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Abstract /

The object of this thesis is twofold. The first part
concerns the improvement of the unitary operator of Buccella
et al. This operator is an example of a Melosh transformation
connecting the algebras of the constituent and current quarks.,
The second part of this thesis examines the structure of the
multiplets and the corresponding Lagrangians arising from the
enlarged supersymmetry algebra incorporating isospin.

Chapter One is a general introduction to the Melosh
transformation and the work done by Buccella et al. The second
chapter examines the difficulties involved with the Buccella
transformation and contains a discussion on its possible
improvement. In the third and final chapter on the Buccella
transformation these improvements are implemented successfully,
giving a unitary transformation which is correct to the second
order of a perturbation expansion. Using this transformation we
are able to obtain mass equations which are in good agreement
with experiment in addition to the usual successful predictions
for axial couplings typical of Melosh transformations in general.

Chapter Four gives a general introduction to the concept
of supersymmetry, describing the successes of the original model
and also its special points of interest. The fifth chapter looks
in detail at the structure of the multiplets arising from the
larger super-algebra incorporating isospin, suggested by Salam
and Strathdee. In the sixth chapter we try to form “super-invariant®
Lagrangian densities from these multipléts which are physically

applicable. Finally there ig a discussion of our conclusions.
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CHAPTER ONE

Introduction: In this chapter we shall introduce the Melosh
transformation and also that of Buccella et al and describe
the connection between them. We shall then look in greater
detail at the work done on the Buccella transformation 1ead1né

to predictions for the mass spectrum.
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Seoction 1.1
It is now more than ten years since Gell-Mann first intro-
duced the concept of quarks in order to give a schematic model for
the meson and baryon multiplets of SU(3) (ref 1). It was soon real=-
ised (ref 2) that these "constituent quarks" are able to give a
very successful classification scheme for all known hadrons and
that these hadrons could be arranged iq the larger multiplets which
are representations of SU(6) @0(3). It was also realised that this
symmetry cannot be exact, since, for example, the predictions it
would give for axial couplings are clegrly not physical.
. It has also been useful to use quarks to describe the experi-
mental resulis of deep inelastic lepton scattering. In this case,
using & "current quark" model, it is possible to form an SU(3)® SU(3)
algebraic structure from the vector and axial vector charges. This
can be generalised in the infinite momentum frame to SU(6)w.
Recently H.J.Melosh (ref 3) has postulated the existence of
a unitary transformation connecting the generators of SU(G)W.

jocurrents
and SU(6)w and has explicitly constructed the trans-

sconstituents
formation for free quarks.

At the same time attempts were being made by Buccella et al
to find a transformation to connect the "hadron states" classified
by the constituent quarks and the hadron states which are actually
observed (ref 4-7). This second approach has been called "phenomen-
ological" since it was originally begun in order to account for
empirical observations, though it is now possible to see that the
theoretical basis of this work is the same as that introduced by,
Melosh.,

The success of both these transformations has been in the
prediotion of axial couplings which are in good agreement with

experiment., In addition, /Bucg

wreb-al have attempted to use their
¥
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transformation in order to predict the masses of the mesons (ref 6)
but they had only limited success.

The aim of this work is to examine again the problem of pre-
dicting meson masses using the Buccella transformation., In partioular,
we are able to show that it is possible to derive mass equations,
involving the observed mesons, which are in good agreement with experi-
ment.

In the remaindexr of this chapter we shall expand upon the
ideas already introduced, showing the difference between constituent
and current quarks and the connection between the work of Melosh and
that of Buccella et al. Then we shall look at the transformation of

Buccella et al in more detail as a preliminary to the following work.



Section 1.2
i) Constituent Quarks

The constituent quark classification scheme implies that
mesons could be formed by a quark-antiquark pair and thus f£it into
simple muliiplets represented by SU(G)WEDO(B). Here the quarks them-
selves are represented by SU(6)w and 0(3) represents the orbital
angular momentum between the quark~-antiquark pair.

Many diffioculties arise if one attempts to test this scheme
against experimental obsexvalion. We shall just note here that the
symmétry group implies that all the members of the ground state
multiplet (¢ ,g yW ) have the same mass., Also the predictions for
axial couplings are readily seen to disagree with experiment since
they are zero between different multiplets. Nevertheless, as a
classification scheme it is remarkably successful.

We shall restrict our attention throughout this work to the
mesons which could be generated by non—s%range oconstituent quarks
(though the extension to the full scheme should be a technical prob~
lem not involving any new theory). Thus we are considering the had-
rons classified according to the 15 representation of SU(4) and the
states obtained by exciting these with oxbital angular momentum, L;

The ground state multiplet (L=0) contains 7, 9 and W
© with WK as the corresponding singlet. The next multiplet (L=1)

contains,
2+ A, £
1+ A . D
ot~ A, o
B (H)

where H is the corresponding singlet. We should note that some of
these states have not been definitely observed but we include them

in our classification in order to establish notation.
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There is general agreement that the isospin zero member of
an SU(3) octet mixes to some extent with the corresponding SU(3)
singlet. We shall not include this mixing explicitly in our work
but shall note this possibility.

" ii) Current gquarks

The algebraic structure of the current quarks was first

suggested by Gell-Mann (ref 8) for the vector and axial vector

charges,

Q‘('t)— 5‘19” }:(x) , &) f‘)S ?‘ (x)
(= l,o00m %)

, H s
where Et;bé and ?%;(*9 are octets of local current densities
which can in principle be measured in weak and electromagnetic

transitions. In particular, in a current quark model these densities

can be written as

i - o (e is _ ol
ENCER SIS A BT (LTS 2R ION

With canonical equal-time anticommutation relations for quark fields

it can be shown that

[@®w,ai®] = ify QW
[0, @0 ] - by @@
[Qis(’c), st(e)] s ‘C‘ik &u v

which is an SU(3)@SU(3) algebraic structure.

It was hoped that this algebraic structure could be used
for the physical vector and axial vector charges independently of
the possible existence of the current quark field. This has not
been tested directly but, using P.C.A.C. it leads to the success-

ful Adler-Weisberger relation (xref 9). ,
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If one tries to expand‘the SU(3)@ SU(3) group to U(12)
using as generators the integrals over the local densities,
T g () (1=0,1 ...,8),
in the infinite momentum frame many of these operators lead to
vanishing matrix elements. We call the operators which do not
vanish when taken between finite mass states "good" operators
and the remainder are "bad" operators. Following Gell-Mann

(ref 10) we can show that,

8 cfﬁv\aq' =l "bad"

1Y
P: (L"' F’; f\t CL = _1‘?: "bad"

£ 9t hg < | "good -'}

identical
11’ o A\ % = | "good" crrtes
1:" «%3 )i 1 po ‘%; "had"
At - «f%? b 9, e\ ngood"
identical
1“'@; A‘i g’,l "good " entioa
+ " 'L. (] "
il 6‘;'3,\, 9 wr‘- bad
i - 4qt » ) o | " "
' 11’ F“ &‘L good } identical
‘f ﬁ & X q = | "good"
~ on an
cifBuh g = booroee } tdentical
1‘,# o~ 4‘1 ‘L o | "good",

Fhomkg =b v

ff 6z M 1 wl.  "badn

We can see that the "good" charges generate an SU(6)w algebra which
we shall call su(s)w; currents ¢ t0 distinguish it from su(6),w; constit.
introduced previously). “his larger algebra requires the existence

of tensor currents, for which the experimental evidence is not clear.



Section 1,3

' The similarity between SU(é)w;constituents and SU(G)w;currents

leads one to suggest that they may be equivalent, that is, it is
possible that we can equate the generators. There are many examples
that can be given to show that this is not feasible in practice.

As already noted, if we take SU(6)w as more than a

sconstituents
classification scheme we run into the difficulty that all the masses
in the ground state multiplet (qr,g y3) are pred?cted to have the
same value. Also, many decays are forbidden since the axial couplings
between members of different muliiplets are zero (for example, A.‘l‘" g'“';
B > ).

Melosh suggested the possibility of relating the generators
of the two SU(6)w algebras using a unitary transformation, thus
allowing both descriptions to be equally valid. The difficulty is
to determine the form of this unitary transformation.

The "Melosh transformation" (ref 3) was derived by assuming
that the quarks are free. It is then possible to determine ths form
of the transformation explicitly. Using a technique similar to the
Foldy-Wouthuysen transformation (ref 11) to exolude "bad" operators,

Melosh shows that

l9kY = UITKY  Ql)=e ™ &N A

e(k) = arclon k/m \( il “.&\ (1.1)

where q denotes a constituent quaék with effective mass m, § denotes

a current quark and k is the transverse momentum of both quarks.
(Note, we are only concerned with states moving with infinite momentum
in the z-direction.) In order to apply this transformation in a
realistic manner one has to abstract the important characteristics,
the importance being judged by the success of the predictions that
follow.



The unitary transformation proposed by Buccella et al (ref 5)
arose independently of the Melosh transformation. It was found that
the introduction of mixing between the "hadron states" classified by
constituent guarks could produce some successful predictions for the
axial coupling constants (ref 4). In addition, it was possible to
make some mass predictions but these were very unphysical, suggesting
that a greater degree of mixing was necessary. Therefore, in orderl
to introduce a general mixing scheme without,at the same tin}e, intro-
ducing an infinite number of arbitrary parameters, a unitary operator
vwas suggested (ref 5).

' In fact, Buccella et al did not consider the full SU(6)w
algebras, since in their "phenomenological" approach it was only
necessary to look at the subalgebras SU(3)® SU(3). For convenience
they confined their attention even further to the non-strange sub-
algebras SU(2)@® SU(2), though, as already noted, the extension to
states with strangeness should simply be a technical problem requiring
no new theory. In this work we shall restrioct our attention to the
SU(2)@ SU(2) subalgebras throughout.

The unitary operator, U, is defined such that
.r
Qi = \J A(&‘" T..)U ). Qg" A(’C;) (1.2)

where ﬂ(‘i'ﬂ) and A('t;) are the generators of the chiral sub-
algebra SU(2)® SU(2) of SU(4) for the constituent quarks. The particular

form of the unitary operator of Buccella et al is
U(e) = explo® (1.3)
2 = (W M)e = MM =MW, (1.4)

vwhere M is a vector undexr 0(3) and ¥ is similar to the w-spin of

Lipkin and Meshkov; ® isan undetermioned parameter, The effect of

this operator is to mix states with the same quantum numbers, except
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for parity and spin which can vary because of excitation by additional
orbital angular momentum.

Using this operator at first order in a perturbation expansion,
it was shown to be possible to duplicate and improve upon the good
predictions for axial couplings obtained in ref.4 . For example, by
fixing one parameter so that q;«@)"/q * in agreement with experiment,
Buccella et al predict (ref 5)

% q:-S(L) - Ji , (expt. € 0.48)
g c(:u (l\) = Y% (expt. 0.33)
g q:,x (L\) - Y% (expt. 0.13)
c[:..r "‘2/‘1 (expt. »»0.1)
(1.5)
and also the ratio S(l) \ _,L (expt. 0.48%0,13),
(9

We can show, following C.A.Savoy (ref 12), that there is a
close similarity between the Melosh transformation fpr mesons and the
"phenomenological" transformation of Buccella et al. We will assume
that hadrons, in the infinite momentum frame, are a simple system of
constituent quarks which interact with currents like free quarks.
This is probably not a realistic assumption but it would seem to be
a good starting point and sufficient for our purposes. If the qq pair
of constituent quarks in a meson have transverse momentum k and :l_'c:

respectively and the meson has no transverse momentum then k = -:f:_'.

*

where < P‘ Qi, (k)\oc> = %{-p,a Cl’a (\\) for I,‘-O,I’;-l
<F ‘ Q: (L) \ °‘> - atp.ah C(,s«(k) for Iy=Ig=l

with Gg¢ hermitian.
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The current quark content Ean now be written using the Melosh trans-

4k, Tk = VW UE 5k, 55
249“"[( -Enkl, 4 ]ik,'i'£>

o~
where 'q represents a current antiquark. We can now compare this
unitary operator with that of Buccella et al (eqn 1.3,1.4). The

two operators are equal if

20M = Wk /4

There are a number of points which arise from this comparison;=
i) OM is independent of isospin
11) [e,m] =0
iii) @M is not a vector under rotations
iv) a perturbative approach is justified only if k<«m.

Unfortunately, we do not know how much importance to give to
these implications, since the derivation for the Melosh transformation
for mesons involved strong assumptions. Also, we know that there must
be corrections at the second order in € in the Buccella transformation
in order for it to satisfy helicity oconditions (ref 7; see section 1.5).
We shall therefore not demand that these implications are satisfied
but consider their importance at a later stage.

We should emphasise again the strong similarity between the
form of the two transformations. This implies that the transformation
of Buccella et al can now be understood in terms of the theoretical
arguments introduced by Melosh, instead of having to rely on purely
phenomenological argum?nts.

