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ABSTRACT

We review the development of the quark model with
particular emphasis on the interpretation of guarks as
dynamical, confined, hadronic constituents. This inter-
pretation encompasses naturally the phenomenon of radially
excited states. The simple vector dominance model 1is
revi 2 and on
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which includes both redial excitations of the vector
mesons, and q2- dependence of the photon-vector meson
coupling is applied to radiative decays and photo-
production of the vector mesons. The parameters esti-
mated from ¥ radiative decay, define a phenomenological
prescription in which the radial excitations play =3
minor role compared with the ground state vector mesons.
The predictions of the model for various cross-sections
and decay widths are presented and found to be 1n good
agreement with experiment. However we predict a larger
total cross-section, T4 4+(¥N) than has been recently
measured and the suppression of the large phase space
decays of excited states is not understood.

By re-identifying some of the vector meson states
which have been more recently observed coupling to e'e

we show that in all flavour sectors the spectra of radial



excitations can be well described by a Klein-Gordon type
wave equation employing a simple, linear q3 potential.
The wave-functions obtained by solving the equation are
coupled with a quark pair creation hypothesis to predict
a number of partial decay widths of the light quary,
radially excited states. The suppression of large phase

space decays of the excited states 1is then understood.
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RADIAL EXCITATIONS IN THE 7“UARK MODEL

1.1 Degrees of Freedom in a 2-body bound state
We will be dealing throughout this work with radial

excitations of mesons - inte¥ger spin hadrons which
appear in the quark model as bound states of one quark
and one antiquark. To discuss the general nature of
radially excited states, we consider, as an intro-
ductory example, the dynamical degrees of freedom of
two spinless particles bound by a harmonic oscillator
interaction. We suppose that the motion of the particles
1s non-relativistic and we choose this specific type of
interaction because of the mathematical simplicity of
the equations of motion.

The Hamiltonian 1in the centre of mass syster. of
particles of equal mass (m) reads

H = EE + metr (1.1)
m

where r is /2 x particle separation and p is the particlc s
momenta. The usual guantum mechanieal substitutions

yield the SchrSedinger equation

VHE) + (mE - 0 ) Y(5) = O (1.2)
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and this equation is separable in polar co-ordinates.

wWriting
V() = X(©,P) R(r)/ (1.3)
-
the angular equations have solutions
'XT = e,tm¢ PT(ccﬁe) , (==L, ,L:lL m+¢3er) (1.4)

where m,L are separation constants and the remaining

radial equation 1is

d°R + (mE - L(L + 1) - m2Pr2)R = 0 (1.5)
dr2 r2

The boundary conditions we must i1mpose are R—+0 as
r =0 and R remains finite as r —oco. (1.5) can be
transformed into a confluent hypergeometric euntion(l),

the solution to which is the hypergeometric series - a

series that remains finite as r —pocoonly for the energy

eigenvvalues

E = w(2n + L+ 3/2), n,L € {Z*0} (1.6)

where n 1s the degree of radial excitation and L the
degree of orbital excitation. The energy is independent
of m = -Ll, ..., L and this degeneracy is related to the
fact that the original equation 1s separable in more
than one co-ordinate system. The Schrgedinger equatior
can be separated and solved in ecylindrical and rect-~
angular co-ordinates also, the latter method yi<.ding

the eigenvalue equation
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E=Ww(p+q+T1 + 3/2) yP,q,r € {Z",O} (1.7)

and the equivalence of the degeneracies in each system

1s apparent, e.g.

E = ;Qu), n 1 m p q r
0 1 +1 1 0 O
0 1 O0}3-fold degenerategy0 1 O
0 1 -1 0O 0 1
(1.8)

We see in (1.6) the two signatures of a harmonic
oscillator interaction: 1ntegrally spaced energy levels
and double spacing of the radial excitations (in co-
variant models there 1s the possibility that time-like
excitations may effectively fill the gaps in this double

spacing (2,3)): these points will be useful when we

examine meson spectra in chapter four.

1.2 The Non-Relativistic Quark Model

As radially excited mesons arise naturally in the
non-relativistic quark model we sketch briefly the
development of this scheme.

The first advances 1n comprehensively classifying
hadrons were group theoretical in nature. Mesons were
found to fall i1nto octets with the same spin and parity,
while baryons fitted into octets and decuplets. All
these states can be economically classified 1n terms of
an SU(3) symmetry based on quarks, spin 4 hadrotic con-

stituents hypothesised by Gell Mann and Zweig (4,5).
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This quark triplet (u,d,s) c- nsists of the I=4 doublet
(u,d) and the I=0 singlet s, each quark has baryon
number B=4 and a corresponding antiquark g with éz-é.
The (u,d,ﬁ,a) quarks have strangeness zero and the s,S
quarks have strangeness *1 respectively.

The mesons have the structure qq, and the baryons
the structure qqq. These hadrons may be usefully
classified in terms of a more restrictive cymmetry thsn
SU(3), namely the SU(6) symmetry whose transformations
act in the space of SU(3)® SU(2),, where O denotes
Paula spin. This possibility was first proposed by
Gursey ana Raulcaty $) LY Aanalogy witin bite SU'r)
symmetry, acting in the space SU(2) & SU(2) , whicn hnas

proved successful i1n nuclerr physics, for the light

nuclei. The mesons then appear 1n multiplets of

6 ® & = L + 139 (1.9)

and the 39 has the SU(3)-8U(2)4 content
35 = 38+ + L8 (1.10)

where the superfix 1s 25+1. The nine triplet states of
(1.10) are said to form a nonet and the singlet of (1.9)
has the structure 1(1).

The baryon states form multiples of

6®6®E = 20 + 56 + 20 + 720 (1.11:

where the 56 1s symmetric, the 20 antisymmetric »nd the
70's are of mixed symmetry with respect %o the quark
flavour-spin labels. No example of a 20 representation

1s yet known.
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Invariance under space rotations leads to an SU(6)
x 0(3) symmetry and the correct parity for the mul-
tiplets emerges. The symmetry is non-relativistic and
works well 1n classifying practically all known hadrons.(7)

The group-theoretical quark content of nhadrons
described so far can be predictive when apnlied to
hadron scattering. For low energy scattering in the
s-channel the scattering amplitude can convenientlv be
written as a partiasl wave series and the various partial
wave amplitudes are frequently dominated by resonance
pole contributions. At high energies on the other hsnd
it 1s very useful to worv 1nstead wltn tne T-cnanneil
partial wave series, transformed via the Sommerfeld-

(8)

Watson representation 1nto a sum of t-channel Regge
poles {(and cuts).

In the intermediate region, however, there are two
possibilities. One wight try adding the two contrib-
utions

p = aTes , pRegge (1.12)

This 1s often called the interference model becausec of
the oscillations of the amplitude as a function of s.
However 1%t leads to a double counting of resonance con-
tributions ~nd consequently 1t was suggested\9) that

the sverage of the resonance contributions and the aver-
age of the Regge con*‘ribtutions are esuivalent in tae
intermediate energy range. #MAs s increnses the r _neity

of resonrnces will 1ncrease, smoothing out the bumps,
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until eventually there 1s "local duality%:
A = AT®S - pTeege (1.12)
This may be expressed 1n terms of querk diagrams
1f exotic exchanges and resonances are forblqden.(lo’ll)
The rules for drawing a legal diagram are simple:
1) each guark has 1ts own line and does not
change 1te< 1aentity:
11) every external baryon 1s represented by
three lines running i1n the same

direction;

11i) every external meson 1s represented by

TWO llnes running Llmn oppostiLe 4 ifed Lions,

1v) the two ends of 2 single line cannot
belong to the sare particle;

v) 1n any of the s, t, u channels 1t 1is
possible to cut the diagram in two by
cutting only a non-exotic combination
of lines.

(An exotic particle here is any combination otner than

, qqq - for a more recent and topical treatment of

Nel
L

o
b

ctics see ref. (12)).

v

Consider now as an (S-channel) example pp and np
scattering (p = proton). The six nruzrks from the
incoming protons cannot combine non-exotically and at
low energies the process can take place only through v ¢
non-resonating background, snd, using two comp-nert
duallty,(13) that is by aiffraction. On the other hacra

pP scattering has three incoming guarks and three
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= =

L1
(a)%;\% (b)
Fig. (1.1)
Quark diagrams for proton-proton(a’
ton(b tterin

antiquarks which may form non-exotic combinations. Hence
there is a resonance contritution and the cross-section
should show resonance structure. Both these predictions
are verified by erperirent. Similsr predictions can te
made(lo’ll) for meson-meson and meson-tarvon scattering.
A comparable quark philosophy appliea to three-
hadron vertices takes the forr of the Zweig rule, which

says simply that unconnected dizgramns are suppressed.

meson vertex

The small branching ratio for @— @1 =na, as we shall

2
see later, the narrowness of the 1’;*‘cre consictent

with this rule.



- 14 -

1.3 Dypamical Juarks

A free gquark has never been observed ana for somc
time thelr physical relevance was deniled, many penple
regarding them as only a useful mne monic underlying the
classification of hadrons. However 1t was eventually
realised that the quarl hypotnesis presented for the
first time a single and consistent way of calculating »
large number of decay processes with very few acssump-
tions.

The aquark binding was assumed to result 1in non-
relativistic quark motion within a haaron and the
non-observation oI Iree CONST1lGUennE "Sugeesled llley were
very heavy snd tightly bound. Van Eoven and Welsskopf(lh)
speculated on the nature of the deep binding potential-—
well arguing that there were two possibrlities:

i) it may transform as the fourth component

of a four-vector, like the Coulomb
potential, or
ii) 1t may be a scalar potential.
The motion of a quark inside the well (of dep*h V) can

be described by a Dirac eguation

(%3, * BMIY = (E+Vo) ¥ (1.14a)

or

(= g_x + BM~Ve)) ¥V = EVv (1.140

In the scslar case (1l.14b) the Dirac magnctic

noment of a bound quark would be

e/2peff Bohr Magnetons (1.19)
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where Meff = Mq-Vo. Now 1f the auarks move non-

relativistically we expect

Merr = Mp/3 =~ 0.3 GeV (1.16)

which yields a value for the proton magnetic moment

/e v 2Merf oM,

in good agreement with the experimental value. (In
fact m, = "\L='“*=336 MeV reproduces the experimental

value exactly.) The SU(6) prediction for the neutron

magnetic moment 1s then(ls)

/An = —2/3 Mop (1.18)

1n good agreement with experiment (for s comperison of
SU(e) predictions with "tag model" predictions for the
%+ baryons sece ref.(16)).

In the vector case (1l.1lk4a) the quark magnetic
moments would be much smaller (o< )4q,) and one must then
assume that most of the quark's magnetic moment is
anomalous.

Relativistic generalisations of this naive heavvy
quark model were 1nvestigated by considering the Bethe-
Salpetzrequatlon(17) for the bound state of a fermion
and anti-fermion. In the ladder approximation (when t.-
interaction potential depends only on the quark-antigusrk

exchange momentum) the configuration space ecuaiion t-Ves

the form

(B + & -my)rF, ~ Fem) = AV Y& (1.19)
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where P = pj + p2. This equation 1s extremely com-
plicated, however for massless bound states it becomes
more tractable and can be solved analyticallv.(lg) If
the quark mass 1s large compared with low lying meson
masses then a reasonable first approximation may be

Mpadron = 0 followed by a perturbation expansion in

mhadron/mquark' Bohm et 31(18) 1nject a covariant

oscillator interaction which, as always, simplifies the

solation process and leads to linear Regge trajectories

)]
on the J vs. Miadron plane. (Walters et 31(19' take

the Mg —-00 limit of the Bethe-Salpeter equation and

rir_\m'uhf‘ +h
s aane e

+ +hr o
v wal 2

»
“

Ainred aAanatryan hae a ha
Jquaret eguatien =g na

'
]

monie

oscillator form, obtaining similar results.) The model
1s applied to strong meson decays(eo), the vertex
calculation methods being motivated by duality diragrams
(see Chapter Five), with predicted widths that are 'n
reasonable agreement with exveriment (~205). Notably
they preaict the 2T branching ratio of the €'(1600)
regarding this state as the first radial excitation of

the (:. As we shall discuss 1n more detail later, the

node 1n the wave-function of the fl 1s responsible for

a suppressed partial width of
M(e'—»21r) ~ 80 MeV (1.20)

where the normalisation is on rq((-4'2ﬂj = 146 MeV.
Although the philosophy of heavy quarks has

recently become questionable, consideration of lne

properties of such four-dimensionsl theories deserve

more attention at the precent time.
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A disguised heavy guark model was developed from

the non-relativistic harmonic oscillator auark mode1(21)

by Feynman, Kislinger and Ravndal(FKR)<22).

Spin 1s
artificially introduced (Pquark‘*'yquark) and relativity
is introduced as simply as possible. The aquark mass 1s
disguised as follows.

Consider the non-relativistic harmonic oscillator

guark model for mesons. The Hamiltonian in the rest

frame 1s equation (1.1).

H = p2/ + mw°r2 (1.21)
m q
q
i.e.
mH = p? + n2r2 (1.22)
where we have defined
O = nw (1.23)

q

Adding a constant c¢/4 = mg to both sides we can write

2
%mq + hqu = hpz + b£12x2 + C (1.24)

and if m§ 5» H> the left hand side can be 1dentified as

the relativistic energy squared of the meson.

2 2 2
Moeson = (2mq + H) ~ qu * quH (1.25%)
and we obtaln
2 2 2 2
M = 4(p + N x) + C (1.26)
meson

We see that the quark mass does not appear explicitly.
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Relativity 1s introduced by writing dowr the most natural

covariant form of (1.21)
2 2 2 2]
= - P P -
K 2[ ) + 5 * 20 (xl x2) (1.27)

where we are no longer i1n the c.of m. frame. When P,L =

Piu+ P2ﬂd 2Pu. = Py - Py and x = Xy = X, we have the

c.of m. equation
K = P2 - l+(P2 +_(12x2) (1.28)

Comparing with equation (1.26), K-P° may be identified
with the mass squared operator. This leads to straight
line Regge trajectories ot slope L/8£L anda meson
exclted states are generated by the action of crestion
operators on the oscillator vacuum s%~te. Negative
norm. time-like excitations are removed by an arbitrary
subsiduary condition and an arbitrary correction factor
must be introduced to account for the concequent unit-
arity violation.

Matrix elexents are calculated by a minimal sub-
stitution of the electromegnetic current and the
divergence of the axial current, the large namrber of
predictions being mostlv within 20% of the experimental
data. The harmonic oscillator form of the interaction
and wave-functions was not vigorouslv tested as data
only existed for low lying states.

The discovery of the new particles 1n Noveuber
1974 gave a new dimension to the study of quark dynemics.

It now seems clear that the new degree of hadronic
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freedom responsible for those unexpected phenomena 1s

(23)

cherm, precisely i1n the cense of Bjorken and Glashow
and Glashow, I1liopoulos and Maian1(24)

Since the discovery of the ¥ and ¥, the charmonium
spectrum hss filled out and charmed pasrticles (D,F,...)
have been 1solated. Some of the lower chariwonium levels

are shown scheratically in Figure (1.3). We see that the

4.0
+ 4
40 1
g '
X V(3 ell) l
n
21l ;
3§ ' O\ N ‘\::
~r e (3 45 ’ -
! ) ~\>'xit\L i
- 1
s
P V(3 0a%)
ol -
i me (2 83) 1

'Se 'S, 3Po,, 2
Fag. (1.3)
] 1 the charmonium spectrum

radial states are doubly spaced with respect to the
orbital states suggesting a harmonic oscillator des-
cription which turns out to work well for the lower
levels with a Regge slope of 1/2 GeV'2, We can compar ~
this with the Regge slope for the old mesons (= 1 CeV" ~
in terms of vhe FKR model and obtaln informsticn on the

new chermed quark mass.
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From (1.28) we saw that the Regge slope in this

model 1s proportional to

———
—

where w is constant. Hence from the observed slopes we

have

L charm = 2 0.4 (1.30)

or

me &= 2Lm, 4., (1.31)

and this indicates that the heavy quark model (m0 >>
mmeson) described so far 1s incorrect - since relation
(1.31) would not be possible with a small percentage
fass difference between the guarks.

We are thus led (phenomenologically) to the
hypothesis of light quarks, a hypothesies supported by
the 1dentification of quarks with the light, point-like
partons seen in deep 1nelastic electron scattering experi-
ments (see section 1.5).

The discovery of higher radially excited states in
the charmonium spectrum will provide a more exacting test
of our understanding of the spatial structure of hadron
wave-functions - ass will the recent discovery(25) of
high mass (10 GeV) vector meson states which is herald =g

a repeat performance of the new particles show. A

unified understanding of the quark dynamics of —adiall,

excited states from m? = 0.6 GeVe to m© = 108 GeVe 1s

Tl'

a problem we attempt to solve in Chapter Four.
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1.4 Coloured Quarks

If we now assume that gquarks are light then their
conspicuous absence forces us to hypothesise that they
are dynamically or statistically confined. This 1s
sometimes (emptily) expressed by demanding th-t all

hsdrons have zero triality, defined as

t = {nta) - n(a)} mod. 3 (1.32)

One of the major problems with the quark hypothesis
for many years was due to the Pauli exclusion principle.
The lowest baryonic multiplets are the 3% octet of
states and the §+ decuplet ot states. Within an SU(6)
symmetry, these receive s direct interpretation as the
spin-SU(3) components of s 56 representation. However,
as we have seen, this representz2tion has even permuta-
tion symmetry with respect to the labels on the three
quarks, whereas the spin-statistics theorem of Paula,
together with spin % for quarks, requires that the
complete wave-function should have odd symmetry. The
spatial wave function cannot provide this anti-
symmetry <ince the ground state wave-function is
expected to be nodeless. We are forced to i1ntroduce
another label called "colour"(26) so that each nuark
comes in red, yellow and blue. Now the wave-function

can be antisyumetric in colour
€13k 9,949 (1.33°

where €45 1s the completely antisymmetric tensor and
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i,3J,k g» from one to shree. With this extra degree of
freedom the number of states proliferates - a problem
we overcome bv treating colour a=< a group, SU(3)001' in
fact, and triality is replaced by postulating that the
only allowed physical states are colour singlets.

(3®3 and 3@3I® 3 yreld singlets whilst 3 @ 3 does not,

hence mesons and baryons)

Other arguments for postulating colour in this wavy
include the TT°>-»YY decay rate calculatlon(27) and, as
we discuss, in the next section, the experimental value
for R in e'e annihilation.

The emcrgencs cof cclour gounze theoriegs as nossible
candidates for the description of strong interactions
gives colour 1ts main theoretical significance. It was
shown by Politzer(28) and Gross and Wilczek(29) that
non-Abelian (Yang-Mills) gauge theories in which quarks
are coupled to massless gauge vector gluons have a
running couvling constant which anproaches zero as the
(momentum transfer)2 approaches infinity. The colour
SU(3) gauge group provides the non-Abelian character
that 1s necessary for this phenomenon of 'asymptotic
freedom', a phenomenon which helps us understand in a
wider sense the <uccesses of the parton model.

Asymptotic freedom has led to the conjecture that
the forces between guarks recsulting from such a colnu-
gauge theory may reach the opposite extreme 1n tnhe large
distance, low energy regime, naomelv that they become

strong enough to confine quarks and gluons until it
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becomes energetically favoursble to produce gqa nairs.
The paire interact i1n a normal colourless way and onlv
colour «inglet states can ever be observed.

This 1is at present only a speculat:on, the technical
problems of Vang-Mills theories are sufficiently grest
for there to be no general theory of quark confinement.
However the phenomenological applicatlons(30) of tne
view that there exist large distance confining forces
together with simple gluon exchange forces at chor®
distances have led to a quantitative understanding of
many aspects of meson spectroscopy.

PR ) - A Al . el Y dhm el omm A A -~
we will #QupPl wnéSe pniilsdopalies In Suav treats

(¢]
-

nt
of the radial excitation spectra, together with the
1ndicat10ns(31) that the inter-gquairk forces may be
independent of the senaration and that the long range

confining force 1= essentially spin-independenst.

1.5 Partong and Quarks

The credibility of a physical basis for the quark
model was boosted by the emergence of the parton model
- a model designed to explain phenomena observed i1n the
deep inelsstic scattering of electrons off orotons.

When an electron with four momentum k scatters from
a target and produces in the final state an electron
with momentum k' then the process may be represented
by Fig. (1.4) 1n the one photon exchange anrproximation.

The lab. energy of the photon 1s v = E-E' and the mass-
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h,
R e
S
%
. —
W
o
P
Fig, (1.4)
Electron-proton inelastic scattering in the
one photon exchange approximation

squared of the photon can also be varied
0° = (k - k)2 = -4EE' sin26/2 (1.34)

The lepton-photon vertex is known from auantum-
electro-dynamics (QED). Writing down the most general
form(32) for the hadronic vertex which is consistent with

gauge invariance we obtain for the differential cross-

section

2 2,2 2 2
4°0 = LR’ { cos® 8 W, + 2W, sin® § } (1.35)
dadE' T b 2 2 1 75

where Wj(9,Q2) are structure functions depending on the
internal structure of the proton target. The data

originally indicated33) that in fact Wy end W, are

functions only of the ratio

W = 2MYy (1.36)

q2

known as the Bjorken(3u) scaling variable. The parton
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model derivation of this scaling phenomenon begins witn
the assumption that the inelastic crosc-sectior is the

incoherent sum of elastic cross-sections from individual
partons contained within the proton. Fo»™ spin 4 partons

the structure funections take the form familiar from the

GED description of electron-muon scattering

Wy (9,99) = _Q._i $(e% - Ve )
m L (1.37)
2 _ 2 2
wg(\’aQ ) = S(Q/Qm - V)el J

where m 1s the parton mass and e, 1s the ratio of the
parton charge to the muon charge. Then 1f f(x)dx is

the probability that the fractionnl parton mess 1s be-

tween x» and (x + dx)M

i 2
Y, Q) = dx §eyel @ 8¢ - x )
w,(», Q) 2_[ § Py (h- x) (1.38)

where we have used the fact that
2
Evaluating the integral in (1.38) we obtain

W, (2.Q*) = Z;ef/mﬂ'/m) = W, (w) (1.40)

and a similar result obtains for Wo. Thus the structure
functions have the desired property of scaling.
The experimen%al behaviour of the ratio of thc

(2>
transverse and scalar photon absorption cross-scctions

= W 2 R
o—’VO'.r z/w.(I " V) (1.41)
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rules out » spin O assignment for thc partons and
supports the spin % assumption. We =re led to the
attractive proposition that these partons are the
quar¥s of Gell-hann 2nd Zwelg with the usual auantun
numbers - a proposition which finds some experimental
support(32) 1n the non-diffractive behaviour of vw,
(nucleon).

In the parton model e*e”—p hadrons takes place
by e*e”—p parton + antiparton and the partons then
fragment 1nto the observed hadrons. Then =% large

S (= ,)2)(35).

< ‘fﬁ—l_-h—

O'(e'z——-—b hads) = L VU EE —ﬁv'i,. .)
i

i

= YelO (e p) (1.42)

and the ratio

{

(1.47)

R O (e*e~ —p hads ) _ Ze_?:
T (ee” — atun) C
should be conctant with ?2 (scales) and 1ts magnitude
measures the sam of the squared charges of the funda-
mental fermion fields (ay). Below charr threshold we

have
R = 3"+ Y4 lh) = 2 (1.44)

where the (obviouslv essenti=21l) factor 2 is due to
colour. The data do show ccaling with 2 value of K
which 1< roughly constant ~nd between Z and 2 f~ ¢62 £
3 GeV. The rise 1n R around 4 GeV would have been

troublecsome for this model until the discovery of charn
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and a new heavy (~1.9 GeV) 1ept0n(36). The hadronie

contribution to R is here given by
R = 3*+'a+ha+*a) = 3% (1.45)

whilst R settles down to around 5% after the 4 GeV
structures. Subtracting one unit due to heavy lepton
pair production there 1s still 1 missing unit.

This unit may be qualitatively provided by the
predictions of non~Abelian gauge theoriec with
asymptotic freedom briefly discussed i1n the preceding
section. In these theories the asymptotic value of R
should pe Aapproacuned sluwiy {rofi avOve - wnus €Apiainin
the discrepancies below 3 GeV ana above 4% GeV. Small
deviations from exact BEjorken scaling are also predicted
by gauge theories and these violations nave been found
experimentally.

The question of additional structure i1n K, below
3 GeV and above the established p,w,$ mesons 1s one we
shall address in detail in what follows, 2< meson radial
excitations are expected to appear in this region. The
possible "dualitv" between the auark-parton model
description of this area in R and the vector me<on
dominance description has been discussed 1n detsrl by
Close(37) (1t 12 well-known that scaling behaviour can
be obtained in generalised vector dominance models(BR),
- we now proceed to discuss the effect of radial states
observed in this region on specific vector dominance

calculations.
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Suymmary

We have reviewed the development of the anuark
model with particular emphasis on the interpretation of
quarks as dynamical, confined, hadronic constituente.

This 1nterpretation encompasses naturally the phenomenon

of radially excited states.



CHAPTER 2

RADIAL EXCITATIONS IN THE VECTOR uOMINANCE mODEL

2.1 Simple Vector-Dominance

The fundamental matrix element relationship of

vector-dominance as first written down by Gell-Mann and

(39)

Zacharaisen ready

<8l)21A) = ;f:r q,*l RUE TS (2.1)
ol +mr

where bf stands for the i1so-vector part of the electro-
magnetic current andinggtands for the p-meson source.

(q2 = (pg - pa)2). Fig. (2.1) represents a pictorinal wavy

Yl-iOV

T - ton angl

of interpreting this equation. The left hand side rf
(2.1) is directly measurable 1n photoproproduct:on,
electro-production, ete” e<periments etec., since

e.<8|),f|A> is just the amplitude for
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Y + A —» B (2.13)

Liov

In contrast <8 |TA'|A) that appears on the right-
hand si1de 1s not directly measurable without the addi-
tional hypothesis that the off-shell f=amplitudes with
(Py - PA)2 = 0 are not too different from on-shell
(-amplitudes with (P - PA)2 = -m% ("smoothness
hypothesis”"). we must also assume that the photon-
vector meson coupling constant fv does not verv in the
trip from q2 = -ms to q2 = 0. At q2 = -m? equation
(2.1) 1s an exact but essentially trivial s*tatement.
Tt telle ne nnly that whenever a f—meson 1s emitted 1n
a hadronic procese then an electron-positron pair 1s
also produced with a branching ratio calculable from the
Y-(‘ coupling constant mr" S'f

Vector-meson-douinance (VMD) then, 1is not a pre-
cisely defined hypcthesis, however = grezat de=l of early
progress was made by putting faith 1n the smoothness
statement. Ps 3 simple example let us consider the
case where A,B are » single TtVstate and q° = 0. If
the pTTT vertex and ff vary little between qa = -n% and

q2 = 0 then the right-hand-<ide of equation (2.1) can

be anproximated by the on-shell (awntnmtrix element. So

F,©)(Pas Pe)n = F£ Gewm (Pa+ Ps) (2.2
A 4T ek
or
ft gr"n- = ' (2.3.)
AT (F“.(o) =1, r\armg)
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whicn 1s a spccial case of the 'Universality relation!

proposed origin-1lly by Sakurai(hO). Numericallv we
have (see Table 2.1)
fr Yerw = (.2 * O (2.33)

/4T
which was an encouraging result for this mo<t basic
form of vector-dominance - the f—photon analogy.

The real photon 1n (2.1) with q2 = 0 has only two

(transverse) state< of polarisation while the finite
mass e has three. Tntuitively 1t 1s reasonable that
only the matrix eclements for transversely polarised ('c
shculd bc con

ared tao phO*O'.‘!‘C’i‘ ntinn matriv eclemente

Hence people first wrote down

M (Yoo *A®8) = £ M(fF., +A—>B)  (2.3)

however the notion of transverse polarisation is not
covariant ana the question was raised - 1n which frane
does the vector-meson resemble the photon mos* closely?
It would seem natural to apply the model to invariant
awplitudes which are free from kinematical sirgularities
snd zeroes and this leads to non-trivial i1denftities
between longituainsal and transverse helicity ampli-

(41)

tudes which for certzin acce=sible nrocecses are
not incompatible with experiment(bz).

The model can of courre be trivially extended to
encompass the full electromagnetic current by tne

irclusion of i1dentical terme for the 1so-sco2lar ) and

¢ vector mesons 1n the right-hand-siae of enuaticn (2.1).
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This s:anplest and most predictive form of the vector-
dominance model leads %o 2 host of relations which can
be subjected to experimental tests (radiative decays,
vector-meson photo-production and totel cro<s-sections,
Compton scattering ...). PRefore going on to discnss in
detail the new dimension added to VMD by the considera-
tion of rad:ally excited (daughter) stated we examine
some of the qualitative features of photon-induced
reactions expected within this model.

