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Let G- be a reductive group. Using the usual notation of the theory 

of algebraic groups B ~ T are respectively a fixed Borel Subgroup 

and a fixed maximal torus in CT; ~ = ~ (G, T); ~+ = ~(B, T) etc. 

be the set of unipotent conjugacy 

classes in G- , where C( u .L ) is the class conta.ining u l , and C( u . ) = 
l 

C(u.) ~ L=~ • 
J 

Let (3 be the variety of Borel Subgroups, u e G 

unipotent and f3u.. = l 8 e f3 ILl e. 81. A (u) = ~tT(u) I ZGr(u)
0 

acts 

on the irreducible components of f3u of maximi.ll dimension. 

the number of such components fixed by a E: A( u) 

Let c( u) be 
a 

Basic assumption If C E: .t then w ~ W = UlG,T) such that 

C U
+ 

n w 

Results 

= 

I) 

u + 
w 

\[we~/ (u)(ILL+ \ c = w 

I ltl I 

u+ 5I ~· = c(u) w a EAt u) 
IA(u..Jl 

{ r= = -'-

2 
a 

2 II) (SPRING~R'S RESULT) L c( u. ) 
L=l I A(uJI a. e A ( l.l.) 

L a 
l 

N0\-1 let Gr = SL (n 1 K) 1 B 2 T be the groups of upper triangular 

matrices and diagonal matrices respectively. \v(G IT) ~ s 0 

n 
Let ( lz ) 

= ( R1 1 ••• , ~r) be an ordered partition of n, d( R. ) the dimension of 

the corresponding irreducible representation of S , 
. n 

N. 
~. 

c 

matrix -\i'ith --l ,-s on -the superdiagonal and zeros elsmo~here, 

the R.. X R· l l 

= 

l + N ~ ® N. E£> . . . ID N 1 and 
1 1::12 ~r 

1 w e- S , the image of the Bruha t 
n 

cell B w B under the canonical map ~ ~~ 

Result ---

(orol\orf 

\ \ w ~ s.., \ c~. n 1.3 * ,~, 
-- I LL(~ 't' I 

The :-tur.Jber of irreduGible con:.:-:n:e;"~t::; of f1 tt 
(td 

of maximal di~ension equals d(R)" 
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Let G . be a connected reductive algebraic group defined over an 

algebraicaliy closed field K, T be a maximal torus in G, B a Borel 

Subgroup of G containing T, W • W(G,T) the Weyl Group of G with 

respect to T, and _/, be the set of unipotent conjugacy classes in G. 

G. Lusztig has recently proved that the number of elements, 1.-e..1, of [. 

is finite·. To each w £· W we can associate a closed irreducible unipotent 

subgroup u + 
.W t 

of B~ Thus·, we can associate to ~ach w £ W the unique 

element c of /e which intersects + U in a dense open subset. w In this 

way we obtain a map ~ : W ~~. We make the following basic assumption: 

if C £ .)?, then the.re exists w £ w such that 
-·:.----- . 
u n c _a c, or equlvalently, .. ·--·--· --·-- w -·- -----------·-·--------·-·-. 

This assumption holds-in the following cases: 

(i) G . is a quasi-simple algebraic group for which the Carter Bala 

classification holds. (see 3) 

(ii) G • SL(n,K) 

(iii) G. • SO(n,K) or Sp(n,K), ·where K has infinite transcendence 

degree over its prime field and char(K) ~ 2.· 

Let B be the 'flag variety' of Borel Subgroups of G. If u £ G is 

unipotent, then Bu • {B £ B lu £ B} is a closed subvariety of B, and 

the finite group where is the centralizer 

of u in G and is the identity component of acts on 

} u' lu_ bei_ng the set of irreducible components of B of maximal dimension, 
u 
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as follows-: if F £'1 u 
0 and yZG(u) £ A(u), 

0 -1 
then yZG(u) .F • yFy • 

If c(u)
8 

·denotes the number of elements of tu fixed by a£ A(u), 

then 

1 l 
a£A(u) IA(u)l 

c(u) 
a 

2 
••• I 

where C(u) denotes the element of ~ containing u. 

of 

that 

If-~ ~ {C(u1), ••• ,C(u1)}, 

G, and i ~ j implies that 

1 

where 

C(u.) ~ C(u.), 
1 J 

l: 
a£A(u.) 

1 

are unipotent elements 

then it follows immediately 

2 c(u.) 
1 a ••• II 

In particular, if G • SL(n,K), then W ~ S , 
n 

the symmetric group 

on n elements, and ZG(u) is connected. Thus 

Is I .. n 
2 

n . • u. 
1 

where n = u. 
1 

It I u. 
1 

This briefly covers the material of Chapter 2, t_he ·main result being 

II~ Chapter 1 provides the necessary background material. 

T. A. Springer presented the result we have labelled II in a seudnar 

at Warwick·u~iversity during Easter 1975. This suggested that I might be 

true. We later found that it was m fact an immediate consequence of the 

work we had completed prior to T. A. ~pringer's seminar. Springer's proof 

of II is ·algebraic in nature where as ours is geometric; ours is much 

easier. R. _Steinberg has also obtained these results. We obtained our 

results just after Steinberg and quite independently. 

·In Chapter 3 we look specifically at the group SL(n,K). We prove 

that our basic assumption is true for SL(n,K), and then go on to look 

further at the fibres of the map n. 

We assume that· K has infinite transcendence degree over its prime field. 
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Let T· be the maximal toru.s consisting of the diagonal matrices in 

SL(n,K), and B be the Borel Subgrou~ of upper traingular matrices in 

SL(n,K). Note %hat W • W(SL(n,K),T) is isomorphic to s • n 

The unipotent conjugacy classes of SL(n,K) are in one to one 

correspondence with the ordered partitions (k) • (kl•••••kr) of n 

(k. £. l + for i • 1, ••• , r, 
1 

r r k .• n, 
. 1 1 

and ki ~ ki+l for i • l, ••• ,r-1). 
1• 

Also, there .. is a bijective correspondence between such partitions and the 

irreducible representations of s • 
n 

We let denote the dimensi.on of 

the repre~entat'ion corresponding to (k). It can be shown that 

r· 
partitions 

(k) 

... Is I n ••• III 

Let + 1 £ Z ,then let N1 be the 1 x 1 matrix with ones on the super-

diagonal and zero's elsewhere. Also, if 

partition of n, then let 

(k) = (kl•····k) r 

tt; • • • tt1 Nk • If 
r 

is an ordered 

w E W, then 

let c be the image of the Bruhat Cell B w B under the canonical w .. 

morphism G + B, g ~ Bu. 

Our int~rest lies in the set 

· N • {w E W I C (\ B + 9), 
u(k) .w u(k) 

and we pr_ove that 

This· together with III and the results of Chapter 2 enables us to 

show that nu • d(k)' ·where u is any element of the unipotent conjugacy 

class of SL(n,K) corresponding to (k), and n is equal to the number 
u 

of irreducible co~ponents.of B 
u 

of maximal dimension (cf page ii. ) . 
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Finally, in Chapter 4 we show that our basic assumption holds for the 

groups SO(n 1 K) and Sp(n.K) (see page (i)). All we do in this chapter 

is to combine the work of Carter and Bala ('3) and Gerstenhaber (5). 
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B A S I C C 0 N C E P T S 

Our aim in this chapter is to give a brief outline of the basic 

material which will be needed in later work. We begin by giving brie~ 

descriptions of Root Systems and Algebraic Varieties, and then go on to 

describe the structure of Linear Algebraic Groups. (Basic Reference, 

11Linear ~l.gebraic Groups 11 
1 by A. Borel). 

1.1 ROOT SYSTEMS (SEE 2) 

Let E be a finite dimensional, real Euclidean Space with inner 

product ( 1 )E. 

1.1.1 Reft'ections: 

If a £ E "" {O} and H = { v £ E I (v, a') = 0}, 
a 

denote th~ r•flection of E in the hyperplane H •. i.e. 
a 

T (v) 
a 

"'!' v -

~t is cl~ar ·that t 2 = 1. 
a 

1.1.2 Abstract Root Systems: 

2(v,a) · 
(a,a).a \;J v £ E. 

then let 

A subset, w, of E is called an abstract root system if it 

satisfies the following conditions: 

(i) 0 ¢·~• ~ is finite and spans E. 

T 
CL 
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(ii) If a c ~. then T (Ill) . ~. 
a 

(iii) If a, ~~ (. oil, Lhen 2(al e> is an integer. 
(<~,n) 

(iv) lf II I. oil, t I. l! .· anc.J t n t.: ojl, Lh~n t .. tl. 

Definition: The dimension of E is called the rank of ~. 

1.1.3 The Equivalence of Root Systems 

Suppc;>se ··that E and E' are two, finite dimensional, real Euclidean 

Spaces with .inner products ( , )E and ( , )E' t:espectively, and suppose 

that ~ ~ E and t' · E' are root systems, then ~ 1s said to be 

equivalent to ~· if there exists a linear isomorphism f: E • E' 

such ti&a t: 

(i) (vl, ·.y2 )E = (f(v 1), f(v 2 ))E' for all v 1 , v 2 e: E. 

(ii) f maps ~ bijectively onto ~·. 

1.1.4 Examples (seeS) 

then the subsets of E rep·resented in the diagrams belo~ are root systems. 

Moreover any other root system of rank 2 is equivalent to one of these: 
I 

I 

I 

I 
l 
1 

\ 



-<-----
- O(:L 

\ 

- 3-

tX . 

1 2 

I 
-1-------------~ 
. o<._ 

-- C'~ 
2. 

.....: lX' ... c( 
.1. !l. 

, -· CLJ. \ 
~----------- -------;~ 

-- ::!( ··':( 
~ . 2 

.. :..v 2 

a1 and az are 

pe~pendicular and any 

ratio la1l : lazl is 

permissible. 

All the vectors have the 

same length and the angle 

between adjacent vectors 

is n/3 • 
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3) B:t 

c<.,_ c/.1 -t ex,_ 2cx 1- ':\: 
.\. :1. 

~ 
A ;1 

I / 
/ 

I / 
".., ' i 

/ 
/ 

"- I "' 
, ,. 

...... I ' 

.·-C\:1 +---·--/f~·. . ----------~;.. 

C{ 
l. 

I '"'"· 
I ' 

The angle between ~djacent 

vectors is w/4. 

l " ~ 
- l\':l.. 

- 2. 01"]. - ()( 
. 2. --c.! :L •.. X:l. 

4) G:t 

The angle between adjacent 

vectors is v/6. 

1.1.5 The Weyl Group: 

Let t ~ E be a root system. ·. Then the subgroup W(~) of GL(E) 

generated by h a a & ~} is a pe~mutation group of t,. and is thus 

finite. W(~) is called the Abstract Weyl Group of t. 

Example~- The Abstract Weyl Group of a root system t of type A~ 

(see the above exam~le) is isomorphic to S3, the symmetric group 
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on three elements. i.e. 

./ 
/ 

T 
a.l 

(see l.l.l). From the above diagram it is clear that 

We.get the required isomorphism ~y mapping 

and 

1.1.6 Bases: 

T 
a.:.! 

onto 

A subset n of ~ is called a basis of ~ if: 

(i) n is a basis of E. 

(ii) If a £ then where the m 's 
B 

.like sign. 

are integers of 

Bases exist; W(t) permutes the collection of bases simply 

transitively., and every root lies in at least one base. If a basis n of 

t is fixed, then its elements are called simple roots. 
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A subset ~ ·of t is said to be a set of positive roots if: 

(i) a· £ ~ if and o~ly if -a ¢ ~. 
(ii) If ·a, S £ ~ and a+ 8 £ t, then a+ 8 £ ~. 

Let f :denote the collection of all such sets of positive roots, 

and 7r the collection of bases. Then the map r : ll'-~ f, given by 

f(lT) • {a £ t I a .. l m
8

B, m
8 

;r. 0} for all :ir£71', is a bijection; 

£f. 
8£11 

i.e. if ~ then· r~<~> "' {a £ ., I a - 8 ~ lj/ 1 V B £ ~}. 

If 
.. 

fixed basis"of 41 then we· write t+ for r('ll'), and call 1T 1s a . I 

t .. t -. + 
~he set of negative roots with respect to 1To 

1.1.7 The Heisht Function 

If a • l mBB £ t, then we put h(a) "" r mB. h(a) is called 
8£1T 8£1T 

the heisht of the root a with respect to the basis 1T. The number 

max (h(a)) is independent of the choice of· n, an~ is called the hei&ht 
a£t 

of the hishest root. 

1.1.8 Example 

In Example 1.1.4, a1 and a2 are si~ple roots in the various root 
. . . 

systems.· . In .the root system ·of type B2 a 1, a 2., a 1 +a2 and 2a1 +a2 are 

the posi.tive roots, and -al, -a·2 1 -a1-a2 and -j,aal-a2 are the negative 

roots correspond.ing to the basis {al,a2 }. Also, in this case, the height 

of the heighest root is 3. 

We now fix an arbitary basis . 1r of t. 

1.1~ 9 The Length of the Elements of W(t) 

The elements of the set {T a £ n} are called fundamental 
a 

reflections. W(t) is generated by the fundamental' reflections (c.f. the 

example in s.ectio~ 1.1.5) •. The length !(w) of w £ W(t) is the smallest 

non-negative integer q such that where a. £ 11 
1 
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for i .. l, ••• ,q. 

l(w) .. - + It t \ w41 I 
+ I -

> I· .. lla & 41 wa & 41 

There exists a unique element 

a maximum. 

1.1.10 Subsystems 

and w .. w 
0 0 

Let. S be a finite subset of 

A E -#. }. Now if J .;-- lT, then tJ u 

subspace of E spanned by Ji ~J 

w 
0 

-i 

E, 

of W(~) 

and put 

=tf\Y.J is 

for which t (w ) 
0 

is 

ll.S .. {v E E I v .. r 
ue:S 

a root system in the 

is called a subsystem of t. J is 

A u· 
u ' 

a basis of t J" Also, W(~J) can be identified, in the obvious way, with 

the subgroup WJ of W(cj>) generated by {T I' a E J}. If T E WJ' then a 

1.1.11 Orr:kin Diagrams and Irreducible Root Systems 

Suppo.se.that 1T={alta2, ... ,at}." TheD~nkinDiagram, \7, of~ 

consists of. t nodes, each .of which represents a distinct element of lT. 

The nodes ·which 
2 

4(a.,a.) 
1 J . 

(a. ,a.)(a. ,a.) 
1 1 J . J 

represent the simple roots a. 
1 

and 

bonds. Further, if (a.,a.) ; 0 
1 J 

a. 
J 

are joined by 

and la.l < la.l' 
1 J 

then this 'is represented by an arrow which points from the node which 

represents a. 
1 

to the node which represents a. • •J 

A root ·system is said to be irreducible if it cannot be written as 

the disjoint uni.on of two, non-empty, mutually orthogonal subsets. Up 

to equivalence, the irreducible root systems are in one to one correspondence. 

with the f~llowing Oynldn Dia.grams: 



At 

81 

cot 

Di. 

Ea 

Ill. 
1 

(1 

(1 

(1 

(1 

~ l_) 0 t) 0 

> 2) ~ 

?- j·) . o.-:..-o-a 

~ 4). o--o---o 

. 

. 

. 

8 -

o=- 0 (t nodes) 

o o ; o ( 1 nodes) 

o <bf=o ( t .nodes) 

~ (~ nodes) 

If t is a root· system, then t • c11 1 u t 2. u ••• \..i ll>p' where each 

is an irreducible subsystem-of 111, and t. and t. 
1 J 

an· mutually 

orthogonal _whenever i :1- j. The subsystems t. are called the irreducible 
l 

compore nts of t. The Dy'1lkin Diagram of Ill is of the form 

\71 Ell V' 111 . . • ~ \/ where V. is the_ Cynkin Diagram of 2 p' l 

t .• i = 1, ••• ,·p. {If r--· .. 0---o,_:?:=O and .<;..72 = o-o, then 
l 

v 1 

'\71 If' \72 .. D-----0=,~.0 o-----o.} 
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1.2 ALGEB~IC VARIETIKS (SEE 9) 

We will use K to denote an algebraically closed field. 

1.2.1 Affine Algebraic Varieties: 

An affine algebraic variety is a pair (V,K[V]), where: 

(i) V ·is· a set and K[V] is a finitely generated, commutative 

K~algebra of K valued functions on V. 

(ii) If x, y E V and x·? y, then there exists f E K[y] such 

that f(x) ; f(y). 

(iii) If lJ,I : K [v] -+ K is a K-algebra morphism, then J x E V such 

tha·t lJ,I(f) = f(x) for all f E K[v]. 

If x ·E V, then we let ex denote theevaluation at x (i.e. 

e (f) = f(x) ·v f E K[V]). By: (ii) and (iii) above it is clear that the X . 

map V-+ Ho~-alg(K[V],K), x-+ ex' is b~jective. Also, we can identify 

the points· of V with the maximal .ideals of K[v], i.e. x -+ Ker(e ). 
X 

In general we shall not d.istinguish between V and the pair 

(V, K[V]). K[v] ·is called the co-ordinate··~ing of V. 

1.2.2 The Zaiski Topology 

If ~ -;;, K[v], then we call V( c.".) "':' {x E V I· f(x) = 0 \J. f E t'li. } 

a closed subset of V. In this.way we obtain a topology on V. This is 

called the Zariski Topology. 

Note: If. 'il· is the ideal in ·K(v] generated by ·e,_·, then V(Clt).= V(<f_). 

Thus, since the ideals of K [v] are finitely generated, it is clear that 

there exists a finite subset ~,. of fQ_ such that V(i~) = V( •JL) • 

If f E K[v], then vf = {x E V ·I f(x) "' 0} is an open subset of 

v, and it is .called a Erincieal. oeen set. The principal open sets form 
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a basis for the topo~ogy on V~ any open·subset being the union of a 

finite numb~r of principal open sets. 

1.2.3 Morphisms of affine v.arieties 

Let U and V be affine algebraic varieties. A function a : U + V 

i_scalledamorphismif,forall fEK[v], foa£K[u]. If a isa 

* * . morphism, then a : .K[v] + K[u], a (f) = f c a, is called the comorohism of 

If a is.a ~orphism, then: 

(i) Foi ail ·f £ K[v], Thus a is continuous. 

(ii) e ( )f a f(a(u)) • e (a*f), and thus a is completely determined a u . u 

* by a • 

If a : ·U + V and a : V + W are morphism& of affine varieties, then 

sois aoa •. Further (aoa)*=a*aa*. 

1.2.4 Subvarieties 

If V is an affine variety and W is a ·closed subset of V, then 

W is an affine. varie·ty with co-ord~nate ring K (w] = ~ [v] I I (w], where 

r[w] "" {.f £ K.[v] l"f(x) ""o, ·v x £ W}. W is ca"tled a closed subvarie!X, 

of. V. 

If f. £ K[v] - {0}, ~hen. let K[v"Jf denote the localisation of 

K[v] at f; 

g £ K (v] and 

i.e. K[vjf is the ring of fractions of 

r is.a non-negative integer. Vf is an 

co-ordinE:lte ring K [v] f - note that if x £ V f 

..& (x) .. ·g(~) 
r r · f. ·f (x) 

the form ~ , where 
ir 

affine variety with 

then 

a. 
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1.2.5 Affine n-space 

If we let {X1,X2••••X } be a set of n independent indeterminants, 
n 

then R III!_K~~ltX2•···xnJ is, in the obvious way, a ring of K-valued 
7 

functions on Kn. It is easy to sec, by the Hilbert Nullstellensatz Theorem, 

that Kn is an affine variety with co-ordinate ring R. 

If v is an affine variety, then there exists ~l,u2• • • • ,un. £ ~[v] 

such that K[v] = K[u 1,u2, ••• u ']. Further, if x1,x2 ••• x are n independ-n .-· n 
·:· 

ent indete~inants, then we ~an define a K-algebra morphism. 

* by putting t (X.) = ii. 
1 1 

for i • 1, ••• , n. 

Hence, we can obtain a morphism of algebraic varieties, 

. c*. comorph1sm .. 

n t: V • K , with' 

i.e. ·Identify V with the maximal ideals of K [v], and K0 wit!"t 

the maximal ideals of K[X~tX2 , ••• X']. Now, if CQ is a maximal ideal of 
n 

K[v], then put t(~) = (E;*)- 1 (~.).· 

It can be shown that: 

(i) t(.Y.)' is a clc:>sed subvariety of Kn. 

(ii) f;: V • t (V) is an iso~orphism of varieties. 

Thus, .there exists n such that V is isomorphic to a closed 

subvariety of Kn. · 

l. 2. 6 Exa~ples 

Note:- if at is an ideal in K [v], then I [v ( <31.)] • the radical of & • 

Also, if f1~f2•••••f £ K(X1 1 X2; ••• x ], then (f1,f 2 , ••• ,f) denotes 
p n p 

the ideal- in K[XltX2, ••• X
0

] generated by f1,f 2, ••• fp. 
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Example 1 

jv 

/ 
\ 

- 2 
V • V((X1 3- - X2 )) • and is a closed subvariety of K2 • 

I[v] • (X13 - x22>. and thus K[v] • K[x1.x2J I (X13 - x22). 

Example ,2 

x, 
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Example 3 

M (K), the set of n x n matrices with coefficients in K, is an 
n . 

affine vaiiety with co-ordinat~ ring K[Tll•Tl2•.••••Tnn]' where 
n2 

T .• ((a ) ) • .a .. 
1J pq 1J 

for all (a ) t ~1 (K)i i.e. M (K) := K • pq n n 

GL(n,K) is the principal open set 

is such that D((a )) = det((a .)) for all (a ) t M (K). The pq pq. pq n. 

co-ordinate ring of GL(n,K) is K(Tll•Tl2•••••Tnn' ~]· 

1.2.7· Products of Affine Varieties 

If U and V are affine varieties, then K[U] ® K[V] is a 

finitely .generated, commutative K-algebra of K-valued functions on 

U X V. i.e~ If rn f. ® g. E 

i=l 1 ,1 
K [u] Q!! K[v] and (x,y) E U X V, 

n· n 
then r . f. .QD g. ((x,y)) .. r f.(x)g.(y). u X V is an affine 

. 1 ·1 1 i-=1 1 1 
1"" ':. 

variety with ·co-ordinate ring K [u] ® K [v]. 

We note ·that the Za:-is~i Topology on U x V is not the same as the 

product topology. 

Example 

The ·qu.~dric X1 2 + X2 2 "' 1 is ·a Za-iski closed subset of K2 = K x K, · 

but it is not a closed subset in the product topology on K2• 
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1.2.8 Algebraic Varieties 

We now extend our definition from affine varieties to varieties in 

general. An algebraic variety ~s a finite collection of affine varieties 

which have been suitably patched together; i.e. an algebraic variety is a 

topological space 

{U.}. 1n such that: 
1 1• 

V ·for which there exists a finite open covering 

•• 
(i) Each.· U. is an affine var~ety. 

