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INTRODUCTION 

A well-known r e s u l t of both piecewise-lmear and 

d i f f e r e n t i a l toDology i s that concordance implies isotop> for 

suitable erabeddings. The aim of t h i s t h e s i s i s to present 

topological counterparts to these r e s u l t s * The treatment 

given i s heavily dependent on sophisticated handle techniques, 

and, as a means of introducing notation as well as preparing 

the conceptual framework for these techniques, we also give a 

proof of a topological h-cobordism theorem. This not only 

lays the groundwork for l a t e r chapters, but provides a detailed 

proof on the l i n e s of Smale's o r i g i n a l one for smooth manifolds. 

A topological manifold i s smooth, or piecewise l i n e a r , 

i f there e x i s t s a smoothly, or piecewise l i n e a r l y , respectively, 

compatible a t l a s of charts* By d e f i n i t i o n , smooth and 

piecewise l i n e a r manifolds are topological manifolds. The 

question a r i s e s as to which manifolds are smoothable, and which 

are triangulable - that i s , can be given a smooth structure, or 

a piecewise l i n e a r structure, respectively. 

There i s not, as yet, a complete answer to t h i s question, 

but we have the following information. A l l smooth manifolds 

are triangulable (Cairns £ 6 ~\ ) ; there e x i s t piecewise 

l i n e a r and general topological manifolds which are not smoothable. 

(Kervaire £20 1 ) . Kirby and Siebenmann [22 1 have shown that 

i n each dimension > 5 there e x i s t s a non-triangulable 
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topolog.cal manifold, and, further, they have reduced the 

question of the t r i a n g u l a b i l i t y of any given manifold M to 

the vanishing of an obstruction i n H (M, Z2). That a l l 

2-mamfolds are triangulable i s a c l a s s i c a l r e s u l t of Rado [.29^, 

and Moise [26^ proved that a l l 3-manifclds are triangulable. 

We give an example of a non-tnangulable manifold taken 
from Kirby [ 2 l ] | . By theorem 17 of ^21^ ^ 7 , there e x i s t s 

3 2 
a piecewise l i n e a r structure ® o n S x S which i s not isotopic 
to the standard structure£(that i s , the ide n t i t y , 

3 2 3 2 id : (S x S ) £ - (b x S ) i s not isotopic (see Glossary) 
3 2 3 2 to a piecewise l i n e a r homeomorphism (S x S ) — * (S x S ) t t ). 

In [36} , S u l l i v a n shows that piecewise l i n e a r structures up 

to homotopy on a manifold Q are equivalent when the Bockstein 
3 4 homomorphisra ^ : H (Q; Z^) — H (Q; Z) i s zero. But 

A 3 2 
H (S x S ; Z) = 0, so there e x i s t s a piecewise l i n e a r 

3 2 3 2 home omorph ism h : (S x S ) ^ * (S x S ) ^ 
3 2 3 2 Then h : (S x S ) £ (S x S ) i s not isotopic to a 

piecewise l i n e a r homeomorphism, for i f i t were, 

h _ 1 h = id : ( S 3 x S 2 ) ^ ( S 3 x S 2 ) ^ would be isotoDic 

to a piecewise l i n e a r homeomorphism, by composing the given 

isotopy with h *, and t h i s would contradict the fact that (R) 

and are not isotopic. Furthermore, s t a b i l i t y 

(TT_ (TOP , PL )«*1T"- (TOP/PL), see ) shows that J m m j *- J 

3 2 3 2 h x i d . : S x S x R — » S x S x R i s not 

isotopic to a piecewise l i n e a r homeomorphism, where 
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S x S x R i s given the standard piecewise l i n e a r structure. 

Since S 3 x S 2 x R St (R 4
 x § 2) \ (0 x S 2 ) we can form the 

manifold 

M6 = (R* x S 2 ) U h x i d > (R* x S 2 ) . 

Suppose that had a piecewise l i n e a r structure. Then since 
4 2 

piecewise l i n e a r structures on R x S are unique up to isotopy, 
the piecewise l i n e a r structures induced from M on each copy of 
4 2 

R x S would each be isotopic to the standard structure. 

This would imply that h x i d . was isotopic to a piecewise l i n e a r 

homeomor phi snip which i s f a l s e . Hence M** has no piecewise 

l i n e a r structure, i . e . , i s non-triangulable. 

The work of Kirby and Siebenmann, then, shows that 

endeavours to extend piecewise l i n e a r r e s u l t s to cover topological 

manifolds are not vain. The concept of handles ( 1 ^ 3 ) was 

f i r s t introduced by Smale [ 3 5 ] to prove the h-cobordism theorem 

( I 5.1) for smooth manifolds, and these techniques were extended 

to prove the piecewise l i n e a r case by several authors (including 

Sta l l i n g s , and Zeeman.) In the smooth category, handle theory 

has now been replaced by the more amenable Morse theory. The 

existence of handlebody decompositions ( I § 4) i s a c l a s s i c a l 

r e s u l t for a l l piecewise l i n e a r and smooth manifolds, and, i n 

[ 22I , Kirby and Siebenmann give a proof for a l l topological 

manifolds of dimension > 6. We use t h i s l a s t r e s u l t , 

together with an extension of Smale's proof to the topological 

case, to prove a topological h-cobordism theorem. (A weak 
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topological h-cobordisra theorem, that i s having a conclusion 

W K M x [ 0 , 1 ) , was proved by Lees, i n his t h e s i s L 7 5 l , 

and by Connell C 8 l - t h i s r e s u l t was used to prove the 

topological Poincare conjecture). This proof occupies 

Chapter I of the t h e s i s , where we also prove a r e l a t i v e theorem. 

Notice that Kirby and Siebenmann also show that there e x i s t s a 

topological manifold, of dimension 4 or S, which does not have a 

handle decomposition. 

That concordance implies isotopy (see Glossary for 

d e f i n i t i o n s ) was f i r s t proved by Hudson [ 1 2 ] , [ u ] for 

piecewise l i n e a r embeddings of polyhedra i n manifolds and smooth 

embeddings of manifolds i n manifolds. An extension to piecewise 

l i n e a r emb eddings of polyhedra i n manifolds using theideas of 

embedded handle theory and c r i t i c a l l e v e l embeddings ( I I | 1) 

appears i n Rourke L3l3. Rourke's methods also prove the 

re s u l t for smooth embeddings of smooth manifolds. To show the 

existence of c r i t i c a l l e v e l embeddings, Rourke resorts to r e s u l t s 

of Kosinski [ 2 3 l on s i n g u l a r i t i e s of piecewise l i n e a r maps. 

Kearton and L i c ^ o n s h give a more direct approach in C 19J , ana 

i t i s t h e i r treatment that we follow i n Chapter I I , which i s 

devoted to the study of c r i t i c a l l e v e l embeddings. (Note that 

more care i s required than Kearton and L i c k o r i s h suggest in C l 9 ^ 

theorem 3, with regard to subdivision (see I I \ 2X) 
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Armstrong extended concordance implies isotopy to include 

topological embeddings of manifolds i n Euclidean space, [ 2 J . 

He also l a i d the foundations of a theorem for embeddings into 

general topological manifolds i n {_3] , upon which r e s u l t s the 

proof of I I I 2.2 (concordance implies isotopy for topological 

embeddings of manifolds i n manifolds) given i n Chapter I I I § 1 

i s based. Using e n t i r e l y different methods, Pederson has 

proved a s i m i l a r r e s u l t to t h i s in [28\ , but he imposes 

stronger conditions - that Mn i s a handlebody, that q > 5, 

and that i f q = 5 then "3Q i s a stable manifold ( i n our notation) 

- and he r e l i e s on l e s s elementary r e s u l t s , notably the 

s-cobordism theorem. Pederson's work was drawn to the author's 

attention a f t e r the majority of t h i s work was completed. 

The remainder of Chapter I I I i s concerned with further 

r e s u l t s deduced more or l e s s d i r e c t l y from I I I § 1 : a r e l a t i v e 

theorem; concordance implies isotopy for topological embeddings 

of polyhedra i n manifolds; concordance implies isotopy for 

suitable embeddings of polyhedra i n polyhedra; S-concordance 

implies £ -isotopy for topological embeddings of manifolds in 

manifolds. 

The layout then i s t h i s . Chapter I , §1, presents 

preliminaries fundamental to the remainder of the t h e s i s . The 

res t of Chapter I deals with a proof of h-cobordism. 
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Chapters I I and I I I are independent from Chapter I mathematically 

(except for I ^ 1 ) , but conceptually, Chapter I I i s heavily 

dependent upon i t . Proofs of concordance implies isotopy , 

appear in Chapter I I I , making use of the r e s u l t s on c r i t i c a l 

l e v e l embeddings occurring i n Chapter I I . 

Throughout the t h e s i s , ALL EMBEDDINGS ARE ASSUMED TO BE 

LOCALLY FLAT. We assume that the reader i s f a m i l i a r with 

the standard r e s u l t s of piecewise l i n e a r topology, as found 

in l l 3 ] , 1 3 2 ] , or [ 3 8 ] and also with r e l a t i v e regular 

neighbourhood theory (see ) . References are 

given i n the text when other s p e c i f i c r e s u l t s are used. 

There follows a glossary of notation and d e f i n i t i o n s . 

(x) 



GLOSSARY 

Notation 

I = \_0» l\ , the closed unit i n t e r v a l 

B = [-1.1] , B P = [-1, l ] P , D 2 = B 2 

£ B P = [ - t , ^ P (where 0 < e < 1) 

0 -» (0, 0) e B P <=. RP. 

clX : the closure of X 
o 

X = i n t X : the i n t e r i o r of X 

3X : the boundary of X 

A\ B = | x | x * A, x ft B"̂  

A x t = A x ^ t } , ( f o r t € I , usua l l y ) 

// denotes the end of a proof, or a r e s u l t 

stated without proof. 

Definitions Let M, Q be polyhedra, or manifolds, and 

l e t i f s Q x I — • Q be the projection onto 

the f i r s t factor. 

(1) Two embeddings f, g t M — • Q are concordant i f there 

i s an embedding F : M x I — * Q x I which s a t i s f i e s 

F - 1 (Q x 0) = M x 0, F _ 1 (Q x 1) = M x 1, F | M x 0 = f 

and F | M x 1 = g. 

( x i ) 



Definitions (continued) 

(2) The concordance F i s v e r t i c a l over a subset X of M 

i f F(x, t ) = ( f ( x ) , t ) for a l l x 6 X, t e I . 

(3) A map <* : Q x I — • Q x I i s level-preserving i f 

oe (Q x t ) cz Q x t for a l l t e l . Then <*. : Q — - Q 

i s defined by <* (x, t ) = (<*.(x), t ) . 

( O An ambient isotopy of Q i s a level-preserving homeo-

morphism « ; Q x I —»• Q x I for which o< i s the 
o 

ide n t i t y . 

(5) The ambient isotopy °c is fixed on the subset X, 

of Q i f oc t i s the id e n t i t y on X for a l l t « I . °c 

has support i n a subset U of Q i f oc i s fixed on Q \ U. 

(6) Two embeddings f, g : M > Q are ambient isotopic i f 

there i s an ambient isotopy oc of Q such that «*̂ f = g. 

(7) A homotopy H : M x I — * Q i s an £ -homotopy i f , 

for each ( x f t ) c M x 1, d (H (x, 0 ) , H(x, t ) ) < t . 

(8) An ambient isotopy « : Q x I — • Q x I i s an £ -ambient 

isotopy i f iTooc : Q x I — * Q i s an £ -horaotopy. 

( x n ) 



Definitions (continued) 

(9) A concordance F : M x I —•> Q x I i s an £-concordance 

i f tfo F : M x I —•> Q i s an E -homotopy. 

( x i n ) 



C H A P T E R I 

TOPOLOGICAL HANDLEBODY THEORY 



In t h i s chapter we develop the techniques necessary for a 

proof of the topological h-cobordism theorem which we give in 

§5. The ideas are e s s e n t i a l l y those involved i n the piecewise 

l i n e a r proof, which argument we follow c l o s e l y (see, for example, 

Rourke and Sanderson L32] Ch.6.) - f i r s t l y represent the cobordism 

as a handlebody, then use the algebraic conditions to elminate the 

handles, so that f i n a l l y we must have a product. In ^3 we 

introduce handles and the handle lemmas of reordering, cancellation, 

introduction and adding. In ^ 4 we discuss handle decompositions 

and use the § 3 lemmas to simplify them, given certain algebraic 

constraints. The Whitney lemma i s an e s s e n t i a l part of t h i s 

procedure, and we give a topological version i n ^2. 

Note that several of these r e s u l t s have a dimension r e s t r i c t i o n 

not present i n the corresponding piecewise l i n e a r cases, but that 

t h i s does not affe c t the f i n a l theorem, whose statement i s 

equivalent to that of the piecewise l i n e a r theorem. We also prove 

a r e l a t i v e theorem. 

I n ">ost cases, the technique of proof i s to tame l o c a l l y and 

then use the piecewise l i n e a r proofs, and i n ^ 1 we quote, and 

deduce, the important tools required for t h i s process, both in 

t h i s chapter and i n subsequent ones. This f i r s t section w i l l be 

referred to frequently. 
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§ 1 Preliminaries - taming and c o l l a r s 

This section deals with r e s u l t s , a l l but two of them quoted, 

which w i l l be used i n proofs throughout the remainder of the 

t h e s i s . 

1.1 Lemma (Lacher [2b\ ) 

Let B <= M be a l o c a l l y f l a t b a l l i n the topological 

manifold Mm. Then there e x i s t s a chart U of M such that 

( l ) CB, U) a ( B k , R n ) , a standard pair, i f B i s closed, 

( i i ) (B, U) 3£ (R k, R n ) , a standard pair, i f B i s open.^ 

Taming 

Let M, Q be piecewise l i n e a r manifolds and f : M — * Q 

a (topological) embedding. Then f i s said to be tame 

i f there i s an ambient isotopy, oc of Q such that ^ ^ l s 

piecewise l i n e a r . f i s £-tame i f for each e. > 0 there 

e x i s t s an £ -ambient isotopy oc of Q such that oc f i s 

piecewise l i n e a r , and oc i s the i d e n t i t y outside the 

E -neighbourhood of f(M), for a l l t . In each case, the 

embedding i s strongly tame, strongly t -tame, i f , furthermore, 

«* . f i s l o c a l l y unknotted. 
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1.2 Theorem ( C a n t r e l l and Rushing [ 7 J Theorem 1 ) 

A l o c a l l y f l a t embedding f : B k — * i n t Qq, q > 5, 

of B into the i n t e r i o r of a piecewise l i n e a r q-manifold Q, 

i s strongly Z -tame.^ 

1.3 Theorem - (Rushing C33\ Theorem 1 ) 

Let f i Mn —*• Qq, q - n > 3, be an embedding of the 

piecewise l i n e a r manifold Mn i n the piecewise l i n e a r 

manifold Q̂ , for which f * ( ^Q) i s a piecewise l i n e a r 

(n - 1 ) - submanifold (possibly empty) of ^ M, and such 

that f | f " 1 ( dQ) and f | (M\f _ 1( dQ)) are l o c a l l y f l a t . 

Then f i s £ -tame. 

Furthermore, i f f I ( ^Q) i s piecewise l i n e a r , 

then the taming isotopy i s fixed on Q̂*// 

Definition 

I f X Q
C x are polyhedra, then the pa i r (X q, X) i s 

admissible i f X = X vj (U M n i), where M i s an n - dimensional o o 1 ' 1 1 
l - l 

piecewise l i n e a r manifold such that H n (X u ( II M ) ) 
l o o j 

i s e i t h e r empty or an (n - 1 ) - dimensional piecewise l i n e a r 

submanifold of dM for which X «j ( U M ) i s lmk-
l o o j 

l - l 
c o l l a p s i b l e on r\ ( X Q U ( U M^)), I » 0, r . 

4 



4 

1.4 Theorem (Rushing \_ 3 3 } Theorem 2) 

L e t ( X Q , X) be an admissible pair of polyhedra, 

where c l (X \ X Q ) I S n-dimensional f and l e t Q^, q - n ^ 3, 

be a piecewise l i n e a r q-manifold. Suppose that 

f : X * int Q i s an embedding which i s l o c a l l y f l a t on 

the open'simplexes of some triangulation of X F and i s such 

that f X i s piecewise l i n e a r . Then f can be 6 -tamed I o 
by an isotopy oc so that 

0C t| { f ( X q ) U [ Q - N ( c l [ f ( X \ X Q ) 1 , Q ) ] ^ = 

C o l l a r s 

Let X <= Y be polyhedra, or topological manifolds. 

Then a c o l l a r on X i n Y i s a piecewise l i n e a r , or topological, 

homeomorphism, respectively, c : X x I — • Y such that 

c (x, 0 ) = x and c (X x £.0, 1 ) ) i s an open neighbourhood 

of X i n Y; we also c a l l c (X x I ) a c o l l a r , and X i s 

said to be collared i n Y. 

I f X can be covered by a c o l l e c t i o n of open subsets, 

each of which i s collared i n Y, then X i s l o c a l l y collared 

i n Y. 

Existence of c o l l a r s i s given by the following r e s u l t s . 

1.5 Theorem (Rourke £ 3 0 3 ) 

Let P <= Q be polyhedra and suppose P i s l o c a l l y 

collared i n Q. Then there i s a c o l l a r on P i n Q... 



1.6 Theorem (Brown L see also Connelly 

Let M « N be topological manifolds and suppose M i s 

l o c a l l y collared i n N. Then M i s collared i n N... 

1.7 Corollary 

Let M be a (piecewise l i n e a r or topological) manifold. 