There have been a number of successful attempts to produce
results similar to those described above using differing assumptions
but based on the Melosh transformation (ref 13). The partiocular

success of the Buccella transformation is that it is not only able



- 11 -

to produce results concerning axial couplings but that it is also
able to give predictions relating to the masses of the mesons (ref 6).
This has not been demonstrated by other similar models.

The method used by Buccella et al is to expand the unitary

-~

operator to seconf order in 9 and apply constraints resulting from

Weinberg's equation (ref 14),

[Q: ’ [Qi,'ﬂeﬂ < 8, (1.6)

To do this it is necessary to give a strict interpretation to the
operators M and W which initially are not completely defined. |

In the next section we shall summarize the necessary theory
related to Weinberg's equation which will be used in the following
chdpters. Then, in sections 1.5 and 1.6, we shall look at the
attempts, first by Buccella, Celeghini and Savoy (ref 6) and then
by Celeghini, Sorace and Zappa (ref 7), to formulate definitions

for M and ¥, and predict mass relations for the mesons.,




Section 1.4

In this section we shall summarize the theory resulting from
Weinberg's equation which we shall need in the following work and
which was first introduced in this form in ref. 6. We oan revwrite

Weinberg's equation (eqn 1.6) as

[Alew), [Alew), vteu]-
T % [A(f.'f.\, [A(c,;’n) , Uhe U]]

+
using equation(1.2). Equation (1.7) implies (ref 14) that U wVU

(1.7)

must transform as the sum of a chira} scalar and the fourth component
of a ohiral four~vector under the SU(2)e SU(2) algebra.

The SU(2)® SU(2) content of states belonging to the 150 1
representation of SU(4) is, ,

Il T-0
Sl $.=0 l%)-é[((,o)-@,o] 15 « (o,0)
el Surtl B, s = (1) Flu,seeDes(Bd),

)

o 1€ =gk [(l,O) + (O.l)] Isp = (o,0)

It is easily seen that the absence of (1’1):.9 in Utm“U
causes constraints to be made on the following terms in order %o

satisfy equation (1.7)

<wolwi e | < (4,4)

(0, |68,

These constraints are .
<t {4, | VW V]t w4
= KT UV Tw 14>

(1.8)
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<Tsind S| FTsan € 4

= <u'“ S, W ‘(I'(e'lUt#U’U...S,_V\’((.?
(1.9)

tw 4|0t U [T 4D

= <E‘ w A, U*M"Ul t *4(!>.

(1.10)

In these equations (f ) —(._) represents the orbital excitation of the
states. The quantum number n counts the number of times one has to
apply the operator M to reach a state, starting from the ground state
(L=0),on the (n,1) lattige. (M will be defined such that each time
it is applied Af=|, An=l.) |

¢l . P .

LR . . .

4r . . . " .

3¢ ’ o« . .

2t " . . . .

I+ o ° ] ) o

04 r - —— . N o N 50N
. o l 2 38 4 s ¢ 1 g 1 o

The introduction of this lattice structure allows for the
existence of more than one set of states at each value of l., thus
we can use daughters.

The approach used throughout this work is a perturbative

one and the (nua.as:s)z operator is expanded as




-14 -

* *

Moo= oy Dy 0T (1.1)
When we have defined the unitary operator, U(P ), we shall adopt
the procedure of examining the nature of the above constraints at

each power of the parameter,9 « We shall assume in this work that

U(O ) is adiabatic, that is, it is a continuous function in ©
and U(0 )->1 as 6-=0,
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Section 1.5

Before going on to complete the definition of the unitary

operator, we shall first display explicitly the conditions that it
nust satisfy (ref 7), ' '

[3',, U(e)] =0 , ["l ) U(O)J‘O ) [Q,U(e)]'o (1.12)

[%, [%, vA®I], =0 (1.13)

- Tg
where J is the total angular momentum, G is G-parity and V\s Pa—"r

represents inversion of the y-axis.

We shall find the first three conditions easy to satisfy.
But the final ocondition will necessitate the introduction of a
correction at the second order in € %o the unitary operator (eqn 1l.3).

So the unitary operator now takes the form,
U(9> =] + 92 + .;_.0'?;‘-& 9%y 0(9‘). (1.14)

Furthermore, ref.7 shows that such corrections must be introduced
at all even powers of e.

Celeghini, Sorace and Zappa then begin to construct a
mathematical formalism in which such a structure of'an infinite
series of operators can be handled. The advantage of such a formalism
is that it could be used in the whole class of Melosh transformations
and not just the Buccella transformation. We shall not follow this
line but instead concentrate here on irying to improve the Buccalla

/
transformation.
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Section 1.6

In this section we shall begin to tackle the problem of
defining the terms in our unitary operator. This was first attempted

in ref.6, where the following definitions were suggested;

:

We l6> = [T, s, mx) We|ED=O
(1.15)

(=]
u
o

Wy |5 =t,\{\r.,,s.--.\:l) 5 Wilsp =0

and for the M operator,

<1'-l) w! { -(‘tllf'/\t lI";“' .(_|‘.(‘> -

) 'J:Lz“\((tf\)(f*tﬂf ¢

<I-O}‘V\"{ '('.‘."\M.t\I'-O;v\ {-\ 'f.> =

- ‘ v ~“0 4
B Q)4 +) Th oo @as
where ,\, C and T are real numbers.
The constraints of the Weinberg equation (1.8~1,10) imply

that W\: = A. + An + B (-|)4+| (5,5 R {)

(1.17)
(Ao‘ A ) 6 “l\“’h*l)

for both isospin one and isospin zero states. We can also deduce

that ~n o " 4 f (‘\*‘{)
A C“,\ - = cw-\ £ = 2
“ b Taa
W o s S, 5 CO) I

“ o n A= ) .
\ i W (1 18)

where £+ and f_ are arbitrary functions such that f_(-l)-o, so that

there is no tendency for states to mix with "ancestors" above the
leading trajectory. It is evident from these equations that the

attempt to make a difference beiween isospin one and isospin zero
in the definitions of ¥ and M has not worked. Hence, \ =1 and M is

independent of isospin, as suggested by the comparison in section 1.3
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between the Buccella and Melosh transformations.
So far we have not considered the constraints on the system
imposed by considering the Weinberg conditions at second order when

’
n'=n and {*f. This reqires that,

(48[4 e tr2) et - £ ert) £ ot

= 2A [ '-f:(vu"ﬁ-Z) - f_t(w-'(- l) — ﬁ_\‘(ni-'f -":(‘\"("’)
24+3 2¢-1

(1.19)
Clearly, one solution of this equation is,

'g-; (ned) = ﬁv\-: ! (1.20)

and this solution ensures that f_(-1)s=0,

We shall show in the next chapter that this solution has
undesirable consequences and attempt to find other solutions of
equation (1.19). We should note that the work in ref.6 did not take
account of the correction in the unitary operator that was introduced
in the last section but similar results can be obtained if the

correotion is included.




CHAPTER TWO

In this chapter we shall introduce a new constraint on the
functions, f4 , which appear in the definition of the M-operator.
The original solution for the functions, fy , does not satisfy
this consiraint, hence we shall look for further solutions.

Finally there is a discussion of difficulties encountered.
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Section 2,1

The problem has now been clearly outlined. It is basically
one of increasing the degree of acouracy of the unitary operator
so that it is not only compatible with the experimental walues for
axial couplings amongst the mesons but also compatible with the
masses of the mesons. We shall show in this chapter the difficulties
encountered by the solution proposed in ref.6 and then go on to
discuss improvements which will be incorporated in the following.
chapfer.

In this section we shall introduce a new constraint upon
the functions, fs+ , which appear in the definition of M and show
that this necessary constiraint is not satisfied by the solution
of ref.6 (eqn 1.20). In section 2.2 we shall look again at the
problem of solving equation (1.19) and then in section 2.3 we shall
consider the changes necessary in order to improve this scheme.

There are two conditions which must be satisfied by the
functions, fy . The first, as we have already seen, is that f_(-l)-O.
This ensures that there is no possibility of states'mixing with
"ancestors" which are above the leading trajectory. The second
condition is that fy must be bounded above by a constant. Since
this condition was not used in ref.6 we shall make this point more
explicitly.

The aim of the mixing is to obtain an operator of the form

O 2D = FEF il e

L1}

where | °~§I€| and éii (o ]) =

and miﬂ is a meson state, i, excited by orbital angular momentum, f.

with the additional quantum number equal to m. But, since

V1.2 = 120 - 8(MM.-Mu)L2 )+ 0F)
- W2>-0225 F’ ] ¥ " 09) (2.2)

m“\t\ 4

("(tl
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J
if the ,,"g: coefficient becomes unbounded then the only possibility
%o cancel this unboundedness is between the various te'rms of the
series involving different powers of 9. But, the condition of
adiabaticity suggests that there should be a solution possible for
all © as 620, U(6) > | . Therefore the functions, fy , are
bounded above by a constant.

This condition excludes the solution,

f* (ntd) ~ Sv\,t-(-a- |

which had been considered originally (ref 6). In the next section
we shall re-examine equation (1.19) in order %o try to find a

physically acceptable solution,




Section 2,2

We return now to the problem of solving equation (1.19) in
the hope of obteining an acceptable solution. There are two
possibilities, either n and S are independent of each other ox
they have some kind of interdependence. In the latter case the only
real alternative is that n-4 = constant, i.e. f_(x) = 0, and this
will be considered later.

We shall look first at the case in which n and € are
independent (except n+{ will remain either odd or even throughout

the lattice). Equation (1.19) can be rewritten in the form

Fin) w2812 £ o] e[t lonte]

= F(«,(»«z), (2.3)
Since n and € are independent, F(n,{ +2) is independent of -( and

80

st = Pl < 28 1300 (P84 0er)

If n-{ = A, for somé A20, a8 n—»oo then it can be shown that

B L (A+) =0 (2.4)

i.e. either B=0 or f:(::)-.eo. (In the latter case n and { are
linearly interdependent and so we will assume that B=0 here).

If n->e0 DdHut ‘( remains finite then

28 do [0t - Elerte] o 2

i.e, either A =0, and the whole equation is degenerate, or the
limit is zero.
If OO0 then

5?2: f::. w [i'..-(vw()— £, (m—-(ﬂ)] - f:: f*(zk*z)“m



- 20 -

which together with the condition that fy are bounded above by

a constant implies that #:(x) - :(3?'(1‘) =0

Hence there are three distinct possibilities:e

i) f: = 0 and then for the leading trajectories, n=< ,

v o A=) )\ (4€-) _
ALY (i yaafedoea)  [deeg2A] G- 2] (246)

depending on whether { is even or odd. In order to

guarantee the positivity of f: ’ 18| » 2%

il) B= A =0

i11) £, = £_=m 0 for €>0, but £,(x) k0 for {=0 vhere the
equation does not necessarily apply since the helicity is
zero. It is necessary that B=0 if there is to be mixing
at the very lowest level and also f+(n+1) - f_(n) forxr
agreement with the equation (1.19), but A remains

unconstrained.,

These alternatives should now be discussed with reference
to the spectrum at zero order given by m:' (eqn 1.17). This spectrum
is completely degenerate in the second case. In case (i) the slopes
of the trajectories, & and At B, are too widely spaced to be
considered approximations to the observed situation.

The final solution is merely a statement that at low orders
there is no mixing except amongst the members of the ground state
multiplet. This solution is clearly unsatisfactory since, although
it allows the 1(-{ mass split and spaces all other multiplets in
a way that is consistent with no mixing, it does not give the
required axial couplings between the different multiplets,

Hence we have explored all the possibilities contained within
the set of definitions suggested in ref.6 and have been unable to

extract any system which meets with our requirements.
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Section 2.3 ‘

There are two sources éf diffioculty emerging from the work
of Buccella et al in ref.6 . The first is the problem of obtaining
a feasible scheme which is consistent with equation (1.19). It is
worthwhile noting that,if we did not have to satisfy this equation,
there would be a much greater possibility of obiaining a solution
which is physically applicabdble.

The second difficulty is that in the above discussion we
have omitted to take account of the additional term, b, which was
introduced in equation (1.14) in order to ensure the helicity
conditions (eqn 1.13) are satisfied. The reason for not including
this term is that its form is not straightforward because of the
nature of the definitions for the operators M and ¥W. The process’
involved in solving equation (1.19) has been shown to be one of
increasing degeneracy, cutting away the possibility of "fine
structure" for the (massy' operator. It is reasonable tolsuppose
that the further complivation of an additional term would not
simplify equation (1.19) but,instead, increase the r;te at which
the "fine structure" disappeared. In particular, it will be shown
in the next chapter, in a modified system, that the presence of
the b-term causes B=0 at an early stage and subsequently plays
no parf in the calculations up to second order.

