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Abstract

The constant K4 for the hexagonal magnetocrystalline anisotropy
of the basal plane has been measured at various temperatures between
77k and 180K for alloys of Terbium and Scandium of compositions

Tbecl_x where x = 0.895, 0,825 and 0.89
using a torque magnetometer with automatic balancing and recording.

Simple methods were devised for setting up the instrument and for
analysing torque curves so as to correct fo; shearing and distortions
introduced by rotational hysteresis. Instability in the magnetometer was
cured by increasing the speed of response. Three methods of calibration
were compared.

The variation of K@ with temperature for the Tb/Sc alloys indicates
that the anisobropy is of single ion origin and due to the second o;der
magnetostriction of hexagonal symmetry. Analysis of the results of P.hH.
Biy ( 1967, Ph.D. thesis, University of Durham, unpublished) leads to
the same conclusion for pure Terbium. Estimates of K4 at absolute zero
indicate that the hexagonal anisotropy contributes significantly to the
driving energy to ferromagnetism in pure Terbium end the Terbium rich
alloys.

Reported changes in the easy axis of Dysprosium have been investigated.
Those below 80K are associated with hysteresis in the movement of the
domain walls and are not reproducible. Those above 130K may be explained
by the existence of fan-like spin structures but could also be due to the

uncertainty associated with determinations of easy axis using a torque

negnetometer with an unsaturated specimen.
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CHAPTER 1

INTRODUCTION

1.1 Aims of this investigation

In the heavy Rare Earth metals the magnetic ordering is,strongly
influenced by magnetostriction and magnetocrystalline anisotropy
energies; both help to precipitate the onset of ferromagnetic behaviour
and the latter energy determines the direction of the spontaneous
magnetisation in the ferromagnetic state and the detailed form of the
periodic antiferromagnetic structures.

The alms of this investigation were;

(1) to measure the basal plane anisotropy coefficients of a

series of Terbium-Scandium alloye as a contribution to
an understanding of the striking effect of dilution with

v
Scandium on the magnetic ordering of the Rare Earth;

(2) to examine further the changes of easy axis in Dysprosium

reported by Bly et al., (1969);

(3) to examine the possibility of determining the origin of
the basal plane anisotropy from the temperature variation
of the coefficieats for the alloys, pure Terbium and

Dysprosium.

1.2 Some basic properties of the Rare Earths, Scandium and Yttrium

The Rare Earths or Lanthanides are the 15 metallic elements having
the atomic numbers 57 to 71 inclusive. A list, together with some of

their relevant physical properties, is given in Table 1.1. Similar
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9

information for Scandium and Yttrium is added to the list, These two
elements are also members of group IIIA of the periodic table and have
many properties in common with the rare earths,
The chemical properties of the rare earth metals are very similar
and this made the separation of the pure elements extremely difficult
before the development of the ion-exchange method. All are active
reducing agents although they are moderately stable in dry air. Europium
is attacked most easlily by moist air and so toc are Lanthanum, Cerium,
Praseodymium and Neodymium in order of decreasing activity. Samarium,
the heavy rare earths, Scandium and Yttrium are more stable, Dysprosium
and Terbium among the rare earths being least affected by a moist '
atmosphere while Scandium is not attacked rapidly even by water. !
Of special relevance to this investigation are the electronic
configurations, the crystal structures and the alloying properties of

these metals, A survey of thelr general properties is given by Taylor

(1970).

1.2.1. FElectronic Structures

The similarity of chemical properties in the Rare Earths arises from '
the similarity of their outer electron structures. The distribution of
electrons in the neutral atom is as follows:

2

182 252 2p% 352 3p° 34

4s? 4p® 4410 4™ 562 5p8 541 662
This is the Xenon structure with the addition of a variable number
of 4f electrons (up to the maximum of 14) a possible 5d electron and

two 68 electrons, In the description of atomic and ionic electron

structures in Table 1.1, only the additional electrons are listed.



The ions are formed by the loss of the 6s electrons and the 5d
electron (if it exists) or of one electron from the 4f shell, An
exception to this is Cerium which sometimes loses both 4f electrons
giving the ion the stable Xenon structure and a valency of four.

Other exceptions are Europium and Ytterbium which are usually divalent,
losing only the two 6s electrons and leaving intacs the stable half-
full and completely~full 4f shells respectively. In all the ions the
outermost electrons are the two 5s and the 6 5p electrons, differences
being only in the number of 4f electrons.

The elements are conveniently grouped into the Light rare earths
(La to Eu) with zero to seven 4f electrons and the Heavy rare earths
(Gd to Lu) with seven to fourteen 4f electroms.

The angular momenta, disposition and small spatial extension of
the 4f electrons are of interest because they are responsible for the

unique range of magnetic properties found in the rare earths,

1.2.2. JTonic and atomic magnetic moments

The magnetic moments of the Rare Earth elements are due to
the resultant angular momentum of the 4f electrons. The filling of the
4f shell is in accordance with Hund's rules, i.el so that the resultent
spin angular momentum S is a maximum and that the resultant orbital
angular momentum L has the highest value consistent with that value of
spin and with Pauli's exclusion principle.

When the 4f shell is less than half filled the resultant angular

momentum is given by

J=L-=-8 (1.1)



(a) Data from Chikazumi (1064 )
(b) Data from Rhyne, page 129 ol.scq. of Elliott (3972)

Number of| Trivalent | Saturation moment Effective moment
Element 4t jon nsaf:msa-r/ mny Nepp = meff/ )
electrons| S L J calc. obs. calc. obs.
g3 glI(3+1) V=V |5+ion | metad
(v) {a) (v)
Ia 0 00 O 0 0 0
Ce 1 t 5 28 | 2.4 2.54 | 2.56 | 2.52 | 2.51°
Pr 2 15 4 | 8.2 5.58 [ 5.62 | 5.6 | 5.56"
Na 5 i 6 4 5.27 3.62| 3.68 | 8,5 | 5.45°
Pm 4 2 6 4 2.40 5.68 | 2.85
Sm 5 2k 5 2% 0.72 0.85 | 1.55 1,748 *
Eu 8 55 0 0 |»3 0 $.40 8.5 %
¢a 7 5 0 5 7.0 7.55 7.94| 7.94| 7.8 | 7.98
Tb 8 55 6 9.0 9.54 9.72| 9.70 | 9.74 | 9.71
Dy 9 2 5 7% | 10.0 10,55 10.64 | 10.6 [10.5 |10.64
Ho 10 2 6 8 |10.0 10.54 10,6 | 10.6 [10.6 |11.2
Er 11 i3 6 % 9.0 9 9.58| 9.6 | 9.6 | 9.9
Tm 12 15 6 7.0 7,14 7.56| 7.6 | 7.1 | 7.8
Yo 15 5 5 4.0 4,55| 4.5 | 44 | O
Lu 14 00 O 0 0 0 0

» Bep data for the light rare earths is complex.
These values should be regarded with caution.

Table 1.2 The Rare Farth metals: magnetic moment data




When the shell is half filled or more,then
J=L+S8 (1.2)

Except for Samarium and Europium the measured effective magnetic
moments of the Rare Earth trivalent ions in salts agree quite well with

the moments calculated from the expression

Moee = 8 mﬁ/J(J+l)

where g is the Landd splitting factor, ny is the Bohr magneton and J is

obtained from equations 1,1 or 1,2, Values are given in Table 1.2.

Sm3+ and Eu3+ ions give values of L higher than that obtained
from the theoretical expression above. This was explained by Van Vleck !
by taking into account the transfer of some ions to the first excited
state which has a larger value of J and lies close to the ground state
for these two clements,

In the heavy rare earths with the exception of Ytterbium, the effective
magnetic moments in the metallic state are close to those of the ions in
salts, the slight differences being attributable to polarisation of the
_ conduction electrons in the metal; this is taken as confirmation that
the 4f electrons are localised even in the metals. A rdsumé of this

and other evidence for the small spatial dimensions of the 4f shell is
given by de Gennes (1962). Neutron scattering experiments indicate

that the mean radii of the 4f shells are of the order of 10% of the

interatomic distance.

1.2.3, Crystal structures

In the rare earths and Scandium and Yttrium, close packed

crystal structures predominate. In a close packed arrangement the

sy



atoms may be visualised as spheres packed in plamnes, which for ease of
description may be imagined to be horizontal. The arrangement of spheres
within one plane is unique but one plane may be stacked on another in
either of two alternative positions. The positions of atoms in the first
plane and of other atoms lying vertically over them may be called "A"
sites, Similarly the alternative positions of atoms in the second layer
define the positicns of "B" and "C" sites.

The stacking sequence A B AB A Bor ACA CA C gives the hexagonal
close packed structure, denoted by "hcp" in Table 1.1. Similarly the
sequences A BACABAGC, and ABCABC A B C give the double
hexagonal close packed and face centred cubic structures, denoted by
d-hcp and fcc respectively.

Samarium has a stacking sequence peculiar to itself, namely,
ABABCBCAGC.

Except for Europium, which already has a body centred cubic structure,
and Pm, Er, Tm and Lu for which there is no certain data, all the metals
change to a body centred cubic form at temperatures approaching their
melting points. This is not a close packed form,

In addition, Lathanum changes to a face ceﬁtred cubic form at
temperatures above 533K and Cerium has a double hexagonal close packed
structure below 200K and a further change to a face centred cubic form
below 77K.

Dysprosium on entering the ferromagnetic phase is distorted so much
by magnetostriction that its crystal structure can then be described as
orthorhombic. Evidence exists (Bucher et al. 1970) that high purity

Ytterbium, as normally prepared, is a mixture of hcp and fcc phases and
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that a change to 100% hcp can be produced by cooling to 77K, This

phase persists on warming up to room temperatures but may be entirely

removed by annealing at 150K.

1.2.4. Ionic dimensions

Apart from the two normally divalent elements, it can be
seen from Table 1,1 that the dimensions of the Rare Earth ions decrease
with increasing atomic number. This is the well known Lanthanide
contraction. The metallic interatomic distances (given roughly by the
length 'a' for the hcp crystals) hardly alter at all across the series,
an indication that the ion core does not play a large part ia the
binding. This applies a fortiori to the 4f orbitals which are much
nearer to the nuclei. The ratio c/a or ¢/2a is given in Table 1.1 for
the hexagonal structures. This departs from the value 1.633 which it
would have for the perfect packing of geometrical spheres and has

important consequences for the anisotropy energy.

1.2.5. Alloying properties

The Rare Earths form among themselves and with other

elements a vast array of intermetallic compounds of definite stoichiometry.
These exhibit a great variety of properties and are the objects of much
interest and investigation. A review is given by Taylor (1971).

The heavy Rare Earths with the exception of Ytterbium form
continuous solid solutions with each other and with various other metals
such as Thorium, Yttrium and Scandium,

Yttrium and Scandium have similar outer electron configurations to
the Rare Earths but are non-magnetic. They also have the hep crystal

structure and so do their alloys with hcp Rare Earth metals. They form



therefore ideal diluants for altering the magnetic and other properties of
the Rare Earths in a controlled manner and so gaining an insight into the
magnetic interactions involved,

The volume of the Yttrium atom is very close to that of Gadolinium and
dilution of the heavy Rare Earth metals with Yttrium does not alter the
lattice parameters greatly. Dilution with Scandium, in contrast, causes
a reduction of the lattice parameters. For Tb/Sc alloys, Chatterjee
and Corner (1971) have shown that there is a linear relationship between
the "c" axis lattice parameter and the atomic percentage of one
constituent, while there is a nearly linear relationship for the "a"
axis lattice parameter.

The effects of dilution with Yctrium and Scandium on the magnetic
properties of Rare Earth metals are considered in Chapter 4 following the
introduction of some fundamental magnetic concepts and definitions in

Chapters 2 and 3.



CHAPTER 2

SOME BASIC CONCEPTS AND DEFINITIONS

2.1 Units

S5.I. units are used throughout. The magnetisation or magnetic
polarisation,which is the magnetic moment per unit volume, is symbolised by
M and is related to the flux densiéy (B) and the magnetic field strength
(B) thus:

B =u°(H + M) (2.1)

The units of M are therefore Am-l.

This convention, usually attributed to Sommerfeld (1964, page 89)
differs from that used in many standard works but is embodied in the
Symbols, Units and Abbreviations report of the Royal Society (1969) and
is the one accepted by the Intermnational Union of Pure and Applied
Physics., It is also associated with methods of developing the theory of
magnetism in which prominence is given to current loops rather than to
the concept of magnetic poles,

The maximum torque on a current loop of area A carrying a current
I in a field of flux density B is B A I, The Soﬁmerfeld convention
allows the product AI to represent the magnetic moment (m) of the current

loop so that
Maximum torque = Bm (2.2)

The small 'm' is used to represent magnetic moments. Thus the Bohr
magneton is represented as 'mB'.
For a current loop where m = Al, the relationship (2.2) above holds

both in free space and in isotropic homogeneous magnetic fluids,



provided that the fluid is allowed to penetrate the loop. 'A permanent
magnet, provided that it has a very high coercive force, can be
represented by a system of currents but is only equivalent to them in
vacuo. The magnetic moment is then defined by equation (2.2),

In a homogeneous isotropic magnetic fluid the bar magnet is
equivalent to a system of current loops from which the fluid has been
excluded and the maximum torque is then (Whitworth and Stopes-Roe, 1971)
given by:

Maximum torque = p Hm (2.3)

Jouguet (1972) points out that neither (2.2) or (2.3) above can be
applied directly in all cases. They are identical in free space and
become so in a magnetic fluid when account is taken of the change in
magnetic polarisation produced when a bar magnet displaces the fluid.

As a result of (2.3) the maximum torque on an atomic spin is
Maximum torque = p HJgm, (2.4)

where g is the Landé 'g! factor and J is the angular momentum quantum

number.

The work done per unit volume in magnetising a body is
M
W =u°6f H aM (2.5)

M(T) denotes the magnetisation at a temperature T. The reduced magnetisation,

here denoted by s is given by m, = %%%%, where M(0) is the magnetisation

at absolute zeru. In describing experimental results, field strengths
are given as uoH(=Bo) and in units of Tesla rather than in Am-l. The

quantity Bo is called variously 'Applied flux density', 'External flux
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density', or less rigorously 'Field Strength' (Bates 1970), Comparison

with other work is then facilitated by the easy numerical relationship.

Bo/Tesla = 30/104 Oersted (2.6)

Comparison of specific magnetic moment (o) is also easy

(J/Amzkg—1 = g/e.m,u. gmul (2.7)

2.2 Varieties of magnetic behaviour

For an isotropic material, or for a particular direction in an
anisotropic material, the magnetic susceptibility Xp is defined by the

relationship
M= &nﬁ, (2.8)

Since M and H have the same dimensions in the Sommerfeld convention, Xh
is a dimensionless quantity as in the c.g.s. system. Because of
rationalisation however, X.m of unity in S.I. units is equivalent to a

volume susceptibility of 1l/4mw when M and H are measured in c.g.s. units,

xm is not in general a constant and its value and variations with

. magnetic field strength and temperature can be used to distinguish

varieties of magnetic behaviour,

2.2,1., Diamagnetism

For diamagnetic substances X is negative, small, (of the
order of 10_5 for solids) nearly independent of applied field strength
and usually independent of temperature also. The bulk magnetisation of
magnetic materials is due to the orbital and spin angular momenta of
electrons. In solids however the degeneracy of the orbitals which allows

the motion of electrons from one orbital to another may be removed by
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bonding and the orbital angular momentum of unpaired electrons may be
partly or wholly quenched. Magnetic effects are then due to spins only,
In diamagnetic substances the electrons are paired so that their resultant
angular momenta are zero. The effect of an applied magnetic Field may be
understood in classical terms as causing precession of orbits and spins
about the field direction in such a sense as to produce a magnetic moment
in the opposite direction to the Afplied field. The effect occurs in all
materials including those described as 'non-magnetic', but is masked in
all magnetic materials by the larger magnetic polarisation due to the

atoms having resultant magnetic moments.

2,2,2. Paramagnetism

In paramagnetic substances Xm is positive, of the order of
10-3, is independent of applied field strength and varies with temperature

according to the Curle law

=L
ST (2.9)
or the Curie-Weiss law
S
xm = T_e - (2.9&)

in which C and 6 are constants, O being known as the paramagnetic or
asymptotic Curie temperature, see Fig.2.1l, Paramagnetic behaviour at
ordinary temperatures can be accounted for by regarding the elementary
moments as randomly orientated due to thermal motion. When a magnetic
field is applied, orientations more nearly parallel to the field have
a lower potential energy and the fraction of the elementary moments

having those orientations increases in accordance with the Boltzman law.
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g% «  exp(-W/KT) (2.10)

%g is the number of moments per unit solid angle orientated at a given

angle to the field and W is their potential energy. There is thus a
resultant bulk magnetic polarisation M(T) parallel to the applied field
at a given temperature,

If J is the total angular momentum quantum number of the atoms, g is

the Landé splitting factor and m, is the value of the Bohr magneton then

B
the maximum component of the atomic moments parallel to the field, known

also as the saturation moment, is

m,= Jgmg (2.11)
Jg = Dat? the number of Bohr magnetons in the saturation moment.

The lowest value of potential energy of an individual magnetic ion is
-Jg my pOH

The hypothetical maximum value of magnetic polarisation M(0) will be
obtained at absolute zero of temperature when the atomic moments are
undisturbed by thermal vibrations. All the moments are then parallel to

the applied field and

M(0) = N, Jgmy (2.12)

N_ is e nwmper ¢ ofors in unk voume and the quantity Jg is known as the saturation

moment per ion (units of Bohr magnetons). It can be showa (Chikazumi

1965, page 63) that

_ 2] +1 (ZJ + 1) 1 (ja)}

um = uO{(25H) corn (BEL)s - L corn(2 (2.13)
ngBuoH

vwhere a = T The quantity in curly braces is the Brillouin function

BJ(a).
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As H and hence a tend to infinity then
BJ(a) -1

In the classical case where spins may assume any orientation, J as a

measure of the number of possible orientations is effectively infinite so

that

1
BJ(a) -+ Coth a - — (2.14)

The quantity on the right hand side of 2.14 is the Langevin function,

denoted usually by ii(a).

When a << 1
J+1)
BJ(a) » (ﬂss—_ a
NLgZJ(J + l)miuoH
and M(T) =

3kT

NngJ(J + 1)m§u
= 0 (2.15)
3kT

o

and xm =

Thus for a given material Xh o« % which is the Curie law. (The quantity

gV J(J+1) my which appears squared in 2.15 is called the effective atomic

moment and gV J(J+L) = n is its measure in Bohr magnetons). The

eff
Curie-Weiss law (equation 2,9a) can be explained if it is further assumed
that there is an internal molecular field due to the partial orientation
of the atomic moments., Fach atomic moment is not only under the
influence of the external applied field H but of an internal field
proportional to the magnetic polarisation. The resultant field H' is

given by

H' =H + NwM(T) (2.16)

where Nw is the Weiss molecular field constant,



14,

From equation 2.15 above we have

1
u(r) = &2 (2.17)
NngJ(J+1)m§uo
where C' = 3k and is a constant,
Putting H + wa(T) for H
Cl
we have M(T) = 7E(H + Nuy(T))
~M__C
and hence Xo =5 = To0TH (2.18)

in which C' and C'Nw may be identified with C and 0 respectively in the

Curie-Weiss law. (2.9a).

2.2.3. Ferromagnetism

Ferromagnetic materials have values of Xm which are positive,

very large (of the order of 104

to 105) and depend on the fiecld strength,
the temperature and the previous magnetic history of the specimen. The
bulk magnetic polarisation shows an approach to saturation at moderate

6 to 10"1T) whereas paramagnetic substances show a

field strengths (10~
tendency to saturate only at very low temperatures (~ 4K) and high applied
fields (5T).

This behaviour is explained by the existence within crystals of the
ferromagnet of regions called Domains, a mame due to Weiss, in each of
which all the atomic moments are parallel save for the effects of thermal
vibration. The value of magnetic polarisation within the domains is
called the spontaneous magnetisation GMS) and is usually not much less

than the saturation magnetisation at OK (M(0)). Domains are separated

by boundaries or Bloch Walls, regions through which the direction of
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the atomic moments changes gradually. Domains form so as to minimise the
total of magnetostatic energy and wall energy and in the absence of an
applied field the resultant moments of the domainsare randomly
distributed among a set of easy directions in the crystal. The
resultant bulk magnetisation may therefore be small or zero.

Magnetisation of a specimen proceeds not by orientation of individual
magnetic moments but by rearrangement of domains. Figure 2.2 shows a
typical magnetisation curve. At (a), the instep of the curve, the applied
field moves domain boundaries nearly reversibly. Those domains in which
the magnetic polarisation is more nearly parallel to the applied field
grow at the expense of the others, (Fig.2.3a,b). At (b) in Figure 2.2
the directions of the spontaneous magnetisation within each domain change
irreversibly till they are all parallel to the easy direction nearest to
the direction of the applied field. When this stage is completed the
crystals are effectively single domains and further increase of the
applied field causes reversible rotation of the magnetic moments as a
whole more nearly into alignment with itself. The bulk magnetisation
approaches asymptotically the value of Ms of the spontaneous
magnetisation. Ms therefore also denotes the saturation value of
magnetisation,

If the applied ficld is removed, in general the magnetisation of a
ferromagnetic specimen does not fall to zero, i.e. it exhibits hysteresis.
Energy is needed to move the domain boundaries which form again
spontaneously. However, even in a specimen which is magnetised beyond
the knee of the magnetisation curve and in which there are no domain

boundaries, if the specimen is rotated in a magnetic field, thermodynamically
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irreversible jumps in the direction of the magnetisation take place
(between one easy direction and another) and work must be done to maintain
the rotation., This rotational hysteresis was observed in all specimens
used in this investigation.

The spontaneous alignment of the atomic moments within the domains

of a ferromagnetic material may be comprebended by an extension of the

Weiss theory of paramagnetism.

For a paramagnetic material from equation 2,13

M(T) = M(0)B (a) (2.19)

Where a = ngBpoﬂﬁdP Prom Eq.(2.16) in the absence of any external

field H = Nuy(T). The value of M(T) can be found in principle by plotting:

M(T) =M(0)Bs(a) versus a (2.20)
and M(T) = -jaédg%— versus a (2.21)
g Buo w

If the value of Nw is large then the line represented by 2.21

crosses the curve represented by 2.20 at two points as shown in the

.Figure 2.4,

The solution M(T) = 0 is unstable since any slight local alignment
of the atomic moments will increase the molecular field and the
alignment will further increase. A stable solution is the value of M(T)

at the point P in Fig.2.4.

Experimentally, for a ferromagnetic material ﬁgg; = BJ(a) at the

point P might be 0.85. This corresponds approximately to a value of a
of 7, and a value of molecular field H of the order of 200 or 300T.

Such a large internal field cannot arise from the ordinary Lorentz field
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of the surrounding magnetic dipoles and Heisenberg suggested that the
internal field causing the alignment of the elementary moments is a
quantum mechanical exchange force. The potential energy between two

atoms having spins ,Svi and ij is

o= -2FS, . 8, (2.22)

where j is the exchange integral, 1If } is positive, the energy is
least when ij_ and Ej are parallel, The exchange forces are basically
electrostatic and } is related to the overlap of the charge
distributions of the atoms i and j. If the two spins are parallel, the
spatial part of the wave functions must be antisymmetric under exchange
of the electrons, and if the spins are antiparallel, the spatial part
of the wave functions must be symmetric., The different wave functions,
representing different distributions of charge, have different Coulomb
energies of the correct order of magnitude to account for the alignment.

When a ferromagnetic material is heated to the ferromagnetic Curie
temperature (Tc) the spontaneous alignment of the spins within each
domain disappears and often thematerial then shows paramagnetic

behaviour, beginning to obey the Curie Weiss law a few degrees above Tc’

2.2.4, Antiferromagnetism

The characteristic variation of Xm with temperature for an
anti-ferromagnetic material is shown in Figure 2.5. Xm is positive,
of the order of 7 x 10-4 and increases with temperature up to the Neel

temperature, TN’ above which it varies with temperature according to

Xa =T 1o (2.23)

i.e. the material becomes paramagnetic with a negative paramagnetic

Curie temperature,
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These properties may be explained by the existence of an ordered
spin state below the Néél temperature in which adjacent spins are anti-
parallel, the exchange integral g being negative. Increasing temperature
weakens the negative interaction so that xm rises until the spins become
disordered at the Néel temperature. The existence of this type of
ordering was first shown by Shull in 1949 using neutron diffraction
techniques, sinc; when the techniqﬁe has become standard for investigating
magnetic structures. Comparison of X-ray and neutron diffraction patterns,
or comparison of neutron patterns above and below the transition
temperatures, shows additional neutron reflections in the magnetically
ordered states. 1In the case of the antiferromagnet MnO, the magnetic
unit cell is found to be twice the size of the crystallographic unit
cell since alternate (111) planes of Mn't ions have their magnetic moments

in opposite directions.

2.2.5. Ferrimagnetism

An antiferromagnetic arrangement of spins may be regarded
ag two interleaved arrays of spins each of which alone is ferromagnetic.
Because the spins in each array are of equal magnetic moment, the
resultant susceptibility tends to zero with falling temperature. If the
spins in the two sublattices are not equal or opposite there is a
resultant spontaneous magnetisation which will be smaller than in a
typical ferromagnet. Domain structures may exist and the specimen may
give magnetisation curves similar in all respects ko those of a ferro;
magnet. Such ferrimagnetic substances resume paramagnetic behaviour when

heated above a characteristic Curie temperature,
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2.2,6, Helical Antiferromagnets

Yafet and Kittel (1952) proposed a triangular arrangement
of spins to explain an anomalously small value of spontaneous
magnetisation in certain ferrites. Yoshimori (1959) proposed a helical
arrangement of spins for Mno, and J. Villain (1959) a similar arrangement
for antiferromagnetic MnAu,. Herpin et al (1959) investigated the
magnetic structure of tetragonal MnA.iJ2 by neutron diffraction, observing
the production of two satellites to each Bragg reflection when the
material was in the antiferromagnetic state, The spacing and intensities
of these satellites were consistent with a structure in which all the atoms
of mangancse in the same plane have their moments parallel to each other
and normal to the 'c' axis; the common directions of the spins in
consecutive planes being advanced by a fixed angle. The vectors
representing a series of spins lying in a row parallel to the 'c' axis
then form a helix; the 'c' axis of the crystal is the axis of the helix
or the screw axis, and the angle between the spins in one plane and the
next is known as the interlayer turn angle.

From the variation in the spacing of one satellite (002" ) from the
main reflection Herpin et al calculated that the interlayer turn angle
varied between 46° at 125K to 51° at 300K.

To show in principle how this simple helical arrangement can arise,
consider a single row of spins as shown in Fig.26, 1If gl'is the
exchange integral between adjacent spins in the row and g 9 that between
next nearest neighbours then the arrangement is stable when the energy
u = -2(§1§'p . fS~p+1 +ﬁ'2’SVp . §'p+2) is a minimum (taking the interactions
only as far as next nearest neighbours), In terms of the interlayer turn

angle © this means that the quantity €ICOSG + 2200329 must be a minimum.
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This occurs when ?
Cos® = - 4 L (2.24)
2
and <l4~$z\

1f g'z is negative and 3‘ is positive,then neighbours in a layer will
couple ferromagnetically and the helical arrangement described will
result. In any real crystal the exchange energies gl’ gz must be
replaced by effective exchange interactions appropriate to the crystal
synmetry and which are functions of the exchange integrals for pairs of
spins on various sites. Equation 2.24 then holds for the interlayer
turn angle. This simple treatment ignores magnetostriction and magneto-
crystalline anisotropy energy. Their influence is considered in
Chapter 4. Helical and other forms of period magnetic structure occur
in the rare earths and their alloys (Child et al 1966, 1968; Koehler
1961, 1965; Spedding et al 1970) and are further described in Chapter 4.
Koehler (1961, 1965) lists the patterns obtained from the various
structures and outlines the techniques used in the study of magnetic

structures by neutron diffraction.

2.2.7. Metamagnetism

This is the name given originally by Becquerel and van den
Handel (1939) to the behaviour of those magnetic materials which can be
changed from antiferromagnetic (including helical forms) to ferromagneti.c
by means of an applied field or a change of temperature, The change
from antiferromagnetism to ferromagnetic behaviour is called the meta-
magnetic transition and the value of applied field where it occurs is
called the Critical Field (Hc). Figure 4.3 shows the variation of H,
with temperature for Dysprosium. Figure 2,7 shows the variation of the

magnetisation with applied field for a typical metamagnetic transition
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in a helical antiferromagnet and the inset diagrams represent
schematically the behaviour of one row of spins according to the theory
of Enz (1960), Nagamiya et al (1962) and Kitano and Nagamiya (1964).

The spins are viewed along the screw axis, which is perpendicular to the
direction of magnetisation, At low values of applied field the helix
distorts and a small magnetisation is produced in the direction of the
field., At the critical field the helix changes into a sinusoidal
arrangement of moments, (Fig. 2.7c¢,d), in which all the individual
spins have a component parallel to the field (Fig.2.8). At a higher
field, Hf approximately 2Hc,this fan structure collapses to a normal
ferromagnetic arrangement, the transition being first or second order
depending on the anisotropy and magnetostriction energies which are
discussed later. Another effect of these energies is to lower both.Hf
and. Hc s increasing anisotropy lowering Hf more than Hc so that they
coincide and the fan phase is eliminated. Theoretical studies of these
processes are discussed by Cooper (1972).

The materials used in this investigation, Dysprosium, Terbium and
the Terbium rich Terbium/Scandium alloys are all helical antiferro-
magnetic In some temperature range, having the screw axis parallel to
the 'c' crystallographic axis, and they show metamagnetic transitions
under suitable applied fields. Measurements were made with the applied
fields perpendicular to the 'c' axis and of magnitude Hc and above, so

that the collapse of the helical structure shown in Fig.2.7 was a

significant feature of the work.,
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2.3 Demagnetising Fields

The resultant field (Br) inside a magnetised body is the applied
field Bo reduced by a quantity uoNdM, the demagnetising field which is
proportional to M and opposite in direction, Nd is strictly defined
only for ellipsoids uniformly magnetised parallel to an axis. Values
are given by Brailsford (1966) for ellipsoids with axes in various
ratios,

Standard texts explain the demagnetising field in terms of free
magnetic poles at the surface of rhe body. Coleman (1971) has shown
that an explanation in terms of a current loop model does not present
any very great difficulty, so that a consistent development of the
subject is possible within the Sommerfeld convention and making no use

of the concept of free poles.

2.3.1. The use of demagnetisation factors in determining the

magnetisation of specimens

Graphs of specific magnetisation for materials are commonly
available plotted against the resultant field Br rather then against the
applied field Bo' Given a demagnetisation factor Nd for a specimen, the
problem of determining the magnetisation in a given applied field is

"that of solving simultaneously two equations

o) fn(Br) (2.25)

--and

=
a

r = By = HoOPN ; (2.26)

where p is the density of the material.
These may be solved graphically by plotting graphs of each to the
same scale and noting the point of intersection. The graph of Eq.2.25

is simply the magnetisation curve which is already available.
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Figure 2.9

The determination of the wagnetisation of a

specimen of given demagnetisation factor.
A is the magnetisatioan curve for the material,
B is a line of slope —1/jY3 on a transparent overlay
C is the end of the line 3 which is placed on By,
the givea value of applied field.
D indicatss the required magnetisation and

E is the resultant field.
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Rearranging (2.26) we have

Plotting ¢ against Br gives a straight line, the slope of which is JT; 5
oD
and the intercept on the B axis is the value Bo' It is convenient in
practice to draw the graph of the second equation on a piece of
transparent graph paper. Sliding this graph over the magnetisation

curve allows determination of magnetisation (and also of Br) for any

given value of Bo' The process is illustrated in Figure 2.9,
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CHAPTER 3

MAGNETOCRYSTALLINE ANISOTROPY

3.1 Anisotropy Energy

The work done on a body per unit volume to raise the magnetisation
from zero to its saturation wvalue is given by

M

8
Wo=p I H.a1 (3.1)
o0 -

Some of this energy is lost in irreversible magnetisation processes and
part is stored as a potential energy of magnetisation (E), the value of
which may depend on the direction in which the material is magnetised.
This variation of magnetisation energy with direction may be produced
by applying mechanical stress to a material, it may be due to the shape
of the specimen or it may be produced in polycrystalline materials by
cold working or by heat treatment in a magnetic field, When these
three types of anisotropy, known respectively as magnetostrictive,
shape and induced magnetic anisotropy, are eliminated by suitable
shaping and mounting of a single crystal specimen the magnetisation
energy may still depend on the difection of the magnetisation with
respect to the crystallographic axes.

This anisotropy, due solely to crystal symmetry is known as
Magnetocrystalline Anisotropy. In this case, the difference between
the energy of magnetisation in an arbitrary direétion and its value
along a selected crystal axis is known as the Magnetocrystalline
Anisotropy Energy (Ea)' Ea is a free energy and increases when work
is done on the system, Directions within a crystal in which Ea is a

maximum or minimum are called hard and easy directions of magnetisation



-

— e

25,

respectively., The direction of the spontaneous magnetisation within a
ferromagnetic domain is along an easy axis if no magnetic field is applied.
Although easy directions and hard directions usually do coincide with a
crystallographic axis, they need not necessarily do so, e.g. in Gadolinium
below about 240K the easy direction is specified by the surface of a cone

of varying half angle, (Corner et al 1962).

