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;E,e CUf// Group ancl ["m/zyacy Closser - 177 A Bos

Let G be a reductive group. Using the usual notation of the theory

of algebraic groups : B 2 T are respectively a fixed Borel Subgroup

and a fixed maximal torus in G ; ¢ = @ (G, T); @Jr = Q(B, T) etc.
Ve let € = {C(u,]), ceey Clu, )} be the set of unipotent conjugacy
classes in G , where C(u. ) is the class containing u, , and C(u.L ) =

C(uj) <= .=}y «» Letp be the variety of Borel Subgroups, u e G
unipotent and B, = {BeB lue.BL & (u) = ZG_(u) / ZCT(u)o acts
on the irreducible components of g of maximal dimension. Let c(u)a be

the number of such components fixed by aeA(u)

Basic assumption If Ce b then 3 we W = \U(G,T) such that

— 4 +
C N uw = U W
Results I) |fweW |\ C (u)ﬂLL‘: = U;H = | 2 ' c(u)s
A
AWl € (w)
4
II) (SPRINGER'S RESULT) 1wl = 2 —1— Z c(u, )2
L=1 A Cu)] as A(u) a
Now let &G = SL (n, K), B> T be the groups of upper triangular

matrices and diagonal matrices respectively. w(G,T)

1

S . Let (k)
n

= (R, y eeey Rr) be an ordered partition of n, d( the dimension of

R )

R. L L

L

the corresponding irreducible representation of Sn' N. the R x k,
matrix with 1 's on the superdiagonal and zeros elsewhere, U Q) =

L+ N\z ® N @ ... oN , and E‘; ' WeSn, the image of the Bruhat
)

2 -

cell B w B under the canonical map G -3 .

Reslt  1{wes } Cong@, +¢ , CTUWIOD -ulll=d
R |

(w) w (r)

Coro\\or¥ The number of irreducible cenponents of g i
(=)

of maximal dimension cyuals d(R)
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INTRODUCTION

Let G. {)e a connected reductive algebraic group defined over an
algebraically closed field K, T be a maximal torus in G, B a Borel
Subgroup of G containing T, W = W(G,T) the Weyl Group of G with
respect to T, and £, be the set of unipotent conjugacy classes in G,
G. Lusztig has recently proved that the number of elements, |,€|, of C.
is finitéw To each w e W we can associate a c}os;d irreducible unipotent
subgroup pw+' of B. Thus, we can associate to each w e W the unique
element C of _¢, which intersects Uw+ in a dense open subset, In this
way we obtain amap n : W-+.0. We make the following basic assumption:

. . R ¥ .
if C € .Y then there_g¥1sts wewWw sgch“Ehat__Uw f} C=¢C, or equxvalgggly,

n_is surjective.
This_assumb;ion holds - in the following cases:
(i) ;G_ is a quasi-simplé algebraié group for which the Carter Bala
classification holds. (see 3)
(i) G = SL(n,K)
(1ii) - G - SO(n,K) or Sp(n,K), -where K has infinite transcendence

degree over its prime field and char(K) ¢ 2,

Let B be the 'flag variety' of Borel Subgroups of G. If ue G is
unipoteni, then Bu ={Be8B lu e B} is a closed subvariety of B, and
the finite group A(u) = Zc(u)lzc(u)o, where ZG(u) is the centralizer
of u in G and ZG(u)o is the identity component of Zc(u), acts on

}u, 3u being the set of irreducible components of Bu of maximal dimension,
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as follows: if F ef}u and YZG(u)o € A(u), then YZG(u)o.F = YFY-I.
If c(u)a fdgnotes the number of elements of .}u fixed by a e A(u),

then

- 2
In" ()] = — e (u) o T
[ACw) | azA(u) a

where C(u) denotes the element of _{ containing u,

1f L = {C(u;),.0.,C(uy)}, where wu),...,u, are unipotent elements

2
of G, and i ¢ j implies that C(ui) # C(uj), then it follows immediately

that

4 X
Iwl =} T——-;TI ) etu,) 2 oo II
i=1 A(ui aeA(ui) 1a

In particular, if G = SL(n,K), then W & Sn, the symmetric group

on n elements, and ZG(Q) is connected. Thus

|Sn| = iZi nuiz' where nui = -|} ;

This_briefly covers the material of Chapter 2, the main result being
II. Chapter 1 provides the necessary background material.

T. A. Springer presented ?he result we have labelled II in a seminar
at Warwickzﬁqiversity during Easter 1975, This aﬁggésted that I might be
tfue. We later found that it was in fact an immediate consequence of the
work we had completed prior to T. A. Springer's seminar. Springer's proof
of I ig'algebraic in nature where as ours is geometric; ours is much
easier. R._éteinberg has also obtained these results. ﬁe obtained our
results just after Steiﬂberg.and quite independently, |

‘In Chapter 3 we look specifically at the group SL(n,K). We prove
that our basic assumption is true for SL(n,K), and then go on to look
further at the fibres of the map n.

We assume that K has infinite transcendence degree over its prime field.
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Let T be the maximal torus consisting of the diagonal matrices in
SL(n,K), and B be the Borel Subgroup of uppeér traingular matrices in

SL(n,K). Note that W = W(SL(n,K),T) 1is isomorphic to Sn'

~ The unipotent conjugacy classes of SL(h,K) are in one to one
correspondence with the ordered partitions (k) = (kl.....kr) of n

+ - ' N r 3
(ki £ 2 fot i®1l,i.4,r1, i§1 ki = n, and ki > ki+1 for i = )l,...,r"1).
Also, there is a bijective correspondence between such partitions and the

irreducible representations of Sn' We let d(ks

the representation corresponding to (k). It can be shown that

denote the dimension of

2
V day = IS,, | ees III
partitions

(k)
Let 2 ¢ Z*,then let Nz be the 2 x ¢ matrix with ones on the super-
diagonal and zero's elsewhere. Also, if (k) = (kln°---kt) is an ordered

Kk # ... B Nk « If we W, then

partition of n, then let U =1 +N
: -1 r

(k)
let E; be the image of the Bruhat Cell B w B under the canonical
morphism G-+ B8, g ~+ gB,

Our interest lies in the set

N = {we W| Ce" By

$#9, n(w) =c(,.\)}
Utk (k)

(k)

and we prove that

This together with 111 and the results of Chapter 2 enables us to
show that n = d(k),"where u is any element of the unipotent conjugacy
class of SL(n,K) corresponding to (E), and n, is equal to the number

of irreduciﬁle components of Bu of maximal dimension (cf page ii ).
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Finally, in Chapter 4 we show that our basic assumption holds for the
groups SO(n,K) and Sp(n,K) (see page (i)). All we do in this chapter

is to combine the work of Carter and Bala (3) and Gerstenhaber (5).



CHAPTER 1

BASIC CONCEPTS

Our aim_in tﬁis chapter is to give a brief outline of the basic
material which will be needed in later work. We begiﬁ by giving brief
descriptions of Root Systems and Algebraic Varieties, and then go on to
describe the structure of Linear Algebraic Groups. (Basic Reference,

"Linear Algebraic Groups", by A. Borel).

1.1 ROOT SYSTEMS (SEE 2)

Let E be a finite dimensional, real Euclidean Space with inner

product ( ; )E'

1l.1.1 Reflections:

If a ¢ E~ {0} and H ={(veE | (vya) =0}, then let =

o

denote the réflection of E in the hyperplane Ha.- i.e.

T (v) =v-~- 2£!igl:a , V ve E. 
a (G)G)

It 1s clear that Taz =1,

l.1.2 Abstract Root Systems:

A subset, ¢, of E is called an abstract root system if it

satisfies the following conditions:

(i) 0¢- ¢, ¢ is finite and épaﬁs E.

M UNIVE
Rk SIENBE STy

12 JAN 1978
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(ii) If ac ¢, then 1“(¢) = 6.
2

(iii) If o, B ¢ ¢, tLhen 2(a,8) is an integer.
(a,a)

(iv) I e d, tolr and t a ¢ o, then t = 1tl,

Definition: The dimension of E 1s called the rank of ¢.

1.1.3 Thélgquivalence of Root Systems

Sup;p;é”that E and E' are two, finite dimensional, real Euclidean
Spaces with:inner products ( , )E and ( , )E' respectively, and suppose
that ¢ — E and ¢'- E' are root systems, then ¢ 1is said to be
equivalent to ¢' ié there exists a linear isomorphism f: E » E'
such that:
(i) (vl,'yz)E = (£(v)), £(v3))y, for all v, v, € E.

(ii) £ maps ¢ bijectively onto ¢'.

1.1.4 Examples (see )
If E.= " with the usual inner product, ((x3,%2), (1 ¥2)) = x3y) + X5y3,
then the sdbsets of E represented in the diagraﬁs below are root systems.

Moreover any othér root system of rank 2 is equivalent to one of these:
. \

et e e e -



1) Al ] Al
m’z
a; and a3 are
perpendicular and any
< B } ratio |a;| : |ap| is
- I
1 &, . .
+ permissible.
\1' --. (a4
2) A,

>4
-. . 2 p Lx'l " o\lg_ . ‘ .
' All the vectors have the
Lt \\ ' ' ~ same length and the angle
: N

\ between adjacent vectors

\ is n/3.



3) B,
a : u: =11 vz,
oL, oy + o, leu.f_\'l I ll I ‘I
N /)’ The angle between adjacent _
s .
/ vectors is mu/a.
/
A /
N4 R
-y . ~y
AN
AN
N
7 \ -
- N
20:1 T, oty -
4) Gy
30’] "'21\’

o] ¢ Jag] =1 2 vs,
The angle between adjacent

vectors is w/6.

1.1.5 The Wéyl Group:

Let ¢ < E be a root system. ' Then the subgroup W(¢) of GL(E)
generated by {ru | @ € ¢} is a permutation group of ¢, and is thus

finite. W(®) is called the Abstract Weyl Group of ¢.

Example.- The Abstract Weyl Group of a root system ¢ of type A,

(see the above example) is isomorphic to S3, the symmetric group



on three elements. 1i.e.

1; 2 a Ty | (see 1,1.1). From the above diagram it is clear that
1 Z :

T T T T
a,+ay a; az; a)

= 102101102. Hence W(¢) = {IdE, Tal' 102. Iﬁxtﬂz'

Tuzta‘. TachzT“l}. We.get the required isomorphism by mapping <

a,

onto (1 .2- 3) y and T onto (12 3) .

2 1 3 2 l1 3 2/
1.1.6 Bases:

A subset 7 of ¢ is called a basis of ¢ if:

(i) m 1is a basis of E,
(ii) If a € ¢, then a = Z mBB, where the ma's are integers of

.like sign. fer )

Bases exist; W(¢) permutes the collection of bases simply

transitively, and every root lies in at least one base. If a basis ® of

¢ is fixed, them its elements are called simple roots.
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A subset § of & is said to be a set of positive roots if:

(i) o€y if and only if =-a ¢ y. -
(ii) If '&, Bey and a + B¢ ¢, then a + B € ¢.

Let }P;;&enote the collection of all such sets of positive roots,
and JT° the collection of bases. Then the map T : 97— }&", given by
F(n) ={aec®|a= B%“ mBB. L 0} for all # € 7°, 1is a bijection;
i.e. 1if we}#, then T3(y) ={aey |a=-B4¢vy, VB e
If v is a fixed basis'of @, then we write ot for r(z), and call

- +
¢ =¢ ~ ¢ the set of negative roots with respect to .

l.1.7 The Height Function

B ¢ ¢, then we put h(a) = z m
Bew

If a= z m
Bew

8 « h(a) 1is called

B
the height of the root a with respect to the basis w. The number

max (h(ai) is independent of the choice of 7, and is called the height
aed o

of the highest root.

1.1.8 Example

In Exémple i.l.ﬁ, a; and ap are simple roots in the various root
systems. - .In the root system of type 32 a), az,-a1+az and 2a;+a; are’
the posi;iv; roots, and map, T2, -a;-uz and -2aj-ay are the negative
roots correhponding to the basis _{al,az}.- Also, in this case, the height

of the heighest root is 3.

We now fix an arbitary basis . m of ¢.

1.1.9 The Length of the Elements of W(¢)

The-éiementé of the set {ru | o ¢ wi are called fundamental
reflections. W(¢) is generaéed by the fundameﬁtal‘reflections (c.f. the
exaumple in section 1.1.5). The length 2(w) of w e W(®) is the smallest

non-negative integer q such that w= 71 1 ...T_ , where a, €=
a)] a2 aq 1



for 1i=1,...,q9

L(w) = |0—l\ w0+|

= |{a ¢ 'y | wa e ¢}
There exists a unique element v, of W(®) for which z(wo) is

) , + - -i
a maximum. w ¢ = ¢ and w = w .
.o o o

1.1.10 Subsystems

Let . S be a finite subset of E, and put 7S ={veE |v= ] LY

ueS
Au € 72} Now if J « ﬂ..then QJ = ¢/ 7J 1is a root system in the
subspace of E spanned by J; ¢J is called a subsystem of ¢. J is

a basis of ¢ Also, W(¢J) can be identified, in the obvious way, with

J.
the subgroup W

of W(¢) generated by (r, [eeJh If teW

AL then

J

(¢ ~ ¢J).="¢ ~ ¢J.

1.1.11 Qynkin Diagrams and Irreducible Root Systems

Suppose. that = = (al,uz,...,az}{ The Dykin Diagram, 7 , of ¢

consists of £ nodes, each of which represents a distinct element of .

The nodés'ﬁhghh represent the simple roots a; and aj are joined by
A(ai,aj)

(ai'ai) (“j ’-dj)

then this ‘is reptesénted by an arrow which points from the node which

bonds. Further, if (ui,aj) # 0 and |ui| < |uj|,

represent§ a, to thg nogelwhich represents o5e -

A ropt'system is said to be irreducible if it cannot be written as
the disjoint upion-of fwo, non-empty, mutually ortﬁogonal subsets. Up
to equivalenge, the irreducible root systems are in one to one correspondence -

with the following Dynkin Diagrams:



Az (¢>1) o—0>—0. . . o0=0 (2 nodes)

B, (1> 2) o—o0—0. . . o—o==0 (2 nodes)

C, (2>3) o—0—0. . . 0—0=<%(0 (& nodes)

Dl (2 >4) o—0—0. . . o———o<::: (% nodes)

Eg o—f—of——I—_-ow-—o

E7 o——;of——o———I———o———o
Eg o—h4&—74»~—o~——0——~1~——0———0.

Fl. O——-—O_'-.—}'_—O—-—O

Gy 0330

If ¢ ;s a root systgm, then ¢ =6, U ¢ U ... k/¢p, where each
¢i is an irreduciblg subsystem of I¢, and ¢i and ¢j are-mutgally
orthogonal whenever i # j. . The subsystems ¢i are called the irreducible
comporents of ¢. The Dykin Diagram of ¢ is of the form

V, & V, & , .. # ‘Jp, where \7i is the ynkin Diagram of

¢ i=1,000,p- {If ¥} = 0—o0=3>0 and VYV, = 0—o0, then

V), & VYV, = 0—02=0 o0-—0.}



1.2 ALGEBRAIC VARIETIES (SEE 9)

We will use K to denote an algebraically closed field.

1.2.1 Affine Aliebrai‘c Varieties:

An affine algebraic variety is a pair (V,K[V]), where:

(i) v _--is-a set and K[V] 1is a finitely generated, commutative
K-*aléebra of K valued functions on V,

(ii) If x, yeV and x # y, then there exists f ¢ K[V] such
that f£(x) # £(y).

(iii) If ¢ 3 K[V] + K 1is a K-algebra morphism, then J x ¢ V such
that ¢(f) = £(x) for all f ¢ K[V].

If x € V, then we let e denote theevaluation at x (i.e.

ex(f) = f(x) 'V f e K[V]). By (ii) and (iii) above it is clear that the

map V -» HomK-_alg(K[V].K). X e, is bijective. Also, we can identify

the points-of V with .the maxi-mal ideals of K[V], i.e. x Ker(ex).

In general we shall not distinguish between V and the pair

v, K[v]). K[V] ‘is called E_he co-ordinate'xing of V.

1.2.2 The Zaiski Topology

If « = K[V], thenwe call V(w) = {xeV | f(x) =0 V f e «}
a closed ubs'et of V., In this. way we obtain a topology on V. This is

called the Zar iski Tobolgg_x.

Note: If. ?c', is the ideal in 'K[V] generated by 'Gl.'., then V(a) = V(7).
'i‘hus, since the ideals of K[V] :ate' finitely generated, it is clear that
-there exists a finite subset  of . such that V(%) = V().

If £ e K[V], then 'Vf ={x eV | £(x) ¥ 0) is an open subset of

V, and it is called a principal. open set. The principal open sets form
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a basis for the topology on V; any open subset being the union of a

finite number of principal open sets.

1.2.3 Morphisms of affine varieties

Let U and V be affine algebraic varieties. A function a : U+ V
is called a morphism if, for all £ ¢ K[V], foa e K[U]. If a is a
* * :
morphism, then a :,K[V] -> K[U], a (£) = £f<a, 1is called the comorphism of

If a 1is.a morphism, then:
' -1

(i) For all f ¢ K[V], a (Vf) = Ua*f' Thus a 1is continuous.
(ii) ea(u)f = f(a(u)) = eu(a*f), and thus o is completely determined
*
by a .

If a:U-+>V and B : V + W are morphisms of affine varieties, then

80 15 Boa. . Further (8 oa)* = a¥o g*.

1.2.4 Subvarieties

If V is an affine variety and W is a closed subset of V, then

W is an_affine-vériety with éo-ordinate ring K[W] = Kfv] / I[W], where

1[w] = {f e K[V] |[£(x) = 0, Vxe Wl W is called a closed subvariety
of V. -
If £ e K[V] - {0}, then let K[V]f denote the localisation of

K[v] at f} i.e. K[V]f is the ring of fractions of the form - ) where
. ‘ : f

g € K[V] and r is. a non-negative integer. Vf is an affine variety with

co-ordinate ring K[y]f = note that if x € V. and 5} € KEV]f, then

£ £

-E_t(x) = -&g)—
f £ (x)
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1.2.5 Affine n-space

1f w’eT let {x,.xz,...xn) be a set of n independent indeter;llinants,
then R -..K[x,,xz,...xn] is, in tl'fe obvious way, a ring of K-valued
functionsT 69 Kn_. - It is easy to see, by the Hilbert Nullstellensatz Theorem,
that K" 'i.s -_an affine variety with co-ordinate ring R.

If V 1is an affine variety, then there exists U)sU2pe eyl € K[V]
such that K[V] = K[ul,uz,...u!;l. Further, if XI,X-E...Xn are n independ-
ent indec'é_rmi.nants-, then we can define a K-algebra morphisﬁ_

" s K[x;{xz,l.;xn] +'K[V] by putting a*(xi) =, for i=1,...,n.
Hence, we éa;n obtain a morphism of algebraic varieties, £: V =» Kn, with'
comorphism E*.

i.e. Identify V with the maxiinal-idea.ls of K[V], and K" with
the maximal ideals of K[x,,xz....xn']. Now, if @ is a maximal ideal of
K[V], then put &(a@) = E* Q). .

It c'a~n' be shown ti.yat: |
(i) E(V)" is a closed subvariety of K",

(ii) E: V+E(V) 1is an isomorphism of varieties.

Thus, there exists n such that V is isomorphic to a closed

subvariety of K",

1.2.6 Examples

Noter if @ 1is an ideal in K[V], themn I[V(@)] = the radical of & .
Also. if fl;fz,ouo ,fp E K[XI,XZ'....Xn], then (fl’fz'.no- ’fp) denotes

the ideal in K [xl ’xz' L) cxn] generated by f] ,fz geo e -fpo
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Example 1 -~

; 2 .
V = V((X;3 - X;°)), and is a closed subvariety of K2.

1[v] = (X3 = X;2), and thus K([V] = K[X;,X2] / (X;3 - X,2),

Exaggle:z

V = V((X;X3,X,X3)), and is a closed subvariety of K3,
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1[v] = (X,%;,X;X3), and hence K([V] = K[X;,Xp,X3] / (X1X3,X,X3).

Example 3

Mn(K), the set of n x n matrices with coefficients in K, 1is an
affine vafféty with co-ordinate ring K[T,l,le,,..,Tnn], where
s . . 2
T..((a = a,, for all (a M (K); i.e. M (K)= K",
ij pq)) i ( pq) € n( ) n( )
GL(n,K) 1is the principal open set Mn(K)D, ‘where D € K[Tll,le,...,Tnn]

is such that D((apq)) = det((apq)) for all (apq) e M (K). The

co-ordinate ring of GL(n,K) is K[Tllole-'---Tnn- %ﬂ.