The difficulty found in constructing the b-term can be
removed by redefining the W-operator in a way such that the { and
spin operators together form an SU(2)® SU(2) algebra. We shall show
in the next chapter that, by this redefinition of the W-operator
and also redefining the M-operator in an analogous way, it is possible
to obtain a system which is free of the difficulties encountered '
in this chapter.



CHAPTER THREE

In this final chapter on the transformation of Buccella et al
we shall introduce the improvements previously noted and find
a8 a consequence that we are able to prodv,.oe ;lln.ss equations
wvhich are in good agreement with experiment.
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Section 3.1

In this chapter we shall construct a unitary operator which
gives predictions that are compatible with both the axial couplings
and the meson masses. In the next section we shall introduce our new
definitions for W and M, explaining their advantages over the previous
d;finitions. Then, in section 3.3, we shall work through the process
of checking the effects of the constraints from Weinberg's equation
(eqn 1,8-1,10). Section 3.4 will be an analysis of the consequences
of th; nevw approach, giving a brief comparison with the results of
ref.6 . Finally, in the last section, we shall summarize the
achievements of our work on the Buccella transformation.

This section is devoted to generslising the procedure used
in ref.4 to find the unmixed (massy equations of any multiplet of
mesons. In ref.4 this problem was only considered for multiplets of
mesons which could be constructed from constituent quarks with
orbital angular momentum, £ =0,1. We shall generalise this procedure
to all values of angular momentum, A.

In ordexr to determine the chiral content of a general
multiplet, we must consider the application of orbital angular
momentum to the ground state multiplet, f =0, This multiplet can

be represented as follows,

h=| h=0 h=-l

>

feut et g = v
|.->='J'.A S'tl"”s “'u‘.

where h is the helicity. Giving this system angular momentum, {,
results in a multiplet containing eight particle states, iﬁf ’
where i=1,2, ...,8 labels the states within each multiplet
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such that,
Sfin =1 T-o
£ Z, Z.,
{ zi 2! 2;, 2%
(-1 2! &

¢
(Note, the Z., results from giving angular momentum to the ¢
and Z.': from the g.)
If we consider the Clebsch-Gordan coefficients we are ledd

to the following set of equations at helicity, m,

N T oa T ’ 1
Z‘ = \«‘""‘*O({*Q Y, "j«-ﬂr-— - f+)((-m4-l)('(-”) u_,B

2 (€+1) (24 +\) Gexr)(24+1) 2(4+1) (24+1)

'Z = "'A(e-w.-q-i) (—(+m) 'mA o+ ™M t «+ «-\-M"“!(“(—M!‘ U‘.‘
’ 24 (1) {4 ) 2¢(<+)

£ 7
Z (“""*‘)(’(-ﬁ) U’, - "e - 1 + }(ﬁ-m {eon u;‘
s T 24 (2-(4—!) -((2-(4-\) 'ET()L(;Z:‘)-)-
z =t (3.1)
where \T.A e U214 mat? u-f = L= |4 .v....|>
£ = hoYlemo, s = lo> w2
using the notation Is 27 | € m.? .

There are also a similar set of equations for the isospin zero
states obtained by changing U, ->U, t s, t'-» s/ for the
states labelled 4,5,6,8 respectively.

From these equations it is possible to find the following

mass relations by inverting the matrix of Clebsch-Gordan coefficients,

W\I“ = é-t-m-ﬂX’(-HN) rv\ at + ('f-m«lzs-ﬁ-m) Mt( +((—m+' ('(—M) "'

v 24 (24%) 24¢ (€+t) 24(2¢+)
my = e)ew Wog b Iy Ly

@) (24+1) - €(L+) € (24+)

3
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d %
and mt, = W\

&l (3.2)

together with the equation given by changing u-.A—»U? )™ Dem,

There are also four equivalent equations for the isospin zero states.

. L] > -~
1f there is no mixing then m}=my ) Moa ™ Moa m;.. -

[ 8,

which implies that wi-¢ = m® - - » ~ -~ -
P i‘. i."., ) M-zi' Mg‘} ’ ";'Mi'{ ‘mz“v - u\‘-;

and (21(4-') m."ai —-'(W\;f * (‘f-\-l) w\;.&

(244-&) W\;: = ((H)m‘ﬂ + ’(m;-; . (3.3)

From these equations it can readily be shown that the
spacing of the squared-masses within the €¢-th multiplet is
4 <4
T nw e
{ | R

This result is equivalent to saying that, if there is no mixing,

m: - Alt)+ B8 L.3 (3.4)

but the above method of derivation differs from that used to

obtain this equation previously (ref.2).

mrmes T e —



Section 3.2

In this section we shall introduce new definitions for the
operators M and W. These are essentially only modifications to the
definitions previously used but we will find that they are sufficient

to make significant improvements.

The new definitions for the }-operator are most concisely

expressed in the following diagrammatic form;

where the constant in brackets is the coefficient associated with

that particular operation, for example, N+l g'> = -1 l‘N>

The S-operators form the usual SU(2) spin algebra and the § and W

\

operators combine to form SU(2)g®SsU(2),
[S{'S.ﬂts "lse“sk ) [SX,N{\] "= '\E‘S\gwk p [N:)N.s] w iiaaksk .

The operations on the isospin zero states are exactly the same.
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In order to simplify the algebraic properties of M, we "

shall modify the definitions of ref.6, as follows,

<r\+l {+l, mlM ‘v\‘{ m)"":‘;'. C t +(v\*"("'z)

24 +3

<l tel, W lt\/\,, | € =

lv'l’l

al Sl €\ 'f-lvl -\
2-(-\-3 C. :c )

<V\-ﬂ-‘ £-1 \,w’ ‘Ma-\ 'S “em>’- A c: "::,l :c.(vs-'(-l-l)

"v

<«-\,f-\,-'|b’\§l ~ M>=§if—2-“';;-. 2T i lent) (3.5)

4 i
where C:......' are Clebsch-Gordan coefficients. It can eagily be

<|'l'

shown that M.t = M. and Mf = M, if the functions, f,, are real.
The presence of the Clebsch-Gordan coefficients, giving the !
helicity dependence, ensure that the commutation relations with

the orbital angular momentum operators, L, are

[L""M’]:M“ ) [Lx;Mt]“tM";o

Alternatively, setting \"\t-(M‘tiMJA'i in the usual way

LLi, Myl = gy M,

Commuting the M-operators amongst themselves gives the following,

St T MG e 4 = £ Gteflefnday gind)
ot [T w 4wy = Cotnflfndd o)

and zero for all other possible matrix elements, where

gln,4) = ;'m[f:(ﬂmg N S CU) JRT3 R
- ": (w-\-‘() '
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o
It is evident that if the ft‘mction, 8(n,1) is a non-zero
constant, then we have an SU(2)@® SU(2) algebra very similar to
that of the W and § operators just introduced. Alternatively,
if g(n,L) is identically zero, then the M's commute.

If g(n,L) is a non-zero constant for all values of n and L,
then the sum of four bounded terms must be greater than a linearly
increasing term, 21+1, and clearly this is not possible, If instead
g(n,) is identically zero, then either fx(x) = const.(x+l)

(of. ref.6) but this is not bounded, or f;(x) = constant. In the
second case, we are lead to consider "ancestors" unless f_(x)g 0,
i.e. unless there is no mixing between states on different
trajectories. This is possible but we shall consider this as a
special case later. Although we have not been able to obtain an
algebra for the M and L operators in general, this does not prevent
us from using equations(}.G), which are in a very convenient form.

The new definitions for the W operator are similar to those
adopted in ref.7 (see Appendix A), where they were introduced
specifically for the purpose of creating an algebraic structure
which would allow easy calculation of the correction, b, in the
unitary operator. The authors were unaware of the consequences in
the calculations of ref.6 since they used the definitions for M
that had been derived in ref.6 . In this work, we have adopted
a slightly different set of definitions in order to simplify the
"gpin" content of the axial generator, A@;1§). This now takes the
form 5°Ax-|4-kko:-o (ref.7).

Equation (1.13), the helicity condition on the unitary‘

operator, can now be written,

[T+) [0‘* / U(s°°f" N N’A‘:-o) U+ﬂ4\\-o =0

If we note that [3‘*' I‘i\,\,;llgo and [T-h [‘S‘h z]] - O/

we can show that the condition is satisfied at second order in 9

(347)
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" be-t[Ma, MM (3.8)

where M.\d N\,N. * V\.,,.N- *+ M-N+ .

At order € the helicity condition can be written,for ATs
o, [, tle,te, sl e Ia 5] -
i (o, (2 MM ]+ [z l"\.f-‘:.m |
=4[5, {5, C2,nl])
z0

L

and similarly, for AT=0O ’
[0, [, 1Mo, 12,0 « (5 W]]] =
i % [S'U [T-\- ’ t Wy, M_Ss - WS-TD

O

(Note that if D’\;'Milro , then Jw -% N\.(N\.s* - M, s-)
of. ref.7).

Finally in this section, we shall look back to the
implications of comparing the Melosh transformetion with the
transformation of Buccella et al that we discussed in Chapter 1.
As we noted there, the implications of this comparison are not
" necessarily valid because of the nqpber of assumptions made.
Nevertheless, it is interesting to see to what extent they are
compatible with the definitions that we have been lead to
intrdduce here.

The first point to note is that M is independent of
isospin. Originally provision was made so that there could be a
difference between M acting on isospin one and isospin zero states,

but it was found that this distinction was unnecessary (ref.6).

B T T T g
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The commutativity of the M-operators amongst themselves is feasible
with our present definitions, as we have already seen. Without
imposing further conditions on the functions, f4 , equations (3.6)
show us that the M's do not commute but the function, g(n,{), on
the right hand side will cause the commutator to be ()(9&> .
Hence, there is some agreement here even in the general case.

The problem of the nature of © M under rotations can be
answered by noting the existence of the additional terms to be
introduced into the transformation of Buccella et al at all even
orders of O . Thus we can have M as a vector under rotations and .
8till not disagree with this comparison.

The final point,concerning whether or not the transverse
momentum of the quark is much less than the effectime mass of the
quark, is not clear. Instead, we shall judge the correctness of the
perturbative approach by its degree of success in predicting

experimental observables.
{
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Section 3.3

We are now in a position where we can begin to look at the
consequences of applying the constraints resulting from Weinberg's
equation (eqns 1,8-1,10). As might be expected, this series of
calculations is similar in outline to those undertaken in ref.6
but,as we shall note, there are important distinctions.

The details of the procedure of the calculation can be found i

in Appendix B. We shall display here the results of those calculations; :

W\: = A. + AV\- (A.'A ani\'m‘-S) (‘3.9> ;
wow x(Tat)  f(Tat) L3 w g SIS

v ¥(ze) (&3 (3.10) |

where T(I"-!O, “ :() = Y(T=\,w, '0 EY(“:")

: Hlartsd) = L)
2 2{-&\) [ a3 |
- {0 (f.‘(w-‘*‘)] 1
24-1
(3.11) -
and S(I-\; w, 4) s - .....—-[ (:f-+(w~—(+2) ( (“_‘(_\»_'_
24\
sy ~t a=al
<[t
(3.12)
T C S PR TN

(3.13) '
= o((f-O‘w'C) + S(T-"a,“‘(\. .
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These results represent the conditions imposed on our system
by Weinberg's equation up to, and including, second order in ©. Use
of these conditions at higher order is not necessarily valid because
of the need to introduce further corrections to the unitary operator
at higher orders to satisfy the helicity condition (eqn 3.7).

We will note explicitly that there is no equation emerging
from these calculations of a form similar to equation (1.19). The
reason for this is a direct consequence‘of the redefinitiomls
introduced in section 3.2 . Hence, we now have a solution which is
completely valid to second order in O and whioch is free of further
constraints. In the next section, we shall look at the implications

of this solution on the predictions for meson masses.
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Section 3.4
1t has been our intention to introduce a mixing scheme for
all the non-strange mesons but, since we only have experimental data
for the lowest lying states on the leading trajectories, we must look
at the predictions on these offered by our calculations. Appendix C
contains a table listing the (massf' predictions, with accuracy up
to second order in ©. This table also gives the predictions
resulting from the additional constraint of 'F! - ) 2+ |
in the second column (as suggested in refs. 6 & 7). In the last
column, we have set '-E,,a constant, 4_-.'_-: O . This case was suggested
in section 3.2 because it would imply that the M-operators commuted.
We can deduce the following (massf' equations from all three

cases; (to simplify notation we shall write “&; as "X, N<§ as g ’
eto.)

S = W
- - o &-'D
Az +AO A\ # (3.14)
A,+A = £+
In addition, the second column gives the relations,
experimentally
l.h.8.” T.h.8.
*» A, =28 = 2(p-~ -0.2 12
A, * § )’ . (3.15)
26, + A, -38 = 3(5-), 0 y
Alternatively, the third case gives the additional equations,
Q\ + A'L = zg € %(g—m)’ -O.Z. OOZ
(3.16)

260, + A, -36 = q/s(g-'v:)’ 0 [

e

——
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It is readily seen that the effect of specifying the
functions, ft(x), in either of the ways suggested, is to suppress
the mass difference between « and g « But, since this difference
is one of the prime factors which we wish to be conpatible with
our work, these particular definitions for ft(x) must be ruled out.

