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ABSTRACT

In general this thesis is concerned with high energy elementary particle
physics. In particular it discusses the solution of the unitarity equation when
the input multiparticle production amplitude is given by a specific model. The
main quantities which are calculated and predicted are; (i) the intercepts of
Reggeon and exotic trajectories, (ii) the average multiplicities of the produced
parficles and charge transfere (AQ), (iii) and finally the relative probab-
ilities of Charge exchange |aQl = 2/(4Q=0+ {4Q| =2) and | Q| =3/( Q=1+

[AqQl =3).

Chapter one is a general introduction to the field. The physical
motivations for using a peripheral description for 2~ 2 amplitude and a‘multi-
peripheral description for the 2 —yn amplitude are discussed.

fhe physical consequences of dual unitarization (or topological
expansion) are discussed in Chap£er two., Using quark-duality diagrams we have
calculated many interest;ng phxsical quantities, e.g. the Residﬁe and intercept
of exotic exchange, the IOZ rule and its violation,

In chapter three we introduce our pion production model for the A2_+;1
amplifude, where we do not impose exchange degeneracy betwsen the I = 0 and I =|
trajectories, and we include (in addition to I=0, 1 trajectories) two exotic
trajectories (X, Y) of opposite G-parity. The intercept of the output Reggeons
and Exotic are calculated and a reasonable spectrum is obtained.

- In chapter four we repeat the calculations of chapter three when the
I;Spin 0 partner of.the pions, i.e. the "Z is produced (in addition to Tr’*)
Sincz, however,'Q is heavier than the pions, we associate a suppression factor
X when'? is produced., The main effect of the inclusion of'? is to push up (doa
the positiye (negative) G-parity states, This effect, however, is small
compared to the original résults; i.e. the results when only pions are produced,

The average multiplicities of the produced particles and charge transfex
(AG) are calculated in Chapter five in the context of both models of Chapters
3 and 4. These resul:: are compatible with the modcrate emergy data but they

are too small compared to high energy data.
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Finally, in Chepter six we introduce a multi-ladder model for the
Pomeron, and we show how the data at high energy can be described by the
model, In particular, we compare the relative probabilities of charge

exchange predicted by the model with the new data of Lamsa et al.(16)



Preface

Abstract

CHAPTER I
1.1

1.2

1.3
1.4

1.5

CHAPTER 11
2.1
2,2
2,3
2.4
2.5

CHAPTER III1
3.1
3.2
3.3
3.4
3.5

3.6

CHAPTER IV
4.1
4,2
4,3

4.4

CONTENTS

Unitarity and multi-peripheralism
Introduction

Some of the distinctive features of elastic scattaring and
two-bkody amplitude, '

General features of multi-particle production.
The multi-peripheral Regge Models.

The generation of the Pomeron in a dual multi-peripheral
model,

The Reggeons and Pomeron intercepts in dual unitarization
Introduction |

Explicit S-matrix models

The topological expansion

The intérferenée terms

Remarks

Unitarity, Pion Production and Exotic trajectories
Introduction

The Model

The coupling and signature matrices

Evaluation of Regge trajectories without exotic input
The. effect of I=2 exchange

Conclusions and final remarks

Suppiement

Unitarity with only stable particle production
Introduction

The Coupling Scheme

The coupling and signature matrices

Evaluation of Regge trajectories,



CHAPTER Q
5.1
5.2
5.3
CHAPTER VI
6.1
6.2
Appendix A
Appeﬁaix B

References,

The Calculation of Multiplicities.

Introduction

The total and charge transfers multiplicities
The-average multiplicity of pions and 1?5 production,
Charge Exchange and the Nature of the Pomeron
Introduction ‘

The model, comparison with the data,

The Crossing Matrices

A perturbation method for calculating the exotic effect.



CHAPTER 1

UNITARITY AND MULTIPERIPHERALISM

1. Introduction

The S-channcl unitarity equation gives an expression of the
imaginary part of the two-body amplitude as a sum of contributions from

two and multiparticle intermediate states:

(1)

» '” . [
Tu fiTICY = T €6\ TIx)<x\TED
x ' r
Now if we separate the termns on the right into diffractive and
non-diffractive, and if we ignore the diffractive term (it is knowmn
experimentaly that up to ISR energies, diffractive processes including
elastic scattering constitute only a minor part ( :E; 30 pgr cent of

the total cross-section) we can calculate the dominant imaginary part

of the two-body amplitude from the shadow of only the non-diffractive

component

Tm (4TI« £ GFITIDGITIO

T Tst) » & j-r* T d9
n £=>n 4 n

(3), Fig.

In fact in the model which we will use in Chapter 3, the input
amplitude in the right hand side of the unitarity equation includes
somehow diffractive contribution because we do not impose exchange

degeneracy between vector and #enser trajectories, and the pomeron

i,
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contribution comes through the inclusion of f. Notice that because
the unitarity condition relates the dynamics of two particle to
multiparticle channels, it turns out that any model for multiparticle
procduction shoulé satisfy two things:
(1) it should give the well known properties of many
particle production, which have been established from
experihent;
(2) it should re-produce via (1) the distinctive features
of elastic scattering, and the symmetry structure
established in two body process,

" The rest of this chapter is organized as follows: In Section 2

we give a number of outstanding features concerning elastic scattering
and two body amplitudes. The general features of many particle
production are given in Section 3. In Section 4 we introduce our model
for the non-diffractive component, namely the multiperipheral Regge
Model, and we show in particular how the consistency between the input
and the output Regge poles provides a natural bootstrap mechanism., Ve
discuss in some details the Chew-Pignotti model,1 where a prerequisite
of the model is Dolz=n-Horn-Schmid duality which justifies a rough multi-
Regge description of high energy multiple production that ignores
resonances and concentrateson those final particles which are stable with
respect to strong interaction.2 Finally in section 5 we discuss a dual
multiperipheral model proposed by Huan Lee,3'where duality is incorporated
into the model by using dual Resonance amplitudes as input amplitudes

in the unitarity ejuation (eq.3).



2, Some of the distinctive features of elastic scattering and two-body

amplitudes

2.1. Elastic scattering

The forward diffraction peak for elastic processes is nearly
stable in its height and in its dependence in t. This fact is quite
consistent with the pomeron exchange being the dominant contribution, .
with intercept close to 1 and small slope O(P(o)-v A , utl(o)-v o3 G—'Q-va:
2.2. Charge exchange processes

The forward diffraction peak for these processes shows much
less stability in its § and t deperdence than elastic processes. 1In
Regge terminology this fact is characterised by the exchange of Reggeon

with (B~ 05, oto)wl Gevs

2.3. Exotic exchange processes

The amplitudes which correspond to éxotic exchange (e.g. double
charge exchange) are zero or at least suppressed compared to non-exotic
exchange, For example the W« .channel of K-P—) K-'P is K+P-——§ K+P
which has exotic quantum numbers, and so there are no Reggeons which

can be exchanged (except the exotic one if it exists), and indeed

the backward peak of K P——)I(.P is strongly suppressed.

2.4, Exchange degeneracy

Exchange degeneracies are relations between the leading Regge
trajectories (excluding the pomeron;:nisult from the absence of exchange
forces in t or y channel. 'We illustrate this by the following example,
let us consider 'ﬂ'*Tr* elastic scattering. Since the direct chamnel
is exotic, duality implies cancellation between the leading trajectories

in t channel., The I1 =1, 0 leading trajectories in t channel 2re

$ and f respectively, they are exchange degenerate, i.e. their



trajectory functions are equal but they have opposite signature ( f
has odd spin and the signature factor ¥ is =~1, while f has
even spin, and % = +1). However exchange degeneracy is not well-
satisifed experiﬁentally, e,g. recently direct measurements at FNAL
and Serpukho: give "f (o)-otAz(g).\, °..1 and in fact a lot of
efforts have been davoted recently to calculate the breaking of

exchange degeneraéy.a’7

3. General features of multi particle production

3.1 The production of pions

" A striking fact is that most particles that afe produced in the
high energy collisions are pions. E.g. in the reaction Tf-é
at 25 Gev5 only 16 per cent of the produced channels include strange

particle production, ‘This iﬁplies

<h> “_-? i <“ >,“.$

{nDpotcharged  {n D F+n D
4Ly + 16 [{n)-27] - toodnd-3=
E4EnY & 16[<ny~2]+(16)® loc <n)

If we take the parametrization of the mean multiplicity of charged

particles from reference (6), at S o~ 50 Gev2 we get

V Y |
> (4
< m loo(y)-32 _ 310 QZA

<“+>.,+. cha. Joo C4) 400
hence :
n )t
< >K — 0.08

<“ >¢ot' chet .



which is in excellent agreement with the data of Reference (6). Since
the production of other stable particles (with respect to strong
interaction) like “z and N are quite small compared to pion
pfoduction, we will in much of this thesis be considering only pions as

stable particles in the intermediate states of the unitarity equation.

3.2, Low transverse momenta

The number of particles produced falls off very rapidly as a
function of !?L , the magnitude of momentum transverse to the
incidénf Seam. The average value <:STJ::> 20,3 to 0.4 Gev/c
is apprqximately independent of the incident energy, and does not

depend strongly on the type of particle or multiplicity of particles

produced.

3.3. Low multiplicity of particle produced.

" The average number of particles produced grows slowly with
energy, much more slowly than would be the case if most of the
available energy were converted into particles. E.g. the maximum
number N of particles ( W, say) produced in process where the incident

energy Yy % » 1is given by;
= \/ S ///mn
NMax. w (4)

while the data on the multiplicity of changed particles are well fitted by

a logarithmic increase with energy6)

<“>c\\.. = Axb o 3 )



This fact together with the rule of smallness of transverse
momenta, implies that most of the available energy remains in the

longitudinal motion.

4,3, Poisson-type distribution.

In a multiparticle reaction where -one is concerned with the
number of particlés produced, the data collected are numbersof events
as a function of the number of charged prongs (since the neutrals are
usx;ally not observed), and as a function of beam energy. The resulting
two dimensional distribution = (Vzk J E) is called a topologica]__
cross-section., The data on w—P at 16 Gev sho.ws that when TN 15
\plotted VS, the number of prongs, the curve has the chara'cte1istic
shape of a poisson distribution,

The 1ogarithmié increase of multiplicity and the poisson
distribution of ==, ) are among the well known predictions of

in the
multi-peripheral models as we shall see next section,

Before we close this section we would like to mention the following
remark; although at energies E ~» 10 - 30 Gev the observed
distributionsare close to poisson distribution$. However for E 2'102 Gev
experiments show an essential deviation from the poisson distribution for larg
n . .In reference (8) it is shown that this effect can be understood
as a result of the simultaneous production of several multiperipheral
showers. A similar phenomenon, is the charge exchange ratios, whereas at
moderate energies a single multiperipheral ladder gives almost the correct
charge exchange ratios which are observed experimentally, the situation at
high energies is different, and as we shall see in Chapter Vithe
simultaneous production of several multiperipheral ladders is able to

accommodate the new effects.,



4. The Multiperipheral Regge Models

4.1 Extension of peripheral to multi-peripheral processes,
Since the early sixties there was experimental evidencell’lz)

indicating the iﬁportance of a long range interaction (-\o l/w\‘ )

in high energy collision of pions with nucleons and of nucleons with nucleons.

This indicates the importance of a periphéral collision, in which the two

incident particleé collide by exchanging a single pion. The meaning of

the word peripheral was extended after that to include any interaction

which is transmitted through the exchange of a single virtual particle

(not necessarily the lightest one, i.e. T ).

' Now a two body amplitude (See Fig (2)) can be written as:

A(st) =G é“ (S/sj“ﬂ

. . ’
which for fixed S and linear trajectory ol (t) = of (o) + ol ¢

leads to ’

oL oS .t
A(s,t)ot €

with oL'Ll’ﬂ S 2-€ G‘Q:Iz ) indicating the dominance of
the.collisions in which the square of the virtual exchange particle's
four momentum (i.e, t ) is small. So that the beam can be thought of
_ as interacting strongly with the periphery of the target, and the
amplitude is rapidly damped in t . So if we take 92 as some
peripheral range oi momentum transfer ( ¥« 0.5 Gevz) we say that
an interaction is peripheral if |¢| s (4 includes the bulk of

the events. Similarly the many particle amplitude of Fig. (3), is

said to be peripheral if |¢&] .é % ,  and we expect this to be the
dominant £ . region for § % S, 5& . However in
this limit the | &y, | is given by , (where |t |

: min

is the minimum poscible value of {+¢] )



t . ::-S“é.-/s (8)

min

Therefore the peripheral description of this process is meaningfull when

T yss/s o=\t (9)

and the full amplitude can be written as a product of the [+ —» Sl
amp.litude and the 72¢+2 —> S, amplitude times some propagator for
the exchanged virtual particle X. Now once this singly peripheral
description becomes acceptable, a further decomposit.ion of the
amplitude can be performed as ‘long as the kinematics allow i't tc be
meaningfull, If the total energy § is large, S5 can be
large enough as that also admits a singly peripheral description

(see Fig. (4)). The criterion now is

’ .
Sz 53 /Sa o tz min (10)

be small. Continuing to N blobs, this gives

$,5, > Swn (11)
' 22 —— -$, 1
S v

This equation provides a simple, rough derivation of the law of

logarithmic growth of multiplicities., Taking all S‘-_ equal to

some average value blob mass-squared §, eq. (11) gives

<h> $ ., b S (12)

So g



So the average number of blobs increases at most logarithmically with S.

