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ABSTRACT

We describe the application of certain four and five-point
Dual Scattering Amplitudes to the NNmmm system and compare the results

with others in the literature.

In Chapter One we review the basic ideas that led to the
construction of the Veneziano model and provide a short introduction

' to the Maximum Likelihood Method.

In Chapter Two a discussion of five-point dual functions
is given, followed by an application to a production process of the above

system with an appropriate amplitude.

In Chapter Three a fit by dual four-point functions to some
suitable NN-decay at rest data is presented, together with discussion
of related work, and in Chapter Four we use various five-point dual
functions to fit the same data and contrast the two sets of results.

This is followed by a summary of Bs—phenomenology.

In Chapter Five we apply various four-point function
amplitudes to some Nﬁ—decay in flight data and comment on their

suitability.

References are provided after each Chapter, and there is some

duplication of both references and material between chapters.




CHAPTER 1

Introduction

1.1 An Cutline of Duality

1.1.1 Whv the word "Duality'?

The words Dual, Duality [l], Self-Dual and their derivatives already

enjoyed wide use before High-Energy Theorists employed them.

_For example, the Algebraist used Dual Vector Spaces, would take
the Dual of the Du&l Space and Dual Transformations [2) and might employ
Dual Grassmann Coordinatés [3] in his Algebraic Geometry, Today he
simplifies matters and uses the word "Co" as in Co-homology Group etc. [u].
As early as the 1920's numbefs of:a form z + ¢ were called dual numbers [5].
In Fourier Analysis there are the well-known Duality Theorems {6] concerning
functions and their Fourier transforms. Graph Theory also has its Dual-
Graphs, Self-Dual Graphs and geometric duals of planar graphs [7] and
similarly in Reliability networks there are Dual networks and those that
are Dual to themselves [b]. The Mathematical Programmer uses Dual methods

in decomposition and has Duality theories in both Linear [9] and non—Linear[id]

Are .

programming. Even outside of fhe Mathematical Sciences there is a Dualism
both in Theology (in which one description of God's attributes and His
nature is said to antagonisé another) [11] and in Philosophy (Cartesian
dualism, and the traditional dualism of Descartes, in which there is a
'mind-body' dualism) [}é], these beihg the two explanations of the usage
of the word 'dualism' in ref. [1]; and one speaks of the Social Dualist
(who keeps his private life separate from his social life and moralé).

In Physics the.famous use of these words was fdf the Wave-Particle
behaviour of, for example, light and electrons, spoken of in Quantum
Mechanics [}i] as the Wave-Particle Duality. ;There is also, however, a

Duality Principle in Continuum Mechanics, the use of the word coming from



that in Analysis [i@].

For many subjects the word 'duality' expressed a correspondence
or correlation of effects between two ideas, things or spaces etc; Thus
in about 1968 when High-Energy Theorists wished to express their bélief
in the correspondence of effects in a scattering process between the
'direct'channel' at 'low' energies and the 'crossed-channel' at 'high}
energies they spoke (of some kind, for example Global) of Duality, thus

using a word that had the type of connotation they wished to convey.
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1.1.2 Phenomenology Iﬁﬁ]

In reviewing the work of the Theoretical Study Division at CERN

in 1971 [;6] M. Jacob said, concerning phenomenology :

"Lacking a theory for strong interaction processes,

models which stress the importance of some specific parameters

are tested with variable success against the many experimental
. - results which become available. The aim is thus to ascertain
" -. the prominent role of some key parameters around which an

actual theory could eventually develop, tc test the theoretical

pictures thus built up at their predictive value and, by the

same token, to help choosing the most significant experiment

to do next. Having, however, only theoretical models and not

an actusl theory, we cannct a priori estimate what is left over

by the approximation retained in any specific apprcach. If

in difficulty with experiment, one may often cell on this

rerainder in a particular way in order to help oneself out.

As a result, strong interaction models may show to many a

somevhat troublesome flexibility. Nevertheless if models may

not die, they may well complicate themselves out! A good

taste for simplicity is one of the main guiding lines in our

search for key parameters”.

And:

-

"_ firding regularity patterns and eventually

ascertaining some key parameters for many - particle phenomena
is at present one of the most challenging problems in strong
interaction phenomenology."

The Veneziano model together with its earlier developments [if]
did indeed provide just such simple expressions for strong interaction
ampli@udes. These models contained the agsumption of Regge asymptofic
behaviour and Regge-pole-Resonance "duality".

In this thesis the "regularity patterns" exhibited by the pn-+3n
aeca§:d;té aré studied-in the framework of these dual-models. As such
the theoretical aspects of our work onl& concern developments up to abouf
1971 and no consideration is given to the more formal aspects of the theory

which are still being investigated [18].



1.1.3 The Dispersion Relation Approach

Superconvergence

Consider the invariant scattering amplitude as a function of the
usual Mandelstam invariants s, t, u and denoted A(s, t).

These invariants are conventionally defined by (see Fig. 1)

s = (P1 + P2)2
_ 2
1.'.- (P1_+ P3)
u=(p, +p)°2
N 1 h
with s+t +u= I m.2 = I
. i
1=1

For fixed t we can write down a dispersion relation, unsubtracted,

and not involving kinematic singularities or pole terms, for A(s, t).
Consider A(s, t) to be analytic in the s-plane (see Fig.- 2) end for fixed

t restrict A(s, t) to A(s, t)« (s™%), so that:

1 (7 ImaA(s',t) as' 1. (7 Im Alu',t)
Als, 1) = 2 atl st 1 [T ImAluLe) g,
m S - 8 n u - u
s T u
(] : [o}

Symbolically written

] 1
As, t) = 1 [ Im A(s') t) ds 1.1
m s' - s
[Note. Strictly speaking we should use the discontinuity DvA = %ﬁ [
A (v +ie) - A (v -ie)| and not Im A. When t < ty, ve have D A = Im A.]

: ]
Now suppose we let s + » and make an expansion in terms of (1 - %—)

EN

i.e. Re A(s, t) = —{

+

J Im A(s',t) ds' : ' .

|H ®» |-

n

2 % J Im A(s',t) s'
1
+ 0 ( ;3)terms.
From the first term of the expansion we require that Im A(s',t) vanish faster

1
than ;, for convergence, and so on.

It J Im A(s', t) ds' < then



Re A(s,t) & %-(% J Im A(s',t) ds') (apart froﬁ log factors). If in fact
A(s, t) v O (l ) then J Im A(s', t) ds' =0 (if Re A 1 %.)

so if A(s, t ) <0 (s ), € >0 then
J Im A(s, t) ds = O 11.2

11.2 is called a Superconvergence Relation [lé].
This result may be obtained more direc tly. Take a dispersion
relation for A(s, t) multiply by s and subtract a dispersion relation for

sA(s, t) viz:-

_ .1 ] ImaA (s', t) ds'
sA(s, t) = s z j py
=>
] | L 1
sA(s, t) = % Im A(ssf E): de
0= J Im A(s', t) -ds' as above.
. -n—¢ .
In fact if A(s, t) <0 (s ) n=1, 2, 3 cieeeass

then J & " lima (s, t) ds =0

an (n-1)th moment superconvergence relation,

We are more likely to obtain superconvergence relations for processes
with spin. [15 (d)]

Take the helicity amplitude

<A1, A | A A3, Ay > n sMax[! SRR RS I] x (Amalytic

function of s)
N sM x (Analytic function of s).

So that the kinematic singularity free (K.S.F.) amplitude

" sa(t) - M [15 (d)]




If M) 2, for example, then since a(t)£ 1 for t £ O

there will always be a superconvergence relation.

-Similarly superconvergence relations are more likely when the t - channel
.has isospin I-= 2, since there is no known I = 2 trajectory with

a(0) > 0.




1.1.4 Finite Energy Sum Rules (F.E.S.R.)

Finite energy sum rules ere a method of exploiting the analytic

and asymptotic behaviour (not necessarily Regge) of scattering

ampiitudes, and as such are little different from the well known

dispersion relations. They relate the high-energy asymptotic behaviour
of scattering amplitudes to their values at low energies thus providing
a method for checking the gonsistency of asymptotic models such as the
Regge model. Historically it was K. lgi in 1962 [20] who first used
dispersion relations and asymptotic behaviour to correlate low and high
energy properties. The recent work of 1967 from which the term FESR
was introduced was carried out by D. Horn and C. Schmid, K. lgi and

S. Matsuda, A.A. Logunov et.al, and R. Gatto [21].

Here we follow the derivation given by Dolen et.al. [2?] in which
the specific application to 7N scattering was made.

Consider the relativistic amplitude A (v, t) where for convenience
we take v = Eﬁ% with m the target mass and\s, u and t the usual
Mandelstam variables. - We assume that A possesses a definite symmetry
with respect to seu crossing and consider the case where A is
antisymmetric in v the varieble et fixed t. i.e. A (v) = - A%(-v).
Also we assume that A satisfies the fixed t dispersion relation in v

given from

+ o ]
- 1 [ ' 1+ 1
A (V, t) - Jod\) Im A(v ) t)[\)'-\) \)'+\)J

o _
L
by A (v, t) = %- 2v I av' 12551351 (where the superscript is
o viT= v

suppressed for convenience) and where the integration includes pole

terms for - 0 <v'<v . and continuum distributions for v' > v

th th'



We now assume that at high energies the amplitude can be written in

an expansion of Regge poles i.e. [see e.g. ref. 15(a) or (bﬂ

For |v| > v

N
- + -ime. a.(t)
s _ (=1 - e i) i
A" (v, t) = L Bi(t) a. | sin ma.
i ie i
a, (t)
= LB, v . say 11.3

so that if we consider the following result
o, (t)

A(v) - ¢ Bivl = 0 (s717%)
ui>—l

this will satisfy the superconvergence relation

I
o

® a.
J [Im A(v) - £ B, v 1] dv' =
o ai>-l1

Now we cut the integration off at a, = N and express the high energy

N

beheviour by the Regge terms whose a is below -1

~

N a.(t) o o,
J [Im A(v)- £ 8, v'? dv + J I 8, v dv = O
o i i
a.>=1 a.~-1
i N "1

so that on integrating we obtain the finite energy sum rule

N a.+]

J ] u
ImA (v)dvy = B, ——— 11.

o a11°(i1 ai+1

Generalizing to sum rules for higher moments for even integer n

we obtain
o,
1+n+l

N n B; N
J v ImA (v) av i ai+n+l

11.5

o]




ST e .~
LY

Similarly we can obtain this result for amplitudes even under crossing

and for odd integer n. Notice that the relative error made by taking

just a fixed number of poles on the R.H.S. is independent of pi
Another way to obtain the relations 11.4 and 11.5 or their

equivalents is to apply Cauchy's theorem to the contour of Fig. 3.

B, (t) [1 - e—i“ai(t)] o (+)

Assuming A (v,t) -+ L sin 7o (D) v
i i
As in 11.3 (Putting-%‘ = B) and
taking the countour radius at |vN| = N so that 11.3 holds we have
) ' . :
J A (v+, t) dv + J A (v, t) dv = 0 with v, = v+ ie
-N Y . (e>0)

since the function is regular inside the contour.

From the symmetry properties of the amplitude

~

Re A (v, t) = -Re A (-v, t)
' We obtain
Im A (v,,t) =ImA (v, t)
a.+l .
N B -1wa.]
2i J Im A (v, t) dv + ig N Bj [1 & J x
J sin Ta.
o
T .
. ()
where v = N e1¢i '

and finally
N N

. aj+l
J Im A (v, t) dv = L B,
J

as in 11.L

J a.+l
° J

or again using v A (v, t) we could obtain 11.5



10.

o.+n+l
N . B. N 9
v Im A (v, t) dv = -
’ aj+n+l
o

with n even for antisymmetric amplitudes and

n odd for symmetric amplitudes.
The point of using this method is that one can assume a different
asymptotic form for the amplitude, instead of the Regge one in the
above, when evaluating the integral over the semicircle.

Continuous moment sum rules CMSR can similarly be obtained.

I , 1 1 11.6
| Recall that A (v, t) == Jodv Im A (v', t) [v,_v v
for the odd amplitude A™, with Vip = O then since
. K o
r .
L Im ( [- v2]2A ) = vl X(cos E% Im A (v) - sin E% Re A (v) )
(if the phase is chosen as exp ( - 1"%0 )

then we require also the real pert of A. The imaginary part being

taken from the ontical theorem [e.g. Ref. lS(a)].

4

R ES

Now J:Im ( [-v2] CA (v) ) av

. a0 ) o0
=J v  cos B tma (v) av - % jsink—glvlk av
(o] 0

J” dv'{Im A(v') - ImA (v')}
o

v' = v vt 4y

Changing the order of integration in the last term gives




11.

L k
"').[ _:)L.'_:fl:)_’_ = + 1 cot ik vF
° From [23]
J‘” Vv _ /k
7 o' - =~ T cosec Tk v

so that the second term becomes:

I sin k—; v'k Im A(v') dv' (_c_cls__kij_l_)

sin ku
o
kn
®. kn k 2 cosz(_é)- 1+ 1
' = [ sin = ' Im A(v') dv' x ( )
o 2 5 ai kw knw
sin — cos =
; 2 2
= cos -k—;- J v'k Im A(v') év! and this then
o)

cancels the first term so that the CMSR are identically s;a.tisfied if
Re A is obtained from the dispersion relations. This type of continuous
moment dispersion relation was originally derived and compared with
experiment by Y.C. Liu and S. Okubo [2’4]. :

The FESR for the odd amplitude (with v ™ 0) is

N . .
J[ dv |\)|k [cos KT Im Aly) - sin L Re A(v)]
)

2 2
o.+N+1 .
(Si(t) N J COS((!..+N) -2-
= = _ <
LA T 1.7
J J cos a. %

See Ref. [15(h)] ana [25].

The connection .between CMSR and integer moment FESR was given by
Ferrari and Violini [26].

The use of FESR for Regge analysis_was an accepted and widely used

tool, illustration of their more recent use being that by Field and
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Jeckson [27] in which the effective "pole"” parameters of the K* and K*#
Regge trajectories were obtained using FESR's for the reaction
K- n+>m A and n* n -+ K+A and a knowledge of the low-lying resonances
and their couplings.

A discussion of questions related to the application of. FESR in
the presence of Regge cuts (which intrcduce uncertainty of the vay
to run them) is given by F. Schrempp [28] and such cuts are in the
enalysis (in which CMSR's were used) of Barger and Phillips in [29]
where they are effectively parameterized as secondary Regge poles.

S. Humble Lﬂ)}has described some of the difficulties associated
with writing dispersion relations for produétion amplitudes and has
indicated how these can be overcome to construct FESR's for five

point amplitudes.
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1.1.5 The Duality Idea

The concept of Duality, first introduced by Dolen, Horn and
Schmid [?2], states that, in a scattering amplitude A(s, t) for a
reaction A + B > A' + B', the terms contributed by s-channel resonances
and those contributed by t-channel Regge exchanges describe to some
extent and in some approximetion the same dynamical effeéts. This
duality was expressed in terms of the imaginary parts of the amplitudes
with real coupling coefficients in the resonance formulae.

Fig. 4 shows the scéttering funcéion for m-N scattering represented
both by a Regge fit and by resonances illustrating this concept. The
plot is of the difference of 7" p and w+p total cross sections (which
give the imaginery pert of the amplitude by the optical theorem)
against energy taken from Chiu.;nd Stirling [31]. Curve II is the
extrapolation of the contribution of the p-trajectory.

In 11.4 we have a sum over all Regge poles sigrificant in the
region v > N (and neglecting errors due to bacgground terms, lover
lying poles etc. in v > N). On including only poleslwith aj +n>-1
then the R.H.S. is the Regge pole contribution integrated from threshold
to v = N, so that in this sense the leading Regge pole contribution
averages the imaginary part of the amplitude. Or: The prominent
resonances at low energies are related to the leading Regge trajectoriés
at high energies. The leading vacuum singularity was excluded from
the scheme, for reasons given later, and this type of dualitj vas

referred to as global duality.

Dolen, Horn and Schmid [?2] applied the F.E.S.R. to nN charge
exchange and considered the specific example of n p - 7°n since for
this reaction the t-channel quantum numbers allow only the p-messcn

(JP =1, 1° = 1+,_mass M= TE5 Mev.) in a single particle



1k,

intermediate state. So the p- Regge pole exchange was assumed for
the asymptotic behaviour. See Fig. 5.

This process is described by the invariant amplitudes A' and B
(corresponding to t-channel non-flip and helicity flip [32] ) which
are found from Regge-pole fitting to high-energy data to change sign
neaf t = -0.15 (the "crossover" zero of 7N scattering) and t = =0.6
(wvhere a nonsense zero in the p-residue at aP(t) = 0 is expected),
respectively. The sign changes and the approximate magnitudes of the
p residues in both aemplitudes were successfully predicted even though
a low cut-off of N = 1.1 Gev was taken, Dolen et . al. suggested two
applications of these F.E.S.R.

1. As an aid to determine Regge pole parameters.

2. As a bootstrap (in which Regge poles in ‘crossed” reactions determine
resonances belonging to trajectories in “direct” rgéctions end the
converse).

The following bootstrap ingredients may be noted.

Bootstrap .

F.E.S.R. Conventional (e.g. |15a Ch.6])
1. Analyticity 1. Analyticity
2. Crossing 2. Crossing
(Linear IDw= Zz )
3. Regge behaviour 3.
N Not important.
L, J Im A dv given by L,

I Resonances.
'Resonance saturation' assumption.
5. Unitarity
(Non linear process. Force ;:z:)
6. Crude approximation

(e.g. using neasrest singularity)
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A typical application which involved & sign problem was that by
D. Gross [35] using only scalar mesons (0+ particles).

This F.E.S.R. duality is incompatible with the old interference
model of Barger and Cline [ék] and Barger and Olsson [35] because the
direct channel resonances and Regge pole approximation are made in
different regions so that no question of "double counting” arises.

If ImA=ImA ___ forv>Nand ImA = Im A___ for v<N

egg
then

N N _
Jo Im ARes dv = Jo Im ARegge dv

Dolen et al. suggest that the amplitude be written
A= ARegge + ARes -. <ARes > where. <ARes > denotes the locally
averaged resonance amplitude, so that for any scattering process

where all resonances contribute with the same sign to A one has

ARes =< ARes> or A = ARegge

So that in that case the Interference Form (I.F.) .

A= ARegge + ARes would imply double counFlng. If the resonances
contributed with different signs so that <A.Res > = 0 one would obtain
the I.F. for A.

The Dual Form (D.F.) is defined for intermediate energies by:

ImA=1m(z)M§~<) = Im ( zj\n) 11.8

Res Regg
F.E.S.R. cannot predict reliably to very high energy since the low
energy input may not be sufficiently exact for a large extrapoiation.
Steiner [36] has given an estimate for the range of t valﬁes-in
vhich FESR and CMéR can be used and justifies the fesults of Dolen
et.al. concerning the p-residue functions at negative t values.
References to the application of the interference model aré given

in the review article by Hite [ngJ and the connection with FESR is

discussed by Kellett[3?].
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1.1.6 Schmid Loops

Schmid [38 ]was the first to show that upon analysing the Regge
contribution into partial waves, structures may appear in the Argand
diagrem (in which the Real and Imeginary parts of AL are plotted) of
partial waves which resemble closely resonances. The Regge pole must :
contain many partial waves so that although these may vary rapidly
with energy their total sum is smooth. Schmid took the Regge parameters
as determined by fits at high energy to extrapolate to the p-exchange
amplitude in 7N charge exchange scattering down to energies~ 2 GeV.
Then performing a partial wave analysis on this he obtained for each
partial wave & loop on the argand diagram very similar tc those |
obtained by phase shift analysis‘as evidence for nucleon rescnrnances.
Moreover, these 'pseudo-resonances®' were shown to lie approximately
on a linear rising Regge trajectory. Such a behaviour of partial
wave pﬂases is an almost exact consequence of the Regge form of the
amplitude, for any exchanged trajectory with finite slope [39].

These circles on the Argand diagrams are caused mainly by the
changing phase e-i“a(t) in the signature factor of the p-exchange

amplitude. So that in the expression

1
J az Pl(z) A(E,z)
-1 )

Im AQ(E) =

n=

use is made of the identity 1
2 .
J (z))

+1 . :
i j (2) = %- J gtzcos® P, (cosg) d(cose) iQ(E%) ]
* -1 2+

so that for a real linear trajectory (where the equal mass case is

teken for simplicity) of slope a', and constant residue, i.e.



17.

a(t) = a(0) + a't, t = - 2g2(1~cosfB), we have

J+i;ina(t) -in(a(0)-2q2%a )

-1

AVET

Pz (cos®) d(coss) = e X igjz(-2q2na') 11.9

(jz(z) is a spherical Bessel function).

For each § the phase of the partial wave amplitude increases with s

(s«qu) and eventually reaches = for some s = 5, For another

2
partial wave, &' = & + &3 the phase is reached for s=sz, = sz-f- _:Sﬁ!:

Collins et.al.[hO] give plots of some of the 7-N partial wave amplitudes
beginning at threshold obtained from a Regge.pole fit te high energy
data. The agreement of the Regge projection with experiment is not
so impressive as it appears to be because the energy dependence is not
shown. Some further discussion on the interpretation of these loops
is given in refs. [hl,hz] . (Schmid points out that the authors of
ref. [hl] obtain unwanted loops in K+p elastic scattering because |
in their analysis they failed to include th? Yo* (%7, %7,,...) Regge
trajectory).

Incorporating the signature factor into B(t) it is seen that the
resonance structure is given by the zeroces of B(t) which appear as
dips in the angular distribution. This correlation is shown to agree
experimentally in that channels forbidden by the quark model (called
'exotic') such as pp and K+p do not show these dips while non-exotic
channels like ip_or K p do. |

Schmid further claims that the equivalence between t-chanﬁcl Regge
poles and s-channel resonances holds locally at each intermediate energy.

This is called local duelity and is assumed for the imaginary part of

the amplitude only. So that if one considers the difference of two

FESR
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N -Ta. (t ) Cli+n+1 ai+ n+l

2 n [l : e ! N2 -Nl
J dv v Im A{v,t) = ¢ ﬁi(t) sTrro (0) — T T3 11.10
Nl i l i i

then for N2 close to Nl the Regge formula should be a good

approximation to the scattering amplitude in the locel sense i.e.

point by point.
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1.1.7 The Deck Effect

In an effective mass distribution of a resonances' decay products
the cuestion arises: What is the background? 1In the specific reaction
N - mwpN Deck [}3] observed a peak near the Al resonance in the
finel 7mp mass spectrum, despite the fact that his model had no pole in
this variable. The double peripheral model for three particle
final states was used and the substantial low-mass enhancement over
phase space was seen in the two-body subchannels.

Further investigation Elh,h‘j] , using the double Regge model [h6],
was made into this effect. The Duality explanation [FT] was that
.the "no resonance” situation that gives rise to a "bump” in the cross-
section Fig. 6(a) and the "Resonance" situation Fig. 6(b) should not
be added as in the Interference model but that these are descriptions
of the same phenomena.

The conjecture that the presence of a Deck enhapcemeﬁt could be
interpreted as evidence for the existence of the Al resonance was
however, criticised on two points. Firsﬁ[lSﬁ] that Duality was
applicable only to the imaginary part and not to the full amplitude
and hence not to the cross-section especially if the amplitude
were predominantly real. Secondly that the Deck effect is essentielly
of kinematic origin and should appear for any amplitude with appropriate
peripheral properties independently of whether there were resonance
roles in the Deck veriable or not. Thus one might distinguish
a real resonance from a Deck enhancement.by a2 study of the imaginafy

rart or the phase variation in the mass variable.
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1.1.8 Pomeranchuk Exchange

Consider collisions of the type A+B 5 A'+B' (see Figs. T and 8)
vhich occur without exchange of the internal quantum numbers I.Q.N.
(such as baryon number, hypercharge, isospin, or G-parity) i.e.

when IQN (A')
IQK (B')

IQN (A)}. In all the measured cases of this type
IQN (B)

-

E% at fixed t shows a weaker s-dependence than for the exchange type

collisions.

i.e. wvhen IQN (A') # IQN (Ai}, and is compatible with the approach to
IQN (B') # IQN (B)

a finite limit. The data can be described by an amplitude of the form

-ing_(t)
[1 + e 1"ap ] vaP(t)
sin nap(t)

A~ Bp(t) + I Reggeized Particle Exchange.

. 11.11

where Bp is real and ap(t), called the Pomeranchuk trajectory (or

Pomeron), is subject to

0 <« {t=0 0.5.
o, (t=0) <0.5

The mathematical form for the Pomeron is ﬁrobably more complicated
than the above (Regge cuts for exsmple may be requifed).

When there are 3 or U particles in the final state the Pomeranchuk
exchange dominates whenever it is allowed, and this leads to the
clustering of the final particles as in Fig. 8(b).

