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. ABSTRACT 

The main purpose of the work described i n t h i s t h e s i s was to 
develop techniques for producing boules of ZnSe and ZnS Se 
sui t a b l e for research purposes. This was accomplished by extending 
the method that Clark and Woods used for CdS to the higher tem­
peratures needed to grow ZnSe and ZnS Se i n the range x = 0-0.6. 

X X " X 

I n t h i s system the capsule i s connected to a reservoir of one of the 

components v i a a narrow o r i f i c e to maintain constant growth conditions. 

The system has been examined t h e o r e t i c a l l y i n an attempt to learn 

more about the actual conditions of growth within the capsule. I t 

was concluded that growth occurs close to stoichiometry v/ith 

(the r a t i o of P„ /P„ at the growth face) approximately 0.194 
. 562' Zn 

or r..l2" according to the element i n the reservoir. 

P a r t i c u l a r emphasis was placed upon the incorporation of man­

ganese into the zi n c selenide l a t t i c e . Concentrations of the order 

300 p.p.m. were obtained when the element was added to the charge 

and MnCl^ was placed i n the reservoir. Higher level s of manganese 

('\'1%) were obtained using chemical vapour transport with iodine 

as the transport agent. 
Boules of s o l i d solutions, within the range of compositions 

from ZnSe to ZnSe„ .S. . were examined using a transmission electron 0.40.6 
r 

microscope. The dominant crystallographic defects were found to 

change from thin twins to stacking f a u l t s as the amount of ZnS was 

increased. The or i g i n of the defects was probably post growth s t r e s s . 

F i n a l l y , the anomalous photovoltaic effect was discovered i n 

ZnSe needle c r y s t a l s , and was explained q u a l i t a t i v e l y i n terms of 

asymmetrical b a r r i e r s along the polar axis of the c r y s t a l . 
t 

(1) J Woods and L Clark (1968) J . C r y s t a l Growth 3 4 127-130 
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CHAPTER 1 

INTRODUCTION 

The zinc and cadir'.ium chalcogenides have been studied for 

many years because of thei r interesting photoconductive and 

luminescent properties. They have d i r e c t band g:aps, of a magni­

tude that a t low temperatures varies between 1.6 eV for CdTe and 

3.91 eV for hexagonal ZnS^^^- These values correspond to photons 

with wavelengths varying from the infra-red to the u l t r a v i o l e t . 

The work described i n t h i s thesis was directed towards producing 

materials suitable for the fabrication of two types of p r a c t i c a l 

device. 

The f i r s t , as part of a project sponsored by S.R.C. was 

a l i g h t emitting diode of the Schottky barrier type made from 

zinc selenide or s o l i d solutions of zinc selenide/sulphide. The 

second was a s c i n t i l l a t o r made from single c r y s t a l CdS:Te, for 

the detection of nuclear p a r t i c l e s . This was intended for use i n 

conjunction with a s i l i c o n photo-diode. 

The early work on I I - V I compounds was performed on poly-

c r y s t a l l i n e material cind powders. Single c r y s t a l studies began 
(2) 

e s s e n t i a l l y i n 1947 when Frerichs f i r s t grew cadmium sulphide 

c r y s t a l s from the vapour phase, and produced c r y s t a l s of a purity 

not found i n nature. Since that time bulk c r y s t a l s have been 

produced by a number of techniques, but s t i l l have not reached 

the perfection of those c r y s t a l s used i n semiconductor and laser 

technology. 

The d i f f i c u l t y i n growing c r y s t a l s of I I - V I compounds 

stems from a combination of r e l a t i v e l y high melting temperatures 

and high vapour .pressures, with quite high chemical r e a c t i v i t y . 
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The evaporation of I I - V I compounds involves dissociation of 

the form 

2MN ^ 2M + 

Solid Gas Gas 

M and N are used to denote the metal and non-metal respectively. 

The r e l a t i v e vapour pressures of the two elements are governed 

by the relationship 

Kp = P^P^ (1.1) 

Kp i s the reaction constant, P̂ ^ i s the p a r t i a l pressure of metal, 

P^ the p a r t i a l pressure of non-metal and P^ i s the t o t a l pressure. 

As 

^T = ^ . ^^-2^ 

the t o t a l pressure must vary rapidly with the re l a t i v e proportions of 

the constituents within the l i m i t s set by the vapour pressures of the 

elements at that temperattire. 

Let 

then 
KP = AP^ , (1.4) 

and ^p3 
Kp = ^ . (1.6) 

(A+l)-" 

Rearranging the l a s t expression gives 

Differentiating to find the minimum value of the to t a l pressvire gives, 

ci^' 2 - ^ i-M . , 3 . 
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Equating the right hand side to zero yields A = h for a minimum. 
3 K 

i . e . P^ = j(2Kp) , P^ = (2Kp) ^ and P^ = ^ (1.9) 

At the maximum melting point the dissociation pressure Pj^jjj i s 

si g n i f i c a n t as the following table^"^^ shows. 

Maximum Malting Pt.°C ^MIN ^^°spheres 

ZnS 1830 3.7 

ZnSe 1520 0.53 

ZnTe 1295 0.64 

CdS 1475 3.8 

CdSe 1239 0.41 t 
CdTe 1092 . 0.23 

The values of P„.̂ „ are extrapolated from data obtained at 

low temperatures, and would therefore have to be revised upwards 

i f the non-metal were to be monatomic i n the vapour at the higher 

temperatures. 

Melt growth thus poses an interesting problem, the materials 
o 

must be heated sane 50 G above thei r melting points to ensure com­

plete melting before c r y s t a l growth i s begun. Thjgy.should also.be 

contained i n a sealed capsule to prevent t h e i r evaporation. How­

ever s i l i c a g l ass, which provides by far the easie s t sealing system, 

softens above 1200°C making i t unsuitable i n i t s simple unsupported 

form as a container. The d i f f i c u l t y i s compounded because material 

sealed i n a tube at room temperature almost certainly w i l l not lead 

to P.._„ conditions at the melting point, and may well give a 

pressure many times ^'jjjj^ that temperature. An alternative to 

sealing the material i n a capsule,, i s to provide an overpressure 
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of one of the constituents, thus suppressing.the evaporation of the 

compound by reducing the vapour pressure of the other constituent. 

Another approach i s to apply a large overpressure of i n e r t gas, 

which increases the time for the charge to evaporate completely. 

One of the f i r s t reports of melt growth of CdTe i n a sealed 
(4) 

s i l i c a capsule was by De Nobel . He used a horizontal boat 

system and prevented the cadmivmi t e l l u r i d e from leaving the boat by 

applying an overpressure of either cadmium or tellurium. 

Tsujimoto et al.^^^ grew ZnSe under a pressure of 120 Atmospheres, 

while Fischer used a highly ccanplex system of a graphite container 

sealed i n s i l i c a . An overpressure of argon was used to support the 

s i l i c a . Both these workers used R.F. heating of a graphite cirucible, 

but Fischer sealed h i s crucible i n a quartz envelope and held one 

of the elemental ccanponents in a reservoir at a fixed temperature to 

control the stoichiometry while growth was i n progress. Wardinski^"^^ 

used Hnsupported s i l i c a to grow CdSe by the Bridgeman-Stockbarger 

technique; t h i s i s probably the l i m i t of what can be performed 

with confidence i n unsupported s i l i c a . Graphite supporting envelopes 

are sometimes used as reinforcement for the s i l i c a which expands under 

the i nternal pressure u n t i l i t i s compressed against the graphite 

(e.g. Ref. 8 ) . 

The pressure on the capsule may be minimised by baking the 

compo\ind imder vacuum at a high temperature before sealing the capsule. 

During the bake some of the material sublimes and the charge moves 

towards the composition required to establish ^^j^ conditions at 

that temperature. A l l the melt techniques used to date have been 

variations of the Stockbarger theme (e.g. Refs. 8-12). There have 

been no successful attempts at Czolchralski pulling. This i s 

because of the d i f f i c u l t y of preventing evaporation of the melt and 

growing c r y s t a l ; a s i m i l a r problem to that encountered with 
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I I I - V compounds. However with the I I I - V compounds liq u i d encap­

sulation with boric oxide has been successfully employed ̂  ' ̂ "̂ .̂ 

With t h i s technique the loss of v o l a t i l e components i s prevented 

because 1:he melt i s covered with a layer of molten glass, and an' 

overpressure of i n e r t gas greater than the vapour pressure of the 

melt i s applied. Many of the d i f f i c u l t i e s of the melt growth of 

I I - V I compounds would be removed i f a suitable encapsulent could 

be found. The requirements for such an encapsulent are quite 

stringent. With zinc t e l l u r i d e for example, i t must melt below 
o o 900 C, and with ZnS b o i l above 2,000 C. I t must not react with 

the melt or the apparatus. The compound must not dissolve in i t . 

I I - V I compounds unfortunately react with boric oxide, the usual 

encapsulent, and dissolve i n a l l the molten s a l t s t r i e d i n ..this 

laboratory, including KI, Cal and CaCl2. However i f a suitable 

encapsulent were found the stoichiometry of the c r y s t a l could be 

readily controlled i n a quite low pressure apparatus by adding an 

excess of one of the components to the charge, and allowing i t to 

b o i l off through the encapsulation u n t i l the desired t o t a l pressure 

(related to the p a r t i a l pressures by equations 1.1 and 1.2) equalled 

the presstire outside the encapsulent. 

Solution growth has been attempted to avoid t:he problems 

encountered with high temperatures and pressures. Parker and 

Pinnel^"""^^ used a Kl-ZnCl^ flux to produce small c r y s t a l s of ZnS 

at temperatures around 800°C. The resultant c r y s t a l s were of 

moderate quality and highly doped with solvent. Since most cr y s t a l s 

are studied for t h e i r luminescence and e l e c t r i c a l properties, which 

may be affected by impurity concentration of a few parts' per million, 

t h i s method of c r y s t a l growth i s not l i k e l y to find wide application. 

One might also seek to grow cr y s t a l s frcan a non-stoichiometric 



melt, i . e . a solution of the I I - V I compound i n one of i t s con­

st i t u e n t s . However,the d e t a i l s of the phase diagrams^^^^ (shown 

in F i g . 1.1) make t h i s approach d i f f i c u l t . The vapour pressure 

above a dilute solution approaches that of the solvent element. 

In most cases the solvent must be taken well above i t s boiling 

point to increase the s o l u b i l i t y to a reasonable l e v e l . Consequently, 

to gain a worthwhile reduction of temperature and pressure^a very 

d i l u t e solution must be used. So f a r only poor quality c r y s t a l s 

have been produced by t h i s method. Moreover, there i s the d i f f i c u l t y 

of separating the c r y s t a l s from the solvent. The cr y s t a l s are 

l i k e l y to be damaged by the stress involved i n cooling in a solid, 

matrix. However,temperature gradient solution zoning has been used 

with success for ZnTe^^'^\ This technique produces a veiry worth­

while reduction i n temperature for the growth of zinc t e l l u r i d e 

which i s brought to a comfortable temperature for use with wire 
(4) 

wovind furnaces and s i l i c a glass. De Nobel when growing cadmium 

t e l l u r i d e under a heayy excess pressure of one element found that 

h i s melt was non-stoichicmetrie, not as one might have expected 

by suffering from constitutional supercooling, but from bubble 

formation from the boiling solvent. For the same reasons that con­

s t i t u t i o n a l supercooling occurs, there i s a build-up of rejected 

solvent i n front of the growth face, considerably increasing the 

vapour pressure of the melt l o c a l l y . To avoid bxibble formation i t 

i s consequently necessary to p u l l slowly to avoid reaching the 

c r i t i c a l supersaturation for bubble formation, or to put an over­

pressure of i n e r t gas on the melt, thus employing a l i q u i d encap­

sulation technique. A similar problem i s encountered using 
(18) 

overpressures of i n e r t gas with an unsealed capsule . The two 

constituents diffuse at different rates, (particularly i n the. case 
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of t e l l u r i d e s ) leaving a concentration gradient in the melt. As 

high overpressures are applied, bubbles do not form, but consti­

tutional supercooling and c e l l u l a r growth may do so. This 

phenomenon i s l i k e l y when any I I - V I compound i s grown from the 

melt, because the melt can e a s i l y have a composition outside the 

narrow existence region of the s o l i d . This d i f f i c u l t y could be 

overccane by using Fischer's method and applying a suitable p a r t i a l 

pressure of one element to keep the melt stoichiometric. The 

temperature of the reservoir would have to be controlled very 

accurately. 
(19) 

Another promising piece of work was that of Rubenstein 

who investigated the solxabilities of various I I - V I compounds i n 

t i n and bismuth. Several of the ccanpounds were found to have useful 

s o l u b i l i t i e s which i s p a r t i c u l a r l y interesting because although these 

s o l u b i l i t i e s are only a l i t t l e higher than those i n tiie parent metal, 

higher temperatures can be used without exceeding a pressure of one 

atmosphere because t i n does not b o i l u n t i l 2600°C. Rubensteih 

demonstrated the p o s s i b i l i t y of growing CdS by t h i s method. A 

temperature difference of 500°C was maintained between tiie top and 

bottom of a t i n bath with CdS floating on top. Pl a t e l e t s grew from 

the bottom of the bath. E p i t a x i a l layers of ZnTe on ZnTe have been 

grown by t h i s method, and the growth of ZnSe layers on ZnTe w i l l 

be described i n t h i s t h e s i s . As t i n i s a group IV element i t does 

not have a serious effect on the electronic properties of the 

material when incorporated as an impurity. 
Another p o s s i b i l i t y i s the growth of c r y s t a l s i n a gel. 

Very high c r y s t a l l i n e quality with surprisingly high growth rates 
(21) 

has been reported by Z. Blank et a l . 
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The other, general method that has found favour i s growth 

from the vapour phase. While slower than melt growth the capital 

expenditure i s l e s s , making i t p a r t i c u l a r l y suitable for the small 

quantities of c r y s t a l s required for research purposes. 
(2) 

Frerichs used a horizontal, two-zone furnace to produce 

the f i r s t high purity c r y s t a l s of CdS. Two separate streams of 

hydrogen c a r r i e r gas were passed down a s i l i c a tube within the 

furnace, and mixed i n the hotter zone. One stream also contained 

H^S, and the other carried cadmium vapour from a boat positioned 

i n the cooler of the two zones. The following reaction occurred 

i n the hot zone: 
Cd + H2S ss. cdS+ + H2 

CdS c r y s t a l s grew from the walls of the s i l i c a glass reaction 

tube. Many modifications of. the technique have been used and CdS, 

CdSe, CdTe, ZnSe and ZhS have a l l been grown i n a similar manner. 

Preformed compounds and a single flow of i n e r t gas are often used. 
(22) 

Kremheller used a cold finger to encourage the precipitation 
(23) 

of ZnS, while Fochs and Lunn have studied extensively the 

growtJi of CdS needles and plates on various nucleation s i t e s . ZnTe 

grown by t h i s technique in our research group quickly coalesced to 

form pol y c r y s t a l l i n e lumps rather than discrete single c r y s t a l s . 
(24) 

Reynolds and Czyzack used a method l a t e r modified by 
(25) 

Green to grow large single c r y s t a l boules from the vapour phase. 

A charge of the preformed compound was placed i n a quartz tube in 

the cent:re of a symmetrical temperatture graidient. The quartz tube 

was not sealed but the compovind Was protected from the atmosphere 

by a mullite muffle containing argon or non-metal hydride. The 

charge sublimed to form a c r y s t a l at each end of the quartz tube. 
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(26) 

Piper and Polich modified t h i s technique to produce 

very good single c r y s t a l s . In the i r arrangement a quartz ampoule 

with a conical growth t i p and a heat sink was employed. At the 

other end of the capsule a charge of sintered compound was closely 

backed by a t i g h t l y f i t t i n g quartz tube, and the whole was pro'^ 

tected by a mullite tube containing an argon atmosphere. 

The growth t i p was positioned at the centre of the furnace 

and the mullite envelope evacuated and baked at 500°C to remove 

v o l a t i l e impurities. Argon was admitted at atmospheric pressure, 

and the furnace raised to the growth temperature. The mullite tube 

was pushed towards the cool zone at between 0,3 and 1.5 mm hr ^. 

Often a single seed predominated and a single c r y s t a l boule grew. 

CdS, ZnS and ZnSe have a l l been grown by t h i s technique. Numerous 

modifications have been suggested, most of which have been concerned 

with sealing the capsule under vacutim after baking, and pulling the 

capsule v e r t i c a l l y instead of horizontally. See for example 

Ref. 27. 
A number of experimenters have endeavoured to control the 

(28) 

stoichiometry of the charge at the growing c r y s t a l . Lunn 

accomplished t h i s by u t i l i s i n g a Knudsen hole i n the capsule, and 

Woods apd Clark and Fochs et al^"^^^ did so by connecting the 

capsule to a reservoir of one of the constituent elements held at 

a known temperature. 

A f i n a l variation of the vapour transport technique i s the 

chemical vapour transport method. Kaldis^^^^, Nitsche^"^^^ and 

Schaeffer^^"^^ have developed t h i s technique extensively using a 

variety of transport agents. The two-six compound i s sealed i n 

a quartz tube with a small quantity of transporting agent which 

might be iodine. The method depends on the principle of a chemical 
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reaction occurring at one temperature and being reversed at another, 

releasing the transport agent again. 

HOT 

e.g. 2BnSe + 21 - 2ZnI + Se 

SOLID GAS COLD 

In practice the two ends of the growth tube are held at 

diff e r e n t temperatures; at the hot end,the reaction proceeds l e f t 

to r i g h t transporting ZnSe as Znl^ and Se^ which have much higher 

vapour pressures than ZnSe. At tlie cold end,solid ZnSe i s deposited 

and I ^ i s freed to diffuse back to the source and recycle. There i s 

a relationship between t o t a l pressure i n the capsule and temperature 

for optimising the transport rate for each reaction. J.H.E. Jeffes 
(34) 

has discussed t h i s i n a review paper 
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CHAPTER 2 

MATERIAL PREPARATION 

The o r i g i n a l intention was to buy the materials used i n t h i s 

research as high p u r i t y compounds from chemical suppliers, but i n 

practice only B.D.H. "Optran" cadmium sulphide proved satisfactory 

for c r y s t a l growth, and i t became necessary to synthesize ZnSe, ZnTe 

and ZnS from the elements. A primary object was, therefore, to develop 

a method of producing these compounds i n a form suitable for growing. 

crystals from the vapour phase. 

2.1 CdS 

"Optran" CdS polycrystalline lump was purchased from B.D.B,, and 

as a f i r s t step towards growing large crystals was sublimed i n a flow 

of argon using the equipment shown i n Fig. 2.1. The argon (B.O.C, 

99.9995% argon) was passed over hot copper f i l i n g s to remove any 

oxygen present, and then through a molecular sieve to extract water 

vapour, before being passed down the s i l i c a furnace tube at 200 ml/min. 

After the furnace had been flushed with argon for one hour i t 

was heated to 600°C to drive o f f v o l a t i l e impurities from the charge. 

Six hours l a t e r the furnace temperature was increased to 1165°C for 

the sublimation. The process was controlled by a motor driven programmer, 

but was switched o f f manually, t y p i c a l l y after 15 hours. 

Most of the 50 gm charge was transported from the boat i n the 

hot part of the tube and formed needles and platelets of CdS on the 

wa l l of the f i r s t l i n e r . I f good needles or plates were required 

fo r an experiment t h e i r growth was observed through the window and 

the furnace switched o f f at an appropriate time. The furnace was 

wound with Kanthal A l wire and was controlled by an Ether "Transitrol 

990" switching a mercury relay. A temperature fluctuation of a few 
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degrees was present, but did not affect the process noticeably. . 

To ensure the correct and reproducible assembly of the apparatus, 

a l l the components were made to a standard size, and were loaded with 

the l i n e r s , boat and pyrex cap touching. The second or ' d i r t ' l i n e r 

was cleaned each time the apparatus was used. The ' d i r t ' consisted 

of v o l a t i l e impurities and CdS dust that had f a i l e d to condense, on 

the walls of the f i r s t l i n e r . No attempt was made to clean 'die f i r s t 

l i n e r , the loose CdS crystals were shaken o f f and the remaining layer 

l e f t attached to the l i n e r to absorb any imp-urities diffusing out of 

the s i l i c a . Impurities less v o l a t i l e than CdS accimiulated i n the 

charge J consequently the small amount l e f t i n the boat was rejected. 

2.2 Zinc Selenide 

Zinc selenide was i n i t i a l l y purchased from Derby Luminescents 

Ltd., and was found t o contain quite a large percentage of zinc . 

oxide. In an attempt to remove this,the material was sublimed under 

vacuiam, but the product s t i l l required heating i n excess zinc before 

i t was suitable for the growth of large crystals. The technique used 

for p u r i f y i n g CdS was therefore adapted f o r zinc selenide, and 90 gms 

could be sublimed i n one week using an argon flow of 350 ml/min and 

a temperature of 1160°C. This produced yellow-green plates and needles 

of very pleasing appearance, the plates had triangulco: growth features 

on one face and waves on the other, while the needles were of hexagonal 

cross section. Typically 1-5 gms of zinc oxide Were l e f t i n the source 

boat, and the brown colour towards the ends of the boules grown from 

material p u r i f i e d i n t h i s way suggested the presence of oxygen. 

A change to B.D.H. material improved t h i s situation i n i t i a l l y , 

but the quality of the material supplied declined, and lat e r batches 

were found to contain several percent of carbon i n the form of 
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hydrocarbons which decomposed on heating. T h i s forced a f u r t h e r 

change i n the procedure, and l e d to the s y n t h e s i s of ZnSe from the 

elements which were purchased from Metals Research or from Koch-Light. 

C o n s i d e r a t i o n was f i r s t given to the d i r e c t combination of 

z i n c and selenium i n a s e a l e d quartz tube, but the r e s u l t s were 

v a r i a b l e and s e v e r a l explosions occurred. As a r e s u l t the s y n t h e s i s 

tube of F i g . 2.2 was developed. A s i m i l a r technique was used by 
(2) 

W.C. Holton e t a l . . Z i n c s e l e n i d e decomposes almost e n t i r e l y ' i n t o . 

z i n c and selenium molecules i n the vapour phase, so i f a w e l l mixed 

vapour can be produced frcm separate sources of z i n c and selenium, i t 

should be p o s s i b l e to produce s o l i d z i n c s e l e n i d e by s u p e r s a t u r a t i n g 

the vapour. The vapour phase r e a c t o r contained a separate source f o r 

each element, from which the vapour was c a r r i e d i n two separate streams 

of argon to the r e a c t i o n zone where they merged. To obtain A s a t i s f a c t o r y 

y i e l d , i t proved ne c e s s a r y t o c l o s e the end of the z i n c tube except f o r 

four s m a l l n o z z l e s which produced j e t s of z i n c vapour and broke up the 

laminar flow i n the r e a c t i o n chamber. Before t h i s was done a sheet of 

s o l i d z i n c s e l e n i d e formed between the two gas flows u n t i l they had 

cooled s u f f i c i e n t l y to p r e c i p i t a t e z i n c i n elemental form again, t h i s 

r e s u l t e d i n a low y i e l d . 

Large amounts of z i n c s e l e n i d e dust were formed i n the tube, 

and sometimes needle c r y s t a l s were found. These were often of mixed 

hexagonal and c u b i c s t r u c t u r e , as i n d i c a t e d .by t h e i r b i r e f r i n g e n c e . 

F i g . 2.3. 

The design of the r e a c t o r tube proved d i f f i c u l t to s i m p l i f y . 

A b u t t r e s s end with t e f l o n s e a l i n g r i n g was used t o avoid greased end 

caps and consequent r i s k of contamination. T h i s a l s o had the advantage 

t h a t the j o i n t could, not separate and leak z i n c s e l e n i d e or selenium 
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dust i n t o the atmosphere i n the event of p r e s s u r e b u i l d i n g up because 

of a blockage i n the o u t l e t pipe. Zi n c s e l e n i d e dust was trapped a t 

the o u t l e t by a s i l i c a wool plug, which was r e p l a c e d a f t e r each run. 

The end p l a t e was f a b r i c a t e d from two 3/16" duralumin p l a t e s 

screwed together w i t h two '0'-rings clamped between them to form a 

channel to permit water c o o l i n g , thus e l i m i n a t i n g the p o s s i b i l i t y of 

the end p l a t e being over-heated by the furnace. A 25 mm bore tube 

c o n t a i n i n g the s i l i c a wool plug conducted the waste gases away through 

a s i l i c o n e o i l bubbler and a sodium hydroxide t r a p , and f i n a l l y to a 

fume cupboard e x t r a c t duct. The viewing window of the cadmium sulphide 

tube design was d i s c a r d e d because i t q u i c k l y became obscured by dust 

i n t h i s c a s e , and the s t r a i g h t through design was f r e e from blockages 

and allowed l ^ e f i l t e r to be changed q u i c k l y . S a f e t y frcan s e l e n i d e s 

i n the l a b o r a t o r y was provided by e x t r a c t i n g a c i d i c m a t e r i a l i n the 

c a u s t i c soda biobbler, while the s i l i c o n e o i l prevented back d i f f u s i o n 

of water vapour i n t o the system. 

The m a t e r i a l produced was o f t e n mixed w i t h unreacted z i n c and 

selenium and was, t h e r e f o r e , sublimed i n an argon flow i n a s i m i l a r 

manner to the B.D.H. and Derby Luminescents L t d . m a t e r i a l . Because of 

the low d e n s i t y of the powder formed i n the p r o c e s s a mass of 30 gms 

only could be loaded and t h i s was sublimed i n 48 hours. The optimum 
o 

temperatures f o r the t h r e e zones were found by t r i a l to be 400 C f o r 
o ^ o the seleniiim, 710 C f o r the z i n c and 1050 C f o r the combination zone, 

the r e l a t i v e l y low temperature of the combination zone ensured a 

reasonable l i f e f o r the expensive r e a c t i o n tube. Each zone was con­

t r o l l e d by a t h y r i s t o r c o n t r o l l e r w i t h a. platinum/platinum 13% rhodium 

thermocouple p l a c e d between the s i l i c a r e a c t i o n tube and the furnace 

tube. I t i s c l e a r t h a t the m a t e r i a l i n the boats must have been a t a 

lower temperature than t h a t r e g i s t e r e d by the thermocouples, but 
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nevertheless conditions were reproducible from run to run, and so 

from the production point of view t h i s was immaterial. As the p a r t i a l 

pressures of zinc and selenium were much higher than P . for zinc 
mm 

selenide at 1050°C, powder and c r y s t a l l i n e material formed along the 

whole length of the reaction chamber. 

The chief danger with the apparatus was that uncombined zinc 

would form a pool at the cold end of the reaction chamber. Since molten 

zinc wets s i l i c a t h i s would cause the s i l i c a to crack on cooling. 

To avoid any r i s k of t h i s occurring, excess seleni\im was provided to 

maintain a seleniiam r i c h vapoiir at a l l times. At f i r s t rather 

variable results were obtained. The rate of sublimation of ZnSe i n 

v e r t i c a l growth tubes i s c r i t i c a l l y dependent on the quantity of 

impurities present. Some batches of seleniima charge were shown by atomic 

absorption analysis to have si g n i f i c a n t (p.p.m. level') amounts of copper 

present. Results were improved by obtaining 6N grade selenium, and 

constructing a zone refiner for zinc bars. 

2.3 Zinc Sulphide 

A similar reactor to that used for zinc selenide was employed 

to produce zinc sulphide fran the elements. However, the super-r 

saturation i n the growth chamber was several times greater than that 

for ZnSe, so that a l l the zinc sulphide produced was i n the form of 

a f i n e white powder. During unloading, the powder was unavoidably 

mixed with unreacted zinc and sulphur, which were subsequently removed 

by heating to 1165°C i n a flow of argon. No significant transport of 

zinc sulphide occurred because of the low vapour pressure of the 

material at that temperature. The optim\am temperatures were found 

experimentally to be: sulphur 300°C, zinc 750°C, and the reaction 

zone 1050°C. 



18 -

F u r t h e r p u r i f i c a t i o n was provided f o r l a t e r batches by 

sub l i m a t i o n a t d i f f u s i o n pump p r e s s u r e (5 x 10 ̂  t o r r ) i n a simple 

s i l i c a tube c l o s e d a t one end. The product l i n e d the tube i n the 

entrance to the furnace and showed a grad i e n t of colour on co o l i n g 

to room temperature. White m a t e r i a l was removed f o r use, while the 

darker coloured m a t e r i a l was r e c y c l e d . 

2.4 Z i n c T e l l u r i d e 

Because z i n c and t e l l u r i u m have s i m i l a r vapour p r e s s u r e s i t 

was p o s s i b l e to r e a c t the two q u i t e s a f e l y i n a se a l e d quartz tube. 

However, heating a mixture of the two melts was found to produce a 

s m a l l boundary l a y e r of z i n c t e l l u r i d e only and the remainder of the 

charge was l e f t unreacted. 

The technique adopted to overcome t h i s d i f f i c u l t y was to use 

the t h r e e zone furnace employed f o r ZnSe and ZnS with a bent s i l i c a 

r e a c t i o n tube, F i g . 2.4. The tube was evacuated to 10 ̂  t o r r and 

s e a l e d . When heated each element was trapped a t i t s own end of the 

tube and the two vapours met i n the middle. Each end was c o n t r o l l e d 

a t 800°C w h i l e the middle was 100°C h o t t e r to prevent condensation 

of the elements. A f t e r between 6 and 24 hours a l l the unreacted 

m a t e r i a l accimiulated- a t one end, and was c y c l e d frcan end to end of 

the r e a c t i o n tube by a l t e r i n g the end zone temperatures as appropriate. 

When s e v e r a l c y c l e s had been performed most of the m a t e r i a l 

had r e a c t e d . 

The method v a r i e s from the techniques of other workers. 
(2) 

F i s c h e r r e a c t e d extruded b a r s of t e l l u r i u m and z i n c i n c l o s e contact 

by i g n i t i n g one end, w h i l e other workers have used autoclaves and 

Sc h a f f e r ^ ^ ^ has suggested an i o d i n e t r a n s p o r t technique. 
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CHAPTER 3 

VERTICAL GROWTH SYSTEM 

3.1 ZnSe 

The v e r t i c a l growth system described by Woods and Clark 

was developed for use with zinc selenide. Diagram 3.1.1 shows the 

arrangement of: the furnace and crystal growth tube. In t h i s tech­

nique, a charge of preformed I I - V I compound i s sublimed under vacuum 

between the ends of a s i l i c a growth capsule. The capsule i s con­

nected via a narrow o r i f i c e to a reservoir containing one of the 

components of the compoiind, which i s held at a constant temperature 

to maintain a constant p a r t i a l pressure of that component i n the 

growth capsule. Clark and W o o d s f o u n d that the colour, conduc­

t i v i t y and optical q u a l i t y of CdS boules could be controlled by 

varying the temperature of the reservoir. 

The f i r s t objective of the research in t o the growth of ZnSe . 

was to develop the technique used for CdS i n t o a reliable production 

method fo r ZnSe boules with centimetre dimensions for research purposes 

within the group. A grain size of at least several millimetres was. 

required, but single c r y s t a l boulea were not a necessity. Burr and 
(2) 

Woods reported growth of t h i s technique i n 1969, but i n practice 

poor transport and frequent equipment f a i l u r e resulted in an linreliable 

supply of material for research. As noted i n Chapter 2, the i n i t i a l 

s t a r t i n g material used by Burr and Woods, namely vacuum sublimed Derby 

Luminescents Ltd. Electronic Grade ZnSe, was iinsatisfactory. I t some­

times contained several percent of oxide as supplied, and consequently 

was vacuum sioblimed to p u r i f y i t . A brown material resulted. The 

material adhered strongly to the s i l i c a and lat e r experience showed 

that sticking was associated with a high impurity content. Before a 
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crystal could be grown, i t was necessary to heat the ZnSe with excess 

zinc i n a cry s t a l growth tube (Figure 3.1.2) for a period of several 

days at 1150°C. The material obtained was crushed and reloaded into a 

new cr y s t a l growth tube before any attempt was made to grow a cry s t a l . 

As the growth tube was cooled after a run, i t was frequently cracked 

by.the ZnSe which stuck to i t . Both the remaining charge and the ZnSe 

boule were oxidised as a result. Furthermore, selenium dioxide vapour 

escaped from the capsule to the laboratory and needle crystals of SeÔ  

were found round the top of the m u l l i t e furnace tube and the p u l l rod. 

The f a c t that selenium compoxinds are poisonous provided an added incen­

t i v e to cure the cracking problem. Other fai l u r e s were the result of 

broken p u l l rods and furnace guides, the loss of t a i l thermocouples 

and furnaces burning out mid-way through a growth run. 