3.2 Expressions for the Magnetocrystalline Anisotropy Energy

The variation of the anisotropy eneréy Ea can be expressed as a
series involving constants and functions of the angles between Ms and the
crystallographic axes. Symmetry considerations can be used to simplify
the expressions. Thus the variation for a cubic crystal can be

represented adequately by

2 2 2 2 2 2 2 2 2
Eo,(’l_',oo) Kl(al @, + @y g+ 0y ) + Koo 0y 0" + oo (3.2)

(Brailsford 1966,p.121)

In principle terms of higher order could be added but in practice they

are usually unnecessary. Ky and K2 are functions of temperature only

"and oy, ), Oy are the direction cosines of Ms with respect to the crystal

axes.

The energy of a hexagonal crystal is best expressed in polar

co-ordinates. The expression originally derived by Mason (1954) is
, 2 . 4 . 6 e O 6
Bo(Tye0) = Klsln 0 + K281n 8 + K3SLn e+ k481n 8Cos ¢ (3.3)

where @ and ¢ are the angles between Ms and the < 0001 > or 'c¢' axis and

the < 1120 > or 'a' axis respectively. Kl’ K2 etc. are constants at any

one temperature. In this expression K3 and K4 are generally small
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compared with K1 and K2; the KZ term represents a modulation of the
uniaxial anisotropy with the symmetry of the basal plane. It can be
shown (thlstra,1967 » p.170) that if K1 is positive the easy axis is
the 'c' axis and if Kl < -21(2 the easy axis is perpendicular to the
‘e! axis. If -2K2 < Ki < 0 the easy axis lies on a cone of half angle

Y given by

(3.4)

Where the easy axis lies in the basal plane and is parallel to the
< 1010 > or 'b' axis, the energy minimum occurs where ¢ = 90° and 8 = 90° '
i.e. where the sin60sin6g term is a minimum. X, is therefore positive as

4
in Terbium. Where the easy axis parallel to the < 1120 > or 'a' axis,

K.4 is negative as in Dysprosium.

It is important to note that the energy Ea is defined for magnetisation
at constant stress. Due to magnetostriction part of the free energy is
stored as elastic strain in the crystal. Methods of supporting crystals
during measurements of anisotropy energy must therefore allow the
development of these strains and yet not introduce any stresses. It is
also important to note that Ea is defined for saturation magnetisation of
the crystal. Measurements at finite values of applied field give values
of the anisotropy constants K1 etc. which vary with the field value and
are distinguished by primes thus: Kl" K2' etc, Methods of obtaining
infinite field or saturation values of the constants are discussed in
Section 9.2.4.

Zener (1954) showed that the temperature dependence of the anisotropy

energy in his theory could be stated more simply if the anisotropy energy g

is expressed as a series of surface harmonics of appropriate symmetry thus:
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B, = ) ES (a0,) (3.5)
n
where Sn is a surface harmonic of degeae 1. (This form also has the
advantage of allowing direct comparison with crystal field terms in a
one~-ion theory of anisotropy.) This practice is followed widely with a

variety of symbols for the coefficients. For example Feron (1969) has

for hexagonal symmetry

g O o o 6.. 6
E, =V, Pz(Cose) + 9, P4(Cose) + Vg P6(Cose) + V Sin @Cos6p (3.6)

Where Pl(Cose) is the Legendre polynomial of deqre 1. Similarly Rhyne
(1972) has

B, =K ,,°0,0) +N,¥,%(0,0) +R 1.°(0,0) + K Csin’ecosep  (3.7)

where the Ylm(9,¢) are spherical harmonics, which being normalised to
unity fer © = ¢ = 0, reduce to the Legendre polynomials.
The En’ the Vlm and the h( 1 are linear combinations of the constants
K, in equation (3.3). ¥ 66 and V66 are to be identified with Mason's K4.

The use of the older phenomenological equations continues (e.g.

. Miyahara 1971, Novac 1971) and following Callen and Callen (1966), to

avoid confusion the symbol hc will be used when expansion of Ea in
spherical harmonics is implied. The coefficient of the term represcnting

the hexagonal anisotropy of the basal plane will be most frequently given

as K4.

3.3 Origins of Magnetocrystalline Anisotropy

The greater part of the magnetisation energy arises from the
Heisenberg exchange interaction which produces the molecular field and

is of the form (Eq. 2,22)
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Uij = "z?ii'ij
This quantity is an invariant under a rotation of the co-ordinates and
it therefore gives a free energy which is independent of the direction of
magnetisation and cannot account for the anisotropy. Models to account
for the anisotropy are of two main kinds: the first, the "two-ion" model,
traces the anisotropy to a dependence of the exchange energy between
paigs of magnetic ions on their orientation relative to the line joining
them, Two-ion mechanisms include both anisotropic exchange and true
dipole-dipole interaction. 1he second model, the "single~ion" model,
traces the anisotropy to the interaction between individual magnetic ions
and the anisotropic field produced by the other ions and conduction
electrons. The models are not mutually exclusive. For example, both
one~ion and two-ion mechanisms have been combined to account for the

temperature dependence of the magnetostriction coefficient AY in

Gadolinium (Callen and Callen, 1965).

3.3.1. The Two-Ton Model

The pair cr two-ion model is due largely to Van Vleck (1937
and 1956). The classical electromagnetic coupling between two spins gives

a potential energy

2 2
B8 My 38 .20 155
=3 (s,.8 - (3.8)
A r3 ~1 ~] r2
i3 1]

where g is the Land& splitting factor for the spins. g ~ 2 in most cases
because of the quenching of orbital angular momentum in the crystal
lattice.

ryij is the distance between the Spins Ej_ and S

~3]
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This expression, which represents the true dipole-dipole interaction, is
of the correct form but gives values which are too low to account for

observed values of anisotropy energy. An expression of the following form
was sought
S . - ij" ~j
Cij(rij)(ni 2 2
i3

3§i£.3(835“)> (3.9)
where Cij is a function of Eij much larger than the classical constant and
dying away more rapidly with increasing Eij'

By superposing the spin-orbit coupling on the exchange energy in a
sécond order perturbation calculaticn an interaction of the form given in
(3.9) was obtained with Cij of the order of magnitude of é’(g—z)%, where
& is the exchange integral.

Qualitatively the origin of the interaction is the effect of magnetic
spin-orbit coupling between any unquenched orbital angular momentum and
the spins responsible for the magnetic moment, Part of the orbital
rotates with the spins and the overlap and hence the electrostatic energy
of neighbouring orbitals is thereby altered. The dependence of the
anisotropy on the existence of unquenched orbital angular momentum is
clearly indicated in the factor (g-2) since complete quenching of the
orbital angular momentum leaves only the intrinsic angular momenta of
the electrons for which g = 2,

The coupling represented by the expression 3.9 above is known as the
pseudo-dipolar interaction or anisotropic exchange.

Where the fourth order effect of the spin-orbit interaction is
included in the perturbation calculation a potential energy of the

following type is obtained,
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2 2
LINCIE FRRCIS Y (3.10)

where Dij ~ ?(3-2)4.
Dij falls off very rapidly with increase of Eij and by considering only
the coupling between nearest neighbours it is possible to obtain energies
large enough to account for typical measured anisotropy energies. Dij
is of the same order of magnitude as Kl for cubic crystals. This
inte;action is called "pseudo-quahdrupolar”.

The pseudo-dipolar interaction averages to zero in b.c.c. lattices

since it is proportional to (1-3coszei ) and the average value of

3
Coszeij is 1/3 in this case for parallel spins. The pseudo-quadrupolar
interaction can only occur if the spins Si are 1 or greater. Van Vleck
found that if a second order calculation is made of the effect of the

pseudo-dipolar energy on the isotropic exchange an anisotropy energy is

obtained of the same order of magnitude as for the pseudo-quadrupolar i.e.

j’e (-1

Exact calculations are not easy on this model, For example, in uniaxial
crystals the first order pseudo-dipolar interaction does not average to
zero and gives calculated values of anisotropy energy much higher than
those measured. Only qualitative explanations are possible, thus one may

regard the uniaxial crystals as slightly distorted cubic crystals where

the interaction is zero.

3.3.2. The One~Ion Model

For ions such as Fe3+ and Mn2+ in non-metallic ferromagnetic
crystals the degeneracy of the 3d orbitals is completely removed, the
orbital angular momentum is nearly completely quenched and the Landé g

factor is very close to 2. Thus the anisotropic exchange, which is



31.

proportional to (g-2)4, cannot account for the magnetocrystalline
anisotropy., 1In this case the spins are not coupled to the orbitals and
may be viewed as free. They are sited in an electric field, (the crystal
field) due to the other ions, which possesses the symmetry of the crystal
lattice. Wolf (1957) showed how, on this view, the anisotropy erergy could
be calculated in terms of parameters entering the spin Hamiltonian for a
single ion, The form of the Hamiltonian depends on the symmetry of the
surroundings as well as the magnitude of the spin. For spins in a lattice
of cubic symmetry with axial distortion

4

- lis?
X = epgng R .S +5a(s," + 5

4 2 4
+5, ) + Dsa + fsa (3.11)

constant terms having been dropped. Sx’ Sy’ Sz and Sa arve the components
of 8 (the total spin of the ion) parallel to the x, y, z axes and « the
direction of the axial distortion. Of the three parameters, a, D and £, £
represents the amount of axial distortion. H is the molecular field' used
to represent the exchange energy, and here assumed to be isotropic. The
expressions obtained for the free energy involve H and hence the relative
magnetisations of the sublattices on which the ions are placed. This
makes it possible to predict the temperature dependence of the anisotropy
from the temperature dependence of the magnetisation.

The single-ion model can also be expected to apply to the Rare Earth
elements in the metallic state since the unpaired electrons responsible
for the magnetic moments of the ions belong to the 4f shell, The mean
radius of the 4f shell being small compared with the interionic distance,
the magnetic ions may be regarded as isolated. Spin-orbit coupling is
strong and the crystalline field tends to align the non-spherical 4f
charge cloud as a unit relative to the crystal axes, For the hexagonal

case, the potential energy of a single 4f electron can be expressed
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in spherical harmonics (Elliott, 1961 and 1972, p.156),

2 4 6 6 6. 6
Vv = A2°r Y2°(9,¢) + A4or Y4°(e,¢) + A6°r Y6°(e,¢) + 4T (Y, (0,8) -

¥, (0,0 (3.12)

m
1

are crystal field potentials calculated from the distributions of positive

where r, 0 and ¢ are the spherical co-ordinates of the electrom, the A

ions and the screening effect of the electrons in the 5s and 5p orbitals.
In terms of the total angular momentum quantum number J of the ions this

may be written, (Elliott and Stevens, 1953)

V=A°<r2>afY2°(J)+A°<r4

2 4

6

> BY4°(J) +4°%<zc’ > yY6°(J) +

6

A66 <% > 'Y[Y66(J) + Y6'6(J)] . ’ (3.13)

where the factors < r1 > o Y o(J) represent the dipole, quadrupole etc,

11

moments of the 4f charge cloud.

3.4 Magnetostriction and its Contribution to Magnetocrystalline Anisotropy

Ignoring shape effects, the free energy of a crystal may be written

as

B Fexchange + Fcrystal field + lspin—orbit coupling + Felastic
(3.13R8)
As the magnetisation vector in an unstressed crystal changes direction,
changes in Fcrystal field and Fspin-orbit coupling occur. These energies
depend on interionic distances and changes in these are therefore
accompanied by distortions of the crystal lattice. Changes in F . ,
elastic

occur to keep the total free energy a minimum, the changes in dimensions

of the crystal being known as magnetostriction.



33.

The single-ion theory, as described above, pictures an ion orientated
within an anisotropic but constant electrostatic field produced by the
other ions in an unstrained lattice. Anisotropy measurements are however
carried out under conditions of constant stress so that magnetostrictive
strains are allowed to develop and modulate the crystal field. We can
therefore regard measured values of anisotropy coefficient as containing

two parts (Brooks, 1972).

H 1m = oKlm + AKlm (3.14)

where‘{ ;“ is the measured value, ohclm is the anisotropy coefficient
due to the unstrained crystal aad A‘(lm is the contribution from the
magnetostriction. It is the oh(lm which scale with the factors

m 1
A1 <r > oy

In the hcp crystals used in this investigation the magnetic moments

of equation 3,13,

are confined to the basal plane, i.e. h(zo is large and negative. ¥From
symmetry considerations, the elastic (Fe) and magnetoelastic (Fme) free

energies can be written (Cooper, 1968 II)

F_ = 5cVI(e, % + (e, (3.15)
Foe © e1Yl:201(°’12 - °’22) -Gyt 802"’12‘”22] + &) Vl4C o, +
4C, 00, (0y 2 = 0,7)] (3.16)
2717271 2
where o and o, are the direction cosines of the magnetisation with respect
to the "a" and "b" axes respectively. C1 and C2 are constants giving the

magnitude of the first and second order magnetoelastic energies.

1 %(eaa B ebb) and.

€ab

ora the irreducible strains  appropriate b e gﬁmmﬁ_j .



PSRV IS

34.

br‘i.
eij - T
c'Y is the elastic stiffness constant related to the Cartesian stiffness
constants ©11* 12 by
Y = -
¢! = 2(e; - ¢y

The energy due to magnetostriction is the sum of Fe and Fme

F =F +F
e m

(3.17)
ms

e

Differentiating the energy with respect to e:l'Y and ezv in turn and setting

the result equal to zero gives the minimum energy when

_y=_i_[ 2_ 2 2 2_ ]

€ K ch(oz1 @, ) &-BCzal o, C2 (3.18)
v ;L.[ 2 2 ]

and €y x 4C1a]az + éczalaz(al C ) (3.19)

Mason (1954) gives the following expression for the magnetostriction in

a hexagonal crystal
x =8 = Al2e 08 + (@ - ) )p,1”
2 2 2
+ Bayg [(alal + aZBZ) -‘(alaz - “251) ]
+ el B, +a,B)? - (a8, - @82
171 272 172 271

2 2
+DQ - 2,90 - g2

+ etc. . (3.20)

The A, B, C etc. are constants, Bl, 52, 33 are the direction cosines made

by the direction in which %} is measured with the 3 crystal axes and

al, a2, a3 are the direction cosines of the magnetisation with respect to



the crystal axes a, b, ¢ respectively.
to the basal plane, o

axis, 51 = 53 = 0 and BZ = 1 hence,

3
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= 0, and when AL is measured parallel to the "b"

1

“

A_L] = (e 2 2,2 2 2
[B =a@? - a,h% +o@? - +0  u21)

When AL is measured parallel to the "a" axis Bl = 1 and 52 =B, =0 and

1

3

AT 2 2 2
(8], = ace)? + oo - @) +1 (3.22)

XY’Z is defined as the change in [%%] when the magnetisation rotates from

t

being parallel to the "a" axis to the "b" axis. In the first case ¢, =1

and o,

Since

and

= 0 and in the second, o = 0 and o

1

1 therefore

90
V’z-_-r.élo_r-é]—'.] =
A LT la L 1 la 2C (3.23)
= €Caa
€ bb

we have, from 3.21, 3.22 and the definition of E‘X on page 33

and. since

2

wal Qoa,)? - (@ - 0,1 + 2000 ” - 0,1

1

2 2

1 - az

Y =%{A(8&12a22 -1+ 20(&12 - azz)}

Comparing terms with equation 3.18 we have, with equation 3.23

-

Y Y, ¥
- c’'C_ _ch 2
153 A (3.24a)

When the magnetisation is confined



e et — s = =

36.

and C, = -5 (3.24b)

Substituting the values of the minimum strains 51Y and 32 in

equations 3.15, 3.16 and 3.17 for the magnetostriction energy, the

expressions simplify to -

= cYah? 2.2 WY
Fms [ 8 (a +a, ) =5 ACos6p  (3.25)
-1
where ¢ = Cos oy
The first term has cylindrical symmetry since 012 =1 - 022 and

therefore it does not contribute to anisotropy in the basal plane. The
sccond term has hexagonal symmetry and writing 1 =m = 6 in equation 3.14

it is possible to make the identity

MY
AK 6 _ " A (3.26)

Ak(66 being the contribution to the planar anisotropy from magneto-
striction. The magnitude of this contribution can be calculated. Values
of Y being obtained from the longitudinal and shear elastic wave
velocities and the constants A and C and hence AY being obtained from the
variation of basal plane magnetostriction as follows:

In equation 3.22 we let @, = cosp and o, = sing. Taking as a
reference the position where Ms is parallel to the "a" axis and @, =1

1

and 02 = 0,

I “51] [M] = A{ 20,0 )2} + ¢f (ozl2 - ozzz) - 1}

A ;Sin22¢ + C{(1-281n2¢) - 1}

A Sin22¢ - zcsm2¢ (3.27)



Figure 3.1 To iliustrate the cause of the temperature variation of

anisotropy energy (adapted from Callen and Callen 1960 )
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Measurements of T at various values of ¢ suffice to give A, C and Ay,

3.5 Variation of Anisotropy with Temperature

3.5.1. Qualitative Discussion

The measured anisotropy coefficients are found to fall
rapidly with increase of temperature. This cannot be attributed to a
weakening of the microscopic mechanism causing the anisotropy since for
example in Nickel the spin-orbit coupling as indicated by the value of
the Landé 'g! factor remains virtually constant with changes of
temperature., Satisfactory explanations of the temperature variation of
anisotropy are all based on the following general idea, illustrated in
Figure 3.1.

The solid line represents the energy density of a single elementary
moment for various orientations in the (010) plane of a cubic crystal.
This curve is independent of the temperature. At absolute zero of
temperature all the elementary moments or spins would be parallel to each
other and would have the same energy density. The average energy density
of N spins would then be equal to that for a single spin and the mean
energy density curve would have the same form as the solid line., At a
finite temperature however, when the macroscopic magnetisation is parallel
to a hard axis OB, many spins have less than the maximum value of potential
energy because thermal vibrations cause them to be distributed in a cone
around OB as a mean direction, The mean energy demsity is then less than
the energy density for a single spin aligned along OB. Similarly when
the macroscopic magnetisation is parallel to an easy direction OA, those
spins which are not parallel to OA have more than the potential energy

appropriate to that axis so that the mean energy density is higher than
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it would be at absolute zero. The overall result is shown in the dotted
curve which is clearly less anisotropic than the solid line.

The elementary moment may be the magnetic moment of a single ion or
a coupled pair or a small region containing several magnetic ions, so
that the general idea may Be applied to one-ion, two-~ion and cluster
models,

. From Figure 3,1 it may be inferred qualitatively that the dotted
curve will become circular and the anisotropy will fall to zero when the
mean deviation of the spins from the magnetisation direction is about 22
degrees although the resultant magnetisation may still be quite large.
This is in accordance with experience that the anisotropy falls to zero
much more rapidly than the magnetisation. In the hexagonal case, the
diminution of the six-fold component of the anisotropy would occur even
more rapidly. The problem of calculating the temperature variation of
the anisotropy energy consists of averaging the anisotropy energy of the
spins at various temperatures. Since the macroscopic magnetisation also
depends on the distribution of the spins about the average direction it
is convenient to express the anisotropy energy in terms of the reduced

magnetisation

=MS(T) E'-!-'_
MM 0 °F &
8 0

where MS(T) is the saturation magnetisation at temperature T and MS(O) is
the value at absolute zero. A history of the methods of performing the
averaging and the variety of results obtained are given by Callen and
Callen (1966) and a full explanation of the mathematical background is
given by Birss (1964, page 162 et, seq.). A brief account of the

relationships which have been established is now given.
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3.5.2, Temperature Variation of Anisotropy of Single Ion Origin

At absolute zero of temperature, N spins in a domain or
a saturated crystal might be supposed to be parallel, and the anisotropic
part of the macroscopic free energy would be N times the anisotropy
energy of one spin. The anisotropy coefficients P(l would take the value
obe](O). It is permissible therefore to express the energy density of
a single spin in terms of these coefficients. Following Callen and

Callen,

e, = ) K © § (s (3.28)
1

where‘g 1(S) is a normalised polynomial of the lth degree in either the
spin operators or a unit vector along the spin axis. ,5 1(S) has a
symmetry imposed by the crystal lattice and 1s conveniently wricten as a

linear series of spherical harmonics.

m
3, =)a™ v s (3.29)
m

where the constants alm are fixed by the crystal symmetry.

The anisotropy energy per unit volume of a system of spins is
m m
E, = ) b @) a"<y™s) > (3.30)
1 m

where <:Y1m(S) > is an average value computed assuming the magnetisation
itself to be isotropic.
By changing the polar axis to the direction of the resultant

magnetisation, Callen and Callen obtain

e, = YH, 0 <160 >8] @ (3.31)
1
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vhere @ is a unit vector parallel to the magnetisation and S' is the spin
unit vector referred to this direction. By comparison with equation 3.28,

the quantity
o
SORS ASCHES

may be recognised as the temperature dependent anisotropy coefficient H, l(T)

and also

W@ <y°6H >,

K1 <y >

(3.32)

The temperature variation of the anisotropy coefficients is reduced to an
evaluation of the right hand side of equation 3.32, Several separate

cases are treated.

(a) At low temperature. Quantum mechanical treatment

Using the fact that

<v°%> M(T)

10 L = my (3.33)
L <Y > M(0)
Callen and Callen obtain
W @ 1(14)
= () 2 (3.34)

Hl(O)

(b) Extension to arbitrary temperatures

The averages of equation 3.32 were calculated in this case using
a Boltzman distribution function for the deviations of the spins from

the mean direction. This gives

K, .

K,© - L@ (3.35)
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where Z is a parameter which can be eliminated by the use of the

relationship

mT 3/2(Z) (3.36)

~

Here Il+% is a normalised Hyperbolic Bessel function of order 1 and
A

13/2(2) is the Langevin function l: (z). Normalised hyperbolic Bessel

functions are related to the hyperbolic Bessel functions (11+%) thus:
A L@
I 4(2) =
L, (2)

At low temperatures only, where my is nearly 1 and X is large, a series

~ ~
expansion for I1+%(X) and I%(X) gives

HEITBT = T) (3.37)

in agreement with the quantum mechanical treatment. This is the well

1(1 )

known —% powcr law enunciated by Zener {1954). Zener's proof of the

law is classical, allowing the spins any orientation in an applied field,

and makes the same basic assumption i.e, the sole effect of temperature

is to introduce local fluctuations in the direction of the magnetisation
vector., His theory does not specify that the microscopic local moment

is a siungle spin or atom. He obtains a similar expression to 3.32 above

K 1(T) < Pl(Cose) >

W, ~ <P (Cos®) >, (3.38)

) o
where P,(Cos®) = Y, (g¢)replaces Y, (S').

He makes a second assumption, namely that the deviation @ of the

local magnetisation is the resultant of a large number of small deviatiors
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in random directions and the probability of a deviation within a certain

range is given by a random walk function. This leads to

[y

‘;(’ 1(T) 1(1-2+1)
EZ:;T57 = (mT) (3.39)

This agrees with equations 3.34 and 3.37 for low temperatures but does
not agree with equation 3.35 for higher temperatures. Keffer (1955)
points out that this is due to Zener's use of a random walk distribution
function rather than the Boltzmgn distribution, the latter function
implying a field of force tending to restore the spims to parallelism.
Wolf (1957) calculated the anisotropy energy of a cubic lattice in
terms of the reduced magnetisation (mT) using explicit quantum mechanical
expressions for the emnergy of a single spin in the crystal field and
assuming a Boltzman distribution of spins between the various levels.
His results for 1 = 2 and 4 and for spins 1, 3/2, 5/2 and 7/2 were
adapted by Callen and Callen (1965) who showed that the values converge

very rapidly to those given by the hyperbolic Bessel functions for the

classical approximation.

3.5.3. Temperature variation of anisotropy of two-ion origin

The temperature dependence of anisotropy resulting from
pseudo-dipolar and pseudo-quadrupolar interactions is caused by the
statistical deviations of the pairs of spins Si and Sj from the direction
of the macroscopic magnetisation. The form of the theoretical
temperature variation depends very much on the degree of correlation
between the spins, that is on how far they maintain parallel alignment

with each other. Only the two limits of complete correlation and no

correlation can be treated with any confidence.
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(a) The case of complete correlation

Keffer (1955) showed that Zener's 10th power law (for 1 = 4)
applies to the pseudo-quadrupolar inéeraction in cubic crystals in the
case of complete correlation and Keffer and Oguchi (1960) established
the same result for the pseudo-dipolar interaction. 1n this limit the
theoretical temperature variation of the anisotropy is the same whether
calculated ffom expressions for the energy of interaction between
neighbouring spins or from expressions involving single spins in a
crystalline field.

If Si and Sj move always parallel to each other then the two spins
can be treated as one spin of magnitude 2S and the averaging of the
anisotropy energy can be carried out by the same methods as for the
single ion case. Thus for complete correlation at low temperatures

1(141)
2

equation 3.34 also holds and W, is proportioned to the power of
9 1

mT.

For the pseudo quadrupolar term this may be regarded as a
replacement of the term

2 2
< (8yx P80 >

4
by < (Ei'zij) > .

i.e. 8, becomes the same as S
~L ~

3

This situation can hold only where the lowest states of the two

through correlation,

spin complex are occupied since in these the spins remain parallel. The

condition is that

1
1 - mT <:<:S

This correlation can also be regarded as breaking down at temperatures
where the wavelength of thermally generated spin waves is of the same

order of magnitude as the range of the given two-ion mechanism.
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(b) The case of no correlation

In this case the spin averages transform separately, so that for

the pseudo~quadrupolar terms the expression
2 2
< ('SVi‘}uij) (gj'rl:ij) >

is replaced by

’ 2 2
Q

and the average of < YZO(Si) >-2 rather than <:Y40(Si) > is found.

Thus Van Vleck (1937) obtained a Cls%fﬂQQZ

law (=6th power law for the
two-fold component) for the pseudo-quadrupolar interaction at low
temperatures, since his use of the molecular field approximation was
equivalent to the assumption of no correlation,
Callen and Callen (1965) performed a cluster theory calculation for

1 = 2, for several spin values and for several ratios of f]]’fz where
i 1 and 3 o are the exchange integrals for nearest and next-nearest
neighbours. They show that an mT2 law holds over practically the whole

range of values of W and only at the very low temperature limit isk<;2
again proportional to mTS. This distinguishes the two-~ion variation
from that due to the single ion mechanism for which the approximation

W o -

= 3
R, = Ts2®m (o)

is valid over nearly the whole temperature range. They state (1966) that

in general for two-ion interactions at high temperatures,

W L (D

_ 1
W = (mT) (3.40)
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Yang (1971) obtained expressions for the temperature variation of the

anisotropy constants Kl and K2 in equation 3.3 for hexagonal crystals

which included terms representing two-ion interactions with no correlation.
Since her coefficient Kl 1s a linear combination ofb( 2 and H4 the single

ion terms are as follows:

. K, (T) A

1 _ A

KZ(T) ~

T - °© 19/2 (z) (3.42)
2

where Z = 11-1(%%5% = E;}Z (mT) as before,

With the addition of the two-ion terms the expressions are

Kl(T) ~ o ) ) o )
Kl(O) = a 1:5/2(2) +b 19/2(2) + a (mT) +b (15/2(2)) (3.43)
KZ(T) b o 2

and gTey T Lgjp(®) + (L5, (2)) (3.44)

The coefficients a', b', a", b" etc. involve quantities which are
not known with any precision and Yang treats them as constants which can
be adjusted to fit the experimental results. Thus any theoretical
relationship between the coefficients is lost and it may be said simply
that each single-ion term in EQ/Z(Z) is supplemented by a term of the
form ({5/2(2))2 representing the two-ion interaction and similarly each

single~ion term IS/Z(Z) has added to it a proportion of (I (Z))z.

3/2
(Equivalent to (mT)Z). Yang was able to represent very closely indeed

the temperature variation of K1 and K2 for both Gadolinium and Cobalt

with expressions of this form. Yang et al. (1973) have applied the theory
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to cubic crystals and have obtained good fits to the temperature variation
of Kl for Iron and Nickel. They point out that fitting with four
adjustable constants is not a very critical test but the expression is
superior to previous expressions for nickel, (e.,g. that of W.J, Carr
quoted in Chikazumi 1964, p.152) at least in that it has a theoretical
justificationt A complete check of the theory must.wait until knowledge
of the microstructure of the metals allows a calculation of the

coefficients,

3.6 Variation of Magnetostriction with Temperature

Kittel and Van Vlieck (1960) extended the classical theory of the
temperature variation of anisotropy energy to include the magnetoelastic
constants., They used expressionsderived by Becker and Doring on symmetry
considerations for the magnetoelastic energy of a cubic crystal and
regrouped the terms so that they formed homogeneous surface harmonics of
order 2 and 4, The temperature dependent coefficients of these terms were
shown to be proportional to < Pz(Cose) > and < P4(Cose) > which correspond
exactly to the averages appearing in the temperature variation of
anisotropy. Callen and Callen extended this work to crystals of other
synmetry and pointed out that the thermal averages involved in calculating
magnetostrictive strains are identical to those ian the theory of anisotropy
so that the temperature variation of anisotropy cocfficients of order 1
should be the same as anisotropy coefficients of the same order. For
example the coefficient AY for which 1 = 2 should vary as ES/Z(Z) if it
is of single-ion origin. For Dysprosium the proportionality is found to

hold over three orders of magnitude (Clarke et al., 1965),
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3.7 The Temperature Variation of Magnetostriction or Anisotropy as an

Indication of the Fundamental Mechanism Involved.

In the case of Gadolinium, Callen and Callen (1965) found that

magnetostriction data obtained from Coleman was fitted very well by the

expression

AY = 351 x 10” -6 (z) - 243 x 1070 m?

] 5/2 m T8 (3.45)

The first term indicates a single~ion mechanism and the second a two-ion
mechanism of comparable strength. The relatively small single-ion
contribution is entirely consistent with the S ground state of Gadolinium.
Similarly it should be possible in principle to distinguish
contributions to the hexagonal anisotropy from magnetostriction and the
crystal field by their different temperature dependence. The concribution

from magnetostriction AF<66 is given (section 3.4) by equation (3.26).

Ah( 6 chYA

c¢Y doe s not vary greatly with temperature, while AY and A, for which 1}

A ~
=2 and 1 = 4, if of single-ion origin, vary as 15/2(2) and 19/2(2),

6
AH6 (T

Therefore —_———e—e = T (Z).£ (z) (3.46)
APC 6 5/2 9/2

This is in contrast to the crystal field contribution for which 1 = 6 and

— (2) (3.47)
6 13/2
op(6 (o)

Combining (3.46) and (3.47)

K lm = Hom + ol b = K Soo1,,@ + 1K 01,,@.1,,0

(3.48)



Element Temperalures Comments on the antiferromagnelic
Néol Transitioa Curie phase,
X K X

Co 12.5 Ferrimagnetic plancs, moments parallel
10 the 'c! axis.

Pr 25 Adjacent layers antiparsllel, Sinusoidal
modulalion of ferromagnetic structure in
each plane. lagnetic ordering is noi
f'ouni in single crystals.

Na 19 75 Sinusoidal wodulation as for Pr. Hexagonal
sites order at 19K and cubic sites at 7.5K
with a differont modulation wave vector.

S 14 106 Spins on hexagonal sites order antiferro-
magnetically at 106X, Cubic sites order
fecromogneticelly at 14K,

Fu 89 Helical structurc as for Dy with spins
parallel to a cube face and the screw
axis perpendicular to a cube face.

Ga 292,7(g) | Has no anliferromagnciic phase.

Tb 230.2(z) 219.6(F)

Dy 178 (a) 88.3(1)

Ho 120 (a) 19 (v)

P 85 (c)| 535(d) 19.5(b) | The ‘*squaring up' to the forr (d) of
figure 4.1 proceeds gradually and is not
compleie when Tc is reached.

T 57.2(c)| 20{cse) | 32 (e)

Pable 4.1 lagnelic Ordering in the Rare Darths ( Data Trom Koehler in
E1l30t1(1972) paze €1 et. seq. )
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CHAPTER 4

MAGNETLIC ORDERING IN THE RARE EARTHS

4.1 Varieties of Magnetic Ordering in the Rare Earth Metals

Table 4.1 gives the various ordering temperatures. Small letters in
parentheses refer to the sections of Figure 4.1 where the various types of
magnetic ordering are illustrated. The symbols represent the orientations
of spins in consecutive planes parallel to the basal plane.

Figure 4.1(a) represents the helical spin arrangement described in
section 2.36 and found in Terbium, Dysprosium and Holmium. The
temperature range over which this periodic structure exists in Terbium is
quite narrow and the application of a small magnetic field (about 0.1T)
destroys the periodic structure. It is not absolutely certain that the
structure is helical but such a structure is expected on theoretical
grounds and measurements on alloys with Yttrium, which are expected to
have the same structure, seem to confirm this,

In the arrangement of Figure 4.1(b) each spin is shown resolved into
two components. One set of components aligns ferromagnetically parallel
to the c axis while the other set forms the planar spiral arrangement as
in Figure 4.1(a). The unresolved moments evidently lie on a cone which
has its axis parallel to the "c" axis,

Figure 4.1(c) illustrates a sinusoidal variation of the "c¢" axis
component of the individual moments. The other égmponents of the moments
which are parallel to the basal plane are randomly orientated and
produce no overall effect; they are therefore not shown in the diagram.

