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ABSTRACT 

I n general t h i s t h e s i s i s concerned w i t h high energy elementary p a r t i c l 

physics. I n p a r t i c u l a r i t discusses the s o l u t i o n of the u n i t a r i t y equation who 

the i n p u t m u l t i p a r t i c l e p r o d u c t i o n amplitude i s given by a s p e c i f i c model. The 

main q u a n t i t i e s which are c a l c u l a t e d and p r e d i c t e d are; ( i ) the i n t e r c e p t s o f 

Reggeon and e x o t i c t r a j e c t o r i e s , ( i i ) the average m u l t i p l i c i t i e s o f the produce 

p a r t i c l e s and charge t r a n s f e r e (AQ), ( i i i ) and f i n a l l y the r e l a t i v e probab­

i l i t i e s of Charge exchange \c>q\ = 2/( AQ=o+ l^Q| =2) and lAQ| =3/( I * Q\ =1+ 

l*Ql -3;. 

Chapter one i s a general i n t r o d u c t i o n to the f i e l d . The p h y s i c a l 

m o t i v a t i o n s f o r using a p e r i p h e r a l d e s c r i p t i o n f o r 2 —> 2 amplitude and a m u l t i -

p e r i p h e r a l d e s c r i p t i o n f o r the 2 —>n amplitude are discussed. 

The p h y s i c a l consequences of dual u n i t a r i z a t i o n ( o r t o p o l o g i c a l 
1 

expansion) are discussed i n Chapter two. Using q u a r k - d u a l i t y diagrams we have 

c a l c u l a t e d many i n t e r e s t i n g p h y s i c a l q u a n t i t i e s , e.g. the Residue and i n t e r c e p t 

o f e x o t i c exchange, the IOZ r u l e and i t s v i o l a t i o n . 

I n chapter three we introduce our pion p r o d u c t i o n model f o r the A j ^ n 

amplitude, where we do not impose exchange degeneracy between the 1 = 0 and I = 

t r a j e c t o r i e s , and we inc l u d e ( i n a d d i t i o n to 1=0, 1 t r a j e c t o r i e s ) two e x o t i c 

t r a j e c t o r i e s (X, Y) o f opposite G - p a r i t y . The i n t e r c e p t o f the o u t p u t Reggeons 

and Exotic are c a l c u l a t e d and a reasonable spectrum i s obtained. 

I n chapter f o u r we repeat the c a l c u l a t i o n s of chapter three when the 

I-Spin 0 p a r t n e r of the pions, i . e . the i s produced ( i n a d d i t i o n t o IT' 5) 

Sine;, however, ^ i s heavier than the pions, we associate a suppression f a c t o r 

X when i s produced. The main e f f e c t o f the i n c l u s i o n of i s t o push up (do 

the p o s i t i v e ( n e g a t i v e ) G-parity s t a t e s . This e f f e c t , however, i s small 

compared to the o r i g i n a l r e s u l t s , i . e . the r e s u l t s when only pions are produced 

The average m u l t i p l i c i t i e s o f the produced p a r t i c l e s and charge t r a n s f c 

(AQ) are c a l c u l a t e d i n Chapter f i v e i n the c o n t e x t of both models o f Chapters 

3 and 4. These r e s u l t are compatible w i t h the moderate energy data but they 

are too small compared to high energy data. 



F i n a l l y , i n Chapter s i x we introduce a m u l t i - l a d d e r model f o r the 

Pomeron, and we show how the data a t high energy can be described by the 

model. I n p a r t i c u l a r , we compare the r e l a t i v e p r o b a b i l i t i e s of charge 

exchange p r e d i c t e d by the model w i t h the new data of Lamsa e t a l . ^ ^ 
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C H A P T E R I 

UNITARITY AND MULTIPERI.PHERALISM 

1. I n t r o d u c t i o n 

The S-channol u n i t a r i t y equation gives an expression of the 

imaginary p a r t of the two-body amplitude as a sum of c o n t r i b u t i o n s from 

two and m u l t i p a r t i t e i ntermediate s t a t e s : 

I * < . f l T | t > * £ < * \ - T \ x > < * l T W > ( 1 > 

X 

Now i f we separate the terms on the r i g h t i n t o d i f f r a c c i v e and 

n o n - d i f f r a c t i v e , and i f we ignore the d i f f r a c t i v e term ( i t i s known 

experimentaly t h a t up to ISR energies, d i f f r a c t i v e processes i n c l u d i n g 

e l a s t i c s c a t t e r i n g c o n s t i t u t e only a minor p a r t ^ 30 per cent of 

the t o t a l c r oss-section) we can c a l c u l a t e the dominant imaginary p a r t 

of the two-body amplitude from the shadow of only the n o n - d i f f r a c t i v e 

component 

X * <<|TtO*£<*|T|h><*|TK> ( 2 ) 

( 3 ) , 

I n f a c t i n the model which we w i l l use i n Chapter 3, the i n p u t 

amplitude i n the r i g h t hand side of the u n i t a r i t y equation includes 

somehow d i f f r a c t i v e c o n t r i b u t i o n because we do not impose exchange 

degeneracy between vec t o r and AensoTtrajectories, and the pomeron 

( t ' 1 2 JAN 1978 J 
V . secTion y 



c o n t r i b u t i o n comes through the i n c l u s i o n of f . Notice t h a t because 

t h e _ u n i t a r i t y c o n d i t i o n r e l a t e s the dynamics of two p a r t i c l e to 

m u l t i p a r t i c l e channels, i t turns out t h a t any model f o r m u l t i p a r t i c l e 

production should s a t i s f y two t h i n g s : 

(1) i t should g i v e the w e l l known p r o p e r t i e s of many 

p a r t i c l e p r o d u c t i o n , which have been es t a b l i s h e d from 

experiment; 

(2) i t should re-produce v i a (1) the d i s t i n c t i v e f e a t u r e s 

of e l a s t i c s c a t t e r i n g , and the symmetry s t r u c t u r e 

e s t a b l i s h e d i n two body process. 

The r e s t of t h i s chapter i s organized as f o l l o w s : I n Section 2 

we give a number of outstanding f e a t u r e s concerning e l a s t i c s c a t t e r i n g 

and two body amplitudes. The general f e a t u r e s of many p a r t i c l e 

production are given i n Section 3. I n Section 4 we introduce our model 

f o r the n o n - d i f f r a c t i v e component, namely the m u l t i p e r i p h e r a l Regge 

Model, and we show i n p a r t i c u l a r how the consistency between the i n p u t 

and the output Regge poles provides a n a t u r a l b ootstrap mechanism. We 

discuss i n some d e t a i l s the Chew-f'ignotti model,* where a p r e r e q u i s i t e 

of the model i s Dolan-Horn-Schmid d u a l i t y which j u s t i f i e s a rough m u l t i -

Regge d e s c r i p t i o n of high energy m u l t i p l e production t h a t ignores 

resonances and concentrates on those f i n a l p a r t i c l e s which are s t a b l e w i t h 
2 

respect to strong i n t e r a c t i o n . F i n a l l y i n s e c t i o n 5 we discuss a dual 
3 

m j u l t i p e r i p h e r a l mouel proposed by Huan Lee, where d u a l i t y i s in c o r p o r a t e d 

i n t o the model by using dual Resonance amplitudes as i n p u t amplitudes 

i n the u n i t a r i t y equation (eq.3). 



3 

2. Some of the d i s t i n c t i v e f e a t u r e s of e l a s t i c s c a t t e r i n g and two-body 

amplitudes 

2.1. E l a s t i c s c a t t e r i n g 

The forward d i f f r a c t i o n peak f o r e l a s t i c processes i s n e a r l y 

s t a b l e i n i t s h e i g h t and i n i t s dependence i n t . This f a c t i s q u i t e 

c o n s i s t e n t w i t h the pomeron exchange being the dominant c o n t r i b u t i o n , 
w i t h i n t e r c e p t close to 1 and small slope °t0(°')'*' 0< -* o*3 Or*.}/ • 

P ' p 
2.2. Charge exchange processes 

The forward d i f f r a c t i o n peak f o r these processes shows much 

less s t a b i l i t y i n i t s $ and t dependence than e l a s t i c processes. I n 

Regge terminology t h i s f a c t i s ch a r a c t e r i s e d by the exchange of Reggeon 

w i t h o( (&~* 0-5 o< (o)~sX (^tV . 

2.3. Exotic exchange processes 

The amplitudes which correspond to e x o t i c exchange (e.g. double 

charge exchange) are zero or a t l e a s t suppressed compared to non-exotic 

exchange. For example the U - channel of K, P—̂  K P i s K P — P 
i 

which has e x o t i c quantum numbers, and so there are no Reggeons which 

can be exchanged (except the e x o t i c one i f i t e x i s t s ) , and indeed, 

the backward peak of f( P——̂ fcP i s s t r o n g l y suppressed. 

2.4. Exchange degeneracy 

Exchange degeneracies are r e l a t i o n s between the leading Regge 
and 

t r a j e c t o r i e s ( e x c l u d i n g the pomeron) r e s u l t from the absence of exchange 
A 

forces i n t o r y channel. We i l l u s t r a t e t h i s by the f o l l o w i n g example, 

l e t us consider IT TT e l a s t i c s c a t t e r i n g . Since the d i r e c t channel 

i s e x o t i c , d u a l i t y i m p l i e s c a n c e l l a t i o n between the leading t r a j e c t o r i e s 

i n t channel. The I = 1, 0 leading t r a j e c t o r i e s i n t channel are 

f and f r e s p e c t i v e l y , they are exchange degenerate, i . e . t h e i r 



t r a j e c t o r y f u n c t i o n s are equal but they have opposite s i g n a t u r e ( f 

has odd spin and the sign a t u r e f a c t o r X. i s ~1» w h i l e f has 

even s p i n , and *C = +1 ) . However exchange degeneracy i s not w e l l -

s a t i s i f e d e x p e r i m e n t a l l y , e.g. r e c e n t l y d i r e c t measurements a t FNAL 

and Serpukho give * ^ (©} - o ^ ^ f o } 0 « 1 and i n f a c t a l o t of 

e f f o r t s have been davoted r e c e n t l y to c a l c u l a t e the breaking of 

exchange degeneracy. 

3. General features of m u l t i p a r t i c l e production 

3.1 The production of pions 

A s t r i k i n g f a c t i s t h a t most p a r t i c l e s t h a t are produced i n the 

hig h energy c o l l i s i o n s are pions. E.g. i n the r e a c t i o n "IT P 

a t 25 Gev^ only 16 per cent o f the produced channels include strange 

p a r t i c l e p r o d uction. This i m p l i e s 

I t t<*>-^244*>toi " | o c < n > 

I f we take the p a r a m e t r i z a t i o n of the mean m u l t i p l i c i t y of charged 
2 

p a r t i c l e s from reference ( 6 ) , a t S si 50 Gev we get 

hence 

< ^ U ? _ = cog 



which i s i n excellent, agreement w i t h the data of Reference ( 6 ) . Since 

the p r o d u c t i o n of other s t a b l e p a r t i c l e s ( w i t h respect to s t r o n g 

i n t e r a c t i o n ) l i k e and N are q u i t e small compared to pion 

p r o d u c t i o n , we w i l l i n much of t h i s t h e s i s be con s i d e r i n g only pions as 

s t a b l e p a r t i c l e s i n the intermediate s t a t e s of the u n i t a r i t y equation. 

3.2. Low transverse momenta 

The number of p a r t i c l e s produced f a l l s o f f very r a p i d l y as a 

f u n c t i o n of 
f i . 

the magnitude of momentum transverse to the 

i n c i d e n t beam. The average value ^ ^ l / ^ S?0.3 t o 0.4 Gev/c 

i s approximately independent of the i n c i d e n t energy, and does not 

depend s t r o n g l y on the type of p a r t i c l e or m u l t i p l i c i t y o f p a r t i c l e s 

produced. 
3.3. Low m u l t i p l i c i t y of p a r t i c l e produced. 

The average number of p a v t i c l e s produced grows s l o w l y w i t h 

energy, much more slowly than would be the case i f most of the 

a v a i l a b l e energy were converted i n t o p a r t i c l e s . E.g. the maximum 

number N of p a r t i c l e s ( TT , say) produced i n process where the i n c i d e n t 

energy "y/"*" »» i s given by; 

N»«, * A r (*) 

w h i l e the data on the m u l t i p l i c i t y of charged p a r t i c l e s are w e l l f i t t e i 

a l o g a r i t h m i c increase w i t h e n e r g y ^ 

< * > r fi + B J* S (5) 



This f a c t togelher w i t h the r u l e of smallness of transverse 

momenta, implies t h a t most of the a v a i l a b l e energy remains i n the 

l o n g i t u d i n a l motion. 

4.3. Poisson-type d i s t r i b u t i o n . 

I n a m u l t i p a r t i c l e r e a c t i o n where one i s concerned w i t h the 

number of p a r t i c l e s produced, the data c o l l e c t e d are numbersof events 

as a f u n c t i o n of the number of charged prongs ( s i n c e the neutrals are 

u s u a l l y not observed), and as a f u n c t i o n of beam energy. The r e s u l t i n g 

two dimensional d i s t r i b u t i o n O-" C i i s c a l l e d a t o p o l o g i c a l 

c r o s s - s e c t i o n . The data on xTP a t 16 Gev shows t h a t when v~"V» 1 5 

p l o t t e d VS. the number of prongs, the curve has the c h a r a c t e i i s t i c 

shape of a poisson d i s t r i b u t i o n . 

The l o g a r i t h m i c increase of m u l t i p l i c i t y and the poisson 

d i s t r i b u t i o n of t are among the w e l l known p r e d i c t i o n s of 
in t-Ve 

m u l t i - p e r i p h e r a l models as we s h a l l see next s e c t i o n . 

Before we close t h i s s e c t i o n we would l i k e to mention the f o l l o w i n g 

remark; although a t energies £ ^ 1 0 - 3 0 Gev the observed 
2 

d i s t r i b u t i o n s a r e cJose to poisson d i s t r i b u t i o n s . However f o r fc: ̂  2 P Gev 

experiments show an e s s e n t i a l d e v i a t i o n from the poisson d i s t r i b u t i o n f o r l a r g i 

V) . I n reference (8) i t i s shown t h a t t h i s e f f e c t can be understood 

as a r e s u l t of the simultaneous p r o d u c t i o n of several m u l t i p e r i p h e r a l 

showers. A s i m i l a r phenomenon, i s the charge exchange r a t i o s , whereas a t 

moderate energies a s i n g l e m u l t i p e r i p h e r a l ladder gives almost the c o r r e c t 

charge exchange r a t i o s which are observed e x p e r i m e n t a l l y , the s i t u a t i o n a t 

high energies i s d i f f e r e n t , and as we s h a l l see i n Chapter VI the 

simultaneous production of several m u l t i p e r i p h e r a l ladders i s able to 

accommodate the new e f f e c t s . 



