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ABSTRACT 

TRANSIENT INTERACTION AND CONTROL SCHEDULING 

IN MULTIMACRTME POWER SYSTEMS 

by 

J .R . BUSSBY 

The thes i s describes new methods o f de te rmining c o n t r o l schemes 

f o r mult imachine power systems by us ing Linear : : u l t i v t . r i a W . o C o n t r o l 

Theory , 

The i n i t i a l stages o f the work inc ludes a review o f the d i f f e r e n t 

mode l l ing techniques a v a i l a b l e f o r s tudying the performance o f synchronous 

machines by analogue or d i g i t a l computat ion. Based on t h i s review a non

l i n e a r d i g i t a l program t h a t describes any multimachine power system i s 

produced. For c o n t r o l work a l i n e a r i s e d ve r s ion o f t h i s program i s 

a v a i l a b l e . 

A review o f the mathematical theory behind L inear M u l t i v a r i a b l e 

C o n t r o l methods i s g iven emphasising i t s l i n k w i t h the c l a s s i c a l approach 

o f Nyqu i s t A n a l y s i s . 

The c o n t r o l t heo ry i s i n t e r f a c e d w i t h the d i g i t a l model o f the 

power system t o produce a se r i e s o f designs by which c o n t r o l i s achieved 

by e i t h e r : 

( i ) Impedance s w i t c h i n g 

( i i ) Fast v a l v i n g 

( i i i ) F i e l d E x c i t a t i o n 

The d i f f e r e n t c o n t r o l designs are compared both w i t h each other 

and w i t h c o n t r o l schemes suggested by other au thors . '.forking, f rom a 

pu re ly mathematical bas i s c o n t r o l schemes are pos tu l a t ed t h a t produce 

improved o p e r a t i o n t o bo th sma l l and l a r g e d i s tu rbances . 



The advantages o f f a s t v a l v i n g as a c o n t r o l method i s o u t l i n e d 

and suggested as the most advantageous method o f o v e r a l l c o n t r o l f o r 

b o t h s i n g l e - and multiraachine power systems. 
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• CHAPTER \ 

INTRODUCTION 

1 .1 TUB TRAiiSlSHT STABILITY KIOBKM 

I n the e a r l y years of e l e c t r i c generation and transmission 

t r a n s i e n t s t a b i l i t y problems were not very s i g n i f i c a n t as, 

( i ) Transmission distances were e i t h e r s:::all or, over ±'n^ longer 

distances low transmission powers were uaod. 

( i i ) The i n e r t i a constant o f the a l t e r n a t o r was high, 

( i i i ) The c h a r a c t e r i s t i c generator impedance was low. 

I n more racent years trans m i s s i o n distances and powers have 
(12) 

increased w h i l e the tren d i n a l t e r n a t o r design has shown a decrease i n 
(62 < 

i n e r t i a constant and an incx'ease i n the generator c h a r a c t e r i s t i c impedance^ 

These f a c t s render a system mors susceptible t o t r a n s i e n t i n s t a b i l i t y . 

Consequently t h e r e i s an i n c r e a s i n g need t o analyse power systems w h i l e 

t h e y are s t i l l i n t h e i r design stage and t o develop, new, improved c o n t r o l 

schemes t o help overcome the t r a n s i e n t s t a b i l i t y problem. 

I n the case o f multimachine power systems tba f l o w o f synchronising 

power between each i n d i v i d u a l a l t e r n a t o r d u r i n g the t r a n s i e n t p e r i o d can 
(21) 

a l t e r the t r a n s i e n t s t a b i l i t y l i m i t , work by fr c e c e and Dincley and 
(51) 

M o r r i s has shown that..raultiswin,* i n s t a b i l i t y can r e s u l t i n such systems* 
i > A's- " '• ; ' . > » •_• • y. ... 

i " ' * 7 - m ' ^ • ' 

JI I )>..<. The moat usual cause of dynamic i n t e r a c t i o n i s when two, or more, 

machines are e l e c t r i c a l l y close and t h e i r i n e r t i a constants d i f f e r . This 

c o n d i t i o n a r i s e s i n cross-compound sets w i t h l i n e s running a t d i f f e r e n t 
( 5 l ) / 

speeds when t y p i c a l i n e r t i a constants are; ?. K j /KVA f o r tne hi g h speed 

l i n e and 8 KJ / aVA f o r the low speed l i n e . ^ ^ S i m i l a r i n e r t i a d i f f e r e n c e s 

can a r i s e i n a power system when a hydro s t a t i o n i s e l e c t r i c a l l y close t o 

a l a r g e steam s t a t i o n . 
s5S«w u" -
« aCIS C£ 
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I n the developing countries i t i s not uncommon to have large 

transmission distances between the generating stations and the system 

load. I n t h i s type of study interaction phenomena are important as the 

e l e o t r i c a l coupling between machines can be low compared with the coupling 

between the generators and the main system loads. 

1.2 METHODS OF IMHtOVTN& TRAN3I3HT STABILITY 

1.2.1 TilS CONTROL gROBLSM 

For any synchronous machine i n a multimachin9 power system the 

power balance a t any instant i s given by 

H.S = R*-Pr-R. d.i) 
I n the steady s t a t e PM= P t -Pu 

When a f a u l t occurs there i s a change i a the e l e c t r i c a l output 

power and the rotor moves i n such a way as to t r y and keep the energy 

balance. To counteract t h i s rotor movement either the turbine input 

power, Pr\ , or the e l e c t r i c a l power, Pa. , can be a l t e r e d i n some 

determined way. Methods by which t h i s can be done are now discussed. 

1.2.2 IMFEDAHCB SWITCHING 

Quenching machine transients by i n s e r t i n g a capacitor i n the 
(75)(8L . ) (8 i 

transmission l i n e has been shown to produce strong control. (53)1(52) 

Using capacitor i n s e r t i o n methods the system response can be either 
underdamped, overdamped or c r i t i c a l l y damped (posicast switching) 

depending on the f a u l t 3ize and capacitor used. 

Fos i c a s t switching i s i d e a l as i t requires the l e a s t amount of 

switching operations to reach the new steady state condition. 

Unfortunately because the optimum capacitance s i z e i s f a u l t dependent 

posicast switching cannot be achieved for a l l f a u l t conditions. 

Capacitor control can be obtained i n a number of ways by v.3ing 
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svfitched or continuously operating capacitors i n either a shunt or 

se r i e s mode. However Kimbark^ 1^ has demonstrated that switched s e r i e s 

capacitors require a lower rating to produce the sane transient s t a b i l i t y 

l i m i t than either unswitched s e r i e s or switched shunt capacitors. 

1.2.3 EXCITATION CONTROL 

Ex c i t a t i o n control involves changing the magnitude of the machine 

i n t e r n a l voltage and hence the height of the operating locus i n a determined 

manner. 

Control of the f i e l d excitation i s an established control means 

and was f i r s t introduced to help produce a stable terminal voltage. Control 

was achieved by feeding back a signal proportional to terminal voltage. 

I t was l a t e r found that t h i s control was also b e n e f i c i a l during the 

tr a n s i e n t period. 
(9} 

More recent work v ' using d i f f e r e n t feedback signals to the 

exci t e r has shown that the transient s t a b i l i t y l i m i t can be sub s t a n t i a l l y 

improved by incorporating signals describing the machine's state i n the 

feedback control signal* 

1.2.4 TURBINE FAST VALVIITS 

Fa s t valving r e f e r s to the opening and closing .of s p e c i a l electro-

hydraulic valves i n the steam system to control steam flow to the turbine 

and hence the mechanical power input to the alt e r n a t o r , i'ast valving of 

the intercept valves i n the reheat cycle i s usually preferred as i t causes 

fewer p r a c t i c a l problems than valving the main steam flow yet controls 

approximately 70/o of the t o t a l input p o w e r ^ 

Electrohydraulic valves with closing times of 100 - 200 ms are 

available,^5)(27) while the opening times are approximately four times 

greater than the closing times. This i s duo to the valve control system 
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having to bo drained of hydraulic f l u i d . 

1.3 CONTROL SYSTEM DESIGN METHODS 

To implement the control elements of section 1.2 i t i s necessary 

to design a control scheme. This design can be approached by two general 

methods, 

( i ) By considering the sj'steras n o n-linear dynamics d i f f e r e n t feedback 

control signals can be suggested and investigated on a computer 

model of the system 

( i i ) Modern control theory can be applied to a l i n e a r i s e d version of the 

machine and system equations to determine the necessary control 

action. 

Optimal control methods have been favoured by a number of 

a u t h o r s ^ 6 ) ( l ) ( 4 9 ) whereby a quadratic performance index i s proposed. 

This performance index includes weighting matrices which take account of 

the r e l a t i v e importance between the di f f e r e n t inputs and outputs of the 

system. The performance index i s minimised, generally by solution of 
(55) 

the Matrix R i c a t t i equation, w y to obtain the r e s u l t i n g control scheme. 

The designs proposed by the above authors d i f f e r due to the choice of 

weighting i n the performance index. 

As the design i s carried out on a l i n e a r equation set, the control 

schemes are v a l i d over a small operating region and has to be applied to 
( l ) 

large disturbances with caution. For instance, Anderson obtained 

improved response for small disturbances but when the control scheme was 

subjected to a large disturbance i t showad no improvement on the system 

response. This was due to the choice of weighting matrices. On the other 

hand De Sarkar and Dharma R a o ^ ^ produced a sub-optimal control scheme 

which exhibited improved response a t both, l e v e l s . 
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Optimum control methods suffer several disadvantages summarised 

by MacFarlone^ 6 8' as, 

( i ) They require access to a l l the system s t a t e s . 

( i i ) They provide gain margins far i n excess of those a c t u a l l y required 

for s t a b i l i t y . 

( i i i ) They offer no means of providing dynamic compensation. 

An a l t e r n a t i v e approach to optimal control methods i 3 to use an 

extended c l a s s i c a l approach developed at Manchester I n s t i t u t e of Science 

and Technology by MacFarlane and Rosenbrock. This i s the approach taken 

i n t h i s work and i s considered by investigating multi-machine systems. 

For any multi input/output control problem M a c F a r l a n e ^ ^ has 

shown that i t i s inadvisable to design separate control loops using single 

loop theory. Applying t h i s control design method to multimachine power 

systems can aggravate interaction phenomena^ 0) and ultimately r e s u l t i n 

an inherently stable system being u n s t a b l e ^ ^ 

I n designing a control scheme for a multi input/output system 

a l l the inputs and outputs of the system and t h e i r respective e f f e c t on 

each other must be considered to avoid the kind of i n s t a b i l i t y discussed 

above. Thus some form of group control scheme must be formulated. 

1.4 MULTIVARIABLE CONTROL i-'iLTHODS 

The multivariable control methods applied i n the present work 

involve a design technique i n the frequency plane proposed by 

Rosenbrock(65)(66) ^ o r i i n e a r multivariable control problems. Inverse 

Ny.quiat (I.N.) plots are u t i l i s e d where interaction between channels 

oan be investigated by changing the usual Nyquist l i n e locus to that of 

a band. The width of t h i s band being dependant on the amount of i n t e r a c t i o n 

between channels. 

This design method has the advantage that well established 



c l a s s i c a l design methods can be used but instead of considering a l i n e 

as the Nyquist locus t h i s i s replaced by the envelope of c i r c l e s * One . 

of the main advantages over optimal methods i s that i t doe3 not require 

access to a l l the system states, which, i n 3ome cases can be d i f f i c u l t 

to obtain. I t i s for these reasons that the investigation of l i n e a r 

multivariable control theory applied to multimachine power systems was 

i n i t i a t e d . 

1.5 FORMULATION OF THS DESI&N PROBLEM 

The work presented i n the following chapters 7/ilI demonstrate 

how the multivariable approach produces a group control scheme to reduce 

i n t e r a c t i o n e f f e c t s and allows dynamic compensation to be applied v i a the 

control elements of section 1 .2 . By reducing the inte r a c t i o n effects to 

a minimum dynamic compensation can be made without fear of introducing 

the possible i n s t a b i l i t y referred to by iMacFarlane i n reference (67) • 

The o v e r a l l control scheme i s developed Y/ith special reference 

to; 

( i ) Improvement of the overall system s t a b i l i t y . 

( i i ) Removal, of interaction between machines i n a multimachine power 

system. 

( i i i ) Improvement of the system response. 

The approach taken allows for the investigation of dif f e r e n t 

control signals to the regulators discussed i n section 1.2 and t h e i r e f f e c t 

on both the steady and transient s t a b i l i t y l i m i t s to be studied. 

I n i t i a l l y the e f f e c t of interaction i n multiaiachine systems i s 

investigated i n Chapter 5 while the remaining Chapters discuss the effect 

of the various control schemes on both small and large disturbances. 

As the conventional regulators are used t h e i r e f f e c t on the system both 
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with and without interaction present i s considered i n d e t a i l . This i s 

important because i n the event of any f a i l u r e i n the group control scheme 

the regulators themselves w i l l be acting i n t h e i r conventional mode, 

i . e . control being applied round each individual machine i r r e s p e c t i v e of 

the other machines i n the system. I t also provides a method to judge the 

performance of the group control by. F i n a l l y i n Chapter 9 the o v e r a l l 

r e l i a b i l i t y o f the design method i s discussed. 

Before any control work can begin i t i s neoessary to produce a 

d i g i t a l computer program to represent any multimachine power system. 

This d i g i t a l model i s necessary both i n i t s non-linear and l i n e a r i s e d 

form. The early chapters of the work discuss the development of these 

two programs. 

1.6 STABILITY DEFINITIONS 

1.6.1 GENERAL 

Feedback of certain signals to the regulators of section 1.2 

have been shown to produce self-induced o s c i l l a t i o n s ^ ^ (78) (9) w p , i o n 

can ultimately lead to an unstable system. Also because of the non-linear 

nature of the machine equations there i s a s p e c i f i c region i n the state 

space i n which the system i s stable. Once the system state i s outside 

t h i s region the system w i l l be unstable. 

I t i s necessary to d i f f e r e n t i a t e between these two different 

types of i n s t a b i l i t y . 

1.6 .2 LYAKJKOV INSTABILITY 

I t i s not always necessary to have an e x p l i c i t knowledge of the 

system equations to determine the s t a b i l i t y boundary. Authors have 

applied the d i r e c t method of L y a p u n o v ^ 1 ^ ^ ^ ^ ^ ^ ^ ^ to determine the 
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t r a n s i e n t s t a b i l i t y boundary of simple power systems using di f f e r e n t 

synchronous machine models. 

The Lyapunov function produced by G l o s s ^ ^ y i e l d e d a s t a b i l i t y 

boundary i n the phase plane s i m i l a r to that depicted i n F i g . 1.1 where 

£©» » Qoz are the i n i t i a l and f i n a l steady values of rotor angle and 

Sc i s the rotor angle at f a u l t clearance. At the onset of a f a u l t the 

phase t r a j e c t o r y of the machine w i l l take the path shown and i f t h i s f a u l t 

t r a j e c t o r y t r a v e l s outside the stable region the system w i l l be unstable. 

However i f the f a u l t i s cleared while the tra j e c t o r y i s i n the stable region 

the post-fault t r a j e c t o r y w i l l be stable as shown in the diagram with Sox 

as the focus. This model assumes no damping. I f damping was present the 

post-fault t r a j e c t o r y would s p i r a l into Soz and the system would be 

asymptotically stable. 

A system producing t h i s behaviour i s s a i d to be bounded and any 

i n s t a b i l i t y due to inadequate f a u l t clearance w i l l be termed Lyapunov 

i n s t a b i l i t y . 

1 . 6 . 3 HYQUIST INSTABILITY 

The term Nyquist i n s t a b i l i t y i s used to describe the i n s t a b i l i t y 

caused by self-induced o s c i l l a t i o n s * These self-induced o s c i l l a t i o n s 

are produced by d i f f e r e n t feedback control signals to the regulators when 

in c o r r e c t gain and phase margins e x i s t * 

The onset of the self-induced o s c i l l a t i o n s can be r e l a t e d to a 

Nyquist plot of the system, as w i l l be demonstrated i n Chapters 7 and 8, 

and i s consequently termed Nyquist i n s t a b i l i t y . 

1 . 6 . 4 DEFINITION OF THE STABILITY LIMIT 

When a system i s subjected to a three phase f a u l t there i s a 

c r i t i c a l period, termed the c r i t i c a l c l e a r i n g time, a f t e r which f a u l t 



removal w i l l r e s u l t i n an unstable system i n the Lyapunov sense. For 

any large disturbance the c r i t i c a l c l e a r i n g time i s used as a measure of 

the o v e r a l l system s t a b i l i t y . 

1.7 DEVELOPMENT OF SYNCHRONOUS MACHINE MODELS 

1 .7.1 GENERAL 

The a n a l y s i s of synchronous machines by P a r k ^ ^ 2 0 ^ and l a t e r 

extended by Doherty and Nickle* J' and Shaokshaft^- 3 ^fo'rm a convenient 

basis on which to build computer models to predict the dynamic performance 

of power systems. 

Different machine models can be obtained from successive 

approximations to Park's equations (Appendix A). The ef f e c t of these 

d i f f e r e n t approximations on the r e s u l t i n g accuracy and overall computer 

time are now discussed. 

1 .7 .2 MACHINE. SYSTEM INTERFACE 

The power system equations are generally represented by a set 

of algebraic equations which characterise i t s behaviour at frequencies 
(11) 

close to fundamental frequency. ' 

To match these algebraic network equations to the machine 

equations i t has to be assumed that the stator quantities can be represented 

by slowly changing phasors, i . e . the system can be regarded as slowly 

passing from one steady state to another. The stator transients i n the 

machine equations are neglected and because of the slowly changing phasor 

quantities large step lengths i n the numerical integration procedure can 

be u a e d . < 3 8 ) ( l 7 > 

I f the stator transients i n equations (A.25) and (A.26) are not 

ignored then the system equations are no longer algebraic and have to take 

into account any transmission l i n e and transformer inductive voltage drop 
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(36) a f t e r a sudden change and become a set of d i f f e r e n t i a l equations! 
Introducing the stator transients not only inv a l i d a t e s the assumption of 
slowly changing stator quantities but i t also introduces the asymmetrical 
ooraponent of stator c u r r e n t I t i s now found that the axis quantities 
change a t approximately supply frequency which, to avoid numerical 
i n s t a b i l i t y necessitates a small numerical step l e n g t h ^ ^ ^ 1 ) ( 3 7)(Vt) 
Typical values for this step length are of the order of 0,0005s to 0.001s 
as compared with 0.02s to 0.05s when stator transients are ignored. 
Transforming into computer time means an increase of at l e a s t 25 for 
s i n g l e machine studies and an increase of at l e a s t 100 for multimachine 
s t u d i e s / 3 8 ^ 

1 .7 .3 SATURATION OF MACHINE PARAMETERS 

The refinement of representing machine saturation can be 

incorporated into a l l models. There are a variety of methods for 

incorporating saturation and are well documented i n the l i t e r a t u r e . ^ 8 ^ * ^ ^ " ' ^ 
( 38) 

However Hammons and iYinning^ ' conolude that detailed simulation 

of saturation i s not j u s t i f i e d because of the increase i n computer time 

and that saturated machine values, with the pre-fault conditions c a r e f u l l y 
(21) 

defined, s u f f i c e . This same conclusion has been reached by other authors (38j 

Saturation effects only become important when A.V.R. and high 

f i e l d forcing i s c o n s i d e r e d / 2 1 

1 .7 .4 MACHINE REPRESENTATION 

The complete synchronous machine model uses the f u l l f i v e winding 

Park's equation. Equations (A.i) to (A.12). As t h i s model incorporates 

stator transients i t s biggest disadvantage i s the excessive computer time 

i t requires to y i e l d a solution. This i s e s p e c i a l l y true for the multi-

machine case. I t has been shown that the increase i n accuracy obtained 

by t h i s method compared with the increase i n computer time for a s e r i e s 

of rotor angle excursions i s not j u s t i f i e d as comparable accuracy over 
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(38) 
a aeries of swings can be achieved by a simpler model. 

On the accuranco of a 3-phase f a u l t the rotor angle does not 

increase immediately, as i s predicted by simple machine models, but i n 

f a c t has a tendency to decrease before i t increases.^ 87)(43)(41) 

This phenomena i s termed backswing. I t i s an e f f e c t associated with: 

( i ) The large individual phase currents produced by the 3-phase fault. ( 8 7 ) 

These currents are several times larger than the normal load current 

and thus the short c i r c u i t brings about a considerable increase i n 

the magnetic energy of the generator c i r c u i t s . This increase i n 
Km<thc 

magnetic energy i s balanced by a reduction i n the knietio energy 

of the rotor. Thus an o s c i l l a t o r y component of torque i s produced 

at fundamental frequency which always tends to d e c e l e r a t e the rotor. 

( i i ) The high rotor transient currents that are induced at the onset of 

a f a u l t . ^ ) ( ^ 3 ) These currents produce a r e s i s t i v e l o s s which 

together with the armature short c i r c u i t l o s s produces a 

unidirectional retarding torque which opposes the turbine input 

torque. 

Consequently there i s l e s s torque avai l a b l e to accelerate the 

rotor, and i n some situations can cause an actual rotor angle backswingp 

The amount of backswing i s found to be very dependent on pre-fault operating 

conditions, machine parameters and the position of the f a u l t . T h i s 

e f f e c t of rotor backsv/ing i s neglected i n the majority of machine 

representations. However t h i s complete model includes t h i s e f f e c t . The 

importance of t h i s backsv/ing i s that i t gives the pov/er system engineer 

a longer time i n which to c l e a r the f a u l t . 

S h a c k s h a f t ( ^ ) used the f u l l model on an analogue computer 

simulation but found he had to reduce the amortisseur equivalent 

re s i s t a n c e by a factor of four to get agreement between t e s t and 
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calculated r e s u l t s . This reduction i n resistance value i s to account 

for skin e f f e c t s at the surface of the rotor. The effect of t h i s 

reduction i n resistance i s v e r i f i e d by Haramons and Winning. 

Rogers and Smith used f i e l d theory to model eddy current 

l o s s e s within the rotor and produced r e s u l t s s l i g h t l y more accurate than 

Shackshaft. This extra accuracy i s not j u s t i f i e d , except f o r detailed 

simulation, as reduction of the amortisseur equivalent resistance i s a 

convenient, v a l i d , method of representing t h i s skin e f f e c t . 

I f a very accurate representation i s required the f u l l model 

should be used, with the refinement of Rogers and Smith, but for most 

problems i t s requirements i n computer time are too excessive for i t s 

increased accuracy. 

By using equations (A . 2 l ) and (A.27) - (A.32) a model which 

neglects some of the stator transients i s obtained. I t i s found that the 

highest frequency component i s 5 to 10 times lower than i n the f u l l 
(38) 

representation and algebraic equations can be used to represent the 

system components. This r e s u l t s i n a l a r g e r numerical stop length and a 

corresponding decrease i n computer time. 

Further s i m p l i f i c a t i o n s can be l i s t e d : 

( i ) The rotor angular speed O i s assumed constant and equal to u J 0 

during the transient period, i . e . *v5 = / 

( i i ) Stator transient neglected. 

( i i i ) Zero subtransient saliency, 3<^" = aco6" 

( i v ) The gain constants G and G defined i n equation (A.2l) are set 

to C=r 0 ' , Gt s O respectively. 

With these s i m p l i f i c a t i o n s a saving i n computer time i s achieved 
(38) 

while the r e s u l t s obtained are comparable with t e s t r e s u l t s . 
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I f now the 3-winding model described by equations (A.36) to (A.39) 

i s considered, noting that damping i s not now included, Hammons and Winning^ 8) 

produce r e s u l t s comparable with the previous two models during the f i r s t 

rotor swing. Future excursions do not compare because of the lack of 

damping. S h a c k s h a f t ^ ^ recommends that t h i s model with the armature 

res i s t a n c e set to zero and amortisseur e f f e c t s represented by an equivalent 

damping c o e f f i c i e n t a reasonable model.representing the machine should be 
(39) 

obtained. This conclusion i s also reached by Adkins and has been 

shown to be true by Devotta^^^ where the tra n s i e n t response of a divided-

winding-rotor machine i s shown both for the f u l l and s i m p l i f i e d models. 

Devotta used the simple model to predict an optimal control scheme for a 

d.w.r. generator. The r e s u l t i n g controls were applied to the detailed 

machine model and found to y i e l d good r e s u l t s . 

The most simple model can now be discussed where equations (A.36) 

to (A.39) are used with Tcio set equal to i n f i n i t y , i . e . no flux decrement, 

and transient saliency neglected i . e . ' X q , 5 ' * ^ . With t h i s model 

reasonable agreement can be obtained during the f i r s t swing^ 8*^ and. a 
(36) 

second order s i m p l i f i c a t i o n recommended by Shackshoft i s the use of 
t h i s " f i x e d voltage behind transient reactance" with an equivalent damping 
c o e f f i c i e n t i n the equation of motion. A s i m i l a r model to t h i s has been 

(45) 

used by Hughes when looking at the effect of different feedback 

parameters to the governor and f i e l d regulator. 

I t was noted that backswing was only important during the f i r s t 
(37) 

load angle excursion. Dineley and Morris have made use of t h i s 

phenomenon. They suggest the use of the f u l l representation u n t i l the 

f i r s t peak of rotor angle i s reached. After t h i s the simple model i s used 

but tra n s i e n t saliency i s accounted for and damping terms proportional to 

v e l o c i t y and square-of-voltage incorporated. A very close approximation 
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to the f u l l representation i s obtained with a substantial reduction i n 

computer time. 

Hammons^^ has also produced r e s u l t s where the damper windings 

are represented by two windings on each ax i s * I t i s found that t h i s 

representation produces r e s u l t s only s l i g h t l y better than the 5 winding 

model with an increase i n the complexity of machine equations and computer 

time* I t i s thus not j u s t i f i e d . 

1*7*5 CONCLUSION 

( i ) The f u l l 5 winding model i s not justified,, e s p e c i a l l y for 

multimachine models, when modelling over the complete transient 

period i s required because of the excessive computer time used. 

( i i ) By neglecting stator transients r e s u l t s comparable with t e s t 

r e s u l t s over the transient period are obtained. This model 

being most economical on computer time when Odd" r 'X^"' 

( i i i ) For multimachine studies the representation using the 3 winding 

model with a velocity-damping factor produces.adequate r e s u l t s . 

( i v ) For some studies the simple representation of f i x e d voltage 

behind transient reactance with an equivalent c o e f f i c i e n t i n 

the mechanical equations of motion produces adequate r e s u l t s . 

(v) The simulation chosen i s very problem dependent. 

( v i ) The hybrid model of Dineley and Morris i s commendable but 

i f any design work incorporating control equipment i s to be 

car r i e d out i t i s advisable to work on one representation. 

( v i i ) I f a simple model can be found that represents the system 

adequately t h i s i s the best model to use for any control 

design work. 
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UNSTABLE r TABLE 
F a u l t T r a j e c t o r y 
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Post F a u l t T r a j e c t o r y 

Maximum T r a j e c t o r y 

Fig.1.1 Phase Plane Showing Stable and Unstable Regions. 
Examples of F a u l t and Post F a u l t T r a j e c t o r i e s are Shown. 
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CHAPTER 2 

A NON-LINEAR MUIffBlACHINB PO'.VER SYSTEM COMPUTER PROG-RAW 

2.1 GENERAL PROGRAM SPBCIFICATION 

The use of d i g i t a l techniques have become an established method 

of determining the transient response of power s y s t e m s . ^ ^ ^ ^ ^ ^ 

The program discussed was w r i t t e n with a view to studying i n t e r 

action effects i n multimachine power systems when d i f f e r e n t synchronous 

machine models and system parameters are used. I t was also used to 

investigate the ef f e c t s of d i f f e r e n t c o n t r o l schemes. 

The synchronous machine models used v/ere based upon Park's 5 

winding model. (APPENDIX A) . 

I n general only symmetrical three phase f a u l t s w i l l be considered 
(12) 

as these are the most severe. However by using an equivalent shunt 
(12) 

reactance i n t h i s positive sequence model other types of l i n e 

disturbance cculd be accommodated. 

Saturation effects are not included f o r the reasons outlined i n 

section 1.7«3« 
• 2.2 MODELLING TECHNIQUE SYNCHRONOUS MACHINE 

The a b i l i t y to use d i f f e r e n t synchronous machine models w i t h i n 

the program i s provided by using a general method of synchronous machine 

representation outlined by Kimbarki^^ Each machine i s represented by 

a variable e.m.f. 

Eh = Ehd -j.EV^ (2.1) 
i n series with the value of modelling reactance 3C.li . A vector diagram 

f o r t h i s model i s shown i n f i g . 2.1. Then i n general 

EMOD = E.T + Z . I T (2-2) 
where E.MOO i s the machine i n t e r n a l modelling voltage. 
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Applying equation (2.2) to the vector diagram gives 

Eh=E-r-v-Y.lT ^ j . X h . X d - xh.Xc^ (2.3) 
and 

ET+T.IT +j.Xd ' .Td -OGv'.T^ (2.4) 
Capital l e t t e r s are now used as current and voltages are assumed 

as slowly changing and so t h e i r effective values may be used. This also 

allows the use of the phasor diagram. 

Subtracting (2.3.) and (2.4) 

Eh = E'+j.C^K-xdOXd - (-xh--x^T^ (2.5) 
which i n component form y i e l d s 

Ehd = Ed' - 6ch-DC^.X^ (2.6) 
E K a =E<V' - (*h -xdO.Xd 

By suitable choice of dCh d i f f e r e n t machines and machine models 

are made available. 

Armature resistance i s assumed to be zero i n a l l the models but 

provision i s made i n the program to account f o r i t . The load angle i n a l l 

oases i s measured w i t h respect to the quadrature axis. 

HEP 1 

Flux linkages of the rotor c i r c u i t s are neglected. 

Transient saliency i s neglected i n equation (A.36) and (A.37) 

by putting ^Cty* "Xd.. This gives E. as the reference axis f o r load 

angle measurements. However using the modelling equation (2.6) w i t h 

"X-V\ - ~X.&1 = "iCq/ and l e t t i n g "Xc^ take on i t s f u l l value the same model 

i s obtained but giving the quadrature axis as a reference f o r load angle 

measurements. This i s a similar model to a round r o t o r machine with a 

s o l i d r o t o r i . e . XCL* -'Xc^1. 

Machine damping i s not included. 



R3SP 2 

As REP 1 but machine damping i s included i n equation (38) 

These two representations provide the cl a s s i c a l model of "constant 

voltage behind transient reactance". 

REP 3 

Transient saliency i s now included but machine damping and f l u x 

decrement are assumed n e g l i g i b l e . The modelling reactance Dch - "X^. 

REP k 

As REP 3 but machine damping included. 

REP 5 

As REP 3 hut f l u x linkages no longer constant. 

REP 6 

As REP 3 hut f l u x decrement and machine damping included. 