A f i n a l cause of f a i l u r e was the collapse of.the s i l i c a glass 

capsule. The pressure over stoichiometric ZnSe at 1150°<; i s only 

20 t o r r , and the unsupported capsule sometimes collapsed under the 

external atmospheric pressure. The weakest parts of the s i l i c a were 

those where the glass had been worked by a glassblower. Water vapour 

and other impiirities are absorbed from the gas flame, rendering the 

glass softer, and more susceptible to d e v i t r i f i c a t i o n . For example, 

the o r i g i n a l guides f a i l e d very quickly at 1150°C because of the 

d e v i t r i f i c a t i o n of the s i l i c a at the j o i n t between the 3 mm rod and the 

36 mm O.D. tubing. Such fa i l u r e s caused several growth tubes to drop 

out of the furnace and smash on the f l o o r . A modified guide without 

any j o i n t s i s shown i n Figure 3.1.3Bj i t i s produced by twisting a 

single plate of s i l i c a through 90°. The holes were made with an 

ultrasonic d r i l l . 

P u l l rod f a i l u r e s were eliminated by replacing the d e v i t r i f i e d 

end of each rod af t e r 2 or 3 runs, but furnace f a i l u r e was more 
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d i f f i c u l t t o overcome. The top furnace was i n i t i a l l y 38 mm i n t e r n a l 

diameter, and 680 mm long; l a t e r t h i s was reduced t o 32 mm i n t e r n a l 

diameter by 600 mm long t o reduce the convection currents round the 

growth tube, and t o increase the temperature gradient. The 32 mm 

tubes have a longer average l i f e due t o b e t t e r i n s u l a t i o n and smaller 

heat losses from convection i n s i d e the furnace tube. This would lower 

the element temperature s l i g h t l y . However, the main f a c t o r was the 

compromise between the temperature required t o grow a c r y s t a l , and 
o 

furnace l i f e . 1165 C was the optimum temperature, i t gave a reasonable 

furnace l i f e (about f o u r months a t temperature) and was a l i t t l e h o t t e r 

than the minimum f o r the s a t i s f a c t o r y growth of undoped boules (1150°C). 

This gave a s l i g h t margin f o r e r r o r i n the r e s e r v o i r temperature and 

the e f f e c t of dopants and i m p u r i t i e s . 

D i f f i c u l t i e s w i t h the lower furnace stemmed from l o s i n g the 

thermocouple from the growth tiabe, which caused the furnace t o heat up 

to i t s maximum temperature, and the s t i c k i n g of the mechanical relays 

i n Ether M i n i temperature c o n t r o l l e r s . Appendix 1 shows a method of 

converting these c o n t r o l l e r s t o 'Triac' switching. The thermocouples 

are now secxired by threading them through the t a i l guide. 

A modified growth tube was devised (Figure 3.1.2b) which had 

many advantages i n c l u d i n g : 

1. A large cross-section f o r evacuation. 

2. A large hole f o r loading the charge. This meant t h a t the 

crushing o f the charge could be reduced t o a minimum. 

3. A double thickness of s i l i c a over the boule. This provided 

added resistance t o collapse, and pr o t e c t e d the boule from 

o x i d a t i o n i f the inner l a y e r o f s i l i c a cracked during c o o l i n g . 
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4. The growth t i p was reproduclbly shaped, and could be alteired 

as desired. 

5. A minimum of working was done on the s i l i c a . 

6. The length of the capsule could be altered at w i l l . 

The weakest point of the new growth tube was the jo i n t between 

the base of the capsule and the t a i l . 

Before use the s i l i c a growth tube and growth t i p were soaked i n 

aqua regia, washed i n deionised water and methanol, and stored i n a 

drying cabinet. 

Figure 3.1.4 shows the stages of loading a standard c r y s t a l 

growth tube before putting i t i n the furnace. Usually, tubes were 

prepared i n batches of three. F i r s t the growth tube was attached to 

an expanded section of s i l i c a , which terminated i n a ground glass j o i n t . 

The tube was then evacuated, flushed with argon and baked out using a 

gas torch to heat the tube. 0.5 gms of zinc or selenium were added to 

the t a i l reservoir, which was then sealed and bent. Figure 3.1.4B. The 

element was' sublimed into the t a i l of the tube under vacuum. When the 

t a i l had been resealed, the bent section of glass was discarded. To load 

the 20 gm charge of s l i g h t l y crushed ZnSe, the tube was removed from the 

vacuum system, and the charge dropped i n . A growth t i p was placed i n 

the expanded section of tube, followed by a piece of soft iron encapsulated 

i n s i l i c a . The tubes were evacuated and flushed with argon several times, 

before the tubes were f i n a l l y p\amped out overnight using a mercury 

diffusion pump (Figure 3.1.4D). A growth t i p was moved into position 

using a magnet, and the tiibes were sealed off at a pressure between 

2 and 3 x 10 ̂  torr which was measured using an ionisation gauge. 

Figure 3.1.4E. 
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F i n a l l y the tubes were removed from the vacuum system, the 

growth tube collapsed on t o the bottom end of the s i l i c a growth t i p 

and a hook was added a t e i t h e r end of the tube. 

The tubes were then ready f o r loading i n t o the furnaces. Each 

tube was p o s i t i o n e d so t h a t i t s growth t i p was a t the centre of the 

furnace. The power and the p u l l were then turned on. Two rates of 

p u l l were a v a i l a b l e , 0.1 and 0.2 mms/hr. I n i t i a l l y the growth t i p 

was i n the h o t t e s t p a r t o f the f i i m a c e , and m a t e r i a l transported 

towards the base o f the capsule. I n t h i s way the charge was compacted 

and any ZnSe dust was removed from the growth t i p . This reduced the 

number o f nuc l e a t i n g centres i n the capsule. As the tube was p u l l e d 

through the furnace (see Figure 3.1.1) the charge became h o t t e r 

than the growth t i p : and a boule grew from the t i p of the 

capsule. Using flow c r y s t a l s and a r e s e r v o i r temperature 

c a l c u l a t e d t o give Pj^j-^j c o nditions i n s i d e the capsule, ZnSe boules 

3 cms long by 1.1 cms diameter were grown reproducibly. The boules 

had convex bases, and a good greenish colour. Twin bands could be 

seen running across.a boule. Boules grown from Derby Luminescents L t d . 

m a t e r i a l f r e q u e n t l y had a brown appearance i n the l a s t few m i l l i m e t r e s 

grown. The m a t e r i a l as purchased from the manufacturer had a high 

oxide content, and the brown colour may w e l l be a t t r i b u t a b l e t o oxygen. 

At f i r s t an attempt was made t o t r a n s p o r t only two- t h i r d s of the 

charge, and t o o b t a i n p u r i f i c a t i o n of the boule by leaving most o f the 

i m p u r i t i e s i n the residue o f the charge. I n p r a c t i c e i t was found t h a t 

some o f the tubes cracked round the base of the growth chamber when 

the boules were cooled, a weak p o i n t noted above. This cracking was 

caused by the remnants o f the charge s t i c k i n g t o the s i l i c a . To avoid 

t h i s d i f f i c u l t y the charge was transported completely and the bottom 
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s e c t i o n o f the boules were discarded. Occasionally a boule stuck t o 

the s i l i c a growth t i p and cracked i t on c o o l i n g . This d i d not matter 

as the outer layer of s i l i c a p rotected the boule from the atmosphere. 

These problems were reduced when higher p u r i t y m a t e r i a l from B.D.H. Ltd . 

became a v a i l a b l e . 

The boules were u s u a l l y cooled over a p e r i o d of 80 hours using 

a ramp f u n c t i o n e.m.f. generator i n series w i t h the thermocouple. 

Low r e s i s t i v i t y zinc selenide was required f o r research i n t o 

Schottky b a r r i e r l i g h t e m i t t i n g diodes. N a t u r a l l y i t was desired t o 

reduce the r e s i s t i v i t y of the bulk m a t e r i a l t o as low a value as possible 

i n order t o avoid heating the c r y s t a l and l o s i n g e f f i c i e n c y . When the 

t a i l temperatures were a l t e r e d away from those required t o give ^^j-^ 

c o n d i t i o n s i n the capsule, the r e s i s t i v i t y of the undoped ZnSe boules 
12 

remained h i g h , 10 flcm. This contrasts s t r o n g l y w i t h the behaviour 

of CdS^ I t was necessary t o heat s l i c e s of 'as grown' m a t e r i a l i n l i q u i d zinc 

t o reduce t h e i r r e s i s t i v i t y . 5his process has two e f f e c t s ; i t produces 

a s a t u r a t i o n concentration of selenium vacancies, and i t removes com­

pensating i m p u r i t i e s such as copper and s i l v e r by solvent e x t r a c t i o n ! ^ ^ 

I n view o f t h i s , the use o f a t a i l r e s e r v o i r t o c o n t r o l stoichiometry 

would appear superfluous, and the simple sealed capsule o f t e n used f o r 

CdS ought t o have been adequate (see, f o r example, reference 4). This 

was t r i e d w i t h o u t success; a s u a l l y no t r a n s p o r t was obtained, but 

f o l l o w i n g a vacuum bake a t 800°C f o r s i x hours p r i o r t o sealing the 

tube a small amount o f t r a n s p o r t d i d occur. However, instead o f growing 

a c r y s t a l i n the t i p of the capsule, the m a t e r i a l was deposited i n the 

form o f t i n y c r y s t a l l i t e s and d e n d r i t i c spikes lower down on the w a l l . 

Figure 3.1.5 shows a t y p i c a l r e s u l t . A long tube extending t o the 

cooler p a r t of the furnace was added t o the simple capsule (Figure 3.1.6), 



D i s t i l l a t e consists of tiny 

c i r y s t a l l i t e s at the top of the 

tube, and dendritic spikes I n 

the middle. 

The ch£irge has annealed to a 

s o l i d mass. 

Figure 3.1.5; An attempt to grow ZnSe i n a Sisaple 

Sealed Capsule. 
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and two c r y s t a l s were grown. They grew rat h e r slowly and were 

h e a v i l y f a c e t t e d . As a production technique t h i s method was u n r e l i a b l e 

i n comparison w i t h the r e s e r v o i r system. However, i t d i d prove u s e f u l 

i n demonstrating a technique of producing t h i n f i l m s of ZnSe and the 

l\aminescent samples of Section 3.6. 

3.2 Doped ZnSe 

ZnSe boules doped w i t h manganese c h l o r i d e , c h l o r i n e , indium, 

g a l l i u m , copper, antimony, t e l l u r i x i m and erbixmi c h l o r i d e have a l l been 

grown i n the v e r t i c a l system. Elemental indium, g a l l i u m , copper and 

t e l l u r i u m were added t o the charge and found t o tr a n s p o r t s a t i s f a c t o r i l y . 

Indium and g a l l i u m l e d t o orange coloured boules, while copper reduced 

the t r a n s p o r t s i g n i f i c a n t l y . Concentrations of the order 0.1 p.p.m. 

a f f e c t the luminescent properties^^^ and heavy p r e c i p i t a t e s o f copper were 

found i n boules nominally containing 100 p.p.m. copper. An antimony 

doped c r y s t a l was grown t o t e s t the e f f e c t of t h i s element on the growth 

and luminescence of zinc selenide. This was r e l a t e d t o work i n v o l v i n g 

the evaporation o f zi n c selenide on t o glass coated w i t h t i n oxide, 

when a pressure of antimony was found t o be h e l p f u l i n maintaining the 

c o n d u c t i v i t y o f the t i n oxide. T e l l u r i u m doped c r y s t a l s were dark i n 

co l o u r , w i t h no unusual luminescent p r o p e r t i e s i n the v i s i b l e region.. 

Erbium c h l o r i d e , zinc c h l o r i d e and manganese c h l o r i d e were added 

t o the t a i l r e s e r v o i r i n the manner described f o r manganese c h l o r i d e 

below. This arrangement allowed a constant p a r t i a l pressure of the 

dopant compound t o be maintained during the growth of the c r y s t a l . 

Tables 3.2.1, 2, 3, 4 summarize the experimental r e s u l t s f o r the growth 

of c r y s t a l s doped w i t h galliiom, copper, antimony/indium and t e l l u r i u m . 



INDIUM AND GALLIUM DOPED CRYSTALS 

C r y s t a l 
No. 

Dopant Teaperature °C S i l i c a Description of. 
Boule 

C r y s t a l 
No. Charge T a i l Amount Charge Reservoir 

S i l i c a Description of. 
Boule 

139 In 
Zn 

D.F.C. 1150 
555 

Good 3 cms, orange 
tigered 

140 Ga 
Zn 

lOOQp.p.m. 1150 
1 

555 
Good 3 cms; deep 

orange-brotm 

142 In 
Zn 

D.F.C. 1150 
555 

Good 3 cms, orange 

150 In 
Zn 

lOCp^p.m. 1150 
555 

GoiDd 3 cms, orasge 

154 In 
Zn 

lodop.p.m. 1150 
555 

C r a c k ^ b cms, 
oacidised 

174 In 
Zn 

lOOOp.p.m. 1175 
555 

Cracked 
by boule 

3 cms, T.7. 

176 6a 
Zn 

lOOOp.p.m. 1175 
555 

Sood i cms, Ra& 

180 I n 
Se 

lOQp.p.m. 1175 
360 

:ollapsed h cm 

188 6a 
Zn 

lOOp.p.m. 1165 
5S5 

Good 3 cm, ToT. 
medium 
sherry 

D.F.C. = Doped flow c r y s t a l 

T.T. = Total transport 

Table 3.2.1 



Copper Doped Crystals 

No. Dopant Proportion 
WT. piargd Reservoir(Zn) 

Temperature C S i l i c a 
Description 

of 
Boule 

157 

158 

168 

169 

CuSe 

CuSe 

Cu 

Cu 

lOOOp.p.m. 

lOOOp.p.m. 

lOOOp.p.m. 

1% 

1150 

1150 

1150 

1150 

555 

555 

555 

555 

Cracked 

Normal 

Cracked 

Cracked 

Green under 
heavy Oxide 
layer 

{Almost 
Black 1 cm.I 

Dark Green 
under Oxide 

BottcM half 
dendritic 
iDark Green 
under Oxide.! 
3 cms. 

Cr y s t a l growth wds somewhat inhibited by the coipper, the growth 
tubes were cracked on cooling by the residue sticking to the 
s i l i c a . They f a i l e d where the t a i l joined the girowth emqpoule. 
The dopant was added to the ZnSe charge. 

Table 3.2.2 



In/Manganese Doped Crystals 

C r y s t a l 
No. 

Dopant' Temperature ®C 
S i l i c a 

Description 
of , 

Boule ' 

Cr y s t a l 
No. 

Charge T a i l Amount ::hGirge Reservoir 
S i l i c a 

Description 
of , 

Boule ' 

184 In Zn lOOp.p.m. 1175 Good r.T. 
Mn 1% Dark Yellow-Mn 1% Orange 

Zn 555 

186 In lOQp.p.m. 1175 Cracked 1.5 cms 
Mn 1% Oxidised Mn 1% Oxidised 

Se 360 

Table 3.2.3 



Antimony and Tellurivm Doped Crystals 

Crystal 
No. 

Dopant Temperature °C S i l i c a 
Description 

Bouie 
Crystal 
No. Charge T a i l Amount Charge T a i l 

Description 

Bouie 

192 Te 
Se 

LOOOp.p.m. 1165 
365 

[:racked 1 cm 
Surface 
oxidised. 
Green inside 

206 Te 
Zn 

1165 
560 

Good 3 cms 
Brown-Green 

211 Sb 
Zn 

lOOOp.p.m. 1165 
560 

oood Lime Green 

Table 3.2.4 
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For application i n d.c. electroluminescent devices, samples with 

high conductivities are necessary to reduce the series resistance of a 

device. Some dopants increase the photoluminescent efficiency of ZnSe, 

and i t was hoped to find a dopant that would simultaneously enhance the 

luminescence and the conductivity of samples. Gallium and indium were 

found to decrease the r e s i s t i v i t y of the ZnSe boules from the usual 
14 3 undoped value of 10 fi cm to about 3 x 10 cm . One boule (139) l i g h t l y 

doped with indivmi had a conductivity of 2.0 ohm ^ cm^, and i t i s thought 

that t h i s sample had a p a r t i c u l a r l y low concentration of acceptor 

impurities. Atomic absorption analysis, indicated that there was less 

than 50 p.p.m. indium i n the boule. A more typi c a l sample (152) had 

100 p.p.m. i n the boule, as determined by atomic absorption analysis, 

and a r e s i s t i v i t y of 3 x 10"̂  ohm cms. In practice, however, i t was 

found that these dopants had l i t t l e effect on the electroluminescence, 

and manganese was more e f f i c i e n t . To investigate the luminescence 

ef f e c t s of manganese i n a c r y s t a l , i t was necessary to identify the 

c h a r a c t e r i s t i c luminescence associated with manganese and distinguish 

i t from that associated with co-dopants. G. Jones found that a l l 

the boules grown were s l i g h t l y contaminated with copper and chlorine 

(le s s than 1 p.p.m.) and that photoluminescence bands due to these two 

impurities overlap i n the red region of the spectrum and mask the 

manganese emission when samples are excited with U.V. (3656 angstroms) 

radiation . To obtain samples for comparison p\arposes, chlorine, water 

and copper doped samples were grown, together with highly doped boules 

of ZnSe:Mn (Section 3.3) and polycrystalline samples of ZnSe:Mn, MnCl2 

and Al (Section 3.6). G. J o n e s i n v e s t i g a t e d these samples rigorously, 

measuring excitation spectra to distinguish between different impurities. 
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and he eventually isolated the luminescence associated with each, see 

Table 3.2.5. He showed that copper, but not the chlorine, could be 

removed by leaching i n l i q u i d zinc. A substantial amount of indium and 

gallium was precipitated when the samples were heated in l i q u i d zinc, 

but was redissolved when the c r y s t a l s were heated i n selenium or vacuum. 

I t i s believed that t h i s i s due to the removal and replacement of compen­

sating acceptors i n the form of impurities or zinc vacancies. Most of the 

manganese remains i n the l a t t i c e during the treatment i n molten zinc, 

but afterwards i t i s found that the c h a r a c t e r i s t i c photoluminescence of 

manganese i s quenched. Evidence that the manganese i s s t i l l i n the l a t t i c e 

after the zinc treatment comes from the electrolxminescence spectrum 
(9) 

(Figure 3.2.1) i n which the manganese peak was c l e a r l y present, and 

from atomic absorption analysis of samples before and after treatment in 

zinc. J . A l l e n h a s explained the absence of photoluminescence after 

leaching i n zinc by suggesting that i n semiconducting zinc selenide the 

manganese ions are rapidly de-excited by giving up their energy to con­

duction electrons i n an Auger type interaction. This cannot happen in 

insulating material. In an electrolximinescent device the useful manganese 

ions are i n the depletion region of the device close to the metal Schottky 

contact, and so once again there are no conduction electrons available 

to participate i n Auger de-excitation processes. 



1 
Position of Emission Position of Excita­

t Band tion Band % 

Emission Band Dopant 293 K 85 K 293 K 85 K 

j Copper - Red Cu 6480 6400 5350 5150 

1 Copper - Green Cu 5300 4440 

1 Copper - Green Cu 5450 4600 

a 4750 

S.A. - 6050 6150 4650 4480 

S.A. C I 6050 6150 4700 •« 4550 

4950 4800 

S.A. I 6050 6150 a . 4700 a 4600 

- . 5100 4890 

is.A. Al 
i-
e 6240 6360 4700 « 4550 

4900 4800 : 

S.A. In a 6200 6300 

Group I I I - Green Al 5570 4450 

Group I I I - Green In 5600 4530 

Group I I I - Green Ga 5630 4550 

Undoped - Green - 5650 

Undoped - Grieen - a 5600 

Undoped - Green - 5420 » 4550 

a 4750 

Undoped - Green 5350 

Undqped - Green 5300 4480 

Table 3.2.5: Emission bands observed i n Zinc Selenide 

S.A. s Se l f Activated. 



THE SPECTRAL DISTRIBUTION OF THE E.L 
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3.3 Manganese and Alminium Doped ZnSe 

Manganese doped samples were required for photo and electro-

Ixaninescence studies. J Allen e t a l . attributed e f f i c i e n t electro­

luminescence i n ZnSe to manganese doping. The best L.E.D's. were reported' 

to be fabricated from ZnSe:Mn:Al, i n which the function of the aluminium 

was to increase the conductivity. 

Manganese, however, proved more d i f f i c u l t to incorporate than 

the dopants mentioned above. I t has a low vapour pressure i n the form 

of the element or the selenide, and i t rapidly attacked any s i l i c a that 

i t came into contact with. To avoid excessive attack i n any one section 

of the capsule, which would have led to a leak, the manganese and ZnSe 

were ground together to form an intimate mixtxire, frcm which a boule 

was grown i n the usual way. Manganese could not be detected i n the 

resulting c r y s t a l using luminescence techniques, and very l i t t l e was 

revealed by spark source mass spectroscopy. Similar r e s u l t s were obtained 

with MnSe doping. To grow meinganese into the boules i t was necessary to 

introduce meinganese chloride, which has an appreciable vapour pressure, 

into the system. In t h i s way many doped boules were grown. The most 

sat i s f a c t o r y technique was to sublime the chloride into the t a i l which 

contained the usual zinc. Unfortunately, MnCl2 i s deliquescent, and 

undoubtedly some water was introduced at the same time. To minimise 

the amo\int of water, the MnCl^ was placed i n a capsule which was con­

tinuously pumped with a rotary vacum pump, and gently warmed for 

several hours before being loaded as quickly as possible into the t a i l 

of a growth tube. The chloride was heated gently under vacum u n t i l 

i t melted, and was then sublimed. Nevertheless, growth tubes containing 

MnCl2 had to be pxamped individually instead bf i n batches of three, and 

a much longer time was required to reach the f i n a l vacuum, usually 
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~ 8 X 10 ̂  torr. Recent tubes have been equipped with an extended t a i l 

and the mangemese chloride has been sublimed twice. A wet cloth was 

used to cool the glass and induce the MnCl^ to condense at the correct 

place. With t h i s technique boules containing ~ 2 0 0 p.p.m. were readily 

obtained. Adding manganese powder to the charge increased the resultant 

concentration to ~ 1 0 0 0 p.p.m. Samples from such boules (e.g. No.213) 

were fabricated into L.E.D's. with the highest brightness of any 

observed to date. Figure 3 . 3 . 1 shows a t y p i c a l c h a r a c t e r i s t i c (Woods 

and Ozsan^^^). S. Gezci^^'^^ observed the manganese absorption spectra 

i n such a sample and was able to detect the zero phonon line at 5137.4 £ . 

Boules grown with manganese chloride i n the t a i l only, appeared reasonably 

homogeneous when removed from the capsule, while those with additional 

manganese i n the charge were l e s s so. This i s to be expected because 

the reservoir maintains a constant vapour pressure of the dopant. 

Aluminium doped boules were also d i f f i c u l t to produce. The 

element reacts with s i l i c a to produce a white f l u f f y residue. As a 

r e s u l t only small amovmts were incorporated into the boule. Even when 

1000 p.p.m. aluminium was loaded with the charge very l i t t l e was trans­

ported, and that mainly into the l a s t part of the boule to grow. Some­

times small pieces of ZnSe grew round the base of the growth t i p . 

When alviminiiam was added to the charge, the resultant boules 

were usually the standard green/yellow i n colour, but contained very 

l i t t l e aluminivun, while small pieces round the base of the capsule were 

orange. These pieces contained aluminium at a concentration of around . 

20 p.p.m., and had a r e s i s t i v i t y reduced from ~10^^ ficms to 10^*^ ficms. 

I t i s thought that the alminium diffused into the wall of the capsule 

frcan the top of the charge, and then out again into the ZnSe as i t grew 

on that part of the capsule. 
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3.4 C r y s t a l l i n i t y of Doped Boules 

As the quantity of manganese i n the boules was increased, the 

growth.rate cind quality declined} often a three or four centimetre boule 

would grow d e n d r i t i c a l l y for the l a s t 2 cms. This should not necessarily 

be attributed to the manganese since chlorine (ZnCl^) doped boules 

behaved s i m i l a r l y , although erbium chloride doped boules behaved much 

better. Both MnCl^ and ZnCl^ are highly deliquescent and the trouble 

i s probably due to water vapour i n the system. Figure 3.4.1 shows voids 

nucleating i n a ZnSeiMnCl^ c r y s t a l . The boule was pulled at the slowest 

rate available (0 . 5 mm/hr) and was then held stationary i n a temperature 

gradient for one week. Facets formed indicating that a very slow p u l l 

rate should allow non-dendritic boules to be grown. The photograph of 

the voids was taken through the facetted face of the c r y s t a l , which 

displayed triangular growth features indicating a 111} Zn face, and 

many growth ridges. The common facets found on ZnSe were • 110 and | l l l 

planes as ide n t i f i e d by Laue back-reflection photographs. 

The mechanism for the growth of chlorine doped boules i s cer­

t a i n l y different from that of the vindoped boules. Boules numbered 226 

and 230 were grown with manganese chloride only in the t a i l and no zinc 

so that the stoichiometry of the vapour was hot controlled i n the usual 

way. Normally no growth would occur i n these circianstances, because the 

pressure i n the capsule would move well away from ^^j^' The growth 

process must be at l e a s t i n part a chlorine transport reaction, e.g. 

HOT 
2ZnSe + 201^ 2ZnCl2 + Se2 
SOLID GAS GAS GAS 

The free chlorine may be released by a variety of reactions, 

but the most l i k e l y seems to be the simple dissociation of MnCl^ 

to MnCl + '^sCl^ 



A. Triangular growth features on a facet. The dark 
spots are globules of selenium which siiblimed from 
the t a i l reservoir as the c r y s t a l cooled (Mag. x 25) 

B. D e t a i l of growth ridges (Mag. x 50) 

Figure 3.4.1; Some Growth Features of a Manganese 
Doped Boule 



'J 
mm 

C. Nucleation of voids. Photograph taken through 
facet shovm i n 3.4.1A, growth direction l e f t to 
right (Mag. x 50) 

i 

D. D e t a i l of voids (Mag. x 50) 

Figure 3.4.1 (Continued) 
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Possibly some HCl i s formed, this has been used as a transport 

agent for ZnSe^^^'. Further evidence for the chemical vapour transport 

process i s the large increase i n the quantity of dopant incorporated 

i n the boule when Mn i s added to the charge i n addition to MnCl^ i n the 

t a i l reservoir. Adding the chlorides of most r e c a l c i t r a n t dopants might 

be expected to a s s i s t i n doping ZnSe c r y s t a l s , although chlorine w i l l 

be incorporated also, and cannot be removed by any known method. For 

example, c r y s t a l s doped with terbium chloride and erbium chloride grew 

p a r t i c u l a r l y well. In fac t they grew better even than many manganese 

chloride doped boules, because of the lower water content of the chloride 

used. Figure 3.4.2. A summary of the c r y s t a l s grown i s given in 

Tables 3.4.1 and 3.4.2. 

3.5 Seeded Single Crystal Growth 

The standard c r y s t a l growth t i p was modified to accommodate a 

flow c r y s t a l as a seed (Figure 3.5.1), and a d i f f e r e n t i a l thermocouple 

was attached to the capsule with one junction close to the seed, and 

the other against the charge. Flow p l a t e l e t s of appropriate s i z e were 

selected and inserted so that growth would take place either on the 

{ i l l } zinc face or the {TIT} selenium face. 

The growth tube was loaded into the furnace i n the usual manner, 

except that the midpoint of the capsule was located so as to be at the 

hottest part of the furnace when f u l l temperature was reached. When 

the furnace attained the growth temperature the tube was lowered u n t i l 



Figure 3.4.2; An Erbium Chloride Doped 

Boule of ZnSe 



ALUMINIUM, MANGANESE AND MANGANESE CHLORIDE DOPED BOULES 

Boule 

T • ? 

DopeUlt 
o 

Temperature C S i l i c a Description 
of Boule No. Charge jj:^ 4 i l Quantity . Charge Reservoir i -

Description 
of Boule 

141 MnSe 
Zn -

1000 p.p.m. 1150 550 White 1 cm- Green 
Dendritic 

145 MnSe 
Al Zn 

1000 p.p.m. 
1000 p.p.m. 

1150 
555 

S.D. 3 cm. Orange 

147 Al 
Zn 

1000 p.p.m. 1150 
555 

Normal Good 2h cms. 
White f l u f f y 
residue 

149 Mn 
Al Zn 

100 p.p.m. 
1000 p.p.m. 

1150 
. 555 

S.D. 5 cms. 

153 MnSe 
Al Zn 

100 p.p.m. 
1000 p.p.m. 

1150. 
555 

S.D. 3 cms. Green 
White f l u f f y 
residue 

156 MnSe 1% 1200 Highly 
Devitri- . 
fie d 

1 pn. Very 
Dendritic 

160 Mn 
Zn 

1% 1150 
555 

Good 4 cm.Yellow 
Residue 
Black Sponge 

161 Al 1000 p.p.m. 1200 57.0 S.D. 3 cms. Top 
Yellow-Green 
Bottom Orange 

162 MnCl^ 
Zn 

1% : 1200 
570 

Poor 
Collapsed 

Small.Orange 

163 . MnCl^ Zn 
Zn 

1% 1200 
570 

Pair. 
Partly 

.Collapsed 

Small.Orange-
Red 

165 MnCl^ 
Zn 

1% 1160 S.D. 
Growth T i l 

1.5 cms. 
Orange 

170 MnCl2 
Zn 

1150 
555 

S.D. 4 cms. 
Dendritic 

183 MnCl2 
Zn 

1165 
555 

S.D. 
Growth Tij 

1.5 cms. 

187 Al 
Zn . 

1000 p.p.m. • 1165 
555 

Normal 2.5 cms. T.T. 

Table 3.4.1 



Table 3.4.1 (Continued^ 

Boule . Dopant T.emperature °C S i l i c a Description 
of Boule No. Charge T a i l Quantity Qharge Reservoir 

Description 
of Boule 

189 MnSe 
Al SSe 

. 1% 
1000 p.p.m. 

1165 . 
365 

Normal 3 cm. Green 

190 
Zn 

MnCl2 
Zn 

1165 
560 S.D. 

4 cms. 

195 MnCl2 
Zn 

2»5% 1165 
560 

S.D. 2 cms. 

2200 MnCl2 
Zn 

1165 
460 

S.D. 3 cms. Orange 

202 MnCl2 
Zn 

1165 
680 

Cracked . 
on cbolinc 

0.3 mm.Orange-

204 MnCl2 
Zn 

1180 
360 

Normal 3 cms. Orange 

209 MnCl2 
Se 

1165 
360 

Normal Small Red. 
Poor 

226 Mn 
MhCl2 

1160 
560 

Normal 1 cms. 
Dendritic 

230 
Mn 

MnCl2 1160 Attacked 
by contact 
with Mn. 

Orange. 
Dendritic 

246 Mn 
MnCl2 
Zn 

1000 p.p.m. 1160 

560 

Cracked 
D e v i t r i -
fied 

i cm. Orange 

- 247 Al 
Zn 

1% S.D. Red T.T. 

252 Mn 
MnCl2 
Zn 

1000 p.p.m, 1165 

600 

S.D. at 
Base 

3 cms. Red. 

304 - Mn 
MnCl2 
(D.S. 

1500 p.p.m. 1165 

i 

600 

__———— 

2.75 cms. 
Orange 

S.D. = Sli g h t l y d e v i t r i f l e d 
T.T. = Total transport 
D.S. = Double sublimed 



CHLORINE and Ĥ O DOPED BOULES 

Boule Dopant ' Te]]5)erature °C ' S i l i c a Description 
of Boule. No. Charge T a i l Quantity Charge Reservoir 
Description 
of Boule. 

122 ZnCl^ 
Zn 

1150 
555 

Small Red .. 
C r y s t a l l i t e s 

123 ZnCl^ 1150 
555 

S.D. 2 cms. Red 
Tapered 

134 ZnCl^ . 1% 1150 S.D. 0.5 cms. ZnCl^ 
Zn 550 Orange 

135 ZnCl^ 
CuSe 

0.25% 1150 S.D. 3 cms. ZnCl^ 
CuSe Zn 10 p.p.m 5^5 

Orange 

136 ZnCl^ 
CuSe 

Zn 

1% 1150 

555 ' 

S.D. 3cms. 
Orange 
Tapered 

146 ZnCl^ 
Zn 

D.F.C. 1150 
550 

Cracked . 15 cms. 
Oxidised 

148 
Zn 

D.F.C. 1150 
555 

Normal 4 cms. 

242 
ZnCl^: 1% 

1160 
450 

S.D. 3 cms. 
Quite Good 

244 
ZnCl^ 1% 

1160 
600 

S.D. h cm,. 
Orange 

D.F.C. = Doped flow c r y s t a l s 
S.D. = Sli g h t l y d e v i t r i f l e d 

Table 3.4.2 
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a reverse temperature difference of 10°C was obtained, as measured 

using a potenticaneter and the d i f f e r e n t i a l thermocouple. This situa­

tion was maintained for 30 minutes to clean the seed, after which time 

growth was begun by ra i s i n g the tube u n t i l a forward temperature 
o 

gradient of approximately 5 C was established. After 24 hours the 

temperature gradient was increased to 10°C for 48 hours, when the 

mechanical p u l l was started at the slowest rate. The technique of 

quickly removing the growth tube frcan the furnace and examining the 
(12) 

c r y s t a l as used by Shiozawa proved impractical because of the 

gecHnetry of the furnace. F i r s t l y the t a i l guide came clear of the t a i l 

furnace and could not be replaced while hot. Secondly, even i f the 

furnace had been altered to avoid t h i s , the reservoir entered a hotter 

part of the furnace and the zinc d i s t i l l e d into the c r y s t a l growth 

chamber disturbing the growth conditions for a considerable period of 

time. L a s t l y , being a v e r t i c a l furnace, the temperature p r o f i l e was 

grossly distorted by convection currents as soon as the bungs were 

removed. 