Equations (3.14), on the other hand, are acceptable. We know
that, in addition to the mixing described above, there can also be
mixing between the isospin zero state of an SU(3) octet and the
corresponding singlet state. This implies that w; can be satisfied
with approximate agreement for isospin zero states. Eliminating

the mass of the D-meson, which has not been firmly established,

g’-= w

28, « A, = 2+ &

wae have

These are both well satisfied and we can therefore considexr the
above scheme successful to the degree of accuracy claimed.

If we try to improve the predic%ions of ref.5,for the axial
couplings, by increasing the order‘of e y we unfortunately find that

we are unable to do so because of the large increase in new

parameters. Though, of course, the predictions given in equation (1.5)

are still true up to the first order in 9.

Finally, we note that iﬁ is possible to obtain the same
prediotions if f_(x)=0 but f+(x)~is unapecified, that is, if we
do not allow mixing between states on the leading trajectory and

daughter states.

e e e e mw = -

v
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Seotion 3.5

In this last section of our work on the transformation of
Buccella et al we shall summarize the results of the last three
chapters and give some indications of the directions in which it
could be continued.

The basis of this work has been the Melosh assumption that
it is possible to introduce a unitary operator that connects the

generators of the algebras SU(6) and SU(6)

W;ourrents Wioonstituents®
It has been demonstrated that using this assumption it is possible
to obtain good predictions for the axial couplings between mesons
in a variety of models. We have shown, in the particular case of
tﬁe Buccella transformation, that we can also consider the masses
of the mesons and we have produced equations relating these mesons
which are in good agreement with experiment.

The transformation used involves the unitary operator, U(O ),
defined such that, t

Q7 = VO AR UB) | Q= A)

and which also satisfies the necessary helicity equations. It has
been shown that, if this operator is expanded in terms of the
parametenr, 9 yit is possible to use a perturbative approach to

making it compatible with Weinberg's equation,
[Qi ’ [Qi ‘m‘]] =< S'-"’.

Unfortunately, in previous attempts to use this method, the operators
used in the unitary transformation were defined in such a way as to
lead to a poor set of predictions.

In this work, we have undertaken to review the definitions
of the operators used in the construction of the unitary transformation.

As a consequence, we have been able to extract the following
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predictions,

“ﬂ:; - *'\:;
Zm.:‘ + W\:. = 2«3." +

up to the second oxdexr in ) » which are consistent with experimental
observations.

In view of the success of this scheme, it is worthwhile
considering further improvement of the unitary operator by introducing
corrections at orders 6‘ and 9*. The calculation of these corrections
is not straightforward and it is possible that these terms would not
be unique. Nevertheless, they would help to constrain further the
functions already introduced and perhaps lead 1o further predictions.

The approach used in determining the transformation first
proposed by Buccella et al is "phenomenological"™., That is, it
involves a number of assumptions which are introduced to simplify
“the transformation. This enables us to use it to a greater extent
than would otherwise be possible. Our conclusion is that we should
re-assess the importance of the Buccella transformation in view of
the work presented here, since it has been shown to be capable of
giving good mass predictions which are, so far, beyond the scope

of other Melosh transformations.



CHAPTER FOUR

This chapter is a general introduction to supersymmetry, giving
a summary of the successes of the original super-algebra and
also its special points of interest. There is also a description
of the algebra and formalism associated with the larger super-
algebra which incorporates internal symmetry and a review of the

work of Dondi and Sohnius in which they derive the reducible

scalar multiplet.
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Section 4.1

The idea of supersymmetry first emerged from consideration
of the Neveu-Schwarz-Ramond dual model (ref 15). When this model is
written as a two-dimensional field theory, there arises, in addition
to the linear Klein-Gordan and Dirac equations and a generalisation
of the gauge condition, an extra “supergauge" condition.

Gervais and Sakita (ref 16) interpreted this condition as
a set of transformations under which the Lagrangian density for
free fields is invariant. Wess and Zumino then introduced the idea
of auxiliary fields in order to obtain a closed group structure
for this set of transformations in two dimensions and, by a process
of trial and error, generalised the system to four dimensions (zref 17).
In the generalised form, the transformations are no longer a local
gauge symmetry but a global "supersymmetry".

There are several reasons for finding interest in this new
symmetry. The multiplet of fields, associated with each closed set
of transformations, combines fields of integral and half-integral
spin, i.e., bosons and fermions. Also, models can be constructed
which are highly renormalisable. A third point of interest is the
form of the "super-algebra", which contains the Poincare algebra
as a subalgebra. This allows us to have a symmetry containing
relativistic-spin which is consistent with unitarity. In section 4.4
we shall look at some of these points in more detail. '

Initially the super-algebra contained the conformal algebra
and the transformations involved a parameter, 5 s which is a

totally anticommuting Majorana spinor satisfying

(leav - TVD/» - 3;-\'1.\ 3)‘) -5 =0, (4.1)
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In later work, attention has been restricted to the special
case when 3 is constant. This removes the limitation to massless
particles in the Lagrangian and also generally allows a more
compact and manageable description of the theory. The effect of
setting f to a constant is to have a super-algebra which contains
Just the Poincare algebra, instead of the full conformal algebra.
In addition to the usual generators of the Poincaréd algebra, 3;,.,
and 'B.. y the super-algebra also has a spinor super-charge, S,‘ .

This extends the Poincard algebra to include

[se,B] =0
[Se, 3]+ 4(s), s,
fs“) 3(3; © (3;..(‘.)“(3 'P/.
:

where s.g is a Majorana spinor, i.e. 3“ = C..{zs .

(4.2)

In these equations the matrix C denotes the charge conjugation
matrix;(a summary of the notation used in the following chapters
can be found in Appendix D).

In section 4.3 we shall give a brief description of the
details arising from this super-algebra, which will be useful for
comparison in later chapters. But, the main part of our work on
supersymmetry is concerned with the super-algebra incorporating
internal symmetry, which was first introduced by Salam and Strathdee
(ref 18). In this case, the super-charge spinor, S, , has an
additional suffix relating to isospin, thus giving the spinor a
total of eight components; as well as the usual commutation rules

involving ‘S,.v ,'B. and T only, we have
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] (4.3)
/ﬁ
25.«: , Sﬁéi - 24 & (E.T;C)“F P
where Sai satisfies the "Majorana" condition,

Sut = i &4 ({s‘C)u‘: §ﬁg

The object of the work in the following chapters is to
attempt to duplicate, using this algebra, the successful results
arising from the original super-algebra (eqns 4.2). The hope is
to find a Lagrangian model which is physically realistic, incorporating
internal symmetry, and is invariant under supersymmetry transformations,

thus having the interesting properties already noted. -



- 43 -

Section 4.2

The introduction of the concept of the superfield by Salam
and Strathdee (ref 19) represented a major step forward in the
understanding of the supersymmetry transformations. Previously these
transformations had been found by a process of inspired guess-woxrk.
The superfield approach made it rossible to derive the results that
had already been determined and go on to look at larger multiplets,
including those incorporating isospin.

In this section we shall briefly look at the superfield
formalism using an approach analogous to that described in
refs. 19,20 in the absence of isospin. The superfield is a function,

§(-;,9) y of a space-time variable, x, and a totally anticommuting

"Majorana" spinor, &; i.e. '
B = + €& (4 C)ug B9, (4.4)

Since 8 is totally anticommuting, it is possible to expand the
superfield as a terminating series in . If we regard the functions
in x, which are the coefficients in this expansion, to be the fields
of particles, then each superfield represents a multiplet of such
fields which are closed under supersymmetry transformetions.
Although it is possible to obtain all the following results
using 0w , we shall follow ref.20 and use instead Ba and its
conjugate 'é: y which are four-component complex spinors. These

new four-component spinors, O ana & y can be recombined to give

the "Majorana" spinor,

0. (4.5)
euk = ¢
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Proceeding in the same way to translate the spinor super-
charge, 3“;, into the dotted and undotted 8L(2,C)~-spinor notation,

we write

Sc&
=&
S

Soc'\ =

This implies the following changes to equations (4.3) for the large

super-algebra

fs., 5 5} =28 (¢), P”

Isd,%f = {5, S‘sjf = O (4.6)
t = 3
Sav S.
where (c})‘i = (|’-g)‘a and ¢~ are the Pauli matrices. It follows

from equation (4.6) that,if AKX and ﬂ“ are completely anticommuting

*
rarameters, then

[q35.3¢] = -2q 77" (4.7)

* Throughout this Jﬁrk, whenever a quadratic form in spinors
occurs, the spinor indices will be omitted on the understanding
that the spinors on the left and right have respectively upper and
lower indices, unless otherwise is evident from the nature of

the quadratic form. Note that eduation (4.7) provides an example

of the exception.
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A group element may be written in three different ways,

§(w.9.§) = exf (5459 -'=.P) (4.8a)
§‘(u.9.5) s exf A(85- .7) “(.;39 (4.8b)
B (x,0,8) = erp 1(3F-%T) anpibS, (4.80)

We can show, using equation (4.7), that,these forms are connected by

Q(“.e'.é) < §.(¢“-"\6'6‘5‘ e‘ -e.) - §“(“*{8"§)9‘§)' | (409)
Operating on the left of equations (4.8) with the group element

Q= exp 3(§5 +8%)

leads to the following infinitesimal transformation laws

= B L __9— s | +10a
¢ <3§_§+ 13.3 + (36;,9 e,f)) )§ (4.10a)

38 = 2 > -2 -bﬂ) ' .
o (g %é % % 2.9%e.% ¢ (4.10b)

s¥ - (53«33 - 2368 )F o

These expressions are now abstr;cted and taken as the basio
infinitesimal transformation properties of the superfields.

It is clear that it is possible to pass from any one of
these three transformation laws to any one of the others by
"shifting" the variabdble, x,‘according to equation (4.9). Since
the "ghift" iaq;g is pure imaginary one can require ; to be
real, as its transformation properties show that it will remain
real; but F and §“ are essentially complex and,in fact, each

transforms as the complex conjugﬁte of the other.
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When constructing Lagrangians from the superfields it is
important to know the transformation properties of two or moxe
superfields. The transformation rules show that the product of two
superfields of the same type (i.e. transforming in the same way) .:
is also a superfield of that type. In order to multiply superfields
of different types one must first transform them by "shifting" to é
superfields of the same type.

It can be seen that there are itwo super-~invariant derivatives
on each type of superfield. These are as follows,

L -y gld am !

~ 1060 a3 (4.11a)

Yl

2 260

30 on § (4.11b) .

o

B . 2;89_ Y on '!!?" (4.11c) .

90

o/ |o/
<D

The formalism we have described here will be used extensively i
throughoqt the next three chapters and is basic to our understanding %
of supersymmetry. It would be extremely difficult to proceed with
our study of the larger super-algebra without using the superfield

formalism and its importance in giving structure to all work on

n e

supersymmetry theories should be stressed.
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Section 4.3

In this section we shall briefly summarize the results
emerging from the original super-algebra (ref 21). Our aim in
the following chapters is to repeat the success of these results
using the super-algebra which incorporates 1ntern;1 symmetry.
wé shall find it interesting to compare our new results with
those set out belowj(see also Appendix E for more details).

The general scalar superfiald contains two irreducible
scalar superfields and one spinor superfield. The irreducible
scalar multiplet contains a scalar and a pseudoscalar field,

a Majorana spinor and a scalar and a pseudoscalar auxiliary field.

If the parameter, 'g (of eqn 4.1) is constant, then it is possible

to construct an interacting Lagrangian density that is "super- .
invariant", i.e. invariant under supersymmetry transformations

up to a total derivative. In this Lagrangian all the fields have

the same mass and the coupling constants are all related. The
equations of motion of the auxiliary fields can be found and used

to eliminate these fields from the Lagrangian density. It is this
model which has been studied in detail and found to be renormalizable
to all orders of perturbation theory (ref 22).

The spinor multiplet contains a vector field and a Majorana
spinor together with a scalar auxiliary field. It is possible to
form a massless free Lagrangian from these fields which is
invariant under supersymmetry transformations up to a total derivative.

It has been suggested by Wess and Zumino (ref 23) that the
fields of the spinor multiplet could represent a photon and a
"neutrino". They have combined the fields from the two different
multiplets to form a Lagrangian which is both "superinvariant" and
invariant under ordinary gauge transformations. This model is shown

to be renormalizable in the one-loop approximation.

hY

e o ey
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Section 4.4

We are going to give a description here of the special points
of interest emerging from supersymmetry which were noted in the
introduction,

We have already seen, in the earlier chapters on SU(6)w theory,
that it is possible to classify all mesons and baryons in multiplets
of SU(G)WQQO(B). The important distinction between any proposed
super-multiplets and the SU(6)w¢§0(3) multiplets is that,in the
latter case, fermions and bosons never appear in the same multiplet,
whereas, in super-multiplets, they will always appear together.

