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Abstract

We discuss the successes and failures
of the naive quark and parton models and offer a
possible remedy for the resonance symmetry versus
vertex symmetry dilemma, Using the concept of
current and constituent quarks related by a
general Melosh-type transformation, we calculate
matrix elements for excitation of the béryon octet
ground state by weak and electromagnetic currents
and find that the theory compares well with
experiment except in the low w region. Here some
further SU(6) breaking mechanisﬁ is necessary for
a good fit,

An alternative to the current and
cqnstituent guarks idea is to attempt a
relativistic treatment of quarks, assuming
current and constituent quarks to be fundamentally
identical. Several models are discussed and a new
model for mesons is presented, The solutions are
similar to those obtained in other models apart
from the inclusion of spin-orbit coupling terms,
which have not previously appeared uaturally in
relativistic wavefunctions. We calculate some
decay widths and find reasonable agreement with

the data.
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1, The development of the non-relativistic guark model

1.1 Introduction

The concept of an elementary particle, a building
block out of which all matter is constructed, has haunted
physics for centuries, and when finally the proton was
identified, the concensus was that the elusive elementary
particle had been found, The subsequent detection of many
more similar_particlesjdid not suffice to change this view
for some time,

When the SU(3) nature ofvthe hadron spectrum
began to emerge, the first scheme [i] was to assume the
other particles to be bound states of some combination of"
protons, neutrons and /\particles, the A being required to
enable the construction of states of non—zero-strangeness.
This leads_to predicsed states and quantum numbers which
are not obcerved, such as triply charged baryon states (a
bound state of three protons).

another way in'which the situation may be
viewed without losing the proton as an elementary particle,
is to invoke democracy and say that ail the particles are
equally elementary, Then it is feasible to assume that the
set of obsenvsd particles is unique, and is consistent with
unitarity, analyticity, crossing symmetry and Loredntz |
invariance, Unfortunately there is no reason to suppose
that there is a finite number of particles, and considering
only a limited selection leads to inconsistency [é]. On the

other hand, a solution of the problem tak:ng into account

an infinite number of particles is beyond tbe scope of .

present techniques,
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One viable possibility is to'drop one of the
consistency requirements in the hope of being able to
include it at a later stage. Neglect of unitarity, together
_With the assumption that all particles are stable, lying
on straight Regge trajectories, is the course leading to
dual models, The resulting spegtfum is very encouraging,

, but in order to obtéin it, a sacrifice must be made in the
“form of non-physical space dimensions., Also SU(3) symmetry
is not included, though other quantum numbers are correct.

The problem then is two-foldj; both the symmetry
scheme and the dynamical behaviour of the particles must

be incorrorated in any successful model.

1.2 Symmetries of the strong Hamiltonian

When the atom was postulated to consist of a
nucleus of neutrons and protons surrounded by a number of
eiectrons, the nucleons were assumed to be elementary
particles in the sense that they could ﬁot be broken down
into smalier constituents, in the same way as previously
~ the atom had been'thought to be indivisible, In that case,
one of the particles must be stable, otherwise mass could
be converted into pure energy, and matter would not exist.
Since f—decay of nuclei is observed, the stable particle
must be the proton, while the neutron may decay into it.
Hence we see empirically that both charge and the total
number of baryons is conserved. With the increased sophi-
-stication of detection instruments, a.ﬁealth of new part-

icles was discovered, including the strange particles.

- From the observed strong production of kaons in pairs,
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and their subsequent weak decays, we may add to charge and
baryon number the conservation of strangeness.
Conservation of these quantities corresponds to
the invariance properties of the Hamiltonian, which must
satisfy the SU(1l) symmetries related to the conserwed
quantum numbers, It should be noted that the strangeness
symmetry is only exact under strong interactions, and is
violated in weak processes, so that even this simple
symmétry is broken.,
~ To enlarge the scheme, we must first make the
assumption that the apparent indistinguishability of the
‘neutron and proton except by their charge is exéct. We
are then able to describe the neutron and proton as the
two isotopic spin states of the :mcleon. Clearly the
value of the projection of the isotopic spin along some
axis determines the charge on the particle, so that
taking strange particles into account, we are led to the
equation: _ _ _
Q = I +. 3y o | (1.1)
where Y = barydn nﬁmber + strangeness
Tﬁus we have an invariance‘of the Hamiltonian under
‘rotations in isospace about the z-axis, that is an SU(2)
symmetry. Thic is good to about 1%, since it is broken
by the electromagnetic interaction, but satisfied by the
strong interaction. _
Combining the SU(2) of isospin with the SU(1)
of strangeness, the strong Hamiltonian must commute with
. thé generators of an SU(3). Ordinary spin may also be

included to extend the symmetry to SU(6). Finally,




_. _2/3-__

. FIG. 1
The basic quark ftriplet. .
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invariance under space rotations lead to an SU(6) x 0(3)
symmetry. |

This symmetry is approximately satisfied by
the Hamiltonian, which déscribes the elementary particles
of the system. The nucleon, however, has structure
functions different from unity [3] and so cannot be a
point (or elementary) particle, Another clue is that
mesons were found to fall into octets with the same spin
and parity, while baryons fitted into octets and decuplets.
This suggests that the meson is formed from an elementary
particle and an aﬁtiparticle, eééh obeying the SU(3)
symmetry, giving meson multiplets of: |

33" = s@1

and that the baryon consists of three elementary particles
giving baryon multiplets of:

33®3 = O8O O

The symmetry may be extended to SU(G), though
this is broken to‘about 25%, Then tﬁe mesons form multi-
plets of:

6@ = 3B@OL
and the baryons multiplets of:
| 6@E@s = XOBEUDN

The elementary particles, or quarks, =2re assigned spin

W

)
and quantum numbers as in fig 1, in order to reproduce
the hadron quantum numbers correctly. Parity may also be
predicted if the 0(3) symmetry of orbital angular
momentum is inciudeé. However, tﬁe rotation symmetry is

included in such a way as to neglect any spin-orbit
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coupling, which is not a good assumption [4]. A further
difficulty is that the symmetry is non-relativistic,
applying only in the rest frame of the hadron. Neverthe-

less, for hadrons at rest, it works well (e].

1.3 Scattering processes

As well es a static scheme, éome dynamic
theory for the scattering of hadrons is required.. High
energy strong interéctions can be well described by the
exchange of Regge poles in the t-channel, whereas the-
low energy behaviour can be represented as a sum over
direct s-channel resonances plus some non-resonating
background (fig 2). In the intermediate energy region
there are two possibilities., The first ié the inter-
ference model [é], where the intermediate amplitude is
assumed to be a superposition of the two types of
descriprtion: | . _

A = aRegge ;. ,Res ' . (1.2)
However the finite energy éum rules showed that this
led to double counting of resonance contributions [7],
and since the sum rules are based on analyticity,abhe
interference model was rejected in favour of duality,
which gives the amplitude as: _

A = aRegge , ,Res _ (\\Res ' (1.3)
where <A>Res denotes the ‘locally averaged resonance
amplitude, | |

This implies that at low energy, the Regge
amplitude is cancelled by the averaged resonance
contribution and this is semi-local cduality. On the

other hand, at high energy, the resonance contribution
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Sum over s-channel resonances to give smooth
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- - FIG. 4.
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is equal to its average, leaving only the Regge term.
Thls suggests that the s= and t-channel descriptions
are eqguivalent and both separately complete.

Hence we are led to the idea of local duality,
that the smooth behaviour at high energy can be ﬁescribed
by Regge terms or by a sum over direct s-channel resonances,
such that at any energy, the maxima of some resonances
occur a* the minima of others, summing to a smooth
behaviour (fig 3)., This may be expressed in terms of quark
diagrams provided that some non-exoticity'assumptions.are
made, -
| An exotic particle is one which cannot be made
up as a combination of three quarks or a quark-antiquafk
pair (such as gqgqq or qqqq). The assumption that such
particles cannot be produced and do not contribute in
. either the s- or the t-channel leads to some quite
-dramatic results, Consider as an example proton-proton
scattering (fig 4a). At low energies, the process is
dominated by the formation of direct s-channel resonances.
Now the combination of the six quarks from the two

incoming protons is exotic as defined above- -and therefore
cannot contribute. Thus the process can take plece only
through the non-resonating background, that is by
diffraction, and the cross-section should fall smoothly
with energy. On the other hand, proton-antiproton
scattering (fig 4b) has three incoming quarks and three
'antiquarks which may form a non-exotic combination.,

Hence there is a resonance contribution, se¢ that the

cross-section would bhe expected to show resonance
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. structure, Both these predictions are verified by the
data [8]. '

With the aid of this simple hypothesis, rules
for the drawing of allowed diagrams can be postulated.
These are: [9] : |
i) Each quark has its own line, which may not change its
identity,

ii) An antiquark is represented by a line running in the
opposite direction to the motion of the partlcle. |
iii) The two ends of a single line may not belong to the
same external particle,

iv) In any of the s-, t-, u~channels it is possible to
cut the diagram in two by cuttiﬁg only a non-exotic
combination of lines,

These rules correspond simply to the
assumpﬁion of SU(3) and to the equivalence of the
descriptions in any'channel. |

Fig S shows some allowed processes and fig 6
some forbidden ones. Fig 7 shows a contrlbutlon to the
s—channel background, There is no net exchange of guarks
so the t-channel singularity has vacuum quantum numbers,
‘and the two-component duality theory Cuﬂ identifies |
this s1ngular1ty with the pomeron,.




| FIG. 8. |
Deep .inelastic scattering.
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2, The naive parton model

2.1 Introduction

One question which arises immediately from the
SU(3) nature of the hadron specfrum is that of whether
the symmetiy has a physical basis, That is, shall we find
the same SU(3) internal structure by probing the hadron
at distances short enough to reveal the existence of
constituents? To resolve this entails studying processes
with large momentum transfer, equivalent to short range
probing, and a suitable candidate is the aeep inelastic
scattering of electrons on protons. This interaction has
the advantage of involving only a single sirﬁctured
particle. (Fig 8)

We make the assumption that the process can be
described in exactly the same way as electron-muon
scattering, except that the structure of the proton is
accounted for by two structure fUnctiohs, W, and W, , wﬁich
are nct required for the péintlike muon. There are two
structure functions to allow for different behaviour of
the broton depending on the polarisation of the virtual
photon. A priori we might expect these functions to
depend on both the momentum transfer, dz and the photon
energy, ¥V, so that there is no specific prediction that
can be made for their energy‘dependence.

The data [11] shows that in fact W, and YW, are
functions only of the ratio (Q/Qt),.the so-cailed

pPhenomenon of scaling, The naive parton model is an

attempt to explain this,
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2.2 The model

The differential cross-section for the deep
inelastic scattering of electrons on protons, with an
unpolarised beam and target and only the outgoing
electron observed, may be written:

2 2 "
do - X (W,cos ©/2 + 2w, sin0/2) (2,1)
an. ¢Et IL*sin%6/2

where E,L' -are the ingoing and
outgoiﬁg electron energies
® is the electron scattering

. angle,
W, @,Q°) and W, (¥,§") are structure functions which |
- depend on the internal structure of the proton target,
For the case of elastic scattering from a point target,
these functions may be specified as [ié];

WPt0,0Y) = QM/au” §(Q7/2M - V)

WPt (v, Q*) § (Q%/M -V)

where I is the mass of the target,

We may now examine the data to see how it
compares_with the pointlike elastic structure functions,
and sketches of W, and VW, as functions of W=2UV/Q" are
shown in figs 9 and 10, Both W and YW, appear to be
independent. of Q*, and this suggests that the proton may
consist of 'partons! which interact in a pointlike manner,
‘80 that the inelastic cross-section is the incoherent sum
of the elastic cross-sections from the individual partons,
as in fig 11, Thus: 0.3

= 2 V'ypzt(i) eil (2,3)
s, _ :

i

hi.
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—
where wPt() = Q*rams* (@%/2my - V)
wPt(d) = (Q*/emy - W)

and m; is the parton mass
| e; is the ratio of the charge of the parton to that
| - of the electron.

To proceed further we must adopt some
assumption for the dividing of the various dynamical
variables between the partons. The most general is to
assume a mass distribution for the partons such'that the
parton mass is a fraction x; of the proton mass and
£(x1)dx; is the probability of finding a parton of mass
between x;M and (x4+ dx4i)M in the proton, where M is the
proton mass. Then:

.Wi v,Q%) = Z Q*/4mi" §(Q*/2my - V) ei”
i , .
% eiz dxy f(xj) Q"/4xiM1 S(Q"/2xiM -VY)

Similaxrly: . : '

Wy (VyQ) = Zl es fdxi £(xq) S /exgn -v) (2.5
. _ . _
Then, since the 3_-function may be written as x; A S(l/m - Xi)

we have:

W, (V,Q")

U
2. 1
2 of dei £(x;) Q- /ax MV (2 - xp)

2_ el £(1/w) Jw/ AV
1 .

= 2 e £f(1/w) 1/2M

1
= W @) : | - (2.6)
and VY, V,Q") = VI, (@) | (2.7)
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Thus the structure functions have the Gesired scaliné
property., | -

The process may alternatlvely be descrlbed 1n
terms of the cross—sectlons for the absorptlon of
transverse and scalar photons. There are two of theee
for unpolarised targets, since the pheton helicity +1fand'.
-1 cross-sections are equal'by pafity invariance. Hence

naturally W, and W, may be related to o and G} [14], and:
' W, = Kor
W, = Klg+ea) QAT
| | :_-' where K is é eonstant;
The ratio R= &g/a; is an intei'estihg quentity,
since if thepartons were te have spin O fi} must be zere
" and R=> oo, On the other hand the predlctlon obtained by

assuming muon-llke point behav1our as above iss

R o= W Q+V/) -1 (2.9)
and assuming the mass d1str1bu+1on f(x),‘ | '
VW, (0) = 2MxW, (W)
= 'Q‘/v W, (w)
so. that:
R = Q/vi1l+ v/g0) -1
= QA |
= Qe - - (2.10)

Thus R is predicted to be small in the regioﬁs where
Q*>ew with @ fixed, and V-»eo with Q fixed, The data
[15] shows that R is indeed small in the appropriate
regiens.

At this point, having ascertained that if
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partons exist .they have spin %, the suggestion is that
these partons are in fact the quarks of Gell-Mann and
Zweig [ié], in which case the quarks would have the
usual quantum numbers, A difficulty now arises in that
if partons ére'quarks, they must.all have some fixed
fracﬁion x of the total protoﬁ mass and'thg structﬁfe
functions should be §-functions., Howevér this may be
.resolved by allowing the partons to have éome Fermi
energy so that the 8-function apﬁears smeared oﬁt about
the value W =1/x, and hence knowledge of the structure
functions should tell us how meny partons there are in
& nucleon, Since we do not know how to treat the
diffractive parts of processes in this model, we must
use data with the diffractive part removed, and the
éimplest wéy to do that is to consider the difference
ovwpP - VW) so that the diffractive parts in each cancel
out. | | ' | |

| From the moéel we eipect:

jdw/w(vx',? - vy = Zi (e3P - ei™

= s (2.11)

The data [ii] shows a peak around x=/% and the area under
the curve to be 0.28 % 0,06, if the cross-section is
assumed to be dominated by.Regge exchange at high W,
The diffractive parts may be included and will
behave suitably to give phe above cancellétion in the
~duality scheme [18], where on the basis of duality

diagrams the following equivalences are proposed:
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3 valence quarks =+ sea of gq pairs
resonances + background
- non-diffractive + diffractive

The sea of qq pairs is assumed to be a singlet with
respect to SU(3) so that there is no contribution to
nucleon excitation, i.e, to non-diffractive processes,
Such 'a sea would indeed contribute equally t0 \)\r‘J}_’ and
VW2 so that the difference OWP - vu) would contain

no diffractive part,

2.3 Sum rules
We may now proceéd a step further in

evaluating the structure functions., Writing: |

FLW =z yWw -
= 2 eiz, dx £(x) x o(x - 1Ad)
. i :
Then: F,(x) = Zi ei’" x£(x)

. where now x = 1/ = Q /2MV:
Assuming that the partons may be ascribed quark quantuml
numbers, this becomes explicitly: ' :
HP(x) = 4/9 [ub0) + wE(x)] (2.12)
+ 1/9 [u?l(x) + u%(x) + u-?\(x) + u?\-(X)J
where u(x) = x f(x)
and uzlz(x) refers to parton i
in the proton P,

By isospin reflection, we may relate amplitudes for
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finding a p quark in the proton and an n quark in the

" neutron, and the set of relations is:

sl
P _ N
Yy, = up
P - N

and similarly for antiquarks.
Writing all the amplitudes in terms of proton

target amplitudes and dropping the superscript, we haves

EP(x) = 4/9 [u,(x) + up(x)] - (2.13)
+1/9 [u tx) + u.ﬁ(x) + u,\(x) + ux (X)]
Efn(x) = 4/9 [u (x) + uﬁ(xi] (2.14)

+ 1/9 [up(x).+ up-(x) + u)\(x) + u:\(x)]
Hence immediately follows the constraint Eﬁﬂ:
| 1 € FP/EPE < 4 (2.15)
which appears to be satisfied by the data [20]. |

This constraint includes hoth valence quarks
and the sea, i,e, both diffractive and non-diffractive
parts, and so may be dissected further by evaluating
the two parts separately., For the non-diffractive part,

up = 2un
- . ux = uy = uﬁ =ug = O

so that; (F°/ESP) o = 2/3
For the diffractive part, the sea alone contrlbutes

and since this is by hypothesis an isoscalar,

¥n, 8
(E,"/F,P) p = 1
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To obtain the lower limit, the current must
couple only to the actiQevquark, i.e. that with the
‘same'isospin quantum numbers as the target - p in the
pfoton and n in the neutron. Thus as x >0, ije.w->00
diffractive processes seem more important, which is
reasonable since this corresponds to high energies
when g~ is large., For smaller «), non-diffractive
processes become more important, while for very small
W, some mechanism causing coupling to the active
quark only becomes dominant,

_In a simtlar way, we can examine the weak
interaction structure functions, Since the-néutrino

couples to the isospin of the target, we have the

relations:
EP = ©n
Y - 2V
B = BP

" while for tﬁe quark amplitucdes: -
Vn — p
szvkﬁlvﬁ=§x = 0
Np — 1

Then neglecting strangeness-changing cﬁrrents, i.e.

taking the Cabibbo angle as zero:

EBP = un(x) + uﬁ(x) © (2.16)
Fvn
3

us(x) +  ug(x) (2.17)
Using the same approximations for regions
of w as in the electromagnetic case:

(BYENp = 3 x ~ 1/3




(BB, = 1 x >0

and (F:p/F,fn) — 0 x—>1

active
As yet, there is .no data good enough to
test these predictions, but the neutrino and photon
predictions combined may be tested as follows. |
From equations 2.13,14,16,17:"
Ffp -,an = .1/3 (ED - EY) (2.18)
since up = upy if the sea is isoscalar,
And FoP, pin > 5/9 (F:)n+ 5’P) | (2.19)
" This would be an equality if the electromagnetic
current 8id not couple fo stfange quarks, so that
taking the small w region, where strange querks
appear not to contribute the equality should hold.
This seems to be fairly well supported by the ééta
[14].
- - Other sum rules may be deduced by |

consideration of the conserved quantum numbers of the

proton: A . ‘ _
| Strangeness = 0 = fﬁlk(x) - u;\(x)] dx (2.20)
Using this result:
| | Charge = 1 = j{2/3 (up(x) - u-ﬁ(x)] (2.2
o _ .= 1/3 [un(x) - un(x)}} éx
Baryon number = 1 = 1/3 [up(x) + u (x) (2.22)

- uf,(x) - uz—l(x)] dx
Writing these in terms of the structure.functions:

awe [P@) - BP@] = 1 o (pe)
‘ (Adler sum rule [21] ).
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o0
J-dw/w [Ffp(w) - len (w)] = 1/3 | (2.24)
' (c.f. equation 2,11)
The fact that the second relation is almost satisfied
suggests that thé Adlef sum rule may also be similarly

good,

2.4'Quark partons

The identification of partons with quarks
in section 2.2 enabled specific predictions to be made
for various ratios which were obﬁained froﬁ thé
incoherent impulse approximation, It is interesting to
view the same process entirely from the quark model
standpoint, where the non-diffractive part of the
Compton amplitude may be deduced by considering the
couplings of various baryon states that can be excited
'from the farget nucleon, and summing over all possible
excited states, The structure functions are'essentially
the imaginary part of the forward Campton amplitude,
(Fig 12)

. In .exciting any niember of a §§- or Zg-plét,
the matrix element will contain a Clebsch-Gordan
coefficient which is known explicitly for each
particular member of a multiplet and some other
quantity describing all the unknown dynamics, which is
different for 56- and 70- plets. These unknown
quantities remain the same for proﬁon or neutron
targets, since this only alters isospin assigmment,
and for weak and electromagnetic currents, provided
the quarks have an SU(6) x 0(3) symmetry,_this is

irrelevant.