Then £ M i s collared i n M.̂  

We also require the following uniqueness r e s u l t for 

c o l l a r s of piecewise l i n e a r manifolds. (See Armstrong {. 2~] 

for a s i m i l a r r e s u l t for l o c a l l y f l a t c o l l a r s of 

topological manifolds.) 

1.8 Theorem ( Hudson and Zeeman [_15} , Theorem 4) 

Let M be a piecewise l i n e a r manifold, and l e t 

c^ f C2 s M x I — * M be two c o l l a r s , then there e x i s t s 

an ambient isotopy oc of M, fixed on "5 M, with 

" 1 °i = V // 

We now deduce the following two r e s u l t s . 

1.9 Lemma 

Let f 1 —•+ Mn be l o c a l l y f l a t embedding into the 

topological manifold M, n £ 5, "iM = j), and suppose the 

homotopy c l a s s of f, [ f ^ = 0 (M). Then there e x i s t s 
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1 2 

a l o c a l l y f l a t embedding f : D — • M which extends f, 

that i s , f 1 ^D 2 = f. 

Proof 

Since \ f \ = Oe TV (M), f extends to a map f : D 2 — r M. 

Let ^ B j , I = 0, be a cover of D 2 by closed b a l l s 

such that f (B^) <=• l ^ , a chart of M, for each i , and 
k 

A k = 1=0 B i * s a b a l 1 f o r e a c n k» N o w w o r k inductively 

over the A^ i suppose we have homotoped 7 r e l so that 

f | i s an embedding. By 1.4 we can Z -ambient isotope 

\JX so that f | { B k + j a (A^ u S * ) | i s a piecewise l i n e a r 

embedding, and then by general position replace f by a 
homotopic map which embeds B. _ Now apply the inverse 

k»1 • 

isotopy of 1^ to replace to i t s former position. By 

1.1, A^ l i e s piecewise l i n e a r l y i n a chart, so that by 

taming and general position we can remove the intersections 

of B f c +^ with A^. This gives A
k + ^ embedded, and the 

res u l t follows.^ 

Note. Indeed t h i s r e s u l t follows more d i r e c t l y on 

application of Newman's engulfing theorem (see £. 27 ~\ ) . 

1.10 Lemma 

Let Qq be a topological manifold, and Mq a compact, 

l o c a l l y f l a t q - dimensional submanifold of i n t Q which 

supports a piecewise l i n e a r structure- Suppose 
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( X q , X) c i n t Q are an admissible p a i r of polyhedra with 

c l ( X \ X q ) n-dimensional, q - n £ 3, where X Q I S a 

piecewise l i n e a r subpolyhedron of Mf and suppose that 

the open simplexes of some triangulation of X are l o c a l l y 

f l a t i n Q. Then there e x i s t s an £ -ambient isotopy oc 

of Q such that Y = ^ (X) o M i s a piecewise l i n e a r 

subpolyhedron of M, and 

* t l I Xo U LQ ^ N £ (M, Q)] \ = 1. 

Proof. See Figure 1. 

By 1.6, l e t M = M o ( C o l l a r on ^ M), the c o l l a r 

being chosen so that M e N e (M, Q). Then M supports 

a piecewise l i n e a r structure. Let be X n M. 

Triangulate X by the triangulation of the statement, and 

subdivide f i n e l y enough so that N ( Y Q ) , a regular 

neighbourhood of the s i m p l i c i a l neighbourhood of Y q i n X, 

s a t i s f i e s N(Y ) c M. o 

Now by 1.4 we can choose E Q i £ and find an 

t -ambient isotopy «x of M such that «,(N(Y ) ) i s a o 1 o 
piecewise l i n e a r subpolyhedron of M» O F

T| ( ̂ MOX Q) = 1, 

and (oe^ XnM)cN ( Y Q ) . Extending « to Q by the id e n t i t y 

gives the result.// 
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Lemma I 1.10 
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The Whitney Process 

Intersection signs 

Suppose we have oriented manifolds P P, Qq c Mn, 

where P f Q are of complementary dimension i n M; that i s , 

p + q = n. Suppose also that P and Q intersect 

t r a n s v e r s a l l y i n a f i n i t e number of points* 

Let x * P n Q. Then by t r a n s v e r s a l i t y there e x i s t s 

a neighbourhood U of x and a coordinate chart 

JL : (U, Un P, UnQ, { x } ) — > (R P* q, RP x 0, 0 x Rq, 0) 

which we can suppose preserves orientation on UnP and Un Q, 

where the Euclidean spaces are given the natural orientation. 

Define the in t e r s e c t i o n number of P, Q at x, £(x), 

by E ( x ) = +1 i f preserves orientation on U, t ( x ) = -1 

otherwise. The in t e r s e c t i o n number of P and Q, E(P, Q) 

Now suppose we have P p, Qq c Mn, where P, Q are 

connected l o c a l l y f l a t submanifolds of the topological 

manifold M which are of complementary dimension. Further 

assume that P and Q both support a piecewise l i n e a r structure, 

and that ~d M = fl. Under these conditions we state 

the following. 
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2. 1 Topological Whitney Lemma 

Suppose that x, y e P n Q s a t i s f y L ( x ) = - £ ( y ) . 

Then there i s an isotopy of M carrying P to P', with P* 

transverse to Q i n M and with P'nIJ = PnQ \ {x^ \ \y^ , 

provided either 

( i ) P > 3, q > 3 and TT (M) » 0 

or ( i i ) p = 2, q ̂  3 and -ft (M\Q) = 0. 

Moreover the isotopy has support in a compact set which 

does not meet any other int e r s e c t i o n points. 

2.2 Corollary 

I f £.(PP Q) = 0, with the above hypotheses, then we can 

ambient isotope P off Q by an isotopy with compact support. 

2.3 Remark 

I f p > 3, then fl' 1(M*sQ) = 0 implies "tT^(M) = 0, so 

that the lemma can be restated with the single hypothesis 

T T 1 (M^OJ = 0. 

Proof of Remark 

Let i A i TT^ (M\Q) — • TT^(M) be the homeomorphism 

induced by inc l u s i o n . I t i s s u f f i c i e n t to show that I 

i s onto. Let f i S 1 — • M represent [f~\e TT (M). 
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We wish to find g homotopic to f with I n g e M \ Q, 

then [ g ^ T ^ (M\Q) and i r f l&] " • 

Cover Q by charts U , and by 1.1 find charts V of 
l l 

M with V n Q = U and (U\, = (R q, R n ) , the standard 

pair. Now cover by closed i n t e r v a l s - I , with 

n J R c - r\ ~S J R , j jt k, such that, i f f ( J ^ ) n Q ^ | ( , 

then f ( J j ) c v
x f° r some l . 

Using small general position moves where necessary, we 

may assume that ( U f ( J J ) ) n Q = fi. I f f ( J )nQ = fi, 
3 3 k 

define g R : J R • M by § k = f | J R . I f f ( J R ) r > Q * /f, by 

general position for maps we can find a piecewise l i n e a r map 

g R : J R — > homotopic mod "dJ R to f | J R,and, again by 

general position, we may assume that g R ( J R ) r\ Q = fi . 

Now define g : S* • M by g | J R = g R. ^ 

Before we prove the Whitney lemma, we require the next 

r e s u l t . 

Lemma 

Suppose B^, B q C. B n are properly piecewise l i n e a r l y 

embedded b a l l s of complementary dimension, that q > 3, and 

that B^ i s unknotted. Suppose also that B^ meets B q 

t r a n s v e r s a l l y i n two points x, y with £(x) = - E-(y). Then 

there e x i s t s an ambient isotopy of B n, keeping ^ B n fixed, 

which moves B^ off B^. 
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Proof 

We have 

Tf , (B nVB q) = H , ( B \ B q ) H . (SP" 1) * Z p-1 p-1 p-1 

and the element of Hp_^(B n\B q) determined by B p i s 

represented by the sum of two spheres which i n turn 

represent opposite generators i n Z, since £(x)= - E ( y ) . 

Hence ^ B P i s n u l l homotopic i n B n \ B q . By Irwin's 

embedding theorem (see D . 8 ] ) we can span ~iB p by a piecewise 

l i n e a r l y embedded p-disc D P i n B n N B q. See Figure 2. 

Since p 4 n-3, we can unknot both B p and DP; l e t 

h Q s (B° f B p) — * ( B n , B P ) , h l : ( B N , D P) — ( B n
f B P ) f 

be the homeomorphisms to the standard pair . We define the 

required isotopy : B n x I — • B n x I by the Alexander 

t r i c k : 

« I B n x 0 » h • o 
oC | B n x 1 = ^ 

«|^B n x I = ( h j ^ B n ) x id e n t i t y 

*c(0, H) = (0. h) 

and OCJB11 x I i s defined by conical extension from (0, J } ) , 

since B n x I i s a cone with base ( B n x 0) U ( "oBn x I ) U ( B n x 1) 

cone-point (0, 

Proof of Whitney lemma 

Join x and y by l o c a l l y f l a t arcs <>c tp>, i n P, Q, 

respectively, which do not pass through any other int e r s e c t i o n 

points. We have two cases. See Figure 3. 
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Case ( i ) p ^ 3. By 1.9 there e x i s t s a non-singular 
2 2 d i s c D spanning ocu/3 , and by 1.1 D c U so that 

2 l * 1 2 (D, U) = (B , RA) the standard pair. Let X » PoQuD 
2 

and X q = D . Then by 1.10 we can ambient isotope M so 
that X n U i s a piecewise l i n e a r subpolyhedron of U, leaving 
2 
D fixed. By general position we may assume that 
i n t D^rt(PuQ) = ft . Now proceed as i n the piecewise 

l i n e a r s i t u a t i o n - l e t (N, B^, B^) be a regular neighbourhood 
2 

of (D , o£ , fi> ) i n (U, P ri U, QnU). Then B 2 i s unknotted 

i n N, and the above lemma, 2.4, applies - hence we can move 

B^ off B2, and thus P off Q. We have moved Q xn our e a r l i e r 

application of 1.10; we now return i t to i t s o r i g i n a l 

position with the inverse ambient isotopy, and the re s u l t i s 

proved. 

Case (11) p = 2. Since codimension Q = 2 we have diff i c u l t y -

removing the in t e r s e c t i o n of Q with D, and we use the extra 

hypothesis to surmount t h i s . Let B be a regular neighbour­

hood of ̂ 3 i n Q. Then B i s a b a l l , and by 1.1 there e x i s t s 

a chart V of M, with B c V so that (B, V) = ( B q , ft"), a 

standard pair. Let B' c V be such that (B, B') = ( B q , B n ) , 

a standard pair; we can assume that B* n Pr>Q = ( x ^ u ^ y \ • 

Then by 1.10 there e x i s t s an t-ambient isotopy of M, leaving 

B fixed, such that P a B* i s a piecewise l i n e a r subpolyhedron 

of B*. By suitable choice of fc. we can assume that we 

introduce no new in t e r s e c t i o n points of P and Q - choose £ so 

that d \ _ ( P ^ N t B'), ( [ Q ^ B ] n N t B ' ) ] < t . 
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Now choose a regular neighbourhood of fb i n 

( B ( , P n B (, B), say (N, NQ, NJ), see Figure 4. Then 

there i s a homeomorphism 

h t (N,N Q,N 1) = ( B P x B q _ 1 x [-2, 2] , B P x 0 x ^ B , 0 x B 

We can assume that h (oc n N ) = \_0, \\ x 0 x SB. Let 

q-1 x {-2,2^ 

1 (oc\(°tn N ) ) , A = h" 1 (1 x 0 x [-1, 1] ) , 

Dj = h' 1 ( [0, l ] x 0 x [-1, 1] ) Then or* uA' c M \Q, 

and using the extra hypothesis and 1.9, we can find a non-
2 

singular d i s c c M \ Q spanning o ^ ' . Again, as i n 

case ( l ) , by 1.10 and general position we may assume that 

int D,n(PoD.) = 0 . 
Let D = o D2» a 2-disc, so that by 1.1 D i s contained 

i n some chart U of M, and we may assume that B c U. Then 

the homeomorphism (B, U) = (B, V) defines a piecewise l i n e a r 

structure on U with B a piecewise l i n e a r submamfold. As 

outlined above, by choosing a b a l l B' i n U such that D <=• int B', 

and applying 1.10 with suitable e , we can assume that 

D o ( P o B ' ) i s a piecewise l i n e a r subpolyhedron of B'. 

Now proceed as i n case ( l ) . 



The Whitney Lemma 

Figure 3 
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Handles 

w 

Let W be a topological manifold with boundary, and 

suppose we have a l o c a l l y f l a t embedding 

f t *B P x B W' P — > W . 

Then we say that the manifold 
W = W o f ( B P x B W _ P ) 

i s formed from W by attaching a handle of index p (or a 

p-handle). We write W1 = Huh p, a n d f i s c a l l e d the 

attaching map. See Figure 5. 

Let e : B P x B W P —»> W* be the natural embedding, 

cal l e d the c h a r a c t e r i s t i c map. We use the following 

terminology (Figure 5): 

e ( B P x 0) i s the core 

e ( 3B P x 0) i s the attaching sphere 

e ( 3 B P x B W - P ) i s the attaching tube 

e (0 x B #
 F ) i s the fib r e (or cocore) 

e (0 x ^ B W - P ) i s the belt-sphere 

e ( B P x 3 B W " P ) I S the belt-tube 

The compact manifold W i s a cobordism (W, Mo, M^) i f eW 

i s the d i s j o i n t union of the (w-l)-manifolds M and M,. 
o l 

See Figure 6. 
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I f we have a handle h attached to W, with hnW e Ŵ , 

we say that h i s a handle on the cobordism. Then W* = Wu 

i s a cobordism (Wf, M^^W1 - M q) obtained from W by 

attaching a handle. 

The following lemma shows that Wa depends only on the 

isotopy c l a s s of the attaching map of h. 

Lemma 

Let f, g j ^ B p x B w P • be ambient isotopic 

embeddings. Then there i s a homeomorphism 

F : W o _ h W o h 

which i s the iden t i t y outside a c o l l a r of i n W. 

Proof 

Let * t i — • be the given isotopy. and (by 1.7) 

l e t c be a c o l l a r of i n W. Define (b^ : W — • W by 

(3 t (x, s ) • J <«^. s ( x ) , s ) s St t 

^ ( x , s ) s £ t 

where ( x . s ) € Im ( c ) , and extend by the i d e n t i t y to 

W\Im(c). 

Then F = P>x on W 

id e n t i t y on h. 
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Pairs of handles 

We form W' = Woh Pu h^ by attaching a p-handle h p 

to W and then attaching a q-handle h q to the cobordism 

Wo h p . 

We wish to echo the r e s u l t s used i n the proof of the 

piecewise l i n e a r h"cobordism theorem to reorder, cancel or 

"add" consecutive pairs of handles* To do t h i s we tame 

l o c a l l y (allowed by lemma 3.1) and then use the techniques 

of the piecewise l i n e a r proofs. This imposes a r e s t r c t i o n 

on w = dim W. 

Let M2 • ^ (W w h p ) \ Mo, e i B P x B w" p — • H o h p 

be the c h a r a c t e r i s t i c map of h p , and f t^B q x B w q — » 

be the attaching map of h q . Then e, f induce piecewise 

l i n e a r structures on the submamfolds P, Q of M̂ , respectively, 

where 

P = e ( B p x 3 B W p ) v c o l l a r on i t s boundary 

= (belt-tube of h P ) o c o l l a r on i t s boundary 

and Q = Imf u c o l l a r on i t s boundary 

= (attaching tube of h q ) u c o l l a r on i t s boundary. 

See Figure 7. We use 1.6 here. 

3.2 Reordering lemma 

Let W = Wuh pu h Q with q < p. Then W = Wo h Qo h p 

with h p and h q d i s j o i n t , provided that w ^ 5. 
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Proof 

We wish to ambient isotope f so that Im ( f ) and Im (e) 

are d i s j o i n t , then we can attach the handles i n reverse 

order, and the r e s u l t follows from lemma 3.1. 

Let.S 1 = e (0 x S B w " p ) = belt-sphere of h p 

S 2 = f ( S B q x 0) • attaching sphere of h q . 

i I n the piecewise l i n e a r case, since p ^ q. we can 

assume that S^ft = by general position. Choose regular 

neighbourhoods N̂ , of S^, which are d i s j o i n t . See 

Figure 8. Isotope onto the belt-tube of h^, onto the 

attaching tube of h q by uniqueness of regular neighbourhoods, 

and the proof i s complete. 

In the topological case, we have two instances. I f 

w-q ^ 3, then has codimension > 3 i n so that 1.10 

applies. Hence we may assume that n P i s a piecewise 

l i n e a r subpolyhedron of P, and, by general position, that 

S^n = ft* I f w - q<3, then, since w ^ 5 and p ? q, 

p > 3, so that has codimension M i n M̂ . Apply 1.10 

to obtain r\ Q a piecewise l i n e a r subpolyhedron of Q, 

and again, by general position, that S^n = 

In either instance, we can now use the above regular 

neighbourhood argument, being sure to take regular neighbourhoods 
N l * N2 o f S l ' S 2 * n P* ^ respectively. This completes the 

proof.a 
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Handles of adjacent index 

Suppose H* = H u h p u h1**1 and that w > 6. Then the 

spheres = belt sphere of h p, S 2
 3 attaching sphere of 

h*5*^ are of complementary dimension i n M̂ t so that, as 

i n the l a s t proof, by a small ambient isotopy of the 

attaching map f of bP*^ we can assume that and are 

in general position, and hence that meets t r a n s v e r s a l l y 

i n a f i n i t e number of points. 

