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ABSTRACT

In chapter I we give:an account of the important theorems and
results needed in the subsequent work, we also include all the references
from which a general point of view can be obtained. Chapter II is a
continuation of Chapter I, where we consider only one specific concept ~

Lie groups and homogeneous spaces.

Chapter III deals with Riemannian (locally) symmetric manifolds.
The theorems and results in this chabter are included with their proofs, since

both are very relevant for the work in the coming chapters.

The main original contributions of this thesis are presented
in Chapters IV and V. In Chapter IV, Riemannian s-manifolds, and Riemannian
k-symmetric spaces, in the sense of A.J. Ledgei, are defined. We also define
Riemannian s-regular manifolds, and Riemannian k-regular symmetric spaces.
We discuss in detail the case when k is an odd positive integer, and we
establish some results concerning this case. The whole of Chapter V is
concerned with Riemannian (locally) 5 - (regular) symmetric manifolds.
Our treatment of these manifolds is in some way similar to that adopted by
Gray’[8:]for 3 = (regular) symmetric manifolds. We will also show that
Riemannian (locally) 5 - (regular) symmetric manifolds diverge from

Riemmannian (locally) 3 - (regular) symmetric manifolds.

Finally, the appendix contains calculations needed in Chapter V,

section 5.3.
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CHAPTER I

Basic Deflinitions and Fundamental Results

This chapter deals with the basic geometric properties of .a manifold.
These properties are very important in the next chapers, and they are put
in the form required for the subsequent work. However, each section will
include references in which generalizatio;ls of these properties may be

found.

1.1. Manifolds: -

Definition 1.1.1. - Let M be a Hausdorff topological space. The pair
(U,¢) is an open chart, or a co-ordinate neighbourhood of M, if U is an

open subset of M, and ¢ is a homeomorphism of U into R,

Definition 1.1.2. A differentiable manifold M, with a differentiable

structure of class CT is a Hausdorff space with a collection of open charts
(Uy, 92 ), #€ A, where A is an index set, such that the following properties

are satisfied.

(a) Ux covers M.
) The mapping f,p = 4}, o 4&'1 of <, (U‘xnU’B) onto ‘P‘B U, n Up )
is differentiable of class C” for all o, BeA.

() The collection (U, , 4 ), € A is a maximal family of open charts

such that (a) and (b) hold.

The dimension of M is n, i.e. the same as the dimension of R™. The
mapping f°"F is a diffeomorphism.of 4, (U N Uﬂ> onto 4’.,9 W, n Ug ). M is
said to be analytic if f, g is analytic. We shall only considerﬁ‘ manifolds of
class ol , therefore, unless otherwise stated, all manifolds are of class C
If peUy , then ¢, (pde R™, and so it is an n-tuple of real nﬁmbers. Let the
jil slot be Xj(p), then the n-tuple &', ...,x™) of real-valved functions on U,

isacalled the local co-ordinate system on (Uu y Fude

ORTIAE TRyprss,
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oo
Denote by € (x,M) the algebra of all recal-valued functions of
class C° whose domains include a neighbourhood of the point xeM,
. (=]
while we denote by C (M), the algebra of all real-valved functions on

M. Consider the real-valued function

Qo
XX:C x,M) —— R
satisfying
(1) X (afrbg = aX O+ bX (g,
@ X (9 = X NG+ FGOXX o
(o 7]
forallf, geC (x,M), andalla, beR . Xx is called a tangent vector
at x. At each point xéM, the tangent vectors form a vector space over

R, denoted by Mx'

Theorem 1.1.1. Let M be an n-dimensional manifold, and let f x'i}

G=1,....,n) be a 1oca1 co-ordinate system about a point x€M. Then if

XeM, , X —(Xx)(

l‘x x (We use the Einstien summation convention),
dx

and the co-ordinate vectors (

—)_ form a basis for M_ , which thus has
axl p.¢ X

dimension n.
Proof: - See Hicks [12] page 7.

