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Abstract 

V/e discuss the successes and f a i l u r e s 
of the naive quark and parton models and o f f e r a 
possible remedy f o r the resonance symmetry versus 
vertex symmetry dilemma. Using the concept o f 
current and constituent quarks related by a 
general Melosh-type transformation, we calculate 
matrix elements f o r e x c i t a t i o n of the baryon octet 
ground state by weak and electromagnetic currents 
and f i n d t h a t the theory compares w e l l w i t h 
experiment except i n the low LO region. Here some 
f u r t h e r SU(6) breaking mechanism i s necessary f o r 
a good f i t . 

An a l t e r n a t i v e to the current and 
constituent quarks idea i s to attempt a 
r e l a t i v i s t i c treatment of quarks, assuming 
current and constituent quarks to be fundamentally 
i d e n t i c a l . Several models are discussed and a new 
model f o r mesons i s presented. The solutions are 
s i m i l a r to those obtained i n other models apart 
from the inclusion of sp i n - o r b i t coupling terms, 
which have not previously appeared n a t u r a l l y i n 
r e l a t i v i s t i c wavefunctions. V/e calculate some 
decay widths and f i n d reasonable agreement w i t h 
the data. 
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1. The development of the n o n - r e l a t i v i s t i c quark model 

1,1 Introduc t i o n 
The concept of an elementary p a r t i c l e , a b u i l d i n g 

block out of which a l l matter i s constructed, has haunted 
physics f o r centuries, and when f i n a l l y the proton v/as 
i d e n t i f i e d , the concensus was t h a t the elusive elementary 
p a r t i c l e had been found. The subsequent detection of many 
more s i m i l a r p a r t i c l e s did not s u f f i c e to change t h i s view 
f o r some time. 

When the SU(3) nature of the hadron spectrum 
began to emerge, the f i r s t scheme f l j v/as to assume the 
other particles to be bound states of some combination of 
protons, neutrons and Aparticles, the A being required to 
enable the construction of states o f non-zero strangeness. 
This leads to predicted states and quantum numbers which 
are not observed, such as t r i p l y charged baryon states (a 
bound state of three protons). 

Another way i n which the s i t u a t i o n may be 
viewed without losing the proton as an elementary p a r t i c l e , 
i s to invoke democracy and say that a l l the p a r t i c l e s are 
equally elementary. Then i t i s feasible to assume tha t the 
set of observed p a r t i c l e s i s unique, and i s consistent w i t h 
u n i t a r i t y , a n a l y t i c i t y , crossing symmetry and Lorgntz 
invariance. Unfortunately there i s no reason to suppose 
th a t there i s a f i n i t e number of p a r t i c l e s , and considering 
only a l i m i t e d selection leads to inconsistency [ 2 ] . On the 
other hand, a s o l u t i o n of the problem taking into account 
an i n f i n i t e number of p a r t i c l e s i s beyond the scope of . 
present techniques. 



One viable p o s s i b i l i t y i s to drop one o f the 
consistency requirements i n the hope of being able to 
include i t a t a l a t e r stage. Neglect of u n i t a r i t y , together 
w i t h the assumption that a l l p a r t i c l e s are stable, l y i n g 
on s t r a i g h t Regge t r a j e c t o r i e s , i s the course leading to 
dual models. The r e s u l t i n g spectrum i s very encouraging, 
but i n order to obtain i t , a s a c r i f i c e must be made i n the 
form of non-physical space dimensions. Also SU(3) symmetry-
i s not included, though other quantum numbers are correct. 

The problem then i s two-fold; both the symmetry 
scheme and the dynamical behaviour of the p a r t i c l e s must 
be incorporated i n any successful model. 

1.2 Symmetries of the strong Hamiltonian 
When the atom v/as postulated to consist of a 

nucleus of neutrons and protons surrounded by a number of 
electrons, the nucleons were assumed to be elementary 
p a r t i c l e s i n the sense tha t they could not be broken down 
i n t o smallor constituents, i n the same way as previously 
the atom had been thought to be i n d i v i s i b l e . I n t h a t case, 
one of the p a r t i c l e s must be stable, otherwise mass could 
be converted i n t o pure energy, and matter would not e x i s t . 
Since ^-decay of nuclei i s observed, the stable p a r t i c l e 
must be the proton, while the neutron may decay i n t o i t . 
Hence we see empirically that both charge and the t o t a l 
number of baryons i s conserved. With the increased sophi­
s t i c a t i o n of detection instruments, a. wealth of new part­
i c l e s was discovered, including the strange p a r t i c l e s . 
From the observed strong production of kaons i n pa i r s , 



- 10 -

and t h e i r subsequent weak decays, we may add to charge and 
baryon number the conservation of strangeness. 

Conservation of these quantities corresponds to 
the invariance properties of the Hamiltonian, which must 
s a t i s f y the SU(1) symmetries related to the conserved 
quantum numbers. I t should be noted th a t the strangeness 
symmetry i s only exact under strong i n t e r a c t i o n s , and i s 
vi o l a t e d i n weak processes, so that even t h i s simple 
symmetry i s broken. 

To enlarge the scheme, we must f i r s t make the 
assumption that the apparent i n d i s t i n g u i s h a b i l i t y of the 
neutron and proton except by t h e i r charge i s exact. We 
are then able to describe the neutron and proton as the 
two isotopic spin states of the :>ucleon. Clearly the 
value of the projection of the isotopic spin along some 
axis determines the charge on the p a r t i c l e , so th a t 
taking strange p a r t i c l e s i n t o account, we are led to the 
equation: 

Q = I +.£Y (1.1) 
v:here Y = baryon number + strangeness 

Thus we have an invariance of the Hamiltonian under 
ro t a t i o n s i n isospace about the z-axis, t h a t i s an SU(2) 
symmetry. TMs i s good to about 1%, since i t i s broken 
by the electromagnetic i n t e r a c t i o n , but s a t i s f i e d by the 
strong i n t e r a c t i o n . 

Combining the SU(2) of isospin w i t h the SU(1) 
of strangeness, the strong Hamiltonian must commute w i t h 
the generators of an SU(3). Ordinary spin may also be 
included to extend the symmetry to SU(6). F i n a l l y , 
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invariance under space rotations lead to an SU(6) x 0(3) 
symmetry. 

This symmetry i s approximately s a t i s f i e d by 
the Hamiltonian, which describes the elementary p a r t i c l e s 
o f the system. The nucleon, however, has structure 
functions d i f f e r e n t from u n i t y [3] and so cannot be a 
point (or elementary) p a r t i c l e . Another clue i s that 
mesons were found to f a l l i n t o octets w i t h the same spin 
and p a r i t y , while baryons f i t t e d i n t o octets and decuplets. 
This suggests th a t the meson i s formed from an elementary 
p a r t i c l e and an a n t i p a r t i c i e , each obeying the SU(3) 
symmetry, g i v i n g meson mu l t i p l e t s of: 

3 © 3 * = 8 © 1 
and that the baryon consists of three elementary p a r t i c l e s 
g i v i n g baryon m u l t i p i e t s of: 

3 © 3 (g) 3 - 1 0 © 8 © 8 © 1 
The symmetry may be extended to SU(6), though 

t h i s i s broken to about 25%. Then the mesons form m u l t i ­
plets of: 

6 ® 5* = 35 0 1 
and the baryons m u l t i p l e t s of: 

6(x)6®6 = 20 (T) 55 © 70 0 70 
The elementary p a r t i c l e s , or quarks, ere assigned spin ̂-
and quantum numbers as i n f i g 1, i n order to reproduce 
the hadron quantum numbers c o r r e c t l y . P a r i t y may also be 
predicted i f the 0(3) symmetry of o r b i t a l angular 
momentum i s included. However, the r o t a t i o n symmetry i s 
included i n such a v/ay as to neglect any spin - o r b i t 
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coupling, which i s not a good assumption £4]. A f u r t h e r 
d i f f i c u l t y i s that the symmetry i s n o n - r e l a t i v i s t i c , 
applying only i n the rest frame of the hadron. Neverthe 
less, f o r hadrons at re s t , i t works w e l l [sj . 

1.3 Scattering processes 
As w e l l as a s t a t i c scheme, some dynamic 

theory f o r the scattering of hadrons i s required.. High 
energy strong interactions can be w e l l described by the 
exchange of Regge poles i n the t-channel, whereas the 
low energy behaviour can be represented as a sum over 
d i r e c t s-channel resonances plus some non-resonating 
background ( f i g 2 ) . I n the intermediate energy region 
there are two p o s s i b i l i t i e s . The f i r s t i s the i n t e r ­
ference model [s], where the intermediate amplitude i s 
assumed to be a superposition of the two types of 
description: 

A = A R eg£ e -J- A R e s (1.2) 
However the f i n i t e energy sum rules showed t h a t t h i s 
led to double counting of resonance contributions J~7\ , 
and since the sum rules are based on a n a l y t i c i t y , •. the 
interference model was rejected i n favour of d u a l i t y , 
which gives the amplitude as: 

A = A R e ^ e
 + ARes „ ^ e s ( 1 < 3 ) 

< \ Res A,̂  denotes the l o c a l l y averaged resonance 
amplitude. 

This implies that a t low energy, the Regge 
amplitude i s cancelled by the averaged resonance 
c o n t r i b u t i o n and t h i s i s semi-local d u a l i t y . On the 
other hand, at high energy, the resonance c o n t r i b u t i o n 
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i s equal to i t s average, leaving only the Regge term. 
This suggests th a t the s- and t-channel descriptions 
are equivalent and both separately complete. 

Hence we are led to the idea o f l o c a l d u a l i t y , 
t h a t the smooth behaviour at high energy can be described 
by Regge terms or by a sum over d i r e c t s-channel resonances 
such t h a t at any energy, the maxima of some resonances 
occur a t the minima of others, summing to a smooth 
behaviour ( f i g 3 ) . This may be expressed i n terms of quark 
diagrams provided that some non-exoticity assumptions are 
made. 

An exotic p a r t i c l e is. one which cannot be made 
up as a combination of three quarks or a quark-antiquark 
pair (such as qqqqq or qqqq). The assumption that such 
p a r t i c l e s cannot be produced and do not contribute i n 
eit h e r the s- or the t-channel leads to some quite 
dramatic r e s u l t s . Consider as an example proton-proton 
scattering ( f i g 4a). At low energies, the process i s 
dominated by the formation of d i r e c t s-channel resonances. 
Now the combination of the s i x quarks from the two 
incoming protons i s exotic as defined above and therefore 
cannot contribute. Thus the process can take place only 
through thd non-resonating background, th a t i s by • 
d i f f r a c t i o n , and the cross-section should f a l l smoothly 
w i t h energy. On the other hand, proton-antiproton 
sc a t t e r i n g ( f i g 4b) has three incoming quarks and three 
antiquarks which may form a non-exotic combination. 
Hence there i s a resonance c o n t r i b u t i o n , so t h a t the 
cross-section would be expected to show resonance 
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structure. Both these predictions are v e r i f i e d by the 
data [is]. 

With the aid of thi s simple hypothesis, rules 
for the drawing of allowed diagrams can be postulated. 
These are. [9] : 
i ) Each quark has i t s own l i n e , which may not change i t s 
identity. 
i i ) An antiquark i s represented by. a line running i n the 
opposite direction to the motion of the particle. 
i i i ) The two ends of a single line may not belong to the 
same external particle. 
i v ) I n any of the s-, t - , u-channels i t i s possible to 
cut the diagram i n two by cutting only a non-exotic 
combination of lines. 

These rules correspond simply to the 
assumption of SU(3) and to the equivalence of the 
descriptions i n any channel. 

Fig 5 shows some allowed processes and f i g 6 
some forbidden ones. Fig 7 shows a contribution to the 
s-channel background. There i s no net exchange of quarks 
so the t-channel singularity has vacuum quantum numbers, 
and the two-component duality theory (loj identifies 
t h i s singularity with the pomeron. 



JT(v,Q ) 

FIG. 8. 
Deep inelastic scattering. 
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2. The naive parton model 

2.1 Introduction 
One question which arises immediately from the 

SU(3) nature of the hadron spectrum i s that of whether 
the symmetry has a physical basis. That i s , shall we fin d 
the same SU(3) internal structure by probing the hadron 
at distances short enough to reveal the existence of 
constituents? To resolve this entails studying processes 
with large momentum transfer, equivalent to short range 
probing, and a suitable candidate i s the deep inelastic 
scattering of electrons on protons. This interaction has 
the advantage of involving only a single structured 
particle.(Fig 8) 

We make the assumption that the process can be 
described i n exactly the same way as electron-muon 
scattering, except that the structure of the proton i s 
accounted for by two structure functions, W, and Wi9 which 
are not required for the pointlike muon. There are two 
structure functions to allow for different behaviour of 
the proton depending on the polarisation of the v i r t u a l 
photon. A p r i o r i we might expect these functions to 
depend on both the momentum transfer, Q, and the photon 
energy, V, so that there is no specific prediction that 
can be made for t h e i r energy dependence. 

The data [ l l ] shows that i n fact W, and W zare 
functions only of the r a t i o N/Q*), .the so-called 
phenomenon of scaling. The naive parton model i s an 
attempt to explain t h i s . 
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2.2 The model 
The d i f f e r e n t i a l cross-section for the deep 

inelastic scattering of electrons on protons, with an 
unpolarised beam and target and only the outgoing 
electron observed, may be written: 

dV _ c*7" (W,costO/2 + 2W, sin"©/2) 
dacE' 4E'tsinW2 

where E,E' are the ingoing and 
outgoing electron energies 

angle. 
Wj (VjQ7") and are structure functions which 
depend on the internal structure of the proton target. 
For the case of elastic scattering from a point target, 

where M i s the mass of the target. 
We may now examine the data to see how i t 

compares with the pointlike elastic structure functions, 
and sketches of W, and i)V^, as functions of U>=?2MV/Ql are 
shown i n figs 9 and 10. Both V/, and m% appear to be 
independent of Q7", and this suggests that the proton may 
consist of 'partons1 which interact i n a pointlike manner 
so that the inelastic cross-section i s the incoherent sum 
of the elastic cross-sections from the individual partons 
as i n f i g 1 1 . Thus: [is] 

€> i s the electron scattering 

52] these functions may be specified as 
QV4M £(Q /2M - -0) 
S (QVSM - V ) 

(2.2) 

(2.3) 
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where w, p t ( i ) = Q V ^ I * " ( q V ^ i - V ) 

w p t ( i ) _ (QVani - v) 

and m̂  i s the parton mass 
i s the r a t i o of the charge of the parton to that 

of the electron. 
To proceed further we must adopt some, 

assumption for the dividing of the various dynamical 
var i a b l e s between the partons. The most general i s to 
assume a mass d i s t r i b u t i o n for the partons such that the 
parton mass i s a f r a c t i o n x^ of the proton mass and 
f(xj_)dxi i s the probability of finding a parton of mass 
between XjM and (x±-h dx-jjM i n the proton, where M i s the 
proton mass. Then: 

WJCVJQ3-) = £ Qx/4mi S"(QV2mi - V) e±~ 
1 ( 

= H e± I dXi f ( x i ) Qx/4xiM* ̂ (Q^/^xiM - V) 
(2.4) 

S i m i l a r l y : , 
W j V j Q 1 ) - Z el f d X i ^ X i ) ScJ-/2x±M - V ) C2.5) 

i -̂o 
Then, since the S-function may be written as x^/V S(1/C0 - Xj.) 
we have: 

W, (V,Q X) = Z e± dXjL f ( x . ) Ql/4x.MV S(lA> - x A ) 
i Jo 

= 71 f ( l / U ) Q\>/4M"V 

= Z e . 1 f(l/<*>) 1/2M 
i 1 

= W, (£0) (2.6) 
and VV^(V,Q X) = \JV^(w) (2.7) 
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Thus the structure functions have the desired scaling 
property. 

The process may alternatively be described i n 
terms of the cross-sections for the absorption of 
transverse and scalar photons. There are two of these 
for unpolarised targets, since the photon h e l i c i t y +1 and 
-1 cross-sections are equal by parity invariance. Hence, 
naturally W, and \\ may be related to and erf [ l 4 ] , and: 

W, = Key. 
Wz «= K(<^+^) OMQW-) 

where K i s a constant.' 
The ratio R 2 <5/^ .1s an interesting quantity, 

since i f thepartons were to have spin 0, <5f. must be zero 
and R-^oo. On the other hand, the prediction obtained by 
assuming muon-like point behaviour as above i s : 

R = flt/W, (1+ ̂ >VCT) - 1 (2.9) 
and assuming the mass distribution f ( x ) , 

^ (t>) = 2MxW, (w) 
= QVv W, (to) 

so that: 
R = Q V V ^ I ^ vy<t) - 1 

= ^ i V Q ^ (2.10) 
Thus R is predicted to be small i n the regions where 
Q*-»CO W i t h <*> fixed, and with Q*" fixed. The data 
[15] shows that R i s indeed small i n the appropriate 
regions. 

At t h i s point, having ascertained that i f 
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partons exist .they have spin the suggestion is that 
these partons are i n fact the quarks of Gell-Mann and 
Zweig [is} , i n which case the quarks would have the 
usual quantum numbers. A d i f f i c u l t y now arises i n that 
i f partons are quarks, they must a l l have some fixed 
fraction x of the . t o t a l proton mass and the structure 
functions should be S-functions. However th i s may be 
resolved by allowing the partons to have some Fermi 
energy so that the ̂ -function appears smeared out about 
the value w = 1/x, and hence knowledge of the structure 
functions should t e l l us how many partons there are i n 
a nucleon. Since we do not know how to treat the 
di f f r a c t i v e parts of processes in this model, we must 
use data with the di f f r a c t i v e part removed, and the 
simplest way to do that i s to consider the difference 
(VŴ p - VW.J1) so that the d i f f r a c t i v e parts i n each cancel 
out. 

From the model we expect: 
Jdu/^^P - v \ n ) = L (e5 P - e? n) 

= '/3 (2.11) 

The data [17J shows a peak around x = '/$ and the area under 
the curve to be ,0.28 ± 0.06, i f the cross-section i s 
assumed to be dominated by Regge exchange at high (4 . 

The di f f r a c t i v e parts may be included and w i l l 
behave suitably to give the above cancellation i n the 
duality scheme [l8j , where on the basis of duality 
diagrams the following equivalences are proposed: 
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3 valence quarks + sea of qq pairs 

t t 
resonances •+ background 

X I 
non-diffractive + d i f f r a c t i v e 

The sea of qq pairs i s assumed to be a singlet with 
respect to SU(3) so that there is no contribution to 
nucleon excitation, i.e. to non-diffractive processes. 
Such a sea would indeed contribute equally to VwP and 
VW? so that the difference ftyjP - Vvf) would contain 
no d i f f r a c t i v e part. 
2.3 Sum rules 

We may now proceed a step further i n 
evaluating the structure functions. Writing: 

= £ e.z dx f( x ) x S(x - 1M) 
i 1 

Then: F^(x) - £ e>xf(x) 

where now x = 1/tO »' oJVsMV: 
Assuming that the partons may be ascribed quark quantum 
numbers, t h i s becomes e x p l i c i t l y : 

PfP(x) = 4/9 [u*(x> + uS(x)] (2.12) 
-f 1/9 [u£(x) + ug(x) + u?(x) + u£(x)J 

where u(x) = x f(x) 
p 

and u^(x) refers to parton i 
i n the proton P. 

By isospin reflection, we may relate amplitudes for 
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finding a p quark i n the proton and an n quark i n the 
neutron, and the set of relations i s : 

P N u =» u~ p n 

< - -I 

and similarly for antiquarks. 
Writing a l l the amplitudes i n terms of proton 

target amplitudes and dropping the superscript, we have: 
F* p(x) ^ 4/9 [u p(x) Ar u^(x)] (2.13) 

1/9 f i n ( x ) + u n(x) + u^(x) -f u^(x)] 
F* n(x) = 4/9 [u n(x) + u-^x)] (2.14) 

+ 1/9 [u p(x).+ up(x) + u x(x) u x(x)] 
Hence immediately follows the constraint [l9] : 

i < F* n(x)/F*P(x) ^ 4 (2.15) 
which appears to be satisfied by the data \20]. 

This constraint includes both valence quarks 
and the sea, i.e. both d i f f r a c t i v e and non-diffractive 
parts, and so may be dissected further by evaluating 
the two parts separately. For the non-diffractive part, 

u_ = 2u P n 
"X = US = = Un = 0 

so that; ( ^ " A / P ) , ^ = 2/3 
For the d i f f r a c t i v e part, the sea alone contributes 
and since t h i s is by hypothesis an isoscalar, 
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To obtain the lower l i m i t , the current must 
couple only to the active quark, i.e. that with the 
same isospin quantum numbers as the target - p i n the 
proton and n i n the neutron. Thus as x -> 0, i;e.^->oo 
d i f f r a c t i v e processes seem more important, which i s 
reasonable since this corresponds to high energies 
when q1" i s large. For smaller w, non-diffractive 
processes become more important, while for very small 
t*>, some mechanism causing coupling to the active 
quark only becomes dominant. 