Harari [h8] and E’?a] (also Freund [’49] and Gilman et al ]:50] )
.suggested that one takes from the relation

A= ADUAL + APOMERON an identification of the Pomerancﬁuk
term with the non-?anishing and non-resonating backgfound. Thus
direct channel resonances are not to be associaeted with Pomeranchuk
exchange as this would have implied isospin degeneracy due to the

fact that no non-vacuum trajectories are degenerate with the leading
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vacuum singularity. This Harari-Freund form of duality assumes that
the Pomeron is built exclusively from the background whereas the other
Regge poles are built exclusively from the resonances. However, the
original dual scheme proposed by Schmid [58] assumed that the resonances
built all the Regge poles including the Pomeron whereas the background
summed to zero. In the interference model of Barger and bline [3hj:
on the other hand, the Pomeron and other Regge poles are built from
the background while the resonances sum to zero. Each of these
schemes is characterized'by the fact that the Pomeron on the one hand
and the other Regge poles on the other hand are built exclusively from
either the background or the resonances. Support for this 'two-
component' form of duality was presented by Harari and Zarmi [éi] who
on analysing 7N scattering dat; found that the Argand diagrams for
It=0 and It=l suggested an identification of the large imaginary
background (seen in the It=0 diagram) with the Pomeron. VWhen there
are no s-channel resonances the imeginary part of the amplitude in
this scheme is entirely given by the Pomeranchuk term, and this vanishes
vhen Pomeron exchange is forbidden. This would apply to reactions
like K+p > K+p for example and implies degeneracy of the w, p, A2, '
trajectories and allows for the prediction of the SU(3) mixing .
angles of w-¢, f-f! [éé].

Del CGuidice and Veneziano [53] have shown, however, that in a
croésing symmetric picture, the duality.betweén Pomeron and ﬁon—rgsonant
background is not compatible with resonance saturation. If.non--
resonant background is present in Pomeron channels,- crossing puts it
also in channels where no Pomeron is possible.

This exceptional role for the Pomeranchuk trajectory is consistent
witﬁ its apparent flatness and the absence of low mass rescnances on

the trajectory. The assumption that there is a flat trajectory may
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however not be correct ané Rosner [}h] showed that this form of duvality
leads to an inconsistency in baryon-antibaryon scattering (which imply

6 quark meson states). The role of the Pomeron in the duality picture

is thus rather mysterious.
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1.1.9 Straight Parallel Trajectories

In the early stages of Regge theory in analogy with potential
scattering or from simple S-matrix calculations, which neglected
multiparticle intermediate states, a Regge trajectory had a form similar
to that in Fig. 9. For example Squires could state [55] in 1963 that
the "Re a will probably turn over so that it does not reach very high

real values of srin for real s (Mass2) and: "The approximete éé}eémeﬁt

da o

ds
striking - and better than we have any right to expect! Note that, even

of the slopes with 1 (for the known particles and resonances) - is
when we have two points on the same trajectory, the correct p;th joining
them will not be a straight line but some curve, yet to be determined".
However, it.now appears thaf at least for positive t trajectories
are, over several CeV, approximately linear and moreover all the observed
trajectories (except possibly for the Pomeron) are approximately parellel
with slope a' ~ 1 Gev™2, Fig. 10 shows a "Chew-Frautshi plot" of
spin (J) versus (mass)2 for the meson trajecto;ies with I=0 and I=1
trajectories coinciding and signature showing no effect so that four
trajectories appear to ride on top of each other.
If o(t) increases proportionally with t at large t then we can write

a dispersion relation of the form

dt' Im a(t')
t' -t

a(t) = a + bt + %—J

so that if Im a(t') is small then the linearity condition follows.
The condition Im @ be small amounts to requiring that the resondnces be
narrow. Should the integral diverge it would require subtraction.

Some plots of the meson trajectories using recent data are given in

the review hy :Gollins-[l'jk] for example.
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1.1.10 Duelity Diagrams

Harari [56] and Rosner [%7], following Imachi et al [Sg}
independently suggested that one could represent scattering amplitudes
in terms of continuous quark lines and in such a way that exotic
resonances were forbidden in both direct (s) and. exchanged (t) channels.
For the construction of dual models, sﬁch graphs were used quite early.
In the represéntation of Gell-Mann [59] Mesons were made of quark -
anti-quark pairs (qq) and taryons of three quarks (qaq) and an “exotic
hadron" was defined as any meson whose isospin and hypercharge are
such that it cannot be made of-a quark (q) and an anti;quark (3) or any
baryon not expressible as (qgqq). There appears to be little evidence
for the existence of either of these. The quark properties are listed
in fig. 11 following the notation p, n, A of Zveig [%O], and various
Duality diagrams are shown in fig. 12 including those used more recently
for the Regge-Pomeron-Regge cu£s of Girardi et al [;l] (fig. 12(e))
and also the "illegal" diagrams (fig. 12(c)) which have (qqqq) and
(aqqqq) channels. Certain selection rules were postulated to take into
account experimental data on cross-sections (Lipkin's Rule [62]).

Three hadrcns can couple to one anotﬁér only if every pair is
connected by at least one quark line [53:]and in eddition:(dynamical
justification given in [6&]) No quark line begins end ends in the
same hadron.

The quark line from baryon to baryon, that gives the third quark
for a baryon, is called a "spectator’ and in the non-planar graph of
(fig. 12(d)) there is none because each baryon forming quark becomes
a meson forming one.

In the notation [611] M) = Qaaq

B qQ
5 quqq
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(M for meson, B for barym, subscript denoting totel number.of quarks)

the rules forbad the coupling (Mh M } but not the coupling (Mh B, B.)

3
thus allowing the coupling of exotic mesons (Mh) to baryon - anti-baryon

2 M

pairs (but not to meson-meson pairs). This is known as the BB
problem [?5] ard the'ﬂii%géa}ﬁ diagram is shown in fig. (12(d)). A
striéy.form of duality would require thc exis@ence of such Mh.mesons
thus raising some interesting experimental questions. Alternatively
some form of "broken duality" is required, [?6] in which a complete
breakdown of duslity in BB + BB is used. If the exotic meeons Mh in
BE exist they can generate exotic baryons B, (qqqqa) when scattered off
baryons (B3 = qqq) [éé], and highly exotic states then couple only where
they are needed for duality and never destroy earlier sets of ccnstraints.
The baryon - enti-baryon elasfic channel thus appesrs to be a place
where duality could be erucially tested [?f].

Processes which cannot be described by legal diagrems are predicted
to have purely real amplitudes (and hence zero polarisation) at small t
values &5 the imaginary part should vanish by duality. A further
prediction 1s that the transitionSEJ;.f ¢ are ugE_gllowed by the diagrams
so that, for example,0 (nN + ¢N) = O which is in good agreement with
experiment. ; Fig. 13 gives a suﬁmary of the well known mesons fitted

into the qq model.
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1.1.11 Exchange Degeneracy ({EXD)

Ve have seen that Duality has given the following two-component

prescription:

Im A (resonances) = Im A (Regge poles)

11.12

Im A (background) = Im A (Pomeron)

where = means approximate equality when averaged over some energy

interval at fixe@ t wﬁen.t-channel Regge exchange is being considered.

From the practical standpoint one of the most striking consequences

of this prescription is that if resonance formation A+B -+ R is impossible

(i.e. the s-channel is "exotic" e.g. in K'n - K°p collisions) then

Im A(Regge) =0 for both t- and u- channel exchanges. In order not to

have the null solution of decoupling all the Regge poles we satisfy

Im A (Regge) =0 in the s-channel by imposing that the various cross-

channel Regge poles (here p, A2) compensate each other by having

opposite signatures but equal ccuplings and trajectories - EXD.
Consider the specific example of K'n Kpp which has an exotic

s-channel (i.e. no qqq) and p and %Bt—channel Regge exchanges.

For the two exchanges we heve the amplitudes:

+ —i'ﬂ'(!_'_(t) a (t)
_ B (t) _(-1-e ) 45y +
Amp. (A2) - sin na+(t) (So)
~ima (t)
- a (t)
L
- o

The requirement that on addition this should be purely real

leads to the restriction:
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a,(t) = a_(t) = alt)
11.1h
B, (t) = B8_(t) = B8(t)
o
and the sum: ;izwz (2‘)

The 'poles' here may include cuts i.e. “Argonne' [69] type cuts
which give no effect to the results. (They used the WSZ in contrast
to the 'strong' cuts of the 'Michigan' [70] school).

A search for t-channel structure in differential cross-sections
for two bodyreactions which have exotic direct channels (and by this
scheme pairs of exchanged poles with opposite signature) shows that
the prediction of "no dip' is widely obeyed and this still holds when
making an SU(3) extension to further processes.

The exemple of the BB problem would be:

———

= —
PP ==

In this case the s-channel is non-exotic but the t; and u-channels are
and the requirement
Im. ZI(non exotiecs) = O would imply the unreasonable
restriction that p, fo’ w, A2 should decouple from the EE—gystem.
In meson-meson scattering, wn-scattering implies p, fo EXD,
mk-scattering implies P, fo EXD, and KK scattering requires

w, fo(I=0)= D, A2 (I=1) and

1 equalities.

B

Duality has thus cenventionally arranged that an exotic amplitude is
made real through EXD: if even and odd signature trajectories having

the same quantum numbers sre equal, and their residues are equal too
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("strong" exchange degeneracy), then the contribution of a pair of

trajectories is

-imo(t) a(t) -ira(t)
A _ . l+e s + B(t) | 1l-e alt)
EYOTIC = Ap ~ B(t) [——-2 ] [———2 ] S
© o 11.15
= a(t) ()
vhich is purely real. The contribution of the same pair to the
corresponding line reversed, or non-exotic amplitude is, however,
-ima(t) ~ima(t)
A o~ l+e a(t) B(t)]| 1-e a(t)
Ayon-Exoric = Ay~ B(t) [ 2 ] s - 2 s
. 11,16
= B(t) s(l(t) e—l'ﬂ'a(t)
and is said to have a "rotating phase”. "Week™ EXD consists of breaking

EXD for the residues (B(t)) and retaining it for the trajectories (a(t)).
Experimental support for even strong EXD seems gocd A. Firestone et al [?l]
found the-"exotic" process K+n + Kop to be overwhelmingly real so that
retaining it to the greatest degree possibié is desirable. Care in
tampering with the residues is required since the roles of AE and A.N
can be interchanged if the residues are altered [?2].

The EXD constraints, required by resonance - Regge pole duality
and the absence of exotic pearticles, have ﬁany conseguences., One of
the most interesting predictions is that differential cross-sections
should become asymptotically equal for pairs of processes related by
line-reversal [}j}. Well known examples of this predicﬁion are

[72,74].

~n
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do - #0 _ 4o /.t o

at (K p~+ K n) = at (Kn +K p)

and

do + + _+ - Q - . -+
at (np »K 1) at (Kp =% I)

2 -
Schmid [75] showed that strong EXD held for the Y s in KN which was
expected because the FESR are linear relations and refer to one
amplitude at a time. Martin and Michael [;6] showed that between

3 and 4 GeV/c the differential cross sections for
K p+A (pure I=1 in the s-channel)
K" p=+A 7 (pure I=0 in the s-channel)

could be related assuming SU(3) and the exchange of exchénge degenerate

atas

* ]
vector (K ) and tensor (K ) trajectories.
Similar results were presumed to be true for reactions in which

resonances are produced, e.g.

do
at

do

.
x (KPP ~>K p)

(K+p > K“+p)

It has been shown [aé]that a very general cléss of dual models predicts
that these cross-section equalities are cnly true for reactions involving
stable reactions.

These results depend cn "weak'" EXD but in general %% (real phase) >
%% (rotating phase). Polarization effects (that depend on interference
terms) will vanish (when there is no P exchange) when "streng" EXD
holds; a prediciion that appears to be violated.” In general it was found
that the larger the spin 'non-flip' contribution to the amplitude the

worse were the results of using EXD whilst the spin 'flip' amplitudes

were successful in their predictions and data fits.
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Both the straightness of the trajectories, and exchange degeneracy
(EXD trajectories occur only in the absence of an exchange (Majorana)
force) were completelv unezpected, and seem quite at variance with
the potential scattering ideas which motivated the introducﬁion of

Regge poles intc particle physics.
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1.1.12 Duality Breaking

If the question asked is: "Given the set of meson trajectories
generated by the quark model, [%7] what further constraints are imﬁosed
by duality?" [?8] then the answer is that one requires that the meson
trajectories (for no A(X) quarks in the qq state) corresponding to thé.
(qa)L model have the form of Fig. 1i. The degeneracy of the Fig. is
only approximately realized. The main difficulty comes from the
N(= P(-l)J}=—l'trajectoriés which is presﬁmably due to the large
deviation from the "ideal" (to give aa struqture) mixing angle.

Logan and Roy [?9] showed that the only solutions of duality and
absence of exotic resonances for M-M and M-B scattering, which are
consistent with SU(3) symmetric couplings, are the ones in which all
the members of the vector and tensor nonets ere degenerafe with each
other. If less stringent degeneracy requirements are assumed and the
solution of Harari and Freund taken then they show that it is necessary
to have an unreasonable kind of SU(3) breaking of the coupling strengths.

As has been mentioned in (1.1.10) one can eliminate the EB problem
by abandoning factorization [bo] so that a non vanishing polarizetion
then is possible for MB scattering in accord with experimenf. ¥ie conclude
that 'duality' is thus not a perfectly rigorous solution to the strong
interaction problem but can be teken as an approximate description of

nature.




1.1.13 Successful FESR Bootstrap

Ademollo, Rubinstein, Veneziano and Virasoro [?l] applied fESR to
a particularly simple case, mn+mw, which led Veneziano to his well ‘known
formula.

In this process only one amplitude is different from zero, parity
being conserved and the W having no isospin and this amplitude is
completely crossing symmetric. The p- trajectory will dominate the
direct and the crossed channels and in each case one has I=1, G=+1, normal
parity and negative signasture.

From Fig. 15 they get:

= (»)
Tapy = “a8y Sy Spvpo “1ve Poo P30 Alv,t)

(»)

y E are Ricci tensors, e is
aBy’ “uvpo u

the polarization vector of the w; A(v,t) is an invariant kinematic

[Where afBy are isospin indices, €

singularity free amplitude; v = Eﬁg vhere s, t and u are the Mandelstam
variables] . The one independent Eelicity amplitude has asymptotic

behaviour

[1 ) P-im(t)] ,.e(t)-1
> v -
A(\),t) — B(t) sinﬂu(t) (\)g 11.37
AV S o
where B(t) was parameterized as B(t) = B(t) so that the proper
F(uzt55 =
zeros appeared at nonsense points.
The FESR for the nth moment is
v | = alt)l
n - 8lt) (» -n+1
J v Im A(v,t) dv S(t)+n V1) v 1. 18

o




33.

Assuming a linear trajectory over the range of interest, a "narrow
width" approximation for the resonances and then that B(t) was a
constant B they firstly took v in a suitable range and found the cut-

off to be midway between the JP= 1~ and 3~ resonances in (mass)® .

units.
- m 2
For the n=1 case they found that Im A ~ ﬁi;%—l G(v—vp\ .
and their sum rule was:
| - 1.2 - a-1
_ 2 _a(t) (2vo ) v
where L = 3 m 2 + m 2.
m w
2 2

When t = L - 2mp v ms ve = 0 and the equation is satisfied if
a(-mp2) = a(-0.53) = 0. .
This zero was confirmed from the experimental analysis of the

CEX.7nN scattering data where a dip is observed,

On putting the term ¢ = 1, from Vo = E%T’ the cut off was then

2
= _oa(t)+2 _ 1 | 2m " + 2 _
VE Tt T [ P o Tt Z]

and this choice of cut-off midway between the last rescnance included
and the:fipéggigff_ont'turned out to be a gereral prqurty_of the
equations used.

In ordep to enlarge the region of t where the FESR was
satisfied other resonances lying on the p-trajectory were taken into
account, their contribution being evaluated from the crossing

symmetry of the amplitude.
' Yyt

They show that in general the cut off isV = ntl
. and the i-th resonance position is
. = Hi-1) + 6 + at) where § = -a -2m 2 +z 11.20
i Yo' ]
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For n=1 as above 6§ =0 corresponded to a(-mp2)=0 and a good Regge-
Resonance agreement wés found.

For n=2 § = -0.05 corresponding to a(70.58)=0 and again
good agreement was found.

However, increasing n led to bad agreement and the Regge pole no
longer averaged the resonance contribution because the resonances on.’
the one b-trajectory could not keep up with the Regge side.

A solution was suggested which possessed daughter trajectories
assumed to be linear, and then found to be parallel, with small
residues B(t) which also agreed with a theorem due to Khuri on the

singularity of B(t) at =,



35.

1.1.14 The Veneziano Model

It is the aim of the present-day S-matrix theory, which follows
the first proposals of Heisenberg [?2], to obtain scattering

functions such that the following fundamental assumptions are satisfied:

1. Analyticity in the kinematic variables.
2. Crossing symmetry under the interchange of scattering channels,
3. Unitarity. Required in order to preserve probability under the
assumption of complete sets of initial and final states,
From the theoretical framework of Regge theory one could require
4, Regge asymptotic behaviour. |
From the previous section on duality one could add
5. 'Duality' in the global and local senses.
6. Resonances on linear rising trajectories with the possibility of
'daughters’'.
As a result of extensive work on FESR and in particular the
success of the application to the process n7m*mw with Ademollo et al.ESl],
G. Veneziano [hS] wrote down a neat simple invariant amplitudé, in terms
of Euler Beta functions, for the process wn»mw which satisfied all
but no. 3 of the properties listed above as the resonance poles
were actually on the s-axis.

From the definition T =

Py Pzp P, A(v,t) given in 1,1,13

€
uvpo \Y

and assuming parallel linear trajectories it was found that

asymptoticly (s+¢ fixed t)

A > a(t)-1

A |1

r'(1 - a(t)) (- als)) + (seu) 11.21

and that this was a good parametrization for the amplitude in the high

s-region in the sense that it was able to reproduce itself when
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introduced in FESR. Veneziano replaced the term (-a(s))u(t)-l‘

by I'(1-a(s)) and divided by another I' function in order to have the
correct asymptotic behaviour and was led to the expression:

A(s.t.u) = B(l-a(t), l-afs)) + B(l-a(t),l-alu)) + B(l-a(s),

o jmi

1-a(u)) ] ' 11.22

where B is a constant, and B = I'(a(t)) B(t) and

B(x,y) = [(x) I'y) is the well known Euler Beta Function,
T(x+y)
F(l-at) F(l—as)

The expriession B(l-at, 1—as) Sl & " ) 11.23
s t
(where a(x) = ux) has the properties:
@, -1
. _ _ _ R .
(i) B(1 at,l as) — ( as) r(1 a ) (for fixed t)

g .
thus reproducing the asymptotic relation in (11.21)

(ii) Whenever ag O a, take positive integral values the function
will have poles, but because of the denominator contribution there
is no double pcle in the two variables. Lines of poles and lines of

zeros in .the plane given by a v o are thus of a simple straight

line pattern.

o F(atfn) 1
(iii) Bl - a , 1 -a,) = I —_— ———
s t n=o F(n+l)F(at)_ (n+l—as)_
o0 F'(a +n) 1
or I I‘(n+‘§l‘(a )| (otl-a)
n=o - s | t

The residue of a pole in the s-variable is a polynomial in the
t-variable and vice-versa. This function can thus be written either
as a sum of s-channel poles or t-channel poles. The coefficient

of the form Cn(t) = F(n+at) / F(at) is an nth degree polynomial with
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n equally spaced zeros but it does not coincide with the Legendre
polynomial Pn(cose) associated with a resonance at n=J, The pole
at some t=t  in fact corresponds to a multiplet of n-particles with

the same mass m_ = /;; and spins J=0, 1, ..., n.

(iv) B(l—as, l-at) = B(l—at, l—as) so that crossing symmetry is
obeyed for this expression. In fact the amplitude is invariant
under cyclic and anti-cyclic permutation of the external lines and
the fully crossing—symmetric expression is given by the sum of the
three non-equivalent terms.
‘For the linear trajectory case @ =o a'. x Regge asymptotism

is ,true in the vwhole complex s-plane except on the real axis where
the narrow resonances lie and if the trajectories are strictly real

the absorbtive part is just a sum of &-functiong. (In this nerrcw-

. . 1 P ..
= + -
width resonance assumption when us+J, aS-Jiie 5_-J _1n6(us J)

1

so that Im A involves Im TEj?EZIE)
=]

tn8(a_-J). ) If @  were
s s
given an imaginary part increasing with energy, however, then unwanted
"ancestors" (in which arbitrary high spins are associated with a pole
in the s-channel) would appear. Since the amplitude gives both low
energy resonances and high energy Regge behaviour 'duality' is
obeyed in some sense.
The emplitude is appropriate for the non-diffraction reaction
+ + + + .
0O +0 >0 + 0 so that in order to remove poles at even values of o
for the reaction being studied Veneziano applied the constraint at a + uu=2.
Finally it was shown that the fecrmula (11.22) was a solution of
the superconvergence relations.
This expression for a scattering amplitude in terms of Beta

functions raised several important problems:
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(i) Unitarity

The narrow resonance approximation of the amplitude with poles
along the rgal axis violates unitarity. Three significant different
approaches to this problem were suggested:
(a) 2 simple and crude solution was to introduce complex trajectories
to take the poles off the real axis in the physical region and assure
the correct high energy Regge behaviour. This leads to
unwanted ancestors (although their residues could be very small) [?4]
by destroying the polynomial form of the residues and gives equal

total widths to all partial waves that resonate at the same mass.

(b) Another approach, due to Martin and subsequent workers [%%} was
- to consider the Beta function as a distribution to be "smeared” out

by a suitable convolution integration process that moved the poles

out of the.physical region but modified the high energy Regge behaviour.

(c) A more ambitious scheme than the phenomenological approaches of

(a) and (b) was to treat the Veneziano formula as a Born term in a
perturbative approach [?é]. Work on this approach is still in hand [;g]. |
Other methods of unitarizing included the K-matrix of Lovelace [?7] '

and - several further ingeneous models [éS].

(ii) Non Unidgueness and Satellite Terms.

The Beta function amplitude (11.23) could equally well have been
written in the form:

F(m-as) F(n-ut)

vnmp ® T(mtnip - as—at) ' 11.24

This has the same basic properties as the expression given by

Veneziano. The first poles appear at a_=m and a,=n (m and n positive

t
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integers and p is required to be an integer and$0 if the residues
on the poles are to be polynomials) instead of zero and the

asymptotic behaviours correspond respectively to

a, -n-p a_~-m-p
S t and t S

with n+p and m+p>0 4 corresponding toc daughter behaviour. We may add
such "satellite" terms together without modifying any df the desirea'
properties,such as leading high energy behaviour, and in so

doing can eliminate unwanted daughter contributions, in particular

odd daughters [?9], and ghosts (when residues have negative values).

(iii) Extension to Physical Particles

(a) In order to apply the Veneziano formula to physical processes
several authors suggested various formulation§to include fermions [QQ],
mesons [é%] and baryons.[§2]. Once the Veneziano formula had been
extended to the five-point function [éé] and then the N-point function
[éu] attempts were made to include fermions and bosons in a consistent
procedure [é%]. One solution is to use Veneziano forms for invariant
amplitudes that are kinematical singularity free and which have their
meaning unchanged under crossing. There are parity doubling problems
for this approach as wel; as that of the relativistic quark models [91]
and even departing only slightly from the straight line trajectories
modifies the Regge behaviour [é&] and no longer gives residues
polynomial in the dual variable ("ancestors'"). Heimann [94] has
discussed some of the questions invclvéd in including fermions in dual

amplitudes.

(b) The role of the Pomeron (P) when applying a Veneziano type of
amplitude needs to be clarified. (Roberts [Qi] for example, found
that a particular generalization of the Venezianc model gave rise to a

trajectory of the form ap(t) = 1 + (0,2+0.4)t and concluded that the
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small slope was consistent with almost complete absence of shrinkage
of the diffracticn peak in %N scattering so that the P did not fit a

Regge pole scheme. See also section 1,1.8).

(c) The incorporation of isospin into the Veneziano model by a very

simple general method was made by Chan and Paton [éB]. This methaqd
preserved all the desired properties of the model, gave no unwanted

states of high isospin and avoided the presence of exotic resonances.

The desired isospin factors were given as certain trace terms corresponding
to the ordering of the particles (the explicit realization for five

particles being given in Chapter 2).

(iv) Duality.