4,2, The basic ingredients of multiperipheralism.

The basic idea behind the multiperipheral model is that at high
energy the dominant production mechanism should be like Fig (5). The
different versions of the model differ in the choice of what objects
being exchanged and what objects being produced. However all these
models have the following common features,

(1) The momentum transfer dependence between successive links in
the multi-peripheral chain is damped rapidly. This restriction is
necessary in order to limit the transverse momenta, 'EJ_‘: of the
produced secondary particles. . Thus for Q) wal in the lLaboratory
and Center of mass systems the fouf vectors q“: and Pl.' of the
virtual and produced particles are almost in the light cone, so that
the transverse momenta gre all small and the energies are approximately

equal to the longitudinal momenta. i.e,

By Dwa & Yz ®Uerlis (13)
2 2 e 2
(Ve l~ For ~ Ven ~ W (14)
where & is the beam direction, and .EJ.L_, q_l,g‘.L are two
dimensional vectors perpendicular to the & direction,

(2) The heart of multiperipheral dynamics lies in the
factorization property of the full amplitude into a product of
factors describing the dynamics in local regions of the multi-peripheral

chain, In Amati, F:bini and Stanghellini9 (AFS) model each factor
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a
depends only on a single %‘- J being the elementary propagator
for the line labelled by q“. "There is a minimal interparticle

correlation here", A recursion relation between T~ and TN-'

is then immediate:

N .
Tl %)~ ALY .9.) D)

(15)
= A (l';:.i,’,) D) Taqr (a,8)

where D (Q/:) is the propagator of the line lab_elled by q': ,
‘and A (q‘,: . q: ) is the vertex associated with the ’ ith
produced particle in Fig (5), which decrease rapidly as (%i)
becomes larger tham a quantity W\z of order of the square of a particle
mass., The original AF.S modei was based on multi-pion exchange due to the
proximity of the pion pole to the physical region, and the consequent
enhancement for small momentum transfer, As it is shown in r-ference (9),
the substitution of the AFS amplitude, eq. (15) and in general any
multiperipheral amplitude which has the above mentioned features .,
yields a Regge behasiour for the imaginary part of the scattering
amplitude,

After the original AFS model, (which gives no dynamical correlation
between produced particle momenta), more realistic models have been
suggested which allow correlation between neighbouring particles, and in

which the exchanged particles are Reggeized. 1t is convenient to

define this concept of "neighbouring' in terms of rapidity:

g ol g Eet ae
‘ - E«." Pt.'z



and we say that two paiticles are neighbouring if the Lorentz boost
parameter that relates their rest frames is less than a prescribed

constant value,

4,3, Chew-Pignotti Model

We now examine a particular multipe;ipheral model to illustrate
how the general features of multiperipheral models come about. We have
already noted that, since all the transverse momenta are limited, the
reai degree of freedom in multiparticle production processes lies in
the longitudinal motion., Following Detar,10 we ignore the transverse
momenta and formulate the model in one dimension, Thé process we

consider is (Fig. 6)

At —> Otles N W

11

In the laboratory system, where particle a is at rest and particle b

moves along the 2 direction, we specify the momenta of the out

going particles in terms of the rapidity variable;

Pa'= (“‘a)ﬂjolo3

- 17
R,: (MbCosh Y , 0,0, Sinh ‘5“3 (17)

B.s (1o Cothd, B o By 0 S0 )

where (.J‘, v ( W“:"'aq- P‘i )V’- is the longitudinal mass.,
For large E, we have
8‘0 (18)
. M hyY =~ wwm
Sn Maa-w';.\-zv::w‘\,Cos Sb n bﬁ



One of the assumptions of the model is that all the sub-energies

S, ., are large, this gives
¢, exl

(19)

Thus if each S ot IS large then ‘3‘.." » Y. for each i.

In this region of phase space we have what is called "strong ordering in

rapidity" i.,e. the ordering of the particles in rapidity (Fig. 7) Correspond

to the ordering of their coupling (Fig. 6).

The n particle production cross-section is given by

-4 2n Z
b
m e’ )y TT (S ) 48, (20)
: -9 . I ;
where e is the usual flux factor $ , of is an effective
Regge trajectory and g is the coupling constant at tha Regpeon-Reggeon

particle vertex, The differential element of phase-~space is

ne4! 3 el
d .Ec.' “
05, - T ' (£ r-eoR) o

feo E‘: 1

which, by making use of the new variables E e -,‘z and £ . P‘-

¢ ‘2
becomes
nel .hi\
4@, =3',_-;[£° PPLe d9. & C?Z. Pue)

(22)

nel 1 R
x ${ = w, e . mf-b‘h\’_“:’ e-“’;-“‘h‘zbl

tzeo



In the strong ordering limit these delta functions may be approximated by

éi’al’
§(9-%)5(9.y -» (23)
™" W nalt b
o b
where 7a= ,,e.,. ")o/we“_ , _ﬂ,. ““ /mb and the total energy is
given by
S S Sa S, vl (24)
“"20'{'\.. .“e.z '

’
]

1f we substitute the above relevant equations in equation (20) we get

~Y9. zn gbcziu) 5 nel

LA ¢

ool € 3 € E" dY. 8 (Y- 3“)
3 Z ) ) Y,
- 1“ gb\z -f . S dd
oLe g e 5 S““:‘, ' v (25)
2n 35(2&21) JL
%3 € —
lel-z \LiL\
S
o s (3 ) ,
n!
where we have taken P = M mae W and E Lc is ignored in

" ¢r2 a6 ? .  nat
eq. (22).



The total cross-section is simply

- 2
24 -2+ 9

Thus a Regge behaviour emerges in a multiperipheral model,

order to obtain constant cross-section one requires

.25?-2--f§?: o

using this relation in eq. (25) we get

n _od
oz (b~ S) 3

(26)

In

(27)

(28)

which is a poisson distribution with an average multiplicity which grows

Logarithmically with energy

(wdz g M s

Finally, from optical theorem and eq. (26) we get

< - ™
0(0\:‘ 2‘—2-&3
G't’ ~

owut

=> «

- 2
2o ~-14+ 9

this equation is illustrated schematically in Fig. (8).

(29)

(30)

1

Ba



4.4, The multiperipheral bootstrap.

The simple multiperipheral model discussed in the previous section
suggest that the multi-Regge model in conjunction with the unitarity
relation, can be used to obtain bootstrap-like conditions involving
Regge parameters. This is achieved by imposing the condition that the
Regge behaviour obtained for a suitably chosen two body amplitude at high
energies is controlled by the same trajectory that is exchanged along the
multi-Regge line. Notice, however, that we can not apply this self-
consistency condition to the previous model, eq. (30) because meson
trajectories have been employed only to generate the. pomeron and not to
generate themselves (in fact the dominant contribution to .JZT¢“
is the lower meson trajectories ('9‘°a' £, A:_) because we know that

the pomeron is not important in the production processes).

5. The generation of the Pomeron in a dual multiperipheral model

When we write a multi-Regge form for the n particle production
amplitude, we assume that all the momentum transfers | L. 1 & T

and § v S where S is some cut value above which

C,ued
Regge formula valid, Experimentally, however, many events have low
sub-energies, due probably to the production of resonance, and to apply
the model for theSe events, it is necessary to make use of some duality
acsumptions, that this high sub-energy form of the amplitude applies,

2
at least in the average sense, for low as well, Once

S¢, ¢l
this assumption is made, all the particles in the intermediate states
become stable and the problem of double counting is over.

In this séction we make a full use of two-component duality3 (the
pomeron is generated by the sum of background contributions, and the Reggeon

is generated by the sum of resonating contributions) » in .the framework

of multi-Regge model,



To. illustrate the model let us take first a + b % 1+ 2 (fig. 9)
Here there are just two diagrams for Reggen exchange in the t channel,
one s - t planar, the other t - u planar.

In the first (second) diagram, the particles a and b are adjacent
(not adjacent), so it has (has no) s - channel resonances. Similarly for
a4+ b «=p 1+ 2+ 3, there are four diagrams_ for Reggeons exchange in t
channel, only the.first one (see fig. 1l0) has s-channel resonances since
a and b are in adjacent order. The other three have no s-channel resonances
since a and b are in a non adjacent order. And so on, there being Zn-l
different diagrams for an n particles final state, all but one (the s, t
planar.one) contritute to the background component.
| Since all the diagrams contribute equally to o, we find from
eq. (25)

-1

nl g (9',&5; 2d -2
M T L | oy

if we neglect interference between various terms,

The total cross section is given by

o0 n-‘ (1] 2 z*-z
oy " S 2z 9 (34 s) S (32)
hee (n-1)!
0 2o-2 +2a2
=29 S 3 (33)

Thus the total cross-section has only one pole at (making use of optical

theorm)

, 2d-tezef
c?:-‘;—ImiAz——-bzgzzg-'s—S 3 (34)



= odpz2d-lezy (35)

On the other hand, for each n (n is the number of produced

particles) only one diagram contributes to reggeons

el -
£ 9 (Fhs) 2dez
"¢ (Reggeons) = Z 3 TSI

- 2
¢ ad=2
= 9 S 3

Thus the reggeons contribution to q—J_é has a pole at

o, = zd-la 9 (36)
R
Similarly for the crossed diagrams (vhich presumably build up the
pomeron) we get
o—, (non-planar diagrams) = = (2 .1
€ visa
& (91'/&; s) 2L -2
XY ——— =
(Vt—"-).
& 2 -2elq g 2a4-1%9§ :
=29 s -3 s (38)

- T
- 2
which gives two poles, one is the usual pomeron pole at & = 2o-1+29 ’

the other one cancels the reggeon (which has the same quantum numbers

L4



B

like the pomeron, i.e. the fl) contribution to o—g .
Now if we impose the self consistency condition on the reggeon

°(°"‘t_ ;‘- we get from eqs. 35 and 36
R "'

q{;“*co) s kg, g (s (39)

The above scheme for the pomeron is closely related to the
interpretation of the pomeron in the topological expansion, namely the
cylinder (as we shall see next chapter). However, the ihtercept of the
pomeroﬁ is greater than that of the reggeons in the topological expansion,
bLt here we are able to obtain an intercept of the pomeron, not oniy
greater than that of the reggeons, but exactly at one (of course under
some strict assumptioné, nameiy (i) using chew-pignotti approximation,

(ii) and imposing the self consistency condition on the reggeons.)



Figure captions

Fig. 1 : Representation of the unitarity equation, ( d denotes

diffractive intermediate states, including elastic).

Fig. 2 : Peripheral exchange in 2 —==$ 2 amplitude,

Fig. 3 : Peripheral process 1 4+ 2 w==P (SL) + (SZ) with exchange of X.
The kinematics are specified by s, t, and the invariant masses
S1 and SZ’

Fig. 4 : Extension of Peripheral to multiperipheral process,

Fig. 5 : Multiperipheral graph.

Fig. 6 : Diagram for the production of n particle, §howing the definition
of sub-energies and momentum transfers. .
B Fié. 7 : The strong ordering limit, which occurs when the orderinglof the
particles in rapidity is the same as the oxrdering of their couplings,
i.e., the same ;s in fig. 6.
Fig. 8 : Symbolic version of multiperipheral bootstrap equation.,
Fig. 9 : The s-t and t - u planar duality diagrams which pro&ides the two

contributions to the signature factor of a t-Channel Reggeon.
Fig. 10: The four signature contributions to the ab e 123 double

Regge ampliiude.
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CHAPTER 11

Regpeons and Pomeron intercepts in dual Unitarization

1. Introduction

In this chaéter we follow the newly proposed dual-unitarity
scheme (or topological expansion) which makes use of the combined constraint
of duvality and unitarity iideas in the form of a multi-peripheral unitarity
equation (see for example Veneziano;18 Chan, Paton and Tsou;25 Schmid and
Sorensen)13. This approach seems to provide us with a systematic understanding
' of\many aspects of strong interactions as the nature of the pompron;'the
Okubo-Zweig-Iizuka20 (0ZI) rule and its violation; the suppression of exotic
exchanges; and the breaking of-exchange degeneracy among Regge poles with
different quantom numbers. OQur main purpose here is to get information
concerning the output Regge-exchanges in the 2 —» é amplitude, when we insert

a multiperipheral production amplitude o 25 input to the Unitarity

Ay

equation

)
Z’PY) FEL-‘?2L== :gi /21—49|h 2. —>Wn "

In the next section we calculate the ocutput Regge exchanges in
eq. (1) by solving the multiperipheral integral equation explicity, using
the Chew-Pignotti approximation. In the third section we solve the unitarity
equation for the first two terms in the topological expansion, namely the
planar and the cylinder amplitudes, It will turn out that a serious difficulty
of the dual unitary scheme is the problem of W exchanges (the ¢dextinction).
Another difficulty also is that the total contribution of the planar and the
cylinder temns to f eachange vanishes, or stated differently the f trajectory

is shifted upwards and is identical to the Pomeron. At this point we should



- exchange is regenerated., We calculate in this section explicitly the'g ~ A

fo o

distinguish between two approaches to the planar bootstrap;
(1) In the approach where both the planar and the cylinder are

generated.(3’l3)

In this approach the generation of the cylinder is
related to the geﬂeration of the planar Reggeon through the bootstrap
equation, (1 -~ )N = 2g2 (see sub-section 3.1). Using this approach,
the total contribution of the planar and thé cylinder terms to aa SU(N)
singlet with negative charge conjugation vanishes. This is because there
is an exact concellation between the diagrams with even and odd number of
twis;ed loops. With regard to f trajectory, it will be pushed up and its
intercept at t = O in this approach is exactly at one (see Section 3).