4. The M u l t i p e r i p h e r a l Regge Models 

4.1 Extension of p e r i p h e r a l to m u l t i - p e r i p h e r a l processes. 

Since the e a r l y s i x t i e s there was experimental e v i d e n c e ^ ' 

i n d i c a t i n g the importance of a long range i n t e r a c t i o n ' ^ ^ t r ^ 

i n high energy c o l l i s i o n of pions w i t h nucleons and of r.ucleons w i t h nucleons, 

This i n d i c a t e s the importance of a p e r i p h e r a l c o l l i s i o n , i n which the two 

i n c i d e n t p a r t i c l e s c o l l i d e by exchanging a s i n g l e pion. The meaning of 

the word p e r i p h e r a l was extended a f t e r t h a t to include any i n t e r a c t i o n 

which i s t r a n s m i t t e d through the exchange of a s i n g l e v i r t u a l p a r t i c l e 

(not n e c e s s a r i l y the l i g h t e s t one, i . e . "IT ) . 

Now a two body amplitude (See Fig ( 2 ) ) can be w r i t t e n as: 
t 

A / \ a t , oU-O 

which f o r f i x e d S and l i n e a r t r a j e c t o r y o(, (."O s *>i •* °£ ^ 

leads to j a _ . 

* -a 

w i t h oL Lff^J S $5 2. - C (r€\/ j i n d i c a t i n g the dominance of 

the c o l l i s i o n s i n vh i c h the square of the v i r t u a l exchange p a r t i c l e ' s 

f o u r momentum ( i . e . t ) i s small. So t h a t the beam can be thought of 

as i n t e r a c t i n g s t r o n g l y w i t h the periphery of the t a r g e t , and the 

amplitude i s r a p i d l y damped i n t . So i f we take *f* as some 
2 

p e r i p h e r a l range o i momentum t r a n s f e r ( » 0.5 Gev ) we say t h a t 

an i n t e r a c t i o n i s p e r i p h e r a l i f |-fc| ̂  includes the bulk of 

the events. S i m i l a r l y the many p a r t i c l e amplitude of Fi g . ( 3 ) , i s 

said to be p e r i p h e r a l i f | £ | ^ t , and we expect t h i s to be the 

dominant it « region f o r ^> S # S f t . However i n 

t h i s l i m i t the | £vwtw ( i s g i v e n b v » (where I f \ 

i s the minimum possible value of {~t I ) 



t • « - Sy\ / S (8) 

Therefore the p e r i p h e r a l d e s c r i p t i o n of t h i s process i s meaningful1 when 

and the f u l l amplitude can be w r i t t e n as a product of the l + H — ^ 

amplitude and the ?€.•+• 2. —> Sj . amplitude times some propagator f o r 

the exchanged v i r t u a l p a r t i c l e X. Now once t h i s s i n g l y p e r i p h e r a l 

d e s c r i p t i o n becomes acceptable, a f u r t h e r decomposition of the 

amplitude can be performed as long as the kinematics a l l o w i t tc be 

me a n i n g f u l l . I f the t o t a l energy $ i s l a r g e , S a
 c a n be 

large enough as t h a t also admits a s i n g l y p e r i p h e r a l d e s c r i p t i o n 

(see F i g . ( 4 ) ) . The c r i t e r i o n now i s 

~ ***** (10) 

be small. Continuing to N blobs, t h i s gives 

s t % - » - s N > , ^ ( I D 

s r 

This equation provides a simple, rough d e r i v a t i o n of the law of 

l o g a r i t h m i c growth of m u l t i p l i c i t i e s . Taking a l l S; equal to 

some average value blob mass-squared S* • e<l« ( H ) gives 

(12) 



9 

So the average number of blobs increases a t most l o g a r i t h m i c a l l y w i t h S. 

4.2. The basic i n g r e d i e n t s of m u l t i p e r i p h e r a l i s m . 

The basic idea behind the m u l t i p e r i p h e r a l model i s t h a t a t h i g h 

energy the dominant production mechanism should be l i k e F i g ( 5 ) . The 

d i f f e r e n t versions of the model d i f f e r i n the choice, of what o b j e c t s 

being exchanged and what o b j e c t s being produced. However a l l these 

models have the f o l l o w i n g common f e a t u r e s . 

(1) The momentum t r a n s f e r dependence between successive l i n k s i n 

the m u l t i - p e r i p h e r a l chain i s damped r a p i d l y . This r e s t r i c t i o n i s 

necessary i n order to l i m i t the transverse momenta, P j ^ * of the 

produced secondary p a r t i c l e s . . Thus f o r ^ ^ i n the Laboratory 

and Center of mass systems the f o u r vectors and jf*. o r the 

v i r t u a l and produced p a r t i c l e s are almost i n the l i g h t cone, so t h a t 

the transverse momenta axe a l l small and the energies are approximately 

equal to the l o n g i t u d i n a l momenta, i . e . 

?CZ %ll »C*l*JU (13) 

where 2 i s the beam d i r e c t i o n , and £*A-rf ^ t'J» are two 

dimensional vectors perpendicular to the Z. d i r e c t i o n . 

(2 ) The heart of m u l t i p e r i p h e r a l dynamics l i e s i n the 

f a c t o r i z a t i o n property of the f u l l amplitude i n t o a product of 

f a c t o r s d e s c r i b i n g the. dynamics i n l o c a l regions of the m u l t i - p e r i p h e r a l 
9 

chain. I n Amati, Fv.bini and S t a n g h e l l i n i (AFS) model each f a c t o r 



t 

depends only on a s i n g l e j being the elementary propagator 

f o r the l i n e l a b e l l e d by < ^ "There i s a minimal i n t e r p a r t i c l e 

c o r r e l a t i o n here". A r e c u r s i o n r e l a t i o n between and 7Vi-l 
i s then immediate: 

(15) 

where Jfr * s t n e propagator of the l i n e l a b e l l e d by C^. t 

and *X . ̂ a } I s t n e v e r t e x associated w i t h the i t h 
1 / 2 \ 

produced p a r t i c l e i n F i g ( 5 ) , which decrease r a p i d l y as ( j 

becomes l a r g e r than a q u a n t i t y W\ of order of the square of a p a r t i c l e 

mass. The o r i g i n a l AFS model was based on m u l t i - p i o n exchange due to the 

p r o x i m i t y of the pion pole to the p h y s i c a l r e g i o n , and the consequent 

enhancement f o r small momentum t r a n s f e r . As i t i s shown i n reference ( 9 ) , 

the s u b s t i t u t i o n of the AFS amplitude, eq. (15) and i n general any 

m u l t i p e r i p h e r a l amplitude which has the above mentioned f e a t u r e s , 

y i e l d s a Regge beh&/iour f o r the imaginary p a r t of the s c a t t e r i n g 

amplitude. 

A f t e r the o r i g i n a l AFS model, (which gives no dynamical c o r r e l a t i o n 

between produced p a r t i c l e momenta), more r e a l i s t i c models have been 

suggested which allow c o r r e l a t i o n between neighbouring p a r t i c l e s , and i n 

which the exchanged p a r t i c l e s are Reggeized. I t i s convenient to 

d e f i n e t h i s concept of "neighbouring" i n terms of r a p i d i t y : 



and we say t h a t two p a i t i c l e s are neighbouring i f the Lorentz boost 

parameter t h a t r e l a t e s t h e i r r e s t frames i s less than a prescribed 

constant value. 

4.3. Chew-Pignotti Model 

We now examine a p a r t i c u l a r m u l t i p e r i p h e r a l model t o i l l u s t r a t e 

how the general features of m u l t i p e r i p h e r a l models come about. We have 

already noted t h a t , since a l l the transverse momenta are l i m i t e d , the 

r e a l degree of freedom i n m u l t i p a r t i c l e p roduction processes l i e s i n 

the l o n g i t u d i n a l motion. Following D e t a r , ^ we ignore the transverse 

momenta and formulate the model i n one dimension. The process we 

consider i s ( F i g . 6) 

I n the l a b o r a t o r y system, where p a r t i c l e a i s a t r e s t and p a r t i c l e b 

moves along the 2. d i r e c t i o n , we s p e c i f y the momenta o f the out 

going p a r t i c l e s i n terms of the r a p i d i t y v a r i a b l e : 

u J IP s ( h i CoSV,̂  (17) 

Vj. . ( W t . Co l l .* t ^ , ^ , U { . ) 

where v C w* + P. i s the l o n g i t u d i n a l mass. 

For l a r g e s we have 

(18) 



One of the assumptions of the model i s t h a t a l l the sub-energies 

6 are l a r g e , t h i s gives 

1*1 

**• •• *••« d»> 

Thus i f each 5 . i s large then VS i) , f o r each i . 

I n t h i s r e g i o n of phase space we have what i s c a l l e d "strong o r d e r i n g i n 

r a p i d i t y " i . e . the o r d e r i n g of the p a r t i c l e s i n r a p i d i t y ( F i g . 7) Correspond 

to the o r d e r i n g o f t h e i r c oupling ( F i g . 6 ) . 

The n p a r t i c l e production c r o s s - s e c t i o n i s given by 
i 

\ 

mm 

where €L *-s t n e u s u a l f l u x f a c t o r $ o( i s an e f f e c t i v e 

Regge t r a j e c t o r y and g i s the cou p l i n g constant a t tha Reggeon-Reggeon 

p a r t i c l e v e r t e x . The d i f f e r e n t i a l element of phase-space i s 

*K'Y * <• f . l - - IrK) <21> 

n teo p., CcO 4 

which, by making use o f the new v a r i a b l e s C j _ P and £. « P 

becomes 

a f B .1 TT JSPU- m. fez Pw) 



I n the st r o n g o r d e r i n g l i m i t these d e l t a f u n c t i o n s may be approximated by 

where yg, . / w - and the t o t a l energy i s 

given by 

I 
1 

I f we s u b s t i t u t e the above r e l e v a n t equations i n equation (20) we get 

^ e 3 e 

<=C e 3 e J'3,)'1';., ) > <25) 

* 3 e b 

where we have taken fc) . w, ^ - ̂  ^ . w and f i t i s ignored 
*' J CL~ C > b" 

eq. ( 2 2 ) . 



The t o t a l c r o s s - s e c t i o n i s simply 

- ^ ^ £ ( 2 6 > 

Thus a Regge behaviour emerges i n a m u l t i p e r i p h e r a l model. I n 

order to o b t a i n constant c r o s s - s e c t i o n one req u i r e s 

using t h i s r e l a t i o n i n eq. (25) we get 

(27) 

< s > e / » \ (28) 

which i s a poisson d i s t r i b u t i o n w i t h an average m u l t i p l i c i t y which grows 

L o g a r i t h m i c a l l y w i t h energy 

< * > O J 0 n S (29) 

F i n a l l y , from o p t i c a l theorem and eq. (26) we get 

o r ^ S - S 

t h i s equation i s i l l u s t r a t e d s chematically i n Fig. ( 8 ) . 

(30) 



4.4. The m u l t i p e r i p h e r a l b o o t s t r a p . 

The simple m u l t i p e r i p h e r a l model discussed i n the previous s e c t i o n 

suggest t h a t the multi-Regge model i n c o n j u n c t i o n w i t h the u n i t a r i t y 

r e l a t i o n , can be used to o b t a i n b o o t s t r a p - l i k e c o n d i t i o n s i n v o l v i n g 

Regge parameters. This i s achieved by imposing the c o n d i t i o n t h a t the 

Regge behaviour obtained f o r a s u i t a b l y chosen two body amplitude a t high 

energies i s c o n t r o l l e d by the same t r a j e c t o r y t h a t i s exchanged along the 

mul'ti-Regge l i n e . Notice, however, t h a t we can not apply t h i s s e l f -

consistency c o n d i t i o n to the previous model, eq. (30) because meson 

t r a j e c t o r i e s have been employed only to generate the pomeron end n o t t o 

generate themselves ( i n f a c t the dominant c o n t r i b u t i o n to cL ^ 

i s the lower meson t r a j e c t o r i e s ( 9»^j £j As. } because we know t h a t 

the pomeron i s not important i n the production processes). 

5. The generation of the Pomeron i n a dual m u l t i p e r i p h e r a l model 

When we w r i t e a multi-Regge form f o r the n p a r t i c l e p r o d u c t i o n 

amplitude, we assume t h a t a l l the momentum t r a n s f e r s j •i.^ | ̂ . *£1 

and ^ S where s i s some c u t /alue above which 

Regge formula v a l i d . Experimentally, however, many events have low 

sub-energies, due probably to the production of resonance, and to apply 

the model f o r these events, i t i s necessary to make use of some duality-

assumptions, t h a t t h i s h igh sub-energy form of the amplitude a p p l i e s , 
2 

a t l e a s t i n the average sense, f o r low • as w e l l . Once 
/ V • • 

t h i s assumption i s made, a l l the p a r t i c l e s i n the in t e r m e d i a t e s t a t e s 

become s t a b l e and the problem of double counting i s over. 
3 / 

I n t h i s s e c t i o n we make a f u l l use of two-component d u a l i t y I the 

pomeron i s generated by the sum of background c o n t r i b u t i o n s , and the Regge< 

i s generated by the sum of resonating c o n t r i b u t i o n s ^ , i n the framework 

of multi-Regge model. 



# 

To. i l l u s t r a t e the model l e t us take f i r s t a + b — 1 + 2 ( f i g . 9) 

Here there are j u s t two diagrams f o r Reggen exchange i n the t channel, 

one s - t planar, the other t - u planar. 

I n the f i r s t (second) diagram, the p a r t i c l e s a and b are adjacent 

(not a d j a c e n t ) , so i t has (has no) s - channel resonances. S i m i l a r l y f o r 

a + b , . 1 + 2 + 3 , there are f o u r diagrams,for Reggeons exchange i n t 

channel, only the f i r s t one (see f i g . 10) has s-channel resonances since 

a and b are i n adjacent order. The other three have no s-channel resonances 

since a and b are i n a non adjacent order. And so on, there being 2 n ^ 

d i f f e r e n t diagrams f o r an n p a r t i c l e s f i n a l s t a t e , a l l but one ( t h e s, t 

planar one) c o n t r i b u t e to the background component. 
» 

Since a l l the diagrams c o n t r i b u t e e q u a l l y to O""̂  ve f i n d from 

eq. (25) 

5 s ( 3 i ) 

i f we n e g l e c t i n t e r f e r e n c e between va r i o u s terms. 

The t o t a l cross s e c t i o n i s given by 

r- * <£ 2. 9 ± S (32) 

- 2 g S J (33) 

Thus the t o t a l c r o s s - s e c t i o n has only one pole at (making use of o p t i c a l 

theorm) 



(35) 

On the other hand, f o r each n (n is. the number of produced 

p a r t i c l e s ) only one diagram c o n t r i b u t e s to reggeons 

«*> c 
e (P-ejjeoYM) - £ 3 — — s 

3 s J 

Thus the reggeons c o n t r i b u t i o n to h a s fl Po3-fc a t 

S i m i l a r l y f o r the crossed diagrams (which presumably b u i l d up the 

pomeron) we get 

<y—i (non-planar diagrams) = <£L- £ 2 _ I ^ 

« 2 . q S - V S 

(36) 

5 S (38) 

- t 

which gives two poles, one i s the usual pomeron pole a t *L s l l ' - l + l 5 ; 

the other one cancels the reggeon (which has the same quantum numbers 



l i k e the pomeron, i . e . the f ^ ) c o n t r i b u t i o n to a-*"^ . 