1.2.7- Pfoduéts of Affine Varieties

If U and V are affine varieties, then K[U] @ K[V] is a
finitely generated, commutative K—algebra of K-valued functions on

UxV., i.e. If Zn £, @ g ¢ K[u] @ K[V] ‘and (x,y) e UxV,

n
T((x,y)) =) £.(x)g;(y). UxV is an affine

o
then Z. fi .® B
i=1

i=1 ] 1

variety wiih'co-ordinate ring K[ﬁ]- ® K[V].
We note that the Zariski Topology on U x V is not the same as the’

product topology.

Examgle

The'qdadric X12 + X2 =1 is a Zaiski closed subset of K2 = K x K,-

but it is not a closed subset in the product topology on K2.
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1.2.8 Algebraic Varieties

We now extend our definition from affine varieties to varieties in

general. An algebraic variety is a finite collection of affine varieties

vhich have been suitably patched together; i.e. an algebraic variety is a

topological gpace V “for which there exists a finite open covering

o
n

(Ui}i_1 qqcﬁlthat. |

(i) EéchI_Ui is an affine variety,

(ii) U; A Uj is a principal open set in both U, and Uj' and the

identity map is an isomorphism of the two affine structures on
Uif\ Uj (obtained from Ui and Uj).
(iii) {(x,x) € U; x Uj | x¢ U, N Uj} is a closed subset of U, N Uj'
(iv) U is open in V if and only if U N Ui is an open subset of Ui

for each i = 1;...,n.

If V- is an algebraic Qariety, then we write K[j] for the algebra of
rational functions on V whiéﬁ.a;e defined evetywhere.l A function £ 1is said
to be defi;ed at x é vV if for some affine open neighbourhood Ux of =x,

f =g/ .where g, h ¢ K[ﬁ;] (in tﬁé old sense) and h(x) # O, Note that if
vV is aﬂzgffine variety, then K[V] as defined above coincides with K[V}

in the old sense.

A subset ‘Z of V is said to be locally closed if it is the
intersection of an open subset and a ciosed suba;t of V, or, equivalently,
if it is open in its closure. If Z is a locally closed subset of V, |
then it ﬁap,'in_a natural way, the structure of an algebraic variety.- It

is called a subvariety of V.

1,2.9 Mofphisms of ‘varieties

Let 'V and W be algebraic varieties. A function ‘a3 VoW is .'
called a morphism of varieties if:

(i) a 'is continuous.
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(ii) If S and T are open subsets of U and W respectively, and

d(S)g; T, then there exists a K-algebra morphism, aST: KET] -+ K[S],

such that a ' (f) = foa for all £ e K[T].
: * *
We denote the collection of maps aST by a. a is called the

comorghisﬁ_qf a.

1.2.10 Projective Varieties

n+l

Let Pn(K) denote the set of lines, through the origin, in K
ce g n+l
Also, if Fxo,xl,...,xn) € K -~ {0}, then let [(xo,xl,...,xn)] denote
the line in Pn(K) on which (xo,xl,...,xn) lies. It is clear that
[(xoixl....;xn)] = [(io,il,...,in)] if and only if there exists k ¢ x*

such that'. x; = kx; for i =0,...,n.

Let fui = {[(xo,xl,...,xn)] | x; ¢ o} for i =0,1,...,n. Then
each Ui- is an affine algebraic variety with co-ordinate ring
X, X X, X '
K x_,x_..-...-x—"no-’T » Whel’e
X7

i i i

X N
Yg ([(fo’¥1"'f'xn)]) = ;2 for i = 0,l,0eepip0eeyne 1i.e., the map

. i ' x X X
e ) 1 .
. n . . [¢] 1 n
from U to K given by [Legoxpeeenxd] +{ G5 qmpeenigiee iy | 18

a bijection.
Now: -
: .
) P = U/ u.
) n M
.-- ._. =0
(i1) U{/\ Uj is a principal open set in both Ui' and Uj
(i.e. pi/\ Uj = (Ui)fi = (Uj)xi ), and the identity map is an
X, X, .
1 J
iS§morphism of the two affine structures on U, N u..

(iii) :{ﬁxix)'s U, x Uj | x e Ui/\ Uj} = V(él), where
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X,

X X A - )
Q ={§§ ® 3{:1 -1 ® i—JB | p =0, 1,...,i,...n}§K[UiJ ® K[UjJ.

So, if we define a topology on Pn(K) by saying that U @.Pn(K)
is open if and only if U AU, is an open subset of U, for i =0, 1,...n,
then it is cléat that Pn(K) has the structure of an algebraic variety.

Any closed subvariety of Pn(K) is called a projective variety.

1.2.11 I'r.r.educible Compore nts

A tobol?gicai.space is said to be irreducible if it is not the uniom
of two prbpér closed subsets, or, equivalently, if every open subset is dense,
Any topological space X has maximal irreducible éubsets, these are closed

and they cover X. They are called the irreducible components of X.

If Y is a subspace of X, then Y is irreducible if and only if
Y is irreducible. Also, if X and Y are topolﬁgical spaces, X 1is
irreducibfejéﬁd a: X -+>Y .is a continuous map, then a(X) is irréducible.
A Qafiety has a finite number of irreducible components. If V and
W are varieties Qith irredubiblé.components: Vl,Yz,...,Yr and

wl,wz....,wél respectively, then VxW is-a variety with irreducible

components _Vi X w&, i=1,2,...,r and J = 1,2,...,s.

Examples (i) 1In example 1 of section 1.2.6 V is an irreducible variety.
(ii) In example 2 of 1.2.6 the variety V has two irreducible comporents,

namely the plane X3 = O, and the line X; = X3 = O,

1.2.12 Diﬁedsion

The' dimension of a ﬁopological space X 1is defined to be the

supremum of'the'lengths of chains, Fo cF)lC ... C.Fn, of distinct,
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irreducibie'closed subsets of X. Dim X € Z or dim X = tw
(Dim ¢ = ==»)., If x € X then dimxX = Inf{dim U | U is an open neighbour-
hood of x}. 1If Xi (1 € i ¢« n) are closed subsets whose union is X,
tﬁen dﬁi“k B_Q?x dim Xi. -
If Vv |is : variety, then:
(i) - dinV is finite.
(ii) if Q;; Vz,;..,Vs are the irreducible components of V, then
dig_v = max dim Vi.
i
(iii) if V is irreducible and U 1is an open subset of V, then

dim U = dim V.

(iv) if- W 1is a variety, then dim V x W = dim V + dim W,

Examples In example 1 of section 1.2.6 dim V =1, and for all
veV dimvv = 1. In example 2 of section 1.2.6 dim V = 2; also,
if v = (x;,x,0) then diva =2, and if v = (0,0,x3), x3 # O,

then dim V.= 1,
v

1.2.13 Fibres of Morphisms -

If a: U+V is a morphism of varieties, and Vv ¢ a(U), then

. . =1 .
the closed subvariety @ (v) of U is called the fibre of @ over wv.

Lemma:
(i) If ;aE U+V is a morphismlof varieties with U irreducible and
| a(Ui'IAense in V (such_a morphism is said to be dominant), then
dim a-i(v) > dim U + dim V for all v ¢ a(U). Further, equality

holds for all v in some open-subset of a@).
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(ii) If a: U +V is a morphism of varieties, then a(U) contains

a dense open subset of a(U).

1l.2.14 Tangent Spaces

The definition of a tangent space TQV to a variety V at a point
v € V is quite involved, and although we give a definition below, an
intuitive idea of what is meant by a tangent space is sufficient for our

needs. Thus we begin with some examples:

(i)

As we saw in example 1 of section 1.2.6, V 1is an algebraic variety.
The tangent space to V at the point P is the line indicated.
Dim T}V ?-1;-and this is equal to dimPV -~ when this occurs we say that P is

a éi@ple'poinc. On the other hand TOV = K2 and dide # dim TOV. 0 is

called a singular point.
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(ii)

/ ///“/
/ - ’ - &
//, /./ \/
-
////

V consists of the plane X3 = O, and the line X; = X = O.

TPV =K and P is a simple point. TV = K and Q is a simple point,

Q

TOV = K3 and O is a singular point.
We now give a formal definition of a tangent space. Let A be a
commutative K-algebra, and let M be an A module (since A is
commutative, we can regard M as a right and a left A module). A linear
map 6:.?A'+ M 1is called a derivation if 6(ab) = as(b) + 8§(a)b for all
a, b e A.I'ﬁehlet DerK(A,M) denote the K-vector space of derivations from
A to M. | |
We note ghat if V is a v;tiety, W 1is an open subvariety of V
and f ¢ K[V], then f | W e K[W].
Let V be an aléebraig variefy and v ¢ V. Also, let
xv = {U|U open in V, v € U}, anq Rv be cheldisjoint union of the
co~ordinate rings of the elements of kv' Suppose that V;,V; € X, »
£ e K[V)] and g e K[V,], then we write f - g if there exists

W.

We i, such that Wc VNV, and flw=g
~ is an equivalence relation on nv’ and the set, g, of
equivalence classes is called the stalk of V over v. If f ¢ nv’ then

we let .[f] denote the corresponding element of 9, " Also, if
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iz ex,, fe¢ K[Vi], 8 ¢ K[v,], £' = £|v,NV,,
g' =g|V; \V, and k € K, then we write:
@ [fl.-[e] = [£'8]
(ii)  [£] + [g] = [£' +g']
(iii) k[f] = [kf]

It is easy to see that these operations are well defined, and that
oy has the. structure of a commutative K-algebra. It can be shown that
g, is a iocal ring, We let Kv denote the residue class field of ¢

v

(i.e. Kv =_dv/mv, where m, 1is the maximal ideal of ov). Kv is

isomorphic to K, and is, in the obvious way, a a, module. The

tangent space to V at v is the K-vector space DerK(ov,Kv).

We have seen that a point v ¢ V 1is said to be simple if
diva = dim TVV. A variety is said to be smooth if all of its points are
simple points.

If V' is a variety, and Y is the sef of the simple points of V,
then:
(i) Y 1is an open dense subvariety of V.
(ii) The cﬁnngcted and the irreducible components of Y coincide.

If a: U ; V is a morphism of varieties, then we can differentiate
a at u ¢ UC to get a linear map do, ¢ T,U = ;g(u)v. i.e. If X e TU
and f ¢ ad(u)' then dau(X)f = X(a*(f)), where a*s Taw) * % is given

by a*([h]) = [hoa] for all f[h] ¢ % (u)°
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1.3 LINEAR ALGEBRAIC GROUPS (SEE 1)

1.3.1 Algebtéic Groups

A set G is called an algebraic group if:

(i) It is an algebraic variety

(ii) It is a group

(iii)  The group operations u: G.x G + G, wu((x,y)) = x.y, and
it G = G, i(x) = x—l. are morphisms of algebraic varieties.

G is called an affine algebraic group if it is an affine algebraic

variety,

Amap a: G + G' is called a morphism of algebraic groups if it is

both a morphism of varieties, and a group homomorphism.

1.3.2 Lincar Algebraic Groups

We have already seen that GL(n,K) is an affine variety, and we will
novw show that it is an algebraic group.

i.e. If G =0GL(n,K), u: CxG -G is given by u((X,Y)) = XY
and i: .G * G is given by i(X) = X!, then:
(i) The K'-al'lgebra morphism 1*: K[G] -~ K[6] ® K[G], sgiven by

n
u*(T.;) = Z T, ® T.. (see example 3 of section 1.2.6 for the
1] p=1 ip PJ

notation), is such that u*(£f)((X,Y)) = £(XY) = fou ((X,Y)) for
alll £ e K[G] and .X,Y e.G.v Thus u is a morphism of affine
varieties with comorphism u*-
(ii) The'khalgebra morphism i’ : K[6] » K[G], given by
i*(Tii) ; (-1)i+jn_ldet(Trs)r#js#i' is such that
1*(f)('x_)-= £(X') = £0i(X) for all f e k[G] and X ¢ G.

Thus i 1is a morphism of affine varieties with comorphism 1 .
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A closed subgroup of - GL(n,K) is called a linear algebraic group.

Theorem (See 1) If G 1is an affine algebraic group, then G is

igsomorphic to a linear algebraic group.

1,3.3 The identity Component

An algebraic group is smooth, and its irreducible and connected
components coincide. We use G° to denote the irreducible component
of G which contains the identity element e. G° is called the identity
component of G. It is a closed normal subgroup of G, and c/6° is a

finite group. .

Example The udentity component of O0(n,K), the group of orthogonal
matrices in- GL(n,K), consists of those matrices with determinant equal

to one. Also, O(n,K)IO(n,K)o & 2,

1.3.4 Group Actions

An dlgebraic transformation space is a triple (G,V,a), where G is

an algebraic group, V 1is an algebraic variety. and a: Gx V »V,
(g,v) » d(ké,v)) = g.,v, 1is a morphism of varieties such that:
(1) e;v =v for all v eV,
(ii) g.(hov) = (g.h).v for all g,h e.G and v e V.

We say that G acts on V. If v ¢ V, then a(G x {Vv}) = G.v
is called an orbit, and the closed subgroup G = {g e G | gov = v}

v

of G 1is called the isotropy group at v.
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Theorem (See 1) If G acts on V, and v €V, then:
(i) G.v is locally closed
(ii) G.v. is smooth

(iii) dim G.v = dim G - dim Gv

-l . .
Examgle Int: G x G » G, Int{(g,h)) = ghg , defines an action of

G upon itself. The orbits of this action are called conjugacy classes,

and the isotroby group ql = Zc(h) is called the centralizer of h in G,

1.3.5 Homéggneous Spaces

If G is an affine algebraic group and H 1is a closed subgroup of
G, then we can,in a natural way, give the coset space G/H the structure
of an algebfaic variety so that the canonical map G + G/H is a morphism
of varieiies. G/H is called a-homogenéous space. If H is a normal
subgroup of G, then G/H 1is an algebraic group. For further details

see (1).

Q

1.3.6 Semi- Direct Products

Let G and H be closed subgroups of the algeBraic-group G' such
that H i; normalized by G (i.e. gHg-l = H for all g e G). The
cartesian préduct H x G can be givén the structure of an aléebraic group
by defining a multiplication as follows:

(hy,81).(hyp8p) = (hyghog; " ,8182)

The map H x G + G', (h,g) » hg, is a morphism of algebraic groups. If

it is an isomorphism, then G' 1is called the semi direct product of

H and G; .we write G' = H.G.



- 24 -

1.3.7 Lie Algebras

If G is an algebraic group, then the tangent space g to G at
the identity element e can be given the structure of a Lie algebra
(See 1). g is called the Lie algebra of G. If H is a closed subgroup
of G, then.the Lie algebra i of H can be identified with a sub-
algebra of g.' Also, if a: G - G' 1is a morphism of algebraic groups,

then we can differentiate o.. at e to get a Lie algebra morphism

da: g+ g'.

Example = The Lie algebra of GL(n,K) is gt(n,K), the set of

n x n matrices with coefficients in K, and Lie bracket [X,Y] = XY - YX.

From now onwards we will assume that G is a connected affine algebraic

group.

1.3.8 Unipotent and semi simple elements

If V is a vector space, then X ¢ End(V) is said to be locally

finite if V= ] V
Aeh .
a finite dimensional, X-invariant subspace of V.

X where A is an indexing set, and each VA is

Let X e G, and consider the automorphism Py G +G given. by
px(s) = g; V g e G. It is clear that ox*: K[G] » K[G] is a K-algebra
automorphiqm, and that -pxy* = px*o py*. Thus p: G ~» AutK_alg(K[G]),
p(x) = px* Vx e G, is a group hororerphism. If £ ¢ K[G], then the sub-
space of K[G] spanngd by {px*(f) | x € G} is a finite dimensional vector
space. Thus if x ¢ G, then p(x) is locally finite.

An element s of G is said to be semisimple if op(s) is
diagonalisable,

An glemént u of G is said to be unipotent if p(u) is unipotent.

i.e. localiy, all the eigenvalues of p(u) are equal to one.
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Theorem (Jordan Decomposition) Each g € G may be written uniquely
in the form s.u, where s is semi~simple, u is unipotent and s and

u ' commute.-

We let Gu denote the closed subgroup of G consisting of the
unipotent eféments of G, and if G = Gu' then we say that G is a

unipotent group.

Example u e GL(n,K) 1is unipotent if and only if all of its eigenvalues
are equal to 1, and s ¢ GL(n,K) is semi-simple if and only if it is

diagonalisable.

If u e G is unipotent, then for all g ¢ G, Int(g)u = gug-l
is also qnipptent. We are thus able to talk about the unipotent conjugacy
classes of G. We let ¥/ denote the set of unipotent conjugacy c}asses
of G, and.if u e G is unipotent, then we let C(u) denote the element

of € containing u.

1.3.9 Character groups and one parameter subgroups

Notat%oh: we will use Gm to denote the multiplicative group
K*, and G, to denote the additive group K.
An algebraic group morphism a: G =+ Gm is called a character
of G. We let X(G) denote the set of characters of G. If
X1, X, € X(G), then we can obtain X;.X, € X(G) by putting
X1.X5(g) = X1 (g)X,(g) for all g e G; this gives X(G) the structure

of an abelian group. By writing gx = X(g) we can adopt an additive
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notation for this group structure. X(G) is called the character group

of G.

A one parameter subgroup of G is an algebraic group morphism

Examples

(i) Fet D(n,K) denote the direct product of n copies of Gm,
and if 1 ¢ i < n, then let Xi ¢ X(D(n,K)) be given by |
X;((kl,kz,...,kn)) = k; for all (kj,kp,eee,k ) € D(n,K).

o, . P Pn

Now, if X ¢ X(D(n,K)), then X =X .X, eeX where
pl;ﬁé....,pn are integers. 1i.e. X(D(n,k)) is the free abelian
group of rank n with basis {xl.xz,..,xn}.

(ii) Let i and j be integérs such that 1 ¢ i, j ¢« n and
? f j. Also, let Eij be the n x n matrix with 1 in the
(i,j)th position and zeros elsewhere. Then the morphism

ij:
subgroup of GL(n,K).

€..: 'Ga + GL(n,K), eij(k) =1 + k Eij' is a one parameter

1.3.10 The Adjoint Representation

Let V be a vector space over K, and dimV =n (n fini;e).
Then, by cﬁqosing a basis of V, -we can idenfify_ GL(V). and GL(n,K).
Thus GL(V) .has thé,stru;ture of an a;gebraic group (note that this
structure is independent of the choice of the basis of V). A morphism

a: G > GL(V) is called a represéntation of G.

I1f we differentiate the isomophism Int (x): G -+ G, x ¢ G, then
we obtain a Lie algebra isomorphism Adx: g -+ 8, and hence a representation

Ad: G » GL(g). 'This_rep;esentation is called the Adjoint Representation.
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Example If g ¢ GL(n,K) and X ¢ g&(n,K), then Ad(g)X = ng-l.

1.3.11 Tori and Roots

A £2£2§'is an algebraic group which is isomorphic to D(n,K)
for some n. Any connected, commutative algebraic group consisting entirely
of semi simple elements is a torus, and if R 1is a torus, then X(R) is
a finitely generated, free abelian group (see example (i) of section
1.3.9).

We wiii use T to denote a maximal torus in an algebraic group G

(maximal torii exist for reasons of dimension), and consider the representation
Ad: T » GL(g); A non-zero element o of X(T) (recall that we are using

the additive notation for the group structure on X(T)) 1is called a root

of G with respect to T if there exists X ¢ g such that
Adt.X = t“;x for all t ¢ T. We will use ¢(G,T), or more simply ¢,
to denote the set of roots of .G with respect to T.
1f ;‘e #(G,T), ‘then
g = {Xeg | Adt.x=1¢% V¢t e 1)
is called the root SEacel of g corresponding to the root a. If we let |

g’ = (X eg | Adt.X = X}, then

gﬂ_g-oQ l.l_ g .
- o(e@

Examgle

The group T of diagonal matrices in G = GL(n,K) is a maximal
torus. Further:
(i) ¢(G,T) = {uij | i,j-= 14000yn, i ¥ j}, where

dyj (@iaglkyskgyeeeske)) = ky/kye
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(ii) g = (Ei') and go is the set t of diagonal matrices
%ij ’
in gf(n,K)
(iii) It is clear that .
n
g=t & [l (E; o)
i =1
ifj

Note that t is the Lie algebra of T.

1.3.12 Borel Subgroups

A maximal connected solvable subgroup of G is called a Borel
Subgroug.' Ail the Borel Subgroups of G are conjugate, i.e, if B, and
B, are twé_éuch subgroups, then there exists g ; G such that
B,=gB,g = BB,

All the.maximal tori of a connected solvable group are conjugate.
Thus, since any maximal torus of G 1is a maximal torus of some Borel
Subgroup of. G, we have that all the maximal tori of G are conjugate.
The rank of. G is the common dimension of the maximal torii of G.