In 1965, 0'Raifeartaigh examined the general problem of
combining the inhomogeneous Lorentz algebra, L, and an internal
symmetry algebra, T, into a larger symmetry algebra of finite order, B,
(ref 25). He was prompted by the current interest in large symme try
algebras and the mass-splitting which is necessarily required within
multiplets in order to get agreement with experiment. The basis
of O'Raifeartaigh's work was Levi's radical~splitting theorem.

This states that every Lie algebra, E, of finite order, is the
semi-direct product of a semi-simple Lie algebra, G, and an
invariant solvable algebra, S. The main consequences arising from
this theorem are that any physical large symmetry group, E, is
probably a direct sum of L and T and that there can be no mass-
splitting without the introduction of symmetry breaking phenomena.
There are other possibilities for the symmetxry group, E, but these
were not considered to be physically applicable.

We have already seen that there is no mass-splitting amongst
the members of a super-multiplet. But, the super-algebras is not
the direct sum of the Lorentz algebra and an internal symmetry
algebra. Originally, it was suggested that this discrepancy was

due to the favt that the super-algebra contained a combination
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of commutators and anticommutators and so O'Raifeartaigh's theorem
did not apply. Recently Goddard has shown (ref 24) that it is
possible to rewrite the superalgebra as a Lie algebra involving only
commutators, hence the theorem must apply. O'Raifeartaigh's theorem
does include the possibility of the algebra, E, taking the form of
our super-algebra. But, this was excluded from further comsideration
on the grounds that it appeared unphysical and unlike any higher
symmetry group that had been suggested. Hence, one of the interesting
features of the super-algebra is that it explores a possibility

that has not been considered previously.

A further point of interest arises from the renormalizability
of the "super-invariant" Lagrangians. In particular, the interacting
Lagrangian formed from the original irreducible multiplet (ref 26)
has been shown to be renormalizable to all orders of perturbation
theory and only one renormalization constant is needed (ref 22),

The approach used in ref.22 considers the component fields

of the multiplet explicitly. This work has since been repeated using

a powerful technique that introduces Feynman graphs for the superfields

(refs 27,28). The advantage of this approach is that one superfield
diagram corresponds to several component field graphs and the
cancellation of the associated infinities is implicitly contained
in this one graph.

The technique of using “supergraphs" has been used with
great effect in the more complex models involving the original
spinor multiplet (ref 29) and the reducible scalar multiplet arising
from the super-algebra containing internal symmetry (ref 30).
Unfortunately, in both these cases, the, conclusion is that the
models are non-renormalizable though the divergences are considerably

less than might be expected from power-counting.
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In chapter 6 we shall attempt to comstruct "super-invariant"
Lagrangians using the multiplets of fields from the larger super-
algebra which incorporates isospin. It will be interesting at that
stage to look more closely at the work of Capper and Leibbrandt
(ref 30) and the approach they adopt. But first we shall begin
our analysis of the supermultiplets of the larger super-algebra by
reviewing a paper by Dondi and Sohnius in which they derive the
reducible scalar multiplet (ref 31).




Section 4.5
In considering the original super-algebra (eqns 4.2) a great
deal of importance was given to the scalar multiplet corresponding
¢ -

to the superfield i(ﬂﬁ,e) that satisfied the super-invariant
constraint

d ' 8

. § ('x., g 8) = O

90
This was found to be the smallest irreducible multiplet, containing
only two scalar fields, two auxiliary scalar fields and a Majorana
spinor field. Therefore, when the larger super-algebra incorporating
isospin (eqns 4.3) was introduced the first step was to calculate
the equivalent scalar multiplet. This work was done by Dondi and
Sohnius (ref 31) and we will present their results here for
completeness.

] o
The superfield, i(‘:ﬁ,a, 9) y which satisfies the super-invariant

constraint,eqn 4.12, (where now 0.;. and S"i are each complex four- '

component spinors) has the expansion,

$'(%,8) = A + 0Fma+ L BTO.Foo +

2!

*L 82,9 ¢ 1) 2 678, 9""21..(*) *

9‘;9¢5 %8, G (4.13)

+
al

where -',;(ZN): is the undotted-spinor representation of the
3;-5’. It 'ﬁﬁ.\ is the completely anticommuting infinitesimal
parameter, the constituent fields have the supersymmetry trans-

formation properties, as follows, ‘



Sp‘ &) = ? "{’(-u.)
SV (x) = -2 6;,,‘?9”“(*)-' 'z.fEm%z,,fcﬁ’(x)

SEG) = i feTr ) H) L fT %)

3400 = i FCR £ D - 3 T2 20

X = dite §3Fw - 2:2,,&,'?_3395”“‘)*
K §Q)

~ - -

Q) = 20§ & XM | (4.24)

where the superfix, Ty denotes matrix transpose, C is the lowering
- ab b
matrix for undotted (dotted) SL(2,C)-spinor indices, 6;'.!(&}.) « (1,8)

and where

P \ A
¢, ) = 0w i B $(), (4.15)



CHAPTER FIVE

In this chapter we shall analyse the irreducible multiplets
emerging from the larger super-algebra incorporating internal

symmetxy. In addition, we shall find the independent Casimir

operators of this algebra.
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Section 5.1
The aim of the following two chapters is to comtinue the

process suggested by Salam and Strathdee (ref 18) and already begun
by Dondi and Sohnius (ref 31) of working out the consequences of
introducing isospin into supersymmetry theory in a non-trivial way.
In this section we shall begin by looking at the new representations
of the Casimir operators of the larger super-algebrg. We shall go
on to consider the different types of irreducible multiplets
contained within the most general scalar superfield and derive their
supersymmetry transformations. Then in the next chapter we shall
be able to attempt to construct "super-invariant" Lagrangian
densities using these multiplets in the hope of finding a form
which is physically applicable.

The independent Casimir operators of the direct product of
the Poincare and isospin algebias which are normally used are

Pz, W' and ;f, where W, is the Pauli-Lubanski spin-operator,
L ! (5.1)
w, = 2, /'ﬂa\"P S . .

When considering the super-algebra (egqns 4.3) only P is super-
invariant. Therefore we must find super-invariant generalisations
of W* and I".

To generalise W&, first define

W. 2 W.-3i3%%S (5.2)

It can be seen from the super-algebra that the transverse part

of @; swritten in the form

! ] ¢

K/«v = ’B‘Nv - B W/,. (5.3)
is super-invariant and its square proyides a super-invariant
generalisation of W®. (Note that for convenience we are here ,

adopting the "Majorana" notation.)
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Similarly, in order to generalise _]_Z_", we first define

'g% = BI - .é's‘-o;:ﬂgs (5.4)

=

and it follows from consideration of the super-algebra that the
longitudinal part,

4" - P4

| (5.5)
s

is super-invariant and its square gives us a super-invariant
generalisation of I".

Now we want to translate these operators into their
corresponding representations when acting on the superfield, §(u,9,§),
We have already seen (section 4.2) that the representation for the

spinor super-charge, S,. is

Su = - FHu - V(B0 Y (5.6)

and the super-invariant derivative is defined to be

Di = ~ %‘g«z + 1 (%9)u 37 (5.7)

We can therefore deduce from the super-algebra that the following

representations are valid,

'B, —> Aok

T > T+ 100 2

I —= ' «+ %t 2 (5.8)
Y

where the double-primed operators have no dependence on terms

involving super-variables § and € or their derivatives.

A mm -
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Inserting these representations into the terms introduced

to define the above super-invariant operators we find

K/W' — K/.: - -f{'BX,,'D

and i‘ e ﬂ" - ’—‘g'ﬁé'gp
where X/w = (D/.'U;—- D,ﬂ)}.)'b; .

In this form the super-invariance of these terms is manifest.

{5.9)
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Section 5.2

In the original supersymmetry theory it was shown to be
feasible to explicitly find the supersymmetry transformations of
the most general scalar superfield (ref 19). This contained only
16 independent components if the superfield was real. In the
supersymmetry theory which includes isospin intrinsically the most
general real scalar superfield contains 256 independent components,
In practice, this means that we can only give detailed consideration
to the smaller superfields which are contained within the general
superfield.

The most straightforward way to show the reduction of the
general superfield, §(1¢,9, 5) y 18 to consider it to be complex
and to adopt a tabular form, indicating the fields whioh are the
coefficients of the various powers of ® and 5'(using the dotted

and undotited spinor notation).

8 09 660 o 6®
‘\ ~k EE:Fipél 2( Ci
?5 “P. A -Y; Z:';k;”a 6%”’h¢' A
- ! o? ] ’ '
60 Eha %, X, E', LT ...', '\:,.a q, qf/-vl
o, F‘)”"“S’P i
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In the above table greek letters represent complex spinor
fields and latin letters complex boson fields. Isovector labels are
denoted by underlining the field, for example, E is an isovector,
E is an isotensor and .X_’ is a spinor with an additional isospin
label. Fields which have greek suffices are tensors and square
brackets denotes antisymmetry with respect to the intershange of
two of these indices. For example, B),. is a vector, FW is an
antisymmetric second rank tensor. FMI;? is a fourth rank tensor
which is antisymmetric under the interchange of either P and ¥
or g and \ D /’t;w] is a spinor with an additional antisymmetric
tensor label.

Now consider the effect of imposing the constraint
D §(x,8,8) =0

26
This leaves us with a complex l6~-component multiplet, ;3;‘“( %, 9) ’
in the first row of the table and nothing elsewhere. This is exactly
what was described in section 4.5 (a.ssuming that &m(x, 9)
transforms according to equation (4.8b), otherwise %‘5 would not
be a super-invariant derivative).

Similarly, the first column can be seen to be a multiplet
of the same form, except the fields are coefficients of § in this
case. We could regard the column-multiplet as satisfying

2. §(,9,9)=0
aeﬂ“ )

where §(1,9,9) must transform according to equation (4.8c).
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Adopting the first of these two alternatives, we can expand

the general unconstrained supeifield in terms of superfields of

()
the basic form é‘(x,e),

§(°¢. 0,8) = im(x,e) + 5‘“?‘: (=2,9) +L 8z®. § (x,9) +

(<=1}
134
(w»]l
&
=
4
r\:e
2
L
P
W
[
(e}
-

+ L 8
™

It has beéen shown that §m(-x,9) is a superfield; that is,
it can give rise to a series of supersymmetry transformations
which close upon the constituents of the multiplet all contained
within §m(x,9) . If suffices are attached to the basic scalar
superfield we know that these new functions will also be superfields.
Therefore the coefficients of 5 in the above expansion could each be
regarded as an independent superfield. In other words, each row
(or, alternatively,.each column) could represent an independent
superfield. (It should be noted that if we were to derive the
supersymmetry transformations of all the fields in the unconstrained
scalar superfield explicitly, we would find that the independent
multiplets do not emerge until the fields have been redafined,
subtracting out the terms which are dependent on fields in other
multiplets.)

Hence we have found that the general complex scalar superfield
can be reduced into two smaller scalar superfields, an isovector
superfield, an antisymmetric tensor superfield and iwo spinor

superfields.



- 60 - /

Section 5,3

In this section we shall look in detail at the supersymmetry
transformations of the different kinds of multiplets. These trans-
formations are obtained using equation (4.10) acting on the super-
field expanded in powers of ©® and 5..We will omit the formal
derivation here and just quote the resulting transformations.

L) -
For the smaller scalar superfield § («,9,9) satisfying
9 0] -
3 $(=,8,0) =0

we can write

f‘)(x,e) - Al + 9¥(0) -c-i'-! 9T9.E(x) +
L 82,8 P+ & 6°095,00 ¢

+ Ll..L! 9‘; Q.J 9*3 e;; c((’-"-) . (5.11 )

As noted, this is Jjust the multiplet examined by Dondi and Sohnius
(ref 31 ); we will find it more convenient to express this in the
"Majorana" notation, rather than the dotted and undotted spinox
notation used previously in ref.31 . In the "Majorana" notation it
becomes clear that this scalar multiplet is reducible.

The supersymmetry transformations for the reducible scalax

multiplet can be written as follows,

‘S‘xt = i.? L %8¢
SA'&”:‘?*
3% = GIAT « JAT + AT E SN T.ES

2
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?
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+
T
=
-
'.
T
Wy T~

SC\\ = ‘2;?$2
8Q, = "2‘\{.253?2’ (5.12)

where the boson fields have been writien in terms of their real
and imaginary parts, for example, A={(A.*i A.) and E-.-{(E.-ﬁs,).
As we noted in section 4.2, the product of two superfields
of the same type,§m(¢,9) and im('x,a\, is also a superfield of
that type, im('u,s) + The procedure for obtaining the combination
rules, displaying the relationship between the component fields
of the three superfields, is basically one of comparison of the
coefficients of © . We will find it extremely useful to use the
explicit combination rules for two reducible scalar superfields
in the next chapter when we consider the problem of obtaining a
"super-invariant" Lagrangian density. These combination rules
are given in Appendix F.