1f at each point p €M, we pick a tangent vector Xp EMP , then the

correspondence X:p —->-Xp is called a vector field on M. X is differentiable

if XfeC (M) for all feC ®(M), where (XD(p) = Xp f. Denote by X(M)the
set of all differentiable vector fields on M, it forms a real Lie algebra
with bracket defined by

[x,Y]o = X(rp - YXDH ; X,Ye3(M) and feC™(M)

A covector at a point. x€ M, is a vector W,, which belongs to the dual

a * .
space Mx of Mx. Similar to vector fields on M, a 1-form is an assignment

of a covector to each point of M. In local co-ordinates system about x,
every one form (/ can be uniquely written as

LU =f1dX1 ; i=l’.oo,n
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where f ; are functions defined on a neighbourhood of x, and (_dxi} are
. @
the duals of a—al-} forall i=1,...,n. W is differentiable if f; €C (M)
X
" Denote by D(M) the set of differentiable 1-forms . We shall consider only

differentiable vector fields, and differentiable 1l-forms.

The union of all tangent spaces M,, as x varies on M is called

the tangent bundle of M, and is denoted by TM. The map.TI': TM—>M,

defined by TTX = x if and only if X€ M_, , defines a projection from TM

onto M. Similarly, we define the cotangent bundle TM*, ~

Let f: M ——>N, where M and N are m and n - dimensional manifolds
respectively. Let p€M, and p’e N be such that pl = f(p), then fis said to
be of class C* at p, if for any open charts ( U, %), and ( VB,?F) of p and pl

-l o
respectively, we have the map F = ’7’;01’ o ‘P,x : R*—= R%is C at X
oo
where x, = ,(p) - fis said tobe C , ifitis c® atall points of M. We

o)
shall consider only C - maps.

"TFor ecach peM, [ induces a linear transformation of M_ into Nf( y

called the derived linear function on M, , and is denoted by (df)p . If
Xe MP , define (df)P X to be the vector in Nf(p) such that if he C® (N)
then ((af )p XX = XP (hoB, where hofeC®(M). In local co-ordinates

system, the action of (df)P is determined by

Q a(y" of) d
(=) > (=% ) (=)
axl P o axl P ay] f(P)

where fxi} ,G=1,...,m andfyj} , G =1,... , ) arc;.\_co-ordinate systems

of Uu and Vp' respectively. If g:M—>1\T and f:N—>H, then we have

(d(fo)p = (@b o(dg)é

sp)

where p € E domain of fog} (Cf Brickell and Clark[[3} Chapter IV page 57).
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A map f: M—N, where M and N are m and n-dimensional manifolds, '
determines a map df: TM~»TN, defined by X}—>(df)P X., where TTX =p.
df is called the differential of f. A vector field X€X(M) is.f-related to'a
’ /
vector field X € X (N) if ("df)x X= Xp) o for all xeM. IfX andY in
/ . / /
5€(M) are f-related to X and Y € 3€(N), then [X,Y] is f-related to[ X ,Y ].

Leto~: E=—»M be C , where E<R is open containing [a,b] , then
. . (=] .
-the restriction of 6~ to [a,b]is -said to be a C curve. Let te[a,b] , and
consider (da.)_t (d/dt )t = T(1), then T(¥) is a tangent vecfp_r to o~ at &—(®.

o— is an integral curve to a vector field X€ ¥(M), whenever ¢~ is in the domain

of X, and X is tanget to o= for all t e (a,b] .

_ @
A homeomorphism f: M—>N, such that f and f'l are both C' , is called

a difféomorphism. If M = N, then fis called a transformation of M. If¥ and

Y are in (M) and f: M—>N 1is a diffeomorphism, then (df)X and (df)Y are in
5¢(N) with @B [X,Y] - [@px, w@nyl. '

The mapping R x M—>M ; (s,x)}—é‘fz—_(x) such that

(1) <&, : M—>M is a transformation of M,for all S€R,
(2) 4>5+'[: x) = 4’5 (‘."ft (x)) for all s, t €R,and all XeM, is called |

a l-parameter group of transformation:. Each l-parameter group of trans-

.formation induces a vector field X on M, where if pe M, the curve q'>5(p)'

(called the orbit of p, and 4 (p) = p) is an integral curve to X.

