

Durham E-Theses

Ground deformation associated with tunnelling and deep excavations in clay, with particular reference to London clay

Myrianthis, Michael L.

How to cite:

Myrianthis, Michael L. (1975) Ground deformation associated with tunnelling and deep excavations in clay, with particular reference to London clay, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8233/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

GROUND DFFORMATION ASSOCIATED WITH TUNNELIING

AND DEEPP EXCAVATIONS IN CLAY, WITH PARTICULAR
 REF'ERENCE TO LONDON CLAI

The copyright of this thesis rests with the author No quotation from it should be published without his prior written consent and information derived
from it should be acknowledged
by

MICHAEL L. MYRIANTHIS
belng a Thesis submıtted to the Faculty of Sclence, University of Durham for the fulfilment of the Ph.D. degree.

DURHAM, ENGLAND 5th MAY, 1975.
21.

ABSTRACT.

This work lis mannly dırected towards problems of ground stabılıty and ground deformations caused by tunnelling and deep excavation an clay. The particular question of surface settlement assoclated with soft ground tunnellıng has been critically examıned. Derıvation of semıempırıcal relatıonshıps has facılıtated settlement predıction.

A detalled analysis has been carried out on the results of an extensive research programme of $1 n-s i t u$ measurements aımed at determining ground movements created by
a) hand excavation of a 4.146 m dameter shıeld-drıven tunnel at a depth of 29.3 m below ground surface, and
b) the excavation of a 6.1 m long, 0.8 m wide and 15 m deep bentonate slurry-supported diaphragm wall.

Both enganeerıng structures were situated in the stiff fissured, overconsolıdated London Clay.

The stress-strain regime around the tunnel and behind the diaphragm wall was examıned, and a theoretical analysis was attempted in order to provide an explanation for the actual performance of both structures during the early stages of construction.

ACKNOWLEDGEMENTS.

The work described in this thesis was carried out in the Engineering Geology Laboratories of the University of Durham under the direction of Dr. P.B. Attewell, Reader in Engineering Geology, whose help, constructive crıticism and crıtıcal readıng of the manuscripts are gratefully acknowledged. The author also expresscs his debt to Dr. I.W. Farmer, Lecturer 1 n Engineerıng Geology, particularly for his help during field-work in London.

The field measurement work outlined in the thesis was a team effort on Contract Research to the Transport and Road Research Laboratory of the Department of the Environment (British Government). The Contract Research was directed by Dr. P.B. Attewell and Dr. I.W. Farmer and the other members of the team were Mr. A.Gowland (Experımental Offıcer), Mr. J.C. Crıpps and the author (both Research Students).

All these people participated in the field measurement programme. On the data processing side, Mr. J.C. Cripps was prımarıly responsible for the reduction of the raw inclinometer data reported in this thesis and further processed. Mr. A.Gowland performed the stress analysis computations reported in Figure 6.2.2. of the thesis and he also fitted the polynomial curve to Skempton!s K_{o} curve also illustrated- in Figure 6.2.2. The author was the person prımarily responsible for the reduction of the surface and sub-surface settlement data.

The results of the Fleet Line tunnel measurements and the bentonite diaphragm wall measurement in Green Park were reported to T.R.R.L. under Report Nos. PBA/TWF/TRRL//1972/1 and PBA/IWF/TRRL/1973/1 respectively by Drs. Attewell and Farmer.

The author also wishes to acknowledge the help provided by Mr. A.E.Cobb during his laboratory work.

Thanks are due to Mrs. A.Taylor for her meticulous typing of the thesis.

Finally, thanks are due tohis wafe, Alıce Mary, for her never-facling interest and encouragement throughout the research.

To my mother IRINI

CONTENTS

Page

Abstract
AcknowledgementsI
Contents IV
Symbols VIII
Inst of Figures XV
List of TablesXXV
INTRODUCTION 1
Chapter 1
GROUND STABILITY FOR TUNNEIS IN CLAY
1.1 Introduction 8
1.2 The overload factors (OFS,OFM). Formulation of a plastic zone around a tunnel 8
1.3 Loss of ground and OFS 15
1.4 Laboratory technıques applled to ground stabılıty 16
1.5 Tume factor and ground stabiluty 19
1.6 Relationship between OFS and time 24
Chapter 2
SURFACE SETTLEMENT CAUSED BY SOFT GROUND TUNNETLLNG
2.1 Introduction 27
2.2 Review of the existing basic concepts 28
2.3 Surface settlement resulting from shield tunnelling In soft ground 30
2.4 The stochastic theory of ground movements and surface settlements 34
2.5 Prediction of settlement associated with soft ground tunnelling 37
2.6 The development of surface settlement profiles during soft ground tunnelling 46
Chapter 3
DESCRIPTION OF IN-SIIU MEASUREMENTS
3.1 Introduction 49
3.2 Description of the working site 49
3.3 In-Situ measurement methods 49
3.4 Instrumentation 51
Chapter 4
GROUND DEFORMATIONS ASSOCIATED WITH SHIELD TUNNELLING IN LONDON CLAY
4.1 Introduction 53
4.2 Vertical surface and subsurface ground movements 53
4.3 Horizontal subsurface ground movements 56
4.4 Taming the shield's drıve and interrelating it to the ground movement pattern 58
Chapter 5
LaBORATORY TESTING PROGRAMME
5.1 Introduction 63
5.2 Brief review of the nature and morphological characteristics of London Clay 63
5.3 Review of the strength properties of the Iondon Clay 67
5.4 . Index properties and results from unconsolidated undrained (UU) trıdxial compression tests 70
5.5 Poisson's ratio measurement during triaxial undrained tests 72
5.6 Unconsolıdated undrained (UUU) and consolıdated undrained (CUT) triaxial test results 75
Chapter 6
THE STRESS-STRAIN REGIME AROUND A CIRCULAR TUNNEL DURING THEEARLY STAGES OF CONSTRUCTION
6.1 Introduction 79
6.2 Stress deformation distribution around the tunnel 79
6.3 Strain energy release during tunnelling 85
6.4 Ground deformation in the vicunity of the tunnel 89
Chapter 7
STRESS PATH APPROACH FOR TUNNELLING IN LONDON CLAY
7.1 Introduction 93
7.2 Stress-path estimates derıved from the elastic-plastıc analysis 93
7.3 The soil-grout interaction 96
7.4 Mobılızed earth pressure during shield tunnelling 96
Chapter 8
STABILITY OF SLURRY TRENCHES IN CLAY
8.1 Factors affecting stabılıty 99
8.2 Derıvation of the critical depth (H_{cz}) 103
8.2.1 Two dimensıonal Coulomb wedge analysis in purely cohesive soul 104
8.2.2 Three dimensional Coulomb wedge analysis in purely cohesive soul 105
8.3 Normal stress transfer in slurry trenches 108
Chapter 9
GROUND MOVEMENTS CAUSED BY A DIAPHRAGM WALL EXCAVATION IN LONDON CLAY
9.1 Introduction 111
9.2 The working site 112
9.3 Method of construction 112
9.4 Monıtoring system 112
9.5 Observed behaviour during construction 113
9.6 Post-construction earth pressure analysis 116
9.7 Predicted horizontal ground deformation 117
CONCLUSIONS 120
REFERENCES 123
TABLES 133
FIGURES
APPENDIX 1 Protodyakonov's de-coupled arch A 1
APPENDIX 2 Relationship between the shear strength and depth for a soil wath a linear Mohr envelope A 6
APPENDIX 3 Case histories of tunnelling in various soll A 7
APPENDIX 4 Extrapolated conversion curves for the settlement versus depth relationships A 10

SYMBOLS

Symbol	Represents	Reference
A	value of stress at boundary ($x \rightarrow \infty$)	eq.(1.2.9.)
A	rate of tunnel advance ($A=d l / d t$)	Chapter 1
A	coefficlent with dimension of depth	eq.(2.4.1.)
A	a constant in equation (2.5.8.)	Chapter 2
A	pore pressure parameter	Chapter 5
A_{0}, A_{1}, A_{2}	coefficients in equation(2.5.17.)	Chapter 2
a	$a=0 F S / 2$	Chapter 1
a	ratio of R / R_{o} distance from tunnel centre over the tunnel radius	Chapters 6, 7
a	a coefficient in equation (4.4.1.)	Chapter 4
B	breadth of the unsupported roof	Chapter 1
B	value of stress at boundary ($\mathrm{y} \rightarrow \infty$)	eq.(1.2.10.)
B	pore pressure parameter	Chapter 5
B	width of a diaphragm wall or of a slurry trench	Chapter 8
B	wadth of Protodyakonov's arch	A. 1
b	coefficient in equation (1.6.7.)	Chapter 1
b	a constant in equation (2.5.5.)	Chapter 2
b	slope of K_{f}-lıne	Fig. 5.6.5.
CU	consolldated undrained test	Chapter 5
CD	consolldated drained test	Chapter 5
$\overline{\text { Cu }}$	consolidated undrained test with PWP measurement	Chapter 5
$\overline{C D}$	consolıdated drained test with PWP measurement	Chapter 5
c	a constant in equation (2.5.9.)	Chapter 2
c	shear force due to shear resistance along a two-dumensional Coulomb wedge	eq.(8.2.2.)
c	shear force due to shear resistance along a three-dımensional Coulomb wedge	eq.(8.2.7.)
c^{\prime}	cohesion intercept based on effective stresses	Chapters 1,5
c_{u}	total stress strength pasameter (undrained shear strength)	Chapters 1,8
c_{v}	coefficlent of consolldation	Fig.5.6.3.
c	cohesion	eq.(8.2.7., 8 ,

Symbol	Represents	Reference
D	original width (diameter) of a specimen	eq. (5.5.4.,5)
d / /dt	rate of extrusion	Chapter 1
$d \varepsilon / d t$	rate of axial strain in triaxial compression tests	Chapter 5
d	shıeld bead wıdth	Chapter 1
d	a constant in eq. (2.3.6.)	Chapter 2
$(d s / d t)_{\text {max }}$	maximum rate of setllement for pounts on the centre line of a tunnel above soffat level	eq.(4.4.1.)
E	Young's modulus	Chapters 1,9
ESP	Effective stress path	Chapter 5
$\mathrm{F}_{1}, \mathrm{~F}_{2}$	constants in equation (1.2.16.)	Chapter 1
F	factor of safety against fallure at the base of an excavation	Chapter 1
	factor of safety against shear failure	Chapter 8
$f_{1}(S)$	parametric expression of tangential (hoop) stresses	Chapter 1
$\mathrm{f}_{2}(\mathrm{~S})$	parametric expression of shear stresses	Chapter 1
f	length/depth ratio of a slurry trench	Chapter 8
G	a constant in equation (2.5.14.)	Chapter 2
H	helght of the diaphragm wall or of the slurry trench	Chapters 8,9
H^{\prime}	modified height of the slurry trench ($\mathrm{H}^{\prime}=\mathrm{H}+\sqrt{2}$)	Chapter 8
H_{a}	critical helght to which a slurry trench may be dug in cohesive soll wathout the sades falling In	Chapter 8
h	height of Protodyakonov's arch	A. 1
h	horizontal movement of ground at face, per unit length of advance of the shield	Chapter 2
1	standard deviation on a normal probability curve, being the point of inflection distance on surface settlement semı-profile	the Chapters 1,2
J	horizontal movement of ground at the tunnel face per unit length of shield's advance	Chapter 1

Symbol	Represents	Reference
K	prancipal stress ratio or lateral stress ratio	Chapters 1,6,7,8,9.
K*	elastic constant equal to $\sigma_{z} / 2$ (In the maximum shear stress theory) and equal to $\sigma_{2} \sqrt{3}$ (in the octahedral shear stress theory).	eq.(1.2.8., 11,12)
K。	prancipal stress ratio based on effective stresses	Chapter 6
K	coefficient in equation (2.5.1.)	Chapter 2
$\mathrm{K}_{\text {A }}$	active stress ratio	Chapter 8
K_{P}	passive stress ratio	Chapter 7
$\mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}}, \mathrm{K}_{\mathrm{C}}, 7$		
$\mathrm{K}_{\mathrm{A}},{ }^{\prime} \mathrm{K}_{\mathrm{B}}$,	specified stress ratios	FIg.7.4.1.
K_{C},		
$\mathrm{K}_{\text {1 }}$	integration constant	Chapter 8
K_{f}-lıne	line through p_{f} versus q_{f}	Chapter 5
LL	lıquid lımıt	Chapter 5
L	original length of a specimen	Chapter 5
L	length of the slurry trench	Chapters 8,9
χ_{0}	length of shield	Chapter 1
ℓ_{1}	distance from the centre line on the harmonic settlement semi-profile	Chapter 2
ℓ Inf	```point of inflection on the harmonic settle- ment semı-profıle```	Chapter 2
m	an exponent in equation (2.5.1.)	Chapter 2
N_{c}	a coefficient dependent on the dimensions of the excavation	Chapter 1
n	coefficlent of viscosity	Chapter 1
n	an exponent of equation (2.5.8.)	Chapter 2
OFS	sumple overload factor	Chapter 1
OFM	modified overload factor	Chapter 1
P	a probability of a sphere moving down in LITWINISZYN'S model	eq.(2.4.1.)

Symbol	Represents	Reference
P	hydrostatic force exerted by the suspension to the sidewall	eq.(8.1.2.,3)
PL	plastic limıt	Chapter 5
PWP	pore water pressure	Chapter 5
P_{0}	disturbing force acting on the slurry trench sidewall	Chapter 8
p	$=\left(\sigma_{1}+\sigma_{3}\right) / 2$ or $\left(\sigma_{v}+\sigma_{h}\right) / 2$	Chapter 5
p_{f}	p at faclure	Chapter 5
Q	surface surcharge	Chapter 1
$\mathrm{q}_{\text {u }}$	unconfined compressıve strength of clay	Chapter 1
q	$=\left(\sigma_{1}-\sigma_{3}\right) / 2$ or $\left(\sigma_{v}-\sigma_{h}\right) / 2$	Chapter 5
q_{f}	q at fazlure	Chapter 5
R	extent of plastic zone around a tunnel	Fig. 1.2.1.
R	distance from the tunnel centre	$\begin{aligned} & \text { Chapter 1, } \\ & \text { eq. } 6.2 .1_{0} \text {) } \end{aligned}$
R	tunnel radius	$\begin{aligned} & \text { Chapter } 2 \text { \& } \\ & \text { A. } 1 \end{aligned}$
R	radius of shield	$\begin{aligned} & \text { eq. }(2.5 \cdot 16 ., 17) \& \\ & \text { eq.(1.5.1.) } \end{aligned}$
R	ratio of princıpal stresses σ_{3} / σ_{1}	eq. (5.4.2.)
R_{0}	external radus of the tunnel linnag	$\left[\begin{array}{l} \text { eq. } 1.5 \cdot 10 .) \\ \text { eq. }(2.5 \cdot 16 ., 17 .) \end{array}\right.$
Ro	tunnel radius	Chapter $1 \&$ $\text { eq. }(6.3 .1 ., 2,4,5 .)$
R_{f}	ratio of principal stresses of failure $\left(\sigma_{3} / \sigma_{1}\right)_{\mathrm{f}}$	eq.(5.4.2.)
$s_{\text {max }}$	maximum surface settlement	Chapters 1,2
${ }^{\text {sexp }}$	clay movement at tunnel soffit during exposure time ($t_{\exp }$)	Chapter 1
s_{1}	vertical settlement at any point of the harmonic semı-profile	Chapter 2
s_{2}	vertical settlement at any point of the linear profile	Chapter 2
so	absolute dıfference between s_{1} and s_{2}	Chapter 2
$s(X, Y)$	settlement at (X, Y) point	eq.(2.4.3.)

Symbol	Represents	Reference
t	time	Chapter 1
$t_{\exp }$	exposure time for an element of clay above the tunnel soffit	Chapter 1
t	rellef behind the cutting edge	Chapter2
t_{f}	time required for fallure under a triaxial $\overline{\mathrm{CJ}}$ or $\overline{\mathrm{CD}}$ test	Chapter 5
U	vold thickness related to Protodyakonov's arch	A. 1
U_{1}	the de-coupled displacement at the crown of Protodyakonov's arch	A. 1
U_{R}	radial displacement	Chapters 6,7
$\mathrm{V}_{\text {surf }}$	volume of soil included wathin the surface settlement trough	Chapters 1,2'
$\mathrm{V}_{\text {exc }}$	theoretical volume of the excavated soll due to tunnelling	Chapters 1,2
V_{l}	loss of ground	Chapters,1,2
V_{l}	the -rth component of loss of ground	Chapters 1,2
V_{θ}	tangential displacement	Chapters 6,7
v	"look-up" of shield measured as extent of non'cırcularıty on vertical diameter	eq. $(1.5 \cdot 9$.
W	welght of a three dimensional Coulomb wedge	eq. (8.2.2.,7)
W_{1}	strain energy before tunnelling	Chapter 6
W_{2}	strain energy after tunnelling	Chapter 6
W	strain energy due to tunnelling	Chapter 6
X_{0}	horizontal distance between the sidewall and the rupture plane	Chapter 8
Y_{1}	magnitude of the span of the settlement trough	Chapter 2
Y_{2}	forward extension of a settlement profile	Chapter 2
Y_{3}	magnitude of the transverse extension of settlement trough	Chapter 2
Z	axis depth l.e. depth froin ground surface to tunnel axis.	Chapters 1,2
z	any depth below ground surface	Chapters 4,8,9
z_{W}	ground water I evel	Chapter 8
z_{b}	level of bentonite suspension	Chapter 8

GREEK

δ
$\delta_{\ell} \quad$ horizontal ground deformation in a vertical plane parallel to the longitudinal axis of a diaphragm wall Chapter 9
$\left.\begin{array}{l}\Delta \varepsilon_{1}, \Delta \varepsilon_{2}{ }^{\prime} \\ \Delta \varepsilon_{3}\end{array}\right]$
$\left.\begin{array}{ll}\Delta \sigma_{1} & \Delta \sigma_{2} \\ \Delta \sigma_{3}\end{array}\right]$ increments of principal stress \quad eq.(5.5.2.,3)

ΔL	Increment of specimen length	Chapter 5
ΔD	Increment of specimen diameter	Chapter 5
ΔV	volume change during consolidation	Chapter 5

| ε | strain
 $\varepsilon_{\text {res }}$ | residual relative displacement |
| :--- | :--- | :--- | eq. (1.6.6.,7)

Symbol	Represents	Reference
λ	factor in equation (A.1.1.)	A. 1
V	Poisson's ratio	$\begin{gathered} \text { Chapters } 1,5,6, \\ 7,9 . \end{gathered}$
σ_{v}	overburden pressure	Chapter 1
σ_{1}	internal pressure applied in unlined tunnel wall for stabilization purposes	Chapter 1
$\sigma_{\theta \text { max }}$	maxımum tangential (hoop) stress	Chapter 1
$\sigma_{x} ; \sigma_{y}$	stresses in the x, y plane	Chapter 1
$\sigma_{1}, \sigma_{2}, \sigma_{3}$	principal stress	Chapter 1
σ_{r}	yield point of material for the case of uniaxial tension	Chapter 1
σ_{3} / σ_{1}	principal stress ratio	Chapter 5
σ_{v} / σ_{f}	stabilıty ratio	Chapter 1
σ_{1}	stress due to the elastic element in the "Standard Lunear Solıd" (rheological model)	eq. (1.6.1.)
σ_{2}	stress due to the viscous element in the "Standard Lnnear Solıd" (rheological model)	eq. (1.6.1.)
σ	total stress	eq. (1.6.1.)
σ_{R}	radial stress at distance R from tunnel's centre	Chapters 6,7
${ }_{-}{ }_{\theta}$	tangential stress at distance R from tunnel's centre	Chapters 6,-7
σ	net effectuve lateral pressure acting on the sidewall of a slurry trench	eq. (9.6.1.)

$\tau_{\theta r}$	shear stress in polar co-ordinates	Chapter 1
τ_{xy}	shear stress in Cartesian co-ordinates	Chapter 2
$\tau_{\mathrm{R} \theta}$	shear stress at distance R from tunnel centre	Chapters 6,7

$\phi(x, y)$	stress function in Cartesian co-nrdinates	Chapter 1
ϕ (friction angle based on effective stresses	Chapters 1,5
\varnothing	friction angle	Chapters 5,8

FIG. 1.2.1.	Relationship between the extent of a plastic zone around a tunnel (R), and the OFS for various tunnel radil (R_{0}).
FIG. 1.2.2.	Relationship between $Z / 2 R$ and OFS.
FIG. 1.2.3.	Relationship between the coefficients (F), and the friction angle based on effective stresses (\varnothing^{\prime}).
FIG. 1.3.1.	Ground loss associated with tunnelling in clay. After SCFMMIDT (1969).
FIG. 1.4.1.	Above (left) Outline of extrusion cell parameters. Above (rıght) Typical combined vertical stress/ vertical deformation curves. Below Varıation of extrusion-based stabılıty ratio with liquadity lndex, for undusturbed lamınated clay. After ATTEWELL and BODEN (1971).
FIG. 1.4.2.	Above Use of constant strain-rate extrusion tests to define critical stabılıty ratios. Below: Relationships between extrusion rate and stabilıty ratio. After ATTEWELL and FARMER (1972).
FIG. 1.6.1.	Characteristics of rheological models. Above.a Kelvan material, after OBERT and DUVALL (1967). Below a modıfied Kelvın materıal.
FIG. 2.3.1.	Transverse settlement profile. A. SZECHY'S (1970) model. B. Actual semı-profile.
FIG. 2.3.2.	Centre line settlement profile. A. SZECHY'S (1970) model. B. Est 1 mated actual proficle.

FIG. 2.3.3.	Linear (left) and Harmonic (rıght) settlement
transverse profile.	
FIG. 2.3.4.	Characteristics of settlement semı-profile. After,
	ATTEWELL and FARMER (1972).

FIG. 2.5.1.
Relationship between $1 / R$ and $Z / 2 R$.

FIG. 2.5.2.

FIG. 2.5.3.

FIG. 2.5.4.

FIG. 2.5.5.

FIG. 2.5.6.
(right) Relationship between the ratio $Z / 2 R$ and the loss of ground (V_{l}).

FIG. 2.6.2. The development of the surface setclement transverse profile as a function of tunnel advance.

FIG. 2.6.3.
Relationship between the $s_{\max }$ (max. settlement) and the tunnel advance.

FIG. 2.6.1.
a. (abcive) Transverse surface settlement profile of the 4 m diameter tunnel 30 m deep in London clay. b. (below) Relationship between the $s_{\text {max }} / R$ dimensionless ratio and the tunnel advance.
FIG. 3.2.1. Green Park site. Scale 1500. Redrawn from ATTEWELL

FIG. 3.2.2. Above Longitudinal view of borehole arrangement (not to scale). Below Location of boreholes and survey stations. Scale 1200.

FIG. 3.3.1.

FIG. 3.3.2.

FIG. 4.2.1.

FIG. 4.2.2.

FIG. 4.2.3.

FIG. 4.2.4.
Vertical settlement profile development in the vertical plane passing through the tunnel centre line and at different depths in boreholes Y1, Y2, Y3. After ÁTTEWELL and FARMER (1972).

Vertucal settlement profile development in the vertical plane passing through the tunnel centre line and at dıfferent depths in boreholes Z1, Z2. After ATTEWELL and FARMER (1972).

Transverse settlement profiles for dıfferent subsurface depth ranges. After ATTEWELL and FARMER (1972).
FIG. 4.2.5. Normalised settlement development curves. After

ATTEWELL and FARMER (1972).

FIG. 4.2.6.	Development of maximum ($s_{\max }$) and ultimate ($s_{u l t}$) settlement with depth. After ATTEWELU and FARMER (1972).
FIG. 4.3.1.	Horızontal displacement profiles. Boreholes X1, Y1, Z1
	After ATTEWELL and FARMER (1972).

FIG. 4.3.2. Horizontal displacement profiles. Boreholes X1, Y1, Z1. After ATTEWELL and FARMER (1972).

FIG. 4.L.1. Ground loss areas around a shleld-drıven tunnel.

FIG. 4.4.2. (below) Record of tunnel progress.

FIG. 4.4.3. Relationshzp between the rate of settlement (ds/dt) and the tunnel advance (A), for boreholes X1 (left) Y1 (maddle) and Z1 (raght). After ATTEWELL and FARMER (1972).

FIG. 4.4.4.

FIG. 4.4.5.

FIG. 4.4.6.
(above) The maximum rate of settlement as a function of depth for boreholes X1, Y1, Z1.
(below) Sclematic concept (qualitative) of ground movement ahead of a tunnel shield. After BARTLFIT and BUBBERS (1970).

Ground deformation in a vertical plane along the tunnel axis. Tunnel face 10m behind Z1 (right hand side) and at Z1 (left hand side).

FIG. 4.4.7.
Ground deformation in a vertical plane along the tunnel axis. Tunnel face at Y 1 (right hand sade) and at X1 (left hand side).

FIG. 4.4.8.	Ground deformation in a vertical plane along the tunnel axis. Tunnel face approximately 6 m ahead of X 1 (right hand side) and 17 m ahead of X 1 (left hand side).
FIG. 4.4.9.	Ground deformation at right angles to the tunnel axis The left hand side illustrates the scaled layout of boreholes with the exact position of magnetic rings. Right hand side shows the state of ground disturbance when the face is 5 to 10 metres behind the cross-section.
FIG. 4.4 .10.	Ground deformation at right angles to the tunnel axis. Tunnel face at the cross-section (left hand side) and 10 metres ahead of the crossmsection (right hand side).
FTG. 4.4 .11.	Ground deformation at right angles to the tunnel axis. Tunnel face 20 metres ahead of the cross-section (right hand side) and 30 metres ahead of the cross-section (left hand side).
FIG. 5.3.1.	Effective (left hand side) and lotal (right hand slde) shear strength parameters for London clay.
FIG. 5.4.1.	Stress-strain relationships for 38 mm diameter specimens subject to undrained triaxial tests. Deviator stress applied parallel to the bedding.
FIG. 5.4.2.	Stress-strain relationships for 38 mm diameter specimens (London clay) subject to undrained triaxial tests. Deviator stress applied normal to the bedding.
FIG. 5.4.3.	Results for undrained triaxial tests on 38 mm diameter specimens (London clay). Above deviator stress applied parallel to the bedding, below normal to $1 t$.
FIG. 5.4.4.	Relationship between the principal stress ratio σ_{3} / σ_{1} and the strain for 38 mm diameter specimens of London clay subjected to UU triaxial tests.

FIG. 5.5.1.

FIG. 5.5.2.

FIG. 5.6.1.

FIG. 5.6.2.

FIG. 5.6.3.

FIG. 5.6.4.

FIG. 5.6.5.

FIG. 5.6.6.

FIG. 5.6.7.
Relationship between the pore pressure parameter A and the axial strain, for $\overline{C U}$ triaxial tests on 38 mm diameter specimens of London clay. Each test was carried out under different nominal rates of strain.

FIG. 5.6.8. Relationship between the deviator stress at faclure, and the rate of strain for CU triaxial tests on 38 mm diameter specamens of London clay.

FIG. 6.2.1.	Polynomial fitted to SKEMPION (1961) data relating
the variation of K_{o} with depth in London clay. After	
	GOWLAND'S (1974) private communication.

FIG. 6.2.2. Amplıtudes of principal stress ratios around the $4 m$ diameter tunnel 30m deep in London clay. Analyses based on elastic equations interrelated with SKEMPTON'S K_{o} function with depth and assuming condztion of plane strain (Based on data supplied by GOWLAND, 1974 private communication).

FIG. 6.2.3. Radial and tangential stresses around the $4 m$ diameter tunnel 30m deep in London clay. Stresses are calculated from elastic and plastic analyses under the assumption of plane strain conditions.

FIG. 6.3.1. Relationship betweon the strain energy per unit length and the distance from the tunnel centre for the $4 m$ diameter tunnel 30 m deep in London clay.

FIG. 6.3.2.

FIG. 6.4.1.

FIG. 6.4.2.

FIG. 6.4.3.
The maximum settlement as a function of depth below ground surface. Comparison between the calculated and the actual values.
(Above) Measured radial displacement as a function of polar co-ordinate angle for the 4 m diameter tunnel 30 m deep \ln Iondon clay.
(Below) Calculated radial displacement as a function of distance from the tunnel centre taking the polar coordinate angle as the main parameter.

Comparison between the actual (after ATTIEWELL and FARMER, 1972) and the theoretically preducted radial displacement around the $4 m$ diameter tunnel 30 m deep in London clay, for different polar co-ordinate angle.

FIG. 7.2.1.	Hypothetical stress paths for an element of clay at tunnel soffit and at tunnel axis level. Tresca's lines are defined according to laboratory test results from UU triaxial tests on specimens taken from tunnel axis level In two main durections, parallel and vertical to stratification.
FIG.7.4.1.	Hypothetical mobilization of earth pressure for an element of clay at tunnel axis level during the various stages of construction.
FIG. 8.1.1.	Some grout properties. After CARON (1973).
FIG. 8.1.c. a	Stability factors of a slurry trench as a function of Its geometry. After MEYFRHOF (1972).
FIG. 8.1.2. b	Horizontal and vertical arching behind flexible retaining structures. After TSCHEBOTARIOFF (1951).
FIG. 8.2.1.	Stabilıty analysis of a two-dumensional Coulomb trench.
FIG. 8.2.2.	Relationship between the stabillyy factor and the unit welght ratio.
FIG. 8.2.3.	Stabilıty analysis of a three-dımensional Coulomb wedge.
FIG. 8.2.4.	Relationship between the length/depth ratio, and the angle θ.
FIG. 8.2.5.	Relationship between the stability factor and the unit weight ratio, for various values of the angle theta.
FIG. 8.3.1.	Stability analysis of an element of ground behind a slurry trench.

FIG. 9.5.5. Two-dimensional vector representation of ground movements

FIG. 9.2.1.

FIG. 9.3.2.

FIG. 9.4.1.

FIG. 9.5.1.

FIG. 9.5.2.

FIG. 9.5.3.

FIG. 9.5.4.

FIG. 9.5.6.

FIG. 9.5.7.

FIG. 9.6.1.

Site plan (after ATTEWELL and FARMER, 1972) geology and soll propertıes as defined by laboratory tests. (1971).

Excavation progress. After ATTEWELL and FARMER (1972). Boreholes layout.

Surface and subsurface seltlement development curves. After ATMEWELL and FARMER (1972).

Development of maxamum settlement wath depth below ground surface. Borehole BH1.

Transverse surface settlement profile at varıous times.

Evolution of lateral deflection profiles at various times. After FARMER and ATTEWELL (1973). in borehole BH1.

Lateral deformation profile.

Hypothetical shape of the ground affected zone.

Resultant pressure dastribution in the excavatirn sldewall. After FARMER and ATTEWELL (1973).

FIG. 9.6.2.

FIG. 9.7.1.

Earth pressure distribution calculated from METERHOF'S (1972) approach. The K_{0} versus depth linear function is taken from COIE and BURLAND (1972).

Comparison between the actual (left) and the calculated (right) horizontal deformation profile. Borehole BH1.

LIST OF TABLES

Table 2.6.1. Above. Tunnelling in various soils Below: Records for the tunnel advance and the dimensionless ratio $s_{\text {max }} / R$ for sux case studies of tunnelling.

Table 5.5.1.

Table 6.3.1.

Table 9.7.1.
Poisson's ratio measurement during triaxial undrained tests on 38 mm diameter samples, collected in two main directions, parallel and normal to stratıfication.

Calculation of strain energy release and vertical ground displacement due to tunnelling, according to relationships proposed by JAEGER and COOK (1969).

Calculation of the earth pressure acting behind the diaphragm wall (see Chapter 9) and the ground deformation in borehole BH1 according to dıfferent approaches.

INTRODUCTION

Ground movements may be dufferentiated between these which are attributed to natural causes (often with a strong geological control) and those which arise as a result of constructional activity. The first type of movement may be sald to comprise:-
a) Ground movements due to non-elastic deformations,
b) Ground movements due to earthquakes, or ground creep,
c) Ground movements due to natural ground compaction and consolidation, or due to natural changes in the groundwater level.

On the other hand, ground movements maght be the result of the following artificial causes:
a) Mining**;
b) Tunnelling (rock or soft ground),
c) Deep excavations,
d) Deep foundations (pıle drıving);
e) Geotechnical processes (chemical treatment, vibroflotation, sand drains and so on);
f) Excessive pumping of water or withdrawal of oil,
g) Vibration of machinery or traffic vibrations;
h) Blast vibrations.

* Beneath heavy loads, plastic layers or layers which become plastic due to some disturbance, may squeeze outward, allowing surface settlement. Thus, clay may be extruded from beneath a structure, or sand and silt layers, unless drainage is provided, may become locally plastic and flow. (see TREFETHEN, 1960).
** Maınly manıng subsidence which is an essentially downward movement of the ground surface due to the removal of large volumesof material underground. As a result, the welght of overlying rock may cause collapse and subsidence.

The aim of the present thesis is to examine ground deformation due directly to tunnelling operations and deep excavations in clay.

Ground movements can be described in every point of a three damensional soil mass as a spatial vector, which may be resolved into three components one vertical, which is known as settlement, and two co-planar horizontal components. In the case of tunnelling, the horizontal components may be related to directions parallel and normal to the tunne] centre line, while in the case of deep excavations, these components have dırections normal to the sldewail (the so-called ground deflection) and parallel to 1 t.

The magnitude of the ground deformation vector is normally higher in the vicinity of the opening where the bulk of any ground loss takes place.

From both the practical and academic points of view the problem of ground movements due to tunnelling or mining has been treated with an emphasis on the surface settlement development rather than on the associated subsurface ground deformation. In this context, the main question was,and still is, the prediction of the magnitude and extent of the main parameters of the surface settlement trough, namely the amplitude of the maximum settlement and the magnitude of the settlement span. This trend is particularly illustrated In the State of the Art Report of PECK (1969) In which emphasis is given to the prediction of surface settlement and other movements assoclated with soft ground tunnelling and deep excavations.

During the last five years, however, the interest appears to be shifted towards the examination and analysis of subsurface ground deformation. This new trend would seem reasonably to be attributed to the following two mann factors.
a) The necessity for recognition and understanding of the subsurface ground deformation regimeas it durectly affects the stability of the foundations
of nearby bualdings. Since the recent trend is to build more tunnels and rapid transit systems in urban areas, this factor is of particular Importance.
b) The rapid improvement of more sophisticated instrumentation and measuring techniques for the analysis of the in-situ ground deformation. Nevertheless, most of the relevant literature is still concerned with surface settlement. Thas is probably understandable from the point of view of simple economics, sance the establishment of a network of ground survey stations and precise levelling operations are far simpler and cheaper than the sinking of boreholes and the operation of continuous subsurface surveys with the aid of inclinometers, magnetic detectors and other instrumentation. Therefore, it is not surprising that during the last five years only sporadic, well-documented case historles for surface and subsurface ground deformation resulting from soft ground tunnelling and deep excavations have appeared in the literature.

Factors affecting ground movements

Examining those factors affecting the type, magnitude and extent of ground movements associated with soft ground tunnelling, one may single out as key factors the geological setting and the ground properties (particularly hydrological) of the site where the tunnel is driven.

