

Durham E-Theses

A numerical comparison of commonly - used algorithms for structural optimisation

Smith, Erling Aastrup

How to cite:

Smith, Erling Aastrup (1975) A numerical comparison of commonly - used algorithms for structural optimisation, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8203/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details

A NUMERICAL COMPARISON OF COMMONLY - USED ALGORITHMS FOR STRUCTURAL OPTIMISATION

by

ERLING AASTRUP SMITH

A thesis submitted to the Faculty of Science of Durham University at Durham in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

DEPARTMENT OF ENGINEERING SCIENCE
DURHAM

1975

Abstract

SMITH, ERLING AASTRUP: A numerical comparison of commonlyused algorithms for structural optimisation. (Under the supervision of WILLIAM CALVIN CARPENTER)

The thesis makes a qualitative and a quantitative comparison of algorithms used to solve non-linear structural optimisation problems. Algorithms are categorised into linearization, feasible direction and transformation methods. From each category, algorithms are selected (by considering applicability restrictions, anticipated computational effectiveness and efficiency, supplementary program requirements and program development effort) for a numerical comparison of computational effort. The algorithms chosen are:- the Method of Approximate Programming, a Method of Feasible Directions and the Sequential Unconstrained Minimization Technique. Newton's, FletcherPowell's, Stewart's and Powell's methods are chosen for use with SUMT.

The algorithms are used in the study to minimize the weight of eight test structures:- four pin-jointed plane trusses and four plane stress plates, all subject to two load cases, member stress limits and design variable limits. The finite element stiffness method was used for structural analyses, function and derivative evaluations. Details and FORTRAN IV program listings are given for the algorithms.

Estimates are developed of the relative computational effort required by each algorithm in terms of the Central Processor Unit (CPU) time required when an IBM 360/67 computer is used. Measurements are reported for each algorithm of the CPU time used on an IBM 370/145 computer.

A comparison is made of the computational effort used by each algorithm. Conclusions are drawn about the relative efficiency of the optimisation algorithms and of the derivative algorithms.
LIST OF ABBREVIATIONS ìv
NOTATION v
LIST OF SYMBOLS USED THROUGHOUT THE TEXT vì
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER

1. STATEMENT OF THE PROBLEM 1
2. METHODS OF SOLUTION FOR THE PROBLEM 6
2.1 Classification of NLP methods 6
2.2 Linearization methods 7
2.3 Feasible Direction Methods 10
2.4 Transformation methods 13
2.5 Unconstrained Optimisation Algorithms 16
2.6 One-dimensional search methods 17
2.7 Algorithms selected for comparison 19
3. DETAILS OF THE ALGORITHMS 20
3.1 Introduction 20
3.2 Method of Approximate Programming (MAP) 21
3.3 Method of Feasible Directions (MFD) 24
3.4 Sequential Unconstrained Minimization Technique (SUMT) 31
3.5 Newton's method 37
3.6 Fletcher-Powell's method 39
3.7 Stewart's method 40
3.8 Powell's method 43
3.9 One-dimensional search for the minimum of $\dot{\emptyset}$ 47
3.10 One-dimensional search for the boundary of the feasible region 53
3.11 Prima1-Dual LP algorithm 56
4. EVALUATION OF FUNCTIONS AND DERIVATIVES 59
4.1 Functions and their derivatives 59
4.2 Stresses and their derivatives 61
4.3 Solution of the stiffness and derivative equations. 70
Page
5. COMPUTATIONAL EFFORT 73
5.1 Introduction 73
5.2 Effort used by the optimisation algorithms 75
5.3 Effort used in evaluating functions 80
5.4 Effort used in evaluating derivatives 85
5.5 Total computational effort 92
6. TEST PROBLEM DATA 98
6.1 Description of the tests 98
6.2 Test structure data 99
6.3 Optimisation algorithm data 106
6.4 Optimisation algorithm arbitrary coefficients 110
7. TEST RESULTS AND DISCUSSION 136
7.1 Introduction 136
7.2 Computer results 136
7.3 Effort used by the function and derivative algorithms 146
7.4 Effort used by the optimisation algorithms 148
7.5 Other results 153
7.6 Discussion 155
8. CONCLUSION 164
8.1 Conclusions 164
8.2 Recommendations 166
8.3 Further research 167
8.4 Summary 167
9. LIST OF REFERENCES 169
10. APPENDICES 172
10.1 Results for 21-bar bridge 173
10.2 Computer program listing 174

LIST OF ABBREVIATIONS

CPU Central Processor Unit
FD Finite Differences
FP Fletcher-Powell's method used with SUMT
LP Linear Programming
MAP Method of Approximate Programming
MFD Method of Feasible Directions.
N1 Newton(1)'s method used with SUMT
N2 Newton(2)'s method used with SUMT
NLP Non-Linear Programming
NMW Near Minimum Weight
PO Powell's method used with SUMT
ST Stewart's method used with SUMT
SUMT Sequential Unconstrained Minimization Technique
UOA Unconstrained Optimisation Algorithm

NOTATION

a scalar or integer subscript
A scalar
2

A
$\underline{a}^{\prime} \quad$ row vector or transpose of \underline{a}
$\underline{A}^{\prime} \quad$ transpose of \underline{A}
a*
a*
A* value of \underline{A} at an optimum
マ
$\nabla^{2} \quad$ matrix of second partial derivative derivative operators
$\frac{\partial}{\partial x}$ i
i, j th component of $\underline{\nabla}^{2}$

[^0]value of a at an optimum
value of \underline{a} at an optìmum
vector of first partial derivative operators
ith component of $\boldsymbol{\nabla}$

1

	LIST OF SYMBOLS USED THROUGHOUT THE TEXT
t	vector of design variables
$F(t)$	objective function
$f_{i}(t)$	constraint function
P	number of design variables
W	vector of weight coefficients
σ qS	stress in member s for load case q
$\sigma_{\min q s}$	minimum permitted stress in s for q
σ max q्s	maximum permitted stress in s for q
$t_{\min }$	minimum permitted value of design variable j
$t_{\max } j$	maximum permitted value of design variable \mathbf{j}
L	number of load cases
M	number of members
VF(t)	vector of first partial derivatives of the objective function
$\underline{\mathrm{f}}_{\mathrm{f}}(\mathrm{t})$	vector of first partial derivatives of constraint function i
d	search direction vector
$\theta(.$.	objective function for SUMT

LIST OF TABLES

5.3.2 Computational effort for basic operations 82
5.4.30 Estimated function and derivative effort ratios 92
6.2.6 Loadings on the 21 bar Eridge 105
6.3.2 Maximum number of algorithms iterations allowed 108
7.2.1 Computer tests made 137
7:2.10 Results measured at the NMW 147
7.3.3 Measured function and derivative effort ratios 148
7.5.1 Measured effort ratios to achieve NMW 153
7.5.2 Ayerage number of function evaluations per one- dimensional search 154
7.5.3 Measured algorithm-MAP effort ratios to reach the NMW 155
7.5.4 Ratio of the number iterations required to reach the NMW to the number of design variables 156
7.5.5 Ratio of the number of iterations required by an algorithm to reach the NMW to the number required by MAP 156
7.6.1 Estimated algorithm-MAP effort ratios to reach the NMW when Lund's search is used 157
7.6.2 Estimated algorithm-MAP effort ratios to reach the NMW when Lund's search and forward FD derivatives are used 158
7.6.3 Estimated algorithm-MAP effort ratios to reach the NMW for different values for the derivative- function effort ratio 160
8.1.1 The algorithms listed in increasing order of computational effort required 165

LIST OF FIGURES

Page
$\begin{array}{ll}\text { 5.4.28 } & \text { Estimated computational effort required to evaluate } \\ & \text { functions and derivatives - trusses } 90\end{array}$
$\begin{array}{ll}\text { 5.4.29 } & \text { Estimated computational effort required to evaluate } \\ & \text { functions and derivatives }- \text { plates }\end{array}$
$\begin{array}{ll}\text { 5.5.13 } & \begin{array}{l}\text { Estimated computational effort required by the } \\ \text { algorithms to complete one iteration - trusses . . } 96\end{array}\end{array}$
$\begin{array}{ll}\text { 5.5.14 } & \begin{array}{l}\text { Estimated computational effort required by the } \\ \text { algorithms to complete one iteration - plates . . . } 97\end{array}\end{array}$
6.2.1 Test structures - pin-joined plane trusses 100
6.2.3 Test structures - plane stress plates 101
6.2.5 Test structure - 21 bar brìdge 103
$\begin{array}{ll}\text { 6.4.1 } & \text { Weight - CPU time and MAP coefficient } \alpha \text {. } 3 \text { bar } \\ & \text { truss } 112\end{array}$
$\begin{array}{ll}\text { 6.4.2 Weight - CPU time and MAP coefficient } \boldsymbol{\alpha} \text {, } 7 \text { bar } \\ & \text { truss } 113\end{array}$
$\begin{array}{ll}\text { 6.4.3 Weight - number of derivative evaluations and } \\ & \text { MFD coefficients c } 3 \text { bar truss } 114\end{array}$
$\begin{array}{ll}\text { 6.4.4 Weight - number of derivative evaluations and } \\ & \text { MFD coefficients } c \text {, } 7 \text { bar truss } 115\end{array}$
$\begin{array}{ll}\text { 6.4.5 } & \text { Weight - CPU time and SUMT coefficient } c, 3 \text { bar } \\ & \text { truss: Newton's method, data } 3 b=3 c=0.005 . \ldots\end{array}$
$\begin{array}{ll}\text { 6.4.6 Weight - CPU time and SUMT coefficient } c, 3 \text { bar } \\ & \text { truss: Newton's method, data } 3 b=3 c=0.001 \ldots . .117\end{array}$
6.4.7 Weight - CPU time and SUMT coefficient $c, 3$ bar

truss: Newton's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.0002$. . . 118
$\begin{array}{ll}\text { 6.4.8 Weight - CPU time and SUMT coefficient } c, 3 \text { bar } \\ & \text { truss: Newton's method, data } 3 b=3 c=0.00004 \text {. . . } 119\end{array}$
$\begin{array}{ll}\text { 6.4.9 Weight - CPU time and SUMT coefficient } \mathrm{c}, 3 \text { bar } \\ & \text { trusis: Fletcher-Powe11's method, data } \\ & 3 \mathrm{~B}=3 \mathrm{C}=0.005 \text {. } 120\end{array}$

6.4.10	Weight - CPU time and SUMT coefficient c, 3 bar truss: Fletcher-Powell's method, data $3 \mathrm{~F}=3 \mathrm{C}=0.001$
6.4 .11	Weight - CPU time and SUMT coefficient c, 3 bar truss: Fletcher-Powell's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.0002$
6.4 .12	Weight = CPU time and SUMT coefficient c, 3 bar truss: Fletcher-Powell's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.00004$
6.4 .13	Weight - CPU time and SUMT coefficient c, 3 bar truss: Stewart's method, data $3 \mathrm{~B}=3 \mathrm{C}=0.005$. . .
6.4 .14	Weight - CPU tìme and SUMT coefficient c, 3 bar truss: Stewart's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.001$. .
6.4.15	Weight - CPU time and SUMT coefficient c, 3 bar truss: Stewart's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.0002$. . .
6.4.16	Weight - CPU time and SUMT coefficient c, 3 bar truss: Stewart's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.00004$
6.4 .17	Weight, - CPU time and SUMT coefficient c, 3 bar truss: Powel1's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.005$
6.4 .18	Weight - CPU time and SUMT coefficient c, 3 bar truss: Powell's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.001$. . .
6.4 .19	Weight - CPU time and SUMT coefficient c, 3 bar truss: Powel1's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.0002$
6.4 .20	Weight - CPU time and SUMT coefficient c, 3 bar truss: Powell's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.00004$.
6.4 .21	Weight - CPU time and SUMT coefficient c, 3 bar truss: Newton's method, data $3 \mathrm{~b}=3 \mathrm{c}=0.001 \times .4^{\mathrm{i}-1}$
6.4 .22	Weight - CPU time and SUMT coefficient c, 3 bar truss: Fletcher-Powell's method, data=3b=3c= 0.001×0.41-1
6.4 .23	Weight - CPU time and SUMT coefficient c, 3 bar trus \bar{s} : Stewart's method, data $=3 b=3 c=0.001 \times \mathbb{1}^{1-1}$
6.4 .24	Weight - CPU time and SUMT coefficient $c, 3$ bar truss: Powel1's method, data $=3 \mathrm{~b}=3 \mathrm{c}=0.001 \times . \mathrm{Al}^{1-1}$

7.2.2 Weight - CPU time and algorithms, 3 bar truss 138
7.2.3 Weight - CPU time and algorithms, 7 bar truss 139
7.2.4 Weight - CPU tìme and algorithm: 13 bar truss 140
7.2.5 Weight - CPU time and algorithms, 21 bar truss 141
7.2.6 Weight - CPU time and algorithms, 4 node plate 142
7.2.7 Weight - CPU time and algorithms, 9 node plate 143
7.2.8 Weight = CPU time and algorithms, 16 node plate 144
7.2.9 Weight - CPU time and algorithms, 25 node plate 145
7.3.1 Measured computational effort required to evaluate functions and derivatives-trusses 149
7.3.2 Measured computational effort required to evaluate functions and derivatives-plates 150
7.4.1 Measured computational effort required by the algorithms to complete one iteration-trusses 151
7.4.2 Measured computational effort required by the algorithms to complete one iteration-plates 152
10.1... Weight - CPU time and algorithms, 21 bar bridge 173

ACKNOWLEDGEMENTS

The author would like to express his appreciation to Dr. W. C. Carpenter, Joyce E. Smith, Ms. E. V. White and Marjorie McGrath Higgins for their help in the preparation of this thesis.

The author also acknowledges the continued assistance of Professars G. Higginson and W. A. Hamilton, the Universities of Durham, England and of Maine, U.S.A. and the financial support of the Science Research Council and of his wife, Joyce.

CHAPTER 1

STATEMENT OF THE PROBLEM

The engineering design problem is to find the optimum, either the maximum or the minimum, of a function of one or more design variables subject to equality and inequality constraints. Examples of engineering design variables are heights, lengths or thicknesses and examples of the function to be optimized, called the objective or merit function, are mass, weight, cost or efficiency. The design is subject to constraints, for example, upper and lower bounds on stresses and deformations, called behavioural constraints, and upper and lower bounds on the design variables, called side constraints. The engineering problem can be stated mathematically as

```
minimize (or maximize) F(t)
...1.1
subject to }\quad\mp@subsup{f}{i}{}(t)\geqslant0,i=1,\ldots,R.
where }\quadt\mathrm{ is a P-vector of design variables t }\mp@subsup{t}{j}{},j=1,\ldots,P
F(t) is the objective function, and fi}\mp@subsup{f}{i}{}(t)\geqslant0\mathrm{ are the constraints.
```

Mathematical Programming methods find the optimum of a function of several variables subject to equality and inequality constraints and can be used on the engineering design problem. Wasiutynski and Brandt ${ }^{1}$ in 1963 reviewed the use of classical and contemporary techniques of Mathematical Programming in optimum structural design. Since the early sixties, Sheu and Prager ${ }^{2}$ in 1968 and Schmit ${ }^{3}$ in 1969 have shown how electronic computation has allowed Mathematical

Programming methods to be used increasingly on structural optimisation problems.

There now exist many suitable Mathematical Programming algorithms, but they vary in the type of problem which they can solve, in the computational effort they require and in their effectiveness at producing an optimal solution. It is desirable, therefore, to predict which methods would be the most appropriate to a particular problem or to a class of problems. The following work makes a comparison of commonly-used algorithms applied to a class of structural optimisation problems. Important considerations in the comparison of the methods are:

1. restrictions of applicability:

Typical restrictions on the type of problem a method could solve would be requirements for linearity and convexity of the objective or constraint functions.
2. effectiveness:

The effectiveness required of a method depends on the accuracy required in the solution.
3. computational efficiency:

The computational efficiency of a method can be measured by the amount of computer time and storage space required to solve the problem.
4. requirements for supplementary programs:

The additional facilities required by a method could be the evaluation of first or second partial derivatives of the functions, the solutions of sets of linear equations, of linear
programming problems, and of one-dimensional search problems.
5. effort for program development:

The effort for program development depends on the complexity of .the method and of the supplementary programs required.
6. feasibility of intermediate solutions:

For some problems it may be difficult to construct a feasible solution from an infeasible one, feasible intermediate solutions are desirable, though not essential, in case of premature termination of the optimisation process.

The above criteria are used in chapter, 2: to select methods to be quantitatively compared in later chapters.

The class of problem considered is the minimization of weight of certain structures subject to stress and design variable limits. The structures considered are pin-jointed plane trusses and plane stress plates. The design variables are, for the trusses, the bar cross-sectional areas and, for the plates, the thicknesses at nodal points of the triangular finite element idealisation. Upper and lower bounds are placed on the design variables . and on the stresses in the structural members. The stress is taken as the axial stress in each member for the truss problems and as the effective stress in each constant stress finite element for the plate problems. The optimisation problem for both types of structures can be stated mathematically as:

```
minimize \(\quad \underline{w}^{\prime} \underline{t}\)
subject to \(\sigma_{\min q s} \leqslant \sigma_{q S} \leq \sigma_{\max q s}, q=1, \ldots, L, s=1, \ldots, M\), \(\mathrm{t}_{\min j} \leq \mathrm{t}_{\mathbf{j}} \leq \mathrm{t}_{\max j}, j=1, \ldots, P\),
```

where
L is the number of load cases,
M is the number of members,
P is the number of design variables,
\underline{w} is a P-vector of weight coefficients,
t is a P-vector of design variables,
σ is the minimum permitted stress in member s for
$\min q s$
load case q.
$\sigma_{\text {max } q s}$ is the maximum permitted stress in member s for
load case q,
$\sigma_{q s}$ is the stress in member s for load case q,
t is the minimum permitted value of design variable j, $\min j$
$t \quad i s$ the maximum permitted value of design variable j. $\max \mathrm{j}$

Problem T. 2 can be rearranged into the form of 1.1:
$\operatorname{minimize} \quad \underline{w}^{\prime} \underline{t}$

$q=1, \ldots, L, \quad s=1, \ldots, M$,
$\left(t_{\max j}-t_{j}\right)=\left(t_{j}-t_{\min j}\right) \geq 0$, $j=1, \ldots, P$.

Problem 1.3, called a Non-Linear Programming (NLP) problem, has a linear objective function subject to non-linear behavioural constraints and linear side constraints.

Chapter 2 considers methods available for the solution of problem 1.3 and selects methods for comparison in later chapters. Chapter 3 gives details of the solution methods selected for comparison. Chapter 4 describes the methods used to evaluate the objective and constraint functions and their derivatives. Chapter 5 estimates the computational effort required by the optimisation, function and derivative algorithms. Chapter 6 presents test structures used to compare the optimisation algorithms and chapter 7 gives the test results. A summary, conclusions, recommendations and ideas for further research are presented in chapter 8. The appendices give FORTRAN IV program listings of the algorithms used in this study.

CHAPTER 2

METHODS OF SQLUTION FOR THE PROBLEM

2.1. Classification of NLP methods.

There are many methods for solving the general NLP problem and most can be included in one of the following categories:

1. linearization methods,
2. feasible direction methods,
3. transformation methods.

This classification is based on those of Jacoby, Kowalik and Pizzo ${ }^{4}$ and of Zoutendijk. ${ }^{5}$

Linearization methods solve the NLP problem using a sequence of Linear Programming problems (LP problems) formed from the NLP problem. Thus an iteration consists of two stages:
i. form a linear approximation at the current point, then
ii. solve the linear approximation by LP methods to give a new solution point.

Feasible direction methods search within the feasible region for an optimal solution along a sequence of 'usable feasible' directions By definition, a search along a 'usable feasible' direction will, for minimization problems, reduce the objective function but maintain feasibility. Thus an iteration consists of two stages:
i. form a usable feasible direction,
ii. search along the direction for a new solution point.

Transformation methods solve the NLP problem indirectly by forming a different, but related, NLP problem. The transformations are such that the solution of the transformed problem coincides with that of the original problem. The transformed problem may often, but not always, be solved as a sequence of problems and may be constrained or unconstrained, depending on the transformations used.

2.2 Linearization methods.

Linearization methods linearize the objective and constraint functions at the initial point. The resulting LP problem is solved by an LP algorithm giving a new solution point. Next, the problem is totally or partially relinearized at the new point and the new LP problem is solved. This procedure is continued until the solutions converge to the optimal solution.

A non-linear objective function can be linearized with a truncated Taylor's series about the current point:
$F(\underline{t})=F(\underline{\bar{t}})+(\underline{\nabla}(\underline{\underline{t}}))^{\prime}(\underline{t}-\underline{\underline{t}}) \quad$...2.2.1
Similarly, the constraints can be linearized with truncated Taylor's series:
$f_{i}(t)=f_{i}(\bar{t})+\left(\nabla f_{i}(\bar{t})\right)^{\prime}(t-\bar{t}) \geq 0, i=1, \ldots, R$,
where $\underline{\underline{E}}$ is the design vector at the current point,
$\nabla f_{i}(\underline{\bar{t}})$:is the vector of first partial derivatives of the ith constraint function with respect to the design variables.

If the original constraints form a convex region, the linearized constraints completely enclose the feasible region. If, however, some of the original constraints are non-convex, then the linearized constraints will cut off some of the feasible region in which the optimal solution may lie. ${ }^{5}$ Algorithms must be able to prevent non-convex constraints from slowing or stopping convergence to the optimal solution of the original problem.

Cutting Plane methods (Kelley ${ }^{6}$ and Cheney and Goldstein ${ }^{7}$) retain most of the original linearizations of the constraints at each intermediate solution. Only the mast active convex constraints are relinearized and the new linearizations are added to the set of constraints. Non-convex constraints are rel inearized at each itteration with the new linearizations replacing the old linearizations. A full evaluation of first partial derivatives is not required at each iteration since only a subset of the constraints is relinearized. Howeyer, as the method proceeds, the increased problem size increases the computationa1 effort required. I11-conditioning can arise as more linearizations of each constraint are added.

The Method of Approximate Programming, MAP, (Griffith and Stewart ${ }^{8}$), discards all the old linearizations at each iteration and relinearizes the entire constraint set. Full evaluation of first partial derivatives is required at each iteration, but the problem does not increase in size as the method proceeds. MAP does require additional constraints which limit the size of step that can be taken from the current solution to a new solution. These additional constraints are of the form:

$$
\left|t_{j}-\bar{t}_{j}\right| \leqslant \delta_{k}, j=1, \ldots, P,
$$

where δ_{k} is a positive number preventing large changes in the design variables.

For problems with side constraints, the move limit constraints do not add to the number of constraints since for each design variable one of the upper bound constraints (1 side and 1 move limit constraint) and one of the lower bound constraints (as above) will be redundant. The move limit constraints and complete relinearizations are intended to provide convergence for both convex and non-convex problems although this has not been proved ${ }^{5}$. Possible ill-conditioning is not as severe as on the cutting plane method since each constraint is represented by only one linearization. Intermediate solutions may be infeasible.

Advantages of linearization methods are that functions and first partial derivatives are evaluated no more than once per iteration and one-dimensional searches, which require a number of function evaluations, are replaced by efficient LP methods. However, convergence may be slow when the optimum of the NLP problem does not lie at a vertex of the constraint surfaces or when non-convex constraints are present. ${ }^{5}$

Both the cutting plane method and MAP appear to be apposite to the problem. However the cutting plane method requires additional logic to ensure that old linearizations of non-convex constraints are replaced at each iteration. The computational effort to solve the LP problems increases as optimisation proceeds although
some effort can be saved since full derivative evaluations may not be required. When MAP is used, the problem does not increase in size but a full first partial derivative evaluation is required. The main difficulty with MAP is the choice of δ_{k}. On balance, it appears that MAP is likely to be more efficient than the cutting plane method and since fewer difficulties were anticipated, MAP was selected for comparison with other NLP methods.

2.3 Feasible direction methods.

Feasible direction methods explore the feasible region by searching along directions which reduce the objective function while maintaining feasibility. From the initial point a search direction is found. The design is changed along this search direction until either a minimum is found or until a constraint is encountered. At the new solution point a new search direction is determined and the design is changed by moving along it. A search direction through an intermediate solution point must not violate any constraint for small moves nor allow the objective function to increase. Thus, if $\overline{\underline{E}}$ is an intermediate solution point and I_{a} are the indices of the constraints active at $\underline{\underline{E}}$, then:
$f_{i}(\overline{\mathrm{t}})=0, i \in I_{a}$,
Expanding such constraints about Eusing a truncated Taylor's series gives:
$f_{i}(\underline{t})=f_{i}(\underline{\underline{t}})+\left(\underline{\nabla} f_{i}(\bar{t})\right)^{\prime}(\underline{t}-\overline{\underline{t}})$

Let \underline{d} be the search direction through $\overline{\underline{E}}$ and α be a positive scalar, then a new design lying along \underline{d} is given by:
$\underline{t}=\overline{\underline{t}}+\alpha \underline{d}$,
Substituting equations 2.3.3 and 2.3.1 in equation 2.3.2 gives:

$$
f_{i}(\underline{t})=\alpha\left(\underline{\nabla} f_{i}(\underline{t})\right)^{\prime} \underline{d},
$$

Similarly for the objective function:
$F(\underline{t})=F(\underline{\bar{t}})+\alpha(\underline{\underline{V} F}(\bar{t})) \cdot d$,
The new search direction will be acceptable if

or
$-\left(\underline{V} f_{i}(\bar{E})\right)^{\prime} \underline{d} \leq 0, i \in I_{a}$,
$+(\underline{F F}(\underline{t}))^{\prime} \underline{d} \leqslant 0$.
Conditions 2.3.7 are the conditions for a new search direction to be 'usable feasible'. Among the algorithms which satisfy conditions 2.3.7 are Rosen's gradient projection method ${ }^{9}$, Gellatly's method ${ }^{10}$ and Zoutendijk's methods. ${ }^{11}$

In the gradient projection method, the new direction, \underline{d}, is taken as the solution of the equality constrained probilem:

$$
\begin{aligned}
&\operatorname{minimize} \quad \underline{(\nabla f}(\underline{\underline{E}}))^{\prime} \underline{d} \\
& \text { subject to }-(\underline{\nabla f} f(\underline{\underline{E}}))^{\prime} \underline{d}=0, i \in I_{a} \\
& \underline{d}^{\prime} \underline{d}=1 .
\end{aligned}
$$

...2.3.8

This problem can be solved using Lagrangean techniques. If the constraints are non-linear the direction may leave the feasible region immediately so that a correction procedure must be applied to maintain feasibility.

In Gellatly's method, the new direction, \underline{d}, is taken as the solution of the equality constrained problem:

$$
\begin{align*}
(\underline{\nabla F}(\bar{t}))^{\prime} \underline{d} & =0, \\
-\left(\underline{\nabla} f_{i}(\underline{t})\right)^{\prime} \underline{d} & =1, i \in I_{a}
\end{align*}
$$

First, the design is moved into the feasible region along the new direction. Next, the objective function is reduced by moving the design along the direction of the gradient of the objective function.

In Zoutendijk's method, the new direction, \underline{d}, is taken as the solution of the problem:
maximize y
subject to $(\underline{F F}(\bar{t})) ' \underline{d}+y \in 0$, $-(\underline{\nabla f}(\underline{E}))^{\prime} \underline{d}+\underset{i}{c} y \leq 0, i \in I_{a}$,
and $\quad \underline{d}$ is normalized,
where c_{i} are positive coefficients which can be taken as unity for non-linear constraints and as zero for linear constraints. This problem can be formulated as a LP problem by a suitable normalization of d .

With the exception of the gradient projection method, feasible direction methods are suitable for the general NLP problem. The gradient projection method is designed for linearly constrained problems, although in combination with a transformation method (section 4) it can be adapted to solve the NLP problem. Gellatly's and Zoutendijk's methods are directly applicable to the NLP problem, and hence the gradient projection method will not be considered further in this study.

For structural problems of the type 1.3 , it will be shown that the major computational effort in determining a search direction is the computation of first partial derivatives. Thus a useful measure of computational efficiency is the number of searches required for convergence to the optimum. In Gellatly's method, only alternate searches reduce the objective function, whereas in Zoutendijk's methods every search reduces the objective function. It seems likely that Zoutendijk's method will converge more quickly than Gellatly's method. Accordingly, a method based on the method of Zoutendijk was selected for comparison with other NLP methods.

2.4 Transformation methods.

Transformation methods reduce the degree of difficulty of the constrained NLP problem by forming a simpler, but related NLP problem. Depending on the transformation used, the transformed problem may be solved as a sequence of constrained or unconstrained problems. Transformation methods are of two types: interior point methods and exterior point methods. Interior point methods generate a set of feasible intermediate solutions which converge to the solution of the original problem. Because exterior point methods generate a set of infeasible intermediate solutions, they will not be considered for the solution of problem 1.3.

The Sequential Unconstrained Minimization Technique (SUMT) is an interior point method developed by Fiacco and McCormick ${ }^{12}$. iFor the SUMT, a new objective function is formed by adding to the original objective function a penalty function (a function of the
slackness of the constraints) weighted by an arbitrary scalar.
Thus if the original problem is written as:
minimize $F(t)$ subject to $f_{i}(t) \geqslant 0, i=1, \ldots, R$;
then the SUMT formulation is:
solve the sequence of problems:
minimize $\because \emptyset\left(\underline{t}_{\boldsymbol{l}}^{\boldsymbol{l}}\right)=\mathrm{F}(\underline{\mathrm{t}})+\boldsymbol{e}_{\mathrm{k}} \mathrm{P}\left(\mathrm{f}_{\mathrm{i}}(\underline{\mathrm{t}}), \mathrm{i}=1, \ldots, \mathrm{R}\right)$
for $k=1,2, \ldots$
where $\varnothing(. .$.$) is the objective function,$
ρ_{k} is an arbitrary scalar, with $\rho_{\mathrm{k}+1}<\rho_{\mathrm{k}}$, and $P(\ldots)$ is the penalty function.

There are two difficulties with SUMT: choice of a suitable value for \boldsymbol{e}_{1}, and choice of a suitable rate of change for \boldsymbol{l}_{k}. These can be overcome by using the 'Q' transformation of Fiacco and McCormick ${ }^{12}$; the formulation is:
solve the sequënce of problems:
minimize $Q(\underline{t}, k)=1 /\left(F_{k-}\{\underline{t})-F(\underline{t})\right) \neq P\left(f_{i}(\underline{t}), i=1, \ldots, R\right) \ldots$...4.3, where $Q(\underline{t}, k)$ is the objective function for the kth iteration,

$$
\begin{aligned}
& F_{k-1}(\underline{t}) \text { is the value of } F(\underline{t}) \\
& \\
& \text { at the optimum of } Q(\underline{t}, k-1) .
\end{aligned}
$$

This formulation was not included for comparison with other NLP methods but in chapter 8 is recommended for further research.

The above SUMT transformations do not take advantage of useful properties such as the possible linearity of some of the constraints or of the original objective function. Fiacco and McCormick ${ }^{12}$ suggest that the linear constraints are not included in the penalty function.

The modified SUMT problem is:
solve the sequence of problems;
minimize $\varphi(\underline{t}, \rho)=F(\underline{t})+\rho_{k} P\left(f_{i}(\underline{t}), i \in I_{1}\right)$
subject to $f_{i}(\underline{t}) \geqslant 0, i \in I_{2}$,
for $k=1,2, \ldots$,
where $\quad I_{7}$ are the indices of the non-linear constraints, and I_{2} are the indices of the linear constraints.

Each $\ell(.$.$) in problem 2.4.4 can be minimized by a linearization or$ a feasible direction methed. ${ }^{5}$ Although the modified SUMT method was not used in this study, it is recommended for further research.

The SUMT formulation of 2.4.2 was chosen as the transformation method to be compared with other NLP methods on problem 1.3. There are two popular penalty functions used with formulation 2.4.2:

1. $P(\ldots)=\sum_{i=1}^{R}\left(1 /\left(f_{i}(\underline{t})\right)\right)$, ...2.4.5
2. $P(\ldots)=\sum_{i=1}^{R}\left(-\log \left(f_{i}(\underline{t})\right)\right)$,

Since the evaluation of ' ${ }^{\prime} \mathrm{log}^{\prime}$ requires more computational effort than a division, a penalty function similar to 2.4 .5 was selected for use with SUMT. The choice of suitable unconstrained optimisation algorithms for use with SUMT is made in section 5 of this chapter.

2.5 Unconstrained Optimisation Algorithms.

Unconstrained Optimisation Algorithms (UOA) find the values for design variables which optimize an objective function of the variables. Thus, UOAs are suitable for finding, within the feasible region of the original NLP problem, the minima : of the transformed objective functions of the SUMT. Among the most efficient UOAs are those which search along a sequence of directions until an optimum is found. Such UOAs have two stages?
i. find a search direction, then
ii. find the optimum along the search direction.

The two stages are repeated until the global optimum is found. An important criterion for choice of one of the UOAs is the computational efficiency of the method. In optimising the problems of the type 1.3, the major computational effort used is that of evaluating the functions and, if required, their derivatives. Thus the computational effort used in optimizing the $\varphi(\underline{t}, \boldsymbol{e})$ depends upon the number and type of evaluations required to find the search direction (which is dependent on the UOA) and to find the minimum along the search direction (which is independent of the UOA).

UOAs can be categorized by whether they require in the determination of their search directions the evaluation of:

1. functions, their first and second partial derivatives, or
2. functions and their first partial derivatives, or
3. functions only.

It will be shown in a later chapter that derivative evaluations require much more computational effort than function evaluations.

Therefore, derivative methods will be computationally competitive with non-derivative methods only if they require correspondingly fewer one-dimensional searches to find the optimum than the nonderivative methods require.

A number of numerical comparisons of UOAs ${ }^{13,14}$ have shown that among the most efficient methods are those which generate a sequence of conjugate directions or use second derivatives. Accordingly, the following UOAs to be used with SUMT were selected for comparison with other NLP methods:

1. Newton's method with first and second derivatives; 15
2. Fletcher-Powell's method with first derivatives; ${ }^{16}$
3. Stewart's method with finite difference first derivatives; ${ }^{17}$
4. Powell's method with no derivatives. ${ }^{18}$

2.6 One-dimensional search methods.

Many NLP methods solve the NLP problem by moving the design point through design space along a sequence of search directions until the optimal solution is found. Such methods consist of two stages:
i. determine a search direction - the direction-finding sub-problem, then
ii. determine a move along the search direction - the searching sub-problem.

The searching or one-dimensional search sub-problem finds the move to the boundary of the feasible region and/or the move to the minimum of the objective function. Thus the one-dimensional search problem can be written as:
if $\underline{t}=\underline{\underline{E}}+\alpha \underline{d}$, find the $\underline{t}^{*}=\underline{\underline{E}}+\boldsymbol{\alpha}^{*} \underline{d}$
such that either

1. t^{*} lies on the boundary of the feasible region, or
2. t^{*} minimizes the objective function,
where $\overline{\underline{E}}$ is the best design point on the previous search, \underline{d} is the search direction through \underline{E} and
α is a scalar specifying the move along d.
Interval methods or point approximation methods may be used to perform one-dimensional searches. Interval methods find an interval in which the move $\boldsymbol{\alpha}^{*}$ is known to lie. An interval is chosen. If $\boldsymbol{\alpha}$ * is not bounded, the interval is expanded. When $\boldsymbol{\alpha}^{*}$ is bounded, the interval is reduced until the prescribed accuracy is achieved. There are many interval methods but methods based on the Fibonacci numbers or on the Golden Section converge to a prescribed accuracy in the smallest number of iterations. ${ }^{19}$

Point approximation methods estimate the move, $\boldsymbol{\alpha}^{*}$, by polynomial approximations. The new point is used in a succeeding approximation for $\boldsymbol{\alpha}^{*}$. The process is repeated until successive estimates converge to within the prescribed accuracy. Despite the guaranteed rate of convergence of Fibonacci and Golden Section searches, point approximation methods generally converge more quickly. Powel1 ${ }^{18}$ suggests fitting a second-order polynomial to three function values along the search direction, while Davidon ${ }^{20}$ fits a third-order polynomial to two function values and the two corresponding directional derivatives. Davidon's method usually requires fewer approximations than Powel1's method. If, however, a derivative evaluation requires
much more computational effort than function evaluation, Davidon's method will not be as computationally efficient as Powell's method. A one-dimensional search method based on that of Powell using a second-order polynomial was chosen for use in the solution of the structural problem 1.3.

2.7 Algori thms selected for comparison.

The algorithms selected for comparison in later chapters are:'

1. the Method of Approximate Programming (MAP) - a linearization method, ${ }^{8}$
2. a method based on Zoutendijk's - a method of feasible directions, (MFD) ${ }^{11}$,
3. the Sequential Unconstrained Minimization Technique (SUMT) - 12
a transformation method, used in conjunction with:
i. Newton's method, 15
ii. Fletcher-Powell's method, ${ }^{16}$
iii. Stewart's method, and ${ }^{17}$
iv. Powell's method. ${ }^{18}$

Of the above methods only Powell's and Stewart's methods do not require the evaluation of explicit first partial derivatives. Newton's. method requires the evaluation of second partial derivatives. A11 the methods except MAP require a one-dimensional search algorithm. MAP and Zoutendijk's method of Feasible directions require a Linear programming algorithm.

The following chapter gives further details of the algorithms and of the modifications required to solve the structural problems 1.2 and 1.3.

CHAPTER 3

DETAILS OF THE ALGORITHMS

3. Introduction.

Chapter 1 introduced the structural problems to be solved and chapter 2 selected methods for solving these problems. This chapter gives details of and modifications to the selected algorithms to handle the structural problems.

The general NLP problem was stated in chapter 1 as:
minimize $\quad F(\underline{t})$
...3.1.1
subject to $f_{i}(t) \geqslant 0, i=1, \ldots, r$
and the structural problem to be solved was stated as:
minimize $\quad \underline{w}^{\prime} \underline{t}$
subject to

or:
minimize $\quad \underline{w}^{\prime} \underline{t}$
subject to $0 \leqslant\left(\sigma_{\max q \mathrm{~s}}-\sigma_{\mathrm{qs}}\right)$, $0 \in\left(t_{j}-t_{\min j}\right) \quad$,
\quad.

$$
=1, \ldots, p
$$

3.2 Method of Approximate Programming (MAP).

As described in chapter 2, MAP: forms a sequence of linear problems obtained from the NLP problem by linearizing all the non-linear constraints at intermediate solutions. A set of 'move limit' constraints are added to the constraints of the NLP problem to aid stability and convergence of the algorithm. The MAP algorithm can be stated as:
i. select an initial design point;
ii. calculate the first partial derivatives of all the non-linear constraint functions at the current design point;
iii. linearize the objective function and the non-linear constraints;
iv. form the 'move limit' constraints;
v. solve the resulting LP problem using an LP algorithm;
vi. form a new design point from the solution of the LP problem;
vii. terminate if the new and old design points and objective function values converge to within the prescribed accuracy; otherwise go to step ii.