Firstlv total cross-sections in rhoton-nucleon
collisions lead ng to ourelv hadronic fins1l states are
expecteq tO exniott wne fediures uf L¥picsl fiadronn-
hadron cross-sections since ¥p and T'p have the <sme
quantum numbers. Experimentally both sets of cross-
sections exhibit spectecular resonance< at low energies,
flattening off at higher energies and cventurlly starting

to rice slowlv - 1n fact the following fornula works

remarvably well

Tiat (¥p) = S [ OmTe) + Ou CW'P)} (2.%)
2

Secondly we expect Yp —¢°p to resemtle elerstic
scattering and sltrough there 1is no direct 1nformation
on pp scattering 1t shoula exhibit the diffrerctive
features of high-energy hadron-hadron elastic ecatterire.
These features are very nicely exhibited by ff photc -
production(u3) and excellent fits to thc dats arc¢ pre-
dicted by

do - i/?l__gr(_* l_/j_ﬁ,?—
(E)YP"’POP 33§ {Z dt “P) M 2 dt P) (2.5)
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Photon and hadron inauced inclusive cross-secticns
also exhibit simrler features and the phenomenon of

shsdowing in rhoton-nucleu< interrctions 1s extremelv
convincing evidence for the hadronic nature of the

photon (see Chapter Three). 3

2.2 Bagial_Exn.u.a_tLQnﬁ_ansLag__Ia___-DF endeance of fv
The discovery of radiallv excited vector-mesons
which couple non-negligibly to e'e” demands tha* the

vector dooiinance model be extended %o 'nclude their

€frnd+
PR RGO

m
[&2]

. Orbitally everted 3D1 etatees nlan have the
requircd quantur numbers for a photon coupling however

as their leptonic (e'e”) widths are typically an order

(44)
o

of magnitude down n thore of their 381 partners

the effect will be small and we neglect them in what

follows.

'
We include 1n the analysis(IU

a q2-dependence of the photon-vector-meson coupling

the possitilitv of

constant fv‘ The proposal that f s q2—dependent 18

(4o-51)

certainly not new and severzl attempts have been

made to calculate the form of f,(q°) for both old and
(49,50)

new mesone< However no form has emerged which
1s universally used 1n vector domin»nce model calcula-
tions, and q2-dependence 1< usually i1gnored. As
1muproved measurements have shown differences bctween
velues of f measured 1ndirectly at q2 = 0 and a.

q2 = -m3 in e'e” colliding beam exper:ments(52),
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'non-1deal' mixing has been proposed(53) as a solution
to the problem for the w and ¢ mesons. While mixing
1S a2 ressonable mechanism for under<tanding the w and
# 1t will not solve the same problem for the W ana so
we turn to q2-dependence for a more general solution.

2

As we are mrking a case for g“-dependence but not for

a particular model-dependent fora of fv(q2) we adopt a

simple exponential paremeterisation which conforms to
the expectation(hb) that the photon progressively de-
couples from haarons in the region q2'> 0 ~nd conse-
quently that 'Fv(o)/{_v{_m:) < 1.

We are ettective.y rejecting the smoothness
assumption for f,, and a photon interaction may be
intuitively viewed as the emission by the photon of an
on-shell vector meson with a strength propcrtional to
fv(qg), q° being the unvariant (mass)® of the photon.
This particular hadronic component of the photon can
only exist for a2 time-interval determined by the un-
certainty principle (see Chapter Three) however 1ts
subsequent nadronic interaction may be regarded as being
on-shell and vector-dominance becomes =~ more eract
hypothesis.

To establish the calculational prescription we

will make assumptions about couplings entering 1t which
are either not directlv measurable, or are as yet un-

measured. In wmaking these assumptions we are guiaed by
the gquark model and reasonable extrapolation. However,

these guides are of little help i1in explaining or
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quantifying the apparent suppression of the low multi-
plicity pion decays of the radial excitations, conse-
quently we discuss each case as 1t arises,

Other authors have included the ('(1.57) and
4”(3.68) 1n calculations involving the radiative decav
widths of WY Jng vy mY, ¥ 5 my(55-59) nq
in both cases, in the absence of a 9°-dependent fy, the
effect of the radial excitation has been required to
cancel that of the ground state meson. In ohe case the
cancellation results i1n a2 larger hadronic coupling
shnwro , which improves the consequent prediction of
the w—3Twidth dependlng on nNow Strongly (' couples to
2 . In the other case the cancellation 1s necessary to
reduce the effect of the hadronic coupling 3$Q~7 .
While the cancellation is plausible 1n the p,p’ case it
leads in the other to the requirement that [3v¢7]j>|9,,7]
>]g++vlwhile in the quark mode1¢59,00) one might expect
the ground state coupling ey to dominate.

The introduction of q2-dependence in addition to

the radial excitations allows the quark model expecta-

tions to be restored in the‘?ﬂ?lcase while retsining the
enhancement of Jumeee 10 the W —>TY decay calculation.

To do this we will find 1t necessary to add the effect
of the now suppressed radia. excitations to that of the
ground state vector meson. While this reguirenent
emerges naturally from a study of theﬂ@?JradnnL1ve
decays 1n the next section, it 1s also neccessary for tne

total cross~section predictions which ve discuss 1in

Chapfér Three.
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We 1include the effects of the well-established

4
radial excitations ('(1570), YV (368%) which fit well
into harmonic-oscillator quark model spectra where the

spacings are described by the eigenvalue equation

My = L (20« L v 3) (2.6)
with .Jlunihflqﬁvz, £, ~ 26Gev? as we have seen in
Chapter One. The recent observations'®l) of an w'(1.78)
and possibly a ¢k1.82)(62'6u) give further motivation
for systemstically incluaing radial escitations 1in
vector dominance model calculations.

In the sections that tollow we use the vecror
dominance model without using SU(3) or the gunrk-model
to extend the results except where 1t 1s recuired to
ma¥e the point of the necessitv of including radial
excitations of the vector-mesons and the az—denendence
of the photon vector-meson coupling. The auerk mndel
does constitute s background to the analysis as the
p'yw', @' and V' are regarded as radial excitations of
the f,uo,g)and YV 2nd this fact 1s used to esvimate the
relative size of vertex couplings. 8lso 1% is assumed
that the p is made up of u,d quarks, the w and @ are
essentially u,d and s qusrks respectively and the™Y 1s
primarily made up of ¢ guarks. While the quark content
and the Zwelg rule are used as a guide 1n comparing
reaction mechanisms, the actual mechenismrs do r.t 1n-
fluence our conclusions.

The counlings f, are measured at q2 = m2

4+ -
vlnee
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colliding beam experiments, the width formula being

(1n the one-photon-exchange approximation)

'(v— e*e) = §vz("~\3)°<mv/3 (2.7)

1

where . The measured values fromn

2
= |
Q/Qnr /LB?
ref. (65) are given in Table (2.1) along with 2 ana
7

because of the many conventions in this subject we also

tabulate fz;n-= °9?1 y \C} = nsﬂffz .

Table (2.1):

Decay widths and couplings for v—be*e”

b | e B L AL el

'V v
0 077 6 5410 /6 3¢ L 5.¢90 2.10 0 53
w 0 783 O 1620 17 4 O 2 00 18 25 4 56
¢ 1 020 1.31+0 G3 553 2 30 13 77 i 44
1] 3 09% 4 0.7 67 229 11 77 2 vb
g ! 1 57 () 16910 v (Y 4 3 2,08 16.97 4 24
' 1 76 () O %3 (d) 08 Q ge oL.24 22 Ri
6 182 (c) | + 07 W)l 2o 1 40 o 50 9 12
v )R, 2110 ¢ 2 3 e 31 74 / 93

All data 1s from ref. (65) except (a) Ref. (52),
(b) ref. (61), (c) ref. (6&) and (d) which are
predicted.

The right hand side of equation (2.1) 1s nov modi=-
fied to be 2 sum over all relevant vector-mesons »nd fy

becomes fv(q2). We arply the model at q2 = 0 whcre we
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can write equation (2.1) for radiative vertices as

A(Yab) = 5 f,(©) A(Vab) (2.8)

v

and for photoproduction amplitudes
A(Ya—be) = Y 4§ ) A(Va —>be) (2.9)

where we have absorbed a factor e = ,/4m 1nto the

photo~reaction amplitudes.

Assuming that there 1s a q2-dependence of £y,
Barger and Philllps(hé) note that the progressive de-
coupling of photons from hadrons in the q2> O region
suggests

£,(0)
— <1 (2.10)

In the following we renuire a parameterisation of

2

the q“~-dependence of fy; which reproduces (2.9) and we

take
2y

f,(q°) = £ (0) exp (-cq?) (2.11)

énd choose ¢ to be the same for all vector mesons. The
parameterisation is simple in that 1t makes no statement
about poles 1n fv(qz), their position or whether they are
single or multiple.

If we take a quark model point of view (2.7) ana
(2.8) contain both ground state and radially excited
vector mesons. (Clavelll and Nu551nov(59) have -oted
that one might expect the magnitude of couplings 1n-

volving ground state and radially excited mesons to be
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suppressed relative to the magnitude of couplings in-
volving mesons of the same excitation and this suppression
is attributed to poor overlap between the wave-functions
of the radial excitations and the ground state meson.

In what follows we will expect that ground state

couplings are larger than tho<e i1nvolving one or two

radial excitations.

2.3 Badiative Deceys of ¥ and¥_

The radiative decays of the ¥ and v , esvecinlly
‘4’——9'77: and \lf'—b«;‘( provide evidence in support of =
q°-dependent f..

If one accepts the chermonium model view that the
ﬂj(3.68) 1s the first radial excitation of theV¥(3.1),

a state made essentially from charmed (c¢) quarks, the
photon 1n radlatlve“P,¢J decays can only be decomposed
1n terms of essentially c& states, although a very small

(58)

amount of u, d and s guarks i1n the ¥s 1s not ruled

out. With this view the ‘Y—#’qY', #A—any' decays are
suppressed by the Zweig rule unless the *7{9' conteins

(56, 66-69)
&

an admixture of c . The actual mechanism

for allowing the decay need not strictly concern us, as
1t drops out of the calculations which follow.

The Lagrangian for the decay of a JP = 1~ partic:o
(Va) of mass m,_ into particles with JP = 07(P), 1-(Vb),

va
where Vi can be a photon, 1s

oC = Avawvpp E'”“P(axvnfﬂ)(apvbv) + he (2.12)
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and the decay width 1s

M (v'=swvpP) = st.vbp ks (2.13)
1270

where
R: = (my, - (Mvy* ™M) ) (MY = (M- "‘p)z)/‘*-"‘\z;. (2.14%)

There are two measurements(70» 71) of the 4’-@17‘(

width and we take the most recent(7l) to get the

coupling

Bymy = (10+ 02)x 107> CeV (2.15)
For the " — ¥V width only an apper bound is zessursdl 70)
which gives

Gywy < F-F x107% GeVT (2.16)
and the hadronmic width ¥-s¥m (73 deternines

Jyvm = ©.23 t 0oy GeV™ (2.17)

The overall sign ambiguity has been ignored in all

couplings.
It 1s i1nteresting to note that 1f mixing of c¢ in

the m and ff 15 the mechanism by which the decays
VvV »7\( (m'Y) , + '7Y('7’Y) proceed, then
9 emy = Yvxyy =  GemY (2.12

9 v'nY A¥qy ¥ Y ¥'m Y
where ﬁ73(2.88) is the psendoscalar meson which 1is

essentially made up of c¢ quarks. The data(70- '2) gi. o

L

gy > 1.3 5 ey > 1L (2.19)
3~|;'7Y S'b'-v'Y




- 41 -

which do not contradict the mixing hypothesis. The
ratio for the Ve decays 1s poorly determined.

Applying the vector-dominance model to the radia-
tive couplings 5y7y 3 G uimv gives

9‘07‘( = '&'*(D) S#‘hr, * -‘-*.(O) 9#'\0"')

deay = Fe@)9un t £,(0) 944, (2.20)

where the sign ambiguity results from taking the square
root of the decay widths. It 1s this ambigulty which
allows one to solve (2.20) by cancelling the ¥ part of
the photon against the Vf'part.

Defining the ratios,

7

Xa = Jwem Xe = v (2.21)
3*'*’7 3v'w-7
gives
Jegr = Fel0) [Xz z §*'(°)}3w'~v7
'{'\y (O)
Gume = $,0 [X£ 562 & | ]an
= (o) 7 (2.22)

where the subscript on the X, 1s associated with the ¥
sign in (2.22). The contribution to (2.22) from de-
composing the photon into w and @ is negligible as c¢an
be seen by calculating the couplings for theto7 and $m
decay modes of ¥ and v from the data 1n‘”*) ang Just
fies the assumption that the admixture of u,d quarhks in

the ¥ and ¥ 1s small.

(2.22) provides a test of both q2-dependence of I,

and of the effect of radial excitations. If fv 12 not
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q2-dependent, then (2.22) determines X and X' to be

X, -0.48, X!<-1.3

X +0,.86 X'<+1.7 (2.23)

This suggests that |g,wm| > [9veq]| > | Y vem| and
that a cancellation between the radial and ground state
contributions is required to satisfy (2.22), no matter
which solution is chosen.

The q2 independent calculation clearly requires
higher order radial excitations to play 2 major rather
than a minor role in the vector-dominance model(hg) and

- R &
a VIsS VvV TL L

-
vi

A i a4 am A~ D
vyl gL Sgl LeEl \ze")

)
converges as a result of cancellation between terms,
This view 1s tenable if the couplings change sign each
time a particle is replaced by its next order radial

(55)

excitation y, but one sti1ll requires that the couplings
decrease in size with increasing order of excitation -f
the series 1s to be =aturated by 2 small number of terms.
The fact that ,3¢¢7[ 1s requircd to be the smallest,
rather than the largest coupling in the solution %o

(2.22) contradicts the guark model expectatlon(55’59).
This contradiction, the apparently fortultou= cancellation
necessary to satisfy (2.22) and the dominant role of
radially excited states suggests that we consider *he
q2-dependence of fy, with 2 view to finding a more sa.i-

factorv solution.

2

I1f we consider q“-dependence of f,, we require

fv(0)<:fv(-m3), and also, 1f the radial excitation 1s
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not to dominate, the suppression of f . must be greater
than that for f, . Both these requirements are met by

the parameterisation (2.11) and to determine the single

parameter, C, we plot i1n Fig. (2.2) the values of X, X}
.
-t p-
2 N ] 1 L 1 1 1
o 0.1 o2 o1 o 4
C (Gev™?)
Fig. .2)

The value of the ratios X, = Suwes/3unn

and X] = 9yvy /2ve  netessary to

satisfy (2.22) plotted against the

q2-devendence parameter, C. The data

used are given in Table (2.2)
which satisfy (2.22) against C. There are two solutions
to consider, if we ignore the two where the sign of
3’«*.7 differs from that of 3,-*.,7 on the grounds that
this situation is unlikely to arise 1n a aquark model.

The X_, X! solution with no q°-dependence (C = O

is the one most commonly used to fit the data. However

1t requires one to accept that(sé) '3,-\,.}} = 'va,,\‘

which means that the series (2.8) will contain a2 large
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number of significant terms unless f, decreases ranidly
as V is replaced by its next order radial excitation.
As the data for the fl and¥' in Table (2.1) do not

suggest such a rapid fall off we discard this solution

for ¢ = 0. As C increases beyond 0.2 GeV'2 we find

‘9**"7' > I3*'*"7’ , but from the X' curve we see that
[8uwm]| > |viem | and consequently that [ Q. m|

S>> |9*+v| which does hot restore thec expected
quark model results. Of course the X' curve represents
only a bound on the ¥'—» =Y width and 1f may well <hift

to the right, but even with a factor of 3 decrease %he

+*

......... -
reguircaent £ 1 only

1

]
[

ahtly

reduced. For these reasons we rule out the X_,X! solution.
The X,,X] solution for C==0.26 GeV™2 gives [ Burem |

0 Yy \?w-w)l which 1s consistent with what we would

expect from the quark model. For the same value of C,

X, 1s not well determined as the X; curve corresponds

to the measured upper bound of the 4’ﬁ4>1ff width. The

curve will shift to the right as the bound on the width

decreases and the value of X! at Cx0.26 GeV™2 w11l fall

from X! = 2.5. How far the curve shifts and X] falls
at fixed C 1s an open question, however we will take

X! = 1, regarding 1t as an underbound, which 1s not

1ncompatible with the data. X, = 2 and X; = 1 then give

w— -2 Y
choice is compatible with the ouark model and 1% elimin-
ates the need for a fortuitous cancellation between *. -

v and V' parts of the photon. Also the first radini
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excitation 1s no longer a dominant contribution to (2.22)
and higher order radial excitations are even more supp-
ressed. Having made the choice of parameters, we can use
the hadronic width [ (¥'—»w¥m) to predict the radia-

tive decays and the results are given in Table (2.2)

Iable (2,2):
Decayvy width predictions
Proccss I perivs utal Ref Prcdiction Experiio tal
width INpuUL
Yy 90+2/ eV (#) 90 ¢V gl
U'-ny <91 cV (30) 45 oV h' i
V' oty <250 oV (#2) | 93 eV v'yn!
Y-y (3 41) 1729 keV (F6) 11t+4 keV p'2pe
and
SU(4)
X (3 4L) >y | - - 0.1510.0, tleV | o' spe
ard
SU(4)
Uy 513 eV (30) | 1 0%0 2 eV bapt
Pty <1.6 kaV (#%) | 0.5 cV ¥ o
Ww'arp €230 ¢V (M) | 300480 ev YopT
ptatw 100400 eV 6s) 250 MeV WY
p ' - - 0.32 MeV ¢y
. 1o060 ey | o | 1087 eV | T
w'->pw - - 1'4* GeV WY
w'p'w - - 12 9 MeV I
¢ rpu - - 1.5": MeV Ay
¢ T - - 0 03McV drny
¢-nm 0.57+0 03 MeV (08) 0.3+0 1 eV Ty

§"I‘hese widths decrease if low multiplicity plon decays
of radisl excitations are suppressed
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Equations of the form (2.22) can be used to deter-
mine the ratios of Qu,v/Guwmy and  Gymv /g,y
but not the individual widths, as the necessary hadronic
decays \lf'—-'h\!fv)' ,\y'—-»«p-,.?c are kinematically not
allowed. Making the same cholce for X,,X | and C as
before we find that the ratios are equal, and ecual to
3emy / Duimy . This is consistent with the mixing
argument discussed above.

Further evidence consistent with q‘z-dependence of

fy is given by the decay ¥'—p YX(34) although addi-

tionsl assumptions are required. Proceeding as before

we write
/
Ye'vn = -g..(O) [x!‘. 's-w"'o) p- ‘]3v'~rx (2.24)
fo (o)
’
with X, = gﬂ,w,‘/s\,.v.,‘ . To continue we reguire
the SU(L4) relation
V2 Qe = Geex (2.29)

and estimating the width to be ['(¢~>p&) = 200-400 MeV
(48,75) gives IYeree = 33=47 GeV-l. This assumes that
X(3.%) 1s a scalar resonance and the SU(L4) psrtner of
the € , and the € mass 1s about 750 MeV.

Guided by the M decays we select the additive
solution to (2.24%) and we have a choice of using the
¥'—» Y X width to evaluate X! or to take X; = 1 as 1,
the M decays and predict the width. Adopting % .2 latter

course we predict
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MV — Y XB 6= Fbo-le b kaV (2.26)

compared with(76)

MV —> YX@B ) = 13 t9 reV (2.27)

which 1s reasonable agreement. Using the same method we

can calculate the X(3.4) — YV width and the result 1s
in Table (2.2).

Turning to ¥— YT, v'—e YT decays which
suggest a small adnixture of u,d quarks(58) in the ¥
and ¥ we find

— P r 4 L '{g\ i -l -
Qeny — *?(O)L' = e J Quwe
‘F( (0) Xq
!
gv.“\( — .g_' (o)[‘fcl(o) X:_ + i ] g*'-mr (2-28)
‘f( (0)
with X = vm¢  and X' = 9¥®¢' . Taking the adaitive

Bewep! Se'rp
solution and the same parameters as before, the

radiative widths can be deduced from the hadronic widths
M@-»we) =690 150 ev, (W' —>Tre) <230 ev(7D),
They are

M@ —TY)=1102eV, M DTY)<oseV (2,29)
compared with(70,77)
M (v —TTY) = 5§23 eV, M —amY)<loreV (2.30)

We also note that 1f all couplings with one radially
excited state are half the magnitude of the cor~:spondinrg

coupling with all the particles 1n the ground state, then



- 49 .

Ov'eor® €= % Gypome = g sxi0™ Qe\/-' (2.31)

(71) ¢

compared with the experimental value

Qyipome < FE x 107F GeV T (2.32)

1n reasonable agreement, given the data. 1f, however,
1
the low multiplicity decay of W~ 31 1s suopressed,

as 1t is 1n the case f’l—-b 2 and w'—w 3’“2(60,61)

we would expect Yepowe << S wpomo y, well within the
experimental bound.

In summary, the radiative decays of W@‘W' to
~7(7'gqc) , X(3.4) and T are tound to be 1n reasonable
accord with the proposal that the vector meson-photon
coupling 1is q2-dependent and that the radisl excitations
of the vector mesons must be included in the decomposition
of the photon in tne vector dominance model. Choosing a
simple parameterisation of the q2-dependence of f, we
are able to f1t the data on the radiative decay of ¥
and “PI to'7 1n a way which does not require s cancella-
tion of the ¥ part of the photon with a large ¥ part.
In fact the ¥ and V' parts of the vhoten add, »nd the
ratios X = 3‘.‘...7/3‘,-.,,,,7 s X' = gv-v',,/gwq—.? are
determined or bounded by the data and quark model expect-
ations. In what follows we take the came parameterisat-cr

and apply 1t to the data for , wasnd @. The same ,~
dependence (2.11) with C = 0.26 GeV™2 is maintoined

throughout, however, i1n view of the app~rent suppress on
of low multiplicity decays of ('and w',X, 1s re-examined

each time it is used.
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2.4 Radiative Decavs of '0Old' Vector Meson

Vector dominance model caleculations done on

vertices involving ‘o,w and ¢ have been quite successful

(5%,78,79), although 1t has proved difficult to accommo-

date the data on p ™—eTU Y and on the SU(3) related
process K*% K°Y (48,78)
This success has been achieved without renuiring a

q2-dependence of fy, although 1t has been nroposed(“7‘
as a mechanism for explaining the discrepancy between

the vector-dominance model prediction and the new measure-

ment of the ¢->Tl'( width(so). Mass dependence of

{ 7)Y - . R
hadronic vertices ‘'~ nNas 39Lso wveern (iied ju @il anaitysis

of radiative decays, the motivation being that 11 1s an

SU(3) breaking mechanism.
Radial excitations, or heavy mesons have been

i1ncluded in radiative decay calculations 1n a variety of

(5&,78), 2

ways but without g~-dependence of f, which would

appear to be required by the ¥ and +' . as the

f'(1.57) 1s established, and the w'(1.78), @'(1.82)

(61-64)

have recently been seen 1t 1s appropriate to

demonstrate that a consistent calculational scheme can

be established which includes both q2—dependence, and the
radial excitations of (,u)and g.

Proceeding as before we cap immediately write down
1]

the modified universality relation (2.3)

fo (0 sfrm[l t §p(0) | ] = | (2.33
A 4T fe (o) P




Numerically we have (maintaining the X, solution)

£,0) Qo [1 + §¢1 (@ ‘} ~ .l x0.1
JiF;; ¢ [ ¥i755 -5 (2.333)

which 1s 1n better agreement than the value obtained
without q2-dependence and radisl excitations (2.3a).

We now consider the W —» 1Y vertex. The width,
7 (w —TY)= 880 ! 50 keV(OS) gives a coupling

+ -
Qume~ = (0.78 = 0.02)GeV 1 and continuing as before

Gumey = Gumeps §¢(0) [r v Splo) 1 } (2.34)
'S'f (,O) X+
where X+ = 5..011-0(0/6,:11-0(’@ . Agaln we take )(+ = 2

and deduce that Qumepe = 13..9‘)'(}9\7_1 which can be com-

psred with 12.22GeV-1 with no fl or g2-dependence of Sr
An effect of 1ncreasing sanﬁro 1s to ralse the

prediction for the W —31 width from the simple VDM

value of 5.6 Mev(81) 4n 6.5 Mev(5") closer to the

(65)

measured value of 9.0 I 0.4 MeV The 1ncrease

varies according to the method of calculatlon(5h), and

also on how strongly the f' couples to 2TC . The point

we would make 1< that q2

-dependence and the f’ are con-
sistent with an improved result for fthis width.

The calculation of W-—3mT from W —TCY has been
done without q2-dependence(5“). The enhancement of
3"¢W°f° necessary to fit the data has been achieved
letting the f“ and p contributions have opposite s:1.:
and by not letting the F'couple to 211 . Such solut-n
fits the data and requires &r,(mr’i)gr-.u“o/{—f(w\,‘) ooy oo
= -0.16 ¥ 0.03, or lgr'cw“o/aoro.ﬂo, ~ 0.49, - result
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not inconsistent with the quark model. However, when
the same solution 1s applied to the ¥ radiative decays
the 4/ makes a dominant contribution, and for this
reason we discard the negative solution to (2.34).
Confirmation of the fact that 9ecwwe ¥ '/;_‘3r°-’"°
comes from predicting r'(f'°—->"'c°w) ~ 2§0 MeV.
The experimental width can be estimated from | '(f') =~

[
200 - 800 MeV(é’), and assuming that, at most, half of
the 4TU events go by anwtWintermediate state(82). The
result is ["(¢'—sTTw) 22 100 —>40C neV 1f p’ does not

couple to 2t or ['(p'—» TTw) = 75300 neV if ]a’ has
a 25¢ branching ratio to 2rc ‘837, Thews' ">’ estimates
M(p'— TTw) =< 140 MeV which would require X o3 and
consequently g.,peqo e 4.4 Gev-l to yield
r'(f'-—pn:uo) ~ 120 MeV.

If we continue with X, = 2, then the effective

photon coupling is

fe o) X+
compared with {meF) = 5.9 x 1072, Using (2.25)

and the hadronic width!80) M(eé-=me) = 0.57 ¥ 0.02 Nev,

we predict [(¢ —»1Y) = 12.1 keV compared with the

(84)

experimental values of 5.9 ¥ 2.0 keV and 10.€ ¥ 5.1

keV(Bs). The discrepancy between the prediction and the
recent measurement of 5.9 keV 1s difficult to resolve,
as its removal requires X>-1 if C = 0, or 0.2¢ GeV"e,

+

in conflict with the quark model and increasing C cau<es

problems for the O (eN) calculation.
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The f‘—4>1f“( decay is analysed 1n a similar way

to the above to give

Gy = Qumepe $.C0) [I N O J

"'u (°> K+

Come b [ OB ] e
e Co

where the small ¥ and ¥ contributions have been 1gnored.

If we take XI = Qunp /ev'wr = 2 there remain two
unknowns, § (o) and §, (o). From the following

observation that

f0(0) ~ o021 , v > 024 (2,37)
tp ©) ¥v (0)

we 1nfer that

§.. () — 5p:@) =~ o023 (2.18)
£ (o) Ya (03

which allows us to estimate the values §:.GW3-) and

§;,(Hﬁg,) given in Table (2.1). (2.36) becomes

Yera-vy == [Quuo’o'G,_,(O) + 9¢“of,o -§-¢(o)][l.l]

~ 028 GeV™ (2.39)

The predicted width 1s (£ 1Y) = 108 keV which is
larger than the Prinakof effect measurement(Sb) of
F(f‘-ﬂ»ﬂ’v) = 35 % 10 keV, but smaller than the measure-
ment from Yp — ¢7n (87) of M(p~—>mY) = 190 % 60 ¥ev.
Using SU(3) we also predict [ '(K**—»K°Y) = 140 teV
compared with the Primakof effect measurement(gs) of

M (k*e o K°Y) = 75 ¥ 35 keV.

The discrepancy between theory and experiment for
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f-_.,'rt‘\( and K'°—K’Y is a problem 1in simple vector
dominance calculations and 1t 1s not going to be removed
by q2-dependence of fy,. As broken SU(3) models with
considerable freedom are unable to fit satisfactorily
these w1dths(78), the problem 1s either more fundasmental
than the one we are addressing, as it resides in the
data.

The m (v') decays of the p,u0 and # vector mesons
are analysed in the same way as above and we are able to
predict the decays of the radially excited state
V'i— Vm V'—=mY from an input of the V —> mY
width.

The decomposition 1s as follows

-
= (=] x + .S.V‘ (c) ] v'v
SVYN) 'gv( ) ] + .Sv (o> 5 '7

Bv'ym

- 5 1o+ X, §V,(o\]3v.v7 (2.40)

It 1s assumed as usual that X, = 2 and that we are
not going to experience the additional suppression of
low multiplicity decays found i1n the last section. We
also take X! = 1 and §,'(0)/%,(0) &r 0.21 to 0.23 te find

Gumy = f,2) [221] Yo
Oy = $u00) [121] auivy (2.41)
and the results are given in Table (2.3). The two values

given for data from ref. (89) result from an ex, rimen~..l

ambiguity.
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Tabl e 3)

Radiative ™M(7') vertices for ¢, =, ®.

