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ABSTRACT

The Keyes model] has heen used to formulate the frece
electron contribution Lo the elastic constants of baismuth and
1ts alloys with antimony (0-10 at.% Sb) The electronic con-
tribution has becn shovn theoretically to be negligible ain the
intrinsic materials but to be observable in highly donor doped
bismuth

The elastic stiffness constant tensor components of
single crystals of bismuth and its alloys (3 at.% Sb, 5 at % Sb,
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betwecen 4.2 K and room temperature from measurements of ultra-
sonic wave velocities made by the pulse echo overlap lechnidue.
In contradiction with previous work on polycrystalline alloys
the ultrasonic velocities are found to increase monotonically
with antimony composition No electronic contribution to Lhe
elastic constants can be observed. Tne temperature dependences
of the elastic constants are indcpendent of the antimony concen-
tration.

The elastic constanis of baismuth doped with tellurium
(0-0.4 at.% Te) have been measured between 4.2 K and room tem-
perature. Changes in some ¢f the elastic moduli have been
attributed to electronic contributions, the magnitudes of vhich
are 1n rcascnable agreement wvith the theoretical predictions.
“he temperalure variation of the ultrasonic velocities, which
alv independent of tellurium composition, have been esplained

on *the basi. of temperature dependent deformation potentials



ACKNOWLEDGEMENTS

First and foremost my thanks go to
Dxr G.A. Saunders (now Professor Saunders) for his sus-
tained enthusiasm and help, and constant encouragement
My thanks are due to Professor D A. Wright for allowing
the use of the facilities provided in the Department of
Applied Physics and Electronics in the University of
Durham. I am indebted 1o all the technical staff,
headed by Mr F Spence, particularly Mr. R. Waite,
vwhose friendly sssistance has considerably cased the
completion of this research project. I have benefitted
from many useful discussions with past and present
mem>crs of Dr. G.A. Saunders' research group, especially

with Cevdet Akgoz and Mike Farley.

For financial assistance I am indebted to the

Science Research Council.

[




Abstract

CONTENTS

Acknowledgements

Contents

INTRODUCTION

THE CRYSTALLOGRAPHY AND BAND STRUCTURE

2.1
2.2
2.3

2.4
2.5
2.6

Introduction

Crystal Structure

The Band Structuvre of Bismuth and its alloys

(a) Pure Bismuth

(b) Bismuth-Antimony alloys

(c) Donors and Acceptors in Basmuth
The Dispersion Relations

The Density of States Function

Summary

ULTRASONIC WAVE PROPAGATION IN THC RHOMBOHEDRAL

STRUCTUREL

3.1 Introduction

3.2 Defanition of stress and strain

3.3 Elastic Constants of Bismuth

3.4 Equation of Motion

3.5 Solution of the Equation of Motion

3.6 The Energy Flux Vector

3.7 Adiabatic and Isothermal llastic Constanis
3.8 The Strain Energy

L% B

~N

13
16
17

18
i8
18
20
21
23
26
29
29



EXPERIMENTAL TECHNIQUES
4.1 Crystal Growth
4.2 Sample Preparation

4.3 Ultrasonic velocity Measurements between
4.2 K and 300 K

(a) Pulse echo method
(b) Pulse Echo Overlap
(c) Transducers and Bonds
(d) Transait Tame Errors
4.4 Measurement of Temperature Dependence
(a) The Cryostat

(b) Temperature Measurement

THE KLYES MODEL
[~ | Trd+rAadinmtrAn
5.2 Band edge energy changes

5.3 Application of the Keyes Model to the electron
band structure of bismuth

ELECTRON RAND PARAMETLRS AND COMPUTATION OF THE
ELLCTRONIC CONTRIBUTION TO THE LELASTIC CONSTANTS

6.1 Introduction
6.7 Band Parameters of Pure Bismuth

(a) At 4.2 K

(b) As a function of temperature
6.3 The Fermi level in pure and donor doped bismuth
6.4 Band parameters of bismuth-antimony alloys

(a) Carrier concentration

(h) Band cdge paramelers of bismuth-antimony
6.5 The Deformation Potentials

6.6 Computation of the Llectronic Contrabulions
to the Elastic Constants

(a) Basis
(b) Baismuth

(c) Bismuth-antimony

6.7 Summary

31
31
33

34
34
36
37

42
42
43

Y
tn

52

64
64
65

G7
73
74
74
75
78

78
78
80
81
81



7. THE ELASTIC CONSTANTS OF THE BISMUTH-ANTIMONY ALLOYS
7.1 Introduction
7.2a Room temperature ultrasonic velocities
7.2b The Elastic Constants at room temperature
7.3 Temperature dependences
7.4 The Elastic Compliances
7.5 The Polycrystalline Modula
7.6 Measurements of Ultrasonic Attenuation
7.7 The Debye Temperature

7.8 Discussion

8. THL ELASTIC CONSTANTS OF BISMUTH DOPED WITH
TELLURIUM

8.1 Introduction

8.2 Tie Llastil Constants 4t roum temperature
8.3 The Compressibilities and Young's Modulus
8.4 The Temperatlure Dependence

8.5 The Tempcerature Variation of the Band edge

effective mass aud of the Deformation Potentials

8.6 Summary

APPENDTY 1 - CALCULATIOM OF THE FREE hkNERGY

APPENDIX 2 - THC COMPUTER PROGRAM FOR THE EVALUATION OF
THE CLLFECTRONLC CORNTRIBUTION TO THE
ELASTIC CONSTANTS

APPEI'DIX 3 - THE LEAST-MEAN-SQUARES COMPUTER FROGRAMNME

REFLERENCES

84
84
84
86
89
94
9¢
98
99
101

102
102
100
109
112
113

118

120

132



CHAPTER 1

INTRODUCTION

Study of the propagation behaviour of high frequency elastic
waves 1n solids 1s well established as an effective way of examining
the elastic and anelastic properties of materials. The elastic con-
stants of a 50l1d relate directly the total crystal energy, part of
which may be electronic in origin. Electronic energy i1s responsible
for the anteratomic bainding and elastic properties of many solids
especlally metals, in which an ordered array of cations i1s held
together by a flux of valency clectrons. In semiconductors and semi-
metals the bonding between atoms is localised, either purely covalent,
as found in silicon or germanium, or of the mixed covalent-ionic type,
as found an the III-V compounds.

Straining of a degenerite semiconduclor or semimetal may result
in an energy change of the electronic energy bands. If the symmetry
of the strain allows for the relative molion of the degeneratec bands,
the charge carriers become a function of the local strain. The elastic
properties may be defined in terms of the free energy with respect to
the strain. In semiconductors and semimetals the free energy contaains
a contribution from the carriers which depends on Lheir distribution
over the electronic energy levels. If the strain alters the distribu-
tion of the carraiers there will be a contribution from this source to
the deraivatives of the frce energy with respect to the strain compon-
ents, 1.e. a contribution to the clastic constants Keyes (1961) was
the first to outline the basic principles associatcd with the contri-
bution to the free energy and Lo derive the form of the contribution

to the elastic constants of the cubic semiconductors silicon and



gexrmanium. The electronic contribution to the elastic constants of
si1licon and germanium has now been well resolved both theoretically
and experimentally.

The present work was inilially inspired by the paper of
Gopinathan and Padmini (1974a) which andicated that the elastic moduli
of polycrystalline bismuth-antimony alloys vary extensively in the
composition range 0-10 at % antimony, which they partly attributed to
a variation in the electronic contribution to the elastic constants.

The first objective has been the determination of the compon-
ents of the elastic stiffness tensor for a number of bismuth-antimony
alloys in the range of composition 0-10 at.% antimony and in the
temperature range 4 2K to 300 K by pulse echo overlap measurements of
ultrasound velocity. The theoretical electronic contribution has been
formulated from first principles and the expected megnitude has been
calculated using the parameters from the litereture. The electronic
contribution to the free energy 1s a function of the total clectron
population, vhich may be increased by doping the malerial with elemenis
from necighbouring columns of the periodac table. For example, in
n-type silicon and germanium the relative change in the eleclronic
coniribulion can be two orders of magnitude greater than the atomic
fraction of the donor. In the present work thce clectron population
ol pure bismuth has been varied by the addition of tellurium, a mono-
valent donor, and the elastic stiffness constants have been measured
as a function of temperature.

In chaplier two the band structures of bismuth and bismuth-
antimony alloys are revicwed, with particular emphasis on the points
pertinent to the present study. ITn chapter three the formel theory

of anisotropic elasticily is applied to rhombohedral crysials and the



rclationship between ultrasound velocity and ithe elastic stiffness
tensor i1s established. Chapter four outlines the experimental tech-
niques employed crystal growth and the preparation of samples, the
principles of the ultrascnic methods and details of the measuring
system are given In chapter five the Keyes model 1s extended to the
baismuth band structure and the form of the electronic contribution to
the elastic constants 1s deraved. The magnitude of the electronic
contribution i1s then computed both as a function of composition and
temperature 1n chapter six. The resulis of ultrasonic velocity
measurements on bismuth-antimony alloys in the composition range

0-10 at.% antimony are presented in chapter seven and the eclastuic

2 +1 T4 £
hebhawmionury 16 dogerahed Chaptox caght preosertc the resulis of

[0}

ultrasound measurcments on bismuth doped with tellurium and the

electronic contribution to the elastic constants is identified.



CHAPTER 2

THE CRYSTALLOGRAPIIY AND BAND STRUCTURL

2.1 Introduction

The group V semimetals bismuth and antimony have been the
subject of intense investigation and many aimportant effects in solid
state physics were first observed in these solids. Thesc materials
contain two atoms in the unit cell each contributing five electrons
which are accommcdated by the first five Brillouin zones The faifth
and sixth Braillouin zones overlap in pure bismuth and antimony
allowing some electrons to spill over into the sixth zone, thus,
by virtue of the simultaneous occurrence of free electrons and holes.
these elements are electrically conductive at all temperatures and
therefore resemble metals. However, their carrier properties and
their great sensitivity to ampurities give them many similarities to
semiconductors: thus the term semimetal. Over most of the range of
composition the alloys of bismuth and antimony also show semimelellic
behaviour, but in Lhe range B8-22 at.% antimony the overlap between
the faifth and sixth Brillouin zones disappears and the material
behaves as a narrow-gap semiconductor

The exceedingly large number of papers which have been pub-
lished on bismuth and the bismuth-antimony alloys makes a complete
review of the subject a daunting task, for a more comprehensive
guide to the literature, the reader 1s referred to Noothoven van
Goor (1971), Boyle and Smith (1962) and Goldsmid (1970). Thais
chapter wi1ll discuss only the crystallography and band structure

pertinent to the present investigalion
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2.2 Crystal Structurc

Bismuth, antimony and the bismuth-antimony alloys all
crystallise into a lattice with the rhombohedral, arsenic A7 crystal
structure. This crystal structure may be regarded as a distortion
of the simple cubic lattice. The distoriion can be best 1llustrated
by considering the simple cubic lattice to be composed of two inter-
penetrating face centred cubic lattices (Figure 2.1), the origin of
the fairst sublattice 1s taken to be at (0,0,0) and the origin of the
second to be at (2u,2u,2u). For the undistorted structure u = 0.25
and the angle o , between the unit vectors a,r 92, 33 1s 600. The
iwo latiices are first displaced relative to each other along the
body diagonal, thereby altering the value of v slightly from 0.25.
The rhombohedral structure is then generated by a strelching of ihe
lattice along the same body diagonal involved ain the first Jdisplace-
ment. This body diagonal becomes the traigonal, threefold axis of
the crystal structure. The rhombohedral crystal parameters ¢ and u
of bismuth and antimony are summarised in Table 2.1. The trigonal
system may also be described in the frame of the hexagonal lattice
(see Cullaty (1967) p.462)

An unambiguous orthogonal set of crystallographic coordinates
1s normally defincd as shown in Figure 2.2 (Akgoz, Farley and Saunders
1972). The trigonal axis lies along the body diagonal of the
primitive rhombohedral unit cell defined by the lattuice translational
vectors a0 3,2

2 3

of any a on to the traigonal plane, the positive y axis 1s taken to

The bisectrix axas i1s defined by the projection

be outward from the origin to the projection of 21' The coordinate

system 1s completed by a positive binary axis.



Blsmuth(a) Antlmony(b)
Hexagonal a 46458 4.3084 8
Lattice
Constants c 11.862 R 11.274 X
i
‘ Rhombohedral u 0.2339 0.2335
Parameters o
o 57.28° 57.12
|
References.

(a) Barrett (1960)

Cucka and Barrett (1962)

(b) Barrett, Cucka and Haefner (1963)

Table 2.1 The Latticc Constants of pure bismuth

and antimony at 298 K.
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Bismuth and antimony form solid solutions which crystallize
in the rhombohedral structure over the entire range of composition.
Cucka and Barrett (1962) have measured the lattice parameters in
the range 0-29 at.% antimony and found that the variation i1s essen-—

tially linear.

2.3 The Band Structure of Bismuth and its Alloys

(a) Pure Bismuth
The band structure of bismuth 1s now well established (for
a reviev see Dresselhaus 1970). The electron Fermi surface consists

nf thrao e

Lasl @llipscids Ceunlied &u uie La polncs,

[0}

wn

occupying A10 ~ of the volume of the reduced Brillouin zone. The
heavy hole Fermi surface comprises a single ellipsoid of revolution
located at the T point of the reduced Brillouin zone. At 0 K the
La-point electron pockets overlap the T-point hole band by about
38 meV producing a semimetal with a carrier population of
3.3 x 1017 cm—3 (Sumengen and Saunders 1972), the electron and
hole concentrations are equal., The Fermi level 1s constrained towards
the centre of the region of band overlap and i1s closer to the edge
of that band containing the heavier carrier, 1.e. the hole band edgc,
at 0 K the Fermi level in pure bismuth lies appioximately 25 meV
above the bottom of the Ls band edge (see Figure 2 4).

kach electron ellipsoid has one principal axis coincident
with the crystallographic binary axis. The other two principal axes
are tilted away from the bisectrix and trigonal directions by a
ti1lt angle of approximatec + 60, the positive talt engle i1s defined

as a rotation about the banary tx axis which takes a vector along

the +y axis iowerds thc 1 z axis (see Figure 2.5). For a cunplele
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descraption of any electronic parameter associated with these

ellipsoids, a tocal of four independent coefficients of the form

P11 0 0
(1) _
P = 0 P?2 P23 (2.1)
0 P23 P33

(1) may be the mobility, the effective

are required, for example, P
mass or the deformation potential. The tilt angle of the electron
ellipsoids, in terms of the general electronic parametcr coefficients,

1s given by

~ 2P
o = %tanl ;—%3-9—— (2 2)
22 33

If the form of the general parameter coefficients of
equation 2.1 1s assigned to one of the electron ellipsoids (super-
script (1)) the form of the coefficient for the other two ellipsoids

o
must be obtained by 120 rotations around the trigonal axias. Therefcre

(2) _ + (1) + T
P = R, P R} 0 (2.3)
and 3 _ - () - T
k = Ry P Ry20
vvhere
1 V3 1 /3
-7 2 O 2 2 0
+ ﬁ 1 - }/3- i
Ry20 "= 2 ~ 32 0 Ri20= 2 2 0
0 o 17, 0 0 1

1 T +
and R120 refers to the iranspose of R120 .



Since the hole Fermi surface consists of a single ellipsoid
of revolution at the T point of the Brillouin zone the elecctronic

components assoclated with it take the form

H11 0 0
H = 0 H“ 0 (2.4)
0 0 H33

Lying about 13.6 meV (at 4.2 K, Vecchi and Dresselhaus 1974)
below the La conduction band edge 15 a mirror image valence band
edge (Ls band). The carriers in the Ls valence band are referred to
as light holes, however, in pure bismuth at ordinary temperatures,
therr carrier density 1s low and theisr effects negligible.

The freec carricr concentration increases as the temperature
1s raised, until at room temperature the carriexr population 1is
approximately 2.45 x 1018 cm-3 {Machenaud and Iss1,1972) Tnhus, when the
temperature increases, the tendency of ‘he Fermi level in each
electron valley to decrease 1s compensated by the thermal excitation
of more carriers. Hence, while the number of carriers increases 1in
the two bands, the Fermi level should stay at about the same position
at all temperatures, the carriers in each band will be at least

partially degenerate.

(b) Bismuth-Antimony Alloys
Jain (1959) and subsequent vorkers (Smath and VWolfe 1962,
Brown and Silverman 1964, Dugué 1965, Chu and Kao 1970, Thomas and

Goldsmad 1970, for a reviev see Goldsmid 1970) have shown that the
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addition of anitmony to bismuth causes a gradual decrease in the
overlap energy between the La point electrons and the T point hole
band, resulting in a transition from the semimetallic tc the semi-
conducting state. This semimetal to semiconductor transition occurs
at approximately 8 at.% antimony (Brandt and Svistova 1970). The
recent work of a number of investigators has also shown that the L
point cnergy gap decreases upon addition of antimony, with the

result that the L point energy levels undergo a band inversion at
some composition before the onset of the semiconducting state. This
view 1s consistent with the theoretical calculation of Lin and
Falicov (1966) which show thalL in pure antaimony the L point con-
duction and valence bands have opposite symmetry to those in baismuih.
The magnectoreflection data of Hebel and Smith (1964) led Goulin (196G8)
to propose a model whose L point inversion occurs at 5.7 at.% ancaimony,
after which the L point energy gap increases linearly with increasing
antimony concentration. Tichovolsky and Mavroides (1269) from
magnetoreflection data have found that the band inversion occurs

at 4 at.% antimony, while Brandt (1969) observed the transition to

be at approximately 8.5 at.% Sb, uncertainty of Lhe nature of this
band inversion still exists.

If there 1s a progressive change i1n the band edges with
composition, the alloy must revert to the semimetallic state at a
higher antimony concentration. The original work of Jain (1959)
indicated that the semiconductor to semimetal transition occurred
at a composition of approximately 40 at % antimony More recent
studies indicate that the transition occurs at 22 at.% antimony
{(Wehrly 1968, Brandt et al 1970), the suggested cause 1s an overlap

of a valence band at the H-point of thc Brillouin zone and the
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Ls point conduction band; 1in pure antimony semimetallic behaviour
1s a result of an overlap between the H-poant hole ellipsoids and
the Ls—p01nt electron ellipsoids (Oktu and Saunders 1967). Apart
from the galvanomagnetic data of Schnieder and Trinks (1972) (on
30 at.% antimony) and the magnetoreflection results of Apps (1974)
(85-100 at.% antimony), little information exists on the band
strxucture in the range of composition 22-100 at.% antimony.

The shape of the energy surfaces of the L and T point
ellipsoids have been considered in detail (e.g. Lerner, Cuff and
Williams 1968) in the range of composition 0-10 at % antimony. The
results indicate that the L and T point pockets retain the shape
characteristic of pure bismuth, the same di<persion relations may

therefore be assumed.