Indeed, we can achieve more than t h i s * For each 

x e S j n S j , l e t be a closed b a l l neighbourhood of x 

i n P (our previously defined submanifold of with piecewise 

l i n e a r s t r u c t u r e ) , chosen so that N^n = for a l l y M « 

Let B c i n t be a b a l l neighbourhood of x of the form 

B = D P x D W" p - 1<=f ( ̂ B P * 1 x B W ' P " 1 ) . Choose Z so that 

N £ ( S 1 # P)o S 2 n <= B and N t ( B 1 N x) c int Nx. Now using 

1.2 we can E-ambient isotope Nx, leaving "5 N x fixed, such that 

B i s a piecewise l i n e a r submanifold of P. Our choice of fc 

ensures that now S^n r> Nx<= D p. See Figure 9. By 

general position i n B, we can assume that D p i s piecewise 

l i n e a r l y t r a n s v e r s a l to S^. I f we repeat t h i s process 

for each x « S^n S^, we ambient isotope f so that S^, 

int e r s e c t t r a n s v e r s a l l y i n a f i n i t e number of points, and 

near each x < S^n S^, f i s a piecewise l i n e a r embedding 

into P. 

So, further to t r a n s v e r s a l i t y , we now have s ^ n S 2 

l o c a l l y nice near each i n t e r s e c t i o n point, that i s , l o c a l l y 

a piecewise l i n e a r subpolyhedron of P <=• M̂ . 
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Incidence number 

Now define the incidence number of h p, h^^ -' 

£(h p, h'5**'), to be equal to the intersection number of 

Sl' S2' £ ^ S l » S 2 ^ ^ a s d e f l n e d l n \ 2^* 

Next, we see that the incidence number depends only 

on the homotopy c l a s s of the attaching map, f, of h p**. 

3.3 Lemma 

P D 
Let q : W o h — * S be the map which sends W to 

a basepoint * s S p, collapses h P onto i t s core B p x 0, and 

i d e n t i f i e s B P / dB p with S p /* . Let g : S 2 — • S p be 

the r e s t r i c t i o n of q to S^, and l e t w £ 6, then g has 

homo l o g i c a l degree £ ( h p , h**5**"). 

Proof 

The degree of g i s unaffected by an isotopy of f. 

Let x t S j n S j , and l e t D x = e ( B p x(x$) be the standard 

transverse d i s c to at x. We wish to ambient isotope 

f so that agrees with near x. 

In the piecewise l i n e a r case, t h i s follows from the 

de f i n i t i o n of t r a n s v e r s a l i t y and the di s c theorem for 

pairs* I n general, since we have f a piecewise l i n e a r 

map near x, the same applies* 
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Do t h i s for each intersection, and then, a f t e r an 

isotopy of P (defined as before) which c a r r i e s a standard 

neighbourhood of i n P onto the belt tube of h P , we have 

S 2 n h P = U ( D J X € s j . Now q | i s the 

standard i d e n t i f i c a t i o n of D / dD with S P/; and the 
x x 

re s u l t follows... 

Complementary handles 

Suppose that, i n the above notation, we have 

ft ̂ 2 = o n e p o i n t * Then h p, h*5"*̂  are c a l l e d 

complementary handles. 

In t h i s case, the pair of handles can be eliminated: 

3.4 Cancellation lemma 

Let W = H u h ^ u h ^ , where h p, h^*^ are complementary. 

Then there e x i s t s a homeomorphism W = W, fixed outside a 

neighbourhood of h P o h P**, provided that w ^ 6. 

Proof 

As i n the previous proof, we may assume that ft ( b e l t 

tube of h p ) = D^, where x = n S 2» and also that f i s 

piecewise l i n e a r near 0 X < By the disc theorem for p a i r s , 

we may also assume that « ( B p x Bj) = f ( B 2 x £ B W ~ P _ 1 ) 

where 0 < t < 1 and B 2 are neighbourhoods of x i n S 2 
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respectively. Now a f t e r an ambient isotopy of Q 

(defined above) shrinking f ( B 2 x B y ) to 

f ( B 2 x £ B W P followed by an ambient isotopy of P 

expanding a standard neighbourhood of onto the belt 

tube of h p, we can assume that 

h P 0 h ^ = e ( B P x Bj) » f ( B 2 x B W " P _ 1 ) . 

See Figure 10. 

h p u h1*** i s , then, a w-ball attached to W by a face. 

The r e s u l t follows.// 

3.5 Corollary 

Suppose that W* = W u h Pw h ^ ^ and i s simply-

connected, w - p > 4, p ? 2, and w £ 6. Then, i f 

£(h P, h 1 * 1 ) = - 1, W = W. 

Proof 

We wish to use the Whitney lemma to ambient isotope 

so that rt S 2 = one point, and then use lemma 3.4 to 

cancel. Now, codimension £ 2, codimension S 2 ~>, 3. 

Also 

TT 1 ( M 1 \ S 1 ) = ^ \ attaching tube of h P ) 

= "If^ (M^\ attaching sphere of h p ) 

Using 1.9, 1.10 and general position, we can show that 

(Mj\ attaching sphere of h p ) i s simply-connected. Hence 

the Whitney lemma applies.« 
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We s h a l l need the reverse procedure to lemma 3.4. 

That i s , given a b a l l attached to a cobordism by a face, 

we replace that b a l l by a pair of complementary handles 

of a r b i t r a r y index, by means of the following lemma. 

3.6 Introduction lemma 

Suppose that W* = WoB w where B w r\ W = B w^ M = B ^ 

a face of B. Then we can write W' = Huh^o h ^ , with 

h p and h1*** complementary, for any 0*p<w. 

Moreover, i f DP<=- B^ i s any l o c a l l y f l a t d i sc then 

we can assume that the attaching sphere of h P i s 3 D P 

and that W n (attaching sphere of Iv 0**) <=• D P. 

Proof 

Consider the standard complementary pair 

hj = B P x ( LU 33 x B W" p- 1) 

h 2 = B ^ 1 x hVP-l 

with h l W h 2 = B p x (_-l, 3) x B w " p - 1 , a b a l l with face 

E = (5B P x [-1, 3] x B W - p _ 1 ) ( B P x -1 x B " " ^ 1 ) . 

Identifying ( h ^ u h ^ E) with (B, B^) gives the 

required r e s u l t . See Figure 11. 
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For the l a s t part, i d e n t i f y D p with 

( 9 B P x [-1, 2^ ) < j ( B p x - 1 ) , using the fact that two 

l o c a l l y f l a t embeddmgs of a di s c into i n t B^ are ambient 

isotopic with compact support.^ 

Adding handles 

We wish to isotope the attaching map of a p-handle 

by s l i d i n g i t over an adjacent p-handle, with the ef f e c t 

of adding (or subtracting) the incidence numbers of the 

p-handles with those of (p-1) -handles. 

3.7 Adding lemma 

Suppose that W = tf u, h p «J, h p . with Im(f,) 
n 1 f 2 2 1 

and l m ( f 2 ) d i s j o i n t , that w - p ^ 2, p £ 2, w ^ 6, and 

"TTj(M^) • 0. Then there e x i s t s an f^ isotopic to f.̂  

such that Im(f j ) n Im(f^) = and 

[£,] = [ f 2 l i t f t ] . 
where e "^p(M^) i s the c l a s s determined by 

ft | ( ? B P x 0 ) . 

Proof 

Let be the c h a r a c t e r i s t i c map of h^. By 1.6 

there e x i s t s c t ^ B p x ^ B w " p x I — • c l (M,\h.\h,), 
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a c o l l a r on the boundary of the attaching tube of h^, 

where M2 = 3(Wuh 1)\M Q, with l r a ( c ) n h 2 = /. 

Let S x = c ( S B P X { X } X 1) for some x t S B W " P . 

Then bounds the embedded p-disc 

Dx = c ( 3B P X\X\X I ) u e l ( B p x\xy*. 

Define S 2 = attaching sphere of h 2 < See Figure 12* 

We can pipe and S 2 i n i n the following manner. Join 

S^ and S 2 by a l o c a l l y f l a t arc « i n M 2« d i s j o i n t from D^. 
1 w-1 

By 1.1 we have a chart U containing <x with ( « , U) - I B , R ) 

the standard pair and thus by 1.2 we can tame S^ and S^, near 

the end points of«, i n U by an ambient isotopy H of U. 

Again j o i n S^ and S 2 by a (piecewise l i n e a r ) arc i n U, 

with end points those of °c . Now we can construct a 

piping tube i n the usual (piecewise l i n e a r ) fashion, and 

then apply H~*. Let = S^ 4+ S 2» defined by the piping, 

and D = s o l i d piping tube. 

Then S 2 i s ambient isotopic to S^ by two c e l l u l a r 

moves - f i r s t l y across D and then across D^. (See Figure 13). 

C a l l t h i s isotopy K. By a regular neighbourhood argument 

we can assume that Im ( f ^ = o f 2 ) i s d i s j o i n t from I m ( f ^ ) . 

The r e s u l t follows; the choice of sign comes from the 

choice of orientation of S^. ^ 
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3.8 Corollary 

Suppose, i n the above s i t u a t i o n , that 

W = l ^ u h p _ 1 . Then there i s an h p such that 

t ( h 3 , h p - 1 ) =£.(h 2, h p ~ l ) - f- ( h t , h p _ 1 ) . 

Proof 

hj i s attached by the map f ^ of 3.7; the formula 

follows from 3 * 3 * ^ 

4l 
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Handle decompositions ' 

Let W be a closed manifold, than a handle decomposition 

of W i s a presentation 

where h . i s a w-ball, and h. i s a handle on W , » U h , o i I - I j<i y 

for each i . 

More generally, l e t (W, Mq, M^) be a cobordism. 

Then a handle decomposition of W on M Q I S a presentation 

W = C o h , o . . . u h , o 1 t 

where C i s a c o l l a r on M i n W, and, for each l , h i s o o 1 

a handle on the cobordism 

W i - 1 " C o u < j V i h j >• 

Adding a c o l l a r to does not a l t e r W, and gives 

us the symmetrical decomposition 

W = C o h- w • • • o h_ o C, • o 1 t 1 

In t h i s case, define 

W* , - C. o ( U h ) , l + l 1 j>i j ' 

then h^ can be regarded as a handle h^ on w ^ + ^ with 
* 

c h a r a c t e r i s t i c map «^ = o T, where 

T : B w" p x B p — • B p x B w _ p i s defined by T (x, y) = (y, x ) , 

for x « B w p, y * B p. This gives us the dual decomposition 
* * 

W = C j U h t u . . . « J h j u C Q 

of H on M1. 
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Note that index (fr^) = w - index ( i ^ ) , and that the 

attaching tube of h i i s the belt tube of h^ . 

We c a l l a decomposition nice i f index ( h ^ ^ ) ? index ( h ^ 

for each i , and i f handles of the same index are d i s j o i n t . 

By lemma 3.2 we get the following. 

4.1 Lemma 

Given a handle decomposition of W, there e x i s t s a nice 

decomposition of W with the same number of handles of each 

index as the o r i g i n a l . ^ 

Note that the dual decomposition of a nice decomposition 

i s also a nice decomposition. 

The existence of handle decompositions i n general i s 

given by the following theorem of Kirby and Siebenmann 

which we state without proof. For piecewise l i n e a r 

cobordisms the r e s u l t i s comparatively simple - see, for 

example Rourke and Sanderson [ 3 2 ] 6.9 

4.2 Theorem (Kirby and Siebenmann [ 2 2 ] Chapter I I I , theorem 2.1) 

Let (W, MQ, M^) be a cobordism, and suppose w £ 6. 

Then there e x i s t s a handle decomposition of W on Mq, with 

C any c o l l a r of M i n W. o o 
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Handles and homology 

Given any decomposition of W on M q we construct a 

CW complex K attached to M^, of the same homotopy type 

as W and with one p - c e l l for each p-handle, as follows: 

Suppose, inductively, that we have defined ^ 

and a homotopy equivalence 

V l 5 W i - 1 — • K i - 1 ' r e l V 
Let : h P — * core ( h ^ u attaching tube (h^) be the 

obvious deformation r e t r a c t i o n . Then W , u , h 
l - l f x 1 

i s homotopy equivalent to K . u h , where g = 1 . o f , 
l—J. g^ l l l — l i 

which deformation r e t r a c t s b y l ,o r on K , u , B p. 
l - l l l - l g j 

Then K. = K , u . B p i s a c e l l complex K , u attached i l - l g x| F l - l 
p - c e l l . and we have constructed 1 : W —*• K . K * i l l 

I f the decomposition was nice, the c e l l s w i l l be 

attached i n order of increasing dimension and K w i l l be a CW 

complex. 

Now l e t h p, h p + * be handles i n the decomposition and 

e P , e^** the corresponding c e l l s of K. Then, by mceness, 

we can assume that h p , h ^ ^ are consecutive. By lemma 3.3 

we have t ( h p , h****) = fc(ep, e ^ * ) , the incidence number of 

e P . eP* 1 i n K. 

By considering the CM complexes associated to a 

decomposition and i t s dual we get the following. 
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4.3 Lemma 

Let W = C oh, o u h„ be a nice decomposition o 1 t 
and W(s) = C u ( U h P ) , M ( s ) = 3 W(s) \ M . 

o p« S 1 o 

Then 

( a ) TT^ (W, W ( S )) = 0 for i $ s 

(b) -n^ (W, M ( s )) = 0 for l « s, v - • - 1. 

Proof 

(b) follows since I T (W ( s\ M ( s )) = 0 for 

i $ w - s - l from ( a ) . ; / 

S i m p l i f i c a t i o n of handle decompositions 

I n t h i s section, we use the handle lemmas of § 3, 

together with the ideas above, to simplify handle decompositions 

under algebraic conditions. This t r a n s l a t i o n of algebraic 

statements into geometric r e s u l t s provides the major steps 

i n the proof of the h-cobordism theorem. 

4.4 Lemma (Elimination of 0-handles) 

Suppose given a handle decomposition of W on M q with 

ip-p-handles for each p, and that each component of W meets 

Mq. Then there e x i s t s another decomposition with no 0-handles, 

( l , - l ) 1-handles and l p-handles for p > 1. 1 o p 
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Proof 

« 

By lemma 4.1 we may assume that the decomposition i s 

n ice. By hypothesis, for each Ohandle we cai find a 

d i s t i n c t 1-handle which connects i t to ei t h e r C or 
o 

another 0-handle. These form a complementary pair, which 

can be cancelled by lemma 3.4. See Figure 16*// 

4.5 Corollary 

Suppose W i s connected, and MQ, £ ft, then W has 

a handle decomposition with no 0-handles, or w-handles, 

provided w > 6, 

Proof 

Apply the lemma to a decomposition, which e x i s t s by 

lemma 4.2, and i t s dual.^ 

4.6 Lemma (Elimination of 1-handles) 

Suppose k i s connected, and that we are given a handle 

decomposition of W on M with no 0-handles and l p-handles 
o p 

for p > 0. Suppose that TT^CW, M Q) = 0 and w £ 6. 

Then there i s another decomposition with i p p-handles, 

p £ 1, 3, no 1-handles, and ( l . + i _ ) 3-handles. 
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Proof 

By 4*1 we can assume the given decomposition i s nice. 

Let be a 1-handle with c h a r a c t e r i s t i c map e^« We 

replace by a 3-handle and the r e s u l t follows by 

induction. 

Let oca e^ (B* xfcc^ be an arc i n the belt tube of h^. 

As i n the proof of reordering (lemma 3.2), by taming, 

general position, and regular neighbourhoods, we can assume 

that oc misses the 2-handles, and hence l i e s i n M^2^ = 3W^2^\MQ. 

Since TfjCW* 2*, C q) = 0 by 4.3, we can find a map f : D 2 — s - W ( 2 ) 

with f ( 3D ) a otu^> , where l i e s i n C Q. S i m i l a r l y , we 
(2) 

can assume that fb i s embedded i n M d i s j o i n t from a l l 
1-handles and 2-handles. Again by 4.3, we can homotop 

2 f 2 ) 
f r e l into M , and by 1.9 we can replace f by a l o c a l l y 

2 (2) 
f l a t embedded disc D i n Mv . See Figure 15. 

The introduction lemma 3.6 can now be used to replace 
2 

a neighbourhood of D by a complementary 2-handle and 

3-handle pa i r ( l ^ , h^) so that the attaching sphere of h 2 

i s D . h^ and are then complementary and can be 

cancelled by 3.4. This proves the lemma.^ 

4.7 Lemma (Elimination of p-handles, 2 £ p ^ w - 4) 

Suppose given a handle decomposition of W on M q with 

no handles of index < p and i ^ q-handles for q .̂ p. 
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Then i f MQ i s simply-connected, 2 $ p $ w - 4, w > 6 

and H P (W, M Q) = 0, we can find a new decomposition 

with the same number of q-handles for q Is p, p + 1, 

with no p-handles and w i t h ( i - i ) (p • 1) -handles. 
p+1 p 

Proof 

We can assume the decomposition i s nice (4.1) and 

then we can compute H. (W, M ) from the incidence numbers. 

Let h p be a t y p i c a l p-handle. We show hov to eliminate 

h P and the r e s u l t follows by induction. Let h P + ^ b e 

the (p + 1) -handles and = £ ( h P + 1 , h p ) . Using 

3.8 we can add the (p + 1) -handles so as to reduce ^JiJ 

as f a r as possible. F i n a l l y , only n^, say, i s non-zero , 

and since H (W, M ) = 0 we must have n, = - 1. p o / l 

h p, h p + * are then a l g e b r a i c a l l y complementary, and the 

re s u l t follows from lemma 3.5.^ 



Figure 15 
Elimination of 1-handles 

Figure 16 
Cobordism with boundary 
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The h-cobordism theorem 

A cobordism (W, MQ, M^) i s an h-cobordism i f both 

inclusions M QC W, M^e. W are homotopy equivalences* In 

th i s instance, the r e s u l t s of the l a s t section lead to 

the important r e s u l t that any simply-connected h-cobordism, 

of dimension greater than 5, i s a product. To prove t h i s , 

we express the cobordism as a handle decomposition, and use 

the algebraic conditions to simplify completely. 