"(ii) The planar bootstrap is assumed, while éhe cylinder is generated.
Since in this approach we do not have the above relation betw;en the
cylinder strength (Zg2 = K) and the planar parameter (of), the ) trajectory
is shifted downwards but does not disappear, and the f trajectory is
shifted upwards but not to one. This approach used in Ref. 28,

In section 4 we discuss some of the physical consequences of the
inclusion of the higher order terms (the interference terms which have

twists in the produced lines). It will turn out that the w extinction

happens only when thise terms are excluded; when they are included, ¢

2

splitting by solving the unitarity equation when the interference terms

(at the two loops level) are included. We calculate also the residue and the
intercept of exotic exchange by including all the higher order terms which
generate exctic exchange and we compare this with the intercept and residue

of planar Reggeons. Finally section 5 is devoted to some remarks.

2, Explicit S-matrix models

We start by writing the multiperipheral intehral equation for the
amplitude A in the awgular momentum plane, which takes the following form

(using the Chew-Pignotti approximation)



A‘.‘-V*‘VQV.'- Tee
=V *'\,62‘\
-V k? A (1)

where the J-plane singularities are obtained by solving for det (1 - K) = 0.
In eq. (1), Q = l /(=-A2) and =2 of (F)-\ s where we take
€ = -o0.1 (Gev/c)z. The input Reggeons are assumed to be the exchange
degenerate vector and temsor mesons (we neglect the unnatural parity exchange).
v denoteé the matrix representing the coupling of the produced objects to the
' exéhanged reggeons, which is fixéd by SU(3) and exchange degeneracy. We
consider a world without strangeness (SU(2) symmetry). For the produced
objects we consider seve£a1 chAices. We solve the unitarity equation at
t = 0 and for positive G-parity (in the t-channel).
2.1 The pion production models
| First we consider the model of Coulter and Sm'.der29 wherc only I-spin
’ is conserved. In this case the relevant intermediate states in t-channel
are (I= 1, I = 1) for both It = 1 and It = 2 (we do not consider here

the It = 0 channel, since we are interested in comparing the output of

It = 0, and It = 2), hence the mafrix K has one element,

I

""-u\ T(I=1) jr='= 29"
\\I-.. >

f (2)

2
k(I;l): 2 ’ k(:&f-?-)"-':gl (3)




which gives

(4)

2
= = /2-9
IL=a2
<
which shows the desired suppression of It = 2,
Now if we corsider the same model but we conserve both I-spin

and G-paiity. In this case the relevant intermediate states in t-channel

are (gf) and (AZ’ AZ) for both I, = 1 and I, = 2. This gives

\ .sl ) ) ! 3& .
. ° = ° 27
(T=1) = , k(z=2)-
_ ) ‘t 31, . . .f- 5‘
- =n 0J4A =a 0

Solving for det (1 - k) = 0 we get

’ S
R c(_—r_ (5)

Thus the conservation of G-parity leads to an identical It =1
and It = 2 in the output, a disastrous result in view of the experimental
suppression of exotic., The origin of the difference between the above

results (5) and ('4) can be seen as follows:

4 =

channel and -gz to It = 2 channel (from the crossing matrix). Thus if we

o

-]

The process “‘! L —""-':'.. 2_33- contributes -I-g2 to It = 1



produce n pions in the intermediate states, the contribution of

% e — -— ) e
Ain A fn is positive for both It = 2 and It = 1 channels, if n is even,
and this contribution is positive (negative) for I = 1 (It = 2) if n is

odd. In the I-Spin conserving model any number of the produced pions is
* . : . —
allowed, and the sum %F Ain Anf is an-alternating series for It = 2,
On the other hand when G-parity is conserved, either odd or even number of the
*
produced pions is allowed and the sum 2% Ain Anf is no longer an
alternating series,
- +

2.2. The resonance production models (1 and 2 production),

The above difficulties (eq. 5) are not avoided if we produce pions

f . + )

and""‘zls . Here we will see how the production of 1 and 2 with equal

strengths eliminate the exotic completely. Making use of SU(3) and exchange

+
degeneracy we find that all the coupling of the produced 1 and 2 to the
+
exchanged reggeons are equal. Since however 2 are higher mass resonances we
- .
associate a suppression factor x, when 2 are produced.
The coupling matrices K are given by
™ { T _‘ .
L) - F 2¢q [+
h(l'ft-_z\ = kv-r kT = — A+ (6)
:‘ﬁ +1 -\ 3'_/3 -1 +1
T
2
g o+l 23 T+l
R(I-:I):. hv-{- RT-:‘- — 4+ —
t I Loy oy I-B kv o«

(7)
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2 | -Ji o) (1 2 -J3 o)
L ~ 21 o -3
g |1t - 3
k(lé——o‘)=,kv+kr-—?_—/-s * OBl 23
30 o \ TA|J3 e 0 8)
SEREIY o 531 o]

+
if we produce 1 and 2 with the same strength (x = 1), the exotic exchange

will be eliminated ccmpletely. However, in I.=0 channel we have only one
leading pole and the exchange degeneracy between ¢ ‘and f is lost (this is the
same resplt of H, Lee model CH, I é 5). If on the other hand wc take x = b,
we‘maintain the exchange degenerécy between f andf (in It = 0. we have
non-leading pole which is exchange degenerate with the It = 1 leadiug pole).

For the exotic we get
z -
— -2

Although this intercept for the exotic seems to be reasonable, the
fesidue of the exotic is such that it gives large exotic cross-section when
compared with experiment.

Finally we note that in the above models, ()pole in the output
is not generated. This is because the relevant intermediate states in the
t-channel (for W quantum nunbers exchange in t-channel) are (w, f) and
(g, AZ)' But because of the assumption of exchange degeneracy between Vector
and Tensor trajec£ories and the standard signature factors, these terms do

not contribute to the overlap function in the unitarity equation,
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3. The topological expansion

3.1 The motivations and the parameter N

Consider first the quark-duality diagfams of Figs. 1 & 2. The
Chan-Paton factors-of Fig, 2 is N (where N is the types of quarks) times
that of Fig. 1. The reason for this is that in Fig. 2 we have a closed
loop and one should sum over the types of qu;rks in this 1oop: Similarly
the Chan-Paton factors for the Figs., 3, 4 & 5 respectively give NZ, N, and 1.
On the other hand the most evident difference between these diagrams is
their-different topological structure (plamar, cylinder, and torus). Thus
we se2 that when the topological structures of the diagrams get more
complicated, the contribution of certain diagram will se suppressed by a

" factor 1/

N (to some power) compared to the planar ones. (In fact there

are other dynamical suppression factors in most cases, as we shall see
later, which make this ekpansidn converge more rapidly).

Now, in dual perturbation theory, a general term in the perturbation
series "involves powers of g?and ﬁN. In this theory every oriecntable loop
(for the loop to be orientable it should have two twist, since every quark
line has an arrow, i.e. baryon number) can be classified (in terms of few
numbers namely; b: t2e number of boundaries where the external particles
are attached, w: the number of windows which are boundaries without legs
attached to them,; and h: the number of handles) by the topological structure
of the two-dimensional surface on which it can be embedded, so that every
part of this surface is covered by a planar diagram, In this language the

unitarized n point function is given by

: ne? b-ltzh | W
Aonam L &y T8N o)

7
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In the conventional expansion, the number N is irrelevant and the

expansion is in the loop number

_/e—. 'o—|+2h-\-w
(11)

On the other hand in the topological expansion, we collect the
graphs which have the same‘topological structure, It is thus expansion
in él ( or % ) at gzN fixed., The starting point in this expansion is
the sum of all planar graphs with arbitrary number of windows., 1In this
cafe we have b = 1, h = 0, and the corresponding topology is a sphere with
one boundary with the external partiélé attached to it., The other terms in

this expansion which have more complicated topological structure, have an

order of magnitude (compared to the planar one) which is given by

b -t+2h xb—u—zk
(+) = (q) (12)

The second term in this expansion is the sum of all diagrams where
both exchanged reggéons in one loép at least are crossed. The sum of these
diagrams gives the amplitude which has vacuum quantum number exchanges in
t-channel (the cylinder, see Fig. 6), which usually is identified with the
(bare) Pomeron. In this case we have b = 2, h = 0, and the corresponding
topology is a sphere with two boundaries, The order of magnitude is

- 9 = I/N

To go to higher order terms one must allow for the produced
object to be crossed. Fig. 5 is an example, The corresponding topology
is a sphere with one boundary and one handle (b = 1, h = 1). This class

of diagrams are responsible for the breaking of exchange degeneracy between



¢
t

pand A2 as we shall see in Section 4. The order of magnitude of

3.2. The properties of quark-diagrams

For any given quark diagram whether it is planar or not, we
attach to it three properties,

(i) Quark line flow (i.e, the t-channel quantum numbers). For
the planar diagrams we have always qq in t-channel. Thus these
_ diagrams contribute to the NZ plet. Reggeons in t-channel, (In fact we
define in terms of qa pairs, the Pumeron, the Reggeons, and the exotic,
to be the Zero, the one, and the two pairs of qa). On the other hand
all the diagrams which give the cylinder topology, have vacuum quantum
number exchange in t-channel and they contribute only to SU(N) singlet.
Finally, the interference terms can have zero or one or twc pairs of qa
in t-channel, as we shall see in section 4,

(ii) The orientation of the quarks at both ends of the diagram.
If the diagram has the same quarks orientations at both ends of the
multiperipheral chain, it gives a positive contribution for both Ct =+
and Ct = - yhere Ct is the charge conjugation in t-chanmel. On the contrary,
if the diagram has opposite orientations at the ends of the multiperipher
" chain, it gives positive contribution to Ct = + and negative contribution
to Ct = -, For the planar diagrams we have always the same orientation
at both ends of the diagram. For the diagrams which build up the cylinder,
if a certain diagram has even number of crossed loops it gives positive
contribution to both Ct = + and Ct = -, but if the diagram has an odd
number of crossed loops it gives positive (negative) contribution to
C, =+ (Ct = -). The interference terms have both properties depending
on the way we arrange the crosses on the Reggeons and on the produced lines.

For example in Fig. § where we have three particles in the intermediate



gtates; Fig., Ba gives positive contribution for both Ct = +, and Ct = -y
while Fig. 3b gives positive contribution t. Ct = 4+ and negative
contribution to Ct-= -

(iii) The phases which are associated with the reggeons signatures.
Only the interference terms have phases, the reason for this is that since
uncrossed reggeon has phase exp(-iTTel) 'while crossed reggeon
has phase 1, it turns out that all the planar diagrams and all the
diagrams which contribute to the cylinder have phase 1,

The £ extinction

From the above properties it is easy to see how the total
contribu£ion of the planar and thz cylinder terms to W exchange vanishes.
Consider for example a diagram wﬁere Qe have n produced objects. lﬁe
total number of quark diagrams is 2" (= 2n-1 . 2;),2n-1 diagrams
because every reggeon can either be crossed or not and 2 accounts for the
two diffefent orientation of quarks for every diagram), Half of these
diagrams Zn/2, have even number of twisted loops (the planar-diagram
has zero number of twisted loops and it is one of these) and thay give
positive contribution to w exchange. The other half have odd number of
twisted loopg and it giyes negative contribution to w. Thus the total

contribution to W exchange vanishes for each n, and after summation over

n, no w trajectory is generated in the L.H.S. of the unitarity equatiom.

3.3. The planar and the cylinder amplitudes.

" The planar amplitude is the sum of all planar diagrams with
arbitrary number of windows. At this level of the expansion "the Born
term'; the exchange degeneracy is exact, the I0Z rule is exact, there
is no Pomeron and no exotic., In terms of quark diagrams we write the

planar amplitude M in the case of SU(N) as,



C R C s. k L S 2}
M = ~:‘ ; ; + -
—— < <
J ) ) L S £ (13)
_ 5 (anyg g

where (14)

1.
N

&:/3+23le '/_s’-_'z;(-_i ) o =od

From eq. (14) we obtain the planar bootstrap condition (assuming

t = 0 and the self consistency between the input and the output Reggeons).