If we consider the spinor field

i; gy -ll-b’;;w ) (5.13)
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it becomes evident that there are two multiplets Separating out,
If we try setting 7 identicall,y to zero together with F, , §%,
we obtain a new irreducible scalar superfield.

This process of reduction can be expressed formally by

demanding that the reducible sealar superfield, f?n ,8)

satisfies the super-invariant relation {
71 S 3. i - (5.14)
2.4 5% 3B:; 3 3 ‘?(**2‘9“9 B) = 3 i(x, 9)

where Rx¢28r§ ,5) is obtained from i?or-, 8) by first taking
the hermitian conjugate and then "shifting" the space~time variable.
Using equation (5.11) and the identity,

LD .. 8. 8.8 §
w55k, 3o %, (B BeBun i) = g (e, Ciz + Cyy Cjo)t
+ zkmi,{.. (csz cit + csacaé) + 8.‘“ zfm (C;} C#i + C'Qé céS)’

the following explicit relations are found,

QG = EYA
SV TG = 4V
-SE ) = SE
-6 258 N -z P (5.15)

where (Z/'-")a; = '@')a ¥ .

It is immediately evident that this is the same reduction as

Ve
that implied by setting ¥ to zero.

Consistently with equations (5.15) and the transformation
&)

laws (eqns 5.12), the expansion of a superfield of type I(’K,O) R

subjected to equation (5.14), may be written as,

e o e e m—mp—— = o ——
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@"»9) « LA+ 1A ¢ ONlx) 4 L OTVOLE () +

~o

1 Cov . s g Té
* 3 920 & ) - 23-‘ 0 0y o% (6});; Yy () +

* i‘ 9“‘9.5 9“58“ ;“(A\h)"{ A‘b‘)) (5.16)
with the boson fields all hermitian and Erfx) satisfying

€ g \:‘Q?] (=) =0 |, (5.17)

YrPAY

The infinitesimal transformation laws satisfied by the constituent
-

fields of 9 may be deduced from equations (5.12),
$AK) = Fafedtn
SA(x) = =1 4 w)
W = G FYAG)+ BT ITAM ATEL B
O A
SR = - §5 15 )
SE) = L FIY STV ALY L (5.18)

, Note that these equations provide an immediate check that the
constraint (eqn 5.17) is super-invariant.

The procedure involved in obtaining the supersymmetric
transformations is a Qery long process involving much algebraic
manipulation. In practice, it is found to be a very convenient
check to look at the double-transform equation (4.7). In Appendix G
we shall show how the transformation laws (eqns 5.18) satisfy
equation (4.7).

Before moving on to look at another set of transformation

laws we should consider the nature of the product of two superfields
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of the form of equation (5.16). If we demand that the superfields,
§“)<'&,9) and §M(%,9) , of Appendix F, both satisfy equation (5.14),
then the product is still a reducible scalar superfield of the
same form as equation (5.11). This is an important point of
difference between the irreducible scalar multiplet (eqns 5.18)
and the scalar multiplet of the original super-algebra. In the
latier case the product of two irreducible scalar superfields
of the same type is also an irreducible scalar superfield of that
type. This particular property was exploited by Wess and Zumino
(ref 23) to obtain an extension of quantum electrodynamics which
is super-invariant using the original superfields. It has not been
found possible to duplicate the work of ref.23 using the irreducible
scalar multiplet of the supersymmetry which incorporates internal
symnmetry.

An alternative way of reducing the superfield of equation (5.11)
is to demand that it satisfies the super-invariant relation which
is obtained from equation (5.14) by multiplying both sides by a
Green's function for the wave-equation and integrating over space~-

time. The superfield, so reduced, has the expansion,

@( ,0) = 3'2 ¥ (q () =58 (ﬂ) .—-— Bs 07 Z(x)ai 91:'9.,,.(x)+

v o bl
+ afj..ver:“(u)-r ;'!9 8‘5832"‘(-*\*

£1--

L 89, (5t 438 0) (5.19)

with E?“kx) satisfying the constraint

E/w%g Fr'\g](*) = 0

and all boson fields hermitian.
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The infinitesimal transformation laws again follow from

i

equation (5.12), they are
S‘i‘(x) T - 2{€¢Z(°‘)
Sch.('*) - 2%?'{;?%(-&)

M

dX () = $5G ) - %550 + kiGN TEIE x)

1
Thg\

2% % &, T3 E"

SE"‘"(a) - —§-|_ f(z”’a"-‘a’”b") z;«#l’(s) . (5.20)

By introducing minus signs intp equation (5.14), we can
produce similar multiplets involving the other boson fields, B
and E?ﬂ; the only difference in the supersymﬁetry transformations
is the appearance of extra ‘1; -matrices, The exact structure of
these transformations can easily be obtained by considering the
reducible multiplet equations (5.12).

The antisymmetric tensor superfield and the isovector
superfield have similar supersymmetry transformations, and can
also be reduced by a similar procedure to that used above; by
merely appending the appropriate indices onto the fields each
time they appear.

The remaining superfieid which we have to consider is the
spinor superfield., This is by far the largest irreducible super-
field in the supersymmetry system we are considering, containing

128 independent complex components. Its supersymmetry transformations

can be written as follows,
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It is worthwhile noting that there is a difference between the
spinor multiplet of the original supersymmetry theory and the
multiplet desoribed above. In the original theory the equivalent
spinor multiplet was reducible and could be regarded as the
combination of two irreducible spinor superfields, each containing.

a Majorana spinor, a vector field and an auxiliary scalar field.
It was possible to consiruct from one of these irreducible mualtiplets
a massless free Lagrangian density which is "super-invariant".
In the present case we have derived a very large spinor multiplet
which is irreducible and, as we shall indicate in the next chapter,
it is not possible to form a physical Lagrangian density that is
"super-invariant". An additional problem is the spinor field with
the additional isovector label which is found in tihe spinor multiplet.
Whereas all the other fields could be regarded as corresponding in
some sense to .physical fields, the appearance of this spinor field
is difficult to understand in physical terms.

Finally in this section we shall consider -the most general
real scalar superfield. It might be suggested that, since the
256 independent components of the real scalar superfield are
themselves real, the problems are not so difficult and, in fact,
the first superfield calculations were undertaken on a general real
scalar superfield (ref 19). Unfortunately, because of the complexity
of the calculations, we are not able to make direct derivations in
this case. Therefore we found it easier to use the complex superfiel@
written in the tabular form, which gave us a clear indication of
the steps to take. Nevertheless, we should note the form of the
general real scalar superfield and show that it can be reduced

into the mul%ﬁplets we have described above.
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.We shall not write the superfield out formally bdbut instead
note the coefficients for each power of the totally anticommuting
"Majorana" spinoxr 55, adopting the same notation for the fields

used in section 5.2,

It is not possible to give a clear indication of how these fields
form into irreducible multiplets  without explicit calculation,
But, noting the reduction of the complex scalar superfield, it can
be seen that the real scalar sﬁperfield is composed of two
irreducible scalar superfields, a spinor superfield , an irreducible
isovector superfield and an irreducible antisymmetric tensor

supexrfield.

|



CHAPTER SIX

In this final chapter on supersymmetry we shall look at the
possibilities of forming Lagrangian densities from the multiplets
derived in the previous chapter. We shall compare the results
with the work of Capper and Leibbrandt and also with the

achievements arising from the original super-algebra.
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Section 6.1

In this chapter we are going to look at the possibilities
for forming a physical Lagrangian density which is "super-invariant"
from the multiplets which we derived in the previous chapter.

The formal procedure for obtaining Lagrangian densities for super-
symmetry multiplets was described in the early papers (ref 19,26),

but with the introduction of internal symmetries this process

becomes very long. We will introduce here a shorthand way of displaying
the contents of the Lagrangian density. Though the exact coefficients
still have to be determined, this technique does help to determine

all possible “super~invariant" Lagrangian densities and thus

eliminate quickly the unphysical ones.

The procedure in all cases is to find the coefficient of the
highest power of the O's and §'s of a product of superfields of
the same type. This coefficient can be extracted, up to a total
derivative, by applying the appropriate number of super-invariant
derivatives and this forms the Lagrangian density. There are two
possibilities, that is, either the product of superfields contains
only R (or 6'8) or it contains both ©'s and g's. In the first
case only four super-invariant derivatives are required but in
the second case eight derivatives are necessary. Clearly, if both
types Lagrangian are going to be considered together, extra
derivatives or mass operators must be inserted for dimensional
reasons.

For illustration, we shall consider here products of two

superfields of the form §(‘£,9) y where

§(°=,9) = Alx) + DY) + j 0T 0. (= +ZJ-2!8,§,,9FW(,9+

o) by al A
+f © 007X ) ‘.‘4_.!8‘9.-)9”6*.,"((%),

Y
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In the first case, in order to obtain the contents of the Lagrangian

density,

L= D" [ 8,0 8=0)]

simply multiply the multiplet "top to tail", i,e.

A E,Fw)( q

¢ X E,%. Yt A,

The Lagrangian density, J: sy in this case contains
% *
F\‘R ’ Ak ;k' ) E:. » F;md
In the second case it is necessary to return to the tabular
form. Insert the component fields of §C%,9) in the first row and
those of @ (%,8) in the first column. Then £111 the last row and
column with the appropriate derivatives of the component fields

(the number of derivatives is determined by dimensional arguments).

The object of this metlhod is to find the contents of

.['4' ’D?[ﬁ(u,Q) i*(u+2&96‘§,§z‘l

and it is straightforward to do this by extracting the coefficient
=i
of 9*9 from the following table. It can be seen that the Lagrangian

density contains,

ADQ-A*, A’k D*A , E DtE‘R' F—* D'VF-’ Qq*

) - ~

» * “
f?‘Z ) v ?9‘{’ ’ F‘:M) F F;:: 2 \-_-f-/"‘il
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) o o3 o
A " F, % G

5 sy X

I P | IE, 'S'F‘M

5 eYV ¢

&YX FEN IR, YTt g

These techniques are not precise but they do allow us to
examine the alternatives which are available and to discount those

that are clearly‘not going to lead to a model that is physically
applicable.
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Section 6.2

In this seotion we shall look in detail at the possible
Lagrangian densities that can be formed from the multiplets der;ved
in the previous chapter., The first thing to note is that the
contents of the Lagrangian densities which were given in the last
section are not, in their present fornm, physically applicable.
It is possible to introduce a system which involves cancellations .
(ref 30) and we shall consider this later, but here we shall
consider Lagrangian densities which appear without needing such
cancellations.,

First we will look at the multiplet arising from the
superfield of equation (5.16). A "super~invariani" free Lagrangian

density for this multiplet may be written as follows

I = -t 'D“'D-'Q'DH’D“ (@(x,&) @(u.s))-t- he, (6D

where

b

D, - 2(s8): Y (6.2)

2
‘.\ Da"\
is a super-invariant derivative acting on superfields which transform
as equation (4.10b). Using the combination rules of Appendix F,

the free Lagrangian density can be written explicitly as
» M a AL *
Lo« $2ATA L IAYA w1 APt o4
Om

- 1
& E’g_ﬂ E % divergence terms |, (6.3)

This gives a massless free theory, and it would be natural
to try to introduce mass terms in a super-invariant way. However,
this cannot be done, as it is easily seen from the supersymmetry

transformations (eqns 5.18 ) that the construction of a non-trivial
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quadratic form in the fields, which does not involve derivatives,
is impossible.

Next we shall consider couplings. The simplest self interaction
of the superfield ‘f(*.ﬂ is given by the following "super~invariant"

interaction Lagrangian density,
al 4 A 3 ¢
L (%) = "”%Jq:g DD, PPy ($(x.9) +\.e. (644)

In terms of the constituent fields this is given explicitly by

Toos AR YA« BA- LT R - ADAYAS

PAN A A FTHIV AL+ LT -

Ow) ) = LKA)
LGSR L G BN,

+ divergence terms , (6.5)

It is interesting to note that if the field-equations for F,  and
™, which follow from equ;tiqn (6.3) together with equation (6.5),
are used to eliminate these auxiliary fields from the total
Lagrangian, the resulting interaction is non-polynomial in the
fields Py(x) and A,(x).

‘ It should also be noted that it is possible to give an
alternative interpretation to the field F’ and regard it instead

as

EW = duul, = AU, v’ =0, (646)

This would imply that the new vector field,uJy, , has the super-
symmetry transformation
. if'3f~\P : ) if1{7“q+
u, = 2 » -'\/_:Tv 3
)

moreover, this definition is consistent with equation (5.17),
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The consequence of considering the vector field, Vs , instead of
the antisymmetric tensor field, Ff”ﬂ is that the latter appears as
an auxiliary field but the former can be regarded as a physical
field. We are not able to give any insight into this apparent
ambiguity.