Theorem 

w 
Let (W , MQ, M^) be a simply-connected h-cobordism. 

Then i f w £ 6, W = M x I . 
o 

Proof 

By 4.2 we have a handle decomposition 

W = C o h, o ... u h u C,. We show how to eliminate a l l o 1 t 1 
the h^, so that W = C Q u and the r e s u l t i s proved. By 

4.5 and 4.6 we can assume there are no 0-handles or 1-handles, 

and, by applying these r e s u l t s to the dual decomposition, 

that there are no w-handles or (w-1) -handles. Now use 

4.7 to eliminate a l l p-handles, 1< p^w - 4, and 4.7 applied 

to the dual decomposition to eliminate (w-2) -handles. Then 

we have only (w-3) -handles l e f t . But H w 3(W, M Q) = 0, which 

implies that there are no (w-3) -handles l e f t . . . 
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The r e l a t i v e case 

By a cobordism with boundary, (W, Mq, M^), we mean 

a compact w-mamfold W, together with two d i s j o i n t (w-1) 

-dimensional submanifolds MQ, of d W. Then 

V = c l (9W\(M u M,)) i s a cobordism between <>M andS M,, o 1 o 1 
See Figure 16. 

W i s an h-cobordism i f M Q G W, M 1 <=. W, 2 M Q <=- V, 

3 «=• v are a l l homotopy equivalences. 

5.2 Theorem 

Let (H, MQ, M^) be a simply-connected h-cobordism 

with boundary, and suppose that V = ^ M Q X I and w ^ 6. 

Then (W, V) = (M , ^ M ) x I . 
o o 

Proof 

Using techniques of Connelly £ 9 ] we can extend 

x I = V to a c o l l a r on M . Then by 4.2 there e x i s t s o o 
a handle decomposition on t h i s c o l l a r . By 1.6 we may 

assume that t h i s decomposition i s symmetrical, and i t 

only remains to observe that each step i n the proof of 

the absolute theorem goes through i n t h i s case, each 

constructed homeomorphism being fixed on V. Hence 

W = C o C, r e l V and the r e s u l t follows./, o 1 // 

* 



C H A P T E X I I 

CRITICAL LEVEL EMBEDDINGS 
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This chapter i s concerned with embeddings, F s W — • Q x I , 

of a cobordism into a product. I n § 1 we define c r i t i c a l 

l e v e l embeddings, an equivalent notion in t h i s context to that 

of handle decompositions of a cobordism^ ( I § 4 ) , and \ 3 

i s devoted to existence under r e q u i s i t e conditions. 

I f W i s a product M x I , and we know that the handle 

decomposition of F cancels completely, then we can r e a l i s e t h i s 

cancellation by an ambient isotopy of Q x I . The re s u l t i s 

that F becomes at leas t setwise v e r t i c a l over M. These ideas 

correspond to I § 3 , and are proved i n § 4. 

In the case that M i s piecewise l i n e a r , the way to achieve 

such a cancelling handle decomposition i s by r e l a t i n g i t to an 

appropriate t n a n g u l a t i o n . This i s discussed i n \ I and 

explains the statement of 3.6. When using the inductive 

process i n Chapter I I I , we s h a l l be concerned with preserving 

such c n c i a l l e v e l embeddings under the operation of subdivision 

of the tnangulation, and §2 deals with the lemmas required 

for t h i s purpose. 

Again, as a l l the r e s u l t s of t h i s chapter are for application 

i n the next, we deal with the r e l a t i v e case as much as possible. 

§ 1 begins with an extension of the def i n i t i o n s of I § 4 to 

the case of a cobordism with boundary (as defined i n I § 5 ) . 
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sm 

Definition 

Let (W, MQ, M^) be a cobordism with boundary 

(see I § 5) and V = c l ( 3 w \ ( M o M,)) the cobordi 
o l 

between t) hi and 
o 1 

I f we have a handle h attached to W by a map 

f : ̂  BP x B«-P _ _ * } w 

with h n^U e H^, then we c a l l h a handle on the cobordism 

(as i n I $3) provided that h i s of one of the following two 

forms. 

I f h i s a handle on W, with h n ^ H c int then 

we c a l l h an i n t e r i o r handle. I f h n W int M̂ , but 

h n 3 M 1 = f ( ^ B p x Bw-P-1 x l 5 t h e n n l s c a l l e d a boundary 

handle. Note that i n t h i s l a t t e r case B p x B w p"x 1 i s 

a p-handle h attached to B by f | , i n the usual sense. See 

Figure 17. 

I n these two cases, W = Uu h i s a cobordism with 

boundary (W*, MQ, MJ) where 

M i = cl\3w\(M u V)3 for i n t e r i o r h o 
c l [ * W \ ( M u V « h ) l for boundary h, 

that i s , M' i s given by the surgery defined by h, and 

the cobordism V between M q and M* i s given by 

V for i n t e r i o r h 

V u h for boundary h 
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Handle decomposition, symmetrical decomposition, etc., 

are now defined, as i n I §4, for a cobordism with boundary. 

We also require another type of decomposition. A 

collared handle decomposition of a cobordism with boundary 

(W, MQ, M^) i s a decomposition of the form 

W=~(M x I ) u h . o ( M , . v x I ) u h,o ... w h VJ (M. x I ) o 1 Kl) 2 r 1 
where each h^ i s a handle attached to the cobordism with 

boundary 

W ( i - 1 ) = ( M o X 1 5 ** h l ° ( M ( 1 ) x 1 5 " o h i - l J ( M ( i - l ) x J ) 

and i s obtained from by the surgery given above. 

Let Q be a manifold and F : W — • Q x I an embedding 

such that F" 1 (Q x 0) = Mq, and F * 1 (Q x 1) • Nj. Then F 

i s a c r i t i c a l l e v e l embedding i f there e x i s t s a collared 

handle decomposition of W such that F embeds each handle 

i n Q x for some t ^ « I , and on each c o l l a r x I , F 

i s the product of an embedding of i n Q with a direction 

preserving embedding of I i n I . 

The p a r t i c u l a r decomposition occurring i n t h i s d e f i n i t i o n 

w i l l be ca l l e d a handle decomposition of F, and F i s c r i t i c a l 

with respect to t h i s collared handle decomposition. 

Each h^, i d e n t i f i e d with the image of F | h^ : — • Q x 

w i l l be c a l l e d a c r i t i c a l l e v e l of F. bee Figure 18. 
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Now suppose that we have a piecewise l i n e a r structure 

on W, and that we are given a piecewise l i n e a r handle 

decomposition. 

W = (M x I ) o h, o h,o ... o h o (M. x I ) , o 1 2 r 1 

Then we form the associated collared handle decomposition 

by i t e r a t i n g the following procedure. See Figure 19. 

Suppose that M_ i s an (m-1) -manifold with boundary, 

and that we add a p-handle h = B p x B m~ p to M_ x I with 

attaching map 

f : dB P x B m" P — • M. x 1 

Let M =(M_ x I ) u f h . 

I n the case when h i s an i n t e r i o r handle, we have 

f : "d B P x B m" P — • ( i n t M.) x 1. Let f ( ? B P x B m ' P ) 

be T x 1, the attaching tube. Now 
o 

M = (M. x {0, ^ ) u ( ( M _ \ T ) x [H, l ] )u(T x [Jj,l] ) u f ( B P x B m" P) 

Let h1* be ( iTf ( 3 B P X H B m" p) x \ h , l } ) u f ( B P x \ B m ~ P ) , 

where TT : M_ x I — • M_ i s the projection; t h i s i s a 

p-handle added to M. x (_0, k\ . But (T x \£ f 1̂  H- f(B p x B m" p) 

collapses to ( 3T x \%, l\ ) u (T x ij)o h^, so that, i f 

a(h) and bCK) denote the attaching and belt tubes of the 

handle h , the closure of ((T x jjfc, l\ ) u f ( B p x B m " p ) ] \ h 

i s homeomorphic to ((T x J s \ a ( h ) ) o b(h)] x \%, {\ . This 

homeomorphism can be e x p l i c i t l y recorded, i t being the identity 
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on x \H, i] . Thus we have 

M - (M_ x \0, § ) J h o (M + x \js, l\ ) where M+ i s the 

manifold obtained from M_ by the surgery defined by h* 

See t 1 9l» f r o m
 w h l c n t n l s argument i s taken. 

We reduce the boundary handle case to an i n t e r i o r 

problem 6y considering the manifold 

M - = M - U^M x 1 (*M- x 33 > 
and the p-handle h* = B P x B M " P _ 1 x ^1, 2^ attached to 

in t h« x 1 by f : ̂ B P x B m " P _ 1 x [-1, 2\ —»• M' x 1. 

where 

f > [ f on 3B P x B M " P 

|(f | B P x B"" 1*" 1 x 1) x i d e n t i t y on 

} B P x B M _ P - 1 x 

Let M* be the manifold so formed. Then applying the 

above procedure to M', h* gives a decomposition 

M' = (M* x 1_0, H~\ ) u F 0 (M; x [H, l ] ) . where h 7 i s the 

handle associated to h'. Now define the boundary handle 

h « h * n If to recover M = (M_ x [0, %\ ) u i i , (M+ x l j ) 

where M+ i s the manifold obtained from M_ by the surgery 

defined by h . 

I f we have a triangulation K of W, then taking second 

derived neighbourhoods of barycentres of the f i r s t derived 
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subdivision gives us the second derived handle 

decomposition with respect to K. (Figure 20). (Note 

that these handles are either i n t e r i o r or boundary as 

required.) By cancelling complementary pairs of 

handles i n t h i s decomposition, we w i l l obtain other 

handle decompositions of W. (See I § 3 ) . 

Let K q c. K be a subcomplex, and suppose that we 

form i n t h i s way a decomposition of W by cancelling 

those handles determined by barycentres of simplexes 

belonging to K q. Let F i W — » Q x I be a c r i t i c a l 

l e v e l embedding with respect to the associated collared 

handle decomposition. Then we say that F i s c r i t i c a l 

with respect to K \ K . (K may be empty). 



Figure 17 

A boundary handle on a 
cobordism with boundary 



Figure 1 8 - 1 1 3 1 

A c r i t i c a l l e v e l embedding 
of 
W=(M x I ) u h u (M, x I ) 

A handle decomposition 
The associated collared handle W= (M x I ) o h; o hi u 
decomposition 
W= (M„ x I ) yj T7,u(M x I\,h,o(M (1) (2) 

\ 

/ I V * 

1111 M i l l I I i i 

° Figure 1 9 - 1 1 § 1 
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§2 Subdivision 

Suppose that F i s a c r i t i c a l l e v e l embedding with 

respect to some triangulation K. I s i t possible to 

ambient isotope F so that i t i s c r i t i c a l with respect to 

any subdivision of This section deals with t h i s and 

related r e s u l t s * 

F i r s t l y , a preliminary lemma* 

2*1 Lemma 

Let W be a piecewise l i n e a r cobordism and l e t 

F i Ww • Q x I , = f t q - w ^ 2, be a c r i t i c a l l e v e l 

embedding with respect to the decomposition 

W = (M x l ) u h u (M, x I ) , o l 

Suppose given a new decomposition 

W - (M x I ) u h, u ... u h o (M. x I ) o l r 1 

where Uh^ = h. Then there e x i s t s an ambient isotopy <x 

of Q x I , fixed on (Q x 0 ) o ( Q x 1 ) , such that «• F i s 

a c r i t i c a l l e v e l embedding with respect to the new 

decomposition. 

Proof 

By I 1.1 and I 1.10 we can assume that % and F are 

piecewise l i n e a r . 



43 

Let TTi Q x I —<*• Q be the projection and suppose 

that F(h) o Q x t . We now use Induction on the h^. 

See Figure 21. 

Suppose that F(h^) i s attached to F(M_ x I ) where 

F | M_ x I : M_ x I — > Q x ^s, t\ i s the product of 

an embedding of M_ i n Q and a l i n e a r map of I onto ^ s , t\ . 

Let D be the (w + 1) - b a l l TfF(h^) x [ s * t , t ] and l e t 

N(D) be a regular neighbourhood of 0 mod c l (Im F \ D) in 

int (Q x I ) . Define w-balls 

D + = F ( h l ) u { l T F ( b e l t tube of x [ l j ( s + t ) , t\\ 

and D_ = ^"fi'F(h i) x % ( s • t ) \ u ^flf(attaching tube of h ^ x [^(s+t) 

which are complementary i n "3D, with s ^ D + ="SDo ^ N(D). 

Since q-w > 2, there e x i s t s an ambient isotopy ^S 1 of N(D), 

fixed on <5 N(D) f such that (D +) = D_. Moreover,/^1 

can be chosen so that / i * F | -̂ (M_ x I ) o h ^ i s c r i t i c a l 

with respect to the associated collared handle decomposition 

to (M_ x I ) o ^ . 

Define «x =» /V o ̂ > T * o ... o^>* . ^ 

We use t h i s l a s t r e s u l t to prove the following 

subdivision lemma. 
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2.2 Lemma 

Let F i WW — • Q q x I , ^ Q = jEl, q - w > 2 be a 

c r i t i c a l l e v e l embedding with respect to some triangulation 

K of W, and suppose given a subdivision ? K of K. Then 

there e x i s t s an ambient isotopy « of Q x I , fixed on Q x 0, 

such that o^^F i s c r i t i c a l with respect to o-K. 

Proof 

Suppose that F i s c r i t i c a l with respect to the 

decomposition 

W S (M q x D o h j U ( M ( 1 ) x I ) u ... v i h r u ( M 1 x I ) 

determined by K, and l e t 

W S (M x I ) u H o ... uH u (M. x I ) o l s i 

be the second derived handle decomposition with respect to 

tr K. 

Suppose that h^ i s the handle determined by the bary-

centre of a simplex A * K, We can assume chat are 

ordered so that the handles determined by simplexes in 

o - A \ " £ ( c - A ) are ^ H x | t < i ^ t ^ . 

Define W, » = (M x I ) oh. <j (M, . x I ) u ... o h o(M, * x I ) . 
Kj) o 1 J C j ̂  

Then by uniqueness of regular neighbourhoods, there e x i s t s 

an ambient isotopy oc of W such that for each j 
t 

« i [ < M o x I ) u ( A H i } i = wor 

4 
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Now introduce the c o l l a r s -1 (Mf .* x I ) and by c o l l a r 
* -1 , M , . uniqueness ( I 1*8) assume that of (M x 1) = M x 1 and 

1 o o 
oc^j(Mo x I ) = i d e n t i t y , so that we have a decomposition 

W = (M x I ) u o i= Ul H i u ( M Q J x I)u...o i = t t _ 1 + l H l J o (Ml x I ) 

and an isotopy ex. of W such that 

U H, 

and aL. M, x x I = i d e n t i t y . 

By Edwards and Kirby ^ 1 0 ^ , the isotopy K 'of F(W), 

defined by a*' oF = F oC , can be extended to an ambient t o t 

isotopy |/1 of Q x I . Now apply the preceding lemma, 

2.1 r times to fi> F.^ 

S i m i l a r arguments lead to the following. 

2.3 Lemma 

Let F > VT Q s x I , q - w £2, be a c r i t i c a l l e v e l 

embedding with respect to K \ K q , where ( K , K Q ) I S a 

triangulation of (W, F * O Q x I ) ) , and suppose given a 

subdivision a K of K. Then there e x i s t s an ambient 

isotopy oc of Q x I , fixed on (Q x 0) u Q x I ) such 

that*. F i s c r i t i c a l with respect to o-K\o-K . 1 o 
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I f we further assume that W i s compact, then oc has 

compact support.^ 

2.4 Lemma 

Let M N, M", M" , and T N _ 1 be manifolds, with M = M QO M 1 

and T = M rtM, = M rv^M,, and l e t K, and the subcomplexes o 1 o 1 K 

K Q , K j , L, triangulate M x l , M Q X I , M ^ x l , T x l 

respectively. Let a K be a subdivision of K and 

suppose that F : M x I *• Qq x I , >Q » ^, q - n > 3, 

i s an embedding such that F | M Q X I i s c r i t i c a l with respect 

to K q , and F | x I i s c r i t i c a l with respect to the handle 

decomposition determined by L on T x I and or on ( M ^ \ T ) x I . 

Then there e x i s t s an ambient isotopy K of Q x I , fixed on 

Q x 0, such that oc.F i s c r i t i c a l with respect to cK.,, 



The C r i t i c a l Level Theorem 

The purpose of t h i s section i s to show that, under 

appropriate conditions* we can ambient isotope a piecewise 

l i n e a r embedding of a cobordism so that i t i s a c r i t i c a l 

l e v e l embedding with respect to some triangulation. 

In [ 19] , Kearton and Lickori s h prove r e s u l t s of 

t h i s type, but either for i n t e r i o r embeddings of closed 

manifolds, or for concordances of closed manifolds with 

the ambient space a closed manifold* ke require r e s u l t s , 

however, of a r e l a t i v e nature, but the techniques of \.19~̂  

can be extended to prove them. This section, then, i s 

based e n t i r e l y on t h e i r work - 3.1 ( a ) , 3.2 ( a ) being [ l 9 l 

Lemma 1 and Addendum, 3.1 ( b ) , 3.2 ( b ) , 3.6, 3.5 and t h e i r 

proofs being simple extensions of ^19 J Lemma 1, Addendum, 

Lemma 2 and Lemma 3 to the r e l a t i v e case. Likewise, 

the proofs of Theorem 3.6 and i t s Corollary are based on [ 19 

Theorem 3 and the remarks that follow i t . 