The general LP problem is of the form:
minimize $\underline{c}^{\prime} \underline{x} \quad$...3.2.1
subject to $\underline{A} \underline{x} \leqslant \underline{b}$ and $\underline{0} \leqslant \underline{x}$,
where $\quad \underline{x}$ is the vector of variables,
\underline{c} and \underline{b} are vectors of constants,
$\underline{0}$ is the null vector, and
A is the matrix of coefficients.

The objective function of the structural problem 3.1.2 is already linear and does not require linearization for the LP problems. The size of the LP problems can be reduced by combining the linear move limit constraints with the linear side constraints:

If

$$
\delta_{j}=\alpha\left(t_{\max j}^{-t} \min j\right), 0<\alpha<1, \ldots 3.2 .2
$$

is the move limit on the fth design variable,
then the move limit constraints can be written as:

$$
\bar{t}_{j}-\delta_{j} \leqslant t_{j} \leqslant \bar{t}_{j}+\delta_{j}, j=1, \ldots, P, \ldots 3.2 .3
$$

where E_{j} is the value of the j th design variable at the current solution point.

The constraints 3.2 .3 can be combined with the side constraints of 3.1 .2 to give:
$\left(t_{j_{i}}^{L}\right)=\operatorname{Maximum}\left(t_{\min j}, \tau_{j}-\delta_{j}\right) \leq t_{\underset{U}{j}}$ and
$t_{j} \leq \operatorname{Minimum}\left(t_{\max j}, \bar{t}_{j}+\delta_{j}\right)=\left(t_{j}\right), j=1, \ldots, P$
or

$$
\left(t_{j}^{L}\right) \leqslant t \underset{j}{t} \leq\left(t_{j}^{U}, j=1, \ldots, P\right.
$$

The total number of constraints in the LP problem can also be reduced by redefining the LP variables thus:

$$
t t_{j}=\left(\underset{j}{\left.t-t_{j}^{L}\right), j=1, \ldots, P, ~}\right.
$$

Hence constraints 3.2 .5 become:

$$
0 \leq t t_{j} \leq\left(t_{j}^{U}-t_{j}^{L}\right), j=1, \ldots, p
$$

The non-linear behavioural constraints in problem 3.1.2 are linearized by expanding in a truncated TayTor's series the constraint functions about the current solution, $\overline{\underline{E}}$:

$$
\sigma_{q s}=\bar{\sigma}_{q s}+\underset{q s}{ }+\left(\underline{\nabla} \overline{\sigma_{s}}\right)^{\prime}(\underline{t}-\underline{E})
$$

$$
\sigma_{q s}=\bar{\sigma}_{q s}+{\underset{q s}{ })^{\prime}(\underline{t t}-\overline{t t})}^{\prime}
$$

$$
=\left(\overline{\sigma_{s}}-(\underset{q s}{ })^{\prime} \overline{\overline{t t}}\right)+\left(\underline{\nabla}_{q s}\right)^{\prime} t t
$$

or

$$
\sigma_{\mathrm{qs}}=\beta_{\mathrm{qs}}+\underset{\mathrm{qs}}{\left(\underline{\eta} \tilde{\sigma}^{\prime} \underline{t t}\right.}
$$

Equation 3.2.11 substituted into the non-linear constraints of problem 3.1.2 gives the linearized constraints:

$$
\begin{aligned}
& \sigma_{\min q s} \leq\left(\beta_{q s}+\left(\underset{q s}{ } \underline{\nabla}_{\text {hence }}\right)^{\prime t t}\right) \leq \sigma_{\max } \\
& -\left(\underline{\nabla} \bar{\sigma}_{q s}\right)^{\prime} \underline{\text { tt }}=\left(\beta_{q s}-\sigma_{\min q s}\right) \text { and }
\end{aligned}
$$

$$
+\left(\underset{q s}{\left(\nabla \sigma^{\prime}\right)} \underline{t t} \leq{\underset{\max }{q s}}-\beta_{\mathrm{qs}}\right)^{\prime}
$$

which are linear functions of the LP variables, tt. Rearranging substituting equations 3.2.6 into the objective function of problem 3.1.2 gives

$$
\underline{w}^{\prime} \underline{t}=\underline{w}^{\prime} \underline{t t}+\underline{w}^{\prime} \underline{t}
$$

Hence the LP approximation of problem 3.1.2 at $\overline{\mathrm{t}}$ is:
minimize $\underline{w}^{\prime} \underline{t t}+\left(\underline{w}^{\prime} \underline{t}\right)$,
subject to

$$
\begin{aligned}
& -(\underset{q S}{(\underline{\bar{\delta}})})^{\prime t t} \leq\left(\beta_{q S}-\underset{\min q s}{\sigma}\right), \\
& +\left(\underset{q s}{(\mathbb{V})^{\prime} t t} \leq\left(\sigma_{\max q s}-\beta_{q s}\right),\right. \\
& q=1, \ldots, L \quad, \quad s=1, \ldots, M
\end{aligned}
$$

and

$j=1, \ldots, P$
where $t{ }_{j}, j=1, \ldots, P$ are the $L P$ variables.
Problem 3.2.15 is of the form 3.2.1 and can be solved by the LP algorithm described later in this chapter. Suitable values for $\boldsymbol{\alpha}$ in 3.2.2 are chosen in chapter 6. The FORTRAN IV program listing of the LP algorithm used in this study is given in the appendices.
3.3 Method of Feasible Directions (MFD).

Feasible direction methods search within the feasible region for an optimal solution along a sequence of usable feasible directions. As described in section 3 of chapter 2 a usable feasible direction will satisfy the following conditions:

$$
\begin{aligned}
& -(\underline{\nabla f}(\underline{t}))^{\prime} \underline{d} \leq 0, i \in I_{a}^{\prime}, \\
& +\left(\underline{\nabla}(\underline{\underline{t}})^{\prime} \underline{d} \leq 0,\right.
\end{aligned}
$$

where the set I_{a} are the indices the active constraints.
The algorithm for Zoutendijk's 11 method of feasible directions can be stated as:
i. select an initial feasible design point;
ii. search down the negative of the gradient of the objective function until a minimum of the objective function or a constraint is found;
iii. evaluate the first partial derivatives of the functions;
iv. form the direction finding problem: maximize y '...3.3.2 subject to $(\underline{\nabla F}(\bar{t}))^{\prime} \underline{d}+y \leq 0$, $-\left(\underline{\nabla f}_{i}(\underline{\bar{t}})\right)^{\prime} \underline{d}+c_{i} y \leq 0, i \in I_{a}$, d is normalized ;
v. solve the direction finding problem;
vi. test the direction for acceptability;
vii. if the direction is acceptable then search along it until a minimum of the objective function or a constraint is found, then go to ix ;
viii. if the direction is unacceptable then reduce the number of constraints in the set I_{a} and go to iv;
ix. terminate if the new and the old design points and objective function values converge to within the prescribed accuracy; otherwise go to iii.

By a suitable normalization of \underline{d}, the direction finding problem can be formed as an LP problem. In the direction finding problem, the arbitrary coefficients can be set to unity for the non-linear
constraints and to zero for linear constraints. Zoutendijk tests the acceptability of the search direction by examining the value of y. By including in the set I_{a} all the constraint functions such that

$$
0 \leq f_{i}(t) \leq \varepsilon
$$

and assuming that $\mathbf{c}_{\mathbf{i}}=1$ for the non-linear constraints, then the search direction is usable feasible if:

$$
\varepsilon \leqslant y
$$

Test 3.3.4 can be obtained by considering equations 2.3.1 to 2.3.7 and the assumption that the search direction is normalized such that $\alpha=1$ is a meaningful move along the direction. The first order change in $F(\underline{t})$ and $f_{i}(t)$ for a unit move along d is given by:
$F(\underline{t})-F(\underline{\bar{t}})=(\underline{\nabla} F(\underline{\bar{t}}))^{\prime} d$
...3.3.5
$f_{i}(\underline{t})-\bar{f}_{i}(\bar{t})=\left(\underline{\nabla f}_{i}(\bar{t})\right)^{\prime} \underline{d}$
But from 3.3.2:
$y \leq-(\underline{\nabla F}(\underline{\underline{t}}))^{\prime} \underline{d}$
and

$$
y \leq+\left(\underline{\nabla} f_{i}(\underline{\bar{t}})\right)^{\prime} \underline{d} \text {, if } c_{i}=1,
$$

Thus
if $\mathcal{E} \leq y$,
then
$0 \leqslant \varepsilon \leqslant f_{i}(\underline{t})=f_{i}(\underline{t})$
$0 \leqslant \varepsilon \in F(\bar{t})-F(\underline{t})$
therefore

$$
\varepsilon \leqslant f_{i}(t)
$$

and

$$
F(\underline{t}) \leq F(\underline{t})
$$

Therefore the direction is usable feasible. If the direction is not acceptable, then \mathcal{E} is reduced and the direction finding problem is reformed.

Since the $\mathbf{c}_{\mathbf{i}}$ are not dimensionless, the choice of values of unity for the non-linear constraints may not be the most computationally efficient. Furthermore, the test of acceptability 3.3.4 can be incorporated into the direction finding problem. Hence the following formulation of the direction problem was used in this study:
the direction \underline{d} is taken as the solution of the problem maximize y...3.3.13
subject to $\quad\left((\underline{\nabla F}(\underline{\underline{t}}))^{\prime} d\right) /|\Delta F *|+y \leqslant 0$ $\left(\left(-\underline{\nabla} f_{i}(\underline{Z})\right)^{\prime} \underline{d}\right) /\left|\Delta f_{\cdot i}^{*}\right|+\dot{i}_{i}^{y} \leq-\varepsilon /\left|\Delta f_{i}^{*}\right|, i \in I_{a} .$, and d is normalized
where
c_{i}
are dimensionless scalars, $=0$ for linear constraints, and 0 for non-linear constraints,
$\Delta F^{*} \quad$ is the largest possible change in $F(\underline{t})$ for a unit move along any normalized \underline{d} through $\overline{\underline{t}}$ and has units of $F(\underline{t})$, and
Δf_{i}^{*} is the largest possible change in $f_{i}(t)$ for a unit move along any normalized \underline{d} through $\underline{\underline{t}}$ and has units of $f_{i}(\underline{t})$.

If $y \leqslant \varepsilon_{m}$, where ε_{m} is a very small positive number, then LP problem 3.3.13 has no feasible region. In this case, \mathcal{E} is reduced and the direction finding problem is reformed.

The values $\Delta F *$ and $\Delta f *$ depend on the normalization of the search direction, d. Zoutendijk suggests a number of possible normalizations but some of them require that certain modifications be made to the LP algorithm. The following normalization used in this research does not require modifications to the LP algorithm:

$$
\underline{d} \text { is normalized such that }-D \leq d_{j} \leq+D, j=1, \ldots, P \quad \ldots 3.3 .14
$$

Hence the largest possible changes in $F(\underline{t})$ and $f_{i}(\underline{t})$ for a unit move along any normalized \underline{d} through \underline{E} are:

$$
\begin{align*}
& \Delta F^{*}=D\|\underline{\nabla}(\underline{\bar{t}})\| \|_{T}=D \sum_{j=1}^{P}|\underline{\nabla F}(\underline{\bar{t}})| \\
& \Delta f_{i}^{*}=D\left\|\underline{\nabla f_{i}}(\underline{\bar{t}})\right\|_{T}=D \sum_{j=1}^{P}\left|\underline{\nabla f_{i}}(\underline{\bar{t}})\right|
\end{align*}
$$

where subscript T denotes the 'taxicab' normalization defined by equations 3.3.15 and 3.3:36.

Problem 3.3.13 can be rearranged and combined with normalization 3.2.14 to give:
maximize y
subject to
$(\underline{\operatorname{VF}}(\overline{\mathrm{t}}))^{\prime} \underline{d}+|\Delta F *| y \leq 0$,
$-\left(\underline{\nabla f}_{i}(\underline{Z})\right)^{\prime} d+c_{i}\left|\Delta f_{i}^{*}\right| y \leq-\varepsilon, i \in I_{a}$,

Problem 3.3.17 can be solved by an LP algorithm. The total number of constraints can be reduced by redefining the LP variables thus:
$d d_{j}=\left(d_{j}+D\right), j=1, \ldots, P$
hence
maximize y
...3.3.19
subject to $(\underline{F}(\underline{\bar{t}}))^{\prime} \frac{d d}{}+|\Delta F *| y \leq D \sum_{j=1}^{P}(\underline{\nabla} F(\underline{\bar{t}}))$
$\left.-\left(\underline{\nabla} f_{i}(\underline{\bar{t}})\right)^{\prime} \frac{d d}{c}{ }_{i} \Delta f_{i}^{*} \right\rvert\, y \leq D \sum_{j=1}^{p}\left(\underline{\nabla} f_{i}(\underline{\bar{t}})\right)-\varepsilon, i \in I_{a}$

$$
0 \leq d d_{j} \leq 2 D \quad, \quad j=1, \ldots, P
$$

To prevent zig-zagging between a subset of the constraints; Zoutendijk suggested that the set I should incorporate the indices of those constraints encountered on some of the previous iterations. Thus in problem 3.3.19, I_{a} is formed from the union of the two sets $I_{a c t}$ and $I_{\text {rem }}$ which are defined by:
$I_{\text {act }}=$ the set of indices for which $0 \leq f_{i}(\underline{\bar{t}}) \leq \varepsilon \quad$...3.3.20

$$
\begin{align*}
I_{\text {rem }}= & \text { the set of indices of the constraints which have been } \\
& \text { encountered more than once }
\end{align*}
$$

hence

```
I = (I act )U(I_ rem
```

If the search direction produced in the direction finding problem is rejected, then I is emptied and $\boldsymbol{\Sigma}$ is halved or reduced so that at lease one index remains in I. The set I is reformed and a new act direction is determined. I is updated on succeeding iterations. rem

To solve the structural problem 3.1.3 by the formulation 3.3.19, the following quantities are required:

$$
\nabla F(\overline{\underline{t}}) \text { and } \nabla f_{i}(\overline{\mathrm{t}}), i \in I_{a} .
$$

Since

$$
\begin{aligned}
& F(\underline{t})=\underline{w}^{1} t \\
& f(\underline{t})=(\sigma \quad-\sigma) \text {, } \\
& i \quad \max q s q s \\
& \left(\sigma_{q s}-\sigma_{\min q s}\right), \\
& \left(\mathrm{t}_{\max \mathrm{j}}-\mathrm{t}_{\mathrm{j}}\right) \text {, } \\
& \text { or } \quad\left(t_{j}-t_{\min j}\right) \text {, } \\
& \underline{\nabla F}(\underline{t})=\underline{w} \text {, }
\end{aligned}
$$

then

$$
\begin{align*}
& \nabla f_{i}(\underline{t})=-\underline{\nabla}_{q s}^{\sigma}, \\
& +\nabla_{q S} \quad, \\
& { }^{-\mathrm{e}}{ }_{\mathrm{j}} \quad, \\
& \text { or te }{ }_{j} \text {, }
\end{align*}
$$

where e_{j} is the j th coordinate direction vector.

The algorithm for the feasible direction method used to solve the structural problem 3.1.3 can be summarized by the following:
i. form an initial feasible design point;
ii. search down the gradient of the objective function until a minimum is found or until a constraint is found;
iii. evaluate first partial derivatives of the functions;
iv. form the direction finding problem 3.3.19 incorporating equations $3.3 .15,3.3 .16,3.3 .18,3.3 .20,3.3 .21,3.3 .22$, 3.3.23 and 3.3.24;
v. solve the direction finding problem;
vi. if $y \leqslant \varepsilon_{m}$, where ε_{m} is a small positive number, then reduce \mathcal{E} and go to iv ;
vii. otherwise, search along the direction for a minimum of the objective function or for a constraint;
viii. terminate if the new and old design points and objective function values converge to within the prescribed accuracy;
ix. otherwise go to iii.

Suitable values for the dimensionless coefficients c are selected in chapter 6. A FORTRAN IV program listing of the above algorithm as used is given in the appendices.

3.4 Sequential Unconsträined Minimization Technique (SUMT).

As described in chapter 2, the SUMT is an interior point transformation method. A sequence of unconstrained objective functions (formed from the original objective function and penalty functions) is minimized until the minima converge to within the prescribed accuracy. The SUMT algorithm can be stated as:
i. select an initial feasible design point;
ii. form the transformed objective function $\emptyset\left(t, e_{k}\right), k=1$;
iii. minimize $\emptyset\left(t, e_{k}\right)$;
iv. terminate if the new design point is satisfactory; otherwise go to v ;
v. form the new transformed objective function $\emptyset_{(}\left(t, \rho_{k+1}\right)$;
$v i$. estimate the minimum of $\emptyset\left(t, \rho_{k+1}\right)$ by extrapolation;

vii. go to iii, with $k=k+1$;

For the reasons given in chapter 2, the objective functions used in step ii and v are similar to the form:

$$
\phi\left(\underline{t}, p_{k}\right)=F(\ddot{t})+e_{k}\left(\sum_{i=1}^{r}\left(1 /\left(f_{i}(t)\right)\right)\right)
$$

The sequence of values for ρ_{k} are determined from:

$$
p_{k+1}=c p_{k}, 0<c<1
$$

Equation 3.4 .2 requires the values ρ_{1} and the coefficient c. The scalar e_{1} is often determined such that the weighted penalty term is a predetermined proportion of the original objective function at the initial design point:

$$
p_{1}=p\{F(\underline{E}) / P(f(\underline{E}), i=1, \ldots, r)\}
$$

Typical values for p are $.01, \ldots, .50$. However the efficiency and reliability of such an approach is dependent upon the initial design point. If the initial point is close to one more of the constraints, ρ_{η} given by equation 3.4 .3 may be too small; alternatively
if the initial point is not close to any of the constraints, e may be unnecessarily large. Fiacco and McCormick suggest that a 'natural' choice for e would be given by the e that minimizes the magnitude of the gradient of at \bar{E}, so that \underline{E} is close to the minimum of $\phi\left(t_{p} \rho_{j}\right)$. Such a value of e_{1} could, during the first SUMT iteration, reduce the computational effort used but also reduce the amount by which $\emptyset\left(t, \rho_{j}\right)$ could be decreased. Nevertheless; the Fiacco and McCormick value for P_{1} was used in this study and can be obtained from the following:
let $\left(\emptyset=F+\rho_{1} P\right)=\left(\varphi\left(\underline{t}, \rho_{1}\right)=F(\overline{\bar{t}})+\rho_{1}^{P}\left(f_{i}(\bar{t}), i=1, \ldots, r\right)\right)$
where \underline{E} is the current (initial) design, then $V \emptyset=\nabla F+e_{T} \nabla P$
hence e_{1} is given by the such that $\mathbb{V Q} \boldsymbol{V}$ is a minimum.
But since

$$
\ddot{\nabla Q} \nabla \nabla=\left(\nabla F+e_{1} \ddot{\nabla P}\right)^{\prime}\left(\ddot{\nabla F}+e_{1} \nabla P\right)
$$

then

$$
\nabla Q^{\prime} \nabla D=\nabla F \cdot \nabla F+2 e_{1}(\ddot{\nabla F} \cdot \underline{\nabla P})+\rho_{1}^{2}(\underline{\nabla P} \cdot \underline{\nabla P})
$$

Differentiating equation 3.4 .7 with respect to \mathcal{C}_{1} gives:

$$
d\left(\nabla \phi^{\prime} \nabla \phi\right) / d C_{1}=2(\nabla F P P)+{ }^{2} C_{1}\left(\nabla P^{\prime} \nabla P\right)
$$

V \varnothing 'V has a minimum value when the left hand side of equation 3.4 .8 is equal to zero; hence

$$
e_{1}=(-\nabla F \cdot \nabla P) /\left(\underline{\nabla} P^{\prime} \overrightarrow{V P}\right)
$$

The minimum value that ∇ ! $V 0$ can have is zero; hence from equation 3.4.7:

In this study, the value for e_{1} was determined using equation 3.4.10. If the quantity under the root sign is negative, then the value for e_{1} was determined from 3.4.9. If the value for e_{1} is not positive, for example when $\nabla F^{\prime} \underline{\nabla P} \geq \dot{0}$, then $\boldsymbol{C}_{\boldsymbol{l}}$ was determined from equation 3.4.3.

An efficient choice for the coefficient, \dot{c}, in equation 3.4.2, is dependent on the accuracy of the search and on the number of unconstrained minimizations attempted. Suitable values for c are determined in chapter 6.

The algorithms used for minimizing the sequence of $\phi(.$.$) are$ detailed in later sections of this chapter.

Preliminary work for this research and other studies 22,23 indicate that computational savings of approximately 30% can be made by incorporating an extrapolation technique into SUMT as in step vi of the algorithm stated above. The technique used in this study is as follows:
i. fit a Lagrangean polynomial through the previous minima ;
ii. predict the minimum of the new objective function using the polynomial ;
iii. search for a minimum along the direction connecting the current design point to the predicted minimum design point ;
iv. proceed with the unconstrained minimization from the new point. Using a Lagrangean polynomial, ${ }^{24}$, the value of a function $y(x)$ can be determined at any value of x as

$$
y\left(x_{n+1}\right)=\sum_{k=1}^{n}\left(1_{k}\left(x_{n+1}\right) y\left(x_{k}\right)\right)
$$

where

$$
1_{k}\left(x_{n+1}\right)=\prod_{\substack{i=1 \\ i \neq k}}^{n}\left(x_{n+1}-x_{i}\right) / \prod_{\substack{i=1 \\ i \neq k}}^{n}\left(x_{k}-x_{i}\right)
$$

Hence the design point at the minimum of the new objective function can be estimated from the following:
let $t_{j}^{*}\left(p_{n+1}\right)$ be the estimate the j th design variable at the
minimum of the objective function: $\varphi\left(\underline{t}, \rho_{n+1}\right)$, and
let $t_{j}^{*}\left(\boldsymbol{\rho}_{k}\right)$ be the design of the j th design variable at the
minimum of the objective functions, $\varnothing\left(\underline{t}, P_{k}\right)$, then

$$
t_{j}^{*}\left(\rho_{n+1}\right)=\sum_{k=1}^{n}\left(1_{k}\left(\rho_{n+1}\right) t_{j}^{*}\left(\rho_{k}\right)\right)
$$

where

$$
\begin{align*}
& \quad 1_{k}\left(\rho_{n+1}\right)=\prod_{\substack{i=1 \\
i \neq k}}^{n}\left(\rho_{n+1}-\rho_{i}\right) / \prod_{\substack{i=1 \\
i \neq k}}^{n}\left(\rho_{k}-\rho_{i}\right) \\
& \text { But, since } \rho_{k}=c^{k-1} \rho_{1}
\end{align*}
$$

then

$$
1_{k}\left(\rho_{n+1}\right)=\prod_{\substack{i=1 \\ i \neq k}}^{n}\left(\left(c^{n} \rho_{1}-c^{i-1} \rho_{1}\right) /\left(c^{k-1} \rho_{1}-c^{i-1} \rho_{1}\right)\right) \ldots .3 .4 .16
$$

hence

$$
1_{k}\left(e_{n+1}\right)=\prod_{\substack{i=1 \\ i \neq k}}^{n}\left(\left(c^{n+1-i}-1\right) /\left(c^{k-i}-1\right)\right) \quad \ldots 3.4 .17
$$

The coefficients $1_{k}(\boldsymbol{e})$ can be determined iteratively by the following recursion formulae developed from equation 3.4.17:

$$
\begin{align*}
& 1_{n}\left(e_{n+1}\right)=\left(c^{n}-1\right) /(c-1) \\
& 1_{k}\left(e_{n+1}\right)=\frac{\left(c^{n}-1\right)\left(c^{n-k}-1\right)\left(1_{k}\left(e_{n}\right)\right)}{\left(c^{n+1-k}-1\right)\left(c^{k-n}-1\right)}
\end{align*}
$$

The transformed objective functions for SUMT used to solve the structural problem 3.1.3 are gìven by:

$$
\varphi\left(\underline{t}, e_{k}\right)=\underline{w}^{\prime} \underline{t}+e_{k}\left(P_{1}+P_{2}\right)
$$

where

$$
\begin{aligned}
& p_{1}=\left(\sigma_{\max q}-\sigma_{\min q s}\right) \sum_{q=1}^{L} \sum_{s=1}^{M}\left(1 /\left(\sigma_{\max q s}-\sigma_{q s}\right)+1 /\left(\sigma_{q s}-\sigma_{\operatorname{minq}}\right)\right) \\
& P_{2}=\left(t_{\max j}-t \min _{j}\right) \sum_{j=1}^{P}\left(1 /\left(t_{\max j}-t\right)+1 /\left(t \underset{j}{t}-t_{\min j}\right)\right. \\
& \text {...3.4.22 }
\end{aligned}
$$

The weighting scalars of equations 3.4.21 and 3.4.22 put the penalty terms in non-dimensional form.

A FORTRAN IV program listing of the SUMT algorithm used in this study is given in the appendices.

3.5 Newton's'method ${ }^{15}$

Newton's method can be used with SUMT to minimize the sequence of objective functions $\emptyset(\underline{t}, \rho)$. The method requires the evaluation of functions, first and second partial derivatives. The method used is developed in the following:

Let
$\eta=\eta(t, e)$.
$\bar{\emptyset}=\varnothing(\bar{t}, \varrho)$ where $\overline{\underline{t}}$ is the current design point,
$\nabla \emptyset=$ the vector of first partial derivatives of the objective function with respect to the design variables \underline{t},
$\overline{\bar{V} \emptyset}=\bar{\nabla} \underline{\theta} \underline{\underline{E}}$.
$\nabla^{2} \emptyset=$ the matrix of second partial derivatives of the objective function with respect to the design variables,
$\overline{\bar{I}} \emptyset=\bar{\nabla}^{2} \emptyset$ at $\underline{\bar{t}}$,
then expanding \emptyset in a truncated Taylor's series about $\overline{\underline{E}}$ gives:

$$
\emptyset=\bar{\emptyset}+\bar{\nabla} \phi^{\prime}(\underline{t}-\underline{\bar{t}})+\frac{1}{2}(\underline{t}-\overline{\underline{t}})^{\prime} \bar{\nabla}^{2} \emptyset(\underline{t}-\underline{\bar{t}}) \ldots 3.5 .1
$$

which has a stationary value when

$$
\nabla \emptyset=0
$$

Differentiating equation 3.5.1 and ignoring higher order terms gives:

$$
\nabla \phi=\bar{\nabla} \phi+\overline{\bar{I}} \emptyset \quad(\underline{t}-\bar{t})
$$

Hence

$$
0=\bar{\nabla} \emptyset+\overline{\bar{\nabla}}^{2} \emptyset \quad\left(\underline{t}^{*}-\underline{t}\right)
$$

Newton's method solves equation 3.5 .4 for t^{*} which is an estimate of the design for the minimum of \emptyset. When used with SUMT, Newton's method may give a \underline{t}^{*} which lies in the infeasible region. Newton's method is modified ${ }^{15}$ to prevent the design going into the infeasible region, thus:
let $\quad t^{*}=\overline{\underline{t}}+\alpha^{*} \underline{d}$
where \underline{d} is a search direction,
then $\underline{t}^{*}-\underline{E}=\alpha^{*} \underline{d}$
Substituting equations 3.5.6 into 3.5 .4 gives:

$$
0=\bar{\nabla} \emptyset+\alpha^{*} \overline{\underline{V}} \emptyset \underline{d}
$$

Equation 3.5 .7 is solved by setting $\boldsymbol{\alpha}^{*}=1$ to yield a search direction d. Then α^{*} is determined by searching along \underline{d} for a minimum of \emptyset. Thus the algorithm for Newton's method used with SUMT is:
i. calculate $\bar{\emptyset}, \bar{\nabla} \emptyset$ and $\bar{\nabla}^{2} \emptyset$;
...3.5.8
ii. solve the set of equations $-\bar{\nabla} \emptyset=\overline{\mathbb{V}} \emptyset$ d for \underline{d};
iii. find the α^{*} which minimizes \varnothing along d and replace $\overline{\underline{t}}$ with \underline{t}^{*}, where $\underline{t}^{*}=\overline{\underline{t}}+\alpha^{*} \underline{d}$, and go to \mathfrak{i}.

The process is continued until convergence is achieved to within the prescribed accuracy. The algorithm 3.5 .8 will be referred to as Newton(1), hereinafter.

A variation of algorithm 3.5 .8 which attempts to reduce the computational effort required will be referred to as Newton(2). 2 Newton(2) ${ }_{2}$ omits evaluating $\mathbb{V} \emptyset$ on second and subsequent iterations but sets $\nabla \emptyset$ to the values at the initial point.

Newton(1) and Newton(2) as described above were used with SUMT in the tests in chapter 6. A FORTRAN IV program listing of Newton(2) used in this study is given in the appendices.

3.6 Fletcher-Powe 11's method.: 16

Fletcher-Powell's method can be used to minimize the sequence of objective functions $\emptyset(t, \rho)$. This method requires functions and their first partial derivatives and is similar to Newton's method except that the inverse of the Hessian matrix of second partial derivatives is replaced by a matrix which, by improvement after each iteration, converges to the Hessian matrix. The algorithm for Fletcher-Powel1's method is:
i. start with an initial design \underline{t}_{0}, and an initial positive definite matrix \underline{H}_{O}, for example, the identity matrix;
ii. calculate $\nabla \varnothing$ and set $k=0$;
iii. determine the search direction $\frac{d}{k}$ from the equation

$$
\frac{d}{k}=-{\underset{k}{k}}_{k}^{\nabla} \emptyset_{k} ;
$$

iv. find α_{k}^{*} which minimizes \emptyset along $\frac{d}{k}$ and

$$
\frac{H}{k+1}=\frac{H}{k}+\frac{M}{k}+\frac{N}{k}
$$

$$
\frac{M}{k}=\alpha_{k}^{*}\left(\frac{d}{k} \frac{d^{\prime}}{k}\right) /\left(\frac{d^{\prime}}{k} y_{k}\right),
$$

$$
\frac{N}{k}=-\left({\underset{H}{k}}_{k}^{y}\right)\left(\frac{H}{k} \underset{k}{y}\right)^{\prime} /\left({\underset{k}{y}}^{\prime} \underline{H}_{k} y_{k}\right) \text {, and }
$$

$$
\underline{y}_{k}=\underline{\nabla}_{k+1}-\nabla \emptyset_{k}
$$

vi. go to $i i_{i}$, with $k=k+1$.

The process is continued until convergence to within the prescribed accuracy is achieved, Fletcher-Powell's method as described above was used with SUMT in the tests described in chapter 6. A FORTRAN IV program of the method used is given in the appendices.

3.7 Stewart's method 17.

Stewart's method is an extension of Fletcher-Powell's method enabling the use of finite difference first derivatives. In addition to updating the matrix \underline{H}. Stewart's method updates the diagonal elements of its inverse \underline{A}, which are used in the determination of the finite difference derivatives. Stewart considers the problem of estimating the first derivative of a non-linear function by a linear form and indentifies two major sources of error: - truncation errors and cancellation errors. Truncation errors are caused by the mathematical inadequacy of the derivative approximation. Cancellation errors are caused by the loss of significant figures in finite precision arithmetic. Stewart's method chooses a finite difference step length to that the two sources of error are approximately equa1. Stewart shows that this can be done by solving the following equation for each of the coordinate directions:
the step length, δ_{j}^{*}, along the j th coordinate direction is given by the solution of

$$
\left|\alpha_{j j}\right|\left|\delta_{j}\right|\left|\Delta \phi_{j}\right|-4\left|\emptyset_{0}\right|\left|\gamma_{j}\right| \eta=0 \quad \text {...3.7.1 }
$$

where
$\boldsymbol{\alpha}_{j j}$ is the j th diagonal element of the matrix $\frac{A_{k}}{}$,
Δ_{\emptyset} is the change in \emptyset for a step δ_{j} along the j th coordinate direction,
\emptyset_{0} is the value of the objective function at the current point,
γ_{j} is the j th component of the last first derivative calculations.
η is an error bound on the function evaluation.
Stewart shows that an approximate solution to equation 3.7.1 is given by either:

$$
\delta_{j}^{*}=\delta_{j}\left(1-\left(\left|\alpha_{j j}\right| \delta_{j}\right) /\left(3\left|\alpha_{j j}\right| \delta_{j}+4\left|\gamma_{j}\right|\right)\right)
$$

for $\gamma_{j}^{2} \geqslant\left|\alpha_{j j}\right| \|_{0}^{\emptyset} \mid \eta$
where

$$
\delta_{j}=2 \sqrt{\left|\phi_{0}\right| \eta /\left|\alpha_{j j}\right|}
$$

or

$$
\delta_{j}^{*}=\delta_{j}\left(1-\left(2\left|\gamma_{j}\right|\right) /\left(3\left|\alpha_{j j}\right| \delta_{j}+4\left|\gamma_{j}\right|\right)\right)
$$

for $-\gamma_{j}^{2} \geqslant-\left|\alpha j \| \phi_{j}\right| \eta$
where

$$
\delta_{j}=\sqrt[2]{\left|\emptyset_{0}\right|\left|\alpha_{j}\right| / \alpha_{j j}{ }^{2}}
$$

Stewart suggests that the value of η should be the larger of (i) the estimate of the error bound on the calculation of \varnothing; and (ii) the error bound on the calculation of \emptyset by linear expansion about
the computer approximation of the current point.
If the step length given by the above equations is greater than some prescribed upper bound, Stewart suggests that a central difference scheme is employed, where δ_{j}^{*} is chosen as the positive root of

$$
\frac{1}{2}\left|\alpha_{j j j}\right| \delta_{\frac{j}{j}}^{2}+\left|\gamma_{i j}\right| \delta_{j}^{*}-0^{m}\left|\emptyset_{0}\right| \eta=0
$$

where
10^{-m} is the prescribed upper bound.
The matrix \underline{A} used to find the second derivatives $\alpha_{j, j}$ is updated in the following manner:

$$
\frac{A_{k+1}}{}=\frac{A}{k}+c_{1} \frac{y}{k} \frac{y}{k}+c_{2}\left(\nabla \emptyset_{k}^{\prime} y_{k}+y_{k}^{\prime} \nabla \emptyset_{k}\right)
$$

where

$$
\begin{align*}
& c_{1}=\left(c_{2} / \alpha_{k}^{*}-c_{2}^{2} \nabla \emptyset_{k}^{\prime}{\underset{k}{d}}_{c_{1}}^{c_{2}}=1 / y_{k}^{\prime} \frac{d}{k}\right.
\end{align*}
$$

The algorithm for Stewart's method is:
i. start with an initial design, the matrix \underline{H}_{0} and $\underline{H}_{0}^{-1}=\frac{A_{0}}{0}$ i
ii. calculate $\forall \varnothing_{0}$ and set $k=0$;
iii. determine the search direction $\frac{d}{k}$ from $\frac{d}{k}=-\frac{H}{k} \nabla_{k}$;
iv. find the $\underset{k}{\alpha}$ which minimizes \emptyset along $\frac{d}{k}$ and calculate ${\underset{k}{k+1}}$;
v. determine $\eta=\max \left(\eta_{\phi},\left|\gamma_{j} t_{j} \eta_{m} / \phi_{0}\right|\right)$, calculate δ_{j}^{*} from eqtns. 3.7.2-3.7.7, and set $\delta_{j}^{*}=\operatorname{sign}$ $\left(\alpha_{j j}\right) \operatorname{sign}\left(\gamma_{j}\right) \delta_{j}^{*} ;$
vi. if $\frac{1 / 2}{2}\left|\alpha_{j j} \delta_{j}^{k} / \gamma_{j}\right|<10^{-m}$, use a forward first finite difference scheme to obtain $\partial \emptyset / \partial t{ }_{j}$
otherwise calculate δ_{j}^{*} from equation 3.7.8 and use a central difference scheme to obtain $\partial \not \subset / \partial t_{j}$ i
vii. hence calculate $\frac{H}{k+1}^{\text {and }} \frac{A_{k+1}}{}$;
viii. go to iii, with $k=k+1$.

The process is, continued until convergence to within the prescribed accuracy is achieved.

Stewart's method as described above was used with SUMT in the tests described in chapter 6. A Fortran IV program of the method used is given in the appendices.

3.8 Powell 's method ${ }^{18}$

Powell's method can be used with SUMT to minimize the sequence of objective functions $\phi(\underline{t}, e)$. The method does not require the evaluation of derivatives, but does require modification for use with SUPT.

Powell's algorithm is:
define a set of P linearly independent directions (e.g. the coordinate directions) as $\frac{d}{1}, \frac{d}{2}, \ldots, \frac{d}{p}$; define the initial point as $\frac{t}{0}$
and the objective function at $\frac{t}{r}$ as $\emptyset(\underset{r}{t}, \rho)$; then
i. for $r=1, \ldots, P$, find α to minimize $\varphi\left(\frac{t}{r-1}+\alpha \frac{d}{r}, \rho\right)$ and define $\frac{t}{r}=\frac{t}{r-1}+\alpha_{r} \frac{d}{r}$;
ii. find the index R and the quantity $D_{R}=\operatorname{maximum}\left(D_{r} ; r=1, \ldots, P\right)$, where $D_{r}=\left(\eta\left(\frac{t}{r-1}, \rho\right)-\eta\left(t_{r}, \rho\right)\right)^{R}$;
iii. define $\phi_{0}=\varnothing\left(\underline{t}_{0}, \rho\right)$ and $\emptyset_{p}=\phi(\underline{t}, \rho)$ then calculate $\theta_{Q}=\varnothing\left(\left(2 t_{P}-t_{0}\right), 1 ;\right.$
iv. if either $\emptyset_{0} \leqslant \emptyset_{Q}$ and/or
$\frac{1}{2} D_{R}\left(\emptyset_{0}-\emptyset_{P}\right)^{2} \leq\left(\emptyset_{0}-2 \emptyset_{P}+\emptyset_{Q}\right)\left(\emptyset_{0}-\emptyset_{P}-D_{R}\right)^{2}$
then go to i with $\frac{t}{0}$ replaced by $\frac{t}{p}$ and with the old set
of directions ; $\frac{d}{1}, \frac{d}{2}, \ldots, \frac{d}{p}$;
v. if the tests in iv are not met, then define ${\underset{P}{p+1}}=t_{p}-t_{0}$, find the α_{p+1} to minimize $\phi\left(\left(_{p}^{t}+\alpha_{p+1}\right), p\right)$,
define $\frac{t}{P+1}=\frac{t}{P}+\alpha_{P+1}^{\alpha} \frac{d}{P+1}$,
then go to i with \underline{t}_{0} replaced by $\frac{t}{p+1}$ and with the set of
directions : ${ }_{7}^{d}, \frac{d}{2}, \cdots, \frac{d}{R-1}, \frac{d}{R+1}, \cdots, \frac{d}{P}, \frac{d}{P+1}$.
The tests in step iv of Powell's algorithm combine the following three tests:

1. if $\left(\emptyset_{0}-2 \emptyset_{P}+\emptyset_{Q}\right)<0$, then take step v; otherwise
2. if $\emptyset_{0} \leq \emptyset_{Q}$, then the stationary point of $\emptyset(t, p)$ lies between $\frac{t}{p}$ and t_{0}, and the old directions should be used ; otherwise
3. let \emptyset_{S} be the stationary point of a quadratic form fitted to $\emptyset_{0}, \varnothing_{P}$ and \emptyset_{Q}, then
if $\quad J\left(\emptyset_{0}-\emptyset_{S}\right)-\sqrt{ }\left(\emptyset_{P}-\emptyset_{S}\right) \leqslant J D_{R}$, then take step v; otherwise use the old directions.