Now we shall consider the multiplet represented by the
irreducible superfield of equation (5.18). As we have seen, this
is essentially the same superfield as that used above, only with
the fields redefined. We shall see that.the free Lagrangian
densities are of an entirely different character. A "super-invariant"

free Lagrangian density for this superfield is given by

L.t = - \ ’D“‘D‘J DD, (i.(uﬁ) Sg.(wﬁ))-v h.c.

L4
e 4!

e, Lox) = (q:»,q:)"»{:‘;: X3 + E(UEY

L
¥

-4 ( o {:‘5"”’ ) + divergence terms.
3 (6.7)

ﬁote that in this multiplet the roles assumed by the boson fields
in the reduced multiplet are interchanged. Whereas previously'zt(x)
and Ffbﬂkx) were auxiliary fields and the others "physical", here
E.(x) and %) (x) are the "physical" fields and the others are the
auxiliary fields.

The simplest self intéraction is given by

L DDy DD (§d)[FE D)) + .

- L
L) = =L o
(6.8)

It can be shown, using the combination rules, that this
interaction céntains terms which are clearly undesirable,for
%
example, (a/_ﬁ,) .%,-,C\\ . Whereas in the free Lagrangian density

the symmetry takes care of such terms and ensures they do not

hY
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appear in the final version, in this case such terms are unavoidable.
Thus we are lead to discount this formulation as unphysical.

We can form a Lagrangian density from the reducible scalar
multiplet by redefining the first two component fields such that

b P — i B Y T « 1878, P
é;(?c,e) = ilé'l's" * 5 96}3 Aloe) 4-26'5‘9 Fix) +

+L9Z.0 F0 + i‘a"&; X ey +
e L 979,99 0 Q0. (6.9)
ot )

Using the tabular technique we can see that this Lagrengian density

would contain
13y, XX, ESE,

Y vl ~ gud
E;-IE ) °~y..a v

E; ;'»E qy q: , ,D"\-’ ‘?\.’

*y Moo

Note that if Az X, D=zqg* , Fso, \::W'«lao'then

L

2, (8 = 5\ (x,9) . Therefore, using equation (5.14)
L (gg)‘*[ £09 8, lxr 25 9@5,5)] - D*[x0) T8 (,,9)]

and thus we can see the connection between this Lagrangian and the
previous one. Unfortunately, as in the previous case, the difficulty
arises in forming an interaction Lagréngian and we must discount
this formulation also.

All the above calculations can be made applicable for the
multiplets of the isovector and antisymmetric tensor superfields
by just adding the appropriate indices.

Finally, we shall briefly consider the spinor superfield.

The only method of forming a possible Lagrangian without cancellations
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is to construct an appropriate second spinor multiplet so that
when these two are multiplied ;ogether they produce a Lagrangian
density which could be physical. Unfortunately, this Lagrangian
density would contain the term Zﬁﬁé{ " and, since we cannot give
‘this any physical interpretation, we are lead into discounting
this Lagrangian and also this multiplet.

The conclusion of this section is that, of all the Lagrangians
we have considered, only the ones formed from the irreducible
scalar multiplet could be regarded as physical (eqns 6.3, 6.5).

All the other multiplets have to be excluded because they do not
give both a free and an interacting Lagrangian density that could
be regarded as physically applicable.

The successful multiplet forms a massless interacting
Lagrangian using a procedure similar to that introduced for the
scalar multiplet of the original supersymmetry theory (ref 19),
though in that case the fields could be massive. In the next
section we shall describe the work undertaken by Capper and
Leibbrandt (ref 30) in which they try to form a massive interacting

Lagrangian from the reducible scalar multiplet.
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Section 6.3

In this section we shall give a brief summary of the attempts
of Capper and Leibbrandt to form a massive "super~invariant"
Lagrangian density (ref 30). Unlike the approach used in section 6.2,
the procedure used in ref.30 does not restrict attention to Lagrangians
which could be produced without cancellations. On the contrary, the
approach used is to introduce additional "super~invariant" terms
into the Lagrangian density specifically to cancel the undesirable
terms from the first attempt at construction.

The massive free Lagrangian density proposed takes the form

L- 5Bz 3 « Grof[Es2E)
¥ (’.‘5 T 'D)‘ [%_ (3"*\- 2~.“') %_] (6.11)

where ¥, and {_ are reducible scalar superfields such that

3,7 = §_.

The form of the Lagrangian density is such that the fourth
order derivatives from the first term (which are ghosts) are
cancelled by the second term. The auxiiiary fields in this free
Lagrangian density do not have such simple equations of motion as
in the previous cases we have considered, since many mixed products
occur, but when they are removed the fsrm of the Lagrangian density
is physical. (In fact, the spinor fields appear in an undiagonalised
manner but no ghosts appear if these are diagonalised).

The most promising interaction Lagrangian density is

j; = ('B“E’D)‘(i: * §:) (6.12)
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and when the auxiliary fields are removed from the sum of the free
and interaction Lagrangian densities the resulting expression is

very complicated, involving quartic interactions and cubic terms
with quadratic derivatives.

Capper and Leibbrandt show, using supergraph techniques,
that, though the divergences are considerably less than expected,
this does not lead to a renormalizable theoxry. Also, the choice
of another interaction is unlikely to improve this conclusion.

The important distinction between this case and the original model
is that here the mass plays an essential role and cannot be set to
zero. If, in fact, we consider what happens when the mass tends to
zero we are lead to the irreducible scalar multiplet which we have

already considered.
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Section 6.4

We are now in a position to give an assessment of the
results emerging from consideration of the larger super-algebra
incorporating isospin. In making this assessment we shall draw a

comparison between the results derived in this work and those found

in the original supersymmetry theory (see section 4.3 and Appendix E).

Our object in this work has been to duplicate the’successes
of the original sugersymmetry theory using the larger super-algebra
which incorporates isospin intrinsically.

We have found that there are two basic types of irreducible
multiplets emerging from the larger super-algebra, these form the

scalar and spinor superfields. If we impose the super-invariant

constraint

9—.: §(m, e, 9) = O

>0
on a general scalar superfield, §('ﬁ.9,5), that transforms as
equation (4.10b), the resulting super-multiplet is reducible
(unlike the original supersymmetry theory). In order to ob%ain the

irreducible scalar superfield we must also impose the constraint

(eqn 5.14)

Lo ) 2.) F 6 FEY . 5
55 0 e g, B(xr2008,8) - TE9)

where g("-*?‘sfg, 5) is obtained by first taking the hermitian
conjugate and then shifting the space-time variable.

We noted in section 5.3 that, because of this further
constraint, it is not possible to combine two irreducible scglar
multiplets to give a third irreducible scalar multiplet. Instead
this product would give the reducible scalar multiplet. This is

in contrast to the original theory were it was possible to make
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such a combination and this property was used by Wess and Zumino
(ref 23) in order to extend quantum electrodynamics in a super-
iﬁvariant way. Hence, we are not able to repeat the work of ref.23
using the irreducible scalar multiplet of the larger super-algebra.

Nevertheless, we are able (eqns 6.3, 6.5) to form a
successful massless interacting Lagrangian with the irreducible
scalar multiplet in a manner analogous to that used in the original
theory (cf. Appendix E). In fact, this was the only suitable
interacting Lagrangian which we were able to extract from the
superfields without requiring cancellations.

In section 6.3 we described an attempt by Capper and
Leibbrandt to construct a massive interacting theory using the
reducible scalar multiplet. In this model the mass plays an essential
role and cannot be set to zero. This differs from the original model
since there the massive free Lagrangian was constructed in two
independent parts and if the mass is set to zero the Lagrangian is
8till valid (see Appendix E). This important difference results in
the conclusion that, unlike the original model, the Lagrangian
model of ref.30 is non-renormalizable. (It is interesting to note
that the conclusions of ref.30 are similar to those of Adjei and
Akyeampong (ref 29) when they used the same approach with the
reducible spinor multiplet of the oxiginal theory.)

It remains for us to consider the Lagrangian densities of
equations (6.3 & 6.5) as a possible model. In fact, these equations
are similar to the original interacting Lagrangian model (see
Appendix E) and it is interesting to compare them in some detail.
Both models are based on irreducible scalar multiplets with a
scalar and a pseudoscalar field and a spinor field. In the original

case the spinor is Majorana, i.e.

\('“ = Cup'\{:ﬁ
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whereas,in the case in which we are incorporating isospin, the

spinor satisfies

—-F'
+u‘-. = i€y (ﬁc)ap '\{l a.

In the isospin case the auxiliary fields are an antisymmetric tensoxr
and an isovector field. This differs from the original model in
which the two auxiliary fields were a scalar and a pseudoscalar
field. It is readily seen that,once these auxiliary fields have
been removed from the massless free Lagrangian densities, the two
models are quite similar,

It is interesting to note that,when the auxiliary fields
are removed from the interacting Lagrangian densities,the result
in the original case is still a polynomial, whereas in the isospin
case the interaction Lagrangian density must now be non-polynomial
in the fields A(®) and A, lx).

Therefore the new Lagrangian shares many characteristic
features of the original one, including the nature of the "physical"
fields involved. Unfortunately, the scalar bosons which are present
in both models are not found to play an important role in physiecs.
Whilst we can superimpose higher spin and isospin labels on the
basic multiplet and also re-interpret the auxiliafy antigymmetric
tensor field as a "physical" vector field, we then have the
difficulty of interpreting the spinor fields with these additional
labels.

Hence as our conclusion we are lead to suggest that the
massless interacting Lagrangian densities of equations (6.3 & 6.5)
form the most promising model to emerge from the large super-
algebra incorporating isospin. Unfortunately, this model is not
physically applicable, since the isospin content which we hoped
to incorporate into the model does not appeaf on fhe boson fields

which could be interpreted as physical. Whilst we could superimpose
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the isospin labels this would lead to the problem of understanding
the spinor fields with these additional labels. Therefore we have
ﬂot been able to give supersymmetry any additional importance in
describing nature.

Nevertheless, we have successfully introduced isospin into
the original supersymmetry theory and thus we do have a theory
which incorporates all the special points of interest noted in
section 4.4 . The theory contains bosons and fermions together
in a manner which is in general less divergent than might be
expected from power counting. Also, the form of the super-algebra
is not the direct sum of an internal symmetry algebra and the
Lorentz algebra and thus supersymmetry is intrinsically different
to previous theories. For these reasons it is useful to attenpt
to extend the scope of the work presented here to a general SU(N)
internal symmetry (ref 18) and work is progressing in this

direction (ref 32).
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Appendix A

The set of definitions for M and W given in section 3.2 are
not unique in having all the required properties. In this appendix
we shall display the definitions for W suggested in ref.7 and the
corresponding versiog of the M-operator. Together these are able
to generate the same solution as the set of definitions proposed

in section 3.2 .

Using the diagrammatic form, the W-operators could be

defined as follows,

where the W and S operators form an SU(2)@ SU(2) algebra.

The M-operators which are analogous to those presented in

equations (3.5) are,
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<V\.+l,‘(+|'ml M%’l“'e“>=f %:3—- C':. { ‘f:l {*(“ve*z) |

£ t s
<V\—l"(+l,w\ N\t l K.{M> ’E ‘%“‘:‘:3 C. g.(w-‘(-l)

L4 f-1
Corl el m [ Mal w dap s 21t G ()

241
y" ‘ <-
<v~—|, -1, | My l w ’(m>‘§ —2%:-\ C: | w-: (4-("‘“"().

These definitions differ significantly from those given in ref.7 .

Firstly, we have made no attempt here to determine the functions, f4

+ %
Secondly, the definitions are such that V\,.. = '/\.. N M. - V\,

and 8o

Z= MM -MWy = -2,

There is only one point of disagreement between the sets
of definitions in the series of calculations outlined in Appendix B.
But, since this effects the nature of the function, B(n,{) (eqn 3.4),

there is no difference finally as in both cases B(n,{) is necessarily

zexro.
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Appendix B

In this appendix we shall give the details of the series
of calculations performed in order to ensure that our unitary
operator is compatible with the constraints resulting from Weinberg's
equation (eqn 1.8-1.10).

Using the general form for the zero-th order (mass)v-squared

equation,

o~

\N\: = A(m,{) + 6(vx,'()'—-.§

As already noted, the approach used is a perturbative one and we

shall look at all three constraint equations (1.8-1.10) at each
order of 6.

At order O Eqn 1,10 with n'=n# 1, = (%]

4+

Blnt) = L)8 < €)' 8B (8 cnsht)  (B:1)

(Note that using the definitions of Appendix A we would
obtain B(n,{) = constant.)

