W Durham
University

AR

Durham E-Theses

A numerical comparison of commonly - used
algorithms for structural optimisation

Smith, Erling Aastrup

How to cite:

Smith, Erling Aastrup (1975) A numerical comparison of commonly - used algorithms for structural
optimisation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/8203/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8203/
 http://etheses.dur.ac.uk/8203/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A NUMERICAL COMPARISON OF COMMONLY - USED
ALGORITHMS FOR STRUCTURAL OPTIMISATION

by

ERLING AASTRUP SMITH

A thesis submitted to the Faculty of Science
of Durham University at Durham in partial
fulfillment of the requirements for the Degree
of
Doctor of Philosophy

DEPARTMENT QF ENGINEERING SCIENCE
DURHAM

$\“\\\;\('\ b»( LT
I I
1975 ‘



ABSTRACT

SMITH, ERLING AASTRUP: A numerical comparison of commonly-
used algorithms for structural optimisation. (Under the super-
vision of WILLIAM CALVIN CARPENTER)

The thesis makes a qualitative and a quantitative comparison
of algorithms used to solve non~linear structural optimisation
problems. Algorithms are categorised into linearization, feasible
direction and transformation methods. From each category, algorithms
are selected (by considering applicability restrictions, anticipated
computational effectiveness and efficiency, supplementary program
requirements and program development effort) for a numerical compari-
son of computational effort. The algorithms chosen are:- the Method
of Approximate Programming, a Method of Feasible Directions and the
Sequential Unconstrained Minimization Technique. Newton's, Fletcher-
Powell's, Stewart's and Powell's methods are chosen far use with SUMT.

The algorithms are used in the study to minimize the weight of
eight test structures:- four pin-jointed plane trusses and four plane
stress plates, all subject to two load cases, member stress Timits
and design variable Timits. The finite element stiffness method was
used for structural analyses, function and derivative evaluations.
Details and FORTRAN IV program listings are given for the algorithms.

Estimates are developed of the relative computational effort
required by each algorithm in terms of the Central Processor Unit
(CPU) time required when an IBM 360/67 computer is used. Measure-
ments are reported for each algorithm of the CPU time used on an

IBM 370/145 computer.



A comparison is made of the computational effort used by
each algorithm. Conclusions are drawn about the relative efficiency

of the optimisation algorithms and of the derivative algorithms.



LIST OF TABLES

TABLE QF CONTENTS

........................

LISTOF FIGURES . . « ¢« v v ¢ v v v v vttt e e v e e e e s

CHAPTER

1. STATEMENT OF THE PROBLEM . . . . . . « . ¢ v v o o . .
2. METHODS OF SOLUTION FOR THE PROBLEM . . . .. .. ..

2.7

Classification of NLP methods . . . . . . . . .
Linearization methods . . . . . . . . . . . ..
Feasible Direction Methods . . . . . . . . . .
Transformation methods . . . . . . . . . . ..
Unconstrained Qptimisation Algorithms . . . . .
One-dimensional search methods . . . . . . . .
Algorithms selected for comparison . . . . ..

3. DETAILS OF THE ALGORITHMS . . . . . « o o v o v o o

Introduction . . . . . ¢ . ¢ o v v v o v
Method of Approximate Programming §MAP) Ce e
Method of Feasible Directions (MFD

Sequential Unconstrained Minimization
Technique (SUMT) . . . . ... ..o
Newton's method . . . . « « ¢« ¢ v ¢ o ¢ o v o
Fletcher-Powell's method . . . . .. . . . ..
Stewart's method . . . . . ... .. ...
Powell's method . . . « & v ¢ v v v v v o v o &
One-dimensional search for the minimum of @ . .
One-dimensional search for the boundary of

the feasible region . . . . . . . . o .. ..

3.11 Primal-Dual LP algorithm . . . . . . . . . ..
4, EVALUATION OF FUNCTIONS AND DERIVATIVES . . .. . . .

4.1
4.2
4.3

Functions and their derivatives . . . . . . . .
Stresses and their derivatives . .. .. . ..
Solution of the stiffness and derivative

equations . . . . . . . L L el el e e e e



10.

COMPUTATIONAL EFFORT . . v & v v v v v o 0 v v v v 0 o s

Introduction . . . . . & ¢ v v o v o v 0 o 0 .
Effort used by the optimisation algorithms

Effort used in evaluating functions . . . . . . .
Effort used in evaluating derivatives . . . . . .
Total computational effort . . . ... .. ...

TEST PROBLEM DATA . . . v v v v v v v e v o s o e o o e

o1 0101 OOt
L3 L] L . L]
OB W N —

6.1 Description of the tests .. .. ... .. ...
6.2 Test structuredata . . . . . . .« . ¢ o0 .
6.3 Optimisation algorithm data . . . . . . . . . ..
6.4 Optimisation algorithm arbitrary coefficients . .

TEST RESULTS AND DISCUSSION . . . . . . o v o v o v o

Introduction . . +. & ¢ ¢ ¢ v ¢« b e e e e e 0.

1

2 Computer results . . . . .. ¢ o v v o v 0.
3 Effort used by the function and derivative
4
5

7

7

7
algorithms . . . . . ¢ ¢ v v v v v v v o oo .

7

7

Effort used by the optimisation algorithms .
Other results . « v &« v ¢ ¢ ¢ ¢ o o o o o o o o &
7.6 Discussion . & v v v v b et e e e e e e e e e

CONCLUSION . . v v v v v v v e e et e e v s o o o 0 o

8.1 ConcTusions . . « & v v ¢ ¢ ¢ o ¢ o o o o o « o &
8.2 Recommendations . . « « « ¢ ¢ ¢ o ¢« ¢ 4 0 e 0 ..
8.3 Further research . . ¢« ¢ ¢ ¢ ¢ v ¢ ¢ ¢ o o o« o &
8.4 SUMMATY « ¢ & ¢ & « o & o o o o o o o s o o s o o

LIST OF REFERENCES . . . o ¢ ¢ ¢ o ¢ o o o o o o o o o
APPENDICES . . & v & v v o v v v v e e v v v s o o s o

10.1 Results for 21-bar bridge . . .. ... .. ..
10.2 Computer program listing . . . . .. . .. ...

i

Page



CPU

FP
LP
MAP
MFD
N1
N2
NLP
NMW
PO
ST
SUMT
UOA

LIST QF ABBREVIATIONS

Central Processor Unit

Finite Differences

Fletcher-Powell's method used with SUMT
Linear Programming

Method of Approximate Programming
Method of Feasible Directions
Newton(1)'s method used with SUMT
Newton(2)'s method used with SUMT
Non-Linear Programming

Near Minimum Weight

Powell's method used with SUMT
Stewart's method used with SUMT
Sequential Unconstrained Minimization Technique

Unconstrained Optimisation Algorithm

iv



[<}}

= | >

= &

NQTATION
scalar or integer subscript
scalar
column vector
matrix
row vector or transpose of a
transpose of A
value of a at an optimum
value of a at an optimum
value of A at an optimum
vector of first partial derivative operators
matrix of second partial derivative derivative operators

ith component of ¥

i,jth component of 12
!
{



Jet

F(t)
f ()
i

1=

qs
min qs
max qs
min j

max J

|43r—
(e

vf (t)

[=%

o(..)

LIST QF SYMBOLS USED THROUGHQUT THE TEXT

vector of design variables

objective function
constraint function

number of design variables
vector of weight coefficients

stress in member s for load case q

minimum permitted stress in s for q

maximum permitted stress in s for q

minimum permitted value of design variable j
maximum permitted value of design variable j

number of Tload cases

number of members

vector of first partial derivatives of the objective
function

vector of first partial derivatives of constraint
function 1

search direction vector

objective function for SUMT

Vi



~

~ ~ o (o)} [$5] o
. . . . ° .

w
.

N n w N = w
. . - . L]

©w N

N o

.10

LIST OF TABLES

Computational effort for basic operations . . . . . ..
Estimated function and derivatkve effort ratios . . . .
Loadings on the 21 bar bridge . . . . . . . .. . ...
Maximum number of algorithms iterations allowed . . . .
Computer testsmade . . . . . . . . . o v v v oL

Results measured at the NMA . . . . « . . « « « ¢« « . .

Measured function and derivative effort ratios
Measured effort ratios to achieve NMW . . . . . . . . .

ﬁverage number of function evaluations per one-
1mensional search . . . . . .. . .. .

Measured algorithm-MAP effort ratios to reach
the NMH . . . & & ¢ v o it e e s e e e e e e e e e e

Ratio of the number {terations required to reach
the NMW to the number of design variables . . . .. ..

Ratig of the number of {terations required by an
glgﬁxgthm to reach the NMW to the number required
‘Y ........................

Estimated algorithm-MAP effort ratios to reach
the NMW when Lund's search isused . . .. .. .. ..

Estimated algorithm-MAP effort ratios to reach
the NMW when Lund's search and forward FD
derivatives are used . . . . v v it e e e e e e e

Estimated algorithm-MAP effort ratios to reach

the NM{ for different values for the derivative-
function effort ratio . . . . . . . ... ... ...

The algorithms listed in increasing order of
computational effort required . . . . . . . .. . ...

vii



5.4.28

5.4.29

5.5.13

5.5.14

6.2.1
6.2.3

6.2.5
6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

6.4.7

6.4.8

6.4.9

viii

LIST QF FIGURES

Page

Estimated computational effort required to evaluate
functions and derivatives - trusses . . . . .. .. 90

Estimated computational effort required to evaluate
functions and derivatives -~ plates ... .. ... 91

Estimated computational effort required by the
algorithms to complete one iteration - trusses . . 96

Estimated computational effort required by the
algorithms to complete one iteration - plates . . . 97

Test structures - pin-joined plane trusses . . . . 100

Test structures - plane stress plates . . . . . .. 101
Test structure - 21 bar bridge . . . ... .. .. 103
Weight - CPU time and MAP coefficient &« , 3 bar

TPUSS + ¢ &+ 4 4 6t & o o o e s o o o o o a o o o s 112
Weight - CPU time and MAP coefficient & , 7 bar

TPUSS & v ¢t i et e e e e e e e e e e e e e e 113
Weight - number of derivative evaluations and

MFD coefficients ¢ s 3 bar truss . . .. ... .. 114

i
Weight - number of derivative evaluations and
MFD coefficients ¢ , 7 bar truss . . .. ... .. 115

i
Weight ~ CPU time and SUMT coefficient ¢ , 3 bar
truss: Newton's method, data 3b=3c=0.005 . . . . . 116

Weight -~ CPU time and SUMT coefficient ¢ , 3 bar
truss: Newton's method, data 3b=3¢=0.001 . . . . . 117

Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Newton's method, data 3b=3c=0.0002 . . . . 118

Weight ~ CPU time and SUMT coefficient ¢ , 3 bar
truss; Newton's method, data 3b=3c=0.00004 . . . . 119

Weight ~ CPU time and SUMT coefficient c , 3 bar
truss: Fletcher-Powell's method, data
3=3¢=0.008 « & 4 bk e e e ke e e e e e e e e e 120



6.4.10 Weight - CPU time and SUMT coefficient ¢ , 3 bar

truss: Fletcher-Powell's method, data
36m3c=0.001 . & . . . L e e e e e e e e e e e 121

6.4.11 Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Fletcher-Powell's method, data
30=3¢=0.0002 . ... ... ... 122

6.4.12 Weight = CPU time and SUMT coefficient ¢ , 3 bar
truss: Fletcher-Powell's method, data
3b=3c=Q.Q0004 . . . . . e e e e e e e e e e e 123

6.4.13 Weight - CPU time and SUMT coefficient ¢ 4 3 bar
truss: Stewart's method, data 3b=3c=0.005 . . . . 124

6.4.14  Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Stewart's method, data 3b=3¢=0.001 . . . . 125

6.4.15 Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Stewart's method, data 3b=3c=0.0002 . . . . 126

6.4.16 Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Stewart's method, data 3b=3c=0.00004 . . . 127

6.4.17 Weight,- CPU time and SUMT coefficient ¢ , 3 bar
truss: Powell's method, data 3b=3¢=0.005 . . . . . 128

6.4.18 Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Powell's method, data 3b=3¢=0.001 . . . . . 129

6.4.19 Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Powell's method, data 3b=3c¢=0.0002 . . . . 130

6.4.20 Weight - CPU time and SUMT coefficient ¢ , 3 bar
truss: Powell's method, data 3b=3c=0.00004 . . . . 131

6.4.21 Weight ~ CPU time and SUMT coefficient ¢ , 3_b?r

truss: Newton's method, data 3b=3c=0.001x.41" 132
6.4.22 Weight - CPU time and SUMT coefficient ¢ , 3 har

truss: Fletcher-Powell's method, data=3b=3c=

0.001x0.41~T . . . . . . ... ... .. 133
6.4.23 Weight - CPU time and SUMT coefficient c , 3.b1r

trus§ : Stewart's method, data=3b=3c=0.001x41" 134
6.4.24 Weight - CPU time and SUMT coefficient ¢ , 3‘b%r

truss: Powell's method, data=3b=3c=0.001x.41- 135



2.2
.2.3
2.4
.2.5
.2.6
207
.2.8
2.9
3.1

NOONN N NN NN

7.4.1

7.4.2

10.1...

Weight ~ CPU time and algorithms, 3 bar truss . . . 138
Weight - CPU time and algorithms, 7 bar truss . . . 139
Weight ~ CPU time and algorithm, 13 bar truss . . . 140
Weight ~ CPU time and algorithms, 21 bar truss . 141
Weight - CPU time and algorithms, 4 node plate . . 142
Weight - CPU time and algorithms. 9 node plate . 143
Weight = CPU time and algorithms, 16 node plate . . 144
Weight - CPU time and algorithms, 25 node plate . . 145
Measured computational effort required to evaluate
functions and derivatives-trusses . . . . « « . . . 149
Measured computational effort required to evaluate
functions and derivatives-plates . ... ... .. 150
Measured computational effort required by the
algorithms to complete one iteration-trusses . 151
Measured computational effort required by the
algorithms to complete one iteration-plates . . . . 152
Weight ~ CPU time and algorithms, 21 bar bridge . . 173



ACKNQWLEDGEMENTS

The author would 1ike tq express his appreciation to
Dr. W. C. Carpenter, Joyce E. Smith, Ms. E. V. White and Marjorie
McGrath Higgins for their help in the preparation of this thesis.
The author also acknowledges the continued assistance of
Professars G. Higginson and W. A. Hamilton, the Universities of
Durham, England and of Maine, U.S.A. and the financial support

of the Science Research Council and of his wife, Joyce.



CHAPTER 1
STATEMENT OF THE PROBLEM

The engineering design problem is to find the optimum, either the
maximum or the minimum, of a function of one or more design variables
subject to equality and inequality constraints. Examples of engineering
design variables are heights, lengths or thicknesses and examples of
the function to be optimized, called the objective or merit function,
are mass, weight, cost or efficiency. The design is subject to con-
straints, for example, upper and Tower bounds on stresses and deforma-
tions, called behavioural constraints, and upper and lower bounds on
the design variables, called side constraints. The engineering

problem can be stated mathematically as

minimize (or maximize) F(t) e 10T
subject to fi(i);> 0, 1=1,.., R.. ~
where t is a P-vector of design variables tj, J=T1s..P;

F(t) is the objective function, and f;(t) 3 0 are the constraints.

Mathematical Programming methods find the optimum of a function
of several variables subject to equality and inequality constraints
and can be used on the engineering design problem. Wasiutynski and
Brandt1 in 1963 reviewed the use of classical and contemporary tech-
niques of Mathematical Programming in optimum structural design.
Since the early sixties, Sheu and Prager2 in 1968 and Schmit3 in 1969

have shown how electronic computation has allowed Mathematical

WAH ONITES
Q\“‘ e l8//
= 1 JUN 19¥5

N

L ARf




Programming methods to be used increasingly on structural

optimisation problems.

There now exist many suitable Mathematical Programming

algorithms, but they vary in the type of problem which they can

solve, in the computational effort they require and in their

effectiveness at producing an optimal solution. It is desirable,

therefore, to predict which methods would be the most appropriate

to a particular problem or to a class,of problems. The following

work makes a comparison of commonly-used algorithms applied to a

class of structural optimisation problems. Important considerations

in the comparison of the methods are:

1.

restrictions of applicability:

Typical restrictions on the type of problem a method could solve
would be requirements for linearity and convexity of the objective
or constraint functions.

effectiveness:

The effectiveness required of a method depends on the accuracy
required in the solution.

computational efficiency:

The computational efficiency of a method can be measured by the
amount of computer time and storage space required to solve the
problem.

requirements for supplementary programs:

The additional facilities required by a method could be the
evaluation of first or second partial derivatives of the func-

tions, the solutions of sets of 1inear equations, of 1{near



programming problems, and of one-dimensional search problems.

5. effort for program development:
The effort for program development depends on the complexity of
.the method and of the supplementary programs required.

6. -feasibility of intermediate so}utions:
For some problems it may be difficult to construct a feasible
solution from an infeasible one, feasible intermediate solutions

are desirable, though not essential, in case of premature termina-

tion of the optimisation process.

The above criteria are used in chapter. 2 to select methods to be

quantitatively compared in later chapters.

The class of problem considered is the minimization of weight
of certain structures subject to stress and design variable Timits.
The structures considered are pin-jointed plane trusses and plane
stress plates. The design variables are, for the trusses, the bar
cross-sectional areas and, for the plates, the thicknesses at nodal
points of the triangular finite element idealisation. Upper and
Tower bounds are placed on the design variables . and on the
stresses in the structural members. The stress is taken as the axial
stress in each member for the truss problems and as the effective
stress in each constant stress finite element for the plate problems.

The optimisation problem for both types of structures can be stated

mathematically as:



minimize w't ...1.2
subject to o €q¢ %gq s G=1,..50,8=T,..,M,

min qs Qs  max gs

t  kt ¢ s J=1,...P,

min J J max Jj
where

L is the number of load cases,

M is the number of members,

P is the number of design variables,

w is a P-vector of weight coefficients,

% is a P-vector of design variables,

o is the minimum permitted stress in member s for
min gs

load case q,

o~ is the maximum permitted stress in member s for
max qs

load case q,

0 is the stress in member s for load case q,
gs

t dis the minimum permitted value of design variable j,
min j

t is the maximum permitted value of design variable j.
max Jj
Problem T.2 can be rearranged into the form of 1.1:
minimize w 't ... 1.3,

subject to(o -a Y*o,(@¢ -a »o,
max gs qs qs min gs

q=Tseosls  s=1,..,M,

(t -t®o, (t-t %o,

max Jj J j minj

J=TseesPe



Problem 1.3, called a Non-Linear Programming (NLP) problem, has a
Tinear objective function subject to non-linear behavioural constraints
and linear side constraints.

Chapter 2 considers methods available for the Solution of problem
1.3 and selects methods for comparison in later chapters. Chapter 3
gives details of the solution methods selected for comparison.
Chapter 4 describes the methods used to evaluate the objective and
constraint functions and their derivatives. Chapter 5 estimates the
computational effort required by the optimisation, function and
derivative algorithms. Chapter 6 presents test structures used to
campare the optimisation algorithms and chapter 7 gives the test
results. A summary, conclusions, recommendations and ideas for
further research are presented in chapter 8. The appendices give

FORTRAN IV program 1istings of the algorithms used in this study.



CHAPTER 2

METHODS OF SOLUTION FOR THE PROBLEM

2.1  Classification of NLP methods.

There are many methods for solving the general NLP problem and

most can be included in one of the following categories:

1. linearization methods,

2. feasible direction methods,

3. transformation methods.

This classification is based on those of Jacoby, Kowalik and Pizzo*
and of Zoutendijk.>

Linearization methods solve the NLP problem using a sequence of
Linear Programming problems (LP problems) formed from the NLP problem.
Thus an iteration consists of two stages:

i. form a linear approximation at the current point, then
ii. solve the Tinear approximation by LP methods to give a new
solution point.

Feasible direction methods search within the feasible region for
an optimal solution along a sequence of 'usable feasible' directions
By definition, a search along a 'usable feasible' direction will, for
minimization problems, reduce the objective function but maintain
feasibility. Thus an iteration consists of two stages?

i. form a usable feasible direction,

ii. search along the direction for a new solution point.



Transformation methods solve the NLP problem indirectly by
forming a different, but related, NLP problem. The transformations
are such that the solution of the transformed problem coincides with
that of the original problem. The transformed problem may often,
but not always, be solved as a sequence of problems and may be

constrained or unconstrained, depending on the transformations used.

2.2 Linearization methods.

Linearization methods Tinearize the objective and constraint
functions at the initial point. The resulting LP problem is solved
by an LP algorithm giving a new solution point. Next, the problem
is totally or partially relinearized at the new point and the new LP
problem is solved. This procedure is continued until the solutions
converge to the optimal solution.

A non-linear objective function can be linearized with a

truncated Taylor's series about the current point:

F(t) =F(®) + (r®)'(t-3) ...2.2.1
Similarly, the constraints can be Tinearized with truncated Taylor's
series:

£ L) = fi@ +(IF,@EN(E - 2 20, i=1,. 4R, .2.2.2

where T is the design vector at the current point,

¥£;(8) «is the vector of first partial derivatives of the

i{th constraint function with respect to the design

variables.



8
If the original constraints form a convex region, the linearized
constraints completely enclose the feasible region. If,however,
some of the original constraints are noﬁ-convex, then the 1inearized
constraints will cut off some of the feasible region in which the
optimal solution may-]ie.5 Algorithms must be able to prevent
non-convex constraints from slowing or stopping convergence to the
optimal solution of the original problem.

Cutting Plane methods (Ke11ey5 and Cheney and Go]dstein7) retain
most of the original linearizations of the constraints at each inter-
mediate solution. Only the mast active convex constraints are
relinearized and the new linearizations are added to the set of
constraints. Non-convex constraints are relinearized at each fiter-
ation with the new linearizations replacing the old linearizations.

A full evaluation of first partial derivatives is not required at
each {teration since only a subset of the constraints is relinearized.
However, as the method proceeds, the increased problem size increases
the computational effort required. I11-conditioning can arise as
more linearizations of each constraint are added.

The Method of Approximate Programming, MAP, (Griffith and
Stewarts), discards all the old T1inearizations at each iteration and
relinearizes the entire constraint set. Full evaluation of first
partial derivatives is required at each iteration, but the problem
does not increase in size as the method proceeds. MAP does require
" additional constraints which 1imit the size of step that can be taken
from the current solution to a new solution. These additional

constraints are of the form:



‘t. - 1 €5 , i=l,..4Ps vee2:2.3
i k

where Gkis a positive number preventing large changes in the
design variables.

For problems with side constraints, the move Timit constraints
do not add to the number of constraints since for each design vari-
able one of the upper bound constraints (1 side and 1 move Timit
constraint) and one of the lower bound constraints (as above) will
be redundant. The move 1imit constraints and complete relinearizations
are intended to provide convergence for both convex and non-convex
problems although this has not been proved®. Possible i11-conditioning
{s not as severe as on the cutting plane method since each constraint
is represented by only one linearization. Intermediate solutions may
be infeasible.

Advantages of Jinearization methods are that functions and first
partial derivatives are evaluated no more than once per iteration
and one-dimensional searches, which require a number of function
evaluations, are replaced by efficient LP methods. However, con-
vergence may be slow when the optimum of the NLP problem does not
1ie at a vertex of the constraint surfaces or when non-convex
constraints are present.5

Both the cutting plane method and MAP appear to be apposite
to the problem. However the cutting plane method requires addi-
tional logic to ensure that old linearizations of non-convex con-
straints are replaced at each iteration. The computational effort

to solve the LP problems increases as optimisation proceeds although



10
some effort can be saved since full derivative evaluations may not
be required. When MAP is used, the problem does not increase in

size but a full first partial derivative evaluation is required.

The main difficulty with MAP {is the choice of § On balance, it

T
appears that MAP is 1ikely to be more efficient than the cutting
plane method and since fewer difficulties were anticipated, MAP was

selected for comparison with other NLP methods.

2.3 Feasible direction methads.

Feasible direction methods explore the feasible region by
searching along directions which reduce the objective function while
maintaining feasibility. From the initial point a search direction
is found. The design is changed along this search direction until
either a minimum is found or until a constraint is encountered. At
the new solution point a new search direction is determined and the
design is changed by moving along it. A search direction through an
intermediate solution point must not violate any constraint for small
moves nor allow the objective function to increase. Thus, if t is
an intermediate solution point and Ia are the indices of the
constraints active at T, then:

f @ =0, eI, vee2.3.1

Expanding such constraints about T using a truncated Taylor's
series gives:
e = @ + @ @) -8 ..2.3.2



1
Let d be the search direction through T and & be a positive scalar,

then a new design lying along d is given by:

t =t + &d, ...2.3.3
Substituting equations 2.3.3 and 2.3.1 1in equation 2.3.2 gives:
fi(-t-) = (¥ (E))'d ...2.3.4

Similarly for the objective function:

F(t) = F(t) + oL (TF(E))'d , ...2.3.5
The new search direction will be acceptahle if

f,&) * 0 and F(t) & F(E) ...2.3.6
or

- (HE)'d 20,1 €1, ...2.3.7

+ (WF(@))'d & 0.
Conditions 2.3.7 are the conditions for a new search direction to be
'usable feasible'. Among the algorithms which satisfy conditions
2.3.7 are Rosen's gradient projection method?, Gellatly's method10
and Zoutendijk's methods.!!

In the gradient projection method, the new direction, d, is taken

as the solution of the equality constrained probitem:

minimize (97 (1)) 'd ...2.3.8
subject to - (lfi(f_))'_d_ = 0,141
d'd = 1.

This problem can be solved using Lagrangean techniques. If the
constraints are non-linear the direction may leave the feasible region
immediately so that a correction procedure must be applied to maintain

feasibility.



12
In Gellatly's method, the new direction, d, is' taken as the
solution of the equality constrained problem:
(FF(¥))'d =0, ...2.3.9
~(TIf @' =1, 1 €1,

First, the design is moved into the feasible regéan along the new
direction. Next, the objective function is reduced by moving the
design along the direction of the gradient of the objective function.

In Zoutendijk's method, the new direction, d, is taken as the
solution of the problem:
maximize y ...2.3.10
subject to (JF(E))'d + y € 0,

-(lf(I))'_ﬁl + c.y €0,1 & Ia ’

1 1
and d is normalized,

where c, are positive coefficients which can be taken as unity for
non-1inear constraints and as zero for linear constraints. This
problem can be formulated as a LP problem by a suitable normalization
of d.

With the exception of the gradient projection method, feasible
direction methods are suitable for the general NLP problem. The
gradient projection method is designed for linearly constrained
problems, although in combination with a transformation method
(section 4) it can be adapted to solve the NLP problem. Gellatly's
and Zoutendijk's methods are directly applicable to the NLP problem,

and hence the gradient projection method will not be considered

further in this study.



13

For structural problems of the type 1.3, it will be shown that
the major computational effort in determining a search direction s
the computation of first partial derivatives. Thus a useful measure
of computational efficiency is the number of searches required for
convergence to the optimum. In Gellatly's method, only.alternate
searches reduce the objective function, whereas in Zoutendijk's
methods every search reduces the objective function. It seems likely
that Zoutendijk's method will converge more quickly than Gellatly's
method. Accordingly, a method based on the method of Zoutendijk was

selected for comparison with other NLP methods.

2.4 Transformation methods.

Transformation methods reduce the degree of difficulty of the
constrained NLP problem by forming a simpler, but related NLP problem.
Depending on the transformation used, the transformed problem may be
solved as a sequence of caonstrained or unconstrained problems.
Transformation methods are of two types: 1interior point methods and
exterior point methods. Interior point methods generate a set of
feasible intermediate sQlutions which converge to the solution of the
original problem. Because exterior point methods generate a set of
infeasible intermediate solutions, they will not be considered for
the solution of problem 1.3.

The Sequential Unconstrained Minimization Technique (SUMT) is
an interior point method develgped by Fiacco and McCormick!2. iFor
the SUMT, a new objective function is formed by adding to the

original objective function a penalty function (a function of the



14

slackness of the constraints) weighted by an arbitrary scalar.
Thus if the original problem is written as:
minimize F(t) subject to fi(_g) 20, i=l...,R 3 e 2.4.1
then the SUMT formulation {is:
solve the sequence of problems:
minimize 7 Q(jbe) = F(t) +~ekf( fi(g) » 1=15..5R) . 2.4.2
for k=1,2,...
where @(...) 1s the objective function,
Q 1s anarbitrary scalar, with Qk*]<L€k s and
P(...) 1s the penalty function.

There are two difficulties with SUMT: choice of a suitable value
for @1 » and choice of a suitable rate of change for € .- These can
be overcome by using the 'Q' transformation of Fiacco and McCormick12;
the formulation 1is:
solve the sequénce of problems:
minimize Q(%,k) = 1/(Fk?{§) - F(t) ) + P(fi(g), 1=1,..,R) ...2.4.3,
where Q(t.k) 1is the objective function for the kth {teration,
Fk_](g) is the value of F(t)
at the optimum of Q(t,k-1).

This formulation was not included for comparison with other NLP methods
but in chapter 8 is recommended for further research.

The above SUMT transformations do not take advantage of useful
properties such as the possible Tinearity of some of the constraints
or of the original objective function. Fiacco and McCormick!2 suggest

that the linear constraints are not included in the penalty function.



15
The modified SQMT prob]em isy

solve the sequence_of problenms;

minimize B(t.g) = F(£) + @ P( £5(t) » 1 €1, )

subject to fi(t) * 0, 1€£1,, | 2.4
for  k=1,2,...., "

where ;] are the indices of the non-linear constraints , and
I

, are the. indices of the linear constraints.

Each @(..) in problem 2.4.4 can be minimized by a Tinearization or
a feasible direction metho_d.5 -A]tthgh'the’modified SUMT method was
not used in this study; it is recommended for further research.

The SUNT formulation of 2.4.2 was chosen as the transformation

method to be compared with other NLP methods on prob]em,l.S;L There

are two popular penalty functions used with formu]ation;2q4;2:

R

1. Pl..) = Z ( 1/(1’{(};)') ) s | ...2.4.5
i1
R

20 Pl = ) (-Tog( (8 ) ) 2.8.6
i=1

Since. the evaluation of 'log' requires more computationd] effort
than a division, a penalty function similar to 2.4.5 was selected
for use with SUMT.. Thg,chéice'ofisuitahle»Unconstrained optimisation

algorithms for use with SUMT is made in section 5 of this chapter.



16
2.5 _Unconstrained Optimisation Algorithms.

Unconstrained Qptimisation Algorithms (UOA) find the values for
design variables which optimize an objective fun¢tion of the vari-
ables. Thus, UOAs are suitable for finding, within the feasible
region of the original NLP problem, the minima‘® of the transformed
objective functions of the SUMT. Among the most efficient UOAs
are those which search along a sequence of directions until an
optimum is found. Such UOAs have two stages?

i. find a search direction, then

ii. find the optimum along the search direction.
The two stages are repeated until the global optimum is found. An
important criterion for choice of: one of the UOAs is the computational
efficiency of the method. In optimising the problems of the type 1.3,
the major computational effort used is that of evaluating the functions
and, if required, their derivatives. Thus the computational effort
used in optimizing the @(t,@) depends upon the number and type of
evaluations required to find the search direction (which is dependent
on the UOA) and to find the minimum along the search direction (which
is independent of the UOA).

UOAs can be categorized by whether they require in the determina-
tion of their search directions the evaluation of:

1. functions, their first and second partial derivatives, or
2. functions and their first partial derivatives, or

3. functions only.

It will be shown in a Tater chapter that derivative evaluations

require much more computational effort than function evaluations.



17

Therefore, derivative methods will be computationally competitive
with non-derivative methods only if they require correspondingly
fewer one-dimensional searches to find the optimum than the non-
derivative methods require.

A number of numerical comparisons of UoAs'3s 14 have shown
that among the most efficient methods are those which generate a
sequence of conjugate directions or use second derivatives. Accord-
ingly, the following UOAs to be used with SUMT were selected for
comparison with other NLP methods:
1. Newton's method with first and second derivatives;!®
. Fletcher-Powell's method with first derivatives;!6

Stewart's method with finite difference first derivatives; 1’

A W N
L . ]

Powell's method with no derivaﬂ:ives.]8

2.6 One-dimensional search methods.

Many NLP methods solve the NLP problem by moving the design
point through design space along a sequence of search directions
until the optimal solution is found. Such methods consist of two
stages:

i. determine a search direction - the direction-finding sub-problem,
then

ii. determine a move along the search direction - the searching
sub-problem.

The searching or one-dimensional search sub-problem finds the move

to the boundary of the feasible region and/or the move to the minimum

of the objective function. Thus the one-dimensional search problem

can be written as:



18
if t =%+ &d, find the t* = T + &*d .e.2.6.1
such that either
1. t* Tlies on the boundary of the feasible region, or
2. t* minimizes the objective function;
where t is the best design point dn the previous search,

d 1is the search direction through T and
o 1s a scalar specifying the move along d.

Interval methods or point approximation methods may be used to
perform one-dimensional searches. Interval methods find an interval
in which the move o* is known to Tie. An interval is chosen. If
o * is not bounded, the interval {s expanded. When o(* is bounded,
the interval is reduced until the prescribed accuracy is achieved.
There are many interval methods but methods based on the Fibonacci
numbers or on the Golden Section converge to a prescribed accuracy
in the smallest number of iterations.!?

Point approximation methods estimate the move, &*, by poly-
nomial approximations. The new point is used in a succeeding approxi-
mation for &X*. The process is repeated until successive estimates
converge to within the prescribed accuracy. Despite the guaranteed
rate of convergence of Fibonacci and Golden Section searches, point
approximation methods generally converge more quickly. Powe1118
suggests fitting a second-order polynomial te three function values
along the search direction, while Davidon?0 fits a third-order
polynomial to two function values and the two corresponding directional
derivatives. Davidon's method usually requires fewer approximations

than Powell's method. If, however, a derivative evaluation requires



19
much more computational effort than function evaluation, Davidon's
method will not be as computationally efficient as Powell's method.
A one-dimensional search methqd based on that of Powell using a

second-order polynomial was chosen for use in the solution of the

structural problem 1.3.

2.7 Algorithms selected for comparison.

The algorithms selected for comparison in later chapters are:'
1. the Method of Approximate Programming (MAP) - a linearization
method,8
2. a method based on Zoutendijk's - a method of feasible directions,
GORE
3. the Sequential Unconstrained Minimization Technique (SUMT) - 12
a transformation methaod, used in conjunction with:
i. Newton's method,19
ii. Fletcher-Powell's method, '®
iii. Stewart's method, and!’
iv. Powell's method. 18
Of the above methods only Powell's and Stewart's methods do not re-
quire the evalwation of explicit first partial derivatives. Newton's
method requires the evaluation of second partial derivatives. All
the methods except MAP require a one-dimensional search algorithm.
MAP and Zoutendijk's method of Feasible directions require a Linear
programming algorithm.
The following chapter gives further details of the algorithms

and of the modifications required to solve the structural problems

1.2 and 1.3.



CHAPTER 3

DETAILS OF THE ALGORITHMS

3. Introduction.

20

Chapter 1 introduced the structural problems to be solved and

chapter 2 selected methods for solving these problems.

This chapter

gives details of and modifications to the selected algorithms to

handle the structural problems.

The general NLP problem was stated in chapter 1 as:
minimize F(t)
subject to f (t) * Q0 , 1i=l,..,r
1

and the structural problem to be solved was stated as:

minimize W't
subject to ¢ ¢ o & s
min gs Qs max qs
g=1s..,L s STla..,M >
t € t € .
min j j max J
J=]= »P *
or:
minimize w't
subject to 0 ¢ (o - 6 )
max qs qs
0 £ (U - 5‘ ) ?
qs min gs
q-], 5L [y S=1,..gM EY
0 é (_ t . - t ) 9
max Jj J
0 é ( t - t ) s
J min j

...3.1.1

...3.1.2

..3.1.3



21
3.2 Method of Approximate Programming (MAP).