Taking account of the particular character of the ground stress regime, the engineer choses the appropriate type of lining (concrete cast in situ, expanded lining, bolted pre-cast segments, and so on) and decides on the suitable method of excavation to be followed(hand-mined, digger shield, handmined shield, full face blasting, and so on). In the case of shield tunnelling, the particular type of shield and its structural features(such as the presence or otherwase of a bead, the jacking pressure, ats length, the possible requirement for a diaphragm across the face when dealing with very soft solls lying beneath the water table) are factors having a particularly important control on
the ground movements and consequential 'ground losses' around the shield. These ground losses taking the form of "face-take" or radial intrusions of the soil are essentially time-dependent deformations related to the geotechnical and rheological properties of the soll - and particularly, of course, to 1 ts drannage character - and to the rate of tunnel advance. ATTEWELL and FARMER (1974) have examined in some detail these ground losses associated with shield tunnelling in an overconsolidated stıff fissured clay. PECK et al (1969) argue that the most dufficult task during the construction of shield-driven tunnels is to provent the movements of soll into the void behind the tailpiece of a shield before the void can be filled. Thus, in cohesionless soils the ground movement into the tail void may comprise two types: collapse of the sand at the crown, or inflow at the invert if the tunnel is below the ground water table, while in plastic clays or silts, the soll tends to squeeze radially \lrcorner nto the annular space.

In the case of difficult soll conditions, or what are commonly termed "geologic anomalies" in the form of longitudinal variations of lathology and structure along the tunnel axis and centre line, mixed-face conditions, or unfavourable positions of any ground water table, ground stabllisation might be an effective way of preventing severe and unacceptable ground deformation. For solls having low cohesions, especially those beneath the ground water table, geotechnical processes of soll improvement are sometimes inevitable.

The most common types of such methods are the use of compressed alr, grouting, ground water lowering, and ground water freezing.

Geotechnical processes, although very useful in ameliorating unfavourable soil conditions, must be used with care especially when the tunnel is driven beneath urban areas because it can happen that the stabilization of the ground around the tunnel may only be at the cost of inducing ground instability in the foundations of the nearby buildings. As BARTLETY and BUBBERS (1970) pointed
out, in fissured ground care has to be exercised to ensure that grout at high pressure does not come into direct contact with the underside of foundations, with resultant heave and damage to the building. Also, in the case of ground water lowering; in addition to dırect settlement, the possibilities of drawing down piles or of causing timber piles to rot have to be considered.

Another factor affecting ground deformation is the geometry of the tunnel, its depth and diameter. It has been found that, assuming the character of the transverse surface settlement profile above a tunnel to take the form of an error curve (considered in detail subsequently in this thesis), then the parameters of this curve are related to the dimensionloss ratio: tunnel depth/tunnel diameter. This dimensionless ratio is a function of the standard deviation of the settlement curve (SCHMIDT, 1969, PECK, 1969, PECK et al, 1969) and is also a function of the maximum surface settlement (MYRIANTHIS, 1974 a,b) of the same curve.

Finally, some prelıminary mention should be made of the influence exerted by the time factor on the ground deformation regime in soft ground tunnellang. This factor may be expressed as a function of the rate of soll deformation and the rate of tunnel ddvance. It is commonly acknowledged by the tunnelling engineer that the slower the rate of tunnel advance, the greater is the total soll intrusion for a given depth of tunnelling. For shield-draven tunnels, the problem lies in the accommodation of the time factor into the ground loss computations. Such a problem is considered in the present thesis.

As far as deep excavations are concerned, it may be argued that ground movements will always occur during construction whatever the effectiveness of the supporting system. These deformations usually take the form of:
a) An inward movement of the soll on the sude walls,
b) An upward movement of the base of excavation - the well known bottom heave, and
c) A surface settlement resulting from the ground loss of the sade walls. The third type of movement is probably the most serious because it is the most lakely to occur, and thus place at risk the foundations of the nearby buildings.

As in the case of soft ground tunnelling, the goological factor is dominant in the determination of ground deformation associated with deep excavations. This factor, together with the properties of the soil influence to some extent the cholce of type of excavation and supporting system (braced, slurry-supported, timbering, and so on). The geometrical factor is also important for the stabilıty of deep excavations. MEYERHOF (1972) pointedout that the dimensionless ratio : depth/wadth of the structure is directly related to a stability factor in the case of slurry trenches in saturated clay.

Ground movements are also dependent on the particular detalls of construction and its historical progress, and upon the quality of workmanship.

Minımization of settlement and ground losses associated with deep excavations in soil may often be achieved if a trial part of the excavation is adequately instrumented in order to provide an early detection of the ground movement trend. This trend could in turn be interpreted in such a way as to promote possible alterations in the original design of the system provided that it has such an inbuilt flexibility.

Damage to nearby buildings due to ground movements.
Surface and subsurface ground movements and settlement due to soft ground tunnelling and deep excavation could cause damage to adjacent surface and subsurface structures. Surface settlement may result in dıfferential
settlement of the foundations of the buılding, while differential horizontal ground movement may distort plles and displace them from thear original position. These movements would create a new and unknown distrıbution of load from the superstructure to the foundations. Surface heave may also endanger the foundations, creating conditions of surface ground compression which could possibly crush foundations, walls and roofs. In the case of shield-driven tunnels, the pressure exerted by the thrust rams may at least theoretıcally create a state of passuve earth pressure at points ahead of and above the shield. If foundations of adjacent buildings are present in the vicanlty of the range of influence of such tunnel pressures, there $1 s$ a possibility of a completely new form soll-structure interaction - that of soll-foundation interaction.

For all these reasons special precautions are required durıng design and construction for the minamization of the danger of damage.

[^0]
1.1 INTRODUCTION

The stability of soft ground tunnels can be examıned with the ald of some semı-empırıcal crıterıa such as those expressed by the simple overload factor (OFS) and the modified overload factor (OFM).

The loss of ground around the opening is probably a major factor contributing to ground movements and surface settlements. Stabılıty analysls Indicates that the loss of ground is a function of OFS. Stabılıty criteria in the form of critical stress ratios can also be formulated from special laboratory technıques such as extrusion tests. Finally, the incorporation of the tame factor into any soft ground tunnelling stabilıty consideration is a real necessity because stability is a dynamic phenomenon rather than a mere static concept. In fact, stabilıty is a function of time dependent parameters such as the rate of tunnel advance, the rate of clay deformation around the opening and the rate of application of any internal stabilising pressure.
1.2. THE OVERLOAD FACTORS (OFS, OFM). FORMULATION OF A PLASTIC ZONE AROUND A TUNNEL.

DEERE et al (1969) proposed that the stabilıty and the potential ground loss for a tunnel in clay might be expressed as a function of a "simple overload factor", OFS, which ls the ratio of the overburden pressure, less any internal pressure (for instance, air pressure if it is applied), to the undrained shear strength of the clay for conditions in which the vertical and lateral pressures pre-existing in the ground are equal.

Thus,

$$
\text { OFS }=\frac{\sigma_{v}-\sigma_{1}}{c_{u}}
$$

where.
σ_{v} is the overburden pressure, σ_{1} is any internal pressure,
and
c_{u} is the undrained shear strength of the clay.
The maxımum tangential (hoop) stress according to the theory of elasticity equals twice the radial (vertical) pressure σ_{v}, for $K=1$. Thus, one may define the "modified overload factor," OFM, as

$$
O F M=\frac{\sigma_{\theta \max }-2 \sigma_{1}}{q_{u}}
$$

where
$\sigma_{\theta \max }$ is the maximum tangential stress,
$\sigma_{1} \quad$ is any internal pressure,
and $\quad q_{u} \quad$ is the unconfaned compressive strength of the clay.
In essence, the maxamum tangential stress is the major princlpal stress at the tunnel wall surface, and it is reasonable to assume that when σ_{θ} exceeds q_{u} some shearing take place to form a plastic annulus around the unsupported tunnel. The radius of the sheared annulus depends upon the magnitude of the ratio σ_{σ} / q_{u}.

Due to the very importance of the nature and extent of the "plastic annulus" around an unsupported tunnel, an attempt has been made vaa the theory of elasticity to define the raduus of the plastic zone and the parameters Influencing its amplitude.

SAVIN (1961) stated that if the stresses in a mathematically-defined region of stress concentration around a circular hole exceed a certain limiting value for a given materıal, the material $1 n$ this region will be in a state of
stress exceedıng the lamıt of elasticity. Assuming, that this is the case and that the stress function $\Phi_{1}(x, y)$ which determines the stress state "beyond the limat of elasticity" in this zone is a hyperbolic function, then the stress function $\Phi_{2}(x, y)$ for the elastic range sathsfies the bi-harmonlc equation

$$
\frac{\partial^{4} \phi_{2}}{\partial x^{4}}+2 \frac{\partial^{4} \Phi_{2}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} \phi_{2}}{\partial y^{4}}=0
$$

Assume further that tangential and shear stresses are given in a parametrical
(s) form by

$$
\begin{equation*}
\sigma_{\theta}=f_{1}(S) \cdot \tau_{\epsilon r}=f_{2}(S) \tag{1.2.4.}
\end{equation*}
$$

are applied to the contour of the hole and satisfy the boundary conditions amposed by the limits

$$
\begin{align*}
& \lim _{\theta}=\sigma_{\theta}(x, y) \\
& S \rightarrow \infty \\
& \lim _{\theta} \tau_{\theta^{r}}=-\sigma_{\theta}(x, y) \\
& \theta r \rightarrow \infty
\end{align*}
$$

or,

$$
\begin{align*}
& {\lim \sigma_{x}}^{\lim _{1}(x, y)} \\
& \lim _{x \rightarrow \frac{y}{}}=\sigma_{2}(x, y) \\
& y \rightarrow \infty \tag{1.2.6.}\\
& \lim \tau_{x y}=\sigma_{3}(x, y) \\
& x y \rightarrow \infty
\end{align*}
$$

It is necessary to suppose that the function $\phi_{1}(x, y)$, that $1 s$, the stress function for the range above the limıt of elasticity, satisfies beyond the boundary conditions (equation 1.2.6.) the hyperbolic type equation

$$
\begin{equation*}
F_{1}\left(x, y, \frac{\partial^{2} \phi_{1}}{\partial x^{2}}, \frac{\partial^{2} \phi_{1}}{\partial y^{2}}, \ldots, \frac{\partial \phi_{1}}{\partial x}, \frac{\partial \phi_{1}}{\partial y}=0\right. \tag{1.2.7.}
\end{equation*}
$$

which is known as the "plasticity condition".

The problem now consists of finding a bi-harmonic function $\phi_{2}(x, y)$ outside some unknown contour which surrounds the hole and separates the plastic from the elastic zone. In the meantime, at this contour the following conditions must apply

$$
\frac{\partial^{2} \phi_{1}}{\partial x^{2}}=\frac{\partial^{2} \Phi_{2}}{\partial x^{2}}, \frac{\partial^{2} \Phi_{1}}{\partial y^{2}}=\frac{\partial^{2} \Phi_{2}}{\partial y^{2}} \text { and } \frac{\partial^{2} \phi_{1}}{\partial x \partial y}=\frac{\partial^{2} \phi_{2}}{\partial x \partial y} \quad \ldots(1.2 .8 .)
$$

as well as the boundary conditions

The "hyperbolic type" equation (1.2.7.) may be formulated as follows

$$
\left[\frac{\partial^{2} \phi_{1}}{\partial x^{2}}-\frac{\partial^{2} \phi_{1}}{\partial y^{2}}\right]^{2}+4\left[\frac{\partial^{2} \phi_{1}}{\partial x \partial y}\right]^{2}=4 \mathrm{~K}^{*}
$$

where K^{*} is a material constant defined as $K^{*}=\sigma_{r} / 2$ n the maxımum shear stress theory and $K^{*}=\sigma_{r} / \sqrt{3}$ in the octahedral shear stress theory. Note that σ_{r} is the yield point of the material in the case of uniaxial tension. Assuming that a single normal pressure acts at the hole contour (the diameter of the tunnel): tunnel's carcumference,

$$
\left.\begin{array}{l}
\sigma_{\mathbf{r}}=-\mathrm{p} \\
\tau_{r \theta}=0
\end{array}\right\}
$$

and that the boundary conditions are.

the solution of equation (1.2.8.) ls then given by

$$
\begin{equation*}
\Phi_{1}(x, y)=K^{+} R^{2} \ln \left(R / R_{0}\right)+\left(\frac{p+K^{*}}{2}\right) R^{2} \tag{1.2.11.}
\end{equation*}
$$

where R_{o} is the tunnel radius and R is a distance from the tunnel centre. One may express the stress functions $\sigma_{x}, \sigma_{y}, \tau_{x y}$ and further, using a mathematical method known as the MUSKHBLISHVILI formulation (see SAVIN 1961) It is possible finally to define the boundary of the plastıc zone. This boundary is a circle with a radius given as follows.

$$
R=R_{o} e^{\frac{A+p-K^{*}}{2 K^{*}}}, \text { for } B=A \neq 0
$$

and

$$
\begin{array}{ll}
R=R_{0} e^{\frac{p-K^{*}}{2 K^{*}}} \quad, & \text { for } A=B=0 \tag{1.2.12.}\\
& \text { l.e. no stress at infinity }
\end{array}
$$

The more complex case of normal and shear stresses applied at the contour of a cırcular hole (tunnel cırcumference) was examined by PARASYUK (see SAVIN 1961) who found that the boundary of the plastic zone is no longer a circle and that its radius is given under a rather complex notation.

Using the above results in a soll mechanics context and considering the case of a frictionless soil under $K_{0}=1$, conditions, it is known that the yield state must satısfy TRESCA'S criterion of failure,

$$
\sigma_{1}-\sigma_{3}=2 c_{u}
$$

This could be written as

$$
\begin{equation*}
\frac{\sigma_{1}-\sigma_{3}}{2 c_{u}}=a \tag{1.2.13.}
\end{equation*}
$$

where $a=1$ at equilıbrium.
Substituting $\sigma_{1}=\sigma_{v}$ and $\sigma_{3}=\sigma_{1}$ then,

$$
\begin{equation*}
a=\frac{\sigma_{v}-\sigma_{I}}{2 c_{u}}=\frac{O F S}{2} \tag{1.2.14.}
\end{equation*}
$$

a<1 means that no plastic zone will develop whereas
a) 1 means that a plastic zone will develop.

The radius of a developed plastıc zone is given by equation (1.2.12.) in the case of ($A=B=0$). Thus

$$
\left[\frac{\sigma_{v}-\sigma_{1}}{2 c_{u}}-\frac{1}{2}\right]
$$

$R=R_{o} e$
or

$$
0.5(0 F S-1) \quad(1.2 .15 .)
$$

$R=R_{o}^{e}$

Thus relationship has been plotted on a log-lınear graph (see Figure 1.2.1.) for values of R_{o} rangang from 1 m to 4.5 m . Although the graph 1 s self-explanatory, It must be emphasised that for the critical value of OFS $=6.28$ (as defined by DEFRE et al 1969) the extent of plastic zone is contanned between the lumits $14.5 \mathrm{~m}<\mathrm{R}<68 \mathrm{~m}$ depending upon the respective value of the tunnel radıus R_{0}. It should be noted, however, that for basic stabılıty, OFS should not exceed 6 (PECK, 1969).

A detalled presentation of ten case studies has been given by PECK in his State of the Art Report. It was concluded that tunnelling can be carried out without undue difficulties in plastic clays $1 f$ OFS ≤ 5. In shıeld tunnellıng, $1 f$ OFS $1 s$ much greater than this, the clay $1 s$ lıkely to anvade the tailpuece too rapidly to permıt satısfactory filling of the vold with pea gravel or grout. For OFS values approaching 7, the shield may become unmanageable because of $1 t s$ tendency to talt as it advances.

Usıng PECK'S op cit publıshed data, a graph has been plotted relating the dimensionless ratio $\mathrm{Z} / 2 \mathrm{R}$ (depth to diameter) to OFS for ten case studies. As is shown in Figure 1.2.2. a curve of the second degree describes the Increase of OFS as $Z / 2 R$ decreases. Taking into account the fact that shear
strength may reasonably be assumed to increase linearly with depth (see Appendıx $z a)$ the crıtıcal value of OFS for shallow depths could be even less than 6. As MUIR WOOD (1970) pointed out, this is only one condition for stabilıty. DEFRE et al (1969) emphasized the importance of the time of exposure of the face in a soll, the effective permeability of which is sufficlently low to permit appreciable varlation in pore water distribution during the period of exposure. Immeda tely after excavation, the release of the ground sets-up negative pore pressures at the face which provide some measure of support so long as the condition persists and this negative pressure is assisted by the cohesion of the soll.

In a stıff, fıssured clay such as London clay, the stabılıty may depend less upon the strength of the clay mass, than upon the shear stresses developed at fissures. The orlentation and anclination of the fissures should be taken Into account because laboratory results indicate a significant difference in shear strength due to these factors (see MYRIANTHIS, 1973).

Nevertheless, for the question of crown stabılıty in an unlined tunnel DEERE et al, op cit, provide a criterion based on BALLA'S analysis for a flat roof. This ls that•

$$
\text { OFS }=\frac{2 Y Z}{q_{u}}<\frac{2\left({ }_{1}{ }_{1}-2 B Y F_{2}\right)}{c^{\prime}}
$$

where the unconfined drained compressive strength,

$$
q_{u}=2 c^{\prime} \tan \left(45^{\circ}+\phi^{\prime} / 2\right)
$$

in which B is the breadth of the unsupported roof, c^{\prime} and ϕ^{\prime} are the effective shear strength parameters for the soll, and the constants F_{1}, F_{2} are functions of the angle ϕ^{\prime}, as $1 n{ }^{\prime}$ cated by Figure (1.2.3.).
1.3 LOSS OF GROUND AND OFS.

The excavation of a tunnel in clay, under normal constructional and ground conditions, creates a symmetrical settlement trough at the ground surface. PECK et al (1969) suggest that the shape of the trough is nearly andependent of the magnitude of the maxımum settlement and that the settlement volume is equal to the volume of lost ground in the tunnel modified by any volume change in the subsiding mass.

More recently, PECK et al (1972) have stated that the maximum amplitude of the settlement curve can be estimated on the assumption that the volume of the settlement trough wall be about one per cent of the volume of the tunnel (that is, the volume of the excavated soll). Under exceptionally good conditions and workmanship, the settlement may be as little as half of this amount. In contrast, volumes of settlement of up to 40% or 50% of the volume of the tunnel are not unknown (PECK et al, 1972).

The symmetrically-shaped settlement profile over a tunnel can adequately be approximated by a Gaussian error curve (see Chapter 2), and It has been shown in the literature that the shape of most settlement profiles conforms closely to it. From the properties of the Gaussian error function it is known that the surface settlement volume per unit advance of the tunnel is proportional to the product of 1 (the standard deviation on a normal probability curve, beang the point of inflection on the surface settlement semı-profile) and $s_{\max }$ the maximum settlement on the error curve. Thus,

$$
V_{\text {surf }}=\sqrt{2 \pi} \perp s_{\max }
$$

Loss of ground however, must be related to the theoretical volume of the tunnel ($V_{\text {exc }}$),

$$
V_{\text {surf }}=V_{l} V_{\text {exc }}
$$

where V_{l} is the ground lost

SCHMIDT (1969) examined variations in the loss of ground with the OFS value and with the soil properties under $K=1$ conditions on the assumption of no volume change (that is $\boldsymbol{V}=0.5$). He concluded that

For OFS $\leqslant 1, \quad V_{l}=30_{l} \frac{{ }^{c}{ }_{u}}{E}$
where c_{u} is the undrained shear strength
and E is the Young's modulus.
Finally, he pointed out that the strength/modulus ratio for common solls varies within a fairly narrow range approximately bounded by the values 5×10^{-3} to 2×10^{-3}. This range is likely to be narrowed as more becomes known about the deformational behaviour of clay soils.

As is shown in Chapter 2, the $Z / 2 R$ ratio (depth/diameter) is a function of the loss of ground $\left(V_{l}\right)$, and according to SCHMIDT'S results it might be a function of OFS, because $V_{e}=f(O F S)$. Indeed, SCHMIDT, op cat derived a graph giving the range of theoretical ground loss as a function of OFS for boundary values of the ratio c_{u} / E, as shown in Figure 1.3.1.

1.4. LABORATORY TECHNIQUES APPLIED TO GROUND STABILITY

Laboratory extrusion testing of clays and other soft ground materials has been suggested as a quick method of evaluating ground stability at a tunnel face. A feature of the model is that the direction of extrusion of material becomes perpendıcular to the direction of stress application. Extrusion itself is by a combination of plastic deformation and shear. BJERRUM and EIDE (1956) determined the factor of safety against faclure at the base of an excavation as,

$$
F=N_{c} \frac{c_{u}}{\gamma^{h+Q}}
$$

where N_{c} is a coefficient dependent on the dimensions of the excavation,
c_{u} is the undrained shear strength of the soll,
Y is the unat weaght of the soll,
h ls the depth of the tunnel from the ground surface,
and $\quad Q$ is a surface surcharge.
If d is the hole diameter, they concluded that for $h / d>4, N_{c}=9$.

BROMS and BENNERMARK (1967) translated this adea in terms of a curcular tunnel face where $\mathrm{Z} / 2 \mathrm{R}$ is greater than 4 . From a theoretical analysis of a semn-curcular rotational faclure at tho face they deduced a value for $N_{c}=6.28$.

They proceeded to reinforce theur argument by a serles of laboratory extrusion tests from which they derived a value for N_{c} n the region of 6 to 8. This adds a theoretical justification for the earlier practical observations of a critical value for OFS a lıttle greater than 6.

A tunnel excavation would be stable therefore, lf overburden pressure is less than sux tames the undrained shear strength of clay. Later work by ATTEWELI and BODEN (1971) stressed that the stability ratio which is based on sumple stress-deformation criteria is ancomplete. They arguc that for practical considerations, the stress level of interest is not that of total faslure but rather that of maximum acceleration of clay intrustion at a tunnel face. This occurs before the ultamate stress-deformation yıeld considered previously. The value for this new stability ratio is taken as $N_{c}=0.45$.

BODEN (1969), PASCALL (1970), ATTEWELL and BODEN (1971), HARRISON (1971) and finally ATIEWELL and FARMER (1972) conducted a series of laboratory extrusion tests in order to simulate tunnelling. The basic testing programme was in almost all cases the same and conslsted of two distinct parts.

The first part was an extrusion test using a constant rate of axial strain, while the second part was a series of extrusion tests using five constant stress steps loaded on the same sample and held on for approximately fafteen manutes each. The applied vertical stress and the amount of clay extrusion were measured in both tests with the addition of the axial deformation of the sample in the former case.

Investigations were carried out anto the effects on the stabilıty of the clay of varying molsture content and extrusion hole size. Other testing of a more standard form was also performed.

Atterberg Limats were determined for each clay sample as was the undrained shear strength. ATTEWELL and BODEN (1971) plotted the varıation of extrusion-based stabilıty ratıo wath liquidıty index for undisturbed lamınated clay. They found a linear relationship to hold in the form that as the lıquidıty index increases, the stability ratio tends to decrease.

Figure 1.4.1. ıllustrates the cell for clay extrusion experaments with its geometrical elements, and some results of a typical constant axial strain rate test on a clay.

A more detalled analysis of a constant rate of axial strain test is given in Figure 1.4 .2 while a graph $1 s$ presented for the extrusion rate $\mathrm{de} / \mathrm{dt}$ versus the stabilıty ratio $\sigma_{\mathrm{V}} / \sigma_{f}$. This graph comprises data on London clay and on stiff clay with different extrusion hole diameters used.

The basic feature in the interpretation of the combined curve (Figure 1.4.2.) is the series of values for critical overburden pressures such as

$$
\sigma_{v}=\sigma_{e}^{(f)} 1,2 \ldots . \ldots
$$

In fact, $\sigma_{e}(f)$, is a value which is determined from the stress level
corresponding to the point of departure of the pre-fallure tangent from the extrusion curve. It shows, however, the stabilıty value at the tame when the clay is just startang to accelerate out of the hole.

Nevertheless, if the point of tangent interception 1 s produced horizontally to meet the graph, the stabılıty value $\sigma_{e(f)}$ corresponds to a state where extrusion is visible but maximum acceleration has not yet been attanned. On the other hand, $\sigma_{e(f)} 3^{\text {is }}$ the stablluty value which may be correlated wath the maxımum acceleration of extrusion. It is found from the point of antersection of the tangent angle bisector wath the extrusion graph, whale $\sigma_{e(f)} 4$ is the stabılaty value for the tangent intersection. It is actually a value corresponding to an event just after maxımum acceleration.

Finally, $\sigma_{e(f) 5}$ is determined from the point of departure of the post-fallure tangent from the curve. It shows the value of the stabilaty ratio when extrusion ls attainang a more unıform velocıty. Obviously, these $\sigma_{e(f)}$ values can be expressed more consistently in a dimensionless way takıng the ratio σ_{V} / σ_{f} which $1 s$ a characterıstıc stabılıty ratıo.

1.5. TIME FACTOR AND GROUND STABILITY

It is usually accepted that the slower the rate of tunnel advance the greater is the total clay intrusion for a given depth of tunnelling. Indeed, the time factor is a governing parameter in the ground stability regame around a tunnel. The rate of tunnel advance determines an effect the time of exposure of any element of clay at or near to the turnel face as well as around the opening.

For shleld tunnelling, the problem lies in the accommodation of the tame factor anto the ground loss computations. MUIR WOOD (1970), In a quite precise manner, pounted out the mann contributory factors for the determination of ground loss. Using MUIR WOOD'S op cit arguments as a Sramework, an attempt has been made by the author to modify and extend the concept, emphaslzing the role of rate effects. The total ground loss might be expressed as the sum of ground losses

1) At the face
2) Behind the bead of the shield.
3) Along the shreld, and
4) Behind the tail of the shield.

Thus,

$$
V_{l}=V_{l_{1}}+V_{l_{1}}+V_{l_{2}}+V_{l_{3}}+V_{l_{4}}
$$

The first factor of equation (1.5.1.) can be expressed in terms of the shield radius (R) and the horızontal movement of ground at the face per unit length of shıeld's advance (J).

Thus,

This factor obviously is not tame dependent. In order to incorporate the time factor it $1 s$ necessary to define two basıc rates, namely the rate of clay movement at the tunnel face ($\alpha=d s / d t$), and the rate of tunnel advance $(A=d l / d t)$. Note that l represents length measured in metres. Therefore,

$$
J=\alpha / A
$$

and

$$
V_{l_{1}}=\frac{\pi R^{2} \alpha}{A}
$$

Equation (1.5.4.) expresses the ground loss due to the face take area.

Assuming a 180 degrees bead, the ground loss due to the radual take area 1s,

$$
V_{l_{2}}=\frac{\pi l_{0}}{2}(2 R-d) \simeq \pi l_{0}, R \text { because } d \ll 2 R
$$

where l_{0} is the length of the shield only, d is the bead width.

On this basis one could define the "exposure tame" for an element of clay above the tunnel soffit as,

$$
\begin{equation*}
t_{\exp }=\frac{\ell_{0}}{\mathrm{~A}} \tag{1.5.6.}
\end{equation*}
$$

During that time the clay movement is

$$
\begin{equation*}
s_{\exp }=\frac{l_{0 \alpha}}{A} \text { or } s_{\exp }=l_{0 J} \tag{1.5.7.}
\end{equation*}
$$

From equation (1.5.5.) and equation (1.5.7.) the ground loss could be expressed more accurately as,

$$
\begin{equation*}
V_{l_{2}}=\pi \ell_{0}^{2} R \frac{\alpha}{A} \quad \text { or } \quad V_{\ell_{2}}=\pi \ell_{0}^{2} R J \tag{1.5.8.}
\end{equation*}
$$

Since the bead is relatively small, (something between 5 to 25 mm according to European standards), one should expect that during the shield's passage there are two alternatives, l.e.. either, $s_{\exp }>d$ which means that the bead is closed,
or $\quad s_{\exp }<d$ which means that the bead is not closed.

In difficult soils the shield is often distorted so that its cross-section changes along its length. This results in some extra ground loss. The same, however, could happen when the shield is driven with its axis at an angle to the axis of the tunnel.

MUIR WOOD op cıt, basing on SHIRAISHI'S (1968/69) paper, proposed that if a shıeld "crabs" or, on account of poor ground, is drıven at an appreciable attıtude, considerable settlement and ground losses are lakely to occur.

Hence,

$$
\begin{equation*}
v_{l_{3}}=\frac{\pi l_{0}^{v}}{8} \tag{1.5.9.}
\end{equation*}
$$

where
v is a "look-up" of shield measured as extent of out of plumb on vertical diameter.

Finally, a substantial ground loss usually occurred behind the tailpiece before, during and after the ground stabillzation through grouting.

Theestimation of that component of ground loss is probably the most difficult and speculative because many and different factors are affecting the nature and extent of ground movement behind the tailpiece.

First of all, the soll's nature, its stıffness, cohesion and molsture content are the domanant factors. Secondly, but not less important, is the type of temporary supporting system as well as the type of lining.

The time of unsupported ground exposure, the composition and effectiveness of grouting, the tunnel's depth and its location with respect to the groundwater level are no doubt some addıtional factors.

As a first approximation, it could be argued that for tunnels above the groundwater level, the loss of ground 15 glven by

$$
\begin{equation*}
\mathrm{V}_{\ell_{4}}=2 \pi R\left(R-R_{0}\right) \tag{1.5.10.}
\end{equation*}
$$

where R_{0} is the external radius of the lining, and R Is the radius of the shield.

Finally, it is then possible to express the volume of the total ground loss per unit length of tunnel, taking into account the partial ground loss values of relationshıps (1.5.4.), (1.5.6.), (1.5.9.) and (1.5.10.). $V_{l}=\pi R^{2}(\alpha / A)+\pi l_{0}^{2} R(\alpha / A)+\frac{\pi l_{0}}{8}+2 \pi R\left(R-R_{0}\right)$ or,

$$
\begin{equation*}
\left.V_{l}=\frac{\pi R \alpha}{A}\left(R+\ell_{0}^{2}\right)+2 \pi \frac{\left(\ell_{0}^{v}\right.}{16}+R^{2}-R R_{0}\right) \tag{1.5.11.}
\end{equation*}
$$

One should comment that the only unknown factors in 1 elationshıp (1.5.11.) are The rate of clay movement at face, in other words α, and the "lookup" of the shield measured as extent of out of plumb on vertical diameter, 1.e. v.

Since the latter factor could be determined in-situ, the problem arises with the first one.

With that point in view, the extrusion technıque is a useful tool for the determanation of the extrusion rate.Finally, it is possible to express the maximum surface settlement above a tunnel, taking into account rate effects. Thus, assuming that the volume of the surface settlement trough ($\mathrm{V}_{\text {surf }}$) is equal to the total volume of ground loss (V_{ℓ}), and that the surface solllemenl curve follows a Gaussian error function,

$$
\begin{equation*}
V_{\text {surf }}=V_{\ell} \tag{1.5.12.}
\end{equation*}
$$

but as has been discussed previously (see equation 1.3.1.)

$$
V_{\text {surf }}=\sqrt{2 \pi} I s_{\max }
$$

Also, bearıng in mind SCHMIDT'S (1969) equation,

$$
\frac{I}{R}=\left(\frac{Z}{2 R}\right)^{0.8}
$$

It is possible to estımate the maximum settlenent over a single tunnel
by the combination of the latter relationships.

Thus,

$$
\begin{aligned}
& \sqrt{2 \pi} \perp s_{\max }=\pi\left[R(\alpha / A)\left(R+\frac{\left.\left.\left.l_{0}^{2}\right)+\frac{\left(l_{0}^{v}\right.}{8}+R^{2}-R R_{0}\right)\right]}{s_{\max }=} \begin{array}{l}
\sqrt{2 \pi / 2}\left[R(\alpha / A)\left(R+\ell_{0}^{2}\right)+\left(\frac{\ell_{0}}{v}+R^{2}-R R_{0}\right)\right]
\end{array}\right]\right.
\end{aligned}
$$

$$
\ldots .(1.5 .13 .)
$$

and sance $I=R\left(\frac{Z}{2 R}\right)^{0.8}$, and $\sqrt{2 \pi} / 2=1.25$

Thus,

$$
s_{\max }=\frac{\left.1.25\left[(\alpha / A)\left(R+l_{0}^{2}\right)+\frac{\left(\ell_{0}^{v}\right.}{8 R}+R-R_{0}\right)\right]}{\left(\frac{Z}{2 R}\right)}
$$

Ground loss calculations have also been discussed uy ATTEWELJ and FARMER(1974).

1.6 RELATIONSHIP BETWEFN OFS AND TIME

Another problem of interest is the relationship (ıf any does exist) between the OFS and TIME. Such a relationship maght be derived on the basis of rheologlcal laws. For the case of saturated plastic clay or a stıff plastic clay, $1 t$ ls reasonable to adopt a visco-elastic behavioural mode which is represented by a Kelvan model. This is composed of an elastic ${ }^{-}$ element (spring) in parallel with a viscous element (dashpot), (see Figure 1.6.1.).

OBERT and DUVALL (1967) stated that the strain in the elastic element must equal the strain in the viscous element, the total stress σ, is the sum of the elastic stress σ_{1} and the viscous stress σ_{2}. Thus, they proposed that the total stress ls equal to

$$
\sigma=\sigma_{1}+\sigma_{2}=E_{1} \varepsilon+3 \eta
$$

Assume that at $t=0$, when $\varepsilon=0, \quad$ a constant stress σ_{0} ls applıed to the system. By integration of equation (1.6.1.) :

$$
\begin{equation*}
\varepsilon=\frac{\sigma_{o}}{E_{1}}\left[1-\mathrm{e} \frac{\frac{E_{1} t}{3 \eta}}{}\right] \tag{1.6.2.}
\end{equation*}
$$

By adding in series wath the Kelvin element a spring ${ }^{*}$ in order to accommodate the instantaneous displacement, DEFRE et al (1969) pointed that

$$
\begin{equation*}
\varepsilon(t)=\frac{\sigma}{E_{2}}+\frac{\sigma}{E_{1}}\left(1-e^{-b t}\right) \tag{1.6.3.}
\end{equation*}
$$

Taking the limit,

$$
\begin{aligned}
& \operatorname{lım} \varepsilon(t)=\varepsilon_{u l t} \\
& t \rightarrow \infty
\end{aligned}
$$

where,

$$
\begin{equation*}
\varepsilon_{u l t}=\sigma\left(\frac{1}{E_{1}}+\frac{1}{E_{2}}\right) \tag{1.6.5.}
\end{equation*}
$$

b is a coefficient with dimensions of inverse time.
Finally, taking $\varepsilon(t)$ as an arbitrary value of relative displacement of a tunnel wall, and further assuming that $\sigma=\sigma_{v}=\gamma \mathrm{h} .$, 1.e. the overburden pressure, then

$$
\varepsilon_{r e s}=\frac{\sigma_{v}}{E} e^{-b t}
$$

where,
$\varepsilon \quad$ is the residual relative displacement, or in other words, the res remaining displacement that will occur after the removal of the external stress.

In fact, $\varepsilon_{r e s}=\varepsilon_{u l t}{ }^{-\varepsilon(t)}$

Thus,

$$
\begin{equation*}
\sigma_{v}=\varepsilon_{r e s} E e^{-b t} \tag{1.6.7.}
\end{equation*}
$$

Assumang, further, that an internal pressure is acting for the purposes of stabilization of the tunnel walls and that this pressure ls given by a known function of time, l.e. $\sigma_{\text {Int }}=f(t)$, then the OFS could be expressed as a function of time:

The accuracy of the proposed relationship depends primarily upon the nature of the soul and its rheological properties and secondly upon the groundwater regime existing near the face and around the carcumference. Maybe it is reasonable to suppose that the relationship in question $1 s$ valid for short time domains, such as, for instance the time elapsed between the excavation and the installation of the early support of the tunnel.

CHAPTER 2

2. 1 INTRODUCTION

Any cavity or tunnel excavation constitutes a discontinuity in the subsurface ground volume, and as a result disturbances occur in the state of stress and strain in the vicinlty of the opening. As a consequence, this disorder causes deformations and displacements of the ground mass, these displacements being represented at the ground surface as a settlement phenomenon.