The tests of step iv assume that $\varphi(\underline{t}, \rho)$ is continuous along the search direction $\left(\underset{p}{t}-t_{0}\right)$ between $\underline{t}=\frac{t}{p}$ and $\underline{t}=\frac{t_{p}}{p}-\frac{t}{0}$. However, the formulation with SUMT has $\emptyset(\underline{t}, \boldsymbol{\rho})$ approaching infinity as \underline{t} approaches the boundary of the feasible region. Since Powell's procedure does not guarantee that $\underline{t}=\frac{2 t}{t}-\underline{t}_{0}$ is in the feasible region, the tests in step iv may not be applicable. A satisfactory test, based on Powell's rationale, to determine whether the new direction should be accepted, can be developed in terms of $\emptyset_{0} \emptyset \quad$ and $\emptyset_{M}=\varnothing\left(\frac{t}{M}, p\right)$, where $\frac{t}{M}=\frac{1}{2}\left(\frac{t}{P}+\frac{t}{0}\right)$. Assuming that $\emptyset(\underline{t}, \rho)$ is convex, then $\frac{t}{M}$ must be in the feasible region.

The three tests combined in step iv can be replaced by the following tests:

2. if $\left(-\emptyset_{0}+40_{M}-3 \emptyset_{p}\right)<0$, then the stationary point of $\theta(t, p)$ lies between $\frac{t}{p}$ and \underline{t}_{0}, hence the old đirections should be used ;
otherwise
3. let \emptyset_{S} be the stationary point of a quadratic form fitted to θ_{0}, θ_{p} and θ_{M}, then if $\downarrow\left(\emptyset_{0}-\emptyset_{S}\right)-\downarrow\left(\emptyset_{P}-\emptyset_{S}\right) \leqslant \int D_{R}$, then take step v, otherwise use the old directions.

The above three tests can be combined. Thus steps iit and iv become:
iii. define $\emptyset_{0}=\emptyset_{\left(\underline{t}_{0}, p\right)}$ and $\emptyset_{p}=\emptyset\left(\underline{t}_{p}, \rho\right)$, then caiculate $\left.\emptyset_{M}=Q\left(\frac{1}{2}\left(\frac{t}{P}+\frac{t}{0}\right)\right), p\right)$ and $\emptyset_{S}=\phi_{M}-\left(\phi_{0}-\emptyset_{P}\right)^{2} /\left(8\left(\phi_{0}-2 \theta_{M}+\emptyset_{P}\right)_{i}\right) ; ;$

either (a) $\left(\emptyset_{0}-4 \emptyset_{M}+3 a_{P}\right)>0$
or (b) $\left(\theta_{0}-4 \emptyset_{M}+3 \emptyset_{P}\right)<0$ and
$\alpha\left(\theta_{0}-\theta_{S}\right)-\alpha\left(\theta_{P}-\theta_{S}\right) \geq \checkmark D_{R}$
then go to i with \underline{t}_{0} replaced by $\frac{t}{p}$ and with the old
set of directions : $\frac{d}{q}, \frac{d}{2}, \ldots, \frac{d}{p}$;
With the above modification Powell's method was used with SUMT in the tests described in chapter 6. A Fortran IV program of the method used is given in the appendices.

3.9 One-dimensional search for the minimum of \emptyset.

The one-dimensional search algorithm to find the local minimum of the objective function was used in this study in conjunction with the UOAs and SUMT. The algorithm (the programmed with the name ONED) finds a sequence of feasible points, fits a quadratic polynomial to the points, and locates the minimum of the polynomial. One of the previous points is discarded and another polynomial is fitted to the remaining points and the new point. This process is continued until successive estimates of the minimum converge to within the prescribed accuracy. The algorithm can be stated as:
i. $\operatorname{set} \alpha_{1}=0, \underline{t}_{1}=\underline{\bar{t}}$ and $\emptyset_{1}=\theta(\underline{t})$; determine the largest negative move (amin) and the largest positive move (amax) along \underline{d} that can be taken without violating the linear constraints ; determine the resolution (the minimum distance between two points along \underline{d} that are considered as different poínts); for derivative methods, form the directional derivative, $d y=\nabla \varnothing$ ' \mathbf{d};
ii. form α_{2}, the move along d to the second point; for derivative methods: $\alpha_{2}=\left(\emptyset_{E}-\emptyset_{1}\right) / d y$, where \emptyset_{E} is an estimate of the minimum value of \emptyset along d, for non-derivative methods : $\alpha_{2}=5 \times$ (resolution) ;
iii. if $\left.\alpha_{2}\right)^{\text {amax }}$ then $\alpha_{2}:=\left(\alpha_{1}+\operatorname{amax}\right) / 3$;
if $\alpha_{2} \leqslant \operatorname{amin}$ then $\alpha_{2}:=\left(\alpha_{1}+\operatorname{amin}\right) / 3$;
evaluate \emptyset_{2} at $\frac{t}{2}=\underline{\bar{t}}+\alpha_{2} \underline{d}$;
if any of the non-linear constraints are violated, then if $\alpha>0$, set $\operatorname{amax}=\alpha$ and go to $i \mathrm{i} i$, or if $\alpha_{2}^{2}<0$, set amin $=\alpha_{2}^{2}$ and go to iii;
if none of the non-linear constraints are violated, and if the interval of uncertainty (amax-amin) is less than twice the resolution, then terminate at the point with the least value of \emptyset;
iv. form α_{3}, the move along d to the third point; for derivative methods fit a quadratic to \emptyset using dy and two points \emptyset_{1}, $\alpha_{i}{ }_{j}$ and $\emptyset_{2}=\alpha_{2}$;
if the quadratic would predict a maximum, find α_{3} by extrapolation; for non-derivative methods, find α by extrapolation so that the interval spanned by the three points is three times the interval spanned by the first two points;
v.if $\alpha \geqslant \operatorname{amax}$, then $\alpha:=(\alpha+\alpha+\operatorname{amax}) / 3$,
if $\alpha_{3}^{3} \leqslant \operatorname{amin}$, then $\alpha_{3}^{3}:=\left(\alpha_{1}^{1}+\alpha_{2}^{2}+\operatorname{amin}\right) / 3$;
evaluate \emptyset_{3} at $\frac{t}{3}=\overline{\bar{t}}+\alpha_{3} \underline{d}$;
if any of the non-linear constraints are violated, then
if $\alpha_{3}>0$, then set $\operatorname{amax}=\alpha_{3}$ and go to v, or if $\alpha_{3}<0$, then set amin $=\alpha_{3}$ and go to v; reset amax and/or amin if the function values bound the minimum of \emptyset either above and/or below, and if the interval of uncertainty can be reduced; if the interval of uncertainty <2 (resolution), terminate at the point with the least value of $\theta_{;}$if the estimate of the second derivative is negative, terminate the
search; if it is less than the test value, then discard one of the points and go to iv ;
vi. form α_{4}, the move along \underline{d} to the fourth point, by fitting a quadratic polynomial to three points using $\emptyset_{1}, \alpha_{1}, \varnothing_{2}, \alpha_{2}, \varnothing_{3}$ and $\alpha_{3} ;$
vii. if $\alpha_{4} \geqslant \max$, then $\alpha_{4}:=\left(\alpha_{2}+\alpha_{3}+\operatorname{amax}\right) / 3$,
if $\alpha_{4} \leq \operatorname{amin}$, then $\alpha_{4}:=\left(\alpha_{1}+\alpha_{2}+\operatorname{amin}\right) / 3 ;$
evaluate \emptyset_{4} at $\underline{t}_{4}=\underline{\bar{t}}+\alpha_{4}^{\underline{d}}$;
if any of the non-linear constraints are violated, then if $\alpha_{4}>0$, then set $\operatorname{amax}=\alpha_{4}$ and go to vii, or if $\alpha_{4}<0$, then set amin $=\alpha_{4}$ and go to vii;
reset amax and/or amin if the function values bound the minimum of \emptyset either above and/or below, and if the interval of uncertainty can be reduced; discard one of the four points;
viii. if the interval of uncertainty is less than twice the resolution, then terminate at the point with the least value of \emptyset;
if the remaining three points do not bound the minimum of o, then go to vi;
if the maximum permitted number of quadratic fits has been exceeded then terminate at the point with the least value of η;
go to vi;

A quadratic polynomial is of the form:

$$
\theta=c_{1} \alpha^{2}+c_{2} \alpha+c_{3}
$$

where c_{1}, c_{2} and c_{3} are coefficients.
Differentiating equation 3.9.1 gives:

$$
d \varnothing / d \alpha=2 c_{1} \alpha+c_{2}
$$

\emptyset has a stationary value, ϕ^{*}, when $d \phi / d \alpha=0$, or when

$$
\alpha=\alpha^{*}=-c_{2} / 2 c_{1}
$$

Equation 3.9.3 is used in step iv to find $\boldsymbol{\alpha}_{3}$ and in step vi to find α_{4}. In step $i v, c_{7}$ and c_{2} are determined from the solution of the following three equations:

$$
\begin{align*}
& q_{1}=c_{1} \alpha_{1}^{2}+\underset{21}{c} \alpha+c_{3}, \\
& \phi_{2}=c_{1} \alpha_{2}^{2}+{ }_{c} \alpha_{2}+c_{3}, \\
& d y=2 c_{11} \alpha_{2}+c_{2},
\end{align*}
$$

which yield:

$$
\begin{align*}
& c_{1}=d y /\left(\alpha_{1}-\alpha_{2}\right)-\left(\emptyset_{1}-\emptyset_{2}\right) /\left(\alpha_{1}-\alpha_{2}\right)^{2} \\
& c_{2}=d y-2 c_{1} \alpha_{1}
\end{align*}
$$

In step vi, c and c are determined from the solution of the

$$
\emptyset_{3}=a_{13} \alpha_{3}+c_{2} \alpha_{3}+b_{3}
$$

which yield:

$$
\begin{align*}
& c_{1}=\left(\phi_{1}-\emptyset_{2}\right) /\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)-\left(\emptyset_{2}-\phi_{3}\right) /\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{1}-\alpha\right) \\
& c_{2}=\left(\emptyset_{2}-\emptyset_{3}\right) /\left(\alpha_{2}-\alpha_{3}\right) \quad-c_{1}\left(\alpha_{2}+\alpha_{3}\right)
\end{align*}
$$

Equation 3.9.3 will predict a minimum provided that the second derivative of \emptyset with respect to $\boldsymbol{\alpha}$ is positive, or

$$
d^{2} \emptyset / d \alpha^{2}=2 c_{1} \geqslant 0
$$

or

$$
c_{1} \geqslant 0
$$

A lower bound on c_{1} can be obtained from the following:
consider three points $\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}$, and $\boldsymbol{\alpha}_{m}$, where $\boldsymbol{\alpha}_{m}=\frac{1}{2}\left(\boldsymbol{\alpha}_{i}+\alpha_{j}\right)$ along the search direction \underline{d};
let the function value at the three points be $\emptyset_{i}, \varnothing_{j}$ and \emptyset_{m}; the coefficient c for this case is :

$$
c_{1}=\left(\emptyset_{i}-2 \emptyset_{m}+\emptyset_{j}\right) /\left(\frac{1}{2}\right)\left(\alpha_{i}+\alpha_{j}\right)^{2}
$$

When using limited precision arithmetic, \emptyset can not be represented exactly; hence

$$
\left(1-\eta_{\phi}\right) \varnothing_{m} \leq \emptyset_{m} \leq\left(1+\theta_{\phi}\right) \theta_{m}
$$

where $\boldsymbol{\eta}_{\phi}$ is the error bound on \emptyset.
The smallest meaningful absolute value c_{1} can have occurs when \emptyset_{m} is given by:

$$
\emptyset_{m}=\left(1 \pm \eta_{\phi}\right)\left(\frac{1}{2}\right)\left(\emptyset_{i}+\emptyset_{j}\right)
$$

Substituting equations 3.9.16 into 3.9.14 gives c_{t}, a test value for C_{1} :

$$
c_{t}= \pm 2 \eta_{\phi}\left(\emptyset_{i}+\emptyset_{j}\right) /\left(\alpha_{i}+\alpha_{j}\right)^{2}
$$

The positive value from equation 3.9.17 is used in step iv to test if a maximum would be predicted and in step vi. For step iv, $\alpha_{i}=\alpha_{i}$ and $\alpha_{j}=\alpha_{2}$.
For step vi, $\alpha_{i}=\alpha_{1}$ and $\alpha_{j}=\alpha_{3}$.
In step vii, the point to be discarded is chosen in the following manner:
i. if the latest or the previous best point is an end point of the four points, then discard the other end point and go to iv;
ii. if the four points do not definitely bound the minimum, then discard the end point in the interval furthest from the minimum and go to iv ;
iii. if the four points do bound the minimum, then discard the end point which bounds the minimum and go to iv;
iv. return to the search algorithm;

A FORTRAN IV program listing of the above search algorithm used in this study with the UOAs and SUMT is given in the appendices.
3.10 One-dimensional search for the boundary of the feasible
region.
The one-dimensional search algorithm to find the boundary of the feasible region was used in this study in conjunction with MFD. The algorithm (programmed with the name FSMOVE) finds a sequence of points within the upper bound move to the boundary defined by the linear constraints. A quadratic polynomial is fitted to each of the non-linear constraints and the smallest positive root is determined. One of the previous points is discarded and another set of polynomials is fitted to the remaining points and the new point. This process is continued until it converges to the boundary to within the prescribed accuracy. The algorithm can be stated as:
i. set $\alpha_{1}=0, \underline{t}_{1}=\bar{t}, f_{i 1}=f_{i}\left(t_{1}\right), i=1, \ldots, R$ where R is the number of non-linear constraints; determine the resolution (see section 9 of this chapter); determine the largest negative move (amin) and the largest positive move (amax) along \underline{d} to reach the linear constraints; form the negative of the directional derivatives of each of the constraint functions: $d y_{i}=-\left(\underline{\nabla f}_{i}(\underline{\bar{t}})\right)^{\prime} \underline{d}, i=1, \ldots, R ;$
ii. form α_{2}, the move along d to the second point, from 2

if $\alpha_{2}>\operatorname{amax}$, then $\operatorname{set} \alpha_{2}=\operatorname{amax} ;$
evaluate $f_{i 2}=f_{i}(\underline{t})$ at $\underline{t}_{2}=\underline{\bar{t}}+\alpha_{2} d$;
if any of the non-linear constraints have been violated, then set amax $=\alpha_{2}$ and continue:
iii. form α_{3}, the move along \underline{d} to the third point, which is an estimate of the move to the nearest non-linear constraint and is found from the solutions of $f(t)=\boldsymbol{\varepsilon} / 2$ and of a quadratic polynomial fitted to the values ${ }_{i j}, \alpha_{1,} f_{i 2}, \alpha_{2}$,

evaluate $f_{i 3}=f_{i}{\underset{3}{(t)})}^{f} \underline{t}_{3}=\underline{E}+\alpha_{3} \underline{d}$;
if any of the non-linear constraints are violated, then set amax $=\boldsymbol{\alpha}$ and continue ;

3 and
iv. reset amax and/or amin if the boundary is bounded either above and/or below providing the interval of uncertainty will be reduced ;
v. form α_{4}, the move along \underline{d} to the fourth point, in a similar manner as in step iii, except that polynomials are fitted to each of the constraint functions using the values

if any of the non-linear constraints are violated, then set
$\operatorname{amax}=\alpha$ and continue ;
vi. if the interval in which the boundary lies is less than the resolution, then terminate at the point in the feasible region; if the maximum number of quadratic fits has been exceeded, then terminate at the feasible point nearest the boundary;
vii. discard one of the points and go to iv;

The quadratic polynomials are of the form 3.9.1, and the coefficients are determined from the formulae 3.9.7, 3.9.8 or 3.9.10 and 3.9.11. To reduce the amount of computer storage and effort required, advantage was taken of the form of the non-linear constraints for the structural problem 1.2:

$$
\sigma_{\min q s} \leq \sigma_{q s} \leq \sigma_{\max q s}, q=1, \ldots, L, s=1, \ldots, M \quad \text {...3.10.1. }
$$

Thus polynomials were only fitted to each of the $\boldsymbol{\sigma}$ qs instead of to each of the $f(t)$. The polynomials are of the form:

$$
\sigma_{q s}=c \alpha_{1}^{2}+\underset{2}{c \alpha}+c_{3}
$$

An estimate of the move to boundary is given by the solution of equation 3.10 .2 with the following equations:

$$
\sigma_{\mathrm{qs}}=\left(\sigma_{\min q s}+\frac{\varepsilon}{2}\right) \text { or }=\left(\sigma_{\max q s}-\frac{\xi}{2}\right)
$$

where ε is given in equation 3.3.3. The four possible solutions of equations 3.10.2 and 3.10.3 are given by:

$$
\alpha^{*}=\left(-c_{2} \pm \sqrt{c_{2}^{2}-4 c_{1}\left(c_{3}-\sigma_{\max q s}+\frac{1}{2} \varepsilon\right)}\right) / 2 c_{1},
$$

or
$\alpha^{*}=\left(-c_{2} \pm \sqrt{c_{2}^{2}-4 c_{1}\left(c_{3}-\sigma_{\min q S}-\frac{1}{2} \varepsilon\right)} \quad\right) / 2 c_{1}$, ...3.10.5

In step vii, the point to be discarded is chosen in the following manner:
i. order the points such that $\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4}$;
ii. if the boundary lies between
a. α_{1} and α_{2}, discard α_{4}, unless it is the newest point , in which case discard α_{3};
b. α_{2} and α_{3}, discard α_{1}, unless it is the newest point, in which case discard α_{4};
c. α_{3} and α_{4}, discard α_{1}, unless it is the newest point,
in which case discard α_{2}.

A FORTRAN IV program listing of the above one-dimensional search algorithm used with MFD in this study is given in the appendices.

3.11 Primal-Dual LP algorithm.

The Primal-Dual LP algorithm, programmed with the name PRMDUL and used in this study with MAP and MFD, finds the optimum of the problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \underline{c}^{\prime} \underline{x} \\
\text { subject to } \underline{A} \underline{x} \leq \underline{b}, \underline{0} \leq \underline{x} .
\end{array}
$$

where the values in $\underline{\mathcal{c}}, \underline{A}$ and in \underline{b} may be either positive or negative.

The inequalities in 3.11 .1 may be converted to equations by the addition of the variables, \underline{s} : called slack variables,

$$
\begin{align*}
& \operatorname{minimize} \underline{c}^{\prime} \underline{x}+\underline{d}^{\prime} \underline{s} \\
& \text { subject to } \underline{A} \underline{x}+\underline{I} \underline{s}=\underline{b}, \underline{0} \leq \underline{x}, \underline{0} \leq \underline{s} .
\end{align*}
$$

A basic solution may be obtained by setting $\underline{x}=0$ thus

$$
\underline{x}=0, \underline{s}=\underline{b}
$$

where the variables in \underline{s} are called the basic variables, and in \underline{x} are called the non-basic variables.

The LP algorithm moves from the solution 3.11.3 to the optimum feasible solution by performing elementary row operations on the coefficients of $\underline{c}, \underline{d}, \underline{A}, \underline{I}$ and \underline{b}. An optimal solution is found when all the components of the vector \underline{c}^{\prime} are greater than or equal to zero. The vector c^{\prime} gives the change in the objective function for a unit increase in any of the non-basic variables. A feasible solution is found when all the components of the vector \underline{b} are greater than or equal to zero. The algorithm PRMDUL determines an optimal solution then searches for a feasible optimal solution in the following steps:
i. determine a basic (feasible or infeasible) solution ;
ii. operate on problem 3.11.2 unti1 an optimal (feasible or infeasible) solution is obtained, using the Primal simplex algorithm ;
iii. operate on the optimal solution until a feasible solution is obtained, using the Dual simplex algorithm.

The Primal and Dual LP algorithms operate on the coefficients by selecting the pivot element to give the largest increase in optimality or the largest decrease in infeasibility respectively. The Primal and the Dual algorithms are well documented 11,25 and will not be detailed further.

To save computer storage space, a condensed tableau which does not store the matrix I but stores the variables associated with the columns of the matrix $\quad \underline{\text { was }}$ wsed in PRMDUL.

A FORTRAN IV program listing of the algorithm is given in the appendices.

CHAPTER 4

EVALUATION OF FUNCTIONS AND DERIVATIVES

4.1 Functions and their derivatives.

The algorithms described in chapter 3 require some or all of the following quantities:

$$
\begin{align*}
& F(t)=f_{i}(\underline{t})=\emptyset(\underline{t}, l) \\
& \underline{\nabla F}(\underline{t})=\underline{f}_{i}(t)=\nabla \emptyset(\underline{t}, e)
\end{align*}
$$

and

$$
\nabla^{2} F(t)=\nabla_{i}^{2} f(t), \nabla^{2} \emptyset(t, e)
$$

The derivatives in equations 4.1 .2 and 4.1 .3 may be obtained either explicitly by differentiation or by a finite difference technique. Thus, for problem 1.3 ,

$$
F(\underline{t})=\underline{w}^{\prime} \underline{t}
$$

hence, by differentiation,

$$
\underline{\nabla F}(\underline{t})=\underline{w} \text {, and } \underline{\nabla} F(\underline{t})=\underline{0}
$$

Similarly,

$$
\begin{aligned}
f_{i}(t)= & \left(\sigma_{\max q s}-\sigma_{q s}\right),\left(\sigma_{q s}-\sigma_{\min q s}\right),\left(t_{\max j}^{\left.-t_{j}\right)} \operatorname{or}\right. \\
& \left(t_{j}-t_{\min j}\right)
\end{aligned}
$$

hence

$$
\nabla f_{i}(t)= \pm \underline{\nabla} \sigma_{q s}, \text { or } \pm e_{j} \text {, respectively }
$$

where e_{j} is the j th coordinate direction vector,
and

$$
\underline{\nabla}_{i}^{2} f_{i}(\underline{t})= \pm \underline{\nabla}_{q s}^{2}, \text { or } \underline{0} \text {, respectively, }
$$

For the function :
$\theta(t, e)=F(\underline{t})+e\left(\sum_{i=1}^{r}(1 / f(t))\right)$
differentiation yields :
$\nabla \emptyset(t, \rho)=\nabla F(t)+\rho\left(\sum_{i=1}^{r}\left(-1 / f_{i}(t)^{2}\right)\left(\nabla_{i}(t)\right)\right) \ldots 4.1 .10$,
and

$$
\begin{array}{r}
\underline{\nabla}^{2} \emptyset(\underline{t}, \rho)=\nabla^{2} F(\underline{t})+\rho\left\{\sum _ { i = 1 } ^ { r } \left(\left(+\left(2 / f f_{i}(t)^{3}\right) \nabla f_{i}(t), \nabla f_{i}(t)\right)^{\prime}\right.\right. \\
\left.-\left(1 / f_{i}(t)^{2}\right) \nabla_{i} f_{i}(\underline{t})\right)
\end{array}
$$

The functions and derivatives in equations 4.1.9, 4.1.10 and 4.1.11 can be obtained from equations 4.1.4 to 4.1.8. Equations 4.1.6 to 4.1.8 require, in particular, the evaluation of

$$
\underline{\sigma}, \underline{\nabla} \sigma \text { and } \underline{\nabla}^{2} \underline{\sigma}
$$

for which the algorithms are described in section 2 of this chapter.

An alternative procedure for obtaining derivatives is to use a finite difference derivative scheme. In a forward FD scheme, the ith component of ∇y is given by:

$$
\delta_{y} / \delta x_{i}=\left(y\left(\underline{\bar{x}}+\underline{\delta x}_{i}\right)-y(\underline{x})\right) / \delta x_{i}
$$

where
$y(\underline{\bar{x}})$ is the value of $y(\underline{\underline{x}})$ at $\underline{\bar{x}}$,
$\underline{\delta x}_{i}$ is the vector $(0,0, \ldots, 0, \delta x, 0, \ldots, 0)^{1}$, and
$\boldsymbol{\delta} \mathrm{i}_{\mathrm{i}}$ is ansmall change in the ith variable $: \mathrm{x}_{\mathrm{i}}$.
Similarly,

$$
\begin{equation*}
\delta^{2} y / \delta x_{i} \delta x_{j}=\frac{\left(y\left(\frac{\bar{x}}{}+\frac{\delta \underline{x}_{i}}{i}+\frac{\delta x_{j}}{j}\right)-y\left(\underline{\bar{x}}+\frac{\delta x_{i}}{i}\right)-y\left(\underline{\bar{x}}+\underline{\delta x}_{j}\right)+y(\underline{\bar{x}})\right.}{(\delta x)\left(\delta x_{j}\right)} \tag{1.14}
\end{equation*}
$$

Hence finite derivatives can be found for the functions $F(\underline{t}), f(t)$ and $\emptyset(\underline{t}, \varphi)$ using equations similar to equations 4.1.13 and 4.1.14.

4.2 Stresses and their derivatives.

The evaluation of derivatives as described in section 1 of this chapter requires some or all of the following quantities :
σ, $\underline{\sigma}^{-}$and $\underline{\nabla} \sigma$
where
$\boldsymbol{\sigma}$ is the $M \times L$ matrix of member stresses,
$\underline{\sigma} \boldsymbol{\sigma}$ is the matrix of the first partial derivatives of $\underline{\sigma}$ with respect to the design variables t, and 2
$\underline{\nabla} \boldsymbol{\sigma}$ is the matrix of the second partial derivatives of $\underline{\sigma}$ with respect to the design variables.

The member stresses, $\underline{\boldsymbol{\sigma}}$, for the truss problems, are taken as the axial stress in each member and for the plate problems, as the effective stress in each constant stress finite element. The effective stress for the plate problems is defined as:

$$
\sigma_{4}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{12}+3 \sigma_{3}^{2}}
$$

where
$\sigma_{4}=$ the effective stress,
$\sigma_{1}=$ the direct stress in the first coordinate direction,
$\sigma_{2}=$ the direct stress in the second coordinate direction, and
$\sigma=$ the shear stress for the first and second coordinate 3
direction.
In this study, the stiffness matrix method was used to find the quantities in 4.2.1.

The matrix $\underline{\sigma}$ is obtained by solving the matrix equation :

$$
\underline{p}=\underline{K} \underline{u}
$$

for \underline{u} and then operating on \underline{u}, thus :

$$
\underline{\sigma}=\underline{s} \underline{u}
$$

where
P is an $N \times L$ matrix of N applied nodal loads for L load cases ,
\underline{u} is an $N \times L$ matrix of associated deformations,
\underline{K} is the stiffness matrix , and
\underline{S} is the stress-deformation transformation matrix .
The matrix, $\bar{\nabla} \sigma$, is obtained by differentiating equations 4.2.3 and 4.2 .4 with respect to the i th design variable, t_{i}, to give :

$$
\begin{align*}
& {\left[\partial \underline{P} / \partial t_{i}\right]=\left[\left[\partial \underline{k} / \partial t_{i}\right] \underline{u}+\underline{k}\left[\partial \underline{u} / \partial t_{i}\right]\right]} \\
& {\left[\partial \underline{\sigma} / \partial t_{i}\right]=\left[\left[\partial \underline{S} / \partial t_{i}\right] \underline{u}+\underline{s}\left[\partial \underline{u} / \partial t_{i}\right]\right\}}
\end{align*}
$$

where [.] denotes a matrix.
Rearranging equations 4.2 .5 and 4.2 .6 gives:

$$
\begin{align*}
& {\left[\left[\partial \underline{p} / \partial t_{i}\right]-\left[\partial \underline{K} / \partial t_{i}\right] \underline{u}\right]=\underline{k}\left[\partial \underline{u} / \partial t_{i}\right]} \\
& {\left[\left[\partial \underline{\sigma} / \partial t_{i}\right]-\left[\partial \underline{s} / \partial t_{i}\right] \underline{u}\right]=\underline{s}\left[\partial \underline{u} / \partial t_{i}\right]}
\end{align*}
$$

which are of the same form as equations 4.2.3 and 4.2.4. The matrix $\underline{\nabla}^{2} \sigma$ is obtained by differentiating equations 4.2.7 and 4.2.8 with respect to the j th design variable, t_{j}, to give:

$$
\begin{array}{r}
\left.\left[\partial^{2} \underline{P} / \partial t_{i} \partial t_{j}\right]-\left[\partial^{2} \underline{K} / \partial t_{i} \partial t_{j}\right] \underline{u}-\left[\partial \underline{K} / \partial t_{i}\right]\left[\partial \underline{u} / \partial t_{j}\right]\right]= \\
\\
{\left[\left[\partial \underline{K} / \partial t_{j}\right][\partial \underline{u} / \partial t]+\underline{k}\left[\partial_{i}^{2} \underline{u} / \partial t_{i} \partial t_{j}\right]\right]}
\end{array}
$$

$$
\begin{array}{r}
{\left[\left[\partial^{2} \underline{\sigma} / \partial t_{i} \partial t_{j}\right]_{-}^{2 n d}-\left[\underline{s}^{2} / \partial t_{i} \partial t_{j}\right] \underline{u}-\left[\partial \underline{s} / \partial t_{i}\right]\left[\partial \underline{u} / \partial t_{j}\right]\right]=} \\
{\left[\left[\partial \underline{s} / \partial t_{j}\right]\left[\partial \underline{u} / \partial t_{i}\right]+\underline{s}\left[\partial^{2} \underline{u}_{i} / \partial t_{i} \partial t_{j}\right]\right]}
\end{array}
$$

Rearranging equations 4.2 .9 and 4.2.10 gives:

$$
\begin{align*}
& \left.\left[\left[\partial^{2} P / \partial t_{i} \partial t_{j}\right]-\left[\partial^{2} K / \partial t \partial t\right]_{j} \underline{u}-\left[\partial K / \partial t_{i}\right] \partial u / \partial t\right]_{j}\right]-\left[\partial K / \partial t{ }_{j}[\partial u / \partial t]\right]= \\
& \underline{K}\left[\begin{array}{l}
\partial \underline{u} / \partial t \\
i
\end{array} t_{j}\right]
\end{align*}
$$

and

which are of the same form as equations 4.2.3 and 4.2.4.
Equations 4.2.3 and 4.2.4 are solved using the stiffness method. This method can also be used to solve the equations 4.2.7 and 4.2.8 and equations 4.2.11 and 4.2.12, providing the left hand sides of the equations can be formed. Thus the following derivatives are required:
to solve equations 4.2.7 and 4.2.8:

VP, VK and VS

and to solve 4.2.11 and 4.2.12:

$$
\begin{align*}
& 222 \\
& \underline{\nabla} \underline{P}, \underline{\mathbb{K}} \text { and } \underline{\mathbb{V}} \underline{\underline{S}}
\end{align*}
$$

VP is the change in applied forces caused by a change in the design variables. \bar{P} and \bar{V} are null matrices for the structures and the loading under consideration. In the stiffness method, the stiffness matrix, \underline{K}, for the assembled structure, can be obtained from the element stiffness matrices, ${\underset{k}{j}}^{j}$; for the unassembled structure by using the equation:

$$
\underline{K}=\sum_{j=1}^{M} \underline{A}_{j}^{\prime} \underline{k} \underline{A} \underline{j}_{j}
$$

Where
A_{j} is a displacement transformation matrix which is constant
for the structure ;
hence ∇K and $\underline{\nabla}^{2} \underline{K}$ can be considered from an elemental level.
The stiffness matrix for element j for the truss problems is given by ${ }^{26}$:

$$
\underline{k}_{j}=\left(\begin{array}{lll}
t_{j} & E & \vdots \\
\hline 1 & & j \\
j & 1 & -1 \\
-1 & 1
\end{array}\right]
$$

where
t_{j} is the cross-sectional area of the j th member,
E_{j} is Young's modulus of elasticity for the fth member, and
${ }_{j}$ is the length of the j th member.
Hence, differentiating equation 4.2 .16 with respect to the eth design variable gives:

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ll}
\frac{\partial \underline{k}_{j}}{j} & \partial t
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { for } i \neq j} \\
{\left[\frac{\partial \underline{k}_{j}}{} / \partial t\right.} \\
j
\end{array}\right]=\left[\begin{array}{ll}
E_{j} \\
\frac{j}{i}
\end{array}\right] \begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], i=j \quad .
$$

Therefore

$$
\underline{\nabla}^{2} \underline{k}=\underline{0}
$$

The plane stress plate problems can be analyzed using triangular constant stress finite elements. In this study the design variables
were taken as the nodal thicknesses of each element. The stiffness matrix for element s, k, can be shown to be ${ }^{26}$:

$$
\frac{k_{s}}{s}=\frac{E_{j}\left(t_{s 1}+t_{s 2}+t_{s 3}\right)}{3 A_{123}}
$$

where
$t_{s 1}, t_{s 2}, t_{i s 3}$ are the three nodal thicknesses for member s,
A is the area of the triangular element s, and 123

C \quad is a symmetric matrix of constant coefficients formed from the nodal coordinates and Poisson's ratio.

Differentiating equation 4.2.20 with respect to the ith nodal design variable gives:

The matrix \underline{S} transforms nodal displacements into member stresses. For the trusses, the stress transformation matrix for member \mathbf{j} is given by:

$$
\underline{S}_{j}=\left(\begin{array}{c}
E \\
\frac{j}{1} \\
j
\end{array}\right)\left[\begin{array}{ll}
-1 & 1
\end{array}\right]
$$

hence

$$
\left.\left[\frac{\partial S}{j} / \partial t\right]_{i}\right]=\underline{0} \text {, for all } i \text { and } j
$$

Thus,

$$
\underline{\nabla S}=\underline{0} \text { and } \underline{\nabla}^{2} \underline{S}=\underline{0}
$$

Similarly, for the plane stress plates,

$$
\underline{S}_{j}=\left(\frac{1}{2 A}\right) \underline{D}
$$

where
D is a matrix with terms which are functions of the nodal coordinates.

Thus

$$
\underline{\nabla S}=\underline{0} \text { and } \underline{\nabla}^{2} \underline{S}=\underline{0}
$$

Thus for the two types of structure considered, equations 4.2.7 and 4.2 .8 simplify to
$-[\partial \underline{K} / \partial t]_{i} \underline{u}=\underline{k}\{\partial \underline{u} / \partial t\}$
$+[\partial \sigma / \partial t]_{i}=\underline{s}[\partial \underline{u} / \partial t]$
Equations 4.2 .11 and 4.2 .12 simplify to
$-\left[\left[\partial K / \partial t_{i}\right\}\left[\partial u / \partial t{ }_{j}\right]+\left[\partial k / \partial t_{j}\right\}[\partial u / \partial t\}_{i}\right]=\underline{K}\left[\partial^{2} \underline{u} / \partial t_{i} \partial t{ }_{j}\right]$...4.2.31
and
$+\left[\begin{array}{lcc}\partial^{2} \underline{\sigma} / \partial t & \partial t \\ i \quad j\end{array}\right]=\underline{s}\left[\partial^{2} \underline{u} / \partial t \partial t{ }_{i}\right]$
The solution of equations 4.2.3, 4.2.4, 4.2.29, 4.2.30, 4.2.31 2 and 4.2.32 gives $\underline{\sigma}_{,} \underline{\nabla} \sigma$ and $\underline{\nabla} \sigma$ directly for the truss problems, but only gives $\frac{\sigma}{1}, \frac{\sigma}{2}, \frac{\sigma}{3}$ and their derivatives for the plate problems. The derivatives of the effective stress, $\frac{\sigma}{4}$, can be obtained by differentiating equation 4.2.2. Thus, since

$$
\sigma_{4}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{12} \sigma_{3}+3 \sigma_{3}^{2}}=\sqrt{\sigma_{4}^{2}}
$$

then

$$
\binom{\partial \sigma_{i}}{\partial t_{i}}=(\begin{array}{c}
\left.\frac{1}{2}\left(\sigma^{2}\right)^{-\frac{1}{2}}\right)
\end{array} \underbrace{\partial\left(\sigma^{2}\right)}_{i} \begin{array}{c}
\frac{\partial}{\partial t}
\end{array})
$$

hence

$$
\binom{\partial \sigma}{\frac{4}{\partial t}}=\left(\frac{1}{2 \sigma}\right)\left\{\underset{i}{2 \sigma_{1}}\binom{\partial \sigma}{\frac{1}{\partial t}}+2 \sigma_{i}\binom{\partial \sigma}{\frac{\partial t}{\partial t}}-\sigma_{1}\binom{\partial \sigma}{\frac{\partial t}{\partial t}}-\sigma_{2}\binom{\partial \sigma}{\frac{\partial t}{\partial t}}+6 \delta\binom{\partial \sigma}{\frac{3}{\partial t}}\right\}
$$

Differentiating equation 4.2 .34 with respect to the j design variable gives :
where

$$
\begin{align*}
& \left.\sigma_{2}\left(\frac{\partial^{2} \sigma_{i}}{\partial t_{i} \partial t_{j}}\right)+6 \sigma_{3}\left(\frac{\partial^{2} \sigma^{3}}{\partial t_{i t}}{ }_{j}\right)\right\}
\end{align*}
$$

Equations 4.2.36 and 4.2.38 can be simplified to give:

Equations 4.2.35 and 4.2.39 enable $\underline{\nabla} \sigma$ and $\mathbb{\nabla} \sigma$ to be evaluated for the plate problems.

The; solutions of the stiffness equations, 4.2.3 and 4.2.4, and the derivative equations, 4.2.29 to 4.2.32, are given in the following section of this chapter.
4.3 Solution of the stiffness and derivative equations.