Process Ixperimental I} Prodictien
viidth PVI=vy) rviaay)
| l.ceV MeV MoV
NNy 50¢+13 (89) 43110 0 740 2
(7641Y) (Lhil2) (1L Oh10 2)
1 Wy e (84) 514140 07 %= 05
(29417) (4501 30) { 51 05)
¢ v 54212 (%9) £0+19 0220 0§

1 (V'Vn') 1(V'-=n'y)
1oV MoV

n'opy <3N0 (65) - £0.76

n'wy £50 (65) | <18(n") g0 32

Because the q2-dependence of f, reduces the coupling
at q2 = 0, the Compton sum rule will be less well satis-
fied by p, =, $ and ¢’ contributions than if q2-
dependence was not considered. Evaluating 1t at Pjgp =
9.3 GeV and taking the data from Table (3.1) (Chapter
Three) gives

do (¥p —» Yp) = O8%t002 mb Gav T
dt

E=O

= [z (o1 42, Cvp —svp)] )*z] :

v

~ (o §06 £ 0 02 (p) + O OFF + O 005 (w)

+0 028 o 00 (P) +O0ou2t 0 co'—r(())z

= 0.40 t 004 b GaVv~? (2.42)
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in contrast with O.(JO,;v.bGeV'2 if there is no suppression.
Using the methods of the previous sections we find that
w', @' ,v and ¥ make a contribution to the sum rule
of less than 1%.

In view of the various proposals reviewed by
Sllverman(sz) to account for the discrepancy we do not
regsrd its 1ncrease as a fundamental problem. It 1s 3

question of allocating the deficiency on the right hand
side of the sum rule to non-resonating 21 contributions
(53), higher mass and continuum contributions, or other
mechanisms.

A more puzzling probiem 1s tne apparent experimental

suppression of the low multiplicity pilon decays of the

light quark radially excited states. The coupling con-

R

stant suppression factor of X, = 2 gives M(p'—> T)
250 Mev, ['(¢'—» M) x~ 86 Mev, T (@'—» ™) = 1.5 MeV
and r‘(w‘__,.(n) ~ 1.4 GeV. The 2T branching ratio

of the e' 1s consistent with one solution from phase-

shift analyses(go) (61)

, however, in view of the data
on the W' which gives ['(w') = 150 ¥ 30 MeV and shows
a preference for 5T rather than 31 decay the last

result is absurd. This suppression of phase space

favoured decays may indicate that for Y decay modes
the assumption that Quima /Quma =~ 0.5 is too naive
and that for w' and #' 1t should be much smaller. Th:
would reduce the F‘-—bTr'Y and K*°—p K°Y widths

to 89 and 115 keV respectively. Because the suppress-.n

of the low wultiplicity pion decays is not part of our
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prescription here our predictions for such widths are
expected to be much too large. Our predictions of the
higher multiplicity decays w'—5 (’Tl‘ y P'—» r’T‘r
are made assuming gu'f-,r = Y Quem 9¢'f'“'

= L Qgpr and the results are summarised in Table (2.2).

In Chapters Four and Five we consider the puzzle of the

low multiplicity decays within a specific quark model.

Summary

The simple vector-meson dominance model has been
reviewed and an extended vector dominance model which
includes both radial excitations and q2-dependence of
the photon-vector meson coupling applied to radiative
decays of the vector mesons. The parameters estimated
from‘qfradiative deccy define a phenomenological pres-
cription in which the radial excitations play a minor

roie compared with the ground state vector mesons.

Various predictions have been made for decay widths.



- 57 -

CHAPTER 3
ECTOR N_PHOTOPRODUCTION TOTAL
- NS_ON NS _AND NUCLEI

3.1 ZIhe Space-Time Structure of Photon-Hadron Interactions
Before proceeding to apply the methods of Chapter Two
to the prediction of vector-meson-nucleon total cross-
gsections we develop a more intuitive space-tlime des-
cription of the photons hadronic interactions. This
description will facilitate an understanding of the
nuclear shadowing phenomenon which is exploited in the
experimental measurements of total cross-sections -
measurements which are independent of any vector-meson-
dominance assumptions and hence are important for
testing our predictions.
The mean free p2th of photons in nuclear matter is
given by
[C¥ot(YN) x (density of nucleons)]'1 ~ 700f
(3.1)
and 1s large compared to typical nuclear dimensions. 01«
expects, then, that every nucleon is 1lluminated by &}
full incident photon beam and will psrticipaste enually

in the scattering process. Hence

Tiot (YA) = A0y (YN)) (3.2)
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However it is always the case experimentally that
Oror (YA) < A(OL, (YN)) | an effect which 1s

usually characterised by the expression

Age < A (3.3)
where
Ags = S (YA)

This phenomenon strongly bears out the underlying phil-
osophy of verctor meson dominance where a photon incident
on a large nucleus first converts itself i1nto a linear
complnation oI vector mesons. Une certainiy expects
Ctb+(€A) not to be provortional to A because of

shadow effects: the mean free path of (% 1n huclear

matter

[O%ot(fN) x (density of nucleons)]'1~a3f (3.5)

is comparable to nuclear sizes, so that nuclecns deep
1nside the nucleus do not see the full incident (-flux.

If hadronlic mean free paths were negligible compared to

B

nuclear sizes (1.e. 1f O}ot(fN) were infinite), 1inter-
actions would be confined to the surface. The cross-
section would then go as Ag since the surface to volume
behaves as the & power. The fact that 0y, (¢N) ~30md

means that shadowing is not that dramstic (typical

A0.8

hadronic cross-sections go like as A 1ncresses).

We have outlined in Chapter Two the similarities

between photon and hadron interactions - these sugrest
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that the photon behaves like a hadron for a small
fraction (~ &) of the time. We express this by
expanding (to lowest order in e)a physical photon state
| Y>> of energy v in terms of a "bare" photon state

[ Yg¢) and eigenstates |n)> of the Hamiltonian which
includes the strong interactions but not the electro-

maghetic interaction HEM(91)=

IY> = 1Yed + L ind{nHeml ¥a) (3.6)
E, -~ v
The hadron states |n) which can contribute to the sum

are those states that are produced 1n e'e” annihilation,

2 e O . A A Vmr mmde mend can L e o~ el mema X e e e m dn e -

i3l 4 &8w DL WV AUWGSO U Wi wuTa 1 < LISTLA T 4D ais CTAAQLW U LUiliticu ™
(92)

tion which is given by perturbation tneory. The

states ]n>» are on-shell and massive so energy is not

conserved at the Y —n vertex (Fig. (3.1)).
RO \n)>
/\/\/\/\@

Fig. (3,1
Photon-hadron vertex

The time during which the hadronic vacuum fluctuation

lives is determined by the uncertainty principle

and

_.l___ = ! = 2.1 vz>>mz
E,-V (v"+m")y‘-v m? ( ) (3.8)

We refer to At as the formation time of a particular

hadronic component. When At 1s large (i.e. as Vv increases)
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we expect diffractive scattering features to emerge in
nucleonic photoprocesses as the hadronic component of
the photon becomes dominan% - an expectation which 1s
borne out experimentally as noted in the previous
chapter.

The picture can easily be extended to electro-
production processes where the photon acquires a mass

squared

The formation time (3.8) now becomes

At = 2V (3.10)
Q2+m2
where the approximation is now v2>>»Q2+m2. Diffractive
features are expected to show up in electroproduction

for large At and hence(93) for large

W = 2my (3.11)
02

L
which 1s the dimensionless Bjorken scaling variable(9 ).

This is indeed the case experimentallv(gs) (note that in

this picture the parareter W' = _2myY 1is a more natural
2 2
candidate than w for the em scaling

variable).

It is now natural to expect that the virtual phot =
exhibits s changling effective size as Q2 is varied for
large w. This would be explicitly manifested ss 3
shrinkage of the forward peak of the differential cross-

section for f’-electro-production on a nucleon target as
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2
Q decreases. The reason for this is that diffractive
processes generally exhibit a forward differential
cross-section of the form

do = AePt (3.12)
dt

where the slope b and the interaction radius R are

related by(96)

b= B (3.13)

As Q2 increases w decreases reducing the photons
effective "size" and b will decrease resulting in an
antl-snrinkage oI the Iorward peak.

An advantage of the picture of the photon we are
painting is that the hadronic components of its structure
are not restricted to vector meson poles as in simple
VDM. Non-resonant components (e.g. 7w, bD, NN, ...)
will contribute to the interaction in the appropriate
kinematical regicns. Yennie(92) discusses the dipion
component in detail assuming that it 1s g-meson domin-
ated and finds that this component enhances the simple
f—oole contribution to the ovhoton total cross-section
by 10+20% (an effect referred to in the discussion of
the Compton sum rule in Chapter Two).

Further evidence for the i1mportance of this com-
ponent 1s to be seen 1n the mass distribution of pion
pairs in diffractive ™'~ photoproduction. An example
1s shown in Fig. (3.2). The curve is the pure Fopart

of a best fit with an adjustable background(97). It 1s
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obvious that the resonance peak is strongly skewed to-
wards lower masses by an interfering background - this

is gqualitatively simjlar to the distribution we exvect
in the original photon structure as low mass non-
resonant components should dominate due to their larger
formation time. It is also worth noting that diffrac-
tive T photoproduction accounts for ~15% of the
photon total cross-section which agrees reasonably with
the usual Ouw /Ows ~ ©.2 for hadronic processes.
Yennie proceeds to investigate the spatisl structure
of the non-resonant 27 contribution utilising tr.- 2TC
scattering wave function. The "shrinking" of the 21T

component with incressing Q° emerges naturally and he
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regards this as suggestive of a shrinking of the whole
hadronic structure. This expected behaviour 1s 1n accord
with the snalysis of Cheng and WU(98) who 1nvestigated
within the context of Q.E.D. the dissociation of s
virtual photon into a lepton-anti-lepton pair which,
after going through a Coulomb potentisl, recombines to
form a virtual photon again. The calculation was con-

ducted by first taking the W —» o0 1imit and then

investigating the spatial separation of the leptons as

a function of Q2. This separation was found to shrink

to zero as Q2 1ncreases.

\va!,(Q]) P LI £ mem mnvm e ce X me e X T T
niLell vil L TL I UL LCWpU Ll al guau

(4§}

- - Ao
CTLD d Wil

™

the calculation of Cheng and Wu 1s not physically
relevant because of the absence of strong interactions
in the model. As regards Yennies work although the
non-resonant 27 tail will be drawn in as Q2f the
hadronic core will maintain its gtrong interaction

eize and the (—electroproduction slope parameter will be
insensitive to 02 at large w.

The experimental situation is shown in Fig. (2.3)
where the data is taken from ref. (99). Due to
notorious systematic difficulties in comparing results
from different experiments it is difficult to firmlv
conclude shrinkage or no-shrinkage. The Cornell data
is certainly consistent with no shrinkage and one may
say that any substantiasl shrinkage will occur orly at
Q2 of a few GeV2,
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Ihe slope parameter b of the 5
ncer - t '}

We now apply the ideas developed so far to the
nuclear shadowing phenomenon. In the shadow region of s

single nucleon (Fig. 3.4) we expect the state to differ

1> (OS85

from the initlal state in 3 ways:
i) the original hadronic components will be

strongly depleted;

11) the bare photon component may be modif: 'dj
11i) new hadrons, different in nature from the

initial components will be more or less
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catastrophically present - the ultimate
spreading out of these states rep-
resents diffractive photoproduction.
If we now reexpress (i) and (i1i1) 1n terms of
physical states we will have a physical photon with a
slightly reduced amplitude (~x) together with a super-

position of real hadronic states.

|Y3> = |vy> - Zl"‘><an=M‘vs> (3.14%)
" E, - WV

Since it 1s the physical states which propagate with a

definite wave number-energy relationship the super-
position will ultimately spread out and become sSeparated
(100’101). For example, a physical photon and a ¢°
propogate with wave numbers k and (k2 + m?)% respectively,
and to first order a comparison ylelds the coherence
length (3.8). After a distance ~ %fzthey will be
sufficiently out of phase such that they no longer add
up to the bare photon, hence 1f there is a2 second nucleon
behind the first within a coherence length the bare
photon state will pass straight through resulting, for a
large nucleus, in Ae“ < A

An effect which is i1ndependent of any vector domin-
ance assumptions but which 1s often classified as a2

shadowlng phenomenon is the modification of a given

photoproduction cross-section by absorption of the out-

(102)_

going hadrons in nuclear matter The quantity

Acyy = Z(vA—>VvaA)
do
e (YN —=VN)

(3.15)
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can be calculated using Glauber-type multi-scattering

(101, 103)

theory(102) or nuclear optical models , the

only unknown parameter being O, (WN) . Measurements

!
Ajff for different nuclei can
ett

then be used to fix O¢got(VN), a method we discuss further

of Agie or the ratio

1n section (3.3).

Vector dominance is instrumental in the optical

model calculations(101’1o3) of

Tt (YA)
O-l'o'!— (YN)

Aegys = (3.16)

the prediction belng slightlv too drastic 1n thqt(IOh)

at ~ 10 Gev
VMDD o 84
Ags  ~ A (3.17)
with Oyt (fN) = 26mb and Re/y ~ 0.2 for the Y —& ¢
amplitude. The experimental A.y does not fall off
this quickly, the reason for the overprediction being
that the single hadron channel (the rho) accountes for

only about 78% of Oy, 1n the naive model. The modi-
fied formula

0.39

Aecs ~ 0.22A + 0.784 (3.1R)

fits the data well.

The above discussion of the photons structure ana
the shadowing phenomens form an arena in which we can
present the total ecross-section predictions of =he model
developed in Chapter Two and critically asnalyse their

determination from nuclenar scattering experiments.
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3.2 Extended V.n.D. Model Predictions of Oiqt(VN)

The total cross-section for transversely polarised
vector mesons is related in the vector dominance model

to %(‘(N—-VN) as follows

2 2 2
do (YN — VN) =(h_y_~) Our(VN) §0 (1 +e2)
dt t-0 hvn 11T r (3-19)
where
kiN = (s - (my + my)2)(s - (my - my)2)/4s  (3.20)

and the kinematic factor comes from applying the vector
dominance model to the invariant amplitudes. The factor
f 1s the ratio ot the real to imaginary parts of the
forward amplitude.

The assumptions contained in (3.19) are thst
s-channel helicity 1s conserved, that the process
YN-+VN 1s diffractive and consequently that the ampli-
tude 1s predowinantly imaginary. Also it 1s assumed
that contributions to (3.19) arising from expressing the
photon 1n terms of vector mesons, other than the final
state, V, are small.

The last assumption exposes the q2 dependence of f,
as 1t eliminates compensating contributions from radial
excitations of V, or other contributions of the same
1sospin. The consequences of this are illustrated by
Table (3.1) where values of oiot(VN) are presented which
are calculated with and without a q2 dependent f, and
assuming ( = 0. It 1s clear th-t with q° dependence the

Otot(VN) are larger than when calculated with no q°



- 68 -

Tbo
(rs)
(zs)

s)

(4]

¢l 0=70°1

?°0=¢ OI

[ 44

7 1¥1 (T

(ot)
(»)
(v

(s)

(bof)

(zs)

(zs)

(zs)

594

6 7 L ogn
ZCie 8 I=7%
€ 178 61 £=£8
i~8 01 TT+6 56

v 1ve 11 € 1=9 21
7 0=7 ¢1 ¢ 0+S €1
¢ 173 ¢ 7°¢=2 &2
S 1=5 8¢ L7158 1€
d, Ay DuB Gu
aouapuadad ;D] 82UIDLRIBP mv
3T Yyl
() () e

Ou.
2IJLIDISCIS Nw
2041

A».,i.,vuou.n

AN

SUQOTY nmuoum. TOITQVSS S§50a2

(9 z1g7L

12303 ucsSall I0309A

(]
ay}

~J




- 69 -

dependence, and 1t 18 useful to know how large O;Ot(VN)
can be. Barger and Phillips(hé) calculated that
O¥ot(VN)g.hTTbGeV-2 where b 1s the logarithmic slope of
the forward elastic differential cross-section. However
their result 1s out by a factor of two(los): Taking an

exponential approximation for the forward pesk

do (VW —VN) = O 2. (VN) ¢ Pt (3.21)
dt 22
161C
we obtain
IA(s,t), = sO0¢ot © bt/2 (3.22)

Considering now the partial waves(106) (we are assuming
diffraction, 1.e. essentially imaginary and spin inde-

pendent amplitudes)

Ay(s) = S%__ ldx P,(x) A(s,t) , x =.cosf
T

-1 (3.23)

we get, on substitution of (3.22)

e /o (3.24)

x = 2t + 1 (3.25)

Unitarity now tells us that each partial wave 1s hounded

by 1i:

M(s) = &2¥0108) L1 ¢y (3.20)
21
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and this implies bounds on %E and Ot,t- The 1 = 0

partial wave reaches 1ts limit first and sets the bound.

Ao(s) = 1iO0xe¢ °at e bgb (3.27
loTT -s
= 1044 £ 1 (3.28)
81Thb
and hence we have the corrected result
Otot(VN) & 87D (3.29)

All of our predictions for the ground state mesons,
including the ¥, where Oiot(q’N) 29.4 mb, are within
the unitary bound, however the V¥ prediction disagrees

considerably with the data‘}07),

One cause of the dis-
!
crepancy 1s the effect of the ¥ on the calculation.

Treating the problem generally, we find

kyn
+(kV'N) £,1(0) A(V'N—®VN)
kyN

A(YN-VN) = (E!N) £,(0) A(VN-»VN)

(3.30)

Tf we make the same assumptions as went into (3.19),
with the exception that A(V'N—VN) is not zero, and
assume 1in addition that the diffractive amplitudes are

dominated by factorizable pomeron (P) exchange, we get

-~

A(YN-VN) = fv(o)A(VN—»VN){ 1+ Kyry fyr(0) }
kyw Ty(0)

(3.21)
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where X, = Byvp/By'lyp: 1f we take X, = 2, as 1t was in
Chapter Two, then the effect on the Oty (VN) predictions

in Table (3.1) calculated with g° dependence 1s to reduce
them by factors of

=]

{1 + :V'N ?zlégl 1.1 (p,w,®)
VN v

xra

+

——r’
R

~ 1.2 (V) (3.32)

and these effects will not decrease with energy.

The proposal that the radial excitations affect the
calculation of Oyqt(VN) can be tested for consistency
by predicting STYN—V'N) at t = 0 and also Oy 5(V'N).
The result is

fV'(O) ’ }2

— X + 1

dO(YN—sV'N) = dO(YN—VN) (f,(0) *

at g=0 4% PTG }2
£,(0) +

(3.33)

where X: = gV'V'p/gv'vp' If, as i1n Chapter Two,
[
X, = 1, the suppression factor in (3.33) is 0.3 and at

t = 0 we estimate

gg'(YN-4>(N)
dt

dg (YN—¥'N)
dt

30 * 3 ub/GeVe

5.1 = 1.3 nb/GeV? (3.134)

Given the errors on the mesasurements of these values we
regard the results as encouraging. As they arc weakly
dependent on Xi they may be suggesting that X, is closer

to 3 and this would give a reasonable ratio for
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C(NN*(1400) /GUNN) £ Y, 1f 1n fact N*(140C) 1s a redial
excitation of the nucleon, and the suppression is the
same for nucleons as for mesons. On the other hend
studies of the decay ﬁ’t——>“VWTt suggest(los) that
Quy's = Gev e sy S0 we keep X, = 2.

The estimate of O(V'N) follows from

£,1(0) X,

ACYN-»V'N) = fv;(O)A(V'N—bV'N)[l + £5(0) 1 }
+

(3.39%)

1s independent of Xi, which, 1n the absence of any

4]

nad o
savs v Wy

11
-

m

meagnrements of 07+ (2'M) or G}ot(i/N) p
determined. We take Xi = 1 and predict the values of
Otot(V'N) given in Table (3.1), which are a considerable
improvement on those calculated assuming only q2
dependence, 1n that O(¢’' N) 1s now more safely below the
unitary bound of 68 mb calculated from an assumed b of

7 GeV™2. The improved estimate for Oiot(V'N) supports
adding rather than subtrzcting the effect of the radial
excitation and ground state meson, with or without

q2 dependence of fy, 1f the same final results are to

be achieved.

In summary, the Otot(VN) predictions in the vector
dominance model which includes both g2 dependence of fy
and radial excitations of the vector mesons are 1n
reasonable accord with the data for ¢,wand @. Oy (¥N)
1s predicted to be larger than the data at s ~ 13t Geve

- we now go on to consider this data.
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3.3 Analysis of Experimental Data on Ot t{(¥ N)

The left hand side of (3.19) 1s given by measure-
ments of $F(YN-»VN). The logarithmic slope, b, of the
differentiasl cross-section has to be well determined so
that the extrapolation to t = O of %%-can be performed,
and for (,u)and @ this presents little problem as there
are many measurements and the extrapolation from
t! = t-tp,e = O to t = O 1s snort. For the¥, the
measurements are few, and for comparison with a
Otot( ¥ N) measurement made with a bremsstrahlung beam
of E; = 20 GeV there 1s only one determination of b, 1in
the right energy range(log). It is a measurement on
deuterium with a bremsstrahlung end point energy of
Ec = 20 GeV and a photon energy of k = 19 GeV which
gives b = 2.9 GeV™2 from three data points, alheit with
small error bars. As tp,x = -0.088 GeV ™2 for this b
value, the extravolation raises the differential cross-
section of 15.0 ¥ 1.0 nb/GeV2 at t' = O to 19.% * 1.3
nb/GeVe at t = 0(110). The error on the measurement is
statistical and the authors(109) report a 15% systematic
error as well as a possible 20~30% 1nelastic contrib-
ution. In view of the error range, and the fact that
three measurements(log) at k = 19 GeV give differential
cross-sections at t = O ranging from 13.9 to 19.4

nb/Geve(llo)
(3.19).

we take 17 ¥ L4 nb/GeV2 as the input to

This yi1elds the prediction, with q2 dependence and

4
the ¥ correction, of 10.5 ¥ 1.5mb which should be com-

(107)

pared with the experimental determination of 3.5 ¥

0.8 mb.
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The experiment is performed with a 20 GeV
bremsstrahlung beam scattering off beryllium (A = 9)
and tantalum (A = 181) nuclei. The scattering 1is
incoherent as the A dependence data 1s taken with a
spectrometer setting corresponding to a *transverse
momentum P; = 1.65 GeV. We can estimate the formation

time of the hadronic component to be

At ~ 2k =~ 4 Gev'l (2.36)
mv2

for a photon energy of 19 GeV. This 1s to be compared

with the mean free path of ¥’ in nuclear matter
1, = [g%otCVN) x (dendity of nucleons):l-1
2 40040 GeV 'l for O (¥ N) = 1—»10 mb (3.37)

We see that even 1f U%Ot(ﬂfN) is 10 mb the formation time

is small compared to the nuclear mean free path and a

(101)

simple nuclear optics model yields

A = Ty (1 _ o= TN T CB)
eif q;or(VN) [d b (l e ) (3-38)

where

T(b) = / dz e(b,z) (2.39)

P(b,z) is the nuclear density, the photon 1s 1ncident
along the # -axis and b is the lmpact parameter. In the
notation of the nuclear optics models this expression
for A,§+ is valid if the process is incoherent nd if

B, = ihLz_ S>> (2.40)
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For the case we consider ?v takes the value 200 —» 20
for Opoe(¥N) = 1—>10 mb.

Anderson et a1(107) use a hard sphere model(lll)

for the nuclear density

T(b) = 3A (R2-b)? 5 b< R
27 R?
_ 5 L b> R (3.41)

where the nuclear radius K = roAé and the ry's for Be
and Ta are determined from the measurements of
effective nuclear radii as determined from rho photo-

production data{l12) | Tne substitution of (3.41) in

(3.38) yisléds
A = 2T {k’&‘ - Y(2, hR)} (3.42)
«ff OMk‘ 2 3
where
4
RR = 3 A” Ctor
2 rd (3.43)
ana
Y(,x) = Ma) = M(a,x) (3.44)

is the incplete gamma function. This function can be

reexpressed to yield

Cliot ®* 2

A¢“ _ 7_—1_[_ {ﬂi e e—h“(|+ hR)} (3_)"_5)

Then 1f Oina¢ is small the extreme right hand term can

be expanded and the whole expression approximated by

the first two terms ylelding

Awi = A (1 - 3kR) (3.46)

A (l - QABO'\“-& ) (2.47)

lbrtc 2
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and this is the expression used in ref. (107).

If Otot(W¥ N)~ 0.8 mb as predicted by naive vector
dominance then the approximations made above are
reasonable, however if Oy :(¥ N)~10 mb as predicted 1n
the previous section then even for beryllium, kR=1 and
the analysis must be modified.

Maintaining the exact expression for AQ{; (3.4%)

we solved numeriecallv for Op ¢(¥ N) (the experimentally

measured quantity is in fact

= Aq; /Acﬂ' (3.48)

ANnd tlhie equation To Ue solved Decomes wore cumversome)

with the result
Oiot(¥N) = 4.4 iy om (3.49)

One more refinement was i1ncluded in the analysis as the
hard sphere model is a reliable model only for heavier

( A2 12%) nuclei. The harmonic oscillator model
= 6 2, _ay) -(b+22) 2
T(b) = (OA/ (l M (A_,,._)Qz(b te ))e_ %ed= (2.50)

(where (c is the normalisation constant determined bv
Aegg = A as 0—»0) is known to be more appropriate
for light nuclei and 1ts i1nclusion i1n the analysis vyields

the final result
Oiot(¥N) = 4.6 2 1.8 mb (3.51)

Although this value 1s larger thsn the published cross-
section (and is now considerably larger than the naive

vector dominance estimate) there 1s still a factor of ~ 2
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discrepancy between prediction and experiment.

The cross-section Oy (¥ N) deduced from
%%kYN—aﬂVN) at t = 0 is very energy dependent in the
photon energy range up to 20 GeV and this would appear
to suggest the opening of an inelastic channel at
S = 23.5 .0 GeV2 consistent with charmed particle
production. Thorndlke(113) using dispersion relation
arguments, has observed that the real part of the
elastic VN scattering amplitude cannot be zero given
the energy dependence of Jtot(¥ N). The effect of a
non-zero ratio of real to imaginary parts of the
elastlc scattering awpiitude LS 0 Teduce the predicved
value of Otot(¥ N) by a factor (1+(2)é. As ¢ decreases
in magnitude as energy 1ncreases in other diffractive
processes, the measurement of Otgt(¥ N) at energaes
above 55 GeV, along with more accurate data for
%%:(YN-—VVN) in that energy range would help to remove
e as a cause of dlssrenancy between prediction and
measurement. A point in favour of our prediction which
will persist at higher energies is that OZL/O-*“ =~ 012

in accord with other diffractive processes.

3.4 Summary of the g2-Qgpgnggggg Prescription

We have demonstrated that radiative decays and

photoporduction of the(,w,ﬂ and ¥ mesons can all be
treated in the same way in vector dominance model calcul-
ations with good results. To achieve this it 1s nec-

essary to i1nclude the effect of the radially excited
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!
states (',uj, @' and ¥ and also the g° dependence of the
photon-vector meson coupling fy.

We write the vector dominance series as

|Y7 %2_—_O> = %"S'V(O) ‘\/> (3-52)

where the summation includes all possible ground state
vector mesons and their radial excitations (the contrib-
utions of 3D1 states are negligible). The q2 dependence
1s parameterised simply as fv(q2) = exp(cqz)fv(o) with
the same ¢ for all vector mesons. (3.52) is used to fit
the available data on \V, v decay to Yﬁv with the
photon decomposed only 1nto ¥ and ?J. This leads to
several possible solutions and to select one we use the
quark model criterion that the magnitude of vertex
couplings involving no radially excited states should

be larger than that for couplings i1nvolving one or two

such states. The acceptable solution 1s given by

c = 0.26 GeV~=2, P Yvvy = Y 9yn » and
that effectively defines a calculational prescription for
vector dominance calculations as we require that g .y
= Bvab = % Buap and ¢ = 0.26 GeV™2 throughout.

All of the terms in the series (3.52) add 1in the
chosen solution, and a distinct advantage of this and
the q2-dependence is that the series converges rapidly
as fy1(0)/f,(0)=0.2, and consequently higher order
radial excitations make negligible contributionrn. This

is to be contrasted with the commonly used solution in

which there is no q2-dependence, and the terms in the
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series alternate 1n sign with each increase i1n radial
excitation, and the series appears to converge slowly.

Having integrated V and V' into a single pres-
cription we are able to relate the radiative decays of
V' and V to the appropriate hadronic vertices. We
achieve reasonable success with the various W, v’
decays, and with w —=TCY, in that the predicted width
for p'—»Tw 1s about what is expected and the
prescription predicts a larger g.nﬂr than that of
simple vector dominance.

Consequently a larger width for W —» 31T Jdecay
is predicted which 1s an improvement over the simple
model. If a factorisable pomeron is assumed to domin-
ate vector meson photoproduction, cross sections for V
and V' are related, and predictions for Oty 4(VN) are
in good agreement with the data for ( sw and g.

The prescription also experiences difficulties.
The recent measurement of the § —% TUY decay (84 )
cannot be reconciled with the hadronic w1d1:h(80 ) for
¢——>th' . To achieve the necessary suppression, ,with
C = 0.26 GeV™2 or with C = O requires Qgm, / Spwp
< -1 in contradiction with the gquark model, and to
account for it through increasing the q2-dependence
leads to a very large 3““? coupling and also to a
f’f pomeron coupling much larger than for pe pomeron.
The conflicting measurements for the F‘—q»Tr”Y width
(86,89) are not fitted either, although we i1ncline more

to the Primakoff effect measurement(sb ).
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Because fv(O)/fv(m3)<'l in this scheme the Compton
sum rule is less well satisfied than in 3 scheme with
no q2-dependence. But with the inclusion of the ('.
This is not regarded as a failure of the prescription
as the same mechanisms can be invoked to fill the gap
1n both cases.