If: ﬁ' i; a Borel Subgroup of G, then:

(i) G = g{% g
(ii) NG(B) = B, NG(B) is the normalizer of B in G (see page 294 }
(ii;) If TcB is a maximal torus of G, then Bu is normalised

by T, and B = T.B.

Example The set, B, of upper triangular matrices in GL(n,K) is a
Borel Subgroup of GL(n,K). B = {(aij) e B |aii = 1},

Let B be a fixed Borel Subgroup of G. Then G/B is a projective
variety - see (1) for details. Also, if B' is another Borel Subgroup

of G, themn B' = hy for some h in G, and the map G/B + G/B',
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gB +whgh-lB', is an isomorphism of varieties. Thus G/B is, up to
isomorphism, independent of the choice of B.

We can identify the set g, of Borel Subgroups of G with G/B,

i.e. BB, gB. Thus B8 has the structure of a projective variety.

If S <G, then BS = {B¢ Bl S < B} 1is a closed subvariety of B. The

variety éu E-B{u}, where u 1is a unipotent element of G, will play a

considerable role in later work. In the above identification of B and
G/B, B, corresponds to (G/B)u = {gB e G/B | ugB = gB}; 1i.e.
g

ugB = gB<=;g-l,u-g € B = U ¢

1.3.13 Tﬁe'Weyl Group

! o S} 1is called the normaliz er

If S<G, then N.(S)={ge G | gSg
of § in G, and ZG(S) = {g e G| gz = zg, YV z ¢ S} is called the
centralizer of S in G,

W(G,T) = NGtT)/ZG(T) is. called the Weyl Group of G with respect tp
the maximal torus T.

Since ‘all of the maxiqal tori of G are conjugate, W(G,T) is,
up to isomégbhiém, iﬁdependent of the choice of T. (i;e. If T is
another maﬁimal torus of G, then T' = BT for some ge G. It is easy
to see thaé NC(T') = gNG(T), ZG(T') u gZG(T), ‘and that the map
W(G,T) » W(G,T'), nZG(Tf + gng_IZG(T'), is a group isomorphism).

We write .W for W(G,T). I# can be shown ﬁhat NG(T)o = ZG(T)O, and
hence that . W- is finite.

1f .ﬁ.;_w and a ¢ X(T), then let' woae X(T) be defined as
follows: "

w.a(t) = a(nw-lt nw), where - n_ € NG(T) is mapped onto w by the canonical
map NG(T) -> NG(T)/ZG(T). (Note that if nw' > NG(T) is also mapped

onto w, “then nw"F'nwz, where z ¢ ZG(T). Therefore
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(nw')-l t n'=zM 't o z= nw-lt n, for all t ¢ T. Hence w.a

is well defined.)
It is easy to see that W acts on ¢(G,T).(i.e. if o ¢ ¢(G,T),
then there exists X ¢ g such that Adt.X = q(t).X for all .t ¢ T.
: -1 -1
Now Adt(Adnw.X) Adnw(Ad(nw t nw).x) = Adnw(q(nw t nw).x) = (w.q(t)).Adnw.X.

Thus Werr F"D(G'T)')

Example If G = GL(n,K), and T is the group of diagonal matrices in
G, then (aij) € NG(T) if and only if there exists ¢ ¢ Sn, the

symmetric ‘group on n elements, such that a # 0 and a ij =0 for

. o(i)]
all i # ¢(j). Also, ZG(T) = T, and the map from W to %1 given by
(aij) T -+ o, -where 0 1is as above, is a group isomorphism.
Now, if w g W- corresponds to g ¢ S, thenm n = @..),

n o 1]

a;y = 0 if i # o(j) and ao(j)j = 1, is an element of NG(T);
-1 .. ) . ,

and w = FOT. Also, n d1ag_(k1,k2,...,kn)no = diag (ko(l):ko(z),...,ko(n)).
Recall that ¢(G,T) = {a i | i3 = 1,2,000yn, 1 # j} - see 1.3.11. It is

clear that -v%aij (diag (kl'kZ""'kn)) = ko(i)/ka(j)' and hence that

Veei5 T % ()a(i) "

1l.3.14 Semi-simple and Reductive Groups

We say. that an algebraic group G is quasi-simple if it contains

no non-trivial connected closed nofmal subgroup.
If G is a connected affine algebraic group, then R(G) = (N B)°
Beg
is called the radical of G. It is a connected solVable normal subgroup

of G, and contains all other such subgroups.

R(G)u is called the unipotent radical of G. It is a conmnected

unipotent:ho;mal subgroup of G and contains all other such subgroups.
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G is:said to be semigimple if R(G) = {e}, and reductive if
R(G)u = {;};.- It is clear that a quasi-simple group is semisimple .

If G 1is reductive, then R(G) 1is central in G, and is thus a
torus - See i.3.11. Aléo, the commutator subgroup G' of G is semi-

simple, and G = R(G).G':

Example G = CL(n.K) is a reductive group. R(G) is the group of scalar
matrices in’ C, i.e, those matrices of the form AI, where 1 ¢ Gm'

Also, G' = SL(n,K) and G = R(G).SL(n,K).

Theorem (see 1). If G 1is a reductive group, then:
(i) Z2(T) = T
(ii) ¢(G|T) = _@(G'T)

(iii) g=tell ga,where t is the. Lie algebra of T.Also,dimga = 1 for all o € &
aed i ;

Further if a ¢ ¢(G,T), then there exists a unique unipotent subgroup
Ua of G having the following properties:

(1) The L{e-algebra of Ua is ga

(ii) 1If w:;-w, then n U n -1, U - see 1.1.13 for the notation.
; Waw WVea

(iii) There exiéts an isomorphism ca: Ga > Ua such that for all
KeG. and teT, te(kt’ = € (alt).K)
Ja a a

(iv) G = <Ua'T | @ e¢(G,-T)>..-

Example If G = GL(n,K), and T is the maximal torus in G consisting
of the diagonal matrices, then:

(1) It 'is easy to see that ZG(T) =T

(i1) o(@,T) = {aij' | 45 = 1,eeepm, i 4§}, and =0, = &, il

1]
®(G,T) = =#(G,T).



(iii) We have already seen that g = (Eij)’ and that

| ij
gﬂ-;_e.-l—l- (E

i3=1 ), where t is the Lie algebra of T.
]
ifj

ij

Recall that eij: Ca +G (i 4 3j) 1is given by Eij(k) al+ khij.

Now:
(i) U“i' = eij(ca), and the Lie algebra of Uu.. is (Eij)'
h 1]
. -1
(ii) If. g ¢ Sn, then naEijnq Eo(i)o(j)’ and hence
noda 'na-l = Uu .
ij o(i) o(3)

(iii) If t = diag (kl,kz,...,kn) and k ¢ Ga’ then

et -1
t ? ij(k)t t(I + k Eij)t

ki
s T + E.- k Ei.j
J
= gij(uij(t).k).

(iV) G = <T’ U I i’j = 1.2.-...“. i # j>-
aij

1:3.15 The Roots of Semisimple Algebraic Groups

If G is a connected affine algebraic group of rank n, and T is
a maximal';orus of G,then x(T) is a free abelian group of rank n (see
1.3.11). :ﬁénce the real vector space E = R BLZX(T) has dimension n.
We can identify W(G,T) with a subgroup of GL(E), i.e. if w ¢ W, then

r - r
put w( Z a, ® X.) = z a. ® w(X,) (recall that W acts on X(T))
i= * ' = ? '

for all z; a, @ Xi € E. Now, since W is finite, we can define a
i=1 '

W-invariant, positive definite inner product on E.

Theorem If G is semisimple, then ¢(G,T) is an abstract root system
in E, and the Abstract Weyl Group of ¢(G,T) is isomorphic to W(G,T).

(Note that the rank of ¢(G,T) will be equal to n.)
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The isomorphism between W (G,T)) and W(G,T) is obtained as
follows:

1f a € ¢{G,T), then Zh = <T,Ua,U e is a reductive group,
O(Za,T) = {a,«}, and W(Za,'l‘) ={1’°a}’ where ,.oaz =1 and
a @) = -a,- Also N, (T) < N.(T), and thus W(Z ,T) = N, (T)/T < N.(T)/T =
a . %1 G a Z G

: _ a

W(G,T). Now Ty the reflection of E in the hyperplane perpendicular to
a (see l.l.i). is mapped onto g,
Note: . ¢ (G,T) 1is, up to the equivalence of root systems, independent of

the choice of T.

Example Let G = SL(3,K), and T be the group of diagonal matrices in
G. As far as the roots and the Weyl Group are concerned, there is no
distinction between SL(3,K) and GL(3,K) (cf. 1.3.14 and 1.3.17).

Therefore ¢ (G,T) = {%0)5 taj3, tazz} and W(G,T) = %3' Now, X(T) is

the free abelian group of rank 2 generated by {aj2, a23}, and thus

{a12, a3} is a basis of E = ﬂlxk&x(T). We can define an S -invariant,

3
positive definate inner product on E by putting (a12,%2) = @23,023) = 1,

and (212,223) = -} (note that if o0 € S3 and aij e ¢(G,T), then

O.ﬁij = aU(i)O(j))f It is now easy to sec that ¢(G,T) is the root system

of type A2 described in section l.1.4. We note that
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1.3.16 Quasi-simple Components
If G _gs a semisimple group, and {Gi | i €1} is the set of

minimal cloééd connected normal subgroups of G of positive dimension,

then:

(i) I .is finite; i.e. I = {1,2,...,n}

(ii) (Gi'Gj) = {e} if 1 # )

(iii) Tﬁe-product morphism G; x éz X +eo xG +G is surjective, and
has finite kernel

(iv) The deéomposition G =0Gj.Gp o0 Gn corresponds precisely.to the
deéompésition of ¢(G,T) into its irreducible components.

The groups Gi "are called the quasi-simple components of G. It

is clear that G is quasi-simple if and only if ¢(G,T) is irreducible.
A qua i-simple group is said to be of type Al if its root system is of

type A, :Bn' if its root system is of type Bn’ etc. (See 1.1.12).

Examples
(i) SL(n,K) is of type A_
(ii) SO(in+1,K), the group of (2n+l) x (2n+l) orthogonal matrices

with determinant 1, is of type B
(iii) 50(2n,K) 1is of type Dn
(iv) Sp(ﬁ,K), the group of 2n x 2n symplectic matrices, is of type Cn

These groups are called the classical groups.

1.3il7 The Structure of Reductive Groups

For the rest of this chapter we shall assume that G is reductive.
G = R.G', where R is the radical of G, and G' is the commutator

subgroup of G. Recall that R 1is a torus, and that G' is semisimple.
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If T' is a maximal torus in G', then T = R.T' is a maximal torus in
G. Now:
(1) If o€ ¢(GT), then o | T' € ¢(G',T'). Also, the map
¢(G;T) +¢(G',T"), a +a | T', 1is a bijection.
(ii) W(G,T) is isomorphic to W(G',T'). (i.e. g = rg,, r e R and

g

o € G', is an element of NG(T) if and only if g, is an

element of NG,(T'). Thps we can define an algebraic ' group
mofp@ism £ NG(T) > NG,(T') by putting & (rgo) = g,- It is easy
td=§e§ that £(T) = T' , and that the induced map from W(G,T)
td. W(G',T') 1is a group isomorphism.)
From (i) and (ii) above it follows that ¢(G,T) has the structure
of an abstract root system and that W($(G,T)) is isomorphic to W(G,T).
Let” T _bé a maximal torus in G. Then the choice of an element
B ¢ BT is éqﬁivalént to the choice of a set of positive roots in ¢(G,T),
and hence éo tﬁe choice of a basis of ¢(G,T) (See 1.}.6%.(i.e. if
B e ST, Lhéﬁ O(B.T). is a set of p;sitive-roots in ¢. Conversely,
if o is a set of positive roots of ¢, then B = T.U, where

) C. .- +
U= <Uu | acd¢™>, is the unique element of BT such that ¢(B,T) = ¢ .)

Theorem if B e BT, U 1is the unipotent radical of B, b 1is the Lie
algebra of B, u 1is the Lie algebra of U, and ¢+ = ¢(B,T), then:
(i) u=<ua-|ue¢’> and u = Ll ¢
(b=t & L ¢
ue@“"u T
(iii) 1f U = <u, | c e ¢ >, then B = T.,U is an element of B . B
is. called the Borel Subgroup opposite B.

. L+ . .
(iv) If ¢. = {31-02----v°u}» the order being arbitary, then the product

map . U x U x...x U _ -+ U 1is an isomorphism of varieties,
L% @2 N
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Example 1f G = GL(n,K), and T is the maximal torus in G consisting of
diagonal matrices, then B, the Borel Subgroup of upper triangular matrices
in G, corresponds to the basis {“12’“23-"°F°n,1“) of ¢(G,T). The Borel

Subgroup opposite B is the group of lower triangular matrices in G.

1.3.18 The-Bruhat_Decompdsition

Let T .be a maximal torus in G, B ¢ BT. U be the unipotent radical

of B, and ¢ = ¢(B,T).

If S< G is normalized by T, and w = n,T ¢ W, then we write

We -1 . ' -1, 1y -1
S annw ; note that if an =n, T, then annw =n, S(nw ) I

. + + -1 + - o=l -
Also, if w e W thenwe put A~ = {a o | v ae¢)and A ={ac ®|w o e ¢}

We now consider two closed unipotent subgroups of G, namely

Ut =06, and U =UnYUT.
w w

' + + v,
If k e'Ga, then cu(k) € lezz#'a.e ¢ and- gu(k) e U. Now,
W, -l -1 - .
eu(k) € U:m)nw Ea(k)nw ¢ U. But n, ea(k)nw Ew'l(u)(k ) for some

k' € G, (cf: 3.1.14). Thus, e (K) ¢ "Uesw ' (a) € 0.
+ +
Ly, s <Uu|°€Aw>
Similarly '
u, =-<Uu|aeAw>

. . + - -
It 1s now clear that the product morphisms Uw xU, - U and

+ . . .
Uw X Uw + U are isomorphisms of varieties (see the theorem, part iii,
in section 1.3.17 above).
If we=nTe¢eW, then we write C = BwB = Bn B; C 1is called the
W W w w

Bruhat Cell of G corresponding to 'w.
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BRUHAT . LEMMA

(a) G is-the disjoint union of the double cosets BwB, and Bw'B = BwB

ew-=w', Also, if w e W, then the map Uw- Xx B+ BB, (ub) > u nwb .

is an isomorphism of varieties.

(b) B 1is the disjoint union of the U orbits E; =U."B = ("B | u e UL

uw

Also, if w ¢ W, then the map Uw_ »>C , u =+ "B, is an isomorphism of

w

varieties.

1.3.19 Parabolic Subgroups

A closed subgroup P of G 1is called-a parabolic subgroup if it

contains a Borel Subgroup, or, equivalently, if G/P is a projective variety,
Let w be the basis of 0. determined by B. If J < n, then we

can define a map hJ: ¢ » 7 by putting hJ(u) =0 if ae J, hJ(u) =2

if aen - J, and extending linearly. The closed subgroup

Py = <Uu,T | hj(a) 3> 0> contains B, and is thus a parabolic subgroup of

J

G. Now:
(i) if J, K ¢ n, and Pj is conjugate to PK‘ then J = K,
(ii) if P is a parabolic subgroup of G containing B, then P =P

for some subset J of 1
From (ii) it follows that if P is a parabolic subgroup of G,

then P is conjugate to P for some subset J of =n. We say that

J'

PJ is the standard parabolic subgroup of G corresponding to J.

The Levi Decomposition P, = L,.U;, where L= <T,Upl | hy(a) = 0>, and

and L is

is the unipotent radical of PJ, 3

UJ = <Ua_|hJ(a) > 0> U

a reductive.group with root system $; (See 1.1.10).

J
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A subgroup of G which is conjugate to the commutator subgroup

RJ of LJ, for some J .~ w, is called a Regular Subgroup of Levi Type.

Note: If By £J and uy are the Lie algebras of P_,-L., and U

J* Ny J

respec;ively, "then 2y = ﬁJ ® 45 i.e. Ry = t @ 3hj%;)>o By
A ;0%

g, =t o _Ll gao and ‘_-‘.J='- _.l._l_ ga'

) =0 h;lx)>0

Example Let G = GL(6,K), T be the group of diagonal matrices in G,

and B the group of upper triangular matrices in 'G, then

¢(G,T) = fuij 1 i,j = 1,...,6, i # j}, and the basis of ¢(G,T) determined
by B is {a]2,823,%34,045,a55). Let J = {aj2,034,045]).

Then:

(1) PJ consists of matrices of the form:

X k |k Kk K &\
/ x % I* x % *\\
| 0o 0 i* CENE
"0 O % % % | % |
\ 0O 0 '* k| % )

0 000 Ol*!

R

where the *'s represent entries which need not be zero.

(ii) Ly consists of matrices of the form:

1% %10 0 0 0)

* *|0 0 0 O
Sl o oT* %0 \
10 o|l* = %1lp ;
lo ol*x » %o |
\o 0 0 0 O*
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(1i1) UJ consists of matrices of the form:

[1 ol * % * x|
[0 1] % % % =% \

0 0|1 0 O] * |
( 6.06/{0 1 o|=* .
10 00 0 1]* |
lo 00 0 O[1/

OJ {0‘12_.’_9'3‘0901059“35!'“120’“3‘0:'““5.—“35};

P, = {(aii) € G l.aij =0 if i>j and o« i] ¢ ¢J};
L; = {(aij),; G | as f 0 if a5 ¢ ¢;}, and
u; = {(aij) € G | a;; =1, and 85 " 9 if i3y j, or

a;; € ¢J}.



CHAPTER 2

SPRINGER'S RESULT

2.1 BACKGROUND

Recall that f denotes the set of unipotent conjugacy classes of an

algebraic group G.

2.1.1 Luaztigfs Result

George Lﬁsztig has recently shown that if G 1is a reductive (connected)
algebraic group, then ‘Q{ is finite., The proof of this is long and

complicated and may be found in (6).

Note

The conjecture that 'Lﬁl is finite for reductive groups has been
an open dués;ion for some time. .Prior to Lusztig's solution it was known
that:

if G is a reductive group defined over K, and char(Kk) 1is a

'good' primé (see the definition below), then &1 is finite.
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Definition A prime number p is said to be a 'good' prime for a reductive

group G 1if:

(i) If G is quasi-simple, and of type:
a : p arbitary
Bn R Cn . Dn : p # 2
¢, F, Es, E7: p ¥ 2, 3
Eg : p ¢ 2, 3, 5
(ii) If G is not quasi-simple, then P is 'good' with respect to each

quasi~simple component of G.

2.1.2 The Carter Bala Classification of the Unipotent Conjugacy Classes

of Quasi-simple Algebraic Groups

Let G be a reductive group, T a maximal torus in G, and
B ¢ BT. Let ¢ = ¢(G,T), and n be the basis of ¢ determined by B.
If J g_n; then let \7J be the Dykin Diagram (see 1.1.11) of ¢ weighted
with zero's and twos; a node being weighted with a zero if it represents
an element sfﬂ J, and with a two if it represents an element of n ~ J
(cf. the definition of h_ im 1.3.19).

J
We say that a diagram ‘QS is distinguished if 2N(0) + 2 - N(2) = O,

where 2 =.rank G and N(i) = |{a € o' | h;(e) = i}| for i =0, 2.
If P 1is a parabolic subgroup of G, then P 1is conjugate to the

standard parabolic subgroup PJ for some subset J of T, We say that P

a distingdishedgparabolic subgroup of G if Y7J is a distinguished
diagram. It should be noted that this definition is completely independent
of our initial choice of T and B,

Note that = -qu : where ;= and that

[o] R a _ILJ i=o 821 : 8224 hJ a)=21i gu'
P 1is a distinguished parabolic subgroup of G if and only if

dim__go + 2 =dim g,, i.e. dim g

.y = dim g,.

is
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Example The only distinguished diagram of type A is

2 2 2 2 2
0——0 ...0—0—0, and thus the only distinguished parabolic subgroups

of SL(n,K) are the Borel Subgroups.
Note: we will look at distinguished diagrams in greater detail in Chapter 4.

Let "} "be the set of pairs (R,PR), where R 1is a regular subgroup

of G of Levi type, and P, is a distinguished parabolic subgroup of R.

R
We write (R,PR) m,(ﬁ §§) if there exists g ¢ G such that R = gR, and
Pﬁ = gPR. ~ is an equivalence relation on 3 . Let #H  denote the
corresponding set of equivalence classes, and [(R,PR)] the element of

H containing (R,P)).

Lemma 1 The map £:4f + ( , given by £([(R,P))]) = C&==CAT, =1U,,
——— ‘ 8 R’ PR PR

where UP is the unipotent radical of PR’ is well defined.
R )

Proof If (R,Pp) € T, then U is a closed irreducible subvariety of

G. Also

there exists C ¢ .. such that ﬁ;'f\ c = U, .