In Figure 4.1(d) components of the atomic moments parallel to the

basal plane form a planar spiral while components parallel to the "c"

axis align antiferromagnetically.
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Figure 4.1(e) shows the ferrimagnetic ordering peculiar to Thulium in
which the bulk magnetic moment results from the alternation of 4 planes

having spins parallel to the "c¢'" axis with 3 planes having oppositely
directed spins. )

Figure 4.1(f) shows the ferromagnetic ordering in Terbium and
Dysprosium while Figure 4.L(g) shows the ferromagnetic ordering in
Gadolinium where the angle marked © changes with temperature, becoming
zero above 240K (Corner et al., 1962)

Periodic structures are repeated throughout the crystal with a

wavelength which varies with temperature and is in general not

commensurate with the interlayer spacing of the crystal.

4.2 Interactions Causing Magnetic Ordering (With particular reference

to the heavy Rare Earths)

4.2.1. Indirect Exchange

The exchange interaction giving rise to the co-operative
phenomena encountered in the Rare Earths must be indirect in view of the
small spatial extent of the 4f orbital. It must also be oscillatory,

i.e. change sign with the separation of the pairs of ions, in order to
explain the spiral and other periodic structures observed (section 2.36),

The small value of Hc, needed to produce the metamagnetic tramsition inm,

for example, Terbium (less than 0,08T) compared to the magnitude of the
Heisenberg field points to the existence of ferromagnetic interactions {
alongside the antiferromagnetic interactions which reduce the difference

in energy between the ferromagnetic and antiferromagnetic states. The
existence of magnetic ordering in alloys containing as little as 5% of
magnetic Rare-Earth in a non-magnetic diluant such as Lanthanum or

Yttrium indicates cthat the interaction is of greater range than the .

distance between nearest neighbours in a lsttice.
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The usual explanation of these facts has been on the basis of a
model, used orginally by Rudermann and Kittel in connection with Nuclear
Magneéic Resonance investigations, subsequently applied by Kasuya to the

magnetic ordering in Gadolinium and by Yosida to Copper Manganese alloys,

now known as the Rudermaun-Kittel-Kasuya-Yosida or simply RKKY interaction.

this model the exchange interaction between the 4f electrons of one ion
and the conduction electrons in the metals results in a polarisation of
the latter which in turn couples with a more distant 4f shell. The
exchange integrals are difficult to evaluate from first principles and
it is found adequate for a phenomenological theory to represent the

interactions as scalar couplings of the form

Hi =T Ei'gc (4.1)
where I" is a constant.

This leads to a polarisation of the conduction electrons

Pi(g) =

8,F(2k;.x) (4.2)
where Z is the number of conduction electrons per atom, V is the atomic

volume, Ef if the Fermi energy, kf the wave-vector of the electrons at
the Fermi surface and F(x) is a function
Flx) = (sinx - xcosx)

7 (4.3)

X

F(x) has the necessary properties of alternating in sign and dying away
slowly with distance. The interaction of this polarisation with a second
spin has the same form as equation (4.1) above and this leads to an

interaction of the form

In
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2.2
o 9z T }E
Bis 2 F(2ke.x, 08,5,
GVE. .
£ i#j

(4.4)
de Gennes (1962) showed that in order to take account of the spin-orbit
coupling when applying the above result to the Rare Earths it was

necessary to replace Si and Sj by (g-l)Ji and (g-1)J,, the projections of

j,

- the spins on the direction of J.

The theory in broad outline is very successful. In the molecular
field approximation it leads to an expression for the paramagnetic Curie

temperature Bp,

2.2 2 .

3nZ T (g-1)"J(J+1)

- 5 ) Pkpr, ) (4.5)
£ i#3

The factor (g—l)zJ(J+1), is known as the de Gennes function and is found
to be closely proportional to the average values of ep for Rare Earths,
For the case where there are three conduction electrons per atom de Gennes
obtained a minimum exchange energy when the interlayer turn angle in a
helical spin structure is about 600; this is not far above typical values
actually observed, Theoretical expressions also predict correctly that
the exchange energy in the helical state is not very different from that
in the ferromagnetic state, a fact which gives magnetostriction and
anisotropy energies a decisive role in determining the ordered state of
the metals. (Section 4.2.2).

The polarisation of the conduction electrons which is an essential
feature of the model is observed as an enhancement of the magnetic

moments of the Rare Earth atoms in the metallic state.
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Many sweeping assumptions are made in performing calculations on the
RKKY model, The Fermi surface is assumed to be spherical and the
conduction electrons are all assumed t; be of an 's' character. The
theory does not account at all for the variation of the interlayer turn
angle with temperature and the expressi;n for & breaks down for various
Rare Earth intermetallic compounds (Levy 1970, Becle et al 1970)

Campbell (1972) points out many inconsistencies in deductions based on

the model and shows that many of them would be removed by a different
indirect mechanism having positive exchange between 4f and 5d clectrons in
the same atom and direct 5d-5d interactions between different atoms.

This proposed interaction is however of short range and alone camnot
account for the phenomena in the Rare Earths. The main features of the
RKKY theory are still accepted while modifications are made to achieve
consistency (Taylor 1971, Levy 1970).

The exchange function may be determined expcrimentally from spin-
wave spectra excited by inelastic neutron scattering and is usually given

in terms of the Fourier transform function

f(g) -3 f(gij)eifl'i (4.6)
1#)

where ¢ isa reduced wave vector 2'rr/>\£ Mackintosh and Bjerrum Mgller (1972)).

If a maximum in the graph of g(g) against ¢ occurs where q = 0, the
initial ordering 1s ferromagnetic as in the case of Gadolinium; but if
there is a maximum at q =g .. the ordering shouid then be periodic with
a wave~vector g’equal to'gmax, and may be helical, sinusoidal or some

other form, 1f Qnax 1 then normal antiferromagnetism should result.
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4,2.2, The effect of magnetostriction and magnetocrystalline

anisotropy on magnetic ordering in the heavy Rare Earths

Although spiral structures will not occur without the long
range oscillatory type of exchange interaction with a maximum ing (g)
at some non-zero value of 9 the existence of this type of exchange does
not necessarily produce a periodic structure. Thus experimental results
for g(g) for Dysprosium at 78K show a definite maximum displaced from
the origin, yelL at this temperature Dysprosium is ferromagnetic. The
explanation of this i1s that the system of spins takes up the state with
the lowest free energy and reductions in the total free energy due to
magnetostriction and anisotropy in the ferromagnetic state may morc than
compensate for an increase in exchange energy.

In the heavy Rare Earths magnetocrystalline anisotropy largely
controls the form of the periodic structures. In the particular materials
studied in this investigation (Dysprosium, Terbium and Terbium-Scandium
Alloys) the "c¢" axis is very "hard" magnetically and spin moments are
confined to the basal plane in both the ferromagnetic and the anti-
ferromagnetic state so that the latter is helical, Details of the
following discussion therefore mainly refer to the rtransition from helical
to parallel spin arrangements although the principles arec of wider
applicability. The ideas involved were developed by Elliott (1961, 1971)
and Cooper (1968, I and II) and are fully described in Chapter 2 of
Elliott (1972),

The components of the free energy which should be taken into account

are as follows:-
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(i) The isotropic indirect exchange energy described by the RKKY

theory (Fiso.ex)'

(ii) Anisotropic exchange energy (Fan ex). Since two-ion interactions

are not significant in these materials this energy is neglected.
(iii) Crystal field anisotropy (Fcf) due to the undistorted lattice.
(iv) Elastic strain energy (Fe).
(v) Magnetoelastic energy (Fme) coupling the spins to the strains.
(vi) In the presence of a magnetic field there will also be the

Zeeman energy (Fz).

The change to ferromagnetism will occur when

Fex.hel 2:Fex.fm + Fme + Fe + Fcf + Fz (4.6)
or when
Fex.hel ~ Fex.fm ~ 2= Fns * Fes (4.7)

The equality holding at the critical field for each temperature.

Fex.hel and Fex.fm represent the exchange energy in the helical a.f.m,

and f.m., states respectively, and FmS is the free energy due to the
equilibrium magnetostriction, equal to the sum of Fe and Fme' Expressions
for the values of F s and Fcf are already known. From equation (3.25) we
have

__cam? . SN Yacosép

ms 8 A (4.8)

Omitting all terms concerned with the axial anisotropy from equation

(3.7), since the spins do not leave the basal plane,
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Fe = H66Cos6¢ (4.9

The sum of Fms and Fcf is always negaiive since the first term for

Fms is negative and the spins orientate themselves so as to make the sum

cYaYa

of 4 cosbp and FC66cos6¢ negatiﬁé, @ being either 30° or 0°

cAYa

depending on whether or not the sum of A and h$66 is positive.

The energies Fms and Fcf therefore reduce the free energy in the
ferromagnetic state so that the system may become ferromagnetic even when

the exchange encrgies favour the helical spin arrangement., Their sum

F, = Fms +F ¢ (4.10)

may be regarded as a driving energy to ferromagnetism. A numerical test
of equation (4.7) above is described by Cooper for Dysprosium. The
quantities on the left hand side of the equation were obtained from the
analysis of Elliott (1961) and the quantity Fd was calculated assuming
that the magnetostriction and anisotropy are of single-ion origin, and

that the constant A is negligible for this metal, Therefore

N A 2 ~
Fy=- .(.38_ {,\V Is/z(z)} + H66 {113/2(2)} (4.11)
where as before,
my = T35(2)

Although the two terms contributing to Fd are of roughly equal magnitude
at absolute zero, the hexagonal anisotropy dies away more rapidly with
increasing temperature and is only about 20% of Fd at the Curie
tenperature. Satisfactory numerical agreement was obtained, thus
supporting the general validity of the concepts and also that the driving
energy to ferromagnetism in Dysprosium consists mainly of the cylindrically

symmetrical magnetostriction energy.
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The onset of ferromagnetism with reduction of temperature can be

understood easily on this model. The driving energy Fd depends on

(1

~N

5/2(Z))2 and on 113/2(Z) both of which factors increase more rapidly
than the exchange energy as the temperature falls.

The hexagonal anisotropy determines the direction of the moment when
ferromagnetism occurs and may determine whether the collapse of the
helical spin structure at the critical field is a second or first order
transition. A knowledge of the magnitude of this anisotropy energy is
therefore of some importance in understanding the magnetic ordering of a

particular material, and a knowledge of its temperature variation is also

of use in giving an indication of its origin,

4,3 Anisotropy and Related Measurements in Terbium

A complete series of magnetisation measurements on single crystals
of Terbium is given by Hegland et al (1963) together with some data from
specific heat, neutron diffraction and electrical resistivity
measurements confirming the phase changes found. The antiferromagnetic
order between 220 and 230K can be overcome with a field less than 0,08T.
They also reported the very much smaller susceptibility parallel to the
"e" axis compared with directions in the basal plane, the enormous
anisotropy making it necessary to restrain the specimen with chains during
measurements parallel to the "c" axis at lower temperatures. From the
lack of saturation along the "a" axis they deduced that the "b" axis is
the easy axis at all temperatures,

Rhyne and Legvold (1965) measured the magnetostriction of Terbium
single crystals between 4 and 350K in fields up to 3T, computed the values

of the constants A and C in equation (3,27) and compared the temperature

£
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variation with the predictions of the single ion theory (Section 3.5).
Since A is a coefficient of a term of the fourth degree and C of a term

of the second degree, it was expected that

c(r) _ & o1

oy = Is/a(Igyymp)) (4.12a)
and A(T) _ ~ ~L1

200) - To/2(T3/,(mp)) (4.12b)

where C(T) and A(T) denote the values of C and A at temperature T while
C(0) and A(0) are their values at absolute zero, Both of these
relationships were very well satisfied by the results over the whole
temperature range.

In order to measure the enormous anisotropy energy when the specimen
is magnetised parallel to a "c" axis, Rhyne and Clark (1967) used a
torque magnetomecter in which the counter torque was provided by a current
in a coll fastened to the specimen and suspended with it in the applied
field, TFields up to 14T were used and it was found that fields of 10T
were able to move the magnetisation less than 10° out of the basal plane,
Using magnetisation data to calculate the actual orientation of the
magnetisation and the first term in equation 3.7 they found that the

temperature variation of hcz followed the single-ion theory well i.e.

K@ ~ s
R,© ~ T5/2'T3/2 ) (4.13)

3

with a value ofP{ 2(0) equal to 6.65 x 107 J Kg_l. In contrast k(66,

the basal plane anisotropy constant deduced from the magnetostriction

~

data, did not fit the corresponding one-~ion function I (z), at all

13/2

closely.

9 66(0) = 29.25 J kg™t
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Bly et al (1968) measured the anisotropy constant K1 for Terbium in
the paramagnetic region and also K, GEF(66) in the ferromagnetic range.
The results agreed well with those of Rhyne and Clarke, and confirm the
N
Iy3/2(%)-

Feron (1969) measured the magnetocrystalline anisotropy of Terbium

poor fit of the single-ion function,

using the magnetisation curve method (Section 5.1) and found a
satisfactory agreement between the variation of HZ and the corresponding
single-ion function but a much poorer agreement for the variation of k(zo.
This he felt would be improved by taking magnetostriction into account.
His value of’k(z(o) is only 3% greater than that of Rhyne and Clarke.
Microwave absorption experiments at 9,44 GHz by Bagguley and liesegang
(1966) on a basal plane crystal disc of Terbium allowed an estimate to
be made of the hexagonal anisotropy field. This quantity was found to
be proportional to (mT)6 in the temperature interval 140 to 220K. This
is a smaller power law than expected on the single-ion theory, whether
the anisotropy is of crystal field origin or not.

Cooper (1968,I) considered the contribution to the hexagonal
anisotropy of Terbium from the second order magnetostriction effects

which should vary (Equation 3.46) with temperature as the product,

~

(z).15/2(z) m, = 13/2(2)

A
T9/2
He showed that this function did not provide a significantly improved
fit to the results of Rhyne and Clarke (1967) (Figure 4.2).
From inelastic neutron scattering experiments, Nielsen et al (1970)
were able to show that the variations of hy(0) with field and temperature
for a Terbium/10% Holmium crystal could be fitted to theoretical

expressions only if the parameter reprecsenting the crystal field
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anisotropy is near zero. They concluded that the hexagonal anisotropy
is entirely accounted for by magnetoelastic effects. Because of the
similarity between the anisotropy properties of Terbium and Holmium,

and because the proportion of Holmium in the sample was small, they felt

that the same conclusion could be drawn for pure Terbium.

4.4 Anisotropy and Related Measurements in Dysprosium

The magnetic properties of Dysprosium in various crystallographic
directions were determined by Behrendt et al (1958) and interpreted by
Liu et al (1959) who determined the axial and the basal plane anisotropy
conctants by fitting theoretical expressions for the magnetisation to
the experimental curves. K, varied as (mT)21 and R, as (mT)3 in
accordance with Zener's theory. They found no anisotropy in the basal
plane between 110K. and the Neel temperature. This was not expected for
a normal antiferromagnetic material. Neutron diffraction experiments
(Wilkinson et al 1961) showed that the antiferromagnetic structure is
helical with a further slight modulation below 140K possibly due to
the basal plane anisotropy. Clark et al (1963, 1964, 1965) studied the
magnetostriction, which is extremely large, T reaching 6 x 10-3
parallel to an "a" axis with an applied field parallel to the "b" axis.
The high valuve allows measurement over a wide range of temperature, and
the variation of ky’z was found to follow the single ion function
£5/2(Z) over three decades.

Experiments carried out by Rhyne and Clark at the same time as those

on Terbium indicate similar values for K o(0). This was to be

2
expected from the identical values of the quantity < r2 >w YZO(J) for

the two metals in the expression for the anisotropy energy in equation
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(3.13). k( 66(b) is of the order of 100 J kg-l.

Rhyne et al (1968)
continued magnetisation measurements on Dysprosium and Terbium in static
fields up to 14T and in pulsed fields of the order of 40T. Fields above
6T applied along the "c" axis produced permanent changes in the crystals.
From the magnetisation curves at lower fields, values of F(2°(o) were
deduced some 20% lower than those obtained in torque measurements,

Feron (1969) using magnetisation curves obtained values of b(zo and
k{66 in substantial agreement with the torque methods. The anisotropy

coefficient k(66 obeys the single-ion relationship equation (3.35) quite

closely. Thus

K 6 .

6 = I
66(0) 13/2

(2) where Z = £3/2(mT)

confirming the single-ion crystal field origin of the anisotropy.

Changes of easy axls in Dysprosium were observed by B8ly (1967,1969)
in experiments with a torque magnetometer, The easy axis changes are
summarised in Figure 4.3, which is taken, with modifications from Bly's
thesis (196?). A point on the graph represents one temperature and
applied field value., The lines join points where the easy axis of
magnetisation changes and K4 changes sign. The broken line joins
points obtained from the torque measurements while the solid lines mark
changes of easy axis deduced by Bly from the magnetisation measurements
of Jew and Legvold (1963). The regions of the diagram bounded by these
lines are marked with Roman numerals and the easy axis in each region
is shown by small letters placed close to the lines. The dotted line
shows the critical field at each temperature.

The original version of this diagram contains an error whichk has

the effect of exchanging 'a' for 'b'. The correction was made in Bly's
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1969 paper and is incorporated in Figuvre 4,3, Also in the 1969 paper
Bly pointed out that the changes of easy axis lie very close to a line of
constant magnetisation where

N

2

o = 236 Am kg—1

There are several discrepancies between the torque-curve and the
magnetisation results. TFor example in the regions I and II they indicate
different easy axes,

4.5 The Effects on the Magnetic Ordering of Heavy Rare Earths of

Alloying with Yttrium

Alloys of Gadolinium and Lanthanum with Yttrium were investigated by
Thorburn et al (1958) and alloys of Terbium, Dysprosium, Holmium, Erbium
and Thulium with Yttrium were investigated by Child et al (1965) by
neutron diffraction techniques. The results confirmed and extended
previous work (e.g. Weinstein et al 1963) and are reviewed and discussed
by Koehler (1965).

Increasing percentages of Yttrium lower the Néel point but lower ,
the Curie temperature even more, thus widening the ranges of temperatures !
over which the alloy has an antiferromagnetic structure. The ferro-
magnetic phase in Terbium disappears with less than 25 atomic percent of
Yttrium and in Dysprosium it disappears with less than 5 At% of Yttrium.

Within the limits of resolution of the method the antiferromagnetic
structures in the alloys are found to be the same as those in the pure
Rare Earth. |

CGadolinium alloys remain purely ferromagnetic with up to 34 At% of
Yttrium; with 34 to 40 At% of Yttrium they show both ferromagnetic and

antiferromagnetic behaviour, while more dilute alloys exhibit only an

k4
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antiferromagnetic phase, probably of a helical kind.

The overall effect of dilution with Yttrium seems to be to produce
magnetic behaviour characteristic of the Rare Earth elements further down
the list and to stabilise the helical structures at the expense of the
ferromagnetic ones. Ordered structures are found with quite small
concentrations of the magnetic Rare Earth, e.g. 5% Terbium or 10% Holmium.
Relationships similar to those obtaining for the inter-Rare Earth alloys
(Bozorth et al 1966) are found between the Néel temperatures, the initial

inter-layer turn angle and the average de Gennes function. The latter

quantity is defined as
¢ =zxc, (-1 (3, +1)
i iti
where Ci is the fraction of the ith. component in the alloy and
G, = (g-1%1 (7, + 1)
v 1 ii

is the square of the effective spin, i.e. the projection of the spin on J.

The Neel temperatures are proportional to the 2/3 power of the de
Gennes function. This relationship holds, with the same constant of
proportionality, for all percentage compositions of all the inter-Rare
Earth and Yttrium-Rare Earih binary alloys tested. More remarkably, the
Curie temperatures of the ferromagnetic Gadolinium alloys also fit the
relationship,

The interlayer turn angles just below the Néel point (ei) when
plotted against the average de Gennes function lie quite close to a single
smooth curve. This curve extrapolates to 91 = 50° for emall values of G.

The value of ei falls to zero for G = 11.5, corresponding quite
closely to the composition first showing ferromagnetic behaviour in the

Gadolinium alloys.
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4.6 The Effects on the Magnetic Ordering of Heavy Rare Earths of

Alloying with Scandium

Measurements of xm for Scandium (Chechernikov et al 1963, Ross et al
1969) show paramagnetic behaviour with a negative value of ep the para-
magnetic Curie temperature, This indicates antiferromagnetic coupling
between nearest neighbours., There are uncertainties in the value of X
and in the slight anisotropy. Ross gives Xy © 90 x 10-6 with xlc - xuc &
4 x 10_6. This anisotropy is drastically affected by small am;;;ts of
magnetic impurities. Wohlleben (1968) explains the field dependence of the
magnetisation in alloys containing 0.1% of Gadolinium by (a) the existence
of an antiferromagnetic interaction, (b) the existence in Scandium of
unquenched angular momentum in the d-orbitals and (c) ready polarisation
of the d electrons.

Neutron diffraction experiments (Child et al 1966, 1968) on alloys of
Terbium, Holmium and Erbium with Scandium indicate some similarities to
the alloys with Yttrium. The ordered structures are of the same kind as
in the pure Rare Earth and the initial value of the inter-layer turn angle
(91) is a single valued function of € with a Iimiting value of 50°. There
are several significant differences however, The Néel temperatures do not

follow a §2/3

law and Scandium lowers the Néel temperatures more for a given
dilution. Magnetic ordering vanishes for quite high percentages of
magnetic Rare Earth, e.g. about 25 At% of Terbium, 18At% of Holmium, and
39 At% of Erbium, even for temperatures as low as 1,3K.

Magnetic measurements on Gadolinium-Scandium alloys (Nigh et al 1964)
show that ferromagnetic behaviour persists up to approximately 30 At% of
Scandium. At about 31 At% of Scandium the alloys show both ferromagnetic

and antiferromagnetic behaviour while alloys with more Scandium are

antiferromagnetic only.
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The polarisation of the Scandium matrix is shown by the rise in Moee

with decreasing Gadolinium concentration and a similar rise in L for
the ferromagnetic alloys. Salamon (1971) using electron spin resonance
found that the effective moment of Gd in Scandium was enhanced and varies
with direction,

Measurements of the lattice parameters, magnetisation, thermal
expansion and magnetostriction of a series of Terbium Scandium alloys were
made by Chatterjee and Corner (1971). The Néél temperatutres appear to
vary as G and ep as (5)2. Magnetostriction measurements for two of
the richer alloys show that the constant XV’Z follows the single-ion
theory well. In addition the sharp fall in the Curie temperature with
increasing Scandium content correlates well with the £all in the
cylindrically symmetrical magnetostriction energy Ems = %(ﬂ%ky)z. This
is approximately 2K/Atom for Terbium but falls to 1.25 K/Atom for

and 0.8 K/Atom for Tb0.8258c0.175' This suggests the idea

™9.89%%.11
that cylindrically symmetrical magnetostrictive energy is responsible for
"driving" the spin from a helical to a ferromagnetic structure in Terbium
as for Dysprosium but takes no account of hexagonally symmetrical
magnetostriction.

The existence of helical structures in the alloys indicates that the
exchange interactions are still long range and oscillatory. The entire
absence of ordering with more than 70 to 80 At% of Scandium indicates
considerable weakening of the interaction., The Scandium atoms have a
volume about 25% smaller than those of Yttrium and this could be the cause
of the different behaviour. The R.K.K.Y, theory does not help in under-

standing the effect of such changes on the exchange energy. Wollan (1967)

compared certain effects of dilution of Terbium and Gadolinium with
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Scandium to the effects of applying high pressures and showed that they
were essentially the same.

Isaacs et al (1971) investigating the anisotropy changes produced in
a Scandium matrix by quantities of magnetic Rare Earth of the order of 1%
showed that Gadolinium changed the easy axis from "a" to "c¢" at low
temperatures, while Dysprosium did not change the easy axis but increases
the anisotropy by several orders of magnitude. It thus appears that the

solute begins to dominate the anisotropy at very low percentages.
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CHAPTER 5

METHODS OF DETERMINING ANISOTROPY CONSTANTS

5.1 Anisotropy Constants from Magnetisation Curves

The work done per unit volume in magnetising a specimen is given by

M
W = by oj H.dM

If the specimen is symmetrical, unstrained, magnetised to saturation, and
if in addlition corrections are made for demagnetisation ficlds and
irreversible processes, then the work W is the anisotropy energy Ea'

The integral may be found graphically as the area between the magnetisation
(M/versus H) curve and the M axis. Determinations of E, in four selected
directions should then suffice to determine four anisotropy constants,

and from equation 3.3 it should be possible to obtain K4 from one curve
measured in the basal plane parallel to an "a" axis.

To eliminate the contribution of irreversible processes to the
integral, a complete hysteresis loop may be plotted for the specimen and
a curve constructed, the M co-ordinates of points being unchanged but the
H co-ordinates of points being the mean af corresponding pairs of H
co-ordinates on the hysteresis curve. Alternatively, each point on the
magnetisation curve may be obtained by superimposing on the static field
a large alternating field, and gradually reducing the latter to zero.
This allows the system to settle in the state of minimum energy far
each point.

To elim;nate the effect of demagnetising fields the specimen may be

made in the form of a picture frame, Otherwise it may be an ellipsoid
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of revolution so that the demagnetising field may be calculated, If the
specimen is spherical then the work done against the demagnetising field

is the same for all directions in magnetising to saturation. It may then
be treated as an extra unknown quantity and eliminated by obtaining another
magnetisation curve.

The method has several disadvantages. Unless the magnetisation
curves are required also, it is very time consuming and requires
temperature stabilisation over long periods. There are uncertainties
associated with the corrections for demagnetising fieid which are large
compared with the quantity measured and results are also very sensitive
to misorientation of the sample. 1In addition it cannot be applied
directly in cases where the fields available are not high enough to
saturate the material in the hard direction. This is the case for the
axial aniébtropy in Dy and Tb where Feron (1969) evaluated the
coefficients F(Zo and h14° by fitting theoretical expressions involving

them to the magnetisation curves.

5.2 Anisotropy Coefficients from Torque Measurements

A single crystal specimen is cut, usually in the form of a disc or
oblate spheroid with its minor axis perpendicular to an important crystal
plane., It is suspended from a vertical torsion wire or other counter
torque device so that the major axes of the disc or ellipscid are
horizontal, and the specimen is situated in a uniform horizontal magnetic
field. The torque exerted by the field on the crystal is measured as either
the specimen or the magnet is rotated and plotted as a function of the
angle between the field lines and a specified crystal axis.

On Lh; assumption that the magnetisation within the crystal is

virtually parallel to the applied field, the torque may be obtained in
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terms of the anisotropy constants by differentiating the appropriate
expressions for magnetocrystalline anisotropy energy. Thus for a hexagonal

crystal, from equation (3.3),

2 4 6 6
Ea = Klsln 0 + KZSin 8 + K3Sin 0 + KASin 8Cos6¢ (5.1)

If the specimen is cut with a 'c¢' axis in the plane of the disc then the

torque exerted on the crystal by the field is, since ¢ is a constant,

dE
a _ . . 3 LD
L=%g " 2K181neCose + 4K281n pCos B + 6(K3 + K4COS6¢)SLH 8Cos§
(5.2)
Following Corner et al (1962)
=g '
K, + K, Cosbp = K, (5.3) :
so that
K, 3K, !
= 15 1 - <,_-'_7-_ 3 ) i 3 ' '
L (1<1 + X, + 75 K, )Sin26 5+~ —)Sinke +_ T¢ Ky 'Sin6e (5.4)

Fourier analysis of the curve allows a determination of the coefficients
of sin2@, sin4® and sin6® and hence of K1 and K2. To determine K3 it is
necessary to know K4 and ¢. ¢ can be determined from X-ray photographs
or it can be arranged to cut the crystal so that its plane contains the
"a" axis, thus making ¢ = 0°. K4 can be determined from similar
measurements on another specimen cut so that its major axes are parallel
to the basal plane of the crystal. Since in this case 8§ = 90° the

anisotropy energy is

E, =K +K, +K; + K4c0s6¢ (5.5)

and the torque is

= -6K,S in6¢ (5.6)
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In general the torque curve obtained will still have other periodic
components due to misalignments and Fourier analysis is still needed to
give a value for K,. The coefficients b(l-of equation (3.7) can be found

as linear combinations of the coefficients Kn. h(66 is identical with K, .

4
Birss and Wallis (1964) pointed out the importance of clarity on the
OE
gign of — in obtaining expressions for the torque and suggested that
0¢

failure to observe this point caused disagreements about the sign of K2
for nickel, Here the positive derivative of Ea is used since it is the
torque exerted on the crystal by the field which is considered, Corner
et al (1962) use the negative derivative of Ea but clearly specify that
they mean the counter-torque provided to keep the specimen from rotating
in the applied field. In Figure 5.1 representing a basal plane crystal
disc, the applied field poH has moved the magnetisation vector away from
the easy axis, here taken to be the "a" axis, in the direction of
increasing ¢. The energy Ea is increased and the crystal experiences

a torque tending to reduce the angle ¢ and hence the energy. This torque
tends to rotate the crystal in the positive, anticlockwise direction,

It can be clearly seen in this situation that &9, 6Ea and the torque L

are all positive so that

L=+—2
¢

The torques exerted on the crystal have been measured in a variety of ways.
(i) By the torsional strain produced in the suspension wire,
For stability a stiff suspension is needed (see Section 6.5) and
several workers have used a flexible cage to replace the wire.
This reduces the sensitivity enormously and methods to measure

the distortion of the cage include
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1) the use of strain gauges (Tajima 1971),

2) the use of a variable transformer, one coil being fixed and
the other attached to the lower end of the cage and hence the
rod carrying the specimen (Aldenkamp et al 1960). The varying
output from the secondary of the transformer is amplified and
is almost directly proportional to the torque on the cage,

3) the use of a variable capacitor, one plate being connected to
the upper end of the cage and one end to the lower, The
capacitor is connected to a stable oscillator and the variations
in frequency are used to indicate torque In the suspension.

(Alberts et al., 1971).

(ii) By applying a counter~torque to the crystal to prevent it from

rotating. Deviation of the specimen from its position causes a
spot of light to alter the output from photoelectric cells,

This output controls the counter-torque which may be applied

in a variety of ways. The output may be amplified and passed
through a coil fixed to the crystal holder and suspended between
the poles of a second magnet (Penoyer 1959, Corner et al 1962).
The magnitude of this counter-torque current is then proportional
to the torque experienced by the crystal in the field. Rhyne and
Clarke (1967) placed the specimen inside the counter torque

coil and placed both in the main field. Barron et al (1970) used
a similar sensor to control a motor which twisted the wire
suspension to apply a counter torque, the size of which was
indicated by the output of a potentiometer attached to the drive

spindle of the motor.
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5.3 Anisotropy Studies using Ferromagnetic Resonance

When a steady magnetic field is applied to a ferromagnetic material
the i;dividual atomic moments tend to precess about their equilibrium
position. This precession is coherent because of the strong exchange
force£ and the motion can be viewed as a uniform precession of the whole
magnetic moment about:the direction of the applied magnetic field. This
precessional movement can be regarded as a section of a spin wave of
wavelength far exceeding the dimensions of the specimen so that the angle
between one spin and the next is practically zero.

The angular frequency of a spin wave of wave vector ¢ is usually
denoted W(ﬂ) and the quantum of energy associated with it is fhw(q) where
h = %%. The quantum of energy in the uniform or nbrmal mode of
precession is therefore denoted by Hiw(0). The graph of hw(q) versus q
for a given temperature and direction in a material represents the magnon
disperson relation and the intercept on the q = 0 axiq gives the value of
hw(0). This is therefore also referred to as the spin-wave or magnon
energy gap in the long wavelength limit. It is possible by semi-classical
arguments to calculate the normal mode frequency in certain special cases.
Thus for hexagonal crystals where the easy direction is in the basal

plane and the applied field and magnetisation are parallel to the hard

direction in the basal plane, the normal mode quantum energy is

. 36K 6K 2K
| 4 4 1
'YIU.)(O) = gmB{[B o Ms + pIO(NDa - NDb)Ms] [BO - Ms + MS +
¥
u'o(NDc - NDb) Ms]} (5.7

Bo is the applied field. NDa’ NDb’ NDc are demagnetising factors
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parallel to the a, b and c axes, the quantity in curly braces representing
a geometric mean of effective fields in the basal plane and the plane
contafning the "c" and "b" axes. Expressions corresponding to equation
(5.7) for different orientations of the applied field are given by
Bagguféy and Liesegang (1967). Expressions for cubic crystals are given
in Vonsovskii (1964), Morrish (1965) and other texts.

In the usual experimental arrangements the crystal specimen is cut so
as to make the demagnetising factors ND easily calculable, (or equal,in
which case they cancel). The specimen is mounted in a resonant cavity
which is supported between the poles of an electromagnet so that the D.C,
and radio frequency magnetic fields are mutually perpendicular. Microwaves
of fixed frequency are fed to the cavity and as the D.C. magnetic field is
altered, dips in the reflected or transmitted microwave amplitude indicate
that the normal mode frequency is equal to that of the microwaves.
Information concerning the anisotropy constants can be obtained. For the
case represented by equation (5.7) Figure 5.2 shows schematically the

relationshlp between resonant frequency and applied field where NDa =N

Db’
A typical microwave frequency (10 GHz) is indicated. Two resonances are
36K
observed at values of applied field close to the value m where the
'8

resonance frequency falls to zero, A complete system using a klystron to
generate the microwaves is described by Tannenwald (1955). Kyllonen and
Mamasse (1972) describe an inexpensive and extremely convenient
arrangement where the microwaves are generated by a Gunn diode mounted in
the resonant cavity. The tuning of the cavity is not critical and the
Dewar vessel with a narrow neck containing coolant and specimen can be
inserted into the cavity and rotated conveniently., Reflected amplitudes
are observed using a crystal detector comnnected to the resonant cavity

via a directional coupling.
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This method, like that following (section 5.4) presents difficulties
both in experimentation and interpretation of results. Thus apparent
resonances may be due to ?hanges in resistive losses., Resonances obtained
at low frequencies (~ 10GHz in this work) may disappear at high
frequencies (~ 100 GHz) due to changes from free to "frozen' lattice
behaviour (Hart and Stanford 1971, Vigren and Liu 1971, 1972). At the
higher frequencies the strains in the lattice cannot follow the magnetisation
vector and remain at their equilibrium value. This introduces terms

representing the magnetoelastic energy into expressions for the uniform

mode resonance frequency, which consequently does not fall to zero when

36K

B,y = and may not fall far enough to give resonance with the radio :
s

frequency field applied.