. 1 

(ii) u. tl u. 
1 J 

is a principal open set in both u. 
1 

and u .• 
J 

and the 

identity map is an isomo~hism of the two affine structures on 

u. n u. (obtained from u. and u .) • 
1 J 1 J 

(iii) {(x,x) £ U. X u. X£ U. n U.} is a closed subset of U.(\ U .• 
1 J 1 J 1 . J 

(iv) u is open in v if and only if u (\ u. 
1 

is an open subset of 

for each i • l, ••• ,n. 

u. 
1 

If V· is an algebraic variety, then we write K(v] for the algebra of 

rational ~unctions on V which. are defined ev~rywhere. A function f is said 

to be defined at x £ V if for some affine open neighbourhood U of 
X 

x, 

f • g/h . -w~ere g, h E K[U ] (in the old sense) and h(x) ~ o. Note that if 
X 

V is an·affine var~ety, then K(V] as defined above coincides with KlVl 

in the old·sense. 

A subset ·.z of V is said t~ be locally closed if "it is the 

intersection ~f an open subset and a cJosed subset of V, or, equivalently, 

if it is open in its closure. If Z is a locally closed subset of V, 

then it ~a~,· in_a natural way, the structure of·an algebraic variety. It 

is calle~.·-a iubvariety of V. 

1.2.9 Moiphisma of·varieties 

Let : V and W be algebraic varieties. ·A function ·a: V ~ W is 

called a morphism of va~ieties if: 

(i) a.· ·is c9ntinuous. 
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(ii) If S and T are·ppen subsets of U· and W respectively, and 

a(S).;; T, then there exists a K-algebra morphism, aST: K[T] -+l,<[S], 

such that 
T . 

as _(f) = __ f o_ a for all 

We denote the collection of maps 

comorphism.of a. 

1.2.10 Projective Varieties 

f_ E K ["rl· 

* a • * a is called the 

Let P (K) denote the set of lines, through the origin, in Kn+l. 
n 

· · · n+l 
Also, if (x ,xl•• •• ,x ) E K • {O}, then let [Cx ,xl•• •• ,x >] denote o n o n 

the line.in P (K) on which (x ,x1, ••• ,x) lies. It is clear that 
n o n 

[<x ,x1, ... ~x >] • [<x ,x11 ••• ,x >] if and only if there exists k £ K~ o n . o · n 

such that". x. • kx. for i • 0, ••• n. . . 1 1 ,.. 

Let _..Ui = {[(x
0
,xlt••••xn)] I xi p o} for .i =- O,l, ••• ,n. Then 

each U.· is an affine algebraic variety with co-ordinate ring 
1 

lx . x1 . 
K ~ x. I X. I • • • I 

1 . 1 

X. X~ 1 n - -x. • . • . • X". 
1 1 

where 

X x 
" -;f ( [Cx0 ,~lt·. ·. ,xn_)]) ~-!: for i = O,l, ••• ,i, ••• ,n. i.e. the map 

1 1 ,..... 
. ( X X} ·X.. X ) 

from U .· to .Kn · b 
1 

g1v~n y [<x ·,x1.,. •• ,x >] -+ ....2., -, ••• ,....!., ••• ,...!! . o n . x
1
. x. ·. x. x. 

1 1 . 1 

a bijection. 

Now: 

(i) 

(ii) 

(iii) 

p .(K) ·.,. 
·n u .• 

1· 

U .. (\ U. is .a principal· open set in both 
1 . J 

U .. and 
1 

u. 
J 

_(i.e. U. f\ U. = 
1 J 

(U.) X .. 
1 . (u. >x > • 

J i 
and the identity map_ is an 

......J.. x·. 
1 

X. 
J 

is_omorphism of the two affine structures on U.f\U •• 
1 J 

.{(_~~x)· E U. ·.xU. I x E U. (\ U.} = V(G1_), where 
1 J 1 J 

is 



X 
CQ. ={...,.e. s 

X. 
1 

So, 

is open 

X. 
·1 

X. 
"J 

if 
:: 

w~ 

if· and 
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X 
1 ® t: /\ 

p ,.. o, 1, ••• , i, •.• n} £. K [u .] 
1 

J 

define a topology on p (K) 
n 

by saying that 

only if u ."\ u. 
1 

is an open subset of u. 
1 

U •:;. P (K) 
n 

for i .. 0, 1, ••• n, 

then it is cle_ar that P (K) has the structure of an algebraic variety. 
n 

Any closed subvariety of Pn (K) is called a proj_ective ~ariety. 

1.2.11 Irreducible Comporents 

A topol~gical space is said to be irreducible if it is not the union 

of two proper closed subsets, or, equivalently, if every open subset is dense. 

Any topological space X has maximal irreducible subsets, these are closed 

and they cover X. ~hey are called the irreducible components of X. 

If Y is a su~spa~e of X, then Y is irreducible if and only if 

Y is irreducible. Also, if X and Y are topological spaces, X is 

irreducibfe and a: X -+ Y is a continuous map, ·then a(X) is irreducible. 

A var"iety has a finite number of irreduc~ble.components. If V and 

W are varieties with irredu.cible components and 

wl,w2•····w· respectively, then v·x w is·a variety with irreducible 
s. . . 

components. yi x_ ~j' i = 1,2, ••• ,r and J = 1,2, ••• ,8. 

Examples ·(i) In example 1 of section· 1.2.6 v is an irreducible variety. 

(ii) In example 2 of 1.2.6 the variety v has two irreducible compor.e nts, 

namely the plane x3 = o, and the line Xt .. x2 "" o. 

1.2.12 Dimension 

The·· dimension. of a topological space X is defined to be the 

supremum of the ·lengths of chains, F c F 1 c . • . c F , of distinct, 
o n 



- 17 -

irreducible'closed subsets of Xo Dim X E ~+ or dim X • t~ 

(Dim ~ = ->.o If X E X then dim X 
X 

= Inf{dim U I u is an open neighbour-

hood of X }o If X. (1 ~ i ' n) are closed subsets whose union is X, 
1 

then dim X "'max dim X. o 
i 1 

If v is a variety, then: 

(i) dim v is finite. 

(ii) if. V.(, v2 , o •• , V are the irreducible co'!llponents of V, then s 

dim .V "'max dim V •• 
1 i 

(iii) if V is irreducible and U is an open subset of V, then 

dim U • dim V. 

(iv) ~f: W is a variety, then dim V x W = dim V + dim Wo 

Examples In example l of section 1."2.6 dim V = l, and for all 

v E V dim V "' l.. In example 2 of section 1.2.6 dim V • 2; also, 
v 

then dim V.= 1. 
v 

then dim V = 2, and if v = (O,O,x3), x3 1 0, 
v 

1.2.13 Fibres·of Morphisms 

If a: ·u +·V is a morphism of varieties; and v t a(U), then 

-1 
the closed ~ubvariety a (v) of U is ·called the fibre of ~ over v. 

Lemma: 

(i). If ·.a: U+ v is a morphism of varieties with u irreducible and 

a (U) ··dense in v (such a morphism is said to be dominant), then 

-r dim a (v) ;,. dim u + dim V for all v· E a (U). Further, equality 

holds for all v in some open-subset of a (U). 
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(ii) If a: U ~ V is a morphism of varieties, then a(U) contains 

a dense open subset of a(U). 

1.2.14 Tangent Spaces 

The definition· of a tangent space TV 
v 

to a variety V at a point 

v E V is quite involved, and although we give a definition below, an 

intuitive idea of what is meant by a tangent space is suffici~nt for our 

needs. Thus we begin with some examples: 

(i) 

X:. 
l 

X 
1 

As we saw in example 1 of section 1.2.6, V is an algebraic variety. 

The tangent space to V at the point P is the line indicated. 

Dim TPV ~ l, and this is equal to di~V when this occurs we say that P is 

a simple point. On the other hand t 0v • K2 and dim0V ~ dim T0V. 0 is 

called a singular point. 



(ii) 

v consists of the plane 
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X3 .. o, and the line x1 

X 
l 

... ~2 ... o. 

TV .. p 
K2 and p is a simple point. TQV .. K and Q is a simple point. 

T0V Ill K3 and 0 is a singula:r point. 

We now give a formal definition of a tangent. space. Let A be a 

commutative K-algebra, and let M be an A module (since A i.s 

commutative, we can regard M as a right and a left A module). A linear 

map 6:. A·~ M is called a derivation if o(ab) .. a6(b) + 6(a)b for all 

a, b £ A. We let DerK (A,M) deno.t·e the K-vector space of derivations from 

A to M. 

We note that if V is a variety, W is an open subvariety of V 

and f £ K [ V] , then f I W E K [ W J • 
Let V be an algebraic variety and v E V. Also, let 

Xv .. <ulu open in V, v £ U}, and r 
v 

be the disjoint union of the 

co-ordinate rings of the elements of ~· Suppose that v1 ,v2 E )\,, 

f E K[v 1] and g £ K[v2], then we write f - g if there exists 

is an equivalence relation on rv' and the set, 

equivalence classes is called the stalk of V over v. 

a , of 
v 

If fEr, 
v 

we let denote the corresponding element of a • v 
Al~o, if 

then 
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v1 ,v2 £ x, f £ K[v 1], g £ K[vJ, f 1 
.. fiV 1 f\ v2 , v 

g 1 
.. siV1 !\ v2 and k £ K, then we write: 

(i) 

( ii) 

(iii) 

[ f] • . [g] '"' [ f I • g I] 

[f] + [g] a [f 1 + g1J 

k[fJ a [kf] 

It is easy to see that these operations are well defined, and that 

av has the. structure of a commutative K-algebra. It can be shown that 

av is a local ring. We let K denote the residue class field of a v v 

(i.e. K .. a /m where m is the maximal ideal of a). K is v · v v' v v 

isomorphic to K, and is, in the obvious way, a a module. The v 

tangent space to v at v is the K-vector space DerK(a ,K ). v v 

We have seen that a point v f: v is said to be simple if 

dim V • dim T V. A variety is said to be smooth if all of its points are v v 

simple points. 

If V · is a variety, and Y is the set of the simple points of V, 

then: 

(i) Y is ~n open dense subvariety ·of V. 

(ii) The connected and the irreducible components of Y coincide. 

If a: U ~ V is a morphism of varieties, then we can differentiate 

a at u £ u· to get a linear map da : TU~T<>v. i.e. If X £ T U u u -'~ u u 

and f then da (X)f * * is given 
£ aa(u)' = X(a (f)), where CJ : ·a ~ a u a(u) u 

by a*([h])_ • [boa] for all [h) £ 
0 a(u) • 
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1.3 LINEAR ALGEBRAIC GROUPS (SEE l) 

1.3.1 Algebraic Groups 

A set G is called an algebraic group if: 

(i) It is an algebraic variety 

(ii) It is a group 

(iii) The group operations ~: G.x G ~ G, u((x,y)) • x.y, and 

i: G ~ G, i(x) • x- 1
, are morphisms of algebraic varieties. 

G is .. ·called an affine algebraic group if it is an affine algebraic 

variety. 

A map a: G ~ G' is called a morphism of algebraic groups if it is 

both a morphism of varieties, and a group homomorphism. 

1.3.2 Linear Algebraic Groups 

We have already seen that GL(n,K) is an affine variety, and we will 

now show that it is an algebraic group. 

i.e. If G ~ GL(n,K), ~: G x G ~ G is given by u((X,Y)) = XY 

and i: -~~c isgivenby -i(X) -x- 1
, then: 

(i) The K-algebra morphism *· u • K(G] ~ K[GJ ® K [G], given by 

u*(T . .") ~ t T. ® T·. (see example 3 of section 1.2.6 for the 
1J p=1 1p PJ 

notation), is such that u* (f)( (X, Y)) = f (XY) "" f o u ((X, Y)) for 

all f e: K[G] and X, Y e: G •. Thus lJ is a morphism of affine 

varieties with comorphism * ~ . 
(ii) The·K•algebra morphism ·* 1 : K(G] ~ K[GJ, given by 

·* . ' i+j -1 1 (T .. ) • (-1) D det(T ) ~· ~·• is such that 
1~ rs rrJSr1 

i*(f)(X) ·= f(X- 1
) ~ f o i(X) for all f e: k[GJ and X e: G. 

Thus i is a morphism of af-fine varieties with comorphism 

• 

·* 1 • 
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A closed subgroup of ·. GL(n,K) is called a linear algebraic group. 

Theorem (See 1) If G is an affine algebraic group, .then G is 

isomorphic to a linear algebraic group. 

1. 3.3 The Identity Component 

An algebraic group is smooth, and its irreducible and connec.ted 

components coincide. We use G0 to denote the irreducible component 

of G which contains the identity element e. G0 is called the identity 

f G I · 1 d 1 b f G and G/G0 1's a component o • t 1s a c ose norma su group o , 

finite group. 

Example The roentity component of O(n,K), the group of orthogonal 

matrices in· GL(n,K), consists of those matrices with de·terminant equal 

to one. Also, O(n,K)/O(n,K) 0 ~ £2 • 

1.3.4 Gro~p Actions 

An algebraic-transformation space i's a triple (G, V ,a), where G is 

an algebrai.c group,· V is an algebraic variety and a: G x V -+ V, 

(g,v) -+ a((g,v)) • g.v, is a morphism of varieties such that: 

(i) e.v a v for all v £ v. 

(ii) g.(h.v) = (g.h).v for all g,h £ G and v £ V. 

We say that G acts on V. If. v £ V, then 

is called an· orbit, and the closed subgroup 

of G is ·called the isotropy group at v. 

G .. 
v 

a(G X {v}) a G.v 

{ g £ G I g.v = vl 
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Theorem (See 1) If G acts on v. and v £ v. then: 

(i) G._v · is 

(ii) G.v, is 

(iii) dim G.v 

Example Int: 

locally closed 

smooth 

.. dim G - dim G v 

-1 
G x G + G, Int((g,h)) • ghg , defines an action of 

G upon itself. The orbits of this action are called conjugacy classes, 

and the isotropy group 'b = ZG(h) is called the centralizer of h in G. 

1.3.5 Homogeneous Spaces 

If G is an affine algebraic group and H is a closed subgroup of 

G, then -we.can,in a natural way, give the coset space G/H the structure 

of an algebraic variety so that the canonical map G + G/H is a morphism 

of varieties. G/H is called a homogeneous space. If H is a normal 

subgroup of G, then G/H is an algebraic group. For further details 

see (1). 

1.3.6 Semi· Direct Products 

Let G and H be closed subgroups of the algebraic group G' such 

that H is normalized by G (i.e. 
-1 

gHg • H for all g t G). The 

cartesian product H x G can be given the structure of an algebraic group 

by dcfini~g a multiplication as follows: 

The map H x G + G', (h,g) + hg, is a morphism of algebraic groups. If 

it is an isomorphism, then G' is called the semi direct product of 

H and G; .we write .G' = H.G. 
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1.3.7 Lie Algebras 

If G is an algebraic group, then the tangent space ~ to G at 

the identity element e can be given the structure of a Lie algebra 

(See 1). g .is called the Lie algebra of G. If H is a closed subgroup 

of G, then the Lie algebra h of H can be identified with a sub-

algebra of ~··Also, if a: G ~ G' is a morphism of algebraic groups, 

then we can differentiate a •. at e to get a Lie algebra morphism 

da: g + g'. 

Example The Lie algebra of GL(n,K) is ~(n,K), the set of 

n x n matrices with coefficients in K, and Lie bracket [x,Y] • XY- YX. 

From now onwards we will assume that G is a connected affine algebraic 

group. 

1.3.8 Unipotent a~d semi simple elements 

If V is a vector space, then X £ End(V) is said to be locally 

finite if V = L VA, where A is an indexing set, and each VA is 
A &A 

a ·finite dimensional, X-invaria~t subspace of V. 

Let X £ G·, and consi"der the automorphism p : 
X 

G+G givel by 

px(g) • gx \j g £ G. It is clear that 

automorphism, and that * * = p 0 p • 
X y 

* p : 
X 

Thus 

* . p(x) a p \J x £ G, is a group hor~"~on'llrphism. If 
X 

K(G] + K[GJ is a K-algebra 

p: G + AutK-alg (K (G]), 

f £ K[Gl, then the sub-

space o~ K[G] spanned by {px*(f) I x £ G} is a finite dimensional vector 

space. Thus if x £ G, then p(x) is locally finite. 

An element s of G is said to be semisimple if p(s) is 

diagonalisable. 

An element u of G is said to be unipotent if p(u) is unipotent. 

i.e. locally, all the eigenvalues of p(u) are equal to one. 
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Theorem (Jordan Decomposition) Each g £ G may be written uniquely 

in the form s.u, where s is semi-simple, u is unipotent and s and 

u commute.· 

We let G denote the closed subgroup of G consisting of the 
u 

unipotent elements of c, and if G • G u' then·we say that G is a 

unipotent group. 

Example u ·£ GL(n,K) 1s unipotent if and only if all of its eigenvalues 

are equal ~-o 1, and s £ GL(n,K) is semi-simple if and only if it is 

diagonalisable. 

If u £ G is unipotent, then for all g £ G, 
-1 

Int(g)u = gug 

is also unipotent. We are thus able to talk about the unipotent conjugacy 

classes of G. We let -€_, denote the set of unipotent conjugacy classes 
i 

of G, and if u £ G is unipotent, then we let C(u) denote the element 

of -e containing u. 

1.3.9 Character groups and one parameter subgroups 

Notation: we will use G to denote the multiplicative gr;oup m 
K* and G to denote the additive group K. • a 

An algebraic group morphism a: G + G is called a character 
m 

of G. We let X(G) denote the set of characters of G. If 

X1,x 2 £ X(G), then we can obtain x1.x2 £ X(G) by putting 

Xl.X2(g)= x1(g)X 2 (g) for all g £ G; this gives X(G) the structure 

of an abelian group. By writing gX = X(g) we can adopt an additive 
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notation for this group structure. X(G) is called the character group 

of C. 

A one parameter subgroup of C is an algebraic group morphism 

Examples 

(i) 

(ii) 

Let denote the direct product of n copies of c ' m 

and if 1 ~ i ' n, then let X. £ X(D(n,K)) 
1 

({_C<~l,k2 • • • • ,kn)) ~ ki 

Now~ if X.£ X(D(n,K)), 

PltP~t••••Pn are integers. i.e. X(D(n,K)) 

group of rank n with .basis {X 1 • X 2 • •• ~ xn } • 

Let i and j be integers such that 1 ~ i, 

be given by 

is the free abelian 

j :It n and 

i ~ J. Also, let E •• be the n x n matrix with 1 in the 

(· ... ) th 
l,J 

ll 

position and zeros elsewhere. Then the morphism 

£:.: ·c -+ GL(n,K), t;,(k) =I+ k E .. , is a one parameter 
lJ · a lJ lJ 

subg~oup·of GL(n,K). 

1.3.10 The Adjoint Representation 

Let V be a vector space over K, and dim· V "" n (n finite). 

Then, by choosing a basis of V, we can identify GL(V)· and CL(n,K). 

Thus GL(V) has the. structure of an a~gebraic group (no.te that this 

structure is independent of the choice of the basis of v)·. A morphism 

a: G -+ GL(V) is called. ·a representation of G. 

If we differentiate the isomophism Int (x): _G -+ G, x. £ G, then 

we obtain a Lie- algebra isomorphism Adx: ~-+ ~·- and hence a representation 

Ad: G -+ GL(~). ·This representation is called the Adjoint Representation. 
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Example If g £ GL(n,K) and X E gi(n,K), 
-1 

then Ad(g)X m gXg • 

1.3.11 Tori and Roots 

A torus -is an algebraic group which is isomorphic to D(n,K) 

for some n~- Any connected, coDDnutative algebraic group consisting entirely 

of semi simple elements is a torus, and if R is a torus, then X(R) is 

a finitely generated, free abelian group (see example (i) of section 

1.3.9). 

We wili use T to denote a maximal torus in an algebraic group G 

(maximal torii exist for reasons of dimension), and consider the representation 

Ad: T + GL(~). A non-zero element a of X(T) (recall that we are using 

the additive notation for the group structure on X(T)) is called a root 

of G with respect to T if there exists X £ ~ such that 

Adt.X = ta .X for all t £ T. We will· use ~(G"~T), or more simply Ill, 

to denote the set of roots of .G with respect to T. 

If a £ t(G,T), then 

. ~a • { X· £ ~ I Ad t. X = t a. X, V t £ T} 

is called the root spa·ce of ~ corresponding to the root a. If we let 

g 0 
"" {X E g Ad t. X • X} 1 then 

Example 

0 
tf1 11 g ... g . g • 

-=a 

The group T of diagonal matrices in G • GL(n,K) .is a maximal 

torus. Further: 

(i) t(G,T) • {a .. I i,j.= l, ••• ,n, i; j}, where 
:1:-J 

a .. (diag(kp"k2, •••• k)) .. k./k .• 
l.J n 1. J 
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'(iii) 
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& · ·"" (E .. ) and g0 is the set t of diagonal matrices 
~ij lJ 

in gt (n,K) 

It is clear ~hat 

ul'\ 
i ,j =l 
i"j 

(E .. ) 
lJ 

Note that t 1s the Lie algebra of T. 

1.3.12 Borel Subgroups 

A maximal connected solvable subgroup of G is called a Borel 

Subgroup. All the Borel Subgroups of G are conjugate, i.e. if B1 and 

B2 are t~~ such subgroups,· then there exists g e: G such that 

.-1 g 
Bl = g B2 g D B2. 

All the maximal tori of a connected sowable group are conjugate. 

Thus, since any maximal torus of G is a maximal torus of some Borel 

Subgroup of.. G, we have that all the maximal tori of G are conjugate. 

The rank of G is the connnon dimension of the maximal torii of G. 

If B. is a Borel Subgroup of G, then: 

(i) G • 

(ii) NG(B) "" B, NG(B) is the. normalizer of B in G (see page 2<-1 } 

(iii) If T ~ B is a maximal torus of G, 

by T, and B "" T.B • 
u 

then B is normalised 
u 

Example .The set, B, of upper triangular matrices in GL(n,K) is a 

Borel Subgroup of GL(n,K). B = { ~ .. ) e: B I a .. "" 1}. u lJ 11 

Let B be a fixed·Borel Subgroup of G. Then G/B is a projective 

varie.ty - see (l) for details. Also·, if B' is another Borel Subgroup 

of G, then B' • hB for some h in G, an4 the map G/B -+ GlB', 
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gB +···hgh-1 8 1
, is an isomorphism of varieties. Thus G/B is, up to 

isomorphism, independent of the choice of .8. 

We can identify the set ~. of Borel Subgroups of G with G/8, 

i.e. 8s + g8. Thus B has the structure of a projective variety. 

If S s G, then s5 
'"' (B e: B I S <;~ B} is a closed subvariety of B. The 

variety 
·. { u} 

~u .... B ' where u is a unipotent element of G, will play a 

considerable -role in later work. In the above identification of B and 

G/B, Bu ~orresponda to 

ugB = gB ~ g-1_u·g e: B 

1.3.13 The· Weyl Group 

(G/8) '"' {gB e: G/B I ugB'"' gB}; 
u 

i.e. 