I n a similar way, we can examine the weak 
interaction structure functions. Since the neutrino 
couples to the isospin of the target, we have the 
relations: 

F̂ P = F j n 

while for the quark amplitudes: 
v n —> p 
V p = vX = v n =M X = 0 
Vp —> n 

Then neglecting strangeness-changing currents, i.e. 
taking the Gabibbo angle as zero: 

F̂ P = u n(x) + up(x) (2.16) 
F ^ = u p(x) u-(x) (2.17) 
Using the same approximations for regions 

of as i n the electromagnetic case: 
(Fa P/^ n)ito = 4 X - 1/3 
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( F v p / F V n ) D = x x ^ 0 

and ( ^ P / F ^ n ) a c t i v e -H> 0 x - * l 
As yet, there is no data good enough to . 

test these predictions, but the neutrino and photon 
predictions combined may be tested as follows. 
From equations 2.13,14,16,17: 

F*P - F^n = 1 / 3 (F^ n - F>) (2.18) 
since up = UJJ i f the sea i s isoscalar. 
And F*P + F*n > 5/9 (F? n+• F*p) (2.19) 
This would be an equality i f the electromagnetic 
current did not couple to strange quarks, so that 
taking the small t£ region, where strange quarks 
appear not to contribute the equality should hold. 
This seems to be f a i r l y well supported by the data 

Other sum rules may be deduced by 
consideration of the conserved quantum numbers of the 
proton: 

Strangeness = 0 - J[u^(x) - u^(>0] dx (2.20) 
Using this result: 

Charge = 1 = J^2/3 [u p ( x ) - Up-(x)] (2-21) 
- 1/3 [u n(x) - u n ( x j j dx 

Baryon number = 1 = j l / 3 [u p(x) + u n(x) (2.22) 
- u-(x) - u-(x)] dx 

Writing these i n terms of the structure functions: 
JdW/w []£n<tt) - F^P(0))] = 1 :.: ( 2 >23) 

(Adler sum rule [2lJ )" 
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Jdw/w [F^PCU) - F L * N ( ^ ) ] = 1/3 (2.24) 

' (c.f. equation 2.11) 
The fact that the second relation i s almost satisfied 
suggests that the Adler sum rule may also be similarly 
good. 

2.4 Quark partons 
The i d e n t i f i c a t i o n of partons with quarks 

i n section 2.2 enabled specific predictions to be made 
for various ratios which were obtained from the 
incoherent impulse approximation. I t is interesting to 
view the same process entirely from the quark model 
standpoint, where the nori-diffractive part of the 
Compton amplitude may be deduced by considering the 
couplings of various baryon states that can be excited 
from the target nucleon, and summing over a l l possible 
excited states. The structure functions are essentially 
the imaginary part of the forward Compton amplitude. . 
(Fig 12) 

I n .exciting any member of a 56- or 70-piet, 
the matrix element w i l l contain a Clebsch-Gordan 
coefficient which is known e x p l i c i t l y for each 
particular member of a multiplet and some other 
quantity describing a l l the unknown dynamics, which i s 
different for 56- and 70- plets. These unknown 
quantities remain the same for proton or neutron 
targets, since t h i s only alters isospin assignment, 
and for weak and electromagnetic currents, provided 
the quarks have an SU(6) x 0 ( 3 ) symmetry, this i s 
irrelevant. 
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Expressing the contributions to the 
structure functions in this form, we obtain the 
results i n Table I. Regarding the quantities A,B as 
sums over a l l possible 56-, 70-plets, we then find: 

F*n = 12A + 6B 
F J p = 17A •+ 10B 
E?" = 33A + 21B 
F^13 = 24A -+- 3B 

A and B may be related by demanding no exotic t -
channel exchanges and thi s gives simply A=B. 

With t h i s condition, 
F*n = ISA 
F*p = 27A 
F^n = 54A 
F̂ P - 27A 

i.e. exactly the same ratios hold as found before. 
Thue i t i s clear that the quark parton model 
results depend on two i m p l i c i t assumptions: 

i ) that SU(6) i s exact 
i i ) that there are no t-channel exotics. 

From the mass spectrum alone, we know 
that SU(6) i s broken to at least 20 to ";25%, so that 
these results are also good only to a similar degree. 
The question remains as to how the symmetry i s 
broken. 

One po s s i b i l i t y is to treat the nucleon 
as a quark and a core. I f we consider the region 
6J ^ 3, strange quarks and antiquarks should be 
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unimportant and we can divide the nucleon into an 
interacting quark and a non-interacting core 
consisting of the remaining quarks. This we regard , 
as a quasi-particle. [22J I t must be either 
isovector or isoscalar in order to give a combined 
isospin of core and interacting quark of.^-. Under . 
SU(6) the isovector and isoscalar cores should be 
equally l i k e l y , but suppose now that this is not 
true. Similarly we may remove the degeneracy i n the 
spin case also, so that the probabilities of spin 0 
and 1 cores are not equal. Nucleon wavefunctions 
may then be deduced ["l4j and the structure functions 
calculated as before. The results depend crucially 
on the relative probability of the isoscalar to 
isovector core and reduce to the old SU(6) results 
when the probabilities are made equal. I f we write 

^(x)/<^(x) - 1 - x . 

where jZj(x) is the probability for 
an isovector core 

^ ( x ) is the probability for 
an isoscalar core 

then we find that the ratio of the structure 
functions for neutron and proton targets i s : 

F y n ( x ) ~ 4 - 3x 

—> 1/4 as x - > l 
as is indeed observed i n the data {20J . 
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I t i s also, i n t e r e s t i n g to note that the 
r e l a t i o n equation 2.19 may s t i l l be derived i n t h i s 
SU(6) broken model, since i t holds f o r <$(x) and 
$4(x) separately. Further tests of t h i s model are • 
given i n r e f 22, but these are as yet not v e r i f i a b l e 
against data. 

2.5 Further symmetry 
I n the parton model, the ca l c u l a t i o n of 

e +e" a n n i h i l a t i o n cross-sections i s simple. I n 
p a r t i c u l a r , the r a t i o 

R = g" ( e + e~ —» ha dro ns) 
cr ( e + e - - > jS?Jc~l 

i s given by: 

i 
where Q̂ e i s the charge o f the i parton. 

Muons are assumed to be p o i n t l i k e , as are 
the partons, so tha t the r a t i o removes a l l dynamical 
factors,.leaving simply the r a t i o o f the charges 
squared. Hence f o r the quark parton model, the r a t i o 
i s : 

R = 4/9 + 1/9 -+ 1/9 
= 2/3 

This i s much too small to agree w i t h the 
data C23J which shows the r a t i o R t o be about 2 to 3 
i n the region q1* ̂  9 Gev*". Clearly the only way to 
achieve t h i s r a t i o and yet maintain the quark parton 
model i n i t s standard form i s to increase the number 
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of quarks to nine, where three have the charge of 
the p-quark, three that of the n-quark and three 
tha t of the X-quark. 

This provides us w i t h the second h i n t 
t h a t more than three quarks are required, the f i r s t 
having arisen w i t h the introduction of the SU(3) 
model. The baryon ground state made up of three 
quarks i s the 56-piet containing the nucleon 
and the 3/2 A decuplet. This i s a completely 
symmetric state under the interchange of any two 
of the constituent quarks. The space part of the 
wavfifunction i s also symmetric, since there i s zero 
o r b i t a l angular momentum, which means that the 
whole three quark wavefunction i s symmetric. Yet 
the baryon i s a fermion and so should have an 
o v e r a l l antisymmetric wavefunction. This 
d i f f i c u l t y may be resolved by the in t r o d u c t i o n of 
an extra degree of freedom, colour. The ground 
state baryon wavefunction may then be assumed {24j[ 
t o be antisymmetric i n colour, i . e . a colour 
s i n g l e t , so that the complete wavefunction i s 
indeed antisymmetric. To prevent coloured states 
being observable, i t must be assumed tnat the 
si n g l e t i s the lowest energy state. 

The symmetry problem together w i t h the 
observed value of R suggests th a t there are nine 
quarks, tne extra number occuring because of tne 
required extra degree of freedom, the SU(3) of 
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colour. 
The s i t u a t i o n was recently f u r t h e r upset 

by new data f o r cne value of R [25] , which shows 
that i n the region 9 ^ q*^25 Gev1, the r a t i o r i s e s 
steeply to between 4 and 6. I t i s not yet clear 
whether the data shows a bump i n t h i s region or the 
beginning of a considerable r i s e . I f the former i s 
the case, i t i s conceivable th a t i t represents a 
threshold of some new quantum number which a t lower 
energies does not appear. This could be because the 
quark carrying t h i s -new quantum number might be 
heavier than the others, i.e.. the new larger 
symmetry i s badly broken. 

A s i m i l a r extra quark i s required i n 
order to u n i f y the weak and electromagnetic 
interactions [263, a n < 3 i n t h i s guise the extra 
quantum number has been called charm, givi n g quarks 
w i t h quantum numbers as shown i n f i g 13. I t i s 
hooped tha t the r i s e i n R may also be caused by the 
charm threshold. 

More recently s t i l l , new resonances, the 
^(3100) and ^'(3700) have been found [27] i n e +e~ 
a n n i h i l a t i o n and i t has been suggested [2Sj t h a t 
these are indeed charmed states. The quark model 
then implies that several other states should be 
close by i n energy to form suitable raultiplets, but 
as yet these have not been seen. 
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On the other hand, i f the r a t i o R 
continues to climb, i t i s d i f f i c u l t to f i n d any 
simple explanation. A l l single photon exchange 
processes to describe e^e" a n n i h i l a t i o n to hadrons 
lead to the prediction of R as a constant [29J. By-
invoking various symmetries the value of the 
constant can be manipulated to whatever i s desired, 
but a r i s e i n R cannot be reproduced. The hope i s 
t h a t eventually the r a t i o w i l l s e t t l e a t some w e l l 
defined asymptotic value, and the model can then be 
adjusted to include t h i s value, by a l t e r i n g the 
number of quarks, or t h e i r charges, or both. 
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3. SU(6) breaking 

3.1 Introduction 
The f i r s t two chapters have shown that 

the SU(5) scheme describes s a t i s f a c t o r i l y the 
observed hadron spectrum, and the interactions of 
a single structured p a r t i c l e w i t h a point p a r t i c l e , 
while the predictions of the parton model f o r the 
non - d i f f r a c t i v e parts of hadron cross-sections are 
not quite so successful. We now t u r n LO the problem 
of interactions between two structured p a r t i c l e s , 
i n p a r t i c u l a r hadron decay processes. 

Decays which take place v i a the- strong 
i n t e r a c t i o n are characterised by a very short decay 
time (~10 sees) and such processes might 
therefore be expected to conserve those quantities 
which are in v a r i a n t under the strong i n t e r a c t i o n , 
t h a t i s isospin and i t s t h i r d component, strangeness, 
spin and i t s t h i r d component, and o r b i t a l angular 
momentum. Applying these simple constraints enables 
decays to be categorised i n t o those which are 
allowed, forbidden, doubly forbidden, etc. Processes 
which are forbidden v i a the strong i n t e r a c t i o n may 
of course be allowed v i a the weak or electromagnetic 
i n t e r a c t i o n , but f o r the purposes of t h i s discussion 
we s h a l l consider only the strong i n t e r a c t i o n . 

As w e l l as t h i s simple selection of. 
allowed processes, we may rel a t e the decay rates of 
p a r t i c u l a r p a r t i c l e s i n the same m u l t i p l e t , since 
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the coupling constant f o r any p a r t i c l e i n a given 
m u l t i p l e t to two other p a r t i c l e s i s universal. 
This i s w e l l v e r i f i e d f o r SU(3) coupling constants 
(pb] , but i s not s a t i s f i e d when the symmetry i s 
extended to SU(6) [ 3 l ] , i . e . SU(6) appears to be 
broken f o r coupling constants. I n t h i s chapter, we 
attempt to f i n d a basis f o r the breaking. 

3.2 The symmetry SU(6) v ; 

Several dynamical quark models have 
been proposed and although a l l n a t u r a l l y 
reproduce the SU(3) r e s u l t s , i t i s d i f f i c u l t to 
estimate t h e i r v a l i d i t y outside these r e s u l t s . I t 
i s therefore i n t e r e s t i n g to investigate the purely 
algebraic structure of the quark model w i t h a view 
t o d i f f e r e n t i a t i n g between those r e s u l t s which 
depend on the quark dynamics and those which may 
be deduced simply from the algebra. 

F i r s t we consider the spectrum of 
resonances as observed experimentally. This may be 
b u i l t up as a representation of the group SU(6) x 
0(3) where the SU(6) symmetry expresses the 
invariance of the strong i n t e r a c t i o n under isospin, 
hypercharge and spin transformations, and 0(3) 
allows f o r o r b i t a l e x c i t a t i o n s . This scheme leads 
to prediction o f mass degeneracy betv/een the L-0, 
J = 0 and J = l mesons, and betv/een the L = 0 , J = £ 
and J •= 3/2 baryons, which i s c l e a r l y very badly 
broken, but nevertheless we are enabled to view a l l 
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pa r t i c l e s as f i t t i n g i n t o a u n i f i e d p i c t u r e . 
We may now attempt to predict which 

decays are allowed w i t h i n the confines of the model, 
simply by demanding conservation of spin and 
strangeness, as w e l l as the usual dynamical variables 
(energy, e t c . ) . Consider the decay jD->"mr. According 
to SU(3) ideas, t h i s process i s forbidden, since spin 
i s not conserved, and s i m i l a r l y i n the corresponding 
baryon case, i\ -> NTT . However, experiment shows tha t 
these decays c e r t a i n l y do take place \32j, and t h i s 
leads to the conclusion th a t any scheme which 
conserves i n t r i n s i c spin i s not suitable f o r the 
description of p a r t i c l e decays. 

To gain some in s i g h t i n t o v/hat sort of 
symmetry might be suitable, consider a two-body 
decay i n the centre of mass frame. Then the product 
p a r t i c l e s move c o l l i n e a r l y . I t may thus be h e l p f u l 
t o consider transformations which leave the 
momentum i n a given d i r e c t i o n (say the z-direction) 
i n v a r i a n t . These are: 

i ) r o t a t i o n s about the z-axis 
i i ) r o t a t i o n s through TT about the x-axis, 

followed by r e f l e c t i o n i n the x-y plane 
i i i ) r o t a t i o n s through IT about the y-axis, 

followed by r e f l e c t i o n i n the x-y plane. 
The generators of these transformations 

may then be used to form a new symmetry scheme, SU(S),.. 
Note tha t only the f i r s t .transformation i s through 



an a r b i t r a r y angle © , while the other two are 
through the sp e c i f i c angle TT, so tha t the 
transformations are single members of the group of 
ro t a t i o n s . We then have to guess t h a t the f u l l group 
i s the one appropriate f o r v e r t i c e s . 

In t h i s scheme the quark operators are 
unchanged, so tha t the baryon spectrum i s undisturbed, 
while the antiquark operators are affected according 
to [33]: 

W x = °x = -°x 
wy = <ry w; = - o-y 

This reorganises the meson spectrum, 
though i t s t i l l decomposes in t o the same m u l t i p l e t s 
except w i t h W-S f l i p , so that i n the new scheme, the 
|S=0, S z~ 0> state becomes -J\V=1, W = 6) and the 

• |S-1, S z= o)> becomes |W = 0, W = Q> . Hence the "TT 
forms a spin t r i p l e t w i t h f> and f> , and j> i s a 
spin s i n g l e t (where the superscripts r e f e r to 
h e l i c i t y ) . This then removes the problem of j^-decay 
since J3° has Wz = 0 and may decay to two 7T's 
w i t h W=l, Wz= 0. An analogous argument also allows 
A N T T i n the SU(6) scheme. 

We now have a symmetry which i s invariant 
under Lorentz transformations i n the z-direction, 
but i t i s s t i l l not suitable to- describe even 
c o l l i n e a r strong i n t e r a c t i o n v e r t i c e s . As an example 
consider the process B-^ *J7r. Since the B i s a state 
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of Hv = 1, Wz = 6y under SU(6) W, the decay to the 
h e l i c i t y -+1 state of the 03 does not conserve Wz. 
Only the decay to the h e l i c i t y 0 state should occur, 
whereas experimentally, the decay i s observed to be 
predominantly to the h e l i c i t y 1 state, [Hj. There 
are several s i m i l a r examples of v i o l a t i o n of W-spin 
conservation both i n meson and baryon decays. 

Another problem w i t h SU(6) W i s tha t of 
the anomalous magnetic moment of the quarks. The 
proton i s made up of three quarks i n an s-state, so 
th a t i t s magnetic moment i s given by the sum 
X of the moments of each of the quarks. Thus 
the i n d i v i d u a l quarks also have anomalous moments, 
and so do not couple simply (as o&^Pit) to the 
electromagnetic f i e l d . 

Both of these d i f f i c u l t i e s may be 
resolved by the follo w i n g simple idea. We know t h a t 
systems at rest are v/ell represented by the SU(6) W 

scheme, but that the scheme f a i l s f o r v e r t i c e s . 
Suppose then t h a t there i s a d i f f e r e n t SU(6) W f o r 
ve r t i c e s . This may be a l t e r n a t i v e l y expressed by 
postulating current quarks, d i f f e r e n t from 
constituent quarks, such th a t a current proton, 
made up of three current quarks i n an s-state, i s 
a superposition of constituent states. Then current 
quarks couple simply to the electromagnetic current 
and have no anomalous magnetic moment, while 
constituent quarks, being a superposition of 
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current states do not couple simply. At v e r t i c e s , 
the simple conservation rules no longer apply, and 
depending on the r e l a t i o n between the two d i f f e r e n t 
SU(6) W schemes, new rules may be substituted. 

3.3 Current algebra 
The f i r s t problem i s to see whether i t 

i s possible to construct an SU(6) W of coupling 
constants. That the vector (Qot) and a x i a l vector 
(Q^) charges should form an algebra was f i r s t 
suggested by Gell-Mann jss] , v/here: 

Q"(t) = J d 3 x V * ( x , t ) 
Q* 5(t) = | d 3 x A^(x,t) 

where oC - 1,2... .8 
and V , A are the vector and a x i a l vector current 

octets. 
Their equal time commutation r e l a t i o n s are 
(dropping the e x p l i c i t time, dependence): 

where f f are the SU(3) structure constants. 
Rewriting these i n terms of r i g h t - and left-handed 
charges Q Z Q : 

These r e l a t i o n s demonstrate the SU(3) x SU(3) 
nature of the algebra. 
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From the t h i r d of equations 3.2, taking 
matrix elements and in s e r t i n g a complete set of 
states on the l e f t hand side: 

This sum includes m u l t i p a r t i c l e diagrams ( f i g 14) 
as w e l l as the simple f i r s t order diagram, and t h i s 
makes i t useful to work i n the i n f i n i t e momentum 
frame, where the former are suppressed l i k e 1/P [36J. 
Considering the r e l a t i o n i n t h i s frame, and invoking 
PCAC to i d e n t i f y the divergence o f the a x i a l current 
w i t h the pion, the difference ( CrTI P - cr71" p ) of the 
TTp t o t a l cross-sections may be evaluated i n terms of 
of Ĝ /Gy, the r a t i o of a x i a l to vector coupling constants 
constants.[37]. This i s the Adler-Weisberger sum 
rule and has been v e r i f i e d experimentally to 2o%. 
As yet there i s no evidence to suggest that the 
algebra of currents i s not exact. 

Specialising now to a current quark 
model, the current densities may be w r i t t e n : 

Z < f / Q 5 / n > < n | Q 5 | i > ~ < f | Q | i > 
n 

0u\/2 
r (3.3) 

where X* are the SU(3) generators. 
The algebra may also be generalised by replacing 
^ by P, the Dirac covariants, to give a U(12). 
However, transforming to the i n f i n i t e momentum 
frame so tha t m u l t i p a r t i c l e diagrams may be 
neglected, also causes most of the generators to 
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vanish. Those t h a t remain, the so-called good 
operators, are those components tha t are i n f i n i t e 
i n the i n f i n i t e momentum frame. The z- and t -
coraponents become i n f i n i t e and equal, while the 
x- and y-components are f i n i t e and so n e g l i g i b l e . 
Hence those t h a t remain are: 

F*(t) = JV*(x,t) dx c / q f X*/2 q dx 
A z ( x , t ) dx - j q ' c r z A / 2 q dx 
V y Z ( x , t ) dx = Jqfy^>#2 q dx 

Fy(t) = J v^ z(x,t) dx = J?/5°y^/2 q dx 
where V^v = qC^vA/2 q 

Although these tensor currents do not 
appear to couple d i r e c t l y to anything i n nature, 
they do arise n a t u r a l l y from commuting the 
observable currents w i t h t h e i r divergences. Thus 
we have 36 good operators, forming an SU(6) W of 
currents. 