(c) Donors and Acceptors in Bismuth

Many workers have investigated the effects of dopina pure
bismuth with elements from neighbouring columns of the pcricdic
table (Noothoven van Gooxr 1971, G.A. Antcl.ife and R T. Bate
1969, R.N. Bhargava 1267, N. Thompson 1936, Wiener i962), ain
particular much study has been concentrated on the effects of
tellurium {(a donor) and tin (an acceptor) The dope densities spoil
the intrinsic equality of the electron and hole populations; at
high donor or acceptor concentrations only one type of carrier occurs.
The addition of tin and tellurium in concentrations of less than
0.1 % 1s reported to leave the lattice constenis practically
unchanged {(Cucka and Barrett 1962). Consequently 1t has been
standard practice to assumc thal the rigid band model 1s applicable

(1 e. whilst the carrier populations change, the relative positions
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of the band edges remain constant). Early experiments on doped
bismuth suffered from the uncertainty in ascertaining the exact
level of doping, but the matter has now been resolved by
Noothoven van Goor and Trum (1968) who have proved, with the
aid of radioactive tracer analysis, that in bismuth telluraium
1s a monovalent donor and tin a monovalent acceptor.

The introduction of tellurium into the bismuth lattice

increases the electron population in the Ls ellipsoids and

decreases the heavy hole population in the T45

ellipsoad. Con-
duction electrons and holes can coexist as long as the dope 1is
not heavy, but when 8 x 1017 donors are present (Noothoven van
Goor 1971) the electrons are the only carriers, the hole band
having been completely filled. Antcliffe and Bate (1966) have
suggested that above 55 meV other eleclron bands exist (at the
T point) and that these can become populated by up to 3% of the
total electron population The enistence of these additional
electron bands has not, as yet, been fully confirmed.

The doping of bismuth with tin causes the number of
LS conduction electrons to fall and the hole population in the
TZS level to increase Emptying of the conduction band requires
4 x 1018 acceptors cm—3 and at low temperatures only heavy holes
exist. At higher temperatures thermal excitation of the electrons
from the T point to the Ls band occurs. When the acceptor con-
centrations are large, there i1s an appearance of light holes in

the valence band at the L point (R.T Bate, Einspruch and

fay 1969).
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Donor and acceptor impurities in bismuth cannot give rise
to localised states because of the strong screening of the impuraity
centres by the free carriers,so that the impurities remain ionized
all the way down to temperatures below 4 2 K (Brownell and Hygh,
1967); 1.e. the impurity carrier concentration will remain con-

stant with temperature.

2.4 The Dispersion Relations

Shoenberg (1939) was the first to propose a dispersion
relation for the Fermi energy surfaces of bismuth i1n which he assumed
that the sucrfaces were bLoth ellipsoidal and parabolic. The disper-

sion relation for the electron ellipsoids 1s given by

(2.5)

where Pl (r =1,2,3) arxe the momenta, mJ ( =1,2,3,4) are the com-
ponents of effective mass and E 1s the energy. The data can often

<>
be presented in terms of the inverse effective mass tensor a , where

v = @t -4 L 0 0
m
1
m -m
3 4
0 — — (2.6)
B3y ™My MM, M,
Ty ™
0 m.m_-m < m.m_-m
M2 3™y

The cross terms (1 e. m4) arise because twe cf the principal

axes of the clectron ellipsoids do not coincadc with the crystal axes
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but are rotated by the tilt angle 0 about the binary axis. It is
usually more convenient to express the effective mass tensor in

<
terms of a coordinate system in which m 1s diagonal (no cross terms)

L.e.

m1 0 0
% 1
m = 0 m2 0 (2.7)
L
0 0 m3

“«—r <>
The two effective mass tensors m' and m arc related by a rotation

/ - -
oy

-3 o e -
vV} abouc e ‘UJ.unu._y ax.id

m = R@) m R(8) (2.8)
where
1 0 0
R(0) = 0] cos6 +sinb (2 ©)
0 -sin 8 cos 6

Thus the relationship between the coefficients of the two effectave

mass tensors 1.s

mHoEn
B 1%
2 2
+ -— -
N ] m1 m3 + L}mZ m3) 4m4__ (2 10)
2 2
2 2™
m' ) m2 + m3 L}mz-mB) - 4m4__
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The cllipsoidal parabolic dispersion relation for the T

point hole ellipsoid 1s

vhere M1 and M2 are the components of the effective mass tensor of
the holes.

The Shoenburg model has been found adequate to describe the
T point hole Ferma surface, however, 1t has failed to describe
accurately the electron Fermi surface. Two diffecent dispersion
selaciuis ugéve peen proposed Lo expialn tne departure from the
ellipsoidal parabolic model. the ellipsoidal non-parabolic (ENP)
model of Lax (1960) and the non-ellipsoidal non-parabolic model
(NENF) ot Cohen (1961). Non parabolic effects become important
because of the strong interaction between the valence and conduction

bands at the L points. The ellipsoidal non-parabolic dispersion

relation 1is

P12 P22 P32 E\
—— t —V— + —]—=E “E“) (2.12)
2m1 (0) 2m2 (0) 2m3 (0) g

where ml'(O) {(r = 1,2,3) refer to the band edge effective mass
components and Eg 1s the energy gap at the L point. This model then
has an ellipsocidal Ferma surface but non-parabolic bands. The NLCNP
model of Cohen (1961) modifies the dispersion relation still further

by the inclusion of a term from the valence band
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p, 2 p 2 p_2 ) p 2
t —"— 4 —F— = Et+ -5 (——) @13

] n"
2m1 (0 2m2 (0) 2m3 (0) g g 2m2 (0)

"
where m2 (0) 1s the effective mass 1n the bisectrix direction at

the top of the balence band, since the two bands are mirror 1images

one can assume that mz' = m2". The quartic term in P2

1o a Fermli surface vhich 1s distorted from an ellipsoid at large

gives rise

values of P2.

The NENP dispersion relation represents a band having non-
parabolic dispersion in the P1 and P3 directions and parabolic

dispersion in the direction of P2 However, as far as the band
parameters are concerned, the difference bectween the Lax and the
Cohen model 1is small., Experimentally it 1s difficult to differ-
enciate between the two models because the dispersion relations
reduce to the same equation over much of the Fermi surface. More~
over, wn the region vhere they differ the effective mass 1is large
and consequently very difficult to measure. Dinger and Lawson
(1970) have recently reappralsed previcus cyclotron resonance data

and conclude that the NENP model provides the bhest fit. In the

present work the NENP model has been chosen.

2.5 The Density of States Function

For the ellipsoidal parabolic model, the density of states

s ,

* 3/2
Nl = A [Z2Im(ER) £ (2.14)
lT!i h2

] ] ] 1/3
m, ) m

where m”™ (LP) L My Ty o m* (EP) 1s the density of statces

"
E)
5
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effcclive mass, ml'(l =1,2,3) are the Ferm1i level effective
masses and mo 1s the free electron mass. In the non-parabolic
non-ellipsoidal model the density of states function must take

1into account the energy variation of the effective masses, where

] _ [} 2_E
m, = m, (0) 1+ = (2.15)
g
1 1
m2 = m2 (0)
1 ' 2E
m3 = m3 (0) 1 + Eg

and ml'(O)(l = 1,2,3) are the effective mass components at the
bottom of the conduction band The NENP density of states function

thercfore becomes

(1) 4 2 m* (NENP) 3/2 L 2E
N (B) = —g —-——'2—‘—— E 1 4 T (2 16)
T h g
* [} ] [} 1/3
where m* (NENP) = (m1 (0) m.,, (0) my (0)) m

2.6 Summary

This chapter has discussed the important features of the
bismuth and bismuth-antimony band structures and has aintroduced
the various dispersion relations used to describe the electron
and hole Fermi surfaces. The calculation of the electron contri-
bution to i1hc elastic constants requires the evaluation of the
densiiy of states function, for which the appropriate clectrenac
paramalers are sequired. Chapler six will considcr these points

in greater detail.



CHAPTCR 3

ULTRASONIC WAVE PROPAGATION IN THE RHOMBOIIEDRAL STRUCTURE

3.1 Introduction

The strains normally encountered in ultrasonic experiments
are infinitesimally small and calculations based upon classical
linear elasticity, as revieved by Love (1927), are normally valad.
For the sake of completeness a brief outline description of elastac
wave propagation as applied to the rhombohedral system is incluaed
here, for a comprehensive review the reader is referred to Hearmon

(1961), Nye (1957). Truell, Flbaum and Chack (1969) and

3.2 Definition of Stress and Strain

The stress tensor, with components 013' 1s defined as the
force per unit area in the X direction acting on an area normal to
the xJ direction, 011 are normal (longitudinal) components and

UlJ(1.#3) are shear components. The deformation of a body is defined

in terms of the varaation of the displacement (ul,u u3) wvith position

2’

(xl,x ,x3) and there exist nine components of the form

2

9
u

a;fh (1,3 =1,3) (3.1)
J

Two features need to be considered, namely strain within the media
{extension per unit length) and body rotations, since a second rank

tensor can he expressed as the sum of a symmetrical tensor (T13==T31)

and an antisymmetrical tensor (le =—TJl), the strain tensor can be

erpressed as the symnetrical part, uwith components



< 1 1 J
e, =zl (3.2)

and the rotation tensor can be expressed as the antisymmetric part,

wvith components

d d
1 ul u
At —-13 (3.3)
XJ Xl

If the body 1s elastic, the relationship between stress and
strain 1s linear and may be expressed by the familiar Hooke's Law.

In an orthogonal cartesian coordinate system this law takes the form

a = C . F . Al x = 122 2 M
1] 1jkL k& -
and Elj = Sljk£ okﬂ 1,j,£,k = 1,2,3
vhere C and S arc the elastic stiffness and compliance constants
17kl 13kl

respectively, both are tensors of the fourth rank. In the generalised
form of Hooke's Law there are 81 components of the elastic sciffness
tensor. Iiluowever, by considering the rotatioral and translational
equilabrium conditions for an element of volume ain the deformed state,
1t can be shown that the stress and strain tensors must be symmetric
(Le o© = 0 and € = cjl), reducing the total number of indepen-

1] Ji 1)

dent stress and strain coefficients to six, this implies that since

c - - - .
17kl C)lkt € e C1yex (3.5)

the total number of independent elastic constants 1s reduced to 36.
Furthermore, the restriction that the clastic potential 1s a function
of thermodynamic state alone mmplies that

cljk£ B Ckﬂlj (36
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This condition reduces the independent elastic constants to 21.
Consiaderation of the crystal symmetry leads to the vanishing of
some of the elastic constants and may lead to algebraic relations
amongst the remainder, for example, for a complete description of
the elastic behaviour of a cubic material only three constants are

necessary (C1 . C and C ).

1 12 44

For brevity and compactness, 1t 1s convenient to adopt the

following contracted matrix notation.

11 =1, 22=2, 33=3, 32,23=4, 13,31 =5, 12,21 = 6

(for example, = C14

C1132 ). The elastic constants may then be

represented by a symmetric 6 x 6 matrix, vwith components

Clj,l,] = 1,6. In this notation Hooke's Law becomes

Gl = Clj EJ (,,3 = 1,2,3) (3.7)
and el = Sl] oJ (r,3 = 1,2,3) .
33 Elastic Constants of Bismuth

Bismuth and the bismuth-ancimony alloys crystallise in a
rhombohedral crystal structure, the crystallographic symmetry
reduces the total number of independent elastic constants to six,

the elastic constant natrix then taking the form
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| 51 S22 Gz Cig 0 o |
2 C11 %3 Cig 0 0
C,y C3 Cyy 0 0 0
C,y ~Ciy4 0o ¢, 0 0
0 0 0 o ¢, ¢,
oo 0 0 0 o, e |
where C66 = [C11 - C12] /2

3.4 Equation of Motion

By consideraing the forces on opposite faces of an infinitesi-
mally small parallelopipid (the element of volume) and by assuming
that the body force components are ZEro, the equation of motion for

an elastic material becomes

'60J 0 u:L
—lax = p > (3.9)
3 ot

where t 1s time and p is density. Substituting the stress-strain

relationship (equations 3 2 and 3 4) 1in thais expression gives

22 up 32y ) 32ul
Cl v o+ — = 2p > (3.10)
IR\ o, oa dn_ 9% ot
IN J J 'k
Since Clj]'f, 1s symmetrical the expression reduces to
2
2 9 u
c ALY S 1
13kL Fyepm = 0 (3.11)

kK ot
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In any crystalline medium each direction of propagation can
support three independent waves, cach with a characteraistic velocity
and with particle displacements which are mutually orthogonal.
Consequently, three solutions to the equation of motion in the form

of plane travelling waves are sought ,

up = Uy, exp 1wt -k x) £=1,2,3 (3.12)

°e

Each wave travels in the direction given by the propagation vector

k (kl'k ,k3), the magnitude and direction of ihe propagation vector

2
are defined hy

s - ()

|
]
N
<€
S’
EE

(3.13)

where A 1s the wavelength, w i1s the angular frequency, Vv is the

phase velocity and ﬁjnl,n ,n3) 1s the unit vector drawn normal to

2
the wavefront.

By differentiating equation (3.12) and substitutin| into

equation (3.11) the equation of motion becomes

2
= 4
Cljk£ u p nk nJ pv uOl 1 1,2,3 (3 14)

For a particular crystallographic direction, defined by_é(nl,nz,nB),
the equation of motion will provide three solutions, one of which
rescembles a longatudinal (or compressional wave) and two of which
resemble transverse waves (particle motion normal to the darection
of propagation). A pure longitudinal plane wave 1s defined as one

whaich has the particle motion in the direction of propagation, a

pure transverse wave has 1ts particle motion rormal to the
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propagation direction In general, hovwever, the solutions of the
equation of motion are neither pure longitudinal nor pure Lransverse.
Waves which have particle motions most closely resembling pure modes

are referred to as either quasi-longitudinal or quasi-shear modes.

3.5 Solution of the Equation of Motion

For the trhombohedral system the equation of motion cxpands to

give the following three equations

2
(L - pv )u + L, .u + L,_€ = 0
11 o, 12 02 i3 03
2
i - =
L12uo (L22 pv )uo + L23u03 0 (3.15)
1 2
2 -
15%, + Lyso,  + gz —Pviu, =0
1 Z 3

~

where the ng's are the Christoffel coefficients

2 2 1
Lyg = Gy +2€,myny #Cyy Ny + 5 (Cpy = Cyp)
Lig = 5 (€ +Cp) myny +2€,, nyng
L13 = 2C 14 n n + (C 13 + C44) nln3
2 2
Log = Cyg ¥y ¥ (Gg ¥ Cyy) vy ~Cymy
~ ? 2 3
Lyy = C331m3 +Cypy (0 107
L = C n 2 + (C +C )nn -C n 2
33 14 ™ 13 ¥ Caqa? PP "Gy My

For a complcte determination of all the elastic constants a mainimum
of three crystallographic directions must be chosen. Measurements
along the major crystallographic axes will yield all the elastic

stiffness constants except C

and the sign of C the further

13 14 '

data can be obtained from any diirection except for those in the xy

plane or along the z axis In the present work measurements were
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undertaken on [100], [001] and [O,--%:,-%:] {or [0,—3-,—l'])

/2 /2 2 V2
samples, in the following sections the equation of motion for these

propagation directions 1s solved, the notation used 1s consistent wvith

that of Eckstein, Reneker and Lavson (1960).

(a) Propagation ain the [001] Direction

For n1 = 0, n2 = 0, n3 = 1, the Christoffel equations

simplify to

2
(1) (C44—pv )u01 = 0
(11)  (C,. - pv?) - 0 (3 17)
i a4 ~ P “02 =
Z -
. {(121) (C33 - pv )uo3 = 0

Solution of these equations yields the velocities of a pure longi-
tudinal (particle displacement vector parallel to the propagation

direction) vave

v = C (3.1R)

pv8 = C (3.19)

which may be polarised in any direction in the xy plane

(b) Propagation in the [100] Direction

forn, =1, n_ =0,

1 2 = 0 the Christioffel equations

3
simplify to
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2
(n) (C11 - pv )u01 = 0
(12) [ECc..-C.) - pvilu +C. . u = 0 (3.20)
1k 211712 P %, " 14 o, .
(111) C u  + (C - v2) = 0
1 14 Yo, as ~ P Yo,

Solution of (1) yields the velocity of a pure longitudinal mode

pv = c (3.21)

Combination of (11) and (111) gives the velocity relationships for

the two pure shear modes

2

N PYs,3

2 2 .°
4)i{(C44-C ) +4c14} 1 (3.22)

1
= = +
2 [(C66 ¢ 66

4

The direction of particle motion for each of the pure sheer modes 1s

given by

[o} C
3 - 14 (3.23
u c _ pv2

) 44 2,3

tan ¢ =

where ¥ 1s the angle the pacticle displacement vector makes with

the xy plane.

{a) Propagation 1in the [O,—-}— ,—lﬂ Direction
V2 V2
For n, = 0, n2 = -L r Dy = L the Christoffel equations
/2 V2

reduce to

1 1 2 _
@) [-Cpy + 350 ~ 3 Cyq ~ Cpp) v ]“ol =0
(1) [C.. +4c.. +ic - v i 1c. ) - qu =
1x 14 72711 T 2haa T F “o? 27137 "4’ T2714"%, "
1 1 1 1 2
(121) 15, =5(Ca+ €yl “02 FLgC3 1 S0y m PV “03 = 0
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Expression (1) correspouds to a pure transverse wave whose velocity

1s given by

2 1
= 2+ - 3.
pv = = (C66 + C ) C1 (3.25)

Solution of (11) and (111) yields the velocity relationship for a

quasi longitudinal and a guasi shear mode

2
1 1
= = + +/1= -
2PVy9,0a =7 C11¥C33) €40t Cyy [2 €117 C33) +C14:l
-2 )k
+ liclsTc44+c14l (3.26)
The pacticle daisplocement disecticn is given by
u 2
o (C + C + C - pv )
11 44
tan y = E_i - 14 - /2 /2 ] 12,14 (3.27)
— - -|. ————
%2 3 G371 € "7 Sy

where Yy 1s the angle the particle displacement vector makes with the
Xy plane. '

The relationship between the velocity and the elastic constants
for the selected propagation directions 1s given in Table 3.1; the
polarization vectors have been calculated from the dala for pure

basmuth at room temperature (the elastic constants are taken from

Chapter 7).

3.6 The Energy F'lux Vector

It 1s an experaimental necessity to know the energy flux vector
assoclated with the direction of propagation, since deviations of
the energy fluan from the preopagation direciion can resvit in the

wave impilnging orn the cides of trle specimen; giving risc to mode
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conversion and considerable error in the velocity measurements
(Fagure 3 1) Brugger (1965) has studied the effect of crystal
symmetry on the energy flux vector, he concludes that for a pure
longitudinal wave the cnergy flux vector is always parallel to the
propagation direction; the same 1s true tor a pure transverse wave
propagated along a direction waith a twofold, fourfold or sirvfold
symnetry or normal to a reflection plane.