Many theorles have been developed in an attempt to describe or model the actual mechanism of the ground movement in general and the surface settlement in particular. It is a natural fact that most of these theorles are concerned with settlements due to mining operations rather than those due to tunnelling.

Unfortunately, the concept of settlement due to tunnelling has sometimes been treated consciously or unconsciously on the basls of the same assumptions and relationships which govern the mining phenomenon. It may be claimed that this is a groundless and rather dangerous oversimplıfication because, although the deformation mechanics of both tunnelling and mining follow approximately the same basic pattern, there are some substantial differences between them.

The main practical issue, however, ls the transformation of the semıempirical or purely theoretical concepts concerned with ground movements Into handleable formulae expressing the major surface subsidence parameters with relation to the geological and geometrical elements of the underground
opening. Nevertheless, the focus of attention in the present Chapter wall be concentrated on the state of predictive art in subsidence due to soft ground tunnelling, with a brief reference to the generalized theoretical background.
2.2 REVIEW OF THE EXISTING BASIC CONCEPTS

The exlsting settlement theorles have been developed primarily to explain ground movements created by longwall coal mining, and they could be classified into two main groups the so-called empirical concepts, and the elastic theory concepts.

The first group includes a) the mechanical approach which is related mainly to the pressure arch formation hypotheses, b) the stochastic hypothesls which will be examined separately later, c) laboratory models, which experimentally reproduce subsidence deformations with the ald of, for example, gelatıne, and d) field data analysis such as the survey conducted by the British National Coal Board at 157 collıeries and which resulted in the correlation and statistical treatment of the basic parameters unvolved.

The second group comprises the concepts of the classical theory of elasticlty using varıous assumptions for the behaviour of the media. There is the linear elastic, the plastic or the viscoelastic approach. An outline of these concepts is illustrated in the following diagram

Major differences between the ground deformation in mining and tunnelling could be attributed to the following factors
a) The depth factor, which in the case of mining excavation is far greater then that for soft ground tunnelling.
b) Coal mining usually involves the disturbance of rocks, whereas most tunnelling in Britain takes place in soft ground.
c) Ground stabilization via compressed air, chemical injection, ground water freezing and ground water lowering is of little importance In mining operations, while $10 \perp$ tunnelling in urban areas it is a major assue before and during construction.
d) Lining and support systems differ conslderably in the two cases consıdered.
e) The majority of settlement profiles in tunnelling are subcritical (in nilning subsidence terminology) in contrast to most coal mining longwall faces.
f) Ground losses are very small in tunnelling while in mining they can reach appreciably hıgh values.

2. 3 SURFACE SETTLEMENT RESULTING FROM SHIELD TUNNELLING IN SOFT GROUND.

In order to define the magnitude of surface settlement due to shield tunnelling, some assumptions have to be made with respect to the main contributing factors and the nature and behaviour of the ground involved.

As a first approximation - and assuming non-dilating, non-bulking ground - it is reasonable to suggest that the volume of the settlement profile is the sum of the volume of material entering at the face plus
the volume of the annular vold behind the lining created by the tailskın.

SZECHY (1970) also suggested taking into account the volume resulting from the void created by material compression within a PROTODYAKONOV de-coupled arch (see Appendix 1). It must be stressed, however, that SZECHy'S analysis prımarıly concerns cohesionless soils where arching phenomena (such as the formation of the de-coupled arch) are possible.

The second main assumption is that the ground density is independent of depth, and that the shear strength increases linearly with depth (see Appendux 2).

In fact, making the assumption that the volume of the soll mass, which is responsible for the loosening and thus the surface settlements, will mobilize in both cohesionless and frictionless materials the full shearing resistance along a rupture plane with inclination $(45+\varnothing / 2)^{\circ}$ to the horizonta It is possible (excluding arching phenomena) to use the same analysis for any kind of soft ground tunnelling.

The geometrical arrangement of SZECHY'S op cat model is illustrated in Figures 2.1.1 and 2.3.2. The former Figure shows a transverse settlement profile (A) according to the model, and an actual measured profile (B) caused by the hand excavation of a 4.146 m diameter shield driven tunnel at an axis depth of 29.3 m in London clay.

A comparison between the model and the actual case history reveals good compatibility between the two. The predicted magnitude of the span of the settlement trough $\left(Y_{3}\right)$ is equal to $64.45 \mathrm{~m}^{*}$, while the measured span

[^1] (undrained shear deformation).

Is approxımately equal to 70 m . The Latter exceeds the former by 8%. The forward extension (Y_{1}) of a settlement profile is equal to 29.3 m according to the model, and 19 m according to $1 n-s i t u$ measurements (34.5% less).

Another interesting feature is the difference in the shape of the shear surface. A straıght line inclined 45 degrees upwards is assumed from the model whereas a curved surface may be postulated from the measurements as shown in Figure 2.3.2 (Note that X1, Y1, Z1, are measurement stations for settlement and horizontal ground movement and are on the centre line of the tunnel, station X1 is actually slightly displaced - 0.85 m - from the centre line).

Now, let us assume that the volume of the settlement trough is $V_{\text {surf }}$ and let the maximum settlement be $s_{\max }$. Although, the delimiting lımbs of the settlement basin wall be sigmoidal, as a first approximation It is possible to assume that they are straight and hence to regard the trough as a pyramid of helght $s_{\text {max }}$ and of rectangular cross-section $\left(Y_{2} Y_{3}\right)$. This approximation (which is certainly valıd in the case of a harmonic profile) is shown in Figure 2.3.3. Accordingly,

$$
\begin{align*}
& \mathrm{v}_{\text {surf }}=\frac{1}{3} \text { Base } x \text { Height or, } \\
& v_{\text {surf }}=\frac{4}{3}(R \operatorname{cosec} B+z \cot B) z \cot B s_{\max } \tag{2.3.1.}
\end{align*}
$$

Applying the fundamental hypothesis that the volume of the soul included in the surface settlement curve ($\mathrm{V}_{\text {surf }}$) must be equal to the volume of soll lost at the end of the tunnel ($\mathrm{V}_{\text {exc }}$) due to the excavation (no dilation in the intervening strata) one may write:

$$
\begin{equation*}
V_{\text {surf }}=V_{\text {exc }} \tag{2.3.2.}
\end{equation*}
$$

Thus, the maximum settlement could be expressed as,

$$
\begin{equation*}
s_{\max }=\frac{3 \mathrm{~V}_{\text {exc }}}{\mathrm{Y}_{2} \mathrm{Y}_{3}} \tag{2.3.3.}
\end{equation*}
$$

or

$$
s_{\max }=\frac{v_{\text {exc }}}{2 Z \cot B(R \operatorname{cosec} B+2 \cot B)}
$$

......(2.3.4.)
$!$
The later equation is obviously an incomplete relationship and might be useful as a first approximation only because the prediction of settlement amplıtudes at dıfferent planes along the profile would be inaccurate If based on the planar trough side concept.

Additionally, one could argue that inclinometer data suggest that this adea 1s not really acceptable. In order to overcome this dıfficulty, elther a harmonic analysis can be used or the profile can be approximated to an error curve (the well known GAUSSIAN) along any section.

Nevertheless, another approach of the analytical expression for the transverse surface settlement profile is possible through the harmonic analysis. Figure 2.3.3. Allustrates the harmonic analysis*of the settlement semı-profile, so that the profile is resolved into a linear component and into a harmonic component which can be approximated by a sine wave.

Let therefore s_{1} be the vertical settlement at any point on the profile, and let s_{2} be the same component on the linear profile. Finally, let s_{0} be the absolute difference between s_{1} and s_{2}. The geometry of the arrangement indicates that,

$$
\begin{equation*}
\frac{s_{2}}{s_{\max }}=\frac{\ell_{1}}{Z \cot \bar{B}} \quad \text {, therefore } s_{2}=\frac{\ell 1 s_{\max }}{Z \cot B} \tag{2.3.5.}
\end{equation*}
$$

* This concept is developed on the basis of P.B. Attewell's lecture notes (University of Durham, Academıc year 1972-73).

Equation (2.3.5.) may be approximated to

$$
\begin{equation*}
s_{2} \simeq d \cdot s_{\max } \sin \quad \frac{2 \ell 1}{2 \cot } \tag{2.3.6.}
\end{equation*}
$$

where d is a constant.
Accepting that the slope of the settlement profile is horizontal at the point ($\ell=0, Z \cot /$,), the constant (d) may be designated as $d=\frac{1}{2 \pi}$. Sance $s_{1}=s_{2}-s_{0}$

It follows that the final relationship is of the form,

$$
\begin{equation*}
s_{1}=s_{\operatorname{lnax}} \frac{\ell}{Z \cot B}-\frac{1}{2} \sin \frac{2 \ell_{1}}{Z \cot B} \tag{2.3.8.}
\end{equation*}
$$

The point of inflexion of this profile is defined by the maximum slope, ュ.e. $\mathrm{ds} / \mathrm{d} \ell=0$ which gives a value of $\ell_{\text {Inf }}=\frac{Z \cot B}{2}$

ATTEWELL and FARMER, (1972, 1974) based on SZECHY'S (1970) model developed an analysis assuming that the form of the axial and transverse settlement profiles can be approxımated by the error function. They finally derived the following relationship for the maximum settlement,

$$
\begin{equation*}
s_{\max }=\frac{9 V_{\mathrm{exc}}}{2 \mathrm{Y}_{2} \cdot \mathrm{Y}_{3}} \tag{2.3.9.}
\end{equation*}
$$

The latter equation is in fact a more refined form of equation(2.3.1.) and can be written more analytically as,

$$
\begin{equation*}
s_{\max }=\frac{9 v_{\text {exc }}}{4 Z \cot B(R \operatorname{cosec} B+Z \cot B)} \tag{2.3.10.}
\end{equation*}
$$

2.4. THE STOCHASTIC THEORY OF GROUND MOVEMENTS AND SURFACE SETTLEMENTS

An important development took the form of a series of papers by LITWINISZYN concerned with stochastic theory as a tool for settlement prediction. LITWINISZYN (1953, 1956, 1957, 1957b) proposed an abstract
model conslstang of many layers of small unform spheres an 3-dimensions or discs in 2-dimensions falling into "cages" in a random manner under the action of gravity. In fact, the removal of a single sphere leaves an empty space which is due to be occupled by another sphere which in turn creates a second void. The laws governing the upwards movement of volds or downwards movement of spheres are probabılistic. The translocation of a sphere from the point $\left(X_{2}, Z_{2}\right)$ to $\left.X_{1}, Z_{1}\right)$ in a Cartessian plane is guven by the diffusion-lıke differential equation

$$
\text { A } \frac{\partial^{2} p}{\partial x^{2}}-\frac{\partial p}{\partial z}=0
$$

where-P is the probability of the sphere moving down and A is the coefficient wath the dimension of length.

The general solution to equation (2.4.1) is

$$
P=s(X, Z)=\frac{1}{\left[4 \pi A\left(Z-Z_{1}\right)\right]^{1 / 2}} \quad \exp \left[\frac{\left(X_{2}-X_{1}\right)^{2}}{4 A\left(Z_{2}-Z_{1}\right)}\right]
$$

where $s(X, Z)$ is the settlement at (X, Z) point.
LITWINISZYN shows that equation (2.4.2.) takes the form of the wellknown error curve
$s=s_{\max } \exp \left(\frac{-x^{2}}{2 x^{2}}\right)$
where $s_{\max }$ is the maximum settlement,
1 Is the standard deviation, or the displacement of the point of inflexion on the settlement profile from the vertical centre plane of the disturbance, and
$s \quad$ the settlement $i n$ the point (X, Z).

It may be argued that the model has certain disadvantages due to the following reasons.
a) I completely $1 g n o r e s$ the stresses $\operatorname{lnvolved}$ in the settlement mechanlsm.
b) As the spheres move always downwards there is no accommodation for upwards ground movements, such as heave for instance, which, it is claımed, sometımes occurs.
c) The model disregards the horizontal components of ground movements, so restructing ats valıdıty to setllement only.
d) It would be difficult to fand a real geological material with the Idealızed properties of the unıform spheres as proposed. Even for the case of a granular soll the similarıty is rather poor $1 f$ a friction or apparent cohesion in water-bearing strata is taken into account. Also, as has been forcibly noted by BERRY (1969), from the mathematical point of view the model suffers by adopting the principle of superposition. Indeed, VOIGHT and PARISEAU. (1970) stressed that the experımental evidence obtained with sand as a mediumdoes not support the valıdity of superposition. BODZIONY, LITWINISZYN and SMOLARSKJ (1960) suggested a delinearization of the concept. No doubt such a process would probably Introduce complexities such as the necessary formation of constitutive laws.

It is accepted that every theory can only be judged by its performance when applıed to actual practıce. From that point of view, the stochastıc concept does assume a certain valıdıty. PECK ET AL (1969) pointed out that the symmetrically-shaped settlement profıle over a tunnel may be approximated by the GAUSSIAN error curve not only on theoretical grounds but, more importantly, on the grounds of convenience and easy-to-use properties of the function, which is completely defined by the maximum settlement ($s_{\max }$) and the standard deviation (1). The area under the curve (the settlement volume per unit advance) is given by

$$
\mathrm{V}_{\mathrm{surf}}=\sqrt{2 \pi} \perp s_{\max }
$$

and is a value of great importance for prediction of settlement especially in tunnels drıvet under urban areas. PECK (1969) supported the "stochastic theory" by presenting in a very analytical and critical manner case studies of tunnels in soft ground constructed and supported by various methods.

However, the main conclusion $1 s$ that the error curve does fit reasonably well the majorıty of cases, thus greatly asslsting the engineer in his calculations.
2.5. PREDICTION OF SETTLEMENT ASSOCIATED WITH SOFT GROUND TUNNELLING

The problem of settlement prediction consists of two quite separate parts. There is the question of the shape of the settlement trough, and the question of ground loss incurred during tunnelling. These questions are interrelated by common factors. For instance, knowledge of ground loss leads to the estimation of $V_{\text {surf }}$, which an turn is related to the main parameters of the settlement trough. Accepting the arguments of PECK (1969) and taking the "error function" as the most reasonable representation of the shape of a settlement curve, the problem is one of the designation of the standard deviation (1) or the maximum settlement ($s_{\text {max }}$) for the definition of the particular curve. By combining results from theoretical elastic analyses and model tests on the bascs of stochastıc theory, SCHMIDT (1969) derıved a relationship relating the geometrical elements of the tunnel to the standard deviation

$$
\left(\frac{\mathrm{I}}{\mathrm{R}}\right)=\mathrm{K}\left(\frac{\mathrm{Z}}{2 \mathrm{R}}\right)^{\mathrm{m}}
$$

where
I 1 s the standard deviation for a normal distribution of data,
K is a coefficlent which is very close to unlty
m is an exponent equal to 0.8

Equation (2.5.1.) is expressed andependently of the type of soll. PECK (1969) confurmed andurectly the valıdaty of SCHMIDT'S relationshıp by providing data for settlement over a number of tunnels. He concluded that the ratio $1 / R$ appeared to be greater in clay than in noncoheslve solls.

SCHMIDT'S op cit relationship is plotted (Figure 2.5.1.) in the same graph with a sumilar function derived from SZECHY (1970) If it is assumed* that the span of transverse settlement profıle is equal to

$$
Y_{3}=6 I
$$

Thus,

$$
2(R \operatorname{cosec} B+Z \cot B)=61
$$

Therefore

$$
\frac{1}{R}=\frac{2}{3}\left(\frac{\operatorname{cosec} B}{2}+\frac{Z}{2 R} \cot B\right)
$$

The graph reveals that the functions are very close to one another for the limats of $1<Z / 2 R<9$. For the tunnel under consaderation, $Z / 2 R=7.07$ and $R=2.07$. Therefore, the standard deviation $1 s 1=9.88 \mathrm{~m}$ on the bascs of SCHMIDT'S (1969) equation, and $1=10.24 m$ accordang to the SZECHY (1970) model.

[^2]MUIR WOOD (1970) has pointed out the possibility that Schmidt's value of the ratio i / R might be fairly reliable for shield driven tunnels. In the derivation of his equation SCHMIDT assumed that volume changes in the subsiding mass can be neglected. PECK ET AL (1969) also argued that the equation can be used with confidence in predacting the width of the settlement troughs in clay, since the immediate soil displacements around a tunnel in clay takes place in an undrained condition and, thus, with little or no volume change.

In the context of ground loss, the percentage of the average settlement volume ($\mathrm{v}_{\text {surf }}$) with respect to the theoretical volume, is a useful index of loss of ground.

Assuming that the theoretical volume of excavation per unit advance for a circular tunnel is

$$
\begin{equation*}
V_{\text {exc }}=\pi R^{2} \tag{2.5.4.}
\end{equation*}
$$

The loss of ground might therefore be

$$
\begin{equation*}
\mathrm{V}_{l}=\mathrm{bv} \mathrm{exc} \text { or } \mathrm{V}_{l}=\mathrm{br} \mathrm{R}^{2} \tag{2.5.5.}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{b} \text { is a constant } \\
& \pi \text { is } 3.1415 .
\end{aligned}
$$

But according to the main hypothesis, which is a modified form of the mass conservation principle, the volume of the ground under the surface settlement trough ($\mathrm{V}_{\text {surf }}$) is equal to the volume of loss of ground in the tunnel, (V_{l}).

Thus,

$$
\begin{aligned}
\mathrm{V}_{\text {surf }} & =\mathrm{V}_{l}, \text { or } \sqrt{2 \pi} \perp s_{\max }=b \pi R^{2} \text { or } \\
\frac{s_{\max }}{\mathrm{R}} & =\frac{\mathrm{bR}}{\sqrt{2 \pi} 1} \\
\text { or, } \frac{s_{\max }}{R} & =\frac{C R}{1} \quad \text { If } b \pi / \sqrt{2 \pi} \quad \text { ıs'wrıtten as } C \quad \ldots . .(2.5 .6 .)
\end{aligned}
$$

Taking into account SCHMIDT'S relatıonship,

$$
\begin{equation*}
\frac{s_{\max }}{R}=d\left(\frac{Z}{2 R}\right)^{-m} \tag{2.5.7.}
\end{equation*}
$$

where $d=C / K$

Taking logarıthms of both sldes of equation (2.5.7.), we have

$$
\begin{aligned}
\log \left(\frac{s_{\max }}{R}\right) & =\log d-m \log \left(\frac{Z}{2 R}\right) \\
\text { or } \log \left(\frac{Z}{2 R}\right) & =\frac{1}{m}\left[\log d-\log \left(\frac{\left.s_{\max }\right)}{R}\right]\right. \\
\text { and } \log \left(\frac{Z}{2 R}\right) & =\log \left[\frac{d}{\left(\frac{s_{\max }}{R}\right)}\right]^{1 / m}
\end{aligned}
$$

finally,

$$
\log \left(\frac{Z}{2 R}\right)=\log \left[d\left(\frac{s_{\max }}{R}\right)^{-1}\right]^{n}
$$

where $1 / m=n$.
Now taking antılogarıthms,

$$
\left(\frac{Z}{2 R}\right)=d^{n}\left(\frac{s_{\max }}{R}\right)^{-n} \quad \text { for convenıence we substıtute }
$$

$d^{n}=A$, therefore,

$$
\begin{equation*}
\left(\frac{\mathrm{Z}}{2 \mathrm{R}}\right)=\mathrm{A}\left(\frac{\mathrm{~S}_{\max }}{\mathrm{R}}\right)^{-\mathrm{n}} \tag{2.5.8.}
\end{equation*}
$$

Relation (2.5.8.) was proposed by MYRIANTHIS (1974a) and supported by the accompanıed analysis of 40 case studıes, (see Appendıx 3).

Coefficıent A and exponent n of relation (2.5.8.) take values
depending upon the soll type where the tunnel is driven.
On the other hand, the equalıty of volumes indzcate that a linear relationship must exist between $V_{\text {surf }}$ and $V_{\text {exc }}$, slnce $V_{\text {surf }}=V_{l}$ and $V_{l}=b V_{\text {exc }}$. Indeed, the analysis of numorous case historıes indicated (MYRIANIHIS op cıt) that a relationship holds an the form of

$$
\begin{equation*}
v_{\text {surf }}=b V_{\text {exc }}+c \tag{2.5.9.}
\end{equation*}
$$

The coefficlents b,C were determined through least squares regression technıques, and as in the case for maxımum subsidence $1 t$ was found that b and C depend a great deal upon the properties of the ground, as shown in Figures 2.5.4.,2.5.5. As expected, the coefficient b, which does represent a characteristic andex of ground loss, is higher in the case of granular sozls than for plastic clays.

PECK (1969) suggested that many but not all soft ground tunnels can be discussed whth respect to loss of ground and settlement on the basis of four principal groupings of solls granular solls with no cohesion other than that imparted by capıllarıty, cohesıve granular solls, non-swelling stiff to hard clays, and stiff to soft saturated clays.

The classification system adopted for the present thesis is more or less that of PECK op cit.

A graph of the dimensionless ratio $Z / 2 R$ versus $s_{m a x} / R$ has been plotted in Figures 2.5.2. and 2.5.3. for the case of stiff plastic clay and saturated plastic clay plus granular soll respectively. In general, the fitting for the fifteen cases of stiff plastic clay wilh the proposed equation (2.5.8.) is quite satisfactory. It appears that the pheonomenological relation

$$
\frac{\mathrm{Z}}{2 \mathrm{R}}=9.35\left[\frac{\mathrm{~s}_{\max }}{\widehat{\mathrm{R}}}\right]^{-0.41}
$$

does reasonably represent the interrelationship between maximum settlement and tunnel geometry. The same behaviour could be claimed for the case of granular soll and for plastıc clay, but with less satisfactory results.

Fugures 2.5.2. and 2.5.3. andıcate that there as a "critical" value
for the ratio $Z / 2 R$, where the ratio $s_{\max } / R$ tends asymptotically to
infinlty. Obviously, this ls a purely theoretical consideration attributed to the exponential nature of the proposed relationship, while In actual practice the maximum settlement is bound between ,ertain upper lumıts imposed by the qualıty of workmanshıp and the implementation of ground stabilising processes.

Nevertheless, $1 t$ ls reasonable to accept that the deeper the tunnel, the more arching ${ }^{*}$ and thus the less the surface settlement. On the other hand, the larger the tunnel cross-section (hıgh values for R), the higher $V_{\text {cxc }}$ and $V_{\text {surf }}$ which in turn facilıtate higher values of maximum settlement ($s_{\max }$). However, the main argument in favour of the usefulness is of anyrelationship such as these proposed for settlement prediction is that they are primarily addressed to design engıneers as a first quick estimation of the extent and amplitude of settlement due to soft ground tunnelling. However, practical and safety reasons bound the upper and lower limats for values of the ratios $Z / 2 R$ and $s_{\max } / R$. In that respect, arguments concerning, for example, an asymptotic behaviour for the functions involved, are of a rather academic value. Finally, it is worthwhile noting that the ratio $Z / 2 R$, in contrast to the case of stıff plastıc clay, varies within a small range of values \ln the case of granular solls, while the ratio of $s_{\max } / R$ varies quite widely. The latter is compatible with the

[^3]nature of granular solls.
A rather linear relationship between $V_{\text {surf }}$ and $V_{\text {exc }}$ appears in Figures 2.5.4. and 2.5.5. which anclude case history data. The quality of fit of the actual data reasonably Justifies the proposed linear equation (2.5.9.). This relationship is of particular importance because it provides a first approximation of the volume under the settlement curve per unıt advance from estimates of the theoretical volume of tunnel excavation $V_{\text {exc. }}$ Also, an estimate of a mean value for loss of ground is possible from the graphs of Figures 2.5.4. and 2.5.5. (the latter with more reservations). A plot of $Z / 2 R$ versus the loss of ground V_{l} is illustrated in Figure 2.5.6. where, for r easons that are not 1 mmediately apparent, there is a strict demarcation between cases in granular solls above and below the ground water table. The curve fitting for the cases of saturated plastıc clay is less successful, whıle there is no correlation at all for the cases of stiff plastic clay. A $Z / 2 R$ versus $V l$ relationshıp is to be expected because
$$
V_{l}=\left(V_{\text {surf }} / V_{e x c}\right) \times 100 \% \quad \ldots \ldots(2.5 .11 .)
$$

Takıng into account that,

$$
V_{\text {surf }}=\sqrt{2 \pi} s_{\max }
$$

It follows that equation (2.5.11.) can be written

$$
V_{l}=\frac{\sqrt{2 \pi}}{\pi} \frac{\left(s_{\max }\right)\left(\frac{1}{R}\right)\left(\frac{\bar{R}}{(}\right)}{\left(V^{2}\right.}
$$

Substituting $\left(\frac{S_{\max }}{R}\right)$ and $\left(\frac{1}{R}\right)$ from relationships (2.5.8.) and (2.5.1.) respectively,

$$
V_{l}=G\left(\frac{Z}{2}\right)^{m+n}
$$

where G is a constant equal to $\frac{\sqrt{2 \pi}}{\pi} K_{A^{-n}}$

Since $m=0.8$ from equation (2.5.1.) and $n=0.0574$ from Figure 2.5.3. It follows that,

$$
\begin{equation*}
V_{l}=G\left(\frac{Z}{2 R}\right)^{0.857} \tag{2.5.15.}
\end{equation*}
$$

Equation (2.5.15) can be approximated by a linear relationship for the narrow domain of values
$0<z / 2 R<5$
Finalieing the above analysis, it is worth noting that the phenomenological relationships have been extracted under the dominant assumption that the loss of ground is a function of the square of the tunnel radius.

This is obviously a debateable point and particularly if MUIR WOOD'S (1970) analysis is taken into consideration. According to that concept, the loss of ground into a shield-driven tunnel may entail the following contributory factors
a) At the face, computed as $V_{l 1}=\pi R_{h}$ with normal limıts ($0.1-9$) \%,
b) behind the cutting edge or bead of the shield $V_{l_{2}}=2 \pi R t$, with normal limats ($0.1-0.5$) \% ,
c) along the shield, $V_{l 3}=\pi \ell_{0} v / 8$, with normal limits $(0-1) \%$,
d) behind the tail of the shield $V_{\ell_{4}}=\pi R\left(R-R_{0}\right)$ with normal limits ($0-4$) $\%$.
where R is the radius of the shield,
R_{o} is the external radius of the lining,
t is the relief behind the cutting edge,
v is the "look up" of shield measured as extent of out-of-plumb on vertical diameter,
ℓ_{0} is the length of shield,
h is the horizontal movement of ground at face, per unit length of advance of shıeld.

Thus the total amount of ground loss may be expressed as:

$$
V_{l}=\frac{\pi l_{0} v}{8}+2 \pi t R+\pi R\left(R-R_{0}\right)+\pi h R^{2}
$$

The second factor of equation (2.5.16.) is linearly related to tunnel radıus and takes normal lamıts of 0.1 - $0.5 . \%$ The thard and fourth factors of the same equation arc functions of the square of tunnel radius and have normal limıts of 0.1 - over 4%. The first factor is apparently radius-independent.

Adoption of the hypothesis that $V_{l}=f\left(R^{2}\right)$ seems to be justified since at accounts for over 4% of the ground loss, whale the hatherto Ignored linear relationship $V_{l}=f(R)$ accounts for only 0.5%. Because the above analysis has so far totally ignored the radial loss of ground (linearly related to tunnel radıus), lt must be stressed that the latter becomes an all important factor for tunnels with small diameters where the face-take area $\left(\sim \pi R^{2}\right)$ is very small. However, for greater precision, the baslc hypothesls of $V_{l}=b \pi R^{2}$ should really be replaced by a linear polynomial of the second degree:

$$
V_{l}=A_{0}+A_{1} R+A_{2} R^{2}
$$

but this would tend to sacrifice simplicity for extra - and questionably more accuracy.

Besldes the stochastic approach of LITVINISZYN more recently an attempt has been made by FOLYAN et al (1970) towards the use of decislon theory as a tool for settlement prediction. In a case study involving settlements, the relıabılıty of settlement predictions for San Francisco Bay mud was reported to fall wathin $\pm 20 \%$ of the actual settlement. FOLYAN op. cit. stated that probabilıstic procedures provide a framework that can asslst the engineer to organize, accumulate, interpret and evaluate experience. They can become a distanct ald an Soll Mechanics and Foundation Engineering if properly applıed.

2. 6 THE DEVELOPMENT OF SURFACE SETYLEMENT PROFILES DURING SOFT GROUND TUNNELLING.

Early knowledge of tume-dependent ground movements in the soll mass above and around a tunnel is vital because it could lead to a rough estimale of the deformation of tunnel walls as a function of the preducted earth response. It has been shown that ground deformations which take place in the vicanıty of a tunnel are ultamately reflected at the surface by the formation of a settlement trough. The amplacation of the time factor in the genesis and progression of surface and sub-surface ground movements due to tunnel advance is a complicated problem. Two possible alternatives are avaılable in order to study this effect a rheological or a phenomenologlcal approach. The latter can draw conclusions from the detailed study of a glven number of case historles (the more the better) lgnoring the actual mechanisms which create the observed ground behaviour. As for the rheological approach, DEERE et al (1969) refer to these laws in a tunnelling context. They state that "sunce these laws are mathematical approximations of the real behaviour under specified simple conditions, the effect of certain conditions that have little anfluence on the behaviour under sample conditions, but may have greater influence under more complex conditions, may not be adequately accounted for. For this and other reasons, it is not likely that predictions on this base are accurate".

Thas comment is very true for tunnelling, where excavation complexities and ground conditions may often vary over a distance of a few metres. However, in a phenomenological context, and in the light of a very simple analysis of six avaılable case studies, (see Table 2.6.1.) an attempt has been made to relate the progression of the surface settlement
curve with the tunnel advance. The results andicate the existence of such a relation MYRIANTHIS (1974b).

A typıcal surface settlement profile appears an Figure 2.6.1. and It shows a fair agreement wath the normal probabilıty curve. The standard deviation (1) is located 15 m from the tunnel's centre line and the curve is converging towards the point of zero settlement at a distance of more than 35 m . This distance is reasonably comparable with the 45 m distance which might be expected from the properties of the normal probability curve $(31=45 \mathrm{~m})$.

Figure 2.6.2. 1 llustrates how the evolution of the profile relates to the position of the shield, from the same graph there is evidence that ground movements originate when the plane of the shield face is located over 20 m from the datum plane. Thus, at a distance of 20 m (tunnel approaching) the $s_{\max }$ is 8% of the measured $s_{\max }$ in the final profile, 23% at 10 m and 47% during shield passage. The calculation 1 s based on the assumption that $s_{\max }$ has reached its maximum when the shield 1s located 36 m away from the datum point. Of course, small movements may continue on the surface over a longer period of time and in that case the limıt of 36 m seems arbutrary.

Nevertheless, it maght be claumed that these small movements do not greatly influence the safety of any overlying structures sance such amplıtudes of movement could effectively be absorbed without any drastic differential settlement in the foundation of a building.

The second graph in Figure 2.6. 1. is a relationshıp between the $s_{\max }$ and the tunnel advance. As far as cases 5 and 6 are concerned in Fıgure 2.6.3., this relationship takes the form of a modifled normal distribution function.

However, the poant of anflexion on the settlement development profile occurs when the tunnel advance $1 s$ zero, that is, during shleld passage, the non-symmetric raght hand part of the curve being attributed to the slow convergence until an ultimate $s_{\max }$ is reached.

Data in Table 2.6.1. have again been plotted in a semı-dimensionless manner in an attempt to normallze the $s_{\max }$ parameter. It is to be expected from the equation (2.5.8.) that the ratio $s_{\max } / R$ ancreases as Z/2R decreases, as shown in Figure 2.6.1. From the same graph it could be argued that in almost all cases the ratio $s_{\max } / R$ converges for practical purposes when the tunnel advance ls between 40 to 50 m away from the point in question, and also that the ground disturbances start when the tunnel approaches to within a distance of -15 to -10 m . Another feature of this particular graph is that cases 2, 4, 5 and 6 reasonably approxımate to a normal probabılıty curve, but in case 3 there Is no point of inflexion at all.

Finally, it may be noted that the points of inflexion seem to develop at a distance of between 0 and +10 m with an apparent tendency to move towards the zero as the ratio $\mathrm{Z} / 2 \mathrm{R}$ Increases. Nevertheless, the above analysis andlcates that the graph of $s_{\max } / R$ versus the tunnel advance can be approximated to a modified normal distribution function with the point of anflexion lyang between 0 and 10 m along the tunnel advance axis. Clearly, there is a need for more case studies to be examined in order to confirm or modify the implied trend. Untıl then, the above conclusions must serve as general guadelanes only.

3.1 INTRODUCTION

The present Chapter *escribes the methods of in-situ measurements which formed part of a research programme aimed at determining ground deformations caused by hand excavation of a 4.15 m external diameter shield driven tunnel at an axis depth of approximately 30 m in London clay.
3.2 DESCRIPTION OF TIE WORKING SITE

The eection of the tunnel chosen for detalled observation was the initial length of the northbound North tunnel starting from the working access shafts at Green Park station (Figure 3.2.1.). This tunnel forms part of the stage one contract let by London Transport Executive for the new Fleet Inne comprising $23 / 4 \mathrm{mLles}$ of a $4 m$ diameter double tunnel from the Strand to Trafalgar Square station via Green Park and Bond Street to Baker Street station, where it will take over the existing 11 males of the Stanmore Branch of the Bakerloo line.

The northbound North section was chosen because, with the exception of a short length of tunnel in Regents Park, it is the only part of the new line passing through ground that is relatively unaffected by other services, surface structures or surface cover, excluding some recent site concrete. The ground comprises mainly blue and brown London clay overlain by a thin layer of sand/gravel.

3.3 IN-SITU MEASUREMENT METHODS

As was stated by ATTEWELL and FARMER (1972 1974) the choice of instrumentation was governed by the need to obtain a sufficiently high degree of
accuracy to record the small surface and subsurface movements expected to result from the tunnel excavation, whilst at the same time retaining sufficient simplicity to permit a large number of observations to be recorded over the short time period during which the instrumented ground was under the influence of the tunnel excavation.

The instrumentation for the tunnel is described in the next part (3.4.) of the present Chapter where It can be seen that vertical surface movements were monıtored using a precise Cooke level at stations established along three lines normal to the tunnel centre line and approximately 9 m apart (see Figure 3.2.2.). The design of the TBM (temporary bench mark) at Green Park is shown in Figure 3.3.1. together with the design of the actual survey stations. A detacled scale layout (crosssection) of the boreholes and inclinometer access tubes with the exact position of each magnetic ring as initially located on each tube is allustrated in Figure 3.3.2.