C S S
‘R R R
(i.e. C; and C, are locally closed (see 1.3.4), and hence C;N Up

R

U . Therefore C; N C, N UP ¥ 0,
R

then Cl = CZ-

and C2 N UP'
R

and thus C; =.C2.).

are open subsets o

If ‘(R,Pp) - (R, P

R

|

P

|

) then t%ere exists g ¢ G such that 8 = R

and gPR = Pﬁ. It is easy to see)that is a maximal, connected, normal
4

\

|
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unipotent subgroup of ﬁ*, and hence that gUP = Uﬁ-' Thus, if
R R

= CCNNTGa = \g_=g—__= -
AU, =U,, then THU; =c N, =8NT, =u;.

R R R R Pe R

Let p be the characteristic of the base field K of G, and m be

the height of the highest root of ¢ (see 1.1.7). Then:

Theorem 2
If G 1is quasi-simple, and p 3 4m + 3, then ¢: > [ is a

bijection.

This is the Carter Bala classification theorem, and the proof can
be found in (3). By classifying the elements of -}t Carter and Bala were

able to classify the unipotent conjugacy classes of G.

2.1.3 The map n

Suppose that G is reductive, and that W = NG(T)/T. If w e W,

then Uw+ is a closed irreducible unipotent subgroup of G, and thus there

: . ¥ + .
exists a unique element C e 0, such that C N Uw = Uw . hLence we

can define a map n: W + £ by putting n(w) = C if and only if

+ +
Uw N C= Uw .
In this chapter we shall be concerned with the map n, being motivated
by the following theorem (this theorem is mentioned in the appendix of

Carter and Bala's popcc on unipotent conjugacy classes (3)):



- 44 -

Theorem 3

If G is quasi-simple and p » 4m + 3, then n 1is surjective.

Proof If (R,PR) €'}, then there exists g ¢ G such that BR = RJ
(see 1.3.19), where J 1is some subset of =. Now, ¢ is the root

J
system of RJ, J is a basis of 0 and Bp_ is a parabolic subgroup

R
of R;. Hence, there exists h € R, and a subset S of J such that

J
hg

PR = PJ g - the standard parabolic subgroup of R
]

3 determined by S.

It is clear that (R,PR) ~ (RJ,P ); i.e. that we can write any element

1,8
of # 1in the form [(RJ,PJ’S)].

Now, let C be an element of ., . By Theorem 2, there exists
sets S and J, S < J <. w, such that C intersects the unipotent

radical U g of P densely. Let ¢ be the subsystem of ¢
’

1,8 spanned

J

by S. Now, R, is the semi~simple part of the reductive group
Ly = <'1‘,Uu | o € ¢ >3 i.e. Ry = <T°,Uu | o a¢p, where T is the

maximal torus in RJ such that T = D.To, D being the radical of LJ.

Thus
P = T, U * d
1,8 <Tor U, lacoguo;>, an

+
UJ’S = '<Uu IQEQJ -~ ¢S>o
Let ws- and WJ be the abstract Weyl Groups of ¢S and °J

respectively; we can assume that W, < W We If w

_ s =W &
the elements of greatest length (see 1.1.9) in W

A and wo are

wJ and W respectively,

sl
then:
(1) w Ty w -1 w and w -1 W o,
S s’ J J o o
(ii) . + + d + -
ii LA o ~ ¢J +> & ~ oJ, an OJ -+ ¢J .
(.1) . + + + +
11 Wg! % - ¢s+ o - ¢S' ¢J ~ ¢S > ¢J ~ ¢S’
+ + + -
and hence ¢ - oJ+ o -~ ¢J. Also wg °S -+ ¢S .

. + -
(iv) AR IR X



Let W= waon

v Ha

= wowas(u)

+

and a € ¢ .
(¢*

€ wowJ -

+
€ w°(¢ ~ ¢

£ ¢
+
If ace€ °J - °S’ then:
@) ww (0. o)
w (a e ww (e, - ¢
€ wo(¢J )
€ ¢+
If o€ ¢S » then:
W-l(u) w (¢ -)
€ ¥Wo¥i'%
+
€ wo(d>J )
€ ¢_
+ +
Hence Aﬁ = ¢J -~ ¢S.
v = v d n@w)
W J,s * an¢ ntv

- 45 -

If

¢J)

7

+
aed ~¢

from

from

from

from

from

from

from

from

from

3 then:
(iii)

(ii)

(iv).

(iii)

(ii)

(iv).

(iii)

(ii)

(iv)
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2.2 SPRINGER'S RESULT

2.2,1 Preliminary Results

Let G be a connected algebraic group acting on two algebraic

varieties X and Y, with G transitive on Y. Let y: X >Y be a

G-morphism, i.e. ¢ is a morphism of algebraic varieties such that for
all g ¢ G y(gx) = g(x). It is clear that ¢ 1is surjective, and that
all of the fibres are isomorphic. In particular, all of the fibres have

the same dimension. Let y ¢ Y, and put F = w-l(y).

Lemma 4 dim F = dim X - dim Y.

Proof Y 1is the image of G under the morphism G - Y, g + g.y, and
thus Y is irreducible. Let X be an irreducible component of X of
maximal dimension. Then G.X is the image of the irreducible variety

G x X under the product morphism, and hence it is irreducible. But

>

X <G.X, and thus X = G.X. It is now easy to see that the map ¥ = y|

from X to Y, is a surjective G-morphism. Hence dim ﬁrl(y) = dim X - dim Y

(see 1.2313). But dim z = dim X and $rl(y) < F. .. dim F 3 dim X - dim Y.
Let- F be an irreducible component of F of maximum dimension, and

X 2 F be an irreducible component of X. Then the map y,= w]lf, from

- ~t
to Y, is a surjective G-morphism. Hence dim y, l(y) = dim X - dim Y.

!

But dim y; '(y) = dim F and dim X ¢ dim X. .. dim F ¢ dim X - dim Y.
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Let dimF=m and dim X =n. Let } = {Fj, Fp,e.0, Fr} be the

set of irreducible components of F of dimension m, and A(y) = Gy/Gyo,

wvhere G
y

is the isotropy group of G at y. Note that A(y) is a

finite group.

Lemma 5

Proof

. o
(1) Gy

(ii) If
of
It
of T .

We

Lemma 6

maximal

A(y) permutes the elements of | .

F = Fs for all Fs € + (cf. the proof of Lemma 4).
g € Gy' then ng is a closed, irreducible subvariety of F
dimension m. Hence ng R

is. clear from (i) and (ii) above that A(y) permutes the elements

now state the main result of this section.

(Counting Lemma) The number of irreducible components of X of

dimension is equal to

wom L, P
) y aeA(y)

where c(y)a is the number of elements of '+ fixed by a.

tNote that TI%;YT 2 c(y)a is independent of the choice of y € Y).

aeA(y)

The above counting lemma follows immediately from Lemmas 7 and 9 given

below.
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Let d be equal to the number of A(y) orbits on ' .
Lemma 7 d = the number of irreducible components of X of dimension n.

Proof iet {X;, xz,...,xp} be the set of irreducible components of
X of dimension n.
(i) 1f 1 <1i < p, then G.Xi = Xi, and the map wi =y X.» from
Xi to ¥, is a surjective G-morphism. Hence dim wi-l(y) = dim Xi-dim Y
= dim F. But wi-l(y) = F f\Xi, and hence dim F r\xi = dim F.
Let T be an irreducible component of F N xi of maximal dimension.

Then F 1is a closed, irreducible subset of F of dimension m.

Fed.
(ii) If F_e 3, then G.F_ is invariant under G, and the map
s s
$; =.w| éiis, from G.F_ to Y, is a surjective G-morphism.

-1 -
dim W; (y) = dim G.Fs - dim Y. But dim W; 1(y) = dim F,

and hence dim 5??8 = dim X, Now G.Fs is irreducible and hence
it is equal to Xi for some i, 1 «1i ¢ p.
Fs g;Xif\ F, 1i.e. Fs is an irreducible component of

xi/\ F of dimension m.

(iii) Let 1<s<¢r, l1<i, j<p and ge¢ G I1f F_ and gF,
are ifreducible components of xir\ F and Xjf\ F respectively,

then X. = X..
1 J

X.; and

i.e. (a) G.Fsgz cxi i

(b) G.Fs E;ij Xj. Thus, by the argument of (ii) above

it is clear that E?is is equal to both Xi and Xj.
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(iv) If F and F
81 . 89
where 1 ¢s,, s, <r and 1l < i ¢ p, then Fs = ng for

. ‘ 1 2

are two irreducible components of F r\xi,

some G .
B € y
i.e, G'Ft’ l <t <r, 1is the image of the variety G x Ft

under the product map G x X » X, Hence, G.F contains an open

t
dense subset of G.F (see 1.2.13). Now, G.F = G.F_ = X,
t s) 55 i
(cf (iii) above). Hence, G.Fs s j =1, 2, contains an open dense
) j
subset of Xi. .. G.Fs N G.F5 contains an open dense subsct
1 2

U, of Xi. We can assume that U 1is invariant under G, since

T3

if its not, then we can replace it by G.U. Themap § = y | U,
from U to Y, is a surjective G-morphism, and hence:
dim § ' (y) = dim U - dim ¥
= dim X - dim Y

= dim F.

mt ¥ i (y) < F NG.F, N G.F
1

= G.FsﬂG.Fs.

2

y 1 y 2
dim G .F_ N G .F = dim F.
y § Yy 8,
(o] [o] [o] o
Let G /G = G G es e G . Then:
. y/ y (81 y * 820y seres8,Cptl
1 4
G.F N G.F = F F )
y. Sl y 82 ( UL"jl gu sl) /\ ( ‘\1\31 gV 82

¢

U

u,v=l gqul[\ gVFSZ.
Hence there exists u and v, 1 ¢ u, Vg, such that
-:'dim gqulr\ ngsz = dim F (See 1.2.12). But gqu1 and
g.st2 are irreducible components of F and thus gqul = ngsz.
The result now follows immediately.
:Before we go on to conclude the proof of this lemma, we note
the following about (iv) above. Although G'Fs.’ j=1, 2, is a

J
constructable subset of X, it is not necessarily a subvariety. Thus,
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it was necessaryto define § from U to Y, rather than from

GF N GF_  to Y.
5 8,

(v) Consider the map
r: {Fl' le'.'l Fr) -> {xl’ XZ,-.., Xp}
defined by F(Fs) = xi if and only if Fs is an irreducible

component of F N Xi.

By (ii) and (iii) above, T is well defined, i.e. if Fs e 3,
then there exists a unique element X, ¢ {X1p000, Xp} such that F_ is
an irreducible component of F N xi.

By (i) above, T 1is surjective.

By (iii) and (iv) above, each A(y) orbit is mapped onto a single
element of {X1ye0., XP}, and the images of any tﬁo such orbits are

distinct.

The Lemma follows immediately.

Lemma 8 (Orbit Stabilizer Theorem) If T 1is a finite group acting

transitivelyfon a finite set E, then |I| = IFV| = |[E|] for all v € E.

Proof {Note that T = {yer| yw =v}}. Let {erv,yzrv,...,yrrv}
be the set of left cosets of I with respect to r,s we are of course
assuming that ;T ,...,v I are all distinct. Then

E = {ylv,...,Yrv}, and ;v # ;v for any i, j, 1 # j. The result

follows immediately.
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Lemma 9 If I is a finite group acting on a finite set E, and if
for each vy e T, cY is equal to the number of elements of E fixed by

Y, then:

i z c = number of T orbits on E.
[T] Y
yel

Proof Let (0;, O2,..., 02} be the set of T orbits on E. Also, if
l<ig<2 and y €T, then put ch equal to the number of elements of
0 fixed by y. Let n, be equal to the number of pairs (y,v) ¢ T x Oi

such that y.v = v. It is clear that:

J el = n = I In

yeT Y 1 veO., v

i

i

Now _1_ Z c = Z ._L
IFl yer Y . i=l  yer |r|

L I, |

= 2 z —_— (by Lemma 8)

2. 2.3

From now onwards G will denote a connected, reductive group, B a
fixed Borel Subgroup of G, T < B a maximal torus in G, and W the
Weyl Group of G with respect to T. Also, we let £ = rank G, and

U be the unipotent radical of B.
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We now make the following basic assumption:

Assumption I = Given a unipotent conjugacy class C of G then there

- py - -+
exigts w € W such that C N Uw = Uw+.

Note:

(i) Assumption I is equivalent to assuming that the map  (see page &3 )
is surjective.
S

. + + . +
(ii) I1f ¢ K\Uw = Uw , then Uw N C 1is an open subset of Uw .

(iii) Assumption I implies that |.l] < |W

Assumption I holds in the following cases:

(i) SL(n,K)

(ii) SO(A,K) and Sp(n,K), given that char(K) # 2, and that K has
infinite transcendence deérge over its prime field.

(iii) For any algebraic group for which the Carter-Bala classification

theorem holds.

We shall show that Assumption I holds in cases (i) and (ii) in chapters

"3 and 4 respectively. See Theorem 3 for case (iii).

Recall that B 1is the variety consisting of the Borel Subgroups of

G, and that if u ¢ G 1is unipotent, then Bu = {BeBluce B} is a closed

subvariety of 8. Also let C = C(u), C(u) being the unipotent conjugacy

class of G containing u.
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We now give a result (Lemma 10) which is due to Steinberg (see 9).

Let S = {(v,B;, Bo) e CxB xB | ve B N By} (it is clear that
S is a closed subvariety of C x B x B), and let 7m: § * B xB be given
by n((v,By, B2)) = (By, B2). G acts on B x B8 by conjugation, i.e.
g.(B;, B) = (BB, 8B,). If we W, then let X = (B, "B), and put

w
-1
Sw = 1 (G.xw). Note that:
(i) s, = {(v, g, 8¥p) | &y e B N ¥B).
(ii) s, # #e=CN (BNYB) # ¢
<=)C/\Uw+ # 0

(iii) G.xw is a subvariety of B xB, and hence Sw is a subvariety of

S, i.e. S, is a locally closed subset of S.

Lemma 10

(i) S 1is the disjoint union of the Sw“s.

(ii) If S #@; then dimS =dim G- £ +dim U ‘N C - dim U .
w w w w

(iii) dim $ = dim G - 2.
dim ZG(u) - L

(iv) dim Bu = :

Proof

(i) Suppose that (v, B, B,) € S. Then there exists g;, g ¢ G

g.
such that 'B = B.» i =1, 2. Also, there exist b, b'€ B,

and w ¢W such that gl-l.gz = bnwb' (see the Bruhat Lemma

in section 1,3.18). Put g = g b. Now

g,b 8 g,bn g bn b’ g
%8= 'B= !'B=B,and B= ! ¥Yp= ! ¥ B= 2p=3,

= g, 8W
(v, Bl' Bz) (v, ®B B)

S = U 8
weW v
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Now suppose that (v, gB, ng) = (v, B, B). Theri

. -3 g w
Vo=V, 8= 'B and B = ! 'B. .. g = g .b for some
b B, and gn, = g0 b' for some b' € B, Hence
) . hRA
gbn = gn b', .. bn =na b', and hence Bn B = Bn_ B.
1w A W Wy W w,

w = wl‘

(ii) Suppose that Sw ¥ ® or equivalently that Uw+f\ C+# 0. Let
-1

s, = (v, (BN B) c € xG/BN"B | & ve B NYBl. It is easy

to see that Sw is isomorphic to Sw'. i.e. just consider the map

(v.gB, ng) + (v, g B f\wB). Let E£: Sw' + G/BN"B be the projection
onto the second factor. G acts on Sw' , le.e.

%) 81 w .
gl.(v, g BN'B) = ( v, glg B N"B), and also acts transitively on
G/BNYB in the obvious way. It is clear that £ 1is a surjective

' -1
G morphism, and that £ (BN"B)=cn (BNYB) =cnu .

dim S ' = dim 6/B N"B + dim CN uw+

=dinG-dim .U * +dimcnu”’
w w
. . + ] +
= dim G - 2 - dim Uw + dim C f‘\Uw
(iii) By (i) above, dim S > dim Sw for all w € W, and there exists
w ¢ W for which equality holds. Now, by Assumption I, w €W
such that dimU_ ' =dimU_ ‘N'c. .. dim$§ =dimG - 3.
: - v, v, v
It i clear that dim S cannot be greater than dim G - %, and thus
that dim S = Dim G - L,
(iv) Let & S +C be the projection onto the first factor. G acts on
. = (8. 8 g .
S, i.e. g.(v, B1, B2) (°v, Bl' Bz), and acts transivitely on
C by conjugation. It is clear that T is a surjective G-morphism,
-1 :
and that & "(u) x %1 X Bu.
. dim Bu X Bu = dim S - dim C
2 dim Bu s dim G~ % - dim C
= dim Zc(u) - £

dim Bu . = dém Zc(u) - 2
2
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: —_ -1
Lemma 11 {Sw | w en (C)} is the set of irreducible components of §

. . . -1
of dimension dim G - %&. Further if w), w2 € n (C) and w; # w2, then

S‘!1 # Swz.
Proof
-1
(i) Suppose that w € n (C). The variety Sw" = {(v,g) e CxG |
-1
8

veBnYsl is isomorphic to (Uw+f\ C) x G, the isomorphism
being given by (v,g) - (g-lv g, 8). Now, Uw*/\ C is irreducible
(i.e. B;$7§_E = Uw+ is irreducible), and hence S " is
irredﬁcible. Let Sw" -+ Sw be given by w((v,g)) = (v, 23, 8p).
It is clear that =m is a surjective morphism, and hence that Sw

is irreducible. Also, dim Sw = dim S (cf, Lemma 10 part (ii)).

Hence,, '§§ is an irreducible component of S of dimension dim G - £.

(ii) Let Z be an irreducible component of S of dimension dim G -% .
z= U —Z“ﬁ_§w, and hence there exists w < W such that
weW

Z ='szrsw g:g;. Now, dim Sw = dim'Sw, and hence dim Sw = dim G - %.
dim Uw+ = dim C N Uw+ (see lemma!Q part (ii)),

_—____; - l . .
i.e. CN Uw = Uw+. Hence w € n (C) and by (i) above Sw is

irreducible. .- 'Sw =7,

(iii) If S =S , then S NS # @, and thus w, = w
S Y2 v w2
_ o 'y . .
Let A(u) = ZG(u)/ZG(u) , and - be the set of irreducible components
of Bu of maximal dimension. ZG(u) acts on Bu by conjugation, i.e. if
8 € Z;(u) and Be B, then 8% ¢ Bu. If F ¢ 4, then
(i) gF ¢ 4 for all g € Z,(u); and T (i) ZG(u)o.F = F.
A(u) acts on i-. If a ¢ A(u), then let c(u)a be the number of

elements of- ye fixed by a.
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Theorem 12

1
|ACu)| acA(u)

@] = c(w),2.

Proof
Let F  be the set of irreducible components of Bu x Bu of maximal
dimension. 3 = {F; x F, | Fi» F3 ¢4}, and A(u) acts on ¥ in the

obvious way, i.e. g ZG(u)o.(Fl, F2) = (gFy, gF2)e If a e A(u), then

the number of elements fixed by a is c(u)az.

Now consider the surjective G-morphism Z: S > C (See the proof of
lemma 10 pt., iv). Recall (i) that G acts on C by conjugation, and
hence that the isotropy group of u is Zc(u); and (ii) that
£ = By x By

The action of A(u) on T fits into the general framework described

of
on page 4#6 . Hence by Lemma 6, we have that the number,irreducible
1
|ACu)|  acA(u)

components of S of maximal dimension is

c(u)az.

The result now follows immediately from Lemma 11.

Let {ul, Uppeees up } be a set of unipotent elements of G such that

() L= {c), Cueer, Cl )l and (i) Clu) = Cluy) &= i = j.

THEOREM (SPRINGER'S RESULT)

w| = Zp 1 ) Clu;), 2.
i=l |A(ui)| aisA(ui) i
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Proof The result follows immediately from theorem 12 and the obvious

fact that |W| = JP | n_l(C(ui))l-
i=l )

Let G = SL(n,K); T be the set of diagonal matrices in G, and
u be a unipotent element of G. Then:
(i) G satisfies assumption I (we will prove this in the.next chapter).
(ii) W = W(G,T) 1is isomorphic to S, the symmetric group on n elements.

(iii) ZG(u) is connected.

Thus we obtain:

Corollary 13

al =s| = §° a2

where {u;,..., up} are as described on page 56 , and n is equal
i
to the number of irreducible components of Bu of dimension

dim Z,(u) - 2.

2

2.3 BRUHAT CELLS

We finish this chapter by proving two lemmas which will prove useful

later on.