3.4 The Melosh transformation 
The r e a l transformation from current to 

constituent states must superimpose many current 
states and also must create qq p a i r s . As yet, such 
a transformation has not been found. 

Melosh 1 s transformation |38j t r e a t s only 
the free quark problem, where the d i f f i c u l t i e s are 
much reduced, since only single quark states can be 
rel a t e d . The sea o f qq pairs i s also neglected. 
Since the SU(6)v/'s may not be i d e n t i f i e d , Melosh 

(3.4) 
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chose the next most simple p o s s i b i l i t y , i . e . t h a t 
the transformation i s uni t a r y so tha t the group 
generators are re l a t e d by: 

W1 = V F 1 V"1 (3.5) 
where V i s a unitary matrix. 

Several desirable properties of V may be 
in j e c t e d [j33j so as to preserve the good parts of 
SU(6)^ ( c o n s t i t u e n t ) : 

i ) Invariance under rotations about the 
z-axis i s required, so th a t : 

[ j z > v] = 0 (3.6) 
i i ) CVC i s good f o r decay processes, so i t 

should not be destroyed by the transformation. 
Thuf<; F* = wj 

r , °n ° (3.7) 
and i F j , V j - 0 

i i i ) Conservation of W-spin i s not good 
f o r decays, so t h a t : 

FJ ^ VA 
z z (3.8) 

and V] jfi 0 
Using the free quark approximation, the 

Hamiltonian H may be w r i t t e n : 
H ] d 3 x q ( - i t f . d + em) q 

r% n ' (3.9) and [W1, Hj = 0 
Clearly, when the Hamiltonian i s transformed i n t o 
current space, i t should commute w i t h the 
transformed generators: 

[ F 1 , V"1 H v] = 0 (3.10) 
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Writing the transformed generators 
e x p l i c i t l y : 

F* = Jd 3
X q+XVsq 

F* = Jd 3x J CTZ XV2 q (3.11) 

Now these generators contain only 1, 
6 ^ « C"„ and so commute w i t h any operator 
containing only l > p , and ̂ °< z, so that the 
transformed Hamiltonian must contain only these. 
Hence the transformation V must transform away' 
the o j ^ part of the constituent space Hamiltonian 
H. Such a transformation i s r e a l i s e d i n the form: 

V - exp (iY) 
P 3 - f v \ 1 (3.12) 

where Y = Id x q arctan [!2jL*2j/"mj ... 

g i v i n g a current space Hamiltonian: 
V-^HV = Jd 3X q [ - i « z \+ f Jm* 4- [ tL.h$ ] q 

This i s i d e n t i c a l i n form to the 
Foldy-V/outhuysen transformation (TSQJ 9 except that 
the z-direction i s picked out as a special 
d i r e c t i o n as a r e s u l t of choosing SU(6),ir i n 

W 
preference to SU(6). 

The transformed operators must now be 
boosted to the i n f i n i t e momentum frame to remove 
the bad components. 

3.5 Models w i t h d i r e c t SU(6) breaking 
i ) The 3 P 0 model 

This i s an attempt to incorporate the 



- 41 -

breaking of V/-spin conservation without invoking 
the idea of current and constituent quarks. 
Returning to the example of the decay B -> U»TT, 
data {34] shows tha t the decay from the h e l i c i t y 
1 state of the B i s dominant over that from the 
h e l i c i t y 0 state, contrary to the predictions of 
SU(6) W x 0 ( 2 ) L ^ , where only the 0 state should be 
allowed to decay. Similar contradictions occur i n 
baryon decays. 

A general decay of t h i s type to a 
ground state hadron and pion (or kaon) i s : 

ACJ^LjSS A) -> B(J B,L=0,3 B= J B ; X) 
C (3.13) 

+ C(J.= 0) 
where L,3 are the quark o r b i t a l and spin angular' 

1 momenta, 
the z-axis i s the d i r e c t i o n of the momentum 

of B, 
i s the p r o j e c t i o n of along t h i s axis, 

A,B,C are members of m u l t i p l e t s of s t a t i c 
SU(6) x 0 ( 3 ) . 

The decay i s now assumed to take place 
by the creation of a quark-entiquark pair ( f i g 16), 
one of whose members appears i n each f i n a l hadron. 
The pair i s assumed to have the quantum numbers of 
the vacuum, i . e . i t i s an SU(3) s i n g l e t , J P C = O"*"', 
Using spectrographic notation, the state may be 
described as ^"P0, The model i s motivated by d u a l i t y 
diagrams ( c f . e.g. f i g 5 ) . 
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• • ' • I n i t i a l l y a f u r t h e r r e s t r i c t i o n was 
made on the si n g l e t pair, namely that the 
transverse-momenta of the quarks may be neglected 
compared to the l o n g i t u d i n a l momenta i n c o l l i n e a r • 
processes such as decays. Then: 

S z = L z = 0 
and again the old SU(6) W x 0 ( 2 ) L z r e s u l t s are 
obtained. However Rosner and Colglazier [40.] 
suggested t h a t t h i s r e s t r i c t i o n be relaxed so as 
to allow also L z = ± 1 , on the grounds th a t 
although the r e s t r i c t i o n i s plausible f o r high 
energy processes such as de-?u i n e l a s t i c scattering, 
i t i s less so f o r low energy decays. Thus the r a t i o 
of the d i f f e r e n t h e l i c i t y euiolitudes become § 
a r b i t r a r y , i . e . a new parameter i s introduced. Then 
although no re l a t i o n s h i p between the h e l i c i t y 
amplitudes of the same decay may be predicted, 
r a t i o s between amplitudes f o r d i f f e r e n t decays may 
be related. For example: 

2 ( g , / g 0 ) A ^ = (g0/&)B->«nr + 1 ( 3 « 1 4 ) 

where g 0,g| are the couplings to h e l i c i t y 0,1. . 
This r e l a t i o n seems consistent w i t h the data 

The theory was generalised by Rosner 
and Petersen JA.^ SO that the h e l i c i t y amplitudes 
f o r the general process i n equation 3.13 are: 

NL(A->BC) = 7 1 A B 35 ^ ( & I £ 8 J 
A I \e^a f,b 873/ i \A I B C / i 

x X^(A-»BC) (3.15) 
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where X^(A-»BC) = 21 ( J B , A, 1 - L z | SA, X - L z) 
^ A , L|3, 

x (ST, X - L Z,L,L Z [ J,X)a L 

Here the f i r s t term i s an SU(3) scalar 
f a c t o r w i t h A,B,35 l a b e l l i n g SU(6) representations 
and (°<,a), ( f> ,b) and (8,3) l a b e l l i n g 3U(3) x 3U(2) 
representations. The second, term i s an isoscalar 
fac t o r w i t h A,B,C l a b e l l i n g s p e c i f i c i s o m u l t i p l e t s . 
The sum over i corresponds to the various possible 
couplings, f o r example d and f when e<,|S are octets. 

Physically, the P 0 s i n g l e t has been 
combined w i t h the pseudoscalar meson to form an 
e f f e c t i v e (8,3) member of the 35-plet of SU(S). Thus 
the formalism i s equivalent to SU(6)..r x 0 ( 2 ) T i f 
±1 
â - are put equal to zero. 

I n X^(A-»BC), the f i r s t c o e f f i c i e n t 
describes quark spin conservation, while the second 
describes the L-3 coupling to form a t o t a l spin J. 

T _ 
The reduced matrix elements at1 are assumed to 

., , Li 

depend only on L z and the s p e c i f i c m u l t i p l e t s 
involved i n the decay. Equation 3.14 may be derived 
d i r e c t l y from equation 3.15. 

The h e l i c i t y amplitudes may therefore be 
calculated, and i f symmetry breaking due to 
c e n t r i f u g a l b a r r i e r terms i s taken i n t o account, 
may be compared reasonably successfully with data. 
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i i ) 1-broken 3U(6), 
Another way of introducing symmetry 

breaking i s to calculate matrix elements of Melosh 
transformed currents between mixed states of SU(6)^. 
mixing taking place amongst states of the same 
isospin and hypercharge, both at the SU(3) and the 
SU(6) l e v e l s . [3l] The e f f e c t of the Melosh 
transformation i s to introduce extra terms i n t o the 
currents, breaking the SU(6) symmetry. I n 
c a l c u l a t i n g decay widths,.some angular momentum 
b a r r i e r f a c t o r must be included, although the 
r e s u l t s do not seem to depend strongly on the form 
chosen. 

t h a t resonance decay couplings do f i t i n w e l l w i t h 
predictions of SU(3) [*3o] . However, the SU(6) 
nature of the hadron spectrum encourages a search" 
f o r a s i m i l a r larger symmetry f o r coupling constants. 
Using the scheme suggested above, the bad 
predictions of SU(3)K. are avoided. 

-.-11 

parametrised i n terms of mixing angles, according 
to*, f o r strangeness 0 components: 

f o r states i n any given 70-plet. Thus, f o r example, 
the physical N state contains a small admixture 

Testing a t the 3U(3) l e v e l only, shows 

The mixing of the SU(S) W states may be 

N 
N 

\ 
sin 0 cos 0 

s i n & cos 0 8 
(3.17) 
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i i ) 1-broken SU(6)V/ 

An a l t e r n a t i v e way of introducing 
symmetry breaking, i s to incorporate a mixing scheme 
int o SU(S).^ whereby states of the same isospin and 
hypercharge are expected to mix both at the SU(3) 
and the SU(6) l e v e l . [31] Thus, f o r example, the 
physical II state contains a small admixture of the 
70 4 8 , instead of being pure 56 28 (or vice versa), 
according t o : 

cosO sinG 
(3.17) 

„ w , - sin© cos© 
Testing at the SU(3) l e v e l only, shows 

that resonance decay couplings do f i t i n w e l l with 
predictions of the symmetry [30 J . However, the 
SU(6) nature of the hadron spectrum encourages a 
search f o r a s i m i l a r larger symmetry f o r coupling 
constants. To avoid the problems of 3U(6)^. the 
mixing scheme above may. be adopted, g i v i n g i n 
e f f e c t the most general possible SU(6) structure. 
I n calculating decay widths, some angular 
momentum b a r r i e r f a c t o r must be included, 
although the r e s u l t s do not seem to depend 
strongly on the form, chosen [3lJ. 

The mixing may be parametrised i n 
terms of mixing angles, as i n equation 3.17, and . 
these may be determined from a f i t to the data. 
I n t h i s way, Cashmore, Hey and L i t c h f i e l d show 
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j|_3lj that the scheme can describe quite w e l l decays 
/ 

of the types: 
-+ •+ 56, 2 -> 56, 0 pseudoscalar meson 
_ j . 

70, 1 -> 56, 0 pseudoscalar meson 
-f-

and photoproduction of the 70, I and 56, 2 . 
Having established such a model, i t i s 

then possible to use i t to t e s t the p l a u s i b i l i t y 
of the m u l t i p l e t assignments of various resonances. 
I n p a r t i c u l a r , they suggest that some of the 
supposedly posit i v e p a r i t y 70-plets are i n f a c t 
r a d i a l excitations of the 56, and they can f i n d no 
resonance which i s indisputably i n a posi t i v e 
p a r i t y 7C— p l e t . 

This scheme allows a- mo.re_c.oiripr.e.heji.s.ive 
breaking of SU(o)..T than the model, which does 
not contain a l l the T.erms generated by tne Meiosh 
transformation. The f a c t t h a t the 3U(6) structure 
of the decay couplings i s shown to hold 
approximately, encourages a measure of confidence 
i n the v a l i d i t y of the ideas on which the Melosh 
transformation i s based. 
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4. Implications of the current and constituent 
quark hypothesis 

4.1 Introduction 
The Melosh transformation i s a u n i t a r y 

transformation between, two d i f f e r e n t SU(6)y-
algebras, those of free constituent and free 
current quarks. To apply i t to the r e a l world, we 
must assume tha t the structure i s unchanged by 
the i n t e r a c t i o n between quarks. To see whether 
t h i s assumption i s v i a b l e , i t i s necessary to 
t e s t the algebraic structure of the model against 
t h a t which i s a c t u a l l y observed. Unless t h i s 
confrontation i s successful, there i s l i t t l e to 
be gained from attempting to include the dynamic 
properties of quarks. 

I n order to t e s t the algebra of the 
quark model, we must f i r s t w r i t e the Melosh 
transformation i n a way independent of the quark 
dynamics, th a t i s , we must extract the SU(6)^ x 
0 ( 2 ) L z properties of the transformation ^3*J 0 From 
the way i n which i t was i n i t i a l l y constructed, 
using the commutation properties of the operators, 
i t i s clear that the appropriate algebraic 
properties of the operator generating the 
transformation are: 

{35; W= 1, Wz = U " L Z = + l } 
{ s u ( 3 ) , l\ y = C= + 
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The transformation i n i t s algebraic 
form may now be applied to the simple currents, 
as w r i t t e n i n the current basis, i n .order to 
construct the current i n the constituent basis. 

To s i m p l i f y the problem s t i l l f u r t h e r , 
we make the assumption th a t a current only 
i n t e r a c t s w i t h a single quark. This i s also made 
i n the e x p l i c i t free quark model, but there i s no 
physical j u s t i f i c a t i o n f o r i t . I n the algebraic 
formalism, the assumption i s equivalent to 
r e s t r i c t i n g the currents to an |su(3), 8_J part of 
a 35-piet. 

4..V The transformation of the currents 
I n the current basis, a transverse 

current w i t h A J Z = 1 may be w r i t t e n as: 
JT ~ { ^ 5 w = w z = L z - °} 

where J * = 1/^2 C f J x - i J y ) 
and YJ.j Y~- = - , where Y i s the x-y plane 

r e f l e c t i o n operator. 
Applying the Melosh transformation, Lhe current 
may be w r i t t e n i n the constituent basis as: 

~ (.35; W = 0, W z= 0, L z - l } 
+ f 3 5 ; W ~ 1, W z= 1, L z = 0} 

r •) (4.1) 
•+ 135; W ~ 1, W2 = 0, hz= lj 

{35; W = 1, W z= -1, L z = 2} 
where the i n d i v i d u a l terms appear i n a r b i t r a r y 
combinations. I f the e x p l i c i t quark model i s used, 
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the combinations are f i x e d and depend on parameters 
i n the dynamics, such as quark mass. 

I t i s i n t e r e s t i n g to note that the form 
of the current obtained by appli c a t i o n of the 
Melosh transformation i s i n f a c t the most general 
which may be w r i t t e n , consistent w i t h the 
r e s t r i c t i o n to single quark i n t e r a c t i o n s . 

I n order to calculate matrix elements 
of the transverse current between free quark 
states, the current must be expressed in:terms of 
single quark operators: 

jm = (aL + ib S + + icL+S° + idL^L^S") J 
+ (4.2) 

where L i s the -f. part of a vector operator 
"f* 
S"'° are the quark spin operators 

and IT - l//~2 ( + L X - i L y ) 
S* = l / f i " ( S x ± i S y ) , S° = S z 

and. J i s an SU(3) octet operator. 
Thus a,b,c,d are SU(6) W s i n g l e t operators, which 
commute w i t h L z. Applying the r e f l e c t i o n operator 
Y: 

J j - (aL" -f- ibS" - i.cL~S° + idL"L"S +) J 
since YL?Y _ 1 = -L*~ 

Y s V 1 = -S*, Y S ^ 1 = -S° 
Taking the Hermitian conjugate: 

(J T)"^ ~ - J j f o r J**=- J 
and ( L ^ ) t - -L" 

Hence a,b,c,d are Hermitian. 
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The v a l i d i t y of t h i s d e rivation of the 
form of the transverse current may be questioned, 
since the matrix elements of J T ~ taken between 
SU(6)„, x 0(2) T states are not in v a r i a n t under 

w i->z 

boosts i n the z-direction, whereas the Melosh 
transformation i s expected to be meaningful only 
when applied to good operators. However, the 
transformation has the same form i n an i n t e r a c t i n g 
theory as i n the free case f o r which i t was. 
constructed, so i t may be argued that the operators 
may be abstracted from the free case. Since no 
p a r t i c u l a r dynamical behaviour i s specified, i t 
may be hoped t h a t the d i f f i c u l t y may be avoided 
and_the current operator J^" used w i t h impunity. 

"2- + 
At Q = 0, w i t h r e a l photons, Jrj-, can be related 
to good operators v i a current conservation (44j , 
but not i n general f o r cf ̂  0. 

This problem does not arise f o r the 
good l o n g i t u d i n a l currents. For the l o n g i t u d i n a l 
part o f a vector current, the transformed current 
may be w r i t t e n : 

J L - (35; W =0, Wz-- 0, L z= 0} 
+ "{35; W = 1, Wz =' -1, L z = + l } 

-f £35; W ' 1, Wz = 1, L z - l } . 
where the f i r s t term alone i s the untransformed 
current, and again each term has an a r b i t r a r y 
c o e f f i c i e n t . 
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Rewriting i n terms of single quark operators: 
J L = (c/ + i p L ~ 3 + -+ i t f L^S") J 

Applying the r e f l e c t i o n conditions as before, 
except YJLY" 1 =• J L , the c o e f f i c i e n t s are reduced 
to two, since ^ - ^ . 
Thus: J L = (c< -f if> Jl-S^-f L +S'] ) J (4.3) 
Taking the Hermitian conjugate, and ^ are 
found to be Hermitian. 

' The a x i a l current may be treated 
s i m i l a r l y , the transformed current being;: 

JL ~ ^35; -W= 1, V/2^ 0, L Z = o] 
+{35; W - 1, V/Z s -.1, L Z = l } 
4 [ 3 5 ; W - 1 , WZ = 1, Lz= - l } 

where the f i r s t term i s the untransformed current. 
Rewriting: 

7L = (£s° + f L + 3 " 4- ? L"3 +) J 
Applying the r e f l e c t i o n conditions, w i t h YJ^Y~ X 

s - J L f o r an a x i a l current, the co e f f i c i e n t s are 
again reduced to two, with <*> = , so that: 

J L =• \Sc S° + flip's- - ITS*] ) J (4.4) 
Again o( and ^ are found to be Ilermitian. 

I t i s now possible to calculate the 
h e l i c i t y amplitudes f o r the e x c i t a t i o n of any 
resoiTiance. For co l l i n e a r i n i t i a l baryon state B 
and f i n a l resonance state R, these are defined 
by: 
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A3/2 = <"R 3/2 | J * | B J > 
= % ( . ) j R " a " < n 4 | . j ; |.3 3/2> 

= 1 n ( - ) i r 2 < H 4 i J - T | B + > • 

where T|_̂  i s the p a r i t y of resonance H 
Jr, i s the spin o f resonance R. 

The wave functions used f o r the i n i t i a l 
and f i n a l states are the standard SU(6) x C(3) 
wavefunctions w i t h given angular momentum L, a n ( 3 

d e f i n i t e p a r i t y , since baryons are unaffected by 
W-S f l i p . 

4.3 Matrix elements and the n o n - d i f f r a c t i v e 
co n t r i b u t i o n to i n e l a s t i c structure functions 

Transition matrix elements f o r transverse 
octet currents to excite members of 56- and 70-pletr 
representations f o r a r b i t r a r y L are given i n Table I , 
including the specialised cases of electromagnetic 
and weak AQ = 1 currents f o r proton or neutron 
targets. This table also covers transverse a x i a l 
currents, although the detailed c o e f f i c i e n t s are 
d i f f e r e n t . The corresponding matrix elements f o r 
l o n g i t u d i n a l vector and a x i a l currents are given i n 
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Tables I I and I I I . For the special case of L = 1 
70-plets and L = 2 56-plets, of rnost p r a c t i c a l -
i n t e r e s t , the r e s u l t s f o r transverse photons and 
pions reduce to those of r e f s . 44 and 45, save 
f o r matters of sign convention which are discussed 
i n Appendix I I I . Predictions f o r strangeness-
changing or a r b i t r a r y neutral octet currents may 
also easily be deduced from the tables. 

The n o n - d i f f r a c t i v e c o n t r i b u tion to the 
i n e l a s t i c structure functions f o r weak or 
electromagnetic currents may now be obtained by 
summing over the i n d i v i d u a l resonance contributions 
using the orthogonality r e l a t i o n s f o r Clebsch-
Gordan c o e f f i c i e n t s . The r e s u l t s f o r proton and 
neutron targets are given i n Tables IV and V. 

We assume t h a t SU(6) x 0(3) i s an exact 
symmetry and t h a t each supermultiplet contributes 
a t a d e f i n i t e mass. Then since each 56- and 70-plet 
has the same form of c o n t r i b u t i o n , independent of 
L, the t o t a l contributions from a l l 56's and 70's, 
weighted appropriately by t h e i r masses,.is simply 
obtained by summing over the i n d i v i d u a l raultiplets 
and replacing the c o e f f i c i e n t s a, b etc. by A, B 
which are the weighted sums of the a, b etc. f o r 
each m u l t i p l e t . These t o t a l contributions are given 
i n Tables VI and V I I . . 