A local 1-parameter group of local transformations can be defined in

the same way, except that <5 (x) is defined only for t in a neighbourhood
of o, and x in an open set of M. Conversely, iet X € (M), and xeM,
there exist a neighbourhood V of x in M and a 1-parameter group of trans--
formation 4_35 : V—M such that |S|<¢, for some positive € , and this
1- parameter group indu(ces X. (Cf.Kobayashi and Nomizu Vol. I [13] ,

page 12).
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1.2 Affine Connections: -

Definition 1.2.1. Let M be an n-dimensional manifold, the map SAX(M)X¥(M)

> (M), defined by X,Y)| - vXY

is called an affine connection, or covariant differentiation, if it satisfies
the following properties

() V(Y+2) = VY 4 VXz

) VY=Y .} |
Gi) VyunY = YY + Y ’
Gv) V) = (XDXY) + £ VY

for ail X,Y,Z, WeX(M), and all fe C (M)

The symbol (M,V) is taken to mean that we are given a manifold M

with affine connection V .

(oo :
A vector field X alonga C  curve o~ in M is said to be parallel if

V_x=0  where T is the tangent vector ficld too— . 1If VTT = o, i.e.

T .
T is parallel along &, then o~ is said to be a geodesic. -

Given a differentiable 1-form w, we define VXW , Xe€ (M), to be

the 1-form such that (V)%U)(Y) = Xw) - Ww (VXY),. for all Ye X (M)

Proposition 1.2.1. Let o~ be a curve in M, and suppose that X €M

- ¢ .
for some ¢ €[a,b], then there exists a unique 1x;c:ectox' field X(t) along g~

- = i —_— 1V e
such that X(¢) = X . If de@,b], then corr espondence Mc-(c) l\g_(d) given b3‘r

(c)

)é‘<—a->)((r(d) is called parallel translation along o— from c to d.

Proof:- See Willmore [23] page 209.

Proposition 1.2.2. Let M be an n-dimensional manifold, and 1etP€-M.

o—(c) o Cc



o3 ~ i -
X LN (x,M)byx1=eloexp

)

Then for every Xe MP’ there exists an € >0 , and a unique geodesic o5,

defined on [-€.€] such that o= (3= p and o—(o)= X.
Proof:- See Hicks [12:] page 58.

~ An affine mapping from (M,{/) to (M,_V—) is a diffeomorphism

f: M—>M such that (dD(VyY ) = Y—7df(x) WOY | forall X, Y e 7M.

If M= \7[, then f is called an affine transformation. A parallel vector

field X(1) along a curve o— in M is mapped under f to a parallel vector field
(dD(X(1)) along the curve f (& in M. In particular f maps geodesics to-

geodesics.

Let M be an n-dimensional manifold, and let p € M, suppose that o

is the unique geodesic such that o= (o) = X € MP (proposition 1.2.2.).

" Define expPX = 6';("(1), when o‘i(l) is defined. exp, is' called the exponential

map. [From the definition we see that at each point p €“M, MP has a subset

1-[p for which the geodesics (1) are defined, for all Ye I—[P .

7y

Proposition 1.2.3. Let M be an n-dimensional manifold, and let pe M.

Then there exists a neighbourhood V of o in MP such that éxpp maps V

diffeomorphically onto a neighbourhood of p in M.
Proof: - See Wolf [24] Chap. I page 22.

Let x &M and U be a neighbourhood of x in M, then U is cailed a

normal neighbourhood if expx(V) = U, where V is an open neighbourhood of

oin M , and such that expx:V'—>U is a diffeomorphism. Proposition 1.2.3.

\

says that every point 'x € M has a normal neighbourhood. Let Ec} ’

i=1,...,n be a basis for Mx’ and let fei }be the dual basis, and define
)

{ n

for all i. The functions xl yeeasX

are called a normal co-ordinate system. LetyeU be an arbitrary point,

then y can be joined to x by a unique geodesic, and this geodesic is given
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bya}', where expxX = Y. An important theorem due to J. Whitehead states
that if we are given é M, V), and p& M is any point, then there exists a

neighbourhood U of p in M such that any two points in U can be joined by a
unique geodesic, this means that U is normal at each of its points, such a

neighbourhood is called convex.