Values of K4 (= (’C 66) obtained by fitting theoretical expressions
for the temperature variation of the resonance frequency to experimental
results for Dysprosium and Terbium (Marsh and Sievers 1969) were much
higher than those obtained in magnetisation and torque methods. This and
other discrepancies can be due to difficulties in deriving the theoretical
expressions and in correctly identifying the microscopic parameters with
the measured anisotropy coefficients. Thus Egami (1972) attributes
differences between static and dynamic results for K4 for Dysprosium to
neglect of the zero point energy introduced by ellipticity of the spin
precession caused by the high anisotropy.

The method is exceedingly valuable for the light it throws on
microscopic processes by comparison of its results with those from static

measurements,
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5.4 Anisotropy Studies using Inelastic Neutron Scattering

Spin waves of finite wavelength (q > 0) are excited in the crystal
studied by bombardment with monoenergetic neutrons. Using a crystal
spectrometer, the wave vectors k1 and k2 of the incident and scattered

neutrons are determined, The wave vector of the excited spin wave is
g = k - k - T (5.8)

where I'is a reciprocal lattice vector, The energy transferred to the
spin wave is ﬁw(g) = 52(512 - EQZ).

Maxima in intensity of scattered neutrons give conjugate pairs of
values of hw(g) and ¢ from which the magnon disperson relation can be
plotted. Extrapolation to q = 0 gives the value hw(0) for which
expressions are known involving the anisoﬁropy constants, Values of
Xiw(0) may be obtained with applied fields along various crystallographic
directions and at various temperatures., This method can only be used
with materials having low capture cross section for thermal neutroms.
Terbium can be investigated this way and Nielsen et al (1970) were able
to show for Tb-Ho 10% alloy, that the variation of ¥y(0) with applied
field and temperature could only be explained if the basal plane

anisotropy arose from hexagonally symmetrical second order magneto-

striction effects.

5.5 Other Methods of Measuring Anisotropy Energy

Rhyne and Clarke (1967) have calculated the basal plane anisotropy
coefficient K4 for Dysprosium and Terbium from the departures of the
moment vector from parallelism with the applied field as detected by

maguetostrictive strain. Other methods include the remanent torque
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magnetometer and torsion pendulum, described by Zjilstra (1967, page

195 et seq). They may be of very high sensitivity (Collette 1962)

but have limited application.

5.6 Choice of Method of Determining Anisotropy Constants

The most convenient of the methods described is that using the torque
magnetometer with counter-torque feedback. Measurements are direct, and
with automatic recording are rapid. The instrument can be adapted for use
over a wide range of temperatures and magnetic fields and the sensitivity
can be altered conveniently over several orders of magnitude to suit
different materials. The method does not give much information in addition
to the actual anisotropy energy but it may give chis with considerable
precision, particularly when a torque curve is dominated by one component

as in measurements on basal plane specimens of hexagonal crystals,
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CHAPTER &

THE APPARATUS

[

6.1 General Description and Principles of Operation

The principal moving parts of the torque magnetometer are shown in
Figure 6.,1. The single corystal specimen, with its major axes horizontal,
is mounted on a specimen holder of tufnol. This plugs into a tufnol
socket which is connected rigidly by a short threaded brass rod bto the
lower end of & stainless steel tube, 0.6 m long and 3mm in diameter, +he
upper end of which is fastened to the counter~torque coil. This coil is
wound with 150 turns of 30 s.w.g. cnamelled wire and moves in the radial
field of a large galvanometer magnet.

The whole torque magnelometer movement is suspended by taut
beryllium-copper wires, 0.0l inches in diameter, so that it is free to
rotate about a vertical axis. The leads from a copper-constantan thermo-
couple pasas up the stainless steel suspension tube 1o a tag board just
above the counter-torque coil. From there they pass to vacuum lead-through
pins in the case by means of flexible flying leads. Similar connections
carry current to the counter-torque coil, all the flying leads being
arranged so as to place minimum constraint on the movement.

A cross section of the case is shown in Figure 6.2. The lower
support tube carries the anchorage for the lower suspension wire and
a heating coil. The end of this tuhe is covered by a brass cap which
screws down onto a neoprene "O" ring. Similarly tﬁé cover over the
top suspension and all other joints in the case are sealed with
neoprene gaskets so that the apparatus can be evacuated before cooling
to liquid nitrogen temperatures. The liquid nitrogen is contained in
a Dewar vessel which is suspended {rom the same [ramework which supports

the magnetometer case. Further details of the consiruction of the
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apparatus are given in sections 6.3 (page 79) and 6.4 (page 85) which
are concerned with the setting up and use of the magnetometer.

. Figure 6.3 is a block diagram illustrating the principles of
operation of the apparatus. It is arrangeé so that the crystal specimen
is midway between the flat pole faces of an electromagnet in a uniform
horizontal magnetic field. Iight from a small projector lamp is reflected
from the plane mirror, which is fastened to the movement just above the
counter-torque coil, and falls on two phototransistors PT1 and PI2.

These are connected in a long-tailed-pair amplifier in such a way that
the output current is zero when they are equally illuminated and increases
a8 one receives more light than the other, the direction of the current
output and the connection to the counter-torque coil being such that the
current tends to restore the movement to its central position.

If the specimen in the field experiences any torque, the movement
rotates slightly and the current output from the amplifier increases until
the rotation is arrested. Damping is provided by means of a bent strip
of copper fastened to the movement and having its ends immersed in a
trough of oil.

I the torque on the crystal exceeds the maximum counter-torque
available then the spot of light may be moved past the phototransistors
and. the movement will then be twisted violently and may be dameged. Two
warning meters were therefore included in the amplifier., When the current
is near zero in one meter, this indicates that the counter-torque
current is near to its maximum value.

The torque produced by the counter-~torque coil is proportional to
the current through it and hence to the potential difference across it.

This P.D. is recorded as the Y deflection on an XY recorder. The X
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deflection of the pen recorder is controlled by a P,D, derived from a
slide wire on the base of the electromagnet. This magnet rotates about
the same vertical axis as the crystal holde;. Rotating the electromagnec
slowly therefore produces automatically a graph of the counter-torque
or the torque experienced by the specimen versus the angle between the
- magnetic field and some arbitrary direction in the plane of the crystal
disc. With suitable calibration the absolute values of the torques may
be found and the anisotropy constants deduced. The electromagnet is
mounted on rails and can be moved to one side to facilitate setting up
the apparatus. The framework carrying the magnetometer is screwed to the
floor and the lamp and phototransistors are carried by an angle iron
tower, also bolted to the floor of the laboratory.
In principle the apparatus is the same as that described by Penoyer
(1950) but with important modifications introduced by Roe (1961) and
Bly (1967). The main parts of the apparatus were already constructed and
werce as used by Bly. The following items are modifications made for the
present investigation,
(a) The ;se of the XY recorder and the potentiometer system on the

base of the magnet,

(b) The use of phototransistors instead of photoresistors to speed

the response of the feedback system and so increase stability.

(c) The use of gauges and a sighting device to set up and orientate

the specimen,

(d) The use of lenses and plane windows and mirrors to allow more

efficient light transmission to the phototransistors,

(e) Modifications to the circuit of the amplifier to increase the

counter~torque current available,

(£f) The construction of a top suspension with two orthogonal screw

adjustments.

(g) The use of a transistor to stabilise the heating current.
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Table 6.1
wcscsa | Ddomecer | Thidimess | g | Mose | ety
Terbium 0.492 cm | 0,054 cm disc 51 mg 8.272
Tby.895% .11 0.497 cm | 0,116 cm disc 90 mg 7.85
Tb0.8253c0.175 0.524 cm 0.064 cm disc 100.5 mg 7.64
Tby 69550305 | ©+515 cm 0.103 cm disc 153 mg 7.07
Dysprosium 0.493 cm 0.0605 cm | ellipsoid 51 mg 8.536

The experimenrs were carried out on five single crystal specimens,

all having the "c" axis parallel to the short axis of the specimen.

Dimensions are given in Table 6.1.

The Dysprosium and Terbium specimens

were the same as those used by Bly et al (1968) and the Terbium-Scandium

alloy specimens were those used by Chatterjee (1972).

6.3 Setting up the Apparatus

6.3.1.

Etching and Mounting the Crystal Specimens

The crystals were etched for one or two seconds in the

following mixture of acids.

Lactic acid 20 ml
Phosphoric acid 5 ml
Acetic acid 10 ml
Conc. Nitric acid 15 mt

Conc, Sulphuric acid 1 ml
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They were then washed in water free acetone, allowed to dry, weighed and
mounted on the ends of specimen holders using four strips of sellotape
approximately 2mm by 15 mm bound with a similar strip as a collar, This
technique has been found to‘provide a firm attachment which is immune to
thermal cycling. Curves obéained from specimens which are attached in
this way do not show the distortions which appear when using adhesives
to fix the crystal. These distortions are attributed to strains produced
in the crystal by differential thermal expansion.

The orientation of the crystals on the holder was determined using

the Laue back reflection technique, With the crystals at 3cm from the

film, an exposure time of 1.5 hours was adequate using a cobalt anode

without a filter and a current of 10 mA at 30 kV. The axes were |
identified by comparing the films with standard (0001l) projections for
hep crystals, The specimen holder has a small piece of plane mirror

let into its side for purposes of alignment. The plane of the mirxor

can be set accurately perpendicular to the axis of a combined gauge and |
sight (Figure 6.4) by looking through the slit and rotating the specimen
holder until the image of the slit appears in the centre of the plane :
mirror. The gauge was clamped on the X-ray set and its axis made

parallel to one edge of the film holder using a spirit level. The

specimen holder was screwed onto a threaded brass rod which fitted the
operture in a second spare Laue camera, This method kept the crystal
accurately on the axis of the X-ray beam and allowed it to rotate until
the mirror was perpendicular to the axis of the gauge. Measurements on
the film gave the angle between one of the "b" axes and the normal to
the mirror within 1/3 of a degree.

The centre of the pattern on the exposed film was in all cases

close to the geometrical centre of the film, The "c¢" axis of the
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crystals was estimated to be within 3 to 5 degrees of the axis of the

specimen holder in all cases.

6.3.2. Orientation of the crystals in the magnetometer

The specimen holder is a push fit in the tufnol socket
attached to the stainless steel tube (Figure 6.1). The grub screw in
the specimen holder slides into a slot in the socket and this was intended
to provide precise location of the specimen. No great reliance was
placed on this arrangement however and the specimen was not moved after
the orientation had been performed. Since the movement is under tension
from the suspension, it is necessary to screw up the locating grub screw
very gently until it grips the back of the socket.

A heavy brass disc is screwed into the bottom of the specimen holder
in place of the suspension wire to load the movement so that it hangs
vertically from the upper suspension. The bolts holding the torque
magnetometer to its frame are slackened and it is moved until the
specimen holder is midway between the pole faces of the electromagnet.
This adjustment is aided by the use of the gauge which is a gentle push
fit between the magnet poles and has a central slot wide enough to
accommodate the specimen holder with a millimetre clearance on each side,
This adjustment is made with the magnet pole faces parallel to the rails
on which it runs. At the same time the main plate carrying the magneto-
meter is checked with a spirit level and made horizontal if necessary by
the use of shims under the corner bolts. After removing the gauge
temporarily as a precaution, the magnet is turned through 90° and moved
on its rails until the pole faces are again equidistant from the specimen

holder. Clamps are then placed on the rails to mark this position.
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Only one clamp is removed when it is necessary to move the magnet to
insert the Dewar vessel; the correct position of the magnet is then
easil§ found with the other,

The movement is turned by hand until the reflected spot of light is
seen to fall equally across the two lenses in front of the phototransistors.
Without disturbing the movement, the magnet is rotated until the image
of the sllit on the sight appears in the centre of the mirror on the
specimen holder when viewed through the slit. The magnet scale is read
at this point and it is then known that the pole faces and the normal
to the mirror are parallel. With a small lamp to illuminate the slit,
this setting is particularly easy and can be repeated within % of a
degree., Figure 6.5 illustrates the procedure, If the reading on the
scale is yo and the angle between the mirror normal and a "b" axis is
xo, then an anticlockwise rotation of the magnet by x° to (y-x)omakes
the pole faces parallel to one "b" axis. The field lines are then
parallel to an "a'" axis. It is thus possible to determine quickly the
angle between the flux lines and the crystal axes with a probable error
of less than 1°. Later it was found that the zero of the sin68
component of the torque curves occurred within one or two degrees of the

position of a crystal axis as determined above.

6.3.3. Replacement and adjustment of the suspension

The heavy brass disc is removed from the bottom of the
movement and is replaced by the lower suspension wire. The brass slug
on the lower end of this wire is fastened to'a piece of fine wire which
is threaded through the small hole.in the support tube to help in pulling

it down when the tube is replaced. This tube is pushed back in position
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against its "O" ring and the three screws which secure it are tightened

gently in turn until the tube is centrally placed between the poles of

the electromagnet, Tightening one screw excessively will pull the tube and

the specimen away from the centre of the field, To assist in this
adjustment another gauge was made, similar to the first but having a

slot wide enough to accommodate the support tube. The three screws are
adjusted until the tube remains central in the slit in the gauge while the
magnet is rotated.

The tensioning nut on the top suspension (Fig.6.6) is screwed down
until the spring is about half oé its uncompressed height. In this
position the upper suspension pulls the counter-torque coil against the
lower edge of the soft iron cylinder in the galvanometer magnet. The
brass slug on the lower suspension 1s then pulled down by means of the
attached wire until the top edge of the coil touches the top of the soft
iron cylinder. It is then allowed to rise 2 mm aund fastened with the
grub screws in the lower end of the support tube. The vertical
adjustment is facilitated by placing a small piece of plastic, 2 mm in
thickness and having a small slot, around the brass slug and gripping
the latter close to the plastic with a pair of pliers. Removing the
plastic and moving the pliers into contact with the case makes the
adjustment automatically. The counter-torque coil should then clear the
soft iron cylinder by approximately 2 mm at both top and bottom edges.
The fine wire is then removed and the brass cap which makes the lower
end of the suspension air tight is screwed down firmly onto its "O" ring.
The heating coil is covered with its stainless steel sheath and connected
to the contrel circuit,

1{ there is any damping oil in the trough it is removed so that the

magnetometer movement can swing-mwithout damping. The amplifier is
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switched on and the upper suspension is twisted until the spot of light
falls across the phototransistors. The movement should then start to
oscillate freely. If it does not, then the adjusting screws on the upper
suspension are moved until it does. Then the range of travel of each
screw is explored in turn and each is set half-way between the two
positions when the movement just begins to stick. Since the two
adjusting screws are at right angles, they act independently and the
movement is centred by 2 adjustments only. The top suspension wire passes
through a hole 0.013 inch in diameter and is therefore precisely located.
Until this form of suspension was made, great difficulty was experienced
in making the coil move freely even for a short seiries of readings,

The upper suspension ligament can be twisted without disturbing the
centring adjustment. This makes it possible, at this stage in setting up,
to switch off the amplifier and rotate the movement till the spot of light
is centrally placed on the photocells. If this is not done, the counter-
torque current has an additional steady component even in the absence of
any torque on the crystals,

The damping oil (Shell Spirax E.P, 140) is replaced in the trough and
the reflected spot of light settles down firmly and centrally on the two
phototransistors, The brass cover is replaced on its "O" ring with a
twisting motion and che apparatus is evacuated and is then ready for use.
The damping oil is stored in an evacuated vessel, Otherwise outgassing
under vacuum causes bubbles to form in the trough. These cause sticking
and, in bursting may introduce dribbles of oil into the centre of the

magnetometer.
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6.4 Further Details of the Apparatus and its Use

6.4.1. Temperature control and measurement

Experiments were carried out in the temperature range 77 to 190K
and for this range the method used by P,H, Bly was found to be very
satisfactory. The support tube is immersed in liquid nitrogen and temperatures
;bove 77K are obtained by passing a current through a heating coil of Kanthal
wire wound on a layer of Sellotape on the stainless steel support tube at the
level of the specimen. This wire is insulated with a further layer of
Sellotape and covered with a stainless steel sheath. The resistance of the
coil is 7 ohms and a current of about 1.25 amperes from a transistorised
potentiometer (Fig.6.7) was needed to raise the temperature of the specimen
to about 190K. At higher temperatures the boiling of the nitrogen occasionally
caused waves to appear in the recorded torque curves but these were of uniform
amplitude and could easily be allowed for in taking readings from the graphs.
The tima to reach thermal equilibrium was usually about 10 to 15 minutes and
temperatures were then measured with a copper-constantan thermocouple, the
reference junction being kept in liquid nitrogen. The thermoelectric
e.m.f.'s were measured on a Pye portable potentiometer. It was possible to
read the potentiometer to within 0.0l mV (corresponding to 0.5K at the lower
temperatures). Measurement of the thermal e.m.f. at three fixed temperatures,
(boiling nitrogen, melting acetone and melting ice) gave agrecment, within
these Jimits, with the calibration table used. Temperatures are therefore
assumed to be within 1K of the measured value. Because of the need to
remove the movement from the apparatus, the thermocouple leads were not
continuous as far as the potentiometer. Connection was by means of a small
gold plated plug and socket. Soldered joints were also discovered in the

leads at the vacuum lead-through in the case and on the tag board on the
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counter-torque coil, Deliberately introduced temperature differences

(for instance by touching one lead with a screwdriver cooled in liquid
nitroéen) produced variations in the apparent temperature of only 2 to 3K.
It was therefore assumed that normal temperature differences would produce
neg]iéible effects, since the connections were physically close together

and distant from any sources of heat,

6.4.2. The optical system

The maximum counter~torque available is proportional to the
maximum out-of-balance current from the amplifier. This in turn depends
on the illumination of the phototransistors. The cylindrical glass dome
formerly used on the apparatus had the effect of diffusing the light and
the galvanometer mirror formerly used was of a very small area. In
order to make better use of the light available the arrangemeni shown
in figure 6.8 was used.

A condenser lens of 10 cm focal length and 5 cm diameter focuses an
image of the lamps filament on the projector lens (87 cm focal length
and 3 com diameter). A slit is placed close to the condenser lens and
the projector lens forms a sharp image of this on the lenses on front
of the phototransistors, via the plane mirror on the movement and the
plane window in the cover of the instrument. The phototransistors have
a very small sensitive area and are mounted on adjustable brackets so as
to be exactly at the foci of two lenses. Two tubes help to protect
the phototransistors from stray light but they were found to be
unnecessary since the phototransistors are relatively insensitive to
changes in the bagkgrOund illumination. The tubes were mounted as closely

as possible but this is not necessary to restrict the rotation of the



TToo anbaoj Jojunogy ‘a9 G800 Sul ‘YL
134 OT SWUO 03 3I0d 00220 PuI ‘TuL
33%eM OT suyo 08 TIod (ueo uedo)e0Tod BId ‘TId

Z 104
3
W AL o8 o8 VIS
. 41 Zdl
Zld ;, bLd
1 19
919
v ZITNS TmEers LZNS
uNZ'Z M 202 ams ims $90C i w7z
Suggg < o0—m i vogg

pesiigpis S}oA GZ-

2INoXTy JOTJITAWy oUL 6°9 oImItg




[ ——

87.

magnetometer movement since the maximum torque is obtained when the spot
of light moves off one phototransistor completely. The width of the slit
in th; light source is adjusted till the image covers one half of each
of the pair of lenses L1 and L2.

gince the distance of the phototramnsistors from the moving mirror
is about 180 cm and the width of the lenses is 2 cm, maximum torque is

obtained when the spot moves 1 cm, i.e. when the movement turns through

—*zlzga radians, or 0.1l5 degrees. Calculations with

an angle of )
artificially produced displacements in the torque curves show that
results are not significantly affected by rotations in the specimen of
several times this value. It is therefore permissible to regard the
specimen as fixed, In addition, because the rotaéion of the crystal is
so small, torques introduced by twisting of the suspension wires and
connecting leads may be neglected.

The lamp, which is an Atlas Truflector ALl/184 (21.5V 150 Watt) is

fan cooled and may be dimmed by a rheostat to prolong its life when

maximum torques are not required.

6.4.3. The Amplifier

The circuit of the amplifier is shown in Figure 6.9. SWl
is a double-pole, double-throw type and SW2 is double-pole, single-throw,
Both switches are shown in their Aormal position., Potentiometers Pot 1
and Pot 2 are set initially with their sliders half way along the track.
With the reflected light from the torque magnetometer falling equally on
both phototransistors (which are normal BCl09 types opened and fixed to
transparent windows with Araldite) both 0C200's and both 0C35 transistors
are conducting. The collector terminals of the 0C35's (marked X1 and X2)

are at the same potential and the current in the counter-torque coil,

which is connected between them, iLs zero,
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If the light moves off PT1 and onto PT2 then the currents in TRl and
TR2 fall, while those in TR3 and TR4 increase. The point X2 then becomes
positive with respect to.Xl and current flows in the coil. This current
increases with the distance moved by the light spot and reverses when it
moves“onto the opposite phototransistor, If the lightspot should
accidentally move off both phototransistors then all currents fall to zero,
and, since the apparatus is sealed, no direct means exists of getting the
spot of light back onto the phototransistors., This situation can
sometimes be cured by rotating the electromagnet. The crystal usually
sets itself with an easy direction of magnetisation parallel to the field
and it follows the magnet as it rotates, Otherwise, SW2 is closed
producing a large current in both sides of the circuit. The potentio-
meter Pot 2 is then adjusted to unbalance the circuil and provide a
current in the coil sufficient to bring the light back to a central
position. SW2 is then opened and the spot of light should remain on
the phototransistors.

In plotting a torque curve the restoring torque varies continuously
and the variation of current in TR3 and TR4 can be observed on the meters
Ml and M2, 1If it is clear that the current in either is about to £all to
zero then the switch SWl is changed over and the circuit is deliberately
unbalanced with potentiometer Pot_l to raise the current. This allows
the measurement of larger torques than would otherwise be possible,

The potentiometer Pot 2 can be used to unbalance the circuit even more.
This gives output currents up to 440 mA which produce counter-torques of
approximately 3,25 Nm. In normal use such a high current would not flow
continuously through the counter-torque coil. It was however checked

that the coil could tolerate this current for at least two minutes with

only slight rise in temperature.
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6.4.4. Arrangements for Automatic Recording

To obtain a torque-curve with the apparatus as used by Bly
it was necessary to read currents at 36 points as the magnet was rotated
and a further 36 points as it was rotated in the opposite direction.
With practice a set of readings could be obtained in 15 minutes but the
tendency of the magnet to overheat made readings at the highest field
strengths impracticable by this method and it became imperative to make
the recording automatic. The counter~torque current was vecorded by
connecting the terminals of the coil directly to the Y terminals of a
Hewlett-Packard potentiometric recorder (Type 7030A). The recorder
contains an internal voltage reference standard and,using a suitable
scale, deflections of the trace can be read off directly as potential
differences. To record the angular setting of the magnet a potentiometer
wire was stretched over a transparent insulating strip round the scale
of degrees on the base of the magnet. One end of this wire and a wiping
contact fixed to the magnet trolley were connected to the X terminals on

the recorder. A 2 volt cell and a 220 ohms resistance were connected in

series with the wire and a scale chosen so that the recorder pen traversed

the,
nearly,whole length of the paper for a 180 degree rotation of the magnet.

This adjustment was kept constant throughout each series of measurements

but no reliance was placed on this. The 0° and 180° positions of the magnet

were indicated on each graph by operating the Y set-zero switch on the
recorder with the magnet in those positions. If the X set-zero switch
was operated with the Y set-zero switch down and the magnet in the
appropriate position, the recorder would draw in the horizontal axis on

each graph.
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A linear relationship was found between the angular displacement of
the magnet and the X deflection on the recorder., When this had been
established angles were read from the graphs by interpolation between the
0 and 180 degree marks.,

The reading of the graphs is described separately. This process
took almost as much time as the direct reading of the currents did formerly.
Several advantages were obtained by the automatlic recording however,

It became possible to detect rapidly cases where the apparatus was mis-
behaving, overheating of the magnet was avoided and in the case of the
Dysprosium specimen it was possible to recognise regularities in the
behaviour of the material after collecting large numbers of torque curves.
Also temperature stabilisation became easier. It is unsafe to analyse

a series of numerical results without first plotting them to see if they
lie on a smooth curve of the expected form. The selection of the next
working temperature or field value often depends on the form of the
curve just obtained, The labour of plotting all the curves, including
many that will have to be rejected, is avoided. The graphs obtained

were stored in a centrally heated environment until required for computing.

6.4.5., The Electromagnet

The electromagnet is the same as that described by Bly (1967)
and originally constructed by Roe. Although this magnet had been
calibrated carefully there was evidence that the poles had been disturbed
and a check was made on the calibration using two specially constructed
search coils and two calibrated Grassot Fluxmeters. Differences of up
to 3% were observed from the original calibration. This may however
indicate merely differences in the instrument used to measure the current

through the magnet. For currents under 30 amps a specially shunted AVO
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meter was used and for currents above this, the pointer instrument in the
control unit of the magnet power supply was used. The strength of the
applied field could be determined within 2% between 0.6T and the maximum
value, The calibration curve is shown in Figure 6,10. Uniformity of the
field was checked using a small Hall probe, No sensible variation in the
flux density could be observed over a distance of approximately 0.75 cm
from the centre of the space between the poles of the magnet, although the
pole faces deviated from being parallel by approximately % degree.

The pole faces are circular and 10 cm in diameter and an average of
4.770 cm apart, The magnet coils are connected in series and have a
resistance of 1 ohm. The maximum current supplied by the power unit is
200 amperes at 200 volts. This is unsmoothed D.C, rectified from the mains
supply. The current is controlled by means of a motorised variable
transformer feeding the input to the P,S.U, The magnet is cooled by
means of distilled water pumped from a 40 litre tank through the coils and a

heat exchanger. The heat exchanger is cooled by running mains water.

"The pressure of the water produced by the circulating pump was quite

capable of blowing out the rubber gaskets on the magnet and to avoid this
the outlet tap from the magnet was opened fully and the inlet tap opened
only as far as necessary to keep the magnet cool. A slight electrical
leak from one end of the magnet coils to the case makes it safer to
observe polarity in connecting the magnet to the D.C. supply, the negative
terminal of the supply being earthed.

It was necessary to construct a framework to support the hoses
carrying cooling water so that the magnet could rotate freely. The
rotation was still limited to about 200 degrees. In obtaining torque

curves the magnet was rotated continuously from about 15 degrees before
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the zero of the curve to about 15 degrees beyond thc 180 degree mark.
Analysis was then carried out on readings taken between the O and 180

marks.

6.5 Stability Considerations in the Design of the Magnetometer

In all torque magnetometers the specimen is held in equilibrium by
opposing the torque due to the magnetic field by an equal restoring torque,
and it is the restoring torque which is measured. In simple instruments
the restoring torque is provided by a torsion wire and is measured by the
angle of twist in the wire. Equality of the torques is however not a
sufficient condition for stability. F.W, Harrison (1956) has shown from
energy considerations that for any slight rotation of the specimen, the
change in torque iun the torsion wire must be greater than the change
of torque on the specimen due to its changed orientation in the magnetic
field. The change in magnitude of both torques must have the same sign.

If this condition is not met at some position of the specimen then no .

" measurement can be made, Expressed in Harrison's symbols

dL
T>V o

Where 7 is the torsion constant of the wire,
V is the volume of the specimen,

L is the torque per unit volume of the material of the
specimen and

o is the angle between the magnetic flux lines and some
direction fixed within the specimen.

For crystal specimens with hexagonal symmetry, in certain circumstances,
the torque due to the field may change with rotation at a rate which, if

continued, would bring it to its maximum value after 5 degrees. A



U,

r—

93.

torsion wire suspension must be stiff enough in this case therefore to
provide its maximum restoring torque for an angle of twist of less than

5 degrees. The movement of the torsion head and therefore the sensitivity
of the instrument is small unless special methods are used to measure the
angle of twist in the suspension,

In instruments such as the one used here, the maximum restoring
torque is produced by a very small deflection of the moving parts and the
feedback mechanism can be regarded as constituting a suspension of very
high torsion constant. The condition specified by Harrison is therefore
easily obtained. A more serious problem however is that of the violent
oscillations which can occur with this kind of instrument, and which
require some form of damping. Bly (1967) was forced to fix double
paddles moving in a closely fitting anunular trough filled with high
viscosity gear oil. King et al, (1964) used paddles immersed in a 50/50
mixture of paraffin and liquid paraffin. Craft Donahoe and Love (1955)
used wires dipping into vacuum oil. Baron and Hoffman (1970) used eddy
current damping. However, Roe (1961), apart from a 30 microfarad
capacitor connected across the counter-torque coil, had no special
provision for damping and neither had Penoyer (1959) or more recently
Willey et al. (1972). Penoyer and Willey used air bearings in their
apparatus and both used magnetron magnets with the counter torque coil.

It may be that some damping was introduced by these means.

In this investigation. the use of close fitting paddles was found to
be most unsatisfactory. They tended to jam against the side of the
trough after the apparatus had been cooled, so that time was wasted in
warming up and opening the apparatus to-put the fault right. 1In any

case the damping provided was only barely adequate, Several attempts
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were made to damp the oscillations electronically but without any success,
Multiple paddles gave no more damping and made adjustments virtually
impossible.

King et al. (1964) mention the importance of fast response for
obtaining stable feedback. The speed of response of this system was
therefore examined, The system originally used Cadmium Sulphide photo-~
resistors as the light sensitive elements. Maximum counter-torque was
only obtained from the amplifier when the resistance of one cell fell to
about 450 ohms and that of the other rose to 10,000 ohms. These
resistances correspond to full illumination and complete darkness
respectively and the changes were found to take as much as % of a second
to complete., This suggested the following qualitative explanation for the
behaviour of the magnetometer. Referring to Figure 6.lla. If a random
vibration moves the spot of light away from the central position a
counter-torque will be developed and the mocion will be reversed. The
motion stops at B when the work done by the counter-torque curreut on the
system (represented by the area OAB) equals the rotational kinetic energy
of the original random motion. At this point however the counter-torque
current (AB) is still high and, as the movement reverses, it falls only
to DC because of the slow response of the system., On the reverse journey
the movement therefore acquires more kinetic energy from the counter-
torque current and makes a much larger excursion in the opposite
direction. The area OABC represents the kinetic energy of the movement
as it passes through its central position. If the damping system is
unable to dissipate the additional energy, represented by OBC, while
turning through the angle OA then oscillations will build up. In the

ideal case represented by Figure 6.11(b) the speed of response is
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imagined to be very high so that for every position of the magnetometer
movement there is a unique value of the counter-torque current. The
area of the loop OBC is zero, no energy is supplied to the movement from
the feedback system and damping is only needed to dissipate the kinetic
energy due to random vibrations of the moving parts. Multiple, closely

fitting paddles moving in very viscous oil having proved inadequate

to dissipate the energy acquired from the feedback system, it was realised

that increased speed of response would decrease the ordinate OC in
Figure 6.11(a) and hence the energy fed into the system. For this
reason phototransistors, which have a response time 2 or 3 orders of
magnitude smaller than photoresistors,were used. The feedback mechanism
then became very much more stable and sufficient damping was obtained
from strips of copper 3 mm wide dipping 8 mm into the heavy oil,

The greater clearances in the trough of olil allowed a greater range
of movement to the upper suspension and permanent adjustments could be
made quickly. In principle the same result could have been obtained by
greatly increasing the gain of the amplifier. This would have greatly
added to the cost and complexity of the amplifier and would have made

the system extremely sensitive to stray light,
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CHAPTER 7

CALIBRATION OF THE MAGNETOMETER

7.1 Calibration using a Flux Meter

The magnetometer was first calibrated by the method described by Roe
(1961) and by Bly (1967). 1In this method a flux meter is connected to
the counter-torque coil and the coil is rotated sharply through a small
angle by pushing the damping vanes between two stops made of plasticine.
The angle turned is calculated from the deflection of the reflected spot
of light on a metre rule and the distance of the rule from the mirror on
the apparatus. Assuming that the flux density in the gap of the
galvanometer magnet is constant over the small angle turned, it is

possible to calculate the product BAn from the relationship

BAné® = 6%
where B is the flux density in the magnet gap (Tesla)
A is the effective area of the counter-torque coil (mz)
n is the number of turns on the coil
86 is the angle turned rhrough in radians

$8 is the change in flux linkages indicated by the fluxmeter (Webers).