Some difficulty was involved in sorting out exactly which
notion of 'duality' was used in the model [éé]. Howeﬁer, Sasaki and
'Sugano !}06] demonstrated the Regge poles - Regge poles duality in each
channel ignoring Regge cuts, in a Veneziano like amplitude possessing

a family of parallel trajectories.
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1.1.15 Generalizations of the Veneziano Formula

Many authors have tried to derive the Veneziano representation
from general properties of scattering amplitudes [}O%], in particular
using meromorphic approximations. The suggestion of Bassetto that the
amplitude be written:

r(l—as) r(l-a. ) a_+a

A(s,t,A) = t 2Fl(l—as,l—at; 1 -

“a - 3 A) 11.25
r(1 o at)

produces a Veneziano pattern of straight line zeros for A=0, an

alternating straight 1iﬂe - wavy line pattern for A=} and an 'Odorico' [iOé]
pattern of straight line zeros for A=1, Ferrari and Grillo [;Oé]

gave a more general form than the Beta function for the integral
representation of the amplitud? and Virasoro [}O%] produced an example

of how the Veneziano expression could be extended so that when

a_+a
S

t+au=2 the Veneziano form for mm+mw is reproduced. Explicitly

this expression was:

Br(3-za,) F(%—%ut) P(%-%au)

Als,t,u) = T(1-3(a_*a_)) T(1-3(a_a )} T(1-3(x_ta_))

11.26

Additions to the Veneziano expression in order that Regge cuts may be
introduced have also been given [lO%] and in order to incorporate
Mandelstan analyticity a new integral formulation for the dual crossing

symmetric amplitude was suggested l}O@ .
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1.1.16 Applications of the Veneziano formula

(1) The wn-»nm scattering process

For mm scattering [i07,108,10€] one starts with a linear exchange

degenerate p - fo Regge trajectory
1
a (x) = a (o) + x.a =a
p P X

and requires the lowest particle on the trajectory to have spin 1
(since a(o) > 0 and the. zero point must have no particle). For m'm~
elasiic:écéttering the nint u-channel is exotic, hence implying
exchange degeneracy of these two p and f trajectories and resonances
in both s- and t- channels should then be spaced by one unit of spin
instead of two. Introducing *the function

F(l-ax) F(l—ay)

VOLy) = - A —ato e 11,27
Xy

where A is an overall constant, (which can be obtained from gpnn),

the 77 amplitudes and isospin amplitudes are :

AtrTrsateT) = - v(s,t)

A(n+n°+1+n°)

_.%,(v(s,t)+v(t,u) - V(u,s) )

A(r°n%+1%1%) = - %-(V(s,t)+V(t,u)+V(u,s) )

and(neglecting an overall coupling constant):

I =0 ‘ '

A - 32 Ez(s,mws,u):] - (t,u)
I =1 -

A S = V(s,t) - V(s,u) : 11.28
I =2 '

AS = V(t,u).

Satellite terms having been disregarded in the amplitude,

The slope of the trajectory is taken from experiment, a'~ 0,9 (GeV)2
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and this fixes the mass scale.- - Lovelace l}0§] showed that the
remaining parametérs could be determined from current algebra with

the off-mass shell continuation being made by considering s, t and u

as independent variables in (11.27). The Adler self-consistency
condition [llé] states that the amplitude should vanish when one of

the n's has zerc mass, the remaining pions being kept on the mass shell,
i.e. S =t=u-= m_"2 (s+t+u = 3 mﬂz).
Thus either A=0 or V(s,t)=0 when one of m“=0.

2

i.e. 1 -a(m 2) ~-a(m®)=0
p T

pom
and taking the p-mass as 764 MeV, this gives an intercept of up(o)NO.HB
in remarkable agreement with experiment.,

The two-soft pion limit {}li] s=u=mr2,t=0 fixes A in terms of

the pion decay constant

f1T n 95 MeV (from m+uv) as
1

A= ———
th2 ol
n

Thus, by construction, the s-wave scattering lengths agree with
current algebra predictions. Kawarabayashi et al [}lf] constructed such
a model for wm, K, KK and KK scattering and normalized -at the ﬁ—pole.

In order to cémpute phasé shifts and resonance widths, the amplitude
must be unitarized: one such prescription being given by Lovelace [;Oé]
is to treat the partial wave projection as a K matrix.

The partial wave projections of (11.28) are

A(2,s) = Rl(s) =1 J Pl(cose) A1 (s,t) d(cosb)
and are purely real with poles at the resonance positions.

The interpretation is to take
Rl(s)
1+ p(s) RQ(S)

,Az(S) =
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where for the p term in a channel with masses M and m Lovelace obtained:

reote) = Wit sem? [etem]®

,e 3
and .
Im p(s) = - [ﬁf%%ig%;]p

Using this prescription and the given X the result

Fp n 120 MeV
was obtained (a consequence of KSFR[%awarébayashi, Suzuki, Fayzazudin and
Riazzudin| formula [;lq] known to work well), The I=0, s-wave daughter
of the p is very broad: )
I‘E / Fpﬂ'g'

(a consequence of duality itself [;14 ) and the fo parameters are well
reproduced: M=1289, I'=110 MeV. (experimentally M=1300,'<130).

Roberts and Vagner [;1?] applied this Lovelace model to experimental
data on nrn interactions and also.to T p> 7 7' n at low energies [llé].
Using the same model Wagner [il?] predicted the wrm scattering amplitude
up to 1 GeV and the off-shell A2 (momentum transfer to the nucleons)
depen@ence from wN-naN, as fig. 17.

The K-matrix method was also extended into the inelastic region
by Roberts who added an empirical Pomeron and absorptive corrections [;15].

Chung and Feldman [}1§]have presented a formulation of the integral
representations of the partial waves of the amplitude (11.27) studied

the threshold behaviour in detail, demonstrated how to reduce all partial

waves to finite sums of s~-waves and reproduced certain power bounds.
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(ii) Other Processes,

Although the Veneziano formula was originally devised for
meson-meson processes it was soon extended to meson-baryon processes
by Igi [12(E| and by various authors to kaon-nucleon scattering by the
use of various simple formulae to give an overall description of the
process in agreement with experimental data [l?l]. It was, however,
pointed out that for processes like pion-nucleon scattering there a;r'e no
reliable principles to construct a concise formula incorporating
aopropriate signatures and isospin structures of baryon trajectories l:l??].
Explicit SU(3) symmetric Veneziano models for pseudoscalar meson-baryon
scattering have however been constructed [123] . Studies on other
Processes such as 7N+ nN [l2l€| 7N+ KA [125] and mm-+n(Boson) [126] were
also made, and extensions to five particle processes using pion exchange
also given [127] .

That is an appropriate point on which to close thi§ section, as
the Veneziano formula was itself suitably generalized tc five and then

N-point processes shortly after its eppearance.
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1.2 The Maximum Likelihood Method (MLM)

Introduction

In the article "Likelihood" D] A W F Edwards traces the history
of statistical inference through Bernoulli's "Ars Conjectandi" (1713),
de Moivre's "Doctrine of Chances" (1718), Bayes (1763) approach of "After- B
trial evaluation" Lambert (1760) and Daniel Bernoulli (1777) who both
maximised likelihoods, Gauss (1809) following Béyes, andlLaplace (1820).
It was R A Fisher who in 1912 [?] proposed the method of maximum likelihood
which he claimed suffered none_of the objections of least squares methods,

which depended on the measurement scale of the variables, or of the method
of moments, which depended on an arbitrary choice of moments to equate in

the population and the sample, or of Bayesian estimation methods, which
depended on the parametric form adopted. Edwards states as his likelihood

axiom- that:

"Within the framework of a statistical model, all the
information which the data provide concerning the
relative merits of two hypotheses is contained in the
likelihood ratio of those hypotheses on the data, and
the likelihood ratio is to be interpreted as the degree
to which data support the one hypothesis against the
other" -

- the hypothesis which best fits the data is to be
preferred, and the relative excellence of the fit

is to be measured by the probability of obtaining

the data."

We shall not be concerned with general theoretical questionms

but shall state the widely used practical results of the method.
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Method

The method of maximum likelihood [?-16] will be used in order to
estimate parameters a1y 8y eee s A of a given function from experimental
data. A likelihood function L(a) being constructed (a = (al, 355 see s an)T)
such that it is maximised for certain values of a, a* say, called the maximum-
likelihood estimator (or solution). Errors ej for the parameters aj can
be estimated.

For an experiment consisting of N independent observations
(events) at coordinates s i=1, ... , N, suppose the expected distribution
of observation (probability density) to be given by a function f(xi,_g)

depending on the n parameters a a . f(xi, a) is assumed to be

1, ssoe g

normalised to unity, so that if X = range of observation:
J f(x, a)dx = 1.
X

The likelihood function for the problem is given by the product:
N
L(a) = T f(x-s a)
— . 1 —
i=1
being the joint probability density of getting a particular result,

X

1> tte o0 Xpo and the Log-likelihood function by:
;f_ = 2nL(a) = Z lnf(xi,_g) : (12.1)
i
From g_iﬁ =18/ fxg, 2) | (12.2)
J 1 J .

2 2 '
- aaa.a;i B E[fg a_:_k B aaaja:fk £0xgs 3)] / fz(xi, a) (12.3)

from which Ejk aa aa;] "error-matrix" or "covariance matfix"

gives a measure of the variance (diagonal elements) or the co-variance
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(off-diagonal elements) and hence an estimate of the confidence intervals
on each aj which are proportional to * “Ejj (the 'correlation matrix' is

p., =E. [/

ik sk ! (E...E 1 ) L is then maximised, corresponding to determining

a solution to:

In practice, for convenience, one usually uses this latter form since it is
easier to work out sums and their derivatives rather than products and
since f can often take an exponential form.

Inherent in the MLM there may be a systematic error, or 'bias",
in a [8], but the MLM is said to be unbiased for large N (where N is some
number proportional to the "amount of statistics" gathered) because as N
increases the bias typically vanishes like N-l.

The MLM therefore enables one to put statistical bounds on the
aj's and to show which if any of them may be neglected, thus giving a
"best" set of aj's for the given data. Given an alternative function,
F(xi’ b) say, then the ratio of the L values (or correspondingly the
difference in Jﬁ values) for £ and F, known as a likelihood ratio test, will
indicate which function best'fits'the data. The MILM gives a comparison of
fits to the data but in order té indicate the quality of any "best" fit one
would use the usual xz—test, in which the given data is "binned" (subdivided

n
into suitable groups) and the sum y (ui - Ni)2 / Ni computed when 1

(7]
)

i=1

refers to the bin, n the number of bins of events, Ni the number of events

in each bin and s the predicted number of events in each bin.



k9.

In the Method of Least Squares if an experiment consists of N

independent measurements s i=1, ..., N, of some quantity y at
coordinates-,x,i and if the errors of each y are o (standard deviations)
then a minimization is made of the quantity
N
2
s(a) = ] (f(x;, &) -y) /2
. i o,
i=1 i
where f(xi,‘g) is the fitting function as before (but is not now a
probability distribution). The minimum value of S is called S*, the least
squares sum, and is found from 95 0. 1If the ¥s have a probability

3a

density function that is normal, mean (expected value) f(xi, a) and standard

. s . 1 _ 1 _ 2
deviation o, and }f ¢(yi, f(xi,.g)) -=;;7§; exp [::EEI? {yi f(xi,_g)}:]

(i=1, ... , N), represents each density function then the joint probability

density function for Yyr Yoo see s Yy is

2
L(a) = ———— [ 2 ]N exp El Ig (yi ks 2) ]
— 01°2"'°N 7 2m 2 i=1 2

thus

i(g)

enL(a)

2
N Br - f(x,, a)]
-Ntn (/27) ~ ] 2no, - x L —

i=1 i=1 o

N 1=
e~z
N

so that for normally distributed errors with mean 0 and standard deviation

oy the relation
L =-3
=-3 S(g) + const.

holds where Jﬂ is the log-likelihood function for the problem. Minimizing

the quantity S (the least squares sum) thus corresponds to maximizing jﬁ,
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In such a case omitting the constant term leads to

L - -3 G, @ - yP 2 | (12.4)
1 1

g_§' = 23—:.' ( i = f(xi, 3)) / 0.2 ‘ L (12.5)
5 i 53 i

\ 22 _y _f_f_ LG PN
| y. f(x.,a))| /_ 2 (12.6)
’ aaaa.k i 9a ak Bajaa.k 1 i1°—= oi

For Gaussian-distributed yj's the distribution of S% = S(af].‘),
the least-squares sum, is the x2 distribution of (p — M) degrees of
freedom where p is the number of experimental points and M is the number

of parameters solved for. If the values are Poisson distributed, e.g,

they could represent counting rates (number of events) in a small region

{f (xi . E)Ei

T
y;-

of x, then the quantity

p(xi. a) exp (- f(x;, a) )

would give the probability of observing a counting rate Y in a region X,
expecting a counting rate f(xi, a). The likelihood function L is then

given by L = Hp(xi, a)
i

fnL =Jﬁ‘= g Yilnf(xi, a) - g f(xi,.g) + const. (12.7)
ol _ v af | |
a_.'zyla_./f(x,a)_za_f. _ (12.8)
i o1 j = pda,
=324 ) [af 3 f 3 2f ]
=LY: |35 3a " f(x,,a)
aajaa.k. i aja aajaa.k /
) (12.9)
E2(x;s 8) - ] 5er
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J. Orear [9] quotes the following results (for one parameter):

In general, the likelihood function will be close to Gaussian

I(a - ag)ZLdaj }
as in the figure, where Aaj = [ .dea. ]
J
L(a.
( _1) ’
-)-Qﬂ'
. J\\\\‘
0 a* a.

It is a known property of M L estimates (referred to as "The M L Theorem")
that in the limit of large N, ag -+ ajo (the true physical parameter value);
and furthermore, there is no other method of estimation that is more
accurate. Also, the condition for the maximum-likelihood solution is
unique and independent of the arbitrariness involved in the choice of
physical parameters. B R Martin [K] quotes the following important results

(for one parameter). that are valid for common distributions met in practice:

Maximum likelihood estimators (MLE)

a). _ are consistent (i.e, as the sémple size increases the estimate
tends to the value of the population parameter),

b) have a distribution which tends to nbrmality for large samples,

c) have minimum variance in the limit of large samples.

If a sufficient estimator (one that contains all the information
about the population parameter) for a parameter exists then it is a

function of the maximum likelihood estimator.




Blobel [7] gives a programming routine for finding the maximﬁm
_oftlf. In fact the routines referred to by Swanson [6] under "Fitierte
Literatur" for finding the minimum of a general function of N variables
have now been written up as a CERN report MINUIT [10] and this is the
routine that has been used. A general review of the main ideas of
unconstrained optimization, in which the problem of calculating the
greatest value of a given real function F(xl, Xgs eve s xN), where each
variable g i=1, 2, ... ,_N) can take the value of any real number,
is given by M J D Powell [11], and also E Polak [12], in Appendix C of
the book by B R Martin [4], and in Chapter 10 of .that by S Brandt [5].

A typical M L formulation for a data fitting procedure is given
in [13] and for the "Likelihood handling of scattering data with previous

experimental information" J Bystricky et al have given a short paper [14]

52.
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Fig. 11 Quark Properties used in the Duaelity Diagrams
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Fig. 13 Summary for mesons (in the qq ‘model)

(masses from "Review of Particle Prcperties" April 1973).
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53.

CHAPTER 2

Application of a Veneziano-tvpe Amplitude

to the process #~p > n~ntn

2.1 Introduction

The generalization of the Veneziano four-point formula
to that suitable for five neutral bosons was first given by

Bardakgi—Ruegg [1] and Virasoro [2] .

For a five particle amplitude there are five independent

variables [KBN - 10) for N particleé] and for this extension the

= (. + P, )%

five independent scalar Mandelstam variables Si, i+l P, i+l

P6 = Pl, were used where Pi are the incoming particle four-momenta.

i j i i . = o0, . + 488, .
The linear Regge trajectories given by a5 i+l C ®04,i41 a81,1+1

were assumed to hold.
Starting from the four-point function:
1 1 a19=1  =0ya-1
= - - = 9127 “8237 -
Ay = B, (701907%)3) Jodulzjod“23“12 Uy ©7 8(upptuyyl)

where the(auxiliary) variable Uyq (called dual to ulz) is fixed by

forbidding coincident poles, the extension is made to:

A, =B -a 0o -0

5 = Bg (70195 =0, 45° %) =

1.1

: dui,i-&-lduilii-l u -Glz—lu -023‘1‘:1 -0'.34'1u -045-1u -agq-1
l-u. . ,u, . 12 23 34 45 51

oo 1,i+l7j,j+1

where i and j are any two non-consecutive integers and the variables



5k,

ui,i+1 obey the (duality) constraints:
Up iel T 1 T Yo 5 Yier,ie2r P T L eee s 35ug Tug ete,
so that
U3 T TI:-TU%— and  ug, = 1_1--_;1%5?_ :
12745 12745

The Bardakgi-Ruegg-Virasoro form of 35 is thus:

1 1 1-u —agq-1
= —a12-1 -ogs-l | 712 | 723
As Iod“lz J dugsuyy T s 1 " x

0 = u;,u
l1-u "0-'34'1 -051-2
* T 2 G PAY
1245

This amplitude is cyclicly invariant in the « terms; has

i,i+1

simple po}es for @ .4

1= 1, 2, 3, ...; has simultaneoué poles
9

in a, ., and a if i, j, m, n are all different; gives the
i, m,n

correct single and double Regge behaviour in all channels and has

no "ancestors' to the leading Regge trajectory.

A compact way of writing this expression is obtained by

putting it into the form

ls 5
Bs(xl,...,xs) = J M du uk M 6(u_+ u
OK= =

where u u

i,i+1 = ui, 0 = us, u6 =u and xi = -q The-

i,i+l’
second (primed) product in the integral is defined to run over all
'uK' except the two (called mutually non-dual) chosen as independent

variables. The argument of the delta-function is of the form

"variable plus product of all dual variables, minus one". This is

(21.1)
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the Chan form [ﬁ] of B, which clearly exhibits both the invariances

5
under cyclic and anticyclic permutations as well as the absence of
double poles in dual variables. Extension was made to firstly the
case N =6 [3], then N =7 [lo], then N = 8 [5], and finally to
that for arbitrary N [6,7] particles. The corresponding Chan form
for arbitrary N being given by:
B (X peeepX, ) = Jl EN du u k-1 { gNg(u-+ ﬁNﬁ=-1)}
N Ry ox=1 ¢l K g
~ where Ry = N(N-3)/2, the (conjugate Mandelstam) variables are
denoted U s K ='1, cee 3 RN’ the primed product runs over all K

except the N-3 (mutually non-dual) independent variables (whichever

are chosen), and the doubly primed overall variables dual to K.

XK-l
K

The bring in the pole structure, while the product of delta
functions enforces the absence of coiﬁcident poles in dual variables,
thereby determining (N-2)(N-3)/2 auxiliary variables (so that when

N =5 the 5 variables are reduced to two independent ones as

(5-2)(5-3)/2 are integrated out). The corresponding Bardakci-Ruegg

form [8] for N particles can be obtained by defining

where u with j = 2, ... , N-2 are the (l4-3) independent

1j

variables and integrating overall delta functions, so that

(21.2)
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BN 1 ...N) =

*

1 X127b X np7t Xp371
129%13-

X (1-
du, ,du "dul,N—Z Uppt eeeUy N2 (1 u12)

' t
x,,-1 -1 -2(psp,)a+a +a
_ 34 _ -2, P4’
(1 u13) o..(l ul’N_Z) (1 m23) *,...

| \
2(pN_3.pN_2)a+u0+u

-2(p,.p)a
) * (1-w 275 .

.o (l_wN-3,N—2

24)

-2 (pz 'pN_l)a‘

]
a 2(py_ Py . y
LN ] Z’N-Z

| -wN-4,N—2) eor ¥ (1w

This was the form used extensively in the first investigations of

level structure [9 s 10] .

The form (21.1) of the amplitude for N = 5 may be obtained
directly using graphical rules suitable also for extension to the N-
point case. Ordering the momenta as in Fig. 1 we define a partition
as a set of at least two momenta with relation to the order of Fig. 1,
e.g. (123), (34) etc. Two partitions are said to be dual if they share
elements without one being contained in the other, so that, for example,
(12) and (23) are dual but not (12) and {34). To every partition is

associated the invariant

' 2
S5 = Pyt Pyttt

To the graph in Fig. 1 is associated its dual in Fig. 2, where the
condition pX P; = O is explicitly taken into account by the closed
i

polygon, and where each diagonal of this polygon corresponds to a

partition; dual partitions are associated with intersecting diagonals.
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There are N-3,2 in this case, non-intersecting, and hence mutually

non-dual, variables which correspond to u,, and u,_ in (21.1).

12 45

These conjugate variables are usually written in this form to
correspond to each Sij and although any 2(N-3) non-intersecting
variables can be chosen (cf. Figs 3 and 4) the "multiperipheral

form shown in Fig. 4 is easy to visualise and the set Sij’ j=2,3,..(N=2)

is often used.

From Fig. 2 choose a vertex V of the polygon, associate

the independent variables Uipr Yo to the diagonals concurring there.

Then to the diagonal corresponding to Uyq (i.e, 23) we associate the

a - u12) since it crosses the diagonal line for
(1 = u)5u45)

LIPY i.e (12), and is diagonal to the quadfifgféral (123 u

expression

.45).
Similarly the diagonal for Ugus i.e (34) crosses that for U5 i.e (45)

and (12) makes up the side of the appropriate quadrilateral. The
diagonal corresponding to Ugys i.e (51), crosses both (12) and (45)

and is assoclated with (1 - u12u45) since it must be unity when u

12

or u,. are zero. The rules are now:

i) Integrate from zero to one on all independent variables

ii) Write the factors corresponding to the diagonals of the
polygon, each one to a power (-1 =~ “ij)’ where the 1ij

correspond to the diagonals

iii) Divide by the factor 1 - U o, vhich guarantees invariance

when another set of variables is chosen, i.e.
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M a5 agpm1 agem1 [ 1T U | sl
Ag = T-u,.0,  “12 U5 T-uu,.
1245 12%5
00
1- Uys -a34-1 - u )-als—l
1 - Ujolg 12745

Several equivalent forms of the generalized beta function

were suggested and its various important properties established.

By expanding the integral for B_ in a power series in

N
various ways, one can obtain it as an infinite series of beta functioms
of lower order. Such.series expansions were considered in some detail

by Hopkinson and Plahte [11] and yield a practical iterative method

for the numerical evaluation of these beta functions.

In particular for the Bardakci-Ruegg form of (21;1) by
expanding the term in (1 - u12u45) in a binomial series, we may

obtain after integration:

. = o, . kiz
Bo(x)gseeerxgy) = o 1) [k]Ba(x12+k'x23)34(x34’x45+k)

her z =X - x - and 2 o r(z+1) 2| < 1
where 51 ~ ¥23 T X340 09 Iy T(k+D)T (z-k+1) °* |0 :

Using the gamma function representation of BA’ this may be

rewritten (dropping the x's) as:
B.(1,2,...,5) = B,(12,51)B, (34,45) ,F,(12,45,-2;12+23,34+45;1)
5 47" 4 32 -

where 3F2 (al, 2y, §3; bl’ bz; 1) =

I‘(a1+n) I‘(a2+n) I‘(a3+n) r(bl) r(bz) _z_r:

nZO r(a;) r(a,) . r(ay) r(by*n) T(by+n) n!

(21.3)

(21.4)

(21.5)
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is a generalized hypergeometric function [12] with unit argument.

This series converges when
Re [1+(x)ptxyg) + (xytxe) = xpp vz = x5 ) > 1

ie, when Re(x51) is positive. Thus we have found a representation
for B5 which has a much larger region of convergence than the
integral. This is because the integral representation of the beta
function is only convergent when both arguments have a positive
real part, while the function is well-defined, through the gamma

function, for all values of its arguments.

The series (21.5) is the starting point for any method

of calculating B, numerically [13,14] although since it is not

5
convergent in a big enough region to be useful, recursion relations
(which increase the range of convergence) are used. The program

for this calculation is listed in ref.[13] together with details of

the recursion relations and truncation error terms.

Since the beta function B4 has simple poles in each variable
at the non-positive integers, so, using cyclic symmetry,
- similarly € X
Bs(xl,xz,x3,x4,x5) Bs(xz,x3,x4,x5,x1), has B5 imilarly for each

argument separately, and these are all the poles of BS'

From (21.4) taking the limit x., - O yields

12

B(npgeeeong) =5 | B [iJ By (5yy0%y5 * 1) xXIEk'*
. *12 |k=0 12

*”"12”‘*1’] S
P(x,, + + k) - X
X0 12

(X ,x)Q
12 ¥ %5 & 34 45
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i.e, restriction to the first pole of any variable gives the
Veneziano four-point formula - bootstrap consistency [see Fig. 5].
So if the amplitude for N = 5 is known then it is uniquely fixed

for N = 4, as residue of the first pole.

In general, if x., » -N

12

: N X —l]

1 z||723 N
Be(d 0y ovesXp ) = z [ ][ - (-1)"B, (x,, %, +k)

512 51 7 L, {0 (k) - k] 434> %45
and thus writing
Bs(x12’ ...,x51) = I Ck (x23, cees x51) ;l—:f
k=0 12

the residues Ck (x23, ceny x51) are polynomials of degree k in the

"angle" variables X5y and Xyq and the kth pole corresponds to the

exchange of a family of particles with spins from k down to zero.

(Mother plus daughters).