Definition 1.2.2. Let U be a normal neighbourhood of a point pegM, and

let q¢ U, consider the geodesic (1) within U such that 6~(o) = p and
s g /
(L =q . Pute=(-1)=q . The mapping q|—> q of U onto itself is

called a geodesic symmetry with respect to p, and it is denoted by Sy

1.3 Tensors and Tensor Fields:-

Let peM, then MP is an n-dimensional vector space over R. Consider

the real-valued bilinear maps defined on MP* X Mp'*’ these maps form a

vector space over R called the tensor product of MP- with itself, and it is
denoted by Mp ® Mp . The dual of any basisiei}, i=1,...,no0f Mp

determines a unique basis for MP (65 Mp .

The set of linear maps L : Mp‘*—-}Mp form a vector space over R,
denoted by L ( Mp-* ; Mp), which is naturally isomorphic (i.e. independent
of particular basis) to Mp @ Mp , therefore each element of MP XD MP can
be identified with a linear map of Mp* into Mp . Furthermore, the two
vector spaces (Mp @ M.P)® MP , and'Mp D (MP ® MP) are naturally

isomorphic, and there will be no confusion if they are identified with the
symbol NLP ® Mp @ M,

The set of al} real-valued trilinear maps definc—:'d of Mp* % MP* % Mp*

form a vector space over R which is naturally isomorphic to Mp ®Mp® My
\

In this way, the vector space of all real-valued r-linear maps defined

over Mp*'x c o XM

P* (¥ -times) is naturally isomorphic to the tensor product
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Mp R ®Mi) (r -times). Denote by Tor (M.'p) the vector space of the

tensor product M'P® O M'p (r -times). An element of Tor(M’p). is said

to be of type (r,0). Similarly, elements of TSOCM ) = Mp*®. . .®Mp*

(s-times) are called tensors of type (o,s) at p. More generally, the elements
T, 0 — T,

of T, (Mp) DT, (MP = T, (MP) are called tensors of type ( ¥,s) at p.

A tensor of type (, s) is identified with the multilinear map on M_*x...xM_*

P
.prx. . .pr (r- copies of M_* and s-copies of Mp). From above we have

P
T, M)=M¥ andT 7 (M)=M_. We define T Zrch) = R. Since
T Sy' (Mp) is a vector space over R, then if A, B € T (Mp), we have
..
aA+bB T (M ); a,beR. AlsoifReT [ (M), and S €T (M),
S P S P 4 p

we define R@,S' ¢ T S’*; M) Cef. Willmore [ 23 ]Chap. V section 3). -
.I.

Similar to the definition of the tangent bundle, one can define the

A X ~ . 'r
tensor bundle TSrM as the union of all the vector spaces T'S (Mi)) as p

vaires over M.

i .
Proposition 1.3.1. T v (MP) is naturally isomorphic to the vector space

of all ¥-linecar maps of M x ...xM_ into M_.
p P - P
Proof: - See Kobayashi and Nomizu [13] Vol. 1. page 23.

, .
It follows that if AeT (Mp) i.e. if A is a tensor of type (1,1) at p,

~ then A can be regarded as a linear endomorphism of Mi) .

Let Eez }., i=1l,...,n be a basis for Mp’ and let Eei}be their duals, then
Ir. : .
every tensor KeT < (M'P) can be uniquely expressed (using Einstein summation

convention) as

ig...d J 3
K=Kl T ei®...®ei®e1@...es
‘il""is T '

J dg
wherege.@...@e.®e1®...®e5}isabasisfor’l‘r(M) Y
Ly i s P

i...1
k1T

5 j € [R are called the components of K with respect to Eei} .
. l a ¢ o s .
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An r-form at p ¢M is a skew-symmetric element of Tro(Mp)' The
set of r-forms at peM is a subspace of Tro(MiJ) of dimension (2), where n

is the dimension of M. Denote by Fr(Mp) the space of all r-forms at p €M.

Analogous to the way we defined vector fields on M, we can define
tensor fields i.e. at each point p€M, we pick a tensor A, GTsr(M'p), then
the correspondence A:p—>Ap is called a tensor field on M of type (r,s).