Let G be reductive. Recall that B = kj E;, and that each element
weW
of E; can be written uniquely in the form va, where Vv € Uw- (see 1.3.18).
- 1

+ R -
If w g W, then let T Uw X Uw + U be defined by rw((v,a)) vav .
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Lemma 14 Let u be a unipotent element of B, and w ¢ W. Then

By N E; $#9 © u ¢ Im (Tw). In this case B, N Cw is isomorphic to

"1(1w-1(u)), where m Uw- X Uw* -+ Uw- is the projection onto the

first factor.

~ vw - vw
Proof Cw/\ B, = {"B|ve Uw , U g B}
(1) Suppose that E;f\ By # #. Then there exist v ¢ Uw- such tha:

u e va, ie. viuv e BN VB,

. -] +
.V uve=acg Uw ,» and tw(v.a) = u.
(ii) Suppose that u ¢ Im(rw). Then 1 (v,a) € Uw- x Uw+ such that

-1
vay = U.

v=-1 vw

w . ~
u=aeBN"B, i.e. Be Cw F\Bu.

(iii) The last assertion follows easily.

Note that if u e U +, then B NTC_ # 0.
w u W

+ -1 . ,
Lemma 15 If ue U, and wen (C(u)), then dim c, N Bu = dim Bu.
Proof

S, = {(v, 8B, 8B) e C(u) x B x B |v e 8B NYB)} is an irreducible
variety of_aimension dim G - 2 (see Lemma l1). Let w: Sw + C(u) xB be

-1
given by =u(v, °B, 8YB) = (v, ®B). Then Y = ﬂ(Sw) = {(v, B) | 8 v ¢ Uw*}

is an irreducible subvariety of C(u) x 8. Now, (u,B) €Y, and
bw

2, B)) = {(u, B, ®B) | u e °¥B)

[

CW N Bu.
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dim B NC >dim S =- dim Y. (see 1.2.13).
u w w -

G actson Y, i.e. _g.(v,gB)

(gv. ggB), and acts transitively
on C(u) By-conjugation. The map 7: Y + C(u) given by (v, gB) =V,
is a surjective G~morphism, Hence dim ?T'-l(u) = dim Y - dim C(u). But

~=1 -
7 (u) = (5B | glu g er+}

S 8,

. dim Bu >dim Y - dim C(u)

.dim Y < dim Bu + dim C(u).

.dim Bu e Cw > dim Sw - dim Bu = dim C(u)
dim G - 2 = dim Bu = dim C(u)

= dim Bu (see the proof of part (iv) of Lemma 10),.

dimB N C = dim B .
u W u



CHAPTER 3

SL(n, K)

In this chapter we look specifically .at the group SL(n,K). Our

# ¢ and
(k)

main interest lies in the set N ={weW |CnB
U(k) W

U
n(w) = C(U(R\)} (see the introduction for the notation) , where (k)
is an ordered partition of n.

Before we look at NU we find it necessary:
(k).

(1) To deécribe SL(n,K) and to establish the relationship between
the unipotent conjugacy classes of SL(n,K) and the ordered
partitions of n (see sections 3.1.1 and 3.1.2). In the course
of fhié we are able to show that our basic assumption (see 2.2,3)
is true for SL(n,K) (see proposition 19).

(1i) To make a slight digression and look at the multiplication of
matrices - see section 3.2.1. Our aim in this section is to prove

Corollary 25.

Note: At the beginning of section 3.2 we impose the restriction that K

has infinite transcendence degree over its prime field.

In sections 3.2.2 - 3,2.4 we look at the properties of Ny ‘. We
(k)
are able to find Wor W] € NU (see proposition 31) such that
(k)
w eN if and only if U * cU *c U *. This enables us to set up
U(k) wo =W w)

a biject ive correspondence (proposition 33) between the elements of

NU and ‘the set of standard tableaux corresponding to (k) (see section
(k)
3.2.3 for the definition of a standard tableau). But we know (theorem 32)
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that the number of standard tableaux is equal to d Thus we obtain

(k)°

Theorem 34 which states that:

| = d

My H)

U
Note that d(k). is the dimension of the irreducible representation
of Sn = W corresponding to (k).
Finally we show that the number of irreducible components of

By of maximal dimension is equal to d

(theorem 35).

It should be noted that in order to give complete proofs of the abcie
results, it has been necessary to go into a great amount of somewhat

tedious detail.

3.1 BACKGROUND

3.1.1 Deécription of SL(n,K)

SL(n,K) -is a quasi-simple algebraic group consisting of n x n
matrices with coefficients in K, and determinant 1. The set, T, of
diagonal matrices in SL(n,K) is a maximal torus, and the set, B, of
upper triangular'matrices_in SL(n,K) is a Borel Subgroup containing
T. U, the uﬁipotent radical of B, consists of all those matrices in
B with '115- on the diagonal.

NG(T) is the set of matrices (aij) for which there exists

o € Sn, the symmetric group on n elements, such that a # 0,

_ 0(j)]
and a;; = 0 whenever i # o(j). W(G,T) = NG(T)/T. and the map

W(G,T) -+ Sn’ (aij)T + g, where. 0 1is as above, is a group isomorphism.
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Let <1,n > denote the set of integers (1, 2,.:., n},
. . . . + . . . .
A, = {(i,j) e <l,n> x <1,n> | i # j}, and p, = {(i,]) ¢ AL | 1< j}.
If (1,)) ¢ An' then let uij: T » Gm be defined by

“ij(diag (a), a34.00 an)) = ai/aj. ¢(G,T) = {aij | (i,3) € An}’

ot = ¢(B,T) = {“ij | (i,3) ¢ An+}’ and the corresponding set of simple
roots, n,-.is equal to {ajz, @p35+-+5a _, }. Recall that

©ii%e L

€ = aij(t)akz(t) for all t ¢ T. From this it is easy to sece

that a;. + ay, e ¢(C,T) if and only if j =k and i # %, and that .

i — = Q, .
this case “13 ukz u12

If we identify A, and ¢(G,T) in the obvious way, then Aﬂ+

corresponds to ¢+, and the set {(1,2),(2,3)...,(n-1,mn)} to .

i : = = e 1 J O
Also, if we'VW Sn' then w'uij uw(i)w(j)' Thus, the action of W on

An+ given by w(i,j) = (w(i),w(j)), corresponds to the action of W
on ¢(G,T).
+ . + -1, -1,.
If we W, then Aw = {(i,]) ¢ B | w (1) <w ()},

A= (W ea [T TG, U = Gy e U | ag; =0 it

ij

. . T+ + - , .. + -
(1,)) ¢ Ay ~ A, }, and u, = ((aij) e U | aij =0 if (i,j) € by~ A, T

The qné parameter subgroup eij corresponding to the root

w

(i,J) is_defined-by sij(k) =1+ kEij (see example (ii) of section

1.3-9)'

We can make Sl(n,K), the set of n x n matrices with coefficients
in K and trace zero, into a Lie algebra by ﬁutting EX,Y] = XY - YX for
all X, Y e:sl(n,K). s2(n,K) 1is the Lie algebra of €L(n,K), t, the
Cartan Subalgebra consisting of the diagonal matrices in s8%(n,K), is
the Lie algebra of T, and Eij is a root vector corresponding to the
root (i,j) € A . Also, if w ¢ W, -then gw+ = {X e s(n,K) | X+ Ic¢ Uw+}’

and u = {XesUnK |[X+TeU }
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3.1.2 Partitions and Conjugacy Classes

If N is the variety consisting of the nilpotent elements of

62.(n,K), and V the variety consisting of the unipotent elements of

SL(n,K), then the ﬁap rr N-V, given by I(X) = X'+ I 1is an isomorphism
of varietie?, Also, if g ¢ SL(n,K), then r(ng"l) = gr‘(X)g-1 for

all X e N. Thus, there is a bijective correspondence between the nilpotent '
conjugacy classes of sg(n,K) and the unipotent conjugacy classes of
SL(n,K), 'i.e. the nilpotent conjugacy class, C(X), containing X
corresponds to_the unipotent conjugacy class, C(X + I), containing

X +1.

Lemma 16 If X and Y are nilpotent elements of sf(n,K), then:
(1) C(X) < C(Y) if and only if rank x' < rank Y' for i = l,...,n.

(i1) C(X) = C(Y) if and only if rank x* = rank Y' for i

1,2,...,n,

Or, equiv#lently, if u and v are unipotent elements of SL(n,K),

then: -

(1) C(u) = C(v) if and only if rank (u - I)i < rank (v - I)i for
i=1,2,...,0.

(ii) C(u) = C(v) 1if and only if rank (u - I)i = rank (v - I)i for

i = 1’2'.'.’“.
Proof See 4.

Definition An ordered partition (k) = (k;, kKpyess, kr) of n is a set

{(kigeoes kr}'- of positive integers such that:
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(i) kl + kz + LN ] + kr = N

(ii) ki > ki+l for i = 1,2,...,r-1:

The numbers ki’ i=1,2,...,r, are called the parts of the

partition.

If k is a positive integer, then we use Nk to denote the k x k

matrix with ones on the super diagonal, and zeros elsewhere.

Lemma 17 The nilpotent conjugacy classes of sf(n,K) are in one to one
correspondence with the ordered partitions of nj; the nilpotent class
corresponding to (k) = (k,, kz,...,kr) being the one which contains

N =N &N ®..@N .
(k) ~ kp kg Tk

Proof See 4.

Note:
(1) The analogue in the unipotent case is obvious.
(i) We write U, , =1 + N, ..

(k) (k)

+ . « .
Let S < A s Ug = {(aij) e s2(n,K) | aij =0 if (i,j) ¢ S},

and Ug = {x € SL(n,K) | x -1 ¢ ugl. Ug is a closed, irreducible

subvariety of SL(n,K) consisting entirely of unipotent elements. Thus,

there exists a unique unipotent conjugacy class, C such that

S’

CS N US = US (cf. the proof of Lemma 1).
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i + - o« s
Definition Let L be a root system, and ¢° a set of positive roots
. + . .

in ¢°, then a subset ¥ of ¢o is said to be closed if a, B € Y, .

+ . .
and atf ¢ ¢o implies that athh € ¥.

+ +
Lemma 18 ~If ¥c¢ , and ¥ and ¢ ~ ¥ are closed, then there

exists w g'w(¢b) such that Aw+ sy,

Proof See.(10).

A subset S of p, 18 closed if (1,5),(j,k) € S 1implies
that (i,k) ¢ S. We are now in a position to show that our basic assumptiom

(see 2,2,3) 1is true for SL(n,K).

Proposition 19 If (k) = (ky, Kpyeee, kr) is an ordered partition

. + _ gt
of n, then there exists L Sn such that C(U(k)) n Uw Uwo

. . + .
Proof Let ko =0, and put S = {(i,]j) ¢ A, | ko-+ k] + ... % kp < 1,j

< ko + k) oo, * kp+1 for some p =0,1,...,r=1}. It is easy

to see that - S and An* ~ S are closed (cf the diagram below). Thus,

+
e U » and
(k) v,

- 1)' > rank(v - 1) for i = 1;2,...,n.

there exists w ¢ S such that U. = U * . Now U
o n S w
. + i
if v e Uw , then rank(U
o

(k)

Hence C(v) < E?U(k))' It is now easy to see that C(U * *

(k)) N UWO = Uw .



Note: An element v .of u, * has the form _

o

A P

1N, '

\"\ :

AR |

NN
NN ll k, O

W -

O bt

AN I
N !
N\ R i
.4 " |
1 %= - - % i
|
l AN I |
A | ’
\.\ I k'L ,
SINNNY |
\\\* 1
5 /
\ /

O //
g r//
Before we go on to look at the subset NU of W (see the
(k)

introduction to this chapter) we need to establish some preliminary results.

We do this in the following section.
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3.2 THE WEYL GROUP AND CONJUGACY CLASSES -
From now onwards we assume that K has infinite transcendence degree

over its prime field.

3.2.1 Some Preliminary Results

e + . . .
Deflnxtlon.- If Sc An s then (aij) €u; 1is said to be generic
if {aij | (i,j) € S} 1is a set of algebraically independent transcendentals
over the prime field. u ¢ US is said to be generic if u -1 is a

generic element of u

s.
Lemma 20 If wu £ US is generic, then C(u) = Cs.
Proof It is clear that if -v ¢ U then rank (v - I)' < rank (u - nt

S!
for i=1, 2, «eey n. Thus C(v) = C(u). It now follows immediately

that C(u) N Us = bs.

Definition A subset S of An+ is said to be triangglat if

(i,j) ¢ 5 implies that (i-1,j),(i,j+1) € S.

Note: The notion of triangular subsets can be found in M. Gerstenhaber's

paper (5) on Classical Groups. We shall be using his ideas in the next

chapter.



. . ; c
Example Let n = 6. We can display the elements of A5+ in a triangular

array.

(1, 2) Vasss/ /), 5/ (1 5 (-’,-;'9-)’/
'., (2,3) (2,4) (2/5) /(%,9)/
(3,4) (3;5) //(3/.?)/
_iflfiij/(€;6)

/Qs,é)’

+ . .. . .
The elements of Ag which lie in the shaded region form a triangular
+ + . .
subset S, of Ay . Note that the elements of Ag which lie above,

and to the right of an element (i,j) of S, are elements of S.

Definition Let (k;, k,) be an ordered partition of n. Then we say

+ ., . . .
that a subset S of S triangular with respect to (k,, k,) if:
(i) S 1is triangular.

(ii) s 'e{(i,j) ¢ An+ | 1 <4<k, and k; < j € n}.
For the rest of this chapter we shall assume that S 1is triangular
with respect to (k), k2).

Let £(S) = {(i,jde 8 * | 1¢isck and k <j<al-~s,

Then a generic element, Xo, of EA; -£(S) has the form:

k.‘L
/ O_\'A‘—__ e e R - - ¥ \\
AN I ! !
/ \‘: ;___', _____ ;‘ |
QO : P
/kl v \

.where the *'s denote non-zero

entries,
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Our. aim in this section is to describe Xot, where t 1is a positive
integer. We achieve this in Proposition 24. In particular, we obtain
Corollary 25 which we will need in the proof of Proposition 31,

Before ‘'we can prove Proposition 24, however, we need to consider

some of the properties of the triangular subset S,

~ Ihe trianguiar-subset S

We define a sequence, (I, ) (i, J1)aeee, (1 ), of

p+l’ Jp+1
elements of An+ as follows:
(i) Put (I, J) = (1, k).
(ii) Suppose that (Io, Jo), (Ijy J1)peees (Ir’ Jr) have been defined.
Then:
(a) 1If there exists (i,j) € £(S) such that j > J_, then put
I.a~= min {i e <l, n> |3 j > J. such that (i,j) € £€(S)}, and
Jr+1 = max {j ¢ <l,n> | (Ir+1’j) e £(S)}.
(b) If there does not exist (i,j) € £(S) with j > I and
I # k) + 1, then put (Ir+1'Jr+1) = (k; +1, a).

(c) 1If Ir = k; + 1, then the sequence finishes with (Ir'Jr)'

In the diagram below we indicate the positions of (10930):(Ils31)~---
(Ip'Jp) and (Ip+1’Jp+1)’ and we also note that this sequence gives us a

complete discription of S.
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(x,.%) \

(r,.7,) \

"3 : \\(I:. '-]-l)

(L, .3

\
. |
L o
| (Tpus Tpa) f

/

We now go on to define the sequence, S! 5 S2> ceeS" = @, of

characteristic subsets of S.

(1) Put Sl = 8§,
(ii) Suppose that S!, s2,..., s® have been defined. Then:
d d . . d . .
(a) If S # ¢, thenput L = ({(i,j) ¢S | (i+l,j),

(i,j-1) ¢ Sd}. and let Sd+l = Sd ~ Ld.

(b) If Sd = ), thén the sequence ends with Sd.

Note:
(i) 1 59 # #, then e # ¢, and thus the above inclusions are strict.

(ii) Each Sd, d=1,...,my 1s a triangular subset of An+ with respect

to (kl! kz).

(iii) Sd is called the dth characteristic subset of S




- 71 -

Example Let n = 10, and (kl' kz) = (6, 4).

7 8 9 10
1 a 8 B B
2 0 0 8 B
3 0 0 a 4
4 0 0 0 B
5 0 0 0 ]
6 o 0 4] a

1f the positions with non~zero entries represent the elements cf Sd9 Flen

. . . d .
the positions with entries g represent the elements of L, and the

.. -. . d+
positions with entries g represent the elements of S 1.

It will prove helpful, when we come to look at Lemmas 21 and 22, to
represent Sd diagramatically. So we let the set {(i,j) | 1 < i < k;,
k, < ) ¢ n} be represented by a rectangular array of k; x kp, nodes, and

the 'diagram' below represent sd,



L | 5,
1 L]
1 »
1
| *
N
NN
! W\
[ N
0O~ -~ Qx — — — - -— - - =
Ix“" . '|l- _ -
|
1
|
\ »*
C\-' o~
1N
N
o- — —o %=~ - .- -
'.lx-- —
I,_ 4—
I'q__
. \
/ i
i )
{
|
N
I, +
R, 1
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i.e. The positions with entries

those with entries * represent

O represent the elements of E(Sd),

the elements of Sd, and those to the

right, and above the bold lines represent the elements of S.

T ¥ "
! ‘o N
r - -l ——4
- - - -
|
!
|
U
. — e e e e e el
{
1
I
i
1
]
.
— —_— e mem mmm m— m— am— - - — — — o — — — — ——_‘*
|
|
|
|
¥
- '
L e i i -
| |
' !
:f\ |
0_\'\
NAN !
\\\
o-—-ok- - — — - - - - — = — - — %
i
|
!
!
|
1
1
i
—_— 1
e
l [
! |
l i
|
i 1
| |
-
QO |
1
1 1
!'.f !
o« ;
{ NE
N ]
| T
R (=il A aiont.



from.the

Row 1i:

Row i:

Row i:

Row kit

Row k)¢

Lemma 21

Ir+!

scheme below indicates how the 'diagram':for

'diagram' for S .

1f

d

(=
*»la.

1< Line

=73 -

3 > J
T

Row i:

Row i3

Row 1

Row 1i:

Row 1:

Row k;j:

Row ki

and (i,j) € § ~ ¢

d+l

S

s 1is obtained

then
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Proof The relevant part of the 'diagram' for
o (.
i
- r
(£.3) '
!
O — — — e — _
(1 ,.1;)

Sd has the form:

To prove the lemma it is sufficient to notice that the number of

zeros indicated must be less than d.

Lemma 22 If Ir € 1ic< Ir+1' Jr <j<nm
(i+1,j+1) # s%, then:
G) i=1_ -1.

(i1) j-J »d.

Proof Case (1) r # p.
.2
(A) 1If Im € u < Im+1’ (u, Jm +1) €8 and
then u =1 - 1, for otherwise we would

m+l

(i,j) ¢ Sd and

(L. .5.)" (Im.wﬂ

w —

* ® W —
0O
h g O or
b
[
O o0
(To, 1,

Myt

+ .
(u +1, Jm +2) € An ~ S

get a 'diagram'

O——--—- 00---0%

2
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for S&, and this is not possible. It follows that

(1 -1, Jm +1) ¢ Sl, and hénce that ¢ = 1.

m+1
(B) We now return to the situation described .in the Lemma. Rows - i and -

i+l of the 'diagram' for s¢ have the form:

e v ji+l g
Ro-w. i 0 [ ] L ] 0 0 ] [ ] 0 * L] L] * * L] L] * * L] . *
Row i+l 0. .00, .00. .00. .0%*% , b %

{we include the cases where v=j, val _,1» 470 etc, }.

It is clear that v - Jr <d+1 (see Lemma 21), By looking at

the diagrams on page 135

X d=(v=J,.~1)
o

, it can be seen that rows i and 1i+}

of have the form:

J
r

Rowi: 0. . O0* , , , %%  _ _ | %

Rowi¢l 0. .00, .. .0%*,, ., ., %

ies (i, J_+1) ¢ gd = (V=IetD) g (e 1, J_+2) ¢ gd = (v=I D)

Hence by part A,we have that i = Ir+1 - 1. Also we have that

v - Jr = d, and hence that j - Jr > d.

Case (ii) 'r =1p

It is trivial to show that the lemma is true in this case.

Description of Xot

Recal} that xo = (aij) is a generic element of EA; - E(5)"
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d+ )

d
Lemma 23 If d ez, Xo = (bij)’ xo = (cij)’ and arp' b #0

Pq
for some p € <1,n> then ®rq ¢ 0.

Proof If 2 ¢z, and (i,j)e <l,n> x <l,n> then put
9 noog
fij = z Mim.m m j xim xm m," ""* xm j !
LITC PR ) B Y S g1

where (X7, Xjgyeses xnn} is a set of n2? independent indeterminants,

and

0 lf 0] € {aiml’ ._amlmz""' amz-lj) .