Since in basmuth the x axis 1s of twvofold symmetrx the pure
longitudinal and the two pure shcar modes will each have the encrgy
flux vector parallel to the propagation direction, the same result
1s obtained for the pare longitudinal mode along the trigonal axis.
Because the threefold symmetry along the z axis allows degencrate
pure shear modes of arbitrary polarization to propagate the devia-
tion of the energy flux vector manifests i1itself in the phenomenon
of internal conical refraction, as the particle displacement vector
1s rotated about the trigonal axis through 180o the energy flux
vector rotates through 3600, thereby generating a cone of possible
directions for energy flow (see Truell, Elbaum and Chick (1969 P.36).

Propagation alcng thce [Orl—,—l—] and [0,~-l—,—L-] directions

2 /2 2 /2
yrelds, 1n each casc, one pure transversc mode polarized along the
bainary aris and two quasi-pure modes polarized in the yz plane,
since none of these modes satisfy the conditions of Brugger, they
must have energy flux vectors which deviate from the propagation
direction. Pace and Saunders (1971) have calculated the energy flux
deviations of the group VB semiretals for propagation directions in

the zy plane, reference to their results has been made when con-

sidering the geometrical configuratlion of the samples.



specimen—

transducer

(a} Incorrectly sh
and mode con

A energy flux vector

+ propagation
direction

aped specimen giving rise to 'wall bounce'
version

transducer

o

e

-

~i———specimen

\

direc

(b) Correctly shap

Figure 31

N
propagation

energy flux vector

tion

ed specimen


http://bodr.ce'

3.7 Adarapatic and Isotnermal Elastic Constants

Mason (1947) has shown that there exists a difference between
the adiabatic elastic constants, which apply to rapid loading, and
the isothermal elastic constants, which refer to slow or static

loading. The difference 1s given by

o
At -t s 23 ¥ (3.28)
1] 1] C

where the superscripts A and I refer to the adiabatic and isothermal
elastic constants respectively, al and aj are the temperature
coefficients of stress, Tv 1s the temperature and CV 1s the specific
heat at constant volume. In practice, the difference between the
adiabatic and isothermal elastic constants i1s less than 1%. CUnder
conditions of ultrasonic measurements the adiabatic elastic constants

arc obtained.

3.8 The Strain Fuergy

The strain energy is effectivelv the energy of deformation
of a solid and many be related to the strain coefficients in the

following manner ,

1 1
¢ =0, % gcl] €13 * §C13k€ €19 txt + 3(Cljk£mn)813 %8 €rn T ..
(3.29)

where g 1s a constant, 613 are the strain components, ¢° 1s the

strain energy before deformation and Clj, are the

C C
13k€"  T1jkfmn
first, second and third order elastic constants respectively. The

strain energy before deformation is zero and 1f there 1s no static

loading on the material the first two terms may be set to zero,
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reducing the strain energy function to

1 i
¢ = 2 Cljkﬁ Eljekﬂ+ 3 Cljklmn Elj “%e fmn o0 (3.30)

When the contracted matrix notation is used, the strain energy to

second order in strain for the traigonal system 1s

C2 52
_ 11 22 2) 2
¢ = Cpy ( 2t Y &) v 8y, (511522 €%y )
1 2
+ = +
2 C33%33 7 C44(323 € 13>
(3.31)
X . _
N C14(2511523 4815 %13 2*:22623)

N o TR )

In chapter five the comparison between the second orderx
strain function and the electron free energy function deraives the

form of the electronic contraibution to the elastic constants.
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CHAPTER 4

EXPCRIMENTAL TECHIIIQUES

4.1 Crystal Growth

Since the oraginal pioneering work of Jaian (1959) con-
siderable attention has been given to the growth of homogeneous
single crystals of bismuth-antimony alloys. Reference to the
phase diagram (Fig. 4.1a) indicates the problems involved in the
growth of these solid solutions. The large temperature differences
between the solidus and the liquidus (AT) suggest that constant
composition alloys can best be grown by the repeated pass zone
melting technique (Pfann 1958). The problem of constitutional
supercooling (Tiller et al 1953) i1s greatly incrcased due Lo the
large equilibrium segregation coefficient (ko = CS/CL, where Cs
and CL are the solidus and liquidus concentrations respectively)
and stringent precautions are necessary to eliminate the effect
It has becn shown that constitutional supercooling and its resultant
solute segregation in the frozen alloy can only be avoided if Lhe
growth rate R is less than GD/ T, where G is the temperature gradient
at the solid-melt interface and D i1s the diffusion coefficient of
the minority component in the melt (D = 2x 105 cm2 sec—1 for Sb in
Bi, Brown and Heumann 1964) Due to the low melting point of these
alloys, large temperature gradients are difficult to achieve and as
a result the growth rate must necessarily be small. Figure 4.1b
shows the critical growth rate as a function of alloy composition,
1l can be assumcd that crystals grown below the solid line show no
inhomogeneity effects of constitutional supercooling.

The zone leveller used for the growth of the alloys is

1llustrated in 'igure 4.2. The furnace coaprised a toroidally



SLNSIAVYDO JEYNLVY3dN3L SNOIYVA

HOd 3Jivd HLMOYO vOILiidd Q17914 W3ILSAS 9S-18 3HL 40 AWVHOVIQ 3SVYHd P L7914
(%1V) 4s (%61V) S
oot 0Ob o8 oL Q9 oS oY% Q¢ T ot Q ool Oop 08 oL 09 Qg oY% Oc O7 o\ o
" 1 2 L Py e a A J - A A A S e L "N A . CON
loom
®
pe)
so O
=
All_ > O0Y
I
I ¢
>
-
m - 008
<
3
3
lm -
I — - Q09
1S
4
p QOL

34NLVY3IdNIL

o




- 32 -

wound Kanthal 'A' resistance wire heater powered by a stepless Eurotherm
SR-10 temperaturc controller, the sensor for which was a Pt-Pt.Rh 13%
thermocouple embedded deep in the heater assembly. To increase the
tempecrature gradient, water cooled copper coils vere mounted on either
side of the furnace. The entire assembly was able to traverse along

the bed by virtue of a screw thread driven by a variable speed motor
{(traversing speeds of 0.3 mm - 2 5 mm hr_1 vere avallable). Crystals

of approximate length 8 cm and semicircular cross section (diameter 2 cm)
were grown in quartz boats coated with colloidal graphite, the circular
cross section accommodated the thermal expansion of baismuth on freezing

and the graphite coating prevented the alloy from sticking to the gquartz.

in a 60 cm long, 3 cm diareter quartz tube, i1n which an inert atmosphere
was provided by a controlled flow of oxygen-free nitrogen. The tech-
nique provided a temperature gradient of about 4OOC cm_1 at the solidus-
liguircdus intexface (measured with a thermocouple embedded in the surface
of the alloy).

Before the growth process, the high purily elements ©9.9999%
pure) were fused together in vacuo and raised to 700°C to drave off
volatile onides, continuous shaking of the alloy promoted mixing. The
frozen polycrystalline boule was then trancferred to the quartz boat
and melted within the zone leveller. Homogeneous single crystal growth
was then accomplished by several zone passes Inspection of the alloys
by chemical etching and x-ray analysis indicated that the entire charge
was easily converted into single crystals and tended 1o grow in direc-
trions perpendicular to the trigonal direction, as observed and discussed
on the basis of thermal conductaiviiy by Yim and Dismukes (1967). During

the growth prccess, which extendad over scveral weeks, some oxidalion
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occurred due to a small quantaity of residual oxygen in the inert nitro-
gen. However, the oxidation was found to be insufficient to inhibit
the growth of single crystals and could be readily removed by slight
chemical etching with 30% Nitric acid.

Pure bismuth and crystals doped witn tellurium were grown in
the manner described above. Tne restriction on the growth rate could
however be slightly relaxed, as the solidus-liquidus separation (AT)

(Hancen 1958 ) 1s much less than in the antimony alloys.

4.2 Sample Preparation

The ultrasonic techniques emrployed here require samples with
parallel opposite faces normal to a specified crystallographic direction.
Crystallographic orientation of the as-grown crystals was acccomplished
by mcans of Laue back reflection x-ray photography. The cartesian
co-ordinate system assigned to the rhombohedral lattice 1s described
in Section 2.1. The trigonal axis was easily 1dentified by the typ.ical
three-fold symmetry, the binary axis by the two-fold syrwetry and the
bisectrix axis by the reflection symmetry of the mirror plane. The
sensc of the bisectric (y) axis was recognised from its relationship
wilh the trigonal (z) aris, the quadrant formed by the 4y and + z
axes contains a pseudo-threefold axis whilst that formed by the -y and
+ 2z axes contains a pseudo-fourfold axis.

Bismuth and 1ts alloys with antimony cleave easlily along the
(001) planes To prevent damage to the material, all cutting and
polishing was pexrformed by a Servomet spark machine (Metals Research
Ltd., Royston). The main advantage of this technique is that hecause
the cutting action resalts from electrical spark cirosion no mechanical

stresses ure anduct ] by the preesure of a cutting tool Slight
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mechanical deformation occurs only at the sample interface, which can
readily be removed by chemical etching. The Servomet spark machine
produces a rapid succession of spark discharges beilween the tool and
the work face, the entire machining area being immersed in a bath of
kerosene (the dielectric). These sparks erode the work at a rate
which can be controlled by the input energy The salient points of
the operating prainciples are illustrated in Figure 4.4. A full wave
bridge of silicon rectifiers smooths the mains voltage into a D.C.
supply which is subsequenily fed to a relaxation circuit comprising
of a capacitor and a variable resistor. The capacitor, C, charges

at a rate deterrined by the variable resastor until the dielectric
breakdown i1s rcached and an electrical discharge occurs across the
gap. The capacitor then re-charges and the cycle 1s repeated A
servo mechanism, controlled by the dielectric breakdown voltage,
maintains the work tool at a constant value of d. The cutting tool
was evlther a thin copper plate or a continuously moving tinned copper
wire. Polishing was accomplished by a rapidly rotating flat copper
disc Samples with end faces parallel to better than 10--4 radians
and normal to within %o of the required crystallographic axis were

readily produced using this technique.

4.3 Ultrasvnic Velocity Measurements Between 4 2 K ard 300 K

4.3a Pulse Echo Method

The pulse transit time methods are amongst the most
accurate and sensitive techniques for the determination of ile
attenuation and velocaily of stress wvaves within a solid, the basac

principles will be described in detail.
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A short duration pulse of high frequency stress waves 1s
introduced anto a solid vhich has two accurately parallel faces
(Figure 4.5), the stress wave 1s generated by the application of a
high voltage electrical impulse to a gold plated piczoelectric trans-
ducer bonded to one of the normal surfaces of the material. Due to
the high acoustic impedance mismatch at the surfaces, the stress wave
is reflected at the lower interface and returns to the transducecr-
sample interface, here some of the acoustic energy is converted into
electrical energy which is amplified by a receiver and displayed on
an oscilloscope. The stress wave continues to travel through the
material due to interface reflections, producing a sequence of
mq}tlple echoes, the decay of which is dependent upon the sound
absorbing mechanisms of the sample. The time interval between succes-
sive echoes represents the velocity of ultrasonic wave propagation
within the material.

The block diagram of a simple pulse echo system used in the
present work 1s given in Faigure 4.7. It consasts of the model 6600
Matec pulse generator and amplificr and the model 1204A exponential
generator, calibrated delay and master synchroniser The oscillator
produces r f. pulses of a controlled duration (1 us typically cmployed)
at a repetition frequency determined by ihe master synchroniser
(0-500 Hz). These r £. pulses are conveyed to the bonded piezoelectric
transducer and the resultant set of echoes are amplified and rectaified
by the narrow band pass receivcr, the rectified echoes are displayed
on an oscilloscope to which an electronically synihesised exponential
curve 1s added to facilitate the measurement of attenuation The
time intcrval between successive echoes ray be measured either by the

calibrated delay or by the oscilloscope timebase
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(b} Pulse Echo Overlap

The pulse echo overlap technigque 1s based upon the pulse
echo system, with the facility to superimpose any two selected,
visually intensified echoes on an oscilloscope vhose triggering rate
1s equal to the delay between the two chosen echoes. Critical adjust-
ment of tnhe triggering rate permits precise measurement of the transit
time to 1 part an 104 (and under i1ceal conditions 1 part an 105).

The particular system used during the course of this wvork is
1llustrated in block form in Figure 4 8. The Bradley 235 signal gener-
ator 1s used to power the Matec 122A decade divider and douhle stroke
generator  The latter unit performs two functions (1) 1t provides
two trigger sources, one equal to the signal gencrator frequency
(Master Sync.) and the other a sub-multiple of 10n (n=1,2,3) of the
master frequency (divided sync). {(11) Secondly, the double delay
stroke generates two, time variable 0-30 v square wave pulses which,
when linked to the z-modulation of the oscilloscope permit the inten-
sification of any two sections of the echo pattern. The divided sync.
triggers +the Matec 6000 r.f. pulse generator. Each trigger pulse
creates an r.f. burst vvhach as in turn transformed by the quartz trans-
ducer into a mechanical vibration within the crystal. Successive
reflections sre then detected by the transducer and amplified by the
receiver, vhich then provides two types of output (1) the raw r.f.
echoes amplified, (11) the rectified r.f. echoes (referred to here
as the video output), which are coupled via an exponential generator
to an oscilloscope, vhere the attenuvation can be measured manually
The waveforms associated with the operation are illustrated in

Faigure 4 9.
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The raw r.f. echoes are first observed an their entirety
by triggering the oscilloscope with the divided sync. Careful adjust-
ment of the double delay stroke generator permits the intersifica-
tions (1 e. the brightness) of any two echoes The oscilloscope
brightness 1s then reduced until only the two selected echoes are
visible. By triggering the oscilloscope with the master sync at a
rate equivalent to the delay between the chosen echoes, the inten-
sified regions may be overlapped Crit.cal adjustment of the signal
generator will then provide cycle-to-cycle matching Proper cyclic
matching may be difficult for highly attenuatinc materirals, but where
four or more echoes are discernable the operation is straigniforward.

Cycliic marcning may pe achieved by using a triggering rate
thal 1s assumed to be equivalent to the transit iime betwcen two
successive echoes and intensifying the first echo in the d.splay by
the first strobe pulse. Time variation of the second stroke pulse
permits the overlap of each echo upon the first. In the event of
cyclic matching being in error by one cycle, this error will be
multiplied by the transit time multiple and will beécome readily
apparent as further echoes are overlapped (see Figure 4 10).

Measurement of velocity to 1 part ain 104 1s readily achieved,
but 1t must be stressed that such a value 1s by no mcans the actual
absolute velocity characteristic of the sample, corrections have to

be applied due to the transducer and bond effects (see Section 4 3d).

(c) Transducers and Bonds

The generation and detection of ulirasound vere effocted
by the use of gold plated quartz transduvcers produced commercially

by Brookes Crystals (Ilminster) Ltd X and Y cut transducers with
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fundamental resonant frequencies of 5, 10, 15 and 20 Mz and with
diameters of 5 mm and 6 mm were used.

The resonant frequency of a transducer 1s determined by its
thickness, the fundamental resonant frequency is given by d = A/2,
where 4 1s the thickness and A 1s the wavelength of sound in quartz
at the resonant frequency. 0d4d harmonics of the transducer may be
generated ky applying higher r.f. frequencies which satisfy the con-
ditions fn = (2n-—1)fo {n=1,2,3), vhere fo 1s the fundamental
frequency.

A large variety of viscous liquids have been used to bond
quartz transducers to materials, a good review of which has been
given by Farley (1973) For bonding to bismuth based alloys Nonagq
Stopcock Grease has been found to be the most efficient. Repro-
ducible bonds were formed by the gradual rotiation of the transducer
on to the grease coated surface of the material, bond thicknesses of
3 -5 um were thus readily produced The Nonag bond performed well

at all temperatures in the range 4.2 - 300 K.

(d) Transit Time Lrrors

In the pulse echo method 1t 1s standard practice to regard
the transit time at the measured delay between the peaks of two con-
secutive echoes. Essentially the pulse echo overlap technique method
gives the taime delay between two corresponding £ §f. cycles. Although
1t appears experimentally that Lhe transit time can be measured to a
precision of 1 part an 104, owing to the transducer loading effect
the true transit time within the sample 1s smaller than the elec-

tronically measured transit time
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An investigation of the behaviour of ultrasonic waves
incident on a boundary between two dissimilar materials requires
the calculation of the reflection and tisnsmission coefficients,
which are derived from the acoustic impedances of the respective

materials. The acoustic impedance 1is defined as--
Z = pv ' (4-1)

where v 1s the velocity of sound propagation and p 1s the density.
The reflection coefficient of a wave incident normal to a boundary
1s given by

2y = %y

R = =77 (4 2)
Z2 + Z1

and the transmission coefficient is

22,
(2, +2,)

where Z1 and Z2 are the acoustic impedances of the materials con-
taining the incident and transmitted waves respectively

At the free end of the samplc the acoustic impedance mis-
match from sample 1o air i1s effectively infinite (Z1 >>Zz). the
reflectaivity i1s total (R = -~ 1) But, at the transducer end of the
sample the situation is far more complea, a gold plated guarctz
transducer is bonded to the specimen with a suitable bonding agent,
consequently there are four interfaces Since the thickness of
the bond and the gold plating together (10 um) are very much less
than the thickness of the transducer (0 15 - 0 6 mm) they can, to

a firstL approxuration, be ignored, and the interface can be con-

sidered to be purely between the quartz and the sample.
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Thus, for ultrasonic wave incident from the sample the
reflection and transmission coefficients take the form (see

Fagure 4.11)

Z -2 2z
S

- Q - S_ (4.4)
R = T, = ' .
+ z Z_ +
1 ZS 9 1 Z Z

Z -7 2z
® vz, L TieE (4.5
S Q S Q

where ZS and ZQ are the acoustic impedances of the sample and gquartz
respectively. Figure 4.12 gives the calculated reflection and trans-
mission coefficients between quartz and baismuth for the ultrasonic
velocities encountered in the present work

Thus when an acoustic wave crosses the sample-guartz
interface part of i1t 1s reflected and part i1s transmitted. The trans-
mitted part 1s then totally reflected from the free end of Lhe Lrans-
ducer and on reaching the interface from the opposite direction part
1s reflected and the transmitted part combines with the original
reflcction i1n the sample. The ultrasonic wave continues to be reflected
back and forth withain the transducer thereby producing an output pulse
whach differs in shape from the input pulse The relative ampliiude
of a wvave entering the sample after n round trip reflections in the

transducer i1s simply

p-

|

|

H

H

o)
o}
1

n 1722
R n (4.6)

(z.S—ZQ) 2
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The wave will be delayed by a time interval nT1, where T
refers to the transit taime withain the transducer. If the incident

wave function 1s denoted by 1(t), the reflected function r(t) will

be

r(t) = R 1(t) + ; R2n i(t 4+ n) (4.7)
=1

Lenkkeri and Lahteenkorva (1973) bhave solved this equation by

assuming that the input pulse has the form of a Gaussian wave packet
1(t) = exp(_tz/a2) + Where a refers to the pulse width. If the input
pulse 2(t) has a maxamum at t = 0, the negative time coordinate of

the maximum of r(t) will represent the time delay 6. At the maximum
of g(t) , dg/dt = 0 and t =8, differentiatzon of equation 4.7 yields

Rld = B ;:o R" exp r—nr (nt - 2t6)/a2] (nt - 6) . (4.8)
n=1 —

The apparent transit taime delay 6 may therefore be calculated
by numerical solution of the above equation. The delay 1< found to
be independent of the pulse width a for a > 0 5 us. To a good approxi-
mation the timec delay may be obtained by assuming that a2 >> nt({nt ~ 26},

with the result that

%
§ = T°zs (4.9)

The varialion of the transit time plotted against the thick-
ness of the transducer should therefore produce a plot which is
essentially linear  An extrapolacion of this plot to zero transducer
thickness deraives the hypothetical transit time corresponding to a

mossless transducer The 1ntercepl value can be considered to
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represent the true trancsit time withan the material. This technique
has been verified experimentally by Kammer (1964).