— e B
A=o = - =29 N
(15)

‘From eq. (15) we read the following interesting results.
(i) The leading Reggeon-intercept must be below one,
. : . z g . . P
(ii) The effective coupling A= 29 N is fixed, This in fact
is one of the motivation to the topological expansion.
The next term in the topological expansion is the sum of all
diagrams where both reggeons in the loop are crossed., This term has the
cylinder properties and it is communicate with states of zero additive

quantum numbers. The cylinder correction is given by

\c )Q 1
[ ¢ s . 5
C = = X =3 S é
ST 3-0 ok
& R : (16)
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here refers to the Charge Conjugation in t-channel C_ =

t .

The total amplitude A after the cylinder correction is given by

C _ v h_ < 3
A= '< : -+ _i'—‘:’ L—"'—’ PN
(2 e’ ~ 3]
(17)
=My MCM ... = __'._—-
o
M- C

It is. easy to solve eq. (17) in the case of SU(2). In this case the planar

poles are two for each C. We associate each trajectory with different
quark index, the trajectories are exchange degenerate, we lable their common

trajectory by o/ ., Thus we have

4 LN
3@
s« ° |
Ms (18)
0 .
I
l )
A >
(23 23
._/1 :—ﬁ
C= x f_s: ag (19)
LS Tp
Solving for det (M"1 - C) = 0 we get
“
- I = Dk + QS
C_e = = S
2 (20)
C - - I = D(- Lf 3



Substituting eq, (15) in eq. (20) in the case of SU(2) we get

T d4l-od=1 ; the Pomeron of H., Lee
(21)
Sl +/2+3
The Residue of W pole is given by
. \
Res A (5=) = Lo (5-0) ——
- T/ M-C
(22)
'3_’:&4\—1:; _,_':3\ o
3-p =p v
= b (5-p) % (:--(;)1 -
T s 4429 (s-Yx 49 (:-o()
0 3
(23)
For the first diagonal element we get
L i A 2
Res A = S (5.p) _S-4*29 &-n)
e son X (— (24)
(=-p) Cs-d) 43 ls-4)
“ 2
e Lim 2B (5-2+23)+ (5-p)
S>3 2(5-ot Y x 4 g
(25)

o)



and we get the same result for the other elements of the matrix.
Similarly we have calculated the Residue of f pole and we found it

equal to ‘4 gz.

Next consider the case when 4 #o and write
L= oL+ B
(26)
eq. (21) now is given by (making use of eq. 26 and eq. 14);
3‘;-; v+ 2 A
- (27)
Se= .

From eq. (27) we conclude that for a reasonable value of A we
get a pomeron intercept which is much above one. On the othér hand the w
Residue, vanishes independent of both A and :(_ (see eq. 25).

A similar calculation can be done in the case of SU(3), in this
case -the matrices of eqs. (18, 19) have three rows and three columns
“(pp, nn and AN ). In the limit of exact SU(3) symmetry the three
trajectories associated with the three types of quarks are exchange

degenerate. Solving for det (M-l- C) = 0 we get

2
3;:0(-!-63 , Sm:°(
(28)
3 -ok-é'L S = o
& * 3 $ =

The w and f' are not shifted by the cylinder correction because

in the limit of exact SU(3) they become members of octets that do not



communicate with the cylinder. If, however, SU(3) symmetry is broken in
the sense that the trajectory associated with the strange quarks is lower
than the others, the four I = O trajectories will be shifted (Chew and

Rosenzweig28).

4, The interference terms

As we mentioned earlier, the interference terms are those which
have twists in the produced lines. The number of these terms is given
by (Zn.2n—2n) where n is the number of the produced objects in the
intermediate states, the factor (-2n) takes account of the sum of the
planar and the cylinder terms. 1f we produce objects with positive

and negative charge conjugation (e.g. vector and tensor mesons) we write

£ =2 twisted produced line _ g, -8

an untwisted produced line = (29)

2
g, te._

where g8y (g_) refer to the couplings of objects with positive
(negative) Charge Conjugation.

From eq. (29) we see that -1<£&<1, it will turn out, however,

‘through the calculation in this section that a small negative value for &

is favourable.

4,1. Exotic exchange in the t-Channel.
Exotic exchange arises from diagrams where all produced lines are

twisted, whether the exchanged reggeons are twisted or not. Thus we have
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= 29 € [ " 3 3¢’ ,\....:\:(33_.,6_:'__‘-1/(30)
- (=-M* (=63 . J s-pouge
Hence
out "
o = pf+a3 €
 E :
4 2
Resi&ue-_ 2 4 € (31)

It is worth mentioning that if we calculate the exotic exchange to
lowest order in ¢

» i.e. taking the diagrams which have two produced
lines only, we get

4 2
E = 29 €

53

(32)

to be compared with eq. (30).



Finally we note that according to the second property of quark
diagrams discussed in sub-section 3.2, the total contribution of the

above series of diagrams to It = 2, Ct = = Channel vanishes for

each n, Since G = (-1)I C, we have no output pole for the It =2, Gt = - "

- Channel.

4,2, Thef - A, Splitting

To calculate the breading of exchange degeneracy between g and A2_
one must take into account all the quark diagrams which generate in the

L.H.S. of the unitarity equation (1) the following U - t diagraum

S—>

N
N
T4

this is because this diagram contribute to N2 plet of reggeons exchange in

t-Channel, and it gives positive (negative) contribution to Ct=+(-) Channels.,
We consider here the two loops diagram (lowest order in & ) which

generate the above u-t diagram. The topology of these diagrams are that

of the torus (b=1, h=1)

>
= =
T = * + Complex Conjugate
X
s s

the phase =1



‘ 4 (33)
. & §
(:S-/!) gc

- a (£29)(=236) 5

The amplitude F after the torus correction is given by

E A\‘)AA (
F= nto (T ; H--l-C'T

(34)

Since for f and A2 the cylinder kernel vanishes (C = 0), det, (M-l- T) =0

\

gives
1, a2
- o 23 (23€) - =
x- (3 (-$)2
~ ~o
—c 4€9 _ vE Y
JX=°( - T , JA oA + —
2
8316 (35)
' o( -b( T e e—————
= S Aaq N

Let us now see how we can arrive at the same result of eq. (35)
by considering the two loops diagram (lowest order in &) which generate

the U-t diagram and the S-t diagram, these are
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-21%e
The phase = ¢ The phase =1

2 14
IZ=C2§)6 A 2 (cos 2T ;:-.l) éhgj

The amplitude F including the interference temms of two
loops (IZ) is given by
= n \
F-= Z— C rz AB A = -1
h=° ‘C"I'L
(37)
For g and A2 exchange in t-Channel the cylinder kernel vanishes,

then det (M-1 - IZ) = 0 gives
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3-« (29)E 2 (cosali 1)

= 0o
Bl -m*
(38)
which gives
. ~ '
ge a
3= d. 8 Sin ¥
\ f N
| (39)
} -~ ,7_‘
(S
‘ J, = o+ g3 Cos o
Ao
hence N
5.3 .. 8€3
? A~ N
4,3, The regeneration of @
The contribution of the interference temms with two loops only
i.e, Iz, to W exchange in t-channel is given by (eq. 36)
A |
L(w):(23)€ —— 2 (o8 20K-1)
2 (3-/})7— (40)

2 13 ¢
= - Y4E  Sin v°<<:r—ﬁ>

wo



On the other hand the amplitude

A (the planar amplitude with

the cylinder correction) vanishes for W exchange in t-chanmel, i.e,

A (w)-=

. Thus the full amplitude F

terms 12) gives for w exchange

() - Res.

"

=
A (41)

(the amplitude A with the interference

Ay Ay Ty A

N
T
4 (-9€ smwa 73 )
-{1)-

oy

l-T-¢¢€ sin v—o(f’_é:.
L G-r*

(=- /’)'L

o, @)
(_S—ﬂ).z_(_qe s“mro(-(‘f%)) ‘*

eq. (&) implies that we have two poles given by

44
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(5-p)

[( TP+ (g€ sinmd. 48) )

F (@)= -
2 2\12
(.S_/;)_ (-4 € sinwel . “9) (43)

2

(j"ﬂ) -3 . .\\"L
(5-) - (-9€ sim .
F('g>=— [:r M) -(-4€ sin . 49 ) J "

(=-p) + (-9€ Sim Tl . q%-jlz

hence . !

\Igy

oL Bk yd(ce) oin TY (45)

4.4, The Violation of the I0Z rule,

In order to get a reggeon coupling which violates the I0Z rule,
the first or/and the last produced line must be crossed (Fig. 7z, 7b).
From Fig. 7a we see that the process which violates the I0Z rule is (to
- lowest order in €) suppressed by a factor € /N compared to the process
which are given fof example by Fig., 3 and which do not violate the IOZ rule,
Hence from the experimental suppression of the 10Z rule violating process
(Fig. 7a) we can estimate the strength of the coupling which violate the
10Z rule.

For the decay processes like ¢-—-> €T or Y - QT we are
however in the time like region (t = m 2) and we have dynamical
enhancements factors depending on the masses (asymptotic planarity). To
see this consider for example the above decaying process, which by

meking use of semi-local duality and factorization gives



»
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)

(46)

K

Thus the above type of decay has a Regge cut-like dependence on
~d
the masses of the decaying particles, which as t —3 00 is oL £
where d 1is positive. This explains for example why .0 (cv._> < n')

is suppressed compared to [ (¢ N— fTr) . ' '

4,5, Numerical estimation of €

From the previous calculations we see that the sign and the magnitude
of the suppression factor € is sensitive to many physical quantities, For
example if € is positive we get a positive intercept of thz exotic exchange
(eq. 31), a Complex -4 pole (from eq. 45) and a wrong sign for the § - A,
splitting (from eq. 35), three undesirable results. On the other hand if
one assumes the production of vector and tensor mesons, a negative value for
iE is a welcome result in view of the dynamical suppression of higher mass
resonances, i.e. tensor mesons, ksee eq. 29). Schmid, Webber and Sorensen(Sq)
have used the experimentally measured suppression of exotic exchange reactions
to determine € by considering only the lowest order diagrams which give
exotic exchange, i.e. eq. 32. Since, however, the cross-section of these
processes is proportional to El£ the sign of E is irrelevant, They found
that £ = ‘0.25‘ . From the above considerations we take the negative

sign, With € =~ -~ 0.25 we have the following interesting results.



(1) Theg - A, splitting

Since oé_n(:.— Sé‘-e/N , making use of the bootstrap condition
A
a
2q N =zl-¥ &0 5, we get
(47)
d -, = o.125 for N=2
e Aa
- ;-or N’-z‘5
°(g— °(A_L- 6.0% .

(2) The Residue and intercept of W pole

For obvious reason we .consider eq. (43) for the w pole. The

intercept is given by (we take N = 2),

2 NG
O(w-_/s + 49 (-€) sinTK

o N/
Ab(w-. qgc-e) Swmilld = g 75 (48)

the Residue is given by (from eq. 43)

\ 2
qu'l(— 6)7— Sin “*l = ‘_ [qél C— E\)I.LS;V\ “"’(]
2Jag -eN T d)

~Res.

o\ (49)
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to be compared with the Residue of the planar W (from eq. 13)

Re_ts ( pLanar) = (3-(3) = '?—%N ~ 0.5

(50)
Where we have taken 2 0.5, since it satisfies the conmsistency
condition = (€) if ¢ is not too large.
(3) The exotic exchange ,
The intercept of Exotic exchaﬁge is (from eq. 31)
o | € 2
T + 4 = —~o-] 51
RWARE | (s1)
and The Residue
4 2
Res. = 8 g€ = 0.008
E :
(52)

Notice, however, that it is wrong to compare this result with
the planar residue 2g2N = 0.5. The reason for this is that, in writing
eq. (13), the external legs were amputated. If they were included, the
planar Reggeon residue would be 2g2(2g2N), instead of (ZgzN). Thus the

Exotic residue which is comparable with the planar residue is given by

¢ 2
T
Res.: Bse = ‘Iaé’a_—;‘_o‘o's
E 29* -

(53)



5. Remarks
(i) The Pomeron £ identity.
In sub-section 3.3 we discussed the effect of the cylinder correction -
to the planar approximation. No new poles were generated at the cylinder
level, and the effect of the cylinder is to-shift the I = O planar poles.
The planar f is shifted upwards and is identified near t = O with the bare

28)

pomeron, This picture which was suggested by Chew and'Rosenzweig is in
contrast with the stendard picture in Reggepole models, where there is an f,
exchange degenerate with the w, EEQ a pomeron whose intercept is about

0.5 higher. Although the Chew-Rosenzweig scheme did pass some =xperimental

tests,(31’32)

tre recent data on Vector Meson production (D.W. DUKE35)
Cannot be described by this scheme. 6n the other hand the standard picture,
i.e. w-f EXD model, can adequately describe the data.
(ii) Two-Vacuum trajectories

Having seen from the recent data on Vector Meson Production, the need
for two Vacuum trajectories, one would like to ask whether the existence of
such two Vacuum trajectories are consistent with the topolegical expansion,
In Ref. (36) Veneziano showed that the unitarity conditica for h = 0 (no-
handles) implies that factorizable poles appear in C ( =p + C, the plane
iplus the Cylinder) and not in C alone. The Chew-Rosenzweig scheme not only
satisfics this reqdirement but also makes the total number of poles in C

36)

the same as in P. Veneziano suggested an alternative scheme which
satisfies the above requirement, and which ends up with two Vacuum trajectories.
(iii) The Regenerated w.