CIf I(xi} ,i=1,...,n1is a local co-ordinate system in a neighbourhood of p,

put X.1 = a/axi as a basis for M'p , and w' = ax! are theif!\ duals. Then A can

be expressecd as

U X @..0% 0w ..U
g %@ eX QU

iqeeeio :
where A‘}.1 Jr are real-valued functions on M, called the components of A
1" s . . '
1,0

. « L
with respect to §x! §, A is said to be differentiable if A L e c®
1°- g

for all 1" yena ’ir ’jl’ . ’JS' A differentiable r-form is a tensor fi_eld such
that at cach point of M we have an r-form. Denote by T ; (M) and F*(M)
the vector spaces of differentiable tensor fields and differentiabe r-forms,

respectively. We shall consider only elements of Tsr(M) and F*(M).

Proposition 1.3.2. A tensor field X of type (o, 1) (respectively of type (1, 1))

on a manifold M can be considered as a multilinear map of H(M)X...X¥(M) into

Cc 0 (re spectively 6(M)) such that

o2
KXy, £ X0 = £ £ KXy, .0, X ), forall £, €C (M) and all X, € %(M).
Conversely, any such mapping can be considered as a tensor field of type

(o, 1) (respectively (1,1)). ' N
Proof: - See Kobayashi and Nomizu [13:] Vol. I page 26.

Given a (M,\/), we define the curvature tensor Re T31(M) by

5 s X,Y, Z e X(M)
(x,Y] 2 >

R(X;Y).Z -V, VYZ - VY iz - V
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We also define the torsion tensor T €& T21(M) by

T(XY)=VXY—VX"[X,Y_] : X,Y € X M)
o Y

Let T(M) = r.(‘\/D then T(M) is an associative algebra with

r s >o .
multiplication . @ , i,e, if KeT, (M) and SeT YM), then K® Se T (M)
3

{
is such that if x € M, we have (K® S X = K_x® Sx

Remark: - Analytic manifolds, analytic maps, analytic vector fields, and
analytic tensor fields are defined in a similar way to which differentiable
manifolds, differentiable maps, differentiable vector fields, and differentiable
'tensor fields were defined, e.g. for analytic manifolds, we need the functions

fNF = <;bﬁ o <€< in definition 1.1.2. to be ahalytic;

: r
Let Ac Tsr(M), then A GTS+1 (M) is called the covariant differential
of A. Ttis defined as follows. Let x ¢M, A,)< c Tsr(Mp) is considered as a

multilinear map of Mi)-X. . .XMP (s-times) into Tor(Mp) *Set
(VXY , X, X = (VyAXX 5 eeh X)) i Yo X eMp
Now define VYA by solving the equation
s .
A, X = (VA XX, .00 X ) +_§ AKXy, X,
where Y,Xié ZK(M).

A is said to be parallel if and only if vx_ A = ojfor all X € X(M).

/ /
Proposition 1.3.3. Given two manifolds (M,{/), and (M , {/ ). Assume that

p / -
/ / }
YT = VR= YR - VYT =o, for all X € XM,

/ / / /
and all X" € (M "). Let peM, pe M , and suppose that A is a linear

/
1-1 map of Mp onto MP'

/
isomorphism of the mixed tensor algebra 'I‘(M.'p-) onto T(M p’ ), we extend

Let A denote the unique type preserving
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A such that A coincides with (A9 ! on the dual space MP*. Assume that

— / - /

A RP =R b’ and ATP =T pl . Then, there exists an open neighbourhood
U of pin M and an affine transformation ¢ of U onto an open neighbourhood

p .
U~ of P’ in M/ such that €6 (p) = Pl and (0’4’)1) = A.

Proof: - See Helgason[le page 165.

Proposition 1.3.4. Let (M,{/) be an n-dimensional manifold, such that
VT =VYR=o0. With respect to the atlas consisting of normal co-ordinate

systems, M is an analytic manifold, and the connection is analytic.
Proof: - See Kobayashi and Nomizu [13] Vol I page 263.

1.4 Riemannian Manifolds: -

Definition 1.4.1. Let M be an n-dimensional manifold. Then M is called

pseudo-Riemannian if there exists;, a tensor field g e TZO(M) on M sucfx that
at each point p € M, gp is a bilinear, non-degenerate, symmetric forn of '
Mp X MP — R. If gp is positive definite, then M is said to be a i

Riemannian manifold . g is called the metric tensor on M. i

Denote by (M, g) a pseudo-Riemannian manifold with a metric g. It
is characterised by having a unique affine connection\/, with two useful

properties.