Various "high energy" limits of B5 were given by Biatas

and Pokorski [15] using the limiting properties of the series. For
X
12 . -
12 23 %5 fixed, the “single

Regge limit" [éee Fig. 6], then Bs(l...S) = 84(45.51)R(23,3&) where

example, if X5 and x,, *+ », with x,. and n

34(45,51) is the Veneziano amplitude for the reaction

X
a5 (23) + 1. [Bs x 0w, B, (45,51) > (x,5) O * £(xg )] -
c_(34,n) |

x23 + m

and R(23,24) = is the vertex function

I ™8

m=0

expressed as a sum over resonances in the (23) system.
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In a similar fashion, if X450 X1 and Xyq > @ with
3 n Tt e
b1 X19 %94 / %5 fixed (the "double Regge limit") then
Bs(l eve 5) = 34(45,51)34(23,34-51)f(34,51,}{)

X51  *34

12 Xy3 f (34, 51,1)

= X

Both Regge limits of B5 introduce a well-defined dependence on the

Toller angle (~n,}).

The Regge limits are taken giving to a an imaginary part
(or alternatively avoiding the real axis where the amplitude develops
an infinite number of poles in the narrow width approximation). The
correct signature factors [16] follow on summing over twelve different
orders of external lines and properly considering the Regge limits.
Thus B5 [17] has the essential properties that one would wish to
generalize from BA: dual pole structure, residues polynomial in
angle variables and thus correct spin structure, factorization and
thus bootstrap consistency, and high energy Regge behaviour. These

all remain true for arbitrary N.

A further representation of the N-point amplitude in a compact
and manifestly crossing symmetric form was given by Koba and Fielson [}8]
and also Plahte[19]. This was used in certain aspects of the formal

developments of dual theories.

So far we have a formula that violates unitarity (being a
narrow resonance approximation amplitude) and has non-physical parricles

(being built up only of scalars). For phenomenological applications one
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usually chooses the trajectory a(x) to be complex with Ima(x)
increasing with x, the energy, and determined so as to reproduce
correctly all observed resonance widths. Ihe poles are thus taken
off the real axis in the physical region and at the same time
correct high energy Regge behaviour is assured, although various
disadvantages (such as.fesidues, in general, losing polynomial
behaviour in the momentum trgnsfers) also follow. We have followed
this procedure throuéhout our work. The introduction of physical
trajectories is a non—triviél problem; if we retain the term u_m-1

in (21.3) we have a ghost when o = 0, if we change the exponent u 2

we lose the correct asymptotic behaviour. When the external particles
are pseudoscalars, kinematical fagtors are needed in order to obey
parity conservation and they can have just the effect of restoring
Regge behaviour in an amplitude with physical trajectorieé. For
reactions involving fermions one can take Veneziano forms fﬁr invariant

amplitudes free of kinematical singularities.

Although this leads to the desired pole structure, the
straight line trajectories in s, t and u give rise to an amplitude
invariant under change of sign of the amplitude in W = /S and thus
by MacDoweli symmetry [?Q] to parity doubling. Removal of béryon
parity doublets in the Veneziano model [21] and discussion is given
by Storrow [22] and a re-examination of the arguments using a

particular spin formalism by Enflo [23].

One of the further properties that would have to be taken

into account in constructing a realistic system is internal symmetry,



or the incorporation of isospin. That is, we wish to determine
the coefficient CS(P) multiplying BS(P) corresponding to permutations P
of extemal particles

T, = {5} C5(P) B (P)
such that: (1) CS(P) BS(P) remains invariant under cyclic and
anti-cyclic permutations; (ii) factorization is retained; and

(iii) no exotics are to occur in any channel. This is dictated

by experimental evidence.

For five external isovector particles condition (iii)
requires absence of poles with isospin larger than one. The .
solution takes the simple formm given by [24,25)
Ci(l, 2, veu ) = ZTr (r, 7, +r1,)
1 72 5
where each T,. denotes the 2x2 Pauli matrix representing the
isospin state :i of external particle i. .Condition (i) follows
from the result TrABC = TrCAB, and (iii) from the closure under
multiplication of the 2x2 Pauli matrices (i.e, the product of any
number of 2x2 matrices is a 2x2 matrix and hence can represent only
a combination of isospin O and 1). To see the factorization property,
we note the identity:

1 1 1 -
=Tr(t ..o ) = [— Tr (+ ...t )= Tr(q ceed )]
2 a1 a5 2 a1 aM 2 aM+l 5

B |2 ey e
+ T - Tr(-r ceesT T ) - Tr(-[ T cesT )
1-1 2 3 a2 a1 41 35

The first term in the RHS corresponds to a singlet (isospin zero) and
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the second to a triplet (isospin one) intermediate state; i.e,
an isospin degeneracy. Summing over all permutations shows that
the two states have different signature (cf. the identity

= + i where the two terms on the RHS have opposite
2T S ab €abx x S the PPC
symmetry under the interchange of a and b). In effect this gives

the p- £° degeneracy from the isospin factor.

The extension to include kaons as external lines is
straightforward using the Gell-Mann A Matrices. The isospin factor
corresponding to the ordering (1, 2, ..., 5) is then simply

Tr (A, X ... 2 ),

a, a, ag
(The extension to N particles is made by replacing 5 by N). A

question of uniqueness has been answered by Tornqvist [26].

The first practical five-point processes to be analysed

using B_. were the KKTTT  and  KKKKT [27,28] systems. For the

5

former process in the form KK + 7T (i.e, 1,2+ 3,4,5) Bardakgi

and Ruegg gave the amplitude in the form

A, = BIx *

. 1, M2 M3, Miuy
5 ° 2 1171371515 P3 "P,

. P P
1u21.3u4 1 2

Kk

w k¥ o] _
%5y )

Bs(l-u12 , 1-a23 s 1

p
- 1-—
a0 17950 1

where the sum is performed over all pemutations of the three pioms.’
The first factor is due to isospin and thé second to parity conservation.
They obtained correct poles on the lowest values of the trajectories

with correct factorization properties and went on to show that the
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four- and five-particle Veneziano amplitudes gave consistent
results, including the standard mixing angles for w and ¢, f

and f', a universal relation for 2° and 1 meson decays, and

pure F coupling for the decay 2* 170" . Gunion and Yesian [?8]
looked at some of the experimental implications for particular
process of the two systems. The difficulties that arise when

one tries to extend B5 to include physical bosons are illustrated
by considering the amplitude for the o4rm system (1,2,...5) [}9,3@],

. .
where ¢ denotes a JP = 0 boson. Taking

B (oo 12 g 23 _ 3 _ 45 _ 51
5 T ] p ’ p ’ ) .’ T
introduces a spurious state of negative mass at a = 0, and if

the rho trajectory is started at one using

12 23 34 45 51
BS(—a“ y 1 up , 1-a , 1l=a s =0 ")

then it has to be multiplied suitably to obtain this, a possible

solution being:

35 12 23 34 45 51
o B5 ( e " l-ap , -ap s 1=a 7, =a 77)

where the multiplicative factor kills the ap3a = 0 ghost and

provides the correct spin for all the rho poles without altering

that of the pion poles.



2.2 The Reaction 75~p + n*m™n 1in the p and £%-mass regions

A specific five-point function amplitude for the process
En + g=a+tr— (4,5 - 1,2,3) which ignored spin complications was
proposed by Rubinstein, Squires and Chaichian [31]. Using the
notation F(alz, cea) = BS(-alz, ...) they took their amplitude
to be:

A= B[“lg FCayss ) ~1s agp =30 0,0 %3 = 3)

* Clagem P Flogdl o051y agg = 50 0371 ap5 = 3 )]
where £ is a constant, o5 refers to the Regge trajectory asscciated
with each sij’ as in Fig. 7, and B refers to either the ngcleon or
delta (1238) baryons. Spinor factors were introduced later [32] in a
normalization comparison (see Fig. 8). The constant C was calculated
by comparing the amplitude with a fit to the data [33] siven by
Altarelli and Rubinstein [34]. We show,in fact,in Chapter 3 that this
data fit was not satisfactory (although this did not affect the C
value), in Chapter 4 that thelvalue of C should be slightly different
from the value of ;1.25 giveﬁ, and, in fact, that the second term in
the amplitude could be neglected (i.e, C = 0). An explanation of the

choice of the terms used by Rubinstein et al in (22.1) is given in

Chapter 4 where the amplitude is compared with the data of [35].

We investigated the process NNprrm  in the production form
7-p -+ m—rn+n using the amplitude (22.1). The differential cross-
section, for small values of the momentum transfer, and the angular

distributions are both given with the pole positions M"" = Mp and

(22.1)
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M= Mf being explicitly taken to simplify the calculations.
An interesting point here was to see if the second term in (22.1)
would eliminate any, spin 1, p'contribution from the, spin 2, £
pole. Experimentally there seemed to be no evidence for such a
particle which is predicted by the usual Veneziano four-point

" function formulae that has families of daughter trajectories. The

effect of having the second term in (22.1) was therefore to be

seen in our results.

Support was lent to applying B_ to nucleon-antinucleon

5
annihilation reactions by a successful application to the reaction
Ep + 47 (at rest) by Hopkinson and Roberts [35]. Later applications

to the process are considered in Chapter 4.

As regards the production form, Jones and Wylde [36]
calculated the differential cross-sections for the quasi two body

processes 00 - (00)o using the B formula suitable for oo + goo.

Taking the same trajectory aij = [Sij - (.138)2) +10.1 Jéij - 4(.138)2
for each of the five channels and an amplitude of the form

Bs(-alz, “Ogqs T4, "0 -a51) they were able to correctly

reproduce the observed change of slope of %% with (oc) mass that

N -+ 7mA results suggest. Using the same amplitude they [3i]
investigated the Regge residue function with their model and simulated

the pion-exchange processes such as 7N - pﬁ comparing differential
cross—sections and calculating spin-1 and spin-2 density matrix

elements. They suggested further investigations with more detailed

models.
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Waltz [38] applied the production amplitude

a By, 8 R N
“agys P1 P3 P4 P By (17 ap% 1= aygs Tmag,y 1moys, 1= agy)

+ (3<>»5)

+ ...

to the process B(0+)1r+ > BI(O+) (n_n+) (i.e, 2,3 > 1,5,4) and found

that the expected shape of the differential cross-section -%% (t=812)

together with the resonance mass spectrums followed in a straight-
forward way from the dual amplitude considered. Further, Pokorski,
Szeptycka and Zieminski [3§] showed that the mass dependence of the
slopes in differential cross-sections could be explained using the

Bardakgi-Ruegg B. function, with finite width resonances, and the

5

kinematics appropriate to N -+ 7nN.

a) Phase Space [46]

A reaction with three particles in the final state has five
independent Lorentz-invariant variables. Some such suitable variables

are indicated in Fig. 7, where, for example,

_ 2 .2 2
Sq, = (B3 +B)° = P° = (P, + P, +P) . (22.2)

For three particles in the final state the restricted phase space

element is given by:

. ' o1 . o
d Lips (S34,P1,P2,P5) = d Lips (S3A,P12,P5) *

(2w)
(22.3)

d Lips (812’P1'P2)d512
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where:
d Lips(S,,,P.,,P.) = A8y mg iS5 ) dog
P8i93427127%5 (22.4)
4534 16725, °
T 234
where dQ5 is the differential solid angle of particle 5's momentum
in the centre of mass
and:
: 2 2
. = A(S.,,m, " ,m,") .
d Llps(Slz,Pl,Pz) //// 12431 2 gﬂ T (22.5)
12 167 S12
where dQ 1is the corresponding differential solid angle in the rest
2 2
A(§155my 5my )
frame of particles 1 and 2, and = k is the
4S
i 12
magnitude of particles 1 (or 2) momentum in that rest frame. Hence,
(22.3) becomes:
' 2
A(S., smc",5.n) k dodQ. dS
d Lips(S,,3P),Py,P;) = ///ﬁ a2 12 T (22.6)
34 (16%7) 834 S12 (27)
. _ .2 2 2
with A(x,y,2) = x +y + 2" - 2xy - 2xz - 2yz
=(x-y- z)2 - 4yz (22.7)
2 — 2, |
= (x - Uy + /DY) x - ¢F - /DY) |
a Lorentz-invariant.
b) Cross-Section
The cross-section for this process is given from the general
case of N final particles and a and b initial particles of
o = 1 - d Lips (S;P P)IT |2 (22.8)
'/ 2 2 **1° "t "NYITIf '
2/2(S,m ",m")
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where T is the connected part of the S matrix.

2

By neglecting spin effects so that lTif| = |A|2

this becomes:

2

Z /&(q - 2) J d Lips (334;P1,P2,P5) IA]
3 1 )

c) Kinematics

The details are given in the Appendix, where it is shown

that:
do [k ] | 2
s = |o=| |A]S x £(5,,)
d845d512d9 2E 34
where:
1
£(S.,,)
34 2 2 4 9
A(S34’ M )TT
and
E = Energy of particle 1 in (1,2) CMS
m = pion mass
M = nucleon mass

d) Evaluating the Amplitude for g4-p -+ g*+g—n at the 5 and fo'poles

The details are given in the Appendix, where for the p-region
= 1) we had:

e _ _ — _ -
N jP(O iImp)T (4 GBQ)F( a45) e (0.15 Gyq a34)
l r¢i - Uy~ a45) 23 45

(@)

-t
(a3['+045 2)

(22.9)

(22.10)

(22.11)

(22.1i)
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where Imp refers to the imaginary part used on the p-trajectory
at the p-pole to keep the expression finite. C is the constant

term given as -1.25 in Rubinstein et al [?i].

For the f-region (al2 = 2) we had:

(0ye = Ogn = n,)
] 15 ~ %23 ~ %34
A=BK {“23‘“23*1) " 223%5 oy, * oy - D

lays ~ apy ~ag)logg + 1 = ayy —ag)) (1 =a,5day,

3 1 .
(0. + q - .....) (d + q - _)
34 45 2 34 45 2 (22.13)

(a,, - l) Cnn O
34 2 23 745
+C 1
(agy * 045 = 3)
1
Jo fea mPlays L7 agy m ag) (07 ayg) oy |
3 1
- = - = J
(agy * ays5 =P (agy * 045 = 3)
“T(-0y, + DP(-a, )T (~a,, + §)
where K = 1?(_ - 45+_1) 34 (22.14)
%45 %34 T 2
-r(-1 - iImf)T(-a, )T (-a,, + })
i.e, K = R T e — (22.15);
‘ 27 %34 T %45
where Imfi refers to the imaginary part given at the f-pole.
e) Integration
. . dg do .
In the evaluation of the expression 1S CE— say) it
45 OF
is required to integrate over { and 512. To integrate over § we
integrate over ¢ and ¢:
2m 1
J fdo- J d ¢ j d (cos @) f (22.16)
0 -1 : -

The integration over the ¢ variable is done directly using the Gauss-

Mehler method, viz:



" 1y (2j-D)n
£ (cos ¢) d¢ = —~ I £ (cos==—="")
0 j=1

This formula is exact up to the order (2n-1) so that for a 4th

order case, as here, we therefore require n=3, i.e.

27
J f (cos $) do = 2n {ff(%] + £f(0) + f[J/%} }
0

To integrate over 6 we use the Gaussian method om
1
I F (x) dx.
-1

(The previous method is not used because F involves sinf).

Since the pole positions only were taken for S to

12
integrate over this variable, it was therefore necessary to
assume a particular form for the amplitude at this point. The

simple Breit-Wigner form was assumed, so that:

2
2 .2 | d : )
a%s as > Ep Iy [E?&E]s=s 5=5,,
dt ds 12 = ) (S-S )% + E_21Z R ds where
12 Se, R R R 5+S,
- rco 4a(s - SR) (E 2{, 2 F_Z_O'__‘] ]
- - 2+ E 21 2 T3
-5y <5, o ®  R'R [ ROR O lovds, S=Sg
R th "R . F
= L tan 1 [(S-SR)-] l E 21‘ 2 izi_] ]
ErTR Eglr 4 I R "R [dtdS s |
(5-8p) = S, -Sp
= E_T T o ean ! [Sth_SR-. %o
RR L2 (Ep Tl dtds

T2.

(22.17)

(22.18)

(22.19)



73.

At the p-position:

. 2 2
= = W = =
ER mp, FR Width p, Sth 4(m)", SR ER
At the f-position:
E,=m., T_=Width f, S = 4(m)>, S, = E>°
R £’ R ’ th ? R R

m = pion mass.

£) Sﬁinor Factors

We have mentioned that ref. [31] gives spinor factors to
account for the fermion's spin. These are given by:
- 2 ’
I |u, Tu,|”, T =¥ (22.20)
. f i 5 .
f,l Al

Expanding (22.20) by using the usual projection operators and taking

mp =m = M we get the factor to be:
545 |
-z J as given in ref. [32]. (22.21)

g) The Constant 8

The constant R is given by:

B = o x V2 x BN fgﬂﬂ
os . . 2 2
Since we will require |A] then we take B = B
.2 2 2 2 ' '
B = o " x 2 x NN x(fp”) (22.22)
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where:
(i) o' = The Universal trajectory slope
.. 2
(ii) fpmr = 4T x 2.4
(iii) gﬁN“ ~ 4m x 14.4 Coupling constants

f2 in (ii) may be calculated from:

2 3 o
£ P where 2 P2 +m 2 =m if

P 6n 2 _ m p

|
"

2 4

m

kit >

and P = |P| (given in,for example [41])

3
2 -2 - 14

m
n

gl

Various values of both (ii) and (iii) are quoted in the literature

2
with 2.1 <%<2.8 and 14;-6%—1-;-{ 15. ESee for example the values in
Ebel et al [42], Sakurai [43] and the Daresbury 4th International

Conference (p.94)].

h) Computations

(i) Differential Cross Section v. Momentum Transfer

The following values were used for the masses:

MN = 0.94 GeV, m = 0.14 GeV, = 1.236 GeV.

*ey, (1236)
Different widths were tried:
I, =0,15GeV, T =0.125GeV and T' =T_. = .09 GeV.
£ p o f
vere varied from 0.9 to 1.0 and also a slope tried which

was given by the p~-f masses. The conversion factor

l(GeV)-2 = 0.38935 m.b. was used for the ordinates.

The trajectory functions used were:
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a23(0) + a' x 523 + i (RTERM) /823 - 4m2

2
" = ’ . _
Ogy = 0q,(0) + o' x 85, +.i0.14 (5, - Orm)")

B
) 2
= / - .
a5 = @35(0) + o/ x 5, + i 0.14 (5., - (0m)”)
T a = o/ x (S - m2)
45 45 -
p. oyp = 1+ i (RTERM) /S5, - 4m?
Poles = v ’
) 3 2
£. oy = 2+ i (FTERM) /%12 ta
where Ima = (o = SLOPE) x (I = WIDTH) x (m = MASS)

This phenomenological fit was first suggested by Peterson and
Tornqvist [@4] and we follow their prescription for both meson

and baryon imaginary parts. The pole positions were used so that:

= 1.0 - alz(O) Sf _ 2.0 - alZ(O)
12 o ; C12 —
a,,(0) = a, .(0) = 2.0 - o/ x sf = 2,0 - g’x Mz
12 23 ‘e . f
0q, (0) = 0a,.(0) = 1.5 = a’ x 2 (for the A as baryon) .
34 15 Wk
33(1236)

The relationship between the laboratory energy and the C M energy is

given by: h
2 2 . .
S -m -M
534 . 2.2 [T 3
ELAB = M i.e, 834 (M“4m”) + 21 ‘|PL| +m
: S
. : 34
(i.e, approx. I?Ll = EL = =5 )

(22.23)

(22.24)

(22.25)



From the appendix to C recall that:

S
_ %5 .2 32 2 2.} 4
Sy3 =3 2E" +om + 2(E m) A3 cos B
where: .
) - _ 2 2 2
E=3/5 A3= (5,5 m, (2B)7) / 16E
2 2
)\3=E§-m2, E, = 4E" +m- - 5,
4E
(5, - @2E)?) (8, - (w-2E)2)
. _ Bys 45
A3 = Z
16E
Similarly,
S 2
- 34 _ 2 M 2 2 _ 2 P 1
815 == 2E” + 7= tm ¢ 2(E m) Ag *
“* [:- cosg cospg + sing sine5 cos¢ ]
2 2
where: e E2 _ M2 E = 534 4E -.M
5 5 > 5 4E
(8., - (M+2E)2) (S,, - (M—ZE)Z)
s 34 34
A5 = )
16E
2 - 2
4E(E_ - E,) + 4E” - 2E_E_ + m
= 5 3 573
and cos B, =
> TR
3 75
(E3, ES’ Ays Ag and E are given above),
_k
The factor |2E f(S34) is found using:
E=L/5,, k= @)}, £, - L
2 12 34 2 .2, 4,9
A(S ym sM )'IT 2
AT34
2 2. _ 2 _ 2,
where A(S5,,m M) = (85, = (M m)7) (S,, - (M+m)7)

The amplitude expressions were put into the more compact forms below:
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(22.26)

(22.37)

(22.28)
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p - case (22.12) becomes:

[T(O - iImp)FG% - 034)F(—a45) s
%23 * .

A=28 *
1 _ - -1
L MG = ag, = ) 34*%45” 2 .
' (22.29)
1
* - - -
[?“15 a3 T 934) * Celog, 2%] }
For the f-case (22.13) becomes:
. 1
_ F(-1 - iImf)T(5 = 04,)T(~a,5)
A=8 ) ay3 (apy + 1)+
PGE I TV a45)
—, 1 [“23 %s {2 (@rc = Gy = 02, )4C. (aq, - -1-)}- (22.30)
(a34+a45 - i) 15 23 34 34 2

_ (maysda,slaygmayg mag, + 1)'{

1
S (315 = dp3 7 934)*C-(ag, "5)}]}
%34 7 %45 T 2

(ii) Anguiar Distribution at.f-region do / d(cos®) v. cos 6

A similar procedure to that in (i) was carried out except

that because we integrate over S4 the spinor factor (22.21) and

5

various other terms can not be taken out as factors as was the case
in (i). The decay angular distribution (see, for example, ref. [ﬁﬁ])

for one pion exchange in the f°(2+) resonance region takes the form:
/W, (8) ~ A cosZe + B.

Since in the p ¢ resonance case it takes the form:
/ﬁi (6) ~ C cosp

then if in the region @y, = 2 there is some spin 1 (p’) contribution

then we would have the form:

W, (@) ~ | (D cos26 + E cosg + F)| 2.
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As this contains terms odd in cos® then a plot of the angular
distribution will indicate whether or not there is any spin 1

contribution present.

The Gamma functions were calculated by using ZFACT, a (22.31)

series approximation for Z! = I'(Z + 1) where Z is complex.

A desk-calculator check was made, for one incident
energy~momentum transfer case, for those constants not integrated

over (e.g, A3)-

On the first few computer runs various output statement

checks were inserted. These were subsequently removed.

The results of the computations compared with experimental
data [46,421 are shown in Figs., 11-15. Although a fitting procedure
was not used there is considerable latitude in any curve presented
due to the wide choices of trajectory function, resonance widths and
coupling constants. Narrowing the widths increased the magnitude of
the differential cross—sections and putting C = O seemed to produce
a slope which corresponded closer to that ofithe data. In general
the agreement is not too good, but is more successful at 8GeV than
16 GeV and for the p, rather than the fo—region. Writing the amplitude
in the fom R1 + CR2 then, the value of C = -1.25 does not seem to
be favoured by the data and in fact a value of C = 0 would be not too
far out, at least as regards the slope of the curve. These
observations were borne out later in direct data. fits as reported in
Chapters 3 and 4. With C = O, however, the agreement is very poor in
the near forward direction of small |t|. It would have been, nevertheless,
worse still had not the normalisation term [22,21] been included; a fact
stressed by Rubinstein et al [32] in'theip normalization of the

amplitude.
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The angular distribution for the fo-region at 8 Gev
indicates that this model with C = -1.25 gave rise to p’
(i.e, £°-daughter) contributions as seen in the strong asymmetry
of the graph in Fig. 15. A symmetric distribution in cos® would
require C to be about +2. In Chapter 4 a value of C = } was
found and this would still imply the existence of a small contribution

from the p/ daughter term.

After this work was completed two similar fits to the
NNwnn complex and the particular process =N - 7maN were'giveﬁ.

Bender, Dosch, Miiller and Rothe gave a dual resonance model [48]
for the complex using B5 functions suitably multiplied by polynomials
for the various invariant amplitudes. They then applied this model
to the process 7N -+ 7N [49] at small momentum transfer (small |t|)
between the nucleons and found that the differential cross-sections
for the p and £° region were in good agreement with the data provided
daughter terms were included. Thus, leaving out the I = 1 daughter
in the f°-case led to poor agreement. In the model proposed by
Pokorski, Szeptycka and Zieminski [50] in addition to a suitable dual
amplitude, with the same vertex factor as used by Rubinstein et al
[32], there was used a Pomeron term parametrized according to certain
assumptions. Good agreement with the differential cross—section data
at 11 and 16 GeV was obtained for the p and f-mass regions. These
two slightly better fits required, however, some considerable increase
in complexity of the amplitude expressions.