The intercept of the regenerated w is still low (eq. 48) but

perhaps not very far from the physical W. The residue, however, is too

small compared to the planar one (see eqs. 49, 50).
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Figure captions
Fig. 1 : The four point function planar dual diagram
Fig. 2 : The one planar loop.
Fig; 3 : The two planar loop diagram
Fig. 4 : A two non-planar loop diagram which is suppressed by a factor
/N compared to Fig, 3.
Fig. 5 : A two-non planar loop diagram which is suppressed by a f;ctor
. %f‘ compared to Fig. 3.
Fig. 6 : The topological equivalence between the cylinder and a non-planar
| -one loop with vacuum Q.N. in t-channel,
Fig. 7 : Lowest order diagrams violating IOZ rule, 7a single
| disconnected 7b double disconnected, |
Fig. 8 : The two-loop interference kernel H, which gives the g - A

2

(a) The quarks have the same orientation at both ends of the

) splitting.

diagram.

(b) The quarks have opposite orientation at the ends of the diagwam,
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CHAPTER I1I

Unitarity, Pion Production and Exotic Trajectories39

1. Introduction

In fhe previous chapter we discussed several attempts to construct
t-channel Regge trajectories from multi-particle s-channel unitarity both
in the framework of the topological expansion and explicit s-matrix models.

We found from both approaches that, in order to get a suppressed
exotic in the output, some sort of an incomplete cancellation ,should take Place

between the contributions of the produced objects of positive and negative

‘C-parity, e.g. vector and tensor mesons. In addition to this, the assumption

that vector and tensor mesons dominate multi-particle unitarity is justified

3 . .
experimentally 7 where about 60% - 80% of the produced pions are estimated
to come from the decay of non strange vector and tensor mesons.

It is well known, however, that the exact unitarity equation

includes only stable particles in the intermediate states, and attempts to

rewrite the unitarity equation in terms of resonances or '"clusters" lead to
problems of double ;ounting, etc, Some of these problems are discussed by
Fréeman, Zarmi and Veneziano,38 who avoid them only by ignoring the rescnances
and working in an approximation in which pions are directly produced.

In this chapter we will consider a model with only pions as produced
particles (in fact we should consider the production of C;I(Tn ”l.) quartet.
Since, however, NZ production is suppressed due to its high mass, we ignore

“z production here, In the next chapter the effect of "z production.willL
be taken into account). In our work we endeavour to see how the pion
production model of CH., II, section 2 can be improved so that a more reasonable

output is obtained. In one sense our problem must have a solution since if



e

we know the amplitude ab =) n, where n is a state of n pions then
Im (ab —» ab) is completely determined by unitarity and will inevitably
yield the experimentally observed trajectories. However it is not clear
whether a satisfactory result can be obtained with a reasonably simple
(i.e. multi-Regge type) description of the ab —%» n amplitudes. We shall
assume a multi-Reggg form for ab —» n amplitudes; i.e. we order the
produced pions in rapidity and approximate each sub-energy by its Regge form
(see .Fig. 1). The t-integrations are performed by the simple expedient
of replacing functions of t by suitable averages.13 For the exchange
reggeons Qe consider only vector and tensor trajectories, we neglect sister
trajeétories and the unnatural parity exchanges. The exchange degeneracy of the
' , , .

input trajectories ( S, w, S—’ Az)'ié not assumed. As a resuli of this the
Pomeron exchange is not neglected cdmpletely in the input, its contribution
comes through.the inclusion of f which is higher than £he others, In
addition to vector and tensor trajectories, we include I = 2 trajectories in
the input. It will turn out that both of these effects (i.e; the inclusion
of 12 = exchange and breaking of EXD) improves the output spectrum,

In the next section we introduce our modgl. The coupling =2nd
signature'métrices are given in Section 3. Section Z} contains tﬁe results
iwhen I =2 input is‘neglected. Its lowest order contribucion is discussed

in Section 5. Finally Section 6 is devoted to conclusions and some remarks,



2, The Model
We use the simplified form of the multi-Regge model of reference (13).
The contribution. to unitarity of the diagram depicted in Fig. 2, summed over

the number of rungs (pions), is denoted by A( . - « In matrix

¢ 9&)()’)2)

notation we write
AR AS S VAR W
=V 4+ VXA
[ add o iy Ma

where V has elements given by

. N A4
Vu,'g)(,; i) F ;} ‘j{ (2)
¢

Q (eeyy) = - )

Here §

. is the signature factor of the ith trajectory
[ .

f -cnel,.
.= e +£ 1 (4)

&

with X corresponding to even/odd signature, and ‘\fc is the ith

2
trajectory taken at a suitable value of t, In fact we choose t =-0.1 Gev',



L
~1

It is convenient to define

~ NZ) NMa
A:G AQ
~ \i¢ \q ()
V:Q V
So that eq, (1) becomes
o~ -~ -~ Z
ﬁ = \,.f * 1{_ o~ (6)
. |
A = <"" y_ Poill (see Fig. 3) (7)

The leading output Regge trajectory (at t = 0) is then the highest
~F
value of J for which det (1 - V) = 0. We calculate this fcr I = 0,1,2,3
””

and for even and odd G - parity,

3. The Coupling and Signature Matrices

For the sake of completeness we write down here the matrices
jz of eq. (5). In fact because of the redefinition of Ei in eq. (5);

these mﬁfrices are symmetric. Since we have six exchanged trajectories

(f, w, ff AZ, X, ¥3 X is an exotic state with positive G-parity and
positive signature, y is an e#otic state with negative G-parity and

negative signature), it turns out that we will have in general 36 pairs
intermediate states (11 and 12 in Fig. 3). Since however we exclude

(I =2, I =2) intermediate states and since we conserve I-spin and G-parity

in the model, the relevant intermediate states are;



i) for the f - exchange amplitude in t - channel,
(£,£)= (£,8), (ALR), (4 5), (2.0).
ii) for the w - exchange amplitude in t - channel,
(£,¢): (5,0). (25, (A, 3),(54,)
iii) for thef - exchange amplitude in t - channel '

(‘puljz,)': (faf)l (A"A‘)‘ (f‘;)a (;’f): (‘f'X), (X,f),
(All‘j) I <31A1) .

iv) for the A, - exchange amplitude in t - channel,

2

(-0., 'p-g,) = (f,uj),Cwlg)) (;l A‘l).. (Az,;)o (A-L,f)o
(2 ALY, (A, (42,0, (3,8, (1,9).

v) for the x - exchange amplitude in t - channel,

(4 4.) = €2,9), (ALA), (09),(50) , ($,%),
(%, £), (3, %), (4,9): (A1), (340
vi) for the y - exchange amplitude in t - channel,
(4,4 )= (A,3).058,), (A), (AX), (V. 9),
(R, Y) s (X)), (w.%), 0, £ (£,9)

For the residue we put

-
T
G, = G—A_,_ ¢ (8)
z
+ +
L g
G'a':- G-A+§‘ - G-f+ LD (9)



3 - G‘x Az - G-ﬂ f (10)
3’ = C"x Y (10%)

The equality in eq. (9) would follow from exchange degeneracy. We
assume it here to reduce the number of input parameters - relaxing it
would éllow some improvement of the output but since it already
éeasonable we do not consider fhis-ﬁecessary at this stage. Notiee
also that in eqs. (10) and (101) we have defined what we call "the

reduced coupling"” which is independent of I, of the particles, and

Py

it is related to the coupling when we have definite I, for the

3
particles by

G (e—b+)= I I,T

LI \L.5,) e

¢ 30

Finélly for the I-spin crossing matrices, we follow reference (14)

- and we calculate them in terms of 6-j symbol; (see appendix A),

~r
. The V matrices -are:
A,
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The small letters a, b, ¢, d and z°s which appear in the
preceding :\;- matrices represent the approbriate elements of the Q%
matrices (see.eq.. 3). To illustrate the calculation of the z
matrices elements, we do this here for the element which appears in the

~ first row and third column in Y matrix, For this element, we have in

s-channel the I = 1 process;

XA;-"'é Azg

Ve \y

\* /A.l an. f“‘z :

¢
41. T \ffﬂ( Al')(”‘A"“")
¢
&3 g 2,
(8)

D a ) L. 0 [~} + \
Notice that because JJ 1is linear combination of (A’j‘ MJ Ax_f J
2

and because we did not include this effect in the definition of Gl’ we
have an additional ¢z in front of Gl'
But the crossing matrix element for the above process when X

is exchanged (It = 2) is given by

( X 3‘=3/m: o

hence




4, Evaluation of Regpe trajectories without exotic input

In this section we calculate the l=ading output Regge trajectories
(af. t = 0) by solving the equations det ('L- g_° =0 for the
highest value of J. The input to the calculation is the values of el
for ¢, Az;"‘) omd §£. e take these to be reasonable experimental
vaizg; of the trajectories at t = - Q.1 (Gev)z. For the f we take a value
midway between the "pomeron" at ¢f (0) = 1 and the exchange degenerate f
ata((o) o 0.5. This is either the "unflavoured" (P =£f of dual
unitarisation theory, or it is a phenomenological "average" of the [P

and the f. We take

A =%, 2 003 | (10)

df:‘- oY (11)
d; =°'7 (12)

Since the extra effects (the exotic exchange effects) do not affect

the w and f trajectories (because we do not consider (1=2,1-=2)

intermediate states), we choose Gl2 and 022 to give the correct

experimental output for a('u? = 0.4 and o = 0.8. This requires

2 N\,
G = o216 ) Q:o-ls (13)
G‘: o 46 ’ G;-: a3 6



The resulting output trajectories are shown in the first column

of table (l). We see that the results are em—:ouraging. In particular
we obtain a reasonable value for the § output, the correct sign and
magnitude for the #- A, . splitting and values of gx and °€y

which show considerable suppression of exotics.

"7\ Before we ciose this section we would like to mention that in
order to generate an output w - trajectory, it is necessary not only

to break exchange degeneracy between the trajectories, but also between
the couplings. First of all in the models where one assumes the degeneracy
of the_ trajectories; the interference terms of trajectories with opposite
§ignatures do not contribute to the overlap function. Since the two
corresponding Regge exchanges for t};e w-exchange amplitude in t-channel
are (w, f) and (f‘A,'_\ , ‘the above assumption prevents the generation
of an output w - trajectory. In the model we are considering we are able

to generate w - pole because we do not assume exchange degenerate trajectorie

However from w matrix the equation det (1 - .\Jl) = 0 gives (after
_ _ ’eowe s -
putting J = » = 0.4)
) & . 5976

which shows that G, must be .diffefent from G2 in order to obtain

4.
physically acceptable values for these coupling constants. E.g. if we
take G, =G, =6, eq. (14) gives:

G"r- -0.07 Xco0.08

(14)
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5. The effect of I = 2 exchange

We allow the possibility of X and Y exchange by introducing the
vertices g of equation (10). We do not of course have experimental

— o
information on the trajectories g&x and o, so we take values which

Y

agree reasonably well with our output, i.e.
}

clx.—."LY:-G'Z- (15)

The method we have used to calculate the effect of these exchange is
discussed in details in Appendix B (in fact we evaluate, to .lowest

order in gz, the effect of X and Y exchange on our fL A, Xand Y
a
trajectories).

Cnd
It turns out that, due to the size of the matrix ;& for A?

(previous section) this procedure would be very complicated in this

case, for this reason we have calculated the effect of P A, splitting

2
o~ R . N

in the v matrix of A, in two ways. First; we ignore the ¢ A
aron 2 2

splitting in the unperturbed calculation 'the calculation of section 4",

thereby obtaining an output

O&Az‘-'- O'Z.‘ 4(16)

Now if we include the effect g A2 splitting in the exact calculation

of section 4, we obtain

ol 0-3§

>
~
"

(17)



On the other hand, the coﬁtribution of ¢ A2 splitting calculated in
the perturbation method of this section is 0,17, whereas equations (16),
(17) show that its contribution calculated exactly is 0.15. We conclude
that this effect, for the A2, may be treated in lowest order (effectively
this means that we ignore cross-terms between ( g A2) splitting effects
and X/Y effects).

The Final results are shown in the second column of table (1). We
note that g2 has a much greater effect on X, Y than on 4§, AZ' For g2> 0
the-effect is to lower the exotic trajectories., Values similar to those
given in eq, (13) take both olx and °CY below zero ~ which is probably
adequate for this type of calculation. The value of °LA2- is excellent
but “ﬁr comes out too small by approximately 0.1, TentatiYely we attribute
this to the fact that we have ignored the pion trajectory in the input,
since it is well known that the (2 W ) state makes some contribution
to the physical §.