Now i f we impose the s e l f consistency c o n d i t i o n on the reggeon 

c^01*"*.. ^ we get from eqs. 35 and 36 

« ~ V > = '-3\ - v ^ i (39> 

The above scheme f o r the pomeron i s c l o s e l y r e l a t e d to the 

i n t e r p r e t a t i o n of the pomeron i n the t o p o l o g i c a l expansion, namely the 

c y l i n d e r (as we s h a l l see next c h a p t e r ) . However, the i n t e r c e p t of "th.€ 

pomeron i s gr e a t e r than t h a t o f the reggeons i n the t o p o l o g i c a l expansion, 

but here we are able to o b t a i n an i n t e r c e p t of the pomeron, not only 

g r e a t e r than t h a t of the reggeons, but e x a c t l y a t one (of course under 

some s t r i c t assumptions, namely ( i ) using ch e w - p i g n o t t i approximation, 

( i i ) and imposing the s e l f consistency c o n d i t i o n on the reggeons.) 



Figure captions 

F i g . 1 : Representation of the u n i t a r i t y equation, ( d denotes 

d i f f r a c t i v e intermediate s t a t e s , i n c l u d i n g e l a s t i c ) . 

F i g . 2 : P e r i p h e r a l exchange i n 2 « > 2 amplitude. 

F i g . 3 : P e r i p h e r a l process 1 + 2 «—$ (S^) + ( S 2 ) w i t h exchange of X. 

The kinematics are s p e c i f i e d by s, t , and the i n v a r i a n t masses 

S L and S2. 

Fig. 4 : Extension of Pe r i p h e r a l to m u l t i p e r i p h e r a l process. 

Fig . 5 : M u l t i p e r i p h e r a l graph. 

Fig . 6 : Diagram f o r the production of n p a r t i c l e , showing the d e f i n i t i o n 

of sub-energies and momentum t r a n s f e r s . 
i 

F i g . 7 : The strong o r d e r i n g l i m i t , which occurs when the o r d e r i n g of the 

p a r t i c l e s i n r a p i d i t y i s the same as the o r d e r i n g of t h e i r c ouplings, 

i . e . the same as i n F i g . 6. 

Fig. 8 : Symbolic v e r s i o n of m u l t i p e r i p h e r a l bootstrap equation. 

F i g . 9 : The s-t and t - u planar d u a l i t y diagrams which provides the two 

c o n t r i b u t i o n s to the sign a t u r e f a c t o r of a t-Channel Raggeon. 

Fi g . 10: The f o u r signature c o n t r i b u t i o n s to the ab «—£ 123 double 

Regge amplitude. 
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CHAPTER I I 

Reggeons and Pomeron i n t e r c e p t s i n dual U n i t a r i z a t i o n 

1. I n t r o d u c t i o n 

I n t h i s chapter we f o l l o w the newly proposed d u a l - u n i t a r i t y 

scheme ( o r t o p o l o g i c a l expansion) which makes use of the combined c o n s t r a i n t 

of d u a l i t y and u n i t a r i t y ideas i n the form of a m u l t i - p e r i p h e r a l u n i t a r i t y 
18 25 equation (see f o r example Veneziano; Chan, Paton and Tsou; Schmid and 

13 
Sorensen) . This approach seems to provide us w i t h a systematic understanding 
of many aspects of strong i n t e r a c t i o n s as the nature of the pompron; the 

20 

Okubo-Zweig-Iizuka (OZI) r u l e and i t s v i o l a t i o n ; the suppression of e x o t i c 

exchanges; and the breaking of exchange degeneracy among Regge poles w i t h 

d i f f e r e n t quantom numbers. Our main purpose here i s to get i n f o r m a t i o n 

concerning the output Regge-exchanges i n the 2 — > 2 amplitude, when we i n s e r t 

a m u l t i p e r i p h e r a l production amplitude A„ as i n p u t to the U n i t a r i t y 

I n the next s e c t i o n we c a l c u l a t e the output Regge exchanges i n 

eq. (1) by s o l v i n g the m u l t i p e r i p h e r a l i n t e g r a l equation e x p l i c i t y , using 

the Chew-Pignotti approximation. I n the t h i r d s e c t i o n we solve the u n i t a r i t y 

equation f o r the f i r s t two terms i n the t o p o l o g i c a l expansion, namely the 

planar and the c y l i n d e r amplitudes. I t w i l l t u r n out t h a t a serious d i f f i c u l t y 

of the dual u n i t a r y scheme i s the problem of 10 exchanges (the e x t i n c t i o n ) . 

Another d i f f i c u l t y also i s t h a t the t o t a l c o n t r i b u t i o n of the planar and the 

c y l i n d e r terms to f exchange vanishes, or s t a t e d d i f f e r e n t l y the f t r a j e c t o r y 

i s s h i f t e d upwards and i s i d e n t i c a l to the Pomeron. At t h i s p o i n t we should 

equation 

21 A A 
v» 2 — : 

2—3>*"> 2_ —5>*i 
(1) 
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d i s t i n g u i s h between two approaches to the planar b o o t s t r a p ; 

( i ) I n the approach where both the planar and the c y l i n d e r are 
(3 13) 

generated. ' I n t h i s approach the generation of the c y l i n d e r i s 
r e l a t e d to the generation of the planar Reggeon through the bootstrap 

2 

equation, ( 1 - o(. )/N = 2g (see sub-section 3.1). Using t h i s approach, 

the t o t a l c o n t r i b u t i o n of the planar and the c y l i n d e r terms to an SU(N) 

s i n g l e t w i t h negative charge conjugation vanishes. This i s because there 

i s an exact c o n c e l l a t i o n between the diagrams w i t h even and odd number of 

t w i s t e d loops. With regard to f t r a j e c t o r y , i t w i l l be pushed up and i t s 

i n t e r c e p t a t t = 0 i n t h i s approach i s e x a c t l y a t one (see Section 3 ) . 

( i i ) The planar bootstrap i s assumed, w h i l e the c y l i n d e r i s generated 

Since i n t h i s approach we do not have the above r e l a t i o n between the 
2 

c y l i n d e r s t r e n g t h (2g = K) and the planar parameter (o£.)> t n e t»> t r a j e c t o r y 

i s s h i f t e d downwards but does not disappear, and the f t r a j e c t o r y i s 

s h i f t e d upwards but not to one. This approach used i n Ref. 28. 

I n s e c t i o n 4 we discuss some of the p h y s i c a l consequences o f the 

i n c l u s i o n of the higher order terms ( t h e i n t e r f e r e n c e terms which have 

t w i s t s i n the produced l i n e s ) . I t w i l l t u r n out t h a t the w e x t i n c t i o n 

happens only when tht-se terms are excluded; when they are included, <o 

exchange i s regenerated. We c a l c u l a t e i n t h i s s e c t i o n e x p l i c i t l y the f ~ ^2 

s p l i t t i n g by s o l v i n g the u n i t a r i t y equation when the i n t e r f e r e n c e terms 

( a t the two loops l e v e l ) are included. We c a l c u l a t e also the residue and the 

i n t e r c e p t o f e x o t i c exchange by i n c l u d i n g a l l the higher order terms which 

generate e x o t i c exchange and we compare t h i s w i t h the i n t e r c e p t and residue 

of planar Reggeons. F i n a l l y s e c t i o n 5 i s devoted to some remarks. 

2. E x p l i c i t S-matrix models 

We s t a r t by w r i t i n g the m u l t i p e r i p h e r a l i n t e h r a l equation f o r the 

amplitude A i n the angular momentum plane, which takes the f o l l o w i n g form 

( u s i n g the Chew-Pignotti approximation) 



S V + V6?A 

( i ) 

where the J-plane s i n g u l a r i t i e s are obtained by s o l v i n g f o r det (1 - K) = 0. 

I n eq. ( 1 ) , Q = I /(*-/3) and = 2 o< ̂  * ) .. | , where we take 
— 2 

SJ - 0.1 (Gev/c) . The i n p u t Reggeons are assumed to be the exchange 

degenerate ve c t o r and tensor mesons (we n e g l e c t the unnatural p a r i t y exchange). 

V denotes the m a t r i x representing the c o u p l i n g of the produced o b j e c t s to the 

exchanged reggeons, which i s f i x e d by SU(3) and exchange degeneracy. We 

consider a world w i t h o u t strangeness (SU(2) symmetry). For the produced 

obj e c t s we consider several choices. We solve the u n i t a r i t y equation a t 

t = 0 and f o r p o s i t i v e G-parity ( i n the t-channel). 

2.1 The pion production models 
29 

F i r s t we consider the model of C o u l t e r and Snider where, o n l y I - s p i n 

i s conserved. I n t h i s case the r e l e v a n t intermediate s t a t e s i n t-cbannel 

are (1= 1, I = 1) f o r both I f c = 1 and I = 2 (we do not consider here 

the I = 0 channel, since we are i n t e r e s t e d i n comparing the output of 

I ~ 0, and I = 2),- hence the m a t r i x K has one element. 

< 
I 

> ( 2 ) 
1 

k ( 3 ) 
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which gives 

*V" ft •* 

which shows the desired suppression of I = 2. 

Now i f we consider the same model but we conserve both I - s p i n 

and G-parity. I n t h i s case the r e l e v a n t intermediate s t a t e s i n t-channel 

are ( ff ) and ( A 2 > A 2) f o r both I = 1 and I = 2. This gives 

3 
T-fl 

tt 

' A a. 

•L 

Solving f o r det ( 1 - k) = 0 we get 

( 5 ) 

Thus the conservation of G-parity leads to an i d e n t i c a l 1 ^ = 1 

and I = 2 i n the output, a d i s a s t r o u s r e s u l t i n view of the experimental 

suppression of e x o t i c . The o r i g i n of the d i f f e r e n c e between the above 

r e s u l t s (5) and (4) can be seen as f o l l o w s : 

The process ^ ^ ~ c o n t r i b u t e s -l-g"* t o I ( 

channel and -g to I = 2 channel (from the crossing m a t r i x ) . Thus i f we 



produce n pions i n the intermediate states, the contribution of 

A. A , i s positive f o r both I t = 2 and I . = 1 channels, i f n i s even, in i n t t ' ' 
and this contribution i s positive (negative) f o r I f c = L ( l t = 2) i f n i s 

odd. In the I-Spin conserving model any number of the produced pions i s 

allowed, and the sum 5T A. A , is an alter n a t i n g series f o r 1^ = 2. 
n i n nf b t 

On the other hand when G-parity i s conserved, either odd or even number of the 
- ^ 

produced pions i s allowed and the sum Z_ A. A r i s no longer an r n i n nf fc 

alternating series. 

+ 
2.2. The resonance production models (1 and 2 production). 

The above d i f f i c u l t i e s (eq. 5) are not avoided i f we produce pions 
+ 

and s . Here we w i l l see how the production of 1 and 2 with equal 

strengths eliminate the exotic completely. Making use of SU(3) and exchange 
+ 

degeneracy we f i n d that a l l the coupling of the produced 1 and 2 to the 
+ 

exchanged reggeons are equal. Since however 2 are higher mass resonances we 
+ 

associate a suppression factor x, when 2 are produced. 

The coupling matrices K are given by 

J5 
(6) 

(7) 
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(8) 

i f we produce 1 and 2 with the same strength (x = 1), the exotic exchange 

w i l l be eliminated completely. However, i n I = 0 channel we have only one 

leading pole and the exchange degeneracy between^ and f i s l o s t ( t h i s is the 

same resul t of H. Lee model CH. 1 ^ 5 ) . I f on the other hand wc take x - 0, 

we maintain the exchange degeneracy between f and^ ( i n I = 0- we have 

non-leading pole which is exchange degenerate with the 1 = 1 leading pole). 

For the exotic we get 

•c. 

Although this intercept f o r the exotic seems to be reasonable, the 

residue of the exotic i s such that i t gives large exotic cross-section when 

compared with experiment. 

F i n a l l y we note that i n the above models, (0 pole i n the output 

i s not generated. This i s because the relevant intermediate states i n the 

t-channel ( f o r tt quantum nunbers exchange i n t-channel) are (w, f ) and 

(y» ^ J . But because of the assumption of exchange degeneracy between Vector 

and Tensor t r a j e c t o r i e s and the standard signature factors, these terms do 

not contribute to the overlap function i n the u n i t a r i t y equation. 



3. The topological expansion 

3.1 The motivations and the parameter N 

Consider f i r s t the quark-duality diagrams of Figs. 1 & 2. The 

Chan-Paton factors of Fig. 2 i s N (where N i s the types of quarks) times 

that of Fig. 1. The reason for this i s that i n Fig. 2 we have a closed 

loop and one should sum over the types of quarks i n thi s loop. Similarly 
2 

the Chan-Paton factors for the Figs. 3, 4 & 5 respectively give N , N, and 1. 

On the other hand the most evident difference between these diagrams i s 

thei r d i f f e r e n t topological structure (planar, cylinder, and torus). Thus 

we sea that when the topological structures of the diagrams get more 

complicated, the contribution of certain diagram w i l l be suppressed by a 

factor ^/ (to some power) compared to the planar ones. ( I n fact there 

are other dynamical suppression factors i n most cases, as we shall see 

la t e r , which make this expansion converge more r a p i d l y ) . 

Now, i n dual perturbation theory, a general term i n the perturbation 

series involves powers of g and gN. In t h i s theory every oricntable loop 

( f o r the loop to be orientable i t should have two tw i s t , since every quark 

l i n e has an arrow, i.e. baryon number) can be c l a s s i f i e d ( i n terms of few 

numbers namely; b: t i e number of boundaries where the external p a r t i c l e s 

are attached, w: the number of windows which are boundaries without legs 

attached to them, and h: the number of handles) by the topological structure 

of the two-dimensional surface on which i t can be embedded, so that every 

part of this surface i s covered by a planar diagram. In t h i s language the 

unitarized n point function i s given by 

w 
(10) 



In the conventional expansion, the number N is i r r e l e v a n t and the 

expansion i s i n the loop number 

(ID 

On the other hand i n the topological expansion, we c o l l e c t the 

graphs which have tht-. same topological structure. I t i s thus expansion 
2. 1 2 

i n g ( or — ) at g N f i x e d . The s t a r t i n g point i n t h i s expansion i s 

the sum of a l l planar graphs with a r b i t r a r y number of windows. In t h i s 

case we have b = 1, h = 0, and the corresponding topology i s a sphere with 

one boundary with the external p a r t i c l e attached to i t . The other terms i n 

this expansion which have more complicated topological structure, have an 

order of magnitude (compared to the planar one) which is given by 

m =c^ <») 

The second term i n t h i s expansion i s the sum of a l l diagrams where 

both exchanged reggeons i n one loop at least are crossed. The sum of these 

diagrams gives the amplitude which has vacuum quantum number exchanges i n 

t-channel (the cylinder, see Fig. 6), which usually i s i d e n t i f i e d with the 

(bare) Pomeron. In t h i s case we have b = 2, h = 0, and the corresponding 

topology i s a sphere with two boundaries. The order of magnitude i s 

To go to higher order terms one must allow f o r the produced 

object to be crossed. Fig. 5 i s an example. The corresponding topology 

i s a sphere with one boundary and one handle (b = 1, h - 1). This class 

of diagrams are responsible f o r the breaking of exchange degeneracy between 



j>and as we shall see i n Section 4. The order of magnitude of 

Fig. 5. i s g ~ / . 