During the course of this work all the ultrasonic velocity
measurements were performed with different thicknesses of transducer
(5, 10, 15 and 20 MHz fundamental resonant transducers were chosen)
and the extrapolated value was assumed to be the unpercurbed transit
time. Typical extrapolation plots are shown in Figurc 4.13. The
transit time erroxs derived from these plots werc found to correspond
closely with the theoretical predictions and 1i was concluded that

this method could yield the true transit time to within 0 015 ps.

4.4 Measurement of Temperaturc Dependence

(a) The Cryostat

Measurements in the temperature range 4.2 K to 300 K were
accomplished using a conventional glass dewar system (see Figure 4 14).
The cryostat assembly consisted of two double walled glass dewers
and employed liquid nitrogen and helium refrigerants The 1nterspace
vacuum was monitored using a Pirani head and gauge (Edwards speedivac
gauge B5, head type M6A). The dewvar inner spacc included a Pirani
gauge and a mercury manometer, a mercury protection valve was also
incorporated to protect the dewar from accidental pressvre build up.

The frame of the sample holder was constructed of thin
walled stainless steel tubing to reduce heat leakage Elcctraical
leads for the temperaturc sensors were taken through the tubing and
lead out through a neoprene vacuum seal at the Lop of the holder.

The ultrasonic coanial line was constructed from a solid core of

stairiess stecl sheathed 1na thick valled teflon tube, electrical
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connection to the transducer was made by a spring loaded, copper
centre contact.

Ultrasonic measurements were usually taken whilst the sample
was being cooled. The rate of cooling was determined by the quality
of the interspace vacuum and by the atmosphere of the inner dewar.
Before cooling was begun, the inner space of the helium dewar was
usually filled with dry helium gas (at atmospheric pressure) in order
to provide good heat exchange within the system and to facilitate the
later transfer of liquid helium. With an interspace vacuum better
than 0.1 torr the tame of cooling from 300 K to 80 K was approximately
3 hours. Refrigeration of the system from B0 K to 4.2 K was achieved
by the steady transfer of cold helium gas. Careful control of tLhe
transfer rate permitted a fine degree of control over Lhe cooling rate
Rapid fluctuations of temperature were avoided by monitcring Lhe
temperature with a thermocouple linked to a digital pctentiometer,
measurcments were only taken under steady conditions. To achieve the
final temperature of 4.2 K it was usually necessary to injcct a small
quantily of liquid helium. Thus, with great care, the total amount

of liquid helaum used could be restricted to 1.5 litres.

{b) Tempersture Measurement

The measurement of temperature withan the cryostat assembly
vwas accomplished by means of an Oxforxrd Instruments digital temperature
contreoller. The sensor for the unit was a cryogenic linear temperature
sensor (CLTS), consisting of a fine resistive grid of nickel and
manganin. For ease of operation, the CLTS was permanently mounted on

the sample holder in close proximity (within 5 mm) to the specimen
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The operation of the CLTS is essentially that of the four
probe potentiometric method. The unit provides the CLTS with a
constant current and then compares the developed voltage with an
internally generated refercnce voltage  The characteristic voltage
of the sensor as a function of temperature 1s generated by a millivolt
D.C. amplaificr, vhose gain i1s varied in segments using resistor net-
works, in the range 0 K to 100 K it is approximated by 10 K linear
steps and 1s Lreated as linear in the range 100 K to 300 K. The
CLTS voltage 1s compared to the characteristic voltage by a differen-
tial network and the error voltage produced modulates the digital

output. The reading accuracy was found to be i1 K.
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CHAPTCR 5

THL KLYLS MODEL

5.1 Introduction

It 1s well cstablished that the free carriers 1n a semi-
conductor (or for that matter a semimetal) can have profound effects
on the elastic properties of the materials The free carriers
referred to here are those whaich occupy either the conduction or
valence bands and take part in normal electrical conduction Bruner
and Keyes (1961) have shown that in germanium the addition of

019

-3
2.8 x 1 cm arsenic donors decreases the elastic constant C

bv 5 5% whilst the elastic constant (C11 —(‘1)\/2 remains essentially

i

unchanged. Similar results have been obtained for silicon by
Einspruch and Czavinszky (1963) and by Hall (1967) in which

. This difference between

}/2 1s changed rather than 044

€41 7 €42
the behaviour of silicon and germanium can be explained on the basis
of the symmetry of {their electronic band siructures, a shear stiain
along a <111> axais destroys the symmetry of the valleys i1n germaniumr,
whereas a shear strain along a <100> axis does not. The reverse is
true in silicon The impurity atoms, which alter the carrier con-
cenilration, may also have an effect upon the elastic constanis. The
relative changes in the elastic behaviour are usually of the same
order of magnitude as the atomic fraction of impurity (Illuntingdon,
1958) , whereas in these semiconductors the relative changes can be
two orders of magnitude greater t@an the impurity concentration.

An 1nsight into the free electron contribut.on may be gained

by considering a two dimensional stricture consisting of a four

fold degenerate conduction band, as 1llustraled in Figure 5 1 In
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the absence of strain the energy of each valley is equivalent and
the electron population is distributed evenly amongst the four
degenerate bands (Fig. 5.1a). A strain in the (1,0) direction
(Fig. 5.1b) will cause valleys 1 and 3 to decrease in energy, to
attain equilibrium, the electrons are forced to redistribute them-
selves. Since Lhe electron redaistribution minimises the free
energy in the strained crystal, some of the wvork nccded to strain
the crystal 1s recovered and the effective elastic constant is
decreased. A strain component in the (1,1) direction (Fig. 5.1c)
would shift all the valleys by the same energy, as there is no
net encrgy difference between the valleys, the electrons cannot
redastribute themselves and no minimisation of electronic free
energy takes place.

On the basis of thermodynamics and statistical mechanwscs
Keyes (1961 and 1967) has developed a theory which reasonably quan-
titatively explains the electronic effects in silicon and germanium.
The model predicts that electronic effects should be preseni in
multivalley semiconductors, but a knowledge of thce defcrmation
potential consiants is necessary before the electronic coniribution
to the elastic constants can be calculated. Pratt and Das (1970)
have observed the effect of the L_' - L_~ band inversion on the

6 6

temperature dependence of the clastic constant C 4 of Pb, .S Te

4 0 5770 5

and have interpreted their rcsults on the basis of the Keyes! model.
Houston and Stralna (1964) found a large variation in the elastic
constant of SnTe as a function of carrier concentration but since

the band structiure has not been fully resolved it hes not been

possible to inteiprct the findings on the basis of the Keyes model.
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The rest of this chapter i1s devoted to the extension of the
Keyes model to derive the form of the electronic contributions for
the basmuth band structure. Since the deformation potential con-
stants have been measured experaimentally by Walther (1968) and by
Inoue and Tsuji (1967) 1t 1s possible to calculate the theoretical

magritudes of these contributions in bismuth.

5.2 Band edge energy changes

The assumption 1s made that the strain shifts a band in
energy without altering any associated physical parameters, such as
the effective mass or the deformation potential In view of the
small mechenical strains involved in ultrasonic experiments this
rigid band model should be quite an accurate approximation. The
change in energy of a band edge under the influcnce of ¢ mechanical
strain 1s given by a double contraction of the deformation potential

tensox over the strxain tensor,

(1) _
W = Z Dk.('. €k£ {(5.1)
k,L

where Dkﬂ 1s the deformation potential and € 2 1s the strain com-

k
ponent The solution of the equation of molion of an ultrasonic

wave (see Scction 3.4) takes the form of a plane travelling wave

u = u° exp 1(wt - k - r) (5.2)

vhere u 15 the particle displeccucht vector, k the direction of
propagation and w the angular frecuency It should be emphasised
that, except for certain pure wode directions, the diszplacement

u 1s not parallel to the propesgation direction X . ‘lhe strain
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tensor Ek£ 1s the symmetrical part of that tensor which describes
the deformation of the body and comprises two partial diffcren-

tials ,

Ek‘e = E 5—-—* + 5— (5.3)

where Uy r uz are the components of the displacement vector and
X, and Ap are the components of the position vector x. For

an infinitesimal strain equation (5 3) may be approximated to,
€ - 1 u k, +u, k (5.4)
34 2 k £ £ "k

Since the deformation potential tenscrs are symmetric
(Dkﬂ _ Dik) + the expression for the band edge energy change may

be approximated as,

(1) =
W Z Dpu, Ky (5.5)
kl

(1) assocrated waith

The deformation potential tensors L
the electron ellipsoids can be vixatten in the general form

{see egn. 2 3)
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L, 0 0
(1)
L= 0 Iy, Iy
0 Lyy Ly
3 /3
1 3 )
2Ty ¥30 e g Ly mhoo)e 5 Ly
= +—‘/—§(L -L ) L (3L_+L_ ) S L. (5.6)
4711 22 ' 4 11 "22°" 2 723 :
V3 1
3 L3 v =g Lys r Lyg
- _1-(1 42T - Q T, -7, \ __/E I -
4 711 2277 4 ‘“i11 22" 2 *“23
V3 1 1
= 7Ty Iy (3L ¥ Lopdr = 5 Iy
V3 1
" b3 r =5 Loy v Dy

and the deformation potential tensor T of the hole ellipsoid

as

T11 0 0
T = 0 T11 0 (5.6a}
0 0 ']‘33

The shift 1n energy of each of the four carrier ellipsoids
may be calculated by using equation 5.5. Table 5.1 gives the
energy change of each of the carrier ellipsoids for sound propaga-

tion along the [100], [001) and [0, !:,—1——] crystallographic
VY2 /2
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Propa-— Polarisa- Band LCdge Encrgy Change
gation Velocaity Lion Band (1)
Vector Vector Index W = E D 2 u k
we XLk £
k u
1 1 L11
1
= +
V1 0 2,3 4(L11 3L22)
0 4 T11
f1 - 0 1 0
B3 1040 i}
0 V2 0.859 2,3 5 [0.429[L 1 L22] +0.514 L23 ]
0 | 0.514 4 0
0 ] 1 0
A 0.514 2,3 +-£: 0.257 L, -L 0.8591
3 . 3 E [ 22! = 0-859 1951
-0.8589 4
T n X 1 T
(A - ~33 |
| i
0 V7 0 J 2,3 L33 |
0 0 4 T33 :
— - - i
1 cos @ 1 L23 |
1 - ]
A sin 2,3 2[1/3 cos - sin 0]L, 4 !
. 0 | 4 0 |
- - 1
-—+ - 1 + _\ 4
0 1 /2( 0 842I? 0 5(9I33 1. 411L?ﬁ ‘
-0. 4 + .
V12 0.842 2,3 /2( 0 211[3L 22] 0 569133-+0 705L39
T 1
0 | 0 569 | 4 /2(0.842T1 4—0.569T33)
1
7 1 1 0 B B
1 /3 Y
7 - (= -— -L
% Vi3 0 2,3 77 G k3 Ty mIp))
o7 0 4 0
1 !
75 (=0. + - 0. z
0] 1 /2( -0.569 L22 0 842L33 0.273 L33) i
1
r, —_— A - 1
V14 0.5G9 2,3 /2( -0.1 5[3L 22]+O.842L33 0'136L29.
0.842 4 75(-0.569T, +0 8427, |
Table 5.1 Lnerqy Changes for the Carxrrier Ellipsoids.

Band Indexes

hole cllipsocad

1,2, and 3 are the electron cllipsoids and 4 is the
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directions, the particlc displacement vectors are those calculated
for pure baismuth at room temperature (see Table 3.1). These cal-
culations demonstrate the imporiant feature that sound propagation
in any direction in the bismuth crystals will produce changes in
band edge energies. Moreover, as a consequence of the threc fold
symmetry the electron ellipsoids can only be perturbed i1dentically
when a longitudinal sound wave is propagated along the trigonal
dairection, therefore energy differentials will exist between the
electron Fermi pockets for all directions of sound propagation
other than for the longitudinal trigonal pure mnde. A redistribu-
tion of carriers in pure bismuth may be accomplished by two distinct
processes. Energy differentials between the three L-point electron
ellipsoids will promote the transfer of electrons between the
valleys to attain equilibrium. These transitions wvill be referred
to here as L+ L point transitions. A stress that induces a change
in the L - T point overlap energy will either create more caxriers
(1ncrease the overlap) or will initiate electron-holc recombination
with an accompanying decrease in the cotrier population, 1his
effect will be referred to as an I.= T point transition. In hagh
purity bismuth both the L+ L and the L-+ T point transitions could
occur, however, in the case of haghly donor (Lelluraium) doped
bismuth the L~ L point transition must be the dominant mechanism
since Noothoven van Goor and Trum (1971) have shovn that vhen

7 -3
01 cm donors are present the electrons are the only carriers,

8 x1
the hole band having been completély filled. The applicaticn here
of the Keyes model to the electroric band structure of bismuch
will make the assumption that only L= L point transitions occur

and that the cnergy shift of T point hole ellipso-d does not

influence Lhe carrier densily
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5.3 Application of the Keyes model to the electron kand

structure of bismuth

As 1n equation (5.1), the change’'in energy of an electron

pocket 1n the presence of a mechanical deformation i1s denoted by

(1)
W = 3§ L ,€ (5.7)
K, L kL k&

Band edge energy clianges may modify the Fermi level from 1ts

equilibrium value, E_ , by an amount o, so that E_ = E + o

Fo F  Fo

represents the new location of the Fermi level. The electronic {ree

erergy of the clecctrons 1n a valley (1) 1s given by the espression

[0 R - o - A oL P an
AWiLLGlL 4D AcLived iua ﬂHLJClluJ.A 1

F (1) _ n(l) EF + KT

2 (g) log [l-f(E,D )] daE (5.8)
e b

D

N(
E(1)

where Fe(l) 1s the electronic free energy, N(l)(E) 1s the density

of states function, f(E,EF) 1s the Fermi~-Dirac prcbability function,
n(1) )

1s the number of eleclrons and E(l 1s the minimum band codge

energy. The Fermi-Dirac probability function 1s

5-x, -1
= +
f(E,EF) 1 exp T (5.9)
and the Lotal population of electrons in valley (1) 1s
o v @) £ o,Ey a (5.10)
E(J.)

“

The ew.pression for the free energy may be expanded by using

a Taylor Serics exparsioan of log {1 - f(E,EF)] In povers of

(1)

(W - ) and deravatics of t(L,LF ). Saince the band cnergiec
o
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(1) (1)

are modified by W (r.e. E>E-W ) and the Fermi level 1is

altered by a (1.e. EF = EF + o), the logarithmic term in the
o

free energy becomes

log[ 1 —f(E,EF)] =log[1 - (1 -exp [(E-EF ) - (W(l) -a )]/kT)-l] (5.11)

[s)

Since Mlog[l-f(E,EF )])/BE = f(E,EF }/kT, the series expansion
o o]

ls

log [1 —f(E,EF)] = log [1 —f(D,EFO)]

Bf(E,EF )

(1) 2
(w -0) o
- o) f(E,EFo)/kT + T T

(1)

+ (W

32 £ (E,E,, )
A P Fo

6kT dE

+ . (5 12)

The total electron free energy is obtained by a summation over all

three valleys ,

3 3 at
F = ¢ O o 2 1n® g 40 +xo n (g
e e r
1=1 1=1 o (1)
E

, (1) (1)
[1-109 £(E,L )] AE+ (W'~ - o) NTU(E) £ (R,EL ) dE
° (1) °

E

g [+
o af(E,EF ) dE

s L@ g)? f N gy ——2 + L@ -0)3j 8 ()
2 3E 6
E(1)

N E(1)

2
3 I (E,EF )

o
5 dec + ..., (5 13)
oL




The fourth term an the expansion is quadratic in strain and wall
make a contribution to the second-order elastic constants,

af(E,EF )/9E 1s a negative delta function and consedquently the

(o}
function

B = - N

E(1)

- 54 -

Bf(E,EF )

(1)

(E)

JE

(o]

dE

(5.14)

1s essentially the effective density of states at the Fermi surface

concerned in the redastribution

1s thixd order in strain and leads to a contribution to the thard

order elastic constants,

pursued here.

The fifth term in the expansion

a solution to this term will not be

Since the assumption 1s made that only L-+L point trancitions

occur, the total number of electrons remains constant.

criterion, the shift ¢ in the fermi level can be determined.

change in population of valley (1) 1s

An(l) = (W

To fulfil the condition of constant electron population

therefore

(1) (1)

(1) _ Q) B

(1

™ w

)

(W

(1)

-o) B

(1)

4

(5.15)

(5.16)

(v 37)
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Substitution of (5.17) 1into (5.13) yields the following expression

for the total electron free energy to second order in strain ,

3 -
F = NE + kT I r N (@) 1og Ll—f(E,E )] aE
e F F
o 1=1 (1) o
E
3 2
Ion() o13)
v 8 oa® gy g -2 W) oo B (5.18)
1=1 1=1 3 (1)
r B
J=1
3 (1)
where the total electron population N = % n .
1=1
The first two terms
3 o (1)
NE, 4k j f N () log |1 - £(5,E,) | ax (5.19) ,
(o} 1= E(1) o

represent the electronic free energy an the absence of strain.