The most s t r i k i n g r e s u l t a r i s i n g from 
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the above treatment i s t h a t independent of -
r e l a t i v e abundances and couplings of 56 :s and 70's 

o 
and CTJ£ •= o 

where 0 ~ i i 3 / 2 = Z 4,3/2 

^ T = ° £ + ^3/2 
°~TL • = 2! ^ 
These r e l a t i o n s are true f o r each 56 

and 70 separately. Hence w i t h i n t h i s framework a 
K ^ n 

non-zero value f o r A n or 0"TL w i l l be d i r e c t 
evidence f o r v i o l a t i o n of the SU(6) symmetry 
assumption. 

Apart- from these two r e l a t i o n s , the 
expression f o r the cross-sections a r i s i n g from 5S-
and 70-plet f i n a l states d i f f e r , so that w i t h no 
•information on the r e l a t i v e importance of 56- and 
70-plets, i t i s only possible to set bounds f o r 
various r a t i o s rather than obtain absolute 
predictions. 

Consider as an example the r a t i o 
O* n/<y P. i f only 56's contribute, then f o r ei t h e r 
transverse or electromagnetic currents, the r a t i o 
may be constrained by: 

0 < g - V 5 p 12/17 (4.6) 
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The lower bound r e s u l t s f o r A or c< dominant 
(the spin zero terms) while the upper bound 
arises i f B,C,D or j? dominate (the spin one 
terms). 
S i m i l a r l y f o r only 70-plets present: 

3/5 ^ cr n/o*P <. l 
Thus from.SU(6) assumptions only, the r a t i o i s 
r e s t r i c t e d to values betv/een 0 and 1. 

The lower bound of 0 i s not t h a t 
usually obtained i n the quark parton model, 
where the value i s 1/4, but the difference arises 
because the quark parton model usually includes 
an assumption of the incoherent impulse 
approximation. The lower bound obtained above i s 
f o r a c o n t r i b u t i o n from 56-plets only, which 
necessitates exotic t-channel exchanges, 
corresponding to non-incoherent impulse 
contributions (Fig 16). 

I f we now impose the r e s t r a i n t of only 
non-exotic exchanges i n the t-channel, we f i n d 
t h a t t h i s i s exactly what i s required to enforce 
exchange degeneracy of the 56- and 70-plet 
contributions. From Appendix I I I : 
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x GTjg, x [CA+C*+£BV£I7-) 
+ (2AC - 4tf+iD')ff 0]2i 

E + ( B J M v ,p> ,v c
 C B J M ' > r 

x J ^ . j f , x [(AW- C ^ . U + C c r 0 ) ^ 

and U',E' are obtained by replacing A,B etc. by 
A',B' etc. 

The terms E +, E_j. have a tensor 
structure and thus correspond to the currents 
landing on d i f f e r e n t quarks, which includes 
exotic ̂ exchanges. To exclude these .contributions, 
there must be cancellation between and Ê !. 
This requires: 

. : % = B; 
which i s only true i f : 

(A + Cf = (A" + C'f, "= B,Z, D*" = D1*" 
(4.8) 

Thus the c o e f f i c i e n t s f o r 56- and 70-plet 
contributions must be i d e n t i c a l , representing 
exchange degeneracy between the couplings to 
transverse vector currents. 

S i m i l a r l y , by considering C3̂ , <r^ and 
°£L» the constraints may be extended to a l l 

the couplings: -
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j£ (A t C) = p ( A ' ± C 1), = oCB 1 

Substituting these values into the cross-sections, 
we obtain: 

o-̂ P s ff*n , j v ^ n = 1 , 2 / 3 ? x , 2 

(4.9) 
f o r e i t h e r transverse or l o n g i t u d i n a l vector 
currents, i n agreement w i t h the resu l t s from the 
naive parton model [ l 8 ] , neglecting the 
transformation between current and constituent 
quarks. 

On the other hand, the p o l a r i s a t i o n 
symmetries are affected by the inclus i o n of the 
transformation: 

A*P = 5/9 X A*n - 0 " 
ui* urt (4.10) 

. A W P = - 1/3 X A ^ n = 2/3 X 
where X = - 4AC +• - D % ( - 1 £ X < 1) 

2(A"»-+ C*) + B--f D-*" 
..... . . Excluding the transformation 
corresponds to A = C = D = 0 so X ~ 1, and a l l 
the asymmetries have a d e f i n i t e sign. However, 
taking the transformation i n t o account, even the 
signs cannot be predicted though the magnitudes 
are bounded and the r a t i o s are independent of X: 

A*n : A*P : A w +P : A W + n = 0 : 5 : -3r: 6 (4.11) 
Experimentally, the r a t i o o f 

O" n / c r P does not s a t i s f y 4.9 near 0 ~ 1 (where 
CO = Q*/2MV), but the nature of the f a i l u r e of 
the assumptions made cannot be f u r t h e r 
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investigated without knowledge of the behaviour 
o f A^n and A^p as-well. One p o s s i b i l i t y i s that 
SU(6) i s v i o l a t e d , f o r instance by the nucleon 
containing a 70-plet part i n i t s wavefunction. 

4.4 Current algebra and sum rules . . . . 
Several sum rules may be derived 

from the commutation r e l a t i o n s of current 
operators, and from these may be derived various 
constraints when saturated w i t h resonances 
belonging to 56- and 70-plets, f o r a r b i t r a r y L. 
•In the model of SU(6)^. only those sum rules 
involving forward scattering amplitudes may be 
discussed, because of the c o l l i n e a r nature of 
the symmetry. 

The Adier-Weisberger sum rul e i s 
obtained from the commutator of two a x i a l 
current operators: - -

05 , - F j ] = i f ^ F k (4.12) 
At Q = 0, the matrix elements of t h i s equation 
between any states of the L ' 0 56»plet, summed 
over anv 56- or 70-plet w i t h a r b i t r a r y L, 
g i v i n g f o r a 56: 

(4.13) 

where V k = 3 ^ \ & ^ (B«,0^'a',/a»,«e 

* <i.*k£- a' 
and s i m i l a r l y a 70, e x c e p t ^ ^ are replaced by &\ J'. 
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V̂ . is the matrix element of the vector charge 
between any members of the L = 0' 56-plet, so the 
sum rule reads: 

L + 2Z ( 5 ' % * « V ) = 1 56 '• 70 / (4.14) 
From Table I I I , AjF n = 5/3 o< , so that the old 
quark parton model result of gA/gy = 5/3 
corresponds to assuming the Adler-Weisberger 
relation to be saturated j u s t .by the lov/est 56-
plet, with L s 0. The Melosh transformation 
requires additional terms, so that gA/gy *C 5/3. 

- I t should be noted that taking matrix 
elements of equation 4.12 between octet and 
decuplet states, or taking the difference of 4.12 
between M = 3/2 and M decuplet states, leads 
to superconvergence relations which are 
automatically satisfied within each 56- or 70-
plet. - -

The commutator of the vector current 
operators i s t r i v i a l l y satisfied for each SU(3) 
multiplet because of the assumption of exact 
SU(3) symmetry. 

We may also consider the Cabibbo-
Radicati [45J and Drell-Hearn-Gerasimov ^ 7 ] 
sum rules decomposed according to isospin, with 
isovector and isoscalar currents between nucleon 
states. These read: • 

2F,'V(0) = MA*" 1 6 / 9 f~ <4-15) 

+ . Z 2 k ^ ( R ) - erf P(H3 
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and: 

where F/|V(0) > 0 
and F^(0) = 1 i s the usual isovector form 

factor. 

• j1' ft'' 3/2/*» 

-cr| n(R) . - cr| P(R)J 
For photon-neutron scattering, the 

Drell-Hearn-Gerasimov sura rule is very simple, 
since ( 0 " 3 " 2 ~ O" J) i s zero for each 56- and 
70-plet by i t s e l f , so the rule j u s t reads: 

- f » = . . . 
where only the A makes a contribution. This - — 
i s i n agreement with the usual SU(6) result 

Similarly, for isoscalar photons : 
1*1? ~ £ 4 _ T < £ P (R) - ^ P ( R ) l 

R .(4.17) 
S 

where ^ A = jx^ + jx ̂  - 1/2M 

may. be easily deduced from our results. 
Then substituting our results for the cross-
sections i n these sum rules, we obtain: 
2F,'V(0) = CuY)1" - 16/9/iX + Z - 2 x 

' ' 56 TM^~"W 
F2(A* + C*") + B" + D 1} 

V r (4.18) 
70 (M ̂  - M ^ L ^ J 
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(uY)L - 16/91?+/ 2 [20/3 AC - 3" -f D! 

V r - * f 4 - 1 9 ) 

+ / 4 8/3 A'C" - B' -f DM 

(P ~ Z_ S — AC - 1/9(BX - D )1 
5? r -,£4.20) 

-f r 4 1/9(B' - D' ) 
7. 

Taking the simplest possible approximation, 
neglecting a l l higher resonant states, we obtain for 
(4.19) and (4.20): 

(u \t = 16/SU1- and (a SJ = 0 
r A • " • r a (4.21) 

or jxv • = 3/2M , ^ n = - l / f i 
Even this crude simplification i s already 

quite close, to experiment.—Including an admixture_of 
70 L « 1 (where D* = 0), i t i s clear that: 

Kjd S

kf = B'"* - 0 • (4.22) 
i s the only consistent solution, indicating that 
jl ̂  and B» for 70 L - 1 are l i k e l y to remain 
small. I n general, the main conclusions to be 
drawn from equations 4.18,19,20 are that a 
consistent saturation requires the presence of C 
or D (C or D') for some excited 56- (70-) plet. 
Further, each set of excited supermultiplets 
contributes positively to F/ v(0) i n accord with 
i t s known positive result. 
4.5 Conclusions 

The results for the asymmetries A 
etc. are interesting for several reasons. I n the 
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calculation of matrix elements, there i s no 
r e s t r i c t i o n i n the value of Q , so that the 
results should be valid over the whole range 
of the momentum transfer. We may therefore 
consider the sum rules which apply to both 
photo- and electro-production. I n photo-
production, the Drell-Hearn-Gerasimov sum rule 
requires that the asymmetry on protons be 
negative over a substantial region, which i s 
supported by some data [483, while for large 
Q*" the Bjorken sum rule {49 J suggests the 
asymmetry should be positive. Thus i t seems 
probable that the asymmetry w i l l show an 

- interesting variation. -- -
On the basis of naive parton models, 

or l i g h t cone analysis fW]'.,. X(Q*") i s expected 
to scale for large Q1". Now, i n the resonance 
region i t seems that i f X(Q**) is-changing sign 
at a l l as Q1" goes from zero to space-like, 
then i t is doing so very slowly with increasing 
Qa. On the other hand, the unpolarised structure 

"2_ 
functions scale down to very low Q . Thus i t 
seems possible that either the asymmetry remains 
negative i n the deep inelastic region and 
Bjorken 1s rule f a i l s , or that scaling obtains 

t_ 
only for very large Q for the polarised 
structure functions. 

I t is also interesting to consider 
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role of the approach in this chapter. Since we 
have made no dynamical assumptions at a l l , the 
coefficients Â B etc. are completely arbitrary, 
so that scaling is not in any way either 
predicted or necessary to the theory. On the 
other hand, the theory is not troubled by the 
main defect of the naive parton model, that free 
quarks appear in the f i n a l state. Our results 
show that many of the good deductions from the 
parton model are in fact independent of the 
incoherent impulse approximation. I f we include 
the assumption of no exotic t-channel exchanges 
we may also derive some other sum rules 
familiar in the ciuark-parton model*.. Starting ._ 
from the Adler sum rule f or vector currents: 

off • 

J \ l t V o [£ n(^) - F^P(*o)J ~ 1 (4.23) 
and including the no exotic constraints: -

jfdW/to. jpJP(u>) - E^n(U)J ~ 1/3 (4.24) 
and i f the vector-axial interference is 
maximal and negative (as predicted i n the 
naive model): 

r6 r "I 
JTdlO/to [F 3

VP0J)+ ^ N ( W ) J = - 6 (4.25) 
Thus we can see how our general results from 
SU(6) symmetry alone are incorporated into 
more specific models. 

4.6 Postscript - the asymmetrie.s paradox 
I n Section 4.3, we obtained the 

relation: 
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A*P = 5/9 X , - 1 < X < 1 . 
This seems to conflict d i r e c t l y with Bjorken's 
sum rule: 

Jdx/x [A* P F^P(X) - A* N F^Kx^ = 1/3 g A/g y 

Since A " is predicted to be zero, t h i s requires 
that A * be positive over a large.range i n x, 
since SU(6) gives g A/g y = 5/3. 

In connection with this apparent 
paradox, i t is interesting to see what happens 
when calculations are done i n the current basis, 
i.e. transforming the constituent states into 
current states. I t can be easily shown [51J that 
the transformed states may be written: 

- f ^ > c = cos0'ty> 4- sin<9|S(p> 
where V = ' -f \ ( §ip)> 
and V i s the Melosh transformation. 
The result ( a X n / ( T ^ 2/3 is obtained 
as before, and the asymmetries are: 

A*n = 0 , 
. A*? = 5/9(003*6 - sin-0 ) 

= 5/9 cos 2 © 
Thus i t is clear that the effect of the 
transformation V i s simply a rotation through 
the angle ^ of the quark spins. This does not 
change the relative probabilities of spin 1 to 
spin 0 core, so that the SU(S) remains 
unbroken, hence the bad value for the ratio 
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Thus we see from this section that 
the Melosh transformation does not break 3U(6), 
so that i t can never lead to the empirical 
result Fx*n/F/P -> - i as x -*> 1. 

I f we now calculate gA/gy i n th i s 
formalism, v/e f i n d that: 

g A/g v - 5/3 cos 25> (4.26) 
so that the Bjorken sum rule is again realised. 

Empirically, g A/g » 5/4, so that 
V 

we can f i n d a value for © - tan" 1(1/77). This 
quantity i s also interesting since i t measures 
the amplitudes for finding L z - 0 and L z ̂  0. 
i n the nucleon ground state i n current space. 
This leads us to deduce that 40% of the 
amplitude has L z 7* 0. This figure coincides 
with that obtained by Sehgal £52] in tne parton 
model through a completely different approach. 

Such a large proportion of L z ^ 0 i n 
the ground state shows why. the SU(S)W of 
constituent quarks is inadequate to describe 
the behaviour of current quarks. But t h i s section 
also shows that the Melosh transformation i n i t s 
turn i s not suf f i c i e n t to explain the low 
results. Clearly some other mechanism which 
s p l i t s the spin 0 core from the spin 1 core 
results is necessary. 
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5. Relativistic quark models 

5.1 Introduction 
In the previous chapters, we have 

treated quarks s t r i c t l y as a convenient 
description of the algebraic structure of 
hadrons, with no assumptions of th e i r dynamics 
beyond that of the i r pointlike behaviour. 
Combined with the use of the Melosh 
transformation, t h i s has led to a scheme for 
hadron interactions v/hich seems to agree quite 
well with experimental observations, except 
for the region of low where i t i s clear 
that SU(6) breaking, probably in the form of 
of unequal probabilities for a spin 0 and spin 
1 core, must occur. The Melosh transformation 
does not introduce such breaking, merely 
rotating the quark spins, and as such i s not 
sufficient to allow a f u l l description of 
hadron interactions. 

Having examined the algebraic 
structure of the quark model plus Melosh 
transformation with some success, i t is 
interesting to consider the position of the 
transformation in a dynamic model. There are 
two d i s t i n c t types of model possible, because 
of the problem of individual quarks not being 
seen outside the hadron. Either quarks are 
l i g h t and weakly bound but somehow contained 
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within the hadron, or they are heavy and very 
strongly bound. I n either case they must behave 
as quasi-free particles i n order to produce the 
observed symmetries, so that i t i s reasonable 
to treat quarks as free Dirac particles, 
ignoring mass and binding problems for the 
purposes of investigating the basis for the 
Melosh transformation. 

5.2 Relativistic quarks 
The Haini-ltonian for a free Dirac 

quark i s : 
. H 0 = J V x £(t) tyl ( t f . £ + j£m) yp ( 5 t l 

where ^ is a superposition of solutions u(p,s) 
of the free Dirac equation. 
None of the 3U(6) symmetry operators (apart from 
unity) commute with t h i s Harailtonian. I n fact 
O'Raffertaigh [53} showed that i t i s not 
possible to combine r e l a t i v i s t i c invariance with 
SU(6) invariance except by a direct product of 
the symmetry groups. 

Thus to find any symmetry at a l l , we 
must lock in a particular frame, the most 
obviously useful being the rest frame. The 
solutions u(p,s) of the Dirac equation are 
obtained by Lorentz boost of the rest frame 
solutions w(0): 

u(p) = L(p) w(O) (5.2) 
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However the Lorentz boost is not a unitary 
transformation, which we require i n order to 
leave the Hamiltonian unchanged: 

H,B = Jd*x S(t) Vf/f"e-is e i S + fm) 

x e- i s e i s 

- Jd*x S ( t ) <^e i s t ̂ m) e" i s^ 
where u(p,s) '~ w(0) 

= L(p) w(0) 
and <j> i s a superposition of rest frame wave-

functions w. 
This simply entails-renormalising w(0) such that 
t t - -
w'w = u' u (instead of ww ^ uu), and t h i s 
defines S. 

Hence v/e can find: 

(5 

e i s (1̂ .2 + p m) e _ i s = Jm* + £x ^ 

3 free Hamiltonian i s : 
H 0 - j d 4 x S ( t ) jyfj m%+ i 2 " ^ (5.4) 

This Hamiltonian is invariant under 
transformations of the form: 

where [/\ , (5 J = 0 
Thus A i s precisely the set of 

SU(6) x SU(6) matrices, and the transformation 
manifestly demonstrates that r e l a t i v i s t i c free 
quarks have this symmetry i n the rest frame. 

Another useful frame i s that i n 
which one component of momentum is boosted to 
i n f i n i t y . Choosing the z-direction, states of 
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large momentum may be obtained by boosting 
states of fixed momentum. Boosting with rapidity 

x 1 = x 
y 1 = y 

(5.5) 
z 1 = z cosh to t sinhfco 
t 1 - t coshcj •+ z sinhu; 
The quantities which are most 

interesting from the point of view of calculations 
are the charges F ( A ) : 

F ( A ) - J V x S(t).l|jf"Aip (5.6) 
These charges do not commute with the free 
Hamiltonian, but the SU(6) generators W(A) do, 
where W(A) are related to ~F(/\) by the Foldy-
Wouthuysen transformation J4Q.J. I t would have 
simplified the problem greatly had the charges 
F ( A ) commuted with the Harailtonian instead. 
They do form amongst themselves an SU(6) algebra 
however, so i t may be that they can be used as 
symmetry operators after a l l . Transforming the 
operators to the i n f i n i t e momentum frame: 

ilA) = e ^ 3 7 ( A ) 
r 4 <- -f-(5.7; 

2 d x d ( t + z tanhtO)f A'1^ where A' , e ^ A 
, 1-f 0<3tanh<o/2 A 2 cosh *f/2 1±^^%^^ 

2 cosh^/2. ^ 

and allowing <^> -> 00: 
P(A) = 2 j d * x 5 ( t - + z ) ^ ( l + ^ 3 ) A ta+obrf (5.8) 
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These new operators should s t i l l have 
the same symmetry properties as before, since 
they have simply been Lorentz boosted. However, 
many of the SU(5) x SU(6) operators anticommute 
with o^, and hence the operators corresponding 
to these values of A. vanish identically. Those 
which do not vanish commute with o/2j forming a 
subalgebra, SU(6) W: 

. A = (1,.X^ [ l , «£] (5.9) 
where /V are the SU(3) matrices. 

, The corresponding good operators also 
satisfy this algebra, provided l i m i t s of 
commutators are identified with commutators of 
l i m i t s for these "operators [*54]. They also 
commute with the free Hamiltonian, 

Thus r e l a t i v i s t i c quarks satisfy an 
SU(6) x SU(6) algebra in the i n f i n i t e momentum 
l i m i t . 