3.2. The properties of quark-diagrams 

For any given quark diagram whether i t i s planar or not, we 

attach to i t three properties. 

( i ) Quark l i n e flow ( i . e . the t-channel quantum numbers). For 

the planar diagrams we have always qq i n t-channel. Thus these 
2 

diagrams contribute to the N pl e t . Reggeons m t-channel, ( I n f a c t we 

define i n terms of qq pairs, the Pcmeron, the Reggeons, and the exotic, 

to .be the Zero, the one, and the two pairs of qq). On the other hand 

a l l the diagrams which give the cylinder topology, have vacuum quantum 

number exchange i n t-channel and they contribute only to SU(N) si n g l e t . 

F i n a l l y , the interference terms can have zero or one or two pairs of qq 

i n t-channel, as we sha l l see i n section 4. 

( i i ) The or i e n t a t i o n of the quarks at both ends of the diagram. 

I f the diagram has the same quarks orientations at both ends of the 

multiperipheral chain, i t gives a positive contribution f o r both C = + 

and C = - where Ct i s the charge conjugation i n t-channel. On the contrary, 

i f the diagram has opposite orientations at the ends of the multiperipher 

chain, i t gives positive contribution to C = + and negative contribution 

to C = -. For the planar diagrams we have always the same or i e n t a t i o n 

at both ends of the diagram. For the diagrams which b u i l d up the cylinder, 

i f a certain diagram has even number of crossed loops i t gives positive 

contribution to both C = + and C = but i f the diagram has an odd 

number of crossed loops i t gives positive (negative) contribution to 

Cfc = + (C t = - ) . The interference terms have both properties depending 

on the way we arrange the crosses on the Reggeons and on the produced l i n e s . 

For example i n Fig. J where we have three p a r t i c l e s i n the intermediate 



states; Fig. $a gives positive contribution for both Cfc = +, and C =* 

while Fig. gb gives positive contribution t . C = + and negative 

contribution to C = -. 

( i i i ) The phases which are associated with the reggeons signatures. 

Only the interference terms have phases, the. reason f o r t h i s is that since 

uncrossed reggeon has phase exp ( - i "TV o{ } while crossed reggeon 

has phase 1, i t turns out that a l l the planar diagrams and a l l the 

diagrams which contribute to the cylinder have phase 1. 

The £/Q> extinction 

From the above properties i t i s easy to see how the t o t a l 

contribution of the planar and the cylinder terms to W exchange vanishes. 

Consider for example a diagram where we have n produced objects. The 

t o t a l number of quark, diagrams i s 2 n ( = 2 n * . 2 ) , 2 n * diagrams 

because every reggeon can either be crossed or not and 2 accounts f o r the 

two d i f f e r e n t orientation of quarks f o r every diagram). Half of these 

diagrams 2 n/2, have even number of twisted loops (the planar diagram 

has zero number of twisted loops and i t i s one of these) and they give 

positive contribution to w exchange. The other half have odd number of 

twisted loops and i t gives negative contribution to w. Thus the t o t a l 

contribution to H exchange vanishes for each n, and a f t e r summation over 

n, no w trajectory i s generated i n the L.H.S. of the u n i t a r i t y equation. 

3.3. The planar and the cylinder amplitudes. 

The planar amplitude i s the sum of a l l planar diagrams with 

a r b i t r a r y number of windows. At this level of the expansion "the Born 

term"; the exchange degeneracy i s exact, the IOZ rule i s exact, there 

is no Pomeron and no exotic. In terms of quark diagrams we write the 

planar amplitude M i n the case of SU(N) as, 



*> 'A 

v 

^ < 
X i -* (13) 

where (14) 

From eq. (14) we obtain the planar bootstrap condition (assuming 

t = 0 and the self consistency between the input and the output Reggeons). 

D(-. ^ 4 |- *< = 2.3% 
(15) 

"From eq. (15) we read the following interesting r e s u l t s . 

( i ) The leading Reggeon intercept must be below one. 

( i i ) The ef f e c t i v e coupling 'X = 2 3 Nl i s f i x e d . This i n f a c t 

i s one of the motivation to the topological expansion. 

The next term i n the topological expansion i s the sum of a l l 

diagrams where both reggeons i n the loop are crossed. This term has the 

cylinder properties and i t i s communicate with states of zero additive 

quantum numbers. The cylinder correction i s given by 

^ — > > — > - 3- (i h 
ft (16) 



+ + The - here refers to the Charge Conjugation i n t-channel C = -. 

The t o t a l amplitude A af t e r the cylinder correction is given by 

(17) 

- n+ncM *... 

I t is. easy to solve ecj. (17) i n the case of SU(2). In t h i s case the planar 

poles are two for each C. We associate each tr a j e c t o r y with d i f f e r e n t 

quark index, the tra j e c t o r i e s are exchange degenerate, we lable t h e i r common 

trajectory by cj_ . Thus we have 

(18) 

-v. 2_3_ •v. 
*3 
71 

(19) 

Solving f o r det (M - C) = 0 we get 

C -
•d 

3" c< + M 3 

to 

(20) 



Substituting eq. (15) i n eq. (20) i n the case of SU(2) we get 

3 -

; the Pomeron of H. Lee 

The Residue of W pole is given by 

Res A (x-m(s) * J^vw (s„n) _ L — 

(21) 

(22) 

It- a) 

(23) 

For the f i r s t diagonal element we get 

Res A (?.n\ 
O/0 re (24) 

= O 
(25) 



and we get the same re s u l t f o r the other elements of the matrix. 

Similarly we have calculated the Residue of f pole and we found i t 
2 

equal to . 
Next consider the case when ^to a n d w r i t e 

(26) 

eq. (21) now i s given by (making use of eq. 26 and eq. 14); 

3- - /3 (27) 

From eq. (27) we conclude that f o r a reasonable value of A we 

get a pomeron intercept which i s much above one. On the other hand the w 

Residue, vanishes independent of both A and (see eq. 25). 

A similar calculation can be done i n the case of SU(3), i n th i s 

case the matrices of eqs. (18, 19) have three rows and three columns 

"(pp, nn and ). In the l i m i t of exact SU(3) symmetry the1 three 

t r a j e c t o r i e s associated with the three types of quarks are exchange 

degenerate. Solving f o r det (M-*-- C) = 0 we get 

(28) 

The w and f 1 are not shifted by the cylinder correction because 

i n the l i m i t of exact SU(3) they become members of octets that do not 



communicate with the cylinder. I f , however, SU(3) symmetry is broken i n 

the sense that the trajectory associated with the strange quarks i s lower 

than the others, the four 1 = 0 t r a j e c t o r i e s w i l l be shifted (Chew and 
28 

Rosenzweig ). 

4. The interference terms 

As we mentioned e a r l i e r , the interference terms are those which 

have -twists i n the produced li n e s . The number of these terms i s given 

by (2 n.2 n-2 n) where n i s the number of the produced objects i n the 

intermediate states, the factor (-2n) takes account of. the sum of the 

planar and the cylinder terms. I f we produce objects with positive 

and negative charge conjugation (e.g. vector and tensor mesons) we w r i t e 

£ _ a twisted produced l i n e 
an untwisted produced l i n e 

where g^ (g ) refer to the couplings of objects with positive 

(negative) Charge Conjugation. 

From eq. (29) we see that - l ^ t ^ l , i t w i l l turn out, however, 

through the calculation i n this section that a small negative value f o r £. 

is favourable. 

4.1. Exotic exchange i n the t-Channel. 

Exotic exchange arises from diagrams where a l l produced lines are 

twisted, whether the exchanged reggeons are twisted or not. Thus we have 

2 2 
6 + " 6 - (29) 

, 2 g . + g _ 



X 
j—X—_ 

1 
^ 9 € ——- -f • -V » » • \ = 7T-(30) 

Hence 

B 

Reside = S a £ (31) 

I t i s worth mentioning that i f we calculate the exotic exchange to 

lowest order i n € » i.e. taking the diagrams which have two produced 

lines only, we get 

B ~~ 
23 € 

(32) 

to be compared with eq. (30). 
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F i n a l l y we note that according to the second property of quark 

diagrams discussed i n sub-section 3.2, the t o t a l contribution of the 

above series of diagrams to I f c = 2, Cfc = - Channel vanishes f o r 

each n. Since G = (-1) 1 C, we have no output pole f o r the I = 2 , Gfc = -

- Channel. 

4.2. Thej* - A 2 S p l i t t i n g 

To calculate the breading of exchange degeneracy between g and 

one must take into account a l l the quark diagrams which generate i n the 

L.H.S. of the u n i t a r i t y equation (1) the following U - t diagram 

2 

t h i s i s because this diagram contribute to N p l e t of reggeons exchange i n 

t-Channel, and i t gives positive (negative) contribution to Ct=-!-(-) Channels 

We consider here the two loops diagram (lowest order i n £ ) which 

generate the above u-t diagram. The topology of these diagrams are that 

of the torus (b = 1, h = 1) 

+ Complex Conjugate 

the phase = 1 



The amplitude F a f t e r the torus correction, is given by 

1 r.T (34) * * t> t«f - C-T 

Since f o r f and the cylinder kernel vanishes (C = 0 ) , det. (M"*"- T) = 0 

gives 

± 2a tie) = o ^ 

4ea 
A/ 

2, 

^68 
A/ 

f A a. 
g56 
N 

(35) 

Let us now see how we can arrive at the same resul t of eq. (35) 

by considering the two loops diagram (lowest order i n 6) which generate 

the U-t diagram and the S-t diagram, these are 



— — — J a + C-C 

L J 

The phase The phase = 1 

(36) 

The amplitude F including the interference term* of two 

loops ( I ^ ) i s given by 

(37) 

Forj> and A,, exchange i n t-Channel the cylinder kernel vanishes, 

then det (M* 1 - I„) = 0 gives 



• ~ ———— — . ^ 0 

which gives 

f N 

hence 
3 . 3 . *S3 

(38) 

(39) 

"f A T A/ 

A.3. The regeneration of W 

The contribution of the interference terms with two loops only 

i.e. I ^ , to W exchange i n t-channel i s given by (eq. 36) 



<*. 'J 

On the o t h e r hand the amplitude A (t h e planar amplitude w i t h 

the c y l i n d e r c o r r e c t i o n ) vanishes f o r W exchange i n t-channel, i . e . 

A to- — (41) 

Thus the f u l l amplitude F ( t h e amplitude A w i t h the i n t e r f e r e n c e 

terms I ^ ) gives f o r w exchange 

<5'py~ J 

l - T- <V <S S i * TTo( • < V 3 -

;——I ~\ <42) 

eq. (4^ i m p l i e s t h a t we have two poles given by 



4 )} 

(43) 

F ^ ) s — ^ - - J (44) 

hence 

° k . - f1 ± *i 3 6" ̂  ^ K * (45) 

4.4. The V i o l a t i o n of the IOZ r u l e . 

I n order to get a reggeon coupling which v i o l a t e s the IOZ r u l e , 

the f i r s t or/and the l a s t produced l i n e must be crossed ( F i g . 7c, 7b). 

From F i g . 7a we see t h a t the process which v i o l a t e s the IOZ r u l e i s ( t o 

lowest order i n 6) suppressed by a f a c t o r € /N compared to the process 

which are given f o r example by F i g . 3 and which do not v i o l a t e the IOZ r u l e . 

Hence from the experimental suppression of the IOZ r u l e v i o l a t i n g process 

( F i g . 7a) we can estimate the s t r e n g t h of the co u p l i n g which v i o l a t e the 

IOZ r u l e . 

For the decay processes l i k e 0 — > $ TT o r l^p —^ S w e a r e 

2 

however i n the time l i k e r egion ( t = m^ ) and we have dynamical 

enhancements f a c t o r s depending on the masses (asymptotic p l a n a r i t y ) . To 

see t h i s consider f o r example the above decaying process, which by 

making use o f semi-local d u a l i t y and f a c t o r i z a t i o n gives 



0 z : 

z>c: 

(46) 

Thus the above type o f decay has a Regge c u t - l i k e dependence on 
_ d 

the masses of the decaying p a r t i c l e s , which as t — > 00 i s «C -fc. 

where d i s p o s i t i v e . This explains f o r example why . p ( ^ g IT ̂  

i s suppressed compared to P C $ '—* • 

4.5. Numerical e s t i m a t i o n of E 

From the previous c a l c u l a t i o n s we see t h a t the s i g n and the magnitude 

of the suppression f a c t o r E i s s e n s i t i v e to many p h y s i c a l q u a n t i t i e s . For 

example i f £ i s p o s i t i v e we get a p o s i t i v e i n t e r c e p t o f ths e x o t i c exchange 

(eq. 31), a Complex W pole (from eq. 45) and a wrong s i g n f o r the $ -

s p l i t t i n g (from eq. 35), three undesirable r e s u l t s . On the other hand i f 

one assumes the produ c t i o n of vec t o r and tensor mesons, a negative value f o r 

E i s a welcome r e s u l t i n view of the dynamical suppression of hig h e r mass 
(34) 

resonances, i . e . tensor mesons, (see eq. 29). Schmid, Webber and Sorensen 

have used the experimentally measured suppression of e x o t i c exchange r e a c t i o n s 

to determine € by co n s i d e r i n g only the lowest order diagrams which give 

e x o t i c exchange, i . e . eq. 32. Since, however, the c r o s s - s e c t i o n of these 

processes i s p r o p o r t i o n a l to the s i g n of £ i s i r r e l e v a n t . They found 

t h a t £ |o.25l . From the above co n s i d e r a t i o n s we take the negative 

s i g n . With £ ~ - 0.25 we have the f o l l o w i n g i n t e r e s t i n g r e s u l t s . 



(1) The 5 - A 2 s p l i t t i n g 

Since o(_o(•=. - A/ » making use of the b o o t s t r a p c o n d i t i o n 
S At, 

(47) 

» 

(2) The Residue and i n t e r c e p t of W pole 

For obvious reason we consider eq. (43) f o r the w pole. The 

i n t e r c e p t i s given by (we take N = 2), 

IT °( 

<2. 

the Residue i s given by (from eq, 43) 

£ C J > . - ± Z 2 ± — t ± - L \<-i<\ C-e) s i w i r ^ f 



to be compared w i t h the Residue of the planar W (from eq. 13) 

R e s . ( p4«.*̂ ») = ("3-/1) = ~ °• 5 
(50) 

Where we have taken «JL^2-0.5, since i t s a t i s f i e s the consistency 

c o n d i t i o n i f fc i s not too l a r g e . 