The third term 1s linear ain strain and represents the effect of
dilational strain on the electronic energy. Expansion of the fourth
term which 1s quadratic i1n the strain yields

2
W (J))

(3) \2
CE)

3

; w) ()
()" _ 2W(1) 3=1

(1)

L

W

-+

1 r B
=1

(1)

t
1]
I ™MW
|
N
=
| 7
-
i Mwof fitw
(=

J

(5.20)
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3 2
- % z 3 [W(l) () gla) (1) L) g(2) g(2)

I EO IENCIRNED B(n)]

3
; gl

=1

2 2
3 3
S L3 (AT L@t @ L)) ga) 5@
2 - 2
1=1 3=1
i g
=1

=1 3=1
(5.21)
3
5 B(J)
i=1
() _ ()
Since from eqguation (5.14) 8 = B + the quadratic free enecxgy
term reduces to
3 3 2
F = —11—2— ;o op (w® - g@)? g (5.22)
€ 1=} =1

This equatiop clearly shows that there will only be a free electvron
energy contraibution to the second order elastic constants 1f there
er1sts an energy differential betveen at least two of the electron
ellipsoids; otherwise, 1{ the band edges remain constant or are
perturbed identically, the contribution wvill be zero, since

3 3 2
yoor (e . NG R (5.23)
1=1 =1
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The general form of the free energy obtained here 1is identical to
that deraived by Keyes (1967) which he subsecquently applied to the
ellipsoidal and parabolic band structures of cubic silicon and
germanium. For the first time, a solution of the Keyes model to
the band structure of rhombohedral bismuth will be presented.

The dispersion relation that best describes the electron
Fermi surface i1n bismuih 1s that of the non-ellipsoidal non-parabolic
(N.E.N.P.) band model, originally developed by Cohen (1961) The

density of states function is ,

¥2
(1) 21rm* /

SREIC A

where m* 1s the band edge effective mass, h 1s Plan s coustant and

”lr%’

\
} (5.24)

Eg 1s the L-point energy gap The electron density of a valley as

thercfore

y ® E - Ep

Introducinyg the well known Fermi-Dirac function (Macdougall and

Stoner 1939)

X
_ >
F (n) = Tremom & (5.26)

(o]

-

where x = L/kT and n = Ep /XT, the clectron density reduces to
o
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(1) 2 2kT
n = —=— N F n) + —— F (n) (5.27)
ﬂ1/2 c 1/2 l:.g 3/2
where 3
* /2
N o= 2 (M) (5.28)
c h2

The effective density of states concerncd in the electron redistri-

(1)

bution B ) pecomes

(1) W (ama N2 [ 1 n\ o [ Bgp
B = 1/ ( 5 > f E/2 (1+E > E 1+exp wT dE
- 2 h (o) g |
N . i
= 2 (ﬁ,—) rom + 2R R (5.29)
- /2 /2 g /2 n
where 3
F! (n) = = F (n)
1/2 31’1 1’/2
and F!'  (n) = = F () (5.30)
¥, m Y,

To facilitate numerical calculation, the derivatives of the Fermi
Dirac integrals may be transformed into a non derivative form by

the following relationships ,

B = kb, () (5.31)
Since
r! (n) = 4 (n) (5.32)
yz 2 4/2
and '
(n) = 3/, F (n) (5.33)
3/2 /2 1/2

the effective density of states transforms to

1
() _ -2 -1 6kT -
B = N, (kD) F‘I/z (n) + E F1/2 (n) (5.34)

To complete the evaluation of the sccond order electronic contribution
1t 1s necessary to calculate the energy change of ecach ellipsoid ain

the prcsence of a mechanical strain and to eapand the sunmqtion

3 "
L (v _ (Y ©
= 1 <W W ) (5.35)

™

i=1 )



The change in energy of each electron pocket i1s gaiven by a double
contraction of the deformation potential tensor over the strain
tensor. Since the strain tensor is symmetrical, it has six

independent components

€11 €12 €13
£ = 512 622 523 (5.36)
€13 €23 €33

Application of equations (5.7a) and (5.6) gives the form of the

band edge energy changes ,

(1) (1)
W = L L €
) kL “xf
= DLyy Bpq tRgy gy P 2lng Eog r Ligg E4q
(2) (2)
W = . 1.
5
W x€ “xlb
V3
= 1yg @y +3Ly,) ey + 5 (g - b)) €, + V3L e
1 ; - )
o lyy By ¥ Lgy) €y = Lpg E9q + Ly €44 (5-38)
(3) (3)
W = ¢ 13 e
) k& k£
Y3
= 1 - — - -
lg (Tyq * 3Lgp) By = Wy = Lyo) Byy ~ V3 Lyg ey

) €

1 -
/g GLygt Loy ) €y m Loy €5 F Igq €qq

(5.39)

Expansion of the summation in the frec energy yields six non zero

wponents
3 3 2 (1) (2)\? (2 () )
oz (@@ - @) = (@ - w ) +(w - W )
1=1 =1
P (n - “(3))?_+(vﬂ3) ) W(t))24 (wtz)__W(3))24_(w(3) ) w(2>)?
(5. 40)

Duc to the sumilarity .r the firsi four corponcntc these will be

swmed collectavely!
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(1% °9)

€2, 22, €2, 2y _ Tl oo

€15 80, €27 (B8 _Tiqy 0 4 0, TT5 €T, (28, 11,00 115 2T, thmquz,d N\m
XA A A ze AA 4 S €T, €2, A ee _ 11 4! zz 1., ¥
3 3 - + 3 T 3 - 3 -
22 719+ A ) \m 22 [T+ g3 ne A T) \m
M- zv + M- M v
- M) - M- M)+
N?mvz 'y NTS o)+ L@ NA ™ @
€z, €2 AN S A AN €1, €2 cr, .22 11, ¢ |9 P4 & N
3 3 - + 3 3 - 3 -
TE + ("1 T) \m T EL + ("1 T) \lm\ + ("1 1) \m
€25 €T _ T, 28, 11, ¢\m + 51, mmqm\ BREA LA, L N\M\ A PR M 12 w\m
€25 €8qc | (T Ty B, | £l mmqm\ I S PN R L PR AN A
3 A €
€2, €2, | €528, Tl v\m + E15 mmqm\_ + Chy@Cp Ty N\.m\_ + :uﬁf.TNNdw\m

ax0z2IdYT,
o T mM
T et
o " M
M - M
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Summation of the last two components of equation (5.40) yields

2 2
(3) (2) (2) (3) _ 2 2
(W - W ) + (W - W ) = 24L23 €13
+ 6(L - L )2 82 + 24 (L - L L € €
11 22 12 11 221123 F1o B43

The total summation therefore becomes

2

€
33 2 1 2511 fa2
X Z(w(l)—wm) '18[/4 (Lyy =) " (54
1=1 3=1

2 2 2 2
eyt 2L23(c + €E..)

=y @yt Ty 13 7 €23

€11%22 7

1 T
*y Ly T Lgyhyy (26 8,5 + 4E 565 - 2622523’_1

(5 42)

(5.43)

The elastic strain energy of a traigonal crystal to terms of second

order in strain has been shown (see Section 3 8) to be

32 €2
_ 11 %22 2
¢ = Cy ( 2 1 * 512)
2 2 2
T Cyp (E8gy T Eyp) 1 Cyy (Bg5 + €55)

2 A -
P Cpy (2811853% 40 815 = 2€95C03)

(5.44)

Comparison of the elastic strain energy wvith that of the electron

free cnergy shows that the elastic constants C

contributions will be (from equation 5.22 and 5.34)

117 12* €14

will possess electronic conlributions. The magnitude of these

and C44
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9 _ 2
bCyy = /MLy T L)
9 2
¢y, Ty My T L) Y
(5.45)
ACip = 12y =~ L))l Y
ac. = -36 12
a4 = 23 ¥
where
y = 8/,,
(5 46)
—-]é »
-1 T
= “12 N_(kT) [F_l/ (M) + %5—-r1 (nﬂ
2 g /o

The deformation potentials have been measured experimentally by
Walther (1968) and by Inoue and Tsuja (1967) and have becn calcu-
lated usang a pseudopotential method by Katsuki (1969). The
numerical values obtained are presented in Table 6.4. Substitution
of the deformation potentials into equation 5.45 indicates that, in

the presence of a strain, C and C will be reduced, whilst C

i1 44 12

and C14 will be 1increased in magnitude At first sight 1his might
appear paradoxical, since wve might expect a loweraing of all the
elastic constant-. However, in resglity, we must expect a loweraing
of some of the effective elasiic constants (C = lez, where C may
be a combaination of second order clastic constants, see Table 3.1),
but not necessarily a reduction of all the second order elastic

constants In the rhombohedral structure there are only three modes

with a simple velociily-elastic constant relationship, 1.e.

2
vy = Sy

2 . .
pvl = L3Q (5 47)
pv 2 = C

8 44
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The present theory predicts a lowering of V., and V_, consistent

1 8

with our expectations. But other directions of propagation present

a far more complex picture (Table 3.1), since C12 always appears

as a negative consitant, an increase in C will decrease the effective

12

elastic constants, (N.B. C in silicon also increases, Hall (1966)),

12

a change in C,, may elther raise or reduce Lhe effective elastic

14

consiants and therefore an increcase in C14 1s consistent with the

argument. The computations in Chapter 6 will show that the electronic

contributions should decrease all the measured ultrasonic velocities,

apart from the longitudinal trigonal pure mode { pV 2 =C,.).

7 33
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CHAPTELR 6

ELECTRON BAND PARAMETERS AND COMPUTATION OF THE ELLCTRON CONTRIBUTION

TO THE ELASTIC CONSTANTS

6.1 Introduction

To calculate the electronic contributions to the elastic con-
stants as a function of temperature, a knowledge of the electronic
parameters 1s required, i.e. the carrxier concentration, the L point
energy gap, the effective masses and the deformation potentials.
Fortunately, we have been able to obtain the experimental data for
these paramcters from the literature. The magnitudes of the elec-
tronic pacameters ol pure bismuth at 4.2 K are now vell established
values for the effective masses have been obtained by a number of
different experiments, among them those based on cyclotron resonance,
quantum oscirllations and optical reflectivity, the deformation
potentials have been deduced from magnetoacoustic experiments, Lhe
L poant energy gap {rom magnetoreflection and the carrier concentra-
tion has been derived from galvanomagnetic mecasurements. As the
temperature 1is increased from 4.2 K the electron relaxation time
decreases rapidly and the condition for cyclotron resonance and
guantum oscillation (wt >> 1) breaks down. Thus, at higher temperatures,
transport properties and magnetoreflection mecasurements have to be
relied upor for the necessary information Previously, in the absence
of quantitative data, 1L has been standard practice to assume that
the effective masses and the I. polnt energy gap remain constant viaith
temperature, hovever, recent magn;toreflectlon studies (Vecchi and
Dresselhaus 1974) have indicated that this assumption is grossly

inaccurate.
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This chapter reviews the measurements which have been carried
out on bismuth and on the bismuth-antimony alloys, in the light of
this knowvledge a justification of the parameters used in the present
work 1s made. Finally, the electronic contributions to the elastac

constants, as predicted by the model in chapter five, are presented.

6.2 Band Parameters of Pure Bismuth

(a) At 4.2 K
The Fermi surface effective masses of pure bismuth at 4.2 K,
measured by a variety of experimental techniques, are collected in

Table 6.1, the effective masses m,', m_ ', m,' refer to those
Fy

~ -
& ~

measured at the Fermi level. The density of states effecti1ve mass

in the ellipsoidal parabolic wodel of Shoenberg 1s ygaven by

1
mk (EP) = (m ' m)' m3‘)/3 (6 1)

In the non-ellipsoidal non-parabolic model (sce Chapter 2,

t
page 15) the dispersion (E-k) curves corresponding to m, and m3' are

non-parabolic, whilst that corrcesponuing to m '1s parabolic. The

2

band edge effective masses for the NENP model are derived from the

electron Ferml level effective masses by the relations

1 ! 2EF
m, (0) = m1 /(1 + T )
g
(6.2)
] _ ]
m2 (0) = m2
ZEF
] - ] __'
m3 (0) = m3 /(14 = ) (6.3)
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Thus, the NENP band edge density of states effeclive mass is

2EF %’3
m* (NENP) = m*(E.P) / |1 F-Er— (6.4)

g

Since, in the ENP model of Lax the effective masses are non-parabolic
in all directions, the band edge ENP density of states effective mass

1s

25
m* (ENP) = m*(EP) / 1+—E—F (6.5)

9

Thus, 1f the Fermi level and the L point energy gap are known, the
band edge effective masses may be calculated us.ng either (6.4) or
(6.5). There 1s now general agreement that the Fermi level lies

25 meV above the conduction band minima and that the L point gap is
13.6 meV (Vecchi and Dresselhaus 1974). Dinger and Lawccn (1970)
have reappraised the eaperimental results of both Kao (1943) and
Edelman and Khaikin (1966) and have concluded that the NLNP i1s a
more accurate description of the eleciron I'ermi surface. In the
present study the NENP model was employed, the band edge densily
of states effective mass was computed from the results of Swith,
Baraff and Rowell (1964) to be 0.016 free electron masses. Table 6.1
presents the density of states effective masses calculated from the

various reported Fermi surface eaperiments.

(b) As a function of Temperature

Michenaud and Issi (1972) have resolved the temperature
varietion of the carrier populalion; Figure 6.1 shows Lhat the

carrier concentration i1s approximately constant below liguid nitrogen

temperatures (3.3 x 1017 cm—3 at 4.2 KX), but at higher tempcrature

1t 1ncreases rapidly (2.45 » 1018 cm_3 at 290 K). Recently
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Vecchi and Dresselhaus (1974) have overcome the problems of making
magnetoreflection experiments at higher temperatures and have
measured the temperature dependence of some of the L point band

edge parameters. Tney give the temperature variation of the I point
gap as

ng = 13.6 + (2.1 x 10'3) T + (2.5 x 1074 T° ev (6.6)

Thus, the L point ecnergy gap increases with temperature with the
result that the electron bands should become morce parabolic. Vecchi
and Dresselbaus also measured the temperature variation of some of

the inverse cyclotron masses 8*. but since thev on

T2 mynrasd +h
-y RPXCICs,tT Wl

results for threc cyclotron masses (light binary, heavy buisectrix
and light bisectrix) it 1s not possible to derive the temperature
dependence of all the effective mass components. To utilise their
results, i1t 1s necessary to make a number of samplifying assumptions,
the data 1s presented in the form of the inverse cyclotron mass 8%,

where

"o
B* = B =% (6.7)
c

£

and

eh

where Bo 1s twice the Bohr magnetron, mc* 1s the cyclotron mass,
e 1s electron charge, h as Plank's constant and c¢ 1s the velocity
of light. The relationship between thc cyclotron effective mass and

the band edge effective masses 1is
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<>
0¥ = (gngz; 2: m (6.8)
.

vhere h 1s a unit vector in the direction of the external magnetic

<>
field and m is

ml(O) 0 0
™ = 0
m = m2(0) m4(0) (6.9)
0 m4(0) m3(0)

For the three orientations measured by Vecchi and Dresselhaus,

~

we obtain
(1) Jight binary Ly
| m, (m_m m 2)
m*(on) = 2{-1-23 _ 4 (6. 10)
c m, + 3m
| i 2
1
! (1) light bisectrax
i m, (m.m_. — m 2) §
\ m *(ﬂbx) - 1772 2 __ 4
I c )
{111) heavy basectrix
( 2 \*
m, {m_m m
m *(hbx) = 2 1723 4
o} 3m1 + m2

Inspection of thesc equations reveals that only scolutions to

m, , m2 and m3/m4 are possible, hovever, attempts at a diarect

1

solution failed because m, 1s much larger than m1 Since to cal-

culate the density of siates band edge effective mass we require

<~y
solutions 1n vhich the effective mass 1s diagonal. m, disgonalizaticon
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wlll now be carricd through.

related by a rotation R(8) about the binary axis

<>
m

where

i

R(0)

(

and 0 1s the tilt angle of the electron ellipsoid.

R(0) m' R-(0)

1 0 0
0 cosb -sinb
0 s1nbd cosB

The two effective mass tensors

are

(6.11)

Solution of

equation 6 11 yields the relationships between the components of

the two effective mass tensors,

™y = 0m
M, = M
m3 = m2
m4 = (m2
and (mm. - m 2)
23 4

c0526 + m,' sxnze

3

' 51n29 + mj' cos20

- m3') cos8 s1nb

The three cyclotron masses therefore become

(1) light bainary

-

m|mlm|
mc*(ﬁbn) = 2 12 g 7]
| ] [}
m1 + 3 m2 cos © + m3 sin ©
|
(11) light bisectrix
mlmlml _!i
mc*(ﬂbx) = 1 2 3
t 1
[mz cos 6 + m3 sin e]
L.
(111) heavy biseclriy
mlmlml
mc*(hbx) = 2 1 2 23 5—
3mi + (mz' cos 0 + m" san 0)

N

(6.12)

(6.13)
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47-

Assuming that the tilt angle i1is known, a solution for m
should be possible, the tilt anglc at 4.2 K has been reported to
be 6020' * 15' (Edelman and Khaikin 1966). However, a small varia-
tion in the assumed tilt angle would produce vide variations in
the calculated effective masses. Morcover, the assumption that
the tilt angle 1s independent of temperature 1s not necessarily
valid, (indeed the galvanomagnetic data of Michenaud and lssi
(1972) i1ndicates that the tilt angle increases with temperature).
Thus a solution which 1s independent of the tilt angle 1s desarable.

Since the tilt angle 1is small,

R ccszc s~ m,! 5152 c (5.14%)
2 3
and because
1 ]
m >>m {(6.15
2 1 )

the cyclotron equations may be simplified to

’ml' m3"'li
* = ———— s
m, (£bn) 2 i 3]
- ~k
mc*(ﬂbx) = ml' m3' (G 1G)
I _
-
- = 2 't
mc (hbx) knl m3

Therefore, to a first approximation, the results of Vecchi and
Dresselhaus give the temperature variation of ml' m3'. This 1s
not an unreasonable conclusion since for the geowetrical orienta-
tions used in their esperiments the contribution for m2' 1s small.
Table 6.2 compares the cyclotron masses obtoined at 4.2 K by
Vecchi and Dreccselhaus with those calculated on the basis of the

samplificd equations (6 16) using the experimental data of other

workers, the coirerponcence 1S good
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The assumption is made that in the NENP model m,' 1s parabolic

2
and does not vary with temperature. Consequently the temperature
variation of the light bisectrix electrons given by Vecchi and

Dresselhaus

B¥ (Lba) = 7.06 — (2.2 » 10 )T + 7.4 x 1070 12

will directly give the temperature dependence of the NENP density

of states effective mass as

1 2
_ . . /3 /3
m, = (m1 (0) m2‘(0) m. (0)) (AB*)
2
= m_(0) 8*y3
where
-2 -6, 2
AB® = 7.06/(7.06 - (2.2 x 10 )T + (7.4 x 10 )T%)

and ml‘(O)l =1,2,3 refer to the band edge masses at 0 K

6.3 The Fermt level in pure and donor doped bismuth

Ia the previous section all the electronic parcometecs necessarcy
for the calculation of the Fermi level in baismuth as a function of
temperature were introduced The Fermi level is computed from the
Fermi-Dirac equalion which defines the total electron concentrataion
(see equation > 27 )

2 kT 3/2
wmy

_— F (n)
h2 VZ g /2

where .

¥k ( n = 2

o

and
L - nk?

B - xkT
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The method of computation of the Fermi Dirac integrals Fk(n) is
described in the appendix.