A further point to be noticed 
concerning the new charges F(A) is that & ( t ) 
has been replaced by &( t + z) so that the 
combination ps-+- p 0 is now conserved. 
Nevertheless, i f null-plane anticommutation 
relations are assumed for the wavefunctions 
only those for the good components coincide 
with the i n f i n i t e momentum l i m i t method, 
indicating that i t is not always reliable 
because of the assumption which had to be made 
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regarding l i m i t s of commutators. 
The f i r s t hope was that F ( A ) would 

be suitable particle operators, but this was 
dismissed since these operators lead to zero 
anomalous magnetic moment for nucleons, in 
contradiction with the large moment observed. 
This being the case, Melosh suggested that 
perhaps the W(A) when boosted to i n f i n i t e 
momentum might prove more suitable. Since the . 
W(A) contain p 3 which i s not invariant under 
boosts i n the z-direction, Melosh modified the 
generators by using a Foldy-Wouthuysen 
transformation which removed only of, and a!, 
buO not ^3 from the Hamiltonian^ This then 
removes the term c^p^ from W(A) and the 
Hamiltonian i s : 

H0• = J d V S ( t ) ftt[flm+'vl + * £ p j ^ (5.10) 
This then means that the symmetry of the W(A) . 
is reduced to invariance under transformations 
such that: 

as before, but also 
r A

 1 (5.11) 
[ A , < ] = 0 

This i s not a disadvantage however, since the 
set of A is now the set of SU(6) W operators 
and these are the ones most relevant to the 
problem. Boosting the generators W'(A) now 
produces the operators W(A), which also have 
an SU(6) W i n a similar way to the F ( A ) . Then 
the question arises as to whether the W(A) 
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are any more suitable than the P(A), since the 
or i g i n a l problem was simply to find a symmetry, 
which the V/(A) and F(A) already possess. 
Performing two transformations each of which 
leads to a symmetry is j u s t solving the problem 
twice. 

One way of choosing a preferable set 
of operators i s to consider the rotation 
properties, since we know what properties we 
require for particles. Because the rotation 
matrices anticommute with o(a, complicated 
relations ensue for the F(A ) [ 5 4 ] such that i t 
i s not possible for a particle to have a 
definite spin under the -F(A) and at the same 
time belong to a definite representation of 
SU(5) W under the F(A). On the other hand, the 
relations are simply satisfied for the W'(A) 
and'?(A). 

With this i n mind we may now start 
again from the Foldy-Wouthuysen transformation 
and simply renormalise i t s l i g h t l y d i f f e r e n t l y 
i n order to achieve the required rotation 
properties, instead of a r b i t r a r i l y removing the 

and *S3 parts as for W'(A). This leads to 
the second Melosh transformation: 

^ ~ J(m + lp Q+ Px̂ ' ' 
Unfortunately, this procedure has 
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resulted i n the loss of longitudinal boost 
invariance, which the original W(/S) generators 
had, so that i t seems that one d i f f i c u l t y i s 
removed only at the expense of creating 
another. The new generators then have lost a l l 
boost invariance, so that they should be 
symmetries only for systems at rest, while for 
moving systems, one must deboost to rest and 
then reboost. ' 

In the free quark case, the modified 
generators V/(/\) are constants of the motion, 
as are a l l the null-plane charges, and i n fact 
are the same as the Foldy-Wouthuysen 
transformed generators W(/\). Whether the 
transformation remains i n any way effective 
for a system with interaction must depend 
solely on the strength and type of interaction. 

5.3 Quark model philosophies 
At t h i s stage, we have pointed out 

the problems arising from an attempt to 
describe vertex symmetries by the same SU(6),„ 

w 
as the resonance spectrum and considered the 
resolution of this d i f f i c u l t y by means of the 
Melosh transformation. Both of the suggestions 
put forward by Melosh have t h e i r disadvantages, 
although as can be seen from Chapter 4 the 
algebraic scheme is extremely useful. From i t 
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can be deduced that the free transformation 
i s moderately appropriate at least, although 
clearly SU(6) W symmetry is broken to a 
minimum of 20 to 25%, 

In view of this i t is not 
unreasonable to look for alternative methods 
of resolving the constituent quark-current 
quark dilemma. Such a p o s s i b i l i t y i s to 
reject, the idea that there i s any. > 
fundamental difference between the two types 
of quark, save that one i s at. rest while the 
other is moving. The difference is then 
expressed i n the Lorentz boost. I t i s 
interesting therefore to investigate 
r e l a t i v i s t i c formulations of the quark model 
i n order to discover whether the effects of 
the Melosh transformation may be described 
i n this way, purely by invoking dynamics. 

In section 5.1, we saw that free 
r e l a t i v i s t i c quarks with spin-^- satisfy an 
SU(6) x SU(6) x 0(3) algebra in the rest 
frame. I n the discussion of hadrons, we have 
a choice i n deciding.how to view the quarks. 
Either they are l i g h t with weak binding, so 
that the symmetries s t i l l hold, or they are 
heavy with strong binding and small 
effective mass, but somehow the symmetry i s 
carried, over to the effective quarks. From 
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the f a i l u r e of the search for quarks 

experimentally, we are forced to favour the 
second case, though then the success of SU(6) 
for c l a s s i f i c a t i o n becomes almost incredible, 
since there i s no compelling reason why the 
bound quarks should behave as i f they were 
free . A further a l t e r n a t i v e i s to suppose 
that free quarks do not e x i s t , and that the 
quark model i s simply a phenomenological 
description of the internal symmetries of 
hadronso 

I n formulating models appropriate 
to any of these viewpoints, there are two 
important c r i t e r i a to be incorporated. The 
f i r s t i s that to have any physical 
s i g n i f i c a n c e , the model must reduce to the 
n o n - r e l a t i v i s t i c quark model i n the r e s t 
frame, since i t i s so successful there. 
Secondly, the interaction between quarks i s 
severely r e s t r i c t e d because of the observed 
l i n e a r l y r i s i n g hadron mass spectrum. The 
physical o r i g i n of the behaviour i s not 
c l e a r , so that the best that can be done i s 
to accept i t as a fundamental f a c t , and 
adjust the in t e r a c t i o n accordingly. I f we 
assume that the r i s e of the t r a j e c t o r i e s i s 
exactly l i n e a r , we must i n j e c t a harmonic 
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o s c i l l a t o r form of inter a c t i o n . 
With these points i n mind, we are 

forced to r e j e c t any model i n which the 
i n t e r a c t i o n potential i s singular at the 
or i g i n . Thus a simple f i e l d theory, treating 
quarks as fundamental p a r t i c l e s bound by a 
neutral vector gluon f i e l d , i s not suitable, 
i n spite of i t s success i n the formulation 
of current commutation re l a t i o n s .and l i g h t 
cone algebra. 

Many r e l a t i v i s t i c models which do 
s a t i s f y the above c r i t e r i a have been put 
forward, encompassing a l l the standpoints 
mentioned previously as to the nature of 
quarks. I t i s the object of the following 
sections to discuss some of these models 0 

5.4 Dual models 
I n these models an attempt i s made 

to include the known crossing and a n a l y t i c i t y 
constraints i n the description of hadron 
int e r a c t i o n s . Veneziano [55j succeeded i n 
parametrising the invariant amplitude for the 
process TTiT —> £OTT W h i c h was then extended 
to a formula for an n-point function \5(Q, 
The amplitude contained both s- and t-channel 
descriptions v/ithout allowing double poles or 
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any unwanted s i n g u l a r i t i e s . However, since 
l i n e a r l y r i s i n g t r a j e c t o r i e s were an input of 
the model, u n i t a r i t y has been neglected, and 
i t was hoped that t h i s would turn out to be 
an acceptable approximation. 

These r e s u l t s may also be reached 
by treating the hadron as made up of an 
i n f i n i t e number of partons, which may be r e a l 
constituents or simply degrees of freedom. 
Then since each p a r t i c l e consists of an 
i n f i n i t e number of these, interactions take 
place by an i n f i n i t e ' number of interactions 
between the individual partons. Low order 
diagrams with small numbers of interactions 
become meaningless and the high order 
diagrams dominate (Fi g . 17).. Because of the 
i n f i n i t e number of partons, there e x i s t s a 
symmetry between the channels, and i f the 
partons are treated as s c a l a r s , a 
s t a t i s t i c a l model [57J gives the Veneziano 
amplitudes. 

The model may also be approached 
from a di f f e r e n t angle, by considering the 
free Hamiltonian of the constituents of the 
hadron. Treating them as s c a l a r s , t h i s may 
be written as an i n f i n i t e sum of covariant 
o s c i l l a t o r s : 

09 
H = J T. [p* 4- ^ 1 (5.13) 

n-0 n J 
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where ^ n + 1 - L J

n

 = u > i ^ = 0,1,2,... 
I t i s assumed that the physical l i m i t i s that 
when to —> o, when the zeroth mode becomes 
t r a n s l a t i o n a l . Thus p 0 i s the centre of mass 
momentum, while Pn,q n are the in t e r n a l momenta 
and positions* 

I n t h i s l i m i t , a l l the physical 
observables of the system may be written as 
averages over the period of i n t e r n a l cycles. 
The i n t e r n a l time, T, i s defined by means of 
the Heisenberg equations: 

fH , f ] - i df/dt (5.14) 
where f i s any operator. 
The fundamental cycle " i s taken to be: 

- TT/u ^ T t ^ n/io (5.15) 
+ 

I n p a r t i c u l a r , i f a_' (X) and a . (t) are the 
harmonic o s c i l l a t o r creation and ann i h i l a t i o n 
operators corresponding to the in t e r n a l 
motion, then: 

V r > = e i " n * a y ( 6 - 1 6 ) 

The t o t a l momentum of the p a r t i c l e may be 
written: 

-f X J^J2 (a J, e 1 ^ - P 
T n T l n' ^ 7 (5.17) 

and the observed momentum i s the time-averaged 
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P • 

We are now i n a position to 
generalise the Klein-Gordan equation as 
follows: 

p x - mQ = <p) .<P> - n£ 
H> <:PS> -

Then: 

(p1- - m * ) ^ -> ( p j + 1 1 ^ ^ / - ^ (5.19) 

where the normal ordering i s to eliminate the 
zero-point energy. 

Thus the new mass operator i s : 

A d i f f i c u l t y now a r i s e s since the 
time-like states have negative normalisation 
and are thus unphysical. They are most simply 
removed by gauge conditions: 

p ^ a ^ (physical s t a t e ) 0 (5.21) 
i . e . CO) < W pf (T)) |physical s t a t e > 

sr 0 (5.22) 
Replacing (v^ ( t j ) (e1^ jf ( r ) ) by 
^e 3* > n' t ^ P ^ : / we obtain: 

^ e 1 " 1 1 * :^P^:) (physical state") t= 0 (5.23) 
These are exactly the Virasoro gauge conditions 
^ 5 8 j . They can be s a t i s f i e d provided the 
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dimension of space i s allowed to vary, and 
for 25 space dimensions and 1 time, there are 
no unphysical s t a t e s . Also i t i s found that 
i n t h i s dimension of space, the pomeron may 
be represented simply by a pole, instead of 
the more complicated s i n g u l a r i t y necessary i n 
any other dimension in t h i s model. 

To t h i s point, the hadron 
constituents, or partons, have been treated 
as s c a l a r s . To incorporate spin i n a 
dynamical way, Ramond made an analogous 
generalisation of the Dirac equation [p9] . 

I n order to do t h i s i t i s necessary to find 
some generalisation of the Dirac matrices, 
such that the average over a cycle should 
reproduce the usual matrices: 

< ^ 0 C ) > = y (5.24) 
The simplest anticommutation r e l a t i o n s 
consistent with those of the usual matrices 
are: 

{ f ) t t - ) > f^Ct')] - 2g^vS£v2rr (H - t ' ) ] (5.25) 
Again appealing to s i m p l i c i t y , we have for 
the adjoint matrices: 

•' V / ^ o (6.86) 
Assuming that ^ (X) may be expressed 

as a Fourier s e r i e s over the i n t e r n a l cycle, the 
matrices may be written: 
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provided the c o e f f i c i e n t s obey the a n t i -
commutation r e l a t i o n s : 

(V, wf = = 0
 (5^7) > 

The l a s t term i s neglected i n the l i m i t 
O ) 0 — > 0, under the assumption that %^ i s 
not singular i n t h i s l i m i t . 

The Dirac equation may now be 
generalised i n an analagous way to the K l e i n -
Gordan equation: 

( p ^ - m Q) (f) - 0 

"> r<^X^> = 0 (5.28) 
Writing t h i s i n terms of creation and 
a n n i h i l a t i o n operators: 

Squaring the equation, we obtain: 

= j<P^ - i - i ^ ty) - m o ] ^ - 0 (5.: 
where fl = d/dt ( f ) 
from the anticommutation r e l a t i o n s for 
and since ( t ) , ^ (T)j - 4 i g ^ v d/d^|k/277"(T - 1 ')] 
I n terms of creation and a n n i h i l a t i o n operators: 

,30) 

This leads to l i n e a r t r a j e c t o r i e s i n the physical 
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l i m i t ^ n ~ > nio, with masses of excited 
states given by: 

m^ - -f l<o (5.32) 
where 1 = 0,1,2;;., 

As with the Klein-Gordan equation, 
gauge conditions are necessary to remove 
unphysical states, and these may be written: 

<^r fjt p/ ) | physical state/* ^0 (5.33) 
corresponding to: 

:P0bn/x / physical state)* = 0 (5.34) 
Again the non-physical states 

can only be decoupled completely i n an 
unphysical number of dimensions, though l e s s 
than for the s c a l a r parton case. I t i s hoped 
that i f further symmetries can be included 
i n the model, the c r i t i c a l number of space 
dimensions w i l l drop to three, though at 
present i t i s not cl e a r hew symmetries such 
as isospin may be incorporated n o n - t r i v i a l l y . 

5.5 The Bethe-Salpeter equation 
The d i f f i c u l t i e s of the dual model 

are such as to leave i t unphysical a t i t s 
present stage, so that perhaps u n i t a r i t y 
should not be approximated i n t h i s way. A 
manifestly r e l a t i v i s t i c approach can be made 
through the Bethe-Salpeter equation [60jj for 
the bound state of a fermion and antifermion. 
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I n momentum space t h i s may be written: 

-™>U - vJUT.* ( 5 . 3 5 ) 

= Xjd*k/(27/f V ^ C p , ,P J.,k)Vp / ) { r(k) 

Rewriting i n terms of centre of mass 
va r i a b l e s : 

( J ? + 4 -m)^(q)(£? - 4 -t m) 

* \j6k/(2trf V(P,q,k) ^ ( k ) 
where we have taken: 

(5.36) 

m, -
and: P - p; + p^ 

q ~ 4(P, - P v) 
i s a covariant wavefunction and may be 

expressed i n terms of the Fermi b i l i n e a r s F. 

The binding i s due to the repeated action of 

a potential V. Hence the equation may be 

represented diagramatically as i n Fi g . 18. 

Provided the potential depends 

onljr on the exchange momentum, i . e . i f : 

V(p,,p^,k) =r V(k - p, - p t)" (5.37) 

the equation may be re-expressed i n position 

space by the ladder approximation: 

(£? -+ i£ - m) vp (x) (4? - i d + m) 
' v (5.38) 

= A v ( x ) lp (x) 

The wavefunctions eire normalised 
to the charge on the constituents as i n F i g . 

18: 

<f / j A ( q = 0 ) / e A / i / / > - Jd*k/(27^Tr [ f ( k ) ^ ^ ( k ) 

x (J? + + m)] 
5 2P M 

(5.39) 
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where e i s the charge on p a r t i c l e A, 
ana f -

The equation i s extremely 
complicated to solve, but can be rendered 
more tractable by considering massless bound 
states as suggested by Bohm, Joos and Krammer 
Jjol] j since the equation then exhibits 0(3.1) 
symmetry. Continuing a n a l y t i c a l l y the q 0 

variable to pure imaginary values jj52] the 
equation has 0(4) symmetry leading to a 
hyperradial eigenvalue equation for }\ . 
Having solved t h i s , Bohm et a l . (B.J.K.) 
argue, that quarks are very heavy so that: 

mhadron ^ mquark 
so that putting the bound state mass equal 
to zero i s s a t i s f a c t o r y for a f i r s t 
approximation. Then to improve the r e s u l t s , 
a perturbation expansion i n m h a d r o n/m q u a r k 

may be made. 
The potential V(k - q) must be 

further r e s t r i c t e d to the harmonic 
o s c i l l a t o r form i n order to produce l i n e a r 
t r a j e c t o r i e s , and to give the required 
charge conjugation and pa r i t y spectrum. 
This i s done by the choice of b i l i n e a r s , 
and the suitable ones are: 

V(x) = •+ L + l)(o< -+ 
r ' (5.40) 

V(x) - <« r + (> - (&)(<* +. fx*) 
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Both interactions lead to some 
negative normalisation s t a t e s , and no spin-
o r b i t coupling i s included, V/hen applied to 
meson decay amplitudes, the predicted widths 
are i n reasonable agreement with experiment, 
correct to about 20 to 25% [63], 

5.6 The quark model of Feynman, K i s l i n g e r 
and Ravndal (FKR) 

Rather than using the Bethe-
Salpeter equation as a basis, FKR [64] s t a r t 
from the n o n - r e l a t i v i s t i c o s c i l l a t o r quark 
model [65] and generalise i t i n an 
idiosynchratic way to include r e l a t i v i t y . 

The Hamiltonian for two p a r t i c l e s 
bound by a harmonic o s c i l l a t o r potential i s : 

H = (l/2m).p* + (l/2m)^-+ m w 0 ( x f - x / (5.41) 
or, writing: 

x = (x, - x^) 
i n the r e s t frame: 

H = aM)q + i ^ x " (5.42) 
i . e . 4mH = 4(q'~ + tu^x1") -f constant (5.43) 
where UJ ^ M & 

o 
Now the r e l a t i v i s t i c energy squared i s : 

nr' = (2m + H) V 

meson ' 
and since H ^ m, 

<e s o n * ^ + 4 m H 
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Hence, adding 4m to 5.43, we obtain: 

mJlr.«« = 4 ( q x + wx1") + constant meson -* — 
Equation 5.44 may e a s i l y be generalised to 
a covariant form: 

K. = - 2 [tf + v- 2 u ^ ( X l - x J 1"] 
where now p^, J P ^ J X , ^ are four-vectors. 
I n the centre of mass' frame: 

(5.44) 

(5.45) 

K = - 4(q , _+ «oV") (5.46) 
where =: p^ + 
Thus comparing with equation 5.44, K. - P 
may be i d e n t i f i e d with the mass squared 
operator. Defining creation and a n n i h i l a t i o n 
operators: 

J2LJ 

4 2<~> a 
(5.47) 

we obtain: 
f£ - P v - = • - XL yi a/* + constant 

where XI = 8 to. 
This leads to s t r a i g h t Regge 

t r a j e c t o r i e s of slope S\~' . The ground state 
meson corresponds to the o s c i l l a t o r vacuum 
state (apart from SU(3) l a b e l s ) and excited 
s t a t e s are generated by the action of the 
creation operators. As i n dual models, the 
problem of negative normalisation timelike 
s t a t e s a r i s e s , but here FKR eliminate them 
by f i a t . They adopt the condition: 

P . a l f > ~ 0 - m.a0|<^> (5.49) 

(5.48) 
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i n the r e s t frame. This means that the set 
of physical states i s no longer complete, 
so u n i t a r i t y i s violated. Consequently the 
decay matrix elements w i l l be increasingly 
too big with r i s i n g energy, and a 
correction factor must be introduced to 
compensate for t h i s . 

As yet no mention has been made 
of spin, and t h i s i s a r t i f i c i a l l y 
introduced by the interpretation of p^ i n 
equation 5.45 as P^p^, where ^ =• p{^ ̂  I* 
I t i s then assumed that Dirac r e l a t i o n s 
are obeyed.individually for each quark. 
These r e s t r i c t i o n s are equivalent to . 
assuming quasi-free quarks within the 
hadron. Note that both quark and antiquark 
are treated as,quarks, one with the 
opposite charge, presumably to maintain a 
close correspondence to the n o n - r e l a t i v i s t i c 
model. 

Under these conditions, the 
electromagnetic current i s easy to deduce. 
I n the presence of an electromagnetic . 
potential A^, the operator i s replaced by 

- eX)) where e i s the charge on the 
in t e r a c t i n g p a r t i c l e , so that the mass 
squared operator i s perturbed by an amount: 

• i 
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%K = 3 Z e a ( j f $ a X a + X a ^ a ) (5.50) 
a 

summing over a l l three quarks, and neglecting 
the second order term (eX) . Taking the case 
of a plane wave carrying momentum q^ and with 
po l a r i s a t i o n vector ^ , we obtain: 

%K = 3 ' I e a ( f $ a ^ i ( i ' U a
 + |e i ( l ' u ^ a )er (5.51) 

so that the vector current i s : 
^ sZ. e a « a | e i < l ' u a 4- ^ e ^ a ^ ) (5.52) 

where u a i s the position of quark a. 
S i m i l a r l y the a x i a l current i s : 

d£ = 3±Z e a ( r f \ X e^' U a 

f a a a
 y (5.53) 

and i t s divergence i s : 

h ' a1 a a y • . (5.54) 
' + ^ e ^ ' ^ a ) 

These currents may now be expressed 
e x p l i c i t l y i n terms of centre of mass variables 
and creation and an n i h i l a t i o n operators, and 
s p e c i f i c matrix elements calculated. The 
r e s u l t s obtained are mostly within 20% of the 

experimental data, although there are several 
bad disagreements. Some of these a r i s e 
because a decay to two pseudoscalar mesons, 
for example, may be calculated by treating 
e i t h e r as the current, Then since the 
calc u l a t i o n s depend on the mass of t h i s 
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p a r t i c l e , different answers are obtained 
i n each case. 