- 25 -
Expressing the contributions to the
structure functions in this form, we obtain the

results in Table I, Regarding the quantities A,B as

‘sums over all possible 56-, 70-plets, we then find:

Y = 124 + 6B
B = 174 + 108
E® = 33\ + 21B
EP = 24 + 3B

A and B may be related by demanding no exotic t-
channel exchanges and this gives simply A=B,

- With this condition,

Efn = 18A
FIP = 274
yn _

E " = 544
EP = 2

i.e. exactly the same ratios hold as found before,
Thue it is clear that the quark -parton model
results depend on two implicit assumptions:

i) that SU(6) is exact |

ii) that there are no t-channel exotics,

From the mass spectrum alone, we know
that SU(6) is broken to at least 20 to 25%, so that
these results are also good only to a similar degree,
The question remains as to how the symmetry is
broken.

One possibility is to treat the nucleon
as a quark and a core. If we consider the region

W £ 3, strange quarks and antiguarks should be
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unimportant and we can divide the nucleon into an
interacting quark and a non—interacting cofe |
consisting of fhe remainiﬁg quarks, This we regard .
as a quasi—particle.[ézj It must be either
isovector or isoscalar in érder to give a combined
isospin of core and interacting quark of #, Under
SU(6) the isovector and isoscalar cores should be
equally likely; but suppose now that this is not
true, Shnilarly‘we may remove the degeneracy in the
spin case also, so that the probabilities of spin O
and 1 cores are not egual, Nucleon wavefunctions
~may then be deduced [ié] and the structure functions
calculated as before, The resﬁlts depend crucially
on the relative probability of the isoscalar to
isovector core and reduce to ﬁhe 0old SU(6) resultis
when the pfobabilities are made equal. If we write
/g = 1-x |
' - where 5é(x) is the vrobability for
| " an isovector core
gé(x) is the probabilitj for
| | an isoscalar core
then we find that the ratio of the structure
functions for neutron and proton targets is:
B S
ESP(x 6 - 2x
= 14 as x->1

as is indeed observed in the data [2Q].
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It is-aiso.intéresting éo note that the
relation equation 2,19 may still be derived in this
SU(58) broken mddei, since it holds for kﬁ(x) and
Qi(x) separately. Further tests.of this model are
~ given in ref 22, but these.are as yet not verifiable

against data,

2.5 Further symmetry

In the parton model, the calculation of
efe™ annihilation cross-sections is simple. In

particular, the ratio

R = o (e — hadrons)

o (efe”— /uifg‘ )
.
5

where Qje is the charge of the ith parton,

is given by:

R

‘Muons are assumed to be pointlike, as are
the partons, so that the ratio reméves all dynamical
faétors,lleaving simply the ratio of the charges
squared.'Hence for the quark parton moéel, the ratio
iss : |

R = 4/9+ 1/9+ 1/9
= 2/3
This is much too small to agree with the
data [23] which shows the ratio R to be about 2 to '3
in the region g~ £ 9 Gev'. Clearly the only way to
achieve this ratio and'yet maintain the quark parton

model in its standard»form is to increase the numnber
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of quarks to nine, where three have the charge of
the p-quark, three that of the n-quark and three |
that of the A-quark. |

This provides us with the second hint
that more than thfee quarks are reguired, the first
having arisen'with the introduction of the SU(3)
model, The baryon ground state made up.of three
quarks is the 56-plet containing the 4+t nueleon
and the 3/2° A decuplet, This is a completely
symmetric state under the interchange of any two
of the coﬁstituent_quarks. The space part of the
waveTunction is also symmetric, since theré is zero
orbital angular momentum, which means that the
whecie three quark wavefunction is symmetric, Yet
the baryon is a fermion and so should have an
overall antisymmetric waﬁernction. This
difficulty may be resolved by the introduction of
an extra degree of freedom, colour, The ground
state béryon wavefunction may then be assumed [?43
to be antisymmetric in colour, i,e, a colour
singlet, so that:the complete wavefunction is
indeed antisymmetric., To prevent coloured states
being observable, it must be assumed that the
.singlet is the lowest energy state.

The symmetry problem together with the
observed value of R suggests that there are nine
quarks, the extra number occuriﬁg because of the

required extra degreé of fréedom, the SU(3) of




- 29 -

colour,

The situation was recently rfurther upset
by new data for the value of R 25], which shows
that in the region 9 § ¢*§ 25 Gev%, the ratio rises
.steeply to petween 4 and 6., It is not yet clear
whether the data shows a bump in this region or the
beginning of a considerable rise, If the foruwer is
the case, it is conceivable that it represents a
threshold of some new guantum number which at lower
energies does not appear. This éould be because the
quark carrying this -new quantum number might be
heavier than the others, i.e. the new larger
symmetry is bacdly broken.

A similar extra ¢nark is reguired in
order to unify the weak and eiectromagnetic
interactions {26}, and in this guise the extra
quantum number has been called charm, giving quafks
with guantum numbers as shown in fig 13. It is |
hoped that the rise in R may also be caused by.thé
charm -threshold,

More recently still, new resonances, the
¥ (310C) and V' (3700) have beén found [27] in e*e”
ennihilation and it has been suggested [2€] that
these are indeed charmed states., The quark model
then implies that several other states should be
close by in energy to form suitable multiplets, but

as yet thése have not been seen.
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Cn the other hand, if the ratio R
continues to climb, it is difficult to find any
simple explanation, All single photon exchange
processes to describg ete” annihilation to haérons
lead to the prediction of R as a constant [29]. By
invoking varicus symmetries the value of thé
constant can be manipulated to whatever is desired,
but a rise in R cannot be reproduced, The hope is
that eventually the ratio w1ll settle at some well
defined asymptotic value, and the model can then be
adjusted to include this value, by ﬁlterlng the

number of quarks, or their charges, or beth,
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3. SU(6) breaking

3.1 Introduction

The first two chapters have shown that
the SU(5) scheme describes satisfactorily the
observed hadron spectrum, and the interactions of
a single structured particle with a point particle,
while the predictions of the parton model for the
non-diffractive parts of hadron cross-sections are
not quite so succeésfhl. We now turn to the problem
of interactions between two structured particles,
in particular hadron decay processes,

Decays which take place via the strong
interaction are characterised by a very short decay
time (AJ10'24 secs) and such processes might
therefore be expected to conserve those guantities
which are.invariant under tne strong interaction,
that. isvisospin and its third comﬁonent,'strangeness,
spin and its third component, and orbital anguler
momentum. Applying these simple constraints enables
deca&s'to be categorised into those which are
allowed, forbidden, doubly forbicden, etc., Processes
which are forbidden via thé strong interaction may
of course be allowed via the weak or electromagnetic
interaction, but for the purposes of this discussion
we shall consider only the sitrong interaction.

| As well as this simple selection of.
allowed processes, we may relate the decay rates of

particular particles in the same multiplet, since
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the coupling constant for any particle in a given
multiplet to two other particles is univeréal.
This is well verified for SU(3) coupling constants
[?O], but is not satisfied when the symmetry is
extended to SU(6) {31], i.e. SU(6) appears to be

broken for coupling constants, In this chapter, we

attempt to find a basis for the breaking,

3.2 The symmetry SU(v’a‘)w

- Several dynamical qﬁark models have
been proposed and although all,naﬁurally
‘reproduce the SU(3) results, it is difficult to
estimate their validity outside these results, It
is therefore interesting to investigate the purely
algebraic structuré of the quark model with a view
to differentiating between those results which
depend on the guark dynamics and those which may
be deduced simply from the algebré;

First we consider the spectrum of
resonances as observed experimentally. This may be
built'up as a representation of the group SU(6) x
0(3) where the SU(6) symmetry expresses the
invariance of the strong interaction under isospin,
hypercharge and spin transformations, and 0(3)
allows for orbital excitations, This scheme leads
to prediction of mass degeneracy between the L=0,
J =0 and J =1 mesons, and between the L=0, J=%
and J = 3/2 baryons, which is clearly very badly

| broken, but nevertheless we are enabled to view all
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particles as fitting intb a unified picture,

We may now attempt to predict which
decays are allowed within the cénfines of the model,
simply by demanding conservation of spin and
strangeness, as-well as the usual dynamical variables
(energy, etc.). Consider the decay Jp%TrW. According
to SU(5) ideas, this process is forbidden, since spin
is not conserved, and similarly in the corresponding
baryon case, [\ > N . However, experiment shows that
these decays certainly do take place [32], and this
leads to the conclusion that any scheme which
conserves intrinsic spin is not suitable fér the
description of particle decays.

To gain some insight into what sort of
symmetry might be suitable, consider a two-body
decay in the centre of mass frame. Then the product
particles move collinearly., It may'thus be helpful
to consider transformations which leave the
momentum in a given direction (say the z-direction)
invariant, These are:

i) rotations about the z-axié
ii) rotations through'Tr about the x-axis,
followed by reflection in the x-y plane
iii) rotations through T about the y-axis,
followed by reflection in the x-y plane.

The generators of these transformations

may then be used to form a new symmetry scheme, SU(6),.

Note that only the first transformation is through




an arbitrary angle ) y while the other two are
through the specific angle T, so that the
transformations are single members of the group of
rotations. We then have to guess that the full group
is the one appropriate for vertices.

In this scheme the quark operators are
unchanged, so that the baryon spectrum is undisturbed,

while the antiquark operators are affected according

to [33] :

Wx = Gx Wy = -0y
= 6- W = e
Uy y W, = -9y
W, = o, W, = o,

This reorganises the meson speétrum,
though it still decorﬁposes into the same multiplets
except with W-S flip, so that in the new scheme, the

_lS‘—‘O, S, = 0> state becomes - |W =1, W= 0) and the

- Is =1, So= 0> becomes l\-‘v':o, \-’-’z: O> . Hence the T

forms a spin triplet with f’ and f—’, and ]oo is a
spin singlet (where the superscripts refer to
h-elicity). This then removes' tﬁe problem of f—decay
since _P° has W= 0, W,=0 and may dgcay to two 7T's
with W=1, W,= 0. An analogous argument also allowé
DASNT in the SU(6) scheme., |

We now have a symmetiry which- is invariant
under Lorentz transformations in the z-direction,
but it is still not suitable to describe even
collinear strong interaction vertices. As an example

consider the process B-» &, 'Since' the B is a state



of lW =1, W,= 0) under SU(6)y, the decay to the

helicity +1 state of the W does not conserve Wy,
Only the decay to the helicity O state should occur,
whereas experimentally the decay is observed to be
predominantly to the helicity 1 state.[é%ﬂ. There
are several similar examples of violation of W-spin
conservation both in meson and baryon decays,

| Another problem with SU(6)w is that of
the anomaious magnétic moment of the quarks. The
.prdton is made up of three quarks in an s-state, so
that its magnetic moment }#p is given by the sum
:E /L of the moments of each of the quarks. Thus
the 1ndlv1oua1 quarks also have anomalous moments,
and so do not couple simply (as eéLAF) to the
electromagnetic field, _ _

Both of these difficulties may be
resolved by the following simple idea. We know that
systems at rest are well represented by the SU(6)w
scheme, but that the scheme fails for vertices.,
Suppoée then that there is a different SU(6)y for
vertices. This méy be.alternatively expressed by
postulating current quarks, different from
constituent quarks, such that a current proton,
made up of three current quarks in an s-state, is
a superposition of constituent states, Then current
quarks couple simply to the electroqggnetic current
and have no anomalous magnetic moment, while

constituent quarks, being a superposition of
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current states do not couple simply. At vertices,
the simple conservation rules no longer apply, and
depending on the relation between the two different

SU(6)y schemes, new rules may be substituted.

3.3 Current algebra

The first problem is to see whether if
is possible to construct an SU(G)w of coupling
constants, That the vector (Gy) and axial vector
(Gys) charges should form an algebra was first

suggested by Gell-Mann [ﬁﬁ], where:

*t) = fdsx v(x,t)
¢ty = [ &zt
where £ = 1,2,...8

o« .
and V', A are the vector and axial vector current

octets,
Their equal time commutation relations are |
(droppinz the explicit time dependénce):
[, Fl = 187
NG B L (3:2)
[, oFf] = iquxQK

of
where f fK are the SU(3) structure constants.,

Rewriting these in terms of right- and left-handed

charges @ * G O3 . |
[+ &5, Ft f°] = a1 dex[QK + Q']
[+ &% of - ofs] = o |

These relations demonstrate the SU(3) x SU(3)

~nature of the algebra,
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From the third of equations 3.2, taking
matrix elements and inserting a complete set of

states on the left hand side: »
Z <e[e¥ [y {nle®] o> ~<elal i)

This sum includes multiparticle diagrams (fig 14)
as well as the simple first order diagram, and .this
- makes it useful to work in the infinite momentum ~
frame, where the former are suppressed like 1/P [56].
Considering the relation in this frame, and invoking
PCAC to identify the divergence of the axial current
with the pion, the difference'(crﬁﬁ)— o™ P) of the
Tp total cross-sections may be evaluated in terms of
of GA/GV, the ratio of axial to vector coupling constants
constants.[ﬁ?]. This is the Adler-Weisberger sum
rule and has been verified experimentaily to 20%.
As yet there is no evidence to suggest that the
algebra of currents is not exacf.

Specialising now to a current quark

model, the current densities may be written:

\¢f = EiéﬁXjﬁ q (3.3)

where X‘ are the SU(B) generatoers.,

The algebra may also be generalised by replacing
ﬁw.by [1, the Dirac covariants, to give a U(1l2),
However, transforming to the infinite momentum
frame so that multiparticle diagrams may be

neglected, also causes most of the generators to
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vanish, Those that remain, the so-called good
operators, are those components that are infinite
in the infinite momentum frame, The z- and t-
components become infinite and equal, while the

x- and y-components are finite and so negligible.

Hence those that remain are:

F(t) = JVZ(_)_:_,’.G) P N7
FZ(’G) = fAi(E,t) dx = quG" X2 q dx
F:(t) _ _f b(z(x by dx = J\QTF‘T N Q& (3.4)
F;,‘(t) = jvxz(x,t) dx = qu o N2 q ax
where V:v = /“V o X972 q

. Although these tensor currents do not
appear to couple directly to anything in nature,
they do arise naturally from commuting the |

observable currents with their divergencés. Thus

we have 36 good operators, forming an SU(6),, of

currents,

3.4 The Melosh transformation

The real transformation from current to
constituent states must superimpose many current
states and also must create qq pairs. As yet, such
a transformation has not been found,

| Melosh's transformation ESSJ treats only
the free quark problem, where the difficulties are
much reduced, since only single quark states can be
related. The sea of g pairs is also neglected.

Since the SU(6)y's may not be identified, Melosh
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chose the next most simple possibility, i.e. that
the transformation is unitary so that the group
generators are related by: _

| wi = yriyl (3.5)
where V is a unitary matrix. |
Several desirable properties of V may be
injected ES@] so as to preserve the good parts of
SU(G)W (constituent): |
i) Invariance under rotations about the
z-axis is required, so that:
[5,,v] = o (3.6)
ii) CVC is good for decay procesées; so it
should not be.destroyed by the transformation,
Thuyse | Fi = yi :
o, ° (3.7)
and [Fg, V] = 0
iii) Conservation of W-spin is not good'
for decays, so that: '

. Fi * Wz ~ (3.8)

and L, v] # o
Using the free quark approximation, the
Hamiltonian H may be written:
H ﬁﬁXQ.(lﬂ 0 + Fm)q
and [w , H] =

Clearly, when the Hamiltonian is transformed into

(3.9)

current space, it should commute with the
transformed generators:

[Fi, v-1 H v] = 0 | (3.10)




- 40 =

'Writing the transformed generators

explicitly: .
-Fi' = _[d3x q'r Alse q _
FLo= fd3x o o, X/2 q (3.11)
Fix,y= fdsx q—rFG;c,y A2 g

Now these generators contain only 1,
| é‘i’y, G, and so commute with any operator
j o containing only LB, X, and FD(Z, so that the
 transformed Hemiltonian must contain only these,
Hence the transformation V must transform away
the Q.(J_ part of the constituent space Hamiltonian
H. Such a transformation is realised in the form:
V = exp (iY). |
where Y = jd3x q arctan [ .L/ m]
g1v1ng a cufrént space Hamiltonian: '
vigy = f xq [-1%, B-fme «(5,.30) |a

‘This is identical in for'm to the

(3 12)

Foldy-Wouthuysen transformatlﬂn E»QJ, except that
the z-direction is picked out as a special .
dire_étion as a result of choosing SU(6)W in
preference to SU(6).

' The transformed operators hmst now be
boosted to thé intinite momentun: f:rame té remove .,

't.he‘ bad compolne nts.

3.5 Models with direct SU(6) breaking

i) The 3P model

This is an attempt to incorporate the
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breaking of W-spin conservation without_invoking-
the idea of current and constituent quarks. |
Returning té the example of the decay B -> WTI,
data [34] shows that the decay from the helicity
1 state of the B is dominant over that from the
helicity O state, contrary to the predictions of
SU(6),, x 0(2)Lz’ where only the O state should be
allowed to decay. Similar contradictions éccur in
- baryon decays. |
. " A general decay of this type to a

ground state hadron and pion (or kaon).is:

a@®,L,s*; ) = BB,L=0,55% dB; N\)

C

- © (3.13)
+ ¢ =0) !

where L,S are the quark orbital and spin angular
| o | momenta,
the z-axis is the direction of the momentum
| of B,
is the projeciion of JA along this axis,
A,B,C are members of multiplets of static
SU(6) x 0(3).
The decay is now assumed to take place
by the creation of a quark-sntiguark pair (fig 15);
one of whose members appears in each final hadron,
"The pair is assumed to have.the guantum numbers of |
the vacuum, i.e. it is an SU(3) singlet, JFC= o™,
Using spectrographic notation, the state may be
described as 3Po. The model is motivated by duality .

diagrams (cf. e.g. fig 5).
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tr Initially a further restriction was
made on the singlet pair, namely that the
transverse momenta of the guarks may be neglected
comparea to the longitudinal momenta in collinear -
processes such as decays. Then:

S, = L, =0
and again the old SU(6)y x 0(2)LZ results are
obtained, However Xosner and Colglazier [%Q]
suggested that this restriction be relaxed so as
to allow also L,= %1, on the grounds that
although the restrietion is plausible for high
energy processes such as de=p inelastic scattering,
it is less so for low energy decays., Thus the ratio
of the different helicity ewmplitudes becomeS$
arbitrary, i.e. a new parameter is introduced. Then
although no relationshib between the helicity
| amplitudes of the same decay may be predicted,
ratios betwéen emplitudes for different decays may
be related, For example: |

2 (gi1/80)p5om = (8o/8)ppur * 1 (3.14)

where g,,g, are the couplings to helicity O,1l1.
This relation seems consistent with the datg l%&].