The statement of 3.6 i s necessarily involved - the 

theorem i s used i n Chapter I I I as a l o c a l piecewise l i n e a r 

tool to provide c r i t i c a l l e v e l embeddings of topological 

objects - and i s based on Armstrong \_ 3~\ observation ( c ) . 
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Lemma 

Let (Q? * P M|I! ^ ) be a piecewise l i n e a r manifold pair, 

m < q. Let the pai r (Q, M) be formed from (Q_, M_) x I 

in one of the following ways: 

( a ) by .attaching a p-handle pair H p = B p x ( B q ' p , B m " p ) 

to (Q, H) x 1, where ( B q _ p , B m" p) i s a standard b a l l 

pair, and then adding a (p + 1) -handle H p +^ which 

cancels the p-handle just added to Q. x I ; 

(b) by attaching a p-handle pair H p = B P x ( B q - p , B m " P ) 

to M.) x 1, where ( B q _ p , B m - p ) = ( B q - p - 1 , B m _ P _ 1 ) x ( B , , [ 0 , l ] ) , 

( B q p ^ , B m p ^ " ) i s a standard b a l l p a ir, and the 

handle added to M_ x 1 i s a boundary handle with 

B p x B m - p ~ l x 0 attached to ~d M_ x 1, and then 

adding a (p + 1) -handle H1*** which cancels the 

p-handle j u s t added to Q_ x I . 

Suppose that the attaching tube of H1*** does not 

meet N. Then there i s a homeomorphism h : Q_ x I —• Q 

such that 

( l ) h * : M — • Q_ x I i s a c r i t i c a l l e v e l 

embedding with respect to the associated 

collared handle decomposition of M on 

M_ x I ; 

( i i ) h i s the i d e n t i t y outside a regular neigh­

bourhood of (Q_ x DnCH^H^ 1) r e l ^ [ ( Q . x l ) n ( H P u H p + 1 ) ] . 
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Proof 

As the handles added to Q_ x I cancel, we may write 

H P = B p x ( B q _ P , B m" p) = B P x ( I x B q" p" 1
f B m' P) where 

B m " p c : * x B q- p" 1, and H 1* 1 = B 1* 1 x B ^ " 1 = (B p-x I ) x B q~ P~^. 

I f a^ and a 2
 a r e t n e respective attaching maps, and e^ the 

c h a r a c t e r i s t i c map of Hp, we may assume that 

a 2 ( ( B P x 1) x B q " P _ 1 ) = e i ( B P x (0 x B q _ p _ 1 ) ) but that 

otherwise the attaching tube of Hp*'" misses H P. I t may 

also be assumed that 

a 2 ( ( B P x 1) x h B q " P " 1 ) = e i ( B p x (0 x H B q " P " 1 ) ) . Now 

consider the following p-handle and (p + 1) -handle 

attached to Q_ x \o, Q . See Figure 22. 

^ = [ B P x ([0. % ] x ^ q - p - 1 ) ] o a i { a 1 ( ^ B P x [ o . f l x h^'P'hx 

H^ 1-^ 1* 1 x * B q " p - 1 ] u a 2 \ a 2 ( ( B p x 0 o ^ B p x I ) x * B q ~ P _ l ) x ^ t l \ \ . 

These form a cancelling pair of handles, and I F contains 

i n i t s boundary the handle for M i n the associated collared 

handle decomposition of M. Thus HPu HP+*' I S a q-ball 

D with boundary the union of two (q-1) - b a l l s D_ and D + , 

where Dn (Q_ x i | ) = D-. Let h:D_ x \_0,jjj > (D_ x [ o , ^ ) u D 

be a homeomorphism such that h(D_) = D+ and h i s the iden t i t y 

on x ^0, k\ and near D. x 0. Let E be the q-ball 

H Po H1*** with the boundary E_u E+, where E_ and E+ are (q-1) 

- b a l l s and E c\ (Q_ x 1) = E- . 
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Now Eo(E. x [Jj.l] ) \ . O E _ x ) o ( E . x % ) o D u ( M n E ) 

and MnE \ ( M n D ) u ( M n{(E_ x *}) u ( ̂ E _ x [H, l } ) } ) . 

Hence by standard r e s u l t s on regular neighbourhoods, the 

closure of [ E u ( E . l ] [ ) \ \ D i s homeomorphic to 

{ ( ( E _ x J } ) \ D . ) o D + \ x [ J j , i ] , the homeomorphism being 

the i d e n t i t y on ~oE_ x l\ , and compatible with the 

c o l l a r structure i n the associated collared handle 

decomposition of M. Thus h can be extended by the 

i d e n t i t y on {(Q_ \ D_) x (.0, %~\\o ^(Q= \ E_) x [ J j . l[\ . 

and by means of the above homeomorphism on E_ x [if, 1̂  . 

Then h t Q_ x I — • Q has the required properties... 

Lemma 

Suppose that, i n the statement of 3.1, the following 

conditions hold i n the respective cases: 

( a ) the (p+1) -handle H1*** i s a standard pair 

B ^ 1 x ( B q ~ P ~ l , B r a ~ P _ 1 ) which cancels the p-handle 
o o 

pair added to (Q_, M_) x I ; 

(b) the (p+1) -handle H 1* 1 i s a pair B 1* 1 x ( B ^ - 1 , B m " p _ 1 ) 

where ( B ^ " 1 , B ^ " 1 ) =(B q- p" 2, B r a- p- 2) x (B1, [p. l j ) . 

( B q - p - 2 , B m - p " 2 ) i s standard and B 1* 1 x B m~ p~ 2 x [o, l ] 

i s a boundary handle with B1*** x B r a~ p 2 x 0 attached 

to the boundary, and that cancels the p-handle pair 

added to (Q_ t M_) x I . 
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Then there exists' a pairwise homeomorphism 

h i (Q_, M_) x I — • (Q, M) and property ( 1 1 ) s t i l l 

holds. 

Proof 

H p u H1*** i s an unknotted b a l l pair (case ( a ) ) or 

t r i p l e (case ( b ) ) attached to Q_ x 1 by an unknotted 

face pair, or t r i p l e , respectively. Then r e s u l t s of 

Zeeman ^37^ show that an h can be constructed of the 

required form. h then simply "stretches" the o r i g i n a l 

c o l l a r pair over (Q, M)»^ 

Lemma 

Suppose that the conditions of 3.2 are s a t i s i f e d . 

Then there e x i s t s a homeomorphism h : Q_ x I — • Q such 

that 

( i ) h * : M ——* Q_ x I i s a c r i t i c a l l e v e l embedding 

with respect to the associated collared handle 

decomposition of M on M_ x I ; 

( i i ) h i s the id e n t i t y outside a regular neighbourhood 

of (Q_ x l ) n ( H P u H 1* 1) r e l ^ [ (Q_ x l ) o ( H P u H p 
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Proof 

We can assume that H P u H1*** i s a standard pair 

( B q , B m) = B P "x B x ( B q ~ p ~ \ B m " P " 1 ) attached by a on 

{ ^ B P x B X CB'-P" 1, B m - p " l ) \ o { B P x -1 x ( B q " p - 1 , B m - p " 1 ) $ 

where H P = B P x[[p.l] x ( B q " P _ 1 , B m _ P " 1 ) ^ and 

H 1* 1 =CBP x [-1, 0] ) x ( B q ~ P _ 1 , B r a _ p - 1 ) . Intoduce 

the cancelling (p+1) -handle and (p+2) -handle pair 

H1*1 = ( B P x [-1, 0] ) x ( \k, i j x B q " p - 2 ) 

W*2 = ( B P x £-1, o} x lh, Q ) x B q" P" 2 

and l e t HJ*1 = H1**1 X C H ^ o H 1* 2). Then the pairs 

(HP, H1*"1) and (H?* 1, 'HP+2) are also cancelling p a i r s , 

and they each s a t i s f y the conditions of lemma 3.1. 

See Figure 23. Applying 3.1 twice gives the r e s u l t . 

Let Q be a piecewise l i n e a r manifold, with boundary, 

and suppose that d i s a c o l l a r of the pair (Q x 0, 5Q X 0) 

i n (Q x I , x I ) with d ( ̂ Q x I ) = 3Q x I and 

d | d _ 1(Q x 1) a c o l l a r of X 1 i n Q x 1. Now, 

given a handle decomposition of Q x I on d(Q x I ) 

together with a procedure for cancelling these handles i n 

p a i r s , we can construct a homeomorphism 

h t Q x I — > Q x I , with h | ( Q X 0 ) U ( 3 Q X I ) = 1, 

by stretching t h i s c o l l a r over each pair of cancelling 
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handles i n the usual way* We say that an h so 

constructed i s associated with d and the given handle 

cancelling procedure. 

3*4 Lemma 

I f h and h* are homeomorphisms of Q x I to i t s e l f 

both associated with a c o l l a r d, of the above form, and 

a given handle cancelling procedure, then h and h* are 

isotopic keeping (Q x 0) o ( ̂  Q x I ) fixed. 

Proof 

By induction on the number of pairs of cancelling 

handles, i t i s s u f f i c i e n t to suppose that there i s just 

one pair, and that h, and h', are associated with c o l l a r s 

d, and d', respectively, and with t h i s single cancelling 

pair of handles, where d (Q x I ) » d* (Q x I ) and d~^d' 

i s isotopic to the id e n t i t y keeping (Q x 0)u (^Q x I ) 

fixed. 

Let B q be the union of the two handles. See Figure 24. 

Then Q x I = d(Q x I ) o B q where B q n d (Q x I ) = B q _ 1 ="SB qnd(Q x I ) . 

Letoc, oc' i d(Q x I ) — • Q x I be homeomorphisms sending 

B q~* t o 3 B q \ i n t B q"* and which are the i d e n t i t y outside 

a regular neighbourhood of B q _ 1 r e l ^ B q " 1 o (Q x 0) u OQ X 1)\ . 

4 
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Then oc ce'is isotopic Co the iden t i t y , for the isotopy 

can be constructed f i r s t l y on the b a l l B q * and then on 

the regular neighbourhood of B q * i n d(Q x I ) . But 

h a « d and h' a <*• d', for some oc and oc* with the 

above properties, and d * oc * oc ' d' i s isotopic to the 

id e n t i t y ] hence h and h* are isotopic.,. 

Suppose that Q x I i s triangulated i n such a way 

that Q x I Q x 0 by a c y l i n d r i c a l collapse (see 

Zeeman^38]). Then t h i s collapse induces a cancelling 

procedure for the handles of the second derived handle 

decomposition with respect to t h i s triangulation. 

Suppose t h i s second derived i s chosen so that the 

s i m p l i c i a l neighbourhood of Q x 0 i n the second derived 

i s Q x [0, t\ for some small t . Let d be a c o l l a r of 

Q x O i n Q x I , whose image i s the second derived 

neighbourhood of (Q x 0 ) V J O Q X I ) , such that d | 3q x I 

i s the iden t i t y , for simplexes A of Q x 0, with A c int Q, 

d | A x I i s the product of the id e n t i t y on the f i r s t 

factor and the l i n e a r map of I onto [o, t] on the second 

factor, and, for other simplexes A, d ( A x I ) c A X I . 

See Figure 25. 
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3.5 Lemma 

Let h i Q x I ——» Q x I be a homeomorphism associated 

with a c o l l a r d, of the above form, and a cancelling 

procedure given by a c y l i n d r i c a l collapse. Then h 

i s isotopic to the i d e n t i t y keeping (Q x 0) o ( Q x I ) 

fixed. 

Proof 

By 3.4, we can ssume thac h i s chosen so that 

h ( A x I ) = A x I for each simplex A i n Q x 0. Now 

construct the isotopy inductively over each A x I . ^ 

3.6 Relative piecewise l i n e a r c r i t i c a l l e v e l theorem 

Let (W , M . M,) be a piecewise l i n e a r cobordism o l 
with boundary, and l e t P be a compact piecewise l i n e a r 

manifold of dimension w - 2. Suppose that P x I x I 

i s a piecewise l i n e a r submanifold of U such that 

(see Figure 26) 

(Pxlxl)<\3w = (PxIxO)u(PxOxDo ( P x l x D u C ^ P x l x l ) 
( P x I x I ) n M x = P x i x I , i • 0, 1. 

(PxIxI )naM x = (P x l x 0) u ( *P x l x I ) , I - 0, 1. 

Let Qq be a piecewise l i n e a r q-raanifold, and 

F i W — • Q x I a piecewise l i n e a r embedding, with w $ q 

and Q compact, such that F *(Q x l ) = M , l = 0,1, 

F _ 1 ( d Q x I ) = P x I x 0 , and F i s v e r t i c a l over P x 0 x I . 
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Let<K» K q ) be a triangulation of (W, P x I x 0 ) . 

Then there e x i s t s an ambient isotopy <*. of Q x I , fixed 

on (Q x 0) u ("i Q x I ) , and a subdivision (o-K,«rK ) . 
o 

such that * * j F i s a c r i t i c a l l e v e l embedding with respect 

to crK \ crK . 
o 

3.7 Corollary 

Given L>0,oc and or can be chosen so that oc i s 

an £ -ambient Isotopy. 

Proof of theorem 

Let c : M x I — + W be a c o l l a r on (M , "SM ) i n o o o 
(Wf ^ tf) which agrees with the structure of P x I x I , 

i . e . c ( ( x, 0, t ) x I ) c { x ^ x I x t for x«P, t * I . 

Such a c o l l a r e x i s t s by Rourke and Sanderson ̂ _32 ̂  4.21. 

(Extending c o l l a r s ) . 

By Rourke and Sanderson's level-preserving lemma 

[32 ] 4.23 (or see Hudson's r e s u l t s i n [ l 3 } v i § 3 on 

compatible c o l l a r s ) , we can choose t Q small enough, and 

assume that F(c(x, t ) ) =(F (x, 0 ) , t ) for X*M Q, 0 < t s , t Q . 

Now TTF(P x 0 x I ) i s a c o l l a r of TTF(P X 0 x 0 ) ^ ^ Q 

i n "T^F(Mo)c.Q, so, by c o l l a r extension again, there e x i s t s 

a c o l l a r c' 1 dQ x — » Q with 

c' CTTF(x, 0, 0 ) , t ) =TTF (X, 0, t ) for xfeP and 

0 < t <t i $ 1. We can assume that 
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ImCcOftTTFCW) *TTF ( P i O x [0,S1 ) . Define 

c" t OQ x I ) x \pM Q x I by c"(q. s, t ) = ( c ' ( q , t ) f s 

then c" i s a c o l l a r of the pair ( 3 Q x I , "3Q x ^ I ) i n 

(Q x I , Q x "c>I), and fin(cN)rk F(W) - F(P x I x [0, ) , 

with c"(TTF(x, s, 0 ) , t ) • (F(x, 0 t ) s ) for 

x c P f t e[p»&] • 

Triangulate Q x I , and subdivide K so that F i s 

s i r a p l i c i a l and Q x [o, t j | , I r a ( c M ) , are subcomplexes of 

Q x I . Subdivide Q x I so that I T : Q x I — > Q x 0 

i s s i m p l i c i a l , and take the further subdivision of K, «- K, 

induced by F. We can take the second derived of 

Q x I i n such a way that the s i m p l i c i a l neighbourhood of 

(Q x 0 ) u CdQ x I ) i n t h i s second derived i s 

(Q x [0, t j ) u c " ( "5Q x I x [o,*.] ) for some 

0 < t j < t Q f and 0 < £ <• & • Now the second derived 

neighbourhood of (Q x 0)v("fcQ x I ) i s a c o l l a r d of the 

pair (Q x 0, "oQ x 0) i n (Q x I , x I ) with 

d(( "SQ x 0) x I ) a x I . Since TT i s s i m p l i c i a l we 

have a c y l i n d r i c a l collapse Q x I Q x 0, which defines 

a cancelling procedure for the handles of the second 

derived handle decomposition of Q x I on Tm(d). By 3.1f 

3.2, and 3.3, we can construct a homeomorphism 

h : Q x I > Q x I associated to d and t h i s cancelling 

procedure, such that h * F i s i n c r i t i c a l l e v e l position 

with respect t o c - K \ c r K o . Furthermore, h w i l l be isotopic 
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to the i d e n t i t y r e l ^(Q x 0)o ( ~bQ x 1 ) ^ by lemma 3.5. 

Define ec to be t h i s isotopy.^ 

Proof of cor o l l a r y 

Divide Q x I into a number of consecutive slabs 

Q x f y \ Y ] W l t n X'fi < E » s o t h a t F^W) m e e t s e a c h 

slab i n a cobordism, and apply the theorem to each 

slab i n turn. Now a l l isotopies used are £. , except, 

possibly, on application of 3.5. When 3.4 i s used in 

3.5, and hence i n using 3.5, each A x I i s never 

isotoped outside ( s t a r A) x I . Hence by taking a 

suitably fine i n i t i a l subdivision of K, the corollary 

follows.,, 
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Handle moves 

Viewing a c r i t i c a l l e v e l embedding as an embedded 

handle decomposition, can we simplify the decomposition 

by embedded handle moves s i m i l a r to the handle lemmas 

of I § 3' Since we w i l l be looking at concordances, 

and hence dealing with products so that we can arrange 

for the decomposition to cancel simply, we only require 

two lemmas - reordering and cancellation. Order here 

i s i n the following sense. 