For safety precautions with respect to possible water inflow at the tunnel during construction it was decided that the centre line boreholes should be terminated 1.5 m above soffit level. Simılarly, the nearest encroachment of borehole X 2 to the springline is approximately the same. It would appear that the borehole arrangement is well designed for the work that was undertaken. Equally, it could be argued that there were two drawbacks
a) The tubes in boreholes $\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z2}, \mathrm{X} 3, \mathrm{Y} 3$ not in the centre line were not extended below the tunnel axis level. To some extent this anhibited the measurement of the complete ground movement pattern around the tunnel and specifically below the invert horizon.
b) In retrospect, it would undoubtedly have been very useful if a borehole had been placed at a horizontal distance greater than 10 m from the tunnel centre lane an order more precisely to demark the boundaries between the 'disturbed' and the undisturbed' ground.*

3.4 INSTRUMENTATION

In order to detect sub-surface horizontal and vertical ground movements through the 100 mm diameter boreholes, inclinometers and settlement gauges were used. The Soll Instruments torpedo anclinometer incorporating a digital read out has a resolution of $\pm 1 \mathrm{~m}$ horizontal deflection computang to $\pm 01 \mathrm{~mm}$. It operates Ins. $d e$ an aluminıum access tube grouted into the borehole. A clay-cement grout designed to have a three months strength equal to that of the surrounding clay infills the annulus between borehole wall and tube. The borehole tube itself has four keyways dividing the tube's carcumference anto four equal parts. Two diametrically opposed keyways were located parallel to the longitudinal axis of the tunnel, while the other two were at raght angles to $1 t$. Nevertheless a set of reading comprised one run up and one run down each tube at $4 \times 90^{\circ}$ settings in order to give maximum accuracy of readings in two orthogonal directions. Readings were taken at every meter of torpedo travel down the tube. As HANNA (1973) has pointed out, the precision of inclinometer measurements may dıffer sagniflcantly from the precision of the inclinometer system as a whole. The main factors affecting any observations are.
a) possible spirallıng of the casing, check tests elimınated this possibılıty,
b) a lack of repeatability of the reading position,
c) the sensitivity and therefore dependence of the anclinometer to temperature and humidity change,
and finally,

* Therc were, however, practical on-site difficulties which tended to mılıtate against adopting this course of action.
d) the skall of the observer.

In order to detect vertical ground movements, an electrical borehole settlement system was provided whlch comprised four or more magnetic rings located at various depths in each borehole and located on the outslde of the aluminlum access tube. The accuracy of these measurements was estimated at $\pm 1 \mathrm{~mm}$ and attempts were always made to restrict the taking of these readings to a single observer in order to limit the personal error. These settlements were measured from the surface by the use of an audıble 'bleeper' relay unit which was lowered down the hole on the end of a steel tape. As the moving relay probe entered the magnetic field created by the rings, closed contact was established and the rıng position establıshed by audıble note. Four measurements were taken - entering and leaving the magnetic fleld on both the up and down runs - and the average of these four measurements was taken. The vertical surface settlements (accuracy $\pm 0.1 \mathrm{~mm}$) were monıtored using a COOKE 5440 preclse level at stations establashed along three lines normal to the tunnel darection of advance. The readings of the surface movements and settlements were obtaıned by precise levelling, triangulatıon and trılateration surveyıng to the caps of the access tubes and to other stations forming a surface grid. Use was also made of the NPL Mekometer for precıse inter-station dustance measurements.

Daıly surveys and instrument readings were taken for approximately 25 days after which it had been estimated that the ground disturbance would cease. During that period, the tunnel advance was observed with precision, thus making it possible subsequently to correlate the measured ground movements as a function of face advance or, in effect, as a function of time.

CHAPTER 4

GROUND DEFORMATIONS ASSOCIATED WITH SHIELD TUNNELLING IN LONDON CLAY.

4.1 INTRODIICTTON

The present Chapter attempts to describe the ground dusturbance which occurs during shield tunnelling in the overconsolıdated stiff fissured Iondon Clay.*

In particular, an effort is made to define the main factors which might affect the form and the magnitude of the recorded ground movement. Due recognition is made of the influence of time in the tunnelling process.

4.2 VERTICAL SURFACE AND SUBSURFACE GROUND MOVEMENTS

Typical surface (continuous lines) and subsurface (broken lines) settlements measured by precise levelling and by the settlemenl rıng relay system are shown in Figures 4.2.1. to 4.2.4. The vertical settlement development profıles relate to boreholes X1, Y1 Z1, whlch lie above the tunnel centre line. ${ }^{+}$Simılarly, vertical settlement development profiles are shown for a series of vertical planes parallel to the tunnel centre line. In this case, the settlements were monltored for different depths in the boreholes $\mathrm{X} 2, \mathrm{X} 3$, Y2, Y3 and Z2.

All the above Figures take the form of graphs where the abscissa represents the distance between the particular borehole and the plane of the face of the shield. The tunnel advance is denoted by the letter "A" and is measured in metres in a direction parallel to the tunnel centre line. The ordinate represents vertical settlement denoted by the letter "s" and measured in mm . Each curve refers to a particular depth. All the curves

[^4]have been drawn in by eye as best fits to the data points and it is to be expected that maxımum vertical surface and subsurface settlements wall have occurred an boreholes $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}$ above the tunnel centre line.

The graphs in Figures 4.2.1., 4.2.2. and 4.2.3. Indicate lhol when the shield face is exactly below the particular borehole (or when $A=$ zero metres) the settlement development curve tends to ats poant of inflexion. They also show that the maximum value of surface and subsurface settlement coincides wath tunnel advance distances of 10 to 20 metres bcyond the borehole point under consideration. In order to normalize the settlement development curve for the boreholes X1, Y1 and Z1, graphs are shown in Figure 4.2.5. to relate $s / s_{\max }$ versus A / z (tunnel advance/depth). From these graphsit is clear that the maxımum settlement $s_{\max }$ has occurred for values of A / z ranging between $1 / 3$ to $2 / 3$. Another graph in Figure 4.2.6. illustrates the development of maxımum $s_{\max }$ and ultimate $s_{u l t}$ settlement with depth. It is evident from these graphs that settlement increases with depth, and if the trend of the relationship holds, then by extrapolation the amplıtude of settlement at soffit level may be approximated to a value of 22mm. Figures L.2.1., 4.2.2., 4.2.3. and 4.2.5. pount to the fact that there 1 s some apparent uplıft of the ground above the soffit following the occurrence of maxamum settlement.

We may note two points. First,signiflcant uplaft occurred only for the X1 and 21 boreholes, while for Y1 there $1 s$ less firm evidence. Second, the accuracy of the measurements 1 s estimated at $\pm 1 \mathrm{~mm}$, while the recorded uplift is 3 mm for X 1 and 2 mm for $\mathrm{Z1}$, being more or less withan the range of error in measurement. Alternatavely, taking for granted that the uplift really did occur it may be argued that they are some reasons for justifying such a ground behaviour. These are discussed in Chapter 6 in some detail.

[^5]Vertical settlements at boreholes X2, X3, Y2, Y3 and Z2 which are laterally displaced from the tunnel centre line are, for obvious reasons, of reduced amplıtude. This settlement reduction with lateral distance from the tunnel centre line is reflected by the form of the tranoverse settlement trough (see Figure 4.2.4.) which conforms quite reasonably to a normal probabilıty curve with its point of inflexion 50% further displaced from the centre line than would be predicted on the basis of SCHMIDI'S (1969) equation (see Chapter 2.). ATIEWELL and FARMER (1974) argue that such a discrepancy might be explained at least qualitatavely from the measurement evidence of some post-shield contraction and consequential extension of horizontal and vertical tunnel axes respectuvely.

These deformations could be partially responsible for the flattenıng tendency at the base of the maxımum surface settlement trough, which probably Is an attenuated manıfestation of the uplıft effect mentioned earlıer.

HANSMIRE and CORDING (1972) reported on the performance of a soft ground tunnel on the Washangton metro bored an ruver terrace deposits of Plelstocene age. Solls an the top heading were partially cemented sand and gravel and silty sand. The remainder of the heading conslsted of clayey and sulty zones, wath shear strengths of an order of $72 \mathrm{kN} / \mathrm{m}^{2}$. The contractor used a 6.4 m dıameter shıeld, and sand-cement-bentonıte grout was pumped behind the poling plates after completion of each shove. The authors stressed that the typical subsurface settlements measured by extensometers indicated that twothirds of the movement occurred over the shield. The remaining one-third occurred within about six shoves after the tall passed the instrument. Only one-third of the surface seltlements could be attributed to movements over the shield and the remaining two-thirds occurred behind the tail. The delay

In the total development of the surface settlement appeared to be related to the change from a three-dumensional to a two-dimensional displacement geometry as the tunnel heading was advanced. A surface point as anfluenced not only by deep movements immediately beneath the surface ponnt hut also by the deep movements several shoves ahead of and behind the pount.

4.3 HORIZONTAL SUBSURFACE GROUND MOVEMENTS

The nnclinometer records were presented in a manner somewhat sumılar to tho settlement development curves. The curves take the form of a serles of continuous records of horlzontal deflection with depth, each graph being related to a particular tunnel advance wath respect to the position of the inclinometer tube.

In Figures 4.3.1. and 4.3.2. deflection both in the direction of tunnel advance parallel to the line of advance and transversely towards the tunnel centre line in a direction norinal to the line of advance are registered as a prsıtıve displacement.

On the lane of the tunnel (Figure 4.3.1.) sagnaficant movement dad not occur untal the tunnel face approached within 5 m of the anclinometer boreholes. This is confirmed by the X1 record but not by the Y1 and Z 1 records.

Horızontal transverse displacement profıles are shown in Figure 4.3.2. Boreholes Z1 and Y1, beang on the plane of symmetry, were not subjected to any movement normal to the direction of tunnel advance. Borehole X1 was offset 0.845 m from the tunnel centre line and monctored a fairly uncform 5 mm movement towards the centre line at the base of the hole 1.5 m above the soffit. From the same Figure boreholes $\mathrm{X} 2, \mathrm{Y} 2$ and Z 2 confirm this deformation trend, Indıcatıng a unlform and apparently localızed component of deformation towards the tunnel opening at axis level of between 6 and 8 mm for X 2 and $Y 2$ and 2 to 3 mm for 72. Figures 4.3.1. and 4.3.2. reveal that the horizontal deflection did
reduce rapidly towards the ground surface.
Finally, the horizontal ground movement parallel to the tunnel axis above soffit level, and as related to the tunnel advance, can be explained by the compression exerted at the face through the actions of the shield rams when shovang off the last ring of lining segments. This thrust alters the state of active pressure of the clay in front of the face to one of passive pressure. Thus, noting that for the tunnel in question up to ten 50 tonnes rams may have been used to a maximum 50% power so exertang a total thrust of 250 tonnes, at seems reasonable to expect a local movement in the direction of tunnel advance rather than an intrusive decompressional movement towards the face.

W $\Lambda R D$ (1970) published data from measurements on subsurface movements during the construction of the Victoria Line in London Clay. Two sets of observations of the convergence of the Iondon Clay towards the tunnel were made by means of sleeved rods anchored at one end in the clay and which extended to nearby underground structures where reference pounts were establıshed. A set of lateral convergence measurements at the axis level of the approaching tunnel were made with reference to an existing parallel tunnel at the same level and 8.3 m clear of the tunnel under construction. The results are in good agreement with the present findings. This ls not very surprising because WARD op cit describes a tunnel which, from the point of view of construction and ground conditions, is quite simılar to the tunnel considered in the present thesis. Hıs second set of axlal convergence measurements were made at three points at axis level in front of the face of the same tunnel. Results of this set indicate a very small axial displacement of 1.27 mm close to the edge of the face compared with the displacement of 17.2 mm at the axis. This 1 mpl . es a strong dome-lake shearing of the clay at the face as it intrudes.

4.4. TIMING THE SHIELD'S DRIVE AND INIERRELATING IT TO THE GROUND MOVEMENT PATTERN.

The particular constructional conditions are certainly one of the major factors which affect the stabillty of the soll in the vicinity of a tunnel. Ground loss, surface and subsurface settlements and ground movements are influenced by the excavation method chosen and the manner in which the stabılızation has been achıeved. The tunnel under discussion was of the hand-excavated, shıeld-drıven cırcular type, with a radıus of 2.073 m (external shield radius), lying at an average depth of 29.6 m to axis level in London clay. The length of the shield was 2.36 m and that of the tailplece was 0.915 m , glving a total length of 3.275 m . On the outside of the cutting edge of an upper 180 degrees bead of 6.5 mm thickness was provided in order to facılıtate guidance and to reduce friction on the skin as the shield was pushed forward off the last ring of lining support. Some features of the shield, with the configuration of the major ground loss areas around it, are shown in Figure 4.4 .1 and the graph of tunnel advance versus time is shown in Figure 4.4.2. Although some dafficulty arose when estimatıng an average rate of tunnel advance, it seemed reasonable also to include the halt periods in order to achleve a more representative overall rate. Calculations on that basls gave an average rate of advance of $0.134 \mathrm{~m} / \mathrm{h}$ or $2.23 \mathrm{~mm} / \mathrm{m} \mathrm{n}$. Also, as shown in Figures 4.2.1., 4.2.2. and 4.2.3., calculations with respect to the average maximum deformation rate of an element of clay directly above the soiffıt produced the value of $0.005 \mathrm{~mm} / \mathrm{m} \ln$., (ATTEWELL \& FARMER, 1972).

It is also possible to generate from these three Figures a famıly of curves representing the change in rate of settlement as a function of tunnel advance. These curves are shown in Figure 4.4.3. and it may be concluded that for the borehole X 1 the rate of settlement maxımizes at the time of passage of the tunnel face beneath the borehole. In the case of boreholes

Y1 and Z1, the naximum seltlement rates occurred when the shield was 5 to 10 metres away from the borehole in question. The curves are sensibly symmetrical about the particular tunnel advance point zero for X1, about 5 m for Y 1 and about 10 m for Z 1 . This symmetry reveals that there is little or no phase shıft in the settlement curve for the different ground horizons. Finally, by plotting the maximun for each of the above curves versus depth and then expressing them as a function of time, it is possible in Figure 4.4.4. to express the maximum rate of settlement as a function of depth. This Figure indzcates the "settlement velocity" of a clay column on the centre line of the tunnel above soffit level. The curve appears to follow a hyperbolic form which may be approximated by the analytical expression,

$$
z=\frac{a}{(d s / d t)_{\max }} \quad \ldots \ldots(4 \cdot 4.1 .)
$$

where z is a depth below ground,
a is a coeffficlent with dimensions $L^{2} \mathrm{~T}^{-1}, \mathrm{~mm}^{2} / \mathrm{min}$,
and $(d s / d t)_{\text {max }}$ Is the maximum rate of settlement for points on the centre lane of the tunnel above soffit level.

From the estimated average deformation rate of clay at the sorfit ($0.005 \mathrm{~mm} / \mathrm{min}$) It follows that an element of clay requires 1300 minutes an order to reach the skin of the shadd after deforming through a dastance of 6.5 mm . It is estimated that 1300 manutes corresponds in terms of tunnel advance to a dıstance of 2.9m. Consequently, the element of deforming soul docs in fact 1 each the tallpıece because the length of shield and tall ($2.36+0.915 \mathrm{~m}$) is obviously greater than this estimatod distance of 2.9 m . Thus, frictional shearresistance between clay and tailslizn occurc ure. $4 \hat{i}$, cent of the total length of the tandpaece provided that the average clay deformation rate is unaform during the passage of the shield and tail.

In order to present a vectorial representation of ground movements for the two major planes of symmetry which lie vertically along the tunnel axis
and vertically normal to $1 t$, It was decided to combine the results of the surface settlement survey, the anclinometer and the magnetic settlement rang records. Since anclinometer readings of horizontal deflection were taken erery metre of depth and magnetic rings were unstalled at $6 m$ untervals along the inclinometer access tube (see Chapter 3), It was necessary by using the vertical settlement development profiles to extrapolate and thus present a relationship between settlement and depth for different positions of the tunnel face. The extrapolated conversion curves are given in Appendix 4. By using these relationshaps it as possible to combine both the vertical and horizontal components of ground movement ior the different stages of tunnel advance.

Figures 4.4.6. to 4.4.8. show the stale of ground deformation in a vertical plane along the tunnel centre line during the tunnel advance. The direction and anclination of the vectors representing ground deformation for a level just above soffat - possıbly indıcate a limıted frıctional shear resistance between clay and shıeld skin, confirming the valıdity of the earlıer calculatıons. Also, lt may be deduced from the state of these vectors that ground movement in the darection of tunnel advance takes place when the face is 8 to 10 metres away from the particular point of measurement. At such a distance from the tunnel face, the injected grout wall be offering a degree of set resistance, and the clay deformation wll be a direct result of frictional shear resistance between the soll and the grout rather than between the soll and the shield/tailskin.

BARTLETT and BUBBERS (1970) presented a sımplıfied qualıtatıve concept of ground movement ahead of a shleld drıven In stıff clay (see Figure 4.4.5.). The main assumption in their approach is that the ground is ancompressible or, In terms of the \quad model, there is no change in the area of each grid segment.

The boundary of the zone of movement ahead of the face is projected upwards at 45° to the horizontal and the vertical lines above the top of the shield generally remain vertical. With the exception of the heave development, the actual figures of longitudinal ground movemenl profiles tend to agree in prancaple with the above concept.

Early ground disturbance appears in Figure 4.1.6. where the face is 10 metres behind the borehole Z 1 and a strong horizontal deflection of ground In the direction of the shield advance is indicated particularly in the upper norazons. At the 2 to 5 metres horızon above the soffit, the soll predominantly settles without any horizontal deflection, and boreholes Y1 and X1 just begin to register the presence of the shield. When the tunnel face arrives at borehole Z1, the same pattern is repeated for borehole Y1 (see Figure 4.4.6.) while at Z 1 the horizontal deflection in the middle to upper soll horizons seems to decrease. In the horizon immediately above soffit level, the soll behaves as if it were under the influence of the action of the thrust from the shield. Finally, some pecullarity rises in the ground disturbance in borehole $\Psi 1$ when the face is exactly councldent with it. Above soffit level, the clay moves in a direction contrary to that of the tunnel drive. This behaviour has vanished to some extent (see Figure 4.4.7.) as the vector of ground deformation rotates about its axis and re-orientates towards the direction of advance. Such a feature is not, however, the case for horizons Just above soffit level where the movement increases in amplıtude, probably due to the exceptionally large halt period when the tunnel face was boxed for 125 hours, as it was below the borehole $Y 1$ and as shown in Figure 4.4.2. Thus, it may be argued that the clay during the halt period has deformed to the extent of exceeding the elastic limit.

Ground movements at right angles to the tunnel axis are considered at different stages of face advance. This is shown in Figures 4.4.9., 4.4.10. and 4.4.11 (note that the left hand side of Figure 4.4.9. illustrates the scaled layout of the boreholes with the exact position of each magnetic fing being marked.

In order to avold confusion, the movements detected in the pair of boreholes $\mathrm{X} 2, \mathrm{Y} 2$ and $\mathrm{Z2}, \mathrm{X} 3$ have been presented jointly by taking the mean value of each pair of curves for horizontal or vertical movement versus depth for the same point of advance in time (that is, same face position). The raght hand side of Figure 4.4.9. depacts the state of the subsurface disturbance when the face is approaching the particular clay cross-section but is at a standoff distance of 5 to 10 metres. The left hand side of Figure 4.4.10 illustrates the clay deformation when the face is exactly underneath the ground cross-section, while the right hand side of the Figure relates to the face position 10 metres ahead of the cross-section. Both Figures reveal an increasingly radial "ıntrusion-lıke" trend which is elımınated in a zone defined by distances of $10-15 \mathrm{~m}$ in the vertical axis and $5-7 \mathrm{~m}$ in the horizontal axis.

Borehole $Y 3$ results show that the clay is moving predominantly downwards. More generally, the horızontal component of ground movement reverts to zero over a distance of roughly 4 to 4.5 tunnel rad工.

Finally, Figure 4.4 .11 shows the clay motion situation when the tunnel face $1 s 20$ and 30 m ahead of the ground cross-section in question.

The magnitude of the soil deformations is likely to increase steadıly over a face advance of 30 m , but the horizontal deflection towards the cavity seems to have decayed as the shield was retracted beyond the cross-section.

CHAPTER 5

LABORATORY TESTING PROGRAMME.

5.1 INTRODUCTION

In the present Chapter, a brief account of the strength properties of Iondon Clay 1 s given by reviewing the extenslve data published by varıous authors. For the express purposes of theoretical stress analysis some laboratory tests were conducted on samples of clay taken from the sate of the tunnel which as the subject of the present thesis. The test results are reported and discussed.

5.2. BRIEF REVIEW ON THE NATURE AND MORPHOLOGICAL CHARACTERISTICS OF IONDON CIAY.

a. Geology The clay whıch underlıes most of central London is a stiff, fıssured, overconsolidated, blue-grey clay. It was called "London Clay" by W. Smıth in 1812. The sediments were laid down under marine conditions In the Eocene period, and subsequently the Claygate beds, followed by the Bagshot, Bracklesham and Barton beds were deposited.

These were all predomınantly sandy beds wich occasıonal clay layers. However, uplift and erosion in the late Tertiary and Plelstocene epochs have removed most of the overlying beds and half to two thirds of the London Clay Itself, in only a few areas do any of the overlying beds remann (BISHOP et al, 1965).

Following each period of down-cutting, terrace gravels were deposited by the River Thames. The alluvium which overlıes the Flood plain gravels is a recent post-glacial material and contains Neolıthıc as well as Roman remains.

The amount of material removed by erosion varıes from place to place. SKEMPTON and HENKEL (1957) quote a pre-consolidation load of $2145 \mathrm{kN} / \mathrm{m}^{2}$ for
the central London area, suggesting a removal of $170-230 \mathrm{~m}$ of material.
The London Clay atself consists of a lower sandy clay varying from $0-3 m$ thick and known as the basement bed. This is overlain by a bluegrey clay varying from $30-170 \mathrm{~m}$ thick and which 1 s the London Clay proper. Finally, near to the surface is the brown and somewhat weathered clay, varying from $0-10 \mathrm{~m}$ in thickness.

The sands and gravels mentioned earlier overlie the London Clay in many areas, as does alluvium near the Thames and soft marsh clay and peat near the sea. The upper layer is yellowish-brown in colour near to the surface but becoming grey-brown at depth due to oxidation of the rron salts in the blue clay, probably when the ground water level was low.

WARD et al (1959) have suggested that the structure of London Clay on a regional scale takes the form of a very gentle syncline with some manor folding in places, although dips of more than three degrees are rare.

The geology in the vicinity of the site in question, namely Green Park corner, is of some complexity. * This is generally confirmed in the geological map of central London drawn by SK\$MPTON and HENKEL (1957).

Strata description from borehole No. 23 at the Green Park construction site ${ }^{* *}$ helps, however, to remove some of the ambiguities as far as the ground profile is concerned

* ATTEWELL (1974) • personal communication
** Data records from borehole No. 23 were taken from ATTEWELU and FARMER (1972), and FARMER (1972-73) personal communication.

1.67-2.13m	Yellow brown sandy clay (firm)
2.13-5.48m	Medium brown clay. Stıff with thin blue-grey traces on fissure surfaces.
	Medium density of fissuring. Fissures tight, of small extent oblique to subvertical plane. Smooth or slight slick degradation.
5.48-10.00m	Unlamınated dark brown grey slightly silty clay, very stıff but fıssured.
10.00-14.02m	Thinly laminated dark brown grey slightly silty clay with some thin partings of pale fine sand, very stiff but fissured. Fissure density medium to high. Fissures as above.
14.02 m	Claystone nodule.
14.02-20.00m	Degradation of fissure surfaces to pale grey.
20.00-32.00m	Thinly lamınated dark brown-grey fissured clay with some fine sand partings and occasional clay stone nodules.

Depth
$5.48-10.00 \mathrm{~m}$
$10.00-14.02 \mathrm{~m}$
14.02 m
14.02-20.00m
20.00-32.00m
b. Mineralogy. BROOKER and IRELAND (1965) have published the results of X-ray diffraction tests aımed at the determination of the mineralogical compasition of London Clay. Percentages of the main minerals are as follows.

Quartz
Chlorıte and Kaolinite 15\% 35\%

Illıte 35\%
Montmorillonite 15\%
c. Microstructure. TCHALENKO (1968) studied the microstructure of Iondon clay from several localıties and depths using petrographic thin sections under the polarızing microscope. Measurements of the birefringence ratio \boldsymbol{B}^{*}, andicated varıation in values in the range of $0.35-0.65$ denoting strong

[^6]particle parallelism in the horizontal plane. The ratio was found to increase at shallow depths due to a disruption of the original matrix. Another interesting feature observed was the existence of primary and secondary microshear surfaces.
d. Macrostructure. A signıficant contribution to the classification of macrostructural features came from SKEMPTON et al (1969) who distinguished the five main types of structural discontinuities on a macro-scale.

1) Bedding Where in general, there is no lithological change the bedding appears as a "discontinuity with a gently undulating surface having a somewhat rough or bumpy texture".
2) Joints. Predominantly vertical (at Wraysbury site) between 0.3 to 1.2 m high and up to 6 m long, with a pronounced trend in two orthogonal directions of $N 60^{\circ} \mathrm{W}$ and $N 30^{\circ} \mathrm{E}$. They are plane in surface, matt in texture with occasional small steps.
3) Sheeting Surfaces of moderate size are approximately $320 \mathrm{~cm}^{2}$ at the Edgwarebury site, dipping at angles of between 5° and 25° in a southerly direction. They are smooth in surface with a plane shape.
IV) Fissures At depths of $10-12 \mathrm{~m}$ these are planar or concholdal fractures up to 15 cm in saze with a matt surface texture. Their number per unit volume increases and their size decreases as the upper surface of the clay is approached. Usually they lie horizontally and almost parallel to bedding.
v) Faults: Sometimes they contain some gouge clay (5-10mm in the case of the fault at Wraysbury).

5.3 REVIEW OF THE STRENGIH PROPERTIES OF THE LONDON CLAY.

It is well known that London clay has been the subject of some quate thorough studies by a number of authors. With respect to its strength properties, attention is frequently concentrated on the question "Which factors and to what extent do these factors influence the shear strength of the clay under consideration"?

HOOPER and BUILER (1966) derived and consequently treated numerical data on the shear strength of London clay from a statistical point of vow. Their results are quite interesting because they indicate that the triaxial shear strength/depth profile obtained for any given site depends upon the sampling procedures employed. It is also shown that the frequency distribution of triaxial test strengths corresponding to a given depth may be represented by the classical Gaussian curve. Therefore, assuming a Gaussian population distribution of shear strength, it is possible to estimate the number of samples required at any specific clay level to give a mean sample shear strength which falls within specified limits of the population mean strength.

Referring to the undrained properties of stiff fissured clays, MARSLAND (1971) outlined the factors which might affect these properties estimated from In-situ loading tests. The factors are

ュ) The mineralogical composition, strength and type of discontinuities present in the clay.
11) The forces and restraints mposed on the ground around the test levels by dıfferent mechanical arrangements adopted for the tests. MARSLAND (1972) investigated further this factor from results of in situ plate tests in lined and unlined boreholes in highly fissured London clay at

Wraysbury near London alrport. The baslc conclusion from this work was that there was no slgniflcant dıfference between tests made in unlined and lined portions of boreholes and this suggests that the degree of restraint imposed by standard borehole linings has no measurable influence on the results of plate tests in hıghly fissured clay. MARSLAND op cit emphasized that these conclusions only applied to the partıcular test conditions, and that it wall be necessary to make further investigations on this particular problem.
111) DImensions of the test equipment and in particular the relative dimensions of the loaded plate and the spacing of the flssures in the clay.
Iv) The reduction in stress and the accompanying strains which occur in the clay during drıllang and insertion of the test equipment.
v) The ant erval of time between dralling the hole and loading the plate. vi) The rate of penetration during loading. More attention was given to the time factor, that is the interval of tame between sampling and testing in MARSLAND (1973), where the variation in the stress strain curves - oltained from tests on 38,75 and 125 mm diameter specımens prepared from adjacent block samples at dufferent tımes after sampling - is given. Also, the opening of fissures due to the reduction of external atress during excavation, sampling and storage is intimated as being a factor attrabuting to the "softening" phenomenon.

The opening of fissures is a well-known feature of tunnelling where, as soon as the face is excavated, examination of the clay in the walls of the tunnel shows that the fissures start to develop and open.

The operational strength of fissured clays was examined by $L 0$ (1970) who analysed data reported in the literature. As a first approximation, the
fissure strength may be taken as the residual strength of the clay，while the $1 n t a c t$ and fissure strength could provide the upper and lower bound values respectavely of the strength that can be measured by any type of test on any saze of sample．LO op cit，consıdering a clay wath a system of fissures randomly distriluted－and dssuming that the slze of the specimen is increased from an inıtial value－suggested that the following probabilıty of occurrences wIll be correspondingly ancreased

I）the number of fissures ancluded in the sample，
11）the probabilıty of having fissures critically orientated to the applied stress system，

ュュュ）the probabılıty of having larger fissures；
Iv）the probability of having large fissures critically orientated，
v）the probabılıty of coalescıng adjacent cracks \ln the proxımıty of the potential faılure plane．

Finally，IO developed an equation for the strength－size relationship which contains two parameters describing the antensity of fissuring of the clay．Based on the proposed equation，the operational strength，or the strength of the soil mass in the field maght be predicted．

The stress path method presented by LAMBE（1967）and extended by LAMBE and WHITMAN（1969）comprises a major approach to stability and deformation analysis in soll mechanıcs．Data concerning the shear strength of Iondon clay beang selected from the literature and presented in a stress path manner Is shown an Figure 5．3．1．The left hand graph of this Figure illustrates the effective stress paths（ESP）as they are defined by the test results of several authors using different technıques and specımen dıameters．The right hand side of the same Figure visualızes the total stress paths（TSP），while K_{f}－lines for peak and resldual strength were drawn together．Both K_{f}－lines were derıved from data publıshed by SKEMPION et al（1969）．

Although, by deinnition, the axes in two-dimensional stress space are
$p=\frac{1}{2}\left(\sigma_{1}+\sigma_{3}\right)$ and $q=\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right)$ corresponding to the hydrostatic and shear stress components respectively, a modified basls was used in the present thesis. The use of σ_{1} or σ_{v} versus σ_{j} or σ_{h} bears the advantage of samplacity and provides a quick and direct assessment of the state of stresses in the Clay.
5.4 INDEX PROPERTIES AND RESUITS FROM UNCONSOLIDATED UNDRAINED (UU) TRIAXIAL COMPRESSION TESTS.

Site investigation results from borehole no. 23 at the Green Park working site for the Fleet Lane Tunnel revealed the following andex propertles.

Depth m	Mo1st. cont \%	$\begin{gathered} \mathrm{LL} \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { PL } \\ & \underline{q} \end{aligned}$	Bulk density $\mathrm{Mg} / \mathrm{m}^{3}$
3.7-4.1	28	80	32	1.920
17.2-17.7	26.5	75	29	1.935
27.3-27.7	26	70	27.5	1.970
31.5-32.0	25	76	33	1.935

For the employment of the elastic-plastic approach, and in order to define the state of stress around the tunnel in question, it was necessary to use shear strength valves and elastıc modulus values from "representative" samples. Accordingly, specımens were prepared from samples taken at the depth of the tunnel axis (30m) at the tunnel face.

The samples comprised two groups collected from two directions (vertical and horizontal) with respect to ground surface, so giving a loading facility for two dıfferent anclinations on a particular fabrıc of fissures.

Undrained triaxial compression tests on 38 mm diameter specimens were conducted and results indıcated (see Figures 5.4.1., 5.4.2. and 5.4.3.) that the shear strength was 67% higher in the horizontal samples thar for the vertical samples. WARD et al (1965) reported simlar percentage dıfferences as a function of orientation ranging between 30% and 62% for undrained tests on London clay. AGARWAL (1967) also noticed the same effect. BISHOP (1966) proposed a relationship for the varıation of undrained shear strength (c_{u}) with respect to sample orientation θ

$$
\begin{equation*}
c_{u}=c_{u \text { vert. }} \quad\left(1-\operatorname{ascn}^{2} \theta\right)(1-b \sin 22 \theta) \tag{5.4.1.}
\end{equation*}
$$

where a and b are constants.
For confining pressures near to the overburden pressure existing at axis depth (30 m), the stress ratio $R=\sigma_{3} / \sigma_{1}$ has been plotted against strain and is shown in Figure 5.4.4. It can be seen that the curve for horizontal samples underlies that for vertical, and both have the parabolic shape already suggested by BREIH et al (1973)

Although BRETH et al were concerned with test results on sand, they observed that the plotted curves of strain against stress ratio σ_{3} / σ_{1} showed a parabolic trend with strain becoming exces sively high as the stress ratio approached the failure stress ratio $\left(\sigma_{3} / \sigma_{1}\right)_{f}$. That observation eventually led to formulation of an analytical expression for the function $\left(\sigma_{3} / \sigma_{1}\right)=f(\varepsilon)$ which is

$$
\begin{equation*}
\varepsilon\left(\sigma_{3} / \sigma_{1}\right)=a+\frac{b}{\left(R-R_{f}\right)}+\frac{c}{\left(R-R_{f}\right)^{2}}+\cdots \tag{5.4.2.}
\end{equation*}
$$

where
$\varepsilon \quad$ is the axial or lateral strain at any value of the
ratio $\left(\sigma_{3} / \sigma_{1}\right)$.
σ_{3} is the minor principal stress,
σ_{1} is the major principal stress,
R_{f} is R at fallure stress,
a, b, c are parameters depending on the observed stress-strain characteristics of the materia].

Another interesting feature revealed in Figure 5.4.4. Is that the stress ratio $\left(\sigma_{3} / \sigma_{1}\right)$ at faılure is approximately 0.60 . It is worth noting that the K_{o} ratio may be determined through Jaky's relationship

$$
\begin{equation*}
K_{0}=1-\sin \phi \prime \tag{5.4.3.}
\end{equation*}
$$

derıved from tests on granular material, although the expression

$$
\begin{equation*}
K_{o}=0.95-\sin \varnothing^{\prime} \tag{5.4.4.}
\end{equation*}
$$

has been found to be more applicable to cohesive solls (BROOKER and IRELAND,
1965). As wall be seen in a later part of the present Chapter, the effective friction angle based on the effective stresses was found to be equal to $\phi^{\prime}=19^{\circ}$. Therefore substatuting the value of $\phi^{\prime}=19^{\circ}$ for equation (5.4.4.) results in a K_{0} value equal to 0.62 . This particular K_{o} value is reasonably compatible with the experimentally-defined ratio of principal total stresses at failure $\sigma_{3} / \sigma_{1}=0.60$, although K_{0} is defined as the ratio of the principal effective stresses $\sigma_{3}{ }^{\prime} / \sigma_{1}{ }^{\prime}$.
5.5. POISSON'S RATIO MEASUREMENT DURING TRIAXIAL UNDRAINED TESTS.

Poisson's ratio may be evaluated from the ratio of the lateral induced strain to axial inducing strain during a triaxial compression test with axial loading.

In order to evaluate the variation of Poisson's ratio with strain, 38 mm diameter specimens were prepared from samples which were collected from the working face of the tunnel in two main directions (horizontal and vertical) with respect to ground surface. The tests were performed in the unconsolidated undrained triaxial compression mode and a provision was made for Poisson's ratio measurement during the varıous stages of loading. This was achleved
whth the use of an electronic linear variable differential transformer, wlred via a carrıer amplıfier demodulator system to an auto potentiometric chart recorder. The displacement on this recorder was carefully calibrated beforehand and several times subsequently. Polsson's ratio was recorded durang compression for the two sets of tests for the different sample orientation and for the several cell pressures.