Out of 10 attempts to grow c r y s t a l s only the f i r s t two on. zinc 

faces were successful. In these a 0.5 cms, and a 1.5 cm boule. Figure 

3.5.2, were grown using a charge temperature of 1165°C and a zinc 

reservoir at 555°C. In the other attempts, one of the seeds evaporated, 

and one very dendritic polycrystalline growth resulted. I t has beccane 

cle a r , however, that the reason for the f a i l u r e s was connected with the 

deteriorating quality of the ZnSe supplied by the manufacturers. In 

f a c t i t l a t e r proved very d i f f i c u l t to grow unseeded c r y s t a l s with the 

material then being used. 

The two boules actually produced grew free from the walls of 

the capsule, and had s i x facets round the sides. They were dark green 



Figvire 3.5.2; A Boule of Zinc Selenide grown from a Seed 

The c r y s t a l was grown on the {111} zinc face 
of a flow p l a t e l e t . Note the s i x facets on 
the. itop part of the boule, which grew free ̂  
of the s i l i c a capsule. 
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i n colour and showed no signs of twinning. The method therefore shows 

gr e a t promise f o r growing high q u a l i t y , t w i n f r e e boules. No other 

r e p o r t s of t h i s technique being applied t o ZnSe have been found, 

although i t has been used f o r i o d i n e transported c y s t a l s ^ ^ ^ ^ . Selenivun 

faces u s u a l l y grow f a s t e r than zinc when the chemical vapour t r a n s p o r t 

technique i s used and thus the f a i l u r e t o grow c r y s t a l s on the selenium 

faces of flow c r y s t a l s i s almost c e r t a i n l y due t o the poor q u a l i t y of 

the s t a r t i n g m a t e r i a l employed. 

3.6 Photoluminescence Samples 

A series of very h e a v i l y doped samples of ZnSe was.required f o r 

the work of G. Jones on the photoluminescence of ZnSe. I n attempts t o 

o b t a i n very high concentrations of i m p u r i t i e s / v e r y f a s t evaporation rates 

were employed and these were produced by using a very large temperature 

g r a d i e n t . As noted i n Section 3.1, ZnSe w i l l not siiblime a t a u s e f u l r a t e 

unless some method i s adopted t o maintain the stoichiometiry of the vapour 

phase. Consequently the arrangement o f Figure 3.6.1 was devised, the 

growth tube i s s i m i l a r i n p r i n c i p l e t o the capsule of Figure 3.1.6,and 

provides a cold region t o condense non-stoichiometric m a t e r i a l . The 7 mm 

I.D. tube was evacuated and sealed a t ~ 1 0 ^ t o r r . P o l y c r y s t a l l i n e samples 

were produced by s\ibliming the z i n c selenide down the temperature g r a d i e n t , 

the,charge was held a t 1000°C and the other end below 200°C. C r y s t a l l i n e 

m a t e r i a l condensed a t temperatures between 800°C and 450°C. Excess dopants 

and zinc or selenium c o l l e c t e d a t the c o l d t i p . With aluminium doped 

samples a c e r t a i n amount of Al^Se^ was formed a t the c o l d end of the tube. 

When such a tube i s opened Al^Se^ hy d r o l i s e s on meeting water i n the a i r 

and releases t o x i c H^Se. The simplest way t o avoid t h i s danger i s t o open 

the tube i n a fume cupboard and t o wash the .--samples and glass before 

removing them from the cupboard. This ensures tha.t the r e a c t i o n proceeds 

t o cCTnpletion s a f e l y . 
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CHAPTER 4 

THEORETICAL CONSIDERATION OF VERTICAL GROWTH 

TUBE WITH RESERVOIR 

4.1 I n t r o d u c t i o n 

The theory o f c r y s t a l growth from the vapour phase has been 

i n v e s t i g a t e d by many authors, i n c l u d i n g Reed and L a f l e u r ^ ^ ^ , Reed, 

L a f l e u r and Strauss and Faktor and G a r r e t t Ballentyne e t a l ^ " ^ ^ . 

Rouse and W h i t e , Tempest and B a l l e n t y n e h a v e given p a r t i c u l a r 

a t t e n t i o n t o the c r y s t a l growth o f I I - V I compounds from the vapour phase. 

The o b j e c t o f t h i s chapter i s not t o add t o the general theory of the 

s i i b j e c t , b ut t o attempt t o apply some r e l e v a n t p a r t s o f c r y s t a l growth 

theory t o the experimental system described i n Chapter 3, p a r t s 1-4. 

This has been done i n order t o understand what i s happening i n s i d e the 

sealed system, and t o a r r i v e a t the approximate composition of the vapour 

over the growing c r y s t a l . Because the system was designed t o grow c r y s t a l s 

r e l i a b l y , r a t h e r than t o i n v e s t i g a t e the l i m i t s of the possible growth 

c o n d i t i o n s , the data a v a i l a b l e i s r e s t r i c t e d , and many assumptions have 
(7) 

t o be made t o o b t a i n the i n f o r m a t i o n required. However, Clark and Woods , 
(8) (9) Burr and Woods and C u t t e r , Russell and Woods have reported the 

growth o f CdS, ZnSe and ZnSe. S respiectively. The apparatus has also 

been used s u c c e s s f u l l y t o grow CdSe, ZnTe and ZnTe, Se . With each com-

pound a furnace ten^^erature o f 1150°C was used and the t a i l r e s e r v o i r 

contained one o f the elements. The t a i l temperature was s e t , as usual, 

t o give a pressure o f the reseirvoir element equal t o i t s p a r t i a l pressure 

i n the capsule a t ̂ ^j^- CdSe, ZnTe and ZnTe^_^Se^ a l l transported w e l l 

t o provide s u b s t a n t i a l boules. This was expected because CdSe and ZnTe 

have much higher values o f KJ> than ZnSe a t 1150°C. A l l the boules 
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produced had hollow growth faces i n d i c a t i n g t h a t heat e x t r a c t i o n from 

the growth face was governing i t s shape. During one ZnTe run the t a i l 

furnace f a i l e d , then i n c o n t r a s t w i t h ZnSe and Cds, the ZnTe transported 

to the t a i l and completely blocked i t i n a p e r i o d of approximately 72 

hours. Another r e p o r t of c r y s t a l growth i n a system w i t h a separate 

r e s e r v o i r has come from Fochs e t a l ^ ^ * ^ ^ , who grew CdS i n a s i m i l a r system. 

I t would seem worthwhile, t h e r e f o r e , t o i n v e s t i g a t e why the system works 

so w e l l , and t o enquire how much d e v i a t i o n from the i d e a l charge w i t h 

exact s t o i c h i o m e t r y can be t o l e r a t e d before the growth i s disturbed 

s i g n i f i c a n t l y . 

F i r s t , however, i t i s necessary t o review some of the background 

theory. The basis of the c r y s t a l growth technique i s t r a n s p o r t i n a 

sealed txobe, e i t h e r i n vacuum or i n the presence of an i n e r t gas. The 

growth process may be conveniently d i v i d e d i n t o three stages: 

( i ) Evaporation of the charge. 

( i i ) Transport i n the vapour phase. 

( i i i ) Condensation on t o the growing c r y s t a l . 

The three processes may be regarded as analogous t o three 

r e s i s t o r s i n series w i t h a current (growth ra t e ) and a d r i v i n g voltage 

(AT between source and seed). I f the resistance o f one step i s much 

gr e a t e r than the others i t w i l l c o n t r o l the growth r a t e almost e n t i r e l y , 

e.g. the growth r a t e may be sai d t o be ' d i f f u s i o n l i m i t e d ' i f the process 

i s c o n t r o l l e d by the r a t e of d i f f u s i o n of one component i n the vapour 

phase, or 'condensation l i m i t e d ' i f the k i n e t i c s a t the growth face i s 

the c o n t r o l l i n g f a c t o r . 

I n a sealed tube, evaporation i s much less l i k e l y t o be l i m i t i n g 

than condensation. I n t u i t i v e l y t h i s appears reasonable because conden­

s a t i o n takes place a t a lower ten5>erature and thus c o n s t i t u t e s a greater 
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disturbance o f t h ^ e q u i l i b r i i a n r a tes of evaporation and condensation. 

With I I - V I compounds the stoichiometry of the m a t e r i a l a f f e c t s the 

evaporation r a t e . Somorjai and Jepson^^^^ i n v e s t i g a t e d the evaporation 

r a t e o f CdS and found t h a t an i n d u c t i o n p e r i o d o f several hours was 

necessary before a non-stoichiometric cheirge reached i t s f u l l evapora-
(12) 

t i o n r a t e . I n another experiment , they found t h a t bombarding the 

surface w i t h cadmium had l i t t l e e f f e c t on the evaporation r a t e , and con­

cluded t h a t the r e t a r d a t i o n was a bulk r a t h e r than a surface phenanenon. 

I n a sealed growth tube non-stoichiometry of the charge could a f f e c t the 

evaporation r a t e s u f f i c i e n t l y t o make i t the r a t e l i m i t i n g step, r a t h e r 

than the d i f f u s i o n o f the m i n o r i t y component. However, using a growth 

tube w i t h a t a i l r e s e r v o i r the stoichicanetry o f the gas i n the capsule 

i s s t a b i l i s e d . Tl-ie charge i s always slowly evaporating and condensing 

i n the t a i l , so t h a t any non-stoichiometry o f the charge ought.to be. 

corrected i n the 48 hours p e r i o d before c r y s t a l growth begins. I t would 

appear t h e r e f o r e t h a t the c o n t r o l l i n g f a c t o r s during the growth o f the 

c r y s t a l s described here are processes ( i i ) and ( i i i ) . 

Consider the t r a n s p o r t process ( i i ) f i r s t . M a t e r i a l may be 

moved by three basic mechanisms: 

(a) Viscous flow due t o a pressure d i f f e r e n c e between the ends of 

the capsule. 

(b) D i f f u s i o n . 

(c) Convection. 

I n the simplest possible system, namely w i t h an elemental charge 

i n a p e r f e c t l y evacuated capsule, t r a n s p o r t occurs when a temperature 

d i f f e r e n c e i s e s t a b l i s h e d along the capsule, because o f the r e s u l t a n t 

pressure d i f f e r e n c e between the ends. However, only a very small pressure 

d i f f e r e n c e would be r e q u i r e d t o o b t a i n a high t r a n s p o r t r a t e , and the 
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growth r a t e would be l i m i t e d by the heat flows i n t o the source and out 

from the c r y s t a l , which supply and remove the l a t e n t heat o f sublimation. 

The system i s , i n f a c t , a simple heat pipe, i n which the flow, o f gas from 

one end o f the capsule t o the other c o n s t i t u t e s what may be termed a. 

' w i n d i h s i d e . the capsule. Gas i s introduced a t the source and removed 

'-at,-tHe c r y s t a l . Faktor e t a l ^ ^ ^ r e f e r t o t h i s e f f e c t as 'Stefan' flow. 

; V I f . an i n e r t gais i s introduced i n t o the system i t w i l l be swept 

/alorig by the wind. A steady s t a t e w i l l be set up i n which there i s a • 

.^mailer .'wind' from source t o c r y s t a l , while superimposed on t h i s w i l l be 

the forward d i f f u s i o n of the element, and the backward d i f f u s i o n of the 

i n e r t . g a s . To formulate t h i s mathematically (see Figure 4.1.1), l e t the 

'Stefan''flow be U, the pressure o f gas be P, the m a t e r i a l f l u x be J, 

and the. number o f moles/unit volume be N. Further, l e t the siabscripts 

E, I-and,T added t o these symbols represent the elemental gas, the i n e r t 

,gas, and t o t a l , r e s p e c t i v e l y . The pressure d i f f e r e n c e between the ends 

of the capsule i s assumed t o be zero. 

T E I 

However, i n the steady s t a t e the flow of i n e r t gas must be zero, 

so J , = 0 and J„ = J„. I T E 
Consider the flow o f the element being transported 

d N 
J^ = N^U - D — ^ = J^ (4.1.1) E E dx T 

i . e . Flux of Element = Stefan Flow + D i f f u s i v e Flow = T o t a l Flux 

But 

so. 

J = UN (4.1.2) T T 

Jn, = • - D (4.1.3) T N„ T dx 
T . 
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and dN 
J dx = DN^ . — — 7 - (4.1.4) 
T T (Ng - N^) 

I f the c r y s t a l grows a t x = 0, where N^ = N^(0), and the source i s a t 

X = £ where N_ = N (£), then by i n t e g r a t i o n between x = 0 and x = £, E E 

D N^ 
= -j^ . In 

- N^) 
(Ng(0) - N^) (4.1.5) 

Or i n terms o f pressure, 

"̂T = • L (4.1.6) 

where R and T have t h e i r usual s i g n i f i c a n c e . 

As an example consider the growth of a zinc c r y s t a l from the 

vapour a t a temperature j u s t below i t s m e l t i n g p o i n t . A temperature o f 

400°C i s used f o r the charge. Figure 4.1.2 shows the v a r i a t i o n of the 

growth r a t e (J^) w i t h AT f o r two values o f t o t a l pressure (P^). I n 

Figure 4.1.3 the v a r i a t i o n o f the p a r t i a l pressiires of the zinc and the 

i n e r t gas along the capsule i s shown. The curvature of the p a r t i a l 

pressure l i n e s i s a consequence o f the Stefan flow. As the value o f P^ 

i s increased the f l o w v e l o c i t y f a l l s r a p i d l y and the curves approach 

s t r a i g h t l i n e s when P^ » P^^(£). S i m i l a r e f f e c t s may be seen i n m u l t i -

component systems, and a s i m i l a r curvature of the p a r t i a l pressure l i n e s 

occurs when the Stefan flow has a s i g n i f i c a n t v e l o c i t y . 

I f the capsule geometry permits, the s i t u a t i o n may be f u r t h e r 

ccmplicated ( p a r t i c u l a r l y i n a v e r t i c a l system) by convection c u r r e n t s , 

which are d i f f i c u l t t o t r e a t t h e o r e t i c a l l y . A reasonable approximation 

may o f t e n be made by assuming p e r f e c t mixing o f the source gas up t o a 

boundary la y e r close t o the growing c r y s t a l , and then assuming d i f f u s i o n 

c o n t r o l l e d growth takes over again, w i t h a source t o seed distance equal 
(2) 

t o the boundary l a y e r thickness. Reed, L a f l e i i r and Strauss p o i n t out 





PARTIAL PRESSURES OF Z inc AfSD AN 

(INERT GAS IN A SEALED CAPSULE . 

F ig . 4 : 1 : 3 

10 

8-^ 

6 

5 -I 

PRESSURE 
T O R R ^ 

z-

1 -

PT = 10x10"'̂  

PT = 3x10"^ 
PH.. 

CRYSTAL X 

PI (=%)C10''̂ ) 
rPr. 

Pj (='"9x10 ) 

10 CM5 

SOURCE 

-2 
PT = 1 0 x 1 0 

" FT = Sx lO"^ 

STEFAN 
FLOW 

NOTE THE CURVATURE OF THE PARTIAL PRESSURE 

LirSES DUE TO THE INCLUSION OF STEFAH FLOW m 

THE TRANSPORT EQUATION. AS PT INCREASES 

THE CURVES APPROACH STRAIGHT L INE^ WHICH 

AGREES WITH A "DIFFUSION ONLY" TREATMEMT. 



- 41 

that t h i s approximation may also be used to describe growth i n an open 

tube with forced convection, ( i . e . the conventional vapoiar phase epitaxy 

apparatus) by the insertion of an appropriate boundary layer thickness. 

4.2 Interface E f f e c t s 

The surface effects on the growing interface have also been sub-
(4) 

divided into three main classes by Ballentyne et a l following the work 

of Brice^^"^^ on melt growth. 
(i) Growth on a perfect* singular interface, where i t i s necessary to 

nucleate each successive growth layer requiring a supersaturation r a t i o 
(14) 

of at l e a s t 2 . A perfect singular interface implies 
EQUILIBRIUM 

a defect-free surface (no dislocation impurity or other nucleating centre), 

that corresponds to a sharp dip i n the surface energy. This i s i l l u s t r a t e d 

i n Figu.re 4.2.1 which shows Wolff's theorem i n two dimensions. A singular 

plane contains no steps. A plane nearly p a r a l l e l to such a face can 

minimise i t s free energy by becoming stepped so that i t i s made up of 

steps and singular faces. This type of face i s sometimes referred to as 

a v i c i n a l plane. 

( i i ) Growth on a nearly perfect face, e.g. one containing screw d i s ­

locations or some other s e l f regenerative step mechanism. This requires 

a supersaturation ~1.01^^^^. 

( i i i ) Growth on an atomically rough surface, which always has comer 

s i t e s available. This requires a very low supersaturation, possibly as 

low as 1.0001^^^^. 

4.3 Processes i n Sealed Capsules 

Before passing on to a consideration of the special p e c u l i a r i t i e s 



W U L F F 3 T H E O R E M T O D E T E R I V I I N E T H E 

E Q U I L I B R I U M S H A P E O F A C R Y S T A L . 

Figure^ 4.2.1; W u l f f s theorem i n two dimensions. The heavy lin e 
i s the equilibrium shape and the l i g h t l i n e i s the 
free energy polar diagram. A i s a singular i n t e r ­
face and B i s a rough interface. 

I f a plot of Y„(h),(the value of v i n a direction s — s 
defined by a vector n, where Y i s the surface free 
energy of the c r y s t a l ) i s produced, t h i s w i l l be a 
closed surface. I f at t h i s surface a plane i s drawn 
normal to each radius vector, then by Wulff's theorem, 
the equilibrium shape of a c r y s t a l w i l l be geometrically 
similar to the volume which can be reached from the 
origi n without crossing emy plane. I f a direction n 
corresponds to a sharp minimum of Yg > the resulting face 
w i l l be f l a t . I n other orientations i t w i l l be curved. 
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of the growth o f I I - V I compounds, i t i s perhaps more opportune t o consider 

the processes i n an a c t u a l growth run. See Figure 3.1.1. I f the t a i l o f 

the capsule i s ignored the system reduces t o a simple sealed capsule being 

p u l l e d through a temperature gradient- A run s t a r t s w i t h the growth t i p 

i n the h o t t e s t p a r t of the furnace. The charge tends t o sublime and con­

centrates i n the lowest p a r t o f the capsule where i t coalesces. As the 

capsule i s p u l l e d through the teni)erature gradient the growth t i p becomes 

cooler than the charge, and a t some c r i t i c a l s upersaturation, nucleation 

begins on the w a l l s o f the growth t i p . I n i t i a l l y the c r y s t a l l i t e s ' . i . 

( i n v i s i b l e t o the unaided eye) grow very r a p i d l y reducing the l o c a l super-

s a t u r a t i o n o f the gas u n t i l t h e i r volumes of i n f l u e n c e overlap. The 

c r y s t a l l i t e s w i t h the l a r g e s t volumes dominate when t h i s occurs, and the 

smaller ones are a n n i h i l a t e d by re-evaporation as the value of the super-

s a t u r a t i o n decreases. A reasonably evenly spaced array r e s u l t s . A p e r i o d 

of growth f o l l o w s i n which the most favourably o r i e n t e d c r y s t a l l i t e s out­

grow the others and f i l l the whole w i d t h of the ti i b e . Usually one or two 

g r a i n s are l e f t . Growth w i l l i n general proceed a t a r a t e d i f f e r e n t from 

the p u l l r a t e u n t i l AT has been a l t e r e d by the movement o f the growth face 

so t h a t the two rates become comparable t o one another. Of course the p u l l 

r a t e may exceed the maximiHQ possible growth r a t e i n the system, i n which 

case AT w i l l become l a r g e . Then the adsorption process may be l i m i t e d by 

a c t i v a t i o n energy. The a c t i v a t i o n energy i s associated w i t h a p o t e n t i a l 

b a r r i e r t o an e n e r g e t i c a l l y favourable r e a c t i o n (see Figure 4.3.1). I n 

c r y s t a l growth, common examples of a c t i v a t e d adsoprtion processes are the 

d i s s o c i a t i o n o f molecules a t the surface o f ZnS and CdS^^\ and the 

brecik up o f the c a r r i e r species a t the growth face i n chemical vapour 

t r a n s p o r t . The b a r r i e r w i l l be most s i g n i f i c a n t a t lower growth tempera­

t u r e s , and one of the c h a r a c t e r i s t i c s o f t h i s mode of l i m i t a t i o n i s t h a t 
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the growth r a t e increases e x p o n e n t i a l l y as the temperature of the i n t e r ­

face i s increased. 

4.4 A p p l i c a t i o n t o I I - V I Compoiinds 

Some of the ideas described i n Sections 4.1, 2 and 3 can now be 

a p p l i e d t o the simple sealed capsule containing a I I - V I compound. The 

e s s e n t i a l d i f f e r e n c e between the siablimation of a I I - V I compound and an 

element i s t h a t the I I - V I compound dissociates i n t o monatomic metal, and 

diatomic non-metal molecules. The pressures of each component are given 

by the r e l a t i o n s h i p 

so c l e a r l y there i s an e x t r a degree of freedom i n the system. 

Consider the capsule shown i n Figure 4.1.1A. M a t e r i a l evaporates 

a t the hot end of the capsule, t r a v e l s t o the co l d end and condenses. 

The sealed capsule cind r e s e r v o i r system was developed from a simple 

capsule t o provide more c o n t r o l over the conditions during growth. 

Faktor e t alf"^^ have observed t h a t a t normal growth rates the 

t r a n s f e r o f m a t e r i a l from charge t o growing c r y s t a l c o n s t i t u t e s q u i t e a 

considerable wind i n s i d e the capsule. For example 20 gms of ZnSe t r a n s ­

p o r t e d a t a temperature of 1I50°C and a pressure of P j ^ j ^ i n f i v e days 

w i t h i n an 11 mm I.D. tube c o n s t i t u t e s a wind of average v e l o c i t y 

5 cms/sec. 

Furthermore, Faktor e t a l p o i n t out t h a t the pressure d i f f e r e n c e 

between the ends of the capsule necessary t o produce t h i s wind i s very 

small r e l a t i v e t o the t o t a l pressure i n s i d e the capsule. This presents 

an i n t e r e s t i n g p i c t u r e , the source and seed are a t s u b s t a n t i a l l y the 

same pressure, y e t a t d i f f e r e n t temperatures. This may be achieved only 
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i f the composition of the vapour v a r i e s along the length of the capsule. 

Figure 4.4.1 shows a t y p i c a l set of curves of canposition versus tem­

perature f o r ZnSe a t constant t o t a l pressures (P^) which have been 

c a l c u l a t e d assuming e q u i l i b r i u m conditions a t the two i n t e r f a c e s . The 
o 

pressures o f the isobars were selected by the computer t o be a t 50 C 

i n t e r v a l s a t P..̂ „ (A = 's). The basic assumption of e q u i l i b r i u m must be MIN 

j u s t i f i e d i f the cxarves are used w i t h reference t o a p r a c t i c a l system. 

Next consider t r a n s p o r t of ZnSe i n the capsule o f Figure 4.1.1A. To 

model i t mathematically, l e t the c r y s t a l grow at. x = 0, and the source 

be a t X = Let the t o t a l gas flow be J moles/unit area i n u n i t time. 

Each o f the moles corresponds t o 2/3 mole of s o l i d ZnSe transported 

because 1 mole o f ZnSe di s s o c i a t e s i n t o 1 mole of Zn and 0.5 moles of Se2 

when i t evaporates. Let U be the average flow v e l o c i t y of the wind i n 

the tube, and N be the nnmher o f moles/unit volume, consequently 

N = I (4.4.1) 

Let A be the r a t i o of Se2 t o Zn so 

AP^ = Pe-Zn Se 

and 

2 

5 + P = (A+1)P„ (4.4.2) Seo Zn ' Zn 

X = Flux due t o the wind i n the capsule. 

Y = Flux due t o d i f f u s i o n . 

Let the siabscripts Zn, Se and T stand f o r z i n c , selenium and t o t a l 

r e s p e c t i v e l y , e.g. X„ = Flux o f zinc c a r r i e d by wind, J = T o t a l Flux 

Zn Se 
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So, J 

( i . e . The f l u x of zinc c a r r i e d by the wind a t any p o i n t i s the product 

of the t o t a l f l u x and the p r o p o r t i o n of zinc vapour a t t h a t p o i n t , and, 
dN, 

"Zn " dx = - D - ^ (4.4.4) 

But 

so 

^zn = \ l - b (^-^-^^ 

dN , 
= -N. ^ (4.4.6) 

' ^ ( l . A ) 2 

and s u b s t i t u t i o n i n 4.4.4 gives 

S i m i l a r l y , 

and 

N T dA = D — - ' ̂  (4.4.7) 
( 1 + A ) 2 ^ 

= J T^-r (4.4.8) Se T A + 1 

dN 
= -D . -r^ (4.4.9) 

Se d x 

N„ = N_ . ^ 

Therefore 

Se T 1 + A 

d N 
= +N — r - (4.4.10) 

and 

^ ( 1 + A ) 2 

+ = 0 . 
Zn Se 

This i s t o be expected because the t o t a l d i f f u s i o n f l u x must be zero 

under e q u i l i b r i i m i c o n d i t i o n s , as a r e s u l t of the assumption of zero change 

i n t o t a l pressure (P^ along the length of the capsule. 



- 46 -

The t o t a l zinc flux must be constant along the length of the tube 

at 2/3 J ^ , because the zinc i s only introduced at the source and must 

be composed of 2/3 zinc and I/3 selenium. Therefore, 

N 
Zn Z.n 

- 2 /3 J . 1 + A + D 
dA 

(1 + A) 2 dx • (4.4.11) 

I t follows that 

J I 2 L 
T I 3 1 + A 

D . N_ 

(1 + A)' 
dA 
dx (4.4.12) 

and substitution from 4.4.1 gives 

2A - 1 
3(1 + A) 

D 
U (1 + A) 

dA 
2 • dx (4.4.13)-

Therefore 

dA 
(2A - 1) (1 + A) dx (4.4.14) 

and 

1 dA 
(2A - 1) (1 + A) 

(4.4.15) 

To fin d the variation of the composition of the vapour along the. capsule 

i t i s necessary to integrate between x = 0 and x = giving. 

(2A - 1) (1 + A) dA (4.4.16). 

So, 

(2A£ - 1) (A + 1) 
(2A^ - 1) (A^.+ 1) (4.4.17) 
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giving, 

/u l\ 2̂A - 1) . (A +1) 
^ n ^ ) = (2A - 1 ) . ( A % i ) ^^-^-^^^ 

o x . 

The same r e s u l t may be obtained by putting X^^ + Y^^ = j J . 

I f the value of A i s taken as 2 and that of A» as 1, for example, 

which w i l l be shown l a t e r to be rather large for ZnSe in the 

experiments reported here, the concentration gradient along the capsule 

may be calculated as shown i n Figure 4.4.2A. Knowing the vapour com­

position, the equilibrium temperature for the vapour over the s o l i d may 

also be calculated, giving a superlinear curve. Figure 4.4.2b. To avoid 

constitutional supercooling i n the vapour phase, a c r i t e r i o n for s t a b i l i t y 
(1 / 2) 

suggested by Reed and Lafleur ' , i t i s necessary to ensure that the 

furnace p r o f i l e i s more steeply curved than t h i s . A furnace p r o f i l e 

with a sharp knee i s usually aimed for (for example, as indicated by the 

dashed l i n e ) , which allows for as large a curvature as possilale. The 

c r i t e r i o n for s t a b i l i t y i s that 

dT \ dT 
^FURNACE ^ ^SOLID-VAPOUR EQUILIBRIUM 

at the growth face (x = 0) . 

The choice of the parameter A as the dependent variable was 

made sol e l y for convenience to obtain an expression i n terms of the 

growth parameters required l a t e r , and these results are e s s e n t i a l l y the 

same as those of Faktor and Garrett They went further i n their 

calculations and suggested that c r y s t a l s should be grown either with 

an i n e r t gas i n the capsule, or s l i g h t l y off stoichiometry to ensure 

s t a b i l i t y at the growth face. 

In practice l i t t l e evidence was found of i n s t a b i l i t y . Only one 
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undoped boule showed d e n d r i t i c growth, and t h i s occurred when the 

capsule was held s t a t i o n a r y i n a large temperature gradient i n an 

attempt t o enlarge a boule a f t e r a p a r t i a l l y successful run. I t i s 

shown below t h a t growth must occur a l i t t l e o f f stoichiometry and t h a t 

there i s almost c e r t a i n l y i n e r t gas present. The c r i t e r i a f o r s t a ­

b i l i t y are t h e r e f o r e s a t i s f i e d on almost every run. 

4.5 Experimental Observations 

I t i s possible t o ccanpare the p r e d i c t i o n s o f the theory w i t h the 

r e s u l t s found i n p r a c t i c e when growing boules o f ZnSe, the best o f 

which were prepared from B.D.H. m a t e r i a l . The boules of the highest 

q u a l i t y were l i g h t green i n colour cind consisted t y p i c a l l y of several 

l a r g e g r a i n s . T o t a l t r a n s p o r t was r e g u l a r l y obtained. The f o l l o w i n g 

observations were made of these boules. 

1. The f a s t e s t t r a n s p o r t (15 gms i n 40 hrs) produced boules w i t h 

good body colour and rounded ends. The r e s e r v o i r teirperature was 

chosen t o give a p a r t i a l pressvire o f the r e s e r v o i r element correspond­

i n g t o P„^„ i n the capsule. Deviation from t h i s tenperature by as 
MIN 

l i t t l e as 20°C l e d t o boules w i t h facets and p a r t i a l t r a n s p o r t only. 

An experiment was performed t o check as c l o s e l y as possible t h a t these 

were the optimum conditions f o r t r a n s p o r t w i t h i n the capsule. Three 

growth tubes were prepared using s t a r t i n g m a t e r i a l from the same batch. 

They were pumped down on the vacuum system simultaneously, and 

sealed o f f a t the same time. Growth was performed i n a growth r i g 

w i t h three i d e n t i c a l furnaces which shared the same p u l l i n g mechanism. 

The charge teii5)eratures were 1175°C f o r each of them, but the t a i l 

r e s e r v o i r s were set a t 335°C, 360°C and 385°C. The r e s u l t s are 
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t a b u l a t e d i n Table 4.5.1. They showed t h a t the boule w i t h the t a i l 

a c t u a l l y s et f o r P ^ j j ^ grew f a s t e s t . The c r y s t a l s r e f e r r e d t o lower 

i n the t a b l e (179, 175, 176, 129) were grown i n d i f f e r e n t runs and 

are thus more d i f f i c u l t t o ccmpare. Crystals grown w i t h t a i l tem­

peratures away from the c a l c u l a t e d 'best' value were allowed t o remain 

i n the temperature g r a d i e n t f o r longer times. C r y s t a l 129 was grown 

w i t h a heavy overpressure o f zinc and the growth r a t e was slowed, 

leading t o a f a c e t t e d boule. 

Poorer q u a l i t y s t a r t i n g m a t e r i a l gave s i m i l a r r e s u l t s because 

the e f f e c t i v e value o f Kp was a l t e r e d by the i m p u r i t i e s present. A 

good example i s bouie 196, which had an orange c o l o u r a t i o n i n s t e a d o f 

the usual lime green colour, and which was produced from a batch o f 

s t a r t i n g m a t e r i a l which gave poor t r a n s p o r t . 

A domed growth face corresponds t o what Ballentyne e t a l have 

c a l l e d a face type ( i i i ) i . e . growth on an atcanically rough surface, 

w h i l e the f a c e t t e d face corresponds t o t h e i r type ( i i ) i . e . growth on 

a n e a r l y p e r f e c t i n t e r f a c e . 

A nearly p e r f e c t i n t e r f a c e requires a supersaturation o f the 

order 1.01, while the rough i n t e r f a c e needs very much le s s . However, 

t o prevent the rough i n t e r f a c e becoming f a c e t t e d during growth i t may 

be necessairy t o have the supersaturation required f o r type ( i i ' ) growth. 

Using the expression , 

supersaturation 
Zn Se2 /̂3 

i t i s p o s s i b l e t o c a l c u l a t e the value o f AT required t o give a 

p a r t i c u l a r supersaturation. Using the values quoted i n Aven and 
(17) Prener 



Boulei 
Number 

Charge Temperature 
°C 

o 
T a i l Temperature C 

(Type) 
Result 

171 1175 385 (Se) 2.5 cm boule 

172 1175 360 

^MIN 

(se) t o t a l transport 

173 1175 335 
P - 25 MIN 

(Se) 3 cm boule 

Boules 171, 172, 173 were grown sintultaneously giving a 
good oon^rison of the growth rates. 