2.3 NETWORK PERFORMANCE MODEL 

2.3.1 THE MODEL REFERENCE FRAME 

The network performance model i s used to represent the i n t e r 

connected network of transmission l i n e s , transformers and other associated 

equipment. Such a model can be established using either the bus or loop 
(22) 

frame of reference. 

This program uses the bus frame of reference i n the form of the 

bus admittance matrix with ground as the reference node. This was selected 

as, 

( i ) The bus admittance matrix i s easily formed because mutual coupling 

i s not involved. 

( i i ) The bus 'ami'^onoo matrix i s sparse so r e l a t i v e l y few elements have 

to be calculated. 



( i i i ) Because of the sparsity of the matrix there i s a saving i n 

computer time and memory storage as the zero elements w i t h i n 

the matrix need not be stored. 

( i v ) The bus admittance matrix i s easily modified to represent a 

f a u l t . 

2.3.2 BUS BAR REPRESENTATION 

I n the solution of any power system network i t i s necessary to 

represent the bus bars accurately. There are four types. 

( i ) Slack bus. This supplies additional r e a l and reactive power f o r 

the transmission losses as these are unknown u n t i l the f i n a l 

solution i s obtained. This i s necessary i n any load flow program. 

( i i ) I n f i n i t e bus. This appears to the rest of the system to be a 

source of voltage constant i n phase, magnitude and frequency and 

not affected by the amount of current drawn from i t . I t can thus 

be regarded as a machine having zero impedance and i n f i n i t e i n e r t i a . 

A large power system often may be regarded as an i n f i n i t e bus. An 

i n f i n i t e bus i s accommodated w i t h i n the program and i f required 

must become bus n of an n bus system. On the inclusion of an 

i n f i n i t e bus t h i s also become the slack bus. 

( i i i ) Voltage controlled bus. The r e a l power and voltage magnitude 

are f i x e d . 

( i v ) Load bus. The r e a l and reactive powers remain f i x e d . 

The l a s t two buses are refinements to a program and were not 

included w i t h i n t h i s program. 

The network performance equations are given i n Appendix B. 

2.3.3 REPRESENTATION OF LOADS 

During the transient i n t e r v a l i t i s necessary to include the 

system loading conditions w i t h i n the network performance equations. The 
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l o a d representation selected was that of s t a t i c admittance to ground, 

which i s calculated, f o r bus k > k.Y 

y*o = _ I * 2 _ ( 2 - 7 ) 

EK 
This i s one of the simplest methods of load representation and 

strengthens the convergence rate of the Gauss--* Seidel i t e r a t i v e process. 

This process i s used i n the solution of the non-linear network equations. 

2.3.4 SYNCHRONOUS MACHINE CONNECTION 

Each machine i s connected to some node of the network. To account 

f o r t h i s machine connection the elements of the bus admittance matrix are 

adjusted to accommodate the machine inductances. I n the network performance 

equations new voltages appear to represent the machine i n t e r n a l voltage. 

The machines I5UST be numbered such that machine number 1 i s 

connected node number 1 and becomes node (n + *|) when the data i s modified. 

S i m i l a r l y machine number 2 i s connected to node 2 and becomes node (n +2), 

e t c The synchronous machine and load representation i s shown i n f i g . 2«2. 

2.3.5 THE INTERCONNECTION OF YACHIUB AND NETWORK EQUATIONS 

The alternator equations describe each machine separately with 

reference to i t s own d, q axis. Consequently i t i s necessary to transform 

the machine and network equations into a common reference frame. 

A free r o t a t i n g reference frame at synchronous speed w i t h i n the 

space defined by the machines i s selected. I f necessary t h i s may be 

adjusted so that one of the machines may be used as the reference. 

No voltage transformation i s necessary as the network voltage 

equations are w r i t t e n i n the reference frame and the machine voltages are 

calculated from these. However a current transformation i s necessary 

(see f i g . 2.3) and i s given as 
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2.4 DIG-ITAL PROGRAM SOLUTION METHOD 

A description of the subroutines used and flow diagrams are 

given i n APPENDIX D. 

The system operating conditions p r i o r to a disturbance are 

obtained by a load flow solution. The systems generating and loading 

conditions are used as the inputs. The network performance equations are 

then modified to accommodate the synchronous machines. 

On the occurance of a f a u l t the bus admittance matrix i s modified 

i f necessary and the i t e r a t i v e load flow technique used to obtain the 

systems new conditions. Depending on the machine model used the machine 

voltage i s either held constant during the i t e r a t i v e process or i s updated 

a f t e r each i t e r a t i o n . 

The i t e r a t i v e process i s carried out during the entire transient 

period i n conjunction w i t h a numerical inte g r a t i o n routine to obtain the 

complete transient response. 

2.5 CONTROL EQUIPMENT 

2.5.1 ALTERNATOR FIELD EXCITATION REGULATOR 

With the developments i n the f i e l d of s o l i d state electronics the 

use of f a s t acting controlled r e c t i f i e r regulators i s becoming increasingly 
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w i d e s p r e a d . ( ^ ( ^ ^ The exciter model available i s described by the 

equations below and shown i n f i g . 2.4. 

L J * = tf* ~ 3* (2.10) 

(2.11) 

R| - \<l-<Zr ~ R» (2.12) 
T i 

X a = R. ~ (2.13) 
T j 

i x z . = OCcx (2.14) 

E f d = T z . D C a +"X<2- (2.15) 

The variables Xa and DGa. are dummy variables used i n representing 

the r e c t i f i e r transfer function block. 

I n some instances i t i s necessary to compare the action of the 

s t a t i c exciter w i t h the older r o t a t i n g e x c i t a t i o n system. The program 

provides t h i s f a c i l i t y by reducing the e x c i t e r model to the f i r s t order 

E*<* _ I c ( 2 - i 6 > 

and using a small or large time constant to represent the s t a t i c or 

ro t a t i n g e x c i t e r respectively. 

The value of the c e i l i n g voltages employed i s dependant on the 

type of exciter used. A f i x e d value being used i n the case of the r o t a t i n g 

exciter whereas* f o r economic reasons, the s t a t i c e x c i t e r i s usually 

powered from the machine t e r m i n a l s . ( ^ ( ^ ^ 

The f i n a l block i n f i g . 2.4 gives the relationship between E-fcL 
(9) 

and the machine voltage. ' I f f l u x decrement i s included i n the model 

then equation A.38 i s used wi t h 

G = _ E £ c U ( 2 - 1 7 ) 

Ec^o 
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w i t h no f l u x decrement 

G = -Efdo (2. 18) 

2.-5.2 INPUT PO'iVER REGULATOR 

Previous a u t h o r ^ 1 ^ 2 < ^ 2 2 ^ have reduced the turbine/boiler 

modelv ^ to a s i m i l a r second order model as used i n t h i s program ( f i g . 2 . 5 ) . 
(op) 

The c e i l i n g power l i m i t s are given by Stagg and El-Abiad ' 

to be zero and the maximum output power of the turbine respectively. 

The control system i s a model of the turbine valve and with the 

use of f a s t valving a time constant of the order 80 - 100 ms would be 

u s e d . ^ ^ ^ The time constant representing the steam system depends on 
(5) 

the valving employed and where i t i s employed. A value of the order 

o f 0.75s has been suggested^ 2^ and u s e d . ^ 

2.6 NUMERICAL IfflTHODS 

2.6.1 ITERATION METHOD 

Laughton^^ reviews the i t e r a t i o n methods available and concludes 

that the use of either Gauss Seidal w i t h acceleration factors or a Newton 

Raphson i t e r a t i v e method, f o r the solution of the equation set (B.5). The 

former method was selected for the following reasons: 

( i ) The number of arithmetic operations are reduced with the 

Gauss-Seidal method as the bus admittance matrix i s sparse; 

consequently the time per i t e r a t i o n i s small. 

( i i ) The Newton-Raphson method converges much faster and requires 

fewer i t e r a t i o n s but the Jacobian matrix has to be calculated 

at each i t e r a t i o n i n t e r v a l which increases the computer time. 
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(22) ( i i i ) With systems under 40 buses the methods are comparable 
but with larger numbers of buses the Newton-Raphson i s 
more e f f i c i e n t . However as the program was designed to 
study i n t e r a c t i o n phenomena the number of busbars w i l l , on 
the whole, be low. 

2.6.2 ITERATION STABILITY 

The disadvantage of the Gauss--Seidel method, with or without 

acceleration f a c t o r s , i s that there i s no law guaranteeing convergence. 

Convergence i s helped i f ( 2 8 ) O o ) 

laul > lacjl 

J*J. (2.19) 

This i s achieved by representing system loads by a s t a t i c 

admittance to ground. 

2.6.3 INTEGRATION METHODS 

Four in t e g r a t i o n methods are a v a i l a b l e ^ ^ ^ ^ 

( i ) Euler. 

( i i ) Modified Euler. 

( i i i ) 4th order Runga-Kutta, f i x e d step. 

( i v ) 4th order Runga-Kutta, variable step, 

2.6.4 INTEGRATION INSTABILITIES 

Incorrect choice of numerical step length i n an inte g r a t i o n 

procedure can cause a mathematical i n s t a b i l i t y . Mathematical unstable 
(15) 

regions can be proved f o r a l l types of i n t e g r a t i o n method. 

Considering Euler 1s numerical inte g r a t i o n method and a d i f f e r e n t i a l 

equation of the form i (2.20) 
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This system i s Lyapunov and Nyquist stable so long as the zeros are i n 

the open l e f t h a l f complex plane. 

By fiuler's f o r m u l a ^ 1 ^ 

t j n + i = y n + y n ' ( 2 . 2 1 ) 

where h i s the numerical step length 

Substitute (2.20) into (2.21) 

y n + i = C l - + h . X ) . L j n ( 2 . 2 2 ) 

I f K l + h . X ) l M then the system w i l l be divergent and a mathematical 

i n s t a b i l i t y w i l l arise even though the system i t s e l f i s Lyapunov and 

Nyquist stable. 

There i s a condition of mathematical s t a b i l i t y 

I 1 + K X I 4 1 <2.23) 
shown on the s t a b i l i t y chart, f i g . 2.6. 

The analysis i s extended to a set of coupled d i f f e r e n t i a l equations 

y ' = [ X L y (2.24) 

I f Ai, Xn are the eigen-values of t h i s system then the conditions 
(15) 

f o r mathematical s t a b i l i t y are 

I1-H.X.U1, ll+h.Xil 41 , - - . l l - k X n k l ( 2. 25) 

Consequently the largest X l i m i t s the inte g r a t i o n step length. 

Extension to non-linear equations i s possible whore the eigen-
(15) 

values are considered to be continually changing. 

Mathematical i n s t a b i l i t y can arise i n power system analysis due 

to the step length selected being too large r e l a t i v e t o ; 

( i ) The time constants of the system. 

( i i ) The loop feedback gain. 

Including the stator transients i n the machine equation set 

(Appendix A) severely l i m i t s the maximum step length that can be taken 

before a mathematical i n s t a b i l i t y sets i n . 
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2.7 PROGRAM VERIFICATION 

A comparative study f o r the model system of f i g . 2.7 was run 
(9)(2l) 

using REP 6 and the program developed by Freece. ' ' The machine and 

system data i s given i n Appendix &. Results compared to wi t h i n 1?3 a f t e r 

6 sees, giving the r o t o r angle response of f i g . 5 . 1 5 ( c ) . 

The program used by Preece was w r i t t e n i n Algol and usable only 

on the type of system of f i g . 2.7. I n comparison the program discussed 

here can have any interconnection of buses and machines and r e l i e s on an 

i t e r a t i o n method to provide the new bus voltages at each step. No i t e r a t i o n 

process i s used by Preece. 

2.8 CONCLUSION 

The program does not provide a l l the refinements available i n 

power system transient analysis but w i l l allow a deta i l e d investigation 

i n t o machine i n t e r a c t i o n . F a c i l i t i e s are available to represent the 

synchronous machine by d i f f e r e n t mathematical models. 

The main l i m i t a t i o n s of the program l i e i n the modelling of the 

amortisseur windings and the i t e r a t i o n method used. I t i s suggested that 

any further refinements to the program should be i n i t i a t e d i n these areas. 

Neglecting saturation i s v a l i d w i t h i n the context of the program 

but i s a refinement worth consideration as i s a aore accurate load 
+ +. (4) representation. 

The accuracy of the program i t s e l f has been v e r i f i e d . 
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CHAPTER 3 

A LINEAR i.IULTI?.IACHINE POY.ER SYSTEM COMPUTER PROGRAM 

3.1 GENERAL 

The design of a control scheme by Linear K u l t i v a r i a b l e techniques 

requires a li n e a r i s e d form of the machine and system equations. 

The use of the l i n e a r equation set, applied to synchronous 

machine studies, has become a well established technique both v;ith the 

:a recently w i t h the 
(47)d)(49)(6i)(46) 

use of classical control raethods^^ and more recently w i t h the 

continued application of optimal control theory. 

The synchronous machine model selected f o r l i n e a r i s a t i o n was 

that of constant voltage behind transient reactance with an equivalent 

damping constant (REP 2). This model was selected as being the simplest 

model representative of the system transient c h a r a c t e r i s t i c s . 

Previous authors have used t h i s machine model f o r the determination of 

s t a b i l i t y boundaries by Lyapunov methods^ ̂ ^"^ and energy methods^ 
(45)(5l) 

and also f o r the investigation of control schemes. ' 

Regulators are provided w i t h i n the model to co n t r o l f i e l d 

e x c i t a t i o n and turbine input power. 

3.2 THE LINEARISED MACHINE AND NETWORK EQUATIONS 

The synchronous machine equations describing REP 2 i n APPENDIX A 

along with the network performance equations, modified f o r the transient 

period, are l i n e a r i s e d by a f i r s t order Taylor expansion. (APPENDIX C) 

The l i n e a r i s a t i o n being carried out around tho systems i n i t i a l operating 

po i n t s . 

The f i n a l set of l i n e a r equations i n Appendix C being 

M 

- fcd. K . •£ . 31* (3.1) 
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DClm GK .LLK 
"T~do K 

— 1 Z)Cam + K 
Td 

(3.2) 

Xm** = DC i (3.3) 

where Xl.-X.i-vi ; Xim»i. —, X i m ; Ui.-ULam; d i . — -Aim are the state 

variables defined i n equation C.35. 

This set of f i r s t order d i f f e r e n t i a l equations i s w r i t t e n i n the 

state space form 

x - C A l x H-LBlu +CDld (3.4) 
where A i s n x n plant matrix 

B i s n x m Driving matrix ( l ) 

D i s n x m Driving matrix (2) 

x i s n x 1 vector of State Variables 

u is in x 1 vector o f inputs (1) 

d is n x 1 vector of inputs (2) 

and n a 3m 
which f o r a two machine system yields 

X , 

X-3 

X 5 

>k<h.4!ir 
Hi O - n , - n , 

O -kdj.f.Ti -Pa, -V. -P.* 
i O 0 O 0 O 
O 1 0 O 0 O 
O O 0 O Tdt>\ O 
O O 0 O 0 - 1 

Tdo'a. 

X , 

X z 

x 3 

X s 
Xfc 

+ 

0 O v LL, 0 
0 O 0 
0 O 0 O 
0 O 0 O 

O 0 O 
O 0 O 

d, 
d2 

(3.5) 
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3.3 REGULATOR MODELLING-

The s y s t e m i n p u t s LLi t o U.** a n d oLi t o cCm a r e r e s p e c t i v e l y 

t h e f i e l d e x c i t a t i o n v o l t a g e a n d m e c h a n i c a l i n p u t power t o t h e s y n c h r o n o u s 

m a c h i n e s . I n g e n e r a l t h e r e w i l l be some d e v i c e r e g u l a t i n g t h e change i n 

t h e s e q u a n t i t i e s * 

R e g u l a t o r s were d i s c u s s e d i n s e c t i o n 2.5 a n d a r e a g a i n used i n 

t h i s p r o g r a m w i t h t h e i n p u t s t o t h e b l o c k s b e i n g t h e change i n t h e 

v a r i a b l e r e l a t i v e t o i t s i n i t i a l s t e a d y s t a t e v a l u e . P r e v i o u s l y a b s o l u t e 

v a l u e s w e r e u s e d . 

3.4 SOLUTION TECHNIQUE 

A d e s c r i p t i o n o f t h e s u b r o u t i n e s u s e d a n d f l o w d i a g r a m s i s g i v e n 

i n . APPENDIX E . 

The n e t w o r k p e r f o r m a n c e e q u a t i o n s a r e s o l v e d u s i n g t h e L o a d F low 

s u b r o u t i n e t o d e t e r m i n e t h e i n i t i a l o p e r a t i n g c o n d i t i o n s o f b o t h t h e 

mach ines and t h e s y s t e m . T h e n e t w o r k e q u a t i o n s a r e t h e n m o d i f i e d f o r t h e 

t r a n s i e n t i n t e r v a l and l i n e a r i s e d a l o n g w i t h t h e mach ine e q u a t i o n s t o 

o b t a i n e q u a t i o n (3.5). T h i s e q u a t i o n i 3 s o l v e d d u r i n g t h e t r a n s i e n t 

i n t e r v a l b y one o f t h e f o u r i n t e g r a t i o n methods t o o b t a i n t h e c o m p l e t e 

t i m e r e s p o n s e . 

3.5 PROGRAM VERIFICATION 

W i t h s m a l l p e r t u r b a t i o n s t h e l i n e a r and n o n - l i n e a r mode ls c o r r e s p o n d . 

W i t h s m a l l d e v i a t i o n s t h e s i n e wave c h a r a c t e r i s t i c o f t h e n o n - l i n e a r 

e q u a t i o n s can be a p p r o x i m a t e d by a l i n e a r r e l a t i o n s h i p . 

A n i n v e s t i g a t i o n i n t o t h e l i n e a r and n o n - l i n e a r c o m p a r i s o n s i s 

c o n d u c t e d i n C h a p t e r 6. ' 
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3.6 THE K A N T TRANSFER F A C T I O N MATRIX 

The t r a n s f e r f u n c t i o n o f t h e s y s t e m i s o b t a i n e d f r o m e q u a t i o n 

(3.4), w r i t i n g 

p.3c = A. x -v- B . u -+ t>.d (3.6) 

= C p . l - A T ' B . y . + (p.T - A)"! t> > d (3.7) 

The s y s t e m o u t p u t s a r e r e l a t e d t o t h e s t a t e v e c t o r s b y t h e 

o u t p u t e q u a t i o n 

LJ = C . Oc (3.8) 
w h e r e z C i s m x n o u t p u t m a t r i x , t h e n 

y= C . fpI -Ay. 'B.u 4 . C . ( P . I - A T . ' D . d (3.9) 

T h e r e a r e t w o t r a n s f e r f u n c t i o n s i n e q u a t i o n (3.9) shown d i a g r a m m a t i c a l l y 

i n f i g . 3.1, w h i c h a r e 

(0 GCp) = C.CT>.I-AV! B (3.10) 
r e l a t i n g t h e s y s t e m o u t p u t and t h e i n p u t v e c t o r , U - o f t h e change 

i n f i e l d e x c i t a t i o n . 

( iO G C p ^ = C . f p . I - A T " ! D (3.11) 
r e l a t i n g t h e s y s t e m o u t p u t a n d t h e i n p u t v e c t o r , C l o f t h e change 

i n m e c h a n i c a l i n p u t p o w e r . 

The p o s s i b i l i t y o f c o n t r o l l i n g t h e f i e l d e x c i t a t i o n a n d / o r t h e 

m e c h a n i c a l i n p u t power i s made a v a i l a b l e . 

3.7 A DEFINITION 0? TRANSIENT RESPONSE 

The i d e a l t r a n s i e n t r e s p o n s e e x h i b i t s a q u i c k r e t u r n t o t h e 

s t e a d y s t a t e w i t h o u t e x c e s s i v e e x c u r s i o n s o f a n y o f t h e s y s t e m v a r i a b l e s . 

I t i s assumed t h a t o b s e r v a t i o n o f t h e i n s t a n t a n e o u s v a l u e o f l o a d a n g l e , S 

c a n be u s e d as a measure o f t h e sys t em s t a b i l i t y and t r a n s i e n t r e s p o n s e . 

F u r t h e r , i t i s assumed t h a t i f a p l o t o f &a i s a s y m p t o t i c a l l y s t a b l e 
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a p l o t o f t h e d e r i v a t i v e s o f Sq, w i l l a l s o be a s y m p t o t i c a l l y s t a b l e . 

C o n s e q u e n t l y t h e s t a b i l i t y a n d r e s p o n s e o f a s y s t e m can be d e t e r m i n e d b y 

o b s e r v a t i o n o f any o f t h e s e q u a n t i t i e s . Y»'hen l o a d a n g l e , S , v e l o c i t y , 
• • • 

S > a c c e l e r a t i o n , S > o r t e r m i n a l v o l t a g e i s u s e d as t h e f e e d b a c k 

v a r i a b l e i t i s a l s o assumed t o be t h e o u t p u t o f t h e P l a n t T r a n s f e r 

F u n c t i o n M a t r i x , GCP). 

3.8 THE OUTPUT EQUATION 
The v a l u e s c o n t a i n e d w i t h i n t h e O u t p u t M a t r i x , C, o f e q u a t i o n (3«8) 

d e t e r m i n e s t h e r e l a t i o n s h i p b e t w e e n t h e s y s t e m ' s o u t p u t , ^ , and t h e s t a t e 

v e c t o r s , x . 

F o r a n y " t w o mach ines t i e d t o an i n f i n i t e bus p r o b l e m " s i m i l a r t o 

f i g . 2»7» w i t h t h e c h o i c e o f s t a t e v a r i a b l e s as i n A p p e n d i x G, e q u a t i o n 

C.35, t h e f o l l o w i n g o u t p u t m a t r i c e s a r e v a l i d : 

( i ) V o l t a g e o u t p u t (See A p p e n d i x C) The o u t p u t m a t r i x i s o f t h e f o r m 

' v o l t s 0 0 
0 0 

( i i ) A c c e l e r a t i o n o u t p u t 

P 0 
• A C C 

( i i i ) V e l o c i t y o u t p u t 

k 2 H k 2 l 2 k m k 1 1 2 

k 2 2 l k 2 2 2 k l 2 l k l 2 2 

0 
0 

0 
0 

0 
0 

0.12) 

( 3 . 1 3 ) 

' V E . L 

o r 

' V C L 

1 
0 

0 
0 

0 

1 

0 
0 

0 
0 

P 
0 

0 
0 

0 

p 

0 
0 

0 
0 

0 
0 

0 
0 

(3.14) 

(3.15) 
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( i v ) P o s i t i o n o u t p u t 

'Pos 

D e f i n e a m a t r i x 

0 0 1 0 0 0 
O 0 0 1 0 0 

and A 

S 

t h e n 

P 0 

. ° P . 

Vp 0 

0 V p 

C A C C =•• S * C V E . U 

CVEI, = S # CpoS 

A s t h e P l a n t t r a n s f e r f u n c t i o n m a t r i x i s o f t h e f o r m 

G C ? } = C . C p . T - A ) " 1 . B 

t h e n 

a n d 

F o r t h e g e n e r a l f e e d b a c k c o n t r o l s y s t e m o f f i g . 4.1 

G O O . kC-p) 
\ + G C p Y K C ? y F C ? ) 

a n d 

(3.16) 

( 3 . 1 7 ) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

w h i c h f o r v e l o c i t y o u t p u t a n d X ( p ) = I , t h e i d e n t i t y m a t r i x , becomes 

A A 

MVEL f p) = Gvet_(V) + FVEL. ( ? ) (3.25) 
A A 

m u l t i p l y i n g t h r o u g h b y S y i e l d s HACC ( p ) 

a n d 
KACC Cp) = S * FvELL ( p } (3.26) 
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3.9 FORMATION OF THS PLAINT TRANSFER EUHCTION MATRICES 

F o r a power s y s t e m model o f f i g . 2.7 t y p i c a l n u m e r i c a l v a l u e s 
a r e g i v e n i n A p p e n d i x G . 

3.9.1 CONTROL OF TURBINE INPUT POV.ER 

I f t h e r e g u l a t o r s a r e i d e a l t h e n f o r a c c e l e r a t i o n f e e d b a c k t h e 

t r a n s f e r f u n c t i o n m a t r i x GACC i s g i v e n by s u b s t i t u t i n g t h e A and B 

m a t r i c e s o f e q u a t i o n (3»5) a n d t h e r e l e v a n t C m a t r i x i n t o e q u a t i o n (3.10) 

"f/TT.pIp3 - a2Z.pz-Qz4.p] , -for. p. Z0.14.pl 

H, H*. 

£lI-P-Caa3.p] , ^ 7T • -p. Cp 3~ PL"- P* " ^ 3 . PJ 

+ (aa^.Qj3-0.i4.a2.s) (3.27) 

w h e r e t h e a ' s a r e t h e components o f t h e p l a n t m a t r i x A . 

T h e n G v E i X p ) i s r e l a t e d t o G i A c c C p ) b y e q u a t i o n (3.21) 

The i n v e r s e o f e q u a t i o n (3.27) i s 

• f i t 7>* •f.TT 7>A 

"TTT ^ f TV t 
ft (3.28) 

3.9.2 CONTROL OF FIELD EXCITATION 

A s s u m i n g i d e a l r e g u l a t o r s a n d a c c e l e r a t i o n f e e d b a c k , s u b s t i t u t i o n 

o f t h e A and D m a t r i c e s o f e q u a t i o n (3.5) and t h e r e l e v a n t C m a t r i x i n t o 

(3.11) y i e l d s 
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Gj ACc Cp) — 

Tdo, 

Ida. 
bib p3- fefc p"+ (oibQ^i -On Qafaj j 

7> - «-6<b 

(3.29) 
g i v i n g on i n v e r s i o n 

g l 2 i = - Tdox.(p- Qss)\-Cu*.p+CbbAzip -t-fa.ife.Qz4.-Oa^.d^.p) 

9 * . = -~T*°z 

g 3 i - -Tdo'2 QjbJfbsp-Qtg a&P+COtiQ.** -CU.Qje)p] (3.30) 

3.9.3 TRANSFER FUNCTION MATRICES WITH REGULATORS 

By p r e - m u l t i p l y i n g b y t h e t r a n s f e r f u n c t i o n b l o c k s r e p r e s e n t i n g 

t h e f i e l d e x c i t a t i o n o r i n p u t power r e g u l a t o r a l l o w s a r e p r e s e n t a t i o n o f 

t h e c o n t r o l e l e m e n t s t o be t a k e n i n t o a c c o u n t i n t h e P l a n t T r a n s f e r f u n c t i o n 

m a t r i x , G C p ) • U s i n g t h e second o r d e r i n p u t power r e g u l a t o r as a n 

e x a m p l e 

G A C C Cp) - \ - . G A C C ( ? ) / , , v 

dp) = C l + p . T v X l - p . T * ) . G A c c C p ) (3.32) 
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3 . 1 0 CONCLUSION 

A l i n e a r i s e d model w r i t t e n i n t h e s t a t e space f o r m has been 
p r o d u c e d f o r a m u l t i m a c h i n e power s y s t e m u s i n g t h e i n i t i a l s t e a d y s t a t e 
o p e r a t i n g c o n d i t i o n s o f t h e s y s t e m as t h e l i n e a r i s a t i o n p o i n t . The use 
o f REP 2 as t h e s i m p l e s t s y n c h r o n o u s machine m o d e l r e p r e s e n t a t i v e o f t h e 
s y s t e m ' s t r a n s i e n t b e h a v i o u r has been j u s t i f i e d . 

The use o f t h e s t a t e space e q u a t i o n i n p r o d u c i n g t r a n s f e r f u n c t i o n 

m a t r i c e s f o r t h e s y s t e m has been d e m o n s t r a t e d . 

The m a i n l i m i t a t i o n o f t h e l i n e a r p r o g r a m i s t h a t i t i s o n l y t r u l y 

r e p r e s e n t a t i v e o f t h e sys t em o v e r s m a l l p e r t u r b a t i o n s . However,, u s i n g a 

l i n e a r model t o p r o d u c e a c o n t r o l scheme,De S a r k a r a n d Dharraa R a o v have 

d e m o n s t r a t e d i m p r o v e d r e s p o n s e f o r b o t h s m a l l a n d l a r g e d i s t u r b a n c e s . 

The e f f e c t o f t h e l i n e a r model when s u b j e c t e d t o d i f f e r e n t 

d i s t u r b a n c e s i s i n v e s t i g a t e d i n C h a p t e r 6. 
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CHAPTER 4 

LINEAR MULTIVARIABLB CONTROL TiiEORY 

4.1 GjS'jERAL 

I n a n y m u l t i c h a n n e l c o n t r o l p r o b l e m i t i s n e c e s s a r y t o c o n s i d e r 

i n t e r a c t i o n e f f e c t s b e t w e e n c h a n n e l s i n t h e d e s i g n t e c h n i q u e . T h i s 

can bo a c h i e v e d b y e i t h e r op t imum c o n t r o l methods o r L i n e a r L l u l t i v a r i a b l e 

c o n t r o l m e t h o d s . 

A g r e a t d e a l o f w o r k has been c a r r i e d o u t on L i n e a r M u l t i v a r i a b l e 

C o n t r o l T h e o r y a t M a n c h e s t e r I n s t i t u t e o f S c i e n c e and T e c h n o l o g y ^ ^ 

a n d f o r m s t h e b a s i s o f t h e c o n t r o l w o r k p r e s e n t e d h e r e . C o n s e q u e n t l y a 

summary o f L i n e a r M u l t i v a r i a b l e C o n t r o l M e t h o d s i s now p r e s e n t e d . 