An inıtial value of Polsson's ratio was taken as 0.5 on the assumption lhat the clay 1 s an elastic isotropıc material. Thus

$$
\begin{aligned}
\varepsilon_{2} & =\frac{1}{E}\left[\sigma_{2}-V\left(\sigma_{3}+\sigma_{1}\right)\right] \\
\varepsilon_{3} & =\frac{1}{E}\left[\sigma_{3}-\mathbf{V}\left(\sigma_{1}+\sigma_{2}\right)\right] \\
\varepsilon_{1} & =\frac{1}{E}\left[\sigma_{1}-V\left(\sigma_{2}+\sigma_{3}\right)\right]
\end{aligned}
$$

$$
\varepsilon_{3}=\frac{1}{E}\left[\sigma_{3}-V\left(\sigma_{1}+\sigma_{2}\right)\right] \quad \ldots . .(5.5 .1 .)
$$

Assuming that in the triaxial stress field, the strain is $\Delta \varepsilon_{2}=\Delta \varepsilon_{3}$ and that $\Delta \varepsilon_{1}$ is caused by stresses $\Delta \sigma_{2}=\Delta \sigma_{3}$ and $\Delta \sigma_{1}$, it follows that Polsson's ratio is given by the relationship,

$$
V=\frac{\Delta^{\sigma} \Delta^{\varepsilon_{1}}-\Delta^{\varepsilon_{2}} \Delta^{\sigma} 1}{\left.\Delta^{\sigma_{2}} \Delta^{\varepsilon_{1}}-{ }^{2} \Delta^{\varepsilon_{2}}\right)^{+}+\Delta^{\sigma}{ }_{1} \Delta^{\varepsilon_{1}}}
$$

Thus, under hydrostatic compression and before any shearang occurs $\Delta \sigma_{2}=\Delta \sigma_{1}$ and as a consequence equation (5.5.2.) becomes

$$
V=\frac{\Delta^{\sigma_{2}}\left(\Delta \varepsilon_{1}-\Delta^{c_{2}}\right)}{2 \Delta^{\sigma_{2}}\left(\Delta_{1} \varepsilon_{1}-\Delta_{2}^{\varepsilon_{2}}\right)}=0.5
$$

Durang the early range of strain, LAMBE and WHITMAN (1969) argue that Polsson's ratio varles with strain. This ls shown to have occurred during the test programme descrıbed herean. It as shown however, in Flgure 5.5.1. for vertıcally orıentated samples that Polsson's ratio steadıly increases up
to a given value of strain - which is controlled by a particular confining pressure - and when $1 t$ does exceed a critıcal value, the ratio decreases gradually (see also Table 5.5.1.). On the other hand, for the results for the norızontally orlented samples graphed an Figure 5.5.1. 1t appears that Polsson's ratıo ${ }^{*}$ ncreases almost inversely wath stra.n.

The observed behaviour of the vertically oriented sample may be attributed to some plastic deformation behavıour beyond a critical elastic Inmıt.

Figures 5.4.1.and 5.4.2. Illustrate the stress-strann curves for both vertical and horızontal samples, pounting out the difference in stiffness belween them. This difference presumably combined with the rather extensave plastic behaviour for the vertical samples provides an explanation for the strainPolsson's ratio relationship, for both cases. Undoubtedly, further research is required to distanguish between these possible causes of the dofference an results mentioned above. Nevertheless, these results are influenced by many other factors as the elastic anısotropy, the overconsolıdated nature of the clay, the orientation of the fissures fabric, the high K_{o} value (~ 1.65) existing at that depth, the stress path and the rate of strain.

However, the test results have clearly shown that varıations of Polsson's ratio during triaxial compression are practıcally neglıg $\perp b l e$.

Polsson's ratıo mlght also depend upon the stress path. Figure 5.5.2. illustrates the plotted variation of Polsson's ratio with the stress ratio σ_{3} / σ_{1}. It is evident that an asymptotic decay of the ratio emerges as the stress ratio decreases from zalues of 1.0 to 0.5 (for vertical samples) and

[^7]1.0 to 0.3 or 0.4 (for horizontal samples).

5. 6 UNCONSOLIDATED UNDRAINED ($\overline{U U}$) AND CONSOLIDATED UNDRAINED ($\overline{\mathrm{CU}}$) TRIAXIAL TEST RESULTS.

Two further sets of triaxial compression tests were carried out. These comprised unconsolıdated undrained and consolidated undrained, both with pore water pressure measurements. The second set was necessary in order to define the shape of the faclure envelope in terms of the effective stresses.* The first set consisted of tests on 98 mm diameter samples taken from the depth of 25 m an borehole drilled into the London Clay at a site in Regent's Park. A rather small nominal strain rate $5.5 \times 10^{-3} \mathrm{~mm} / \mathrm{mln}$. was used to allow the development of pore pressures during loading. In ali the undrained and consolıdated undrained tests, filter paper strıps attached to the perımeter of the test cylınders were used to accelerate drainage during consolıdation ($\overline{U U}$ tests) and to equalize the pore pressure during shearing (both $\overline{U T}$ and $\overline{C U}$ tests). The stress-strain and pore water pressure relationships for the UU tests are shown in Figure 5.6.1. It wall be seen that the specimens faュled at strains of about 2% whle the pore pressures reached their peak a lıttle earlıer. Faュlure was usually of a brıttle nature along one or more shear planes. Finally, for each specimen the pre-shear effective stress has been given. The effective stress path for a sample taken from 25 m depth has been evaluated from the results of the $\overline{U U}$ triaxial tests as shown in Figure 5.6.2. Also on this Figure has been plotted a stress path for the same element of clay predicted from the Kırsch equations (see Chapters 6 and 7). In terms

[^8]of total stress, $\sigma_{\theta}=\sigma_{h}=\sigma_{1}=1100 \mathrm{kN} / \mathrm{m}^{2}$ and $\sigma_{R}=\sigma_{v}=\sigma_{3}=498 \mathrm{kN} / \mathrm{m}^{2}$. For effective stress evaluation, the $\Delta u \cdot \varepsilon$ curve in Figure 5.6.1 at a confining pressure $\sigma_{3}=605 \mathrm{kN} / \mathrm{m}^{2}$ was used. Assuming elastic ground deformation up to 0.5% strain (Figure 5.6 .1), a Δu value of $221 \mathrm{kN} / \mathrm{m}^{2}$ may be taken for the computation of effective stresses $\sigma_{1}=\sigma_{\theta}-\Delta u=879 \mathrm{kN} / \mathrm{m}^{2}$ and $\sigma \frac{1}{3}=\sigma_{R}-\Delta u=277 \mathrm{kN} / \mathrm{m}^{2}$. The experimental and theoretical stress paths show reasonable compatibilıty over the restricted length of the latter.

In the case of the consolidated undrained tests, the following procedure was adopted:
a) A cell pressure of $70 \mathrm{kN} / \mathrm{m}^{2}$ was applied inıtıally and kept constant for a period of time (usually two to three hours).
b) The pore pressure was then measured and noted. The cell pressure was increased to $140 \mathrm{kN} / \mathrm{m}^{2}$ and after a few hours, the pore pressure was again measured. Each step of pore pressure measurement was followed by "equalısation" between the back pressure and the cell pressure, and a measurement of the pore pressure parameter "B". Since "B" was not equal to unity, the term "equalısation" can therefore be somewhat misleading with respect to parameter pressure.
c) The cell pressure was then increased to $210 \mathrm{kN} / \mathrm{m}^{2}$ and left for a few hours. After a new "equalisation" between cell pressure and pore pressure the parameter "B" was measured.
d) The cell pressure was increased to $280 \mathrm{kN} / \mathrm{m}^{2}$ and left overnight. It was found that the value of "B" finally obtained was nearly equal to one (in fact between 0.95 and 0.98).
e) After this consolidation with back pressure in the pore water carcuit so that any aur remaining maght be dissolved, the volume change carcuatry was then connected and the pore water volume changes recorded through a series of suıtably spaced readings. Consolidation was theoretically completed when no significant movement of the water level in the measuring burette occurred (see BISHOP and HENKEL, 1964). Figure 5.6.3. illustrates
the relationship between the volume change and the square root time (\sqrt{t}) for a 38 mm diameter sample during consolidation under an all around pressure (radial and end drannage). The same Figure 5.6.3 incorporates the calculation for an estimate of the coefficcent of consolidation c_{v} which was found to equal $0.14 \mathrm{~mm}^{2} / \mathrm{min}$. Basing on that value and taking the value of the coefficient n equal to 40.4 (see BISHOP and HENKEL, 1964, page 125) the tame required for failure under the particular triaxial stress field was found to be $t_{f}=86$ hours. It is worth noting that this time is based on drained conditions and It maght therefore be expected that in undrained tests the corresponding value of t_{f} would be much less. Indeed, the time to failure was in the order of 18 to 24 hours.

The stress-strain relationships for the consolidated undrained triaxial tests on 38 mm diameter specimens are shown in Figure 5.6.4. where it appears that fallure has occurred at strains considerably less than those in the case of unconsolidated undrained tests. The same differences are evident for the pore pressure.

On the basis of these results, Mohr envelopes in terms of effective stresses have been drawn in Figure 5.6.5. From these, it would appear that the friction angle based on the operative effective stresses is 19 degrees and the cohesion intercept similarly based on the operative effective stresses $1 \mathrm{~s} 10.57 \mathrm{kN} / \mathrm{m}^{2}$. In the same figure the K_{f} line has been drawn together with the slope angle b, and the ordinate axis intercept a.

Another feature of this suite of tests was a special set of five consolidated undrained triaxial compression experıments with pore pressure measurement on 38 mm diameter specimens and with a different rate of strain for each loading. All specimens were taken at a depth of 22.5 m and the common pre-shear effectuve stress was equal to $450 \mathrm{kN} / \mathrm{m}^{2}$. The rates of strain used
were $1.20,2.44,5.50,15.2$ and 76.2 (all $\times 10^{-3}$) $\mathrm{mm} / \mathrm{min}$.
The relationship between the pore pressure parameter A and the axial strain has been plotted in Figure 5.6.7. These graphs are plotted from the results of $\overline{\mathrm{CU}}$ triaxial tests on 38 mm dameter specimens and for different rates of axial strain.

The effect of the rate of strain on the pore pressure parameter A is self evident and could perhaps be attributed to the dependent of A on both the total stress path and the strain, as pointed out by LAMBE and WHITMAN(1969). Thus, taking into account the fact that all specimens were from the same depth, it is reasonable to accept that a different rate of axial strain influences considerably the development of pore pressures and therefore alters the stress paths accordingly.

The stress-strain characteristics of thisset of $\overline{\mathrm{CU}}$ tflaxial tests are shown in Figure 5.6.6., from which it would also seem that the deviator stress at fallure depends upon the rate of axial strain. Such a dependence was reporled for the farst time by BISHOP and HENKEL (1964) but with respect to a different material.

To conclude this set of results a graph has been drawn in Figure 5.6.8. between the deviator stress at fallure and the rate of strann. Although this graph does not provide a conclusive trend, it appears, however, that there is an exponential relationship between the rate of axial strain ($\alpha \varepsilon / \alpha t$) and the deviator stress at fallure $\left(\sigma_{1}-\sigma_{3}\right)$ such that an increase in $\mathrm{d} \varepsilon / \mathrm{dt}$ implies a decrease in the quantity $\left(\sigma_{1}-\sigma_{3}\right)_{f}$. Clearly, further tests are required in order to verify this trend which might be of some importance in tunnelling applications where the rate of clay deformation is functionall, related to the rate of tunnel advance (see Chapter 1) and both rates exert an Influence on the overall tunnel stabılıty.

6.1 INTRODUCTION

Using the classical elasto-plastic approach, a simple analysis may be carried out upon the stress regime around a carcular tunnel, the results of that analysis being correlated with the tunnel advance. The resulting theoretical ground deformations predicted on that basis may then be compared with the in-situ measurements as a check on the validity of the concepts built into the theory.

6. 2 STRESS-DEFORMATION DISTRIBUTION AROUND THE TUNNEL

Any tunnelling operation results in a re-distribution of the stress regime in the surrounding ground and produces a new unknown state of stress.

Using the classical methods in elastic theory, it is possible to estımate the new state of stress with an accuracy which depends prımarıly on the elastic properties of the soil and its deviation from elastic behaviour when it is subjected to tensile or compressional loading.

In the present work, Kirsch's equations (see DEERE et al, 1969) are employed for their convenience and simplicity. As 1 s to be expected from the theory of elasticity, the soll is considered to be an incompressible material (no volume change) with Poisson's ratio equal to 0.5 . Of course, It may be argued that during loading this ratio possibly undergoes considerable variation from the 0.5 value. Thus, before employing the classical elastic approach for the determination of stresses and strains

[^9]around the tunnel in question, some laboratory tests* were carried out in order to check the possible deviations of Poisson's ratio from the value of 0.5. These tests are described an Chapter 5 and the results have shown that variations of Poisson's ratio are not a practical issue.

During and after the excavation, Poisson's ratio for the overconsolıdated stıff clay is nelther constant nor does it correspond to a situation of constant volume. Such an assumption is valid only for short term deformation and lt would be prefcrable after CHRISTIAN (1968) to adopt a slightly smaller value of say 0.48 for the purpose of any calculations. In fact, the value proposed by CHRISTIAN op cat for Poisson's ratio is in good agreement with the experamental results outlined in Chapter 5.

For the evaluation of stresses around the opening, the famılıar Kırsch equations were used for a biaxial case problem ${ }^{* *}$ (see DEFRE et al, 1969).

$$
\begin{aligned}
& \sigma_{R}=0.5 \sigma_{v}\left[(1+K)\left(1-a^{2}\right)+(1-K)\left(1+3 a^{4}-4 a^{2} \cos 2 \theta\right)\right] \\
& \sigma_{\theta}=0.5 \sigma_{v}\left[(1+K)\left(1+a^{2}\right)-(1-K)\left(1+3 a^{4}\right) \cos 2 \theta\right] \\
& \tau_{R \theta}=(K-1)\left(1-3 a^{4}+2 a^{2}\right) \sin 2 \theta \\
& \sigma_{y}=V\left(\sigma_{R}+\sigma_{\theta}\right)
\end{aligned}
$$

where $a=R_{o} / R$
R_{o} is the hole radius,
R Is the radial distance from the centre of the hole to any point in the clay mass,
K is the coefficient of earth pressure at rest;
σ_{R} is the radıal stress at distance R
σ_{θ} is the tangential stress at dıstance R,
$\tau_{R \theta}$ is the shear stress at distance R
and
θ Is an angle defining a polar co-ordinate, the horizontal axis through the centre of the tunnel defines the case $\theta=0^{\circ}$

* UU triaxial compression tests on 38 mm diameter specimen.
** Assuming an infinite ground mass.

SKEMPTON (1961) provided data which related the undisturbed horızontal and vertical stresses of London Clay. A polynomial curve was fitted by GOWLAND (1974)* to those data and thas function of K_{o} with depth was interlaced with equation 6.2.1. to compule suıtes of stress for different points around the tunnel. It may be noted that COIE and BURLAND (1972) referring to the same overconsoladated stıff clay deduced a samılar relationship from the data of SKFMPTON op cıt. and BISHOP et al (1965). Theur graph suggests, however, that values obtained from BISHOP et al are generally higher than those obtanned by SKEMPTON, but that they take a simılar trend to that of Figure 6.2.1.

The computer programme written by A. Gowland and referred to above, was used to calculate the stresses and deformations around the opening wathin a region up to 5 tunnel radil and for discrete points at every 0.2 radlus and every 10 degrees. From the computer output, contours of normalızed principal stress have been plotted for the vertical plane along with the longıtudinal tunnel axis and the plane of the tunnel's cross section. (Figure 6.2.2.).

Although the information on the graph $1 s$ self explanatory, note should be taken of the dramatic change in the stress regime at a vertical helght above soffat of approximately 1 to 1.5 tunnel radıl which approximately

* GOWLAND, personal communication.
corresponds to a vertical distance of 4 to 5 metres. A further change In the trend of the contours is evident at a horizontal distance of one tunnel diamter (4m.). It also appears from the curves that the maxima of ratios σ_{3} / σ_{1} and $V\left(\sigma_{1}+\sigma_{3}\right) / \sigma_{1}$ occur at a tunnel axis level. This is sumply a reflection of the dominant horizontal najor principal stress In the overconsolidated clay prior to disturbance.

It is useful to attempt to correlate the configuration of the principal stress ratios σ_{3} / σ_{1} for the plane of the tunnel cross-section with the earlier experimental curves which relate Polsson's ratio to the stress ratio σ_{3} / σ_{1} for the same clay (see Figure 5.5.2.). However, it would appear from superimposing the experimental values that it might be reasonable to replace the contours of equal principal stress ratio with contours of equal Poisson's ratio. Consequently, by choosing from the family of curves in Figure 5.2.2. the particular curve having a confining pressure equal to $760 \mathrm{kN} / \mathrm{m}^{2}$ (a horizontal test sample and a confining pressure which is a reasonable approximation to the calculated horizontal stress existing at the depth of 29 m), it is possible to convert the principal stress ratios to Poisson's ratio values. The contour for σ_{3} / σ_{1} $=0.45$ corresponds approximately to the $\mathrm{V}=0.45$ contour. This partıcular Poisson's ratio value is that found at the fallure stage of the sample under UU triaxial compression conditions. The most important results seem to be that the contour of $\sigma_{3} / \sigma_{1}=0.45$ defines the limits of the shear strength for the overconsolidated clay when the opening has been created.

The general problem of evaluating the stress regime around a shield driven tunnel is of some complexity sance the stresses surrounding the circular cross-section are a function of shield position. However, as soon as the face reaches a given cross-section of the clay, the ground moves radially
inwards in order to fill the bead annulus (in the present case of thickness 6. 5 mm). The intrusion 1 . termanated when the clay touches the shield surface. Noting that the bead thıckness $1 s$ quite small, $1 t$ follows that the anward movement of the clay may well be restricted during that narticular phase of the excavation. Therefore, sance the assoclated strains are also small it is not unreasonable to assume that the deformation is mainly elastic in character and that this quasl-elastic deformation persists until the 3.275 mlong shield and tail clear the given cross section.

Beforeany grouting operations took place behind the erected linang segments over the measurement length of the Jloct Inne tunnel there was a further 1.20n of unsupported annulus behind the tailpiece into which the soll can move. This total unsupported length amounted to $3.275+1.20=$ 4.475 m so glvang to the clay a real facılıty for more radial antruscon.

It has been suggested that the average rate of tunnel advance is $2.23 \mathrm{~mm} / \mathrm{m} 1 \mathrm{n}$ and so $1 t$ follows that the unsupported length of 2.115 m corresponds to 15.8 hours of exposure time, during whach the clay at the cross-section could move in an unrestricted manner.

On the basis of the average maximum deformation rate of the clay (at the soffit) of $0.005 \mathrm{~mm} / \mathrm{m} / \mathrm{n}$ the further movement amounts to 4.7 mm . This latter deformation facilıty may well have created strains of amplıtudes beyond the elastic regime and therefore have introduced a form of "plastic release zone" around the tunnel.

DEERE et al, (1969) suggested that for a curcular tunnel driven in an elastıc-plastıc medıum the criterion for the development of a plastac zone around the opening is

$$
\begin{equation*}
\sigma_{v}-\sigma_{I}=c_{u} \tag{6.2.3.}
\end{equation*}
$$

where
σ_{v} is the overburden stress,
σ_{I} is the internal pressure,
and c_{u} is the undrained shear strength of the soll.

The stress field in the soll 15 supposed to be one of unlform compression, and for a frictionless soll the radius of the plastic zone around the tunnel is given by the equation

$$
R=R_{o} e^{\frac{\sigma_{v}-\sigma_{I}}{2 c_{u}}-0.5}
$$

......(6.2.4.)
where R_{0} is the hole radius.
Inslde the plastic region the volume $1 s$ assumed to be constant (Poisson's ratio is everywhere equal to 0.5). By using equation 6.2.4. It was found that the extent of the plastic zone was approximately 1.5 tunnel radıl. This is in basic agreement with the change in the stress regime for the same distance as shown in Figure 6.2.2. Inside the plastic region the radial and hoop stresses are given by the equations.

$$
\begin{align*}
& \sigma_{R}=\sigma_{1}+2 c_{u} \ln \left(R / R_{0}\right) \\
& \sigma_{\theta}=\sigma_{R}+2 c_{u}=\sigma_{1}+2 c_{u}\left[1+\ln \left(R / R_{0}\right)\right]
\end{align*}
$$

A possible objection to the adoption of the 'plastac zone' concept could be the fact that the equations describing the plastic stress state are based on the $K=1$ assumption, while for the clay an question the K values greatly exceed unlty. There are, however, no analytical solutions outside the hydrostatic state and so as an approximation it is necessary to use the equations 6.25 . The results of this exercise wath respect to soffit, axls and 45° elevation are shown in Figure 6.2.3.

Progress of the shleld may be consldered in two stages
a) the time which has elapsed between the appearance of the face of the shield and the end of the tallplece at a particular clay crosssection, and
b) the time which has elapsed between the tailplece rotreat and the first contact grouting operation.

During the first phase of the excavation, the clay is assumed to behave elastically, the radial and tangential stresses within the plastic region beang drawn by broken lines. In essence, during that phase, there is no plastic zone at all. For the second phase of the excavation, an elasto-plaslic behaviour has been adopted and the stresses inside the plastic region were given by the contınuous lines.

The stress satuation at the springlane resembles that described by KASINER (1962) for the distribution of secondary stresses adjacent to a carcular tunnel where a pseudo-plastic stress slate ls applied. It should be noted that in the second phase of excavation, due to the limnted time during which the clay is allowed to deform freely, it is quite possible for the real plastic state not to develop fully, so glving way to a rather pseudoplastic stress situation instead.

It may be argued that there $1 s$ a third phase of ground movement which is characterızed by the setting of the grout. Durıng the stiffening progress, the inward ancursion of the clay is progressively resisted to create a changing stress situation around the tunnel.

Any attempted speciflcation of that new stress is a matter of speculation, but at is worthwhile to note that the clear trend for some uplift of the ground above the soffit às recorded in boreholes X1, Y1, Z1 (see Figures 4.2.1., 4.2.2., 4.2.3.) for the tunnel advance over 10 metres may be explained on the basis of this changing ground-lining interaction effect (see ATTEWELL and FARMER, 1974).

6. 3 STRAIN ENERGY RELEASE DURING TUNNELLING.

Changes in the status of stress and the resulting ground movements due to tunnelling in an elastic medium may be interpreted in terms of the release
of stran energy due to the excavation. Conceptually, the variation of the strain energy stored in the ground is the potential factor which drives the ground disturbance.

The theory of elasticity provides the means of estimating the variation of strain energy that results from tunnelling in an annulus of ground with radius $R\left(R>R_{o}\right)$. Thus, consldering a deep unlined tunnel with an internal radius R_{o}, surrounded by an homogeneous, isotropic and tectonically undisturbed ground, it is necessary to find analytical expressions for the pre-existing strain energy which is stored in the ground due to the hydrostatic stress field in addition to the new state of strain energy which is established after the tunnel drıve.

The difference between these two values should express the amount of energy which has been released during tunnelling. This change of strain energy is important sunce it provides the triggering mechanism for the development of ground movements which might be associated with any excavation.

The examination of that particular problem has attracted the attention of various authors, notably JAEGER and COOK (1969) who presented some relationships connecting the internal radius of the tunnel, the radius of the annulus, the dastic parameters of the surrounding ground and the hydrostatic stress, with the strain energy before and after tunnelling.

Prior to driving the tunnel, the strain energy per unit length stored In an annulus of radıus $\left.R(R\rangle R_{0}\right)$ due to the hydrostatic stress of the medium is,

$$
\begin{equation*}
W_{1}=\frac{\pi(1+V)(1-2 V)}{E} \sigma_{V}^{2}\left(R^{2}-R_{0}^{2}\right) \tag{6.3.1.}
\end{equation*}
$$

and after the tunnel is driven it becomes

$$
\begin{equation*}
W_{2}=\frac{\pi(1+V) \sigma_{v}^{2}\left[(1-2 V) R^{4}+R^{2} R_{0}^{2}\right]}{E\left(R^{2}-R_{0}^{2}\right)} \tag{6.3.2.}
\end{equation*}
$$

where,

```
    V is Polsson's ratio of the ground,
    E ls Young's modulus of the ground,
    \sigma
    Ro ls the internal radius of the tunnel,
    R ls the radlus of the annulus,
    W
    W}\mp@subsup{W}{2}{}\mathrm{ is strain energy after tunnelling,
and W is strain energy due to tunnelling.
```

Obviously, the change in strain energy due to tunnelling is given by

$$
\begin{align*}
& W_{2}-W_{1}, \\
& \quad W=W_{2}-W_{1} \tag{6.3.3.}
\end{align*}
$$

JAEGER, op cit using the same pattern of calculations, also proposed a relationshıp giving the displacement (U_{R}) induced at R by driving the tunnel.

Thus,

$$
\begin{equation*}
U_{R}=\frac{2(1+V)(1-V) \sigma_{v} R_{o}^{2} R}{E\left(R^{2}-R_{o}^{2}\right)} \tag{6.3.4.}
\end{equation*}
$$

An attempt has been made, however, to apply the above formulae to the tunnel in question and to find out the strain energy and displacement as a function of distance from the tunnel centre which, for convenience, is expressed by the dimensionless ratio R / R_{0}.

It is evident that the relationship anvolved includes terms which normally might be affected by the ratio R / R_{o}, by the overburden pressure $\sigma_{v}=Y^{Z}$, by Young's modulus, and by Polsson's ratio. Therefore, in an attempt to amprove the basls of the analysus $1 t$ was decided to accommodate
into the calculations the functions.

$$
\begin{aligned}
& \sigma_{v}=f\left(R / R_{o}\right) \\
& E=f\left(R / R_{o}\right)
\end{aligned}
$$

making the no-volume change assumption, that is by supposing that Poisson's ratio is equal to 0.5 or-in order to avold null terms- 0.48 . The value of 0.48 seems to be justiflable on the basis of the laboratory test results. These results are presented in Chapter 5 of the thesis.

Values for the variation of Young's modulus with depth for the same clay were provided by MARSIAND(1973) who conducted triaxial compression tests on 98 mm diameter specimens.

Finally, entering the radius of the tunnel as $R=2.035 \mathrm{~m}$, some calculations were carried out (tabulated in the Table 6.3.1.) and the graphs are presented in Figure 6.3.1.

As shown in Figure 6.3.1. the strain energy due to tunnelling (the difference an energy hetween the states of before and after tunnelling) Increases significantly where the ratio R / R_{o} approaches unity from the value of 4 tunnel radıl, while for values over 4 there $1 s$ a more or less unıform relationship between strain energy and distance from tunnel centre. As the ratio R / R_{o} approaches the value of 14.5 - which approximately corresponds to the ground surface - the strain energy appears to be very small, just enough in fact to satisfy the few millimetres of surface settlement. On the other hand, the employment of the dasplacement formula leads to very anteresting results when the predicted function of displacement versus depth is compared wath the actual relationship measured in the research boreholes.

Figure 6.3.2. shows the two curves on the same graph for comparison purposes. It is apparent that the two curves are compatible with one another subject to some deviations in the vicinity of the opening - when the estimated
("theoretıcal") curve amplıes higher settlements than those actually measured. It may be argued that this behaviour is quite expected because the "theoretical" curve completely lgnores the ground stabilisation processes and the early lining erections which drastically reduce further displacements.

Finally, both curves in Figure 6.3.2. do change their slopes in a quite marked manner at a point where the distance from tunnel centre is about 8 m . This approximates to the value 4 for the ratio R / R_{0}.

6.4 GROUND DEFORMATION IN THE VICINITY OF THE TUNNEL

Post tallplece and pre-grouting clay deformations were reported by ATTEWELL and FARMER (1972) after the completion of a micrometric measurement programme conducted in situ in the tunnel under question. The observations were carried out through grout holes in a newly-erected ring of cast iron lining segments Just off the tallplece 30 minutes after the shield shove. It is belleved that the results represent the state of clay deformabilaty at that tame. The thickness of the annular vold between the linang and the clay was accurately measured for elght different points around the carcumference.

Notıng that the actual vold annulus mıght have been slightly distorted from its original carcular cross-section to an elliptical one due to the lining's own welght distortion, a simple calculation results in an expression for the theoretical vold annulus as a function of the elevation angle. ATIEWELL and FARMER op clt. subtracted the actual from the theoretical values to estimate the absolute value of clay displacement for each of the elght positions under consideration.

On the basıs of those data, a graph was prepared illustrating the absolute radial dısplacement of the clay versus the angle (Figure 6.4.1.).

It should be noted that the graph constitutes a major deviation from the expected configuration of clay displacement around the opening, according to the earlier concept of WARD and THOMAS (1965).

It is usually accepted that once a tunnel has been constructed it tends to become distorted so that its horizontal diameter is increased and its vertical diameter is correspondingly reduced. This mode of deformation is termed "squatting". As DRUCKER (1943) pointed out, where the vertical loading exceedsthe active lateral pressure the horizontal diameter increases until it has built-up a sufficient lateral passive resistance from the ground. WARD and TIIOMAS (1965) showed that the diameters of continuously lined carcular tunnels in the horizontally bedded London clay become shorter in the vertical direction and lengthened horizontally, during which time a uniform circumferential thrust - equivalent to the full overburden pressure acting hydrostatically - was slowly mobilized, and that this effect occurred urrespective of the method of construction.

These observations are in some conflict with the results of the measurements outlined a little earlier, where the clay seemed to be thrust upwards at the soffit while converging at axis level. Nevertheless, ATTEWELL and FARMER (1972) carried out in situ measurements of moisture content changes in the clay at the tunnel face in order to check the pore water situation which was an important element appearing
in the interpretations of WARD and THOMAS op cit.
However, the molsture content calculations for samples of clay taken at different depths into the clay and across the tunnel face in cruciform configuration produced inconclusive results which nezther supported nor rejected the large suction pressure arguments of WARD and THOMAS.

It is worth nowing that MUIR WOOD (1969, 1971) measured ground movements of an airfield runway during the construction of a cargo tunnel at

Heathrow alrport. His records of tunnel deformation showang that there was a small increase in tunnel diameter was in some disagreement with the measurements of WARD and THOMAS (1965) where for the Victoria lane, the horizontal diameter increased and the vertical diameter decreased.

However, such duscrepancles between observations for different tunnels In the same soll lend a certain degree of mpetus towards a theoretical interpretation, and the use of elastic theory - although not entirely satısfactory - $1 s$ at this stage probably valıd.

The modıfied elastic displacement equations for the blaxial stress field may be written after DEERE et al (1969) as.

$$
\begin{aligned}
& U_{R}=\frac{\sigma_{V}}{2 E}(1+V)\left[\frac{R_{o}^{2}}{B}[(1+K)+4(1-K)(1-V) \cos 2 \theta]-\right. \\
& \left.-\frac{R_{o}^{4}}{R^{3}}(1-K) \cos 2 \theta\right]
\end{aligned}
$$

$$
\begin{equation*}
V_{\theta}=\frac{2 \sigma_{v}}{E}(1+V)(1-K) \quad\left[2 R_{0}^{2} / R+R_{0}^{4} / R^{3}\right] \sin 2 \theta \tag{6.4.2.}
\end{equation*}
$$

where
U_{R} is the radial displacement,
V_{θ} is the tangential displacement,
σ_{v} is the overburden pressure,
E Is Young's modulus for the clay,
V is Polsson's ratio of the clay,
K is the ratio σ_{h} / σ_{v} for the clay in its undisturbed state,
R_{o} is the tunnel radius,
R is the radial distance from tunnel axis,
and $\quad \theta$ ls the polar co-ordinate angle with the vertical axis representang $\theta=0^{\circ}$.

Values for the radial displacement have been plotted as a function of the dimensionless ratıo $\mathrm{R} / \mathrm{R}_{\mathrm{o}}$ in Figure 6.4.2. This particular graph contains a famıly of curves representing different angles θ^{*} for the domain defined by $0^{\circ}<\theta<90^{\circ}$. Thıs elastic treatment tends to inducate that for axis level the radial displacements are greater than those displacements at soffit.

It may, therefore, be coneluded that, taking anto account the K_{0} variation wath depth for the London Clay and using elastic theory, it is possible to predıct reasonable values for the radial displacements.

The figures that emerge fron the lheory durectly support the values actually measured in situ. For comparatıve reasons, the radıal displacements predicted by elastıc theory for $R=R_{0}$ and for the first quadrant of the circumference are plotted in the same graph in Figure 6.4.3. as the results of the in situ measurements. Although there is a conslstent difference of 25 mm between the theoretical and measured curves the reasonable concordance in the shape of both curves suggests that the analysis proposed above produces a reasonable answer wath respect to the form of the displacement distribution as a function of angular elevation (θ) around the tunnel. It must be acknowledged, however, that the result is strongly dependent on the elastic assumption whereas we know that non-lınear stress-strain behaviour must occur. One thing must be stressed and that as that anslde measurements of lining deflection do not necessarıly reflect the true deformation of the ground, particularly soon after erection of the segments.

[^10]
CHAPTER 7

7.1 INTRODUCTION.

The present Chapter attempts to descrube the employment of stress path theory in order to interpret the stress on an element of clay at
a) the tunnel axis level, and
b) the tunnelsoffit level.

Both elements are taken at a distance of 0.2 tunnel radil from the free cut surface, of a clrcular shıeld drıven tunnel in the London clay. The tunnel radus is 2.035 m . The approach 1 s based on total stresses and $1 t s$ valıdıty is necessarilyrestrıcted to the time that elapses between the creation of the excavation and before grouting. Pore pressure and possible volume change phenomena associated whth the excavation are neglected.

7.2 STRESS-PATH ESTIMATES DERIVED FROM THE ELASTIC-PLASTIC ANALYSIS

Stress paths for the ground elements defined earlier and which deform during the tunnelling process can be described with the ald of elasticplastic analysis using equations 7.2.2. for the elastic case and equation 7.2.3. for the plastıc stage of ground deformation * (see DEEREet al, 1969).

$$
\begin{aligned}
& \sigma_{R}=0.5 \sigma_{V}\left[(1+K)\left(1-a^{2}\right)+(1-K)\left(1+3 a^{4}-4 a^{2} \cos 2 \theta\right)\right] \\
& \sigma_{\theta}=0.5 \sigma_{v} \quad\left[(1+K)\left(1+a^{2}\right)-(1-K)\left(1+3 a^{4}\right) \cos 2 \theta\right]
\end{aligned}
$$

$$
\text { where } a=R / R_{0}
$$

and

$$
\begin{align*}
\sigma_{R} & =\sigma_{1}+2 c_{u} \ln a \tag{7.2.3.}\\
\sigma_{\theta} & =\sigma_{I}+2 c_{u}(1+\ln a)
\end{align*}
$$

It may be argued that for both ground elements in question, the radial and hoop

[^11]stresses are colncldent with principal total stresses or
$\sigma_{\theta} \simeq \sigma_{v}$ and $\sigma_{R} \simeq \sigma_{h} \quad$ (tunnel axis level), and
$\sigma_{\theta}=\sigma_{h}$ and $\sigma_{R} \simeq \sigma_{V}$ (tunnel soffit leved).
Equations 7.2.2. and 7.2.3. are employed for a distance from the tunnel centre equal to $a=R / R_{o}=1.2$. The choice of that particular distance was governed by the desire to be very close to the tunnel circumference, avolding in the meantime the free surface where for $a=R / R_{0}=1$, then $\sigma_{R}=0$ at both axis and soffit level.