The theory was generalised by Rosner
and Petersen Eéé] so that the helicity amplitudes

for the general nrocess in equation 3,13 are:

M (A->EC) = A 35 of '8)
A Z( é‘?a)i(A’gc i

A
x  Xy(a=>3C). (3.15)

&
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where Xy(A=>BC) = 2. (@B A, 1 - Lg|s%, X\ - Ly
- _
’ Z

Here the first term is an SU(3) scalar
factor with 4,B,35 labelling SU(6) representations
and (X,a), (F,b) and (8,3) labelling 5U(3) x 5U(2)
representatioﬁs. The second termm is an isoscalar
factor with A,B,C labelling specific isomultipléts.
The sum over i corresponds to the various possible
couplings, for example d and f when NQP are octets.

-Physically, the 3Po singlet has been
combined with the pseudescalar meson to foﬁn an
effective (8,3) member of the 35-plet of SU(8), Thus
the formalism is equivalent to SU(6), x 0(2)LZ if
aﬁ? are put equal to zero. |

| In X,(A-3C), the first coefficient
describes qﬁark spin conservction, while the second
describes the L-5 coupling to form a total epin J.

Z

T
The reduced matrix elements ar'“ are assumed to

L
depend only on Lz'§£% the specific multiplets
involved in the decay. Equation 3.14 may be derived
directly from eguation 3.15,

The helicity amplitudes may therefore be.
calculated, and if symmetry breaking due to
centrifugal barrier terms is taken into account,

may be compared reasonably successfully with data,
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ii) 1-broken SU(G)W

Another way of introducing symmetry
breaking is to calculate matrix elements of Melosh
transformed currents between_mixed states of SU(G)W,
mixing taking place amongst states of the same
isospin and hypercharge, both at the SU(3) and the
SU(6) levels.[31] The effect of the Melosh
transformation is to introduce extra terms into the
currents, breaking the SU(6)w symmetry. In
calculating decay widths, some angular momentum
barrier factor must be included, although the
results Go not seem to depend strongly on the form
chosen,

Testing ét the SU(3) level only, sh@wsj
that resonance decay couplings do fit in well with
predictions of SU(3) [30]. However, the SU(8)
nature of the hadron spectrum encourages a searen™
for a similar larger symmetry for coupling constants.
Using the scheme suggested above, the bad
predictions of SU(3), are avoided,

The mixing of the SU(8), states may be

W
parametrised in terms of mixing angles, according

toy for strangeness O components:

N, cos B sin@] { 48 '
= 5 (3.17)
N, - 8in®  cos ® 8

for states in any given 70-plet, Thus, for example,

. o . s
the physical N state contains a small admixture
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11) 1-broken SU(8),,

An alternative way of introducing
symmetry breaking, is to incorporate a mixinglscﬁeme
into SU(5),; whereby states of the same isospin and
hypercharge are expected to mix both at the SU(3)
and the SU(E) level, [él] Thus, for example, the

physical N* state contains a small admixture of the
g

70 "8, instead of being pure 56 ?§ (or vice versa),
according to: |
4
N, ' cosO sinO| (78 :
= o (2.17)
N, - 8inB cosD 8

Testing at the SU(3) level only, shows
that resonance decay couplings do tit in well with
predictions of the symmetry [?OI.IHowevef, the
SU(4) nature of fhe hadron spectrum encourages a
search for a similar larger symmetry Zfor ccupling
constants, To avoid the problems of SU(§)W the
mixing scheme above may be adopted, giving in
eftect the most general vosgible SU(5) structure.
In célculating décay widths,'some angular
momentum barrier ractor must be included,
although the results do not seem to depend
strongly on the form. chosen [él].

‘The mixing may be perametriseé in

-terms of mixing angles, as in equation 3,17, and

these may be determined from a fit to the data,

In thiSIWay, Cashmore, Hey and Litchfield show
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[?l] that the scheme can describe quite well 3§cays
of the types: ' s

56, gt > 56, o' pseudoscalar meson

70, 1° > 56, 0' pseudoscalar mésop
and photoproduction of the 70, I~ ard 56, 2' .

Having established such a model, iv is
then possible to use it to test the plausibility
of the multiplet assigrments of various resonances,
In particular, they suggest that some of the
supposedly positive parity 70-plets are in fact
redial excitations of tﬁeigg, and they can find no
resonance which is indisputabiy in a positive
parity 7C-rlet,

This scheme allows a.more _conprehensive
breaking of SU(:’S)w than the 3Po model, which does
not contain all the terms generated by the Melosh

transformation, The fact that the SU(E) structure

.of the decay couplings is shown to hold

 approximately, encourszes a measure of confidence

in the validity of the ideas on which the ¥elosh
. \-

transformation is based,
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4, Implications of the current and constituent

guark hypothesis

4,1 Introduction

The lelosh transformation is a unitary
transformation between. two different SU(é)w
algebras, those of free constituent and free
current quarks, To apply it to the real world, we
must assume that the structure is unchanged by
the interaction between quarks, To see whether _.
this éssumption is viable, it is necessary to
‘test the algebraic structure of the model against
that which is actuelly observed. Unless this
confrontation is successful, éhere is little to
be gained from attempting to inclucde the dynamic
properties of quarks.

In order to test the algebra of the
quark model, we must first write the Melosh
transformation in a way independent of the quark
dynamics, thét is, we muét extract the SU(8)y x
0(2)Lz properties of the transformatioﬁ E@SJ. From
the way in which it was initially constructed,
using the commutation properties of the operators,
it is clear that the appropriate algebraic
properties of the operator generating the
transformation are:

{355 W= 1, w, = t1, L,= $1}

{suca), _;} Y=C= +
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The transformation in its algebraic
form may now be applied to the simple currents,
as written in the current basis, in.order to
construct the current in the constituent basis.

To simplify the problem still further,
we make the assumption that-a current only
interacts with a single quark. This is also made
- in the explicit free quark model, but there is no
physical justification for it, In the algebraic
formalism, the éssumption is equivalent to

restricting the currents to an {SU(B), §_} part of
a 35-plet. |

4,2 The transformation of the currents

In the current basis, a transverse
current with AJ, = 1 may be written as:
IE o~ {§§; W= 1, Wy=1, L= o}
where JfT = 1/J2 (FTx - idy) _
and YJ%I 1= - J.I:.F .,'wh'ere Y is the x-y plane
| | reflection operator.
Applying the Melosh transformation, the current -
may be written in the constituent basis as:-
Jg ~ '{gg; W =0, W= 0, L= 1}
+ {g; W =1, Wy= 1, L, = O}
+{383 W =1, W= 0, L= 14 (4.1)

+ (355 W =1, -Wz= -1, Lg= 2} )
where the individual terms appear in arbitrary

combinations, If the explicit quark model is used,
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the combinations are fixed and depend on parameters
in the dynaﬁics, such as quark mass.

It is interesting to note that the form
of the current obtained by application of the
Melosh transformation is in faci the most general |
which may be written, consistent with the
restriction to single guark interactions, .

- In order to calculate matrix elements

of the transverse current between free quark
states, the current must be expressed in:terms of
single quark opgratérs:
o ap = (al + dbst + 1al’S 4 iafrts) g
where L+ is the + part of a vector operator (2.2)
_ s’1° are the quark spin operators
and L7 = 142 (L, - iL)

st = ade (s, f 15, s = s

and J 1is an SU(3) octet opefatof.

2

Thus a,b,c,d are SU(6)y singlet-operators, which
comnute with L,, Applying the reflection'operator
Y: o

37 = (aL~+ ibS™ - icL"S® + iat’sh g

since YL”Y 1 = -ﬁ+

vs'vl = .gF, ysoyla -g0
Taking the Hermitian conjugate:
(JT)T = -J} for J=7
and (Lf)f = L '

Hence a,b,c,d are Hermitian,
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The validity of this derivation of the
form of the transverse current may be quéstioned,
since the matrix elements of in taken between
' SU(6)w x 0(2)LZ states are not invariant under
boosts in the z-direction, whereas.the Melosh
transformation is_eipééted to be meaningful only
when applied to good operators, However, the
transformation has the same form in an interacting
thgory as in the free case for which it was.
constructed, so it may be argued that the operators
may be abstracted from the free case., Since no
particular dynamical behaviour is specified, it
may be hoped that the diffidulty may be avoided
and_the dﬁrr_ent operator J; used with impunity.
At Q¥ = o, with real photons, JT:t can be related
10 good operators via current conservation E&g,
but not in general for @ # O.

This problem does not arise fof the
good longitudinal currents, For the lohgitudinal_
part of a vector curreht, the transformed current
may be written:

‘ ) R {g@; W =0, W,= O, L= _o} :
+{35; W =1y, Wy = 1, L, = -1}_

where the first term alone is fhe untransformed.

current, and again each term has an arbiﬁrary

coetficient.
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Rewri;cing in terms of single quark operators:
| g, = (et aprist 4 i3rfsT) g
Applying the reflection conditions as before,
.except YJLY"l = J;y the coefficients are reduced
to two, since F’—‘ ¥ .
Tus: gy, = @&+ 1p[iste ] (a9
Taking the Hermitian conjugate, ™ and IS are
found to be Hermitian,
* The axial current maﬁr be treated
similarly, the transformed current being:
.~ {g_f_ 1, U= 0, L= o}
efa w =1, 1w, 1, = )
: +{§_§; W=, Wy=1, L= -1}

where the first term is the untransfoTmed current.

wr

1l

¥ T3

353 W

Rewriting: : .

Tz (K0 + Fots +Ssh o
Applying the reflection conditiom‘s',.. with YELY"'J'
= "3,L for an axial clu-rrent,v the coefficients are
again reduced to two, with ’6: -¥ , so that:

3'1; = (X304 ?'[L"“s- -1s)) g (4.4)
Again & and ’F are found to be Hermitien,

It is now possible to calculate the
helicity emplitudes for the excitation of any
resonance, For collinear initial baryon state B
and finzl resonance state R, these are defined

by
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Azsp = <R 3/2[371B a~>%

J
"VIRUR (ndlas s e

g = Gl o
= <>‘“<rz-%la~ By
<R%IJ f131> | (4.5)

It

4,

L

N
?u\'
-
L_.Q-i

5
o
~"

T2 ~
L PO CEI RN

where TID is the parity of x °eaenencc R
Jy 1is the spin of resonance R, |
The wavefunctions used for the initial |
and final states are the stendard SU(G) x C(3)
" wavefunctions w1th given an;ular'momen tua L,y and
deflnlte_parlty, since baryons are unaffected by

w-S flip.

4,3 Matrix elements and the non—diffraetive'

contribution to inelastic gtructure functions

. Transition matrix elements for transverse
octet currents to excite members of §§- and 70-plet=
| representations for erbitrary L are given in Table I,
inclnding the specialised cases of electromagnetic
and weak ZSQ =1 currents‘fer proton or neutron
targets. This table also covers transrerse‘axial
currents, although the detailed coefficients are
different., The corresponding matrix elements for

longitudinal vector and axial currents are given in
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Tables II and III, For the special case of L=1
70-plets and L = 2 §§¥?1ets; of most practical -
interest, the results for transverse photons and
pions reduce to those of refs. 44 and 45, save

for matters of sign convention which are disgussed
in Appendix III, Predictions for strangeness-
changing or arbitrary neutral octet currents may
also easily beldeduced from the tables,

- The non-diffractive contribution to the |
inelastic structure functions for weak or
electromagnetic currents may now be obtained by
summing over the individual resonance contribgtions
using the orthogonality relations for Clebsch-
Gordan coefficients, The results for proton and
neutron targéts are given in Tables IV and v. :

- We assume.that,SU(é) x 0(3) is anlexact
syametry and that each supermultiélet contributes
at o definite mass. Then since eaqh 56~ and zg-p;et
has the same form of cohtfibution, independent of.
L,-the-totgl contributions'from all Qéfs_and zg's,
weighted appropri§tely by their masses,uis simply
thained by summing over the individual multiplets
and replacing the coefficients a, b etc. bv A, B
which are the weighted sums of the a, b etc, for
each multiplet. These total contributions are given

in Tables VI and VII.

The most striking result arising from
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the above treatment is that independent of . -

relative abundances and couplings of 56's and 70's

A¥n = Cfgn' _ Cﬂ;&g
oo
= 0
and ﬁ"g{l = 0 L
where Gﬁ%,é/z = ”,A%,B/z.
O = O3 4+ T3p

S, T 2 A A |

- These relations are true for each 56
ancC 70 separately. Hence within this frémework a
non-zero value for Asn or Crgf will be direct
evidence for violation of the SU(S) symmetry
assumptioh. - S o

Apartfrom these two relations, the _
expiression for the cross—éectiops'arising_ﬁrcm 55-
and 70-plet final states differ, so that wdth no
‘Information on the relative importance of 56- and
70-plets, it is only possible to set bounds-for
various ratios rather than obtain absolu%e
| predictions,
' . Consider as an example the ratio -
c77‘“/(:7\61). If only 56's contribute, then for either
transverse or electromagnetic currents, the ratio

may be constrained by:

o € ¢V lp < ._12/17_ (4.6)
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The lower bound results for A or o dominant
(the spin zero terms) while the upper bound
arises if B,C,D or F dominate‘ (the spi‘n one
terms), » _
Similarly for only 70-plets present:

35 { &Y/ 1
Thus from SU(6) assumptions only, the ratio is
restricted to values between O and 1, o

The lower bound of O is not that
usually obtained in the quark parton modél,
where the value is i/4, but the difference arises
because the quark parton model ustally includes
an assumption of the incoherent impulse
approximation, The lower bound cbtained above is
for a contribution from gé-plets only, which
necessitates exotic t-channel exchanges,
corresponding to non-incoherent iﬁpulse
contributions (Fig 16).

If we now impose the restraint pf only
non-eiotic.éxchanges.in'the t;channel, we find
thai this is exactly what is requifed to enforce
exchange degeneracy of the 56- and 70-plet

contributions. From Appendix III:

b
o2 [0 [ g [l = a0, + ey
| (4.7)

2 | CBT0uE / a /Bﬁﬁ’o>{-=6U_"_ - 6E_;L
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where U, = (B25:0) 56 O)d'a fb ybe

+ JM wa,Fb,Kc
‘ 4 . 2 4.2 1.3
X (EJ)(X, bd EA+C+-2—B+§D )
+(2AC - 4B +4D)00]2
_ ,=56,0 6,0 X" |’ 'b',?Sc
E, = By’ )o(a Fb . (B3 O)e F |

'x J ' JF x [(A+ CO'O)a|(A+CQ—°)
+Bo a,cr +D d*

and U', E' ~are obtained by repla01ng A,B etc, by
A' B! ete, :

-The terms E+,.Ei have a tensor
étructure and thus correspond to the currents
landing on different quarks, which includes
exciic -exchanges. To.exclude.these_contributions,
there must be cancellation between E, and-E;.

This requires:

which is only true if:
A+cl = (ar +cy, EB=3B% D= D

Thus the coefficients for §§- and 70-plet
contributions must be identical, representing
exchange degeneracy between the couplings to
trensverse vector currents.
Similarly, by considering Oi, EL and
Op,s the constraints may be extended to all

the couplings:



] ~ T /.
S A AT N
p@ato =p@+c), «B = o 'B!
Substituting these values into the cross-sections,
we obtains _
P, sn, of!"’+P . 0!_1+n _ 1

s 2/3 : 1 ¢ é'.
: (4.9)

for either transverse or longitudinal vector
currents, in agreement with the. results from the
naive parton model [:18:] y negle_ctihg the -
transformation between current énd constituent

,; o quarks. | :

On the other har-ld,._ the polarisation

symmetries are affected by the inclusion of the

transformation:
A% = sp0x TAm- o
| U SR s SPY S (4'10_)-—
where X = _- 4AC + B - D (-1<€ X €1

2(4*+ C*) + B+ D -

Excluding the transfomati_on _
corresponds to A= C =D = 0 so X = -'_1, and all
the asymmetries have a definite sign. }_Ioweve-r,'
-téking the transformation into account, even the
signs cannot be predicted though the magnitudes
are bounded and the ratios are indep_endent. of X

S0 2% 0 D 2 o536 (41D)
Experimentally, the ratio of
G'.Kn/o‘fp does not satisfy 4.9 near «~1 (where
W = Q/2M¥), but the nature of the failure "of

the assumptions made cannot be further
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investigated without knowledge of the behaviour
of AbD and %P as well. One possibility is that

SU(é) is violated, for instance by the nucleon

containing & 70-plet part in its wavefunction.

4.4 Current algebra and sum rules .

Several sum rules may be derived
from the commutation relations of current
operators, and from these may be derived various
. constraints when saturated with resonances ‘-
belonging to 56- and 70-vlets, for arbitrary L.
-In the model of SU(G) v only those sun rules
1nvolv1ng'forwqrd scatterlng amplitudes may be
discussed, because of the collinear nature of
the svmmetry. . N

‘The Adler-Weisberger sum rule is
obtained from the comiutator of two axial
_ current operators: SRR -

(%, F5] i By (4.12)
At-QL== 0, the matrix elements of this eQuation
between anv states of the L = O 56 -plet, summed
over anv 56- or 70-plet w1th arbitrary L,

giving for a 56:

56,0 55 .L L 56 o
awggg. <,BJ 1} ’B"v > <<B"M‘ ] Ji, ‘ By’
(4.13) .
_ - i€y = (o( +/s )ify sV
wh Vv = 3 50 0 55 ' ¥
where Kk EJU XXa,ﬁb ¥ (B 6 O)d a ,Fb, c

a

. S X (ékﬂd' a'
and s:unllarly a 70, exceot}b(,f/@ are replaced by o(,F




V# is the matrix element of the vector charge Pk
between any members of the L = O 56-plet, so the
sum rule reads: |
_st(w*fgl.)*z.%,(&}*/g (414)'
From Table III, A}_{ M z5/3& , so that _thg 01d
quark parton model result of g,/gy = 5/3
| ' corresponds to assuming the Adier-Weisberger '
relation to be saturated just by thé lowest 56~
plet, with L = 0. The Melosh transformatlon .
requires additional terms, so that ga/ey < 5/3
_ -It should be noted that taking matrix
elements of equation 4,12 between octet and
dgggplet states,_or taking the difference'of 4.12
between M = 3/2 and M = 4% decupief:stépes,'leads
to superconvergence relations which are .
automatically satisfied within each Qé—_or'zg—
plet,

-The commutator df_the-veétor current
operators ié trivially satisfied for each SU(3)
multiplet because of the assumption of exact
SU(B)'symmetfy. | -

‘We may also con31der the Cablbbo-

Radi cati [46] and Drell-Hearn-Gerasimov [47]

sun rules decomposed according to 130ap1n, with

isovec;or and isoscalar currents between nucleon

states, These read- | B .
2FV(0) = /u,\ - 15/9 (4.15)

2 2 E)’¥ "®) - ¥ _p(R;J
R '(I-xRi- MD)* -
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where EF'V(0) > 0©

and EY(O) = 1 is the usual isovector form

factor.