The solution of the stiffness equations, 4.2.3 and 4.2.4, is given by the following algorithm :
i. assemble the basic data for the idealized structure:4.3.1 position of nodes, location "of members, boundary conditions, material properties and the applied loading ;
ii. determine the band width of the structure stiffness matrix, \underline{K}, and the compact storage index matrices ;
iii. calculate the element stiffness constant, streas transformation and weight transformation matrices ;
iv. insert the boundary conditions into the element stiffness constant matrix so that the rigid body degrees of freedom are removed. (This was done by replacing diagonal terms of affected rows and columns with ones and the other terms of affected rows and columns with zeros);
v. determine the design variable values (input data or output data from the optimization algorithms) ; form the element stiffness and structure stiffness matrices ;
vi. decompose the structure stiffness matrix, thus: $\underline{K}=\underline{U}^{\mathbf{U}} \underline{U}$, where \underline{U} is an upper triangular banded matrix, using the following formulae :

$$
\begin{aligned}
& u_{i i}=/\left(k_{i j}-\sum_{r=1}^{i-1}\left(u_{r i} u_{r i}\right)\right) \ldots 4.3 .2, \\
& u_{i j}=\left(K_{i j}-\sum_{r=1}^{i-1}\left(u_{r i} u_{r j}\right)\right)\left(1 / u_{i i}\right), j>i \quad \ldots 4.3 .3 .
\end{aligned}
$$

vii. solve $\underline{P}=\underline{U} \underline{U} \underline{U}$, using a dummy solution, q, thus: $\underline{P}=\underline{U} \underline{q}$, then $q=\underline{U} \underline{u}$, giving \underline{u}, using the following formulae:

$$
\begin{align*}
& q_{i}=\left(p_{i}-\sum_{r=1}^{i-1}\left(u_{r i} q_{r}\right)\right)\left(1 / u_{i i}\right) \\
& u_{i}=\left(q_{i}-\sum_{r=i+1}^{A}\left(u_{i r} u_{r}\right)\right)\left(1 / u_{i i}\right)
\end{align*}
$$

where
A is the order of the stiffness matrix.
viii. solve $\underline{\sigma}=\underline{s} \underline{u}$, giving $\underline{\sigma}$;
ix. for plate problems, determine $\underline{\sigma}_{4}$ from $\underline{\sigma}_{1}, \underline{\sigma}_{2}$ and $\frac{\sigma}{3}$ using equation 4.2 .2 ;

The solution of the first derivative equations 4.2.29 and 4.2.30 is given by the following algorithm, assuming that steps i to $i x$ have been performed already:
for $i=1, \ldots, P$,
x. form $[\Delta \mathrm{k} / \partial \mathrm{t}] \underline{\mathrm{i}}$;
xi. perform step vii, but with $[\partial K / \partial t] \underline{u}$ replacing \underline{P}, yielding $[\partial u / \partial t]$;
xii. perform step viii, but with[$\left.[u / \partial t]_{i}\right\}$ replacing \underline{u}, yielding $[\partial \sigma / \Delta t]_{i}$;
xiii. for plate problems, determine $\frac{\nabla \sigma}{4}$ from $\frac{\nabla \sigma}{1}, \frac{\nabla \sigma}{2}$ and $\frac{\nabla \sigma}{3}$ using equation 4.2.35;

Steps iii to xii will be repeated for each full partial derivative evaluation. For step $\mathrm{x}, \underline{\mathrm{VK}}$ has already been formed in step iii.

The solution of the second derivative equations 4.2.31 and 4.2.32 is given by the following algorithm, assuming that steps i to xiii have been performed:
for $\mathbf{i}=1, \ldots, P ; j=\mathbf{i}, \ldots, P ;$...4.3.7, xiv. form $\left\{\left[\frac{\partial K}{} / \partial t\right]_{i}\left[\frac{\partial u / \partial t}{j}\right]_{j}+[\partial K / \partial t][\partial u / \partial t]\right\}$ as in equation 4.2.31; $x v$. perform step vii, but with the above expression replacing \underline{P}; xvi. perform step viii, but with $\left.\left\{\partial^{2} \frac{u}{2} \partial t \quad \partial t\right]_{j}\right\}$ replacing \underline{u}; xvii. for plate pröblems, determine $\mathbb{\nabla} \frac{\sigma}{4}$ using equation 4.2.39;

FORTRAN IV program listings of the algorithms used in this study are given in the appendices.

CHAPTER 5

COMPUTATIONAL EFFORT

5.1 Introduction.

Computational efficiency is an important consideration in the comparison of the NLP methods introduced in chapter 1. When using electronic computers, computational efficiency can be measured by the computational effort and the computer storage space required to solve the problem. The storage space required is becoming less important as computers increase in size. However, inefficient data storage and access may increase considerably the computational effort. Recommendations ${ }^{27}$ regarding the storage and access of data for the computers used in this study were implemented wherever practical.

The computational effort expended is a function of the efficiency of the computer program for the algorithm. As will be shown later in this chapter and will be seen in the results in chapter 7, the major computational effort is used in the evaluation of functions and their derivatives and since the routines used for these evaluations are common to all the algorithms, any inefficiencies in their programming will affect all the algorithms similarly.

A multiplication with present day computers takes more computer time than an addition or subtraction, and since divisions
are relatively few in number, computational effort is often measured by counting the number of multiplications required to perform the operation under consideration. Such an analysis omits the computational effort involved in forming DO loops, array subscript arithmetic, and logical statements, and since multiplications may compose only a small proportion of the computational effort expended, a more realistic measure of computational effort is the amount of computer time required to solve the problem. In this study, Central Processor Unit (CPU) time was used as the measure of computational effort. Included in the CPU time are the times needed to load registers, to execute the instructions, and to store the results. Estimates for CPU time for the IBM 360/67 are developed in the succeeding sections of this chapter using the following procedure :
i. describe the algorithm : see preceding chapters ;5.1.1
ii. program the algorithm in FQRTRAN : see appendices ;
iii. translate the FORTRAN program into an ASSEMBLER program ;
iv. assign to each of the ASSEMBLER instructions a published average instruction time ${ }^{28}$ for the computer used ;
v. sum the times.

It should be noted that step iv was only performed on the instructions which constituted the major computational effort. It should also be noted the times resulting from the application of procedure 5.1.1 are dependent on the programming of the FORTRAN, on the FORTRAN/ASSEMBLER translator (compiler) and on the computer
and hence can only be, at best, approximations to the actual effort required.

In an optimisation, the computational effort expended consists of three components :

1. the effort used by the optimisation algorithm ;
2. the effort used to evaluate functions ;
3. the effort used to evaluate derivatives.

Estimates of these three components are considered in the following sections of this chapter.

5.2 Effort used by the optimisation algorithms.

By inspection of the algorithms presented in chapter 3, it can be seen that a large proportion of the computational effort will be expended in performing the following steps in the algorithms:

MAP - step v. solve the LP problem,
MFD - step v. solve the LP problem to give the search direction, and

SUMT - step iii. minimize $\emptyset(\underline{t}, \ell)$ using the UOAs, where a large proportion of the effort is used in determining the search direction.

In the LP problems, the major computational effort in each LP iteration, is used in finding a pivot element and in transforming the LP tableau. Procedure 5.1.1 was applied to the primal-dual algorithm described in the previous chapter and gave the
computational effort to select one pivot and then transform the LP tableau as

$$
\begin{align*}
& \mathrm{T}_{5.2 .1}=39.3 r c+144.1 r+101.5 c+91.9 \\
& \text { where }
\end{align*}
$$

T is the CPU time estimate in microseconds on the IBM 360/67,
r is the number of rows in the matrix A of the LP problem (3.2.1), and
c is the number of columns in the matrix \underline{A} of the LP problem. Zoutendijk ${ }^{11}$ estimates that the number of iterations required by a primal simplex LP algorithm to produce an optimal solution is between 1 and 2.5 times the number of rows in the primal problem. Similarly the number of iterations required by a dual simplex LP algorithm to produce an optimal solution is between 1 and 2.5 times the number of columns in the primal problem. Observations of preliminary trials on the structural problems indicate that a value of 1.5 times the number of columns giver approximately the number of iterations required by the LP algorithm used. Thus an estimate of the computational effort to find the solution of the LP problems is approximately given by :

$$
T_{5.2 .2}=58.95 c r+152.3 c+216.2 r c+137.9 c \quad \ldots 5.2 .2
$$

For the class of problems considered, when using MAP,

$$
r=P+2 L M, c=P
$$

and thus r is approximately given by :

$$
r=6 P
$$

hence the computational effort to find the solution of the LP problems associated with MAP is given by :

$$
T_{5.2 .5}=353.7 P^{3}+1450 P^{2}+137.9 P \quad \ldots 5.2 .5
$$

When using MFD for the problems considered, the number of rows is given by:

$$
r=P+v 2 L M
$$

where v is the proportion of non-linear constraints considered as active at the current point.

The value of v has been found to give r approximately as :

$$
r=1.5 \mathrm{P}
$$

hence the computational effort to find the search direction by solving the LP problems is given by :

$$
T_{5.2 .8}=88.43 P+476.6 P^{2}+137.9 \mathrm{P}
$$

When using MFD, extra computational effort is used to locate the boundary of the feasible design space. Applying procedure 5.1.1 to the search algorithm (FSMOVE) gives the computational effort necessary to locate one point by using a quadratic fit and associated 'housekeeping' operations as :

$$
T=339.0 \mathrm{R},
$$

where R is the number of non-linear constraints used.
Assume that $R=2 P$, then

$$
T_{5.2 .10}=678.0 \mathrm{P}
$$

Typically, only three points are required to locate the boundary, hence

$$
\mathrm{T}_{5.2 .11}=2034 \mathrm{P}
$$

Thus, with MFD, the effort to generate and search along a direction, excluding any function or derivative evaluations, is given approximately by combining equations 5.2 .8 with 5.2 .11 to give:

$$
T_{5.2 .12}=88.4 P+476.5 P^{2}+2172 P
$$

When comparing equations 5.2 .8 with 5.2 .12 , it can be seen that the extra effort to search is not as significant as the effort required to generate the direction.

When Newton's method is used with SUMT to minimize $\emptyset(\underline{t}, \underline{p})$, the major computational effort is used in solving equations 3.5.7, which are both linear and symmetric. The procedure 5.1 .1 when applied to the equation-solving algorithm (GELS) gave the computational effort to solve equation 3.5 .7 as :
$T_{5.2 .13}=10.68 P^{3}+112.9 P^{2}+102.2 P \quad \ldots 5.2 .13$
When Fletcher-Powell's method is used with SUMT, the major computational effort is in steps iii and v as described in chapter 3 section 6. The procedure 5.1.1 was applied to those steps in the algorithm (FLEP). The computational effort used to perform steps iii and v is given by:
$T=129.6 P^{2}+99.20 p+12.61 \quad$...5.2.14. 5.2 .14

When Stewart's method is used with SUMT, the computational effort required to perform steps iii and v, as described in chapter 3
section 7 is given as :
$T_{5.2}=129.6 P^{2}+400.6 p+40.80 \quad$...5.2.15. 5.2 .15

When Powell's method is used with SUMT, the computational effort to generate a new search direction and to perform the matrix manipulation prior to each one-dimensional search is given by the following :

$$
T_{5.2 .16}=16.21 P+56.78 \quad \ldots .5 .2 .16
$$

When using a one-dimensional search to find the minimum along a search direction in conjunction with an UOA and SUMT, the computational effort necessary to perform one quadratic fit and associated 'housekeeping' operations, but to exclude any function or derivative evaluations was estimated by procedure 5.1.1 to be:

$$
T_{5.2 .17}=23.59 \mathrm{P}+412.2 \quad \ldots 5.2 .17
$$

A lower bound on the number of new points along the search direction is 3 , although typically between 4 and 9 points along the diraction are required to locate the minimum. Thus, assuming that on average, $6 \frac{1}{2}$ points are required to locate a minimum and that T is 5.2 .17 approximately equal to the computational effort required to locate any of the points along the search direction, then the computational effort used during a one-dimensional search is given by :

$$
\mathrm{T}_{5.2 .18}=153.3 \mathrm{P}+2679
$$

...5.2.18.

Combining equations 5.2.18 with 5.2.13 to 5.2 .16 gives the computational effort to generate and search along a direction; but
excludes the effort for any function or derivative evaluations, for Newton's method as :

for Fletcher-Powell's method as :

for Stewart's method as ${ }_{2}$:

$$
T_{5.2 .21}=129.6 P+553.9 P+2720 \ldots \ldots 5.2 .21
$$

and for Powell's method as :

$$
T_{5.2 .22}=169.5 P+2736
$$

Comparing equations 5.2 .13 to 5.2 .16 with 5.2 .19 to 5.2 .22 , it can be seen that, with the exception of Powell's method, the computational effort to perform a search is not very significant compared with the effort to generate the direction.

5.3 Effort used in evaluating functions.

The function evaluations required by the optimisation algorithms are the determination of :

$$
F(\underline{t}), f_{i}(t) \text { and/or } \emptyset(t, p)
$$

in which the major computational effort is used in determining the stresses, $\underline{\sigma}$. The algorithm used to determine $\underline{\sigma}$ is given in section 3 of chapter 4. In the optimisation process, steps \mathbf{i} to iv of the algorithm will be performed only once, whereas steps v to viii
will be repeated many times. Therefore the computational effort used in steps i to iv will not be considered further.

All the major computational manipulation in steps v to viii can be formed from the following operations :

1. locate an element in a vector, using subscript arithmetic, and post it into another vector ;
2. add the product of an element in another matrix and an element in a vector to an element in a matrix ;
3. add the product of two elements in a matrix to a scalar ;
4. replace an element in a matrix by the difference of the element and a scalar ;
5. replace a diagonal element in a matrix by the reciprocal of its square root ;
6. replace an element of a matrix by its product with an element of a vector.

Applying procedure 5.1.1 gives the following results:

Table 5.3.2: Computational effort for basic operations

Operation	CPU time (microseconds)
1	19.24
2	19.31
3	17.96
4	23.22
5	115.28
6	15.53

Using the values in table 5.3.2, the computational effort to complete step v is given approximately by :

$$
T_{5.3 .3}=19.24(M)(C)+19.31(M)(E) \quad \ldots 5.3 .3
$$

where M is the number of members.
C is the number of design variables which affect the member stiffness matrix, and
E is the number of elements in the upper part of the member stiffness matrix.

Similarly, the computational effort to complete step vi is given approximately by :

$$
\begin{aligned}
T_{5.3 .4}= & 17.96(B)(B-1)(3 A-2 B+1) / 6+23.22(B-1)(2 A-B) / 2 \\
& +115.28 A+15.53(B-1)(2 A-B) / 2 \ldots .5 .3 .4,
\end{aligned}
$$

or

$$
\begin{aligned}
T_{5.3 .5}= & 17.96(B)(B-1)(3 A-2 B+1) / 6+38.75(B-1)(2 A-B) / 2 \\
& +115.28 A
\end{aligned}
$$

where A is the order of the system stiffness matrix, and B is the bandwidth of the system stiffness matrix The computational effort to complete step vii is given approximately by:

$$
T_{5.3 .6}=(2)((19.31(B-1)(2 A-B)(L) / 2)+(38.75(A)(L)))_{. .5 .3 .6}
$$

where L is the number of load cases.
The computational effort to complete step viii is given approximately by :

$$
T_{5.3 .7}=19.24(\mathrm{~L})(\mathrm{M})(\mathrm{D})+19.31(\mathrm{~L})(\mathrm{M})(\mathrm{D})(\mathrm{S}) \quad \ldots 5.3 .7
$$

where D is the number of nodal displacements associated with each member, and
S is the number of components of stress associated with each member.

Equations 5.3 .3 to 5.3 .7 can be simplified by substituting values for the variables from structural problems of the type given in chapter 6. Thus, for the truss problems, assume that

$$
\begin{align*}
& M=P, C=1, E=10, A=2 P+2, B=P+3, L=2, D=4, \text { and } \\
& S=1,
\end{align*}
$$

substituting equations 5.3 .8 into 5.3 .3 gives:

or

$$
T_{5.3 .11}=12.0 P^{3}+121.0 P^{2}+453.0 P+287.3 \ldots 5.3 .11
$$

into 5.3.6 gives :

$$
T_{5.3 .12}=(2)((19.31(P+2)(3 P+1) / 2)+(38.75(2 P+2)(2))){ }_{0.5 .3 .12}
$$

or

$$
T_{5.3 .13}=57.9 P^{2}+445.2 P+348.6
$$

into 5.3.7 gives :

$$
\begin{aligned}
& T_{5.3 .14}=19.24(2)(P)(4)+19.31(2)(P)(4)(1) \quad \ldots .5 .3 .14 \\
& \text { or }
\end{aligned}
$$

$$
\mathrm{T}_{5.3 .15}=308.4 \mathrm{P}
$$

Similarly, for the plate problems, assume that

$$
\begin{aligned}
& M=1.5 P-4, C=3, E=21, A=2 P, B=.25 P+6, L=2, D=6 \text { and } \\
& S=4, \ldots 5.3 .16 .
\end{aligned}
$$

Substituting equations 5.3.16 into 5.3.3 gives:

$$
\begin{aligned}
T_{5.3 .17}= & 19.24(1.5 P-4)(3)+19.31(1.5 P-4)(21)= \\
& 694.9 P-1853
\end{aligned}
$$

$$
\ldots 5.3 .17
$$

into 5.3.5 gives:

$$
\begin{aligned}
T_{5.3 .18}= & 17.96(.25 \mathrm{P}+6)(.25 \mathrm{P}+5)(6 \mathrm{P}-.5 \mathrm{P}-17) / 6+38.75(.25 \mathrm{P}+5)(4 \mathrm{P}- \\
& .25 \mathrm{P}-6) / 2+175.28(2 \mathrm{P})
\end{aligned}
$$

or

$$
\frac{T}{5.3 .19}=1.03 p^{3}+61.4 p^{2}+968.1 p-2073
$$

into 5.3.6 gives :

$$
T_{5.3 .20}=(2)((19.31)(.25 P-5)(4 P-.25 P-6) / 2+(38.75)(2 P)(2))
$$

$$
\begin{align*}
& \text { or } \\
& T_{5.3 .21}=18.1 P^{2}+488.1 P-579.3 \\
& \text { into } 5.3 .7 \text { gives : } \\
& T_{5.3 .22}=19.24(2)(1.5 P-4)(6)+19.31(2)(1.5 P-4)(6)(4) \\
& \text { or } \\
& T=\ldots .5 .3 .22, \\
& \frac{1}{5.3 .23}=1737 P-4631
\end{align*}
$$

From equations 5.3.9. 5.3.11, 5.3.13 and 5.3.15, the computationa1 effort needed to evaluate the stresses in the trusses is given approximately by :

$$
T_{5.3 .24}=12.0 p^{3}+178.9 p^{2}+1420 p+635.9 \ldots 5.3 .24
$$

From equations 5.3.17, 5.3.19,5.3.21 and 5.3.23, the computational effort needed to evaluate the stresses in the plates is given approximately by :

$$
T_{5.3 .25}=1.03 P^{3}+79.5 p^{2}+3888 p-9136
$$

5.4 Effort used in evaluating derivatives.

The derivative evaluations required by the optimisation algorithms are the determination of :

$$
\underline{\nabla F}(\underline{t}) ; \underline{\nabla f}_{i}(\underline{t}) ; \nabla \phi(\underline{t}, p) ; \underline{\nabla}^{2} F(\underline{t}) ; \underline{\nabla}_{i}^{2} f(\underline{t}) \text { and } \underline{\nabla}^{2} \phi(\underline{t}, \varphi) \quad \ldots .5 .4 .1 \text {, }
$$

in which the major computational effort is used to determine the derivatives of the stresses. The algorithms used in this study are given in section 3 of chapter 4. Using the values in 5.3 .2 , the
computational effort to complete step $\times P$ times is given approximately by:

$$
T_{5.4 .2 .}=\left(19.24(L)(D)(M)(C) /(P)+19.31(L)\left(D^{2}\right)(M)(C) /(P)\right)(P)
$$

The effort to complete step $x i, P$ times, is given by:

$$
\begin{equation*}
T_{5.4 .3}=\left(T_{5.3 .6}\right) \tag{P}
\end{equation*}
$$

and to complete step xii; P times, is given by:

$$
\mathrm{T}_{5.4 .4}=\left(\mathrm{T}_{5.3 .7}\right)(P) \quad \text {...5.4.4 }
$$

Thus, for the truss problems, substituting the values 5.3.8 into equation 5.4.2 gives:

$$
\begin{align*}
\mathrm{T}_{5.4 .5} & =19.24(2)(4)(P)(1)+19.31(2)(16)(P)(1) \\
& =771.8 \mathrm{P}
\end{align*}
$$

into equation 5.4.3 gives:

$$
\mathrm{T}_{5.4 .6}=57.9 \mathrm{P}^{3}+445.2 \mathrm{P}^{2}+348.6 \mathrm{P} \quad \text {...5.4.6, }
$$

and into equation 5.4.4 gives:

$$
T_{5.4 .7}=308.4 \mathrm{P}^{2} \quad \text {...5.4.7. }
$$

Similarly for the plate problems, substituting the values 5.3.16 into equation 5.4.2 gives:

$$
\begin{aligned}
T_{5.4 .8} & =19.24(2)(6)(1.5 P-4)(3)+19.31(2)(36)(1.5 P-4)(3) \\
& =5210 P-16,960
\end{aligned}
$$

into equation 5.4.3 gives:

$$
T_{5.4 .9}=18.1 \mathrm{P}^{3}+488.1 \mathrm{P}^{2}-579.3 \mathrm{P}
$$

$$
\ldots 5.4 .9,
$$

and into equation 5.4 .4 gives:

$$
T_{r}=1737 P-4631 P
$$

From equations 5.4.5 to 5.4.10, the computational effort to evaluate the first derivatives of stress, assuming that the stresses have already been evaluated, is given approximately by:

$$
T_{5.4 .11}=57.9 P^{3}+753.6 P^{2}+1120 P
$$

for trusses, and approximately by:

$$
T_{5.4 .12}=18.1 P^{3}+2225 P^{2}-16960 \quad \text {...5.4.12 }
$$

for the plates.

The computational effort to evaluate the first derivatives of stress using finite differences, is given approximately by:

$$
T_{54.13}=12.0 \mathrm{P}+178.9 \mathrm{P}+1420 \mathrm{P}+635.9 \mathrm{P}
$$

for the trusses, and by:

$$
T_{5.4 .14}=1.03 p^{4}+79.5 p^{3}+3888 p^{2}-9136 P \ldots 5.4 .14
$$

for the plates.
The computational effort to complete step xiv, $P(P+1) / 2$ times, is given by:

$$
T_{5.4 .15}=\left(\begin{array}{c}
\\
5.4 .2
\end{array}\right)(2)(P+1) / 2
$$

to complete step $x v, P(P+1) / 2$, times is given by:

$$
\begin{aligned}
& T_{5.4 .16}=\binom{T}{5.4 .3}(P+1) / 2 \\
& \text { d to complete step xvi, } P(P+1) / 2 \text {. times, is given by: }
\end{aligned}
$$

$$
T_{5.4 .17}=\left(T_{5.4 .4}\right)(P+1) / 2
$$

Thus, substituting the values 5.3 .8 for the truss problems into equation 5.4 .15 gives:

$$
T_{5.4 .18}=771.8 \mathrm{P}^{2}+771.8 \mathrm{P}
$$

into equation 5.4 .16 gives:

$$
T_{5.4 .19}=28.95 P^{4}+251.6 P^{3}+396.9 P^{2}+348.6 p
$$...5.4.19,

and into equation 5.4 .17 gives:

$$
T_{5.4 .20}=154.2 P^{3}+154.2 P^{2} \quad \ldots 5.4 .20
$$

Similarly, for the plate problems, substituting the values 5.3.16 into equation 5.4 .15 gives:

$$
T_{5.4 .21}=5210 P^{2}-11,750 p-16,960 \quad \ldots 5.4 .21
$$

into equation 5.4 .16 gives:
$T_{5.4 .22}=9.05 P^{4}+253.1 P^{3}-45.6 P^{2}-289.7 P$
...5.4.22,
and into equation 5.4 .17 gives:

$$
T_{5.4 .23}=868.5 p^{3}-1437 p^{2}-2316
$$

From equations 5.4.18 to 5.4.23, the computational effort to evaluate the second derivatives of stress, assuming that the streesses and their first derivatives have already been evaluated, is given approximately by:
$T_{5.4 .24}=28.95 p^{4}+405.8 p^{3}+1323 p^{2}+1120 p$
for the trusses, and ${ }_{4}$ approximately ${ }_{3}$ by:

$$
T_{5.4 .25}=9.05 P+1122 P+3728 P-12040 P \ldots 5.4 .25,
$$

for the plates.

The computational effort to evaluate the second derivatives of
stress using finite differences, is given approximately $\underset{4}{\text { by }}$:

$$
T_{5.4 .26}=6.00 \mathrm{P}+95.5 \mathrm{P}+798.9 \mathrm{P}+1027 \mathrm{P}+317.9 \mathrm{P}
$$

...5.4.26,
for the trusses, and approximately by:

$$
T_{5.4 .27}=.515 p^{5}+40.3 p^{4}+1984 p^{3}-2624 p^{2}-4568 p-4568
$$

for the plates.

Figures 5.4.28 and 5.4.29 respectively plot estimated computational effort required for the trusses and plates of chapter 6 using an IBM 360/67 computer to evaluate a function (as given approximately by equations 5.3.24 and 5.3.25), a first derivative (as given by equations 5.4 .11 to 5.4 .14), and a second derivative (as given by equations 5.4.24 to 5.4.27).

FIGURE 5.4.28

FIGURE 5.4.29

A	B	P-BAR TRUSSES			$P=$	P-NODE P		PLATES ,	$\mathrm{P}=$
		3	7	13	21	4	9	16	25
V \emptyset	\emptyset	1.81	2.75	3.56	4.05	2.55	5.34	8.07	10.8
$\nabla^{2} \emptyset$	\emptyset	4.18	12.0	25.8	45.3	11.0	32.4	76.6	150.
$P \times \varnothing$	\emptyset	3.00	7.00	13.0	21.0	4.00	9.00	16.0	25.0
$\frac{\left(P^{2}+P\right) \varnothing}{2}$	\emptyset	6.00	28.0	91.0	231.	10.0	45.0	136.	325.
$\nabla \emptyset$	P×ø	0.60	0.34	0.27	0.19	0.64	0.59	0.51	0.43
$\nabla^{2} \emptyset$	$\frac{\left(P^{2}+P\right)}{2} \phi$	0.70	0.43	0.28	0.20	0.91	0.72	0.56	0.46

Table 5.4.30 gives effort ratios obtained from the results shown in figures 5.4.28 and 5,4.29. The effort ratios are defined by: $E_{A}=$ the computational effort to evaluate $A /$ the computational A, B effort to evaluate B ...5.4.31.

5.5 Total computational effort.

The results obtained in the previous three sections of this chapter are summarised in this section.

One iteration in MAP requires, a function evaluation, a first derivative evaluation, and the solution of the LP problem. Thus an estimate of the total computational effort required by MAP to perform one iteration on a truss problem, is given by:

$$
T_{5.5 .1}=423.6 \mathrm{P}+2383 \mathrm{P}^{2}+2678 \mathrm{P}+635.9 \ldots 5.5 .1
$$

and on a plate problem is given by:

$$
T_{5.5 .2}=372.8 P^{3}+3755 p^{2}+4018 P-26100
$$

One search in MFD requires, a function evaluation, a first derivative evaluation, the solution of a LP problem and two more function evaluations on average, to locate the next set of constraints. Thus an estimate of the total computational effort required by MFD to perform one search on a truss problem, is given by:

$$
T_{5.5 .3}=182.3 P^{3}+2840 P^{2}+7549 P+1908 \quad \ldots 5.5 .3
$$

and on a plate problem is given by:
$T \quad=109.6 P^{3}+2940 P^{2}+13840 P-44370 \quad \ldots 5.5 .4$. 5.5 .4

One search in Newton's method with SUMT requires a function evaluation, a first and second derivative evaluation and 5.5 more function evaluations on average, to find the minimum along the direction. Thus an es.timate of the total computational effort required by Newton's method to perform one search on a truss problem, is given by:

and on a plate problem, is given by:

If the objective function were quadratic, then Newton's method would require only one iteration to find its minimum.

One search in Fletcher-Powell's method with SUMT requires a function evaluation, a first derivative evaluation and 5.5 function evaluations, on average, to find the minimum along the direction. Thus, an estimate of the total computational effort required by the method to perform one search on a truss problem, is given by:

$$
T_{557}=135.9 P^{3}+2047 P^{2}+10600 P+6825
$$

and on a plate problem, is given by:

$$
T_{558}=24.8 P^{3}+2872 P^{2}+25520 P-73660
$$

Similarly, when Stewart's method with finite difference derivatives is used, the total computational effort to perform one search on a truss problem is given by:

$$
T_{5.5 .9}=12.0 p^{4}+156.9 p^{3}+2712 p^{2}+10400 p+6853 \ldots 5.5 .9,
$$

and on a plate problem, is given by:

$$
T_{5.5 .10}=1.03 p^{4}+86.2 p^{3}+4535 p^{2}+16690 p-56670 \ldots 5.5 .10 .
$$

If the objective function were quadratic, then both Fletcher-Powell's and Stewart's methods would require no more than P iterations to find its minimum.

When Powell's method is, used with SUMT, then the total computational effort to form and search along a direction on a truss problem, is given by:

$$
2
$$

$\mathrm{T}=78.0 \mathrm{P}+1163 \mathrm{P}+9393 \mathrm{P}+6869$ 5.5.11
and on a plate problem, is given by:

$$
T_{5-12}=6.70 P^{3}+517 P^{2}+25440 P-56650 \quad \ldots 5.5 .12
$$

5.5.12

Powell's method requires. P or $P+1$ searches per iteration, and requires no more than P iterations to minimize a quadratic function.

For the truss problems and the plate problems respectively, figures 5.5.13 and 5.5.14 plot es.timates of the computational effort required by each method to complete one iteration using an IBM 360/67 computer (as given by equations 5.5 .1 to 5.5 .12) against the number of design variables.

An iteration is defined as:
the solution of one LP problem when using MAP, the solution of one-dimensional search when using MFD, N1, FP or ST, and the solution of P one-dimensional searches when using $P Q$.

Measurements of the actual computational effort used by each algorithm during one iterationare given in chapter 7.

FIGURE 5.5.13

FIGURE 5.5.14

CHAPTER 6

TEST PRQBLEM DATA

6.1 Description of the tests.

Chapter 5 developed estimates of the computational effort required by each of the algorithms on the two types of structural problem under consideration when using an IBM 360/67 computer. This chapter gives details of test problems investigated using an IBM 370/145 computer to ascertain the actual computational effort used by each of the algorithms. The following results were recorded:

1. the number of
a. one-dimensional searches,
b. function evaluations, and
c. derivative evaluations;
2. the CPU time expended in
a. evaluating functions,
b. evaluating derivatives, and
c. performing those operations required by the optimisation algorithms; and
3. the value of
a. the objective function and
b. the structural weight.

The CPU times, measured using a system subroutine, do not include CPU effort expended performing input/output operations. The test structures used are:

3, 7, 13 and 21 member pin-jointed plane trusses, and
4, 9, 16 and 25 node idealization plane stress plates, all subject to two load cases, with upper and lower bounds on stress and design variable values. Data for the structures are given in the following sections of this chapter.

The optimisation algorithms used are summarized in section 7 of chapter 2 and are detailed in chapter 3. Selection is made of arbitrary coefficients and other parameters required by the algorithms in section 3 of this chapter.

6.2 Test structure data

The trusses used in this study are similar to one investigated by Schmit ${ }^{29}$. The design variables are the member cross-sectional areas. The configurations of the test trusses are shown in figure
6.2.1 and have the following common data:

$$
\text { initial cross-sectional area of all members }=1.0,
$$

load case $1, P_{1}=15.0, P_{2}=25.9808$,
load case $2, P_{1}=-20.0, P_{2}=0.0$,
Young's modulus of elasticity $=1.0$,
density $=1.0$,
$t \therefore \quad=20.0$,
max j
t $=0.01$,
$\min j$

FIGURE 6.2.1

FIGURE 6.2.3
$\sigma=20.0$, $\max q \mathrm{~S}$
$\sigma \quad=-15.0$.
$\min q s$
The plane stress plates used in this study are rectangular and are subject to two load cases, one of pure tension and one of pure shear. The noda1 thicknesses of the finite element idealization are the design variables. The plates have the configurations shown in figure 6.2.3 and have the following common data:
the initial thicknesses of the nodes are determined from linear interpolation using the initial thicknesses of the nodes of the 4 node plate,

Young's modulus of elasticity $=10,000,000.0$,
Poisson's ratio $=0.3$,
density $=2.0$,
$t=1.0$, ...6.2.4
$\max j$
$t=0.25$, $\min j$
$\sigma \quad=15,000.0=-\sigma$
$\max q s \quad \min q s$
Figure 6.2 .5 shows the configuration of a 21 bar bridge which was also used to test the optimisation algorithms. The bridge was subjected to one dead load and four live load cases. The live loadings are of the type imposed by vehicles on a bridge truss. Table 6.2 .6 gives load data. Other pertinent data are:

FIGURE 6.2 .5

```
initial area of all members \(=95.0 \mathrm{~cm}^{2}\),
initial weight \(=106.7 \mathrm{kN}=10.86 \mathrm{Mg}\),
Young's modulus of elasticity \(=21,000 \mathrm{kN} / \mathrm{cm}_{-5}^{2}, 3\)
density \(=7.698 \times 10 \mathrm{kN} / \mathrm{cm}=0.785 \times 10 \mathrm{Mg} / \mathrm{cm}\),
\(\mathrm{t}=100 \mathrm{~cm}\).
\(\max \mathrm{j}\)
\(t_{\min j}=10 \mathrm{~cm}^{2}\),
\(\sigma_{\max q s}=16.5 \mathrm{kN} / \mathrm{cm}^{2}\), and \(\sigma_{\operatorname{minq} q}=-12.0 \mathrm{kN} / \mathrm{cm}^{2}\).
```

Results for this structure are given in the appendices.

Table 6.2.6: Loadings on the 21 bar bridge (kN)

Load	Dead load	load case	Live load case 2	$\begin{gathered} \text { ad } \\ \text { load case } \\ 3 \end{gathered}$	${\underset{4}{\text { load case }}}^{2}$
x_{3}	-	- 40	-40	-	-
X_{5}	-	-	- 40	$+40$	-
$\begin{gathered} X_{7} \end{gathered}$	-	-	-	$+40$	+ 40
x_{9}	-	-	-	-	$+40$
${ }_{2}^{Y_{2}}$	10	-	-	-	-
Y_{3}	55	+ 200	$+200$	-	-
Y_{4}	15	-	-	-	-
Y_{5}	55	-	+ 200	+ 200	-
$\begin{gathered} Y_{6} \end{gathered}$	15	-	-	-	-
Y_{7}	55	-	-	+ 200	$+200$
Y_{8}	15	-	-	-	-
γ_{10}	10	-	-	-	-

6.3 Optimisation algorithm data

Operational characteristics of optimisation algorithms are dictated by control parameters and/or arbitrary coefficients. Values for the arbitrary coefficients (α in equation 3.2 .2 for MAP, c in problem formulation 3.3.19 for the MFD, and c in equation 3.4.2 for the SUMT) are selected in section $\#$ of this chapter. Values for the control parameters required by the optimisation program used in this study are given below.

The control parameters are used by the optimisation program to determine when control should. be returned from a subroutine to the calling subroutine or program and to determine when the optimisation should be terminated. The control parameters are set in the main program or are read as data input. The algorithm for the main program used is:
i. read in structural data and optimisation data; ...6.3.1
ii. set values for the control parameters for the algorithms on this iteration of the main program;
iii. go to the optimisation algorithm and on return from the algorithm go to iv;
iv. record results (section 1 of this chapter);
v. if the optimisation should be terminated, report results and terminate; if the optimisation should not be terminated go to il .

In step i, the following optimisation data are input:

1. the values of the arbitrary coefficients;
2. the relative accuracy of
a. number representation and
b. function and derivative evaluations;
3. the minimum allowable relative rates of
a. reduction in weight,
b. reduction in objective function, and
c. change in all the design variable values;
4. the resolution of design points; and
5. the maximum number of main program iterations allowed.

The data items $2 a$ and 2 b are used by many of the algorithms to generate the test values in the algorithms. The relative accuracy of number representation depends on the absolute magnitude of the number represented, but was taken to be an average value of 0.0000001 for the computers used in the tests. Preliminary tests showed that the relative accuracy of function and derivative evaluations was approximately 0.000001.

Data item 3a is required in step v of the main program algorithm. The program is terminated if the actual relative reduction in weight during the latest main program iteration is less than the value 3a. A value of 0.000010 per main program iteration was used.

Data items 3b and 3c are used in step iii by the optimisation algorithms to transfer control to the main program. Thus, if the
relative reduction in the objective function and relative change in all the design variables are less than the values $3 b$ and $3 c$, then the optimisation algorithms return control to the main program. A value of 0.001 per optimisation algorithm iteration was used for both 3b and 3c.

Data item 4 is used by the one-dimensional search algorithms. A value of 0.001 was used for the resolution of design points. The maximum number of main program iterations, data item 5, was set at 7.

The control parameters set in step ii are: the maximum number of quadratic fits allowed in each one-dimensional search and the maximum number of optimisation algorithm iterations allowed per main program iteration.

Table 6.3.2: Maximum number of algorithm iterations allowed

Algorithm	Maximum number of iterations per main program iteration allowed.
MAP	$1+\mathrm{i} / 3 *$
MFD	$4+\mathrm{i} / 2$
PO	$(2+\mathrm{i} / 2) \mathrm{P}$
ST	$2+\mathrm{i} / 2$
FP	$(1+\mathrm{P}(3+i)) / 2$
N1	
N2	

[^1]In step ii, the maximum number of quadratic fits allowed per one-dimensional search was set at $(6+i / 3)$ for all the algorithms except MAP.

In step iiti of the main program algorithm, the optimisation algorithms return to the main program when the maximum number of iterations given in table 6.3.2 is exceeded.

The results in step iv of the main program algorithm are listed in section 1 of this chapter. When MAP is being used, the weight of a feasible design obtained from an infeasible solution is also recorded. The feasible design is determined by multiplying all the design variables of the infeasible solution, by the ratio of the stress which violates the allowable stresses by the greatest amount to the appropriate allowable stress. The weight obtained from the feasible design is called the 'scaled weight' in the following chapters.

In step v of the main program algorithm, the following tests are made for termination:
i. terminate for all algorithms except MAP, if the weight has increased;
ii. terminate if the design is feasible or acceptably infeasible, and if the relative rate of change in weight during the latest main program iteration is less than the test value data item 3a;
iii. terminate if the number of main program iterations exceeds the test value, data item 5.