Given the relative simplicity of our initial dual amplitude (22.1)
and the various assumptions that had to be made we have seen that the
crossed, production, process gave moderately successful results for the
particular energies chosen and that some p’ -daughter contributions were

present in the given amplitude.



CHAPTER 2 Appendix for (c)

The Kinematics for 17p -+ n*r™n

Let M

nucleon mass

m = pion mass

We take, conventionally, all four-momenta as incoming so that in
the notation of Fig.7; 3, 4 ~+ T, 5, 3, Take 3 and 4 to be the
incident particles and look for the resonances in the 1, 2 region.

Express all variables in terms of 834, 812, 845, and the angles

defined in the 1, 2 CMS (i.e, when Pl +-BZ = 0).
2 2 2
S + m - m S + m -
In the CMS of 1, 2 El - 12 L 2 ’ E2 - 12 2
2 VSIZ 2 VSIZ
so if m, = m, (pion mass) then E,Z = E_ = Elg = E sa
1- % P 1 %27 72 ¥-
As Pl + 22 =0 let IPII = k say.
In géneral we define the four-momenta as follows:
P, = (E,R) ¢ Ogig‘fmg
Pl 4By + Py 4P 4Py = O
{ B = (E5F)
or E3 + E4 = E1 + E2 + ES /
and P, + B, = B +R,+ P P, = (B, )
- Tpegnine
| Bt R

Note: In Polar Coordinates the three components in (R,0,¢) are:

(k cosf, k sinBcos¢, k sinfsing).



- Pl- = (E, -k cosf, -k sinfcos¢, -k sinfsind)

-P2 = (E, +k cose,.+k sinbcos¢, +k sinbsind).
Also 33 is along the x—~axis with L23| = q, say{ so that

P3 = (E3, q, 0, 0).

The CMS condition that -P3 +-B4 --PS = 0 implies that
these momenta are co-gianér so let the 3,4 angle be 8 and the

4
3,5 angle 65. See Fig. 16 for these angles.

P4 = (E4, |¥a|cos64, LPh|sin64, 0)
-P5 = (ES’ -[P5|cos 65, +|¥5|sin 65, 0).
Using the results
P1 + P2 + P3 + P4 + Psl = 0 in 1,2 CMS
= By +B, = 0 = R +B -R
and .E3+E4 = 2E+E5

gives the following for the invariants:

- 2 . -
S34 = (P3 + Pa) (in the use of P3 +-Pa = (+85))
2 2
= (Ey + E)" - [7]
2 2 2 .
= (2E + ES) - (E5 - M") (by CM energy conservation)
= 4E% 4 4EE, + M
25 2
S34 - 4E" - M
[ E =

5 4E

81.
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S = (P, +P )2 (using the CMS condition again)
45 4 5
_ _ 2 _ 2
= (B, -~ Eg)" - By
2 2 2 .
= (2E - E3) - (E3 - m ) (by CMS energy conservation)
= 4E2 - AEEB + m2
2 2
- E3 _ 4E +m -845
4E
_ 2
S15 = (Pp + Py)
=qm + Mz + 2P..P
1'°5
=n? + ¥+ 2EE_ - 22 .2
5 175
=’ + MZ + 2EE, - 2k|P.| [cosgcosg. - singsing.cos¢]
5 5 5 56084
22 2 2% .2 24
Sjs =m +M + 2EE. + 2(E° - m)? (E;° - M) [cosScosBs +
+ sinBsinescosﬂ
_ 2
523 (P2 + P3)
2 2
= m +m + 2P2.P3
2
= 2m‘ - [2E(+E3) - 2122.123]
_ 2 _ 2 _ 2 i 2 2 i
823 = 2m ZEE3 + 2(32 Ny m ) L(E3 - m ), cos®
k
From 534
(s, - M2 + 168* - ge%(s,, - M%) - 16E2M>
2 2 34 34
: 16E
2 2.2 2.2 2 2 2,.,2
i 834 + (M)° + (4ET)T - 2834M - 2(4E )834—2(4E M
1682
2 2
g2 _ 2 o MSy.M,(2B)0)
5 5 = (defn.) g

16E
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Where )(x,y,2) = x2 + y2 + 22 - 2xy - 2xz - 2yz.

Similarly from S45

2 2.2 2.2 2 2 2 2
9 2. 845 + (4E7)" + (m")° - 2845(4E ) - 2845m -2m (4E")
16E
A(S, ., m2, (2E)%)
E 2 _ 2 _ 45 o
3 m 2 - (dEf'n.) 13’

16E

N.B.

A can be put into various different forms (Ref. [40] Pilkuhn, p.6)

of products as well as the above:

2 2
e.8, M85 12, (2B)D) =[5, - 2B [5,, - (a-28)7]

A(S 50 m?, (2£)%) (5,5 - o2 - (26)%)2 - 4 (2E)2.

Using these results in 515’ 823 gives:

S 2
%3 .2 M5 2 2 2.4 b -
SlS =5 2E° + st m o+ 2(E"-m _) Ag [:cosecose5 +
+ sinesinescoscb]
S = E - 2E2 + 2 m2 + Z(Ez—mz)g )y é osO
23~ 72 2 3 ¢
From -23 + 214 - 35 = 0
2 2
(33 -35) (34)
and p2+p% -2 2 = 22
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we have:
2 2 2
) (33 +¥5 —24)
cose5 =
212, 12|
- @l+2 -2 2

3 Es
2 2 2 2 2.2
_ (E3 -m- + E5 - M - (54 -M7))
B 'R
But in this CMS, E4 = 2E + E5 - E3, so this becomes:
_ 2 _ 2 2 2. .2 2 2 2
cosgg = E3 m o+ E5 M™+ M (4E" + E5 + E3 +
+ 4EE5 - 2E5E3 - 4EE3)
2 2 : A !
3 75
e - Y -
[?E(n3 ES) . 4E” + 2E5E3 m%]
cosg —
2 A3 As
The Differential Cross Section is given from
o ! [ 4 Lips (s r)| Al2
2 /&S m 24; 2) ' 34’ 1’
3673 4

. _ 2 2 2
and dLlpS (534, 1, 2. ) = /A(S34)m5 ’Sr) /A(Sr’ml ’mz ) x

deQSdSr

2,2
(2m)4(1677) SrS34

~where dQS is the differential solid angle of particle 5's momentum

in the CMS and the length of this momentum is |35| = /&(S S )/ZS i.

34 ’“‘5 ’

|¥| = /&(S ’ m1 » My )IZSri is the magnitude of the momentum
of particle 1 (and 2) in the r or 1,2.rest_frame, i.e. = k, and @ is

the corresponding solid angle.



85.

2
Recall Pr = Sr’ Pr = P1 + P2,
_ _ 2 _ o 0,2 _ 2 _ ,.2
Sr—Slz—(P1+P2) = (P,” +P,) (E + E)” = 4E7,
2
Sr = S12 = (2E)
So we have __do___ from:
dQsdslzdﬂ
// |
dQSdeS X(S:M,m5 ’ 12)k
dL1ps(S34,P1;P2;P5) = . s ] 210 "5
34 "12
2 2 | .
do ‘/“534’“‘5 » (2E)7) [k_) a2 [ 1 ]
dQ_ds dQ 2 2 2E 10 5
57712 2/&(8 4,m3 T, ) Y | S34

We now translate d95 into dS45 and to do this we go into the
3,4 CMS (I.e, the 1,2,5 CMS) or the overall CMS of the system.

See Fig. 1l7.

In the 3,4 CMS

¥3 + 24 =0 = 31 + 22 + Ps. So ¥3 = EPA = =P, say, in this
system.
845 = (P4 + P.)
S = m 2, m 2, 2P, P, = 2M2 - 2E,E. + 2|P,||P.|cosey
45 4 5 45 475 =4'1=5 5°
YyAr(s,,,m" ,M7)
34 °
Recall that [B| = %S = |¥3| = |34|
34
/iis 2, 2mrh) )
and that |BS| = 4Ts,,) , 8,, = 4E7,

(in this CMS)
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2
. 2/ J\(S34,m2,Mz) /A(S%,M +S15) i
. . c:lSl.5 = 4834
.- S
and dﬂs = 27 d cose5 2ndz.

{The int. over d¢ implies no initial spin polarization.}

So we have:

. do ; FQJ |A|2 1
dS45d812dQ 2E >‘(334’“‘2’}‘[2) "4?29
do _ Ik 2
i.e, ds&sds1zd9 = [ZE]|AI x f(334)
1
£(8.,,) =
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CHAPTER 2 Appendix for (d)

Evaluating the amplitude expression for #~p - w~wtn.

Let the amplitude (22.1) be written for convenience

- - - 1 -3 -
(1) A = A +A, where A = Bay oF (01950, 4 105,750,530 5 2)
A, = 8CCay,~ DIF(ay0=1s0n-lran,m =ra,c=lra e 2)
2 34 2 12 7°723 "°%34 2’745 Y15 2
Recall (21.1) and put x = U5 ¥ = U, SO that _
11 —a,~1 —a,,-1 -a,,-1 -a, .1
= 45 12 _ 34 _ 23 7
F(alz,a23,a34,a45,a51) JO Jodxdyx y (1-x) (1-y)
O qata,,~a
* (1-xy) 23 734 15
Now for the first term A1 we have:
1 .
1.1 -a, -1 -a,,~1 “(a,,- 3)-1 =(0,,~1)-1
A. = Bo dxdy x 45 y 12 (1-x) 34 2 (1-y) 23 %
1 12
0/0
1 3
(opo—D¥(a,,” ) -(a, .~ 5
* (1-xy) 23 3% 20 '%157 2
11 —0,5”1 —(ag,” %9-1 —a,571 ~(ay,~1)=1
(2) A, = Ba dxdy x (1-x) y (1-y) *
1 12
: 0’0
Onata,,~a
5 (1oxy) 23 0367715
Expanding the last term gives:
O, ta,, "0
(3 (-xy) 22 #1
(G q*o,, =0, ) (o, . ta.,, =a, .~1) '
o 237 %34 %157 %237 %34 %15 2 3
1+ (015 g, a23)xy + 3 (xyl) + 0(xy)

]Note: Hopkinson and Plahte [ii], Hopkinson [13] and Biatas and Pokorski

[15] have given a general expansion in the form:
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° k (X5 ¥27%3
4%y

Bs(x1,x2,x3!x4’x5) = Z (_1) k

B, (x,+k,x,)B, (x
Lo ]412

+k,x3)

as (21.4)

Substitution of the various arguments for the x's and expanding
gives a check on the simpler procedure used here to derive (4).

and (6). ]

Putting (3) into (2) gives:

1
BElzB('“as’ a3 * ) Blragys may3 + 1)
1
*applagg = ag, = ayg)Blra, o+l mag,+ 9)B(Tay 541, ma,gtl)

o
12 1
=5 (agg *ag, = a)5)(ayg +ag, = oy “DB(ma, 42, magt g

\

B(-a12 + 2, - Gyq +1) + ...i]

where
1
B(m,n) = J dx x° 1(1—x)n 1. myn > 0
Y .
orRem >0 (5)
and Ren > 0"
r'(m)T (n) :
B(m,n) = T'(m+n)

F(-aas)r(-a34+ %) F(—alz)r(-023 + 1)

(4) So A1 = B|a +

012 T(a,g gy *+ D) " T(rap, = 0pg + D

1
F(-a45+1)r(-a34+'i) T(—a12+1)F( a23+1)

Oyn0qe = Qpn = an,) x +
12*%15 23 34 _ 3 - -
r( ag, T a5t 2) r( 41y T Bgg +2)
1
(a23 *aq, “15)(“23 *ag, "o l)x- T( a45+2)F(-u34+ E) .
%12 2 - _ N
%34~ %5 T 2

r(-a,, + 2)T(-a,, + 1)
. *12 *23 . :I

(Fayp ~@p3 + 3
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Repeating this procedure for the second term in (1) gives:

1
1 T( a45+1)1‘(—a34+ 5) T'( a12+1)l‘(-a23+1)
Ay = 8(Clegm 3.~ —. +
F(=a,5 = a5 *+3) Moy = ayy +2)
. .
1 P(a,s* DT (o + 9)  T(ma),+2)I (-a,4+1)
+ C(la.,, -~ D@, = dny —a,, + 1) - x
345 ~ 2 (@5 T G5 T g, e, - NER a2 . 3
%34 ~ %45 T 32 %12 T %23

We can now apply the result T'(z+l) = zT(z), (z # -n), to (4)

and (6).

For the p-region (a12=1) we put ao,, = 1 + iImp and for the

12

f-¢/ region (a12=2) we can put @y = 2 + iImf. This will prevent

the infinite values of T(n) for n a negative integer and will be

done after the expansion.

p-region
For(4)
first t “12r('“45)r(’°34+'%)F(’°12) ) F(-ayy + 1)
1YSs erm { 1 x
F(rays = 0g *3) P(=a pmayy + 1)

or { “T (-, )T (ay, + PIap, + 1)} (-a,q)

1
Mrays = a3 *3)
= K (—a23).
second term K } (a5 ~ a3 7 o3,) (Fayg) (71
(~a,, —a,. * l)
3 %5 " 2
B R U F I T
1
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For (6)

. 1l
first term K1 C (u34 2)( aAS)( 1)

(o, . -

1
s T %34 T D)

1
Ky € (o, =y,

1
(o = 03, * )

In this case, therefore,

i 1 o
A =B {r(o iImp)T(5 = ag,)T(=0,4) . o505 = ayq = 0g.)
t 93 *

T 1
TG = 23, = %s (0g, + 045 = 3)

-1

c ( )
. %34 7 2'%5 ]}

1
oy, + a4 = 3)

Putting in this imaginary part after making the expansion saves
having the infinite series and is justified on the basis that we
are near a pole with 'small' widths and hence 'small' imaginary

parts.

f-region

For (4)

-T (= - - 1 -
(o) * 1T (-, )T (Fag,+ 3) ) I'(-a,q+1)

1

first term {
45 " %34t Q) [(-2-a,4+1)

I'(-a

. g (opT(mayy)

I (-a 1)

23

K ey, (a23 + 1)
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second term K (a15 - q23 } o‘34)(“0‘45)(.-0112)11(.-(123 +1)

(Faq, = 045 * ) r(-a,,)

K 20,5095 (0)5 = 0y = ag,)

1
(ag, + 045 =3

third term K (ayq * aq, = uls)(az3 *og, Tayg T 1)(-045+1)(-a45) *

3 T
2(-ag, oy * P (ag, " aug + )
r(-a,, + 1)
¥ () (ap, + 1) —3
F('a23 + 1)

= K (agy + ag, = ag)(ayy + ag, = oy = DL = 0,5) a4

3 1
(cag, = ou5 +3) (oug ~ag, +3)

- For (6)

first tern  KC(ay, - ) (-u,q) (-uyq) (1)

1
(oy5 ~ ez, + 3

1
= KC (ay, = 3) ay3 o

1
(a5 * a3, =3

1
second term KC(a34 '5)(a15+1 g a34)( a45+1)( uAS)

3 I
(mag, = ay5 + P Cag, ~ a5 *+3)

So that we have (A = A, + AZ):

1

A = BK {"23(“23 * D+ 2050,

(a3 * oy =3

- logg may3 Ty ey v L mapy = a0 -~ ayg) oy
3 1

(a3 * o5 = ) lagy *a45 =)
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1
(a3, =) @3 %

1
(0, * 45 =)
1
(ag, =P lagg + 1 -0y =03 )(1 - a,0) a,q
(7) -C 3 K
(ag, *+ oy5 = (ag, + a4g = 3)
M=o, + DI (-a, )T(-a,, +2)
Where K = 12 45 34 2
1
Mo, = agy +3)
. 1
- -r(-1 - 1Imf)F(-a45)F( ®ap +-E)
T
TG = ey, = oy5)

(Notice that the only difference between the K for the f-region

and the K for the p-region is that one has T'(-iImf) and the other
has T'(-iImp), or simply, the difference is due to the relative
widths, and these are almost the.same. We could, therefore, equate

the K's in magnitude to a good approximation) .
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Figs. 11-15

"We use the p-f-trajectory in the form
0.9t + 0.56

and the widths are given by

r = = 90 MeV,

o = T
as used by Bender et al [49].

The dashed lines refer to the given C value and the firm lines refer
to the case C = 0, (except for the angular distribution graph of

Fig. 15).
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CEAPTER 3

A Dalitz Plot Analysis of the Amnihilation Process
P n > 31 at Rest using Veneziano Type 4-point function

Amplitudes

Introduction

A remarkable feature of the reaction E n > 3 7 at rest is the

very complicated structure of the Dalitz plot for the 3ﬂ-system. Fig. 1

shows a computer line-printer output of the data (consisting of 2902

events) for this reaction as measured by P Anninos et al [1] in which each

event is plotted twice (because of the two T ) so that the plot is

completely symmetric with respect to the diagonal. This group made the

following comments on the structure shown:

(1)

(ii)

(1ii)

(iv)

strong enhancement in the low Mz(nz, n;) region where

Mz(n+, nI) = Mz(n+, n;) = 1.64 GeV2 (about the £° mass) ;

= M2(xt, 1) = 1.08

i . 2, + -
absence of events in the region M (m , = > Ty

P
GeV2 (hole near the centre of the Dalitz plot);

. + =\ ¢
lack of events in the region where one Mz(n , ) 1s small and

the other one is large; and

. o .
apparent abundant production of p~ and f, as seen in the

Mz(n+, n_) distribution.
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[R.B.

The line-printer'output tends to mask these effects by grouping some

of the events for printing purposes._J

They were not able to find a satisfactory fit to the data but could make
the conclusions that: p production seemed to be very small but fo production
seemed to be very large.

The Veneziano [f] 4;point function formula outlined in Chapter 1
might well never have excited so much interest had it not been seen Sy
C Lovelace [i] to provide a plausible explanation for the complicated dip-
bump structure of the 5 n + 37 Dalitz plot.

In the annihilation process pn + 7 n m at rest the initial

state has orbital angular momentum L = O and the total angular momentum

J equals S, where either S = O (singlet) or S = 1-(triplet). The initial

state is charged so that T = 1 and since L = 0 it has P = (-I)Lt1 = -1,

Thus, the initial state is either JP =0 or JP = 1- but since

G=(- )L+S+I the latter state has G = ( - )0+1+1 + and cannot
decay into three pions. The initial state 5 n is thus uniquely an isovector

pseudoscalar IG JP 1 0 state, or has exactly the same quantum numbers

as the 7 meson, but of mass mp + mo also written as 1So and illusérated
in Fig. 2. Fuller discussion on the evidence for S-state capture of the
antiproton at rest is given by Gray et al [ﬁ], based on the original study
of Day, Snow and Sucher Eﬂ. This assumption about the initial state may,
howevér, not be justified since recently there has been evidence against
complete S-state capture of the p reported by Dévéns et al [6] in the
process p p + 2n ,at rest and discussed further by R Bizzarri [7] and

TE Kalogeropoulos [3] at the Chexbres Symposium on Nucleon - Antinucleon

Ann1h11at10nsl
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Lovelace took the m—7 Veneziano type 4-point function to
describe this process making an "off mass~shell” continuation on
the grounds that the exchanged trajectories were not modified

thereby. Since Veneziano forms

v ) '(n - as) F'(n - at)

+ - -
nm I'(m+n a ut)

depend explicitly on linear trajectories an extrapolation from the

mass of the pion to that of the two nucleons is performed by changing

the connection s + t + u = ém: to s+t+u = | = (mp + m,n)2
+ 3m§ = mﬁ + 3mi where s, t and u are the Mandelstan variables for

the decay of the dinucleon system into the three pions. Coefficients
for terms like Vnm depend on the external masses and could be allowed
to change representing, for each term, just a scale change.

Lovelace suggested the two term formula:

T - us) r (1 - at) r(1 - as) r (1 - at)-
A(S’t) = _B I‘(l - as - at) + ‘l’ r(z - Gs - at)
= {Y l: (i —a_ -at)} B (1 - @, 1 - at)

for the amplitude A(s,t) to describe this process and took a phenomeno-

logical Regge trajectory:

a = 0.483 + 0.885x + 10.28/x — bm>  6(x - 4m ?)

(31.1)

(31.2)
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For comparison with experimental data he gave @ and
& imaginary parts in order to remove the poles away from the real
axis. The residues are then no longer polynomials in the crossed
channel. invariant but the "ancestor'" problems are not too serious
for this particular application. Lovelace ended up by setting
B =0 in his comparison with experiment, so that the standard wm
Veneziano amplitude [9] was eliminated leaving the satellite term
vhich does not have the leading (p, f ...) trajectory. This was

done because of the apparent absence of an appreciable p- signal

in the data of Anninos as mentioned above.

The distribution of events on the s = M21r+ g~ Vversus
1l
t = M2“+ a Dalitz plot is given by
2
d 20 2
5ot © IA(s,t)l

(The phase space distribution on the Dalitz plot is constant).
Lovelace claimed that his version of the Veneziano type
amplitude given by (31.1 ) predicted the marked depletion of events,

corrésponding to L + @, = 3, and the strong accumulation at the

edge of the plot given at @ = 1 (p band) or a = 2 (f band) and

at a =1 or @, = 2. 1In fact the hole is so deep and the depletion

of events on the lines o + e, = 2 or 4 1is so much weaker that a

fit to the data will require an additional line of zeros at o + @, = 3,



which could be obtained, for example, by setting B = -y/2 in (31.1)

so that A(s,t) = [§s + @, = j]B(l -l 1- at), explaining

’
qualitatively why satellite terms are needed [10]. Although the
amplitude (31.1) with B = 0 could not be said to "fit" the data
the idea of applying the Veneziano formula to this particular
reaction was an impoftant one. If, for example, the reaction

P p~+ m m- 7 had been chosen then the initial state at rest

having the quantum numbers of either m, which couples to 1So, or, say,

w, which couples to the 351 states of 5.p’ would have required'a
more complicated analysis and also as the final state has no exotic
mn channels it is less interesting anyway. Jengo and Remiddi in
fact looked at this problem [11] and gave an adequate fit to the
data.

Berger [12] pointed out that Lovelace's fit did not match
the angular distribution in the p and f-region and he was not convinced
of the theoretical justification for equation (31.1 5 since it was
.not clear how the details of the model had entered, beyond the fact
that the wn system contains a p, f and a largé S-wave phase shift.
Using the Lovelace ansatz for the trajectory function ( 31.2) Berger
allowed 8 and vy in (31.1) to be free parameters and found a best fit
to the invariant mass distributions with g = -1.0 and y = 1.95.
The experimental data-for the decay angular distribution of the u+
in the mass region of the f show a sharp forward peak that needs an
L = 2 contribution present in Berger's model, but absent in Lovelace's.
In the p-region neither model fitted the decay angular distribution

very well,

97.
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The Lovelace results were also compared by Boldrighini and
Pugliese [13] with the phenomenological consequences of using

amplitudes of the form:

r(1 - as/Y)P(l - at(Y)

F(s,t) =8 T(l - (a +a )/Y) and
s t
LT = e /NTA - e /Y)
F(s,t) = B r(z - (as+at)/7)
assuming
s - s)Y
a = b '[ © ]
s c

and taking b =0.52, c =1.29 and y = 0.93.

They obtained only a fair agreement with the data and concluded
that this was a reflection of the lack of higher thresholds in their

amplitudes.

By expanding A(s,t) simultaneously in poles in aé and
@, Boguta [14] was able to make the structure of the Dalitz plot
appear very obvious. For @nm scattering he took the convergent

expansion for the amplitude V10 as:

(_1)n+1 T(n+l - us - at) { 1 + 1 }
t

A(s,t) = ) — - = =
ne1 r(m)r(1 a at) n-o,  n-o
1 1
= (a + a, 1) { ut‘l + —1
¢ toa -2 a, +a -2
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This converges for Re(l - a = ut). <0 or s+t> (1 - 2u0)()

(where s refers to the iﬁtercept and a\ the slope of the Regge

trajectory) = 0 (as o = 1). The residues of the péles in this
expansion grow when s and t increase so that constructive inter-
ference gets strongef when s and t increase - a specific
ﬁrediction. By taking the first few temms of such an expansion’ "
one has a specifically non-dual isobar model.

.Boguta was able to reproduce Lovelace's original results
by using such a method, illustrating that within a limited
kinematical range a dual model can always be approximated
arbitrarily well by a non-dual model [10].

A similar type of fit but using non linear daughters was the
rising phase shift model of Gleeson, Meggs and Parkinson [15].
Their flexible parameterizétion allowed mass shifts between
resonanées in each tower of daughters and different widths. By
letéing the masses of the resonancés vary they were testing one of
the assumptions of.the Veneziano approach, that resonancés occur
in degenerate towers.