The scheme may be simply 
extended to include baryons also and the 
same d i f f i c u l t i e s appear again. 

With regard to the Melosh 
transformation, i t should be noted that 
the electromagnetic current contains no 
spin-orbit coupling term. For example, i n 
the decay of the D l 3(1520), the 
amplitudes A§/ 2 and A3/2 a r e o f equal 
magnitude but opposite sign, and 
whereas the data [66] i s j u s t consistent 
v/ith t h i s , i t i s thought that [67] 

A3/2 *> - 2/3 A g / 2 (5.55) 
which would be the case i f there existed 
a spin-orbit term of the same strength 
as the o r b i t a l term i . e . A =• C i n the 
Melosh transformed vector current. 

However, there i s some spin-
o r b i t coupling contained i n the a x i a l 
current, so that the bad SU(6) W r e s u l t s 
for the decay B *OTT are improved. 
P a r t l y therefore, t h i s model succeeds i n 
duplicating the e f f e c t s of the Melosh 
transformation, though by no means 
e n t i r e l y . Possibly t h i s p a r t i a l f a i l u r e 
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i s due to the way i n which spin i s so 
a r t i f i c i a l l y introduced, and a more 
natural treatment might lead to greater 
success. 
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6. A r e l a t i v i s t i c Quark model for mesons 

6.1 Introduction 
I n the previous chapter, some 

dynamical models attempting to construct 
r e l a t i v i s t i c descriptions of hadrons were 
discussed, and none of them were able to 
reproduce f u l l y the e f f e c t s of the Melosh 
transformation. Nor has there a r i s e n any 
fundamental resolution of the d i f f i c u l t y 
that quarks are apparently both very 
strongly bound, since they must be heavy 
to escape observation, and quasi-free 
within the hadron. Taking the i n f i n i t e 
mass l i m i t for quarks i s however 
t h e o r e t i c a l l y useful, since in t h i s case 
i t has been shown [68] that there e x i s t s 
a r e l a t i o n between bound state quark 
dynamics and the dual model. This may be 
demonstrated by allowing the quark mass 
to become i n f i n i t e i n the Bethe'-Salpeter 
equation for two bound s c a l a r p a r t i c l e s , 
when the equation reduces to a l i n e a r 
form. When the equation i s solved for a 
harmonic o s c i l l a t o r interaction, i t i s 
possible to find an expression for the 
four-point function in the narrow 
resonance approximation which i s c l o s e l y 
related to the Veneziano formula. This 
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i s e s s e n t i a l l y also the treatment in the 
FKR model, which we may therefore regard 
as a lowest order approximation to the 
Veneziano model. The fa c t that the FKR 
model only has one creation and 
an n i h i l a t i o n operator, rather than a sum 
over an i n f i n i t e number, i s interpreted 
as being a neglect of the sea of qq 
p a i r s . 

In a s i m i l a r way, i t i s 
possible (69) to solve the Bethe-Salpeter 
equation for two spin-^- p a t i e l e s , and 
thus obtain a lowest order approximation 
to the Ramond model. 

6.2 The FKR model from the Bethe-Salpeter 
equation 

We consider f i r s t the 
a l t e r n a t i v e method of deriving the FKR 
model suggested above, s t a r t i n g from the 
Bethe-Salpeter equation for s c a l a r 
p a r t i c l e s : 

(pi" - m L ) ^ ( p ^ - mu) r VY' (6.1) 
assuming m, = m 1= m 
Taking the l i m i t m —^ large: 

(p, v + p* - m 4 U)f - 0 (6.2) 
where U - V/m*" 
I n order to obtain l i n e a r l y r i s i n g 
t r a j e c t o r i e s , U must be of harmonic 
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o s c i l l a t o r form, giving: 

(P?" + p*+- 2 u V * C)ty = 0 (6.3) 
Separating into centre of mass var i a b l e s : 

QrP1" + 2(q^ + ^x"*") 4- q]+ = 0 (6.4) 
where P - p( •+ 

q = 4(P, - P*.) 
C = constant 

The potential U includes a constant part 
i n order to cancel out the large mass and 
allow the bound states to have only a 
small mass* 

Introducing the standard 
harmonic o s c i l l a t o r creation and 
a n n i h i l a t i o n operators: 

J2aZ at - q -*• i u 
, r r t (6.5) 
s/2u) a^ * q^ - iWx^ 

and substituting into equation 6.4 we 
obtain the FKR model: 

(P-* + XI at a** -+ 2C)U/ - 0 (6.6) 
r 

where X I = 8 to 
P*~ =. - (meson mass)1" 

6.3 The model 
We now attempt to repeat t h i s 

treatment for spin-^- quarks, again s t a r t i n g 
from the Bethe-Salpeter equation: 

(tf - m)<p (rf - m) = V ^ (6.7) 
where $ ± = p * J> 
I n f a c t , from the form of the Bet-he-
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Salpeter equation i n equation 6.7: 

^ = ^ T (6.8) 
and operates from the right and 
from the l e f t . 

We have here written down the 
quark-quark equation, for s i m p l i c i t y i n 
working out the charge conjugation 
properties (see r e f 76, A4). The qq 
r e s u l t s are obtained by the use of the 
charge conjugation matrix. 

Taking the large mass l i m i t , 
the equation becomes: 

(£, + - (m - (6.9) 
where U =̂  V/m 
Rewriting i n terms of centre of mass 
vari a b l e s as before: 

feUNtf) •+ Q ( V * - - t f ) r m + u ] * 
' r (6,io> 

o 
We now wish to chose a suitable 

i n t e r a c t i o n U, such that the squared 
| equation represents a harmonic o s c i l l a t o r . 
This requirement leads to two r e s t r a i n t s , 
since the squared equation has two forms. 
I n order to obtain equation 6.6 from 
squaring, we l i n e a r i s e i n spin 
space to get: 

i ^ r t r * V ) ~J< ~ JZZitfpBt + o/^a>) (6.11) 
Secondly we require that equation 6.10 v/hen 
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squared should be. o f the form o f equation 
6.4, and t h i s introduces various 
c o n d i t i o n s on the p o t e n t i a l . 

From the f i r s t r e s t r a i n t , t o 
ensure harmonic o s c i l l a t o r form, we must 
el i m i n a t e terms quadratic i n and a^ , 
i . e . : 

Comparison w i t h equation 6.10 suggests 
the form: 

cxvP = a-+ MC6,F - t£) (s.i3) 
and w i t h equation 6.12 t h a t : 

A ± = (6.14) 
Thus: 

V i Z T ^ a -f «<at) - q u ( V - ^ ) \ 
I v i . v i , u (6.15) 

To determine the exact form o f the 
pote n t i a l , . w e now e x p l i c i t l y square 
equation 6,10: 

[it + q- - + * { k ( V * 
r' „u U \ (6,16; 

+ f y - ̂ >>u} -" 0 

For a harmonic o s c i l l a t o r form: 
-tS~x~ + constant (6.17) 

and {^?,uj - j^,u] = 0 (6.18) 
I t i s not possible t o s a t i s f y a l l these 
requirements a t once, so we neglect 
c o n d i t i o n 3,18, and then we o b t a i n : 

• U * - " + Vf"B (6.19) 
where B i s an a r b i t r a r y constant. 
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The form o f the i n t e r a c t i o n , 
l i n e a r i n p o s i t i o n v a r i a b l e s , which, l i k e 
the momenta, are contracted w i t h Dirac 
matr i c e s , a r i s e s from the p o s i t i o n -
momentum symmetry c h a r a c t e r i s t i c o f the 
harmonic o s c i l l a t o r . Equation 6.19 i s 
c l e a r l y i n v a r i a n t under the interchange: 

The second term ^5-' H£B was 
not included i n the o r i g i n a l model [70J, 
and as a r e s u l t , some confusion arose as 
to the magnitude o f the quark mass, since 
w i t h o u t t h i s term, the ground s t a t e mass 
o f the meson i s the same as the quark 
mass, which i s c l e a r l y not d e s i r a b l e . 
However the new term removes t h i s 
d i f f i c u l t y , l e a v i n g the ground s t a t e 
mass f r e e as an ext r a parameter (see 
Appendix V ) . The large quark mass 
enables us t o ignore quark propagation 
e f f e c t s , e s t a b l i s h i n g a close r e l a t i o n 
between our r e l a t i v i s t i c r e s u l t s and the 
n o n - r e l a t i v i s t i c ones. 

A f u r t h e r advantage o f the 
large quark, mass scheme i s t h a t the 
i n t e r n a l motion o f the quarks w i t h i n the 
hadron may be t r e a t e d as n o n - r e l a t i v i s t i c 
(though t h i s e n t a i l s n e g l e c t i n g the 
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r e l a t i v e energy i n the centre of mass). I n 
t h i s approximation, the four dimensional 
creation and annihilation operators become 
three dimensional i n the r e s t frame, so we 
may replace , a^^ by: 

= (0,a) i n the r e s t frame 
Generalising to any frame: 

~ K " p,x P.a/fcff- (6.20) 
V f t where P Pf - I P 

This also has the effect of removing the 
negative norm timelike states, v/hich had 
to be a r t i f i c i a l l y decoupled from physical 
states i n the FKR model, leading to a 
v i o l a t i o n of u n i t a r i t y and the necessity 
of introducing an adjustment factor to 
compensate for t h i s in the calculation of 
matrix elements. 

6.4 Properties of the wave functions. 
The solutions.to equation 6.10 

when the form of the interaction has been 
substituted i n : 

j ^ . t f / ' * - * 0 + i f c ^ a W . a 1 " ) ] ^ = 0 (6.21) 
can be b u i l t up i n a Fock space with a 
vacuum defined by: 

fylOp> = 0 (6.22) 
Since vj i s simply the n o n - r e l a t i v i s t i c 
annihilation operator in the res t frame, 
t h i s state i s the n o n - r e l a t i v i s t i c ground 
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state i n the r e s t frame. A general solution 

may be written: 

where i s a 4 x 4 matrix, and i n 
c a l c u l a t i o n s , quark operators act on ^pp 
from the r i g h t , while antiquark operators 
act from the l e f t . 

The invariance properties of the 
solutions under charge conjugation, parity 
and Lorentz transformations are defined i n 
the same way as for the Bethe-Salpeter 
wave functions (see r e f 76 9A4 ) . 

I n the evaluation of matrix 
elements, we are not able to use the usual 
invariant measure d q, since the v/ave 
function does not depend on the r e l a t i v e 
energy as a r e s u l t of the approximation 
used i n the replacement of the creation 
and a n n i h i l a t i o n operators a. and a ^ by 
^ and <j ( i . e . as a r e s u l t of the large 
quark mass approach). Hence we must 
redefine the s c a l a r product i n a more 
appropriate way. This v/e do i n a way 
prompted by the FKR treatment. That i s , we 
replace I 0^) by lo^, the four-dimensional 
vacuum st a t e , which also s a t i s f i e s equation 
6.23. Defining the spin part of the s c a l a r 
product i n the usual way, we have: 
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We normalise the wave functions 
i n the same way as the Bethe-Salpeter wave 
functions, by using the matrix element of 
the quark current a t zero momentum transf e r 
to define the quark charge, ( f i g 19). 
Thus we obtain: 

<vp p i y>co>/e q i « f p > f 

= - A<0| Tr ^ p ( ^ , ? | ) l l / / p ( - | | , T | ) i o > (3.25) 

where A i s a normalisation factor. 
We use the minimal vector current 

for the quarks, which may be written: 

V = " e q V e i q , X 

=* - e q F e ^ a t ^ e-<W^ 
where F = e""^^ 2^-
and the centre of mass phase factor i s 
neglected. 
Then the a x i a l current i s : 

V = - X q ^ s ^ F e^ a f4n: e - q . B / f i i 

The antiquark operators, neglecting unitary 
spin factors, are given by: 

F C P V 1 e ^ " * ^ e ^ ' 8 ^ (6.27) 
where [7 i s either \ or 

r h s r 
The corresponding antiquark matrix elements 
are: 

' x e q - a / ^ l^(T0,>J) C P T CT 1 J ( V 
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The unitary spin parts are 
calculated under the assumption of no rj r| 1 

mixing i n the 0" + nonet, and ideal mixing of 

6.5 The solutions 

The complexities of equation 6.21 
may be considerably reduced by w r i t i n g the 
equation i n the r e s t frame. When the e f f e c t s 
of p a r i t y transformations and charge 
conjugation are taken into account, the 
wavefunction may be separated into four 
components, each 2 x 2 matrices. The equation 
may then be expressed as a set of. coupled 
equations a t the P a u l i spinor l e v e l , and 
reduced a l g e b r a i c a l l y to a single equation 
(see r e f 76, A4 ) . 

The application of charge 
conjugation and parity invariance allows 
the solutions to be divided into two clas s e s 
characterised by the value of PC. I n the 
n o n - r e l a t i v i s t i c model, the set with PC =: -1 
corresponds to spin zero states, while that' 
with PC = + 1 corresponds to spin one s t a t e s . 
I n the r e l a t i v i s t i c wavefunctions, t h i s 
r e l a t i o n i s maintained in the large 
components, but not i n : the small. With some 
manipulation the large components may be 

u> and <p m the 1 nonet. 
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shown to.be eigenstates of the number 
operator, and hence the f u l l solution may­
be constructed. This solution, rewritten 
i n covariant form, may then be demonstrated 
to be a solution of equation 6.21 by di r e c t 
substitution, 
i ) PC = -1 

As a consequence of choosing a' 
three dimensional interaction i n the r e s t 
frame as i n the n o n - r e l a t i v i s t i c model, we 
obtain the naive quark model r e s u l t .••.•that 
mesons with P = (-1) J and C = ( - 1 ) J + 1 

are forbidden. Had v/e not wished for. the 
close correspondence to t h e ' n o n - r e l a t i v i s t i c 
model, the .interaction would i n general have 
been four dimensional i n the r e s t frame, and 
i n t h i s case the forbiddenness depends 
c r u c i a l l y on the spin-space structure of the 
i n t e r a c t i o n . 

The solution for a PC - -1 state 
of mass m and spin quantum numbers ( J , J Z ) 
i s : 
| v^>" =r l/2jm^ ^[(m - m0JVm) 

. n • x (6.29) + M */mf(J I^N , J , J Z > 

where mQ i s the effective quark mass 
and only states with P = ( - 1 ) J + 1 , C = (-1) J 

e x i s t . 

http://to.be
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/N,J,J Z^ i s an eigenstate of the number 

operator y | ^ T ] ^ J with eigenvalue N. 
I n the l i m i t X I 0 , the solution 

reduces to that for a free (mass m) quark 
and antiquark with r e l a t i v e angular momentum 
zero, that i s , there i s ho admixture of 
negative energy s t a t e s . The ground state 
solution: 

|<f 0> - l/zJEQ - m0F7m)|0> 
i s simply a boosted n o n - r e l a t i v i s t i c wave-
function. I t has the same spin structure as 
postulated by Gudehus [ 7 l J . The BJK solution 
has the same form, but with JP'/m replaced by 

? / mquark-
The p a r t i c l e s l i e on str a i g h t 

Regge t r a j e c t o r i e s : 
m7" - mj~ •+ £L N (G.30) 

where N = 0,1,2... 
We choose the slope of the t r a j e c t o r y to be 
unity, i . e . i 7 . " 1 = 1, and take for 111^. the 
average of the square of the pseudoscalar 

-2- "2-

meson masses, mQ = 0.25 Gev . V/ith these 
choices, we reproduce reasonably t h i s . 
section of the mass spectrum ( f i g 20). 

I n f i x i n g the parameter SI as 
above, we have also automatically fixed the 
s i z e of the hadron [72]. The space part of. 
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the ground state solution i s : 
<fx = x, ~ x j °y ^ exp(- 60I"xV2) 

*v exp(- xV2R^") (6. 
where R v =• 1/to = S/tL = 8 natural u n i t s . 

R i s e s s e n t i a l l y the average 
separation of the quarks and determines the 
s i z e of the meson. Taking a nearest order 
of magnitude approximation, the cross-section 
of the meson i s ~ 7T R*~ ̂  24 natural units 
~ 10 mb, which i s not unreasonable, 
i i ) PC = + 1 

Using the same method as for 
PC =. -1, we find that the solutions are not 
always unique, because the eigenvalue 
equation a t the Pauli spinor l e v e l demands 
only an eigenstate of the number operator. 
Thus the quark spin and the o r b i t a l angular 
momentum are decoupled, so that for a given 
meson spin, there are two allowed values of 
o r b i t a l angular momentum. This same mechanism 
however, ensures the desirable feature that 
there i s no spin-orbit s p l i t t i n g of the 
t r a j e c t o r i e s . I n f a c t the ambiguity of the 
solutions does not manifest i t s e l f i n every 
st a t e , and the states on the leading 
t r a j e c t o r y and those with the spin equal to 
the o r b i t a l angular momentum are unique. 
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Hence the f i r s t ambiguous case occurs for a 
spin one meson with N — 2, so that the 
ef f e c t i s i r r e l e v a n t for p r a c t i c a l 
considerations. To define a general solution, 
we require that the r e s t frame v/avefunction 
should have no spin zero components, i n 
accord with the unambiguous solutions. Then 
the unnormalised PC = -+• 1 states are: 

Ivp> = 1/2JF 0 [(m + mj/m)& + SI ̂ € . y ( m v - m£ )) 
- i K y m £ ( P r ) + e f ) ] IN,<,12> ( 6 . 3 2 ) 

where P - C = (-1) , 

^ s a s P * n o n e wavefunction 
£ ( P ^ € ^ ) i s the L e v i - C i v i t a tensor 

dotted into four four-vectors. 
The solution has not been separated into i t s 
possible spin states of -t-f 1, ^ and 1.-1. 

As i n the PC = -1 solutions, we 
note that i n the l i m i t XI 0, the solution 
reverts to that for a free quark and a n t i -
quark with r e l a t i v e momentum zero, showing 
that there i s no negative energy admixture. 

The term ^ / j / O n 7 " - m0*") which 
vanishes i n the case J - - t , i s responsible 
for adding the extra o r b i t a l angular 
momentum i n the large components for the 
cases J = 1, where the solution i s not 
unique. 
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The significance of the other 
terms i s most e a s i l y understood through 
consideration of the ground state solution: 

\^ o) =• l / 2 j ^ 0 [(m + m 0 M n ) £ 
- i/R \/m £(Pr^V )] (0> 

The f i r s t term i s cl o s e l y r e l a t e d to a 
boosted n o n - r e l a t i v i s t i c wavefunction, and 
i s i d e n t i c a l i f m0 - m, when the solution 
becomes that of Gudehus J7lj« I t i s also 
s i m i l a r to the solution of BJK: 

|lp> =r (1 + ?/mq)g l0> (6.34) 
with <q / 0> = e ^ 7 " / ^ 

I n the second term, the quark :' 
spin i s coupled to a P-v/ave o r b i t a l state 
( i n the small components) and hence 
corresponds to a spin-orbit i n t e r a c t i o n . 
This feature i s absent from the solutions 
of BJK and Gudehus. Experiments, on the 
other hand, indicate the necessity of t h i s 
type of coupling (see section 3.2) and we 
regard t h i s property as most desirable. 
This spin-orbit coupling i n the wave-
functions i s independent of the presence 
or absence of spin-orbit s p l i t t i n g of the 
t r a j e c t o r i e s . 

The mass spectrum i s again 

l i n e a r and i s . not affected by the 

ambiguity i n the solutions: 
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m1- = (6.35) 
V/ith the parameters fixed as previously, the 
mass of the vector meson i s predicted to be 
1.58 Gev, which i s about twice the correct 
value. This devolves from too strong a spin-
spin interaction, though c l e a r l y some such 
i n t e r a c t i o n i s required to make the vector 
mesons more massive than the pseudoscalar 
nonet. I n calculations, we reset the value 
of m Q (since >̂ i s free) to be: 

^ mj - 1.511 (6.35) 
and use the t r a j e c t o r y : 

m"1" =• 4- SI (N + 2) 
= (H1Q + 0.5XZ) 4- X2 N (6.37) 

The ground state mass squared (mj" -h 0.5JQ.) 
i s again chosen to be the average value of 
the vector meson mass squared. The mass 
spectrum i s then reasonable, with the quantum 
numbers i d e n t i c a l to those predicted i n the 
n o n - r e l a t i v i s t i c quark model ( f i g 21). 

Having obtained the s p e c i f i c wave-
functions for r e l a t i v i s t i c mesons, i t i s 
c l e a r that they do indeed incorporate a spin-
or b i t coupling term, and t h i s i s suggestive 
of the Melosh transformation. I n the FKR 
treatment, SU(6)^. wave functions were chosen 
for the meson st a t e s , while the vector and 
a x i a l currents were more complicated than 
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the usual simple minimal currents. I n t h i s 
model, the reverse i s true, with the usual 
currents being used to calculate matrix 
elements between complicated s t a t e s . This 
may be compared with the calculations of 
chapter 4 in constituent space and current 
space, except that i n FKE spin-orbit 
coupling appears only i n the a x i a l current 
and not i n the vector current, where i t i s 
a l s o required. The natural occurrence of 
t h i s coupling i n our model i s i t s most 
a t t r a c t i v e feature. 