As described in chapter 2, MAP: forms a sequence of linear prob-
lems obtained from the NLP problem by linearizing all the non-linear
constraints at intermediate solutions. A set of 'move Timit' con-
straints are added to the constraints of the NLP problem to aid
stability and convergence of the algorithm. The MAP algorithm can
be stated as:

i. select an initial design point;
i1. calculate the first partial derivatives of all the non-Tinear
constraint functions at the current design point;
iii. Tlinearize the objective function and the non-linear constraints;
iv. form the 'move Timit' constraints;
v. solve the resulting LP problem using an LP algorithm;
vi. form a new design point from the solution of the LP problem;
vii. terminate if the new and 01d design points and objective
function values converge to within the prescribed accuracy;
otherwise go to step ii.
The general LP problem is of the form:

minimize ¢ ' ...3.2.1

N %

subject to Ax%b and Q% x,

where x 1is the vector of variables,
c and b are vectors of constants,
0 is the null vector, and

A is the matrix of coefficients.



22
The objective function of the structural problem 3.1.2 {is alreddy
Tinear and does not require linearization for the LP problems. The
size of the LP problems can be reduced by combining the linear move
Timit constraints with thé linear side constraints:

If & = (t -t ) s 0t &L, 3,22
q max J min j

is the move Timit on the jth design variable,
then the move 1imit constraints can be written as:

%.. - 8. £ t. é % + 8. [y j=1’no,P 9 .t.3.2‘3

J J J J J
where T’ s the value of the jth design variable at the
J

current solution point.

The constraints 3.2.3 can be combined with the side constraints

of 3.1.2 to give:

(t%) = Maximum( t . T -8 ) 4t and ...3.2.4
J, min J i J ﬂ
t £ Minimum( t s T + 8 ) =(t,) s J=ls..5P
J max Jj J i J
or
L ]
() ¢t £ (t) , j=l,...p , (..3.2.5.
J J J

The total number of constraints in the LP problem can also be

reduced by redefining the LP variables thus:

L
tt = ( t - t ) [} ,j:.l,o.’P s ooo3-2u6
J j



23

Hence constraints 3.2.5 become:

u L .
0 £ tt ¢ (t -t ) , j=1,..,P ..a3.2.7
J I
The non-linear behavioural constraints in problem 3.1.2 are
linearized by expanding in a truncated Taylor's series the constraint

functions about the current solution, T :

E =6 + ((F)(t-3 ...3.2.8
qs qs as
Since 3 /3tt =3 /3t
qgs! qs j , then
o =06 + (J& )(tt- tt) ...3.2.9
qs gs qs
= - (7 )'tt) + (T )'tt ...3.2.10
qs gs gs
or
F - B+ (1F )it ...3.2.11.
qQs qs qs

Equation 3.2.11 substituted into the non-linear constraints of

problem 3.1.2 gives the Tinearized constraints:

g (g T @) €
min gs max qs ...3.2.12

hence

-~ 7 )'tt <(p -0 ) and

qs qs min qs
t+ (Vo )'tt £ (o - ) ...3.2.13
qs max qs qs

which are linear functions of the LP variables, tt. Rearranging
substituting equations 3.2.6 into the objective function of problem
3.1.2 gives

L
w't = w'tt +uw't ...3.2.14



24
Hence the LP approximation of problem 3.1.2 at t is:

minimize w'tt + (W'tt), ...3.2.15
subject to
-(v:)tt‘(p-r ),
qs min gs
+ (Y6 )'tt = -'P ),
qs max qgs ' gs
q=]a sL ) s=]a sM
and U L
tt € (t -t ) ,
J i 3
0 € tt ;
J
Jj=1,..,P ’

where tt j=1s..,P are the LP variables.
J

Problem 3.2.15 is of the form 3.2.1 and can be solved by the LP
algorithm described Tater in this chapter. Suitable values for o
in 3.2.2 are chosen in chapter 6. The FORTRAN IV program listing

of the LP algorithm used in this study is given in the appendices.

3.3 Method of Feasible Directions (MFD).

Feasible direction methods search within the feasible region for
an optimal solution along a sequence of usable feasible directions.
As.described in section 3 of chapter 2 a usable feasible direction
will satisfy the following conditions:

-(@(E)'d fo0,1 €1, ...3.3.1
i 3

+ (FF(E))'d £ 0,



25
where the set Ia are the indices the active constraints.
The algorithm for Zoutendijk's!! method of feasible directions
can be stated as:
i. select an initial feasible design point;

ii. search down the negative of the gradient of the objective
function until a minimum of the objective function or a
constraint 1s found;

iii. evaluate the first partial derivatives of the functions;

iv. form the direction finding problem:
maximize Yy ‘ ...3.3.2
subject to  (TF(t))'d + y € 0 ,

-(\_Tfi(:f,))‘_d, tey €0 .1 €1,
d s normalized ;
v. solve the direction finding problem;

vi. test the direction for acceptability;

vii. 1if the direction is acceptable then search along it until a
minimum of the objective function or a constraint is found,
then go to ix;

viii. 1f the direction is unacceptable then reduce the number of
constraints in the set Ia and go to 1iv;

ix. terminate if the new and the old design points and
objective function values converge to within the prescribed
accuracy; otherwise go to iii.

By a suitable normalization of d, the direction finding problem can
be formed as an LP problem. In the direction finding problem, the

arbitrary coefficients can be set to unity for the non-linear



26
constraints and to zero for 1inear constraints. Zoutendijk tests
the acceptability of the search direction by examining the value of

y - By including in the set I all the constraint functions such that
0 < fi(g) < £ , ...3.3.3

and assuming that Ci = 1 for the non-linear constraints, then the
search direction is usable feasible if:

Ef y ...3.3.4
Test 3.3.4 can be obtained by considering equations 2.3.1 to 2.3.7
and the assumption that the search direction is normalized such that
A= 1 is a meaningful move along the direction. The first order

change in F(t) and fi(g) for a unit move along d is given by:

F(t) - F(®) = (FF@E)'d ...3.3.5
) -@ - (y_fi(i))'_q .+.3.3.6
But from 3.3.2:

y ¢ - (FF(@EN'd ...3.3.7
and )

y £ o+ (F.(E)d, if U ‘ ...3.3.8
Thus

ifes y,

then

0LE¢L fiLt_) - fi@ ...3.3.9

06&€ F(t) - F(t) ...3.3.10



27

therefore
¢4 (1) .3.3.1
and 1
F(t) € F(T) ...3.3.12.

Therefore the direction is usable feasible. If the direction is not
acceptable, then £ is reduced and the direction finding problem is
reformed.

Since the ci are not dimensionless, the choice of values of
unity for the non-1inear constraints may not be the most computa-
tionally efficient. Furthermore, the test of acceptability 3.3.4

can be incorporated into the direction finding problem. Hence the

following formulation of the directien problem was used in this

study:

the direction d is taken as the solution of the problem

maximize y e0.3.3.13

subject to ((lF(E)'_@_)/MF*\ + oy £ D R
((-Ifi(i))'iyl&f:\ tdy an) 11y,

and d is normalized

where

c are dimensionless scalars, = 0 for linear constraints, and
> 0 for non-linear constraints,
AF*  is the Targest possible change in F(t) for a unit move along

any normalized d through t and has units of F(t), and



28
Af* s the largest possible change in fi(i_:) for a unit moye
1 along any normalized d through t and has units of fi(-t-)'
Ify € im » where £ is a very small positive number, then LP problem
3.3.13 has no feasible region. In this case, €1s reduced and the
direction finding problem is reformed.

The values AF* and Af* depend on the normalization of the
seasch direction, d. Zoutendijk suggests a number of possible
normalizations but some of them require that certain modifications
be made to the LP algorithm. The following normalization used in
this research does not require modifications to the LP algorithm:

d is normalized such that - D £ dj €+D, j=1,..,P ...3.3.14

Hence the largest possible changes in F(t) and f1.(_t_) for a unit move

along any normalized d through T are:

AF* = D _V_F(_’E)n - 0gn 1F(§)\ ...3.3.15
- T J='l
P
Af¥ = D Y-fi@l = D02 zf,(j)l ...3.3.16
1 T =1 1 .

where subscript T denotes the 'taxicab' normalization defined by

equations 3.315 and 3.3i16.

Paoblem 3.3.13 can be rearranged and combined with normalization

3.2.14 to give:



29
maximize y eee3.3.17
subject to  (YF(%))'d + \AF*\y

- @, (B + chely <6 . 1€,

N
L=
L]

o
N
=]

1 N

-d

. "D 'Y j=.l,.o’P .
J

Prgblem 3.3.17 can be solved by an LP algorithm. The total number of

constraints can be reduced by redefining the LP variables thus:

ddy = (d +D), j=l,..,P ...3.3.18
J

hence

maximize y ...3.3.19

11N

subject to  (YF(E))'dd + \AF*y < D él (3 (2))
J=

N

P
- (OF,(®)'dd + clarrly < D T (3F.(B) -£ . 1l
1 1 1 j=1 1 a

0 £ ddj € 2 , j=1,..,P

To prevent zig-zagging between a subset of the constraints, Zoutendijk
suggested that the set I should incorporate the indices of those

a
constraints encountered on some of the previous iterations. Thus in

problem 3.3.19, Ia is formed from the union of the two sets Lct

and Irem which are defined by:

I . the set of indices for which 0 € f () € & ...3.3.20
ac i

I = the set of indices of the constraints which have been

rem
encountered more than once ...3.3.21

hence



- 30

I = (I I ) ' ,1;;;3;3.22
a - act rem

If the search direction produced in the direction finding problem {s

rejected, then I s emptied and & is halved or reduced so that at

rem
lease one index remains in I . The set I ds reformed and a new
‘ . act a
direction is determined. I  {is updated on succeeding iterations.
rem

To solve the structural problem 3.1.3 by the formulation 3.3.19,

the following quantities are required:

VO ad (D 1l

Since F) = 't . ...3.3.23
f(t) = (& -0 )
i max qs  qs
(0— - . L ) 9
qgs = min gs
(t -t )
“max J j_
or (t -t ) ;
j - min j
TF(t) = w ,
then ' . . ; _
CIF) = e ...3.3.24
Vo R
" gs
—.e' 9
J
or e .
J

where. e 1is the jth coordinate direction vector.
J



31
The a]gorlthm for. the feas1b1e d1rect1on method used to so]ve the

structural prob]em 3.1.3 can be’ summarized hy the fo110w1ng

1. form an initial feasible design point;
it. search down the Qradient of the objective function Qnti] a
minimum is found of until a constraint is found;
itl. evaluate first partial.deriyatTVes,ofrthe functions;
iv. form the direction finding prob]em13:3;19 incorporating
equations 3.3.15, A_3'.-‘3‘.‘1_6; 3.3.18, 3.3.20, 3.3.21, 3.3.22,
.,3.3.23-and,3.3;24;
V. solve the direction finding problem;
vi. if y € i , where € s a small positive number, then
reduce iiand go to. 1VT
vii. otherwise, search along the direction for a minimum of the
objective function or for a constraint;
viii. terminate if the neW‘aﬁd.o1d design points and objective
_.fUnction va1ues converge to within the prescribed accuracy;
ix. otherwise go to {ii.
Su1tab1e values for the dlmen510n1ess coefficients c are selected
in chapter 6. A FORTRAN IV program 115t1ng of the above a]gorlthm

as used is given in the appendices.

- 3.4 Sequential Unconstrained Minimization Technique (SUNMT).

As described in chapter 2; the SUMT is an interior point‘trans—
formation method. A sequence of unconstrained objective functions
(formed from the original objecfive function and penalty functions)
is minimized until the minima converge to within the prescribed

accuracy. The SUMT algorithm can be stated as:



32
i. - select an initial feasible design point;
ii. form the transformed obqect1ve function ﬂ(t,e )‘ k=1;
iii. minimize Q(_, k),
iv. terminate if the new design point -is satisfactory;'otherwise
. 90 to Vi
v. form the new transformed obJectlve function w(t e )

vi. estlmate the minimum of  A(t, ) by extrapo1at10n,

R
vii. go to 111, with kslesl ;

For the reasons glven in chapter 2, the ohyect1ve functions used

in step 11 and v are similar to the form:.
Pl t.p) = F(t) +e 2 CCf)) ) Ceel3:401.
k =1 1 '

The sequence of va]ues for‘ek.are determined from:
0 - cp » 0<edl 3.4.2
_ « |

Equation 3.4.2 requires the values 81 and the coefficient c¢ . The
scalar @ is often determined such that the weighted penalty term
is a predetermined proportion of the original objective function at

the 1n1t1a1 design point:

R, - irm/r»( ()'tfl;.;;.r)} | 343

&l

Typical values for p are .01,,.;.; .50. However the efficiency
and reliability of such an approach is dependent upon the initial
design point. If the initial point is close to one or more of the

constraints; Q]_given by equation 3.4.3 may be too small; alternatively



.33

if the initial point is.nqtﬂé1qsgfﬁqfany_qf.thé.constraints;ye
may be.unnecessarily large.. 'FTaCCO'and'McCOrmTck.suggest'that ;

‘natural’. ch01ce for e would be 91ven by the @ that minimizes the
magnitude of . the grad1ent of. # at T‘, so that T‘1s close to the
minimum of w(aq) Such a va1ue ofe - could,during the flrst
SUMT {teration,reduce the cqmputat19na1 effort used but. a]so reduce
the amount byxwhiCh,Q(i;e1),cou1d be’decreased: Nevertheiess;'the
Fiacco and McCormick,yaiug for e] was used in this study and can be

obtained from.the following:

et (¢ = F o+ g]P ) 5(‘\@(___1_;;,(1)’ = (_ +eP(f (®),i= 1 .r) )
| 3.4
where T s the current (initial) design,

then' ¥p = WF + h_vj L3.4.5

1

hence e] 1s given by the @ such that.jg?iﬂ is a minimum.

But since )
'V = (Y + P K VF + p TP ee:3.4.6
WW s (TF e ) (T ke ) LB
then
. o . y 2. .
39 T =T TFUF o+ 2 (IFUTIP) te (TP TP
..;344.7
Differentiating equation 3.4.7 with respect.' toca gives:
AETER R el Ry ! |
ap'WI/dp = 2TT) + 2p (YP'TP) ...3.4.8.
- G- .

¥2'VP has a minimum value when the Teft hand side of equation 3.4.8

is equal to zero; hence

¢, = (TFEP)/(PEe) L..3.4.9.



34
The minimum value that V)!V@ can have is zero; hence from equation
3.4.7:

S )
(-VF'TP) + (YFYP) - (YF'VF) (yP'YP) 5.4.10

(]
1

(Yp'¥P)

In this study, the value for Q] was determined using equation 3.4.10.
If the quantity under the root sign is negative, then the value for‘e]
was determined from 3.4.9. If the value for C] is not positive, for
example when YF'TP ® (, then f] was determined from equation 3.4.3.

An efficient choice for the coefficient, ¢ , in equation 3.4.2,
is dependent on the accuracy of the search and on the number of
unconstrained minimizations attempted. Suitable values for c are
determined in chapter 6.

The algorithms used for minimizing the sequence of @(..) are
detailed in later sections of this chapter.

Preliminary work for this research and other studies?2:23 {ndi-
cate that computational savings of approximately 30% can be made by
incorporating an extrapolation technique into SUMT as in step vi
of the algorithm stated above. The technique used in this study 1is

as follows:

i. fit a Lagrangean polynomial through the previous minima ;
il. predict the minimum of the new objective function using the
polynomial ;
{ii{. search for a minimum along the direction connecting the current

design point to the predicted minimum design point ;



35

iv. proceed with the unconstrained minimization from the new point.

Using a Lagrangean polynoml'al,zg the value of a function y(x) can

be determined at any value of x as

n
yix ) = &3 (1 (x gy(x )) ., c.3.4.11
n+l k=1 kK ntl) k
where
n
T(x )= W(x =%) n
k ntl: i= ntl 4 W x-x). ...3.4.12.
1Ak i=1 k 1
ik

Hence the design point at the minimum of the new objective function
can be estimated from the following:
let t*(enﬂ) be the estimate the jth design variable at the
minimum of the objective function @(t __,e ) » and

let t*(e ) be the design of the jth des1gn variable at the

minimum of the objective functions Q(j:_,ek) s then

n

t*( ) = (1« Yt (p ) ) .e.3.4.13,
jenﬂ kg k en-ﬂ J ek
where
1( T ( -p )
en+1 i= en+] ei . (f -c.) ...3.4.14.
i#k i=1 k i
i£k
- 3.4.15
But, since =C ...3.4.15,
A &
then
n n i-1 k-1 i-1

1(p )
k enﬂ i=1



36

hence
N ontl-i - k=i
l(e ) = W((c -1 Y(c -1 )) ..o 3.4.17
k “ntl i=1
£k

The coefficients 1 (Q) can be determined {teratively by the
k 1

following recursion formulae developed from equation 3.4.17:

n
1n(en+]¢ = (¢ ~1)(c-1) ...3.4.18,r
n n-
1k(€n+]) = (c -1)c -1 )(1k(cn ) ) ...3.4.19.
( Cn+1-~1< RRY ck-n -1)

The transformed objective functions for SUMT used to solve the

structural problem 3.1.3 are given by:

s = w't + P + P ...3.4.20
el T wE TR LR TR
where
L M
P = (¢ - )T ET (Yo -e )+ -~ )
1 max gs min qs q=1 s=1 max qs  qs qs min gs
...3.4.21,
P
P = (t -t ) 2 (1/(t -t )+t -t ) )
2 max Jj min j j=1 max j R min j
«..3.4.22

The weighting scalars of equations 3.4.21 and 3.4.22 put the penalty

terms in non-dimensional form.

A FORTRAN IV program 1isting of the SUMT algorithm used in this

study 1s given in the appendices.



37
3.5 Newton's ‘method!®

Newton's method can be used with SUMT to minimize the sequence
of objective functions @(t,@). The method requires the evaluation
of functions, first and second partial derivatives. The method
used is developed n the following:

Let

a(ts@) »
Q(-_f,e) where t is the current design point,

]

2 SIS
b1}

the vector of first partial derivatives of the objective
function with respect to the design variables t,
TWatE,

= 3
1

@ = the matrix of second partial derivatives of the objective

function with respect to the design variables,

Y9 = Y9att,

then expanding @ 1in a truncated Taylor's series about t gives:

2

p =7 + Tp'(z-i) +(t-T)

which has a stationary value when

1=

p(t-1t) ...3.5.1

w-=20 ...3.5.2.

Differentiating equation 3.5.1 and ignoring higher order terms gives:
-— -—-2 —

Ww=3+3J0 (t-1t) ...3.5.3,

2
0 =T + Y9 (tr-%) .c.3.5.4,



38
Newton's method solves equation 3.5.4 for t* which {s an estimate
of the design for the minimum of @ . When used with SUMT, Newton's
method may give a t* which Ties in the infeasible region. Newton's
method is modiﬁed]5 to prevent the design going into the infeasible
region, thus:
let  t* =T +olkd ...3.5.5,
where d is a search direction,
then t* - ¥ =ol*d ...3.5.6.
Substituting equations 3.5.6 into 3.5.4 gives:

0 = ¥ + * Ezw d ...3.5.7.
Equation 3.5.7 is solved by settingo{* = 1 to yield a search direction
d. Thengf is determined by searching along d for a minimum of @.
Thus the algorithm for Newton's method used with SUMT is:

i. calculate @ , 7@ and 'izg ; ...3.5.8
ii. solve the set of equations —fﬂ = —Iﬂ d for d;
tii. find they! which minimizes @ along d and replace t

with t* , where t* =t +o* d , and go to 1.

The process is continued until convergence is achieved to within the
prescribed accuracy. The algorithm 3.5.8 will be referred to as
Newton(1), hereinafter.

A variation of algorithm 3.5.8 which attempts to reduce the
computational effort required will be referred to as Newton(2).
Newton(2) gmits evaluating 2?¢ on second and subsequent iterations
but sets ¥ @ to the values at the {nitial point.

Newton(1) and Newton(2) as described above were used with
SUMT in the tests in chapter 6. A FORTRAN IV program listing of

Newton(2) used in this study is given in the appendices.



39
3.6 Fletcher-Powell's method: 10

Fletcher-Powell's method can be used to minimize the sequence

of objective functions Q(jc_,e). This method requires functions and
their first partial derivatives and is similar to Newton's method
except that the inverse of the Hessian matrix of second partial
derivatives is replaced by a matrix which, by improvement after each
{teration, converges to the Hessian matrix. The algorithm for

Fletcher-Powell's method is:

1. start with an initial design t , and an initial positive
0

definite matrix H , for examp]e; the identity matrix;

0
ii. calculate V9 and set k=0;
0
iii. determine the search direction d from the equation

k
d = ~-H ' ;
k k k

iv. find ¢* which minimizes @ along d and
k
calculate t =t +ok*d 3
k1 Tk kK

v. calculate 7§ and H where
k+1 kt+1

j=
n

H o+ M + N
kb1 Tk k k

M =¥ (d d" )(d y),

k kK "k Tk k 'k

N =-(Hy)Hy)/(y'Hy), and
k kk kk k kK

y =% -

k k+1 k

vi. go to iii, with k = k+1.



40
The process is continued unt{l convergence to within the prescribed
accuracy 1is. achieved, Fletcher-Powell's method as described above
was used with SUMT in the tests described in chapter 6. A FORTRAN

IV program of the method used {s given in the appendices.

3.7 Stewart's method!’.

Stewart's method is an extension of Fletcher-Powell's method
enabling the use of finite difference first derivatives. In
addition to updating the matrix H , Stewart's method updates the
diagonal elements of its inverse A , which are used in the deter-
mination of the finite difference derivatives. Stewart considers
the problem of estimating the first derivative of a non-linear
function by a linear form and indentifies two major sources of
error; - truncation errors and cancellation errors. Truncation
errors are caused by the mathematical inadequacy of the derivative
approximation. Cancellation errors are caused by the loss of
gignificant figures in finite precision arithmetic. Stewart's
method chooses a finite difference step Tength to that the two
sources of error are approximately equal. Stewart shows that this
can be done by solving the following equation for each of the

coordinate directions:

the step length, S’j s along the Jjth coordinate direction is given
J

by the solution of
\“‘jjn Sj“A¢jl i 4'90“ le?

where

11
o

«e03.7.1,

oA is the jth diagonal element of the matrix Ak ’
Jd



41

Ag 1s the change in @ for a step S along the jth
J J

coordinate direction,
QO is the value of the objective function at the current point,
X 1s the jth component of the last first derivative calculations.
J

(‘) is an error bound on the function evaluation.

Stewart shows that an approximate solution to equation 3.7.1 is

given by either:

33‘ = 33 (1- (\o(jj‘ Sj )/( 3|°(jjlgj + 4[53’) ) ...3.7.2

o ¥ YRl

..3.7.3
where
SJ, = 2/\¢0\QA‘J,J_\ ...3.7.4
or
S¢ = S (1-(2lyh/Cs alhe ) ) ...3.7.5
7oy (1 Lelylvale 1o < 4]
for‘_xg >-h'\-j“¢ox‘? ...3.7.6
where

Sj - Zjliﬂone(j\/djf R A

Stewart suggests that the value of r) should be the larger of (i)
the estimate of the erraor bound on the calculation of @; and (i{)

the error bound on the calculation of @ by linear expansion about



42
the computer approximation of the current point.
If the step length given by the above equations is greater
than some prescribed upper bound, Stewart suggests that a central
difference scheme is employed, where 8{6 is chosen as the positive

J
root of

o8 Tel# 0y o

where
-m
10 1is the prescribed upper bound.

The matrix A used to find the second derivatives o _ is updated

M
in the following manner:
A = A +cyy + c (¥y +y'7) ...3.7.9,
k+1 k Tkk 2 k k k k
where
2
= c /od*=-c VP'd «..3.7.10, and
o = Lo /dr-c, W g
c = 1 /y' «ee3.7.11.
2 "
The algorithm for Stewart's method is:
' -1
i. start with an initial design, the matrix H and H =4 3
0 0 0
ii. calculate T_Ipo and set k=0 ;
iii. determine the search direction d from d =- H V0 ;
k k k k

iv. find the o * which minimizes § along d and calculate t
k “k k+1



43
‘v- determine q ] max (r)¢, Ixjtj q {n/ﬁo_ll s

calculate Sf from eqtns. 3.7.2 - 3.7.7, and set 3* = sign
J

*
(& ) sign (x)9
JJ Jjd

-m
vi. if %\o&,g/};.\ {10 , use a forward first finite difference
TR

3J
scheme to obtain 3g/¥t .
J

*
otherwise calculate S R from equation 3.7.8 and use a central

difference scheme to obtain )th 2
J

vii. hence calculate H and A
k+1 k+1

3
viii. go to 111, with k = k+1.

The process is. continued until convergence to within the prescribed
accuracy is achieved.
Stewart's method as described above was used with SUMT in the

tests described in chapter 6. A Fortran IV program of the method

used is given in the appendices.

3.8 Powell's method o

Powell's methad can be used with SUMT to minimize the sequence
of objective functions Q!(L,e). The method does not require the
evaluation of derivatives, but does require modification for use with
SUMT.

Powell's algorithm 1is:

define a set of P linearly independent directions (e.g. the coordinate

directions) as _d_], d o ... ,d ; define the initial point as t
2



44

and the objective function at t as @(t .@) i then
r r

1. for r=1,...P, find & to minimize @( t +eld ,Q)
r r-1 r
and define t =t + od 3
r r-1 rr

ii. find the index R and the quantity D = maximum (D ; r=1,..,P),

R l
o 4 (~._ b ) a

r
4. defi _ ’ _ ,
1i1. define QO Q(;O e ) and Q)P (J(jc_P e) then calculate
=0((2t - t ), H
QQ (( i _0) )

iv. 1if either @ 49 and/or
0

2
5D (9 -0)
R 0P

N O

2
(p-2p+0)(@/~0-D)
0O PQ 0 PR

then go to i with replaced by t and with the old set
0 P

t
of directions 3 d ,d, ... » d 3
1 2 P
v. if the tests in iv are not met, then define gP = t-t

find the & to minimize P((t +atd )’?) .
P+1 P P+1

define t =t+e d
P+t1 P P+1 P41,

then go to 1 with t ‘'replaced by t  and with the set of
0 P+1

.0 3 9

directions : d s, d, ... s+ d s d .. d ,d

1 2 “R-1 TR+l TP TP+ .
The tests in step iv of Powell's algorithm combine the fo]]owiné
three tests:

1. if ( ﬂo‘éﬂp“l' ﬂQ)< 0 , then take step v ; otherwise



45
2. if Q)O < gq » then the stationary point of p(t@ lies between

t and t , and the o1d directions should be used ; otherwise
P 0

3. let @ be the stationary point of a quadratic form fitted to
S

p @ and p , then
0P Q

. - - - & H
it ﬂo QS ) -J( ¢P ;as) J DR s then take step v ;

otherwise use the old directions.

The tests of step iv assume that ¢(_1;,e) is continuous along the
search direction (t -t ) between t =t and t = 2t - t . However,
PO I - "o
the formulation with SUMT has @(t.e) approaching infinity as t
approaches the boundary of the feasible region. Since Powell's
procedure does not guarantee that t = 2t -t 1is in the feasible region,
the tests in step iv may not be applicgblg. A satisfactory test,
based on Powell's rationale, to détermine whether the new direction
should be accepted, can be developed in terms of §,§ and § =p(t ,p),
where t = %(% + t ). Assuming that ﬂ(_i;,e) is convgxf then t wmust

M P O M
be in the feasible region.

The three tests combined in step 1iv can be replaced by the following

tests:

1. 1if (ﬂo- 20 + QP) £ 0 , then take step v i otherwise
M
2. if (~p + 4p -3p ) £ 0, then the stationary point of B(t.p)
0 M P

lies between t and t , hence the 0ld directions should be used ;
P Q



46
otherwise

3. let @ be the stationary point of a quadratic form fitted to
S
fp,p and P , then
0P M
if J(p-p)-vy(p-p)é€ YD , then take step v ,
o’ PQS J R P
otherwise use the old directions.
The above three tests can be combined. Thus steps iii and iv become:
i1l. define @ = (t .e) and @ = p(t ’Q) » then calculate
0 0 P P
2
P=fs( t+t))p) and@=0-(P-0)/(8(0-20+p})}
M P 0 S M 0 P 0 M P ¥
iv. if (P-22+9)>0and
0 M P
either (a) (P -40+32)D0Q
0] M P
or (b) (@ -4p+3p)L0 and
0 M P
J(P-p)-d(p-0)®yD
0 S P 'S R
then go to 1 with t replaced by EP and with the old
0

P
With the above modification Powell's method was used with SUMT in the

set of directions : d ,d , ... , d ;
1 2

tests described in chapter 6. A Fortran IV program of the method

used is given in the appendices.



47
3.9 One-dimensional search for the minimum of @.

The one-dimensional search algorithm to find the Tocal minimum
of the objective function was used in this study in conjunction with
the UQAs and SUMT. The algorithm (the programmed with the name QNED)
finds a sequence of feasible points; fits a quadratic polynomial to
the points, and locates the minimum of the polynomial. One of the
previous points is discarded and another polynomial is fitted to the
remaining points and the new point. This process is continued until
successive estimates of the minimum converge o within the prescribed

accuracy. The algorithm can be stated as:

i. set0(|=0 ,1:_] =1 and Q' = p(%) s
determine the largest negative move ( amin) and the largest
positive move ( amax) along d that can be taken without
violating the Tinear constraints ; determine the resolution
(the minimum distance between two points along d that are
considered as different pémnts)); for derivative methqds ,

form the directional derivative , dy = Vp'd 3

ii. form o , the move along d to the second point;
2
for derivative methods :oL2 = (Q)E-ﬂ])/dy s Where ﬂE is
an estimate of the minimum value of @ along d,

for non-derivative methods :®X = 5x(resolution) 3
2

{ii. if o(z),amax then 0(2:= (X 11- amax )/3 ;
ifol Lamin then X := (X 1+ amin )/3 ;
2

2,
evaluate @ att=1t+oCd ;
2 2 2



iv.

48
if any of the non-linear constraints are viglated , then
if o )0 » set amax = o and go to iii, or
1fo( {0 , set amln =o<z and go to iii ;

if none of the non-linear constraints are violated, and if the
interval of uncertainty ( amax-amin ) is less than twice the
resolution , then terminate at the point with the Teast value
of @
form v( » the move along d to the third point; for derlvatlve
methods fit a quadratic to @ using dy and two pdints {b s
o« and f sl

2 2

LS
1

if the quadratic would predict a maximum , find o(sby extra-

polation; for non-derivative methods, find o{ by extrapolation
3

so that the interval spanned by the three points is three times

the interval spanned by the first two points;

AF o )amax, then °‘ = (o( +o< + amax )/3 ,

if o( £amin, then o( = (o( + ol + amin )/3 3

evaluate @ at t=t+old ;

3 3 3
if any of the non-linear constraints are vielated , then
if L D0 , then set amax =o{ and go to v, or
if °(3<0 » then set amin =o(3 and go to Vv ;
resetsamax and/or amin if th.e3funct1'on values bound the minimum
of P either above and/or below, and if the interval of uncertainty
can be reduced; if the interval of uncertainty < 2(resolution),
terminate at the point with the least value of @; if the

estimate of the second derivative is negative, terminate the



vi.

vii.

viii.

49
search; if it is less than the test value, then discard one of

the points and go to 1iv ;

forme , the move along d to the fourth point, by fitting a
4
quadratic polynomial to three points using ﬂ]’°§’¢2’°(’¢ and
2 3
ol ;
; [ 8
ifol Hamax, then o := (o +&K + amax )/3 ,
if 4>/ ’ 4 ( 5 "3 )/
if ol Lamin, then o 2= (R +k + amin }/3 3
4 4 1 2
evaluate @ at t =t+old;
4 4 4
if any of the non-linear constraints are violated, then
if &4)0, then set amax = o(4 and go to vii, or
if 9(440, then set amin = o(4 and go to vii;
reset amax and/or amin {f the function values bound the
minimum of @ either abgve and/or below, and if the interval
of uncertainty can be reduced; discard one of the four points;
if the interval of uncertainty is less than twice the

resolution, then terminate at the point with the least value
of #;

if the remaining three points do not bound the minimum of

f, then go to vi;

if the maximum permitted number of quadratic fits has been
exceeded then terminate at the point with the least value
of @

go to vi;


file:///amax

50
A quadratic polynomial is of the form:

2
P =cX + ck + ¢ ...3.9.1,
1 2 3

where ¢ , ¢ and ¢ are coefficients.
1 2 3

Differentiating equation 3.9.1 gives:

dg / det = 2c10k e ...3.9.2.

P has a stationary value, @%, when d@/d¢ = 0 , or when

o = K* = -c2/ 2c] ...3.9.3.

Equation 3.9.3 is used in step iv to find & and in step vi to
3

find 044. In step iv, ¢ and ¢ are determined from the solution
1 2
of the following three equations:

2
g?_ = ¢ $ + ¢c®X + ¢ N --.3-9.4;
1 11 21 3
2
@ = col *+ CX *+ c , ...3.9.5,
2 12 22 3
dy =2cx + ¢ s ...3.9.6,
11 2
which yield: )
c = dy/(K-K)-(-0)( -g) ...3.9.7
1 1 2 1 2 1 2
c = dy - 2c¢ ...3.9.8.
2 11

In step vi, ¢ 3nd c are.determined from the solution of the
1

2
equatians 3.9.4, 3.9.5 and the following:
2
g, = ek + Ck tg ...3.9.9,
3 13 23 3

which yield:



51
c =(p-p )@ - )k -¢) - (0-B)/0 -&K)( -e&)
1 1 2 1 2 1 3 2 3 2 3 1 3
...3.9.10
c =(p-p )R -k) =--c (K +&) ...3.9.11.
2 2 3 2 3 1 2 3

Equation 3.9.3 will predict a minimum provided that the second

derivative of @ with respect to o{ 1{s positive, or

2 2
dp/d = 2c] > 0 ...3.9.12

or

c] > 0 ...3.9.13

A Tower bound on c] can be obtained from the following:

consider three points o(g s s and & , where of = %(of + o¢) along
i J m m 1 J
the search direction d ;

let the function value at the three points be g.p and P ;

1 m
the coefficient ¢ for this case 1is :
1

(p]
—
1]

2
(0 -20 40 )/Ca) (X +oL ) ...3.9.14,
iom 1)

When using limited precision arithmetic, @§ can not be represented

exactly; hence
(1-p)p < p < (1+p)p «..3.9.15,
I7¢ m m 9¢ m
where ¢)¢ is the error bound on .

The smallest meaningful absolute value c¢  can have occurs when §

1 m
is given by:

p = (1% 9¢)(‘/2)( ﬂiwa‘) ...3.9.16.

m



52
Substituting equations 3.9.16 into 3.9.14 gives ¢ , a test value

t

or C =
f 1

2
c =+2 ) (p+p )///( o + L) ...3.9.17.
t g 1] 1 J

The positive value from equation 3.9.17 is used in step 1iv to test

if a maximum would be predicted and in step vi. For step iv,

o =of and £ = .
i 1 b 2

For step vi, o« =6 andek =of.
i1 j 3

In step vii, the point to be discarded is chosen in the following

manners:

i. 1if the Tatest or the previous best point is an end point of
the four points, then discard the other end point and go to iv;
ii. 1if the four points do not definitely bound the minimum, then
discard the end point in the interval furthest from the minimum
and go to {vi
i{i. 1if the four points do bound the minimum, then discard the end
point which bounds the minimum and go to iv;

iv. return to the search algorithm;

A FORTRAN IV program 1isting of the above search algorithm used in
this study with the UOAs and SUMT is given in the appendices.



53
3.10 One-dimensional search for the boundary of the feasible

region.

The one-dimensional search algorithm to find the boundary of
the feasible region was used in this study in conjunction with MFD.
The algorithm (programmed with the name FSMOVE) finds a sequence
of points within the upper bound move to the boundary defined by
the Tinear constraints. A quadratic polynomial is fitted to each
of the non-linear constraints and the smallest positive root-is
determined. OQne of the previous points is discarded and another
set of polynomials is fitted to the remaining points and the new
point. This process is continued until it converges to the boundary
to within the prescribed accuracy. The algorithm can be stated as:

i. set ® =0, t =t, f =f (& ), i=1,...R where R is the number
1 1 il i1

of non-Tinear constraints; determine the resolution (see
section 9 of this chapter); determine the largest negative
move (amin) and the largest positive move (amax) along d to
reach the linear constraints; form the negative of the direc-
tional derivatives of each of the constraint functions:

dy =- (¥f (8))'d, i=1...,R;
i i

ii. forme{, the move along d to the second point, from
2

e(z = minimum ( ( £ () - 5€)/dy 5 1=1,..,r);
i i

if «?amax, then setv<2 = amax;

evaluate f =F (t) at t =T+od d;
iz 1 2 2 2



iii.

iv.