The most striking prediction of the prescription
is that O, (¥ N) at § =~ 36 GeV2 15 larger than the

experimental measurement(107).

As this may just be
reflecting the presence of a relatively large real

part in the elastic scattering amplitude, the difference

LN

Could D& resolved Ly repeatlng tne measurement at higher
energies where the effect of the resl part is expected
to decrease.

An interesting effect arises i1n the discussion of
the hadronic decays of the 'old meson' radial excita-
tions, especially the decay w'(1780) —» th . The
prediction is an order of magnitude larger than the
measured total width - furthermore the state prefers
experimentally a 5T decay relative to the 3 mode.

While there are general arguments(llh)

for evpecting =
suppression of low multiplicity pion decays we have not
added the suppression as we wish tc concentrate solely
on q2—dependence and the role of the V'. Tn the follow-
ing chapters we investigate the suppression phenomenon
and the status of radial excitation spectroscopvy 1n the

light of more recent experimental developments in these

areas.
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Summary

We have described an intuitive approach to the
photons hadronic interactions based on the space-time
development of its hadronic components. This promotes
an understanding of the nuclear shadowing phenomenon
which is experimentally employed to determine vector
meson-nucleon total cross-sections. The predictions

of the extended vector dominance model for thece

quantities were presented and compared with experiment.
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CHAPTER U4

SPECTRA _OF RADIAL EXCITATIQNS

4.1 Experimental Situation
We have seen in Chapter Two that the case for

structure i1n the process

-+ - N,

2@ —m 0 — =a TUTUTU TC
at about 1570 MeV is reasonably strong(lls) and the
case for it being resonant structure is supported by

(116)

the observation of a small signal in the 2

invariant mass distribution i1n the process

Y Be ———p TUYTX™ Be
We also saw that evidence wae forming for an wW-like
excitation with a mass of 1780 MeV and possible a @-
excitation at approximately 1320 MeV.

More recent observations of structure in this low
energy region have i1ntensified interest in light-quark
spectroscopy and so we now review the experimental
situation in more detail.

We regard thef?-like state at 1570 MeV as well-
established although 1ts width 1s not accurately deter-
mined. A similar state which would not fit so naively
into a harmonic oscillator spectrum has been contro-

versial for some years now. First indlcations(117) of
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a fi-like state with a mass of 1250 MeV and total width
~ 150 MeV came from analyses of angular die<tributions
in the reaction
PF —_— W Tt
where both JP = 17 and 1 structures were renuired (the
1* structure being the B-resonance). An enhancement
at 1.24 GeV was also observed(118),
Yp —_— s P1T*n'(+nudwus)

although neither the B- meson nor 2 Deck-type background
could be ruled out as alternative explanations.

Analyses of pion form-factor data in the time-like
region indicate an enhancement over the Gournais-
Sakurai fit(llg) at about 1250 MeV and fits %o this
region which include a (ﬂ state at 1250 MeV suggest a
possible 7% branching ratio for e'(1250)-—P2It. Alter-
native explanations for this enhancement have been
offered(120’l21) and this type of evidence can be re-
garded as indirect. A sighal has also been seen(122)
in

ete” — » W T’

however a more recent combined pnalysis(123) of dats on
ete” — e Tt'tT ,e'e"—— 4.TC and TCTT phase shift
favours a model with f—like states at 1250 and 1600
MeV, both coupled weakly to TUTU . This picture is also
supported by the direct observation(124) of theff(1250\
as a 5 standard-deviation effect in the Compton process

(Fig. (4.1))
Yp —» Pe—*e'



Fig. (4.1) .-
The Compton Scattering Proce Yp—= pee

Because of dominant Bethe-Heitler amplitudes interference
plots are studied rather than invariant mass distrib-
utions and the Compton amplitudes are parameterised with
vector meson poles. Further rich structure is seen up

to 1800 MeV although i1ndividual resonances cannot be
reliably 1solated.

The observation of f>-recurrenc1es ana the estab-
lishment of the charmonium radial spectrum made the case
for w and @ excitations compelling. The search began
to prove fruitful in early 1977 when an Orsay group

(61)

observed structure at 1780 MeV in ete~ collisions

(Fig. 4.2)). They were registering final states of 3

EVENTS [nb™

S l L I

ol 1 6 1.9

20
ENERGY (GeV)
ELJ’EE._Z_H
Qrsay evidence (61) for the w'(1780

L
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or 4 charged particles and 1 or 2 photons and were able
to establish that most ( >85%) of the tracks were pions.
The resonance decays mainly to 51t’s with a total width
of 150 ¥ 70 MeV which 1s narrower than might have been
expected for an w-excitation - an 1dentification made
because of the dominant decay to an odd number of pions.
Better statistics 1n the same energy region at
Adone permitted three groups(62'6h) to analyse ana
publish more comprehensive data. All three groups saw
a second and narrower resonance at about 1820 MeV. The
one group that saw the w(1780) in association with this

new state produced the data of Fig. (4.3). Final states

“" 1 § ' )
12k J
n
0O 10p =
¢
~
X
< B F o
9
?
w
[ 3 .
. i 4
.3 K3
eNnERGY (GaV) '9
Fig., (4,
ta 1n 820) ,w(1780) region

of at least 3 charged tracks were being observed and

resonance parameters depend on whether an interference

term is included 1n the fit. Average values for the new

state are

M = 1820 MeV, M= 35 I 20 Mev
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The relatively extreme narrowness prompts the

identification of this state as an excitation of the

@-meson - an identification which 1s supported by indi-

cations of similar states akt 2.1 GeV

1.5 gev(l20)

(125)

and possibly

In conclusion we summarise briefly in Table (4.1)

the experimental evidence for light quark (u,d,s)

radially excited states.

Table (4.1)
STATE EXPERIMENT REFJ4 STATE EXPERIMENT REF.
P (1250)| pprwnrcangular @(1500) | Seen 1n €% but (126)
*% distributions. 117y EXLTEMe 1iar FOWIIEDbS
Poss. seen 1in suggests alterna-
Ypspretw- 1182 tive explanations
Yp 2pee” 124
€ e n® 1 22$
€(1570)| ee» arc* 27¢" 115Y@(1820) | ee» =3cn (62-
* K YBe »7WriBe 116 ) *+x o4 )
Phase-shift anal- (131
yses of T awtn"
W(1780)| 6> 3cn + 1,2Y¥s  [61) P(2130) |Resonant K* prod™ {(125)
* % ben + 1,2Ys *H % observed at 2.13
et =3cn (62 - GeV.
3y
(*#)- personal rating.
Table (4,2)
Expressions foro and Bin
equation (420)
Vy=ar + Db Vg = ar b VS = gr Vv = Db
( )2 2 2 /o 22 2
B (E-b)a/?2 Za(mq+b) 2amy
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4.2 Problems with Observed States

whether the present experimental evidence for the
Venezlano-type odd daughters (e.g. (%1250‘) should be
considered compelling or not 1t has been a general trend
to associate the W(1780) with the ((1570); i.e. thev
are generally regarded as eaually excited radial partners,
the #(1820) being the second 1soscalar partner of the
@ (1570). This type of 1dentification scheme poses manv
problems as have been discussed 1n the 1iterature(11u’127)°
In the non-relativistic guarlV model (together with
a zero width approximation) SI1(3) bresking within the 1~
((5u3,¢,K")nonet 15 postulated to be due to a strange-

nonstrange quark mass difference Ag, 1.e.
Asu = Mg-Myd & M- M, X mg-— Mg '.Z".OI'I.S'QQV(L},]_)

(This simple model also works surprisingly well for

heavier quarks:

Agu_ = Mc"mud ~ MDQ--—-MP ~ Mw—mbg ~ ‘-‘b C|e\/()+.2"

A = me-my = mp. —Mg = My oM & O4GeV (K, 3)

Analagous siwple predictions for b-quark states follow
immediatelvy from a knowledge of the upsilon mass

My-mp =3 Ap, = b 266V = m (bia,3%=17) = 503GV

My -my :#Ab‘ = L 146GV => m (b§,3"=l') =5 21.,-V

My ~my A g = 3 15GeV = om (BT, 357 17) = o 215GeV )
(k ,5,6)

A naive repetition of the ground state nonet would pre-

dict



m = ™Mt fod 1 5% C‘GV (h’.?)
™ w? - m,! + ASLL = I+ C\QV (LF.B)

M¢l mKdl + ASL& = 1 SZC‘QV ().‘..O)

The 1nclusion of the w'(1780) 1n this nonet can bhe
achieved only at the expoense of thc 1de=l symnmetry which
works so well for the gronnd state mescns. The mass
matrix 1s diagonalised without the i1deal condition

my = mg and the physical @' mass s predicted on sub-
stitution of the octet mass mg = Wer = 1.57 and the

pnysical w m=ss m,, = 1./8. [his solution requircs

and the symmetry 1s far from 1deal. Apr abundance of

strange quarks 1n both the ¥' and the W' then wrkes the

dominant pionic decay of the w' difficult +to unaerstand.
There is aleco of course the problem of the origin of rthe
departure from the 1deal nonet symmetry.

)]
Layssac and Renara‘11%) Lent on to consider the

effect of finite widths and counled decav channel=s
(\/——4}{-—4§V') on the mass matrix. Using SIT(2)
relations between the V-f couplings thev showed ta=t

the 1deal symme*r” conld be reccovered 1 f the @' w-cs

o]
n

slightlv heavier than 2 Gev. If fthe 2'(1.82) 1< the
s§ strte relevant to this nonet then we aga:in have
confusion.

The discovery of the w(1780) also highligh+ d
another anpePrent puvzle arsocisted w'th radial exc ta-

tlon< and that 1s the e>perimentallv obrerved ruppress.on
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of their large-phase-space decays. Thi< state was
observed to decav meinly to 5Tt’s(61\(no 31T
branching retio has vet been rublished however 1t s
known to be cuppressed) - also the 27T decay mode of
the(9(1.57) was conspicuous by 1ts absence for some
years. A small signal was eventually seen 1n photo-
production experjmpnts(llé) - up until this time non-
reconant explanations of the 1.57 bump had teen

afforded.

More rccent and extensive work by phase-shifterec
(128,129) lookirg at TCU TU elastic scattering, hrs led
to the szame conclusione. Extracting their information

from dat= on the process TUpPp—pTCrTT R (Fre.

(4.4)).they conclude that two solutions (,B) are
o

P n
Fig., (L4}

T scatterang from TP +TXTTn
conpatible with 2nalyticity and unitarity of %he
scattering amplitudes. Solution o« has a structureless
P-wave showing no evidence for s p'coupllng to TCTT ‘

elther 1.25 or 1.57 GeV at the 24 level. Solution 8

on the other hand, has a P-wave clesrly resconatirg at

1.57 GeV showing a 15 —»30% elesticity. This <olution
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(128)

may be preferred although both solutions tell us

that the phase-space-favoured 270 decay mode of the
f (1.57) 1s suppressed.

As we mcntioned 1n section (4.1) indircet 1indi-
cations from TC foru-factor analy<es suggest a sim-lar
suppression for the decav ¢ (1250) —p. 27T , the
fitted branching ratio being ~7%.

A more spectacuiar large-phase-space suppress:on
is to be seen 1n the decays of the ﬂxkh.03 GeV). The
(130)

measnred cross-sections for the final sfates
D°5°, D°D°* 4+ D°*D° , D°* Do seen 1n ete- experi-
ments are 1n the ratio

1 : 22 : 20
If the available phase-cvaces are tsken into account the
enhancement factors become

1 : 40 : 1400
which should be compared with the quark-model spin-

Pl
counting preu1ctlons(1“l)

of
1 : L 7

This sunpression phenomenon 1s evidently a general
feature of the decays of rsaiallvy excinea sTates and
tnis has been noted énd investigated by manvy people.
Notably Tornavist{132) offered an explanation wnich
requires there to Le nearlv degenerate statec at each
of the sitee 1.25 GeV, 1.57 GeV, 1.7% GeV and L.03 GeV.
Then consistency with unitarity reauires the s*rtes at

each site to uix :n such a way that the large-phase-

space modes of one of the states becomc suppressed.
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The remaining states at that site are predicted to be
so wide as to be unobserveble,

A more spectaculer postulate was proffered bv
De. Rﬁﬁuln et 91(133) in order to explain the enhanced
0°* D°* decays of the (4.028). They argued that the
identification of this resonance as a D° B°% molec-
ular bound state would explain 1ts preferred decav
modes. Indeed 1% would however critics argue that this
1s jJust a tautologv (see ref. (134)) - to sav there 1s
a D*D* resonance 1s equivalent to saying that the

D* D* are produced more otten than expected!

A more recent treatment of this problem due to
Le Yaouanc et 31(135’136) demonstrating that the ¥'(4.C3)
decays can bhe understood without the 1nclusion of such
drastic sssumptions. The suppressions can be seen to be
due to the spatial structure of the radiallv excited
wave function describing the ¥". They calculate within
a quark-pair-creation model ewploying non-relativistic,
harmonic oscillator wave-functions. Coupling constants
are comp=red under the approximation of egqual radii for
all hadron: ana they reproduce well the suppression of
the large-phase-cspace decavs and also the observed
narrowness of the ¥ (4.41).

It 3s this philosophy that we shall go on %o 1n-
vestigate 1n Chapter Five, particulerly as anplied to

light quark radially excited states.
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4.3 Qualitative Solution
We have seen that the status of the light quark

meson radial excitation spectra 1s one of confusion and
untidinecss with the states exhibiting unexpected prop-
erties 1n their hadronic decay modes.

We look first for guidance at the form of the becst
established spectrum of radial steates - the charmonium

particle¥(2.1) and 1ts excitations (Fig. (4.5)).

LI S -‘
Ve W)
ol ¥ o
Q oy
3
V »
A 4+ (3 68)
SN ) sTATES
V (3.10)
3 -~

Fig. (4.5)
Chermonium spectrum of radially excited states

A harmonic oscillator potential would feel at home
amongst the levels below 4 GeV. The first orbitally
exclted states lie mid-wey 1n mass-squared between the
n =0 and n =1 states and, as we saw 1n Chapter One,

a spring constant L= 2 GeV2 in the eigenvalue ecuation

M2 = Q(2n + L + 34) (4.10°

fits the levels nicely. However the relatively rapad
convergence of the higher states tells us that thie 1s

not the spectrum of an hermonic oscillator - 1t 1s more
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characteristic of a linear qa binding potential ana this
notion has been discussed extensively 1n the liter=~ture
(137°1h5). We will carry over this clue of rapid cor-
vergence to the spectra of light guark states.

We saw in Chapter Two that radial excitations can

be combined with traditional vector dominance :deas to

vield a consistent prescription for all vector-meson

radiative decays. dHowever 1t was not possible to
explain the observed suppression of the large-phase-
space decays. The particle identifications made 1n that
work were harmonic-oscillator like, the (1570), w(1780)
and P(1820) particles all being n = 1 states. However
1t 1s apparent from the structure of radiaslly excited
wvave-functions that if these states are in fact higher
n-excitations, then their (large-phase-space) couplings
to n = 0 states will be reduced because of the reduced
overlap of the spatial wave-functions.

This reasoning, combined with the expected con-
vergence of states and the problens associated with
deviations from i1deal nonet symmetry suggest that we
expect light-quark spectra of the tvpe shown in Fiv,
(4.6).

The new assignment of the w(1780) as the (n = 2)
third radial excitation of the w and tne postulation of
the existence of 1ts isovextor partner (f'') will remove
all the problems of associating the w(1780C) witn the
¢ (1570). (We will review later the experimental evi-

dence for the predicted new states.) We will discuss in
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Chapter Five how qualitatively and quantitatively thie
scheme leads to an understanding of the suppressed
decays of the excited states. We will calculate various
branching ratios within a srecific quark model for which

we require wave-functions deseribing the vector mesons
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and their excitations. Consequently we go on now to
discuss the application of linear potential models to
both light and heavy quark-antiquark bound systems.

We want both to describe the observed spectra and to

obtain simple wave-functions with which we can calculate.

4.4 tenti M S

We first review briefly various potential model
approaches to the problem i1n order that we might find
the most economical way %o describe the spectra and
obtain simple wave-functions.

As mentioned in Chapter One the constituents of
hadrons aré generally believed to be light. The
experimental non-observation of such constituents out-
side hadrons leads naturally to the proposition of a
confining mechanism and this is the basis for the
potential model approach which was originally motivated
by indications from colour gauge theories that the forces
binding quarks are independent of the inter-quark
separation.

The firet treatments of meson spectra were non-
relativistic and applied to the charmonium spectrum 1in
the hope that 1t may be non-relativistic. Harrington(138)

solved the Schroedinger equation
{PV + V¥ = EV (%.11)

with V = ar. The lowest two 1 states of the spectrum
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fix the two parameters a, m, and the higher levels are
predicted. The higher radial levels are rather too
spaced out although a notable prediction was that the D

states should be at ~3.77 GeV which 1s where the 3D

1
state has been recently seen(lub).
Kang and Schnitzer(lno) solved a Klein-Gordon
equation (1n the centre of momentum system)
v
E-V = (p*+ m})7+ (P+mI)® (412

with a potential V = ar + b transforming as the fourth
component of a four-vector. They noted an 1nconsis-

L T i - St el e - el = - e -
teLivy 411 utllt.lil aApPpLUaLL Lt niiaeu

2 2,2 2 a
-9 o+ L {aEr - a'r ] B —m
[ 2m 2w\ T 4 } Y = e T () (4.13)
w(r)
U(r) grows to a maximum and subsequently tende to -—oo,

However they neglect any possible tunnelling through the
barrier (the tunnelling coefficient being reasonatly
small) and apply the equation to old and new mesons.
They find that, i1n common with wmany similar approaches
they must regard the-((léoo) as a first radial excitation.
In fi1tting the spectra they argue that, again becauce of
1ndications from gauge theories, they must regard the
confinement constant a as universal - however b, which
must account for short range spin-independent and spin-
dependent corrections - both of which depend on the quark
mass, must vary with the quark mass.

Gunion and L1'137) noted thst 1f the confinement

potential transforms as a Larantz scalar then the
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difficulty with the effective potential 1s removed.

They considered both Klein-Gardon and Dirac equations
2 2 1
[V B = (m+Vs) ]«l/(r) = O (4.14)

and

[L"Yo + Y.V -—("‘*Vs):] \]/5 (e = O (4.15)
2 =§ °F '

and solved numerically with Vg = a|r] . They found
the term quadratic in the gquark sgeparation to be unim-
portant for the first few levels and also the Dirac and
Klein-Gordon equations yield i1dent-cal spectra with
1dentical parameters.

It appears then that spin-dependent corrections are
relatively unimportant for a description of the radial
spectra. This observation 1s supported by the work of

Barbieri et al(lhs)

who solved the Schrgedinger equation
with a "linear + Coulomb" potential and then calculated
Fermi-Breit and "relativistic corrections" (the tnird

term in the expansion of (m2 + pz)%). They found that
the Fermi-breit corrections were relativelv small in all
cases.

The=e indications influence our philosophy which 1s
that: within the context of potential models with simple
choices of potentials the effects of a relativistic
treatment of the quark motion are much more significan'
than any relativistic treatment of the quark spin. A
Klein-Gordon equation 1s adequate here and the teru

quadratic in r 1s unimportant for the first few radial
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levels. We will employ 3 linear quark confinement
potential of the form V = ar + b - both because of 1ts
possible theoretical adequacy, and because the light
quark states we have i1dentified together with the
charmonium states constitute spectra that are more
rapidly converging than the eigenvalues of a harmonic
oscillator wave equation.

We will expect the constant a to be universal whilst
b, which subsumes all effects other than the confinement
mechanism, will be constant within any system of
excitations. We will not i1nitially choose the Lorentz
transformation properties of the potential, rather we
will consider three cases

(1) V

(11) Vv

ar + b 1s a Lorentz scalar

ar + b 1s Coulomb-like

(111) The confining potential is scalar and

the short range term vector.

Also we will treat all flavour sectors with the same
wave~equation, and so will not assume the charmonium
states to be non-relativistic. Our criterion for
relying upon the wave-functions generated is that the
elgenvalues of the wave-equation describe the observed
spectra.

For equal mass constituents interacting via vector

and scalar potentials the Klein-Gordon equation reads
(E - V)2¥ (@) = 4(p2 + (meV)2)¥(D) (4.16)

which with the usual gquantum-wechanical substitutions
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reads
(V2 + 3@ -2 - @ v}y @ =0 an

We neglect the term quadratic i1n r and consider the

three cases

(1) Vg = ar + b ’ VV =0 ]
(11) Vv, = o0 y Vy=ar+b | (4.1%)
(i11) VS = ar ’ VV = b

o

Separating angular variables in the usual way and con-

sidering L = 0 systems only we obtain the radial

equation
¢°R(r) + (e -Br)R(r) = 0 (4+.19)
ar?
where
V(o) = Y2(e,#) R™ /- (.20)

The expressions for « and 8 for the three potentials

considered are given i1n Table(42(p86)).Substituting now

% = ,6"3r , equation (4.19) becomes
@°R(x) + (A - xX)R(x) = O (4.21)
dx2
with
A = x/gin (4.22)
The solution which approaches zero as x -0 1is an Airy
function(1h7),

R(x)

H]

M(x = A) (k,23)

n

(x—;\ K, (e -M™)  (ho2w)
TTA/D
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where K& is the usual modified Bessel function. The
requirement that R—40 as r—» 0 determines the eigen-

value equation

A(=-A)

0 (4.25)

1.€. A an (4%.26)

where ap are the zeros of the Airy function along the

negative real axis (only positive energy solutions are

allowed). Hence the eigenvalue equation reads

X = B*a, (4.27)
where « and B8 are glven 1n Table (4.2). For example for
case three we have

1
E-b = 2fu? + (20m3,) (4.28)

The full solutions to equation (4.17) then read

V() = K Y2(e,8) A(m"™r - xg¥s)

(4.29)
-
where K 1s the normalisation constant given by
K = — £ (4.30)
berr A‘-'(_“/ﬁ"la) }
where
Ad(z) = 4 Aue)
Ia (4.31)

4.5 Spectra of the Model

In order to determine the parameters entering intc
the wave-functions (namely a, b and the quark m-rces) we
attempt to describe the particle as<ignments made eariier

and the more established resonances using the eigenvalue
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equations (4.27). This procedure singles out a uninue
potential from the three considered capable ot accomino-
dating our new particle assignments.
(1) The purely scalar potential does not
allow any fit as the constant b merely
renormalises the quark masses.
(11) The purely vector potential cannot
accommodate all flavour sectors with
a universal confinement constant a.
The charmonium system puts a lower bound on a and this
in turn puts a lower bound on the spacing i1n the non-
chermed sectors. This lower bound is too large to
accomwodate the ((1250) hovever consistency can be
achieved by 1dentifying the ((1570) as the first radi-~l
recurrence of the £(770), the second excitation appearing
at approximstely 2.2 GeV (these were the particle
1dentifications made by Kang snd Schnitzer':*?) e they
were considering precisely this potential). However sas
this 1s in contradiction to our philosophv and nossiblv

(117-119, 122-124)

to experiment we reject this form of

potential.
The third potential type considered, scalar con-

fining term and short-range-vector rotential with the

parameters
2 — :\'
a = 0.19 GeV Uod = 0.3 GeV bu = -0.827 Gev
m, = 1.055 GeV b, = O

yields the spectrum shown in Fig. (4.7). The short range

SR,
1 4 JUL1978

SEOTION
LIBRARY
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2
- a=019GeV n
Muz03 GV  bu=--082%Gev V" 4.38( &)
Ms =0 37 Gev bs=- 0734 GeV ’
— Mc =1 055 CeV bc= 0 C‘e\/ Vv L.Og(l& 03)
V' 3Lk (3.68)
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p" | Se(~153) ¢'ISOQ~\?7>
p' | 23(~1 25)
@ .02 (1.02)
B p 013 (0 33)
ut /dd X cc
Fig, (4,7)

The mass spectra predicted by the eigen-
value equation (4.28)(experimental masses
given in brackets) together with the
potential parameters and quark masses.
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potential is attractive and its effect decreases with
increasing mass as asymptotic freedom arguments suggest.
The quark masses are reasonable 1n that they are 1in

accord with simple quark model prejudices. The mass of

the charmed quark is smaller than that obtalned 1n some
(139-142, 1L5)

treatments However for similar and
smaller values see(137’ 138, 143, 144). It 1s not clear
from detailed considerations of the fine structure of
the charmonium spectrum (for a brief review see (143))
that this system is essentially a non-relativistic one
- however we examined the sensibivity of the spectra to
each of the parameters in order to determine the unigue-
ness within this model of the quark masrses.

The charmonium spectrum is sensitive to the con-
finement parameter and essentially fixes a = 0.19 GeV2
however m, can reasonably vary between 1 and 1.35 GeV,

1.055 GeV giving the best statistical fit. With (a)

fixed my snd b, for the light suarks are determined by
the n = 0,1 states and the higher levels predicted.

Structure has recently been observed2?) in }£7u5
mass distributions emerging from proton-nucleus colli-
sions and it has been suggested by many authors (see
for example (149)) that this may correspond to bound
states of at least one new heavy quark. The resonsnce
mass values are given sas

9,40 ¥ 0.01% GeV

1]

=
i

10.00 ¥ 0.05 GeV

=
]

T 10.4 ¥ 0.15 Gev
3
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We are 1n a position to give predictions supporting the
identification of these states as a ground state of a
heavy (b) quark and 1ts first two radial excitations.

For such massive systems we expect b, the short
range constant, to be approximately zero, so with (a)
fixed we have one free parameter, the new ouark mass.
My = 9.4 GeV fixes my = 4,35 GeV and the predicted

masses are

My = 9.4 GeV
MTI = 9-95 GeV
Mpn = 10.35 GeV

1n reasonatle asgreement wltn tne putllsnea paramesers,

It would be over-optimistic to attach any basic
significance to the parameters we obtain as our model
is simple.

However the fact that the radial excitation spectra
are so well-described 1n all the mass ranges considered
adds velght to the light particle identifications mnade
earlier.

As a check on the consistency of our parameters
we calculate the energies of the first orbitally excited
states. We use the W.K.B. approximation which works well

in this type of calculatlon(l38)

, even for low n states,
because the effective potential is a slowly varying
function of r between the classical turning points.
The W.K.B. quantisation condition is given by
T1
gpdr = (n + 3)TC (L.32)
To



- 105 -
with

Qp = (Bnp - D)2 - m? - 2amr - (1 + 4)2 3
L r2

(4.33)

where ro &L r , the classical turning points, are the

two positive roots of

9, = O (4. 34)
Solving (4.32) for u,d quarks yields
E01 = 1.06 GeV
and for ¢ quarks
EO]. = 3 a)"')'f' GeV
to be compared with the 3pJ triplets
A,(1.31)
ud quarks  A,(1.10)
S (0.97)
X(3.55)
¢ ouarks X(3.51)
X{2.41)

in reasonable agreement.

We will use the wave-functions (4.29) in Chapter
Five to calculate the decay properties of the excited
states where we also discuss the predicted new states
of this model (w'(1260), w''(1580), e"'(l??O» as their

eventual detection is obviously crucial to our argumeris,



- 106 -

§gmmg;:2

We discussed the experimental status of radial

excitation spectroscopy and various potential model
attempts to describe these spectra. By re-identifying
some of the vector meson states more recently observed
coupling to e'e” we showed that 1n all flavour sectors
the spectra of radial excitations can be well described
by a Klein-Gordon type wave-equation emploving a simple,

linear qq potential.



- 107 -

CHAPTER 5
DECAY PROPERTIES OF RADIALLY EXCITED STATES

5.1 Properties of the Wave-iunctions

The charmonium system 1s frequently regarded as a

non-relativistic one and this 1s an assumption we can
1mmediately test within the context of the model out-
llneud 1n uwne previous cnaprner. Ine non-relativistic

limit of the wave-equation (4.16) is derived by

expanding the sauare-root operator
(p2 + mn(m + 2Vs))% (5.1)

to first order i1n powers of l/m2 to obtain

- 2mvg + p° :
(E - V,)¥(r) = 2m(1 + LZ'T.%‘B‘W(L) (5.2)
i.e.
EV(r) = { om + _r:?? + (v + V) V() (5.3)

the desired Schrgedinger equation. The expectation
value of the quark velocity within any meson will deter-
mine whether this equation represents an adequate des-
cription of the systeu.

We calculate the root-mean-square guarl¥ velocities

using the following identity



- 108 -

(M- b)2

vy = = (Y - S0 FERCEY

1n the notation of Chapter Four. From the wave-equation

(4.16) we have
<P2> = 2‘,‘(1“1-1))2 - m2 - 2m<Vs> (5.5)

and substituting 1n (5.4) we obtain

[}
% "2
<N22 ={1'.ﬁﬁi_ - _Bam_ [ V'V rldrdn
(M=b)?2 (M=-b)2
(5.6)

Using the normalised wave functions (4.29) and evalua-
ting the radial integral numerically we find the reculte

listea 1n Table (5.1). It is clear that onlv the upsilon

Table (5.1):

Root _mean square guark velocities
in radislly gxg;fgd states

STATE <v%>" STATE <y
p (0.77) 0. 540 Y (3.098) | 0.4%0
e’ (1.25) 0.570 V' (3.684) | 0.485
e’ (1.57) 0.580 V'(4.028) | 0.491
®(1.02) 0.520 Y (9.400) 0:21
P(1.50) 0.547 Y'(10.00) | 0.30
®"(1.82) 0.554 Y'(10.35) | 0.32
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(bb) system can reasonably be regarded as a non-
relativistic one, the r.m.s. velocity for ¢ quarks in
the W being almost half the velocity of light.