Since the torque produced in the coil by passing a current of i amperes
through it is T = BAin (Newton metres), the quantity BAn is the required
calibration constant t/i NmA-l. Since in this case torques were
recorded on an XY recorder as potential differenées across the counter-
torque coil, the method also required an accurate determination of the
resistance of the coil and its leadsand a check on the accuracy of the

XY recorder. The resistance of the coil was found to be



& et L

97.

)

10.115 + 0.005 ohms at room temperature (approx. 20°¢)

The XY recorder has a very high impedance input and was connected directly
to a Weston Standard cell. The readings on the 1 volt per inch, 0.5 volt
per inch and 0.2 volt per inch scales were measured directly and the 0.1
volt per inch scale was checked by suppressing the zero on the
instrument. In all cases the readings agreed with the certificate
accompanying the cell, within the limits set by the thickness of the
recorder pen trace, The standard cell was checked against another which
was available and agreement within 1O microvolts was found., Further
successful checks were made with a Mallory cell but these added nothing
to the precision.

The results for the determination of the product BAn are given in
Table 7.1. Large numbers of readings are necessary because of the low
precision of each reading. Three fluxmeters were used and the speed
and amplitude of the deflection of the counter-torque were varied.

"Slow" in the table indicates a change taking about 0.75 of a second and
"fast" one made by flicking the coil rapidly with a pencil and taking
perhaps 0.1 to 0.2 of a second. "Small" means a rotation of about 3
degrees while a '"large" swing is about 10 degrees.

It can be seen from the table that the results show several
unsatisfactory features. Although there is reasonable agreement between
the results from the different fluxmeters, mean results for different
speeds of rotation of the coil differ between themselves by more than one
standard error, indicating the existence of some damping in the flux-
meter. Results for different angles of rotation also differ between
themselves, possibly because of variations in the flux density in the

magnet gap.
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Table 7.1

Calibration of Magnetometer by Fluxmeter Method

omerer | 2o 06 [ o ot T o o e, s
C453832 14 small, fast | (6.818 + 0,076) x 10~
554228 15 large, fast | (7.080 +0,073) x 107>

17 small, fast | (7.160 + 0.065) x 107>
755103 12 small, slow | (6.23 +0.142) x 107>
13 small, fast | (6.82 +0.068) x 107
20 large, fast | (7.030 + 0.049) x 107>
7 V. large, fast | (7.080 + 0.104) x 10"3

7.2 Calibrations using a Torsion Fibre

A brass wire of round cross section, 0.5 mm in diameter and 0.3m
long was soldered centrally into a brass screw which was then screwed
into the lower end of the specimen holder in place of the normal lower
suspension. The lower end of the brass wire could be twisted by a
precision 30:1 worm drive gear clamped to the track on which the magnet
ran. The upper suspension was freed and adjusted and the XY recorder set
up as if for recording a torque curve, The lower end of the brass wire
was twisted in 12 degree steps, each step being the result of turning
the worm drive through one complete revolution, and the position of the
recorder pen on the paper was marked at each step using the zeroing
switch on the X amplifier. The P.D, appearing across the counter-torque
coil for unit angular twist of the wire was found from a total of 20

readings on four switched ranges of the recorder.
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Figure 7.1 Calibration: Oulput versus twist in calibrating wire
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The torque constant of the wire was then determined by suspending
from it an accurately machined brass cylinder and measuring its period
of os;illation about a diameter through its centre of gravity. The
dimensions of the cylinder were found with a travelling microscope and
the m;ss with a chemical balance., Timing was done with a stop watch
calibrated against the G,P,0, speaking clock., Results are given in
Table 7.2. The linearity of the counter torque system is indicated in

Figure 7.1 which shows the P.D, across the counter-torque coil plotted

against the angle of twist in the torsion wire. This calibration does

agree with the first within the limits of experimental error and a third

method of calibration was used.

Table 7.2

Calibration with a Torsion-Wire

99.

not

P.D. across counter-torque coil for _

. . K . 0.3499 + 0,0017V
12 degree twist in torsion wire -

Length of brass cylinder 12.10(275) + 0.001 cm

Diameter of cylinder mean 1.58(775) 4 0,001 cm

Mass of cylinder 202.10 + 0.03 gm

Time of one oscillation 2.81(43) + 0.04s

Torque for a P.D. of one volt = (0.745 + 0,008) x 1073 Nav

-1
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Figure 7.2 Calibration: General Arrangement of the Test Coil
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Figure 7.3 Calibratlion: Output versus current in test coil



e —a R —

[P p——

- e =

100,

7.3 Calibration using a Current carrying Solenoid of known Dimensions

A coil of 31 turns of 40 s.w.g. wire was wound on a square section
brass former, drilled and fitted with a grub screw so that the coil could
be fastened to the specimen holder at the level normally occupied by the
specimen as shown in Figure 7.2. The projecting end of the brass former
was of assistance in setting the plane of the coil parallel to the
magnetic field of the electromagnet. The lower suspemsion wire of the
magnetometer movement was fastened to a heavy support resting on the yoke
of the electromagnet. To avoid direct pulls on the coil due to the effect
of the magnetic field on the current in the lead in wires, they were
twisted together and made as long and flexible as possible.

Currents between 0.1 and 0.45 amperes were passed through the coil
and measured with a sub-standard ammeter. At the same time a field of
about 1T was applied and the deflections of the pen on the XY recorder
were marked. The quantity BAin was found for each value of current and

v

field, where V is the P.D, obtained from the pen recorder.

The mean of 15 determinations is

(0.7470 + 0,0055) x 107> NmV™ !

This figure agrees quite closely with that obtained from the use of
torsion wires. Figure 7.3 shows the P.D, across the counter-torque coil
plotted against current in the test coil for an applied field of 1T.
The line does not pass through the origin because of comstant torques in
the suspeusion.

The results of the calibrations using a fluxmeter do not agree within
the limits of experimental error with those obtained by the other two
methods. Yossible reasons for the discrepancy are (1) The assuvmption made

that the flux denmsity round the counter-torque coil is independent of the
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current passing through it, This is questionable since the flux density
due to the current in the coil is not negligible compared with that dve to
the permanent magnet, Exact calculations are not possible but for
comparison, the flux density round the counter-torque coil due to the
galvanometer magnet is less than 0,03T while the flux density 1 mm away
from the coil at maximum counter-torque current is approximately 0.013T,
neglecting the effect of the soft iron core. Harnwell (1949) page 426,
describes the disturbing effect of current in a dynamo armature, a similar
situation.

(2) The fact that the value of flux density varies over the pole faces
of the galvanometer magnet and this method determines a quantiy BAn
depending on the average value of B while the value required is that at
the central rest position of the counter-torque coil,

(3) In deflecting the coil, eddy currents in the brass former would
tend to diminish the induced e.m.f. in the coil.

For these reasons the result from the fluxmeter method of
calibration was discarded and the weighted mean of the other two results
was used in all subsequent calculations. The weighted mean is

.

(0.7463 + 0.008) x 107> Nav™!

2 AUG1974
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CHAPTER 8

ANALYSIS OF TORQUE CURVES

8.1 General Features of the Torque Curves

An ideal basal plane torque curve for an H.C.P. crystal is shown

in Figure 8.1. The sign conventions used are as follows.

(1) The crystal is viewed from above.
(Li) Positive values on the graph represent torques turning the
crystal anticlockwise.

(iii) A point on the scale of degrees gives the angle between some
horizontal direction (such as the magnetic flux lines, or the magnetisation
vector inside the crystal) and a fixed direction in the specimen. Increasing
values on this scale indicate a rotation clockwise in the plane of the
crystal., The graph in Figure 8.1 shows torque versus rotation of the
magnetic field and when the magnetic field turns clockwise towsrds a
direction such as El’ E2 or E3, there is an anticlockwise torque on the
crystal, which dimin%hes, and passes through zero as the field becomes
parallel to these directions. El’ E, and E3 are therefore easy axes of

2
magnetisation in the crystal. The points marked Hl’ H2 and H3 show the
position of the hard axes of magnetisationm.
From equation 5.6, in the case of a basal plane disc cut from a

hexagonal crystal, with the magnetisation vector in the plane of the

disc, the torque exerted by the field on the crystal lattice is

&
L= % = " 6Kasin6¢
where L the torque and K, may both refer to unit mass and ¢ is the

angle between the magnetisation vector and 'a' axis of the crystal,
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If ¢ could be measured directly it would be possible to plot L versus
¢ and obtain K4 from direct measurement of the amplitude of the curve. 1In
practice torque is plotted against the angle of rotation of the applied

field and other features occur in the torque curves, which make the

analysis for K4 more complex. These are discussed below,

(i) Phase angles

Zero torque rarely coincides with the origin of the torque curve. The
range of angles through which the magnet can be turned is limited by
electric current and water connections and the orientation of the axes of
the specimen in a horizontal plane is measured only after it has been
settled by chance. The effect is to add phase angles to the periodic
components of the torque curves,

(ii) Torques varying with the period of 2¢

These represent a very large disturbance and may arise from
several causes.

a) Non-horizontal mounting of the crystal specimen

b) Non-circular shape of the crystal specimen

¢) Misalignment of the crystallographic axes with the

geometrical axes of the disc

(2) and (b) above are treated by Phillips and Shephard (1970) who showed
that the first disturbance gives a component proporiional to the magnetic
field strength while the second is independent of it,.

The disturbance mentioned in (c) above, was considered by Darby and

Taylor (1964). They showed that in order to find the constant K, it is

strictly speaking necessary to know exactly the orientation of the

crystal's axes and the other anisotropy constants Kl’ K2 and K3.
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However in a case where the crystallographic C axis is not more than 5

degrees from the normal to the plane of the specimen and where

K4 << Kl + 2K2 + 3K3

it is permissible to regard the misorientation as merely adding a term with
the period 2¢. These conditions were always fulfilled,

(iii) Torques with the period of ¢

Phillips and Shephard also point out that if the ceatre of the
specimen is mounted off the axis of rotation of the magnetometer and
the magnetic field is not uniform then a component proportional to sing
can be expected in the torque curves, This component was not detectable
on inspection of the curves and the calculated points could be fitted to
the experimental curves without the inclusion of sing terms.

(iv) Constant torques

These may be due to a slight twist left in the magnetometer
suspension after setting it up. In this case both clockwise and anti-
clockwise torque curves are displaced vertically in the same direction by
a constant amount.

More often the constant torquesare due to rotational hysteresis in
the specimen and act in the same direction as tﬁe rotation of the
magnetic fieid. Clockwise and anticlockwise curves are then displaced
vertically away from each other and the area enclosed between the curves
and the 0 and 180 degree ordinates is proportional to twice the work
done in moving the magnetisation vector through 180 degrees.

(v) Torques with the period of sin4¢ and sinl2¢

Because of random errors in reading the curves, Fourier analysis

will show the presence of second and higher harmonics of the sin2¢ and
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sinbp components. These sin4¢ amd sinl2¢ components may also rise from
the structure of the specimen. For instance Bly (1967) found a 12 fold
component in the basal plane anisotropy of Holmium. Such components can
be recognised by their phase angles which do not vary more than one or
two degrees from graph to graph,

The torque curves may be expected to be represented by an expression
of the form,

L(p) = A+ Z A2nsin2n(¢ + °’2n)
n=1,2,3,6

Where Ao is a constant torque due to rotational hysteresis,
A°n is the amplitude of the sin2ng component and

s

@, is its phase angle.

/

L(¢) in this case refers to an arbitrary mass W of the material

then K, =—

so that Fourier analysis for A6 should suffice to obtain K4,
It is also useful to know the amplitudes of the other components

and their phases.

8.2 Calculation of the amplitudes and phases of components of the torque
curves

The torque L(¢) is given by

L(g) = A+ }i A2nsin(2n¢ + ann)
n=1,2,3,6
Expanding this we have
L(g) = A + }_ A, sinZnpcos2ng -+
n=1,2,3,6

}L A.2 cos2ngsin2ny
n an
n=1,2,3,6



106 .

uj T :
Now J sin2ngdg = J cos2ngdg = O
o o
)
j sin2n1¢c032n2¢d¢ = 0 for all n,
)
m 0 if n, # n,
j sin2n1¢sin2n2¢d¢ = {
o n/2 if n, =n,
] 0 if n; # n,
and j cosZn1¢cos2n2¢d¢ ={
) n/2 if n; =m,
ﬂ - '
. of L(p)sin2ngdp = 7 A, cosa, = C, (say)
n J
and dj L(¢)cos2ngdg = E’AZnSlnazn =5, (say)
cooa =2 482 >%

2n ™  2n 2n

i
Y
=]
t
[y
N
Iy
=]
~—”

and @y, =
A is simply the mean value of the ordinates over the torque curve.
The integration is performed numerically using the Euler-McLarin expansion

(Booth 1957, page 35 and 178).

a-tméx

f £(x)dx = -Q,f-'[f(a) +2(a + 6%) + 2£(a + 26%X) + ....... ..
a -

f(a + m6x)]

- -(-]8.—12{—)-%\'?(51 + méx) - f'(a)]

4
+.S$§%— [f"‘(a + mbx) - f"'(a)]
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f(x) is a function which it is desired to integrate over the range (a) to
(a + m8x). The range is divided into m equal parts of width §x and values
of £(x), f'(x), f"(x) etc. found at x = a, a+bx, at28x, etc, where f'(x)
indicates the first derivative of the function f(x) and £"(x) the
second derivative and so on,

I1f the function £(x) is periodic and m§x is an exact multiple of its

period then

f(a) = f(a + mpx)

£'(a)

f'(a + méx)

and so on for the other derivatives. The expansion therefore simplifies
to the following:

a+mfx
J f(x)dx = sx[£(a) + f(a + §x) + £(a + 28x) + ..... f(a +(m-1)6x)]
a

To integrate

o
IL(¢)sin2n¢d¢ = G,
(o]

first let x = ¢, m = 36, &x = %t, a=0

then

o
!

on —3116- [L(O)sin(O) + L(%) sin2n<%) + L(%ﬂ) sinZn(

QU

)
+ L(%_g_r) sin2n(-§%‘)+ L(%) sinZn(3356“)]

and similarly
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ojﬁL(¢)c032n¢d¢ =8, = 13% [L(o)cos(o; + L(%) cosZn(%) Fornennn

351Y cosza( 1)
L( 36 )°°32" 36

It is then only necessary to find the torques and trigonometrical functions
at 5° intervals and perform the simple numerical summation to obtain an
exact value for each of the above integrals.

Readings in centimetres were taken from the torque curves at 5°
intervals and the integrals were evaluated for n = 1,2,3,4,5,6. Hence
were

values in centimetres of AZ’ A4, A6’ and A, and @ys Qs O and o

12 12
computed for each curve, A.o was found simply as the mean value of the
35 readings. The value of K4 for each curve was then found after
finding the value of A6 in units of Nm, using the scale factor of the XY
recorder and the calibration constant of the torque magnetometer. The
value of K4 obtained at a particular field below saturation is referred
to as K4'. Values of K4

anticlockwise curves and 0 mean value computed for each field and temperature

! were obtained separately from clockwise and

value. Calculations were performed on th; Northumbrian Universities
Multiple Access Computer using mainly the language APL360. This allowed
rapid development and modification of programmes and in addition can

be used in batch mode. The final version of the programme used is given
in Appendix I, and is written in PL1l. This programme, in addition to
calculating amplitudes, phase angles and a mean value of KA" causes

the computer to print out ordinates calculated from the values of Ao, AZ’

A4, A6 and A, , previously obtained. It also prints out the R.M.S,

12
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difference between the measured and the calculated ordinates. In addition
the programme causes the computer to estimate the area between the
clockwise and anticlockwise torque curves obtained for each pair of field
and temperature values. The values are in arbitrary units but take
account of the differences in scale factor between the graphs so that
comparison can be made., This area between the curves is proportional to
the rotational hysteresis and the values were subsequently used to detect
the maximum which occurs in this quantity when the specimen is magnetised
near the 'knee' of its magnetisation curve (Bozorth, 1951, page 515).

Other sections of the programme were written to deal with corrections
for 'shearing' in the torque curves and also variable hysteresis drag.

These are discussed later.

8.3 The Determination of the Easy Axis from Phase Angles

Assuming that the six-fold component of the torque curve is due to
magnetocrystalline anisotropy, the phase angle for this component gives
the position of a hard axis of magnetisation. Thus a phase angle of (say)
411 degrees would indicate that this component had zero value and a
positive slope when the magnetic field was parallel to an axis 11 degrees
anticlockwise of the zero of the torque curve; this axis is a hard axis
because rotating the magnet clockwise would produce a positive ( = anti-
clockwise) torque.

Hard axes determined from computed phases always coincided with
crystal axes as determined by the orientation procedure described in
section 6,3.2. within 3 degrees and very often within 1 degree. Phases
found when a component was nearly indistinguishable from the background

were often different for the clockwise and aniiclockwise curves, and were
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not reproducible. This suggests that if a component cannot be seen in the
recorded curve then a Fourier analysis for it is not likely to produce
a reliable result. Random errors and distortions in the curves will

produce spurious components,

8.3.1. The sign of K4

For a hexagonal crystal magnetised in its basal plane

E, =K +K, +Kg+ K4 cosbp (Equation 5.5) where ¢ is measured in the
plane of the crystal from the ‘'a' axis., If K4 is positive, then as the
magnetisation moves away from the 'a' axis, cos6gp falls and the system
moves to a state of lower energy. Thus the 'a' axis is a hard axis of
magnetisation, Similarly if K4 is negative then the 'a' axis 1is easy.
Since the programme used for calculating K4 gives a positive value

regardless of easy axis, it 1s necessary to add a negative sign if the

'a' axis is found to be easy from inspection of the phases,

8.4 Methods of Reading the Torque Curves

A set of graticules was prepared on waterproof, transparent graph
paper. The scale on the paper was checked ?gainst laboratory scales
was found to be accurate and more stable dimensionally than the graphs
from the XY recorder, All paper sheets were kept as far as possible
in the same environment during the course of the experiments and the
reading of the values. The graticules consisted of 37 equally spaced
parallel lines, the first of which was laid on the O degree mark of
the graphs and the last of which was made to coincide with the 180 degree
mark. The displacement of the torque curve from the axis was then read
on the first 36 lines on both clockwise and anticlockwise curves. The

72 values were read into a tape recorder and then taken down on punching

forms ready for the preparation of punched cards for computing




e . —

111,

8.5 Errors in Reading Torque Curves

(a) Due to mismatch between graticule and torque curve

The distance between the O degree mark and the 180 degree mark
varied by 2 or 3 mm between curves obtained on different days and it was
feared that a very large number of graticules would be needed to read
all the graphs. An analysis was made to determine how closely the
graticules used for reading need to match the length of the rotation
axis. Values of sinb¢p were found at intervals of 5° 3.5| which
corresponds to reading a pure sine curve with a graticule 2 mm tco long.
These values were analysed as if they were readings from a normal torque

curve and the value of A6 was found to be 0.999., This procedure was

repeated with values of sin6¢p as they would be read from graticules 2 mm too |

short, 4 mm too long and 4 mm too short, The results are given in

Table 8.1.

Table 8.1

Errors due to ill-fitting Graticules

Graticule Computed ~
misfit amplitude
2 mm long 0.999
2 mm short 1.001
4 mm long 0.9979
4 mm short 1.001

The greatest error can be seen to occur when the graticule is too long for
the graph and js approximately 0.2% for a 4 mm misfit. The computation
is very tolerant of errors of the order of 1 mm in the length of the

graticule, This made it possible to read all the torque curves with only

|
1
[
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three prepared graticules. Further calculations with sin2¢ curves showed
that a 4 mm misfit caused an error of 0.5% in this component, but also
produced a spurious sin6g component of about 0,9% of the sin2¢ amplitude.
Similarly the amplitude of a sin4¢ curve read with a graticule short by

4 mm was only changed by 0.3% but a spurious sinb¢ component with an
amplitude 1.3% of the sin4¢@ amplitude was produced. Thus a gross mis-
match in an extreme case where the sin2¢ and sin4¢ components have the
same amplitude as the sin6¢ component introduces an error of 2.5%. In

the torque curves which were used, even in the most unfavourable case

zﬁ<o.3,f‘-<z
6 6

and the mismatch was about 1 mm and occasionally 2 mm. Therefore errors

due to this cause are estimated to be less than 0.5% for most readings.

(b) Random errors

Errors due to random faults in reading ordinates vary from curve
to curve. A typical mean ordinate might be 20 mm and this might be read
with a precision of 1 mm.Kavalues were computed from 72 such readings so

that the standard error is approximately 0,6%.

8.6 Shearing of the Torque Curves

Figure 8.2 shows a torque curve for the pure Terbium basal plane

specimen. A section of a sine wave is included in the graph for comparison.

The torque curve is not sinusoidal, but has the appearance of a sine wave
sheared away from the easy axes, the horizontal displacement of a point
from the sine curve being approximately proportional to the height of

the ordinate at that point,
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The cause of the shearing is the fact that in finite magnetic fields
the magnetisation vector in the crystal does not lie parallel to the applied
field except when the torque is zero, but is always directed between the
applied field and the nearest easy axis. In Figure 8.2 when the applied
field is at an angle A the magnetisation vector is at an angle A' nearer
to the easy axis (EZ)' The torque T which is produced when the
magnetisation is at this angle is actually recorded at A, further from
the easy axis. 1In Figure 8.3 MS represents the direction of the
saturation magnetisation vector, Bo the direction of the applied magnetic
field (assumed to be high enough to saturate the specimen), uONDMs
the demagnetisation field antiparallel to MS and Br the resultant field.
The torque on the crystal is

L= BrMs sine
In the triangle OPQ

B B B
X o) o

sin@ sin(180-(8 + 6)) = sina

therefore .
1
B sinoy = B sin® . [
r (¢]
and L =BM sing
08
. _ L
go s8in@ = B M
O s
L
and T losel = =
nd very closely eradians B const.L (8.1)

The angle § is the amount by which the torque ordinate corresponding to
this orientation of Ms would be displaced away from the position of the
easy axis on the graph. The correction suggested by H.J. Williams,

(Bozorth 1954) is to displace each ordinate on the experimental curve
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through the appropriate angle § ( Fig 8.2) back towards the nearest easy
axis. The value of ©§ for each ordinate can be found very simply from the
above equation 8,1 since-the applied field is known and the saturation
magnetisation is generally available from other experiments.

When the correction is applied the sinusoidal form is regained, but
if the correction is not applied then unwanted harmonics appear in the
Fourier expansion of the torque curve and the amplitude of the sin6g
component is seriously affected. To determine the importance of the
correction a sine curve of unit amplitude was carefully drawn and
deliberately sheared by moving each point side ways through an angle
proportional to the height of the ordinate at that point. This artifically
sheared curve was then read at 5 degree intervals.and analysed as for a

normal torque curve., Table 8.2 shows the displacement of the peak value

of the distorted curve and the computed value of the sin6¢ amplitude

Table 8.2

The effect of 'shear' on computed amplitudes of the
sixfold component of torque curves

Maximum value | Computed amplitude
of 8 degrees sinbg

) 0.999

3 0.975

5 0.9578

7.5 0.916

To perform a more precise test a series of points on a sheared sinég¢

curve was obtained by solving numerically the equation
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sinbgp = 91 (p ~ A) for values of A at five degree intervals.
max
) is a given maximum displacement of the ordinates from an easy axis,

max

It can be seen (Figure 8.4) that the solutions to these equations

represent the ¢ co-ordinates of the points of intersection (QI’QZ’ etc.) of
a series of sloping lines with the sin6¢ curve. If the values of sinbg

at the points Ql’QZ etc. are plotted against the value of A at five

degree intervals then a sheared curve is obtained. At the peak of the
curve sinbg = 1, and

¢ =A+ 0

that is, the peak of the curve occurs at an angle @ earlier than the peak
of a pure s8in6¢ curve and the displacement of the other ordinates is
proportional to their height. Table 8.3 shows the results of Fouriler

analysis of the sheared curves for various values of emax'

Table 8.3

The effect of 'shear' on the amplitudes of the gixfold component of
torque curves and its second harmonic

d::j:es Amp.sin6$ | Amp.sinl2g

0 1,0000

1 0.9979 0.0498
2 0.9952 0.1013
3 0.988 0.1499
5 0.9655 0.2359
8 0.9095 0.3165
10 0.8583 0.3337
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The following conclusions may be drawn concerning the correction for
shear,

éhe error in the amplitude of the sinb¢ component rises rapidly once
the value of emax has risen above 2% degrees, and it is therefore
imper;tive that some correction should be applied if emax is more than
this. It is also clear that even a rough correction can make a great
improvement in the accuracy of the results, If the actual maximum angle
of shear is say 8° then any correction to emax between 5.5 and 10.5

degrees will then reduce theerror from 9% to 1%.

8.7 Correction for Shear

Where large numbers of torque curves are to bé read some automatic
method of applying the correction for shearing is needed. Penoyer (1959)
achieved this by tapping off a proportion of the output from the torque
magnetometer and connecting it in series with the output from the
potentiometer which indicated the orientation of his magnet. The angle
co-ordinate of each point was thus displaced the appropriate amount
towards the easy axis.

In this investigation it was found possible to correcé for shear by
reading values of torque from the curves with an inclined graticule. The
general arrangement is shown in Figure 8.5. Values are read off where
the inclined lines cut the experimental curve. E.g. the torque represented
by the line AP in the diagram is read where the line PB through the 25
degree mark cuts the curve and is tabulated against this angle. The
angle through which each value of torque is moved is proportional to the
value.

The inclination of the graticule is found thus. The torque
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represented by some arbitrary vertical distance on the graph, say RQ

is calculated from the scale factor of the XY recorder and the calibration

constant of the torque magnetometer. Suppose this torque is L. The

end of the angle axis of the graticule is ihen tilted up so that the

o

distance QS represents an angle

If DY is the displacement of the angle axis on the graticule from the
angle axis on the torque curve at the 175 deg. ordinate, and OY is the
distance between the O and 175 deg. ordinates on the graticule, then the
latter must be tilted until

S
=0 Qs
DY Y x x

Itis inconvenient to read AP directly, since the scales on the graticule
are inclined to the axis of the torque curve. Instead, the distance PC
is read, and a correction made as follows. Suppose AP is the n'th

ordinate (n = zero for the origin) then

la)
AP (PC + BC) cosAPB

(PC +n QX) cos(tan'-1 EX)
35 oY

A section of the programme given in Appendix I causes the computer to
make this correction to each reading.

The graticule used has to be chosen so that the inclined distance
between the 0 and 180 deg. ordinates fits the length of the experimental
curve, At the O deg. ordinate the graticule and torque curve axes
coincide,

An advantage of this method of correction for shearing the graphs is

that a good approximate correction can be made without performing the
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calculation to find the necessary inclination of the graticule. Where the
curves are symmetrical the graticule is inclined until the maxima and
minima on the torque curve appear to be evenly spaced across the lines on
the graticule. 1In all cases where shearing was significant, the curves
proved to be symmetrical enough to allow the use of this simple procedure
which reduces the maximum shear below 2 degrees with ease.

Figure 8.6 shows a tracing of a sheared curve and a plot of the
points read from it with an inclined graticule and corrected in the above

manner.

8.8 Phase Differences between Fourier Components of Clockwise and Anti-

Clockwise curves

The phases of the sin2¢ and sinbg terms were found to differ with the
direction in which the torque curve was plotted. These differences were
attributed to an additional angle of lag between the magnetisation vector
and the applied field 8 s which is constant and due to the hysteresis

torque, If Lh represents this latter torque then

- -1
eh = gin

n

MsBo

The difference in phase between the two principal component of the curves
should be 29h and it was thought possible that given values of the applied
field Bo it might be possible to obtain values of MS the saturation
magnetisat;on. Values were obtained of the correct order of magnitude
thus supporting the view of the origin of the phase differences given
above; the values were however too scattered to be of much use in
plotting magnetisation against temperature, presumably because of the

errors in eh which is a small quantity.
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One important result of the difference in phase between the clockwise
and anticlockwise curves is that it is invalid to calculate K4 from the

mean of corresponding values on the CW and ACW curves. The value of K4
so obtained is generally less than that obtained from the individual
curves, It is necessary to find separate values of K4 for the CW and the
ACW curves and find the mean of these. In several cases the values of
K4 obtained by the two averaging processes turn out to be nearly equal.
This point was noted by Bly (1967). These cases however are ones
exhibiting large rotational hysteresis where the drag is not constant
over the first few degrees of the torque curves and this effect depresses
the individual values of K, to the level of the invalid mean. A

4

correction for this effect is discussed in the next section,

8.9 Distortion of Torque Curves due to Variable Hysteresis Torques

and its Correction

It was found with some specimens that the vertical displacement of the
torque curves increased over the first 30 to 40 degrees rotatiou of the
magnet., The effect was reduced but not eliminated by giving a 'run-in'
to the curve since hoses and wires restricted the 'run-in' to about 15
degrees. A calculated correction was therefore sought,

Acting on the assumption that the CW and ACW curves should have the
same form, the first 12 readings in each curve were replaced by the last
12 readings of the curve taken in the opposite direction, each reading
being displaced by a distance equal to the mean distance between the
central 12 readings. This procedure is only strictly valid if the
Fourier components of the two curves are in phase but its use is

encouraged by the following features of the combined curves,
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(a) They had the same value and slope at O degrees and 180
degrees. This is an essential condition for the valid
application of the Euler-Maclaurin expansion in the

numerical integration.

(b) They could be more closely fitted by calculated curves

Figures 8.7 and 8.8 show the improvements obtained,

8.10 Estimate of Errors

The limits of error for various parts of the experimental work have

been estimated in other sections and are summarised below.

Section 6.2 Masses of specimens: Dysprosium and Terbium 1%

Other specimens 0.5%
Section 7.5 Calibration of torque magnetometer 1.2%
Section 8.5 Reading graphs 1.1%
Section 6.4.1 Temperatures 1X
Section 6.4.5 Magnetic Fields 2%

It is estimated that the relative uncertainty in K4' values is ~ 4%

The source of the greatest uncertainty in the results is the
extrapolation procedure to find K, at infinite field, (Section 9.2.4).
This extrapolation increases the highest measured value of K4' by 15 to
20%. Experience with other magnetic materials and the arguments of
section 9.2.4 suggest strongly that if a linear portion is reached in
the graph of K4| against :iﬁ, then the linear relationship will persist
up to very high magnetic field values. If the extrapolatioms are valid
they are accurate within 4%, The K, values are therefore claimed to be

4

within 8% of the true values. In performing extrapolations, judgment was
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aided by the gradual change in the slopes of the lines from one temperature
to the next (Figures 9.4 and 9.5). Errors in the values of KA(O)’

(the values of K4 at OK) are likely to be larger since they depend on the
correct choice of function for renormalisation (Sections 9.2.7; 9.3.2),

The choice was however always clear and in the case of Terbium (section
9.4) gave a value of K4(0) in good agreement with the results of Rhyne

and Clark which were obtained much nearer to absolute zero. It is felt
that K4(O) values obtained for the alloys (sections 9.2.7; 9.3.2) are

reliable within 20%.



Table 9.1

4
_K4 values for Tb0.695§90.305

. -1 Phase (°) Hysteresis

M'oH (T) K4 (Jkg *) CW ACW Arbitrary Units
77% | 0.99 0.0004113 7,9 1000
1.14 0.000996 26,29 1976
1.173 0.005871 15,15 2617
1.205 0.0143 15,15 2953
1.238 0.02387 15,15 3513
1.27 0.0368 13,13 4165
1.28 0.03 13,14 6281
1.29 0.036 13,13 4877
83.6K 1.173 0.0021 17,16 1927
1.173 0.0032 17,17 2240
1.205 0.01196 40,40 2725
1.238 0.01663 16,16 3177
1.27 0.0235 15,16 3857
1.285 0.0277 13,14 5177
91K 1.14 0.00086 35,38 1471
1.173 0.00085 35,39 1533
1.205 0.004878 14,13 2207
1.238 0.01175 14,14 2877
1.275 0.01947 14,14 3364
1.28 0.02948 12,15 4697
102K 1.173 0.000711 6,7 1107
1.205 0.00395 12,14 1828
1.238 0.007619 12,12 2255
1.27 0.0204 12,13 3377
113K 1.173 0.00111 9,12 1768
1.205 0.004157 11,13 2873
1.23 0.00694 14,15 2869
1.27 0.01137 11,13 3477
117K 1.173 0.0028 0,3 5073
1.205 0.0042 23,24 6433
1.238 0.0054 13,13 4813
1.27 0.0056 16,16 2669
126K 1.045 0.00138 43,11 568
1.205 0.00107 43,14 544
1.275 0.001449 11,12 524
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CHAPTER 9

RESULTS AND DISCUSSION

9.1 The Tb Basal Plane Disc

0.695°50.305

9.1.1. Orientation of the Specimen

The angular relationships between the axes of the crystal and
magnet scale were determined as described in Section 6.2.3. From the
X-ray photograph the angle between one of the "b" axes of the crystal and
the normal to the mirror on the specimen holder was 30.75° and the normal
to the mirror was found to be normal to the magnetic field when the
magnet scale read 79°. Rotating the magnet anticlockwise about the
specimen by 30.75° brought the field lines perpendicular to a "b" axis of
the crystal and parallel to an "a" axis. The "a" axes were therefore
parallel to the field when the scale read 48.25 +n 60°, where n is an

integer.