Boule 
Number 

Charge Temperature o 
T a i l Temperatyire C 

(Type) 
Result 

179 1175 410 (Se) t o t a l transport 

175 1150 360 (se) t o t a l transport 

176 1175 555 (Zn) t o t a l transport 

129 1150 655 (Zn) 15 mu facetted 

196 1165 560 (Zn) 15 nan facetted 

The lower table shows data from four c r y s t a l s grown from similar 
s t a r t i n g m a t e r i a l . 129 grew slowly because of the high t a i l temperature. 
179, 175 and 129 transported completely, and had domed ends. 
The' f i f t h c r y s t a l , 196, was grown from a bcid batch of startixig 
material, and shows a s i m i l a r i t y to 129 because of the depression 
of 1^, V7hich produces an effect similar to raising the reservoir 
temperature. 

Table: 4.5.1 
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(log^Q Kp) V/: 
_ 37500' 

dT 2 
T 

Which a t 1177°C y i e l d s a value of 

(log^Q K p / ^ 
dT o f 0.0059 

w h i l e log^Q 1.01 i s 0.0043. So a temperature d i f f e r e n c e of the order 

o f 1°C i s required t o give the necessary supersaturation f o r growth 

on a n e a r l y p e r f e c t face. This corresponds w e l l w i t h the seeded 

growth experiments reported i n Section 3.5, which showed t h a t i n i t i a l 

growth on the seed could be obtained w i t h a temperature d i f f e r e n c e o f • 

1°C. The growth on the seeds was slow and f a c e t t e d as would be 

expected. This demonstrates t h a t the nucl e a t i b n r a t e a t the c r y s t a l 

cannot be a l i m i t a t i o n t o the growth r a t e because the values of AT 

used were much l a r g e r than 1°C. 

2. While i t was not possible t o monitor the growth r a t e c o n t i n ­

u a l l y , observation o f various capsules which have been stopped i n mid 

run (because of furnace f a i l u r e , or s i m i l a r d i f f i c u l t i e s ) i n d i c a t e d 

t h a t the f a s t e s t growth r a t e obtained d i d match the capsule v e l o c i t y 

used g i v i n g a growth time o f 36 hours f o r a 3 cm boule. Most boules 

grew r a t h e r more slow l y , completing t h e i r growth i n 3-5 days. 

3. The temperature o f the charge i s u s u a l l y assumed t o be the same 

as the maximum temperature o f the furnace, but i n f a c t v a r i e s through 

the growth run as the capsule i s p u l l e d , and probably a l t e r s by as . 

much as 20°C. AT may be measured by a thermocouple w i t h the c o l d 

j v i n c t i o n a t the c r y s t a l and the hot j u n c t i o n near the charge. How­

ever, there must be a temperature grad i e n t through the s i l i c a , and 

(18) 

* A more up t o date value from K i r k and Raven would replace 

37500 by 38260. 



- 51 -

such an arrangement only provides a maximum estimate of the magni­
tude of AT. Further, as growth proceeds the junctions are l e f t 
behind, making i t a l i t t l e d i f f i c u l t to determine exactly what i s 
being measured. Nevertheless, with good quality starting material, 

growth occurred with AT much l e s s than 30°C, but probably exceeding 
o 

10 C i n most runs. This means that nucleation on the growth face 

was not a limiting parameter. 

4. Because the t a i l reservoir was used i t i s unlikely that 

greatly exceeded 'P^^j^i say ^-^ ̂ MIN̂ ^̂ "̂̂ ^ ^ ^ Figure 4.5.1. 

The reason for t h i s i s that for P„ to exceed P.._„ the vapour must 
T MIN ^ 

be non-stoichiometric. I f t h i s i s so, then more of the excess com­

ponent w i l l be l o s t to the reservoir, thus tending to restore the 

system to Pjjjjj- This w i l l be discussed f\irther below. 

Equation 4.4.18 l i n k s the growth rate with the values of A^ 

and A^. I f one i s known then the other can be calculated, and using 

Figure 4.4.La value of AT can be derived. I f i t i s assumed that 

the source i s i n equilibrium with the vapour over i t , then a value . 

of AT corresponding to the observed growth rate can be calculated. 

By ccmparing t h i s with the experimental value for AT i t i s possible 

to decide whether the growth of the c r y s t a l was limited by diffusion 

or by the k i n e t i c s of the interface, and t h i s w i l l also be discussed 

below. The ass\imption of equilibrium at the source may be j u s t i f i e d 

by the following observations: 

(i ) I n s i m i l a r diameter tubes pumped by a diffusion pump, transport 

of material down a temperature gradient was more than 100 times faster 

than i n a sealed capsule. 
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( i i ) Transport i n the 11 mm I.D. sealed capsule was slower than in 

the 7 mm tubes of Section 3.6. 

They indicate that the experimental evaporation rate i s only 

a small perturbation of the naturally occurring evaporation and con­

densation of molecules at the source. 

4.6 The effects of stoichiometry i n a simple sealed capsule 

In practice the maximum growth rates theoretically obtcdnable 

i n a sealed tube are rarely approached. To obtain a high growth rate 

one needs a source with the composition to give Pj^jj^f which i s close to 

the stoichiometry r a t i o of 2:1 monatomic zinc molecules to diatomic 

selenium molecules. Even, i f the necessary accuracy could be obtained 

when weighing the material, only 0.3 mg of oxygen adsorbed over a 20 gm 

charge i n a t y p i c a l capsule would be s u f f i c i e n t to give an oxygen vapour 

pressure greater than P̂ ^̂ -ĵ  for ZnSe. Clearly t h i s would greatly affect 

the stoichiometry of the contents of the capsule. Further contamination 

may be produced by outgassing and by diffusion through the capsule walls. 

To overcome such d i f f i c u l t i e s , some w o r k e r s h a v e baked CdS 

within the growth capsule at a temperature of the order of 500°C^ to 

outgas the charge and capsule and to bring the charge nearer to the com­

position required to produce Pjjjjj conditions at that temperature before 

sealing under vacuum or back f i l l i n g with argon. ZnSe has a Ibwer vapour 

pressure than CdS at the temperature used for growth, and i s consequently 

more d i f f i c u l t to grow i n t h i s manner. When transporting ZnSe i t i s 

necessary to maintain the vapour near 'Py^j^ conditions continuously by 

placing some constraint on the composition of the vapour i n the capsule 

or tube. In Chapter 3 two methods were described; the v e r t i c a l tube 

with t a i l reservoir i n Section 3.1, and the horizontal tube i n 3.6. 
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In the v e r t i c a l tube the stoichiometry of the charge i s controlled by 

connecting the capsule to a reservoir containing one of the constituents. 

The two degrees of freedom, within the capsule are removed by controlling 

the charge and reservoir temperatures, and transport occurs while the 

vapour remains close to P̂ ^̂ ^ with a temperature difference of 10 - 50°C 

between the source and c r y s t a l . 

In the horizontal tube conditions are very different. L i t t l e 

or no transport takes place when a temperature difference of 50°C i s 

employed between the ends of the capsule, see Figure 4.6.1a. I f the 

capsule i s displaced i n the furnace so that a larger value of AT i s 

obtained as i n Figure 4.6.1b, transport i s s t i l l very slow, but when 

position 4.6.1c i s reached the transport rate increases rapidly. Material 

i s deposited along the walls of the tube when the temperature i s between 

800 and 400°C. (The temperature i s that deduced from the temperature 

p r o f i l e of the furnace. The latent heat of sublimation of the material 

deposited may well r a i s e the internal temperature of the tube con­

siderably) . I t i s extremely d i f f i c u l t to arrange for material to be 

deposited right i n the t i p of a sealed tube even when the t i p i s held 

at 400 - 800°C, although material i s deposited i n t h i s temperature region 

when the t i p i s cooler. 

The reasons for the processes summarised diagrammatically i n 

Figures 4.6.1a, b and c are quite straightforward. When the source i s 

heated, a t o t a l pressure P^ several times P̂ ^̂ ^ develops because the 

charge i s never perfectly stoichiometric, and also because any impurities 

present w i l l a f f e c t the stoichicmetry of the gas. The rate of transport 

under these conditions i s necessarily very low because of the low vapour 

pressure of the minority component which has to diffuse to the cooler 

region of the tube. Because the tube must contain a constant pressure 
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of gas throughout, the value of A rapidly becomes extreme.in the cooler 

regions of the tube. The pressure of the minority component i s then so 

small that P„.,^ P„- This i s the situation i n Figures 4.6.1a and b. 

However, when the tube i s withdrawn far enough from the furnace, 

w i l l exceed the saturated vapour pressure of the excess element at the 

coldest p a r t of the tube. The vapour of the element then begins to 

condense u n t i l P j ^ ^ ^rji) ~ Saturated Vapovir Pressure of the element. 

I n t h i s condition P̂  i s fixed by the maximum value P j ^ can take, and 

lowering the temperature of the cold end of the tube brings about a 

rapid increase i n the transport rate as P„_., i s approached and the vapour 

pressure of the minority component increases. When the temperature of 

the cold end of the tube i s such that both constituent elements have a 

vapour pressure at the cold end which i s small r e l a t i v e to P„^„, then 

the transport rate reaches i t s maxim\am. The value of P̂  cannot be the 

same throughout the tube and the approximation breaks down. Theoreti­

c a l l y such a system should give transport rates which are similar to. 

those i n a continuously pumped system. In f a c t , t h i s i s not realised 

i n practice because residual gas and adsorbed impurities raise the back­

ground pressure i n the sealed tube. However, i n the ZnSe system a rapid 

increase i n tremsport rate d e f i n i t e l y occurs when the saturated vapour 

of selenium at the cold end of the tube approaches 1/3 ^^j^' 

4.7 Application of Theory to Vert i c a l Crystal Growth Tube with 

Reservoir 

The capsule plus reservoir used i n the v e r t i c a l system combines 

some of the features of the simple sealed capsule with some of those of 

the long tube emerging from the furnace. To obtain the maximum mass 

transport i n the c r y s t a l growth tvibe (such conditions w i l l not neces­

s a r i l y produce the best crystals) the vapour over the charge should be 
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maintained at Pj^jjj throughout the growth run. The p a r t i a l pressure of 
2 1 zinc i n the system would be /3 P..„, and that of selenium would be /3 P..„,. 

WIN MIN 

The temperature of the reservoir was usually adjusted t o maintain the 

corresponding pressure of whichever element was placed i n the reservoir. 

In practice something approaching P,,̂ , must have been obtained i n the 
MIN 

capsule because the crystals grew at a reasonable rate. 

However, because the system has given good results with CdSe, 

CdS, ZnSe, ZnS and ZnTe, and often works ef f e c t i v e l y when considerable 

quantities of dopants are added, i t i s of interest to examine why the 

system works so w e l l , and to discuss the order of magnitude of the devia- • 

t i o n from the ideal case which should affect the transport of material. 

Clearly the pressure of the element i n the reservoir cannot be 

d i r e c t l y imposed on the charge evaporating i n the capsule because under 
normal conditions there i s a si g n i f i c a n t pressure difference between the 

1 2 

capsule at P̂ ^̂  and the reservoir at /3 or /3 ^^j^ (for Se^ or Zn) as 

appropriate. Gas must flow continuously down from the capsule to the t a i l 

because of t h i s pressure difference. Fortunately the gas cools on i t s 

passage down the t a i l tube, and ZnSe i s precipitated on the wall of the 

s i l i c a over a length of 200 - 300 mm, stopping a l i t t l e before the 

reservoir. The value of P̂  P̂  at 700°C i s ~10 (atmospheres)^, so 
Zn 

with a zinc reservoir held at 550°C the equilibrium pressure of selenium 

at 700°C i s lO"^"^ atmospheres. For t h i s reason the reservoir remains 

uncontaminated. 2 - 4 gms of material are transported to the t a i l during 

a t y p i c a l growth run, which lasts approximately 10 days. 

However, assimiing laminar flow of the gas to the t a i l , a pressure 

difference of ~10 ^ t o r r w i l l account f o r the observed rate of loss of 

material. Compared with the value of P̂ ^̂ ĵ ( ~ 10 t o r r ) t h i s i s negligible, 

and the system must therefore be v i r t u a l l y isobaric. This conclusion was 
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somewhat surprising, and i t was necessary to devise an experiment to check 

i t . I n p r i n c i p l e the idea was to pump continuously from the t a i l of a 

growth tube and discover whether or not the rate of loss of material to the t a i l 

increased very rapidly as any residual gas was removed. This experiment 

was performed by lengthening the usual t a i l tube, so that i t extended 

below the t a i l furnace, and attaching a rotary pump to i t via a f l e x i b l e 

hose. No reservoir element was used. The resu l t was most interesting. 

In 60 hours s u f f i c i e n t material had sublimed to the t a i l to block i t 

completely, and a c r y s t a l had grown at the growth t i p . Essentially a 
(26) 

system closer to that o r i g i n a l l y used by Piper and Polich had been 

obtained. This seems reasonable confirmation that there was a s i g n i f i ­

cant amount of unwanted gas present i n a sealed-off capsule. This gas 

has not been i d e n t i f i e d so f a r , although spectroscopic studies prove 
(21) 

that carbon monoxide i s present. J.J. Murray et a l . have used a mass 

spectrometer to investigate the species evolved when sealed s i l i c a capsules 

are heated. When fabricated i n t o capsules the s i l i c a supplied by scane 
—6 —2 

manufactiirers released 4 x 10 l i t r e s cm of hydrogen (meastared at 

S.T.P.) when the s i l i c a was raised to a temperature of 1300 K, even though 

i t had previously been baked at 600°C. This would correspond to a pressure 

of greater than 60 t o r r i n a growth capsule at the normal growth tempera­

tures we used. Our growth capsules with t a i l s were made from e l e c t r i c a l l y 

fused quartz tubing which would not have been subjected to heating by 

hydrogen during manufacture. However, the tubing was worked with propane 

gas flames to form the capsules, and then reheated quite severely during 

the sealing process and may well have absorbed hydrogen or OH radicals 

quite heavily during these processes. 

Some of the gas may well be SeÔ . Evidence for t h i s comes from 

comparison with CdS and ZnTe. Occasionally during a growth run the t a i l 
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. furnace would f a i l . When t h i s happened CdS and ZnSe charges were l o s t to 

the t a i l at the usual slow rate when the temperature of the t a i l reservoir 

f e l l to 100 - 200°C, but when t h i s happened to a ZnTe tube the whole 

charge sublimed t o the t a i l . This could be ascribed to the lower vapour 
(99) -15 o pressure of Te02 , which i s of the order 10 t o r r at 200 C compared 

with 10 t o r r f o r SeÔ  and a b o i l i n g point of -10°C f o r S02^^^^. 

The meinner i n which the t a i l reservoir acts i n controlling the 

vapour pressure i s d i f f i c u l t to analyse quantitatively. Experimentally, 

i t i s fovind that when Pj^g — /3 ^ j ^ j j j the case of a zinc reservoir, 

or V3 Pjjjjg for a selenim reservoir, the fastest transport takes place. 

I f no impurities and no residual gas i n the tube are assumed, then the 

mechanism of the co n t r o l l i n g action of the reservoir may be examined for 

the two extreme cases > P̂ ^̂  and Pj^g = 0. 

In the f i r s t case the pressure throughout the tube w i l l be approx­

imately t h a t of the t a i l reservoir. The transport rate w i l l be low, and 

controlled by ..the rate of di f f u s i o n of the minority ccanponent. I t would 

be expected that only a small amount of the compound would form on the 

walls of the t a i l , and t h i s i s confirmed i n practice. The pressure of 

the minority ccanponent can be calculated approximately by inserting.the 
2 value of P„„„ i n t o K = P„ P̂  . The velocity of the gas flow to the RES p Zn Se2 

t a i l i s very low, and the t a i l might be regarded as a separate long 

narrow capsule with a source at the nozzle emd a crystal face close to 

the reservoir l i q u i d . 
When P _ ̂  0 the t a i l reservoir i s cold; i f i t were cold enough, RES 

then the vapour pressure of any molecules landing would be negligible, 

and the system would be indistinguishable frcm a pump. Under these con­

ditio n s the charge would s t a r t evaporating and rapidly approach Pj^jj^-

The only obstacle to maximum transport would be the very l i g h t reduction 

i n P̂  due to the flow out of the capsule through the nozzle, which 
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reduces the supersaturation at the growth face. This situation i s i l l u ­

strated i n Figure 4.7.1. 

The e f f e c t of the nozzle diameter i s important i n the case of 

the cold reservoir. I f flow i s by dif f u s i o n only, then the flow w i l l be 

proportional to the radius of the tube squared. Assuming a nozzle 1 mm 

i n diameter and 1 mm long, and an effective length for the t a i l of 250 mm 

(where the heaviest deposit of the compound occurs) with a diameter of 

4 mm, i t may be seen that the resistance of the nozzle i s only ~ 6 % . 

However, i f the flow i s laminar as seems l i k e l y i n the case of the cold 
4 

reservoir, then the flow i s proportional to (radius) giving i t , a ' r e s i s ­

tance of more than 50% of the t o t a l . In t h i s case the nozzle size plays 

a s i g n i f i c a n t part i n deciding how much of the charge i s los t to the 

t a i l . 

As the ten^jerature of the reservoir i s increased, the vapour 

pressure of the element i n the reservoir increases, resulting i n the 

compound being precipitated further up the t a i l tube. In the steady 

state, atoms of each element must be l o s t at an equal rate down the cap­

sule, and so the p a r t i a l pressure i n the capsule of the reservoir element 

must increase s l i g h t l y to balance the greater rate of d i f f u s i o n towards 

the capsule of the majority component i n the t a i l . At low t a i l pressures 

the pumping effec t of the flow of gas away from the capsule w i l l make 

the e f f e c t very small. However, the value of P̂  i n the capsule must 

s t a r t to deviate s i g n i f i c a n t l y from ^̂ -̂ ^ when the p a r t i a l press\ire of 

the reservoir element i n the t a i l exceeds that corresponding to Pj^jj^ i n 

the capsule. As the temperature of the reservoir i s increased, the point 

of p r e c i p i t a t i o n of zinc selenide moves closer to the capsule. The net 

resul t of the argument i s that a selenium reservoir must give a selenium 

r i c h atmosphere and a zinc t a i l a zinc r i c h atmopshere, even when the. selenium 
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reservoir i s at a pressure of V3 P̂ ,̂ „ or the zinc reservoir at /̂3 P.„„, 
WIN MIN 

although the deviation i s l i k e l y to be small. 

This argument also indicates that transport should be fastest 

when the t a i l reservoir i s cold; t h i s was not found i n practice. This 

i s because of the backgroxind gas i n the system which has so far been 

ignored, and which affects the growth with a cold t a i l , (when a large gas 

flow would otherwise be expected),much more than the growth with a hot 

t a i l (whenthe flow i s always small). The flow down the t a i l of a crystal 

growth tube i s p a r t l y attributable to Stefan flow and p a r t l y to diffusion. 

An experimental confirmation of the importcince of the Stefan flow c o n t r i ­

bution was provided by an experiment attempting to grow ZnS i n a tube. from which 

the nozzle to the t a i l reservoir had been removed. Instead of losing the 

usual 2-4 gms of material to the t a i l , most of the 15 gm charge was 

l o s t , blocking the t a i l completely. I f flow had been by diffusion only, 

the loss would have increased by less than 10%. ( I t was shown above 

that the nozzle contributes ~ 6% resistaince i n the d i f f u s i o n only case). 

As the t a i l i s heated the element i n i t melts. At t h i s point i t i s 

possible that a number of the impurities are removed by dissolution i n 

the resejTvoir l i q u i d leaving mainly i n e r t gas, which should improve, 

transport considerably. Further, because there i s always a p l e n t i f u l 

supply of majority molecules available the minority component molecules 

flowing from the capsule should be rapidly precipitated as the ccanpound, 

giving good control of the capsule stoichicmetry which w i l l be a l i t t l e 

r i c h i n the majority element. ZnSe i s precipitated i n the t a i l closer 

to the capsule. However, when the t a i l i s cold the flow w i l l p a r t l y 

break up i n t o the d i f f u s i o n of the two separate elements through the 

i n e r t gas or impurities. Under these conditions Zn molecules would 

diffuse faster than Se2 molecules. (A r a t i o of 1.5 i s obtained frcm 
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the square root of the d e n s i t i e s ) . Again, i f some of the gas does not 

reform into ZnSe, but diffuses further down the t a i l to c r y s t a l l i s e i n 

elemental form, the Se2 has further to t r a v e l . These considerations 

would lead to a selenium r i c h atmosphere i n the capsule with a cold 

t a i l . Thus the action of the t a i l i s described q u a l i t a t i v e l y } to obtain 

more information a mathematical model i s required. 

4.8 A Mathematical Model of the Transport Processes 

Having established i n Section 4.7 that there i s a si g n i f i c a n t 

pressure of uncontrolled gas i n the system, i t i s necessairy to i n v e s t i ­

gate transport in"the presence of an i n e r t gas. Constant pressure i s 

assumed throughout the system. Using the same notation as i n Section 4.1, 

i t i s possible to write down the transport equations for zinc and selenium 

For zinc: 
„ N dN 

= ^ - U N - D . — ^ (4.8.1) 
3 T N„ Zn dx 

But J„ = UN„ , T T 

so 

(I - ' f ) 
dN 

= - D - r ^ . (4.8.2) dx 

and 

Jn ^ •'N (0) 

3 
3 N„ - 2 N„ Zn . dN„ (4.8.3) 

where N„ (£) i s the value of N_ at x = £, and Zn ^n 

N (0) i s the value of N„ at x = 0 Zn zn 
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This gives 

T 
D . N_ In 

(3N^^(£) - 2N^) 
(3N^^(0) - 2N^) 

u£. 
D (4.8.4) 

For selenium a similar treatment can be used, and 
dN. 

1 .̂ 
Se, 

U N^ - D . -r— Se dx 2 
(4.8.5) 

gives 

T 
D . N„ In D (4.8.6) 

In passing i t i s interesting to enquire what happens i f 

N_ 
'^2 

N_ Zn (4.8.7) 

then 

exp — 2N„ (0) - N„ (0) Se Zn 
(4.8.8) 

- 1 

- 1 

But 
NRT = P v. 

SO N i s proportional to P 

and 

A 

Further 

A + 1 'Zn = k N, Zn 

where k i s a constant. 
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Substitution i n 4.8.8 gives 

exp 

which i s equation 4.1.18 again. 

Reverting to the more general problem with a f i n i t e value of P̂ , 

equations 4.8.4 and 4.8.6 lead to 

The values of U, £ and D are known, so to determine conditions 

at the growth face i t i s necessary to obtain values for Pg^ (£), 

P^^(£) and P̂ . 

A simple method by which to obtain P (£) and P. (Z) i s to assume 
Se2 Zn 

that the pressure of i n e r t gas i s so high that material i s l o s t to the 

t a i l by d i f f u s i o n only. This may be achieved i n practice by deliberately 

admitting i n e r t gas, e.g. argon to a pressure >10 Pjjjjj* The two elements 

w i l l then diffuse to the t a i l and the p a r t i a l pressvires i n the capsule 

would adjust themselves so that equal numbers of zinc and selenium atoms 

l e f t the capsule ( i . e . twice as many molecules of zinc as selenium). 

To formulate t h i s mathematically, l e t the subscripts CAP and TAIL stand 

f o r capsule and t a i l respectively, and 

^ ^ fseTAIL. ^ ^ ^ZnTAIL ^ (4.8.10) 
^MIN ^MIN 

The di f f u s i o n c o e f f i c i e n t of zinc i s assumed to be 1.5 times that of 

seleinium because of the difference i n mass of the molecules. The 

d i f f u s i o n rate of zinc i s proportional to AP^ (Fig.4.8.1), and must be 
zn 
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twice the di f f u s i o n rate of selenium which i s proportional to P„ 
^ ^ Se CAP 

Thus equating the rate of loss of atoms of each species, and allowing for 

the faster d i f f u s i o n of zinc, gives 

^^Zn = ^Zn CAp-^Zn TAIL = M ^Se CAP ''•̂ '''̂  

which gives 
2.0 

^Zn CAP * ^Zn TAIL its ^Se CAP (4.8.12) 

and 

^SeCAP = ^SeTAIL i j f ̂ Zn CAP '̂''-''̂  

for a selenium t a i l e d tube. 

Therefore from e..8.12) and (4.8.10) 

p - - P (4.8.14) Zn CAP 3 Se CAP = W P.„„ 
MIN 

But 

— P-̂  = K = P̂  P ,(4.8.15) 27 MIN p Zn CAP Se CAP 

so 

p - - P f'= w"̂  — P̂  P (4.8.16) Zn CAP 3 Se CAP/ 4 Zn CAP Se CAP 

However, 

so , 

^ ^Zn CAP ^Se CAP 

( l - i - A ) ^ = W^.^A (4.8.17) 

Similcirly, for a selenium t a i l 

(A - | ) ^ = . 4r A (4.8.18) 4 4 
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2 By putting W = j , A may be obtained when the reseirvoir i s at the stoich­
iometric p a r t i a l pressure f o r zinc. This yields a value of 0.20 for A. 
A similar calculation gives A = 1.47 f o r a selenium reservoir. A further 
interesting result i s obtained by putting A = j i n ̂ .8.17) and (4.8.18) 
This gives W = ^ and a negative value for V. Thus i t i s possible to 
obtain P„^„ i n the capsule using a zinc t a i l l i m i t e d by d i f f u s i o n . How-

MXN 
ever, t h i s can never happen with a selenium t a i l . 

I n Section 4.7 i t was shown that the system, including the t a i l , 
i s isobaric. This means that the transport equations (4.8.9) may be applied to 

the t a i l i f suitable values of U, £ and D are inserted. The growth 

face i n t h i s case i s a section of the t a i l tube about 100 mms long, 

but most of the deposition occurs i n the f i r s t 40 mms, and the nozzle 

i s regarded as the source. P„ and P„ are known. I f the tube ^ Se TAIL Zn TAIL 
has a zinc t a i l P̂ ^ ^^^^ = f P̂ ,̂ ^ and P̂ ^ ^^^^ = 0, while i f the reservoir 

contains selenium P̂ ^ ^^^^ = } P̂ ^̂ ^ and P̂ ^ ^^^^ = 0. (See Figure 4.8.1) 

When these values are inserted i n t o equations 4.8.9 for zinc and selenium, 

^Zn TAIL = ^Zn^°^ ^Se TAIL ' ^^^^^ equations with 
three unknowns, p (I), p (0) and P„. However P„ (£) and P̂  (£) 

zn T Zn Sê  
are i n close equilibrium with the s o l i d source and so 

= ^zn^^^ ^se^^> • 2 
This relationship provides a t h i r d equation and the problem may 

be solved nimierically. The following values have been used i n the c a l ­

culation. 

( i ) Mass of Material l o s t to t a i l : - 4 gms. 

This i s a t y p i c a l loss for a charge which was completely transported. 

Unfortiinately no attempt was made to check whether capsules with zinc and selenium 

t a i l s showed d i f f e r e n t weight losses. (N.B. when used i n equations 4.8.9 
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and 4.1.18 the transport rate has a negative sign. See Figure 4.1.1) 

( i i ) Time 7 days:- the time the tube was i n the furnace at 1160°C. 

( i i i ) Diffusion Coefficient at N.T.P.:- 0.2 cms sec ^, an estimate 

obtained from Faktor and Garret ̂  .̂ The difference between zinc 

and selenium has been ignored. ^ 

(iv) The d i f f u s i o n c o e f f i c i e n t i n the growth tube was calculated from the 

expression 

,1.8 
D = D . I (4.8.19) 

T̂ Â STAN 

An average value was used for T̂ . This expression was also suggested 

by Faktor and Garrett. 

(v) Charge temperature 1158°C. The usual furnace tonperature was 1160°C 

and the charge was unlikely to have been at the hottest spot. 

(vi) T = 1000°C, average temperature of t a i l assuming condensation 

at 850°C. 

( v i i ) I = 30 cms, the distance travelled l y the material. See Figure 4.8.2. 

A representative value i s taken, clearly i t cannot be precise. 

-2 
( v i i i ) Cross-sectional area of t a i l tube 0.126 cm . 

(ix) P.„„ i n capsule 12.3 t o r r . 
MXN 

Using 
.1/3 

(£) .P^^(£) = f .P^^^. ( A ^ . l ) . (4.8.20) 
-2 

and ful\ -
exp [—) = 0.585 
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I t i s possible to w r i t e , f o r a selenium t a i l e d tube. 

P = 7.23.P_ (£) -4..23.P^ (0) (4.8.21) 
T _ Se^ Se2 

and 

P̂  = 3.61 P̂  (£) (4.8.22) T . Zn 

By selecting a value of Â. two values of P̂  may be calculated, one 

from (4.8.21) and one from (4.8.22). The average value of P̂  i s siabstituted 

i n these ''equations to obtain revised values of P„ {Z) and P„ (£) , and 
Zn S^ 

hence obtain a better value for A . When the cycle i s repeated rapid 

convergence results. 

Â  = 0 . 8 5 Ẑn̂ "̂ ^ " 
P̂  {I) = 3.76 

T 

Using the same value for exp — , analogous expressions may be derived 

f o r a zinc t a i l e d tube . 

\ = 3.61 P^^il) - 2.11 P^^(O) (4.8.23) 

P = 7.23 P (£) . (4.8.24) T Se2 

They give 

A» = 0.264 P̂  (I) = 6.50 

P (£) = 1.71 
^^2 
P̂  = 12.39 

The d i f f e r e n t values of P̂  are the result of using the same value 

of I j | f o r both zinc and selenium t a i l s . In fact i t would be expected 

that J would be larger for a selenium t a i l e d tube because of the lower 
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pressure of the t a i l element. 

Having obtained a value for P̂ ,̂ i t i s now possible to obtain 

values f o r Pgg(O) ̂ nd ̂ gn^*^^ capsule and hence to calculate Â . 

The value of e x p ^ — j in' the capsule w i l l be d i f f e r e n t of course. The 

following additional values were used to calculate \—J i n the capsule 

( i ) Mass of material transported:- 16 gms. 

N.B. J requires a negative sign because of the convention used. 

( i i ) t:- 10 cms-

2 
( i i i ) Cross sectional area of capsule:- 0.95 cm .* 

Then exp 0.82 

Assuming 

then. 

Assuming 

T̂ 15.90 

^Zn^^^ = 4.40 

P {I) .3.76 

P̂  (0) Zn = 3.04 

P (0) 
Se2 

3.39 

12.39 

^Zn^^^ = 6.50 

P it) 1.71 

P̂  (0) 
Zn. 

6.12 

= 1.19 

selenium t a i l - 0.85 

A = 0.89 o 

zinc t a i l A^ = 0.264 

A = 0.194 o 

However, i f no i n e r t gas were present, i n the selenium t a i l e d tube; 

T̂ = 8.16 

^Zn(°^ 4.19 

P (0) = 3,97 A = 0.95 o 
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I f no i n e r t gas were present AT could be read d i r e c t l y from Figure 4.4.1 
o 

using the curve for 1150 . The other values may be ready by i n t e r ­

polating between the isobars to f i n d the correct position for P + • 
2 

However, a more accurate value can be calculated using the 
equation 

• . ^ 0 P = _ 37500 (4.8.25) dT 

AT = 54 log^Q 
Zn • Se^ 

p j (0) P (0) Zn Se2 
(4.8.26) 

The following values were then obtained; with 

the zinc t a i l e d tube AT = 11.6°C, and for the selenium t a i l e d 

tube AT =' 19.7°C. 

However, i f no i n e r t gas were present i n the selenium t a i l e d tube, 

the calculated value of AT i s reduced to 1.15°C, which i s clearly too low 

and confirms the conclusion that i n e r t g|as must have been present. 

The most uncertain quantity i n the calculation i s the value of the 

d i f f u s i o n coefficient D^,„. I f the selenium and the zinc are diffusing 
STAN ^ 

through l i g h t e r molecules then the value of 0.2 would not appear un-
(24) 

reasonable. However, i f the data of Toyama and Sekiwa i s used 

assiaming the gases present to be.zinc and diatomic selenium, then the 

c o e f f i c i e n t i s approximately 0.1. To check the effect of t h i s variation 

the analysis was repeated using a value of 0.1 f o r the d i f f u s i o n co­

e f f i c i e n t . The results are tabulated i n Table 4.8.1. Their chief 

features are the.value of P̂ , which indicates a pressure of approximately 

5 t o r r i n e r t gas i n the capsule and the difference i n the values of AT,, 

none" of which vary very much from the o r i g i n a l estimate from experiments 

of '̂20°C-
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CM ô  
• • 

CO 
CM as 
• • 

00 ^ 

CM as 
• • 

CO 

0 
< 

CTi C N ] a> CM a\ CM 
CO 
VO CO 
OSl CO 
o o 

00 
VO 00 
CM 00 
o o 

00 
VO 00 
CM 00 

o o 

^ a> 
eg 00 
o o 

VO ^ 
CN 00 
O O 

VO 5^1 

CM CO 
o o 

00 1H 

ro VO 
CO - 1 

'S' as 
ro VO 

00 .H 
ro vO 

o u 
u 

0) 0 
W H »H CO 

(Tl . - 1 

O 

Tj" CM 

•H •>* 

o 
m ^ 

^ ro 

^ as 
VO CM 
o 

CM VO 
CTl 00 
^ ro 

o u 
— M 

C 0 
0* .: . • 

CM •̂ J' 
^ O 

i n S 
i n CN 
CN »-l 

CM CTI 
VO r -

i n CM 
i n . 

i n ro 

o 
CM 

VO 00 ^ ro 
O I " 

M 
H U 

0. O 
t< 

m cn 
» • 

CM i n 
•-4 »-( 

VO fO 
»H VO 
• t 

i n VO 
<e 00 
• • 

i n at 

«H i n 
^ IS. 
• • 

o 

CM CO 
on ^ 
• « 

ro "^f 

CM as 
r s ro 
• « 

•rH ro 

^ u u 
. w S ^ PO 

.H VO 
r~ i n 

o ^ 

m i n 

T H VO 
CM ^ 

VO VO 
O CM 
CM ro 

VO VD 
00 ro 
O -t 

r> VO 
i n . o 

CM << 

5 u 

ft t ^ 

o o 
i n ^ 00 

CM . »H 

O 00 

CO i n 

CM T-4 

as f s 
m u 

VO 
<3> as 
CM ^ 

00 
ro. CO 
r«- i n 

H U 
a p 

04 

i n 

CO 
• 

T H 

CO 
CM 
• 

n 

»-l 
CO 
• 

as 

i n 
r » 
00 
• 

CO 
CM 
• 

ro 

. H 

»-l 
00 
• 

OS 
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Table 4.8.1; Continued 

where log^^ Kp = - | + b . 