(3) The e x o t i c exchange 

The i n t e r c e p t o f Exotic exchange i s (from eq. 31) 

"C - /* * ^ 3 £ - - r i > ( 5 i ) 

and The Residue 

<y 2. 
3 € ^ 

(52) 

Notice, however, t h a t i t i s wrong to compare t h i s r e s u l t w i t h 
2 

the planar residue 2g N = 0.5. The reason f o r t h i s i s t h a t , i n w r i t i n g 
eq. ( 1 3 ) , the e x t e r n a l legs were amputated. I f they were included, the 

2 2 2 planar Reggeon residue would be 2g (2g N), instead of (2g N). Thus the 

Exotic residue which i s comparable w i t h the planar residue i s given by 

i - 2 c\*- (53) 



5. Remarks 

( i ) The Pomeron f i d e n t i t y . 

I n sub-section 3.3 we discussed the e f f e c t of the c y l i n d e r c o r r e c t i o n 

to the planar approximation. No new poles were generated a t the c y l i n d e r 

l e v e l , and the e f f e c t of the c y l i n d e r i s to s h i f t the 1 = 0 planar poles. 

The planar f i s s h i f t e d upwards and i s i d e n t i f i e d near t = 0 w i t h the bare 
28) 

pomeron. This p i c t u r e which was suggested by Chew and Rosenzweig i s i n 

c o n t r a s t w i t h the standard p i c t u r e i n Reggepole models, where there i s an f , 

exchange degenerate w i t h the w, and a pomeron whose i n t e r c e p t i s about 

0. 5 higher. Although the Chew-Rosenzweig scheme d i d pass some experimental 
(31 32) 35 t e s t s , ' the recent data on Vector Meson produc t i o n (D.W. DUKE ) 

Cannot be described by t h i s scheme. On the other hand the standard p i c t u r e , 

1. e. »-f EXD model, can adequately describe the data. 

( i i ) Two-Vacuum t r a j e c t o r i e s 

Having seen from the recent data on Vector Meson Production, the need 

f o r two Vacuum t r a j e c t o r i e s , one would l i k e to ask whether the existence of 

such two Vacuum t r a j e c t o r i e s are c o n s i s t e n t w i t h the t o p o l o g i c a l expansion. 

I n Ref. (36) Veneziano showed t h a t the u n i t a r i t y c o n d i t i o n f o r h - 0 (no-

handles) i m p l i e s t h a t f a c t o r i z a b l e poles appear i n C ( = p + C, the plane 

plus the. C y l i n d e r ) and not i n C alone. The Chew-Rosenzweig scheme not only 

s a t i s f i e s t h i s requirement but also makes the t o t a l number of poles i n C 
36) 

the same as i n P. Veneziano suggested an a l t e r n a t i v e scheme which 

s a t i s f i e s the above requirement, and which ends up w i t h two Vacuum t r a j e c t o r i e 

( i i i ) The Regenerated p . 

The i n t e r c e p t of the regenerated w i s s t i l l low (eq. 48) but 

perhaps n o t very f a r from the p h y s i c a l W. The r e s i d u e , however, i s too 

small compared to the planar one (see eqs. 49, 5 0 ) . 
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Figure captions 

F i g . 1 : The f o u r p o i n t f u n c t i o n planar dual diagram 

F i g . 2 : The one planar loop. 

F i g . 3 : The two planar loop diagram 

F i g . A : A two non-planar loop diagram which i s suppressed by a f a c t o r 

I/V̂ l compared to F i g . 3. 

F i g . 5 : A two-non planar loop diagram which i s suppressed by a f a c t o r 

compared to F i g . 3. 

F i g . 6 : The t o p o l o g i c a l equivalence between the c y l i n d e r and a non-planar 

one loop w i t h vacuum Q.N. i n t-channel. 

F i g . 7 : Lowest order diagrams v i o l a t i n g IOZ r u l e , 7a s i n g l e 

disconnected 7b double disconnected. 

F i g . 8 : The two-loop i n t e r f e r e n c e k e r n e l which gives the g - s p l i t t i n g . 

(a) The quarks have the same o r i e n t a t i o n a t both ends of the 

diagram. 

(b) The quarks have opposite o r i e n t a t i o n at the ends of the diagram. 
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CHAPTER I I I 

39 U n i t a r i t y , Pion Production and Exotic T r a j e c t o r i e s 
1. I n t r o d u c t i o n 

I n the previous chapter we discussed several attempts t o c o n s t r u c t 

t-channel Regge t r a j e c t o r i e s from m u l t i - p a r t i c l e s-channel u n i t a r i t y both 

i n the framework of the t o p o l o g i c a l expansion and e x p l i c i t s-matrix models. 

We found from both approaches t h a t , i n order to get a suppressed 

e x o t i c i n the output, some s o r t of an incomplete c a n c e l l a t i o n .should take place 

between the c o n t r i b u t i o n s of the produced objects of p o s i t i v e and negative 

C - p a r i t y , e.g. ve c t o r and tensor mesons. I n a d d i t i o n to t h i s , the assumption 

t h a t v e c t o r and tensor mesons dominate m u l t i - p a r t i c l e u n i t a r i t y i s j u s t i f i e d 
37 

expe r i m e n t a l l y where about 607. - 807. of the produced pions are estimated 

to come from the decay of non strange v e c t o r and tensor mesons. 

I t i s w e l l known, however, t h a t the exact u n i t a r i t y equation 

includes only s t a b l e p a r t i c l e s i n the inte r m e d i a t e s t a t e s , and attempts to 

r e w r i t e the u n i t a r i t y equation i n terms of resonances or " c l u s t e r s " lead to 

problems of double counting, e t c . Some of these problems are discussed by 
38 

Freeman, Zarmi and Veneziano, who avoid them only by i g n o r i n g the resonances 

and working i n an approximation i n which pions are d i r e c t l y produced. 

I n t h i s chapter we w i l l consider a model w i t h only pions as produced 

p a r t i c l e s ( i n f a c t we should consider the production of Q ("17^ ^ q u a r t e t . 

Since, however, production i s suppressed due to i t s h i g h mass, we ignore 

production here. I n the next chapter the e f f e c t of p r o d u c t i o n w i l l : 

be taken i n t o account). I n our work we endeavour to see how the pion 

production model of CH. I I , s e c t i o n 2 can be improved so t h a t a more reasonable 

output i s obtained. I n one sense our problem must have a s o l u t i o n since i f 



we know the amplitude ab — ^ n, where n i s a s t a t e of n pions then 

Im (ab — £ ab) i s completely determined by u n i t a r i t y and w i l l i n e v i t a b l y 

y i e l d the e x p e r i m e n t a l l y observed t r a j e c t o r i e s . However i t i s not c l e a r 

whether a s a t i s f a c t o r y r e s u l t can be obtained w i t h a reasonably simple 

( i . e . multi-Regge type) d e s c r i p t i o n of the ab — ^ n amplitudes. We s h a l l 

assume a multi-Regge form f o r ab —> n amplitudes; i . e . we order the 

produced pions i n r a p i d i t y and approximate each sub-energy by i t s Regge form 

(see .Fig. 1 ) . The t - i n t e g r a t i o n s are performed by the simple expedient 
13 

of r e p l a c i n g f u n c t i o n s of t by s u i t a b l e averages. For the exchange 

reggeons we consider only v e c t o r and tensor t r a j e c t o r i e s , we n e g l e c t s i s t e r 

t r a j e c t o r i e s and the unnatural p a r i t y exchanges. The exchange degeneracy of the 

i n p u t t r a j e c t o r i e s £ J/*"̂ * 5"/A^V*3 n°t assumed. As a r e s u l t of t h i s the 

Pomeron exchange i s not neglected completely i n the i n p u t , i t s c o n t r i b u t i o n 

comes through the i n c l u s i o n of f which i s higher than the o t h e r s . I n 

a d d i t i o n to v e c t o r and tensor t r a j e c t o r i e s , we include 1 = 2 t r a j e c t o r i e s i n 

the i n p u t . I t w i l l t u r n out t h a t both of these e f f e c t s ( i . e . the i n c l u s i o n 

of I2 = exchange and breaking of EXD) improves the output spectrum. 

I n the next s e c t i o n we introduce our model. The c o u p l i n g ^nd 

signature matrices are given i n Section 3. Section 2^ contains the r e s u l t s 

when 1 = 2 i n p u t i s neglected. I t s lowest order c o n t r i b u c i o n i s discussed 

i n Section 5. F i n a l l y Section 6 i s devoted to conclusions and some remarks. 



2. The Model 

We use the s i m p l i f i e d form of the multi-Regge model of reference ( 1 3 ) . 

The c o n t r i b u t i o n , to u r i i t a r i t y o f the diagram depicted i n F i g . 2, summed over 

the number of rungs ( p i o n s ) , i s denoted by A- . , . . . I n m a t r i x 
( Cf ̂  J ̂  } J_ j • & ' 2 

n o t a t i o n we w r i t e 

- v v a A 

and Q i s a diagonal m a t r i x w i t h elements 

f S-
i *• 

Here y . i s the signature f a c t o r of the i t r a j e c t o r y 

( i ) 

where V has elements given by 

(3) 

(*> 

w i t h i corresponding to even/odd s i g n a t u r e , and «^c» i s the i ^ 
? 

t r a j e c t o r y taken a t a s u i t a b l e value of t . I n f a c t we choose t =-0.1 Gev". 



I t i s convenient to de f i n e 

a - a 2 A a 

V z Q V O 
( 5 ) 

So t h a t eq. (1) becomes 

A •=. V * V A (6) 

- I 

A - f i - Y ^ (see F i g . 3) ( 7 ) 

The leading output Regge t r a j e c t o r y ( a t t = 0) i s then the h i g h e s t 
~* 

value of J f o r which det ( 1 - V) = 0. We c a l c u l a t e t h i s f o r I = 0,1,2,3 

and f o r even and odd G - p a r i t y . 

3, The Coupling and Signature Matrices 

For the sake o f completeness we w r i t e down here the matrices 

V o f eq. ( 5 ) . I n f a c t because of the r e d e f i n i t i o n of V i n eq. ( 5 ) ; 

these matrices are symmetric. Since we have s i x exchanged t r a j e c t o r i e s 

( f , w, A^, x, y; x i s an e x o t i c s t a t e w i t h p o s i t i v e G-parity and 

p o s i t i v e s i g n a t u r e , y i s an e x o t i c s t a t e w i t h negative G-parity and 

negative s i g n a t u r e ) , i t turns out t h a t we w i l l have i n general 36 p a i r s 

intermediate s t a t e s ( 1 ^ and 1^ i n F i g . 3 ) . Since however we exclude 

( 1 = 2 , 1 = 2 ) intermediate s t a t e s and since we conserve I - s p i n and G-pari 

i n the model, the r e l e v a n t i n t e r m e d i a t e s t a t e s are: 



i ) f o r the f - exchange amplitude i n t - channel, 

i i ) f o r the w - exchange amplitude i n t - channel, 

i i i ) f o r thej> - exchange amplitude i n t - channel 

(AXl!JJ , (5, Ax) . 
i v ) f o r the A^ - exchange amplitude i n t - channel, 

L*. Ai) . l*,*x\ (f,?)-

v ) f o r the x - exchange amplitude i n t - channel, 

v i ) f o r the y - exchange amplitude i n t - channel, 

For the residue we put 

a. J 

= Gy ( 9 ) 
2. 



d o 1 ) 

The e q u a l i t y i n eq. (9) would f o l l o w from exchange degeneracy. We 

assume i t here t o reduce the number of i n p u t parameters - r e l a x i n g i t 

would a l l o w some improvement of the outp u t but since i t already 

reasonable we do n o t consider t h i s necessary a t t h i s stage. Notice 

-also t h a t i n eqs. (10) and (10*") we have defined what we c a l l "the 

reduced c o u p l i n g " which i s independent o f of the p a r t i c l e s , and 

i t i s r e l a t e d to the c o u p l i n g when we have d e f i n i t e 1^ f o r the 

p a r t i c l e s by 

F i n a l l y f o r xhe I - s p i n crossing m a t r i c e s , we f o l l o w reference (14) 

•and we c a l c u l a t e them i n terms of 6-j symbol; (see appendix A ) . 

.The V matrices are: 

G 
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The small l e t t e r s a, b, c, d and z°s which appear i n the 

preceding V matrices represent the a p p r o p r i a t e elements of the Q 
at/ 

matrices (see eq.. 3 ) . To i l l u s t r a t e the c a l c u l a t i o n of the V 

matrices elements, we do t h i s here f o r the element which appears i n the 

f i r s t row and t h i r d column i n Y m a t r i x . For t h i s element, we have i n 

s-channel the 1 = 1 process; 

* A 4 » A z ? 

(8) 

- f - -5- e / a ° la* N 

Notice t h a t because i s l i n e a r combination of f CMMV ) ) 

and because we d i d not in c l u d e t h i s e f f e c t i n the d e f i n i t i o n of Ĝ , we 

have an a d d i t i o n a l ^"X" i n f r o n t of Ĝ . 

But the crossing m a t r i x element f o r the above process when X 

i s exchanged ( l f c = 2 ) i s given by 

hence 

3. 



4. Evaluation of Regge t r a j e c t o r i e s w i t h o u t e x o t i c i n p u t 

I n t h i s s e c t i o n we c a l c u l a t e the lea d i n g output Regge t r a j e c t o r i e s 

( a t t = 0) by s o l v i n g the equations Jb€"i ( I _ V N - ft f o r the 

hig h e s t value of J. The i n p u t to the c a l c u l a t i o n i s the values o f ei, 

f o r fe A ^ uJ owv»o/ £ , We take these to be reasonable experimental 
/ 2 values of the t r a j e c t o r i e s a t t = - 0.1 (Gev) . For the f we take a value 

midway between the "pomeron" a t (0) = 1 and the exchange degenerate f 

a t «£ (0) Csf 0.5. This i s e i t h e r the "unflavoured" fP = f of dual 

u n i t a r i s a t i o n theory, or i t i s a phenomenological "average" of the {P 

and the f . We take 

u
s - (11) 

'- (12) 

Since the e x t r a e f f e c t s ( t h e e x o t i c exchange e f f e c t s ) do n o t a f f e c t 

the w and f t r a j e c t o r i e s (because we do not consider ( 1 = 2 , 1 = 8} 
2 2 

intermediate s t a t e s ) , we choose and G2 to give the c o r r e c t 

experimental output f o r ot = 0 . 4 and oC ~ 0.8. This r e q u i r e s 

" ^ < ( I S ) 



f: 8 

The r e s u l t i n g output t r a j e c t o r i e s are shown i n the f i r s t column 

of t a b l e ( 1 ) . We see t h a t the r e s u l t s are encouraging. I n p a r t i c u l a r 

we o b t a i n a reasonable value f o r the f output, the c o r r e c t sign and 

magnitude f o r the A- • s p l i t t i n g and values of and °L>J 

which show considerable suppression of e x o t i c s . 