For the element of clay at axis level ($K=1.65$) It was found ${ }^{*}$ that $\sigma_{\theta} \simeq \sigma_{v}=813 \mathrm{kN} / \mathrm{m}^{2}, \sigma_{R}=\sigma_{h}=168 \mathrm{kN} / \mathrm{m}^{2}$ (elastıc state of stress) and $\sigma_{\theta} \simeq \sigma_{v}=1034 \mathrm{kN} / \mathrm{m}^{2}, \sigma_{R}=\sigma_{h}=212 \mathrm{kN} / \mathrm{m}^{2}$ (plastic state of stress). For the element of clay at soffit level ($K=1.70$), the respective values are $\sigma_{R} \simeq \sigma_{v}=160 \mathrm{kN} / \mathrm{m}^{2}, \sigma_{\theta}=\sigma_{h}=760 \mathrm{kN} / \mathrm{m}^{2}$ (elastıc state of stress) and $\sigma_{R}=\sigma_{v}=137 \mathrm{kN} / \mathrm{m}^{2}, \sigma_{\theta}=\sigma_{h}=669 \mathrm{kN} / \mathrm{m}^{2}$ (plastic state of stress). As the inltial principal stress ratios K are known, one could presumably reconstruct the hypothetical stress path for these clay elements producing a rather general but comprehensive idea of stress mobilization during tunnelling. However, before tunnelling, the undisturbed clay is represented in two -dimensional stress space (σ_{v}, σ_{h}) by the pounts A (axis level) and A^{\prime} (soffit level) where the corresponding princıpal stress ratios ${ }^{+}$

* The calculation of the stresses due to the plastic state are based on values for the undrained strength. These were obtained from laboratory results of unconsolidated undrained triaxial compression tests on specimens of 38 mm in diameter taken from the tunnel face (29 m in depth) in two main durections coinciding with the principal axes. The results show that

$$
\begin{array}{ll}
c_{u}=411 \mathrm{kN} / \mathrm{m}^{2} & \begin{array}{l}
\text { when the deviator stress is applıed parallel to the ground }
\end{array} \\
c_{u}=266 \mathrm{kN} / \mathrm{m}^{2} & \begin{array}{l}
\text { surface } \\
\text { when the deviator stress is applied vertical to the ground } \\
\text { surface. }
\end{array}
\end{array}
$$

+ These K ratios are estimated from SKEMPTON(1961) and by GOWIAND'S (1974) personal communcation to the author.
are $K_{A}=1.65$ and $K_{A^{\prime}}=1.70$ (see Figure 7.2.1.).
As soon as the excavation has been created, the clay moves towards a stress state represented by the point B (axis level) and B' (soffit level) where the respectuve K values are $K_{B}=0.20$ and K_{B}, 4.75. Both points B and B^{\prime} correspond to the elastic stress state due to tunnelling, and were calculated using equation 7.2.2. The values of K_{B} and K_{B}, indacate that there is a trend for the ground to undergo active stresses (tunnel axis)and passive stresses (cunnel soffit), where a conslderable vertical stress relef seems to occur accompanied by minor changes in the horizontal stress.

Further stress change occurs due to the formation of a plastic zone around the opening and the new plastlc state of stress is marked by pounts C (axis level) and C^{\prime} (soffit level) and by the K ratios $K_{C}=0.20$ and K_{C}, $=$ 4.80 respectively. For the element of clay at axis level it may be argued that the stress difference from the elastic to plastic state is quite conslderable while the point C lies on the experımentally-defined TRESCA-lıne (see Figure 7.2.1.) being therefore at failure.

On the other hand the stress dufference from the elastic to plastic state for the element of clay at soffit level is very small and remote from the TRESCAIme ${ }^{*}$ (see Figure 7.2.1.). The K ratio for that element equals K_{C}, $=4.80$ and this indicates a further stress change towards a passive state of stress. Perhaps this passive state of stress is to some extent responsible for the earlier mentioned (see Chapters 4 and 6) apparent upwards movement of the clay at soffit level as was detected from the instrumented boreholes, and from \ln situ measurements on the deformation of the unlined clay annulus surrounding the shield.

[^12]
7.3. THE SOII-GROUT INTERACTION.

For the tunnel in question, a 11 water-cement grout was injected at low pressures behind the newly constructed lining. GORDON (1974) has referred to the soll-grout interaction pointing out that grout inltially is virtually incompressible and will tend to flow, but as its shear strength is increased with time and is compressed by the converging clay, the grout will tend to bleed and shrınk. The bleed water will drain into the clay, facilitating the softening phenomenon, and the remaining grout will gain staffness with time while some reduction in volume occurs.

During the first stage of grouting, the clay continues to deform at a very slow rate. As soon as the stiffness of the grout converges to the value of the clay's stıffness, the latter is subject to radual recompression tending to restore $1 t s$ orıginal stress field.

For all of the above reasons it is difficult to reproduce - in a stress path manner - the clay-grout interaction bearing also in mind the fact that the degree of clay alteration due to intrusion of bleed water into the claygrout interface 1s completely unknown.
7.4. MOBILIZED EARTH PRESSURE DURING SHIELD TUNNELLING.

Before tunnelling, the clay element at tunnel axis level is at an undisturbed stress state under K_{o} conditions. As soon as the face approaches the clay starts to move and at the same time undergoes a redistrıbution of stress towards a state of actıve earth pressure, say K_{1}, (see Figure 7.4.1.).

As the face advances forward, the clay moves to infill the bead volume. Thas movement ceases when the bead is closed. It is worth noting that the probability of the bead's closure is governed mainly by the rate of clay deformation. ATYIEWELL and BODEN (1971) proposed a laboratory method for the calculation of that rate of deformation under tunnelling conditions, (see Chapter 1).

However, during this time anterval, the clay is tending progressIvely towards smaller K values, say K_{2}. The time elapsed ($t_{2}-t_{1}$) is equal to the average exposure tame for the clay element during passage of the shıeld. Exposure time may be defined by the ratio • length of shield plus the tallpzece/rate of tunnel advance.

Due to bead closure - whlch $1 s$ the case for the clay tunnel in question - the radıal convergence of clay is restricted by the shield-skin. Probably a small amount of friction and larger K values are developed to a condition K_{3}.

When the tailpiece clears the cross-section and the lining has been anstalled, the clay is an relatively anactive state untul the anjection of grout.

The first stage of grouting ls characterızed by a strong clay-grout interaction resulting in a passive earth pressure built up during the setting time $\left(t_{4}-t_{3}\right)$.

Finally, as the grout tends towards its ultumate value of stiffness, the clay tends towards an ultimum value of earth pressure ($\mathrm{K}_{\mathrm{ult}}$).

It must be stressed that thas probably over-simple analysis is lumıted to the case of a clay element at tunnel axis level. It whll be appreciated that the stress situation at soffit ls even more complicated. The nature of the analysis $1 s$ essentially qualıtatıve because $1 t$ is partıcularly dıffıcult and probably 1 mpractıcal to assess quantıtatıvely by theoretıcal means the mobilized earth pressure both during construction and in the long term. Such an appraisal could probably be achleved experamentally by the in-situ anstallation of earth pressure cells at strategic points on the circumference of the newly-installed lining. Even in that case the question of early earth pressure mobilization - before the anstallation of any linang - must
remaln one of baslc speculation. A programme of research for the determanation of the creep properties for London Clay from specimens recovered at these particular depths would facilıtate such analyses.

CHAPTER 8

STABILITY OF SLURRY TRENCHES IN CLAY

8.1 FACTORS AFFECTING STABILITY

A slurry trench is defined as an excavation supported by a slurry based on the technique of bentonite suspension.

The main factors contributing to the stability of slurry trenches may be summarised as follows
a) The slurry properties.
b) The ground properties.
c) The position of the water table and the level of bentonite.
d) The degree of slurry penetration into the ground and the resulting modification of the shear strength and effective stress parameters of the ground.
e) The geometrical configuration of the trench.
f) The effects of arching and the transfer of pressures by shear.
g) Electrical phenomena associated with the slurry.

a) Effect of slurry properties

RENAU (1972) states that the specific weight of the bentoncte suspension and the increase of this welght by non-colloidal particles in suspension has a major effect on trench stability. It will in fact be shown in Section 8.2 that the so-called stabilıty factor, determined by Coulomb wedge analysis, is a function of the unit weight of the slurry. Another factor affecting the flow properties of slurry ls the water/solids ratio.

CARON (1973) classified the prımary and secondary factors affecting the characteristic properties of bentonite suspensions and water/cement
grouts as shear reslstance, viscosity and yleldang time. Figure 8.1.1. ıllustrates some grout properties.
b) Ground properties

Ground properties are also important, particularly the unit welght, undrained shear strength, and friction angle. These factors determine the stabllıty factor, the safety factor and the shape and extent of the dusturbed or deforming ground area behand the trench. On the other hand the K_{0} and K_{A} coefficients determine the degree of earth pressure mobilısation in the ground ansude the hypothetical Coulomb wedge.
c) The position of the water level and the level of bentonite

The influence of that factor in the overall trench stabilaty can be Illustrated by consldering (FARMER, 1974)* the "actual forces" actang on the trench sidewall. Thus the total horizontal force in saturated soll havang a ground water level at a depth z_{w} where $\left.H\right\rangle_{w}$ (His the helght of the wall) as guven by•

$$
P_{0}=K_{A}\left[\gamma z_{w}\left(H-\frac{1}{2} z_{w}\right)+\left(Y-Y_{w}\right)\left(H-z_{w}\right)^{2}\right]+\frac{1}{2} Y_{w}\left(H-z_{w}\right)^{2} \ldots(8.1 .1 .)
$$

where K_{A} is the coefficient of active earth pressure
Y is the density of the soll
Y_{W} is the density of water
Thas force wall be reduced by the total hydrostatic force exerted by the suspension and in the case of a bentonite slurry is given by.

$$
\begin{equation*}
P=\frac{1}{2} Y_{b}\left(H-z_{b}\right)^{2} \tag{8.1.2.}
\end{equation*}
$$

where z_{b} is the level of bentonnte suspension,
Y_{b} is the density of the suspension.

[^13]
d) Slurry penetration

The significance of slurry penetration depends on the type of the soll. Thus, as pointed out by ELSON (1968), in soils with intermediate permeability, the formation of an impermeable filter cake ls assumed at the interface between slurry and soil. On the other hand, in highly permeable soals, the slurry penetration is of great amportant and must be taken into account. EISON op cat argues that penetration of the mud into the soll is due to negative pore pressures induced by soll dalation and shearing. This negative pore pressure will serve to increase the shearing strength of the soil. LA RUSSO (1963) reported that in such a soll a radius of penetration up to 17 m from the trench centre line is possible.

e) Trench geometry

The effect of trench geometry has been consldered by many authors, notably MEYERHOF (1972) and PRATER (1973). MEYERHOF examaned the lateral earth pressure and the short term stability of a slurry trench in saturated clay, extending the solution for the stress distribution around a shallow cylindrical cut. This solution supplies an equation for the net horizontal pressure at any depth.

$$
\begin{equation*}
\sigma=\left(\gamma^{\prime}-\gamma_{b}^{\prime}\right)_{z}-2 c_{u} \tag{8.1.3.}
\end{equation*}
$$

where γ^{\prime} is the effective unit weight of clay
and Y_{b}^{\prime} is the effective uñıt wélght of bentonate suspension
and in that solution the critical helght of stable trench sidewall is given by ${ }^{*}$

$$
\begin{equation*}
H_{c r}=\frac{4 c_{u}}{\gamma^{\prime}-\gamma_{b}^{\prime}} \tag{8.1.4.}
\end{equation*}
$$

MEYERHOF op cit suggested, however, that the value 2 in equation (8.1.3.) and the value 4 in equation (8.1.4.) are likely to be replaced by a value of earth pressure coefficient defined according to the equation.

$$
\begin{equation*}
K=2[\ln (2 D / B+1)-1] \tag{8.1.5.}
\end{equation*}
$$

where D / B is the dimensionless ratio of depth/width, as shennghi'rigure 8.1.2.a.

Finally, in another study, PRATER (1973) related the depth/length ratio of a slurry trench to the inclination of a linear Coulomb-type rupture surface of an hypothetical wedge acting behind the trench. This relationship is of the form:

$$
f=\frac{\cos \theta}{\tan ^{2} \theta-1}=\frac{\mathrm{L}}{\mathrm{H}}
$$

where f is the length/depth ratıo. The above relationshıp is illustrated In Figure 8.2.4.

f) Arching and stress transfer effects.

The effects of arching and transfer of earth pressuse by shear are of great importance as they entall a decrease of earth pressure both vertically between the soll below the trench bottom and the guide walls at the top and also horlzontally across the sub-soll adjacent to the panel excavated. A useful discrimanation between arching and stress transfer by shear will be considered in Section 8.3. RENAU (1972) suggested that the arch action is In fact three dimensional and vault-like. The vault action consists of a re-distribution of stresses in the soll mass caused by the movements of the trench walls. Figure 8.1.2.b provides a schematic configuration of horizontal arching in a rigldiy sheeted vertical cut with fixed upper edge and yıelding lower edge, and of vertical arching behind a flexible bulkhead. Both cases were reported by TERZAGHI (1941) and appeared in TSCHEBOTARIOFF (1951).

g) Electrical phenomena

Another interesting feature of a slurry is the development of electrical phenomena in the suspension. The suspension as a system (bentonite and water) is electrically neutral whth the negative charges on the clay surfaces completely balanced by the positive charge of the exchangeable cations in water. The difference in ion concentration between the suspension and the surrounding soll could inıtiate movement of water by osmosls. This osmotic
pressure, although small in magnitude, may be an addıtional factor contributing to the stability of slurry trenches.

Finally, in addution to these key factors, some secondary factors influence stability. These include the method of construction, the rate of excavation and its relationship to the rate of soil deformation at the slurry/soll interface, and the possible lubrication of slap planes caused by loss of fluıd through the wall cake and alded perhaps byswelling caused by the action of large horızontal forces which exist within stıff fissured clays. This latter point was noted by PULLER (1974) in the case of Iondon Clay.

8.2. DERIVATION OF THE CRITICAL DEPTH (H Cr)

One of the classical problems in foundation engineering is the determination of the maximum depth which corresponds to the limıt equilıbrıum conditions of an unsupported vertical cut an a cohesive soll. COULOMB (1773) posed and solved the problem assuming the existence of a rupture surface behind the cut which separates the slipping material from the undisturbed materıal.

Although Coulomb admitted in principle the 1 dea of a curved fallure surface, he based his calculation on the assumption of a triangular wedge. By a simple resolution of forces acting on that wedge he stated that the greatest or critical depth (H_{cr}) to which a trench could be dug in cohesive soll without the sades falling in would be determined by the equation

$$
\begin{equation*}
H_{c r}=\frac{4 c_{u}}{\gamma} \cot \theta \quad \text { where, } \theta=\left(\frac{\pi}{4}-\frac{\phi}{2}\right) \tag{8.2.1.}
\end{equation*}
$$

Using Coulomb's main analysis, an attempt will be made to derive an equation for the critical depth in the case of a slurry-supported trench both for case of a plane triangular wedge and a three dimensional prismatic wedge. The soll behind the trench is assumed to be perfectly plastic with an undrained
yield strength c_{u} in shear, while the unit weight of soil and the bentonite suspension are treated as depth-independent variables.

8.2.1. TWO DIMENSIONAL COULOMB WEDGE ANALYSIS IN PURELY COHESIVE SOIL.

A scmple analysis of the stabılıty of a slurry-supported wedge can be obtained by resolution of forces (Figure 8.2.1.) along the rupture surface.

$$
\begin{equation*}
W \sin \theta-C-P \cos \theta-W \cos \theta \tan \phi=0 \tag{8.2.2.}
\end{equation*}
$$

The welght, hydrostatic force, and conescive resistance (all per unt length) are gaven as:

$$
W=\gamma H^{2} / 2 \tan \theta, \quad P=\gamma_{b} H^{2} / 2, \quad C=c_{u} H / \sin \theta .
$$

Substituting values of W, P and C in equation 8.2.2., re-arranging, and finally solving for H we have

$$
\begin{equation*}
H=\frac{2 c_{u}}{\gamma\left(\cos \theta \sin \theta-\cos ^{2} \theta\right)-Y_{b} \sin \theta \cos \theta} \tag{.8.2.3}
\end{equation*}
$$

Taking into account the fact that

$$
\cos \theta \sin \theta-\cos ^{2} \theta=0.5 \tan \theta
$$

it follows that.

$$
\begin{equation*}
H=\frac{2 c}{\frac{Y}{2 \tan \theta}-\sin \theta \cos \theta} \tag{8.2.4.}
\end{equation*}
$$

At fallure, a critical value of the angle θ, say $\theta_{c r}$, wall correspond to a critical value of helght $\mathrm{cr}^{\text {. Minimization of helght implies maximization of }}$ the denominator in equation 8.2.4. This is satisfied for the value $\theta=\frac{\pi}{4}$. Therefore,

$$
\begin{equation*}
H_{c r}=\frac{4 c_{u}}{\gamma-\gamma_{b}} \tag{8.2.5.}
\end{equation*}
$$

Equation 8.2.5. is a modification of the original Coulomb relationship and it provides a higher value for $H_{c r}$ as a result of the unit weight decrease $\left(\boldsymbol{\gamma}-\boldsymbol{\gamma}_{b}\right)$.

NASH and JONES (1963) have suggested that the ratio $4 c_{u} / H\left(\gamma-Y_{b}\right)$ must be taken as a factor of safety. One may argue that this analysis ignores possible tension cracks in the clay which reduce the factor of safety.

Equation 8.2.5. may also be written in the form

$$
\begin{equation*}
\left(1-\frac{\gamma_{b}}{Y}\right)=\frac{{ }^{4 c} c_{u}}{\gamma_{c r}^{H}} \tag{8.2.6.}
\end{equation*}
$$

This function is expressed in Figure 8.2.2. where a quick appralsal of the critical depth (H_{cr}) is feasible provided that the properties of the clay and the bentonnte are known.

8.2.2. THREE DIMENSIONAL COULOMB WEDGE ANALYSIS IN PURELY COHESIVE SOIL

In the three dimensional analysis, the trıangular wedge (see Figure 8.2.1.) Is transformed to a triangular prism as is shown in Figure 8.2.3. It is obvious that the difference between a two- and three-dimensional analysis is the consideration by the latter of a cohesive resistance acting at both ends In a dırection parallel to the rupture plane.

Using the same static arguments as previously, it is possible to write the limıt equilibrium equation along the rupture plane as:

Pcos $\theta-W \sin \theta+C+C_{0}=0$
Taking into account the fact that.

$$
\begin{aligned}
& \mathrm{W}=\mathrm{L} Y \mathrm{H}^{2} \cot \theta / 2, \\
& \mathrm{P}=\mathrm{L} Y_{b} \mathrm{H}^{2} / 2, \\
& \mathrm{C}=\mathrm{H}^{2} \cot \theta \mathrm{c} / 2 \\
& \mathrm{C}_{\mathrm{o}}=\mathrm{LH} \mathrm{C} / \sin \theta,
\end{aligned}
$$

It follows that. $\quad P \cos \theta=\boldsymbol{\gamma}^{L H^{2}} \cos \theta / 2-L H_{c} / \sin \theta-H^{2}{ }_{c} \cot \theta / 2 \ldots \ldots(8.2 .8$.

Expressing the stabilising force as force/unit length:

$$
\begin{equation*}
P / L=Y H^{2} / 2-2 H c / \sin 2 \theta-H^{2} c / L \sin \theta \tag{8.2.9.}
\end{equation*}
$$

Introducing PRATER'S (1973) dımensionless factor,

$$
\begin{align*}
& f=\text { length } / \text { depth }=L / H \\
& P / L=\gamma H^{2} / 2-H c(2 / s \ln 2 \theta-(1 / f) \sin \theta) \tag{8.2.10.}
\end{align*}
$$

PRATER op cıt argues that critical equalıbrium is obtained when:

$$
\begin{equation*}
\frac{d(P / L)}{d \theta}=0 \tag{8.2.11.}
\end{equation*}
$$

The fulfillment of this condition reveals a critical value of factor (f):

$$
\begin{equation*}
f=\frac{\cos \theta}{\tan ^{2} \theta-1} \tag{8.2.12.}
\end{equation*}
$$

Figure 8.2.4. Illustrates the relationship between the angle θ with the ratio f. Using this ratio f, an attempt wall be made - as for the twodimensional case - to express the stability factor as a function of the unit welght ratio.

Rewriting equation 8.2.10., it follows that•

$$
Y_{b} H^{2} / 2=\gamma H^{2} / 2-H c(2 / \sin 2 \theta-(1 / f) \sin \theta) \quad \ldots \ldots(8 \cdot 2 \cdot 13 .)
$$

Substituting equation 8.2.12. for 8.2.13., we have:

$$
\begin{equation*}
H_{c r}=\frac{4 c_{u}}{\left(\gamma-\gamma_{p}\right)} \frac{\tan ^{2} \theta}{\sin 2 \theta} \tag{8.2.14.}
\end{equation*}
$$

and finally.

$$
\begin{equation*}
\left(1-\frac{\gamma_{b}}{Y}\right)=\frac{4 c}{\gamma^{H}} \frac{\tan ^{2} \theta}{\sin 2 \theta} \tag{8.2.15.}
\end{equation*}
$$

[^14]This relationship is plotted in Figure 8.2.5. and it will be noted that for a given value of the ratio $\left(Y / Y_{0}\right)$ the stability factor increases as theta (θ) decreases. For the partıcular value of the ratio $\gamma / Y_{b}=1$, the stability factor is independent of the angle (θ) and is equal to zero. This extreme condition corresponds to a purely hypothetrcal case where $Y=Y_{b}$ and is described by the limıt

$$
\lim _{Y_{b} \rightarrow Y} \frac{4 c_{u}}{Y_{c r}}=0
$$

The practical implication of equation 8.2.15. is clear for it permits - at the design stage - the estimation and therefore the optimization of the stability factor and, in effect, the critical helght $H_{c r}$ for different values of the ratio γ / Y_{b} and for various inclinations of the shear plane.

Application

As will be seen in some detail in the next Chapter, the deep excavation in question was a 6.1 m long, 0.8 m wide and 15 m deep bentonite slurrysupported diaphragm wall, excavated in the stiff, fissured over-consolıdated London Clay.

According to NASH and JONES (1963), the factor of safety of that trench wall be.

$$
\text { F.S. }=\frac{4 c_{u}}{H\left(\gamma-Y_{b}\right)}=\frac{4 \times 150 \mathrm{kN} / \mathrm{m}^{2}}{15 \mathrm{~m}(2-1) \mathrm{Mg} / \mathrm{m}^{3}}=4
$$

where

$$
\begin{aligned}
\mathrm{c}_{\mathrm{u}} & =150 \mathrm{kN} / \mathrm{m}^{2} * \\
\mathrm{H} & =15 \mathrm{~m} \\
Y & =2 \mathrm{Mg} / \mathrm{m}^{3} \\
Y_{\mathrm{b}} & =1 \mathrm{Mg} / \mathrm{m}^{3} \\
\mathrm{~L} & =6.1 \mathrm{~m} \\
\mathrm{~B} & =0.8 \mathrm{~m} .
\end{aligned}
$$

If no effective stress changes take place, and the excavation is open only
for a matter of days, then $c=c_{u}$ and $\phi=0$, hence the anclination of the shear surface must be $\theta=45^{\circ}+\phi / 2=45^{\circ}$.

8.3 NORMAL STRESS TRANSFER IN SLURRY TRENCHES.

One of the dominant factors contributing to the stability of slurry trenches in cohesive soll ls the effect of the transfer of earth pressures In the form of shoar stresses.

Despate its amportance, this factor $1 s$ rarely referred to explıcitly In the lıterature. Almost all stabllıty analyses do, however, mention the ground arching effect.

TSCHEBOTARIOFF (1951, 1973) made a useful discrimanation between these two ground functions. Whale conceptually they both ınvolve some transfer of pressures by discrete shear they do dıffer radically in that arching pre-supposes the exlstence of "two rigld boundaries" able to wathstand the mobılızed earth pressure. In the case of slurry trenches, the guide wall at the top and the soll below the trench bottom could probably be consudered as "rigid boundaries". Nevertheless, for deep excavation in purely cohesıve soll $\left(\phi=0^{\circ}\right)$ it is perhaps more accurate to regard stabllıty from the standpoint of stress-transfer rather than in terms of arching.

Stabilıty analyses which take arching into account should be primarıly concerned with cohesionless material where the friction angle is the key factor determining the magntiude of earth pressure. Such analyses have been Introduced by various authors and notably by SCHNEFBELI (1964), PIASKOWSKI and KOWALWWSKI (1965) and HUDER (1972). In the present section an attempt will be made to present schematically the forces acting on a ground element in the crosssection (Figure 8.3.1.) of a three dımensional Coulomb wedge (Figure 8.2.3.). These forces are
a) The welght of the soll element,

$$
d W=\gamma L\left[\left(x_{0}-\cot \theta d z\right)+\frac{1}{2} \cot \theta d z\right] d z
$$

b) The hydrostatic force exerted by the bentonite suspension,

$$
\begin{equation*}
d P=Y_{b} L z d z \tag{8.3.2.}
\end{equation*}
$$

c) The force due to shear resistance along the rupture plane is. $\mathrm{dC}=\mathrm{L} c \frac{\mathrm{dz}}{\sin \theta}$
d) The force due to shear resistance along both ends 1s:

$$
d C_{o}=c\left[\left(X_{0}-\cot \theta d z\right)+\frac{1}{2} \cot \theta d z\right] d z \quad \ldots .(8 \cdot 3 \cdot 4 \cdot)
$$

The equation determining stability of the soal element with dimensions ($L, X_{o}, d z$) may be obtained by a resolution of the forces parallel to the rupture plane

$$
\begin{equation*}
d C+d C_{o}+\cos \theta d P+\left(\sigma_{v}+d \sigma_{v}\right)\left(X_{0}-\cot \theta d z\right) L \sin \theta-\sin \theta d W-\sigma_{v} X_{0} L \sin \theta=0 \tag{8.3.5.}
\end{equation*}
$$

Substituting $d C, d C_{d} d W$ and $d P$ for equation 8.3.5. and neglecting differentials of the second order and diffcrential products, it follows that

$$
\begin{equation*}
\frac{d \sigma_{v}}{d z}+\frac{1}{H-z}\left(\frac{2 c}{\sin 2 \theta}+Y_{b} z\right)+\frac{c}{L \sin \theta}-\gamma-\frac{\sigma_{v}}{H-z}=0 \tag{8.3.6.}
\end{equation*}
$$

The latter equation is a typical linear, first order differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{8.3.7.}
\end{equation*}
$$

and its solution offers the appropriate integrations.

$$
\begin{equation*}
\sigma_{v}=-\frac{2 c}{\sin 2 \theta} \frac{z}{H-z}-\frac{Y_{p}}{2} \frac{z^{2}}{H-z}+\frac{1}{2}\left(\frac{c}{I \sin \theta}-Y\right)(H-z)+\frac{K_{1 n}}{H-z} \tag{8.3.8.}
\end{equation*}
$$

where $K_{\text {In }}$ is the integration constant, which is determined by the boundary* conditions of the problem. This relationship (equation 8.3.8.) is an

[^15]expression of the normal stress transfer effect in the form of a function $\sigma_{v}=f(z)$, with parameters the length of the trench (L) and the properties of the ground (c, Y) and the bentoncte suspension $\left(Y_{b}\right)$.

9.1. INTRODUCTION

The structure under investigation was a 6.1 ill long, 0.8 m wide and 15 m deep slurry-supported diaphragm wall excavated in a stıff, fissured, overconsolidated clay (London Clay) forming one side of a proposed square access shaft to an underground rallway tunnel. A new method of construction had been adopted which carried out the excavation in three stages using the B.W. Longwall Drill system whth reverse circulation of bentonite. The depth of the excavation, its method of construction and Its proximity to adjacent underground structures necessitated the design of a ground monıtoring system in order to register ground movements associated with the excavation. The in-situ measurement programme was almed at the determination of lateral soll deformations and surface and subsurface settlements. This was achieved through measurements in instrumented boreholes.

Some of the results of the project are reported by FARMER and ATIEWELL (1973). However, in the present Chapter these results will be presented in a more detailed manner while a post-construction earth pressure analysis will be developed in order to predict the shape and magnitude of the recorded ground deformations. This analysis consists of two different approaches, namely,
I. A semı-empırical approach derıved from a combination of TERZAGHI and PECK (1967) trapezoldal earth pressure dıstribution modıfıed by the hydrostatic pressure due to bentonite suspension, and

II An elastic theory approach developed by MEYERHOF (1972).

9.2 THE WORKDNG SITE.

The site of construction was in central London (Green Park corner) and its geology was of some complexity (Attewell, 1974)*. Nevertheless, the major part of the excavation was in overconsolidated,stıff,fissured Iondon Clay. The slte plan, geology and soll properties are illustrated in Figure 9.2.1.

9.3 METHOD OF CONSTRUCTION

The operational process for the excavation of the bentonite-supported diaphragm wall, using the B.W. Iong wall drill, and the B.W. Support and excavation system, 1s schematically presented in Figure 9.3.1. The Figure 1s taken from the journal 'Ground Engineerıng' (1971) and $1 l l u s t r a t e s ~ t h e ~$ arrangement for the mud circulation system, which links the BWN-5580 submersible drilling unit with a slurry separation and treatment plant.

The excavation was constructed in three panels (Figure 9.4.1.). The sequence of excavation was Panel A first, followed by Panels B (left hand) and Panel C (centre). Figure 9.3.2. visuallzes the excavation progress which was rather 1 rregular and relatively slow, with long halt periods, especially as far as panels A and B are concerned. This feature, caused by machine breakdown, was undesırable from both financial and geotechnical points of view, the financial impact of constructional delays being selfevident, while the geotechnical aspect could be understood in terms of yield and softening of ground surrounding the diaphragm wall. The latter situation could eventually lead to potentially unstable ground situations. 9.4 MONITORING SYSTEM.

In order to monitor lateral soil deformations and vertical surface and sub-surface settlements, four boreholes ($\mathrm{BH} 1, \mathrm{BH} 2, \mathrm{BH} 3$ and BH 4) were installed

[^16]at distances of $0.6 \mathrm{~m}, 2.1 \mathrm{~m}, 4.1 \mathrm{~m}$ and 6.1 m from the edge of the excavation. The four boreholes lay on a plane which intersects the plane of the wall at right angles, at its centre point, as is shown in Figure 9.4.1. Borehole BH1 was 18 m deep being 0.6 m from the sidewall, while the other boreholes were only 10 m deep. Vertical surface movements were monitored using a Cooke 5440 precise level to an established bend mark. A complete surface level survey was usually carried out once a day and at frequent intervals during critical periods of excavation. Horızontal subsurface movements were monltored using a Mark IT Soil Instruments inclinometer with digital read-out computing to 0.1 mm horizontal displacement over a metre vertical length. Inclinometer access tubes with orthogonal guade keyways were located parallel to and normal to the longitudznal plane of the dıaphragm wall. Vertical subsurface movements were measured at magnetic rings located at approximate 3 m Intervals (for BII1) along the inclinometer access tubes. Vertical settlements and unclinometer readings were measured to an accuracy of $\pm 0.1 \mathrm{~mm}$. Subsurface vertical settlements were measured with $\pm 1 \mathrm{~mm}$ of error.
9.5 OBSERVED BEHAVIOUR DURING CONSTRUCTION.

From the results settlement development profiles in a vertical plane normal to and passing through the wall centre line and at different depths in BH1 were computed and are presented in Figure 9.5.1. The pattern of settlements in this Figure indicates that
I. A maximum settlement occurred at the depth of $7.5-8.0 \mathrm{~m}$, approximately one half of the total helght of the wall,

II It appears that the ground was relatively slow - in general - to respond to the excavation since the major settlement occurred between the 18th and 20th day from the beginning of the construction. This conclusion

Is not entarely justified sance the BH1 is in front of panel C (see Figure 9.4.1.) whose excavation started on the 17th day (see Figure 9.3.2.). It is, therefore, reasonable to accept that the ground in BH 1 is vartually unaffected by the excavation of panels A and B, while the ground behind panel C is not slow to respond during the excavation of that particular panel.
III.

Durang the limıted time anterval of six days, $1 . e .20$ th to 26 th, there 15 no slgnificant varlation of the pattern of settlements. Thls statement is reinforced by the shape of the graph for the maximum settlement versus depth as shown in Figure 9.5.2.

This graph shows that a maximum settlement occurs at a depth approximately 8 m . This might have been related to the progress of excavation in panel B and maybe in panel C, where long stand-up perıods at the partıcular level of 9 m may have affected the nearby clay in a way perniltting the possible occurrenceof vertical consolıdation.

Another interesting feature documented in Figure 9.5.1. is that the particular subsurface horizon of 16.9 m (note that the maxımum helght of the wall is 15 m) moves in a way that confurms the existence of a bottom heave trend. Finally, a transverse surface settlement profile as illustrated in Fıgure 9.5.3. It is anteresting to note that the maxamum value of the ratio distance from excavation $=0.3$
maximum depth from excavation
while the maxımum value of the ratio
$\frac{\text { settlement }}{\text { maxımum depth from excavation }}=0.02 \%$ Nevertheless, PECK (1969),
referring to case studies of deep excavation - long walls - using standard
soldıer pıles or sheet pıles braced with crossbracing or tiebacks, found that
for conditions of average workmanshıp the respective ratios are equal to
2.0 and 1%. It could be argued, therefore, that bentonite-supported excavations surpassed the traditional constructional methods providing limited extension of the surface settlement profile (15% of the value obtained by the latter methods), and very limited magnitude of maximum settlement.

The evolution of lateral deflection profiles in time is taken from FARMER and ATTEWELL (1973) and is illustrated in Figure 9.5.4. The recorded maximum deflection 1 s 16 mm for BH 1 , 6 mm for BH 2 , 2.6 mm for BH 3 and 0.0 mm for BH 4 . These maxima occurred at depths of 5 m for BH 1 , and 6 m for BH 2 and BH 3 . It 1 s obvious that BH 4 lies out of the disturbed ground zone. Combining vertical and horizontal soil movements for BHI , a two-dimensional vectorial representation is attempted in Figure 9.5.5. sımilar to that presented by FARMER and ATTEWELL (1973). In the lower part of that Figure, the slope of the ground deformation vector (ϕ_{0}) is plotted agaunst depth (z). Both graphs of this Figure inducate that the horizontal component of the vector is more evident at depths of $2 \sim 6 \mathrm{~m}$ whale the vertical component dominates at depths below 10m. A schematic representation of maximum horizontal ground deflections in each borehole Is shown in Figure 9.5.6.

Following an estimation - by an approximate extrapolation - of depths where ground deflection is zero for $\mathrm{BH} 1,2,3$ and 4, a scaled diagram has been drawn (Figure 9.5.7.) where the disturbed ground zone appears to be of parabolic shape. The parabola intersects the ground surface at a point displaced 6.2 m from the edge of the sidewall. A characteristic feature of this parabola is its slope of 45 degrees at the point of maximum helght of the wall. Nevertheless, it must be stressed that this pattern of groundaffected area is only a rough approximation of real situation. The quantitative consideration of the parabolic profile is highly speculative, but it is reasonable to accept the qualıtative nature of this lıne of
demarcation for the ground deformed zone.

9.6 POST-CONSTRUCTION EARTH PRESSURE ANALYSIS

Varıous attempts have been made to calculate the earth pressures responsable for the recorded sidewall deformation during the excavation. FARMER and ATMEWELL (1973) suggested that the sidewall of the wedge was sımılar to a yıeldıng retainıng wall flexıbly supported by the bentonıte suspension, and that is subject - during excavation - to the resultant stress equal to the dıfference between the trapezoldal earth pressure distribution suggested by TERZAGHI and PECK (1967), and to the hydrostatic pressure exerted by the bentonite suspension. This distribution is shown in Figure 9.6.1. Altnough trapezoldal earth pressure distribution is an use for desıgn purposes in braced excavations, it was probably assumed by the authors that the deformation mechanism of a slurry trench is comparable to that of a braced excavation if one accepts that each level of bentoncte suspension "constıtutes" an equivalent strut al that level. Therefore, the slurry method could be equivalent to a bracıng system with "continuous" struts, I.e. struts placed in such a succession as if no sidewall was left uncovered On the other hand, MEYERHOF (1972) examıned the lateral earth pressure of a slurry trench in saturated clay and proposed that the net lateral
pressure at depth (z) is given by.

$$
\sigma_{\ell}=\left(\mathrm{K}_{\mathrm{o}} Y-Y_{\mathrm{b}}\right)_{\mathrm{z}}
$$

The pressure profile calculated from equation 9.6.1. 1s shown an Figure 9.6.2. together with the linear variation in K_{o} with depth (for Iondon Clay) as proposed by COIE and BURLAND (1972) in a sımılar analysis.