4.2 THE CONTROL SYSTEM 

A n y n** 1 o r d e r d i f f e r e n t i a l e q u a t i o n d e s c r i b i n g a s y s t e m can be 

r e p r e s e n t e d b y a s e t o f n f i r s t o r d e r s i m u l t a n e o u s d i f f e r e n t i a l e q u a t i o n s 

o f t h e f o r m ^ 5 5 ) 

dcL(0 = -FJx,u.,t) (4.0 
w h i c h f o r a l i n e a r sys t em i s a l w a y s e x p r e s s i b l e i n t h e s t a t e space f o r m 

o f e q u a t i o n (3«4) 

The P l a n t T r a n s f e r f u n c t i o n m a t r i x , f o r m s t h e b a s i s o f t h e 

d e s i g n m e t h o d and i 3 o b t a i n e d v i a e q u a t i o n (3.10). 
Some i n i t i a l d e f i n i t i o n s c o n c e r n i n g t h e c o n t r o l s y s t e m o f f i g . 4.1 

a r e n e c e s s a r y . I n f i g . 4.1 

h ( p ) = m x 1 m a t r i x o f r e f e r e n c e i n p u t t r a n s f o r m s 

e ( p ) s m x 1 m a t r i x o f e r r o r t r a n s f o r m s 

y ( p ) = m x 1 m a t r i x o f p l a n t o u t p u t t r a n s f o r m s . 

u ( p ) = r x 1 m a t r i x o f p l a n t i n p u t t r a n s f o r m s 

k ( p ) = r x m m a t r i x o f c o n t r o l l e r t r a n s f e r f u n c t i o n s 

G ( p ) = m x r m a t r i x o f P l a n t t r a n s f e r f u n c t i o n s 

F ( p ) = ra x m m a t r i x o f f e e d b a c k t r a n s d u c e r t r a n s f e r f u n c t i o n s . 
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I f a l l t h e f e e d b a c k l o o p s a r e b r o k e n a t C L , f i g . 4.1, a n d a 

s i g n a l t r a n s f o r m v e c t o r <*6p) i s i n j e c t e d t h e t r a n s f o r m v e c t o r o f t h e 

s i g n a l r e t u r n e d a t a i s 

- G ( R ) . K ( P ) . R P ) . * ( P ) (4.2) 

T h e d i f f e r e n c e be tween i n j e c t e d and r e t u r n e d s i g n a l s i s t h u s g i v e n b y 

[ T m + G C p ) . k < p > . F ( p \ U ( p ) = E C ? ) . * ( ? ) ( 4 . 3 ) 

w h e r e E ( p ) i s d e f i n e d as t h e R e t u r n D i f f e r e n c e M a t r i x , w h i l e t h e 

q u a n t i t y 

T W = G ( p \ K f p ) . F ( p ) M 

i s d e f i n e d as t h e R e t u r n - r a t i o M a t r i x . T h i s g i v e s 

E f p ) =Xm + T ( p ) (4.5) 
The c l o s e d l o o p t r a n s f e r f u n c t i o n m a t r i x o f f i g . 4*1 i s 

H r P ) = Clm + 6 ( P ) . k < : p ) . F f p ) ] ~ , . G ( p Y k ( p ) (4.6) 

so t h a t 

H O ^ E ^ ' W . Q C p ) (w) 
w h e r e 

Q C p ^ G C p l k C p ) (4.8) 

a n d i s t h e open l o o p t r a n s f e r f u n c t i o n m a t r i x . 

4.3 VECTOR FEEDBACK STABILITY CRITERIA 

4.3.1 GENERAL STABILITY DEFINITIONS 

L e t I G ( p ) l a n d l H C p ) l be t h e d e t e r m i n a n t s o f 

and H C p ) , i n f i g . 4.1 w i t h k Y p ) s T m , r e s p e c t i v e l y t h e n i f ^ ° ^ 

I 6 ( p ) l = gj.Cy) ( 4 . 9 ) 
0 o C ? - ) 
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IHCP)) = ( 4 . 1 0 ) 

l G(p)l _ &OP) 
w h e r e , I H Op) I " 0 o ( P ) 

^ o ( ? ) i s t h e o p e n - l o o p - s y s t e r a c h a r a c t e r i s t i c p o l y n o m i a l a n d < 0 i C p ) i s 

t h e c l o s e d - l o o p ~ s y stern c h a r a c t e r i s t i c p o l y n o m i a l • 

Prom e q u a t i o n ( 3 . 1 0 ) 

G C P V C / P I - A T ' B (3.10) 

r f . k d i frT-ACfl • 8 ( 4 . 1 2 ) 

t h e n | G W l has , » ^ " A ^ 

<2UP) = I p X - A l ( 4 . 1 3 ) 

The open l o o p s y s t e m i s s t a b l e i f a n d o n l y i f a l l t h e z e r o s o f 

l i e i n t h e open l e f t h a l f c o m p l e x p l a n e . S i m i l a r l y t h e c l o s e d l o o p 

sys t em i s s t a b l e i f a n d o n l y i f a l l t h e z e r o s o f 0a.Cty) l i e i n the open 

l e f t h a l f c o m p l e x p l a n e . 

F o r d e s i g n p u r p o s e s i t i s e a s i e r t o w o r k i n t e r m s o f t h e c o n t r o l 

s y s t e m s t r a n s f e r f u n c t i o n m a t r i c e s o f s e c t i o n 4 . 2 t h a n i n t e r m s o f Q$Cp") 

From e q u a t i o n (4<>7)» w i t h K ( p ) = I , 

H 6 r i = E ~ V P ) . G ( P ) U . 1 4 ) 

t a k i n g d e t e r m i n a n t s 

I H C d l = l G ( p ) l ( 4 . 1 5 ) 

o r 

I E C T O I ' = 1G(P)1 (4.16) 
I H f p ) l 
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a n d f r o m e q u a t i o n (4.11) t h e d e t e r m i n a n t o f t h e R e t u r n D i f f e r e n c e M a t r i x 

I E X p ) l c an be w r i t t e n 

' " » ' = 4 & 

Vfhen w o r k i n g i n t e r m s o f t h e s y s t e m 1 s t r a n s f e r f u n c t i o n m a t r i c e s 

i t i s n e c e s s a r y t o r e c o g n i s e t h a t c a n c e l l a t i o n may o c c u r i n e q u a t i o n s 

(4»1l) a n d (4»17). To ensu re t h a t t h e c a n c e l l e d p o l e s a r e n o t u n s t a b l e 

t e r m s i t i s assumed t h a t t h e o p e n - l o o p s y s t e m i s a s y m p t o t i c a l l y s t a b l e . 

A t t h i s s t a g e i t i s n e c e s s a r y t o d e f i n e a c o n t o u r , D c » I n t h e c o m p l e x 

p l a n e , i n t h e u s u a l N y q u i s t sense , t o a l l o w f u r t h e r a n a l y s i s o f s y s t e m 

s t a b i l i t y , . 

L e t D c be a c o n t o u r i n t h e complex p l a n e c o n s i s t i n g o f t h e 

i m a g i n a r y a x i s f r o m ~ j°*> t o a n d a s e m i - c i r c l e c e n t r e d on t h e 

o r i g i n o f r a d i u s .*< i n t h e r i g h t h a l f p l a n e . L e t e< be l a r g e enough 

t o e n s u r e t h a t e v e r y z e r o a n d p o l e o f I G C p ) l a n d i H C f O l i n t h e 

open r i g h t h a l f p l a n e l i e w i t h i n D c . F u r t h e r l e t D be i n d e n t e d 

i n t o t h e l e f t h a l f p l a n e t o a v o i d any p o l e s o r z e r o s o f o r 

t h a t l i e o n t h e i m a g i n a r y a x i s b e t w e e n - j o { and Je< . 

The i n d e n t a t i o n s a r e assumed t o be s m a l l enough t o a v o i d any p o l e o r 

z e r o i n t h e open l e f t h a l f p l a n e . 

4.3.2 STABILITY I N T B R ' 3 OF THE RETURN DIEEBMMCB MATRIX 

From e q u a t i o n (4*17) w i t h t h e o p e n - l o o p s y s t e m s t a b l e t h e c l o s e d -

l o o p c h a r a c t e r i s t i c p o l y n o m i a l w i l l n o t v a n i s h i n t h e c l o s e d r i g h t h a l f 

c o m p l e x p l a n e i f a n d o n l y i f | ECpM does n o t v a n i s h i n t h e c l o s e d 

r i g h t - h a l f complex p l a n e . 

I f l i e maps i n t o a c l o s e d c u r v e P i n t h e c o m p l e x p l a n e u n d e r t h e 

mapp ing o f t h e n t h e sys t em i s c l o s e d l o o p s t a b l e i f no p o i n t w i t h i n 

"Dc maps o n t o t h e o r i g i n o f t h e complex p l a n e under t h e mapping I E C p ) | . 



The s y s t e m i s t h u s c l o s e d l o o p s t a b l e i f P does n o t e n c l o s e t h e o r i g i n . 

I f IECT>) I 1 as l " p l - * » 0 0 , t h e n <* c a n be t a k e n a3 

a r b i t r a r i l y l a r g e a n d I c an be r e f e r r e d t o as t h e l o c u s 

T h i s g i v e s a N y q u i s t t y p e s t a b i l i t y c r i t e r i o n f o r t h e m u l t i l o o p s y s t e m 

w i t h t h e p o i n t ( O , O ) as t h e c r i t i c a l p o i n t . 

I f t h e e i g e n - v a l u e s o f E O p ) a r e ^)^Cp) , L = 1 , 2 , r < n 

t h e n 

w i l l n o t v a n i s h f o r any. p e n c l o s e d b y IX: i f a n d o n l y i f none 

o f j ) i , C p ^ , u : l j l - , » m v a n i s h f o r any p e n c l o s e d b y *Dc • I f Tic naps 

i n A L u n d e r £>i6p), i - - " "• *"° t h e n P w i l l n o t e n c l o s e t h e o r i g i n 

o f t h e complex p l a n e i f a n d o n l y i f none o f L.L e n c l o s e t h e o r i g i n o f t h e 

c o m p l e x p l a n e . The f o l l o w i n g s t a t e m e n t o f s t a b i l i t y h o l d s -

"The s y s t e m i s c l o s e d - l o o p s t a b l e i f a n d o n l y i f a l l t h e e i g e n 

v a l u e l o c i J'wCjw*) f o r i = \j jtx\ s a t i s f y t h e N y q u i s t c r i t e r i a w i t h 

t h e c r i t i c a l p o i n t as ( O j O ) • " 

By e q u a t i o n ( 4 « 5 ) a n d t h e e i g e n v a l u e s h i f t t h e o r e m 

f i t ? ) = 1 * 'OuCp} ( 4 # 1 9 ) 

where , — j vc\ a r e t h e e i g e n - v a l u e s o f T ( p ) t h e n a 

s i m i l a r s t a t e m e n t o f s t a b i l i t y h o l d s as above t h e c r i t i c a l p o i n t now 

b e i n g ( - 1 , 0 ) . 

4.3.3 AM INDIRECT STATBI-DBNT OF STABILITY I N TERMS OF THIS RETURN DIFFERENCE 
MATRIX 

G e r s h g o r i n * s t h e o r e m s t a t e s ^ t h a t t h e e i g e n - v a l u e s o f any 

m a t r i x E ( p ) a r e c o n t a i n e d w i t h i n a u n i o n o f disC3 h a v i n g c e n t r e s 

a n d r a d i i < r p i 1 , . 1 ( 4 . 2 0 ) 

J - 1 
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The m a p p i n g o f " D c under t h e p a r t i c u l a r e l e m e n t ( S o C C j u a ) , 

t h e G e r s h g o r i n d i s c s e t g e n e r a t e d e n s u r e s t h a t e v e r y e i g e n - v a l u e l o c u s 

j ^ L ( j v o ) l i e 3 w i t h i n t h e g e n e r a t e d G e r s h g o r i n d i s c s e t . I f 

m 

t h e n t h e s y s t e m i s s t a b l e v / i t h a l l f e e d b a c k l o o p s c l o s e d i f none o f 

P{, t i, = l j 2 , — , rr\ e n c l o s e t h e o r i g i n o f t h e c o m p l e x p l a n e , where 

*DC map3 i n t o Pi u n d e r (Zic Cp) i = ) , 2, - , m. 

S i n c e 

<2,u Cp) = 1 * -tic ( p ) , L= \a> - - - m ( w 2 ) 

and ^ . N 

<2.LjCp) r -tCjC-p) , ro (4.23) 
t h e n a s i m i l a r s t a t e m e n t o f s t a b i l i t y can be made w i t h " t l L L = V*2j—j m 

s a t i s f y i n g t h e K y q u i s t s t a b i l i t y c r i t e r i o n w i t h c r i t i c a l p o i n t a t ( - 1 , 0 ) , 

t h e n t h e s y s t e m i s s t a b l e w i t h a l l l o o p s c l o s e d . 

4.3.4 STABILITY IN T3RI!S 0? OPEN LOO? AND CLOSED LOOP TRANSFER FUHCTIOK 
MATRICES 

W o r k i n g i n t e r m s o f Q ( p ) and H ( p ) make i t more c o n v e n i e n t t o 

r e l a t e open a n d c l o s e d l o o p r e s p o n s e s . F u r t h e r H ( p ) i s n o t a s i m p l e 

f u n c t i o n o f G ( p ) , K ( p ) and F ( p ) and t h u s i f Q " 1 ( p ) e x i s t s i t i s more 

c o n v e n i e n t t o use t h e i n v e r s e f o r m , t h u s i n v e r t i n g e q u a t i o n (4.6) 

H C P ) = - Q C p ) (4.24) 
w o r k i n g w i t h t h e s e t r a n s f e r f u n c t i o n m a t r i c e s R o s e n b r o c k ^ ^ has p r o v e d 

t h e f o l l o w i n g s t a b i l i t y t heo rems : -

Theorem 1 
A 

L e t t h e open l o o p sys t em be a s y m p t o t i c a l l y s t a b l e . L e t I Q ( p ) l 

map Be i n t o I © , a n d map "be i n t o • Then t h e c l o s e d 
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A A 

l o o p s y s t e m i s s t a b l e i f an o n l y i f e n c i r c l e t h e o r i g i n 

t h e same number o f t i m e s . 

Theorem 2 

D e f i n e , 

J * I (4.25) 

L e t iQOp) I map "be i n t o P a n d C^ic^P1) map T)c i n t o fT. 

L e t e n c i r c l e t h e o r i g i n N t i m e s a n d f c e n c i r c l e t h e o r i g i n M l t i m e s , 

t h e n ; 

F o r a U p on D t , l e t \(^Cp)\ - UiCp) > 0 

C r e s p . /^ViCp) I - Sc<Tp) > O ), ^ « /, 2, — , *c. 

Then 
A / = A / / -*"/N/2 + - - - - » - A/»M 

Theorem 3 

L e t T)c be mapped b y 1 i n t o H, , by \ UCp)\ i n t o /"2 » 
A A A 

by i n t o Joi. a n d by A.[£ Cp) i n t o f it . L e t t h e number o f 
A A * 

e n c i r c l e m e n t s o f t h e o r i g i n by fTo be N 0 , by be AJc , by i d 
A 

be M > i , a n d by f 2 i be A^cc.. 

D e f i n e 

T h e n ; J * f c 

L e t t h e open l o o p s y s t e m by a s y m p t o t i c a l l y s t a b l e a n d l e t 

h a v e no z e r o i n t h e c l o s e d r i g h t h a l f - p l a n e . 

L e t - fcCp)\ ~ CLlCp)>0 , 
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C rasp. 1 -PuOp) + q,Li C-p)l - SlCp) > , L =»,2, - — f ro. 
T h e n t h e c l o s e d - l o o p s y s t e m i s a s y m p t o t i c a l l y s t a b l e i f and o n l y i f 

m 

E q u a t i o n (4*27) may be r e p l a c e d b y 

N C L = O J (4.28) 

T h i s i s t h e u s u a l i n v e r s e N y q u i s t c r i t e r i o n a p p l i e d s e p a r a t e l y t o 

each q / a C p ) 

Theorem 4 

L e t t h e open l o o p s y s t e m be a s y m p t o t i c a l l y s t a b l e . L e t 

( i i ) I6LC ? V^U.(?>1 -dLCp) > O , (rasp. IfuX^ + ^aCT>)l - 6iX*> > o ) 
t h e n t h e c l o s e d l o o p sys tem i s a s y m p t o t i c a l l y s t a b l e i f and o n l y i f 

^ McL = j£ MoL (4.29) 
U i ct« 

E q u a t i o n (4.29) may be r e p l a c e d b y 

NcL r NoL , L * > j a , ™ (4.30) 

T h i s i s t h e u s u a l i n v e r s e N y q u i s t c r i t e r i o n a p p l i e d s e p a r a t e l y t o 

e a c h ( j^ Cp). 

I f t h e d i a g o n a l e l e m e n t o f j?(p) a r e -fu - ^c. t h e n 

e q u a t i o n s (4.28) and (4»30) u s ® t h e p o i n t ( - k i , 0) as t h e c r i t i c a l p o i n t . 
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4.4 APPLICATION OF THIS STABILITY CRITERIA 

For each d i s c r e t e value on the Dc contour Ĉ u.C"p) i s 

evaluated and a c i r c l e of r a d i u s cLCp) G"<£SP« Si.($>Y) i s drawn 
A 

centred on C ^ u X t ^ . The l i n e l o c u s o f <^U.Cp) now changes t o t h a t 

o f an envelope. By G - e r s h g o r i n ' T h e o r e m t h i s envelope contains the 

c r i t i c a l l o c u s * However t h i s union o f d - c i r c l e s does not give the exact 

l o c a t i o n o f the locus but does con t a i n i t . The usual Nyquist s t a b i l i t y 

c r i t e r i o n i s a p p l i e d t o t h i 3 envelope. 

I f the c r i t i c a l p o i n t given by ( - k i , 0) i s outside t h i s envelope 

and i n the c o r r e c t p o s i t i o n as given by the Nyquist c r i t e r i a , s t a b i l i t y 

would be guaranteed and the system s a i d t o be diagonal dominant f o r t h i s 

corresponding g a i n , k i . I f the envelopes do not touch or cut the negative 

r e a l a x i s between the o r i g i n and the p o i n t s - k i the s t a b i l i t y o f the 

m u l t i v a r i a b l e system i s determined by the Nyquist s t a b i l i t y c r i t e r i a . 

The t r a n s f e r f u n c t i o n t h a t a s i n g l e l o o p c o n t r o l l e r must be 
A 

designed f o r i s P«.Cpi where 
A A 

This i s the t r a n s f e r f u n c t i o n seen i n the i l o o p when t h i s i s open and 
A 

a l l other loops are closed. Ostrowski 1 s Theorem says t h a t t h i s 'pi.Cp) i s 
A . 

contained w i t h i n the envelope swept out by the c i r c l e s c e n t r e d on Ĉ U. Cp) 

and t h a t t h i s remains t r u e f o r a l l values o f gains k j i n each loop j , 

between zero and k j . Furthermore provided Q(p) and H(p) are dominant 

t h i s same theorem narrows the band and gives c i r c l e s 0;.C ?"). di.Cp) 

where 

0 1 C ^ = MCL-X d j f r p ) (4.32) 
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then the system may be made dominant w i t h r e s p e c t t o a c e r t a i n feedback 

g a i n i n the i t h loop and the above c r i t e r i a a p p l i e d ^ ^ 

Before a p p l y i n g the 0 c i r c l e s s t a b i l i t y of the system must f i r s t 

be determined v i a the d - c i r c l e s . 

4.5 DIGITAL COMPUTATION OF THB IHV3RSB NYQUIST DIAGRAMS 
A 

The p r e d i c t i o n o f the I.N. diagrams f o r each element, o f a 

m a t r i x i s a tedious longhand process but one t h a t i d e a l l y l ends i t s e l f t o 

a computer s o l u t i o n . 

A program was w r i t t e n (Appendix F) t h a t w i l l c a l c u l a t e from 

t h e s t a t e space equations or allow i t t o be s p e c i f i e d d i r e c t l y i n a 

t r a n s f e r f u n c t i o n form. 

Q(p) and Q(p) are then c a l c u l a t e d where 
= K(p). GOp). L0j>) (^33) 

and K (p) andG(p) take on t h e i r usual forms and L(p) i s a p o s t -

compensator m a t r i x . 

The I.N. diagram f o r each element C^uOp) i s then p l o t t e d on a l i n o 

p r i n t e r . The magnitude o f the d and S c i r c l e s are c a l c u l a t e d and can 

be added t o the I.N. p l o t s i f r e q u i r e d . 

DESIGN 0? HON-INTHRACTIV5 CONTROLLERS 

The aim o f designing n o n - i n t e r a c t i v e c o n t r o l l e r s i s t o make the 

i n t e r a c t i o n between channels n e g l i g i b l e , i . e . t o o b t a i n a diagonal dominant 

c o n d i t i o n . This c o n d i t i o n o f diagonal dominance may be achieved by the 

a d d i t i o n o f c o n t r o l elements i n t o e i t h e r the pre - or post - compensator 

mat r i c e s or i n t o the feedback m a t r i x , F ( p ) . 
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J+.6.1 CONTROLLER DESIG-Ii BY MATRIX DIVISION 

The feedback matrix F(p) i s assumed d i a g o n a l . Control elements 

are added i n t o the pre-compensator m a t r i x E(p) by assuming a diagonal 

form of Q(p), t h e n 

KCp) = G'^-p). dOp) (4.34) 
I t f o l l o w s t h a t H(p) i s dia g o n a l . 

The danger of t h i s method i s t h a t much o f the design freedom 

can be used up i n choosing the elements o f K ( p ) , thus l e a v i n g l i t t l e 

room f o r compensation. 

4»6»2 COMPENSATION IN THE FESDBACK MATRIX, F(p) 

Frequency dependent terras may be added i n t o the o f f - d i a g o n a l 

elements o f F ( j w ) t o cancel d i r e c t l y w i t h the o f f - d i a g o n a l elements o f 

Q(j w ) . ( e q u a t i o n 4« 24)• 

Such methods can introduce phase advance and must be c l o s e l y 

c o n t r o l l e d . 

4.6.3 ROSBNBROCK'S INVERSE NYQUI3T ARRAY DESIGN METHOD 

The pre-compensater m a t r i x K(p) i s synthesised i n t h r e e successive 

tCOp)»ka.KtOp).ICcCp) (,,.35) 

where, 

kcx i s a permutation m a t r i x r e p r e s e n t i n g a p r e l i m i n a r y renumbering 

o f the i n p u t s t o . 

kfcCp) represents a sequence o f elementary row and column operations 

so as t o make the m a t r i x diagonal dominant. 

kcGp) a diagonal m a t r i x which synthesises the m p r i n c i p l e c o n t r o l 

loops. 
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Having s e l e c t e d k b t , lCfeCp) i s chosen so as to make Q(p) diagonal 

dominant. The t r a n s i e n t response i s now shaped i n the m p r i n c i p l e loops 

by a d d i t i o n of c o n t r o l elements i n t o the diagonal m a t r i x KcOp) . 

4.6.4 DISCUSSION 

C o n t r o l schemes may also be designed by using these design methods 

i n c o n j u n c t i o n w i t h each o t h e r . The methods o u t l i n e d above have been used 

i n t h i s work; other design methods have been summarised by llacParlane i n 

reference (68). 

4.7 CONCLUSION 

The theory and some c o n t r o l l e r design methods f o r use i n l i n e a r 

m u l t i v a r i a b l e c o n t r o l problems have been o u t l i n e d . 

A d i g i t a l program t o compute the Inverse Nyquist l o c i was w r i t t e n . 

T h i s program does not completely automise the process b u t e l i m i n a t e s the 

m a j o r i t y o f the ted i o u s longhand c a l c u l a t i o n s . The program i s e a s i l y 

converted t o the advantageous g r a p h i c a l d i s p l a y output medium i f i t i s 

a v a i l a b l e . 

A comprehensive s u i t e of programs using g r a p h i c a l d i s p l a y 

equipment has p r e v i o u s l y been w r i t t e n ^ " ^ by researchers a t U.M.I.S.T. 

- 46 -



ft* 

B 

t o C3 

10 

01 



CHAPTER 5 

THE DYNAMIC INTERACTION OF SYNCHRONOUS MACHINES 

5.1 IHTRODUCTION 

I n determining the t r a n s i e n t s t a b i l i t y l i m i t o f l a r g e e l e c t r i c a l 

power systems i t i s common p r a c t i c e t o lump together synchronous machines 

i n the same p h y s i c a l v i c i n i t y , such as i n e.n i n d i v i d u a l power s t a t i o n , 

and use an equ i v a l e n t machine t o represent t h i s group. The main advantage 

o f t h i s s i m p l i f i c a t i o n i s a l a r g e saving i n computer time. However Din e l e y 

and M o r r i s have shown t h a t the f l o w o f synchronising power between 

e l e c t r i c a l l y close-coupled machines o f v a r y i n g i n e r t i a s , can lea d t o 

mu l t i s w i n g i n s t a b i l i t i e s . Under such c o n d i t i o n s r e p r e s e n t a t i o n by an 

eq u i v a l e n t machine can l e a d t o inaccurate r e s u l t s . 

A saving on computer time can be made by using the simplest 

machine model r e p r e s e n t a t i v e o f the system 1s dynamics. The model o f 

"constant v o l t a g e behind t r a n s i e n t reactance w i t h an eq u i v a l e n t damping 

constant" has been suggested. 

I f such simple models are t o be used then t h e i r behaviour i n a 

multimachine system r e l a t i v e t o the more complete models must be understood. 

T h i s and the study o f i n t e r a c t i o n phenomena are the i n t e n t i o n s o f t h i s 

Chapter. 

5.2 CONTROL EQUIPMENT 

Modelling o f the associated c o n t r o l equipment can hide the e f f e c t s 

produced by d i f f e r e n t machine models. Consequently both e x c i t a t i o n v o l t a g e 

and i n p u t power t o the machine are assumed constant d u r i n g the study 

i n t e r v a l . 



5.3 TRANSMISSION SYSTEMS STUDIED 

The network c o n f i g u r a t i o n s o f f i g s . 2.7 and 5.1 are used. Both 
networks, could, i f r e q u i r e d , be transformed i n t o the other by the non
l i n e a r V - K t r a n s f o r m / ^ The V c o n f i g u r a t i o n o f f i g . 5o1 has the 

advantage over the A network, even though the l a t t e r i s the most l i k e l y 
(21)(57) 

t o be found i n a p r a c t i c a l system, /*- / , / ± n t h a t i t allows an easy measure 

o f the power t r a n s f e r r e d between the machines. 

5.4 A QUALITATIVE ASSESSMENT OF PARAMETER VARIATION ON THE OSCILLATION 
FREQUENCY 

The f l o w o f synchronising power between machines i s dependent on 

the frequency a t which the machine l o a d angles o s c i l l a t e . Power w i l l 

f l o w from machine one t o machine two when S i ^ S * and v i c e versa. 

S e c t i o n 5«5 shows t h a t a small change i n the o s c i l l a t i o n frequency can 

induce a c r i t i c a l c o n d i t i o n w i t h i n the system such t h a t there i s an adverse 

power f l o w causing i n s t a b i l i t y . Conversely a small change i n o s c i l l a t i o n 

frequency could o f f s e t t h i s c r i t i c a l c o n d i t i o n . 

The o s c i l l a t i o n frequency o f the machine i s a f u n c t i o n o f the 

machine and system parameters and can be c a l c u l a t e d f o r small p e r t u r b a t i o n s 

using a f i r s t order Taylor expansion. 

I f a s i n g l e machine t i e d t o an i n f i n i t e busbar i s considered and, 

using REP 2, the equation o f motion i s 

H. d*§ + kd.dS =TU - fk.SinS (5.-,) 
dt l dt 

= £ .Vft - - - ---- Maximum e l e c t r i c a l power output 
X 

^ ..... . Machine and l i n e combined impedance. 

- i£ -



L i n e a r i s i n g equation (5»l) and assuming only v a r i a t i o n s i n 

mechanical power and l o a d angle, then 

H.ASH-Kd.AS + Pc.CosSo.AS = APm (5.2) 
where A represents a small change. 

I n i t i a l l y the r o t o r o f the machine i s s t a t i o n a r y w i t h respect 

t o the r o t a t i n g reference frarae, then 
». *• • • • • 

A S = S-So = X. 5 , 3 

Rt-.CoS So = fit 
S u b s t i t u t i n g equation (5.3) i n t o (5.2) and i n t r o d u c i n g the 

Laplace operator, y i e l d s 

J X _ - L 
APm H.f? + ka.p -v- Pe ( 5 - ^ 

The poles o f equation (5*4) are 

p.,pst= -JSd. ±j 

The o s c i l l a t i o n frequency i s given by the imaginary p a r t of 

equation (5.5) as 

•P = _L 
H 4 H 1 '5.6) 

and i s dependent on a l l the system parameters, e s p e c i a l l y the i n e r t i a 

constant, H. 

For the n o n - l i n e a r system of equation (5.1) the o s c i l l a t i o n 

frequency i s a f u n c t i o n o f the system parameters such t h a t 

f = gCH, k d , E ' , V B J X , b ) (5.7) 

Because o f the i n t e r c o n n e c t i o n between machines i n a multimachine 

system the o s c i l l a t i o n frequency o f any one machine becomes a f u n c t i o n o f 
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a l l machine and system parameters. Changing a parameter i n one machine 

would a f f e c t the o s c i l l a t i o n frequency o f the o t h e r s . 
(57 

This change i n frequency i s discussed by Dineley and Mo r r i s 

when a change i n i n e r t i a constant i s made. The same e f f e c t w i l l be 

prominant i n l a t e r s e c t i o n s . 

5.5 IHTaRACTIOlI FKSNOLIBHA - A GiiilFMAL DESCRIPTION 

E l e c t r i c a l power i s t r a n s f e r r e d between synchronous machines i n 

a d i r e c t i o n determined by t h e i r r e s p e c t i v e l o a d angles. The t r a n s f e r o f 

e l e c t r i c a l power i s explained by reference t o f i g . 5*2. 

Power i s t r a n s f e r r e d t o an i n f i n i t e bus from the synchronous 

machines when t h e i r l o a d angles are gr e a t e r than zero, i . e . they a c t as 

generators. I f any l o a d angle f a l l s below zero then t h a t machine w i l l be 

motoring and e l e c t r i c a l power f l o w s from the i n f i n i t e source t o t h a t 

machine - p o i n t ( c ) . 

A s i m i l a r s i t u a t i o n a r i s e s when e l e c t r i c a l power i s t r a n s f e r r e d 

between a c t u a l machines. The power t r a n s f e r occurs when the loa d angles 

o f the r e s p e c t i v e machines d i f f e r and fl o w s from the machine w i t h the 

hi g h e r l o a d angle t o t h a t w i t h the lower. 

The a c t u a l power output o f a machine depends upon i t s p o s i t i o n on 

the o p e r a t i n g l o c u s a t any i n s t a n t . As the magnitude o f the r o t o r angles 

i n i t i a l l y increase the power output from the machines w i l l a l s o increase 

u n t i l the peak o f the o p e r a t i n g locus i s reached and then i t w i l l decrease. 

Consequently i n c e r t a i n circumstances a machine having a much l a r g e r l o a d 

angle than the other can be developing l e s s power, 

e.g. suppose 
s , > 

°< >0«o-Si)<Sa. ( 5 , 8 ) 

where c(° i s the peak o f the o p e r a t i n g l o c u s , then pov/er w i l l t r a n s f e r from 
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machine 1 t o machine 2 y e t machine 2 w i l l be developing more power o u t p u t . 

T h i s i s demonstrated by p o i n t (a) f i g . 5*2. 

The f i r s t reverse l o a d angle excursion o f machine 2 - p o i n t (b) -

i s l i m i t e d . This i s associated w i t h the power flows a t bus 2 which a r e : -

( i ) Power being t r a n s f e r r e d from bus 1-

( i i ) Power being t r a n s f e r r e d from bus 2 t o the i n f i n i t e source. 

The power t r a n s f e r from bus 1 reduces the l o a d i n g c o n d i t i o n on 

machine 2 and produces a r e d u c t i o n i n the t e r m i n a l power. Consequently 

the power balance between mechanical i n p u t and e l e c t r i c a l output power i s 

upset. A s i t u a t i o n i s c r e a t e d whereby the machine has a tendency t o 

acc e l e r a t e t o accommodate t h i s excess power. This tendency t o acce l e r a t e 

l i m i t s the reverse l o a d angle swing and, i n t h i s case, produces a subsequent 

increase i n l o a d angle. 

