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INTRODUCTION

A well-known result of both piecewise-linear and
differential topology 1s that concordance implies isotopy for
suitable embeddings. The aim of this thesis 1s to present
topological counterparts to these results. The treatment
given 1s heavily dependent on sophisticated handle techniques,
and, as a mean; of i1ntroducing notation as well as preparing
the conceptual framework for these techniques, we also give a
proof of a topological h-cobordism theorem. This not only

lays the groundwork for later chapters, but provides a de:alled

proof on the lines of Smale's original one for smooth manifolds.

A topological manifold 1s smooth, or piecewise linear,
1f there exists a smoothly, or piecewise linearly, respectively,
compatible atlas of charts. By definition, smooth and
plecewlse linear manifolds are topological manifolds. The
question arises as to which manifolds are smoothable, and which
are triangulable - that 1s, can be given a smooth structure, or

a plecewlse linear structure, respectively.

There 1s not, as yet, a complete answer to this question,
but we have the following information. All smooth manifolds .
are triangulable (Cairns { 6 ] ) there exist piecewise
linear and general topological manifolds which are not smoothable.
(Kervaire [20]). Kirby and Siebenmann [22] have shown that

1n each dimension 2 5 there exists a non-triangulable
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topologcal manifold, and, further, they have reduced the
question of the triangulability of any given manifold M to

the vanishing of an obstruction in HQ(M, Z). That all
2-manifolds are triangulable 1s a classical result of Rado [29},

and Moise [26] proved that all 3-manifilds are triangulable.

We give an example of a non-triangulable manifold taken

from Kirby [21] . By theorem 17 of [21] §7, there exists

a precewise linear structure@on S3 X S2 which 1s not 1sotopic

to the standard structureZ(that 1s, the identity,

1d : (S3 X Sz)i —_— (b3 X Sz)0 1s not 1sotopic (see Glossary)
to a pirecewlise linear homeomorphism (S3 X Sz)i — (S3 X SZ)cb ).
In [36) » Sullivan shows that piecewlse linear structures up

to homotopy on a manifold Q are equivalent when the Bockstein
homomorphi sm [5 : H3(Q; 22) — Ha (Q; 2) 1s zero. But

B (s3

X 52; Z) = 0, so there exists a piecewlse linear
homeomorphism h :(S3 x SZ)Q —_ (S3 X Sz)i .

Then h : (S3 x Sz)i — (S3 X Sz)zls not isotopic to a
precewlse linear homeomorphism, for 1f it were,

h-lh = 1d : (S3 X Sz)i— (53 X Sz)® would be 1sotoplc

to a plecewise linear homeomorphism, by composing the given
1sotopy with h-l, and this would contradict the fact that @
and € are not 1sotopic. Furthermore, stability

(T, (TOP , PL )= T, (TOP/PL), see [21] ) shows that

3 2 3 2

hxide ¢t S xS xR — S xS xR 1s not

1sotopic to a piecewise linear homeomorphism, where

(v1)



S3 X S2 x R is given the standard piecewise linear structure.

Since S3 x S2 x R &= (Ra X Sz) N (0 x SZ) we can form the

manifold

6 _ (pb . o2 4 2
M= (R x %)y L, (R x sT).

Suppose that M6 had a piecewise linear sttucture. Then since
4 2
precewlse linear structures on R x S are umique up to isotopy,

the pirecewise linear structures induced from M on each copy of

4

R x S2 would each be 1sotopic to the standard structure.

This would 1mply that h x 1d. was 1sotoplc to a pirecewlse linear

homeomorphism, which 1s false, Hence M6 has no piecewise

linear structure, l.€., 1s non-triangulable.

The work of Kirby and Siebenmann, then, shows that
endeavours to extend piecewise linear results to cover topological
manifolds are not vain. The concept of handles (I § 3) was
first i1ntroduced by Smale [35] to prove the h~cobordism theorem
(I 5.1) for smooth manifolds, and these techniques were extended
to prove the piecewlise linear case by several authors (including
Sta lings, and Zeeman,) In the smooth category, handle theory
has now been replaced by the more amenable Morse theory. The
existence of handlebody decompositions (I § 4) 1s a classical
result for all piecewise linear and smooth mamifolds, and, 1n
[ 22] » Kirby and Siebenmann give a proof for all topological
manifolds of dimension 2 6. We use this last result,
together with an extension of Smale's proof to the topological

case, to prove a topological h-cobordism theorem. (A weak
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topological h-cobordism theorem, that 1s having a conclusion

W & M x [0, 1), was proved by Lees, 1n his thesis [ »s),
and by Connell [ 8] - this result was used to prove the
topological Poincare conjecture). This proof occupies
Chapter I of the thesis, where we also prove a relative theorem.
Notice that Kirby and Siebenmann also show that there exists a

topological manifold, of dimension 4 or 5, which does not have a

handle decompositione.

That concordance implies 1sotopy (see Glossary for
definitions) was first proved by Hudson [12] ’ [1&] for

precewise linear embeddings of polyhedra in manifolds and smooth

embeddings of manifolds in manifolds. An extension to piecewise

linear emb eddings of polyhedra 1n manifolds using theideas of
embedded handle theory and critical level embeddings (II § 1)
appears 1n Rourke [3i]. Rourke's methods also prove the
result for smooth embeddings of smooth manifolds. To show the
existence of critical level embeddings, Rourke resorts to results
of Kosinski [23] on singularities of piecewlse linear maps.
Kearton and Lickorish give a more direct approach in [ 19] s, and
1t 1s their treatment that we follow in Chapter 1I, which is
devoted to the study of critical level embeddings. (Mhote that

more care 1s required than Kearton and Lickorish suggest 1in [19]

theorem 3, with regard to subdivision (see II § 2))
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Armstrong extended concordance implies isotopy to include
topological embeddings of manifolds in Euclidean space, [ZJ .
He also laid the foundations of a theorem for embeddings into
general topological manifolds in [3] » upon which results the
proof of III 2.2 (concordance implies 1sotopy for topological
embeddings of manifolds 1n manifolds) given in Chapter III § 1 )
15 based. Using entirely different methods, Pederson has
proved a similar result to this in {28 , but he imposes
stronger conditions - that M" 15 a handlebody, that q 2 5,
and that 1f q = 5 then 3Q 1s a stable manifold (in our notation)
= and he relies on less elementary results, nocably the
s-cobordism theorem. Pederson's work was drawn to the author's

attention after the majority of this work was completed.

The remainder of Chapter III 1s concerned with further
results deduced more or less directly from III §1 : a relative
theorem; concordance implies isotopy for topological embeddings
of polyhedra in manifdds; concordance 1mplies 1sotopy for
sultable embeddings of polyhedra in polyhedra; § -concordance
implies & -1isotopy for topological embeddings of manifolas 1n

manifolds.
The layout then 1s this. Chapter I, §1, presents

preliminaries fundamental to the remainder of the thesis. The

rest of Chapter I deals with a proof of h-cobordism.

(1x)



Chapters II and III are independent from Chapter I mathematically
(except for I § 1), but conceptually, Chapter II 1s heavily
dependent upon 1it. Proofs of concordance implies 1sotopy ,
appear 1n Chapter III, making use of the results on critical

level embeddings occurring in Chapter II.

Throughout the thesis, ALL EMBEDDINGS ARE ASSUMED TO BE
LOCALLY FLAT. We assume that the reader 1s familiar with
the standard results of piecewise linear topology, as found
in 3], L3 ] y OT [38-l and also with relative regular
neighbourhood theory (see [.16l, [.17} ). References are

given 1n the text when other specific results are used.

There follows a glossary of notation and definitions.

(x)



GLOSSARY

Notation

I

LO. 1] s the closed unit i1nterval
(-1}, 8= [-1,1] P, b2 = s

sBp = [—E,i]p (where 0 < € £ 1)

B

0 = (0, «o., 0) € BP < RP,

clX : the closure of X

o

X = a1int X : the interior of X
9X : the boundary of X

AN B

-(x | x<a, x ¢ 8}

A x {t}, (for t e I, usually)

>
o
rt

il

/| denotes the end of a proof, or a result

stated without proof.

Definitions Let M, Q be polyhedra, or manifolds, and
let T: Qx I -—»Q be the projection onto

the first factor.

(1) Two embeddings f, g ¢t M —» Q are concordant 1f there
1s an embedding F : M x I —» Q x I which satisfies
Flx0=Mx0, F1(Qx1)=Mx1, F[MxO0=f

and F | M x 1 = g.

(x1)



Definitions (continued)

(2) The concordance F 1s vertical over a subset X of M

1f F(x, t) = (f(x), t) forall x € X, t € 1.

(3 Amp o3 QxI—>Qx1I1s level-preserving 1f

x(Qxt) € Qxt forallt e I, Then oct=Q—>Q

1s defined by ¢ (x, t) = (oct(x), t).

(4) An ambient 1sotopy of Q 1s a level-preserving homeo-

morphism o« : Q x I —= Q x I for which o(o 1s the

i1dentity.

(5) The ambient isotopy o« is fixed on the subset X,

of Q 1f «_ 1s the identity on X for all t € 1. oC

t
has support in a subset U of Q 1f o 1s fixed on Q@ \\ U.

(6) Two embeddings £, g : M —> Q are ambient 1sotopic 1f

there 1s an ambient 1sotopy o of Q such that o« f = g,

1

(7) A homotopy H :t M x I — Q 1s an € -homotopy 1f,

for each (x, t)e€ Mx I, d (H (x, 0), H(x, t))<¢E&,

(8) An ambient 1sotopy «x: Q x I — Q x I 1s an €-ambient

1sotopy 1f Woex: Q x I —> Q 1s an € -homotopy.

(x11)



Definitions (continued)

(9) A concordance F : Mx I —» Q x I 1s an €-concordance

1f We F

MxI—+ Q15 an £ -homotopy.

(x111)



CHAPTER I

TOPOLOGICAL HANDLEBODY THEORY




In this chapter we develop the techniques necessary for a
proof of the topological h-cobordism theorem which we give 1in
§5. The 1deas are essentially those involved i1n the plecewlse
linear proof, which argument we follow closely (see, for example,
Rourke and Sanderson [32] Ch.6.) - firstly represent the cobordism
as a handlebo&y, then use the algebraic conditions to elminate the
handles, so that finally we must have a product. In §3 we
introduce handles and the handle lemmas of reordering, cancellation,
introduction and adding. In § 4 we discuss handle decompositions
and use the § 3 lemmas to simplify them, given certain algebraic

constraints. The Whitney lemma is an essential part of this

procedure, and we give a topological version 1in §2.

Note that several of these results have a dimension restriction
not present in the corresponding piecewlse linear cases, but that
this does not affect the final theorem, whose statement 1s
equivalent to that of the piecewise linear theorem. We also prove

a relative theorem.

In most cases, the technique of proof is to tame locally and
then use the pirecewise linear proofs, and in § 1 we quote, and
deduce, the 1mportant tools required for this process, both in
this chapter and 1n subsequent ones. This first section will be

referred to frequently.

iye ‘l'\
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§1 Preliminaries - taming and collars

This section deals with results, all but two of them quoted,
which wi1ll be used in proofs throughout the remainder of the

thesis.

1.1 Lemma (Lacher [24) )

Let B= M be a locally flat ball in the topological

manifold Mm. Then there exists a chart U of M such that
(1) (B, ) & (Bk, Rn), a standard pair, 1f B 15 closed,

(ii) (B, ) = (Rk, R™), a standard pair, 1f B 1is open. ,

Tamtng

Let M, Q be piecewise linear manifolds and £ : M —> Q

a (topological) embedding. Then f 1s said to be tame
1f there is an ambient 1sotopy- ¢ of Q such that oclf 1s
precewlse linear. f 1s g-tame 1f for each € > 0 there

exists an € -ambient 1sotopy oc of Q such that Oclf 1s
precewlse linear, and cct'1s the 1dentity outside the
€ -neighbourhood of f(M), for all t. In each case, the

embedding is strongly tame, strongly € -tame, 1f, furthermore,

°<1f 15 locally unknotted.



1.2

1.3

Theorem (Cantrell and Rushing [7 ] Theorem 1)

A locally flat embedding f : Bk —p 1nt Qq, q 2> 5,
of Bl'L into the interior of a plecewise linear q-manifold Q,

is strongly ¢ -tame.”

Theorem - (Rushing (33} Theorem 1)

Let f 3 Mn — Qq, qQ - n 23, be an embedding of the
piecewise linear manifold M 1in the plecewlse linear
mani1fold Q¥, for which £l ( 9Q) 1s a precewise linear
(n - 1) - submanifold (possibly empty) of 9 M, and such
that f f-1 ( 2Q) and £ I(M\f-l( 3Q)) are locally flat.

Then f is & -tame.

Furthermore, 1if f l f°1 ( ?Q) 1s precewise linear,

then the taming isotopy 1s fixed on BQ.//

Definition

If X < X are polyhedra, then the pair (Xo, X) 1s

T
n
admissible 1f X = Xou (g Mll), where Ml 1s an n - dimensional

1-1
pirecewise linear manmifold such that M1 n (}(o u ( g MJ))
1s elther empty or an (n1 - 1) - dimensional piecewlse linear

1-1
submanifold of OMI for which X v (U MJ) 1s link-

1-1
collapsible on Ml (o) (Xou ( g MJ)), 1= 0, esey Lo



1.4 Theorem (Rushing [ 33] Theorem 2)

1.5

Let(xo, X) be an admissible pair of polyhedra,
where cl (X \ xo) 1s n-dimensional, and let Qq, qQq-n23,
be a pirecewise linear gq-manifold, Suppose that
f : X—> 1nt Q 1s an embedding which 1s locally flat on
the open-simplexes of some triangulation of X, and 1s such
that f l xo 1s piecewlse linear. Then f can be £ -tamed

by an 1sotopy « $0 that

x| {gxpule-n @lragd, o} - 1.,

Collars

Let X< Y be polyhedra, or topological manifolds.
Then a collar on X 1n Y 1s a piecewise linear, or topological,
homeomorphism, respectively, ¢ : X x I — Y such that
c (x, 0) = x and ¢ (X x {0, 1)) 1s an open neighbourhood
of X 1n Y; we also call ¢ (X x I) a collar, and X 1s

said to be collared 1n Y.

If X can be covered by a collection of open subsets,

each of which 1s collared 1n Y, then X 1s locally collared

in Y.

Existence of collars 1s given by the following results.

Theorem (Rourke [30])

Let P =« Q be polyhedra and suppose P 1s locally

collared 1in Q. Then there 1s a collar on P 1in Q.//



1.6 Theorem (Brown[ 41,01 5]. see also Comnely L 9 1

Let M = N be topological manifolds and suppose M is

locally collared in N, Then M 1s collared 1in N'//

1.7 Corollary

Let M be a (precewise linear or topological) manifold.

Then oM 1s collared in M.”

He also require the following uniqueness result for
collars of piecewlise linear manifolds. (See Armstrong [2_)
for a similar result for locally flat collars of

topological manifolds.)