V.

54
if any of the non-linear constraints have been violated,

then set amax = 0(2 and continue:

form .(3, the move along d to the third point, which {s an
estimate of the move to the nearest non-linear constraint

and is found from the solutions of f (t) =&/2 and of a
i
quadratic polynomial fitted to the values '#f , X f .o,
i 1, 12 2
and dy., i=Ts..4R;

i
if & Damax, then setoh = amax;
3 3

evaluate f =f (t})att =T + o d;
i3 i 3 3 3

if any of the non-linear constraints are violated, then set
amax =% and continue ;

reset amgx and/or amin 1‘%‘ the boundary is bounded either
above and/or below providing the interval of uncertainty
will be reduced ;

form c(4, the move along d to the fourth point, in a similar
manner as in step iii, except that polynomials are fitted to
each of the constraint functions using the values

f 9°<sf.’°(9f‘ and ® 3

it 1 12 2 13 3
if o »amax, then set = amax ;
4 4
4 _
evaluate f =f(t)att =% +o d;
i4 i 4 4 4

if any of the non-linear constraints are violated, then set

amax = °‘~4 and continue ;



55
vi. 1f the interval in which the boundary lies is less than the
resolution, then terminate at the point in the feasible
region; if the maximum number of quadratic fits has been
exceeded, then terminate at the feasible point nearest the
baoundarys;
vii. discard one of the points and go to iv;
The quadratic polynomials are of the form 3.9.1, and the coefficients
are determined from the formulae 3.9.7, 3.9.8 or 3.9.10 and 3.9.11.
To reduce the amount of computer storage and effort required, advan-
tage was taken of the form of the non-linear constraints for the

structural probiem 1.2:

o L r Lo R q:.-];_.,L, s=1,..,M ...3.10.1.
min qs qs max qs

Thus polynomials were only fitted to each of the & , instead of
qs
to each of the f (t). The polynomials are of the form:
) i
0 =colt+CchtC ...3.10.2,
qs 1 2 3
An estimate of the move to boundary is given by the solution of
equation 3.10.2 with the following equations:

o = (0 + & )or= (o - &) ...3.10.3,
qs min qs 2 max qs 2

where € is given in equation 3.3.3. The four possible solutions

of equations 3.10.2 and 3.10.3 are given by:

2
L*¥=(-c _’r_/c -4 (c - 6 +%€) )/2c , ...3.70.4
2 2 1 3 max qs 1

or



56

2
*=(-c + ~4c(c - & " -%¢) 2 ,
ol * c _jcz c] c3 )M :

2 min gs
...3.10.5
In step vii. the point to be discarded is chosen in the following
manner:

1. order the points such that & ¢ & <« Lo 3
1 2 3 4

ii. 1if the boundary Tlies between

a. ¢ andok , discard o , unless it is the newest paint ,
1 2 4
in which case discard X :

3
b. o4 andek , discard oK , unless it is the newest point,
2 3 1
in which case discard &« ;
4
c. & and X , discard & , unless it is the newest point,
3 4 1
in which case discard X .
2

A FORTRAN IV program 1isting of the above one-dimensional search

algorithm used with MFD in this study is given in the appendices.

3.11 Primal-Dual LP algorithm.

The Primal-Dual LP algorithm, programmed with the name PRMDUL
and used in this study with MAP and MFD, finds the optimum of the

problem:

minimize X L3010,

Cl
subject to Ax ¢ b, 0 £ x.

where the values in ¢, A and in b may be either positive or

negative.



57

The inequalities in 3.11.1 may be converted to equations by the
addition of the variables, s , called slack variables,

minimize ¢' x+d' s 30012,

subject to Ax + Is = b.,0 ¢ x,0 € s.
A basic solution may be obtained by setting x = 0 thus

X = 0,5 = b ...3.11.3 .
where the variables in s are called the basic variables, and in
x are called the non-basic variables.

The LP algorithm moves from the solution 3.11.3 to the optimum
feasible solution by performing elementary row operations on the
coefficients of ¢ , d , A, L and b. An optimal solution is found
when all the components of the vector c' are greater than or
equal to zero. The vector c¢' gives the change in the objective
function for a unit increase in any of the non-basic variables. A
feasible solution is found when all the components of the vector b
are greater than or equal to zero. The algorithm PRMDUL determines
an optimal solution then searches for a feasible optimal solution
in the following steps:

1. determine a basic (feasible or infeasible) solution ;

ii. operate on problem 3.11.2 until an optimal (feasible or
infeasible) solution is obtained, using the Primal simplex
algorithm ;

{i1. operate on the optimal solution until a feasible solution

is obtained, using the Dual simplex algorithm.



58

The Primal and Dual LP algorithms operate on the coefficients by
selecting the pivot element to give the largest increase in
optimality or the largest decrease in infeasibility respectively.

The Primal and the Dual algorithms are well documented!1> 29 and
will not be detailed further.

To save computer storage space, a condensed tableau which does
not store the matrix I but stores the variables associated with
the columns of the matrix A was used in PRMDUL.

A FORTRAN IV program 1isting of the algorithm is given in the

appendices.



59

CHAPTER 4

EVALUATION OF FUNCTIONS AND DERIVATIVES

4.1 Functions and their derivatives.

The algorithms describéd in chapter 3 require some or all of

the following quantities:

F(t) » £ (8) » P(tsg) A1,
1
TF(t) » 7F (t) » 90(t.p) G2,
and '
2 - 2 2
VR - 1F (), Tote) 413
1

The derivatives in equations 4.1.2 and 4.1.3 may be obtained either
explicitly by differentiation or by a finite difference technique.

Thus, for problem 1.3 ,

F(t) =w' t Y % DY S
hence, by differentigtion,
VF(t) =w, and Y F(t) = Q G415
Similarly, .
f(t)= (& - ), (¢ -¢o ), (t -t)or
i max qs qs qs min gs max Jj J
(t -t ) 4106
Jj min j .
hence
Uf(t)= *%o ,orte , respectively 4107,
i qs j



60

where e is the Jjth coordinate direction vector ,
J

and
2 2
VYf(t)=+%e , orQ, respectively , ...4.1.8 .

i qs
For the function :

r
p(t.e) = F(t) + g( 2 : (1/f (£))) 41,9,
1= 1

differentiation yields :

2
W(tp) =TF) + ol 2’5. (-17F(@) )FF(R))) ...4.1.10,,
i=1 i i

and
2 2 r 3
Tate) = TF) +ez§((+(z/f_(_t)> T (£).3F (9)'
1= 1 1 1

2 2
-(/f (1)) Tt
(/i(") ) I i(“) ?.}.4.1.11 .

The functions and derivatives in equations 4.1.9, 4.1.10 and 4.1.11
can be obtained from equations 4.1.4 to 4.1.8. Equations 4.1.6 to
4.1.8 require, in particular, the evaluation of

2
o,V andV o A2,

for which the algorithms are described in section 2 of this
chapter.
An alternative procedure for obtaining derivatives is to use
a finite difference derivative scheme. In a forward FD scheme, the
ith component of Ty is given by:
6y/5xi = (y(_7<_'+§_x_i) - ¥(X) )/6x1_ 813,

where



61
y(X) is the value of yfX)at X ,

_81(_. is the vector { 0,0,..0,8x ,0,..,0)' , and
: X

i
& 1is assmall change in the {th variable , x .
! i

Similarly ,

‘Zy/ x &
T

- (y(z+§_>g{+_t_x__) -y@’f_&i) ~y(2+§§j) +y(® )

3
(6x )(dx )
i J

40114
Hence finite derivatives can be found for the functions F(t) , f (t)

i
and ﬂ(;,e) using equations similar to equations 4.1.13 and 4.1.14.

4.2 Stresses and their derivatives.

The evaluation of derivatives as described in section 1 of
this chapter requires some or all of the following quantities :
2
¢, % and V& A I

where

g is the M x L matrix of member stresses ,
Yo~ is the matrix of the first partial derivatives of g with
respect to the design variables t , and
_V_zcr is the matrix of the second partial derivatives of ¢ with
respect to the design variables.
The member stresses, ¢ ., for the truss problems, are taken as the
axial stress in each member and for the plate problems, as the
effective stress in each constant stress finite element. The

effective stress for the plate problems is defined as:



62

2 2 2
66 =/[0 +0 - 00 + 30 LG4.2.2
4 ) 2 12 3 ‘
where
o; =  the effective stress,
G} = the direct stress in the first coordinate direction ,
G; = the direct stress in the second coordinate direction, and
0 = the shear stress for the first and second coordinate
3
direction.

In this study, the stiffness matrix method was used to find the
quantities in 4.2.1.
The matrix ¢ 1is obtained by solving the matrix equation :

P =Ku ...4.2.3,
for u and then operating on u , thus :

g=3u h2.4

where

P is an N x L matrix of N applied nodal loads for L load

cases

is an N x L matrix of associated deformations ,

=

|7=<

is the stiffness matrix , and
S 1is the stress-deformation transformation matrix .
The matrix, Vo=, is obtained by differentiating equations 4.2.3

and 4.2.4 with respect to the 1ith design variable, t , to give :
i



63

Loe / bti] =[[05 /M’.i]y_ + KPu / hti]} ...4.2.5,
[b_o_‘/bti] =[Lb§_/bt;lg + _S_[bg/bti]) ...4.2.6,

where {.] denotes a matrix.

Rearranging equations 4.2.5 and 4.2.6 gives:

[Y_cg_/ ati] = (s Bti]g_]= _K_[_by_ / bti] ...8.2.7,
[[bg/ bti] - sy bti]_q]= §_[bg/bt1] ...4.2.8,

which are ofzthe.same form as equations 4.2.3 and 4.2.4.

The matrix ¥ o is obtained by differentiating equations 4.2.7 and

4.2.8 with respect to the jth design variable, t » to give:

j
1[623 / atiatj] - [z,?-g/ atiatj]y_ - [35/ Bti ][bg_ / btj]]:

[Oc/ 330w/ 0e] + xurdeae])
! ! VY a2,
and

2 2
U.B a/ Btibtj] - [B S/ Btibtj] u - Lb§ /vt Ju/ atj‘n=

2
Qs btj]lby_ / Bti] +sWOOuy btibt;}]
...4.2.10.

Rearranging equations 4.2.9 and 4.2.1Q gives:

2 2 ;
l[% P/Btiatj] - K/bti'btj] u - [ak/btilbyjbtJ] -{_bﬁ/btj]}g/bt?] -

2
S [3 g/btibtj] .

and



64
2 2
d oyt 3 3-1d /3t 3t Y u - Pt Youne - § 3/t Y dusat
e
2
s wot 3t
1]

which are of the same form as equations 4.2.3 and 4.2.4.

...4.2.12,

Equations 4.2.3 and 4.2.4 are solved using the stiffness method. This
method can also be used to solve the equations 4.2.7 and 4.2.8 and

equations 4.2.11 and 4.2.12, providing the left hand sides of the

equations can be formed. Thus the following derivatives are
required:

to solve equations 4.2.7 and 4.2.8:

™, and §5 ...4.2.13
and to solve 4.2.11 and 4.2.12:

2 2 2

YP,.TK and 7S ...4.2.14,

VP 1is the change in applied forces caused by a change in the design
variables. YP and ]Eg_are null matrices for the structures and the
loading under consideration. In the stiffness method, the stiffness
matrix, K, for the assembled structure, can be obtained from the

element stiffness matrices, gﬁi for the unassembled structure by

using the equation: ‘

M
K= Z3AkA ...4.2.15,



65

A 1is a displacement transformation matrix which is constant
—J
for the structure ;
2
hence YK and ¥ K can be considered from an elemental level.

The stiffness matrix for element Jj for the truss problems is

given by26 :
k = -1 ...4.2.16
J
1
where

t is the cross-sectional area of the jth member,
E 1s Young's modulus of elasticity for the jth member, and
J

1 1is the length of the jth member.
J

Hence, differentiating equation 4.2.16 with respect to the {th

design variable gives:

0 0
[Bg/bt = [ ]for 1#] o 82,17
i 0 0
bg/bt_] =1 - 1] , =] ...4.2.18.
N -]
TE1 1
J
Therefore
2
Tk =0 ...4.2.19.
i

The plane stress plate problems can be analyzed using triangular

constant stress finite elements. In this study the design variables



66

were taken as the nodal thicknesses of each element. The stiffness

matrix for element s , k , can be shown to be26 :
S
k =t(t + t+ t ) C ...4.2.20 ,
[ j sl s2 s3
3A
123
where

t ,t , t are the three nodal thicknesses for member s ,
sl s2 is3

A is the area of the triangular element s, and
123

C is a symmetric matrix of constant coefficients
formed from the nodal coordinates and Poisson's
ratio.

pifferentiating equation 4.2.20 with respect to the 1ith nodal

design variable gives:

a&,/bt = 0 , ifsl, i#s2 and i#s3 ...4.2.21 ,

s i
Q& /¥ = E. C, i=s1, i=s2 or i=s3 ...4.2.22 ,

s i 3AY -
123
2

Hence Tk = 0, ...4.2.23 .

S

The matrix S transforms nodal displacements into member stresses.

For the trusses, the stress transformation matrix for member j

is given by:



67

S =|[E il—] 1?! ...4.2.24 5

J -
]o
J
hence
T}_S_/&t}= 0, forall i and j ...4.2.25 .
J i
Thus,
2
¥$ = 0 and ¥§ = 0 1..4.2.26 .
Similarly, for the plane stress plates,
S. - (] )_D- e 4.2.27 ]
~J 2R
123
where

D is a matrix with terms which are functions of the nodal

coordinates.
Thus
2 -
¥S = 0 and 7S = Q ...4.2.28 .

—

Thus for the two types of structure considered, equations 4.2.7 and

4,2.8 simplify to

n

- &/t u
1

+ (2o /vt
i

k{du 7 2t3 42,29 ,
1

n

sfou/at) ...4.2.30 .
1
Equations 4.2.11 and 4.2.12 simplify to

- {[aymi}[ Bybtj} ¥ [by‘btj}[byjbti}] = K [32 Watibt;

...4.2.31

and



68
2 2
+ Y_B o/ btibtj - _s_[b u/ atic)tj] 42,32 .

The solution of equations 4.2.3, 4.2.4, 4.2.29, 4.2.30, 4.2.31
2
and 4.2.32 gives 0, Vo and ¥V v directly for the truss problems,

but only gives ¢, o, O and their derivatives for the plate
T 2 3
problems. The derivatives of the effective stress , gﬁ, can be

obdained by differentiating equation 4.2.2. Thus, since

/2 2 2 / 2
g =Jo +060 -0c0 +3¢ = [0 ...4.2.33,
4 1 2 12 3 4
then
2

173 2 1Y Mo ) ...4.2.34,

41 = | (0 ) 4
o3 ( 4 S

i i )
hence

60-4 1 {2 (00-1) 2 (:;2 60—2 (60.1) 6 60'3

= o + 20 - - + 66

LI (2?‘) 1\3%/ 2 ) Tlae) 2 \oe

i 4 i i i i t

i
...4.2.35.

Differentiating equation 4.2.34 with respect to the jth design
variable gives :

(b%) -1 NVl e b,(o*,zg) 1 32(0-2)

4 4 4 |+ ...4.2.36,
3t Ot —lFI\ AT 726 |\ot 5t
i 2\ 4 j i Y A
2 2 2
' )64 " 60-4 60‘4 "2? ’ (0-4) 4.2.37
- + 2 oo Toluo )
DT |= 6-; ¥ Aot 4)\¥ 3t
1] i J i 3



69

where

)2(0'2) Do \[ 3 c\[dc\ Po\[dr\ [dc\[dr

T_g_ =3 4.3y _a\+2[_2\ 2\-( gl 2 2l 1)+
t Ot - ' e
i3 dt A Ot ot Adt | Bt 1ot | 3t Adt
J i J'z i J 21 j 21
c\[dr\ : 2. [d o s d o
3V -3\+*26) 1 \t20| —2VLqg| —2 -
Ot Ko N8t At 2t 3t | 1ldt ot
J i i i d i J
2 2
do bYa
cl—1 \+60 | -3 ...4.2.38.
2 Pt ot 3\t ot
i j i

Equations 4.2.36 and 4.2.38 can be simplified to give:

2 2 2
30’4_ 1 - zb_cr] 30'2 80‘1 0'1_30'2 X
MM | 2o ) 1 M ‘(b‘t_bt d )L Pt ) |t
J i i 3 J

i d 4 i

2

AN AV AT ANE:
Gz(ﬁlbt\)‘ bt‘at)} ¥t 5t.>- %)

1 1 J 1

1
J J J
(f_o; 9_63 L d \ o
% b bt | \de bts) TR R
1] T i J
... 4.2.39,
2

Equations 4.2.35 and 4.2.39 enable Vo-and ¥ ¢~ to be evaluated for
the plate problems.

The ;solutions of the stiffness equations, 4.2.3 and 4.2.4, and
the derivative equations, 4.2.29 to 4.2.32, are given in the

following section of this chapter.



70

4.3 Solution of the stiffness and derivative equations.

The solution of the stiffness equations, 4.2.3 and 4.2.4,

is given by the following algorithm :

i. assemble the basic data for the idealized structure: ...4.3.1
position of nodes, Tocation ‘of members, boundary conditions,
material properties and the applied loading ;

ii. determine the band width of the structure stiffness matrix,
K » and the campact storage index matrices ;

1il. calculate the element stiffness constant, stress trans-
formation and weight transformation matrices ;

iv. 1insert the boundary conditions into the element stiffness
constant matrix so that the rigid body degrees of freedom
are removed. (This was done by replacing diagonal terms
of affected rows and columns with ones and the other terms
of affected rows and columns with zeros);

v. determine the design variable values (input data or output
data from the optimization algorithms) ; form the element
stiffness and structure stiffness matrices ;

vi. decompose the structure stiffness matrix, thus: K = U'U,
where U is an upper triangular banded matrix, using the

following formulae :

i=1
U = K - (U U ) ...4.3.2,
i i1 r= riri

i-1
u = (K -2 (v u ) YW 1) . Iyl ...4.3.3.
1J d orst rind 1



71
vii. solve P = U'U u , using a dummy solution, q , thus:

P=U"q, theng= Uu, giving u , using the following

formulae:

i-1
qQ = (P - Z2( U q ))( /U ) ...4.3.4
1 r=1 ror i1

A
u = (q_ -z u))(]/U ) 435,
1 1 r=1+ ir

where
A 1is the order of the stiffness matrix.
viii. solve @=S u , giving 03
ix. for plate problems, determine ¢ from § ,00 and ¢ using
equation 4.2.2 ; * e ’
The solution of the first derivative equations 4.2.29 and
4.2.30 is given by the following algorithm, assuming that steps
i to 1ix have been performed already:
for 1=1,..,P, ...4.3.6 ,
x. form {oK/dt ]u :
xi. perform step vii, but with [bK/OtJu replacing P, yielding (b_/bt}
xii. perform step viii. but mthibu/bt } replacing u, yielding (_b__/‘bt]
xiii. for plate problems, determine Vo from Yo, Vo and Vg using
equation 4.2.35 ; ! ] : ’

Steps 111 to xii will be repeated for each full partial derivative

evaluation. For step x, VK has already been formed in step {ii.



72

The solution of the second derivative equations 4.2.31 and

4.2.32 is given by the following algorithm, assuming that steps

i1 to xiil have been performed:

for i=1, .. ,P3sJi=1i, .. sP3 ...4.3.7,

xiv. form}JOk/dt Qou/dt Y + {dk/dt §} du/dt Ylas in equation 4.2.31
(e Jouae} + (Y ans

xv. perform step vii, but with the above expression replacing P %
2
xvi. perform step viii, but with[b %/bt.at ) replacing u ;
137

xvii. for plate préhiems, determine ¥ ¢ using equation 4.2.39 ;
4

FORTRAN IV program 1istings of the algorithms used in this study

are given in the appendices.



73

CHAPTER 5

COMPUTATIONAL EFFORT

5.1 Introduction.

Computational efficiency is an important consideration in
the comparison of the NLP methods introduced in chapter 1. When
using electronic computers, computational efficiency can be
measured by the computational effort and the computer storage
space required to solve the problem. The storage space required

is becoming less important as computers increase in size. How-

ever, inefficient data storage and access may increase considerably

the computational effort. Recommendations?’

regarding the storage
and access of data for the computers used in this study were
implemented wherever practical.

The computational effort expended is a function of the
efficiency of the computer program for the algorithm. As will
be shown later in this chapter and will be seen in the results
in chapter 7, the major computational effort is used in the
evaluation of functions and their derivatives and since the routines
used for these evaluations are common to all the algorithms, any
inefficiencies in their programming will affect all the algorithms
similarly.

A multiplication with present day computers takes more

computer time than an addition or subtraction, and since divisions



74
are relatively few in number, computational effort is often
measured by counting the number of multiplications required to
perform the operation under conskderation. Such an analysis omits
the computational effort invelved in forming DO loops, array
subscript arithmetic, and logical statements, and since multi-
plications may compose only a small proportion of the computational
effort expended, a more realistic measure of compuftional effort
is the amount of computer time required to solve the problem. In
this study, Central Processor Unit (CPU) time was used as the
measure of computational effort. Included in the CPU time are
the times needed to load registers, to execute the instructions,
and to store the results. Estimates for CPU time for the IBM
360/67 are developed in the succeeding sections of this chapter
using the following procedure :

i. describe the algorithm : see prec?ding chapters ; ...5.1.1
ii. program the algorithm in FORTRAN ¢ see appendices ;
iii. translate the FORTRAN program into an ASSEMBLER program ;
iv. assign to each of the ASSEMBLER instructions a published
average instruction time28 for the computer used ;
v. sum the times.
It should be noted that step iv was only performed on the
instructions which constituted the major computational effort.
It should also be noted the times resulting from the application
of procedure 5.1.1 are dependent on the programming of the FORTRAN,
on the FORTRAN/ASSEMBLER translator (compiler) and on the computer



75
and hence can only be, at best, approximations to the actual

effort required.

In an optimisation, the computational effort expended con-

sists of three components :
1. the effort used by the optimisation algorithm ;
2. the effort used to evaluate functions ;

3. the effort used to evaluate derivatives.

Estimates of these three components are considered in the

following sections of this chapter.

5.2 Effort used by the optimisation algorithms.

By inspection of the algorithms presented in chapter 3, it
can be seen that a large proportion of the computational effort
will be expended in performing the following steps in the
algorithms:

MAP - step v. solve the LP problem ,

MFD - step v. solve the LP problem to give the search
direction, and

SUMT - step 111: minimize ¢(§;e) using the UOAs, where a large
proportion of the effort is used in determining

the search direction.

In the LP problems, the major computational effort in each LP
iteration, is used in finding a pivot element and in transforming
the LP tableau. Procedure 5.1.1 was applied to the primal-dual

algorithm described in the previous chapter and gave the



76
computational effort to select one pivot and then transform the

LP tableau as
T =39.3rc + 1g4.1r + 101.5¢c + 91.9 «..5.2.1
5.2.1
where
T s the CPU time estimate in microseconds on the IBM 360/67 ,
r 1is the number of rows in the matrix A of the LP problem
(3.2.1), and

¢ 1is the number of columns {n the matrix A of the LP problen.

Zoutendijk]] estimates that the number of iterations required by
a primal simplex LP algorithm to produce an optimal solution is
between 1 and 2.5 times the number of rows in the primal
problem. Similarly the number of iterations required by a dual
simplex LP algorithm to produce an optimal solution is between 1
and 2.5 times the number of columns in the primal problem.
Observations of preliminary trials on the structural problems
indicate that a value of 1.5 times the number of columns gives
approximately the number of iterations required by the LP algorithm
used. Thus an estimate of the computational effort to find the
solution of the LP grob]ems is gpproximate1y~given by :

T5 29 =58.95¢cr+152.3¢c +216.2rc+137.9¢c ...5.2.2

For the class of problems considered, when using MAP,

r=P+2lM , c=P ...5.2.3,

and thus r 1is approximately given by :



77
r = 6P ee.5.2.4 3
hence the computational effort to find the solution of the LP

problems associated with MAP is given by :
3 2

T =353.7P + 145Q°P + 137.9 P ...5.2.5,
5.2.5

When using MFD for the problems considered, the number of rows is
given by:

r = P + va2LM ...5.2.6,
where v 1is the proportion of non-linear constraints considered as
active at the current point.

The value of v has been found to give r approximately as :

r = 1.5P ...5.2.7 3
hence the computational effort to find the search direction by
solving the LP prob]egs is given b%‘:

T = 88.43P + 476.6 P t+ 137.9°P ...5.2.8.
5.2.8

When using MFD, extra computational effort is used to Tocate the
houndary of the feasible design space. Applying procedure 5.1.1

to the search algorithm (FSMOVE) gives the computational effort
necessary to locate one point by using a quadratic fit and associated
'housekeeping' operations as :

T = 339.0R, ...5.2.9,
5.2.9

where R is the number of non-linear constraints used.
Assume that R = 2P , then

T = 678.0 P ...5.2.10.
5.2.10



78
Typically, only three points are required to locate the boundary,
hence

T = 2034 P ...5.2.11.
5.2.11

Thus, with MFD, the effort to generate and search along a direction,
excluding any function or derivative evaluations, is given approxi-
mately by combining eguations 5.2.8 with 5.2.11 to give:

2

T = 88.4P + 476.5P + 2172 P ...5.2.12
5.2.12

When comparing equations 5.2.8 with 5.2.12, it can be seen that the
extra effort to search is not as significant as the effort required
to generate the direction.

When Newton's method {s used with SUNT to minimize @(%.p), the
major computational effort is used in solving equations 3.5.7, which
are both linear and symmetric. The procedure 5.1.1 when applied to
the equation-solving algerithm (GELS) gave the computational effort
to solve equation 3.537 as:

T =10.68 P + 112.9P + 102.2°P ...0.2.13
5.2.13

When Fletcher-Powell's method is used with SUMT, the major compu-
tational effort is in steps 1i1 and v as described in chapter 3
section 6. The procedure 5.1.1 was applied to those steps in the
algorithm (FLEP). The computational effort used to perform steps
ii1 and v is given by:

2
T = 129.6 P+ 99.20 P + 12.61 ...5.2.14.
5.2.14

When Stewart's method is used with SUMT, the computational effort

required to perform steps 1il and v, as described in chapter 3



79
section 7 is given as é

T = 129.6 P + 400.6 P + 40.80 ...5.2.15.
5.2.15

When Powell's method is used with SUMT, the computational effort
to generate a new search direction and to perform the matrix
manipulation prior to each one-dimensional search is given by the
following :

T = 16.21 P + 56.78 ...5.2.16.
5.2.16

When using a one-dimensional search to find the minimum along a
search direction in conjunction with an UOA and SUMT, the computa-
tional effort necessary to perform one quadratic fit and associated
'housekeeping' operations, but to exclude any function or derivative
evaluations was estimated by procedure 5.1.1 to be:

T = 23.59 P + 4l12.2 ...5.2.17.
5.2.17

A Tower bound on the number of new points along the search direction
i§ 3 , although typically between 4 and 9 points along the direction
are required to lTocate the minimum. Thus, assuming that on average,
% points are required to locate a minimum and that T is
approximately equal to the computational effort requi?ég'lg locate
any of the points along the search direction, then the computational

effort used during a one-dimensional search is given by :

T = 153.3 P + 2679 ...5.2.18.
5.2.18

Combining equations 5.2.18 with 5.2.13 to 5.2.16 gives the

computational effort to generate and search along a direction; but



80 .
exc]udes-the effort for any function or derivative evaluations,

for Newton's method as

3 2
T = 10.68 P + 112.9 P + 255.5 P +. 2679
5.2.19 ' : ' , veeb.2.19,
- for Fletcher-Powell's method as :
T = 129.6 P + 252.5 P+2692 o ...5.2.20,
5.2.20 ‘ ‘
for Stewart's method asz:»
T = 129.6 P+ 553.9P + 2720 ...5.2.21,
- 5.2.21 T : : '
and for Powell's method as :

T = 169.5 P + 2736 ...5.2.22.
5.2.22 e

Comparing equations 5.2.13 to 5.2.16 with 5.2.19 to 5.2.22, it can
be seen that; with the exception of Powell's method; the computa-
tional effort to perform a search is not very significant compared

with the effort to generate the direction.

5.3 Effort used in evaluating functions.

The - function evaluations required. by the optimisation algorithms
are the determination of : -

F(t) + F(2) and/or (L.p) 3T,
1 .

in which the major computational effort is used in determining the
stresses, ¢ . The algorithm used to determine ¢ is given in section
3 of chapter 4. In the gptimisation process, steps i to iv of

“the algorithm will be. performed only once, whereas steps v to viii



81
will be repeated many‘times."Thekefore<the'COmputationa1'effort

used in steps 1 to 1v will not be considered further.

A1l the major computational manipulation in steps v to viii can
be formed from the following operations : |
1. 1ocatg an element in a vector; using subscript arithmetic,
and post it into anqther-vector';
2. add the product of an element in another matrix and an
element in a vectéf to an element in a matrix ;
3.. add the product of two elements in a matrix to a scalar ;
4. vreplace an e]ement in a matrix by the difference of the
| e]ement and a scalar ;
5. replace a diagonal e]ehent in a matrix by the reciprocal
of its square root ;
6. replace an element of a matrix by its product with an
.element of a vechr;

Applying procedure_5.1.1_gives the fo]]oﬂing results:



82

Table . 5.3.2: Computational effort for basic operations

Operation CPU time ( microseconds)
1 19.24
2 19.31
3 17.96
4 23.22
5 - 115.28
6 15.53

Using the values 1in tab]ev5;3.2; the computational effort to
complete step. v is given approximately by :

I = 19.24 (M)(C) 4+ 19.3T (M)(E) ...5.3.3,
'5.3.3° - » ~ '

where M 1is the number of members , .
C is the number of design vafiables which affect the
membe stiffneSS'matrix; and
E is'the.number of elements in the upper part of the
member stiffness matrix.
Similarly, the computational effort to complete step vi 1s given

approximately by :

T a4 '=.'17;961(B)(3*1)(3AAZB*1)/6 + 2322 (B-1)(2A-B)/2
+ 115,28 A + 15.53 (B-1)(2A-B)/2 .5.3.4
or
T5»3 5 = 17.96 (B)(B~1)(3A-2B+1)/6 + = 38.75 (B~1)(2A-B)/2

+  115.280 | 535,



83"
where- A 1is the order of the system stiffness matrix; and
B s the bahdwfdﬁh of the system stiffness matrix
The'computatiqnal effqrt ta comp]ete step vii 1is given approxi-
mately by: | |

T = (2) ((19.37 (B-1)(20-B)(L)/2) + (38.75 (A)(L)))
5.3.6 ' R - ..6.3.6

where L 1is the. number of load caSes;'
The computational effort to complete step viii 1is given
approximately by :

T = 19.24 (L)YMOD) + 19.30 WMO)S)  ...5.3.7,
5.3.7 o T - -

where D 1is the number of nodal displacements associated with
each member, and
S is the number of components of stress associated with
each. member. |
Equations 5.3.3 to 5.3.7 can be simplified by substituting values
for the variab1e5'frqm structural problems of the type given in
chaptgr,é.:'Thus;'fbr the truss prob]ems; assume that
M=P,C=T,E=10,A=2P+2, B=P+3 L=20=4,and
§=1 , - 7 _'.>..'_5.3.'_8.
substituting equations 5.3.8 into 5.3.3 gives:

T = 19.24 P + 193.1P = 212.3 P ...5.3.9,
-5.3.9. : : - )

into:5.3.5 gives :
T = 17.96. (P+3)(P+2)(4P+1)/6 +. 38.75 (P+2)(3pP+1)/2 +
S 5.3.10 00 . ' :
© . 115.28.(2P+2) ‘ C.ai5.3.10 5

or



| 84
3 2 | -

T =12.0P +121.0P +453.0 P+ 287.3 . ...5.3.11,

5.3.11 IR ~ |

into 5.3.6 gives :

T = (2) ( ( 19.31 (P+2) (3P+1)/2) + (38.75(2P+2)(2 Z
©5.3.12 > (1931 ( *2)(3pr1)72) + (38.75( }(.?? .3.12
or
2 = . o
T % 57.9P + 445.2 P + 8.6 ...5.3.13.
0 5.3.13 . e ‘ ‘ |
into 5.3.7 gives : »
T =. 19.24 (2)(P)(4) + 19§31.(2)(P)(4)(1) ...5.3.14,
‘5.3.14 - ~ - - :
or
r = 308.4 P . ...5.3.15.
'5.3.15 o

Simi]ar1y; for the plate prob1ems; assume.that
M

n

1.5P-4, C =3, E=21, A= 2P, B=.25P +6sL = 2, D = 6 and
s=4, | ..:5.3.76.
Substituting equations;5;3.16 int0;5;3;3 gives:
'_T5;3;]7 ;,19(24(1;5PA4)(3): + 19;31(1;5Pq4)(2]) = |
694.9 P - 1853 ...5.3.7,

into,5;3.5 gives:

T = 17.96(.25P+6) (. 25P+5)(6P~.5P-11)/6 + 38.75(.25P+5)(4P-
.25P-6)/2 -+ 115.28(2P) ' ...5.3.18,
or ,
: 3. 2 o
T =1.03P +61.4P + 1968.1 P - 2073 ...5.3.19,
~5.3.19 T R o |

into 5.3.6 gives :

T _=;(2)-((19.31)(,25945)(4P=.25P46)/2 + (38;75)(2P)(2%)3_

5.3.20 20,



.85

or

T = 18.1 P
5.3.21

2 .
+ 488.1 P~ 7579.3 - ...5.3.21,

into 5.3.7 gives :

T = 19,24 (2)(1.5P-4)(6) +. 19.31 (2)(1.5P-4)(6)(4)
©5.3.22 - - SO - ..5.3.22,
or |
. = 1737 P - 4631 ©...5.3.23.
"5,3.28 ‘ .

From equations 5.3.9, 5.3.11, 5.3.13 and 5.3.15, the computational
~ effort.needed to.evaluate the stresses in the trusses is given
approximately by :

: : .2
T = 12.0P + 178.9P + 1420P + 635.9 . ...5.3.24.
- 5.3.24 ‘ ’ '

From equations 5.3.17, 5.3.19, 5.3.21 and 5.3.23, the computational
effqrt needed to,evaluatg'the stresses in the plates is given
approximate]y by :3 o
T ~ =1.03P +79.5P  + 3888 P - 9136 ...5.3.25.
5.3.25 ;

5.4 Effort used in evaluating derivatives.

The derivative eva1uat10ns required by the optimisation
algorithms are the determination of :
. 2 . ..2 2 .
TF(R), TF(8), W)y TR, T (0) and Tp(te)  -..54.1,
in which the major computational effqrt is used to determine the
derivatives of the stresses;' The algorithms used in thfs study are

~given in section 3 of chapter 4. Using the values in 5.3.2, the



86
computational effort to complete stepxP times is given

approkimate1y~by:: ,

| 2
T = (19.24 (LYY (C)/(PY + 19.31 (LY(D ) (M(CHP)) (P)

~5.4.2. .
C...5.4.2.
- The effort to complete step xi,P times,is given by:
I = (1 )m® ..5.4.3
~5.4.3  5.3.6

and to complete step Xii‘,P times 1s given by:

T ‘-(T | )' (P) .54,
544 \ 537/ 4.