Suppose that F : W — • Q x I i s a c r i t i c a l l e v e l 

embedding,with each c r i t i c a l l e v e l of F contained in 

( i n t Q) x I . Now by a small ambient isotopy, we can 

assume that the c r i t i c a l l e v e l s l i e i n d i s t i n c t Q x t , 
i ' 

for some 0 < t ^ < . . . < t n < 1. This gives a new 

ordering for the handles i n the handle decomposition 

of F, determined by the order of the indices of t h e i r 

l e v e l s . 

In the following two lemmas we assume tnat W and Q 

are piecewise l i n e a r manifolds and that F : Ww —•* x 

i s a piecewise l i n e a r embedding. I n theorem 4.3 we 

revert to the topological s i t u a t i o n . 4.1 and 4.2 f i r s t 

appeared, with sketch proofs, i n Rourke [ 3 1 ] , as Lemmas 

3 and 5. 
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4.1 Lemma (Reordering Handles) 

SuDpose q - w ^ - 2 , and that we are given a handle 
D r 

decomposition of F with handles h , h consecutive, 

and with r ^ p. Then we can find another decomposition 

with the same number of handles of each index, and the 

same ordering except that h r precedes h P . 

Proof 

Let "IT i Q x I —*• Q be the projection. Suppose 

that h p, h r , are embedded i n Q x t , Q x t ' , respectively, 

and that h r i s attached to M x \t, t'] . I d e n t i f y 

TTh P, -TThr, with B p x B w~ p, B r x B w~ r, respectively. 

Note that Tfh P n M = B p x d B w" p and "TThro M = ^ B r x B w - r . 

The arguments of the proof of the standard reordering 

lemma (see I 3.2) give us an ambient isotopy of M moving 

"TTh ro M off "ITh P r> M. Extend t h i s isotopy to one of 

Q with the same property. See Figure 27. 

Choose 0 < < 1 large enough so that 

( i f core h r n T T h p ) c int ( ^ B 1 x 0 ) . Let N be a regular 

neighbourhood of ' t B 1 x 0 i n Q, such that NnM = ^. By 

general position there e x i s t s an ambient isotopy of Q, 

with support i n N, carrying ("TTcore h r ) r\ N off i f f i b r e h p, 

that i s , an ambient isotopy of Q moving TTcore h r off 

"Tffibre h p leaving M fixed. 

4 
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Choose a c o l l a r c. of ^ B r x "3 B W" r i n M \ t T h r , 

and 0 < t < 1 small enough so that 

( TT fib r e h p ) n ( B r x £ B w ~ r ) = ji. Then the isotopy 

of T f h r
f shrinking B r x B M _ r fibrewise to B r x £ B W~ r, 

extends to an isotopy of M u TT h r simply by stretching c 

i n M, leaving M \ I m ( c ) fixed. Then by the covering 

isotopy theorem for polyhedra (see, for example, Hudson [_14] o r 

Rourke and Sanderson .24) there e x i s t s an ambient 

isotopy of Q which extends the isotopy of M u TT~hr. This 

gives us an ambient isotopy of Q, setwise fixed on M, 

moving T T h r off l T ( f i b r e h P ) . 

Now l e t Nj, N̂ , be regular neighbourhoods of h p 

mod M, (0 x B W " P ) u ( B p x £ B W " P ) mod (MuTTh r), respectively. 

Then both are regular neighbourhoods of (0 x B w p ) o ( B p x ^ B w _ p ) 

mod M, so that, by uniqueness, there e x i s t s an ambient 

isotopy of Q, leaving M fixed, and moving to N^, 

i . e . s h i f t i n g I f h r off -fl"h p. 

Let oc J Q x I *• Q x I be the composition of these 

ambient isotopies. Note « leaves M setwise fixed. 

Define (I t Q x I x I *> Q x I x I by 

/ 5 ( x , u, r ) (x, u, r ) for (x, u, r ) 6. Q x \o, t] x I 

jftCx, v . u - t ) . r ) for (x, u, r)«Q x [ t , t*\ x l . j tf-t 

(<x(x, r ) , r ) for (x, u, r)«Q x [ t ' , l ] x I 
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Then f*z i s an ambient isotopy of Q x I , s h i f t i n g h such 

that i y ? > 1 h r n "*rrh p = ft and leaving Im(F) setwise fixed 

below h r . 

Choose 0 < s < t such that no other c r i t i c a l l e v e l s 

of F l i e i n Q x [s, t*\ • We now push / ^ j h * down 

to l e v e l s i n the following manner; t h i s proves the 

r e s u l t . 

Let D be the b a l l / ^ ( B 1 x B w ~ r ) x [s, t*\ and 

N(D) a regular neighbourhood of D mod c l (Im(F) \ D ) 

i n Q x I . Then the w-balls 

D. = ^ ( B * x B w " r ) x s]u {°< 1(B r x"^B W" r) x [s, tfy 

and D + = {« i(B r x B W _ r ) x t ^ o ^ C a B 1 x B W" r) x [B, t ^ 

are complementary i n 7)D = D.oD +, with 

^ D- = = ^ D o ^ N ( D ) . Hence there e x i s t s an ambient 

isotopy of N(D), fixed on *^N(D), moving D+ to D_, since 

we have codimension three. Extend to an ambient 

isotopy of Q x I , replacing ^ h r i n l e v e l t ' by 

Tiyi^ h r x s i n l e v e l s. (This process i s s i m i l a r to 2.1, 

Figure 21). 
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4.2 Lemma (Cancelling Complementary Handles) 

Suppose that h p and h^** are complementary handles 

i n a handle decomposition of F. Then there i s another 

handle decomposition of F, with the same number of handles 

of each index, except that h p and h1*** are missing, 

provided that q - w 2. 

Proof 

Let tiP*^t h P, be i n l e v e l s Q x t ' , Q x t , respectively, 

and be attached to M x [ t , t*} , M. x \s, t] . Let 

TViQ x I — * Q be projection, and " ^ ( h ^ 1 ) = B 1^ 1 x B w ~ p _ l , 

-vT(h p) = B p x B w" p. Note that 

M n T T ( h P + 1 ) O B 1 * 1 x B W " P _ 1 , MrflT(h P) = B P x ^ B W~ P, 

and ( ̂ B 1* 1 x 0) r\ ( O x 3 B W ' P ) = { x } , the one point 

i n the d e f i n i t i o n of complementary handles• Let N be 

a regular neighbourhood of Bp+^' x 0 mod M. Then by general 

position there e x i s t s an ambient isotopy of Q, fixed outside 

m t N, such that ( i n t B 1* 1 x 0 ) n ( 0 x B W ~ P ) = ^, that i s , 

s h i f t i n g lT(core h1***) such that TT(core h1*"^) r\ Tf(fibre h p ) = { x j } 

and leaving M fixed. 

Choose e>0 such that ( S B 1 * 1 x t B w " p " 1 ) r \ ( 0 x B W" P)= ̂ x £ B w " p _ 1 . 

Let X = ( B 1 * 1 x 0) u <Jx\xEB W~ p - 1), and l e t N , N2 be regular 

neighbourhoods of B 1* 1 x £ B w ~ p _ 1 mod M, X mod [(0 x B v " p ) VJ , 

respectively. Then N^, are both regular neighbourhoods 
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of X mod M, so that by. uniqueness there e x i s t s an ambient 

isotopy of Q moving onto N̂ , and leaving M fixed. This 

c a r r i e s B ^ 1 x e B w " p _ 1 off mt TT(fibre h p ) . 

Now, using s i m i l a r arguments to those of the reordering 

lemma, 4.1, we can ambient isotope Q x I so that 

T f ( h p + ^ ) n i n t T T ( h p ) = ft , leaving Im(F) setwise fixed 

below h** 1. 

We now a l t e r F by pushing h p** into the same l e v e l as 

h p . This l e v e l then consists of a "step" - a disc 

attached to M_ by a face - which we remove by pushing i t 

v e r t i c a l . F w i l l then have a handle decomposition of 

the required form. 

Let D be the b a l l B ^ 1 x B w" p" 1 x j t , f ] and N(D) 

a regular neighbourhood of D mod c 1 (Ira(F) V D) i n Q x I . 

Then the b a l l s D_ - ( B 1 * 1 x B W' P" 1 x t ) v , ( B P + 1 x^""*" 1 x [ t , f } 

and D + = ( B ^ 1 x B w' p~ l x f ) o ( l B p n x B ^ " 1 x [ t , f } ) 

are complementary i n = D_ o D+, with 

= ~oD+ -^Dn ~^N(D). Hence there e x i s t s an 

ambient isotopy of N(D) fixed on the boundary, moving D+ 

to D_. Extend to a ambient isotopy of Q x I , replacing 

h1**1 i n Q x t* by h1**1 = l T ( h P + 1 ) x t i n the same l e v e l as 

h P . See Figure 28. 
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Since h P , h P + * are complementary, we now have 

T T ( h P o h 1 3* 1) = E, a b a l l attached to M_ by a face E- . 

Let E+ be the complementary face to E. i n E. Then, 

as above, there e x i s t s an ambient xsotopy oe of Q, with 

support i n a regular neighbourhood N(E) of E mod c l ( M _ \ E-) 

such that ^ ( E - t . ) = E-» Define f l : Q x 1 x I —»• Q x I x I 

by 

(x,u,r) for ( x , u , r ) t Q x [0,t} x I P> (x, u, r ) 

(* ( x , r . u - t ) . r ) for (x,u,r)€Q x [ t t t ' l x 1 

t?-t 

( o t ( x , r ) , r ) for (x,u,r)«Q x \t'» l j x I 

Then E_ x [ t , t ^ and ^ { ( E x t ) o ( E + x [ t , tfj ) \ are 

b a l l s with common boundary, so move the l a t t e r to the former 

by an ambient isotopy supported i n a regular neighbourhood 

of N(E) x [ t , t * ] mod^ 1 ( c l \ _ I m ( F ) \ { ( E x t ) u ( E + x [t,f] 

See Figure 29. 

F i s now i n c r i t i c a l l e v e l position, with respect to 

the o r i g i n a l decomposition with h p and h1*** cancelled.^ 

We apply the preceding two lemmas i n the next theorem 

to simplify completely a cancelling handle decomposition of a 

topological embedding F : M x I * Q x I , where M i s a 

codimension three piecewise l i n e a r manifold. 

•4 
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4.3 Theorem 

Suppose that F i M x I — » Q x I i s an embedding, 

where M i s a piecewise l i n e a r n-manifold and Q i s a 

topological q-manifold, which i s a c r i t i c a l l e v e l 

embedding with respect to a cancelling handle decomposition 

of M x I . Further suppose that F _ 1 ( 3 Q x I ) = X x I , 

where X i s a closed subset of M, and that F i s v e r t i c a l 

over a neighbourhood of a closed subset Y of M that 

contains X. Then, i f q-n ^ 3, there e x i s t s an ambient 

isotopy at of Q x I , fixed on (Q x 0) u ( 3 Q X I ) and on 

a neighbourhood of F(Y x I ) i n Q x I , such that 

K 1 F(M x I ) = j o ^ F(M x 0 ) ^ x I . 

Proof 

Using I 1.1 and I 1.10, we can apply the proofs of 

lemmas 4.1, 4.2 i n the topological s i t u a t i o n , i n a manner 

si m i l a r to that of I § 3. 

As we have a cancelling decomposition, the r e s u l t 

follows.a 

4.4 Remark 

In the case that M i s compact, we may assume that 

the ambient isotopy oc of 4.3 has compact support... 
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The f i n a l chapter i s divided into tvo sections. I n 

the f i r s t we develop the proof of the main theorem (1.5) 

from the r e s u l t s and techniques of Chapter I I . This 

theorem has as a coro l l a r y that concordance implies isotopy 

for embeddings of manifolds i n manifolds. To simplify 

the proof p we have stated 1.5 as an absolute theorem - we 

give a more general r e l a t i v e r e s u l t i n § 2, together with 

versions f or embeddings of polyhedra i n manifolds, and, 

at the end of that section, for embeddings of polyhedra in 

polyhedra. We also prove that given £ > 0, there e x i s t s 

a £ > 0 such that, i f two close embeddings of a manifold 

i n a manifold are concordant by a concordance within % of 

the* v e r t i c a l concordance, then those embeddings are t -ambient 

isotopic. 

We begin § 1 with some d e f i n i t i o n s , then state and 

quote the proof of the Approximation theorem of Armstrong jj}} . 

This r e s u l t i s used in conjunction with an inductive application 

of Proposition 1.2 to change topological concordances into 

c r i t i c a l l e v e l embeddings, a major step of 1.5. 
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The Main Theorem 

Two erabeddings f, g of M i n Q are concordant i f there 

i s an embedding F i M x I — * Q x I which s a t i s f i e s 

F" 1 (Q x 0) = M x 0, F~ 1(Q x 1) • M x 1, F | M x 0 = f 

and F | M x 1 = g. 

Let IT": Q x I * (J x 0 be the projection. A 

concordance F i s regular over a subset U of M i f the set 

"TrF(U x I ) l i e s i n a compact q-dimensional submamfold 

of Q wmch supports a piecewise li n e a r structure. Vine 

Q i s a manifold with boundary we s h a l l c a l l a concordance 

F allowable i f F ~ l ( "̂ Q x I ) = X x I , where X i s a closed 

subset of M, and F i s v e r t i c a l over a neighbourhood of a 

closed subset Y of M that contains X. 

Suppose that Q i s a non-triangulable manifold (see the 

Introduction), and l e t f be a s p a c e - f i l l i n g curve f : I —*• 

(see \_ 11 Then the embedding F defined by 

F * 1 * Q x I 

t l — * ( f ( t ) , t ) 

i s a concordance of a point i n Q which i s not regular. 
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However, Armstrong L 3 1 h a s proved the following 

theorem for allowable concordances, i n codimension three, 

so that we can ambient isotope such a concordance to be 

regular over the members of some open cover. ( I n fact 

Armstrong's proof i s for q ^ 4, but q - n ^ 3 works 

equally w e l l ) . 

1.1 Theorem (Approximation; Armstrong £ 3 ~\ theorem 1) 

Let Mn, be manifolds, M compact and q-n £ 3, 

and l e t F t M x I — » Q x I be an allowable concordance. 

Then there i s an ambient isotopy K of Q x I , and a 

covering of M by open sets U., U_, U such that: 
1 l s 

( i ) K i s f i x e d on Q x 0, on dQ x I and on a 

neighbourhood of F(Y x I ) m Q x I ; 

( i i ) K has compact support; 

( l i i ) K^F i s regular over U x, 1 < l £ s. 

Proof 

We s h a l l content ourselves with examining the case 

where bM, dQ and Y are a l l empty, leaving the extra d e t a i l s 

required for the r e l a t i v e case to the reader. 

Since M i s compact i t i s enough to find an ambient 

isotopy K of Q x I r e l Q x 0 and a neighbourhood U(x) for 
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each point x of M such that K^F i s regular over U(x) 

for a l l xcM. Let be a c o l l e c t i o n of closed 

l o c a l l y f l a t b a l l s i n Q whose i n t e r i o r s cover Q. By 

Legesgue's lemma we can find a covering of M by b a l l s 

B,, B_, ..., B and a p a r t i t i o n 0 • t < t. < ...<t = 1 
i c r o i n 

of I so that i f 1 ̂  i ̂  r and 1 4 j $ n then there e x i s t s 

e^ 1 with F(B x [ t ,, t l ) £ mt V x x I . Let B denote 
J J 

a s l i g h t l y enlarged copy of B^ (say B^ plus a c o l l a r ) so 

that t h i s property remains true with B^ replaced by B . 

Consider f i r s t those points that l i e i n the b a l l B^. We 

s h a l l show by induction that given k, 1 k <• n, there 

e x i s t s an ambient isotopy C of Q x I r e l Q x 0 and a 

neighbourhood U (x) for each x € such that 

( i ) TTG*F(U k(x) x ^0, t k") ) l i e s i n a compact 

q-dimensional submanifold of Q that supports 

a piecewise l i n e a r structure, and 

k„,£ (ii ) GJF(B x x [ t , t j ) C i n t V t x I , U U r 

J 
1 $ J <; n 

The induction begins with k = 1. By construction 

iTFCB^ x [0, t^\) l i e s i n the i n t e r i o r of the b a l l V , 

1 1 - 1 

so we may take G to be the i d e n t i t y and U (x) to be B^ for 

a l l x i n B^. Inductive step k —» k + 1. The i n t e r i o r s of 
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It 
the sets (J ( x ) form an open cover of B^. Let 

k k int U ( x . ) , i n t U (x ) be a f i n i t e subcover* By 
L S 

assumption there are compact q-dimensional submamfolds 

W , ..., W of Q, each of which supports a piecewise l i n e a r X s 
structure, such that 

( 1 1 1 ) -n-G kF(U k(x ) x [ 0 f t."] ) Q i n t Wm for l m *- K j m 
1 £ m ̂  s. (We can write i n t Ŵ  by c o l l a r i n g . ) 

k 

Choose E > 0 small enough so that a l t e r i n g G by composing 

i t with an £-ambient isotopy of Q x I w i l l not destroy 

condition ( i i ) or condition ( i l l ) . We know that 

G kF(B 1 x [ t k , t k + 1 " i ) S int V x I where V = V . 
k+1 

Give and V piecewise l i n e a r structures as b a l l s , and, 

using the taming theorem I 1.3, perform an Z-ambient 
k 

isotopy H of Q x I r e l Q x 0 such that H^G^F i s piecewise 

l i n e a r on 3 x ^ t R , \ + ^ \ . Set G k + 1 = HGk. Now l e t 

x € B^ and suppose that x l i e s in U ( x f f i ) . We s h a l l 

enlarge Wffl so as to include -rrG k + lF( {x\ x [ t R , t R + ^ ) 

i n i t s i n t e r i o r . Set A = T T G k + 1 F ( U k ( x ) x [o, tJ\ ) 
1 ID K 

and X = T T G k + 1 F ( ( x l x [ t R t t , ^ ) . Then A c int Wm 

and X £ int V. Note that X i s a f i n i t e 1-complex i n V. 
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Let W denote an enlarged copy of W formed by adding an m m 
open c o l l a r ^ w

m
 x [°» 1) to i t s boundary. Let 

h : Q x 0 — » Q x 0 be a homeomorphism such that 

( a ) h(X) i s piecewise l i n e a r in W near where i t 
m 

meets 3w and h(X) meets Ŵ tr a n s v e r s a l l y m m 
i n a f i n i t e number of points. 