Finally, we have calculated the positive and negative G, I = 3

trajectories (Z & W) which we now obtain

0u§ 4 L) e
ofy =.o854 (089 0¢39%") (18)
\la
out gy ~/

t
With reasonable values of g2 and g 2, there does not seem to be

any danger of these trajectories rising too high,
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6. Conclusion and final remarks

As we have mentioned in the introduction an exact description of
the ab —3 n  amplitudes will inevitably lead, through unitarity, to the
observed Regge trajectories. We have used a very simplified form of the
multi-Regge form for the amplitudes, with realistic input trajectories and
obtained reasonable values for the output I =0, 1, 2, 3, From the
table of the results wé see that;

(i) The Breaking of Exchange degeneracy plays an important role
in making a significant difference between the I = 1 and I = 2 output
(see the girst column of the table),

(ii) The exotic exchange (see the second column of the table) has

much greater effect on X, Y than on g, A This effect (for g2> 0) is

9
in the right direction'(apar; from ¢ ). e.g. the lowest order

calcula;ion of this effect pushes Y down by (-1.76 gz) and A2 up
by (+ 0.1 gz). However one may well ask whether this suppression of
exotics is sufficient. The data (sée the discussion in ref. 13) for

example may well require much smaller values of In fact in

exotic’
refs. (13, 17) (see also Ch, 2, § 2) it is shown that a complete
cancellation in the unitarity sum for exotic exchange requires the
production of I and ; with equal strength, and it is unlikely that
" these cancellations would arisé from the type of calculhtion performed here.
(iii) The sign of ¢ A, splitting is right, but the amount of fAZ
splitting. is small (e.g. for g2 = 0.1 g(g..e(At ~ 0.05).
(iv) The pomeron of the model is the f. we have only one vacuum
trajectory lying above the others. 1In fact with Gl2 and G22 given by
eq. (13), the eduation det (i-—'zl (£)) = 0 gives

T4 0633 L0972, 6. (76T 4012620



From which we find that the highest root is J = 0.8, and the second
one is at J = 0.3

. cut
Supplement: Repeating the calculation with oL# (o) = b

Since in Ch. V, we will find that the one ladder vacuum trajectory
is capable to reproduce the experimentally observed multiplicity and
charge exchange ratios at energies S <: 40 Gevz, and at high energy
one-néeds the multi-ladder vacuum trajectory to explain these effects,

We use these multi-ladder diagrams to create a new high lying vacuum
singularity (the Pomeron) in which case we do not have the ﬂ' = f

relation so we expect the f to be lower,

e ' out i
For this reason we take e.g. 4; (c) = 0.6, With regard to
;24 we still consider-it at 0.7, this is because both f and some

of the promoted f (The (P ) are expected to contribute to the input
vacuum trajectory. If we repeat the calculation of section 4

Now, we obtainj;

(20)

to be compared with those of eq. (13).

Finally, with the values of Gl and G2 given in (20), we repeat

the calculation of sections 4 & 5 and the results are shown in table 2,

The effect is to reduce GLPUt in the first column by approximately
0.03 (apart from f), while the values of the second column stay

almost the same.

-]

Iy



TABLE 1

Final results

Trajectory Calculation without X&Y
) . W 0.4
f 0.8
9 0.44
AZ 0.36
X 0.17
Y 0.15
TABLE 2
Trajectory Calculation without X&Y
W ( 0.4
f 0.6
- ? 0.4
AZ 0.33
X 0.147
Y 0.12

0.4 (fitted)

0.8 (fitted)

0.44 - 0.2g°
0.38 + 0.1g>
0017 - lollgz
2
0.15 - 1.76g

Final results

0.4 (fitted)
0.6 (fitted)

0.4 - 0.23g2

0.33 + 0.12g>

2
0'147 -~ l.Zg

Ollz - 1.982

-
e
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captions

Fig. 1

Fig. 2

Fig. 3

The produced pions are ordered in rapidity, and each
is approximated by its Regge form.

The contribution to unitarity of the diagram with n
produced,

Symbolic representation to eq. (6).

sub-process

pion
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CHAPTER IV

Unitarity with only Stable Particle Production

Introduction

This chapter is a continuation to Ch,IIl., where as we mentioned
earlier that since- the exact unitarity equation includes only stable
particle in the intermediate states, and since in our model we ignore
baryons and we consider a world without strangeness, this means that we
should only include pioﬁs and "2:5, Since, however, "Z's are much heavier

than pions, we do not expect ‘2'9 to be produced with the same strength

as pions; therefore we associate a.suppression factor x when *7 is
produced. We consider a few instructive examples;
(x = 0.5, x=0.25 and x = 0.125).
In the next section we discuss the coupling scheme. The (Eoup].iug
and signature matrices are given in section 3. The results of t:.he
calculation and the conclusions are given in section &,

The Coupling Scheme

The relative coupling strengths of O—(r,'z) to | (},)

and 2% (Az ,$) can be calculated from the expression;
M M 1
Tr (MM, My)» cce, Tr (M PR (1)

where M, and 2 x 2 matrices and represent our SU(3) multiplets (0, I and

& -
2 ) in the absence of strangeness, e.g. for the @ (ﬁ;'?.) we have

@ -1 +)
M _ =
p = Psuedoscalar = ) (2)
- . °
r vZ ('Z‘“’)




4 O

/-'—-( N+ TT® =

— vy T

M =

e (3)
T kEE
N s
- + .
and similar matrices for 1 and 2. Ci which appear in eq. (1) are

the charge conjugation quantum numbers of the nutral members of Mi

multiplet. If ClCZC3 = + (~), we say that the coupling is symmetric

(anti-symmetric). Thus, for example for the vertex

. \ - ’
o .
\ >+. a_ . | (4)

2

we have:

Tr (Mp 8, Mp) 4 CCC Tr (MPMThV) .
-

= T (M, M Ye Te (MM )

. which gives;

vz w [ 37 {-—F’@]-eﬁw*[FA—FA;]

: (6)
+Jz W-[FA:-?A:;‘]

Thus "as it should be the case" "Z does not couple to I and st

because the conservation of I-spin and G-parity forbid that.

On the other hand for the vertex \ ° we have



Tr (Mp M, M)+ G55 T'(MPMva)
(7)
= Tr (Mp F, M Y e Tem, M)
which gives
Vi ZLow+f 8 ST f8 Jez 7 oo 5¢]
wVE T [Fw + S8 1erm v EFe B8]

and for the vertex we obtain

+GT [ FAWECIASFA]  ©

Now if we make use of the assumption used in Ch.III (eq. (9))

' T
Crz: G-Pz ¢ = G}*w

we obtain that all the couplings of eqs. (8) and (9) are equal and

equal to GZ'



On the other hand, following eq.(8) of Ch.III,

G+ G,

We find that the couplings of eq. (6) are equal, and equal to G1

and finally for the exotic we write as before;

T T
EB'=. éik'ﬂg = (S%,j,

= G
3" xy
Notice that the above coupling scheme is equivalent to the Zweig

rules for quark graphs, where one can obtain the above coupling using

the pictorial techniques discussed in ref. (20).

3. The Couplings and Signatures Matrices:

In the model of Ch,.ITI, because we produce only pions vie have
Ioff;diagonal matrix elements, as a result of G-parity conservation, Here,
thg effect of producing ﬂz's (in addition to pions) is to full completely
the diagonal elements, (it adds nothing to the other elements of the

matrices). Thus we have:
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4, Evaluation of Regge trajectories

We calculate here the leading output Regge trajectories (at t = 0)
by solving the equations det (1 - jE)) = 0 for the highest value of J.

The input to the calculation are as before:

Ji e ;Z = 0}
A

3
f': e Y (10)

We determine Gl2 and Gzz from W and f matrices by requiring

the leading output to be equal to 0.4 and 0.8 respectively, This implies:

x : ﬁi G 2

72
% 0.2 0.1
X 0.21 0.12 . (11)
1 0.21 0.123
0 0.216 0.13

The reason why the strength of .the coupling GZ2 decreases with increasing x

(more than Gl2

(i) the inclusion of ﬂz production comes through the coupling

does) is because:

G2 only (see section 2) and (ii) the strength of G1 and G2
are determined in such a way to give the correct experimental output for
044 and G{ua .+ Thus because of (i) when x increases the contribution of

G2 to the matrices increases, but because of the constraint (ii), the

value of G2 decreases,

The results of the calculation are shown in the table below for

x = 0.5, 0.25 and 0.125. We give also in the table the effect of exotic



exchange calculated as before, for x = 0.25.

Trajectory Calculation without exotic Final results
W 0.4 0.4 (fitted)
f 0.8 0.8 (fitted)
0.47
5 0.47 0.47 - 0.26 g°
0.46
0.23
"2
X_ ) . 0.21 0'21 - l.osg
0.19
0.26
2
A2 : 0.32 0.32 + 0.1g
0.35
0.09
: 2
y 0.12 0.12 - 1.7g
0.13

From this table we see that the effect of the inclusion of ™ is to
pﬁsh up (down) the positive G-parity poles (negative G-parity poles). As a
result of that we get approximately the correct f’AZ splitting in sign and
magnitude. However for a reasonable values of x, this effect seems to te
quite small compared to the original results. We have calculated (with x =
0.25) the multiplicities for TX’s and “Z's production in the It = 0,
C(4+) amplitude (i.e. thé f), and we found that the ratio of '2'5 prodﬁction

to pions is about 1/17. Details of these calculations and other

calculations of multiplicities are given in the next chapter.



CHAPTER V

THE CALCULATION OF MULTIPLICITIES

1. Introduction

This chapter is devoted to the calculation of multiplicities. Ve
do this in the Ié:o , 6—: + amplitudes, i.e. the f, which dominate
at high S. In the next section we calculate the average multiplicities of
I =0, 1, and 2 exchanges in the context of the pion production model of
Chapter III, from which we deduce the total multiplicity and the average
multiplicities of charge transfers, <hAQ=o> , < “Aqu.l). <VA¢’-5‘?‘>
It will turn out that these results are in good agreement with the data
at energies S {; 40 (Gev)z; but are incompatible with the data at
higher energies., This leads-us to the suggestion that at higher energies
a new effect takes place, namely the two and more ladder contribution that

was predicted in the dual-model,(23)

and which will be the subject of
Chapter VI, Finally, we calculate in section 3 the average multiplicity

of pion and ‘z production in the context of the stable particle

production model of Chapter IV, in the case when the suppression factor

A= 1/4

2, The total and change transfers multiplicities

2.1. The method

To calculate the I = 0, 1, and 2 exchanges, we put a factor

e, VR, , VFa,  inesch 10,12 propagators. Since

we are considering ladders with equal I~Spin in both sides

. (f exchange in t channel), we insert a factor XI into Q

of eq. (3) Chapter 1II.



Then we have

LHw
X X
vy

vy

XX

oL
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A0,
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Then we write

| x = l-;l V
at J= la(‘““Q where ot®t  is the leading pole (the f), K
has a pole, The residue is given by
Res A(:r LYYy e hom (3-% )A<3) (2)
Ll T

I1f we write the matrix 3/: in the following abbreviated form

(neglecting X and Y contribution)

, .
o A o B \
~ A o > O
Y =
o o D o o
B © oo
'. equation 2 gives /
‘(A*—B 8'p A AD 8-8D%
“n 2 ‘2 2
2 A+p-8D D-p8 A8
R‘E‘ A(ﬁ“\ 2 ~2 8D J- §<0“t
o-u AD D-DB 2-D8 A ded (1- V(i)
3 Tl -
2-8BD» AR ABD 8.8 (3)
~ /

- Xout
= fom L () x— 2=t
T A (L.. \:’.(3))

out



e )

e
Expanding det ( X('J‘)) about T= ¢ and

-L' ou<t

noticing that det ( | .
Aon

i<

(oL )):O "~ , equation 3 becomes

- L (%o |
RQS.,A..(%@J?‘R= ma( ° 4:_) (%)

[ det 1Y) ]
23

Ie"( &

[-X2)

Now we write

(5)

If we take a particular component e.g. the first diagonal element

of the matrix \_ (denoting A and R for this component by
APP L] AP
Ll b d
A“ and R!l ) equation (5) gives

~ ~ o{
Al (s) = R“ch S

(5)
The mean multiplicity of I - Gap is given by
~y ~
YA/~ ] D > o
<D SR s | 9 53 ©
1}
T I Rn I L
2 ) 2=t
T b
Since the constant term in eq. (6) depends on the particular
component of the matrix L which we are considering, we calculate

[ o]
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this term for all the diagonal elements of !;-A and then we take

the average.,

2,2, The calculation of logs coefficient
We have done these calculations in two cases: first, when X and Y
~ :
contribution to the matrix M\L is neglected, second, when this contribution

is taken into account,

In the first case the equation det (1 - V) = 0 =‘—>
. . LY L

4 3 *
T+063 -3 (6822423 01940.08)

' ' %
-3 (0'\1-3'2“9.93) +o3 2 (7

2
T+ 0-0032’1 —oollz e
! o

] (]

el = o. &, But when we keep ) and 9 as parameters we have
o ¢ i o

When 9 =2 9 = the highest root of eq. (7) is

3:3(5\',20')

(8)
Since, however, )‘ and )b are artificial parameters

(in eq. (6) we put Q=2 =1} after the derivative) we write:
I\ o

9‘.:\-&-7"- %\:\-{-xa (9)

and we expand about P to a first order. Thus we have: -
‘I
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¥ 4w a3 y 3 T (10)
T3e03 (235 + 257 ]
\ o
3 2
Y ) o3 '
I={+3{£°f§;?*’: 3::1
. DT >
= AN [}:: °c * %: A .1
[} -
T=3 [_:z;-—:-— + ”__)_i
P Y J% © 3%
\ o -
h - -
where =3 (-*f_ca, 7::.0)?- . 8

putting the approximations of eq. (10) in eq. (7) we get,

2. 6 xa_.{. 33
l E\ b?*fg}-c'gsﬁ’o'lc,’;=°
o

(11)



Since eq. (11) holds for arbitrary ’ﬁ and 7, we have

7% — 7 ="
' \
(12)
63' - N YA R - 3
l.zé?;g-‘* = )"_:e'\‘s
(-] o

To calculate the mean multiplicity of I-gaps, when X and Y

contribution to the matrix is taken into account, we need first to

b
A
1 , .
solve the eq. det (l - ;\Z Y=o for the highest root of J. 1In order
to do that we need to give the coupling, g2 a reasonable numerical value.