~ u e: Bs. 

If .s·.;;, G, then NG(S) • {g e: G I gSg - 1 "" S} is called the normalizer 

of S in G, and ZG(S) = {g e: G gz = zg, \J z e: S} is called the 

centralizer of S in G. 

W(G, T) '"' NG(T} /ZG(T) is. called the Weyl Group of G with respect to 

the maxima!" torus T. 

Since ·all of the maximal tori of G are conjugate, W(G,T) is, 

up to isomorphism, independent of the choice of T. (i.e. If T' is 

another maximal torus of G, then T' = gT for some g £ G. It is easy 

W(G,T) + W(G,T'), is a group isomorphism). 

We write W for ~(G,~). It can be shown that 

hence that. W· is finite. 

If w e:.W an·d· a e: X(T), then let w.ae: X(T) be defined as 

follows:· 

and 

w.a(t) = a(nw- 1 t nw)' where· nw e: NG(T) is mapped onto w by the canonical 

map NG(T) + NG(T)/ZG(T). (Note that if nw' e: NG(T) is also mapped 

onto w, ·.then n '. = 
w where Therefore 



-1 -1 -1 (n ') t . n 1 = z n t w . w w 

is well defined.) 

n 
w 
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z = n - 1 t n 
w w for all t £ T. Hence w.a 

It is easy to see th~t W acts on ~(G,T).(i.e. if a £ ~(G,T), 

then there exists X·~~ such that Adt.X a a(t).X for all •.t £ T. 

Now Adt(Adn .X) a Adn (Ad(n - 1t n ).X) a Adn (a(n - 1 t n ).X) = (w.a(t)).Adn .X. w w w w w w w w 

thus w.a t·t(G,T).) 

Example If G = GL(n,K), and T is the group of diagonal matrices in 

G, then (a .. ) £ NG(T) 
lJ 

if and only if there exists a £ S • n 
the 

symmetric :·group on n elements, such that a(")·. ~ 0 and a .. = 0 for 
a J J lJ 

all i ; ~(j). Also, ZG(T) = T, and the map from W to Sn given by 

(a .. ) T -+ a, where a is as above, is a group isomorphism. lJ 

Now, if 

a .. = 0 if 
lJ 

w £ W· corresponds to C1 £ s ' n 
then n 

a 
= (a .• ) • lJ 

i :/: a(j) and a (")' = 1, a_J J 
is an ·element of NG(T) ,· 

-1 and w "" n T. Also, n
0 

diag_ (k 1,k 2 , ••• ,kn)n
0 

a diag (ka(l):ka( 2 ), ••• ,k
0
(n)). a 

Recall that ~(G,T) = {a .. 1 i,j = 1,2, ••• ,0., i r j}.- see 1.3.ll. It is 
lJ 

and hence that 

1.3.14 Semi-sii.mp.~e· and Reductive Groups 

We .say. that an algebr-aic group G is quasi-simple if it contains 

no non-trivial connected closed normal subgroup. 

If G. is a connected affine algebraic gro~p, then R(G) = (/\ B) 0 

Bta 
is called the radical of c·. It is a connected· solVable normal subgroup 

of G, and contains all other such subgroups. 

R(G)u is called the unipotent radical of G. It is a connected 

unipotent-no~al subgroup of G and contains all other such subgroups. 
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G is .said to be semisimple if R(G) = {e}, and reductive if 

R(G)u ... {e}. It is clear that a quasi-simple group is semisimple 

If G is reductive, then R(.G) is central "in G, and is thus a 

torus - See 1.3.11. Also, the commutator subgroup G' of G is semi-

simple, and G., R(G).G 1
;; 

Examele G ill GL(n,K) is a reductive group. R(G) is the group of scalar 

matrices in ' G, i.e. matrices of the form those >..I, 

Also, c• = SL(n,K) and G • R(G)~SL(n,K). 

Theorem (se~ 1). If G is a reductive group, then: 

(i) Zc'(T) "' T 

~(G,T) = -~(G,T) 

where >. £ G . m 

(ii) 

(iii) g • ..t. 4l ll g ,where _t is the. Lits algebra of T.Also,dim2 • l for all a £ ~ 
0\.cjD -a ~ 

Further if. a£ ~(G,T), then there exists a unique unipotent subgroup 

U of G h~ving the following proper.ties: 
a 

(i) The ~ie algebr~ of u 
a 

is 

(ii) If w £. w, then n U n ~ 1 • U see 1.1.13 for the notation. w a w w.a 

(iii) There exists an isomorphism £ : G -+ U such that for all 
a a a 

k £ G and 
.a 

t £ T, t E'(k)t-l"' £ (a(t)~k) 
a a 

(iv) G = <U , T I a £ t(G,·T) ~· 
a . 

Exa!Ple If C • GL(n,K), and T is the maximal torus in G consisting 

of the diagonal ma~rices, then: 

( i) It ·is easy to see that ZG(T) = T 

(ii) ~(G,T) ... {a .• I i,j ... l, ••• ,n, i " j } • and -a .. = a.. i.e. 
1J lJ Jl • 

t(G,T) ... -~(G,T). 



(iii) 

Now: 

(i) 

(ii) 

(iii) 

(iv) 
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g "" (E •. ) • -a.. 1J 
1J 

.We ·nave already seen that and that 

_& • t.. ~ ll (E ) where _t is the Lie algebra of T. 1,]"•1 ij • 
i"j . 

Rec·a-11 that £ •• : 
1J 

G -+ G a (i " j) is given by E •• (k) ... I + kE .. 0 

1J 1J 

U ., E •• (G ) , 
aij 1J a 

and the Lie algebra of 

If·,atS, 
n 

-1 
n U n a a .. · a 

1J 

If 

t £ 

G • <T, U a .. 
1J 

then 

= u 
aa(i) a(j) 

= ~ .. (a •• (t).k). 
·-1J 1J 

k £ G , 
a 

i,j = 1,2, ••• ,n, i r/: j >· 

u a .. 
lJ 

1S (E .. ). 
1J 

and hence 

then 

1··3.15 The Roots of Semisimple Algebraic Groups 

If . G is a connected· affine algebraic group of rank n, and T is 

a maximal ·torus of G,then X(T) is a free abelian group of rank n (see 

1.3.11) •. Hence the real vector space E • fR ®~X(T) has dimension n. 

We can identify W(G,T) with a subgroup of GL(E), i.e. if w £ W, then 

put tir( t a. ® X.) .. rr a . ® w(X.) (recall that w acts on X(T)) 
i=l 1 1 i•l 1 1 

for all p: a. ® X. £ E. Now, since w is finite, we can define a 
ic:rl 1 1 

W-invariant, positive definite inner product on E. 

Theorem If G is semisimple, then t(G,T) is an abstract root system 

in E, and the Abstract Weyl Group· of t(G,T) is isomorphic to W(G,T). 

(Note that the rank of t(G,T) will be equal to n.) 
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The isomorphism between W{t (G, T)) and W(G, T) is obtained as 

follows: 

If a e: ~ {G,T), then Z ... <T,U ,u > is a reductive group, 
a a -a 

~ (Z ,T) ={-a ,-a}, and W(Z ,T) = { l,o } , where ,.a 2 = 1 and 
a a a a 

aa (a) =-a.- Also Nz (T) t;;; NG(T), and thus W(Za ,T) = Nz (T)/T ~NG(T)/T = 
a a 

W(G,T). Now T- , the reflection of E in the hyperplane perpendicular to - -a 

a (see 1.1.1), is mapped onto a • 
a 

Note:-~ (G,T) is, up to the equivalence of root systems, independent of 

the choice of T. 

Example Let G = SL( J,K)-, and T be the group of diagonal matrices in 

G. As- far as the roots and the Weyl Group are concerned, there is no 

distinction between SL(J,K) and GL(J,K) (cf. 1.3.14 and 1.3.17). 

and W(G, T) ~ s
3

• Now, X (T) is 

the free abelian group of rank 2 generated by {a12, a23}, and thus 

is-a basis of E = fl.t® X(T). q_ We can define an s
3
-invariant, 

positive definate inner product on E ·by putting (a12 ,a12) • (a23• Cl2J) = 1, 

and (al2 ,ai3) a -~ . (note that if a e: 53. and a .. e: ~ (G, T), 
l.J 

then 

a.a .. =a (") (")). It is now easy to sec that t(G,T) is the root system 
l.J a 1. a J -. 

of type A2 descr1bed in section 1. 1. 4. We note that 

/1 k ol 
I 1 0 ~) ' ~ fo 1 I k' 1 k,k' E. G~ ~·12 - I OJ 
\o 

' . T' \0 0 0 ., 
'· 1, 1. 

\ 

and W(Z , T) • 
al2 

[ Id, n12T}, where 

I o 1 

0 ' 
( 1 -1 0\ 11 0 0 J (1 -1 0) (1 0 0) 

n12 = \ 1 0 0 ~ = 010 !110 ( 0 1 0 0 -1 0 
.0 0 ~1/ o o1J.\oo1, ,o .·0 lj 0 0 -1, 
\ 
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1.3.16 gua~i-simple Components 

If .G is a semisimple group, and {G. I i £ I } is the set of 
1 

minimal closed connected normal subgrqup_s of G of posi-t-i-ve dimens-i-on, 

then: 

(i) 

(ii) 

I .is finite; i.e. I= {1,2, ••• ,n} 

(G.,G.) = {e} if if. J 
1 J 

(iii) The product morphism G,l X G 2 X • • • X G -+ G n 
is surjective, and 

has finite kernel 

(iv) The decomposition G = G 1• G2• • •• G 
n 

corresponds precisely to the 

decomposition of ~(G,T) into its irreducible components. 

The groups Gi -are called the quasi-simple components of G. It 

is clear that G is quasi-simple if and only if ~(G,T) is irreducible. 

A qua i-simpie ~roup is said to be of type A 
n 

type A
0

, - Bn_ if its root system is of type 

Examples 

(i) SL(n,K) is of type An 

if its root system is of 

B • n etc. (See 1.1.12). 

(ii) S0(2n+l,K), the group of (2n+l) x (2n+l) orthogonal matrices 

with ·determinant 1, 

(iii) S0(2n,K) is of type 

is of type 

D 
n 

B 
n 

(iv) Sp(n,K), the group of 2n x 2n sympledtc matrices, is of type Crt 

These groups are called the classical groups. 

1~3~17 The Structure of Reductive Groups 

For the rest of this chapter we shall assume that G is reductive. 

G • R.G', where R is the radical of G, and G' is the commutator 

subgroup of G. Recall that R is a torus, and that G' is semisimple • 

• 
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If T' 1.s a maximal torus in. G' • then T = R. T' is a maximal torus in 

G. Now: 

(i) If a·E ~(G,T), then a I T' E ~(G',T'). Also, the m~p 

~(G~T)-+ ~(G',Ti), a-+ a IT', is a bijection. 

(ii) W(G,T) is isom.1rphic to W(G I 'T'). (i.e. g = rgo' r E R 

g E G' 
0 ' 

is an element of NG(T) if and only if go is 

and 

an 

element of NG 1 (T 1
). Thus we can define an algebraic · group 

by putting E; (rg ) • g • 
0 0 

It is easy 

to, se~ that E; (T) = T' , and that the induced map from W(G,T) 

to W(G',T') is a group isomorphism.) 

From (i) and (ii) abov.e it follows that ~(G,T) has the structure 

of an abstract· root sys tern and that W( ~ (G, T)) is isomorphic to W(G, T). 

Let· T be a maximal torus in G. Then the choice of an element 

B E BT is equivalent to the choice of a set of positive roots in Q(G,T). 

and hence ~0 the choice of a basis of ~(G, T) (See 1.1. 6) •. (i.e. if 

B E 
T 

B • thEm· ~ (8, T) is a set of positive roots in ~- Conversely, 

if + 
~ is _a set of positive roots of ~. then B = T.U, where 

u "" <U I a E ~>,·. is the unique element of BT such that cHB, T) 
+ = 4» • ) 

a 

Theorem If T B E B , U 1.s the unipotent radical of B, ~ is the Lie 

algebra of . B, 

(i) u = <U . I 
.a 

(ii) ~ 

(iii) If U 

~ is the Lie algebra of U, 
+ 

and ~ = ~(B,T), 

+ 
a £ ~ > 

il g 
ll<E ~I· --(l 

"' <U I a 
Q 

and ~ = 

-
E ¢ >, then B = T.U is an element of 

is. called the Borel Subgroup opposite B. 

then: 

B 

(iv) the order being arbitary, then the product 

map . U 
. . al 

X. o • X U -+ U a-· . 
~·-N 

is an isomorphism of varieties. 
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Example If G = GL(n,K), and T is the maximal torus 1n G consisting of 

diagonal matrices, then B, the Borel Subgroup of upper triangular matrices 

in G, corresponds to the basis {al2ea23 , ••• ·,:an ... ln} of eii(G,T). The Borel 

Subgroup opposite B is the group of lower triangular matrices in G. 

1. 3.18 The Bruhat.Decomposition 

Let T .be a maximal torus 

of B, and ell 
+ eii(B, T). .,. 

If s c;;.._ G is normalized 

w -1· 
S = n Sn ; note that if w w 

Also, if w £ W then we put 

by 

in G, 
T B £ a • u be the unipotent radical 

T, then we write and w = nwT £ W, 
-1 

n 'T then n Sn = n 'S(n 1
)-

1
• 

w w w • w w 
+ -1 + 

{a tell I w a tc!J} and A -={a £ e~~+lw- 1 o. 
w 

We now consider two closed unipotent subgroups of G, namely 

and - w -u = u~ u • 
w 

If k £" Ga' then 
+ + 

£ (k) £ U <~=;'·a.£ ell 
a w· 

£ (k) 
a 

w -l 
£ U¢:=>n £ (k)n 

w a w £ u. 

k 1 
£ G -a (cf~ 3.1.14). Thus, 

+ 
U = <U w a 

Similarly 

+ atA > 
w 

u ... .c·u ·1 o. e A > 
w 0. w 

lilt 

(. (k) 
a 

-1 
n £ (k)n = 

w a w 
w -1 

£ U =--=1 "'' (a) 

It 1s now clear that the produ~t morphisms 

and £ (k)· £ wu. Now, 
0. 

£w- 1 (o.)(k
1

) for some 
+ . 

£ Ill • 

-
and 

U x U + ~ U a_re iso~orphisms of varieties (see the theorem, part iii, 
w w 

in section 1.3.17 above). 

If w = n T e: W, . w then we write 

Bruhat Cell o"f G corresponding to · w. 

C = BwB .., Bn B· 
w w ' 

C is called the 
w 
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BRUHAT.LEMMA 

(a) G is =·the disjoint union of the double cosets BwB, and Bw' B = BwB 

<==;. w = w'. ··Also, if w £ w, then the map u 
w 

X B -+ BwB, (u,b) -+ u n b w • 

is -an isomo~phism of varieties. 

(b) is the disjoint union of the 

W E W, then the map u w 

U orbits C = U. wB = {uwB I u e: U}. 
w 

"-' 

-+ c • w 
uw 

u -+ B, is an isomorphism of 

varieties. 

1.3.19 Parabolic Subgroups 

A closed subgroup P of G is called ·a parabolic subgroup if it 

contains a Borel Subgroup, or, equivalently, if G/P is a projective variety. 

Let n be the basis of ~ determined by B. If J b n, then we 

can define a map hJ: ~ -+ :~_ by putting hJ(a) = 0 if a e: J, h
3

(a) = 2 

if a e: n J, and extending linearly. The closed subgroup 

PJ • <U T a' hj(a) ~ 0> contains B, and is thus a parabolic subgroup of 

G. Now: 

(i) if ~, K c;; n, and P· 
J 

is conjugate to then J .. K. 

(ii) if p is a parabolic ~ubgroup of C containing B, then p = p 
J 

for some subset J of n 

From (ii.) it follows that if P is a parabolic subgroup of G, 

then P is_ conjugate to PJ' for some subset J of n. We say that 

P J is the standard parabolic subgroup of G corresponding· to J. 

The Levi Decomposition p Ill LJ.UJ' where L = <T,U hJ(a) .. 0>, J J a 

UJ = <Ua .lhJ(a) > 0>. UJ is the unipotent radical of PJ' and LJ 

a reductive.~roup with root system ~J (See 1.1.10). 

and 

is 
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A subgr~up of G which is conjugate to the c~mmutator subgroup 

RJ of LJ' for some J .. -. n, is called a Regular Subgroup of Levi Type. 

Note: If ~J'· !J and ..Y.J are the Lie a-lgebras of p --L 
J' J and UJ 

respectively, "then ...RJ = £ (f> 
!! J' i.e. .nJ "" t ~ . Jl g ' -J ·· h

1 
("') >.,o -a 

tJ ... ~ Ill ··u ..&a' and u "'. 11 g • 
. h1 (o&) =0 

-J . 
h:r (oe.) )0 

a 

Example Let G = GL(6,K), T be the group of diagonal matrices in G, 

and B the group of upper triangular matrices in G, then 

t(G,T) ""{"a· •• I i,j .. 1, ••• ,6, i;. j}, and the basis of 41{G,T) determined 
lJ 

by B is {al2,a23ta31ttalts•ass}. Let J = {al2,a31ttalts}. 

Then: 

(i) PJ consists of matrices of the form: 

.(: * I* * * * \ 
* * * * *' "i. o· 0 r· *Ji \ 

. \ ~ 0 ~· * * ) 0 * * * 
. I 0 0 0 0 0 * I 

where the *'s represent entries which need not be zero. 

{ii) LJ consists of matrices of the form: 

. ·r _; ____ ; __ ~-----~-----!lg g \1 
.· 0 0 * * * 0 . 
:00***0/ 
\ 0 0 L~. __!!__ * I_Q_} 
\"0 0 0 0 01 * 
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(iii) UJ consists of matrices of the form: 

i.e. 

p .. 
J 

L .. 
J 

u .. 
J 

a .. 
1J 

£ 

I 1 0 * 
0 1 * 
0 0 1 
(). 0 0 

* * 
* * 
0 0 
1 0 

* 
* 
* 
* 

\ 
I 
I 
' 

0 0 0 0 1 * \oOOOOil; 

{(a. ; ) £ G I ·a .. .. 0 if 
1J 1J 

{(a .. ) £ G a .. .. 0 if 
1J 1J 

{ (a .. ) £ G a .. .. 1, and 
1J 11 

t J}. 

i > j and a 

a .. ¢ 41 J}. and 
1J 

a .. .. 0 if 
1J 

ij ¢ 41 J}; 

i ~ j. or 
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2 • 1 BACKGROUND 

Recall that ~ denotes the set of unipotent conjugacy classes of an 

algebraic group G. 

2.1.1 Lusztig's Result 

George Lusztig has recently shown that if G is a reductive·(connected) 

l b . 1nl
1 a ge ra1c group, then ~ is finite. The proof of this is long and 

complicated and may be found in (6). 

Note 

The conjecture that ·1..e.1 is finite for reductive groups has been 

an open que.stion for some time. Prior to Lusztig' s solution it was known 

that: 

if G is a reductive group defined over K, and char(K) is a 

'good' prime (see ~he definition below), then 1~1 is finite. 



- 41 -

Definition A prime number p is said to be a 'good' prime for a reductive 

group G if: 

(i) If G is quasi-simple, and of type: 

A p arbitary n 
B c D p .I. 2 ' T n n n 

0£, Fit E6 E7 p ; 2, 3 

Ea p ; 2, 3, 5 

(ii) If G 1s not quasi-simple, then P is 'good' with respect to each 

quasi-simple component of G. 

2.1.2 The Ca~ter Bala Classification of the Unipotent Conjugacy Classes 

of Quasi-simple Algebraic Groups 

Let G be a reductive group, T a maximal torus in G, and 

T B e B • Let ~ = ~(G,T), and n be the basis of ~ determined by B. 

If J <;;;,. n, then let \I J be the Dynkin Diagram (see 1.1.11) of ¢ weighted 

with zero's and twos; a node being weighted with a zero if it represents 

an element of·. J, and with a two if it represents an element of n - J 

(cf. the definition of hJ 1n 1.3.19). 

We say· that a diagram VJ is distinguished if 2N(O) + 1 - N(2) = O, 

where 1 =-rank G and N(i) = l£a E 
+ 

¢ I hJ(a) "' i} I· for i .. o, 2. 

If P 1s a parabolic subgroup of G, then P is conjugate to the 

standard parabolic subgroup P J for some subset J of n • We say that P is 

a distinguished parabolic subgroup of G if \7J is a distinguished 

diagram. It ·should be noted that this definition is completely independent 

of our initial choice of T and B. 

p 

Note ,that ..n. = 
J 

wher~ _g 2 i = 

is ~distinguished-parabolic subgroup of G 

dim g + i =.dim _g2, i.e. dim .&.J = dim _&2• -o 

l I g and that 
h Jaf=2i -a' 

J 
if and only if 
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The only distinguished diagram of type 
2 2 2 

A 
n is 

0--~ ••• ~. and thus the only distinguished parabolic subgroups 

of SL(n,K) are the Borel Subgroups. 

Note: we will look at distin~uished diagrams in greater detail in Chapter 4. 

Let ~.} ·be the set of pairs (R,PR), where R is a regular subgroup 

of G of Levi type, and PR is a distinguished parabolic subgroup of R. 

We write if there exists g E G such that and 

is an equivalence relation on 1 Let H denote the 

corresponding set of equivalence classes, and [(R,PR)] the element of 

~ containing (R,PR). 

Lemma 1 

where uP 
R 

Proof If 

The map t,;: H .... (I given by E,;( [(R,PR)]) = c ~ cnur -
~· 

R 

is the unipotent radical of PR' is well defined. 

(R,PR) E 'j- then UP is.a closed irreducible subvariety of 
R 

G. Also 

there exi'sts c 

(i.e. c1 and 

and 

uP = 
R 

u 
Cd'; 

E 
t'· 

.. ~: such that 

·-·-· -·-· ~ .1 
E _t, and C 1 r\ U(. = 

;R 
c 2 are locally cLosed 

I 
I 

and hence 

= 

--
c2 '' up = up , then 

R R 
(see 1.3.4), and hence c 1 fl. uP 

R 

are open subsets of 
\ 

~p • 
R 

Therefore c 1 1\ c 2 f'\ uP r1- 0, 
R 

and thus C1 =.C 2.). I 

If '(R,PR) - (R, ~R) then t.\ere exists g E G such that gR = R 

uP , 
R 

and gPR = Pi· It is easy to see)that gUPR is a maximal, connected, normal 

I 
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... gu unipotent subgroup of pi. and hence that .. U" Thus, if 
PR p•" 

R 

cn-1J .. uP • then cl\-~- .. c/~-su- g--- = U• = c f\ uP 
PR P• PR p .. • 

R R R R 

Let p be the characteristic of the base field K of G, and m be 

the height of the highest root of t (see 1.1.7). Then: 

Theorem 2 

If G is quasi-simple, and p :,.. 4m + 3, then ~: 8{-+ ~t is a 

bijection. 