Values of a and b were derived from Aven and Prener^^^^ (A + P) 

and Kirk and Raven (K+R). There are two pairs of values from 

Kirk and Raven, t h e i r experimental values, and t h e i r experimental 

values modified by theoretical considerations (Expt. and Theory 

i n t a b l e ) . Because the l i n e has been iextrapolated quite con­

siderably the factor of 3 divergence i s not surprising. The 

values of A^ and A^ cire independent of the value of Pj^jj^ because 

of the i n i t i a l assumption that the t a i l reservoir pressure was 

T P„xxT (Zn) or 4 P„TXT (Se) as appropriate. (See Appendix 4). 
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Two main conclusions can be drawn from t h i s mathematical analysis. 

F i r s t l y , some i n e r t gas i s necessary i n the system. I f i t were not 

present much of the charge would be l o s t to the t a i l reservoir. The 

gas also helps to ensure that the growth i s mainly transport limited. 

Secondly, although the calculated values of AT have quite a spread, they 

nevertheless indicate that most, i f not a l l , of the experimentally 

observed temperature difference i s necessary to sustain the observed 

transport rate. This implies that the growth rate i s limited mainly 

by the transport i n the capsule rather than surface kinetics.. However 

the calculation does not give s u f f i c i e n t precision to dismiss completely 

the e f f e c t of the processes at the growth face. 

4.9 The Effect on the Growth Rate of Doped and Non-Stoichiometric . 

Charges 

I f the charge were non-stoichiometric and the excess were released 

at a steady rate throughout the growth nin, while the crystal grew with 

perfect stoichiometry, then the gas l o s t t o the t a i l would no longer 

contain equal numbers of metal and non-metal atoms. Suppose there were 

a non-stoichiometry of 1000 p.p.m., then - 1% of the material l o s t 

through the o r i f i c e would be non-stoichiometric excess. This corresponds 

to a change i n the value of A of 0.005 - 0.01, which would not have a 

noticeable effe c t on the growth rate. (A was found i n 4.8 to be of the 

order 0.26 for a tube with a zinc t a i l and 0.85 for one with a selenium 

t a i l ) . 

In practice the charge i s extremely unlikely to contain so much 

non-stoichiometric material, because t h i s i s far outside the existence 

range of the material, and could only be present i n the form of pre­

c i p i t a t e s . However, a similar e f f e c t would arise from the diffusion of 

impurities through the capsule wall or out of the s i l i c a during a growth 
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run. Larger quantities of unwanted material may be removed from the 

capsule before growth commences without affecting the efficiency of the 

transport. For example, when 1 gm of excess zinc was added to the charge 

i t siJDlimed to the t a i l reservoir as soon as the temperature, began to 

r i s e , because zinc b o i l s at 985°C. A similar e f f e c t occurs when a 

dopant (e.g. manganese) i s added to the charge i n the fom of a powder, 

so that i t reacts immediately upon, heating to displace either zinc or 

seleniiam (e.g. manganese displaces zinc). The displaced element i s 

rapidly transferred to the t a i l , and no longer a:ffects the stoichiometry. 

I t should be noted though, that any impurity i n the charge which depressed 

K would slow transport not only'because of the lower P.„,, over the p MIN 
source, but also because the reservoir temperature would be too high 

and would create a non-stoichiometric vapour, which would suppress 

transport. 

4.10 The Variation of Growth Conditions During a Growth Run 

A f i n a l point on the action of the t a i l comes from a consideration 

of the effec t of evaporation on the solid. Normally selenium comes 

o f f the charge of zinc selenide when i t i s f i r s t heated up; a similar 
(25) 

e f f e c t occxirs with sulphur and CdS. Buckley observed that when 

t h i n f i l m s of CdS were grown by evaporation i n a vacuum system, the con­

d u c t i v i t y of the deposited films increased with t h e i r thickness, or the 

time fo r which the material had been evaporating. I t would appear that 

as CdS or ZnSe i s heated, the so l i d i n equilibrium with Pj^jjj deviates 

from a l a t t i c e with equal numbers of metal and non-metal atcsns, to one 

with an excess of non-metal vacancies. In a growth tube with a t a i l , 

the i n i t i a l burst of sulphur or selenium i s l o s t to the t a i l quite 

quickly and the so l i d charge comes to equilibrium with the vapour i n 

the capsule, which w i l l be s l i g h t l y r i c h i n the reservoir element. 
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The surface of the charge w i l l clearly do t h i s quite rapidly, but the 

inside w i l l take a time which depends on the rate of diffusion of selenium 

vacancies from the surface. To obtain an order of magnitude estimate of 

the e q u i l i b r i a t i o n time i t may be noted that 1*2 - 2 mm thick Hall samples 

can be made conducting by solvent extraction i n l i q u i d zinc at 850°C i n a 

few days. At 1150°C the time necessary should be reduced to a few hours. 

I f i t i s assiamed that non-metal vacancies must diffuse i n to make ZnSe 

conducting, at the same time as impurity atoms diffuse out, then the same 

time constants as for solvent extraction can be taken as the maximum for 

e q u i l i b r i a t i o n . Because the charge i s i n a reverse temperature gradient 

f o r 1 - 2 days before the tube i s pulled far enough for growth to s t a r t 

(Figure .3.1.1) i t can be ass\amed the charge has mainly equilibriated with 

the vapour by the time growth begins. In consequence the growth should 

occur from a charge with a uniform composition. In contrast i n a simple 

sealed capsule, growth occurs from a vapour which has an excess of one 

component. Because the excess element becomes more concentrated i n the 

vapour over the growing crystal than i n the vapoxor over the charge, the 

c r y s t a l must s t a r t growing further from stoichiometry than the charge and 

must f i n i s h growing closer to stoichiometry to conserve the number of 

atoms i n the capsule. 

4.11 Discussion of the Rate Limiting Mechanism within a Vertical 

Capsule 

In the f i r s t ten sections of t h i s chapter, an attempt has been 

made to b u i l d up a picture of what i s happening inside a ty p i c a l growth 

capsule used for producing a boule of a I I - V I compound from the vapour 

phase. Many of the factors influencing the growth rate and quality of 

the crystals have been investigated. When these are considered i n relation 

to the boules of ZnSe grown i n the manner reported here, i t i s clear that 
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the evaporation of the charge, and the nucleation of growth steps are not 

si g n i f i c a n t i n l i m i t i n g the process. The main rate l i m i t i n g step appears 

to be the transport process, with possibly an additional e f f e c t associated 

with the condensation process. I t has been suggested by Toyama and 

Sekiwa^2'*' that at 1127°C the growth of ZnSe i s limited by the condensation 

process. Using the capsule eind reservoir system, the observed growth rate 

roughly corresponds to calculated pressures of i n e r t gas i n the range 

1 - 5 t o r r , cind experimental values of AT near 20°C. The possible errors 

i n t h i s calculation may be quite large, associated i n particular with the 

estimation of the magnitude of the d i f f u s i o n c o e f f i c i e n t , and thus the 

condensation process may have some significance i n l i m i t i n g the growth rate. 

However, the treinsport process i s the dominant mechanism. The boules 

which grew fastest a l l showed convex growth faces, which are usually i n t e r -
( 4 ) 

preted as indicating d i f f u s i o n controlled growth . Slower growing 

boules were often facetted, and did not reach the f u l l possible size. Many 

had one or two grains, while larger boules often contained more. Ccmpciri-

sons of these results with those obtained growing crystals of CdS and ZnS, 

which are discussed further i n Chapter 5 , i s interesting.. At 1150°C, CdS 

crystals often grew singly, while pure ZnS transported reasonably w e l l , 

but only produced an agglcxneration of dendritic needles. Boules of ZnS, 

ZnSe cind CdS are compared i n Figures 4 .11 .1 A to E. Ballentyne and 

Tenpest^^ ^ investigated the growth of ZnS and CdS at similar temperatures, 

and concluded that CdS grew under d i f f u s i o n limited conditions, while the 

grcwth of ZnS was condensation limited. The results from our capsule and 

reservoir system agree well with t h e i r findings, and put ZnSe somewhere 

between the two. The higher probability of CdS boules growing as single 

crystals may be due either to the hexagonal structure of CdS, or to the 

ZnSe growing under p a r t l y condensation controlled conditions. I t i s 

interesting to note that the rate of loss of material from the capsule 



Figure 4.11.1 Some boules grown i n the v e r t i c a l growth system. 

A. CdS boule 

B. Domed end of CdS boule 



C. CdS boule with f a c e t t e d growth face showing s i x - f o l d 
symmetry. 

D. ZnSe boule 

F i g u r e 4.11.1: Continued 



E. F a c e t t e d ZnSe boule showing c h a r a c t e r i s t i c t r i a n g u l a r 
growth f e a t u r e s . 

F. ZnS boule. The formation of s p i k e s i s a t t r i b u t e d to 
condensation l i m i t e d growth. 

F i g u r e 4.11.1; continued 



- 73 

to the t a i l was similar for CdS, ZnSe and ZnS, suggesting that an unknown 

i n e r t gas was present when a l l the compounds were grown. (Preliminary 

experiments indicated that the gas was carbon monoxide). The ZnSe crystals 

which did not a t t a i n the maximum growth rate (the case examined i n . 

Section 4.8) were probably grown i n a regime closer to dif f u s i o n l i m i t a ­

t i o n i n i t i a l l y , but as AT increased during the run so that the temperature 

of the growth face was lowered, the growth may well have stopped when 

condensation l i m i t a t i o n became important. I t i s not suggested that the 

presence of growth facets proves that growth i s limited by condensation 

processes. The equilibrium form of the crystals i s , i n general, facetted, 

and a slow growth rate w i l l lead to t h i s morphology. However, i t i s 

believed that the break-up of growth in t o a mass of dendritic needles as 

occurred with ZnS does indicate that condensation l i m i t a t i o n i s important. 

I f growth i s completely condensation limited then the.growth rate of the 

c r y s t a l w i l l increase with increasing temperature. This leads to an effect 

analogous to constitutional supercooling. Any random protuberance from 

the surface of a growing c r y s t a l w i l l enter a warmer area and grow faster. 

However, there i s a difference between t h i s e f f e c t and constitutional 

supercooling; i n the l a t t e r case the latent heat of fusion increases the 

temperature of the projection and slows the grcswth rate, whereas i f the 

growth rate i s condensation l i m i t e d , the heating effect increases the 
(4 ) 

growth rate and makes the system more unstable. Ballentyne j e t a l . 

showed that growth under condensation li m i t e d conditions was undesirable 

because i t necessarily implies high levels of supersatiiration which can 

lead to the nucleation of more c r y s t a l l i t e s . This argument clearly shows 

that condensation l i m i t a t i o n must lead to unstable growth (rinless there 

are other very strong s t a b i l i s i n g factors), and should be avoided unless 

needle crystals are wanted. The ZnS needles had the ci:ibic structure and 

grew i n a [l 11] d irection ( p o l a r i t y not determined). I n Chapter 5 the 
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growth of s o l i d solutions of ZnSe S i s reported. As the concentration 

of sulphur was increased, growth continued quite well u n t i l x. y 0.6 when 

needle crystals only were formed, and the morphology of the boule closely 

corresponded to ZnS. No intermediate facetted stage was observed, sug­

gesting that the facets observed on ZnSe boules were attributable rather 

to growth rate than condensation l i m i t a t i o n . I t i s interesting to speculate 

on the reason for the abrupt change i n morphology of ZnSe. S boules 
X ""X X 

when X exceeds 0.6. I t would appear that the activation energy to decom­
pose the Se molecule, E < E < E . The incorporation of sulphur 

^ 2 SSe 02 

i n t o the boule would then occur most easily from the SSe molecules, and 

compositions with x a l i t t l e greater than 0.5 could be obtained by the 

re-evaporation of Se2 molecules. Smooth growth would stop when the amount 

of SeS declined too far to support the necessary growth rate. The growth 

rate would then be condensation li m i t e d and the i n s t a b i l i t y would become 

large as the supersaturation increased because the p u l l rate exceeded the 

growth rate. 

4.12 Conclusions 

The growth of a crystal i n a v e r t i c a l tube with a t a i l reservoir 

has been analysed i n rather crude terms. Nevertheless i t has been demon­

strated that the reservoir w i l l correct for non-stoichiometry of the charge 

exceeding 1000 p.p.m. without a si g n i f i c a n t effect on the transport rate, 

and that a much greater quantity of v o l a t i l e material may' be removed i f 

i t i s released as the system warms up, e.g. zinc released by the reaction 

between the charge and manganese. Further, i t has been shown that the 

t a i l reservoir w i l l not hold an exact vapour pressure over the material 

i n the capsule, but one which depends on the physical dimensions of the 

system (which i n turn control the velocity of the gas flow to the t a i l ) , 
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the amount of residual gas and the p a r t i a l pressure of the element i n the 

reservoir. I t has been demonstrated that there i s a considerable pressure 

of gas i n the system ( 5 t o r r at temperature) which i s neither zinc nor 

selenium, and that without t h i s gas a l l the charge would siablime to the 

t a i l . An attempt has been made to estimate the t o t a l pressure (P^) of the 

gases i n the system when the optimum transport was obtained. The equations 

were used to describe the flow of gas to the t a i l from the capsule. For 

a tube with zinc i n the reservoir i t i s possible to substitute 

^Zn<°^ = f ^MIN ^Se,^°) = °' si m i l a r l y P̂  (0) = } P̂ ^̂  and P^^(O) = 0 
2 

for a selenium reservoir. Kp = P„ (£) E, (t) i n each case. The equations 
Zn 2 

have been solved numerically, and the most sig n i f i c a n t error was derived 
from the assumed value of D c r r a v ' diffusion coefficient, which l i e s 

2 -1 

between 0.1 and 0.2 cm s . Values of A and AT were therefore calculated 

for the two extreme values of D^^^. 
D Reservoir Element A AT 

o 2 - 1 o 
cm s C 

0.2 Zn 0.194 11.6 

0.2 Se 1.12 19.6 

0.1 Zn 0.268 8.2 

0.1 Se 0.88 14.9 

The assumption of no residual gas leads to a value of AT 1°C which i s 

unacceptibly low, because t h i s would imply that the boules which grew 

fastest did so under condensation limited conditions. This i s clearly 

not true because the boules have smooth domed ends t y p i c a l of diffusion 
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li m i t e d growth. Thus i t i s concluded that the fastest growing boules 

grew under transport limited conditions, and that t h i s was due to the • 

presence of an unknown i n e r t gas. Runs i n which t o t a l transport was not 

achieved produced boules which grew i n i t i a l l y under diffusion limited, 

conditions, but may have stopped growing under condensation limited con­

di t i o n s when AT grew large. The value of Â^ i s maintained close to 0.5 

when the t a i l temperature i s set to give a p a r t i a l pressure of the reser­

vo i r element corresponding to Pj^jj^ i n the capsule, but the exact value 

i s not precisely determined. Known p a r t i a l pressures caj:i be established 

away from ^^j^^ using a reservoir of the major constituent element required 

i n the vapour phase. 

The reservoir essentially deals with large swings of the p a r t i a l 

pressures i n the capsule away from those to give Pj^jj^- corrects large 

deviations quickly because of the increase i n P̂  associated with such 

swings. The crystal i t s e l f can be grown with a d i f f e r e n t stoichiometry 

from, the charge, and t h i s remains constant throughout the growtlri period, 

unlike that of a crystal grown i n a simple sealed capsule. Also a much 

wider range of dopants may be incorporated by adding them to the charge 

before growth i s in h i b i t e d . 

In general i t would be expected that crystals grown using a 

iselenium reservoir would grow faster than those with zinc reservoirs, 

because the vapour over the charge i s kept closer to stoichiometry. 

Conditions should also be more stable, because P̂  increases faster with 

deviation from stoichiometry on the selenium r i c h side of P MIN 
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CHAPTER 5 

ZING SULPHO-SELENIDE AND THE GRCfflTH OF SOLID SOLUTIONS 

5.1 I n t r o d u c t i o n 

Work w i t h i n the research group on zinc selenide L.E.D's. had y i e l d e d 

devices w i t h electroluminescence emission ranging from yellow t o red i n 

colour depending on the dopant used. S i m i l a r r e s u l t s were found by several 

other workers, (see references 1-3) . I n an attempt t o extend the range of 
(4) 

colours towards the b l u e , Ozsan and Woods studied Schottky diodes on •. 

s i n g l e c r y s t a l s o f s o l i d s o l u t i o n s of Zn(S,Se). They were able t o obtain 

a reasonably intense green electroliaminescence from devices on ZnS^ ̂ Se^ ̂ . 

To s u s t a i n work i n t h i s f i e l d i t was necessary t o produce boules of zinc 

sulpho-selenide from the vapour phase s i m i l a r t o the zinc selenide boules 

described i n Chapters 3 and 4. The work i s p a r t i c u l a r l y i n t e r e s t i n g because 

although ZnSe can j u s t be grown by the technique, i t i s very d i f f i c u l t t o 

grow ZnS because of the higher temperatures needed. While there i s no 

doubt t h a t the furnace could be modified t o provide a higher temperature, 

the quartz ampoules used are found t o collapse a t 1200°C, and so t o extend 

the technique t o t h i s temperature sane means o f reducing the pressure d i f ­

ference between the i n s i d e and outside of the capsule would be required. 

Although Pj^^j^ f o r ZnS i s only reduced by a f a c t o r of two compared w i t h ZnSe, 

and a s a t i s f a c t o r y r a t e o f t r a n s p o r t has been obtained experimentally, the 

r e s u l t a n t boules were only an agglomeration of d e n d r i t i c needles. Powder 

photographs showed these needles t o have the cubic s t r u c t u r e . I t would 

appear t h a t the boule growth i s l i m i t e d by the k i n e t i c s of the growth i n t e r ­

face t o an i m p r a c t i c a l r a t e i n the system used. The value of AT was ra t h e r 

l a r g e r than t h a t f o r ZnSe, although i t was probably less than 50°C. Thus 

the i n d i c a t i o n s are t h a t the growth r a t e was l i m i t e d by the a c t i v a t i o n , 

energy of adsorption on the growth face. 
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The a d d i t i o n a l problems i n the growth of s o l i d s o l u t i o n s ar i s e from 

the e x t r a component. This could lead t o separation of the components 

during c r y s t a l growth, g i v i n g a varying composition through the boule, or 

a composition d i f f e r e n t from t h a t intended. Crystals of ZnSe S were 

of p a r t i c u l c i r i n t e r e s t t o the group, but a few boules of ZnSe Te and 
X X "~X 

CdS S, were grown t o gain experience w i t h mixed c r y s t a l s ; t h i s was done 
X 1 "*X 

because ZnSe, ZnTe, CdS and CdSe can a l l be transported much more e a s i l y 

than ZnS. I n f a c t CdSe S, ZnSe Te, and ZnSe S, were a l l found t o 
X 1-Xt X 1-x X 1-x 

o 

t r a n s p o r t e a s i l y a t 1150 -1165 C, and there, was no change of colour along 

the l e n g t h o f the boule, which i n d i c a t e d a reasonably consistent com­

p o s i t i o n . With ZnSe S the composition ZnSe/ S was found t o be as 
X 1"X 0.4 0*6 

f a r as i t was possible t o go towards ZnS before the q u a l i t y of the boule 

d e t e r i o r a t e d and the d i s t i l l a t e became a mass of d e n d r i t i c needles. The 

ccanposition i s a very convenient 50% mixture by weight of ZnSe and ZnS. 
5.2 Some T h e o r e t i c a l Aspects of the Growth o f S o l i d Solutions 

As remarked i n 5.1, the main problem i n the growth o f s o l i d s o l u t i o n s 

i s l i k e l y t o be the separation o f the two compounds involved during c r y s t a l 

growth. This could occvir f o r two reasonsj f i r s t l y the thermodynamics of 

the source and c r y s t a l i n t e r f a c e s , and secondly the p h y s i c a l nature of 

the t r a n s p o r t system, may a i d the separation of the components. I n par­

t i c u l a r , molecules of d i f f e r e n t masses have d i f f e r e n t d e n s i t i e s and 

d i f f u s i o n r a t e s . The d i f f e r e n c e i n density can cause a v e r t i c a l separation 

of components according t o Archimedes' p r i n c i p l e . N a t u r a l l y t h i s can lead 

t o one element being transported more e f f i c i e n t l y than another i n a 

v e r t i c a l system. 

The thermodynamics of the simple binary system are s t r a i g h t f o r w a r d . 
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and are described by the equations 

and 

-RT ^n Kp = G 

where R, T and Kp have the i r usual meanings and G i s the Gibbs' Free 

Energy of dissociation. At the temperature of c r y s t a l growth (<^llpO°C) 

the ccxnpounds appear to interdiffuse freely, which means that the s o l i d 

solution has a lower energy state than a mixture of the two separate 

compounds. Expressing t h i s mathematically , 

S(N1) (N2)._ " ^^M(Nl) ^^"^^ S(N2) ^^'^'^^ 

Let Kpn represent some average value of Kp that may be ised for the solid solution. 

I t has been observed that transport of the s o l i d solution i s easier than 

the transport of ZnS, which suggests that i n the ZnSe S system 

l ^ a > Kp(ZnS) for a l l x. This situation i s i l l u s t r a t e d graphically i n 

Figure 5.2.1 for the systems ZnSe^Tej_^ and ZnSe^S^^ ^. ^oS^q Kp i s 

plotted against composition for the systems at 1150°C. (^^10 ^ 

proportional to AG at a fixed temperature). Line A represents 

£nKpa = X ^nKp (Zn Nl) + (1-X) ^nKp (ZnN2) (5.2.2) 

while l i n e B i s an estimate based on the knowledge that the curve must 

be sublinear for a stable s o l i d solution, but AG (ZnSe S ) > AG(ZhS) 

to give the observed rate of transport. 

The greatest d i f f i c u l t y i n analysing the system i s to estimate the 

conposition of the gas i n equilibrium with a s o l i d solution of a par­

t i c u l a r composition. In t h i s respect a system with two metals i s simpler 

than one with two non-metals. This i s because the vapour over 
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(M1)^(M2)^_^N w i l l contain three main constituents (Ml),(M2) and N, 

while the vapour over M(N1) (N2) w i l l contain four main constituents, 
X X "X 

(Nl) , (N2) and (Nl)(N2). The pressure of (Nl) and (N2) i s 

related to the pressure of (Nl)(N2) by the equation 

^(Nl) ^(N2) 
Ky = (5.2.3) 

^(N1)(N2) 

Consider a mixture of X parts ZnS to (1-X) parts of CdS (parts 

atomic metal) used as a charge i n a capsule. When the capsule i s f i r s t 

heated up,the vapour pressiire over the mixture would be governed i n i t i a l l y 

by the dissociation of the two binary sulphides 

and 

Kp(CdS) = P^^ Pg^ 

Kp(ZnS) = P^^ Pg^. 

Because P i s the same i n each equation s 

^Cd 
^Zn (Kp (CdS) \ 

Kp (ZnS) j (5.2.4) 

which i s of the order 100 at 1150°C. As the zinc and cadmium in t e r -

diffuse, the p a r t i a l pressures w i l l move closer to those associated with 
•̂ Cd x the s o l i d solution and - — w i l l approach - — , although t h i s w i l l not 
Pzn 

i n general be the equilibrium value. Further, i t i s not clear whether 
^Cd 
- — w i l l depend on P . I t i s interesting to compare th i s situation with 
Zn 

the variation i n p a r t i a l pressures of the metal and non-metal over a 

binary I I - V I canpound. I n such a case the pressure of the metal and 

non-metal can vary within the l i m i t s set by the precipitation of another 
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phase, and the composition of the s o l i d ccanpound remains v i r t u a l l y 

unchanged. This contrasts with the case of Zn Cd S where changing 
X X ~x 

the value of P^^Pjln ^ ® value of x and thus affects the value of 

Kpa. 

Such a discussion of the problems of growing cry s t a l s may make the 

process seem closer to alchemy than to science. Fortunately steps can 

be taken to minimise the effects of the various uncertainties. Ideally^ 

the system for growing a ternary solution would have three controls to 

remove a l l the degrees of freedcsm, i n the same way as the binary system 

required two. A c r y s t a l growth tube with two reservoirs seemed^ a natural 

development frcxn previous work, and the capsule i l l u s t r a t e d i n Figure 

5.2.2A was t r i e d . Both a zinc and tellurium reservoir were used i n an 

attempt to grow ZnSe^ ̂ Te^^ ^ Although material was transported i n the 

system, the tellurium reservoir either emptied or became f u l l of ZnTe. 

Far better r e s u l t s were obtained from a tube with a single zinc reservoir, 

and a cheirge of mixed ZnSe and ZnTe. A l i t t l e reflection shows that t h i s 

approach (with two reservoirs) has a basic flaw. With a two non-metal • 

system, (M(N1) (N2) ) , the metal reservoir remains uncontaminated X X ~x 

because a l l the n o n ^ e t a l gases are precipitated as the compound on the 

walls of the s i l i c a before they reach the reservoir (see Section 4.3). 

No such reaction prevents two non-metals from contaminating each other. 

An equivalent e f f e c t would occur for two metals and one non-metal, with 

the metals becoming contaminated. Satisfactory r e s u l t s were obtained 

with single reservoir tubes, and work on double reservoir systems was 

abandoned. I f i t became necessary to use such a technique i n an experi­

ment, a tube such as Figure 5.2.2b would probably give better r e s u l t s . 

The capsules would contain ZnSe Te , ZnTe and Zn so that the selenium 
X X ̂ x 

would tend to be precipitated before contaminating the ZnTe reservoir. 
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In Chapter 4 i t was pointed out that c r y s t a l growth occurred with 

near equilibrium conditions at both interfaces, and that P^ remained 

constant along the length of a growth capsule to a very good approxima­

tion. The approximation w i l l also be v a l i d i n a three component system 

and may be used i n an analysis of the system. There would be a basic 

thermodynamic reason for the sepeiration of the components i f the com­

position of the vapour i n equilibrium with the s o l i d changed si g n i f i c a n t l y 

with the temperature difference between the ends of the capsule. I t i s 

possible to evaluate the magnitude of t h i s e f fect for the worst case 

which would be (for a two non-metal system) when the charge acted as' a 

mixture of two powders M(N1) and M(N2). Then , 

\ l Kp (M(N1)) ,c , 
^ r KP (M(N2)) ^^'^'^^ 

But 

-RT InSap = AH - TAS (5.2.6) 

So, representing the compound M(N1) by the subscript 1 and M(N2) by the 

2, 

AĤ  -
- (AS, - AS^) (5.2.7) T "̂"1 "^2 

Therefore 

AH - AH 
+ ^ (5.2.8) 

RT 

The left-hand side of the expression represents the fractional chemge 

i n composition with temperature. Fortunately log^^Kp i s usually plotted 

against 1/T for I I - V I compounds (see for example Aven and Prener^^^) 
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1 AH giving a l i n e of gradient - -r-r — . ^ • J R 

I n s e r t i n g the nvunbers f o r ZnSe S a t 1150*̂ C gives a f r a c t i o n a l change 
-4 -1 -3 -1 of 5.5 X 10 K } for ZnSe Te the value i s 2.4 x 10 K . These 

values are not s i g n i f i c a n t , p a r t i c u l a r l y when i t i s borne i n mind that 

t h i s i s an evaluation of an extreme case which cannot actually happen 

(see equation 5.2.1). 

Although there i s no basic thermodynamic reason why separation 

should occur when the s o l i d solution i s transported i n a temperature 

gradient, the k i n e t i c s of the transport system may cause t h i s to happen. 

In Chapter 4 the vapour composition along a simple sealed capsule was 

evaluated for a binary compound. A c r y s t a l growth tube with a separate 

reservoir was found to behave i n a similar manner, while the reservoir 

ensured that the value of P^ was kept close to Pw-j-jj- "̂ ê r a t i o 

•^-^ = A was found to vary along the capsule thus maintaining P con-
Zn 

stant. I n a simple sealed capsule containing M(N1) (N2)._ ,P must 

s t i l l remain constant, but there are now two ways of achieving t h i s . 

Either the r a t i o of metal to non-metal i n the vapour can change, or the 

composition of the charge can d i f f e r from that of the growing c r y s t a l , 

leeiding to a different value of Kpa at the charge and c r y s t a l interfaces. 

For ccanparison i t i s worth remembering that Kp(ZnS), Kp(ZnSe) and 
o 

Kp(ZnTe) are equal when the canpounds are at 1229.̂  1175 and 975 C 

respectively. I n order to determine what w i l l actually happen i t i s 

necessary to examine the tremsport process. I f transport occ\irred 

e n t i r e l y by diffusion i n a system with a large AT, the transport rate 

of each of the two or three minority components (2 metal or 2 non-metal 

system respectively) would be the product of the diffusion c o e f f i c i e n t 

of that conponent (proportional to density ) and i t s p a r t i a l pressure 
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over the source. This approximation assumes that the minority components 

have very small vapour pressures over the c r y s t a l and that the metal i s 

the majority component i n a two non-metal system, and the non-metal in a 

two-metal system, see Figure 5.2.3. (Note the extra component i n the two 

non-metal system i s N1N2). The c r y s t a l grown would necessarily have the 

composition dictated by the a r r i v a l rate of the gases which w i l l be 

^ P£ D£ where n i s the number of components diffusing and P the p a r t i a l 

pressure over the source. This w i l l not i n general lead to a c r y s t a l with 

the same composition as the charge. As noted i n Chapter 4, however, transport 

occurs by a mixture of the 'wind' and diffusion processes unless the vapour 

i s highly non-stoichiometric or an inert gas f i l l i n g i s present. This means 

that the diffusion model i s once again a 'worst-case' situation. For­

tunately Kp(ZnTe) >Kp(ZnSe) > Kp(ZnS) at the same temperature which means 

that the vapour over the charge i s l i k e l y to be r i c h i n the heavier, more 

slowly diffusing component, so the two effects tend to cancel. A further 

cause of separation, p a r t i c u l a r l y i n a v e r t i c a l system i s associated v/ith 

the d i f f e r e n t densities of the gases i n the system, e.g. the molecular 

weight of S2 i s under half the molecular weight of Se^. An example of 

t h i s e f f e c t was found during attempts to grow boules of ZnSe^ ^S^ ^. 

The f i r s t millimetre to grow, right i n the t i p of the capsule, often 

emitted a blue photoluminescence when excited by u l t r a - v i o l e t radiation, 

which indicates that i t was very close to pure ZnS i n composition. I t 

might be noted that one way of obtaining an ingot of the desired com­

position would be to use a charge of s u f f i c i e n t length so that i t was 

much longer than the diffusion length of the separating elements i n the 

s o l i d . The situation would then resemble that which occurs during the 

f i r s t pass i n a zone refi n e r , Figure 5.2.4. 
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Although t h i s d e s c r i p t i o n of the systan i s q u a l i t a t i v e only, c e r t a i n 

conclusions can be drawn. P^ i n a simple sealed capsule should be as 

close t o P j j j j ^ as p o s s i b l e , and AT should be kept small t o avoid the d i f ­

f u s i o n o nly' approximation being v a l i d i n the v i c i n i t y of the c r y s t a l . 

An i n e r t gas atmosphere should be avoided. 

The c r y s t a l growth tube described i n Chapter 4 was used again w i t h 

a zinc r e s e r v o i r t o grow c r y s t a l s of ZnSe S. and a t r i a l c r y s t a l of 

ZnSe ^Te ^. The r e s u l t s were encouraging and are described i n the 

f o l l o w i n g sections of t h i s chapter. I n the tube w i t h a zinc r e s e r v o i r , 

the c o n d i t i o n s reccaranended f o r growth of s o l i d s o l u t i o n s were met admirably. 