Putting g2 = 0.1 we get

J = 0.81 (exact solution)

(13)

[
|

= 0.815 (perturbation method)

From equation (13) we conclude that (i) the effect of exotic exchange
pushes (f) up and-(ii) This effect calculated by the perturbation method
(see app. B) is quite close to its exact value. This proves the validity of
the perturbation method (this result in fact feminds us with a similar one,
namely the effect of £ A, splitting in the :\z matrix of A,"CH.III § 5"

where we found that the value of this effect calculated exactly (by the

perturbation method) is 0.15 (0.17)).
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Taking the exact solution (J = 0.81) and proceeding as before

we get finally:
35/3% = o 12
o

¥33/2% = o078

(14)
as/ae{. 2 003
Comparing eqs. (l4) and (12) we see that the effect of exotic
exchanges is to increase the total multiplicity by a small amount,
‘ot. Eot
2.3. The Calculation of the residue term
We calculate the constant term in the case when the X and Y
contribution to ?7 is neglected. From eqs. (3), (4) and (6) we write
A

» N » Cdet (- vim)] J /
b " - )(A‘t-rB‘—G .D\)/aal )[ 23 ‘j'._,q ] aa‘I

R 0| (Ag- 6°3) SCdet (1-ve))]
" A 2 >3
I=' zn' » ~
T=6 ar
(15)
which gives:
3R
L —t. 93 _\.B22 0.9/
Y ‘B2z a-.
Rll 9\l
~ (16)
_é" ﬁl' - °.°(-°'39:—°-37
n 2



The residue terms which corresponds to the other diagonal

elements of L  can be calculated in the same way, and they are
Lo

given in the following table:

'Th—cchann_el; [ Azﬁ $$
R" Ra.'& 3
I.1 o4l -0.96 ol
L-o -o37 o8 0.5%

_—-;-; <R> :.-0.3.2 i <‘R~>I = o.l13]
and thus finally we have;

<V'2 : e-I'BLﬂjS + ol

N\
b

A\ Ve
"

0.78 Lﬂjs —0'31

N\

S
\ %
]

a.03loq s

which gives

< =-°.z.‘.°.9qb_ag$

<40¢.TUng S

ww

+ M

-e:32

_o-|5

(17)

(18)



12 IS

In comparing with experiment we have to consider data on pp
scattering, Clearly the coefficient of the Ln term will be unaffeéted
by the nature of the colliding particles but there is uncertainty
in the value of the constant, To fix our parameters we take the
average value given above and add one to it. The one takes account
of the ease with which either proton can excite to, for example, ¢) A

which will then produce an extra pion,

<v-> = 0.8+ 0:94 Log S (19)
‘ot. Proolutta(' Pavdicles

2.4, Comparison with the data
For pp scattering the total multiplicity of charged particles

is well described by(6)

<“%k. = Ul + L4Leg S | (20)

Assuming the number of neutrals equals the number of positive
or negative charged particles and allowing for the necessary excess

1 of two positive particles we write;
<“'h"? >= |4 L2 S -3 (21)

=>» <n e oplog S-1.6

neudrat
hence eqs. (22) and (20) give:

<{n> =2 lqS-27 (23)

ot.
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T6 be compared with the total multiplicity predicted by our
model, eq. (19). Clearly the prediction is too small at high energies
by a factor of about two. On the other hand for § £ 40 Gev? the fit
is qiite reasonable, In view of the fact that we have not included T
production in the model (we will do- that in. the next section) and alsco
the fact that we cannot calculate the pp process (notice that the
constant term in eq. (19) is somewhat uncertain, It is determined as
the average of the values obtained in ff‘ AA,ww and #$4
scattering), we regard the agreement at low energy as satisfactory.

Next we consider the charge transfer along the rungs. Assuming
tl_lat I1=11in eq. (17) gives Q = 41, -1, O in equal propecrtions,

we get

(24)
4“} =<r\> :o-?élﬁss-es.“
L@zl PR
) L A
At S >20Fevwe find AQ= o+, -\ in the ratio 1:1:1.8

(22)

. compared with the experimental values 1l:1:2, Bearing in mind the

"sources of error noted above thé agreement is excellent,

Finally we compare the ratio lAQl:z/Ac?-_-g predicted by
our model with the data. The data compilation of ref. (22) shows this
ratio in the central region around zero rapidity. For tI'-P the
ratio is about 2% at 16 Gev/c and for pp it increases from about 7%
at 12 Gev/c to a‘bout 147, at‘ 205 Gev/c. The increase with energy is more
apparent if we compare this data with the newer data of Lamsa et al.(16)
who show the ratio for W‘P at 200 Gev/c as a function of rapidity gap vy.

At the mean charged rapidity gap (they only include charged particles)
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b

of 0,7 the ratio is about two-thirds. Our model is again satisfactory
at low energies but it clearly cannot accommodate the large amount of
lAQ' = 2 at high energy. We, therefore, have to explain (i) the
origin of the additional |AQls2 exchange, (ii) its energy
dependence and (iii) its dependence on Y.  We defer the discussion

of these questions and others to the next chapter,

s
3. -The average multiplicity of WS and'Zi‘ production

To calculate the average multiplicity of pions and "Z's we insert

a factor 1' (2e) into WV of eq. (2) Chapter IIT when W ("Z)

is produced; '

L

A . ‘
Vu,‘gw;{) =/‘. T )\—) % Ve d)

1 T (25)

% < N
5 [7as %,
0'7" 2 (@] QR £y
A3 4 e 9(‘
/, ~
4 vy
gt s
o ? AA
2 e '§6 @ 32 ?
v
G
Q
3
XL © 2
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The equation det ( L._ ﬁL' ) =0 gives

LX) >3
12 [2‘: -b-:' *+ 1:--3—%-3: -\.27f-+o-o'1‘):
° .

which gives

ET ‘s . é}_- .
-;,?-.‘01 . b-,;-..0063

hence

<h> e l.lo“] Lc"% S &« Cownsiant,
™

(“},z = 0..963 Lﬂa S-Q- Cons4ant.

which gives the ratio

<n>“ /<v~>,z-.-. 1 /)

for large 3

The total multiplicity of eq. (29) shows some improvement

to that of eq. (19).

(27)

(28)

(29)

(30)

compared



CHAPTER VI

Charge Exéhange and the Nature of the Pomer:onl"0

1. Introduction

The main couclusion which we have drawn from the calculations
of the preceding chapter is that; while the single ladder model gives

< 40 Gevz), it is

a good description of low energy data (s &

not satisfactory at higher energies, c.g. the predicted

relative probabilities (A @[z /Aan and IAQ(:%_/ lagiatl,

where AQ is the charge exch;nge across a rapidity gap, is too
.small compared with the new data of ILamsa et al,16 but in agreement
with the data at low gnergy._22 Qur main task here is to explain

the additional |AQ\ = 2 exchange, and its Y and S dependence

(sce Fig. 5).

Before we introduce our model we mention a possible explanation
considered by Lamsa et al.16 In the strong ordering limit one would
not expect the occurrence of |AGR| > | gaps (see Fig, la).
However, for small @& y the strong ordering would be violated,
Consequently the single cross-over or multiple cross-over phenomena
" might occur, leading to | &% | > | gaps (see Figs. 1B,

lc, and 1d). Given that the observed rapidity gaps are small we

should not be surprised to see such terms. However we would expect
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them to fall off faster with y (exponentially in as = ey)* and

more important, since this effect is 1<.>ca1 in rapidity space it does not
have a high threshold and should not be energy dependent, If the energy
dependence which appears to occur in the data is confirmed then we must

look elsewhere for an explanation.

*
Consider the process K" we order the particles by their rapidity,
n

i.e. ‘?)'Az) )5',' . If we take a sub-process in the ladder diagram
. ; this sub-process has in géneral contributions from both
¢

i)

t-channel and u-channel,

~t! VRS _
—_—AS = } ({-‘kﬂ“'\e‘) + 3 (K-Ck.)
f \(‘,\,\ ¢
t
1 O v ,
= (planar St Jiqjmw) + k(\»\am\v :
XY S-V s )

In the strong ordering limit W Y, , o ve don't have the second
¢ Ve

' diagram, But when AYs94_Yy is small, the second diagram might
¢ ')

occur, leading to {a gl ! gaps (2 q@ pairs in t - channel). The
contribution of this diagram is roughly given by
L) ) X &S
~ (28s) = e
Since S+taxlU=z & for t small and fixed we get
_-se’ Ren
~ @ wheve Ye as

Thus if the occurrence of 1&®Rl >} gaps to be attributed to the above
4

cross~-over phenomena, we would expect them to fall off exponentially in e’
On the other hand the data points of Fig. 5 seem to fall on a Gaussian

Curve,



We suggest that what is being observed at high energies is the
decay of two (and more) heavy (Ma {"S) clusters which are approximately
at rest in the centre-of-mass system and which decay independently.
Thus.instead of having one ladder, we have several over-lapping ladders
- in rapidity space (Fig. 2).

Such contribution is expected, for example, in the Dual models23
and it arises froﬁ the diagram shown in Fig. (3). Notice however -that
if_we approximate the production amplitude in Fig. 3 by the leading Regge

2

exchanges then tmin effects would restrict Ml and Mzz to be L S,

in the large S limit [ -(:M.‘“ “w'-ntl“1 /s] and this would then merely
. t .

]
1

yield the single ladder multi-Regge contribution (Fig. 4). On the other
hand, if we use a Dual model to describe the production amplitude we
effectively include léwer lying trajectories which do not have the same t
dependence in their residues so that tin effect does not operate and we
have an extra contribution from H':'.., M-:’-\‘ S. In fact the ?'\:." ﬂ:
integral diverges at this point and yield a new (pomeron) singularity. In
the language of the topological expansion; the cylinder itself has a
singularity. Although in the present Dual models this singularity is at 2,
there is arguments for believing that this singularity is at 1 (see Chapter I,

§ 5), and so will dominate over the promoted f at high energies. Also it
only occurs in the Pomeron sector., In the next section we introduce our
model and we compare its predictions with the high energy data.

2. The Model, Comparison with the Data

We consider a simple model in which we permit contributions from
one, two or three ladders, ignoring possible interference terms. At a
given energy we denote the relative probability of these diagrams by

i 33': )ds. We assume that the available energy is divided equally

N
12 JAN1978

BECTION
LIBRAR




amongst the two or three ladders, i.e. if we have an event with h
ladders produced simultaneously, and if the total available energy is S,

then the average multiplicity for each ladder is given by,

. S
<“>h' a+bLon 2y (1)

(s)

of .the ladders which can be produced simultaneously such that <\n> is

k

of course for a given S, there is a maximum number h\mnn

large (at least of order two or three).

Now the total multiplicity of the produced particles is given

by

<the total multiplicity> _ the total number of particles (2)
the total number of events

From eqs. (1) dand (1) we get

(n.cs))u. Y2 <h, 4 -f—;))-r 32’3('3'.’/‘9 S
\v Yo I3

<\\(S)> =

(3)

where <V{($)> is the average number of pions produced in a single ladder .

of energy S. We take this from our previous calculations

<h(s)> = 0.8 + 02479 (4)
éot. :

Since in the analysis of Lamsa et al, only charged particles are

included we take two thirds of equation 4. This gives

Q)
<\n($)> :_0‘53+6-63L°'3S
ch. (5)



The two and three ladders contributions are given respectively by;

()
¢ny, s2 e [<nomi] =24 Tesa v e eatnd]

(6)

(3) ' .
<h>h =3k, [<nessay] 303 leb2e 0 631095

- (7)

It is convenient to rewrite the above equations in the following form,

<“%l«.= Nileg s (8)
@) . |
<“>c\¢\. =2 X [l (9)
D s
“Z.k. = 3 L2 Loy .;‘3 (10)

At S 400 Gev2 (we take this value because the analysis of Lamsa

et al, are done in 200 - Gev/c interactions), we find

: ;\'-:.o-'la , 3:e-1q7 , 'As-.-. .77 (11)

-
ot



The fact that these.values are not equal is a reflection of the
presence of the constant term in {n}) = A Logs + C.