Thus, for the truss problems, substituting the values 5.3.8 into

equation 5.4.2 gives:-

T = 19.28 (@) + 1931 (2(6)(P)T) -

RS e ...5.4.5,
into equation 5,4;3 gives: |

T 597 4 445.2 PZ' + 348.6 P ...5.4.6,

sas “ 8.

and -inte equation 5.4.4 gives:
R )

T = 308.4 P | .57,
5.4.7 - ' -

Similarly for the plate problems, substituting the values 5.3.16

into equation 5.4.2 gives:

T = 19.24 (2)(6)(1.5P-4)(3) + 19.31 (2)(36)(1.5P-4)(3) -

5:4.8 = S0P - 16,960 ..5.4.8,
into equatién,5.4.3'giyes:‘_ )

T = 18P + 488.1P - 579.3 P 549,

-5.4.9



.87
and into equation,5*424'gives; 4 |
T = 1737.P - - 4631 P ...5.4.10.
25.4.10 0 o -
From equations'5,4;5 tq 5.4;10;.the'computatTOna1 effort to
.éya]uate the first derivatiVes.of stress; assuming thét.the

stresses have a]readyébeen evaluated; is given approximately by:

T = 57.9P + 753.6 P + 1120 P BN RIA
5.4.117 S -
for trusses, and approximately by:
3 2
T = 181 P  + 2225 P - 16960 . ..s5.4.12,
h.4.012 : - S '

for the plates.

The computational effort to evaluate the first derivatives of

stress using finite differences;'is‘given approximately by:
' 4 -3 2 ‘

T = 1200+ 178.9P  + T1420P + 6359 P
B.4.13 : : : : : .
h ---5.4‘-‘[3’
for the trusses, and zy; . )
T = 1.03P + 79.5P + 3888 P - 9136 P ...5.4.14,

- 5.4.14
for the plates.
The computational effort to complete step xiv P(P+1)/2

times ,is given by:

= [T N\ () (pe1)/2 ...5.4.15,
T5.4.15 (;5.4.2) 2) (P -
to complete step xv ,P(P%l)/ZItimes is given by:
T - [1 > (P+1)/2 ...5.4.16,
.T5.4{]6 \.5.4.3, SR '

and to complete step xVi) P(P+1)/2,times/is given by:



88

T = ('T (P+1)/2 ...5.4.17.
5.4.17 5.4.4

Thus, substituting the values 5.3.8 for the truss problems into

equation 5.4.15 gives:

2
T = 771.8P + 771.8°P ...5.4.18,
5.4.18
into equation 5.4.16 gives:
4 3 2
T = 28.95P + 251.6P + 396.9P + 348.6°P
5.4.19
...5.4.19,
and into equation 5.4.;7 gives:
T = 154.2 P + 154.2 P ...5.4.20.

5.4.20

Similarly, for the plate problems, substituting the values 5.3.16

into equation 5.4.15 gives:

2
T = 5210P - 11,750 P - 16,960 ...5.4.21,
5.4.21
into equation 5.4.16 2ives:
3 2
T = 9.05P + 253.1P - 45,6 P - 289.7°P
5.4.22
...5.4.22,
and into equation 5.4.17 gives:
3 2
T = 868.5P - 1437 P -~ 2316 ...5.4.23.

5.4.23

From equations 5.4.18 to 5.4.23, the computational effort to

evaluate the second derivatives of stress, assuming that the

steesses and their first derivatives have already been evaluated,

is given approximately by:
s 9 p A 3 )

T = 28.95P + 405.8P + 1323P + 1120°P
5.4.24

...5.4.24,



89

for the trusses, and 2pproximate1%~by: )

T = 9.05P + 1122P + 3728 P - 12040 P...5.4.25,
5.4.25

for the plates.

The computational effort to evaluate the second derivatives of

stress using finite d%fferences, Zs given apprgximate1y~%y:

T = 6.00P + 95.5P + 798.9P + 1027 P +317.9°P
5.4.26
...5.4.26,
for the trusses, and approximately by:
5 4 3 2
T = .515P +40.3 P + 1984 P - 2624 P ~ 4568 P ~ 4568
5.4.27
...5.4.27,

for the plates.

Figures 5.4.28 and 5.4.29 respectively plot estimated compu-
tational effort required for the trusses and plates of chapter 6
using an IBM 360/67 computer to evaluate a function (as given
approximately by equations 5.3.24 and 5.3.25), a first derivative
(as given by equations 5.4.11 to 5.4.14), and a second derivative

(as given by equations 5.4.24 to 5.4.27).



90

=
N = = (=8

= o >

S

L

&

N

S
| i [ |
2 3 2 =
o . o
— r— o ﬂu-

SPU023S Nd) 340443 |eUOLIeINdWO) paqewLs]

21

13

Number of Design Variables, Trusses

FIGURE 5.4.28



Estimated Computational Effort, CPU Seconds

2
10.0(7- 4P(PH)P Vo
Po
79
1.00
' ]
0.101
0.01‘ —
1 1 | |
4 9 16 25

Number of Design Variables, Plates

FIGURE 5.4.29

91



92

)

Table 5.4.30: Estimated function and derivative effort ratios;, E

. P-BAR TRUSSES , P =  P-NODE PLATES , P =

3 7 13 21 4 9 16 25
[ g 1.81 2.75 3.56 4.05 2.55 5.34 8.07 10.8
v?g 0 4.18 12.0 25.8 45.3 11.0 82.4 76.6 150.
Px@ g 3.00 7.00 13.0 21.0 4.00 9.00 16.0 25.0

2
(P +P)p  6.00 28.0 91.0 231. 10.0 45.0 136. 325.
2.

7 Px@  0.60 0.3% 0.27 0.19 0.64 0.59 0.51 0.43

2 2
Ve (E_§§9¢ 0.70 0.43 0.28 0.20 0.91 0.72 0.56 0.46

Table 5.4.30 gives effort ratios obtained from the results shown

in figures 5.4.28 and 5.4.29. The effort ratios are defined by:
E = the computational effort to evaluate A / the computational

A,B
effort to evaluate B ...0.4.31.

5.5 Total computational effort.

The results obtained in the previous three sections of this
chapter are summarised in this section.

One iteration in MAP requires, a function evaluatéon, a first
derivative evaluation, and the solution of the LP problem. Thus
an estimate of the total computational effort required by MAP to
perform one iteration on a trusg problem, is given by:

T = 423.6 P + 2383 P + 2678 P + 635.9 ...5.5.1,
5.5.1

B



93
and on a plate prohéem 1s given by:
2

T, T 328 + ISP+ 408 P - 26100 ...5.5.2.

One search in MFD requires, a function evaluation, a first
derivative evaluation, the solution of a LP problem and two more
function evaluations on average, to locate the next set of con-
straints. Thus an estimate of the total computational effort
required by MFD to perform one search on a truss problem, is given

by:

3 2
T =182.3 P + 2840 P + 7549 P + 1908 ...5.5.3,
5.5.3 '
and on a plate problem is given by:
3 2
T =109.6 P + 2940 P + 13840 P - 44370 ...5.5.4,
5.5.4

One search in Newton's method with SUMT requires a function
evaluation, a first and second derivative evaluation and 5.5 more
function evaluations on average, to find the minimum along the
direction. Thus an estimate of the total compufational effort
required by Newton's method to perform one search on a truss
problem, is given Zy:

3 2
T =29.0P +552.0P + 3351 P + 11720 P + 6812 ...5.5.5
5.5.5

and on a plate problem, is given by:
4 3
T =9.05 P + 1158 P + 6583 P + 13490 P - 73670 ...5.5.6.
5.5.6
If the ohjective function were quadratic, then Newton's method

would require only one iteration to find its minimum.



o4
One search in Fletcher-Powell's method with SUMT requires a
function evaluation, a first derivative evaluation and 5.5
function evaluations, on average, to find the minimum along the
direction. Thus, an estimate of the total computational effort
required by the method to perform one search on a truss problem, is
given by: 3 )
T = 135.9 P + 2047 P + 10600 P + 6825 ...5.5.7,
5.5.7
and on a plate proglem, is g;ven by:

T =24.8P + 2872 P + 25520 P - 73660 ...5.5.8.
5.5.8

Similarly, when Stewart's method with finite difference derivatives
is used, the total computational effort to perform one search on

a truss problem is4given by«

2
T =12.0P +156.9P + 2712 P + 10400 P + 6853 ...5.5.9,
5.5.9
and on a plate problem, is given by: )
3
T =1.03P +8.2P + 4535 P + 16690 P - 56670 ...5.8,i0.

5.5.10
If the objective function were quadratic, then both Fletcher-Powell's
and Stewart's methods would require no more than P iterations to
find its minimum.

When Powell's method is used with SUMT, then the total com-
putational effort to form and search along a direction on a truss
problem, is given b§: )

T =78.0P + 1163 P + 9393 P + 6869 ...5.5.11,
5.5.11

and on a plate problem, is given hy:



95
3 2

T =6.70 P + 5817 P+ 25440 P - 56650 ...5.5.12.
5.5.12

Powell's method requires P or P+l searches per iteration, and

requires no more than P iterations to minimize a quadratic function.

For the truss problems and the plate problems respectively, figures
5.5.13 and 5.5.14 plot estimates of the computational effort required
by each method to complete one iteration using an IBM 360/67 computer
(as given by equations 5.5.1 to 5.5.12) against the number of design

variables.

An iteration is defined as:
the solution of one LP problem when using MAP,
the solution of one-dimensional search when using MFD, N1, FP

or ST, and

the solution of P one-dimensional searches when using PQ.

Measurements of the actual computational effort used by each

algorithm during one iterationare given in chapter 7.



Estimated Computational Effort per Iteration, CPU Seconds

96

PO
N1
10.0 [~
ST
MAP
MFD
FP
1.00
PO
.10 N1
ST—
FP—
MFD—
MAP
0.01 l 1 L | .
3 7 13 21

Number of Design Variables, Trusses

FIGURE 5.5.13



Estimated Computational Effort per Iteration, CPU Seconds

97

PO
1
10.0 |~ MAP
ST
MFD
FP
1.00}F
PO '
N1
0.10fF ST—
FP—
MAP-
MFD”
0.01 | L { 1

4 9 16 25

Number of Design Variables, Plates
FIGURE 5.5.14



98

CHAPTER 6

TEST PROBLEM DATA

6.1 Description of the tests.

Chapter 5 developed estimates of the computational effort
required by each of the algorithms on the two types of structural
problem under consideration when using an IBM 360/67 computer.
This chapter gives details of test problems investigated using
an IBM 370/145 computer to ascertain the actual computational

effort used by each of the algorithms. The following results were

recorded:

1. the number of
a. one-dimensional searches,
b. function evaluations, and
c. derivative evaluations;
2. the CPU time expended in
a. evaluating functions,
b. evaluating derivatives, and
c. performing those operétions required by the optimisation
algorithms; and
3. the value of
a. the objective function and

b. the structural weight.



99
The CPU times, measured using a system subroutine, do not
include CPU effort expended performing input/output operations.
The test structures used are:
3, 7, 13 and 21 member pin-jointed plane trusses, and
4, 9, 16 and 25 node {dealization plané stress plates,
all subject to two load cases, with upper and Tower bounds on

stress and design variable values. Data for the structures are

given in the following sections of this chapter.

The optimisation algorithmsused are summarized in section 7 of
chapter 2 and are detailed in chapter 3. Selection is made of
arbitrary coefficients and other parameters required by the

algorithms in section 3 of this chapter.

6.2 Test structure data

The trusses used in this study are similar to one investigated
by Schmitzg. The design variables are the member cross-sectional

areas. The configurations of the test trusses are shown in figure
6.2.1 and have the following common data:

initial cross-sectional area of all members = 1.0,

load case 1, P] = 15.0, P2 = 25.9808,

load case 2, P =-20.0, P = 0.0,

Young's modu]ul of elastisity = 1.0,
1.0,

20.0, ...6.2.2

density

t .
max Jj

|

t = 0.01,
min j



1.0

100

L X

\j

12 @

1.0
3 BAR
1.0 TRUSS
—»p
1 60 0.5 =
L tjj 1 ﬁ' —t
0.25 = Pz

13 BAR
TRUSS

20 @ 0.15 = 3.0

21 BAR 1.0

U elffffnne

FIGURE 6.2.1



4 NODE 9 NODE
.88 .76
4.0
.76 %
64
6.0 6.0
* -+ £
4.0
16 NODE 25 NODE
21000
o SN
30000 30000 o 1
21000
LOAD CASE 1 LOAD CASE 2
FIGURE 6.2.3

e
GORRAY DMV
= 1 .Jun 17,
& S
L aR0 o

* 14000

101



102

o = 20.0,
max qs
o =-15.0.
min qs

The plane stress plates used {n this study are rectangular and
are subject to two load cases, one of pure tension and one of
pure shear. The nodal thicknesses of the finite element idealiza-
tion are the design variables. The plates have the configurations
shown in figure 6.2.3 and have the following common data:

the initial thicknesses of the nodes are determined from

linear ingerpolation using the initial thicknesses of the

nodes of the 4 node plate,

Young's modulus of elasticity = 10,000,000.0,

Poisson's ratio = 0.3,

density = 2.0,

t = 1.0, ...6.2.4
max J

t = 0.25,

min Jj

o8 = 15,000.0 = - ¢ .

max gs min qs

Figure 6.2.5 shows the configuration of a 21 bar bridge
which was also used to test the optimisation algorithms. The
bridge was subjected to one dead load and four Tive load cases.
The Tive loadings are of the type imposed by vehicles on a bridge

truss. Table 6.2.6 gives load data. Other pertinent data are:



103

4060m=24.0m

21 BAR BRIDGE

FIGURE 6.2.5



104
2 :
initial area of all members = 95.Q0 cm ,

initial weight = 106.7 kN = 10.86Mg,
2
Young's modulus of e]asgicity ; 21,000 kN/cm 2

density = 7.698 g 10  kN/em = 0.785 x 10 Mg/cm ,
t = 100 cm ,
max J
2

t. . = 10cm,
min J

2 2
o = 16.5 kN/cm , and g~ = - 12.0 kN/cm .
max qs min gs

Results for this structure are given in the appendices.



105

Table 6.2.6:- Loadings on the 21 bar bridge ( kN )

Live Load
Load Dead 1oad load case . load case Toad case - load case
‘ ' ] 2 -3 4
X . - 40 - 40 - -
3. , -
X - - ~ - 40 C 40 -
X - - S + 40 + 40
X - - - - + 40
9 . A
. Y 10 . . oo _ -
-2 :
1 - 55 +200. +200 - -
3 -
. 15 - - - -
4
| YJS. 55 - + 200 + 200 . -
Y ]5 e - G e -
e .55 - - + 200 + 200
e 15 - _— - -

Y 10 . - - .




106
6.3 Optimisation algorithm data

Operational characteristics of optimisation algorithms are
dictated by control parameters and/or arbitrary coefficients.
Values for the arhitrary coefficients (o in equation 3.2.2 for
MAP, ¢ in problem formulation 3.3.19 for the MFD, and c in
equatio; 3.4.2 for the SUMT) are selected in section & of this
chapter. Values for the control parameters required by the
optimisation program used in this study are given below.

The control parameters are used by the optimisation program
to determine when control should. be returned from a subroutine
to the calling subroutine or program and to determine when the
optimisation should be terminated. The control parameters are
set in the main program or are read as data input. The algorithm

for the main program used is:

i. read in structural data and optimisation data; ...6.3.1
ii. set values for the control parameters for the algorithms
on this iteration of the main program;
iii. go to the optimisation algorithm and on return from the
algorithm go to {v;
iv. record results (section 1 of this chapter);
v. 1if the optimisation should be terminated, report results
and terminate; if the optimisation should not be terminated

go to ii.

In step 1, the following optimisation data are input:



107,

1. the ya]ues;qf,thg'arbifrary:coefficiénts;
- 2. the relative accuracy of

. number representation and

b. function-and derivative evaluations;:
- 3. the minimum allowable velative rates of

a. reduction in wefght;

b. reduction in objective function, and

c. change in-all the design variable values;
4. the resolution of design points; and

- 5. the maximum number of main program iterations allowed.

The . data items 2a and 2b-ar¢ used by many of the algorithms to
~generate the test values in the anorithms.v The relative accuracy
of number represent&tion depends on the absolute magnitude of the
number represented, but was. taken to be an average value of
0.000.000 1 for the computers used in the tests; Preliminary
tests showed that the-re]ative éccuracy of function and derivative
evaluations was‘approximétglng.OOO 001.

Data item 3a 1is required in step v of the main program
-algorithm. The program s términated if the actual re]ativa
reduction in weight during the Tatest main program iteration is
less than the value 3a. A value of 0.000 010 per main program
iteration was used.

Data items 3b and 3c are used in step iii by the optimisation

‘algorithms to transfer control to the main program. Thus, if the



108

relative reduction in the objective function and relative change
in ai]lthe'design variables are less.than the values 3b and'3c;
then the optimisation algorithms-return control to the main program.
A value of 0.001 per optimisation algorithm iteration was used for
hoth 3b. and:3c.

Data item 4 is used by the one-dimensional search algorithms.
A value of 0.001 was used for the resolution of design points. The
maximum number of ‘main program iterations; data item 5, was set
at 7.

The control parameters set in step i are: the maximum
nhumber of quadratic fits allowed in each one-dimensional search
and the maximum numbér of optimisation.algorithm iterations allowed

per main program iteration.

Table 6.3.2: Maximum number of algorithm iterations allowed

Algorithm Max{mum .number of
iterations per main
program iteration

allowed.
MAP T+ 1/3%
MFD 4+ /2
PO o
ST (2 +i/2)pP
P
N1 | 2 + /2
N2 (VB +))/2

* where i is the iteration number of the main program.



109

In step i, the maximum number of quadratic fits allowed per
one-dimensional search was set at (6 + i/3) for all the
algorithms except MAP.

In step 11i of the main program algorithm, the optimisation
algorithms return to the main program when the maximum number of
iterations given in table 6.3.2 is exceeded.

The results in step {v of the main progfam algorithm are
Tisted in section 1 of this chapter. When MAP is being used, the
weight of a feasible design obtained from an infeasible solution
is also recorded. The feasible design is determined by multiplying
all the design variables of the infeasible solution, by the ratio
of the stress which violates the allowable stresses by the greatest
amount to the appropriate allowable stress. The weight obtained
from the feasible design is called the 'scaled weight' in the
following chapters.

In step v of the main program algorithm, the following tests
are made for termination:

i. terminate for all algorithms except MAP, if the weight has
increased;

ii. terminate if the design is feasible or acceptably infeasible,
and if the relative rate of change in weight during the
latest main program {teration is less than the test value
data item 3a;

iii. terminate if. the number of main program iterations exceeds

the test value, data item 5.



110
In test 11, a design {s considered acceptably infeasible providing

none of the stress constraints are violated by more than 0.000 001

G .
max qs

6.4 Optimisation algorithm arbitrary coefficients.

Preliminary computer runs were made to establish suitable values
for the arbitrary coefficients of the optimisation algorithms. The
three bar and seven bar trusses were used as the test structures for
these runs.

For the three and seven bar trusses respectively, figures
6.4.1 and 6.4.2 plot weight against CPU time for the values of the
MAP arbitrary coefficient.o from 0.10 to 0.40. From the results
shown, o{ was selected as 0.2Q for all the computer runs reported
in chapter 7.

For the three and seven bar trusses respectively, figures
6.4.3 and 6.4.4 plot weight against the number of derivative
evaluations for the values of the MFD arbitrary coefficients c
(for a1l i) from 0.0001 to 10.0. From the results shown in th;se
figures, ¢ for all 1 was set at 0.10 for all the computer runs
reported i; chapter 7.

For the three bar truss only, figures 6.4.5 to 6.4.24 plot
weight against CPU time for the values of the SUMT arbitrary
coefficient ¢ from 1/10 to 1/320. For data items 3b and 3c
of section 3 of this chapter, figures 6.4.5 to 6.4.8 have the
values of 0.005, 0.001, 0.0002 and 0.00004 respectively on

Newton(1)'s method. Similarly, figures 6.4.9 to 6.4.12, 6.4.13 to



11
6.4.16 and 6.4.17 to 6.4.20 have the above values on Fletcher-
Powell's, Stewart's and Powell's methods respectively. For
Newton(1l)'s, Fletcher-Powell's, Stewart's and Powell's mathods
respectively, figures 6.4.21 to 6.4.24 have, for data items 3b
and 3c, the initial value of 0.001, which is then reduced, as
recommended by‘Moezz, by a constant factor of 0.4 on each
succeeding SUMT iteration. From the results shown in figures
6.4.5 to 6.4.24, an efficient and consistently effective choice
for the value of the SUMT arbitrary coefficient c¢ 1is 1/160.
This value was used for the computer runs reported in chapter 7.
Figures 6.4.5 to 6.4.24 also verify that the value of 0.001 for
data items 3b and 3c of section 3 is efficient and that the scheme
suggested by Moe does not seem to offer significant computational

advantages.



112



113

3.70 r-
VALUES
FOR o
0.40
3.60 0.35
0.30
T 0.25
0.20
0.15
— 0.10
3.50 =
3.40 f=
43
S
3
= 3.30
3.20 f=
3.0
3.00 L L { I —
0 2 4 6 8 10

Measyred Computationa? Effort, CPU Seconds
FIGURE 6.4.2



3.04 T'
3.02 |
3.00 VALUES FOR
Si
10.0
————1.00
0.10
2.98 & 0.01
0.001
FR)
K
o
‘D
=
2.96 I
2.94 +
2.92 |
2.90 1 | !
0 10 15

20
Number of Derivative Evaluations

FIGURE 6.4.3

25

114



115

Weight

3.00 | | | | |
0 5 10 15 20 25

Number of Derivative Evaluations

FIGURE 6.4.4



KHeight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

116

VALUES
FOR ¢

0.100
0.050
AN — 0.0250

0.0125
wh 0.00625
0.003125

=N

3 4 5 6 7
Measured Computational Effort, CPU Seconds

FIGURE 6.4.5



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

! | * '

117

3 4 5 6

Measured Computational Effort, CPU Seconds

FIGURE 6.4.6



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

118

ALY 0.00625

Measured Computational Effort, CPU Seconds
FIGURE 6.4.7



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

VALULS
FOR ¢

0.1

119

3 4 -5 6
Measured Computational Effort, CPU seconds.

FIGURE 6.4.8



Weight

3.04

3002 e

3.00¢

2.98p

2.94p

2.92f-

2.90l

120

1 ) ) | 1

2 3 4 5 6
Measured Computational Effort, CPU Seconds

FIGURE 6.4.9



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

121

VALUES
FOR C
\\ 0.10
0.05
:§§\ 0.025
0.0125
0.00625
0.003125
? | '
3 4 5 6 7

Measured Computational Effort, CPU Seconds
FIGURE 6.4.10



122

3.04
3.02 L
3.00
2.98 L VALUES
FOR ¢
0.10
. \ \ 0.05
<, \\ 0.025
= 2.96 |- Y\ 0.0125
= \\AN X 0.00625
0.003125
2.94 L.
2092 -
2.90 i 1 | 1 ]
2 3 4 5 6 7

Measured Computational Effort, CPU Seconds
FIGURE 6.4.11



123

3.04

3.021
3.00

98 VALUES
2.9 FOR ¢

\&A 0.10
SR WA\ 0.08,
ok N oo,

AN\ \ 0.003125

Weight

2.94

2.92

2.90 '-' . ' .
3 4 5 6 7

Measured Computational Effort, CPU Seconds

FIGURE 6.4.12



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

0.00625
0.003125

124

Measured

6

Computational Effort, CPU Seconds

FIGURE 6.4.13

8

10

12



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

125

} ] | | ]

4 6 8 10 12
Measured Computational Effort, CPU Seconds
FIGURE 6.4.14



Weight

3.04

3.02

126

3.00
2,908 VALUES
FOR ¢
0.10
\ \ 0.05
1 88%52’5
2.96 \ \\ \ \\ o'fooszé
0.003125
2.92
2.90 | | 1 | |
2 4 6 g 10 12

Measured Computational Effort, CPU Seconds

FIGURE 6.4.15



Weight

3:04 T

3.02 I~

3.00

2.98 I

2.96 I~
2.94 7
2.921
2.90 i | | i i
4 6

8 10 12 14

Measured Computational Effort, CPU Seconds
FIGURE 6.4.16

127



3.06
3.02 |
3.00 |
2.98 [-
-
5 YALUES
o 2.96 I FOR ¢
=
\ :
05
\( 05
2.94 |-
2.92
|
2.90 ' 4 '
0 5 10 15

20 25
Measured Computational Effort, CPU Seconds

FIGURE 6.4.17

128



Weight

3.04

3.02

3.00 -

2.98

2.96

2.94

2,92

2.90

i | |

129

10 15 20

Measured Computational Effort, CPU Seconds
FIGURE 6.4.18

25



3.041

|
’

3.02

3.00

5

2.98 p

Weight

2.9 I~

2.94 ™

2.92 ™

2.90

L y i §

T

20
Measured Computational Effort, CPU Seconds

FIGURE 6.4.19

5 10 15

25

130



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

[ i 1

131

10 15 20
Measured Computational Effort, CPU Seconds
FIGURE 6.4.20

25



132

3.04¢
3.02T-
3.00=
2.98~
VALUES
- FOR ¢
L
oD
‘v " 0.1
= 2.96 0.05
\ 0.025
\\ 0.0125
N\ 0.00625
0.003125
2.94
2.92=
9.90 (] | ] (1 4
2 3 4 5 6 7

Measured Computational Effort, CPU Seconds
FIGURE 6.4.21



Weight

3.041

3.02[F

3.00f

2.981

2.96[

VALUES

2.94F

2.92¢

133

2.9
2 3

Measured

4 5 6
Computational Effort, CPU Seconds
FIGURE 6.4.22



Weight

3.04

3.02

3.00

2.98

2.96

2.94

2.92

2.90

| [ ] 1

134

VALUES
c

0.1
0.05
0.025
0.0125

0.00625
0.003125

4 6 8 10

Measured Computational Effort, CPU
PIGURE 6.4.23

12

Seconds



Weight

3.04

3.02

3.00

135

2.98
VALUES
FOR ¢
)
\ .
2.96 \ \ 0.025
1\ 0.0125
0.00625
0.003125
2.94
2.92
2.9 | ] | | J
5 10 15 20 25

Measured Computational Effort, CPU Seconds
FIGURE 6.4.24



136

CHAPTER 7

TEST RESULTS AND DISCUSSION

7.1 Introduction

Throughout this chapter the following definitions are used:

i

computational effort CPU time expended using an IBM 370/145
computer,

A-B effort ratio = E
A,B

computational effort either to perform
operation A or using method A divided by
computational effort either to perform

operation B or using method B,

minimum weight (MW) lowest recorded weight of all feasible

designs encountered by any of the
algorithms

near minimum weight (NMW)=100.5%0f the minimum weight defined
above.

Slight changes in the arbitrary coefficlents can alter the
computational effort required by the algorithms. Nevertheless
it is assumed in chapter 6 that either the optimum choice or an
equally non-optimum choice has been made for the arbitrary

coefficients of the algorithms on all of the problems.

7.2 Computer results.

Table 7.2.1 shows on which problems the algorithms were

tested and indicates whether the near minimum was achieved.



137

Failure to achieve the near minimum weight (NMW) was usually
caused by the upper time 1imits set for the computer run. How-
ever, MFD failed to achieve the near minimum on both the 21 bar
truss and the 25 node plate because the LP algorithm lacked ade-
quate precautions to prevent cycling. Powell's method and
Stewart's method were not run on the large problems because
earlier runs on the smaller problems had established that these

algorithms were not as efficient as the other algorithms.

Table 7.2.1: Computer tests made

P-BAR TRUSSES P-NODE PLATES
ALG 3 7 13 21 4 9 16 25
MAP Y Y. ¥ v Y Y Y Y
MDY Y Y N Y Y ¥ N
N1 Y Y Y v Y Y Y ¥
N2 Y Y Y N Y Y Y Y
FP Y Y Y Y Y Y v Y
ST Y N N - Y Y Yy -
PO Y N - - Y Y - -

Y = algorithm reaches the NMW of the problem,

=
i

algorithm does not find the NMW within the

time allowed, and

- = problem not run using this algorithm.

Figures 7.2.2 to 7.2.9 plat weight against total computational

effort used during the computer runs shown in table 7.2.1.



Weight

138

3.04 -
3.02 |*
|
ALGORITHMS
3.00 [ MAP
MFD
N1
— N2
H FP
ST
2.98 |t PO
2.96 [T
2.94 I \\\\\
2.92
9 90 [ [} [ § |
Q 5 10 18 20 25

Measured Computational Effogt, CPU Seconds
FIGURE 7.2.2



139

3.60
3.50 H
ﬁ | ALGORITHMS
MAP
3.40 \\ MED
, NT
\ N2
\ FP
ST
3.30 H PO
i)
<
-
2 3.20 1
3.10 It
3.00 |
2.90 ] 1 | i }
Q 50 100 150 200 250

Measured Computational Effort, CPU Seconds
FIGURE 7.2.3



Weight

140

4,20 r
4,004
3.80
ALGORITHMS
3.60L EEEEE—
n MAP
MFD
¥4r——————-N1
- N2
FP
3.40H ST
3.20H
3.00»}.\~
2.8 1 1 ] 1 ]
0 100 200 300 400 500

Measured Computational Effort, CPU Seconds

FIGURE 7.2.4



Weight

141

4.20r
4.00p
3.80H
ALGORITHMS

MAP

MFD

N1
3.60[ N2

FP
3.40r
3.20
3.00~
2.80 ] l ] L 1

0 400 800 1200 1600 2000

Measured Computational Effort, CPU Seconds

FIGURE 7.2.5



142

25.2
25.0 |
24.8 |
246 || ALGORITHMS
MAP
MFD
N1
g N2
= 24,41 ' FP
= ST
PO
24.2 F
24.0 -‘\ k
0 5 10 15 20 25

Measured Computational Effort, CPU Seconds

FIGURE 7.2.6



Weight

25.2

25.0

24.8

24.6

24.4

24.2]]

24.0

23.8

1

ALGORITHMS

MAP

MED
| St
N2

FP
*&—— ST
PO

L

43

100 200 300 400 500

Measured Computational Effort, CPU Seconds
FIGURE 7.2.7



Weight

144

25.2 B
25.0 -
24.8],
ALGORITHMS
MAP
MFD
N1
24,611 N2
FP
ST
24.4]T
24. 24T
L~
24.0
23, l l ' L '
0 200 400 600 800 1000

Measured Computational Effort, CPU Seconds
FIGURE 7.2.8



145

25.2
ALGORITHMS
MAP
MFD
25.0 H N
N2
FFP
24.8}=
24.6
s ]
-~
2
< a4)
24.2)
24.0F -
23.8l ) \ | . .
0 625 1250 1875 2500 3125

Measured Computational Effort, CPU Seconds

FIGURE 7.2.9



146
Table 7.2.10 shows values frthe parameters measured at the NMW

for each run. The parameters measured and the abbreviations used

are:
TF = CPU time (secs) used in evaluating functions,
TD = CPU time (secs) used in evaluating derivatives,
TQ = CPU time (secs) used in the optimisation algorithms,
TT = sum of TF, TD and TO,
NFE = total number of functions evaluations,
NDE = total number of derivative evaluations, and
NITS = total number of iterations.

The results presented in the remainder of this chapter have been

derived from the values in table 7.2.10.

7.3 Effort used by the function and derivative algorithms

For the trusses shown in figures 6.2.1 and for the plates
shown in figure 6.2.3, figures 7.3.1 and 7.3.2 respectively, plot
measured computational effort for evaluation of functions and
derivatives against the number of design variables. Table 7.3.3
gives the derivative - function effort ratios, A/B, obtained from
the results shown in figures 7.3.1 and 7.3.2.

The effort ratios for rows 1 and 2 in table 7.3.3 are for
derivatives obtained by differentiation, and the ratios in rows
3 and 4 are for derivatives obtained from a forward finite difference
scheme. Note that differentiation - finite difference effort ratios
for first derivatives shown in row 5 are of a similar magnitude to

the second derivative ratios shown in row 6.



147

Table 7.2.1Q: Results measured at the NMW.
P-BAR TRUSSES, P = P-NODE PLATES, P =
ALG
3 7 13 2% 4 9 16 25
MAP TF 0088 0.54 4.2 14.2 107 0.77 2.2 5.
D 15 1.40 16.4 65.4 .234  3.80 17.0 56
T0 071 0.41 5.4 19.1 141 1.45 9.4 40.
1T 274 2.35 26.0 98.7 482 6.02 28.6 101.
NFE 3 5 1 12 3 5 5 5
NDE 2 4 10 11 2 4 4 4
NITS 2 4 10 11 2 4 4 4
MFD TF .352 3.5 52, - .249 2.1 10. -
b)) .369 4.04 43, - .466 8.9 78. -
TQ 270 1.71 15, - .202 1.5 17. -
1T .991  9.30 11Q. - 917 12.5 105. -
NFE 11 32 138 - 7 13 22 -
NDE 6 11 26 - 4 9 18 -
NITS 6 11 26 - 4 9 18 -
NT TF 1.57 14.3 57. 196. 2.25 11.0 42.0 93
D 1.87 32.2 251. 1320 3.66 84.2 776. 4300
TQ 0.16 0.6 2. 15 0.34 0.9 2. 5
1T 3.60 47.1 31Q. 1530 6.25 96.1 820. 4398
NFE 51 133 157 172 63 70 93 91
NDE 9 17 19 20 7 12 15 14
NITS 9 17 19 20 7 12 15 14
FP TF 2.71 28.6 184. 801. 2.16 28.7 116. 397.
L] 0.92 16.9 144. 706. 1.48 30.6 221. 1067
TO 0.26 1.5 6. 15. 0.36 1.5 4. 10
TT 3.89 47.0 344, 1522 4.00 60.8 341. 1474
NFE 87 259 485 704 60 179 256 382
NDE 14 42 84 116 12 30 49 74
NITS 13 43 85 117 11 30 49 74
ST TF 5.15 - - - 5.75 137. 761. -
D - - - - - - - -
TO 0.36 - - - 0.50 2. 6. -
TT 5.51 - - - 6.25 140. 767. -
NFE 162 - - - 156 880 1690 -
NDE - - - - - - - -
NITS 15 - - - 12 45 57 -
PO TF 12.1 - - - 16.6 417, - -
™ - - - - - - - -
T0 0.8 - - - 1.1 7. - -
TT 12.9 - - - 17.7 424, - -
NFE 387 - - - 470 2679 - -
NDE - - - - - - - -
NITS 17.3 - - - 17.0 47.2 - -




In the figures 7.3.1 and 7.3.2 and in the table 7.3.3, it

148

can be seen that derivatives obtained by differentiation required

in general less computational effort than derivatives obtained by

finite differencing. The values in table 7.3.3 ébmpare well with

the estimates given in table 5.4.30.

Table 7.3.3:

Measured function and derivative effort ratios, E

P-BAR TRUSSES, P =

P-NODE PLATES, P =

L]

A B

3 7 13 21 49 16 25
Vo g 1.98 3.34 4.43 5.12 3.34 6.35 9.81 13.7
v’ 9 431 144 31.3 55.2  10.1 39.4 107. 19.
Px¢ @  3.00 7.00 13.0 21.0 4.00 9.00 16.0 25.0
(P2+P)P P 6.00 28.0° 91.0 231. 10.0 45.0 136. 325.
vp ‘ Pxp  0.66 0.48 0.3 0.24 0.8 0.70 0.61 0.55
v2p LP:E_PM 0.72 0.52 0.34 0.24 1.01 0.88 0.79 0.60

7.4 Effort used by the optimisation algorithms,

For the trusses shown in figure 6.2.1 and for the plates shown

in figure 6.2.3, figures 7.4.1 and 7.4.2 respectively plot measured

computational effort used during one iteration (as defined in

chapter 5) of each of the algorithms against the number of design

variables.

Comparison of figures 7.4.1 and 7.4.2 with figures

5.5.13 and 5.5.14 shows that except when MAP is being considered,

the estimated algorithm iteration effort ratios agree with the

measured ratios.