I f these power f l o w c o n d i t i o n s a r i s e when b o t h machines are 

a c c e l e r a t i n g then a s u b s t a n t i a l increase i n l o a d angle can r e s u l t -

p o i n t (d) - which can u l t i m a t e l y cause a mu l t i s w i n g i n s t a b i l i t y , fig.5«3(a). 

T h i s c r i t i c a l c o n d i t i o n has been r e l a t e d t o the o s c i l l a t i o n frequencies 

o f the r e s p e c t i v e l o a d angles - s e c t i o n 5.4. By i n c r e a s i n g the mechanical 

i n p u t power t o machine 2 t o 0.92 p.u. and thus changing r o t o r angle 

o s c i l l a t i o n frequency s l i g h t l y the system i s rendered s t a b l e - f i g . 5.3(b). 

These c r i t i c a l c o n d i t i o n s are g e n e r a l l y associated w i t h the 

machine o f l i g h t e r i n e r t i a as the a c c e l e r a t i n g power i s i n v e r s e l y 

p r o p o r t i o n a l t o i n e r t i a constant - equation ( l . l ) . 

5.6 SYNCHRONOUS MACHINE MODELS - THE EFFECT OF NEGLECTING TRANSIENT 
SALIBKCY 

By i n c l u d i n g t r a n s i e n t s a l i e n c y an increase i n the estimate o f 

the t r a n s i e n t s t a b i l i t y l i m i t i s obtained - REP 1 and REP J i n f i g . 5.*f. 

Transie n t s a l i e n c y i n t r o d u c e s a second harmonic term dependent on l o a d 
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angle i n t o the op e r a t i n g locus which i s responsible f o r the increase 

i n s t a b i l i t y l i m i t . 

Using REP 1 and REP 3 m u l t i s w i n g i n s t a b i l i t y was obtained w i t h 

s i m i l a r machine and system parameters. The asymmetry being i n t r o d u c e d i n t o 

the system by the unsymmetrical 30 f a u l t . By changing the i n e r t i a 

constants t o values o f 6 and 3XJ/KVA r e s p e c t i v e l y the asymmetry w i t h i n the 

system i s exaggerated and multiswing i n s t a b i l i t y r e a d i l y produced -

f i g . 5.3(a) and 5.9« 

The e f f e c t o f the cou p l i n g impedanoe on the t r a n s i e n t s t a b i l i t y 

l i m i t depends on the i n e r t i a constant used, f i g . 5.5 and 5«6. With a l l 

i n e r t i a combinations the s t a b i l i t y l i m i t i n i t i a l l y increases as the 

cou p l i n g impedance decreases. However as the machines become more 

e l e c t r i c a l l y close coupled i n e r t i a e f f e c t s predominate. 

These d i f f e r e n c e s i n the s t a b i l i t y l i m i t are associated w i t h the 

a b i l i t y o f the machines t o absorb the excess f a u l t energy w i t h o u t producing 

a Lyapunov i n s t a b i l i t y . As the i n e r t i a increases the machines can 

accommodate more k i n e t i c energy w i t h o u t producing t h i s i n s t a b i l i t y and a 

corresponding increase i n the s t a b i l i t y l i m i t r e s u l t s . 

I n a remote system t h e m a j o r i t y o f the f a u l t energy has t o be 

accommodated by the e l e c t r i c a l l y nearest machine. I f the i n e r t i a o f t h i s 

machine i s small then the s t a b i l i t y l i m i t o b t a i n e d i s l e s s than i f the 

machine had a l a r g e i n e r t i a - ( b ) , ( c ) , ( a ) . I f there i s a p o s s i b i l i t y 

o f accommodating some o f t h i s excess energy i n another p a r t o f the system 

the s t a b i l i t y l i m i t would also increase. Another machine, p a r t i c u l a r l y one 

of heavier i n e r t i a , and a low coupling impedance, provides a convenient 

means o f absorbing and t r a n s m i t t i n g t h i s excess energy - curve ( b ) . T h i s 

e f f e c t i s also demonstrated by machines o f s i m i l a r i n e r t i a s but t o a l e s s e r 

degree - curve ( c ) . 



When the f a u l t i s nearest the heavy machine there i s a tendency 

f o r the s t a b i l i t y l i m i t t o reach a maximum a t one value o f coupling 

impedance - demonstrated by curve (a) i n f i g s . 5.5 and 5«6 - i . e . there i s 

an optimum cou p l i n g value. The i n i t i a l increase i n the s t a b i l i t y l i m i t , 

w i t h decrease i n coupling impedance, i s caused by the l i g h t e r machine 

absorbing some of the f a u l t energy. During t h i s p e r i o d the l o a d angle 

o f the heavy machine i s always greater than the l i g h t e r machine - f i g . 

5»l0(a). A f u r t h e r decrease i n coup l i n g impedance r e s u l t s i n the f a u l t 

energy seen by the l i g h t machine being o f such magnitude t h a t i t accelerates 

quicker than the heavy machine - f i g . 5«10(<0. The heavy machine now has 

t o t r y and absorb both the f a u l t energy and the energy t r a n s f e r r e d from the 

l i g h t e r machine. A decrease i n the s t a b i l i t y l i m i t r e s u l t s - curve ( a ) . 

The optimum c o u p l i n g impedance i s obtained when the two machines' r o t o r 

angles r i s e a t the same r a t e - f i g . 5.10(b). 

A t low values o f coupling impedance the two generators t e n d t o 

appear as being a t t a c h e d to the same busbar, An e q u i v a l e n t machine 

r e p r e s e n t a t i o n would give a s t a b i l i t y l i m i t - curves ( f ) i n f i g s . 5.6 and 

5.7 " t h a t a l l the i n e r t i a combinations would tend t o a t low co u p l i n g 

impedances. By comparing curve ( f ) and the s t a b i l i t y l i m i t produced by 

the other i n e r t i a combinations the e r r o r s t h a t c o u l d be i n t r o d u c e d by 

i n d i s c r i m i n a n t l y lumping together synchronous machines and using an 

e q u i v a l e n t machine model i s apparent. 

The s c a t t e r o f the p o i n t s i n f i g . 5.5 and 5«6 i s the tendency 

o f REP 1 and REP 3 t o produce multiswing i n s t a b i l i t i e s . To reduce the 

computer time a numerical step l e n g t h o f 0.01 was used. Consequently the 
to-ols. 

accuracy i n the c r i t i c a l c l e a r i n g time i s tCMp. This accounts f o r the 

d i f f e r e n c e between curves ( c ) and ( f l ) and ( c ) and (f2) a t low coupling 

impedances i n f i g . 5*6. 
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5.7 HULTISV/IN6 AND FIRST SY/IS& INSTABILITY 

The general approach used t o p r e d i c t the s t a b i l i t y o f l a r g e 

power systems i s t o observe the computed l o a d angle response o f those 

machines nearest the f a u l t . This computation l a s t s f o r a time p e r i o d 

s l i g h t l y i n excess o f t h a t r e q u i r e d f o r the f i r s t r o t o r angle swing. I f 

these l o a d angle responses do not show a Lyapunov i n s t a b i l i t y the system 

i s assumed stable under t e s t f a u l t c o n d i t i o n s . 

For some machine combinations i n s t a b i l i t y may not a r i s e u n t i l 

a f t e r the f i r s t l o a d angle swing. The e r r o r i n t r o d u c e d i n t o the s t a b i - l i t y 

l i m i t by using the f i r s t swing c r i t e r i a over the a c t u a l s t a b i l i t y l i m i t 

can be o f the order o f 5$ - f i g . 5*5 curves ( a ) and (am) - g i v i n g a wrong 

impression o f system s e c u r i t y . 
( 5 7^(21^ 

M u l t i s w i n g i n s t a b i l i t y i s also p r e d i c t e d by REP 6 U , M i y -

s e c t i o n 5*9. 

5.8 THE EFFECT OF DAMPING CONSTANTS ON DYNAMIC INTERACTION 

I n t r o d u c i n g a damping term i n t o the machine equations reduces 

the energy a v a i l a b l e t o accelerate the machine. The system becomes 

p o s i t i v e l y damped - f i g . 5»11 ~ and the s t a b i l i t y l i m i t f o r a l l values 

o f c o u p l i n g impedance increases - curves (d) and (e) i n f i g s . 5.6 and 5»7» 
Consider the S0 f a u l t nearest the heavy machine and unsymmetrical 

machine damping. An increase i n the damping f a c t o r o f the heavy machine 

o n l y , i n a remote system, produces a g r e a t e r s t a b i l i t y l i m i t than i n c r e a s i n g 

the damping on only the l i g h t e r machine - curves (g) and ( h ) , f i g . 5»8. 

This i s due t o the system being remote and the damping term h e l p i n g t o 

reduce the f a u l t energy. 

Reducing the coupling impedance increases the s t a b i l i t y l i m i t 

u n t i l the optimum c o u p l i n g value i s a t t a i n e d . This i s more pronounced 



when only the heavy machine i s damped -• curve ( h ) , f i g . 5.8. Damping o n l y 

the l i g h t e r machine reduces i t s a c c e l e r a t i o n so t h a t a t low co u p l i n g imped

ances 6a i s not very much greater than 8, and the t r a n s f e r o f power t o the 

heavy machine i s small causing l i t t l e change i n the s t a b i l i t y l i m i t -

curve ( g ) . Damping the heavy machine produces the opposite e f f e c t . 

I t i s concluded that by changing the damping constant of an 

i n d i v i d u a l machine the optimum increase i n the transient s t a b i l i t y l i m i t 

may not always r e s u l t . W i l l e m s ^ ^ i n h i s work on Lyapunov methods found 

t h a t i n c r e a s i n g the system damping d i d not n e c e s s a r i l y increase the o v e r a l l 

s t a b i l i t y r e g i o n . Model systems demonstrating t h i s e f f e c t have been 

discussed.(58)(59) 

5.9 THS EFFECT Off FLUX DECREMENT ON TUB TRANSIENT INTERACTION 

I n c o r p o r a t i n g f l u x decay e f f e c t s i n t o the model reduces the 

s t a b i l i t y l i m i t w i t h respect t o REP 3 - f i g . 5.4. The 30 f a u l t causes a 

r e d u c t i o n i n the f l u x l i n k a g e s o f the r o t o r c i r c u i t s and consequently 

l e s s energy i s r e q u i r e d to push the machine i n t o the Lyapunov unstable 

r e g i o n . The s t a b i l i t y boundary obtained f o r REP 5 was given by f i r s t 

swing i n s t a b i l i t y , the decrease i n f l u x l i n k a g e s causing an increase i n 

f i r s t l o a d angle maximum as compared w i t h REP 3* 

A general response i s shown i n f i g . 5«i2. The f i r s t reverse l o a d 

angle swings are reduced as the decrease i n the f l u x l i n k a g e s d u r i n g the 

f a u l t p e r i o d have n o t had time t o recover. The subsequent l o a d angle 

o s c i l l a t i o n s are p o s i t i v e l y damped due t o the change i n f l u x l i n k a g e . 

For reasons o u t l i n e d i n s e c t i o n (5.8) a d d i t i o n o f a damping 

constant increases t h e s t a b i l i t y l i m i t - curves (e) and (d) f i g . 5*7 -

w h i l e the e f f e c t o f the optimum co u p l i n g impedance i s s u b s t a n t i a t e d . 



The presence o f raultiswing i n s t a b i l i t i e s has been associated 

w i t h c e r t a i n power f l o w c o n d i t i o n s . The a d d i t i o n o f f l u x decrement allows 

f o r the decay o f the t r a n s i e n t o p e r a t i n g locus to t h a t of the steady s t a t e 

l o c u s . This e f f e c t i n i t s e l f can cause m u l t i s w i n g i n s t a b i l i t y . 

For a s i n g l e machine, i n f i n i t e bus system the two op e r a t i n g 
(13) 

curves are given by Kimburk v as 

Hn*t* = E<y.Va. Sin S + V& .Cocd-Xq,'). S infeS) (5 # 1 o ) 
•ycd 2. -xd. -x<^ 

^ A M S i e n r = Eq,'. VB . Si'r\& _ \j£. (peg,- •3GdO.Sift 
ocd' XxA\ ^ (5'1i) 

Sketch graphs o f these are shown i n f i g . 5.13 where the peak on the 

t r a n s i e n t l o c i i s g r e a t e r than 90° whereas i n the steady s t a t e t h i 3 peak 

value i s l e s s than 90°. 

During the dynamic response t h e o p e r a t i n g curve decays from the 

t r a n s i e n t c o n d i t i o n towards t h a t o f the steady s t a t e . I f d u r i n g t h i s 

dynamic i n t e r v a l powerflow c o n d i t i o n s are such as t o keep the r o t o r angles 

h i g h , a t around 90°, then as the o p e r a t i n g curve decays towards the steady 

s t a t e i t i s p o s s i b l e f o r the o p e r a t i n g p o i n t t o be on the unstable r i g h t 

hand side o f the steady s t a t e l o c i . This w i l l cause the machines t o 

accelerate out o f the Lyapunov s t a b l e r e g i o n . This change- i n o p e r a t i n g 

locus i s demonstrated i n f i g . 5«14 f o r the power system of f i g . 2.7 where 

the t e r m i n a l power o f machine 2 i s p l o t t e d a g a i n s t r o t o r angle each time 

c e r t a i n f i x e d values o f r o t o r angle are reached. A s t r a i g h t f o r w a r d decay 

between the o p e r a t i n g curves i s not obtained because o f the power t r a n s f e r 

between machines. F i g . 5.15(c) shows the corresponding r o t o r angle response. 

Fu r t h e r examples of t h i s m u l t i s w i n g i n s t a b i l i t y are shown i n 

f i g . 5.15(a) and (b) where the damping constant i s v a r i e d . The r e s u l t s 



are s i m i l a r t o those produced by Dineley and Mo r r i s and Preece 

t o demonstrate raultiswing i n s t a b i l i t y . 

The r a t e a t which the f l u x l i n k a g e s vary i s governed by the value 

o f the f i e l d open c i r c u i t time constant, "Tclo . I f t h i s i s l a r g e then the 

p o s i t i v e damping e f f e c t associated w i t h the f l u x decay i s l o s t but the 

maximum size of r o t o r angle swing d u r i n g the f i r s t o s c i l l a t i o n i s reduced. 

The decay time from one operating l o c u s t o the other i s also increased 

d i m i n i s h i n g the f l u x decrement e f f e c t on mult i s w i n g i n s t a b i l i t y . Removal 

o f the p o s i t i v e damping by the increase i n Tcio renders the c r i t i c a l 

f l o w c o n d i t i o n s o f s e c t i o n 5«5 more l i k e l y t o produce, not only an increase 

i n a f u t u r e l o a d angle swing, but p o s s i b l y a mu l t i s w i n g i n s t a b i l i t y . 

5.10 CONCLUSION 

I n the preceding s e c t i o n s the e f f e c t of d i f f e r e n t machine 

r e p r e s e n t a t i o n s on the dynamic i n t e r a c t i o n w i t h i n mu].timachine power 

systems has been discussed. 

I t has been demonstrated t h a t : -

( i ) V a r y i n g system and machine parameters a f f e c t the o v e r a l l s t a b i l i t y 

o f the system. 

( i i ) I n d i s c r i m i n a j f t l y i n c r e a s i n g damping on a machine does not guarantee 

t h e best increase i n o v e r a l l s t a b i l i t y l e v e l . 

( i i i ) For some system c o n d i t i o n s t h e r e i s an optimum value o f impedance 

between the machines t o produce the maximum system s t a b i l i t y . 

( i v ) Dynamic i n t e r a c t i o n e f f e c t s can produce an increase i n the size 

o f a l o a d angle excursion. A t the l i m i t t h i s excursion can r e s u l t 

i n a i n u l t i s w i n g i n s t a b i l i t y i n the Lyapunov sense. 

( v ) Flux decrement add3 p o s i t i v e damping t o a system i n so much as i t 

tends t o decrease the o v e r a l l o s c i l l a t i o n s i z e . 

- 57 -



( v i ) Flux decrement increases the f i r s t load angle excursion. 

( v i i ) For a salient pole machine f l u x decrement can cause multiswing 

i n s t a b i l i t y as i t allows f o r the decay of one operating locus to 

another. 

( v i i i ) I f there i s any p o s s i b i l i t y of a inultiswing i n s t a b i l i t y a r i s i n g 

v.'ithin a system a study time of at least 6 sees, should be used. 
( 5 7 ) 

This conclusion was also reached by Dineley and Morris 

( i x ) Because of ( i v ) a method of removing harmful i n t e r a c t i o n should 

be investigated, providing i t does not reduce the o v e r a l l system 

s t a b i l i t y l e v e l . 

(x) A control scheme of the nature outlined i n ( i x ) should be 

p r a c t i c a l and re a d i l y implemented. 
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CHAPTER 6 

A TRANSIENT CONTROL SCHSME BY IMPEDANCE SVrlTCHIITG 

6 . 1 GENERAL 

Chapter 5 demonstrated how machine i n t e r a c t i o n can produce adverse 

load angle excursions, leading ultimately to possible multiswing i n s t a b i l i t y 

This chapter, along with chapters 7 . 3 and 9, demonstrates methods by which 

t h i s i n t e r a c t i o n can be removed or a t least reduced. I t w i l l be shown that 

reducing i n t e r a c t i o n increases the systems transient s t a b i l i t y l i m i t . 

Because the design i s carried out on a set of l i n e a r equations 

the c o n t r o l l e r when applied to the p r a c t i c a l non-linear set w i l l not y i e l d 

the same res u l t s . I t i s therefore necessary to understand the cause, and 

the e f f e c t , of the differences between the l i n e a r and non-linear equations. 

6 . 2 A COMPARISON BETWEEN THE LINiM/i'lON-LIieil EQUATIONS 

6 . 2 . 1 THE EFFECT OF THE INITIAL CONDITIONS 

The i n i t i a l steady state operating conditions of a raultimaehine 

power system are determined by the system loading and the network 

parameters. 
(13) 

For REP 2 the operating locus i s that of a sine curve. As 

the i n i t i a l load angles, SoL increase the operating range over which the 

sine curve can be approximated by a st r a i g h t l i n e decreases. For example^, 

a step change on the input power to machine 2 i n f i g . 5»1 causes a f i r s t 

load angle excursion of machine 2 of approximately 2 0 ° . V/ith 8oi,a=^0'5° 

the difference between the models wa3 0 . 5 5 ° while with 6oi,i = G5° 
i t was 1 . 5 9 ° . 

6 . 2 . 2 THE EFFECT OF FAULT CONDITIONS 

The comparison between the l i n e a r and non-linear models depends 

on the f a u l t size and i t s duration. The lin e a r model i s only t r u l y 



representative of the non-linear system over a l i m i t e d range. Increasing 

e i t h e r the f a u l t size or duration produces a greater discrepancy between 

the two models - f i g . 6 . 1 . Increasing the f a u l t size s t i l l f u rther produces 

a Lyapunov i n s t a b i l i t y i n the non-linear model while the l i n e a r model 

remains stable - f i g . 6 . 2 . The linear model gives no i n d i c a t i o n of 

i n s t a b i l i t y i n the Lyapunov sense but w i l l indicate s t a b i l i t y of the 

operating point. I t also allows a Nyquist assessment of s t a b i l i t y f o r 

d i f f e r e n t feedback arrangements. 

Consider f i g . 6 . 3 and a step change on the input power from F i ^ 

to P i and then back to P i . I f Pi„ » " Pi then there w i l l be a 
2 1 2 1 

substantial amount of f a u l t energy available to accelerate the rotor which 

re s u l t s i n a rapid machine response. Because of the large amount of 

accelerating power available the d i f f e r e n t gradients of the linear and 

non-linear operating curves have l i t t l e e f f e c t on the time response and a 

good comparison i s achieved - f i g . 6 . 4 . I f i s only s l i g h t l y greater 

than Pi^ then the associated f a u l t energy i s small and the response of the 

machine i s not so rapid. The gradient differences between the two operating 

curves now a f f e c t the response - f i g . 6 . 5 . To produce a similar f i r s t load 

angle o s c i l l a t i o n to f i g . 6 . 4 a larger f a u l t clearing time ie.required* • 

A disturbance associated with a large clearing time does not give 

such a good comparison as the disturbance of short duration required to give 

similar f i r s t r o t o r angle swings. 

Extending t h i s to the case where a disturbance i s applied and not 

removed - f i g . 6 . 1 5 - the comparison between models i s very poor. This i s 

mainly a t t r i b u t e d to the l i n e a r model being designed to operate round the 

i n i t i a l steady state operating points and the f i n a l operating conditions 

being d i f f e r e n t . 
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6 . 2 . 3 CONCLUSION 

I t i s concluded from the previous discussion that: 

( i ) I f Sol i s small, preferably less than 6 0 ° , a larger o s c i l l a t i o n 

range i n which the models are comparable i s obtained. I n most 

p r a c t i c a l systems the operating angles of the machines are i n 

excess of 60°, IIov,ever f o r small disturbances the comparison 

range i s s t i l l s u f f i c i e n t to produce a control scheme. i ?or large 

disturbances drastic action i s required to l i m i t acceleration i n t o 

the Lyapunov unstable region. This i s available to a degree i n the 

multivariable design technique by a change i n the feedback gain 

(Chapter 8 ) . 

( i i ) The best comparison i s achieved over small deviations. For a 

similar, r e l a t i v e l y large, load angle excursion the comparison 

deteriorates as the disturbance size decreases and clearing time 

increases. 

6 . 3 A SWITCHED SKRISS IMPSSDANCB CONTROL SCHEME 

I n Chapter 5 the effe c t of l i n e impedance on the s t a b i l i t y l i m i t 

was seen to be a s i g n i f i c a n t f a c t o r . Previous authors^ )(&«•)(51 bj) 

have demonstrated the power of switched capacitance control schemes. A 
(31) 

system similar to that used by G-less - f i g . 6 . 6 - was investigated 

to discover a control scheme based on impedance sv/itching working from 

only the l i n e a r equation set. 

A damping term was included i n the machine equations as previous 

work by the author and Preece^ 0^ showed a tendenc3r of the non-linear 

controlled model to produce self-induced o s c i l l a t i o n s . This was a t t r i b u t e d 

t o : 

( i ) The machine equations being undamped. 

( i i ) The discrepancy of using a cont r o l l e r designed on a l i n e a r equation 

set on the non-linear model. 
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Including the damping terra removed any tendency towards s e l f -

induced o s c i l l a t i o n . 

6 . 4 DERIVATION Pi? TUB LINEAR EQUATIONS 

Using REP 2 and assuming no change i n f i e l d excitation voltage 

or mechanical input power the non-linear equations describing f i g . 6 . 6 

are 

H..S. = PM.-V!.Vi.>r2.SinC6,-S1')-Vi.Vi.Nr;3.5in6i - kTdi.Si . 
( 6 . 1 ) 

. Sa.= fti -Vz.V.. Yai. W S x - S . V VaV&.\21.Si<\ S i - Icda. Sa. 

The rotor angles are measured w i t h respect to the i n f i n i t e bus 

while impedances represent the t o t a l impedance between machines. 

Linearising the equations by a f i r s t order Taylor expansion 

and introducing the state variables, x 

D C . = S i - SIO = A & l 

DCx = S i - S a o = A. S i 

X i a = OCi - X x - S i - S t o - S i +&2o 
= S«2- S iao = A S i z 

Xa= CC, ( 6 . 2 ) 

X 4 . - - X z . 
y i e l d s 

Hi. Xs = - b.i.X.2. - C.2 . AYx - G * . A Y * - b.3.X. - WAu 
( 6 . 3 ) 

H l . X 4 =-b2..X2.. -Ca».AY2-C-ziAYzs-b2.s.x2.-\<d2.x1. 
where 

Note; 

b L =VL.VJ.YLj . Cos S i j o . b I ̂  . ̂ = w i ^ 

CL - - V u . V j . S i a&Lio * - * J 

SL,3O = SLo a s S i = O 
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represent the impedance changes and combine to 

give the inputs 

u, = - Ciz . AYz. - C/3. AY?3 

AXx - - Cxi. AY/a - Cz3-AY23 (6.5) 
Substituting i n t o (6.3) 

/-fa. £ 4 623)^2.-62/. -DC.-hkya.^.- a 2 ( 6 . 6 ) 

Writing i n the state space form of (3.4) 

^ 3 

0 O J O 

0 O O 1 y, 

Mi 
biz 
Hi 

- ku, 
Hi O 

H i 
-Cfc»i+t»») 

Ha O H* 
(6.7) 

0 0 
0 0 
1 
u, 0 0 1 

Ma. 

a, 
U.7. 

Define the systems outputs as 

tj, = A S . 
y%-- A S a 

then the output equation i s 

[y, 1 = Ti o o o l 
2*Z 

The Plant transfer function matrix <£Cp) i s derived as 

Ha.p + fefa.p + (fcaz+bas) , 61a 

621, Wi.p+ kb//.p + Cbu +6/3) 
GOpi = J . 

where 

(6.6) 

(6.9) 

(6.10) 

~ bn. 6A, (6.11) 

This forms the basic equation f o r the design process. 
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6.5 COMPENSATOR DESIGN 

The design method of section 4.6.1 was used. By observation 
of G (p ) , Q(p) i s assumed to have the form 

o 

/ 

A.pa +8.p +"D 

which y i e l d s 

(6.12) 

Hi . p +(bi2+biz) + Kdi.p , - b,: 
Ap1 +-B.p +T> 
— "fcai 

E.p2, + F.p + G 

E-p2 + P7. p -4- Gj 
(6.13) 

The general diagonal properties ofQ(p) are retained i f 

A - H i , 6 = KcL, , T>= (6,*+ 
E = Ha , P - k r d i , ^ = C6z.-f bis') 

(6.14) 

then 

ktp>= 

/•o 

_ 6 a . 

J=J± 12*. 

/•O 

(6.15) 

and 

H/.pz +kbtt.p *Cbix + bi£) 

O 1 

(6.16) 

A block diagram of the system i s i l l u s t r a t e d i n f i g . 6.7. 

The e f f e c t of t h i s compensator on the l i n e a r , non-linear models 

was investigated using an I.B.Ivi. Application Program - Continuous System 

Modelling Program, C.S.M.I'J 8^ 
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6.6 STABILITY 

For the uncontrolled system 

I p I - A I =_!_ * 
Hi.Hx 

whe.ro, c* - ( H i . H a . p 4 4-p 3CMi. k d z + H z . k d i ) + p 2 . C H , . ( b n 

+ K d i . k d z + H i . ( b i i + bttY) p.(Kdi.Ct>a.\+bas) + k d z / b t t + bii)) 

4-Cbi2 + b ^ y b i i + bas) - bia.ba.1^) (6.17) 

Substituting i n the numerical values of f i g . 6.6 gives zeros a t 

p , , i = - 0 \ O S 3 ± j . \ - < b 3 1 2 . 

pa,+ = - o c n q 2 ± j . o - 7 8 i 4 ( 6 , 1 8 ) 

With the controller added the zeros are given by the roots of the 

denominators of Op} and Ĉ axCp) which give, 

f o r C^nOfi 
p.j2 a -0-I25 ±j I-458 ( 6. 1 S ) 

and for Q^ix Op) 
p3,4-= - O 062.5 ± j 1-08 

Both systems are thus stable. 

6.7 FAULT CONDITIONS 

One of the double c i r c u i t transmission l i n e s i n l i n e 1-3 of 

f i g . 6.6 was tripped out, for a set f a u l t period, by opening the c i r c u i t 

breakers a t each end of the l i n e . The load angle response for the 

uncontrolled system - f i g . 6.8 - shows the in t e r a c t i o n present within 

the system. 

I n equation (6.5) the input quantities to GCp) are 

a, *f.(AY.a,AY.O 
(6.20) uz -- -kfAY.*, AY*y) 
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To eliminate the dependence of both U-i and LLi on A ^ l , ^fix 

i s assumed constant. Any control i s exerted on the system v i a ̂ 3 or St2,'£ . 

The l i n e outage on 2.13 i s applied as a step input to ULi • 

6.8 APPLICATION 03? THE CONTROL MATRIX 

Applying the control scheme to the l i n e a r model the two machines 

are completely decoupled while for the non-linear model interaction i s 

su b s t a n t i a l l y reduced - f i g . 6.9. The o s c i l l a t i o n s of machine 2 are caused 

by a t r a n s f e r of power from machine 1. The control scheme works by adjusting 

the impedance, , (shown dotted i n f i g . 6.9) to counteract t h i s power 

t r a n s f e r , thus keeping the accelerating power of machine 2 at a minimum. 

Reducing the impedance value, ̂ 2.3, immediately at the onset of 

the disturbance allows an easy transfer of excess f a u l t energy to the 

i n f i n i t e bus. A reduction i n the f i r s t load angle maximum of machine 1 

r e s u l t s . This reduction i n Z z 3 i s equivalent to i n s e r t i n g a capacitance 
(51-53)(75)(81)(84) 

on f a u l t occurance as has been suggested by other authors. 

The control scheme suggests a reduction of Z23 on each forward 

o s c i l l a t i o n of machine 1. This i s equivalent to i n s e r t i n g a variable 

capacitance into l i n o 2-3« S i m i l a r l y introducing a variable inductance 

on the reverse swing would increase t h i s impedance. The p r a c t i c a l control 

system i s shown i n f i g . 6.10. 

The control unit would be operated by f a u l t relaying indicators to 

ac t i v a t e an input to the control unit proportional to the f a u l t s i z e . 

The output of the unit would then control the magnitude of the capacitive 

and inductive elements of f i g . 6.10. 

6.9 IKPLEMSKTATION OF A SWITCHED CONTROL UNIT 

The control scheme outlined i n the previous section i s p r a c t i c a l l y 

u n r e a l i s t i c , but using s e r i e s capacitance and inductance of f i x e d values 

and predetermined switching instants i t becomes a p r a c t i c a l proposition. 
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The r e s u l t s of such a control scheme are shown i n f i g . 6.11 where 

the size of the capacitive and inductive elements are taken as the maximum 

and minimum of those obtained for Tlz'i in f i g . 6.9. The switching instants 

are computed by the control unit, the output of which i s proportional to 

the decaying sinusoid, CYxi i n f i g . 6.9. The switching function used i s 

of the form:-

Y23P ^ u i <C \a3c -t-Msp , M i ^asp 

Z (6.21) 

ul-3. V23P -t-Yaac , V i i s^taac 

LLa. - instantaneous output of the co n t r o l l e r 

Y l i P - pre-fault value of Y a 3 

Y l S C - maximum value o f ^ f ^ - point B on f i g . 6.9. 

Yxsx. - minimum value of ^tis- point C on f i g . 6.9. 

Good in t e r a c t i o n removal i s obtained u n t i l a f t e r the t h i r d rotor 

swing when there i s no control a c t i n g . However the rotor angles have been 

brought to a position very near t h e i r f i n a l equilibrium point. 