In test ii, a design is considered acceptably infeasible providing none of the stress constraints are violated by more than 0.000001

```
\sigma .
max qs
```


6.4 Optimisation algorithm arbitrary coefficients.

Preliminary computer runs were made to establish suitable values for the arbitrary coefficients of the optimisation algorithms. The three bar and seven bar trusses were used as the test structures for these runs.

For the three and seven bar trusses respectively, figures 6.4.1 and 6.4.2 plot weight against CPU time for the values of the MAP arbitrary coefficient. α from 0.10 to 0.40 . From the results shown, α was selected as 0.20 for all the computer runs reported in chapter 7.

For the three and seven bar trusses respectively, figures 6.4.3 and 6.4.4 plot weight against the number of derivative evaluations for the values of the MFD arbitrary coefficients c_{i} (for all i) from 0.0001 to 10.0. From the results shown in these figures, c for $a 11$ i was set at 0.10 for a 11 the computer runs reported in chapter 7.

For the three bar truss only, figures 6.4 .5 to 6.4 .24 plot weight against CPU time for the values of the SUMT arbitrary coefficient c from $1 / 10$ to $1 / 320$. For data items $3 b$ and $3 c$ of section 3 of this chapter, figures 6.4 .5 to 6.4 .8 have the values of $0.005,0.001,0.0002$ and 0.00004 respectively on Newton(1)'s method. Similarly, figures 6.4 .9 to $6.4 .12,6.4 .13$ to
6.4.16 and 6.4.17 to 6.4.20 have the above values on FletcherPowell's, Stewart's and Powell's methods respectively. For Newton(l) !s, Fletcher-Powell's, Stewart's and Powell's methods respectively, figures 6.4.21 to 6.4.24 have, for data items 36 and $3 c$, the initial value of 0.001 , which is then reduced, as 22
recommended by Moe , by a constant factor of 0.4 on each succeeding SUMT iteration. From the results shown in figures 6.4.5 to 6.4.24, an efficient and consistently effective choice for the value of the SUMT arbitrary coefficient c is $1 / 160$. This value was used for the computer runs reported in chapter 7. Figures 6.4.5 to 6.4.24 also verify that the value of 0.001 for data items 3b and 3c of section 3 is efficient and that the scheme suggested by Moe does not seem to offer significant computational advantages.

FIGURE 6.4.2

FIGURE 6.4.3

FIGURE 6.4.5

FIGURE 6.4.6

FIGURE 6.4.9

FIGURE 6.4.11

Measured Computational Effort, CPU Seconds
FIGURE 6.4.13

Measured Computational Effort, CPU Seconds
FIGURE 6.4.14

FIGURE 6.4.15

FIGURE 6.4.16

FIGURE 6.4.17

FIGURE 6.4.19

FIGURE 6.4.20

FIGURE 6.4.21

FIGURE 6.4.23

CHAPTER 7

TEST RESULTS AND DISCUSSION

7.1 Introduction

Throughout this chapter the following definitions are used:

computational effort $=$	CPU time expended using an IBM 370/145
	computer,
$A-B$ effort ratio $=E_{A, B}=$	computational effort either to perform
	operation A or using method A divided by
	computational effort either to perform
	operation B or using method B,
minimum weight (MW) $=$	lowest recorded weight of all feasible
	designs encountered by any of the
	algorithms

near minimum weight $(N M W)=100.5 \%$ of the minimum weight defined above.

Slight changes in the arbitrary coefficients can alter the computational effort required by the algorithms. Nevertheless it is assumed in chapter 6 that either the optimum choice or an equally non-optimum choice has been made for the arbitrary coefficients of the algorithms on all of the problems.

7.2 Computer results.

Table 7.2.1 shows on which problems the algorithms were tested and indicates whether the near minimum was achieved.

Failure to achieve the near minimum weight (NMW) was usually caused by the upper time limits set for the computer run. However, MFD failed to achieve the near minimum on both the 21 bar truss and the 25 node plate because the LP algorithm lacked adequate precautions to prevent cycling. Powell's method and Stewart's method were not run on the large problems because earlier runs on the smaller prablems had established that these algorithms were not as efficient as the other algorithms.

Table 7.2.1: Computer tests made

> P-BAR TRUSSES P-NODE PLATES

ALG	3	7	13	21	4	9	16	25
MAP	Y							
MFD	Y	Y	Y	N	Y	Y	Y	N
N1	Y							
N2	Y	Y	Y	N	Y	Y	Y	Y
FP	Y							
ST	Y	N	N	-	Y	Y	Y	-
PO	Y	N	-	-	Y	Y	-	-

$Y=$ algorithm reaches the NMW of the problem,
$N=$ algorithm does not find the NMW within the time allowed, and

- = problem not run using this algorithm.

Figures 7.2 .2 to 7.2 . 9 plat weight against total computational effort used during the computer runs shown in table 7.2.1.

FIGURE 7.2.2

FIGURE 7.2.3

FIGURE 7.2.4

FIGURE 7.2.5

FIGURE 7.2.8

Table 7.2.10 shows values @frthe parameters measured at the NMW for each run. The parameters measured and the abbreviations used are:

TF = CPU time (secs) used in evaluating functions,
TD = CPU time (secs) used in evaluating derivatives,
TO $=$ CPU time (secs) used in the optimisation algorithms,
$\mathrm{TT}=$ sum of $T F, T D$ and $T 0$,
NFE = total number of functions evaluations,
NDE = total number of derivative evaluations, and
NLTS $=$ total number of iterations.
The results presented in the remainder of this chapter have been derived from the values in table 7.2.10.

7.3 Effort used by the function and derivative algorithms

For the trusses shown in figures 6.2.1 and for the plates shown in figure 6.2.3, figures 7.3 .1 and 7.3 .2 respectively, plot measured computational effort for evaluation of functions and derivatives against the number of design variables. Table 7.3.3 gives the derivative - function effort ratios, A / B, obtained from the results shown in figures 7.3.1 and 7.3.2.

The effort ratios for rows 1 and 2 in table 7.3.3 are for derivatives obtained by differentiation, and the ratios in rows 3 and 4 are for derivatives obtained from a forward finite difference scheme. Note that differentiation - finite difference effort ratios for first derivatives shown in row 5 are of a similar magnitude to the second derivative ratios shown in row 6.

Table 7.2.10: Results measured at the NMW.
P-BAR TRUSSES, $P=\quad P$-NODE PLATES, $P=$

In the figures 7.3.1 and 7.3.2 and in the table 7.3.3, it can be seen that derivatives obtained by differentiation required in general less computational effort than derivatives obtained by finite differencing. The values in table 7.3 .3 compare well with the estimates given in table 5.4.30.

Table 7.3.3: Measured function and derivative effort ratios, $E_{A, B}$.

$$
\text { P-BAR TRUSSES, } P=\quad P \text {-NODE PLATES, } P=
$$

A	B	3	7	13	21	4	9	16	25
$\nabla \emptyset$	\emptyset	1.98	3.34	4.43	5.12	3.34	6.35	9.81	13.7
$\nabla^{2} \emptyset$	\emptyset	4.31	14.4	31.3	55.2	10.1	39.4	107.	196.
$P \times \emptyset$	\emptyset	3.00	7.00	13.0	21.0	4.00	9.00	16.0	25.0
$\left(P^{2}+P\right) \emptyset \emptyset$	6.00	28.0	91.0	231.	10.0	45.0	136.	325.	
$\nabla \emptyset$	$P \times \emptyset$	0.66	0.48	0.34	0.24	0.83	0.70	0.61	0.55
$\nabla^{2} \emptyset$	$\frac{(P+P) \emptyset}{2}$	0.72	0.52	0.34	0.24	1.01	0.88	0.79	0.60

7.4 Effort used by the optimisation algorithms.

For the trusses shown in figure 6.2.1 and for the plates shown in figure 6.2.3, figures 7.4 .1 and 7.4.2 respectively plot measured computational effort used during one iteration (as defined in chapter 5) of each of the algorithms against the number of design variables. Comparison of figures 7.4.1 and 7.4 .2 with figures 5.5.13 and 5.5.14 shows that except when MAP is being considered, the estimated algorithm iteration effort ratios agree with the measured ratios. When considering MAP the discrepancies arising

FIGURE 7.3.1

EIGURE 7.3.2

FIGURE 7.4.1

FIGURE 7.4.2
are probably caused by the arbitrary assumption (made in chapter 5) of the number of iterations required by the LP algorithm to find the solution to the linearized problem.

7.5 Other results.

Table 7.5 .1 shows the ratios of the CPU effort used in evaluating functions (F), derivatives (D) or in performing the optimisation operations (0) to the total CPU effort. The derivative-total effort ratio for Stewart's method was determined

ALG	X	P-BAR TRUSSES, $P=$				P-NODE PLATES, $\mathrm{P}=$			
		3	7	13	21	4	9	16	25
MAP	F	0.32	0.23	0.16	0.14	0.22	0.13	0.08	0.05
	D	0.42	0.60	0.63	0.66	0.49	0.63	0.59	0.55
	0	0.26	0.17	0.21	0.20	0.29	0.24	0.33	0.40
MFD	F	0.36	0.38	0.47	-	0.27	0.17	0.10	-
	D	0.37	0.43	0.39	-	0.51	0.71	0.74	-
	0	0.27	0.18	0.14	-	0.22	0.12	0.16	-
N1	F	0.44	0.30	0.18	0.13	0.36	0.11	0.05	0.02
	D	0.52	0.68	0.81	0.86	0.59	0.88	0.94	0.97
	0	0.04	0.02	0.01	0.01	0.05	0.01	0.01	0.01
FP	F	0.70	0.61	0.55	0.53	0.54	0.47	0.34	0.27
	D	0.24	0.36	0.43	0.46	0.37	0.50	0.65	0.72
	0	0.06	0.03	0.02	0.01	0.09	0.03	0.01	0.01
ST	F	0.67	-	-	-	0.64	0.54	0.46	-
	D	0.26	-	-	-	0.28	0.45	0.53	-
	0	0.07	-	-	-	0.08	0.01	0.01	-
PO	F	0.94	-	-	-	0.94	0.98	-	-
	D	-	-	-	-	-		-	-
	0	0.06	-	-	-	0.06	0.02	-	-

by including in the derivative effort only those functions evaluations necessary for a forward FD derivative scheme. The effort used by the remaining function evaluations was used to determine the function-total effort ratio.

Table 7.5.2 shows the average number of function evaluations used per one-dimensional search for each of the algorithms. The high values reported for Stewart's method are a result of the assumption that only the forward FD scheme was used by the algorithm. As assumed in chapter 5, the average number of function evaluations used per one-dimensional search was approximately 2.5 when MFD was used and was approximately 6.5 when either N1, FP or PO was used.

Table 7.5.2: Average number of function evaluations per onedimensional search.

$$
P-B A R \text { TRUSSES, } P=\quad P-N O D E \text { PLATES, } P=
$$

ALG	3	7	13	21	4	9	16	25
MFD	1.8	2.9	5.3	3.0	1.8	1.4	1.2	-
N1	5.9	7.8	6.6	8.6	9.0	5.8	6.1	6.5
FP	6.7	6.0	5.7	6.0	5.5	6.0	5.2	5.2
ST	7.9	9.8	13.	-	8.4	11.	13.	-
P0	7.4	6.8	-	-	6.9	6.3	-	-

It can be seen in table 7.5.3, showing the algorithm-MAP effort ratios to reach the NMW, that for the test problems, SUMT in conjunction with N1, FP, ST or PO requires much more effort to reach the minimum than either MFD or MAP.

The effect of improvements to SUMT and the UOAs and of using finite difference derivatives with MFD and MAP are discussed in section 6 of this chapter.

ALG	reach the NMW						ALG, MAP	
	P-BAR TRUSSES, $P=$				P-NODE PLATES, $\mathrm{P}=$			
	3	7	13	21	4	9	16	25
MAP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MFD	3.62	3.98	4.20	$*$	1.89	2.08	3.67	-
N1	13.1	20.2	11.8	15.5	12.9	16.0	28.7	43.5
FP	14.2	19.9	13.0	15.4	8.28	10.1	11.9	14.6
ST	20.1	-	\%	-	13.0	23.2	26.8	-
PO	47.1	\div	-	-	36.8	70.4	-	-

Table 7.5 .4 shows the ratio of the number of iterations made by an algorithm to reach the near minimum weight, to the number of design parameters. Table 7.5 .5 shows the ratio of the number of iterations required by an algorithm to reach the NMW to the number of iterations required by MAP to reach the NMW.

7.6 Discussion.

From the results shown in table 7.5 .3 which summarizes the relative performances of the algorithms on the structural problems, it would appear that MAP and MFD require less computational effort than SUMT. This section investigates the effects of:

Table 7.5.4: Ratios of the number of iterations required to reach the NMW to the number of design variables.

$$
\text { P-BAR TRUSSES, } P=\quad P-N O D E \text { PLATES, } P=
$$

ALG	3	7	13	21	4	9	16	25
MAP	.667	.571	.764	.524	.500	.444	.250	.160
MFD	2.00	.157	2.00	+	1.00	1.00	1.00	-
N1	3.00	2.43	1.46	.952	1.75	1.33	.938	.560
FP	4.33	6.14	6.54	5.57	2.75	3.33	3.06	2.96
ST	5.00	-	-	-	3.00	5.00	3.56	-
PO	5.78	-	-	-	4.25	5.26	-	-

Table 7.5.5: Ratios of the number of iterations required by an algorithm to reach the NWW to the number required by MAP.

P-BAR TRUSSES, $P=\quad P$-NODE PLATES, $P=$

ALG	3	7	13	21	4	9	16	25
MAP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MFD	3.00	2.75	2.62	-	2.00	2.25	4.52	-
N1	4.50	4.26	1.91	1.82	3.50	3.00	3.75	3.50
FP	6.50	10.8	8.56	10.6	5.50	7.50	12.2	18.5
ST	7.50	-	-	-	6.00	11.3	14.2	-
PO	8.66	-	-	-	8.50	11.8	-	-

i. using a more efficient search technique with the UOAs of SUMT,
ii. using finite differences derivatives with MAP and MFD and
iii. having derivative-function effort ratios different from those of this study.

The number of function evaluations per one-dimensional search can be reduced by a search technique developed by Lund and recommended by Moe ${ }^{22}$. In the search, quadratic polynomial approximations of the original objective and all the constraint functions are fitted to three points, the initial and two other points, along the search direction. The polynomial approximations are combined to form a new transformed objective function for this search of SUMT. The minimum of the new objective function is found with little computational effort. The original transformed objective function is evaluated at the new point and the search is terminated. Therefore, only three function evaluations are required per search. The effect of using such a search technique is estimated in table 7.6.1 from the results in tables 7.5.1 to 7.5.3. In table 7.6.1

Table 7.6.1: Estimated algorithm - MAP effort ratios, E ${ }_{\text {ALG, MAP }}{ }^{\text {, }}$
to reach the NMW when Lund's search is used.

ALG	P-BAR TRUSSES, $\mathrm{P}=$				P-NODE PLATES, $\mathrm{P}=$			
	3	7	13	21	4	9	16	25
MAP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MFD	3.62	3.98	4.20	-	1.89	2.08	3.67	-
N1	10.2	16.8	10.7	14.7	9.88	15.2	27.8	43.1
FP	8.66	14.1	9.47	11.2	6.22	7.78	8.69	13.0
ST	11.7	-	-	-	5.69	14.0	17.2	-
PO	21.2	-	-	-	16.9	33.8	-	-

it.can be seen that the effort required by the UOAs and SUMT relative to the effort required by MAP and MFD wou®d be reduced by using Lund's technique. Therefore in the following work in this chapter, the values in table 7.6 .1 will be used.

When finite differences are used to obtain derivatives, the effort necessary per iteration and the number of iterations required are greater than when derivatives are obtained by differentiation. The greater effort per iteration can be estimated from tables 7.3.3, 7.5.1 and 7.6.1. The greater number of iterations required can be estimated from table 7.5 .5 by comparing the number of iterations used by Stewart's method with the number used by Fletcher-Powell's method. With the assumption that the number of iterations required is 25% greater than when derivatives are obtained by differentiating, table 7.6.2 gives estimates of the algorithm-MAP effort ratios to reach the near minimum weight when derivatives are obtained by finite differences.

Table 7.6.2: Estimated algorithm-MAP effort ratios, E ALG,MAP to reach the NMW when Lund's search and forward FD derivatives are used.

ALG	P-BAR TRUSSES, $P=$			P -NODE PLATES, $\mathrm{P}=$				
	3	7	13	21	4	9	16	25
MAP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MFD	3.53	3.53	3.33	-	1.90	2.13	3.91	-
ST	7.67	-	-	-	4.14	8.80	10.0	-
PO	13.9	-	-	-	12.3	21.3	-	-

The derivative-function effort ratios for the function and derivative evaluation algorithms used are given in table 7.3.3. However, different function and derivative algorithms may give different derivative-function effort ratios which would affect the effort ratios to reach the near minimum weight but should not affect the path taken by the optimisation algorithm to get to the near minimum weight design. Table 7.6.3 estimates the effect on the algorithm-MAP effort ratios toineach the near minimum weight, of different derivative-function effort ratios. The values are determined from the following equations.

Let
$\mathrm{T}=$ effort to evaluate a function, \emptyset
$\mathrm{T}=$ effort to evaluate a first derivative by differentiation, $\nabla \varnothing$

```
    T = effort to evaluate a first derivative by forward finite
    \Delta
        differences, and
    P = number of design variables.
```

Then

$$
E_{\nabla \emptyset, \emptyset}=T_{\nabla \emptyset} / T_{\phi} ; E_{\Delta \emptyset, \emptyset}=T_{\Delta \emptyset} / T_{\phi}=P \quad \text {...7.6.4, }
$$

therefore

Similarly, let
${ }^{\top} \nabla^{2} \emptyset=$ effort to evaluate a second derivative by differentiation, ${ }^{\top} \Delta^{2} \emptyset \quad \begin{aligned} & \text { effort to evaluate a second derivative by forward finite } \\ & \\ & \text { differences. }\end{aligned}$

Table 7.6.3: Estimated algorithm - MAP effort ratios, E
ALG, MAP ${ }^{\prime}$
to reach the NMW for different values for the derivative-function effort ratios.

ALG	μ	$\underset{3}{\text { P-BAR TRUSSES, }} \mathrm{P}_{73}=$			21	${ }_{4}^{\text {P-NODE PLATES; } ;}{ }_{96}{ }^{\text {P }}={ }_{25}$			
MAP	211	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MFD	1/P	4.83	4.43	4.06	-	3.22	3.62	7.28	
	$\frac{1}{2}$	4.51	3.45	2.95	-	2.82	2.69	4.96	
	1	3.88	3.07	2.73	-	2.44	2.43	4.62	
	2	3.42	2.84	2.60	-	2.19	2.28	4.44	
	10	2.96	2.64	2.49	-	1.95	2.15	4.29	
N1	1/P	10.3	13.0	11.0	16.9	8.70	10.3	17.9	22.8
	$\frac{1}{2}$	10.4	14.9	10.7	15.7	8.95	12.5	25.2	35.4
	1	10.4	15.5	11.2	16.2	9.13	13.1	26.2	36.4
		10.4	15.9	11.4	16.5	9.25	13.4	26.8	37.0
	10	10.4	16.2	11.7	16.7	9.36	13.7	27.2	37.5
FP	1/P	10.0	16.7	13.2	16.4	8.50	11.6	18.9	28.6
	$\frac{1}{2}$	9.06	12.1	8:40	9.64	7.10	7.92	11.5	16.5
	2	7.55	10.5	7.58	8.95	5.96	6.95	10.6	15.4
	2	6.47	9.48	7.12	8.59	5.21	6.42	10.0	14.9
	10	5.36	8.60	6.73	8.29	4.47	5.94	9.57	14.4
ST	1/P	17.4	-	-		16.2	52.4	104.	
	$\frac{1}{2}$	13.9	-	-	-	10.8	19.1	23.2	
	1	8.71		-	-	6.51	10.5	12.3	
	2	4.98	-	-	-	3.61	5.52	6.33	
	10	1.13	-	-	-	0.79	1.15	1.30	
PO	1/P	30.1	-	-	-	39.4	123.	-	
	$\frac{1}{2}$	24.1		-	-	26.3	44.9	-	
	1	15.1	-	-	-	15.8	24.6	-	-
	2	8.62			-	8.78	13.0	-	-
	10	1.95	-	-	-	1.93	2.71	-	-

Then
therefore

$$
E_{\nabla^{2} \emptyset, \emptyset}=E_{\nabla^{2} \emptyset, \Delta^{2} \emptyset}{ }^{P(P+1) / 2}
$$

Table 7.3.3 gives that

$$
E_{\nabla \emptyset, \Delta \emptyset} \doteqdot E_{\nabla}{ }^{2} \emptyset, \Delta^{2} \emptyset
$$

Therefore let

$$
\mu \doteqdot E_{\nabla \emptyset, \Delta \theta} \div E_{\nabla^{2} \emptyset, \Delta^{2} \emptyset}
$$

Thus, if $\mu=1 / P$, then a derivative evaluation by differentiation requires as much effort as a function evaluation; if $\mu=1$, then a derivative evaluation by differentiation requires as much effort as one obtained by forward finite differences; if $\mu=2$, then a derivative evaluation by differentiation requires as much effort as one obtained by central finite differences. If $\mu=4$, a higher order finite difference derivative may use less effort than and may be as accurate as a differentiation derivative. The computational effort required by the algorithms to perform one iteration is given by:

$$
\begin{align*}
& T_{\text {MAP }}=1.33\left(T_{i}^{\prime}+T_{\nabla \emptyset}\right) \\
& T_{\text {MFD }}=1.25\left(2.5 T_{\phi}+T_{\nabla \phi}\right) \\
& T_{N 1}=1.02\left(3.0 T_{\phi}+T_{\nabla \emptyset}+T_{\nabla \varnothing}\right)
\end{align*}
$$

$$
\begin{array}{llr}
T_{F P} & =1.03\left(3.0 T_{\emptyset}+T_{V \emptyset}\right) & \ldots .7 .6 .13 \\
T_{S T} & =1.03\left(3.0 T_{\emptyset}+T_{\phi \emptyset}\right) & \ldots .7 .6 .14 \\
T_{P O} & =1.03\left(3.0 T_{\emptyset}\right) P & \ldots .7 .6 .15,
\end{array}
$$

where the coefficients. $1.33,1.25,1.02,1.03,1.03,1.03$ account for the effort used by the optimisation algorithms and were obtained from table 7.5.1.

Substituting the equations 7.6.4 to 7.6.9 into 7.6.10 to 7.6.15 gives:

$T_{\text {MAP }}=1.33(1+\mu P) T_{\emptyset}$	$\ldots .7 .6 .16$,
$T_{\text {MED }}=1.25(2.5+\mu P) T_{\emptyset}$	$\ldots .7 .6 .17$,
$T_{N 1}=1.02(3.0+\mu P(P+3) / 2) T_{\emptyset}$	$\ldots .7 .6 .18$,
$T_{F P}=1.03(3.0+\mu P) T_{\emptyset}$	$\ldots .7 .6 .19$,
$T_{S T}=1.03(3.0+P) T_{\emptyset}$	$\ldots .7 .6 .20$,
$T_{\text {PO }}=1.03(3.0) P_{\emptyset}$	$\ldots .7 .6 .21$.

Therefore, the effort per iteration ratios are

$$
\begin{align*}
& \mathrm{E}_{\text {MAP, MAP }}=1.0 \\
& \mathrm{E}_{\text {MFD, MAP }}=\frac{1.25(2.5+\mu \mathrm{P})}{1.33(1+\mu \mathrm{P})} \\
& \mathrm{E}_{\mathrm{N} 1, \text { MAP }}=\frac{1.02(3.0+\mu \mathrm{P}(P+3) / 2)}{1.33(1+\mu \mathrm{P})}
\end{align*}
$$

$E_{F P, M A P}$	$=\frac{1.03(3.0+\mu P)}{1.33(1+\mu P)}$	$\ldots .7 .6 .25$
$E_{S T, M A P}$	$=\frac{1.03(3.0+P)}{1.33(1+\mu P I}$	$\ldots .7 .6 .26$
$E_{P O, M A P}$	$=\frac{1.03(3.0 P)}{1.33(1+\mu P)}$	$\ldots .7 .6 .27$.

Equations 7.6 .22 to 7.6 .27 and the number of iterations ratios in table 7.5 .5 were used to determine the estimated effort ratios in table 7.6.3. In table 7.6.3 it can be seen that when a differentiation derivative evaluation requires as mach effort as a function evaluation, MAP would require less effort than any of the methods considered. MFD would require more effort than MAP but less effort than the other methods considered.

When a differentiation derivative evaluation requires as much effort as a central difference derivative evaluation, MAP still requires the least effort.

When a differentiation derivative evaluation requires much more effort than a central difference derivative evaluation, the non-derivative methods require approximately as much effort as MAP and MFD. However it is unlikely that such differentiation derivatives would be used since high order polynomial approximations to the derivatives would require less effort and may be as accurate.

CHAPTER 8

CONCLUSION

8.1 Conclusions.

The test results of chapter 7 verify the estimates made in chapter 5 of the relative effort required by the function, derivative and optimisation algorithms used in this study. From these results the following conclusions can be drawn:

1. a first derivative evaluation requires much more effort than a function evaluation;
2. a second derivative evaluation requires much more effort than a first derivative evaluation;
3. finite difference derivatives require more computational effort than differentiation derivatives;
4. the effort to solve the LP problem for MAP or MFD is approximately equal to the effort to evaluate a first derivative;
5. the effort to generate a search direction for the UOAs, not including the necessary function and derivative evaluation effort, is approximately equal to the effort to perform a function evaluation.

Therefore, procedure 5.1 .1 can give useful estimates of the CPU time involved in computations.

The preliminary results in chapter 6 show the effect of 'tuning' an algorithm by the adjustment of the arbitrary
coefficients and parameters in the algorithms to reduce the computational effort expended. For the results reported in chapter 7, it is assumed that a comparable degree of 'tuning' has been achieved.

The results of chapter 7 show that all the methods selected can be used to solve the structural problem 1.2 or 1.3, although those methods which did not use differentiation derivatives were less effective than the other algorithms.

Table 8.1.1 shows the algorithms listed in increasing order of computational effort required. The table also shows the type of derivative evaluation to be used.

Table 8.1.1: The algorithms, listed in increasing order of computational effort required.

TYPE OF DERIVATIVES TO BE USED
NO ALGORITHM DIFFERENTIATION FORWARD F.D. CENTRAL F.D.

1 MAP X
2 MAP - X
3 MAP -

4 MFD X
5 MFD - X
6 MFD - \quad - X
SUMT + FP X
8 SUMT + N1 X -
9 SUMT + ST - X
10 SUMT + ST $\quad-\quad$ X
SUMT + N1 \quad X or X
12 SUMT + PO

Table 8.1.1 summarizes the conclusions that can be drawn from the results of chapter 7 .
8.2 Recommendations.

Table 8.1.1 lists the algorithms in increasing order of computational effort. However, other considerations, as given in chapter 1, may be more important than computational effort, in the selection of algorithms. Therefore, this section gives recommendations for the use of the algorithms on problems similar to 1.2 or 1.3.

If MFD is selected, the extra provision for increasing or decreasing the arbitrary coefficients to slow or speed the optimisation, may give computational savings.

If SUMT is selected and second derivatives are available, then a combined Newton and Fletcher-Powell method is suggested. The proposed method would proceed as in Newton's method for the first iteration, storing the inverse of the second derivative matrix, and then proceed as in Fletcher-Powell's method on succeeding iterations. However, if second derivatives are not available, Fletcher-Powell's method or a quasi-Newton method ${ }^{30,31}$ is recommended. A search technique based on that of Lund, using directional derivatives when available, is preferred.

The ' Q ' transformation for SUMT is recommended as it obviates the difficulties associated with ρ. If, however, another transformation is chosen and requires ρ, then it is recommended that ρ_{1} is found from equation 3.4.3 or from the following:

$$
\rho_{1}=c e_{3.4 .9}
$$

where $\varrho_{3.4 .9}$ is given by equation 3.4.9.

8.3 Further research.

A number of topics for further research arise from the results of this study:

1. establish the relative efficiency of MAP and MFD when FD derivatives are used instead of differentiation derivatives;
2. a. establish the relative efficiency of the Q transformation and other SUMT transformations;
b. investigate the effect on the efficiency of alternative schemes for evaluating ρ_{1} for SUMT;
c. investigate the efficiency of the proposed Newton-Fletcher-Powell method used with SUMT;
d. verify the efficiency of the search technique based on Lund's method used with SUMT;
3. investigate the efficiency of the Modified Interior Point methods; and
4. verify the conclasions for other types of structural problem.
8.4 Summary.

The subject of the thesis is a comparison of commonly-used algorithms applied to a class of structural optimisation problems. The types of structure under consìderation are pin-jointed, plane trusses and plane stress plates. The optimisation problem is
weight minimization of the structures subject to stress and design variable limits. Optimisation algorithms fall into one of three categories: Linearization, Feasible Direction and Transformation methods. Algorithms have been selected from each category in order to compare the computational effort required to solve the structural problems.

Comparison of the results of the computer runs shows that MAP requires the least effort, MFD requires more effort than MAP and SUMT requires most computational effort of the methods considered.

LIST OF REFERENCES

1. Wasiutynski Z. and Brandt A., 'The present state of knowledge in the field of Optimum design of Structures', Applied Mechanics Reviews, vo1. 16, no. 5, May 1963, pp 341-350.
2. Sheu C.Y. and Prager W., 'Recent developments in Optimal Structural design', Applied Mechanics Reviews, vol. 21, no. 10, Oct. 1968, pp 985-992.
3. Schmit L.A., 'Structural Synthesis 1959-1969: A decade of progress', Japan - U.S. seminar on Matrix methods of Structural analysis and design, Tokyo, Aug. 1969.
4. Jacoby S.L.S., Kowalik J.S. and Pizzo J.T., Iterative Methods for Non-Linear Optimization problems, Prentice-Hall, Englewood Cliffs, N.J., 1972.
5. Zoutendijk G., 'Non-linear Programming: A numerical survey', J. SIAM Control, vol. 4, no. 1, 1966, pp 194-210.
6. Kelley J.E., 'The Cutting Plane Method for solving convex programs', J. SIAM, vol. 8, 1960, pp 703-712.
7. Cheney E.W. and Goldstein A.A., 'Newton's method for convex programming and Tchebycheff approximation', Numerical Mathematics, vol. 1, 1959, pp 253-268.
8. Griffith R.E. and Stewart R.A., 'A Non-linear Programming technique for the Optimization of continuous processing systems', Man. Sci.; vol. 7, 1961, pp 379-392.

9a. Rosen J.B., "The Gradient Projection method for Non-1inear Programming, part I, Linear constraints', J. SIAM, vol. 8, 1960, p 181 ff.

9b. Rosen J.B., 'The Gradient Projection method for Non-1inear Programming, part II, Non-1inear constraints', J. SIAM, vol. 9, 1961, p 514 ff.
10. Gellatly R.A. and Gallagher R.H., 'A procedure for automated minimum weight Structural design', Aeronautical Quarterly, Aug. 1966, pp 216-230.
11. Zoutendijk G., Methods of Feasible Directions; A Study in Linear and Non-Tinear Programming, Elsevier PubTishing Co., 1960.
12. Fiacco A.V. and McCormick G.P., Non-1 inear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, Inc., 1968.
13. Himmelblau D.M., 'A uniform evaluation of Unconstrained Optimization techniques', presented at the Dundee Optimization Conference, June 1971, proceedings to be published, ed: Lootsma F.A.
14. Fletcher R., 'Function minimization without evaluating derivatives - a review', Computer Journa1, vo1. 8, no. 1, 1965, pp 33-41.
15. Fox R.L., Optimization methods for Engineering design, Addison - Wesley Publishing Co.s 1971, pp 97-101.
16. Fletcher R. and Powel1 M.J.D., 'A rapidly convergent descent method for minimization', Computer Journal, vol. 6, 1963, pp 163-168.
17. Stewart G.W., 'A modification of Davidon's minimization method to accept difference approximations of derivatives', J. of the Association for Computing Machinery, vol. 14, no. 1, Jan. 1967, pp 72-83.
18. Powell M.J.D., $1 / \mathrm{M}$ efficient method for finding the minimum of a function of several variables without calculating derivatives', Computer Journa1, vol. 7, 1964, pp 155-162.
19. Kiefer, J., 'Optimum Sequential search and approximation methods under minimum regularity assumptions", J. SIAM, vol. 5, 1957, pp 105-136.
20. Davidon W.C., 'Variable metric method for minimization', A.E.C. Research and Development report, ANL - 55990 (rev.), 1959.
21. Russel1 D., Optimization Theory, W.A. Benjamin Inc., 1970, p 19.
22. Gallagher R.H. and Zienkiewicz O.C., (eds), Optimum Structural design, Theory and applications, John Wiley and Sons, 1973, pp 143-175, Moe J., 'Penalty Function methods'.
23. Fiacco A.V. and McCormick G.P., 'Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming', Man. Sci., vol. 10, no. 4, July 1964, pp 601-617.
24. Hildebrand F.B., Introduction to Numerical Analysis, McGrawHill Book Co., Inc., 1956, pp 60-64.
25. Beale E.M.L., Mathematical Programming in Practice, Pitman, London, 1971.
26. Przemieniecki J.S., Theory of Matrix Structural Analysis, McGraw-Hi 11 Book Co., Inc.g 1968.
27. IBM System / 360 and System / 370 FORTRAN IV language, form GC 28-6515-8.
28. IBM System / 360 model 67 Functional characteristics, file no. S360-01, form A27-2719 - 0, pp 43-53.
29. Schmit, Jr. L.A., 'Structural design by systematic Synthesis', 2nd ASCE conference on Electronic Computation, Pittsburgh, Pa., Sept. 1960, pp 105-132.
30. Gill P.E. and Murray W., 'Quasi-Newton methods for unconstrained optimization', J. of the Inst. of Mathematics and its applications, vol. 2, 1972, pp 91-108.
31. Fletcher R., 'A new approach to Variable Metric algorithms', Computer Journal, vol. 13, no. 3, 1970, pp 317-322.