The vapour over the charge was very close t o ̂ ^j^- I f the growing c r y s t a l 

were t o vary i n composition from the charge^ the value of P ^ j a t the 

c r y s t a l would be increased, Clecirly i t cannot exceed P̂  cind t h i s provides 

a negative feedback e f f e c t on the growth r a t e which allows more time f o r 

the slowest.component t o d i f f u s e . Mass t r a n s p o r t i s as l i t t l e dependent 

upon d i f f u s i o n as po s s i b l e f o r s t a b i l i t y i n the growth system. Against 

these advantages there must be balanced the p o s s i b i l i t y of l o s i n g unequal 

amounts of the two components t o the t a i l . Assming 3 gms of m a t e r i a l 

i s l o s t from a 20 gm charge of ZnSe^ ^S^ ^, and t h a t A = 1 i n the region 

of the nozzle, 1 gm of non-metal might be l o s t . Assuming t h a t t h i s was 

a l l selenium, the average composition o f the m a t e r i a l grown would be 

ZnSe^ . .S- This would not be very important f o r experimental purposes 0.44 O.bo 

where the q u a n t i t y o f ZnSe could be increased experimentally u n t i l the 

re q u i r e d composition was produced. I n p r a c t i c e the m a t e r i a l l o s t d i d 

not appear t o a f f e c t the value of X along the boule, probably because 

i t was l o s t a t a constant r a t e during growth. 
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5.3 C r y s t a l Growth of ZnSe S. 
X 1 "̂ X 

ZnSe S. _ c r y s t a l s were grown i n the c r y s t a l growth tube w i t h a 
X 1 "~X 

separate r e s e r v o i r as described i n Sections 4.3 and 5.2. I n i t i a l e x p e r i ­

ments only required a small amount of sulphur i n a boule, and c r y s t a l s w i t h 

compositions between ZnSe and ZnSe. _S were produced by using a charge 

of ZnSe w i t h 1-2 gms of sulphur i n the r e s e r v o i r . The r e s e r v o i r was held 

a t the tonperature u s u a l l y used f o r seleniimi during the growth of ZnSe. 

Boules were then grown i n the normal manner, and when the r e s e r v o i r was 

examined afterwards, i t was found t h a t the selenium and sulphur had l a r g e l y 

changed places. (Sulphur has a higher vapour pressure than selenium). 

To grow the complete range of s o l i d s o l u t i o n s w i t h ccanpositions 

from ZnSe t o ZnS i t was necessary t o use a charge of mixed ZnSe and ZnS 

powders which had been ground together t o ensure an i n t i m a t e mixture. 

(The p r o d u c t i o n of the high p u r i t y ZnS and ZnSe s t a r t i n g m a t e r i a l was 

described e a r l i e r i n Chapter 2 ) . The growth tube was then t r e a t e d i n the 

usual manner, i . e . i t was evacuated and flushed w i t h argon several times 

before being sealed a t a pressure of some 2 x 10 ^ t o r r . 
o 

During growth the capsule was held a t a temperature of 1165 C, 

whi l e the r e s e r v o i r , which was f i l l e d w i t h z i n c , was maintained a t the 

temperature necessary t o give the p a r t i a l pressure of zinc c a l c u l a t e d t o 

e x i s t i n the capsule under P..̂ „ condit i o n s . This was ca l c u l a t e d using the 
MIN 

approximation 
^Zn = ^2Kpa)^ 

where .£nKpa = X top (ZnSe) + (1-X) £nl^(ZnS) which i s probably a s l i g h t 

overestimate, (see equation 5.2.1). 

I n i t i a l l y ^ the capsule was arranged i n the temperature g r a d i e n t so 

t h a t the charge end was a t a lower temperature than the end a t which the 
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boule was u l t i m a t e l y t o grow. This s i t u a t i o n was maintained f o r three 

days d u r i n g which coalescence and s i n t e r i n g of the charge occurred, and 

a homogeneous, s o l i d s o l u t i o n was produced. The capsule was then p u l l e d 

through the furnace a t a r a t e of between 0.5 and 1.5 mm/hr f o r ten days. 

For most of t h i s time the charge was a t 1165°C and the growing c r y s t a l 

i n t e r f a c e Was at a temperature of between 1145°C and 1065°C, depending 

on the composition of the c r y s t a l being grown. The lower temperatures 

were used f o r the more sulphur r i c h boules. S a t i s f a c t o r y homogeneous 

c r y s t a l s , w i t h the cubic, s p h a l e r i t e s t r u c t u r e , were grown f o r a l l com­

p o s i t i o n s i n the range ZnSe t o ZnSe. S , which suggests t h a t the com-

pound i s evaporating so t h a t the vapour has the same composition as the 

s o l i d . Attempts t o grow c r y s t a l s w i t h more than 60 molar percent of 

sulphur were unsuccessful, i n t h a t no boule was obtained. Some tra n s p o r t 

d i d occur but the end product simply consisted of an agglomerate of large 

nvmibers o f d e n d r i t i c needles. 

The c r y s t a l s of zinc selenide were wholly c\ibic i n s t r u c t u r e and 

most o f the mixed c r y s t a l s were s u b s t a n t i a l l y cubic. This was demon­

s t r a t e d both by e l e c t r o n d i f f r a c t i o n and X-ray b a c k - r e f l e c t i o n studies. 

E l e c t r o n microprobe analysis of a boule w i t h the composition' ZnSe^ ^S^ ^ 

showed t h a t i t was s u b s t a n t i a l l y homogeneous both r a d i a l l y and from one 

end t o the other. Seme samples were thinned f o r examination i n t r a n s ­

mission i n the e l e c t r o n microscope and were o r i g i n a l l y obtained by c u t t i n g 

s l i c e s 1 cm i n diameter and some 0.5 mm t h i c k a t r i g h t cingles t o the long 

axis o f a boule, i . e . no attempt was made t o ensure t h a t the large area 

faces o f the discs corresponded t o any p a r t i c u l a r low index face. 

However, as the work proceeded, i t became necessary t o produce 

o r i e n t e d s l i c e s , and i t was then discovered t h a t the axes o f a l l the 

boules examined l a y w i t h i n a few degrees of a <111> d i r e c t i o n . Slices 
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were then cut p e r p e n d i c u l a r l y t o t h i s d i r e c t i o n and studied t o determine 

the p o l a r i t y o f the two { i l l } faces. For t h i s purpose they were polished 

mechanically down t o 0.25 pm diamond g r i t and then polished chemically 
(6) 

i n HPC . (HPC consists o f one p a r t of a saturated s o l u t i o n of chranium 

t r i o x i d e i n orthophosphoric a c i d w i t h two p a r t s o f hydrochloric a c i d ) . 

F i n a l l y they were etched i n a 1% s o l u t i o n of bromine i n methanol, which 

Gezci and W o o d s h a v e shown t o produce t r i a n g u l a r p i t s on the (111) 

zinc faces, and c o n i c a l p i t s on the (TTl) selenium faces. 

Using t h i s technique i t has been established t h a t a l l our c r y s t a l s 

grew w i t h t h e i r long axes close t o a (111) d i r e c t i o n , i . e . the growing 

i n t e r f a c e l a y close t o a { i l l } plane, w i t h the { i l l } zinc plane facing the 

t i p o f the c r y s t a l , so t h a t the growing face lay close t o a {111} selenium 

face. I t i s i n t e r e s t i n g t o note i n passing t h a t s i m i l a r etching e x p e r i ­

ments on boules of CdS and CdSe grown by the same vapour phase technique 

show a s i m i l a r e f f e c t , i . e . the c-axes o f a l l boules examined lay w i t h i n 

20° of the geometric axes of the boules, and the growth i n t e r f a c e there­

f o r e l a y w i t h i n 20° of a basal plane. This basal plane was found t o be 

the non-metal (0001) face i n a l l samples examined. 

5.4 E l e c t r o n microscope studies 

Polished discs were thinned f o r transmission studies using the 
,-tQ\ 

HPC s o l u t i o n and the "window" technique described by Hirsch e t a l . 

A f t e r t h i n n i n g , the specimens were washed f i r s t i n d i s t i l l e d water, and 

then i n absolute a l c o h o l . They were then ready f o r examination i n the 

JEM 120 e l e c t r o n microscope. 

5.4.A Zinc Selenide 

The dominant defects observed i n the zinc selenide samples were 
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narrow twins extending completely across t h i n regions of the specimen, 

see Figure 5.4.1. Although some of these twins exceeded 1 |am i n width 

the m a j o r i t y were s l i g h t l y narrower than t h i s and were o f t e n found close 

together i n small groups which were separated by la r g e r regions of 

untwinned m a t e r i a l . With the wider twins, where the boundaries were w e l l 

separated, seme i r r e g u l a r i t y was apparent a t the edge of the specimen a t 

the i n t e r s e c t i o n s w i t h the t w i n boundaries. This i s i l l u s t r a t e d i n 

Figure 5.4.2 and i s a t t r i b u t e d t o d i f f e r e n t i a l etching of the d i f f e r e n t 

c r y s t a l l o g r a p h i c faces o f the twinned m a t e r i a l . Electron d i f f r a c t i o n 

p a t t e r n s f r a n the regions containing the twins showed t h a t twinning 

occurred on { i l l } planes i n a l l the samples. 

There are two types of t w i n which can occxar on { i l l } planes i n 
(12) 

the s p h a l e r i t e s t r u c t u r e , namely the ortho- and the para-twin . The 

o r t h o - t w i n i s not associated w i t h any change of p o l a r i t y along the (111) 

a x i s , whereas the para-twin i s . The f o l l o w i n g experiment was performed 

i n order t o i d e n t i f y the nature of the .twins i n zinc selenide. A boule 

c o n t a i n i n g large g rains was selected, and a s l i c e was cut from i t so t h a t 

i t s l a r g e area surface l a y close t o a { i l l } plane on which twinning 

occurred i n the l a r g e s t g r a i n . Since the cut was made a t an angle of a 

few degrees t o the { i l l } plane, the tw i n boundaries i n t e r s e c t e d the cut 

surface a t t h i s low angle. A f t e r mechanical and chemical p o l i s h i n g w i t h 

diamond paste and HPC, the s l i c e was etched i n bromine i n methanol f o r 

about one minute. Subsequent examination i n the o p t i c a l microscope 

showed t h a t both the twinned and untwinned regions developed etch p i t s 

w i t h a t h r e e - f o l d symmetry, and t h a t the twinned m a t e r i a l had suffered 

a 180° r o t a t i o n about the <111> axis i n comparison w i t h the untwinned 

m a t e r i a l . The s i m i l a r nature of the p i t s i n the twinned and untwinned 
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m a t e r i a l , i n d i c a t i n g maintained p o l a r i t y , and the r e l a t i v e 180° r o t a ­

t i o n are the c h a r a c t e r i s t i c s expected of ortho-twins. 

Although very few other defects have been observed i n the zinc 

selenide s l i c e s , the micrograph i n Figure 5.4.3 does i l l u s t r a t e one 

i n t e r e s t i n g g r a i n boundary which i s worth recording. A knowledge of the 

orientationsr^of the two g r a i n s , a t the top and bottom of the micrograph, 

together w i t h the i n f o r m a t i o n t h a t the boundary l i e s approximately 

p a r a l l e l t o the [lOO] d i r e c t i o n i n the upper g r a i n , suggests t h a t the 

f a u l t i s a t i l t boundary w i t h a <100> a x i s , of the type described by 
(9) 

H o l t . Such a g r a i n boundary, i n c o n t r a s t w i t h an o r t h o - t w i n boundary 

f o r exanjjle, contains an array of wrong bonds which makes the f a u l t a 

favoxirable s i t e f o r the formation of p r e c i p i t a t e s . I n f a c t small regions 

o f dark c o n t r a s t are seen along t h i s boundary, Figiire 5.4.4, and are 

b e l i e v e d t o be such p r e c i p i t a t e s . 

The incidence of d i s l o c a t i o n s i n the as-grown c r y s t a l s of zinc 

selenide was very low, and apart from the twinning described above very 

few c r y s t a l l o g r a p h i c defects were observed. Many of the d i f f r a c t i o n 

p a t t e r n s however d i d e x h i b i t extensive st r e a k i n g as shown i n Figure 5. 

This e f f e c t i s a t t r i b u t e d t o thermal d i f f u s e s c a t t e r i n g which i s 

observed i n many ma t e r i a l s w i t h the diamond or zinc blende s t r u c t u r e 

(see f o r example Honjo e t al^^°^). The d i f f u s e streaking was most 

prominent i n p a t t e r n s where the zone axis was close t o a <100> d i r e c t i o n 

as i n Figure 5.4.5. Unlike streaking associated w i t h stacking f a u l t s 

and planar d e f e c t s , which i s very s e n s i t i v e t o specimen o r i e n t a t i o n , 

the s t r e a k i n g associated w i t h thermal d i f f u s e , s c a t t e r i n g i s maintained 

as the c r y s t a l i s t i l t e d w i t h respect t o the i n c i d e n t beam. 

The reason why the thermal d i f f u s e streaking i s most prominent 

i n p a t t e r n s w i t h a <100> zone axis i s t h a t the 'zig-zag" chains i n 
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Figure 5.4.1; A group of narrow twins i n ZnSe 
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Figure 5.4.2; An i r r e g u l a r i t y i n the specimen edge 
near a twin boundary 
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<110> d i r e c t i o n s which connect nearest neighbour atons, and which give 

r i s e t o ' i n t e n s i t y w a l l s ' i n r e c i p r o c a l space perpendicular t o t h e i r 

l e n g t h are perpendicular t o the d i r e c t i o n of the e l e c t r o n beam i n t h i s 

o r i e n t a t i o n . I n other o r i e n t a t i o n s when the zig-zag chains are not 

perpendicular t o the e l e c t r o n beam, the i n t e n s i t y w a l l s i n t e r s e c t the 

Ewald sphere a t an angle i n c l i n e d a t less than 90° t o the d i r e c t i o n of 

the e l e c t r o n beam so t h a t the streaking i s less pronounced. 

5.4B Zinc sulpho-selenide 

The def e c t content o f t h i s m a t e r i a l d i f f e r e d from t h a t of zinc 

selenide i n t h a t , w i t h increasing sulphur content, the degree of stacking 

dis o r d e r increased. I n a d d i t i o n many more t h i n twins were observed 

which were less wide than those i n zinc selenide. A t y p i c a l region 

c o n t a i n i n g such f a u l t s i s shown i n Figure 5.4.6, which once again 

suggests t h a t the twins occur i n groups, while most of the area shown 

i n the micrograph remains o f the same c r y s t a l l o g r a p h i c o r i e n t a t i o n . 

Some examples o f the stacking f a u l t s which have been observed 

are shown i n Figure 5.4.7. Such f a u l t s which f r e q u e n t l y occurred i n 

groups, a l l l i e on the same s l i p plane. This suggests t h a t they owe 

t h e i r o r i g i n t o s l i p processes. A l l the f a u l t s i n v e s t i g a t e d were found 

t o be i n t r i n s i c ^ by r e l a t i n g the d i r e c t i o n of the d i f f r a c t i o n vector 

operating t o the asymmetry o f the corresponding d a r k - f i e l d image (see 

f o r example Gevers e t a l f ^ ^ ^ ) . Although no s t a c k i n g - f a u l t tetrahedra 

have been found, a few planar f a u l t s which s l i p from one { i l l } plane 

t o another have also been observed, see Figure 5.4.8. 

The planar f a u l t s j u s t described were r e l a t i v e l y easy t o 

i d e n t i f y because they were s i t u a t e d between f a i r l y large regions of 

defec t f r e e m a t e r i a l . However the c r y s t a l s o f zinc sulpho-selenide 
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Figure 5.4.3: Fringe c o n t r a s t a t a <100> t i l t boundary 
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Figure 5.4.4; Another region of the boundary i n 
Fig\ire 5.4.3 a f t e r t i l t i n g through a 
few degrees 



Figure 5.4.5; Selected area d i f f r a c t i o n from a <100> 
axis of ZnSe using 100 kV electrons 
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Figure 5.4.6; A group of thin twins i n ZXISSQ ^ S ^ ^ 
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also contained a few small regions where the concentration of planar 

f a u l t s was very h i g h , as shown i n Figure 5.4.9. The selected area 

d i f f r a c t i o n p a t t e r n s from these regions contained e x t r a spots which 

could be a t t r i b u t e d t o twinning on a | l l l | plane. I n a d d i t i o n there 

was a suggestion of d i f f r a c t i o n streaks passing through the matrix r e f l i s c -

t i o n s i n a d i r e c t i o n perpendicular to. the length of the f a u l t s . This 

s t r e a k i n g i s probably due t o a shape e f f e c t associated w i t h the thickness 

o f the overlapping planar defects. The composition of the m a t e r i a l 

w i t h i n the h e a v i l y f a u l t e d regions i s c l e a r l y u n c e r t a i n , but the degree 

of s t a c k i n g disorder suggests t h a t t h i n lamellae of hexagonal or p o l y ­

t y p i c m a t e r i a l may be present. 

The presence of a hexagonal phase i n one sample has been f i r m l y 

e s t a b l i s h e d by e l e c t r o n d i f f r a c t i o n . I n the sample examined, the 

hexagonal m a t e r i a l was i n the form of a t h i n layer i n the plane of the 

f o i l . The consequent overlapping of the layers of w u r t z i t e and zinc 

blende gave r i s e t o the moirl' f r i n g e s shown i n Figure 5.4.10. The 

v a r i a t i o n i n o r i e n t a t i o n and spacing of these f r i n g e s i s a t t r i b u t e d t o 

d i f f e r e n t d i f f r a c t i o n c onditions and changes i n . o r i e n t a t i o n of the phase 

boundary i n d i f f e r e n t regions of the specimen. 

A study o f the d i f f r a c t i o n p a t t e r n showed t h a t the o r i e n t a t i o n a l 

r e l a t i o n s h i p between the cubic and hexagonal phases was such t h a t the 

(111) cubic pleine was p a r a l l e l t o the (1010) hexagonal plane, while the 

[211] cubic d i r e c t i o n was p a r a l l e l t o the [OOOl] d i r e c t i o n i n the 

hexagonal m a t e r i a l . Thus the f r i n g e s belong t o a p a r a l l e l moire p a t t e r n 

where the f r i n g e spacing, M, i s given by 

M = d ^ d / l d i - d ^ l 

where d^ and d^ are the i n t e r p l a n a r spacings o f the planes i n the two 
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Figure 5.4.7; Long i n t r i n s i c stacking f a u l t s i n ZnSe^ ^S^ ^ 
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Figure 5.4.8; I n t r i n s i c stacking f a u l t i n ZnSe^ ^S^ ^ a r i s i n g 
f r o n s l i p on two d i f f e r e n t {111} planes. 
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phases which are p a r a l l e l t o one another and responsible f o r the f r i n g e 

c o n t r a s t . To account f o r the observed value o f M o f 100 X, f o r example 

a t P i n Figure 5.4.10, the d i f f e r e n c e i n the values of d^ and must 

have been of the order o f 2%. The magnitude of t h i s d i f f e r e n c e i s con­

s i s t e n t w i t h the f a c t t h a t the separation of the r e f l e c t i o n s from these 

planes was not resolved i n the d i f f r a c t i o n p a t t e r n . 

To conclude t h i s account of the experimental r e s u l t s on the 

mixed c r y s t a l s some measurements of l a t t i c e parameters should perhaps 

be mentioned. The sample containing the small regions of hexagonal 

phase which l e d t o the production of the moire f r i n g e s was cut from a 

boule o f the naninal canposition ZnSe„ ^. Nominal i n the sense t h a t 
0.4 0.6 

the boule was grown from a charge of t h i s molar composition. The l a t t i c e 

parameters c a l c u l a t e d from the e l e c t r o n d i f f r a c t i o n data werey.as f o l l o w s j 

f o r the cubic phase a^ = 5.46 ± 0.11 A ; f o r the hexagonal phase 
a = 3.90 ± 0.08 S, c = 6.32 ± 0.13 S. The values obtained frrau the o 
ASTM index f o r ZnSe and ZnS eire: f o r the cubic s t r u c t u r e a = 5.667 £ 

o 
f o r ZnSe and a = 5.406 8 f o r ZnS ; f o r the hexagonal s t r u c t u r e o 
a = 3.996 £, c = 6.530 X f o r ZnSe and a = 3.820 £, c = 6.260 S f o r o ' o 

ZnS. 

Thus assianing Vegard's law holds f o r t h i s s o l i d s o l u t i o n , as 

much work on the photoluminescence and energy band gap of powdered 

samples suggests, the measurement of l a t t i c e parameters i n d i c a t e s t h a t 

the composition o f the cvibic phase was approximately ZnS^ ̂ gSe^ 

while t h a t of the hexagonal was between ZnS^ ggSe^ and ZnS^ ygSe^ ̂ 2' 

depending on whether the values of a^ or c are taken i n t o consideration. 

The u n c e r t a i n t y i n the l a t t i c e parameters derived from e l e c t r o n d i f ­

f r a c t i o n p a t t e r n s r e a l l y permits of a q u a l i t a t i v e conclusion only. 
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Figure 5.4.9: A large nociber of very t h i n overlapping 
planar f a u l t s i n ZnSe„ ,S, . 
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Figure 5.4.10; Moire f r i n g e c o n t r a s t a r i s i n g from overlapping 
layers of w u r t z i t e and s p h a l e r i t e planes i n 
ZnSe^ ^ 0.4 0.6 
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namely t h a t t h i s p a r t i c u l e i r boule contained a higher molar p r o p o r t i o n 

of sulphur than selenium cind indeed was a s o l i d s o l u t i o n w i t h a com­

p o s i t i o n not too f a r removed from the nominal composition. This was 

confirmed l a t e r by the X-ray powder photograph technique. 

5.5 Discussion 

The experiments reported here show t h a t the vapour phase tech­

nique used t o grow homogeneous s i n g l e c r y s t a l s of ZnSe S i s b a s i c a l l y 

successful f o r values o f x up t o 0.6 a t l e a s t . Electron microprobe 

a n a l y s i s i n d i c a t e d t h a t the c r y s t a l s were homogeneous and t h i s and 

X-ray powder techniques, together with, e l e c t r o n d i f f r a c t i o n s t u d i e s , 

have shown t h a t the c r y s t a l s produced had compositions close t o those 

of the s t e i r t i n g cheirges, which were simple mixtures o f the sulphide and 

selenide. Examination i n transmission i n the e l e c t r o n microscope 

revealed t h a t the zinc selenide samples were of p a r t i c u l a r l y high 

c r y s t a l l o g r a p h i c q u a l i t y w i t h s u r p r i s i n g l y few d i s l o c a t i o n s between 

g r a i n boundaries. Those defects which were observed were mostly 

associated w i t h s t a c k i n g d i s o r d e r . Thus long, t h i n twins were common 

i n zinc selenide while zinc sulpho-selenide was considerably more d i s ­

ordered and contained i n t r i n s i c stacking f a u l t s as w e l l as a higher 

d e n s i t y o f even t h i n n e r t w i n s . 

I n discussing twinning i n caoapounds w i t h the zinc blende 

s t r u c t u r e i t i s important t o r e a l i s e t h a t there are two possible t w i n 
(12) 

boundaries w i t h a | l l l } composition plane, see Holt . I n cubic 

zinc selenide, f o r example, the [ i l l ] axis i s po l a r and the stacking 

o f zinc cuid selenium layers i n (111) planes can be represented as 

a o b g c Y a o b 3 c Y a ab B c Y 

where abc represent zinc layers emd ogY represent selenium l a y e r s . 
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I f the [ i l l ] axis i s v e r t i c a l , the atcms of any layer l i e v e r t i c a l l y 

above the atans of lower-lying planes designated by the same l e t t e r , 

a i s separated frcm a by one quarter the distance between two succes­

sive a planes. Similar remarks apply to b and g , and c and y . The 
(12) 

two possible twins described by Holt are the para-: and ortho-twin 

which can be represented i n the following way: 

a a b g c y a o i b b a a Y c S b a a - para-twin , 

a a b B c Y a o i c Y t ) 3 a a c Y b 3 - ortho-twin. 

The true mirror image, or para-twin, i s characterised by wrong bonds 

and the p o l a r i t y of the [ i l l ] axis changes to [ i l l ] across the twinning 

boundary. In contrast the ortho-twin has no wrong bonds and the 

po l a r i t y does not change. Because of i t s bonding, the para-twin has 

higher energy than the ortho-twin and i s therefore le s s l i k e l y to be 

observed. Indeed i n the etching experiment described in Section 5.4A, 

the twins observed i n c r y s t a l s of ZnSe S were a l l of the ortho-type. 

The question of the origin of the twins cannot be completely 

resolved. The twins must form either during growth or as a r e s u l t of 

post-growth s t r e s s . Consider f i r s t the p o s s i b i l i t y that the twins form 

during growth. I t i s believed that the formation of growth twins 

depends on a p a r t i c u l a r c h a r a c t e r i s t i c of the growth of our c r y s t a l s . 

For example i t i s usually found that when cr y s t a l s of I I - V I ccanpounds 

are grown by the technique described here, the growth face l i e s within 

20° of the (iTT) or (0001) non-metal face. Taken in conjunction with 

the findings of P a r k e r w h o investigated the growth of e p i t a x i a l 

layers of zinc selenide on gallium arsenide and found that the growth 

rate of the (111) selenium face was two and a half times that of the 
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(111) zinc face, t h i s suggests t h a t the growth of zinc selenide i s 

s t r o n g l y p o l a r . 

Now when an unseeded ampoule i s used, m u l t i p l e nucleatioh may 

w e l l occur. Often one seed grows f a s t e r than the others, f i l l s the 

ampoule and a s i n g l e c r y s t a l r e s u l t s . This i s probably what happens 

w i t h c r y s t a l s w i t h the w u r t z i t e s t r u c t u r e , such as CdS and CdSe, which 

are r e l a t i v e l y easy t o grow i n s i n g l e c r y s t a l form by the vapour phase 

technique. However w i t h a cubic m a t e r i a l such as zinc selenide, the 

higher symmetry w i l l pranote f a s t growth i n f o u r times as many d i r e c t i o n s , 

thus leading t o the greater p o l y c r y s t a l l i n i t y t y p i c a l of boules of t h i s 

m a t e r i a l . Now as a g r a i n of zinc selenide grows i n a f a s t <TlT> 

d i r e c t i o n a t a small eingle t o the axis o f the ampoule, see Figure 5.5.1, 

twi n n i n g may w e l l occur t o preserve the o v e r a l l a x i a l growth d i r e c t i o n . 

I f the t w i n boundary i s of the ortho-type the growth i n t e r f a c e w i l l be 

of opposite p o l a r i t y on e i t h e r side of the twinning plaine. Since the 

metal (111) face grows more slowly, t h i s i s an i n h e r e n t l y unstable 

s i t u a t i o n so t h a t the c r y s t a l would r a p i d l y t w i n back t o e s t a b l i s h the 

o r i g i n a l f a s t growing i n t e r f a c e . I t i s suggested t h a t t h i s mechanism 

may account f o r same of the long, t h i n twins observed i n zinc selenide 

and zinc sulpho-selenide. However, i t cannot be responsible f o r the 

formation of a l l the twins because some o f them are found l y i n g perpen­

d i c u l a r t o the growth a x i s . The proposed mechanism i s only able t o 

account f o r twins l y i n g on the three {111} planes which i n t e r s e c t the 

growth i n t e r f a c e . 

As t o the p o s s i b i l i t y t h a t the twins are introduced by post-

growth s t r e s s , i t seems u n l i k e l y t h a t stress due t o the d i f f e r e n t i a l 

c o n t r a c t i o n o f the c r y s t a l and i t s container dxirinig c ooling w i l l 
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normally be s i g n i f i c a n t . This i s because the c o e f f i c i e n t s of thermal 

expansion o f zinc sulphide and selenide are s x i b s t a n t i a l l y l a r g e r than 

t h a t o f s i l i c a g l a s s , as evidenced by the f a c t t h a t the grown boules 

u s u a l l y become completely f r e e f r o n the wa l l s o f the capsule during 

the c o o l i n g process f o l l o w i n g the completion of growth. However s t i c k i n g 

sometimes occurs, and then d i f f e r e n t i a l c o n t r a c t i o n leads t o s t r e s s . 

I n a d d i t i o n there i s some evidence t o suggest t h a t the walls of evacuated 

s i l i c a glass ampoules creep slowly a t 1200°C under e x t e r n a l atmospheric 

pressure. For example evacuated capsules w i t h cross sections which are 

c i r c u l a r i n i t i a l l y are sometimies found t o have become s l i g h t l y e l l i p t i c a l 

i n s e c t i o n f o l l o w i n g heating a t 1200°C f o r ten days. The gradual collapse 

o f the w a l l s o f the ampoule could t h e r e f o r e r e a d i l y introduce stress 

i n t o the growing boule. Another source of stress occurs, of course, 

du r i n g c o o l i n g , when a c e r t a i n amount of d i f f e r e n t i a l c o n t r a c t i o n between 

the core and periphery of the boule i s unavoidable i n the presence of a 

r a d i a l temperature g r a d i e n t . These r e s u l t s i n d i c a t e t h a t the major 

defects i n zinc selenide are ort h o - t w i n s , and t h a t as selenium i s 

replaced w i t h sulphur, the twins become narrower, and the incidence of 

stac k i n g f a u l t s increases. I t has not been possible t o study zinc 
(14) 

sulphide, but the a v a i l a b l e evidence suggests t h a t the major defects 

i n t h a t m a t e r i a l are stacking f a u l t s . I t i s believed t h a t many of the 

stacking f a u l t s i n zinc sulphide, and of the twins i n zinc selenide, 

owe t h e i r o r i g i n t o post-growth s t r e s s , and t h a t the reason f o r the 

occurrence of d i f f e r e n t defects i n the two mate r i a l s i s t o be sought 

i n the s l i g h t d i f f e r e n c e i n the degree of i o n i c i t y o f the bonding i n 

the two compounds. Consider, f o r example, the stacking of double atom 

lay e r s along a <111> axis i n a c\abic c r y s t a l . I n the n o t a t i o n used 
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e a r l i e r t h i s can be represented as 

aah&cy f a ah c y a ah ^ c y ( i ) 

A s t r e s s nucleated d i s l o c a t i o n w i l l s p l i t i n t o two p a r t i a l s 

separated by an i n t r i n s i c stacking f a u l t , and one p a r t i a l w i l l sweep 

across a { i l l } plane i n a p o s i t i o n such as t h a t marked by the arrow i n 

( i ) above. The stacking f a u l t energy i n zinc sulphide i s very low, or 

even negative, so t h a t the f a u l t covers the whole plane. Following 

the passage of the p a r t i a l the stacking sequence becomes 

hexagonal 
a a b g c y b g + cy aah & cy aa . ( i i ) 

This i n t r i n s i c stacking f a u l t ( i i ) can be regarded as containing four 

double layers of hexagonal m a t e r i a l w i t h a stacking sequence h Q cyh ^ cy . 

This c o n f i g u r a t i o n w i l l be p a r t i c u l a r l y s t a ble i n zinc sulphide, and i n 

the mixed c r y s t a l s w i t h h i g h sulphur content, because the higher i o n i c i t y 

o f the bonding i n zinc sulphide favours the formation of the w u r t z i t e 

s t r u c t u r e . (This o f course i s the meaning of a negative stacking f a u l t 

energy). To r e l i e v e thermal s t r e s s , a large number of p a r t i a l s must 

pass over { i l l } s l i p planes, but t h i s w i l l occur a t random eind i n 

consequence numerous i n t r i n s i c stacking f a u l t s w i l l be found. 

Now w i t h zinc selenide the bonding i s more covalent, which 

favours the formation of the s p h a l e r i t e s t r u c t u r e . The stacking f a u l t 

energy associated w i t h a sequence such as ( i i ) w i l l be higher than i n 

zinc sulphide and sequence ( i i ) w i l l not be as s t a b l e . Thus when 

f u r t h e r s t r e s s i s t o be r e l i e v e d i t i s probable t h a t a p a r t i a l d i s ­

l o c a t i o n w i l l pass over a {111} plane adjacent t o an e x i s t i n g i n t r i n s i c 
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f a u l t , f o r example a t the p o s i t i o n i n d i c a t e d by the arrow i n ( i i ) . This 

leads t o the f o l l o w i n g stacking sequence 

a a b B c Y b 3 a a + b f i c y a o b g ( i i i ) 
T T 

This arrangement can be regarded equally as an e x t r i n s i c stacking f a u l t 

or as a t h i n t w i n , w i t h composition planes i n d i c a t e d by the l e t t e r s T. 

I f now y e t another p a r t i a l passes over the plane i n d i c a t e d by the arrow 

i n ( i i i ) , the t w i n widens by one double atom layer and the stacking 

sequence becomes 

•«- H ->••<- H ->• 
a a b 3 + cyh ^ aa cy + a o b g c y ( i v ) 

T T 

Obviously the repeated passage of p a r t i a l d i s l o c a t i o n s over adjacent 

{111} planes w i l l lead t o the widening of the o r t h o - t w i n . I t i s 

suggested t h a t the reason why the p a r t i a i s continue t o traverse planes 

adjacent t o the t w i n plane i s because the bonds i n those p a r t i c u l a r 

planes, marked by arrows i n ( i v ) , w i l l be weaker than the bonds i n 

p r o p e r l y co-ordinated double { i l l } layers i n wholly cubic m a t e r i a l . 