9.1.2. The torque measurements

With the maximum field strength available (1.29T) torque
curves were obtained between 77K and 126K, while at 77K the lowest
applied field which could be used to obtain a curve was 1,173T. Results
are given in Table 9.1 and values of K4' (the effective value of K4) are
plotted against uoH (the applied field strength) in Figure 9.1l. It is
clear that the values of K4‘ show no tendency to saturate and that any
extrapolation to infinite field would be invalid. Tests for agreement
with theory are therefore impossible,

The results do however serve to show that the "b" axis is the easy

axis of magnetisation as in pure Terbium. Phase angles of 12 to 15
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degrees were obtained for the sin6¢ component of the torque, indicating
that the torque on the specimen is changing from negative (clockwise) to
positive (anti-clockwise)as the magnet turns clockwise past scale
readings of -12, 148, +108°, etc, At these settings the "a" axis is
parallel to the field and the torque on the crystal is such as to increase
the angle between the "a" axis and the field lines. The "a" axis is
therefore the hard direction of magnetisation and the "b" axis is easy.
The above phase angle was roughly the same for all torque curves obtained
with this specimen except for those measured at field strengths near the
critical field. 1In those cases the phase angles varied in an unsystematic
manner and could show differences of up to 30° between values obtained
with the magnet turning clockwise and turning anticlockwise.

The results also indicate the approximate value of the critical
field through the temperature range used. The values are plotted in
Figure 9.2 which also shows the values for crystals of greater Terbium

content from Chatterjee (1972). The line for the Tb would

S
0.695°0.305
not intersect the temperature axis if extended, in agreement with the
observation that there is no ferromagnetic phase for alloys of Terbium

and Scandium with less than 70-80 at % of Terbium, (Child and Koehler,

1968).

9.2 The Tb

0.825§90.175 Basal Plane Disc

9.2.1 Orientation and determination of the easy axis of magnetisation

The angle between the "b" axis and the normal to the mirror on
the specimen holder was 53.2° and the mirror normal was perpendicular to

the magnetic €ield when the scale on the magnet read 74.5°. The field
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was therefore perpendicular to the "b" axis and parallel to an "a" axis
at scale readings of 21.3 +n 600.

Table 9.2 summarises the results for this specimen and it can be
seen that the phase angles for the sin6¢ components of the torque lie very
close to 39° for all the curves. There is thus a hard axis at -390, +21°

etc, The "a" axis is therefore hard and the "b" axis easy.

9.2.2 Obtaining the curves

It was verified that the form and amplitude of the curves did
not depend on the previous magnetic history of the specimen by obtaining
curves with ascending and descending values of applied field strength,

At any particular field strength, the curves obtained by both methods were

very closely similar.

9.2.3 The results
Values of K4' for six temperatures are shown plotted against
applied field strength in Figure 9.3. There it can be seen that the
graphs flatten off at higher values of applied field strength. It was
therefore felt to be legitimate to extrapolate the values to find the

value of K4 at infinite field for each temperature.

9.2.4 Extrapolation to infinite field

The procedure usually adopted has been to plot values for
anlsotropy constants against 1/H. (For example: Bozorth (1951) page 566;
Tarasov (1939))., A straight line graph is usually obtained and the
intercept at L/H = 0 is read off,
Symbolising by A the difference between the extrapolated value of an

anisotropy constant and its value at 1,25T, Corner et al (1962) found
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that graphs of A against temperature for Gadolinium were smooth curves
and could be used to correct values of the constants obtained at other
temperatures.

Kouvel and Graham (1957) however found for discs of 3%% Silicon-iron
that K1 plotted against ,/H from 0.1 to 2T gave straight lines while K2
appeared to have no simple relationship -with 1/H at all. They
attributed the field dependance of the anisotropy constants to the lack
of saturation at the edges of the discs that they used, even in high
fields,

Birss and Wallis (1964), measuring the torques on a (111) Nickel
crystal disc found that the amplitude of the sine6¢ term did not have a

simple relationship with 1/H but could be represented over part of the

range of values by

K [k, + 1/6K ]2
=2 1 2
3(H, + k)

They proposed the use of terms in higher powers of 1/H as a means of
getting a fit over a wider range of values,

Phillips and Shephard (1970) found for materials of low magneto-
crystalline anisotropy that graphs of the anisotropy constants against
1/H were fitted very well by expressions including terms in 1/H2. Terms
in l/H3 were not needed. They attributed the field dependance of the
apparent values of the anisotropy constants to elevation of the
magnetisation vector out of the plane of the disc and also to the fact
that the applied field and the magnetisation are not parallel, They gave

an expression for the torque L,
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L=R- 2 (9.2)
M (1—3ND)
Q+m +-=
. 8 uO

P,Q,R,S are quantities which depen@ only on the direction of the
magnetisation vector relative to a set of axes fixed to the disc and the
remaining symbols have their usual meaning. Clearly as H increases,

the expression for the torque becomes more nearly linear in 1/H.

1

Figure 9.4 shows the values of K,' plotted against L H (ox'é% ) Graphs
o 0

4
for the lower temperatures become straight at higher values of uoH and
on the basis of the experience described it was assumed that they would
continue so to H =« and they were accordingly extrapolated as straight
lines. The curves for the three highest temperatutes when plotted on a
large scale show a slight change in curvature from concave upwards to a
concave downwards as H increases and 1/H decreases. This may indicate
that the graphs are just beginning to flatten out as those above them
and in this case the linear extrapolations give an upp;r limit to K, ;

4
the lower limit being the value of K,' at 1.28T.

4

Attempts were made to fit quadratic expressions in 1/H to these
curves but this was not satisfactory. Because of the small numbers of
points used, expressions fitted by the least squares method tended to
project the upward curvature of the graphs and give very high values.
But some extrapolation gave infinite field values equal to or even less
than the values of Ké at 1.28T. For temperatures above 145K therefore
the limits of the uncertainty in the infinite field value are wide,

The difference A between the infinite field value and the value of
K4' at 1,28T gives a smooth curve (Figure 9.5) when plotted against
temperature. The value of A falls off almost exponentially with rising

temperature,
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9.2,5 Variation in the amplitude of the sine2¢ component

The amplitudes of the sine2¢ components of the torque curve
at each temperature were plotted against applied field strength. Values
rise to a broad plateau except in the case of results obtained at 151K
and 159.5K where it seemed that the applied field strength was too low

to produce the plateau. (Figure 9.6).

9.2.6. Variation in rotational hysteresis

The area enclosed between the clockwise and anticlockwise
torque curves was recorded for each temperature and field value and
multiplied by the scale factor of the XY recorder. This gave a measure
of the rotational hysteresis in arbitrary units. Figure 9.7.‘shows
this quantity plotted against applied field strength for a temperature
of 96.5K. As the field strength increases there is first of all a
gentle rise in the hysteresis and then a very sharp peak. After this the
hysteresis falls rapidly and becomes more or less constant. Bozorth
(1951, page 516) describes similar effects in nickel and other materials,
the gentler shape of his curves being accounted for by the fact that he
shows rotational hysteresis plotted against magnetic induction rather
than applied field strength. ‘

The state of magnetisation of the specimen may be judged from the
behaviour of the rotational hysteresis. On the initial gentle rise the
magnetisation is very low and the specimen may not even have been driven
past the metamagnetic tramsition. The peak occurs when the specimen
is on the "knee" of the magnetisation curve, Readings are only suitable
for extrapolation if the hysteresls is clearly falling with increase of

applied field strength.
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On this criterion the readings at 159.5K for this specimen and all
the readings for the Tb0.6958c0.305 specimen are shown to be taken at

too low an applied magnetic field.

9.2.7 Comparison of results with theory

The predictions of the single-ion theory (section 3,52)
concerning the variation of K4 with temperature were compared with the
values of K4 obtained by extrapolation to infinite field.

For anisotropy of sixfold symmetry orginating in the crystal field,

theoretically the value of K4 should vary as

A
113/2(2) where my, = 13/2(z)
Anisotropy of sixfold symmetry can also arise in the basal plane from
purely magnetoelastic effects in which case the constant K4 has a

~
component varying as T

9/z(z).£5/2(z) where the symbols have the meaning
assigned to them in section 3.52, Values of ;slz(z) were obtained from
the thesis of D, Chatterjee and from them were calculated values of z
and of the two functions given above, (Table 9.3), using the recurrence
relation given in Abramovitz and Stegun (1965)

Log K4 was then plotted in turn against the logs of the values of
the two functions, This is shown in Figure 9.8.

For proportionality the slopes of these graphs should equal 1,
Neither function satisfies this criterion very well or even gives a

straight line. The best fit is obtained graphically with I_, (z).I

9/2 5/2(2)s
but taking even the extreme lower limits of the uncertainty in the K4'
values it is not possible to make points corresponding to the higher

temperatures fit a straight line. A similar conclusion was reached by

numerical tests using the method of least squares,
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Combinations of the two functions were tried and it was found that
the error of the fit decreased steadily as the combination changed from

100% of ; (z) to 100% of £9/2(z).£5/2(z). (mT = ii(z)).

13/2
Figure 9.9 shows the experimental K4' values plotted on a logarithmic

scale against temperature together with the two theoretical curves.

2 -1
6.68 L5/, (L " @) (9.3)
T op-l ] -1
3.526 (1, (L ). @ L7 ) 0.8

In Figure 9.10 the logarithm of K4 is plotted against the logarithm
of the reduced magnetisation. The slope changes from approximately 2RI
at low temperatures to approximately 2,6 at the higher temperatures,
According to Callen and Callen (section 3.53), two-ion terms in the
basal plane anisotropy vary according to the 1(1+l)/2 power of the
reduced magnetisation at the low temperature limit and soon go over to an
lth power law, For anisptropy of magnetostrictive origin the low and
high temperature limits would be 13th and 6th power laws, while for the
crystal field effects they would be 21st and 6th power laws respectively.
Examining further the possibility that the variation of K4 for this

specimen might indicate the appearance of two-ion interactions, a

function of the following form was fitted to the results,

(8Ty,p(2) + (L-B)(Ig (@)D (BIy p (2) + (1-B) (T, ,(20)D)

N
where I,,,(z) = my, and A and B are adjustable constants. The form of

3/2
this function was suggested by the work of Yang (section 3.53). The best
fit was obtained when A and B were both unity. The function in equation

9.4 therefore represents the best fitting single ion function.




Table 9.4

. 1
Tb0.895°0.11'K4 values

B (D[ X" Jkg™! [ Phases(®)
77K 0.35 | 0.0368 31,37
0.385 | 0.0706 28,40
0.42 | 0.109 25,44
0.47 | 0.1697 | 9.6.0
0.525 | 0.9504 | 4.8
0.56 | 1.658 3.9
0.62 | 2.855 -2
0.645 | 3.57 5,6
0.712 | 4.987 4,5
85.5  0.35 | 0.044 14,22
0.42 | 0.1047 -1,20
0.495 | 0.459 5,4
0.54 | 1.4417 4
0.565 | 2.18 4
0.645 | 3.489 4
0.712 | 4 685 4
93K 0.275 | ©.0207 6,-8
0.385 | 0.0781 2%,-12
0.495 | 0.635 5.5
0.56 | .90 3.7
0.625 | 3.048 4.86
0.712 | 4.258 4.36
0.74 | 4.585 4.54
0.815 | 5.267 4.78
109 0.275 | 0.03126 | 9,-14
0.385 | 0.07289 | 17,10
0.42 | 0.1108 10, -4
0.495 | 0.7672 5
0.56 | 0.8926 | 4.5
0.645 | 2.566 4.5
0.765 | 3.084 4.7
0.86 | 3.227 4.8
0.95 | 3.39% 4.5
1.045 | 3.541 4.4
1.14 | 3.625 4.5
1.238 | 3.743 3.5
1225 0.275 | 0.07539 | 34
0.495 | 0.8898 5
0.56 | 1.403 4,5
0.645 | 1.67 4
0.712 | 1.787 5
0.815 | 1.906 4,5
0.95 | 2.022 4,5
0.99 | 2.933 4.5
1.045 | 2.076 2,6
1.14 | 2.138 2,8
1.238 | 2.173 3,7
129.5K 0.3 0.03515 | 32,36
0.425 | 0.2418 6,3
0.525 | 0.9517 5
0.645 | 1.232 5
0.765 | 1.366 5
0.86 | 1.44 5
0.95 | 1.487 5
1:064 | 1.562 4,5
1.24 | 1.607 4,5
1.205 | 1.625 3,5
1.27 | 1.645 3,5

pH (T K, Jkg"l Phases (%)
138.5k 0.3 0.0145 15,-8
0.425 0,2617 5,3
0.525 0,6415 5
0.645 0.7957 5
0.765 0,8741 5
0.873 0,9437 3
0.95 0,9840 5
1.045 1.020 5,6
1.14 1.074 5
1.205 1,096 4,5
1.28 1.1245 3,5
149K 0,425 0.1797 &
0.525 0.3234 5
0.645 0.4279 3,4
0.765 0,5044 5,4
0.86 0.54 4
0.95 0,5587 4
0.995 0.5674 4,5
1.08 0.595% 4
1.173 0,6029 4,5
1.275 0,6139 -5,-3
1.29 0.5987 2,5
155.5k  0.525 0,1727 3
0.712 0,2984 4,5
0.86 0.3448 4,5
0.99 0,3751 0,5
1.08 0.4 4,5
1.173 0.4167 4,5
1.27 0,4152 3,7
165K 0.525 0.05433
0.712 0.1317 4
0,815 0.1603 5
0.92 0.1793 4,5
0.99 0.1901 5
1.02 0.1976 4,6
1.11 0,2019 4,5
1,173 0.211 4,5
1.27 0.2174 3.4
174.5 0.525 0.002046 7,6
0.645 0,02909 4
0.815 0.05839 4,5
0.99 0.07364 4,5
1.08 0,0801 4,5
1.173 0.0859% 4,5
1.27 0.09059 3,4
181Kk 0.525 0.006132 33,34
0.815 | 0.02582 b,k
0.86 0.0285 4,5
0.99 0,03241 2,3
1.08 0.0378 4,4
1,173 0,03621 3,4
1.27 0.041 3,4
1.29 0.041 3,7




pisel / °g

£l ALt bl o't 60 80 L0 90 S0 70 €0
] T J _ 0
4t
A
4 €
17
. . 19
X 67T v 60T )
o JMG9°QCT mu. NG 49
® JJS°63T A Yc'cg _
+ ME°8gT o) N4/ Y.
i 1 1 1 ' . . . _ . wlmv:; / .Y_

PI®T4 pet11ddy snsisp sentep .#M paanszoyy Lt Oog®8'0q; 116312

e e - - - —_—— U

—— ——— i —



pisel/ °g

70 €0
1 0
-1 1°0
-1 C0
- £€0
- Y0
-4 90
E  MGoT .
+  MIST A MG°GST 190
v NSPLT o Y6FT y
e (YRS
1 ! i ] 1 ] 1 1 H
PISTL PoTTddy snsaop sonTep wm peansesy " Oog®® Oqp 16 f1a




130.

The dependence of K4 on m,, is nearly as mT3 at high temperatures.
This suggests that the origin of these small K4' values is in fact the
twofold component in the curves, (Figure 9.6). Distortion in this
component will produce a spurious sixfold amplitude in the analysis.

At applied fields just above the critical field a 'creeping' of the
pen on the X-Y recorder was observed; i.e. if the magnet was stopped
the pen would move slowly to a lower value of torque. In one very bad
case the movement amounted to 1 cm in about 15 seconds. It was however
verified that the curve obtained by waiting for the pen to settle was
parallel to that obtained by moving the magnet at a steady speed. At
the higher values of applied field, where the specimen was nearly
saturated, the form of the curves obtained was independent of the speed

of the magnet.

9.3 EES-IbO.SQSCO.ll Basal Plane Disc

This specimen was orientated in the same manner as the others and
from the phase angle of the sine6p component of the torque, the "b"
axis was found to be the easy axis of magnetisation over the whole range

of temperature and field strength used. Results are given in Table 9.4.

9.3.1 The Results
At temperatures below 109K the torques on the crystal
specimen exceeded the maximum counter-torque obtainable from the apparatus
and it was only possible to make measurements up to applied fields of :
0.712T. Figures 9.11 and 9.12 show the measured K4' values plotted
against applied field strength, and it is clear that the values obtained

at the three lower temperatures are not saturating,
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Figures 9.13, 9.14 and 9.15 show graphs of Ka'against 1 + For most

By

of the temperature range the graphs are linear and were extrapolated by

continuing the best straight line to 1/Bo = 0, At the three lower
temperatures however extrapolation-is extremely uncertain and it is only
possible to give a range of values within which K4 will most probably lie.

The upper end of each range is obtained by extrapolating a straight

line through the points which were obtained. Since all the other graphs

show a reduction in slope below j%— = :L.55T"1 it is assumed that the
o
slope of lines passing through points where 3%— = 1.55T-1 would be higher

)
than the correct value, The lower limit was obtained by extrapolating

with a line of the same slope as the line for 109K from the highest
value of K4' obtained. Since the negative slopes of the lines increase
with decreasing temperature this extrapolation should be below the

correct value.

9.3.2 Comparison with theory

Extrapolated values of K4 are gathered in Table 9.5. Using

A

magnetisation data from D. Chatterjee (1972) the values of I

13/2¢®)
(z).1

A
and I 5/z(z) were computed and the logarithms of the K4 values

9/2

were plotted in turn against the logarithms of each of these functions.
(Figure 9.16).

The second graph is very close to a straight line of slope =1 so
that K4 is closely proportional to the second function. This is

illustrated further in Figure 9.17 where the functions

30.2 113/2(z) (9.5)

12.59 15/2(2).19/2(z) (9.6)
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are plotted on a logarithmic scale against temperature, the experimental
value of K4 also being indicated.

Using a least squares method of curve fitting, the errors were found
to be least with a function of the form of equation 9,6 above and they
increased with as little as 1% admixture of a function of the form of

equation 9.5,

9.4 Terbium Basal Plane Disc

The graphical and numerical treatment used with the previous specimens
was repeated for pure Terbium metal using the magnetisation measurements
of Hegland et al. (1963) and values of K4 from the measurements of Bly
(1967). Table 9.6 gives the values and Figure 9.18 shows log K4 plotted
against the logarithms of £9/2(z).£5/2(z) and of ?13/2(z). The points
are more scattered than in the previous case but the superior fit of the
first function is clear,

Figure 9.19 shows the temperature variation of the K4 values and for

comparison the two single-ion functions

R, (1) = 7175 I/, (2) (9.8)

From the most closely fitting function of this pair (Eq.9.7) the value of

K4(0) is approximately 25 Jkg-l, which may be compared with the value

1

29.25 Jkg = + 25% obtained by Rhyne and Clarke (1967).

1t may be significant that the R.M.S. error in the curve fitting

procedure is a minimum for the following function:

K, (D) = 30.5 T o(2).Ta i (2) = 5.4 T, (z) (9.9

5/2 9/2 13/2
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If so, this could be taken as confirmation that the crystal field
contribution is of opposite sign to the contribution from the second order

hexagonally symmetrical magnetostriction’energy (Cooper 1968 1)

9.5 Terbium-Scandium Alloys and Terbium. Conclusions

Both graphical and numerical methods of curve fitting indicate
~

T
clearly the superiority of the function I (z).IS/Z(z) for describing

9/2
the variation of the basal plane anisotropy of the two richer alloys and
pure Terbium, The origin of this anisotropy is therefore almost entirely
the second order magnetostriction of hexagonal symmetry. |
Using the function above to estimate the value of K4 at absolute
zero, gave a value for Terbium agreeing with the result of (Rhyne and
Clarke 1967) within their reported limits of error. This value and the
values for the two richer alloys, expressed in Kelvins par Terbium atom,
are plotted against composition in Figure 9.20. Also plotted in the
figure are the values for the cylindrically symmetrical magnetostriction

energy given by Chatterjee (1972).

The expression for the driving energy (Eq.4.10) may be written,

F,=F +F .=F

d s of + F + F (9.10)

cyl hex cf

The temperature variation of the hexagonal anisotropy indicates that the
last term Fcf is negligible. From Figure 9.20 it can also be seen that
the cylindrical term is far the larger. The hexagonal term is not

however negligible in Terbium and the richest alloy and, since it does

-

not fall with temperature much more rapidly than the cylindrical term,
still may account for as much as 1§% of the driving energy even at 77K,

Both F and Fc die away in alloys with between 70 and 80 atomic

hex yl

percent of Terbium,
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9.6 Dysprosium Basal Plane Ellipsoid’

This investigation was principally concerned with seeking
confirmation or otherwise of the changes of easy axis reported by Bly
(1967, 1969) (Section 4.4 )

A series of about 150 torque curves was obtained at temperatures
between 77K and 160K and at fields up to 1,27T. The easy axis was
determined in each case either by analysis as for the other specimens or
by direct comparison of the curves with those obtained at temperatures and

fields where the easy axis was already known.

9.6.1 The Results
(2) At 77K
Table 9.7 gives one of the sets of results obtained at 77K,
in the order in which they were measured. Values of K4',the apparent
anisotropy constant are plotted in Figure 9.21 and can be seen to differ
considerably for ascending and descending values of applied magnetic
field, The negative values mean that the "a" axis is the easy axis.
Irreversible changes, distortions and jumps occur in the curves between
0.23 and 0.31T as B0 is increased. After taking a torque curve at Bo >
0.38T the curves are reproducible and the distortions disappear.
A phase angle of approximately 10 degrees indicates that the 'a'
axis is easy and a phase angle of +40 degrees or ~20 degrees would
indicate that the 'b' axis is easy, The mean phase angle of most of the
pairs of curves is about 10 degrees and only for the curves taken at 0,27T
is there any indication that the 'b' axis might be easy.

(b) 81,86,92,100 K

Torque curves at these temperatures were similar to those
obtained at 77K, When B rose above 0,3T the 'a' axis was easy up to the

highest value of applied field which could be used.
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(c) 110K
Curves obtained at 110K differ from those obtained at
lower temperatures only in that the distortion of the torque curves
reappears when the applied field is lowered, even when curves have been
obtained at fields above 0,6T,

(d) 120,124,131K

Torque curves showing a sin6¢ component could only be
obtained at applied fields in excess of 0.45T, no distortion was observed
and 'a' axis was ‘easy up to the highest field used (1.24T). No indication
was found of the changes of easy axis at high applied fields which marks
the boundary between regions III and I in Figure 4.2.

(e) 136.6, 138, 142.6, 147.6, 156.5K

The amplitudes of the sin6@ component of the curves
obtained at 131, 136.6, 138 and 142.6K are shown plotted against applied
field in Figure 9.22, The amplitudes are positive when the 'b' axis is
easy and negative when the 'a' axis is easy; the field strengths at
which the easy axis changes are then easily determined from the points
where the graphs cross the field axis. Changes located in this way are
plotted on the original figure due to Bly (Figure 4.3) as open circles
and agree well with his results for this temperature range. Torque
curves obtained at 147.6K showed only the 'b' axis easy and those at
156,5K did not show a clear sixfold component even at the highest field
available.

No attempt was made to perform a numerical analysis where a sin6¢
component was not clearly visible, since the Fourier analysis calculation
can give an amplitude which is merely a component of the noise or the

distortions in the curves caused by rotational hysteresis, Direct
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inspection was felt to be the best test for the presence of a sin6g
variation in the torque and on this test no trace was found of the change

of easy axis between regions II and III in Figure 4.3.

9.6.2 Discussion: Results., 77 to 100K

Apart from the general difficulty in determining the easy axis
from torque curves when the specimen is unsaturated (Section 9.6.3),
interpretation of the changes of phase occurring in the sin6¢ component
at low values of applied field between 77K and 100K has the following

special difficulties,

i. The curves are distorted through all or part of their length and
jumps and abrupt changes of form occur in certain curves.

ii, The amplitude and the phases of the sixfold components are not
unique but depend on the previous magnetic history of the
specimen.

iii. The rotational hysteresis is still increasing with the applied
field and the magnetisation data of Behrendt et al. (1958)
confirms that the specimen is still magnetised well below the
knee of the magnetisation curve, Domain walls are therefore
still present and these appear to behave as if they were pinned
in some way, moving only when the applied field exceeds a
critical value.

iv. The graphs of K4' against applied field (Figure 9.21) would have

an improbable kink if the single value of K,' with the

A
appropriate phase (the result for 0.27T, Table 9.7) were to be
given a positive value to represent the change of easy axis

to 'b!'.
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Since the curve showing the 'b' axis phase is the most distorted, it is
likely that the phase change is a result of the distortion and not of any
real change of easy axis. Recent work by Herring et al. (1973) on
Dysprosium at 4.2K in zero field showed the existence of small domains
and also that the 'a' axis is not easy. This suggests that it is possible
that Ms is parallel to the 'b' axis when the specimen is cooled in zero
field from above the Curie temperature,

The graphs of K4' versus applied field in Figure 9.21 exhibit a kind
of hysteresis; the values of K4' do not increase until the applied field
passes a critical value, then they increase rapidly and do not fall as far
when the field is reduced, Because the distortions in the torgque curve
are cleared by taking torque curves at higher values of applied field and
the clearing process is accompanied by jumps and severe changes of form,
it was felt initially that the cause was sticking of the movement of the
magnetometer and that the movement was being freed by 'giving it a good
run'. Some time was spent in establishing that the magnetometer
movement was quite freely suspended and that the changes described were
reproducible in a general way.

The hysteresis in the K4' values appears Lo be closely related to
the hysteresis of the ferromagnetic domain structure in Dysprosium
deduced by Rauch and Zeilinger (1972) from neutron depolarisation
measurements. For example at 80.2K the mean domain size rises from
approximately 18 x 10-6m at 0.05T to 25 x 10-6m at 0,12T and remains at
about 24 x 10-6m as the field 1s again reduced to 0.05T. After taking
into account the demagnetising field of the specimen used in the torque
measurements, this is very nearly the range of applied field over which

the hysteresis in the K4' value is observed,
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The existence of a sort of internal coercive force for the movement
of domain boundaries in polycrystalline Dysprosium of about 0.025T at 90K
is reported by Loffler and Rauch (1969) and connected by Rauch and
Zeilinger (1972) with the high intrinsic coercive force predicted by
Egami and Graham (1971). This intrinsic coercive force, which was
predicted independently by Van den Broek and Zijlstra (1971) should occur
in materials where the ratio of the anisotropy energy to the exchange
energy is large. For such materials the angle between adjacent moments
in domain walls is large, the wall is thin (of the order of 2nm), the
wall energy is high and the movement of the wall involves the movement
of individual spins through a metastable state of higher energy. For
180 degree walls in Dysprosium, Egami and Graham estimated a coercive
force of about 0.1lT at absolute zero, this value falling off rapidly with
rising temperature,

Egami (1971) who has measured the coercive force for Dysprosium
single crystals at various field sweep rates, has observed that the
coercive force rises to a limiting value at sweep rates of about 4 Ts-1
and interpreted this limiting value as the intrinsic coercive force of
the domain walls. The variation with temperature is great and at 80K
the coercive force is only 0.0lT at high sweep rates. Since the quasi-
static coercive force may be less than this by one or two orders of
magnitude, and since this figure is already much lower than the resulbont
field at which domains start to grow, or at which K4' rises suddenly
(approx. 0,025T) it is unlikely that the hysteresis in Ké' values can be
connected with Egami and Graham's intrinsic coercive force.

Near the Curie temperature of Dysprosium, Belov et al. (1969)

observed relaxation effects in the magnetisation of polycrystalline
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samples with relaxation times of the order of 10 and 102 seconds which
disappear just below 100K, Rauch and Zeilinger measured even 1onéer
relaxation times in the neutron depolarisation factors of single crystals,
domain structure continuing to change over times of the order of 103
seconds, Belov et al, connect the relaxation with the gigantic magneto-
striction of Dysprosium since similar effects are observed in Terbium
and Terbium-Yttrium alloys where the magnetostriction is large, but they
are not observed in Gadolinium where the magnetostriction is two orders of
magnitude less than in the other materials. Rauch and Zeilinger were
able to connect the hysteresis effects with magnetostriction by plotting
the neutron depolarisation factors for given applied fields against
temperature, On these graphs the metamagnetic transition stands out
clearly by the large stepwise change in the depolarisation factor. The
transition was found to occur at temperatures 2K higher for rising
temperatures than for falling temperatures. This is close to the
difference in magnetoelastic energies between the ferro-~ and anti-
ferromagnetic states, calculated to be 2.2K/atom. Similar results for
hysteresis of this transition have been obtained by microwave
absorption (Rossoll et al. 1965) and neutron diffraction (Wilkinson et
al, 1961).

It seems probable therefore that the hysteresis in K4 values between
77 and 100K can be regarded as one of a series of phenomena attributable

to the large magnestriction of Dysprosium,

9,.6,3 Discussion: Results above 136K

In contrast to the results at lower temperatures, the changes

of axis obtained above 136K were reproducible and the torque curves show
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no distortion and little rotational hysteresis, Graphs of K4 against
applied field are smooth curves which change sign without discontinuities
and the changes of easy axis implied by this were regarded with some
confidence. These changes are plotted in Figure 9.23. The three points
were read from Figure 9.22 and the applied field was adjusted to take
account of the demagnetisation field of the Dysprosium ellipsoid. The
critical field line in Figure 9.23 was taken from the results of Behrendt
et al, (1958), The line marking the change of easy axis cuts the
critical field line at about 132K and the validity of this extrapolation
is confirmed by the fact that torque curves for 131K show no change of
easy axis.,

An apparent change of easy axis might be expected if the metamagnetic
transition takes place via a series of fan-like moment states in which the
directions of the spins are distributed over a sufficiently large angle,
Figure 9.24 illustrates in a general way how such a fan-like moment
distribution could give an apparent change of easy axis. The graphs
represent the anisotropy energy for a single spin, plotted against
orientation in the basal plane of the crystal., Thermal effects are
taken into account in the amplitude of the curve, In the ferromagnetic
state 9.24(1) all the spins are parallel and the observed easy axis is
the same as that for a single spin. Figure 9.24(ii) and (iii) represent
hypothetical widely divergent fans of spins, centred on an easy and a
hard direction respectively. It can be seen that the total anisotropy
energy could be greater in the former c;se than the latter, Thus a
change of easy axis might be observed which would not represent any

real change in the crystal field.
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The existence of an intermediate stage in the approach to saturation is
detectable in the rounding of the magnetic isotherms of Dysprosium at
temperatures from 130K upwards and at applied fields high enough to
eliminate domain effects as an explanation (Behrendt et al 1958), It
can be shown theoretically (Enz 1960) that when a field greater than a
definite critical value is applied parallel to the basal plane of a
helical antiferromagnet such as Dysprosium we can expect the magnetic
moments of each ferromagnetic layer to deviate from the direction of the
applied field by angles which vary sinusoidally with distance along the
"e" axis. Nagamiya et al (1962) deduced the following relationship for

the case where there is no anisotropy in the basal plane

¢n

Sin - = § sin(nqo + @) (9.11)

(Symbols have been altered to agree with later work). ¢n is the angle
between the field and the magnetisation vector of the nth plane parallel
to the basal plane, 9, is the interlayer turn angle of the corresponding
helical structure which occurs just below the critical field at the same
temperature and o is a phase angle. & is an amplitude which is adjusted
to minimise the sum of the exchange and Zeeman energies. This structure
is illustrated in Figure 2.8.

Kitano and Nagamiya (1964) assumed that the distribution of moments
represented by equation 9.1l could also be used in the case where there
is anisotropy in the basal plane which is not strong enough entirely to
eliminate the fan phase. A term representing the anisotropy energy is
derived from 9.11 and included in the expression for the total free

energy, which when minimised gives value of §.