FIGURE 10.1

C	AL	$=$ ALGORITHM TERMINATION PARAMETER : LB ON DESIGN CHANGE
C	FUNL	$=$ ALGORITHM TERMINATION PARAMETER : LB ON FUNCTN CHANGE
C	TACTN	$=$ RESOLUTION REQUIRED OF THE OESIGN VARIABLES
C	WTEST	= PROGRAM EXITED WHEN (WTI-WTIMI)/WTI.LT.WTEST
C.	EST	$=A N$ ESTIMATE OF THE MIN OF THE OBJECTIVE FUNCTION
C	EPS	= DISTINGUISHABILITY OF FUNCTION VALUES
C	EPM	= MACHINE RESOLUTION
C	TOL	= TOLERANCE ON TIGHTNESS OF CONSTRAINTS
C	FU	= UPPER BOUND ON CONSTRAINT VARIABLE
C	$F L$	= LOWER BOUND ON CONSTRAINT VARIABLE
C	FUN	= VALUE OF WEIGHT PLUS PENALTY FUNCTION = OBJECTIVE FUN
C	TREM ()	$=$ MATRIX WHICH HOLDS OLD DESIGN VARIABLES, WEIGHT, AND OF
C	DFDT()	= GRADIENT OF OBJECTIVE FUNCTION
C	HI)	= WORK MATRIX USED BY UOA
C	WTIMI	= WEIGHT BEFORE A NEW ITERATION
C	WTI	= WEIGHT AFTER AN ITERATION
C	DUN	= AN ESTIMATE OF THE OBJECTIVE FUNCTION
C	RP	= WEIGHTING CONSTANT FOR PENALTY FUNCTION
C	PEN	= PENALTY FUNCTION ADDED TO WEIGHT TO GIVE OBJECTIVE FUN
C	$F O, F N, F M$	= SAVED FUNCTION VALUES OLD,NEW,MIDDLE
C	$A O, A N, A M$	$=$ CORRESPONDING MOVES ALONG SEARCH DIRECTION
C	PO1)	= DESIGN FOR FO
C	ALPHA	- MOVE LIMIT COEFFICIENT FOR MAP
C	NWORK	$=$ NUMBER OF DESI GN VARIABLES (M FOR RODS, N FOR PLATES)
C	NRPV	$=$ MAXIMUM NUMBER OF MAIN PROGRAM ITERATIONS ALLOWED
C	LIMIT	$=$ MAXIMUM NUMBER OF ALGORITHM ITERATIONS ALLOWED
C	NOR	= CODE WHICH SPECIFIES THE OPTIMIZATION ALGORITHM USED
C		NOR = 1, POWELL'S METHOD (POWL)
C		NOR $=2$, STEWART'S METHOD (STEW)
C		NOR = 3, FLETCHER-POWELL'S METHOD (FLEP)
C		NOR $=4$, MODIFIED INTERIOR POINT METHOD (MIP)
C		NOR $=5$ 5, METHOD OF APPROXIMATE PROGRAMMING (MAP)
C		NOR $=6$, METHOD OF FEASIBLE DIRECTIONS (MFD)
C		NOR $=7$ 7, NEWTON'S METHOD (NEWT)
C		NOR $=8$, QUADRATIC PROGRAMMING (QP)
C		NOR $=9$, NEW PROBLEM TO BE READ IN
C		NOR $=10$, END OF JOBS
C	ISRCH	$=$ MAXIMUM NUMBER OF CURVE FITS PERMITTED IN ONED
C	IOPTS	$=$ NUMAER OF ITERATIONS PERFORMED BY MA IN PROGRAM
C	IER	$=0$ NO CONVERGENCE IN ALGORITHM
C		$=1$ CONVERGENCE
C		$=2$ MAX NO OF ITERATIONS
C	I HE	$=1$ YIELDS FIRST DERIVATIVES ONLY
C		$=2$ YIELOS FIRST AND SECOND OERIVATIVES
C	IGH	$=$ CODE FOR EFFLD
C	KOUNT	= NUMBER OF ITERATIONS PERFORMED BY ALGORITHM
C	NUSE	= NUMBER OF TIMES A SEARCH DIRECTION HAS BEEN USED
C	NSRCH	= CODE FOR SEARCH WITH POWELL'S METHOD
C	KODER()	$=$ CODF FOR STEWART'S METHOD
C	ICOEF()	$=$ VARIABLE ASSOCIATED WITH COLUMN IN A-MATRIX
C	IREM()	= ROW DESIGNATION OF ZERO B'S

1. LOAD DATA : SUBROUTINE DAT : IN = INDEX OF NDDE , IC=1 FOR FORCE IN X DIRECTION, IC=2 FOR FORCE IN Y DIRECTION, AMNT AMOUNT OF LOAD ;
2 . NOD1().LT.NOD2().LT.NOD3();
2. BOUNDARY CONDITION DATA: X DIRECTION FREEDOMS DELETED : ENTER NODE NUMBER, Y OIRECTIDN FREEDOMS DELETED : ENTER 1000 + NODE NUMBER ;
3. DIMENSION OF EK() = IBW* (NK-IBW/2+1/2);
5 - SUBROUTINE GELS IS AN IBM SSP SUBROUTINE ;
4. A()-SPACE() REPLACES D2FDT2()-SPACE() IN COMMON WORK FOR SUBROUTINES MAP, MFD,PRMDUL AND SIMP ;

COMMENT : MAIN PROGRAM AND SUMT

```
REAL*8 DATE,TIME
INTEGER VIRT,TOTAL,OPTIM,FUNTIM,DERTIM,TOTIM
COMMON/DATA/X(40),Y(40),F(80,5),P(80,5),EE,EENU,RHO,AK(1260),XL(60
*),STRS(180,6),S(60,4,5),DSDT(60,5,60),ISITP,N,M,NB,NOD1(60),NOD2(6
*0),NOD3(60),IB(80),NK,NLC,NT,IBW,NTIM(80), ISUM(80)
    COMMON/PRINT/ARSLTS (30,30), IRSLTS(30,30),IP,NONED,NFE,NGE
    COMMON/TIME/VIRT,TOTAL,OPTIM,FUNTIM,DERTIM,TOTIM
    COMMON/OPT/T {60),TMAX,TMIN,SIGA,SIGL,AL,FUNL,TACTN,WTEST,EST,EPS,
*EPM,TOL,FU,FL,FUN,TREM(62),DFDT(60),H(2010),WTIMI,WTI,DUN,RP,PEN,
*FO,FN,FM, AO, AN, AM,PO(60), ALPHA,NWORK,NRPV,LIMIT,NOR, ISRCH,IOPTS,IE
*R,IHE,IGH,KOUNT,NUSE,NSRCH,KODER(60), ICOEF(380), IREM(40),NCOL,NROW
    COMMON/WORK/DEL(60),D2FDT2(60,60),D2FDA2(61),EK(3280),EKL(21),Q(80
*,5),R(80,5),U(6,5),DUDT(80,60),SS(60,4,5),SPACE(510)
    COMMON/Z/PSI,KML(280),KM2(280)
    DIMENSION TTT(62,12),TINIT(60),CL{12),CCL(12)
```

```
C** THIS IS THE MAIN PROGRAM WHICH DIRECTS OPTIMIZATION OF A PLANE
C *** STRESS PROBLEM
    1 FORMAT (1H1)
    2 FORMAT (1OH WEIGHT = ,E15.4)
    3 FORMAT (' INITIAL VALUE OF RP = ',E15.6)
    4 FORMAT (1OH WEIGHT = E15.4,7H AFTER , I3,14H OPTIMIZATIONS)
    5 \text { FORMAT(' WEIGHT NOT CHANGING MUCH SO ALGORITHM TERMINATED')}
    6 FORMAT (' MAXIMUM NUMBER OF UNCONSTRAINED OPTIMIZATIONS ALLOWED HAS
    X BEEN REACHED. WE HAVE DONE', I 3,' OPTIMIZATIONS')
    7 FORMAT(' WE ARE BEGINNING AN UNCONSTRAINED OPTIMIZATION PROGRAM WI
        CTH RP = ',E15.41
    8 ~ F O R M A T ( ' ~ W E I G H T ~ I N C R E A S I N G , ~ A L G O R I T H M ~ T E R M I N A T E D ' ) ~
    9 FORMAT(' MATRIX T(I)'/6X,4HNODE,LIX,4HT(I)/I
    10 FORMAT (I10,E15.4)
    11. FORMAT (' ERROR CODE FRCM OPTIMIZATION ROUTINE = ',13)
    12 FORMAT(/'OINITIAL VALUES FOR ALGORITHM CONTROL PARAMETERS'/'ORESOL
        *UTION ,EL5.6/'OREL CHANGE WT ', EL5.6/'OREL CHANGE FUN',E15.6/'
        *OREL CHGE DSIGN',E15.6)
    13 FORMAT ('OCPU TIMES ARE VIRTUAL CPU TIMES IN MICRO-SECONDS **)
    14 FORMAT (' OPTIM PERFORMED ',I 10,' ONE DIMENSIONAL SEARCHES')
    15 FORMAT('OINITIAL RP COEFFICIENT = ',EI5.6)
    16 FORMAT (' FUN = 'E15.4)
    17. FORMAT(' OPTIM PERFORMED ',I10,' FUNCTIONAL EVALUATIONS')
    18 FORMAT(' OPTIM PERFORMED ',IIO,' GRADIENT EVALUATIONS')
    19 FORMAT (' BEGINNING ITERATION ',I5,' WE HAVE WEIGHT = ', El5.4,
        X' FUN = ',E15.4)
    20 FORMAT(' AFTER ITERATION ',I5,' WITH RP = ',E15.4," WE HAVE '/
        X' WEIGHT = ',E15.4/' FUN = ',E15.4)
    21 FORMAT(13)
    22. FORMAT(' UNRESTRAINED OPTIMIZATION ALGORITHM NOT SPECIFIED')
    23 FORMAT('ORP REDUCTION RATE COEFFICIENT = *,E15.6)
    24 FORMAT (IX,I 3,5E15.7)
    25 FORMAT(' DESIGN NOT CHANGING MUCH - ALGORITHM TERMINATED '।
    26 FORMAT(1X,3I10)
    27 FORMAT (1X,E15.8)
    28 FORMATI'ORESULTS FOR',I3," PARAMETER PROBLEM USING ALGORITHM NO',
    *I 3,'. DATE OF RUN ',A8,' TIME *,A8)
    29 FORMAT('OEND ITERATION ',7I15)
    30 FORMAT('OTOTAL NUMBER OF '//' ONE DIM SRCHS ',7I15)
    31 FORMAT('OFUNCTION EVALS',7I15)
    32 FORMAT ('ODERIVATIVES ',7I15)
    33 FORMAT ('1 ALGOR ITHM CODE = NOR =', 13)
    34 FORMAT{"OVALUE OF'/'OFUNCTION ',7E15.6)
    35 FORMAT ('OWEIGHT *,7E15.6)
    36 FORMAT('OCPU TIMES FOR'/ 'OFUNCTION EVALS',7I15)
    37 FORMAT ('ODERIVATIVES ',7I15)
    38 FORMAT('OOPTIMIZING ',7I15)
    39 FORMAT('OSUM OF TIMES ',7115)
    40 FORMAT ('OMAXIMUM NO OF'/ 'OITERATIONS/RP ',7115)
    41 FORMAT 'OQUAO FITS/SRCH',7I15)
    4 2 ~ F O R M A T ( ' O F E A S I B I L I T Y ~ 1 , 7 I I 5 1 )
    4 3 \text { FORMAT('OWEIGHT(SCALEO)',7EL5.6)}
```

```
    44 FORMAT('OESTIMATED FUN.',7EL5.6)
    4 5 ~ F O R M A T ( ' O A L P H A ~ M O V E ~ L I M I T ~ C O E F F I C I E N T ~ = ~ ' , E 1 5 . 6 ) ~
```



```
C
    100 CONTINUF
        WRITE(6,1)
        CALL INIT
        NWORK=N
        IF(ISITP.EQ.2)NWORK=M
        NP=NWORK
        NP1=1+NP
        NP2 =2+NP
        NRP1=1+NRPV
C sokw SAVE DATA ***
    DO 125 I=1,NWORK
    125 TINIT(I)=T(I)
        SAL=AL
        SFL=FUNL
        STN=TACTN
        EPS=1.E-05
        EPM=1.E-06
        CCC=1./160.
        PSI=. 1
C
C *** SET UP OPTIMIZATION ***
    200 CONTINUE
        CALL TIMER(DATE,TIME,VIRT,TOTAL)
        TOL=10.*EPM*SIGA
        IF(NOR.NE.6)GOTO 210
        TOL=.O1*SIGA
        KU=2*(M*NLC+NP)
        DO 205 K=1,KU
        KM1(K)=0
        KM2(K)=0
    205 CONTINUE
    210 CONTINUE
        OPTIM=0
        FUNTIM=0
        DERTIM=0
        TOTIM=0
        NFE=0
        NGE=0
        NONED=0
        IOPTS=0
        AN=0.
        FO=0.
        NFE=1
        CALL SOLVE
C *** CALCULATE WEIGHT ***
        WRITE (6,1)
        WTIML=0.
        DO 225 I=1,NWORK
```

```
    225 WTIMI=WTIM1+XL:(I)*T(I)
    IF(IP.LT.O)GOTO 1225
    WRITE(6,2)WTIMI
    1225 CONTINUE
        IF(IOPTS.NE.0)GOTO3OO
        FUN=WTIMI
        DUN=FUN
        RP=0.
    CALL TIMER(DATE,TIME,VIRT,TOTAL)
    FUNTIM=FUNTIM+VIRT
    DO 245 I=1,NWORK
    245 TREM(I)=T(I)
    TREM(NP2) =WT IM1
    IF(NOR.EQ.5.OR.NOR.EQ.6)GOTO 300
C *** Calculate penalty
    DUMI=0.
    OUM2=0.
    DO2501=1,NWORK
    250 DUM1=OUM1+1./(TMAX-T(I))+1./(T(I)-TMIN)
        DUMI=DUMI*(TMAX-TMIN)
        DO 275 I=1,M
    DO 275 LC=1,NLC
    275 DUM2=DUM2+1./(SIGA-S(I,4,LC))+1./(S(I,4,LC)-SIGL)
    PEN=(SIGA-SIGL)*DUM2+DUM1
C *** CALCULATE INITIAL RP***
C *** FIACCO AND MC CORMICK ***
    RR=.025*WTIML/PEN
    RP=1.
    FUN=PEN
    IHE=1
    DUM1=0.
    DUM2=0.
    DUM 3=0.
    DO 276 I=1,NWORK
    SPACE(I)=XL(I)
    DUM1=DUMI+XIL(I)*XL(I)
276 XL(I)=0.
    WRITE(6,27)DUM1
    IF(NOR.LE.2)GOTO 278
    CALL DERFUN
    GOTO 282
278 DO 280 I=1,NWORK
280 DEL(I)=.0001
    cALL DIffuN
282 CONTINUE
    DO 284 I=1,NWORK
    XL(I)=SPACE(I)
    DUM3=DUM3+DFDT(I)*DFDT(I)
284 DUM2=DUM2+XL(I)*OFDT(I)
    WRITE (6,27)DUM2
    RP=-DUM2/DUM3.
    WRITE(6,27)RP
```

```
            DUM 5=0UM2*DUM2-DUM1*DUM3
            IF(DUM5.LE.O.IGOTO 289
            DUM5 = SQRT (DUM5 )/ DUM3
            IF(RP) 288,288,290
    288 RP=RP+DUM5
    289 IF(RP.LT.U.IGOTO 294
    GOTO 296
    290 IF(OUM5.LT.RP)RP=RP-DUM5
    GOTO 296
    294 RP=RR
    WRITE(6,27)RP
    296 CC=RP*PEN/WTIMI
            FUN=WTIM1+PEN*RP
            WRITE (6,16) FUN
            DUN=FUN
            TREM(NP1)=FUN
            C1=CC
            EST=.9*WTIML
            DO 299 I=1,NRPV
            CCL(I)=1.
    299 CL(I)=1.
C
C C* CALL OPTIMIZATION ROUTINE ***
    300 CONTINUE
        IOPTS = I +IOPTS
        IF(IP.LT.OIGO TO 1325
        WRITE(6,1)
        WRITE (6,7)RP
        WRITE(6,19)IOPTS,WTIMI,FUN
1325 CONTINUE
        GOTO(401,402,403,404,405,406,407,408),NOR
        WRITE(6,22)
        CALL EXIT
    401 I SRCH=6+IOPTS/3
        LIMIT=NP*(2+IOPTS/2)
        CALL POWL
        GOTO 425
    402 I SRCH=6+IOPTS/3
        LIMIT=NP*(2+IOPTS/2)
        CALL STEW
        GOTO 425
    403. ISRCH=6+1OPTS/3
        LIMIT=NP*(2+IOPTS/2)
        CALL FLEP
        GOTO 425
    404 CALL MIP
        GOTO 425
    405 I SRCH=10*NP
        LIMIT=1+IOPTS/3
        ALPHA=.2
        CALL MAP
        GOTO 425
```

```
    406 ISRCH=6+1OPTS/3
    LIMIT=4+IOPTS/2
    CALL MFD
    GOTO 425
    407 I SRCH=6+1OPTS/3
        LIMIT=(1+NP*(3+IOPTS))/2
    CALL NEWT
    GOTO 425
    408 CALL QP
    GOTO 425
    425 CDNTINUE
C CALCULATE NEW WEIGHT ***
    W.TI=0.
    DO450I=1,NWORK
    450 WTI=WTI +XL(I)*T(I)
        IF(IP.LT.O)GOTOL465
        WRITE(6,1)
        WRITE(6,20)IOPTS,RP,WTI,FUN
        WRITE (6,14)NONED
        WRITE(6,17)NFE
        WRITE (6,18)NGE
        WRITE(6,11)IER
        WRITE (6,9)
        WRITE(6,10)(I,T(I),I=L,NWORK)
        WRITE (6,1)
    1465 CONTINUE
        CALL TIMER(DATE,TIME,VIRT,TOTAL)
        OPTIM=OPTIM+VIRT
        TOTIM=OPT I M+FUNT IM+DERTIM
        I=IOPTS
C*** UPDATE RESULTS MATRICES ***
    IRSLTS (I,1)=NONED
    IRSLTS(I,2)=NFE
    IRSLTS(I,3)=NGE
    IRSLTS(I,4)=FUNTIM
    IRSLTS(I,5)=DERTIM
    IRSLTS(I,6)=OPTIM
    IRSLTS(I,7)=TOTIM
    IRSLTS(I,8)=LIMIT
    IRSLTS(I,9)=ISRCH
    IFEAS=0
    IF(NOR.EQ.5)CALL FEASQ(IFEAS)
    IRSLTS(I,10)=IFEAS
    ARSLTS(I,1)=FUN
    ARSLTS(I,2)=WTI
    SCALE=1.
    IF(IFEAS.EQ.OIGOTO 480
    DUML=1./SIGA
    DUM2=1./SIGL
    DO 475 L=1,NLC
    DO 475 K=1,M
    OUM=OUML
```

```
    IF(S(K,4,L).LT.0.)DUM=DUM2
    DUM=DUM*S(K,4,L)
    IF(DUM.GT.SCALE)SCALE=DUM
    475 CONTINUE
    480 CONTINUE
    ARSLTS(I, 3)=SCALE*WTI
    ARSLTS(I,4)=EST
    WRITE (6,1)
    WRITE(6,28)NP,NOR,DATE,TIME
    WRITE(6,29)(I, I = 1,IOPTS)
    WRITE(6,30)(IRSLTS(I,1),I=1,IOPTS)
    WRITE(6,31)(IRSLTS(I,2),I=1,IOPTS)
    WRITE(6,32)(IRSLTS(I,3),I=1,IOPTS)
    IF(NOR.EQ.5.OR .NOR.EQ.6)GOTO 1900
    WRITE(6,34)(ARSLTS(I,1),I=1,IOPTS)
    WRITE(6,44)(ARSLTSII;4),I=1,IOPTS)
    1900 CONTINUE
    WRITE(6,35)(ARSLTS(I,2),I=1,IOPTS)
    IF(NOR.NE.5)GOTO 1902
    WRITE(6,42)(IRSLTS(I,10),I=1,IOPTS)
    WRITE(6,43)(ARSLTS(I,3),I=1,IOPTS)
    1902 CONTINUE
    WRITE (6,36)(IRSLTS(I,4),I=1,IOPTS)
    WRITE (6,37)(IRSLTS(I,5),I=1,IOPTS)
    WRITE(6,38)(IRSLTS(I,6),I=1,IOPTS)
    WRITE(6,39)(IRSLTS(I,7),I=1,IOPTS)
    WRITE(6,13)
    IF{NOR.EQ.5)GOTD 1905
    WRITE(6,40)(IRSLTS(I,8),I=1,IOPTS)
    WRITE(6,41)(IRSLTS(I,9),I=1,IOPTS)
    1905 CONTINUE
    WRITE(6,12)STN,WTEST,SFL,SAL
    IF(NOR.EQ.5.DR.NOR.EQ.6)GOTO 1910
    WRITE{6,15)CC
    WRITE (6,23)CCC
    GOTO 1920
    1910 CONTINUE
    IF(NOR.EQ.5)WRITE (6,45)ALPHA
    IF(NOR .EQ.6)WRITE(6,46)PSI
    1920 CONTINUE
C T** TEST FOR EXIT FROM JOB**
    500 CONTINUE
    IF(IOPTS.EQ.1)GOTO 600
    IF(NOR.EQ.5)GOTO 525
    IF(WTI.GT.WTIMI)GOTO 800
    IF(NOR.EQ.6)GOTO 525
    IF(FUN-WTI.LE.EPM*WTI)GOTO }82
    525 CONTINUE
    TEST=ABS((WTIM1-WTI)/WTI)
    550 IF(TEST .LT .WTEST)GOTO 820
    IF(NOR.NE.5)GOTD 575
    OO 560 I=1,NWORK
```

```
    TEST=ABS(TREM(I)-T(I))
    IF(TEST.GT.(AL*T(I)))GOTO. }57
    560 CONTINUE
        GOTO 840
    575 IF(1OPTS.GT.NRPV)GOTO860
    6 0 0 ~ C O N T I N U E ~
        WTIMI=WTI
        DO 610 I=1,NWORK
        TREM(I)=T(I)
    610 TTT(I,IOPTS)=T(I)
    TREM(NP1)=FUN
    TREM{NP2)=WTIM1
    TTT(NP1,IOPTS)=FUN
    TTT(NP2,1OPTS)=WTIM1
    RP=CCC*RP
    DUN=WTI +CCC*(FUN-WTI)
    FUN=DUN
    EST=WTIMI
    IF (NOR.GT. 3.AND.NDR.NE.7)GO TO 300
    IF(IOPTS.EQ.I)GOTO 300
C *** EXTRAPOLATION***
    IOP 1=1+IOPTS
    IU=IOPTS-1
    CN=CCC**IOPTS
    CL(IOPTS)=(CN-1.)/(CCC-1.)
    DO 660 I=1,IU
    CL(I)=CL(I)*(CN*(1.-CN))/(CCC*CN-CCC**I)
    660 CONTINUE
    DO 670 J=1,NP2
    670 H(J)=0.
        DO 690 I=1,IOPTS
        DO 680 J=1,NP2
        H(J)=H(J)+CL(I)*TTT(J,I)
    6 8 0 ~ C O N T I N U E .
    6 9 0 ~ C O N T I N U E ~
    DO 720 J=1,NWORK
    720H(J)=H(J)-T(J)
        EST=H(NP2)
        NUSE=1
        NSRCH=1
        KOUNT=1
        NNOR=NOR
        NOR=1
        CALL ONED
        NOR = NNOR
        GOTO 300
C
C *** OPTIMIZATION COMPLETE ***
    800 CONTINUE
        WRITE (6,8)
        DO }805\textrm{I}=1\mathrm{ , NWORK
    805 T(I)=TREM(I)
```

```
    FUN=TREM(NP1)
    WTI=TREM(NP2)
    GOTO 900
    820 CONTINUE
    WRITE(6,5)
    GOTO 900
    840 CDNTINUE
    WRITE(6,25)
    GOTO 900
    860 CONTINUE
    WRITE (6,6)IOPTS
    GOTO 900
    900 CONTINUE
C **:* READ IN NEXT JOB ***
    READ(5,21)NOR
    WRITE(6,33)NOR
    IF(NOR.EQ.10)GOTO }99
    IF (NOR.EQ. 9)GOTO100
    OO 950 I=1,NWORK
950 T(I)=TINIT\I)
    AL=SAL
    FUNL=SFL
    TACTN=STN
    GOTO 200
999 CALL EXIT
    END
```

```
    SUBROUTINE POWL
C *** NOR=1 ***
COMMON CARDS:PRINT,OPT,WORK
            IER=0
            KOUNT=0
            NZERO=0
            OO 90I=1,NWORK
            DO 85J=1,NWORK
            85 D2FDT2(I,J)=0.
            90 D2FDT2(I,I)=-1.
            100 CONTINUE
            KOUNT=KOUNT+1
            NUSE=1
            DO102J=1,NWORK
    102 PO(J)=T(J)
            ITST=0
            FO=FUN
            DELT=0.
C *** SEARCH IN THE N DIRECTIONS DEFINED BY D2FDT2
            DO108I=1,NWORK
            DO104J=1,NWORK
    104 H(J)=D2FDT2(J,I)
            FSAV=FUN
            NSRCH=I
            CALL ONED
            IF(AN.NE.O.)NZERO=O
            IF(AN.EQ.O.)NZERO=1+NZERO
            IF(NZERO.GE.NWORKIGOTO }13
            FTST=FSAV-FUN
            IFIDELT.GE.FTSTIGOTO1.06
            DELT=FTST
C *** DELT IS LARGEST CHANGE IN OF DURING THE NWORK SEARCHES
C *** ITST IS ITERATION OF THE LARGEST CHANGE
    ITST=I
    106 CONTINUE
    108 CONTINUE
            DO110J=1,NWORK
    110 PN(J)=T(J)
            FN=FUN
C *** TEST TO SEE IF WE SEARCH IN SAME dIRECTION AGAIN
    DO112J=1,NWORK
    112 T(J)=(PO(J)+PN(J))/2.
            CALL FUNCT
            FM=FUN
            DUM=FO-2.*FM+FN
            IFIDUM.LT.O.IGOTO 120
            IF(FO-4.*FM+3.*FN.GT.0.)GOTO 116
            IF(2.*DELT*DUM.GE.(FO-FN)**21GOTO 120
C *** POWL HAS DECIDED TO KEEP OLO DIRECTIONS AS TESTI.LT.TEST2
    116 CDNTINUE
```

```
DO118J=1,NWORK
T(J)=PN(J)
    118 CONTINUE
    FUN=FN
    GOTO130
C *** WE WILL SEARCH IN PN - PO DIRECTION
    120 CONTINUE
        NUSE=0
        OO 122J=1,NWORK
    122H(J)=PN(J)-PO(J)
    DO124J=1,NWORK
    124T(J)=PN(J)
    FUN=FN
    AO=-1.0
    NSRCH=NWORK +1
    CALL ONED
    IF(AN.NE.O.INZERO=O
    IF(AN.EQ.O.)NZERO=1+NZERO
    IF(NZERO.GE.NWORK)GOTO 136
C** GET NEW DIRECTION OF SEARCH
    NWM1=NWORK-1
    OO126I = ITST,NWM1
    D2FCA2(I)=D2FDA2(I+1)
    DO126J=1,NWORK
    126 D2FDT2(J,I)=D2FDT2(J,I +1)
        D2FOA2(NWORK)=D2FOA2(NWORK +1)
        DO128J=1,NWORK
    128 D2FDT 2(J,NWORK)=H(J)
C **:* DO WE TERMINATE
    130 CALL EXTEST
        IF(KOUNT.LT.NWORK)IER=0
        IF(IER.GT.0)GOTO 136
    132 DO134J=1,NWORK
    134 PO(J)=T(J)
        GOTOLOO
    136 CONTINUE
C*** NEITHER FUNCTION NOR VARIABLES CHANGING MUCH SO WE TERMINATE
        RETURN
        END
            SUBROUTINE STEW
C*** NOR=2***
    CALL FLEP
    RETURN
    END
    SUBROUTINE FLEP
C *** NDR=3***
COMMON CARDS:PRINT,OPT,WORK
```

```
\(C \quad H \quad-W O R K I N G ~ S T O R A G E ~ O F ~ D I M E N S I O N ~ N *(N+T) / 2 . ~\)
        \(N=\) NWORK
        \(I E R=0\)
        KOUNT=0
        \(\mathrm{N} 2=\mathrm{N}+\mathrm{N}\)
        \(\mathrm{N} 3=\mathrm{N} 2+\mathrm{N}\)
        N31 \(=\) N3+1
C COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
        I \(\mathrm{HE}=1\)
    100 IF (NOR.EQ. 3) GOTO102
        DO \(101 \quad I=1, N\)
        \(D E L(I)=0.001\)
    101 KOOER (I)=0
        CALL DIFFUN
        GOTO103
    102 CALL DERFUN
    103 CONTINUE
            RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
        \(1 K=N 31\)
        DO \(4 J=1, N\)
        \(H(K)=1\).
        HINV(J)=1.
        \(N J=N-J\)
        IF(NJ)5,5,2
        2 DO \(3 L=1, N J\)
        \(K L=K+L\)
        \(3 H(K L)=0\).
        \(4 K=K L+1\)
            START I TERATION LOOP
        5 KOUNT \(=\) KOUNT +1
C *** SAVE F ARG VECTOR GRAD VECTOR **
        \(F O=F U N\)
        DO \(9 \mathrm{~J}=1, \mathrm{~N}\)
        \(K=N+J\)
        \(H(K)=\operatorname{DFDT}(J)\)
        \(K=K+N\)
        \(H(K)=T(J)\)
        \(P D(J)=T(J)\)
    C DETERMINE DIRECTION VECTOR H
        \(K=J+N 3\)
        \(T T=0\).
        OO \(8 L=1, N\)
        \(T T=T T-D F D T(L) * H(K)\)
        IF(L-J)6,7,7
        \(6 K=K+N-L\)
        GO TO 8
        \(7 \mathrm{~K}=\mathrm{K}+1\)
        8 CONTINUE
        9 H(J) \(=T T\)
C
                CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H.
        \(D Y=0\).
        HNRM=0.
```

C
C
CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION VECTOR H AND GRADIENT VECTOR DFDT
DO $10 J=1, N$
$H N R M=H N R M+A B S(H(J))$
$G N R M=G N R M+A B S(D F D T(J))$
$10 D Y=D Y+H(J) * D F D T(J)$
REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF OIRECTIONAL DERIVATIVE APPEARS TO BE POSITIVE OR ZERO.
IF (DY) $11,50,50$
REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION
VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR DFDT
11 IF (HNRM/GNRM-EPS)50,50,12
C
SEARCH MINIMUM ALONG DIRECTION H
12 CONTINUE
NSRCH = 1
CALL ONED
IF (FO-FUN+EPS) $50,28,28$
C**** TEST FOR TERMINATION ****
28 CALL EXTEST
IF (KOUNT.LT. NWORK)IER=0
29 IF (IER.GT.O)GOTO 56
IF (AN.LE.O.) GOTO 100
30 IF (NOR.EEG. 3) GOTO 35
C* CALC DEL FOR STEWART***
$\mathrm{PHI}=\mathrm{FUN}$
$A B P H I=A B S(P H I)$
DO $33 \quad I=1, N$
ALPHA=HINV(I)
$A B A L=A B S(A L P H A)$
GAM=DFDT(I)
$A B G A M=A B S(G A M)$
DELPH=DEL(I)
IF (ABGAM.LT. (FUN*EPS)) GOTO33
$Z E T=T(I)$
$A B Z=A B S(Z E T)$
$E T A=E P S$
$D U M=A B S(G A M * Z E T / P H I) * E P M$
IF(ETA.LT.DUMIETA=DUM
$D U M=A B A L * A B P H I * E T A$
$D E L P H=A B P H I k E T A / A B A L$
IF ((GAM**2).LT.DUM) GOTO31
$D E L P H=2 . * S Q R T(D E L P H)$
DELPH=DELPH*(1.-(ABAL*DELPH)/(3.*ABAL*DELPH+4.*ABGAY)) GOTO32
31 DELPH=2.*((DELPH*ABGAM/ABAL)**(1./3.))
DELPH=DELPH*(1.-(2.*ABGAM)/(3.*ABAL*DELPH+4**ABGAM))
32 CONT INUE
IF ((ALPHA*GAM).LT.0.) DELPH=-DELPH
KODER(I)=0
IF ((0.5*ABAL*ABS (DELPH)).LT.(0.05*ABGAM)) GOTO33
KODER(I)=1

```
    DUM=ABGAM/ABAL
    DELPH=-DUM+SQRT(DUM***2+200.*ABPHI*ETA/ABAL)
    33 DEL(I)=DELPH
    CALL DIFFUN
    GOTO 36
    35 CALL DERFUN
    36 CONTINUE
        COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRAD FROM
        TWO CONSECUTIVE ITERATIONS
    DO 37 J=1,N
    K=N+J
    H(K)=DFDT(J)-H(K)
    K=N+K
    37H(K)=T(J)-H(K)
    Z=0.
    DO 38 J=1,N
    K=N+J
    W=H(K)
    K=K+N
    38 Z=Z+W*H(K)
    39 IER=0
        IF(NOR.EQ.3)GOTO43
        BETA=0.
        RHO=0.
        0041J=1,N
        K=N+J
        BETA=BETA+H(K)*H(J)
        RHO=RHO + (DFDT(J)-H(K))*H(J)
    41 CONTINUE
        C1=1:/BETA
        C2={1./AN-RHO*C1}
        D042J=1,N
        K=N+J
    42 HINV(J)=HINV(J)+CI*((C2-2.)*H(K)+2.*DFDT(J))*H(K)
    43 CONTINUE
        PREPARE UPDATING OF MATRIX H
    ALFA=0.
    DO 47 J=1,N
    K=J+N3
    W=0.
    DO 46 L=1,N
    KL=N+L
    W=W+H(KL)*H(K)
    IF(L-J)44,45,45
    44 K=K+N-L
    GO TO 46
    45 K=K+1
    46 CONTINUE
        K=N+J
        ALFA=ALFA+W*H(K)
    47 H(J)=W
```

```
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
C ARE NOT SATISFACTORY
        IF(Z*ALFA)48,1,48
        48K=N31
        DO 49 L=1,N
        KL=N2+L
        DO 49 J=L,N
        NJ=N2+J
        H(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA
    4 9 K = K + 1
    GO TO 5
C
        END OF ITERATION LOOP
C RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS
    50 DO 51 J=1,N
    K=N2+J
    51 T(J)=H(K)
    FUN=FO
    DO }52\textrm{J}=1,
    K=N+J
    52 DFDT(J)=H(K)
        REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE
C
C FAILS TO BE SUFFICIENTLY SMALL
    IF(GNRM-EPS) 55,55,53
        TEST FOR REPEATED FAILURE OF ITERATION
    53 IF(IER)56,54,54
    54 IER=-1
    GOTO 1
    55 continue
    5 6 ~ R E T U R N
        END
    SUBROUTINE MAP
    NOR=5 ****
C THIS SUBROUTINE SETS UP THE LINEAR PROGRAMMING PROBLEM
COMMON CARDS: DATA,PRINT,OPT,WORK
    IER=0
    KOUNT=0
    I HE=1
    NW1 =NWORK+1
    NCOL=NWORK
    NN=NWORK
    NNP1=NN+1
    IWORK = M*NLC
    IWORK 2= 2*I WORK
    NROW=I WORK 2+NWORK
    NRP1=1+NROW
    50 CONTINUE
    DO 95 J=1,NWORK
    95 PO(J)=T(J)
    9 9 ~ C O N T I N U E ~
    KOUNT=KOUNT+1
```

```
    FO=FUN
    CALL DERFUN
    00 100 J=1,NWORK
    DO 100 L=1,NLC
    OO 100 K=1,M
    I=(L-1)*M+K
    100 A(I,J)=-DSDT(K,L,J)
    DO 105 J=1,NWORK
    DO 105 1=1, I WORK
    105 A(I+IWORK,J)=-A(I,J)
    DO 115 J=1,NWORK
    DO 110 I=1,NWORK
    110 A(IWORK2+I,J)=0.
    115 A(I WORK 2+J,J)=1.
    DO 120 J=1,NWORK
    120 A(NRP1,J)=XL(J)
    A(NRP1,NNP1)=0.
    ONMA=ALPHA*(TMAX-TMIN)
    DO 135 I=1,NN
    TL(I)=TMIN
    TU(I) = TMAX
    RRR=T(I)-ONMA
    IF(RRR.GT.TL(I))TL(I)=RRR
    SSS=T(I)+ONMA
    IF(SSS.LT.TU(I))TUSI)=SSS
135 CONTINUE
    DO 145 L=1,NLC
    OO 145 J=1,M
    JJ=M*(L-1)+J
    SUM=0.
    DO 140 K=1,NN
    140 SUM=SUM+OSDT(J,L,K)*(T(K)-TL(K))
        SUM=SUM-S(J,4,L)
    A(JJ,NNP1)=-SIGL-SUM
    145 A(JJJ+IWORK,NNP1)=SIGA+SUM
    DO 150 I =1,NN
    150 A(IWORK2+I,NNP1)=TU(I)-TL(I)
    CALL PRMDUL
    DO 300 I=1,NWORK
    T(I)=H(I)
    300 T(I)=T(I)+TL(I)
    CALL FUNCT
    CALL EXTEST
    IF(IER.EQ.0)GOTO 50
    900 CONTINUE
    RETURN
    END
    SUBROUTINE MFD
C *** NOR=6 ***
COMMON CARDS:DATA,PRINT,OPT,WORK,Z
```

```
    NFAIL=0
    IER=0
    NP=NWORK
    NCOL=NP+1
    KOUNT=0
    IHE=1
    NP2 =NP +2
    KU=2*(M*NLC+NP)
100 KOUNT = KOUNT+1
    CALL DERFUN
    IF(KOUNT.GT.1)GOTO 125
    IF(IOPTS.GT.1)GOTO 125
    AM=0.
    DO 105 I=1,NP
105 H(I)=-XL(I)
    FU=SIGA-TOL/2.
    FL=SIGL+TOL/2.
    CALL FSMOVE
    GOTO 100
125 NROW=1
    IU=2*M*NLC
    DO 130 I=1,IU
    A(I,NCOL)=0.
130 A(I,NP2)=0.
    GNRM=0.
    DO 150 I=1,NP
    A(1,NP2)=A(1,NP2)+XL(I)
    GNRM=GNRM+ABS{XL(I)|
150 A(1,I)=XL(I)
    A(I,NCOL)=GNRM
    FU=SIGA-TOL
    FL=SIGL+TOL
    TTCL=TOL
    TEST=1.E+50
    II=0
    DO 275 L=1,NLC
    DO 275 K=1,M
    DUN=S(K,4,L)
    II = I +II
    IACT=0
    IF(KM1(II)+KM2(II).GE.2)IACT=1
    KM2(II)=KM2(II)+KM1\II)
KML(II)=0
IF(DUM.GE.FU)KML(II)=1
IF(KMI(II)+IACT.EQ.O)GOTO 225
DDUM=SIGA-DUM
IF(DDUM.LT.TTOL)TTOL=DDUM
TTEST=TOL-DDUM
NROW=1 + NROW
A (NROW,NCOL)=0.
DO 200 I= l,NP
A(NROW,NCOL)=A(NROW,NCOL )+ABS(OSDT(K,L,I))
```

```
    A(NROW,NP2)=A(NROW,NP2)+DSDT(K,L,I)
200 A(NROW,I)=OSDT(K,L,I)
    A(NROW,NP2)=A(NROW,NP2)-TOL
    A(NROW,NCOL)=A(NROW,NCOL)*PSI
    TTEST=TTEST/A(NROW,NCOL)
    IFITTEST.GE.O..AND.TTEST.LT.TESTITEST=TTEST
225 II=1+II
    I ACT=0
    IF(KMI(II)+KM2(II).GE.2)IACT=1
    KM2(II)=KM2(II)+KM1(II)
    KMI(II)=0
    IF(DUM.LE.FL)KM1(II)=1
    IF(KMI(II)+IACT.EQ.O)GOTD 275
    DDUM=DUM-SIGL
    IF(DDUM.LT.TTOL)TTOL=DDUM
    TTEST=TOL-DDUM
    NROW=1+NROW
    A(NROW,NCOL)=O.
    DO 250 I=1,NP
    A(NROW,NCOL) =A(NROW,NCOL)+ABS(OSDT (K,L,I))
    A(NROW,NP2)=A(NROW,NP2)-DSDT(K,L,1)
250 A(NROW,I)=-DSDT(K,L,I)
    A(NROW,NP2) =A(NROW,NP2)-TOL
    A(NROW,NCOL)=A(NROW,NCOL)*PSI
    TTEST=TTEST/A(NROW,NCOL)
    IF(TTEST.GE.O..AND.TTEST.LT.TEST)TEST=TTEST
275 CONTINUE
    IF(NROW.ER.1)TEST=0.
    IL = 1+NROW
    IU=1+3*NP+IL
    DO 300 J=1,NCOL
    DO 300 I=IL,IU
300 A(I,J)=0.
    FU=TMAX*(1.-TOL/SIGA)
    FL=TMIN*(1.+TOL/SIGA)
    DO 375 J=1,NP
    DUM=T(J)
    II=I+II
    IACT=0
    IF(KM1(II)+KM2(II).GE.2)IACT=1
    KM2(II)=KM2(II)+KM1(II)
    KMIIII)=0
    IF(DUM.GE.FU)KMI(II)=1
    IF(KMI(II)+IACT.EQ.O)GOTO }35
    NROW=1+NROW
    A(NROW,J)=1.
    A(NROW,NP2)=1.
350.II = 1+II
    IACT=0
    IF(KMI(II)+KM2(11).GE.2)IACT=1
    KM2(II)=KM2(II)+KM1(II)
    KMl(II)=0
```

```
    IF(DUM.LE.FL)KMI\II)=1.
    IF(KM1(II)+IACT.EQ.O)GOTO 375
    NROW=1+NROW
    A(NROW,J)=-1.
    A(NROW,NP2)=-1.
    375 CONTINUE
    OO 400 J=1,NP
    NROW=1 + NROW
    A(NROW,J)=1.
    400 A(NROW,NP2)=2.
    NRP1=NROW+1
    A(NRP1,NCOL)=-1.
    A(NRP1,NP2)=0.
C *** DIRECTION PROBLEM IS SET UP ***
    I I SRCH=I SRCH
    ISRCH=10*NP
    CALL PRMDUL
    I SRCH=I I SRCH
    IF(IER.GT. IIGOTO 462
    DO 460 I=1,NP
    460 H(I)=H(I)-1.
    CALL GETMA(AMAX,AMIN)
    IF(AMAX.EQ.O.)GOTO 462
    IF(ABS(H(NCOL)).LT.L.E-10)GOTD 999
    GOTO 475
    462 CONTINUE
    I ER=0
    NFAIL=1+NFAIL
    IF(NFAIL.GE.10)GOTO 999
    DO 465 K=1,KU
    KM1(K)=0
    KM2(K)=0
    465 CONTINUE
    TOL=TOL/2.
    IF(NFAIL.GE.2)GOTO 125
    IF(TOL.LT.TTOL)TOL=TTOL
    GOTO 125
    475 CONTINUE
    AM=TEST/ABS(H(NCOL))
    NFAIL=0
    FU=SIGA-TOL/2.
    FL=SIGL+TOL/2.
    DO 495 I=1,NWORK
    495 PO(I)=T(I)
    FO=FUN
    500 CALL FSMOVE
    CALL EXTEST
    IF\IER.EQ.OIGOTO 100
999 CONTINUE
    RETURN
    END
```

```
    SUBROUTINE NEWT
C*** NOR=7**
C* SUBROUTINE PERFORMS NEWTON-RAPHSON WITH ONE DIM. SEARCHES
COMMON CARDS:PRINT,OPT, WORK
    5 FORMAT(' HESS SINGULAR,RETURN')
            IER=0
            KOUNT=0
            IHE=2
    100 CONTINUE
            KOUNT=KOUNT+1
            FO=FUN
            DO 150 I=1,NWORK
    150 PO(I)=T(I)
            CALL DERFUN
            GNRM=0.
            DO 200 I=1,NWORK
            GNRM=GNRM+ABS(OFDT(I))
            H(I)=-DFDT(I)
            IF((GNRM-EPS).LE.O.IGOTO }99
            KH=1
            DO 300 J=1,NWORK
            DO 299 I=1,J
            HE(KH)=D2FDT2(I,J)
    298 KH=KH+1
    299 CONTINUE
    300 CONTINUE
    400 CALL GELS(H,HE,NWORK,1,EPS,IER,AUX)
            IF(KS.EQ.IJGOTO 500
            GO TO 600
    500 WRITE (6,5)
            GOTO999
    600 CONTINUE
            HNRM=0.
            DO 650 I=1,NWORK
            HNRM=HNRM+ABS(H(I))
    650 CONTINUE
            NSRCH=KOUNT
            CALL ONED
    700 CONTINUE
C*** CHECK FOR TERMINATION****
            CALL EXTEST
            IF(IER.EQ.OIGOTO 100
    999 RETURN
            END
            SUBROUTINE QP
C*** NOR=8 ww*
    RETURN
    END
```

```
    SUBROUTINE EXTEST
COMMON CAROS:PRINT,OPT
    1 FORMAT(' DESIGN NOT CHANGING MUCH')
    2 FORMAT (' FUNCTION NOT CHANGING MUCH")
    3 FORMAT(' NO CONVERGANCE AFTER',I5,'ITERNS')
        IER=0
        DO50I=1,NWORK
        QTEST=ABS(PO(I)-T(I))
        IF(QTEST.GT.(AL*T(I)))GOTO75
    50 CONTINUE
        WRITE(6,1)
        QTEST=ABS(FD-FUN)
        IF(QTEST.GT.(FUNL*FO)) GOTO75
        WRITE(6,2)
        IER=1
        RETURN
    75 IF{KOUNT.GE.LIMITJGOTO100
        RETURN
    100 WRITE(6,3)KOUNT
        IER=2
        RETURN
        END
```