<
i

A o /“p‘ /U-n ;_1/21\1

)A' j&’= B S/Q}An

VY 2 [suw'n, W'D
= 16 9
' - -6} "®).- o"‘ [P (w))

For photon—neutron scatterlng, the

=
'

(4.16)

Drell-Hearn—Gera51mov sum rule is very 31mple,
¥n
since. (cr3/2 %) is zero for each 56~ and
Zg—plet by itself, so the rule Just reads:
. 2 = 4/9 |
}‘n - f*
where only the Z& makes a contribution. This - —
is_in agreement with the usual SU(R) result
for P ne
Similarly, for isoscalar photons:’
/ o % K
e - 3 g [ - Yl
R RR - MIr
o . _ (4.17)
where }J-%A _KS/AP -f/.tn - 1/2M W

may be easily deduced from our results.

and-

Then substituting our results for the cross-
sections in these sum rules, we obtain: _
2F'V(0) = (VX)"- 15/9p + o 2 e x
. 2
[ea+ &) + 8 + o7
(4.18) -

+ Z 2 [24\"—» c! )+B' + D"“j

70 '(I’-Cf17""-‘o - M)
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(}JX)-L = 16/9;/.11+ Z 2 [20/5 ‘-"sC - B’. + Dz].

st ML - M*)-
o6 4,19)
[8/3 A'C' = B'+ DI

* Z‘(M"‘"@T)l

_ [4/3 a6 - 1908 - T
(/u A ; mé‘:' — |4/3 AC - 1/9(B D._)] .
].64.20)

| 1/9(B' - D'
-t 2: M?O ME)F [' (.” - )_

Taking tne simplest possible'approximation,
neglecting all higher resonant states, we obtain for
(4.19) and (4. 20): :

' 3 S\ o
(}j e amd () =0 (4.21)
or }‘(p.—- 3/2M, ./,Ln.z. - 1/8 R
- Even this crudg simplification is already
- - -_ - .quite.cloée“to.experiment,_lnéluding an admixture_of
| 70 . L= 1 (where D' = 0), it is clear that: _
CpRy = BT = 0 L 4a22)
is the_only consistent solution, indicating that
fli and B! for_zg L =1 are likely to remain
small, In general, the_main qonclusions to be
drawn from equations 4.18,19,20 are that a
_ consistent saturation requires the presence of C
or D (C' or D') for some excited_gé- (70-) plet.
Further, each set of excited supermultiplets
contributes positively to“FTV(O) in accord with

its known positive result,

4.5 Conclusions

3n

The results for the asymmetries A

ete. are interesting for several reasons, In the
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calculation of matrix elements, there is no
restriction in the_ﬁaiue of QL,-so that the
results should be valid over the whole range
of the momentum transfer. We may therefore
consider the sum rules which apply to bofh
photo~ and electro-p*oductlon. In photo-
production, the Drell-Hearn-Gerasimov sum rule
requires that the asymmetry on protons be
negative over a substentiel region, which is
supported by some data [48]), while for large
Ql the Bjorken sum_;ule-EQQJ suggests the -
asymmetry should be positive. Thus it seems
: probéble that the'asymmetry will show an
- interesting Q2 variation; IR _,--;ff?;~f
e -On the baols of naive parton models,
or light cone analysis [bd] X(Q ) is expected
to scale for large Q « Now, in the resonance
regien it seems that if_X(Ql) iejeheng;ng_sign
at~e11 as Q" goes from zero to space-like,
then.it is doing so very slowly with increasiﬁg'
Qz;_On the other hand, the unpolarised structure
functions scale down to very low QL,vThus it
seems possible tﬁat either the aeymme}ry remains
negative in the deep inelastic region.and
Bjorken's rule fails, or that scaling obtains
only- for very large~Qf'for the polarised
structure functions, |

It is also interesting to comsider
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role of the approach in this chapter. Since we
have made no dynamical assumptions at all, the
coefficients AyB etc. are completely arbitrary,
so that scaling is not in any way éipher
predicted or necessary to the theory. On the
other hand, the theory is not troubled by the -
main defect of the naive parton model, that free
quarks appear -in the final state. Our results
show that many of the good deductions'from'the
parton model are in fact independent of the
incoherent impulse.approximation.llf we include
the assumption of no exotic t-=channel exchanges
we may also derive some other sum rules '
familiar in the quark-parton model. Starting _

from the Adler sum rule for vector currents:

of s
vn N _
Jawre [moe) - Pre)] = 1 (a.23)
~and inéludiqg the no exotic constraints:
L fawm. [FPw) - an(wﬂ = 1/3 (4.24)
[

and if the vector-axial interference is

maximal and negative (as predicted in the

:naive model)& . o
-fdw/w [%Vp(wn g*’n(w)} = -6 (4.25)
Thus we can'see how our general results from |
SU(6) symmetry albne_are incorporated into

more specific models,

4.6 Postscrint - the asymmetries paradox

In Section 4.3, we obtained the

relation:
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Atp ='5/_9.x'_, -1 XS1

This seems to conflict directly with Bjorken'.s

sum rule: S : S
fdx/x [At'p E P(x) - AKn'an(XE\ =1/3 g,/8y

Since A P is predicted to be zero, this requires

that A‘rp be positive over.a large range in x,

 since SU(6) gives gA/gV = 5/3.

In connection with this apparent
paradox, it is interesting to see what happens
when calculations are done in the current basis,
i.e. transforming the constituent states into-
current states. It can be easily shown ESl] that
the transformed states may be written:

— 1Py —=  cosBW) + sinblSY)
where vIgy =y +>\(5lP> _
and V is the Melosh transformation, :
The result (O'Kn/(j‘x-.?%'):' 2/3 is obtained

as hafore, and the asymmetries are: -

A'Ign = 0,
.Ang = 5/9(00815 - sin"@)

. = 5/9 cos 26 -
Thus it is clear that‘the eff_ec’ﬁ of the
transformetion V is simply a rotation through
the angle D of the quark spins. This does not
cha-hge the relative probabilities of spin 1 to
spin O core, so that the SU(5) remains
unbroken, hence the bad value fpr the ratio

(& 2/ ¥ P)
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Thus we see from this sec_tion. that
the Melosh transformation does not break 3U(G),
so that it can never lead to the empirical
result an/Ic‘,_‘p —> 1 as x —=>1.

If we now calculate gA/gv in this
formalism, we find that: »

8,/8y T 5/3 cos 20 (4.26)
so that the Bjorken sum rule is again realised.

Empirically, gA/gV = 5/4, so that
we can find a value for O = tan~1(1/J7). This
quantity is also interesting since it measures
the amplitudes for finding Lz,.: O and L, 7 O,
in the nucleén ground state in current space.
This leads us to deduce that 40% of the
amplitude has L, 7 O. This figure coi_ncides
with that obtained by Sehgal [52_] in the parton
model through a completely different approach,

| Such a large proportion of L,# 0 in

the ground state shows why the SU(G)y of
constituent quarks is inadéquate to describe

the behaviour of current quarks. But this section
also shows that the Melosh transformation in its -
turn is not sufficient to explain the low

" results, Clearly somé other mechanism which
splits the spiﬁ O core from tfxe spin 1 core

resulis is necessary.,



S. Relativistic quark models

5.1 Introduction

In the previous chapters, we have
treated quarks strictly as a convenient
description of the algebraic structure of
hadrons, with no assumptions of their dynamics
beyond that of their pointlike behaviour,
Combined with the use of the Melosh
transformation, this has led to a scheme for
hadron interactions which seems to agree quite
well with experimental observations, except
for the region of low W, where it is clear
that SU(6) breaking, probably in the form of
of unequal probabilities for a spiﬁio and spin
1l core, must occur. The HMelosh transférmation
does not introduce such breaking, merely
rotating the quark spins, and as such is not
sufficient to allow a full description of
hadron interactions,

| -' Having examined thé'algebraic
structure of the quark mbdel plus Melosh
transformation with some success, it is
interesting to consider the position of the
transformation in a dynamic model, There are
two distinct types of model possible, because
of the problem of individual quarks not being
seen outside the hadron. Either quarks are

light and wgakly bound but somehow contained
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‘within the hadron, or they are heavy and very
strongly bound. In either case they must behave
as quasi-free particles in order to produce the
observed symmetries, so that it is reasonable
to treat quarks as free Dirac particles,
ignoring mass and binding problems for the

purposes of investigating the basis for the

Melosh transformation.

5.2 Relativistic quarks

The Hamiltonian for a free Dirac
quark is:

He = fd‘x S (t) \PT &.p + pm) Y (5.1)
where HJ is a superposition of solutions u(p,s)
of the free Dirac equation,

None of the 3U(6) symmetry operators (apart from
unity) commute with this Hamiltonian. In fact
O'Raffertaigh [53] showed that it is not
possible to combine relativistic invariance with
SU(6) invariance except by a direct product of
the symmetry groups. |

Thus to find any symmetry at all, we
must i~ck in a particular frame, the most
obviously useful being the rest frame. The
solutions u(p,s) of the Dirac équation are
obtained by Lorentz boost of the rest frame

‘solutions w(0):

u(p) = L(p) w(0) ‘ (5.2)
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Howeverlthe Lorentz boost is not a unitary
transformation, which we require in order to
leave the Hamiltonian unchanged:
H, = qu'x §(t) \pfe-is ¢S p+ gm)
x e-1S iS5 qj '

. ce (5.3)
= fd‘tx' S(t) ¢Tels ol.p + Fm) e-lS¢>
where u(p,s) = 1S w(o)
‘ = L{p) w(0)

B and $£ is a superposition of rest frame wave-
‘ functions w.,
This simply entails- renormalising w(0) such that
WTW = ﬁru (insteéd of ww = ﬁﬁ), and this
defines S.
Hence we can find:
el o.p + Fm) N R’F
and the free Hamiltonian is: '
| H, = fcfx S (t) S{)T/’if m”> + 27'(/5 (5.4)
This Hamiltonian is invariant under
transformations of the form:
. = - i/\¢
where [/\ ,F] = 0 .
Thus /N .is precisely the set of
SU(6) x SU(6) matrices, and the transformation
manifestlj demonstrates that relativistic free
quarks have this symmetry in the rest frame.
Another useful frame is that in
which one component of momentum is boosted to

infinity. Choosing the z-direction, states of
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. large momentum may be obtained by boosting

states of fixed momentum., Boosting with rapidity

/¥ 3
x! = x
y' = vy
(5.5)
z' = 2 coshw + t sinhw

tf = t coshw + 2z sinhuw

The quantities which aré most
interesting from the point of view of calculations
are the charges F(A):

~ F(N\). = jdx _S(t)qﬁ/\q) - (5.6)
These charges do not co-mrgute with the free
Hemiltonian, but the SU(6) generators W(A) do, .
where W(./\) are related to F(A) by the Foldy- -
Wouthuysen transformation Ei@]. It would have
sim'plifiea the lproblem greatly had the charges
F(A) commuted with the Hamiltonian instead.
They do form amongst themselives an SU(6) algebra
however, so it may be that they can be used as
symme.t,ry operators after all., Transforming the
operators to the infinite momentum frame:
FA) = 2% r(N)

.,-(5 7)
= 2de d(t+ z tanhw)Y A

/

where A = 3P N\ 0%
_ 14+ 0<3tanh /2 [\ 2 cosh Tw/e 1+ 0(3t.an‘n 03/2
- 2 - coshwlz P2

and allowing @ —> oD
F(A) = 2ja x S(uz)cp L(:L+<>e3)/\ (1o )k{/ (5. 8)



These.new operators should still have
" the same symmetry properties as before, since
they ‘have simply been Lorentz boosted. However,
many of the SU(5) x SU(é) operators anticommute_
with o4, and hence the operators corresponding
to these values of A vanish identically. Those
which do not vanish commute with (Yg,.fonning a
subalgebra, SU(6)W: _ | .
A = (1) [1, /567, FSL, 0?,] (5.9)

wheréa >E are the SU(3) matrices, '
| ‘ . The corrésponding'good operators also
satisfy this algebra, provided limits of
commutators are identified with commutators of
limits for theséfbperators [543. They also
commute with the free Hamiltonién.

Thus relativistic quarks satisfy an
. 8U(B) x SU(8) algebra in the infinite momentum
limit,

| A further point to be noticed

concérning the new charges 9(/\) is that S(t)
has been replaced by O (t+z) so that the
combination pz-+ pgy is now conserved,
Nevertheless, if null-plane anticommutation
relations are assumed for the wavefunctions W,
only those for the good components coincide
with the infinite momentum limit method,
. indicating that it is not always reliable

because of the assumption which had to be made
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regarding limits of commutators. .

The first hope was that F(A) would
be suitable particle operators, but this was
dismissed since these operatofs lead to zero _
anomalous magnetic moment for nucleons, in
contradiction with the large moment observed,
This being the case, Melosh suggested that |
perhaps the W(/\) when boosted to infinite
momentum might prove riore suitable. Since the
W(/A) contain p; which is not invariant under
boosts in the z-direction, Melosh modified the
gencrators by using a Foldy-Wouthuysen
transformation which removed only & and o5,
bui not &3 from the Hamiltonian, This then
removes the term o,p; from W(A) and the

Heamiltonian is: : )
CHy = [dx S ;[jfgg,fmﬂ'pz +o4pa) (5.10)
This then means that the symmetry of the W(A)
is reduced to invariance under transformations
such that: |
[/\, P] = 0 as before, but also

[/\ d] . | (5.11)

This is not a disadvantage however, since the

set of /N is now the set of SU(6)w operators
and these are ﬁhe ones most relevant to the
problem. Boosting the generators wi () now
produces the operators @(/\), which also have
an SU(6)w in a similar way to the ﬁ(/\). Then

the guestion arises as to whether the W(A)
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are any more suitable than the ﬁ(/\), since the
original problem was simply to find a symmetry,
which the W(A) and F(A) already possess.
Perfﬁrming'two transformations each of which
leads to a symmetry is just solving the problem
twice,

One way of choosing a preferable set
of operators ié to consider thé rotation
properties, since we know what properties we
require fér particles. Because the rotation
matrices anticommute with o{z, complicated
relations ensue for the F(\) [54] such that it
is not possible for a particle to have a
definite spin under the F(/\) and at the same
time belong to a definite representation of
SU(3),, under the F(A). On the other hand, the
relations are simply satisfied for the W (A)
and ‘:‘}('\). '

With this iﬁ mind we may now start
'again from the Foldy~Wouthdysen transformation
and simply renormalise it slightly differently
in order to achieve fhe required rotation
properties, instead of arbitrarily removing the
py and o barts as for W'(A). This ieads to

the second Melosh transformation:

¢ — m + [py+ @l i\-é-l-._e.l. (5.12)
- J(m + [p + %'Y'-l' P> g

- Unfortunately, this procedure has
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resulted in the loss of longitudinal boost
invariance, which the original "TEAY) generétors
had, so that it seems that one difficulty is
removed only at the expense of creating
anopher. The new génerators then have lost all
boost invariance, so that they should be
symmetries.only for systems at rest, while for
moving systems, one must deboost to rest and |
then reboost. o ! |

| In the free quark'case, the modified
generators @(ﬁ\) are éonstants of thé motion,
as are all the null-plane charges, and in fact
are the same as the Foldy-Wouthuysen
transformed generators W(/\). Whether the
transformation remains in any way effective
for a system with interaction must depend

solely on the strength and type of interaction,

5.3 Quark model philosonhies

At this stage, we have pointed out
the problems arising from an attempt to |
descfibe vertex symmetries by the same SU(6)w
as the resonance spectrum and considered the
resolution of this difficulty by means of the
Melosh transformation, Both of the suggestions
put forward bylMelosh have their disadvantages,
although as can be seen from Chapter 4 the

algebraic scheme is extremely useful, From it
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can be deduced that the free transformation

is moderately appropriate at least, although

‘clearly SU(8),, symmetry is broken to a

minimum of 20 to 25%.
In view of this it is not
unreasonable to look for alternative methods

of resolving the constituent quark-current

quark dilemma. Such a possibility is to

reject the idea that there is any.
fundamental difference between the two iypes
of quark, save that one is at rest while the
other is moving. The difference is then
expressed in the Lorentz boost., It is

interesting therefore to investigate

" relativistic formulations of the quark model

in order to discover whether the effects of
the Melosh transformation may be described
in this way, purely by invoking dynemics,

In section 6.1, we saw that free

_relativistic'quarks with spin-4 satisfy an

SU(A) x SU(6) x 0¢3) algebra in the rest
frame. In the discussion of hadrons, we have
a choice in deciding how to view the quarks,
Either they ére light with weak binding, so
that the symmétries 8till hold, or they are
heavy with strong binding and small
effective mass, but somehow the symmetry is

carried over to the effective quarks. From
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the failure of the search for quarks

experimentally, welare forced to favour the
second case, though then the success of SU(6)
for classification becomes almost incredible,
since there is no compelling reason why the
bouhd quarks should behave as if they were
free. A further alternative is to suppose
that free quarks do not exist, and that the
quark model is siﬁply a phenomenological

description of the internal symmetries of

‘hadrons.

In formulating models appropriate
to any of these viewpoints, there are two
important criteria to be incorporated. The

first is that to have any physical

“significance, the model must reduce to the

non-relativistic quark model in the rest
frame, since it is so successful there,
Secondly, the interaction between quarks is

severely restricted because of the observed

Adinearly rising hadroﬁ mass spectrum, The

physical origin of the behaviour is not
clear; so that the beét that can be done is
to accept it as a fundamental fact, and
adjust the interaction accordingly., If we
assume that the rise of the trajectorieé is

exactly linear, we must inject a harmonic
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6scillator form of interaction,

With these points in mind, we are
forced to reject any model in which the
interaction potential is singulear at the
origin. Thus a simple field theory, treating
quarks as fundamental particles bound by a
neutral vector gluon field, is not suitable,
in spite of its success in the formulation
of current commutation relations .and light
cone algebra.

| Many relativistic models which do
satisfy the above criteria have been put
forward, encompassing all the standpoints
‘mentioned previously as to the nature of
quarks. It is the object of the following

sections to discuss some of these models,

5.4 Duzl models

In these models an'attempt is made
to include the known crossing and analyticity
constraints in the description of hadron
interactions. Veneziano [55].succeeded in
parametrising the invariant amplitﬁde for the
process T —> W, yhich was then extended
to a formule for an n-point function [bé].
The amplitude contained both s- and i-channel

descriptions without allowing double poles or
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any unwanted singuiarities. However, since
linearly rising trajeciories were an input.of
The model, unitarity has been neglected, and
it was hoped that this would turn out to be
an acceptabie approximation.