6.10 C0NTR0LL3D CAPACITOR INSERTION 

Because of arcing d i f f i c u l t i e s the inductance was removed from 

the control scheme and capacitance switching alone used - f i g . 6.12. The 

switching function used i s of the form 

U i <C Y*3C +Yt.SP j Yz5 ="̂ 239 
2 

> Y23C -v-Y^p , Y a s = Y » e ( 6 > 2 2 ) 

By neglecting the inductance i n the control scheme the effect of reducing 

the accelerating power of machine 2 on reverse load angle swings has been 
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removed. I n t e r a c t i o n i s removed to a l e s s e r degree than i n f i g . 6.11, 

with the f i r s t reverse swing - point (c) - of machine 2 producing a 10° 

o s c i l l a t i o n . 

As capacitance i s inserted during the f a u l t the f i r s t load angle 

maximum of machine 1 i s s t i l l reduced as compared with the uncontrolled 

case - f i g . 6.8. 

6.11 LARGS DISTURBANCES 

By increasing the s i z e of the l i n e outage i n the double c i r c u i t 

transmission l i n e 1-3 large rotor angle o s c i l l a t i o n s are obtained -

f i g . 6.13. Implementing the control scheme of section (6.9) a substantial 

amount of in t e r a c t i o n i s removed - f i g . 6.14 - u n t i l l a t e r excursions when 

control ceases to e x i s t . However these l a t e r excursions have been reduced. 

By not reclosing on l i n e 1-3 the discrepancies discussed i n 

section 6.2.2 r e s u l t i n a poor comparison between the models - f i g . 6.15 

(a) and ( b ) . Implementing the continuous c o n t r o l l e r - section 6.8 -

produces a d r a s t i c reduction i n the f i r s t load angle maximum of machine 1 

along with substantial i n t e r a c t i o n removal - f i g . 6 . 1 5(c). 

The reduction i n the f i r s t load angle maximum i s apparent i n a l l 

the control schemes and i s attributed to the capacitor insertion on f a u l t 

occurence. 

6.12 CONTROLLER VERSATILITY 

The continuous c o n t r o l l e r of section (6.8) i s used with the 

loading conditions on f i g . 6.6 increased to give i n i t i a l load angles of 

G i c = S a o = 60° - f i g . 6.16. As a comparison the r e s u l t s obtained by 

applying the continuous c o n t r o l l e r designed f or the new loading conditions 

are reproduced - f i g . 6.17. 
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The capacitance inserted by the } 0 0 , 40° design i n f i g . 6.16 

i s l a r g e r than that necessary to remove interaction at the now i n i t i a l 

loading conditions. During the f i r s t load angle swings power transfer to 

the i n f i n i t e bus easier resulting i n a decrease i n f i r s t load angle 

excursions - point ( A ) . As the optimum i n s e r t i o n i s not continuously 

used future excursions are not so p o s i t i v e l y damped and interaction e f f e c t s 

are more apparent than i n f i g . 6.17. However a substantial amount of 

i n t e r a c t i o n i s removed as compared with the uncontrolled case - f i g . 6.18. 

6.13 PRACTICAL DIFFICULTIES INVOLVED WITH IMPEDANCE SWITCHING 

The p r a c t i c a l i t i e s of implementing the control scheme are 

outlined and must be considered i n conjunction with the computer aided 

design. 

( i ) V/hen the c i r c u i t breakers are operating with a capacitor across 

the contacts both arcing and recovery voltage are minimised, 

however, i f switched inductors are also used problems of arcing 

w i l l be introducede 

( i i ) The capacitor/inductors themselves need only have a few seconds 

rating and are thus l e s s expensive than conventional continuous 
( 5 l ) 

duty s e r i e s elements . w " 

( i i i ) Due to ( i i ) a l o t of switching operations are inadvisable. 

The switched control scheme of section 6.9 and 6.10 provides 

for t h i s l i m i t e d amount of switching. 

( i v ) I f the capacitor i s i n s e r i e s with a very l i g h t l y loaded 

transformer large distorted exciting currents may r e s u l t . 

(v) As the r a t i o R / x for a transmission l i n e increases there i s 

a tendency for the machine to h u n t . ^ ^ Capacitor i n s e r t i o n 

decreases X and hence increases the r a t i o . 
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( v i ) I n s e r t i o n of a large s e r i e s capacitor at a large angle i n 

the system swing can cause large subharmonic l i n e and ground 
+ (86) currents. 

6.14 CONCLUSIONS 

The design scheme reduces i n t e r a c t i o n and increases the pos i t i v e 

damping v f i t h i n the system. I n s e r t i o n o f l a r g e r switched capacitances 

would further reduce f i r s t load angle swings but could render the system 

more susceptible to int e r a c t i o n than when the "optimum" capacitance 

value i s used. However the advantage of the increased f i r s t load angle 

reduction could be achieved without a f f e c t i n g the non-interacting properties 

but would require variable capacitor/inductor i n s e r t i o n i n both l i n e s 1-3 

and 2-3» The feedback of one of the machine output variables to control 

the instantaneous value of the impedance would be required. 

This i s a the o r e t i c a l i d e a l and not a p r a c t i c a l p o s s i b i l i t y 

when considering impedance control. However i f continuously operating 

control elements such as f i e l d excitation and/or input power control are 

availa b l e a control scheme similar to that outlined above i s possible. 

This i s discussed i n Chapter 7» 8 and 9« 

" Considering switched impedance control the size of the control, 

capacitor/inductor i s dependent on both the f a u l t size and the i n i t i a l 

operating conditions. Consequently i t i s economically u n r e a l i s t i c to use 

the optimum control value for each f a u l t occurance. By using some form 

of continuous control e.g. f a s t valving or f i e l d e x c i t a t i o n control these 

problems, along with some of the p r a c t i c a l d i f f i c u l t i e s can be overcome. 

Control units regulating f i e l d e x c itation and/or mechanical input 

power already e x i s t to some degree on synchronous machines and operate 

at lower power l e v e l s r e l a t i v e to those used i n impedance switching. 

Consequently lower implementation costs are envisaged. 



The use of these control units i n producing non-interactive control 

schemes are discussed i n the following Chapters. 
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CHAPTER 7 

A NOK-IKTSRACTIVK COIiTROL SCHEME - SMALL PSRTURRATION STUDY 

7.1 GS'riERAL 

The control units regulating f i e l d e x c i t a t i o n and/or mechanical 

input power are used to produce a non-interacting group control scheme. 

These same units are then further used, i n a more conventional mode, to 

improve the system response. Should there be a f a i l u r e in the group 

control the regulators would be operative i n t h e i r conventional mode. I t 

i s therefore necessary to investigate the e f f e c t of these units i n a 

multimachine power system before implementation of the non-interactive 

control scheme. I t al s o provides a comparison by which the performance 

of the group control can be judged. 

Nyquist methods have been used previously by Aldred and 

Shackshaft ' to investigate the effect of excitation control on s t a b i l i t y , 

while i n a-similar study C o n c o r d i a u s e d Routh-Hurwita c r i t e r i a . More 
(47) 

recently Laughton ' has applied state space methods. The approach taken 

here i s s i m i l a r to both that of Laughton and Aldred/Shackshaft i n that the 

problem i s attacked v i a the state space equations and the extended form 

of Nyquist's c r i t e r i a , as discussed i n Chapter 4» One of the advantages 

of the Nyquist method i s that i t gives an i n d i c a t i o n of both s t a b i l i t y 

and the form of response obtained. 

7.2 SYSTEM DISTURBANCES 

The model system under investigation i s that of f i g . 2.7* The 

numerical values of the Plant Matrix and Driving Matrices are given i n 

Appendix H. 

For these small perturbation studies e i t h e r 

( i ) A step change i s made to the turbine input power to investigate the 

e f f e c t of the input power regulator. 
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( i i ) To investigate the e x c i t e r a step change i s applied to the 

exciter reference voltage. 

( i i i ) A three phase f a u l t i s applied to the machine terminals. 

A l l disturbances were removed a f t e r a set time period. 

7.3 THE REMOVAL OF IivJSRACTION EFFECTS BY TURBINE ?A3'J VALVING 

7.3.1 TH5 D5SK3-T 3CHBB 

The Plant t r a n s f e r function matrix,§(p) , i s diagonalised by 

compensating for i n t e r a c t i o n i n the off-diagonal elements of the feedback 

matrix, F ( p ) . The values used i n "PtrjCfJ) being dependent on the regulator 

model and not on the type of feedback used. A block diagram demonstrating 

t h i s type of compensation i s shown i n f i g . 7«1« The diagonal terms, "fc,i.0p) 

i n F(p) are used to improve the individual responses by standard feedback 

methods once the i n t e r a c t i o n has been removed. 

I f the regulator i s i d e a l i . e . Tv=Ts = 0 0 i n f i g . 2.5 then 
A 

the t r a n s f e r function GveuCp) i s obtained from equations (3*22) and 

(3.28) 
H i . f p - QII -Ch*) , - M l . Q.I4-

f l T . P €TT p 

- H z . Olza H z . (p-a.11 - QAA) 
f.TT P 

A 

(7.1) f i r P 

I f input one i s required to control output one and s i m i l a r l y 

input two to control output two 

"1 o 
o 1 K a = 

and by equation (3.24) 
A A . N 

(7.2) 

(7.3) 

(7.4) 

http://p-a.11


HvEi_(p^ w i l l be diagonal i f F v E u ( p ) becomes 

O Hi . 0.14. 
f 7T V 

o 
(7.5) * 7 T V ' 

Interaction i s removed by feeding across the machines a si g n a l 

proportional to the instantaneous value of load angle. 

Now 
HI . ( p - O i i - O r a ) O 

•f.TV P 
O t - i a - f p - a x x - Q a i l 

•f.-rv 
which on in v e r t i n g gives 

(7.6) 

Hi V p ^ - O L n / p -Q.5 / 

O 

O 

0 (7.7) Ha\p a-cba/p-<W 
Two individual second order systems r e s u l t . Their response can 

be shaped by a l t e r i n g the feedback gain round each ind i v i d u a l machine 

i . e . changing "FiiOp) to k'-pbi, • 
I f the regulator models for each machine within the system are 

s i m i l a r then becomes 

(7.8) 

and 

Multiplying equation (7.4) through by the regulator tra n s f e r function 

model y i e l d s for F(p) 

Thus for acceleration feedback and a second order regulator 

(7.10) 

F A c c G p ) = S-*Fveu</p) (3.26) 
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then 

^CC<p)= 

k£b» , W\. 0.14- + H».(TSH-IV)QJ4 -t-TsTv. Hi. Qi4-

-F.7V. k*.pa kp. P -f:Xta> (7.11) 

and i n t e r a c t i o n i s removed by cross feedback of rotor velocity, p S , 

rotor acceleration, p*S> and ro t c r position. This i s shown i n block 

diagram form i n f i g . 7 o 2 ( a ) . 

The same cross-feedback terras are required for v e l o c i t y 

feedback. 

7.3.2 STABILITY AND CONTROL 

The s t a b i l i t y of the open loop system i s determined from the 

open-loop c h a r a c t e r i s t i c polynomial, V p r i - A l (Section 4.3) 

Ip.T-Al - (p 4 - Cau+cbaV2-v Ca.x2.ciu -cu* -a,Ap* 
+ Ca^ct,, -v a.i3.cua).p + (0.24.0.13 - 0.14.. aO) 
*• (p - aWX? - atfcD ( 7. 1 2) 

Substituting from Appendix H y i e l d s 

giving zeros a t 

fiyt = -OI54- ±j.4-776 
p*>* -o-2.sq ij.s-yjfc 

which are a l l stable. 
Transfer functions of the form 

1 -v-p.Tvc (7.15) 

are used to represent control elements. Further zeros at the point ~^T\^ 

are introduced, and as i s a p o s i t i v e time constant the zero i s stable. 

(7.13) 

(7.14) 
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The presence of zeros i n the positive right-half-plane of det GCp) 

introduces non-minimum phase transference and possible closed loop control 

d i f f i c u l t i e s . F o r the present problem GrtecGp) i s given by 

equation (3.27) and substituting the numerical values of Appendix K the 

zeros of det GACC^P) A R E 

p. ,*,M. * O - O 
p s > = - 0 - 1 6 4 i 4--T/5J 

which a l l l i e i n the l e f t - h a l f complex plane and the problem of non-minimum 

phase does not e x i s t . For v e l o c i t y feedback two of the zeros at 0.0 

disappear. 

Once i n t e r a c t i o n has been removed s t a b i l i t y i s assessed by 

either, 

( i ) The I.N. diagram - the c r i t i c a l point being taken as 0 o0 as the 

feedback gains, WpbL » are zero. 

( i i ) By observation of the poles of the diagonal elements of Q(p). 

7.4 THE REMOVAL OF DiTERACTIOH EFFECTS BY EXCITATION .METHODS 

7.4.1 THE DESIGN SCHEMB 

I f the exoitation system i s assumed i d e a l with no time lags the 
A 

plant t r a n s f e r function matrix GiAccCp) i s given by equation (3»3o). 
Substituting the numerical values of Appendix H into t h i s equation gives 

A -5S-44T?-l4-5lpHfe4-4--2G> , -3-l7p 2-l<£»fep+5J2-27 

foS4--p"-l fcfcp+6l2-T7 , -2772p2-l4-'5l.p -/644-2<o 

(7.19) 

where 
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The control equipment i s modelled by a f i r s t order lag with a 

time constant of 0 o 0 3 or 0»5.s depending whether a s t a t i c or rotating 

ex c i t e r i s used. This time constant w i l l influence the magnitude of the 

off-diagonal terms i n F ( p ) . 

The design used i s a hybrid of the methods i n section 4.6. 

Again i t i s required to control output 1 by input 1 and output 2 

by input 2. Then 
r i o 

1 
The terms , Qai 6 3 1 4 Q»a. ' 9'* 

re l a t i o n s h i p to each other 

f-feS _ O I / 4 3 1.6c 

then l e t 
55-4-4 

£ b = l-O , -O.M4i| 
bo-114* , l - o j 

and 

giving 

A 

O.Cv) •= ka. let. GCp) 

(7.20) 

bear the same constant 

(7.21) 

(7.22) 

(7.23) 

-54-72.p a-/4-2>2p-no2-3l , local 

10021 , - 2 T 3 k p * - i 4 - 3 2 p » n o 2 - 8 l 
(7.24) 

(7.25) 

I f now compensation i s made i n F(p) i n a s i m i l a r manner as 

equation (7.4)» with 
V" O a 1-1% + O-k0<b" 

_ *P T a 

i n t e r a c t i o n i s completely removed. 

Y/hen the exciter i s modelled 

QOp) = 1<N. Cl +p.TaxY QCp) 

which modifies 

F C p ) = (\ + *p.Tg*'). F ( - p ) 

(7.26) 

(7.27) 



Cross feedback of v e l o c i t y , position and acceleration removes 

the i n t e r a c t i o n . These values change depending whether a s t a t i c or 

rotating exciter i s used 

For the s t a t i c system •pt-j Op) i s 

* V e l o c i t y 

O & 0 6 -* posit ion 

O- 0 8 3 •* acce.\cz. ration. 

while for the rotating system i s \ (7*28) 
3 * 0 8 4 - * v e l o c i t y 
O-(b0(b pos i t ion 

I - •*• a c j Q z i c j r c c h o o _ 
A block diagram of t h i s control method i s shown i n f i g . 7.2(b) 

For v e l o c i t y feedback the same control scheme unfolds with 

FvEL. (v) = S * FACC Op) (7.29) 

7.4.2 CONTROLLABILITY 

The open-loop system has been shown to be stable - section 7.3*2. 

The non-minimum phase transference i s checked by finding, for 

acceleration feedback, 

where A = p 4 " - (Cbi +0.2*)p •+ (Ozz.Q.// - Q./3 p 

+ (024.0.11 +a:u.QJ3).p+Ca/3.CU4 - O J + . Q I O 

The roots of A were found i n section 7«3«2 and are now modified 

by the fa c t o r , 

G«. G*. - a/4,, a ^ ) 
G11 and 62 are positive and the term 

(CLig.QLxt* - CUb.CLxz) — 1*511 y which i s also p o s i t i v e . 

The zeros are a l l i n the left-half-complex-plane and non-minimum 

phase does not e x i s t . 
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7.5 A MEASURE OF DAMPIH6 

I n i n t e r a c t i v e systems i t i s very d i f f i c u l t to measure the amount 

of damping, positive or negative, introduced by di f f e r e n t feedback arrange

ments. O s c i l l a t i o n frequency was shown to be very parameter dependent 

i n section 5«4. Consequently any change in the feedback gain a l t e r s the 

o s c i l l a t i o n frequency and inter a c t i o n between channels. I n general the 

majority of feedback arrangements tend to reduce the f i r s t load an^le 

excursion. This also disguises the damping e f f e c t . 

For small perturbations a measure of the damping was obtained 

by averaging successive load angle maximums and then normalising by 

dividing by the f i r s t load angle maximum. For any Nyquiat unstable 

system the normalised damping measure v / i l l be greater than one. I f stable 

i t w i l l be l e s s than one and, i n general, as the amount of positive damping 

increases the damping measure w i l l decrease* 

Because of int e r a c t i o n e f f e c t s the graphs are used to demonstrate 

the general trend of damping introduced by di f f e r e n t feedback gains for ONE 

s p e c i f i c feedback arrangement. They should NOT be used a3 an exact, 

quantitative, measure of the amount of damping introduced by the di f f e r e n t 

feedback arrangements. 

7.6 FAST VALVIKC- - TIB EFFECT OF REGULATOR MODELS 

7.6.1 GBHERAL 

Because of time delays within the regulator i t i s impossible to 

have direct control over the mechanical power input to the machine. These 

time delays are associated with the transducers, valve operating gear and 

the steam system. The e f f e c t of these lags i s investigated i n terms of 

the Inverse Kyquist diagrams. 



Position feedback i s not considered as i t has previously been 

shown to be a poor choice of feedback s i g n a l . 

7.6.2 DIRECT CONTROL Off TURBINE POV/ER INPUT 

Direct manipulation of fin would produce strong control. This i s 

possible i f the time constants of the valve gear and steam system are 

assumed to be i d e a l l y zero 

i . e 0 Tv-O-O 

7 s - O - O 

Z_iini"f:s * ± ° 0 i n f i g , 2.5. 

Equation (1.1) suggests that feeding back a s i g n a l proportional 

to the instantaneous difference between TM and Bz. should produce strong 

control. However because of the ide a l regulator model a numerical i n s t a b i l i t y 

r e s u l t s * This numerical i n s t a b i l i t y i s removed by feeding back a signal 

proportional to shaft v e l o c i t y , & . For t h i s feedback arrangement the 

I.K. plots, complete with d - c i r c l e s are shown i n f i g . 7.3» The d - c i r c l e s 

enclose the origin, which was shown stable i n section 7.3.2, while rotor 

angle time responses showed a stable system for values of feedback gain 

enclosed by the union of d - c i r c l e s , as exemplified by curves (a) i n fig.7»4« 

S t a b i l i t y can now be guaranteed for a l l feedback gains. 

Substituting the numerical values of Appendix H into equation (7*5) 

y i e l d s a feedback matrix 

p 
0-4-29 , (7.31) P 

which i s equivalent to the connection of l i n k ( c ) i n f i g . 7.2(a). 

Implementing t h i s feedback arrangement removes i n t e r a c t i o n from within the 
A 

system as demonstrated by f i g . 7.4j curve ( b ) . The diagonal terms of HVELC'P) 
A 

are i d e n t i c a l to those i n Gvatdp) and the I.N. plots are those of f i g . 7.3 

without the d - c i r c l e s . 
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With t h i s regulator model the diagonal terms i n the plant transfer 

function matrices are second order and changing the magnitude of the 

diagonal terms, KTbL , i n Fv£«-(p) i s equivalent to varying the damping 

constant, fee/ , i n the machine equations of Appendix A. As the damping 

constant, kbf , i s included i n Gwet(p) the I.N. locus of f i g . 7.3 i s to the 

ri g h t of the imaginary a x i s . This s h i f t being 0.01, corresponding to the 

value of the damping factor used. I n the work by Al&red and Shackshaft ; 

kd was not included i n GCp) and a d i r e c t study of i t s e f f e c t on system 

s t a b i l i t y obtained. 

Increasing the feedback gain, Kfhi , increases the distance 

between the c r i t i c a l point and the I.N. locus. The system becomes more 

p o s i t i v e l y damped with a corresponding decrease i n the f i r s t load angle 

maximum. 

7.6.3 REGULATOR MODELLED BY A EERST ORDER LAG-

A time constant of 0»75s i s introduced to represent the steam 

system while the electro-hydraulic valve i s assumed i d e a l 

i . e . T v ' O ' O 

T S « 0-76S 
Limits * ± 

k P = l-O f i g . 2.5 

The feedback matrix to remove i n t e r a c t i o n now becomes 

•vet. 
fab: 

(7.32) 

i . e . feedback across machines of 

0.489 
0.36*7 

* position 
* v e l o c i t y 

which corresponds to the connection of l i n k s lb) and(c) i n f i g . 7 . 2 ( a ) . 
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The I.N. plots for both v e l o c i t y and acceleration feedback are 

shown in f i g . 7.5 and 7.6 res p e c t i v e l y with the or i g i n stable i n both 

cases. The e f f e c t of the non-interactive control unit i s to remove the 

d - c i r c l e s from the diagrams. 

When interaction i s present s t a b i l i t y cannot be guaranteed i n 

the case of v e l o c i t y feedback u n t i l feedback gains i n excess of 3»0 for 

machine 2 and 2.5 for machine 1 are used. However rotor angle time 

responses demonstrated asymptotic s t a b i l i t y within t h i s region showing the 

system was Nyquist stable at a l l v e l o c i t y feedback gains. 

By observation of the I.N. diagrams of f i g . 7.5 and 7.6 increasing 

either the v e l o c i t y or acceleration feedback gain increases the positive 

damping within the system and reduces f i r s t load angle excursion; two 

important factors of a good control scheme. For s i m i l a r feedback gains 

t h i s e f f e c t i s more prominant for acceleration feedback as, 

( i ) The c r i t i c a l point i s nearer the I.N. locU3 with v e l o c i t y feedback 

than with acceleration feedback. 

( i i ) Y/ith a signal proportional to £ a f u l l forcing s i g n a l proportional, 

to the instantaneous difference between V M and Pa. i s continually 

applied to the input of the regulator. 

7/ith i n t e r a c t i o n present and high acceleration feedback gains, 

fcfhL ^3-0 , s t a b i l i t y cannot be guaranteed from the I.N. diagram. This 

causes no problems as with feedback gains of t h i s magnitude the system 

would be excessively overdamped. 

7,6.4 SECOND ORDER REGULATOR 

Modelling the steam system and the electrohydraulic valves 

produces the most r e a l i s t i c model, 

T v O OSs 

T S O l6s 

fcrp * / • O 
Limits - ± ° Q i n f i g . 2.5 
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Such a system i s decoupled i f a feedback matrix 

KiFbi , + 0-0:2.9 .p + o-4-o<b 
V 

L P 
feeding back across the machines 

(7.33) 

0.489 x position 

0.029 K acceleration 

0.406 n v e l o c i t y 

corresponding to the connection of l i n k s (a) (b) and (c) i n f i g . 7.2(a). 

The I.N. plots of f i g . 7.7 show that v e l o c i t y feedback gain i s 

limited i n that an excessive gain w i l l produce self-induced o s c i l l a t i o n s 

ultimately leading to Nyquist i n s t a b i l i t y . This i s demonstrated for a 

feedback gain of Kpt>i = 0-<b by rotor angle response of f i g . 7.11. I f 

i n t e r a c t i o n effects are removed the position of the c r i t i c a l point i s 

defined exactly from the I.N. plots of f i g . 7.7 which for t h i s system i s 
A. A 

0.25 for c£„ and 0.22 for Cf^xa. 

The tendency towards self-induced o s c i l l a t i o n with high v e l o c i t y 

feedback gains i s further emphasised by f i g . 7.10(a) where the e f f e c t of 

v e l o c i t y feedback i s to reduce the positive damping within the system. 

The large changes i n gradient of curve CL% i n f i g . 7.10(a) suggest that i t 

i s machines of small i n e r t i a constant that are more s i g n i f i c a n t l y affected 

by the ve l o c i t y feedback gain and more prone to self-induced o s c i l l a t i o n s . 

I n e a r l i e r work Dineley and K e n n e d y d e m o n s t r a t e d the introduction of 

p o s i t i v e damping at low feedback gains but obtained self-induced 

o s c i l l a t i o n s at higher feedback values, e s p e c i a l l y when the machine 

i n e r t i a was 3 r a a l l . I t i s concluded that the damping attributed to v e l o c i t y 

feedback i s system dependent. 

One of the advantages of v e l o c i t y feedback i s i t s a b i l i t y to 

reduce f i r s t load angle excursions with increasing feedback gain, as 



demonstrated by f i g . 7.9 curve ( a ) . Curve (c) shows that i f int e r a c t i o n 

i s removed a further reduction i n f i r s t load angle maximum r e s u l t s . This 

i s due to the movement of machine one being kept to a minimum by the control 

unito The value (S2.-S1 ) i s now greater than when i n t e r a c t i o n was 

present allowing a larger flow of synchronising power to machine one 

producing a corresponding reduction i n the f i r s t load angle maximum of 

machine 2. The build up of power at the terminals of machine 1 i s 

counteracted by a change of input conditions to t h i s machine as directed 

by the cross-feedback. The balance of e l e c t r i c a l to mechanical power i s 

maintained i n machine 1 ensuring minimum movement of t h i s machine. 

Observation of the I.N. plots of f i g . 7.8 produced for a c c e l e r 

ation feedback suggests that acceleration feedback would both reduce f i r s t 

r otor angle excursions and enhance the positive damping within the system. 

T h i s reduction i n f i r s t load angle maximum i s demonstrated for the study 

system by purvea (e) and ( f ) i n f i g . 7.9 and for s i m i l a r reasons as out

l i n e d above., when dealing with v e l o c i t y feedback, removing i n t e r a c t i o n 

further reduces f i r s t load angle excursions as shown by curve (c) i n 

f i g . 7.9. F i g . 7.10(b) demonstrates the increase i n pos i t i v e damping 

with increasing gain while the rotor angle time response of f i g . 7 . 1 l ( c ) 

exhibits near optimum damping with a feedback gain of W i i . i a O - O S . 

Increasing the feedback gain would overdamp the system. 

From t h i s discussion i t i s apparent that acceleration feedback 

produces more powerful control than rotor velocity, a conclusion a l s o 

reached by Dineley and Kennedy. 

7.7 STABILISATION OF VELOCITY F3SDBACK V.'TTH AN ADDITIONAL ACCELERATION 
TERM 

Dineley and Kennedy suggest that the self-induced o s c i l l a t i o n s 

produced by the velocit y feedback can be reduced i f an acceleration s i g n a l 
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i s used to s t a b i l i s e the v e l o c i t y term. This i s demonstrated for small 

perturbations i n f i g . 7.10(c) where the c r i t i c a l gain of k-p-h- O XS i n 

f i g . 7.10(a) has been increased to 1.0. Further, the previous unstable 

rotor angle response of f i g . 7.11(b) i s now stable, f i g . 7.1l(u), and 

self-induced o s c i l l a t i o n s do not cause i n s t a b i l i t y u n t i l a velo c i t y 

feedback gain i n excess of 1.0 i s reached. 

The combined feedback signal produces large reductions i n f i r s t 

load angle excursions, f i g . 7.9 curves (b) and ( d ) , without overdamping 

the system, which would occur with high acceleration feedback gains. 

Again the effect of the non-interactive control unit i s to reduce the 

f i r s t load angle maximum of machine 2, f i g . 7.9 curve (d2). A s i m i l a r 

improved control s i g n a l i s suggested by Hughes^-^ when ve l o c i t y governing 

with phase advance i s used to produce a more acceptable response. 

The s t a b i l i s i n g e f f e c t of acceleration feedback can be further 

studied for the non-interactive system by I.N. p l o t s . The s t a b i l i z i n g 

e f f e c t of an acceleration term on velo c i t y i s shown i n f i g . 7.12 where the 

c r i t i c a l point increases as the acceleration feedback gain increases. The 

higher s e r i e s of c r i t i c a l points for the heavier machine i n f i g . 7*12 

indicates the s u s c e p t a b i l i t y of machines of small i n e r t i a constant to 

self-induced o s c i l l a t i o n s . The c r i t i c a l v e l o c i t y feedback gain increases 

not only with acceleration feedback gain but also with i n i t i a l load angle 

as indicated by f i g . 7.13« Thus the i n i t i a l load angle exerts a certain 

s t a b i l i z i n g e f fect on the v e l o c i t y feedback. 

I f system s t a b i l i t y i s defined as the point a t which one channel 

w i t h i n that system displays an unstable condition then, i n the case of 

v e l o c i t y feedback, i t i s the l i g h t e r machine that sets t h i s l i m i t ; a 

r e s u l t in agreement with Dineley and Kennedy. 
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7.8 Tlffi REMOVAL OF ICTBKACTIOH Oil 30 FAULTS OF SHORT DURATION 

7.8.1 GSNERAL 

The control method was designed to be non-interactive when 

subjected to a disturbance at the machine inputs. The e f f e c t of using 

the non-interactive control unit when the disturbance takes the form of 

a three phase f a u l t at the machine terminals i s investigated. 

With t h i s type of f a u l t a disturbance w i l l be f e l t by both 

machines and v / i l l appear as though two disturbances have been applied, 

one to each channel, simultaneously as indicated by f i g . 7.14. 

The second order regulator model with an acceleration damping 

signal i s used. The f a u l t being applied at the terminals of machine tv/o 

for 0.05s, when i t i s cleared and the system resumes i t s i n i t i a l conditions. 

7.8.2 THE BENEFIT OF INTERACTION REMOVAL 

V/hen i n t e r a c t i o n i s present the synchronising power flowing from 

machine 2 a f t e r reclosure "drags" machine 1 into higher load angle swings, 

f i g . 7.15, curves ( a l ) and ( b l ) . Removing i n t e r a c t i o n counteracts t h i s 

flow of synchronising power by adjusting the machine input power i n a 

determined manner as shown in f i g . 7.17 and 7.18 by curves (c) and ( d ) . 

The disturbance now causing machine 1 to accelerate at a l l i s that of 

f i g . 7.14(b). 

An acceleration feedback signal tends to remove the valve closing 

signal on f a u l t removal, as shown by curves (b2) and (d2) i n f i g . 7.17. 

As the f a u l t period i s small the power l i m i t s do not play an important 

r o l e , provided the acceleration feedback gain i s not exceptionally high. 

Phi i s held lower than i t s steady state value u n t i l the rotor angle reaches 

i t s maximum value as indicated by point X i n f i g . 7.18(b). Section 8 .2 

demonstrates that i f Fin i s s u b s t a n t i a l l y greater than i t s steady state 

value, while the rotor angle i s increasing, the f i r s t load angle maximum 

w i l l increase. 
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As the f a u l t i s applied at the terminals of machine 2 the l a r g e s t 

feedback signals are derived from t h i s machine, Where interaction i s 

removed there i s l i t t l e change i n the input signal to machine 2, r e l a t i v e 

to the i n t e r a c t i v e study, and only a small decrease i n f i r s t rotor angle 

maximum r e s u l t s . I n comparison the change i n the feedback signal to 

machine 1 i s large, due to cross feedback from machine 2, r e s u l t i n g in the 

large decrease in f i r s t load angle. This i s demonstrated by curves (b2) 

and (d2) i n f i g . 7.15* 7.17 and 7.18. 