This is the Carter Bala classification theorem, and the proof can 

be found in (3). By classifying the elements of -~~ Carter and Bala were 

able to classify the unipotent conjugacy classes of C. 

2.1.3 The map n 

Suppose that G is reductive, and that W = NG(T)/T. If w £ W, 

then Uw+ is a closed irreducible unipotent subgroup of G, and thus there 

exists a unique element c £ ~~ such that u 
w 

+ hence we 

can define a map n: W + .e by putting n(w) = C if and only if 

+ + 
uw (\, c ... uw 

In this chapter we shall be concerned with the map n, being motivated 

by the following theorem (this theorem is mentioned in the appendix of 

Carter and Bala' s Fc·r,C:• on unipotent conjugacy classes (3)): 
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Theorem 3 

If G is quasi-simple an"d p > 4m + 3, then n is surjective. 

Proof If then there exists g £ G such that 

(see 1.3.19), where J is some subset of w. Now, ~J is the root 

system of J is a basis of and is a parabolic subgroup 

of RJ. Hence, there exists h £ RJ and a subset S of J such thac 

hgpR = PJ,S' ·the standard parabolic subgroup of RJ determined by S. 

It is clear that (R,PR) • (RJ,PJ,S); i.e. that we can write any element 

of P, in the form [(RJ,PJ,s>J • 

Now, let c be an element of .t. By Theorem 2, there exists 

sets s arid J, s c;;J c~ W' such that c intersects the unipotent 

radical uJ,s of PJ S densely. Let c~>s be the subsystem of 4>J • 
by s. Now, RJ is the semi-si~p"le part of the reductive group 

L "" J 
i.e. RJ•<T,U o a 

where T 
0 

is the 

maximal torus in. RJ such that 

Thus 

T"" D.T , 
0 

D being the radical of 

= 

"' 

Let 

<T • 0 

W· s 

respectively; 

+ 
u a I a£ ~s v ~ J > • and 

+ I a£tJ .. 4>s>· 

and WJ be the abstract Weyl Groups of ¢18 and tJ 

we can assume that w5 ~ WJ C: W. If ws• WJ and w 
0 

spanned 

are 

the elements of greatest length (see 1.1.9) in ws, WJ and w respectively, 

then: 

(i) -1 -1 
and 

-1 
ws .. ws, WJ "' WJ w .. w • 

0 0 

(ii) + + + 
wJ: ~ - ~J .... ~ - tJ' and tJ .... tJ . 

(iii) + + + + 
ws: t • ts-+ ~ - ~S' tJ - cl>s .... tJ - ts, 

+ + + -and hence ~ - tJ-+ t - ci>J. Also ws: ts .... ~~>s . 
(iv) + -w . t .... cl> 

0 
. • 
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+ If a e: ~ . a e: 
+ 

~ - ~J ' then: 

+ 
w0wJ(~ - ~ J) from (iii) 

+ - ~ ) (ii) w (~ from-
0 J 

~ from (iv). 

If then: 

-1 + w (a) £ w0wJ(~J - ts> from (iii) 

-£ w
0
(tJ ) from (ii) 

£ ~· from (iv). 

If 
+ then: a £ ~s ' 

w- 1 (a) £ wowJ(~s-> from (iii) 

+ 
£ wo(«<IJ ) from (ii) 

£ ~ from (iv) 

+ + Hence A._ .. t J - ts. w 

+ and n(w) u ___ .. uJ,S ' = c. 
w 



- 46 -

2.2 SPRINGER'S RESULT 

2. 2.1 Preliminary Resu 1 ts 

Let G be a connected algebraic group acting on two algebraic 

varieties X and Y, with G transitive on Y. Let ljl: X -+ Y be a 

G-morphism, i.e. ljl is a morphism of algebraic varieties such that for 

all g £ G ljl(gx) = gW(x). It is clear that ljl is surjective, and that 

all of the fibres are isomorphic. In particular, all of the fibres have 

the same dimension. Let y £ Y, and put 
-I 

F "' ljl (y) • 

Lemma 4 dim F • dim X - dim Y. 

Proof Y is the image of G under the morphism G -+ Y, g -+ g.y, and 

thus Y. is irreducible. "" Let X be an irreducible component of X of 

maximal dimension. Then G.'X is the image of the irreducible variety 

G X X under the product morphism, and hence ~t is irreducible. But 

x s;oc.x, thus "' ... G.X. and X It is now easy to see that the map ~="'I x, 
from x to Y, is a surjective G-morphism. Hence dim ~-l (y) .. dim X dim y 

(see 1.2.13). But dim X = dim X and 
-I 
~ (y)G_F. dim F ~ dim X - dim Y. 

-Let F be an irreducib __ le component of F of maximum dimension, and 

X2F be an irreducible component of x. Then the map ljii~ "'I x, from 

---- -I tv 

X to Y, is a surjective G-morphism. Hence dim ljll (y) = dim X - dim Y. 

But dim ljl 1-
1 (y) • dim F and dim X~ dim X. dim F ~ dim X- dim Y. 
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Let dim F • m and dim X= n. Let 1 = {Fl, F2••••• F } be the 
r 

set of irreducible components of F of dimension m, and A(y) "' G /G 
0 

y y ' 

where G is the isotropy group of G at y. Note that · A(y) is a 
y 

finite group. 

Lemma 5 A(y) permutes the elements of } • 

Proof 

(i) G 0 .F = F for all F £ T (cf. 
y s s s the proof of Lemma 4). 

(ii) If g e: G ' then gF is a closed, irreducible subvariety of F y s 

of dimension m. Hence gF £ J . s 

It is. clear from ( i) and ( ii) above that A(y) peruutes the elements 

of 1 . 

We now state the main result of this section. 

Lemma & ~Counting Lemma) The number of irreducible components of X of 

maximal dimension is equal to 

1 I 
a£A(y) 

c(y) 
a ' . 1•<Y> I 

where c(y) is the number of elements of '} fixed by a • 
. a 

(Note that 1 
IA(y)l ~ 

a£A(y) 
c(y) 

a 
is independent of the choice of y e: Y). 

The above counting lemma follows immediately from Lemmas 7 and 9 given 

below. 
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Let d be equal to the number of A(y) orbits on '} • 

Lemma 7 

Proof 

~ = the number of irreducible components of X of dimension n. 

Let {X1, x2, ••• ,X } be the set of irreducible components of 
p 

X of dimension n. 

(i) 

(ii) 

(iii) 

If 1 " i ~ p, then G. X ... X., and the map ~JJ. = ~PI x .• from 
1 1 1 1 

X. to Y, is a surjective G-morphism. 
-1 

Hence dim !JJ. (y) .. dim x.-dim 
~ 1 l 

= dim F. 
-1 

dim F n x. dim F. ll.lt "'i (y) = F f\ X. 1 and hence = 
1 1 

r-J 

Let F be an irreducible component of F n X. 
1 

of maximal dimension. 

Then F is a closed, irreducible subset of F of dimension m. 

F £ 1-. 

If F
8

£1, 

~ = s 

"'' 
G.F s' 

then G.F is invariant under G, and the map 
s 

from G.F to Y, is a surjective G-morphism. s 
-1 = dim G.F 

-1 
dim ~ (y) - dim Y. But dim l

8 
(y) :r dim F, s s 

and hence dim G.F = dim X. Now G. F. is irreducible and hence 
s s 

it is equal to X. for some i, 1 ~ i ~ p. 
1 

F c X. f\ F, i.e. F is an irreducible component of s --- 1 s 

x. f\ F of dimension m. 
1 

Let 1 " s ~ r, 1 ~ i, J ~ p and g E G • If y 

are irreducible components of X. fl F and X. f\ F 
1 J 

then X. = X. • 
1 J 

i.e. (a) G.F ·.;;, GX. = X • and 
s 1 i' 

(b) G.F '- GX. = X. • Thus, by the argument 
s J J 

it is clear that G.F is equal to both X. and 
s 1 

F and gl-' 
8 s 

respectively,. 

of (ii) above 

X. • 
J 

y 
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If F and F are two irreducible components of F f\ X., 
s1 52 l 

where 1 ~ s 1• 52 .; r and 1 -~ i ..;: p, then F ... gF for 
s 1 s:>. 

some g £ G • y 

i.e. G. F t, 1 ' t " r, is the image of the variety G X Ft 

under the product map G x X~ X. Hence, G.Ft contains an open 

dense subset of G.Ft (see 1.2.13). Now, G.F = G.F = X. 
s 1 s 2 l 

(cf (iii) above). Hence, G.F , j = 1, 2, contains an open dense s. 
J 

subset of X •• 
l 

G.F (\ G.F contains an open dense subs(t 
s 1 s2 

u, of x .• 
1 

We can assume that U is invariant under G9 since 

if its not, then we can replace it by G.U. The map~ = ~ j U, 

from U to Y, is a surjective G-morphism, and hence: 

dim ~- 1 
(y) .. dim U - dim Y 

... dim X dim Y 

= dim F. 

lilt 1-1 (y) s;. F r\ G.F (\ G. F 
s 1 82 

= G .F n G .F • 
y s1 y s2 

L· 

dim G .F II G .F = dim F. 
y s 1 y 82 

Let G /G 0 
{ G 0 G 0 G 0

} Then: y y "' Sty • S2 y , ••• ,gt y • 

G •F f'\ G .F = ( U 1 
g F ) (\ ( U e gvFs ) 

y . s 1 y s2 u•l u s 1 v•l 2 

... 

Hence there exists u and v, 1 ~ u, v ' t, such that 

dim g F n SyF s2 .. dim F (See 1.2.12). But g F and 
u 81 u s 1 

SyF s2 are irreducible components of F and thus g.F '"' g F • u s 1 v s 2 
The result now follows immediately. 

Before we go on to conclude the proof of this lemma, we note 

the following about (iv) above. Although G.F , j "' 1, 2, is a s. 
J 

constructable subset of X, it is not necessarily a subvariety. Thus, 
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it was necessary=to define ·~ from U to Y, rather than from 

(v) Consider the map 

defined by 

component of 

r(F > .. x. s 1 

F (I X •• 
1 

if and only if F 
s is an irreducible 

By (ii) and (iii) above, r is well defined, i.e. if F s 

then there exists a unique element X. £ {Xl,•••• X} such that F 1s 
1 p s 

an irreducible component of F n x .• 
1 

By (i) above, r is surjective. 

By (iii) and (iv) above, each A.(y) orbit is mapped onto a single 

element of {Xl,•••• X }, 
p 

and the images of any two such orbits. are 

distinct. 

The Lemma follows immediately. 

Lemma 8 (Orbit Stabilizer Theorem) If r is a finite group acting 

transitivel~ on a finite set E, then I r I 7 I r I = IE I for all v £ t:. v 

Proof { No-~e that r = {y £ v 

be the set of left cosets of 

assuming that y1r , .•• ,y r 
v " v 

r I y.v = v}}. Let 

r with respect to 

are all distinct. 

{y r ,y r , ••• ,y r} 
1 v 2 v r v 

r · we are of course v' 

Then 

E = {y
1
v, ••• ,yrv}, and yiv; yjv for any i, j, i; J• 

follows immediately. 

The resu 1 t 
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Lemma 9 If r is a finite group acting on a finite set E, and if 

for each y e: r, c y is equal to the number of elements of E fixed by 

y, then: 

l 
~ number of r orbits on E. TfT c = 

ye:r 
y 

Proof Let {Olt 02. • • • • 0 2.} be the set of r orbits on E. Also, if 

1 ~ i ~ 2. and e: r, then put 1 equal to the number of elementf, of y c y 

o. fixed by Y• Let n. be equal to the number of pairs (y,v) e: r x 0. 
1. 1 l. 

such that· y.v = v. It is clear that: 

~ 
i I lrvl c .. n. = 

ye:r 
y 1 

ve:O. 
1 i 

1 2. c 
Now ~ c = ~ I .J_ 

I r I ye:r 
y i=l ye:r I r I 

R. I r I 
I l v .. -

ial ve:O. I r I 1 

= ~R. ~ 
1 (by Lemma 8) -

i=l ve:O. 1o.1 
1 1 

= 2.. 

2. 2. 3 

From now onwards G will denote a connected, reductive group, B a 

fixed Borel Subgroup of G, T ~~ B a maximal torus in G, and W the 

Weyl Group of G with respect to T. Also, we let R. = rank G, and 

U be the unipotent radical of B. 
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We now make the following basic assumption: 

Assumption I . Given a unipotent conjugacy class C of G then there 

exists w £ W such that 
.... - . -... 
c n u = u +. 

w w 

Note: 

(i) Assumption I is equivalent to assuming that the map n (see page!~-::-. ) 

(ii) 

is surjective. 

If + c {) u 
w = u + 

w ' then u + (\ c 
w 

(iii) Assumption I implies that 1~1 ' IWI. 

is an open subset of 

Assumption I holds in the following cases: 

(i) SL(n,K) 

+ u 
\ .. 

(ii) SO(n,K) and Sp(n,K), given that char(K) 1 2, and that K has 

infinite transcendence degree over its prime field. 

(iii) For ~ny algebraic group for which the Carter-Bala classification 

theorem holds. 

We shall show that Assumption I·holds in cases (i) and (ii) in chapters 

3 and 4 respectively. See Theorem 3 for case (iii). 

Recall that B is the variety consisting of the Bocel Subgroups of 

G~ and that if u t G is unipotent, then S • (B t B I u t B} is a closed 
u 

subvariety of a. Also let C = C(u), C(u) being the unipotent conjugacy 

class of G containing u. 
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We now give a result (Lemma 10) which is due to Steinberg (see 9). 

Let ·S "' f (v' 81 ' 82) c c X B X B I v E n1 n 82 l (it is clear that 

s is 1 cl.osed subvariety of c X a X a>' and let 11:·s-+B xB be given 

by 11 ((v,81, 82)) .. (81 t 82). G acts on B X B by conjugation, i.e. 

g. (B1 t 

sw ... 

(i) 

(ii) 

(iii) 

~) .. (881, 8B2). If w, then let w and put w c X = (8, B), w 
-1 

11 (G.X ). Note that: w 

+ 
~Cf\U ~0 w 

G.X is a subvariety of B xB, and hence S is a subvariety of w w 

S, i.e. S is a locally closed subset of S. 
w 

Lemma 10 · 

(i) 

(ii) 

(iii) 

(iv) 

Proof 

(i) 

s is the disjoint union of the s II So 
w 

If s ~ 0· w • then dim s .. dim G - R. + . +(\ d1.m U C - dim 
+ u w w 

dim S "' dim G - R.. 

dim B dim ZG(u) - R. 
= u 

2 

Suppose that (v • I\ D ~) E s. Then there exists g1 • 
g. 

such that 1B ... B.' i = 1, 2. Also, there exist b, 1. 

and EW such that -1 bn b' (see the Bruhat w gl • g2 = w 

in section 1~3.18). Put g = g1 b. Now 
g

1
b n 

~WB :a WB = 
~ bn h' 

1 w B = 

(v, B
1

, 8
2

) = (v, &g gwB) 

s... u s 
WEW w 

w 

~ c G 

b t E 

Lemma 

B. 
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Now suppose that (v~ gB, gwB) • (~ 

g 
8 B .. 1 B and for some 

b £ B, and gn = 
w 

g n b' for some 
1 w 

b' £ B. Hence 
1 

bn = n b 1 

W W1 ' 
and hence Bn B "" Bn B. 

w w
1 

Suppose that S r f/J or equivalently that U + (\ C 1 f/J. w w Let 
-l 

5 I ""· w 
{ (v, g(B (\ wB)) £ C x G/B ('1. wB g 

V E It is 

to see that S is isomorphic to S 1 i.e~ just consider the n:=t1j) w w • 

Let ~: S ' 4 G/B n wB be the projection 
w 

onto-the second factor. G acts on S 1 
, i.e. 

w 

g • (v • g B fl WB) = 
1 

gl 
( B A WB). v, g g , ' 

1 
and also acts transitively on 

G/ B () wB in the obvious way. It is clear that is a surjective 

G morphism, 

.". dim S 1 

w 

and that -1 w - w + t (B n B) ::::-.: C (\ (B (\ B) = C f\ U • 
w 

... dim G/B n wB +dim en u + 
w 

"" dim G - dim T.U + + dim C n U + 
w w 

= dim G - t • + • A + 
d 1m U w + d 101 C , , U w 

(iii) By (i) above, -dim S ~dim S 
w 

for all w £ w, and there exists 

w t_W for which equality holds. Now, by Assumption I, -3 w £ w 
0 

such that dim U 
w 

0 

+ . = d1m U 
w 

0 

+ n· 
I I Co dimS =dim G- t. 

w 
0 

It is clear that dim S cannot be greater than dim G- t, and thus 

that dim S • Dim G - t.· 

(iv) Let l: S 4 C be the projection onto the first factor. G acts on 

S, i.e. g.(v, B1, B2) = (8v, gB , gB ), and acts transivitely on 
1 2 

C by conjugation. It is clear that t is a surjective G-morphism, 

and that 
~-1 e (u > ~ a x a • 

u u 

dim 8 u x B u .. dim S - dim C 

2 dim Bu • dim G - t - dim C 

dim B 
u 

= 
... 

dim ZG(u) - t 

dli:m ZG(u) - t 

2 
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Lemma 11 {-s I w £ n-
1 

(C) } is the set of irreducible components of w s 

of dimension dim G - t. Further if 
-1 

W 1, W2 £ n (C) and WI rf. W2t then 

Proof 

(i) Suppose that 
-1 

-1 
w £ n (C). The variety S 11 = { (v ,g) £ C x G I 

w 

i v £ Bf"'wB} 

being given by 

is isomorphic to (U +('\C) xG, 
w 

the isomorphi.sm 

-1 
(v,g) + (g v g, g). Now, U + f'\ C is 

w 
irreducible 

(l.e. U-~ • U + is irreducible), and hence S 11 is w w w 

irreducible. Let n: S" + S be given by n((v,g)) = (v, gB, gwB). 
w w 

It .is clear that 

is irreducible. 

n is a surjective morphism, and hence that s w 

Also, dimS =dimS (cf. Lemma 10 part (ii)). 
w 

Hence,. s 
w is an irreducible component of s of dimension dim G - t. 

(ii) l.et 2 be an irreducible component of S of dimension dim G -t • 

(iii) 

Let 

Z. = and hence there exists w ~ w such that 

Now, dim S = dim S , and hence dim S = dim G - t. w w w 

---~ + 
i.e. c n u = u w w 

irreducible. 

(see lemma 10 part (ii)), 

-1 
Hence 

-s- = z. 
w 

w £ n (C) and by (i) above S 
w 

l.S 

0 A(u) = ZG(u)/ZG(u) , and be the set of irreducible components 

of au of maximal dimension. ZG(u) acts on a by conjugation, i.e. if 
u 

g £ ZG(u) and B E au, then 88 £ au. If 

(i) gF £ L for all g £ ZG(u); and- (ii) 

F £ J, then 

A(u) acts on L If a £ A(u), 

elements of ~ fixed· by a. 

then let c(u) be the number of a 
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1 

IA(u) I 
c(u) 2 • a 

Let '} - be the set of irreducible components of 8 x 8 of maximal u u 

dimension. 1 .. {Fl x F2 1 F 1 , F 2 ~ -l,}, and A(u) acts on ·:;r in tho..: 

obvious way; i.e. If a e: A(u), then 

the number of elements fixed by a is c (u) 2 • 
a 

Now consider the surjective G-morphism r: S ~ C (See the proof 0f 

lemma 10 pt. iv). Recall (i) that G acts on C by conjugation, and 

hence that the isotropy group of u is ZG(u); and (ii) that 
-1 

( (u) ~ 8 x ~ • 
u u 

The action of A(u) on 1 fits into the general framework described 
o-f 

on page 4-6 Hence by Lemma 6, we have that the number~irreducible 

components of S of maximal dimension is 1 L 
ae:A(u) IA(u) I 

The result now follows immediately from Lemma 11. 

Let {u
1

, u2 , ••• , up} be a set of unipotent-elements of 

c(u) 2 • a 

G such that 

(ii) C(u.) = C(u.) ~ i = j. 
1 J 

THEOREM (SPRINGER'S RESULT) 

C(u.) 2 • 
1 a. 

1 
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Proof The result follows immediately from theorem 12 and the obvious 

fact that lwl • !P 
i•l 

-1 I n (t(u.)) • 
1 

Let G • SL(n,K); T be the set of diagonal matrices in G, and 

u be a unipotent element of G. Then: 

(i) G satisfies assumption I (we will prove this in the next chapter). 

(ii) W • W(G,T) is isomorphic to S , the· symmetric group ·on n eli:'.ments. 
n 

(iii) ZG(u) is connected. 

Thus we obtain: 

Corollary 13 

n! • Is I n 
.. n 2 

u .• 
1 

where {u 1, ••• , u } are as described on page 56 
p 

to the number of irreducible components of a u. 
1 

2.3 BRUHAT CELLS 

, and n 
u. 

is equal 
1 

of dimension 

We finish this chapter by proving two lemmas which will prove useful 

later on. 

Let G be reductive. Recall that a • lJ C , and that each element 
W&W W 

vw can be written uniquely in the form B, where v & U 
w 

(see 1.3.18). 

If W E W, then let T : w 
U x U + ~ U be defined by 

w w 
T ((v ,a)) "' vav 
w 
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Lemma 14 Let u be a unipotent element of B, and w £ w. Then 
--.J 

8 n C ; 0 ~ u £ Im (Tw). u w In this case Bu 1\ Cw is isomorphic to 

-1 
11'1 hw (u))' where u 

w 
- + XU -+ U w w is the projection onto the 

first factor. 

Proof c n = {vws 1 u u £ vwB} w 8u v £ w • 

(i) Suppose that c n a ; 0. 
w u 

Then there exist v £ U w such tha.: 

vw 
u £ B, i.e. -1 w 

v u v £ B n B. 

-1 + t (v ,a) v u v .. a £ U , and = u. .. w w 

(ii) that £ Im(t ). Then] (v ,a) Suppose u £ 
w 

-1 
v a v ... u. 

v-1 
B 1\ wB i.e. VWB £ C (\ 13 • u .. a £ t w u 

(iii) The last assertion follows easily. 

Note that if u £ u + w t 
then B f\ c ; 0. 

u w 

-1 

u w 

Lemma 15 If u £ u 
w 

+ and w £ n (C(.u)), then 

Proof 

X U + such that w 

,...,. 
dim C (1 B w u "' dim 

is an irreducible 

8 • 
u 

variety of. dimension dim G - t (see Lemma 11). Let n: S -+c(u) x8 be 
w 

given by n (v, 8s, gwB) .. (v, 8B). Then Y .. n(S ) = 
w 

{(v, 8B) I g-\ £ U +} 
w 

is an irreducible subvariety of C(u) x 13. Now, (u,B) £ Y, and 

-1 { bw 11' ((u, B)) = (u, B, B) 

_ c· 1\ B • 
w u 
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"' dim B ~ C ~ dim S - dim Y. 
u w w 

(see 1. 2.13). 