The rates for the decays of vector mesons into
ete” pairs are essily accessible experimentally and
consequently fori a good testing ground for models of
the type that we have developed. Classically the
widths are sensitive to the bound state wave-function
at the origin - this 1s a non-relativistic result
originally written down i1n the context of the quark
model by Van Royen and Weisskopf(lu)- They obtained
the width formula by the expansion ot the matrix ele-
ment about p = O (the quark momentum) keeping only the

leading term,; the specific erpression for the wiath

being
2
(V> e*e) = 3¢ x? 16 |W¥(0)] (5.7)
3Im?
where
Cv = 2, ey . (5.8)
quq.rhs
a. 1s the Clebsch-Gerdon coefficient of nuark i in

1

meson V and e; its electric charge. (The extra factor
of 3 over the original expression 1s due to colour).
The employment of our wave-functions in this

expression would be unrealistic for 1 =) ¢, Vv

mesons and their excitations because of the relativistic

nature of the quark velocities. We do expect

M (g +e%)

3 M(w —» e*e™) (5.9)
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since ]'\l/‘,(o)l = |w._ )| and me = m,. This

relationship holds well experimentally and we would also
predict it to hold for everv degree of radial excitation.
However due to the relativistic corrections which must

(150)

be 1nvolved the remarkable experimentzl fact that

r‘(! :re."e’) o ,—1(4,_;?_+e-) ~ r-‘(v"sbe+a—) (5.10)

(remarkable because the cy's are in this ratio) must be
regarded as fortuitous. Because of 1ts non-relativistie

nature we can predict with some oonfidence the leptonic

width of the upsilon mesons.
In any potentlal moael wiulli 8 linedl cuifinemént
potential [Ww(o)| 1s indevendent of the degree of radial

excitation. From (4,29)

'ﬁ/(O)l =| _Be b AL (B"r — @)

J‘FAL'(—N/ﬁ%) r+o - (5.11)

and since Ac (-073%5) = 0 we use de 1'Hopital's rule

to obtain
V3
vio)| = lﬁ (5.12)
ypes
i.e. 2
‘«P(O) = Q. Mgq, Y n
21 (5.13)

Assuming a preferred charge of -4 for the new quark(151)

we find

(r— e."'e') ~  0.44 KeV
M(r'—e*e) = 0.39 Kev
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Another measurable quantity which 1s a powerful
tool for discrimination among competing theoretical

models is the pion charge radius. The r.m.s. charge

radius 1s related to the pions electromagnetic form
factor by
G [‘G d F.4)

|/Z
” w‘=°:l (5.14)

and the simple vector-dominance model wherein Fg i<

well described by the ((770\ pole.

Fe(q2) = (1 + q,’/m?)—' (5.15)

Y
S 3 s g ! e . 7 — 2 - - —~e
_Yle.L(.lS a prealLc yiLon IUL ! 37\/ Uf 0063 fu)u Ll Nl

-

ledge of the pion spatial wave function allows the direct

calculation of this guantity, 1.e.

)
2 <rfr >Vz = [/"P*"l/ roelr A.D.:I (5.16)

In our model the r and 7T spatial wave-functions are
1dentical, hyperfine splittinge being absorbed into the
constant b. Substituting in (5.16) the p/rc wave-

function and i1ntegrating numerically we find
] '/7- /2 ‘,1. o5
<r.n.> = \"f = LY S
Many measurements have been made of this quantity. The

most recent determination(lsz) 1s a direct measurement

from pion-electron scattering experimerts and yields
2\"%2 +
{rad® = 0.56 L o.o4 tm (152

The prediction 1s reasonable and gives us further con-

fidence in the relevance of our wave-functions.
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It is the structure of the radially excited wave-
functions that allows us to understand, firstly in a
qualitative way, the suppression of the large-phase-
space decays of the excited states. The situaftion can
be paraphrased as the dominance of cascade decays. The
'overlap' of an excited wave-function with ground-state
wave-functions at a 3-meson vertex will be poor compared
to vertex where one of the final state parficles s
excited also. Hence, becaucse states 1ike(9(1570},

(1780) have been identified as higher excitations than

was originally thought to be the case, their couplings

"

TC fF —» 5T

to final states which include excited mesons will be
strong and the small phase-space barrier will be over-
come. In this way we might expect the higher multi-
plicity pion decays of these stetes to dominate over
the phase-space favoured low multiplicity decays.

We now go on to treat this problem quantitatively

and calculate the three-meson vertices within a simple

quark model.
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5.2 r Creation Mode
The model we use has 1ts origins 1n the graphical

forms for 3-point vertices originally suggested by

(153) and extended to 4-part amplitudes by Hararl(IO)

(11)

Zvwelg
and Rosner - by forbidding exotic resonances and qqg
annihilation within external hadrons their diagrams

exhibit the duality principle 1n a simple and striking

way. A three-meson vertex is diagrammatically represented

as in Fig. (5.1). The decay proceeds vias the creation

N
"\\\\T_‘//,/"

A
Fag, (5.1)
IThree meson vertex in. the quark
barr creation model

(within the hadronic matter of particle A) of 3 qf pair

with vacuum quantum numbers. The quarks of meson A are

regarded only as spectators. Conservation of parity

P = (-1)L+1 (for a q pair) requires the created pair uo

be in an odd L state and conservation of angular momentum

then i1mplies the pair must form a spin triplet and the
3
P

pair is in an overall “F, state (we will refer to this
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vertex symmetry model as the 3PO model)

J = 0, L = 8 = 1 (5.17)
The first advocates of this plcture(lsk’lsb)
imposed the further constraint that L =S = 0 neg-

lecting transverse motions of the created quarks (we
are working in the Lorentz frame in which the final state
perticle momenta are collinear along the =-axis) and this
yields the structure of the collinear spin symnetry
su(g)w(lss). This 'relativistic' symmetry, although
allowing SU(6) forbidden aecays such as p —o TUTT,
A —» NTC , was known to be an unsatisfactory des-
cription of strong interaction vertices. For example
since the B-meson is 1n a state W = 1, Wz = O under
Su(6), its B—Twdecay to the helicity ¥l states of
the w does not conserve wy. Only the decay to the
helicity zero state should occur whereas the experi-
mental results are i1nverse to these predictions, the
helicity 11 modes being almost exclusively preferred.
(A similar reversal occurs for the decay A, —» ¢T,
whereas SU(2)w predicts a decay from the J = 1 states,
the J = O state seems to predominate).

These restrictive predictions of the 3PO model
were rewoved by Colglazier and Rosner(157) by relaxing
the condition L =S = 0, the freedom of an extra para-
meter so introduced then allowed the A] and B decays to
be understood.

A second way to explain the failure of SU(6), for
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vertices is to postulate a second SU(6)w which is
appropriate for vertices and non-trivially related to
the SU(6) , describing states at rest (equivalent to
postulating "current quarks" when the new SU(6)w 1s
jdentified as the algebra of currents introduced by

(158)). 1t was Melosh(159) who

Dashen and Gell-Mann
went some way to relating the generators of the two
groups by solving the free gquark case only. Assuming
then that the physical axial charge transforms i1n the
same way as the free quark axisl charge PCAC can be used

to calculate pionic vertices with good results(léz),

This treatment can be shown to be equivalent to the 3Po
model of Colglazier and Rosner which was later generalised

(163)

by Petersen and Rosner

A more dynamical approach to the same problem was
that of Mitra angd Ross(léo). In a naive quark model the
process A-»BTC 1s treated by pion emission from a single
quark, the interaction being proportional to Oi . k. .
This coupling is known to fail for many processes close
to threshold and especially for erw polarisations in the
Aq and B decays described above. Mitra and Ross, on the
basis of Galilean invariance, introduced a recoil term

into the interaction obtaining

T.. (kn - Ea k) (5.18)
wmn
q'
and this improves the bad predictions of the naive

interaction.

The quark-pair-2reation model of Le Yaouanc et alklél)
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leads to a more unified understanding of the approaches
set out above. SU(6), 1s broken without invoking the
notion of current quarks and the phenomenological recoil
term of Milra and Ross appears naturally in matrix
elements which specifically involve the hadron spatial
wave functions.

Defining the S-matrix

§ = | - 21w S(EL-E) T (5.19)

we can write the T-matrix element between hadronic states

for the process A—BC as

<gelTiAd = Y 3, iyt m,-mio0)l &, 8. |8, o> 1 (a,8c) (5.20)

where the i[are the meson SU(6) wave-functions and

1s the SU(6) wave-function of the created pair (@, =
Jr(ud + dd + s8) 1s the Su(3) singlet wave function
and X,™ the spin triplet wave-function.

Y is the dimensionless pair-creation constant
and the Clebsch-Gordon coefficient 1s that relevant to
the L=S=1 combination to give J=0. I (A,BC) 1s the
spatial overlap intergral written as simply as possible

as

I,.(a,8¢c) = /dg. dk,dks &§(k,+ k2 -Ra)& (Ry+kg-Fg) 8k, -Rs-k,)

x 97 (21) Va(i-R2)¥g (Ra - k)Y, (-3 -)  (5.22)

where the delta-functions just reflect the conservation
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of momentum within each meson and E5T(2k3) 1s a solid
harmonic representing the relative L=1 state of the
created pair. Elimnating the § -functions we obtain

I (asc) = S(&*r!syd‘s.‘ﬁr(-ug‘-!-))“K(ZQ.H%(‘IS.-&) ¥ (k-2 (5.23)

We can see now how the phenominological recoil term of
Mitra and Ross arises naturally in this model. Consid-

ering C=T we can write

KEE N ELE> = L&X28, |8,%78,
= <§o‘°--m'§"?l §A> 5.2k)

where 0 and T are spin anditsospin Pauli matrices and
9 1s the pion isovector. (O'tl = 30x + 10 y Op = 03).

V2
Combining (5.24) with I(A,BC) and noting that
U7 (-2(Re-R)) & Ep. (e - 8) (5.25)

we see that the operator to be taken between Q;and

55; takes the form

§(kgrk) Y / dg,wz»_z.){g.@..- k) 2 %]*:tsmis.)}ﬁ(zg. ~&)(5.26)

where all trivial numerical factors have bteen absorbec
into Y. The central operator 1s similar to that of
Mitra and Ross however there 1s an extra factor
*P:( hw-QJg) expressing the composite nature of the
pion. In the limit of a small pion radius W,(k)
— V. (o) the elementary pion emission of Mitra and Ross
is fully recovered (with €, = m,) .

Transforming the wave-functions in (5.23) to con-

figuration space we obtain
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I.(A80) = §( Rg + i_t‘) /d_q, daa dxg dxe ST(Q)WA(‘!—A)«P; ('5.5)

" \P:L%E)e_-a, (xe-%a '2“)0-"!0-(12LA—7_¢3+§¢:) (5.27)

and this is an expre:s:sion i1n which we can employ the

spatial wave-functions obtained in Chapter Four.
Transverse polarisations of the created pair are
allowed but are coupled here with a spatial overlap
integral and summed over. The polarisation phenomena
of the Ay and B decays are calculated by employing non-
relativistic harmonic-oscillator spatiasl wave-functione
under the approximation of equal radii for all hadrons.
This leads to an adequate explanation of the data with-
out the introduction of an extra free parameter(l57).
The model also removes all ambiguities of the choice of
which emitted field is elementary - an ambiguity which

leads to well-known 1inconsistencies in standard quark

models(zz).
5.3 Prev ions of the Model and
Qur_ Approach

The significance of the model of Le Yaouanc et al
nas been noted and exploited by many suthors. Kaufmann

and Jacob(léh)

, working strictly within the spirit of

the original model, were able to go some way towards
explaining the suppression of the 21 decay mode of the
((1570). They identified this particle as a first
radially excited state within a non-relativistic harmonic-
oscillator framework and calculated 1ts 2TU branching

ratio - again within the approximation of equal radia

for all hadrons.
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Barbieri et al(lbs) trivially extended the group
structure to SU(4) in an early attempt to deseribe
quantitatively the behaviour of 01e+e°—¢=hadrons) in
the region just above charm threshold. Again hsarmonic
oscillator wave-functions were employed however in a
later work(1h5) they adopted a philosophy similar to
our own(OO). Motivated by hopes from colour gauge
theories they solved a wave-equation involving a long-
range, spin-independent confining potentisl and a short-
range one gluon Coulomb potential. In contrast to our
approach they assumed that hadrons can be described
mainly by non-relativistic dynamics and solved the
Schrdedinger wave-equation. They went on to use their
numerical wave-functions in the quark-pair-creation model
to calculate coupling constants for the vertices
Y — DD,V — DD, ¥ — FF etc. assuming that the
form-factors for these charmed mesons are dominated by
the (off-mass-shell) vector meson poles. The aiu was
to fit the cross-section O(e*e™—s hadrons) with the
pair creation constant ¥ being the only inknown para-
meter nowever this was not possible because of the poor
data.

The wave-functions obtained in this work were re-

used subsequently by Chaichian and Kggerler(leé)

to
treat radiative transitions amongst the charmonium
states in a vector-dominance spirit. Even with a weak
q2-suppression factor

,C%(«;*w) ~ 4 5 @t mi) (5.28)
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(which is applied rather unrealistically to all the
radial excitations as well as the gound state) and a
j—;‘a cé content of the m. they predict large branching
ratios for decays such as VW —g MY ,‘V’_,, MY .
These details are more relevant to Chapter Two however
the spirit of the approach of thie series of papers is
similar to ours - the non-relativistiec harmonic oscill-
ator wave functions are abandoned in favour of solutions
to a wave equation which employs a theoretically moti-
vated qg potential.

Our interest lies 1n the comparison of the small
phase-space decays of radially excited s%ates to thelr
large-phase-space counter parts. The difference 1n the
structure of the matrix elements is expected to be due
to the different spatial overlap integrals which are
determined by the structure of radially excited wave-
functions. Hence the group theoretical properties of
the vertices are not our main concern. We will consider
only the processes V—PP, V'— VP (V = vector, P =
pseudoscalar) i1n which only one polarisation state of the
created peir is allowed - hence the virtues of the model
discussed earlier in relation to broken SU(6) treat-
ments will not affect our calculations.

Our wave-functions were not derived under the
assumption of non-relativistic quark dymamies, and thkie
generality allows us to calculate coupling constants
for the hadronic decays of the old (light quark) mesons.

wWe will not be able to treat the decays of #" and V"
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mesons because their decay products (K and D mesons)
are composed of unequal mass constituents (we solved
the wave equation onlv i1n the equal mass case). In
this context we mention again the recent work of Le
Yaouanc et 31(135’136) who were able to understand the
suppressed decays of the 1/kh.03) and q;%h.hl) within
the context of the quark-pair-creation model and
harmonic oscillator wave functions.

We calculate vertices involving light quarks by
substitution of the wave-functions (4.29) into the

spatial overlap integral (5.27). Transformation to

-

spnericai Lo=o0rdinAhes A1l10w T ilniGEgTais

T

A
Lw

Y

Lne Angul
be performed analytically using integral relations for
Bessel functions (see Appendix 3). The remaining con-
volution of four, one dimensional integrals 1s calculated

numerically on a computer yielding Im(ABC). For e-ch

particular vertex the value of this i1ntegral 1c combined
with the spin-SU(3) matrix element and the L-S Clebsch-

Gordon coefficlient. For illustration we calculate the
T-matrix element for the decay p" (T =) —& 1T,

The SU(6) wave-functions involved are (Appendix 2)

o> = e i)
> Al - 5)
w0y 3R -y -fay + i)
gop = A(|way + e« [0d) + pdy)
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and these are combined into the matrix element under

the general rule for =z2ny vertex of the form (Fig. (5.1)).

<q/s‘1vsl<“'&<\°u c"ﬁ>|a'v~.q- > m. $ies Sq al5.29)

where

3,

) , [ :a
Note that i1n the case we are considering we pick up an

extra minus sign between the two diagrams Figs. 5.2a/b

because of the relative sign of the pion momenta

v TT
(V] w
wu w z
+ +
F 4
d

£

¢

d

(b)

Fig. (5.2)

to the process p¥———= X *1c®

appearing in I (A,BC) - the matrix element would be zero

if this were omitted. The result for the SU(b) matrix

s is combined with the
Clebsch-Gordon coefficient

element here 1s;%and thus

<l,t;o,o‘o,o> = -\/~/3 (5.31)
to yield the T-matrix element
T = =Y T.(A,80) (5.32)

3J2



- 123 -

This is then compared with the T-matrix element obtained

from the usual phenomenological interaction Hamiltonian
(167)

—
-

TP“"“’" - 2“83(!“0-& _h._“-q-)Srwﬂ' g « R
4 (ar Y e (2m, )2 (5.32)

(where we have set E = "gr ) to obtain the coupling

constant g ere ° The width 1s then calculated via the
width formula.

3 2
r'(V_.p pp) — RBe Quveep

s (5.34)
As 1n ref. (136) we regard the simplifying auark-pair-

creation echeme as being only an approximation; however
in comparing decay rates of large and small phase-space

processes 1t should be the structure of our wave-functions

which 1s the controlling factor.

5.4 Results and helation to Experiment

We calculate the kinematically allowed decays of
p and w-meson excitations. The well-established decay
width of the ¢-meson 1nto 21c’s 1s used as 1nput to
determine the only unknown parameter Y. All the
results listed in Table (5.2) then uniquely follow.
We summarise here the predicted properties of each
resonance.

(1) The ¢'(1250) has a width of 500 =600 MeV

and decays mainly to 4TX's , the 27T

branching ratio being ~ 54.
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Table (5.2):

Decsy widtq predictions

PROCESS PREDICTED EXPT.
A » BC WIDTH (MeV)
(MeV)
o > mm 152 152
pl2so>mm 26
>Tw 528 B R.p’>nm
small
w! 126 010 1 6 GeV -
114
> 39 T A 200-
1570 tor 290
59
T 228 B.R.p’! »mr
) - 1030
-nw” 22% or <27
"
w 1580-+>mp 732 ~
g 864
p1770 »n 68 _
>Tw 164
+Mw 112
> 100
e 468
>mp’ 348 Decays mainly
7] to 5n’s
TP 372

(12)

(111)

The wW'(1260) decayes 1nto

t~n1.6 Gev).

3Tt'5 and 1s wide

’Ju=f%157”) decays mainly to 47U’s and

has a width of
aepending on tne wagnitude of

\ {
re<onant LTT decays or pE&

However the 27T

500 MeV or

channel 1s

greater
1ts non-
decavs.

sunpres<ed

with a branching ratio of ~124x.
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(iv) The unobserved w"(1580) decays mainly
to 5T's with a large width ~1.6 MeV
and the unobserved (m(1770) decays
mainly to 4Ts with 2 total width of
~L450 MeV, its 6TU branching ratio
being small (~10%).

(v) The w"(1780) is also predicted to be

wide, however, it decavs mainly to
5’ , the 37 branching ratio being
~ 30%.

The total width of the w"(1780) 1s i1n bad disagree-
ment with experiment and this is the case to 3 lesser
degree for the e excitations. However these are pre-
dictions of the particular vertex model we are using.
We have succeeded in describing the suppression of the
large-phase-space decays relative to the small-phsase-
space channels for every radial excitation, the pre-

dicted tranching ratios being

PREDICTION EXPT. COMMENT
B.R. ( f'—-P""Ut) ~5% 71 % Form-factor
analyses
B.R. (p" —»Tex) ~12% 10 930% Both solutions

or<2% |equally favoured
B.R. (f"'—>7T) ~15% - -

B.R. (w'"—% 31T) L50% - -

B.R. (w"'—p3m ) L 30% - 5T decay favoured
over 3f decay
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These suppressions which dramatically overpower the
considerable phase-space enhancements are due to the
structure of the radially excited wave-functions and

the particle 1dentifications made. We have also lesrned
that a simple quark-pair-creation model employing a
universal pair-creation strength cannot describe the
narrowness of the excited states.

This narrowness of radially excited states 1s also
becoming apparent in the s§ spectrum. The #(1.02) 1s
much narrower than the(9(770) mainly because of the
unfavourable phase-space factors ( my > myg) - in fact
on removing these factors the coupling constants 9 prrr
and 3¢K‘ emerge as being comparable. Hence for the
excited states there is no compelling reason tn expect
the @ excitations to be exceedingly narrow. However, the
@(1820) and @(~2.1) both have 40 MeV widths and the
reported(126) #(1.5) 1s considerably longer lived
( " € $™MeVv, although this state may possibly be
1dentified as a 3D' orbital exc1tation(l27)).

These long lifetimes will place strong restrictions
on dynamical quark models which attempt to describe
3-meson vertices - models which must incorporate a more
complete understanding of pa:r-creation and shielding of
the long-range gluon exchange forces.

Finally we examine possible indications of a vectar
meson at 1770 MeV, the mass of the predicted ¢ ',
Bartalucci et al(12“) have measured the yield of ete~

pairs in the Compton process Y p—spe'e” (Fig. (5.3a)).



- 127 -

:e e¥(e)
e"
e~ (e+)
(a)
Fap. .
B -Heatler (b) d ram

They parameterise the scattering amplitudes with vector
dominance poles and 11T the data. bBecause o!f strong
Bethe-Heitler ampl:tudes (Fig. (5.3b)) they find 1%
preferable to studv interference plots rather than
invariant mass distributions. Between 1200 and 180C

MeV they see a rich structure which they fit with 2,3

and 4 resonances.

In both the 3 and 4 resonance fits they see the
f(lS?O) with the expected width and also an X(1770)
with a slightly narrower width. No firm conclusions
can be drawn because of the excessive amount of
structure 2n this region however we find this cugegestive
as the 1sovector(fkl770) would be expected to couple more
strongly to e'e” than an wor @ excitation.

We have seen that there 1s now experimental evi-

dence for the following light ouark radial states:

p(1250), ((1570), (’(1770)
- - w(1780) ...
@(1500), @(1820) g( 2100) ...
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all of which fit well 1nto the model we have provosed.
We feel that this area of meson spectroscopy and decavys

w1ll become a rigorous testing ground for phenomenological

models describing the internal structure of hadrons.

Summary

We have investigated the properties of the meson
wave-functions generated in Chapter Four and c¢oupled
them with a quark-pair-creation hypothesis in order to
formulate a modified version of the vertex model
originally proposed bv Le Yaouanc est al(]°1). we
applied this scheme to the hadronic decays of the light-
quark radially excited states and found good agreement

with the observed suppression of the phase-svace favoured

decays.,
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CHAPTKR 6
CONCLUSTONS

A summary of Chapters 1-3, together with the
relevant conclusions, was set out in Section 2.L. We
recall here only brief conclusions from the first three
Chapters and then precent the conclusions from Chapters
Four and rive.

We have shown that the consideration of radially

exclted states and s q2

-dependence of f, allows a con-
sistent vector dominance description of new particle
(\V,V/) radiative decays whilst the good predictions of
simple vector dominance are maintsined (=nd 1n some
cases slightlv improved). An outstanding oprediction of
the extended model 1s that the psi-nucleon total cross-
section is predicted to be larger (at a centre of
momentum energv of 36 Gev2) than a recent mesasurement
of 3.5 mb. Tne experimentzl situation was discussed
in detall.

More surprisingly some of the large phase space
decay rates of the excited states (e.g. w'(1780) —»
37T ) were predicted to be larger than the experimental

values. It was this feature of radially excited states

that we went on to investigate i1n Chapter Four and Five.
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By re-identifying some of the states recently
observed in e'e” experiments (motivated bv the vrop-
erties of the well established charmonium spectrum) we
showed that in all flavour sectors the spectra of radiel
excitations can be well described by a Klein-Gordon wave
equation employing a simple linear guarv¥-antiquark
potential. We went on to couple the aneslytical wave-
functions obtained by solving the wave egquation with a
quark-pair-creation hypothesis to predrct a number of
partial decay widths of the light guark radially excited
states. The suppression of the large-phase~-space decays
wWere prealcted L0 ve 10 EOOd Aglieemeill, wilh Tlde experi-
mental values.

We calculated the eigenvalues of the radial spectra
within the context of a potential model. rlotivated by
indications from gauge theories that » linear potential
may be responsible for the confinement of quarks within
colourless hadrons, many authors had calcula*ed the
spectra of both heavy and light quark-antiauark bound
systems. Our aim was tc generate wave-functions des-
cribing vector-mesons and their radial exc-tatrons 1n
order to estimnte decay widths of the excited states.
The criterion for relying on the wave-functione was
that they be solutions to a wave equation, the eigen-
values of which describe the observed spectra of
excitations.

The razpid convergence of *he charmonium radial

spectrum and the strong evidence for the f(12501
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suggested a light quark spectrum in which the Ww(1780)
is 1dentified as a2 third radial excitstion and an iso-
vector partner 1s postulated to have a mass of about
1770 MeV (there 1s now evidence for this state). The
€(1570) 1s a second excited state and the p(1250) the
first excitation. The s3 spectrum takes the form
g(1020), #'(1500), @"(1820), @#™(2100), ... and it 1s
these spectra which appeared quantitatively from the
solution to a Klein-Gordon eqiation employing a line=r
quark confinement potential. The confinement potential
was assumed to be linearly rising both because of hope-
ful indications from gauge theories and because the W
and 1ts radial excitations together with the states
identified above constitute spectra which are more
rapidly converging than the eigenvalues of a harmonic
oscillator potential.

Analysis of previous potential model treatments of
the meson spectrum indicated that relstivistic sovin
effects were uninportant compared to a relativaistic
treatment of the spatial acuark motion and hence that a
Klein-Gordon type wave equation wse adequate. The
Lorentz transformation properties of the g potential
were not chosen a priori. The effective potential con-
sisted of a linear confinement potentisl and a constant
term descraibing all chort range effects. Scalar and
vector transformation properties were considered for
each term 1n the potential and only one combinstion wss

found to be capable of describing the spectra - the
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confining potential transforming as a Lorentz scalar
(malti-gluon effect) and the short range term as the
fourth component of a four-vector (one-gluon exchange).
The wave equation was solved analytically and the
ergenvalue equation was found to describe the spectrs
excellently.

The guark mass parameters that emerged were
reasonable and the asvmptotic freedom expectations that
short-range effects become less important as the bound
state mass increases were borne out. The energies of
the first orbitally excited states of the ua and c¢
systems were calculated and found to agree with
experimental mass values. The recently observed
spectrum of upsilon (bb) stateswas well described by
the eigenvalue equation with s b-quark mass of 4.35 GeV.
1n contrast to the poor results of previous models 1in
this flavour sector.

Having obtained normalised, analytical wave-functions
with the parameters determined by the spectral mascses
we used them 1n the quark-pair-creation model of Le
Yaouanc et al.to calculate the hadronic decays of the
light gquark excited states. This quark model hes 1te
origins 1n duality diagrams and the graphical forws for
vertices suggested originally by Zweig. It embodies a
group-theoretical structure for vertices sinilar to thr
1-broken SU(6)y scheme but more importantly thies is
coupled with a quark wave-function overlap i1ntegral which
should be the controlling factor in comparing hadronic

decays of radially-excited states.
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The T-matrix elements for the various decays of the
excited states were calculated within the model using
the previously obtained relativistic wave-functions and
compared with the usual phenomenological T-matrix
elements in order to extract the coupling constant
magnitudes. The decay rates for the main hadronic
modes of the excited states are then predicted using
the rate for the decay F—Pﬁﬂas input to fix the one
unknown model parameter. The results are in good agree-
ment with experiment - the suppression of the 3vw decay
mode of the W(1780) being qualitatively predicted. The
suppression oI tne 2 rKaecay modes oif cne-f?l&ﬁo) and
thefw(l570) are also explained. The existence of as yet

unobserved states 1s predicted and the experimental

search for thece states 1s encouraged.
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APPENDIX 1

Basic Conventions

a) Units

Natural units are employed throughout in which
¢ = h = 1. Energies, momenta and masses expressed
in eV (electron volts), keV (= 103eV), MeV (= 1069V) or
GeV (= 107¢V), GeV being the natural unit. Hence one
natural unit of length = TE%EV = 1.973 x 1070, A

convenient alternative unit of length is the fermi
1f = 1075, = 5 gev'! (A1,1)

Cross-sections are usually measured in millibarns

which may be converted to GeV units using

GeV™2 = 0.3893 mb (A1,2)

b) 4-vectors
Contravariant 4-vector A™ = (A°,A',A2,A3) = (49,4)
Metric gy = (1,-1,-1,-1) with A = QGus A
where repeated indices are summed

4-position x# = (xo,z) where x°

1s the time and
X 1s the spatial position.

L-momentum operator p* = M = Laa__ .
x
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c) DRirac Matrices

We adhere to the conventions of ref. (168).

d) Decay width Formulae
The following centre of momentum phenomenological

decay width expressions are used throughout (V = vector,
P = pseudoscalar)

i) Vv—aete”

M(veete™) = fsxmv (A1,3)

ii) V'—s VP
M (v'—svp)

3 2
R quve (41 L)
12 1T

ii1i) V—>PP

r PP = k9%,
(v~ PP) 6?‘_ £ (AL1,5)

where k 1s the momentum of a final state particle.
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The meson superscript refers to the particle's

charge, while the subscript represents the =-component

of its spin.