1.8 Theorem ( Hudson and Zeeman [15] , Theorem 4)

Let M be a pirecewise linear manifold, and let
cl, c, ¢ MxI—>Mbe two collars, then there exists

an ambient isotopy oc of M, fixed on M, with

%1 9 %%y

We now deduce the following two results.

1.9 Lemma

1 — M” be locally flat embedding into the

Let £ 1 S
topological manifold M, n 2 5, M = ﬁ, and suppose the

homotopy class of f, [f] =0 GTTI (M). Then there exists



1.10

a locally flat embedding f1 ¢ D2 —> M which extends f,

that 1s, f1 | BDZ = f,

Proof

Since [f] = OE'ﬂ& (M), f extends to a map f @ D2 - M,

Let {va 1 =0, vee, s} be a cover of D2 by closed balls

such that f (Bl)cz U, a chart of M, for each i, and

k

Ak = 120 B, is a ball for each k. Now work inductively

over the A t suppose we have homotoped T rel 81 so that

k

T | A 1s an embedding. By 1.4 we can &€ ~-ambient 1sotope

k
U i 1
L SO that f {Bk+1 n (Ak\J S )} 1s a piecewlse linear

embedding, and then by general position replace f by a

homotopic map which embeds B Now apply the 1nverse

k+1.

1sotopy of U, to replace S1 to 1ts former position. By
1.1, Ak lies piecewise linearly in a chart, so that by
tamng and general position we can remove the intersections

of B with A ., This gives A

k+1 k
result follows.”

k+1 embedded, and the

Note. Indeed this result follows more directly on

application of Newman's engulfing theorem (see [_27] de

Lemma

Let Qq be a topological manifold, and M9 a compact,
locally flat q - dimensional submanifold of int Q which

supports a pirecewise linear structure. Suppose



(xo, X) €« 1nt Q are an admissible pair of polyhedra with
cl (X\Xo) n-dimensional, q - n > 3, where Xo 1s a
pirecewise linear subpolyhedron of M, and suppose that

the open simplexes of some triangulation of X are locally
flat in Q. Then there exists an € -ambient 1sotopy o

of Q such that Y =oc . (X) a M 1s a precewise linear

1
subpolyhedron of M, and

“’tl{ xoU LQ\NS(M» Q)]‘S = 1.

Proof. See Figure 1.

By 1.6, let M =M o (Collar on 2 M), the collar
being chosen so that M € Ne (M, Q). Then M supports
a piecewlse linear structure, Let Yo be X n M.
Triangulate X by the triangulation of the statement, and
subdivide finely enough so that N(Yo), a regular
neighbourhood of the simplicial neighbourhood of Yo 1n X,

satisfies N(Yo) c ﬁ.

Now by l.4 we can choose Eo € € and find an
Eo -ambient 1isotopy o of M such that KI(N(YO)) 1s a
piecewise linear subpolyhedron of ﬁ’“t! (3N uxo) =1,
and ('::z1 XaM)<N (Yo). Extending ec to Q by the i1dentity

gives the result.//



Figure 1
Lemma I 1.10

Figure 2
Lemma I 2.4



The Whitney Process

Intersection signs

Suppose we have oriented manifolds Pp, Qq c:Mn,

where P, Q are of complementary dimension i1n M; that 1s,

p+t+q=n. Suppose also that P and Q intersect

transveféally in a finite number of points.

Llet x ¢ Pn Q. Then by transversality there exists

a neighbourhood U of x and a coordinate chart
Z: (U, UnP, UnQ, {x} ) —> B"9, P x 0, 0 x RY, 0)

which we can suppose preserves orientation on UnP and Un Q,

where the Euclidean spaces are given the natural orientation.

Define the intersection number of P, Q at x, g£(x),

by €(x) = +1 1f ¥ preserves orientation on U, €(x) = -1
otherwise. The intersection number of P and Q, €(P, Q)
" xePnagE:

Now suppose we have Pp, Qq c Mn, where P, Q are
connected locally flat submanifolds of the topological
manifold M which are of complementary dimension. Further
assume that P and Q both support a pirecewise linear structure,
and that M= ¢. Under these conditions we state

the following.



2.1 Topological Whitney Lemma

2.2

2.3

Suppose that x, y € P n Q satisfy €(x) = -~ €£(y).
Then there 1s an isotopy of M carrying P to P', with P'
transverse to Q 1in M and with P'aQ = PaQ \ {x} \ iy% ,
provided either

(i) p23,q2 3 and 1Ti (M) =0

or (ii) p=2, q23 and 1Ti (MN\Q) = 0,

Moreover the isotopy has support 1n a compact set which

does not meet any other intersection points.

Corollary

If €(P, Q) = 0, with the above hypotheses, then we can

ambient 1isotope P off Q by an isotopy with compact support.”

Remark

If p 2 3, then 1T1(M‘~Q) = 0 1mplies 1T1(M) = 0, so
that the lemma can be restated with the single hypothesis

11—1 (M\Q) = 0,

Proof of Remark

Let 1, @ TT1 (MN\Q) —> 1T1(M) be the homeomorphism
induced by inclusion. It 1s sufficient to show that 1_

1

1s onto. Let £ 1+ S —» M represent [fl€ -\Tl ™).
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We wish to find g homotopic to f with Img< MN\\Q,

then [g]e‘\Tl (MN\Q) and 1 [g] = (£).

Cover Q by charts U1’ and by 1.1 find charts V1 of
Mwith V., n Q= U and (U, V) ¥ (89, R™), the standard
pair. Now cover Sl by closed intervals JJ ¥ I, with

J a3 33 a3y, )#k, such that, 1f £ (J) A Q# g,

then f (JJ) c V1 for some 1.

Using small general position moves where necessary, we
may assume that ((JJ f (BJJ)) nQ-= ﬁ. If f(Jk)nQ = ﬂ.
define g, : J, —>Mbyg =f|J. Iff)InQ#f, by
general position for maps we can find a piecewise linear map
8y ! Jk —_ V1 homotopic mod BJk to ' Jk,and, again by
general position, we may assume that 8y (Jk) n Q= ﬂ .

1

Now define g ¢+ S —> M by gIJk=gk. I

Before we prove the Whitney lemma, we require the next

result.

Lenmima

Suppose Bp N 39 < " are properly piecewise linearly
embedded balls of complementary dimension, that q > 3, and
that B9 1s unknotted. Suppose also that BP meets BY
transversally in two points x, y with £(x) = - & (y). Then
there exists an ambient 1i1sotopy of Bn, keeping ? " fixed,

which moves Bp of f Bq.
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Proof

We have

ngdy = qy ¥ P-ly ¥
™y BN TH (3™p%) Ho ) (P ¥z

and the element of Hp_l(Bn\Bq) determined by 38P 15
represented by the sum of two spheres which in turn
represen;: opposite generators 1n Z, since £(x)= - €(y).
Hence éBp 1s null homotopic 1n Bn\Bq. By Irwin's
embedding theorem (see (18]) we can span 8P by a pirecewise
linearly embedded p-disc pP 1n B \ B9, See Figure 2.
Since p € n-3, we can unknot both P and Dp; let

n, + (87, B°) — (8%, "), n 1 (8", DP) — (8", BP),

be the homeomorphisms to the standard pair. We define the

required 1sotopy o¢ B” x I—>B"x1 by the Alexander

trick:
«|B" x 0 = n
O(I B” x 1 = hl
KISBn x I = (ho| 3B™ x 1identaty
i(gn l’z) = (29 !5)

and ocan x I 1s defined by conical extension from (O, %),
since B" x I 1s a cone with base (8" x 0) U ( 38" x 1) U (B" x 1),

cone-point (0, %).”

Proof of Whitney lemma

Join x and y by locally flat arcs « .[L, in P, Q,
respectively, which do not pass through any other intersection

points. We have two cases. See Figure 3.
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Case (i) p 2z 3. By 1.9 there exists a non-singular

disc D2 spanning a.u/3 » and by 1.1 D2 < U so that

2 2

(p, U) = (B°, qu)‘ the standard pair. Let X = PuQubD
and xo = Dz. Then by 1.10 we can ambient isotope M so

that XnU is a pirecewise linear subpolyhedron of U, leaving
D2 fixed. By general position we may assume that

int Dzn (PuQ) = ¢ + Now proceed as 1n the piecewlse
linear situation -~ let (N, Bl' BZ) be a regular neighbourhood
of (Dz, ol ,(3 in (U, Pn U, Qnl). Then Bz 1s unknotted
in N, and the above lemma, 2.4, applies - hence we can move
Bl off BZ' and thus P off Q. We have moved Q 1n our earlier
application of 1.10; we now return it to its original

position with the inverse ambient 1sotopy, and the result 1s

proved,

Case (11) p = 2. Since codimension Q = 2 we have difficulty

removing the intersection of Q with D, and we use the extra
hypothesis to surmount this,. Let B be a regular neighbour-
hood of /3 in Q. Then B is a ball, and by 1.1 there exists
a chart V of M, wath B < V so that (B, V) ¥ (Bq, R"), a
standard pair. Let B' c V be such that (B, B') = (3%, 8™,
a standard pair; we can assume that B'aPaQ = {x3 u iyl) .
Then by 1.10 there exists an €-ambient 1sotopy of M, leaving

B fixed, such that P n B' is a pirecewise linear subpolyhedron
of B*. By suitable choice of € we can assume that we
introduce no new intersection points of P and @ - choose ¢ so

that d [(PaN¢ B*), ( {QNB} n N¢ B)] < €,
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Now choose a regular neighbourhood of (3 in
(B*, P n B', B), say (N, No, Nl)’ see Figure 4. Then

there is a homeomorphism

hot (NN N % (3P x 897l x (-2, 2}, B’ x 0 x 3B, 0 x B! x [-2,2)

We can assume that h (x n No) = (o, 1} x 0x 3B. Let

el (w~(xad ), =0l axox (-1, 1]),

8.
n

pf=ntclo, 1l xox [-1,1] ). Thenwupc MNg,
and using the extra hypothesis and 1.9, we can find a non-

singular disc D§ < M\ Q spanning q}.,/g'. Again, as 1in
case (1), by 1.10 and general position we may assume that

int Dzn(PuDI) =0 .

Let D = D1 v Dz, a 2-disc, so that by 1.1 D 1s contained
in some chart U of M, and we may assume that B < U, Then
the homeomorphism (B, U) ¥ (B, V) defines a piecewise linear
structure on U with B a piecewise linear submanifold. As
outlined above, by choosing a ball B' in U such that D < int B',
and applying 1.10 with suitable € ; we can assume that
Du(PnB') 1s a pirecewlise linear subpolyhedron of B’.

Now proceed as 1n case (1), /



The Whitney Lemma

Figure 3
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§3. Handles

Let W¥ be a topological manifold with boundary, and

suppose we have a locally flat embedding

£f¢ aBP xB"P — W,

Then we say that the manifold

W' = Wo 8P x 8" °P)

is formed from W by attaching a handle of i1ndex p (or a

p-handle). We write W' = H\;hp, and f 1s called the

attaching map. See Figure 5.

let e BP x BY"P —» W' be the natural embedding,

called the characteristic map. We use the following

terminology (Figure 5):

e (BP x 0) is the core

e (3BP x 0) 1s the attaching sphere

e (I8P x B¥P) 1s the attaching tube

e (0 x BYP) 15 the fibre (or cocore)

(0 xdB" P) 15 the belt-sphere

e (BP x 3B¥P) 15 the belt-tube

The compact manifold WY 1s a cobordism (W, Mo, Ml) 1f W
1s the disjoint union of the (w-1)-manifolds Mo and Ml'

See Figure 6.
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If we have a handle h attached to W, with hnW c:Hl,

we say that h 1s a handle on the cobordism. Then W' = Wuh

is a cobordism (W', Ho,‘BH' - Mo) obtained from W by

attaching a handle,

The following lemma shows that W' depends only on the

isotopy class of the attaching map of h.

Lemma

Let £, g : 3P x BY"P —» M, be ambirent 1sotopic

1
embeddings. Then there 1s a homeomorphism

F:Wou_h— W u h
f 4

which 1s the i1dentity outside a collar of Ml in W,

Proof

Let x, 1 Hl-—9 Ml be the given 1sotopy, and (by 1.7)

let ¢ be a collar of M1 in W, Define /Zt : W—> W by
Py s 8) = (g __ (x)y 8) s &t
(x, s) s >t

where (x,5) € Im (c), and extend by the identity to

W \Im(C) .

Then F

/31 on W

1dentity on h. .
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Pairs of handles

We form W' = WuhPu nd by attaching a p-~handle nP
to W and then attaching a q-handle h% to the cobordism

Huhp.

We wish to echo the results used 1n the proof of the
plecewise linear he=cobordism theorem to reorder, cancel or
"add” consecutive pairs of handles. To do this we tame
locally (allowed by lemma 3.1) and then use the techniques
of the piecewise linear proofs. This imposes a restrction

on w = dim W.

Let M, = d(W v hp)\Mo, e 1 BP x B P — wunP

be the characteristic map of hp, and f 1389 x 3" 9 — Mz

be the attaching map of hd, Then e, f induce pirecewise

linear structures on the submanifolds P, Q of Mz, Tespectively,

where
P= e (BP x 38 P) u collar on its boundary
= (belt-tube of hP)ucollar on 1ts boundary
and Q = Imf U collar on its boundary
= (attaching tube of hq) v collar on its boundary.
See Figure 7. We use 1.6 here.

Reordering lemma

Let W* = WohPu h with g€ p.  Then W' ¥ Wuh%y nP

with hP and ht disjoint, provided that w > 5.
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Proof

We wish to ambient 1sotope f so that Im (f) and Im (e)
are disjoint, then we can attach the handles 1n reverse

order, and the result follows from lemma 3.1l.

Let .S, = e (0 x 38" P) = belt-sphere of nP

1
s, = £ ( 3BY x 0) = attaching sphere of h9.

L In the piecewlse linear case, since p 2 q. we can

assume that Sln S2 = )?f by general position. Choose regular

neighbourhoods Nl’ N2 of 51, S2 which are disjoint. See

1 onto the belt-tube of hp, N2 onto the

attaching tube of nd by uniqueness of regular neighbourhoods,

Figure 8. Isotope N

and the proof is complete.

In the topological case, we have two instances. If

w-q 2 3, then 82 has codimension 2 3 i1n M, so that 1.10

2

applies. Hence we may assume that S2 n P 1s a pirecewise
linear subpolyhedron of P, and, by general position, that

Sln S2 =ﬂ. If w - q<3, then, sincew 25 and p 2 q,

p 2 3, so that S1 has codimension 2 3 1in MZ. Apply 1.10

to obtain S1 N Q a precewise linear subpolyhedron of Q,

and again, by general position, that Sln S2 = ﬁ.

In erther instance, we can now use the above regular
neighbourhood argument, being sure to take regular neighbourhoods
NI’ N2 of Sl'
proof. Jl

82 in P, Q respectively. This completes the
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Handles of adjacent index

Suppose W' = wuhPu hp+1 and that w 2 6. Then the

spheres S1 = belt sphere of hp, S2 = attaching sphere of
nP*1

are of complementary dimension in M2' so that, as
in the last proof, by a small ambient 1sotopy of the

attaching map f of hp+1 we can assume that S1 and S2 are

in general position, and hence that S, meets S2 transversally

1

in a finite number of points.