(b) h i s s u f f i c i e n t l y small so that h(A) C mt W . 
—• m 

Me now replace W by h~*W . Note that A c mt h_1W and m m — m 
that X meets d(h ^ w

m ) i n a very nice way. We can now 

enlarge h ̂ Ŵ  to include a l l of X simply by adding a 

f i n i t e number of 1-handles (corresponding to thickening X) 

and extending the piecewise l i n e a r structure of h *W over 
m 

these. This process gives a compact q-dimensional 

submanifold W of Q which has a piecewise l i n e a r structure 

and which contains A u X i n i t s i n t e r i o r . bo W contains 

TTG k + lF(U(x) x [0, t k + 1 ] ) i n i t s i n t e r i o r for some 

neighbourhood U(x) of x i n M. This completes the 

inductive step. 

In t h i s way, at the end of the induction, we have an 

ambient isotopy G n and a neighbourhood U(x) for each point 

x of B^ such that G nF i s regular over U(x) for a l l x e B^. 

Let i n t U(x^), i n t U(xj ) be a f i n i t e subcover of 

chosen from the family { i n t U(x)| . We now move on 

and deal with points of i n exactly the same way. Any 
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isotopies used are made small enough so as to preserve 

r e g u l a r i t y over U(x^), U(x{ ) . In other words, 

i n dealing with points of we respect our work over B^. 

The process i s complete a f t e r r steps. ^ 

We use t h i s r e s u l t to change concordances into c r i t i c a l 

l e v e l embeddings with the aid of the next proposition. 

F i r s t we need a technical d e f i n i t i o n . Let K c K be 
o 

complexes, then define K r e s t r i c t e d to | K j , K | ) , 

to be K . o 

1.2 Proposition 

Let Mn and be manifolds, q-n > 3, M with a piecewise 

l i n e a r structure, and l e t F : M x I —*• Q x I be an allowable 

concordance. Let H^c M be a piecewise l i n e a r submamfold 

with Y <=• M q, h a handle, and M = M Qwh, with N a regular 

neighbourhood of the attaching tube of h i n M q. Let k. 

triangulate M x I , with MxO, M x l , M x l , h x l , Y x l 

and N x I as subcomplexes and suppose that F i s regular over 

h \j N, and F | M q x I i s c r i t i c a l with respect to 

(K | M q x I ) \ ( K | Y x I ) . Then there e x i s t s an ambient 

isotopy oC of Q x I , and a subdivision crK of K such that: 

( i ) oc i s fixed on (Q x 0 ) u ( ^ Q x I ) , and on 

a neighbourhood of F(Y x I ) i n Q x I ; 

( i i ) oc has compact support; 

( n i ) ocF i s c r i t i c a l with respect to o-K\(crK | Y x I ) . 
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Proof 

Since F i s regular over h u N, there e x i s t s a compact 

q-dimensional submanifold A of Q, which supports a piecewise 

l i n e a r structure, such that "TTF(|IUN] x I ) e int A. 

We can assume that F M x I has c r i t i c a l l e v e l s 
I ° 

i n Q x { c ^ , 1 = 1, s, with < c ^ given 1. 

Choose { t ^ by t Q • 0, t = 1, and c x < t r < c x + 1 for 

i = 1, s-1. Then each Q x [ t ^ t i + ^ [ contains one 

and only one c r i t i c a l l e v e l , F(H^), which can be of two 

types: 

e i t h e r ( I ) H t n (h x I ) * f ; 

or ( I I ) H t n (h x I ) = f . 
From now on we work i n A x I , keeping ^A x I fixed 

- extending a l l isotopies to Q x I by the i d e n t i t y w i l l 

give us the r e s u l t . Let T be the attaching tube of h, 

then N = T x J (where J = [o, 1~1 ) with ^T x J c . 
o 

Consider F | ( [h o N] X 0) J [ h o u\ x 0 — • A x 0. 

By I 1.4, there e x i s t s an E. -ambient isotopy ^5 of A x 0, 

fixed on SA X 0, such that ^ F | ( [hoN^ x 0) i s 

piecewise l i n e a r . Then the ambient isotopy ^ i x 1 of 

A x I preserves the properties of F, so l e t T = ( ^ x 1)F. 

We wish to deal with the f i r s t slab, Q x [ t Q , t j . 

Firstchoose t ' , t " by ^ < t ' < t ^ < t " < c 2 and l e t V be 
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the piecewise l i n e a r subroanifold of N x I , 

V - (N x I ) n F" 1 (A x [ t Q , t " ] ) . Then V i s a 

cobordism between V = (N x I ) r \ F "*(A x t ) and 
o o 

V t = (N x D o F _ 1 ( A x t " ) of the form 

V = ( V q x [ t Q , c j ) o ( V 0 H 1 ) u ( V 1 x [ c l t f ] ) . 

Case ( I ) 

( h x l ) ^ , so i s associated to the 

barycentre of a simplex of K' lying i n T x I . Hence 

H rt(T x [S, l ] x I ) = f for some [S, l j <=- J. Let 

P - V q n |\T x 1) x l \ and choose a neighbourhood P x I 

in V , with ^ x l c > , such that P x I c V A ( T x k , l l x I ) . 
o o o L J 

Then F j V : V — • A x [ t Q , t " ] i s v e r t i c a l over P x I , so 

we can define P x I x [ t # t " ^ c v with 

F | (P x I x | _ t Q , t") ) i P x I x [ t Q , t " ] — * A x ( t Q , t"} 

piecewise l i n e a r . Now, by I 1.4, there e x i s t s an 

€.-ambient isotopy ^ of A x t " , fixed on P x I x t " , and 
with support i n a neighbourhood of V ^ \ ( P x I x t " ) , (and 

hence keeping F (|MQ\N^ X D o (A x t M ) f i x e d ) , such that 

I V l ! ^1 * * x t M l s P l e c e w l s e l i n e a r . Define the 
ambient lsottpy ^ of A x 1 by 

Y t y t x 1 on A x [ f , l ] 

y on A x { ( l - s ) t o + s f ] , s € [p, l"} 

1 on A x t 
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Then y preserves a l l , other c r i t i c a l l e v e l s of F, and 

]jl F | ( v Q o ( V 1 x [ f , t " l ) u(P x I x [ t Q f f ] ) ] i s a 

piecewise l i n e a r map into A x [ t , t"] . 

We now wish to make ^ F (h x I ) n (A x t ^ ) a piecewise 

l i n e a r submanifold of A x t ^ . Consider the closed subset 

of [h u"N] x I , C • ([hu N] x I ) r> ( Y ^ ^ U x t j ) , 

and l e t U be a regular neighbourhood of the s i m p l i c i a l 

neighbourhood of C i n [h u N ] X I . By subdivision of K, 

i f necessary* we may assume that y j F ( U ) c l n t A x ( f , t")» 

and by I 1.4 and general position, we can £ -ambient isotope 

A x [_f, t'*\ i leaving the boundary and x ^ t ' , t"\ fixed, 

so that y^F | U i U *A x [ f , t " | i s piecewise l i n e a r , 

and also maps U piecewise l i n e a r l y transversal to A x t ^ . 

Hence we can define a piecewise l i n e a r submanifold of 

[ h o N ] x I , M » ( Lho H\ x l ) o ( y ^ F ) " 1 (A x [ t Q , t "] ) , 

which i s a piecewise l i n e a r cobordism between 

Wt = ( L h u N j x D n C Y j F ) ' 1 (A x tj, l = 0, 1, with 

P x I x £ t Q , as a piecewise l i n e a r submanifold. Also 

Jf^F j W : W —*> A x \_*-Q* t^"] can be assumed piecewise 

l i n e a r by I 1.4, so l e t Be A be a regular neighbourhood 

of TrYjFCW) r e l (P x I x t Q ) not meeting 

1T( YjF (M q x D o (A x [ t Q , t ^ ) ) , and consider 

F | H i W *• B x [ t Q , . Then, applying I I 3.7 

we can assume that y.F J W i s i n c r i t i c a l l e v e l position 
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with respect to (<rK \ W)\(o*K | P x 0 x ^ t Q , t ^ ) for 

some subdivision o-K of K which has W and P x O x [ t , t 
L o 

as subcomplexes. C a l l t h i s l a s t CONDITION I . 

Case ( I I ) 

H^o(h x I ) • ft. We can assume that 

l T ( F ( h x I)r\(Q x \_tQ, t " ] )) nflTC^) = / ... (*) 

For, i f not, choose t < r < c < r , < t " so that 
o o o 1 

TT(F (n x I ) n ( Q x Q r Q , r ^ ) ) o TfT(H^) = 0 

and apply the following argument to each of the slabs 
Q X £v rol» Q x L v r i l » Q x Cv t H l » a s 

described i n the induction process l a t e r . 

Now 7 | V i V — • A x [ t Q , t " ] i s v e r t i c a l over 

P = V Q n (T x I ) and hence defines a piecewise l i n e a r 

submanifold P x ^ t Q , t " J of V, and 

F | (P x [ t Q , t " ] ) : P x [ t Q , t " ] *A x [ t Q , t H ] i s 

piecewise l i n e a r . Using the techniques of case ( I ) 

we can assume that F (,h x D o (A x t ^ ) i s a piecewise 

l i n e a r submanifold of A x t ^ , and can define the piecewise 

l i n e a r submamfold of (.huNj1 x 1, W = (h x I ) r \ 7 ~ 1(A x [_t 

which i s a piecewise l i n e a r cobordism between 

W. = (h x D f t F _ 1 ( A x t . ) , l • 0, 1, with F x [ t , t . l a l l o 1 
piecewise l i n e a r submanifold of 'dW. Again, by I 1.4, 

F | W : W » A x [^t Q, t j can be assumed piecewise l i n e a r , 

and (using (*) to define B as i n case ( I ) ) we are i n a 

position to apply I I 3.7, except that F i s not v e r t i c a l 
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Over a neighbourhood P x I of P i n W . However, t h i s 
o 

can be remedied by uniqueness of c o l l a r s , so that I I 3.7 

applies, and we have F j W i n c r i t i c a l l e v e l position with 

respect to ( o-K | H ) \ ( o K | P x [ t Q , t j ) for some sub­

d i v i s i o n a K of K, which has W and P x [ t ^ , as 

subcomplexes. C a l l t h i s l a s t CONDITION I I . 

We now use the above procedure (modified for 

A x [t , i\ ) i n conjunction with I I 2.2, inductively over 

the slabs A x j t ^ , t^+jl to give us a single subdivision 

o-K of K, and an isotopy of A x I , so that ^ F s a t i s f i e s 

a condition of the form of CONDITION I or CONDITION I I in 

each slab. 

Further subdivide K, so that, for each slab of type I , 

o-K | W i s the subdivision determined by the following 

lemma, ( 1 . 3 ) . Then on application of t h i s lemma to each 

slab i n turn we have yS'^F | M q x I c r i t i c a l with respect to 

K q \ L, and p>^F | h x I c r i t i c a l with respect to the 

collared handle decomposition determined by K on T x I , 

and «rK on ( h \ T ) x I . 

Using a combination of I I 2.3 and I I 2.4 now gives 
/ the r e s u l t , except that ^Sfc | A x 0 i s not the identity 

Define oc by 

oi = [(p>' | A x 0 ) " 1 x l]^2>' 
// 
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1*3 Lemma 

Let V, V , W, Z be piecewise l i n e a r cobordisms, 

with W = V u V , Z = VnV* = n "dV*, and l e t 

V ° ( V q x I ) u h u ( V ^ x I ) be a c o l l a r handle decomposition 

of V. Let K triangulate Wt and suppose that 

F : W — * Q x I , 3 Q = $ , i s c r i t i c a l with respect to K. 

Then there e x i s t s a subdivision cr K of K, with V and 

Z as subcomplexes, and an ambient isotopy oc of Q x I , 

fixed on (j x 0, such that of^F [V i s c r i t i c a l with respect 

to the given c o l l a r handle decomposition, andoc^F | ( V ' \ Z ) 

i s c r i t i c a l with respect to the c o l l a r handle decomposition 

determined by cr K. 

Note 

I f £ jtp the lemma s t i l l holds, provided that 

F _ 1 (dQ x I ) » P x I c O V \ Z ) and, i f L c K triangulates 

P x I , then we assume that F i s c r i t i c a l with respect to 

K \ L. 

Proof 

Choose cr K as follows : so that V, V , h and core (h) 

are subcomplexesi so that V Q X I ^ V Q X 0, 

V 1 x I ^ Vj^ x 0, h (core (h) «J attaching tube ( h ) ) and 
O S "N 

(core ( h ) \ A ) N d core ( h ) , where A i s a top-dimensional 

simplex of core ( h ) . Now I I 2.2 applies to put F i n 
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c r i t i c a l l e v e l position with respect to crK, and then 

we use I I 4.1, I I 4.2 to cancel those handles determined 

by (c-K | V ) \ A . Now simply adjust F | V to give the 

r e s u l t , a 

1.4 Remark 

Notice that a l l isotopies i n the proof of the 

proposition are 6. , except for those given by the use of 

the subdivision lemmas I I 2.2, I I 2.3, I I 2.4, and that 

given by lemma 1.3 above. By introducing more slabs 

Q x t i + ^ l w e c° n trol t h i s l a s t isotopy at least 

i n the v e r t i c a l d i r e c t i o n , and provided the tnangufetion 

K i n the statement of the proposition i s fine enough, a l l 

these isotopies, and hence <*• , can be assumed E . ( I n 

the subdivision lemmas, no simplex A of K i s moved outside 

s t a r A ). 

1.5 Theorem 

Let Mn, be manifolds without boundary, M compact 

and q-n ^ 3, and l e t F j M x I —** Q x I be a concordance. 

Then there i s an ambient isotopy oc of Q x I , with compact 

support and fixed on Q x 0, such that ot F i s v e r t i c a l . 

4 
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Proof 

Cover M by b a l l s B^, ...f B^. We wish to shew 

inductively that we can make F v e r t i c a l over a neighbourhood 

of o B^u ••• o B ^ = A F E. Then, when k = r , we have F 

v e r t i c a l over M. 

k 

bo, assume that we have an ambient isotopy <x of 

Q x I r e l (Q x 0) such that o^F i s v e r t i c a l over a 

neighbourhood of A^. The induction s t a r t s by taking 

U Q = A Q = fS7 and of° = identity, i n the following. Let 

B be a l o c a l l y f l a t b a l l i n M with B ^ c i n t B. By I 1.1 

we may assume that F Q ( B ) i s standard inside a chart E of 

Q x 0. Now oc *F ( A R x I ) and oC*F ( [ B \ i n t UR1 x 1) 

are d i s j o i n t compact subsets of Q x I . Therefore, there 

e x i s t s a neighbourhood 0 of aC^F ( A ^ X I ) i n Q x I d i s j o i n t 

from <*£F ( [B \ int x I ) . Let V be an open 

neighbourhood of F (A. ) i n Q x 0 such that V x I <= 0. 
o k 

Triangulate £ with P Q(B) as a subcomplex, and subdivide 
f i n e l y enough so that the s i m p l i c i a l neighbourhood S of 
F (A, n B) i n £ l i e s i n V. Let N be a second derived o k 
neighbourhood of S inside V. Define 

X = B \ F - 1 ( i n t N) o 

and Y = (Q x 0 ) \ [ i n t N o F Q ( A K ) } , 

and consider the concordance «**F i X x I — * Y x I . 
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Note that X has a piecewise l i n e a r structure, and i s a 

top-dimensional submanifold of B; also, ce^F i s v e r t i c a l 

over a neighbourhood of F q * ( <i Y) „ Now make use of 

theorem 1.1 to find an ambient isotopy p> of Y x I and 

an open covering of X so that ft ^oc i s regular over each 

member of the open cover. Since ̂ 3> has compact support 

and i s fixed on (Y x 0) u ( *d Y x I ) we can extend i t by the 

id e n t i t y to the whole of Q x I . 

Let L be a tnangulation of X so that F _ 1 ( "oY) i s 
o 

a subcomplex, and l e t X = N(F = 1 ( "BY), L " ) . Then X 
o o 

has a second derived handle decomposition with respect 

to L 
X = X o h , o . » . o h • o l s 

t 
Let X. a Xv>( U h _ ) ; then X. are subcomplexes of L". t o 1=1 t c 
I f T i s the attaching tube of h - l e t N be the s i m p l i c i a l 

neighbourhood of Tfc i n Xt_^. 

Since/3^crf^F i s v e r t i c a l over a neighbourhood of 
-1 k 

F Q ( 'dY), we can choose L fine enough so that/3^ac^F i s 

v e r t i c a l over X q, and each ( h t u N t) l i e s i n some member 

of the chosen open cover. We now wish to use 

proposition 1.2 inductively over the X^. For t h i s we 

require the ambient isotopy at each stage to be E. , i n 

order to preserve regularity over l a t e r handles. This we can 
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do* by remark l s 4 , provided that we choose a s u f f i c i e n t l y 

fine i n i t i a l triangulation K of K x I , with each of 

X x 0, X x 1, X t x I , h t x I and Nfc x I as subcomplexes. 