Nevertheless, MEYERHOF'S relationship is very reasonable because during excavation under bentonite it is probably sufficient to say that lateral earth pressure $1 s$ replaced by the supporting hydrostatic pressure of the bentonıte suspension. As this support pressure ls applıed ammediately
following excavation, the deformation measured initially at the borehole represents the relaxation of the soll at that position in a mainly horlzontal direction as a result of the replacement of the original horızontal constraining pressure ($K Y^{2}$).

9.7 PREDICTED HORIZONTAL GROUND DEFORMATION

Two displaced positions of borehole BH1 have been selected for analysis, the position of 9.11.72. (FARMER and ATMEWELI, 1973), when the central panel was just finished and concreted, and a "final" horizontal deformation profile taken at 27.1.73. (ATMEWELL and FARMER, 1972). These horizontal deformation profıles are 1 llustrated in Figure 9.7.1. A consıderable tımedependent deformation appears for the later BH1 profile at depths between 10 m and 15 m , while the ground appears to be stable at depths between 1 to 10 metres.

Thıs apparent stress relıef over the lower one third of the diaphragm wall might be attrıbutable to bad workmanshıp. There appears to have been some trench collapse prior to concreting which was delayed due to machine faılures and contract dıfficulties..

In order to predict the horizontal deformation profile near the sidewall of the dlaphragm wall two different approaches werc used. The first is that proposed by MEYERHOF (1972) who, using elastic theory results, calculated the radial deformation at any depth (z) for a deep cylindrical cut in clay as

$$
\delta_{l}=\frac{(1+V) \sigma_{l} B}{2 E}
$$

where the net lateral pressure is,

$$
\sigma_{l}=\left(K_{o} \gamma-\gamma_{b}\right)_{z}
$$

Substıtuting equation 9.7.2. for equatıon 9.7.1

$$
\delta_{l}=\frac{(1+V)\left(K_{0} Y-Y_{p}\right)_{z B}}{2 \mathrm{E}}
$$

Using the relationship of K_{o} versus depth, of COIE and BURLAND (1972), a Polsson's ratio equal to $\mathbf{V}=0.48$ and a Young's modulus for Iondon Clay equal to $60 \mathrm{MN} / \mathrm{m}^{2}$ (after MARSLAND, 1971), a calculation for soll deflection versus depth was obtanned (see Table 9.7.1.) and is shown an Figure 9.7.1. One could comment that the proposed profile facls to rcproduce the shape and magnitude of the actual profile as it is developed just after the excavation (9.11.72.). Another approach is that consldered by MYRIANTHIS (1974c) where the influence area of the relaxed zone is assumed equivalent to the area bounded by a typical 45 degrees Coulomb wedge (as in the stabilıty analysis developed in Chapter 8). The magnitude of the deformation wall depend on the extent of the relaxed zone, determined by the amount of any arching or stress-transfer, and the pressure gradient in this zone. Accordingly, excluding arching or stress-transfer phenomena (see Chapter 8) the deflection must be given as.

$$
\delta_{l}=\frac{\sigma_{l(H-z)}}{\bar{E}}
$$

This relationship is in fact another form of Hooke's law and is obviously valid for elastic deformations only.

As for the variation of the net effective horizontal stress with depth the stress distribution developed by FARMER and ATTTEWELL (1973) was adopted,as is shown in Figure 9.6.1.

The calculations were based on the stated elastic properties, i.e. $E=60 \mathrm{MN} / \mathrm{m}^{2}$ and $V=0.48$, while the unit weight of the clay was taken as $2 \mathrm{Mg} / \mathrm{m}^{3}$ and the unit weight of the bentonite suspension was taken as $1 \mathrm{Mg} / \mathrm{m}^{3}$. (For the detailed calculation see Table 9.7.2.).

The deformation profile resulting from the calculation was in good agreement with the actual profile measured at 9.11.72., having a peak deformation of 14.5 mm aE 4 m depth instead of the actual 16.0 mm at 5 m depth. The shape of the predicted profile is also in accordance with
that of the actual profile, while it decays more rapidly towards the value of zero horizontal deformation.

A theoretical analysis supported by case studies of soft ground tunncllung has revealed that tnere is :-
a) an exponential relationship between the ratio of maximum surface settlement to tunnel radlus and the tunnel geometry expressed by the ratio of depth to diameter,
b) a lincar relationship between the theoretical volume of soll excavated and the volume of soll withan the surface settlement curve as defined by an error function, and
c) a relationship taking the form of a modified normal distribution function between the dimensionless ratio maximum surface settlement/tunnel radius and the tunnel advance expressed in units of length.

It is also concluded that a relationship can be formulated between the loss of ground due to tunnelling or the maximum surface settlement and the time factor (the latter factor takes the form of the rate of tunnel advance, and the rate of clay deformatıon).

The transverse surface settlement profile can be approxamated to a normal probabılıty curve having a maxımum surface settlement equal to 6 mm and a point of inflection at an approximate distance of 15 m from the tunnel centre line. This latter distance exceeds that displaced from that predicted by an empirical relationshıp between depth, diameter and inflexion distance as formulated by PECK (1969). The apparent basal flatness of the settlement curve may perhaps be attributed to quate strong lateral decompression upon excavation. It has been further postulated (ATTEWELL and FARMER, 1972) that such lateral decompression may cause some re-consolıdation at soffit and invert leading to the apparent uplift at depth which
attenuates towards ground surface.
For the tunnel in question, the study of ground deformations in a vertical plane along the tunnel centre line indicates that the clay predomanantly subsides an a vertical manner but it also deflects horizontally towards the direction of tunnel advance for points in front of the shield. As the shıeld clears the vertical line of reference, an apparent retraction of the horizontal component of the movement occurs, whale settlement does continue gradually behind the shield until ground stabilızation by grouting is achıeved.

A cross-sectional view of the ground deformations reveals that, as maght be expected, the main comporient of the ground motion vector is a vertical one. Ground deformation occurs for a distance of 5 tunnel radil elther side of the centre line. This is an some disagreement with theoretical expectations on the assumption of the formation of a 45 degrees anclined hypothetical shear fallure plane defining boundaries of the disturbed from the undisturbed ground. Following retraction of the shield, a substantial clay motion continues while the tunnel advances a distance of 30 m beyond the reference point.

Results from an-situ measurements of the deformability of a clay annulus just off the tallplece of the shield tend to show that a major ınward clay movement takes place at the axıs level, while outward motion appears at soffit and invert. Consequently, a reduction of the horizontal diameter and an increase of the vertical diameter should be expected. These results are confirmed by elastıc deformation analysis which take into account the high values of K_{0} exlsting at depth in London Clay. However, these findings tend to contradict the results of previous anvestigations for simalar tunnellıng and ground conditıons- results which suggest (from linang
deformation measurements) - that the clay 'squats' vertically when it is decompressed.

Ground movement records taken during the excavation of a bentonltesupported daaphragm wall have indlcaled that
a) consequential surface settlement of the ground was of negligible magnıtude and extent,
b) the magnitude, extent and development of horizontal ground deformation is more pronounced than the vertical deformation. A maximum deflection of 16 mm was observed at a depth of 5 m (one third of the total nelght of the wall), while a maximum vertical set,tlement of 6 mm was recorded at a depth of 7.7 m . Also, a limated trend for bottom heave formation was decected.
c) the deformed ground zone (on a vertical plane normal to the longitudanal axls of the wall) appeared to be of parabollc form.
d) Post-construction earth pressure analysis has revealed that a semiemparical approach to ground deformation is generally satisfactory sunce at reproduces the shape and magnitude of the actual ground deflection profile. On the other hand, elastic theory has failed to confirm the actual ground deformation trends.

REFFRENCES.

AGARWAL, K.B. (1967) The influence of size and orientation of samples on the undrained strength of London clay. Unpublished Ph.D. thesis, University of Iondon.

ARMENTO, W.J. (1972) Crıteria for lateral pressures for braced cuts. Proc. Specialty Conf. on Perf. of Earth and Earth-supported structures. Vol. 1, part 2, pp. 1283-1302. Purdue Unıv. Lafayette, Indiana, U.S.A.

ATTEWELL, P.B. and BODEN, B. (1971) Development of stabillty ratios for tunnels drive in clay. Tunnels and Tunnelling, Vol.3, No. 3 pp 195-8.

ATTEWELL, P.B. and FARMER, I.W. (1972) Determination and interpretation of surface and subsurface ground movements during construction on a tunnel in London clay. Report for Transport and Road Research Lab. Ref. No. PBA/IWF/TRRL/1972/I Contract No. ES/IN/ 842/101.

ATTEWELL, P.B. (1973) Soft ground tunnelling in urban areas. Lecture No. 10, Regional Meeting of the Figineering Group of BGS., University of Durham, England. pp 35-38.

ATTEWELL, P.B. and FARMER, I.W. (1973) Ground movements caused by a diaphragm wall excavation in London clay. Report for Transport and Road Research Lab. Ref. No. PBA/IWF/TRRL/M973/1.Contract No. ES/LN/842/101.

ATTEWELL, P.B. and FARMER, I.W. (1974) Ground deformations resulting from shield tunnelling in London Clay. Can. Geotech. Jnl., Vol II, pp 380-395.

BALIAS, see MUIR WOOD, A.M. (1970).
BARTLETT, J.V. and BUBBERS, B.L. (1970) Surface movements caused by bored tunnelling. Proc. Conf. on Subway Constr. Budapest III, 5, pp 513-539.

BERRY, D.S. (1960) An elastic treatment of ground movement due to mining. Jnl. Mech. and Phys. of Solıds. Part I, Vol 8, No. 4, Nov. 1960 pp 280-292.

BERRY, D.S. and SALES, T. (1961) Elastic treatment of ground movement due to mining. Jnl. Mech. \& Phys. of Solids. Part 2, Vol 9, No. 1, Feb. 1961, pp 52-62.

BERRY, D.S. (1963) Ground movement considered as an elastic phenomenon. The Mining Engineer, No. 37, pp 28-39.

BERRY, D.S. (1964) The ground consıdered as a transversely isotropic material. Int. Jnl. Rock Mechanıcs Mın. Scl., vol I, pp 159-169.

BERRY, D.S. (1964) A discussion of the stochastic theory of ground movement. Rock Mech. \& Fng. Geol. Vol 2, pp 213-227.

BERRY, D.S. (1964) A theoretical elastic model of the complete region affected by mining a thin seam. Proc. 6th Symp. on Rock Mech., Rolla. pp 310-329.

BISHOP, A.W. and HENKEL, D.J. (1964) The measurement of soil properties in the triaxial test. London, E. Arnold.

BISHOP, A.W., WEBB, D.L. and LEWIN, P.I. (1965) Undisturbed samples of London clay from the Ashford common shaft . strength effective stress relationships. Geotechnique, Vol 15, pp. 1-30.

BISHOP, A.W. (1966) The strength of soils as Engineering materials. 6th Rankzne lecture, Geotechnique, Vol 16, pp. 89-130.

BISHOP, A.W. and LITTIE, A.L. (1967) The influence of the saze and orientation of the sample on the apparent strength of the London clay al Maldon, Essex. Proc. Geotech. Conf., Oslo, pp. 89-96.

BISHOP, A.W. (1972) Shear strength parameters for undusturbed and remoulded soll specimens. Stress-strain behaviour of soils. Edıted by Parry, R.H.G. Foulls and Co., Ltd., Oxford, England, pp. 3-58.

BJERRUM, L. (1967) Mechanisms of progressive fallure in slopes of overconsolıdated plastıc clay and clay shales. Jnl. Soll Mech. Found. Div., Proc. ASCE, Vol 93, No. SM5, Part I, pp 1-49.

BODEN, J.B. (1969) Site investigation and subsequent analysis for shallow tunnels. M.Sc. Eng.Geol. Adv.Course Dissertation, University of Durham, Fingland.
BODZIONI, J., LITWINISZYN, J. and SMOLARSKI, A. (1960) New research into rock masses treated as media characterized by stochastic equations. 3rd Int. Conf. on Strata Control, Paris, pp 137-150.

BODZIONI, J. and SMOLARSKI, A.Z. (1960) Experimental Investigations of loose bodies from the aspect of the theory of the stochastic medıum. Bull. de l'Academie Polonaıse des Sciences. Vol 8, pp 139-144.

BRETH, H., SCHUSTER, E. and PISE, P. (1973) Axial stress straュn characteristics of sand. Jnl. Soll Mech., Found. Div., Proc. ASCE, Vol 99, No. SM8, pp 617-632.

BROMS, B.B. and BENNERMARK, H. (1967) Stabılıty at vertical openings, Jnl. Soll Mech, Found. Div., Proc. ASCE, Vol 93, No.SM1, pp 71-94.

BROOKER, E.W. and IRELAND, H.O. (1965) Earth pressure at rest related to stress history. Can. Geotech. Jnl. Vol 2, No. 1, pp 1-15.

CARON, C. (1973) Un nouveau style de perforation la boue autodurcissable, $\frac{\text { Annales IT BIP, serle Malerıaux No. 47, Nov.73, No.311, pp 12,22, }}{26,38 \text {. }}$

CHRISTIAN, J.T. (1968) Undrained stress distribution by numerical methods. Jnl. Soil Mech. Found. Div., Proc. ASCE, Vol 94, No. SM6, pp 1333-1346.

COLE, K.W. and BURLAND, J.B. (1972) Observation of retaining wall movements assoclated with a large excavation. Proc. 5th European Conf. Soll Mech. Found. Eng., Madrıd, Vol 1, pp.445-453.

COSTET, J. and SANGLERAT, G. (1969) Cours pratıque de Mecanıque des sols. Dunod, Parıs, pp 357-359.

COULOMB, C.A. (1773) Essal sur une application des regles de maximis et minımıs a quelque problemes de statique relatifs a l'architecture, Mem. Math. Phys. (divers Savans). vol 7, p. 343.

DAHL, H.D. (1967) Mıne subsidence as a problem in Coulomb plasticity. M.Sc. thesis, Pennsiylvanıa State Unıversity, U.S.A.

DEERE, D.U., PECK, R.B., MONSEES, J.E. and SCHMIDT, B. (1969) Design of tunnel liners and support systems. Report for the U.S. Dept. of Transportation. OHSGT, Contract 3-0152.

DRUCKER, M.A. (1943) Determination of lateral passive soll pressure and its effect on tunnel stresses. Jnl. Franklin Inst. pp 499-512.

ELSON, W.K. (1968) An experimental investigation of the stabilaty of slurry trenches. Geotechnlque, Vol. 18, No. 1, pp 37-49.

FARMER, I.W. and ATTEWELL, P.B. (1973) Ground movements caused by a bentonite-supported excavation in London clay. Geotechnique. Vol XXIII. No. 4, pp 576-581.

FOLYAN, J.I., HOEG, K. and BENJAMIN, J.R. (1970) Decısıon theory applıed to settlement predictions. Jnl. Soll Mech. Found Div., Proc. ASCE, Vol 96, No. SM4, pp 1127-1141.

GETZIER, Z., KOMORNIK, A. and MAZURIK, A. (1968) Model study on arching above burıed.structures. Jnl. Soll Mech. Found. Dıv., Proc. ASCE, No. SM5, pp 1123-1141.

GEIZLER, Z., GELLART, M. and EITAN, R. (1970) Analysis of arching pressures in ıdeal elastic soll. Jnl. Soll Mech. Found. Dıv., Proc.ASCE, Proc. paper 7431, pp 1357-1372.

GOLDER, H.Q. (1948) Measurement of pressure in tambering of a trench in clay. Proc. 2nd Int. Conf. Soll Mech. \& Found. Eng. Vol 2, pp 76-81.

GORDON, T. (1974) The stress field and displacements assoclated with soft ground tunnels. M.Sc. thesis, Univ. of Durham.

HACKEIT, P. (1959) An elastic analysis of rock movement caused by mining. Trans. Inst. Min, Fing. Vol 118, Part 7, Apr.1959, pp 421-433.

HACKETT, P. (196L) Prediction of rock movement by elastic theory compared with in-situ measurement. Rock Mech. \& Eng. Geol. Supplementum I, 1964, pp 88-102.

HANNA, T.H. (1973) Foundation instrumentation. Series on rock and Soll Mechanıcs. Vol 1, 1971/73 No. 3, Trans. Tech. Publ. Page 192.

HANSMIRE, W.H. and CORDING, E.J. (1972) Performance of a soft ground tunnel on the Washington metro. Proc. 2nd North Amer. Rapid Excavation and Tunnelling Conf. Chicago, Illinois, Vol 1, AIME, Chapter 23, pp 371-390.

HARRISON, A (1971) Extrusion testing of remoulded clays applied to stabilıty problems in soft ground tunnelling. M.Sc.Eng.Geol. Adv.Course Dissertation, Unıversity of Durham, England.

HOFFMAN, H. (1964a) Subsidences in a stratıfied, true-to-scale model, in relation to friction, direction of work and rate of working. Mıttellungen aus dem Markscheldewesen.

HOFFMAN, H. (1964b) The effects of direction of workang and rate of advance on the scale-deformation of a self loaded stratified model of a large body of ground. Proc. 4th Symp. on Strata Control and Rock Mech. New York, 14pp

HOOPER, J.A. and BITTLAFR, F.G. (1966) Some numer \perp) the shear strength of London clay. Geotechnlque, Vol XVI, pp 282-304.

HUDER, J. (1972) Stabllıty of bentonite slurry trenches wath some experience in Swiss practice. Proc. 5th European Conf.Soll Mech. \& Found. Eng. Madrıd, 1972, pp 517-522.

IMAM, H.I. (1965) A viscoelastic analysis of mane subsidence in horızontal lamınated strata. Ph.D. thesis, Unıversity of Minnesota, Minneapolis, U.S.A.

JAEGER, J.C. and COOK, N.G.W. (1969) Fundamental of Rock Mechanics, Methuen, London. pp 441-445.

KASTNER, H. (1962) Statik des Tunnel-und Stollenbaues. Springer-Verlagy Berlin, Gottingen, Headelberg.

KING, J. and WHETTON, J. (1958) Mechanıcs of mining subsidence. Cclluery Enganeering, July 1958, pp 285-288.

LAMBE, W.T. (1967) Stress path method. Jnl. Soll Mech. Found. Div. Proc. ASCE, Vol 93, No. SM6 pp 309-331.

LAMBE, W.T. and WHITMAN, R.V. (1969) Soll Mechanics. John Wiley and Sons, Ltd, , London.

LA RUSSO, R.S. (1963) Wanapurn developemtn - slurry trench and grouted cut-off. Proc. Symp. Grouts and Drıllıng Muds in Enganeerıng Practice. pp 196-201 - Butterworth, Iondon.

LITWINISZYN, J. (1953) The differential equation of displacement of rock masses. Bull. de l'Academıe Polonalse des Scıences, Vol 1, pp 38-40.

LITWINISZYN, J. (1956) Applıcation of the equations of stochastic processes to mechanlcs of loose bodles. Archıvum Mechanıki Stosowanel. Vol 8, pp 393-411.

LITWINISZYN, J. (1957) Fundamental properties of the mechanlcs of stochastic media. Proc. 3rd Congr. Theor. \& Appl. Mech. Bangalore, pp 93-110.

LO, K.Y. (1970) The operational strength of fissured clays. Geotechnique, Vol 20, No. l, pp 57-74.

MARSLAND, A. and LOUDON, A.G. (1963) The flow properties and yield gradients of bentonite grouts in sands and capıllaries. Proc. Symp. Grouts and drilling muds in Fing. practice. 3, Iondon, Butterworth, pp. 15-21.

MARSLAND, A. (1971) Large in sltu tests to measure the properties of stıff fissured clays. Proc. Ist Australıa-NewZealand Conf. on Geomech. Melbourne, Vol 1, pp 180-189.

MARSLAND, A. (1972) Clays subjected to 1 n sltu plate tests. Ground Fngineering, Vol 5, No. 6, Nov. 1972, pp 24-26, 29-31.

MARSLAND, A. (1973) Laboratory and in situ measurements of the deformation moduli of London clay. B.R.S. current paper CP 24/73, England.

MARSHALL, G.J. and BERRI, D.S. (1966) Calculation of the stress around an advancing longwall face in viscoelastic ground. Proc. lst Cong. Int. Soc. Rock Mech. Vol II, pp 379-384.

MEYERHOFF, G.G. (1972) Stabılıty of slurry trench cuts in saturated clay. Proc. spectalty Conf. on performance of Earth and Earth supported structures. Vol 1, Part 2, pp 1451-1466.

MORETYO, O. (1969) State of stress at rest in preconsoludated clays. Proc. 7th Int. Conf. Soil Mech. \& Found. Eng. Main session 4, pp 357-359.

MORGENSTERN, N.R. (1963) Discussion. Proc. Symp. Grouts and drallıng muds In Fngineering practice. London, Butterworth, pp 233.

MUIR WOOD, A.M. (1969, 1971) see HANNA, T.H. (1973).

MUIR WOOD, A.M. (1970) Soft ground tunnelling. Proc. TUNCON 70, Johannesburg, Vol 1, pp. 167-174.

MYRIANTHIS, M.L. (1973) The effect of fissures on the shear strength of blue London clay. Bull. Geological Soc. of Greece. Vol X,No. 2 pp 97-107.

MYRIANTHIS, M.L. (1974a) Quelques relations phenomenologiques sur le tassement d'un terrain de falble reslstance surmontant un tunnel. Annales de l'ITBTP. Serl sols et fondation No 317, pp 117-128.

MYRIANTHIS, M.L. (1974b) The development of surface substdence profiles during soft ground tunnelling. Proc. Znd Int. Cong. of Eng. Geology. Sao Paulo, Brazıl, Vol 2, Theme VII No. 4.

MYRIANTHIS. M.L. (1974c) Analysis of the ground deformations assoclated with the excavation of a deep trench supported by bentonite slurry. (ın Greek) Technica Chronıca. 571, No. 1, pp 71-82.

NADAI see SAVIN, G.N. (1961).

NASH, J.K.T.I. and JOlVES, G.K. (1363) The support of trenches using fluid mud. Proc. of the Symp. on Grouts and Dr \perp ling Muds In Ingıneerıng Practice. London, Butterworth, pp 177-180.

OBERT, L. and DUVALL, W.I. (1967) Rock Mechanlcs and the design of structures in Rock. John Wılley, 1959, New York. pp 162-169.

PASCALL, D. (1970) Extrusion testing of clays applied to soft ground tunnelling. M.Sc. Fing. Geol. Adv.Course Dissertation, Univ. of Durham, England.

PIASKOWSKI, A. and KOWALEWSKI, Z. (1965) Application of thixotropic clay suspensions for stabılıty of vertical sides of deep trenches wathout strutting. Proc. 6th Int. Conf. Soll Mech. and Found. Fing. Vol 2 and 3, Montreal, Canada, 1965.

PECK, R.B. (1942) Earth pressure measurements in open cuts, Chicago, Illınols Subway. Proc. ASCE, 1942, Vol 68, No. 6, pp 900-928.

PECK, R.B. HANSON, W.E. and THORNBURN, T.H. (1947) Foundation Engineering, John Wıley, 13th Edıtion, 410 pages.

PECK, R.B., DEERE, D.U., MONSEES, J.E., PARKER, H.W. and SCHMIDT, B. (1969)
Some design considerations in the solution of underground support systems. Final Report for the U.S. Dept. of Transportatıon, Washıngton, D.C. Contract No. 3-0152.

PECK, R.B. (1969) Deep excavations and tunnellıng in soft ground.
of the Art Volume, 7 th Int. Conf. Soll Mech. and Found.
Mexico City, pp. 225-290.

PECK, R.B., HENDRJN, A.J. Jr. and MOHRAZ, B. (1972) State of the art of soft ground tunnelling. Proc. 2nd North American Rapud Excavation and Tunnelling conf. Chicago, Illinois, Vol i, Chapter 19, pp 259-286.

PRATER, E.G. (1973) Die Gewolbewarkung der Schlıtzwande. Der Bauıngenıeur, 48, pp 125-131, Springer-Verlag.

PJLLER, M.J. (1974) Slurry trench stabılıty - theoretical and practical aspects. Ground Engıneerıng, Sept. 1974, Vol. 7, No. 5, рр 34-36.

RANKILOR, P.R. (1970) An approach to the smulation of mining subsidence phenomena in an elastic layered model. Quart. Jl. Eng. Geol., Vol 3, pp 55-63.

RENAU, F. (1972) see PULLER, M.J. (1974).

SADLEIR, N.A. and DOMINIONI, G.C. (1963) Underground structural concrete walls. Proc. Symp. on Grouts and Drilling muds, in Engineering Practice. Vol 25, London, Butterworth, pp 189-193.

SALAMON, M. (1963, 64) Elastic analysis of displacements and stresses by mining seam on reef deposits. Jnl. South African Inst. Min. and Metal. Part 1, vol 64, Nov. 1963, pp 128-149, Part 2, Vol 64, Jan. 1964 pp 197-218, Part 3, Vol 64, Mar.1964, pp 468-500, Part 4, Vol 65, Dec. 1964, pp 319-341.

SCHMIDT, B. (1969) Settlements and ground movements assoclated with tunnelling in soil. Ph.D. thesis, Univ. of Illinols, Urbana, Illınois, U.S.A.

SCHNEEBELI, G. (1964) Ia stabılıte des tranchees profondes forees en presence de boue. La Houzlle Blanche, No. 7, pp 815-820.

SCHOFIELD, A.N. and WROTH, C.P. (1968) Critical state soil mechanics. McGraw-H2ll, New York, U.S.A.

SHIRAISHI, S. (1968/69) Recent major shield driven tunnels through soft ground in Japan. Soils and Foundations. Vol 9(3), p. 16.

SKEMPTON, A.W. and HENKEL, D.J. (1957) Tests on London clay from deep borings at Paddington, Viccoria and the South Bank. Proc. 4th Int. Conf. Soll Mech. and Found. Eng., Vol 1a, No. 25, pp 100-106.

SKEMPTON, A.W. (1961) Horizontal stresses an overconsolidated Eocene clay. Proc. 5th Int. Conf. Soll Mech. \& Found. Eng., Paris, Vol 1, pp 351-357.

SKEMPION, A.W., SCHUSTER, R.I. and PETILEX, D.J. (1969) Jounts and fissures In the London clay at Wraysbury and Edgeware. Geotechnıque, Vol. 19, No. 2, pp 205-217.

SOM, N.N. (1968) The effect of stress path on the deformation and consolıdation of London clay. Unpublished Ph.D. thesis, Unıversity London, England.

SWEEP, A.L. (1965) Valıdıty of stochastıc model for predicting subsidence. Jl. Fing. Mech. Dıv., Proc. ASCE, Vol 91, No. EM6, proc. paper 4573, pp 111-128.

SWEFT, A.L. and BOGDANOFF, J.L. (1965) Stochastic model for preducting subsidence. Jl. Eng. Mech. Div., Proc. ASCE, Vol 91, No. EM2, Proc. paper 4292, pp 22-45.

SZECHY, K. (1967) The Art of Tunnelling. Publ. Akademial Klado, Budapest.

SZECHY, K. (1970) Surface settlements due to the shield tunnelling method in cohesionless solls. Conf. on Subway Construction, Budapest, 1970, pp 615-625.

TCHALENKO, J.S. (1968) The microstructure of London clay. Q. Jl. Fing. Geol., Vol I, pp 155-168.

TERZAGHI, K. (1941) General wedge theory of Earth pressure. Trans. ASCE, pp 68-97.

TERZAGHI, K. (1943) Theoretıcal Soıl Mechanıcs. John Wıley \& Sons, New York,
TERZAGHI, K. (1946) Introduction to tunnel geology. In R.V. PROCTOR and T.L. WHITF (1968) Rock tunnelling with steel supports. Youngstown printing co., U.S.A., 292 pages.

TERZAGHI, K. and RICHART, F.E. (1952) Stresses \ln rock above cavities, Geotechnique, Vol 3, 2, p. 57.

TERZAGHI, K. and PECK, R.B. (1967) Soıl Mechanıcs In Engıneerıng Practice, Wiley Int., Znd Edıtıon, 729 pages.

TREFELHEN, J.M. (1960) Geology for Engineers, Van Nostrand Co., London, page 405

TSCHEBOTARIOFF, G.P. (1949) Large scale earth pressure tests with model flexible bulkheads. Final report Bureau of Yards and Docks, U.S. Navy, Prıncetom University, January 1949, 272 pp.

TSCHEBOTARIOFF, G.P. (1951) Soll Mechanıcs, Foundation and Earth Structures, Mc-Graw Hıll, New York, 655 pp.

TSCHEBOTARIOFF, G.P. (1973) Foundations, Retaining and Earth Structures, Mc-Graw Hzll, New York.

VEDER, C. (1963) Excavation of trenches an the presence of bentonite suspensions for the construction of impermeable and loadbearing duaphragms. Proc. Symp. on Grouts and Drilling Muds In Engineering Practice. Vol. 24, Iondon, Butterworth, 181 pp .

VOIGHT, B. and PARISEAU, W. (1970) State of predictive art in subsidence Fingineering, Jl. Soil Mech. Found. Div., Proc. ASCE, Vol.96, No. SM2, pp 721-750.

WARD, W.H. (1970) Yielding of the ground and the structural behaviour of linings of different flexibility in a tunnel in London Clay. B.R.S. Current Report CP: 34/70, England.

WARD, W.H., SAMUELS, S.G. and BUTILER, E. (1959) Further studies of the properties of the London Clay. Geotechnıque, Vol 9, No.2.

WARD, W.H. and THOMAS, H.S.H. (1965) The development of earth loading and deformation in tunnel linings in London Clay. Proc. 6th Int. Conf. Soıl Mech. Found. Fing., Montreal, Vol 2, pp 432-436.

WARD, W.H., MARSLAND, A. and SAMUELS, S.G. (1965) Propertles of the London Clay at Ashford common shaft, in situ and undrained tests. Geotechnıque, Vol 15, No. 4, pp 321-344.

$$
133
$$

TABLES

Below Records for the tunnel advance and the dimensionless ratio s max f for

TABLE NR1 $\frac{\text { six case sty }}{\text { tunnelingg. }}$

NUMEEA	CASE	REEERENCE	OEPTH TO TUNNEL Axis (m)	$\begin{aligned} & \text { DIAMETER } \\ & 2 R\left(\mathrm{~m}^{\prime}\right) \end{aligned}$	212 R	$\begin{array}{\|l\|} \hline \text { ULTimum } \\ S \text { max } / R \\ x 10^{-3} \end{array}$	SOIL CONDITIONS
2	NAGOYA UTILITY TUNNEL(DOAT $\text { -same }-A!$ (point B)			410 do		2585 2341	SHTV 5AND mBOVE Tme Ground water level $-N=10-40 \quad-10----$
3	SAN francisco BART MARKET SIR	$\begin{aligned} & \text { R Q PECKS } \\ & \text { FILES } \\ & 1968 \end{aligned}$	1730	525	330	2061	SILTY CLAY WITH SANDY LENSES
4	tokyo HANEDA 1968	$\begin{aligned} & \text { B SCHMIDT } \\ & 1969 \end{aligned}$	1029-1135	6.60	$\left[\left.\begin{array}{l} 156-172 \\ (\sqrt{164}) \end{array} \right\rvert\,\right.$	3454	SAND BELOW THE GROUND water level
5	tyneside TUNNEL UK 1973	Pa ATtEWELL 1973	730	202	365	762	laminated Clay
6	IUNNEL I LONDON CLAY '972	ATTE WE LI $\&$ FARHER (I972)	2930	414	710	288	OVERCONSOLIOATEO Stiff fissured clay

table vr 2

TUNNEL advance (m)	$\begin{gathered} s_{\max } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & S_{\text {max }} 1 R \\ & \times 10^{-3} \end{aligned}$	TUNNEL advance (m)	$\begin{aligned} & s_{\text {max }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & S_{\max 1 R} \\ & \times 10^{-3} \end{aligned}$	TUNAEL advance (m)	$\begin{gathered} \mathrm{S}_{\mathrm{nox}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & S_{\text {max }}{ }^{R} \\ & \times 10^{-3} \end{aligned}$		
CASE NR 1			12 24 39	225 405 463 540	858 1545 1774 2061	$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$	$\begin{aligned} & 620 \\ & 700 \\ & 770 \end{aligned}$	$\begin{aligned} & 513 \\ & 693 \\ & 762 \end{aligned}$		
-3	$\begin{aligned} & 50 \\ & 200 \end{aligned}$	243 975								
1										
5	375	$\begin{aligned} & 1829 \\ & 2009 \end{aligned}$								
8	$\begin{aligned} & 112 \\ & 500 \\ & 530 \end{aligned}$					CASE	Ni 6			
11		$\begin{aligned} & 2439 \\ & 2585 \end{aligned}$	CASE	NR 4		-20-10	05	024		
34			0	8	242			$\begin{aligned} & 068 \\ & 137 \end{aligned}$		
			75	32	969	$\begin{array}{r} -10 \\ 0 \end{array}$	142			
CASE	NR 2		100	$\begin{gathered} 48 \\ 74 \end{gathered}$	$\begin{aligned} & 1454 \\ & 2242 \end{aligned}$	10	442			
-6	265	129	125			2036	$\begin{aligned} & 507 \\ & 600 \end{aligned}$	$\begin{aligned} & 244 \\ & 289 \end{aligned}$		
-2	530	260	150	90	2727					
2	1000	$\triangle 87$	210	$\begin{aligned} & 106 \\ & 114 \end{aligned}$	$\begin{aligned} & 3212 \\ & 3454 \end{aligned}$	36				
14	3650	1785	330			The minus sign in tunnel advance means that the tunnel approoching				
18	4450	2175								
30	4800	2341	CASE NR 5							
			-5	110						
CASE UR 3			- 2	165	163					
-5	75	286	0	290	287					

Poisson's ratio measurement during triaxial undrained tests on 38 mm diameter samples, collected in two main directions, parallel and normal to stratification.

Deviator stress	Prancipal stress	Principal stress ratio	Polsson's ratio	strain
$\sigma_{1}-\sigma_{3}$	σ_{1}	σ_{3} / σ_{1}	r	ε
$\mathrm{kN} / \mathrm{m}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	-	-	\%

a) $\sigma_{3}=490 \mathrm{kN} / \mathrm{m}^{2}$ sample orıentation vertical

0.0	490	1	0.500	0.0
26	516	0.94	0.499	0.13
50	540	0.90	0.498	0.26
-	-	-	0.498	0.39
74	564	0.86	0.497	0.52
89	579	0.84	0.496	0.65
170	660	0.74	0.493	1.18
260	750	0.65	0.490	1.70
333	823	0.59	0.486	2.23
400	890	0.55	0.486	2.75
448	938	0.52	0.488	3.28
484	974	0.50	0.492	3.80
506	996	0.49	0.496	4.33
499	989	0.49	0.502	4.85

b) $\quad \sigma_{3}=650 \mathrm{kN} / \mathrm{m}^{2}$ sample orientation vertical

0.0	650	1	0.500	0.0
78	728	0.89	0.499	0.13
106	756	0.85	0.498	0.26
128	778	0.83	0.498	0.39
-	778	-	0.497	0.52
-	778	-	0.496	0.65
196	846	0.76	0.493	1.18
251	901	0.72	0.490	1.70

306	956	0.67	0.487	2.23
357	1007	0.64	0.484	2.75
391	1041	0.62	0.482	3.28
421	1071	0.60	0.481	3.80
433	1083	0.60	0.481	4.33
451	1101	0.59	0.480	4.85
463	1113	0.58	0.479	5.38
475	1125	0.57	0.478	5.90
488	1138	0.57	0.478	6.95
497	1147	0.56	0.475	8.00
497	1147	0.56	0.475	9.05
499	1149	0.56	0.473	10.1

c) $\quad \sigma_{3}=700 \mathrm{kN} / \mathrm{m}^{2}$ sample orientation : vertical

0.0	700	1	0.500	0.0
13	713	0.98	0.499	0.13
17	717	0.97	0.498	0.26
26	726	0.96	0.498	0.39
47	747	0.93	0.497	0.52
60	760	0.92	0.495	0.65
168	868	0.80	0.491	1.18
249	949	0.73	0.486	1.70
318	1018	0.68	0.481	2.23
387	1087	0.64	0.475	2.75
431	1131	0.61	0.470	3.28
446	1146	0.61	0.464	3.80
479	1179	0.59	0.462	4.33
489	1189	0.58	0.459	4.85
488	1188	0.58	0.457	5.38

d) $\quad \sigma_{3}=780 \mathrm{kN} / \mathrm{m}^{2}$ sample orientation vertical.