COMMENT : SEARCH ALGORITHMS

```
            SUBROUTINE ONED
C** THIS SUBROUTINE PERFORMS A ONE DIMENSIONAL SEARCH
C *** AT CONCLUSION IT YIELDS A NEW DESIGN AND NEW GRADIENTS
COMMON CAROS:PRINT,OPT,WORK
            1 FORMAT (' REGION CONVEX RETURN TO ALGORITHM')
            2 FORMAT(' CAN NOT FIND SECOND FEASIBLE POINT ')
            3 FORMATI' CAN NOT FIND THIRD FEASIBLE POINT 'I
            4 FORMAT(' CAN NOT FIND FDURTH FEASIBLE POINT ')
            8 FORMAT(' INTERVAL OF UNCERTAINTY BELOW ACCEPTABLE SO WE STOPPED')
            9 FORMAT(' SEARCH TERMINATED AFTER *, 13," TRIES')
            19 FORMAT (' ABS (H) =0. RETURN **********')
            21 FORMAT(" REGION FLAT,SEARCH TERMINATED AT BEST POINT = *El5.8)
            22. FORMAT('LAST POINT FURTHEST FROM BEST POINT,SEARCH TERMINATED')
            NONED=NONED+1
            DQQ=0.
            DO105I=1,NWORK
            DQ=ABS(HII))
            IF(DQ.LT.DQQ)GOTO105
            DQQ=DQ
            105 CONTINUE
            IF(DQQ.EQ.0.1GOTO995
            ADK =TACTN/DQQ
            110 CONTINUE
            KVEX=0
            ICNT=0
            IOIR=0
            IQF=0
            Al=0.
            A2=0.
            A 3 =0.
            A4=0.
            F2=0.
            F3=0.
            F4=0.
            Fl=FUN
            FSAVE=FUN
C** SAVE BEST ***
            AA=A1
            FF=F1
            AQ=A1
            FQ=F1
C*****************
    115 CALL GETMA(AMAX,AMIN)
            DO120I= 1,NWORK
    120 TSAVE(I)=T(I)
            FSAVE=FUN
            AH=0.
```

```
    DO125J=1,NWORK
    125 AH=AH+H(J)*H(J)
        AH=SQRT (AH)
        DY=0.
C *** GET SECOND POINT ***
    200 CONTINUE
    IF(NOR.GT.1)GOTO205
    201 IF(NUSE.EQ.1)GOTO202
        A2 =A1
        F2=F1
        A1=AO
        F1=FO
        GOT0295
    202 A2=5.*ACK
        GOT0220
    205 DO206J=1,NWORK
    206 DY=DY+H(J)*DFDT(J)
    212 IF(IP.LT.3)GOTO1012
1012 CONTINUE
    IF(DY) 215,216,213
    213 DO214J=1,NWORK
    214H(J)=-H(J)
        DY=-DY
        ATEMP =-AMIN
        AMIN = - AMAX
        AMAX=ATEMP
    215 ALFA=(EST-FSAVE)/DY
        A2=10.*AOK
        IF(ALFA.GT.A2)A2=ALFA
        IF(A2.GT.1.)A2=1.
        IF(A2.LT.O.)A2=-A2
        GOTO220
    216 A2=1.
    220 CONTINUE
        AQ=A2
    221 IF (AQ.GE.AMAX)AQ=(A1+AMAX)/3.
    222 IF(AQ.LE.AMIN)AQ=(AI+AMIN)/3.
        DO226I=1,NWORK
    226 T(I)=TSAVE(I)+AQ*H(I)
        CALL FUNCT
        FQ=FUN
C *:* IS 2NO POINT FEASIBLE
        CALL FEASQ(IFEAS)
        IF(IFEAS.EQ.O)GOTO295
        IF(AQ.GT.O.)AMAX=AQ
        IF\AQ.LT.O.)AMIN=AQ
        IF(ABS (A2).LT.AOK)GOTO 275
        ICNT=ICNT+1
        IF(ICNT.GT.10)GOTO275
        GOTO 220
    275 IDIR=IDIR+1
        IF(IDIR.GT.1)GOTO821
```

```
    DO280 J=1, NWORK
    280 H(J)=-H(J)
        ATEMP = - AMIN
        AMIN =-AMAX
        AMAX=ATEMP
        GOTO202
    295 ICNT=0
    A2=AQ
    F2. = FQ
    IF(F2.GT.F1)GOTO 298
    IF(F1,GT.F2)AMIN=A1
    AA=A2
    FF=F2
    GOTO 300
    298 AMAX=A2
C *** A FEASIBLE 2ND POINT IS NOW FOUND
C *** GET THIRD POINT ***
    300 CONTINUE
        IF(AMAX-AMIN.LE.2.*AOK)GOTO }80
        FMIN=FF
    301 IF(NOR.GT. 1)GOT0305
    302 IF(F2.LT.F1)GOTO303
        AQ =A1+2.*(AI-A2)
        FMIN=FF
        GOTO 310
    303 AQ=A2+2.*(A2-A1)
    FMIN=FF
    GOTO 310
    305C1=(DY*(A1-A2)-(F1-F2))/((A1-A2)*(A1-A2))
            C2=OY-2.*C1*A1
C *** IS REGION CONCAVE:WILL A MAXIMUM BE PREDICTED? ***
    306 CT=EPM*(F2+F1)/((A2-A1)**2)
        IF(C1.GT.CT)GOTO307
        AQ=A2+3.*(A2-A1)
        FMIN=FF
        GOTO 310
    307 AQ=-C2/(2.*C1)
    FMIN=(C1*(AQ+A1)+C2)*(AQ-A1)+F1
    310 CONTINUE
    320 IF(AQ.GE.AMAX)AQ=(A1+A2+AMAX)/3.
    321 IF(AQ.LE.AMIN)AQ=(A1+A2+AMIN)/3.
    DO330I=1,NWORK
    330 T(I)=TSAVE(I)+AQ*H(I)
    CALL FUNCT
    FQ=FUN
    IF(A2.GT.A1)GOTO331
    ATEMP=A1
    FTEMP = F1
    |1=A2
    F1=F2
    A2 = ATEMP
    F2=FTEMP
```

```
    331 IF(AQ.LT.A2.AND.AQ.GT.A1)GOTO 337
C*** CHECK FEASIBILITY***
    335 CALL FEASQ(IFEAS)
        IF(IFEAS.EQ.0)GOT0337
        ICNT=ICNT+1
        IF(ICNT.GT.10)GOTO993
        IF(AQ.GT.A2)GOT0336
        AMIN=AQ
        GOTO 320
    336 AMAX=AQ
    GOTO 320
C *** REORDER POINTS ***
    337 ICNT=0
        A 3 =AQ
        F3=FQ
        IF(A3.GT.A2)GOTO339
        AT=A3
        FT=F3
        A 3 = A2
        F3=F2
        A2=AT
        F2=FT
        IF(A2.GT.A1)GOTO339
        AT=A2
        FT=F2
        A2=A1
        F2=F1
        A1=AT
        Fl=FT
    339 CONTINUE
C ** A FEASIBLE 3RD POINT IS FOUND
C *** GET FOURTH POINT ***
    400 IF(FF.LE.FQ)GOTO 405
        AA=AQ
        FF=FQ
    405 CONTINUE
        IF(F3.GE.F2.AND.A3.LT.AMAX)AMAX=A3
        IF(F1.GE.F2.AND.A1.GT.AMIN)AMIN=Al
        IF(F1.GT.F2.AND.F2.GE.F3)GOTO 410
        IF(F1.LE.F2.AND.F2.LT.F3)GOTO 415
        GOTD 420
    410 IF(A2.GT.AMIN)AMIN=A2
    GOTO 420
    415 IF(A2.LT.AMAX)AMAX=A2
    420 CONTINUE
        IF(AMAX-AMIN.LE.2.*AOK)GOTO }80
C*** IS REGION CONVEX - WILL A MAXIMUM BE PREDICTED ?**
    A31=A3-A1
    A21=A2-A1
    A32=A3-A2
    C1=(F1-F2)/(A21*A31)-(F2-F3)/(A32*A31)
    CT=EPM*(F3+F1)/(A3-A1)**2)
```

```
    425 IF(C1.GT.CT)GOTO 440
    IF(CI.LE.O.)GOTO }81
    IF(AA.LT.A3)GOTO }30
    A1=A2
    F1=F2
    A2=A3
    F2=F3
    GOTO 302
    440 CONTINUE
    KVEX=0
    ICNT=0
    IQF=IQF+1
    C 2=(F2-F3)/(-A32)-C1*(A2+A3)
    AQ=-C2/(2.*C 1)
    D2FDA2(NSRCH)=C1*2.
    FMIN=(C1*(AQ+A1)+C2)*(AQ-A1)+F1
    445 CONTINUE
    450 CONTINUE
    455 IF(AQ.GE.AMAX)AQ=(A2+A3+AMAX)/3.
    460 IF(AQ.LE.AMIN)AQ =(A1+A2+AMIN)/3.
    DO 465 I=1,NWORK
    465 T(I)=TSAVE(I)+AQ*H(I)
    CALL FUNCT
    FQ=FUN
C*** CHECK FEASIBILITY ***
    470 [F(AQ.LT.A3.AND.AQ.GT.A1)GOTO 485
    4 7 5 ~ C A L L . ~ F E A S Q ( I F E A S )
        IF(IFEAS.EQ.O)GOTO 485
        ICNT = ICNT +1
        IF(ICNT.GT.10)GOTO994
        IFIAQ.GT.A3IGOTO 480
        AMIN=AQ
        GOTO 450
    480 AMAX=AQ
        GOTO 450
C *** REORDER POINTS ***
    485 ICNT=0
        A4 =AQ
        F4=FQ
        IF(A4.GT.A3)GOTO 490
        AT=A4
        FT=F4
        A4 =A3
        F4=F3
        A 3 =AT
        F3=FT
        IF(A3.GT.A2)GOTO 490
        AT=A3
        FT=F3
        A 3 = A2
        F3=F2
        A2 = AT
```

```
            F2=FT
            IF(A2.GT.A1)GOTO 490
            AT=A2
            FT=F2
            A2=A1
            F2=F1
            A1=AT
            F1=FT
        490 IF(IP.LT.2)GOTO 1025
    10)25 CONTINUE
        495 CONTINUE
C ** FOURTH FEASIBLE POINT IS FOUND ***
C *** DISCARD ONE POINT ***
    500 CONTINUE
    505 [F(F2.LT.F1.AND.A1.GT.AMIN)AMIN=A1
    515 IF(F3.LT.F4.AND.A4.LT.AMAX)AMAX=A4
        IF\AQ.EQ.A1.AND.AA.EQ.A4 IGOTO }81
        IF(AA.EQ.AI.AND.AQ.EQ.A4)GOTO }81
        IF(AQ.EQ.A4)GOTO525
        IF(AQ.EQ.A1)GOTO535
        IF(AA.EQ.A4)GOTO525
        IF(AA.EQ.A1)GOTD 535
        IF(F3.LT.F2)GOTO520
        IF(F1.GT.F2)GOTO525
        GOT0535
    520 IF\F4.GT.F31GOTO535
    525 Al=A2
        F1=F2
        A 2 =A 3
        F2=F3
        A3 = A4
        F3=F4
    535 A4=0.
    F4=0.
    545 CONTINUE
        IF(AMAX-AMIN.LE.2.*ADK)GOTO 800
C *冰* IS MINIMUM BOUND ? ***
    IF(F2.GT.F1.OR.F2.GT.F3)GOTO 400
C* TEST FOR TERMINATION OF SEARCH***
    700 CONTINUE
    705 IF((A3-A1).LE.(2.*AOK))GOTO 800
        IF(A1.EQ.A2.OR.A2.EQ.A3)GOTO }80
        IF(IQF.GE.ISRCH)GOTO 805
        GOTO 400
C *** AN EXIT REQUIREMENT HAS BEEN FULFILLED ***
    800 IF(IP.LT.2)GOTO 820
            WRITE(6,8)
            GOTO 820
    805 IF(IP.LT.2)GOTO 820
        WRITE (6,9)IQF
        GOT0820
    810 IF(IP.LT.2)GOTO 820
```

```
    WRITE(6,21)AA
    GOTO820
    815 IFIIP.LT.2IGOTO820
        WRITE(6,22)
        GOTO820
    816 IF(IP.LT.2IGOTO 820
        WRITE(6,1)
    820 CONTINUE
        IF(FQ.LT.FFIGOTO830
    821 AQ=AA
    DO825 [ =1,NWORK
    825 T(I)=TSAVE(I)+AQ*H(I)
    CALL FUNCT
        FQ=FUN
        CALL FEASQ(IFEAS)
    830 CONTINUE
        AN=AQ
        GOT0999
C IF WE ARRIVED HERE AN ERROR IS APPARENT AND PROBLEM TERMINATED
    992 WRITE(6,2)
        GOT0821
    993 WRITE (6,3)
        GOTO821
    994 WRITE (6,4)
        GOT0821
    995 WRITE(6,19)
        AN=0.
    9 9 9 ~ R E T U R N
            END
        SUBROUTINE FSMOVE
COMMON CARDS:DATA,PRINT,OPT,WORK
    NP =NWORK
    NONED =NONED +1
    IQF=0
    I 1=0
    12=0
    13=0
    I4=0
    IQ=1
    IF1=0
    IF2=0
    IF3=0
    IF4=0
    IFQ=0
    Al=0.
    A2=0.
    A 3=0.
    A4=0.
    AQ=0.
    DQQ=0.
```

```
            DO 110 I= 1,NP
            DQ=ABS(H(I))
    110.IF(DQ.GT.DQQ)DQQ=DQ
            IF(DQQ.EQ.O.)GOTO 910
            AOK =TACTN/DQQ
            DO 120 I=1,NP
    120 TT(I)=T(I)
C *** FIND MOVE TO NON-LINEAR CONSTRAINTS ***
C UPPER BOUND FROM LINEAR CONSTRAINTS ***
C ** THEN FORM DIRECTIONAL DERIVATIVES ***
    CALL GETMA(AMAX,AMIN)
    IF(AMIN.LT.O.)AMIN=0.
    IF(AM.LT.AMAX)AMIN=AM
    DO 250 K=1,M
    DO 250 L=1,NLC
    SS(K,l,L)=S(K,4,L)
    DO 220 IS=2,4
    220 SS(K,IS,L)=0.
    DY=0.
    DO 225 I=1,NP
    225 DY = DY+DSDT (K,L,I)*H(I)
    250 SS(K,4,L)=DY
    II=1
C *** LINEAR FIT ***
    300 A2=AMAX
    DO 325 K=1,M
    OO 325 L=1,NLC
    DY=SS(K,4,L)
    IF(ABS(DY).LT.1.E-25)GOTO 325
    Fl=SS(K,l,L)
    IF(DY.GT.O.)AT={FU-F1)/DY
    IF(DY.LT.O.)AT=(FL-F1)/DY
    IF(AT.GT.AOK.AND.AT.LT.A2)A2=AT
    325 CONTINUE
        IF(A2.LT.AMIN)A2=AMIN
        AQ=A2
        DO 350 I=1,NP
    350 T(I)=TT(I)+AQ*H(I)
    CALL FUNCT
    CALL FEASQ(IFEAS)
    DO 375 K=1,M
    DO 375 L=1,NLC
    375SS(K,2,L)=S(K,4,L)
        I 2=2
        10=2
        IF2=IFEAS
        IFQ=IFEAS
        IF(IFEAS.EQ.-1)GOTO 960
        IF(IFEAS.EQ.I.AND.AQ.LT.AMAX)AMAX=AQ
C ** QUADRATIC FIT TO DY,A1,A2 ***
    400 AT=0.
        A3 = AMAX
```

```
    C1=1./( A1-A2)
    C2 =0.
    C 3 = 0.
    C4=A1+A2
    DUM=2.*EPS ( ( (A2-A1)**2)
    DO 425 K=1,M
    DO 425 L=1,NLC
    F1=SS(K,1,L)
    F2=SS(K,2,L)
    DY=SS(K,4,L)
    QB=C1*(F1-F2)
    QA=C1*(DY-QB)
    QT=ABS(DUM*(F1+F2))
    IF(ABS(QA).LE.QT)GOTO 425
    QB=QB-QA*C4
    QC=F1-A1*(QA*A1+QB)
    AT = AMAX
    CALL ROOT(QA,QB,QC,AOK,AT,AMIN)
    IF(AT.LT.A3)A3=AT
    425 CONTINUE
    IF(A3.EQ.A2)A3=(A1+A2)/2.
    435 AQ=A3
    DO 450 I=1,NP
    450 T(I)=TT(I)+AQ*H(I)
    CALL FUNCT
    CALL FEASQ(IFEAS)
    DO 475 K=1,M
    DO 475 L=L,NLC
    475 SS(K,3,L)=S(K,4,L)
        I 3=3
        IQ=3
        IF3=IFEAS
        IFQ=IFEAS
C *** ORDER PTS A1,A2,A3 ***
    IF(A3.GT.A2)GOTO 485
    AT}=A
    A 3 =A2
    A2=AT
    IT=13
    I 3=12
    I2 = IT
    IFT=IF3
    IF3=IF2
    IF2=IFT
    485 CONTINUE
        IF(IFEAS.EQ.-1)GOTO 960
        IF(IFI.EQ.0)AMIN=A1
        IF{IF2.EQ.0) AMIN=A2
        IF(IF3.EQ.0) AMIN=A3
        IF(IF3.EQ.1)AMAX=A3
        IF(IF2.EQ.1) AMAX =A2
C *** QUADRATIC FIT TO A1,A2,A3 ***
```

```
    500 AT=0.
    AA=A1
    IF(IFI.EQ.O.AND.AI.GT.AMINIAMIN=AI
    IF(IF2.EQ.1)GOT0505
    AA=A2
    IF(A2.GT.AMIN)AMIN=A2
    IF(IF3.EQ.1)GOT0510
    AA =A 3
    IF(A3.GT.AMIN)AMIN=A3
    GOTO 515
    505 IF(A2.LT.AMAX)AMAX=A2
    GOTO 515
    510 IF(A3.LT.AMAX)AMAX=A3
    515 CONTINUE
    A4=AMAX
    I QF=IQF+1
    C1=1./(Al-A2)
    C2=1./(A2-A3)
    C 3 = 1./(A3-A1)
    C4=A1+A2
    DUM=2.*EPS/((A3-A1)**2)
    DO 525 K=1,M
    DO 525 L=1,NLC
    Fl=SS(K,I1,L)
    F2=SS(K,I2,L)
    F3=SS(K,I3,L)
    QB=C1*(F1-F2)
    QA=C3*(C2*(F2-F3)-QB)
    QT=ABS(DUM* (F1+F3))
    IF(ABS(QA).LE.QTIGOTO 525
    QB=QB-C4*QA
    QC=F1-(QA*A1+QB)*A1
    AT =AMAX
    CALL ROOT(QA,QB,QC,AOK,AT,AMIN)
    IF(AT.LT.A4)A4=AT
    525 CONTINUE
    IF(A4.EQ.A3)A4=(A3+A2)/2.
    IF(A4.EQ.A2)A4=(A1+A2)/2.
    535 AQ=A4
    IQ=4
    DO 550 I=1,NP
    550 T(I)=TT(I)+AQ*H(I)
    CALL FUNCT
    CALL FEASQ(IFEAS)
    IF4=IFEAS
    IFQ=IFEAS
    14=4
C *** ORDER PTS Al A2 A3 A4
    IF(A4.GT.A3)GOTO }58
    AT=A4
    A4=A3
    A3 =AT
```

```
    IT=I4
    I4=13
    I 3=IT
    IFT=IF4
    IF4=IF3
    IF3=IFT
    IF(A3.GT.A2)GOTO 585
    AT=A3
    A 3 =A2
    A2=AT
    IT=I3
    I 3 = I 2
    I2=IT
    1FT=1F3
    IF3=IF2
    IF2=IFT
    IF(A2.GT.A1)GOTO 585
    AT=A2
    A2=A1
    A1=AT
    IT=I2
    I2=I1
    II=IT
    IFT=IF2
    IF2=IF1
    IFI=IFT
    5 8 5 ~ C O N T I N U E
    IF(IFEAS.EQ.-I)GOTO }96
    IF(IFEAS.EQ.L.ANO.AQ.LT.AMAX)AMAX=AQ
    IFIIFEAS.EQ.O.AND.AQ.GT.AMIN:AMIN=AQ
C TEST FOR TERMINATION
    600 CONTINUE
        IF(IQF.GE.ISRCH)GOTO 920
        IF(IFI.EQ.O)GOTO 625
        IF(A1.EQ.O.)GOTO 625
    625 IF(IF2.EQ.O)GOTO }63
        AT=A2-A1
        GOTO 655
    635 IF(IF3.EQ.0)GOTO }64
        AT=A3-A2
        GOTO 655
    645 IFIIF4.EQ.O)GOTO 700
        AT=A4-A3
    655 AT =ABS(AT)
        IF(AT.LE.ACK)GOTO 930
C *** NO TERMINATION CONDITION FULFILLED ***
C *** SELECT REDUNDANT POINT ***
    700 1FT=0
        IF(IFI.EQ.IFT)IFT=1
        IDIS=I4
        ADIS=A4
        IF(IF2.EQ.IFT)GOTO 710
```

```
    IDIS=I1
    ADIS=A1
    IF(IQ.NE.IIIGOTO }72
    IDIS=I2
    ADIS=A.2
    IF(IF3.NE.IFTIGOTO .720
    IDIS=14
    ADIS=A4
    GOTO 720
    710 IF(IQ.NE.I4)GOTO 720
    IDIS=I3
    ADIS=A3
    720 CONTINUE
C** UPDATE MATRIX + INDICES ***
    DO }725\textrm{K}=1,
    DO 725 L=1,NLC
    725 SS(K,IDIS,L)=S(K,4,L)
    IF(AQ.EQ.A1)II=IDIS
    IF(AQ.EQ.A2)I2=IDIS
    IF(AQ.EQ.A3)I3=IDIS
    IF(AQ.EQ.A4)I4=IDIS
    IF(ADIS.EQ.A1)GOTO 735
    IF(ADIS.EQ.A2)GOTO }74
    IF(ADIS.EQ.A3IGOTO 745
    IF(ADIS.FQ.A4)GOTO 750
    735 Al=A2
        I1=12
        IFI=IF2
    740 A2=A3
    I2=I I
    IF2=IF3
    745 A3 =A4
        I 3=I4
        IF3=IF4
    750 A4=0.
        I 4=0
        IF4=0
C*:* POINT DISCARDED,FIND NEW POINT ***
    GOTO 500
C*** ERROR OR TERMINATION MESSAGES ****
    910 CONTINUE
    WRITE(6,6)
    CALL EXIT
    920 IF(IP.LT.2)GOTO 940
        WRITE(6,1)
        GOTO 940
    930 IF(IP.LT.2)GOTO940
        WRITE(6,2)
        GOTO 940
    940 IF(AA.EQ.AQ)GOTO960
    IF(IFQ.EQ.O)GOTO960
    AQ=AA
```

```
    DO 950 I=1,NP
    950 T(I)=TT(I)+AQ*H(I)
    CALL FUNCT
    960 IF(IP.LT.2)GOTO980
    980 IF(IP.LT.1)GOTO 990
    990 RETURN
    1 FORMAT(' MAX = OF QUADRATIC FITS REACHED')
    2 FORMAT(" CONSTRAINT LIES IN INTERVAL LESS THAN RESOLUTION')
    6 \mp@code { F O R M A T ( " ~ M A X ~ C O M P O N E N T ~ O F ~ H = 0 . 0 ~ ' ) }
        END
            SUBROUTINE PRMDUL
C *** A. PRIMAL-DUAL LINEAR PROGRAMMING ALGORITHM ***
COMMON CARDS:PRINT,OPT, WORK
            3 FORMAT\'LP SOLUTION UNBOUNDED. EXECUTATION TERMINATED'।
            4 FORMAT(" LP ALGORITHM ANTICIPATES LOOPING. EXECUTATION TERMINATED*
                X)
    8 FORMAT(' GYCLING PREVENTION ALGORITHM ERROR NO 1')
    9 FORMAT(' CYCLE PRENTION ALGORITHM ERROR NO 2')
    13 FORMAT(' CAN NOT FIND INITIAL FEASIBLE SOLUTION')
    19 FORMAT('OA PIVOT CAN NOT BE FOUND AFTER',I3,' ITERATIONS'I
C
M = NUMBER OF ROWS IN COEF MATRIX OF INEQUALITY EQS
C A = MATRIX CONTAINING COEFS,COSTS,RH SIDES,AND OF
C IREM(I = ROW DESIGNATION OF ZERO B'S
    N=NCOL
    M=NROW
    NP1=N+1
    MP1=M+1
            NDUM=N+M
            I SAVE=0
            J SAVE=0
                D098J=1,NDUM
    98 ICOEF(J)=J
    ICOUNT =0
    99 CCNT INUE
    ICOUNT = ICOUNT+1
    ATEST=1.E+75
    ICK=0
    JCK=0
    CTEST=1.
    DO100J=1,N
    IF(A(MP1,J).GE.CTESTIGOTO1OO
    JCK=J
    CTEST=A(MP1,J)
100 CONTINUF
    IF(CTEST.LT.O.IGOTO 101
    GOTO 161
    101 IF(ICOUNT.GE.ISRCH)GOTO 952
    ICTEST=0
```

```
C *** FIND A PIVOT FOR PRIMAL PROBLEM ***
    DO 102 I=1,M
        IF(A(I,JCK):*A(I,NP1).LT.0.IGOTO 103
        IF(A(I,JCK).GT.O.)GOTO 103
    102 CONT INUE
C SOLUTION UNBOUNDED
        G0T0951
    103 CONTINUE
        DO111I=1,M
    111 IREM(I)=0
        K=0
        DO 114 I=1,M
```



```
    112 IF(A(I,NPI).NE.O.)GOTO 114
        IF(A(I,JCK).EQ.O.)GOTO 114
            K=K+1
        IREM(K)=I
            ATEST=0.
                ICK=I
        GOTO 114
    113 CONTINUE
        ATEST1=A(I,NP1)/A(I,JCK)
        IF(ATEST1.GT.ATEST)GOTO 114
        ATEST=ATESTL
        ICK=I
    114 CONTINUE
        NLOOK=N
    118 CONTINUE
        IF(K.LT.2)GOTO 153
C AT LEAST 2 B'S ZERO
    NLOOK=NLOOK+1
    NTEST=N+M+1
    IF(NLOOK.GE.NTEST)GOTOS53
    DO 123 J=1,NDUM
    IF(ICOEF(J).EQ.NLOOK)GOTO }12
    123 CONTINUE
    GOT0954
    124 CONTINUE
        JLOOK=J
        IF(JLOCK.LE.N)GOTO 141
        IDUMY = JLOOK -N
        DO 131 I=1,MP1
    131 DUMMY(I)=0.
        DUMMY(IDUMY)=1.
        GOTO 143
    141 DO 142 I=1,MP1
    142 DUMMY(I)=A(I,JLOOK)
    143 CONTINUE
        KK=0
        ATEST=1.E+75
        DO 152 I=1,K
        II=IREM(I)
```

```
        IF(OUMMY(II).NE.O.)GOTO 151
        KK=KK+1
        IREM(KK)=II
        ATEST=0.
        IC.K=II
        GOTO 152
    151 ATEST1=DUMMY(II)/A(II,JCK)
        IF(ATEST1.GT.ATEST)GOTO 152
        ATEST=ATESTL
        ICK=II
    152 CONTINUE
        K=KK
        GOTO118
    153 CONTINUE
C ** A(ICK,JCK) = PIVOT FOR PRIMAL SIMPLEX ***
    IF(ICK.EQ.ISAVE.AND.JCK.EQ.JSAVE)GOTO.952
    ISAVE=ICK
    JSAVE=JCK
    CALL SIMP(ICK,JCK)
    GOTO.99
C *** AN OPTIMAL SOLUTION HAS BEEN REACHED ***
    161 CONTINUE
C** CHECK FEASIBILITY***
    I ICK=0
    JJCK=0
    TEST=0.
    DO 162 I=1,M
    IF(A(I,NPI).GT.TEST)GOTO 162
    TEST=A(I,NP1)
    IICK=I
    162 CONTINUE
    IF(TEST.GE.-1.E-8)GOTD 900
C ** FIND A PIVOT FOR DUAL PROBLEM ***
    I COUNT = I+I COUNT
    IF\ICOUNT.GE.ISRCHIGOTO }95
    ATEST}=-1.E+7
    K=0
    DO 165 J=1,N
    IF(A(IICK,J)*A(MP1,J))164,163,165
    163 IF (A(MP1,J).NE.O.IGOTO 165
    IF(A/IICK,J).EQ.O.IGOTO 165
    K=1+K
    IREM(K)=J
    ATEST=0.
    JJCK=J
    GOTO 165
    164 ATESTI=A(MP1,J)/A(IICK,J)
    IF(ATEST1.LT.ATEST)GOTO 165
    ATEST=ATEST1
    JJCK=J
    165 CONTINUE
    IF(K.LT.2)GOTO 169
```

```
            ATEST=0.
            DO 167 J=1,N
            IF(A(MPI,J).NE.O.IGOTO 167
            DUM=ABS(A(IICK,J))
            IF(DUM.LT.ATEST)GOTO 167
            ATEST=DUM
            JJCK=J
    167 CONTINUE
    169 CONTINUE
C *** A(IICK,JJCK) = PIVOT FOR DUAL SIMPLEX ***
    IF\IICK*JJCK.EQ.OIGOTO 170
    IF(IICK.EQ.ISAVE.AND.JJCK.EQ.JSAVEIGOTO }95
    I SAVE=IICK
    JSAVE=JJCK
    CALL SIMP(IICK,JJCK)
    GOTO 161
    170 WRITE(6,19)ICOUNT
        IER=5
        GOTO 910
C ** A BASIC FEASIBLE OPTIMAL SOLUTION HAS BEEN REACHED
    900 CONTINUE
    910 IF(IP.LT.2)GOTO 1940
    1940 CONTINUE
    912 CONTINUE
    DO 915 J=1,N
    915 H(J)=0.
    DO 920 J=NP1,NDUM
    I=J-N
    K=ICOEF(J)
    IF(K.GT.N)GOTO }92
    H(K)=A(I,NPI)
    920 CONTINUE
    OF=-A(MP1,NP1)
        G0T0999
    951 WRITE(6,3)
            IER=3
            GOTO 910
    952 WRITE (6,4)
            IER=4
            GOTO 910
    953 WRITE(6,8)
            RETURN
    954 WRITE(6,9)
            RETURN
    955.WRITE(6,13)
    999 RETURN
                END
            SUBROUTINE SIMP(ICK,JCK)
C THIS SUBROUTINE CHANGES TABLEAU
COMMON CARDS:PRINT,OPT,WORK
```

```
    N=NCOL
    M=NROW
    NP1=N+1
    MP1=M+1
C ICK IS ROW DESIGNATION OF PIVOT
C THE ICK+N COLUMN WILL LEAVE BASIS
    IREMI=ICOEF(JCK)
    ICOEF(JCK) =ICOEF(ICK+N)
    ICOEF(ICK+N) =IREMI
    CHANGE TABLEAU
    A(ICK,JCK)=1./A(ICK,JCK)
    DO 105 J=1,NP1
    IF(J.EQ.JCK)GOTO 105
    A(ICK,J)=A(ICK,J)*A(ICK,JCK)
    105 CONTINUE
    DO 110 J=1,NP1
    IF(J.EQ.JCK)GOTO 110
    DO 110 I=1,MP1
    IF(I.EQ.ICK)GOTO 110
    A(I,J)=A(I,J)-A(I,JCK)*A(ICK,J)
    110 CONTINUE
    DO 115 I= 1,MPI
    IF(I.EQ.ICK)GOTO 115
    A(I,JCK)=-A(I,JCK):A(ICK,JCK)
    115 CONTINUE
    RETURN
    END
    SUBROUTINE ROOT(QA,QB,QC,AOK,AT,AMIN)
COMMON CARDS:OPT
    DUM2 =.5/QA
    DUN1=QB* {-DUM2)
    DT = (AOK/DUM2) \psi*2
    QT=(.01*(-QB))**2
    IF(DT.LT.QT)DT=QT
100 DUM=QB*QB-4.*QA*(QC-FU)
    IF(DUM.GT.O.) GOTO 150
    IF(DUM**2.LT.DT**2)GOTO 120
    GOT0400
120 IF(DUML.GT.O.)AT=DUMI
    GOTO 400
150 DUM=DUM2*SQRT(DUM)
    QT=DUM1+DUM
200 IFIQT.GT.AMIN.AND.QT.LT.ATIAT=QT
    QT=DUM1-DUM
300 IF(QT.GT.AMIN.AND.QT.LT.ATIAT=QT
400 DUM=QB*QB-4.*QA*(QC-FL)
    IF (DUM.GT.0.)GOTO 450
    IFIOUM**2.LT.DT**21GOTO 420
    GOT0700
420 IF(DUM1.GT.O..AND.DUMI.LT.AT)AT=DUMI
```

```
            GOTO 700
    450 DUM=DUM2*SQRT (DUM)
                            QT=DUM 1 +DUM
    500 IF\QT.GT.AMIN.AND.QT.LT.ATIAT=QT
    QT=DUMI-DUM
    600 IF(QT.GT.AMIN.AND.QT.LT.AT)AT=QT
    700 RETURN
    END
        SUBROUTINE FEASQ(IFEAS)
C THIS SUBROUTINE TELLS WHETHER DESIGN IS FEASIBLE
COMMON CARDS:DAT A,PRINT,OPT
    1 FORMAT(' IFEAS = ',I2,' - CONSTRAINT TIGHT ')
    2 FORMAT(" IFEAS = ',I2,' - DESIGN FEASIBLE *)
    3 FORMAT(" IFEAS = ',I2," - DESIGN UNFEASIBLE ')
        IFEAS=0
    OO 100 L =1,NLC
    DO 100 K=1,M
    TEST=S(K,4,L)
    TTEST=TEST-SIGL
    TEST=SIGA-TEST
    IF(TTEST.LT.TEST)TEST=TTEST
    IF(TEST.GT.TOL)GOTO 100
    IF(TEST.LT.-TOLIGOTO 200
    IF(NOR.EQ.5)GOTO 100
    IF(TEST.LT.O.)GOTO 200
    IF(NOR.NE 6)GOTO 100
    IFEAS=-1
    100 CONTINUE
    GOTO 300
    200 [FEAS=1
    300 IF(IP.LT.2)GOTO 400
    IF(IFEAS)325,350,375
    325 WRITE(6,1)IFEAS
    GOTO 400
    350 WRITE (6,2)IFEAS
    GOTO 400
    375 WRITE(6,3)IFEAS
    400 CONTINUE
    RETURN
    END
C THIS SUBROUTINE FINDS MAXIMUM VALUE OF A ALLOWABLE SO AS NOT TO
C HAVE T .GE. TMAX OR T .LE. TMIN
COMMON CARDS:PRINT,OPT
    1 FORMAT (//' DIRECTION OF TRAVEL IS DETERMINED AS'//4X,1HI,6X,
        S9HDIRECTION/I
    2 FORMAT(I5,E15.4)
    3 FORMAT(//' MAXIMUM MOVE IN DIRECTION = ',E15.4,' MINIMUM = ',
```

```
    XE15.4)
    K=0
    DO 100J=1,NWORK
    IF(H(J).GT.0.)GOTO105
    IF(H(J).LT.O.IGOTO110
    GOTO100
105 CONTINUE
    AMAXT=(TMAX-T(J))/H(J)
    AMINL=(TMIN-T(J))/H(J)
    GOT090
110 CONTINUE
    AMAXT=(TMIN-T(J))/H(J)
    AMINL=(TMAX-T(J))/H(J)
90 CONTINUE
    K=K+1
    IF(K.GE.2)GOTO91
    AMAX=A MAXT
    AMIN=AMINL
    GOTO100
    91 CONTINUE
        IF(AMAXT.GE.AMAX)GOTD }9
    AMAX=AMAXT
    92 IF (AMINL.LT.AMIN)GOTO 100
    AMIN=AMINL
100 CONTINUE
    IF(IP.LT.I)GOTO200
    WRITE (6,1)
    WRITE(6,2)(I,H(I),I=1,NWORK)
    WRITE (6,3)AMAX,AMIN
200 CONTINUE
    RETURN
    END
```