Thus i n the stacking sequences ( i i ) and ( i i i ) the double layers to. 

the l e f t o f the arrows (and the double layer t o the l e f t of the r i g h t -

hand arrow i n ( i v ) ) are i n an immediately hexagonal environment. The 

covalent nature of z i n c selenide ensures t h a t t h i s i s a r e l a t i v e l y 

unstable arrangement so t h a t there w i l l be an inherent weakness on 

the planes marked w i t h arrows. Stress r e l i e f w i l l t h erefore occur 

p r e f e r e n t i a l l y on these planes w i t h the r e s u l t t h a t the twins widen 

i n preference t o the formation of random stacking f a u l t s . Energy con­

s i d e r a t i o n s make t h i s p o i n t clecorer. The passage of three p a r t i a i s 

on successive { i l l } planes leads t o c o n f i g u r a t i o n ( i v ) w i t h two 3-layer 
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hexagonal regions marked H. I f three p a r t i a l s had passed on three 

{ i l l } planes a t random, a t o t a l o f twielve double layers w i t h the 

hexagonal stacking would have been formed. This i s c l e a r l y an 

unfavourable s i t u a t i o n i n a c r y s t a l w i t h a higher degree o f covalency 

i n i t s bonding. The d i s p a r i t y between the energies required t o form 

wider twins or rsmdan stacking f a u l t s increases w i t h the nianber of 

p a r t i a l s r e q u i r e d t o r e l i e v e the s t r e s s . 

I n conclusion t h e r e f o r e i t i s suggested t h a t the r e l i e f of 

thermal s t r e s s i n iinc selenide leads t o the f o m a t i o n o f ortho-twins. 

I n c i d e n t a l l y i t i s perhaps worth recording t h a t zinc t e l l u r i d e i s more 

covalent than zinc selenide, and c r y s t a l s of zinc t e l l u r i d e are u s u a l l y 

h e a v i l y twinned As the selenium i n zinc selenide i s replaced by 

sulphur, the i n c r e a s i n g i o n i c i t y of the bonds and the corresponding 

tendency t o form the w u r t z i t e s t r u c t u r e leads t o the formation of 

random stacking f a u l t s . I n the mixed m a t e r i a l t h e r e f o r e both t h i n n e r 

twins cind i s o l a t e d stacking f a u l t s would be expected, p a r t i c u l a r l y i f 

microscopic homogeneity i s not s t r i c t l y maintained. 
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CHAPTER 6 

CHEMICAL VAPOUR TRANSPORT AND HIGH TEMPERATURE CRYSTAL GROWTH 

6.1 I n t r o d u c t i o n 

I n t h i s chapter d e s c r i p t i o n s are given o f two c r y s t a l growth tech­

niques used t o grow a r e l a t i v e l y small number of c r y s t a l s which could not 

be produced i n the usual v e r t i c a l system. The c r y s t a l s i n question were 

pure ZnS, untwinned ZnSeiMn, and ZnSe h e a v i l y doped w i t h manganese t o a 

conce n t r a t i o n o f 0.1 - 1%. 

Untwinned ZnSe was required f o r E.S.R. experiments, while very 

h e a v i l y doped m a t e r i a l was needed f o r o p t i c a l absorption spectroscopy i n 

an attempt t o i d e n t i f y the zero phonon l i n e i n the manganese absorption 

s p e c t r m . Unfortxinately the ZnSe obtained from the v e r t i c a l system was 

o f t e n twinned, which gave r i s e t o e x t r a peaks i n the E.S.R. spectrum due 

t o the hexagonal s t r u c t u r e associated w i t h the twins. Haxtman^^^ reported 

t h a t hexagonal ZnSe grew i n the temperature range 800 - 1050°C, and i t was 

hoped t h a t by preparing c r y s t a l s a t a higher or lower temperature untwinned 

ZnSe would be produced. To reduce the temperature an io d i n e t r a n s p o r t 

system was used, and t o increase the temperature a modified Piper-Polich 

system was employed i n a h o r i z o n t a l arrangement. The furnace was heated 

by a ' C r u c i l i t e ' element capable o f operating up t o 1500°C. The two tech­

niques were l a t e r a p p l i e d t o zinc sulphide cUid zinc sulpho-selenide. 

Iodine t r a n s p o r t was found t o be u s e f u l f o r i n t r o d u c i n g high l e v e l s o f 

manganese (0.3%) i n t o ZnSe. I t had proved impossible t o incorporate such 

high l e v e l s o f manganese even when several molar percent of manganese was 

added t o the charge. However, the required concentration was obtained w i t h 

the i o d i n e t r a n s p o r t system q u i t e e a s i l y . This i s not s u r p r i s i n g because 
(2) 

Weidemeier and Si g a i used t h i s method t o grow c r y s t a l s of MnSe. 
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6.2 C r y s t a l Growth by a Modified. Piper-Polich Technique 

V The v e r t i c a l furnaces a v a i l a b l e f o r c r y s t a l growth were l i m i t e d 

t o use below 1200°C i n order t o o b t a i n a reasonable l i f e from t h e i r 

Kanthal A l windings. I t was hoped t h a t ZnSe would t w i n less r e a d i l y a t 

1300°C than 1150°C and i t was thought t h a t the higher temperature might 

a s s i s t the t r a n s p o r t o f any manganese added t o the. ZnSe charge, thus 

enabling ZnSe:Mn t o be produced f r e e o f c h l o r i n e or i o d i n e . A h o r i z o n t a l 

furnace w i t h a " C r u c i l i t e ' element, i n which CdS had prev i o u s l y been grown 

by a mo d i f i e d Piper and Polich^"^^ technique was a v a i l a b l e . I n i t i a l attempts 

t o grow ZnSe i n a sealed and evacuated capsule f a i l e d . A ten m i l l i m e t r e 

I.D. capsule w i t h w a l l s 2 - 3 mm t h i c k was p u l l e d through a temperatvure 

g r a d i e n t i n three days. I n a series of experiments the temperature of the 

furnace was p r o g r e s s i v e l y increased. No t r a n s p o r t occurred u n t i l the tem­

perature reached 1300°C, when the tube collapsed and the charge s i n t e r e d 

i n t o several dense rounded pieces. As the temperature was increased 

f u r t h e r some o f the capsules expanded as the pressure i n s i d e exceeded one 

atmosphere. Sintered pieces of ZnSe w i t h a deep red colour were obtained 

f r o n those capsules which d i d n o t f r a c t u r e before c o o l i n g . S i l i c a glass 

d e v i t r i f l e s r a p i d l y above 1200°C and because of t h i s the capsule o f t e n 

s h a t t e r e d during c o o l i n g . Oxidation of the c r y s t a l s was prevented by quenching 

the capsule when i t had cooled t o the region o f 400 -600°C. 

To prcanote m a t e r i a l t r a n s p o r t the open tube arrangement of Figure 

6.2.1 was adopted. Argon was passed slowly along the 15 mm s i l i c a tube a t 

a r a t e somewhat less than 50 ml/sec and allowed t o escape i n t o a fume cup­

board. The whole tube containing the capsule was pushed through the tem­

perature g r a d i e n t a t between 1 and 3 cms/day. The charge s i n t e r e d t o a single 

piece w i t h a deep green colour while the transported m a t e r i a l was l i g h t green. 
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U n f o r t u n a t e l y , even a t the maximum growth temperature used, 1 3 7 5 ° C , the 

t r a n s p o r t e d m a t e r i a l possessed a c e l l u l a r s t r u c t u r e and was not homogeneous. 

A v a r i e t y o f shapes of capsule and heat sink were t r i e d without success. 

Further work was postponed u n t i l the need t o grow c r y s t a l s of 
o 

ZnSe S,_ a t temperatures greater than 1200 C provided an i n c e n t i v e . Using 

the v e r t i c a l capsule w i t h a r e s e r v o i r , c r y s t a l s w i t h a composition from 

ZnSe t o ZnSe S could be grown, but although pxire ZnS was transported 

the d i s t i l l a t e consisted of a mass o f d e n d r i t i c needles. ZnS. __Se 

behaveid s i m i l a r l y . 

As a r e s u l t the modified Piper-Polich furnace shown i n Figure 6 . 2 . 2 

was devised. A capsule w i t h a long neck (Figure 6 . 2 . 3 ) was moved through 

the temperature g r a d i e n t by a s t a i n l e s s s t e e l p u l l rod passing through an 

' 0 ' r i n g s e a l . The 'purox' furnace tube could be evacuated w i t h a mercury 

d i f f u s i o n p\imp. 

Pressures between 5 t o r r and 1 atmosphere could be maintained 

i n s i d e the 'purox' tube by leaking argon i n t o the system through one needle 

v a l v e , and pvmiping through a second. A flow of between 50 and 100 ml/min 

was r e q u i r e d t o keep the pressure s t a b l e . 

The growth procedure was s i m i l a r f o r ZnSe, ZnSe^S^_^ and ZnS. 

Flow run m a t e r i a l was ground t o a coarse powder and loaded i n t o a growth 

tube. Before use each tube was soaked i n aqua r e g i a f o r two hotirs and then 

washed i n methanol and deionised water. A hook and the c o n s t r i c t i o n s i n 

the nozzle were added a f t e r the m a t e r i a l had been loaded. 

The tube was p o s i t i o n e d i n the furnace so t h a t the f i r s t con­

s t r i c t i o n between the capsule and the nozzle was i n the h o t t e s t p a r t o f 

the furnace. A f t e r the system had been flushed w i t h argon, the furnace 

was evacuated w i t h the d i f f u s i o n pump and baked f o r 24 hours a t 8 0 0 ° C . 
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Argon, or an argon and hydrogen mixture was then admitted to the system 

to the required pressure and the furnace temperature was increased to that 

required for growth. The pulling mechanism was started immediately when 

the binary compounds ZnSe orZnS were being grown, but 24 hours \ander a 

reverse temperature gradient was allowed to promote the formation of a 

s o l i d solution before the c r y s t a l growth was begun. 

Material was transported rapidly towards the growth t i p and 

nucleation occurred at several of the constrictions, thus sealing off the 

capsule. Using a p u l l rate of 3 cms per day complete transport of a 

10 gm ZnSe charge occurred i n 36 hours. I n i t i a l l y argon was used as the 

atmosphere, but some of the ZnSe c r y s t a l s grown were red in colour and 

shattered on cooling. The s i l i c a was also stained yellow instead of the 

usual white. I t was suspected that the cause was the diffusion of oxygen 

through the walls of the furnace tube. When 10% hydrogen was added to 

the argon the colour of the c r y s t a l s improved and the cracking stopped. 

I n i t i a l experiments with zinc.sulphide and zinc selenide suggested that 

the most successful temperatureis and pressures were 1350 - 1400°C at 0.25 

atmopsheres for ZnS and 1300°C at 1 atmosphere for ZnSe. A charge of 

ZnS _Se J . was transported when treated in. the same way as the sulphide. 

The apparatus yielded interesting i n i t i a l results, but i t became 

cle a r that the system was not p a r t i c u l a r l y r e l i a b l e , and the s t a i n l e s s 

s t e e l was probably introducing some contamination. An improved design i n 

which the furnace moved and the furnace tube and capsule were r i g i d l y held 

i s shown i n Figure 6.2.4. 

6.3 Chemical Vapour Transport 

The technique of chemical vapoiir transport (C.V.T) has been 

exploited for the p u r i f i c a t i o n of metals since the 1930.'s. At that time 
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i t was used f o r the production o f tungsten eihd zirconium. I n the 

•Van-Arkle' p r o c e s s , a w i r e of the m a t e r i a l i s heated t o ~2000°C 

wh i l e a zirconium source i s maintained a t a few hundred degrees c e n t i -
-2 

grade. Zirconivmi i s transported under a pressure of 10 atmospheres by 
the r e a c t i o n 

COLD 
Zr + 41 5 5 = i Zr I ^ 

HOT 

A s i m i l a r r e a c t i o n i s used i n quartz halogen spotlamps t o redeposit tung­

sten which evaporates from the hot f i l a m e n t o f the lamp back on the 

f i l a m e n t . 

Nische^^^, Shaeffer^^^ and P a r k e r h a v e a l l i n v e s t i g a t e d the 

t r a n s p o r t o f I I - V I compounds by C.V.T. and they found t h a t iodine a t a 

pressure o f 1 atmosphere i s most s u i t a b l e f o r the purpose. 

ZnSe i s transported by the r e a c t i o n 

COLD 
2 ZnSe + 2 1 s==5 2 Znl + Se 

HOT ^ ^ 

The r e a c t i o n occurs a t eiround 800°C and a speci a l furnace system 

was b u i l t t o o b t a i n the re q u i r e d standard of temperature c o n t r o l . Figure 

6.3.1. A double furnace was used w i t h two temperature c o n t r o l l e r s , one 

maintaining a backing furnace a t 800°C, while the other allowed a tempera­

t u r e d i f f e r e n c e o f up t o 30°C t o be superimposed using a d i f f e r e n t i a l 

c o n t r o l thermocouple. The two j u n c t i o n s o f the d i f f e r e n t i a l thermocouple 

were located a t each end of the capsule and hence gave the d i f f e r e n c e i n 

temperature along i t . As may be seen from Figure 6.3.1, the inner furnace 

had two windings so t h a t the temperature g r a d i e n t i n s i d e the furnace could 

be reversed w i t h o u t d i s t u r b i n g the capsule. The growth tube employed. 
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(see Figure 6.3.2,)had a quartz heat sink attached t o the growth t i p t o 

encourage a s i n g l e c r y s t a l t o nucleate. 

The experimental method was simple, two grams of crushed ZnSe 

were loaded i n t o a capsule w i t h 4 mg/ml o f i o d i n e . The capsule was 

r a p i d l y f l u s h e d w i t h argon and sealed a t r o t a r y pump pressure. A s o l i d 

s i l i c a r od was attached as the heat sink and the capsule was ready f o r 

use. I t was p o s i t i o n e d i n the furnace as shown i n Figure 6.3.3 and the 

backing furnace was switched on t o b r i n g the furnace temperature t o 800°C. 

When t h i s had been reached the inner furnace was switched on. Since 

s e c t i o n A was connected t o the c o n t r o l l e r which maintained a temperature 

d i f f e r e n c e of 30°C between the ends of the capsule, a reverse temperature 

g r a d i e n t could be maintained f o r 24 hours t o clean the growth t i p . To 

s t a r t the growth the temperature c o n t r o l l e r was connected t o zone B and 

the thermocouple connections reversed. The temperature d i f f e r e n c e AT 

was maintained a t 10 - 15°C f o r ZnSe. 

A s i m i l a r procedure was followed t o grow ZnS from ZnS powder, 

except a temperature d i f f e r e n c e o f 20 - 30°C was employed. Small c r y s t a l s 

weighing about h gm could be grown i n 10-14 days. The capsules were 

removed from the furnace t o check on progress a f t e r 7 days. Often very 

good q u a l i t y pieces of c r y s t a l were produced although t h e i r size was 

small. The m a t e r i a l o f t e n terminated i n prisms or tetrahedra. A l l the 

fa c e t s examined were of the {111} or {110} type. No twins were observed. 

To grow m a t e r i a l doped w i t h manganese the elemental dopant was 

ground up w i t h the charge and the standard procedure was followed. A f t e r 

a few days the furnace was switched o f f and the capsule removed. None of 

the charge had been tr a n s p o r t e d but zinc displaced by the manganese was 

found i n the growth tip. The charge thus formed was i n s e r t e d i n t o a 
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second capsule, and growth now proceeded i n the same way as f o r xindoped 

ZnSe. There was l i t t l e change i n the growth r a t e or c r y s t a l l i n i t y , 

although manganese doped c r y s t a l s appeared much darker. 

The capsules u s u a l l y employed i n these experiments were 100 mm 

long and 6-7 I.D. When the diameter was increased t o 9 or 10 mms the 

growth became i r r e g u l a r and o f t e n d e n d r i t i c . I t was concluded from t h i s 

t h a t the normal 7 mm I.D. capsule promoted d i f f u s i o n c o n t r o l l e d growth, 

w h i l e i n the l a r g e r diameter tube convection c\arrents l e d t o i n s t a b i l i t y . 
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CHAPTER 7 

THE ANOMALOUS PHOTOVOLTAIC EFFECT 

7 . 1 Introduction to the anomalous photovoltaic effect 

The anomalous photovoltaic e f f e c t i n single c r y s t a l s of zinc 

sulphide i s a well-known but little-understood phenomenon which has 

been reported by several authors ( E l l i s et a l 195 Cheroff and 

Ke l l e r 1 9 5 8 ^ ^ ^ Merz 1 9 5 8 , Lempicki i g S g J ' * ^ Cheroff et a l 1 9 5 9 , 

Brafman et a l 1 9 6 4 ^ ^ ^ ) . Under examination i n the polarizing micro­

scope between crossed p o l a r i z e r s , the c r y s t a l s which show the effect 

are seen to contain bands of laniform birefringence p a r a l l e l to the 

close packed plemes. The widths of these bands vary considerably and 

are of the order of micrometres. The coloured birefringent bands are 

separated by dark l i n e s (striations) which are acccanpanied by kinks 
(7) 

i n the c r y s t a l eind by surface steps (Daniels 1966 ) . Together 
with s i l i c o n carbide and cadmium iodide, zinc sulphide i s a c l a s s i c 

example of a material showing polytypism. In thei r book, Verma and 
(8 ) 

Krishna ( 1966 ) l i s t e d ten known polytypes of ZnS, and Steinberger 
(9 ) 

and Mardix ( 1967 ) have i d e n t i f i e d more than sixty. I t i s often 

supposed that a band of uniform birefringence corresponds to a par­

t i c u l a r polytype, and that the dark s t r i a t i o n s are associated with 

one-dimensional stacking disorder. In any event the anomalous photo-

voltage only appears when the electrodes are applied along an axis 

perpendicular to the s t r i a t i o n s and birefringent bands. The dominant 

features of the observed photovoltage are (i) that i t can exceed 100 V 

in a c r y s t a l a few millimetres long, and ( i i ) i t reverses sign at 

l e a s t once, and sometimes twice, as the wavelength of the exciting 

radiation i s increased from about 3000 to 4000 8. Merz (1958)^"^^ . 
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has offered an explanation of the e f f e c t vrtiich suggests that each 

s t r u c t i i r a l change i n the crystallographic stacking sequence, from 

dominantly cubic to dominantly hexagonal and vice versa, produces a 

photovoltage of the order of 0.15 V, and that a l l those voltages are 

additive. Neumark ( 1 9 6 2 ) h o w e v e r , has c r i t i c i z e d Merz's explana­

tion and proposed that the effect i s due to spontaneous polarization 

of hexagonal zinc sulphide which leads to opposing e l e c t r i c f i e l d s i n 

hexagonal and cubic material. 

This work i s believed to be the f i r s t obseirvation of the 

anomalous photovoltaic e f f e c t i n zinc selenide, although Hartmann^^^^ 

reported polytypes amongst needles of disordered structure i n 1970. 

The c r y s t a l s which showed an anomalous photovoltaic effect a l l exhibited 

numerous birefringent bands and dark s t r i a t i o n s when examined i n the 

pol a r i z i n g microscope. These observations demonstrate that the effect 

i n zinc selenide i s e n t i r e l y analogous to that i n zinc sulphide and 

have led the author to propose a rather different qualitative explana­

tion of the phenanenon. 

7.2 C r y s t a l Growth 

The c r y s t a l s used wete prepared as described i n Chapter 2. 

Eartmann^^^^ reported h i s polytypes amongst material prepared by a 

s i m i l a r technique. However, he used mixtures of HCl, and as 

h i s c a r r i e r gases. 

The zinc selenide produced was normally used for growing the bulk 

c r y s t a l s described i n Chapter 3. However, i t occasionally contained 

scane well shaped needles and p l a t e l e t s . This work was performed 

exclusively on needles selected from such material, which were t y p i c a l l y 
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1 cm l o n g a n d a p p r o x i m a t e l y h e x a g o n a l i n c r o s s s e c t i o n w i t h a w i d t h 

o f o n e s i d e o f t h e h e x a g o n o f a b o u t 0 . 1 mm. I n t h e d a r k t h e e l e c t r i c 

r e s i s t i v i t y o f t h e s e s a m p l e s w a s o f t h e o r d e r o f 1 0 ^ ° n a n c o r r e s p o n d i n g 

14 

t o a r e s i s t a n c e o f 10 fi. 

F i r s t , t h e n e e d l e s w e r e e x a m i n e d u n d e r c r o s s e d p o l a r i z e r s , i n 

t h e p o l a r i z i n g m i c r o s c o p e . A t y p i c a l m i c r o g r a p h i s shown i n F i g u r e 7 . 2 . 1 , 

T h e c r y s t a l s e x a m i n e d h a d s e v e r a l ccanmon f e a t u r e s . F o r e x a n ^ l e , a l l 

o f t h e m w e r e b i r e f r i n g e n t , e x h i b j . t i n g b a n d s o f u n i f o r m c o l o u r s e p a r a t e d 

b y d a r k s t r i a t i o n s , w h i c h w e r e p e r p e n d i c u l a r t o t h e c - a x e s o f t h e 

c r y s t a l s . T h i s a x i s l a y a l o n g t h e l e n g t h o f a n e e d l e . E a c h n e e d l e 

w a s h o l l o w . A h o l e r a n a l o n g t h e a x i s o f e a c h c r y s t a l , a s t h e d a r k 

l i n e a l o n g t h e c e n t r e o f F i g u r e 7 . 2 . 1 s h o w s . F i g u r e 7 . 2 . 2 i s a m i c r o ­

g r a p h o f a d i f f e r e n t c r y s t a l w i t h axi e v e n l a r g e r h o l e a l o n g i t s a x i s . 

T h e m i c r o g r a p h s show t h a t t h e h o l e s w e r e n o t p e r f e c t l y c o n t i n u o u s b u t 

a p p e a r e d t o s u f f e r s l i g h t l a t e r a l d i s p l a c e m e n t s a t t h e i r i n t e r s e c t i o n s 

w i t h t h e d a r k s t r i a t i o n s . H o l l o w n e e d l e c r y s t a l s o f z i n c ^ s u l p h i d e h a v e 
(12 ) 

p r e v i o u s l y b e e n d e s c r i b e d b y L e n d v a y a n d K o v a c s (1970) . F i g u r e 7 . 2 . 3 

s h o w s g r o w t h f e a t u r e s a t t h e t i p o f t h e c r y s t a l , a n d 7 . 2 . 4 c o l o u r e d 

b i r e f r i n g e n t b e i n d s . 

7 . 3 E x p e r i m e n t a l P r o c e d u r e s a n d R e s u l t s 

I n i n i t i a l t r i a l s , c o n d u c t e d t o s e l e c t s a m p l e s s u i t a b l e f o r 

f u r t h e r i n v e s t i g a t i o n s , t h e n e e d l e s w e r e e q u i p p e d w i t h s i l v e r p a s t e 

e l e c t r o d e s a t e i t h e r e n d o f t h e i r l o n g d i m e n s i o n a n d w e r e mounted o n 

s a m p l e h o l d e r s a s shown i n F i g u r e 7 . 3 . 1 . T h e s a m p l e f o r m e d a t i r i d g e 

b e t w e e n t w o c o p p e r c o n t a c t s s t u c k t o a g l a s s s l i d e . I f a b r i d g e 

a r r a n g e m e n t w a s n o t u s e d t h e c r y s t a l s w e r e s h o r t e d o u t b y t h e s i l v e r 
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paste which crept by surface tension between the glass and the c r y s t a l . 

Many of the samples were so delicate that they could only be handled 

with an e i r t i s t ' s fine brush. 

When the paste was dry the samples were irradiated with.focussed 

l i g h t from a 250 Watt, compact source, mercury vapour lamp. For 

measurements of the open-circuit photovoltage, the sample was connected 

i n s e r i e s with a backing-off voltage eind an EIL 'Vibron' electrcsneter 
14 

type 33B. The electrometer, which had an input impedance of 10 Q, 

was used as a n u l l meter. A l l the c r y s t a l s exhibited an open-circuit 

photovoltage. With many, th i s was smaller than the band gap of zinc 

selenide (E^ ~ 2.7 eV), but with several the OCV (open-circuit voltage) 

exceeded 5 V, and with one i n p a r t i c u l a r , i t exceeded lOOvV. The results 

which are described below refer s p e c i f i c a l l y to t h i s l a t t e r c r y s t a l , but 

i t i s c l e a r that the photovoltaic properties of a l l the needles studied 

were b a s i c a l l y s i m i l a r . 

Although i t was important to measure the OCV of the samples in 

order to demonstrate the true anomalous nature of the photoeffect, i t 

was more convenient when studying the spectral response etc., to 

measure the s h o r t - c i r c u i t current (SCC). The reason for t h i s was that 

the high input impedance of the electraneter made the n u l l measxirement 

of the OCV an e s s e n t i a l l y slow process. During the time required to 

adjust the backing voltage the zero-drift of the electrometer might 

have been appreciable so that substamtial error would be involved. 

No such d i f f i c u l t y occurred when the SCC was measured using a Rank 

DC amplifier type NE 503B. 

The SCC increased with increasing temperature, as i l l u s t r a t e d 

by the curve in Figure 7.3.2» and i t s variation with intensity of 
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Figure 7.2.1; Micrograph of a c r y s t a l exhibiting birefringent 

banding and dark s t r i a t i o n s . Notice the kinking of 

the surface and the a x i a l hole. (Magnification x 200) 

iiflHimHi riiMeiiiniiHniiiiiiiB^ 
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Fi»ire 7.2.2; Micrograph of a second c r y s t a l similar to those shown 

i n Figure 7.2.1, but with larger a x i a l hole. 

(Magnification x 200) 



Figure 7.2.3: Growth features at the t i p of a 
needle c r y s t a l (Mag x 100) 

Figure 7.2.4: Coloured birefringence bands i n ZnSe 
needle viewed through crossed 
p o l a r i s e r s (Mag x 200) 
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illumination was foimd to be li n e a r over f i v e orders of magnitude 

when the illumination from the mercury lamp was reduced by interposing 

neutral density f i l t e r s . 

The spectral distribution of the SCC to unpolarized l i g h t i s 

shown i n Figure 7.3.3. The measurements were made using l i g h t from 

the e x i t s l i t of a Barr and Stroud doiJale monochromator type VL2 with 
i 

a 250 W tungsten-halogen lamp as source. When the li g h t from the e x i t 

s l i t was polarized with the e l e c t r i c vector p a r a l l e l or perpendicular 

to the axis of the needle, the resultcint spectral distribution curves 

were displaced s l i g h t l y from one another i n wavelength, as shown i n 

Figure 7.3.4. The spectral distribution of the SCC was measured i n 

two ways, namely by scanning from long to short wavelengths and vice 

versa. There was no detectable difference i n the resultant curves, 

which indicates that trapping effects played no si g n i f i c a n t part i n 

the process. 

7.4 Discussion 

Polytypism and one-dimensional stacking disorder have been 

studied f a i r l y extensively i n zinc sulphide, see for example, Verma 

and Krishna (1966) . The phenomena occur because of the close 

s i m i l a r i t y between the wurtzite and zinc blende structures and the 

smaill difference i n energy between the two modifications. Wurtzite 

i s the stable modification of zinc sulphide at temperatures above 

1020°C, whereas zinc blende i s stable at lower temperatures. However, 

i t i s not usual for synthetic c r y s t a l s of zinc sulphide to be either 

wholly cubic or wholly hexagonal. Crystals grown at high temperatures 

(~1200°C) contain polytypes and stacking f a u l t s , and under crossed 
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polarizers i n the polarizing microscope exhibit birefringent bands 
euid dark s t r i a t i o n s . Such c r y s t a l s show the anomalous photovoltaic 
e f f e c t . 

Although zinc selenide can also c r y s t a l l i z e i n hexagonal 

(wurtzite) and cubic (zinc blende) modifications, the situation 

appears to be s l i g h t l y different from that with zinc sulphide. For 

example, no consensus of opinion i n the l i t e r a t u r e as to the tem­

perature ranges i n which the two modifications of zinc selenide 

would be expected to be stable has been found. The experience of 

several years of growing c r y s t a l s of zinc selenide by a flow process 

as described esorlier, by the iodine transport method and i n sealed 

tubes, suggests that the cubic modification i s stable at temperatures 

below 800°C and above 1000°C. In the intermediate range from 800 

to 1000°C, hexagonal c r y s t a l s can be obtained, p a r t i c u l a r l y i f the 

flow process i s employed. I t i s interesting to note that Fitzgerald 

et a l (1966)^^^^ grew hexagonal c r y s t a l s of' zinc selenide at lOOÔ Ĉ 
o 

using a flow process. Crystals grown by them i n the range 900-950 C 

showed mixed cubic-hexagonal structure. Hartmann^^^^ found similar 

r e s u l t s . 

The c r y s t a l s used i n t h i s investigation were a l l grown i n the 

temperature range 800-1000°C, and they a l l showed coloured b i r e ­

fringent bands and dark s t r i a t i o n s when examined in the polarizing 

microscope. Indeed a l l the needles were hollow, and i t i s believed 

that they grew as hexagonal c r y s t a l s frcan a x i a l screw dislocations 

with very large Burgers" vectors. The c r y s t a l s are hollow because 

the hole reduces the energy of the dislocation considerably. Period­

i c a l l y occurring s l i p i n basal planes after growth would lead to the 
(7) 

formation of polytypes by the mechanism discussed by Daniels (1966) 
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(14) and Mardix and Steinberger (1966) . I t i s important to note that 
the p o l a r i t y of the;;stacked double layers of z i n c and selenium atoms 
in the basal planes does not change along the length of the c r y s t a l . 
Further, the c r y s t a l s contained very few (and i n most cr y s t a l s no) 
extended cubic regions; i . e . with the exception of the dark s t r i a t i o n s , 
the c r y s t a l s exhibited birefringent banding along the whole of th e i r 
lengths. I t i s concluded, therefore, that the anomalous photovoltage 
occurs i n a material when the structvire changes frequently from one 
polytype to another without any change of polarity. 

Neumark's^^^^ theory seems to be unsatisfactory because i t 

assumes that the cubic material i s nonpolar. Cubic material^however^ 

i s polar i n the same sense as the hexagonal. I t i s also d i f f i c u l t 

with Neumark's:theory to understand why the photovoltage changes sign 

when the wavelength of the incident l i g h t i s varied. I t i s believed 

that the e f f e c t can be explained i n terms of the heterojunction which 

occurs at the interface between two polytypes. In the following d i s ­

cussion the c r y s t a l i s imagined to be composed of alternate segments 

of c r y s t a l with the hexagonal and polytype structure. I t seems 

reasonable to suppose that the hexagonal and cubic modifications 

represent the two extremes of the possible range of polytypic structures 

and that the band gaps of the various polytypes are intermediate 

between those of hexagonal and cubic zinc selenide. 

The exact values of the forbidden gaps of cubic and hexagonal 

zinc seienide reported i n the l i t e r a t u r e vary s l i g h t l y from one 

autshor to another. However, i t i s certadn that the band gap of 

hexagonal zinc selenide i s larger than that of the cubic. For example 

Segall and Marple (1967)^^^^ quote = 2.818 eV for cubic ZnSe at 4 K, 
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whereas Liang and Yoffe ( 1 9 6 7 ) g i v e a value of 2.8697 eV for the 

hexagonal modification at 15 K. According to Segall and Marple^^^^ 

the band gap of the cubic material at room temperature i s 2.67 eV. 

I t seems reasonable to assume that the band gap of hexagonal zinc 

selenide i s about 2.73 eV at room temperature. 

Consider what happens i n one unit of the c r y s t a l along the 

c-axis, where one unit contains two potential barriers which occur 

when the c r y s t a l structure changes from a polytype to hexagonal and 

back to the polytype. The Fermi l e v e l , which l i e s approximately in 

the middle of the forbidden gap of a l l the c r y s t a l modifications, 

must be at the same energy throughout in the dark. Since the work-

functions of the polytype and hexagonal modifications are different, 

band-bending w i l l occur, as i l l u s t r a t e d for one junction i n Figure 

7.4.1, to permit the Fermi l e v e l to attain i t s equilibrium position. 

To achieve additive photovoltages along the c r y s t a l i t must be 

postulated that consecutive b a r r i e r s contain scane degree of asymmetry, 

as shown for example i n Figure 7.4.1b, which i l l u s t r a t e s the two 

b a r r i e r s of the unit under discussion. In fact i t would be rather 

surprising i f no asymmetry were present, as the following argument 

w i l l demonstrate. 