Implementation of the non-interactive control unit with an 

acceleration feedback gain of 0.07 produces near optimum response, curves (d) 

f i g . 7.15« Comparing curves (b) and (d) i n f i g . 7.18 shows that the 

penalty paid for t h i s improved control i s a greater change i n the input 

power to machine 1 than when inte r a c t i o n was present. However as discussed 

above the input power deviation of machine 2 remains approximately the 

same. 

A good control system should provide rapid voltage recovery on 

f a u l t clearance, to ensure that induction motor loads do not s t a l l , as well 

as the good system damping and reduction i n f i r s t load angle The good 

voltage recovery produced by the non-interactive control unit i s shown i n 

f i g . 7.16 where curve (d) corresponds to the near optimum response of 

curve ( d ) , f i g . 7-15-

As input power i s being varied to both machines the author f e e l s 

that the additional v a r i a t i o n attributed to the non-interactive control 

uni t i s j u s t i f i e d when considering the improved response that i s obtained 

as indicated by curves (d) in f i g s . 7.15 to 7.18. 

A s i m i l a r set of r e s u l t s was obtained when the f a u l t was applied 

a t the terminals of the heavier machine. 
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7.9 EXCITATION CONTROL 

7.9.1 &2N.BRAL 

Regulators used to control the alternator f i e l d excitation are 

either the older rotating e x c i t e r ^ or the more modern s t a t i c excitation 

s y s t e m . T h e effect of both these e x c i t e r s on system s t a b i l i t y and 

response are investigated when subjected to different feedback signals. 

The alternator f i e l d regulator model discussed i n section 2.5 3.s 

reduced to the f i r s t order 

i , e" fo 
/ -f-pTa-zc (7.34) 

The value of the time constant being adjusted to 

T<zx. = 0 - 0 3 s t s t a t i c e x c i t e r 

Tdoc * O * S S , rotating e x c i t e r 

while a gain value for ki =/0 -0 i s used. 

When in t e r a c t i o n i s removed the exciter reference voltage,Vref, 

i s not the input to the control unit, see f i g . 7«21. Consequently any 

change i n Vref causes a small disturbance i n both machines as shown i n 

f i g . 7 .30(b). However i f the input step was applied as in f i g . 7.21(b) 

intera c t i o n would be removed, f i g . 7 . 30(a). The l a t t e r disturbance i s 

not used as the former i s the more p r a c t i c a l of the two. 

As the disturbance imposed i s small e x c i t a t i o n l i m i t s do not 

play an important r o l e . Their e f f e c t on large disturbances i s discussed 

i n Chapter 8. 

7.9.2 VOLTAGE FEEDBACK 

H i s t o r i c a l l y the control of f i e l d e x c itation was developed to 

maintain i n t e r n a l power factor angle and terminal voltage at pre-set l e v e l s 

during steady state operation. This was achieved by feeding back a si g n a l 

proportional to the magnitude of terminal voltage to a rotating e x c i t e r . 
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Not only did t h i s form of control improve steady state operation but was 

also found to a s s i s t system s t a b i l i t y during the transient i n t e r v a l . 

I.H. plots for both rotating and s t a t i c excitation systems are 

shovm i n f i g s . 7.19 and 7.20 respectively for a change i n exciter reference 

voltage. The band so produced i s extremely divergent with d-oircles at 

higher frequencies overlapping the smaller d - c i r c l e s and enclosing the 

o r i g i n . This siakes any assessment of the c r i t i c a l feedback gain from the 

I.N. plot d i f f i c u l t . -iVith experience gained from previous a n a l y s i s and 

knowing the s t a b i l i t y of the ori g i n (section 7*3.2) self-induced 

o s c i l l a t i o n s would be expected as the feedback gain was increased 

ultimately leading to i n s t a b i l i t y . This was v e r i f i e d by computing rotor 

angle time responses at different feedback gains. Further the onset of 

t h i s self-induced i n s t a b i l i t y i s demonstrated i n the damping curves of 

f i g . 7.24(a) by point X where feedback gains i n excess of Kpbij? '-O 

produce Nyquist i n s t a b i l i t y . As previously stated d - c i r c l e s do not allow 

an accurate assessment of the c r i t i c a l gain values from the I.N. p l o t s . 

However by plotting det T(p) (Section 4.3.2) for different feedback gains 

an accurate assessment of s t a b i l i t y i s achieved. F i g . 7.22 shows plots 

of det T(p) for t h i s system and with feedback gains greater than fT-fki^l-O 

the origin i s enclosed and the system i s unstable. This agrees with 

f i g . 7 .24(a). 

The main locus, i . e . the locus of the centres of the d - c i r c l e s , 

on the I.N. plots of f i g s . 7ol9 and 7«20 indicate a higher s t a b i l i t y margin 

for the rotating e x c i t e r than for the s t a t i c . An e f f e c t f i r s t suggested 

by Aldred/Shackshaft i n 1 9 6 0 . V ^ This same ef f e c t has caused other 

authors to look for supplementary feedback s i g n a l s ! ^ ^ B ) ( 7 9 ) Because 

of the low time constant of the s t a t i c e xciter the phase of response to 

terminal voltage can be s u f f i c i e n t l y advanced to cancel the positive 
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(79) damping e f f e c t produced by the f i e l d time constant. However 
increasing the feedback gain, k?b^ , continually reduces f i r s t load angle 
excursions, as demonstrated by curves (a) and (b) i n f i g . 7.23, but has 
to be l i m i t e d because of the improper phasing and r e s u l t i n g Nyquist 
i n s t a b i l i t y . 

Implementing the non-interactive control unit reduces the movement 

of the i n d i r e c t l y disturbed machine(s) to a minimum as seen i n f i g . 7.30. 

However there i s no s i g n i f i c a n t further reduction in the f i r s t load angle 

maximum of the disturbed machine; curves (a2) and (b2) i n f i g . 7.23 show 

no appreciable difference. This effect i s found with a l l feedback signals 

to the exciter and i s a t t r i b u t e d to the large f i e l d open c i r c u i t time constant, 

Tdo • Removing i n t e r a c t i o n changes the magnitude of the feedback s i g n a l 

to the exc i t e r , but because of the magnitude of Tdo' the effect of the 

interaction removal ha3 l i t t l e influence on the f i r s t load angle excursion 

of the disturbed machine. 

7.9.3 VELOCITY FEEDBACK 

One method of s t a b i l i s i n g voltage feedback to the s t a t i c e x c i t e r 
(6)(79) 

i s to incorporate a signal proportional to s l i p frequency. v I.N. 

p l o t s using rotor v e l o c i t y as the feedback signal are shown for the system 

with and without i n t e r a c t i o n i n f i g . 7.25 and 7.26. I n a l l cases the 

amount of v e l o c i t y feedback i s limited. Previous a u t h o r s ^ ^ ^ ^ have 

shown that using & as the feedback signal either positive or negative 

damping can be introduced depending on the r e l a t i v e gains and time constants. 

For t h i s system incorporating a s t a t i c exciter the time constants are such 

that there i s a tendency to reduce the positive damping at a l l feedback 

gains, f i g . 7.24(B). The presence of self-induced o s c i l l a t i o n s i s more 

prorainant on the l i g h t e r machine as indicated by the steeper gradient of 

curves (a2) and (b2) r e l a t i v e to ( a l ) i n f i g . 7.24(B). However increasing 

the velo c i t y feedback gain continually decreases f i r s t load angle maximums, 

f i g . 7.23, curves (c) and ( d ) . 
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For c l a r i t y consider the non-interactive I.N. plots of 

f i g s . 7.25 and 7.26. The c r i t i c a l v e l o c i t y feedback gain required to 

induce o s c i l l a t i o n s i s similar i n both s t a t i c and rotating excitation 
A 

systems for the l i g h t e r machine, <^»Cp) giving a gain l i m i t of approximately 

2.0 i n both cases. Reducing the exciter time constant increases the 

c r i t i c a l feedback gain for the heavier machine from 0.9 with the rotating 

e x c i t e r to J>.Q with the s t a t i c system. These l i m i t s being obtained from 

With the s t a t i c exciter, increasing the i n e r t i a constant reduces 

the speed of response to the f i e l d forcing. This l i m i t s the tendency to 

overcorrect and produce self-induced o s c i l l a t i o n s . I f the time constant 

of the e x c i t e r i s increased, as i s the case with a rotating e x c i t e r , the 

strength of the f i e l d forcing i s reduced and with the large response time 

of the heavy machine improper phasing r e s u l t s causing Myquist i n s t a b i l i t y . 

Lowering the machine i n e r t i a with the rotating exciter the response to 

any f i e l d forcing i s more rapid and counteracts the low forcing. 

From t h i s discussion i t i s concluded that a greater s t a b i l i t y 

l e v e l i s obtained with the rotating exciter when machines of low i n e r t i a 

constant are used. I t also provides a greater s t a b i l i t y l e v e l with l i g h t 

machines than the s t a t i c e x c i t e r . Conversely a s t a t i c exciter operating on 

a system with large i n e r t i a machines i s l e s s susceptible to self-induced 

o s c i l l a t i o n s than i f rotating e x c i t e r s are used. 

These two e f f e c t s correspond. F i g . 7.27 shows block diagrams of 

the two excitation systems with arrangement ( i ) i n both cases producing the 

greater s t a b i l i t y l e v e l . As a l i n e a r design was used superposition could 

be applied. Rearranging the blocks of f i g . 7.27(a) so that the f i r s t and 

l a s t are interchanged arrangement ( i ) i n f i g . 7.27(a) and (b) are now 

s i m i l a r . These r e s u l t s also correspond with those obtained i n section 7.6.4 
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where with f a s t valving i t was found that the l i g h t e r machine was more 

susceptible to self-induced o s c i l l a t i o n s . 

7.9.4 ACCELERATION ESl'DBACK 

Previous a u t h o r s ( 8 o ) (45) (78) (7) h a v e shown that control i s 

improved by including a term proportional t c rotor acceleration i n the control 

s i g n a l , "with acceleration feedback to the machines in the study system the 

I.N. plots shown i n f i g s . 7.28 and 7.29 r e s u l t . When inter a c t i o n i s present 

the feedback gains included by the union of d i s c s i n f i g . 7.28 were found 

to be asymptotically stable by time response r e s u l t s while the s t a b i l i t y of 

the o r i g i n was demonstrated i n section 7»3»2. S t a b i l i t y can now be 

guaranteed for a l l acceleration feedback gains. 

The I.N. diagrams show that by increasing the feedback gain the 

amount of positive damping introduced also increases. Because of the near

ness of the locus to the c r i t i c a l point t h i s e f f e c t i s more prominant i n 

the s t a t i c e x c i t e r . This damping effect i 3 further demonstrated by 

f i g . 7 . 2 4(c). Also as the feedback gain increases the f i r s t load angle 

excursion i s reduced, f i g . 7.23 curves (e) and ( f ) . However as with 

acceleration feedback to the input power regulator the feedback gain has 

to be l i m i t e d or an overdamped response r e s u l t s . 

The use of an acceleration feedback signal produces strong 

co n t r o l . 

7.10 CONCLUSION 

The work discussed i n t h i s chapter proposed various control methods 

based on l i n e a r multivariable control theory. These control methods were 

then applied to the system when i t was subjected to small perturbations. 

As these perturbations were small both the transmission system and the 
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synchronous machines can be accurately represented by a l i n e a r model. 

This then allows the performance of the control method to be assessed 

from the Nyquist diagram. 

The early stages of the work i n developing a model to represent 

the input power regulator demonstrated that t h i s had to be represented by 

a second order model or else an unstable response could be predicted 

s t a b l e . This was demonstrated when considering v e l o c i t y governing as the 

f i r s t order model showed the system to be stable at any value of v e l o c i t y 

feedback gain. This i s untrue as was shown "by Dineley and K e n n e d y a n d 

r e s u l t s comparable with t h e i r s were not obtained u n t i l the second order 

model was evolved. 

The f i e l d e x citation regulator was also second order. 

Feedback of a v e l o c i t y term to either of these two regulators, 

when in t e r a c t i o n was present or not, showed a reduction i n the f i r s t rotor 

angle swings but tends to produce self-induced o s c i l l a t i o n s as the feedback 

gain i s increased ultimately leading to i n s t a b i l i t y . However i f a s i g n a l 

proportional to rotor acceleration i s used as the control signal any 

tendency towards i n s t a b i l i t y i s removed while s t i l l reducing f i r s t rotor 

angle swings. This control signal also has the advantage of introducing 

strong positive damping into the system but has to be l i m i t e d as i t can 

produce a very heavily damped response culminating i n a slow recovery of 

terminal voltage. As one of the aims of any control system i s to r e t a i n 

good recovery of terminal voltage t h i s i s c l e a r l y a l i m i t a t i o n on the 

control system. However with a c o r r e c t l y selected value of acceleration 

feedback gain section 7.8 demonstrated how good voltage recovery could be 

achieved by input power control. 

The introduction of positive damping by acceleration feedback to 

the exciter was more pronounced with the s t a t i c e x c i t e r than the rotating 
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e x c i t e r because of the lower time constant employed. 

An improved control scheme was obtained by using both an a c c e l e r 

ation term and a v e l o c i t y term i n the control signal to the power regulator. 

The acceleration term s t a b i l i s e s the v e l o c i t y signal and hence allows a 

greater f i r s t rotor angle reduction while the system does not become over-

damped. 

Investigations on the exciter demonstrated that the feedback of 

terminal voltage also reduces f i r s t rotor angle swings but has to be l i m i t e d 

as i t tends to produce i n s t a b i l i t y as the feedback gain i s increased. 
(45)(9) 

However different authors ' have shown that t h i s can be s t a b i l i s e d , 

i n the same way as the v e l o c i t y s i g n a l , by incorporating supplementary 

s i g n a l s describing the machines state into the feedback s i g n a l . 

These conclusions equally apply both to the system with int e r a c t i o n 

present or when interaction i s removed but when interaction i s removed an 

accurate assessment of the system's feedback l i m i t a t i o n s i e available from 

the I.N. diagrams. 

The e f f e c t of interaction removal i3 paramount i n t h i s work and 

one of the advantages of the non-interactive c o n t r o l l e r i n producing 

improved terminal voltage recovery i s demonstrated i n section 7.8 i n 

connection with input power control. Another advantage of t h i s form of 

control i s that only one machine i s s i g n i f i c a n t l y affected by the disturbance. 

The tran s f e r of synchronising power between the machines producing the 

r e l a t i v e movement i s counteracted by a l t e r i n g either the mechanical input 

torque or the electromagnetic torque on the machine. This does not imply 

an increase i n the rotor angle swings of the fa u l t e d machine. As the 

synchronising power i s transferred between the machines i t i s accommodated 

i n the usual form of k i n e t i c energy but t h i s change i n energy i s balanced 
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by e i t h e r a change i n input power or electromagnetic power depending on 

the regulator used. This keeps the energy balance within the machine. 

Further by constraining the movement of the undisturbed machine 

the instantaneous difference i n rotor angles i s increased allowing more 

power to be transferred. This leads to a further reduction i n f i r s t rotor 

angle swings. 

Because of the large f i e l d open c i r c u i t time constant of the 

machine t h i s i s more pronounced when the control i s applied to the input 

power regulator than f i e l d e x c i t a t i o n . 

Continuous control of input power both when in t e r a c t i o n i s present 

or not has been shown to produce stronger control action than excitation 

control both i n i t s control of terminal voltage, f i r s t rotor angle reduction 

and the positive damping i t introduces into the system. This i s further 

emphasised i n the following chapter. 

Present technology does not allow continuous operation of e l e c t r o -

hydraulic valves because of the high hydraulic pressures required for 
(82} 

valve opening but i s foreseen i n the near future. ' At the present 

time systems that allow 5 strokings are available and future development 

w i l l produce continuous valve operation. 
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CHAPTER 8 

A HON-IKTaHACTIVB CONTROL SCHEIE - LARGS DISTURBANCES 

8.1 GENERAL 

In the previous Chapter regulator l i m i t s had l i t t l e e f f e c t on 

the system response as disturbances imposed were only small. By imposing 

a three phase f a u l t on the terminals of machine 2 i n f i g . 2.7 for 0 .21s , 

the c r i t i c a l c l e a r i n g time for the uncontrolled system, large rotor angle 

o s c i l l a t i o n s are produced. This allows the e f f e c t of the regulator l i m i t s 

on the system response, with and without i n t e r a c t i o n present to be 

investigated for different feedback arrangements. 

The damping e f f e c t of different feedback signals i s . r elated to 

the Nyquist s t a b i l i t y of the system and was studied in d e t a i l v i a the I.N. 

diagrams i n the l a s t chapter and consequently does not constitute a major 

investigation here. 

To study the e f f e c t of a combined ve l o c i t y and acceleration feed

back signal an acceleration feedback gain of Kpbi,x s O-OS was used as t h i s 

produced large, f i r s t rotor angle reductions with good subsequent damping 

when the v e l o c i t y feedback gain was zero (see f i g . 8 .3 )• Further t h i s 

a c c eleration feedback gain compensates for the improper phasing introduced 

by the non-interactive control u n i t . 

8 .2 FAST VALVING 

8.2.1 ACCELERATION FEliDBACK 

For large disturbances increasing the feedback gain i n i t i a l l y 

reduces the f i r s t load angle maximum but then causes i t to increase curves 

(e) and ( f 2 ) i n f i g . 8 . 1(b). This i s associated with the mechanical input 

power to the machine being reversed at the wrong moment i n time. 
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Hughes sta t e s that by using Pontrayagin* s maximum princip l e 

the minimum possible rotor angle swing i s obtained by applying the f u l l 

c l osing signal to the steam valves on the occurance of the f a u l t and 

removing i t when the maximum value of rotor swing i s obtained. Acceleration 

feedback closes the valve on the occurance of a f a u l t but tends to remove 

t h i s closing signal on f a u l t clearance. By using a large feedback gain i t 

i s possible for P)n, the mechanical input power, to increase to such an 

extent, while S i s s t i l l increasing, that the machine tends to accelerate 

and increase i t s load angle as demonstrated for a feedback gain of 0.1 by 

f i g . 8 . 1(b) curves ( e ) . Pig. 8 . 8(a) shows the increase i n Pin causing the 

increase i n f i r s t rotor angle swing where point ( a ) corresponds to the 

time at which the maximum value of Sa. i s reached. 

The flow of synchronising power between the machines causes an 

increase i n the f i r s t rotor angle excursion of the unfaulted machine at 

high feedback gains even though the power l i m i t s of t h i s machine may not 

be met. This e f f e c t i s shown by curve ( e l ) i n f i g . 8 . 1(b) while f i g . 8 .8(b) 

shows the v a r i a t i o n of power at the turbine valve with time for an a c c e l e r 

ation feedback gain of 0 .1 , note that the power l i m i t s for machine 1 are 

not reached. Removing i n t e r a c t i o n counteracts the flow of synchronising 

power and removes t h i s e f f e c t shown by curve ( f l ) i n f i g . 8 . 1 ( b ) . 

The effect of a non-interactive control unit at low feedback 

gains ( l e s s than 0.01 i n t h i s case study) i s to increase future rotor 

angle swings, an e f f e c t attributed to the differences between, the l i n e a r 

and non-linear models. The l i n e a r , non-interactive controller produces 

a control signal of such magnitude that the power regulator l i m i t s of the 

non-linear model are continually met and improper phasing r e s u l t s * An 

example of t h i s i n f i g . 8.11 shows the v a r i a t i o n of power at the valve 

corresponding to the rotor angle response of f i g . 8 . 5 . 
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The control effect of the non-interactive control unit can be 

thought of as an apparent t o t a l feedback s i g n a l of varying gain acting 

round each i n d i v i d u a l machine. The improper phasing causes t h i s gain, at 

ce r t a i n instants* to change sign and introduce negative damping into the 

system. This r e s u l t s i n the increased rotor angle o s c i l l a t i o n s . Increasing 

the individual machine acceleration feedback gain p a r t i a l l y compensates for 

the improper phasing by reducing the number of times the power regulator 

l i m i t s are reached, as i n f i g . 8 . 9 ( a ) . This produces the p o s i t i v e l y 

damped response of f i g . 8 . 3 . Note the response of machine 2 i n f i g . 8.3 

i s more o s c i l l a t o r y than i n f i g . 8 .2 , where i n t e r a c t i o n was present, because 

of the cross-feedback tending to produce the improper phasing. 

The main advantage of the non-interactive c o n t r o l l e r i s i t s 

a b i l i t y to produce a large, b e n e f i c i a l , reduction i n the f i r s t load angle 

maximum of the unfaulted machine. This i s demonstrated i n f i g . 8 .1(B) 

where curve ( f l ) shows lower f i r s t load angle maximums than ( e l ) , ths 

corresponding plot for the in t e r a c t i v e study. Because of the low f a u l t 

c l e a r i n g time used i n section 7o8 the e f f e c t of the cross feedback from 

machine 1 had no s i g n i f i c a n t effect on machine 2. Nov;, however, with the 

increase i n the clearing time cross feedback from machine 1 i s of s u f f i c i e n t 

magnitude to have a positive effect i n i t s tendency to hold the control 

valve of machine 2 closed on f a u l t removal; point A i n f i g . 8 . 9(b) showing 

a lower value of ?m than the corresponding point i n the in t e r a c t i v e plot 

of f i g . 8.7* This i s responsible for the further decrease i n f i r s t rotor 

angle maximum of machine 2, at low feedback gains, shown by curve ( f 2 ) i n 

f i g . 8 . 1 ( b ) . After f a u l t clearance the cross feedback signal counteracts 

a s u b s t a n t i a l amount of the synchronising power flowing from the d i r e c t l y 

f a u l t e d machine, machine 2, to machine 1 producing an increase i n the 

instantaneous difference between the load angles. A greater transfer of 

synchronising power from machine 2 i s allowed producing a further reduction 
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i n the f i r s t load angle maximum of machine 2. This e f f e c t was discussed 

i n Chapter 7. 

I f the acceleration feedback gain, k f t i . , i s further increased 

the l i m i t s again tend to cause an increase i n the f i r s t load angle excursion 

of the d i r e c t l y f aulted machine, curve (f2) i n f i g . 8.1(b). 

8.2.2 VELOCITY FEEDBACK 

Increasing the v e l o c i t y feedback gain continually reduces the 

f i r s t load angle maximum as shown by curves (a) i n f i g . 8.1(a). However 

t h i s gain has to be l i m i t e d because of the tendency towards self-induced 

o s c i l l a t i o n s as discussed i n Chapter 7. 

The self-induced o s c i l l a t i o n s for large disturbances can be 

r e l a t e d to the I.N. diagrams of f i g . 7.7. The Nyquist s t a b i l i t y l i m i t 

deduced from rotor angle time responses for the large three phase f a u l t 

y i e l d s a maximum feedback gain s l i g h t l y i n excess of 0.2, which i s com

parable with that predicted from the Nyquist diagram of f i g . 7.7 and the 

damping curves of f i g . 7*10(A). This i s further v e r i f i c a t i o n of both the 

method of representing damping e f f e c t s i n Chapter 7 and the connection 

between self-induced o s c i l l a t i o n s and the I.N. diagrams. F i g . 8.6 

demonstrates the tendency towards self-induced o s c i l l a t i o n s with a feed

back gain K$i>i)xsO'2. while points A1 and A2 are examples of the in t e r a c t i o n 

e f f e c t s discussed i n Chapter 5» 

By removing i n t e r a c t i o n the improper phasing introduced by the 

controller cannot be compensated for by v e l o c i t y feedback before s e l f -

induced o s c i l l a t i o n s set i n . I t i s therefore concluded that the use of 

t h i s non-interacting control scheme with v e l o c i t y feedback i s unsatisfactory 

for large disturbances. 
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8.2.3 COMBINED VELOCITY AIID ACCELERATION FEEDBACK 

The advantages of using a combined feedback signal were discussed 

i n section 7»7 . V/hen the system i s subjected to a three phase f a u l t the 

v e l o c i t y signal t r i e s to hold the valve closed on f a u l t removal but can 

only s l i g h t l y reduce the opening signal to the valve produced by the 

dominant acceleration term. This r e s u l t s i n a s l i g h t reduction i n the 

f i r s t load angle maximum as the v e l o c i t y gain increases; curves (b) i n 

f i g . 8.1(a). This e f f e c t i s more noticeable i n machine 1, curve ( b l ) , as 

the f a u l t energy associated with t h i s machine i s not great enough for the 

e f f e c t of the ve l o c i t y term to be completely overshadowed by the acceleration 

s i g n a l . 

For the reasons discussed previously the removal of inte r a c t i o n 

produces a substantial reduction i n the f i r s t load angle maximum of the 

unfaulted machine. Again because of the dominating behaviour of the 

acceleration terms i n the control signal the v e l o c i t y feedback gain has 

l i t t l e e f f e c t on the f i r s t load angle maximums as shown by the near 

horizontal l i n e s , ( d l ) and (d2) i n f i g . 8.1(A). 

8.3 EXCITATION CONTROL 

8.3.1 THE ALTERATION OF FIRST LOAD ANGLE I.IAXBIUM 

Hughes^*""^ and Dineley et a l ^ ^ found that using a s t a t i c e x c i t e r 

and a feedback signal incorporating a terra proportional to acceleration 

higher f i r s t swing excursions resulted than i n the uncontrolled case. This 

i s demonstrated i n f i g . 8.12 by points (x) and (u) when the system of 

f i g . 2 . 7 was subjected to a three phase f a u l t at the common bus, bus 3* 

for 0.15s (Data Appendix H). 

Three fac t o r s contribute to t h i s rotor angle increase; 

( i ) The acceleration term tends to remove the signal to the exciter 

on f a u l t removal, as shown by curve (a) i n f i g . 8.13» whereas 
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optimum reduction i s achieved when a f u l l increasing s i g n a l 

i s maintained on the exciter u n t i l the i n i t i a l rotor angle 

swing reaches i t s maximum. 

( i i ) A s t a t i c e x c i t e r i s normally pov/ered from the machine terminal 

voltage, which, during the f a u l t i n t e r v a l i s low giving a low 

c e i l i n g voltage. 

( i i i ) The response of a s t a t i c exciter i s very f a s t providing a 

large e x c i t a t i o n forcing s i g n a l . 

Consequently during the f a u l t period there i s a tendency to 

provide a high forcing s i g n a l which i s severely l i m i t e d by the c e i l i n g 

voltage. On f a u l t removal the terminal voltage increases providing a 

"buck" c e i l i n g l i m i t of large magnitude. This allows the acceleration 

term, on f a u l t removal, to produce high negative ^ i e l d forcing and a 

reduction i n the height of the operating locus, beneath i t s steady state 

operating value, while the load angle i s s t i l l increasing. 

This e f f e c t could be removed, producing a substantial reduction 

i n f i r s t load angle maximum, i f high c e i l i n g l i m i t s were used with the s t a t i c 

e x c i t e r . A l t e r n a t i v e l y a p a r t i a l solution to the problem i s to l i m i t the 

buck c e i l i n g at 0.0 and hence reduce the negative f i e l d forcing producing 

the reduction i n the height of the operating locus. These two solutions 

are demonstrated by curves (a) i n f i g . 8.12 where a s i g n i f i c a n t decrease 

i n f i r s t load angle i s obtained with i n f i n i t e l i m i t s , point ( z ) , while 

with a buck c e i l i n g l i m i t of 0.0 f i r s t load angle excursions comparative 

with the uncontrolled case are obtained, point ( u ) . 

I f a rotating e x c i t e r i s used Hughes*4"3' has shown that with an 

acceleration term s t a b i l i z i n g the voltage signal f i r s t swing maximum i s only 

s l i g h t l y greater than i f j u s t voltage feedback i s used. This i s due to 

the rotating exciter having both a slow speed of response and high working 

c e i l i n g voltages, t y p i c a l l y +6 p.u. and 0.0 p.u. 
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The advantage of using an acceleration signal i s that i t increases 

the positive damping within the system as discussed i n section 7 « 9 . 4 . 

With a feedback s i g n a l proportional to either terminal voltage 

or rotor v e l o c i t y the optimum forcing s i g n a l i s applied to the e x c i t e r 

during the c r i t i c a l f i r s t swing. This produces a reduction i n the f i r s t 

load angle maximum as shown by curves (b) and (c) i n f i g . 8 .12 . Because 

the instantaneous magnitude of these signals i s never of the same large 

magnitude as the acceleration terra the e f f e c t of the c e i l i n g voltages i s 

not so d r a s t i c and a reduction i n load angle i s achieved with the p r a c t i c a l 

working values of c e i l i n g voltage. However as was seen i n Chapter 7 the 

feedback gain must be limited or else self-induced o s c i l l a t i o n s w i l l be 

produced. 

Implementing the non-interactive c o n t r o l l e r tends to apply a 

forcing s i g n a l nearer the optimum to the e x c i t e r during the c r i t i c a l period 

and reduces the f i r s t load angle maximum. This reduction i n f i r s t load 

angle produced by the non-interactive controller with an acceleration 

feedback gain, tCpbi,i •= O-OT. , i s shown i n f i g . 8.12, curves ( d ) . With 

a l l l i m i t values large reductions are obtained r e l a t i v e to the i n t e r a c t i v e 

case, curves ( a ) . However as i n the i n t e r a c t i v e study changing the c e i l i n g 

l i m i t s determines the value reached during the f i r s t load angle swing. The 

f i e l d forcing required by t h i s controller to produce maximum load angle 

reduction i s large, t y p i c a l l y greater than 10.0 p.u. which i s subs t a n t i a l l y 

greater than the p r a c t i c a l working c e i l i n g voltages. Consequently the 

more the boost c e i l i n g i s l i m i t e d greater i s the f i r s t load angle swing. 

Because the optimum forcing s i g n a l i s applied during the c r i t i c a l period 

the buck c e i l i n g l i m i t has l i t t l e e f f e ct on the f i r s t load angle swing, 

see points p and q in f i g . 8 .12 . 
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8 .3 .2 SUBSEQUENT LOAD ANGLE REDUCTIONS 

The introduction of damping by the different feedback signals was 
discussed i n Chapter 7 where the tendency towards self-induced o s c i l l a t i o n s 
with v e l o c i t y and/or voltage feedback was observed. These feedback signals 
had to be l i m i t e d or Nyquist i n s t a b i l i t y resulted. I n comparison the 
l i m i t imposed on the acceleration feedback was to prevent an overdamped 
response from being produced. 