When considering MAP the discrepancies arising



Measured Computational Effort, CPU Seconds

149

100. p= LP(PH) @
2
Ve
PP
10.0”-
v
]
1.0~
0.10
AN
| } L
7 13 21

Number of Design Variables, Trusses

FIGURE 7.3.1



Measured Computational Effort, CPU Seconds

100

0.10

1P (PH) @
) 'r T
Pp
\[/
10.0p
]
1.00%

150

Y

9 16 25
Number of Design Variables, Plates

FIGURE 7.3.2



151

ST—
FP -
MFD-

PO
N1 —

MAP

100.T

10.0
1.00p=

SpU029s f1dJ “uotieuaal] J4ad 340443 [ruOL}RINdWO) pI4NSEIY

00]0—

21

13

Number of Design Variables, Trusses

FIGURE 7.4.1



152

N1

MAP
FP
MFD

ST

PO
N1
ST—
FP
MFD

MAP7

100.

o
o

e

SpU02as M1dJ €uol3eudaz] J4ad 340443 [euorlendwo) pa4nsesy

1.001

0.1

25

16

Number of Design Variables, Plates

FIGURE 7.4.2



153
are probably caused by the arbitrary assumption (made in chapter
5) of the number of iterations required by the LP algorithm to

find the solution to the Tinearized problem.

7.5 Other results.

Table 7.5.1 shows the ratios of the CPU effort used in
evaluating functions (F), derivatives (D) or in performing the
optimisation operations (0) to the total CPU effort. The

derivative-total effort ratio for Stewart's method was determined

Table 7.5.1: Measured effort ratios, E » to achieve the NMW
XsTotal
P-BAR TRUSSES, P = P-NODE PLATES, P =
ALG X
3 7 13 21 4 9 16 25

MAP F 0.32 0.23 0.16 0.14 0.22 0.13 0.08 0.05

D 0.42 0.60 0.63 0.66 0.49 0.63 0.59 0.55

0 0.26 0.17 0.21 0.20 0.29 0.24 0.33 0.40
MFD F 0.36 0.38 0.47 - 0.27 0.17 0.10

D 0.37 0.43 0.39 -~ 0.51 0.71 0.74 -

0 0.27 0.18 0.14 - 0.22 0.12 0.6 -
N1 F 0.44 0.30 0.18 Q.13 0.36 0.11 0.05 0.02

D 0.52 0.68 0.81 Q.86 0.59 0.88 0.94 0.97

0 0.04 0.02 0.01 0.01 0.05 0.01 0.01 0.01
FP F 0.70 0.61 0.55 0.53 0.54 0.47 0.34 0.27

D 0.24 0.36 0.43 0.46 0.37 0.50 0.65 0.72

0 0.06 0.03 0.02 0.01 0.09 0.03 0.01 0.01
ST F 0.67 - - 0.64 0.54 0.46 -

D 0.26 - - 0.28 0.45 0.53 -

Q 0.07 0.08 0.01 0.01
PO F 0.94 -~ - - 0.94 0.98

D - - - - - - - -

0 0.06 =~ - - 0.06 0.02 - -




154
by including in the derivatiye effort only those functions
evaluations necessary for a forward FD derivative scheme. The
effort used by the remaining function evaluations was used to
determine the function-total effort ratio.

Table 7.5,2 shows the average number of function evaluations
used per one-dimensional search for each of the algorithms. The
high values reported for Stewart's method are a result of the
assumption that only the forward FD scheme was used by the
algorithm. As assumed in chapter 5, the average number of function
evaluations used per one-dimensional search was approximately 2.5
when MFD was used and was approximately 6.5 when either N1, FP or
PO was used.

Table 7.5.2: Average number of function evaluations per one-
dimensignal search.

P-BAR TRUSSES, P = P-NODE PLATES, P =
A 7 13 2 4 9 16 25
MED 1.8 2.9 5.3 3.0 1.8 1.4 1.2 -
NT 5.9 7.8 6.6 8.6 9.0 5.8 6.1 6.5
P 6.7 6.0 57 6.0 55 6.0 5.2 5.2
ST 7.9 9.8 13. - 8.4 11. 13. -
PO 7.4 6.8 - - 6.9 6.3 - -

It can be seen in table 7.5.3, showing the algorithm-MAP effort
ratios to reach the NMW, that for the test problems, SUMT in con-
junction with N1, FP, ST or PQ requires much more effort to reach

the minimum than either MFD or MAP.



155
The effect of improvements to SUMT and the UOAs and of using
finite difference derivatives with MFD and MAP are discussed in

section 6 of this chapter.

Table 7.5.3: Measured algorithm-MAP effort ratios, E s to
reach the NMW ALG,MAP
P-BAR TRUSSES, P = P-NODE PLATES, P =

AL 3 7 13 21 4 9 16 25
MAP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFD 3.62 3.98 4.20 - 1.89 2.08 3.67 -~

N1 13.1 20.2 11.8 15.5 12.9 16.0 28.7 43.5
FP 4.2 19.9 13.0 15.4 8.28 10.1 11.9 14.6
ST 20.1 - + - 13.0 23.2 26.8 -

PO 47.1 -+ - - 3.8 70.4 - -

Table 7.5.4 shows the ratio of the number of iterations made by
an algorithm to reach the near minimum weight, to the number of
design parameters. Table 7.5.5 shows the ratio of the number of
iterations required by an algorithm to reach the NMW to the

number of iterations required by MAP to reach the NMW.

7.6 Discussion.

From the results shown in table 7.5.3 which summarizes the

relative performances of the algorithms on the structural problems,

it would appear that MAP and MFD require less computational effort

than SUMT. This section investigates the effects of:



156

Table 7.5.4: Ratios gf the number of iterations required to reach

the NMW to the number of design variables.

P-BAR TRUSSES, P = P-NODE PLATES, P =
ALG

3 7 13 21 4 9 16 25
MAP  .667 .571 .764 .524  .500 .444 .250 .160
MFD  2.00 .157 2.00 @+ 1.00 1.00 1.00 <
N1 3.00 2.43 1.46 .952 1.75 1.33 .938 .560
Fp 4.33 6.14 6.54 5.57 2,75 3.33 3.06 2.96
ST 5.00 -~ - - 3.00 5.00 3.56 -
PO 5.78 = - - 4,25 5.26 - -

Jable 7.5.5: Ratios of the number of iterations required by an

algorithm to veach the NWW to the number required

LDy VAP,
P-BAR TRUSSES, P = P-NODE PLATES, P =
ALe 3 7 13 21 4 9 16 25
MAP  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFD 3.00 2.75 2.62 - 2,00 2.25 4.52 -
NT 4.50 4,26 1.91 1.82 3.50 3.00 3.75 3.50
FP 6.50 10.8 8.56 10.6 5.50 7.50 12.2 18.5
ST 7.50 - - - 6.00 11.3 14.2 -
PO 8.66 - - - 8.50 11.8 - -
i. using a more efficient search technique with the UQAs of
SUMT,
ii. using finite differences derivatives with MAP and MFD and
{ii. having derivative-function effort ratios different from

those of this study.



157

The number of function evaluations per one-dimensional search can
be reduced by a search technique developed by Lund and recommended
by Moe?2, In the search, quadratic polynomial approximations of
the original objective and all the constraint functions are fitted
to three points, the initial and two other points, along the search
direction. The polynomial approximations are combined to form a
new transformed objective function for this search of SUMT. The
minimum of the new objective function is found with Tittle compu-
tational effort. The original transformed objective function 1is
evaluated at the new point and the search is terminated. There-
fore, only three function evaluations are required per search.

The effect of using such a search technique is estimated in table

7.6.1 from the results in tables 7.5.1 to 7.5.3. In table 7.6.1

Table 7.6.1: Estimated algorithm - MAP effort ratios, E

ALG,MAP
to reach the NMW when Lund's search is used.
P-BAR TRUSSES, P = P-NODE PLATES, P =
AL 3 7 13 21 4 9 16 25
MAP  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFD  3.62 3.98 4.20 - 1.89 . 2.08 3.67 -

N1 10.2 16.8 10.7 14.7 9.88 15.2 27.8 43.1
FP 8.66 14.1 9.47 11.2 6.22 7.78 8.69 13.0
ST 11.7 - - - 5.69 14.0 17.2 -
PO 21.2 - - - 16.9 33.8 - -




158
it-can be seen that the effort required by the UOAs and SUMT
relative to the effort required by MAP and MFD wouid be reduced
by using Lund's technique. Therefore in the following work in this
chapter, the values in table 7.6.1 will be used.

When finite differences are used tao obtain derivatives, the
effort necessary per iteration and the number of iterations
required are greater than when derivatives are obtained by dif-
ferentiation. The greater effort per iteration can be estimated
from tables 7.3.3, 7.5.1 and 7.6.1. The greater number of itera-
tions required can be estimated from table 7.5.5 by comparing
the number of iterations used by Stewart's method with the number
used by Fletcher-Powell's method. With the assumption that the
number of iterations required is 25% greater than when derivatives
are obtained by differentiating, table 7.6.2 gives estimates
of the algorithm-MAP effort ratios to reach the near minimum

weight when derivatives are obtained by finite differences.

Table 7.6.2: Estimated algorithm-MAP effort ratios, E to
_Eg%gcaéqsegMgrghsgeh?nd's search and forﬁtEaM?g
P-BAR TRUSSES, P = P-NODE PLATES, P =
A 3 7 13 21 4 9 16 25
MAP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFD 3.563 3.53 3.3 - 1.90 2.13 3.91 -
ST 7.67 - - - 4.14 8.80 10.0 -

PO 13.9 - - - 12.3  21.3 - -




159

The derivative-function effort ratios for the function and
derivative evaluation algorithms used are given in table 7.3.3.
However, different function and derivative algorithms may give
different derivative-function effort ratios which would affect the
effort ratios to reach the near minimum weight but should not
affect the path taken by the optimisation algorithm to get to the
near minimum weight design. Table 7.6.3 estimates the effect on
the algorithm-MAP effort ratfos toikeach the near minimum weight,
of different derivative-function effort ratios. The values are

determined from the following equations.

Let
T¢ = effort to evaluate a function,
va = effort to evaluate a first derivative by differentiation,
T = effort to evaluate a first derivative by forward finite
N differences, and
p = number of design variables.

Then
E =T ’//T s E =T ,//T =P eeol.6.4,
W Vo 0 AR a9 0

therefore

E = E P veo7.6.5,
0.0 V0,00

Similarly, let

T

5 = effort to evaluate a second derivative by differentiation,
70

TA? = effort to evaluate a second derivative by forward finite

differences.



Table 7.6.3:

Estimated algorithm - MAP effort ratios, E

160

ALG,MAP
to_reach the NMW for different values for the
derivative-function effort ratios.

ALG M P-BAR TRUSSES, g = P-NODE PLATES, P =
3 7 3 4 9 16 25
MAP all 1.00 1.00 1.00 1.0Q 1.00 1.00 1.00 1.00
MFD 1/P  4.83 4.43 4.06 - 3.22 3.62 7.28 -
3 4.51 3.45 2.95 - 2.82 2.69 4.96 -
1 3.88 3.07 2.73 - 2.44 2,43 4.62 -
2 3.42 2.84 2.60 - 2.19 2.28 4.44 -
10 2.96 2.64 2.49 - 1.95 “2.15 4.29 -
N1 /P 10.3 13.0 11.0 16.9 8.70 10.3 17.9 22.8
3 10.4 14.9 10.7 15.7 8.95 12.5 25.2 35.4
1 10.4 15.5 11.2 16.2 9.13 13.1 26.2 36.4
2 10.4 15.9 11.4 16.5 9.25 13.4 26.8 37.0
10 10.4 16.2 11.7 16.7 9.3¢ 13.7 27.2 37.5
FP /P 10.0 16.7 13.2 16.4 8.50 11.6 18.9 28.6
5 9.06 12.1 8740 9.64 7.100 7.92 11.5 16.5
1 7.55 10.5 7.568 8.95 5.96 6.95 10.6 15.4
2 6.47 9.48 7.12 8.59 5.21 6.42 10.0 14.9
10 5.36 8.60 6.73 8.29 4,47 5.94 9.57 14.4
ST 1/ 17.4 - - - 16.2 52.4 104. -
3 13.9 - - - 10.8 19.1 23.2 -
1 8.71 - - - 6.51 10.5 12.3 -
2 4.98 - - - 3.61 5.52 6.33 -
10 1.13 - - - 0.79 1.15 1.30 -
PQ /P 30.1 - - - 39.4 123. - -
3 24.1 - - - 26.3 44.9 - -
1 15.1 - - - 15.8 24.6 - -
2 8.62 - - - 8.78 13.0 - -
10 1.95 - - - 1.93 2.71 - -




Then

161

E =T T 3 E =T T =P (P+1)/2 eeo7.6.6;
20,0 vzm/ 0 AZ.0 Azﬂ/ )

therefore

E P ( P+1)/2

E =
Voo V.00
Table 7.3.3 gives that

E : E
A0 Vep. A%
Therefore let

J = : E

E ) »
VAP T20.ACP

... 7.6.7,

...7.6.8.

...7.6.9.

Thus, if p = 1/P, then a derivative evaluation by differentiation

requires as much effort as a function evaluation; if p = 1, then

a derivative evaluation by differentiation requires as much effort

as. one obtained by farward finite differences; if p = 2, then a

derivative evaluation by differentiation requires as much effort

as one ohtained by central finite differences. If pn =4, a

higher order finite difference derivative may use less effort

than and may be as accurate as a differentiation derivative.

The computational effort required by the algorithms to perform

one iteration is given by:

T =1.33(T1T/+T )

MAP g0
T =1.25 (25T +T
MFD P Vﬂ)
T =1,02 (3.0T +T +T

N1 g

...7.6.10,
ee.7.6.11,

) ...7.6.12,
720



162

T =1.03(3.0T +T ) e..7.6.13,
FP 0 0
T =1.03(3.0T +7T ) eeedl.6.14,
ST a A
and
T =1.03(3.0T )p e..7.6.15,
PO /)

where the coefficients 1.33, 1.25, 1.02, 1.03, 1.03, 1.03 account

for the effort used hy the optimisation algorithms and were
obtained from table 7.5.1.

Substituting the equations 7.6.4 to 7.6.9 into 7.6.10 to 7.6.15

gives:
T = 1.33 ( 1tpP YT ...7.6.16,
MAP g
T =1.25(25+uP)T ...7.6.17,
MED ¢
T = 1.02 ( 3.0 tp P(P+3)/2)T «rel.6.18,
N1 )
T =1.03(3.0+upP)T eee7.6,19,
FP ! p
T =1.03(3.0+P)T ...7.6.20,
ST ]

and

T =1.03(3.0)PT eeel.6.21.
PO ]

Therefore, the effort per iteration ratios are

E = 1.0 ee.7.6.22
MAP ,MAP

E = 1.25 ( 2.5 + uP ) ...7.6.23
MFD,MAP  1.33 ( 1 + P )

E =1.02 (3.0+nP (P+3)/2) ...7.6.24
NT,MAP 1.33 ( 1+yP)



163

E = 1.03 ( 3.0 +pP ) ...7.6.25
FP.MAP  T33CT + P )
E =1.03 {3.0+P) ...7.6.26
ST.MAP  T33 (T + P ]
E = 1.03 ( 3.0P) ...7.6.27.
PO, MAP . tpr)

Equations 7.6.22 to 7.6.27 and the number of iterations ratios

in table 7.5.5 were used to determine the estimated effort

ratios in table 7.6.3. In table 7.6.3 it can be seen that when a
differentiation derivative evaluation requires as much effort as a
function evaluation, MAP would require less effort than any of the
methods considered. MFD would require more effort than MAP but
less effort than the other methods considered.

When a differentiation derivative evaluation requires as much
effort as a central difference derivative evaluation, MAP still
requires the Teast effort.

When a differentiation derivative evaluation requires much
more effort than a central difference derivative evaluation, the
non-derivative methods require approximately as much effort as MAP
and MFD. However it is unlikely that such differentiation
derivatives would be used since high order polynomial approxima~
tions to the derivatives would require less effort and may be as

accurate.



164
CHAPTER 8

CONCLUSION

8.1 Conclusions.

The test results of chapter 7 verify the estimates made in

chapter 5 of ihe relative effort required by the function,

derivative and optimisation algorithms used in this study. From

these results the following conclusions can be drawn:

1.

a first derivative evaluation requires much more effort
than a function evaluation;

a second derivative evaluation requires much more effort
than a first derivative evaluation;

finite difference derivatives require more computational
effort than differentiation derivatives;

the effort to solve the LP problem for MAP or MFD is
approximately equal to the effort to evaluate a first
derivative;

the effort to generate a search direction for the UOAs,
not including the necessary function and derivative evalua-
tion effort, is approximately equal to the effort to per-

form a function evaluation.

Therefore, procedure 5.1.1 can give useful estimates of the CPU

time involved in computations.

The preliminary results in chapter 6 show the effect of

"tuning' an élgorithm by the adjustment of the arbitrary



coefficients and parameters in the algorithms to reduce the
computational effort expended.
chapter 7, it is assumed that a comparable degree of 'tuning'

has been achieved.

For the results reported in

165

The results of chapter 7 show that all the methods selected

can be used to solve the structural preblem 1.2 or 1.3, although

those methods which did not use differentiation derivatives were

less effective than the other algorithms.

of computational effort required.

of derivative evaluation to be used.

Table 8.1.1 shows the algorithms listed in increasing order

Table 8.1.1:

The algorithms, listed in increasing order of

computational effort required.

TYPE OF DERIVATIVES TO BE USED

The table also shows the type

NO  ALGORITHM DIFFERENTIATION  FORWARD F.D.  CENTRAL F.D.
1 MAP X - -
2 MAP - X -
3 MAP - - X
4 MFD X - -
MFD - X -
6 MFD - - X
SUMT + FP X - -
8 SUMT + N1 X - -
9 SUMT + ST - X -
10 SUMT + ST - - X
SUMT + N1 - X or X
12 SUMT + PO - - -




166
Table 8.1.1 summariZes the conclusions that can be drawn from

the results of chapter 7.

8.2 Recommendations.

Table 8.1.1 Tists the algorithms in increasing order of
computational effort. However, other considerations, as given in
chapter 1, may be more important than computational effort, in the
selection of algorithms. Therefore, this section gives recommenda-
tions for the use of the algorithms on problems similar to 1.2 or 1.3.

If MFD 1s selected, the extra provision for increasing or
decreasing the arbitrary coefficients to slow or speed the optimisa-
tion, may give computational savings.

If SUMT is selected and second derivatives are available, then
a combined Newton and Fletcher-Powell method is suggested. The
propesed method would proceed as in Newton's method for the first
iteration, storing the inverse of the second derivative matrix,
and then proceed as in Fletcher-Powell's method on succeeding
iterations. However, if second derivatives are not available,
Fletcher-Powell's method or a quasi-Newton metnod>%>31 s recom-
mended. A search technique based on that of Lund, using directional
derivatives when available, is preferred.

The ' Q ' transformation for SUMT is recommended as it
obviates the difficulties associated with p . If, however, another
transformation is chosen and requires @ , then it is recommended

that g, is found from equation 3.4.3 or from the following:



167

p = cg@ ...8.2.1
1 3.4.9

where 93 09 is given by equation 3.4.9.

8.3 Further research.

A number of topics for further research arise from the
results of this study:
1. establish the relative efficiency of MAP and MFD when FD
derivatives are used instead of differentiation derivatives;
2. a. establish the relative efficiency of the Q transforma-
tion and other SUMT transformations;
b. 1investigate the effect on the efficiency of alternative
schemes for evaluating @] for SUMT;
c. investigate the efficiency of the proposed Newton-
Fletcher-Powell method used with SUMT;
d. verify the efficiency of the search technique based on
Lund's method used with SUMT;
3. 1investigate the efficiency of the Modified Interior Point
methods; and
4. verify the conclusions for other types of structural

problem.

8.4 Summary.

The subject of the thesis is a comparison of commonly-used
algorithms applied to a class of structural optimisation problems.
The types of structure under consideration are pin-jointed, plane

trusses and plane stress plates. The optimisation problem is



168
weight minimization of the structures subject to stress and design
variable Timits. Optimisation algorithms fall into one of three
categories: Linearization, Feasible Direction and Transformation

methods. Algori{thms have been selected from each category in

order to compare the computational effort required to solve the
structural problems.

Comparison of the results of the computer runs shows that
MAP requires the least effort, MFD requires more effort than MAP
and SUMT requires most computational effort of the methods

considered.



169
LIST OF REFERENCES

1. MWasiutynski Z. and Brandt A., 'The present state of knowledge

in the field of Qptimum design of Structures', Agglied
Mechanics Reviews, vol. 16, no. 5, May 1963, pp 341-350.

2. Sheu C.Y. and Prager W., 'Recent developments in Optimal
Structural design', Apglied Mechanics Reviews, vol. 21,
no. 10, Oct. 1968, pp 985-992.

3. Schmit L.A., 'Structural Synthesis 1959-1969: A decade of
progress', dJapan - U.S. seminar on Matrix methods of

Structural analysis and design, Tokyo, Aug. 1969.

4. Jacoby S.L.S., Kowalik J.S. and Pizzo J.T., Iterative

Methods for Non-Linear Qptimization problems, Prentice-Hall,
engiewood CI1¥fs, N.J., 1972,

5. Zoutendijk G., 'Non-Tinear Programming: A numerical survey',
J. SIAM Control, vol. 4, no. 1, 1966, pp 194-210.

6. Kelley J.E., 'The Cutting Plane Method for solving convex
programs', J. SIAM, vol. 8, 1960, pp 703-712.

7. Cheney E.W. and Goldstein A.A., 'Newton's method for_ convex
programming and Tchebycheff approximation', Numerical
Mathematics, vol. 1, 1959, pp 253-268.

8. Griffith R.E. and Stewart R.A., 'A Non-linear Programming
technique for the Optimization of continuous processing
systems', Man. Sci., vol. 7, 1961, pp 379-392.

9a. Rosen J.B., *The Gradient Projection method for Non-linear

Programming, part I, Linear constraints', J. SIAM, vol. 8,
1960, p 181 ff.

9b. Rosen J.B., 'The Gradient Projection method for Non-linear

Programming, part_II, Non-linear constraints', J. SIAM,
vol. 9, 1961, p 514 ff.

10. Gellatly R.A. and Gallagher R.H., 'A procedure for automated
minimum weight Structural design', Aeronautical Quarterly,
Aug. 1966, pp 216-230.

11. Zoutendijk G., Methods of Feasible Directions; A Study in
Linear and Non-Tinear Programming, Elsevier PubTishing Co.,
1960.




12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

170

Fiacco A.V. and McCormick G.P., Non-linear Programming:
Sequential Unconstrained Minimization Techniques, John
Wiley and Sons, Inc., 1968.

Himmelblau D.M., 'A uniform evaluation of Unconstrained
Qptimization techniques', presented at the Dundee
Optimization Conference, June 1971, proceedings to be
published, ed: Lootsma F.A.

Fletcher R., 'Function minimization without evaluating
derivatives - a review', Computer Journal, vol. 8, no. 1,

1965, pp 33-41.

Fox R.L., Optimization methods for Engineering design,
Addison - Wesley Publishing Co., 1971, pp 97-T0T.

Fletcher R. and Powell M.J.D., 'A rapidly convergent descent
method for minimization's Computer Journal, vol. 6, 1963,

pp 163-168.

Stewart G.W., 'A modification of Davidon's minimization
method to accept difference approximations of derivatives',
J. of the Association for Computing Machinery, vol. 14,

no. 1, Jan. 1967, pp 72-83.

Powell M.J.D., 'Mefficient method for finding the minimum
of a function of several variables without ca]cu]atin?
derivatives', Computer Journal, vol. 7, 1964, pp 155-162

Kiefer, J., 'Optimum Sequential search and approximation
methods under minimum vegularity assumptions', J. SIAM,
vol. 5, 1957, pp 105-136.

Davidon W.C., 'Variable metric method for minimization',
A.E.C. Research and Development report, ANL - 55990 (rev.),
1959.

Ru§3e11 D., Optimization Theory, W.A. Benjamin Inc., 1970,
p L]

Gallagher R.H. and Zienkiewicz 0.C., (eds), Optimum Structural

design, Theory and applications, John Wiley and Sons, 1973,
pp 143-17%, Moe J., "Penalty Function methods'.

Fiacco A.V. and McCormick G.P., 'Computational Algorithm for
the Sequential Unconstrained Minimization Technique for Non-
Tinear Programming', Man. Sci., vol. 10, no. 4, July 1964,
pp 601-617.

Hildebrand F.B., Introduction to Numerical Analysis, McGraw-
Hi11 Book Co., Inc., 1956, pp 60-64.




25.

26.

27.

28.

29.

30.

31.

17

Beale E.M.L., Mathematical Programming in Practice, Pitman,
London, 1971.

Przemieniecki J.S., Theory of Matrix Structural Analysis,
McGraw-Hi11 Book Cq., Inc., 1968.

IBM System / 36Q and System / 370 FORTRAN IV language,
form GC 28 -~ 6515 ~ 8.

IBM System / 360 model 67 Functional characteristics, file
no. $360 - 01, form A27 -~ 2719 -~ 0, pp 43-53.

Schmit, Jr. L.A., 'Structural design by systematic Synthesis',

2nd ASCE conference on Electronic Computation, Pittsburgh,
Pa., Sept. 1960, pp 105-132.

Gi11 P.E. and Murray W., 'Quasi-Newton methods for
unconstrained optimization', J. of the Inst. of Mathematics
and its applications, vol. 9, 1972, pp 91-108.

Fletcher R., 'A new approach to Variable Metric algorithms',
Computer Journal, vol. 13, no. 3, 1970, pp 317-322.



172

APPENDIX



173

45,01-

40.0-“i

s5.0l ALGORITHMS
MAP
MFD
FP
ST
N2

30.0"

£

=4

2 25.0H

20.0p \—

15.0~

10.0t 1 4 | ] /]
0 400 800 1200 1600 2000

Measured Computational Effort, CPU Seconds
FIGURE 10.1



Yo iz ialz skt ieizsininReleizis ke s iz Rele e ik R XeaizisEe e Na el o XaNaXala e Na RnieNolaioRala e Ra Ia Ne R e}

X{)

174

STRUCTURAL OPTIMISATION PROGRAM

- SYMBOLS USED

= X NODE COORDINATE

Y() = Y NODE COORDINATE

FL) = APPLIED LOADS MATRIX

P() = MATRIX OF DISPLACEMENTS

EE = MODULUS OF ELASTICITY

EENU = POISSONS RATIN

RHO = DENSITY

AK () = MATRIX SAVING ELEMENT STIFFNESS MATRICES

XL () = MATRIX WHICH MAPS NODAL THICKNESSES INTD WEIGHTS FOR’
PLATES OR MEMBER AREAS INTO WEIGHTS FOR RODS

STRS() = MATRIX WHICH MAPS NODAL DISPLACEMENTS INTO STRESSES

S() = MEMBER STRESSES

DSDT() = FIRST DERIVATIVES OF STRESSES

ISITP = 1 IF PLATE PROBLEM, 2 IF ROD PROBLEM

N = NUMBER OF NODES

" = NUMBER OF MEMBERS

N8B = NUMBER OF BOUNDARY CONDITIONS

NODL() = FIRST NODE NUMBER OF FINITE ELEMENT

NOD2() = SECOND NODE NUMBER OF FINITE ELEMENT

NOD3 () = THIRD NODE NUMBER OF FINITE ELEMENT

18() = MATRIX OF DELETED FREEDOM INFORMATION

NK = SIZE OF STIFFNESS MATRIX IF IN BLOCK

NLC = NUMBER OF LOAD CASES

NT = NUMBER OF TERMS IN EK()

18W = BAND WIDTH OF STIFFNESS MATRIX

NTIM{) = NUMBER OF TERMS IN EACH ROW STIFFNESS MATRIX

ISUM( ) = LOCATION OF I,I STIFFNESS TERM IN EK()

ARSLTS() = RESULTS MATRIX (REAL VALUES)

IRSLTS() = RESULTS MATRIX (INTEGER VALUES)

Ip = DIRECTS LEVEL OF PRINTING

NONED = NUMBER OF ONE DIMENSIONAL SEARCHES

NFE = NUMBER OF FUNCTION EVALUATIONS

NGE = NUMBER OF GRADIENT EVALUATIONS

VIRT = VIRTUAL CPU TIME

TOTAL = YTOTAL' CPU TIME

OPTIM = CPU TIME SPENT OPTIMISING '

FUNT IM = CPU TIME SPENT EVALUATING FUNCTIONS

DERTIM = CPU TIME SPENT EVALUATING DERIVATIVES

TOT IM = SUM OF OPTIM,FUNTIM AND DERTIM

T() = MATRIX OF NODAL THICKNESS OR MATRIX OF MEMBER AREAS

TMAX = MAXIMUM ALLOWABLE NODE THICKNESS FOR PLATE OR AREA FOR
ROD

TMIN = MINIMUM ALLOWABLE NODE THICKNESS FOR PLATE DR AREA FOR
ROD

SIGA = ALLOWABLE STRESS IN TENSION

SIGL = ALLOWABLE STRESS IN COMPRESSION (A NEGATIVE NUMBER)



e izisisisRakalsinizisiaizisisRsisinkziziskaisie Mgl loNsReNaNalaNeNoeNaNeNaNalalinieReRalan R aln R Ral gl

AL
FUNL
TACTN
WTEST
EST
EPS
EPM
TOL

FU

FL

FUN
TREMU)
DFDT()
HI )

WT 1ML
WTI
DUN

RP

PEN
FO,FN,FM
AO AN, AM
PO()
AL PHA
NWORK
NRPV
LIMIT
NOR

ISRCH
10PTS
1ER

IHE

IGH
KOUNT
NUSE
NSRCH
KODER()
ICOEF()
IREM()

LI T N | T T | | Ot O O (O T N A S | Y B O VA T T N (SO T I 1

WOl oo i NN oW o

175

ALGORITHM TERMINATION PARAMETER : LB ON DESIGN CHANGE
ALGORITHM TERMINATION PARAMETER : LB ON FUNCTN CHANGE
RESOLUTION REQUIRED OF THE DESIGN VARIABLES

PROGRAM EXITED WHEN (WTI-WTIML)/WTI.LTWTEST

AN ESTIMATE OF THE MIN OF THE OBJECTIVE FUNCTIDN
DISTINGUISHABILITY OF FUNCTION VALUES

MACHINE RESOLUTION

TOLERANCE ON TIGHTNESS OF CONSTRAINTS

UPPER BOUND ON CONSTRAINT VARIABLE

LOWER BOUND ON CONSTRAINT VARIABLE

VALUE OF WEIGHT PLUS PENALTY FUNCTION = OBJECTIVE FUN
MATRIX WHICH HOLDS OLD DESIGN VARIABLES WEIGHT,AND OF -
GRADIENT OF OBJECTIVE FUNCTION

WORK MATRIX USED BY UOA

WEIGHT BEFORE A NEW ITERATION

WEIGHT AFTER AN ITERATION :

AN ESTIMATE OF THE OBJECTIVE FUNCTION

WEIGHTING CONSTANT FOR PENALTY FUNCTION

PENALTY FUNCTION ADDED TO WEIGHT TO GIVE OBJECTIVE FUN
SAVED FUNCTION VALUES OLD,NEW,MIDDLE :
CORRESPONDING MOVES ALONG SEARCH DIRECTION

DESIGN FOR FO

MOVE LIMIT COEFFICIENT FOR MAP ,
NUMBER OF DESIGN VARIABLES (M FOR RODS, N FOR PLATES)
MAXIMUM NUMBER OF MAIN PROGRAM ITERATIONS ALLOWED
MAXIMUM NUMBER OF ALGORITHM ITERATIONS ALLOWED

CODE WHICH SPECIFIES THE OPTIMIZATION ALGORITHM USED

NOR = 1, POWELL'S METHOD (POWL)

NOR = 2y STEWART'S METHOD (STEW)

NOR = 3, FLETCHER-POWELL'S METHOD (FLEP)

NOR = 4, MODIFIED INTERIOR POINT METHOD (MIP)
NOR = 54 METHOD OF APPROXIMATE PROGRAMMING (MAP)
NOR = 6y METHOD OF FEASIBLE DIRECTIONS (MFD)

NOR = 7, NEWTON'S METHOD {NEWT)

NOR = 8, QUADRATIC PROGRAMMING (QP)

NOR = 9, NEW PROBLEM TO BE READ IN

NOR = 10, END QOF JOBS

MAXTIMUM NUMBER OF CURVE FITS PERMITTED IN ONED
NUMBER OF ITERATIONS PERFORMED BY MAIN PROGRAM
O NO CONVERGENCE IN ALGORITHM

1 CONVERGENCE

2 MAX NO OF ITERATIONS

1 YIELDS FIRST DERIVATIVES ONLY

2 YIELDS FIRST AND SECOND OERIVATIVES

CODE FOR EFFLD _
NUMBER OF ITERATIONS PERFORMED BY ALGORITHM
NUMBER OF TIMES A SEARCH DIRECTION HAS BEEN USED
CODE FOR SEARCH WITH POWELL'S METHOD

CODE FOR STEWART'S METHOD

VARTABLE ASSOCIATED WITH CDLUMN IN A-MATRIX
ROW DESIGNATION OF ZERO B*S



176

NUMBER OF COLUMNS IN THE COEFFICIENT MATRIX FOR PRMDUL

NCOL =

NROW = NUMBER OF  ROWS 1IN THE COEFFICIENT MATRIX FOR PRMDUL
D2FDT2{) = HESSIAN OF OBJECTIVE FUNCTION

EK () = STRUCTURAL STIFFNESS MATRIX

EKL () = ELEMENT STIFENESS MATRIX

Q) = MATRIX WHICH SAVES NODAL DEFLECTIONS

R{Y = MATRIX WHICH SAVES APPLIED LOADS

ut) = WORK MATRIX (MOVES DISPLACEMENTS)

DUDT () = FIRST DERIVATIVES OF DISPLACEMENTS

$S() = MATRIX WHICH SAVES MEMBER STRESSES

SPACE() = DUMMY ARRAY IN COMMON BLOCK fWORK?

AL) = COEFFICIENT MATRIX FOR PRMDUL

PSI = CONSTRAINT WEIGHTING CONSTANT FOR MFD

KM1{() = INDICES OF CONSTRAINTS HIT ON THE PREVIOUS MFD ITERN
KM2() = INDICES OF CONSTRAINTS HIT ON ALL PREVIOUS MFD ITERNS
NOTE

1 « LOAD DATA : SUBROUTINE DAT : IN = INDEX OF NOIDE , IC=1 FOR
‘ FORCE IN X DIRECTION 4 IC=2 FOR FORCE IN Y DIRECTION , AMNT
AMOUNT OF LOAD 3
o NODL{)«LT.NOD2{).LT.NOD3() ; :
BOUNDARY CONDITION DATA : X DIRECTION FREEDOMS DELETED :
ENTER NODE NUMBER , Y DIRECTION FREEDOMS DELETED : ENTER
1000 + NODE NUMBER 3
4 o DIMENSION OF EK() = IBWX(NK-IBW/2+1/2) ;
5 « SUBROUTINE GELS IS AN IBM SSP SUBROUTINE ;
6 « AL)-SPACE() REPLACES D2FDT2{()-SPACE() IN COMMON WORK FOR
SUBROUTINES MAP,MFD,PRMDUL AND SIMP 3

N
]

ook ek ook ok sk Sjob ko ok e R ok o ok sk sk o e kool ok ok ek ok sk sk i e kol ok sk ok sk o o ol ok o ok K
COMMENT : MAIN PROGRAM AND SUMT

REAL*8 DATE,TIME

INTEGER VIRT,,TOTALOPTIM,FUNTIM,DERTIM,TOTIM
COMMON/DATA/X{40)yY(40)4F(8045)9sP(80s5)yEFJEENUJRHOZAK(1260) XLI16D
*)9 STRSU18046)9S{609445)4DSDT{60+5+60)4ISITPyNyMyNB,NODL(6Q),NCD2(6
*0)9NUD3(60’9IB(BO)vNK'NLC9NT9IBW,NTIM(BO)'ISUM(BO)
COMMON/PRINT/ZARSLTS{30,30),IRSLTS(30,430),1PyNONED,NFE,NGE
COMMON/TIME/VIRT TOTALyOPTIM,FUNTIM,DERTIM,TOTIM

COMMON/OPT/T(60) y TMAXy TMIN,SIGA,SIGLyALyFUNLyTACTNyWTEST yEST +EPS,
FEPMyTOL oFUSFLSFUNyTREMIBE2) ,DFDT(60) 4 HI2010) s WTIML,WTI,DUNsRP,PEN,
*FD g FNy FMy ADy ANy AM,PO{60) y ALPHA s NWORK ¢y NRPVyLIMIToyNORy ISRCH,IOPTS,IE
*Ry IHE,y IGH y KOUNT  NUSEsNSRCH,KODER{60), ICOEF(380)y IREM{40) 4NCOL,NROW
COMMON/WORK/DEL(60) ¢D2FDT2(60,60) 4D2FDA2(61) +EK(3280),EKLI{21),Q(80
%¥95)yR(B04y5),U(6+5)yDUDT(80960})+SS(6044,5),SPACE(510)

COMMON/Z/PST 4KML(280),KM2{280)

DIMENSION TTT(62412),TINIT(60),CL(12),CCL(12)



C woiex
C #*%k*

[o RS B R )\

1

8
9
10
1
12

13
14
15
16

17

18
19

177

THIS IS THE MAIN PROGRAM WHICH DIRECTS OPTIMIZATION OF A PLANE
STRESS PROBLEM

FORMAT (1H1)

FORMAT({10H WEIGHT = ,E15.4)

FORMAT (* INITIAL VALUE OF RP = ',El5.6)

FORMAT (10H WEIGHT = ,E15.4,7H AFTER ,13,14H OPTIMIZATIONS)
FORMAT (' WEIGHT NOT CHANGING MUCH SO ALGORITHM TERMINATED!')
FORMAT (* MAXIMUM NUMBER OF UNCONSTRAINED OPTIMIZATIONS ALLOWED HAS
X BEEN REACHED. WE HAVE DONE',13,' OPTIMIZATIONS?')