To f i x ideas, consider the vinit to be made up of a sandwich 

of hexagonal material between two cubic layers (cubic i s simply taken 

to represent the extreme polytypic variation from the hexagonal 

stru c t u r e ) . In the cubic region on the left-hand side of Figure 7.4.1b 

the double layers of zinc and selenium are assumed to be stacked i n 

the ABC ciabic sequence along the axis of the needle. Suppose that the 

(111) zinc plane i s to the l e f t and the (TlT) selenium plane to the 

ri g h t . Then at the junction X, Figure 7.4.1b, a selenium layer i n a 
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mainly cubic environment neighbours a zinc l a y e r i n the hexagonal 

m o d i f i c a t i o n . I n c o n t r a s t a t thie next j u n c t i o n , Y, a selenium layer 

i n a mainly hexagonal environment neighbours a zinc l a y e r i n a cvibic 

m a t r i x , i . e . the environments are reversed. I t seems recisonable, 

t h e r e f o r e , t o suppose t h a t the p o t e n t i a l energy diagrams a t the two 

j u n c t i o n s w i l l d i f f e r s l i g h t l y from one another. I n Figure 7.4.1b, 

the two b a r r i e r s are drawn w i t h s l i g h t l y d i f f e r e n t heights. 

To check the v a l i d i t y o f the idea an experiment was performed 

on ZnSe cont a i n i n g no major s t r u c t u r a l defects. Large-area cubic 

p l a t e l e t s o f ZnSe have been s t u d i e d f a i r l y e x t e n s i v e l y i n t h i s 
(17) 

department (Gezci and Woods) . The only defects observed i n these 

p a r t i c u l a r c r y s t a l s have been d i s l o c a t i o n s and three-dimensional 

defects which may have been s t a c k i n g - f a u l t t e t rahedra. Twelve such 

c r y s t a l s were eqiiipped w i t h s i l v e r contacts on the leirge-area faces, 

and were then i l l u m i n a t e d w i t h the focused l i g h t from the mercury lamp. 

I n a l l the samples a photovoltage of the same sigh was generated. 

This photovoltage was about 20 mV i n magnitude, and i n a l l samples 

the z inc (111) face became negative. This experiment i n d i c a t e s t h a t 

the work-functions o f the (111) and (TIT) faces are d i f f e r e n t and 

supports the contention t h a t the two j u n c t i o n s i n a c r y s t a l u n i t such 

as discussed above w i l l be asymmetric. 

Now assuming t h a t some such p o t e n t i a l energy diagram as t h a t 

i n Figure 7.4.1b i s c o r r e c t , the behaviour o f the photocurrent can 

be explained q u i t e simply. F i r s t , although the two j u n c t i o n s produce 

photovoltages i n o p p o s i t i o n , there i s nonetheless a net photo-EMF 

per p a i r when the sample i s illvuninated. This net EMF i s s m a l l , 

being o f the order o f a few m i l l i v o l t s , but there may w e l l be several 

thousand b a r r i e r s per centimetre along the c-axis. Indeed Merz was 



ENERGY DIAGRAIVI OF CUBIC/HEXAGONAL 
JUNCTION IM Zh. 5e NEEDLE. 

F ig . 7 : 4 : 1 

C U B I C 
A 

HEXAGONAL 

P R 0 P 0 5 E D P O T E N T I A L ENERGY B A R R I E R A T A 

H E X A G O r S A L / P O L Y T Y P E I N T E R F A C E . 

X Y 
HEXAGONAL 

CUBIC k A CUBIC 

f 

PROPOSED E N E R G Y D I A G R A M OF T W O A O J A C E M T 

B A R R I E R S W H E R E A REGION OF H E X A G O N A L 

C R Y S T A L IS SArSOWICHED B E T W E E N T H E SAfVlE 

P O L Y T Y P E OR C U B I C R E G I O N . 



able t o count 2000 b a r r i e r s per cm i n h i s c r y s t a l s . (There may w e l l , 

o f course, have been more which were not resolved i n the p o l a r i z i n g 

microscope). 

Consider next what happens when the wavelength o f the e x c i t i n g 

l i g h t i s changed. At long wavelengths, l i g h t i s absorbed a t deep-

l y i n g donors i n both the cubic and hexagonal regions (ZnSe i s a 

dcsnlnantly n-type s e m i - i n s u l a t o r ) . The concentrations o f electrons 

e x c i t e d t o the conduction bands of the cubic and hexagonal regions ate 

t h e r e f o r e vejry s i m i l a r . However, the electrons i n the hexagonal region 

w i l l see a lower b a r r i e r a t Y than a t X and w i l l t h erefore flow out of 

the hexagonal region p r e f e r e n t i a l l y t o the r i g h t . Thus a c i i r r e n t w i l l 

be generated w i t h e l e c t r o n s f l o w i n g t o the r i g h t vmder s h o r t - c i r c u i t 

c o n d i t i o n s , and w i t h an open c i r c u i t a net voltage w i l l be set up t o 

oppose t h e i r flow-

As the wavelength o f the e x c i t a t i o n i s decreased, a s i t u a t i o n i s 

reached where f r e e e l e c t r o n s can be e x c i t e d across the band gap o f the 

cubic m a t e r i a l , b u t the photon energy i s s t i l l i n s u f f i c i e n t t o generate 

f r e e e l e c t r o n s and holes i n the hexagonal region. Now the major e l e c t r o n 

concentration i s i n the cubic regions, w i t h the r e s u l t t h a t electrons 

f l o w more r e a d i l y over the b a r r i e r a t Y from r i g h t t o l e f t , tiaan they do 

over the b a r r i e r a t X i n the opposite d i r e c t i o n . Under o p e n - c i r c u i t 

c o n d i t i o n s , t h i s means t h a t the hexagonal region a t Y becomes more 

negative than t h a t a t X, and as a r e s u l t xinder s h o r t - c i r c u i t conditions 

e l e c t r o n s w i l l f l o w from r i g h t t o l e f t . I n b r i e f , the d i r e c t i o n o f the 

s h o r t - c i r c u i t c u r r e n t i s reversed. 

As the wavelength o f the e x c i t a t i o n i s reduced s t i l l f v i r t h e r , 

e l e c t r o n s can be e x c i t e d across the band gap o f the hexagonal region. 
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Event u a l l y a large p o p u l a t i o n of ele c t r o n s would be created i n the 
I 

conduction hand o f the hexagonal l a y e r w i t h the r e s u l t t h a t electrons 

would again f l o w out o f the hexagonal region t o the r i g h t , thus leading 

t o a f u r t h e r r e v e r s a l o f the s h o r t - c i r c u i t c u r r e n t . I n t o t a l t h e r e ­

f o r e , the model can e x p l a i n two reversals o f the sign of the photo-

c u r r e n t as the wavelength i s changed. 

The model r e q u i r e s t h a t the t a i l of the fundamental o p t i c a l 

absorption region i n cubic zinc selenide extends t o 4800 £ a t room, 

temperature, where the f i r s t r e v e r s a l of sign occurs as the wavelength 

i s reduced. Experiments i n t h i s l a b o r a t o r y by S. Gezci on the o p t i c a l 

absorption of cubic c r y s t a l s have shown t h a t s i g n i f i c a n t absorption i s 

u s u a l l y observed beginning a t 4750 8 a t room temperature. Furthermore, 

no dichroism would be expected and the t h r e s h o l d f o r s i g n i f i c a n t absorp­

t i o n i n cubic z i n c selenide should occur a t the same wavelength f o r 

l i g h t p o l a r i z e d w i t h the e l e c t r i c vector p a r a l l e l or perpendicular t o 

the needle a x i s . Thus, i f t h i s explanation o f the anomalous photo­

v o l t a i c e f f e c t i s c o r r e c t , the f i r s t sign r e v e r s a l of the photocurrent 

t o occur as the wavelength i s reduced should be independent o f the 

p o l a r i z a t i o n o f the i n c i d e n t l i g h t . The curves i n Figure 5 show t h i s 
t o be an observed f a c t . 

I n the cubic m o d i f i c a t i o n o f zinc selenide the uppermost valence 

band has V symmetry and o p t i c a l t r a n s i t i o n s t o the conduction band eure 

allowed f o r e i t h e r s t a t e o f p o l a r i z a t i o n o f the i n c i d e n t l i g h t . With 

hexagonal z i n c selenide the uppermost valence band has Fg symmetry and 

the next highest symmetry. O p t i c a l t r a n s i t i o n s from the Tg band t o 

the conduction hand are o n l y allowed f o r Ej_^ ( l i g h t p o l a r i z e d w i t h 

the E-vector perpendicular t o the c - a x i s ) , whereas t r a n s i t i o n s from 
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r.^ are allowed f o r Ej,^ and E^^. Then i f l i g h t p o l a r i z e d w i t h i s 

used, the t h r e s h o l d f o r o p t i c a l absorption w i l l occur a t a longer 

wavelength than i t w i l l when l i g h t p o l a r i z e d w i t h E,,̂  i s used. The 

curves i n Figure 7.1.4 show t h a t the second r e v e r s a l of the sign of the 

photocurrent occurs a t longer wavelengths w i t h l i g h t poleirized w i t h 

Ej_^ , which i s i n accocd w i t h ovir i n t e r p r e t a t i o n . Unfortunately the 

wavelengths a t which the photocurxent changes sign cannot be used t o 

determine the band gaps o f the various p o l y t y p i c and hexagonal regions 

because the experimental curves are l i k e l y t o be superpositions o f many 

i n d i v i d u a l curves f o r b a r r i e r s corresponding t o phase .changes between 

p a r t i c u l a r polytypes. 
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CHAPTER 8 

CONCLUSIONS 

The main o b j e c t o f the research described i n t h i s t h e s i s was 

t o produce boules o f zinc selenide w i t h centimetre dimensions f o r 

research purposes. Having established a r e l i a b l e technique f o r undoped 

boules the work progressed t o doped m a t e r i a l , w i t h p a r t i c u l a r emphasis 

on the i n c o r p o r a t i o n o f manganese. F i n a l l y the growth of c r y s t a l s o f 

the s o l i d s o l u t i o n ZnSe S. was i n v e s t i g a t e d . 

The most s a t i s f a c t o r y production technique f o r ZnSe was found 

t o be the method of Clark and Woods which was o r i g i n a l l y used f o r 

CdS. I n b r i e f , t h i s method i s a vacuum d i s t i l l a t i o n i n a sealed and 

evacuated capsule. The capsule i s connected v i a a narrow o r i f i c e t o 

a r e s e r v o i r c o n t a i n i n g e i t h e r zinc or selenium which i s used t o c o n t r o l 

the composition o f the vapovir i n the capsule. T h e o r e t i c a l l y , i n order 

t o o b t a i n the maximum t r a n s p o r t r a t e , the composition of the gas i n the 

capsule should be the s t o i c h i o m e t r i c r a t i o o f two p a r t s monatcmic zinc 

t o one p a r t of diatomic selenium. However, t h i s i s not necessarily the 
(2) 

b e s t c o n d i t i o n f o r c r y s t a l growth. Faktor and Garret suggest t h a t 

growth o f f stoichiometry should g i v e more st a b l e growth c o n d i t i o n s . A 

t h e o r e t i c a l consideration of the growth system revealed t h a t growth a 

l i t t l e o f f stoichiometry must always occur i n the Clark and Woods system. 

Experimentally i t was found t h a t f o r undoped boules the best growth 

occurred when the t a i l temperature was maintained so as t o give a pressure 
1 

of the r e s e r v o i r element equal t o i n the case of selenium or t o o^ P i n the case of zi n c . With a charge temperature of 1165 C t h i s 
MIN 

meant a r e s e r v o i r temperature of 560°C f o r zinc or 360 C f o r selenium. 

The t h e o r e t i c a l analysis o f the t a i l r e s e r v o i r system was of necessity 

mainly q u a l i t a t i v e . However, i t has been demonstrated t h a t the use of 
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the r e s e r v o i r w i l l c o r r e c t f o r a non-stoichiometry i n the charge exceeding 

1000 p.p.m., cind t h a t a much greater q u a n t i t y of v o l a t i l e m a t e r i a l may be 

removed i f i t i s released as the system warms up, e.g. zinc released by the 

r e a c t i o n between the charge and manganese. Further, i t has been shown t h a t 

the t a i l r e s e r v o i r . w i l l not h o l d an exact vapour pressure over the m a t e r i a l 

i n the capsule, but one which depends on the p h y s i c a l dimensions o f the 

system, the amount o f r e s i d u a l gas present, and the temperature o f the 

r e s e r v o i r . I t was discovered t h a t t o account t h e o r e t i c a l l y f o r the r a t e 

of loss o f m a t e r i a l t o the t a i l tube from the capsule, an i n e r t gas pressure 

o f - 5 t o i r r was r e q u i r e d i n the capsule. Several d i f f e r e n t experiments 

were performed t o check i f t h i s gas weis i n f a c t present. A pressure o f 

r e s i d u a l gas o f the r i g h t order o f magnitude was discovered i n capsules 

which had been i n the furnace f o r a p e r i o d o f 14 days. Mass spectrometer 

an a l y s i s suggested t h a t the gas was a t l e a s t p a r t l y carbon monoxide. I n 

f a c t , i f t h i s gas were not present the r a t e of . loss of m a t e r i a l t o the t a i l 

tube would be s u f f i c i e n t t o block i t w i t h i n a few hours. This was con­

firmed experimentally by pumping the t a l l tube of•a.capsule w i t h a r o t a r y 

pxjrnp awhile c r y s t a l growth proceeded. When t h i s i n e r t gas pressure i s taken 

i n t o c o n s i d e r a t i o n , i t was found t h a t the maximum d e v i a t i o n of A^ (the r a t i o 

P /P a t the charge) from the s t o i c h i o m e t r i c value of 0 . 5 was 
^®2 

=.0.264 (zinc t a i l ) and A^ = 0.849 ( f o r a selenium t a i l ) . From t h i s i t 

may be c a l c u l a t e d t h a t A^ , the value a t the i n t e r f a c e , was between 

A = 0-194 (Zn t a i l ) and A = 1.12 (Se t a l l ) . I t was c a l c u l a t e d t h a t t o o o 
account f o r the observed growth r a t e a value o f AT between 8 .2 and 19 .6°C 

o 

was r e q u i r e d . The experimentally observed values of AT were less than 20 C . 

This i s a strong i n d i c a t i o n t h a t the growth was t r a n s p o r t l i m i t e d . 

The c r y s t a l i t s e l f can be grown w i t h a d i f f e r e n t stoichiometry from 

the charge and the s t o i c h i o m e t r y remains constant throughout the growth 
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p e r i o d , i n c o n t r a s t t o the stoichiometry o f a c r y s t a l grown i n a simple 

sealed capsule. A much wider range o f dopants may be incorporated before 

growth i s i n h i b i t e d . I n general i t was concluded t h a t c r y s t a l s grown w i t h 

selenium r e s e r v o i r s should be o f higher p u r i t y than those w i t h zinc reser­

v o i r s , because the lower vapour pressure i n the t a i l helps i m p u r i t i e s t o 

escape from the capsule. Also growth conditions should be more sta b l e . 

because P^ increases f a s t e r f o r a selenium r i c h atmosphere, than f o r a zinc 

r i c h one. These f i n d i n g s were confirmed by experience during the growth of 

several hundred ZnSe and CdS boules. 

The dopants copper, g a l l i u m and indium were found t o enter the 

boule e a s i l y when added t o the charge i n the form of the elements. However, 

i t was more e f f e c t i v e t o add erbium and manganese t o the r e s e r v o i r i n the 

form o f the c h l o r i d e . I t i s believed t h a t the growth o f such materials i s 

a s s i s t e d by a c h l o r i n e t r a n s p o r t r e a c t i o n . This could.be o f assistance i n 

the i n c o r p o r a t i o n o f many dopeints which are not e a s i l y transported i n 

elemental,form. The amount o f manganese incorporated i n t o the l a t t i c e can 

be increased by adding ground manganese metal t o the charge i n a d d i t i o n t o 

using manganese c h l o r i d e i n the t a i l . This f a c t provides support f o r the 

argument about a c h l o r i n e treinsport mechanism. To o b t a i n r e a l l y large 

amounts o f manganese i n the c r y s t a l ('\/ 1%) i t was necessary t o use C.V.T. 
o o w i t h i o d i n e a t 800 C. A temperature d i f f e r e n t o f 15 C was employed 

between the ends of the capsule and small (h gm) c r y s t a l s were grown i n 

10 days i n a 7 mm I.D. capsule. 

S o l i d s o l u t i o n s o f ZnSe S were grown i n the Clark and Woods 
X 1""X 

system. The charge was a ground mixture o f ZnSe and ZnS and the r e s e r v o i r 

contained Zn. A s a t i s f a c t o r y r e s e r v o i r temperature was found t o give 

P = (2 Kpa) , where £nKpa = X £nKp(ZnSe) + (1-X) £nKp (ZnS). T h e o r e t i -Zn 
c a l i y i t was found t h a t segregation o f selenium and sulphur could occur 
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through a p h y s i c a l separation i n the tremsport system. This wo\ild be 

worst i f t r a n s p o r t occurred e n t i r e l y by d i f f u s i o n . The r e s e r v o i r system 

prevents t h i s happening but could allow the loss of more selenium than 

sulphur t o the t a i l r e s e r v o i r . F o r t u n a t e l y i n p r a c t i c e t h i s was not s i g n i f ­

i c a n t and boules' were grown s a t i s f a c t o r i l y up t o a maximum sulphur content 

o f ZnS^ gSe^ ^. Growth then became unstable w i t h the d i s t i l l a t e c o n s i s t i n g 

o f an agglomeration o f d e n d r i t i c needles. 

The main defects found during an examination i n the e l e c t r o n micro­

scope were t h i n twins i n the case of ZnSe, changing progressively t o stacking 

f a u l t s as the sulphur content of the boules increased. As might be expected 

the q u a n t i t y of defects increased i n the s o l i d s o l u t i o n s . I t i s thought 

t h a t the defects are mainly the r e s u l t of post growth s t r e s s , although some 

twinn i n g probably occurs t o maintain the f a s t growth d i r e c t i o n i n an appro­

p r i a t e o r i e n t a t i o n a t the growth face. 

F i n a l l y , the anomalous p h o t o v o l t a i c e f f e c t has been discovered i n 

ZnSe. The r e s u l t s were found t o be e n t i r e l y analogous t o those reported i n 

ZnS. A p o t e n t i a l of over 100 v o l t s was obtained from one needle c r y s t a l of 

ZnSe, which e x h i b i t e d coloured b i r e f r i n g e n c e bands. The short c i r c u i t 

c u r r e n t was p l o t t e d f o r varying wavelengths of sample e x c i t a t i o n . The short 

c i r c u i t c u r r e n t was found t o change sign twice as the wavelength o f the 

i l l u m i n a t i o n was reduced from 5000 t o 4000 £. Q u a l i t a t i v e l y t h i s was 

explained i n terms o f the asymmetry of heterojunctions along the p o l a r axis 

o f the needle. As the wavelength o f the e x c i t i n g l i g h t i s decreased, the 

e l e c t r o n populations i n the conduction bands o f the cubic and hexagonal 

regions o f the needle c r y s t a l are increased f i r s t by trapped electrons and 

then by e l e c t r o n s e x c i t e d across the band gap. Normally there i s a net flow 

o f e l e c t r o n s from the hexagonal t o the cubic regions because o f the asym­

m e t r i c j u n c t i o n s . However, when the energy o f the wavelength o f the 
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r a d i a t i o n corresponds t o the band gap o f the cubic m a t e r i a l , there i s a 

sudden jump i n the e l e c t r o n p o p u l a t i o n o f the cubic region. This reverses 

the e l e c t r o n flow u n t i l the energy of the r a d i a t i o n i s s u f f i c i e n t t o excite, 

e l e c t r o n s across the band gap of the hexagonal m a t e r i a l , when the current 

f l o w r e v e r t s t o normal. Because the e f f e c t i v e band gap o f hexagonal 

m a t e r i a l i s s l i g h t l y d i f f e r e n t p a r a l l e l and perpendicular t o the c-axis, 

the s h o r t wavelength r e v e r s a l should occur a t s l i g h t l y d i f f e r e n t wave­

lengths f o r r a d i a t i o n p o l a r i s e d p a r a l l e l and perpendicular t o the c-axis. 

This was indeed found as p r e d i c t e d by the theory. 
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APPENDIX 1 

CONVERSION OF ETHER 19/90 TEMPERATURE CONTROLLER TO 

SOLID STATE SWITCHING 

A very simple c i r c u i t was used t o convert the 'Ether Mini 19/90' 

temperature c o n t r o l l e r t o T r i a c f i r i n g i n order t o improve r e l i a b i l i t y . 

The c i r c u i t i s i l l u s t r a t e d i n Figure A l . 1 . 

I n p r i n c i p a l , the idea i s t o remove the r e l a y from the c o n t r o l l e r 

and use the power t o d r i v e an o s c i l l a t o r c i r c u i t which f i r e s a t r i a c 

I nstead. The '19/90' has a power supply on the bottom c i r c u i t board 

g i v i n g +20, 0, and -20 v o l t s , and the r e l a y i s operated by a c i r c u i t 

which holds one t e r m i n a l a t +20 v o l t s , w h i l e the other i s switched 

between 0 v o l t s (ON) and 20 v o l t s (OFF). The r e l a y was removed and a 

t r a n s i s t o r used t o i n v e r t the l o g i c . ( I t conducts when the. base i s a t 

0 v o l t s , b u t not when i t i s a t 20 v o l t s ) . When the t r a n s i s t o r i s con­

du c t i n g the 0.47 iXF capacitor charges from the t r a n s i s t o r output v i a a 

1.2 K r e s i s t o r u n t i l i t exceeds the breakdown voltage (32 v o l t s ) o f the 

di a c , when i t i s discharged and the cycle repeated. The voltage a t the 

c o l l e c t o r o f the t r a n s i s t o r drops t o 20 v o l t s when the c o n t r o l l e r goes 

'OFF' and the o s c i l l a t i o n s stop. Because the c i r c u i t pulses every 
-3 

3 X 10 sees, i t i s unnecessary t o synchronise the pulses w i t h the 

mains cycles, there i s always a pulse t o f i r e the t r i a c soon a f t e r the 

mains has passed through zero . I n v e s t i g a t i o n w i t h a cathode ray o s c i l ­

loscope showed the pulses applied t o the t r i a c gate t o be about 4 v o l t s 

i n magnitude and fol l o w e d by a r i n g i n g o s c i l l a t i o n a t greater than 

100 kHz which d i e d i n 2 or 3 o s c i l l a t i o n s . The a c t i o n o f the c o n t r o l l e r 

appeared unaffected by t h i s m o d i f i c a t i o n , but i t should be noted t h a t 

i t i s u s e f u l only w i t h r e s i s t i v e loads. 
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APPENDIX 2 

AN AMPLIFIER TO MEASURE THE SHORT CIRCUIT CURRENT OF A 

PHOTOVOLTAIC CELL 

While c a r r y i n g out a p r e l i m i n a r y i n v e s t i g a t i o n of the p o s s i b i l i t y 

of d e p o s i t i n g e p i t a x i a l ZnTe on ZnSe from t i n s o l u t i o n the author 

became i n t e r e s t e d i n measuring the S.C.C. of the device produced. He 

thus became aware o f the need f o r improved instrumentation t o measure 

the performance o f CdS c e l l s produced w i t h i n the research group. The 

a m p l i f i e r described below was unnecesseiry f o r ZnTe f i l m s on ZnSe because 

only one e p i t a x i a l f i l m was produced, but i t proved very u s e f u l f o r CdS 

c e l l s . 

When i n v e s t i g a t i n g the performance o f experimental p h o t o v o l t a i c 

c e l l s i t i s o f t e n necessary t o measure the s h o r t - c i r c u i t current as a 

f u n c t i o n of the i n t e n s i t y and the wavelength of the i l l u m i n a t i o n . Because 

the c e l l may be constructed from photoconductive m a t e r i a l s , the i n t e r n a l 

r e s i s t a n c e o f the c e l l may a l t e r as these two parameters are v a r i e d . 

T r a d i t i o n a l l y , the ' s h o r t - c i r c u i t ' c u r r e n t i s determined by meeisuring 

the v o l t a g e developed across a small s e r i e s r e s i s t o r . To achieve an 

accuracy of 1% the voltage measured must be less than 1% of the open 

c i r c u i t voltage ( t h i s may be relaxed t o 5% or more i f the c e l l i s known 

t o have a good voltage c u r r e n t c h a r a c t e r i s t i c , see Figure A2.1). 

I n Figure A2.2 a simple c i r c u i t i s shown which has been used t o 

measure s h o r t - c i r c u i t cvirrents accurately. I t i s based on an i n t e g r a t e d 

c i r c u i t o p e r a t i o n a l a m p l i f i i e r w i t h a FET i n p u t , which was selected f o r 

i t s h i g h i n p u t impedance and low i n p u t b i a s c u r r e n t . The gain i s 10^. 

When the t e s t c e l l i s i l l u m i n a t e d the sh o r t c i r c u i t c u r r e n t flows through 

the feedback loop o f a m p l i f i e r A^ g i v i n g a voltage output equal t o the 
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product of the feedback resistance and the short c i r c u i t current. The 

voltage a t the v i r t u a l earth, and hence at the terminals of the te s t c e l l , 

i s V^^^/G where G i s the gain. A feedback r e s i s t o r i s selected by a switch 

to give an output which does not exceed 100 mV, corresponding to 1 ̂  V at 

the terminals of the c e l l (the capacitor merely prevents o s c i l l a t i o n s with 

some values of feedback r e s i s t o r ) . For a true measurement of the short-

c i r c u i t current, the voltage a t the input of the c e l l should be zero. I t 

vciries from t h i s because of the 1 jiV mentioned above, and the input d r i f t 

of the amplifier. The d r i f t was measured as l e s s than 50 jiV h ^ by 

replacing the te s t c e l l with a 1 k fi r e s i s t o r and selecting the 1,00 k n 

feedback r e s i s t o r to give a gain of lOO. Thus, the performance, of the 

amplifier i s limited s o l e l y by the input d r i f t . For 1% accuracy the 

open-circuit voltage of the te s t c e l l should be 100 x 50 ̂ .V = 5 mV 

(or 1 mV for a c e l l with a normal c h a r a c t e r i s t i c , see Figure A2.1). 

In our arrangement the output voltage was fed into a buffer amplifier 

which protected A^ from o s c i l l a t i o n s which sometimes occurred when i t 

was connected d i r e c t l y to an external c i r c u i t . Any instrument with an 

input impedance greater than 5 k fl could then be connected to the amplifier, 

e.g. a chart recorder or d i g i t a l voltmeter. 

Using the 1 Mfi feedback r e s i s t o r , a shor t - c i r c u i t current of 10 nA 

could be measured i n a high impedance sample. A plot of current against 

wavelength was also made for a s i l i c o n c e l l with cm internal resistance 

of 2 fi. (Note the 100 mV output l i m i t must be observed). 

To achieve similar r e s u l t s with the conventional method, a voltmeter 

capable of measuring 5 p.V to 1% would be required. 
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APPENDIX 3 

POLAR PLANES IN THE Z I I ^ BLENDE STRUCTURE 

The etching experiments mentioned i n Chapter 5.3 drew attention 

to another small point. While i t i s commonly recognised that the {111} 

plane i s polar i n the zinc blende structiire, i t i s not often noticed 

that i n f a c t t h i s i s only one of a family of planes that ought to show 

polar e f f e c t s . Figures A3.1 and A3.2 show the difference between non-

polar faces ( A3.1) and the family of polar planes that intersect the 

{Toi} plane perpendicularly. A polar plane has metal atoms and non-

metal atoms i n separate planes at a distance ^d ap«u:t (\rtiere d i s the 

interplane spacing). 

Planes of the type {1, 2n-l, 2n-l} are of the same polarity as 

t h e { l , l , l } , as are {4n-3, 1,1} planes. However, {4n-l, 1,1} planes 

are of opposite p o l a r i t y , n i s an integer ^ 1 . Effec t s may well be 

noticed when etching planes with small values of n; high index planes 

are usually made up of steps of lower index planes. 
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APPENDIX 4 

The Calculation of A^ and A^ after a Crystal Growth Run 

u£ 

The value of — describes, i n physical terms, the balance, of 

diffusion and Stefan flow during the transport of material by sublimation. 

When the transport equations are applied to the t a i l part of the c r y s t a l 

growth tube, they may be used to determine A^ as shown i n Section 4.S. In 

fac t to determine A^ after a c r y s t a l growth run i t i s only necessary to know 

the value of exp ^̂ '̂  the r a t i o "^RESERVOIR^j^^ . The former can be 

measured by weighing the amount of material deposited i n the t a i l , the time 

taken, and the physical dimensions of, the capsule, the l a t t e r i s fixed by 

the temperatures of the reservoir and charge;. 

F i r s t consider transport from the capsvile to the t a i l tube, l e t 

3P^^(0) - 2P^ -

Then 

and 

2P^(1 - Q) = 3 (P2„('̂ ^ - Q^zn^O) ) '̂̂ •̂2> 

P^d - Q) = 3 (Pgg(£) - QPgg (0)) (A4.3) 
2 2 

From A4.2 and A4.3 

2^^Se2^^^ " 2^362^°^^ = ^Zn^^' " 2^Zn^°^ ^̂ '̂"̂ ^ 

so 
2^Se2^^^ - ^Zn^^^ = 2( 2Pg^^(0) - P2^(0)) (A4.5) 

At t h i s point i t i s necessary to separate the two possible 

cases: 
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fiDr a tube with zinc i n the reservoir, ^ge^^^^ " ° ^Zn^°' ' ^'^MIN ' 

for a tube with selenium i n the reservoir P̂ ĈO) = 0 and Pg^^(O) = F.P^^^ 

Then for a tube with a zinc reservoir A4.4 gives 

(2 Pee - ^Zn^^^^ = -2-^-^MIN 
(A4.6) 

But ^ 

Kp 27 • "̂ MIN 2„ 

so 

Also , P_ { I ) 

(2A„ - 1 ) ^ - 'i^'-'h = ° '"'-'^ 

I f E = f (the usual case of the reservoir set to give the p a r t i a l pressure 

of the element at P^,^ i n the capsule) the equation reduces to 

_ ,,3 . n3 = 0 (A4.1'0) 
t (2A„ - + 2A^Q = 0 

Simi l a r l y , for a reservoir containing selenium , 

Usually F = ~ , so 

( 2 A , - 1 ) ^ - 5 4F^Q^ A, = 0 (A4.11) 

3 ..r?r.O CA4.12) (2 A„ - - 2A^Q » 

I t may be. seen that only the coe f f i c i e n t of A^ varies i n equations A4.9 

and A4.11, so i t i s very easy to solve these equaUons graphically. 



- 137 -

Figure A4.1 gives the variation of A^ with "J EQ. . (Reducing to Q i n the 

usual case E = j ) . Figure A4.2 gives the variation of A^ with ,3FQ 

(Reducing to Q i n the usual case of F = y ) . 

Returning to A4.10 and A4.12, i t i s possible to learn a l i t t l e 

more about these spe c i a l cases. 2 = exp \~^J i and — i s always 

negative because of the sign convention used. (Figure 4.1.1). Therefore 

0 Q. 1 • Q->-0 represents very high flow v e l o c i t i e s when diffusion may 

be ignored, and Q ->• 1 represents very slow flow when Stefan flow may be 

ignored. In practice t h i s would mean a high i n ^ r t gas pressure. 

Q = 0 gives the t r i v i a l solution A^ = ^ ( i . e . perfectly stoichio­

metric gas over the charge) as would be expected. 

Q = 1 gives A^ = 0.1588 for a tube with zinc i n the reservoir, 

and A£ = 1.1623 for a tube with selenium i n the t a i l . 

Equations (A4.T1) and (A4.12) are similar to . (4.6.17) and (4.8.18) , the differences 

are because i t i s assumed here that the diffusion coefficients for zinc and 

selenixam are equal, where previously they were assumed to be i n the ra t i o 

1:1.5 because of the d i f f e r i n g molecular masses. 

In Table 4.8.1 the values of A/, and A are the same whichever 
• C O 

value of P.,_., was selected ( i . e . that due to.Aven and Prener or Kirk and 
2 1 • Raven) because the value of E was fixed at y and that of F at j i n the 

calculations. I t i s believed that the f a s t e s t transport occurred under 

these conditions. 

To derive A^ from A^, the transport equations must be used again , 

From A4.2 and A4.3 i t i s possible to write; 
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and 

because 

2P^(1 - Z) = 3 (P2^(£) - Z Pgn-^^^ (A4.14) 

P ^ ( l - Z) = 3 (P^^ (£) - Z P _ { 0 ) ) j(A4.15) T Se2 Se2 

3(A^P2^(£) - A^Pz^(O)) (A4.16) 

^Se2 
^Zn 

Eliminating P„ (0) from A4.14 and A4.16 yield s Zn 

P ^ ( l - Z) ( 2A^ - 1) = 3(P2^(£) A^ - P^^C^) A^) . 

But from equation A4.1 , for a zinc reservoir (Pgg^^^O) = 0) , 

A b (1 - Q - 2A» (1 - Z) 

and for a tube with selenium i n the reservoir , 

2A^ (1 - Q) + Z - 1 
*o 2(Z - Q) . 

^ ' ^ ^ 601ENSE ' \ . 

' 12 JAN 1978 , 
8€CTI0H y 

(A4.17) 

and for a seleniim reservoir , (p (0) = 0) , 
Zn 

3 ^Zn'^' 

So for a tube with zinc i n the reservoir 

A^ (Z - Q) 