The Fermi lecvel of pure bismuth calculated as a function of
temperature 1s shown in Figure 6.1¢, it remains more or less con-
stant over the temperature range 0-200 K and then decreases slightly
as the temperature approaches 300 K. The increasing electron popula-
Lion 1s thus counteracted by the i1uncrease of the effective mass.

Thais 1s in contradiction to the work of Lerner and Martin (1972)
who, having assumed that the effective masses and the L poant energy
gap remain constant, concluded that the Fermi level should increase
monotonically with temperature.

When baismuth 1s doped with a donor the elcctron concentration
1s increased while the band edge parameters remain constaut When
more than 1019 cm“3 donors are present the electron concentration can
be considered to be andependent of temperature. Figure 6.2 shous the

variation of the Fermi level for variousg electron concentrations, the

Fermi level decreases with temperature for all concentiaticas.

6.4 Band parameters of bismuth-antimory alloys

(a) Carrier Concentration

The carricxr concentrations of 4.2 K of pure bisruth-antimony
alloys in the composition range 0-15 at.% artimony have been reported
by numerous authors. BAs antirony 1s added to basruth Lhe decrease in
the overlap between the L poinli and the T point ellipsoids will cause
a gradual decrease an the carricr pcpulation. In the semimetallic
region (0-B at.% entaimony) ther. will always be a finite carrier
populativn at 0 K resviirnyg frem the band overlap oy ever, wvhon the

8lloy hecowves semiconducling, the cerricr coancentiation at lovw
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temperatures will be predominantly governed by the presence of any
donor or acceptor impurities Table 6 3 collects some of the
reported carrier concentrations for the bismuth-antimony alloys
considered here. The large scatter of the reported values reflects
the problems associated with impuraities. To a good approximation,
the carrier concentration at 4.2 K decreases monotonically from

3.3 x 1017 cm_3 for pure basmuth to appronimately 1 x 1014 cm_3

for 10 at.% antimony.

At higher temperatures thermal excitation will increase
the population of carriers, in view of the small band gap energies
involved at 300 K the carrier concentration 14 of the same order
of magnitude as that of pure bismuth, Ivanov and Popov (18€4)
have measured the numper of carriers in 10 at.% alloy to be
1.29 x 1018 cm—3 at 300 K compared Lo 2.48 x 1018 cm_3 in pure
bismuth. Jain (1959), who worked on crystals of doubtful homo-

geneity, also observed that the carrier populations of all the

alloys at room temperature were of similar magnitude.

(b) Band cdge parameters of bismuth-antimony

Measuremcnts of cyclotron resonance for the bismuth-
antimony alloys carried out within the semimetallic range (Kao et al,
1964, G E Smith, 1962, Hermen et al (1974)) show that in general
the Fermi level effective mass values decrease with the addition
of antaimony. Magnectoreflection results have indicated that the
energy gap at the L point first éecreases, goes to zero at an
antimony concentration of about 4 alt % and then increases again
with i1ncreasing anlimony concentration. Recently, Chao, Chu and

Kao (1974) have reporied a Shubnikov-de llaas study of 0-3 at.%
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Reference at.% Electron concentration at
Antimony 4.2 K cm_3
(a) 0.0 3.3 x 1017
(£) 0.68 2.7 x 1017
(c) 0.95 1.7 x 10%7
() 2.00 1.1 x 1017
(£) 2.90 1.1 % 1017
(g9) 5.0 1.39x 1017
(c) 6.0 7.77% 1014
(a) 7.8 2.0 » 1014
(@) 9.0 9 x 1014
{c) 9.0 4 4 x 1013
(c) 11.2 1.5 x 1015
() 15.0 9 x 1073
(e) 15 0 4 7 x 1015
References

(a) Saunders and Suinengen (1972)

(b) Jacobson (1973)

(¢) Brandt, Ditiman and Ponomerev (1972)

(d) Lerncr, Cuff and Williams (1968)

(e) Brown and Silverman (1964)

(f) Chao, Chu and Kao (1%74)

(g) Thomas

Table 6.3

and Goldsmid

(1970)

I'lectron concentraciun of 1he

bssmuth-antimony alloys at 4.2 K.
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antimony alloys in which they propose a non-linear variation of
the band parameters in the vicinity of the L point gapless region,
this 1s to be expected since, 1f the NENP model still holds in the
gapless region the effective masses must become very small or the
Fexrmi level must increase.

Measuiremenls carried out in the semiconducting region at
liquid helium temperatures suffer from the effects of impvrities
(evidenced by the large scatter in the reported carrier concentra-
tions). Consequently one must guestion the validity of any inter-
pretation which depends upon results taken from different groups,
for example, Oelgart and Herrmann (1973) calculate the band edge
effective masses of n-type semiconducting baisruth antimouny allceys
by taking the Fermi cnergy from Lerner,Cuff and Williams (1968).

The extension of the results to room temperature suffer
from the absence of experimental data  Although the approx.mate
variation cf the carrier density as a function of tempe.sture is
known (Jain, 1959), there 1is no precise information regarding the
cffective masses or the L point energy gap. Lerner and Martan (1972)
attempled sore band edge calculations on bismuth-antimony alloys
using paraumeters derived from various cyclotron and galvanomagnetic
measurements and suggested an approxi nete temperature dependence
for the gap at the L point, however, they ignored any temperature
variation of the effective masses.

In view of the fact that the variation of all the impor-
tant parameters in these alloys sénll remains somewhat unclear,
1t was decided that to calculate an approrimate magnitude of the

electronic contraibution to the elaslic constant at room temperature,
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the following assumptions would have to be made (1) the carrier
concentration at room temperature decrcases monotonically from

1018 cm—3 for pure bismuth to 1 x 1018 cm-3 for a 10 at.%

2.48 x
antimony alloy, (11) the L point cnergy gap remains constant
with composition, (111) the band cdge mass 1s the same as that of

pure bismuth.

6.5 The Deformation Potentials

The deformation potentials of pure bismuth measured at
liquid helium temperatures by Walther (1968) and by Inowe and
y Xatsuka (13CS) are ygiven in
Table 6.4. Since, at present, the deformation potentials cen only
be obtained through magnetoecoustic experiments, ne information
regarding the temperature dependence 1s available and consequently
temperature independent deformation potentials must be assured.
Likewvase, in the absence of data for the bismuth-antimony elloys,
the potentials must also be considered to be consten: with

compo<ition.

6.6 Compulation of the Electronic Contributiors to the

Flastic Constants

(a) Bascais

The electronic contributions to the elastic constants

were shown in chapter faive to be,



- 79 -~

Walther Katsuki Iscque and

(1968) (1962) Tsujr (1967)
L11 -2.2 -1.7 -2.1
L22 5.9 5.0 53
L23 1.5 1.1 -
L33 -1.7 -3.8 -17
T11 1.2 1.1 11
T33 -1.2 -2.5 -1.2
Table 6.4 The Deformation Potentials (eV)

of Baismuth.




2
Acll = =9/2 (L11 - L22) Y
bc.. = 9/2 (L., -L.)2v
12 i1 22
ACI4 = =12 (L11 - L22) L23 \Y
AC = =36 L 2 Vv
44 23
where
n *(JIE Y2 6KT
v o= . 2 | 2mZ (IENP) KT F . + =27 (n)
12 h2 - Eg 3

Utilisaing the band edge parameters discussed in the previous sections,
the electronic contributions were computed both as a function of
temperature and carcier concentrstion. The computer programme 1s

reproduced in the appendix.

(b) Bismuilh
Figure 6.3 prescnts the theoretical electronic contributions

and C of baismuth (alL 4.2 K)

to the elastic constants C X C12, C14 44

1
calculate? as a function of carrier concentration The magnitude of
the electronic component increases waith the free clectron density
but for the pure material it 1s relotively small in comparison to the
absoluvre values of the elastic constants, for example, a carrier

19 -3
population of 3 x 10 cm 1s required to produce a messurable
10 -2
change of 1% an C11 (C11 =62 3 x 107" dyne cm = at 4.2 K). Thus,
to obtain s satisfactory experaimental verification of the ceffect,
ultrasonic recasurements on highly donor doped crystals must be per-
formed Fiquce 6 4 gives the temperature variation of the electronic

contribution for various electron concentrations, the clectronic

contributien i1ncreases <lightly wilh temperatlure, as a corsequence
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of the large temperaturc variation of the band edge effective masses.
The Keyes model predicts that the electron redistribution reduces
the free energy and hence the effective elastic constants should be
decreased for all directions of propagation (other than for the
trigonal pure mode). The change in the velocities for the propaga-
tion directions discussed in chaptcr three have been computed for
various electron concentrations. Fagure 6.5 verifics that all the
ultrasonic velocities are decreased as the electron populatiocn

lncreases.

(c) Baiemuth-antimony

The room temperature electronic contributions to the
elastic constants of intrinsic bismuth~-antimony allovs in the com-~
position range 0-10 at.% antimony are presented in Table 6.5, the
assumptions made arc those discussed in Section 6.4a. The compuia-
tion clearly shows that the electronic cffect 1s so small as to be
virtually insignificanc. Moreover, because 1l has been assumed
that the band edge parameters remain constant with composition, the
theoretically calculated electronic contribution should be larger
than i1s actually the case, the experimental evidence shows that

the band edge parameters decrease with the addation of antimony.

6.7 Summary

In this chapter the band parameters necessary for the cal-
culativn of the electronic coniributions Lave heen detailed. The
computations have shown that for the intrainsic materials the elec-
tronic contributions should bc negligable Hovever, the effect

should be observeablc n highly donor doped crysiels of bismutih.
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At % ACy4 ACy, ACi4 8Cha
Antimony X 1010 dyne Cm-2
0 -0 113 +0.113 +0.042 -0.031
3 -0.098 +0.098 +0.036 -0.027
5 -0.085 +0.085 +0.031 -0.023
7 -0.077 +0.077 40 028 -0 021
10 -0.045 +0.045 +0.018 -0.014
Egglg_g 5 The room temperature eleclronic

contributions to the elastic conslanls
of the bismuth-antimony alloys.
(For comparison the elastic constants

of pure baismuth are ,

— c A = —
C11 65.4, C12 24.5, 013 24.9
014 = 7.28, C44 = 11.5,
C = 37.9 x 1010 dyne cm_2)

33
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Chapter seven gives the results of ultrasonic measurements
on the bismuth-antimony alloys and chapter eight reports the results
for donor doped baismuth. A more precise discussion of Lhe experi-
mentally observable electronic effect 1s reserved for these latter

chapters.
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CHAPTER 7

THE ELASTIC CONSTANTS OF THE BISMUTH-ANTIMONY ALLOYS

7.1 Introduction

The results of ultrasonic velocity measurements on single
crystal bismuth-antimony alloys in the range of composition 0-10 at %
are presented both as a function of composition and of temperature.
From these measurements the elastic stiffuess and elastic compliance
constants have been derived. The polycrystalline modula are deduced
from the single crystal constants and contrasted with the existing

data on aggregate material.

7.2a Rocm Terperature Ultrasonic Velocities

The as-grown crystals vere orientated to an accuracy of
%o by the conventicnal Laue back reflection technique and specimens
having rectangular shapces were then machined by the spark crosion
process, the final surfaces being flat and parallel to 1 part 1u
10,000. The sample dimensions were 3-5 mm in thickness, vith a
cross-sectional area of at least 1 cmz. For a complete determination

of all the elastic constants three directions of propagation were

required (1) the (001) axis gave C33 and C44, {(11) the (10Q0) axis
C11, C12 and the magnitude of C14, (111) the (O, -:%: ' :%:)
2 2

directiion C13 and the sign of C

various modes and the elastic constants is cutlined in Table 3.1,

14° The relationship between the

the notation used i1s consistent with the nomenclature of Eckstein,
Reneker and Lawvcson (1960).

Quartz piczoelectric transducers were bonded to the speci-

mens with Nonaq stopcock grease end the ultrasonic trancii times
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were measured at room temperature (290 K) usaing the pulse echo over-
lap technique. Corrections for the transducer transit time (see
Section 4.3d) were evaluated by measuraing the ultrasonic velocity
as a function of transducer thickness and extrapolating the values
so obtained to zero transducer thickness The (001) and (100)
longitudinal modes were readily excited and distinguishable as were
the two shear modes in the (100) direction. The degenerate shear
mode along the trigonal axis proved to be the most difficult to
propagate and considerable patience had to be exercised before a
clean and exponential echo train vas obtained; cooling of the sample
produced extremely sharp and well defined echoes. Propagation of
ultrasonic waves 1ln the YZ direction presented no difficulties,
although, due to their similar velocitics, care had to be cakewn to
differentiate between the pure and the quasi-purc sheor redes. In
general, for all modes, the Nonag bond appeared to stiffen when
cooled from room temperature to OOC, producing an apparent, but
small decrease in the attenuation, however, ro ancmaliec 1 core
obcerved in the ultrasonic velocities

Figure 7.1 gives the ultrasonic velocities as a function
of compositicn for the eight modes studied here. There 1s an increase
in all the eaperimentally measured velocitires as antimony 1s added
to baismuth.

The prancipal erxrors in the velocity mecssurements are.
(1) the uncertointy in the measurement of the apparent transit taime,
l1.e 1inslrumentation error, (i1) Ehe determination of the correction
for thr effective transit time in the transducer, (111) misForienta-
tion of the sample, (1v) unce-taanty in the length measurement,

(v) arffraction Since Lhe pulse ciho overlap to.-hnique cen recosiure
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the apparent transit tame to an accuracy of 1 part in 104, this error
can be neglected. The uncertainty in the determination of the
effective transit time withan the transducer i1s estimated to be at
most 0.015 us, thus, this error i1s dependent on both the velocity
of propagation and on the thickness of the sample. De Bretteville

et al (1966) have shown, following the method of Waterman (1959), how
to calculate the velocity erxrrors due to misorientation for the
particular modes in rhombohedral crystals, for a misorientation of

and V., will be less than 0.01% and for

o)
7
1~ the errors for \1, V2, V3 7

V7, V12' V13 and V14 less than 0.1%, The specimen dimensions were
measured, Lsing a dial gauge, to an accuracy of 0.03%. Papadakis
(1966) has shown that, for the frequencies used here, the effecl of
diffraction 1s less than 0.05%. Thus the total uncertainty Jimiis

are approximately O 4% for longitudinal velocaities and 0.2% for the

shear wave velocities

7.2b The Llastic Constants at Room nggggg@ure

Cnly the clastic constants C 17 C and C can bu obtaiaed

33 44

from single velocity measurcments 1n pure mode directions, the con-

1

stants C12, C13 and C14 must be deduced from a combrLnation of velocity
measurcments  The method of least-mean-squares has been employed to
compute the entire set of elastic constants for each composition

(see Pace and Saunders 1970). Initially each of the effeciive elastic
constants 1s calculated from an approvimatcd set of Clj's' divided by

the corresponding experimental value and comnpared to unity to compute

the parameter SUMSQ
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i

CALULATED pv >
SUMSO Z 12 -10
MEASURED pv
1=1,2,3,7,8 *
12,13,14

SUMSQ 1s then minimised by a cyclic adjustment of the elastic con-
stants. The computer program and i1ts mode of operation are given
in Appendix 3. The dencsities of the samples were obtained by the
displacement method of Archimedes. The computed elastic constants
as a function of composition are given in Figure 7 2. The errors
in the elastic constants were estimated by usirg the least-mean-

squares programme and adjusting the measured velocities to their

eyperimental limits of accuracy. The elast.c constants C

11°f Clq

and C44 are observed to i1increase monotonicaily with composition,

while C and C remain approximalely constant The constants

12* ©13 33

show an approximate agreement with Vegard's Law 1f they are extra-
polated to pure antaimony (Epstein and De Brettievaille (1964) bave
measured the elastic constants of pure antunmony at 300 K to be

11

Caa

99.4, = 30.9, C = 26.4, C = 21l.6, C = 44.5,

Ci2 13 14 33

39 5 x 1010 dyne cm—z), an extrapolation over such a small

composition range must howvever be treated vith extreme caution.
The clastic constancs of pure bismuth at room temperaturc obtained
herc compare favourably to the results of Eckstein, Reneker and
Lawson (1960) and Kammer, Cardinal, Vold and Gliskman (1972).
Teble 7.1 compares thcese three sets of data. As in the present
work, both Dckstesn el al and Kaﬁmer et al made corrections for
the effective transit time in Lhe transducer, Eckstein et al
uscd the empirical psocedure of determining the transit time with

and withoul a dumpy transducer on the opposite face of the sample,
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Elastic Eckstein, Lawson Kammer et al
Constant | T K| This Work | 4 Reneker (1960) . (1972)
42 69.25 68.7 -
C11 80 ©68.18 68.6 -
290 63.39*0.4 63.7 63.5
42 24.48 23.7 -
C12 80 24.49 23.8 -
2920 24.52+Q 3 24.9 24.7
42 25.37 - -
C13 80 25,41 - -
290 24 900 4 24 7 24.5
42 8 40 8 44
o] . .
14 80 8.12 8.0b
290 7.28%0.1 7.17 7 23
42 40.41 40.06
C33 80 39.93 40.6
290 37.90410.3 38.2 38.1
42 13.55 12.9
C44 80 13.08 12.7
290 11.51 £0.15 11.23 11.3
42 22.39 22.5
21.85 .
C66 80 21.85 22.4
2S0 19 441 0.4 10.41 19.4
Tall. 7.1. The elastic constants of pure bismvth at 4.2 K,

718 1 arc 290 K,

comparison with the work of

Eckuueein, Lawcon and Rencker (1960) and Kammer,

Cardinsl, Vold end Glickeran

(1972).
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while Kammer et al measured the transit time as a function of trans-
ducer thickness. Thus, in all three studies, thec principal error
has been reduced to a minimum. Both these groups measured the
ultrasonic velocities of fourteen modes of propagation and therefore,
although their electronic technigues were not as sophisticated as
used 1n the present work, they were able to reduce their ercors by

having a large number of redundant terms.

7.3 Temperature Dependences

The temperature variation of most of the modes was measured
with the pulse echo overlap technique in the rangc 4 2-290 K The
results are presented in Figures 7.3 to 7.10 An anteresting finding
is that the temperature dependence of the ultrasonic velocrities is
essentially unaltered by alloying; Figures 7.11-7.13 present the
velocily data as V(I}/V(£80) and demonstrate that the temperature
variation 1s independent of composition. The dearee of scatter of
the erperaimental points reflects the accnuracy of the technique. The
pulse echo overlap method 1s sensitive to a velocily vairiaricon of
1 part in 104, the transit time vas continuously monitored and
measurements recorded in at least five Jdegree intervals. Some error
might be introduced 1f the transit tame correcticn for the perturba-
tion of the transducer were to change with temperature. To check
this, the corrections werce cvaluated both at room temperature and
at liquid nitrogen and found to be esseatially identical, thus 1t
vas concluded that the transit time corrcction was temperature
i1ndependent Furthermore, the fact that the temperature dependences
of the ultrasonic velocstics of all tne bismuth-antimory alloys arc

identical atlc:is to thas ascumption. The sawple thicknesses,



-~ 90 -

although similar, were not identical and thus the perccntage transit
time corrections were different for each specimen Any change in the
correction factor would thus have reflected itself in the temperature
dependence. Based upon this simple evidence, the temperature depen-
dences measured here are believed to be of high precision.