Q~ _mesons
Picle. Combination

o y - = = 3 =

me deluu. - u_l, + dyd. - d_d, + s,5_ - s_§,)

"8 dafu,d_ - u_l, + d,d_ - d_d, - s,5_ + s_5,)
. - -

T Yalu,d_ -~ u_d,)
° _ - - -

T, o(ud. - u_, - dyd_ + d_d,)

o Y(d,u. - d.l4)

K: |/AI2(U+-S-- u..§+)

K: yJZ(d...E- d_§+)

KS Zz(s+a- s_d,)

K5 Y%a(s,u_ - s_u,)
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1l _mesons
Ptele. Combination
i S+,- §4»,-
° Ya(845_ + S_84)
o \ - b
ws 4z(u+,_ i, o+ d+,_ d+,_)
w3 Ya(u,G. + u_d, + d,d_ + d_d,)
f,:' Uy, d*a'
; '/\rz(u...c-i- + u-c-1+)
fa faluy o Uy o - dy o dy )
‘;I d+,-— a+,-
s %2(dslie + doO4)
K.t*; |.1+’- §+’-
K Y(usS- + u-5+)
o ds,- S4,-
K.oo le(d...g- + d-§+)
K.;: S+,- a+,..
K's %a(s,d_ + s_d,)
K- %r(s4l- + s-O4+)
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APPENDTX 3

Spatial Overlap Integral

Equation (5.27) is the expression to be simplified and

reads: o
T.(A8C) = §*(kerte) / dy dxn dig dic 97(F) ¥, (20) W)

) Vet @ Y(EETEITED ke (A3,1)
where
vm @
A(¥) = 4. Km Pl (co8y) &% (A3,2)
and
| )
K = (—|)“ 3 (1= m)
m 4 (L +ma)! (43,3)
The angular integrals can be performed by making use of
the following relationships involving Bessel functions(1\
/zve..._’:x dum Oy s4an Op cab(¢n—¢p) eum ¢-'ol.¢x —
(~}
2T ™ zl-"‘dp 'J'M(Px AMSZAWOP) (AB,)‘#)

and
. )
/"a px cod Ox Lod ® S (Px 3Bz 01a8p )P (cnOy) 51Oy Ay
o

- _(__,_)“'“ :_-_;" p':‘(wae,) TLW,(P"‘) (A3,5)

(1) X¢ integral

The X¢ integral from (A3,1) is

/" dxe Vo (x) T E (43,6)



_]_39_

We are dealing with L = O mesons only and V. is a function
of |Z¢| only. writing

9-Xe = qx(sin 6 sin 6x, cos(@Bx,-2)

+ cos Oy, cos &) (A3,7)

and using (A3,4), (A3,5) with L = m = O we obtain

/ ::5‘ —1/: Cxe) P = - (}—“2'”: .;(q’a:,,)'\l{(z‘)x:"alxc (A3,8)
gl ﬂ/ﬂ/ o

(11) B ipntegral
Similarly we obtain

[ dzgtyae?® o -@” / 3, (ame) Vs (=p) % A xg (43,9)
e T Jq Jo *

(111) Q integral

From (A3,1) we must evaluate

/dg UT(g)e -1xp-9
- /‘13&1’ Al 91 491 K p,M(WBQ) QHM¢1‘
A Oy s () + e

x “*%%) (43,10)

and using (A3,4), (A3,5) we obtain
JAasr@E Y L andt uren 4% dg 3, xa) 3,1)
- - —s-,— o £ X
:ZAI
(iv) XA _integral

From (A3,1) and (A3,11) we have

/41:. NACH el oy P (v Oy, ) (A3,12)
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and using again (A3,4) and (A3,5) we get

0o g -~
(43,12) = @™ / = Aoy ¥)%a) 3y, Crgta) K 0™ 80 £7r6)(43 13)
Fipally combining (A3,1), (43,8), (A3,9), (A3,11) and

(A3,13)

T.(a8c) = 57(serke) (ks Em)2r /7 e (I’Iﬁ;iﬁf (A3,14)

where the dimensionless spatial integral takes the form

/ docy 24 ¥, (xa) ng(h.x,,)l q}'i dq 3‘;&(1,“)/;::.32 dx, Welxc)

: g ¥
X S.éu‘pzc)[ xg dxg ¥ g(xs) 3y (4%a) (A3,15)

and it is this expression which is calculated numerically

on a computer for each particular vertex considered.
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SUMMARY

The finite element methed was used to analyse
several hyperbolic paraboloid sandwich shells, and a
sandwich plate. The elements are developments of the
1soparametric finite element allowing for transverse
shear, and for the differing material and structural
properties associated with the layers of a sandwich
panel.

The results of the numerical analysis were
compared with cther flat sandwich panel results with
ci0se agreement for the stress resultants, and excellent
agreement for the displacements.

Experimental data for the displacements of the
hypar sandwich shells was compared with the numerical
analysis with good agreement, provided that the boundary
conditions and loading ace well defined. Poor agreement
results when the panels exhibit non linear effects caused
by the visco-elastic behaviour of the materials.

The introduction of curvature into the sandwich
nanel produces marked reductions in the deflections and
moments, and an increase of the membrane effects. The
results indicate the necessity of including bending
effects, and the importance of the edge conditions in

determining the stress Jdistribution within these shells.



1. INTRODUCTIONM

The sandwich construction used for the panels
presented 1in this work follows the definition of
Plantema (54) of a “"three layer type of construction,
consisting of two thin shests of high-strength materaial
between which a thlick layer of low average strength and
density 1is sandwiched. The two thin sheets are called
the faces, and the intermediate layer 1s the core of the
sandwich."

This thesis oresents the experimental and numerical
analysis of such panels when they are formed into doubly
curved shells, hyperbolic paraboloids (hypars).

Previous workers (8, 43, 51) have considered the
approximation to @ doubly curved surface by a series of
interconnected flat plates, and analysed these sandwich
structures using E£lat finite elements.

The choice of a doubly curved shell was made because
the curvature causes the loading to be dastributed to the
edges of the shell, and reduces the displacements, which
with the materials used are more pronounced than with
conventional materials.

A hyperbolic paraboloid was chosen because 1its
geometric definition 1s the most simple second order
polynomial 1s x and y, and by choosing its form as that
of a warped rectangle 1ts generators are all straight lines,
simplifying the construction of such shells.

14 JUL1978
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The advantages of sandwich construction are that
there 1s a high degree of rigidity for a given dead weight,
compared to conventional constructional materials:; con-
struction 1s usually easy:; the materials have good thermal
and acoustic properties; structurally sandwich panels can
be efficient, as demonstrated by their applications which
have been mainly in the aircraft industry.

One of the objectives of the research carried out
by members of the Engineering Departiment 1s to demonstrate
the applicability of sandwich panels to structural forms
other than those used by the specialised aircraft industry.

The inherent strength of a sandwich panel is due to
the thain faces acting as the outer layers of a beam or
plate. in this application cthe additional twist given

tn the nlate nrnducing the shells aives added strenath
because of the new gecmetry.

The disadvantages associated with sandwich panels are
due to the materials and the bonding between the layers.
Tt 1s 1mportant 1f the sandwich 1s to work efficiently,
that the bonding between the faces and the core i1s such
tnat the faces do act as outer layers of the shell.

In addition, the panels exhibit visco-elastic behavioucr.
Thus the displacements can be considered as those due to an
initial elastic response, followed by a time dependenc
response which increases, depending upon the magnitude of
the load.

The work presented in this thesis 1s concerned with
the elastic response of the structures.

The materials used to construct the hypars were
glass reinforced polyester for the faces, and polyurethane
for the core.

The £ace material was found to have a large variation
in Young's modulus, which imposes a limitation on the
numerical analysis 1in that the properties associated with
an element were assumed to be constant throughout the shell.


http://0cK7c2.no

The polyurethane core was not examined, as Elliott
and previous workers (20, 5, 8, 43, 51) have tested this
material. Following their work, an orthotropic detinition
of material properties 1s used.

The analysis of hypar shells has been treated
differently by a number of authors (10, 11, 12, 14, 22,

26, 27, 37, 38, 46). All the references indicate the
weakness of a membrane solution expressed by Tottenham (&60).

The classical solution depends upon defining a stress
Eunction. The stress function substituted into the equations
of eguilibrium and compatability leads to a linear pactial
differential equation of the second order. ©n substituting
the surface definition of the hypar the resulting charac-
teristic equation of the equilindrium of the hypar relates
the stress function to the locads applied to the structure.

The solution for the membrane stress resultants 1is
such that the normal stress resultants Nx and Ny can be
chosen such that any arbitrary load, a function of v for
ilx and x for Ny can be chosen such that they satisfy
equllibraium.

These additional iocads Wx = f(y), Ny = f(x) ap»nlying
equally to both boundaries cannot, in general, reduce the
normal stresses to zero at the edges.

This result led researchers to a more comprehensive
solution from a non-linear analysis or bending theory
(10, 1la, 26, 27, 37). The conclusions of che work of
Hadid (26, 27) and the other researchers was that che
bending stresses in shallow hynars were significant, and
that the membrane analysis 1s only adequate away frcom the
boundaries.

The different analytical methods which incorporcate
a bending analysis have been Finite Difference (6},
lntegral methods (26, 27), Finite Element (11, 60, 61),
and lumped parameter (47). The i1ntegral method used by
Hadid and Tottenham (26, 27) 4did not include the transverse
shear which would be necessary in the analysis of a sandwich
hypar.



Mohraz' lumped parameter method (47) which
1dealizes the shell structure into a series of rigid
bars and a deformable node, again does not include the
transverse shear strain. The finite difference method
of Beg (6) did include the transverse shear, but as it
1s possible to separate membrane and flexure for a
sandwich shell, i1t was felt the isoparametric finite
element of Ahmad (2) could be developed to provide a
general sandwich shell analysis capability.

The choice of the Ahmad (2) i1soparametric element
was a logical extension to the finite elements developed
by Parton and Bettess (51, 8). These disvlacement
elements use a kinematic hypothesis similar to the Ahmad
shell element. In the Ahmad element the shell 1s considerea
as a series of membranes (29), and the strain energy 1is
the summation of the strain encrgy as each membrane slides
relative to its neaghbours.

The fact that Ahmad's formulation depends upon the
shear strains caused Irons and Razzaque (34) to develop
the thin shell "semi-loof" element. This element 1mposes
zero transverse shear at the integration points, and so
would be 1napplicable for a sandwich shell where the
transverse shear effects are large.

Its superior performance in the analysis of thin
shells could, perhaps, be adopted in the formulation of
the face contributions for a sandwich element, although
problems would exist due to the rotations along the edges
of the element.

The methods used to analyse sandwich structures
have been displacement finite elements (8, 51, 43, 47, 44
41, 1), mixed models (43) and hybrid models (4, 43, 16).

Mawenya and Davlies use an 1soparametric, displacement
finite element to analyse sandwich plates, incorporating
differing material properties for a layer, and allowing
for local deformations waithin a layer. They assume that
the normal rotations are i1independent of lateral displacement,



but can vary Erom layer to layer. The i1soparametric
element develcned in this thesis does not allow for local
deformations within a layecr, but it 1s shown in Chapter 3
that this facility could easily be incorporated. Also,
as the element 1s a shell element, the normal rotations
are assumed to be dependent upon the lateral displacement
as well as normal displacements, and the gecmetric form
or the reference surface of element takes the more general
form, including tne variation with respect to the thickness
co-ordinate.

The papers of zienkiewicz (64), Pawsey (53) and
others (15, 34, 29, 17, 49, 52, 57) indicate the improve-
ment for an i1soparametric thin shell element 1f reduced

Gaussian integration 1s used to evaluate the strain energy
contributions for the differing digplacement nodes,

This 18 explained by the displacement function
1m9051n§ an unrealistic form upon the shear deformations.
1n view of the arquments nut forward by Pawsey, Chapter 4
includes a survey of the effect the difrferent orders of
integration have upon the sandwich shell element developed
for this application.

The final choice for the quadrilateral element was
a 2 x 2 Gauss rule 1n each layer of the sandwich.

An alternative approach co reduced integration 1is
made by Takemoto and Cook (57). They add an extra node
in the centre of an element which has the effect of
allowing the displacement function the freedom to accomuo-
date zero energy deformation modes, and overcome some oL
the difficulty when curved elements are used.

bummarising, this thesis presents experimental
results for vertical displacements in several sandwich
hyperbolic paraboloids. An account 1s given of the
difficulties 1n the fabrication of these panels. The
numerical analysis of these shells i1s performed using
1soparametric displacement shell elements developed to
account for the differing material properties between




the layers of the sandwich, and f£rom the assumption that
flexure and membrane effects can be separated.

A survey of differing orders of integration within
the sandwich finite elements 1s presented, although no
theoretical justification 1s given for the order used.



2. THEORY

The mathematical basis of the displacement finite
element method resembles the Ritz method. In the
ritz method one set of functions describes the dis-
Placement field in the entire continuum. The finite
element metnod assumes 1ndividual displacement rields
for each element and the internal displacements are
uniquely defined by the nodal point displacements.
Thus the entire displacement field 1s assumed to consist
of large numbers of piecewise continuous fields, each
ohe being over an element.

2.1 Element Characteristics

Consider a typical element and define the
displacement at any pcint within the slement as

)= [N1{33 21

rd are shape functions taking a value of unity at a

preferred node and zerc at other nodal pouwnts.

{ €| 1s the displacement vector for the displacement
at the nodal points of an element. The strains are

defined as S.E-} _ [B] shg }e 9.1.2

Where[B] 15 derived from equation 2.1.1 and the stresses,
assuming elastic behaviour, are defined as

{s-i = [»]({e} - 1el) « i

Where ‘Eb are any initial strains and o are any
initial streases, I) 15 the elasticity matrix containing
the material properties.




- 8 -

The equivalent nodal forces are [F }e_ which are
statically equivalent to the boundary stresses and
distributed loads on an element. {_P} are the
distributed lcads acting on a unit volume in an element.

To make the nodal forces statically equivalent to
~ the boundary stress resultants and loads an arbitrary
nodal displacement 1s i1mposed and the internal and
external work done are equated. The work done by the
nodal forces for a displacement of d{gLat the nodes 1s

(afst. Y. {Fl

The internal work per unit volume done by the stresses
and distributed loads 1is

d{elfol - aftT{p}

bquating the external and internal work:-

{8l IFL = (dfske) f[s] {otdver -j[Nl (i

Substituting equations 2.1.3 and 2.1.2:-

{F. = (isTroareleve{s)e - ([T 7o e dw
+ j[B]T{O:}c\Vol - _([N] {P]AVol 2.1.7

The f£irst term of equation 2.1.7 contains the stiffness

B 13 T £ O PR

The nodal forces due to distributed loads are:-

{erp = ",([N]T{Hd\/d 2.1.9

Those due to any 1nitial strains:-

fF], = - [(RT DIt 2

and due to any initial stress:-

e (Wil



In addition to the above terms there are terms

to describe the concentrated forces at a node:
(R )
]
{R} = Rﬂ-
ﬁRs 7

\»J

2.1.12
and 1f the element 1s at a boundary and the boundary
1s subject to a distributed load of {3} per unit area,
then the term descrlblng qpe loading on the nodes of

this boundary element t?§¢$ need to be added.

{F}‘e(, = - j[N]T{ﬂ dArea

This results in the equation
{F}e = [kel{s}e*{F}%*-{F e"i»"“{“:z}.ei&. 14

where {F }g are the equivalent nodal forces.
2.2 Characteristics of the whole structure

The inter element forces must be 1n equilibrium
with each other and need not be included in a virtual
work expression. The sum of the contributions of
internal work for all elements may be equated to the
external virtual work done by the Applied loads to the
structure. Considering a displacement of A{S} acting
on all the nodes of the structure the virtual work done

| sfel {ctavi- | d {S}TR + [d {‘r}T{HdVo‘
+ |di# (g} dheaa|= ©.

2.2.1
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Equation 2.2.1 includes the effects of initial strains
and stresses by the constitutive relation of equation
2.1.3.

Simplifying the terms the equation becomes

(38} + (¥l + (Pl fel olFl - R= o,

where each of the terms of equation 2.2.2 are now
integrals over the whole region and not just one element.

The First term in equation 2.2.1 1s the strain
energy,LJ , of the structure and the second the
potential Energy of the external loads \N’ ., and the
equation 2.2.1 1s re-stated as

d(U*'W)'-' d(’o: Q. 2.2.3

where )L 1s the total potential energy of the structure.
The finite element method 1s, therefore, a minimi-
sation of the total potential Energy X wth respect
to a finite number of unknowns. As the potential
Energy 7( 15 only an approximation to the true potential
Energy 1t 1s necessary to develop convergence criteria
to ensure the assumed displacement function represents
as closely as possible the true displacement of the
structure, and hence the true potential energy.
These criteria as stated by Zienl.itewicz (65) are that
of conformability and continuity. Conformability
depends upon the displacement function prescribing a
continuous variation within an element with no discon-
tinuities across element boundaries, and continuity
depends not only upon the displacements being continuous
but the first deraivatives being continuous. These
points are explained in Chapter 3 with the derivation
of the elements.
The criteria stated above are due to the element
being a displacement model. Other derivations depending
upon complementary energy, or formulations involvaing both
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potential and complementary energy produce different
bounds to the solution (65, 63, 11, 18, 25, 43, 56).

The analysis developed here 1s a lower bound to the

true potential eneryy and the stiffness relation of
equation 2.2.2 will result in displacements which are
too large. By refining the mesn of elements, and
therefore increasing the number of unknowns the solution

by the finite elements will converge to the true solution.



3. IMDMERICAL ANALYSIS

3.1 Introduction

As stated in the Introduction (Chapter 1), 1t
was decided to develop the Ahmac¢ ,z) 1soparametric

shell element to analvse zandwich shells. This element

-~ S o = m e m o e e = B e - b I - - -
53 L[OL AlWitialy JeGmelly wiitlila uie LOusLlialuts

Ci

imposed by Shape functions (Appendix A), and by

assuming that normals to the mid-surface of the shell
remain straight, but are persmitted to rotare relative to
che deformed mid-surface, allows for shear aeirormation
to occur.

The choice of shape functions was mace such that
they defined both the geometry and displacement function,
using the same order [(gquadratic) for both. aAlso oy
choosing the order of the shape functioas from the
standard families (18, 65, 25) the element 1s made to
satisfy both the continuity requirements, and the constant
derivative reguirement.

The formulation of such an 1soparametric element
requires & unique relationship to be defined petween the
carteslan co-ordinates, and an undistorted local set of
co-ordinates. Cnce thlis relationship has been defined
suitable transfcrmations can be per:-ormed to enable the
element properties to be calculated with respect to the
simplified lccal co-ordinate set, most importanctly the
element stiffness matrix.
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3.2 Definition of the Geometry

Figure 3.1 shows an element of the shell

Figure 3.1

In Ahmad's formulation the geometry 1s defined as:-
X X

gt =T [NJ1u) + TN Ve

y Z =

( represents a node on the mid-surface and Vz&

3.2-1

1s the Thickness vector for the &Lth node. [N‘] are
the shape functions. For both the quadrilateral and the
triangular elements these were quadratic functions of the
"Serendipity" family. A descraiption of the shape functions
15 given in Appendix A. The advantage of using shape
functions 1s that they remove the necessity of defining

the displacement function explicitly as a polynomial.

For the sandwich shell element the mid-surface of
the shell 1s retained, but the displacement function is
modified to account for the layered construction. To
ensure the element 1s 1soparametric an additional
transformation i1s made so that the matrices apply to a
specific layer. This requires the thickness vector !éé
and the thickness function .f to be specific to the
layer being considered.
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S
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THE ELEMENT

T

Figure 3.2

Figure 3.2 shows the modification to preserve the
isoparametric form of the element.

The sketch also shows the mid-surface of the core
layer as being the mid-surface of the element, but the
formuiation does not have this restriction.

As the variation of the in plane co-ordinates is
rdentical for each layer the additional tcansformetion
relating the curvilinear co-ordinates (g 41, %)

to the local layer curvilinear co-ordinates (g ’ ‘1', Sa.‘
18 of the form
-r

s]_[eel(s) [ = -
‘L[' o o‘vl} +lo o o
jz o o T; __f_i ° okjg

2.2

} refecs to the d.th layer j:l defines the top face
T, = h/bafare Ke=hre/fabiae
T = e/ bubre koe-heh /e
B = ‘(’.\/-(.* fiee = "t“‘/-‘ﬁ'-cz*c

3.2.3
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This definition preserves the numerical
integration limits of plus one and minus one. The
global co-ordinates of the mid-surface of any layer ‘
are determined f£rom putting f&' ©.0 1nto the geometric
definition of r .

Thus a separate definition of the geometry 1is
obtained for each layer in terms of the mid-surface of
the parent shell element, and its thickness vector \_134,.

These derinitions are:

X S {o: L+ SN (fhrhed). 4*&) Vac

Y 13 <: 2.( e -oc. - (a)

vl *ZCN]P(‘Z +SN] ‘——if—-*—i‘:)v

—,

o

11-C) - (b)
) c.ee -
1;‘ stng {6 | edruag Aoty
2 [3emm z‘ +4, +c) 3.2.4

PATE the limit as 4% and -Fi tend to zero
equations 3.2.4a and 3.2.4c define the top and bottom
surfaces respectively and 3.2.4b 1s i1dentical to
equation 3.2.1.
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3.3 The Definition of the displacement function

To satisfy convergence the choice of displacement
function must meet the constant derivative requirement,
and continuity requirements. In the 1soparametric
formulation these requirements are met, for the first
condition 1f the sum of the shape functions i1s unity.
and for the second 1f the variation of the unknown
function ﬁS 1s continuous 1n the parent set of co-
ordinates, Zienkiewicz (63). The unknoun function
18 in this shell element the function describing the
variation of displacement withain an element.

The choice of shape functions described in appendix &
satisfies the first condition, and by defining the
displacement function for each layer in the form:

r = QJD .
\l; =Z[N'\] Vi +E[NJS%D§} V.!,"]{F.‘} 3.3.1

Y] w;

this satisfies the second condition in that the uniqueness
of the displacement function is identical to the
uniqueness of the geometric definition. As adjacent
elements are given the same sets of co-ordinates at nodes,
continuity 1s implied in the displacement function
because of the continuity implicit in the geometric
definition.

The terms defined in equation 3.3.1 are

U
Vv

The mid-surface displacements.

v The magnitude of the thickness Vector.
[V;L \ﬁ{l Unit Vectors defining two orthogonal
- - directions normal to the thickness
vector.
o4

The two scalar rotations of the
ﬁ; !ﬁyector.
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The definition of the displacement function 1in
equation 3.3.1 does not account for the layered construction,
1n that the transverse shear can be assumed to be entirely
in the core and the in plane and bending resistance deter-
mined by the faces.

Expressing equation 3.3.1 in terms of the mad-
surface of the shell and the rotations within each layer
the daisplacement functions are:

{3 - s Ee{e Lesinds Bafac be[v..v,.]{_Pf}‘
W Top \.'

Febac

FAE

+IINT G404 ke [va v,,]{“‘?

44{4—6 2 TF

W e IW' * hees ¢
( (b)
y Z[M-.[ ILM] £+£ ~< t{e'[V( Vz\—_‘
iv\; Batrne w‘ £+ 2 {F}&
FACE

+Z[t~1](1’+‘)‘e tie [Vu "‘*]m

£+ vc 2

(c)

Tquations 3.3.2
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These equations are of the same form as equation 3.3.1,
the additional terms of 3.3.2(a) and 3.3.2(c) correct the
mid-surface displacements of the element to that of the
mid-surface of the layer, and by considering the extra
rotations of the faces allow for shearing within the
face layers.

This general definition does not allow for the
properties associated with sandwicn materials, and would
also pay the penalty 1n computational effort associated
with nearly doubling the degrees of freedom (72 against
40 for the quadrilateral and 54 sgainst 30 for the
triangle. Both elements with an assumed quadratic
variation 1n g and | ).

The assumptions made reduce the number of degrees
of freedom at a node to f£ive instead of the nine aszociated
with equations 3.3.2.

i1) The face to core thickness ratio 1s small

Kc). The rotations of the V;L vector are
therefore, assumed to act throughogz-the thickness of the
element.

{(11) The stiffness ol the faces 1s two orders of
magnitude greater than the core, and so the transverse
rotations within the faces are neglected.

These assumptions result in the displacement
functions:

=Z[N‘3r:: ‘I‘E[N] \ff-&—“' C)ttbj V,‘]{ }
Wi

v vt o4
Top
FACE
w0 0 1 (B ARS  T o
w Wi £+ f+c)

Core
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v U¢ } '
=Y INIfy: b +Sind e ) & (v vl %
\\ll‘l z ] :h 1(‘&""&_""5‘ - - {P‘

85TToM
EAcE

{c)
Equations 3.3.3

These displacement functions state that the
displacement at a point within a layer 1s given by the
mid-surface translations, and an amount dependent upon
the rotations @ and within the core.

There 1s also continuity between layers, in that
f‘=$ \. for the top or bottom faces respeccively, the

disolacement 1s identical +tn that of f akl or -l in
the core layer. The shape functions describing the
variation of displacement are i1dentical to the funccions
describing the variation of the geometry and so the
Lsoparametric form 18 preserved, again with the limics
of integration between plus and minus one.

3.4 Definition of Strains and Stresses

The displacement functions described in the
previous section (Fquations 3.3.3) the five degrees of
freedom associated with a node are two 1in plane displace-
ments, a transverse displacement, and two rotations.

As a result of the assumptions made about the
thickness and relative stiffnesses of the sandwich
materials the contributions to the stiffness matrix of
an element can be separated into those from a face and
those from the core.

As the faces are stiffer than the core, and inuch
thinner, the transverse shear contributicns are neglected,
and for the core the i1in plane contributions are neglected.

The vector of strains at a point ( §, ﬂ',f )
within the element 1s defined:
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réxl \ r%‘. \

7. |€y v
el - by
{ z ﬁ 1££3| } = « A§L *_gnﬂ ?

5'%'. ! 3.4.1

KX'Z‘ W' dul
a-xl .S—z_(

PRy [
J Li;;: d2'

Tie dasii tefers te a local orthogonal sec of cartesian
co-ordinates calculated at the point within the element.
This 1s to enable the curvature of the shell to be
accounted for. In the flat plate the transformation

to these local cartesian co-ordinates 1s unnecessary, a
global definition of the strains and stresses being
possible, but in the comnputer programme written to analyse
the shells this was not done, as this gave a check on the
validity of the programme.

The evaluation of the direction cosines relating
the local cartesian set of co-ordinates (K',ﬁ‘,Z')
to the global co-ordinates i1s given in Appendix B.

This enables the orientation of the local stresses
necessary to calculate the Stress Resultants, and also
the stiffness matrix to be assembled.

For the sandwich shell the strains at a point within
the layers are separated into membrcane and transverse
components. For the faces the strains at a point within
the face layer were defined as:

'
(o eldm
&£ = y V! 3.4.2

ce 1€Y'
Y o W
)

Fe

Yx’s‘ U N
L L
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and for the core:

led'\ rb“" 4+ élﬂ

“‘;I Ix

{6‘}5%‘—' ?‘z‘ r = %!_:,’..,. %_%: r 3.4.
I \ 4 ’
RS A 4

Similarly, as the shells had no initial strains or
stresses imposed upon them, the stresses at a point
within the shell were defined as:

I CJ;I
15 = 3.4

Faces Gy’

and T:Hb'
LY .
JCO&E Txz' )

tﬂ"z_’

The constitutive relationships were:-

io.-}m - [b"_] {et}‘w 3.4.

with

[D]e ~
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The evaluation of the strains, and hence the
stresses, requires two transiormations; one the
transformation from curvilinear co-ordinates, and
the second to the local cartesian co-ordinates.

The first transformation is performed using the geometric
definitions (equations 3.2.3) and forming the inverse
Jacobean, and the second by forming the direction

cosines of the local cartesian set, mentioned previously.

The description of how these matrices are deraived
and used 1is given 1n Appendix B.

The partitioning of the local strain components,
and the orthogonality between the direction cosine matrix
and i1nverse Jacobean, allowed a more direct formulation
of the element stiffnesses. The orthogonality results

from +he wroartnAre normal +n 2 ¢:11r1:\r~a 1 & ia o+ 4—
s A X I J -
constant) being in the same sense for both matrices.
A Full descraiptaion of the formation of the local
strains and hence the stiffness matrices 1s given in

Appendix C.

3.5 The Stress Resultants

Figure 3.5 shows an elemental section of
sandwich shell. The strains and the stresses are
evaluated at points within che face and core layers,
and the direction cosines of these Local strains and
stresses output by the programme. The assumptions used
to devlop@the shell elements allow a simple derivation
cf the stress resultants.

The Stress resultants are defined as:
~CA C/:.""et

3.5.1

Niy = | oiudz + | Gijdz

"Q%i"kl C/&_




- 23 -

- <3 +-‘.

=

c‘q‘zdz + Tzdz
-q:_- .cz ql 3.5,

The assumptions that the faces act as membranes, and
the core contributes to the transverse shear are
implicit 1n the limits of integration of equations
3.5.1 to 3.5.3.