Indeed, we can achieve more than this. For each

X € S1 n Sz, let Nx be a closed ball neighbourhood of x

in P (our previously defined submanifold of M., with pirecewise

2

linear structure), chosen so that er\Ny = ﬂ for all y £ x.
Let B < 1int Nx be a ball neighbourhood of x of the form
B = DP x Dw-p-lczf ( ypP*l x Bw-p-l). Choose € so that

Ng¢ (SI, P)a S;AN < B and N¢ (B1 Nx) < 1nt Ny Now using

1.2 we can € -ambient isotope N,, leaving 9 Ny fixed, such that
B is a plecewise linear submanifold of P. Our choice of ¢

ensures that now Sln 82 n Nxc oP. See Figure 9. By

general position in B, we can assume that pP 1S pirecewlse

linearly transversal to S If we repeat this process

1.
for each x ¢ Sln SZ’ we ambient 1sotope f so that Sl, S2

intersect transversally in a finite number of points, and

near each x € S.NnS_, f 1s a precewise linear embedding

1 2
into P.

So, further to transversality, we now have Sln S2

locally nice near each intersection po1nf, that 1s, locally

a pirecewlse linear subpolyhedron of P < Mz.
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Incidence number

Now define the incidence number of hpl hp+1’

E(hp, hp+1), to be equal to the 1ntersection number of

Sl, SZ' E(Sl, SZ) (as defined 1n §2).

Next, we see that the incidence number depends only

on the homotopy class of the attaching map, f, of hp*l.

Lemma

let qs: Wou W — sP be the map which sends W to
a basepoint x € Sp, collapses hp onto 1ts core BP x 0, and
1dentifies BP / 38P with sP /% . Let g : S2 —> sP pe

the restriction of q to SZ’ and let w 2 6, then g has

homological degree E.(hp, hp+1).

Proof

The degree of g 1s unaffected by an 1sotopy of f.

Let xS nSZ, and let Dx = e (8P x{x) be the standard

1

transverse disc to S1 at X. Ha wish to ambient 1sotope

f so that S2 agrees with Dx near X

In the pilecewise linear case, this follows from the
definition of transversality and the disc theorem for
pairs. In general, since we have f a piecewlise linear

map near x, the same applies.
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Do this for each intersection, and then, after an
isotopy of P (defined as before) which carries a standard

neighbourhood of S, 1n P onto the belt tube of hp, we have

1

P =
S2 nh U {-Dx I X € S1 n Szg. Now q le is the
standard identification of Dx/ BDx with SP/; and the

result f9llows.”

Complementary handles

Suppose that, 1n the above notation, we have

S1 s} S2 = one polnt. Then hp, hp+1 are called

complementary handles.

In this case, the pair of handles can be eliminated:

Cancellation lemma

Let W' = H\;hpuahp*l, where hp. hp+1 are complementary.
Then there exists a homeomorphism W' ¥ W, fixed outside a

neighbourhood of hPou hp*l, provided that w 2 6,

Proof

As in the previous proof, we may assume that S_. n (belt

2

tube of hP) = Dx' where x = S_ n S,s and also that f 1s

1

piecewlise linear near Dx' By the disc theorem for pairs,
we may also assume that e (BP x Bl) = f (B2 x SBH_p—I)

where 0 < €< 1 and Bl' Bz are neighbourhoods of x 1n S S

1’ 72
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respectively. Now after an ambient 1isotopy of Q

"-p"l) to

(defined above) shrinking f (B2 x B
f (Bz'x € Bu—p-l). followed by an ambient 1isotopy of P
expanding a standard neighbourhood of S1 onto the belt
tube of hp, we can assume that

Wan*! = e ? x B,) = £ (B, x pvP-ly,

See Figure 10,

hpnihp+1 is, then, a w-ball attached to W by a face.

The result follows.”

Corollary

Suppose that W' = H\JhpU hp+1 and Ml 1s simply-
connected, w - p > 4, p > 2, and w > 6, Then, 1f

ewP, Wy = ¥, w o=,

Proof

We wish to use the Whitney lemma to ambient 1isotope

Ml so that Slr\S2 = one point, and then use lemma 3.4 to
cancel. Now, codimension S1 2 2, codimension Sz‘) 3.
Also

T, (M\5)) ¥ 0 (M, \ attaching tube of hP)

n

'“1 (Hl‘\ attaching sphere of hP)

Using 1.9, 1.10 and general position, we can show that

(M,\ attaching sphere of hp) 1s simply-connected. Hence

1
the Whitney lemma app11es.”
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We shall need the reverse procedure to lemma 3.4.
That 1s, given a ball attached to a cobordism by a face,
we treplace that ball by a pair of complementary handles

of arbitrary index, by means of the following lemma.

Introduction lemma

Suppose that W' = WuBY where B A W = BYn Ml = Bl'

a face of B. Then we can write W' = Wy hpo hpﬂ, with

h? and hp+1 complementary, for any 0<p<w,

Moreover, 1f pPc B, 1s any locally flat disc then

1
we can assume that the attaching sphere of nP 1s 9DP

and that W n (attaching sphere of hpﬂ) < pP,

Proof

Consider the standard complementary pair

h

1 BP x ( (1, 3] x B"-p-l)

h, pP*l o p¥-P-l

vith hyoh, = B¥ x [-1, 3] x B""P71, a ball with face

E =8P x [-1, 3 x B*P 1y (8P x-1x ¥ PD,

Identifying (th hz, E) wath (B, Bl) gives the

required result. See Figure 11.
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For the last part, identify DP with
(Bnp x [-1. 2.3 ) U(Bp x =1), using the fact that two
locally flat embeddings of a disc into int B1 are ambient

1sotopic with compact support.ll

Adding handles

We wish to 1sotope the attaching map of a p-handle
by sliding it over an adjacent p-handle, with the effect
of adding (or subtracting) the 1ncidence numbers of the

p-handles with those of (p~1) -handles.

Adding lemma

Suppose that W' = Wu_ hP v_ hP, with Im(f,)
PP 1 £, 2’ 1
and Im(fz) disjoint, that w - p > 2, p2 2, w 2> 6, and

‘ITI(Ml) w O, Then there exists an f_, i1sotopic to £

3 2
such that Im(f3)nIm(f1) = ﬁ and
+
[f3] = [fz] - [f]_] ’

where if:‘ € Trp(Ml) 1s the class determined by
£ | (2°x 0.
Proof

Let e be the characteristic map of hl' By 1.6
there exists ¢ t 3BP xJIB¥ P x 1 — 1 (Mz\hl\ hz),
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a collar on the boundary of the attaching tube of hl’

where M, = 3(Woh )\M_, vith In(c)ah, = f.

Let S, = c ( 3BP x{x}x 1) for some x ¢ 3B P,

Then S1 bounds the embedded p-disc

D =c ¢ 38P x{xix I) o e, (8P x{D.

Define S2 = attaching sphere of hz.

We can pipe S1 and S2 1n MZ 1n the following manner. Join

S1 and Sz by a locally flat arc « 1n Mz. disjoint from D
1

By 1.1 we have a chart U contaiming « with (x, U) 2 (8B

See Figure 12.

1.

wﬂ
» R

1,

the standard pair and thus by 1.2 we can tame S, and SZ' near

1
the end points of «, 1n U by an ambient 1sotopy H of U.

Again join 81 and 52 by a (pirecewise linear) arc/3 in U,

with end points those of x , Now we can construct a

piping tube 1n the usual (precewise linear) fashion, and

then apply H-l. Let 33 = Sl*# SZ’ defined by the piping,

and D = solid piping tube.

Then S, is ambient isotopic to S_ by two cellular

2 3
moves - firstly across D and then across Dl' (See Figure 13).
Call this 1isotopy K. By a regular neighbourhood argument

we can assume that Im (f3 = K1 o fz) 1s disjoint from Im(fl).
The result follows; the choice of sign comes from the

choice of orientation of Sl' /I
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3.8 Corollarz

Suppose, in the above situation, that

W= Hlu hp-l. Then there 1s an hg such that

€ (hy, B =ehy, BPH T € n, nPh,

Proof

h3 is attached by the map f3 of 3.7; the formula

follows from 3.3.”
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§a Handle decompositions'

Let WY be a closed manifold, than a handle decomposition

of W 15 a presentation
H=h°uh1u...oht,

where h .is a w-ball, and h, is a handle on W = U h,
o i 1-1 <1 )

for each i.

More generally, let (W, Mo, Ml) be a cobordism.

Then a handle decomposition of W on @v 1s a presentation

H=Couhluo.-uht,

where Co is a collar on Mo in W, and, for each 1, h1 1s

a handle on the cobordism

= 8]
Hi."l CO O ( J<i hj )o

Adding a collar Cl to Ml does not alter W, and gives

us the symmetrical decomposition

H=c°\Jh1UooouhtUclo
In this case, define

W = € ul U 1),

1+l BED! 3
d handl h* H* h
then hi can be regarded as a handle 1 on 1+1 wit
*
characteristic map ei = ei o T, where

T : BY P x BP — BP x B¥"P 15 defined by T (x, y) = (y, x),

for x € B¥ P, y ¢ BP, This gives us the dual decomposition

[ %*
N = cluhtU-..Uhl\)Co
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Note that index 017:) =z w - index (h1)' and that the

L]
attaching tube of h1 1s the belt tube of h1 .

We call a decomposition nice if index (hlﬂ)a index (hx)
for each i, and if handles of the same index are disjoint.
By lemma 3.2 we get the following.

Lemma

Given a handle decomposition of W, there exists a nice
decomposition of W with the same number of handles of each

index as the ongmal.”

Note that the dual decomposition of a nice decomposition

is also a nice decomposition.

The existence of handle decompositions 1n general 1is
given by the following theorem of Kirby and Siebenmann
which we state without proof. For piecewlse linear
cobordisms the result 1s comparatively simple - see, for

example Rourke and Sanderson [32] 6.9

Theorem (Kirby and Siebenmann [22] Chapter III, theorem 2.1)

Let (W, M» Ml) be a cobordism, and suppose w 2 6.
Then there exists a handle decomposition of W on Mo’ with

(:o any collar of Mo in W,
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Handles and homology

Given any decomposition of W on Mo we construct a
CH complex K attached to Mo’ of the same homotopy type

as W and with one p-cell for each p-handle, as follows:
Suppose, inductively, that we have defined Kx-l
and a homotopy equivalence

1 : Hl-l — K1-1' rel Mo.

Let T, hf —> core (hl)u attaching tube (hx) be the

v h

obvious deformation retraction, Then Hl £ L
= 1

1

1 ng hx' where g, = 11_10 fx’

p
which deformation retracts by 11_10 r, on Kl-l S} 51] B™

1s homotopy equivalent to K1-

Then K, = 8 P is a cell complex Kl_ V attached

T 1
p-cell, and we have constructed 11 : wl —_— Kx'

If the decomposition was nice, the cells will be
attached 1n order of increasing dimension and K will be a CW

complex.

Now let hp, hp+1 be handles in the decomposition and
ep, ep-"1 the corresponding cells of K. Then, by niceness,
we can assume that hp, hm1 are consecutive, By lemma 3.3
we have E(hp, hp+1) =£(ep. epﬂ'), the incidence number of

ep, epﬂ in K.

By considering the (W complexes associated to a

decomposition and its dual we get the following.
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Lemma

Let W = Cou h1 V see U ht be a nice decomposition

(s) _ Py u(8) . (s)
and W C v (puss hl). M QW NN M
Then

(a) 1T1 (w, H(S)) = 0 forig¢ s

(b) 1T1 (W, M(S)) 0 forr1<¢s,w~-s-1.
Proof

(b) follows since TTI (H(S), M(S)) = 0 for

f< w-s-1 from (a).”

Simplification of handle decompositions

In this section, we use the handle lemmas of § 3,
together with the ideas above, to simplify handle decompositions
under algebraic conditions. This translation of algebraic
statements 1nto geometric results provides the major steps

in the proof of the h-cobordism theorem,

Lemma (Elimination of O-handles)

Suppose given a handle decomposition of W on Mo with
ip-p-handles for each p, and that each component of W meets
Mo. Ten there exists another decomposition with no O-handles,

(11 - 10) 1-handles and lp p-handles for p > 1.




4.5

4.6

30

Proof

By lemma 4.1 we may assume that the decomposition 1s
nice. By hypothesis, for each Owhandle we ca find a

distinct 1-handle which connects 1t to either C° or

another O-handle. These form a complementary pair, which
can be cancelled by lemma 3.4. See Figure 1a.”
Corollary

Suppose W is connected, and M M1 # ﬁ; then W has
a handle decomposition with no O=handles, or w-handles,

provided w > 6,

Proof

Apply the lemma to a decomposition, which exists by

lemma 4.2, and its dual.”

Lemma (Elimination of l-handles)

Suppose W 1s connected, and that we are given a handle
decomposition of W on Mo with no O-handles and lp p-handles
for p > 0. Suppose that TTI(H, Mo) =0andw > 6,

Then there 1s another decomposition with 1p p-handles,

p# 1, 3, no 1-handles, and (11 + 13) 3-handles.
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Proof

By 4.1 we can assume the given decomposition is nice.

Let h, be a 1-handle with characteristic map e We

1
replace h

1.

1 by a 3-handle and the result follows by

induction.
Let oc= Y (Bl x{x) be an arc in the belt tube of hl'

As in the proof of reordering (lemma 3.2), by taming,

general position, and regular neighbourhoods, we can assume

(2) - aH(Z) M .

(2)

that < mi1sses the 2-handles, and hence lies 1n M
Since TI. (H(Z), Co ) = 0 by 4.3, we can find a map f : D% —s W

with £ ( 3p2 ) =«xu/5, where (3 lies 1n C_. Simlarly, we
(2)

can assume that /3 15 embedded 1n M disjoint from all

1-handles and 2-handles., Again by 4.3, we can homotop

(2)

f rel 3D2 into M » and by 1.9 we can replace f by a locally

(2),

flat embedded disc D in M See Figure 15,

The introduction lemma 3.6 can now be used to replace
a neighbourhood of D2 by a complementary 2-handle and
3-handle pair (hz, h3) so that the attaching sphere of h,
is 'BDZ. h1 and h2 are then complementary and can be

cancelled by 3.4, This proves the lemma.”

Lemma (Elimination of p-handles, 2<p<w - 4)

Suppose given a handle decomposition of W on Mo with

no handles of i1ndex < p and lq q-handles for q 2> p
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Then if Mo is simply-connected, 2<p<w - 4, w 2 6
and Hp (W, Mo) = 0, we can find a new decomposition
with the same number of q-handles for q # p, p + 1, .

with no p-handles and with(1 - 1p) (p + 1) -handles.

p+l

Proof

We can assume the decomposition 1s nice (4.1) and
then we can compute H, (W, Mo) from the 1ncidence numbers.
Let hP be a typical p-handle. We show how to eliminate
WPt b

1

hP and the result follows by induction. Let e

+
the (p + 1) -handles and n = € (hf 1, nP). Using
3.8 we can add the (p + 1) -handles so as to reduce €i|nll
as far as possible. Finally, only nl. say, 1s non-zero ,
+
and s1nce Hp (W, Mo) = 0 we must have 2 1.

hp, hp+1 are then algebraically complementary, and the

result follows from lemma 3.5.”