The least-mean-squares programme was used to obtain values of
the eclastic constants at a series of temperatures down to 4 2 K.
The ultrasonic path length and the density were corrected for change
with temperature by use of the two coefficients of thermal expansion
of pure bismuth yiven by White (1972). Values of the elastic con-
stants at temperatures between 4.2 K and 290 K are given in Table 7.2

and shown graphically in Figures 7.14-7.16. Apart from C the con-

12'
stants vary linearly with temperature approaching a4 maximua at 0 K

with zero slope - the usual behaviouar found to crystalline materials.

Within the limits of ewperimertal accuracy, the constant C 1s

12
observed to be independent of temperature Eckstein et al measured

all the elastic constants apart from C et 4.2 X to 78 K, making

13
corrcctions for thermal expansion from the data of Erflaing (1939),

in genexal, the present findings substantiate their measurcments.
However, the Lemperature dependences obtained hcre are accurate to

1 an 105 for c11' C33 and C44 and 1% for Lthe indirectly measured con-

stants C and C Kammer et al (1972) determined the adiabatic

12/ C13 14

stiffness constants at a number of discrcte temperatures ranging from
room temperatuce to thc melting point, and made corrxections to the
sonic path length and densily by using the thermal expansion data of
Cave and Holroyd (1960) Thus, the present resulls complete the dats

for pure bismuth cver the entire cange of temperature extending from

4 2 K Lo tne nelting pount
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7.4 The Rlastic Compliances

Often, 1t 1s more convenient to relate the response of a
body directly to a particular stress. The elastic compliance

tensor 1s gaiven by

€ = S5 g (7.1)

The transformation between the elastic stiffness and compliance

tensor 1s affected by ,

C
7.2
;8 (7.2)

s .= (1)

1+3 Ac
1] h1

wvhere Ac 1s the detecrminont of the C terms and AC 1s the minor

17 l
ket ”

(=

nof the elemeut Clj. Expansion of (7.2) gives the relationchip

between the coefficients of the i{wc tensors &«

511 = (C33/M + 044/N)/2
512 = (C33/M - C44/N)2
S13 = “Cy3/m
(7.3)
s
14 = -C14/M
33 = (C)y *Cp/M
Sgq 7 €4y T Cypi/N
Se6 = 2051y 7 5yp)
where M = cC_..(C + C,.) - 2C 2
) = a3ty 12 ‘13
N = C.(C.. -C..) - 2. 2
33€11 7 o2 14

The computed temperveture dependences of the elastic com-
pliances axe presented in I'gurces 7.17-7.19. As evpecled, the

clastic corpiiances ancrease vilh temperstuare.
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7.5 The Polycrystalline Modula

The results obtained here indicate that there are no strange
anomalies in the elastic behaviour of the bismuth-anitmony alloys
in the range of composition 0-10 at.% antimony. This 1s in com—
plete contradiction to the work of Gopinathan and Padmini (1974) on
polycrystallane alloys, in vhich they observed very large changes
in the elastic modula, both as a function of composition and tempera-
ture. These worxers attempt to explain gualitatively their observa-
tions on the basis of a change in the electronic contribution to the
elastic constants and on the complex variation of the lattice para-
meter as determined by Jain (1959). The present work has shoun
that the electronic contribution is so small, as to be iusignificant,
thle the lattice parameters (0-29 at.% antumony) have been very
carefully measured by Cucka and Barrett (1962) and shown to vary
linearly v1th composition.

To facilitate a more direct comparison betwec. the present
findings and the data of Gopinathan and Pedmini (1974), the elastic
cor.tanis oblaiued here are transformed into the elastic moduli Lo
a polycivstalline aggregate. Hill (1952) showed thal the values of
the elastic moduli for a polycrystalline material lie between those
calculazed from the two classical approximations of Voigt (1928)
and Reuss (1929), the Veigt method averages over all lattice direc-
tionc ucaing the assumption that the straun i1s uniform throughout
the aggregate, whi e the Reuss method assumes that the stress is
uniforr throughout the aggregate, the Voigt modull are larger than
the Reuss moduli. Both methods are sligliLlly inaccurate, but the
average of the values obtoircd 1s in good agreemenl v.1th the experi-

mental cvidence (see Hearmon 1961, p.44). For the rhombohedral
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structure the equations for the shear moduli (G = Vsz, vhere Vs

1s the polycrystalline shear velocity) are

1
GV = -1-3-((2c11 + c33) - (C12 + 2c13) + 3(2c44 4 c66))
GR = 15/(4(2511 + s33) - 4(s12 + 2813) + 3(2544 + 866))

and for the bulk modul.

c = Lo
K, = g((2C,, +Cyo) +2(C , 1 2C,,))

3

KR = 1/((2511 + S33) + 2(S12 + 2813))

where the subscripts V and R refer to the Voigtr and Reuss approxi-
respectively. 1n bow upproximarions the pulk roduli arc
equivalent (KV = KR)'

For the bismuth-antimeny alloys it can be assumed Lhat,

like other materials, the actual shear modulus is

()]
1]

(GV + GR)/Z

The Yo j's wodvlus L, Poisson's ratio o, cemprescsikilivy B ana

the longitudinal modulus L (L = pVLz, where VL 1s the longitudinal

velocity of the aggregate) are calculated from the following

formulae,
L e
E 3¢ 9K
o = (& - 2C)/2G
_ o 1- 0
Lo E[( o) U - 20) ]

B = 1/K.
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The longitudinal and shear moduli and the compressibilaty
as a function of composition are given in Figure 7.20, the results
obtained by Gopinathan and Padmini (1974} are also plotted. The
differences between the two sets of data are very striking. Not
only do these workers observe a pronounced minima in the moduli at
5% at % antamony, but their longitudinal modulus for pure bismuth
1s only half of that obtained here. Their data suggests that they
measured a longitudinal velocaty for pure bismuth which as less
than the slowest longitudinal velocity in single crystal materaial.
Furthermore, they incorrectly related the longitudinal velocity to
Young's modulus, 1.e. theirr quoted Young's modulus is 1in fact the
longitudinal modulus. Gopinathan and Padmini measured their ultra-
sonic veloclties using the composite oscillator method, origainally
developed by Balmuth (1934), at a frequency of 110 kHz. In a suh-
sequent paper they report various ultrasonic studies on bismuth
single crystals, wusing the same technique they measure the z anis
velocities to be (1) longitudinal 1.470 x 105 cm ';ec—1
{1 96 103 cm secn1 measured here) can (11) mneat

| 24 -—
0.703 x 10~ cm sec 1 (1.083 x 105 cm sec 1). The deviations (from

the results obtained hecre) for their longitudinal and shear
velocities are 25% and 42% respectively, yet they quote Lheir
measuremrents as accurate to a few parts 1n.a thousand, and the
modulus values accurate to one percentc Thus, awsuming that they
usced bismuth and single crystals, their tecnnique must be accurate
not to a few parts in a thousand, but to 2 parts 1n ten. Bearing
in mind thalt thelr err0rs are so extreme, 1t 1< interesting to note

that their quoted polycrystalline Yourg's modulus (which they

2
meorreclily relaled to E = pVL ) and shear modulus for pure bismuth
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(whaich they correctly related to G = pVSZ) agree to within 0.3% and
0.1% of those gquoted in Hearmon (p 44, 1961). 1In view of their
compounded cxperaimental and theoretical errors, this coincidence is
remarkable. These workers then go on to point out a perfect cor-
relation between the variation of the lattice parameter (as measured
by Jain 1959) as a function of antimony concentration with Young's
Modulus (obtained from VL2). The maxima and mainima in both proper-
ties occur at the same composition Yet, these workers arec apparently
unaware of the careful and accurate measurements of Cucka and

Barrett (1962) of the lattice parzmeters and atomic positional para-
meters of the bismuth-antimony alloys which deronstrave that the
lattice constants vary laincarly with compossition in the range 0-30
at.% antimony. In the composition range corsidercd here CopinathLan
and Padmini also incorrectly related the decrease in the L-T point
band overiap to the decrease in velocity, throughout the paper these
workers have assumed that the electronic contraihution increases che
elastic constanls, whercas here 1t has been shown from tre Keyes
rodel that the reverse is true and also that ibhe effect is negligible.
Since Gopinathan and Padmini have made so many basic eaperimental,
theoretical and interpretive errors no further discuss.on will be

pursued here

1.6 Mequ;emean o” Q]Lrason1c Attenuation

Although they wvere not of primary interest, ultrasonic alten-
uvalion measucements were taken simultaneously vwiith the velocity
meazaremen'.c Furtherrrre,; to cusure accurace vclocity measurements
1t was Lagortent 1o envarce that the scguence of ruleiple echoes

remainod cooponencial whilst the tomperatuvre was varied.
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In general, the attenuation decreased with decreasing tem-
perature and there was no evidence of any pronounced effects. No
overall dependence with composition could be ascertained; typical
results obtained are shoun in Figure 7.22. The attenuation measure-
ments could not always be readily reproduced. There are probably
twe main reasons for the behaviour of the attenuation: (1) the
Nonag band 1s lossy (Farley 1974, Maynell 1972) and the atienuation
within 1t might vary with temperature, (11) the prepared sample
must necessarily have a thin (V100 M) layer of pelycrystalline
material on each ~f the two parallel faces (a result of the machining
process), this layer may have a dominating influcnce on the apparent
attenvation. Therefore, unless the machining process is identical
for all samples (and thais 1s difficult to achieve), a direck com-
parison of the absolute atvctenuation coefficients 1s not easy. Augery
and Freedman (1967) have commented on this very point and have shown
that the prescence of this layer does introduce a significant excess
attenuation. To obtain rcliable acoustic attenuation measurements
they prupose a technique which ucilises a combinaticn of mechanical
grinding and eleclropolishing. The polycrystallaine layer should

however have a negligible effect on the velocity measurements.,

7.7 The Debye Temperature

The elastic constant and density data at low temperature
were used by Dr. G A. Saunders to calculate the Debye temperature

GD from
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where h and k are Plancks and Boltzmann's constants respectively,

N 1s Avogadro's number and Vi are th eigenvalues of the Christoffel
equations. The integral over the solid angle ¢ has been approxi-

mated by a sum taken 10288 points each subtending on equal solid

angle AQ (= 1 218 x 107 steradians). Values of 6, obtained for

pure bismuth and 10 at.% antamony are 121 * 1 K and 128 * 1 X respectively
Separation of the specific heat of baismuth into lattice and electronic
contributions has proved to be rather difficult because the Debye
{temperature 1s small and the electrons in this semimetal with a small

band overlap contribute little to the low temperature specific heat.

However, accurate measurements by Collam, Krusuis and Pickett (1969)

gave a best fit to an eapression of the form vT + BT +4 ATnz of

C = (8.54 2 5T + (1120 * 50)T° 4 (0.0064 1 0 002)T 2 wI/mole K°

with the result that the electronic contribution (VT) tc the specific
heat 1s 1in good agreement with that calculated (v = 7.1 uJ/mole X)
from the cllipsoidal model of the Fermi surface, thus removing the
apparent discrepancics observed by other workcrs. The T3 depend.ut
lattice contrabution Lo the specific hcal gives a Debye tempsrature
of 120 3 £ 1.5 K an excellent agreement with Phillips (1960) deter-
rination and the 121 * 1 K obtained herc from the elastic constants.
Previous calculations (Anderson 1965) of the Debye temperature from
elastic constant. data have obtained 106 K (Cckstein, Reneker and
Lawson) and 118 K (Bridg man 1924).

There 1s ne avalluble specific heat deta wilh which to compare
the eD calculated from Lhe clastic constant data of the bismuth-

antimony alloys. Hovever, the incrcase of the Debye temperature to
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128 K for the 10 at % alloy is consistent with the eD of 184 K for
pure antimony calculated by Anderson (1965) from the isothermal

constants of Bridg.man (1924).

7.8 Discussion

The ultrasonic measurements on the bismuth-antimony alloys
in the range of composition 0-10 at.% antimony have shown that the
elastic constants vary monotonically with composition and, contrary
to the results of Gopinathan and Padmini (1974) exhibit no anomalous
bechaviour This confirms the theorctical studies of chapters five
and sir¥, which have shown that. although the electronic barnd structure
undergocs some rather drastic changes, the electronic contributions
to the elastic constants are neglaigible.

Despite the abundance of literature reporting the clastic
constants of various elemenis, compounds and alloys, little informa-
tion regarding the elastic ‘behaviour of comparable crystalline solid
solutions 1s avallable., Araki and Taneka (197?) have mcasured the
elastic sctiffness constants of the selenium-tellurium system vhich,
like the baismuth-antimony alloys, also form an unintercupted series
of solid solution. They found that the variation of the elastic
constents was essentially linear over the entire range of composition.
Grison (1951} has shown that the unit cell dimensions of the selenium-
tellurium system with composition depart only slightly from lanearaty
Since thais systoer crystallises in the hexagornal structure, it bears
resemblance vo the rhiomhohedral structure of the bismuth-antimony
alloys. The present finding that the elastic constants of the
bismuth-antimony alloys shov apprcrimate agreement with Vegard's Lau
arce thus, 1in esscnce, supposted by the rcsults of Araki and Tanaka
“\\“,\; \( l.l:l.‘LA o~
26 gar e

FERTICN
L-
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CHAPTLR 8

THE ELASTIC CONSTANTS OF BISMUTH DOPED WITH TELLURIUM

8.1 Introduction

The computations at the end of Chapter 6 have shown that,
in highly donors doped bismulh, an elecironic contribution to certain
elastic constants should be observable, the theory predicts that an
increasc in the free electron density should decrease C11, C66 and

C and increase C and C

44 12 14" A programme was evolved to attempt

an experamental verification of the effect.
Single crystals of hismuth doped with tellurium were grown
by the zone levelling technidue and ultrasonic samples were prepared
in the manner described for the hismuth-sntimony alloys Since
Noothoven van Goor and Trum (1969) have shoun that tellurium 1s a
monovalent donor in bismuth, 1t was assumed that each tellurium atom
contributed one electron to the ellipsoids at the L point. The com-
pPlete set of elastic constants wvas measured for crys*als with clectron
conccntrations of approximately 1019 cm_3 and 1070 cm-3 (the exact
tellurium and eclectron concentrations are gaven in Table 8.1), for
brevity these will be referred to here as T19 and T20 respectavely.
The T19 crvstal was cut and polished into samples with parallel

faces normal to the (100), (010), (001l) and (0,—-1— ‘ —l-) crysiol--

V2 /2

lograplic directions, the measured room temperature ultrasonic
velocities and the velocity-elastrc constant relatiorships are sum-—
marised in Table 8 2. The T20 crystal was cut into samplecs with

faces normal to the (100), (001) and (O,-i— ,-i— } crystellographic

2 V2
directions, tLhe ultrasonic velocities measured at room temperature

are gaiven in Teble 8.3 The samec corrections for) the perturbation

-


http://volociti.es
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Electron cm
Sample % Wt, Te % At Te Concentration
19
T 0.024 0 032 111 x 10
19
20
T 0.262 0 428 1.21 x 10
20
Table 8.1. The densities of the bismuth

doped tellurium samples.
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of the transducer, as detailed an 7.3 and 4.3, were made The
velocity errors are of the same magnitude discussed for the bismuth-
antimony alloys. Table 8.4 compares the ultrasonic velocities for
both samples with those measured fcr pure bismuth. In general the
addition of tellurium causes a decrease 1n the ultrasonic velocities,
consistent with the theoretical prediction of the Keyes model (see
Figure 6.6), however, the changes in many of the velocities are

st1ll withan the limits of urcertainty.

8.2 The elastic constants al room temperature

The elastic constants at croom temperature werc compiled by
the method of least-mean-squares described ir Section 7.2, the

derived values are given in Table 8.5 and compared to the theoretical

e

magnitude of the electronic contributicn calculated iror the keyes
model. For both samples a change in most of the elaustic constants
has becn obscxrved. For T19 the changes in the elastic constants f£rom
that of pure bismulh are just wzithian the limits of experimental

uncertainty, while for T20 the changes in Cl c and C66 are larqer

1" 712

than the error lamits (the error in the charge i1in the peasurcment oL

each i1ndividual constant). Moreover, the overlying trend is for C11

and C66 to decrease and for C12 to increase with the tellurium concen-

tration, as predicted by the Keyes model, the numerical change (not
peiL~entagce change) of each of these constants 1s approximately the

same. The variation of C33 1s negligible, lying well withain the

uncertainly limits of pure bismuth. The changes observed in the

elastic constants C and C44 remalin somewhat unclear. C

137 C14 a4

decreases for T19 and increases for T20 (o decreascs by 2%: C

13 14

1ncreases ravginally with the tellurium concenlration.
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Pure

Bismuth T19 T20
v, 2.548 2.529 2.503
V2 1.561 1.547 1.527
V3 0.862 0.835 0.828
V4 - 2.549 -
V5 - 1.385 -
v - 1.02z2 -
6
V7 1.965 1.968 1 961
V8 1.083 1.074 1.088
V9 - - 2 053
V10 - - 1.509
V11 - - 1.128
V12 2.418 ?2.429 -
V13 0.9130 0.873 -
7 -
\]4 1.043 1.044

Tablc € 4 Comparicson of the Room Temgcrature

Velocities (x 105 cin sec— ) .
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In view of the experimental uncertainties, 1t i1s concluded

and C are observed

that only the elastic constants C11, C12, C66 33

to vary in the manner predicted by the Keyes model. The changes in
the elastic constants C13, C14 and C44 have not been verified experi-
mentally. Since, to obtain an electron concentration of 1020 cm—3,
1t has been necessary to introduce 0.4 at.%$ tellurium into the
bismuth lattice, some of the variation of the elastic behaviour could
presumably be due to the presence of impurity atoms The changes 1in
611 and C12 are 3 - 5%, which 1s barely an order of magnitude larger

than the atomic fraction of impuraity. In comparison, the addition

of 0 4 at % antimony causcs a 0.5% change an C {(hased upon ex.ra-

11
polation of the data in Chapter 7) while C and C change to a

12 33
negligible cxtent. On this basis one may plausibly argue that thc
electrons are the dominant mechanism in the change of the elastic
constants found bhcic for tellurium dopcd bismuth. The only otherx
reported viork concerned with the effects of impurities on the elastic
properties of basmuth is the ultrasonic study of Gopinathan and
Padmini (1974b) on polycrystalline bismuth doped witli 11in, an which
they opnserve a most pronounced dependence of the elastic moduli with
composition. However, since these workers have made the same funda-
mental errovs as in their paper on Lhe bismuth-antimony alloys (for

a discussion of this point see Section 7 5), a comparison with their

work will be omitted here.