6.6 Applications 

Following FKR, we calculate 
experimental observables from current 
matrix elements, neglecting quark 
propagation e f f e c t s because of the large 
mass approximation. We have the additional 
problem that our vector currents are not 
i n general conserved, while those of FKR 
are, so a momentum term must be added to 
the coupling to ensure conservation. Then 
the current i s of the form: 

V ~ .e F ( g , U g P ) e < ^ a t / ^ 

where g,,g^ are constrained to ensure 
current conservation 
and + g£ • =• 1 
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and * AJ* = - i X
q F \ ( g , 4 + g^q.P) 

Since t h i s introduces an extra parameter, 
we take g L = 0 for our calculations as a 
f i r s t approximation. I n the cases where 
the decay i s an equal mass t r a n s i t i o n or 
a PC - + 1 meson to pseudoscalar meson 
t r a n s i t i o n , the current i s exactly . 
conserved with = 0 and g ( = 1, so 
that for p r a c t i c a l purposes, vector 
current matrix elements are a l l exact, and 
only the a x i a l current matrix elements f or 
the decays 1~*~ 1~ and 2+ -» 1" are not 
exact. *>•» 
i ) Lepton decays 

The decay matrix for a pseudo-
scalasr meson to annihilate into a lepton 
p a i r i s : 

<vacuum | A^(0) ( 0""* meson^ sr Tr ̂ ^-^-pCx^ =- 0) 

= V/* < 6« 3 9> 
where ^ p ^ ^ u " °) ^ s ^ e pseudoscalar 
wavefunction a t the or i g i n 

fp i s the pseudoscalar meson form 
factor. 

Evaluating the trace leads to: 
f p = J m 0

/ m p Cn/470 (6.40) 
The f a c t that t h i s contains a 

fac t o r of 1/m means that we cannot use 
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the physical masses to calculate fp, since 
t h i s would lead to a very large symmetry 

breaking which i s not observed, i . e . we 
are faced with the Van Royen-Weisskopf 
paradox (73J. Instead we are forced to use 
the predicted unbroken masses to avoid the 
d i f f i c u l t y . Then: 

ni = ni P 0 

and ffT = f k ** 0.112 Gev 
as compared with the experimental values 
[ ? 4 ] : 

f k = 0.105 Gev t^= 0.095 Gev 
S i m i l a r l y the c a l c u l a t i o n may 

be repeated for a vector meson decay: 

^vacuum | V^(0) [ 1" + meson^ - Tr ^ P v ( x - 0) 

r 
which leads to: 

3/J2 g^ - 3 g t o = g p = l / j a n 0 ( a / 4 f l ) 
= 0.08 Gev 

as compared with the experimental values: 
3/J2 g^ = 0.158 Gev 3 g w ~ 0.156 Gev 

gp = 0.160 Gev 
This r e s u l t i s comparable with 

those of other quark models such as BJK, 
who predict g y to be about twice the 
experimental value and FKR, who have: 

gp •= \ = f k e t ^ 
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i i ) Matrix elements of the vector current 
The form factor for K"TT coupling 

i n decay i s calculated from the matrix 

element of the vector current: 

. <JT fy(o).( K)> - F/2J2 ( r v ' m

k " mkMr) 
x [ ( p k 4 * ( p k " 

H f + ( q - ) ( P k -
f J q ^ C P k - P j - ^ 

Evaluating t h i s using unbroken masses, we 
obtain: 

•f+ (q2-) =-0 
i n disagreement with the experimental r e s u l t 
[74] of: 

f.(0) ~ f + ( 0 ) ^ 1.0 
This disagreement i s c l e a r l y attributable to 
the use of unbroken masses, and a symmetry 
breaking scheme must be added to our model 
i f these r e u l t s are to be well described. Had 
we used physical masses in equation 6.42, we 
would have achieved good r e s u l t s but v i o l a t e d 
our c a l c u l a t i o n a l prescription. 

Symmetry breaking i s not so 
important i n the electromagnetic decays of 
the vector mesons, where we obtain much 
better r e s u l t s . Neglecting the unitary spin 
factor, we obtain f o r the matrix element of 
the quark current: 
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> meson 
[ l + <m / D ^ j ^ J £ ( (6. emv F 

m.m »*"0 
where the kinematics are indicated i n f i g 22. 

The f i r s t term i n equation 6.43 
corresponds to an o r b i t a l magnetic moment, 
while the second i s analogous to an i n t r i n s i c 
moment. The antiquark amplitude d i f f e r s only 
i n the signs of the various terms, so 
combining with the unitary spin factor, we 
obtain the r e s u l t s i n Table V I . 

The coupling constant, g i s 
defined by: 

and we have used unbroken masses i n i t s 
evaluation. The quantities dotted into the 
L e v i - C i v i t a tensor are taken a t t h e i r 
physical values, primarily for convenience, 
as any other procedure has a minor e f f e c t 
on the r e s u l t s . 
i i i ) Decays by emission of a pseudoscalar meson 

amplitude for pseudoscalar emission by 
replacing the pseudoscalar meson interaction 
by the divergence of the a x i a l vector 
current, which i s given by: 

(6.44) 

Following FKR, we calculate the 

q.a/JjT (6.45) 
The o v e r a l l strength of the 
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i n t e r a c t i o n i s determined by the adjustable 
parameter, f, and the decay amplitude from 
an i n i t i a l state, i , to a f i n a l s t a t e , j , 
by emission of a pseudoscalar, i s : 

T = - i f £ ^ j l ^ A / ^ l i ) (6.46) 

where the summation i s over quarks and 
antiquarks. 
Expressions for the matrix elements v/ith 
the unitary factor removed are given i n 
Table V I I . 

Decay widths are calculated 
using the formula: 

r = RA&Ti-f 1) ^ ITI7" (3 /2m*) (6.47) 
where 2. i s the three-momentum of the decay 
products i n the r e s t frame of the i n i t i a l 
p a r t i c l e 
and the summation i s over the i n i t i a l and 
f i n a l spins 
The factor R i s to account for the 
di f f e r e n t charge modes allowed i n the decay. 
[64]. 

I n c a l c u l a t i n g the decay widths, 
the dynamical quantities are input using 
unbroken masses, while for the kinematic 
phase space factors we use physical masses. 
For example, the decay width: 

f ( 1 " -> 0" + 0-+) - R 2/3(g/m i) i |o/ (6.48) 
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i s calculated by putting physical masses 
into £ and unbroken masses into (g/m^). 

As can be seen from Table V I I I , 

t h i s prescription yields, good agreement 
with data, as might be expected since t h i s 
i s simply r e f l e c t i n g the SU(3) symmetry of 
the coupling constants. I n the FKR model, 
the r e l a t i v e values of decay widths for a 
given decay type are in l e s s good 
agreement with data, but t h i s i s due to 
the symmetry breaking introduced by using 
physical masses throughout. This problem 
i s p a r t i c u l a r l y acute i n the case of 
decays into tv/o pseudoscalar mesons, 
where di f f e r e n t r e s u l t s are obtained 
depending on which meson i s replaced by 
the a x i a l current. The use of unbroken 
masses avoids t h i s asymmetry. 

The value of the coupling 
constant, f, i s expected to be close to 
that given by PCAC theory, that i s : 

f T ' f^TNl/ mTtSA = 1 ' 6 5 

Using t h i s value, the decay v/idths are 
found to be too large, and reduction to a 
value f = 1.46 Gev""' i s necessary to 
give a good f i t to the data. Our best f i t 
to the decay width data, together with 
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that of FKR, i s shown i n Table V I I I * 
The r e s u l t s for the vector and 

tensor decay widths are a l l within 20% of 
the experimental values, which i s 
encouraging v/hen the f a c t that we have not 
introduced symmetry breaking i s taken into 
account, and i s an improvement on FKR. For 
the 2 + — > 0~1" decays, our r e s u l t s are 
l e s s good than those of FKR, though we 
have not used a conserved current and can 
improve our r e s u l t s by r e c t i f y i n g t h i s 
(Table I X ) . 

I n the other two types of decay 
considered, l 4 " 1~0" and 1*+ -> 1"0~, 
we again have the problem that the 
underlying vector current i s not conserved 
so that our r e s u l t s can be improved. The 
approximate r e s u l t s are however correct to 
an order of magnitude, and are comparable 
to those of FKR. On the other hand, the 
h e l i c i t y proerties, which depend c r u c i a l l y 
on the type of coupling, are much worse 
i n our model unless a conserved current i s 
used (Table X ) . 

The unfavourable comparison 
with experiment for the decays •K**(1240)-> 

K n and A , — i s perhaps mitigated by 
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possible contamination of the resonances by 

the Deck ef f e c t [74J . 

6.7 Conclusions 
The harmonic o s c i l l a t o r character 

of our wavefunctions was an input from the 
beginning i n order to ensure l i n e a r 
t r a j e c t o r i e s , and i s not c r u c i a l to the 
lowest two stat e s , which are the only ones 
for which calculations were made. On the 
other hand, i t does generate the spin 
structure on which our r e s u l t s are e n t i r e l y 
dependent. Hence the harmonic o s c i l l a t o r 
input i s i n d i r e c t l y responsible for any 
relevance of the model. 

The large components of the 
wavefunctions are analogous to boosted non-
r e l a t i v i s t i c wavefunctions and occur i n a l l 
r e l a t i v i s t i c models. The main difference 
a r i s e s from whether m q u a r k or i s 
regarded as the fundamental mass. The novel 
feature of our model i s the inclusion of a 
spin-orbit term i n the small components, 
which nevertheless does not cause s p l i t t i n g 
of the t r a j e c t o r i e s . This extra o r b i t a l 
term i s needed to produce some of our good 
r e s u l t s , the l e a s t ambiguous case being the 
electromagnetic decays, where the o r b i t a l 
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term contributes h a l f the r e s u l t . We regard 
t h i s success in the electromagnetic case as 
our most inportant r e s u l t , as i t does not 
depend on any a r b i t r a r y factors. 

The significance of the r e s u l t s 
for the pseudoscalar decay widths i s harder 
to evaluate because the prescription which 
replaces the pseudoscalar in t e r a c t i o n by 
the divergence of the a x i a l vector current 
i s not quite as w e l l established as the 
corresponding formula for the vector 
current. Further, we do not adhere s t r i c t l y 
to PCAC theory as we use a coupling 
constant s l i g h t l y d i f f e r e n t from that given 
by the theory. 

Given that the r e l a t i v e success 
for any one decay type j u s t depends on 
SU(C) symmetry and the prescription to use 
unbroken masses, the fact that the coupling 
constant i s an independent parameter means 

Table V I I I contains only four independent -
r e s u l t s . Also, because the data for the 
1 — ? 1"0" decay i s ambiguous, there are 
r e a l l y only three numbers to compare with 
experiment. Of these, two compare w e l l , 
while the t h i r d , B —> u>Tf, i s not so good. 

To summarise, we have proposed 
an equation i n which the in t e r n a l quark 
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motion i s c l o s e l y related to that i n a non-
r e l a t i v i s t i c model, but i s treated in a 
covariant manner. Our model i s most c l o s e l y 
related to that of FKR, but has the 
advantage of incorporating spin i n a more 
dynamical way. However, t h e i r simple 
treatment of spin enables them to include 
baryons i n t h e i r scheme. The extension of 
our model to include baryons i s c l e a r l y the 
next step. 

i 
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7. Conclusions 

I n the preceding chapters, we have 
attempted to discuss the dilemma caused by the 
non-identity of current and constituent quarks 
from as many di f f e r e n t approaches as possible. I n 
general, they a l l achieve some degree of success, 
though some are l e s s s p e c i f i c than others. 

I n the f i r s t chapter, we introduced 
the naive quark model, demonstrating i t s remarkable 
success i n predicting p a r t i c l e states i n the mass 
spectrum. Unfortunately, i t i s e a s i l y shown that 
the symmetry SU(6) of resonances i s not suitable 
for predicting f i n a l states i n decay processes. 
Chapter 2 r e l a t e s the same story from the opposite 
direction, showing that the partons of the naive 
parton model cannot be i d e n t i f i e d with quarks, 
without some modification of the symmetry SU(6). 

We discuss some possible methods of 
adapting- the symmetry i n Chapter 3. The f i r s t 
obvious step i s to introduce some form of 
r e l a t i v i s t i c invariance and though t h i s cannot be 
attained i n f u l l , invariance i n a chosen direction 
leads to the symmetry SU(o),„. However, t h i s i s 

V'/ 

s t i l l not s u f f i c i e n t to produce a s a t i s f a c t o r y 
description of both the resonance spectrum and 
decay processes, and some further modification i s 
necessary. This can be achieved i n several ways, 
though a l l are based on the idea of SU(6) breaking 
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and one of these i s the Melosh transformation, 
where the concept of two d i f f e r e n t types of 
quarks i s invoked, these two types being r e l a t e d 
by the transformation from one space to the . 
other. Hence to calculate the matrix element of 
a current between two constituent s t a t e s , the 
current must f i r s t be transformed into 
constituent space (or the constituent states 

into current space). , 
f 

This idea can then be extended 
and used to calculate observables as i n Chapter 
4, where a considerable dego*ee of success i s 
achieved. The spin-orbit coupling observed 
experimentally i s reproduced but the strength 
of the coupling i s a free parameter of the 
theory. I t i s also shown that even the use of a 
general Melosh-type transformation i s not 
s u f f i c i e n t to duplicate the experimental r e s u l t s 
i n the low region, and i t i s c l e a r that the 
transformation does not i n f a c t break the 
symmetry SU(6)V^ but merely rotates the quark 
spins. Thus some further mechanism i s required 
to give d i f f e r e n t p r o b a b i l i t i e s to spin 1 and 
spin 0 cores, isospi n 1 and 0 cores. 

I n Chapter 5, we examine the 
t h e o r e t i c a l b a s i s for the Melosh transformation 
and find that although the transformation i s 
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pla u s i b l e , i t i s d i f f i c u l t to j u s t i f y i t 
t h e o r e t i c a l l y without severely l i m i t i n g the 
sphere of i t s usefulness. V/e then turn to an 
a l t e r n a t i v e method of viewing the underlying 
dilemma, that i s , we regard constituent and 
current quarks as fundamentally the same, except 
that the f i r s t are a t r e s t while the second are 
i n motion. Then, t r e a t i n g quarks r e l a t i v i s t i c a l l y , 
we can investigate whether the same effects as 
those of the Melosh transformation are produced. 

We introduce a r e a a t i v i s t i c quark 
model for mesons i n Chapter 6. The.meson ground 
state mass i s a free parameter of the theory, but 
once that i s fixed, the mass spectrum obtained i s 
the same as that produced by the n o n - r e l a t i v i s t i c 
model. Following FKR, v/e use a minimal vector 
current to calculate matrix elements and replace 
the pion by the divergence of the a x i a l vector 
current... However, i n our model, the minimal current 
i s not always conserved so that i n some cases we 
are forced to correct i t to a conserved form. I n 
t h i s way we achieve some reasonable r e s u l t s , 
w ithin 20% of the data. Most notable i s the natural 
appearance of spin-orbit coupling in our model i n a 
comparable manner to that a r i s i n g from the Melosh 
transformation, without causing at. the 3ame time 
any s p l i t t i n g of the t r a j e c t o r i e s . 
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One e f f e c t of including spin i n a 
dynamical.way i s to make the equation for the 
three quark case rather complicated, so that a t 
present the model only encompasses mesons. I t i s 
hoped that the model may be extended to the 
baryon case i n the future. 
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Appendix 1 
Basic Conventions 

a) Units 
Natural units are used throughout with 

h" = c = 1 and 1 Gev = 1 nat. unit. 
— 1 4 

Hence one natural unit of length = "he = 1.973 x 10 cm 
1 Gev 

—P7 2 
and 1 mb - 10 rcra 0.3893 nat. units. 

b) 4-vectqrs 
Contravariant 4-vector Â  « (A^A'JA^A3 ) (A°,A) 
Metric g ^ e ( - l , - l , - l , - l ) with A^u«g^ft)AV 

where a l l repeated indices are summed, Greek indices from 
0 to 3 and Latin indices from 1 to 3. 

4-position x^ = (x°x) where x* i s the time and 
x the spatial position. 

4-moinentum operator vF"- l&t = i)> = i-iV) 
c) Dirac matrices 

Anti-commutation relations { = 2-

X s P and = p&( 
. I n the Pauli Dirac representation 
AO -\ J ^ o - o 

Pauli matrices 

where <r/~ * «£ ^ } / f f k 
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Feynman slash K - A^tj 

Free particle Dirac spinor u\(p) i s defined by the 
equation: 

(|5 - m)u A(p) = 0 
The anti-spinor v (p) satisfies the equation: 

- m)v x(p) = 0 
I n both cases p 0> 0 
Adjoint spinor u^Cp) = u V p ) 
and i f u transforms under a Lorentz transformation A 
to u* z S(A)u then u ^ uS^CA) 
Normalisation conditions 

^A(P) U \ ( P ) = a n d v^(p) v^(p)=-2m 
where the index A defines the spin direction. 
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Appendix I I 

The good representation of SU(6): 

c -> vcv"' 

o ©i 
^ o 

O i ^ S i 

0 

0 6 
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Appendix I I I 
This appendix outlines the 

SU(6) x 0 ( 3 ) L wavefunctions [75] for the 56 
and 70 representations of baryon states with 
arbitrary o r b i t a l angular momentum L. We use 
o/,jS ~ 1,2,3..< as SU(3) indices, 

a,b,c... ~ 1,2 for SU(2) spin indices, 
which are combined A = (o/a), B = (J3b)... 
to display the properties under SU(6). Octet, 
8, baryon states are described by a matrix: 

» 

while decuplets, 10, are represented by a 
completely symmetric tensor: 

I T 

A" i>" 3 y \ 

Spin ̂ , 2S + 1 * 2, states are given i n 
terras of the usual spinors: 

x - f -- " X ! j = a J J ° 

while for spin 3/2, 2S-+ 1 = 4: 
= r<:ya»lir|a> 

1 r, s 
where C?1.? s l/j2(+x - i£) £ ( o ) =r z 
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with JT the conventional Pauli matrices. 
cvP.o' 

We u t i l i s e £ r - as the t o t a l l y 
antisymmetric SU(3) singlet tensor and 
C a b c for the corresponding tensor i n 
SU(2), having the properties: 

C'** = -CL/ = 1, (o:C) a b = ( o l C ) b a 

(<3;C)ab* . -(£LC) a b, C a bC b c - - S a 

With this notation, the completely 
symmetric 56-plet, for t o t a l angular momentum 
J and z-component M, i s decomposed into 8 
and 10 representations under SU(3) x SU(2) S 

according to: 
l BJM , l j V) ( < * a ) ( f b > ( * c ) 

- ^ £ ^ 4 ^ * 5 + € ^ B « C b < X a 

t e ^ B ^ C c a X ^ |L^)<JI,im,>> l l l . l , 
^ 1/J2 D̂ * (ctLC) a b.pL/ 3)<JM Lfj,3/2m,> 

Here I I ^ ^ are the o r b i t a l angular momentum 
L , z-component A,, states of the three quark 
system of the appropriate symmetry. For the 
mixed symmetry 70-piet, the decomposition 
into 8, 8, 10 and 1 representations i s , 
respectively: 
' BJM , L) £(*a)(/>b)](*c> 

+ 1 / 6 ^ ^ Y ( C & C ^ m * C b c X S ) / ^ 3 > < ^ K , ^ > 
where Y represents the SU(3) singlet baryon. 
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In principle, there are ambiguities of sign 
in relating quark spin S - 3/2 to S * £ 
states, decuplets to octets and singlets, 
and also i n the choice of LS or SL coupling; 
we consistently use the signs i n equations 
111.1 and 111.2. For observable cross-
sections the sign conventions are of course 
immaterial, but they are crucial at 
intermediary stages of calculation. The 
wavefunctions are normalised so that: 

< B j ° i W [ A B ] c l B S , L > C A B ] C ' h'^wu 

[Tr(BiB^) + T r ( B ^ ) 
T5*} 

The completeness properties are: 
y~ I R56,LN ABC/r,56,LI JMBD 

- * S * ^ i - ̂ ,S^S=, + ̂ ,SB,SA,+ § ^ c i S B ^ 

The usefulness of 111.4 for us i s that i t may 
be employed to obtain: 

711 5 
|(^'70,L I TA lB5S,0\ABC)2- ITJ _ i E * 
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where U = / (B"iS»w) A T ^ ( B » ) (J„ ) A i 
JM ABC JM *s * i A 1 I I > 6 

TT = T f 1556 .Ox c N56,0> |A ,B ,C/ T^ NA ( J 

E Z. C BJM ^ABC(BJM J W ^ ; A , W ^ ; B « 
where ( B j j j ' 0 ) ^ 1 " represents j u s t the ground 
state SU(6) 56 wavefunctions ands 

•d<s)g, = <^ 5 /4 io> 
\6)> being the L = 0 ground state o r b i t a l 
wavefunction. The term E i n I I I . 5 contains 
the contributions of the only exotic t -
channel 405 representation (and i n a quark 
picture corresponds to the currents coupling 
to different quarks as i n f i g . 15(b)). 