Moen and Moffat [16] instead of taking a product of Gamma
functions for each term took a sum to ensure that there were no
'ancestors' as occurs in the Veneziano type of approach. They
claimed a fit to the dat; at least as good as Berger. Other models

for this process will be considered later on in the chapter.
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Lovelace had used a one term Veneziano type of fit and
Berger a two term fit, neither of which amplitude is unique.
Altarelli and Rubinstein ﬂ7] suggested, therefore, using the

decay amplitude for this process in the form:

A(s,t) a ﬁ={1 m=ZO Com Vom (31.3)

where the Cnm are coefficients to be determined by the fit, and

v was as above.
nm

In order to restrict the possible values of n and m
they utilised the experimental feature of the Dalitz plot that
there is a "hole" at values of s and t such that
a = oa = 1.5. This led them to'a five term fit us?ng n+mn g3,

so kegping only those terms that vanished at ag + oy = 3, and

they obtained for the coefficients:

c = 1 (normalizatioﬁ)

10
C,, = 1.89
Cyo = 0.57
Cio = €1 = O

They claimed a good fit to the data and ruled out the possibility
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of a one term four point function, such as Lovelace's, fitting
the data. (In fact they possibly slipped up in computing

their. coefficients and their decay rate ratios given in equation
(9) are miscalculated). Using Bizzarri's (1968) estimate of the
conversion factor (S'p > a11)/(5 n + all) they reached rough
agreement between the éxpérimental and theoretical values of

the decay rates for (p p > T+ w- © ) vs ; n.
(T=1)

Jengo and Remiddi computed this ratio for Lovelace's amplitude but
found their result to be (a factor of 10) different from the (rough)

estimate of Altarelli and Rubinstein.

Boguta [16] was again able to generalise this model to
reproduce the invariant mass-distribution results of Altarelli and
Rubinstein and also showed that ancestors played an important role
in their fits. He took a finite number of terms aﬁd a suitable
ansatz to give identical ancéstor, parent dgughter structure.
Similar agreement with the experiﬁental data.using these simple

isobaric amplitudes was also made for other related reactions [1§].

The. somewhat arbitrary nature of taking sums of terms such
as (31.3) was pointed out by Rubinstein, Squires and Chaichian [26].
Instead of using the Veneziano formula appropriate for two body
scattering processes tﬁey took the generalized forms suitable for

processes as given by Bardak%}-Ruegg and Virasoro [2ﬁ]. We have
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discussed this amplitude in Chapter 2 and further comment will

be given in Chapter 4. 1In order to cast their amplitude in the
form of ( 31.3) they evaluated the amplitude at the threshold,

i.e, 845 = 4MN2 (their diagram for the definition of the

kinematical variables is given in Fig. 4), took the approximation

&

azs = 3, and obtained the results:

c,, = -3¢ (a2 + 8a + 15) - (24° + 2142 + 708 + 75)
3 2 2

C11 = 3C(2A7 + 17AT + 3BA + 15) - (3A° + 24A + 45)

c20 = 3C + 6A + 21

021 = 0 - 3C (2A + 3)

sz = 3C (2A+ 3) -9

C = 0, otherwise

nm

(NB - The ClO’ C11 coefficients given in their paper
were in error and a publication of the corrected
terms was made)

2

where A = - 20 MN + ZaB(O) - ap(O) -1, o being the universal

trajectory slope, a(0) the’'trajectory ihtercept,MN the nuclear mass and

3 . . .
c = 2A+3 if C22 is required to be zero.




Using the A trajectory for uB, they gave (corrected

entries):

C = -1.25

Cio = ) (normalization)
€1 = 3.2

Coo = 0.39

C21 = 0

Rubinstein et al claimed excellent agreement with the Altarelli
and Rubinstein results. This was the case, and their signs were
consistent, but the Altarelli and Rubinstein fit was itself not -
very good in the form they gave. Boguta [22], not aware of the
corrected coefficients, pointed out the deficiencies of the fit

to the data.

Since none of these previously cited adaptations of the
Veneziano model to E n annihilation made direct fits to the full
two-dimensional Dalitz plot representation the accuracy of the
predicted patterns was not fully tested. Gopal, Migneron and Rothery

[?i] made such a fit to the data using the same Veneziano like terms
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as Altarelli and Rubinstein with m + n< 3 but found that
their coefficients Cmn were different. Their procedure was
. . 2 _ 2 _ - ..
to divide up the M____ (=v) vs M ___ (=s) Dalitz plot %nto
a 30 x 30 grid and obtain the predicted probability distribution

p of each square by.integrating the expression

2
dp _ 2
dadu c. | A(s,w)]

over the area of the square. A method of obtaining an indication

of goodness of fit was presented. They found that:

(1) For the restriction m + n €3 the secondary terms with

n > 2 were essential.

(2) The overall fit of Altarelli and Rubinstein was worse than

Lovelace's.
(3) The best fit trajectory of the form

= oyt o x + iA(x - 4D o(x - tmd)

had Gqs a\ and B.=n% as for Lovelace but that A = 0.33

(A = 0.28 gave only slightly inferior results).
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(%) Using this trajectory-(3) their coefficients were:

C10 = 1.00 (normalization)
€1 = 2.90

Chg = 2.14

C21 = 7.31

C30 = -3.74

We agree that a direct fit to the Dalitz plot is essential
for detefmining the quality of any ﬁarametrization. However,
the use of a grid over the plot-(without a good criterion for its
size) and of the Poisson distribution seem unnecessary (except for
.a xz—type test of a fit). Further, exactly which of the Cnm's
are important and what other ones might be required should be

investigated.
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3.2 The Model

We wish to fit the 5 n *> 3 7 at rest annihilation
process with a sum of four-point functions of the form (31.3).,
to give the statistical errors on the coefficients found and to
see if additional teifms other than those previously used are

required.

Events for this study were those given by Anninos €t al [1]
in which 2902 points were recorded on the s = M2 (m+ 1!1-) vs.
t = M2(1r+ 1r2—) plot. (As s+ t+u =) we did not follow

Gopal et al [23] who use s vs. u). Using the amplitude:

T(n - as)I'(n - at)

n,m nm I'(n+m o at)
n>1
m €n
= Z cnm Vnm=.ZcIVI
n,m I
n>1
m <n
where a = 0.483 + 0.885x + iA /x - e 6(x - 4md)
) 2 2
with s+t +u = (ZM.N) + 3m
(M.N = Nucleon mass, m = Pion mass)

we performed a maximum likelihood [:m:l fit Eee Chapter 1] to
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the (s,t) data using for the likelihood function:

N=2902

L = n F(x., ¢) with j F(x, c)dx = 1
i=1 1 X '
where
. ' )
, , | A ( (Si’ti) s Cnm §) |
F(x., ¢ = T Z ’
i foffh( (s,t) » C_ s) | “dsdt |

(si’ti) are the data points of the plot and the integration is
taken over the Dalitz plot. Maximum values oth.= Ln L were
evaluated using tﬁe'CERN library routines MINUITS on —;i, ZFACT
for the Gamma function with complex arguments, and the Daliti
plof.integration was performed‘u;ing Simpson's rule (72 intervals)

and Gaussian Quadrature (32 points).

With n + m £3 the value of A was varied between 0.12
and 0.35 to fipd an optimum and 5( was evaluated for the Lovelace [3],
Altarelli and Rubinstein [17], Rubinstein, Squires and Chaichian [?dﬂ,
and Gopal, Migneron and Rothery [23] parametrizations. The results
of theaZL values for these cases are-given in Tables 1 and 2 where
it is seen that the four-point function fit of Rubinstein et al does
not givec;1.values an&where near so good as those of Altarelli and
Rubinstein. The Cnm coefficients of these two cases were then

optimised and their';(_values consequently improved. However, even



with these improvements they come nowhere near the A = 0.33

results of Gopal et al.

" The analysis was then extended to include the C.. and C.

22 31
coefficients and it was found that C,) =0 and so terms in the
series of (31.3) after V30 were neglected. C22 was also found
to be small and includiné the V22 term only changed the value of
;[_by approximately one so that this term too could be left out

of the series.

An estimate of the errors (statistical) on the CI's was

obtained from the error-matrix.

325£ -1

- 3CI acJ = E where )\ VE

1J 11
gives the confidence interval for CI’ A being given for both
957 (1.96) and 99% (2.576) levels. These in turn implied changes

2 . :
of the order of %— in ;t_for CI + A /EII,' (for a 'normal

j 2
distribution' the variation is exactly %— ) and the effect on

;t of changing some of the coefficients was also calculated.

These results are presented in Table 3.

We also show the ratios of the decay rates for each case,

following Altarelli and Rubinstein, given by:
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R(Ep > 3n°): _R(;n > ﬂ+ﬂ—ﬁ—): R(Ep > n+n_n°).

T=1
1f P = J JI A(s,t)|2 ds dt and
o’ . .
Q = J J? Re{ A(s,t) A*(t,u)} ds dt ,
(o]

and the integration is over the Dalitz plot, then these are

given by

4P . 6P - 2Q

1: F+Q° P+Q

These are compared with the approximate experimental results for

R(Ep -+ n+n-n°)
T=1
R(Pn + 171 1)

and are given in Table 4.

The kinematical and computational details are given in the

Appendix.

The results of Gopal et al are seen to agree remarkably"
well with ours and the requirement of Altarelli and Rubinstein
that there should be just the five terms with m + ng 3 is
here established‘statistically.- The decay rate ratios indicate
that for our fit |

R(pn +ﬂ+n-n_) = R(pp + n+n-w°) = ZR(Ep + 319
T=1
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otherwise they are inconclusive due to the uncertainty in the
experimental value used. Those of Altarelli and Rubinstein are

almost reproduced by the Rubinstein et al N-trajectory ones.

From a theoretical point of view the justification for
Eq. ( 31.3) is perhaps rather slight. The initial 0 state of
mass _ZMN is a very low-lying object .on the Chew-Frantschi plot,
perhaps a particle on the third daughter trajectory of the pionm,
as in Fig. 5. However, very littlé is known about u"(t) and
nothing about its daughters. The physical interpretation of these
Veneziano model fits to pn + 37 is that at rest the reaction is

dominated by the five m 7 resonances:
p, €, £, p%5 and € shown in Fig. 6.

These fits have no role for any I = 2 7 w interaction.



Summary

Veneziano four-point function fits have been applied with.
some success to five particle processes following the original
idea cf Lovelace [3]. 1In an analysis of the specific
annihilation process pn+3m (at rest) we employed the ML -method
to give an indication of the relative importance of various
Veneziano satellite terms. We were able to give support to_the
idea [17] that this process could be fiﬁted with just a few such
terms given from certain observations of the structure of the
data. For such a fit we presented the correspornding decay rate
ratios. In the next chapter we describe efforts to fit five

point functions to the same annihilation data.
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3.3 Other Methods

A more careful tréatment of the problems inherent in
the ad hoc "unitarization'" procedure of adding an imaginary part
to the p trajectory is given by Pokorski, Raitio and Thomas.[?d].
The difficulty with the rather crude treatment of the unitarization
problem is that the Ima prescription forces the total widths of
all resonances within a given tower té be the same, even thouéh
partial wodths of parents and daughters are very different.
Pokorski et al followed the method of Boguta [14] and decomposed
the Veneziano amplitude into a convergent sum of resonance terms
which enabled them to "unitarize" each resonance term separately.
Total widths were given to the ¢, p‘ and E'.hhile the partial
widths were determined by the coefficients of the Veneziano functions.
Mass and angular distributions which showed the qualitative features
Ef the model were first presented by Pokorski and Thomas and then
a fit to the data was made by dividing it into 120 bins and appiying
an ML type of fit. A x2 test was used to compare their data fits
and~some significant qualitative differences in overall fits'was
noted. An important feature of their dual model was the presence of
the non-resonant background determined by the resonance coupling
strengths. The table of relative contributions of resonance terms
f&r the various models as given in Pokorski et al [?4] is reproduced

as Table 5.
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In a similar analysis to determine the resonance
structure for this prbcess Gopal et al [?5] found that the
dominant contributions to the (ntr7) system in Bn <+ 37 came
from ¢ ,e\, é\ and p\ daughter resonances and they confirmed
the "decoupling" effect of the parent trajectory suggested by
Lovelace [i]. Rothery [?6] suggested a possible explanation

for the small p- signal by using a simple model of p/photon

analogy.

Barnes, Sarkar and Wells [2?] used a scheme in which
S
essentially the Lovelace form was multiplied by a (ii)k12) trace
term;—] polynomial factor. Their fit proved inferior to Lovelace's
—_— ' ’ ~s

and they concluded that this was due to their use of LJ(lZ)

rather than chiral symmetry.

In a-similar manner Franzen and Rémer [28] constructed
a dual quark model with Regge—behaviour in all channels apd.absence
of both exotics and parity doublets. They claimed reasonable fits
to the data not only for the Bn + 3m process but also for

+

Ep > 3m, Ep + nrtnr”  and Sp + wr'n . Their resonance spectrum,

. . \
however, contains the well-established resonances p, p , £,

A,, B but no e(0%0%).

The problem of unwanted ancestors is eliminated by

Gaskell [29] who uses a model in which complex trajectories appear

113.



naturally. He does not make a direct data fit for En -+ 371 but
claims that the qualitative features of his model agree with the

data for a suitable choice of his pafameters.

More ambitious still was the model of Cohen—Tannou&ji
et al [30] in which a definite model suitable for mm scatfering
was constructed incorporatiﬂg analyticity, crossing, Regge
behaviour, "duality" and partial unitarity via requiring second
sheet resonance poles at low energiés and absorpt{on effects at
high energies. Analytically continuing in s, t, u the =+~
elastic amplitude to the En + 31 decay region they produced
Dalitz plots and mass d@stributions that gave qualitatively good
results without making any further kind of parameter adjustment.

lowever, this success required a fairly complicated amplitude.

Hicks, Shukre and Winternitz [31] took a two-variable
expansion of decay amplitudes, based on the representatioq theory
of the group 0(4) and applied their formalism, applicable to four
particle cases where the masses and spins are arbitrary, to the
En -+ 37 annihilation at rest data. The numerical fit was made
to some more recent data from T.Kalogeropoulos and account of
final state Coulomb interactions was also made, slightly improving
théir fits which were claimed to be reasonably_good. No assumptions
were made about the initial or final states or the annihilation

dynamics, giving a purely kinematical fit.

11k,
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A Moments Analysis has been given by G Rinaudo [32],
and Bjérneboe [33] has presented a Grand Angular Momentum

Analysis, both being given for the En + 37 annihilation reaction.



3.4 Application to Other Final States

Veneziano four-point function fits have also been

applied to other NN decay processes with varying success.

The pn + 7KK and PP+ mkk  annihilations were
fitted by a Rome group [34] using a least squares fit to the
experimental data. The fits reproduced the qualitative features
of the data and the main difficulty of the mbdel'was stated té
be that all the resonances of the same mass were given the same

widths. Satellite terms were disregarded.

A good fit to both the Dalitz plot and the w - decay
angular distributions Qas obtained using Veneziano-type ampli-
tudes for the process Ep + 7+1~w by Chung, Montanet and
Reucroft [35]. A x2 fit was made to the Dalitz plot which had
a large amount of data. Franzen and Romer [28] pointed out that
in the Chung et-al model parity doublets appear. A similar model
fot.this'process was given by'Huséain, Rahman and Razmi [36] in
which a fit was made to the mass distributions but not the Daiitz

plot. Both found a small singlet to triplet decay ratio.

The Chung et al group [?7] have made a similar sort of
analysis of the process Ep -+ natn~™ at rest and by an ML fit

together with 2 x2 test they obtain good fits to the data using
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Veneziano-type amplitudes with satellite terms. In both of
these cases the Chung et al group use the Veneziano-type

amplitudes in the form

. i} r - ajr(m- a,)

Lmn F'(n - o

1" %)

rather than the. symmetric form as in (31.3). Similar results
for a final state interaction model for this process using an

ML fit were claimed by P Espigat et al [38].

Biatas, Tﬁrnau and Zalewski [3@] have shown that in
the Veneziano model the resonances observed in the decay and
production channels in general cannot have the-same properties
enjoyed by resonances formed in the direct scattering channel.
A modified Veneziano form is presented by Goebel, Blackman and
Wali [4d] for dealing with the reaction =m + 7S where S is a

particle of arbitrary spin S and parity i(—l)s.



118.

APPENDIX

Dalitz Plot Boundary

In the figure of the Dalitz Plot boundary the points
A-F are given in the accompanying Table 6. The limiting curve
of the Dalitz plot corresponds to events which are ‘collinear,

so that ir the notation of Fig. 4 if s,, = s and

12 =t

523
this becomes:

where m1 = m2 =

By conservation of energy:

The energies are given by:

.
o2 n?-s o2 n? -
3 7(2) » By 3020

so that the limiting curve is given by

2 2
(2M)~ - 2(2M) (15:1 + E3) + 2E1E2 +m

=12 /(Elz - m%) (E32 - m?)



Substituting for the values of E, multiplying by 2(2M)2,

squaring and collecting terms gives this equation in the form:

2t + t2s - st(]) + mz[(ZM)z - m2]2 =0
where s + t +u = z = (2M)2 + 3m2.
This equation is symmetric under interchange of s, t and u and
is a quadratic in each .of the variables so that for each value

of s there corresponds two values of t and vice-versa. A check

on (A.1) is that at s (or t) = 4m®> and at s (or t) = (24 = m)2

the equation should give equal roots corresponding to the one
value of t (or s) at the minimum and maximum of s (or t)
respectively; given by the points B and E (or A and D). The

points C and F are given by putting s = t.

An alternative set of axes for giving the boundary

of the plot are given in Fig. 7, with

1 : 1
s-/_—z(x-y), t=/:2(x+y)

1
xg= /T @+ ), x-S0 - ah)

The boundary curve now becomes:

—2
(y2 - xz) [% - %] + m2 [(ZM)2 - m2_|

giving two y values for each x value.

n
o
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Integration over the Dalitz plot

When optimizing the cnm coefficients this was

performed by taking
2 _ 2 2 *
1§ ¢p Vol = feglvp 1+ 3o 2reqv v

and integrating each term separately.

The evaluation of P and Q for the Decay-Rate ratios

was made using both (s,t) and(x,y) axes and as

P = ||aGs,t)|%60 = Jfiut,u)lzdo = JIMs.u)Izdo
J
and Q = |2Re [z\(s,t)A*(t,u)] do

= I 2Re [A(s,t)A*(Ssu)] do

= JZRe' [ACt,wA" (s,0)] do

(where the integration is over the Dalitz plot) a check on the

precision of these results was made by evaluating each possibility.

The various decay rates (4a, 4b and 4c in Altarelli
and Rubinstein) are found as follows using the well known T

isospin relations for the s-channel:

A: = —3— [A(s,t) + A(s,u)] - % A(t,u)
J A: = A(s,t) - A(s,u)

L A2 A(t,u)
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For 1 ~ 2, 3, 4 consider 1, 2 + 3, 4 and use the

Clebsch-Gordon coeffitients for (T = 1)x(T = 1)

(a) pn »> wHrTwT is considered to go via

™ >t~

i.e.m7n” > TN ,T = 2 amplitude A2
or A(sz3, 334) = A(t,s) {u and g interchange)
(b). Ep -+ wtg~n0 is considered to go via
T=1

7m0 » gHu—q0

i.e.won™ > =00 yamplitude %{Az - Al)
1
or 7 (Als1ys 5p3) + Alsyys 53,) + Alsy5s 85))
= -% (-A(u,t) + A(s,u) + A(t,s)) (u and s interchange)
(c) ;p -+ 370 is considered to go via

w0 > TONon0

i.e. w00 > qOqO Using the isospin relations

(no interchange needed) on 1 A° + 2 A2 gives
3 3

2 [aGs,t) + AGs,w)] - 7 ACE,0) + 3 ACt,W)

= -% EA(s,t) + A(s,u) + A(t,u)] |



The decay rates are then proportional to the modulus

squared of these results. So that if

Integrating using

{ c
so that R :
c
or 1:
becomes 1 :
Also 2(Ra

A(s,t)

A(s,u) using Bose statistics gives:
A(t,u)

1 2

70 18yl

1 2

7 8y = 8 -4

1 1 2
Zx§!|A1+A2+A3|

the relations for P and Q gives

1

3.P

3 1

2 - 3@

§®*Q
Ra : Rb
Bh
R * R

Cc Cc
4P 6P-2Q
P+Q ° P+Q
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From

o”|o”
n
Nlw
1
N =
ko

and -1« € 2

Lo

we obtain the relationship:

1
7§, %
a -
+ -
-]; R(ppT:-:l" “ 1|'°) <2
1.e. 2 R(Pn » rHa=q—) = °°

Amplitudes

The amplitudes used were of the fofm:

r(n - as)r(n - at)

] ¢ .
a,m nm '(m + n o at)

where o was the Lovelace type Regge trajectory

e, = 0.483 + 0.885x + i A /x - 4m2 o(x - 4m2).

Taking out the wr amplitude as a factor we have

Lovelace

C11 = 1.0, Cnm = 0 otherwise
r1 - a)r(l - o)

A(s,t) s t 1

rq1r - @ = at) Q1 - ay - &t)



Altarelli and Rubinstein

C10 = 1'0f 011 = 1.89, 030 = 0.57, other Cnm = 0

r(1L - as)r(l - at) 1
A(s,t) = T . - “t) c10 + = a - “t) {jcll +

. [(1 - o)l - a)@2 - a)@-q)
30 (2 - ag = at)

Goﬁal, Migneron and Rothery

~
o
O
3]
"

A=0.28: €, = 1.0, C;; = 2.5, C,g = 2.96, C, = 50 = 452
A=0,33: ClO = 1.0, C11 = 2,90, C20 = 2.14, 021 = 7.31, C30 = =3.74
rqi - 1 -~
A(S,t) = I(-(l _QS)rf )ut) ClO + (1 _1 — ) c].l +
% T % Bg T O

(1- as)(l - at) [CZO + ’{CZI + C30(2 B ms)(2 - at)}}' A|

- o, - o) J
: : 022
022 and 031 terms were included by replacing 021 by C21.+ 3= a_ - “t)
)|
and 030 by C30 + (3 = a_ - “t) respectlvely.-

Rubinstein, Squires and Chaichian

In the C terms below
nm

A

-2 M2+2aB(0)-up (0) -1,

3
2A - 3

C =
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where o = 0.885 and a°(o) = 0.483

1.5 - o> (1.236)2
2

* B
and for N = A, a (0)

N, o0 = 0.5-a M.
Putting C10 = 1 for normalization
2 3 2
Cigp = - 3C(A" + 8A + 15) - (287 + 21A” + 70A + 75)
3 2 2
c,; = [BC(2a7 + 178% + 38a + 15) - (3" + 244 + 45)] [
€101
C,o = [3C + 6a+21] /c
101
o o 1T T -e) | [C11 + Cppllma) (1-a))]
s - - - -
r(1 o at) 10 (1-a Gt)
For the case C =0,
a1 = %/, v Gy = T Cy
: 101 '
r(l - a )T(1 - B
A(S,t) :'(1 _aS) f )at) ClO + (1 - 1 - ) cll *
. as at GS at

. . C
. 21
(1 - as)(l - at) C20 + ]_
/
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Error Matrix

The amplitude A ] ¢ Vnm was written

n,m
A =YX V
1 I '1I
that A A" (TX Vv.)(Ix V)
80 a = .
L Vg ) Gl T
2
_ |A|i
From L = I ——5— " taking logs gives
i J|A|%do

L o[l a0 - ] Il
- oL, - giz

The error-matrix is given by : e

[_ ax.ax-] where X1 = 1 for normalization

*
z 2 Real (V J? XJ

:ﬂlh}ﬂh

’ I=2,-..,6
| a|?

2 *
2 ‘iz _ 2Real (v V)
. BXT?XK- | A |2
* x
6 2 Real (V VJ)XJ 6 2 Real (VK VL)XL
'|2

This was then summed to include each i wvalue and held in store to

325
OXP %

being calculated and noted separately due to the large

be subtracted from the corresponding value of Jéach term

2L
BXISXJ
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computing time of completing the whole operation in one process).
The values of the error matrix were found by inverting the
resultant matrix and the square-root of each diagonal element
taken and then multiplied by A for the required parémeter

confidence interval.
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Fig. 2 P n > 37 Annihilation at Rest

o3|
=3
+

:>°"7><

s=(P +P) =(Pa+P)
t = (p »fpl)2 - ‘P1'P)
u = (P + P) = (I’2 - a)
P,+B = P, +P, s+t+u=m.b2+-3mﬂ2=z
Fig. 4 ' . Manc_lelstam Variables for ref. [20]
S
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Table 1

VALUES OF THE LOG LIKRELIBOOD FUNCTION ‘;e.