These results may also be reached
by treating the hadron as made up of an
infinite number of partons, which may be real
constituents or simply degrees of freedom.
Then since each particle consists of an
infinite number of.ihese, interactions take
place by an infinite number of interactions
between the individual partons, Low order
diagrams with small nunibers of interactions
become meaningless and the high order
-diagrams dominaﬁe (Fig.17). Because of the
infinite number of partons, there exists a
symmetry between the channeicy and if the
partons are treated as scalars, a
statistical mddel [57] gives the Veneziano
amplitudes,

The model may also be approached
from a different angle, by considering the
free Hamiltonian of the constituents of the
"hadron. Treéting them as écalars, this may
be written as an infinite sum of covariant

oscillators:

ol
H = % nZ=o [& + l*f,‘]q;] RS
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where W ,q - LJn = W, n= 0,1,2,...
It is assumed that the physical limit is that
when tJ  —> O, when the zeroth mode becomes
translational. Thus pp is the centre of mass
momentum, while pp,q, are the internal momenta
and positions.

In this limit, all the physical
observables of the system may be written as
averages over the perioq of internal cycles.
The internal time, T, is defined by means of

the Heisenberg equations: _
[, f] = i af/at . (5.14)
where f is any dperator.
The fundamental cycle is taken to:be:
-T/o €T K 70 (5.15)
In pa?ticular, if ag;(t) and aqpﬁt) are the
harmonic oscillator creation and annihilation
operators corresponding tc iiie internal

motion, then: , _
' jw T :

| ar}u(f‘f) = &P a | (5.16)
The total momentum of the particle may be

written:

17«

ry‘_e

and the observed momentum is the time-averaged
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p = KB
- 5y,

We are now in a position to

(5.18)

genéralise the Klein-Gordan equation as
follows: :
P - mLo = <P>.<P> - m:
e ~<}P1:> - mS
Then: - | _
I A
where the normal ordering is:to eliminate the
zero-point energy.
Thus the new masiaoperator is: -
M = m + 2 walaf (s5.20
' A difficulty now arises since the
time-like states have negative'nenhalisation
and are thus unphysical, They are most simply
removed by gauge conditions:
p,uan}‘ | physical s_tat.e) = 0 (5.21)
i.e. <174 (v)) <ei“_’n't Pf(‘t:)) |physical state)
: | = 0  (5.22)
Replacing <17A (@) (N @)) by
(%ﬁwnt :§4Pf:> we obtains
(ei¥n® ;I;kph) (physiga_l state) = O (6.23)
These are exactly the Virqsoro gauge conditions

_[58]. They can be satisfied provided the
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dimension of space is allowed to vary, and
for 25 space dimensions and 1 tﬁhe, there are
no unphysical states, Alsé it is found that
in this dimension of space, the pomeron may
be represented simply by a pole, instead of
the more complicated singularity necessary in
any other dimension in this model,
To this point, the hadron
constituents, or partons, have been treated
as scalars, To incorporate spin in a |
dynamical‘way,.Ramogd made an analogous
generalisation of the Dirac equation &%ﬂ.
| In order to do this it is necessary to find
some generaliSation of the Dirac matrices,
such that the average over a cycle should'
reproduce the usual matrices:
(P = | (5.24)
The simplest anticommutation relations
consistent with those of the usual matrices
- are: | _ ' - : .
, {F,}'CJ, FF(WP = 2g/w5E)/2'ﬂ @ - )] (5.25)
Again appealing to simplicity, we have for
the'adjoint matrices: :
F‘/f(t) = %ol}(t) L . (5.26)
Assuming that /7, (T) may be expressed
~-as a Fourier series over the internal cycle, the

matrices may be written:



provided the coefficients obey the anti-

commutation relations:

Il
o

= & ygmn
The last term is neglected in the limit

{en }bmv} {bn s B (®.27)
bn ’ me}

tJdo — 0, under the assumption that S/‘ is
not singular in this limit,

.The Dirac equation may now be
generalised in an analagous way to the Klein-
"Gordan equation: _ |

/“ﬂ'( -_mo)(}s' = o - .
- [(170(/"/‘) -m]d = o (5.28)
Writing this in terms of creation and

ananihilation oper'ators'

{,.pf‘-mc- b’Z__-w(a v Fr bn/‘n }cb

=1 n/‘ n ! (-5.4.9)

Squaring the equation, we obtain:

{(r ety - usld - -
[(Pl> 41<P Ff) 'mo] 0 (5.30)

where ftl = 4/at (r/")

from the anticommutation relations for ('}4.
and since {P (’C),P\, (’t)} = "'%ig/,\v d/dtgl_:-.-‘/zﬁ(‘t -T ')]
In terms of creation and annihilation operators:

{P; - m:; + Z_ (¥) (ar}ua s + b/ub }‘)}% .O (5.31)

This leads to linear trajectories in the physical
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limit W, —> n«, with masses of excited

states given by:

N :
where 1 = 0,1,2.,.,

As with the Klein-Gordan eqguation,
gauge conditions are necessary to remove
unphysical states, and these may be written:

o <ei- nt G P/‘> fphysical state> =0 (5.33) |
corresponding to:
h}_,bn}‘ | physical state) = O (5.34)

Again.the non-physical states
can only be decoupled completely in an
unphysical number of dimensions, though less
than for the scalar parton case. It is hoped
that 1if further symmetries can be inéluded
in the model, the critical number of space
dimensions will drop to three, théugh at
present it is not clear hew symmetries such

as isospin may be incorporated non-trivially.

5.5 The Bethe-Salpeter equation

The difficulties of the dual model
are such as to leave it unphysical at its
present stage, so that perhaps unitarity
should not be approximated in this way. A
manifestly relativistic approach can be mace
through the Bethe-Salpeter equation [éd] for

the bound state of a fermion and antifermion,
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In momentum space this may -be written:

(é, = ‘O(K q')e(ﬁ(p' - p,_) (ZS T+ I%_)FS

(5.35)
= N\[a*x/(ens VSSPG“(pI yD, 1K) \Uf,y(k)
Rewriting in terms of centre of mass
variables:
i - g
(5P + 4 m) W (q) (=P 4 + m) (5.36)

= )\fd4 k/(2’rr5t' V(P,q,k) l;'(k)

where we have taken:

m, = M,
and: P = P, + D,
a = %(p - p,)

\}y’ 1is a covariant wvavefunction and may be
expressed in temms of the Fermi bilinears .
The binding is due to the repeated action of
a potential V. Hence the equation may be -
represented diagramatically as in Fig, 18,
Proviced the potential ‘depends
only on the exchange momentum, i.e. if:
V(B,yp,,k) = V(k-D -p) (5.37)
the equatioh may be re-expressed in position
. spaée by the ladder apnroximation:
37 + i3 - m) PGP - id + m)
= AV(X) P (x)

The wavefunctions are normalised

(5.38)

to the charge on the constituents as in Fig.
18:
<‘FIJA((1 0) /Ay = fd k/(2m" Tr ruf(k)x Y (x)
x (3P + y + m)]

—
-
-

213/‘_

(5.

39)



- 83 -

where et is the.charge on particle A,
and ¥ = Ko\lﬁxo

The equation is extremely
complicated to solve, but can be rendered
more tractable by considering massless bound
states as suggested by Bohm, Joos and Krammer
[éi], since the equation then exhibits 0(3.1)
symmetry. Continuing analytically the g,
variable to pure imaginary values [éé] the
equation has 0(4) symmetry leading to a
hyperradial eigenvalue equation for % .
Having solved this, Bohm et al. (B.J.K.)

argue. that quarks are very heavy so that:

- <

Mhadron mquark

so that putting the bound state mass eqdal
to zero is satisfactory for a first
approximation. Then to improve thé results,-
a perturbation expansion in mhadron/mquark
may be made,

The potential V(k - g) must be
further restricted to.the harmonic |
oscillator form in order to produce linear
trajectories, and to give the reduired
charge conjugation and parity spectrum,

This is done by the choice of bilinears,
and the suitéble ones are: .
V= et Yt D gx)
V) = (5 + g, - @l)(oz + px")

(5.40)
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Both interactions lead to some
negative normalisation stetes, and no spin-
orbit coupling is included. When applied to
meson decay amplitudes, the predicted widths
are in reasonable agreement with experiment,

correct to about 20 to 25% [63]

5.6 The quark model of Feynman, Kislinger

and Ravndal (FKR)

Rather than using the Bethe=- |
Salpeter eguation as a basis, FKR [64] start
from the non-relativistic oscillator quark
model [65] and generalise it in an
idiosynchratic way to include relativity.

The Hemiltonian for two particles

bound by a harmonic oscillator potential is:

H = (l/2m)p + (1/20)p + mwy(x, - X,)  (5.41) -
or, writing: | |
= 3(p, = py)
x = (x -x)
in the rest frame:
H = (1/m)q + mu’;,xz' . (5.42)
i.es 4mnH =

4(qg> + w*x*) + constant (5.43)
where w = mwo ' '

Now the relativistic energy sqguared is:

3%

meson
and since H € m,

= (em «+ H;‘.

mr-nleson = 4m1' + 4mH
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Hence, adding 4m™ to 5.43, we obtain:

m> = 4(q*+ wx ) + constant  (5.44)

meson
Equation 5.44 may easily be generalised to
a covariant form: :
- kR

K= e [fes v 2oty -x3] Gus)
~ where now p,f ,pzf,x,}, ,xz/A are four-vectors.
In the centre of mass frame:

K = P L oa(g+ WY | - (5.46)
where P/( = 'pl}‘ + B _
» 2
Thus comparing with equation 5.44, K - P
may be identified with the mass sguared

operator, Defining creation and annihilation

operators:
Jouw T = —f*‘ 1w
T s l“)}“ (5.47)
a o a/A = qﬂ - -xf.

we obtain:
.1'
K - P" = M

where {1l = 8w.

1"

, _ﬂ ,7;* af‘ + constant | (5.48) .

This leads to straight Regge
trajectories of slope {1~ . The ground state
meson corresponds to the oscillator vacuum
state (apart-frdm SU(3) labels) and excited
states are generated by the action of the
creation operators, As in dual models, the
problem of negative normalisétion timelike
states arises, but here FKR eliminate them

by fiat, They adopt the conditions .
Paly) = 0 = m.a | Y | (5.49)
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in the rest frame. This means that the set
of physical states is no longer complete,
so unitarity is violated. Consequently the
decay matrix elements will be increasingly
too big with rising energy, and a
correction factor must be introduced to
compensate for this,

As yet no mention has heen made'
of spin, and this is artificially
introduced by the interpretation of Py in
equation 5.45 as ﬁiﬁi, where pi Y X;r
It is then assumed that Dirac relations
are obeyed.individually for each quark,
These restrictions are equivalent to .
assuming quasi-free quarks within the
hadron. Note that both quark and antiquérk
are treated as quarks, one with tﬁe
oppusite charge, presﬁmably to maintain a
clcese correspondence tb the non-relativistic
model, |

Under these conditions, the
electromagnetic current is easy to deduce.
In the presence of an electromagnetic .
potential A,, the operator p ié replaced by
(6 - eX), where e is the charge on the
interacting particle, so that the mass

squared operator is perturbed by an amount:
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= 3% e (B fa + Koby) ~ (5.50)

summing over sll three quarks, and neglecting
the second order term (eA). Taking the case
of a plane wave carrying momentum qr and with

polarisation vectorisg, we obtain: ' _
SK = 30 e (p %ellva ‘§Ae1q'uazﬁa)€fk (5.51)
' a @& &ap /I .
50 that the vector current is: :
Vo ig.u ¥ old.uay y -
3 = BZ e_(p. §e a + e~ By) (5.52)
s a =@ s -
where uy, is the position of quark a.
Similarly the axial current is:
A= a1 e (8, 3 B etdrua ‘
afpz 5.53)
f a [ ﬁ iq u (O. <
‘ , . + $§‘e * a'pa)
and its divergence is: '
'A . 4 i(l.u
Yo = 8 F ebaee
' . + stelq.uapa)

These currents may now be expressed

(5.54)

explicitly in terms of centre of mass varizbles
and creatioﬁ and annihilation operators, and
specific matrix elements calculated. The
results obtained are mostly within 20% of the
experimental data, although there are several
bad disagreements, Some of these arise

because a decay to two pseudoscalar mesons,

for example, may be calculated by treating
either as the current, Then since the

calculations depend on the mass of this
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particle, different answers are obtained
in each case. |

The scheme meay be simply
extended to include baryons also and the
same difficultieé appear again.

With regard to the Melosh
transformation, it should be noted that
the electromaghetic current contains no
spin-orbit coupling term. For example, in
the decay of the D2(1520), the

amplitudes A%/, and A§/2 are of equal

" magnitude but opposite sign, and

whereas the data [66] is just consistent
with this, it is thought that [67]

K3, % -2/3A8 (5.55)
which would be the case if there existed
& spin-orbit term of the same étréngth
as the orbital term.i;e. A = C in the
Melosh transformed vector current,

However, there is some spin-
orbit coupling contained in the axial
current, so that the bad SU(6), results
for the decay B — «© 1 are improved.
Partly therefore, this model succeeds in

duplicating the effects of the Melosh

'transfonnation, though by no means

entirely. Possibly this partial failure
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is due to the way in which spin is so
artificially introduced, and a more
natural treatment might lead to greater

success.,



6. A relativistic quark model for mesons

6.1 Iﬁtroduction

In the previous chapter, some
dynamical models attempting to construct
relativistic descriptions of hadrons were
discussed, and none of them were able to
reproduce fully the effects of the Melosh
transformation. Nor has there arisen any
fundamental resolution of the difficulty
that quarks are apparently both very
strongly bound, since they must be heavy
to escape observation, and quasi-free
within the hadron., Taking the infinite
mass limit for quarks is however
theoretically useful, since in this case
it has been shown [6€] that there exists
a relation between bound state quark
dynamics and the dual model, This may be
demonstrated by allowing the quark mass
to become infinite in the Bethe-Salpeter
equaticn for two béund scalar particles,
when the equation réduces to a linear
form. When the equation is soived for a
harmonic oscillator interaction, it is
possible to find an expression for the
four-point furction in the nafréw
resonance approximation which is closely

related to the Venezizno formula. This
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is essentially also the treatment in the
FKR model, which we may therefore regard
as a lowest order approximation to the
Venezizno model, The fact that the IKR
model only has one creation and
anﬁihilation operator, rather than a sum
over an infinite number, is interpreted
as being a neglect of the sea of qg
pairs. :

In a similar way, it is
possible [CQ} to solve the Bethe-Salpeter
equation for two spin-% paticles, and
thus obtaig a lowest order approximation

to the Ramond model.

6.2 The FKR médel from the Bethe-Salpeter
' -equation
We consicer first tﬁe
alternafive method of deriving the FKR
mddel suggested above, starting from the

Bethe-Szlpeter equation for scalar

particles: _
(py - )Yy - o) = VY (6.1)
assuming m= m_ = m

Teking the limit m —> large: :

i 8 z k3

(p, + . =-m + UY =0 (6.2)
where U = V/m"*
In order to obtain linearly rising

trajectories, U must be of harmonic
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oscillator form, giving:

(pr + pr+ 205 + Q)Y = O (6.3)
Separating into centre of mass variables:
[2P" + 2(g™+ wix") + CJ\;J = 0 (6.4)
where P = p + B
a = ¥(p - p)
C = constant

The potential ﬁ includes a constant part
in order to cancel out the large mass and
allow the bound states to have only a
small ﬁass.
Iﬁtroducing the standard
harmonic oscillator éreation and
annihilation operators:
{2; a-;; = qr + ibdxr (6.5)
Jow ar = qr :-f i“fx |
and substituting into equation 6.4 we

obtcin the FKR model:

.(1.’-1+.ﬂ.a;a“ + 20)§ = 0 (6.5)
where [l = 8w
P" = j('z = (meson-'.malss)?'

6.3 The model
We now attempt to re.peat this’
treatment for spin-# quarks, again starting
from the Be‘.che--Salpetler equation:
B, - n1)91(157_ -m) = VY o (6.7)
where Py = | pi/; ¥ i

In fact, from the form of the Bethe-
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Salpeter eqﬁation in equation 6.7: .
K.L = ‘&/\ T (6.8)
and "S,Iu operates from the right and Bz/,\
from the left. |
We have here written down the
qﬁark-quark equation, for simplicity in
working out the charge conjugation
properties (see ref 76, A4). The qq
results are obtained by the use of the
charge conjugation matrix.
Taking the large ﬁass limit,
the equation becomes: . -
B+ B = @-WY  (6.9)
where U = V/m ' s
Rewriting in terms of centre of mass
variables as before: : :
[2p. 3+ ¥ + wx.f*--&b -m+ Ul

= 0

(6,10)
We now wish to chbse a suitable
interaction U, such that the squared
quation represénts a harmonic oscillator,
This requirement leads to two restraints,
i since the squared eéuation has two fonmus.,
In order to obtain equation 6.6 from
squaring, we linearise in spin 3 (® 3
s -space to get: B :
3, 0P+ W ~ M~ Jé_hj(%/lar : D/Ta*r) (6.11)

Secondly vie require that equation 6.10 when

\ .
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sQUaredtshould.be.of the form of equation
'6.4, and this introduces various |
-conditions on the motential,

From the first restraint, to
ensure harmonic oscillator form, we must

/A,

eliminate terms quadratic in cl and d

i.e.: )
v : \;
o(f = m(f‘b(_ = 0 (6.12)
Comparison with équation 6.10 suggests
the form:
ol = aw ancf - Yy a3

and with ecuation 6.12 that:
Iy 2 : ;
Ae = FECYC (6.14)
Thus:
\IBLJ-R_,‘_EZ!. + D(_zj') = q}A(zSJA -

ETAL IR (T g xf)x/“

(6.15)

To determine the exact form of the
potentizl, we now explicitly square
equation 6,10: )

[_%_Pl e ot -mt 4 U.L‘ + {113 (\6 + LD U}

+{ (- ISr)U2 = 0

For & harmonic oscillsator form'

(6.18)

U~ -wx" + constant (6.17)
and {é-?,u} = {zg,u} = 0 (6.18)
It is mot possible to satisfy all these
requirenents at once, so we neglect |
condition 5,18, andé then we obtain:
U - i YEEf - }Sl\-{/‘ ¢ %8R (6.19)

where B is an arbitrary constant,



The form of the interaction,
linear in position varizbles, which, like .
the momenta, are contracted with Dirac
matrices, arises from the position-
momentum symmetry characteristic of the
harmonic oscillator, Equation 6.19 is
-elearly invarient under the interchange:

qf\ &> - iw\éélg;}f.’_&

The second term KS!Q;B was
not included in the original model [70],
and as a result, some confusion arose &as
to the magnitude of the gquark mass, since
without this term, the ground state mass
of the meson is the same as the qguark
mass, which is clearly not desirable,
However ‘the new term removes this
difficulty, leaving the ground state
mass free as an extra paremecter (sce
Appendix V ). The large quark mass
ensbles us to ignore guark propagation
effects, esteblishing a close releticn
between our relativistic results and the
non~relativistic ones.

A fTurther advantage of the
large quark mass scheme is that the
internzl motion of the cuarks within the
hadéron may be treated &s non-relativistic

(though this entails neglecting the
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relative energy in the centre of mass). In
this approximation, the four dimensional
creation and ennihilation operators become

three dimensional in the rest frame, so we
é}uf

r = (052) in the rest frame

may replace aP, by:
Generelising to any freame:
EEEAEE P.a/M (6.20)

foor

where I;A P =M™

This also has the effect of removing the
negative norm timelike.states, which had
to be artificially decoupled from physical
states in the TEKR model, leading to a
violation of unitarity and the necessity
of introducing an adjustment factor to

compensate for this in the calculation of

matrix elements.