FORMAT(' WE ARE BEGINNING AN UNCONSTRAINED OPTIMIZATION PROGRAM WI

CTH RP = ,E15.4)

FORMAT (' WEIGHT INCREASING, ALGORITHM TERMINATED?')
FORMAT(* MATRIX T(I1)'/6Xe4HNODE,11X, 4HT(I)/)
FORMAT(I10,EL15.4)

FORMAT{' ERROR CODE FRCM DPTIMIZATIDN ROUTINE = 1,13) :
FORMAT(/*OINITIAL VALUES FOR ALGORITHM CONTROL PARAMETERS'/'QORESOL
*UT ION '9E15.6/Y0REL CHANGE WT ',E15.6/'0REL CHANGE FUN'4EL5.6/!

*OREL CHGE DSIGN',E15.6)

FORMAT ( *OCPU TIMES ARE VIRTUAL CPU TIMES IN MICRO-SECONDS .')
FORMAT (* OPTIM PERFORMED ',I10,' ONE DIMENSIONAL SEARCHES')
FORMAT('OINITIAL RP COEFFICIENT = ',E15.6)

FORMAT (' FUN = *',E15.4) .

FORMAT(* OPTIM PERFORMED ',110,' FUNCTIONAL EVALUATIONS')
FORMAT('* OPTIM PERFORMED ',110,' GRADIENT EVALUATIONS')
FORMAT(* BEGINNING ITERATION ',1I5,' WE HAVE WEIGHT = ',E15.4,

X! FUN = ',EL15.4)

20

21
22
23
24
25
26
27
28

29
30

31

32
33
34
35
36
317
38
39
40
41

42
43

FORMAT (' AFTER ITERATION ',I5,' WITH RP = ',E15.4,' WE HAVE '/
X' WEIGHT = '",E15.4/' FUN = ',E15.4)

FORMAT (13) | |

FORMAT (' UNRESTRAINED OPTIMIZATION ALGORITHM NOT SPECIFIED® )
FORMAT { "ORP REDUCTION RATE COEFFICIENT = ',E15.6)

FORMAT(1Xy I345E15.7)

FORMAT (* DESIGN NOT CHANGING MUCH - ALGORITHM TERMINATED *)
FORMAT( 1X, 3110)

FORMAT (1X, E15.8) -

FORMAT{'ORESULTS FOR',13,* PARAMETER PROBLEM USING ALGORITHM NO',
%13, 4, DATE OF RUN ',A8,' TIME ',A8)

FORMAT (*OEND ITERATION ',7115)

FORMAT ('OTOTAL NUMBER OF *//' ONE DIM SRCHS ',7I15)
FORMAT ( *OFUNCTION EVALS*,7I15)

FORMAT (*ODERIVATIVES 'y7115)

FORMAT('1 ALGORITHM CODE = NOR =',13)
FORMAT {*OVALUE OF*/'OFUNCTION '4yTEL5.6)
FORMAT(*OWEIGHT 'y 7E15.6)

FORMAT('OCPU TIMES FOR'/ 'OFUNCTION EVALS*,7115)
FORMAT ("ODERIVATIVES ',T7115)
FORMAT('OOPTIMIZING ',7I15)

FORMAT('OSUM OF TIMES ',7115)

FORMAT { *OMAXIMUM NO DF'/ "OITERATIONS/RP *,7115)
FORMAT(*OQUAD FITS/SRCH!',7115)

FORMAT (*OFEASIBILITY ',7I15)
FORMAT('OWEIGHT{SCALED)*,7E15.6)



178

44 FORMAT('OESTIMATED FUN.',7ELS5.6) '
45 FORMAT('OALPHA MOVE LIMIT COEFFICIENT = ',EL15.6)
46 FORMAT('OPSI CONSTRAINT WEIGHTING COEFFICIENT = *,E15.6)

100 CONTINUE
WRITE(6,41)
CALL INIT
NWORK=N
IF{ISITP.EQes2)NWORK=M
NP=NWORK
NPL1=1+NP
NP2=2+NP
NRP1=1+NRPV
C %% SAVE DATA ok
DO 125 I=1,NWORK
125 TINIT(I)=T({1)
SAL=AL -
SFL=FUNL
STN=TACTN
EPS=1.E-05
EPM=1.E~06
CCC=1./160.
PSI=.1

C *k% SET UP OPTIMIZATION sokk

200 CONTINUE
CALL TIMER{DATE,TIME,VIRT,TOTAL)
TOL=10 +*EPM*SIGA
IF (NOR.NE. 6)GOTO 210
TOL=.01%SIGA
KU =2% { MENL C+NP)
DO 205 K=1,KU
KM1(K)=0
KM2(K) =0

205 CONTINUE

210 CONTINUE
OPTIM=0
FUNTIM=0
DERT IM=0
TOTIM=0
NFE=0
NGE=0
NONED=0
10PTS=0

© AN=0.
FO=0.
NFE=1
- CALL SOLVE
C *¥k CALCULATE WEIGHT #okx

WRITE(6,1)
WTIML=0. 4
DO 225 I=1,NWORK



225

1225

245

X Kok

250

2715

ke
* %k

276

278
280

282

284

179

WTIMI=WTIML1+XL{I)*T(I)
IF{IP.LT.0)GOTO 1225

WRITE(6,2) WTIML

CONTINUE

IF(IOPTS.NE.O)GOTO300

FUN=WT IM1

DUN=FUN

RP=0.

CALL TIMER(DATE,TIME,VIRT, TOTAL)
FUNTIM=FUNT IM+VIRT

DO 245 I=1,NWORK

TREM{T)=T(1)

TREM{NP2) =WT IM1

IFI{NOR .EQ.5.0R.NOR.EQ.6) GOTO 300

CALCULATE PENALTY
DUM1=0.

DUM2=0.,.

DO2501=1,NWORK

DUM1=DUML+1./(TMAX- T(I))+l-/(T(I)‘TMIN)
DUM1=DUM1%{TMAX-TMIN)

DO 275 I=1,M

DO 275 LC=1,NLC .
DUM2=DUM2+1./(SIGA-S(I,4,LC))+1. /(S(I,4vLC)‘SIGL)
PEN=(SIGA-SIGL)*DUM2+DUML

CALCULATE INITIAL RP xxkx

FIACCO AND MC CORMICK %%

RR=,025%WTIM1/PEN

FUN=PEN

THE=1

DUM1=0.

DUM2=0.

DUM3=0.

DO 276 I=1,NWORK

SPACE(I)=XL(I)

DUM1=DUML+XL(I)*XL(I)
Xtil)=0.
WRITE(6,27)DUML
IF(NOR.LE.2)GOTO 278
CALL DERFUN:

GOTO 282

DO 280 I=1,NWORK
DEL(I)=.0001

CALL DIFFUN

CONTINUE

DO 284 I=1,NWORK
XL{I)=SPACE(I)
DUM3=DUM3+DFDT(I)*DFDT(I)
DUM2=DUM2+XL (1 }*DFDT(I)
WRITE(6427)DUM2
RP=-DUM2/DUM3
WRITE(6,27)RP



288
289

290

294

296

299

ok
300

1325

401

402

403

404

405

DUM5=DUM2%DUM2-DUM1*DUM3
IF(DUMS.LE.Q.)GOTO 289
DUM5=SQRT({DUM5)/DUM3
IF(RP)288,2884290
RP=RP+DUM5S
IF(RP.LT.0.)GOTO 294

-GOTO 296

IF(ODUMS5.LT«RP)IRP=RP~DUMS
GOTO 296

RP=RR

WRITE(6,27)RP
CC=RP*PEN/WTIM]

FUN=WT IM1+PEN*RP
WRITE(6416)FUN

DUN=FUN

-TREMINP1J)=FUN

Cl=CC
EST=.9%WTIM1

DO 299 I=1,NRPV
CCL(I)=1.

CL(I)=1.

CALL OPTIMIZATION ROUTINE *kx

CONTINUE
IOPTS=1+I0PTS
IF(IP.LT.0)GO TO 1325
WRITE(641)
WRITE(6,47)RP

WRITE(6419)I0PTSyWTIML,FUN

CONTINUE

GOTO(401+4024403+404+4059406+407,408)4NOR
"WRITE(6,22)

CALL EXIT
ISRCH=6+10PTS/3
LIMIT=NP*(2+10PTS/2)
CALL POWL

GOTO 425 |
ISRCH=6+10PTS/3
LIMIT=NP*(2+410PTS/2)
CALL STEW

GOTO 425
1SRCH=6+10PTS/3.
LIMIT=NP*(2+10PTS/2)
CALL FLEP

GOTO 425

CALL MIP

GOTO 425
ISRCH=10%NP
LIMIT=1+I0PTS/3
ALPHA=.2

CALL MAP

- GOTO 425

180



406

407

408

425
C %%

450

1465

C k¥

ISRCH=6+10PTS/3
LIMIT=4+I0PTS/2

CALL MFD

GOTO 425

ISRCH=6+10PTS/3
LIMIT=(14NP*(3+I0PTS)) /2
CALL NEWT

GOTO 425

CALL QP

GOTO 425

CONTINUE

CALCULATE NEW WEIGHT #%x
WTI=0.

DO4501=1,NWORK
WTI=WTI+XL(T)*T(1)
1F(IP.LT.0)GOTOL465
WRITE(641)

WRITE(6 4201 I0PTSRPyWT I, FUN
WRITE(6,14)NONED
WRITE(6,17)NFE

WRITE (6,18 )NGE
WRITE(6,11)IER
WRITE(6,9)

WRITE (64100 (I, T(I),1=1,NWORK)
WRITE(6,1)

CONTINUE

CALL TIMER(DATE,TIME,VIRT,TOTAL)

OPTIM=0PTIM+VIRT
TOTIM=0PTIM+FUNT IM+DERTIM
I=I0PTS

UPDATE RESULTS MATRICES k%

TRSLTS(I,1)=NONED

IRSLTS(I,2)=NFE
IRSLTS(TI,3)=NGE
IRSLTS{I44)=FUNTIM

"IRSLTS(I,5)=DERTIM

IRSLTS(1,6)=0PTIM
IRSLTS(I,7)=TOTIM
IRSLTS(1,8)=LIMIT
TRSLTS(T,9)=1SRCH
1FEAS=0
IF(NOR.EQ.5)CALL FEASQ(IFEAS)
IRSLTS(I,10)=IFEAS
ARSLTS{I,1)=FUN
ARSLTS(I,2)=WTI
SCALE=1. |
IF(IFEAS.EQ.0)GOTO 480
DUML=1./SIGA
DUM2=1./SIGL

DO 475 L=1,NLC

DO 475 K=1,M

DUM=DUM1

181



182

IF{S({Kydol)aLT0.)DUM=DUM2
DUM=DUM*5(K,4,L)
IF(DUM.GT.SCALE)SCALE=DUM

475 CONTINUE

480 CONTINUE

: ARSLTS{I,3)¥=SCALEXWTI
ARSLTS{I44)=EST
WRITE(6,41)
WRITE( 6,28 )INP,NORyDATE, TIME
WRITE(6,29)(1,1=1,I0PTS)
WRITE(6430)(IRSLTS(I,41),I=1,1I0PTS)
WRITE(6431){IRSLTS(I,2),1=1,10PTS)
WRITE(G6,32){IRSLTS(I+3),1I=1,10PTS)
IFINOR +EQe5+0RNORLEQ.6)GNTO 1900
WRITE(6434) (ARSLTS(I,41)+1=1,1I0PTS)
WRITE( 6, 44)(ARSLT51194)91 1,I10PTS)

1900 CONTINUE

. WRITE{6435) (ARSLTS(142),1=1,10PTS)
IF{NOR «NE«5)GOTO 1902
WRITE(6,42){IRSLTS{I,10),1I=1,I0PTS)
WRITE(6443) (ARSLTS(I,43),1=1,1I0PTS)

1902 CONTINUE
WRITE{6,36) (IRSLTS(1,4),1=1,10PTS)
WRITE(643T)(IRSLTS{I45),1=1,10PTS)
WRITE(6438){IRSLTS(I46)y1=1,1I0PTS)
WRITE(6439)IRSLTS(I,7)y1=1,10PTS)
WRITE(6,13)
IF{NOR.EQ.5)GOTO 1905
WRITE{6440)(IRSLTS{I+8),1I=1,1I0PTS)
WRITE(64+41L){IRSLTS{I+9),1=1,10PTS)

1905 CONTINUE
WRITE(6412)STNyWTEST,,SFLySAL

IF(NOR +EQ.5.0R.NOR.EQ. 6)GOTO 1910
WRITE(6,15)CC
WRITE(6,23)CCC
GOTO 1920
1910 CONTINUE
TF(NOR EQe5) WRTTE (6,45) ALPHA
IF(NOR +EQ.6)IWRITE(6,461PSI
1920 CONTINUE
C *#%x TEST FOR EXIT FROM JOB %%k
500 CONTINUE '
IF(I0PTS.EQ.1)GOTO 600
IF (NOR.EQ.5)GOTD 525
IE(WTI.GT.WTIML)GOTO 800
IF (NOR .EQ. 6)G0T0 525
IF(FUN-WTI.LE.EPM¥NTI)GOTD 820
525 CONTINUE
. TEST=ABS({{WTIMI=-WTI) /WTI)
550 IF{TEST.LT.WTEST)GOTO 820
IF(NOR.NE.5)GOTD 575
DD 560 I=1,NWORK



560

575
600

610

C %k

660

670

680
690

720

C
T

800

805

TEST=ABS({TREM(I)~-
IF(TESTGT{ALXT{
CONT INUE
GOTO 840
IF{IOPTS.GT.NRPV)GOTO860
CONTINUE

WTIM1=WTI :

DO 610 I=1,NWORK:"

TREM(I)=T(I)

TTT(LLI0PTS)=T(I)

TREM(NP1)=FUN

TREM{NP2)=WTIML
TTTINPL1,IOPTS)=FUN
TTTINP2,I0PTS)I=WTIML

RP=CCC*RP

DUN=WTI+CCC*{FUN-WTI)

FUN=DUN

EST=WTIM1
IF{NOR«GT+3.AND.NOR.NE.7)G0O TO 300
IF(IOPTS.EQ.1)GOTO 300
EXTRAPOLATION dk¥ok

IOP1=1+I0PTS

IU=ICQPTS~-1

CN=CCC**IQPTS
CLUIOPTS)=(CN-1.)/7(CCC~1.)

DO 660 I=1,IU

CLili= CL(I)*(CN*(1.-CN)’/(CCC*CN-CCC**I)
CONTINUE

DO 670 J=1,NP2

H({J)=0,.

DO 690 1=1,10PTS

DO 680 J=1,NP2

H{J)= H(J)+CL(I)*TTT(JQI)
CONTINUE

CONTINUE

DO 720 J=1,NWORK

H{J)=H{J}-T(I)

EST=H(NP2)

NUSE=1

NSRCH=1

KOUNT=1

NNOR=NOR

NOR=1

CALL ONED

NOR=NNOR

GOYO 300

T(I))
1)))6OTO. 575

OPTIMIZATION COMPLETE %X
CONTINUE
WRITE(6,8)

DO 805 I=1,NWORK
T(I)=TREM(I)

183



820
840
860
900

%R

950

999

FUN=TREM{NP1)
WTI=TREM(NP2)
GOTO 900 -
CONTINUE

"WRITE(6,5)

GOTO 900
CONTINUE
WRITE(6,25)
GOTO 900
CONTINUE
WRITE(6,6)10PTS
GOTO 900
CONTINUE

READ IN NEXT JOB kX%
READ(5421)NOR
WRITE{6,33)NOR

IF (NOR.EQ.10)GOTO 999

IF(NOR.EQ.9)G0OTO100
00 950 I=1,NWORK
T(I)=TINIT{I)
AL=SAL

FUNL=SFL

TACTN=STN

GOTO 200

CALL EXIT

END

184



COMMENY : OPTIMIZATION ALGORITHMS

C k%

SUBROUTINE POWL
NOR=1 #¥%

COMMON CARDS:PRINT,0PT,WORK

85
90
100

102

C %k

104

C w4k
C %%k

106
108

110

C %%k

112

1ER=0

KOUNT=0

NZERO=0

D0 901=1,NWORK

DO 85J=1,NWORK
D2FDT2(1,J)=0.
D2FDT2(1,1)=-1.

CONTINUE

KOUNT=KOUNT+1

NUSE=1

D0102J=1,NWORK

POLII=T(J)

1TST=0

FO=FUN

DELT=0.

SEARCH IN THE N DIRECTIONS DEFINED BY D2FDT2
DOLO8I=1,NWORK
DO104J=1,NWORK
H(J)=D2FDT2(J,1)

FSAV=FUN

NSRCH=1

CALL ONED

IF(AN.NE.O .INZERO=0

IF (AN EC.0.)NZERO=1+NZERD
IF (NZERD.GE.NWORK)GOTO 136
FTST=FSAV-FUN

IF(DELT.GE. FTST)GOTOLOé
DELT=FTST

DELT IS LARGEST CHANGE IN OF DURING THE NWORK SEARCHES
ITST IS ITERATION OF THE LARGEST CHANGE
ITST=1

CONTINUE

CONTINUE

DO110J=1,NWORK

PN(JI=T(J)

EN=FUN

TEST TO SEE IF WE SEARCH IN SAME DIRECTION AGAIN
DO112J=1,NWORK
T(J)=(PO(JI+PN(JI) ) /2.

CALL FUNCT

FM=FUN

 DUM=FO-2.%FM+EN

C &kx
116

IF{DUM.LT.0.1GOTO 120

TF(FO-4 *FM+3.%FN.GT«0.)G0TO 116

IF{2.%DELT*DUM.GE. (FO~FN)*%2)GQTO 120

POWL HAS DECIDED TO KEEP OLD DIRECTIONS AS TEST1.LT.TEST2
CONTINUE

185



- 118

C *Ax
120

122

124

C kX

126

128
C ok

130
132
134

136
C kxk

¢ k#kox

C Hxk

DO118J=1,NWORK
T{J)=PN{J)
CONTINUE
FUN=FN
GOTO130

186

WE WILL SEARCH IN PN -~ PO DIRECTION

CONT INUE

NUSE=0

00122J=1,NWORK
H{J1=PN(J)-PO(J)
DO0124J=1,NWORK

T(J)=PN(J)

FUN=FN

AOD=-1.0 .

NSRCH=NWORK+1

CALL ONED
IF(AN.NE.O.)NZERQO=0
IF(ANEQ.O . )NZERO=1+NZEROD
IF({NZERQ.GE.NWORK)GQOTO 136
GET NEW DIRECTION OF SEARCH
NWM1=NWORK~1
DO126I=ITST,NWM1
D2FCA2(1)=D2FDA2(1I+1)
D0126J=14NWORK
D2FDT2(Js1)=D2FDT2(J,1+1)
D2FDA2 (NWORK)=D2FDA2 {NWORK+1)
D0128J=14NWORK
D2FDT2(JNWORK)=H(J)

DO WE TERMINATE

CALL EXTEST
TF(KOUNT.LT.NWORK)IER=0
IF{IER.GT.0)GOTO 136
DO134J=1,NWORK

PO(JI=T (I

GOTOl00

CONTINUE

NEITHER FUNCTION NOR VARIABLES
RETURN

END

SUBROUTINE STEW
NOR =2 ok

CALL FLEP
RETURN

END

SUBROUTINE FLEP
NOR=3 #kk

COMMON CARDS:PRINT,0OPT,WORK

CHANGING MUCH SO WE TERMINATE



187

H ~ WORKING STORAGE OF DIMENSION N¥(N+7)/2.
N=NWORK ’

IER=0
KOUNT=0
N2 =N+N
N3=N2+N
N31=N3+] .
COMPUTE FUNCTIGON VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
IHE=1 .
100 IF(NOR.EQ.3)G0TO102
DO 101 I=1,N
DEL(I)=0.001
101 KOOER({I1)=0
CALL DIFFUN
GOTO103
102 CALL DERFUN
103 CONTINUE _
RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
1 K=N31
DO 4 J=1,yN
H(K)=1.
HINV{J) =1,
NJ=N-J
IF(NJ)S5,5,2
2 DO 3 L=1,NJ
KL=K+L
3 H(KL)=0.
4 K=KL+1
START ITERATION LOOP
5 KOUNT=KOUNT +1

C #%% SAVE F ARG VECTOR GRAD VECTOR %x

FO=FUN
DO 9 J=1,N
K=N+J
H(K)}=DFDT{J)
K=K +N
H{K)=T(J)
PO(J)=T(J)
DETERMINE DIRECTION VECTOR H
K=J+N3
.TT:’O.
DO 8 L=1,yN
TT=TT-DFDT{L)*H(K)
IF{L=J)6+T47
K=K+N-L
GO T0 8
K=K+1
CONTINUE
H(J)=TT »
CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H.
HNRM={(.

O 0 -4 o



e X2 e X

C
c
10
11
c
12
C ke gk
28
29
30
C Mwk

31
32

188

GNRM=0.
CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION
VECTOR H AND GRADIENT VECTOR DFDT
DO 10 J=1,N
HNRM=HNRM+ABS (H{J))
GNRM=GNRM+ABS (DFDT(J))
DY =0Y+H (JV*DFDT (J)
 REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTIONAL
DERIVATIVE APPEARS TO BE POSITIVE OR ZERD.
IF(DY)11,50,50 .
REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION
VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR DFDT
IF (HNRM/GNRM~EPS)50,50412
SEARCH MINIMUM ALONG DIRECTION H
CONTINUE
NSRCH=1
CALL ONED
1F(FO~FUN+EPS)50,28,28
TEST FOR TERMINATION skokk
CALL EXTEST
IF (KOUNT.LT .NWORK)TER=0
IF(1ER.GT.0)GOTO 56
IF (AN.LE.0.)GOTO 100
IF (NOR.EQ.3)GOT035
CALC DEL FOR STEWART s«
PHI=FUN
ABPHI=ABS(PHI)
PO 33 I=1,N
ALPHA=HINV(T)
ABAL=ABS(ALPHA)
GAM=DFDT(I)
ABGAM=ABS { GAM)
DELPH=DEL(1)
IF(ABGAM.LT. (FUNXEPS))GOTO33
ZET=T(I)
ABZ=ABSI{ZET)
ETA=EPS
DUM=ABS (GAMKZET/PHT ) XEPM
IF(ETA.LT.DUM)ETA=DUM
DUM=ABAL*ABPHIXETA
DELPH=ABPHTXETA/ABAL
IF ((GAM*%2),LT.DUM)GOTO31
DELPH=2 .*SQRT (DELPH)
DELPH=DELPH®{1.—=(ABAL*DELPH)/ (3. %ABAL*DELPH+4 .*ABGAY ) )
G0T032
DELPH=2..%{ (DELPH*ABGAM/ABAL ) %% (1./3.))
DELPH=DELPH* (1.~ (2. %ABGAM)/ (3. *ABALXDELPH+4 . XABGAM) )
CONT INUE
IF ((ALPHAXGAM) .LT.0.)DEL PH==DELPH
KODER( 1) =0
IF((0.5*ABAL*ABS(DELPH) ) .LT.(0.05%ABGAM))GOTO33
KODER(I)=1



33

35
36

37

38
39

41

42
43

44

45
46

47

DUM=ABGAM/ABAL

DELPH==DUM+SQRT (DUM%%2+200 . *ABPHT*ETA/ABAL)

DEL (1) =DELPH
CALL DIFFUN
GOTO 36
CALL DERFUN
CONTINUE

COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRAD FROM

TWO CONSECUTIVE ITERATIONS
DO 37 J=1,N
K=N+J
H{K)=DFDT{J)=-H{K)
K=N+K
HIK)=T(J)=-H{K)
=0,

DO 38 J=1,N
K=N+J
W=H(K)
K=K+N
I=7+WrH(K)
IER=0)

IF(NOR.EQ.3)G0T043

BETA=0.
RHO=0.
DD41J=1,4N
K=N+J
BETA=BETA+H{K)*H(J)
RHO=RHO+(DFDT{JY~HIK))*:H(J)
CONTINUE
Cil=1./BETA .
C2=(1./AN-RHDO*C1)
D042J=1,N
K=N+J
HINV(J)=HINVIJ)+CL1%®((C2-2. )*H{K)
CONTINUE

PREPARE UPDATING OF MATRIX H
ALFA=0,
DG 47 J=1,N
K=J+N3
W=0. .
DO 46 L=1,4N
KL=N+L
W=W+H(KL)RH(K)

CIF(L-Jd)44,45,45

K=K+N-~-L

GO TO 46

K=K+1

CONTINUE

K=N+J
ALFA=ALFA+WXH(K)
H(J)=W

+2.%¥DFDT(J) ) *H(K)

189



"
c
48
49
C
C
50
51
52
C
c
C
53
54
55
56
C *iok

" C

190

REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
ARE NOT SATISFACTORY

IF{Z%ALFA) 4841948

K=N31

DO 49 L=1yN

KL=N2+L

DB 49 Jd=L,N

NJ=N2+J

HOKY=H(K)+HEKLY*HINS ) 7 Z=HILY*H(J) /ALFA
K=K+1

GO TO 5

END OF ITERATION LOQGP
RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS
DO 51 J=1,N '
K=N2+J
T(J)=H(K)
FUN=FO
DO 52 J=1,N
K=N+J
DFDT(J)=H(K)
REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE
FAILS TO BE SUFFICIENTLY SMALL
IF (GNRM~EPS)55,55,53
TEST FOR REPEATED FAILURE OF ITERATION
IF(IER)56454,454
IER=-1
GOTC 1
CONTINUE
RETURN
END

SUBROUTINE MAP
NOR=5 *x%

THIS SUBROUTINE SETS UP THE LINEAR PROGRAMMING PROBLEM

COMMON CARDS:DATA,PRINT,0PT,WORK

50

95
99

IER=0

KOUNT=0

IHE=1
NWL=NWORK+1

NC OL=NWORK
NN=NWORK
NNP1=NN+1
TWORK=M%NLC
IWORK 2= 2% I WORK
NROW=1 WORK 2 +NWORK
NRP1=1+NROW
CONT INUE

DO 95 J=1,NWORK
PO(JI=T(J)
CONTINUE
KOUNT=KOUNT+1



191

FO=FUN
CALL DERFUN
DO 100 J=1,NWORK
DO 100 L=1,NLC
DO 100 K=1,4M
I=(L-1)%M+K
100 A(I,4)=-DSOT{K,L,J)
DO 105 J=1,NWORK
’ DO 105 1I=1,1WORK
105 A(I+IWORK,J)=~A(1,J)
DO 115 J=1,NWORK
DD 110 I=1,NWORK
110 ALIWORKZ2+1,4J)=0.
115 A(IWORKZ+J9J)=1.
DO 120 J=1,NWORK

120 A{NRPL,J)=XL(J)
ACNRPL14NNP1) =(.
ONMA=ALPHA*( TMAX-~TMIN)
DO 135 I=1,NN
TLII)=TMIN
TU(I)=TMAX
RRR=T{ I)-0ONMA
IF(RRR«GTTL{I})TL(I)=RRR
SSS=T(I)+0NMA
IF(SSSLT.TU(TI))TU(I)=S8SS

135 CONTINUE
DO 145 L=1,4NLC
DO 145 Jd=1,M
JJ=Mx(L-1)+J
SUM=0.

DO 140 K=1,NN ,

140 SUM=SUM+DSDT{J,yLK)R(T(K)-TL(K))
SUM=SUM~=-S{Jdq+4,4L)
A(JJIyNNPL)==SIGL~SUM

145 ALJJ+IWORKZNNPL)=SIGA+SUM
DO 150 I=1,NN

150 A(IWORK2+INNPL)=TU(I)-TL(I)

CALL PRMDUL
DO 300 I=1,NWORK

T(I)=H(I)

300 TUI)=T(I)+TLI(I)
CALL FUNCT
CALL EXTEST
IF{IER.EQ.0)GOTO 50

900 CONTINUE
RETURN

END

SUBROUTINE MFD
C #%% NOR=6 *#x%
COMMON CARDS:DATA,PRINT,OPT,WORKyZ



192

NFAIL=0
1ER=0
NP=NWORK
NCOL=NP+1
KOUNT=0
IHE=1
NP2=NP+2
~ KU=2%( M¥NLC+NP)
100 KOUNT=KOUNT+1
CALL DERFUN
IF (KOUNT.GT.1)GOTO 125
IF(IOPTS.GT.1)GOTO 125
AM=0.
DO 105 I=1,NP
105 H{I1)==XL{I)
© FU=SIGA-TOL/2.
FL=SIGL+TOL/2.
CALL FSMOVE
| GOTO 100
125 NROW=1
TU=2%M%NLC
DO 130 I=1,1U
A{T,NCOLI=0.
130 A(I,NP2)=0.
© GNRM=0.
D0 150 I=1,NP
AC1,NP2)=A(1,NP2)+XL(T)
GNRM=GNRM+ABS{XL (1))
150 A(1,1)=XL(I)
ALL,NCOL)=GNRM
FU=SIGA-TOL
FL=SIGL+TOL
TTCL=TOL
TEST=1.E+50
11=0
DO 275 L=1,NLC
DO 275 K=1,M
DUM=S (K y4,L)
II=1+11
IACT=0
TF(KML{IT)+KM2(I1)+GE.2) IACT=1
KM2(I1)=KM2(IT)+KML{IT)
KM1(I1)=0
IF (DUM.GE. FUIKML{11)=1
IF(KMI(II)+IACT.EQ.0)GOTO 225
DDUM=S IGA-DUM
IF (DDUM.LT.TTOL) TTOL=DDUM
TTEST=TOL~DDUM
NROW=1+NROW
A{NROW,NCOL) =0.
DO 200 I=1,NP
A(NROW y NCOL ) =A (NROW,NCOL ) +ABS (DSDT (KoL, 1))



200

225

250

275

300

350

AUNROWoNPZ2)=A{NROW,NP2)+DSDT(KsL 1)
A{NROW, I)=DSDT(K,L,I)

A{NROW,NP2)=A(NROW,NP2)~-TOL

A{NROW yNCOL)=A(NROW,NCOL ) *PSI
TTEST=TTEST/A(NROW,NCOL)
IF(TTESTeGE«Oe s AND TTESTWLTSTEST)ITEST=TTEST
[I=1+11

TACT=0
IF(KML{IT)+KM2{I1).GE.2)IACT=1
KM2(II)=KM2(II)+KML(II)

KM1(I1)=0

IF(DUMJLELFLIKMLI(ITI) =1
IF(KMI(II)+IACT.EQ. O)GDTD 275
DDUM=DUM-SIGL

IF (DDUMLLT.TTOL) TTOL=DDUM
TTEST=TOL-DDUM

NROW=1+NROW

A{NROW,NCOL)=0.

DO 250 I=1,NP
A(NROWyNCOL)=A(NROW,NCOL)+ABS(DSDT(K,L»1))
AINROW,NP2)=A(NROWsNP2)-DSDT(K,L,1)
AUNROWI)==DSDT(KyL,1)
A{NROWyNP2)=A{NROW,NP2)-TOL
A(NROWyNCOL }=A(NROW,NCOL }*PSI
TTEST=TTEST/A(NROW,NCOL)
IF(TTESTeGE«Us «ANDeTTEST.LT, TEST)TEST TTEST
CONTINUE

IF(NROW.EQ.1)ITEST=0.

IL=1+NROW

TU=1+3%NP+IL

DO 300 J=1,NCOL

DO 300 I=IL,IU

A(I,J)=0.

FU=TMAX*%*(1.~-TOL/SIGA)
FL=TMIN*{(1.+TOL/SIGA)

DO 375 J=1,NP

DUM=T(J)

I1=1+11

IACT=0
IF(KML(IT)+KM2(IT).GEL2)TACT=1
KM2{IT)=KM2{TT)+KML(ITI)

KM1{II)=0

" IF(DUM.GE.FUIKMLI(IT) =1

IF(KMI(II)+IACT.EQ.0)GOTO 350
NROW=1+NROW

A{NROWyJ)=1.

A(NROW,NP2)=1.

II=1+11

IACT=0

IF(KMLOIT)+KM2(11).GE.2) IACT=1

KM2(TI)=KM2(IT)+KML(II)
KM1(II)=0

193



375

400

K

460

462

465

475

495

500

999

IF(DUMs LE« FLIKML{II)=1

IF(KMI{II)+IACTEQ.0)GOTO 375

NROW=1+NROW
A(NROW,J)==1.
A(NROW,NP2)=~1.
CONTINUE

D0 400 J=1,NP
NROW=1+NROW
A(NROW,J)=1.
A(NROW,NP2)=2,
NRP1=NROW+1
AUNRP1,NCOL) ==1.
A(NRP1,NP2)=0.

DIRECTION PROBLEM IS SET UP %%

IISRCH=ISRCH
ISRCH=10%*NP

CALL PRMDUL
ISRCH=ITSRCH
IF(IER.GT.1)GOTO 462
DO 460 I=1,NP
H(I)=H{I)-1.

CALL GETMA(AMAX,AMIN)
IF(AMAX.EQ.D.)GOTO 462

IF{ABS(H(NCOL)) .LT+1.E~10)G0TOD 999

GOTO 475

CONTINUE

1ER=0

NFAIL=1+NFAIL
IF(NFAIL.GE.10)GOTO 999
DO 465 K=1,KU

KML1(K)=0

KM2(K)=0

CONT INUE

TOL=TOL /2.
IF(NFAIL.GE.2)GOTO 125
IF(TOL.LT.TTOL)TOL=TTOL
GOTO 125

CONTINUE

AM=TEST/ABS (H{NCOL))
NFAIL=0

FU=SIGA-TOL/2.
FL=SIGL+TOL/2.

DO 495 I=1,NWORK
PO(D)=T(I)

FO=FUN

CALL FSMOVE

CALL EXTEST

IF(IER.EQ.0}GOTO 100
CONTINUE

RETURN
END

194



C ®%x

SUBROUT INE NEWT
NOR=T k%

195

Caxsx SUBROUTINE PERFORMS NEWTON—RAPHSDN WITH ONE DIM. SEARCHES
COMMON CARDS:PRINT,0PT,WORK

5

100

150

298
289
300
400

500

600

650

700
C ok ik

969

C Aok

FORMAT (* HESS SINGULAR,RETURN®)
[ER=0

KOUNT=0

IHE=2

CONTINUE

KOUNT=KOUNT+1

FO=FUN

DO 150 I=1,NWORK

POLIN=T(I)

CALL DERFUN

" GNRM=0.