For large disturbances with i n t e r a c t i o n present the acceleration 

feedback forces the exciter to operate i n a p a r t i a l bang-bang mode u n t i l 

the increase i n the positive damping forces the excitation voltage from 

the c e i l i n g l i m i t to i t s steady state value over a short time period, 

f i g . 8 . 1 4(b). The slow response of the f i e l d winding to t h i s change, 

caused by the large f i e l d open c i r c u i t time constant, Tdo t r e s u l t s in a 

slow decay i n the height of the operating locus. This slow decay produces 

an apparent f i n a l load angle value l e s s than the steady state value, 

see f i g . 8 . 1 4(a). However as shown i n f i g . 8 . 1 4(a) t h i s load angle value 

w i l l slowly r i s e to i t s steady state position as the height of the operating 

locus decays. A buck c e i l i n g l i m i t of 0.0 was used to obtain f i g . 8.14. 

I f , however, the buck c e i l i n g l i m i t has a negative value, as i n f i g . 8.17(a), 

a similar e f f e c t i s observed with the apparent f i n a l value reached by the 

rotor angle being greater than the steady state value. To guarantee t h i s 

e f f ect does not become excessive and produce a distorted response i t i s 

necessary to impose a l i m i t on the acceleration feedback gain, depending 

on both the system and regulator parameters, p a r t i c u l a r l y the c e i l i n g 

voltages. 

The e f f e c t of the non-interactive control unit i s s i m i l a r l y dep

endent on the exciter c e i l i n g voltages. V/ith i n f i n i t e l i m i t s two 

s u b s t a n t i a l l y non-interacting curves are produced, f i g . 8.15. However 

using p r a c t i c a l c e i l i n g l i m i t s there i s a tendency for the f i e l d forcing 
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to continually reach the c e i l i n g voltages, as i n f i g . 8 . 1 6(b), which r e s u l t s 

i n improper phasing and distorted response s i m i l a r to f i g . 8 . 1 6(a). The 

improper phasing can be s u b s t a n t i a l l y reduced i f an acceleration feedback 

s i g n a l i s used whereas neither velooity or voltage signals can provide the 

necessary compensation before self-induced o s c i l l a t i o n s set i n . The effect 

of acceleration feedback and velocity feedback r e l a t i v e to f i g . 8.16 i s 

shown i n f i g . 8.17 and f i g . 8.18 r e s p e c t i v e l y . 

Consequently the non-interactive control unit should only be 

employed i f high c e i l i n g l i m i t s are a v a i l a b l e and then either velocity, 

acceleration or voltage feedback can be used to shape the response as 

improper phasing does not e x i s t . However i f the exciter i s subject to 

low c e i l i n g l i m i t s an acceleration feedback signal i s necessary to 

compensate for the improper phasing produced by the l i m i t s . 

S imilar r e s u l t s are obtained when a rotating exciter i s used. 

8 .4 THE EFPSCT OF INTERACTION REMOVAL ON THE STABILITY LB1IT 

The control methods have been shown to reduce f i r s t load angle 

maximums and introduce positive damping into the system. Because of the 

increase i n the positive damping the danger of multiswing i n s t a b i l i t y i s 

reduced and c r i t i c a l c l e a r i n g time becomes dependent on the f i r s t load 

angle excursion. Consequently any change i n the s t a b i l i t y boundary can 

be r e l a t e d to the change i n f i r s t load angle maximum r e s u l t i n g from the 

d i f f e r e n t control arrangements. 

An example of t h i s i s demonstrated for control of input power 

i n f i g . 8.19 where the change i n the s t a b i l i t y l i m i t can be r e l a t e d to the 

change i n f i r s t load angle maximum of machine 2 i n f i g . 8 . 1 . As the f a u l t 

i s applied to the terminals of machine 2 i t i s t h i s machine that i s most 

susceptible to i n s t a b i l i t y and i s consequently the l i m i t i n g factor i n 

determining the o v e r a l l system s t a b i l i t y l i m i t . 
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F i g . 8.19 demonstrates t h a t i n i n c r e a s i n g the system s t a b i l i t y 

boundary the use o f the combined a c c e l e r a t i o n and v e l o c i t y s i g n a l , w i t h 

i n t e r a c t i o n removed, l i n e ( e ) , i s the best c o n t r o l scheme f o r i n p u t power 

c o n t r o l . With t h i s c o n t r o l arrangement the increase i n c r i t i c a l c l e a r i n g 

time over the u n c o n t r o l l e d case i s 0.06s or 3 cycles. F u r t h e r f i g . 8.19 

only considers the change i n the f i r s t l o a d angle o f machine 2 and takes 

no account o f the d r a s t i c r e d u c t i o n i n the f i r s t l o a d angle o f the 

i n d i r e c t l y f a u l t e d machine, machine 1. T h i s i s one o f the most b e n e f i c i a l 

e f f e c t s produced by i n t e r a c t i o n removal and helps s u b s t a n t i a t e the argument 

f o r the added c o n t r o l complexity o f i n t e r a c t i o n removal. 

8.5 CONCLUSION 

The p o s i t i v e damping of i n d i v i d u a l a l t e r n a t o r s i s increased by 

the use o f an a c c e l e r a t i o n feedback s i g n a l . T h i s s i g n a l has t o be l i m i t e d 

or else both an increase i n the f i r s t l o a d angle maximum and a d i s t o r t e d 

response w i l l be obtained. These e f f e c t s are a s sociated w i t h the p r a c t i c a l 

output l i m i t s o f the r e g u l a t o r . The increase i n the l o a d angle i s most 

pronounoed when a s t a t i c e x c i t e r i s used as such an e x c i t a t i o n system i s 

powered from the machine t e r m i n a l v o l t a g e g i v i n g a low c e i l i n g voltage 

d u r i n g the f a u l t p e r i o d . The increase i n f i r s t l o a d angle o s c i l l a t i o n i s 

small compared w i t h the s u b s t a n t i a l p o s i t i v e damping i n t r o d u c e d i n t o the 

system by the s t a t i c e x c i t e r and i s thus p r e f e r r e d t o the r o t a t i n g e x c i t e r . 

The l i m i t on the a c c e l e r a t i o n feedback gain i s dependent not only 

on the r e g u l a t o r l i m i t s but a l so on the f a u l t s i z e , p o s i t i o n and d u r a t i o n . 

I n c r e a s i n g the r e g u l a t o r l i m i t s w i l l produce both a w e l l damped response 

and reduced f i r s t l o a d maximum. However f o r p r a c t i c a l and economic reasons 

the use o f r e g u l a t o r l i m i t s rjuch above 6 p.u. i s not f e a s i b l e . I n the case 

o f e x c i t a t i o n c o n t r o l l i m i t i n g the buck c e i l i n g l i m i t helps reduce the 

f i r s t l o a d angle maximum. 
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I f a v e l o c i t y s i g n a l t o the i n p u t power r e g u l a t o r and e i t h e r a 

v e l o c i t y or v o l t a g e s i g n a l t o the e x c i t e r i s used the optimum s i g n a l f o r 

f i r s t l oad angle r e d u c t i o n i s a p p l i e d . Hov/ever t h i s s i g n a l has t o be 

l i m i t e d because o f the tendency towards s e l f - i n d u c e d o s c i l l a t i o n s . Thus 

the optimum s i g n a l f o r f i r s t l o a d angle r e d u c t i o n does not n e c e s s a r i l y 

produce the best subsequent response. 

G-ood o v e r a l l c o n t r o l i s obtained i f a v e l o c i t y and a c c e l e r a t i o n 

s i g n a l i 3 a p p l i e d to the i n p u t power r e g u l a t o r . The a c c e l e r a t i o n s i g n a l 

s t a b i l i s e s the v e l o c i t y term and produces good subsequent damping w h i l e 

d u r i n g the f i r s t swing the v e l o c i t y term tends t o apply a more optimum 

c o n t r o l s i g n a l than a c c e l e r a t i o n feedback alone. This reduces the f i r s t 

l o a d angle maximum. This feedback c o n t r o l can be f u r t h e r strengthened 

by removing i n t e r a c t i o n . 

I f i n t e r a c t i o n i s removed the discrepancies between the l i n e a r 

and n o n - l i n e a r models, p a r t i c u l a r l y the use o f r e g u l a t o r l i m i t s , produces 

improper phasing g i v i n g a d i s t o r t e d response. This improper phasing can 

be l a r g e l y compensated f o r by an a c c e l e r a t i o n feedback s i g n a l . V e l o c i t y and 

or v o l t a g e feedback, depending on the r e g u l a t o r , cannot compensate the 

improper phasing. Consequently t h e b e n e f i c i a l e f f e c t o f removing i n t e r a c t s 

i s l i m i t e d , f o r l a r g e excursions, t o the cases where an a c c e l e r a t i o n 

s t a b i l i s i n g s i g n a l can be used* 

When con s i d e r i n g f i r s t l o a d angle r e d u c t i o n , i n t e r a c t i o n removal 

tends t o apply a c o n t r o l s i g n a l nearer the optimum d u r i n g the c r i t i c a l 

f i r s t swing. This produces a r e d u c t i o n i n the f i r s t swing maximum and a 

corresponding increase i n the s t a b i l i t y l i m i t . T h i s r e d u c t i o n i n the f i r s t 

swing maximum i s p a r t i c u l a r l y n o t i c e a b l e i n the machine, or machines, not 

d i r e c t l y a f f e c t e d by the f a u l t and i s one o f t h e major advantages o f the 

n o n - i n t e r a c t i v e c o n t r o l l e r . 
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I n general improved response i s obtained i f i n t e r a c t i o n i s removed 

w i t h an a c c e l e r a t i o n s i g n a l producing the c o r r e c t compensation. This .' 

improvement i n response being more pronounced when c o n t r o l i s a p p l i e d t o 

the i n p u t pov/er r e g u l a t o r than t o f i e l d e x c i t a t i o n . 
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CHAPTER 9 

RELLuBILITY OFTHE NON-INTERACTIVE CONTROL METHOD 

9.1 GENERAL 

The b e n e f i t s gained from using a n o n - i n t e r a c t i v e c o n t r o l scheme 

have been discussed. The r e l i a b i l i t y o f the n o n - i n t e r a c t i v e c o n t r o l 

method i n terms of o v e r a l l s t a b i l i t y and i n t e r a c t i o n e f f e c t s i s now 

i n v e s t i g a t e d w i t h p a r t i c u l a r r eference t o the second order i n p u t power 

r e g u l a t o r . 

'When i n t e r a c t i o n i s removed the system behaves l i k e two s i n g l e 

i n p u t / o u t p u t systems and the feedback gains can be increased t o t h e i r l i m i t 

w i t h o u t a f f e c t i n g the other channel. The I.N. p l o t s are l i n e s . 

I f p a r t o f the feedback across the machines i s l o s t i n t e r a c t i o n 

between channels w i l l e x i s t . The amount o f t h i s i n t e r a c t i o n can be assessed 

by the w i d t h o f the band produced by drawing the d - c i r c l e s . 

The o s c i l l a t i o n frequency o f the l o a d angle i n previous time 

response p l o t s i s between 3 and 12 rad/s, depending on the i n e r t i a . I t w i l l 

be shown t h a t the feedback arrangements t h a t produce the s m a l l e s t d - c i r c l e s 

w i t h i n t h i s frequency band have the l e a s t amount o f i n t e r a c t i o n . This w i l l 

be seen t o apply even though the d - c i r c l e s a t lower or hi g h e r frequencies 

may be o f great e r magnitude. 

9.2 THE EFFECT OF THE CROSS ES5D3HCK COMPONENTS 

The presence o f the d i f f e r e n t cross-feedback terms i n the c o n t r o l 

s i g n a l can be described by the connection o f the cross-feedback l i n k s (a) 

t o ( c ) i n f i g . 7.2(a). 

I f l i n k s (a) i n f i g . 7.2(a) are closed an a c c e l e r a t i o n component 

i s i n c l u d e d i n the cross-feedback s i g n a l which reduces the r a d i u s o f the 
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d - c i r c l e s and hence i n t e r a c t i o n a t high frequencies. However a t low 

frequencies i t i s the p o s i t i o n component, l i n k s ( c ) t h a t i s the dominant 

terra. This e f f e c t o f frequency on i n t e r a c t i o n i s demonstrated i n f i g . 9.1. 

A t high frequency curves ( e ) , ( f ) and ( d ) , which c o n t a i n an a c c e l e r a t i o n 

cross-feedback s i g n a l , show the lowest d - c i r c l e r a d i u s whereas a t low 

frequencies i t i s curves w i t h a p o s i t i o n term i n c l u d e d i n the cross-feedback 

s i g n a l , curves ( c ) and ( e ) , t h a t have the lowest d - c i r c l e r a d i u s . 

I f a v e l o c i t y term i s included i n the cross-feedback s i g n a l , 

corresponding t o the closure o f l i n k s (b) i n f i g . 7.2(a), i n t e r a c t i o n e f f e c t s 

are considerably reduced, r e l a t i v e t o the i n t e r a c t i v e study, as i l l u s t r a t e d 

i n f i g . 9.2 by comparing curves ( d ) , ( c ) and (h) w i t h curve ( a ) . Comparable 

graphs i n f i g . 9.1 show a r e d u c t i o n i n the radius o f the d - c i r c l e s d u r i n g 

the c r i t i c a l middle frequencies. I t i s the v e l o c i t y term t h a t i s dominant 

i s removing i n t e r a c t i o n i n the p r a c t i c a l system. I f the v e l o c i t y term, 

l i n k s (b) i n f i g . 7.2(a) i s n o t in c l u d e d i n the cross-feedback s i g n a l 

i n t e r a c t i o n e f f e c t s are only s l i g h t l y reduced r e l a t i v e t o the u n c o n t r o l l e d 

case. This i s i l l u s t r a t e d i n f i g . 9.1 by comparing curves (e) and ( f ) w i t h 

( a ) . The only exception t o t h i s i s i f p o s i t i o n cross-feedback alone i s 

a p p l i e d by c l o s i n g l i n k ( c ) i n f i g . 7.2(a) when the system becomes more 

i n t e r a c t i v e than the u n c o n t r o l l e d case. Shown i n f i g . 9.1 by comparing 

curves (g) and ( a ) . T r a n s i e n t p l o t s demonstrated t h a t w i t h i n d i v i d u a l 

machine a c c e l e r a t i o n feedback gains, lCphiJieO-0 » and p o s i t i o n cross 

feedback only the system was unstable. T h i s was v e r i f i e d by p l o t t i n g det T(p) 

as i n f i g . 9.3. I n c r e a s i n g the feedback gain KP62 t o 0.05 r e s u l t e d i n a 

s t a b l e system. 

The increase i n i n t e r a c t i o n produced by the p o s i t i o n cross feedback 

term i s f u r t h e r emphasised by comparing c r u v e 3 ( c ) and (h ) i n f i g 3 . 9.1 and 

9.2 where curve ( c ) f o r v e l o c i t y and p o s i t i o n cross-feedback produces more 
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i n t e r a c t i o n than j u s t v e l o c i t y cross-feedback alone, curve ( h ) . I f 

l i n k (a) i s closed i n f i g . 7»2(a) an acceleration term i s included i n the 

contr o l signal and helps s t a b i l i s e the position cross-feedback term. This 

i s i l l u s t r a t e d i n f i g . 9.1 by comparing curves (e) and ( f ) which produce 

d-circles of the same radius w i t h i n the middle frequency band. 

From the above discussion i f the non-interactive control unit f a i l s 

the only unstable condition w i l l exist i f p o s i t i o n cross-feedback i s retained 

alone with no i n d i v i d u a l acceleration feedback gain, kfh^ • Feedback round 

each individual alternator as a response shaping mechanism w i l l generally 

be used and unless t h i s has been l o s t the system w i l l be stable i n the 

Nyquist sense. 

I f complete cross feedback between the machines i s l o s t , i n one 

di r e c t i o n only, then depending on the f a u l t the machine may or may not be 

affected by the flow of synchronising power. Consider f i g . 9.4 where 

curve (a) shows the load angle response f o r a three phase f a u l t on bus 2 

with i n t e r a c t i o n between machine 2 and machine 1 only. Because the 

synchronising power flov/ing to machine 1 i s not counteracted by a change i n 

input power the benefits described i n section 7.8 are l o s t . However i n 

curve ( b ) , f i g . 9»4» i n t e r a c t i o n i s removed between machine 2 and machine 1 

counteracting the flow of synchronising power and giving the improved 

response. 

9.3 APPLICATION Oi' TK5 H0H-E-1TBBACTIV3 CONTROLLER TO REP 6 

For small perturbation studies where there i s a step change i n the 

input power no s i g n i f i c a n t benefits are obtained by using the non-interactive 

c o n t r o l u n i t over j u s t acceleration damping, f i g . 9»5» The e f f e c t of the 

cross feedback i s to produce a reverse swing i n the load angle of machine 1, 

an e f f e c t caused by incorrect gain settings i n the cross feedback elements* 
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I f the disturbance takes the form of a three phase f a u l t on the 

terminals of machine 2, the tendency to reverse swing i n machine 1 i s 

u t i l i s e d producing a substantial reduction i n the f i r s t load angle maximum 

of machine 1, curve b, f i g . 9.6. I n t e r a c t i o n i s substantially reduced on 

l a t e r excursions giving the improved response of curves (b) over j u s t 

acceleration damping, curves ( a ) , f i g . 9.6. 

9.4 SENSITIVITY OF TH& CONTROL UNIT TO CHANGES IN THE INITIAL OPERATING 
POINT. 

9.4-1 SHALL PERTURBATIONS 

The difference i n the response of the l i n e a r and non-linear models 

for small perturbations has been shown i n previous sections to be 

i n s i g n i f i c a n t . The maximum amount of in t e r a c t i o n w i l l be removed when a 

co n t r o l l e r i s designed and used about one specific operating point. I n the 

case of the l i n e a r model the i n t e r a c t i o n removal w i l l be complete. The 

influence on overall system response of controllers designed for d i f f e r e n t 

system conditions, than i n which they are operated, can be assessed by 

p l o t t i n g the radius of the d-circles against frequency as i n section 9.3« 

The data of Appendix H, with the model system of f i g . 2.7, was used 

i n conjunction with a second order input power regulator. Non-interactive 

cont r o l units were designed f o r three d i f f e r e n t i n i t i a l r o t o r angle settings. 

The values of the cross-feedback gains for these control designs are shown 

i n the table of f i g . 9.8. Application of these control u n i t s , at i n i t i a l 

r o t o r angles d i f f e r e n t to t h e i r design values, were found to substantially 

reduce i n t e r a c t i o n effects as demonstrated by curves (c) and (d) i n f i g . 9«7« 

Curve ( b ) , where i n t e r a c t i o n i s removed completely, and curve (a) of the 

uncontrolled machine are reproduced for comparison. The pertinant frequency 

range i s again between 3 to 12 rad/s. 
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The importance of t h i s r e s u l t i s that i t w i l l not be necessary 

t o change the feedback values i n the control u n i t with every change of 

loading condition, even with the synchronous machine operating at rotor 

angles i n excess of 60°. 

These points are further emphasised when considering large three 

phase f a u l t s . 

9.4.2 LARGS DISTURBANCES 

The small changes i n the cross feedback gains of the d i f f e r e n t 

c o n t r o l units produced l i t t l e e f f e c t on the i n t e r a c t i o n phenomena between 

machines for large disturbances as demonstrated by comparing f i g s . 9.9 and 

8.3 where no s i g n i f i c a n t differences are obvious. The improper phasing 

discussed i n section 8.2 again being compensated f o r by an acceleration 

feedback gain of 0.05 round each i n d i v i d u a l alternator. The danger of 

multiswing i n s t a b i l i t y has now been eliminated and the transient s t a b i l i t y 

l i m i t can be related to f i r s t swing maximum. 

Fig. 9.10 demonstrates that the d i f f e r e n t control units have 

ne g l i g i b l e e f f e c t on the f i r s t r o t o r angle maximum of either machine and 

consequently does not greatly a f f e c t the transient s t a b i l i t y l i m i t s . The 

importance being that the gain settings i n the control u n i t need not be 

al t e r e d as the system loading changes to produce the required transient 

s t a b i l i t y l i m i t . 

9.5 CONCLUSION 

The v e l o c i t y term included i n the cross-feedback signal was shown 

to remove a substantial amount of in t e r a c t i o n between o s c i l l a t i o n frequencies 

of 3 to 12 rad/3. I t i s the i n t e r a c t i o n e f f e c t s w i t h i n these frequencies 

which are most prominfnt. Consequently i t i s the v e l o c i t y cross feedback 

term that i s most important and, i f retained, always reduces the system 

i n t e r a c t i o n . 
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The only case when more i n t e r a c t i o n i s present than i n the 

uncontrolled case i s i f only position cross feedback i s retained. This 

would produce Nyquist i n s t a b i l i t y . However i f an acceleration damping 

signal, *^FtL i i s used the system would be stable. I n general, feedback 

round each i n d i v i d u a l machine would be used to shape the response. 

I f the non-interacting control i s l o s t i n one d i r e c t i o n the actual 

effe c t i t would have on the system i s very dependent on the position of the 

f a u l t . I f the ultimate f a i l u r e i n the group control scheme occurs where the 

cross-feedback signals are completely l o s t the machines w i l l s t i l l have 

t h e i r i n d i v i d u a l feedback controls operative and w i l l simply revert to t h i s 

conventional mode of operation. 

I f the non-interactive c o n t r o l l e r i s applied to the machine model 

of REP 6 i n t e r a c t i o n effects are substantially reduced especially i n the 

case of the three phase f a u l t . The author feels that i f the design model 

parameters of REP 2 are adjusted to give a load angle response similar to 

REP 6 f u r t h e r reduction i n i n t e r a c t i o n e f f e c t s would be achieved. 

The v e r s a t i l i t y of the design method was demonstrated when i t was 

shown that the control unit could adequately cope wi t h changes i n system 

loading without losing i t s non-interactive properties. This was shown to 

be true with the machine operating at load angle i n excess of 60°. 

Consequently i t i s not necessary to change the gain settings i n the control 

u n i t every time there i s a change i n the system loading conditions. 
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CHATTER 10 

CONCLUSION 

10.1 CONTROL DESIGN MaTHOP 

The l i k e l i h o o d of transient i n s t a b i l i t y l i m i t s the amount of 

e l e c t r i c a l loading that a pov/er system can be subjected to; consequently any 

contro l method that improves the transient s t a b i l i t y margin i s economically 

worth investigation. The control methods evolved i n t h i s work f o r m u l t i -

machine power systems, through the use of Linear Multivariable Control Theory, 

produced an increase i n the transient s t a b i l i t y l i m i t and improved system 

response, over the uncontrolled system, a t a l l disturbance levels. 

Multivariable control methods are developed because they allow 

inve s t i g a t i o n of a control scheme i n the frequency plane by wel l established 

classical techniques, notably Nyquist methods, which allows correct dynamic 

compensation to be easily predicted. Further they o f f e r advantages over 

optimum control methods i n that they do not require access to a l l the system 

states. Neglecting a system state i n an optimum design method can render 

an inherently stable system unstable. 

A convenient method of qual i f y i n g and quantifying the amount of 

i n t e r a c t i o n present i n any multi-input/output system can be achieved by 

p l o t t i n g the d-circles on the I.N. diagram. This method of quantifying 

the i n t e r a c t i o n was used extensively i n Chapter 9 and yielded r e s u l t s i n 

excellent agreement with the time response p l o t s . I t should be noted that 

the time response only allows a q u a l i t a t i v e assessment of int e r a c t i o n to 

be made. 

One of the d i f f i c u l t i e s of the design method was that the d-circles 

occasionally tended to hinder assessment of the c r i t i c a l feedback gain, 

see Section 7.9.2., but experience taught the r e l a t i v e importance of the 

locus of the d-circle band to the locus of the d-c i r c l e centres. 
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10.2 IMPSDANCS SV/ITCHHJ& 

To obtain a working knowledge of the Linear '.'iiiltivariable Design 

Method a delta connection of three machines was i n i t i a l l y investigated. 

Although not a p r a c t i c a l interconnection of machines such a system was used 

f o r i t s ease i n mathematical modelling. Working from t h i s mathematical 

background control schemes involving impedance changing at times determined 

by the control unit were evolved. 

One control scheme used capacitor i n s e r t i o n to quench machine 

transients. This i s similar i n manner to schemes suggested by other authors, 

f o r single machine systems, when working from either a p r a c t i c a l knowledge 
^ +v, 4. v u • (51)(52)(75)(84) . .. * n * u • (81) o f the systems behaviour or by optimum control techniques. ' 

One of the dangers of mathematical simulation i s that the engineer 

can lose sight of the physical system under study. This i s especially 

important i n the context of impedance switching where high power le v e l s , 

t y p i c a l l y k i l l o w a t t s or megawatts are involved. I t i 3 thus necessary, as 

was done throughout t h i s work, to relate any con t r o l scheme back to the 

physical system and to consider the p r a c t i c a l d i f f i c u l t i e s involved i n i t 3 

implementation. 

10.3 A COMPARISON BBT.TEEK EXCITATION CONTROL AND FAST VALVIN& 

Investigations i n t o input power regulator modelling demonstrated 

that to obtain representative results a modal of at least second order had 

to be used. With t h i s second order input power regulator model the machine 

and associated controls are of equivalent order to the machine with 

e x c i t a t i o n control; only the time constants of the d i f f e r e n t control stages 

d i f f e r . However certain feedback signals show the same general tendency 

i n both exciter and f a s t valve control. 
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Two exciters were considered; the classical r o t a t i n g exciter 

and the newer s t a t i c exciter which i s powered from the machine terminal 

voltage. 

For the multimachine power system both e x c i t a t i o n and input power 

co n t r o l using feedback signals describing the machines state improved the 

o v e r a l l response at a l l disturbance l e v e l s . Similar observations were 

recorded fo r e x c i t a t i o n control (Dineley et a l ^ ) and input power control 

(Dineley and Kennedy^4-)) when the c o n t r o l of a single machine system sub

jected to a 3-phase f a u l t was being investigated. However the feedback gain 

has to be l i m i t e d or, as i n the case of v e l o c i t y feedback, self-induced 

o s c i l l a t i o n s leading ultimately to i n s t a b i l i t y w i l l r e s u l t while too large 

an acceleration feedback gain tends to produce an overdamped response and 

slow voltage recovery on f a u l t clearance. 

Conventional voltage feedback to the exciter was also l i m i t e d as 

i t tended to produce a self-induced i n s t a b i l i t y . This effect v/as more 

noticeable with the s t a t i c exciter than the slower acting r o t a t i n g exciter. 

This phenomena was noted to have been the reason for previous authors^ ^ y ^ ^ 

using a s t a b i l i s i n g signal dependent on the machines state i n the overall 

control signal to the exciter. 

The effect of e x c i t a t i o n c o n t r o l on f i r s t r o t o r angle maxima was 

found to be very dependent on the exciter used, feedback parameter, feedback 
(9) 

gain, f a u l t and c e i l i n g l i m i t s . Dineley et a l demonstrated that accelera

t i o n feedback to the s t a t i c exciter of a single machine power system ac t u a l l y 

increases f i r s t r o t o r angle swings during 3-phase short c i r c u i t whereas 

other control signals s l i g h t l y reduced the f i r s t saving maximum. The work 

presented i n Chapter 8 also demonstrated t h i s to be true i n the case of 

multimachine power systems. The reason for the increase i n f i r s t swing 

i s a t t r i b u t e d to the low c e i l i n g l i m i t s of the s t a t i c exciter during the 
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f a u l t i n t e r v a l and that on f a u l t removal the acceleration signal tends to 

reverse the f i e l d f o r c i n g . This e f f e c t can be reduced by decreasing the 

buck c e i l i n g l i m i t . However subsequent control v/as improved by using an 

acceleration feedback signal. 

This tendency towards an increase i n the f i r s t rotor angle swing 

w i t h acceleration feedback to either the input power regulator or the 

r o t a t i n g exciter was also noted. However i t i s not so apparent as i n the 

s t a t i c e xciter. The actual magnitude of the e f f e c t i s again very 

dependent on regulator l i m i t s and feedback gain. 

Implementing the non-interactive controller improves i n d i v i d u a l 

machine cont r o l i n the multimachine power system by substantially reducing 

any harmful i n t e r a c t i o n effects w i t h i n the system. This i n t e r a c t i o n removal 

being nearly t o t a l f o r small perturbations. This then allows any change i n 

the input to, say, machine 1 to only a f f e c t t h i s machine while the other 

machines are undisturbed. 

f o r large disturbances the linear design method produced improper 

phasing due to the incorrect values of cross-feedback gain at high rot o r 

angles. However, t h i s improper phasing can be adequately compensated f o r 

i n both f a s t valving and e x c i t a t i o n control by acceleration feedback round 

each in d i v i d u a l machine. An improved system response results with i n t e r a c t i o n 

effects being kept to a minimum. 

Using the input power regulator improved system control over 

e x c i t a t i o n methods was achieved i n the multimachine system both with and 

without i n t e r a c t i o n present as the e f f e c t of any exciter i s severely 

r e s t r i c t e d by the large value of the f i e l d open c i r c u i t time constant, 

Hughes^^ has demonstrated a similar improved control over e x c i t a t i o n methods 

for the single machine system using f a s t valving. 

- 117 -



10.4 FUTURE TRKT-iDS 
(82) 

With the further development of turbine f a s t valving inevitable 
the control schemes developed i n t h i s work fo r both excitation and input 
power control become a p r a c t i c a l p o s s i b i l i t y . "ow, then, v / i l l such schemes 
influence the future development program of e l e c t r i c generation and 
transmission ? 

I n the underdeveloped countries new power systems are continually 

being b u i l t with the load centre e l e c t r i c a l l y and physically remote from 

the generating areas. This i s an id e a l s i t u a t i o n f o r i n t e r a c t i o n effects 

leading ultimately to multiswing i n s t a b i l i t y to e x i s t . I n Chapters 7 and 8 

c o n t r o l methods were designed which eliminated the tendency towards m u l t i -

swing i n s t a b i l i t y , by reducing i n t e r a c t i o n effects to a minimum, by either 

e x c i t a t i o n or input power control schemes. Thus, i t has been shown possible 

t o control t h i s harmful i n t e r a c t i o n phenomena by supplementary feedback 

signals to control units that already e x i s t on the generator. 

I n the area of e l e c t r i c generation conventional turbo-generators 

are reaching t h e i r maximum ra t i n g s . Turbo-alternators of 1300 KW are being 
(92) 

designed with a possible extension to a 2000 MVi' l i m i t . This maximum 

power r a t i n g can be substantially increased by using superconducting 

generators. Such generators not only allow increased power output but 

also demonstrate improved e f f i c i e n c y over the conventional machine. 

'with the superconducting A.C. generator many new technical problems 

have to be solved, but here l e t us b r i e f l y examine the e x c i t a t i o n control 

l i m i t a t i o n s . o f a 2000 MVA superconducting generator. For such a machine the 

rated f i e l d voltage w i l l be of the order of 5 v o l t s while the rated f i e l d 
(90) 

energy w i l l be approximately 25 MJ. Consequently to provide any s i g n i f i 

cant f i e l d f o r c i n g exciter c e i l i n g l i m i t s of 10 KV may well be necessary. 