—m b

—— w4

——— - . gem

142,

In Dysprosium the anisotropy in the basal plane will tend to draw
the magnetisation vectors nearer to the adjacent easy direction and this
will tend to distort the simple sinusoidal fan structure so that additional
harmonic terms are required on the right hand side of equation 9.11. For
simplicity, Kitano and Nagamiya retained only the single sinusoidal term
of 9.11, but for Dysprosium at temperatures near to 140K this is
reasonable, The distortion of the sinusoidal distribution is not
expected to be great since the anisotropy is small and the interlayer turn
angle is not a simple multiple or submultiple of m/3. Also the neutron
diffraction experiments on the helical phase of Dysprosium by Wilkinson
et al. (1961) showed very weak additional satellite lines only up to 140K
which suggests that the effect of anisotropy on the simple helical
structure and also therefore on the sinusoidal fan structure is small
above this temperature,

When the applied field is parallel to an easy axis, the anisotropy eneqy

of the n'th atomic plane is
e = -c,cosbp
n n

where ¢ is a constant. The average energy (ea) is then given by

{

= -.9_ =_£ 1
e, 5 }; Cc>s6¢n N z Colearcs:|.n(§S:i.n(nqo + @)
n n
where N is the total number of planes.
N is very large in a typical crystal so that ng  may be regarded as

covering the angular range O-21 uniformly and may be replaced by a

continuous variable ¥, hence,
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e = =< J Cosl2arcsin(ESin¥)dy (9.12a)

a 2
"0

A numerical evaluation of the integral was performed for a series of

values of § between O and 0.5 which shows that it is negative between

€ = 0.2 and € = 0.445 and positive
values correspond to fans of total
Thus for spin structures with this

with the field parallel to an easy

elsewhere in the range. These two
angular width 46° and 104° respectively.
angular width the anisotropy energy

axis would be positive and the axis

would be apparently hard.
The change of axis would not however be expected when § was exactly
equal to 0.2 since the expression corresponding to 9.12a when the field

is parallel to a hard axis is

te 21
ey = 3 I cos6(2arcsin(Esin¥) ~ ¢)dy (9.12b)
0

Here it is assumed that the moments oscillate sinusoldally aboul the
direction of the resultant magnetisation which is pulled towards an easy
axis and makes an angle ¢ with the applied field. Also the value of §
which minimises the energy in this case is not necessarily the same as
that for the easy axis. Hence the sign of the quantity e, " €. which
determines the easy axis will not change sign at the same value of E

as that for the energy e, alone,

Use wac made of the results of calculations for hexagonal crystals
given by Kitano and Nagamiya (1964) from which it was determined that §
just above the critical field would be approximately 0.4 for magnet-
isation parallel to the hard axis and 0.44 for magnetisation parallel to

easy axis. Both fall to zero with increasing applied field and lie
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between the limiting values which lead to reversed anisotropy energies
together, Thus a change of easy axis is expected on the basis of this
theory,

The theory also predicted that the specimen would be in a region
where ¢ tended to zero, this being confirmed by the absence of shear from
the torque curves,

In order to estimate £ from the published results it was necessary
to obtain values of the quantities

Y6
X =
T $a) - fons?

by -feg)

fo - o

K
Here V6 is —ég, and ﬁ(q) is the Fourier transformed exchange in 'the c

mT

and BZ

direction, q, being the reduced wave vector which makes this function a

maximum (section 4.2.1). Values of B, (2.125) and Jz{g'(qo)— f(o)}

2

(0.32 x 10 1J) were obtained for a temperature of 98K from the results

of Nicklow et al (1971) and another value of J2{ %(qo)“ &(o)} (0.2 x 107 5)

estimated from the relationship

P40 - § @1 ng s,

which holds near the Néel temperature, Even supposing that 52 should
increase threefold and that { f(qo)-?(o)}should decrease threefold,
values of £ over 0.3 were obtained at the critical field. These are

high enough to account for the change of easy axis. The amplitude § was
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also estimated directly from the magnetisation above the critical flield,
making the assumption that the magnitude of the magnetisation of each
plane does not change greatly as the moment vectors rotate into line with
the applied field, The bulk magnetisation is then proportional to the

quantity,

mchos¢n

where mp is the magnetic moment of each plane. Following an argument
similar to that leading to equation 9.12, one obtdins an expression for
the magnetisation at each field value, relative to the magnetisation at

a field high enough to cause the collapse of the fan structure,.

2
_M(T,H) _1__J' ) ' -
W(T,20) " 2m cos2(arcsin(Esin¥))dy

A table of values of this expression was constructed for a range of values
of £ and using the magnetisation data of Jew and Legvold it was confirmed
that § is approximately 0.45 just above the critical field, falling to
zero as the field increases, Tt was also found that at the field and
temperature values where the easy axis is changing, £ is approximately
constant but is nearly 0.3, At this point the integral of equation 9.12
(a and b) is just beginning to increase from ils most negative value as
the field increases aﬁd the amplitude § decreases. It is not certain
therefore that the sinusoidal fan structure accounts entirely for the
change of easy axis.

The change could also be partly due to the fact that the torque

magnetometer may give false results for the easy axis when, as in this
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case, the specimen is not saturated., This is illustrated in Figure 9.25
which shows the magnetisation curve for 140K from the data of Jew and
Legvold., The work needed to magnetise the specimen to any given value

of magnetisation is proportional to the area enclosed between the
magnetisation curve, the magnetisation axis and a horizontal line through
the given magnetisation value. For the part of the curve given, the 'a'
axis curve lies to the left of the 'b' axis curve; the work needed to
magnetise the specimen to any given intensity of magnetisation is
therefore less for magnetisation parallel to the 'a' axis and this axis
is therefore easy. The torque magnetometer however indicates as the easy
axis the one which requires least work to bring it into line with the
applied magnetic field. Using the method described in section 2,3.1 to
determine the magnetisation produced by a given applied field, it can be
seen in Figure 9.25 that an applied field of 0.95T would produce greater
magnetisation when parallel to the 'a' axis than when parallel to the

'b! axis and the work needed to bring the 'a' axis parallel to the

m agnetic field would exceed that needed to bring the 'b' axis parallel

to the field, the extra work being proportional to the differcence between
the two arcas marked I and II in Figure 9.25. Torque magnetometer
measurements would therefore show up the 'b' axis as easy. At higher
applied fields the area 1 is smaller and the area II is larger, therefore
the apparent anisotropy would die away as the applied field increases

and would then reappear with the 'a' axis easy, This apparent change of
easy axis would not correspond with any change in the specimen., The
results of torque measurements cannot therefore be relied on to detect
changes of easy axis when the specimen is unsaturated, when the anisotropy

is not small and when the steepest part of the magnetisation curve occurs
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at high values of applied field, thus increasing areas such as that
marked I in Figure 9,24,

In the case of Dysprosium at 140K the measurements of Jew and Legvold
do appear to show anisotropy (and changes of easy axis with rising applied
fields, although at higher values of applied field than those deduced by
Bly who took the crossing of the 'a' and 'b' curves to indicate the
change of axis). These authors did not however consider that their
results indicated any anisotropy at all above 110K so that it is
impossible on this basis to be certain how far the change of axis is
affected by the special nature of the measurements with the torque
magnetometer, It is thought more probable tﬁat the observed changes are

due to the angular width of the fan structure of spins,

9.6.4 Temperature variation of K4 for Dysprosium

It was thought possible at one stage in this investigation !
tha£ changes of easy axis in Dysprosium near the critical field and at |
small fields below the Curie temperature might be caused by the different
dependence on magnetisation of opposing contributions to the anisotropy
from the crystal field and magnetostriction., Thus a small contribution |
from magnetostriction tending to make the 'b' axis easy would die away
more slowly than the crystal field contribution and at low magnetisations
might dominate the anisotropy. Accordingly, attempts were made to fit a
function of the form given below in equation 9.13 to values of K4 for

Dysprosium,

K, = K4(0){(1 + x)Il3/2(z) - x15/2(z).19/2(z)} (9.13)



Dysprosium: K

Table 9,8

’
4 values from Feron and single-ion functions

-1 ~124.69(0.9511 z) +
K4/Jkg 15/2(2) IQ/Z(Z) 113/2(z) ( 13/2( )
-128.6 0.998948 | 0.996499 | 0.99267 -123.79
~128.6 0.998159 | 0,993876 | 0,98719 -123.12
~124.4 0.995122 | 0.983832 | 0.96635 -120.57
-98.24 | 0.982898 | 0.944123 | 0,88627 ~-110.76
-89,76 | 0.95996 0.872684 | 0,75136 -94.21
-75,62 | 0.931676 | 0.789985 | 0,60986 ~76,8
-57.25 | 0,89476 0.69071 0.46069 -58.4
-55.83 | 0.89476 0.69071 0.46069 ~-58.4
-49.5 0.874961 | 0.641362 | 0,39487 -50.25
-51.6 0.874961 | 0.641362 | 0.39487 -50,25
~42 .4 0.851953 | 0.587322 | 0.32906 ~42.,08
~-43.1 0.851953 | 0.587322 | 0.32906 -42,08
-33.9 0.829344 | 0.537574 | 0.27422 -35.24
~36 0.829344 | 0.537574 | 0.27422 -35.24
-29.7 0.802172 | 0.482029 | 0.21938 -28.38
~24,7 0.7895 0.457677 | 0.19744 ~25,62
~-26.8 0.7895 0.457677 | 0.19744 -~25,62
-23.3 0.775485 | 0.431798 | 0.1755 ~22.86
~-26.8 0.775485 { 0.431798 | 0.1755 -22.86
-~21.2 0.763819 | 0.411137 | 0.159 -20.77
-24 0.763819 | 0.411137 | 0.159 -20.77
-16,96 | 0.746468 { 0.381816 | 0,1371 -18.00
~-18.09 | 0.746468 { 0.381816 | 0.1371 -18.00
-13.43} 0.718353 | 0.337752 | 0.1075 -14.23
-15.55 1 0.718353 | 0.337752 | 0.1075 -14.23
90.2 -9,47 { 0.68798 0.294698 | 0,0823 ~11.00
90.2 -10.6 0,68798 0,294698 | 0,0823 ~11.00
95,1 -7.77 | 0.662902 | 0.262494 | 0.0658 -8.86
95.5 -8.48 | 0.662902 | 0.262494 | 0.0658 -8.86
100.6 -5.654] 0,623624 | 0.217681 | 0.04607 -6.29
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If 1l +x
X

is approximately equal to 6, this function would change sign at

the appropriate magnetisation., Values of K4 and £13/2 were cbtained from
the results of Feron (1969), the related functions were calculated

(Table 9.8) and an attempt was made to fit the experimental values of K4

to the function above. Fitting was carried out by adjusting the value

of K4(0) to minimise the sum of the squares of the exors, the sum of the

squares of the fractional errors and the sum of the products of the errors
and fractional errors. In additlion the theoretical and experimental

values were treated in turn as the independeat variable. The results
were consistent in showing that the errors in fitting inereased with

positive values of x. The best fitting equation was

K, = -124,69{0.,951 113/2(z) + 0.049 15/2(2).19/2(2)]

The contribution from magnetostriction is the same sign as that from the

crystal field. The hypothesis above is therefore not supported,

9,7 Dysprosium: Conclusions

The changes of easy axis observed by Bly are not confirmed at
temperatures near the Curie temperature. Changes do occur at higher
temperatures but these may be explained without any real change in the
microscopic easy direction as experienced by an individual atomic moment.

Recent observations by Herring et al. (1973) on domain patterms
at 4K suggest that in zero field the 'a' axis is not necessarily easy.

This is still unexplained,
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9.8 Suggestions for Further Work

The present investigation could be extended by making measurements
at lower temperatures. This would allow the comparison of theoretical
functions with the temperature variation of K4 and the determination of
K4(0) to be made with greater precision but would involve the use of a
larger electromagnet to accommodate the necessary double Dewar vessels.
A larger electromagnet is also required to increase the magnetic fields
available and to improve the reliability of the extrapolated values of
K4.

The use of lower temperatures and higher magnetic fields would
raise the torques to be measured and would involve a radical redesign of
the torque magnetometer, The use of a rigid suspension with piezo
electric transducers to measure the torque has been attempted by Bly
(1967) but was hindered by electrical noise. Modern transducers and
s ignal recovery methods would probably allow the successful construction
of such an instrument. It could be made portable and used with a
variety of magnets including large fixed magnets. The possibility of
using the instrument with a pulsed magnet and very high fields is
attractive and would permit the investigation of the constants k{ao and
*‘ 40 for the "c¢" axis anisotropy of the Terbium Scandium alloys.

There is some similarity between the effects on the magnetic
properties of Terbium by dilution with Scandium and those produced by
bydrostatic pressure (Wollan 1967). It is suggestive that the pressure
which causes the same reduction in the Néel temperature as that caused

by 30 at.% of Scandium (Bartholin and Bloch 1968; McWhan and Stevens

1967) is of the same order of magnitude as that pressure which
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Tatsumoto et al. (1968) estimated would reduce the effective moment of
Terbium ions by one Bohr magneton. A fall in the effective moment of
Terbium ions is observed as the proportion of Scandium increases from

10 at % to 30 at % (Chatterjee and Corner 1971). It is possible that
this shows a loss of large numbers of 4f electrons to the conduction band.
The fact that the actual values of effective moment are higher than that
for pure Terbium could be accounted for by the high polarisability of

the Scandium d electron gas (Wohlleben 1968). The marked drop in
anisotropy could be connected with the presence of increasing numbers of
Terbium ions having isotropic 4f shells,

Resistivity measurements cn Terbium-Scandium alloys might therefore
be of interest., Anilsotropy, magnetisation, magnetostriction and
neutron diffraction experiments on alloys of Scandium with Dysprosium
would allow comparison with the behaviour of an ion which does not lose

its anisotropic character when it loses a further electron.
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APPENDIX I

KAY4 :PRNCEDURE OPTIGNS (MAIN) 3 /% ANALYSIS CF TCRCUE CURVES %/
DECLARE(A(2,6) 4 AMP(246)3AD(2) yCALIRGDIFF DYsHYST o K&, LL,PHASE(2,5]),
PRODS(2+246) yRCRS{2y36)4RMS(2)4RS(243€6),SCALEyTRIG(2y5930),
WT) DEC FLGAT (5)
{(1¢JsKsLeNCySW) BINARY FIXED (15,01,
{DATE) CHAFACTER (15)
/% THIS SECTIGN STCPES THE SINES ANC COSINES CF 2,449698,10412, #/
/% PHI AT FIVE CEGFREE INTERVALS OVER THE RANGE O TC 180 DEGS. %/
SETUP: DO L=: B8Y 1 TC 6 3
DO J=1 BY . TO 26 3
TRIG(I,L,J)
TRIG(24L,yJ)
END 3%
END 3
ON CONVERSION PUT LIST(CNSCURCE CNCHAR) 3
£ 3 o ook s deoqe sk o st e e 3 o ¢ s e e sk ofe oo o Sl s ol ool sl o o e e oje s o e sk e ol ol ot el ok koo sl dfeste o s ok Sk
/% DATA CARDS SHLULD BE CF THE FOLLGWING FCPM 3= */
/% THE FIRST CARD SHCULEC CARRY THE CALIBRATICON CCASTANT GF THE */
/% MAGNETCMETER IN NM PER VCLT AND THE SPECIMEN'S FASS IN KA *®/
/% CARD NO.2 HAS THE DATE IN SINGLE INVIRTEC CCMMAS,THE %/
/% NUMBER GC= THE CGRAPHy THE SCALE FACTOR OfF THE X=Y RECCRDER IN =/
/% VOLTS PER INCH, THE DISPLACEMENT DY GF THE END OF T1HE AXIS .%/
/% OF THE GRATICULE AND LL THt LENGTH OF THE AXIS BETWEENM TRE %/
/% IERG AND 175 CEGRES MARKS, BOTH IN CMS. CARDS 3 TC 5 CARRY %/
7% 36 CLOCKWISE FEADINGS AND CARDS & TO €& CARRY 3¢ ANTICLOCKWISE®/
/% READINGS STARTING AT THE O DEG ESND GF THE GFATICULE. CARD %/
/% NU.Q 1S THF DATE CARD FOR THE NEXT GRAPh LCATA ITEMS SHOULD +#/
/% Ui SEPARATED BY SPACES AND THE LAST ITEM CN A CARL SHCULD BE #/
/% BE FOLLOWED BY A COMMA Y
/ % 2 3k oh o o ol ol ok sie e ol D 2% X sl v e e ol ol o s e e ol e sk sl sl o e o o e o s adete o Skt e ok ok Feoje S skt e ke cklok
GET LIST(CALIByNT) 3
START: Sw=0 ;
ON ENDFILE(SCARLS) GC TOD LAST 3
GET LIST(DATE NLsSCALE,DY,LLy{(RS{I,JIDC J=1 TC 36)10C 1=1,2));
PUT EDIT(DATE," NUMBEP ",NG,* SCALE Y,SCALE, * V/INCH ',

SIMND(IO¥L*(J=F))
COSC(10¥L*x(J=1))

ot

10Y= 'L,LCYet' LL= tylL) (PACELA(LE)+X{Z)A(R), Fla,0)9X(2),
AET), FIS92) 9 X{ V) A(G1 s X(Z)sAL4) sF(6492)4X12) 4215},
Fl642))3

PUT EDIT(' MEASURED VALLEST) (SKIP,A(18)) 3
PUT EOIT(ICWPDGSW? yRSI1y%) 3V ACKLRDGS .4 4PS(2,%))
(2(SKIP)A{B) 1i2(X(2) 4F(6+2))92(SKIP,X(8)412(X(2)4F16452))1))3
/% THE NEXT DO GPOUP CCPRECTS FCR SHEAR IN THE CURVE #/
IF DY>0.01 THEN LO;
00 I= 1,42 3
D9 J=1 BY 1 TO 2¢& ;3
RS{TyJ)=(COSTATAN(DY,LL))IR(RS{T,J)4 ((J=1)%DY/35));
, END 3
ENG ;
PUT ENIT ('vaLULES CCRRECTEC FCR SHEART)(SKIP,A(27)) 3
PUT EDIT('CH.RGGS." 38S(1s%) s *ACW.REGS A 3RS (2,%))
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(2(5KIP1A(8)leé£é2)yF(692))12(SKIPvX(8)912(X(2)1F(612)))));
/% THE NEXT SECTICN COES THE SUMMATICN FOR THE FOUPIER ANALYSIS */
CALC: 00 I=1,2 ;
D0 K=:1,2 3
DC L= BY 1 TC 6 3
PRODS(Ky I gsL)=(SUM{RS(I %) %TRIG(KeLy%*))1/18 3

END 3
END:
END3
/% THE NEXT SECTIOM FINCS THE MEAN VALUES AND FINISHES OFF THE */
/7% CALCULLATION OF THE AMPLITUCES AND THE PHASES. */
L0 I=1,2 3

AOQ(I)=(SUMIRS(T,*)))/36 3
DO t=1 BY 1 TC 6 3
TA(I4L) = SQRT((PROCS(1,1,L))%%2 + (PRCDS(2,I,L))%x2) 3
AMP(ToL) =(A(TI,L)*CALIB*SCALE)/(UWT*2.54) ;3
PHASE(14L) = ATAND(PRCODS(2414L)4PRODCS(1T4L))/{2%L)3

END 3
END 3 )
/% THIS NEXT SECTICN FINDS THE WORK NEECED TQ RCTATE THE */
/% SPECIMEN THROUGKH 360 DEGREES AND THE FEAN K4 */
HYST = (AC(2)-A0{1))*¥SCALE=CALIB®€.2832/(WT*2.54) 3
K4 = (AMP(1,3)¢AMP(2,3))/12 3
/% THE NEXT SECTION CALCULATES THE VALUES OF THE CRDINATES */
/% USING THE AMPLITUDES AND PHASES OF THE 2,446,412 FCLD ¥/
/% CCMPCNENTS CNLY. */
RCRS = 0 3

DO I = 1y2 3
RCRS{I¢*) = ANC(I) 3
DO J=1 BY. 1 TO 3¢ 3
, DO L=14243,6 3%
PCRS{TI4JI=RCRS(IJIHA(TI L)*SINC(2*L (5% {J~1 j4+PHASE(I,L))};
END ;
END ;

s

-

ENC3
PUT EDIT('VALUES CALC FROM 24446412 FOLO CCMPCNENTS')
(SKIP,A(45)) 3
PUT EDIT{'CWaRESL?*sRCRS(1 4% )3 *ACWRSLY4RCRE(2,4%))
{2(SKIPsA(S) 412({X(2)4F(642))92(SKIPsX(8):12(X{2)2F(642)))))3%
/* THE NEXT SECTION FINLCS THE RMS ERFOR, Y/
DO I=1,2 3
RMS(1)=0 3
DC J=1 BY 1 TO 36 ;
RMS(T)=RMS{I)+(RS{I4J)~RCRS{I,J))Ix%2 3
END 7
RMS{I)= SCRT(RMS(I)/3¢) 3
END
PUT EDIT('MEAN''2FCLD'y*4FCLGYy *6FOLLY, '8FCLDY, *10FOLDY,
VIZ2FCOLODY gt AMPS(CWY g AD(L1) s AMP(1 %) 4 "PEASE(CW) !,
PHASE(L9%) s *AVPS(ACW) Y3 AT(2) yAME(2,4% ) *PHASE(ACW) ',
PHASE{Z 3%} ){SKIP X(18) 47 (X &)Y A(T))2(SKIP,A(LR) ,
TIX(L1)9EC(ICy3) ) ySKRIPsALLB) o X(11)46{(XI1)sE(1043)0))3
PUT SKIP EDIT{'*HYSTERESIS ESTIMATE = ',HYST,* JKG~1 PER REV ¢,
EMEAN K4= ' 4K44y' JKG~1t,*RMS ERROR = 1,
RMS)I(X(S) 4 A(22) (LG s3) 4 X{2)¢A(24)4,SKIPWX{1T7),
A0 ) 2E(10,43 )y X(9)4A{TYySKIPsX(16)},A(12),
E(LO43)4X{3)4E(104+3))3
/% THIS SECTJON EXCHANGES ThE FIPST ANC LAST TwELVE RCGS. *x/
/7% OF THE CW. AND ACw. CURVES WITH SUITABLL DISPLACEMENT. x/



C s saaw .

IF SW=1 THEM GD TC STARTjS
DIFF = 0 3
0O 4 = 13 BY 1 TO 24 3
DIFF = DIFF + (RS(2,J) = RS{144)) 3
END3
PO J =1 BRY 1 TO 12 3
RS{14J) = RS(2,4) - DIFF/ic 3
RS(z4(244d)) = PS(1,(244+J)) + CIFF/12 3
END 3
PUT EDIT(*VALUES RESHAPED*)I(SKIP,A{16)])3
PUT cDIT('CweRDGSe*yRS(1 %)+ ACWJRDCS. " 9yR5(2y*))
(2(SKIPyA(B)12(X(7)yF(642))42(SKIPyX(8)22(X(2)sF(6:2)))))3
SW = Sw + 1 3
GO 7O CALC 3
LAST: END KAY4 3

't

160



[P,

e e - =

APPENDIX 1T

NORMALISED HYPERBOLIC BESSEL FUNCTIGNS OF Z FRCM 0 TO 150

CRDER
z 3/2 572 9/2 1372 {572)X(9/2)
0405 0.015663 0.000166 0.000000 0.000000 0.C00000
vedl 0.033311 0.0C0606 0.00000CC 0.000000 0.€00000
el 0.C45925 0.0C1496 €.000000 €.000000 0.000000
[0e20 0.C66486 0.002650 €.000001 0.000000 0.,000000
[Ga25 0.C082988 0.0C4142 0.0C0004 0.000000 0.0C0000
Le3Q 0.099405 0.005549 0.000008 0.000000 0.000000
Ge35 |t 0.115724 0.008072 0.00C015 0.000000Q 0.000000C
1040, 0.131932 0.010506 C.GC0026 €.C00000 0.C000C0O
wedd 0.1480132 0.013244 €.000042 €.CC0000 0.0000C0
ve 5D 0.163953 0.016279 €.00006% £.000000 c.coo0c!
e E5 1 €.179736 0,019602 0.000093 0.C006000 0.000001
0. 60 0.195358 0.023205 0.000131 €.000000 0.000003
|0, 85 0.210799 0.027¢79 €.000179 0.000000 0.000004
10.10.] 0.226050 0.0212i3 0.000239 0.000000 0.000007
Ve TS 1L 0,241100 0.035597 €.000313 0.000001 0.000011
ot 0.25554C 0.040222 0.000401 €.000001 0.000016
Derd 0.270561 0.,045075 0.000507 0.000002 0.000022
10a L 0.284956 0.050146 €.000631 0.000003 0.C00031
0.5 1 0.299116 0.055422 0.000775 0.000004 0.000042
lesl il 0,313035 0.06C894 0.000942 0.000006 0.000057
1.0% 0.3267C8 0.0£6548 C.001132 0.0000086 0.000075
l1.10 0.340129 0.072373 0.601347 0.0000611 [ .0.000097
Lo 32 04353296 0.078357 0.001590 0.000014 0.600124
*1.20 0.366204 0.084489 0.001861 0.0000:8 0.000, 57
.22 0.378850 0.050757 0.002163 0.000023 0.000196
as 20 0.391234 0.067150 0.002490 €.000028 0.000242
1e:5 0.403354 0.103857 0.002663 0.000035 0.00026¢
1euv 0.415204 0.110266 0.003265 0.000042 0.000360
rrenb | 0.426798 0.116567 0.003702 €.000053 0.000432
1,50 0.438124 0.123750 €.004177 0.000063 0.00051¢
1251 0,449187 0.130504 0.004685 0.060076 0.000632
1.¢0.1 0,459988 0.137521 0.005241 0.0000921 0.CC0720
RILIE 0.47€53¢C 0.144485 0.005834 0.000107 0.000843
Le70, 0.480815 0.151501 0.00%468 0.000126 0.006979
1e15, 1 0.45084¢ 0.158%48 0.007143 0.0001417 €.001132
LebG ]l p.5c0627 0.165621 €.007861 0.000171 0.001302
t.£53]1 o0.510160 0.172713 0.008623 0.000198 0.C01489
1450 1 04519449 0.179816 €.009428 0.000228 0.6014655
11e5) 0.528499 0.186523 0.0:0277 0.000261 0.001921
2.00 0.537314 0.154027 0.01117¢C 0.C00298 0.C02167
2.05, 0545895 0.201123 0.012308 €.000338 0.002435
2410 0.554257 0.208203 0.013091 0.000383 0.002725
1Zel® 0.562394 0e215264 0.014116 0.000432 0.0020309
2.20 0.570314 0.222298 0.015192 0.000485 0.003377
o ih 0.57€023 0.229302 0.016309 0.C00544 0.00273¢
2. 20 0.585525 0.236271 0.017471 0.000607 0.004127
12435 0.592825 0.243201 0.018677 0.000676 0.004542
2.49 0.569929 0.250cC88 0.015927 £.000750 0.0C4582
Zeth C. 606841 0.256528 0.021221 €.000830 0.005452
2.5u ] 0.613567 0.263719 €.022558 €.000917 0.005949
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NORMALISED HYPFRBOLIC BESSEL FUNCTICNS OF Z FRCM O TO 15C

CRODER
7 3/2 572 9/r2 1372 (5/21%(9/2)
2.60 0.626478 0.277139 0.02536Q 0.001108 0.€07028
le.70, 0.638703 0.250329 0.028328 0.001328 0.008224
.20 C.65028¢ 0.303271 C.C3145% 0.0015706 0.00954C
L+ 90, C. 661245 0.315952 0.034745 0.0018506 0.010977
2500, 0.671636 0.328363 0.038180 0.002169 0.012537
Yel04 0.681486 0.34049¢ C.041759 0.002517 G.014219
.20 0.690828 0.352348 0.045415 0.002901 0.016023
24 30, 0.699694 0.363914 0.049320 0.003324 0.017948
3.40¢ C.7C811z 0.37516%4 0.053287 0.0037€6 0.019653
3.50, 0.716111 0.386190 €.057369 0.004289 0.022155
2.20 0.723716 0.356902 0.CE&L55% 0.004834 0.C24433
2,70" 0.730952 0.,407335 0.065849 0.005422 0.026822
2.0 0.737843 0.417491 0.07¢€233 0.006055 0.02922]
3.50] 0.7444CS 0.427371 0.074702 0.006732 0.031926
L.00| G«750671 0.43659¢6 0.,079252 0.007455 0.034632
4410 0.756647 0.446355 0.G83874 €.c08225 0.037437
4-201 0.762254 0.455461 0.088562 0.009041 0.040336
4,50 0.767810 0.464318 0.093310 6. C09905 0.043325
%o 40 0.773028 0.472934 C.098112 0.0108L6 0.0464C0
(#s50 0.778024 0.481316 0.102962 0.011775% 0.C49557
4.60 0.78281C 0.4089471 0.107854 0.012781 0.,0527¢91
4.170 0.787399 C+457404 C.112783 0.013835 0.056098
4.80 0.791802 0.505123 C.117744 0.014937 0.656475
4,90 0.75602% 0.512635 0.122731 0.016085 0.0£2916
5.00 0.800090 0.519945 0.127742 0.017281 0.066418
S.10 0.80399% 0.527C61 C.132770 0.018523 0.009577
5.20 0.807752 0.533938 0.137611 0.01l9811 0.073585
5.30" 0.811370 0.540733 0.142863 0.021145 0.C77251
Se40 ¢ 0.814855 0.547302 0.147621 0.022523 0.080957
'5.50 0.818215 0.55370C 0.152981 0.0239%n 0.084705
15‘60 0.82145¢ 0.559934 C.158041 €.025412 0.C%84%2
5.70 0.824583 0.566C08 C.153097 0.026921 0.092314
5.80 0.827604 0.571928 0.168146 0.028472 0.096167
1990 0.820523 0.57769¢% 0.173186 0.030065 0.100049
-Ae 0.833345 0.583327 €.178214 0.031697 0.103e57
.10 0.836075 0.588815 0.183228 0.033369 0.107887
16.20 0.838717 0.554168 0.188225 0.035079 0.111837
l€.30 0.841276 0.556392 0.1$3204 0.036827 0.115805
6.40 0.843755 0.6C4489 0.193163 0.038611 0.1:9787
cboto 0.846158 0.605465 0.203100 C. 040431 0.123782
(6.0 0.648488 0.614223 0.209013 0.042285 0.127787
6.170 0.850749 0.619C67 0.212901 0.044172 0.131800
| & 80 0.852943 C.62370L 0.217763 0.046092 0.13581¢9
6.90 0.855074 0.628228 £.222597 0.048044% 0.139841
17,00 0.857144 0.632652 0.227402 0.050026 0.1438066
17410 0.859156 0.630976 0.232177 0.052037 04147861
17,20 0.8561112 0.641203 Ce236621 0.054077 0.151915
\7.30 0.863014 0.645336 De241634 0.056145 0.155635
17,40 0.864865 0.649378 0ec 46314 0.C58238 0.459651
17,40 0.866667 04653333 C.250961 0.0603257 0.163961
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NORMALISED HYPERBOLIC BESSEL FUNCTIONS OF I FRCM 0 TO 150

ORDER

z 372 5/2 972 13/2 (5/721%(6/2)

[}

TP 0.865281 | "0.659105 | 0.257865 | 0.063581 0.169962

7.40 0.E71795 | 0.664€94 | 0.264658 | 0.066857 | 0.175543

To95 0.874214 | 0.67C107 | 0.271449 | 0.070181 0.1819C0

8.10 | 0.876543 | 0.675354 | C.278i18 | 0.073550 | 0.187823

B.25, ! 0.878788 | 0.680440 | 0,.84707 | 0.076S61 | 0..93726

Bo40g | (.880952 | 0.685374 | 0.291214 | 0.080412 | 0.15955¢C
. ¥et5 | 0.883041 0.650161 0.257638 | 0.083898 | 0,205418
| €470 | 0.885057 | 0.6$4807 | 0.303980 | 0.087418 | 0,211207

B4£51| 0.887005 | 0.69932C | 0.310236 | C€.C9C969 | G.216956
. 900 0.888888 | 0.703705 | 0.316415 | 0.094548 | 0.222662

Selb 0,890710 | 0.707563 | 0.322508 | 0.098152 | 0.228324
' s.20, | 0.892473 | 0.7:2105 (.328519 | 0.101780 | 0.233940

Ye45. 1 0.894175 | 0.716133 | 0.334449 | 0.105428 | 0.239510
! 9460 | 0.895833 | 0.720052 | 0.340297 | 0.109094 | c.245031
| SaT5 | 04657435 | 0.723865 | 0.346065 | 0.112776 | 0.250504

$.90 | 0.898989 | 0.727578 | 0.351752 | 0.116473 | 0.2553927
| 10,05 €.500497 | 0.7311%4 | C€.35736C | €.120182 | G.z613C0
10420 | 0.SC1960 | 0.734717 | 0.362890 | 0.123901 | 0.266621
10.35 | ¢,903381 0.738150 | 0.368342 | 0.127628 | 0.2718%2
1Le650 | 0.904761 | 0.7414S¢ | 0.373717 | 0.131362 | 0.277110
i0.65 | 0,506103 | 0.744755 | 0.37S017 | 0.125101 | 0.282276
20460 1 0.907407 | 0.747942 0.384241 | 0.138844 | 0.237350
10.65 | €.5C8675 | 0.751047 | 0.389362 | 0.142588 | 0,292452
11410 | 0.90990% | 0.754078 | 0.354470 | 0.146332 | 0.297461
12.25 | €.911111 0.757037 | €.399476 | 0.150076 | 0.302418
11440 | 0.51228C | 0.759526 | 0.404412 | 0.153817 | 0.307323
(1Le55 1 00913419 | 0.762748 | C.409277 | 0.157555 | 0.312175
i1.70 1 0.914525 | 0.765505 | C.414074 | 0.161289 | 0.316576
11485 | 0.915611 | 0.768199 | 0.4i8803 | 0.165016 | 0.321724
12,00 | 0.9516666 | €.77C833 | C.423466 | 0.168737 | 0.326422
12,15 | 04517695 | 0.772408 | C.428063 | 0.172450 | 0.331067
12.30 | 0.918699 | 0.775927 | C.432555 | 0.176154 | 0.335662
12,45 | 0.915678 | C.77839C | 0€.4370¢5 | 0.179849 | 0.340207
12,80 | 0.920634 | 0.78080L | 0.441471 | 0.183533 | 0.344701
12475, | €.92i568 | 0.783i00 | 0.445816 | 0.187206 | 0.34914¢
1250, | 0.52248C | 0.785459 | 0.450101 | €.190867 | 0.352541
[ 13.0% | 0.923371 | 0.787730 | 0.454327 | 0.154516 | 0.357887
13.20 | G.S24242 | 0.789944 | G.458454 | 0.198151 0.362185
13.35 | €.$25053 | 0.792113 | C.462604 | 0.201773 | 0.306435
13,50 | 04925925 | 0.754238 | 0.466657 | 0.2C5380 | 0.370¢37
12.65 | C€.S26735 | ©.756320 C.47G655 | 0.208972 | 0.374762
13.80, | 0.927536 | 0.798361 | 0.474565 | 0.212549 | 0.3789C1
135,95, | ©+%¢8315 | 0.800362 | 0.478489 | 0.216109 | 0.3829¢4
14,10 | 0.529078 | 0.802323 | G.482326 | 0.219654 | 0.386982
14.25 | 04629824 | 0.804247 | C.486112 | 0.223181 €.390954
14.40 | €e93C555 | 0.806134 | 0.489847 | 0.226692 | 0.354882
14.55 | 04931271 | 0.807985 0.493532 | 0.230185 | 0.398766
14,70 | €.931972 | o.8c9801 | 0.457168 | 0.233660 | 0.402607
L4.85 | 00532655 | 0.811583 | 0.500755 | 0.237i18 | 0.406405
vioo' | ©+933333 | 0.813333 | (€.5C4296 | 0.240557 | 0.4101€0
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NORMALISED HYPERBGLIC BESSEL FURCTIONS OF Z FRCM 0 TO 150