940 MeV.

Taking M_,r = m .= 140 MeV. M = M = Mn

m+n <3 FIVE TERM FIT

0.12 4780

0.28 4220
0.31 | 4214
0.32 4214
0.33 4214

0.35 ' 4217



Table 2

VALUES OF THE LOG LIKELIHOOD FUNCTION éti-

Taking m

LOVELACE

1f A = .33

ALTARELLI
and
RUBINSTEIN

Best Fit
with

C0=C21°0

RUBINSTEIN
et al

Best Fit
with

€517C3070

GOPAL
et al

11

10

10

%10

10

10

10

21

10

21

- 140MeV. M = M = M
. p n
1 ¢ =0
nm
1, C,; = 1.89, Cy = 0.57
1, €, = 1.67, Gy = 2.98
1, €, = 1.67, Cyy = 2.98
1, €, = 3.22, Cpy = 0.39
1, C.. =4x10°, C,. = 0.39
» €y » Cyp = 0.
1, €y = 2.55, Cyy = 2.96,
7.80, Cg5 = -4.52
1, Cj; = 2.90, C, = 2.14,
7.31, C.. = -3:74

30

940 MeV.

A

0.28

0.33

0.28

0.33

0.28

0.28

0.28

0.33

- L

4531

4512

4603

4409

4356

5776

4531

4220

4214



Table 3

Best Fit
including

Cya

Best Fit
with

Cypp =0

Best Fit
including

Ca2

for
A= .28

Best Fit
with
Cyp =0

for
A= .28

VALUES OF THE LOG LIKELIHOOD FUNCTION éii

TAKING MASSES FROM 'PARTICLE PROPERTIES' TABLE

Confidence Levels

997 957
(Ax=2.576) (A=1.96)

Cio = 1

c11 = 2.89 + 0.47 + 0.35
c20 = 2.16 + 1.04 + 0.79
021 = 7.35 + 1.80 + 1.37
030 = =3,65 + 0.94 + 0.72
022 = -0.10 + 0.45 + 0.34
Cio = 1

c11 = 2.86 + 0.45 + 0.34
C20 = 2.14 + 0.99 + 0.76
c21 = 7.31 + 1.75 + 1.33
C30 = -3.65 + 0.86 + 0.65
Clo=1

C11 = 2.55 + 0.25 + 0.19
C20 = 2,96 + 0.96 + 0.73
C21 = 7.74 + 1.62 + 1.23
C30 = -4.,52 + 0.91 + 0.69
Cyp = -9.10 + 0.33 + 0.25
Cio =1

c11 = 2,52 + 0.25 + 0.19
020 = 2.96 + 0.93 + 0.71
021 = 7.74 + 1.63 + 1.24
C = ~=4.52 + 0.88 + 0.67
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A

0.33

0.33

0.28

0.28

4212

4213

4219

4219



Table 4

DECAY RATE RATIOS

R(pp + m*n710)

T=1
R(Ep > 3n°):R(5n > w*n'n‘):R(gp + nta~n0) R(En + Ty
T=1
LOVELACE 1 1.53 ) 1.05 0.69
ALTARELLI :
and 1 2.47 ' 2.95 1.19

RUBINSTEIN
RUBINSTEIN A . 1 1.60 1.20 0.75

et al N 1 2.54 3.09 1.21
RUBINSTEIN A 1 1.63 1.27 0.78

et al
withC=0 N 1 1.66 1.33 0.8C
GOPAL et al :
A=0.28 1 2.30 2.60 1.13
A =0.33 1 2.01 2.02 1.00
Best Fit
A= 0.28
sz $#0 1 2.32 2.64 1.14
Cpp = 0 1 2.31  2.62 1.13
A =0.33
Cyy $#0 1 2.03 2.05 1.01
C22 =0 1 2.02 2.04 1.01
EXPERIMENTAL 1.6 + 1.1
VALUE FROM

ALTARELLI [17] - 0.8



J =

a(s)

Chew-Frantschi Plot of the a“(t) parent trajectory

a_(t)
e ®
1 e L]
| I | lal I
™ 1 Pn t

The low-spin parent and daughter states included
in the model amplitude (31.3). Resonances are
labelled by their common names (p,e etc.) and J

designates their spin.

Parent
trajectory

? Daughters




Table 5

The relative magnitudes CR(M 2) as defined by
R

(2L+1)CR(s)PL(cose)

A(s,t) = L v + (s€>t) + (non-resonant
R MR background)

where the relative contribution of each resonance, neglecting

interference effects, is

2

2
(28 + 1) lCR(MR)l /

Mp Tr

when a finite width is given to the resonance.

Ce Cp Cs‘ Cp\ Cf
LOVELACE 1 4] 1 -0.2 0
ALTARELLI and RUBINSTEIN 0.2 1 -2.1 1.2 -0.22
GOPAL et al. A=0,28 case 1.8 1 -1.7 2.6 0.42
POKORSKI et al _ 1 -0.052 1.0 -0.56 0.072
mn AMPLITUDE (LOVELACE) 1 -0.2 2,0 -0.5 0.04




Fig. 7 . THE DALITZ PLOT BOUNDARY
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Table 6

POINTS ON THE DALITZ PLOT

BOUNDARY

m~ + 2Mm
(2m) 2
m + 2Mm

o2 -

(2M - m)2

(2M)2 -m

(2M - m)2

0?2 - m

m2 + 2Mm
(2m) 2

m° + 2Mm

(2M)2 -m
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CHAPTER 4

Five-point function fit to the pn + 3r

at rest Dalitz plot data., and B_ Phenomenology

5

4.1 Introduction

In Chapter 3 various four-point function fits to the
Sn + 37 at rest data of Anninos et al [1] were discussed. Berger [2]

recommended the use of five-point B_ function fits to Dalitz plot

5
data for 2 + 3 body processes and in particular for the Sn +> 3n
process in which one might have expected some contribution from
baryon exchange graphs. If th -denotes the four moméntum transfer
for an initial nucleon and final pion then the allowéd kiﬁématic

range of t is given by:

Nw
2 2 2 . o~
M.N + 2.5 M“_ ‘tN'ns (MN M“) =~ 0,64 GeV .

At the upper limit, e is not far from the (M§ = 0.88 GéVZ)
nucleon pole position, so that Berger expected 1argé contributions
to any amplitude from nucleon exchange. Further weight to this
argument was lent by observ?ng that tN

. béing near its maximum
implied that M§+"_ was alsq and that therefore the baryon exchange
should be largest in the two corners of the Dalitz plot where

indeed maxima of the'&ensity distributions are observed. Sivers [3]

"has pointed out that there is a limitation to the use of the four-

point function models used as a convenience for reproducing a general



final state 7T interaction with a reasonable spectrum of
resonances, in that there is a level at which they can do no

more in describing the data. The suggestién is that the t-channel
(the cross—channel if NN is in the direct-channel) exchange pictﬁre
and the final state interaction picture (based on direct-channel
resonances) may be combined in a consistent way by a five-point
function approach. Such an approach considers the process to be

a 2 + 3 reaction in which two duality diagrams correspond to
functions with poles in the En channel. Some duality diagrams for
pn + 7*171" are shown in Fig. 1, and indicate that they each have

an exchanged nucleon pole. Sivers suggests that looking at the
exchange picture is more appropriate and more complete than that

of the final state interaction picture and therefore one ghould
factorize at the exchanged nucleon pole rather than in the NN
channel and one should also look at the structure of the Dalitz

plot in this light. However, Sivers points out that if BS functions

are used then these should not be used to make detailed fits but

rather to-give a qualitative guide to the data.

Reference has already been made in Chapters 2 and 3 to
the five-point function given by Rubinstein, Squires and Chaichian[&]
for this (;n) threshold annihilation intp three pions process. These
authors started from the assumption that, when the external parficles
lie on leading trajectories, a good approximation to the amplitude is

provided by the leading Veneziano terms. It was then.necessary to

129.
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construct physically acceptable five-point functions and the
following conditions were required: all desired poles, leading
Regge behaviour in all channels, no spin-zero ghosts when
trajeétories have positive intercepts. The demand was then made

that the relevant piece of the five-point function, i.e. the |
invariant non-flip amplitude, reduces to the leading term iﬁ

each channel when we go to a pole on a leading trajecfory. In
particular this gives the important restriction that the amplitude
does not have the nucleon pole in both baryonchannels simultaneously,
since otherwise we would obtain an.incorrect N + mN non—-f1lip

amplitude;

They take for that part of the amplitude which has poles
in the NN-channel, corresponding to the confiéﬁration of figure 2
B

1 B3
A=), F(ay o5y = 1y agy =50 oggs ay5 =)

B_1

p _ P _ B_1 = _ B_1 (41.1)
34~ PFlegp™l ay37ls 0= 5y 0571 075~ )

where C is a constant and the terms not written come from non-cyclie

reordering of the external particles of figure 2, and
F(xl, Xys Xq5 Xy xs) = B5(-x1? TX,, fx3, EIT -xs)

where B5 is the Bardakgi—Ruegg—Virasoro form [5] given in Chapter 2.
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aB refers to either the N or the A trajectory, with the

notation o5 = a(Sij) where each o3 refers to the appropriate

S.. of Fig. 2. The factor aB -1 was chosen to eliminate
ij 34 2
the double nucleon pole and the term “23 - 1 kills the ghost.

They point out that Bose - statistics demands the addition-qf an
identical term with 1 and 3 (referring to the two u-';) inter-
changed, and also that instead of their second term they could

have added a term like the first but symmetrised in 4 and 5 that
would also give spin %-poles in the 15 channel. We have seen in
Chapter 2 that differential cross sections are not fitted well with
their given C value and are improved if we put C = 0. Similarly

in Chapter 3 the four-point function fit derived from this amplitude
with the same C value was not very successful; An additional reason
for having such a second term was the hope that it might have enabled
an uncoupling of the ¢ daughter of the f as at the time (and also
.the present [2]) the status of this p’ was not established. This
would have been a means of eliminating a particle that appeared in
the resonance towers .of the u;ual'Veneziano four~point fﬁnction
expressions. The relative contribution of each resonance as evaluated
by Pokorski et al [s] is presented in Table 5 of Chapter 3, showing
that the four-point function fits each have a p/ contribution. This
second term does not have leading behaviour in all channels as, for

. a -1
example, it behaves like Slg when S15 and 823 are large and their
ratio is constant. Schematically then the Rubinstein et al amplitude

is:

(apprepriate to (with (a satellitel
A ' non-flip) =g Al pion-pole) + CA2 term) | .
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Pokorski et al [GT'point out that when evaluating the Rubinstein’

et al 35 model at a pole in the Sn channel the resulting B, four-

4
point function fit does not give a reasonable description of the
data. They note.also that €(1234). B5 models seem to work well
only for peripheral collisions [7] and suggest that the five-point
function model for En annihilation still has unsolved problems. We

have seen in Chapter 3 that the criticism of the four-point function

fit (with C = -1.25) is indeed justified.

Boguta [8] also criticised the Rubinstéin et al amplitude
and computing exactly the model predictions via the standard B5
program of Hopkinson and Plahte [9] showed that the results did not
fit the data at all. However, Boguta does not make it clear how he
performed the fits and does not produce any goodness of fit criterionm.
Repeating the Rubinstein arguments he wrote dé;ﬁ amplitude (41.1)

plus the same thing with 1 and 3 interchanged, as demanded by Bose

statistics. Using the result for En at rest that

%34 ° %35
B _ B
%51 %4

he singled out the terms involving the factor C which were

1 i B_1

c(“34 z)F(“ -1, o5 -1, “34"5’ 0,57l @507 5 )
1 T B 1
+ C(°14 'E)F(“ 12 -1, “14 30 %571 9357 )

and then applied the permutation 12345 - 32154 together with these
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aB equalities to give the sum as:

1 m B 1

B B _ p _ P _ B _1 _ _1
Clag, + ap, = DBlajy=1, 5371, ag,= 55 0571 0y~ )

at En threshold.
Quoting Rubinstein et al that:
T 2,
a (AMN ) =3

and that the residuum of B5 can be used in an approximation for A

wvhere B, = 1 Res B

T_ to get the decomposition
5 a3 5| a=3
¢ r(n - aJr(n - a))
A= L ¢ o S )
nm mnum ['(m+n ag o,

where the coefficients are given in the Rubinstein et al paper,
Boguta then pointed out that if all the terms of Cmn are collected
B B

oy, * g T 1 and

since this was not the case for the Rubinstein et al coefficients

having the factor C, it must be divisible by

then one of them must be wrong. In fact, Rubinstein et al had
simply forgotten to symmatrise. in the 1 and 5'variables and they
later published corrections as pointed out in Chapter 3. A further
comment of Boguta's was on the approximation of taking the resi&uum
of B5 in the a5 variable. He stated that this destroys the pole
structure in the dual g and LTV (i.e, baryon exchange) variables
and that for the approximation to make sense one should be certain
that no characteristic features of baryon exchange are present when

computing with the total BS' The approximation is claimed unfounded

for the delta exchange which was not at all negligible and the nucleon
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exchange was no better. In the actual numerical computations no
width was assigned to the w-trajectory and a poor data fit was
obtained even when C was allowed to vary. No best C value was

given.

Pokorski, Szeptycka and Zieminski [Id] applied the
generalised Veneziano model-to the related process #~p + m~ntn
in the laboratory momentum range from 5 to 16 GeV/C. They
considered the following four processes, each of which was thought

to be dominated by T exchange:

T™p » -
tp > mwHr—N*++
"p » k~r'n

ktp + g~ N*++

They claimed that their approach had the following nice properties

as compared to previous versions of one pion exchange (OPE) models:

(a) nucleon-nucleon four-momentum transfer dependence is
fully predicted by our amplitude without any

additional phenomenological form factors,

(b) factorization of the amplitude into the nw -+ 7w part

and the 7NN vertex is not assumed,

(c) the effects of 7N resonance production in the (15)
system (see Figs. 1 and 2) are taken into account

in a natural way.
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Their calculations were an attempt to include 7 exchange into
the duality frame, even though the dual nature of the pion is

not clear, but they do not test the model's crossing properties.

The form of amplitude used for the given reactions was
|A|2 = C|AD|2 + |AP|2 where A, represents a Pomeron term
which they claim has to be taken into account. The dual amplitude

AD for the particular ﬁroéess 7p +» n¥t™n had the form

A = t_x(p)y5u(q) x [1 - a‘2’3 - a‘;z'_] x
(41.2)

i P _p 3_B _m 3_B )
[Bs (L-a33. 1mogps 5 ~ap5s ~o450 § "03) * Ge5)]

using the labelling of Fig. 2.

The presence of fermions in the calculations was taken into
account by the 7NN vertex factor ;(p)ysu(q) which.when averaged
over initial and summed over final nucleon spins gave the factor 345.

The kinematic factor which multiplies the Bs.functions was introduced
in order to get the Lovelace amplitude for nm elastic scattering as

a residue at the pion pole. This type of model with the Adler
condition built in is criticised by Pokorski et al in [6] since the

. resulting sum of B4 amplitudes dées not seem to give a reasgnable
description of the annihilation data. Thomas [li] points out that
the approximations used for fermion spin, isospin and unitarity for
vector exchange reactions may not apply to pion éxchange reactions,

and that the approximation of making o complex as followed by

Pokorski et al [10] is a very poor ome. He claims that in such

7



cases instead of the B5 method an entirely equivalent descripfion
to the data may be made by using a B4 amplitude times the pion
pole:

- gOT

Bu Ygu Z;— Q1 - ap - ap)B4(1 - up, 1~ ap)
Then he suggested that no new insight is obtained by including the
pion pole in a dual model because, for example, the pion amplitude
at small tpn is mostly reéal, and hence plays no part in buildipg
up the imaginary part of the dual resonance-contribution. Thﬁs
there are important differences between vector exchange and pion
exchange. Thomas also pointed out the further difficulty of
finding a reliable model in which to include the Pomeron. These

points are amplified later.

Pokorski et al [10] attempted a detailed comparison of
their model with experimental data giving different widths to
resonances on parent and daughter trajectories by adding suitable

terms to (41.2). They found that the dual B_. model describes the

5
details of the experimental data very well and was better than a
given reggeized n exchange amplitude. They stated that the dual

nature of the pion was not strongly tested by the application of

the B5 model to their given reactioms.

136.
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This wnuNN process has also been examined in detail in
terms of these five-point functions by a Heidelberg-Kérlsruhe group
of workers. Starting from the covariant decomposition of the
namNN- fiveé-point function chosen by Dosch and Miller [12] Bender,
Dosch, Miiller and Rothe [13] made a particular ansatz for the
invariant functions in terms of Bs—functions multiplied by polynomials
of the invariant variables. The construction of a dual model for
this process was based on these inyariant functions because of their
known and simple crossing properties. Each invérian£ function was
expressed as a sum of twelve terms; each of the above form, and it
was demanded that the invariant functions should factorize correctly
at the nucleon and pion poles so that the 7N and nrn-amplitudes
appearing in the residues were supposed to have the Igi [14] and
Lovelace [15] structures respectively. This forced a minimal set
of Regge trajectories to be those of thg'n, Py Ph w and N. Using
certain asymptotic requirements and that the spin-averaged cross
section shalI'behave in all single Regge limits like a corresponding
scalar five-point function their rather unwieldy expressions were
somewhat simplified, but despite the complicated formulae various
simplifications in the physics remained. Application was made to
the process n+p + p*p with apparently good agreement with the
differential cross section data, all parameters now being fixed.
Further applications, to show the predicticn for ww-resonance
production at high energies, were made [161 and the resulting

differential cross section for the n™p - ntm™n process at various
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energies and for the p and f-mass regions were found to be quite
good in comparison with the experimental data. Of particular
relevance to this section was the application of the foregoing
five-point function dual model to the special case of n;
annihilation at rest made by Bender and Rothe'[17]. Using the
requirement of absence of exotics in the isospin 2 wn—channel and
that at the np threshold Re aﬂ(AMz) = 3 they reduced the T-matrix

element for the annihilation process to

T=-/Evy5uu (S153 Syq)
C3 2. 2
where H=g o HN 2g o fpTrTr H"
and (SasSin) = (S,a + Si0 = (22 = m2) B (1=
Hy (5,355 23 * °12 5(1789qs
o L1_B , 7 1_B |
1-a)9s 3 ~015r 2705 5 03, ) (41.3)
) _ _ P _ P _.p _p
B (593:8)5) = (1 = 057 07,)Bs(1may,, 1-4;,,
3.8, - 3.8 )
2~ %150 %50 7 %3

g, f and o being constants, and the notation being as previously.
Use of the result Bs(xs,x4,x3,x2,x1) = Bs(xl,xz,x3,x4,x5) together
with cyclic symmetry will restore the expressions for HN and'H1T to
the form used in (41.2). A free parameter A was then introduced in
front of the first term to compensate for the deficiency of the

model regarding those terms containing the nucleon poles. Proceeding
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"a la Rubiﬂstein et al" [4] they further reduced the expression to
sums of Veneziano four-point functions with suitable coefficients
but to obtain a good data fit some liberal variation of the widths
and slope was required. The authors suggested the direction for
improvement in the wnnNN-five-point function model but have not

followed it.
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4.2 Comparison of five-point function fits

In this section we investigate the quality of thé fits
to the En + 37 at rest data made by the five-point function
amplitudes of the last section as given by Rubinstein et al [4],
Pokorski et al [10] and Bender and Rothe [17]. Taking these

amplitudes to be respectively Al’ A2 and A3 they are given by

A =R +CR,.
o AP _p _p 1l _B 7 3 _ B
Ry = 01,85 (-00 5, 1-ygs 5 ~8g.s .50 5 TUyg) *
(1e»3)
- B _ l- _.p _.p l _B _ T
Ry = (g, = )Bg(l-ay,, 1-0,4, 5 =0q,, 1-0,,
1 B. . | _
-2- als) + (1«23)
- _ P _ F _.p _p 3 _B .7
Ay = (1 = ayy = a))Bg(lmayg, 17095 5 0150 ~35:
3 B :
Ay = Ay + 2B,.
_ ' _ 2 _ 2 _p _p
By = (Sy5 + Sy — (207 - m')B (10, L=ap0
1 B T 1 B )
7 ~%so 2 %5 g ‘a34) + (1<>3)

where C and » were taken to be free parameters, M = nucleon mass,

m = pion mass and each aij corresponds to an Sij of Fig. 2,
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For the. case of decay from rest if 812 = s, 523 = t and
2 2 2 2
_ 2 _ _t+m - 24 - _s+m - 2M
545 = (2M)~ then S14 515 5 s 534 = 535 = 3

and s + t +u-= (2M)2 + 3m2 = I. (See Appendix).

The p Regge trajectory was taken in the form
of = 0.483 + 0.885x + i 0.33/x - tm?

as given in [18] and aB refers to the nucleon (B=N) or A(1238)(B=4)

trajectory with the same slope of 0.885.

m

20 Can2y L
a = &(845 - m°) + i1, or (S 5 (3m)°) + i1

1 4 2

refers to the pion trajectory or a '3n' daughter trajectory, again
with the same slope, o. Boguta [8] in his fitting procedure for A1
did not put any imaginary.part to the pion traiectory and it is not
necessary in fact although improvements to all.fits can be obtaiped

with its use.

It will be noticed that each of these amplitudes are
appropriate for the diagrams A and B of Fig. 1 and no terms for the
diagrams C and D are included. We do not present suitable amplitudes

for these latter configurations.

Since Hicks et al [19] could comment on their fitting
procedure that the xz-method is not too applicable in regions where
the X2 contributions vary greatly from bin to bin (large statistical
errors) and that it might be prefe;able to consider, for example, the
"likelihood of observation“, we continue to use the same procedure as

in Chapter 3.
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We perform a Maximum Likelihood 1}EJ fit to the Anninos

et al [1] (s,t) data using for the likelihood functiom:

L = H F(si, ti), ;£,= ¢n L, N = 2902 and

i=1 .
2
|A(si,ti)|
s JAGs,t) [Zdsdt

F(si, ti)

where (si, ti) are the data pointé of the Daliti plot énd the
integration is taken over this plot. 1In this case the numerieal "
integration was performed using the Gauss-Legendre quadrature scheme
(with double precision arithmetic)..;t was maximiéed for various
cases by applying the CERN routine MINUIT t?d] to -;fand the
imaginary parts I, and I2 were optimised (regardless of signs) to

1

give minimum -Jﬁ for each particular case. The B_ terms were

5
evalqated using an adaptation of the computer subroutine written

by Hopkinson [21] and the gamma functions were eval;ated using the
CERN .routine ZFACT. The four B5 terms were optimised first with
both (B=N) and (B=A) being used for A2, the best value being obtained
for A, with (B¥A) and the "37' trajectory with an imaginary part of

0.071 /%45 - (3m)2. Combinations of amplitudes were next optimised

using firstly pairs, then triplets and then all four (with B=N).

Some of these results are summarised in Table 1 where, for
comparison, the values of Ji for the one, three and five term four-
point function fits [18] are also given. It was found that a slight

improvement in the values of Jt was to be obtained_by using the '3¢'
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daughter trajectory instead of the pion trajectory for the initial state
as prescribed by Rubinstein et al [22], i.e, 12 = Im“(x) = A(x—9m2)
(a straight line Imo). However I1 and I2 both changed signs when
going from (B=A) to (B=N). In fact, I1 and 12 could both have been
previously fixed prior to making a fit if some theoretical restraint
were reqﬁired such as, for example, that given by Rubinstein et al
in ref. [22]equation (9). Another comﬁuting difficulty was that I1

and I2 had to be varied both for sums of amplitudes as well as for

individual ones as they changed from case to case. The value of C
obtained in the fit for A1 was about 0.5 but in any case R
had a small effect on the amplitude A

2 only

1° C varied according to the
value of 12 but was not near the value -1.25 as given by Rubinstein

et al [4] which seems to confirm the results of Chapters 2 and 3

that this R2 term could be neglected. Most of 'the likelihood values

o

come nowhere near those of the four-point function fits [;.e, they are
—

not within about 3.3 at the 997 levei] but, however, a change in

the argument of the B5 function for B1 of a34<ﬁ>a1

more encouraging results. Eihis would correspond to the suggestion

5 produced much

of Rubinstein et al in E{] that one could, and in general'should,

add terms similar to the amplitude but with 4 and 5 interchanged and
multiplied by an arbitrary coefficientZ] Therefore, although the
amplitudes given by these three groups did not produce good-fits to
the Dalitz plot data it should be possible to give an amplitude in
térms of, say, two B5 functions that does dé so, at least to the order

of the four-point function fits given in [18].
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Sunma

In chapter three it was shown that a suitable sum of Bh terms
gave a reasonable and economical parameterisation of the pn-3n (at
rest) data. In this chapter we have tested some B5 functions
using the same data with the hope.that with just a few parameters
we may hLave been able to give a comparable fit to the data and thus
predict the various coefficients in the former fit. This would
then have been a real test of the whole-dual model idea, giving a
check -on the large mass - small spin region (see Fig. 5 of Chapter 3)
which is-more signitficant than te;ts whiéh lie on the leaaing
trajectory. From our results we have shown that this project was
not successful so that real support for the model was not provided.
However, since the fesults we?e not too absurd we can attribute
the failure in detail to the fact that we did not know how %o write
down dual emplitudes with fermions. There are diagrams without
resonance in the NN channel which we did not include in the
annihilation fit. Sivers [3] argued that all four diagrams
A, B, C, D of Fig. 1 should be taken into accourt in a éata fit
since all have the exchanged nucleon pole and includipg functions
appropfiate for diagrams C and D would have been an obvious next
step to test the NE channel "factorization" assumed in the four-
point function approach. 1In that case the crossing predictions
of the model assumed in chapter two would have required the use of

extra terms to give the amplitude for N + naN from that of NN -+ nnw.
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4.3 B5 Phenomenology

There aré several excellent reviews of the application

of the B5 formulae to five-poiﬁt function processes and the
development and progress of this work can be traced through those
in, for example,

Chan (1969)

Lovelace (1969)

Satz (1970)

Berger (1971) ]

Thomas (1971) [23]
and in:-the Igtroductions to some of the original papers. N point
Venezié;o.¥;¥ﬁulée give a new approach to multi-Regge phenomenology.
They include resonances and Regge exchange in a dual manner, they
should be valid for all values of the subenergies, and they have
well determined and theoretically plausible Regge residues. All
the main drawbacks of the multi-Regge model are thereby removed and
a unified description of mechanisms previously considered separate,
such aé."resonance production", "background" and "double—ﬁeripheralism"
is provided. The attractive properties of correct Regge asymptotic
beﬁaviour,-crossing symmetry and duality possessed by such models lead
to the expectation that the same amplitude describes differént
amplitudes related by crossing and that it should describe also two
bddy reactions related by "bootstrap consistency”. A further
attractive feature is that, due to the theoretical constraints imposed

in constructing the model, in applications there are relatively few



unknown parameters. The shortcomings of the B5 model as applied
to data are that spin and isospin are not correctly included in
the model and unitarity is violated, being simulated usually by
adding in an imaginary part to the trajectory function as required.
Further, the model requires a method of dealing with the Pomeron,
since the Pomeranchuk singularity has no place in a dual model of

this type without unitarity.