Assuming that the variation of direct stress
within a face 1s zero the membrane stress resultants

are:

th' C’iu'e| + ‘S;JLiaL
hJY' = CYSl‘g\ + ‘595-4EL
ng = Tw ‘C. + Ty ‘("z.

and tne Bendlng stress resultants:-

Mx = (d;u'e. - O?‘z"z.‘x (C—"'“')/Z
My = (ot Gk )x (s $)/z

Ms«s = (Tng’;“z\xs‘fz\x(c*‘e)/z

Assuming constant transverse shear within the core

the transverse shear stress resultants are:

dbx' = 13(2 X<

Qa = Tz x¢
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TS 2 STRESS RESUVLLUTANTS
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3.6 The Solution of the Equations

The simultaneous equations formed 1n equation
2.2.2, with the assumption of no initial strains or
stresses, reduce to:

[k]{g} - {R} = O. 3.6.1

The solution for the unknown displacements
depends upon the stiffness matrix of the structure
and the applied loading. The technigque used i5 based
upon the frontal solution programme developed by
Irons (35, 33).

In this programme a degree of freedom or unknown
15 complete when there are no more contributions to be

A e =1 - e I - U R T e Y T
2d4cd intc the SYOSCEii SCALLNSSS widCliin £0r Cual LoeSdui.

Once complete, and even though other degrees of freedon
are incomplete, then that freedom 1s eliminated.
Eventually there remains one freedom which can be
determined explicatly. The programme then back-
substitutes into the relationships for the eliminated
freedoms untli all the equations are solved.

This method depends upon the element numbering
and not the nodal numbering. Elimination of a degree
of freedom depends upon its completeness which, in turn,
depends upon the order in which the adjoining elements
are added into the system stiffness matrix.

The hypars in this work were sub-divided into a

symmetric mesh of quadrilaterals and the element numbering

would not affect the solution procedure.
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4, ITUIERICAL ANALYSIS COMPARIMHONS
AllD NUMERICAL, INTEGRrRATION
The references of Pawsey and Clough(53) and
Zlienkiewicz, Taylos and Too (64) indicate that the choice
of integration order used i1in a shell finite element can
make a significant difference to its performance. A
survey 1s carried out to compare the differing orders of
integration of the sandwich shell element, to determine
the best order to be used i1in the analysis of the sandwich
hypars.

4.1 Nuwnerical Integration

To obtain the stiffness matrix of an element

numerical integration of the form:

(k] = | TeIToI08] aw

4.1.1

13 required. This integration 1s performed numerically by
choosing a mesh of Causs points within the element. The
order used depends upon the variation within the element of
the various straining modes. Both Pawsey (53) and Zienkie-
wicz (64) indicate that high integration orders choose points
within an element such chat the transverse shear contri-
butions to the strain energy can be too large, especially in

thin shell situations. This results from the displacement




- 27 -

function imposing unrealistic restrictions upon the
modes of deformation of the element.

The example given by Pawsey 1s of the quadrilateral
membrane element of Doherty (19), where the ‘bending:
deformations, 1f integrated at a single central node,
woulldl produce contributions of zero, whereas the constant
strain modes, using a higher order for the normal strains,
and the central node for the shear strain, would result
i1n the correct contributions to the stifilness matrix.

Using a higher order (2 x 2)integration formula
wodid result ain the 'bending' deformations contributing
to the strain energy, and the shear strain contributing
too great a value to the strain energy. This would
result i1n an element which would be too stiff.

A

4= [ A~ B T, D ——m e b e e a e
ITn additaon, DPaycey demonctrated that curvacuse in

an element 1s important in determining where the strain
energy contributions should be evaluated.

The example given for this situation 1s of a one
dimensional quadratically curved element subjected to a
constant moment. To produce the result of the normal
strain at the mid-surface being zero, then the normal
strain energy needs to be evaluated at the Gauss points.

The arguments put forward by Pawsey are to selectively
incegrate the stiffness contributions depending upon the
straining m>de being considered. The rules he defined
being extrapolations of the examples he gave, to allow
for the higher order displacement function and general
curvature associated with the i1soparametric elements.

Zienkliewlcz et al. (64) performed a similar analysis
using the Ahmad element in thin shell situations but
proposed reduced integration being applied to all the
straining inodes. This resulted in the element performing
well for both thin and thick shell situations with the
added benefit that the computational effort in forming
the stiffness matrix is reduced due to the smaller number
of i1ntegration points used.
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In thin shells where the lateral shears account
for a small proportion of the strain energy a further
development was made by Irons and Razzaque (34).

They chose to make these shear contributions exactly
zero at the Gauss points. This "semi-loof!" element
1s 1napplicable for the current problem where the
transverse shears cannot be assumed to be zero.

Following the arguments put forward by both sets
of researchers the sandwich shell element would require
a two by two mesh of points within a face which would
&llow Eor the normal straining modes and the membrane
shear strain, the transverse shear strain contributions
pbeing zero for the faces.

Ffor the core a two by two rule should be sufficient

within a1te thickness to allmr for the tranawversze chear

contributions and the zero memorane contributions.
This was found not to be the case, and 1s described in
the following section.

The reasons for this are due to the definition of
the displacement functions. For the faces the choice
of a mid-surface mesh of Gauss points would produce the
membrane effects associated with the face being centred
on the mid-surface of the element, and not at the outer
edge of the shell, and for the core a set of points on
1ts mid-surface would result in no contribution from the
transverse shear rotations.

The results using the differing orders (Table 4.1)
are shown for both the triangular element, and the
quadrilateral element in comparison with Abel and Popov's
beam results (1).

4.2 Comparison with Abel and Popov

Abel and Popov (1) analyse a cantilever sandwich
beam using a finite element with a cubic variation of
transverse displacement and a linear variation of shear
rotation.

as this element allows for shear within the faces
of the sandwich, 1t gives a more accurate representation
or the warping and shear at the built-in end of the beam,

than the elements deveioped by the author.
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The dimensions and material properties of the

cantilever are given below:

Thickness of the faces f = 0.04 1in.
Thickness of the core ¢ = 0.5 1in.
Span L = 10 1ns.
Breadth B=1.0 1n.
Young's modulus for
., the faces Ef = 10 p.s.1i.
Young's modulus tor

the core Ec = 2 x 10 p.s.i.
Shear modulus for

the faces Gf = 4 x 10 p.s.1.
Shear modulus for

the core Gec = 10 p.s.1l.
The Applied load P=1.0 1b.

As this sandwich beam has a weak core (Ecd& Ef)
and the face thicknesses are much less than the core
thickness (f4£ ¢) 1t can be assumed (Plantema, Allen
54, 3) that the core 1s too weak to contribute to the
flexural stiffness of the sandwich and the shear stress
13 conotant over its depth. Also the faces are assumed
to have a linear distribution of normal stress which for
very thin faces 1s constant.

In view of the arguments put forward by Pawsey and
Zienkiewlcz a single node in each of the layers would
be sufficient to enable the strain energy contributions
to be evaluated with respect to the thickness co-oriinate
and two nodes in each element along the leagth of the beam
to accommodate the linear variation i1n the normal stress.

The differing integration orders are shown in Table 4.1.
The Triangular element showed even with an aspect ratio of
ten to one, chat the choice of integration ocrder producea
lictle variation in displacement.

The Quadrilateral element produced a more markea
variation. The worst results for the displacement of
the beam was produced by the high order mesih in plane

on the reference surface of the elemenrt.



This 1s due to the disvlacement function for the coce
contributing to the strain energy the effects of the
reference surface translations and not the rotations.

The resulcs obtained when either the core oc the
faces has the single 1mesn were a slight improvement
upon the previous results.

The best results were produced by the 2 x 2 mesh
of nodal points and 1t was decided to use this formu-
lation for the sandwich plates, and finally in the
analysis of the hypars.

4,3 Chapman and Williams

As the two by two Gaussian rule used to integrate
the element stiffnesses produced good agreement with the
cantilever beam of Abel and Popov (1) 1t was decided to
corpare 1ts performance with Chapman and Williams® work
on shear deformation efrects of uniformly loaded ortho-
tropic plates.

The solutions Chapman and Williams used -vere based
upon series solutions for nlates simply supoorted, and
a rinite difference solution for the clamped poundary
conditions. “or the comparison between the ciamped
plates with the two loading conditions of a unifocm
distributed load, and a linearly varying load tne finaite
element inesn was four by four, and a quarter of the blate
was analysed becsuse of symmetry in loadiag and boundarcy
conditions.

TO provide 4 comparison ot the shear efrfects a
shear parameter Xx 1s varied between 25 and 500.

This shear parameter 1s defined as

Xx = a" Sx

Dx

where 55,‘ - A*x.E:
2 (1+V)
Dy =_Ek
X 2 (- V*)




p\x 1s the unit effecti e wed area

k the thickness

On the length of a side of the plate
E , V Young s modulus and Poisson's ratio.

FPigure 1.3.1 shows the finite element results for moment,
shear and displacement for the points defined in the
diagzam, The displacement of cthe centre oi the panel
shows close agreement for all values of shear parameter,
the moment and shear however snow good agreement for
values of shear parameter greater than 50.

The lower -ralue 1s for a plate with greater shear
effects. The effect of the shear 1s to cause a more
even distribution of load, demonstrated in 4.3.2 by the
edge shear Qy, and the bending moment distribution Il
across the centre line.

Agreement between the Chapman and williams results
and the finite element solution were gocd for all dis-
placements and the bending moment at thne centre line,
fair £or the edge shear and good for twisting momenc
for % greater than 50,

A similar comparison was made for the clamped
square platec with a linesrly varying load (¥Figure 4.3.3).
Agalin agreement with the results was good, except for the
shear force along the edoge of the plate.

‘'me comparisons were made with rectangular
elements only, but with the same two by two Gauss
rule 1n each case. For Xx =156 two analyses were
oerformed; the first with the sixteen elements, and
the second with only f.ur elements. The results shown
in Figure 4.3.1 shov that for both displacement and
moment the coarse mesh 1s insufficient.

As the commarisons of both the sandwich beam and
'sandwich' plate showed good agreement, the order of
integration was Kept at a two by two Gauss mesh to evaluate
the stirfness of the elements for the hypars. Its ver-~

formance is described in Chapter 6.
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5. EXPERIMENTAL WORYX
5.1 Incroduction

The experimental work consisted of the construction
and testing of four hyperbolic paraboloid sandwich shells
anéd a flat sandwich plate of the same materials as the
shells.

Ine dimensions Of the plate and shells vere
limited to the size of the polyurethane sheets
available from the manufacturers, which are rectangles
nominally eignt feet by four feet (2.44m x 1.22m)} and
one i1inch (25mm) thick.

The hyvwars were square in plan with sides of
four feet {1.22m). After the rfaces of the panels had
been formed this was reduced to a metre square, and the
metre square used to measure the displacements.

The face materials of the shells were manufactured
in Eibreglass, due to the construction difficulties
encountecred with plywood and hardboard.

Loading of the shells was done by lcoading 'crabs!'
{(f1g. 5.1) with the loads perpendicular to the x, y plane
and not normal to the surface of the shell.

The resulting displacements were measured using
dial gauges, and the results used as the comparison with

the finite element programme.
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5.2 Geometry
The Geometry cf a hyperbolic paraboloid can be

defined 1n two ways, either that of a surface of
translation (Fig. 5.2a) or as a warped parallelogram
(Fig.5.2b).

In the first case the surface can be defined by
translating a parabola in the vertical plane having
upward curvature (ABC in Figure 5.2a) over another in
a plane normal to the first having downward curvature
(BOF) . The surface is formed by mouving ABC along BOF
keeping the point B on the parabola BCF.

In the second case the surface i1s generated by
moving a straight line parallel to the XZ plans, but
rotating uniformly such that é_e_ﬁ = ik where K 1s a
constant (Taeg, 520V, AV

The surface 1s, therefore, generated by moving
EDC along the y axis as shown in the Figure.

Referring to the quadrant OYGF the geometric
properties required to define the surface are the rise,
which 1s C, and the lengths of the quadrant along the
x and y axes, which are a and b respectively. The
equation defining the surface becomes:

Z= k XY 5.2.1
where l< = ol
ab 5.2.2

Relating this Gecmetric definition ta the parabolic
definition given first, the curved lines parallel to
EOA in faigure 5.2b are equivalent to lines parallel to
BOF 1in figure 5.2a and similarly for the lines GOC and
DCH. The hyperbola in the definition, for both forms
of the shell, 1s produced by taking a section through
the shell parallel to the xy plane.

The advantage of the second definition 1s that the
doubly curved surface can be generated by a mesh of two
intersecting systems of straight lines.
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5.3 Construction

Initially 1t was decided that the materials to
be used to form the hypars would be similar to those
previously tested by other workers in the Department
(20, 43, 51, 8):; that 1s, a core of polyurethane and
face materials of either plywood or hardbeard.

It was found, when using square sheets of either
2lywood (3 ply, 1.5mm thick) or hardooard (= in. thick),
that these materials would not take up the shape of the
surface. They could be formed in one direction, say,
parallel to the tension parabola, but produced large
distortions when made to take up the curvature parallel
to the compression parabola. The resulting sandwich
always produced air pockets between the core and the
faces such that there was no realistic bond betireen th
layers.

The methods used i1n those attempts differed
depending upon which material was used. The difficulties
encountered were always with the face materials, and not
with the flexible polyurethane core.

5.3.1 The Hardboard and Polyurethane sandwich hypar

The initial hypar was to be fcrmed from a square of
side four feet and having a rise of 6 1ins. These
dimensions were chosen so that the hypar would be
significantly different from a flat plate.

The glue used to bond the layers was a Urea-
Formaldyhyde resin (Aerolite 336) with the hardener W_148
which extended the pot life to 30 minutes. The long pot
life was to allow time to place the sandwich into the
forming frame and generate the aypar.

The first attempt was with the hardboard faces
dry. One side of the panel was glued to the polyurethane
coce with no attempt to twist the panel. Once this was
set the half--sandwich was placed in the frame, the glue
applied and the second face placed to form the sandwich.
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This flat sandwich was then clamped to a rigid bar
along two parallel edges of panel and the rigad bars
were rcotated until the degree of twist was achieved.

The clamps used are shown 1in Figure 5.3, and were spaced
at two inch (50mm) intervals along each of the edges.

The panel was allowed to set and checks were made
apon the resulting gecometry.

The edges of the panel did not remain straight,
and where the clamps were attached the edges had quite
severe corrugations. Alsco, within the unsupported
part of the hypar, bonding between the layers of as much
as six inches square had not taken place.

The reasons for this failure were due to the
significant stiffness of the preformed core and single

1

ace  and the inabalaby of the facesz to form the doukly
curved shape with relatively little support.

The second attempt tried to overcome the difficulty
of forming the doubly curved faces by preforming them.

The hardboard sheets were >iaced in a tank of water
and left for forty-eight hours to soak. When saturated
they were placed upon the Dexion framevyork supported by
the runners shown in Figure 5.4. sandbags and other
welghts were applied to the faces to force them into the
required shape. They were then left to dry.

The procedure described for the ‘'dry' hypar was
repeated.

The resulting hypar was again checked and found
to be similarly inaccurate. The bonding waithin the
unsupported part of the hypar was not as poor, but areas
of about two inches square had not formed the sandwich,
and the non-linearity had similarly improved, but not
with the desired degree of accuracy.

The next attempt was with a reducea rise of hypar
(3 1ns. 1instead of 6 ins.). The areas within the hypar,
wiere the bonding had not taken place in the previous
attempts, were loaded with the sandbays and weights.




- 42 -

The faces were again preformed and the procedure for
the second hypar repeated, but with four feet lengtns
of Dexion attached under the panel to give extra support.

Again there was an improvement upon the previous
attempts, but the straight line generators deviated
from the calculated straight lines by * 1.25 cms. along
a four feet length. These lines were not parallel to
the XZ plane nor the Y4 plane as they should have been,
and i1n the areas where bonding had not taken place
previously, the panel had formed flat areas. The failuce
of the hypars was due to a number of reasons.

(1) The face material could not be forced into the
doubly curved shape. When dry the stiffness induced by
bending the hardboard in one direction made the bending
Cn it in the oriiicgomal GireCiladnn LOUO Gifficuic.

{11} When the hardboard was preformed into the
desired shape i1t was possible to get nearer to the form
of the hypar but as the faces dried oat they attempted to
return co their original flat shape.

(111) The loads reguired to ensure bonding between
layers were so large (20 kgs. per 200 mm. square) they
distorted the shape of the panel.

(1v) For even the shallowest hypar there were audible
noises caused by the bonding between layers breaking down.
(v) The clamps used along two of the edges werc
insufficient to provide a distribution of the loading

required to twist the nanel.

{vi) The area of the panel unsupported was too great
to guarantee the form of the surface.

To enable a hypar to be formed using hardboard and
polyurethane which 1s originally in the form of flat
sheets, and 1f autoclave pressing 1s aot to be used, the
preforming of the faces 1s essential. In addition,
support should be given all over the hypar, perhaps using
a plaster (or other similar) cast of the desired shape.
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5.3.2 The Plywood and Polyvurethane sandwich hypar
As a result of the failures with the hardboard 1t

was decided to try plywood as a face material.

Rather than glue the panel together, it was
decided to see 1f the plywood would more easily form
the shape by loading i1t by i1tseli upon the supporting
frame.

The thickness of the rface (1.5 mm) was much less
than the hardboard (6.4 mm) but 1t would twist only in
one direction, and anot 1n the orthogonal direction.

It seemed apparent that similar difficulties to
those i1n forming the hardboard faces would be met,
therefore attempts to form the faces using a sheet of
material were given up in favour of fibreglass.

5.3.3 The Fibregiass and Polyurethane sandwich hypar

To form the hypars a frame was needed which was
adjustable to allow for the variation of rise required
for the models.

‘This was i1n the range C/a= 0. for the flat »niate
to C/q; Yo tor the steepest hypar.

The frame was to be used for testing the hyoars
as well as forming them, and had to be substantial enough
to take the loading required for both purposes.

This was accomplished using “Dexion".

5.3.3.1 The Dexion frame.

The frame was built five feet square to allow for
the runners and box structure used to construct the hypars.
1t was reinforced with Dexion along each edge, and across
1ts area both at ground level and two feet above ground
level.

Figures 5.5a and 5.5b show, not to scale, a
schematic drawing of two sides of the frame.




5.3.3.2 The supporting runners

The runners, shown 1n Figure 5.4a, were made from
20 mm. plywood (5 ply) and were in two parts, male and
female.

The male part of the runner had two tongues at the
ends to fit the female part. These tongues were rounded
to allow the runner to rotate. This enabled 1ts width
to act as a support rather than an edge. Twenty such
runners were used as support for the core.

In the Figure 5.4, a small gap 18 shown separating
the male and female parts. To ensure the runners
remained rigid wvhile forming the shell, pieces of wood
were used as wedges and forced into the gaps.

The wedges had the added advantage that they forced

the female narte hard againet the support bpeam,
The dimensions of the timber used to form the

runners was sufficient to ensure that the loads, usea to

hold the core on to these runners, did not cause them to

def Lect.

5.3.3.3 The support beam

The support beam was made of solid miid steel.
This was circular in section and was a neat fit in the
female parts of the runner. The beam was clamped tc the
Dexion by "U" boits shown as crosses ian Figure 5.5a.

5.3.3.4 The Box Former

The Box former was used for two purposes, the first
for the forming process, and the second in supporting the
hypars under load.

In the forming process the box was used to generate
the shape of the hypar and as support for the edges.
This ensured that all four edges were used to induce the
required twist.

The box was manufactured from four pieces of block
board four feet in length mitred together, with a

reinforcing block of wood in each corner.
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The edges of the box adjacent to the panel were
filed to accommodate the curvature over the thickness
of the box (25.4 mm). The box was placed on to the
runners with no core i1in between, and the runners brought
into contact with the edges.

This was done by rotating the support beams.

Once the runners and support beam were firmly clamped
1n to the desiced shape the box was removed and the core
placed on to the runners.

The box was then returned to the frame. Extra
preces of Dexion were used to ensure that the unsupported
edges of the core, perpendicular to the support beams,
were clamped to the box.

5.3.3.5 The Core

The cocre shown lying along the runners in Figure 3.5
had the paper facing on one side removed. The paper on
the other side 1s used in the forming process of the
"Purlboard" and cannot easily be removed.

As the 7urlboard 1is 1nitially a flat plate, loads
were applied to 1t, two on the compression parabola and
two on the tension parabola to force 1t on to the runners.

The greatest load applied to these points was 4 kg.
These loads, together with the box former, were sufiicient
to hold the core on to the runners. The loads applied at
the four points were attached to the core by pieces of
wire extending through the core and wrapped around a flat
piece of scrap metal, usually abouct 50 mm x 25 mm x 1.5 mm
thick.

This distributed the point loads more evenly on
the surface of the core, but did cause small local
deformitaies. Once satisfied that the core had taken
the required shape the fibreglass was applied to the
face.

The core used for all the hypars was polyurethane.




5.3.3.6 The Faibreglass
The fibreglass used for all the hypars was applied

to each face in turn.

A layer of the fabric was nlaced on the core and
the polyester resin applied. ‘When the layer was drying,
but still tacky, a second layer of the fabric was placed
on the first, but at right angles to the first. The
resin was re-applied and the surface formed.

At the same time, a flat piece of sandwich was
formed to determine the elastic properties using the
same mix of resain,

The procedure outlined above was used for each
hypar in turn.

The box former was rebuilt for each hypar.

THE Fatio Of fiSe cU yuadLaunt ienygcil (C/'a ) a-.;!v)

o, /24 ,i2,Y]8 Vb

for the hypars was

5.4 Checking the Geocmetrvy

After the panel had cured, the edges of the
resulting hypar were trimmed and a grid one metre sqguare
drawn on to a face.

This grid was formed by 100 - 10 cm x 10 cm sguares,
giving 121 noints on the svrface of the shell.

Taking one ccrner of the grid as a datum, a
cathetometer was used to measure the vertical height
of a point above this arbitrary datum.

Graphs of these points were »lotted along the
lengths of the generators to determine the deviation
from the calculated straight line and the measured line.
An estimate of the error in the geometry was determined.

This was repeated for each hypar in turn.

The limitations of this method are that checks
are made only upon the grid points, and no account is taken
of drawing the grid on to the hypars.
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rrom the checks the following errors were found

in the Z co-ordinate:

_ MAX | MUM
c/a a=b CRROR
S ERRoR
o T 0.45cms Zc ~Zm o 100
Ze

'/GZA} ‘8.C>QL
/(2 9.8% e f,iﬁ:mgb

z MEASURED
‘// - )
‘o f« b 18
TABLE 5.4

as the errors in the Z co-ordinate did not exceed
10% comparing the measured and calculated values (Table 5.4)
and the visual checks on the generators {using a steel rule)
indicated they were approximately ovarallel., 1t was decided
the co-ordinates used in the numerical analysis would be
calculated values.

in addation, no check could be made upon the
thicknesses of the layers of the hypar until the testing
was completed.

Thus the thickness of the rfaces was assumed to be
the same as that of the test specimens udsed to determine
the elastic properties of the panels.

5.5 liaterial prooerties
5.5.1 The faces
A polyester resin was used with the glass fibre

matting to form the faces. Tne resin had a number of
desirable properties:
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(1) Air bubbles trapped within the glass mat
could be removed easily.

(11) The resin wet the glass quickly.

(111) The resin could be applied with a 2% inch paint
brush.

(1v) The rate of curing allowed sufficient time to
apply a second layer when the first layer had not set
completely.

The resin 1s commonly used in the construction of
licht weight boats. Other properties such as the
electrical resistance, heat resistance, and translucency
were unimportant in this application.

The glass matting used differed between the hypars
1in its weight per unit area.
the fabric was:

QZ, loomstate, nominally 0.010 in€. thick,
weighing 322.39 gm per square metre.

For the hypars with C-/CL ratios ‘Az, /24
the fabric was:

"Strand" Glass open weave fabric weighing
330 gm per square metre.

The resin for all the hypars was "Siesta" polyester
resin.

The curing times for all thg hypars was twenty-four
hours for the first face, and forty-eight hours ror the
second face.

second face was to ensure that the completed hypar had
fully cured.

To determine the Young's modulus of the face material
a number of tests using a standard shaped specimen shown
in Figure 5.6 were performed.
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fFigure 5.6

These specimens were formed using the same materials
and mix of resin as the hypars.

The specimens were taken at varying angles to the
direction of the weave in the fabric, including where
there was an overlap of the fabric.

The dimensions of the test pieces were constant
in plan, but the thickness varied, resulting from cthe
method of application of the resin.

This variation wvas *10% on the average thickness
of 2.09 wm.

Young's modulus from the test specimens varied
similarly, the median value was 6.50 % 10? N/Mz'
with a variation *30%.

Unfortunately this variation could notv be attributed
to a given test specimen at a given orientation with respect
to the direction of the weave, nor to a particular set of
specimens for a given mix of resin, so the choice of
Young's modulus and thickness of layer was set for all
panels at the median values.

There was a similar variation of both thickness and
Young s modulus for both fabrics.

Ppoirsson's ratio was set at 0.3 following the values
in Finney (40) for a 'rigad' plastic.
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5.5.2 The core

The polyurethane core has been used extensively
by other researchers (20, 43, 51) and no testing of 1ts
properties was done.

The value of shear modulus used four the numerical
analysis was taken to be Z X (O"’N/l:\.\a

5.6 The_ loadong and displacement measureuents
5.6.1 The loading

The loading was applied at poiats on the hyparc
using the loading crabls of figure 5.1.

A hole3/loin. 1in diameter (4.5 mm) was drilled
through the panel, sufficient to allow the ¢/ 1n. (3 mm)
rod to pass through the panel unhindered.

The loading platform was set over the hole and
adjusted by means OrL the legs until it was level.

The legs were then locked with the nuts, and fixed by
plasticine on to the panel. The rod was placed on the
platform using the steel collets (Figure 5.1) and the
dial gauge mounted over the top collet cover.

At the lower end of the rod a jacking arrangerent
was used to ensure the loads were uniformly applied and
removed.

5.6.2 The Displacements

The displacements were measured at grid points
using dial gauges. The position of these gauges was
determined by the load, taking into account any symmetry.

The gauges were mounted on a Dexion framework
attached to the outer frame. Extra gauges were placed
upon this dial gauge frame to check for movement which
would affect the accuracy of the results,

The details of the load points and the position of
the dial gauges 1s given in Chapter 6 where a comparison

15 made between the practical and numerical results.
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5.7 Edge conditions for the test hypars

The hypars formed using the method described in
Section 5.3 were four feet square in plan, but because
of the construction of the faces they were unsuitable
for testing.

A new box was built (Figure 5.5) with its dimensions
as a metre square in plan, and with the calculated rise
for each hypar.

This support box was screwed on :c the Dexion
Eramework with the sioping sides uppermost (the reverse
of that shown in Figure 5.5).

The hypars reduced to a metre square were slaced on
to the box, and the "simple supports" of Fagure 5.4 (c)
were attached loosely by screws through the support and
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of the test panels was not permitted, but any rotation of
the edges was permitted.
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6. COMPARISOL! BETYEEN FLNITE ELEMENI' RESULTS
AND EXPERIMENTAL RESULTS FOR THE SANDWICH
HYPARS.

6.1 The Finite Element analysis

All the meshes of elements used were rectangular,
being square in plan. Figures 6.1.1 and 6.1.2 show the
eirght by eight mesh used for most of the results. Other
meshes were 5 x 5, € x 6 and 10 x 10. The numbers on
all the figures refer to the ten by ten mesh used for
the experaimental results. Figure 6.1.2 shows the
element numbering, and the position of the load points.

As the panels tested experimentally were simply

supported, the boundary conditions for each of the edges

were :
w ) 63 = 0.0 along edges parallel to
the x axis
w y 6,‘ = 0.0 along edges parallel to

the y axis

These boundary conditions were sufficient to
represent the constraints along the edges of the panel,
but to remove rigid body movement both u and v were
constrained at the two low corners, and u constralned
at node 11l1. As wi1ll be seen later, the lack of symmetry
of these constraints produces a corresponding lack of
symmetry for the in plane displacements and stresses.

Also the two low corners are effectively clamped, which
18 not truly representative of the experimental hypars.
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As the mesh used most frequently was eight by eight,
the point loads applied when loading the tension and
compression parabolae needed an extra calculation to
produce nodal equivalent forces. This was accomplished
using the virtual work orinciple applied from Chapter 2.
The work done by a virtual dispiacement and the equivalent
nodal forces was equated to the work done by the applied
load on the element and 1ts virtual displacement.

The relationshin between the virtual displacements was
determined from the displacement function.

The output from cthe finite element programme
consisted of the three translations of the mid-surface
u, v, w and the two rotations of the thickness vector,

ol and P . These rotations for the flat plate
Sandwicn €lementbt represeic clle rotdtions ex and 6”

where: (Figure 6.1.3)

B\N’ - }fx
Ax

IW Y
3%
The stresses output from the programme were CS;:,

073 , Cx% , T «z , z all evaluated at the
integration points and calculated with the relevant

Ox

W

Oy

Elasticity matrix. The Global co-ordinates of the
integration points and the direction cosines of the
local orthogonal axes are also output. A programme was
written to output the Moments and shear forces assuming
plate behaviour, and the relationships or 3.3.9.