Before we close t h i s s e c t i o n we would l i k e to mention t h a t i n 

order to generate an output w - t r a j e c t o r y , i t i s necessary not o n l y 

to -break exchange degeneracy between the t r a j e c t o r i e s , but also between 

the couplings. F i r s t of a l l i n the models where one assumes the degeneracy 

of the t r a j e c t o r i e s ; the i n t e r f e r e n c e terms of t r a j e c t o r i e s w i t h opposite 

signatures do not c o n t r i b u t e to the overlap f u n c t i o n . Since, the two 

corresponding Regge exchanges f o r the w-exchange amplitude i n t-channel 

are (w, f ) and (ft Ai} / the above assumption prevents the genera t i o n 

of an output w - t r a j e c t o r y . I n the model we are c o n s i d e r i n g we are able 

to generate w - pole because we do not assume exchange degenerate t r a j e c t o r i e s 

However from w m a t r i x the equation det ( 1 - V) = 0 gives ( a f t e r 

p u t t i n g J = «Z = 0.4) 

*4 & 

which shows t h a t G, must be d i f f e r e n t from G„ i n order to o b t a i n 
J . 2. 

p h y s i c a l l y acceptable values f o r these c o u p l i n g constants. E.g. i f we 

take G1 = G» = G, eq. (14) g i v e s : 

Cr r - <d-o7 ^ t o-o8 
(14) 



r. a 

5. The e f f e c t of 1 = 2 exchange 

We al l o w the p o s s i b i l i t y of X and Y exchange by i n t r o d u c i n g the 

v e r t i c e s g o f equation (1G). We do not of course have experimental 

i n f o r m a t i o n on the t r a j e c t o r i e s o^,y and so we take values which 
x y 

agree reasonably w e l l w i t h our o u t p u t , i . e . 

The method we have used to c a l c u l a t e the e f f e c t of these exchange i s 

discussed i n d e t a i l s i n Appendix B ( i n f a c t we evaluate, to -lowest 
2 

order i n g , the e f f e c t of X and Y exchange on our "J j\ X and Y 
' i 

t r a j e c t o r i e s ) . 

I t turns out t h a t , due to the size of the m a t r i x V f o r A„ 

(previous s e c t i o n ) t h i s procedure would be very complicated i n t h i s 

case, f o r t h i s reason we have c a l c u l a t e d the e f f e c t o f P s p l i t t i n g 

i n the V m a t r i x o f i n two ways. F i r s t ; we ignore the $ A^ 

s p l i t t i n g i n the unperturbed c a l c u l a t i o n "the c a l c u l a t i o n of s e c t i o n 4", 

thereby o b t a i n i n g an output 

Now i f we include the e f f e c t s p l i t t i n g i n the exact c a l c u l a t i o n 

of s e c t i o n 4, we o b t a i n 

(17) 



On the other hand, the c o n t r i b u t i o n of J s p l i t t i n g c a l c u l a t e d i n 

the p e r t u r b a t i o n method of t h i s s e c t i o n i s 0.17, whereas equations ( 1 6 ) , 

(17) show t h a t i t s c o n t r i b u t i o n c a l c u l a t e d e x a c t l y i s 0.15. We conclude 

t h a t t h i s e f f e c t , f o r the A^, may be t r e a t e d i n lowest order ( e f f e c t i v e l y 

t h i s means t h a t we ignore cross-terms between ( £ k^) s p l i t t i n g e f f e c t s 

and X/Y e f f e c t s ) . 

The F i n a l r e s u l t s are shown i n the second column of t a b l e ( 1 ) . We 
2 2 note t h a t g has a much greater e f f e c t on X, Y than on $ f A^. For g ^ 0 

the'-effect i s to lower the e x o t i c t r a j e c t o r i e s . Values s i m i l a r to those 

given i n eq. (13) take both and below zero - which i s probably 

adequate f o r t h i s type of c a l c u l a t i o n . The value of o£ A * s e x c e l l e n t 
A 2 

but *>tj comes out too small by approximately 0.1. T e n t a t i v e l y we a t t r i b u t e 

t h i s to the f a c t t h a t we have ignored the pion t r a j e c t o r y i n the i n p u t , 

since i t i s w e l l known t h a t the (2 "IT ) s t a t e makes some c o n t r i b u t i o n 

to the p h y s i c a l % . 

F i n a l l y , we have c a l c u l a t e d the p o s i t i v e and negative G, I = 3 

t r a j e c t o r i e s (Z & W) which we now o b t a i n 

o u t </ a 
< w U * ^ ( 1 9 ) 

With reasonable values of g and g , there does not seem to be 

any danger of these t r a j e c t o r i e s r i s i n g too h i g h . 



6. Conclusion and f i n a l remarks 

As we have mentioned i n the i n t r o d u c t i o n an exact d e s c r i p t i o n of 

the ab — > n amplitudes w i l l i n e v i t a b l y lead, through u n i t a r i t y , to the 

observed Regge t r a j e c t o r i e s . We have used a very s i m p l i f i e d form of the 

multi-Regge form f o r the amplitudes, w i t h r e a l i s t i c i n p u t t r a j e c t o r i e s and 

obtained reasonable values f o r the output 1 = 0 , 1, 2, 3. From the 

t a b l e of the r e s u l t s we see t h a t ; 

( i ) The Breaking of Exchange degeneracy plays an important r o l e 

i n making a s i g n i f i c a n t d i f f e r e n c e between the 1 = 1 and 1 = 2 outp u t 

(see the f i r s t column of the t a b l e ) . 

( i i ) The e x o t i c exchange (see the second column of the t a b l e ) has 
2 

much gr e a t e r e f f e c t on X, Y than on £ y A^. This e f f e c t ( f o r g ^ 0) i s 
i n the r i g h t d i r e c t i o n ( a p a r t from J I ) . e.g. the lowest order 

2 
c a l c u l a t i o n of t h i s e f f e c t pushes Y down by (-1.76 g ) and A2 up 

2 

by ( + 0 . 1 g ) . However one may w e l l ask whether t h i s suppression of 

e x o t i c s i s s u f f i c i e n t . The data (see the discussion i n r e f . 13) f o r 

example may w e l l r e q u i r e much smaller values o f . . I n f a c t i n 
6 ?CO 1X.C 

r e f s . (13, 17) (see also Ch. 2, £ 2) i t i s shown t h a t a complete 
c a n c e l l a t i o n i n the u n i t a r i t y sum f o r e x o t i c exchange re q u i r e s the 

+ 
p r o d u c t i o n of 1 and 2 w i t h equal s t r e n g t h , and i t i s u n l i k e l y t h a t 
these c a n c e l l a t i o n s would a r i s e from the type o f c a l c u l a t i o n performed here 

( i i i ) The s i g n of f A^ s p l i t t i n g i s r i g h t , but the amount of f A^ 
2 

s p l i t t i n g i s small (e.g. f o r g = 0.1 ^ f ^ A j , ~ 0.05). 
( i v ) The pomeron of the model i s the f . we have only one vacuum 

2 2 

t r a j e c t o r y l y i n g above the o t h e r s . I n f a c t w i t h and Ĝ  given by 

eq. ( 1 3 ) , the equation det ( 1 - V ( f ) ) = 0 gives 



From which we f i n d t h a t the h i g h e s t r o o t i s J = 0.8, and the second 

one i s a t J = 0.3 
en.*- . 

Supplement: Repeating the c a l c u l a t i o n w i t h oLj> (. 0 >i « e»- b 

Since i n Ch. V, we w i l l f i n d t h a t the one ladder vacuum t r a j e c t o r y 

i s capable to reproduce the e x p e r i m e n t a l l y observed m u l t i p l i c i t y and 
J 2 

charge exchange r a t i o s a t energies S / 40 Gev , and a t high energy 

one needs the m u l t i - l a d d e r vacuum t r a j e c t o r y to e x p l a i n these e f f e c t s . 

We use these m u l t i - l a d d e r diagrams to create a new high l y i n g vacuum 

s i n g u l a r i t y ( t h e Pomeron) i n which case we do not have the = f 

r e l a t i o n so we expect the f to be lower. ' 
/ etv* 

For t h i s reason we take e.g. ( o ) = 0.6. With regard to 
f we s t i l l consider i t a t 0.7, t h i s i s because both f and some 
T 

of the promoted f (The (p ) are expected to c o n t r i b u t e to the i n p u t 

vacuum t r a j e c t o r y . I f we repeat the c a l c u l a t i o n of s e c t i o n 4 

Now, we o b t a i n ; 

(20) 

to be compared w i t h those of eq. ( 1 3 ) . 

F i n a l l y , w i t h the values of and Ĝ  given i n ( 2 0 ) , we repeat 

the c a l c u l a t i o n of sections 4 & 5 and the r e s u l t s are shown i n t a b l e 2. 

The e f f e c t i s to reduce oL° U t i n the f i r s t column by approximately 

0.03 ( a p a r t from f ) , w h i l e the values of the second column stay 

almost the same. 



TABLE 1 

T r a j e c t o r y C a l c u l a t i o n w i t h o u t X&Y F i n a l r e s u l t s 

W 0.4 0.4 ( f i t t e d ) 

f 0.8 0.8 ( f i t t e d ) 

f 0.44 0.44 - 0.2g 2 

A 2 0.36 0.38 + O.lg 2 

X 0.17 0.17 - l . l l g 2 

Y 0.15 0.15 - 1.76g 2 

TABLE 2 

T r a j e c t o r y C a l c u l a t i o n w i t h o u t X&Y F i n a l r e s u l t s 

W * 0.4 0.4 ( f i t t e d ) 

f 0.6 0.6 ( f i t t e d ) 

0 0.4 0.4 •- 0.23g 2 

A 2 0.33 0.33 + 0.12g 2 

X 0.147 0.147 - 1.2g 2 

2 
Y 0.12 0.12 - 1.9g 



Figure captions 

F i g . 1 : The produced pions are ordered i n r a p i d i t y , and each sub-process 

i s approximated by i t s Regge form. 

F i g . 2 : The c o n t r i b u t i o n to u n i t a r i t y of the diagram w i t h n pion 

produced. 

Fi g . 3 : Symbolic r e p r e s e n t a t i o n to eq. ( 6 ) . 
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CHAPTER IV 

U n i t a r i t y w i t h only Stable P a r t i c l e Production 

I n t r o d u c t i o n 

This chapter i s a c o n t i n u a t i o n to C h . I I I . , where as we mentioned 

e a r l i e r t h a t since the exact u n i t a r i t y equation includes only s t a b l e 

p a r t i c l e i n the inte r m e d i a t e s t a t e s , and since i n our model we ignore 

baryons and we consider a world w i t h o u t strangeness, t h i s means t h a t we 

should only include pions and Since, however, are much heavier 

than pions, we do not expect ^'s to be produced w i t h the same str e n g t h 

as pions; t h e r e f o r e we associate a.suppression f a c t o r x when V. i s 

produced. We consider a few i n s t r u c t i v e examples; 

I n the next s e c t i o n we discuss the cou p l i n g scheme. The co u p l i n g 

and signature matrices are given i n s e c t i o n 3. The r e s u l t s of the 

c a l c u l a t i o n and the conclusions are given i n s e c t i o n 4. 

The Coupling Scheme 

(x = 0.5, x = 0.25, and x = 0.125). 

The r e l a t i v e c oupling strengths of O n T / X ) t o 

* £ A t "f) can be c a l c u l a t e d from the expression; and 2 

(1) 

where M. and 2 x 2 matrices and represent our i 
2 ) i n the absence of strangeness, e.g. f o r the 

SU(3) m u l t i p l e t s (0* l"and 

we have 

M p = Psuedoscalar (2) 



( o 

n = 

p 

"W 

( 3 ) 

and s i m i l a r matrices f o r 1 and 2. which appear i n eq. (1) are 

the charge conjugation quantum numbers of the n u t r a l members of 

m u l t i p l e t . I f C]^2^3 = + (—)> w e s a y t n a t the coupling i s symmetric 

( a n t i - s y m m e t r i c ) . Thus, f o r example f o r the v e r t e x 

> ( 4 ) 

we have: 

TV (nf Mv M T) * tec. Tr (M r^R,) 
( 5 ) 

which gives; 

On the ot h e r hand f o r the ve r t e x 

( 6 ) 

Thus "as i t should be the case" does n o t couple t o 1 and 2 

because the conservation of I - s p i n and G-parity f o r b i d t h a t . 

we have 



•7V r n p i ^ n ^ + c^cc 7V<n pryj,) 
(7) 

which gives 

and f o r the v e r t e x \ • , • >^ — we o b t a i n 

Now i f we make use of the assumption used i n C h . I I I (eq. ( 9 ) ) 

"* I T * 
Cr z. G~ Jf — Gr 

we o b t a i n t h a t a l l the couplings of eqs. (8) and (9) are equal and 

equal to G,,. 



On the oth e r hand, f o l l o w i n g eq.(s) of C h . I I I , 

We f i n d t h a t the couplings of eq. (6) are equal, and equal to 

and f i n a l l y f o r the e x o t i c we w r i t e as before; 

-> x y 

Notice t h a t the above coupling scheme i s eq u i v a l e n t to the Zweig 

r u l e s f o r quark graphs, where one can o b t a i n the above coupling using 

the p i c t o r i a l techniques discussed i n r e f . ( 2 0 ) . 

3. The Couplings and Signatures M a t r i c e s ; 

I n the model of C h . I I I , because we produce only pions we have 

o f f - d i a g o n a l m a t r i x elements, as a r e s u l t of G-parity conservation. Here, 

the e f f e c t of producing ijji ( i n a d d i t i o n to pions) i s to f u l l completely 

the diagonal elements, ( i t adds nothing to the other elements of the 

m a t r i c e s ) . Thus we have: 
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4. Ev a l u a t i o n of Regge t r a j e c t o r i e s 

We c a l c u l a t e here the leading o u t p u t Regge t r a j e c t o r i e s ( a t t - 0) 

by s o l v i n g the equations det ( 1 - Vo) = 0 f o r the hi g h e s t value of J. 

The i n p u t to the c a l c u l a t i o n are as bef o r e : 

V " V d o ) 

2 2 

We determine and G2 from O and f matrices by r e q u i r i n g 

the leading output to be equal to 0.4 and 0.8 r e s p e c t i v e l y . This i m p l i e s : 

x Ĝ  G 2
2 

k 0.2 0.1 

k 0.21 0.12 (11) 

H 0.21 0.123 

0 0.216 0.13 
2 

The reason why the s t r e n g t h of . the c o u p l i n g G ^ decreases w i t h i n c r e a s i n g x 
2 

(more than Ĝ  does) i s because: 

( i ) the i n c l u s i o n of ^ produc t i o n comes through the coupling 

G 2 only (see s e c t i o n 2) and ( i i ) the s t r e n g t h of Ĝ  and 

are determined i n such a way to give the c o r r e c t experimental output f o r 

o£j^ and P^^o • Thus because of ( i ) when x increases the c o n t r i b u t i o n of 

G 2 to the matrices increases, but because of the c o n s t r a i n t ( i i ) , the 

value of G2 decreases. 

The r e s u l t s of the c a l c u l a t i o n are shown i n the t a b i c below f o r 

x = 0.5, 0.25 and 0.125. We give also i n the t a b l e the e f f e c t of e x o t i c 



exchange c a l c u l a t e d as before, f o r x = 0.25. 