Figure 15

Elimination of l-handles

Figure 16
Cobordism with boundary
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%5 The h-cobordism theorem

5.1

A cobordism (W, M, Ml) is an h-cobordism 1f both

inclusions Moc W, M. €« W are homotopy equivalences., In

1
this instance, the results of the last section lead to

the 1mportant result that any simply-connected h-cobordism,
of dimension greater than 5, i1s a product, To prove this,

we express the cobordism as a handle decomposition, and use

the algebraic conditions to simplify completely.

Theorem

Let (H", Mo’ Ml) be a simply-connected h-cobordism,.

Then if w 26, WE Mo x I.

Proof

By 4.2 we have a handle decomposition
o’ M t 1° We show how to eliminate all

the hl, so that W ¥ Co u C, and the result 1s proved. By

1
4.5 and 4.6 we can assume there are no 0O-handles or l-handles,
and, by applying these results to the dual decomposition,

that there are no w-handles or (w-1) -handles. Now use

4,7 to eliminate all p-handles, 1< p<w - 4, and 4.7 applied
to the dual decomposition to eliminate (w=-2) -h;ndles. Then

we have only (w-3) -handles left. But H"_3(H, Mo) = 0, which

1mplies that there are no (w-3) -handles left.”
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The relative case

By a cobordism with boundary, (W, Mo’ Ml), vwe mean

a compact w-manifold W, together with two disjoint (w-1)
-dimensional submamifolds M, M, of dW. Then

V=ocl (aw\(Mou Ml)) 1s a cobordism between auo andBMl.

See Figure 16.

W is an h-cobordism 1f M, = W, M, < W, Buoc. v,

1
2 Hl < V are all homotopy equivalences.

Theorem

Let (W, Mo' Ml) be a simply-connected h-cobordism

with boundary, and suppose that V £ QMO x I and w 2 6.

Then (W, V) ¥ (Ho, d Mo) x I.

Proof

Using techniques of Connelly [ 9] we can extend
QHO x I 2V toa collar on Mo. Then by 4.2 there exists
a handle decomposition on this collar. By 1.6 we may
assume that this decomposition 1s symmetrical, and it
only remains to observe that each step 1n the proof of
the absolute theorem goes through in this case, each
constructed homeomorphism being fixed on V, Hence

W = Co v C1 rel V and the result follows.”
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This chapter is concerhed with embeddings, F : W——> Q x I,
of a cobordism 1nto a product. In §1 we define critical
level embeddings, an equivalent notion in this context to that
of handle decompositions of a cobordism, (I § 4), and § 3

is devoted to existence under requisite conditions,

If W is a product M x I, and we know that the handle
decomposition of F cancels completely, then we can realise this
cancellation by an ambient isotopy of Q x I. The result 1is
that F becomes at least setwise vertical over M. These 1deas

correspond to I § 3, and are proved 1n § 4.

In the case that M 1s piecewlse linear, the way to achieve
such a cancelling handle decomposition 1s by relating it to an
appropriate triangulation, This is discussed in § 1l and
explains the statement of 3.6. When using the inductive
process 1n Chapter 111, we shall be concerned with preserving
such cricial level embeddings under the operation of subdivision
of the triangulation, and §2 deals with the lemmas required

for this purpose.

Again, as all the results of this chapter are for application

in the next, we deal with the relative case as much as possible.
§ 1 begins with an extension of the defimitions of I § 4 to

the case of a cobordism with boundary (as defined in I § 5).
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§1 Definition

Let (W, M, Ml) be a cobordism with boundary
(see 1§5) and V = c1 (QH\(HOU Ml)) the cobordism

between DMO and BMI. -

If we have a handle h attached to W by a map

£ :3BP 4 B¥P 534

with hndW e M,, then we call h a handle on the cobordism

(as in I §3) provided that h is of one of the following two

forms.

If h is a handle on W, with h n W< 1nt M) then
we call h an interior handle. If hn 3W < int My» but
thMl = f (238P x p¥ Pl 1) then h is called a boundary
handle. Note that in this latter case Bp x B"-p“)'c 1 1s

a p-handle h attached to B by fI » In the usual sense. See

Figure 17.

In these two cases, W' = WNuh is a cobordism with

boundary (W°*, Mo' Mi) where

My = cl‘_lw\(Mou V)] for interior h

cl [BH\(MO wV u‘i"l)] for boundary h,

that is, M! 1is given by the surgery defined by h, and

1
the cobordism V' between Mo and Mi 1s given by
v = \J for interior h

Vuh for boundary h
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Handle decomposition, symmetrical decomposition, etc.,

are now defined, as in I §4, for a cobordism with boundary.
We also require another type of decomposition. A

collared handle decomposition of a cobordism with boundary

(W, M Ml) 1s a decomposition of the form

W =‘(M° x I)uhlu (M(l) x IDuh,o ...uhru (l‘l1 X I)

2
where each h1 i1s a handle attached to the cobordism with

boundary
Wii-1) = Mo x Dehjo My x Dueeavh L0 M4y x D
and M(l) 1s obtained from H(i-l) by the surgery given above,

Let Q be a manifold and F : W —» Q@ x I an embedding

such that F! (Q x 0) = M, and Fl@x1)=M Then F

1.

is a critical level embedding if there exists a collared

handle decomposition of W such that F embeds each handle h1
in Q x t1 for some ti € I, and on each collar M(l) x I, F
1s the product of an embedding of M(x) 1n Q with a direction

preserving embedding of I in I.

The particular decomposition occurring in this definition

w1ll be called a handle decomposition of F, and F 1s critical

with respect to this collared handle decomposition.

Each h,, i1dentified with the image of F h1 : h1 —_— Q X t1

i

will be called a critical level of F,. See Figure 18.
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Now suppose that we have a piecewise linear structure
on W, and that we are given a piecewise linear handle

decomposition.

W= (Mo x I)doh,uh u...uhru(Ml x I).

1772

Then we form the associated collared handle decomposition

by iterating the following procedure. See Figure 19.

Suppose that M_ 1s an (m-1) -manifold with boundary,
and that we add a p-handle h = P X Bm-p to M_ x I with

attaching map
£f: P x B™"P — M_x1
Let M =(M_ x I)Ufh.

In the case when h 1s an interior handle, we have
f: 3P xB™"P — (int M) x 1. Let £ ( 2BP x 3™ P)

be T x 1, the attaching tube. Now

M= (M_x [0, s,])u((u_\g) x % 1] o x By o8P x B7P)
Let F be (Tf (IBP x % B™P) x [35, 1})\!f (8P x % Bm-p),
where W: M_x I —» M_ 1s the projection; this 1s a
p-handle added to M_ x [0, %\ . But (T x \_—‘5, I-S)uf(Bp x Bm-p)
collapses to (3T x [‘s, 1} Yu (T x %)u?, so that, 1f
a(h) and b(R) denote the attaching and belt tubes of the
handle h , the closure of ((T X [_55, ﬂ ) Ve (8P x Bm’p)}\i
is homeomorphic to ((T x %\a(i))ub(ﬁ)} x [’1, l‘l . This

homeomorphism can be explicitly recorded, 1t being the identity
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on 3T x [5;, ]-.J + Thus we have
M= (M_ x {0, %)uiu (M, x [»‘5, 11 ) where M_ 1s the
manifold obtained from M_ by the surgery defined by he

See {19] , from which this argument 1s taken.

We reduce the boundary handle case to an interior

problem by considering the manifold
S R ET (3M_x (1, 31 )
and the p-handle h' = BP x g™ Pl E1, 2} attached
int B' x 1 by £' 1 3BP x p™ Pl 1, 2y — M x1,
where
f* = [ f on 3BP x B™P
(£ I 8P x B"P1 x 1) x identity on

8P x B Pl

Let M' be the manifold so formed. Then applying the

above procedure to M*', h' gives a decomposition

to

0.2 .

M = (M x |o, 5;] Juh' o (M x {%, 1]), where h' 1s the

handle associated to h', Now define the boundary ha
h =h'n M to recover M = (M_ x {o, ‘ﬂ )UFU(M+ x %,
where M+ 1s the manifold obtained from M_ by the surger

defined by h .

ndle
1 )

y

If we have a triangulation K of W, then taking second

derived neighbourhoods of barycentres of the first deri

ved
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subdivision gives us the second derived handle

decomposition with respect to K. (Figure 20)., (Note

that these handles are either interior or boundary as
required.) By cancelling complementary pairs of
handles in this decomposition, we will obtain other

handle decompositions of W. (See I § 3),

Let K°<: K be a subcomplex, and suppose that we
form i1n this way a decomposition of W by cancelling
those handles determined by barycentres of simplexes
belonging to Ko. Let F 1t N—>» Q x I be a critical
level embedding with respect to the associated collared
handle decomposition. Then we say that F 1s critical

with respect to K ™\ K . (Ko may be empty).




Figure 17
A boundary handle on a

cobordism with boundary
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Subdivision

Suppose that F is a critical level embedding with
respect to some triangulation K. Is 1t possible to
ambient 1sotope F so that i1t 1s critical with respect to
any subd}vxsxon of K? This section deals with this and

related results.

Firstly, a preliminary lemma.

Lemma

Let W be a plecewise linear cobordism and let
Fi1 W —> Qx1I,%Q-= ﬂ. q-w >2, be a critical level

embedding with respect to the decomposition
W= (Mo x I)uhu(M1 x 1),

Suppose given a new decomposition
N = (MOXI)UhIU XX UhrU (MIXI)

where Uhx = h, Then there exists an ambient 1sotopy
of Q x I, fixed on (Q x 0) u(Q x 1), such that a& F 1s
a critical level embedding with respect to the new

decomposition.

Proof

By I 1.1 and I 1.10 we can assume that 8 and F are

plecewise linear.
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Let 771 Q x I —> Q be the projection and suppose
that F(h) < Q x t. We now use induction on the h1'

See Figure 21.

Suppose that F(hi) 1s attached to F(M_ x I) where
F|M_xI : M_xI — Qx (s, t] 1s the product of
an embedc‘iing of M_ in Q and a linear map of I onto |s, tl .
Let D be the (w + 1) -ball WF(h) x |22F, c] and let
N(D) be a regular neighbourhood of D mod cl (Im F \ D) 1n

int (Q x I). Define w-balls
D, = F(h,)u{mF(velt tube of h ) x [4(s + v), I}

ad D = {‘\TF(hl) x %(s + t)‘u {Wf(attachmg tube of hl)x {_‘f,(s*t), tll\
which are complementary in 3D, with BD_ =3D+ =3Dn 3 MD).
Since q-w 2 2, there exists an ambient 1sotopy 131 of M(D),
fixed on J N(D), such that /_’;; (D+) =D. Moreover, [51
1
can be chosen so that /&1 Fl {(M_ x I)vu h;S 1s critical
with respect to the associated collared handle decomposition

to(M_xI)uhi.

Define X = ﬁr O/sr-l O osee 0/51 . Il

We use this last result to prove the following

subdivision lemma.
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2.2 Lemma

Let Ft W — Q¥ x1,09Q=6,q-w232 bea
critical level embedding with respect to some triangulation
K of W, and suppose given a subdivision oK of K. Then
there exists an ambient i1sotopy « of Q x I, fixed on Q@ x O,

such that OcIF 1s critical with respect to oK.

Proof

Suppose that F 1s critical with respect to the

decomposition

69

determined by K, and let

W= (Mo x I)v H1 O ees \:Hs v (Ml x I)

be the second derived handle decomposition with respect to

o K.

Suppose that hJ is the handle determined by the bary-
centre of a simplex D = K, We can assume that Hx are

ordered so that the handles determined by simplexes 1n

cANJI(TA) are {H t ‘1“3&'

Define W = (M x I)\;h v (M X IDuseeuh \;(M( y X 1.

(3 (L

Then by uniqueness of regular neighbourhoods, there exists

an ambient isotopy o¢ of W such that for each 3
t

3
oy (M, x Do A H) | W

(»°
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Now 1ntroduce the collars o(-l (M(j) x I) and by collar
uniqueness (I 1.8) assume t.h:lt o(Il (Ho x 1) = Mo x 1 and
o Mo x I) = 1dentity, so that we have a decomposition

tl tr
W= (Mo x I)u 1l=11 H| v (M(l) X I)Veesu 12!:

and an isotopy o« of W such that

(- 4 U H = h
= 1
1 1 tJ_1+1 J

d = L
and 1 | M(J) x I identity

By Edwards and Kirby [10 }, the 1sotopy oc 'of F(W),
defined by 'x'toF = Fo of » can be extended to an ambient
t
isotopy /5 of Q x I, Now apply the preceding lemma,

2.1 r times to 3 F.”
Similar arguments lead to the following.

Lemma

Let F s W —> Qq x I, q~-~w22, be a critical level
embedding with respect to K \Ko, where (K, Ko) 1s a
triangulation of (W, Fol (9Q x I)), and suppose given a
subdivision o K of K. Then there exists an ambient
isotopy oc of Q x I, fixed on (Q x 0) v (3 Q x I) such

that«lF is critical with respect to ch\o-Ko.

f!-lﬂ'Hl 8] (M1 x 1)



2.4

46

If we further assume that W 18 compact, then o¢ has

compact support. /

Lemma

1

Let M, M, M;' , and T" ' be manifolds, with M = M_u M

1
and T = Mon M1 =" Mor\ P Ml’ and let K, and the subcomplexes

Ko’ Kl, L, triangulate M x I, Mo xI, M xI, TxlI

1
respectively. Let o K be a subdivision of K and
suppose that F : MxI——rquI, ‘ao=;6, q-n23,

is an embedding such that F Mo x I 1s critical with respect

to Ko' and F Ml x I is critical with respect to the handle

decomposition determined by L on T x I and crl(1 on (MI\T) x 1.

Then there exists an ambient 1sotopy « of Q@ x I, fixed on

Q x 0, such that ulF is critical with respect to o—K.//
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83 The Critical Level Theorem

The purpose of this section 1s to show that, under
appropriate conditions, we can ambient 1sotope a piecewise
linear embedding of a cobordism so that it 1s a critical

level embedding with respect to some triangulation.

In [ 19] » Kearton and Lickorish prove results of
this type, but either for interior embeddings of closed
manifolds, or for concordances of closed manifolds with
the ambient space a closed manifold. ke require results,
however, of a relative nature, but the techniques of [19]
can be extended to prove them. This section, then, 1s
based entirely on their work - 3.1 (a), 3.2 (a) being [19]
Lemma 1 and Addendum, 3.1 (b), 3.2 (b), 3.4, 3.5 and their
proofs being simple extensions of [_19] Lemma 1, Addendum,
Lemma 2 and Lemma 3 to the relative case. Likewise,
the proofs of Theorem 3.6 and 1ts Corollary are based on [19}

Theorem 3 and the remarks that follow 1it.