G acts on Y, i.e. g.(v,gB) = (8v, ggB), and a~ts .transitiv.ely 

on C(u) by-conjugation. The map Y -+ C(u) given by 'll'(v, gB) = V, 

is a surjective G-morphism. Hence dim n- 1(u) =dim Y- dim C(u). But 

1i-l (u) ~ { 8 B I g- 1u g £ U +} 
w 

dim 8 ~ dim Y - dim C(u) 
u 

.". dim Y ~ dim 8 + dim C(u). 
u 

. ·.dim B n C ~ dim S - dim B - dim C(u) 
u w w u 

• dim G - 1 - dim 8u - dim C(u) 

(see the proof of part (iv) of Lemma 10). 

:. dim 8 r. C "' dim 8 • 
u w u 



C H A P T E R 3 

SL(N.,K) 

In this chapter we look specifically .at the group SL(n,K). Our 

main interest lies in the set -N = { w £ w I c n a :f. 0 and 
u(k) w u(k) 

n(w) = C(U ('R))} (see the introduction for the notation) , where (k) 

is an ordered partition of n. 

Before we look at N we find it necessary: 
u (k). 

(i) To describe ~L(n,K) and to establish the relationship between 

the unipotent conjugacy classes of SL(n,K) and the ordered 

partitions of n (see sections 3.1.1 and 3.1.2). In the course 

of t:·his we are able to show that our basic assumption (see 2.2.3) 

is true for SL(n,K) (see proposition 19). 

(ii) To make a slight digression and look at the-multiplication of 

matrices - see section 3.2.1. Our aim in this section is to prove 

Corollary 25. 

Note: At the beginning of section 3.2 we impose the restriction that K 

has infinite transcendence degree over its prime fieid. 

In sections 3.2.2 - 3.2.4 

are able to find 

we look at the properties of N 1 

u(k) 
(see proposition 31) such that 

We 

w £ N 
u(k) 

if and only if This enables us to set up 

a bijective correspondence (proposition 33) between the elements of 

N 
u(k) 

and·. the se.t of standard tableaux corresponding to (k) (see section 

3.2.3 for the definition of a standard tableau). But we know (theorem 32) 
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that the number of standard tableaux is equal to d(k)" Thus we obtain 

Theorem 34 which states that: 

.. 

Note that d(k) · is the dimension of the irreducible representation 

of S • W corresponding to (k). 
n 

Finaliy we show that the number of irreducible components of 

of maximal dimension is equal to d(k) (theorem 35). 

It should be noted that in order to give complete proofs of the abc.1e 

results, i~ has been necessary to go into a great amount of somewhat 

tedious detail. 

3. 1 BACKGROUND 

3.1.1 Description of SL(n,K) 

SL(n,K) is a quasi-simple algebraic group consisting of n x n 

matrices with coefficients in K, and determinant 1. The set, T, of 

diagonal matrices in SL(n,K). 1s a maximal torus, and the set, B, of 

upper triangula-r· matrices in SL(n,K) is a Borel Subgroup containing 

T. U, the unipotent radical of B, consists of all those matrices in 

B with T~ ·s on the diagonal. 

NG(T) is the set of matrices 

a E s n' the symmetric group on n 

and a .. = 0 whenever l ; a(j). 
1J 

W(G,T) -+ s n' (a .. )T-+ a, where . a 
1J 

(a .. ) for which there exists 
lJ 

elements, such that a a(j)j 
; o, 

W(G, T) = NG(T)/T, and the map 

is as above, is a group isomorphism. 



- 62 -

Let cl,n > 4enote the set of integers {1, 2,.~., n}, 

{(i,j) c. < l,n~ x < 1 ,n> I i ~ j} t and + {(i,j) j}. 6n = A = E: 6 1 < n n 

If ( i. j) & 6n• tben let· a .. : T -+ G be defined by 
1J m 

a .. (diag (a1 • a2 • • • • • a )) =a./a .• ~(G,T) = {a .. I ( i. j) E: fl } ' 1J n 1 J 1J n 
+ 

a: ~ (B, T) ( i. j) + the corresponding set simple 4l "' {a .. £ 6n } ' and of 
1J 

roots, ll't· is equal to {a 12 , a 23 , ••• ,a n- 1n}. Recall that 

aij +akl. ., 

f .. aij (t)akt (t) for all t £ T. From this it is easy to see 

tbat a .. + akt £ ~(G,T) if and only if J = k and i 

"' 
t, and that 

1J 

this case a .. + 
1J 

If we identify 

correspon·ds to + 
4l ' 

Also, if w ~·w = s , 
n 

6n and ~(G,T) 1n the obvious way, then 
+ 

and the set {(1,2),(2,3) ••• ,(n-l,n)} to 11. 

then Thus, the action of 

+ 6n given by w(i,j) = (w(i) ,w(j)), corresponds to the action of \\' 

on 4l(G,T). 

A + = + I 
-1 -1 If w e; w, then {(i,j) £ 6 w (i) < w (j)} t w n 

{ (i,j) + w -1 (i) -1 + {(a .. ) I A 0::: 
£ 1\n > w (j)}, u = E U a .. = 0 w w 1J 1J 

(i,j) "+ A +} I if £ /)..· and u .. {(a .. ) c u a .. = 0 (it j) E 6 n w t w. 1J 1J n 

The ~ne parameter subgroup & •• corresponding to the root 
1J 

(i 'j) is defined by £ •• ( k) = I + kE .. 
1J 1J 

(see example (ii) of section 

1.3.9). 

if 

+ 

on 

- A w 

We can ·make sl.(n,K), the set of n x n matrices with coefficients 

in K and trace zero, into a Lie algebra by putting [x,Y] = XY- YX for 

all X, Y ~ st(n,K). st(n,K) is the Lie algebra of ~L(n,K), !, tbe 

Cartan Suba~gebra consisting of the diagonal matrices in sJI.(n,K), 1s 

the Lie algebra of T, and E .• 
1J 

is a root vector corresponding to the 

- ' I• 

root (i,j) £ ll • 
n 

Also, if w £ w, ·then 
+ + 

~ = {X e; sl!.(n,K) I X + I c Uw } , 

and = {X £ s~(n,K) I X + 1 c U }. 
w 
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3.1.2 Partitions and Conjugacy Classes 

If N is the variety consisting of the nilpotent elements of 

sP.(n,K), and V the variety consisting of the unipotent element;s of 

SL(n,K), then the map r: N ~ V, given by r(X) = x·+ I is an isomorphism 

of varieties •. Also, if g t SL(n,K), then 
-1 -1 

r(gXg ) = gr(X)g for 

all X ·E N.· thus, there is a bijective correspondence between the nilpotent 

conjugacy classes of s!(n,K) and the unipotent conjugacy classes of 

SL(n,K), ·i.e. the nilpotent conjugacy class, C(X), containing X 

corresponds to the unipotent conjur.acy class, C(X + I), containing 

X + I. 

Lemma 16 If X and y are nilpotent elements of s 2-(n,K.), then: 

(i) C(X) .;;;. C(Y) if and only if rank xi ~ rank yi for l = l, .•. ,n. 

(ii) C(X) ... C(Y) if and only if rank xl = rank Y1 for i = 1,2, ••. ,n. 

Or, equivalently, if u and v are unipotent elements of SL(n,K), 

then.: 

(i) C(u) s;; C(v) if and only if rank (u - I)i ~ rank (v - I)i for 

i = 1,2, ••• ,n. 

(ii) C(u) = C(v) if and only if rank (u - l).i = rank (v - I)l for 

i"' 1,2, ••• ,n. 

Proof See 4. 

Definition An ordered partition of n is a set 

{kl••••• kr}' of positive integers such that: 



(ii) 

• • • + k 
r 

.. n. 
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k. ~ k. 
1 

for i ,., 1, 2, ••• , r-1 ~ 
1. 1.+ 

The numbers ki' 1 .. 1,2, ••• ,r, are called the parts of the 

partition. 

If k is a positive integer, then we use Nk to denote the k x k 

matrix with ones on the super diagonal, and zeros elsewhere. 

Lemma 17 The nilpotent conjugacy classes of s~(n,K) are in one to one 

correspondence with the ordered partitions of n; the nilpotent class 

corresponding to (k) = being the one which contains 

N = N -~ N e ••• 
(k) k 1 k2 

Proof See 4. 

Note: 

(i) The analogue in the unipotent case is obvious. 

(ii) We write 

+ {(a .. ) E s~ (n,K) if (i,j) ~ s }, Let s s;; fl ' Y.s = a .. = 0 n lJ lJ 

and u .. s {x E SL(n,K) X - I E Ys} • us is a closed, irreducible 

subvariety of SL(n,K) consisting entirely of unipotent elements. Thus, 

there exists a unique unipotent conjugacy·class, c8 , such that 

C5 n US= US (cf. the proof of Lemma 1). 
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Definition 
+ 

positive Let ~ be a root system, and ~ a set of roots 
0 0 

+ 
1n ~o' then a subset "· of 4> is said to be closed if n, f3 £ '1', 

0 

+ 
imp lies and a+a £ 410 that u+ ~ £ '· 

+ Lemma 18 If 'I' c ~ and - 0 • 'I' and 

exists w £·we~· ) such that A + = '!'. 
0 w 

Proof See. (10). 

A subset s of f!. 
+ 

is closed if n 

that (i ,·k) £ s. We are now in a position 

(see 2.2.3) is true for SL(n,K). 

are closed, then there 

(i,j),(j,k) £ s implies 

to sh.ow that our basic assumptiom 

Proposition 19 If (k) = (k 1 , k 2 , ••• , kr) is an ordered partition 

of n, 

Proof 

then there exists 

Let k = 0, and put S = 
0 

such that u+ 
w 

0 

+ {Ci,j> e: f!. 1 k . + k 1 + ••• + k < i,j n o p 

' ~0 + k 1 + ••• + k for some 
p+l 

p = 0, 1, ••• , r-1 } • It is easy 

to see that . S and + 
~ - S are closed 

n 
(cf the diagram below). Thus, 

exists + u + and there w £ s such that us = u Now u(k) £ 
0 n w w 

0 

- l)i 
0 

if + 
rank(U(k) -r/ ~ rank(v for i = 1,2, ••• ,n. v £ u then w 

0 

Hence It is now easy to see that 
-·----·-·----+ + 
C(U(k)) n Uw = Uw 

0 0 



Note: 

I 

An element v .of 

,- -
I 

l_o 

0 

u 
w 

0 

+ 

- 66 -

has the form 

Before we go on to look at the subset of W (see the 

introduction to this chapter) we need to establish some preliminary results. 

We do this in the following section. 
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3.2 THE. WEYL GROUP AND CONJUGACY CLASSES 

From now onwards we assume that K has infinite transcendence degree 

over its prime field. 

3.2.1 Some Preliminary Results 

Definition If then (aij) t ~S is said to be generic 

if {a .. I (i,j) t S} is a set of algebraically independent transcendent~ls lJ 

over the prime field. u t US is said to be generic if u - I is a 

generic element of ~s· 

Lemma 20 If u t u
5 

1s generic, then C(u) m c
8

• 

Proof It is clear that if · v t u
5

, then rank (v - I)i < rank (u - I)i 

for i = 1, 2, ••• , n. Thus C(v) ~ C(u). It now follows immediately 

Definition A subset s of is said to be triangular if 

(i,j) t S implies that (i-l,j),(i,j+l) t s. 

Note: The notion of triangular subsets can be found 1n M. Gerstenhaber's 

paper (5) on Classical Groups. We shall be using his ideas in the next 

chapter. 
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I:;xamplt! Let n "' 6. We can display the elements of 

array. 

. I/; I',./ 
(1,~). r<,l•?>i' 

(2,3) (2,4) 

(3,4) 

I I '0 I I I ( 1, 5 )· {-1-, 6-)/ jl/0'1 1 (2 ,5) (2 ,6)l 
I I I I ~3,5> I (3,6)/ ·l0 /fiJI I L 1 (4 ,5) (4 ~o> 

. l_j /1 
- I!}~·~>~ 

The elements of + which lie the shaded tt.6 ln 

+ 
subset s, of tt.6 . Note that the elements 

and to the ~~ght of an element ( i 'j) of s, 

region form a 

of 66 
+ 

which 

are elements of 

c 
in a triangular 

triangular 

lie above. 

s. 

Definition Let (k 1 , k2 ) be an ordered partition of n. Then we say 

that a subset S of 

(i) S lS triangular. 

(ii) s·!;;{(i,j)ttt.+ 
n 

is triangular with respect to if: 

1 < i < k1 1 and k1 < j ' nl. 

For the rest of this chapter we shall assume that S lS triangular 

Let ~(S) ., {(i,j)t tt. + 1 1, i, k1 
n 

Then a generic element, X ' 0 
of 

I k::L 
\ 

0 *--- ---_'I< '11.---.1'- --- --"' 

I "'" I I I \ ' ', I I I 

I 'I' - ·'• - - - - - "' 
I 

""- I I \ 

f k~ " \ ' '-.' 

f 
0 "'" I \ ,, 

"'·· (} ' I 

\ 
~ ~I 

'---·-~ .. 
o. •.- ---- - --- _., 
'-.". ·,. 

\ 
' ' ' 

0 Rl 
0 '·' I I 

·,'- I I "" ,.. I ··a 

I>. :I. 
I 

and k1 < j ' n} - S. 

has the form: 

.where the *'s denote non-zero 

entries. 



- 69 -

Our. aim in this section is to describe X t 
0 • 

where t is a positive 

integer. We achieve this in Proposition 24. In particular, we obtain 

Corollary 25 which we will need in the proof of Proposition 31. 

Before ·we can prove Proposition 24, however, we need to consider 

some of the properties of the triangular subset S. 

The triangular· subset S 

We def1rie a sequence, (I , J ), (Il, J 1), ••• , (I +l' J 
1
), of 

0 0 p p+ 

elements of + as follows: 

(i) Put (I ' J ) = (1, kl). 
0 0 

(ii) Suppose that (I ' J ), ( Il ' J 1) ••••• (I ' J ) have been defined. 
0 0 r r 

Then: 

(a) If there exists (i,j) £ f,;(S) such that j > J r' then put 

I ... = min {i £ <1, n> IJ j > J such that (i,j) £ f,;(S)}, and r+l r 

Jr+l = max {j £ <l,n> I (Ir+l'j) £ f,; (S)} • 

(b) If there does not exist (i,j) £ f,;(S) with j > J , and r 

I ; kl + 1, then put (Ir+l ,Jr+l) = (k 1 + 1, n). r 

(c) If I • k1 + 1, then the sequence finishes with (I ,J ). r r r 

In the diagram below we indicate the positions of 

(Ip,Jp) and (Ip+l'Jp+l)' and we also note that this sequence gives us a 

complete disc.ription of S. 



I 
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I 
I 
\ 
\ 

\ 
\ 
\ 
i 
I 

\ 
I 

---·----~-~ (:to .Jo) 

ll tr,:r,) . -

1 n\(I1.l.) 

I ", 
(1." . T,.) l I ~ 

·--- I ___ , __ J...._II -( I-...l..!.-, . ...J."Jp-.,)-," 

I 

I 
k 

l 

k,. --------------' 

' I 

I 
I 
I 
I 

I 

I 
We now go on to define the sequence, S 1 ::> S2 :::> ••• :::> Sm = f/J, of 

characteristic subsets of S. 

( i ) Put S 1 = S • 

(ii) Suppose that S 1, S2, ••• , Sd have been defined. Then: 

(a) If sd Is f/J, then put 

(i,j-1) t Sd }, and let 

L d = { ( i, j) E Sd 

8d+1 ... 5d • Ld. 

1 <i+l,j>, 

(b) If Sd -- tt.. h h d · h sd v. t en t e sequence en s w1t • 

Note: 

(i) If·· Sd # f/J, then Ld ~ f/J, and thus the above inclusions are strict. 

Each Sd. d = 1 m . , .... , ' + 
6n with respect (ii) 1s a triangular subset of 

to (k1, k2). 

(iii) Sd is called the dth characteristic subset of S 



- 71 -

Example Let n = 10, and (k 1' k 2) = (6' 4). 

7 8 9 10 

1 a -B 8- B-

2 0 0 B B 

3 0 0 a ~ 

4 0 0 0 B 

5 0 0 0 B 

6 0 0 0 a 

If the positions with non-zero entries represent the elements c.£ 

the positions with entries b represent the elements of and the 

positions with entries 8 represent the elements of sd+l. 

It will prove helpful, when we come to look at Lemmas 21 and 22, to 

represent Sd diagramatically. So we let the set {(i,j) I 1 ~ i ~ k 1 , 

k 1 < j ~ n} be represented by a rectangular array of k 1 x k~ nodes, and 

the 'diagram' below represent sd. 



t.:... .1, 

, .. 
' 

I -.. ,I 
I 

I 
I 
I 

I 

,] 

I 

' 
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~1-L~ . 
---------------· 

:r I o ~ 
I 

·I 

·x,. _, 
h 

- ·"k 
- ··- - - ·- -,Jf:. 

I . I 
:I 

-- --- ·- ·- -- -- ~I 
I I 
I 

-------- __ ,. -.~ 

() 

i.e. The positions with entries 0 represent the elements of t(Sd), 

those with entries * represent the elements of sd 
t and those to the 

right, and above the bold line.s represent the elements of S. 
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The scheme below indicates how the 'd'iagr~'· for 

from the 'diagram' for sd. 

d+'l s • is obtained 

Row i: 

i+l: 

Row i: 

i+l: 

Row i: 

i+l: 

Row i: 

i+l: 

Row i: 

Lemma 21 

* . . . • . • . . • • * 
* . • • . . . . . • • * 

* • . . * * • • • • • • * 
0 • • 0 * • . • • • • * 

j 
0 • • 0 * • • • • 0 • * 
0 • • 0 * • • • • • • * 

0 • • 0 * • • * * • • * 
0 • • 0 0 • • 0 * • • • 

0 • • • • • • • • • • 0 

* • . . • . • • . • • * 

j 
0 • • 0 * . . . • . • * 

If i < I • r+l 
j > J and 

r 

Ir+l - i + j J ~ d. 
r 

Row i: * . • • • • • • • • . * 

Row i: 0 * • • • 0 6 . • * 0 

J 
Row i: 0 • • 0 .... • • 0 . . * 

j+l 
Row i: 0 • 0 0 0 * • . 0 • • * 

Row i: 0 • • • • • • • • • • 0 

Row k1: 0 * •.•••.... * 

j+l 
Row k1: 0 o •• 0 * • . .• • . * 

then 
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The relevant part of the. 'diagram' for Sd has the form: 

0 (I 'l) 

0 - - - -- -- - - - 0 
-----, 

c :r,., . r,.·,) I 

To prove the lemma it is sufficient to notice that the number of 

zeros indicated must be less than d. 

Lemma 22 If I r ~ i < I 

(i+l,j+l) I. sd' then: 

<U i ;,. I - l. r+l 

(ii) j - J ... d. r 

Proof Case (i) r ~ p. 

(A) 

r+l • J < j < n, r 
(i,j) E Sd and 

(u, J + 1) E s 1 and 
m 

+ 
(u + 1, J + 2) E 6 m n 

then u • Im+l - 1, for otherwise we would get a 'diagram' 

I 
() () 

-(-1 ---:1) 
... , , .... " I 

I 

or 
u --lo .,1f :t:-

0 0 
I 

I 
I I 

0 0 

(I •.. ,. r_ ... ,l 
0 

I 

I 

I 
0 



- 75 -

for i 
S··' and this is not possible. It follows that 

(Im+l - 1, J + 1) £ s1 , 
m 

and hence that t "' i. 

(B) We now return to the situ~ti_on d.es.cribed .in the Lemma-. -Rows ·. i and -

i+l of the 'diagram' for sd have the form: 

J r v 
Row i 0 • • 0 0 • • 0 • 

j j + 1 

• * 
q 

* * * 
Row i+l 0 •• 0 0 •• 0 0 •• 0 0 •• 0 * * 
{we include the cases where v=j, v=J 

1
, q•n etc. }• r+ 

It is clear that v- J < d + 1 (see Lemma 21). By looking at 
r 

the diagrams on page 1-) it can be seen that rows i and i+l 

of d-(v-J -1) X r have the form: 
0 

Row i: 0 . . . . . • * 
Row i+l 0 •• 0 0 • • 0 * 

i.e. (i, J + 1) £ Sd - (v-Jr-l) and 
·r 

* 

* 

(i + 1, J + 2) ¢ sd - (v-Jr-l). 
r 

.• 

Hence by part A,we have that i = I - 1. 
r+1 

Also we have that 

V - J a d 1 and hence that j .- J ~ do 
r r 

Case (ii) r = P 

It is trivial to show that the lemma is true in this case. 

Description of X t 
0 

Recall that X =(a .. ) 
0 lJ 

is a generic ele1uent of !!t\+ _ f,;(S)" 
n 
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LeDDDa 23 If d t'Z, X d = (b •• ), 
0 lJ 

X d+ 1 a ( ) c.. • 
0 lJ 

for some p E <l,n >, then c ; 0. rq 

Proof If l1. E £' and (i,j)E <l,n> x <l,n > then put 

9. n l1. f .. ~ ~. . X. X ... ij 
m 1 , m 2, ••• m 11.- 1"' 1 1m 1m2 ••• m 11.- 1 J 1m 1 m 1m2 

X 
m 11.-lj 

where {xl·l·, ~ 12 , ••• , Xnn} is a set of n2 independent indeterminants. 

and 

if 

otherwise 

l1. 
fij is a polynomial in the variables Xvw' 

+ (v,w) E 6 - ~(S), with 
n 

coefficients in the prime field of K. Also f .. l!.(X ) = (X 11.) ••• 
lJ 0 0 lJ 

Hence, 

since the non-zero coefficients of X are algebraically independent OVE!r 
0 

the prime field of K, it is 

f.. l1. 

lJ 

that 

.. o. 

Now, b ; 0 pq 

0 ¢:{a , 
pml 

and thus 

X + other terms. But 
md_lq 

0 ~ {a , a , ••• ,a }. 
rp -pml md_lq 

Proposition 24 
t' (h .. ) X .. 

0 lJ 

Rt a { (i,j) 

Further, if 

+ 1 i,j E 6 ' n 

+ (i,j) E 6 
n 

i.e. X t has the form 
0 

~ 

c. lear that l1. ... 0 if and only if (X ) .. 
0 lJ 

f d ., o, i.e. 3 ml,m2. • • ,md-1 pq 

Further, f d+t = 
rq 

ud+t ; 
rpmlm2 ••• md_Iq 

Hence f d+l ; 0, 
rq 

E y6 + < ~(st) u ~ 

n 

0 since 

and c ;. o. 
rq 

Rt)• where 

E 

kl or kl < i,j ~ n, and J - i ' 

then h .. ;. 0. 
lJ 

<l,n> 

t -

such 

X X rp pm 1 

1}. 
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s-·· 

.. * ,It·· - . .,. 
I ' 

I 

- "' -t 
.. --,. 