Theorem 1.4.1. (The Fundamental theorem of Riemannian geometry). There
exists a unique affine connection on a pseudo-Riemannian manifold with the

following properties
WV eg= o , i) T=o0 '
Proof: - See Wolf [24] Chap I, page 47.

The above mentioned connection is called the Riemannian connection on M,

if g is positive definite. When we consider Riemannian manifolds, we will

refer to the Riemannian connection (also called Levi-Civita connection).
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With the help of the metric tensor, we can define angles between two
vectors at each point of M, distance between two points, and length of a

curve in M.

The Riemann Christoffel curvature tensor is defined by

R(X,Y,Z,W) = gRX,NZ,W) ; X,Y,Z,We& HM)

It is a tensor of type (0,4), and it has the following properties

R(X,Y,Z,W) = R(Z,W,X,Y,) ==R(Y,X,Z,W ) ==RX,Y,W,Z)

and R(X,Y,Z,W) + R(Z,X,Y,W) + R(Y,Z,X,W.) =0

The last property is called the first Bianchiidentity. We also have
(VyRXX,Y,Z,W) = (N RXZ,W,X,Y) «=(V,RXY,X,Z, W)
=—(VyRXX,Y,;W,2) ; V,X,Y,Z,We XM

and (V, RXX, Y, Z,W) + (/RXX,Y,V,2) + (NLRXX,Y,W,V )=0

‘where the last property is called the second Bianchiidentity.

For all X, Yé& MP’ and all P € M, the sectional curvature is defined by

-Kp - RP(X’Y,Y,X,), - gp(Rp(X,Y)Y,X)
AX,Y A(X,Y
p( YD p( )

‘ ’ )
where o =& AP(X’\_[) = gP(X, X)gp(Y,Y) - (gp()\,Y))

Definition 1.4.2. Let M and N be two Riemannian manifolds with Riemannian

metrics g and h respectively. Let f: M—>N be a diffeomorphism of M onto
N, then f is called an isometry if for all X,Y & Mp, and p € M, we have-
g p(X,Y) - hp) ((dF)px,(df)Pf)

fis called a local isometry, if at each point p €M, there exist neighbourhoods

U of p, and V of f(P)in M and N respectively, : such that f is an isometry of U

onto V.

An isometry of (M, g) onto itself is necessarily an affine transformation
with respect to the Riemannian connection. It also preserves distances; and
the converse is true, i.e. if f: M=>M is a distance preserving transformation,

then f is an isometry.
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Proposition 1.4.2. Let f be an affine transformation of a pseudo-Riemannian

manifold M. Suppose that for some point q € M, the map (df)q : M—M

4 (q)

is an isometry. Then fis an {sometry of M onto itself.
Proof: - See Helgason [10]Cha15. 11, page 166.
The following theorem is very useful in. subsequent work.

Theorem 1.4.3. Let (M,g) be a Riemannian manifold, and let f and g be two

isometrics of M onto itself. Suppose that for some p € M, f(p) = g(p), and

(df)p = (dg)P, then f = g on M.
Proof: - See Helgason[_lO]Chap. I, page .62.

Definition 1.4.3. Let (M, g) be a Riemannian manifold, and let p &€ M, an "

(local) isometry which leaves Pas an isolated fixed point, is called a (local)

symmetry at p.

For a Riemannian manifold, at each point p € M, there exists a neigh-

bourhood U of p in M, such thatif q € U, M_ is spanned by an orthonormal

9

basis, i.e. there exists a basis X ,... ,XnE Mq , sg‘ch that g,ﬁ(xi,xd- ) = éc'j
i < L < n , and gi_-d.' is the Kronecker delta..

n

The Ricci curvature on (M, g) is defined as s P(X,Y) = S_ Rp(xi’ X,Xi,Y.)

i= |
. .
- s X, .
ei:l gp(R( 1,X)>\1,7)

where X,Y & Mp’ and {xi} i=l,...,n is an orthonormal basis for Mp.