€3 The Compree«ibilities and Youna's Modulus

A knowledye of the complete set of elastic Lensor coefficients
poermits the determinction of a materiral's response Lo any applied

stress system. Particularly wmportant in relating theoretically the
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interatomic binding forces and elasticaty are the bulk modulus, the
volume compressibility and the linear compressibilities. The volume
compressibility (its inverse is the bulk modulus) 1s the measure of
dilation under hydrostatic pressure and for rhombohedral crystals

1s given by

Bv = 2(s11 + 512) + 2513 + 833 (8.1)

where SlJIs are the compliances, (the transformation for which has
been given ain 7.4). The linear compressibilaity of a crystal is the
relative decrease 1in length of a line when subjected to unit hydro-
static pressure, 1t has twvo components, one parallel to the trigonal

axis,

B = 25..+8 (8.2)
and thec other normal to the trigonal direction

) + 8 (8.3)

B = (s,, +S 13

Xy 11 12

Theoretl .rcally, since the electronic contribution to the elu-tic com-

pliances 1is such that

5511 = —5512 ' 5513 = 0, 5533 = 0 (8 4)

there should be no eleclronic effect on the compressibilities. This
1s the same result found by workers on silicon and germanium an which
only very smecll changes an the bulk modulus were observed Table 8 6
shows that ithe compressibilitices measured herxrc decrease slightly witlh
the addition of telluraum, bat are witnin the limits of uncertainty.
1n viev of the complex crystal structure of bismuth, it a1s
interesting, Lo consider the Young's Modulus surface charge due to the

electronic contribution The Young's modilus 1s defined as the ralio
G
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511 512 513 514 533 Sa4 566
Pure Bismuth 25.6 -8.0 -11.1 -21.3 39 1 114.0 67.4
T19 26 7 -8.8 -11.6 -22.8 41 5 117.9 70.9
T20 27 9 -9.9 -11.6 -24,2 41 5 117.2 75.7
Tale O &{ay Tne Eilastic compliance Constants in
) units of 10—13 cm2 dyn_l .
- |
Linear Volume
Bz Bxy Bv
Pure Baismuth 16.9+t1.5 6.5810 7 52 242 5
T19 18 2 6.28 54 0
T20 18 3 6 40 54.3
Table 8 G(b) The Linear and Volume Compressibilities

in units of 10_13 cm2 dyn .
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of the longitudinal stress to the longitudinal strain, its
orientation dependence for rhombohedral crystals i1s given by

2.2

-1 4 2 2
M = (sil) = [(1—13 1°s. . +2 533+Jl3 (1—&3 )(251 s )

11753 3% 544

-1
2 2
+ 21121,3(3!11 —22 )Slt;l (8.5)

where (£1,£2,£3) 1s the unit vector in the direction of the longi-
tudinal stress. The orientation dependence of Young's modulus 1n
pure bismuth was first reported by Gunton and Saunders (1972)

Figure 8.1 presents the change in Young's modulus in the XY and X2

crystallographic planes.

8.4 The Temperature Dependence

The temperature dependence of five ¢f the velocities of

propagation were measured (Vl' V., V.. V_ and VS)' sufficient to

2 3 7
cbtain the temperature dependence of all the elastic constants

bar C the normalised ultrasonic velocities V(T)/VI(290 K) .xre

131
presented i1 Migures B 2-8.6. An intcresting firding +3 that, as
for the bismuth-antimony alloys, there i1is no measurable deviation

in the temperature variation of the ultrasonic velocities from that
of pure bismuth. The leasl mean-squares program vas used to cawpute
the elastic constants at a scries of temperatures dovn to 4 2 K,

the tempcralure dependences obtained arce given an Figure B.7. As
demonstrated by Lhe normalised velocity curves, the temperature
var.ation of most of the eclastic constants appears to be virtually
independent of the lel lurium coucentrarion Howvever, for the

tellurium doned’ sanples the elastic constent C (which 1s tempcra-

12

ture independenct for pure bismuth) iuncrecased slightiy as the
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temperature 1s decreased. The corresponding changes in the elastic

constants C 1! Cc

1 and C are given in Figure 8.8, the

12" %66’ C14 44

changes are larger at lower temperatures and take the approximate

form

8C (T K) - C (T X)
6C (290 K) C (290 X)

for all the constants, apart from C12

8.5 The Temperature Variation of the Band kdge Effective Mass

and of the Deformation Potentials

Figure 6.4 shows that the theorelical electronic con-
tribution previously calculated from the Keyes model increases
slightly with temperature (30% from 4 2 K to room tempevalure for
a carrier concentration of 1020 cm_3). This 1s in couftiadaction to
the present finding of a decreasing electronic contribution with
temperature. When comparing the cxperimental results with the
calculations of chapter 6, it must be remecibered tlhiat the tempera-
tuéé variation of the band edge effeclive masses werec only approxi
mated from the data of Vecchi and Dresselhaus (1974) aud, although
the.r results are of high precision at lover temperatures (below
100 K), the extensicn of thesz parametcrs to higher temperatures 1is
only bascd on two data points taken at 200 K and 280 K  Moxreover,
the Fermi level of pure bismuth calculated from these parameters
(see Figurc G 1) exlithbits a rather strange dependence, remaining
constant in the range 0 - 180 K and then cdecreacing rapidly to reach
the condu-tion band edge at appro<imately room temperature, thas

implies that thie material must bicore semiconductaing at higher

temperatures. TIuril n1rore, the assurpticn thev the defoimation
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potentials are temperature independent 1s not necessarily valaid.
Indeed, the work of Balslev (1966) has shown that the deformation
potentials of silicon at 295 K differ slightly from those obtained
at-80K (Eu=9'2 eVat 295K, 8.6 eV at 80 K). In view of the large
temperature variation of all the other parameters, both electronic
and elastic, 1t would not be surprising to find a large variation
of the deformation potentials of bismuth. Unfortunately, there 1is
no independent way of separating the temperature dependence of the
deformation potentials from that of the effective masses. Two
distinct approaches will be made here to resolve the temperature
variation of the elastic constants. Firstly, by assuming the defor-
mation potentials to be temperature independent, the temperature
dependence of the effective masses will be derived and contrasted
with those approximated L{rom the results of Vecchi and Dresselhaus
(1974). Secondly, the effective masses of Vecchi and Dresselhaus
vill be assumed accurate and the temperature dependence of the
deformation potentials will be deduced.

Before proceeding, it 1s important to realaise that the form
of the electronic contribution cannot modify all the elastic constants

in such a vay as to be temperature independent Since

|Ac11| = |Ac12| = |Ac66| (8.6)
and
C11 (T——K) , Cl?(T X) . C66(T K) & 7
011(290 K} C12(?90 K) C66(290 K)

there must bec some varieticn in the temper-ture dependence of the
elastic constenis ifros that of pure bismuth, hovever, 1t might be

so small ¢s Lo he eyperamentally indistinguishable.
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Since the temperature variation of C was observed to be

11
independent of the electron concentration, the temperature dependence
of the band edge effective mass was deduced making the following
assumptions* (1) the deformation potentials remain constant, (11) the
band edge effective mass, the Fermi level and the calculated electronic
contribution at 4.2 K are accurate, (111) the temperature variation
of the L point energy gap as measured by Vecchi and Dresselhaus is
accurate. The electronic contribution calculated at 4.2 K was then
extrapolated over the entire temperature range to give a temperature
dependence of C11 consistent with the experimental measurements. From
a combination of the equations which define the carrier corcentration
(see equation 5.24) and the electionic contributions (see equation

5.45), the Fermi level and the effective masses were calculated over

the entire range of temperature. The Fermi level was deduced from

2 -1 [F_%(n) * gEE-F‘(nJ
F = -9(L., -L_.)°N.(24 xT) a2 (8.8)
e 11 722 . 2KT
F,.(n) +—TF (n)
5 E L
g
and the effective mass {rom
3 2kT
m* = TN/ (6N [F;z(“) rE—g—- E‘!i(n)]) (8.9)

The variation of the Fermi level and the band edge effective
20 -3
mass for a carrier population of 10 cm calculated from the tem-
perature dependence of C11 1s qaven 1n Figure 8.9, the Fermi level
increases slightly vith temperature, as does the effective mass. The
effective mass deduced from these computations was then used to recom-
pute the electronic contribulions to the clastic constants both as a

function of terperature and eleclron concentratuon, the electronic

contributicne obraincd at 4 2 K and room temperalure are presentied in
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Table 8.7. The interesting finding i1s that the temperature dependence
of all the elastic constants are, within the limits of enperaimental
uncertainty, effectively independent of the electron density. Thus,
although there i1s a slight deviation in the temperature dependence

of the elastic constants from that of pure bismuth, i1t 1s experi-
mentally unobservable. Figure 8.10 compares the theoretical temperature
dependence with the experimentally measured temperature dependence of

the elastic constants C11' c _,C and C

66" 44 14°

Thus, by fitting the electronic parameters to the temperature
dependence of the elastic constants, the behaviour of the Fermi level
and the band edge effective masses have been deduced The variation
of tne Fermi level for various electron concentrations i1s given ain

19 -3
Figure 8.11, above carrier densities of 2 x 10 cm the Fermy
level increases slightly wvith temperature, whereas for concentrations
19 -3

of less than 2 x 10 cm = 1t decreases with temperature. However,
1f the effects of thermal excitation are included, the Fermi level
rises slaightly with temperature for all donor concentrations (at 290 X

- 18 -3
the carrier densily of pure baismuth as 2.3 x 10 cm "). Figure 8.12
presents the Fermi level of pure bismuth as a function of temperature
{(the carrier concentration 1s taken from Michenand and Issi, 1972).
It can be seen that the Fermi level rices from 25 meV at 4 2 K Lo
36 meV a% 290 K, 1in contrast to the decreasing Fermi level calculated
from the data of Vecchi and Dresselhaus.

The Lemperature dependence of the band edgc effective mass
obtained here deviates rather strongly, especially at higher temperaturcs,
from th2 results of Vecchi and Dresselhaus, thus it w#as felt that the

observed temperatlure dependence of the elastic constants was more

likely to be a counsequence of a variation in the defcrmation potcntials.
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Usaing the temperature dependence of the band edge effective mass of
Vecchi and Dresselhaus, the temperature dependence of the deformaticn
potentials (L11-L22) and L23 were calculated to fit the obsexved
variation in the elastic constants The following assumptions were
made (1) the band edge effective mass, the deformation potentials,
the Formi level and the calculated electronic contribution at 4.2 kK
were accurate, (11) the temperature variation of the band edge
effective mass and of the L point energy gap were those derived from
Vecchi and Dresselhaus (1974). Figure B.13 shows the temperature

dependence of the deformation potentials (L1 '-uz?) and L calculated

1 23

from the temperature variation of the elastic constants of T20, the

potentials chaunge by approxamately 20% from 4 2 K to 300 K

8 6 Summary

In thas chapter it has been shown that the addition of tellurium
to bismuth causes changes in the elastic constants which are consistent
with the electronic contributions to the elastic consiante predicted
by the theoretical exlension of the Keves model The temherctburc
veriction of the elastic moduli has been shown to be effectively
independent of the free electron density, in marked conirast to that
obtained by other worckers on silicon and germanium (EHall 1967), in
which the clectron contribution 1s 2 -4 times larger at 4 2 K than at
300 K. Indeed, the temperature vaviation of the electronic contribution
to the elastic constants of silicon and germanium can be so large at
lover tempcratures that the elsstic constarts cen increasce (rathe:r
than decrecase) with temperature. The results obtained here for
bicruth dopcd viath tellurium and for the bismuth-antimony alloys
indicate thet 1t 1s noo possible Lo control the temperature dependence

of the elastic constantr
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Thus, even though the observed change in the elastic con-
stants may in part be due to the impurity atoms, the electronic
contributions to the elastic constants of bismuth must have a
temperature dependence which is, in effect, independent of the
carrier concentration. Furthermore, 1t has been demonstrated that,
by a suitable adjustment of the temperature variation of either the
deformation potentials or of the band edge effective mass, the
theoretical electronic contribution can predict the observed tem-—
perature dependence to a high precision; however, it i1s felt that
the observations are best explained by a temperature variation of

the deformation potentials.
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APPENDIX 1

CALCULATION OF THE FREE ENERGY

In Fermi Dirac statistics the electrons are assumed to

occupy N levels with energies € € €., each of these levels

11 Eo eees €y
having 9yr 9, - In states. The states in each energy level are
assumed to contain nJ electrons (a maximum of one electron per state

1s allowed), consequently nj states are full and gJ-—nJ states are

empty. The total electron concentration is ,
n (A1.1)

and the total energy of all the electrans 3¢

~

U = n € A1.2)
? J ) (

Since the electrons are indistinguishable, they cannot
be 1dentified by number and therefore an exchange of state can only
be considered if an occupied siate is exchenged with an unoccupied
state. Thereforoe the ways or permuting the thermodynamlic probabil. tv

for one energy level ej 1s gaven by

W, o= - (21.3)

w = HWJ = rjl'n“. (gJ. D) (A1.4)

J 3’

The elcctronic frece energy Ls related to the total energy

U and the entropy S by the function

F = U~ TS (a1.5)
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The entropy 1s given by ,

S = ké&n Wonx (Al1.6)

The thermodynamic probability will be a maximum when
dw/dnj = 0. However W 1s a difficult function to differentiate
and 1t 15 more convenient to differenciate with respect to £n W.

Using Sterling's approximations ,

nn!'! = n &nn -n

J J )
abn nJ! (r1.7)
_—(—i;]——- = 4&1’1 nJ

1t can be shown that

nw = B - £ - - £ - Al.
n w ; _93 ﬂngJ n, £nn (gJ nJ) n(gJ nj)] (a1.8)
[
= § Lnj(f,n(gJ - n) - 2n nJ) + gj[ln«gl- f.n(gJ - nj{] (r1.9)

Using the method of the Lagrange undetermined multipliers

the summation 2 is constructed ,

Z = frvi+a(n~-In)tb [U -Ince (A1.10)
3 3J 3 33

which when da{ferentiated with respecti to nj mus. obviously br

cqual tu rero

ST AR 0 = -fnn +¥8n(g -n) -a- Pc (A1 11)
dn J ] ] ]
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The solution to the above equation is found to be
n = gJ/(l + exp(a + Bej)) (A1.12)

which 1s easily recognised to be the Fermi-Dirac probability function

where

a = - £/kT and B = — (A1.13)

Substitution of equations A1(11,12 and 13) into Al.19 yields

£n W = -In /XkT+3In o=
MAX 3 32 / 5 3 kT
+ L g {ﬂng - ﬂnr& (1 - = )ﬂ
> L I—J 1+ exp(E2—
therefore
= - ¥ £ _ _
n Wy = ’3 ny Exr * TNy i g g, &n [1 f(E,E)] (AL.14)
where
g -]}
£(g,E) = [1 + exp — o ] (A1.15)

The electronic free energy therefore takes thc form

F = In_&+ LW g_4n [1 - f(E, g)] (A1.16)
J J J J -
g:l 1s ec<scntially the densaty of states N(l) (E) and therefore the

frce energy of the electrons in_a valley (1) 1s given by

pl) o ) ¢y g f N 1) e [1 - f(F, E)] an (a1 17)

Q
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APPENDIX 2

THE COMPUTER PROGRAM FOR THE EVALUATION OF THE

ELECTRONIC CONTRIBUTION TO THE ELASTIC CONSTANTS

Fermi-Dirac statistics frequently require the evaluation of

integrals which have the form ,

[}

k

x  dx
o= exp(x=-n) +1
o
1 1 3
especially for the values k = X E-and 7.

S"‘
numerical valucs of these integrals in the range -4 < n <20 and havz
derived series representations for those integrals with n > 20 and

n <0. 1In the computer program presented here the methods of

Macdougall and Stoner (1939) have been utilised.

Fk(n) for n <0

When n € 0 ard k > -1

o

Fo) = Tk+1) 5 (170 expen) /e
k r=1

1

,%—and %-the gamma

N

where TI'(kil) 1s a gamma function Tor k =

functions are
Iy = Vo, T(2) = Vn/2, T3) = 3/n/4

Summation of only tnree terms are neccssary to achieve an absolute

-6
accuracy of bettvexr than 10 .,
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Fk(n) for -4 € n< 20

For the range -4 € n € 20 the Fexrmi-Dirac integrals were
obtained from the tabulated results of Macdougall and Stoner.

Intermediate values were computed by interpolation.

Fk(n) for n > 20

When n>>1

_ nk+t j n ~2r l
U Dy {1 +r21 B " ’

where a, 15 a zeta function Summation of t+he first giv tevrme
Zr
of the assymptotic series was necessary to achieve a precisicn

of 10°°.



- 125 -

Nomenclature of Computexr Program

NEW = n

1
FNNP2 = F—2~(n)
FKNP32 = F‘%(n)
FKNN2 = P- -12- (n)
BOLTZ = k
PLANK = h
FASS = m

[o]
NO = N
MASS = m* (NENP)
FEM = EF
EGG = E

g
BET =
cn = e
ARRAY (16,8) =
TEMP = T

D11, D22, D33

A2(I) = a,,

i

NCWE (I) n
r3z2(ly) =
F (I) =
WFD (1) =
W2FD2 (1) =

W3FD3(I) =

DELCN (N) = AC
1]

Boltzman's Constant

Plank's Constant

Free clectron mass

Electron Concentration

Band Edge Effective mass
Fermi lLevel

L-point energy gap
Temperature Dependence of mass
Elasiic Constants

Temperature varialion of elastic constants
Temperature

Deformation Potentials

Zeta Function

Macdowrjall and Stoner Tabulations

Elecironaic Contrabution to the Llastic

Coustants
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APPENDIX 3

THE LEAST-MEAN-SQUARES COMPUTER PROGRAMME

The elastic stiffness costants are derived from the experimen-
tally measured ultrasonic velocities by a minimisation of the parameter

SUMSQ ,

:g: Calculated le2 2

- i

SUMSQ = 5
1=1 Measured le

The computer programme calculates the elastic constants as a

function of temperature applying the thermal expansion data of White (1972).

Nomenclature

COCrT (I = Vl Daperalicenc@aily measured velociry

ERR (I) = i:AVl Error in velocity measurement

SOLN (I) = ClJ Calculated elastic constant

MaX (I) = Maximum elastic constant

MIN (I) = Minimum elastic constant

STEP (I) = AC;J Change 1in elastic constant

SMALL = Minimum SUMLSD required

DENS = PR.T Room temperature density

DELT (N,M) = Temperature dependence of the velocities
TEM (I) = 1T

ALPHAI (I) = Thermal expansion data of White (1972)
APPHA2 (I) =

BETAX = X axis

BETAZ = Z axis Temperature variation of the linear dimensions
BETAYZ = YZ axis .

DENS 1 = Pep Density corrected for thermal expansion
CONST 1

CONST 2

CONST 3 = SUMSQ
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