COMMENT : FUNCTION AND DERIVATIVE ALGORITHMS

```
    SUBROUTINE FUNCT
COMMON CARDS:DATA,PRINT,TIME,OPT
    CALL TIMER(DATE,TIME,VIRT,TOTAL)
    OPTIM=OPTIM+VIRT
    NFE=NFE+1
    300 CONTINUE
    CALL SOLVE
    IFINOR.EQ.5.OR.NOR.EQ.6)GOTO150
    FUNI=0.
    FUN2=0.
    FUN3=0.
    00100I=1,NWORK
    FUN1=FUN1+T(I)*XL(I)
    FUN2=FUN2+1./(TMAX-T(I))+1./(T(I)-TMIN)
    100 CONTINUE
    FUN2=(TMAX-TMIN)*FUN2*RP
    FUN 3=0.
    OO110LC=1,NLC
    DO110I=1,M
    DUM=ABS(SIGA-S(I,4,LC))
    IF(DUM.LT.1.E-50)GOTO200
    DUM=ABS(S(I,4,LC)-SIGL)
    IF(DUM.LT. 1.E-50IGOTO200
    110 FUN3=FUN3+1./(SIGA-S(I,4,LC))+1./(S(I,4,LC)-SIGL)
    FUN3=(SIGA-SIGL)*FUN3*RP
    FUN=FUN1+FUN2+FUN3
    112 CONTINUE
    GOTO175
    150 FUN=0.
    DO 155 I=1,NWORK
    155 FUN=FUN+T(I)*XL(I)
    175 CONTINUE
    200 CONTINUE
    CALL TIMER(OATE,TIME,VIRT,TOTAL)
    FUNTIM=FUNTIM+VIRT
    RETURN
    END
    SUBROUTINE DERFUN
COMMON CARDS:DATA,PRINT,TIME,OPT,WORK
    CALL TIMER(DATE,TIME,VIRT,TOTAL)
    OPTIM=OPTIM+VIRT
    NGE=NGE+1
    NN=N+N
    INLC=NLC
    DO 60 LC=1,NLC
    DO 50 I S = 1,4
```

```
    DO 50 K=1,M
    SS(K,IS,LC)=S(K,IS,LC)
    50 CONTINUE
    DO 60 K =1,NN
    Q(K,LC)=P(K,LC)
    R(K,LC)=F(K,LC)
60 CONTINUE
    DO 100 I=1,NWORK
    DFDT(I) =0.0
    OD 100 J=I,NWORK
    D2FDT2(I,J)=0.0
100 CONTINUE
105 CONTINUE
    NLC = L
    DO 7010 LC=1,INLC
    IGH=1
    DO 2000 I=1,NWORK
    DO 975 K=1,NN
975 F(K,1)=0.0
    J=I
    IF(ISITP.EQ.2)GOTO1001
    OO 1000 K=1,M
    CALL EFFLD(I,J,K,LC)
1000 CONTINUE
    gOTO1003
1001 K=0
1002 CONTINUE
    CALL EFFLD(I,J,K,LC)
1003 CONTINUE
    CALL CHOS
    CALL FIXU
    DO 1050 L=1,NN
    DUDT (L,I)=P(L,L)
1050 CONTINUE
1061 CALL GETS
    IF(ISITP.EQ.2)GOTO1201
    DO 1200 K=1,M
    S(K,4,1)=(SS(K,3,LC)*6.*S{K,3,1)+SS(K,2,LC)*(2.*S(K,2,1)-S(K,1,1))
    C+SS(K,1,LC)*(2.*S(K,1,1)-S(K,2,1)))/(SS(K,4,LC)*2.)
1200 CONTINUE
1201 CONTINUE
    IF(NOR.NE.5.AND.NOR.NE .6)GOTO 1225
    OO 1220 K=1,M
1220 DSOT(K,LC,I)=S{K,4,1)
    GOTO 2000
1225 CONTINUE
    DO 1251 K=1,M
    DO 1250 IS =1,4
    DSDT(K,IS,I)=S(K,IS,1)
1250 CONTINUE
1251 CONTINUE
```

```
1253 CONTINUE
    DO 1500 K=1,M
    DUM=1./(SIGA-SSIK,4,LC))**2-1./(SS(K,4,LC)-SIGL)**2
    DFDT(I)=DFDT(I)+DSDT(K,4,I)*DUM
1499 CONTINUE
1500 CONTINUE
1999 CONTINUE
2000 CONTINUE
2001 CONTINUE
    IF(IHE.EQ.1)GOT07007
    IF(NOR.EQ.5.OR.NOR.EQ.6)GOTO7007
    IF(IHE.EQ.2)GOTO3000
    GOT08110
3000 I GH=2
3001 CONTINUE
    DO 7005 I=1,NWORK
    DO 7000 J=I,NWORK
4000 CONTINUE
    DO 4025 K=1,NN
4025 F(K,1)=0.0
    IF(ISITP.EQ.2)GOTO5001
    00 5000 K=1,M
    CALL EFFLD(I,J,K,LC)
    CALL EFFLO(J,I,K,LC)
5000 CONTINUE
    GOTO5004
5001 K=0
5 0 0 2 ~ C O N T I N U E ~
    CALL EFFLD(I,J,K,LC)
5003 CONTINUE
    CALL EFFLD(J,I,K,LC)
5004 CONTINUE
5 0 1 0 ~ C O N T I N U E ~
    CALL CHOS
    CALL FIXU
    CALL GETS
    IF(ISITP.EQ.2IGOTO6001
    DO 6000 K=1,M
    S(K,4,1)=(SSIK,1,LC)*(2.*S(K,1,1)-S(K,2,1))+SS(K,2,LC)*(2.*S(K,2,1
    C)-S(K,1,1))+SS(K,3,LC)*6.*S(K,3,1)+DSDT(K,1,1)*(2.*DSDT(K,1,J)-DSD
    CT(K,2,J))+DSDT(K,2,I)*(2.*DSDT(K,2,J)-DSOT(K,1,J))+DSOT(K,3,I)*6.*
    CDSDT(K,3,J)-DSDT(K,4,I)*2.*DSDT(K,4,J))/12.*SS(K,4,LC))
6000 CONTINUE
6 0 0 1 ~ C O N T I N U E ~
6 9 8 6 ~ C O N T I N U E ~
    DO 6990 K=1,M
    D2FDT2(I,J)=D2FDT2(I,J)+S(K,4,1)*(1./((SIGA-SS(K,4,LC))**2)-1./((SS
    C(K,4,LC)-SIGL)**2))+2.*DSDT(K,4,I)*DSDT(K,4,J)*(1./((SIGA-SS(K,4,
    CLC))**3)+1./((SS(K,4,LC)-SIGL)***3))
6 9 9 0 ~ C O N T I N U E ~
7 0 0 0 ~ C O N T I N U E
7005 CONTINUE
```

```
7007 CONTINUE
7010 CONTINUE
    IF(NOR.EQ.5.OR.NOR.EQ.6)GOTO8000
    OO 7050 I=1,NWORK
    DUM=(SIGA-SIGL)*DFDT(I)
    OFDT(I)=OUM
    DUM=1./(TMAX-T(I))**2-1./(T(I)-TMIN)**2
    DUM={TMAX-TMIN)*DUM
    DUM=DFDT(I)+DUM
    DUM=RP*DUM
    DFDT(I)=DUM+XL(I)
7050 CONTINUE
7051 CONTINUE
    IF(IHE.EQ.1)GOTO8000
7100 CONTINUE
    DO 7255 I=1,NWORK
    DO 7250 J=I,NWORK
    D2FOT2(I,J)=(SIGA-SIGL)*D2FDT2(I,J)
7125 CONTINUE
    IF(I-J)7200,7150,7200
7150 D2FDT2(I,J)=D2FDT2(I,J)+2.*(TMAX-TMIN)*((1./(TMAX-T(I))**3)+
    C (1./(T(I)-TMIN))**3)
7200 CONTINUE
7210 CONTINUE
    02FDT2(I,J)=RP*D2FDT2(I,J)
7211 CONTINUE
    D2FDT2(J,I)=D2FDT2(I,J)
7250 CONTINUE
7255 CONTINUS
8000 CONTINUE
    NLC=INLC
    DO 8100 LC = 1,NLC
    DO 8050 K=1,NN
    F(K,LC)=R(K,LC)
    P(K,LC)=Q(K,LC)
8050 CONTINUE
    DO 8100 IS =1,4
    DO 8100 K=1,M
    S(K,IS,LC)=SS(K,IS,LC)
8100 CONTINUE
    CALL TIMER(OATE,TIME,VIRT,TOTAL)
    DERTIM=DERTIM+VIRT
    RETURN
8110 CALL EXIT
    END
    SUBROUTINE EFFLD(I,J,K,LC)
COMMON CARDS:DATA,PRINT,OPT,WORK
        4 FORMAT (' ERROR : IGH=',I2)
    100 IF(IGH.NE.1)GOTO200
    DO 105 L=1,NK
```

```
    P(L,L)=Q(L,LC)
    GOTO 210
200 IF(IGH.NE. 2)GOTO207
201 DO 205 L=1,NK
    P(L,1)=DUDT(L,J)
205 CONTINUE
105 CONTINUE
    GOTO 210
207 WRITE (6,4) IGH
210 CONTINUE
213 CONTINUE
    IFIISITP.EQ.2)GOTO280
    IF(NODI(K).EQ.I)GO TO 225
    IF(NOO3(K).EQ.I)GO TO 225
    IF(NOD2(K).EQ.I)GO TO 225
    GOTO275
225 IF\IP.LT.4IGOTO226
226 CONTINUE
    N1=NOO1(K)+NOD 1(K)-1
    N2=N1+1
    N3=NOD 2(K) +NOO2(K)-1
    N4=N3+1
    N5=NOD3(K)+NOD3(K)-1
    N6 =N5+1
    ML=21*(K-1)+1
    M2 =M1+1
    M3=M2+1
    M4=M3+1
    M5 =M4+1
    M6=M5+1
    M7 =M6+1
    M8=M7+1
    M9 =M8+1
    M10=M9+1
    M11=M10+1
    M12=M11+1
    M13=M12+1
    M14=M13+1
    M15=M14+1
    M16=M15+1
    M17=M16+1
    M18=M17+1
    M19=M18+1
    M20=M19+1
    M21=M20+1
    D1=-(AK(M1)*P(N1,1)+AK(M2)*P(N2,1)+AK(M3)*P(N3,1)
1 +AK(M4)*P(N4,1)+AK(M5)*P(N5,1)+AK(M6)*P(N6,1))/3
    D2=-(AK(M2)*P(N1,1)+AK(M7)*P(N2,1)+AK(M8)*P(N3,1)
1 +AK(M9)*P(N4,1)+AK(M10)*P(N5,1)+AK(M11)*P(N6,1))/3
    D3=-(AK(M3)*P(N1,1)+AK {M8)*P(N2,1)+AK(M12)*P(N3,1)
1 +AK(M1 3)*P(N4,1)+AK(M14)*P(N5,1)+AK(M15)*P(N6,1))/3
    04=-(AK(M4)*P(N1,1)+AK(M9)*P(N2,1)+AK(M13)*P{N3,1)
```

```
    1 +AK(M16)*P(N4,1)+AK(M17)*P(N5,1)+AK(M18)*P(N6,1))/3
    D5 =-{AK(M5)*P(N1,1)+AK(M10)*P(N2,1)+AK(M14)*P(N3,1)
    1 +AK(M17)*P(N4,1)+AK(M19)*P(N5,1)+AK(M20)*P(N6,1))/3
    D6=-(AK(M6)*P(N1,1)+AK(M11)*P(N2,1)+AK(M15)*P(N3,1)
    1. +AK(M18)*P(N4,1)+AK(M20)*P(N5,1)+AK(M21)*P(N6,1))/3
    F(N1,1)=F(N1,1)+D1
    F(N2,1)=F(N2,1)+D2
    F(N3,1)=F(N3,1)+D3
    F(N4,1)=F(N4,1)+D4
    F(N5,1)=F(N5,1)+D5
    F(N6,1)=F(N6,1)+D6
    GOT0284
275 IF(IP.LT.4)GOTO276
276 CONTINUE
    GOT0284
280 CONTINUE
    N1=NOD1(I)+NOD1(I)-1
    N2=N1+1
    N3=NOD2(I)+NOD2(I)-1
    N4 =N3+1
    M1=10*(I-1)+1
    M2 =M1+1
    M3 =M2+1
    M4 =M3+1
    M5 =M4+1
    M6 =M5+1
    M7 =M6+1
    M8 =M7+1
    M9=M8+1
    M10=M9+1
    D1=-(AK(M1)*P(N1,1)+AK(M2)*P(N2,1)+AK(M3)*P(N3,1)+AK(M4)*
    XP{N4,1)}
    D2=-(AK(M2)*P(N1,1)+AK(M5)*P(N2,1)+AK(M6)*P(N3,1)+AK(M7)*
    XP(N4,1))
    D3=-(AK(M3)*P(N1,1)+AK(M6)*P(N2,1)+AK(M8)*P(N3,1)+AK(M9)*
    XP(N4,1))
    D4=-(AK(M4)*P(N1,1)+AK(M7)*P(N2,1)+AK(M9)*P(N3,1)+AK(M10)*
    XP(N4,1))
    F(NL,1)=F(N1,1)+D1
    F(N2,1)=F(N2,1)+D2
    F(N3,1)=F(N3,1)+D3
    F(N4,1)=F(N4,1)+D4
284 CONTINUE
286 CONTINUE
    RETURN
    END
    SUBROUTINE DIFFUN
COMMON CARDS:DATA,PRINT,OPT,WORK
    FOO=FUN
    DO 105 I=1,NWORK
```

```
105 TT(I)=T(I)
    DO 110 I=1,NWORK
    T(I)=TT(I)+DEL(I)
    CALL FUNCT
    FPO(I)=FUN
    DFDT(I)=(FUN-FOO)/DEL(I)
    IF(KODER(I).EQ.0)GOTO110
    T(I)=TT(I)-DEL(I)
    GALL FUNCT
    OFDT(1)=(FPO(I)-FUN)/(2.*DEL(I))
    110.T(I)=TT(I)
1015 CONTINUF
    IF(IHE.EQ.1)GOTO140
115 DO 130 I= 1,NWORK
    T(I)=TT(I)+DEL(I)
    JU=I-1
    IF(JU.EQ.O)GOTO121
    DO 120 J=1,JU
    T(J)=TT(J)+DEL(J)
    CALL FUNCT
    FPP=FUN
    D2FDT2(J,I)={FPP-FPO(I)-FPO(J)+FOO)
    DUM=DEL(I)*DEL(J)
    D2FDT2(J,I)=D2FDT2(J,I)/DUM
    120 T(J)=TT(J)
    121 T(I)=TT(I)-DEL(I)
        CALL FUNCT
    DUM=FPO(I)-FOO-FOO+FUN
    D2FDT2(I,I)=DUM/(DEL(I)**2)
130 T(I)=TT(I)
140 FUN=FOO
    RETURN
    END
```

```
COMMENT : STRUCTURAL ANALYSIS ALGORITHMS
    SUBROUTINE SOLVE
    CALL MERGE
    CALL DCOP
    CALL CHOS
    CALL FIXU
    CALL GETS
    RETURN
    END
        subroutine inIt
        CALL DAT
        CALL GIBW
        CALL INWK
        CALL GETAK
        RETURN
        END
        SUBROUTINE DAT
C THIS SUBROUTINE READS DATA
COMMON CARDS:DATA,PRINT,OPT
        l FORMAT(1H1)
        2 FORMAT(I3)
        3 FORMAT(19H NUMBER OF NODES = ,13//5H NODE,14X,1HX,14X,1HY,14X,1HT/
        C)
        4 FORMAT(2F15.4)
        FORMAT(1X,I4,3F15.4)
        6 FORMAT(21H NUMBER OF MEMBERS =,13//5H MEM,3X,2HN1,3X,2HN2,3X,3H
        XN3,4X,11HAREA IF ROD/I
    7 FORMAT(4I3,F15.4)
    8.
        FORMAT(1X,14,315)
    9 FORMAT(33H NUMBER OF BOUNDARY CONDITIONS = ,13//5H NODE,3X,2HBCI
    10
        FORMAT(1X,I4,15)
    12 FORMAT (F15.4)
    13 FORMAT (14H PRINT CODE = ,13)
    16 FORMAT(19H NUMBER OF LOADS = ,I3//5H NODE,5H CODE,9X,6HAMOUNT/)
17 FORMAT(IX,I4,I5,F15.4)
    18 FORMAT(28H SIZE OF STIFFNESS MATRIX = ,13)
    19 FORMAT(I5)
    21 FORMAT(12H MOD ELAS = ,E15.4/18H POISSONS RATIO = ,E15.4)
    30 FORMAT(I5,4E15.4)
    31 FORMAT (21H MAXIMUM THICKNESS = ,E15.4/21H MINIMUM THICKNESS = ,
        XE15.4/' ALLOWABLE STRESS IN TENSION = ',EI5.4/' ALLOWABLE STRESS I
        XN COMPRESSION = ',E15.4/'ONUMBER OF ITERATIONS FOR WHICH RP LOWERE
        XD',16X,'= ',15)
    32 FORMAT(' UOA TERMINATES WHEN (WTI-WTIM1)/WTI LESS THAN WTEST',6X,'
        X=',E15.4)
    33 FORMAT (24H NUMBER OF LCAD CASES = ,13)
    34 FORMAT(E15.4)
    35 FORMAT(11H DENSITY = ,E15.4)
```

```
    36 FORMAT (13H LOAD CASE = ,I3)
    38 FORMAT(I5,F15.4)
    39 FORMAT(' WE ARE DOING PLATE PROBLEM IF ISITP IS L, ROD PROBLEM IF
    X2, ISITP = ',I3)
    40 FORMAT (1X,14,215,5X,F15.4)
    41 FORMAT(' RESOLUTION FOR DESIGN VARIABLES IS TACTN',16X,' =',
        XE15.4)
    42 FORMAT('SUBROUTINE DAT')
    44 FORMAT('OUNCONSTRAINED OPTIMIZATION ALGORITHM NUMBER',13X,'=',I5)
    4 5 \text { FORMAT(' UOA TERMINATES WHEN AL DESIGN CHANGES LESS THAN AL',7X,}
        X'=',E15.4/21X,'AND FUN CHANGES LESS THAN FUNL',7X,'=',E15.4)
        READ(5,2)ISITP
        WRITE(6,39)ISITP
        WRITE(6,1)
        READ(5,2) N
        WRITE(6,3) N
        OO 100 I=1,N
        READ(5,5) I,X(I),Y(I),T(I)
100 WRITE(6,5) I,X(I),Y(I),T(I)
        WRITE(6,1)
        READ(5,2) M
        WRITE(6,6) M
        DO 110 I=1,M
        READ(5,7) ID,NOD1(I),NOD2(I),NOD3(1),DUMMY
        IFIISITP.EQ.1)GOT0105
        T(I)=DUMMY
        WRITE(6,40)I,NOD1(I),NOD2(I),T(I)
        GOTO110
    105 CONTINUE
    WRITE(6,8) I,NOD1(I),NOD2(I),NOD3(I)
    110 CONTINUE
    WRITE (6,1)
    READ(5,2) NB
    WRITE(6,9) NB
    DO 120 I=1,NB
    READ(5,19) IB(I)
120 WRITE(6,10) I,IB(I)
    NK=2*N
    WRITE(6,1)
    REAO(5,2)NLC
    WRITE(6,33)NLC
    DO 130 I=1,NK
    DO130LC=1,5
    F(I,LC)=0.
130 P(I,LC)=0.
    DO141LC=1,NLC
    WRITE (6,1)
    WRITE(6,36)LC
    READ(5,2) NL
    WRITE(6,16) NL
    DO140 I=1,NL
    READ(5,17) IN,IC,AMNT
```

```
    WRITE(6,17) IN,IC,AMNT
    IDI=2*(IN-1)+IC
    140 F(ID1,LC)=AMNT
    141 CONTINUE
    WRITE (6,1)
    READ(5,2) IP
    WRITE(6,13) IP
    WRITE(6,18) NK
    READ(5,4) EE,EENU
    WRITE(6,21) EE,EENU
    READ(5,12)RHO
    WRITE(6,35)RHO
    REAO(5,30) NRPV,TMAX,TMIN,SIGA,SIGL
    WRITE(6,31)TMAX,TMIN,SIGA,SIGL,NRPV
    READ(5,30)LIMIT,AL,FUNL,TACTN,WTEST
    WRITE(6,32)WTEST
    WRITE(6,45)AL,FUNL
    WRITE(6,41)TACTN
    READ(5,2)NOR
    WRITE(6,44)NOR
    RETURN
    END
    SUBRDUTINE GIBW
COMMON CARDS:DATA
    1 FORMAT (14H BAND WIOTH = I I)
        I BW=0
        IF(ISITP.EQ.2)GOTO200
        DO 100 I = 1,M
        IDM=2\pi(NOD3(I)-NODI(I)+1)
        IF(IDM.LE.IAW) GO TO 100
        I BW=IDM
    100: CONTINUE
            GOTO300
    200 CONTINUE
    DO250I = 1,M
    IOM=2*(NOD2(I)-NOD1(I)+1)
    IF(IDM.LE.IBWIGOTO250
    IBW=IDM
    250 CONTINUE
    300 CONTINUE
        WRITE(G,1) IBW
        RETURN
        END
        SUBROUTINE INWK
COMMON CARDS:DATA,PRINT
    NT=0
    OO 100 I=1,NK
    IDI=I+IBW-1
```

```
            IF(IDI.GT.NK) GO TO 60
            NTIM(I)=IBW
            GO TO 100
60 NTIM(I)=NK-I+1
100 NT=NT+NTIM(I)
            ISUM(1)=1
            DO 200 I=2,NK
            IM1=1-1
200 ISUM(I)=ISUM(IM1)+NTIM(IMI)
1000 CONTINUE
            RETURN
            END
            SUBROUTINE GETAK
COMMON CARDS:CATA,PRINT,WORK
    D090 I=1,N
90 XL(I)=0.
    IF(ISITP.EQ.2)GOTO2000
    IDUM=0
    DD 1000MEM=1,M
    NI=NOD1(MEM)
    N2=NOD 2(MEM)
    N3=NOD3(MEM.)
    XI=X(N1)
    x2=x(N2)
    X3=X(N3)
    Y1=Y(N1)
    Y2=Y(N2)
    Y3=Y(N3)
    X31=X3-X1
    Y31=Y3-Y1
    x32=x3-x2
    Y32=Y3-Y2
    X21=X2-X1
    Y21=Y2-Y1
    A123=.5*(X32*Y21-X21*Y32)
    A123=ABS(A123)
    Cl=EE /(4.*A123*(1.-EENU*EENU))
    C2=EE /(8.*A123*(1.+EENU))
    v=EENU
    EKL(1)=C1*Y32*Y32+C2*X32*X32
    EKL(2)=-C1*V*Y32*X32-C2*X32*Y32
    EKL(3)=-Cl*Y32*Y31-C 2*X32**31
    EKL(4)=C1*V*Y32*\times31+C 2* X 32*Y31
    EKL(5)=C1*Y32*Y21+C 2*X32*X21
    EKL(6)=-C1*V*Y 32**21-C 2*X32*Y21
    EKL(7)=C1*X32*X32+C2*Y32*Y32
    EKL(8)=C1*V*X32*Y31+C 2*Y32*X31
    EKL(9) =-C1*\times32*X31-C 2*Y32*Y331
    EKL(10)=-C1*V*X32*Y21-C2*Y32*X21
    EKL(11)=C1*X32*X21+C 2*Y32*Y21
```

```
    EKL(12)=C1*Y31*Y31+C2*X31*X31
    EKL(13)=-C 1*V*Y31*X31-C2*X31*Y31
    EKL{14)=-C1*Y31*Y21-C2*X31*X21
    EKL(15)=C1*V*Y31*X21+C2*X31*Y21
    EKL(16)=C 1*X31*X31+C 2*Y31*Y31
    EKL(17)=C1*V*X31*Y21+C2*Y31*X21
    EKL(18)=-C1*X31*X21-C2*Y31*Y21
    EKL{19}=C1*Y21*Y21+C2*X21*X21
    EKL(20)=-C1*V*Y21*×21-C2*X21*Y21
    EKL\21\=C1*X21*X21+C2*Y21*Y21
    D0300J=1,21
    I DUM=IDUM+1
300 AK(IDUM)=EKL(J)
    A123=A123/3.
    XL(NL)=XL(N1)+A123
    XL(N2) = XL(N2)+A123
    XL(N3)=XL(N3)+A123
999 CONTINUE
    CC=EE/(X32*Y21-X21*Y32)/(1.-EENU*EENU)
    Z=.5*(1.-EENU)
    II=3*(MEM-1)
    I IPI=II +1
    IIP2=1I +2
    IIP3=II+3
    STRS(IIP1,1)=Y32
    STRS(IIP1,2)=-EENU* X32
    STRS(IIP1,3)=-Y31
    STRS(IIP1,4)=EENU*X31
    STRS(IIP1,5)=Y21
    STRS(IIP1,6)=-EENU*X21
    STRS(IIP2,1)=EENU*Y32
    STRS(IIP2,2)=-X32
    STRS(IIP2,3)=-EENU*Y31
    STRS(IIP2,4)=X31
    STRS(IIP2,5)=EENU*Y21
    STRS(IIP2,6)=-X21
    STRS(IIP3,1)=-2* <32
    STRS{IIP3,2)=Z*Y32
    STRS(IIP3,3)=2*X31
    STRS(IIP3,4)=2*Y31
    STRS(IIP3,5)=-Z*X21
    STRS(IIP3,6)=2*Y21
    DO995K=IIP1,IIP3
    D0995J=1.6
    995 STRS(K,J)=STRS(K,J)*CC
    500 CONTINUE
1000 CONTINUE
    DO1100I=1,N
1100 XL(I)=XL(I)*RHO
1200 CONTINUE
    GOTO3000
2000 CONTINUE
```

```
            IDUM = 0
            DO2100I=1,M
            N1=NOD1(I)
            N2=NOD 2(I)
            X2MX1=X(N2)-X(N1)
            Y2MY1 =Y(N2)-Y(N1)
            EL=SQRT{X2MX1*X2MX1+Y2MY1*Y2MY1)
            CCC=X2MX1/EL
            SSS=Y2MY1/EL
            ECCL=EE*CCC*CCC/EL
            ESSL=EE*SSS*SSS/EL
            ESCL=EE*SSS*CCC/EL
            EKL(1)=ECCL
            EKL(2)=ESCL
            EKL(3)=-ECCL
            EKL(4)=-ESCL
            EKL(5)=ESSL
            EKL(6)=-ESCL
            EKL(7)=-ESSL
            EKL(8)=ECCL
            EKL(9)=ESCL
            EKL(10)=ESSL
    602 CONTINUE
            DO2095J=1,10
            I DUM = I DUM +1
2095 AK(IDUM)=EKL(J)
            STRS(I,1)=-EE/EL*CCC
            STRS(I,2)=-EE/EL*SSS
            STRS(I,3)=-STRS(I,1)
            STRS(1,4)=-STRS(I,2)
    600 CONTINUE
                            XL(I)=EL*RHO
2100 CONTINUE
    601 CONTINUE
3000 CONTINUE
            CALL FIXAK
            RETURN
            END
            SUBROUTINE FIXAK
COMMON CARDS:DATA,PRINT
            OO 100 I=1,NK
100.IIB(I)=0
            DO 110 I=1,NB
            IF(IB(I).GT.1000) GO TO 120
            IDUM=IB(I)+IB(I)-1
            GO TO 110
120 CONTINUE
            IOUM=2*(IB(I)-1000)
110 IIB(IDUM)=1
            IF(ISITP.EQ. 2)GOTO400
```

```
    DO 300 I= 1,M
    N1=NOD1(I)+NODI(I)-1
    N2=N1+1
    N3=NOD2(I)+NOD2(I)-1
    N4=N3+1
    N5=NOD3(I)+NOD3(I)-1
    N6 =N5+1
    II=(I-1)*{21)
201 IF(IIB(NL).EQ.O) GO TO 202
    AK(II+1)=1.
    AK(II+2)=0.
    AK(II+3)=0.
    AK(II+4)=0.
    AK}(II+5)=0
    AK(II+6)=0.
202 IF(IIB(N2).EQ.0) GO TO 203
    AK(II+2)=0.
    AK (II+7)=1.
    AK(II+8)=0.
    AK(II+9)=0.
    AK(II+10)=0.
    AK(II+1I)=0.
203 IF(IIR(N3).EQ.0) GO TO 204
    AK(II+3)=0.
    AK (II+8)=0.
    AK(II+12)=1.
    AK{II+13)=0.
    AK(II+14)=0.
    AK(II+15)=0.
204 IF(IIB(N4).EQ.O) GO TO 205
    AK(II+4)=0.
    AK(II+9)=0.
    AK(II+13)=0.
    AK(III+16)=1.
    AK(II+17)=0.
    AK(II+18)=0.
205 IF(IIB(N5).EQ.0) GO TO 206
    AK (II+5)=0.
    AK(II+10)=0.
    AK(II+14)=0.
    AK (II+17)=0.
    AK(II+19)=1.
    AK (II+20)=0.
206 IF(IIB(NG).EQ.O) GO TO }30
    AK(II+6)=0.
    AK (II+1II=0.
    AK{II+15}=0.
    AK(II+18)=0.
    AK(II+20)=0.
    AK(III+2I)=1.
300 CONTINUE
    GOTO500
```

```
    400 CONTINUE
    DO450I=1,M
    N1=NOD1(I)+NOOI(I)-1
    N2=N1+1
    N3=NOO2(I)+NOD2(I)-1
    N4=N3+1
    II=(I-I)*10
451 IF(IIB(N1).EQ.0)GOTO452
    AK(II+1)=1.
    AK(II+2)=0.
    AK (II+3)=0.
    AK(II+4)=0.
    452 IF(IIB(N2).EQ.0)GOTO453
    AK(II+2)=0.
    AK(II+5)=1.
    AK(II+6)=0.
    AK(II+7)=0.
453 IF(IIB(N3).EQ.0)GOTO454
    AK(II+3)=0.
    AK(II+6)=0.
    AK(II+8)=1.
    AK(II+9)=0.
454 IF(IIB(N4).EQ.01GOTO450
    AK(II+4)=0.
    AK(II+7)=0.
    AK(II+9)=0.
    AK(II+10)=1.
450 CONTINUE
500 CONTINUE
501 CONTINUE
    RETURN
    END
    SUBROUTINE MERGE
COMMON CARDS:DATA,PRINT,OPT,WORK
    DO 100 K=1,NT
    100 EK(K)=0.
    IF(ISITP.EQ.2)GOT0500
    IDUM=0
    DO 200 I= 1,M
    NI=NOD 1(I)
    N2=NOD 2 (I)
    N3=NOD3(I)
    TTT=(T(N1)+T(N2)+T(N3))/3.
    00400J=1.21
    IDUM=I DUM+1
    400 EKL(J)=AK(IDUM)*TTT
    DO 40 JJ=1,21
    GO TO (7,1,2,1,3,1,4,2,1,3,1,5,1,3,1,4,3,1,6,1,41,JJ
N NO=2*(NL-1)+1
    L=ISUM(ND)
```

```
    GO TO 20
1 L=L+1
    GO TO 20
    LL=L+2*(N2-N1)-1
    GO TO 20
    L=L+2* (N3-N2)-1
    GO TO 20
    ND=ND+1
    L=ISUM(ND)
    GO TO 20
5 \mp@code { N D = 2 * ( N 2 - 1 ) + 1 }
    L=I SUM(ND)
    GO TO 20
    ND=2*(N3-1)+1
    L=I SUM(ND)
    20 CONTINUE
    40 EK(L)=EK(L)+EKL(JJ)
    200 CONTINUE
        GOTO700
    500 CONTINUE
            IDUM=0
            D0600I =1,M
            N1=NOO1(I)
            N2=NOD 2(I)
            DO610J=1,10
            I DUM=I DUM+1
    610 EKL(J)=AK(IDUM)*T(I)
            00640JJ=1,10
            GOTO(607,601,602,601,604,602,601,605,601,604),JJ
    607 ND=2*(N1-1)+1
            L=ISUM(ND)
            GOTO620
    601L=L+1
    GOT0620
    602L=L+2*(N2-N1)-1
            GOT0620
    604 ND=ND +1
            L=I SUM(ND)
            GOT0620
    605 ND=2*N2-1
            L=ISUM(ND)
    620 CONTINUE
    640 EK(L)=EK(L)+EKL(JJ)
    600 CONTINUE
    700 CONTINUE
            RETURN
            END
        SUBROUTINE DCOP
COMMON CARDS: DATA,PRINT,WORK
    EK(L)=SQRT(EK(l))
```

```
    OUM=1./EK(1)
    JJ=NTIM(1)
    IF(JJ.EQ.1) GO TO 100
    OO 100 J=2,JJ
    EK(J)=EK(J)*OUM
100 CONTINUE
    KK=J
    DO 500 I=2,NK
    IMl=I-l
    JJ=I+NTIM(I)-1
    DO 500 J=I,JJ
    KK=KK+1
    SUM=0.
    DO 490 L=1,IML
    ITST=NTIM(L)+L-1
    IF(J.GT.ITST) GO TO 490
    IDI=ISUM(L)+I-L
    ID2=ISUM(L) +J-L
    SUM=SUM+EK(IDI)*EK(ID2)
490 CONTINUE
    IF{I.NE.J\ GO TO 495
    EK(KK)=SQRT(EK(KK)-SUM)
    DUM=1./EK(KK)
    GO TO 500
    495 EK(KK)=(EK(KK)-SUM)*DUN
500 CONTINUE
    RETURN
    END
    SUBROUTINE CHOS
COMMON CARDS:DATA,PRINT,WORK
    OO950LC=1,NLC
    200 CONTINUE
    P(1,LC)=F(1,LC)/EK(1)
    DO 600 J=2,NK
    SUM=0.
    JM 1=J-1
    DO 580 L=1,JM1
    ITST=NTIM(L)+L-1
    IF(J.GT.ITST) GO TO 580
    IDI=ISUM(L)+J-L
    SUM=SUM+EK(IDI)*P(L,LC)
580 CONTINUE
    ID2=ISUN(J)
    600 P(J,LC)={F(J,LC)-SUM)/EK(1D2)
    P(NK,LC)=P(NK,LC)/EK(NT)
    NKML=NK-1
    DO 700 K=1,NKM1
    J=NK-K
    SUM=0.
    JJ=J+1
```

```
    ITST=NTIM(J)+J-1
    DO 680.L=JJ,NK
    IF(L.GT.ITST) GO TO 680
    IDI=ISUM(J)+L-J
    SUM=SUM+EK(IDI)*P(L,LC)
    680 CONTINUE
    ID2=I SUM(J)
        700 P(J,LC)=(P(J,LC)-SUM 1/EK(ID2)
    803 CONTINUE
    950 CONTINUE
    RETURN
    ENO
    SUBROUTINE FIXU
COMMON CARDS:DATA,PRINT
    DO 500 K=1,NB
    ID4=IB(K)
    IF(ID4.GT.1000) GO TO 65
    IM=2*(ID4-1)+1
    GO TO 70
    ID4=ID4-1000
    IM=2*ID4
    70 CONTINUE
    DO700LC =1,NLC
        700 P(IM,LC)=0.
    500 CONTINUE
        RETURN
        END
    SUBROUTINE GETS
COMMON CARDS:DATA,PRINT,WORK
    IF(ISITP.EQ.2IGOTO1000
    600 CONTINUE
        DO 500 I=1,M
        N1=NOD 1 (I)
        N2=NOD2(I)
        N3=NOO3(I)
        J=2*(NL-1)+1
        DO101LC=1,NLC
        101 U(1,LC)=P(J,LC)
            J=J+1
            D0102LC = 1,NLC
        102U(2,LC)=P(J,LC)
            J=2*(N2-1)+1
            DO103LC=1,NLC
        103U(3,LC)=P(J,LC)
        J=J+1
        DO104LC=1,NLC
    104U(4,LC)=P(J,LC)
        J=2*(N3-1)+1
```

```
    OO105LC=1,NLC
    105U(5,LC)=P(J,LC)
        J=J+1
        DO106LC=1,NLC
    106 U(6,LC)=P(J,LC)
        II=3*(I-1)
        DO107LC = 1,NLC
        DO108IS=1,3
        S(I,IS,LC)=0.
        DO108K=1,6
    108S(I,IS,LC)=STRS(II+IS,K)*U(K,LC)+S(1,IS,LC)
    107 S(I,4,LC)=SQRT(S(I,I,LC)*S(I,I,LC)+S(I,2,LC)*S(I,2,LC)-
    XS(I,2,LC)*S(I, I,LC)+S(I,3,LC)*S(I, 3,LC)*(3.))
    301 CONTINUE
    300 CONTINUE
5 0 0 ~ C O N T I N U E ~
    GOTO2DOO
1000 CONTINUE
1600 CONTINUE
    DO1500I=1,M
    N1=NODI(I)
    N2=NOD2(1)
    J=2*Nl-1
    D01101LC=1,NLC
1101 U(1,LC)=P(J,LC)
    J=J+1
    D01102LC=1,NLC
1102U(2,LC)=P(J,LC)
    J=2*N2-1
    DO1103LC=1,NLC
1103U(3,LC)=P(J,LC)
    J=J+1
    DO1104LC=1,NLC
1104U(4,LC)=P(J,LC)
    DO1.107LC=1,NLC
    S(I, 1,LC)=0.
    DO1108K=1,4
1108 S(I,1,LC)=STRS(I,K)*U(K,LC)+S(I,I,LC)
    S(I,2,LC}=0
    S(I, 3,LC)=0.
1107S(I,4,LC)=S(I,1,LC)
    200 CONTINUE
1500 CONTINUE
2000 CONTINUE
    RETURN
    END
```


[^0]: j

[^1]: * where i is the iteration number of the main program.