Thus, when t = s, we have an ambient isotopy of Y x I 

moving into c r i t i c a l l e v e l position with respect 

to c K S ( o - K X ) for some subdivision o-K of K. By 

I I 2.3 we can assume that c K i s chosen so that 

X x I \ X x 0 c y l i n d r i c a l l y . Then, since t h i s provides 

a cancelling decomposition, theorem I I 4.3 applies, with 

the r e s u l t that the concordance becomes setwise v e r t i c a l 

over X x 0. Hence the concordance now l i e s inside E x I , 

and we can apply Armstrong \_ 2 ~\ theorem 4 to make i t 
k+1 k v e r t i c a l over X. Defining oc to be oc composed 

k+1 

with the above isotopies provides the r e s u l t , since <*. F 

i s v e r t i c a l over B and over a neighbourhood of A^, and 

hence over a neighbourhood of A
k + ^ « (Note that a l l 

isotopies of Y x I have compact support, and are fixed 

on (Y x o ) u ( dY x I ) , so they can be extended to Q x I 

by the ide n t i t y . ) . . 
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2 Further Results 

Relative theorem 

The proof of 1*5 i s a r e l a t i v e proof, and as such 

can be used In a straightforward manner to prove the 

following. See p.67 for the d e f i n i t i o n of an allowable 

concordance, (and Y ) . 

2.1 Theorem 

Let Mn, Qq be manifolds, q-n > 3, and l e t 

F : M x I — » Q x I be an allowable concordance. Suppose 

c l (M N Y) i s compact. Then there i s an ambient isotopy 

ot of Q x I , with compact support and fixed on 

( Q x O ) u O Q x I ) and on a neighbourhood of F(Y x I ) 

in Q x I , such that oc^F i s v e r t i c a l . ^ 

2.2 Corollary (Concordance implies Isotopy) 

Let Mn, Qq be manifolds, q-n > 3. I f f, g : M — + Q 

are embeddings which are allowably concordant, and i f 

c l (M \ Y) i s compact, then f, g are ambient isotopic 

keeping ^ Q u f ( Y ) fixed. 

Proof 

The c o r o l l a r y follows from 2.1 by considering 

<* | Q X 1. g 
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Polyhedra i n manifolds 

2.3 Theorem 

Let Qq be a manifold, and ( X , X Q ) a polyhedral pair, 

with c l ( X \ X ) compact and dim ( X \ X ) = n. 
o o 

Let F : X x I — • Q x I be a concordance, which i s 

l o c a l l y f l a t on the siroplexes of some tnangulation K 

of X x I , and for which F ^ ( ̂  x I ) s X q x I . Suppose 

further that F i s v e r t i c a l over some neighbourhood U of 

a closed subset Y of X that contains X . Then, i f 
o 

q-n > 3, there i s an ambient isotopy oc of Q x I , with 

compact support and fixed on (Q x 0) o ( "9 Q x I ) and on 

a neighbourhood of F(Y x I ) i n Q x I such that «^F i s 

v e r t i c a l . 

Proof 

For s i m p l i c i t y we consider the absolute case ~oQ = f>, 

U - The r e l a t i v e case follows s i m i l a r l y . 

The proof i s by induction over the skeleta K1 of 

K | X x 0, i = 0, 1, n. Applying 2.1 to the 

0-skeleta, |K°| , we can ambient isotope Q x I so that 

F i s v e r t i c a l over | K° | . Now suppose we have ambient 

isotoped Q x I so that F i s v e r t i c a l over |K.r . Then 

4 
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by I 1.4 and Hudson [ l 4 ^ , theorem 1.1 (concordance 

implies isotopy for piecewise l i n e a r embeddings of 

polyhedra) we may assume that F i s v e r t i c a l over a 

regular neighbourhood N of |Kr| i n X. Let N* be 

a neighbourhood of F Q( | K r | ) i n Q such that 

F " 1 ( N , ) o int N and consider F| c l ( I K ^ K F ^ ( N ' ) ) X I , o I 1 1 o 
an embedding into cl(Q\N') x I . 

On application of 2.1 to t h i s concordance, we 

obtain F v e r t i c a l over | K1"*"* | . The proof follows. ^ 

As with 2.2, we have the following corollary. 

2.4 Corollary (Concordance implies Isotopy for embeddings 
of Polyhedra) 

Let X be a polyhedron,Q a manifold and f, g : X — • Q 

two embeddings which are concordant by a concordance F. 

Suppose that X, Q, F s a t i s f y the conditions of theorem 2.3. 

Then f and g are ambient isotopic keeping ^ Q u f ( Y ) fixed. 
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t -concordances 

We r e c a l l the d e f i n i t i o n . A concordance 

F : M x I ——* Q x I i s an £-concordance i f 

ifoF : M x I — * Q x I i s an £-homotopy, that i s , given 

any (x, t ) e M x I , d(iTF(x, 0),-rfF(x, t ) ) < t , where 

IT* i Q x I — » Q i s the projection onto the f i r s t 

f a c t or. 

Corresponding to 2.2, we can ask whether two 

embeddings which are S -concordant by an allowable 

concordance, are i n fact £ -ambient is o t o p i c . 

The proof of 1.5 i s almost s u f f i c i e n t to answer 

i n the affirmative. The extra work required i s a 

version of Rourke's technique i n f i l l which straightens 

concordances inductively over handles. This allows 

us to work l o c a l l y , and hence to r e s t r i c t the s i z e of 

ambient isotopies. 

We f i r s t give an absolute theorem. 

2.5 Theorem 

Let Mn, be manifolds without boundary, M compact, 

and q-n > 3, and l e t f, g : M — Q be embeddings. Ihen, 

given £ > 0, there e x i s t s a £ > 0 such that i f f, g 

are concordant by a ^ -concordance then f, g are £-ambient 

isot o p i c . 

4 
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Proof 

The general argument i s that of the proof of 1.5 

- we induct over a covering of M by b a l l s . Here we 

give the inductive step, using the notation of 1.5. 

We can foillow the proof of 1.5 to &-ambient 

isotope the given £ -concordance F : X x I —*• Y x I 

to a c r i t i c a l l e v e l embedding which i s i n turn a 

2% -concordance. To do t h i s we use remark 1.4, and 

notice that the ambient isotopy fl> , occurring as a r e s u l t 

of the application of 1.1 i s not required - a ^-concordance 

i s by nature regular over some open cover. 

When we apply I I 4.3 to make F setwise v e r t i c a l , 

since we have a c y l i n d r i c a l collapse, A x I i s not moved 

outside s t a r ( A ) x I for any simplex A of X. Hence, 

i f ^ i s the composition of a l l isotopies to t h i s point, 

Y x l ) x I i s 3 £ -ambient, also I s setwise v e r t i c a l , 

lying i n E x I , and i s i t s e l f a 3 £ -concordance. 

We may assume that F Q I S piecewise l i n e a r , for, i f 

not, l e t If be a £-taming of F Q : X — * E; apply 

t x 1 to £ x I , then, at the end of the proof, compose 

with X * x 1 . We use induction over the handles h^ of 

X, making F v e r t i c a l over each * t_^ l n turn; suppose that 

F i s v e r t i c a l over X_ ,. 
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By theorem 2.1 (or theorem 4 of Armstrong C 2~\ ) 

we can assume that F i s v e r t i c a l over core h f c. Using 

I 1.3 l e t the ambient isotopy ^ of E be a %-taming of 

F̂  | h t keeping F (core h^v x
t _ ^ fixed, and define the 

ambient isotopy Y of E x I by V (x, r ) = Y ( X» 
" s 

Then | n t x * l s P l e c e w l s e l i n e a r . Now use 

I 1.3 again to S-tame y^F | hfc x I leaving 

F Q ( h t ) , Y 1 F 1 ( h t ) and F( [core t»t u X ^ ^ x I ) fixed. 

We now use Rourke's techniques i n t h i s piecewise l i n e a r 

s i t u a t i o n . By r e l a t i v e regular neighbourhoods, and 

isotopy extension, we can assume that F i s setwise 

v e r t i c a l over h f c (we s h a l l omit Y f ° r s i m p l i c i t y ) , and, 

further, that F i s also setwise v e r t i c a l over a c o l l a r 

neighbourhood h^u ( *3ht x I ) of h t . We wish to use 

the Alexander t r i c k (p.11) to straighten F on t h i s c o l l a r 

neighbourhood, f i n a l l y extending by isotopy extension. 
Now F i s concordant to F x 1 by the concordance 

o 

G : (X x I ) x I — » (Y x I ) x I , which i s v e r t i c a l over 

(X t_^ x I ) , defined by 

G(x,u,v) (y, v + r ( l - u ) , v ( l - r ) when s ^ t 
1 - u + v 1 - u + v 

where ( y , r ) = F(x, u - v) 

( F Q ( x ) , u, v) when s ̂  t , 

4 
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see Figure 30, and so Fo ( F c ~ x 1) i s concordant to 

the ide n t i t y v i a G o ( F 0 * x l x l ) . Hence we can 

define a map H s [ h t u Ght x x I — + [ h t u ( J h t x I ) ] x l 

by H | h t x I = F o ( F o
_ 1 x 1 ) j hfc x I and, for x e3h t, 

H ( ( x x v) x u) ° Go ( F
0

_ 1 x 1 x 1) (x x u x v ) , so that 

H | ( 3h t"x 1) • 1. 

Applying the Alexander t r i c k to H, with the cone 

point chosen i n (core h f c) x 1 gives an isotopy ^3 of 

^ h t o ( ^ h f c x I ) ] | x I , leaving the intersection with 

* t_^ x I fixed, moving H to the i d e n t i t y . Then 

( F q a 1 x 1)©^ moves F to F Q x 1 on h f c, and, by isotopy 

extension, we have an ambient isotopy of Y x I , with 

support i n a regular neighbourhood of hfc x I r e l (*t_^ x I ) , 

and hence preserving previous work, which makes F v e r t i c a l 

over X t« 

In t h i s way, at the end of the induction, we have 

an ambient isotopy oc of Y x I such that «^F i s v e r t i c a l , 

and ex | \ x 1 i s an £ -ambient isotopy for suitably chosen 

^ . 

This proves the inductive step of 1.5 for t h i s case. 

The remainder of the proof i s that of 1.5, plus corollary 

2.2. 
// 

A r e l a t i v e r e s u l t follows by s i m i l a r arguments: 
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2.6 Theorem 

Let Mn
f Qq be manifolds, M compact and q-n > 3, 

and l e t f, g : M — » Q be embeddings. Then, given 

£ > 0, there e x i s t s a S > 0 such that, i f f, g are 

concordant by an allowable &-concordance, then f, g 

are £ -ambient Isotopic keeping ^ Q u f ( Y ) fixed. 
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Polyhedra I n Polyhedra 

Let X be a polyhedron. For each x « X we 

associate an integer I ( X t x ) , the i n t r i n s i c dimension 

of X at x, i n e i t h e r of the following equivalent ways, 

as i n Armstrong 
t i l . 

( i ) ~ I ( X , x) i s the largest integer t for which 

there i s a cone V, with vertex v, and an 

embedding f : (D C x V, 0 x v) — • (X, x ) . 

( i i ) There i s a triangulation of X with y i n 

the i n t e r i o r of a t-simplex i f and only i f 

t * I (X, x ) . 

( i l l ) Let L be the l i n k of x i n X (defined up to 

piecewise l i n e a r homeomorphism). Then 

I(X, x) i s the largest t such that L i s a 

t-fold suspension. 

Define the t-stratum X^fc^ to be the set of a l l 

points x € X such that I(X, x) = t . Then X ^ i s 

an open manifold of dimension t . See Figure 31. 

Define the i n t r i n s i c t-skeleton Xfc to be the set 

of a l l points x « X with I ( X , x) $ t . Then 

X t =
 s U t X ^ s \ and X C i s a polyhedron of dimension t 

since, from ( i i ) above, X C equals the intersection of 

the t-skeletons of a l l triangulations of X. See 

Figure 31. 
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We s h a l l be concerned with topological concordances 

of polyhedra, F t X x I — » Y x I . I n order to apply 

the preceding manifold theory, we require that 

F _ 1 ( Y J x I ) = X 1 x I for some i ̂  j - 3. This 

condition i s equivalent, when X and Y are manifolds with 

boundary, of codimension 3, to requiring that 

F~L ( 3Y x I ) - 4 or ^X x I - that i s , F Q and are 

i n t e r i o r embeddings, or proper embeddings, which are 

concordant through i n t e r i o r , or proper, embeddings, 

respectively. u e also need to impose a l o c a l f l a t n e s s 

condition - note that F * ( Y ^ x I ) i s a non-compact 

subpolyhedron of X x I . 

2.7 Theorem 

Let X, Y be polyhedra, X compact, and suppose that 

F : X x I — * Y x I i s a concordance for which, given j , 

F" 1 ( Y J x I ) = X 1 x I for some l < j - 3. Suppose also 

that F I F"1 ( Y ( j ) x I ) : F _ 1 ( Y ( j ) x I ) — • Y ( J ) x I 

i s l o c a l l y f l a t on the open simplexes of some triangulation 

of X x I , for a l l j . Then there e x i s t s an ambient 

isotopy ot of Y x I such that ©c^F i s v e r t i c a l . 

Proof 

The proof i s by induction over the i n t r i n s i c skeleta 

of Y. The i n i t i a l step of the induction i s also 

covered by the following argument for the k —*• k + 1 

step. 
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Suppose F * ( Y k x I ) = X P x I , and suppose that we 

have constructed an ambient isotopy <* of Y x I such 

that <*kF i s v e r t i c a l over X p. We have to construct an 
1 k+1 k+1 ambient isotopy « of Y x I such that <x F i s 

1 
v e r t i c a l over X q, where F _ 1 ( Y k + 1 x I ) = X q x I , 

p < q ̂  k" - 2. 

T*r , k+1 k I f p = q, l e t oc = oc . 

I f p < q, we r e s t r i c t our attention to 

<* kF I X q x I i X q x I — * Y*"*"1 x I . This concordance 
1 1 

i s v e r t i c a l over X P and maps X p x I into Y k x I . Let 

N be a regular neighbourhood of Y* i n Y ^ 1 . and l e t N 

be a regular neighbourhood of X p i n X q such that 
k 

<* F(N x I ) c ( i n t N) x I . 1 o 

We now use induction over the components of 

N \ Y\ to put F v e r t i c a l over N . Let U be one 
1 ° 

such component. Then V = c l (U, ) i s a piecewise 
k+1 

l i n e a r manifold with boundary (a subpolyhedron of Y ) , 
and P = F ^"(V) o N i s a closed subpolyhedron of N , o o o 
so consider «(JF | P x I : P x I — * V x I . This i s 

a concordance of a polyhedron i n a piecewise l i n e a r 

manifold, for which ( « k F ) _ 1 ( 3V x I ) = P x I for 
1 o 

some subpolyhedron P Q C p, and, since P Q c x p, <* k F 

i s v e r t i c a l over P Q. 
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We may assume that <*^F P x 0 i s a piecewise 

l i n e a r embedding into V x 0. (For, i f not, by I 1.4 

l e t X. be an ambient isotopy of V which tames 
k I 

oc ̂ F | P x 0; apply t x 1 to V x I , and compose 
^ x 1 with the f i n a l isotopy of V x I given below.) 

k I 

Then of^F | P q x I i s a piecewise l i n e a r embedding into 

"dV x I . By I 1.4, l e t Y» v x 1 * V x I be an 
ambient isotopy fixed on "̂ V x I such that 

k I ~" y^( <X̂ F I P x 1) i s piecewise l i n e a r . Define Y , an 

ambient isotopy of V x I , by }ft(x» s^ = ^ ^ X * S t ^ f ° r 

(x, s ) € V x 1. Then 

^ i i F I L ( P
 x 0 ) u ( P x X ) u ( P o x

 I }1 ls a 

piecewise l i n e a r embedding into V x I . After another 
k I 

application of I 1.4, we have oc^F | P x I a piecewise 

l i n e a r embedding into V x I , and so we can apply Hudson's 

theorem ((j.41 theorem l . l ) to give an ambient isotopy of 

V x I , fixed on "dV x I , which makes oc F v e r t i c a l over 

P. Extend to I by the i d e n t i t y . Proceed 

thus for each component of N XY*, ana define to be 
the composition of a l l these isotopies of Y**1 x I . 

k 
r i s v e r t i c a l over i. . 

o 

_ k 
Then p ot F i s v e r t i c a l over N 

' 1 1 < 

We are now i n a s i t u a t i o n s i m i l a r to theorem 2.3. 
It 

Let N' c N be another regular neighbourhood of Y in 

Y^**, such that F ~ l(N') c mt N and consider the 
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concordance ^ rf^F e l ( X q \ F (N'))x I into 

c l ( \ N') x I . An application of 2*3 gives an 

ambient isotopy , which can be extended by the identity 

to Y* + l x I . such that X \ fil **1 ^ l s v e r t l c a * over 

X q. Using Siebenmann's isotopy extension theorem, 

[ 3 4 ] 6.5, we can extend \{b> to Y x I . Define 

At the end of the induction, then,* = oc 1 1, where 

n ° dim Y. ^ 

We have the following corollary, as with 2.2, 2.4. 

2.8 Corollary (Concordance implies Isotopy for embeddings 
of Polyhedra i n Polyhedra) 

Let X, Y be polyhedra, X compact, and suppose that 

f, g t X——* Y are two embeddings which are concordant 

by a concordance F which s a t i s f i e s the conditions of 2.7. 

Then f, g are ambient isotopic. 
// 
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