We have mentioned some of the early applications of the
uses of B5 in Chapter 2 where the particles were mesons (m,k,0).
However, the B5 amplitude was first applied in the analysis of a

production ekperiment by Petersson and TWrngvist [24] who studied

the reaction
kp + Avtn~

over the energy range 3 - 10 GeV/C. This reaction was suitable for
such an analysis because of thg absence both of Pomeron and.picn
exchange, the restriction by.quantum.number of permissible.graphs,
and the dominance of normal parity exchange. The baryons were put

in with spin zero. The specific amplitude chosen for this process

was of the form

. 1.2_3_4
A= Ceps Py P PP x
3 3
ES(la*’lap’-Z-_aYiila*’-f_aY{) +
3 3
Bs (17000 2 "y 3 Sy 0 T 7T %y )
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where C was a normalizing parameter and the trajectories were

given the universal slope of 0.9 (GeV)2 and had imaginary parts,
inserted above thresholds, of the form A /§:§8 for the p and

B (S—So) for the YT resonances respectively. A further difficulty
in interpretatign, however, was that the graphs chogen for the

above amplitude were not those that the Harari-Rosner [?5] quark
duality graphic ruleé Would suggest in that the "heretical" model
with four quarks and an antiquark in the kN channel was chosen.
This is illustrated in Fig. 3 where the two sets of duality diagrams
considered are shown. The reasonable agreement obtained with the
large range of experimental data treated was most impressive and

. certainly encoﬁr&ged further applications. TUrnqvist_tZG] then
crossed to the process n*p -+ k*r*A and found that the normalization
was too large by a factor of two for the process and its rélated
quasi-two-body process wtp - Yf (1385) «* the dominant sub-channel,
which is-Pomeron free. This was nevertheless considered by Lovelace
[23] to rank among the very best existing checks of crossing symmetry
since a well-known backward +~p Regge fit when extrapolated to tﬁe
A pole was out by a factor of 2000! This example of croséing illus-
trates the novel feature of these types of models in which the legs
of the B5 formulae can be permuted by crossing symmetry to pradict
ten different 2 + 3 reactipn channels, several of which are often
observable. If the five external particle lines are permuted then

there are (N - 1) ! /2. = 12 in-equivalent such diagrams.

Further, in each reaction a considerable number of charge combinations

are also possible so that several processes could be fitted simul-

taneously and for a range of energies.



Furtﬁer applications were made by Hoyer et al [27] but
most of the work on production processes was, however, concerned
with the kNN system first investigated by Chan, Raitio, Thomas
and Tornqvist [28]. The four channels «N + k7N, KN - KN,
™ > KEN, NN + kKT were considered and 21 charged states that had
enough data for study were classified into those that were considered
to require (i) a vector exchange model, "(ii) a vector + a Pomeron
exchange model, (iii) a pion + a Pomeron exchange model. They then
considered the three reactions of type-(i)' k*p + kOmtp, K—p'+ Ebﬂ-p
and 7p + kOk~p and used the orthodox Harari-Rosner diagrams(and

absence of exotics) to obtain three B, terms of the Petersson and

5
Tornqvist form for their amplitude. For each channel the dominant
trajectory was inserfed and the imaginary part of a above threshold

was found using the formula Ima = aM r .
res res

A large wide ranging quantity of data was fitted by this
one parameter fit although once again the cross-section normalization
was predicted bédly from reaction to reactioﬁ. This apparently
significant work Which tested global duality was then continued in

several directions.

By taking the Chan et al [28] amplitude at the nucleon or-
A, pole predic;ions for the two-body reactions of the kind «~p + xn
and 5" p » k% were made by Peterson and Thomas [29]. Bartsch et
a1-[30] made a study of the reaction «™p -+ ;o"-p similar to the one
above and Raitio [31] subsequently studied the reactions *n -+ k97*n’
and k™n » k°7"n related to those considered by the Chan group by

isospin invariance. These global successes with so few adjustable

148.
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parameters at first seemed impressive, especially when compared
to other models that have much more inherent freedom but fail to
do better. However, a closer look at the above works showed that
to some degree the quality of the fits reflected a judicious input
into the modgl, so that it became evident that the claims of one
parameter fits were somewhat misleading. (Discussed in the Review
. by Berger Dﬂ). Tﬁe CERN group also looked at the complex where
n—exchange is thought to be dominant and considered the group of
reactions derived from «k~p + k~ntn [311. Aﬁ ovérall-crossiné
symmetric description was attempted and the main features of the
data Qere found to be determined by pion exchange, and the daughter
structure and relative coupling constants which follow from the zero
width model were Subported by the data. The dominant baryon resonances
were concluded to be dual to the p and no expe;lmental evidence was
found for pion duality to knownbaryog resonances. For a B5 model.
describing these reactions, .the € kinematic faétor, spin, isospin and
unitarity solution usea for vector exchange reactions ﬁay not be.
appropriaté. In contrast to the situation with vector exchange, for
pion exchange daughter states give apﬁreciable contributions in all
but the Sn channel, even fér the lowéét position on the trajectory,
thus making the approximation of a to be complex.a very poor one, as
remarked earlier. An entirely equivalent description to-using the
sort of B(1 - o - uK*) Bg u Y5 U form for the amplitude was found
to be a BA amplitude times the pion pole:

_ %

Buysu —;; a- ap - aK*) 34 (1 - ap, 1 - aK*)



Some simplicity in understanding’ might' thus be obtained: by-
excluding the pion from the dual framework, a conclusion that the
Pokorski paper [10] did not thorougﬁly_test, as remarked in the
earlier section. The fears expressed by Lovelace [23], that no
B5 phenomenology existed outside the CERN group and that spin
would therefore never be put in to the amplitudes properly, were

no doubt overcome by the work that gradually abpeared from Aﬁerica,

Europe and the USSR.

A detailed test of the Bardékci-Rﬁegg model applied'to.
the data of «*p - n*pk©® was made.by Waluch et al [33] in order
to determine what portions of the success of the model were truly
independent of the input. It was shown that even without ad hoe
modifications of trajectory functions a good fit could be.obtaiﬂed,
but at the expense of usiﬁg several kinematic factors and five
adjustable parameters. A report of the experiment at 12 GeV/C
and an extension of their study is given by Waluch [34]. Several
authors have also extenéed the study of the complex to other

energies, e.g. [35].

" An Imperial College group considered a number of different
reactions using the procedure of these previous authors and in the
kKNNT system considered the process =~p = KOkOn at 12 GeV/C [36],
"and found only a limited success with their model when assuming only-

vector exchange. Other dual resonance models for the pion-dominant

reactions k~p + k~m*n, «k*p + xtrtn, x*n > k*tr7p, and «k™n > k"wtp

[37-39] have been presented. Shafee [40] analysed the effect of the

150.
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* -
first daughter of ’ Kiaoo in the reaction «¥p + kOn*p using a

By formularism, and others [ 41-43] have fitted N -+ k+mN

reactions with E.BS models.

Other Complexes

Besides the NNkkm complex other types of reactions were
investigated: KNNN\ by Dunwoodie and Tuominiemi [44] and others
[45-46], Nckkh by a UCLA-Oxford group [47], «*p > «*pw by Jerome
and Simmons [48], Nkk#mA++ by Baier et al .[ug']; kK=p + =ik by Ross
and Lyons [50], and recently Chu [51] constructed -a dual resonance

model to describe the reaction wp -+ mw+mop,

Spin and Isospin

Spin and Iéospin have been incorporated in various ways.
Benfatto et al [52] proposed a model for the NNkKw process (haviﬁg
the correct asymptotic behaviour and.spin structure, the right
isosbin and signature on the parent trajectories and the appropriate
factorization properties on the lowest poles) using invariant
amplitudes.: A similar Veneziano type -ansatz for invariant amplitudes
to suit this complex was given by Schmidt [53]. The most general
spinléss dual amplitude describing the set of reactions KN -+ kTN,
by imposing isospin, charge conjugation and crossing symmetry, as
well as absence of exotic states, was given by a group at Technion [54]. :
The group at Imperial College presented a method for including both
spin and unitary spin by combining the U(6,6) supermultiplet formalism

with the Veneziano spinless amplitude, application being made both
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to «p > nn'h [55]7and «"p '+ x%p [56], with greater success
in the latter, and also to K p + kx"ntn [57]. Hirshfeld and

Schmidt [58] also looked at the dual KN A wr system with spin.

Pomeron Exchanges

Pokorski and Satz [59] attempted to describe diffraction
dissociation reactions by splitting a five-point function for

AB - ACD up into

ACTRAERACY W)

where fA(tAA) denoted a form factor for the hadron-hadron-Pomeron
vertex, s = (PA + PB)2 is a factor to account for the Pomeron
propagator and V(4) denoted the "amplitude" for the "reaction"
[P+B~>C+ D. Berger [2] doubted the reliability of such a model,
but Kajantie and Papageorgiou [60] in their Dual + Pomeron analysis
of «k¥p + «*1% made a good analysis using it,and applications by

other authors were made [61,62]..
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Summary of BN Phenomenology

1)

2)
3)
4)

5)

1)
2)
3)
4)

5)

Attractive Features:

!

Offers a unified approach to resonance production and

multi-Reggeism.
Crossing symmetry.
Bootstrap consistency (some ambiguity in practice).

"Fits" a large amount of data with few parameters.

~ Some complexes have only a few allowed graphs.

Limitationsf
Unitarity simulated by iﬁaginary part of trajectoriés.
Fermions ;reafed as Bpgons
One trajectory in each channel-inserted 'dominant' one.
Co?plexity for more bodiés in final states (i.e, if N > 5)

Has the problems of simple Regge theory (which probably need

cuts for their resolution).



APPENDIX

In the symmetrization procediure it is necessary to find

SIA and 535. Using the notation of Fig. 2 with a four-momentum

vector Pi associated with each particle 1i then:

\

At threshold P, = P_ = (M,0) and E,L + E, + E, = 2M

4 °5 ) 3
S = @+ )2 = | +p )+ P )|2 = (@.+P)% = 5
So 14 174 175’74 s 17°5 15
S. = (P4P,) = |(P.+P)(P,~P.)|% = (P.+P.)2 = §
34 34 37577457 T TS ®35°
Also
S. = (P.+P )2 = (P.+P.+P)2 = 5. + M2 + 2P_(P. + P.)
14 174 y X 23 7 ° 552 3
=S.. + M - 2M (E. +E.)
23 27 "3
=s +Mz—2M(2M.-E)
23 1
But
o 2 _ 2 2
S, = (By+P,) (p, + (2, +20))" = (p, + (2M,0))
= ¥+ @0? + 2:2E)) = -aE, + 2 4o’
(ZM)2 + m2 - 523 o
Therefore E1 = . i
) _ 2 1,2 2
Hence ; Slu = 523 + M 5 (4M m + 823)
823 + m2 - 2M2
i1.e. S = § =

14 15 2



Interchanging indices 1 and 3 gives:

2 2
. _ S,,+m" -2
834-335— 12
2
In a similar manner
S.. = (P, +P,)°%
24 2 4
=M2+m2-2ME
2
But
E2 =2M.-E1-E3
ﬁso - | ..d | .
2 2 ‘°’12‘”523'2Inz
SZ4=M +m - 2M M
Therefore
~ 1,2 . .2 e
Sp4 = Sp5 =5 Em £ -8, s23].
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Diagrams giving the siﬁgularity structure of a dual model for pn +'n+nf15 .

Poles occur in channels defined by adjacent particles.



2

FIG,




TABLE 1

Values.of .the. 1og, likelihood, function £ .

Amplitude : =L
A (B=N | 5006
R B=N) 5002
A (B=N 4855
A, (B = 4) | 4679
A, (B=N) 4619
Ay (B =12 R . 4576
Lovelace 4531
A, (B=A) +B (B=N) 4568
Ry (B=N) +B, (B=N) 4485
a34 ¢ o) in By

Ay (B =4) 4548
A, (B=4)+B, (B=N . ' 4470
A; (B=N) ' 4415
Altarelli and Rubinstein _ 4409.
R, (B=N) +B; (B=N) 4355

Nicholas : ' 4213



FIG. 3

A

P

+

T

Aﬁ\\p(“- A -,

e

Quark duality diagram for the reaction x”p - ntn A showing the "{llegal"

diagrams (a and b) used by Petersson and Tdrnqvist.
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CHAPTER 5

Four-Point Function Fits to the pn -+ 37

1.2 GeV in flight Dalitz Plot data

5.1 Introduction

The data of Bettini et al [1] for the process pn + mtn=n

at 1.2 GeV/C is shown as a Dalitz plot of the 818 events in

Fig. 1.

giving a symmetric plot, although use of the line printer has
resulted in some bunching of events.

striking pattern of zeros in the experimental plot although

Each event, as in the at rest case, is plotted twice

This data also shows a

the features are not quite the same as those for annihilation

at rest.

as given by Bettini et al, from which it is seen that there are:

(i)

(ii)

Fig. 2 shows the equal density contours on the plot,

. 2
two symmetrical zeros, at M e M

other zeros, at

absence of zeros, at

n+ﬂi

2
n+ﬂ§

2 .
n*wi

1,

2.

3,
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(iii) symmetric maximum, at M o M “+“5 =3
; 2 .12 7
other maxima, at M ﬂ+“;.— 3 M “+“£ =3
2 7 2 1
M +—=—,M FOEE
m n1 2 ] "2 2

Bettini et al [1] attempted to fit their data with two types of
Veneziano type amplitudes. Firstly a four point function fit,
assuming that the decay was from a JP =27 state, where the
amplitude was of the form:

rq - as)P(l - at)

A = (factors) T3 = o - at) + (se>t)

The trajectory used was found from fitting a straight

line along the diagonal on the dip-bump-dip structure of the Dalitz

.plot to give
o, = 0.65 + 0.843 + 0.26 i /s - m? .

Their resultant fit to the data did not give the bumps
at the ends of the p-bands and gave only a rough qualitative

agreement over the Dalitz plot.

Secondly a five point function amplitude was suggested,

which included only normal parity states in the Sn channel, ruled

157.
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out various external line permutations and neglected the

nucleon spins. Labelling the particles 55n4 -+ n'n;nz they took

45

- - 3. -
A = (factors) BS(Z ap s 3 T %gs 1 up s 1 ap ,
3 34
2~ oy ) (1<>3)

and found results similar to those obtained by the four-point

function fit.

Odorico [2} noted the failure of the four-point and five-
point functions suggested by Bettini et al to explain fully the
Dalitz plot data and in particular that they failed to give the
prominent hills present at the corners of the plot. Also they
failed to explain the fact that when the holes are present they
are present alternately only. Pointing to the fact that to fit
the data at rest one required several terms of four-point functions
in order to reproduce the "hole" at e = o, = % he suggested
that for the in flight case many such terms might be required for

the more-complicated Dalitz plot. Specifically Odorico proposed

an amplitude of the form

agta,
r(l-us)r(l-at)r[ 5 ]

e, e[
2 ) 2

A(s,t) =

(51.1)

N
+
E]

with a =
x



This amplitude explicitly gives zeros at @ -a = 2m

and removes them for e +a = 2n (m and n arbitrary integers)

so that an alternate presence of holes is automatically incorporated

into the expression for the amplitude. The amplitude is Regge
behaved, crossing symmetric and has sﬁraight line behaving zeros.
Howev;r it implies the existence of exotic meson resonances with
I = 2 (in the u-channel), alternating signs of the residues of
successive tow$rs of poles and that increasing mz(Sn) increases
the mass of the u~channel first resonance position. What Odofico
‘had observed was that, near a pole in s and a pole in t, the

amplitude could be written

a + b = 1 x

2
9 )

2 (s - mlz)(t -m

x I:'% (a+b)(t+s-m12-m22) + % (a-bh) (t-s+_m12-m22)] .

So that if a = b, the square bracket would generate a line of
zeros at constant u, while if a = -b, the line of zeros Qould
be at fixed (s-t). -The fommer occurred with a simple Veneziano
type model whereas the latter appeared to agree better with the

in flight annihilation data. Writing Odorico's amplitude in the

159.
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form

N
Aot) = Zl-as ot sin E(as at) P(l-as)F(l-at)
’ /o ‘T2 - @ - at)

. ™
sin E(as+at)

(by using the 'duplication' formula) shows that the modification
to the Veneziano amplitude used to obtain zeros at fixed (s-t)
was just to multiply it by a suitable factor of s and t. As a
phenomenological realization it is ﬁot clear that this type of
amplitude is required to fit the data but the suggestion of
having lines of zeros at fixed (s-t), rather than fixed u, was
certainly interesting. (Odorico has also looked for fixed u
structure in other reactions). Fig. 3 shows the pattern of

_ zeros and poles in both the Veneziano and the Odorico formulae,

and Fig. 4 shows the pattern on the Dalitz plot.

Bugrij, Jenkovski and Kobylinski [3] suggested that
the most economic amplitude of the Veneziano type giving an
absence of zeros at the required points corresponding to

a +a =4 was the form
s t

2
A(s,t) = (3 - a - ut)V11 + C(3 - a, - at) V32

T'(n - as)r(n - at)

with Vv -
+ - -
nm F(m + n oy at)
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or

A(s,t) = V. _+ 2V__ + C(V30 -V

10 1 (51.2)

a1 * V32

where a_ = 0.453 + 0.885x + 0.281 /x - 4m2 from Lovelace Dﬂ.
Like the Odorico amplitude of (51.1) this was equivalent to
multiplying the Veneziamo-type amplitude by a rational function -
of o and e . This form of the amplitude follow; that of (31.3)
as given by Altarelli and Rubinstein [5] for the at rest data.
Bugrij et al made a fit to the experimental distribution and
found C to be ~1.44, They did not make it clear how such a fit
was made and by changing C their fit could in fact be improved.
Both the mass distribution and the Dalitz plot are not fitted
well with their amplitude. Even when they attempted using a

dual amplitude with Mandelstam analyticity (DAMA) the resultant

fit to the Dalitz plot was wildly out.

One might say that what is really needed is a fﬁlly
dual five-poirt function amplitude (with spin and isospin taken
into account) that would fit the in flight pn + 71 n " data,
would suitably extrapolate to the data at rest, also reproducing
the four-point function amplitude results of Chapter 3, and would
déscribe by crossing, n°p + m*1” n and the other N -+ wmN

processes. However, the lack of quantitativé agreement by the



existing five-point functions to fit the at rest data suggests
that this would not be a simple task. There is the possibility
that the differences in the two Dalitz plots are indicative of
important dynamical effects in the initial NN state which might

mitigate against such a treatment Dﬂ.

The fact that the Dalitz plots for both the at rest and
in-flight cages have pronounced minima and maxima suggests that
one might extend the Lovelace method to the in—fiight data. Since
the En is no longer at rest it can no longer be asserted that a

'heavy pion' adequately represents the initial state quantum

162.

numbers, nor that the pion-trajectory dominates the direct channel [7].
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5.2 Four-point function fit

In making a four point function fit one could follow
the method of Bettini et al [i] and use sums of terms each of
which were appropriate for a particular w7 -+ 7S process wﬁere
S has arbitrary spin and parity. Alternatively a sum of four-

point functions could be used with individual terms of the form

r(g - as)r(m - at)

I'(n - e, - dt)

In our fit, however, it was decided to use the same
form for the amplitude as had been used in the at rest case. This
allowed a comparison with the at rest fit and also with that of

Bugrij et al [3].

The amplitude expression was taken to be

A(s,t) = ] €V (52.1)
n=1
m<n
with
T(n - as)r(n - ut)
Vnm - Tm+n-a_ - a,.)
-] t
and

o, = 0.483 + 0.885x + 0.33 i /x - 4u’

(the trajectory used for the at rest case).
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The fit to the data was performed by maximizing ;f-in

the expression

N
L= 1 |F(s.,t.)|2 where Jﬁ =gnl, N= 818
i=1 vt

2
IA si,ti)l

and FGi» ) = T TaGs,0) [Zasdt

2

and where the data points (si, ti) refer to the MZ ,» M

n+ni n+n§

Dalitz plot events given by Bettini et al for 1.2 GeV/C incident
momenta and the integration is taken over this new plot. Jt was
then maximised, as for the previous cases, by applying the CERN
routines MINUETS for —;t and ZFACT for the Gamma functions.

The 957 and 997 confidence intervals on the coefficients C

imply changes of the order of -%2 in<;: where A is 1.96 aﬁd 2.576
respectively and this allowed terms that did not _changeot by more
than these amounts (about 2 or 3.3 for the two cases) to be dis-
carded from the series. Proceeding in this manner the fit seemed
to have approximately the simple form of:

A(s,t) = V + 2(V22 - V30) +V

11 ~ V20 32°
A practical difficulty with the minimization routine was
that as further terms were added in it tended to neglect these in

preference to the earlier ones, particularly if the former were

only having a smallheffect on‘li. In both this and the at rest case



therefore there could be higher terms to the series giving a small
effect onat. The actual coefficients are given in Table 1
together with the<1fva1ues of Odorico and Bugrij et al. These
results indicate that the Odorico amplitude does not fit the data
as well as the sum of terms but that, like the Lovelace amplitude
for the data at rest, it could be one of several similar terms
which when combined could do so. The Bugrij et al suggestion of
only one free parameter was unduly restrictive and even when this
was fitted thecZivalue, although better than Odorico's, showed

that extra terms were required.

165.



Summary.

The amplitude expression (52.1) gives rise to straight line

zeros(assuming a and o, are real) for @ + a > max (m+n) so that

t t

if we wish to preserve this property over the Dalitz plot thken we
should impose the condition m+n £€ 5 in the same spirit as the
restriction m+n £ 3 noted in chapter three thet wes uged for the
decay (at rest) case. Although the data aﬁpears to suggest an Odorico-
type pattern of zeros we have nevertheless fitted it with a simple
pattern of Veneziano-type ‘emplitudes. We have not performed a fit
using a combination of Veneziano and Odorico-type terms although this
may have indicated which pattern of zeros thé data dictated. The
addition of the imaginary part to the trajectory function meant that
the lines of zeros were not simpiy extractable unless for example

we neglected these imaginary parts in such considerations.

It might be thought that grguments based on simple four point
functions should not be relevant here but quite surprisingly the
pattern of zeros seems to exhibit the striking form suggested by
Veneziano (or Odorico)-type amplitudes.

We conclude by reiterating that perheps & suitable five point
dual function fit should be made to the data such that the at-rest

case 1s fitted as a particular example of the initial energy.
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Veneziano zeros and poles pattern
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Veneziano zeros are due to the denominator of t
r(2 - e, - at)

which also removes double poles. Odorico zeros are given at

o - o, = 2m, and removed at o + a, = 2n.
S t [} t

Odorico =zeros and poles pattern
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t=0

The zeros and poles pattern in the Mandelstam
plane for: a) The Veneziano formula
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Table 1
Values of the log likelihood function £

Cnm values used -L

Cio= — 0 131
Cp=1
Cyp = —0.915
C,y = -0.280
C)p = 1.826 1740
Cyp = —2.005
C3; = 0.979
C32 = 0.870
Putting C40 o)
Cp= -0.129
Cll = 1
Cyo = =0.787 | 1741
Cyy = 1.859
C30 ==2.238
Cy, = 0.878
Putting €1 =C1 = C40 = 0.
C o= =0.130
Cll = 1
C20 = -0, 847 1743
Cp = 1.862
C3p = —2.084
Putting C21 =_C31 = C32 = C40 =0
Odorico 2766
Odorico (Lovelace trajectory) 2685
Bugrij et. al. 2200
<1023
ll
0 2 S?: " caz 1910
30 31 .
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