L

u. .
1m1m2---m£_13 1 otherwise

fij2 is a polynomial in the variables wi' (v,w) ¢ An+ ~ g(S), with

coefficients in the prime field of K. Also fijl(xo) = (xol)ij. Hence,

since the non-zero coefficients of xo are algebraically independent over

the prime field of K, it is clear that (on)ij = 0 if and omnly if
£..% = o.
1)
Now, .bpq # O and thus qud #0, i.e. 3 ml,mz....md_l ¢ <l,n> such

; . 1

that O ¢:{a s . sese,d }» Further, £ d+l ud+ X X coe
pm; ° Tiijm, my-yd rq rpmlmz...md_lq Tp pm,
d+) .
X + other terms. But $ 0 since
md‘lq . rpmlmz...md_lq
d+l

0¢ {arp' gpml,...,amd-lq}. Hence frq ¢ 0, and crq # 0.

Proposition 24 Xot

T (g e uy v (gstyu ey Vhere
RE = {(1,3) ¢ An+ | 1< i,j < k; or k; <i,j€mn, and j - i<t -1},

Further, if (i,j) € An* - €Y U RY), then hi. # 0.

i.e. xot has the form
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E zeros D
K ovnnint i T \
O-~- - 0 ¥ ~. - x| T - # - \
. i ' 1 ; } \,‘
o A R
. ' |t ! | | [ \
. NN PR o e \
) N v N (- '
| > W 1 ! g 4 ! \
, N\ N i | i | I 1
i N N ! | : I | \
: ¥ . e o w
! k.L \ \ : el i ¥ .‘L .‘i )
] N i |
P . . N N i N i ' .
| () N Sy . X \
N ¥l :
| o 0 A
. ! } .
: \ N\ | I H
| S ' I |
i o0 JES !
. O——=0*— =i — — ¥ f
NN ' i
I AN W i |
AN N | /
i N N !
. “ NN I i
' | N\ NN | |
1\ ) | k?_ N \\ ~ |
' i N \‘\\l ‘.'
\ | O N AR /
\ o N0
} ~ [
\ ' \ | t zeros
\ . N
\ l "\1. (o]

where the #*'s represent non-zero elements.

Proof It is clear that the proposition is true when t = 1. We shall

assume that it is true for Xod = (bij)' and prove that it is true for
d+1
Xo (cij)'
We need only look at the situation in the top right hand k; x k,
+ . .. . . .
block of xoq 1, since, using Lemma 23, the situation in the two central

blocks is easily taken care of.

(I) We begin by looking at columns k; + 1 of xod and X°d+l Either

column kj; + 1 of Xod is zero, or there exists iez, 1 i <k,

such thag-'bu.k1+¢ #0 for 1 su <1i, and bu K 4= 0 for i <u <n.

1

If column ky +1 of Xod is zero, then column k, + 1 of xod+1

is

zero. On the other hand, if i is as above, then:



(i)

(ii)
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If 0<ue¢i-1, then a; # 0. Also b.

1k1+1 # 0, and thus

cuk141 # 0 (see Lemma 23).

= 0 for

If u > i, then a.," 0 for all v¢ i. Also bvkl+

all v > i, and thus cukl+l = 0,

(II) We now look at columns q and q+l1 of xod, ki < q < n, and derive

d+l

the form of the first k; rows of column q+l of X~ . Three

possibilities arise for columns q and q+l1 of Xod, i.e. they are of

the form:
Case (i) . ' Col q Col q+1
* *
P * %
0 *
p#i . .
i 0 *
0 . 0
k, 0 0
* * If q-kl-d+1 30
e . there are thus many
. . non-zero entries. Other-
*- * wise all the entries are
4] * ‘Zero.
0 . 0
0 0

Note: we include the cases where p =0 or i = Kk;.
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Gase (ii) Col q Col q+1

%
»*

3]
e Q© W6 o
O %o o

,.
i

*O -

*O o

Same number of

non-zero's as

above

Note: We include the case where i = k;, but not where i = 0.

Case.(iii) : . Col q Col q+l

=
[

* O -
* O

Same number of

non-zero entries

as above

C O %o
v O * %o

Q.
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We note that if I ¢i <I » then row i of X  has the
. _ r T+ (3

form

Hence, if i gu ¢ k; and Jo-ki>q-k;=-d+1, i.e,

q-4ds Jr_--l, then . c, = 0, Further, if q - d.} Jr then

q+l
ciq+1 # 0.
Case (i)
(A) If 1 su < i, then a i f 0. Also bi q+1 # 0, and hence
cuq+1 # 0 (see Lemma 23),

(B) Suppqsé ihat Ir §ic<l Then either q= Jr or -

r+1’

(i,q) ¢ S ~ Sd. If q= Jr' then it follows immediately that

q-4d¢ Jf = 1l. On the other hand, if (i,q) ¢S - Sd, then:

Ir+1 -1i+q- Jr ¢ d . (see lemma 2])
q-d € Jr - (Ir+1 -_1)
€ J -1 '
r

Thus we have that ¢ "=0 for all i <u ¢ k.

u g+l
Case (ii)"
(A) If 1<cu < i, then ¢ # O (see part A of case (i)).

u q+)

Now suppose that I« i< I, (i,9) € s¢ ~and (i+l,q+l) ¢ Sd,

.and thus (Qeé lemma 22) i --If+1 -1 and q~-d 3 Jr' Hence:

(8) #0

c.
1 q+1

(C) Either q < Jr+1,'or (1 q) €S ~ Sd. If q <J then it

r+i’ r+]’

follows trivially that q - d ¢ Jr+1 - 1. On the other hand, if



¢ S qQ) €8S ~ Sd, then:
Liag " Leay Y9730, ¢d
q-=-d <J

(note that if (Ir+l’ q) € S, then r < p).

Thus, 1if l.f l= Ir+1 €u € k), then . q+1 = 0,

Case (iii)

(A) If S =@, then it is clear that €y g1 ° 0 for 1 €u <k,.
(B) Suppose that S # @#, and let r be such that I.€1¢< 1r+1-
(no;g that r = 0 or 1), Either q ¢ Jr or (l,q) €¢8 ~ Sd.
If §'§ Jr,then it follows trivially that q - d ¢ Jr =1, On

the other hand, if (l,q) € S -~ Sd, then:

. =14+q-= <
Ir+l l +gq Jr d

q-d €J - (I, -1

<J -1.
r
=0 for all u, '1¢u<k.

Hence cu ) "q:-* )

(III) We .can summorise the results obtained in  (I) ahd (I1) above as
1 . . . d+l
d+', then cij ¢ 0, and if (i,j) € E(Sd+ )y

follows: 1if (i,j) € S
then ¢,. = 0.
ij -

. 1
Thus theé theorem is true for xod+ +» The proof is completed by induction.

Corollary 25
If S¢S ={(i,j) | 1<i<ky, ki <js<n, and j =i >kzl,

then xokl # O,
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Proof

If S¢S, then there exists (i,j) ¢ S such that j = i = ky.

Suppose that Ir' €ic< Irtl' 1f xokt = 0, then (by Proposition 24)

(l,n) ¢ S~ _skl,- and thus (by Lemma 21) I_, - 1+n-J <k,

But J < jand I . - 13 1.

1
1 Ir+1 -1l+n- Jr >1+n-j =_kr.

Thus, we get a contradiction, and conclude that Xok1 # 0.

Having obtained the main results of this section, we go on to prove

Lemma 26.an¢,Corollary 27. We will need the latter later on.

Lemma 26 Let X = <aij) be an m x n mattii such that aij = 0

whenever ‘i - j > m - n, and let Y

(bij) be an n x p matrix such

that bij_P O whenever i - j.>n-p=-t, where t 1is a non- negative

integer. Then XY = (cij), where i3 = O whenever i~ j>m=-p-=-¢t~-1.

Proof If i >3 + m-;-p - t.-.l. ;hep a " 0 whenever
r¢j+ mzf ﬁ -t=1-(m~-n) |
=j+n- p'— t-1
and brj -.Q -whenver r>j+n- P t.
n

c,. = ) .
i] =1 airbrj 0.

Corollary Zi
If p e<d,2>, then let X = (a,.’) bean m xn matrix
P e <t p = (35 P '

suppose that:

and
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(1) mp*l = np for P = 1...‘. 9,-1-
(ii) a..P = 0 vwhenever i - jem - np.

1) P

Then x}xz...xz = (cij) where cij = 0- whenever i - j >m; - m, = g+ 1,
Proof - Use induction.

3.2.2 The subset N of §
. ) u n

Let (k) = (k), kpyeoey kr) be an ordered partition of n, and put
U(k) =1+ Nkl ® Nk2 ® ... @ Nk . We uxly use u to denote U(k) when

there is no possibility of confusion. Our aim in this section is to

calculate INul’ where Nu = {w ¢ Sn | n(w) = C(u) and waW B, ¢ @)

Lemma 28
- s . - g 4 gt
(ii) There exists a unique element v, in Nu such that 'Uw +g; Uw+
. R o
for all we N.
. u. .
(iii) If we Nu,' then Aw-f\' n = {(i, i+])|
i E:{.k-l‘ kl + kz’a-.. kl + s ¢+ kr-l}}
Proof
(i) Recall that if we S, then 1: U xU ' »U is defined as
n ‘W w w

follows:

- =1 -
Tw((v,a)) = vav for all (v,a) ¢ Uw X Uw+.
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Also, recall that E; AN # @ if and only if u ¢ Im(rw) (see lemma
14).

(a) Suppose that u = rw((v,a)), vhere v = (vij) € Uw- and
. + -l
1 ’ n
). . = 2 vV, ¢ .
1 1+] p=1 1p p 1+]

(v.v-

V.. Cou. *+V,. C. ...
11 1141 i1+l "1+li+l
C.. + v,,
ii+} 11+l

= 0 whenever p > i+l, v,. =1

i .= ( i >
(i.e. vlp 0 whenever i P ii

cpi+l
and Cj41441 ° 1).

Hence c.. .

iiv1 Y Viie ° 0 for i=1,...,n"1.

Now: .
-1'_ n
(vav ).. . = z v. a c .
114] 1 1+]
L ) p,q=1 P P9 g
- 2 v. a ¢ .
. . +
icpsqgi+l 1p Pq Q 1+]

s v,. a,. Cc

« s +v,. a. . C. . + V.. a
11 11 1 1+4] 11 1 14] 1411+l 11+4])

i+1i41 Cis1ie1
€ ie *85 jm * Vi
i= ai i;l'

Hencei-s#nce..u ='v§v-i, we have that a4 i+l # 0 if and only if
icR= <1,$>'-'{k1. Ky + Kppeeny kg + oo + k). Thus
D= ((i+D) |'icR) cat.

+
u U .
€ "w

(b) ¥ u g'Uw+ then it is clear that u ¢ Fm(rw)-
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(ii) Let v be the element of Sn described in Proposition 19, If
w e Nu, then D ;=Aw+ (see the proof of part (i) above). But

A =2ZD N ¢+ (see page ¥ for the definition of 2D), and thus
° &l . ' .
_c;Aw ‘ (Aw being a closed subset of ¢ ). R ¢ c U .

It is clear that v is unique.

(ii1) If :‘w ¢ Nu, then D g Aw+f\ n (see i above). Also, 1ii xo is a

generic element of Uw+' then C(Xo) = C(u), and thus
rank (Xo - 1) = rank (u - I)! for i = 1, 2,..., n. This is obviously

false if » -~ D¢ Aw-f\ n. The result follows immediately.

Lemma 29

If we Nu’ k =0, and (i,j) e Aw—" where

(o]

k +k1+-oao + k -.<i--$k +k1_+¢oo+k and k _ +... + k
o o s . - o

8=1
. + -
for some ﬁs,t)_; Ar s then (&,m) ¢ Aw whenever i ¢ £ ¢ ko +,.. + k

and k+,., +k :
XX . kt'_ <mg Jo

o 1

Proof

We will let ay denote @ j4°

(i,j) corresponds to aij “a; *t a Toeeo oy + .o

i+] +... %k
[o] S

+ o0 *+ a._- .

1=l

If ¢ and m are as aone then

+
. + s o0 4’ -+ e o0 " . '
ag | az_l. am aJ_l € Aw

(see Lemma 28(iii)). Thus, since Aw+ is closed, it follows that if

+*

+ e *+ + e ¢ + .00 ¢ Wi A th
a!, ak +o-o+k ' uk +e0e¥k am-l € w ’ en
o : -] - ] t=1

coo 2,m) -,
iy € Aw - (2,m) ¢ Aw

+
Tkghe ootk _

l<j skg..#kt

1
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We now need to extend our definition of triangular subsets.

and ¢t,

1,8 x

8 > t,

<l,t>

are positive integers, then a subset P,

is said to be triangular,
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if

(i,j) e P

If
of

implies that

(i-1,j), (i,j+1) € P, Also, we say that an 8 x t matrix A = (aij),

is triangular if there exists a triangular subset P of

such that a;. ¢ 0 &=(i,j) ¢ P.

Let

w N

<l,8> x <1,t>

and xo be a generic element of Uw+' Then, by Lemmas

28 and 29, it is clear that (x° - 1) has the form:

where the

— e = eyl T T T e T T T ]
Py ! t
| v i
|; Vi )
|L———1 i{i- i
|| |' -| ) ::
.‘ ! ' . 1
N 'l *- | [ -}K |E
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i.e. If wé:diQide (X, - 1) up into blocks A ;, (I,3) € <l,r> x <1,r>,
in the obvious way, then?

(1) AIJ =0 if I >J

(ii) AII = (aij(l))’ where aij(I) = 0 if and only if i > j.

(ii1) If I < J, then AIJ = (aij(I’J)) is a triangular matrix.

We noﬁ.define a subset D of An+ as follows:
If (I,J) e Ar+’ then put

1J

DT = {(i,j) | ky + oee * kyoy <is k +eee * ks
ko + .o f kJ-l < j < k° + .., 4 kJ, and . j -1 ¢ kI+1 + ...+kJ}.
D = U oW
' +

(LI,J) ¢ Ar

Lemma 30
There exists a unique element w; ¢ S_ such that U Yeau, .
: -on v, An - b

Proof _fWe-need to show that .D and An+ ~ D are closed subsets of
Ah+ (see Lemma 18).
(i) -Supﬁose that (i,p) and (p,j) are elements. of D. Then:

. _ . .
()3 (I,P) e A, such that k_+... +k ,<i § k, *-0e + kp
and

ko + ..._+'kP’1 <p < kb + .o +.kP,

p-1c¢ kI+1 + ce0 * kP’

(b) R 3 J’ P<J <€ r' such that ko +.o.o + kJ-l <_J < ko + 000

+ k

3’ and- j - p ¢ kP+1 + ...kaa

It is clear (see a and b above) that j - i kI+l + l.. kJ.

Hence, it is easy to see that (i,j) ¢ D. Thus D is closed.



losed.

D is ¢

+

A
n

Similarly,

(ii)

= 1 has the form:

then X

+
w

lement of U

is a generic e

X

1f
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represent non-zero entries.

*lg

where the
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Proposition 31

k

o

A-
w

D

1J

+

o

If (I,J) ¢ Ar+’ then put EIJ = {(i,j) € Aw- | ko + .00 + k

vee Kk, and ko4 4k

<Jsk°

Proof
(I)  Let N . Then, by L 28, U < u’
et weN. en, by Lemma 28, v < U, .
To show that U 'c U ', we need to show that A ~— A .
o w1 Vi T W

<1ig

I-1

+ .00 + k It is clear that

J}'

is the disjoint union of the sets EIJ. We need to show that
™, for all (1)) € 8 "
(A) I1f (I,P), (P,J) ¢ Ar+’ DIPg; e and DPJg; EPJ, then
DIJ: EIJ.
ice. If (i,i) e D', then
'k; thy e vk cdek v vk
kot +eed vk <k *+oan t ks
and j - i ) Kpgp * ooe * Ky
kg #eee vkyy=i<cj-i < Kpep * oee * kg
ko Fo o+ kJ_i = (kpyq * oo +.kJ) <i
k0 + ...+kI - kJ < i
But kJ < kP' and thus
ko + .40 kI - kP < ig ko + .00 + kI'
" ko + ... * kI - kP + kI+1 + .00 ¢ KP
< i+ k1+1+ vee * kP < ko + ...+kP
Lkt eeeskp g < v kp g b vk ek o4+ kg
(i, i+kI+1 + ...+ kP) € DIPg; A;..., (a).
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Also, since j -1 <k + vee + kJ, it is clear that

I+1

j - (1 +k +eee + kP) <k + kJ. Hence

I+l pel T 00

. . PJ -
(1 + kI*l + se0 F kp. J) [ D - Aw * o o (b)-

Now Aw- is closed, and hence by a and b above, we have
that (i.j) [ Aw .

. s s o
..(x.J)CE .

(B) DI Is~1g EI I+1

for I = 1’..'. r - 1.

I 1+1 I I+1

¢ E for some I ¢ <l,r = 1ls.
. k
Let Xo be a generic element of Uw+' and divide (x° -1 I

i.e., Suppose that D

into blocks qu, (P,Q) ¢ <l,r> x «<l,r>, in the obvious way.

By Corollary 25, it is clear that # O, and hence that

kI kI
rank (Xo - 1) > rank (u = 1) “. This is not possible.

Bl 11

(C) From A and B above, it is clear that DIJC EIJ for all

‘ +
'SI’J) € Ar .

o + + +
(II) Suppose that UWO c Uw c le .

uegl ¢ Uw+ and hence, by Lemma 28, suf\ Ew #0... (1)

. . + . s
Let p ¢ 2__*, and Xo be a generic element of Uw . Partition X° -1

into blocks A (I,J) € <l,r> x <l,r>, and (xo- )P into blocks

1J°
BIJ = (bij(I’J)) -
Brs ® ) AITlATsz"' Ar g

= P71
T] "Ll ..ll’TP-l 1

Now: (a) If I > J, then BIJ =0

(b) bij(I,I) =0 &= j~i¢p=1 (cf. Proposition 24)



(¢) If I < J, then

-91 -

- ) .
13 7 IeTic..sT _ < Arr A, cechr

J.

P—l

fut Uw+g; Uw *. and hence: if (P,Q) € Ar+’ then

1

AfQ - (aij(P,Q)), vhere aij(P,Q) = 0 whenever i-j > kP-kQ.

Thus bij(I,J) = 0 whenever i-j )kf—kJ-p+1 (see Corollary 27).

In particular, we have that the last p rows of BIJ are zero,

By (a), (b) and (c) above, it is clear that (X° - 1)p has the form:

p el AT 3
{5 —
OO —— — — & — Flt— — — — — — — - oelpt—m - — — — - w— — — g
NN ! i l I ;
N I
| NN | || iyl | ‘
1 N \\\ I | 11 { i i
| AN W\ | 1! [ | :
i N NN ifl K f
| W\ | [
k N i1 |
i H \ \\ l I l I
| - N | i
l ( \ \ | i ! H
) AN | i
N AN . | | | 1
N N e e ] — — — — - o Oloee — — o
v Oem === plo— == -~ a0
N : f 1 i 1 :
N 111 I |
K, olo— — —— - — olg — — —— ——- ) S ¥ S
O —-O¥: ——— == K~ = — - — - - — - — -
N N N | I { I !
Mo K I 1 !
\ N N | | |
NN I |
N Hy | !
AN NN\ | I |
S NN | |
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L i i i
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\\ \\\ ! l |
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k \\ ] l
- LR N N e - of
\ () " femzooy
! ’ N ) I
N\ h |
( / s O\__-Io--_-—_ '
\ ./ N e !
~NL - N\, P el i
~ ———
O0— — -0 ¥ — ¥
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\, A\
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K, (=)
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where the #*'s represent non-zero elements, and the a's represent

elements which may, or may not be zero.

Thus, it is easy to see that rank(xo - 1)P = rank(u - 1)P. Hence

n(w) = C(u)e.. (2)

.. WE Nu (sée (1) and (2) above).

3.2.3 Young's Diagrams

Let () = (21,22,...,18) be an ordered partition of n. Then we

can associate with (%) a Young's Diagram:

*'**;c'.o'* -c-t----*..-.--uo* (21 nodes)

* * * s e o o o o * e o ® © » s 5 o * (22 nOdes)

X 0k K . .44 i e ok (zs nodes)

Examglel The partition (4, 2, 1) has a Young's Diagram:
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We say that a node is in the position (i,j) 1if it is in row i and
column j.
I1f we place the numbers 1 .. . n at the nodes, in any order, then

we obtain a tableau.

Examnle

is a tableau for the partition (4, 2, 1).

Let V be a tableau for the partition (%), and let nij be the

entry in the (i,j)th position. Then we say that ¥V is a standard tableau

if n,., >n,. , n, ‘e
1] 13+1 1+1 3

Examzle
7 6 3 2
5 1
Y

is a standard tableau for the partition (4, 2, 1).