The known multiplicity (eq. 3) gives a relation between Y-._Mol ?31
so we have one degree of freedom which is restricted by the fact that
Y., and ¥4q  are positive.

We turn now to the question of charge-exchange. If the individual
ladders have rungs with AQ =0, +1 and -1 with equal probability

then when the laddcrs overlap, we have for the probability of ‘.AQ‘ = 2 gap

P‘z\.:.g,q for two ladders (12)
4
and
3
P‘?_ —30.‘[6 for three ladders (13)

+ .-p = 1.

Here we normalise (following Lamsa et al.) so that P2 o
Similarly for a leQl = 3 gap, we have
€2)
P = o4
3 (14)

where this is normalised so that P, + P =1

We assume a poisson distribution in each ladder. Thus for one
ladder production, the probability of length y having n particle

is given by

R &M (293 /n

(15)
o (())
R =4

hao w



.and the probability of a gap having length y is

> -4
R=',\e"3 , )’Se‘ﬂ:.l (16)
o

where Q) e (16')
= {nes) /‘-"'3

4ot. vuUng$

For the simultaneous production of two and three ladders, the

corresponding relations are

(2) -2 A | ¢

A
wE e (=%4) /w (17)
¢’
R = ¢= A) e (18)
¢y =323 n
Rh . e (32,4) /n! (19)
(3) X34
3 ’ -3 A3
R =(3%) e (20)
where ’ / / are calculated from equations 8 - 10 as
r 2\ , 1};’ 1}_3 qu
follows:
From eq. 8 we write oy W
> = Lned) -
Lot.vun, (21)

: Alogs-Y, - 4 Log S



similarly for the production of two and three ladders we have;

)

"

runas ¥p 23, Log ':T ~%/]

¢ (22)
= Xz [2 9;. Lﬂ'ﬁ'z;
(%)
Ln >ruh‘5$= X’S [3 ’)3\’3% -'&,3] (23)

= Y3039 3‘-‘"3 ]

2
At QS o 400 Gev', we get

2 ’ ’
Aiea.él Pgze b7 ?-\,’-ac»"]::

From the above consideration we obtain for the probability that a
gap has \aqQl =2

,

-1, 4 22,4 -323
Pl Bk e P ‘v Ae + PP nAne ?
2 r -4 227 Y ’ -3

e, 3’3 +‘3?}Y3€ > (25)

Similarly for the probability that a rapidity gap y has 'AQ‘ = 3 we
obtain

’
-zas 3) -32Y
(9) =~ Pg {7 7‘; e + (2 (33\;)’ Ye 3
b e, AY, e 27 4

-3 A
+3%¥3e 33 (26)

=

(24)



In Fig. 5a we show the resulting Pz(y) and P3(y) for values
3;= 0.50 and ng 2.2, Similar fits can be obtained with other
values, We see that the model gives a good description of the data.
The principle defect of the fit is that P2 and P3 are small near y = 0,

This is very likely because we have ignored the small amount of |AQ}= 2
which will inevitably occur in the cne ladder terms., Our model does not
readily allow us to include these since they will have a very different

y - dependence than ‘ASQ\= o, t 1 gaps. However, to illustrate the

effect we ignore this and suppose that one-ladder gaps have \A;Q' = 0,1, 2

in the ratio 34, 64, 2., This gives

1]
\

P,f"= 6.0556 o P,:": L Pvf"‘goQ&is'
(27)

' | (43
Py cco272, Py= ootB

The resulting Pz(y) and P3(y) are shown as in Fig. 5b,
where 2ﬁz and ]G; are given the same values as in Fig. 5a,.

There is also another important remark related to P,(0). Since
. the 2-prong events (which are mainly & Q = 0) are not included in
"the analysis of Lamsa et al., one expects PZ(O) to be smaller, and
close to that predicted by the model.

There are two further quantities which we can calculate with

our model. The two particle correlation is given by

<“‘t> /éh)a- = A
(28)



o

which agrees with the experimental value24 of 1.28. 1In view of the

fact that we have ignored the diffractive component, which is well

known to contribute positively to the correlation, this agreement

should not be taken very seriously. Also we can estimate °L$ by

the following method, We assume that at  "low" energy, say S g 20 Gevz,
the single ladder (f) term dominates.

Then at S at 400 Gev2 it contributes a fraction

exp Co(;..|)( Loqéeo-10920)a \ feiaVer ¥3)

or

oL£ =~ \-L,s.ug Cla ¥ue X3)
'= -6-56 (29)

This is not the best evaluation of OLF but it is Ian criéinal one,
Finally we note a qualitative prediction of the model which
is independent of the details, Since the contribution of the sirgle
ladder diagrams wiil reduce with energy we expect Pz(y) curve to fall
" off less rapidly with y as the energy increases. Such a phenomenon

if observed would be very hard to explain in any "single ladder model".
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APPENDIX A

The Crossing Matrices

In this appendix we calculate the relevent elements of the
crossing matrices which we need to write down the matrices E; (Ch. III,§ 3.
Since in ref. (14) tables are provided for SU(2) and SU(3) crossing
matrices, we concentrate here only on those channels where one or more of the

involved particles are exotic. Following the method of ref. (ll;) we write;

(T.)  (Tp) (z) (L)
A + O] ._I_.; C +D (s - Channel)

(L) (1) / =t(x) (I
A o+ C -—E-§ 2 + D (t-~ Channel)

the crossing matrix X is given by

(XY ,=§ (2z+)

(A.1)
st TT St

and

2T+ 1 A2
(X)) - (%) 2



where thephase factor is given by

’

I+l
3 (-0

s¢ (A.3)

When Ib and Ic both are integer, which is always the case in

the processes we are considering. The 6.j symbol is related to Racah

coefficient;
| L - . (A.4)
. = (~1) W (,';2.0{0‘-1 .\34’33 )

which can be calculated from the tables and symmetry relations given

in ref. (15) "App. 1'".

[$0 —p 24+ 2 -?M—-)X\I (s - Channel)
+2 —> 0+.2- ?')?-—H:;\/ (t - Channel)
A = -
I:?. (és)ZJ AI's:" = J?/_; AI;"

—

.‘+ l->242 PA —3 XY (s - channel)
t 3

[+2 —3)42 X —>A Y (t - channel)



.2 <’€5)z,| AI_' = "/’-‘r'a: AE"
AI::!: (}-((:S)TU A’E‘:t B '/JE AI-H
<
+2 —> 2+I PY—2XA,
l+2 —> 2+ FXN—Y A,
A s (X lx =/l A
3E= ! (- \3 ;t\ ;}:I §;=
A (x)Y A .3
t=2 (*‘l»'_ Lo fo Apuy
A = (x ) A 33 A
L3 &3 I. (s Ara

|

(s - Channel)

(t - Channel)



{#2-=>|+2 PY — Y (s - Channel)

l¥l—2¢? fi.——b\.;Y (t - Channel)
A X ) A =-
I:co = (-&S)o“ h Y 3/5 A%;\
o ————
2 > o+ Y= ¢ (s - Channel)
\¢+ 0 —_ 2¢| S’w—a;" ¥ (t - Channel)
Ap =(X) A :1.A
&:! st“" ]’;=, 'I§=.l
S e————
(é - Channel)
\*2 =) leo Sy
\e\ =240 ?F-—e?w (t'— Channel)
A:" = (x ) A < = A\.
=1 'esa" Ea" 3,5 %“'
{41 ~—dle? P%-% Py (s - Channel)
1 —3 e PP—=AY (¢ - Channel)



APPENDIX B

. A Perturbation Method for Calculating the Exotic Effect

In the models of Ch.II, because we assume exchange degeneracy
between the trajectories and the couplings; we have a common factor
between all the e_lc-ments of the matrix X y namely 31' /( s-1),

On the contrary, in the Model we consider in Ch.III, we do not assume
neither strong nor weak Exchange degeneracy. Hence the coupling constant
g2 and the dynamical factor I/Y:r-p) is diffefent from element to
another, Add to this the large size of our matrices, this makes the
pirect way of solving the equation det (i~ - SD = 0 for the highest
root J impracticable, Forlthis feason the following perturbation

method is suggested instead.

We want values of J such that

CL-ov YW AY =10 | (8.1)
. 0 = lowest order
Let Ve Vo oV i
- 1 = first order ((B.2)
Then suppése (B.3)
LL-Ne ()12, Y = 1ed
and put (B.4)
125212 % + 120+ 2D
- X ) I ..
3 °+S\* 2™ (B.5)
~ where 1 denotes first order, 2 denotes second order, .....
Then we write . (B.6)

veT) = V.(3) AT\I(=‘> ATV (s)
03')-0 o & PR +-—£T ° rN N saa



2

. . a3y »
MAR AR AL RN IR (1)~ 7 Y (Id)ew (57)

then (1) becomes

Lt-y(3)-ax \: (3= -VUT) - BT V:('g)-u-)\\aa .\%3....> (B.8)

.-.\O)

Computing each order:

zeroth order (B.9)

(l-vo(f))\ ?‘b) = o)

. first order (|-\$(E))‘?:> _;{Vo({\\ %) _\((3\\%).46) (B.9*%)

I1f we take the scalar product with < A ‘ and noticing B.3 we get
o

-{(%\VZ\%): AV (B.10)

Since \I‘(.‘{)\ %> is perpendicular to | 2 ) (as we

shall see in the example below), we get

Second order

(l-\z(g))\ﬁ)—{%({)\%)-\/‘(T)l7\> s o)

3 (B.12)
If we take scalar product with < % | we get
-3 135 = <Y @1

By making use of (B.9') we get \

IR SAREN] SIS AL AN P
"2 r (B.14)
<alV (H\ 2D
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The Calculation of q‘_f to) .

To illustrate the perturbation method which we have just discussed, in

calculating theexouc effect (Ch, III, § 5), we calculate here ‘Sf and 39

For this purpose we write \/‘9 matrix in the following abbreviated form:

o

P AR of 1f  pr  xp Ay ya,
1 A o | o o o | n
"

°l ¢ |l b || o
Vo —>
° 0| o o o (o)
X o . Eae
0 o CT
2%
ol €
°

P
Ane
p f
5t
P x

3

YA,
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First we calculate the highest root of the equation
~de€ (! .Vod=0o (B:15)
S

2
2

a
=) \-ac;a'g.: L‘(z;"...;* ) - Gq
| \

‘ ab =0 (B.17)

(See VD) makrix in tha cene.)

_ * I ¥ | "
where . (B.18)
2 §9 §_P a an fA,_ > fg f#
& = ) 2 b= ) é‘
Tlgg Ty Y T

With the values of G, G, and e(g ,%a‘,d_; given in the text

(Ch., III, eqs. 10-13) equation (B.17) becomes;

3 a
I %060 ETJ —0:3{J 062\ xpo (B.19)

=__> 3° - Q-‘j‘q - (B.20)

Now we proceed to calculate the effect of exotic exchange, i.e. X (g)



If we take

N
-

o

(B.21)

the eq.

e - o o (B.22)

which gives

(B.23)




henc
) /Y
o
(»]
o
Wlyye | o
D
D#
BA-&E';(..*
.,\é*A-\-EC
/
which is perpendicularlto | ‘ a; >
Next we take (L-ho)la‘>;y‘,\%> -==.>
\ 2
ﬁ‘-AQ:o

2 3,
-C*.z-c-%q-_a
% : ¢ ¢
T2, 3
7 "

(B.24)

(B.25)

as we mentioned in eqs. (B.10;l!



' (B.26)

From (B,24) we get
N (B.27)

[ 4
# *
A= e o o 0 D > paevBC  pavel

N Y

Eqs. (B.26) and (B.27) gives the right hand side of eq. (B.13).

2 2 x
. <
<'g\ly~||{\)=f+f+l\'(c‘+8*\* ce (' e*)

+reAa £y c.C]a[BAECs CCY o)

Now we turn to calculate the denominator of eq. (B.1l4)

/ ’ 3
o A o o
A o0 CC

\/0({3: d o 0 , where A' means the derivative
’
g A. A'-_E.ﬁ- . od So CC
’ a3




then / pf N\
| A
ARy cC+CC
/
y %
VIAD> =] ©
o (B.29)
N /
h »* | (8. 30)
ence (MV(Z) Aﬁ¢ﬁﬁ+cc¢cc .
+c’c* 4 ¢ o*
Finally ng is given by
e g <ﬁ°\¥:\%> (5.2.3)
2 . — =
<AV12) (R.3s) (B.31)

The calculation of (B.28) and (B.30) 1is qﬁite lengthy one, and we will nct
write it here. It is enough to note that with Jg given by (B.20) and
Gl’ G, and Q;“ given by eqs. (III, 10-13), J, can be calculated in

2 . ' :
terms of g, and the result in our example is

: 5.04 | (B.22)
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