The statement of 3.6 is necessarily involved - the
theorem is used 1n Chapter III as a local piecewise linear
tool to provide critical level embeddings of topological

objects - and 1s based on Armstrong [ 3] observation (c).
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3.1 Lemma

Let (QS-I, M’B-l) be a piecewise linear mamifold pair,
m< q. Let the pair (Q, M) be formed from (Q_, M.) x I

1n one of the following ways:

- m-
(a) by attaching a p-handle pair HP = 8P x (B9 p' " P)
o o - -
to (Q, M) x 1, where (89 p. B P) 1s a standard ball
pair, and then adding a (p + 1) -handle Hw1 which

cancels the p~handle just added to Q. x I;

(b) by attaching a p-handle pair HP = 8P x (Bq-p, B™°P)
to (§_, M_) x 1, where (B3P, B P)=(397P~1 g™ P-1y (5! (0,1} ),
(Bq-p-l’ Bm-p-l) 1s a standard ball pair, and the
handle added to M_ x 1 1s a boundary handle with
BP x Bm-p-l x O attached to dM_ x 1, and then
adding a (p + 1) -handle HP*! Uhich cancels the

p-handle just added to Q_ x I.

Suppose that the attaching tube of Hp‘l does not
meet M. Then there 1s a homeomorphism h : Q- x I — Q
such that

(1) nlaw —>» Q_x 1 1s a critical level

embedding with respect to the associated
collared handle decomposition of M on

M_x I;

(11) h is the identity outside a regular neigh-

bourhood of (Q_ x 1)n(HE, Hp+1) reld ((Q-x 1) a(HPu Hpﬂ')] .
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Proof

As the handles added to Q_ x I cancel, we may write
HP = BP x (BYP, 8™ P) = BP x (1 x BYP7L, B™P) uhere

B Py x 3Pl ,ng WPl = pP*l 4 pPl o (pP 4 1) x B9TP7L,

If a1 and a2 are the respective attaching maps, and e, the

1
characté}isttc map of Hp, we may assume that
az((Bp x 1) x B97P 1y o el(Bp x (0 x B9 P7lyy put that

Hp+1 misses Hp. It may

otherwise the attaching tube of
also be assumed that

a,(8® x 1) x 5 9Py = e (B x 0 x 5 897, how
consider the following p-handle and (p + 1) -handle

attached to Q_ x [_0, ﬂ . See Figure 22.

F = {Bp X ([0.%] x %Bq-p-l)}ual{al(ﬁnp x [O,ﬂ x l5Bq-p-1)x (_‘5,1\}3
;3+1={pp+1 x %Bq-p-lgk)aziﬁz((Bp x 0093BP x I)x %Bq-p-l)x {%,i‘g .

These form a cancelling pair of handles, and Eb contalins

in 1ts boundary the handle for M in the associated collared
handle decomposition of M. Thus ﬁu Fﬂ‘ 1s a g-ball

D with boundary the union of two (q-1) -balls D_ and D, ,
where Da(Q_ x %) = D-, Let h:D_ x \_0,‘1‘} —y (D- x YO,’{X JubD
be a homeomorphism such that h(D_) = Dy and h 1s the i1dentity
on OD_ x [0, 351 and near D. x O, Let E be the gq-ball
wPu Hpﬂ' with the boundary E_u E,, where E. and E, are (q-1)

-balls and En (Q_ x 1) = E- .
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Now Ev(E_ x [%,1] ) NOE_ x [5,1] ) o (. x ) uDu(MaE)
and MaE N (MaD) oM n{(E_ x ¥) o (3E_ x [4, T} ).
Hence by standard results on regular neighbourhoods, the
closure of {Ex)(E_ x &%, 1])1‘\0 is homeomorphic to

{K(E_ x ¥)N\DJ)ou D+1 x [%, i} » the homeomorphism being
the idenfity on JE_ x [%, i} » and compatible with the
collar structure i1n the associated collared handle
decomposition of M. Thus h can be extended by the
1dent1ity on {(Q- N\ b)) x (o, ﬂku &(Q_ NED) x (5. l‘n .
and by means of the above homeomorphism on E_ x [%, il .

Then ht Q. x I —> Q has the required propertles.”

Lemma

Suppose that, in the statement of 3.1, the following
conditions hold in the respective cases:
(a) the (p*l) -handle Hp+1 is a standard pair

Bp+1 x (Bq-p-l’ Bm—p-l) which cancels the p-handle

o o
pair addea to (Q_, M.) x I;

(b) the (p+l) ~handle #P*1 15 a pair BP*1 & (Bq-p-l’ pm~P-1,

where (BIP71, g"P~ly S(pAP=2 ) gmP=2y , (! [o, 1)),
(897P"2, 3™ P2y 15 standard and BP'Y  x 8™ P72 x [o, 1)

m-p-2 x 0 attached

is a boundary handle with Bp+1 x B
to the boundary, and that Hp"‘1 cancels the p-handle pair

added to (Q_, M_.) x I.
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Then there exists a pairwise homeomorphism
hs(Q, M) x I —> (Q, M) and property (11) still

holds.

Proof

wP ; HP*! is an unknotted ball pair (case (a)) or
triple (case (b)) attached to Q. x 1 by an unknotted
face pair, or triple, respectively. Then results of
Zeeman [37}show that an h can be constructed of the

required form. h then simply "stretches”™ the original

collar pair over (Q, M).”

Lemma

Suppose that the conditions of 3.2 are satisifed.
Then there exists a homeomorphism h : Q_ x I —>» Q such
that

1) h"1 t M—>» Q_ xI1s a critical level embedding

with respect to the associated collared handle

decomposition of M on M_ x I;

(11) h is the 1dentity outside a regular neighbourhood

of (Q_ x 1)n WPy HP'1) re1d [ (q_ x 1) nwPu #7*L)].
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Proof

U Hp+1 is a standard pair

We can assume that HP
(89, 8™ = BP x B x (Bq-p-l, Bm-p-l) attached by a on
{38 x B x (3YPL, gmP LY (IR o 1y x (39PL, 5'“"”1)1 ,
where HP = 8P x{ {0,1] x (p3PL, B""p'l)l) and
WPl =@ x (-1, 0] ) x (897P7L, g™ Py, 1nopduce
the cancelling (p+l1) -handle and (p+2) -handle pair

YP*L

(8P x {-1, 0] ) x ( [%. f} X Bq-p-Z)

P2 P x [-1, o) x (%, x] ) x pa P2

~ ~
and let H£+1 = wP*l \\(Hp+lg, Hp+2). Then the pairs
~ ~
(Hp, Hp+1) and (Hg+1, Hp+2) are also cancelling pairs,
and they each satisfy the conditions of lemma 3,1.

See Figure 23. Applying 3.1 twice gives the result. /I

Let Q be a piecewise linear manifold, with boupdary,
and suppose that d is a collar of the pair (Q x 0, 3Q x 0)
1n (QxI, 3Q x I) withd (3Q x I) =2Q x I and
d d-l(Q x 1) a collar of 0Q x 1 1n Q x 1. Now,
given a handle decomposition of Q x I on d(Q x I)
together with a procedure for cancelling these handles 1in
pairs, we can construct a homeomorphism
h:QxI—>QxI, withh| (Qx0)u(3dQx1I)=1,

by stretching this collar over each pair of cancelling
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handles in the usual way. We say that an h so
constructed is associated with d and the given handle

cancelling procedure.

3.4 Lemma

If h and h* are homeomorphisms of Q x I to itself
both associated with a collar d, of the above form, and
a given handle cancelling procedure, then h and h* are

1sotopic keeping (Q x 0)v (3Q x I) fixed.

Proof

By induction on the number of pairs of cancelling
handles, it is sufficient to suppose that there 1s just
one pair, and that h, and h', are associated with collars
d, and d', respectively, and with this single cancelling
pair of handles, where d (Q x I) = d* (Q x I) and d-id'
1s 1sotopic to the identity keeping (Q x 0)uv (9Q x I)

fixed.

Let BY be the union of the two handles. See Figure 24.
Then Q x I = d(Q x I)uBY where B9ad (Q x I) = B9 L =38% a(q x I).

Ly d(Q x I) —>» Q x 1 be homeomorphisms sending

Let &,
B! to 389\ int BY! and which are the 1dent1ty outside

a regular neighbourhood of Bq-1 reI{BBq-lu (Q x 0)u(3Q x I)g .
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Then oc.%c'is isotopic to the i1dentity, for the isotopy
can be constructed firstly on the ball 8971 and then on
the regular neighbourhood of Bq-1 in d(Q x I), But
h= o« dand h' =’ d', for somecand oc* with the

-1

above properties, and d-l oc oc ' d* is 1sotopic to the

identity; hence h and h' are 1sotop1c.”

Suppose that Q x I 1s triangulated 1n such a way
that Q x I ‘\: Q x 0 by a cylindrical collapse (see
Zeeman|38)]). Then this collapse induces a cancelling
procedure for the handles of the second derived handle
decomposition with respect to this triangulation.

Suppose this second derived 1s chosen so that the
simplicial neighbourhood of Q x 0 1n the second derived

is Q x [0, t| for some small t. Let d be a collar of
Qx 0in Q x I, whose 1mage is the second derived
neighbourhood of (Q x 0) u(3Q x I), such that d|23Q x I
is the 1dentity, for simplexes A of Q x 0O, with A < 1int Q,
d] A xI 1s the product of the i1dentity on the first
factor and the linear map of I onto [p, 61 on the second
factor, and, for other simplexes A, d (A x I)< A x I,

See Figure 25,
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3.5 Lemma .

3.6

Let h 1 Q x1—»Qx I be a homeomorphism associated
with a collar d, of the above form, and a cancelling
procedure given by a cylindrical collapse. Then h
is 1sotopic to the identity keeping (Q x 0)uv (3Q x I)

fixed,

Proof

By 3.4, we can ssume that h is chosen so that
h (A xI)=Ax1I for each simplex A 1n Q x O. Now

construct the isotopy inductively over each A x I. Ul

Relative plecewise linear critical level theorem

Let (H", Mo' Hl) be a piecewise linear cobordism
with boundary, and let P be a compact piecewise linear
manifold of dimension w - 2, Suppose that P x I x I
i1s a piecewise linear submanifold of W such that

(see Figure 26)

(PxIXI)AJIW = (PxIx0) u (PxOxI)u (Px1xI)y ( dPxIxI)
(PxIxI)r\M1 =PxixI , i=0,1.
(PxIxI)ndM;, = (Px1x0) U (3P x21x1I) ,1=0,1.

Let Qq be a piecewise linear gq-manifold, and
F s W—>Q xI a piecewise linear embedding, with wgq

and Q compact, such that F-I(Q X 1) = Ml, 1 = 0,1,
-1

F (3Q xI)=PxIx 0, and F 1s vertical over P x O x 1.
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Let K, l(o) be a triangulation of (W, P x I x 0),
Then there exists an ambient 1sotopy < of Q x I, fixed
on (Q x 0)u(?23Q x I), and a subdivision (crl(.c—l(o),

such that o F 1s a critical level embedding with respect

1
to O'K\O'Koo

Corollary

Given £>0, ¢ and o can be chosen so that oc 1s

an £ -ambient isotopy.

Proof of theorem

Let c : Mo x I —> W be a collar on (Mo. 'BMO) in
(W, J3H) which agrees with the structure of P x I x I,
f.ee c(( x, 0, t) x IDci{x{x I x t for xeP, tel.
Such a collar exists by Rourke and Sanderson [,32] 4,21,

(Extending collars).

By Rourke and Sanderson's level-preserving lemma
[32 3 4,23 (or see Hudson's results in [133VI §3 on
compatible collars), we can choose to small enough, and

assume that F(c(x, t)) =(F (x, 0), t) for xe Mo, Ost st e

Now TTF(P x O x I) is a collar of WF(P x 0 x 0)<=?Q
in 'WF(MO)CQ, so, by collar extension again, there exists
a collar c¢' 19Q x [(_),S] — Q with
c' (MF(x, 0, 0), t) =TF (x, 0, t) for xeP and

Ost<b g1, We can assume that
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Im(c* )aTF(W) =TF (P x 0 x (0,8]). Define

e 1 (3Q x IDx (0,8 — Q x I by ¢"(q, s, t) = (c'(q, t), s),
then c”" 1s a collar of the pair (9Q x I, 3Q x3I) 1n

(@x I, Qx dI), and Im(c")nF(W) = F(P x I x [0,8) ),
with ¢"(MF(x, s, 0), t) = (F(x, 0 t) s) for

X€ePp, t E[O,S] ]

Triangulate Q x I, and subdivide K so that F 1s
simplicial and Q x [0, tJ » Im(c”), are subcomplexes of
QxI. Subdivide Q x I so that T : QxI —Q x 0
is simplicial, and take the further subdivision of K, ok,
induced by F. We can take the second derived of
Q x I 1n such a way that the simplicial neighbourhood of
(Qx 0)u(3Q xI) in this second derived 1s
@ x [o, t]])uc" (9Q x1I x [O,E] ) for some

O<t,<t_, and 0< €< S . Now the second derived

1
nei1ghbourhood of (Q x 0)u(®Q x I) 1s a collar d of the
pair (Q x 0,3Q x 0) in (Q x I,3Q x I) with

d((3Q x 0) x I) = 3Q x I. Since T 1s simplicial we
have a cylindrical collapse Q x I \s‘ Q x 0, which defines
a cancelling procedure for the handles of the second
derived handle decomposition of Q x I on Im(d). By 3.1,
3.2, and 3.3, we can construct a homeomorphism

h: QxI—> Qx1I associated to d and this cancelling

1

procedure, such that h™" F 1s 1n critical level position

with respect to e'K\c'Ko. Furthermore, h will be isotopic
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to the identity rel {(Q x 0)u (2Q x I)} by lemma 3.5.

Define o¢ to be this 1sotopy.”

Proof of corollary

Divide Q x I into a number of consecutive slabs
Q x \'_(s'ﬂ with Y-/A <€ , so that F(W) meets each
slab in a cobordism, and apply the theorem to each
slab in turn. Now all 1isotopires used are T , except,
possibly, on application of 3.5. When 3.4 1s used 1n
3.5, and hence 1in using 3.5, each A x 1 15 never
isotoped outside (star A) x I. Hence by taking a
suitably fine 1nitial subdivision of K, the corollary

follous.”
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Handle moves :

Viewing a critical level embedding as an embedded
handle decomposition, can we simplify the decomposition
by embedded handle moves similar to the handle lemmas
of I § 37 Since we will be looking at concordances,
and hence dealing with products so that we can arrange
for the decomposition to cancel simply, we only require
two lemmas - reordering and cancellation. Order here

1s 1n the following sense.

Suppose that F 1+ N —» Q x I 1s a critical level
embedding,with each critical level of F contained in
(int Q) x I. Now by a small ambient 1isotopy, we can
assume that the critical levels lie 1n distinct Q x t1’
for some 0< t1< cee <tn< 1. This gives a new
ordering for the handles in the handle decomposition

of F, determined by the order of the indices of their

levels.