0.0	780	1	0.500	0.0
56	836	0.93	0.499	0.13
91	871	0.89	0.498	0.26
130	910	0.85	0.498	0.39
163	943	0.82	0.498	0.52
184	964	0.80	0.497	0.65
291	1071	0.72	0.497	1.18
378	1158	0.67	0.496	1.70
440	1220	0.63	0.495	2.23
496	1276	0.61	0.494	2.75
537	1317	0.59	0.494	3.28
568	1348	0.57	0.493	3.80
596	1376	0.56	0.492	4.33
614	1394	0.55	0.492	4.85
623	1403	0.55	0.490	5.38
634	1414	0.55	0.493	5.90
641	1421	0.54	0.496	6.95

e) $\quad \sigma_{3}=400 \mathrm{kN} / \mathrm{m}^{2}$ sample orlentation horizontal.

0.0	400	1	0.498	0.0
72	472	0.84	0.497	0.13
89	489	0.81	0.497	0.26
113	513	0.77	0.496	0.39
145	545	0.73	0.495	0.52
182	582	0.68	0.495	0.65
307	707	0.56	0.492	1.18
426	826	0.48	0.489	1.70
541	941	0.42	0.487	2.23
651	1051	0.38	0.484	2.75
743	1143	0.34	0.482	3.28
804	1204	0.33	0.479	3.80
825	1225	0.32	0.482	4.33

f) $\quad \sigma_{3}=440 \mathrm{kN} / \mathrm{m}^{2}$ sample orientation horizontal.

0.0	440	1	0.500	0.0
67	507	0.86	0.499	0.13
69	509	0.86	0.498	0.26
89	529	0.83	0.498	0.39
119	559	0.78	0.497	0.52
143	583	0.75	0.497	0.65
250	690	0.63	0.494	1.18
372	812	0.54	0.493	1.70
494	934	0.47	0.491	2.23
598	1038	0.42	0.490	2.75
679	1119	0.39	0.489	3.28
760	1200	0.36	0.487	3.80
823	1263	0.34	0.486	4.33
870	1310	0.33	0.485	4.85
905	1345	0.32	0.481	5.38
922	1362	0.32	0.483	5.90
898	1338	0.32	0.480	$6.95-$
811	1251	0.35	0.481	8.00

g) $\quad \sigma_{3}=620 \mathrm{kN} / \mathrm{m}^{2}$ sample orientation horizontal

0.0	620	1	0.500	0.0
72	692	0.89	0.499	0.13
104	724	0.85	0.498	0.26
135	755	0.82	0.498	0.39
156	776	0.79	0.497	0.52
180	800	0.77	0.497	0.65
281	901	0.68	0.495	1.18
380	1000	0.62	0.493	1.70
477	1097	0.56	0.491	2.23
564	1184	0.52	0.489	2.75
626	1246	0.49	0.487	3.28
682	1302	0.47	0.485	3.80
715	1335	0.46	0.483	4.33
729	1349	0.45	0.481	4.85

735	1355	0.45	0.479	5.38
731	1351	0.45	0.477	5.90

h) $\quad \sigma_{3}=760 \mathrm{kN} / \mathrm{m}^{2}$

0.0	760	1	0.500	0.0
6	766	0.99	0.498	0.13
26	786	0.96	0.498	0.26
65	825	0.92	0.497	0.39
87	847	0.89	0.496	0.52
128	888	0.85	0.495	0.65
255	1015	0.74	0.493	1.18
363	1123	0.67	0.488	1.70
464	1224	0.62	0.483	2.23
593	1353	0.56	0.479	2.75
635	1395	0.54	0.474	3.28
713	1473	0.51	0.471	3.80
764	1524	0.49	0.462	4.33
780	1540	0.49	0.459	4.85
833	1593	0.47	0.453	5.38
813	1573	0.48	0.447	5.90

Calculation of strain energy release and vertical ground
displacement due to tunnelling, according to relationships proposed by JAEGER and COOK (1969).

Distance from Tunncl centre	Young's Modulus	Strain energy			Vertical Dısplacement
$\mathrm{R} / \mathrm{R}_{0}$	E^{*}	w_{1}	W_{2}	$\mathrm{W}_{2}-\mathrm{W}_{1}$	U
	$\times 10^{2} \mathrm{kN} / \mathrm{m}^{2}$	$\times 10^{5} \mathrm{kN}$			mm
2	280	2.14	30.38	28.24	38.0
3	262	5.19	24.91	19.72	21.1
4	243	8.79	25.62	16.83	14.8
5	224	12.53	27.24	14.71	11.3
6	205	16.10	28.69	12.79	9.1
7	187	18.98	29.91	10.93	7.5
8	168	21.04	30.22	9.18	6.3
9	149	21.86	29.34	7.48	5.4
10	131	21.00	26.73	5.73	4.5
11	112	18.55	22.77	4.22	3.8
12	93	14.32	17.06	2.74	3.1
13	75	8.45	9.81	1.36	2.2
14	51	2.64	3.02	0.38	1.3

Where the strain energy before tunnelling (W_{1}) the strain energy after tunnelling and the vertical displacement of the soil (U) are given by equation

$$
\begin{aligned}
& W_{1}=\frac{\pi(1+V)(1-2 V)}{E} \sigma_{v}^{2}\left(R^{2}-R_{0}^{2}\right) \\
& W_{2}=\frac{\pi(1+V) \sigma_{v}^{2}\left[(1-2 V) R^{4}+R_{0}^{2} R_{0}^{2}\right]}{E\left(R^{2}-R_{0}^{2}\right)} \\
& U_{R}=\frac{2(1+V)(1-V) \sigma_{v} R_{0}^{2} R}{\left(R^{2}-R_{0}^{2}\right) E}
\end{aligned}
$$

note that $R=0.48$ and $R_{0}=2.035 \mathrm{~m}$ (tunnel raduus)
${ }^{*} E$ (Young's modulus) has been taken from MARSLAND (1973)

TABLE 9.7.1

Calculation of the earth pressure acting behımd the diaphragm wall (see Chapter 9) and the ground deformation in borehole BH 1 according to the elastic theory approach (MEYERAOF, 1972) and the semi-empirical approach (FARMER and ATTHENELL, 1973 and MYRIANTHIS, 1974c).

Depth z in metres	Earth pressure $\mathrm{kN} / \mathrm{m}^{2}$		Ground deformation, mm	
	Elastic Theory approach	Semi-empirical approach	Elastic theory approach	Semı-empırıcal approach
1	22	20	0.22	4.66
2	58	40	0.58	8.65
3	104	60	1.03	12.00
4	156	80	1.53	14.66
5	210	70	2.07	11.66
6	264	60	2.60	9.00
7	316	50	3.11	6.66
8	364	40	3.59	4.66
9	408	30	4.02	3.00
10	446	20	4.40	1.66
11	478	10	4.71	0.66
12	504	0	4.97	0.0
13	525	-10	5.18	-0.33
14	543	-20	5.35	-0.33
15	555	-30	5.47	0.0

where
$B=0.8 \mathrm{~m}$
$\gamma=2 \mathrm{Mg} / \mathrm{m}^{3}$
$\gamma_{p}=1 \mathrm{Mg} / \mathrm{m}^{3}$
$\mathrm{H}=15 \mathrm{~m}$
$V=0.48$ (see Chapter 5)
$\mathrm{E}=60 \mathrm{NN} / \mathrm{m}^{2}$ (after MARSLAND, 1971)
$\mathrm{K}_{\mathrm{o}}=$ values taken from COIE and BURIAND, 1972.

FIGURES

FIG 121 Relationship between the extent of a plastic zone around a tunnel (R), and the OFS, for various tunnel radil (R_{0})

FIG 122 Relationship between $2 / 2 R$ and OFS

FIG 123 Relationship between the coefficients (F), and the friction angle based on effective stresses (φ^{\prime})

FIG 131 Ground loss assucialed with tunnelling in cloy Aiter, SCHMDT (1969)

PIG. I.f.2. Auove: 0 no rf congtant etrain-rite eytrusion

je lowi Rolnt, cinhing betmeln ectrusion rete
and ctebilits-t.0.

Constant stress

Removal of stress

FIG. I.6.I. Characteristıcs of rheolofical models.
Above a Kelvin material, after OBERT and DUVALL
(I967). Below: a modified Kelvin material.

FIG 231 Transverse settlement profile
A SZECHY'S, (1970) model
B Actual semi-profile

Centre line settlement profile
A SZÉCHY'S, (1970) model
B Estımated actual profile
FIG 232

Fig. 2.3.3. Linear (left) and Harmonic (rıght) settlement transverse profile

Fig．2．3．4．Characterıstıcs of settlement semı－profılē
レNヨWヨาL1ヨS WกWIXVW ๐

FIG. 2.5.3. Relationship between $Z / 2 R$ and $s_{\text {max }} / R$ for tunnels in saturated plastic clay and granular soll.

FIG. 2.5.2. Relationship between $Z / 2 R$ and $s_{\max } / R$
for tunnels in staff plastic clay.

FIG. 2.5.4. Relationship between the excavated volume of soil ($V_{\text {exc }}$) and the volume included within the surface settlement trough, for tunnels in stiff plastıc clay.

of ground (k)

FIG. 2.6.1 a. (above) Transverse surface settlement ploîlle of the 4 m diameter tunncl 30 m deep in London clay.
b. (below) Relationship between the $s_{\text {max }} / R$ dimensionless ratio and the tunnel advance.

FIG. 2.62

The development of the surface settlement transverse profile as a function of tunnel advance.

FIG 322 Above Longitudinal view of borehole arrangement (Not to scale)
Below Location of boreholes and survey stations (Scale 1 200)

survey stations

Fig. 3 J. 1 三 Design cí survej slaticne.

FIG. 3.3.2. Scaled layout (cross-section) of the boreholes and incl-nometer access tubes with the exact position of eacn magnecic ring as initially located on each tube.

$$
\begin{aligned}
& \text { Vertical settlement profile development in the vertical } \\
& \text { plane passing through the tunnel center line and at } \\
& \text { different depths in boreholes Y1, Y2, Y3 } \\
& \text { After. ATTEWEL and FARMER (1972) }
\end{aligned}
$$

[^17]
for different subsurface
and FARMER（1972）
along

profiles

ャてャ

PIC. 4.2.5. Normalised settlement development curves. After,
ATTEFELL and PARLER (I972)

\bullet
\sim
\sim
\sim
\sim

FIG. 4.3.1. Horızontal displacement profıles. Boreholes X1, Y1, Z1. After ATMIEWELL and FARMER (1972).

FIG 441 Ground-loss areas around a shield-driven tunnel FIG442 (Below) Record of tunnel progress

FIG 444 (Above) The maximum rate of serteement as a function of depth for boreholes X1, Y1, Z1
FIG 445 (Below) Schematic concept (qualitative) of ground movement ahead of a tunnell shield After, BARTLETT and BUBBERS, (1970)

Horizontal distance, metres.
FTG. 4.4.9. Ground deformation at raght angles to the tunnel axis. The left hand sude illustrales the scaled layout of boreholes with the exact position of magnetic rıngs. Right hand side shows the state of ground disturbance when the face $1 s 5$ to 10 metres behind the cross-section.

Horizontal distance, metres.
FIGe 4.4-10. Ground deformation at right angles to the tunnel axis. Tunnel face at the cross-section (left hand side) and 10 metres ahcad of the cross-section (right hand side).

FIG.4.4.11. Ground deformation at right angles to the tunrel axis. Tunnel face 20 metres ahead of the cross-section (right hand slde) and 30 metres ahead of the cross-section(left hand side).

FIG. 5.4.1. Stress-strain relationships for 38 mm diameter specimens subject to undrained triaxial tests. Deviator stress applied parallel to the bedding.

FIG. 5.4.2. Stress-strain relationshıps for 38 mm diameter specimens (London clay) subject to undramed triaxial tests. Deviator stress applied normal to the bedding.

SAMPIE LONDON CLAY
OVERSURDEN PRESSURE 68こ $\mathrm{kN} / \mathrm{m}^{7}$
ORIENTATION IN RESPECT OF
GROUND SURFACE HORIZONTAL

FIG. 5.4.3. Results for undrained triaxial tests on 38 mm diameter specimens (London clay). Above deviator stress applied parallel to the bedding, below normal to $1 t$.

FIG. 5.4.4. Relationship between the principal stress ratio σ_{3} / σ_{1} and the strain for 38 mm diameter specimens of London clay subjected to UU triaxial tests.

FIG. 5.5.1. Vasucion of Polsson's ratio with vertical
and "Crizornal staan, during JU triaxial tests cn 3 Ômm ozameter sper unens of Loucion cla;-

FIG. 5.5.2. Variation of Poisson's ratio with the principal stress ratio σ_{3} / σ_{1} durıng UU triaxial tests on 38 mm diameter specımens of London clay.

FIG 5.61 (Above) Stress-stiain relationships for $\overline{U U}$ triaxial tests on 98 mm dzareter specimen of London clay.
FIG. 562 (Below) Effective stress paths for $\overline{U U}$ tilaczal test on 98mm diameter speczuen (London clay) Initial effective stress 15 equal to $600 \mathrm{kN} / \mathrm{m}^{2}$.

FIG. 5.6.3. Relatこonship between the volume change and the square root for a 38 mm dameter sample of London clay during consolidation under an allaround pressure (radial and end drainage).

FIG. 5.6.4. Stress-strann relatnonshnps rol CU traaxial tests on
38 mm diameter specimens of Londor clay.
FIG. 5.6.5. Results from $\overline{C U}$ triaxial tests on 38 mm dameter specimens of London clay.
Above $p^{\prime}\left[^{-} q^{\prime}{ }_{f}\right.$ diagram Below Monr circle representation.

FIG. 5.6.6. Stress-strain relationships for $\overline{\mathrm{CU}}$ triaxial tests on 38 mm dianeter specimens of London clay. Depth of sampling was 22.5 m . Each tost was carried out under different nominal rate of strain.

 ratios around the 4 m dameter cunnel 30m deep in London clay. Analyses with Skempton's K function witn depth and assuming condition of plane strain (Based on data supplied by Gowland, 1974, prıvate communication).

FIG. 6.2.1. Polynomial fitted to Skempron
varlation of K with aepth $1 n$ Iondon clay. After Gowland's 1974, private cominunzcatzon.

- Stress $\longrightarrow \times 10^{2} \mathrm{kN} / \mathrm{m}^{2}$

FIG. 6.2.3. Radıal and tangential stresses around the 4 m diameter tunnel 30 m deep in London clay. Stresses are calculated from elastic and plastic analyses under the assumption of plane strain conditions.
ress $\longrightarrow \times 10^{2} \mathrm{kN} / \mathrm{m}^{2}$

FIG. 6.3.2. The maximun sertlement as a function
 the actual values.

IG. 6.4.1. (Above) Measured radial displacement as a function of polar coordinate angle for the 4 m dianeter tunnel 30 m deep in London clay.
IG. 6.4.2. (Below) Calculated radial displacement as a function of distance from the tunnel centre taking the polar co-ordinate angle as the main parameter.

FIG. 6.4.3. Comparison between the actual (after ATTEWELL and FARMER, 1972) and the theoretically predicted radial displacement around the 4 m dameter tunnel 30 m deep in London clay, for different polar co-ordinate angles

FIG. 7.2.1. Hypothetical stress paths for an element of clay at tunnel soffit and at tunnel axis level. Tresca's lines are defined according to laboratory test results from UU triaxial tests on specimens taken from tunnel axis level in two main directions, parallel and vertical to stratification.

[^18]
Creation of the
opening（shield＇s
face at the
cross－section ）
Undisturbed ground
set－up
＂
Installation

lining

FIG 811 Some grout properties atter CARON (1973)

FIG 8120
Stability factors of a slurry trench as function of Its geometry After, MEYERHOF (1972)
stabiuty factors for REGTANTULAR CUTS in clay

FIG 812 b Horizontal and vertical arching behind flexible
retaining structures After TSCHE BOTARIOFF (1951)

FIG 823 Stability analysis of a three-dimensional Coulomb wedge

FIG 824
Relationship between
the length/depth
ratio, and the
angle θ
(atter PRATER, 1973)

FIG. 9.2.1. Site plan (after ATTEWELL and FARMER, 1972) geology and soil properties as determined by laboratory tests.

FIG. 9.3.I. Support and excavation
System, after
"G ROUND SNGINEERING",
$(I 97 T)$.

layout.

Boreholes

FIG 941

(
PIG. 9.5.4. Evolution of lateral deflection profiles at various
times. After, PARIuR and ATTEWETL, (I973)

FIG 955 Two dimensional vector representation
of ground movements in borchole BH1

TIC. 2.5.7. Hypothetical hape of the e round affected zone.

ᄀIG. J.u.I. Resultant prensure cietilbition in tae evcavation
s+cewall. After, FAR'AR and 4mis Tr, (I)73)

APPENDICES

$$
(1,2,3 \& 4)
$$

PROTODYAKONOV'S DE-COUPLED ARCH

The arching theory developed by PROTODYAKONOV(see SZECHY, 1967) as based on the determination of the natural arching geometry development above a tunnel, neglecting the effect of depth. The stability of such an arch is established when the stresses along the arch are purely compressive and are not associated with bending. Figure A.1.1. illustrates the geometry and the forces acting upon the arch.

SZECHY (1970) presented a detalled analysis from which the calculation of the surface settlements due to shield tunnelling in cohesionless solls was possıble. The domınant assumption in the analysis was the equivalence between the volume of the settlement profile and the sum of the volume of material entering at the face, the volume of annular void behind the lining created by the tailskin and the volume resulting from the vold created by the material compression within a PROTODYAKONOV de-coupled arch. However, as the shield is advanced and the primary lining is built within the tailskin, there is a loosening of the soil mass as it collapses to fill the vold around the lining as the shield moves forward. Very early injection with grout or pea gravel when shoving of the last ring of segments will reduce this value of vold thickness, say u_{0}, by some factor• λ The maxımum thickness of the annular vold wall be due to the thickness of the shield bead plus any slackness between the inner surface of the skin and the lining extrados.

Let the double shield skin thickness be 2δ, and the slackness be Δ. Then $u_{0}=2 \delta+\Delta$, or taking into account the vold reduction factor λ,

$$
\begin{equation*}
u_{0}=\lambda(2 \delta+\Delta) \tag{A.7.1.}
\end{equation*}
$$

Area of the parabola : $\frac{2}{3} B^{h}$ Load per unit area $: \frac{1}{3} \frac{\gamma B^{2}}{\tan \varphi}$

FIG. A 11
Development of
Protodyakonov's theory of roof arching.

This vold wıll cause loosening of the soll mass above the tunnel crown and arching effects wall develop up to a limıting horizon. The whole transverse profile and settlement geometry due to the pressure arch generation is shown in Figure A.1.2.

The geometric elements of the arch connected wath the geometry of the transverse profile are as follows
arch wldth

$$
\ldots . .(A .1 .2 .)
$$

arch helght

$$
\begin{aligned}
& B=2 R(\operatorname{cosec} B+\cot B) \\
& h=\frac{2 R(\operatorname{cosec} B+\cot B)}{2 \tan \phi}
\end{aligned}
$$

$$
\ldots(A .1 .3 .)
$$

or, $h=$ arch width for a cohesionless material.

It as possible to calculate the compressive settlement of the detached parabola of soll due to its graviational pressure. The average pressure acting vertically downwards through gravitational self-welght equals $\boldsymbol{d}^{\mathrm{h}} / 2$. The average strain in the soll is
$\frac{\text { decrease in heaght }}{\text { original helght }}=\frac{{ }^{1}}{h} \cdot$
Therefore, $u_{1}=\frac{Y_{h}{ }^{2}}{2 E}$
where,
Y is the soll density which is taken as beang indeperident of depth
u_{1} is the de-coupled displacement at the crown of the parabola
E Is the deformation modulus.
Combining the equations,

$$
u_{I}=\frac{Y_{R^{2}}(\operatorname{cosec} B+\cot B)^{2}}{2 E \tan ^{2} \varnothing}
$$

Thus, u_{1} defines the boundary of the rupture zone, that $1 s$, the boundary delimiting those shear stresses which exceed the shear strength of the mass.

FIG A 12
Transverse profile and subsidence due to pressure arch generation above a cavity

- (after K SZÉCHY, 1970)

Beyond this parabolic area, the deformations result from shear stresses that are less than the shear strength of the mass. SZECHY, op cat suggests that for a cohesionless material, the deformation zone above the de-coupled arch will be de-lımited by the surface rising at an angle \varnothing degrees from the horizontal. The argument is that the intersection of these surfaces with the ground surface fixes the full extent of the subsidence trough. But It must be appreciated that this form of analysis is rather specific with respect to the partıcular geology associated with the Metro construction in Bunapest.

APPENDIX 2

RELATIONSHIP BETWEFN THE SHEAR STRENGTH AND DEPTH OF A SOIL WITH A LINEAR

 MOHR ENVELOPEFor a soil with a Innear Mohr envelope, shear strength increases linearly with depth from the ground surface. (after SZECHY, 1970).

$\sigma=\overline{\mathrm{OD}}=\overline{\mathrm{OC}}-\overline{\mathrm{DC}}=\frac{\sigma_{1}+\sigma_{2}}{2}-\frac{\sigma_{1}-\sigma_{2}}{2} \sin \phi$
.....(A.2.1.)
$\sigma=\sigma_{1}(1-\sin \phi)+\sigma_{2}(1+\sin \phi) \quad \ldots \ldots\left(A \cdot 2_{0} 2_{0}\right)$
If $\sigma_{2}=\sigma_{1} \quad \frac{1 \cdots \sin \phi}{1-\sin \phi}$
then $\sigma=\sigma_{1}(1-\sin \varnothing)$
but given that $\sigma_{1}=\gamma_{z}$
Thus, from equations 4.2.4. and 4.2.5. It follows that.

$$
\begin{equation*}
\sigma=\gamma_{z}(1-\sin \phi) \tag{A.2.6.}
\end{equation*}
$$

and finally,

$$
\begin{equation*}
x=C+\tan \phi Y_{z}(1-\operatorname{san} \phi) \tag{A.2.7.}
\end{equation*}
$$

This relationship indicates that shear strength is a linear function of depth.

CASE	NO	REFERENCE	Z	2R	Z/2R	$\Sigma_{\text {max }}$ mm .	$\begin{aligned} & s_{\max / R} \\ & \times 10^{-3} \end{aligned}$	$\begin{aligned} & V_{\text {exc }} \\ & m^{3} / m \end{aligned}$	$\begin{aligned} & V_{\text {surf }} \\ & \mathrm{m} / \mathrm{m} \end{aligned}$	v	TUNNELITNG METHOD	SOIL CONDITTONS
Fleet Inne, London (U.K.)	1	Attewell and Farmer (1972)	30.3	4.14	7.32	6.65	3.21	13.52	0.161	1.19	Hand mined shleld	
Ottawa Sewer (Canada)	2	Eden and Bozozuk (1969)	18.3	3.05	6.06	7.00	4.59	7.25	0.116	1.60	Digger-shield, Iıner scgments erected behand the shield	$\begin{aligned} & \text { Leda Clay(sensitive) } \\ & g_{u}=361 \mathrm{kN} / \mathrm{m}^{2}, \text { OFS }=15 \end{aligned}$
Ottawa Sewer (Canada)	21	Schmidt (1969)	18.3	3.05	6.06	6.35	4.16	7.30	$0 \cdot 106$	1.46	"	```Over-consolidated clay cu}=178\textrm{kN}/\mp@subsup{\textrm{m}}{}{2}\mathrm{ ,overc.ratio 2.5 14.3```
Vactorza Inne,Iondon (U.K.)	3	Bartlett and Bubbers (1970)	21.8	4-115	5.297	9.00	4.37	12.54	0.171	1.36	Hooded, hand excavation shield	Over-consolidated clay (London clay) $c_{u}=170 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{~W}=25 \%$
"	4	"	21.8	4.115	5.297	10.00	4.86	$12.54{ }^{+}$	0.190 ${ }^{+}$	1.50	"	"
"	5	"	17.0	4.115	4.131	13.00	6.32	$12.54{ }^{+}$	0.234	1.87	"	$c_{u}=145 \mathrm{kN} / \mathrm{m}^{2}$
Broadway Oakland (U.S.A)	6	Kuesel (1969)	-	5.79	3.22	25.3	8.74	-	-	-	-	very stiff molst coalse sandy clay, vory dense clayey sand
Garrison Dam Tunnel (U.S.A)	7	Burke (1957)	36.9	11.0	3.35	$1,2.6$	7.75	95.03	1.49	1.5	```Construction by full face blasting,use of ribs and lagging```	Hard clay, clav shale, $c_{11}=488 \mathrm{kN} / \mathrm{m}^{2}$
Victoria Lane,Jondon (J, K.)	8	Bartlett \& Bubbers (1970)	17.5	6.02	2.916	37.0	1229	$26.98{ }^{*}$	0.421^{+}	1.56	By hand without shield	Overconsolıdated clas (London clay) $C_{u}=145 \mathrm{kN} / \mathrm{m}^{2}$
"	9	"	17.5	6.96	2.514	37.0	10.63	$26.98{ }^{\circ}$	0.421 ${ }^{+}$	1.56	Shneld tunnel, hand exc.	"
"	10	"	17.5	6.96	2.514	50.0	14.37	$25.08{ }^{+}$	0.565	2.35	"	"
"	11	"	21.0	9.525	2.202	88.0	18.48	73.25	1.410	1.98	Shzeld hooded, hand exc	Boulder clay $c_{u}=250 \mathrm{kN} / \mathrm{m}^{2}$
Chıcago Subway D-3 (U.S.A.)	12	Peck (1969)	23.5	7.32	3.21	81.0	22.5	48.4	1.91	3.95	Hand maned horshoe, face benened rabs and liner plates.	Chıcago Glaclal clay. $c_{u}=73.4 \mathrm{kN} / \mathrm{m}^{2}$
San Francisco Bart, Market str. (U.S.A.)	13	"	18.0	5.34	337	79.3	29.7	22.0	1.795	6.20	shield breasted face	Medıum to staff clay
Victoria Lane, London ($\mathrm{U}_{\mathrm{s}} \mathrm{K}_{\bullet}$)	14	Dunton et al (1965)	15.86	3.65	$1.54{ }^{\text {x }}$	61.0	33.0	21.90	1. 16	5.50	Shield tunnel	London clay
GNNR, Seattle (U.S.A.)	15	Hussey et al (1915)	36.7	12.0	3.06	25.9	4.32	126.0	3.86	3.06	Hand mined, small urifts whth centre core,tmbered	Hard clayey tıll

CASE	NO.	RAFPRENCE	Z	$2 R$ m	Z/2R	$\mathrm{s}_{\text {max }}$	$\begin{array}{r} 5_{\max / R} \\ \times 10^{-3} \end{array}$	$\begin{aligned} & v_{\text {exc }} \\ & \mathrm{m}^{3} / \mathrm{m} \end{aligned}$	$\begin{aligned} & v_{\text {surf }} \\ & m^{3} / \mathrm{m} \end{aligned}$	v_{ℓ}	TUNNELLING MEIIIOD	SOIL CONDITIONS
Toronto Subway (Canada)	16	Peck (1969)	$\begin{aligned} & 11.3 \\ & 14.6 \end{aligned}$	5.83	$2.25 *$	93.3	32.01	22.0	0.42	1.9	Hand mined shreld	Medium to fine uniform dense sand $N=4060$ above GWL
Toronto Subalay II (Canada)	17	"	$\begin{aligned} & 11.3 \\ & 14.6 \end{aligned}$	5.66	$2.25{ }^{*}$	1100	38.9	-	-	-	"	"
San Francisco Part Mission Ianc A (U.S ^.)	18	"	12.33	5.83	2.11	13.3	4.56	22.32	0.15	0.15	Mechanical shzeld De-watering by well.,	Cemented sand, peat layer, below GWL
San Trancssco Bart Massion Lune B (U.S.A)	19	"	12.00	5.83	2.06	10.0	34	44.64	0.14	07	"	Slightly cemented fune sand
Toronto Subuay contract E-1 (Canada)	20	Schmıdt (1969)	933	566	1.65	$\begin{array}{r} 99.05 \\ 193.04 \end{array}$	$\begin{aligned} & 350 \\ & 68.2 \end{aligned}$	22.32	0.56	1.0	Shzeld, hand-mined	Dry, sand above GWL
Bruxelles Metro (Belgium)	21	Vinel and Herman (1969)	$\begin{aligned} & 121 \\ & 20.1 \end{aligned}$	9.9	1.63**	150.0*	30.3	82.0	2.41	2.9	Shzeld, hand-mined	Bruxelles sand, loose calcareous $\bar{\beta}=35^{\circ}, \bar{c}=0, e=0.71$
Tokyo, Haneda I (Japan)	22	Schmadt (1969)	10.8	66	1.64	56.0	17.0	34.3	1.15	15	Shyeld, hand-mined	sand, below GWL
$\begin{aligned} & \text { Nagoya Vtılizty } \\ & \text { Tunnel Poınt A } \\ & \text { (Japan, } \end{aligned}$	23	"	7.45	4.1	1.82	45.0	22.0	13.25	0.41	3.1	Hand-mined in rectangular shield	Dry sand
Magoya Utılıty Tunnel. Pount B (Japan)	24	"	7.45	4.1	1.82	53.0	25.8	13.25	- 0	3.8	"	"
Tokyo, Haneda IT (Jypan)	25	"	10.8*	6.6	1.64	132.0	40.0	34.3	1.56	4.5	Lland mining in shield top half of face breastec in beriches.	Layers of loose sand $N=4-12$
Toronto Subway Contiact B-4 Foint A (Canada)	36	Pack (1969)	12.3*	5.66	$2.17{ }^{*}$	19.3	6.82	22.32	0.45	1.2	Shield hand-mined	Crown in sand
$\begin{aligned} & \text { Sin Franclisco Bart } \\ & \text { (U.S.A.) } \end{aligned}$	38	```Peck (1963) Peck et al (1969)```			2.05	-	-	\cdots	-	0.56		cemented dense sand above GWL
Toronto Subway (Canada)	39	"	-	-	2.29	-	-	-	-	1.9	-	Dense sand, above GWL
Toronto Subway (Canada)	40	"	-	-	2.00	-	$-$	-	-	1.0	-	Crown in sand, below CWL

[^0]: * In the Civil Engıneering Code of Practice No. 4 (1954) : Foundations, Part 5: 5.606 It is clearly stated that "In all cases where excavations are to be carried out in congested areas in close proximity to surrounding buildings and public highways, the excavation method adopted should be such as wall provide adequate safeguard against settlement and damage to such buildings and hıghways...".

[^1]: ${ }^{*} y_{3}=2(R \operatorname{cosec} B+Z \cot B)$, and $R=2.07 m, Z=29.3 m$, and $B=45^{\circ}$ if $\varnothing=0^{\circ}$

[^2]: *The assumption is quite reasonable because it is known from the properties of the normal probabilıty curve that 99.7% of the volume per unit advance is contained within a transverse profile span between the limıts of -31 and +31 .

[^3]: *GETZLER et al (1968) in a series of experıments studied the loads on a rigld underground structure supported by a flexıble base when a uncformly distributed static load acts on the ground surface. The aim of the experımental programme was the detection of any arching involved and the connection with the other factors which influenced the underground structure. The results obtained reveal that the amount of arching tends to increase but there is more or less asymptotic behaviour towards an ultimate level of arching when the depth of the structure increased. In a more refıned analysis GETZLER et al(1970) also confurmed the existence of arching which again increases asymptotically with the depth/width ratio of the underground structure.

[^4]: Much of the description in this Chapter and some of the comment is taken from ATTEWELL \& FARMER (1972), report to T.R.R.L.
 ${ }^{+} \mathrm{X} 1$ was slightly displaced $(0.85 \mathrm{~m})$ from the centre line.

[^5]: *Ultimate settlement $s_{u l t}$ is the magnitude of surface settlement when the tunnel advance is over 70 m beyond the particular cross-section.

[^6]: * B is the ratio of the minımum to the maximum light intensity transmitted through crossed polars as the thin section is rotated on the stage. Therefore B is a modulus of partıcle re-orientation, l.e. $B \neq 0$ corresponds to perfect orientation and $\bar{B}=0$ to random orientation.

[^7]: *Assuming that the original length of the specimen is L and the original width is D, and further assuming that the variation in width is ΔD and the variation in length is ΔL, then the Polsson's ratio by definltion is

 $$
 v=\frac{-\Delta D / D}{\Delta^{I / L}}
 $$

[^8]: According to BISHOP and HENKEL (1964), if the pore pressure is measured during the undrained test on saturated cohesive solls, the effective stresses at failure can be determined. It wlll be found, however, that for saturated clays both the σ_{1}^{\prime} and σ_{3}^{\prime} are independent of the magnitude of the cell pressure applied. Hence only one effectuve stress carcle as obtained from these tests and the shape of the faclure envelope in terms of effective stress cannot be determined. Consolıdated undrained or dtrained tests are used for the latter purpose.

[^9]: * In the undranned state.

[^10]: *Note that for technical reasons the graphs illustrated in Figure 6.4.2. calculated under the assumption that horızontal axis represents $\theta=0^{\circ}$.

[^11]: *Thc analysis performed in Chapter 6 has andicated that ground and constructional conditions could satisfy the criterion for the formation of a plastic zone around

[^12]: *This line has defined according to TRESCA'S fallure crıterion, having an analytucal expression

 $$
 \sigma_{v}=\sigma_{h}+2 c_{u}
 $$

[^13]: * FARMER(1974), personal communication.

[^14]: * see also equation 8.1.6.

[^15]: *Admittedly from the mathematical point of view there are some difficulties in arriving at the boundary stresses, especially for $\mathrm{z}=\mathrm{H}$ where all the acting forces apparently coincide to a single point.

[^16]: *ATTEWELL, personal communıcation.

[^17]: FIG423 vertical settlement profile developmient in the vertical
 and at
 line oreholes $\mathrm{Z1}, \mathrm{z2}$ through the tunnel
 in
 attewell
 EIdSSDC different After

[^18]: FIG．7．4．1．Hypothetical mobilization of edith pressure for an element of
 clay at tunnel axis level during the various stages of constructaon． FIG．7．4．1．Hypothetical mobilization of edith pressure for an element of
 clay at tunnel axis level during the various stages of construction． FIG．7．4．1．Hypothetıcal mobılızation of edith pressure for an element of

 ## stages of construction（time）