6.4 Properties of the wave fhnctiens.

The soluticns.to eguation 6.10

when the form of the interaction has been
substituted in:

L g g, - o

EAUE ) - my + HA,a +<aDp = 0 (6.21)
can be built up in a Fock space with a
vacuum {Oﬁ) defined by:

ybu;oi) = 0 (6.22)

Since WQF is simply the non~-relativistic
annihilation operater in the rest frame,

this state is the non-relativistic ground
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state in the rest frame. A general solution _
may be written: | ‘ _
[y = ¢ (r2 flr)!o | (6.23)
where \/, is a 4 x 4 matrix, and in
calculations, quark operators act on q)p
from the right, while antiquark operators
act from the left,
The.invarianqe properties of the
solutions under charge conjugation, parity
and Lorentz transformations are defined in
the same way as for the Bethe-Salpeter
wave functions (see .ref 76,44 ). |
In the evaluation of matrix
elements, we are not able to usé the usual
invariant measure d“q, since the wave
function does not depend on the relative
energy as a result of the approximétion
used in the replacemen£ of the creation
and annihilation operators a

and a f by
,LP and fb‘ (i.e. as a-result of the large
guark mass approach). Hence we must
redefine the scalar product in a ﬁore
'appropriate way, This we do in a way
prompted by the FKR treatment. That is, we
replace [Op> by fd>, the four-dimensional
vacuum state, which also satisfies equation

6.23, Defining the spin part of the scalar

product in the usual way, we have:
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RO ER RN RIVAC I BIDARCES
We normalise the wave functions
in the same way as the Bethe-Salpeter wave
functions, by using the matrix element of
the quark current at zero momentum transfer
to define the quark chafge, eq (fig 19).

Thus we obtain:
<YJ ( Jﬂ (O)/e [ >
= -A<O|Tr *Pp("[ rz) W (Yz Tl) o> (5.25)

= 23*
where A i1s a normalisation factor.
We use the minimal vector current

- for the quarks, which may be written:

o a 6.26)
= B/M F eraTm e-Q'a/\[:Q. (
where F = 7@ /2f1 '
and the centre of mass phase factor is
npg*pcted.
Then the ax1a1 current is:
a8 - -h YN e0E AL oma.adl
poE Q'S
The antiquark operators, neglecting unitary
spin factors, are ‘given by: |
09 = Fc.f‘TC"l 'qa‘ﬁ qa/\ﬁ (6.27)
Ia |
where [ﬂ is either % or § K
k o o

The corresponding antiquark matrlx elements
are: o +

<Wp‘oq{ > F<0’Trw(q1a?1)eqa/‘[ﬁ
o B P, (1 28)
xeqa/‘/— W(? Y]L)Cr' c~ !O>
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The unitary spin parts are
calculated under the assumption of no Y}q'
mixing in the o~* nonet, and ideal mixing of

W and qb in the 177 nonet,

6.5 The solutions

The complexities of equation 6.21
may be considerably reduced by wriﬁing the
equation in the rest frame, When the effects
of parity transformations and charge
conjugation are taken into account, the
wavefunction LPb may be sép@rated into four
components, eéch 2 x 2 matrices. The eguation
may then be expressed as - a set of coupled
equations at the Pauli spinor level, and
reduced algebraically to a single equation |
(see ref 7€, A4 ). | _

The application of charge
conjugation and parity invariance.allows
the solutions to be divided into two classes
characterised by the value of PC, In the
non-relativistic model, the set with PC = -1
corresponds to spin zero states, while that'
wiﬁh PC = +1 corresponds to spin one states,
In the relativistic wavefunctions, this
relation is maintained in the large |
components, but not in: the small. With some

manipulation the large components may be
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shown to:be eigenstates of the number
operator, and ﬂence the full solution may
be constructed, This solution, rewritten
in covariant form, may then be demonstrated
to be a solution of eguation 6.21 by direct
substitution.
i) PC = -1
As a consequence of choosing a’

three dimehsionai interactidn in the rest .
frame as in the non-relativistic model, we
obtain the naive quark model result-that
mesons with P = (-l)J and C = (—l)J+1
are forbidden. Had we not wished for, the
close‘correspondence to the'non-rélativistic
model, the .interaction would in general have
been four dimensional in the rest. frame, and
in this case the forbiddenness dépends
crucia;ly on the spin-space structure of the
interaction, .

| The solution for a PC = -1 state
of mass m and spin quantum numbers (J,J,)
is: :

'\U> = 1/% US'E“‘ ~ mP/m)
| + T #/m v{] | N, 3,3,

where m, is the effective quark mass .

(6.29)

and only states with P = (-1)Ju#1, c= (-1)¢

exist.
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IN,J,J,) is en eigenstate of the number
operator ijTyﬂ with eigenvalue N. |

In the limit {L-» O, the solution
reduces to that for a free (mass m) quark
and antiquark with relative angular momentum
zero, that is, there is no admixture of
negative energy states., The ground state
solutiont . | .,

W = 1/27m, & - mo#/m) |07

is simply aAboosted non-relativistic wave-
function. It has thé szme spin structure as
postulated by Gudehus [71]..The BJK solution
has the same form, but with P/m replaced by
F/mquark‘

The particles lie on straight
Regge trajectories: o
m- = moL s oN . (6.30)
where N = 0,1,2,,, | |
We choose the_sl&pe of the trajectory to be
uﬁity; ie. 27 = 1, and take for'mo’.“‘the
average of the square of the pseudosﬁélaf |
meson masses, m: = 0.25 Gev . With these
choices, we repréduce reasonably this
section of the mass spectrum (fig 20),

In fixing the parameter 0 aé

above, we have also automatically fixed the

size of the hadron [52]. The space part 6f'
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the ground state solution is: :
Kx = x, - x|0p ~ exp(- Wx/2)
~ exp(- x*/2R%) (6.31)
where R' = 1/ = 84L = 8 natural units.
R is essentially the average
separation of the quarks and determines the
size of the meson. Taking a nearest order
of megnitude aﬁproximation, the cross-section
of the meson is ~ 7T RL ~ 24 natural units
"~ 10 mby, which is not unreasonable.

1) PC = + 1

Using the same method as for
PC = -1, we find that the solutions are not
l_always unigue, because the eigenvalue
equation at the Pauli spinor level demands
only an eigenstate of the_nﬁmber operatbr.
Thus the quark spin énd the orbital angular
mbmentum_are decoupléd, so thet for a given
meson spin, thgre.are two allowed values of
orbital angular moméntum. This same mechanism
however, ensufés the desirable feature that
there is no spin-orbit splitting of the
trajectories., In fact the ambiguity of the
solutions does not manifest itself in every
state, and the states on the leading
trajectory and those with the spin equal to

the orbital angular momentum are unigue,
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Hence the first ambiguous case occurs for a
spin one meson with N = 2, so that the
effect is irrelevant for practical
considerations, To define a general sclution,
we requiré that the-rest frame wavefunction
should have no spin zero components, in
accord with the unambiguous solutions, Then
the unnormalised PC = + 1 states are:
W = el [+ n/my@ + 2 qlen/m> - ng )
- i %/m (C:(Pvl ef)] INA, L,y (6.32)
where P = C = (—13‘" S
: eF is a spin one wavefunctlon
£ (Pv] 6\6) is the Levi Civita tensor

~dotted into four four-veptorb.
The solution has not been separated into its
possible spin states of {+ 1, £ ans L- 1,

As in the PC = -1 solﬁtions, we
note that in the 1imit {1 - 0, the solution
reverts to.that.for a free cuark and anti-'
quarf with relative momentum zero, showing
“that there is no negative energy admixture.

The term Vfé’ .q/(m'L - mg ) which
vanishes in the case J = £, is responsible
for adding the extra orbital angular
momentum in the large components for the
cases J = { * 1, where the solution is not

unique,
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The significance.of the cther
terms is most easily understood through
consideration of the ground state solutiom:

[LP0> = 1/2]m, [km + MB/m)¢E

' - in X;/m E(Prfe‘( SJ f0)
The first term is closely related to a
boosted non-relativistic wavefunction, and
is identical if my = m, when the solution
becomes that of Gudehus [b;]. It is also
similar to the solution of RJK:

W) = @ + B/mpe loY (6.34)

with <g [ = emq7/20

In the second term, the quark -
spin is coupled to a P-wave orbital state
(in the small componentsﬁ and hence
corresponds to a spin-orbit interaction.
This feature is absent from the solutions -
of BJK and Gudeﬁus. Experiments, on the
other hand, indicate'tﬁe necessity of this
type of coupling (see seection 3.2) and we
‘regard this property as most desirable,
This spin-orbit coupling in the wave-
functions is independent of the presence
* or absence of spin-orbit splitting of the
trajectories,

| The mass-spectrum is again
linear and is. not affected by the

ambiguity in the solutions:

(6.33)
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m* = my + (L(N + 2) -(6.35)
With the parameteré fixed as previously, the
mass of the vector meson is predicted to be
1,58 Gev, which is about twice the correct
value.iThis devolves from too strong a spin-
spih interaction, though clearly some such
interaction is required to make the vector
mesons more massive than the pseudoscalar
nonet. In calculations, we reseﬁ the vaiue

of m, (since F> is free) to be:

my = my - 1,500 (6.35)
and use the trajectory:
2 S
= (my + 0.5Q) + O N (6,37)

The grouhd stéte mass squared Om:-+ 0.502)
is again chosen to be the average value of
the vector meson mass squéred. The-mass
spectrum is then reasonable, with the quantum
numbers identical to those predicted in the
non-relativistic quark model (fig 21).

Having obtained the specific wave-
functions for relativistic mesons, it is
clear that they do indeed incorporate a spin-
orbit coupling term, and this is suggestive
of the Melosh transformation. In the FKR
treatment, SU(G)W wavefunctions were chosen
for the meson states, while the vector and

axial currents were more complicated than
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the usual simple minimal currents. In this
model, the reverse is true, with the usual
currents being used to calculate matrix
‘elements between complicated states. This
may be compared with the calculations of
chapter 4 in constituent space and current
space, except that in FKR spin-orbit
coupling appears only in the axial current
and not in the vector current, where it is
_also required. The natural occurrence of
this coupling in our model is its most

attractive feature.

6.6 Applications
‘Following FKR, we calculate
experimentél nbservables from current
matrix elements, neglecting gyuark -
propagation effects because of the large
mass approximation, We have the additional
‘problem that our vector currents are not
in general conserved, while those of FKR
are; so a momentum term must be édded to
the coupling to ensure conser&ation. Then
the current is of the form:
Vr = -eqF(g,1§K + gl?)eQ.aT/flf
‘ x e‘qoa/d.ﬁ:
where g, ,g, ére coﬁstrained_to ensure
current conservation

and gr + g = 1

(8.38)
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and BFA}‘ = -iXFWe 4 + g,q.P)

x .2t oL o=+ 8AlL
Since this introduces an extra parameler,
we take g; = O for our calculations as a
'firsi approximation. In the cases where
the decay is an equal mass transition or
a PC =+ 1 meson to pseudoscalar meson
transition, the current is exactly .
conserved with g, = O and g, = 1, so
that for practical purposes, vector
current matrix eleménts are alllexact, and
only the axial current matrix elements for
the decays 14'—9 1° and 2+ - 17 afe not
exact, ol

i) Lepton decays

The decay maﬁrix for a pseudo-
scalar meson to annihilateiinto a-leptqn
pair is:
<vacuum_| A/A(O)[ o~* meson) = Tr é)}%()ﬁh = Q)
| (6.39)

| = prf*
where Lf’p(xlh:-— 0) is the pseudoscalar
wavefunction at the origin

fp is the pseudoscalar meson form

factor,
Evaluating the trace leads to:
£, = Jmy/my (/4 (6.40)
The fact that this contains a

factor of 1/mI)means that we cannot use
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the physical masses to calculate fp, since
this would lead to a ve;y large symmetry
breaking which is not observed, i.e. we
are faced with the Van Royen-Weisskopf
paradox E?B]. Instead we are ferced to use
the predicted unbroken masses to avoid the
difficulty. Then: |
P o ,

and fr = fx = 0.112 Gev
as compared with the experimental values
f?43}

fx = -0.105 Gev f%,: 0.095 Gev

Similarly the calculation may

be repeated for a vector meson decay:

-<vacuumA |Y’*(O)( l"*meson? = Tr §}[—’V(xf‘: 0)
= gyl €, (6.,41)
"which 1eads‘to£ . - fk
a/je 84 = 3g, = Bp = 1/\J?m-o(Sl/4m
= 0.08 Gev-
as coﬁpared with the experimental values:
3/§2 g, = 0.138 Gev 3g,,= 0.156 Gev
gp = 0.160 Gev
This result is comparable with
those of other quark models such as BJK,
who predict gy to be about twice the

experimental value and FKR, who have:

gp = :f_;r = fk etc
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ii) Matrix elements of the vector current
The form factor for KTU coupling
in K¢; decay is calculated from the matrix

element of the vector current:
ar { V)A(O).( K> = F/252 (mg/my - my/mp)
[(pk-l' H’"} + (Pk p,r/'\]

H

(6.42)
£ (g <pk po)

f.

Evaluating this using unbroken masses, we
obtain:

£ (g¥ = 0
in disagreement with the experimental result
[_7?4] of': |

£.(0) ~ £,(0) = 1.0
This disagreement is clearly attributable to
the use of unbroken masses, and a symmetry
breaking scheme must be added to dur model
if these reults are to be weil described., Had
we used physical masses in eguation 6.42, we
WOuld.have achieved good results but violated
our calculational presgription.

Symmetry breaking is not so
important in the electromagnetic decays of
the vector mesons, where we obtain much
better results., Neglecting the unitary spin
factor, we obtain for the matrix element of

the quark current:



- 110 -

™ = i <ﬂ]eJquﬁg(O) ]I+- mesoni7“
= =gmy F [1 + (mo/ml)ﬂ £ (g&¥p€,)  (6.43)
m, My

where the kinematies are indicated in fig 22,

The first term in equation 6,43
corresponds to an orbital magnetic moment,
while the second is analogous to an intrinsic
moment, The antiquark amplitude differs only
in the signs of the various terms, so
combining with the unitary spin factor, we
obtain the results in Table V1,

The coupling constant, g is
defined by: ' |

T = egy&(qeXp <€) . (6.44)

and we have used unbroken masses in its
evaluation, The quantities dotted inte the
Levi-Civita tensor are taken at their
physical values, primarily for convenience,
as any other procedure has a minor effect
on the results, | |

iii) Decays by emission of a pseudoscsalar meson

Following FKR, we calculate the
amplitude for pseudoscalar emission by
replacing the pseudoscalar meson interaction
by the divergence of the axial vector
current, which is given by: .
qoat = -1 F i 4 e 8MR ga. /(g 45)

- The overall strength of the
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interaction is determined by the adjustable

parameter, f, and the decay amplitude from
an initial state, i, to a final state, j,

by emission of a pseudoscalar, is:

T = aif Z (jlé,kAf‘,,('i>

where the summation is over Quarks and
antiquarks,

Expressions for the matrix elements with
the unitary factor Xq removed are given in

Table VII.

Decay widths are calculated

using the formula: |

N = R/(274 + 1) ZITI1 (g /2m,*)
~where g is the three-momentum of the decay
products in the rest frame of the initial
particle ‘
and the summation is over the initial and
final spins
The factor R is to account for the
different charge modes allowed in the decay
(64].

In calculating the decay widths,
the dynamical quantities are‘input using
unbroken masses, while for the kinematic
phase space factors we use physical masses,

For example, the decay width:

Ma=>o0*ohH=r 2/3(g/mif'lélz

(6.46)

(6.47)

(6.48)
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is calculated by putting physical masses
into g and unbroken masses into (g/mj).
As can be seen from Table VIII,

this prescription yields good agreement

“with data, as might be expected since this

is simply reflecting the SU(3) symmetry of
the coupling constants, In the FKR model;
the relative Qalues of decay widths for a
given decay type are in less good
agreement with data, but this is due to
the symmetry breaking introduced by using
physical masses throughout. This problem
is particularly acute in the case of
decays into two pseudoscalar mesohs,
where different results are obtained
depending on which meson is replaced by
the axial current. The‘use of unbroken
masses avoids this asymmetry. .

The value of the coupling

constant, f, is expected to be close to

that given by PCAC theory, that is:

fo = foy/megy = 1.65

Using this vélue, the decay widths are
found to be too large, and reduction to a
value £ = 1,46 Gev~! is necessary to
give a good fit to the data. Our best fit
to the decay width data, together with
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that of FKR, is shown in Table VIII.

The results for the vector and
tensor decay widthé are all within 20% of
the experimental values, which is
encourzging when the fact that we have not
introduced symmetry breaking is taken into
account, and is an improvement on FKR, For
the 21— o071 decays, our results are
less good than those of FKR, though we
have not used a conserved current and can
improve our results by rectifying this
(Table IX).

In-the other two types of decay
. considered, I~ -> 170~ and 1'* - 1707,
we again have the problem that the
underlying vector current.is not gonserved
s0 that our results can be improved. The
approximate results are however correct to
an order of magnitude, and are comparable
to those of FKR. On the other hand, the
"helicity proerties, which depend crucially
on the type of coupling, are much worse
in our model unless a conserved current is
used (Table X),

The unfavourable comparison
with experiment for the decays ¥X*(1240)-—>

K*7 and A,—%ydﬁ is perhaps mitigated by



- 114 -

possible contamination of the resonances by

the Deck effect [74].

" 6,7 Conclusions

The harmonic oscillator character
of our wavefuﬁctions was an input from the
beginning in order to ensure linear
trajectories, and is not crucial to the
lowest two states, which are the only ones
" for which calculations were made, On the
other hand, it does generate the spin
structure on which our results are entirely
dependent, Hence the harmonid oscillator
input is indirectly responsible for any
relevance of the model.

The large coﬁponents of the
wavefunctiions are analogous to boosted non-
relativistic wavefunctions and-occur in all
relativistic models. The main difference
arises from whether Moyark °F Mhadron is
regarded as the fundamental mass. The novel
feature of our model is the inclusion of a
spin-orbit term in the small components,
which nevertheless does not cause split£ing
of the trajectories. This extra orbital
term is needed to produce some of our good
‘results, the least ambiguous case being the

electromagnetic decays, where the orbital
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term contributes half the result. We regard _
this success in the electromagnetic case as
our mos£ inportant result, as it does not
depend on any arbitrary factors,

The significance of the results
for the pseudoscalar decay widths is harder
to evaluate because the prescription which
replaces the péeudoscalar interaction by
the divergence of the axial vector éurrent
is not quite as well established as the
corresponding formula for the vector
current, Further, we do not adhere strictly
to PCAC theory as we use a coupling
constant slightly different from that given
by the theory.