In the following two lemmas we assume that W and Q
are plecewise linear manifolds and that F : W —> Qq x 1
1S a pirecewlse linear embedding. In theorem 4.3 we
revert to the topological situation. 4.1 and 4.2 first
appeared, with sketch proofs, in Rourke|:31]. as Lemmas

3 and S.
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4.1 Lemma (Reordering Handles)

Suppose q - w 2 2, and that we are given a handle
decomposition of F with handles hp, hr consecutive,
and with r < p. Then we can find another decomposition
with the same number of handles of each index, and the

same ordering except that ht precedes nP.

Proof

Let T3 Q x I /> Q be the projection. Suppose
that hp, hr, are embedded 1n Q x t, Q x t', respectively,
and that h' 1s attached to M x {t, t'} . Identify

Lt &

'\Thp, T\'hr, with BP x B"-p, BT x BY°T, respectively,

Note that ThP A M = BP x 3B" P and Wh¥AM = 3BT x B"° T,

The arguments of the proof of the standard reordering
lemma (see I 3.2) give us an ambient 1sotopy of M moving
"\Thrn M off T hP A M. Extend this 1sotopy to one of

Q with the same property. See Figure 27.

Choose 0 € 1 <1 large enough so that
(core h" AT hP) € 1int (M BT x 0). Let N be a regular
neighbourhood of M BT x 0 1n Q, such that NaM = ﬁf. By
general position there exists an ambient 1isotopy of Q,
with support in N, carrying (T core h') AN off Tifibre hp,
that is, an ambient isotopy of Q moving T core ht off

T fibre hP leaving M fixed.
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Choose a collar c. of dBF x dBY ¥ in M ~ThT,
and 0 < £ <1 small enough so that
(7 fibre WP) n(BF x €8¥°F) = ﬁf. Then the isotopy
of - h', shrinking B® x B¥"F fibrewise to B x g BY T,
extends to an i1sotopy of M oI hT simply by stretching ¢
in M, leaving M\ Im(c) fixed. Then by the covering
1sotopy theorem for polyhedra (see, for example, Hudson Lla] §9, or
Rourke and Sanderson [_ 32]6.24) there exists an ambient
isotopy of Q@ which extends the 1sotopy of M u Th'. This

gives us an ambient 1sotopy of Q, setwise fixed on M,

moving T h* off Ti (fibre hP),

Now let Nl' Nz, be regular neighbourhoods of hP
mod M, (0 x B" P) U (B x 3 B¥"P) mod (M v T hY), respectively.
Then both are regular neighbourhoods of (0 x BY Pyo(BP x 3B¥°P)
mod M, so that, by uniqueness, there exists an ambient
isotopy of Q, leaving M fixed, and moving N2 to Nl'
1.e. shifting Th¥ off ThP,

Let «t QxI—> Q x 1 be the composition of these
ambient isotopies. Note o 1leaves M setwlise fixed.
Define [5:QxIxI —> QxIxI by

/ﬁ(x, u, ) =| (x, u, 1) for (x, u, )€ Q x (o, tl x I

w(x, v.u-t),r) for (x, u, r)<Q x [t, t'] xI.
-t

(= (x, 1), 1) for (x, u, v)«Q xft*, 1} x I
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Then /$ is an ambient 'isotopy of Q x I, shifting h' such
that Tf/';.lhrn'\Thp = ﬂ. and leaving Im(F) setwise fixed

below hT,

Choose 0<s<t such that no other critical levels
of FlieinQx [s, t'] & We now push ﬁlhr down

to level s in the following manner; this proves the

result,

r w-r ;
Let D be the ball ,3,(B" x B" ') x [s» t']  and
N(D) a regular neighbourhood of D mod ¢l (Im(F) D)

inQx1I., Then the w-balls

D_ = (oﬁ(nr x B¥°T) x s}u {aﬁ(nr x 98" ") x [s, ty}

and D+={ot1(Bt x BV ) x t'ku{ocl(?Br x BYT) x (s, t':ps

are complementary in oD = D_ou D,, with

dD. = ED... =D N AN(D). Hence there exists an ambient
isotopy of N(D), fixed on "3N(D), moving D4 to D_, since
we have codimension three. Extend to an ambient
1sotopy of Q x I, replacing ﬂ:lhr in level t' by

Tf/ll ht x s 1n level s. (This process 1s similar to 2.1,

Figure 21). /
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4,2 Lemma (Cancelling Complementary Handles)

Suppose that hP and hp+1 are complementary handles
in a handle decomposition of F. Then there 1s another
handle decomposition of F, with the same number of handles
P ptl
of each index, except that h® and h are missing,

provxded‘that q-w22.

Proof

Let hp*l, hp, be in levels QI x t*, Q x t, respectively,
and be attached to M x [t, tﬁ o M_ x Y§, fl . Let
TW:Q x I —» Q be projection, and wnP'l) - AL B"-p-l,
-w(nP) = 8P x B¥°P, Note that

e P =38P x Pl Maw(nP) = 8P x 3 BY7P,
and ( 3Pl 0)n (0 xB" Py = {x} , the one point

} in the definition of complementary handles. Let N be
a regular neighbourhood of Bp+1 x 0 mod M. Then by general
position there exists an ambient 1sotopy of Q, fixed outside
int N, such that (int Bp+1 x 0)a(0 x B"°P) = ﬂL that 1s,

shifting T (core hp+1) such that Ti(core hp+1) n T(fibre hP) = {xf,

and leaving M fixed.

Choose >0 such that (3BP'! x £B" P 1) (0 x B¥ P)=txdx £ 8" P71,

Let X = (3P} x 0)o quxebw-p-l). and let N_, N_ be regular

17 "2
neighbourhoods of Bp+1 x & Bw-p-l mod M, X mod (_(0 x Bw-p)uMl,

respectively. Then Nl’ N2 are both regular neighbourhoods
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of X mod M, so that by uniqueness there exists an ambient

isotopy of Q moving N, onto Nz, and leaving M fixed. This

1

w-p-1

carries l!p"'1 X €B off 1nt W(fibre hP).

Now, using similar arguments to those of the reordering
lemma, 4.1, we can ambient isotope Q x I so that
'Tf(hpﬂ')(\ 1nt W(hP) = ﬂ » leaving Im(F) setwise fixed

below hp“b1 .

We now alter F by pushing hp"‘1 into the same level as
hP.  This level then consists of a “step"” - a disc
attached to M_ by a face - which we remove by pushing 1t
vertical. F will then have a handle decomposition of

the required form.

Let D be the ball BP*} x B¥"P°l x[t, t]  and ND)
a regular neighbourhood of Dmod ¢ 1 (Im(F) N\ D) 1n Q x I.
Then the balls D_ = (BP*! x B¥"P™1 y ) o (BP™L x28" P71 [t,c]
and D+ = (Bp'.'1 x Bw-p-l X t:')u(]l!w1 x B""'-p-1 x(t, t'.l )

are complementary in 3D = D_uv D,, with

AD_ = 3Dy =D AN(D). Hence there exists an
ambient isotopy of N(D) fixed on the boundary, moving D,
to D_. Extend to a ambient 1sotopy of Q x I, replacing
hpﬂ' inQx t* by Al;pﬂ‘ = n’(h"ﬂ) X t in the same level as

nP. See Figure 28.
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P Tptl

Since h', h are complementary, we now have

P . Tptl
T(h" o h" ") = E, a ball attached to M. by a face E- .,
Let E4+ be the complementary face to E. 1n 9 E, Then,
as above, there exists an ambient i1sotopy o of Q, with
support 1n a regular neighbourhood N(E) of E mod c1(M_"\ E-)
such that 0(1(E+)=£_. Define ﬂ:Qx1x1—90xIxI
by

[
/l(x, u, r) = |(x,u,r) for (x,u,r)e Q x LO,tl x 1

{ (s (x,Teu~t), r) for (x,u,r)eQ x [t,t7] x I
v-t

(ec(x,r), t) for (x,u,r)eQ x {t’, 1] x I

Then E_ x [t, ti and /Al{(E x t) u(E, x [t, e )} are
balls with common boundary, so move the latter to the former
by an ambient 1sotopy supported 1n a regular neighbourhood

of N(E) x [t,t.'] mod/ll (cl (_Im(F)\{(E x t) u(Ey x {t,t] )}])

See Figure 29,

F 15 now in critical level position, with respect to

nP*l

the original decomposition with hP and cancelled.”

We apply the preceding two lemmas in the next theorem
to simplify completely a cancelling handle decomposition of a
topological embedding F : M x I —>» Q x I, where M 1s a

codimension three piecewise linear manifold.
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4.3 Theorem :

4.4

Suppose that F t M x I —» Q x I is an embedding,
where M is a piecewise linear n-manifold and Q 1s a
topological q-manifold, which 1s a critical level
embedding with respect to a cancelling handle decomposition
of M x f. Further suppose that F-l( QxI)=Xx1I,
where X is a closed subset of M, and that F 1s vertical
over a neighbourhood of a closed subset Y of M that
contains X. Then, if g-n > 3, there exists an ambient
isotopy o« of @ x I, fixed on (Q x 0) v (3Q x I) and on

a neighbourhood of F(Y x I) in Q x 1, such that

x F(M x I) ={°(1 F(MxO)l x I,

Proof

Using I 1.1 and I 1.10, we can apply the proofs of
lemmas 4.1, 4.2 in the topological situation, 1n a manner

simirlar to that of 1 § 3.

As we have a cancelling decomposition, the result

follows.”

Remark

In the case that M is compact, we may assume that

the ambient isotopy o« of 4.3 has compact support. y
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CHAPTER 111

CONCORDANCE AND I1SOTOPY
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The final chapter is divided into two sections. In
the first we develop the proof of the main theorem (1.5)
from the results and techniques of Chapter II. This
theorem has as a corollary that concordance implies i1sotopy
for embeddings of manifolds i1n manifolds. To simplify
the proof, we have stated 1.5 as an absolute theorem - we
glve a more general relative result 1in § 2, together with
versions for embeddings of polyhedra in manifolds, and,
at the end of that section, for embeddings of polyhedra in
polyhedra. We also prove that given & > 0, there exists
a $> 0 such that, i1f two close embeddings of a manifold
in a manifold are concordant by a concordance within % of
the vertical concordance, then those embeddings are € -ambient

1sotopic.

We begin §1 with some defimitions, then state and
quote the proof of the Approximation theorem of Armstrong [3] .
This result is used in conjunction with an inductive application
of Proposition 1.2 to change topological concordances into

critical level embeddings, a major step of 1.5.
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§ 1 The Main Theorem ¢

Two embeddings f, g of M in Q are concordant 1f there
1s an embedding F : M x I —»> ( x I which satisfies
Flx0=Mx0, FI(QQx1)=Mx1, F|Mx0=f

andF'Mx1=g.

Let T': Q x I — Q x O be the projection. A

concordance F 1s regular over a subset U of M 1f the set

MF(U x I) lies in a compact g-dimensional submanifold

of Q wnich supports a piecewise linear structure. when
Q is a manifold with boundary we shall call a concordance

F allowable 1f F-1 (3QxI)=XxI, where X 1s a closed
subset of M, and F 1s vertical over a neighbourhood of a

closed subset Y of M that contains X.

Suppose that Q 1s a non-triangulable manifold (see the
Introduction), and let f be a space-filling curve f : I —> Q

(see | 11 -X ). Then the embedding F defined by

F H Iﬁ QxI
tb—> (f(t), t)

is a concordance of a point in Q which 1s not regular.
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However, Armstrong [ 3 ] has proved the following
theorem for allowable concordances, 1n codimension three,
so that we can ambient i1sotope such a concordance to be
regular over the members of some open cover. (In fact
Armstrong's proof is for q > 4, but q - n 2 3 works

equally well).

Theorem (Approximation; Armstrong [ 3 ] theorem 1)

Let Mn. Qq be manifolds, M compact and q-n 2 3,
and let F : Mx I —» Q x I be an allowable concordance,
Then there 1s an ambient 1sotopy K of Q x I, and a

covering of M by open sets U essy Us such that:

1' Uzl
(1) K i1sfixed on Q x 0, on 3Q x I and on a

neighbourhood of F(Y x 1) 1n Q x I;
(ii) K has compact support;

(1ii) KIF 1s regular over U,, 1 € 1< s.

Proof

We shall content ourselves with examining the case
where )M, BQ and Y are all empty, leaving the extra details

required for the relative case to the reader.

Since M is compact 1t is enough to find an ambient

isotopy K of Q x I rel Q x 0 and a neighbourhood U(x) for
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each point x of M such that Kll-‘ is regular over U(x)

for all xe M. Let {V.(} be a collection of closed
locally flat balls in Q whose interiors cover Q. By
Legesgue's lemma we can find a covering of M by balls

Bl’ BZ’ eoe, Br and a partition 0 = t°< t, < ...<t’.n =]

1

of I sothat if 1€ 1< r and1l € ) € n then there exists
1 ~

o wWith F(Bx X [tj-l' tJ‘ ) ¢ nt V“I x 1. Let B denote

b
]
a slightly enlarged copy of B1 (say B1 plus a collar) so

that this property remains true with Bl replaced by 31'

Consider first those points that lie in the ball B We

1.
shall show by induction that given k, 1 € kK < n, there

exists an ambient isotopy Gk of Q xI rel Q x 0 and a

nei1ghbourhood Uk(x) for each x € B, such that

1

k k
(1) TTGIF(U (x) x YO. tk] ) lies 1n a compact
q-dimensional submanifold of Q that supports

a precewlise linear structure, and

k A
(11) G F(B, x [cJ_l. t] ) coant vp(1 xI,1s14r
3
1€3)4%n.

The induction begins with k = 1. By construction

A
1\'!-‘(31 x [_0, l:l-\) lies in the interior of the ball V w

X
1

SO we may take G1 to be the identity and Ul(x) to be B, for

1
all x in Bl. Inductive step k — k + 1, The interiors of
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the sets Uk(x) form an open cover of Bl' Let

int Uk(xl). eoay int Uk(xs) be a finite subcover. By
assumption there are compact q-dimensional submanifolds

wl, ceey Hs of Q, each of which supports a piecewlise linear

structure, such that

(111) ‘ﬂ'G?F(Uk(xm) x [0, tk-_\) < int Hm for

1 €£mg s (We can write int Hm by collaring.)

Choose € >0 small enough so that altering Gk by composing
it with an €-ambient 1sotopy of Q x I will not destroy

condition (ii) or condition (111). We know that

k ~
G F(B1 X [tk’ tkﬂ) )€ int Vx I where V=1V

1 %

k+1

A

Give Bl

using the taming theorem I 1.3, perform an €-ambient
k
1

and V plecewise linear structures as balls, and,

isotopy H of Q x I rel Q x 0 such that H.G
k+1

F 1s pilecewise

1 B I 1 set G™1 = ug*,  »
inear on p 4 r'k’ r'k+1 . et = . ow let

1
X € B1 and suppose that x lies 1n Uk(xm). We shall
k+1
enlarge W so as to include TG, "F( =y x [tk, tk+1-X )
+
1n 1ts 1nterior., Set A = 1rc'1‘ IF(U'k(xm) X [_0, tk] )

o k+l
and X = \‘\'G1 F({x’g X ‘tk’ tk+1 ). Then A € 1nt wm

and X ¢ int V. Note that X 1s a finite l-complex 1n V,
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~
Let "m denote an enlarged copy of Hm formed by adding an
open collar"BHm x [P, 1) to its boundary. Let

h: Qx 00— Q x 0 be a homeomorphism such that

(a) h(X) 1s precewise linear in Hm near where 1it
meets me and h(X) meets BHm transversally

in a finite number of points.