To calculate the couplings of the 
L =• 0 octet baryons to excited 56 and 70 
states under the action of a current: 

j(o<a) = . a 
J (fb) Jf> J b 

belonging to a 35, the main step i s to 
evaluate: 

< ^ 5 6 , L | TA R 5 6 , 0 \ A , B C 

\ BJM' JABC^, B J M J . / 

^ ^ j l ^ , ^ l / 9 (LPh\ * mjX. m ([Tr(BBJ) 4 5Tr(BBJ)] 
3 - y~ -x tzTr&BJ) -f Tr(BBJ)] I 0> 

* ym ^ 1 4 , 3 / ^ ) 1 / 3 < m ^ . J f f \ ^ £ ^ & / 0> 
3 I I I . 7 

and: 
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/ 70,Lj A ( R56,0\ A' B C • 

* T <JM (Lp^-im) 1/6J3 (L ^ / r^ f l.<J^Tr(B AB) 
- Tr(B^BJ) + 4Tr(BBaJ)} - jp-^t^ TrCH^B) 

- 2Tr(B^BJ) - Tr(BB^ J)jj/0> 
+ Z^<^l|Le3,3/2m> 1/6J2 ^ . J ^ i [a^TrCS^B) 

3 - 2Tr(B^BJ) - TrCBB^T)) | o)> 

•*21^Mjl^,Jm> l/2j2<(LPjX mjX r a l7Tr(JB) | 0> : .... 

where the discarded terms are irrelevant for 
i n i t i a l octet states. 

For the transverse current, from 4.2, 
we have: 

( j / ) * = alT'Sg 4- ib(S f)g •+ icL + (3°)g + idL^CS^I . 
with S^S0 represented by the usual spin matrices 
and i t i s now easy to obtain the results of Table 
I where: 

A - l/3<Ll|aL + |0> - nL/3 <(L -l| aL~| Cy7 

B r i/3<LO|bJo)> - in L/3 <LO/b|o)> 
C = i/3 <Ll|cL*,'|0)> = i r ^ / 3 <L -l/cL"/0> 
D - i/3 <L2|dL+L+ |0> * nL/3 <L -2|dL~L~ \<Sj 

We have used i n I I I . 9 : 
Y/L^> - n L(-/ 3/L,-^ 3> 

n L i s the o r b i t a l normality, the parity being 
(-) Ln L. For A',B',C,D' the results are identical 
save that the constant of proportionality i n 
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I I I . 9 i s 1/2 3 instead of 1/3. States with 
N L = "* w h e n B ~ °» n a v e not a s been 
iden t i f i e d among low-lying resonances, but 
there is no general reason for t h e i r non­
existence i n highly excited SU(6) multiplets. 

For the longitudinal vector and 
axial currents, from 4.4 and 4.5: 

o( *- 1/3 <LOl* I o)>, d « 1/3 <^0| £ loV 

v/here for n. - oi * <x c Q and i n the same 

'. d1 , p 1, ft' the results are obtained as 

a (Jr.) S L + S~IT) L'ta 
Ŝ L" -v S"L ) a cj,) 

so that: 

/3 <L - l l 6L"!O> I I I . 10 /3 <Ll| A L* )0> P i n 
1/3 <L1/ J* L*/0> * nL/3 <L -\\J> lT\0) 

can be shown to be real. For ay <*\.£, ̂ , /3 can be w 
the 

above, except with 1/2̂ 3 instead of 1/3. 
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Appendix IV 

To c l a r i f y the possibly surprising 
result that the polarisation asymmetry for 
v i r t u a l photon-proton scattering could be 
negative, we present the following simple 
argument. From the proton's 3U(6) wavefunction, 
the probabilities to find p or n quarks with 
spin along ( T ) or opposite (40 to the proton 
spin, taken along i t s direction of motion are: 

P P T - 5/9 , P W * 1/9 

• The cross-sections for v i r t u a l photon scattering 
on quarks with spins parallel and antiparallel 
to the photon spin are Q y and Q z, where Q i s 
the quark charge, and from Section 4.2s 

y = 3 (A + cf ->- 3D* 
z = 3,(A } cf~ -t 33^ 

Hence the cross-section for v i r t u a l photon spin 
parallel.to the proton spin i s : 
°~3/2 c 3 ( 5 / 9 - 4 / 9 + V9.1/9)y + 3(1/9.4/9 +'2/9.1/9)z 

= 7/9y + 2/9z 
the overall factor 3 measuring the three quarks. 
Similarly: 
°~| = 7/9z .-t 2/9y 

so that: ff*'P = y -+ z 
and: A*? - 5/9(z - y)/(z + y) 
This calculation ignores interference effects 
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between different quarks, but these are 
conventionally supposed absent i n the deep 
inelastic scaling region. 

In naive quark models, without the 
Melosh transformation, y = 0, leading to 
A*? - 5/9. 

A similar discussion for cs-on leads 
di r e c t l y to CTSTV<5-*p 2/3 and A n = 0. 
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Appendix V 

i ) The form of the interaction for the linearised 
o s c i l l a t o r model. 

The squared interaction must be of the 
form x2-• + constant, see r e f 76, Chapter 6, and 
t h i s is satisfied by the original form chosen: 

However i t is also satisfied by: 
u ~ -us;py \ut + 

where B i s an arbitrary constant. 
Using this form, the equations to be solved at the 
Pauli spinor level are: 

ll> + pl4> - 4§jp"|3-2> -f |3-2>£T] + £c?(<Sl3+27- J3*2?£T] 
^-<-e)l4> + pll> ^ £a[f /3-2") + |3-2>5 T] - 4^-/3+27- I3-*-2>G3^ 

y^(2> + p|3> - Ja[«-/4-l> - | 4 - ^ T J i - ia[6"|4+3>4 f4+£«;T] 
^/3> + /5/2> - J a f c r ^ - l ^ - H - l ^ 1 1 ] - ^-ajT^-|4+l>4/4-*]>^T] 

(V.1,2,3,4) 
ii)Solutions for the PC = - case 

Using the same method as i n ref 76, A4 
we f i n d that ] l ^ and 14^ are pure spin 0 so that: 

<̂ /4±l) f )4i^e- T « 0 . 
Hence V.3,4 reduce to: 
^/2> + 3> - yj3> + p/ 2> = kfe"M"l>- f 4 - l > ^ T ] 

i.e. /3> = |2> _ -
Substituting into V.1,2: 

^ - * ) ) ! > + £/4> » >(^^))4> - p l l > 
- .^a+fel3+2> - 13+2>S T] 

so that: /4'> = (e - + ^+p) 1'1> 
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Thus: 

* 2ata/(^jS) j (e -JZp)/{e+-pf>) - l ] /1> 
Hence the eigenvalue equation i s : 

• ̂  = - p1" + 4N 

i i ) Solutions f o r the PC - -J- case 
Adding and subtracting equations V.1,2 and V.3,4, 
we may rewrite them: 

*+f>) |3> + (^+« f/*>)/4> - a[6"/3-2> + |3-2>tf T] V.5 
^-C-p) (|3 -yA-e)/4>= |[^/3+2>+ |3+2*>£TJ V.6 

(yv+p)/2^3> = a[o-l4-l"> - l 4 - l ) ^ T ] V.7. 
^txrjS) l2-3> = af|cf|4+l> + V.S 

From charge conjugation, l l ^ , K > are pure spin 1, so 
th a t from V.7, 12+3^ i s pure spin C or |2> - -/3>. 
S i m i l a r l y from V.S, /2-3)> i s pure spin 1 or 12> = !3)>. 
Consider f i r s t the p o s s i b i l i t y t h a t |2+3]>is spin 0 
and /2> = /3>. Then from V.6 : 

(/.- € -p) i]> 4- _ ^ - ^ ) / 4 ) = 0 
But from. V.5: 

which'is the t r i v i a l solution' / l ^ =- |4^ = 0. 
Hence \2} * -/s^ and |2-3^ i s spin 1. 
Substituting into V.5,6: 

y-£+^)ll) -f (^ + fe^/5) /4> = 2a[V|3^ -v J 3>^] 
y - 6 - p ) ) j > 4. (jS-^-€)|4> = 0 

Hence solving as before: 
( ^ - f f - ^ 1 ) / ^ » -4j?.al l> 

and the eigenvalue equation i s : 
e T - ^ - +• 4N 



- 138 -

TABLE I 

Transition matrix elements f o r transverse currents from 
i n i t i a l baryon octet states to a r b i t r a r y states i n 56-
or 70-plet representations of SU(6). 

S U ( 6 ) ; 2 S + 1 SU(3) 
• 1 

56 ; ~8 \ x l / 3 ( 2 f + 3 d ) 

x 7 N x l / 3 ( 2 f + 3 d ) 
56 ; ^10 \ 

70 ; *8 *± 

A* 

X ' * + D'<j\lL2,-^-i» x l/ 6 ( 5 f + 3 d ) 

70 ; 4 S X 
kh 

(j3B'<jt/L0,XA - 2C«<j\lLl3^> 
x i / D . ^ | L 2 f t I 0 ) x l / 6 ( - f + 3 d ) 

N , W - 3D'<j|- L2g-\» x l / 6 ( - f + 3 d ) 
70 ;. 10 \ 

Ai 

- 3 ( ( A ' - 1/3C')<J||L1,^ -l/3B'<j|jL2,-^-|»A 
- 3((A'+ l/3C Ij<j4|Ll,i4>--l/3B'<J^|L0,^>)A 

70 ; 1 A 

A i 

J3/2((A"+ C')<j| :/Ll,-U)^D'<j||L2,H>)x 
^ ( ( A ' - C ' ) < J i - / L l , ^ > - t B ' < j i ) L 0 , J

2 i > ) x 

A ,A:L are defined i n 4.5 and f = Tr( [B , - B ] J ) , d * T r ( - [ s , B j j ) , 
A = ~ D ^ „ Y J C V ' ^ ^ B Q - , x = Tr(JB) are the SU(3) i n v a r i a n t 
couplings between two octets, between an octet and a 
decuplet and between an octet and a si n g l e t under the action 
of an octet current J. I f = - " then B = 0. For 
J = £(\ + l/j3 \*) on a proton, f = 1, d = 1/3, & * -l/>[3, 
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x = O -and on a neutron, f = 0, d =• -2/3, Ẑ  = - l / j 3 , x = 0. 
For J w k = i \ ) on a proton, f = d -C, Z\~ 1, x - 0 
and on a neutron f = d =. 1, A - 1A[3, x = 0. 
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TABLE I I 
Transition matrix elements f o r l o n g i t u d i n a l vector 
currents from i n i t i a l baryon octet states to arbitrary-
states i n 56- or 70-plet representations of 3U(6). 

3\J{6)'i
2S+ 1[3U(3)] 

56 ; ^8 
4 

56 j 10 

^^\hO^)f -f ^<J^(Ll,^4)l/3(2f - 4-3(3) 

-j2/3^(<J^|Ll, 3/4> " n J ^ L - l f ^ A 

70 ; 8̂ 

70 j % 

70 ; \ o 

70 ; a l 

0<»<j£lL0,^£(f+3d) + ^«<J^-lLl,^-i>l/6(5f + 3d) 

-p«J^Ll,3/4> - n j / S ^ l L - l ^ J l / e C - f + S d ) 

-J3(O<:'<J^IL0,^> - l / 3 p < J ^ l L l , M > ) ^ 

J372(o^»<j^-|LO,M> f p ' < J ^ l L l , M > ) x 

; i s defined i n 4.5, and the other quantities are 
! defined as i n Table I . n L = ( - ^ R A N D I F N L = S 
C< - 0. 
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TABLE I I I 

T r a nsition matrix elements f o r l o n g i t u d i n a l a x i a l 
currents from i n i t i a l baryon octet states to a r b i t r a r y 
states i n 56- or 70-plet representations o f SU(6). 

SU(6); 2 S + 1[SU(3.g **** 
A L 

56 ; *8 

56 ; 410 

£<j£fL0,^ + ^<j£/Ll,£-£>)l/3(2f-*3d) 

- i 5 7 3 ( 2 ^ 4 | L O ^ i ) ' + js«jj/Liit4> 3 J } 
r+- ni/3<Ji)L-lfi3/»)A 

70 ; ^8 

70 ; 48 

70 ; °10 

29. ; \ 

(*'<j£|L0,ii> + p ' < J ^ l L l , 4 4 > ) l / 6 ( 5 f t 3 d ) 

n L J ^ r ^ l L - l , \ % > ) ) l / S ( - f + 3d) 

lA/3^«<j£|L0,^>-f ^<J^|L1,M>)A 

^(o^<j£jL0,M> -* (3'<>JilLl,J-i»x 

i s defined i n 4.5 and the other q u a n t i t i e s are 
defined as i n Table I . = ( - ) L / ] R and i f n L = 
2 - 0 . 



- 142 -

TABLE IV 

Contributions to the cross-sections <5"̂ , er^., 6"̂ , " ^ ^ j 
defined i n section 4.3, f o r J - J = £(>3 + 1/J"3^g) e .TH • 
and f o r proton and neutron targets, 

suce);23^ 1[SU(3)] 4 n i J'n 
i 

56 i 
56 \ 

( A - C ) % B1" 

2/9(B*4C+3D*") 
( A ' + C ) ^ D*~ 

2/9(3B+4C+D") 
4/9 (B^C"2") 
2/9(B^4Ct3D1") 

i ..... ̂  1 

2/9 (33^40+D*") 
TO ! 

70 | 
2Q i 

'(A'-C'N B'1" 
0 

i ' A M - l c ' f * hs? 

n • , •• • • "• 

(A ,+C ,r+ D'* 
0 

( A ' - | C « ) > | D ' 

•|(B^4CI+3D'V) 
( A V ^ C - f ^ 

(A'+^C) +§D'. 
^(3B^4C'+-D'1") 
(A'-|C')%~D''2" 

S U ( 6 ) j 2 S + 1 [ s u ( 3 j j TL L TL 

56 
56 • 

•2. 

8/9/f 
<*B+|3(A-C) 

4/9fC 
4/9^ 
8/9 f~ 

-4/9^C 
4/9|2>C 

70 
70 
70 

; 4 s 0 
ot'B'+p ( A ' - C ) 

0 4 / 9 ^ 

| * + 9/* 

s / g p ' c 1 

- ^ B ^ C A ' ^ C ) 
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TABLE V 
Contributions to the cross-sections cr^ y e^, r^-
defined i n section 4.3, f o r J a J w k i r ( \ "+ i \ ) 

and f o r proton and neutron targets 
G^P s o-V/̂ p 

a 

SU(6); 2 S + 1|^U(3a V/+p 
n. *\ 

56 ; ^8 
56 ; * i g 

0 
f (B% 4C% 3D*) 

0 
|(3B% 4C^D*) 

(A-| G ) % f B " 
ICB^ 4C-+3D1") i(3B%4C*+tf") 

y 
70 ; "*§ 
70 i 4 8 
70 ; *10 

0 
0 

3(A+|C)% IB1" 

0 
0 

3( A - i c ) % ^ D 

4(A-|C)+ ^B1" 
1(6% 4C%3Dl") 
(AH^cf+ rfB* 

4 ( A+|c ) % - ^ D T ' 

( A - ^ C ^ D " 

SU(6); 2 S + 1[SU(33 fi-W+p 
L e-w P L 

e-Ŵ n L L 

56 j * i g 
0 
8 ô-

0 

70 j *8 
70 ; *8 
70 ; a i g 

0 
0 

3 . % If 

0 
0 i r 
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TABLE VI 

Coupling constants f o r electromagnetic decays. 

Decay g^ (Gev""1) g^PCGaT1) 

-2.2 -2.89 ±0.26 
0 -0.16 ±0.02 

-1.2 -0.82±0.12 
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TABLE V I I 
Amplitudes f o r decays by emission of a pseudoscalar meson. 

Decay 
type 

Quark amplitude 
-i<£iy\/>> 

Antiquark amplitude 

i"=» cr+o"*1" -m, m̂. FXtq. e, m„ 
m,mt FX2q. £| m„ 

2+=>0~+'0"" m ,mt F X ^ q ^ r 
me 

m„ r 

2 + ^ l " " 0 " - I F a ^ a ) # U i f « I F ( M ) T ^ ( P ^ V . ) 
mTm^m x q v m, m̂ Ta x q v 

- F j g . e,.^(P1_.Pi.Zi) 

+ q. e.q.g,. (m,mi. X2.+_Z2r) 1 
n m/ m J 

- F N ( g | - e . ^ ( p . .r< ̂ ) ! 
i 

+ q.e, q.^ (mfjnjj. X,. + _Ziu j ' 

1 ^ 1 — 0 " + _ ht.£&.-m - - J F k ^ f (Q-f2<)Y ; 
2ZP, .PjAJ ; >/2Q m, m J_ •+ 2ZP, .E^fl] j 

+ q.e.q.^ [(P, .EL- 2mt)jQ. V + q.e, q.^.[-il(P ( ,P,. - 2m*-) ] 

F 
J2/1 m 

* P, .P^ZJ]. 3J 
Abbrev i a t io ns: 

X ± = [l-+-(m0/ml)'1] 
z i = mi - P, .P̂_ 
Y = fcm\-

~ 2. X 2. 

£_ = m, -nn^ + m3 

P, .Pz= J(nf-ni£- n£) 
T®/*vis a spin-two wave-function. 
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T A B L E V I I I 

Widths f o r decays by emission of a pseudoscalar meson. 

Decay type State Mooe P(Mev) p e x p(Mev) p F I ( E(Mev) 

3_—_>0-+0-+ (f> ( 1 0 9 9 ) KK 3 . 1 4 2 . 5 * 0 . 3 9 

r 0 < 0 . 6 0 
i 
i Co ( 7 8 4 ) •mr 0 0 . 1 3 1 0 . 0 3 0 

K * ( 8 9 2 ) KTT 4 6 . 2 5 0 . 1 - i 1 . 1 5 9 . 5 . 

7TK 4 6 . 2 5 0 . 1 * 1 . 1 . 144 

j> ( 7 6 5 ) TT7T 1 1 7 1 4 6 * 1 0 1 4 2 

i 
t l + ^ i - o - 4 - 3 ( 1 2 3 5 ) 6 6 

• 

1 2 0 "£ 2 0 7 6 . 5 j 
i 

K * ( 1 2 4 0 ) 
• 

4 7 
• 

^ 1 0 0 
] 

5 4 • 

A R ( 1 0 7 0 ) 1 0 0 2 0 0 - 4 0 0 1 4 5 i 
f" ( 1 5 1 4 ) 6 2 4 0 * 1 0 9 3 

TtTT 0 ^ 0 0 
• 

f ( .1260) K K 5 . 1 8 * 5 1 2 . • 

TT7T 1 5 3 1 3 0 "± 1 2 . 2 2 0 . ; 

K * ( 1 4 2 0 ) K-rr 5 4 . 7 5 5 ± 6 7 8 i 
i 

7TK 
• 

5 4 . 7 5 5 * 6 1 2 6 

K 1 2 ~ 2 4 . 5 

2 ~ 2 3 . 6 

A,, ( 1 3 0 0 ) r 1 3 . 8 1 5 ± 1 . 5 2 0 

1 3 . 8 1 5 i 1 . 5 4 0 

KK 7 . 8 4 . 7 * 1 1 5 

2 + ± > 0 - + l " f • ( 1 5 1 4 ) 
_ V Jf 
KK •+ KIT 9 . 3 < 1 4 1 3 . 5 

K ( 1 4 2 0 ) KV 1 8 . 2 . 2 9 . 5 * 6 2 0 

'. 5 . 7 9 . 2 ± 3 7 

COK 1 . 4 4 . 4 -i 2 1 . 8 

A Z ( 1 3 0 0 ) • ' 5 3 
: 

7 2 ± 7 6 0 
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TABLE IX 

Ratio of h e l i c i t y amplitudes f o r I * -> l"o" decays. 

Decay (%o/T,{) ( W e x p (VT, () F K R 

B —> LOTX 

A | —» f 
1.0 
1.0 

0.2-»0.7 
2.0->l.l 

0.19 
1.3 
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TABLE X 

An example of corrected r e s u l t s , w i th a conserved 
vector current 

Decay (Too/T,,) 
-

I (T, 0/T„) e x p r pexp 

B -> c o T f 0.21 ! 0.2-»0.7 
{ 

78 Mev 
i 

i 

120±20 Mev 