DO 200 I=1,NWORK
GNRM=GNRM+ABS(DFOT(I))

CH(I)==DFDT (D)

[F({GNRM~EPS).LELO.)GOTO 999
KH=1

DO 300 J=1,NWORK

DO 299 I=1,J
HE(KH)=D2FDT2(1I4J)

KH=KH+1

CONTINUE"
CONTINUE
CALL GELS{H,HE, NNORKylyEPS IER,AUX)

TF(KS«EQ.1J)GOTO 500

GO TO 600

WRITE(6,45)

GOT0999

CONTINUE

HNRM=0,

DO 650 I=1,NWORK
HNRM=HNRM+ABS (H(I))
CONTINUE
NSRCH=KOUNT

CALL ONED

CONTINUE

CHECK FOR TERMINATION ki
CALL EXTEST
IF(IER.EQ.0)GOTO 100 .
RETURN

END

SUBROUTINE QP
NOR=8 %%
RETURN

END



SUBRQUTINE EXTEST

COMMON CARDS:PRINT,O0PT

1
2

3

50

75
100

FORMAT (' DESIGN NOT CHANGING MUCH')
FORMAT (' FUNCTION NOT CHANGING MUCH!)

FORMAT(* NO CONVERGANCE AFTER',I5,*ITERNS')

1ER=0 |
D0501=1,NWORK
QTEST=ABS(PO(I)=-T(1))
IF(QTEST.GT. (AL*T(1)))GOTOTS
CONT INUE

WRITE(6,1)

QTEST=ABS(FO-FUN)

IF(QTEST.GT . {FUNL*FQ))GOTOT75
WRITE(642)

1ER=1
RETURN
IF{KOUNT.GE.LIMIT)IGOTO100

RETURN
WRITE(643)KOUNT

[ER=2
RETURN
END

196



COMMENT : SEARCH ALGORITHMS

SUBROUTINE ONED

197

C *%x%x THIS SUBROUTINE PERFORMS A ONE DIMENSIONAL SEARCH
C x*xx AT CONCLUSION IT YIELDS A NEW DESIGN AND NEW GRADIENTS

COMMON CARDS:PRINT,0PT,WORK

O eH W

16

22

FORMAT(* REGION CONVEX RETURN TO ALGORITHM®')

FORMAT (* CAN NOT FIND

SECOND FEASIBLE POINT ')

FORMAT (' CAN NOT FIND THIRD FEASIBLE POINT ')
FORMAT (* CAN NOT FIND FOURTH FEASIBLE POINT ')
FORMAT(' INTERVAL OF UNCERTAINTY BELOW ACCEPTABLE SO WE STOPPED')

FORMAT (' SEARCH TERMINATED AFTER ',13,!
FORMAT (* ABS{H)=0. RETURN dNokkdxdtoksk? )

TRIES?)

FORMAT (' REGION FLAT,SEARCH TERMINATED AT BEST PDINT = ',E15.8)
FORMAT (' LAST POINT FURTHEST FROM BEST POINT,SEARCH TERMINATED')

NONED=NONED+1

DQO=0.
DO1051=1,NWORK
DQ=ABS{H(I))
IF(DQ.LT.DQQIGOTO105

- DQE=DQ

105

110

C #x%

C %ok
115

120

CONTINUE
IF(DQQ.EQ.0.1GOT0995
AOK=TACTN/DQQ
CONTINUE
KVEX=0

ICNT=0

IDIR=0

1QF=0

Al=0.

A2=0.

A3=0.

F2=0.

F3=0.

F4=0.

Fl=FUN
FSAVE=FUN
SAVE BEST w#%%

“AA=Al

FFE=F1

AQ=Al

FQ=F1

o ok e ok ook o e ***

CALL GETMA(AMAX, AMIN)
D01201I=1,NWORK
TSAVE(I)=TI(1)
FSAVE=FUN

AH=0,



125

ok
200

201

202

205
206
212
1012

213
214

215

D0125J=14NWORK
AH=AH+H{J)*H(J)
AH=SQRT {AH)

DY=0. .

GET SECOND POINT *%x%
CONTINUE
IF{(NOR.GT.1)G0T0205
IF{NUSE.EQ.1)G0T0N202
A2=A1

F2=F1

Al=AQ0

F1=F0

GOT0295

A2=5.%ACK

GOT0220

D0 206J=1yNWORK
DY=DY+H(J)}*DFDT(J)
IF(IP.LT.3)GOTO1G12
CONTINUE
IF(DY)215,216,213
D0214J=1,NWORK
H{d)==H(J)

DY=-DY

ATEMP=-AMIN
AMIN=~-AMAX
AMAX=ATEMP
ALFA={EST-FSAVE) /DY
A2=10.%ACK
IF{ALFA.GT.A2)A2=ALFA
[FIA2.GT.1.)A2=1.
IF{A2.LTe0)A2=—A2

- 6070220

rN
N
oo

222

226

o e

275

A2=1,

CONTINUE

AQ=A2

IF(AQ.GE.AMAX) AQ=(AL+AMAX) /3.
LF(AQ. LE.AMINIAQ={AL+AMIN} /3,
D02261=1,NWORK |
TOI)=TSAVE(I)+AQ*H(I)

CALL FUNCT

FQ=FUN

IS 2ND POINT FEASIBLE

CALL FEASQ(IFEAS)

IF (IFEAS.EQ.0)GOTO295
IF{AQ.GT.04.)AMAX=AQ
IF{AQ.LT.0.)AMIN=AQ
IF(ABS (A2) .LT.AOK)GOTO 275
ICNT=ICNT+1

IF (ICNT.GT.10)60T0275

GOTO 220

IDIR=IDIR+1
IF(IDIR.GT.1)6G0T0O821

198



280

295

298
X ek

koK
300
301
302

303

305

ik
306

307
310
320
321

330

199

00280 J=1,NWORK

HOJY==H{J)

ATEMP=~AMIN

AMIN==AMAX

AMAX=ATEMP

6070202

ICNT=0

A2=AQ

F2=FQ

IF(F2.GT.F11GOTO 298
IF(F1.GT.F2)AMIN=A1

AA=A2

FF=F2

GOTO 300

AMAX=A2

A FEASIBLE 2ND POINT IS NOW FOUND
GET THIRD POINT #xx

CONTINUE |

IF (AMAX~-AMIN.LE.2.*AOK)GOTO 800
FMIN=FF

IF (NOR.GT. 1)G0OT0O305
IF(F2.LT.F1)GOTO303
AQ=AL+2.%(AL1-A2)

FMIN=FF

GOTO 310

AQ=A2+2.%(A2-A1)

FMIN=FF

60TO 310

C1=(DY* (AL-AZ)~(F1=F2) )/ ({AL-A2)*(A1-A2))
C2=DY-2.%C 1¥A1

IS REGION CONCAVE:WILL A MAXIMUM BE PREDICTED? *kx
CT=EPM& (F2+F1)/ ((A2-AL)%*2)
IF(C1.6T.CT)GOTO307
AQ=A2+3 X (A2-AL)

FMIN=FF

GOTO 310

AQ=-C2/ (2.%C1)
FMIN=(CL*(AQ+AL)+C2)*(AQ-AL)+F1
CONTINUE

IF (AQ.GE.AMAX)AQ=(AL+A2+AMAX )/ 3.
IF (AQ.LE.AMINIAQ=(AL+A2+AMIN) /3,
DO3301=1,NWORK
TOI)=TSAVE(T)+AQ¥H(I)

CALL FUNCT

FQ=FUN

IF{A2.GT.AL)GOTO331

ATEMP=A)

FTEMP=F1

Al=A2

Fl=F2

A2=ATEMP

F2=FTEMP



331

335

336

C ¥k
337

339
C %
C kkk
400

405

410

415
420

C Aokx

IF(AQ.LT.A2.AND.AQ.GT.A1)GOTO 337
CHECK FEASIBILITY k%
CALL FEASQUIFEAS)
IF(IFEAS.EQ.0)GOTO337
ICNT=ICNT+1
IF(ICNT.6T.10)60T0993
IF (AQ.GT.A2)GOTO336
AMIN=AQ

GOTO 320

AMAX=AQ

GOTO 320

REORDER POINTS dokx
ICNT=0

A3=AQ

F3=FQ

IF {A3.6T.A2)GOT0339
AT=A3

FT=F3

A3=A2

F3=F2

A2=AT

F2=FT
IF(A2.6T.A1)GOT0O339
AT=A2

FT=F2

A2=A1

F2=F1

AL=AT

FL=FT

CONTINUE

A FEASIBLE 3RD POINT IS FOUND
GET FOURTH POINT ok
IF(FF.LE.FQIGOTO 405
AA=AQ

FF=FQ

CONTINUE

IF(F3.GE«F2.ANDJA3. LT AMAX)AMAX=A3

IF(F1.GE.F2.AND.AL.GT. AMIN)AMIN=AL
IF(F1.GT.F2.AND.F2.GE.F3)GOTO 410
IF({Fle LE.F2.AND.F2,LT.F3)GOTO 415

GOTO 420

IF{A2.GT.AMIN) AMIN=A2

GOTO 420 ,
IF{A2.LT.AMAX)AMAX=A2

CONTINUE
IF{AMAX-AMIN.LE.2.%A0K)GOTO 800

IS REGION CONVEX — WILL A MAXIMUM BE PREDICTED 7?7 %%

A31=A3-Al
A21=A2-A1
A32=A3-A2

Cl=(F1-F2) /(A21%A31)=(F2~F3)/ (A32%A31)

CT=EPM*(F3+F1)/(A3~-A1)%%2)

200



425

440

445
450
455
460

465

¥ ek

470

475

480

ook
485

IF(CL.GT.CT)IGOTO 440
IF(Cl.LE.0.)GOTO 816
IF(AA.LT.A3)GOTD 302

A1=A2

Fl=F2

A2=A3

F2=F3

GOTO 302

CONT INUE

KVEX=0

ICNT=0

1QF=I1QF+1

C2={F2-F3) /(-A32)-C1* (A2+A3)
AQ=-C2/(2.%C1)

D2FDA2 (NSRCH1=C1%2.
FMIN=(C1¥(AQ+A1)+C2)%*(AQ-A1)+F1
CONTINUE

CONTINUE
TF{AQ.GE.AMAXIAQ=(A2+A3+AMAX) /3.
IF(AQ.LE.AMIN)IAQ=(AL+A2+AMIN) /3,
DO 465 I=1,NWORK
T(I)=TSAVE(I)+AQ*H(I)

CALL FUNCT

FQ=FUN

CHECK FEASIBILITY *kx

[F{AQ.LT.A3.AND.AQ.GT.AL)GOTO 485

CALL FEASQUIFEAS)
IF(IFEAS.EQ.0)GOTD 485
ICNT=ICNT+1
IF(ICNT.GT.10)60T0994
IF(AQ.GT.A3)G0OTO 480
AMIN=AG

G0TO 450

AMAX=AQ

GOTO 450

REORDER POINTS #k
ICNT=0

A4 =AG

Fa4=FQ
IF(A4.GT.A3)G0TO 490
AT =A4

FT=F4

A4=A3

F4=F3

A3=AT

F3=FT |
1F(A3.GT.A2)GOTO 490
AT=A3

FT=F3

A3=A2

F3=F2

A2=AT

201



490
1025
495
%ok ok
L2 S
500
505
515

520
525

535
545
e e ok
x ok

700
705

K
800

805

810

F2=FT

IF{A2.GT.ALIGOTO 490

AT=A2

FT=F2

A2=Al

F2=F1

Al=AT

FL=FT

IF(IP.LT.2)G0OTO 1025

CONTINUE

CONTINUE

FOURTH FEASIBLE POINT IS FOUND #%x%
DISCARD ONE POINT k¥

CONTINUE
IF(F2.LToFloAND.AL.GT.AMIN)AMIN=AL
IF(AQ.EQ.ALl . AND.AA.EQ. A4 )GDTO 815
IF{AA.EQ.ALJAND.AQ.EQ.A4)}GOTO 815
IF{AQ.EQ.A4)GDTO525
IF(AQ.EQ.A1)GOTO535
IFLAA.EQ.A4)GOTO525
IF(AA.EQ.AY1)GOTD 535
IF{F3.LT.F2)GOT0520
IF(F1l.,GT,F2)GOTO525

GOT0535

IF{F4.GT.F3)G0T0O535

Al=A2

F1=F2

A2=A3

F2=F3

A3 =A4

F3=F4

A4=0Q.

F4=0.

CONTINUE
IF(AMAX-AMINLLE.2.*AOK)GOTO 800
IS MINIMUM BOUND 7 %%
IFIF2.6T.F1l.0R.F2.GT.F3)GOTO 400
TEST FOR TERMINATION OF SEARCH %=k
CONTINUE

IF{(A3~A1) JLEL(2.%A0K))GOTO 800
IF(Al.EQ.A2.0R.A2.EQ.A3)YGATO 800
1F(IQF.GE.ISRCH)GOTO 805

GOTO 400

AN EXIT REQUIREMENT HAS BEEN FULFILLED k¥
IF(IP.LT.2)GOTO 820

WRITE(6,8)

GOTO 820

IF(IP.LT.2)GOTO 820

WRITE(6,9) IQF

6070820

IF{IP.LT.2)GOTO 820

202



203

WRITE(6,21)AA
5070820
815 IF(IP.LT.21G07T0820
- WRITE(6,22)
GOT0820
816 IF{IP.LT.2)GOTD 820
WRITE(6,1)
820 CONTINUE
IF({FQ.LT.FF)IGOTO830
821 AQ=AA
- D0O825 I=14NWORK
825 T(I)=TSAVE(I)+AQ*H(I)
CALL FUNCT
FQ=FUN
CALL FEASQ(IFEAS)
830 CONTINUE
AN=AQ
G0T0999
C =%*% IF WE ARRIVED HERE AN ERROR IS APPARENT AND PROBLEM TERMINATED
992 WRITE(6,2)
6G0T0821
993 WRITE(6,3)
‘ 6070821
994 WRITE(644)
G0T0821
995 WRITE(6,19)
: AN=0.
999 RETURN
END

SUBROUTINE FSMOVE
COMMON CARDS:DATA,PRINT,0PT,WORK

NP=NWORK

NONED=NONED+1

I1QF=0

11=0

[2=0

13=0

14=0

IQ=1

1F1=0

1F2=0

I1F3=0

1F4=0

IFQ=0

Al=0.

A2=0.

A3=0.

A4=0.

AQ=0.

DQO=0.



OO0

110

120
X et
ok e
1T

220

225
250

KAk
300

325

350

375

ke
400

PO 110 I=1,4NP
DQ=ABS(H(1))

dF(DQ.6T.DQQIDAQ=DQ

IF{DQQ.EQ.0.)GOTO 910
AOK=TACTN/DQQ

DO 120 I=14NP
TT(L)=T(I)

FIND MOVE TO NON-LINEAR CONSTRAINTS sk

UPPER BOUND FROM LINEAR CONSTRAINTS =okx
THEN FORM DIRECTIONAL DERIVATIVES *dok
CALL GETMA{AMAX,AMIN)
IF(AMIN.LT.0.)AMIN=0.
IF{AM.LT.AMAX)AMIN=AM

DO 250 K=1,M

DO 250 L=1,NLC
SSIKelyL)=S(Ky4,L)

DO 220 1S=244

SS(Ky1IS4L)=0.

DY=0.

DO 225 I=1,4NP
DY=DY+DSOT (KyL oI )*H(T)
SS({Ky4,L)=DY

Il=1

LINEAR FIT *%x

A2=AMAX v

DO 325 K=1,M

D0 325 L=1,NLC

DY=SS{Ky4yl)

IF(ABS(LY) .LT.1.E-25)1G0T0 325
F1=SS({Kyl,L)
IF(DY.GT.0.)AT={FU-F1) /DY
TF(DY.LT.0.)AT={FL~-F1)/DY
IF(AT.GT.AOK.AND AT LT.A2)A2=AT -
CONTINUE :

TF(A2.LT.AMIN) A2= AMIN

AQ=A2

DO 350 I=1,NP
TEI)=TT(I)+AQ*H(T)

CALL FUNCT

CALL FEASQ(IFEAS) -

DO 375 K=1l,.M

DO 375 L=1,NLC
SS{Ky24L)=S{Ky4,L)

12=2

1Q=2

1F2=1FEAS

IFQ=IFEAS

IF{IFEAS.EQ.-1)GOTO 960
IF(IFEAS<EQel.ANDAQ.LT AMAX)AMAX=AQ
QUADRATIC FIT TO DY,Al,A2 %%
AT=0.

A3=AMAX

204



205

Cl=1./(A1-A2)
C2=0.
C3=0.
C4=A1+A2
DUM=2 . ¥%EPS/ ((A2-A1)%%2)
DO 425 K=1,M
DO 425 L=1,yNLC
Fl’-'-'SS(K,l.'L)
F2=5SS(K,2,L)
DY=S5S(Ky4,L)
QB=Cl*(F1-F2)
QA=C1%* (DY-QB)
QT=ABS{DUM*(F1+F2))
IF{ABS{QA) .LE.QT)GOTO 425
QB=QB-QA*C4 '
QC=F1-A1%(QA*A1+QB)
AT=AMAX
CALL ROOT(QA,QByQC,ACK,ATHAMIN)
IF(ATLT.A3}A3=AT

425 CONTINUE
IF(A3.EQ.A2)A3=(A1+A2) /2,

435 AQ=A3
DO 450 I=1,NP

450 T{I)=TT(I)}+AQ*H(1)
CALL FUNCT
CALL FEASQ(IFEAS)
DO 475 K=1,M
DO 475 L=1,NLC

475 SS{Ky34L)=S(Kybyl)
[3=3
1@=3
IF3=IFEAS
IFQ=IFEAS

C *%% ORDER PTS AlL,A2,A3 ok

IF(A3.GT.A2)GOTO 485
AT =A3
A3=A2
A2=AT
1T=13
I13=12
12=1T7
IFT=1F3
IF3=1F2
IF2=1FT

485 CONTINUE
IF(IFEAS.EQ.-1)GOTO 960
[FIIFL.EQ.Q)AMIN=AL
IF{IF2.EQ.0) AMIN=A2
IF(IF3.EQ.U)AMIN=A3
[F{IF3.EQ.1)AMAX=A3
IF{IF2.EQ.1) AMAX=A2

C *%%x QUADRATIC FIT TO Al,A2,A3 #%x%



500

505

510
515

525

535

550

C #xxk

AT=0.
AA=Al

IF(IF1.EQ.O0.AND.A1.GT. AMIN)AMIN Al

IFIIF2.EQ.1)GOT0505

AA=A2
IF(A2.GT.AMINYAMIN=A2
IF(IF3.EQ.1)GOTN510

AA=A3
IF(A3.GT.AMIN)AMIN=A3
GOTO 515
IF(A2.LT.AMAX)AMAX=A2
GOTO 515
IF(A3.LT.AMAX)AMAX=A3
CONTINUE

A4=AMAX

IQF=1QF+1

Cl=1l./(A1-A2)
C2=1./{A2~A3)
C3=1./7{A3-A1)

C4=A1+A2

DUM=2.=EPS/{ {A3-Al)*¥2)
DO 525 K=1,M

DO 525 L=14NLC
F1=SS{K,ILl,L)
F2=5S(K,12,L)
F3=SS({K,1I3,L)
QB=Cl4(F1-F2)
QA=C3%(C2%(F2-F3)~-Q8)
QT=ABS(DUM% (F1+F3))
IF(ABS(QA) LLE.QT)GOTO S25
QAB=QB~C4%QA
QC=F1l-(QA%AL1+QB) *Al
AT=AMAX

CALL ROOT(QA,QB,sQCyAOK,AT,AMIN)
IF(AT.LT.A4)A4=AT
CONTINUE
IF{A4.EQ.A3)A4=(A34+A2) /2.
IF(A4.EQ.A2)Aa={AL+A2) /2.
AQ=A4

IQ=4

DO 550 I=1,4NP

T =TT(I)+AQ*H{T)

CALL FUNCT

CALL FEASQ(IFEAS)
IF4=1FEAS

IFQ=IFEAS

14=4

ORDER PTS Al A2 A3 A4 %%k
IF(A4.GT.A3)GOTO 585
AT=A4

A4=A3

A3=AT

206



585

C Aok
600

625

635

645

655

C ko
C Mok

700

1T=14

I4=13

13=1T

IFT=1F4

IF4=1F3

IF3=1FT
IF{A3.GT.A2)G0T0 585
AT=A3

A3=A2

A2=AT

{1T=13

13=12

12=17

IFT=1F3

IF3=1F2

1F2=1FT
IF(A2.GT.A1)IGOTQO 585
AT=A2

A2=A1

Al =AT

IT=12

12=11

11=17

IFT=1F2

IF2=1F1

IF1=]FT

CONTINUE
IF{IFEAS.EQ.-1)GOTN 960
IF{IFEASEQ«OQO.AND.AQ.GT. AMIN}AMIN=AQ
TEST FOR TERMINATION '
CONTINUE

IF(IQF.GE. ISRCH)IGOTO 920
IF(IF1.EQ.Q)GOTO 625
IF(AL.EQ.0.}GOTO 625
IF{IF2.EQ.0)GOTO 635
AT=A2-A1

GOTO 655
IF(IF3.EQ.0)GOTO 645
AT=A3-A2

GOTO 655
IF(IF4.EQ.Q0)GOTO 700
AT=A4-A3

AT=ABS(AT)
IF{AT.LE.ACK)IGOTO 930
NO TERMINATION CONDITION FULFILLED %%
SELECT REDUNDANT POINT b3
IFT=0
IF(IF1.EQ.IFT)IFT=1
IDIS=14

ADIS=A4
IF(IF2.EQ.IFT)GOTO 710

207



710

720
* Aok

125

745

750

gk

*ok ok

910

920

330

940

I0IS=11

ADIS=A1
IF{1Q.NE.I1)GOTO 720
IDIS=12

ADIS=A2
IF(IF3.NE.IFTIGOTO 720
IDIS=14 :

ADIS=A4

GOTO 720
IF(IQ.NE.14)GOTO 720
IDIS=13

ADIS=A3

CONTINUE

UPDATE MATRIX + INDICES k%
DO 725 K=1,M

DO 725 L=1,NLC
SS{KyIDIS,L)=S{Ky4,L)
IF(AQ.EQ.AL)I1=IDIS
IF(AQ.EQ.A2) I2=IDIS
IF(AQ.EQ.A3) I3=1D1S
IF(AQ.EQ.A4) 14=IDIS
IF(ADIS.EQ.ALYGOTO 735
IF(ADIS.EQ.A2)GOTO 740
IF(ADIS.EQ.A3)GOTO 745
IF(ADIS.EQ.A4)GOTO 750
Al=A2

11=12

IF1=1F2

A2=A3

12=13

1F2=1F3

A3=A4

13=14

IF3=1F4

A4=0.

14=0

1£4=0 |
POINT DISCARDED,FIND NEW POINT s
60TO 500

ERROR OR TERMINATION MESSAGES ##%
CONTINUE

WRITE(6,6)

CALL EXIT
IF(IP.LT.2)GOTO 940
WRITE(6,1)

GOTO 940
IF(IP.LT.2)60T0940
WRITE(6,2)

GOTO 940
IF(AA.EQ.AQ)GOTO960
IF(IFQ.EC.0)GOTO960
AQ=AA

208



C ®%% A PRIMAL-DUAL LINEAR PROGRAMMING ALGORITHM sk

950

960
980

- 990

DO 950 I=1,4NP
TII)=TT(I)+AQ%H(T)
CALL FUNCT
IF(IP.LT.2)G0TOS80
IF(IP.LT.1)GOTO 990
RETURN

FORMAT (' MAX = OF QUADRATIC FITS REACHED®)

209

FORMAT (' CONSTRAINT LIES IN INTERVAL LESS THAN RESOLUTION®')

FORMAT (' MAX COMPONENT OF H = 0.0

END

SUBROUTINE PRMDUL

COMMON CARDS: PRINT,0PT,WORK

OO0

3 FORMAT(' LP SOLUTICN UNBOUNDED.

- EXECUTATION TERMINATED?)

4 FORMAT (' LP ALGORITHM ANTICIPATES LOOPING. EXECUTATION TERMINATED'

8
9
13
19

98

99

130

101

X)

FORMAT(* CYCLING PREVENTION ALGORITHM ERROR NO 1')
FORMAT (* CYCLE PRENTION ALGORITHM ERROR NO 2')
FORMAT(* CAN NOT FIND INITIAL FEASIBLE SOLUTION')

FORMAT (*OA PIVOT CAN NOT BE FOUND AFTER',I13,°

N
M
A

o u

N=NCOL
M=NROW
NP1=N+1
MP 1=M+1
NDUM=N+M
ISAVE=Q
JSAVE=0 :
DC98J=1,NDUM
ICOEF (J)=d
ICOUNT=0
CCNTINUE
ICQUNT=ICOUNT+1
ATEST=1.E+75
ICK=0
JCK=0
CTEST=1.
D0100J=1,N
IF(A(MP1l,J).GE.CTEST)GOTOL0D
JCK=J
CTEST=A{MP1,J)
CONTINUE
IF(CTEST.LT.0.1GOTO 101
GOTO 161
IF(ICOUNT.GEL.TISRCHIGOTO 952
ICTEST=0

ITERATIONS')

NUMBER 0OF COLUMNS IN COEF MATRIX OF INEQUALITY EQS.
NUMBER OF ROWS IN COEF MATRIX OF INEQUALITY EQS
MATRIX CONTAINING COEFS,COSTS,RH SIDES,AND OF
IREM() = ROW DESIGNATION OF ZERO B'S



C dokx

102

103
111

FIND A PIVOT FOR PRIMAL PROBLEM %k
DO 102 I=1,M
IF(A{I,JCK)*A{I,NP1).LT.0.)GOTO 103
IF(A(I ,JCK).GT.0.)60TO 103
CONTINUE
SOLUTION UNBOUNDED
GOT0951
CONTINUE

DO111I=1,M

IREM(1)=0

K=0
DO 114 I=1,M

- TF(AL(T 9 JCK)¥A(IyNPL)) 114,112,113

112

113

114

118

123

124

131

141
142
143

IF(A(] 4JCK)EQ.0.)GOTO 114
K=K+1
IREM(K) =1
ATEST=0.
ICK=1
GOTO 114
CONTINUE .
ATEST1=A(I,NP1)/A(I,JCK)
IF{ATEST1.GT.ATEST)GOTO 114
ATEST=ATEST1
ICK=I
CONTINUE
NLOOK=N
CONTINUE
IF(K.LT.2)GOTO 153
AT LEAST 2 B*'S ZERO
NLCOK=NLOOK+1
NTEST=N+M+1
IFINLOOKGE.NTEST)IGOTOS53
DO 123 J=1,NDUM
IF{ICOEF(J).EQ.NLOOK)IGOTO 124
CONTINUE
GOT0954
CONTINUE
JLOOK=J
IF{JLOCK.LE.NIGOTO 141
IDUMY=JL0O0K-N
DO 131 I=1,MP1
DUMMY(I)=0.
DUMMY (IDUMY)=1.
GOTO 143
D0 142 I=1,MP1
DUMMY({ I )=A(1,JLO0K)
CONTINUE
KK=0
ATEST=1.E+75
DO 152 I=1,K
[I=IREM(I)

210



151

152

153
*dok

K K

l61
Aox ok

162

ROfek

163

164

165

211

IF(DUMMY(II).NE.0.)GOTO 151
KK=KK+1

IREM(KK)=1I

ATEST=0.

ICK=11I

GOTO 152
ATESTL=DUMMY(II)/A(I1,J4CK)
IF(ATEST1.GTLATEST)IGOTO 152
ATEST=ATESTL

ICK=11

CONTINUE

K=KK

G0T0118

CONTINUE ‘
ACICK, JCK) = PIVOT FOR PRIMAL SIMPLEX %%x
IF{ICK.EQe ISAVE.AND. JCK.EQ.JSAVE)GOTO 952
ISAVE=ICK

JSAVE=JCK

CALL SIMP{ICK,JCK)

GOT0 99

AN OPT IMAL SOLUTION HAS BEEN REACHED #%x
CONTINUE

CHECK FEASIBILITY ***

T11CK=0

JJCK=0

TEST=0.

DO 162 I=1,M
IF{A(IyNPL).GT.TESTIGCTO 162
TEST=A(I4NPL)

TICK=1I

CONTINUE |
IF(TEST.GE«~1.E-8)GOTO 900

FIND A PIVOT FOR DUAL PPOBLEM E R ES
ICOUNT=1+ICOUNT '
IF(ICOUNT.GE.ISRCH)IGOTO 952
ATEST=-1.E+70

K=0

DO 165 J=1,4N

[F{ACTICKy J)*A(MP1,4J))164,163,165
IF(A(MPLlyJ)NE.D.)IGOTO 165
IFCA(IICKyJ) «EQe041GOTO 165

K=1+K

IREM(K)=J

ATEST=0.

JJCK=J

GOT0 165
ATEST1=A(MPL,J)/A(TIICK,J)
IF(ATESTL.LT.ATEST)IGOTO 165
ATEST=ATEST1

JJCK=J

CONTINUE

IF(K.LT.2)GOTOD 169



167
169
C %xx%

170

C k%

900
910

1940
912

915

920

951

§52

353
954

955
939

c

ATEST=0.

DO 167 J=1,N

IF(A(MPL,J) .NE.O.)GOTO 167
DUM=ABS(A(IICK,J))
IF(DUMLLTLATESTIGOTO 167
ATEST=CUM

JJCK=J

CONTINUE

CONTINUE

A(ITICK,JJCK) = PIVOT FOR DUAL SIMPLEX %*%%

IF(IICK*JJUCK.EQ.QIGOTO 170

IF(IICKEQ.ISAVE.AND4JJICK.EQ.IJSAVEIGOTO 952

ISAVE=11CK
JSAVE=JJCK

CALL STMP{TICK,JJCK)
GOTO 161
WRITE(6,19)ICOUNT
IER=5

GOTO 910

A BASIC FEASIBLE OPTIMAL SOLUTION HAS BEEN REACHED
CONTINUE : ‘

IF(IP.LT.2)GOTO 1940
CONTINUE
CONTINUE
DO 915 J=1,N
H{J)¥=0.
DO 920 J=NP1,NDUM
[=J-N
K=ICOEF (J) :
IF(K.GT.N)GOTO 920
H{K)=A(I,NP1)
CONTINUE
OF=~A(MP1,NP1)
GOT0999
WRITE(6,3)
IER=3
GOTO 910
WRITE(b644)
IER=4
GOTO 910
WRITE(6,8)
RETURN
WRITE (649)
RETURN

WRITE(6413)
RETURN

END

SUBROUTINE SIMP({ICK,JCK)
THIS SUBROUTINE CHANGES TABLEAU

COMMON CARDS:PRINT,0PT,WORK

212



e Ne

145

110

115

N=NCOL

M=NROW

NP1=N+1

MP1l=M+1

ICK IS ROW DESIGNATION OF PIVOT
THE ICK+N COLUMN WILL LEAVE. BASIS
IREM1=ICOEF{JCK}
ICOEF(JCK)=TCOEF(ICK+N)
ICOEF{ICK+N)=IREM]

CHANGE TABLEAU
ACICK,JCK)=1./A(ICK,JCK)

DO 105 J=1,NP1

IF{J.EQ.JCK)GOTO 105
ALICK,J)=A(ICK,J}*A(ICK,JCK)
CONTINUE

DO 110 J=1,NP1

IF{J.EQ.JCKIGOTO 110

DO 110 I=1,MP1l ‘
IF{I.EQ.ICK)GOTO 110

A(T,0)=ACTJ)-ALT,JCKI)XA(ICK,J)

‘CONTINUE

DO 115 I=1,MP1
IF(I.EQ.ICK)GOTO 115
AlT,JCK)==A{I,JCKI*A(ICK,JCK)
CONTINUE

RETURN

END

SUBROUTINE ROOT(QA,QB,QCyAOK,AT,AMIN)

COMMON CARDS:0OPT

100

120
150
200

300
400

420

DUM2=.5/QA

DUM1=QB*(-DUM2)

DT=(AOK/DUM2) #%2
QT=(.01%(~-QB) ) *%2
DUM=QB*QB~4.*%QAX*(QC~-FU)

IF (DUM.GT.0.)GOTO 150
IF(DUMK%2,LT.DT**2)GOTO 120
GOT0400 '
IF(DUM1.GT.0.)AT=DUM1

GOTO 400

DUM=DUM2%SQRT(DUM)

QT=DUM1+DUM
IF{QT«GT.AMINJAND QT .LT.ATIAT=QT
QT=DUM1-DUM
IF(QTaGTAMINLANDQTLLTLATIAT=QT
DUM=QB*(QB-4.*QA% (QC~-FL)
IF(DUMLGT.0.)1GOTO 450
IF{OUM%%2 LT DT*%2)GO0T0 420
GOTO0700

IF(DUM1 eGT 04 AND.DUML.LT.AT)AT=DUM]

213



C 214

GOTO 700

450 DUM=DUM2%SQRT(DUM)

: QT=DUM1+DUM

500 IF{QTaGT«AMIN.ANDLQTLT.AT)AT=QT
QT=DUM1-~-DUM

600 IF{QT.GT.AMIN.AND.QT. LT ATIAT=QT

700 RETURN
END

SUBROUTINE FEASQ(IFEAS)
C THIS SUBROUTINE TELLS WHETHER DESIGN IS FEASIBLE
COMMON CARDS:CATA,PRINT,OPT

1 FORMATI(* IFEAS = "',12,' =~ CONSTRAINT TIGHT *)
2 FORMAT (' I1FEAS = *,12,' -~ DESIGN FEASIBLE ')
3 FORMAT (' JFEAS = *,12,' -~ DESIGN UNFEASIBLE *)

IFEAS=0
DO 100 L=1,NLC
DO 100 K=1.M
TEST=S(Ky4,L)
TTEST=TEST-SIGL
TEST=SIGA-TEST
IF(TTESTLTLTESTITEST=TTEST
IF(TEST.GT.TOLIGOTO 100
IF{TEST.LT.~-TOL)GOTO 200
IF{NOR.EQ.5)GOTO 100
IF{TEST.LT.0.)}GOTO 200
IF(NOR.NE.6)GDTO 100
IFEAS=-1

100 CONTINUE
GOTO 300

200 IFEAS=1

300 IF(IP.LT.2)GOTD 400
IF(IFEAS)3254350,375

325 WRITE(6,4,)1L)IFEAS
GOTO 400

350 WRITE(64,2)IFEAS
GOTO 400

375 WRITE(6,3)IFEAS

400 CONTINUE
RETURN
END

SUBROUT INE GETMA{AMAX,AMIN)
c THIS SUBROUTINE FINDS MAXIMUM VALUE OF A ALLOWABLE SO AS NOT TO
C HAVE T «GE. TMAX OR T .LE. TMIN
. COMMON CARDS:PRINT,0PT
1 FORMAT(//' DIRECTION OF TRAVEL IS DETERMINED AS‘//4Xy1H196Xv
SOHDIRECTION/)
2 FORMATI(ISyE15.4)

3 FORMAT(//' MAXIMUM MOVE IN DIRECTION = ',E15.4," MINIMUM = ',



105

110

30

91
92

100

XE15.4)

K=0

DG 100J=14NWORK

IF(H(J) .GT.0.)G0T0105
IF(H{J ) LTL.0.)160T0110
G0TQ100

CONTINUE

AMAXT= (TMAX-T{J) ) /H(D)
AMINL=(TMIN-T{J))/H{I)
GOT09G '
CONTINUE
AMAXT=(TMIN-T{J))/H(JI)
AMINL=(TMAX-T(J) ) /H{J)
CONTINUE

K=K+1

IF(K.GE.2)G0TO91
AMAX=AMAXT

AMIN=AMINL

6GOT0100

CONTINUE
IF(AMAXT.GE.AMAX)GOTD 92
AMAX=AMAXT

IF(AMINL.LT. AMINIGOTO 100
AMIN=AMINL

CONTINUE
IF(IP.LT.1)GOTO200
WRITE(6,1)
WRITE(fnZ)(IrH(I’,I-‘-lyNWORK)