I 
I 

I I 
~ .-1:- .. :•: .l I I I 

I I 
' I 

'· ' ~ ' I I I , -, ,: o ,_lf. ·r .. -; 
•• I I I 

_. _________ "":..:_ __________ 'o! __________ -~---=-J~ 
i a-;· -- -- a,*.;- -- -. - - - ·--ll: 1 

I· ' "'. : I " " .. 
' ·. ' ' " " '· 

"' 

\ 
I 
\ 
I 

\ 
\ 

I 
i 
I 

\ 
0 0 

I 
' I 
I 

where the ~'s represent non-zero·elements. 

Proof It is clear that the proposition is true when t = 1. We shall 

assume that it is true for X d a (.b .. ), and prove that it is true fo:r 
0 lJ 

X d+l = (c .. ) • 
0 lJ 

We nei!d only look at the situation in the top right hand k1 X k2 

block Of X d_+ 1, ' . ' L 23 h . ' . h 1 s1nce, us1ng emma , t e s1tuat1on 1n t e two centra 
0 

blocks is easily taken care of. 

(I) We begin by looking at columns kl + 1 of X d and X d+1. Either 
0 0 

column kl + 1 of X d 18 zero, 
0 

or there exists i £ :l ' 1 ~ i ~ kp 

such that b f. 0 ,for 1 ~ u ' i, and b "' 0 for 1 < u ' n. u. kl+l u kl+l 

If column .ki + 1 of X d is zero, then column kl + 1 of X d+l is 
0 0 

zero. On the other hand, if i is as above, then: 



(i) 

- 78 -

If e < u ' i - 1, then a . ~ 0. 
Ul 

(see Lemma 23). 

Also b.k +1 ; 0, and thus 
1 1 

"(ii) 

cuk1·+~ ; 0 

If u ~ i, then a · = 0 for all v < i. Also b - .. 0 vk 1+1 for· --uv ·- ·--

all v > i, and thus c ... o. uk1+1 

(II) We ·now·look at columns q and q+l of X d 
0 ' 

and derive 

the form o~ the first k1 rows of column q+l of 

k1 < q < n, 

d+1 
X • Three 

0 

possibilities arise for columns q and q+l of X d i.e. they are of 
0 ' 

the form: 

Case (i) Col q Col q+l 

* * 

p. ·. * * 
0 * 

p ; .i 

i 0 * 
0 0 

k1 0 0 

* * If q-k1-d+l ~ 0 
there are thus many .. non-zero entries. Other-

•• ... wise all the en~ries are 
0 * zero. 
.Q. 0 

0 0 

Note: we· include the cases wh~re p = 0 or i .. k1. 
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~ase (ii) Col q Col q+l 

* * 
• 

i * * 
0 0 

kl 0 0 

* * 
Same number of 

non-zero's as 

* * above 
0 * 
0 0 

0 0 

Note: We include the case where i = k1 , but· not where i • 0. 

Case (iii) Col q Col q+l 

0 0 
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We no.te that if I ' i < I r r+ 1' then row i of X has the 
0 

form 

0 0 .• 0 * • . * 0 0 * . . * 
i k1- J -r 

Hence, if i ,u ' k1 and J - k1 ~ q - k1 - d + 1, i.e. r 

q - d ' J -· 1 r. ' then. c uq+1 = 0• Further, if q - d ~ Jr then 

c. 1q+1 
; o. 

Case (i) 

(A) If 1 " u < i, then a . ;. o. Also b. q+1 ; o, and hence u·1 1 

c uq+1 ;. 0 (see Lemma 23). 

(B) Supp~se ~hat I ' i < 1r+ 1 • Then either q = J or· 
r . r 

(i,q). £ s 
. d 

If ... J • then it follows immediately that - s • q r 

q - d ·~ J. 
r l. On the other hand, if (i,q) £ s - sd' then: 

1 - i + q - J r+1 r ' d (see lemma 21) 

q - d ' J - (I + - i) r r 1 ·. 

.~ J 1 r 

Thus we hav~ that c = 0 for all i " u ~ k 1". u q+l. 

Case ( ii.) . 

(A) If 1 ~ u < i, then c ;. 0 (see part .A of case (i)). 
u q+l 

Now suppose that I ' i r ~ Ir+ 1 • (i,q) £ sd and (i+li.q+l) rJ sd' 

and thus (see lemma 22) i • I· - 1 and q - d ~ J • Hence: r+1 r 

(B) c. ; ·0 1 q+-1 

(C) Either Jr+1' (lr+ 1' q) £ s d 
If ' Jr+ 1' tlten it q " or - s • q 

follows trivially· ·that q - d ~ Jr+1 - l. On the other hand, if 
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(Ir+l 1 q) & s - sd 1 then: 

Ir+2 - I r+1 + q - J r+l ~ d 

q - d ~ J 1 r+. - ~ 1.r+2 - I ) -r-+1 

~ J -" r+1. 1 

(note that if (Ir+l 1 q) &.S, then r < p) 0 

Thus, if i + 1 = Ir+1 ' u ' k1, then c u q+1 .. o. 

Case (iii) 

(A) If s .. ~. then it is clear that cu q+1 .. 0 for 1 ' u ' k1 0 

(B) Suppose that 
s "' ~. and let r be such that I ' 1 < I . 

r r+1 

(not~ that r .. 0 or 1). Either q ' J or (l,q) & s - sd. 
r 

If q· < J 1 then it follows trivially that q - d ' J - 1. On r . r 

the other hand, if (l,q) & s.- d 
S I then: 

I · - 1 + q - J ' d r+1 r 

q- d ' Jr- (Ir+l - 1) 

' J - 1. r 

Hence·c _; =0 forall u, ·1,u, .. k1. 
u· q+ 1 

(III) We .c~n summ~rise the results obtained in (I) and (II) above as 

. f ( . . ) r; ( ·d + 1 ) follows: if 

then c .... o. 
1J 

. d+1 
(i-lj) & 5 . 1 then c. . "' o, 1J 

and 1 1 1 J & .. S 1 

" d+1 
Thus the theorem is true for X • The proof is completed by induction. 

0 

Corollary 25 

If ·. S ¢ S "" { ( i 1 j >. I 1 ' i < k 1t k 1 < j ' n 1 and j - i > k 2 } 1 

then X kl r/: 0. 
0 
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Proof 

If S ¢ s, then there exists (i,j) £ S such that j - i • k2 • 

Suppose that I . < i < I If X kr • 0 then (by Proposition 24) 
r r+l o ' 

(l,n) £ s· -, sk1, · ana· -~huii (by-Lemma 21) Ir+l - 1 + n - Jr ' k1. 

But J < j ···and 1r+l - 1 ~ i. r 
. 1r+l - 1 + n - J > ~ + n - j • kr• r 

Thus, we get a contradiction, and conclude that X kl ; o. 
0 

Having obtained the main results of this s"ection, we go on to prove 

Lemma 26 and_". Corollary 27. We wi 11 need the latter later on. 

Lemma 26 · Let X ,.. (a .. ) be an 
lJ 

m x n matrix such that a., 
lJ 

.. 0 

whenever ·i - j ;. m - n, and let y :: (b .. ) be an n x p matrix such 
lJ 

that bij" ~ 0 whenever i - j. ~ n - p - t, 

integer. ·Then XY "" (c .. .) ' where c .. ... 0 
lJ lJ 

Proof If i ~ j + m -- p - t -. 1 1 then 

r < j + m· ~ p - t - 1 - (m - n) 

aj+n-p-t-1 

and b . • 0 whenver r ~ j + n - p - t. rJ 

c .. 
lJ 

. . n ... . r 
.r•l 

. I 

Corollary 27. 

a. b . ,.. 0. 
u rJ 

If p -~. <1, 1 >, 

suppose that: 

then let 
. p 

X .. (a .. ) 
p lJ 

where t is a non- negative 

whenever i - j 

a. = 0 whenever 
1r 

~m-

be an m x n matrix, 
p p 

p - t 

and 

- 1. 



(i) 

(ii) 

Proof 

3.2.2 

u(k) 
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m • n for p • l ••• , t-l. p+1 p 

p a.. • o lJ 

Then 

whenever 

Use induction. 

The. subset N of 
u 

i - j ~ m - n • 
p p 

s 
n 

where c .. = 0 whenever 
lJ 

Let (k) be an·orde~ed partition of n, 

"" I +I\ • ~2 ~ ... <I Nk • We ~ill use u to denote 
1 r 

and put 

u(k) when 

there is no·possibility of confusion. ~r aim in this s.ection is to 

calculate I Nul• where N = {w t s I n(w) "" C(u) u n 

Lenuna 28 

(i) 

(ii) 

(iii) 

Proof 

If w t s , ·then 8 n c :1 0. ·*'"--"""~ u t ·u ~ 
·n . u w w 

There exists a unique element 

for all w t N • 
u 

If w t N, then A-(\ n "" {(:i, i+l)l u w 

... 

and c n w 

such that ·u 

Bu .; ~ }. 

w 
0 

+ + 
c;;;;; u 

w 

(i) Recall ~hat if w t S , 
n 

+ then t : U x U ~ U is defined as 

follows: 

t ((v ,a)) 
w 

-1 
"'vav for all 

·W W W 

(v,a) t U w U 
+ 

X W • 
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Also, recall that if and only if u t Jm( '( ) . w (see lemma 

14). 

(a) · Suppo.se _that 

-.-.... - la .. > e: u +. 
lJ "' 

u • t ((v,a)), where 
"' -1 

Put v ... (c .. ). 
lJ 

v = (v .• ) t U 
lJ w 

-1 
(v.v )i i+1 ... v. c . 1p p 1+1 

... 

.. c... +· v .. 11+1 . 11+1 

and 

(i.e. v. ... 0 whenever lp i > p, c . 1 = 0 whenever p > i+l, p1+ 
and ~i+1 i+1 . = 1) • 

Hence c.. + v.. .. 0 11+1 11+1 

Now: 
-1 .. 

(vav ) . . . a 1.1+1 

... 

... c ... 
l 1+1 

-= 

for i • l, ••• ,n-1. 

v. a c . lp pq ql+1 

v. a c . 1p pq q 1+1 

+·al. 1'+1 ·+ v. · 1 1+1 

v ..... 1 
11 

Hence;-since -- u ,..·vav-1, we have that ai i+l ~ 0 if and only if 

i t R "' <l,.n>· ~ {kp k1 + k2, ••• , k1 + ••• + kr}• Thus 

D .. 

(b) 

+ {(i;i+l) ,. it R} ~Aw • 

u +. u e: w 

. . 

If then it is clear "that u t lm( t ) • . w 
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(ii) Let w 
0 

be the element of S 
n 

described in Proposition 19. If 

w £ N , then 
u 

+ D ~ A (see the proof 
w 

of part (i) above). But 

+ + 
• 1D f\ ~ A (see pag~ ·; t'or the definition of 2 D), and th~s 

w 
0 

A+ 
w 

0 

~A +,. (A + 
w. w 

being a closed subset of 

It is ciear that w is unique. 
0 

+ 
~ ). u 

w 
0 

(iii) If :W E N ' then D A +r\ 1f (see i above). Also, it X is a u ~ w 0 

generic element of u '+ then C(X ) ""C(u), and thus w t 0 

rank (X i (u I)i for i - 1, 2 ••••• This is obviously -. I) "" rank n. 
0 

false if 1f • D tj;. A (\ 1fo The result follows immediately. . w 

Lemma 29 

If w £ N, k = 0, and (i,j) e: Aw •. where u 0 

and k + k1 + ••• + k •, < i ' k + k1, .+ ••• + k o s-1 o s 
' + 

for some _(s,t). ~ llr then (R.,m) e: A 
w 

and k + • ~ • · + k < m , J •• 
0 ' t-1 

Proof 

We will let ai denote ai i+
1

• 

( i,j) corresponds to a .. • a. + 
1J 1 

If R. and m are as above then 

whenever 

+ • • • + 

+ 
a. + • •• + a., , a -+ ••• + a. ·e: A 

1 . .~~o-1 m J-1 w 

k +... + k < j !I; k + ••• + k 
0 t-1 0 t 

i ~ R. < k + ••• + k 
0 s 

+ ••• +k s 

(see Lemma 28(iii)). Thus, since A + is closed, it follows that if w 

a f.+ • • • + ak + ••• +k of: •• • + ak + ••• +kt + • •• + affi-1 
0 s . 0 -1 

A + •. 
1.&· • E W 

1J 
( 1,m) £ A -. 

w 

+ e: A , then 
w 
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We now need to extend our definition of triangular subsets. If 

s and t, s ~ t, are positive integers, then a subset P, of 

<l,s> x <l,t> is said to be triangular, if (i,j) £ P implies that 

(i-l,j), (i,j+l) £ P. Also, we say that an s x t 

is triansular if there exists a triangular subset 

such that a .. ; 0 ~(i,j) £ P. 
lJ 

and be a generic element of Let w £ N , X u 0 

matrix A~ (a .. ), 
lJ 

p of <l,s> X <l,t> 

u + 
w • Then, by Lemmas 

28 and 29, it is clear that (X - 1) has the form: 

I 
L __ _ 

\ 
\ 

0 

where the *'s represent non-zero entries 

I --:-~ 

" . 

1;-r ' ', 

0 '' I ' ''I< . 
kr '0 j 
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. . 
i.e. If we.divide (X 

0 
1) up into blocks AIJ' (I,J) £ <l,r> x <l,r>, 

in the obvious way, then:· 

(i) AIJ "' 0 if I > J 
- ------

(ii) Ail ... (a .. (I))' where a .. (I) .. 0 if and only if 
lJ lJ 

(iii) If I < J, then AIJ "' (a .. (I,J)) is a triangular 
lJ 

We now define a subset D of 

If then put 

D .. . u· 

Lemma 30 

There exists a unique element 

Proof :·we ·need to shcn.· that .D 

+ 
(see Lemma 18). fl· n 

fl 
n 

and 

+ as follows: 

such that 

+ 
fl - D are closed n 

(i) ·Suppose that (i,p') and . (p,j) ·are elements. of D. 

(a)] (I,.P) + 
£ flr such that k + ki-1 < i + ••• ~ 

0 

p -. i ' kl+l + 

i ~ j. 

matrix. 

- D • 

subsets of 

Then: 

k + kl, + ••• 
0 

(b) 3 J, P < J' r, such that k
0 

+ ••• + kJ-l < .j 'k
0 

+· ••• 

+ kJ' and· j - p' kP+l + ••• ~kJ" 

It is clear (see a and b above) that j - i' ki+l + ••• + kJ. 

Hence, it is easy to see that (i,j) £ D. Thus D is closed. 



(ii) Similarly, 

If 

6 + 
n 
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D is closed. 

is a ·generic element of u + 
w • 

1 
then X - l 

0 

r 0; ~-, -~-~-~=--=-=--=-~: r -~-~-~ .-. ---~-....-:-: f- --- -• 
. . -.... I o' I 

'-- ', I I'-- ' I 1f 

k 
l 

I 
\ 

\ 

', ', I I " " 0' 

'-..' "'· I'·'-(J \.. . 

'," .Iii ', '-"'-
' ' I I I " 

' '· " '" ' •. I ! I· '·, ' 
'· ' I ' ' "'-' ,_·,_Ill ,,, '>II 

'· * I ' * I ''* 
kl. 0 0---- ·-- 0 0- ----0 --·----------------- ·----------------------

0 .t: .... -· -:- - - -·· ?IE-I -~ - - - - -· - r 
. . I I 

'· '· I ·l' 
' ' I 0'-.. I 

l
. '·,'·,, . I II'~'- ~ 

2. ..... '·'' I ' ' I (J ·.,_, II '-', I 
' ·.', I i '"'- · 

. -----··· -~~:_ ___ .. ~--~ ~- ~~~-~- _; i· 
o-:..<-- ------· -:v ,, 
'' ' ' k· ', I 

3 , ' I 
() '-..',1 

. '' ;L~ 

~--
kl 0 

where the *'s represent non-zero entries. 

has the form: 

*--.-- ·-:!< 

I ' 1 

I 
Jl:. 
o' 
I"' '' ' ' '' : 

' ','!(. I v· o-----o 
~----*-

1 ! 

I 
!I! 
o' 
1'-' '· ·, 

"' 

I 
I 
I 
I 

I ,,.t'· 
0--- -- .--0 

:to----- -;~ 
I 
I 

* ' 9," 
I ,, I 

I 
I 

' I . '·,""I· . 
I '-:1::~~ 
o----o ·1 

I 
o-llf.---?1< I 
'' I ' ' ' . ' '·' I I 0 ',\~. j 

k, 0 
- I 



Proposition 31 

Proof 

(I) 

w £ N ~c=-=) U 
u w 

Let w t N • 
u 
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+ + 

0 

U + u +. Then, by Lemma 28, w c w 

To show that 
+ + 0 

Uw C Uw
1 

, we need to show that 

If then put EIJ .. {(i,j) t A 
w 

A -c A 
t.!l - w 

k
0 

+ ••• + ki' and k
0 

+ ••• + kJ_1 < j ~ k
0 

+ ••• + kJ}. It is clear that 

is the disjoint unLon of the sets ~IJ. We need to show that A 
w 

DIJ c;: EIJ, for all (I,J) 
+ 

£ IJ.r 

(A) If (I,P), (P,J) 
+ 0IP~ EIP and DPJc. EPJ, then £ Ar ' 

DIJC EIJ. 

i.e. If ( i' j) DIJ 
£ ' then 

k. + kl + + ki-1 < i < k + + ki' 0 0 

k + kl + . . . + kJ-1 < j ~ k' + ... + kJ' 0 0 

·and j - i ' ki+1 + ... + kJ'" 

k + . . . +· k - i < j - i ~ ki+l + ... + kJ 
0 J-1 

·k + . . . + kJ-1 (kl+l + ... + .kJ) < i 
0 

.. k + ••• + ki - k < i 
0 J 

But kJ < kp• and thus 

k + . . . + ki - k < i ' k + ... + ki. 
0 p 0 

k + ... + ki - kp + kl+l + ••• + Kp 
0 

< i + ki+1+ ... + kp I!; k + ••• +kp 
0 

(i, i+ki+l + ••• (a). 
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Also, since j - i ~ kl+l + ••• + kJ' it is clear that 

j - (i + kl+l + ••• + kp) 'kP+l + ••• + kJ. Hence 

(i + ki+l + ••• + kp, j) £ DPJ,.... A 
w 

• • (b). 

Now A 
w 

is closed, and hence by a and b above, we have 

that ( i, j ) £ A 
w 

:. U,j) t: EIJ. 

(B) DI 1+1 c_ EI I+1 for I= 1, ••• , r- 1. 

i.e. Suppose that DI I+1 4. EI I+l 

Let X be a generic element of 
0 

into blocks BPQ' (P,Q) & <l,r> X 

+ u 
w 

for some I & 

and divide 

<l,r - 1>. 
k 

(X - 1) I 
0 

<l,r>, in the obvious way. 

By Corollary 25, it is clear that BI I+l ; O, and hence that 

k k 
rank (X - 1) I >rank (u- 1) I. This is not possible. 

0 

(C) From A and B above, it is clear that DIJ s; EIJ for all 

·(I,-J) + 
£ fl • r 

Suppo_se that u + 
w ~ 

Let 

u £ u 
w 

0 

+ 
p £ #. . • 

+ 

0 

+ 
!;;; u w 

and· X 
0 

u + r;; u + 
w wl 

and hence, by Lemma 28, 

be a generic element of 

Bu (', c "' ~- .. (1) 

u 
w 

+ 

w 

Partition X - 1 
0 

into blocks AIJ' (I,J) £ <l,r> x <1,r>, and (X - l)p into blocks 
0 

BIJ • (bij(I,J))-
n 

BIJ • 2 
Tl '~ • • • • 'TP-1 ,. 1 

Now: (a) If I > J, then BIJ = 0 

(b) b .. (I, I) = 0 ~~-=9 j - i ~ p .- 1 
lJ 

(cf. Proposition 24) 
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If I < J, then 

BIJ • 
[ 

'J "tT A.r T • • ·A.r J• I'Tt~• •• ,T p-1 1 1 2 p-1 

B'ut + + and if (P,Q) + u c;:. u • hence: £ A ' then 
w w, r 

ApQ • (aij(P,Q)), where aij(P,Q) • 0 whenever i-j ~ ~-kQ. 

Thus bij (I,J) • 0 whenever i-j ~ 'k1 ... _kJ-p+l (see Corollary 27). 

In particular, we have that the last p rows of BIJ are zero. 

By (a), (b) and (c) above, it is clear that (X - l)P has the form: 
0 

p :"e111~ .. -- ... --, . 

! 10,-,- 0~,---~-,-_-----:--r:-- -- -~'r- -----: -----~:==~~- \\ 
I ' ,', I 

I ·, ''·' I I I I I I 

'- '" I I I 
: ', ''- I 

1 k, ' " "~, : I : : r··. ,_ , .... , i I 

' ) ' ' 'l I I 1 I I 
'· ' 10(_ - - - - - ---- 0( ol. - - - - - - r;l.. oi--- - - -- o< ' , ~I i- - - - - - -- - ~ ~ - - - - - -i w--- -- - -~I 

' 1 1 1· I I I 'I '1 
o~ o - --:- - - - -=-=--=-- o o - --==- - -- o ____ lo- - ---61 

0- -- O,'i<- - - - -- --:t t<- - - --- -- ;'Y X-- -- --r>(_ 
' '' I I I I 

' '~' I I 
", ',, II 

'- '' I I 
'- --~\-11 

1<, 

,-.. ' '·,I I I I I -
( -) ' '-" M------- !l( 0<- ----" • 

- '' ' ; I~- - - - - - - ~ ~: --·--- ~·~.--
k, '6!6------------6 6--~-----~ 

-------------------·-rc;~-=~--~~~~-=-= -~ ----~:(=--=---= ---~- I 
' ' ' I II I I' 

' .... ,, I I' I 
k " ''I -' ' it! '. I I () " ' ': IF = = : j} I p 

' 1 , 1 z~rry; 

----~---0 10 ·-·- - -,---,--

~ ..... ·-. 

I 
I ) 

! 

/ ' I , I p 2.•!•0':". . ·,,r-, I 
o- --o11,--'fli 

' ' ' I ' ''I 

( 
\ --.... 

\ k,. ;, ' " ·,]:· II 
\ ~ ,, 

"· o I 
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where the *'s represent non-zero elements, and the a's represent 

elements which may, or may not be zero. 

Thus, it is easy to see that 

n (w) "' C(u) ••• (2) 

rank(X - l)p = rank(u - l)P. 
0 

w £ N 
u 

(see (1) and (2) above). 

3.2.3 Young's Diagrams 

Hence 

Let (JI.) • (JI.l ,J1.2, ••• , i. ) be an ordered partition of n. Then we 
s 

can associate with (JI.) a Young's Diagram: 

•. '{' * . . . . . . * . . . . . . * . . . . . . . . * 

* * * . . . . * * 

* * * • • • • . . . * 

Example The partition (4, 2, 1) has a Young's Diagram: 

* * * * 
* * 
* 

nodes) 

( t 2 nodes) 

(1 
s 

nodes) 
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We say that a node is in the position (i,j) if ·it is in· row i and 

column j. 