(b) h s sufficiently small so that h(A) C int W oo

1 1

We now replace W by h "W .  Note that AC int h W_ and
that X meets a(h-le) in a very nice way. We can now
enlarge n'lwm to include all of X simply by adding a

finite number of l-handles (corresponding to thickening X)
and extending the piecewlse linear structure of h-lwm over
these, This process glves a compact gq-dimensional
submanifold W of Q which has a piecewlse linear structure
and which contains & U X 1n 1ts interior., So W contains
:+1 k+i] ) in 1ts 1nterior for some
neighbourhood U(x) of x i1n M. This completes the

W6 F(U(x) x [0, t

inductive step.

In this way, at the end of the 1induction, we have an
ambient 1isotopy G" and a neighbourhood U(x) for each point
n

x of Bl such that G1
Let int U(xl), seey int U(x, ) be a fimite subcover of

F 1s regular over U(x) for all x € Bl.

B1 chosen from the family {Lnt U(x)} « We now move on

and deal with points of B, in exactly the same way. Any

2
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1sotopies used are made small enough so as to preserve
regularity over U(xl), eosy U(x,y ). In other words,

in dealing with points of B, we respect our work over B

2 1°

The process is complete after r steps. !
We use this result to change concordances 1nto critical
level embedd).ngs with the aid of the next proposition.

First we need a technical definition. Let Koc K be

complexes, then define K restricted to [KJ. K I (ll\O[ ),

to be K .
o

1.2 Proposition

Let M" and Q"l be manifolds, q-n 2> 3, M with a piecewlse
linear structure, and let F : M x I —» Q x I be an allowable
concordance., Let Moc M be a piecewise linear submanifold
with Y < Mo’ h a handle, and M = Mou h, with N a regular
neighbourhood of the attaching tube of h 1in Mo. Let Kk
triangulate M x I, waith M x 0, M x 1, Mo xIl, hxI, YxI
and N x I as subcomplexes and suppose that F i1s regular over
h v N, and F l Mo x I 1s critical with respect to
(K Mo x ID)N\(K | Y x I Then there exists an ambient

1sotopy o¢ of @ x I, and a subdivision o K of K such that:

(1) o¢ is fixed on (Q x 0)u(?d3Q x I), and on

a neighbourhood of F(Y x I) 1n Q x I;
(i1) oc¢ has compact support;

(111) och 1s critical with respect to oK\(oK l Y x I).
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Proof

Since F 18 regular over h v N, there exists a compact
q-dimensional submanifold A of Q, which supports a pirecewise

linear structure, such that ‘T\'F(&nuN] x I) < 1nt A.

We can assume that F ' Mo x I has critical levels
Hi inQ x {c& s 1= 1, eeey S, With <, < c1+1 given 1.
Choose {t]} by to = 0, ts =1, and ¢; < t1 < C1+1 for
1i=1, «e¢, s-1. Then each Q x [tl, t“_a contains one
and only one critical level, F(Hx)’ which can be of two

typest
either (I) Hin (hxD# g
or (II) H . n (hxID= g,

From now on we work in A x I, keeping 9A x I fixed
= extending all isotopies to Q x I by the identity will
give us the result. Let T be the attaching tube of h,

then N =T x J (where J = [0. 11 ) with 9T xJ < QMO.

Consider F ,( [hu N] x 0) @ [huNl x 0> A x 0,
By I 1.4, there exists an £ -ambient 1isotopy ﬁ of A x 0,
fixed on oA x 0, such that [SIF '( ‘_huN} x 0) 1s
precewise linear. Then the ambient 1isotopy /Sx 1 of

A x 1 preserves the properties of F, so let F = (/51 x 1)F.

We wish to deal with the first slab, Q x [to' tl-] .

Firstchoose t', t" by c.<t'<t < t" < ¢, and let V be
1 1 2
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the piecewise linear submanifold of N x I,
V=(NxI) n?l (A x ‘-to’ t"] ). Then V 15 a
cobordism between V_ = (N x IDaF -l(A x t ) and
VI =(NxI)n F -I(A X t") of the form

Ve x [e, o) doand oy x [e, ] 0.

Case (1)

Hln(h x 1) ﬁﬁ » SO H1 18 associated to the
barycentre of a simplex of K' lying 1n T x I. Hence
Hya (T x (6, 1] x 1) = £ for some [8, i, Let
P=V 0 [(T x 1) x I} and choose a neighbourhood P x I
in V_, with JP x I = DV , such that P x I<V (T x [§, 1} x D).
Then F ' ViV—AXx [to' t" is vertical over P x I, so
we can define P x I x [-r'o' t”"l < V with
?‘(lex \_to. t':_\ )t Px1Ix l.to’ t” —>Ax[to, t';}
piecewise linear. Now, by I 1.4, there exists an
€ -ambient 1sotopy { of A x t", fixed on P x I x t", and

with support in a neighbourhood of V.\(P x I x t"), (and

1
hence keeping F (‘.Mo\ N_] x I)a (A x t") fixed), such that
b/l? 'Vl : Vl —> A x t" 1s plecewise linear. Define the

ambient 1isotpy \—/ of A x1 by
?t = Xt xlonAx[t'. 1-_\

Ysr onA x{ (1-s)t_ + st'} » SE [0. 1]

1 onAxto
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Then Y preserves all other critical levels of '!?, and
Xl Fl {VOU(V1 x [t', t"] Ju(Px1 x [to' t"] )}15 a

plecewise linear map into A x [to, t"].

We now wish to make X’I? (hxI)n(A x tl) a plecewlse
linear submanifold of A x tl. Consider the closed subset
of [huN] x1I,c= ([hud] xIn (YlF)'l(A x t)),
and let U be a regular neighbourhood of the simplicial
neighbourhood of C 1n [h U N] x I. By subdivision of K,
1f necessary, we may assume that Yl?(u)cmt A x (t', t™),
and by I 1.4 and general position, we can E -ambient 1sotope
A x [t', t") , leaving the boundary and V1 x ‘_t', t':] fixed,
so that —Y-IF l Ut U—>Ax [_t', t"] 1s pirecewise linear,
and also maps U piecewise linearly transversal to A x tl.
Hence we can define a piecewise linear submanifold of
[h v N]x I, W=([heN] x I)n(?l?)-l (A x [_to, tl] ),
which 1s a pirecewlse linear cobordism between
H1 = ([huoN]x Da (?1?)-1 (A x tl), 1 =0, 1, with
Px1Ix [to’ t{] as a plecewise linear submanifold. Also
S/I'P-‘ |H t W — A X [to’ tl] can be assumed piecewise
linear by I 1.4, so let B€A be a regular neighbourhood
of T\'Yl?(w) rel Yl? (PxIXx to) not meeting
'T\'(YI-F. (Mo x I)n (A x [to, tl] )), and consider
371 F l W:W—=>Bx [-to' tI] . Then, applying 11 3,7

we can assume that ?1? I W is 1n craitical level position
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with respect to (o‘K}H)\(cK PxOx [to, t]] ) for
some subdivision oK of K which has W and P x 0 x [to' tl-_\

as subcomplexes. Call this last CONDITION I,

Case (II)

Hln‘(h x1I)= ﬂ. We can assume that
W(ER x Da@x [¢, '] » NTF(H) = B oo (0

For, if not, choose to< ro< co<r <t" so that

1
T(F (n x Da@x [, rl] )) o TECH) = 0

and apply the following argument to each of the slabs
Q x [to. rO], Q x ‘_ro, rJ s Qx [rl, t"] » as
described 1n the induction process later.

Now F l ViV—AXx [to' t;"] 1s vertical over
P = Von (T x I) and hence defines a precewise linear
submanifold P x [to, t"] of V, and
F | (P x [to, t"] ) ¢+t P x [to' t"] —> A X Lto, t"] 1s
pirecewise linear. Using the techniques of case (I)
we can assume that F (h x I)n (A x tl) 1S a plLecewlse
linear submanifold of A x t.l, and can define the piecewlse
linear submanifold of [hu N} x1,W=(hxI)nF -I(A x (_to,tﬁ),
which 1s a piecewise linear cobordism between
Hi = (h x I)nF -I(A X ti)’ 1 =20, 1, wath P x [to, tI] a
pirecewise linear submanifold of AW Again, by I 1.4,
F|W:W—AX [_to, tI] can be assumed plecewise linear,
and (using (*) to define B as i1n case (1)) we are 1n a

position to apply II 3.7, except that F 1s not vertical
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Over a neighbourhood P x I of P in “o' However, this

can be remedied by uniqueness of collars, so that 11 3,7

applies, and we have F I W 1n critical level position with

respect to ( oK I W)\ (oK l P x {t ’ t] ) for some sub-
o’ 1

division oK of K, which has W and P x (-tx’ tl] as

subcomplexes. Call this last CONDITION II.

We now use the above procedure (modified for
A Xx (ts' 11 ) 1n conjunction with II 2.2, i1nductively over
the slabs A x [tl, tiﬂ] to give us a single subdivision
oK of K, and an isotopy [5' of A x 1, so that {B'IF satisfies
a condition of the form of CONDITION I or CONDITION 1I 1n

each slab.

Further subdivide K, so that, for each slab of type I,
oK | W 1s the subdivision determined by the following
lemma, (1.3). Then on application of this lemma to each
slab in turn we have F”IFI Mo x I critical with respect to
Ko\ L, and /5'15‘ | h x I critical with respect to the
collared handle decomposition determined by KO onT x I,

and oK on (h\T) x I.

Using a combination of II 2.3 and II 2.4 now gives
the result, except that /S't I A x 0 1s not the i1dentity.

Define o¢ by

o = [( /s' | A x 0)-1 x 1]{5'
/]
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Lemma

Let V, V', W, Z be piecewise linear cobordisms,
with W = VuV*', Z=VaV' = 39V n 9V', and let
V= (Vo x Do hu(V1 x 1) be a collar handle decomposition
of V. Let K triangulate W, and suppose that
Fi:W—sQxI, 9Q= ﬁ{ » 1§ critical with respect to K.
Then there exists a subdivision o K of K, with V°* and
Z as subcomplexes, and an ambient 1sotopy o« of Q x I,
fixed on Q x 0, such that OCIF V 1s critical with respect
to the given collar handle decomposition, andccll-‘ l (V'\2)

is critical with respect to the collar handle decomposition

determined by o K.

Note

If 3Q # @, the lemma still holds, provided that
F—l @QxI)=PxIc(3VN2Z)and, :f LK triangulates
P x I, then we assume that F 1s critical with respect to

KN\ L.

Proof

Choose o K as follows : so that V, V', h and core (h)
are subcomplexesy so that Vo x1I \s. Vo x 0,

v, x I v, x 0, h \$ (core (h) u attaching tube (h)) and

1 1
(core (h)\&) \§ O core (h), where A 1s a top-dimensional

simplex of core (h). Now II 2.2 applies to put F 1in
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critical level position with respect to oK, and then

we use II 4.1, 1I 4.2 to cancel those handles determined

o
by (oK | VN\A. Now simply adjust F| V to give the
result. /
Remark

Notice that all isotopies in the proof of the
proposition are € ; except for those given by the use of
the subdivision lemmas II 2.2, II 2.3, II 2.4, and that
given by lemma 1.3 above. By introducing more slabs
Q x {tl. ti+i] we control this last i1sotopy at least
in the vertical direction, and provided the triangultion
K 1n the statement of the proposition 1s fine enough, all
these isotopies, and hence o€ , can be assumed € , (In

the subdivision lemmas, no simplex A of K 1s moved outside

star A\ ).

Theorem

Let Hn, Qq be manifolds without boundary, M compact
and qg-n 2 3, and let F : M x I —= Q x I be a concordance.
Then there 1s an amblent isotopy o« of Q x I, with compact

support and fixed on Q x 0, such that ¢ _F is vertical.

1
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Proof

Cover M by balls Bl, esey Br' He wish to shcw
1nductively that we can make F vertical over a neighbourhood

of Bl v Bzu o uBk = Ak. Then, when k = r, we have F

vertical over M,

S0, assume that we have an ambient 1isotopy “k of

Q xI rel (Q x 0) such that “;.(F 1s vertical over a

neighbourhood Uk of Ak' The 1nduction starts by taking

U, =4 = f, and «® = 1dentity, in the following. Let

B be a locally flat ball in M with Bk+1c int B, By I 1.1

we may assume that FO(B) 1s standard i1nside a chart E of

Q x 0, Now Otl;F (Ak x I) and ocll(F ( [B\mt Uk] x 1)

are disjoint compact subsets of Q x I. Therefore, there
exists a neighbourhood O of dl;F (Ak x I) 1n Q x I disjoint
from o('ltl'-‘ ( [B \ 1nt Uk] x I). Let V be an open

neighbourhood of Fo(Ak) 1in Q x 0 such that Vx I < 0.
Triangulate E with FO(B) as a subcomplex, and subdivide

finely enough so that the simplicial neighbourhood S of

l-‘o(Ak n B) 1n E li1es 1n V. Let N be a second derived
neighbourhood of S inside V, Define
X= B\ Fo-l (1nt N)

and Y (Q x 0)\ [1nt N uFo(Ak)l ’

and consider the concordance ccll‘F t Xx1I—-—-=>YxI.



Note that X has a plecewise linear structure, and 1s a
top-dimensional submanifold of B; also,cz:F 1s vertical
over a neighbourhood of Fo-l (dY). Now make use of

theorem 1.1 to find an ambient 1sotopy /3 of Yx I and

an open covering of X so that /310(¥F 1s repgular over each
member of the open cover. Since /3 has compact support

and is fixed on (Y x 0D u(dY x I) we can extend 1t by the

i1dentity to the whole of Q x I.

Let L be a triangulation of X so that Fo-l('BY) 1s
a subcomplex, and let Xo = N(Foﬂl('aY), L"), Then X
has a second derived handle decomposition with respect
tol

x=xouh1u oooUhso

‘ t
"
| Let Xt a xd°(1£1ht)‘ then Xt are subcomplexes of L".