The other equations offer no constraints at this order.

At order 9“ Eqn 1.8 off diagonal i.e. <{: nw’ ‘('ml tw ‘(w\> = O

Aln,t) + A(*\t‘Z,;(*Z)L- 2Rt 441+ B0 = 0

and A(u\,-() + A(«,‘( '!'Z)-A‘(vwl"('.".l)- A('\",‘ftl)'l-
+ @(—l)M’l = O

= Aln4) = A+ e+ 'g:{_-_o“"' (3.2)

(Ao ’ A Co«-s\'w'\'S)‘
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At order © Eqn 1.9  off-diagonal, s,= =g,
= B=0 (B.3)

(Note, this is true in both systems of definitions
and they are now effectively equivalent.)
The other off-diagonal equations up to second order do not give
any further constraints.
We shall now consider the equations at second order when

n' = n, =4 . The most general form of mg is, (ref 6),

My = k(Tnt) + BITnd) LS + F(Tnt) (L.5) N 5(1.\4)3",( )
B.4
Eqn 1.9 s,= 8,

K(Iul,v\ “() + S(Tsl,u 'f) - W(Tso‘“{)_ S(r,a‘“ .()_‘

= [‘((I=o,w4) - ‘((r.l,,q)}(-& e 3 D>

= Y(1e0,04) = ¥(Tsl,n )

and oL (‘l‘a\‘ vv() <+ S(T'\,n'() = x(IOO‘.\-{)lﬁ-S(IQO(m‘C)

since true for all helicities. (B.5)
Egn 1.2 Bo.= -S-;s
X(V\,‘() = _...é-—-— [{:(“-\"‘*2)—'::.(&-‘(—0 N
2(24+) Py
C o laet) = £ (n-tr)
o (B.6)

24-\
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Egn 1.8

$cet,nd) + Vo [ tlte) -] =

- =B @ x2)(Rar) & o] [ o* ) ‘“.{-‘ .
B 2‘[ (2441)(24+3) (4*("*'{ 2)-%( ))

A 28 e | (%) = £ (nad =)
*'2‘[(24-0(24'“)] (‘ﬂ( ) = £ ) (B.7)

Inserting X(m,{) we can see that there is no-helicity

dependence in the equation (cf. ref.6).

Hence, %
S Tel,nd) = -4 (‘Sﬂ) ( ) W)L ‘
( ) 2=\ [z«’s 4* (nete2) =L net)

(B.8)

?

- ,(" * _ 2 s
S (fero-Cee)

Equation (1.10) does not impose any further constraints.
Hence, we have now considered all the relevant conditions resulting

from Weinberg's equation up to, and including, second order in 0.
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In this appendix we derive the consequences of the calculations

of Appendix B. on the meson states in’ the L=0,1 multiplets. The chiral

content of these multiplets is,

) h=1 b =
120 = ¢=t
Y
L =1 T A= g!_:_-_k{_ Q@%(ﬁ%\_{_‘\&?}
fevy (-s_{.%_{s £'$(v%:'fz°>
RJ‘%‘? A = é(v‘-u")
'D'-'-"'_'_:_r{;.s D= ‘J_‘;(v..'mu;")
v B =t B=t
A, =§-§.(\r'+u"-z
¢ =§(¢;-v;‘-s)
Hence, N\:‘ = oY)y et vl o)
= Ace A=+ 9"(«:4-/4’,'-»’(,'-«- S:)
and meg = <& 0 tleel €50 4>

AL+ A« 6o

(vhere the prime refers to isospin one, otherwise isospin zero, and

the subscript is the value of n = *L). Similarly we can find the

)

masses for all the states.
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Appendix D
Summary of notation used in Chapters 4,5 and 6 .

Vo = duy (1, -, -1, 1)

Pauli matrices:

6}63 e 8\3 “« A&, &,

‘\u‘ﬁ&u"‘e\

Dirac Y-matrices:

(¥ = §1,¢7, ¢, &, m“r‘}

were ¥ x CECY g, TN

£l-

E-\zs b ‘

ana €2 L [v”, ]
a
For any ¥ define '(ﬂ so that {a{A s | (no summation),
M » Py
f¥v”, ¢} = 29

Useful relations:
Y e -y &S,

6‘*"’"(3 = -i(vl’gfv- 1”3 {J‘)q-
+ Eﬂwgk:‘.c\{f.

[6""’, {g] 2:{ " Y - 48 ‘(")

& G_na e 4 (VLvK &»& - vl’xrvk—'lw\ol‘“

- )s YV L ~“ vk

. v 1
- ,,l»kv\w . EN“* -(f)
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1’9} -
Y ey, = O
d}.v'\f’ cﬂv - o

Properties of the charge conjugation matrix,C,
¢ T
-l »
'Y s - Y
-\
¢t - ¢
¢t - -C
T
- s J
hence C‘ { C * {
vV
Clem~C = -E&T

It is useful to note that the matrices '(/‘..C and ‘}pc are

symmetric, whilst C, WC and %¥( are antisymmetric.

:F\TATB“{Q. = +§11ATB+\

Hence

e VAT e {1, TS, T, o, Y

A -

- and “tY Tq «l'; = "*,_.(ATO*‘

for "(A'Ca e § \‘ -{" (/"’ TK gﬁ“,&"fg‘(’f‘}
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Also there exists the re-arrangement formula

'\h { ='"!§ Ze.l ("E ﬁ\"-’n"“?)vkre

where

*u{ = '1&3' ("CS'sC),,‘i ':[’pa

for both ¥ ana ¥,

Note: no olaim for originality is claiged for this appendix

but it is included for completeness.
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Appendix E

In this appendix we shall give some details of the work
done on the original superfields. No claim for originality is
made for this work. It is included as a basis for comparison for
the work presented in chapters 4,5 and 6 . In oxrder to aid this
comparison we shall display this summary in a way similaxr to that
adopted in the main text.

The general complex scalar superfield can be written in

the following tabular form,

>3]
<
> N Ll

-4 FO

<D

and can be expanded as
(8)

F(2.0,8) = B (=B & ) 418753

v

(c)

(x,9) (1)

(c¢f. eqn 5.10). If we impose the super-invariant derivative,
ég% EE (ﬂﬁ,ei'g) = C)z

then we separate out &m(m.e) and this is the irreducidle
scalar multiplet. The supersymmetry transformations of this

multiplet can be written, in the Majorana notation, where "% is

a Majorana spinor,
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SQ‘(x) = .1§+(ﬂ)
$A,6) =3 T %)

) "k () = $ (A,(-u) + g A;Qa-)) 'g -\-(E(-a,) "TSE("))?

SF ) = 3P4
SR §7% P )

the real and complex parts of A y Similarly

(B.2)
where A, and (\.‘_ are

for F.

From this set of fields we can form the following "supexr-

invariant" Lagrangian densities (ref 26),

I‘ = -3 (D/*A\)‘ - %(Q/-At)‘"" §'$$**E‘*F:

- (E.3)
fm = v~ (F;A\ + F'I-A‘I- - -J;'_:(‘*) (E.4)
- i
Zb = 3 [ E(Q‘ - A:) + 2E A\At - ‘\"(A‘-T;R‘)‘J{]. (E.5) i
The sum of these three terms is an interacting Lagrangian density
and if we use the equations of motion for the auxiliary fields,
F, 5
FoxmhA + g(AY-A7) =0
F:. * ""'A& * 23 Al A; = O (B.6)

then we can eliminate these fields and obtain the following "super-

invariant" Lagrangian density
L= - £0.A) - LAY -1%dy
~iw (AT AL) - 3wt

- 9~ A(ATCAY) - & (A4 AY) —"3?(4\.-1’;#\;)\('

'I
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Note that all the masses are equal and the couplings are all
related as a consequence of demanding that the Lagrangian density
is "guper-invariant", It is this model which has been shown to be

renormalizable to all orders of perturbation theory (ref 22).

The spinor multiplet can be reduced to a multiplet containing
only an antisymmetric tensor field,a Majorana spinor field and an

auxiliary scalar field.

spD = 15 IA (B.7)

where the tensor field can also be interpreted as a vector field

%ﬂu 3,.0',. ->vu}- » a..\.r”go.

From this multiplet we can form the massless free Lagrangian,

(B.8)

. - »
Ig —ig}q\rg"ﬂ _%’\$A -t-"i'D .
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Appendix F
We shall display here the combination rules for two reducible
scalar superfields. As noted in section 4.2, the combination of two

superfields of the same type is a superfield of that type. We shall

consider here the product

7 (x,8) = §'(=, 8) 7(x,9)

where each of the superfields is a reducible scalar superfield
which is a function of % and & but not -9- (eqn 5.11). Expressing
both sides of equation (5.11) as an expansion in © , we can
equate the coefficients and determine the following combination
rules, transformed here into the “Majorana" motation for
convenience,
3 ¢ (6 \ (3}

A, = ATAY - AV Al

0)

W A2 (DI
AYAY + AY A

A,
’\(‘(3) R‘:‘ _ ‘{s. AQ:)) “(‘Qﬂ ( A(n u.) ) ‘\(’(0
£

G)

_ ) —ta) ()~ O -t @ =ty 79 )
' = A‘ ~ + a‘ E\ - Al El - Az E?. +.i I‘%

\

« (] 2 T 3
E‘:’ = At:\ F Aw F:o N A)F-n A:) E.:.u . _‘i*” ‘,E‘\{,(

3) W) o~ u) (.) ) (2) =00
= + -
'l A, F‘-D'vl A' o - A "V-v-'l A EEP"’ *
-t - ) Q)
W ¢

F(‘!) . ) (‘l) @) F(l) ) (2) Q2) e=(y)
Gl A Rou + A 2 PR, AR
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x(’-’a) = (QM_T A(\)) z(ﬂ) (I-') LI)) zf') -

cb (G S m> A e,

N CA NI - PR St

g ¥ Vgen
()
* 2\ (Ts E;,_, + F“;.,.;)&#w% .

G = ATGY . AP - AV SY - Ay

+ LE"EY - LEY E”

~

+*

) vl ) Twa)
¥ q" e 2] F F +

O ]
w e Ca ¥, 7 @ £

Y ) (2) L)
S LR ALSEEE -V g

A S ENPTE A ol

(4)) ) )
q‘ = A C\‘f_‘ + ﬂ‘f’ Y LA, QY+ AYQY

*
0 &) @) )
+ l(a,E, e« l(,E‘ B
- 4 gw i~ F.ﬂl Dl F:.u Y + 4 S F:u);,...; F:., )
) () Dad w 0 Ol
xv"}]? - gF?-g/,w) F(‘)

- 2 :{_"07((:) - 2 _;Em xm
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In this very general form the combination rules look

very unwieldy but, in fact, all the information we shall need

to obtain the Lagrangian densities for the various irreducible

scalar multiplets can easily be extracted.

Finally, we shall note that the product of two irreducible

superfields of the form of equation (5.16) is not itself an

irreducible superfield but rather a reducible superfield of the general’

form, as equation (5.11). This can readily be seen by noting

that if F”, F’are identically zero then
W ) D) = V) L)
. o AYES . AYEY L 4T
Q) W~ @) = ) )
Eoo= AVE] + AVE] +ptii ot

and clearly neither of these is zero hence the superfield

cannot be irreducible and must be of the form of equation (5.11).
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Appendix G

In this appendix we shall give two examples to show the
way in which equation 4.7 is satisfied by the supersymmetry trans-
formations we have derived in section 5.3 (eqns 5.18). Formally
these transformations must satisfy equation (4.7) by the nature
of their construction but in practice it has been found very
useful to consider the following type of calculation as a relatively
simple check on the long algebraic derivation.

We shall rewrite equation (4.7) in the form

[S"S-‘.] =T 2.‘ €2$‘§\

where now 1. and ?t are the completely anticommuting parameters.
Consider first the commutator acting on a boson field,

e.g.

ES.YS;]Q\. = "\'?zfs 3.“4’—""1'(.‘:&"6

W

= -2.%53%%nA
using the relations shown in Appendix D.
All the boson fields behave in a similar manner under the

double-{transform but the fermion fields are more complicated and

involve the use of the rearrangement formula (see Appendix D).

/

[ndA PR TR
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2S¢ = WI(Kav4)E + J(-234)%, «
w3 B (-5 3xE, -Lem LI NNYS,

then using the rearrangement formula,

5., 5] = -2 2 (A0 ) [6dins - s
"'E{a'cc$'§

»ieM YT, (‘@,—V}),}

-

ﬂ

- where KAT&’-‘?l ‘D’S,T ‘({1;‘, “rc:‘I’

the other values having cancelled on the introduction of the
R . . 2 o0
commutator. By considering the coefficient of each "s"“( o 'gz

it can readily be shown that

[%\’st]”{’ id "2% "iﬁbri"k

AM UNIY
““““ S01F (‘EERS”

« 2 0CT 1975
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