If we place the numbers 1 ••• n at the nodes, in any order, then 

we obtain a tableau. 

Example 

4 1 3 2 

5 6 

7 

is a tableau for the partition (4, 2, 1). 

Let ~ be a tableau for the partition (t). and let n .. be the 
lJ 

. h (' ')th .. entry 1n t e 11 J pos1t1on. Then we say that V is a standard tableau 

if n .. > n.. , n. . • 
lJ lJ+l l+l J 

Example 

7 6 3 2 

5 1 

4" 

is a standard tableau for the partition (4, 2, 1). 

Theorem 32 

(i) There is a bijective correspondence between the ordered partitions 

of n and the irreducible representations of the group s . 
n 

the dimension, d(i)' of the irreducible representation of 

Further, 

s 
n 

corresponding to the partition (i) is equal to the number of 
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standard tableaux for (1). 

(ii.) ~ 
Ordered partitions 

( 1.) of n 

Proof See (1). 

3.2.4 The number of elements in N 
u 

Proposition 33 

w E N if and only if 
u 

is a standard tableau for (k). 

. I 

= 

Proof 
+ + + .;;;;.. u c.. u w E N 

u 
+ 

Uw has t·he form: 

u 
w 

0 
w -- wl • 

Is I n 

i.e. a gener~c element of 
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(11 ~-- -·------- ----:k s -· 
I 
I 

---·-=---·---------- -- -----:::-1\ -- - I ~ - --· - - - - ~ I ~ - -- - - .. I \ 
I 

·., 

0 '·. 

·. ' . ' ' 
• ·• ~l: 

l __ _ k 1 . ' 

where the ••·s represent non-zero entries, 

the a's and rfs represent zero entries, 

and the . f;' s represent entries which may, 

Note that by Lemma 29 and the fact that 

i I I I 
I' I 

and thus elements of 

and thus elements of 

or may not be, zero. 

'"; 

I ' 
i :X ' 

I' ' 
I I ·, '\ 

·, '·' 