. WRITE(6,3)AMAX,AMIN

‘290,

CONTINUE
RETURN
END

215



216

COMMENT : FUNCTION AND DERIVATIVE ALGORITHMS

SUBROUTINE FUNCT
COMMON CARDS:DATA,PRINT,TIME,OPT

CALL TIMER(CATE,TIME,VIRT,TOTAL)
OPTIM=CPTIM+VIRT

' NFE=NFE+1

300 CONTINUE
CALL SO0OLVE
IF{NOR+EQe5.0R.NORLEQ.6)G0OTOL50
FUN1=0.
FUN2=0.
FUN3=0.
D0100I=1,NWORK
FUNLI=FUNL+T(I)%XL (1)
FUNZ2=FUN2+1e /{TMAX=-T(I))+1./7(T{1)-TMIN)

100 CONTINUE
FUN2={ TMAX=TMIN) 2FUN2%RP
FUN3=0.
DO110LC=14NLC
DO110I=1,M
DUM=ABS(SIGA-S(1,44,1.C})
IF{OUM . LT.1.E~-50)G0TQ200
DUM=ABS(S(I,4,LC)-SIGL)
IF(DUMLLT.1.E-50)G0T0200

110 FUN3=FUN3+1./{SIGA-S{T94,LC))+1./(S{1,4,LC)-SIGL)
FUN3=(SIGA-SIGL)*FUN3%RP
FUN= FUN1+FUN2+FUN3

112 CONTINUE
GOTO175

150 FUN=0.
DO 155 1I=1,NWORK

155 FUN=FUN+T(I)*XL(1)

175 CONTINUE

200 CONTINUE
CALL TIMER(DATE,TIME,VIRT,TOTAL]}
FUNTIM=FUNTIM+VIRT
RETURN
END -

SUBROUTINE DERFUN
COMMON CARDS:DATA,PRINT,TIME,OPT,WORK
CALL TIMER{(DATE,TIME,VIRT,TOTAL)
OPTIM=0PTIM+VIRT
NGE=NGE+1
NN=N+N
INLC=NLC
DO 60 LC=1,NLC
DO 50 IS=1,4



217

DO 50 K=14M
SSIKyISHLC)I=S(K,1IS,1LC)
50 CONTINUE
DO 60 K =1,NN
QIKHLC)=P(K,LC)
RIKyLLC)=F(K,yLC)
. 60 CONTINUE
DO 100 I=1,NWORK
DFDT(I)=0.0
DO 100 J=1,NWORK
D2FDT2(144)=0.0
160 CONTINUE
105 CONTINUE
NLC =1
DO 7010 LC=1,INLC
IGH=1
DO 2000 1I=1,NWORK
DO 975 K=1,NN
975 F(Ky1)=0.0
J=1
IF{ISITPL.EQ.2)G0OTOLD0L
DO 1000 K=1,M '
CALL EFFLD(IyJyK,LC)
1000 CONTINUE
GOTYQ1003
1001 K=0
1032 CONTINUE .
CALL EFFLDI{I,J,K,LC)
1003 CONTINUE
CALL CHOS
CALL FIXU
DO 1050 L=1,NN
DUDT(L,I)=P(L,1)
~ 1050 CONTINUE
1061 CALL GETS
' IF(ISITP.EQ.2)G0T0O1201
DO 1200 K=1,M ’
SUKeay LI=(SSIK 34 LCIHO ¥ S{Ky3 5311 +SSUIKy24LCIR(2.%S{Ky2,1)~-S{K,y1,1))
CH+SSUKy LoLC ) #(2 %S (Kyle1)=S(Ky291)) )/ (SS(Ky4,LCI%2.)
1200 CONTINUE
1201 CONTINUE
IF(NORANE.S5«AND.NORNEL6)GOTO 1225
DO 1220 K=14M
1220 DSDT{KHyLCy IV =S{K,s4,1)
GOTO 2000
1225 CONTINUE
DO 1251 K=1,M
DO 1250 1IS=1l,4

DSDT(KyISsI)=S{KyIS5,1)
1250 CONTINUE
1251 CONTINUE



1253

1499
1500
1999
2000
2001

3000
3001
4000

49 25

5000

5001
5002

5003

5004
5010

6000
6001
6986

6990
7000
7005

CONTINUE
DO 1500 K=1,M

DUM=1./(SIGA=-SS{Ky4,LC))%%2~1, /(SS(K14vLC) SIGL)**Z

DFDT(II=DFDT(I)+DSDT(Ky4,1)%DUM
CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONT INUE

IF{IHE.EQ.1)GOTO70Q7
IFINOR.EQ«5.0R.NORCEQ. 6)GOTO7007
IF(IHE.EQ.2)GOT03000

G0TO8110

IGH=2

CONTINUE
DO 7005 I=1,NWORK
D0 7000 J=1,NWORK
CONTINUE

‘DO 4025 K=1,NN

FIKy1)1=0.0 .
IF(ISITP.EQ.2)G0T05001
DO 5000 K=1,M

CALL EFFLD(I4J¢KyLC)
CALL EFFLD{J,T4K,4LC)
CONTINUE

GOT05004

K=0

CONTINUE

CALL EFFLD(IsJsKeLC)
CONTINUE

CALL EFFLD(J,I,K4LC)
CONTINUE

CONTINUE

CALL CHOS

CALL FIXU

CALL GETS
IF(ISITP.EQ.2)G0TQ6001
DO 6000 K=14M

218

STKy4y 1) =(SSUKyl yLCI*(24%S{Ky1ly1)=S(Ks2+1))4#SS(Ky2,LCI%(2, *S(KfZ!l

CONTINUE
CONTINUE
CONTINUE:
DO 6990 K=14M

D2FDT2(1,J)=D2FDT2(1sJ)+S{Ky4s1)¥(1e/ ((SIGA~SS(Ky4yLC))%%2)=1.7/1(SS

ClKs4yLCI-SIGL)I*%2) ) +2.*¥DSDT(K 94y 1I¥DSDT K4, IV *(1./( (SIGA-SS{Ky4,
CLC) ) *%3)+1 o/ ((SS(Ky4yLCI=-SIGLI*%3))

CONTINUE
CONTINUE
CONTINUE

CI=S(KyLlyl) ) +SS{Ky34LC)*6.%S(Ky3y1)+DSDT(KyL,yI)*(2.%DSDT(Ky1,J)~-DSD
CTIK29J))+DSDT (K929 1) % (2%DSOT(K92yJ)-DSOT(Ky1yJ))+DSDT(Ky34T)%64%
CDSDT(K¢39J)-DSDT K94y I)%2 ., XDSDT(Ky49J))/({2.%5S{Ky4,yLC))



219

7007 CONTINUE
7010 CONTINUE
IF (NOR.EQ+5.0RNOR.EQ.6)GOT0O8000
DO 7050 I=1,NWORK
DUM=(SIGA-SIGL)*DFDT(1)
DFDT(I)=DUM
DUM=Lo/(TMAX=T(I))%%2=-1./(T{(I)~TMIN)**2
DUM={TMAX=TMIN)*DUM
DUM=DFDT(1)+DUM
DUM=RP *DUM
"DFDT{I)=DUM+XL{I)
7050 CONTINUE
7051 CONTINUE
IF(IHE. EQ.I)GDTDBOOO
7100 CONTINUE
DO 7255 I=1,NWORK
DO 7250 J=I4NWORK
D2FDT2(1,4)=(SIGA=-SIGL)%¥D2FDT2(1,J)
7125 CONTINUE
IF(I-J)7260,7150,7200
7150 D2FDT2([4J)=D2FDT2(1,J)+ 2% TMAX=TMINI*((14/{TMAX-T{1))%%3)+
c (Lo/(TCIN=TNMIN) )*%3)
7200 CONTINUE
7210 CONTINUE

D2FDT2(1,4J)=RPXD2FDT2(1,4)
7211 CONTINUE

D2FDT2(J+1)1=D2FDT2(1,4J)
7250 CONTINUE
7255 CONTINUE
8000 CONTINUE
NLC=INLC
DO 8100 LC=1,NLC
DO 8050 K=1,NN
FIKyLCI=R(K,sLC)
P(KyLC)I=Q(K,LC)
8050 CONTINUE
DO 8100 IS=1,4
DO 8100 K=1,M
SUKyISH,LC)=SSI{KyIS,LC)
8100 CONTINLE
CALL TIMER(DATE9TIME,VIRT9TOTAL)
DERTIM=DERTIM+VIRT
RETURN
8110 CALL EXIT
END

SUBROUTINE EFFLD{(I4JyK,LC)
COMMON CARDS:DATA,PRINT,0PT,WORK
4 FORMAT(®* ERROR :IGH=',12)
100 IF{IGH.NE.1)GOTO2G0
DO 105 L=1,yNK



200
201

205
105

207
210
213

225
226

220

P{Ly1)=Q{L,LC)

G070 210

IF(IGH.NEL.2)GOT0207

DO 205 L=1,4NK

PLL,L)=DUDT(L,J)

CONTINUE

CONTINUE

GOTO 210

WRITE(644) IGH

CONTINUE

CONTINUE

IF{ISITP.EQ.2)G0T0280

IFINODL(K).EQ.I)GO TO 225

IF(NOD3(K}.EQ.T)GO TO 225

IF(NOD21(K) .EQ.T)IGO TO 225

6070275

JF{IP.LT4)1G0OTD226

CONTINUE

N1=NOD L{K)+NOD1(K)~-1

N2=N1+1

N3=NOD2{K) +NOD2(K)~-1

N4=N3+1

N5=NGOD3{K) +NOD3{K)~-1

N6=N5+1

M1l=21%(K~1)+1

M2=M1+1

M3=M2+]

M4=M3+1

M5=M4+1

M6=M5+1

M7=M6+1

M8=M7+1

M9=M8+1

M10=M9+1

M11=M10+1

M12=M11+1

M13=M]12+1

M14=M13+1

M15=M14+]

M16=M1L5+1

M17=M16+1

M18=MLT7+1

M19=M18+1

M20=M19+1

M21=M20+1
D1l=—(AK{ML)®*P(NL,1)+AK{M2)%*P{N2,1)+AK(M3)%P{N3,1)
1 +AK{M4)%RP{N&Gy 1) +AK (MS5)RP (NS, 1) +AK(M6)%P(N6,1))/3
D2==(AK{M2 )% P(NLy1)+AK(MT)I*P{N2,1)+AK{M8)*P(N3,1)
1 +AK{MI ) %P N4,y L) +AK(MLO) %P (N5, 1) +AK{MLL)*P(N6,11)/3
D3=~(AK(M3})%P(NL, 1) +AK{MBI%¥P(N2,L)+AK(ML2)%P (N3, 1)
1 +AK (ML 3) %P (N4, 1) +AKIMLG) %P (NS,1)+AK(M15)1*P(N6,1))/3
Da==(AK(M4G)IXP (N1, L) +AK (MI)%P(N2,yLI+AK(ML3)*P{N3,1)



221

1 HAK(MLEYKRP (NG 3 1) +AK{MLTI%P{N5, 1) +AK{ML8)*P(N6,1))/3
DS=={AK{MS)%XP{NL,y 1) +AK{M1O) %P {N2,1) +AK{ML4)*P(N3,1)
1 +AKIMLT)®P(NGy LY +AKI{MLO)*P (N5, L) +AK{M20)%P{N6,1))/3
Do6==(AK(ME)*P{NLy1)+AK{MLL)*P(N2,1)+AK{M15)%P(N3,1)
1 +AK(M18)Y%P{ N4y 1) +AK(M20) %P (N5, 1) +AK(M21)%P{N6,1))/3
FINL,1)=F(N1,1)+D1
FIN2,1)=F(N2,1)+D2
FIN3y1)=F(N3,1)+D3
FI{N4,y1)=F(N4,1)+D4
F{NS5,1)=F({N5,1)+D5
F(N6,1)=F(N6,1)+D6
G0TO284
275 IF(IP.LT.4)GOTQ276
276 CUONTINUE
GOT0284
280 CONTINUE
N1=NOD1(I}+NODL{I)-1
N2=N1+1
N3=NOD2(I)+NOD2{I}-1
N4=N3+1
M1=10%(]I-1)+1
M2=M1+1
M3=M2+1
M4=M3+1
M5=M4+]
M6 =M5+1
M7=M6+1
MB=MT+1
M9=M8+1]
M10=M9+1
- Dl==(AK{ML)%P{NL1,1)+AK{M2)%(P{N2,1)+AK(M3I)%XP(N3,1)+AK(M4)*
XP{N&4y1))
D2==(AK (M2 )%P{N1y L) +AK(MS)I*PIN2Z2y1)+AK(ME)RP{N3,1)+AK{MT) ¥
XP{N4y1) ) | | -
D3=={AK{M3)*P(NLy 1) +AK (M6} *P(N2,1)+AK(MB)%P(N3,1)+AK(MO)*
XP{N4,1))
D4==({AK(M&)*P(NLy L) +AK(MTIXP(N2,1)+AK(MI ) %P (N3, 1 )+AK{M10)*
XP{N4,1})
FINL,1)=F(NL,1)+D1
FIN24y1)=F(N2,1)+D2
FIN3,1)=F(N3,1)+03
F{N4,1)=F{N4,1)}+D4
284 CONTINUE
286 CONTINUE
RETURN
END

SUBROUTINE DIFFUN

COMMON CARDS:DATA,PRINT,0PTyWORK
FOO=FUN
DO 105 I=1,NWORK



105

110
1015

115

120
121

130
140

TTLDI=T(I)
DO 110 I=1,NWORK

TOD)=TT{I)+DEL(I)

CALL FUNCT

FPO(I)=FUN
DFDT(I)=(FUN-FOO)/DEL(I)
IF{KODERII).EQ.0}GOTOL10

T =TT(I)-DEL(I)

CALL FUNCT '
DFOTULI) =(FPO(I)-FUN)/(2.%DEL(I))

T =TT

CONTINUE
IF(IHE.EQ.1)G0TO140
DO 130 I=1,NWORK
TCI)=TT{I)+DEL(T)
Ju=I-1
IF(JU.EQ.0)GOTO121
DO 120 J=1,J4U

T =TT{(JII+DEL(J)
CALL FUNCTY

" FPP=FUN

D2FDT2(Js I )={FPP-FPO(I)~-FPO{J)+F0DQ)
DUM=DEL(I)*DEL(J)
D2FDT2(J,1)=D2FDT2(J,11/DUM
T(J)=TT{J)
TCI)=TTA{I)~DEL(I)

CALL FUNCT
DUM=FPO(1)~FOO~FOO+FUN
D2FDT2(1,1)=DUM/(DEL(I)%%2)
T(I)=TT(I)

FUN=FOO

RETURN

END

222



223

COMMENT : STRUCTURAL ANALYSIS ALGORITHMS

SUBROUTINE SOLVE
CALL MERGE
CALL DCOP
CALL CHOS
- CALL FIXU
CALL GETS
RETURN
END

SUBROUTINE INIT
CALL DAT -

CALL GIBW

CALL INWK

CALL GETAK
RETURN

END

SUBROUTINE DAT
C THIS SUBROUTINE READS DATA
COMMON- CARDS:=DAT A, PRINT,OPT
1 FORMAT(1H1)
2 FORMAT(I13) ’ .
3 FORMAT (19H NUMBER OF NODES =.,1I3//5H NODE, 14X, 1HX, 14Xy LHY 14X, 1HT/
¢)
4 FORMAT(2F15.4)
5 FORMAT (1Xy1443F15.4) :
6 FORMAT(21H NUMBER OF MEMBERS = ,13//5H MEMy3X,y2HN1y3Xy2HN243X,3H
XN3,4X, 1LLIHAREA IF ROD/)
7 FORMAT(413,F15.4)
8 FORMATU(1Xy164,315)
9 FORMAT (33H NUMBER OF BOUNDARY CONDITIONS = yI3//SH NODE 43X,y 2HBC)
10 FORMAT(1Xy14,15) ’
12 FORMATI(F15.4)
13 FORMAT {14H PRINT CODE = ,13) '
16 FORMAT(19H NUMBER OF LOADS = ,I3//5H NODE,5H CODE,9X,6HAMOUNT/)
17 FORMAT (1Xy 144y 15,F1544) .
18 FORMAT(28H SIZE OF STIFFNESS MATRIX = ,13)
19 FORMAT(IS)
21 FORMAT (12H MOD ELAS = ,E15.4/18H POISSONS RATIO = 4E15.4)
30 FORMAT(I544E15.4) ‘ '
31 FORMAT (21H MAXIMUM THICKNESS = ,E15.4/21H MINIMUM THICKNESS = ,

XE1S5.4/' ALLOWABLE STRESS IN TENSION = ',E15.4/"' ALLOWABLE STRESS I
XN COMPRESSION = ',E15.4/*0ONUMBER OF ITERATIONS FOR WHICH RP LOWERE

XD'916X9'= '915’

32 FORMAT(' UOA TERMINATES WHEN (WTI-WTIML)/WTI LESS THAN WTEST!,6X,"*

X=14E15.4)
33 FORMAT (24H NUMBER OF LCAD CASES = ,13)
34 FORMAT(ELS.4) '
35 FORMAT(11H DENSITY = ,E15.4)



224

36 FORMAT{13H LOAD CASE = ,1I3)
38 FORMAT(I54F15.4)

39 FORMAT (' WE ARE DOING PLATE PROBLEM IF ISITP IS 1, ROD PROBLEM IF
X2y ISITP = 1,13)
40 FORMAT(1Xs 144215,5X4F15.4)
41 FORMAT(* RESOLUTION FOR DESIGN VARIABLES IS TACTN',16X,' =1,
XEl5.4) ' :
42 FORMAT{'SUBROUTINE DAT?*)
44 FORMAT{'OUNCONSTRAINED OPTIMIZATION ALGORITHM NUMBER',IBX,'-'.IS)'
45 FORMAT(' UOA TERMINATES WHEN AL DESIGN CHANGES LESS THAN AL',7X,
X*=Y,E15.4/21Xy YAND FUN CHANGES LESS THAN FUNL',7X,'=?',E15.4)
READ(5,2)ISITP
WRITE(6439)ISITP
WRITE(6,1)
READ(5,2) N
WRITE(643) N
DO 100 I=1,N
READ(5495) I4X{I),Y(I
100 WRITE(6,5) I4X(I),yY{
WRITE(6,41)
READ(5,2) M
WRITE(6,6) M
DO 110 I=1,M
READ(5,7) ID,NOD1(I),NDOD2(I),NOD3(1),DUMMY
IF(ISITP.EQ.L)IGOTOL05
T(1)=DUMMY
WRITE(6940)I4NODL(I),NOD2{I),T(])
GOTOL110
105 CONTINUE
WRITE(6,8) I,NOD1(I),NOD2(1),NOD3{1)
110 CONTINUE
WRITE(6,41)
READ(54,2) NB
WRITE(6,9) NB
DO 120 I=1,NB
READ(5,19) IB{1)
120 WRITE(6,10) I,IB(I)
NK=2%N
WRITE(6,41)
READ(5,42)NLC
WRITE(6433)NLC
DO 130 I=1,NK
DO130LC=1,5
F{I,LC)=0.
130 P(I,LC)=0.
DO141LC=1,NLC
WRITE{6,1)
WRITE(6,36)LC
READ(5,2) NL
WRITE(6,16) NL
DO140 I=1,NL ,
READ(54917) IN,IC,AMNT

I

+ T
2! T(T)

}y
1)



CWRITE(6,17) IN,IC,AMNT

140
141

ID1=2%{IN-1)+IC

F{ID14LC)=AMNT

CONTINUE

WRITE(6+1)

READ(5,2) IP

WRITE(6,13) IP

WRITE(6418) NK

READ(5,4) EE,EENU

WRITE(6421) EELEENU

READ(5,12)RHD

WRITE (6,35 )RHO
READ({54y30)NRPVyTMAX, TMIN,SIGA,SIGL
WRITE(6431)TMAX, TMIN,SIGA,SIGL 4NRPV
READ(5,430)LIMITHAL,FUNLyTACTN,WTEST
WRITE(6432)WTEST
WRITE(6+45)AL,FUNL
WRITE(64+41)TACTN

READ(5,4 2)NOR

WRITE(6444)NOR

RETURN

END

SUBRDUTINE GIBW

COMMON CARDS:DATA

1

100

200

250
330

FORMAT (14H BAND WIDTH = ,13)
1BW=0
IF(ISITP.EQ.2)GOTD200

DO 100 I=1,M

IDM=2x (NOD3(I)~NODL{I)+1)
IF (IDM.LE.IBW) GO TO 10
IBW=1DM ,
CONTINUE

60T0300

CONTINUE .
DO2501=1,M }
1OM=2%(NOD2(1)-NODL{1)+1
IF(IDM.LE. IBW)GOTO250
IBW=10M

CONTINUE

CONTINUE

WRITE(641) IBW

RETURN
END

SUBROUTINE INWK

COMMON CARDS:DATA,PRINT

NT=0

DO 100 I=1,NK
ID1=I+1IBW-1

225



60
100

200
1000

IF(IDL.GT.NK) GO TO 60
NTIM(I)=IBW

GO TO 100

NTIM{TI )=NK-I+1
NT=NT+NTIM(I)
ISuM(l)=1

DO 200 T1=2,NK

IM1=I-1 '
ISUM(T)I=ISUM{IML)+NTIM(IM])
CONTINUE

RETURN

END

SUBROUTINE GETAK

COMMON CARDS:CATA,PRINT,WORK

S0

D090 I=1,N

XL{1)=0,

IF(ISITP.EQ.2)GOT0O2000

IDUM=0

DO 1QOOMEM=1,M

N1=NOD1 (MEM)

N2=NOD 2 (MEM)

N3=NOD3 (MEM)

X1=X{NL)

X2=X{N2)

X3=X{N3)

Y1l=Y{N1l)

Y2=Y{N2)

¥Y3=Y{N3)

X31=X3-X1

Y31=Y3-Y1

X32=X3-X2

Y32=Y3-Y2

X21=X2~X1

Y2l=yY2-Y1
Al23=,54#(X32%Y21~-X21%Y32)
A123=ABS(A123)

Cl=EE /(4.%AL123%(1l.~EENU%XEENU))
C2=EE /(8.%A123%{1.+EENU)) '
V=EENU
EKL{L)=Cl%Y32%Y324C2%X32%X32
EKL{2) ==C1l*V%Y32%xX32~C2%X32%Y32
EKL{3)=~Cl%Y32%Y31-C2%X32%X31
EKL{4) =CLAVAY32¥X31+C2%X32%Y31
EXKL(5)=CLl*Y32%Y21+C2%X32%X21
EKL(6) ==CL¥VHYI2%X21-C2%X32%Y21

CEKLU7)Y=CL%X32%X32+C2%Y32%Y32

EKL{8)=Cl¥Vy%X32%Y31+C2%Y32%X31

EKL(9) =-C1%X32%X31~-C2%Y32%Y3]

EKL{LO) =—CLlxV¥X32%Y2]1~-C2%Y32%X21

EKL{11)=C1*X32%X21+C2%Y32%Y21

226



300

999

995
500

1000

1100
1200

2000

EKL(12)=CL*Y31#Y31+C2%X31%X31
EKL(13)==C 1®V#Y31%X31-C2%X31%Y31
EKL{14)=-C1l*Y31%Y21-C2%¥X31#X21
EKL{15)=CLl*V*Y31kX21+C2%X31%Y21
EKL(16)=C1#X31%X31+C2%Y31%Y31]
EKL{L17)=CL*V¥X31%Y21+C2%Y31%X21
EKL(18)==C 1¥X31%X21-C2%Y31%Y21
EKL{19)=CLl*Y21%Y21+C2%X21%X21 .
EKL{20) ==C 1#V¥Y21%X21-C2%X2 1*Y21
EKL{21)=CL%*X21*X21+C2kY21%Y21
00300J=1,21

1DUM=1DUM+1

AK{ IDUMI=EKL (J)

A123=A123/3.

XLINI) =XL{N1)+A123

XL (N2) =XL{N2)+A123

XL{N3) =XL{N3)+A123

CONTINUE

CC=EE/(X32%Y21-X21%Y32)/(1l.-EENU*EENU)

Z=.5%(1.~EENU)
I1=3%(MEM=-1)

IIPL=1T1+1

11P2=11+2

11P3=11+3
STRS{IIP1,1)=Y32
STRS{IIP1,2)=—EENU%*X32
STRS(I1P1,3)=-Y31
STRS{IIPL,4) =EENU%*X31
STRS(IIP1,5)=Y21
STRS(IIP1,6)==EENU%X21
STRS(IIP2,1) =EENU*Y32
STRS(IIP2,2)=-X32
STRS(IIP2,3)=-EENU*Y31
STRS(11P2,4)=X31
STRS(IIP2,5)=EENU*Y21
STRS(11P2,6)=-X21
STRS(IIP3,1)==2%X32
STRS{IIP3,2)=2%Y32
STRS(I11P3,3)=2%X31
STRS(11P3,4)=2%Y31
STRS(I1P3,5)=-2#X21
STRS(IIP3,6)=2%Y21
DO995K=11P1, 11P3
D09954=1,6 ,
STRS(K,J)=STRS(K,J)*CC
CONTINUE

CONTINUE

DO1100T=1,N
XL{I)=XL(I)*RHO
CONTINUE

GO T03000

CONTINUE

227



228

IDUM = O
DO21001I=1,M
N1=NOD1 (1)
N2=NOD2(TI)
X2MX1=X(N2)-X{N1)
Y2MYL=Y(N2)-Y(N1)
EL=SQRTAX2MX1*X2MX1+Y2MY 1*Y2MY1)
CCC=X2MX1/EL
SSS=Y2MY1/EL
ECCL=EE*CCC*CCC/EL
ESSL=EE#SSS*SSS/EL
ESCL=EE*SSS*CCC/EL
EKL(1)=ECCL
EKL{2)=ESCL
EKL{3)=~ECCL
EKL(4)=-ESCL
EKL(5)=ESSL
EKL(6)=-ESCL
EKL(T7)=-ESSL
EKL(8)=ECCL
EKL(9)=ESCL
EKL{10)=ESSL

602 CONTINUE
D02095J=1,10

IDUM=TDUM+]
2095 AK{(IDUM)=EKL(J)

STRS(Is1)=-EE/EL*CCC
STRS(I,42)=-EE/EL*SSS
STRS{I43)=-STRS(I,1)
STRS{I y4)=-STRS(1,2)
600 CONTINUE
XL{I)=EL*RHO
2100 CONTINUE
601 CONTINUE
3000 CONTINUE
CALL FIXAK
RETURN
END

. SUBROUTINE FIXAK

- COMMON CARDS:DATA,PRINT
DO 100 I=1,4NK

100 . 1IB(1)=0
DO 110 I=1,NB
IFLIB(I).GT.1000) GO TC 120
IDUM=TIB(I)+IB(I}~-1
GO TO 110

120 CONTINUE
IDUM=2%(IB(I)-1000)

110 IIB(IDUM)=1
[F{ISITP.EQ.2)GOT0400



201

202

203

204

205

206

300

DO 300 I=1,M
N1=NOD1(I)+NOD1(I)-1
N2=N1+1
N3=NOD2{(I)+NOD2(I)-1
N4=N3+1
N5=NOD3(1)+NOD3(1)-1
N6=N5+1 |
II=(I-1)1%(21)
IF(I1B(NL).EQ.0) GO
AK(II+1)=1.
AK(I11+2)=0.
AK(11+3)=0,
AK(11+4)=0.
AK(II+5)=0,
AK{I1+6)=0.
IF(IIBIN2).EQ.0) GO
AK{II+2)=0.
AKLTII+7)=1.
AK{II+8)=0.
AK(I1+9)=0.
AK{II+101=0.
AK(II+11)=0.
IF{TIBIN3) .EQ.0) GO
AK{II+3)=0.
AK(I1+8)=0.
AK(II+12)=1.
AK(II+13)=0.
AK(II+14)=0.
AK(I1+15)=0.
IF(IIR(N4) .EQ.0) GO
AK(II+4)=0.
AK(1149)=0.
AK(ITI+13)=0.
AK(II+16)=1.
AK(II+17)=0.
AK(11+18)=0.
IF(IIB(N5).EQ.0) GO
AK(11+5)=0.
AK(II+10)=0.
AK(I1+14)=0.
AK(II+17)=0.
AK(II+19)=1.
AK(11+20)=0.
IF(IIB(N6).EQ.O0) GO
AK(IT+6)=0.
AK(11+11)=0.
AK(II+15)=0.
AK(11+18)=0.-
AK(I11+20)=0.
AK(11+21)=1.
CONTINUE

GOTO500

T0

T0

10

T0

T0

T0

202

203

204

205

206

300

229



400

451

452

453

454

450
500
501

CONTINUE

DO450I=14M
N1=NOD1(I)+NOD1(I)}-1
N2=N1+1
N3=NOD2{I)+NOD2(1)-1

N4 =N3+1

II={I-1)*10

IF(IIB{N1) .EQ.0)GOT0N452
AK(TI+1l)=1.

AK(TI+2)=0.

AK(1I+3)=0.

AK(II+4)=0.

[IF(IIB(N2) .EQ.0)GOTO453
AK(1I+21=0.

AK(II+5)=1,

AK{II+6}=0.

AK{II+7)=0.
IF(IIB(N3).EQ.0)GOTQO454
AK(1I+3)=0.

AK(II+6)=0.

AK(II+8)=1.

AK(T1I+9)=0.

IF(I1B(N4) .EQ. O)GOTO450
AK(II+4) 0.

AK(II+T7)=

AK(II+9)=0.
AK(II+10)=1.

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE MERGE

COMMON CARDS:DATA,PRINT,0PT,WORK

160

DO 100 K=1,4NT

EK(K)=0.

IF(ISITP.EQ. 2)60T0500
10UM=0

DO 200 I=14M

N1=NOD1(1I)

N2=NOD2(1)

N3=NOD3(1I)

TTT= (T(N1)+T(N2)+T(N3))/3.
D0400J=1,21

- IDUM=IDUM+1

400

EKL{J) =AKCIDUMIRTTT
DO 40 JJ=1,21

GO TO (79192914341, 412’1v3'1151103v194v39116v1'4)1JJ

ND=2%(NLl-1)+1
L=ISUM(ND)

230



231

GO TO 20
1 L=+l
G0 TO 20
2 L=L+2%(N2-N1) -1
GO TO 20
3 L=L+2% (N3=-N2)~1
GO TO 20
4 ND=ND+1
~ L=ISUM(ND)
GO TO 20
5 ND=2%{N2-1)+1 .
L=ISUM{ND)
GO TO 20
6 ND=2%{N3-1)+1
L=T1SUMIND}
20 CONTINUE
40  EK(LY=EK(L)+EKL(JJ)
200 CONTINUE
GOTOTO0
500 CONTINUE
IDUM=0
DO600I=1,M
N1=NOD1(I)
N2=NOD2(I)
DO610J=1,10
IDUM=1DUM+1
610 EKL(J)=AK( IDUMIRT(I)
D0640JJ=1,10
GOTO(6071601,602,601+6042602,601,605,601,604),JJ
607 ND=2%(N1-1)+1
L=1SUM(ND)
G0T0620
601 L=L+1
G0T0620
602 L=L+2#%(N2-N1)-1
GOT0620
604 ND=ND+1
L=ISUM(ND)
GOT0620
605 ND=2%N2-1
L=1SUM(ND)
620 CONTINUE
640 EK(L)=EK(LI+EKL{JJ)
600 CONTINUE
700 CONTINUE
RE TURN
END

SUBROUTINE DCOP
COMMON CARDS:DATA,PRINT,WORK
EK{1)=SQRT(EK(1})



160

490

495
500

DUM=1./EK(1)

JJ=NTIM(1)

IF(JJ.EQ.1) GO TO 100
D0 100 J=2,J4
EK(J)=EK{J)*DUM
CONTINUE

KK=J

DO 500 I=2,4NK

IMl=1-1

JU=T+NTIM(I) -1

DO 5006 J=1,4J

KK=KK+1

SUM=0.

DO 490 L=1,IM1
ITST=NTIM(L)+L~1
IF{J.GT.ITST) GO TO 490
ID1=ISUM(L)+I-L
ID2=ISUM(L ) +J~-L
SUM=SUM+EK{IDL)*EK(ID2)

- CONTINUE

IF{1.NE.J) CO TO 495
EK(KK)=SQRT(EK{KK)~-SUM)
DUM=1./EK(KK)

GO TO 500
EK(KKY={EK{KK)-SUM)*DUM
CONTINUE

RETURN

END

SUBROUTINE CHOS

COMMON CARDS:DATA,PRINT,WORK

200

580

600

DO950LC=14NLC

CONTINUE
P(14LC)=F(1,LC)/EK(]L)
DO 600 J=2,NK

SUM=0.

JM1l=4-1

DO 580 L=1,dM1
ITST=NTIM(L)+L-1
IF(J«GTLITST) GO TO 5840
IDL1=ISUM(L)+J~-L
SUM=SUM+EK(ID1)*P(L,LC)
CONTINUE

ID2=1ISUNM(J)

PULJIyLCI=(F(JHLC)=-SUM) /EK(ID2)

PIENKsLC)I=P (NKyLCI/EKINT)
NKM1=NK-1

DO 700 K=1,NKM1

J=NK~-K

SUM=0.

JI=J+1

232



630

700
803
950

ITST=NTIM(J)+J-1
DO 680 L=JJ,NK

IF{L.GTLITST) GO 7O 680
IDI=1SUM(J)+L-J
SUM=SUM+EK(ID1)}*P(L,LC)
CONTINUE

ID2=ISUM(J) _ '
P{JsyLC)=(P(JyLC)~-SUM ) /EKLID2)
CONTINUE

CONTINUE

RETURN
END

SUBROUTINE FIXU

COMMON CARDS:DATA,PRINT

65
70

- 700
500

DO 500 K=1,NB
ID4=IB(K)
IF{1D4.GT.1000) GO TO 65
IM=2%( ID4~1) +1
G0 TO 70
104=1D4~1000
IM=2%ID4
CONTINUE
DOTO0LC=1,NLC
P{IM,LC)=0.
CONTINUE
RETURN:

END

SUBROUTINE GETS

COMMON CARDS:DATA,PRINT,WORK

600

101

102

103

104

IF{ISITP.EQ.2)GOTOL0Q0
CONTINUE

DO 500 I=1,M
N1=NOD1(I)
N2=NOD2{(1)
N3=NOO3( 1)
J=2%(Nl-1)+1
DO101LC=1,4NLC
UCl,LCI=P(J,yLC)
J=J+1
DO102LC=1,NLC
U(24LCI=P(J,yLCH
J=2%{N2-1) +1
DOL103LC=1,NLC
U{3,LCHi=P(J,LC)
J=J+1
D0104LC=1,NLC
U(49LC)=P(JvLC’
J=2% (N3-1) +1

233



105

106

D0105L C=1,NLC
U{5,LCI=P(J,LC)
J=J+1
DO106LC=14NLC
Uté6,LC)=PJ,LC)
[I=3%(1~1)
DOLOTLC=1,NLC

 DOL08IS=1,3

108 S{I4IS,LCY=STRS{II+IS,KI*U(KsLC)+SL1,41S,LC)

S{I.IS,LC)=0.
DO10BK=1,6

234

107 S(1s49LC)=SQRTIS(T»1LC)I*S(Io14LCY+S(I42,LCI*S(I42,LC)~

301

300
500

1000
1600

1101

1102

1103

1104

1108

1107
200

1500
2000

XS(I424LCI%S(T,1,LCI+S(L,3,LCI%S(I,3,LC)I*{3.))

CONTINUE
CONTINUE
CONTINUE
GO0T02000
CONTINUE
CONTINUE
DO15001=1,M
N1=NOD1(I)
N2=NOD2(1)
J=2%N1-1
DO110LlLC=1,4NLC
Ull,LC)=P(J,LC)
J=J+]

DO1102LC=1 4NLC

U{2,LC)=P(J,LC)
J=2%N2-1
DO1103LC=1,NLC
U(3,LC)=PlJ,LC)

CdJd=Jd+l

DN1104LC=1,4NLC
Ul4,LCI=P(J,LC)
DOL1OTLC=14NLC
S{I,1,1LC)=0,
DO1108K=1,4

SCIy1yLC)=STRS{T,KI*U{K,LCI+S(I,1,LC)

S{1,2,LC)=0.

$S(I1,34LC)=0.
S(I'4yLC’=S(IpleC)

CONTINUE
CONTINUE
CONTINUE
RETURN
END