Theorem 32

(1) There is a bijective correspondence between the ordered partitions
of n and the irreducible representations of the group Sn. Further,
the'aimension. d(l)' of the irreducible representation of Sn

corresponding to the partition (%) 1is equal to the number of
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standard tableaux for (1).

2
(ii) ! degy = s
Ordered partitions
(2) of n
Proof -See (1.

3.2.,4 The number of elements in Nu

Proposition 33

wel if and only if

W W) v e - - W L)Y L T k) L )
“'-‘“‘1“‘,) ""-‘(kx"‘:'l) "'-1("1”‘1'1) -------- w“(k‘-k;]-k,) ________ w'l(k‘1 1)

! ! [ .7

| : \ ' L7

I . . 1 .

i ' ! e

1
i : t ! - 7
. .

wi(a) wrn-1)  wla-e) | _ w'l(kl----k,_"‘l)

is a standard tableau for (k).

Proof v e Nu — U c U < Uw s 1l.e. a generic element of
- 1

Uw+ has the form:
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: . ' +
where the *'s represent non-zero entries, and thus elements of Aw 5

the g's and q's
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! |
i i
! |
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N !
ko O !
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represent zero entries, and thus elements of Aw-;

and the - §'s represent entries which may, or may not be, zero.

Note that by Lemma 29 and the fact that Aw- is closed, a necessary

and sufficient condition for the a's to represent elements of Aw is

that the @'s represent elements of Aw-.
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So, we have that w ¢ Nu =

. . . + .

(1) (1.14’1) € Aw Whenever 1 € (1.“) ~ {kl' kl + kz’coo' kl Feoe + kr};
and

(ii) VI=1l,..., r -1, (i, k +1) ¢ Aw— whenever

I+1
kl + oo +kI-kI+1< iskl +.|l +kIl
W ¢ N Gz

u

. -1 -1,, .
(1) w 1(1) <w (i+l) whenever i ¢ <1 n> ~ ({k;, k; + kpyeee, k; +.00 ¢+ k }

.

and

. . =1,. -1 .

(ii) V1 2 lyeee, =1, w (i) > w (kI+1 + i) whenever

k1+ooo +kI-kI+1<1sk1+.-|+ho

The result now follows easily,
Theorem 34

|N | = d,. (recall that in the above work, we simplified
U k) (k)

our notation by writing u for U(k))'
Proof The result follows immediately from theorem 32 and proposition 33,
Theorem 35

Let G = SL(n,K), and (k) be an ordered partition of n. Then the
number of irreducible components of By of maximal dimension (see pages 21

(k)

and ¢+ for the notation) is equal to d{k)'
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Proof
If we NU , then dim E;l\ BU = dim BU (see lemma 15).
(k) (k) (k)
Thus, if X 1is an irreducible component of c /\BU of maximal dimension,
(k)
then X is an irreducible component of BU of maximal dimension. Also,
(k)
if w' e N , w#w', and X' is an irreducible component of C ,NB
U w' U
(k) (k)
of maximal dimension, then X # X'. Thus
IN | «n i.e. d .
U ’ h
& ) ) = Mgy,
But ) d(k)2 = |s,| (see theorem 32), and
partitions (k) :
2 . . =
ny |s,| (see corollary 13) . .. n, diyy

partitions (k) (k)



CHAPTER 4

SO(N,K) aND SP(N,K)

In this chapter we will show that our basic assumption (see 2.2.3)
is true for the classical groups S0(n,K) and Sp(n,K), where K has
infinite transcendence degree over its prime field, and char(K) # 2.
To achievé this we just combine the work of Carter and Bala, and

M. Gerstenhaber.

4.1 BACKGROUND

C and D (see 3)

4.1.1 Distinguished diagrams of type Bz, . g

In the following we shall assume that all the parfitions are ordered
(see 3.1.2).

Let (k) = (kyy Kppeony, kr) be a partition of n, and put

* . * -
(k)" = (A1sA2seees)]) , where ), =|{kj | kj » i}|. (k)" is a partition
of n, and it is called the duecl of (k).

Kk
We note that (k) = (k).

Example The partition (4, 3, 2, 2) has Young's Diagram

* * * *
* * *

* *

* *

Reading off the columns we see that (k)* = (4, 4, 2, 1)



- 99 -

s . .
If pe ., and Ziy Zyeeey zp are non-negative integers, then

. zp zp"l z] o« .
we will use (p ¥, (p-1) yessy 1 ') to denote the partition

(P.-oo.p. g—P-_l_).o-l.(?—l_.).oco. \]:’oo-.’_’l). of zp i Z..

—— ) TVt — i=1 1
z z z
p p-1 1
* kr kr-l-kr
If (k) = (k1, k2,000, kr)' then (k) = (r °, (r-1) ’
k_ .=k k, -k
=2 =l 1 2
(r"2) poney 1 )o

(A) The distinguished diagrams of type B, have the form:

2 2 2 2 2 2
( I) o' -0~ —0 e s e O———O===———0

2 2 22020 020 020 00 O
(I1) 6—0¢ ¢« 6-—O—0—0—O0u o 0:—U0s s OO0 00 + O—O==3=—0

m n; n, n
where m and the ni are obtained as follows:

Let (k) = (k1, k24+2., k), r > 1, be a partition of 28 + 1
r
k. =1 .
into distinct odd parts, and put A, = _l_i__ for i=1,..., r.

If AL # 0, then put (1) = (Al,....xr), and if A =.0, then put

*
(A) = (Al.-.’-’kr_l)- (A) = (nv-l’ nv_z.ona'nl’ \1;’—..:_'_}‘)' and
m+l
Ry-1
) if n,_, is even (i.e. 1if A = 0)
n, = Q o

Mv-1 if n is odd (i.e. if A_ # 0)
"—_2'_ v=l r

(Note that n, o> n_ for i=2,..., v -1).

Distinct partitions, (k) = (kl,...,kr), r >1, give rise to
distinct diagrams of type II, and we associate the diagram (I) with the

partition (22 + 1).
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(B) The distinguished diagrams of type Cz are of the form:

Cz)'————%o ') g——%—g—%—g- . g——%——-g- . g——-—g—-'go . g—gz"(—'=%

+ = —_— 5 —_———
m n 1 n 2 nv

where .m and the ni are obtained as follows:
Let (k) = (kyy kppeue, kr) be a partition of 2 into distinct

*
parts, ‘then (k) = (nv, LT &’iill})' Each partition, (k),

m+1

gives rise to a distinct diagram. Note that

n, >0, for 1 =2,3, ..., v.

(C) The distinguished diagrams of type Dz are of the form:

2 2 2 2 0 2 O 2 0 2
I) [o) Os ¢ O0—0-0— s v
— m —2 l—n- —_— —
1 nz nv 2

where all the n{s are equal to 2, m 1is odd if ¢ 1is odd, and

m is even if ¢ 1is even.

. 0
2 2 2 2 02-0 0 2 0 0 2 0 a o °.
1I) 0O—O¢ ¢« 6—0-—-0 -0—0¢ ¢« G—C—0e¢ s« ¢« O—0—0s o+ 0p-4x:
——— e e b LR e Y } \\o
m n l na nv \\ 0

where m and the ni are obtained as follows:

Let (k) = (ky, kyyeen, kr)' r > 4, be a partition of 23 into

distinct odd parts, and put A; = i~ . If Ar # 0, then put

() = (Al,....xr), and if A =0, then put () = (Al,....kr? ).

1

L —

*
(A) o (nv_l. nv_z.ola’nl' 1';.-'-_,}). and

m+l
no_,t 1
0, = —_— if n,_, is odd (i.e. if A =0)
n . . . .
vzl if n,_.  is even (i.e. if # 0)

(Note that n; >, for i=2,..., v-1)
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Each partition gives rise to a distinct diagram.

We can associate to each partition (k;, k;) of 2% into distinct
k.=1
i
; 2
(A) = (A,2y) if x, #0, and (A) = (x;) if A, = O, then

odd parts a diagram of type I, i.e. if ), = y 1L =1, 2,

‘1

peess Ny, 1,...,1), The correspondence thus obtained is

l e

*
() =(n,, n _
v m+1

bijective.

4.1.2 Description of the groups S0(n,K) and Sp(n,K) -See (5)

Let E be a vector space of dimension n over K, and let
{el.ez,pgm,en} be a basis of E. We can define a non-degenerate, symmetric

bilinear formon E by putting (ei,ej) =1 if i+ j=n+1l, and

(ei’ej) = 0 otherwise, Mn(K), the set of n x n matrices with coefficients

in K, acts on E with respect to the basis {el,ez....,en} in the usual

way.

S0(n,K) = {X ¢ Mn(K) | (Xv,Xw) = (v,w) for all v, we E, and

det X = 1} is a quasi-simple algebraic group of type { B if n=22 +1

L
| D2 if n=2¢

If X = (aij)' and o = (i,j) e <l,n> x <1l,n>, then we write

xo = aij' Let T: <l,n> x <l,n>+ <1l,n> x <l,n> be given by

r

T((i,j)) = (n+1l - j, n+l - i), and if X ¢ Mn(K), then let X' be the

element of Mn(K) such that (Xr)o = X S0(n,K) = {X ¢ Mn(K) | X.Xr = I

r(o)’
and det X = 1}.

Let T, be the maximal torus consisting of the diagonal matrices in
G = S0(n,K), Bo be the Borel Subgroup of upper triangular matrices in

. . . + . -~
G, and if (i,j) € A, and 1i+j < n+l, then let aij: T, + Gm be

defined by “ij {diag (al,...,an)) = ai/aj. Then ¢, = ¢(G,To) =
~ . s .. + - . . +
{aij | (1,3) € p, and i+j < n+l}, ¢, = 0(B°,T°) ={aij | (1,3) € A

and 1i+j < n+l}, and the corresponding basis is

WM UNIVE
ot soiciiceSIF

12 JAN 1978

Aratind’
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{ {&l2o623o"" EQ £+1} if n=22 +1
“ =

[o] . . - - N
( {012.023,..., al_l 2'01-12+1} if n = 2,

The N.kin Diagram for SO(2% + 1, K) 1is ¢—0—D0. « + 0—0=3=0,

I &,, %.,, &

and the Drkin Diagram for S0(2, K) 1is

so(n,K) = {X ¢ Mn(K) | (Xv,w) + (v,Xw) = 0 for all v, we E}

= {Xe¢ Mn(K) | x + xI = 0} is the Lie algebra of S0(n,K).

Example so(5,K) 1is the set of matrices of the form:

. ™
ajl aj2 a13  aiy 0 |
a} az2 azz3 O -ajy
as) a2 O -az23 =a)3

az; O -azy =ay2 =az)

o ~ay)] -azl -az1 -a)]|

Recall that if (i,j) € An’ then Eij is the n x n matrix with a

. . .\th - r
1 in the (i,3) position and zeros elsewhere. Rij Eij Eij ’

(i,j) € An and i+ j<n+1l, is a root vector corresponding to the

~ ~ ~ £, 2 .
root uij’ and eij' Ga -+ S0(n,K), eij(t) =1 + tRij + 7 Rij s 1is the
one parameter subgroup corresponding to @,..

1]

2
Note: If n = 2% then Rij = 0 (we are of course assuming that

(i,j) € An and that - i + j <n + 1),

4 X~
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On the other hand if n = 2¢ + 1 then:

2 - 2
i &+1 Ei n+l —i and R2+1 5 = -En+1-j j'

(i) R

. 2 . . . }
(ii) Rij: =0 if 1 # g+ 1 and j # 2+ 1.

Now suppose that n = 2%, and define a skew symmetric bilinear form
on E by putting (ei, ej) =1 if 1+ j=22+1 and 1 <i < g,
(ei, ej) = =] if i+ j=292+1 and £ <i ¢ 2%, and (ei, ej) =0
otherwise. Sp(n,K) = {X ¢ Mn(K) | (Xv,Xw) = (v,w) v, w e E} is

a quasi-simple group of type C it is called the symplectic group.

9. 9
Let 11 be the £ x¢ unit matrix and put A= I2 @ (-Iz).
. ] 1
If XeM(K), thenput X' = AX"A . Sp(n,K) = (X &M _(K) | x' .x = I},

Let To be the maximal torus consisting of the diagonal matrices in
G = Sp(n,K), Bo be the Borel Subgroup of upper triangular matrices in G,

. . . + . ~
and if (i,j) ed ~and i+ j ¢n+1, then let T T, +G_ be

defined by Eij(diag (al,...,an)) = ai/aj. Then ¢, = ¢(G,To) =
+

. . . . ~ A +
gy [ i) eapivionsl)l, o = 0B, T)= (&, | (i,i) ed,

i+j<n+ 1}, and the corresponding basis L is the set

{612.523,,..;ﬁzz+1}. Sp(n,K) has a [ywkin Diagram-

OO0 -0 s o o 00 .
¥ &, & w &7
i D a, (XY Cent

sp(n,K) = (X e M (K) | (Xv,w) + (v,Xw) = 0 for all

' -
vow e E} = {X e M (K) | X+ X' =0} is the Lie algebra of Sp(n,K).
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Example sp(6,K) is the set of matrices of the form:

aj) 22 a3 3, 315 34,4
a1 822 433 A8, 4835 a5g
d3) 832 333 a3, a3, 3y,
PR ay3 -azg "dp; "ajg

a5y agy a,, -~ag; -ap, -"a,

adg) as) a,) =az) “ay '311}

' D - . . .
.. = E,,=-E.,, +
RlJ Exj glj » (1,3) ¢ b, and i + 3j ¢<n+ 1, is a root vector
corresponding to the root aij’ and E&j: Ga » Sp(n,K),
’
E}j(t) a1+t Rij is the one parameter subgroup corresponding to Eij'

4.1.3 Partitions and Conjugacy Classes

First of all we note that if A; B g Mn(K). then:

(aB)f = 1" A B
_ ij pel n+l-j p p n+l-i
" : B
- qzl An+1-j n+l-q n+l-q n+l-i
n r r
= (B). (A") .
qzl )1q q]
= r Ty
(B" A )’-i
(a B)Y = BT AT,

l '
Also, (A B)f Aa B)TA = Bl AlA

AT An ATA
[ ] ]
Bl AT,

It is now easy to see that T and T' are anti-automorphisms of Mn(K).
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Lemma 35  If 8 is an anti-automorphism of Mn(K), and A and B
are similar matrices in Mn(K) such that AA® = BB® = I, or
A+A% =B+ B® = 0, then there exists C ¢ Mn(K) such that ¢ ¢® = 1T

and C A c® = B,

Proof Sge (5)

If X is a nilpotent {unipotent} element of Mn(K), then
X {X=-1}) is similar to: N(k) (see page 64 for the notation) for some
partition (k), of n. We write ¢t(X) = (k). _

Let s =Torr" G= {Xe}(K | xx* =1 and det X = 1}, and
B=(XeM(K) | X+ x® = o).

If X and Y are two nilpotent {unipotent} elements of g

{G} and C(X) = C(Y), C(X) and C(Y) being the nilpotent {ﬁnipofent}
conjugacy classes in 8 {G} which contain X and Y respectively,
then t(*)"= £(Y). If C is aniléptent {unipotent} conjugacy class

in g {G}; then we write t(C) = t(X), where X is an arbitrary
element of C. It is clear that if C' is another nilpotent {unipotent}

conjugacy class of 8 {G} , then ¢t(C) = t(C')=>C = C' (see Lemma 35

above).

Lemma 36 "Let _/”" be the set of nilpotent conjugacy classes in 8 and
72” be the set of unipotent conjugacy classes in G, then we can define
a bijective map op: %"+ ¥ such that:

(i) if €, Che ¥ and C€; ~ C,, then p(Cy) = p(Cy)

(ii)  If € e then t(C) = t((p(C)).
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Proof Let N be the variety of nilpotent elements of g, and V

be the variety of unipotent elements of G. If A ¢ N, then

1 +_A
1-A

= 1 +2A+2A2 + ... +2A" is a

B =

unipotent element of Mn(K). Further, since s 1is an anti automorphism,

s 8
% : :) = % s and hence that BB® = 1.

So we can define a map £: N + V by putting £(A) = %—;F% *

B-1
B+ 1

-1 -1
all B¢ V. Now, if ge G then g(gAg ) = gE(A)g for all

it is clear that (

. e . . . .. . -1
¢ is in fact an isomorphism of varieties, i.e. ¢ (B) = for
A ¢ N, and hence we are able to define p. It is clear that if C;, C; € /Pﬂ
and C; < C, then p(C)) c E?E;).

If X and Y are elements of Mn(K), X 1is nilpotent, Y 1is non-
singular, and X and Y commute, then XY 1is nilpotent. Recall that
Mn(K) acts on the vector space E. If 1 < i ¢ n then x*v': E -+ E,
i i . .. A1 i .

and thus rank XY™ = dim E - dim Ker XY . But Y is non-singular,

and thus rank Xyt = dim E - dim Ker X' = rank X'. Hence

t(X) = t(XY) (see Lemma 16). As above let B g V and put A = %—E—% .
Applying the above result to (B-1) and (B + I)-l, we get that

t(A) = t(B - 1) = t(B). Hence if C e .+ them 't(C) = t(p(C)).

Lemma 37 If (k) = (k;, Kp,eee, kr) is a partitioﬁ of n, then:

(1) A necessary and sufficient condition for there to exist a nilpotent
{unipotent} element X, of so(n,K) ({SO(n,K)} , such that -
t(X) = (k), is that each even part of (k) appears an even number
oflfimes.

(iii A necessary and sufficient condition for there to exist a nilpotent
{unipotent} element X, of sp(n,K) {Sp(n,K)}, such that
t(X) = (k), is that each odd part of (k) appears an even number of

times.
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Proof See (5) for the nilpotent case. The unipotent case is obtained

by applying Lemma 36.

Definition If each even part of a partition (k) appears an even number
of times, then we say that (k) 1is orthogonal. If each odd part of a

partition (k) appears an even number of times then we say that (k) is

symplectic.

It is -clear (see Lemma 35) that the nilpotent {unipotent} conjugacy
classes of so(n,K) (SO(n,K)} xe inone-to-one correspondence with the
orthogonal partitions of n, and that the nilpotent ({unipotent} conjugacy
classes of sp(n,K) {Sp(n,K)} are in one-to-one correspondence with the

symplectic partitions of n.,

If (k) and (k') are partitions of m :and n respectively, then
we use (k) & (k') to denote the partitioﬁ of m +n obtained by taking
the parts of (k) and (k') together and rearraﬁging them in descending

order.,

If (k) = (k;, kppeeey kr) is a partitioﬁlof n, then we can obtain
an orthogonai'pattition (k)o of n, as follows:

If r=1 and k; is odd, then put (k)° = (k)3 and if k; is
even, then put (k)° =(k, -1, 1). If r>1 and k; is odd, then put
(k)o = (k) @& (kpyeeo, kr)o; if k, is even and k; # k,, then put
(k) = (k; = 1) & (kp + 1, kgyueey k) ; and if k) is even and
kl = kz, then put (k)o = (kl' kz) & (k3..o-. kr)o'

Similarly we can obtain a symplectic partition (k),, of n (we

are of course assuming that n is even in this case), 1i.e!
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If r=1, then put (k). = (k;). If r >1 and k; 1is even, then
put (k), = (k;) & (kz,,.,,kr)lJ ; if k; is odd and k) # k,, then put
(kK)o = (k) = 1) @ (ky + 1, k3sees, er); and if k; 1is odd and k; = kj,

then Put (k)-f.) = (kl' kz) (] (ka,ou.. kr)’co

—

Examgle
(7, 6, 6, 4, 2, 2, 1)

(7, 6, 6, 3, 3, 1, 1, 1)

(7' 6’ 6' 4. 2' 2’ 1).1_, (6' 6I 6' [" 2l 2' 2)

We now leave partitions for the time being, and go on to look at

triangular subsets.

Recall that a subset S of An+ is said to be triangular if
(i,j) € 5 implies that (i-1,j), (i,j+l) € S. We say that a triangular
+ ., N - . . -
subset S of 8 is symmetric if (i,j) ¢ S implies.that TI((i,j)) € S.

If S .is a triangular subset of Anf, then we défine a subset I ' of

<l, n>, calied the first characteristic sgquence'of S, as follows:

the first element of I is 1, and if i ¢ I, then its successor is the
least j such that (i,j) ¢ S, 1if such a j does nof exist then the sequence
ends with  i. Now suppose that the characteristic sequences Ilh= I, 12,...,IP_1
have been defined for S, and let Jp_1 = J be their union. We define

the pth characteristic ‘sequence, Ip, of S as follows: the fir%;
element of Ip is the first element of <l,n> - J{ and if 1 ¢ Ip, then
its successor is the least j € <l,n> - J such that (i,j) € S; 1if such
a j does not exist then the.sequence ends with 1i. This process éf

defining characteristic sequences can continue until for some «r

Lu Iouv ... UIr = <l,n>; Ij,eee, Ir constitutes a complete set of
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characteristic sequences for S. 1If we let ki equal the number of
elements in the sequence Ii' then (k) = (k,;, kz,..,kr) is a partition

of. n. We write t(5) = (k).