i 
I 

~~~-~~-~-~ 
., '-. '-. I 

kr '-.' ! I 

l 0 -->-! 
k l.J 

----''----1 

+ 
A ; w 

A . 
w ' 

A 
w 

is closed, a necessary 

and sufficient condition for the a's to represent elements of A 
w 

is 

that the a's represent elements of A 
w 

I 
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So, we have that 

(i) 
+ (i,i+l) tAw whenever i t <l,n> - {k 1, k 1 + k2 , ••• , k1 + ••• + kr}; 

and 

(ii) VI • 1, ••• , r- l, (i, ki+l + i) tAw whenever 

w t Nu "''-'=-9 

(i) w-1 <b < w -
1 

(i+l) whenever i t <l n> -

and 

(ii) \j I. •. l, ••• , l, w-1(i) -1 i) r - > w (ki+l + whenever 

k1 + . . . + ki - ki+l < i lli; k1 + ... + ki. 

The result now follows easily. 

Theorem 34 

= (recall that in the above work, we simplified 

our notation by writing u for U(k)). 

Proof The· result follows immediatel.y from theorem 32 and proposition 33. 

Theorem 35 

Let G ~ SL(n,K), and (k) be an ordered partition of n. Then the 

number of ~rreducible components of B of maximal dimension (see pages 2q 
u(k) 

and b7 for the notation) is equal to d(k)" 
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If WENU, 
(k) 
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then dim c t\ Bu • dim Bu 
w (k) (k) 

(see lemma 15). 

-· Thus, if X is an irreducible component of c f\B 
w u(k) 

of maximal dimension, 

then X is an irreducible component of B 
u(k) 

of maximal dimension. 

if w' £ NU , w ; w', and X' is an irreducible component of 
(k) 

of maximal dimension, then X; X'. Thus 

i.e. 

But I 
partitions (k) 

I 
partitions. (k) 

2 

~(k) -
Is I n 

(see theorem 3~), 

Is I n 
(see corollary 13) • 

and 

Also, 



CHAPTER Ll 

In this chapter we will show that our basic assumption (see 2.2.3) 

is true for the classical groups SO(n,K) and Sp(n,K), where K has 

infinite transcendence degree over its prime field, and char(K) p 2. 

To achieve this we just combine the work of Carter and Bala, and 

M. Gerstenhaber. 

4. 1 BACKGROUND 

4.1.1 Distinguished diagrams of type B~, c1 and D~ (see 3) 

In the following we shall assume that all the partitions are.ordered 

(see J.l.i). 

Let (k) = (k 1 , k2 , ••• , k ) be a partition of n, and put 
r 

>.. =l<k. 1 k. ~ill. 
1 J J 

is a par.ti tion 

of n, and it is called the duol of (k). 

** We note that (k) = (k). 

Exa!fle The partition (4. 3, 2, 2) has Young's Diagram 

* * * * 
* * * 
* * 
* * 

Reading off the columns we see that (k) * .. (4, 4, 2, 1) 
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If p· t ./~ • and zl • z2 ••• , 
z Zp-1 

we will use (p p. (p-1} ••••• 

(p, ••• ,p, (p-l}, ••• ,(p-1}, ••• , 
...._____,_--.~ - -----,-- -·· 

z z p-1 p 

If (k) .. (k1, k2, ••• , k ), 
. r 

k . -k k -k 
(r-2} r-£ r-1 , ••• , 1 1 2). 

z a:re non-negative integers, p 
lzl} to denote the partition 

1, ••• ,1), of rp i z .• ._ ___ "' ___ -
i=l 1 

z 
1 

then * kr 
(k) .. (r 

k -k 
(r-l) r-1 r, 

(A} The d~stinguished diagrams of type B1 have the form: 

(I} 2 2 2 
0----· ---0-----'<"0 

2 2 2 
0-----0=-·;;z·-=O 

then 

(II) 
2 2 22020 020 020 00 0 
0--'0. • 0--0-~-V----O. • o=--V---0. • o o ·o. • 0--.:o==;.=o 

m ·~ i 

where m and the n. are obtained as follows: 
1 

n v 

Let (k) = (k1, k2, ••• , k }, r > 1, be a partition of 21 + 1 
r 

into distinct odd parts, and put A· = 
1 

k. -
1 

2 

1 
for 1 = 1' ••• ' r. 

and i~ ). =.0, then put r 

* (A} = (nv--1' n , ••• , n 1 , 
v-2 1, ••• ,1)' 

'------v-----~ 
and 

m+l 
n v-1 ,.-- if n is even (i.e. if Ar .. 0) 

v-1 n = v 
1 n - (i.e. if ; 0) v-1 if n is odd Ar 

2 v-1 

(Note that ni ~ni-l for i = 2, ••• , v- 1}. 

Distinct partitions, (k) = (k 1, ••• ,k ), r > 1, give rise to 
r 

distinct diagrams of type II, and we associate the diagram (I) with the 

partition (21 + 1). 
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(B) The distinguished diagrams of type c
1 

are of the form: 

2 2 2 2 0 2 0 0 2 0 0 2 0 0 0 2 
o:-.----o. • 0--0----0----o-----4). • 0 ~0. • 0 . ~.!0. • ~~ 

m 

where .m and the n. are obtained as follows: 
1 

n··~ 

v 

Let (k) ,.. (k1, k2, ••• , k) be a partition of 1 into distinct 
r 

* parts, 'then (k) "' (nv• nv_1_. •• ,np ~-·~.:~-~]>· Each partition, (k), 

m+l 

gives rise to a distinct diagram. Note that 

(C) The distinguished diagrams of type 0
1 

are of the form: 

2 2 2 2 0 2 0 

~ 
2 

I) 0-0o . 0 ·o· ·o~ o • 
>----~--... n_.,. ~ 

2 1 n2 v 

where all the n:5 are equal to 2, m is odd if 1 is odd, and 
1 

m is even if 1 is even. 

0 

II) 
2 2 2 2 0 2 . 0 0 2 0 020 oo-·...0 

Q---0----0. o.--0::::: ___ 0'--~ •• 0---0---0 -·0---0 •• C..-~. 

I· ··-- ------~ 

n2 

where m and the n. are obtained as follows: 
1 

f-----~ 0'0 
nv -........._~ 

k ), 
r 

r ~ 4, be a partition of into 

distinct odd parts, and put A. "' l 

k.-1 
1 

-y-
If A ; 0, then put 

r 

1r 

(A) "' (nv-1' n , ••• ,n 1 , 1, ••• ,1), 
v-2 '-----.-. ---

and 

m+l 

r· 1 
nv-~ if n is odd (i.e. if A ,.. 0) n "' v-1 r v 
v-1 if n is even (i.e. if A "' 0) ""2'" v-1 r 

(Note that n. ~ n. 
1 1-1 

for i"' 2, ••• , v-1) 
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~ach partition gives rise to a distinct diagram. 

We can associate to each partition 

odd parts a diagram of type I, i.e. if 

(k 1 , k 2 ) of 

k.-1 
A. • _1 , 
·1 --r-

22. into distinct 

i "' 1, 2. 

(A) = (AltA~) if A2 ~ O, and (A) a (A 1) if A2 a O, then 

* (A) = (n , n 
1

, ••• , v v-
The correspondence thus obtained is 

bijective. 

4.1.2 Description of the groups SO(n,K) and Sp(n,K) ..See (5) 

Let E be a vector space of dimension n over ·K, and let 

{ el,e2•······ ,e
0

} be a basis of E. We can define a non-degenerate, symmetric 

bilinear form on E by putting re.,e.) • 1 if i + j = n + 1, and 
1 J 

(e.,e.) = 0 otherwise. M (K), the set of n x n matrices with coefficients 
1 J n 

in K, acts on E with respect to the basis 

way. 

SO(n,K) = {X £ M (K) I (Xv,Xw) = (v,w) for all v, w £ E, and 
n 

det X = 1} is a quasi-simple algebraic group of type [ Bt if n = 
l Dt if n "' 

If X • (a .. ), and a= (i,j) £ <l,n> x <l,n>, then we write 
1J 

X "" a... Let a 1J 
r: <l,n> X <l,n>-+ <l,n> X <l,n> be given by 

22. + 1 

2t 

r((i,j)) - (n+l- j, n+l- i), and if X £ M (K), 
n 

then let xr be the 

element of M (K) 
n 

so(n,K) = (X £ M (K) 1 x.xr ... 1 
n 

and det X .. 1}. 

Let T be the maximal torus consisting of the diagonal matrices 
0 

G = SO(n,K), B be the Borel Subgroup of upper triangular matrices 
0 

G, and if (i, j) + and i+j < n+l, then let a .. : T -+G £ l\n 1J 0 m 

defined by a .. {diag (al ' .. .,a ) } .. 
1J n 

{(i •. I (i,j) £ l\n and i+j < n+l}, . lJ 

a./a .• 
1 J 

+ 
~0 = 

Then ~0 a ~(G,T0) = 

~(B ,T) ={"(i .• I (i,j) 
0 0 1J 

and i+j < n+l}, and the corresponding basis is 

12 JAN 1978 
II£MinM' 

be 

in 

in 
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l £a12.a23•· ••• at 1+1} if n "' 21 + l 

1T "' 0 [ {a12•a23•···· a ·a } if .. 21. 
1-1 1' 1-11+1 n 

The O.~kin Diagram for S0(21 + 1 1 K) is C>-----;0.---0 • 

;; l:l « .. ~ ot!'t 

0----0·=j>-=0 • 
:ii,,l t c.:,..t•\ 

and the P;dtin Diagram for S0(21, K) is 

0-- ---0 ••• 
«,.,_ «u 

~~ 
n ~ 1-11.. 

~. 
0 ·~ l·l ( o 1 

so(n,K) ={X t M (K) I (Xv,w) + (v,Xw) = 0 for all v, w t E) 
n. 

• {X t M (K) 
n 

X+ xf = O} is the Lie algebra of SO(n,K). 

Recall that if (i,j) t 6 , then E.. is the n x n matrix with a 
n l.J 

1 in the ( . . )th l.,J position and zeros elsewhere. 

(i,j) E 6 and i + j < n + 1, is a root vector n 

root and ~ G -+ SO(n,K), £ .. (t) I a .. • £ •• : = l.J l.J a l.J 

one parameter subgroup corresponding to a ... 
l.J 

2 

+ 

r 
R •• "" E •. - E.. , 

l.J l.J l.J 

corresponding to the 
t '2 2 

tRij + 2 Rij • is the 

Note: If n = 21 then R .. = 0 (we are of course assuming that 
.l.J 

( i 1 j ) t 6 and that · i + j < n + 1) • 
n 
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On the other hand if n = 2t + 1 then: 

2 2 (i) R. r. ... -E. and R "" -E 
1 :t+l 1 n+l -i J.+l J n+l-j j" 

2 
if 

"' "' 
(ii) R •• , ... 0 i t+ 1 and J . 9..+ 1. 

1] 

Now suppose that n = 2t, and define a skew symmetric bilinear form 

on E by putting (e.' e.) 0:: 1 if 
1 J 

i + j 0:: 2t + 1 and 1 ~ i (: t, 

(e.' e.) .. -1 if i + j ... 2t + 1 and g, < i ' 2 t, and (e.' e.) "' 0 
1 J 1 J 

otherwise. Sp(n,K) = {X £ M (K) I (Xv, Xw) ... (v,w) v, w £ E} is 
n 

a quasi-simple group of type c 9..' it is called the symplectic group. 

Let li be the i xt unit matrix and put fla It <:e (-Ii). 
I 

If X£ M (K), then put Xr "" AXr A • 
n 

r' Sp(n,K) .. {X£ M (K) I X .X • I}. 
n 

Let T be the maximal to~us consisting of the diagonal matrices in 
0 

G = Sp(n,K), B be 
0 

and if + 
(i,j) £ lln 

defined by a .. (d iag 
1] 

the Borel Subgroup of 

and i + 
J .; n + 1, 

(a 1 , ••• ,a)) n 
.. a./a .• 

1 J 

upper triangular matrices in G, 

then let a: .. . T +G be 
1] 

. 
0 m 

Then t = t(G,T ) ... 
0 0 

+ + j + t(B , T ) .. {a .. I (i ,j) .c; n + 1}, cliO 
.. 

£ lln ' 0 0 1] 
{a .. 1 (i,j) c ll , i 

1J n 

i + ·j " n. + 1}, and the corresponding basis n
0 

is the set 

v,w 

Sp(n,K) has a ~~kin Diagram· 

0- ------0 ----0 • • • 0-·.: (:.. .. .0 
..... .. " { t • L 

sp(rt,K) = {X £ M (K) I (Xv,w) + (v,Xw) "" 0 for all 
n 

r' EE} -=··{XE.M(K) IX+X =O} istheLiealgebraof 
n 

Sp(n,K). 
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Example sp(6,K) is the set of matrices of the form: 

r a 11 a12 al3 alit alS al6l 

a-2-1 a22 a23 a21t a25 al5 

a31 a32 a33 a3it a2it alit 

aitl ait2 a43 -a33 -a23 -al3 

8 s1 a 52 alt2 - 8 32 -a2_2 -al2 
I 

a61 8 51 aitl -a31 -a21 -a 11 ) 

R •• I ... E .• r' (i,j) £ 6n and i + j ' n + 1, is a root vector E ---. . ' l.J lJ ' l.J 

correspon~ing to the root a: ..• and £ .. : G -+ Sp(n,K), 
l.J l.J a 

I 

£ .. (t) .. I + t R •• is the one parameter subgroup corresponding 
l.J l.J 

4.1.3 Partitions and Conjugacy Classes 

Also, 

First .of all we note that if A, B £ M (K), then: 
n 

(A B)r 
ij 

... t A B n+l-i pal n+l-j p p 

.. t A . 8n:t-l-q n+l-d qal n+l-j n+l-q 

= (BrAr) .• 
"l.l 

(A B)r = Br Ar. 

(A B) r' = fi(A B)rll "" IIBr Ar II 

"' A Br 1111 Arh 

= B r' A r' 

to a ..• 
l.J 

It is now easy to see that r and r' are anti-automorphisms of M (K). 
n 
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is an anti-automorphism of M (K), 
n 

and 

are similar matrices in M (K) such that AAs • 88s "' I, or 
n 

A and 8 

A + As • 8 + 8s a 0, then there exists C £ M (K) such that C C8 = l 
n 

and 
8 

C A C "' B. 

Proof See (5) 

If X is a nilpotent {unipotent} element of M (K), 
n 

then 

X {X- I} is similar to: N(k) (see page 6~- for the notation) for some 

partition (k), of n. We write t(X) = (k). 

Let s "' r or r", G "' {X £ M (K) xx,s ... 1 and det X = 1}, and n 

~ = {X £ M .(K) I X + xs a 0}. n 

If X and y are two nilpotent {unipotent} elements of· ~ 

{G} and C(X) .. C(Y), C(X.) and C(Y) being the nilpotent {unipotent} 

conjugacy classes in g {G} which contain X and Y respectively, 

then t(X)- ... t(Y). If C is a nilp~tent {unipotent} conjugacy class 

in ~ { G}; then we write t(C) "' t(X), where X is an arbitrary 

element of· c. It is clear that if C' is ~nother nilpotent {unipotent} 

conjugacy class of g {G} • then t(C) ... t(C') ='> C = c' (see Lemma 35 

above). 

Lemma 36 Let /V" be the set of nilpotent conjugacy classes in ~· 
and 

r be the set of unipotent conjugacy ·classes in G, then we can define 

a bijective 
_,; ..... 

l/~ such that: map p: _/t/ + 

(i) if cl, c2 E ,//f/'' and cl ,-. c2, then p(Cl) -~-- p(C2) 

(ii) If c /(' £./., then t(C) ... t((p(C)). 
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Proof Let N be the variety of nilpotent elements of g, and v 

be the variety of unipotent elements of G. If A £ N, then 

8 ... I +.A • I + 2A + 2A2 + ••• + 2An is a I - A 

unipotent element of M (K). 
n 

Further, s1nce s is an anti automorphism, 

it is clear that (I + ~) s I + As 
and hence that BBs a 1. "' AS ,. 

I - I -
So can define N v by putting E;(A) 

I + A 
we a map E; : + ,.. I -A 

is in isomorphism varieties, i.e. 
-I B - I 

E; fact an of f; (B) = for B ·+ I 

all B £ v. Now, if g £ G then 
-1 -1 

f,;(gAI )=gf,;(A)g for all 

A £ N, and hence we are able to define P• It is clear that if c1 , c2 £ ../{/) 

If X and Y are elements of M (K), X is nilpotent, Y is non
n 

singular, and X and Y commute, then XY is nilpotent. Recall that 

M (K) 
n 

acts on the vector space E. If 1 then Xiyi .• ..:; 1 {. n E + E, 

and thus But is non-singular, 

and thus rank XiYi = dim E - dim Ker Xi = rank Xi. Hence 

t(X) • t(XY) (see Lemma 16). As above let B £ V and put A 
B- I 

= 1 B + 

Applying the above result to (B- 1) and (B + I)-l, we get that 

t(A) ~ t(B- I) • t(B). Hence if 
1/) 

C £ ,, t·· then · t (C) = t (p'(C)). 

Lemma 37 If (k) = (k 1, k 2, ••• , kr) is a partition of n, then: 

(i) A necessary and sufficient condition for there to exist a nilpotent 

{unipotent} element X, of so(n,K) {SO(n,K)}, such that 

t(X) = (k), is that each even part of (k) appears an even number 

ot' times. 

(ii) A necessary and sufficient condition for there to exist a nilpotent 

{unipotent} element X, of sp(n,K) {Sp(n,K)}, such that . 

t(X) ... (k), is that each odd part of (k) appears an even number of 

times. 
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Proof See (5) for the nilpotent case. The unipotent case is obtained 

by applying Lemma 36. 

Definition If each even part of a partition (k) appears an even number 

of times, then we say that (k) is orthogonal. If each odd part of a 

partition (k) appears an even number of times then we say that (k) is 

symplectic. 

It is .. clear (see Lemma 35) that the nilp.otent {unipotent} conjugacy 

classes of so(n,K) { SO(n,K)} .re ~one-to-one correspondence with the 

orthogonal partitions of n, and that the nilpotent {unipotent} conjugacy 

classes of sp(n,K) {Sp(n,K)} are in one-to-one correspondence with the 

symplectic partitions of n. 

If (k) and (k') are par.titions of m .~.and n respectively, then 

we use (k) ~ (k') to denote the partition of m + n obtained by taking 

the parts of (k) and (k') together and rearranging them in descending 

order. 

If (k) - (kl, k2' ••• ' k ) 
r 

is a partitio~.of n, then we can obtain 

an orthogonal partition (k) of n, as follows: 
0 

l.f r .. 1 and k 1 is odd, then put (k) ... (kl); and if kl lS 
0 

even, then put (k) = 
0 

(kl - 1, 1). If r > 1 and kl is odd, then put 

(k) = (kl) 'l! (k2···.' k ) • if kl is even and kl ~ k2, then put 
0 r o' 

(k) = (kl - 1) ~ (k2 + 1, k3' ••• ' k ) ; and if kl is even and 
0 r o 

Similarly we can obtain a symplectic partition (k)n, of n (we 

are of course assuming that n is even in this case), i.e: 
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If r .. 1, then put (k).,, .. (k1). If r > 1 and k1 is even, then 

put (kt, .. (k1) .. (kz,~·••kr)~ . if • k1 is odd and k1 "' kz, then put 

(k)./.) .. (k 1 - 1) ~!to (k 2 +.1. k3•···· k ) • 
r n • 

and if k1 is odd and k1 = k2, 

then put (k)..o ... (k1, kz) ~ (k3•···• kr).o. 

Example 

(7, 6, 6, 4, 2, 2, 1) = (1, 6, 6, 3, 3, 1, 1, 1) 
0 

(7, 6, 6, 4, 2, 2, lt. = (6, 6, 6, 4, 2, 2, 2) 

We now leave partitions for the time being, and go on to look at 

triangular subsets. 

Recall that a subset s of 6 
n 

+ is said to be triangular if 

~ 

( i . ) .J £ s implies that (i-l,j), (i,j+l) £ s • We say that a triangular 

subset of + 
~s symmetric if s 6 n (i,j) £ s implies ·that r((i,j)) £ 

If s .is a triangular subset of 6 
+ then we n ··• define a subset I 

<1, n>, called the first ch~racteristic s~quence of s,. as follows: 

s. 

·of 

the first element of I is 1, and if i £ I, then its successor is the 

least j su~h tha·t (i,j) £ S 1 if such a J does not exist then the sequence 

ends with · i. Now suppose that the 

have been defined for s, and let 

the pth characteristic ·sequence, 

characteristic sequences 

J .. J be their union. p-1 

I p' of s as follows: 

I1 "" I, I 2 , ••• ,I p-1 

We define 

the firs.t 
I 

element of I is the first 'element of <l,n> - J, and if i £ I , then 
p p 

its successor is the least j £ <l,n> - J such that (i,j) £ S; if such 

a j does not exist then the sequence ends with i. This process of 

defining characteristic sequences can continue until for some r 

•• ~ ui '"'<l,n>; . r constitutes a complete set of 
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characteristic sequences for S. If we let k. equal the number of 
1 

elements in the sequence 1., then (k) 
1 

of. n. We write t(S) m (k). 

Example 

(1, 2) ( l, 3) 

(2, 3) 

(4, 5) 

... 

As before (cf. page bf{) we display the elements of 

triangular array, and let S be the triangular·subset of 

of those elements in the shaded region. 

"' {1, 4, 7 }, = {2, 5, 8} 

13 "' {3 , 6 } , and t ( S ) • (3 , 2 , 2) 

is a partition 

(7. 8) 

in a 

+ 
Aa con.sisting 

Notation If G
0 

is a classical group with Lie algebra ~0 , and y is 

a closed irreducible subvariety of ~ consisting entirely of nilpotent Ro 

elements, then there exist.s a unique nilpotent conjugacy class C of ~0 

such that C f\ Y. "' v. -· we write t(x) ... t(C). 

Now, if S is a triangular subset of then Y.s (see page (,lf-
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for the notation) is a closed irreducible subvariety of si(n,K) consisting 

entirely of nilpotent elements. Further, if S is symmetric, then 

. soy5 = so(~,·K) t1 Ys and spy_
5 

"" sp(n,K) n Yg (in the latter case we· 

are assuming that n is even) are closed irreducible subvarieties of 

so(n,K) and sp(n,K), respectively, consisting entirely of nilpotent 

elements. 

Lemma 38 If s is a triangular subset of 

Further, if. S is symmetric then t(soy 5) = t(S)
0 

and t:(spy 5) "" t(S),:::. 

Proof See (5). 

Recall that ~ = so(n,K) {~p(n,K)}, G = SO(n,K) {Sp{n,K)}, and 

that if X i·s a nilpotent element of ~· then C(X) denotes the nilpotent 

Conjugacy ciass in ~ containing X. 

Lemma 39 If X and y are nilpotent elements of g, then: 

(i) C(X) = C(Y) ~=\>rank xi = rank yi for i. .. 1, ••• ;n. 

(ii) C(X) (-, C(Y) ""'=:;,rank xi 
' rank yi for i· ... 1, ••• , n. 

Proof 

(i) follows immediately from Lemmas 16 and 35. 

(ii) see 5. 

The analogue in the unipotent case is obvious· and follows immediately 

from Lemma 36. 



- 111 -

4.2 THE HASIC ASSUMPTION FOR SO(n,K) AND Sp(n,K) 

Let ~ and G be as above. 

If D -::.:- E ~-, n , n being the basis of the root system of G described 
0 0 0 0 

on pages \02 and 10-5 , then let ~ 
0 

Levi type corresponding to E (i.e. 
0 

be the regular subgroup of G 

RE 1s the semi-simple part of 
0 

of 

-= <T , u_ 
o a .. 

a. . & 
lJ 

(ell ) > 
o E where u-a .. = £ .. (G ) 

lJ a 
(see pages 1o·H IO~.t-)), 

-p·E D 
0 0 

lJ 0 

be the standard parabolic subgroup of 

lJ 

RE corresponding to the subset D 
0 0 

of E ,and 0 . be the Lie algebra of the unipotent radical UE D .• of p~ D • 
0 0 0 0 

If D r: E • n, n being the basis of the root system of SL(n,K) 

described on page 63 , then let RE be the regular .subgroup of SL(n,K) 

of Levi type corresponding to the subset E of n, PED be· the standard 

parabolic subgroup of RE. corresponding to the subset D of E • and 

!!Eo be the Lie algebra of the ·unipotent radical UED' of PED" 

Lemma 40 If C
0 

is a nilpotent conjugacy class.of ~· then there 

exist sets D and E D ··E · n suchthat: o o o' 

(i) 

(ii) 

Proof 

0 0 

is a distinguished parabolic subgroup of ·~ 
0 

intersects ~E D 
0 0 

in a dense open subset. 

and C 
0 

There exists two sets D and E, D .... ~ n, such that 

(I) The proof of part (i) for so(2 1 + 1, K). 

1) Let (k) = (k lt k 2, ••• , k ) , r > 1, be a partition of a + 1 
r 
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into distinct odd parts, and let 

2 2 2 2 2 0 ·o 2 
0-- -0-c._ --0• . 0- O: -0. .o (). 

0 0 0 0 
-C. 0-- . -0:=- ·_)-· ::-_-:.0 

>- ·-m Ill 
----n---. . ---;· 

v 

be the distinguished Dyokin Diagram of type B 
i. 

obtained from (k) 

(see page 99 ) note that the nodes in the above diagram 

represent elements of 1T • 
0 

Let D be the set of those simple roots 
0 

which have weight zero in the above diagram, 

i + j < 2t + 2 and h0 <a .. ) ~ 2} see 1.3.19 for the definition 

of . h0 , 
0 

and S = 

0 lJ 

l'i = {(i,j) £ A:l1+1+ I i + j = 21 + 2 and i4lR.-n}, 
v 

F 1..J l'i U r (F). s is a symmetric tria~gular subset of 

+ A2i+l and soy5 = Yo , the Lie algebra of the unipo~ent radical 
0 

of the standard parabolic subgroup of S0(2R. + l,K) corresponding 

to the subset D of n • 
0 0 

i.e. An element 

·/@] ,;; -
,_ ' .. . . ' 

'·. ' .. ,, ·, 

•,\ 
...... -TI· 

. 1° 0 In, 
~ 

n, '· 

', 

I 
I 

\__ .J 

X • 

n" _, 

of has the form 

'l' . ; .. 
' .. 

1\ ·- t 

~}· 
' '· 

n, 

~n, 
~ 

. ., ' 
....... ' ' "' ·, ' 

'-t . '· I I 
~@J; 
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where the *'s represent entries which may or may not be zero. 

Recall that X is antisymmetric about the antidiagonal. 

Let 11 , ••• , It be a complete set of characteristic sequences 

of s. It is easy to see that IIi 1· is equal to the number of blocks 

in the above diagram with sides greater than or equal to i. Thus 

* t(S) = (2n + 1, n , n 
1

, ••• , n1, n1, 1, ••. ,1) • Let v v-1 v- ~--' 2m+2 

k. - 1 
).i = .......,1~-

2 
for 

(a) If A r/: O, 
r 

1 = 1, ••• , r. 

2n + 1 = n = r (see page 99 ) • Now: v v-1 

* (k) -
kr 

(r ' (r -

2). + 1 
(r r "' 

"" (r) 

* a t(S) • 

k· - k k1 - k2 
l) r-1 r 

1 ••••• 
2(). - A ) 

l) r-1 r (r - ••••• 

().) * 

) 

2().1-).2) 
1 ). 

t(S) = (k) and hence t(y0 ) = (k)
0 

= (k) (see Lemma 38). 
0 

(b) If ).r = 0, then. put ().) = (>. 1·, ••• ,>.t-1). In this case 

2 n + 1 !"' n + 1 = r. Now v v-1 

(k)* 
2). 2 (). . Ar-1) 

"" (r, (r - 1) r-1 (r - 2) r-2 

= (r) ~ ().) * .., (>.)* 

* = t(S) • 

Thus t(S) = (k) and t(f.i0 ) "" (k)
0 

= (k). 
0 

2().1 
••••• 1 

2) The partition (k) = (2i + 1) corresponds to the distinguished 

,·. 2 2 2 2 2 
d1agram o-·-0----0 •• ~ the set of those simple roots 

which are weighted with zero in the above diagram, is the empty set, 

and ~D (see · 1 for the notation) is the. Lie algebra of the unipotent 
0 
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radical of B 
0 
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the Borel Subgroup of upper triangular matrices 

in 50(21 + l,K). It is easy to see that t(Yn ) = (k). 
0 

Let C be a nilpotent conjugacy class of so(21 + l,K) and (k) 
0 

be the corresponding orthogonal partition of 21 + 1 (See page 107-). 

Three possibilities arise: 

(a) (k) is a partition of 21 + 1 into distinct odd parts. 

(b) 

In this case the result follows iminediately from (1) and (2) 

above, i.e. if 1:: ... 'II' o' and D is obtained as in (1) 
0 0 

and (2), then c intersects YE D = Yn in a dense open 
0 

0 0 0 

subset. 

(k) = (f 1 , f 1 , ••• , f , f ) ~ (h 1 , ••• , h ), where 
s s p 

h 1 , h2, ••• , h are distinct odd integers and 
p 

.hl + h2 + ... + h =·2h + 1 > 1. p Let 

E = 11 - {a. 
0 0 1 i+l I i .. fl + + f for some q = l, 2, ••• , s}. 

q 

~-· 

Rl:: has .1).-nkin Diagram 
0 

J' - { I I . ~. 

tr -u •• 0-- :o 
I ·'···I l ··· ---;;.. ...___ '" ----·;,. 

o·- --o •• o o . • • • • • • • • o:..... -0 •• o·.!..- -o 0---0 •• Q.-:'_=0 t 

" ,, ' '·, '- I ' ! •I,·~' l• ,• '•, 

where a. '"'f1 + ••• +f. - 1 for 1 • l, 2, ••• , s. 
1 1 

Let \i be the distinguished diagram 

·': 

·2 2 2 2 2 2 2 2 2 2 2 2 ~. !i._ c ...... F,h 
0--:0 • • 0----0 0' - -o •• o---o o ---o •• G----o ~-~o •• o.~~ ~o, 

_ .. :--- . r,. 1 ----.:., ..-:--. r, - 1 ... -·~ _._ r-~ . ,_ - -'-J . .., ____ h _ . _,.. 

where the distinguished diagram \/1 = 

is obtained from the partition 

above) - note that if h • 1, 

(ht•••• h) (see 1 and 2 
'P2 

then \J1 = 0 
ai. Hl 
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Let D be the subset of E 
0 

which have 

An element 

', 

0 

weight zero in the 

X of YE D has 
0 0 

r, 

' ': -,-_ --:--" 

L---

i 
~ 

_q_J t-
', 

JL 
~ ~~ .. 

11.- ! 
' -I 

consisting of 

above diagram. 

the form 

- '1 
~. 

' ' ..... 1 ..... 

. . .,, 

/ ' ' . ~ ., 

I , ·, l 
I. ·' 

those simple 

/ 

'L 

r 
' J 

I.:..-,, '1 

,. \-! ·- ,j 

' ' 
(' '··~. j-__ 

L ---- "~• 

" 

roots 

'' l 
•,. I 

'' 
~I I 

..... • I I 

--.-:.\-
,; - - _, . 

where the *'s represent entries which may or may not be zero. 

Recall that X is antisymmetric about the antidiagonal. 

Let P be the distinguished parabolic subgroup of so(2h + l,K) 
0 

corresponding to the weighted Dtnkin Diagram Vi, y
0 

be the Lie 

algebra of the unipotent radical of p ' 0 
be the nilpotent conjugacy 



(c) 

class of so(2h + l,K) 

I\ U • 
- 0 

X • N 
0 f 

1 

(-N ) + (-Nf ) is an 
f2 1 

i rank Y ~ rank xl for 

C(X0 )·1 uE D .. ~E D • 
0 0 0 0 
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which intersects densely, and 

• • • + 

element of ul·: D ' and if y £ uE D ' then 
0 0 0 0 

1 • 1' 2 ••••• 21 + l. Thus (see Lemma 39) 

C(Xol being the nilpotent conjugacy class 

of so(2t + l,K) containing X0 • Also (see (l) and (2)) it is easy 

to see that t(X0 } = (k). Hence C(X 0 ) = C • 
0 

(k) = (fl, fl•···· f • f) s s 
(l) • Let E .. 1r - <a . . 1 i = f

1 
, ••• , 

0 0 1 1+1 
~ 

f some q a l, ••• ,s}, 
q 

and D
0 

be the empty set. RE has ryrkin 

Diagram 
. fl .. l 
0 .o •• 0 ·o 
a12 

and an element 

I j 

,\.' , '' 
I 

I ! 

I L. '·' 

j 

L -· 

. 
0 

X of 

7i . ,. 

, I 
\. "' 

f2 - 1 
o •• o 

!,!E D 
0 0 

. ' 

-0 

has 

~: 

the form 

(: 't. 

'--

. I . 
. I 

- <:!_. 

0 

r 
'(1·.'• 

l 

0 

- f 8 - 1 
0 •• 0 

""'· 

' ', 
. -~ 

0 

0 

ai-l t. 

: 0 -~ .. ~r 
·~. ' ! I 

: I~ 
.·111 , I 
() ----_, --
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where the *'s represent entries which may or may not be zero. 

Recall that X is anti symmetric about the antidiagonal. 

It .is easy to see that c 
0 

will inter-sect U· --E D 1 n a d-ense open 
0 0 

subset. 

(II) The proof of (i) for so(2i,K). 

l) Let (k1 , k 2 , ••• , k ), r > 2, be a partition of 21 into distinct 
r 

od"d parts, and let 

2· .. 2 2 
o-- -o 0 
•· --· ·----- m·-- _, 

2 0 
0 o. 
' fi .,. 

1 

. . . 0 2 
0· G 

0 
? 

g 0 - 0 · ___ •• ~---~ 
n ·., " v .• 

0
o 

be the c~rresponding distinguished D)nkin Diagram of type _o
1 

(note 

that the nodes represent elements of 1r ). 
0 

Let D be the set of 
0 

those simple roots which are weighted with a zero in the al;love diagram, 
+ 

F = { (i' j ) £ 62 l 

0 ='{(i,j) £ fl2:. 

1 i + j < 2i + 1, h
0 

(a .. ) ) 2}, 
. 1J 

. 0 

I i + j = 21 + 1 and i·' 1- n }, v and 

+ 
S = F. v 6. 1.1 r (F). S is a symmetric triangular subset of flU. and 

soy
5 

• u
0 

, the Lie algebra of the unipotent radical of the standard 
0 

parabolic subgroup, 

of 1r • 
0 

of 

i.e. an element 

S0(21,K) . corresponding to the subset 

X of has the form 

D 
0 
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I 
I 
! 
I 
i 

l 

·, [\ .... ~ 

I \ 

l / 
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"\ " ,, . - . ..,. 
'I 'r . 

') ,, ... 

- - -- -- --- --- --- -'-- ---- - - "' 0\ /o ;;·_ '. 
. / ·.- \ 

/ ~" // I 

/// I . 

/ // I 
/ / / 

/ // . / 
/ / / 

- // / 
/ / 

/ / .· 
... /. / 

,· / 

lt; 0 /_ 
·--..:..., ' :;- . -

-%· 

where the *'s represent entries which may or may not be zero. 

Recall that X is anti symmetric about the antidiagonal. 

It is easy to see that t(S) • (2nv' nv_1 1 n 1 '• • •' v-

Let 

(a) 

k. - l 
1 

\""~2- i • 1, ••• , r. 

If .). 

"' 
o, then put_ (>.) .. (>. 1 ' ••• '.). ) • In this case r r. 

2n v 

* (k) 

.. n v-1 "" r 
2.). +l 

• (r r 

* • t(S) • 

t(S) • (k) 

(see page 100 ) • Now 

2 (>. 1 ->. ) 2 (~ 1- >.2) 
(r - l) r- r l. ) 

' ••••• 

and hence (see Lemma 38) • = (k) . .. (k) 
0 . 
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If A • O, then put (A)• (A 1, ••• ,A ). In this case r r-1 

2n • n + 1 • r (see page :oo ) . 
v v-1 

* 
2A 2(A -r-1 2) r-2 (k) • (r, (r - 1) (r -

• (r) * * Ill (>.) Ill (A) 

• t(s)* 

t(S) = (k) and t(yD) • (k)
0 

= (k). 
0 

Now 

Ar-1) 2(Al-A2) 
, ••• ,1 ) 

2) If (k 1 , k2 ) is a partition of 21 into distinct odd parts, then let 

2 2 2 
o---<0. • 0· 
I-- -- ---m ..., . . . . 

2 

~n ( v) 

be the corresponding 1 ,r·kin Diagram of type D
1

• Let D
0 

be the set 

of those simple roots which are weighted with a zero in the above 

diagram, F = {(i,j) £ 621 
+ i + j < 21 + 1, ~ <a .. ) 

. 0 1J 
~ 2}, 

0 = { (i,j) £ 62!. + I i + j :: 22, + 1 and i < f. - 1}, and 

s ... F l' our(F). s is a symmetric triangular subset of + 
621 , 

soy
5 

.. Yl) • 
0 

i.e. an element of X of sou5 has the form 

(@] ., 

·. 

I .:..:1 11 
•' I _L l 

. ::> .~· 

I (i I . 
I _. 

('. 
I . 

l. 

·I 

. 1·. 

1 .... 

lu ~~l 
'I 
I • / 

:,J : . .;. (J 

. ·' ~~l -:t:. 

l_~~~:. --. 
!() 0· 
: ~ ~ ; n'" 
Ls::.. ~\ 

·' 

Jl' ('' - /.... ' . 
/ 'I 

/ / . :' 
/ / / 

, , , ,. / 

, / 

.·to.'_ 
, I 

and 
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·· where the *'s represent entries which may or may not be zero; 

X is anti symmetric about the antidiagonal. It is easy to see that 

t(S) • (2, ~-· ••• ,2, 

2v + 1 

* 1, ••• ,1) 
.... - ..... 

2m+ 2 

• (2v + 2m + 3, 2v + 1) 

= 

Note: if 

(see page 10\ ) 

then D is equal to the empty 
0 

set and :y0 is the Lie algebra of the unipotent radical of the 
0 

Borel Subgroup, B • 0 
of upper triangular matrices in S0(2t,K). 

3) Let_ C
0 

be a nilpotent conjugacy class of ,·so(2t,K). To find two 

sets D and E , D r::. E c;; n , such that PE 0 is a distinguished 
0 0 0 0 0 

0 0 

parabolic subgroup of and follow the 

same-procedure-as in I part 3. 

(III) The.proof of part (L) for sp(2t,K). 

1) If (k) ~ (k 1 , k 2 , ••• , kr) is a partition of 22. into distinct 

even parts, then let ).. Ill k./2 
1 1 

for 

2 2 2 2 2 a· 
0----0---..:0. • c --'4..·0~---<0 • . . . 

m 

i • 1, 2, ••• , r, and 

0 
0 

2 0 
~--0 

v 

0 2 
~ 

-be the dis~inguished Dyr,kin Diagram of type c
1 

corresponding to 

Let D be the set of those 
0 

simple roots weighted with zero in the above diagram, 

+ 
F .. { (i,j) £ t:.2t I i + j ~ 22. + 1 a.nd h

0 
(a .. > ~ 2 }, 

0 1J. 
and 
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S•F11r(F). s is a symmetric triangular subset of fl . + 
21. and 

spu_8 • ·u ··o ' 
0 

the Lie algebra of the unipotent radical of the standard 

pa~a~~~i~ subgroup of Sp(2t ,K.) corresjo~di~g to the subset D 
-0 

1T • 
0 

i.e. 

where the 

an element 

'· 

X of has the form 

.. -· ·- - - - -· -· - - :'\:' \ 

·, 

Recall that 

*'s represent entries which may or may not be zero. 

r• 
X + X .. 0 (see page 103 ) • It is easy to see that 

* ntt !L~~~LJ) = (k), 
2m+2 

and hence that t(S) • (nv' nv' ••• ,np 

(k) • (k) 
r~ 

(see Lemma 38). 

of 

Let c be a nilpotent conjugacy class of sp(2t,K). To obtain two 
0 

sets D and E o' D c E c. tr such that PE D is a distinguished 
0 o -· o- o' 

0 0 

parabolic 
~ 

or\ ~E D subzroup of RE and c .. ~E D proceed as in 
0 0 0 0 0 

I part (3) 0 
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Proof of part (ii) 

Recall that B is the Borel Subgroup of SL(n,K) consisting of 

uppertriangular matrices, that U is the unipotent radical of B, and 

that ~ is the Lie algebra of U. 

It is easy to see that we can choose two sets D and E, D ~-= E ~~ w, 

such that ~ f\ yED = !!E D , 
0 0 

where D and E are obtained as in the 
0 0 

proof of part (i), i.e. all we need to note is that in the case where 

.! = so(2f.,K~ {or E }, 
0 

{or E }. 
0 

It is now fairly easy. to see that U n UED = UE D, and hence we obtain 
0 0 

the desir~d result. 

Proposition· .41 

If C . is a unipotent conjugacy class of G, ·then there exists two 

sets D 
0 

parabolic 

Proof 

Let 

and E o' D c. E "='If o' such that .PE D 0 -- 0 
-- -- -· ·- ·~0 0 

subgroup of \: • and ·uE D fl c = UE D 
0 0 0 0 0 

C be the nilpotent conjugacy class of o· 

(see Lemma 36). By Lemma 40, there exist four sets 

D c.Ec;;;'lr· and D-;:: .. E~~w, suchthat: 
0 -- 0 0 

is a distinguished 

0 

! such that p(C ) = C 
0 

D , E , D and E, 
0 0 

(i) is a distinguished parabolic subgroup of RE and 
0 

u·· 0. c 
-E D. o 

o o· 

(ii) and UE D 
0 0 

.. 
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Let N be the variety consisting of the nilpotent elements of ~· 

and v be the variety consisting of the unipotent elements of G. We 

have already seen (see the proof of Lemma 36) that the map E; : N .... v, 
1 + X 

f,; (X) = 1 - X ' 
is an isomorphism of varieties. If X t y,E D ' then 

0 0 

X t YED and thus 1 + X, I - X t UED (recall that UED "" {u t SL(n,K)I 

u - I t \lED} (see page btf)). Hence E;(X) £ UED (\ G =-- UE D On the other 
0 0 

hand, if y 
t .UE D ' then y - 1 and I 1 where t .YED I+Y 

.. 2 v, 
0 0 

v t UED" ·u we note that Y - 1 and v - 1 have the form 

I 

l 
'. 

' 

' 

(J 

then it is easy to see tha~ 
6 

' ' 
.o 

0 

-.... ' J 
\ o o •o• R 

\. I 

'· 

'rr~l 
------·- ~---·--·\ l:>';· . __ ,,. 

'··(., I 
. ',, 

\.· ,.t; 
__ _f:_j 

() 
·-' 

' '· 
' ' 

0'1<----;\: I! -,'.. I 

"-'-.. I 
' . I c ',',.1 

_J;:_j 
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bijectively onto UE 0 
0 0 

is an isomorphism of varieties. Therefore 

"" E; (ijE D ) (\ E; (Co) 
0 0 

Theorem 42 

... UE D (\ c . 
0 0 

i.e. f; : Y.E D -+ 
0 0 

Our basic assumption that n is surjective (see 2.2.3) is true 

for SO(n,K) and Sp(n,K). 

Proof This follows immediately from·proposition 41. (cf. Theorem 3). 
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