6.2 Convergence

The convergence of the element was checked by
comparing the vertical displacements preducted by the
numerical model with the experimental results. Both
sets of values obtained for the hypar with c/a equal to
one eighth.
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It was obvious for even the coarse mesh (5 x 5)
that the displacements away Erom the point of application
of the load showed good agreement, but under the load very
poor agreement. Figures 6.2.1 and 6.2.2 show results
for the vertical displacements on x axis and the compression
parabola using the different meshes. As the mesh 1s
refined the discrepancy 1in displacements under the load
point (node 61) gets worse, but improves for points away
Erom the load. Both the 8 x 8 mesh and the 10 x 10 mesh
produce agreement for points away from the load, within
the accuracy expected from the experimental results.

It was decided to use the eiyht by eight mesh of
elements to model the hypars, neglecting the results
produced ac the load point.

In atl the ecther 1nad cages the modal ro
set of equivalent nodal forces due to the point of appli-
cation of lcad being within the element boundary.
Agreement between experiment and numerical analysis was
acceptable for the loads applied to the compression and
tension parabolae sepnarately, but not so for the four
point load case. The mesh was refined further (10 x 10)
ftor this final load case.

6.3 The Experimental Results

The results obtained from the hypars were restricted
to vertacal displacements. The 1n plane displacements
were an order of magnitude smaller than the vertical
displacements. The magnitude of the loads zpplied to
the hypars was increased in steps of 5 kg. to 20 kg. for
the shallower hypars (c/a ='/34,Vc‘2.) with a maximum load
of 25 kg. for the steeper hypars (c/a = V8, V6.

At the four load points of the final case the loads
were 1dentical, with an increment of 2 or 3 kg. up to a
maximum of 20 kg. for each point.

The measured displacements proved to be non-linear.
For a single load on the panel the values of vertical
displacement under the load were linear up to 10 kg.
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At the higher loads (20 kg. and 25 kg.) the measured
displacement was up to 10% greater than that predicted by
the 1nitial elastic response. The four point load
produced similar results. The i1nitial linearity stopped
at 5 kg. per point, and the measured displacement was up
to 20% greater than the extrapolated value assuming the
i1nitial elastic behaviour.

This non-linearity 1s attributed to the local
pinching which occurs under the load, and the time
dependent behavour of the panels.

The first cause 1s a local effect which the loading
crab 1s intended to reduce. The second is the result of
the materials used in the construction of the hypars.

The displacement can be considered as having an
¢ compencnt and & visco~-&lascic Cdiipuuent.

Figure 6.3.4 shows the central deflection against time
for the hywar (c/a =942)w1th a constant load of 20 Kg.
applied to the centre of the hypar. The figure gives an
indication ocr the error wvhich can be introduced due to the
time at which the displacements are taken.

A standard procedure was adopted:

(1) The panel was loaded;

(12) Two minutes allowed for the distribution of
the load:;

(111) Readings from the dial gauges taken;

(1v) The panel was unloaded:

(v) Fifteen minutes was allowed f£or the panel to
reccovers 1its initial geometry:

(vi) The procedure 1s repeated for the next increment
of load.

The length of time allowed after unlcading was
sufficient to enable the hypars to return to their
original geometry. For the larger loads (20 kg., 25 kg.)
and the four point load case this recovery time was
increased to half an hour.
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Parton (51) shows that the visco-elastic
displacement occurs within the first few minutes of
application of the load, for the pyramid structures he
tested. The single test performed on the hypar indicates
that this may well not be the case for these structures,
the visco-elastic component of displacement occurring
over several minutes after the application of load.

7o minimise these effects 1t was decided to reduce
the magnitudes of the apolied loading. The reduction in
applied load results in smaller displacements, with a
corresponding reduction in the strains. The smaller
straias, and variabiiity of material properties meant
that strain gauges were not used.

Figure 6.3.2 shows the positions of the dial gauges

and 1nad nowntes for the experimental regulis, ‘the
positions of the dial gauges varied depending upon the
load. Generally chey are concentrated near to the load
point with checks also being made upon the symmetry.

The displacements of points symmetrically placed
with respect to the gecmetry and loading were found to
be within 5% of each other for the single load cases,
and 10% for the four point load. .

For the larger loads (20 kg. and 25 kg.) aoplied to
the hypars the measuring procedure would result in the
displacements being 107 greater than the i1nitial instan-~-
taneous displacement. A reduction of 10% for the vertical
displacements would produce results which would more
closely follow the initizl elastic response.

6.4 Comparisons for the Central Point load

Figures 6.4.3 to 6.4.7 show 1sometric drawings of the
vertical displacements for both the experimental and
numerical analyses. Profiles common to the two meshes
are drawn separately (Ffigures 6.4.8 to 6.4.15). A compar.son
showing the effect of rise of hypar for the vertical displace-
ment along the x axis is shown in Figure 6.4.1, and for the
x displacement along an edge 1n Figure 6.4.2.
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As the rise of the hypars increases the vertaical
displacements reduce, and the in plane displacements
1ncrease with good agreement between numerical and
experimental resulcs. Figures 6.4.3 to 6.4.7 show
that the area over which most of the vertical displacement
takes place 1s reduced, with the tendency to concentrate
closer to the point of loading. The experimental results
show an overall reduction of 30% in the vertical displace-
ments comoaring the flat vlate (c/a = 0) and the steepest
hypar (c/a =Vgp (Figure 6.4.1).

Due to the lack of symmetry 1a the in plane constraints
the 1n plane displacements were dgreater when approaching
the corner which had only the vertical displacement and
rotations ccnstrained (node 11 Figure 6.1.2). This did
not producse o lack of SymaStsy inn Che verlical dilsdsplace—
ments.

Figures 6.4.8 to 6.4.15 demonstrate that the finite
element results tcnded to be too stiff, but as the
experimentali results are produced from all the loading
applied to the panels they include the non-linear eifects
described in Section 6.3.

A reducticn of 10% in the experimental results
would give closer agreement with the finite element
results.

6.5 Comparisons for the tension and compression
prarabola load cases.

Isometric drawings of the vertical displacements
ftor the tension parabola load case are shown in figures
6.5.1 to 6.5.5. Individual orofiles are shown Lin
Figures 6.5.6 to 6.5.12. For the cdmpression parabola
load case the individual profiles are shown in Figures
©.5.13 to 6.5.19.

The results for poth these load cases were similar
in form, the vertical displacements being slightly greater
in the canfpression pacabola load case. 'The peak displace-
ments reducing by 26% comparing the f£lat plate displacement
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(c¢/a = 0) with the steepest hypar (c/a =94p) in the
tension parabola load case, and 30% in the compression
parapola load case. For both these load cases the
eight by eight finite element mesh produces good results
for the vertical displacements, following the reduction
in displacement as the rise of hypar increases. As
with the central point load case there 1s a tendency
for the vertical displacement to concentrate closer to
the point of loading as the rise increases, and for the

in plane dispiacements to increase.

6.6 Comparison for the four joint load case

lsometric drawings are shown in rfigures 6.6.1 to
6.6.5. This load case shows large dlscrepancies between
experiment and finite element results, even with the
refined mesh of elements (L0 x 10).

The main reason 1s the non-linear behaviour of the
panels which 1s accentuated in this case. The time
taken to apply the loads 1is greater than for the single
load case, increasing the non-linear displacement, and
the magnitude of the applied loads was four times that
of the single load case.

The results for the hypar c/a =VY24({Figures 6.6.7
to 6.6.9) show good agreement. This 1s Jdue to the nuch
smaller loads appiied to this panel. The loads used to
calculate these results did not exceed 10 kg./pt. but for
the other hypars up to 20 kg./pt. were used.

As a check against non-linear efrfects the experimental
results for tne single voint load cases, on the teasion and
compression parabolas, were superposed and these are
plotted for the hypar c/a = WAZ(l'igures 6.6.10 to 6.6.12)
with closer agreement to the finite element resulits. The
discrepancy 1n dis»lacement betueen tne finite element
results and the exverimental results 1s of the order of
30% and sometimes closer to the load as much as 50%.
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The combination of the larger displacements and
a steeper stress gradient near the load points suggest
that the element mesh round these points should be
refined further.

The larger displacements may result in geometric
changes which, being of the order of a face thickness,
would make a large displacement analysis more applicable.
Although the current programme 1s not able to perZorm a
large displacement analysis the .sopacametric form of
the element would enable variacions in geometry to be
accounted for relatively easily.

6.7 The Stresses

As no strain gauges were used on the hypars there
15 no check upon the stresses predicted by the finite
element programme. The lioment (:ix) and Shear force (Qy)
are shown for each load case in Figures 6.7.1 to 6.7.4.
The results clearly show the marked reduction in tne
stresses as the rise 1s i1ncreased.

In Chapter 4 the shear stiffness parameter Xx
yas varied between 25 and 500 and the stress resuitants
show close agreement for '8,;>5k> . This parameter for
the sandwich hypars tested was between the limits of 40
and 100. rollowing the analysis performed on the Chapman
and Williams plates the predicted values of 3hear and
(oment may be low.

All stresses are evaluated at tne integration points,
and the values plotted refer to the integration points
closest to the centre line, or edge.

To ensure symmetry for both displacements and stresses
the corners of the hypars were all clamped.

Under most practical circumstances a hypar would
have edge beams which would resist translation along
their length, and provide the means by which membrane
loads can be transmitted to the high and low corners
of the shell. It was shown by Kerentsky (37, 38) that
for the timpber hypars he investigated, the edge beams
determined the moment distribution within the snell.
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As the stiffness of the edge beam increased there
was corresponding increase in the area which could be
assumed to be momentless, and a membrane analysis would
be sufficient for design purposes.

The simple support conditions used in the author's
analysis have no stiffness i1in the direction normal to an
edge, and rotations about the edge are not suponressed.

The efrect of the support 1s clearly shown in the moment
distribution shown in Figures 6.7.1 to 6.7.10. There 1s
a reduct:ion in the bending moments but they arsz still
significant even for the steepest lhypar. The form of
the moment distribution corresponding more to the flat
plate tested than a shell.

Figure 6.7.6 shows that the bending moment Mx (x axis)
aC tne €4ges oL i paunel foulluw cne Tiac piate soiution,
and oaly at the centre of the shell 1s the moment reduction
more significant (50% reduction).

The bending moment iy (X axis Figure 6.7.3) shows a
similar reduction to Mx in the centre of the shell but
as the edges are approached there 1s significant decrease
in the bending moments, even for the shallowest hypar
(c/a =V24).

At the edge the hyvpar has 2 bending moment one tench
of the f£lat plate moment. The redistribution of the load
15 1n the membrane force Fxy (Figures 6.7.11 and 6.7.12).

'The transverse shear forces (Figures 6.7.1 to 6.7.4)
show a reduction at the edges of about 25% comparing the
steepest hypar to the flat plate.

At the centre of the shell where the geometry more
closely resembies the flat olate the loading 1is distributed
by the moments, and membrane shear. As the edges are
approached there 1s a reduction in the moment, with a
rapid build-up of membrane actions. The normal membrane
loads, because of the boundary conditions, are then forced
to die away. with a redistraibution to the membrane shear,
especially at the clamped corners.




- 66 -

The solution for the stress resultants shows that
the distribution of the applied loads to bota the membrane
loads and bending moments, instead of just the bending
moments of the flat plate results i1n a more efticient
structure caused by the geometric form of the shell.

Its shape results in the increase of strain energy caused
by the membrane displacements being less than the reduction
caused by the change in transverse displacements.

As the rise of hypar i1ncreases this comparison with
the flat plate improves further. It 15 also clear that
the simple support causes a corplex distribution of the
moments, and membrane forces.

It 1s suggested for future wvork that clamped
boundary conditions be used, followed by edge beams
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7. COUNCLUSIGNS

The areas of work presented in this thesis cover
the development of a sandwich shell analysis capability,
and the correlation between the experimental and numerical
modelling of hywverbolic paraboloid sandwich shells.

The finite elements developed to form the analysis
capability can be critisized for a number of reasons,
but have the merit of being easy to develop. The dis-
advantages associated with the elements are due to
modelling each layer of the sandwich independently,
tne geometry and displacement functions being differenc
for each layer. This results in the numerical integration
requirements, even usihg a reduced integration order,
being large.

lmmediate improvements could be made by a closer
1avestigation of the numerical procedure, explicitly
performing the integrations with respect to the thickness
co-crdinate. The description of the sandwich elements in
Appendix C partly achieves this as the assemblage of the
matrix relating the strains to the unknown displacements
can be partitioned, and the number of operations to form
the stifiness matrix reduced.

The current elements allow a sandwich shell to have
differing layer thickness and material properties. The
pPenalty 1is paid in the quantity of additional data
required.

An additional limitation 1is that the faces are
assumed to have no transverse shear stifriness which imposes

limitations in the general applicability of these elements.
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In the development of these elements immediate
gains could be mace by reducing the integration further,
and including transverse shear displacements within the
faces. If transverse shear 1s unimportant within the
faces then an approach similar to the "semi-loof" shell
elements may produce an even more refined analysis.

As a longer term development 1t would be possible
to develo> a large displacement capability. The 1s0-
parametric £form of the elements allows modifications
tc be made to the geometry of the structure relatively
easily. The 1initial solution for the Jdisplacements
could be made to modify the co-ordinates of the nodal
points and a further analysis executed.

This does have other implications in that the

el ot iubalala e L R W W C v
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the area modelled by the element becomes too distorted.

A check would be necessary to accommouate this, perhaps

even using routines which srould avtcmatically refine the
mesh 1f the distortion was too great.

Given the facility to refine the mesh in an iterative
procedure i1t could also be used 1f the stress distributicn
from the 1nitial solution became excessive across an
element. The criteria for refining the mesh would
become functions of both the geometric distortion and
stress variation, both of which are related to the materieals
used.

The performance of the finite elements can be con-
sidered 1n two areas; firstly, of the analysis of
sandwich problems, and secondly the analysis of shell
proolems.

The plate problems were shovn to give good agreement
for both displacements, and strecses. The comparisons
with Abel and Popov, and Chapman and Williams were
hovever, problems in which the boundary conditions and
loading were well defined.

Abel and Popov's results included the effects of

transverse shear within the faces which with the wnclusion




of the extra rotations indicated in Chapter 3, the
current element could accommodate. The efrfects of
varying tne integration orders within the layers showed
no clear pattern, except that because of the displacement
functions used 1t became necessary to specify two points
within the thickness of a layer.

The plates analysed by Chacoman and williams using
a finite difference solution showed the effects of
increasing transverse shear. The comparison between
che finite difference solution and the author's finite
element produced close agreement for displacements and
scresses.

The stresses diverged from Chapman and Williams'
results when the transverse shear efrfect was extremely
ilarye.

The analysis of the sandwich hypars showed thet
the i1nclusion of bending effects 1s necessary, supporting
the work of previous authors (10, 14, 26, 27, 60). This
was reiniorced especlally as a result of the boundary

conditions. Thus, the situation where a simplified

analysis ain which the central arca of a nypar 1s considered

nomentless, was shown to be inapplicable.

The 'simple’ support =23ge coaditicns imposed Zor
all tne hypars and the flat plate, were such that no
direct f.rce coull be carried pervendicular to them,
and at elements other than at the cornecrs no direct force
could be ~arried along them.

This restriction 1s unimportant for the flat plates
as none of the applied load iLs distributed by membr....
Lorces. FYor the nypars, however, this results in
constraints upon the distributicn thich in a praccical
situation would not exist, 1he bending moments ani
tuisting moment are reduced but remain significant within
the central area of shell. The direct membrane forces
are rorced to rise to peek values within the quadrants
of the hypar, and to die away quickly to zero at the
edges.
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'The remaining loading 1s by membrane and transverse
shears. In both cases the effect at the clamped
corners 1s marked, the membrane shear increasing steeply
as 1t approaches the corners and in the twisting moment
which, when approaching the corners, changes sign.

‘This resuits from the corners restraining the in
plane displacements, the variation of which i1s greatest
as the corners are approached. The transverse shear
force 15 also reduced, again following that of the flat
sandwich nlate. This reduction i1is due to the increase
in membrane loading, and is an indication of the improved
verformance of the hypar shells compaced to the tlat plate,
the change i1n sign apparent i1n the steepest hypar i1s caused
by the panels wishing to lift off the edge supports.

The effeckt uvpon the Jdactributicen of 1
the hypars due to the edge conditions 1s great. Future
work should, therefore, include a detailed analysis of
these effects, a more refined mesh of elements being
used, especlally at the corners.

An additional topic could be the analysis of the
hypars using different edge beams. Defining the effects
of the beams upon the hypars could be achieved either by
developing a beam element compatible to the finite elements
used, or using Lagrange multipliers to define the
assoclated boundary conditions.

The divergence between the experimental results
and numerical analysis has been suggested to be the
result of the non-linear behaviour of the panels.

This non-linearity 1s caused by the materials used. To
enable the elements to perform a creep analysis would
require a large reduction in the computational etfort
involved in formming them, and in their present form
would appear to be unsuitable.

The modelling of the material properties of the
hypars could be significantly improved. This results
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from the abilaty of the element to have differing
proverties for each layer. The large variation found
for Youad's modulus could be represented accuéately,
and 1f material testing showed that different values
were obtained for compression compared to tension this
cculd alsoc be modelled. Also, no account i1s taken of
the different values obtained as a result of different
f1bre densities, or orientation. The choice o=
materrals with well defined properties would enable a
more accurate comparison between tne numerical analysis
and the experimental results to be made, put the
constructional difficulties indicated in this work
need to be overcome.

Finally, the analysis cf the hyepar sandwich shells
snows the erfect of tne douple curvature 1s TO 1mprove
boch the load carrying capacity and the displacements.

The combination of thiz fact with a shape vhich
1s aesthetically pleasing produces a stcuctural form
which should be given more sericus consideration,
especially 1f the application reguires the use of light
welight macerials.
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APPENDIX A

Serendipity shape functions used
in the isoparametric sandwlich shell element

In Chapter 3 the definition of the displacement
functions (equation 3.3.3) and the assumed variation of
the geometry (equation 3.2.4) depend upon the definition
of the shape functions. Shape functions are deiined in
terms of the locai co-ordinates within an element, having
the property that at a specific node they take the value
of unity and at all other nodes the value of zero.

For an isoparametric formulation the assumed variation
of the unknown disnlacement function is identical to the
geometric variaticn. As the hypars are quadratic 1in
x and y, this implies the shape functions must be at
least quadrataic. Also in defining the displacement
function the choice of an assumed quadratic variation for
the unknown displacements allows for a linear variation in
strain components, and hence the stresses, over an element.

By going to even higher orders of shape function the
element can be made to allow for higher orders of variation
1n the displacements and strain components, but the penalty
paird 1s 1n numerically integrating the stiffness matrix,

a higher number of Gauss points being required to account
for the more complex variataion.

Both the quadrilateral and triangular elements used
in this work have an assumed quaaratic varliation of shape
function.
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I
)
N
X
)

(a) (b)
figure A.l

The quadrilateral element Figure A.l(a) has shape

functions:-
Corner nodes: N, = ﬁ' (1+ S)(‘ +V[°X§°+ (i 1)
Mi1d-si1de nodes:
§.= 2o N
o = ©.© Nt

$(-9)(1+1.)
0 - +4.)

where . = §5: 1.= 11,

The triangular elements used Areal co-ordinates

(Figure A.1(b) and the shape functions are:
Corner nodes: NL = (ILL - l), L‘ o= 1,3

rird-side nodes:

N 4L.la

Ng 4- L:.L—'S
N. = 4 L.IL-3
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These shape functions are chosen to preserve both
continuity of displacement, and the condition that any
arbitrary value of first derivative (constant strain
criterion) should exaist.

As the shape functions are quadratic in g and (VL
the first condition 1s satisfied by the three nodes along
an edge being identical to the three defined i1in an adjacent
element.

This 1s due to the three nodal points determining
a unique quadratic function.

The second requirement of constant first derivative
15 met so long as the shape functions retain all the linear
terms. In the case of the quadrilateral and triangle the
unknown displacement function ¢ 1s expressed as

’, - = )
§ = [Ny
where the Nc. are functions of g,*L or L.,L;, Lg

and Ui, Ve, Wi are the nodal values. The constant
strain requirement states that

3% —
= constant.

The derivative of the displacement with respect to
the unknown S mist be a constant. In the finite elements

used 1n this work gﬁ 1s the function u,V,W , the
displacement function and Sils a global direction
(X,lt or Z.).

As the lsoparametric form defines a unique relationship
oetween )C,Y and Z andgn,f the condition of constant strain
1s met so long as linear terms of % in NL are preserved,
which they are for both the guadrilateral and triangular
shape functions.

Thus, for both the quadrilateral and the triangle the
choice of shape functions sreserve both continuity and the
constant strain requirement. They also have the added
advantage that the co-ordinates used are generalised and
can be applied to each element i1dentically, removing the
necessity of defining the displacement function explicitly
as a polynomial for each element in turn.
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APPENDIX B.

Formulation of the transformation matrices

The transformation matrices mentioned in Chapter 3
are those required to form the strains with respect or the
local orthogonal axes X',‘:", 2’

These are the Inverse Jacobean Matrix and the
difecuioun cuside MdTLlX Lelacing ortnogonal co-ordinates
to the global co-ordinates.

Both matrices are evaluated at a point g, VL, f
within an element of the shell.

The geometric definitions are of the form

X¢
o = T el

P4 Z: |

where L 1s a node of the element and X, Y ,Z¢
a vector of the co-ordinates of the rth node.

The Jacopean defines the variation of the global
co-ocrdinates to the curvilinear co-ordinates

=X5 Ye ZS_ K
[T] =X Yq Zq
X Y5 Ig]

BEZ

"
i
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The Jacobean becomes layer dependent for the
sandwich shell elements in that the vector normal to the
reference surface (N) 18 a functaion of the thickness co-

ordinate within a layer.

Similarly, the two vectors S. , and Da
tangential to the reference surface (% vl) are modified 1n
that BZ and 32 are the variation of Z co-ordinate

1 M
within the layer.

The Ahmad Element would define the vector normal

to the reference surface as:
f % \ ’\_/§Lx
(h=lyy o= TNy )

MR S v 2ic+reh) |~
3z Yz_iz

L 3% | L~ )

The sandwich shell element defines the normal vectors as:
Y.
{ } Z[Nj -F V; Eor the faces
2(@ +-f-+r_) B.4

e fo
{Nc} = 2[N‘12(“*£;*°S§Z for the core

The tangential vectors in the original Ahmad element
would have contributions wnich include:

L
9z = ZE&‘;}_ Yi +£}*ﬁ_xfoza
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which, for the sandwich shell element, become:

B.5

3z oy Wiy by NG (g k)
¥4 ¥ | 1. Zb% =

The resulting Jacobean matrix becomes a description of
the variation of the geometry within a layer or the
element, and not the total element.

The direction cosine matrix again 1s evaluated at
the point (%,“L,j’ ) wathin the element, with :r being
the co-orsinate which 1s across the thickness of tne layer
being considered. By forming the vector proauct of two
vectors lying in the surface (g,"l) at j constant the
vector normal to the surface can be calculated.

Thus V3 for the direction cosine matrix is defined

) () (¥ -d)e)
Y ¥ 3§ 31 M ¥
Ve={sxsd={ Mixiw b =ad axye
3G W M A g
3 13z |  [dxd W
3 M) R M ¥ |

as:

"
lvs}
)}

To define a unique set of local orthogonal directions
the cross product between the !3 axis and the X axis 1is
used to define !& , care being taken 1if !g lies
parallel to the X axis.




- 83 -

Forming the cross product between the vectors V\ and y_a_
the final vector !2_. can be defined. After n;-r-mallsn.ng
these three vectors (\l.,\_l_,,,\_l_q) are the direction cosine
matrix Le_.l relating the local orthoganal directions to
the global directions.
Using the Jacobean matrix and the direction cosine

matrix the local strains can be evaluated, and hence the
stiffness matrix Eormed. This 1s described in Appendix C.




APPEHDIX C

Forrmulation of the sandwich shell
element stiffness matrices

The derivation of the eleient stirfness matcix
requires the strains to be evaluated with respect to the
unknown dlsplacements. Equation 2.1 of Chapter 2 defines

+ha ctrai

(e} = [B] {s1 et

‘{é&} 15 the vector of strains.
{S} 1s the vector of unknown displacements.

[];1 1s the matrix defined by the assumed variation
of displacement.
The Element Stiffness matrix 1s formed by calculating
the contributions of the faces, and of the core over the

volume of the element

[k] = VoL'EBIlT[DZI [Bldva + v,L[Bf[DJ [B.Jav!
Top FAce CoRE

+ | B IDARId v

VoL
]"" RBoTm FARE
defines the transpose of a matrix.

mr

] defines the i1nverse of a matrix.
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To form the [B_J matrices use 1s made of the
decoupling of strain components into membrane and trans-
verse strains associated with a particular layer.

In addition, use 1s made of the work of Zienkiewicz
et al. (64) in that the strain components can be evaluated
more directly by accounting for the orthogonality of the
Jacobean and Direction cosine matrix explained in Appendix B.

The strains are evaluated in the local co-ordinate
set of co-ordinates so the stiffness matrix requires the

numerical integration of expressions of the form

LI S

(1= ||| (e e erT 454143’

’-
CI4
In the following derivation a dash refers to the
local orthogonal set of co-ordinates. A subscript waithin

a matrix defines the derivative with respect to the subscript

(ng bu )-

b
The Global strains are given by

-L%‘ Vk \Vﬁﬂ °i Us Vg ‘dsw
UDv W wWy| = (7] Jua Vi Wy
'th Nz Vd!u =IJ‘ U@ VJ{_
C.5
with [T] the Jacobean {% and
the inverse Jacobean (T]? given by §-2 A&tj

iz
l,c,nlwlz

%
X C.6
The vectors :;\ and s& are two tangents to the

surface at the point g *l S and the normal to the

surface FQ .
A
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As these glopbal strains need to be expressed as
local strains the direction cosine matrix is used:

[e] =[v w v

Also \_I} of the direction cosine matrix 1s i1n the same

sense as normal [‘il ¥ _5_3] of the 1inverse Jacobean matrix.
To evaluate the local strains the transformation from
curvilinear to local orthogonal co-ordinaces 1s:

r / ’ 'j V W-‘

Ug’ VX' w)!-' - s S

Uy vy Wy ’[.e’]T[T] Uy Vo "o [610'8
Lo

V; and S' st are normal to the surface at the

point §,9, f the matrix resulting from [6], K[:T]

18 of the form

T - A, A, o
[A] =[e] [3']= Ay A, © c.9

aild the local strains can be expressed as

(e <[ b2l el

1
{e.} =[aulfus Vg Ws’;[e]

These partitioned strains are expressed directly
as derivatives of the displacement functions with
respect to the curvilinear co-ordinates.

By defining two further matrices [Cl and [b.] such
that [C. contains all terms of the local strains which are

derivatives of X and *d— , and [D] as the derivatives

2

.10

C.11
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t
with respect toZ then further reductions can be made
for the sandwich elements

[c] -

D

= A“ NL,g
Az. NL,S
Ass N

='C.l =] oT [ o o
o Cs © _1© o
>y C| (e [b] () o

o o C| D, o
-C> °© G | © b,

< Agz Ng,st

+ Al N

£,1

o o 00O

As the [C] andLb] matrices defined in C.12 and C.13

define the full strain vector containing both membrane and

12

transverse shear terms. these are simplified 1n evaluating
the sandwich strains.

For the faces there 13 no need to consider the transverse

shears and combining the displacement functions of equation
3.3.3 the strains become:

for the too face

{6'}1_0

Fac

€y
é:'j‘
Xx%'

£ -HH— J’)*-C-

2 (2f +¢)

C, © o] - Ui
& (i ©O [éil { VZ
_Ca. C 1 o sz
- .
Ca © ‘;‘ T
o € © [‘51‘[!2;
_CJ C, o_
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Eor the bottom face:
e'X' PC' o OT TrLH\
{el. =qey 1=l aollel{n *

B (W) e cio] (Wi
_ N\ 'CI o © T . 0
3 \e(m; o <o |[e] |4 Vi‘]{P'*}
< C, o

C.15

and as the core has included i1ts membrane

shear contribution:

N % B RN I L
e‘j ={W2[= e o q[l®J{ve) T

CO’-E. x“;&_l ‘—o o C’:J WLJ
e - - hu
Gy < © 0 o ©

Picr

{c "Iy ‘{;‘
EI:E,‘D o <:t + E:‘;:‘ © Eﬁjj E!ﬁ !é;] .

o 0 G

o

«Q

.16

Equations C.14 to C.16 define the local strains
within a layer explicitly in terms of the derivatives
of the shape functions combined with the direction cosine
matrix and Jacobean.

Thus, eguation C.1 1is def1ned,[j§] being defined
for the assumed displacement function 1n each layer.

Using the relevant elasticity matrix for either the
faces or the core then all terms of the stiffness matrix
are calculable, and by Gaussian integration of equation C.4
the element stiffness matrix formed.

By replacing the quadrilateral shape functions
NL Cil ) VL, 5! ) and their derivatives by the Areal
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co-ordinate definition N(, (L. ) L;, L%,Lll) with their

derivatives a similar formulation was used to determine
the stiffness matrix for the triangular elements.
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