- Given that the relative success
for any one decay ﬁype Just depenés on
SU(2) symmetry and thé prescription to use
- unbroken masses, the fact that the coupling
constant is an independent parameter means
Table VIII contains only four independeént --
results, Also, because the data for the
it —» 1-0- decay is ambiguous, there are
really only three numbers to compare with
experiment., Of these, two compare well,
while the third, B —>‘u*W3 is not so good,

- To summarisey we have proposed
an equation in which the internal quark

.
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motion is closely related to that in a non-
relativistic model, but is treated in a
covariant manner. Our model is most closely
related to that of FKR, but has the
advantage of incorporating spin in a more
dynamical way. However, their simple
treatment of spin enables them to include
baryons in their scheme, The extension of
our model to include baryons is clearly the

next step.
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7. Conclusions

In the prececing chapters, we have
attempted to discuss the dilemma caused by the
non-identity of current and constituent quarks
from as many different approaches as possible, In
general, they all achieve some degree of success,
though some are less specific than 6thers.

In the first chapter, we introduced
the naive quark model, demonstraéing its remarkable.
success in predicting particle states in the mass
spectrum, Unfortunately,_it is easily shown that
the syrmetry SU(6) of resonances is not suitable
for predicting final states irn decay processes,
Chapter 2 relates the same story from the opposite
direction, showing that the partons of the naive
parton model cannot be identified with quarks,
without some modification of the symmetry SU(é).

We discuss some possible methods of
adapting the symmetry in Chapter 3. The first
obvious step is to introduce some form of
relativistic invariance and though this cannot be
attained in full, invariance in a chosen direction
leads to the symmetry SU(G)W. However, this is
still not sufficient to produce a satisfactory
description of both the resonance spectrum and
decay processes, and some further modification is
necessary., This can be achieved in several ways,

though all are based on the idea of 3SU(8) breaking
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and one of these is the Melosh transformation,
_ where the concept of two different types of
quarks is invoked, these two types being related
by the transformation from one space to the . .
other. Hence to calculate the matrix element of
a current between two constituent states, the
current must first be transformed into
constituent space (or the constituent states
into current space). ;

This idea can then be exténded
and used to calculate observables as inLChapter
4, where a considerable degree'of success is
achieved, The spin-orbit coupling observed
experimentally is reproduced but the strength
of the coupling is a free parameter of the
theory. It is also showvn that even the use of a
general Melosh-type transformation is not
sufficient to duplicate the experimental results
in the low « region, and it is clear ﬁhat the
transformation does not in fact break the
symnetry SU(6)y but merely rotates the quark
spins, Thus some further mechanism is réquired-
to give different probabilities to spin 1 and
spin O cores, isospin 1 and O cores.

In Chapter 5, we examine the
theoretical basis for the Melosh transformation

and find that although the transformation is
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plausible, it is difficult to justify it
theoretically without severely limiting the

. sphere of its userlness. ¥e then turn to an
alternative method of viewing the underlying
dilemma, that is, we regard constituent and
current quarks as fundamentally the same, exceptl
that the first are at rest while the second are
in motion.'Then, treating quarks relativistically,
we can investigate whether the same effects as
those of the Melosh transformation are produced.

We introduce a reiativistic quark
model for mesons in Chapter é. The meson ground
state mass is a free parameter of the theory, but
once that is fixed, the mass spectrum obtained is
the same as that produced by the'non-relativistic
model. Following FKR, we use a minimal vector
current to calculate matrix elements and replace
the pion by the divergence of thne axial vector
current.. However, in our model, the minimal current
is not always conserved éo that in some cases we
are forced to correct it to a conserved form, In
this way we achieve some reasonable resultis,
within 20% of the data. Most notable is the natural
appearance of spin-orbit coupling in our model in a
comparable mannér to that arising from the Melosh
transformation, without causing at_the samewéime

any splitting of the trajectories,
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One effect of including spin in a'
dynamical way is to make the equation for the
three qguark case rather complicated, so that at
present the model only encompasses mesons., It is
hoped that the model may be extended to. the

baryon case in the future.




. 5 .

References
1. 5.Sakata Prog,Th,Phys, ié (1956) 686 _
2. P.D.B.Collins,R.C.Johpson and E,J.Squires Phys.Lett, 2$B .
N (1968) 223
3. J.Bernstein Elementary Particles and Their Currents
W.H.Freeman and'Co., London 1968. _
4. G.Ascoli, H.B.Crawley, D.W.Mortara and A.Shapiro
Phys,Rev.Lett. 21 (1968) 1411 ‘
R.H.Dalitz and M.Horgan MNicl.Phys. B&6 (1973) 135
6. V.Barger and D.Cline Phys.Rev.Lett. 16 (1966) 913
V.Barger and M.Olsson Phys.Rev, 151 (1966) 1123
76 .- Dolen,Horn and Schmidt Phys.Rev, 156 (1938) 1758
8, V.Barger and R.J.N.Phillips Phys.Rev.Lett, 24 (1970) 291
9. J.Rosner Phys.Rev.Lett, 22 {1959) 689
H.Harari Phys.Rev;Lett; 22 (1959) 562
10. P.G.O.Freund Phys.Rev.Lett. 20 (1958). 235
H.Harari Phys.Rev.Lett, 20 (1968) 1385
1ll. F.J.Gilman Phys,Reports 4C (1972)
12. J.D.Bjorken and S.D.Drell Relativistic_Quantum Mechanics
McGraw-Hill New York 1954 |
13. J.D.Bjorken Phys.Rev. 179 (1969) 1547
R.P.Feynman Phys.Rev,Lett, 23 (1939) 1415
J.D.Bjorken and E.A.Paschos Phys.Rev. 185 (1969) 1975
14, F.E.Close Partons and Quarks Dafesbury Lecture Note -
| Series No, 12 DNPL/R31
15{ C.H.Llewellyn—Smiph Phys.Reports 33 (1972) 254
16, M.Gell-Mann Phys.,Lett, 8 (1954) 214 |

G.Zweig CERN preprint TH 401 (1954) 412



17.
18.

19,
20,
21,

22.

23,
24,

20,
26,

’ 270

- 28,

29,

30.

- 31,

32.
33.

34,
35,

H;Kendal Proc. of electron photon symposium (1971) Cornell
J.Kuti and V,Weisskopf Phys,Rev. D4 (1971) 3418
P.V.Landshoff and J.C.Polkinghorne Nucl,Phys, B28 (1971) 240
O.Nachtmann Nucl.Phys, B38 (1972) 397 | ot
A.Bodek et al, Phys.Rev.Lett. 30 (1973) 1087

S.Adler Phys.Rev., 143 (1956) 1144

FsBE.Close Phys.Lett. 43B (1973) 422

M.Chaichan and S.Kitikado CERN TH 1640 (1973)

A.Litke et al. Phys.Rev.Lett. 30 (1973) 189 |

H.Fritsch and M,Gell-Mann Proc, of the 15th International . .
Conference 'on High Energy Physics NAL Batavia (1972)
G.Tarnopolosky et al. Phys, Rev. Lett. 32 (1974) 422
S.L.Glashow, J.Iliopoulos and L.Maiani Phys.Rev, D2 (1970) 12&o'
S.Ting et al. Phys.Rev.Lett, 33" (;974) 1404

B.Richter et al. Phys.Rev,Lett, 33 (1974) i40é

see é.g. S.Pakvasa, G,Rajasekaran and S.F,Tuan

Phys.Rev., 11 (1975) 1345 :

B.J.Bjorken Proc., of the 6th International Symposium-on
Electron and Photon Interactions at High Energies Bomnn (1973)
b.E.Plane et al., Nuél.Phys. B22 (1970) 93

A.J.G.Hey, P.J.Litchfield and R.J.Cashmore

CERN preprint TH1886 (1974)

H.A.Gordon Phys,Rev, D8 (1973) 779

J.VWeyers Constituent Quarks énd Currenp Quarks

Lectures given at the International Summer School on Particle
Interactions at Very High Energies Louvain (1973)

M.Afzal Nuovo Cimento 15A (1973) 61

R.Dashen and M.Gell-Mann Phys, Rev Lett., 17 (1066) 340



36. S.Drell Phys.Rev. D1 (1970) 1035

37. S.L.Adler Phys.Rev. 140 (1965) 736
R.Weisberger Phys.Rev. 143 (1235) 1302

38, H.J.Melosh Ph.D. Thesis Caltéch (1973) unpublished

39. L.L.Foldy and S.A,Wouthuysen Phys.Rev, 78 (1250) 29
S.Tani Proc.Th.Phys. Kyoto 6 (1951) 267
M.H.L.Price Proc.Roy.Soc. Al95 (1948) 62

40. J.Rosner and W.Colglazier Nucl.Phys, B27 (1971) 349

41, G.Ascoli Phys.Rev.Lett. 25 (1971) 929 |

42, J.Rosner and W.Petersen Phys.Rev, D6 (1972) 820

43. F.B.Close, H.Osborn and AJM,Thomson Nucl.Phys. B77 (1974) 261

44, A.J.G.Hey and J.Weyers Phys.Lepﬁ. 48B (1974) 69
F.J.Gilman and I.Karliner Phys.Lett, 46B (1973) 426

45, F.J.Gilmaﬁ_and M.Kugler Phys.Rev,Lett, 30 (1973) 518
A.J.G,Hey and J.VWeyers Phys.Lett. 44B (1273) 253
F;J.Gilman, M.Kugler and S.Meshkov SLAC-PUB-1283 (1973}

46, N.Cabibbo and L.A.Radicati PhyseLétt,'lg (1966) €97

47. S.D,Drell and A.C,Hearn Phys.Rev.Lett., 16 (1966) 908
S.B.Gerasimov Soviet J.Nucl.Phys. 2 (1966) 430

48, I.Karliner Phys.Rev. D7 (1973)'2717

49, J.D.Bjorken _Phys.Rev.'148 (l96g) 1457

50. A.J.G.Hey end J.Mandula Phys.Rev. T (1972) 2610
C.Carlson and Wu-Ki Tung Phys.Rev, D5 (1972) 721

~ D.Wray Weizman Institute Report (1972)

51, F.E.Close CERN preprint TH.1875 (1974)

52. L.M.Sehgal Aachen preprint (1974)

'~ 53, L.O'Raifeartaigh Phys,Rev, 139 (1965) 1052




64,
65,

66.
67.
.
69,
70.
71,
72,

73,

74.
75,

7.

- 124 -

J.S.Bell Schladming Lecture Notes TH. 1851~CERN

G.Veneziano Nuovo Cimento 57A (1958) 190 |

Z.Koba and H.B.Nielsen HNucl.Phys. B1lO (1269) 633
H.B.Nielsen and P.Olesen Phys.Lett. 32B (1970) 203
H.A.Virasoro Phys.Rev., D1 (1970) 2933

P.Ramond Phys.Rev., D3 (1971) 2415

E.E.Salpeter and H.A.Bethe Phys.Rev. 82 (1951) 1232
M.Bohm, H.Joos and M,Krammer Nucl.Phys, B51 (1973) 397
G.C.Wick Phys,Rev. 96 (1954) 1124 -
M.Bolm, H.Joos and M.Krammer CERY preprint TH,1715 (1973)
R.P.Feynman, M.KiSliﬁger and F.Ravndal Phys.Rev. D3 (1971) 2706
O.W.Greenberg  Phys.Rev.Lett. 13 (1954) 598 |
R.H.Dalitz Lectures at the 2nd Hawaii Conferenqe (1957)
D.Faiman and A.W.Hendry Phys.Rev., 173 (1968) 1%20
L.A.Copley, G.Karl and E, Obryk Phys.Lett, 29B (1909)117
R.L.Walker Phus.Rev, 182 (1959; 1729

R.G.Moorhouse and H. Oberlack Phyg.Lett. 43B (1973) 44

L Susskind Phys,Rev.Lett, 24- {1948) 944

L. Susgk|nd Phys.Rev, D1 (1970) il82 _

“Ped e halters, A.M.Thomson and F.D.,Gault J.Phys.A 7 (1974) 1681
T,Gudehus Phys.Rev. 184 (1969) 1788 '

A.Le Yaouanc, L.Oliver, P.Pene and J.C.Raynal

Orsay preprint (1272) LPTHE 72/5 _

R.van Royen and V,Weisskopf Nuovo Cimento 50 (19é7) él?
R.van Royen and V.Weisskopf Nuovo Cimento 51 (19567) 583
Particle Data Group Rev.Mod.Phys. 45 (1973)

R.Carlitz and M.Kislinger Phys.Rev. D2 (1270) 33é
P.J.Walters Ph.D. Thesis Durham (1974) unpublished




Appendix 1

Basic Conventions

a) Units
Natural units are used throughout with
H=c¢c =1 and 1 Gev =1 nat. unit.

1,973 x 10—14(:m

|

Hence one natural unit of length =_Tec _
1 Gev

and 1 mb = 10727 cn® = 0.3893 nat. units.
b) 4-vectors
Contravariant 4-vector A (A°,A',A:A3) (8,4)
‘ Metric g’.q=<-1_,—l,-1,-1) with A;u= %NIAV
where all repeated indices are summed, Greek indices from
O to 3 a.nd Latin indices from 1 to 3.
| 4-position "= (35x) where x® is the time and
X the spatial position.
4-momentum operator p": 1P =13 =(i3 ,-iV)
= e -
¢) Dirac matrices _
Anti~-commutation relations {X)*J Xv_} = 23)‘"\)_ o
¥,= F and E = ﬁ?_(
. In the Pauli Dirac repre'éentéﬁion
X”’—f(l O’) Y = [o o
\o - - Le o
_ Pauli matrices
cs;:(on) T = [0 < s, = [1 ©
! O : . O) \o -
where O’/‘V = L/Q- [x)“'xv G":J - Gk' o CLJ'k

’

o - 'L0<L 8 = 65: LY - (‘ O)
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Feyman slash K = AI“’ Bf
Free particle Dirac spinor uy(p) is defined by the

equation:
(3 - m)uy(p) =0

The anti-spinor v (p) satisfies the equation:
(6 - m)vy(p) =0

In both cases py,> O
Adjoint spinor "U,(p) = d&(p) Xc
and if u transfofms under a Lorentz transformation A\
to ut = s\)u then Q Q'ﬁs—l(l\)
Normalisation conditions _

TA(P) up(p) = 2n ‘and Vy(p) vy(p)= ~2m

where the index A defines the spin direction,
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Appendix IX

The good representation of SU(6):
)
(_QL,}?.) -> V(Q{_,F)V’

o - vev™!
o, = ( 0 -_6;}) e = [

F - 0 S3 \65' = (_0‘5
' 65 o 0

§ o [igor o | U = (o
0 i§GH -ic,
S = (0 @6‘5) S; = (0
S63 o C{_G'3

Ry
° 9
~——



Appendix IIT

This appendix outlines the
SU(G) x 0(3); wavefunctions [75] for the 56
and 70 representations of baryon states with
arbitrary orbital angular momentum L, We use
of s f , ¥ ... = 1,2,3... as SU(3) indices,
a,bycse. = 1,2 for SU(2) spin indices,
which are cembined A = (a), B = (}Sb)...
to display the properties under SU(8). Octet,

8, baryon states are described by a matrix:

x B \

A b '/ﬁ,\+//iz ",Z ‘° I3
B, = o GA-ETS N
ﬁ' Paa B ' —° 2

T - "_/ﬁ,/\

while decuplets, 10, are represented by a
completely symmetric tensor: ,
)m = A++ u'l- - Z/— —\— ')ﬂ?—: ,/ A.6
Tre &4 DRI Pl et

233 ro%—

):33____ '4/53* X =l{!§“3 ]>3.33= n
Spin 4, 25+ 1 = 2, states are given in
terms of the usual spinors:
X§ - aT(l) - X3 - a*(O)_
\o : 1
while for spin 3/2, 2S5+ 1 = 4: |

an = £<3/2ml%r|s>')(i§_(s)

where g("l) = 1/\[5(;_,_’2 - ii}) §(o)= 2
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with & the conventlonal Pauli matrices.
o °(P>
We utilise = o‘FK as the totally
antisymmetric SU(3) singlet tensor and
cab = C,, for the corresponding tensor in
SU(2), having the properties:
C"}- = _Cll = 1, (zc)ab = (_G_:C)ba
ab ‘ ab - a
(TC)BPX = (=C),y,, C¥PCpe = -85
~ With this notation, the completely
symmetric 56-plet, for total angular momentum
B
J and z-component M, is decomposed into 8
and 410 representations under SU(3) x SU(2)

according to:

56,L X
BJII > (O(a)(Pb)( (')

T 1/3{"2'2 %k’SG_B cabxXC 4 eF’K B cbcx _
5 .
+ em chcaxej— )L—€3><JM\L 4m/ III,1.

+ 1/,[" %Z B8 (wC)ab !L!3><Jw1 L(’;,3/2m>

Here |L95> are the orbital angular momentum
L, z-component Pg,-states of the three quark
system of the appropriate symmetfy. For the
mixed symmetry 70-plet, the decomposition
into 1'§, 4'_8_, 1_]_:(_) and 1_]; representations is,
respectively:
,B7o L> [ea) (pp))(Se) |

= 1/[6 ]vm{e‘x B1§__Cbc')id - B1 cacib}lLP{)(mx}L%,Lm}'_

+ 3 pzi }33/6_((50\ab }f“ {L(’37<JA|L(>5,3/2m}

+ 1/J’~ Z “ﬁ cabxc | Les{an (L, 3my I11.2

+ 1/5 j’:, et PY(EPOAD & CPOUE) L0y [L pm

where Y rcpresentb the SU(3) singlet baryon.



In principle, there are ambiguities of sign
in relating quark spin S = 3/2 to 5 = %
states, decuplets to octets and singlets,
and also in the choice of LS or SL coupling;
we consistently use the signs in equations
111.1 and 111.2, For obéervablé cross-
sections the sign conventions are of course
immaterial, but they are crucial at
intermediary stages of calculation. The

wavefunctions are normalised so that:

)
< ancl B35 L>ABC =8 {Tr(BB) * DF DO(P}

570, L
§ T ,[_AB]C’B?O o1y (e 510 um 111.3
{Tr('E%B%) +zr Tr(ByBy) -
+ D 0 8]

The completeness properties are:

Z ‘B50,L> ABC <B50 o L

JuMBp YM J'.\Vl"AlalCI
= ;!IL%XV_:,LI x 1/6 {54 SBSC, + §B5CS5A,
C §A 52,4 5554 BcA cAcCcB
. *S- S g |g |gC +SC'SB'SC'+SA'SB'SC‘3
2. IB70 L> (ag]c (8791

JMB;B DY 'M'/[AIB] C! 11.1.4.
ILH@L)  x 1/6{2%‘2,52 8¢ . B ch
EseaAsn: - 82 5445, 7 054, 3A5E Y

The usefulness of 111,4 for us ig that it may
be employed to obtain:

5; O\ ABC|{ 2 = - '
JI'VIIBID|'< J'M' A'BC Al B ’ > ‘ = 1/3U0 + 2/3E

2 I11.5
170, L l A I Anclg__ )
| J'xvx'}z'}g'pnynl<3 Jir 1a'B ¢ a0 (P AU - AR
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; = 56,0,A'BC, % . A
where U = 2?(B5§’0) (B.') (3, Jp. Vas -
Z Jil ABC JM 3 3’A | 111, 6
= 7505 ,0 56, 0\A'B'C/ > A B
L3 . }

where (BSS’O)ABC represents just the ground
state SU(6) 56 wavefunctions and: |
(Jes)g, = <u4]ad o>
Id} being the L = O ground state orbital
wavefunction, The term E in III.5 contains
the contributions of the only ekotic t-
channel 405 reﬁresentation (and in a quark
_ picture corresponds to the currents.coupling
to different quarks as in fig. 15(b)).
To calculate the couplings of the

L = O octet baryons to excited 56 and 70
.states under the action of a current:

J@xa)(ﬁb) ) ,J;:J'g |
belonging to a §§, the main stép is to
evaluate: | '

_ A'BC
56,L 56,0
orE e 1255

= %n <JM’LV3',1}m> 1/9 §L?5{ %X, [Tr(BB) + 5T_I:(B§I)]‘ B
_ -3 Xm')tm,[_éTr('EBJ) + Tr(B;BJ)] lo> |

' ; Y- RN

+ % <J11’L%,3/2m>1/3 <L03] %moagxm.'%ﬁf&'gilfwf,/ o} B

and:
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. A'BRC
56,0 -

A (858

70,L
<ef (aB]c7A"

I11.8
= ;4: <ou (L6, m) 1/6J3 <L93{[7TAJ)QA.{J:TI'(-B-%B)
mn £ Y
oL Tr(B,B7) + 4Tr (BB} - JeRt {29 Tr(ByB)
' - 2Tr(B,BJ) - Tf(Bﬁ-J)ﬂiO}
__ y7) - Tr(shy
+;: <om|1g,3/2my 1/6]Z L4/ ?rm.jg')t 2o B
m : R .
3 . - 2Tr(§34'BJ) - Tr(BEA:J)] l O} ,
+ITE(JM[ 143wy 1/6 L[ 25T, Xy = KpdXpo) |
4 x Dyp Ip € PR 10)
+§ O [14,3my 1/202 K18 T3 X, FIrB) 16p : ves
¥ o _ |

where the discarded terms are irrelevant for

initial octet states.