Examgle

. s 7 / v // s S // v -/
L2 a4, X 4/, )AL B A, a, 8y

s

(”/ /// f',/'//‘ s s

4 v e 7/
(2, 3) /<z 4)/<z 5) ,(2 ‘6) Az, 7) @, 8y

(3, 4 (3, 5) (3 6) (3. 7)//(3 9//

vy

(4, 5) (4, 6) r (4 7)/ (4 q/,
('/f oy 4 Y
(5, 6) Y (5, 7). ’(5, 8)

f v 1
l// s e 4 / 4
[V ‘ o /

((6,.7),7 (6, 8),
lr 7/ A 4
(7, 8)

. + .
As before (cf. page 67) we display the elements of Ag in a
triangular'array, and let S be the triangular subset of Aa+ consisting

of those elements in the shaded region.

1, = {1, 4,7), 1, = {2,5, 8}

I, =1{3, 61}, and t(S) = (3, 2, 2)

Notation 1f Go is a classical group with Lie algebra 80 and v 1is
a closed irreducible subvariety of g, consisting entirely of nilpotent
elements, then there exists a unique nilpotent conjugacy class C of %o

such that C Ny =v; we write t(v) = t(C).

+
Now, if S 1is a triangular subset of An s then ug (see page G4
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for the notation) 1is a closed irreducible subvariety of sf(n,K) consisting
entirely of nilpotent eléments. Further, if S 1is symmetric, then

.8oug = so(n,K) N ug and Spug = sp(n,K) M ug (in the latter case we

are assuming.that n 1is even) are closed irreducible subvarieties of
so(n,K) and sp(n,K), respectively, consisting entirely of nilpotent

elements.

Lemma 38 °~ If S is a triangular subset of An+ sthen t(gs) = t(S).

Further, if- S 1is symmetric then t(sogs) = t(S)o and t(spgs) = t(S)..

Proof See (5).

Recall that g = so(n,K) {sp(n,K)}, G = SO(n,K) {sp(n,K)}, and
that if X is a nilpotent element of g, then C(X) denotes the nilpotent

Conjugacy class in g containing X.

Lemma 39 If X and Y are niipotent elements of 5,' then:
(i)  C(X) = C(Y) «=rank X* = rank Y' for i = 1,ee.;n.

(ii) C(X)SZ C(Y) <= rank x* ¢ rank Y' for i = lyeee,n.

Proof

(i) follows immediately from Lemmas 16 and 35.

(11) see 5.

The aﬂa}ogue in the unipotent case is obvious and follows immediately

from Lemma 36.
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4.2 THE BASIC ASSUMPTION FOR SO0(n,K) AND Sp(n,K)

Let g and G be as above.

If DO‘:-EO SN S being the basis of the root system of G described
on pages 102 and 03 , then let iE be the regular subgroup of G of
- o ~
Levi type corresponding to E (i.e. R is the semi-simple part of
o

E
o

T = It o ] > I U. = € :
LEo <T_, Uaij | uij € ( o)Eo , Wwhere Uuij ij(Ga) (see pages 1022 10u)),

~r ~

PE D be the standard parabolic subgroup of RE corresponding to the subset Do
oo ) ’ : (o}
of Eo,and. QE D be the Lie algebra of the unipotent radical UE D* of P
oo oo

EOD

(o]

If D~ E « ®, ™ being the basis of the root system of SL(n,K)

described on page 65, then let RE be the regular subgroup of SL(n,K)

of Levi type corresponding to the subset E of T, PED be the standard
parabolic subgroup of RE corresponding to the subset D of E, and
Ygp be the Lie algebra of the -unipotent radxcal_ UED' of PED'
Lemma 40 If Co is a nilpotent conjugacy class.of gy then there
exist sets D and E_, D .- E - 7™ _ guch that:
o o o o o
(1) éE D is a distinguished parabolic subgroup of iE , and Co
© o0 o
intersects ur o in a dense open subset.
: oo
(ii) ‘There exists two sets D and E, D < E - T, such that
:uE D = ‘g[\!ED and ":I’E D s GN UED.
0o oo
Proof

(I) The proof of part (i) for so(2%+ 1, K).

1) Let (k) = (k1, k2y000, kr)' r >1, be a partition of z2 + 1



- 112 -

into distinct odd parts, and let

2 2 2 2 2 0 ‘0
0O~ —-0-..._-0. s O- O O« o ¢ 0O

- . -~ ' "
m ny

be the distinguished Dyrkin Diagram of type Bz obtained from (k)
(see page 99 ) -~ note that the nodes in the above diagram
represent elements of LA Let Do be the set of those simple roots

which have weight zero in the above diagram, F = {(i,j) ¢ A22+1+ |

i+ j<2g +2 and hD (aij) » 2} - see 1,3.19 for the definition
0

of 'hDO' § = {(i,j)e A22+1

Yli+j=20 +2 and i<t-n},
and S =F U6 UT (F). S is a symmetric triangular subset of

+ = L . .
A21+l and sou. = gDo, the Lie algebra of the unipotent radical
of the standard parabolic subgroup of S0(2% + 1,K) corresponding

to the subset D of nn .,
o o

i.e. An element X, of soug has the form

'/E‘)]-,i.=~ C e - . e e e e o e e e e e e e - 7-&0\'\',

w N ' -~ o
.\-.- ~ .,/ , /‘,l“ \
"l. // Vd a \
S PO
0 . oy ‘

/

\ [0 3Ne] s ,./ /’ I
o ol™ s | I
N v oo
", /s 07 [
0 s
'. // ,."‘ I !
LAY 7 s . .
) N i

<, ' |

s

k—) “v-\ s , 'I ;

R 7 i
* O, '
S .;y: P
" X !
| - B

In 1 ( ) i
o N
'-.'!|= i I
() LN l |
I )

~ -
- . .g

1
« ./ 0o

S 00 |

I

l

]

<k
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where the *'s represent entries which may or may not be zero.

Recall that X 1is antisymmetric about the antidiagonal.

of

Let

S.

It

Ligeooy 1 be a complete set of characteristic sequences

t

is easy to see that |Ii|' is equal to the number of blocks

in the above diagram with sides greater than or equal to i. Thus

t(S) = (2nv +1, n

%*
y9 M yeeey DL, N, 1,..111) . Let
v=l v=1 1 IWZ

1
for i=1,.0., r.

(a) If Ar # 0, then put ()) = (Ar,...,kr).- In this case

(b)

2n + 1 = n_ =T (see page Y9 ). Now:
k k- -k ky = k2
* -
(k) = (r rl (r - 1-) r l r’l.l’ 1 )
2+ 1 2(x - AL) 2()1 -Az)
=( T L,(@-1 TP T

@ + F @« W

t(S)*.

t(S) = (k) and hence t(_ﬁD ) = (k)o = (k) (see Lemma 38).
. ()

If

A

=0 Fhen”put () = (Al}...,xf_i). In this case
2 n +1=n +1=1r. Now
v v-1 . .
2)__ 2(A__, = A__.) 2(x} = A3)
=(r, (r-1) ", (-2 T2 TV 1 )

"

=@ & W' « W

T o= t(S)*.

Thus t(S) = (k) and t(dy ) = (k)o = (k).
[o]

The partition (k) = (2¢ + 1) corresponds to the distinguished

2 2 2 2

diégram %_;_o___o. e O30 . D, the set of those simple roots

which are weighted with zero in the above diagram, is the empty set,

and U

D
o

(see - 1 for the notation) is the Lie algebra of the unipotent
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radical of Bo , the Borel Subgroup of upper triangular matrices

in S0(2¢ + 1,K). It is easy to see that t(ﬁD ) = (k).
o

Let Co be a nilpotent conjugacy class of so(2% + 1,K) and (k)
be the corresponding orthogonal partition of 22 + 1 (See page {C7).
Three ﬁossibilities arise:
(a) (k) 1is a partition of 2% + 1 into distinct odd parts.
In this case the result follows immediateiy from (1) and (2)
above, i.e., 1if Eo = T and Do is obtained as in (1)

and (2), then C° intersects Up p =Yy
oo o

in a dense open
subset.
(b) (k) = (fl' fl’oco’ fs. fs) L4 (hl.o'o. hp)’ Where

hy, ho,ees, hp are distinct odd integers and

hl +h2+--. +hp =2h+l >1. Let

- -~ o . i es e + = e e w2 Je
Eo = {ui el | i = £, + fq for some q =1, 2, , 81}
RE has Dakin Diagram
- 0
ST SRS o - N —_— ——

O —Vee O~ 0 0. -0..0 O. seasesse 0—-0D:.0¢0~-0 OO0 e 0720,

' : . .
gt BT ETIE “ ! ~r ’
f . T N P Iz t -
2t Tyt o an Qo en
RN E &

Where ai=f1 + e +fi-1 for i=1. 2. ..o’.SO
Let VY be the distinguished diagram

2 2 2 2 2 2 2 % 2 2

2 2 £, 8. S, 6y
O0—-0e s 0—-0 O --04eO0—-- e 0-—0e¢e¢0—-0 O---0, ¢ O=> -—-O'
SPA RS UN M SN B VA N

E g .2 Sn

where the distinguished diagram \/| = o0—0 .,..09=0

is obtained from the partition (hy,.., hp) (see 1 and 2

.2
above) - note that if h =1, then V, =0 .

Cg 241
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Let D° be the subset of Eo consisting of those simple roots
which have weight zero in the above diagram.

An element X of u has the form

ED
(o I o]
ST .
! R
A L
! e . \
*
0 .
| 0 o ,
LRI
h
= A
' ' ~r 4l
0 [ ~ - _—— - . ———
. Sy - - - - - - = . ]
5 [ ,
. o , ,
T A
o2 .
. y
N i .
_'.-l .
N \-/-\ 4 ‘
| R .
¥ - —l'\ll
N
L {
- !
."l
[
o
I
Q]
[
e — 1 [e
(S S
T
R
(O A
c

where the *'s represent entries which may or may not be zero.

Recall that X is antisymmetric about the antidiagonal.

Let Fo be the distinguished parabolic subgroup of so(2h + 1,K)

corresponding to the weighted Dwkin Diagram Vi, ug be the Lie

algebra of the unipotent radical of Po' C; be the nilpotent conjugacy
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~

class of so(2h + 1,K) which intersects u, densely, and

-

XeC e Xg=m N # N & . N +7<'L+(-Nf)n+...+
]

R ST £
(-Nfz) + (-Nfl) is an element of wu. , and if Ye u, ,, then
[« 2 o) 0O

rank Y' < rank X' for i = 1, 2,044, 22 + 1. Thus (see Lemma 39)

C(X) Ugp “Ygop® C(X,)) being the nilpotent conjugacy class
oo oo

of so(2g + 1,K) containing X,. Also (see (1) and (2)) it is easy

to see that ¢t(X,)= (k). Hence C(X )= Co'

(k) = (£;, £15000,4 fs’ fs) % (1).Let Eo =T, - (ai i+ | i = fl,...,
fq gome q = 1l,...,8}, and Do be the empty set. ﬁE has lyrkin
o
Diagram
£, =~ 1 - f, =1 - - fg =1
g OeeO -0 [¢] OeeO 0 se s (o] 0O ¢ O 8
12 =12
and an element X of Ur p has the form
, . oo
AN e v! A
N 1
o ;
J ‘E
';' '=' i T.-'
P ~
i
[
-I"-I
J *
l .
LO|. \
% ’Ii'|
i PR
. _e
\'I
i ;
.'C)-.‘a A
\ //I s ‘-’

— ——— ———

\-' .
T
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where the *'s represent entries which may or may not be zero.

Recall that X is anti symmetric about the antidiagonal.

It is easy to see that Co will intersect 'u. in a dense open

ED
oo

subset.

The proof of (i) for so(22,K).

Let (kj, kKpyeos, kr)’ r > 2, be a partition of 2% into distinct

odd parts, and let

0
/O
2.2 2 2 0 0 2 O 0 0
O 0 ¢« ¢« «» O o O¢ o o o [ (9] O ¢ o« (]
[ —- W — } fi » (9 h —— e ———— .
1 N )

be the corresponding distinguished Dykin Diagram of type iDz (note
that the nodes represent elements of no). Let Do be the set of

those simple roots which are weighted with a zero in the above diagram,

~ + .
F f {(i.j) € b,y | i +3 <22 +1, hoo(aij) > 2},
§ = {(i,j) € AZI | i+j=20+1 and i< f - “v}’ and
- | _ .
S=Fuv 8 /T(F). S is a symmetric triangular subset of A22 and

soug = bD » the Lie algebra of the unipotent radical of the standard
. o . .

parabolic subgroup, of SO0(22,K) corresponding to the subset Do

of =.
o

i.e. an element X of sogS has the form



Do = —mmmmm - R g
N /Oi‘-\
\I) AN 4 //.
’,\) N Va4
AN [o] » ad
. . \ R
O 0 N 1"’ L, s
' A /
0 ¢ ‘// /
i, L /
¥ A 7 /
// //
. o
(.) "y L oo/
4 10, ,ar_-’O//

where the *'s represent entries which may or may not be zero.
Recall that X is anti symmetric about the antidiagonal.

. ' *
It is easy to see that t(S) = (2n,, n__ , B _ ,.e0, Dy, My, }iééi;ll

ki -1
Let &ﬂ-z—— » ial.-.o’ } 4
(a) If A # O, then put Q) = (Al,...,kr). In this case
2n =mn _, =r (see page 100 ). Now . -
* 2 +1 200 .= ) 2= Ap)

® s T ,@-1 T %,.., 1.

s(@) o (N @ N

= t(s)”*.

. t(S) = (k) and hence t('\'_lD ) = (k)o. = (k) (see Lemma 38).
o .
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(b) If A 0, then put (A)= (Al....,xr_l). In this case

n = N, +1 =r (see page !0C )., Now
22 2(A__.=A__) 2(A1=22)
* - - -
W =(, (x=-1 T, @-2 2T 0 )
* *
= (r) ¢ (A) @& (1)
- t(s)*
t(s) = (k) and t(QD ) = (k)o = (k).
o
2) 1f (k;, k,) 1is a partition of 22 into distinct odd parts, then let
2
2 2 2 2 0 2 0
0—-0. « 0 0—0 .+ ... O
T TTm 7 "oay” I“nv' =
2

be the corresponding! \rkin Diagram of type DE' Let Do be the set

of those simple roots which are weighted with a zero in the above
diagram, F = {(i,j) ¢ A22+ | i +3 <22 +1, hpo(aij) > 2},
8§ = {(i,j)e A22+ | i+j=22+1 and i< g -1}, and

S=F u §ur(F). S is a symmetric triangular subset of A and

+
2g °*

soug = QB . i.e. an element of X of soug has the form

o

[ 1e] + - %
N 7,4

/ 7 o 1

1", s P
e LU0
[} ~ - . /
' |‘-’-‘ By |‘ , .
1 e ‘_"1
1t
]
1 Q L;_]' .
1 ) . 7/ . , 1
! o : + O S
, foo (-I.| X |'
1 1
' i
L
ISItY
! ; $ Oy
| SISy
' ‘s
! (/-~ . \ __n_|_ ! '
' [ [o d} .
"

] !_Q_C'l ' i
| o
! ~ .';,, : AN . l ;

‘z . )-,—‘ 1

v e

.\_
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where the *'s represent entries which may or may not be zero;

X is anti symmetric about the antidiagonal. It is easy to see that

*
C(S) = (2. 2’000’2' . 1’0--0'1)
2v + 1 2m + 2
= (2v + 2m + 3, 2v + 1)
= (ky, kj) (see page 'Ol )
t(-‘jno) = (kll kz)o = (kl. kz)o

Note: if (k,, k,) = (2¢ - 1,1), then D° is equal to the ewpty

set and ED is the Lie algebra of the unipotent radical of the

o
Borel Subgroup, B of upper triangular matrices in S0(22,K).

3) Let. C_ be a nilpotent conjugacy class of .s0(22,K). To find two
sets Do and Eo' D°=: Eog;no. such that PEODO is a sttxngu1she§
parabolic subgroup of RE and Cor\ Up p "Yg po follow the

. o oo oo
same - procedure-as in I part 3.
(111) The_prodf of part (1) for sp(2g,K).
1) If (k) = (ky, kppeesy k) is a partition of 22 into distinct

even parts, then let A= ki/2 for i=1, 2, .v.y ¥, and

2 2 2 2 2 0 0O 2 0 0 2
Q===

O——O0-~0s ¢« C—O0—-0 ¢ ¢ s o O———O0——-0 o
m - n o
1 v

‘be the distinguished Nyskin Diagram of type Cz corresponding to
the partition (A) = (Al,...,xr). Let D be the set of those
simple roots weighted with zero in the above diagram,

. . + . .
F = {(i,j) ¢ Byg | i+j <22 +1 and b, (Eij) > 2}, and
o .
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S=Fur(F). S is a symmetric triangular subset of A o and

2%

spug = DD , the Lie algebra of the unipotent radical of the standard
o

parabolic subgroup of Sp(22,K) corresponding to the subset QO of

T

o

i.e. an element X of 8pug has the form

(o) x - o o e v\
s N |
To N |
AN |
AN -~
\ [L_I Ny |
G -.“)] |
i’ ”
: 2ol |
;' . n, I
H { _\l ’ |
1 . .-'f‘ i
l RN |
| | |
- N I
N |
! ‘ } n I
' L !
- N 0 I ¢
g \ St 1
( ) c e n, i
= ool !
l&] |
w N\
™, \\ .
TN '
'K\ v\ X
. ) \':\ E._)I

where the #'s represent entries which may or may not be zero.

: ’ '
Recall that X + xr = 0 (see page 103), It is easy to see that

i *
t(S) = (nv, M seeesfyy Oy, 1y00.41) = (k), and hence that

) 2m+2
t@y) = (k), = (k) (see Lemma 38).
o

Let Co be a nilpotent conjugacy class of sp(2%2,K). To obtain two

sets D and E, D c E cm, such that P is a distinguished
o o o o~ o© EoDo .

parabolic subgroup of RE and Cof\iEE p = §E D ' proceed as in
. o [« 2 ¢ ) oo
I part (3).
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Proof of garf Sii)

Recall that B is the Borel Subgroup of SL(n,K) consisting of
uppertriangular matrices, that U 1is the unipotent radical of B, and
that u is the Lie algebra of U.

It is easy to see that we can choose two sets D and E, D< Ec o,

ED -~ED

such that u Nu__ =1 » where D, and E, are obtained as in the
oo

proof of part (i), i.e. all we need to note is that in the case where

8 = 80(22,K) if “z-xzfl €Dy {or Eo}, then &, _, , €D/ {or Eo}.
It is now fairly easy. to see that Un UED H'ﬁE D * and hence we obtain
oo

the desired result.

Proposition .41

If C is a unipotent conjugacy class of G, -then there exists two

sets D and E, D <. E <.n , such that P is a distinguished
o o (o} o o . EODO

parabolic subgroup of iE , and 'ﬁ; D ncs U p
: o . oo oo

Proof
Let Go_ be the nilpotent conjugacy class of g such that p(Co) = C
(see Lemma 36). By Lemma 40, there exist four sets D+ E,, D and E,

D cEcn. and D < E<m, such that:
o o o

(i) FE D is a distinguished parabolic subgroup of ’ﬁE and
oo _ o
W oNC o=F .
Eon' o EoDo
ii u = [ii = v,
(ii) G 8 Nupy and Up o G NV
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Let N be the variety consisting of the nilpotent elements of g,
and V be the variety consisting of the unipotent elements of G. We
have already seen (see the proof of Lemma 36) that the map £: N+ V,

ED® then

e(X) = %—E—% » 18 an isomorphism of varieties. If X e U
_ oo

X € uy, dand thus I + X, I -Xg¢g Uep (recall that U D" {u ¢ SL(n,K)|

E

u=TIeug) (see page ¢4)). Hence E£(X) e Uy N G :fﬁEODO. On the other

then Y~-1¢u and—I-=

hand, if Y ¢ U ED T+Y

v, where

(X [

ED'’
oo

vV e UED' 'I1f we note that Y- 1 and v - 1 have the form

PN
—

O

I B
OF «—~-X

\..\ l

NN

C Y
L&}

N -1 Y-1 ~
then it 1s ;asy to see that & (Y) T+ € gED/\ g gEODO.
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Thus £ maps quDo bijectively onto UE D H

is an isomorphism of varieties. Therefore ﬁE b = E(EE ] r{-co)

=g@@; p)Nnec) = T, N C.
00 oo

Theorem 42

Our basic assumption that n is surjective (see 2.2.3) is true

for SO(n,k) and Sp(n,K).

(cf. Theorem 3).

Proof This follows immediately from proposition 41.
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