If ‘I‘t is the attaching tube of ht' let Nt be the simplicial

} neighbourhood of Tt in X

t-1
Slnce/31d::F 1s vertical over a neighbourhood of
Fo-l( 9Y), we can choose L fine enough so thatﬂlo(:[-' 18
vertical over Xo, and each (ht ) Nt) lies 1n some member
of the chosen open cover, We now wish to use
proposition 1.2 inductively over the xt. For this we

require the ambient 1sotopy at each stage to be & , 1in

order to preserve regularity over later handles. This we can
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do, by remark 1.4, provided that we choose a sufficiently
fine 1nitial triangulation K of K x I, with each of

Xx0, Xx1, Xt x I, ht x I and Nt x I as subcomplexes.
Thus, when t = g, we have an ambient isotopy of Y x I
moving f31<i:F into critical level position with respect

to oK\ (oK | Xo) for some subdivision o-K of K. By

I] 2.3 we can assume that o K 1s chosen so that

XxI \E X x 0 cylindrically. Then, since this provides
a cancelling decomposition, theorem 1I 4.3 applies, with
the result that the concordance becomes setwise vertical
over X x 0, Hence the concordance now lies inside E x I,
and we can apply Armstrong [ 2 ] theorem 4 to make 1t

+
vertical over X, Defining xr 1 to be °(k composed

+
with the above isotopies provides the result, since u} 1F
1s vertical over B and over a neighbourhood of Ak' and

hence over a neighbourhood of A (Note that all

k+1*
1sotopies of Y x I have compact support, and are fixed
on (Y x 0Ju( 9Y x I), so they can be extended to Q x I

by the 1dent1ty.)”
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Further Results

Relative theorem

The proof of 1.5 1s a relative proof, and as such
can be used in a straightforward manner to prove the
following. See p.67 for the definmition of an allowable

concordance, (and Y).

Theorem

Let M®, Q9 be manifolds, q-n > 3, and let

F

MxI—Qx 1 be an allowable concordance., Suppose
cl (M \ Y) 1s compact. Then there 1s an ambient 1sotopy
o« of Q x I, with compact support and fixed on

(Q x 0) u(3Q x I) and on a neighbourhood of F(Y x I)

in Q x I, such that «xlF 1s vertical. y

Corollary (Concordance implies Isotopy)

Let Mn, Qq be manifolds, qg-n » 3. ILf f, g ¢+ M —» Q

are embeddings which are allowably concordant, and 1f
cl (M\\Y) 1s compact, then f, g are ambient 1sotopic

keeping 3Qu f(Y) fixed.

Proof

The corollary follows from 2.1 by considering

«|Qx1. P
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Polyhedra in manifolds

Theorem

Let Q¥ be a manifold, and (X, xo) a polyhedral pair,
with cl (X \ Xo) compact and dim (X \\Xo) = n.
Let F: XxI —» Qx 1 be a concordance, which 1s
locally glat on the simplexes of some triangulation K
of X x I, and for which l-‘.1 (W x1I)= xo x 1. Suppose
further that F 1s vertical over some neighbourhood U of
a2 closed subset Y of X that contains Xo. Then, 1f
q-n 2 3, there is an ambient 1sotopy o of Q x I, with
compact support and fixed on (Q x 0) v (Q23Q x I) and on
a neighbourhood of F(Y x I) 1n Q@ x I such that « F 1s

1

vertical.

Proof

For simplicity we consider the absolute case 3Q = f,

U= ﬂ. The relative case follows similarly.

The proof 1s by induction over the skeleta K' of
K |x x0,1=0,1, «es, no Applying 2.1 to the
O-skeleta, |K°| , We can ambient 1sotope Q x I so that
F 1s vertical over |K°| . Now suppose we have ambient

isotoped Q x I so that F 1s vertical over |kr|. Then
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by I 1.4 and Hudson [ia], theorem 1.1 (concordance
implies isotopy for piecewise linear embeddings of
polyhedra) we may assume that F 1s vertical over a

regular neighbourhood N of |Kr| in X. Let N* be

a neighbourhood of Fo( |Kr| ) 1n Q such that

FO-I(N'); int N and consider 1-"| c1( |Kr+1|\po'1(n')) x I,

an embedding into cl1(Q\N') x I,

On application of 2.1 to this concordance, we

obtain F vertical over lKI+1 . The proof follows. p

As with 2.2, we have the following corollary.

Corollary (Concordance implies Isotopy for embeddings

of Polyhedra)

Let X be a polyhedron,Q a manifold and £, g : X — Q
two embeddings which are concordant by a concordance F.
Suppose that X, Q, F satisfy the conditions of theorem 2.3.

Then f and g are ambient isotopic keeping dQu f(Y) fixed. P,
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€ -concordances

We recall the definition. A concordance

F

MxI—>QxIis an € -concordance 1f
NeF :t MxI —>Qx I is an & -homotopy, that is, given
any (x, t) e M x I, d(WF(x, 0),wF(x, t)) <€ , where

M 31 Qx 1 —>0Q 1s the projection onto the first

factor.

Corresponding to 2.2, we can ask whether two
embeddings which are § -concordant by an allowable

concordance, are in fact € -ambient 1sotopic.

The proof of 1.5 is almost sufficient to answer
in the affirmative. The extra work required 1s a
version of Rourke's technique in L’il] which straightens
concordances inductively over handles. This allows
us to work locally, and hence to restrict the size of

ambient isotopies.

We first give an absolute theorem.

Theorem

Let Mn, Qq be manifolds without boundary, M compact,
and q-n > 3, and let f, g : M —» Q be embeddings. 1lhen,
given £ > 0, there exists a © > 0 such that 1f f, g
are concordant by a S -concordance then f, g are € -ambient

isotopic.
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Proof

The general argument is that of the proof of 1.5
- we i1nduct over a covering of M by balls., Here we

give the inductive step, using the notation of 1l.5.

We can folllow the proof of 1.5 to $-ambient
isotope the given S-concordance Fe:XxI—>YxI
to a critical level embedding which is 1n turn a
2% -concordance. To do this we use remark l.4, and
notice that the ambient 1sotopy /S » occurring as a result
of the application of 1.1 1s not required - a ®-concordance

1s by nature regular over some open cover.

When we apply II 4.3 to make F setwise vertical,
since we have a cylindrical collapse, [5 x 1 1s not moved
outside star (/) x I for any simplex A\ of X. Hence,
if X' 1s the composition of all i1sotopies to this point,
KkY!(l) x I 1s 3% -ambient, also XiF 1s setwise vertical,

lying 1n E x I, and 1s 1tself a 3% -concordance.

We may assume that Fo 1s plecewlse linear, for, 1if
not, let ¥ be a & -tamng of F,: X— E; apply
Cx1ltoE x I, then, at the end of the proof, compose
with ‘171 x 1, We use induction over the handles ht of

X, making F vertical over each xt-l in turn; suppose that

F is vertical over xt_l.
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By theorem 2.1 (or theorem 4 of Armstrong C2])
we can assume that F is vertical over core ht' Using
I 1.3 let the ambient isotopy ¥ of E be a $-taming of
F1| ht keeping F (core htu xt-l) fixed, and define the
ambirent isotopy ? of Ex I by ?s(x, r) = Y (x, ts).
Then SFIE | ht x 1 1s precewlse linear. Now use
I1.3 again to S-tame YIF ‘ ht x I leaving
Fo(ht),ilel(ht) and F( {core ht\J xt_l] x I) fixed.

We now use Rourke's techniques in this piecewlise linear
situation. By relative regular neighbourhoods, and
1sotopy extension, we can assume that F 1s setwlse
vertical over ht (we shall omit if for simplicity), and,
further, that F is also setwise vertical over a collar
neighbourhood htg;( th x I) of h.. We wish to use
the Alexander trick (p.ll) to straighten F on this collar

neighbourhood, finally extending by 1sotopy extension.

Now F 1s concordant to Fo x 1 by the concordance
G: (XxI)xI—(YxI)xI, which 1s vertical over

(X x I), defined by

r

t-1

(ys v+ r(l - u), v(1 - 1) when s 2t

l-u-+yv l-u+yvy

G(x,u,v)

F(x, u - v)

where (y,r)

(Fo(x), u, V) when s €t ,
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see Figure 30, and so Fo (Fo-1 x 1) is concordant to

the identity via Go (Fo-l x1x1l). Hence we can

define a map H : [htu (®n, x I)] xI — [ht;J(bht x Ij] x1
- -1

by HI ht xI-= Fo(F° x 1)| ht x I and, for x e)ht,

H ((x x v) x u) = Go (Fo-l x1x1)(x xuxv), sothat

HI(Bhtxl)'-'l.

Applying the Alexander trick to H, with the cone
point chosen 1in (core ht) x 1 gives an 1isotopy (3 of
[htu;('aht x I)] x I, leaving the 1ntersection with
xt_1 x I fixed, moving H to the identity. Then
(Fo'x 1 x 1)76 moves F to Fo x 1 on ht’ and, by isotopy
extension, we have an ambient isotopy of Y x I, with

support in a regular neighbourhood of ht x I rel (X xI),

t-1
and hence preserving previous work, which makes F vertical

over xt.

In thas way, at the end of the induction, we have

an ambient 1sotopy o« of Y x I such that o _F 1s vertical,

1
and u:|t x 1 1s an €& -ambient i1sotopy for suitably chosen

£ .

This proves the inductive step of 1.5 for this case.
The remainder of the proof is that of 1.5, plus corollary
2.2,
/)

A relative result follows by similar argumentss:
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Theorem )

Let Mn, Qq be manifolds, M compact and q-n > 3,
and let f, g ¢+ M —» Q be embeddings. Then, given
€ > 0, there exasts a ® > 0 such that, 1f f, g are
concordant by an allowable S-concordance, then £, g

are € -ambient isotopic keeping 9Qu f(Y) fixed. /
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Polyhedra in Polyhedra

Let X be a polyhedron. For each x € X we

associate an integer I(X, x), the intrinsic dimension

of X at x, in either of the following equivalent ways,

as in Armstrong [1 ].

(1) I(X, x) 1s the largest integer t for which
there is a cone V, with vertex v, and an

embedding f 1 (Dt xV, 0xv)— (X, x).

(i1) There is a triangulation of X with x 1in
the interior of a t-simplex 1f and only 1if

t<1l (x. X)o

(iii) Let L be the link of x 1n X (defined up to
piecewise linear homeomorphism). Then
I(X, x) 1s the largest t such that L 15 a

t-fold suspension.

(t) to be the set of all

(t) is

Define the t-stratum X
points x € X such that I(X, x) = t, Then X

an open manifold of dimension t. See Figure 31.

Define the intrinsic t-skeleton x‘ to be the set

of all points x € X with I(X, x) <€ t. Then

= U x(s)

=s Y. s and xt 1s a polyhedron of dimension t,

since, from (i1) above, Xt equals the 1ntersection of
the t-skeletons of all triangulations of X. See

Figure 31.
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We shall be concerned with topological concordances
of polyhedra, F ¢t X x I —» Y x I, In order to apply
the preceding manifold theory, we require that
F-l (Y x 1) = xi x I for some 1 € ) - 3. This
condition 1s equivalent, when X and Y are manifolds with
boundary, of codimension 3, to requiring that
FL(3¥xD =gor XxI-that 15, F, and F, are
interior embeddings, or proper embeddings, which are
concordant through interior, or proper, embeddings,
respectively. We also need to impose a local flatness

condition - note that F I ({J) x I) 1s a non-compact

subpolyhedron of X x I.

Theorem

Let X, Y be polyhedra, X compact, and suppose that
Fs: XxI—YxI1s a concordance for which, given j,
Fl (Y3 x 1) = x* x I for some 1 <3- 3 Suppose also
that F | FL¥? x D Fl P x 1) — ¥ &1
is locally flat on the open simplexes of some triangulation
of X x I, for all j3. Then there exists an ambient
isotopy o« of Y x I such that otlF 1s vertical.

Proof

The proof is by induction over the intrinsic skeleta
of Y. The initial step of the induction 1s also
covered by the following argument for the k —> k + 1

step.
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Suppose l'-‘-l'(Yk x 1) = xP x I, and suppose that we

have consttructed an ambient 1i1sotopy ock of Y x I such

!

that «:F 1s vertical over Xp. We have to construct an
+ +
ambient 1i1sotopy 05 1 of Y x I such that xll( 1 F 1s

kM‘xl)“){qxl,

vertical over Xq. where F_I(Y
P S q S k‘ - 2.

4
If p=q, let o(k 1 =ock.

If p € q, we restrict our attention to
o(;"l“ Ix1:x9x1 — Yk+1 x 1. This concordance
1s vertical over xP and maps XP x I 1nto Yk x 1. Let
N be a regular neighbourhood of Yk in Yk‘ﬂ, and let No

be a regular neighbourhood of xP 1n x9 such that

k
o«
1I-‘(No x I)< (int N) x I,

We now use induction over the components of
N \Yk. to put «:F vertical over No' Let U be one

+
such component. Then V = ¢l (U, Yk 1) 1s a precewlse

linear manifold with boundary (a subpolyhedron of Ykﬂ).

and P = FO-I(V) n N, 1s a closed subpolyhedron of N_,

so consider xl.:F PxI :PxI—>VxlI. This 1s

4 concordance of a polyhedron 1n a piecewise linear

manifold, for which (ea(l{F)"1 (dvx1l) = Po x I for

some subpolyhedron Poc P, and, since Poc Xp, o(ll( F

1s vertical over Po.
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K
lF
linear embedding into V x 0. (For, 1f not, by I 1.4

We may assume that o P x 0 1s a precewise

let ¥ be an ambient 1sotopy of V which tames

o(:F | P x 0; apply T x 1 to V x I, and compose
{1 x 1 with the final 1sotopy of V x 1 given below.)
Then o(ll‘F I Po x I 1s a precewlse linear embedding into
dV x I. By I 1.4, let Y: VxI—>VxI bean
ambient 1sotopy fixed on QV x I such that

h’l( 0(‘{!-‘ | P x 1) is precewise linear. Define —f , an
ambient 1sotopy of V x I, by b’t(x, s) = {(x, st) for
(x, s) €V xl, Then
YockFl[_(PxO)u(le)u(P xl)} 1s a

| A | o

pirecewise linear embedding into V x I. After another
application of I 1.4, we have c(l;l-‘ | P x I a precewlse
linear embedding into V x I, and so we can apply Hudson's
theorem (ha]theorem 1.1) to give an ambient 1sotopy of
Vx I, fixed on <dV x I, which makes o(kl-‘ vertical over

1
+
P. Extend to Yk 1 x I by the 1dentity. Proceed
thus for each component of N \Yk, ana define [5 to be
y<*1
the composition of all these 1sotopies of x I.
k

Then [51 ol 1 F 1s vertical over No'
We are now in a situation similar to theorem 2.3,

Let N' € N be another regular neighbourhood of Yk in

Ykﬂ. such that FO-I(N') < 1nt No and consider the
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k -
concordance /510(1F lci (xI\ F 1(N'))x I into
+
cl (Yk 1\ N*) x I, An application of 2.3 gives an
ambirent 1sotopy ¥ , which can be extended by the identity
+1 k
to Yk x I, such that 1{1 /51 0<1 F 1s vertical over
x9, Using Siebenmann's 1sotopy extension theorem,

[36} 6.5, we can extend KYS to Y x I. Define

% k1l X{S o

At the end of the induction, then,o« = ocn, where

n = dim Y. /

He have the following corollary, as with 2.2, 2.4.

Corollary (Concordance 1mplies Isotopy for embeddings

of Polyhedra 1n Polyhedra)

Let X, Y be polyhedra, X compact, and suppose that
f, g ¢+ X—= Y are two embeddings which are concordant
by a concordance F which satisfies the conditions of 2.7.

Then f, g are ambient 1sotopic.

N



Figure 30

Theorem
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