For the transverselﬁurrent, from 4.2,

- we have:

Gy = aLrS.g + ib(sNHE + 1 f(s9)f + 1@t (s)f

with S*,5° represented by the usuel spin matrices
and it is now easy to obtain tﬁe results of Table
I where: . : :
A = 1/3<11lalt |0y = n; /3 <L -1} aL7| 0y

B = 1/3<10|bJ0> = in;/3 {L0[b]0)

¢ = 1/3 t1leL?|0> = in /3 <L -1 cL7[C)

D = 1/3 <L2la’'LS> = np/2 (L -2)d7LT|0)
We have used in III,.9: :

YjLe> = nL(;)‘o3 JL,-f3>

n is the orbital normality, the barity being

111;9

(-)LnL. For A',B',C',D' the results are identical

'save that the constant of proportionality in
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I11.9 is 1/2 3 instead of 1/3. States with
= -, when B = 0, have not as yet been
identified among low-lying resonances, but
there is no general re-ason for their non-
existence in highly excited SU(8) multiplets.
For the longitudinal vector and

axial currents, from 4.4 and 4.5:

(jL)% = <><S% 4 iF(s"L‘ + s‘L”)%
(G = sy + BGS'LT + STLNF
so that:

« = 1/3 <Lofo<lo>, & = . 1/3 Lol x|o>
B = i/3 <LllF L ]0> = in /3 '<L -1l gL7lo)  1IL.10
B o= /3L fLtio> = n/3 L -1lELt]o)

where for s -, X & = 0 and in the same

way of ;& , )5,? can be shown to be real, For

[+'4 ’,gc" ; 16' y E' the results are obtained as

above, except with 1/23 instead of 1/3.



Appendix IV

To clarify the possibly surprising
- result that £he polarisation asymmetry for
virtual photon-proton scattering could be
negative, we present the following simple
argument. From the proton's 5U(6) wavefunction,
the probabilities to find p or n quarks with
spin along (T) or opboéite (¥) to the'proton'.
spin, taken alopg its direction of motion are:
P 5/9 , P_ = 1/9

1% Py

Pa = 1/9 , P = 2/9

- The cross-sections for virtual photon scattering'

N

on quarks with spins parallel and antiparallel
to the photon spin are QLy and th, where @ is
the guark charge, and from Section 4.Z:

3(A +cf + 3p”

y
K

3(A 3 CY + 23

Hence the cross-section for virtual photon spin
parailel?to the proton spin is:

?7332 = 3(5/9.4/9 + 1/9.1/§)y + 3(1/9.4/9 + 2/9.1/9)z

= 7/9y + 2/92 R

the overall factor 3 measuring the three quarks.,
Similarly: |

Crgp = 7/9z t 2/%y
so that: O'g'p =y +z

¥

and: A 5/9(z -'y)/(z + y)

This calculation ignores interference effects

tt
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between different quarks, but these are
conventionally supposed absent in the deep
inelastic écaling region,
In naive quark models, without the
Melosh transformation, y = O, leadihg to
A°P = 5/9, |
A& similar discussion :’:‘of OB 1eads

. B
directly to ojn/e_xp_:. 2/3 and A = O,
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Appendix V

i) The form of the interaction for the linearised
oscillator model,
The squared interaction must be of the
form ¢« . + conétaﬁt, see ref 76, Chapter 6, and
this is satisfied by the original form ‘chosens
U = -hﬂﬁ(ﬁ - Q Yx/
However it is also satisfied by° |
IJ = -uJKé!F - Gz yxl~ + éé%
where B is an arbitrary con!:ant
Using this form, the equations to be solved aﬁ the

Pauli spinor level are:

(= 1Dy + pla>

safs13-2> + B-6T)+ dlsiez- pee®)

(el « plIy = fa[sl3-5) + [3-2s" | - id[cizy - 13+2)s"|
plz> + pl3> = fafsla-D -la-DsT]+ falClad+[aepsT]
A3+ g = %g[cglzi-l? -ja-DsT] - %§[§I4*D+I4+D§T]

’ (V.l’2’3’4) -
ii)Solutions for the PC = - case

Using the same method as in ref 76, A4
we find that [|1> and l4> are pure spin O so that:
Slaty + st = o, |
Hence V.3,4 reduce tos ' T
pie> PI3> = /»13> + pl 2 = la[sh-- -sT]
i.e. 3> = 12)
Substituting into V.1,2: ,
?-e)lb + pla> = -Ge) )4 -FlD
= sl - l2aysT]
80 that: 14) =(e - R/ Cx TIPS
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Thus:
{g2a+ ple- FEVE+ =R = &[5> - 196"]
. - Zg‘tg/(r+F) { € - F;F)/(E-t- 7:;?) - l} ’l>

Hence the eigenvalue equation is:

‘:e'L = - F’“ + 4N
ii) Solutions for the PC = <+ case’ |
Adding and subfracting equations V.1l,2 and V.3,4,
we may rewrite them: _ -' . _
(= e4p) D+ Gurerp)lD = a[s[3-2) + [3-2)7] V.5
(--p) 1D+ (g -p-0 4> = sl « 3+DsT]  v.e

(ptp) 12437 - alola-1) - la-1)sT ] V.7
s p 123> = Hiaen + jas1)s”] V.8

From charge conjugation, l1p,|4> are pure sgin 1, 50
that from V.7, |243) is pure spin 0 or |2 = -[3).
Similarly from V.8, [2-3) is pure spin 1 or |2 = I3,
- Consider first the possibility that 12+3>is spinlo

and 12) = 2>, Then from V.6 :

(- e =) D> + (B 4-Ola) = 0
But fram V.5: ' o
(h-€+p) 1y + ie+p)ldy = 0

which 'is the trivial solution'[1) = |4 = .0.

. Hence |2> = -IS> and ,2—37 is spin 1.

Substituting into v.5,é:
(/_5 e+f)11) + (f”f“é“"s) Ey)
9"5'P))1>‘+ (F-/«-G)Icz)

Hence solving as before:

(/-‘-ﬁ—.e.:—-“) i = -ada D

and the eigenvalue equation is:

61_ - }’_1. - P”- 4+ 4N

]

2g[§137 + | DT
.
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TABLE I

Transition matrix elements for transverse currents from
initiel baryon octet states to arbitrary states in 56-

or 70-plet rebresentations of SU(6).

25+1

SU(6) 3 SU(3)
_§_§ .; *g Ay, A(Jf!Ll,“7f + (c(r% lL1,3%) + D(J’UL ,% 3 )_
A /3(2f +3d)
R e et 2
s6 ; 1o .‘%/ \/2—/3(f 387 L0%%) - %}{ll‘%«z’a{_i 7)--
A% 2/3(B<JolLO 71y - zc({; Ié%) éfﬁ%ﬁ{f@)@
\

2—0- 3 _8. A@ Al Ja/ L1, ﬁ‘f"'._)(i) + (("
, @l + D'{0% L2, 55

Ay | ATCUE[L1,3-405 (£ 4 3g) + (B'<J%

. - c{J5lLl,2-1) x "1V (584 30)
4
.'Z.Q . 3 A3 ( 3B 7/ LO 7\ - 20! /lLl /:l‘ ..
, B n I < d &- '(ngLza’l 117? 1/5(=f+3
Ay | (BulLofYy - 2¢) (IEILL %17
% < = /_ Dng_ 23%_34)\ x 1/,)(_{-.,. 3d)
'7—0 ¥ -1—'0- A.34- - 3((A'— l/3C')<J34'Ll,- '—/SD"<J/.,L2,Q'-‘-'—'~‘..'>).A

Ay - 3(Aa 1/3C")TE|LL,E-%) -1/3B' (210, 220)A
;1 A | J372((a's COSRILL, a8y + DT L2, 52 )X
Ay J372((A'= C€)<T%[L1,3-2 +B'@E]L0, ) x

‘A ,A1 are defined in 4,5 and = Tr( [B BJJ), = TI‘({B -B}J),
A= - ,,(FKJ o Edﬁ rBG-, x = Tr(JB) -are the SU(?) 1nvar1ant
couplings between two octets, between an octet and a

_ decuplet and between an octet and a singlet under the action
of an octet current J. If n = (- )]T? = =« then B = O, For

| %()\ +1/J?3)x8) on a proton, £ =1, @ = 1/3, A = -1/]3,
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x = 0.and on a neutron, £ = 0, d = 42/3,A=~l/ﬁ, x = 0.
For Juk = _%(>\,+ i>\7_) on a proton, £ =d =C, A= 1, x=0
and on a neutron £ = d =1, A= 1/J3, x = O,
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TABLE 11

Transition matrix elements for longitudinal vector

currents from initial baryon octet states to arbitrary

states in 56~ or 70-plet representations of 5U(6).

su(6);2° L [su(a) AL

56 ; B °< <J%klhos%%>f + ﬁ<J%lLl’%;%_>1/3(2f +3d)

s6 5 10 |7 p@IALY - nEGHLARHA

70 "_§ K IE L0, A2 & (£+ 3d) + F'(J%—] L1,5-%>1/6(5¢F +-éd)'
0 \: ;fﬂ' &IEL13-%> - nﬂﬁ@%‘L-lff{))l/éGf +3d)
0 5 10 |[-BeiRiie,dd) - 1/88 GAIL1L,E- A

0 5 1

_13\/_2-(0('@%! L0, 4%) + ﬁ'(J%lLl,%-%\))x

A; is defined in 4,5, and the other quantities are

defined as in Table I, n; = _(-)Lr)R and if ny = &,

X = 0«
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TABLE ITI

Transition matrix elements for longitudinal axial

~currents from initial baryon octet states to arbitrary

states in 56- or 70-plet representations of SU(6).

s5U(6)325 * 1 [su(a); AL
56 3 '8 (3;<J32~ILO,%~1 + ’)<JéILl,2-p>\l/*(2f-ff 34d)
_ . 3 |
56 3 10 ~{273(2%@3 o %4 (THILLE-2> |
0 ’ < 2' ”2.?) ﬁ <nLJ'3<J§lL- ?4_34_)))&
0 ; B (X'<¢T3 L0, 55>+ ﬁ'(Jv}lLl,o 2))1/6(5f+3d)
4
0 8 -(2°<'<J~1-1L0 + (<J~1|L B el
’ §> ﬁ ALY 4)))1/0( £ +3d)
2 41_0 1/f§(°( '3 Lo, 3 + P'<Jé'L1,%_%>)A
1 p! | V72 KISIL0,AE) + F'(J%I]’..l,%--%})x
A; 1s defined in 4.5 and the other éuz;.n'tities are

I\/

defined as in Table I, nL = (=) /’IR and if n; = -,

& = o.
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TABLE IV

Contributions to the cross-sections 6_%_,9’%,61, S
(x5 + 1434

and for proton and neutron targets, o P, s3n,

~ defined in section 4.3, for J = J

e‘m.

-—
b~

cu(ey 25+ 1 Y % ¥n
SU(@B); SU(3 cip o3 n
88 y: (A-C) + B (A+CY~+ D 4/9(B+C™) 4/9(CT+D")
56 3 *10  12/9(B%aC*3D"); 2/9(38%4CD")| 2/0(F34C*3D ) | 2/9(3B+4C+ D7)
" i ; . T 1 a1 ,
70 "'_ (AI_CI‘)L-i- B™ (A'+C')+D" (Al_%cl)+ —éBl (A'+%‘C')1+%D'°T
79 ; g 0 o ?1;(13"440 "3D™) |5 (3B% 4C T+DY)
. ) 2. - T 2
70 ; 10 x01 e sBT| (ader T D' (A ie) + B! (A‘"%C'Z_ »-%D'
= = = 5 e 1
Su(6) ; [su(3) L s{I{L q o -
2% ‘8 oL+ f &B+ B(A-C) 4/9f ~4/9pC
56 *10 8/9f" a/94c 8/9p" 4/9pC
O ! ! 2 IR (AT (! >, 1av Lopgiedar __l’mh?
205 B et LB Gieen) o gpT B P gD
0 % 0 0 . A/9p” 2/9p'C!.
. 12, ] g "-l_’/l’ + 1 & "1"'__,
0 1'_1_9 | «+5 -%"‘B 3 B& 300 o™ gp! ~(B~3 A(A+C)




Contributions to the cross-sections O, 3, S
o 2.
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TABLE V

AL

defined in section 4.3, for J = J,, = 2N, + i)

w'p ¥W'n
and for proton and neutron targets & y V. )

&Vp = oi'p,

aGI__:’

16);2° L W wt wh W
SU(6); su(3] GJZ_ P =P sV¥n ¥ n
. LY . BLL
@
. s
56 3 8 0 0 (A—gC ) %‘E’Bl (A*%Ci«r %—5-D7‘
4 2 2 .
56 10 %(B +4C+ 3D") §(331+ 4C*+D%) S(Bﬁ 4C + 3D™) .9?.(3511 4C+D")
70 3 8 0 o) 4(A-5C)+ 5=B | 4(A+3C)+ 52D
70 “g 0 0 (5% ac™+ar) |2 (a8 ac™+ D)
. . 2 ; 1A 1 2 1 2z 1% 1 1. - " > -
o 10 |3(ar3C)+ 5B | 3(ASC)+5D | (atzcf+gB | (a-dc) 4D
' rt ~ gt o~
su(e) ;25 * 1 [su(a) 6}1 D s;j P Q-Fffn @E*n
% 8 0 0 of 4+ 22 F B4 EN
8 0 Sp* SeC+pY Ep- S BN
‘ ] i -~ h
.70 8 0 0 4(04”‘+%F’) 5196(0( x ™)
0 ; ! 0 0 fem | @ E™
1, A2, ~ 7 '
70 R Qlo 1. ; ~ ; 2, ' 4 _:L 4. ; ~ly -N"L
= 10 | 3«0+ 3f 3% ) "y 5( +p )
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TABLE V1

Coupling constants for electromagnetic decays.

Decay gy, (Gev'™L) g%xP(Gef_l)
¢° - 8 0 -0.16 0,02
& R -1.2 ~0.82 0,12




Amplitudes for decays by emission of a pseudoscalar meson,
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TABLE VII

Decay Quark zmplitude Antiquark _amvlitude
type -1 Ernl‘q’p) _-1(‘6!%_‘ Aviy
1—; O-+O'-+ =M, My F‘}(Lq. < rﬂ_ﬂh Fqu. €,
m, Mg
oty o=to~* m,Ma inqﬂquhV") m, Ma FﬁlqrqumFV
m° mﬂ
2517707 | -ir @0l e iF  ox)1® fr,,d(P”PLe, )
m  m, ¢ x qv m, m.Jy X q.
1*=17 "0+ —I‘J_ € E(BLEZ ) —FE - €. 6,_(‘. B 7))
m, m, m,, Mo 1, My
+ q.'e,q,e,_(m,m,_ X+ Z,,)}jf + Q.€ Q.& (M M X, -.f-._:,;_,,;ﬂ{
- Q_ mm D I
I-s1"=0~* F {e -2y - - F G. €. (ﬂ+2
&l m,m, 1{‘_ 2ZP, .P.ﬂ.:] _ JAT m, m, L[ + 2ZF, .L,_.ﬂJ '
+ 4.€, Q. € [(P B - 2m¥)Q + g.¢ q. QL—Q(R B - Bm,/'
. +P,.,_:] +ammy |y
Abbreviations:

' 2z
Y =

z

[+ (o /m, )

"mz- (P, . P, )L]

L2 2
= m*+m; - m,

P .B = %(m,”-a-‘m:_"- my )

RV . . .
I‘mf‘ is a spin~-two wave-function,
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TABLE VIII
__‘!(jl_é_t_l_zfé__fg_r__de.c___f:}xs___ by emission of a pseudoscalar meson,
Decay type | State Moce [ (Mev) " €*P(iev) FFKP‘(MGV)
1" 750" +o~+ 95 (1099){ KR 3.14 2.5 0.3 9
' f-n' 0 < 0.6 0
w (784) : T o 0.13 ¥ 0,03 0
x*(892) K 46,2 50,1 ¥ 1.1 59.5
K 46,2 50.1 % 1.1 144
P (765) | T | 117 146 t 10 142
TH=317"0~+ | B (1235) w 66 | 120% 20 7645
%5 1--0-+ | ¥¥(1240)] £n 47 : ~100 54 . i
A, (1070); pT 100 200 ~ 400 145
otts o-+o=* | rr(1514)) R 62 40 t 10 93
| o ~0 0
f (1260);: KK : 5.1 ; 8t s 12
T 1563 | 130 % 12 220
K¥(1420)] K7r 54,7 55 t g 78
TK | 54.7 55 % @ 126
| Kn | 2 ~ 2 4,5
K 2 ~2 3.6
A, (1300) Tl" 13.8 15 T 1.5 20
™ 13.8 15 ¥ 1.5 40
KK 7.8 4,7+ 1 15
gt¥yo=+17= | f£r(1514) R+ kB 9.3 { 14 13,5
X (1420) K¢ | 18.2 29.5 t & 20
| PK 5.7 9.2 % 3 7
wK 1.4 4.4t 2 1.8
4y (1300 pre .53 72 %7 €0
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TABLE IX

Ratio of helicity amplitudes for ™ > 170" decays.

Decay (To/Ty) (T,./T, ) 5P (T/Ty)
B — wT 1.0 0.2-20.7 0.19
Mo P 1.0 2,01.1 1.3
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TABLE X

An example of corrected results, with a conserved

- vector current

. B : - - T '"!' S - :
Decay | (T/Tw) | (T/TIP | 7 [ exp

]
i

B—> comt 0.21 ! 0.,2->0.7 |78 Mev | 120%20 Mev |

Sty
Ty,
9 J': )
U\,
"For,olylg76
Rapy - -