T r a j e c t o r y C a l c u l a t i o n w i t h o u t e x o t i c F i n a l r e s u l 

0.4 0.4 ( f i t t e d ) 

f 0.8 0.8 ( f i t t e d ) 

0.47 
f 
J 0.47 0.47 - 0.26 g 

0.46 

0.23 

x 0.21 0.21 - 1.05g 2 

0.19 

0.26 

A 2 0.32 0.32 + O.lg 2 

0.35 

0.09 

0.12 0.12 -• 1.7g 2 

0.13 

From t h i s t a b l e we see t h a t the e f f e c t o f the i n c l u s i o n of *\ i s to 

push up (down) the p o s i t i v e G-parity poles (negative G-parity p o l e s ) . As a. 

r e s u l t of t h a t we get approximately the c o r r e c t ^ s p l i t t i n g i n s i g n and 

magnitude. However f o r a reasonable values of x, t h i s e f f e c t seems to be 

q u i t e small compared to the o r i g i n a l r e s u l t s . We have c a l c u l a t e d ( w i t h x = 

0.25) the m u l t i p l i c i t i e s f o r TV'*and p r o d u c t i o n i n the I -- 0, 

C(+) amplitude ( i . e . the f ) t and we found t h a t the r a t i o of p r o d u c t i o n 

to pions i s about V l 7 . D e t a i l s of these c a l c u l a t i o n s and oth e r 

c a l c u l a t i o n s of m u l t i p l i c i t i e s are given i n the next chapter. 



C H A P T E R V 

THE CALCULATION OF MULTIPLICITIES 

1. I n t r o d u c t i o n 

This chapter i s devoted to the c a l c u l a t i o n of m u l t i p l i c i t i e s . We 

do t h i s i n the X ^ s o / ( r e amplitudes, i . e . the f , which dominate 

a t high S. I n the next s e c t i o n we c a l c u l a t e the average m u l t i p l i c i t i e s o f 

1 = 0 , 1, and 2 exchanges i n the conte x t of the pion production model of 

Chapter I I I , from which we deduce the t o t a l m u l t i p l i c i t y and the average 

m u l t i p l i c i t i e s of charge t r a n s f e r s , < V » A ^ _ 0 > , < ^ 9 t ± , > , ^ j . * ! ^ 

I t w i l l t u r n out t h a t these r e s u l t s are i n good agreement w i t h the data 

a t energies S ^ 40 (Gev) , but are incompatible w i t h the data a t 

higher energies. This leads us to the suggestion t h a t a t higher energies 

a new e f f e c t takes place, namely the two and more ladder c o n t r i b u t i o n t h a t 
(23) 

was p r e d i c t e d i n the dual-model, and which w i l l be the su b j e c t of 

Chapter V I . F i n a l l y , we c a l c u l a t e i n s e c t i o n 3 the average m u l t i p l i c i t y 

of pion and *J production i n the conte x t of the st a b l e p a r t i c l e 

p r o d u c t i o n model of Chapter IV, i n the case when the suppression f a c t o r 

2. The t o t a l and change t r a n s f e r s m u l t i p l i c i t i e s 

2.1. The method 

To c a l c u l a t e the 1 = 0 , 1, and 2 exchanges, we put a f a c t o r 

\T̂ O * \T"*i * \T>\ / i n e a c h 1 = °» 1» 2 propagators. Since 

we are consi d e r i n g ladders w i t h equal I-Spin i n both sides 

( f exchange i n t channel), we i n s e r t a f a c t o r i n t o 

of eq. (3) Chapter I I I . 



Then we have 
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* 

Then we w r i t e 

t o 

a t 7 : where aC i s the leading pole ( t h e f ) , /\ 

has a pole. The residue i s given by 

Res A f y . . T * ) . > * ^--< K +)A(T) (2) 

I f we w r i t e the m a t r i x V i n the f o l l o w i n g abbreviated form 

( n e g l e c t i n g X and Y c o n t r i b u t i o n ) 

© A © B 
A © 3> 0 
o 3> ^ © 

O O o 
equation 2 gives \ 

8-SJ>* ^ 
A &}-H J>-DB A a 

/12) J>-J>B* i*}t A8D 

( 3 ) 

e<\ t 



Expanding det about 3=. ̂ 6 M > H and 

n o t i c i n g t h a t det £ I - V C*( \ \ c O , equation 3 becomes 

C4) 

Now we w r i t e 

ACs)*R S 
<5) 

I f we take a p a r t i c u l a r component e.g. the f i r s t diagonal element 

of the m a t r i x V_- (denoting A and R f o r t h i s component by 

) equation (5) gives Au and R(| 

A ($) = RCs) S 
II u (5') 

The mean m u l t i p l i c i t y o f I - Gap i s given by 

11 X 
V 

(6) 

Since the constant term i n eq. (6) depends on the p a r t i c u l a r 

component of the m a t r i x L. which we are c o n s i d e r i n g , we c a l c u l a t e 



t h i s term f o r a l l the diagonal elements of !— and then we take 

the average. 

2.2. The c a l c u l a t i o n of logs c o e f f i c i e n t 

We have done these c a l c u l a t i o n s i n two cases: f i r s t , when X and Y 

c o n t r i b u t i o n to the m a t r i x V i s neglected, second, when t h i s c o n t r i b u t i o n 

i s taken i n t o account. 

I n the f i r s t case the equation det ( i - v ) 0 =o 

• I o 
(7) 

the 

But when we keep \ 

the h i g h e s t r o o t of eq. (7) i s 

and 3( a s parameters we have 

(8) 

Since, however, and are a r t i f i c i a l parameters 

( i n eq. (6) we put ^ x*X " I a f t e r the d e r i v a t i v e ) we w r i t e : 

(9) 

and we expand about ^ I t o a f i r s t order. Thus we have: 



» 1 

V J* * r ^ 3 * J 1 ( 1 0 ) 

e 

i ft 

T - T . r-— + — 

6 * ' 6 
where 

p u t t i n g the approximations of eq. (10) i n eq. (7) we get, 

6 (11) 



Since eq. (11) holds f o r a r b i t r a r y ?&• and ?t- w e have 

1 l-x-
* 3 

- o.75 

(12) 

6 
e 

6 

To calculate the mean m u l t i p l i c i t y of I-gaps, when X and Y 

contribution to the matrix V i s taken into account, we need f i r s t to 
AM 

solve the eq. det „ V } — o for the highest root of J. In order 
2 

to do that we need to give the coupling, g a reasonable numerical value. 
2 

Putting g =0.1 we get 

J = 0.81 (exact solution) 

(13) 

J = 0.815 (perturbation method) 

From equation (13) we conclude that ( i ) the e f f e c t of exotic exchange 

.pushes ( f ) up and ( i i ) This e f f e c t calculated by the perturbation method 

(see app. B) i s quite close to i t s exact value. This proves the v a l i d i t y of 

the perturbation method ( t h i s r e s u l t i n f a c t reminds us with a si m i l a r one, 

namely the e f f e c t of f Az, s p l i t t i n g i n the V matrix of A a " C H . I I I y 5 

where we found that the value of this e f f e c t calculated exactly (by the 

perturbation method) is 0.15 (0.17)). 



Taking the exact solution (J = 0.81) and proceeding as before 

we get f i n a l l y : 

(14) 

Comparing eqs. (14) and (12) we see that the e f f e c t of exotic 

exchanges i s to increase the t o t a l m u l t i p l i c i t y by a small amount. 

4*t 

2.3. The Calculation of the residue term 

We calculate the constant term i n the case when the X and Y 

contribution to V i s neglected. From eqs. ( 3 ) , (4) and (6) we wr i t e 

I I *• 

which gives: 

^ 81 

ii i 
*5a — I . 5 t - . o > v f 

4 - - 0 . o l - 0 ' ? ? - ~ 6 ' 3 7 

V 

(15) 

(16) 



# >.* -A 

The residue terms which corresponds to the other diagonal 

elements of JL^ can be calculated i n the same way, and they are 

given i n the following table: 

I b . 1 -••96 

X - 0 -©-?7 o.5v ©.15, 

and thus f i n a l l y we have; 

which gives 

(17) 

(18) 



In comparing with experiment we have to consider data on pp 

scattering. Clearly the c o e f f i c i e n t of the Ln term w i l l be unaffected 

by the nature of. the c o l l i d i n g p articles but there i s uncertainty 

i n the value of the constant. To f i x our parameters we take the 

average value given above and add one to i t . The one takes account 

of the ease with which either proton can excite to, f o r example,^) ^ 

which w i l l then produce an extra pion. 

2.4. Comparison with the data 

For pp scattering the t o t a l m u l t i p l i c i t y of charged par t i c l e s 
(6) 

i s well described by 

Assuming the number of neutrals equals the number of positive 

or negative charged particles and allowing f o r the necessary excess 

of two positive p a r t i c l e s we w r i t e ; 

(20) 

Proton« 
(21.) 

hence eqs. (22) and (20) give: 

e **7 Lcro S - \» 4 

(23) 



To be compared with the t o t a l m u l t i p l i c i t y predicted by our 

model, eq. (19). Clearly the prediction i s too small at high energies 
2 

by a factor of about two. On the other hand for S ̂  AO Gev the f i t ' 

i s quite reasonable. In view of the fact that we have not included **£ 

production i n the model (we w i l l do that i n the next section) and also 

the fact that we cannot calculate the pp process (notice that the 

constant term i n eq. (19) i s somewhat uncertain. I t i s determined as 

the average of the values obtained i n ff A.A lOCO and $ 

scattering), we regard the agreement at low energy as satisfactory. 

Next we consider the charge transfer along the.rungs. Assuming 

that I = 1 i n eq. (17) gives Q = +1, - 1 , 0 i n equal proportions, 

we get 

(24) 

At S ^ 2 0 ( ? « v w e f i n d 0,-*\, -\ i n the r a t i o 1:1:1.8 
(22) 

compared with the experimental values 1:1:2. Bearing i n mind the 

sources of error noted above the agreement i s excellent. 

Fina l l y we compare the r a t i o | & ^ | r ? j &Ops.o predicted by 

our model with the data. The data compilation of r e f . (22) shows this 

r a t i o i n the central region around zero r a p i d i t y . For TT P the 

r a t i o i s about 27. at 16 Gev/c and for pp i t increases from about 77. 

at 12 Gev/c to about 147. at 205 Gev/c. The increase with energy i s more 

apparent i f we compare this data with the newer data of Lamsa et a l . ^ ^ 

who show the r a t i o f o r TT P at 200 Gev/c as a function of r a p i d i t y gap y. 

At the mean charged r a p i d i t y gap (they only include charged p a r t i c l e s ) 



of 0.7 the r a t i o i s about two-thirds. Our model i s again satisfactory 

at low energies but i t c l e a r l y cannot accommodate the large amount of 

| | = 2 at high energy. We, therefore, have to explain ( i ) the 

o r i g i n of the additional |&C$\:i2. exchange, ( i i ) i t s energy 

dependence and ( i i i ) i t s dependence on Y. ' We defer the discussion 

of these questions and others to the next chapter. 

3. *The average m u l t i p l i c i t y of V * and c s production 

To calculate the average m u l t i p l i c i t y of pions and we in s e r t 

a factor 3^ C fc© ) i n t o V of eq. (2) Chapter I I I when TT C"Z ) 

i s produced; • 

(25) 

I 2 

I 26) 

Then we have (we take x = k) 

ft \* Sir 

A* O 4* 



The equation d e t ( l „ N / ) = 0 gives 

which gives 

(27) 

(29) 

hence 

IT 

which gives the r a t i o (30) 

rv f \ 
for large o 

The t o t a l m u l t i p l i c i t y of eq. (29) shows some improvement compared 

to that of eq. (19). 



CHAPTER VI 

40 Charge Exchange and the Nature of the Pomerort 

1. Introduction 

The main conclusion which we have drawn from the calculations 

of the preceding chapter i s that; while the single ladder model gives 
2, 

a good description of low energy data (s £ 40 Gev ), i t i s 

not satisfactory at higher energies, e.g. the predicted 

r e l a t i v e p r o b a b i l i t i e s (AC^( S < 1 > ̂ < y a o and ( A ^ s ^ J 

where AGJ i s the charge exchange across a r a p i d i t y gap, i s too 

small compared with the new data of Lamsa et a l , * ^ but i n agreement 
22 

with the data at low energy. Our main task here i s to explain 

the additional \&*\ \ = 2 exchange, and i t s Y and S dependence 

(see Fig. 5). 

Before we introduce our model we mention a possible explanation 

considered by Lamsa et a l . ^ In the strong ordering l i m i t one would 

not expect the occurrence of [AC?\ > \ gaps (see Fig. l a ) . 

However, f o r small A y the strong ordering would be vi o l a t e d . 

Consequently the single cross-over or multiple cross-over phenomena 

might occur, leading to | A><̂  ( > I gaps (see Figs. IB, 

l c , and I d ) . Given that the observed r a p i d i t y gaps are small we 

should not be surprised to see such terms. However we would expect 



1 0 0 

them to f a l l o f f faster with y (exponentially i n A s = e^)* and 

more important, since this e f f e c t i s local i n r a p i d i t y space i t does not 

have a high threshold and should not be energy dependent. I f the energy 

dependence which appears to occur i n the data i s confirmed then we must 

look elsewhere f o r an explanation. 

*Consider the process we order the pa r t i c l e s by t h e i r r a p i d i t y , 

i.e. y^Yt ' ^ w e t a ^ e a sub-process i n the ladder diagram 

; th i s sub-process has i n general contributions from both * 
t-channel and u-channel. 

—-> AS x-1 

In the strong ordering l i m i t $ V) ̂  , we don't have the second 

diagram. But when i s small, the second diagram might 

occur, leading to | 4 < ) l > i gaps (2 qq~ pairs i n t - channel). The 

contribution of this diagram i s roughly given by 

Since S»*fc U t: f o r t small and fixed we get 
y 

Thus i f the occurrence of lACJl gaps to be a t t r i b u t e d to the above 
y 

cross-over phenomena, we would expect them to f a l l o f f exponentially i n e . 

On the other hand the data points of Fig. 5 seem to f a l l on a Gaussian 

Curve. 



0 1 0 I 

We suggest that what i s being observed at high energies i s the 

decay of two (and more) heavy (M««*. \/""s) clusters which are approximately 

at rest i n the centre-of-mass system and which decay independently. 