CRCER
? 3z2 572 9/2 1372 (5/721%(5/2)
15420 0.634210 0.81%6l0 0.508944 0.245113 0.415103
1b.40 0.935064 0.817844 C.513512 0.249636 0.419573
15.¢0 0.535897 0.820019 0.518000 0.254125 0.4247170
15. 80 C.$36708 0.Bz2143 0.522412 0.258579 0.429468
,Le.0¢ 0.537500 0.824218 0.526748 0.262999 0.43415¢
16420 0.938271 0.325245 0.531011 0.267334 0.438745
leaul 0.539024 0.828227 C.5352C2 0.271733 0.443268
 LE.6D 0.535755 0.830164 C.535322 0.276047 0.447726
y 16000 0.540476 0.832057 0.543374 0.280326 0.452119
17.00 0.54117¢ 0.833910 €. 547356 0.2B4569 0.456448
i1_7-20 0.541860 0.835722 0.551278 0.288776 0.460715
,11-40 0.942528 0.837445 0.555133 0.292947 0.464621
,17-60 0.543181 0.839230 0.55852¢ 0.297083 0.4650¢5
i17.80 0.542820 0.840629 0562657 0.301182 0.473155
 1be 00 0.544444 0.842592 0.566329 0.305246 0.477184
"1+ 20 6945054 0.844221 0.569942 0.309275 0.481157
1440 C.945652 0.8458117 C.573458 0.212267 €.485075
lo. 60 0.64623¢ 0.847381 0.576598 0.317224 0.488937
18460 0.546808 0.848913 0.580443 0.321146 0.492746
16,00 0.947358 0.850415 C.583835 0.325033 0.4965C2
19. 20 0.9479i¢ 0.851388 0.587) 74 0.328885 0.500207
iS.40 0.948452 0.853331 €.590462 0.332701 0.5038¢¢0
194 €0 C.%48975 0.854748 €.5937C1 0.336484 0.507464
 Ls.u0 0.549494 0.856.37 €.596890 0.340231 0.511019
2Vewu €.550C00 0.8574%% €.600031 0.343945 0.514526
¢Le U Ce55C435 0.858837 €.603125 0.347624 0.517586
| uehuL 0.950580 0.860149 C.5600173 0.351270 0.521400
A 0.55145¢€ 0.861438 €.609178 0.354882 0.524768
wlotl 0.951923 0.862703 0.612} 36 0.358461 0.528092
Zlevvy 0.952380 0.8563945 0.615052, 0.362007 « 531371
2Lecv 0.65283¢ 0.865165 0.617926 0.365520 0.5346CE
¢lsbu 0.653271 0.866363 C.620758 0.369001 0.55780C3
¢la bl 0.953703 0.867541 0.623550 04372449 0.5406¢%6
2le bV 0.554)28 0.868697 €.626302 0375866 0.5440¢68
2eeUL 0.954545 0.865834 0.629015 0.379251 0.547140
Leeil €.554554 0.87C952 C.631662 0382605 €.550173
Zie4U 0.955357 0.872050 C.634330 0.385928 0.553168
22484 0.955752 0.87313¢ Ce£36932 0.585220 0.556124
Zeebu C.656140 0.874192 04639498 0.392481 0.559044
l 2340y 0.656521 0.875236 0.642020 0.395712 0.561G2¢
iZJ.?u €.556896 0.876203 C.644525 €.398%914 0.564773
2oehy Ce 6572564 0.877273 0.646987 0.402086 0.567585
(c:.uu 0.657627 0.878267 0.64%417 0.405229 0.57C362
23480 €.557983 0.879245 C.651814 C.408242 0.5731C4
Y eaanl €.$58333 C.8806208 Ce65417S 0.411427 0.575614
Vb 20 0.558677 0.881155 0.656513 0.414486 0.57845¢
Ja. 40 0.955016 0.882G88 C.658816 0.417513 0.581134
lere €U 0.959249 0.883GC06 0.661089 0.420514 0.58374¢
| cae L 0.$59677 0.583909 C.663323 Ce423437 0.586327
2500 0.96CCO0 0.884799 0.665548 0.426434 0.588877
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NORMALISED HYPERBGLIC BESSEL FUNCTIONS OF Z FRCM O TO 150

ORDER
b4 3/2 572 9¢2 1372 (5/721%(9/2)

25:25 1| 0.56039¢ 0.885893 C.6682717 0.430079 0.592022
25450 0.260784 0.886966 C.670963 0.433¢682 0.595121
25,15 '} (.561165 0.888019 C.£736C6 0.4317245 0.5981175
26.00 '| 0,967538 0.889053 0.676208 0.440768 0.601185
ctezl ] 0,561904 0.850068 C.678769 0.444251 0.604151
<6450 '| 0,562264 0.891064 0.681261 0.447694 0.0607075
'Zte 15 0.962616 0.892042 0.68377% 0.451099 0.609957
1 27.00 0.962962 0.893C0C4 C.686221 0.4544656 0.612768
127.259 | 0.563202 0.893948 0.688629 0.457796 0.615556
12750 0.963636 0.894876 0.691002 0.401C88 0.6183¢1
27475 0.563963 0.895787 0.693339 0.464344 0.621085
280G 0.964285 0.896683 0695642 0.467563 0.623771
cba 258 €.564601 0.85756% C.697511 0.470748 0.62642¢C
28450 0.564912 0.858430 C.700147 0475897 0.629033
. 2be 19 0.965217 0.899281 0.702351 0477012 0.631611
29.00 0.965517 0.900118 €.704523 C.4R0093 0.034154
29425 0.565811 0.960942 0.706664 0.483140 0.526663
29,490 0.966101 0.901752 0.7C8774 0.486155 0.635139
29.75 0.566386 0.502546 C. 710855 C.489136 0.641582
30400 0.566666 0.903333 0.712907 0.492086 0.643953
ek 0.566942 0.9C4104 C.71493¢C C.495004 0.646372
" 40450 0.567213 0.904864 0.716925 0.497891 0.648720
30. 75 0.567479 0.905611 0.7188%3 0.500747 0.651038
41.00" C.567741 0.906347 €. 720834 0.503573 0.653326
3l.¢5 0.567996 0.907C71 0.722749 0.506369 0.655585
21450 0.968253 0.9C7785 0.724638 0.509135 0.65781¢
31475 €.568503 0.908437 0.7265C2 0.511873 0.660018
32,00 C.56874% 0.90917% 0.728341 0.514581 0.c62162
2,425 0.568992 C.9(9661 0.730155 0.517262 0.664340
32450 0.569230 0.91053Z C.731546 C.516915 0.666661
32415 C.$65465 0.511193 0.733714 0.522540 0.666555
33.00 C.569696 0.,911845 0.735458 0.525139 0.670624
33.2% 0.569924 C.912487 C.73718¢C 0.527710 0.672668
23,0 0.970149 0.913120 0.738881 0.520256 0.674687
33.1% €.97C370 0.913744 €.740559 0.532175 G.&676682
34,00 €.$7C588 0.914256 0.742216 0.535269 0.6786453
344258 €.570802 0.914966 0.743853 0.537738 0.680600C
34.50 0.971014 0.515563 C. 745465 0.540182 0.682524
| 34e 1% 0.571223 0.916]53 0.747065 0.542601 0.684426
35,00 0.971428 0.916734 0.748641 04544957 0.686305
3b.25 G.571631 0.917307 €.750i98 0.547308 0.688:62
35450 0.971830 0.917873 0.751736 04545716 0.689968
£.15 G.972027 0.918431 0.753255 0.552041 0.86%1313

| 16400 C.572222 0.518%8) 0.754756 0.554343 0.693607
| 56426 0.972413 C.919524 0.756239 0.5506622 0.,695380
26450 €.572602 €.92006C G.7577C4 0.558880 0.497123
364 75 €.57278% 0.920588 0.755152 0.561115 0.656867
37.00; 0.972972 0.921110 0.760582 0.563329 0.70058}
‘37-251 0.$73154 0.921628 C.761697 0.565521 0.70227¢6
137,50 0.973332 0.922133 0.763365 0.5676%2 0.702952




Cebm e e -

N

166

NORMAL TSEC HYPERBOLIC BESSEL FUNCTICNS OF Z FRCM 0 TO 150

) CRGER
4 3/2 5/2 9/2 13/2 (5/21X(5/21
LY
37.80 | 0.973544 | 0.922734 | C.765051 | 0.570271 | 0.705939
38.i0 | 0.973753 | 0,923326 | 0.766684 | 0.572819 | 0.707899
30040 | 0.673658 | 0.$23609 | C.7682S4 | 0.575339 | C.705634
38,70 | 0.57416C | 0.924483 | 0.749883 | 0.577831 | 0.711744
129400 | 0.974358 | 0.925049 | 0.771450 | 0.530294 | 0.713630
136420 | 0.974554 | 0.925606 | C.772997 | €.582730 | 0.7154S51
(39460 | 0,974747 | 0.926155 | 0.774522 | 0.585139 | 0.717328
139450 | 0.974937 | 0.926696 | 0.776028 | 0.587521 | 0.719142
40.¢0 | ©.575124 | 0,927229 | ©.777513 | 0.589876 | 0.720933
4Ce5G | 0.575308 | 0.927754 | 0.778979 | 0.592206 | 0.7227¢C2
40460 | 0.97545C | 0.928272 | C.780426 | 0.594511 | 0.724448
L4110 | 0,575665 | 0.928783 | 0.781855 | 0.596790 | 0.720.73
l4leut | 0.975845 | 04929286 | 0.783265 | 0.599044 | 0.727877
41670 | 0.576015 | 0.929782 | C.784657 | 0.601275 | 0.729560
4¢e0U | 0,976190 | 0.530272 | 0.786031 | 0.603481 | 0.731223
42420 | 0.576359 | 0.630754 | 0.787388 | 0.c05664 | 0.732865
4cetl | €.676525 | 0.621230 | 0.788728 | 0.607824 | 0.734488
4Ze5v | 0.976689 | 0.931700 | 0.790051 | 0,609960 | 0.736061
43420 | GC.976851 | 0.932163 | C.791358 | 0.612075 | 0.737c7%
43420 | 0.577011 | 0.932619 | 0.752649 | 0.€14167 | 0.73924)
43.80 | €.977168 | 0.933070 | 0.793924 | 0.616237 | 0.740788
4441C | 0.577324 | 0.933515 | C€.795184 | 0.618286 | 0.742317
44240 | 0.577477 | 0.933954 | 0.796429 | 0.620314 | 0.743823
44.7C | 0.577628 | 0.934387 | 0.797658 | 0,622320 | 0.745322
45.00 | 0.577777 | 0.934614 | 0.758873 | 0.624307 | 0.746758
45430 | 6.977924 | 0.935236 | C.200073 | 0.626273 | 0.748258
45.60 | 0.979070 | 0.935¢53 | 6.801255 | C.628219 | 0.7497¢C1
45.90 | 0.578213 | 0.936064 | 0.802432 | €.620145 | 0.7t1328
46420 | 0.578354 | 0.936470 | 0.803550 | 0.632052 | 0.752v39
46450 | €.S78494 | C.936871 | C.B04736 | 0.633940 | 0.753534
46480 | 0.576632 | 0.937287 | 0.805368 | 0.635809 | 0.755313
47,10 | 0.978768 | 0.937658 | 0.806987 | 0.637659 | 0.756€77
'47.4C | 0.578962 | 0.938044 | ©.808053 | 0.63%492 | 0.758027
"47.70 | 9.979035 | 0.938425 | 0.809186 | 0.641306 | 0.75936i
48,00 | C.575166 | 0.938802 | C.810268 | 0.643102 | C.76C&81
48,30 | 04575296 | 0.939174 | ©.811337 | 0.644881 | 0.701987
48,60 | 04979423 | 0.939541 | 0.812394 | 0.646643 | 0.763278
42450 | C.97555C | 0.939904 | €.813440 | 0.648388 | 0.7¢455¢
4,20 | 0.579674 | 0.940263 | 0.814474 | 0.6501i5 | 0.765820
49.50 | ©.979797 | 0.940618 | 0.615497 | 0.651827 | 0.767C71
45,60 | 04579916 | 0.940968 | o0.8l65c8 | ©.653522 | 0.768308
50.10 | 0.580035 | 0.941314 | C€.B175C9 | 0.655201 | 0.769533
' 50e4l | 04980158 | 0.941657 | C.813468 | 0.656864 | 0.77C745
5y, 70 | CeS8C27€ | 0.941995 | 0.819477 | 0.658511 | 0.771944
51,00 | 0+980392 | 0.942329 | C.B20446 | C.660143 | 0.77313!
1.50 | 04980506 | ©0.942660 | C.821404 | C.661760 | 0.7743G5
bL.60 | 00980626 | 0.942987 | 0.822353 | 0.663362 | 0.775468
5i.90 | ©4980732 | 0.943310 | 0.623251 | 0.664949 | 0.77¢61S
S1.70 | ©+980842 | 0.943625 | C.824219 | 0.666521 | 0.777758
3.5y | 00960952 | 0.943945 | 0.825138 | 0.668075 | 0.778385
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NORMALISED HYPEPBOLIC BESSSL FUNCTIONS OF Z FRCM O TO 150

GRDER
4 3/2 5/2 9/2 13/2 (5/21X(9/2)
52485 0.581078 | 0.944305 | 0.826198 | 0.669878 | 0.780.87
53.20 | 0.981203 | 0.944665 | 0.827245 | 0.671659 | 0.781473
53455+ | 0,981325 | 0.945023 | C.82828C | C.673421 | 0.782744
52450 | 0.581447 | 0.945374 | 0.829302 | 0.675164 | 0.78400i
£4.25 | 0.9B1566 | 0.945716 | ©.830312 | 0.676889 | 0.785243
54,60 | C.581684 | 0.9456061 C.831311 | 0.678596 | 0.786471
54,95, | C.%81801 | 0.9463S8 | 0.832298 | 0.680286 | 0.787685
55.30" | 04981916 | 0.946731 C.833273 | 0.681958 | 0.788886
55,65 | €.982030 | 0.947060 | 0.834237 | 0.683613 | 0.790073
£e.30 | 0.982142 | 0.947385 C.835150 | 0.68525! | 0.791247
8€.35 | 0.582253 | 0.547706 | 0.836133 | 0.680872 | 0.792408
56.70' [ 0.982263 | 0.548023 | 0.837064 | 0.688478 | 0.793556
[£7.0%5 | 0.982471 | 0.948336 | G.837965 | 0.690067 | 0.794662
| 5740, | ce982578 | 0.948645 | 0.828896 | 0.691640 | 0.793815
157,75 | 0.982633 | 0.948951 0.839797 | 0.693197 | 0.796926
[5¢410 | ©€.962738 | 0.949253 | C€.84C687 | 0.654739 | 0.798025
| Sasab | 04582891 | 0.949552 | 0.841568 | 0.69626¢ | 0.7991)3
1 £6.80 | 00982993 | 0.949847 | 0.842439 | 0.697778 | 0.80018¢
'E9.15 | 0.583093 | 0.950138 | 0.843301 | 0.659275 | 0.801:53
'56.50 | 0.983193 | €.95042¢ | <C.844J53 | €.700758 | C.8023cCé
£9,05 | 6.$83251 | 0.950712 | 0.844956 | 0.702226 | 6.803348
169,20 | 0.983388 | 0.550993 | C.£45830 | 0.703¢80 | 0.804379
60,55 | 0.683484 | 0.951272 C.846656 | 0.705120 | 0.8C54C0
160490 | 0.58357% | 0.551547 | 0.847472 | 04706547 | 0.806410
[€lei5 | 0.683673 | 0.951820 | 0.648280 | 0.707955 | 0.807410
le1.6u | c.se3ree | 0.552085 | €.849075 | 0.709359 | 0.80835¢
|€1ev5 | C.983857 | 0.952355 | C.849870 | 0.710745 | 0.809378
16420 | 0.583%48 | 0.952618 €.850653 | 0.712119 | C.510348
£2.65 | 0,584038 | 0.952879 | 0.851427 | 0.713479 | 0.511307
€3.9¢ | 0.984126 | 0.953136 | 0.852194 | 0.714827 | 0.812257
65435 | C€.984214 | 0.953391 C.852553 | 0.716162 | 0.813158
€3.70 | 0.984301 | 0.952643 | 0.8537C4 | 0.717485 | 0.814129
164505 | 0.984387 | 0.953892 | cC.854447 | ©.718796 | c.815051
64440 | €.584472 | 0.954139 | 0.855183 | 0.720095 | 0.8159¢&4
04.75 | 0.984555 | 0.954383 | 0.855512 | 0.721382 | 0.8168&8
t5.10 | 0.584635 | 0.954624 | 0.£56633 | 0.722658 | 0.817763
ELe4s | 04684721 | 0,954863 | 0.857347 | 0.723922 | 0.818650
6.8¢ | 0.684802 | 0.9551CC | C.856054 | 0.725174 | 0.81952¢
€6.15 | 0.984882 | 0.955334 | C.858754 | 0.7264i6 | 0.820397
£6.5C | 0.984962 | 0.955585 | C.855448 | 0.727646 | 0.821259
lg6. 85 | 0.985041 | 0.955794 | C.860134 | C.728866 | 0.822112
67.20 | 0.985119 | 0.956021 C.860814 | 0.730075 | 0.822957
67.5 0.585196 | 0.956245 | 0.861437 | 0.731273 | 0.823754
£7.50 €.565272 | 0.956466 | 0.862154 | 0.732460 | 0.824623
lge.25 | 0.985347 | 0.956688 | 0.862815 | 0.733638 | 0.825444
. .| €-985422 | 0.656505 | C.663465 | 0.734805 | 0.826258
6. 55 .| 00585496 | 0.957121 C.864117 | 0.735962 | 0.827064
Go.30 || 00989569 1 0.957334 | 0.864759 | 0.737109 | 0.827863
€o 65 (| C-985842 | 0.957545 | C.865394 | 0.728246 | 0.828655
0. 5g 1| ©+985714 | 0.957755 | 0.866024 | 0.739374 | 0.829439
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CRCER

4 372 5/2 9/2 1272 (5/2)%15/2)
.40 0.585795 0.957591 0.866737 0.740651 0.830327
7L. 80 0.585875 0.958225 0.867442 0.741915 0.831205
71,20 0.585555 0.958456 C.868140 0.743168 C.832075
71.66 0.986033 0.958685 C.£68830 0. 744408 0.832935
7¢.00' | 6.986111 0.958912 C.869514 0.745637 0.833787
72.40. | €.986187 0.959135 C.870196 0.746854 0.834630
72480 0.986263 0.959357 0.570859 0.748059 0.835465
13,20 C.$86338 0.955576 C.871522 0.749253 0.836262
73.€C 0.985%4]3 0.555792 C.872177 C.750436 0.837110
Taelt C.986486 €.960007 C.872826 0.751608 0.837920
744 44 0.586556 0.560219 0.873469 0.752770 0.838722
144 80 0.986631 04960429 0.874105 0.753920 0.83951¢
75.201| 0.586702 0.56063% 0.874735 0.755060 0.840302
7L 60, | 0.986772 0.960842 0.875358 0. 756189 0.841081
7L.00. | D.986842 0.961045 0.875975 0.757308 0.841852
764400 ] 0.58691C 0.961246 0.676587 0.758417 0.842616
16480 C.586979 0.961446 C.677192 0.759516 0.843373
77.20 0.987046 0.961643 C.877791 0.760605 04844122
77.60 0.987113 0.961838 0.878385 0.761685 0.844864
78.00 C.987179 0.962031 C.878972 0.762754 C.64556%
78.40, | 0.987244 0.962222 C.879555 0.763815 0.846327
74,60 | 0.987306 0.562412 €.880131 0.764866 0.841046
75.20 | 0.687373 0.962596 ¢.880702 0.765907 0847763
76. €0 0.587437 0.962785 C.681268 0.766940 0.848472
8L.00 0.587500 0.562568 €.881828 0.767963 0.849173
buehO 0.987562 0.963150 0.882383 0.768978 0.349368
3V 80 0.$87623 0.5c3330 0.882933 C.769984 C.350557
tle20 0.587684 0.963506 0.883478 0.770981 0.851239
L ble 0 0.987745 0.563685 0.884018 0.771970 0.851915
‘y2.00 0.587804 0.9£3860 C.884553 0.772950 0.852586
| 8¢ 40 0.987864 0.664034 6.885083 0.773922 0.853250
lsz. €0 0.987922 0.566205 0.885608 0.774885 0.3536C8
63420 0.587980 0.964375 0.885128 0.775841 0.8545£0
63460 G.988038 0.964544 0.886643 0.776788 0.855207
b4« 00 €.588095 0.964710 C.887154 0.777728 0.855847
84440 C.588151 0.9¢4876 C.887661 0.778660 0.8564832
b4e €O 0.588207 0.965036 0.588163 0.779584 0.857112
85,20 0588262 0.965202 €.8836060 0.780500 0.657736
85,60 0.588317 0.965362 0.889153 0.78:409 0.858355
ltce 0 0.588172 0.965521 0.889642 0.782310 0.556968
l60.40, | 0.98842¢ 0.56507$ C.89012¢ 0.783204 C.d55577
6. 80 0.588479 0.965835 C. 890606 0.784091 0.660.79
27.20 0.588532 0.965550 €.851082 0.784971 0.860777
87,60 0.988584 C.9¢6144 C.891554 0.785843 0.861370
&k, 00 0.58863¢& 0.9¢6290 C.892022 0.786709 0.861557
0. 40 0.988687 0.966447 C.852486 0.787567 0.862540
44 . 60 0.588738 0:9¢6596 C.892945 0.788419 0.863118
boe .0 0.588789 0.966744 0.893401 0.789264 0.863691
8960 0.588836 04566861 C.853253 C.790107 0.864256
. 0.588888 0.9£7037 0.894302 0.790934 0.864823

90,00
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CRDER
z 3/2 5/2 972 13/2 (5/2)%15/2)

190445 0.988944 | 0.967199 | 0.894801 | 0.791862 | 0.865451
90.50 0.588998 0.967359 | 0,855256 | 0.792781 | 0.866074
;91435 0.589053 | 0.,967518 | 0.895787 | 0.793693 | 0.866650
Gla €0 | 0.569106 | 0.967676 | C.856273 | €.794597 | C.2673C2
92,25 C.S86155 | 0,967832 C.856754 | 0.795493 | 0.867507
$2.70 | 0.589212 | 0.967986 | 0.897231 0.796381 0.868508
93.15 C.$89264 | 0.968135 | ¢.8977¢3 | 0.797261 | 0.8691C2
9363 C.$85316 | 0.968291 0.858172 | 0.798i34 | 0.865652
15405 | 0.589367 | 0.568441 €.898636 | 0.799000 | 0.87C27¢
194450 | 0.989417 | 0.568985 | 6.859065 | 0.799858 | 0.37C355
S0 SY | 0.909468 | 0.968737 | 0.899551 | 0.800709 | 0.871428
65,4011 '€.689517 | C.968883 €.5€0602 | 0.60i552 | 0.871557
’ s5.u5' | 0.685567 | 0.969027 | €.900450 | 0.802339 | 0.872551
| 66430 | 0.989615 | 0.969170 | €.900893 | 0.803218 | 0.873120
| S¢+7> | T.929664 | 0.969312 €.901333 | 0.804041 | 0.873674
| 97.20 | 0.989711 | 0.9€9453 | 0.90176% | 0.804857 | 0.874223
., 67.85 | 0.985759 | 0.969552 0.202201 0.805666 | 0.8747¢7
98,10 | C.$8580& | 0.965730 | C€.502625 | C.B06469 | C.8753C7
| v8.55 | 0.989852 | 0.569867 | 0.903053 | 0.807265 | 0.875842
| §9.00 | 0.585898 C.970003 | €.9C3474 | C.808054 | 0.876372

$9.4% | 0.989944 | 0.970137 | 0.90389L | 0.808837 | 0.876858
| 55490 | 0.989989 | 0.97027C | 0©.604304 | 0.809614 | 0.877420
|100.35 |  0.590034 0.97C402 C.504714 | 0.£10384 | 0.8771037
100.80 | €.$90079 | 0.97C533 | 0.505121 0.811149 | 0.878450
(1Ur+221]  €.990122 0.970663 | 0.905523 | 0.811907 | 0.878558
'101.70 | 0.9501¢7 | 0.970791 6.905523 | 0.812659 | 0.879462
;402015 1 06.990210 | 0.970S18 | 0.906319 | 0.813405 | 0.879963
102480 | €.590253 | 0.971045 | CoSC671Z | 0.814145 | C.880458
105405 | €.59C295 | 0.97117C | 0.907102 | 0.814880 | 0.880S50
1403450 | €.990338 | 0.571294 0.907488 | 0.815609 | 0.881438
102,48 | €.95C375 | c.971417 €.50787] 0.816332 | 0.881922
104,40 | 0.500421 0.971539 | 0.908251 | 0.817049 | 0.882402
104.t5 | €.990462 | 0.97166C | 0.,908628 | 0.817761 0.832878
105,230 | €.65¢503 | 0.971780 | ¢€.509002 | c0.818467 | 0.383351
110%. 754 C€.990543 | 0.971859 | 0.909373 | 0.819168 | 0.883819
106400l 0.990583 | 0.972017 | C€.909741 | C.819863 | 0.884284
100.65 | €.590623 | 0.972134 €.910105 | 0.820554 | 0.884745
"iLTelb || 04990662 | 0.972250 | 0.910467 | 0.821239 | 0.885202
1107.84 ]|  c.s9cTol 0.972365 €.910826 | 0.821918 | 0.885656
l1o5.00 1] Ce990740 | 0.972479 | 0.911182 | 0.822593 | 0.356106
1108.451] ©€.990779 | 0.9725%2 0.911536 | 0.8235203 | 0.886553
(105.9v,] ©€«990817 | 0.972704 | 0.91i88¢ | 0.823927 | 0.886596
L 10Gs 351] €e990855 0.972816 C.912254 | 0.824587 | 0.88743¢
109,60 ]| €+§9C892 | 0.972526 | C.S12575 | 0.825241 0.887872
1,10.25!] 0.990929 €.973035 | 0.9:12921 | C.825891 | 0.888305
110,70 €+990560 | 0.973144 C.913261 | 0.826536 | 0.388735
i11.15| ©eS91003 | 0.973z52 €.543598 | 0.827177 | 0.889161
il.¢oll ©-991039 [ 0.973355 [ o0.913¢32 | o0.827812 | 0.889584
ia.oei| ©+S51075 | 0.973465 | C.914264 | 0.828443 | €.890004
H32.ce!| 0.991111 0.973570 | 0.914592 | 0.829069 | 0.850421
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CRCER
z 3/2 572 9/2 13/2 (5/21%(5/2)
114400 | €.$91150 | 0.973686 | 0.91495¢ | 0.829760 | 0.850830
113.50 | €.991189 | 0.973801 0.525316 | 0.830445 | 0.891336
114400 | C.<91228 | 0.973915 | «c.s15673 | 0.831125 | 0.891787
114450 | ©€.$91266 | 0.974027 | 0.916026 | 0.831799 | 0.892235
115,00 '| ©€.991304 | 0.974139 | 0.916377 | 0.832468 | 0.85268C
115.5C | C€.SS1341 | 0.974250 | 0.916725 | 0.833131 | 0.853120
11£.00 | 0.991379 | 0.974380 | 0.91707¢ | 0.833790 | 0.833557
116450 | C.S91416 | 0.97446S | C€.917412 | ©.834443 | 0.893661
117,00 | €.591452 | 0.974578 | 0.917752 | 0.835091 | 0.8944:1
117.50 | 0.591489 | 0.974685 | 0.918088 | 0.835734 | 0.854847
"118.00 | €.991525 | 0.974791 C.G18422 | 0.636372 | 0.85527C
110620 | 0.991561 | 0.974897 | 0.918753 | 0.£37005 | 0.85565¢C
1119.00 | €.991596 | 0.975001 0.919082 | 0.837634 | 0.8561Cé
116,50 | C.991631 | 0.975105 | C€.519408 | 0.838257 | 0.89651%
1120,00 | C.S91606 | 0.975208 | 0.919731 | 0.83887¢ | 0.396529
'120.50(] 0.551702 | 0.975310 | C.920052 | 0.829490 | 0.897336
121,00 | 0.991735 | 0.675411 | €.92037C | C.B84609% | 0.85772%
121.50 '] 0.961769 | 0.975511 C.$20685 | 0.840704 | 0.658136
122.00.] 0.691803 | 0.975611 €.920998 | 0.841305 | 0.898536
122,50 | C.99183¢ | 0.97571C | ©.921369 | 0.841900 | 0.856930
123.00 | 0.99186S | 0.575808 | 0.921617 | 0.842492 | 0.859321
123.50 | 0,991902 | 0,975905 | C€.921923 | 0.843076 | 0.d97C6
124400 | C.991935 | 0.976001 | 0.522226 | 0.843¢6) | €.90C054
124,50 | 0.991967 | 0.976097 | 0.922527 | 0.844239 | 6.900476
125,00 | 0.S9200C | €.976191 | €.922826 | C.844813 | C.9C0856
125.50 | C€.592031 | 0.976286 | 0.923123 | 0.845383 | 0.901232
126.00 | ©0.992063 | 0.976379 | 0.923417 | 0.845945 | 0.901605
116,50 | C.592054 | 0.976472 .$23769 | 0.84651C | 0.90157c
127,00 | ©€.992125 | 0.976563 | 0.923998 | 0.847068 | 0.902344
127.50¢ | 0.992156 | 0.976655 | 0.924286 | 0.84762L | 0.5627¢9
12¢,00 | €.952187 | 0.976745 | 0.924571 | 0.84817i | 0.503071
128.50 | 0.992217 | 0.976835 | 0.924855 | 0.848716 | 0.903431
126,00 | 0.992248 | 0.976924 | 0.925136 | 0.849258 | €.903788
1z9.50 | €.9$2277 | 0.977012 | c.925415 | 0.849796 | 0.904142
130.00 | €.992307 | 0.977100 | 0.925692 | 0.850330 | 0.504454
130.50 | 04992337 | 0.977137 | €.925$67 | 0.85086C | 0.304842
131,00 | 0.992366 | 0.977274 | 0.926239 | 0.851387 | ©.505190
131.50 | 04992395 | 0.977359 | 0.9265i0 | 0.851909 | 0.903524
132.00 | 0.992424 | 0.977444 | 0.926779 | 0.852428 | 0.9C587¢
132.50 | ©€.992452 | 0.977529 | 0.927046 | 0.852944 | 0.906215
35,00 | 0992481 | 0.977613 | ©.527311 | 0.853456 | 0.906552
133.50 | €-$92505 | 0.977696 | 0.927574 | 0.853964 | 0.506886
134.08 | ©0-592537 | 0.977779 | 0.927835 | 0.854469 | 0.307218
Laaiso | Cec92565 | o0.97786i 0.928095 | 0.85497C | 0.907%548
136,00 | ©-992592 | 0.977942 | 0.928352 | C.55408 | 0.907575
i og | 0:992619 | 0.978023 | C.5266C8 | 0.855963 | C.SC82CC
1300 | €-992647 | 0.978103 | c.92¢862 | 0.856454 | 0.903523
Selog | 0.992673 | 0.978182 | C.929114 | 0.856942 | C.9c8B43
136.58 1 g,65270c | 0.978262 | C€.929364 | 0.857427 | 0.909161
Fs;-gg 0.592727 | 0.578340 | 0.929612 | 0.857908 | 0.509477
d .S




NORMALISEC HYPERBOLIC BLSSEL FUNCTICNS OF Z FRCM 0 TO 150

BEOTION

2 AUG1974
LIBRARY

CRDER
4 372 572 9/2 1372 {5/721X(9/2)

I JRi—

136.05 0.59275¢& 0,978426 0.9298%4 0.858434 0.909822
i A38. 60 0.992784 0.9785.1 C.%30153 0.858956 0.910165
I139.15 G.562813 0.578595 €.930420 C.859474 C.SJC5CS
"136,70 0.652841 0.97867% 0.530685 0.859988 04910842
| 140425 0.992869 0.978702 0.930948 0.860498 0.911177
''140,.80 C.G652857 0.917384¢ C.93123¢9 0.861005 0.911506
l41les5 04932925 0.,978626 049314668 0.861508 0.911829

141.90 0.992952 0.979007 C.931726 0.862008 0.91216¢
, LaZoud €.952979 0.,975087 C.931681 0.862504 C.912491

143,60 0.99300¢ 0579167 0.932234 0.862996 0.912814

143,58 0.993033 0.97924¢ 0.93248¢ C.863485 C.913134

146,10 £e$9306C 0.$79325 C.92273¢ 0.863970 0.913452
i Laa, 65 0.993086 0.979403 0,922983 0.86445%2 0.913767
© 145420 | 0.993112 0.,979481 C.923229 C.864931Q 0.91408}
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