Also any p r a c t i c a l superconducting machine design must shield the superconduct-
(91) 

ing f i e l d T/inding from a l t e r n a t i n g f l u x e s . This i s achieved by means of 
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an eddy - current screen round the f i e l d winding, as shovm i n the IJR.D. 

design i n reference ( 9 l ) . This riot only shields the f i e l d winding but 

means any change i n f i e l d f l u x w i l l take a long time i n penetrating t h i s 

s h i e l d . Further there w i l l be a severe l i m i t on the rate at which the 

f i e l d voltage can be changed due to the inherent physical properties of 

superconducting windings. 

A superconducting winding consists of filaments of superconductor 

within a copper matrix. I f the change i n f i e l d voltage i s too rapid l o c a l i s e d 

hot spots are formed within the copper matrix r e s u l t i n g i n the superconductor 

going normal. 

This then suggests that control of prime-mover power w i l l be the 

best way of providing control to the superconducting A.C. machine. I t has 

been demonstrated that there i s adequate capability i n turbine f a s t valving 

to control not only f i r s t rotor angle swing but also subsequent sv/ings and 

to give good voltage regulation. 

10.5 FAST YALVIN& 

Fast valving techniques have been shown to produce a stronger 

control action than excitation methods i n both multimachine and single 

machine power systems because of the small time constants involved with 

t h i s form of control action. 

Capacitor switching can produce large reductions i n the f i r s t 

rotor angle excursion but subsequent control i s d i f f i c u l t because of the 

number of high power switching operations involved. However f a s t valving 

can produce both a sub s t a n t i a l reduction i n f i r s t rotor angle maximum and 

good subsequent control action and i s thus preferred. 

Input power control i n the multimachine system can be further 

strengthened by removing interaction e f f e c t s . 
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The strongest form of input power control i n the multimachine 

system i s achieved by using a combined feedback signal incorporating both 

v e l o c i t y and acceleration feedback round each individual alternator; a 
(34) 

conclusion also reached by Dineley and Kennedy for the single machine 

system. The acceleration signal s t a b i l i s e s the v e l o c i t y term and helps 

produce good subsequent control while the v e l o c i t y signal helps produce 

a more optimum control action during the f i r s t rotor angle swing. Further 

reduction of f i r s t rotor angle maxima r e s u l t i f interaction e f f e c t s are 

removed when a near optimum control signal i s achieved. Subsequent control 

i s also improved. 

However with both interaction present and i n t e r a c t i o n removed the 

acceleration signal has to be limited or e l s e slow voltage recovery on 

f a u l t removal would r e s u l t . With a c o r r e c t l y selected acceleration feed

back gain good control can be achieved giving good voltage regulation 

e s p e c i a l l y i n the case of the non-interactive system. Similar r e s u l t s 

showing improved voltage regulation using f a s t valving have been published 

by Dineley and Fenwick^"^ for the single machine system when a machine 

model including stator transients was used. A detailed simulation of the 

prime-mover and governor was also incorporated. However the s i m i l a r i t y 

i n the r e s u l t s obtained by Dineley and Fenwick and those presented i n t h i s 

work suggest that the models used in t h i s multimachine program are adequate 

for o v e r a l l control investigations. 
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APPENDIX A 

DEVELOPMENT OI' THE SYNCHRONOUS ?.IACKDIE MODEL 

A . 1 5-WINDINS MODEL 
(2) 

Park's equations for a synchronous machine with rotor damping 
e f f e c t s represented by two short - c i r c u i t e d damper windings ( f i g . A . 1 ) with 

(38} 

saturation e f f e c t s neglected are given by Hammons and Winning and 

derived by Adkins as 

j? Xaef id. 

e-f — O O if 

0 O O 
• 

0 O 0 0 La 

( A . 1 ) 

where "p-cl/dt , , , ^Pt> , X-T> &na£ X Q are complete 

reactances, OCOLOL and OCCL({, are mutual reactances and u>t> - J?7T. •/-©. 

The mechanical eauation of motion i s 

( p „ . TV - ft) -7T. A (A. 2) 

= - ^.7T.-f (A.3) 

Neglecting mechanical losses the mechanical input power i s equal to the 

air-gap power 

?/w » 7 v / r T ; a (A. 4) 

7V, the r e a l power at the machine terminals i s given by 

?T - / QT = X - r . £ * ( A . 5 ) 
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The negative sign and the complex conjugate being used so as to 
(12) 

conform to the convention of capacitive reactive power as p o s i t i v e . 

. The speed equation i s given by 

^ = ] + (A . 6 ) 

The fluxes l i n k i n g the respective windings are 

(pcL = -OCot.MaL + DCa.cC. if + JCcxd. io (A . 7 ) 

$f = -OCcud.Axt + OCf. if + -Xfr.jiv (A.8) 

0j> = -DCacL.XaL + X-pD.sif + D<j>.yL-p (A.9) 

0q, = ~ Xtf,. ^ + • -*><3 (A.10) 

0Q = ~'X.c\q/,.^ic^ +X<S?.sLQ. (A.11) 

and the e l e c t r i c a l torque i s given by 

Vr = ( 0 d . if, - <jkL.^).2L_ (A .12) 

These equations can be s i m p l i f i e d by approximating CCfb^'Xcud 

i n equation (A.-]). T h i s s i m p l i f i c a t i o n used by Hammons and V / i n n i n g ^ ^ 
(2 ) 

and further explained by adkins gives 

0 f y - - -3Ccp Cp). A.^ (A.14) 

where XdCp) , 3Ŝ 7̂>) and 6(j>) are operational impedances approximated by 

(/-y - p . T ^ o ) 

GC-p) = • (' + p-~*) (A . 17 ) 

I f a base assuming unit excitation produces unit armature voltage then 

euqation (A.13) becomes 

4>6L' - -x&Cp). id •+ 6 Op), ef (A.18) 
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Equations (A .13) and. (A .14) can be expanded and written using the 

unit excitation/unit armature voltage base per unit system as 

I -h pTcfo /-i-pTc/o' 

r> 1 ~ 11 

•fif (A.19) 

T T ^ T T ^ ^ - ^ ( A . 2 0 ) 

where 

A « oco/ - -sect' -xaL " = '. T~Q£ " 
£> 2: -XdJ --XCL" ~Tctt>" 

occt'= TCL' OCq,"* -XQ. TO," 

W - Tolo" TolJ - TJo" 
_ /1 /1 

— T c / o — T p 

( 58^ 

Further s i m p l i f i c a t i o n and Hammons and Winning introducing 

the variables 

- . _ oca- -xd-' . j\< . . 

ê " = 0<* + acrf". ̂  CA.23) 

<2o6" - - + (A.24) 

y i e l d s a s i m p l i f i c a t i o n of the voltage equations (see (A.l)) 
eu «r -^va,jioL cpd - a, (A.25) 

- ~^<x.M^ -t-J? fa + ( A . 2 6 ) 

t o 

ed = -ira-iot < - ^ - 4 ( A " 2 7 ) 
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6*. = - K a . . ^ -_P ect"-+iJ.Qj,"_ -XldL.JLdl (A.28) 
Ob 

where 

?• V = ^ - g V - ^ ' - ^ ' ^ - V ' + O (A . 30) 

After rearrangement of equation (A.22) and substitution of 

equations (A.30) and (A .31) into (A.19) (A.20) and (A.29) 

F i n a l l y s u b s t i t u t i n g ^ and (fa from equations (A.23) and (A.24) 

i n t o (A.12) y i e l d s 

7>r = QcL.Uxt + ". -t- (Xcj, VCU "). Xdl. L^. ( A # 3 2 ) 

A. 2 3 ieiflDIK& MODEL 
I f the damper c i r c u i t s D and Q i n f i g . (A . i ) are omitted then iD 

and iQ i n equation (A . i ) are set equal to zero then the equations s i m i l a r 

to (A , i 9 ) and (A .20) a f t e r substitution become 

0cL = --XaL-iccL* JrJ - -xd'.td + / pp (A. 33) 
/ -i- p.iHo i+T>rrdo' 

(tty: --X^.Xq, (A.34) 

Introducing ' 

^ l+p.Tdo I +p.Tcto' (A.35) 

Again using the s i m p l i f i c a t i o n used by Kammons and Wi n n i n g ^ ^ 

y i e l d s from (A.25) and (A.26) 
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£oL = - T e x . . 6 * + OC%.U^ (A.36) 

eq, - -'Ycx.Mi - -Xd'. JLCL + 2 ^ ' U.37) 

Rearranging (A.35) gives 

0.€a'= L ( e f - fee* - OCcL%C°t - Sa') 
r * 7 » D ' * (A.38) 

Further substitution into (A.12) y i e l d s 

Vt= (e^ + ('X^-'XdL').jid ).jLc^ (A.39) 

An equivalent damping c o e f f i c i e n t can be incorporated i n 

equation (A.2) i n the form of a v e l o c i t y dependent terra to account f or 

pos i t i v e sequence damping such that 

f £ = (pM - to,. s ) . z t £ . u . w ) 

hi 
During the steady state equations (A.36) and (A,37) become 

S r ^ = - - Y c i . T c j , -OCcl.lbC •+ E^0 (A.2,2) 

Because the stator quantities can be represented by slowly changing 

phasors the steady state equations are s t i l l v a l i d during the transient 

period. 
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APPENDIX B 

THE NETWORK EQUATIONS 

B.1 STEADY STATE 

The r e a l and reactive power at any bus k, i s 

'Pk- J.G>k = Bk. Tk. ( B - i ) 

.'. X * = ^ -A®* (B .2) 

The performance of the network i s given by 

X u o s - Y&us. E:®os (B .3) 

As ground i s selected as the reference node ( n - i ) simultaneous equations 

of the form 

n 

(B .4) 

are set up. 

Substituting (B.2) into (B.4) 

4. 4& 

Equation (B.5) provides a set of simultaneous equations that 

must be solved by an i t e r a t i v e process to obtain the f i n a l bus voltages. 

(B .5) 

where 
n 

(B .7) 

where 

ijtri = the l i n e charging between buses k and £ assumed as 
a 

a shunt impedance s p l i t i n two and lumped at both 

ends of the l i n e . 
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y K s m w = any shunt admittances at bus k. 

and Yl<e = - J j ^ ( B-8) 

When the f i n a l bus voltages have been obtained the power flow, 

down each l i n e and the power l o s s i n each l i n e i s calculated 

where Etc . Lj = current contribution a t bus k due to l i n e charging 
Z 

then 

The power l o s s i n l i n e k£ i s given by the algebraic sum of 

equations (B.10) and (B.11) 

B.2 TRANSIENT STATE 

By representing loads as s t a t i c admittances to ground 

equation (B .5) i s modified as now the impressed current at the bus i s zero 

and (B .5) becomes 
n-tm 

£ _ , T I C K < *S 

t4-K and during f a u l t , i f 
3 phase »<^f 

(B.13) 

and 

4 = I 
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APPENDIX C 

DEVBLOPMKlfr OF THE LDiSAR SYSTEM KDDKL 

C.1 LSACHIKE EQUATIONS 
th 

The machine equations for REP 2 are for the k machine 

TK 

where 

( C 1 ) 

T V * - JQTK* Xrv.E**" ( C . 2 ) 

t!K = I E'l^ . Cos S K ( C . 3 ) 

-P'J< = IB'l*. Sin. S K ( C # 4 ) 

E « = + J . / ' K ( C - 5 ) 

e 

= « O k - -S.TT.f ( C e 7 ) 

J ^ ± k - <EL* (C.8) 

G K - I £9 ,01 K (C .9) 

, £ ' ^ - V I E ^ ' / J - /Ed-/:' ( c - 1 0 ) 

^ a n S h * r lEcL'l« ( c . n ) 
/ E * 7 „ 

The phasor diagram described by these equations i s shown i n 

f i g . C.1. 

- 130 -



L i n e a r i s i n g by using a f i r s t order Taylor expansion around the 

i n i t i a l operating point y i e l d s 

A X-r* = A Ek- - A E T V 

ACPT k - j QT«) = hTT«.E^ + Trol<.AE'* (CM,) 

AeV= A IE . ' lk . Cos S 0 I C - / E o ' l ^ . S / n - ^ o ^ . A S * (c.15) 

A-P'k-- AlE'lx.SinSoK + / E O / K . & S S O * . A S K ( C I 6 ) 

A E I < - - AeV +-j.A/ 'ur (C.i6a) 

Aw^= CAT^^ - ASfr,y-£-7T (c.1'7) 

A ^ f c - AtOfe; (c.18) 

I E«,'/* 

A £ h K « - &s . Sin S w . A /%'/«< 

lE-fyo Ik-
Substituting (C.20) into (C .2 l ) 

A S U k - J^L S»n fefc-oO . A l E ' / k ( C 2 1 a ) 

lELblic Cos CStyo - &>) 

A Scf,ic - A S ^ K = A (c.22) 
Substitution of equation (C.20) and (C .2 l ) into (C.19) 

AIE'Ik = G K . A I g ^ / k - A IE'/* 

where 

G« = / E-o . dps2 f &frp - S o V 

(C.19) 

(C.20) 

(C.21) 
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C.2 SYSTEM EQUATIONS 

The network performance equations (B.13) are l i n e a r i s e d to give 

for bus k 

^ifc | J i c (c.25) 

Assuming no change i n the l i n e admittances on the occurrence of 

a f a u l t and writing the voltages AE* , n+\, , n+ir» 

as A £.£ Jt - 1,2, rn and A , = 2/ , n as 

A£-r* , ',2, 

gives 
n in 

(C.27) 

Equation (C.27) assumes that each machine i s connected to each and 

every other bus. I n general only one machine w i l l be connected to any one 

bus i n the order that machine 1 i s connected to bus 1, machine 2 connected 

to bus 2 etc. Then equation (C.27) becomes for bus k and machine k 

Le t 
)jlU ljtc& for K £ iv» 

(C.28) 

(C29) 

and y j f u = yicS. fe» i< > 

then 

(c.30) 
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which can be v/ritten i n the matrix form 

C Y ] * £ . A E t 1 = - L A E ' ] (c.3i) 

or 

which i s similar to, for bus k and machine K 

3 (C.33) 

Equation (C.33) y i e l d s a dire c t r e l a t i o n s h i p between the 

voltages a t any of the buses and the machine i n t e r n a l voltages. 

I f an i n f i n i t e bus i s included i n the network t h i s bus becomes bus 

number n. Because of the nature of an i n f i n i t e bus AE-m=0 . 

Consequently equation (C.30) would become 

<C*I (C.34) 

This changes the order of the Y matrix i n equation (C.31) which 

would a l t e r the matrix inversion i n equation (C .32). The i n c l u s i o n of an 

i n f i n i t e bus i s optional within the program. 

C„3 CONNECTION OF THS MACHINE AND NBTii'ORK EQUATIONS 

The l i n e a r equations (C.13) - (C.24) and (C.33) are written 

with state variables and input vectors are described as 

ATivi - cit An>, = oc, 
« 1 
• 1 
• 1 

1 A"PfMM = civ* A u)M - X** 

I I 

A I E ' I , - X i r w i - i 
(C.35) 

AlE_'U ^ 3 f M 
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Assume i n i t i a l l y 
A S| = Xru-H 

( C 3 6 ) 

Substituting (C.35) and (C.36) into (C .15), (C.16) and (C .5) for 

machine k 

— / £ O ' / K . ( S U X So* - j .Cos S O K ) , X»̂-*-« 
L e t t i n g _ g O M . ^ . j £ C>V 6oK 

Equation (C.37) becomes 

(C37) 

(C38) 

and 

(C39) 

Substituting (C.39) into (C.33) and (C.13) 

(C.40) 

A r-rv = 

Substitution of (C.41) into (C.14) and taking the REAL part only 

( C 4 1 ) 

4 c ' 
v/here. 

(C.2,2) 

+ I T . K . & * 1 ^ 
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J. ZCd* fa 

IjZM s l2£f\L. L £o 'k * . / . y*t . /£* ' /« J . ^ J £77 

J * * ' * (C.43) 

Substitute (C.42) into (C.17) 

~ ^ Q i K « ^ a i * J f a ^ * < ] - ISicLij.-fTV. O c J (c.44) 

Taking A & K into account from (C.22) as 

2Crv\+C — A S k « = X r n + ̂  (C.45) 

gives 

where 

r^llC - Hie / a * . j _ . S'Vl (8q,o- SO)K 

IEO\K COS C6^o-So)tc 

Rewrite (C.24) as 

and f i n a l l y O C M + - i c = (C.49) - 143 -



The f i n a l set of l i n e a r equations are given by (C .46), (C.48) 

and (C .49) . 

C.4 CALCULATION 0? TUB OUTPUT MATRIX FOR VOLTAGE FEU)BACK 

The magnitude of the terminal voltage i s given by, 

I E T / V ? = (E-TS)1 + IMA* (ET^ (C.50) 

which on l i n e a r i s i n g gives 

A I E T K I = C£T«:«>) . &LeeAL(E-T$]+ lMfl6feT^).ADMftfa^£T^1 
/ H T / * C , 1 

(C.51) 

Substituting equation (C.39) and (C.33) into (C .5 l ) gives 
A* 

y * A /E - r l x r r ^ k ^ p W ' l 

where 

fewcJL = / ? £ * 4 -/?£**. ( g r p . Lfkrg . j > g * ] 

L " / E r l k o " j 

using (C.45) and (C .2 l ) gives 

where 

/£• ' (g Cos ( 6 ^ 0 - S o ) * 

(C52) 

(C.53) 

(C55) 
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Reference 

t.xd 1 

F i g . C.1 Fhasor Diagram Cn Which The Linearised Model i s Based 



APHSKDIX D 

• A DESCRIPTION OF TKB MULTr.'ACHIHB DIGITAL PROGRAM 
(25) 

The high l e v e l language FORTRAN IV and Double Pr e c i s i o n 

complex variables used throughout. I t was found that due to the integration 

and i t e r a t i o n the cumulative error was excessive when single precision 

variables were used. 

SUBROUTINES CALL3D 

MAIN f i g . D.1 

Data i s processed by the MAIN program. This section contains the 

machine model and also c a l l s the other subroutines at the required moment. 

MODAT f i g . D.2 -

This forms the bus admittance matrix and also c a r r i e s out any 

alt e r a t i o n s to t h i s matrix i f necessary. 

LFLOii/ f i g . D.3 

This c a r r i e s out the load flow solutions i n the steady and 

transi e n t state. 

EUL5R, MKULER. RKFIX, RKVAR 

These are the four integration routines a v a i l a b l e . 

PLOTTY 

This plots out any s p e c i f i e d three variables of the system. 

S c a l i n g i s pre-set. 

DIMAG, DREAL 

These are two function subprograms that f i n d the r e a l and 

imaginary parts of a number. 

- 145 -



S E A T ) "DATA, 

1 
C A L L MOt?AT 

* 

U P D A T E T I M E 

C A L L L F L O W 

C O M P U T E iMITfAL 

C O N t a T l D N S 

W R I T E i N l t l f t L C O N D I T I O N S 

AtND S Y S T E M fARANCTEeS 

N O 
FAULT 

CHANG 

C A L L . P L O T T Y 

C A L L M O O A T 

CALL LFLOW 

W R I T E 'Pucrr 

reef»2. 

U P D A T E . E H 
A T E A C H 
ITERATION 

N O 

COMPOTE 
T E R M . -pOYJERS 

E.ND 
a P i N T E & R A f l 

C J D M F O T C S . 
\NPl»TS 

I N T E Q C W T O C . 

C A L L I N T . R O U T I N E 

F i g . D.1 Flow Diagram Of The Non-Linear Multi-Machine Program 



FORM POWefc 
MAT Six 

Y£* 

S T A R T I T E K A T / O N 
COUNT 

S E T M A X I M U M 
V O L T A G E , C H A N G E . 

E»US COUNT, p 

Y E S 

Y E S 

S L A C K ' S O S 

FAULT 
NO 

E1"*'- "Po- i ^ P 

NO 

E L p ^ E p ^ A C C 

Yes 

C O N T I N U E D ON NEAT " P A G E . 



NO NO E» REP=l INIT = 

Y E S YES 
(eETV)R 

( £ > 
CONVERGED 

NO 

M > V A N C £ I T E R A T I O N 

CSUNT 

NO 

C O M P O T E L I N E P O W E R 

FLOVslS 

F i g , D.2 Flow Diagram For The Load Flow Subroutine, LFLOW. 



Y6S 
C H A N G E . = I 

NO 

Y £ S 
I N I T » 0 

FOftn M A T R I X O F 
L_IN£ A D M I T T A N C E S 

F O & M fcUS ArDNtTTANCE. 
MATf tJJ t 

Y e s 
CHANCE.-( 

NO 

M O D I F Y Y & U S > T O 
ACJODUMT F O R M A C H I N E . 

I M P E D A N C E & B U S LOAVD 

F i g . D.3 Flow Diagram Of The Subrout ine MODAT. 



APPENDIX B 

A DESCRIPTION 0? THE LDKAR PROGRAM 

(25) 

The h i g h l e v e l language FORTRAN IV and Double P r e c i s i o n 

complex v a r i a b l e s were used th roughou t . 

SUBROUTINES CALL3D 

MAIN f i g . E.1 

The MAIN program con t a in s the machine model and c a l l s the o ther 

subrou t ines a t the r e q u i r e d moment. The systems n o n - l i n e a r equat ions are 

s o l v e d t o o b t a i n the i n i t i a l o p e r a t i n g c o n d i t i o n s about which the 

l i n e a r i s e d model w i l l ope ra t e . 

I K V . 

Equat ions (C.32) r e q u i r e a m a t r i x i n v e r s i o n . Complex l i n e 

impedances are used and consequent ly the r o u t i n e must have the a b i l i t y t o 

i n v e r t a complex m a t r i x . The method used was based on the CACM 

A l o g o r i t h u m 4 2 . ^ ^ T h i s i n v e r t s a square m a t r i x , A , by a p p l y i n g a s e r i e s 

o f e lementary row ope ra t ions t o the m a t r i x t o reduce i t t o the i d e n t i t y 

m a t r i x . When these ope ra t i ons are a p p l i e d t o t h e i d e n t i t y m a t r i x t h e 

i n v e r s e o f the m a t r i x A r e s u l t s . 

Other subrout ines c a l l e d a r e , MODAT, LFLOV/, EULER, MEULKR, 

RKFIX, RKVAR, FLOTTY and the f u n c t i o n sub-programs DIMAG-, DRSAL. 

These are discussed i n Appendix D. 
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KE/VD IN 
DATA 

5 
LOAD PLCVvJ TO 
OBTAIN //NJT/AL 
5YSTEr\ <DPEe. 
CjONblTIONS 

? B l N T O U T 
INIT/AU STEAtSf 
STATE. GONtoiTtoNS 

J 

T H £ I N I T I A L . © • P E R A T I I H S P e \ N T . 
CLAU.CU l_ATl=- A-Nt> P f i l M T - " . 
P L A N T M A T R I X . A I Lf? l \ / lNG MftTftJX. . 6 ' . 
"DISTURBANCE M A T R I X . . "D 

T E S T Po<? 
P A u k L X 

3 

C A L C U L A T E . 
lNT£CbRATD«e 
I N P U T S ULATIO 

Y e s 

C A L L . T W E 
l fMT£<i(?ATloN 

R © O T l N £ 

NO P R I N T 
R E S U L T S 

Y E S 

F i g . E .1 Flow Diagram For The L i n e a r i s e d Mul t i -Mach ine Program. 



W O R K MATRIX. 

A * 

A . 

3 1 = I 

/NTEr?CWAM6E 
ROWS 

YES 

M A T K / X 
S I N G U L A R 

NO 

A£T,KVA/*(XX) 

A C L I N M - ^ - K ^ • Afl_ I NN - t l - lO 
- A -CX . M + / - K W A C 

K - - I . N N 

NO 

Yes 
r 

PUT \rs> 
M A T R I X 

A 
I N T O 

AA 
Al 

MATRIX TO B E INN/CRTCD. 
INVERTED MATRIX. 

F i g . E.2 Flow Diagram For The Complex M a t r i x I n v e r s i o n 
Subrout ine INV, 



APPENDIX F 

DIGITAL PROGRAM TO PLOT INVERSE NYQUIST DIAGRAMS 

(25) 

The h i g h l e v e l language FORTRAN IV and complex v a r i a b l e s 

were used t h r o u g h o u t . 

SUBROUTINES CALLED 

MAIN f i g . F.1 

I n i t i a l f r e q u e n c y data i s r e ad , and a l l ou tpu t i s p r i n t e d , f r o m 

t h i s s e c t i o n . The o t h e r subrout ines are c a l l e d f r o m the MAIN program a t 

t h e r e q u i r e d t i m e . 

The d - c i r c l e s are no t p l o t t e d by the computer because; 

( i ) The p l o t comes out on t h e l i n e p r i n t e r and consequently a low 

accuracy i s o b t a i n e d . T y p i c a l l y f o r a x i s -5> y i s ±0.25 and 

x i s +0.1. 

( i i ) No g r a p h i c a l d i s p l a y t e r m i n a l s were a v a i l a b l e a t Durham a t 

t h e t ime o f w r i t i n g the program. 

F i g . F.1 shows t h a t the MAIN program i s completed once f o r each 

d i a g o n a l element o f Q ( p ) . Only one PLOT m a t r i x i s c a l l e d . I n des ign ing 

the program two o p t i o n s were a v a i l a b l e ; 

( i ) Have raxra PLOT ma t r i c e s a v a i l a b l e and dea l w i t h a l l t he q i j elements 

t o g e t h e r . 

( i i ) Use one PLOT m a t r i x and deal w i t h each element q i j . i n d i v i d u a l l y . 

The l a t t e r method was s e l e c t e d as the computer t ime used was 

s m a l l r e l a t i v e t o t h e l a r g e amount o f memory s torage needed w i t h the f i r s t 

o p t i o n . 

I N V . 

See Appendix E . 

PLOTTER f i g . F.2 

T h i s p l o t s the I . N . diagrams. F i x e d scale values are used as 

w i t h v a r i a b l e values the sca le on each p l o t cou ld be d i f f e r e n t . 
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TRFN 

This s p e c i f i e s G(j>) i n t r a n s f e r f u n c t i o n f o r m and also s p e c i f i e s 
the elements i n t h e c o n t r o l l e r mat r ices \£C}>) and LCp) . I f GCp) i s t o 
be computed f r o m the s t a t e space equat ions IKFACS i s c a l l e d . 
INFAC5 f i g . F .3 

T h i s i n p u t s the A , B and C mat r i ces and forms SCp) , 
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fcEAb LATA, 

T l = I . N 

CA.LL T O Foitm 
G . 6a . fc* kc . L 

K e Ka. Kb. Kc 

I 
I NVEfiT G 
C A L L INV/ 

Q = k . G , 

I N V E N T Q. 
C A L L INV 

_ _ L _ 

IINl "PLOT 

W r t l T C . «£5W_T 
"PRINT RESULTS 

W r t l T C . «£5W_T 
"PRINT RESULTS 

1 

P L O T 

N O 

NO 

UPDATE u& 

? 

F i g . F . 1 Flow Diagram For The Inverse Nyquis t Array Design Program. 



NO 

S T A T E M A X . 

D/N&Msiofgs 
O F " P L O T " 

i 
REA"£> S C A L E . 

V A L J E S 

A X I S 

INVERSE N Y Q U f S T P L O T . 

S C A L E , T H E (SEAL *Nt> i M A G J N A f t Y 

PAO.TS O P "CHNS/* A M l i STDCE irJ 

S T E £ / W £ 
S T E / 2 M X , CESPECTVVSLY 

C A L C O L A T E . 
X. ftN£>YVftUJE 

FOR. "PLOT 

Yes DIMENSIONS 

NO 

f C£TLM9V1 Q£XM2ti 

. F .2 Flow Diagram For The Inverse Nyquis t P l o t t i n g Subrout ine 
PLOTTER. 



ftEAD IN D A T A ClNO-UOINC 

A. ft A N D C M A T R I C E S ^ 

WrtlT£ A . 3 . S C . 

ool j W 
c = c * j w 

I 
C O M P O T E . 

CpX-fO 

C A L L / / W 

RETURN 

F i g . F .3 Flow Diagram For The Subrout ine INFACE. 
T h i s Subrout ine Computes The P lan t T r a n s f e r F u n c t i o n 
M a t r i x G ( p ) . 



API*ENDIX 6 

MA-ciTirrii: AND SYSTSM PARAMETERS 

The machine parameters have been used p r e v i o u s l y by Dandeno 

and Kundur. ' 

"XdL " 0.978 p . u . 

"0Cq, = O.616 per u n i t 

ZCcL = 0.325 p . u . 

T t f o ' = 4.58 s. 

H v a r i e s between 2 - 6 KJ/jtVA 

kef v a r i e s between 0 and 0.01 

SYSTEM PARAMETERS 

V - system ( f i g . 5«1) 

~2.fx = v a r i e d between 0.01 - 0.2 p . u , 

. 2 / 3 = 0.12 p . u . 

2 3 4 = 0.12 p . u . 

2 . 0 4 . = 0.24 p . u . 

Bus 3 be ing sub j ec t ed t o a $ f a u l t o f v a r y i n g t ime l e n g t h . 

X - system ( f i g . 2.7) 

Z.13 = 0.12 p . u . 

2.2.3 ~ 0.12 p . u . 

234. = 0.28 p . u . 

Bus 3 be ing s u b j e c t e d t o a 30 f a u l t o f v a r y i n g t ime l e n g t h . 
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AKSS-iDIX H 

MACHINE DATA 

H i = 6 KJ/KVA 

DCcL, = 0.978 p . u . 

OCtj,, = O.616 p . u . 

3Cct, = OGj,, = 0.325 p . u . 

KcL, = 0.01 

SYSTEM DATA - Model system f i g . 2.7 

Z , 3 = 0.12 p .u 

= 0.12 p.u 

234- = 0.24 p.u 

Vs = 1.0 p . u . 

PLANT 1'ATRIX , A 

-0.261799 0.0 -31.121246 

0.0 -0.523599 25.595294 

1.0 0.0 0.0 

0.0 1.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 

DRIVIN& I/ATRICES 

B, 26.179939 0.0 

0.0 52.359878 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

H i = 3 KJ/KVA 

OCotx = 0.978 p .u . 

oCq,* = O.616 p . u . 

OCdl = X 4 X = 0.325 p . u . 

kcti = 0.01 

12.797647 -27.72003 3.168726 

-62.242492 6.337453 -55.440006 

0.0 0.0 0.0 

0.0 0.0 0.0 

0.0 -0.218341 0.0 

0.0 0.0 -0.218341 

D, 0.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.165785 0.0 

0.0 0.165785 
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REGULATOR C0H3TAKTS 

I n p u t Power Regula to r 

= 0.08 s T s = 0.75 s =1.0 

L i m i t s = + 3»0 and 0.0 p . u . 

F i e l d E x c i t a t i o n Regu la to r 

S t a t i c E x c i t e r , Tex = 0.03 a 

R o t a t i n g E x c i t e r , Tex = 0.5 s 

Gain , k = 10.0 

s o u CE 

\ 1 JUN 1974 
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