Thus instead of having one ladder, we have several over-lapping ladders 

i n r a p i d i t y space (Fig. 2). 
23 

Such contribution i s expected, f o r example, i n the Dual models 

and i t arises from the diagram shown i n Fig. ( 3 ) . Notice however that 

i f we approximate the production amplitude i n Fig. 3 by the leading Regge 
2 2 

exchanges then t . effects would r e s t r i c t M, and ML to be S. 
min 1 2 -v\ > 

i n the large S l i m i t £ » - pf?? /S 1 a n <^ t n i s would then merely 

y i e l d the single ladder multi-Regge contribution (Fig. 4). On the other 

hand, i f we use a Dual model to describe the production amplitude we 

e f f e c t i v e l y include lower l y i n g t r a j e c t o r i e s which do not have the same t 

dependence i n t h e i r residues so that t . e f f e c t does not operate and we r mm r 

have an extra contribution from M ( — tt^S. In fact the Y\% t f\% 

i n t e g r a l diverges at this point and y i e l d a new (pomeron) s i n g u l a r i t y . In 

the language of the topological expansion; the cylinder i t s e l f has a 

s i n g u l a r i t y . Although i n the present Dual models th i s s i n g u l a r i t y i s at 2, 

there i s arguments f o r believing that t h i s s i n g u l a r i t y i s at 1 (see Chapter I , 

^ 5 ) , and so w i l l dominate over the promoted f at high energies. Also i t 

only occurs i n the Pomeron sector. In the next section we introduce our 

model and we compare i t s predictions with the high energy data. 

2. The Model, Comparison with the Data 

We consider a simple model i n which we permit contributions from 

one, two or three ladders, ignoring possible interference terms. At a 

given energy we denote the r e l a t i v e p r o b a b i l i t y of these diagrams by 

I ; Y\ 2 • W e a s s u m e t n a t t h e available energy i s divided equally 

JAN V 
StCTIOK 



amongst the two or three Ladders, i . e . i f we have an event with 

ladders produced simultaneously, and i f the t o t a l available energy is S, 

then the average m u l t i p l i c i t y for each ladder i s given by, 

< * > * ct + V, -6*3 -^J. (1) 

of course f o r a given S, there is a maximum number £0 

of .the ladders which can be produced simultaneously such that ^v\S i s 

large (at least of order two or three). 

Now the t o t a l m u l t i p l i c i t y of the produced p a r t i c l e s i s given 

by 
^ t h e t o t a l m u l t i p l i c i t y \ _ the t o t a l number of part i c l e s (2) 
* * the t o t a l number of events 

From eqs. (1) and (£) we get 

(3) 

where ^ v * £ 0 ^ i s t n e average number of pions produced ?.n a single ladde 

of energy S. We take t h i s from our previous calculations 

let. 

Since i n the analysis of Lamsa et a l . only charged par t i c l e s are 

included we take two thirds of equation 4. This gives 

0 > 



I 

The two and three ladders contributions are given respectively by; 

< w ) s i f t . [ < v. d V 9 ) > ] " 2 - ^ ^ 6 - 6 a U 3 T l 
(6) 

C ( l" (7) 

I t i s convenient to rewrite the above equations i n the following form, 

CO 
< « > , = ' X l ^ ^ (8) 

At S 400 Gev' (we take this value because the analysis of Lamsa 

et a l . are done i n 200 - Gev/c i n t e r a c t i o n s ) , we f i n d 

^ - 6-72 t ^ i ©«7«f7 , "^^©,77 



1 

The fact that these.values are not equal i s a r e f l e c t i o n of the 

presence of the constant term i n » % LojS + C. 

The known m u l t i p l i c i t y (eq. 3) gives a r e l a t i o n between 93 > 

so we have one degree of freedom which is r e s t r i c t e d by the fact that 

and are pos i t i v e . 

We turn now to the question of charge-exchange. I f the ind i v i d u a l 

ladders have rungs with AQ = 0, +1 and -1 with equal p r o b a b i l i t y 

then when the ladders overlap, we have f o r the p r o b a b i l i t y of l A Q l = 2 gap 

P f o r t w o ladders (12) 
z 

and 

P - 0.^6 for three ladders (13) 2. 

Here we normalise (following Lamsa et a l . ) so that + P( 

Similarly f o r a V*Q| ~ 3 gap, we have 

where th i s is normalised so that P̂  + P̂  = 1 

We assume a poisson d i s t r i b u t i o n i n each ladder. Thus f o r one 

ladder production, the p r o b a b i l i t y of length y having n p a r t i c l e 

i s given by 

CO -A, 9 R 
00 c o 

(15) 

1 

(14) 



and the pr o b a b i l i t y of a gap having length y i s 

where C | ) / - < 1 6 , > 

For the simultaneous production of two and three ladders, the 

corresponding relations are 

( I ) - 2 ^ 3 

(17) 

(18) 

(19) 

(20) 

where J\, «̂  are calculated from equations 8 - 10 as 

follows: 

From eq. 8 we wr i t e 

(21) 



s i m i l a r l y f o r the production of two and three ladders we have; 

CSL) 

(22) 

CO 
<»> = y» L ^ ^ ^ I - " / , ! ( 2 3 ) 

2 
At S 400 Gev , we get , 

From the above consideration we obtain f o r the pr o b a b i l i t y that a 

gap has \A Q I = 2 

V^^\K^\^rsi^ (25> 

Similarly f o r the prob a b i l i t y that a r a p i d i t y gap y has |AQ{ = 3 we 

obtain 

(26) 



1 

In Fig. 5a we show the r e s u l t i n g ?£(y) a n t* ^ ( y ) ^ o r values 

= 0.50 and g= 2.2. Similar f i t s can be obtained with other 

values. We see that the model gives a good description of the data. 

The p r i n c i p l e defect of the f i t i s that and P̂  are small near y = 0. 

This i s very l i k e l y because we have ignored the small amount of | & ^ = 2 

which w i l l inevitably occur i n the one ladder terms. Our model does not 

readily allow us to include these since they w i l l have a very d i f f e r e n t 

y - -dependence than \AQ\= 0, * 1 gaps. However, to i l l u s t r a t e the 

e f f e c t we ignore t h i s and suppose that one-ladder gaps have \AQ| = 0, 1, 2 

i n the r a t i o 34, 64, 2. This gives 

(27) 

The re s u l t i n g V^iy) and E^Cy) are shown as i n Fig. 5b, 

where Y-j. and Jfj are given the same values as i n Fig. 5a. 

There is also another important remark related to P ?(0). Since 

the 2-prong events (which are mainly &Q = 0) are not included i n 

the analysis of Lams a et a l . , one expects t o ^ e s m a ^ ^ e r > a n c* 

close to that predicted by the model. 

There are two further quantities which we can calculate with 

our model. The two p a r t i c l e c o r r e l a t i o n i s given by 

(28) 



24 which agrees w i t h the experimental value of 1.28. I n view of the 
f a c t t h a t we have ignored the d i f f r a c t i v e component, which i s w e l l 
known to c o n t r i b u t e p o s i t i v e l y to the c o r r e l a t i o n , t h i s agreement 
should n o t be taken very s e r i o u s l y . Also we can estimate Q by 

2 
the f o l l o w i n g method. We assume t h a t a t "low" energy, say S C 20 Gev 

the s i n g l e ladder ( f ) term dominates. 
2 

Then at S 400 Gev i t c o n t r i b u t e s a f r a c t i o n 

o r 

^ ~ i- O * *V* 3 ^ 

C S C (29) 

This i s n o t the best e v a l u a t i o n of oL£ but i t i s an o r i g i n a l one. 

F i n a l l y we note a q u a l i t a t i v e p r e d i c t i o n of the model which 

i s independent of the d e t a i l s . Since the c o n t r i b u t i o n of the sir.gle 

ladder diagrams w i l l reduce w i t h energy we expect ?2(y) curve to f a l l 

o f f less r a p i d l y w i t h y as the energy increases. Such a phenomenon 

i f observed would be very hard to e x p l a i n i n any " s i n g l e ladder model". 



Figure captions 

Fig. 1 : (a) Charges exchanged are r e s t r i c t e d to 

(b) N o . r e s t r i c t i o n on 

(c) The s i n g l e cross-over phenomenon. 

(d) M u l t i p l e cross-over. 

Fi g . 2 : Two-overlapping ladders. 

F i g . 3 : The dual model "two-ladder" c o n t r i b u t i o n to the Pomeron. 

Fig.. 4 : A term i n the s i n g l e ladder c o n t r i b u t i o n to the Pomeron. 

Fig. 5 : The c a l c u l a t e d P£(y) a " d ^ ( y ) compared to the data p o i n t s . 

I n (a) there i s no ( & ^ \ = 2 i n the s i n g l e ladder. I n 

(b) a small amount of (A<^| = ^ * s included i n the s i n g l e 

ladder. 
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APPENDIX A 

The Crossing Matrices 

I n t h i s appendix we c a l c u l a t e the r e l e v e n t elements of the 

c r o s s i n g matrices v/hich we need to w r i t e down the matrices V ; (Ch. I l l , b 3), 

Since i n r e f . (14) tables are provided f o r SU(2) and SU(3) crossing 

m a t r i c e s , we concentrate here only on those channels where one or more of the 

involved p a r t i c l e s are e x o t i c . Following the method of r e f . (14) we w r i t e ; 

A + & _ L c + £ (•s - Channel) 

A + C & + D ( t .- Channel) 

the crossing m a t r i x X *-s given by 
S t 

A. k» x l 

/ 
( A . l ) 

and 

CX ) (A.2) 



where thepKase f a c t o r i s given by 

St 

I+I 

(A.3) 

When 1^ and I both are i n t e g e r , which i s always the case i n 

the processes we are c o n s i d e r i n g . The 6.j symbol i s r e l a t e d to Racah 

c o e f f i c i e n t ; 

J J i a 

* ( - 0 
(A.4> 

which can be c a l c u l a t e d from the tables and symmetry r e l a t i o n s given 

i n r e f . (15) "App. 1". 

(s - Channel) 

( t - Channel) 

A ~ f>< ) A T , =Jvi A t 

•to 

(s - channel) 

( t - channel) 



1+2 *> £ + 1 f V — ^ K A Z (s - Channel) 

1 + 2 — ^ ^ + 1 fX—*T&2. ( t " Channel) 

K " C* ) A, r »/|0 A 

A s ) A . 3 / 5 A , . . 



fysfy (s - Channel) 

>2+2 i f — ( t - Channel) 

A 

l + a > c * ! f y - » « - J f ( s ' c h a n n e l ) 

\ + 0 ^ <j»U3—j>y f ( t - Channel) 

(s - Channel) 

\*\ —^2^-0 f f —3>y ( t - Channel) 

l + | — 4 | r 2 J ^ - ^ f X < s " Channel) 

\4r\ — 3 U 1 fjfl-sA Y ( t - Channel) 
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APPENDIX B 

. A P e r t u r b a t i o n Method f o r C a l c u l a t i n g the Exotic E f f e c t 

I n the models of C h . I I , because we assume exchange degeneracy 

between the t r a j e c t o r i e s and the couplings; we have a common f a c t o r 

between a l l the elements of the m a t r i x V > namely /( ar_/3 } 

On the c o n t r a r y , i n the Model we consider i n C h . I I I , we do not assume 

n e i t h e r strong nor weak Exchange degeneracy. Hence the coup l i n g constant 

g and the dynamical f a c t o r l / f ^ - p ) i s d i f f e r e n t from element to 

another. Add to t h i s the la r g e s i z e of our matri c e s , t h i s makes the 

d i r e c t way of s o l v i n g the equation det ( 1 - V) = 0 for, the h i g h e s t 

r o o t J i m p r a c t i c a b l e . For t h i s reason the f o l l o w i n g p e r t u r b a t i o n 

method i s suggested i n s t e a d . 

We want values of J such t h a t 

L \ - V - \<>> ( B . l ) 

\ 0 = lowest o 

I 1 = f i r s t or 

rder 

r d e r (B.2) 

Then suppose (B.3) 

3 u * + S + 3*... 

where 1 denotes f i r s t order, 2 denotes second order, 

Then we w r i t e # * ^ ( l i . 6 ) 



1 w 

a. 
v / i i - . v / ^ ) ^ : ^ : ) , ± ? v V j W . . . ( B . 7 ) 

then (1) becomes 

[ L V t a ^ - A l V - V < * } - * * (B.8) 

Computing each order: 

zeroth order (B.9) 

f i r s t order C«-^c5)^iK>.*v(^\%̂ .>/faMi>.|.> <••»•> 
I f we take the s c a l a r product w i t h ^ 5k I and n o t i c i n g B.3 we get 

Since V 1*^)1 ^ i s perpendicular to \ y (as we 

s h a l l see i n the example below), we get 

(3.11) 

Second order 

12) 

I f we take s c a l a r product w i t h ^ ^ J we get 

By making use of (B.9 1) we get 
•a \ 

_ 3 _ < > J V » . I C i-VOl W ^ 3 > 
(B.1A) 



The C a l c u l a t i o n of v£^ Lo\ • 

To i l l u s t r a t e the p e r t u r b a t i o n method which we have j u s t discussed, i n 

c a l c u l a t i n g t t a e x o t i c e f f e c t (Ch. I l l , % 5 ) , we c a l c u l a t e here 3^ and 3* 
(9) 

For t h i s purpose we w r i t e V * m a t r i x i n the f o l l o w i n g abbreviated form: 

8 X 

ft 

A At, 

Vo —^ 



F i r s t we c a l c u l a t e the hig h e s t r o o t of the equation 

c i € - t Ll-Vo\^0 (B.15) 
MM 

•=*> I - C \ - C * - A \ O (B.16) 

=> » - ^ V ^ + ^ ) ^ c t W ^ C , (B.17) 
1 2 \ \ * 

where - f e (B.18) 

a. - ' » b • - , -

With the values of G,, G„ and , . given i n the t e x t 
1 2 J AJL' £ 

(Ch. I l l , eqs. 10-13) equation (B.17) becomes; 

3 Sl 
J C" 5 3" - 0>3£-I-fc«62-\ £.& (B.19) 

= > 3 S<< ( B.20) 

Now we proceed to c a l c u l a t e the e f f e c t o f e x o t i c exchange, i . e . 3 •* 
2» 



* 1 v i 

I f we take 

U s . 

the eq. 

6 

e 

(B.21) 

^ - A 3*. o 

6 C o A (B.22) 

which gives 

A 
i 
c 

\ 

o 

o 

0 

0 

(B.23) 



9 1 :,. 'ri 

hence 

© 

ID* 

-a-
\ 

which i s perpendicular to 

(B.24) 

^ as we mentioned i n eqs, (B.10;l: 

Next we take 

7 3 

it- s> 
7 # 

(B.25) 

3 - g A + E C 



From (B.24) we get 

/ \ 
A 

c 

c * 

V 

it "ft1 "* 
< * K - o & o o £ J> AR>*EC ^A* £<?" 

N . — / 
Eqs. (B.26) and (B.27) gives the r i g h t hand side of eq. (B.13). 

(B.26) 

(B.27) 

(B.28) 

Now we t u r n to c a l c u l a t e the denominator of eq. (B.14) 

© A o o 

A o 

o c. o o 

o o 

0 , where A' means the d e r i v a t i v e 

<g * ; A'-



then / A 
/ 

A/Wcc'+cc* 

(B.29) 

hence 

F i n a l l y J 2 i s given by 

(B.30) 

(B.31) 

The calculation of (B.28) and (B.30) i s quite lengthy one, and we w i l l not 

w r i t e i t here. I t i s enough to note that with J D given by (B.20) and 

G. , G» ." and d,. given by eqs. ( I l l , 10-13), J- can be calculated i n J- ^ ^ 2 
terms of g , and the resu l t i n our example i s 

" 1.0* S 
(B.22) 
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