1.5. Minimal Submanifolds: -

Definition 1.5.1. Let f: M—>N be a map, then fis called an immersion if df

is injective. fis called an imbedding, if f is an immersion, and f itself is

injective,

It follows that for a map to be an immersion is that its rank (dir‘nention
of range of (df)p, for all p € M) should be équal to the dimension of M.

Locally, we can consider an immersion as an imbedding (away from self
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intersection).

" Definition 1.5.2. Let M be a subset of an n-dimensional manifold N, and
let j:M—=N be the natural injection. Then M is said to. be a submanifold

of N, if j is an imbedding.

We must notice that the topology of M is not necessarily the same as
the subspace topology, but if they coihcide, then M is called a regular

submanifold.

Definition 1.5.3. Let M be an n-dimensional manifold. A map D, which

~assigns to each point p € M an m-dimensional subspace of Mp’ denoted by
DP, in such a way that each p € M, has a neighbourhoo\q U and vector fields

X, .- ’Xm € X (U), such that D<6 is spanned by iX_.L}' 1= \,...,mat q -
for all q € U, then D is called a smooth m-distribution (9\<m\<n). The
- vector fields ?_Xi} are called basis for Din U. D is called involutive if

[X,YJ € ‘D, whenever X,Y & D.

Dafinition 1.5.4., Let M be an n-dimensional manifold, and let D be a smooth

distribution on M, an integral manifold of D is a submanifold P of M, such that

Px = Dx for all x ¢ P.

Definition 1.5.5. Let M be an n-dimensional manifold, and let D be a distri-

bution on M, then D is said to be integrable,if every point of M is contained

in a maximal integral submanifold.

Theorem 1.5.1. Let M be an n-dimensional manifold, and let D be a smooth

m-distribution on M. Then D is integrable if and only if it is involutive.

Proof:- See Bishop and Crittenden [2:]Chap. 1 page 22.

Let (G,g) be an m+n-dimensional Riemannian manifold with metric tensor

. / *
g and Riemannian connection /. . Let fi:M~——>G be an immersion, where M
is an m-dimensional manifold. f will induce a Riemannian metric on M defined

by h(X_,Y. ) = y Y € ;
y h( D’ p) g((df)PXp, (df)PYp), for all Xp’ . Mp’ and allpe M
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- Discussing local properties, M can considered as imbedded in G. Let
X (G, M) be the algebra of vector fields of G restricted to M. € (G,M) =
=xXM® %(M)J" (direct sum), where %(M)‘L‘ is a subspace of 26 (G, M)
of dirﬁension n, and perpendicular to M. For any vector fields X,Y € 26 (M),
| v)zY € X (G,M), 'where VI is the Riemannian connection on G, and so at

any point p& M, we have

/

/
{V,Y) - tan( V XY, +V(X,Y)

where tan ( v Y) and V(X Y) are the tangential and the normal components

respectively. Let tan ( vXY) = ( VXY)p

Proposition 1.5.2. (i) VXY is the covariant differentiation for the

Riemannian connection on M.
Gi) V: XX X(M)—> %(M)‘Lis symmetric and
o0
bilinear over C (M), called the second fundamental form.

Y , and there is induced a

Conversely, V(X’Y)P depends only on XP, P

L

symmetric bilinear map Vp: Mp XM P—-> Mp

Proof:- See Kabayashi and Nomizu [14] Vol. II page 11,12.

Let p € M, and consider ( V o’ where X € 95(\/1) and N EB{(M)-Jh .
Let the tengential and the normal componcnts of( \/}\\I) be denoted by

-—(A X) , and (D \]) respecnvely, i.e. ( VX\]) .-—(A X) + (D \1)

Proposition 1.5.3. (i) The map A: %(M)’L X (M)—> 3 (M) given by
N, XD !—>_(ANX) € X (M) is bilinear over C CD(M). Conversely——(ANX)p

depends only on Np and Xp’ and a bilinear map is induced - on MI)L b 4 Mp

into MP, where p is any arbitrary point of M.

Gi) hAX),Y) = g(V(X,Y),N) for each NEMI';L ,

consequently, AN is a symmetric - linear transformation of Mp with respect
to the metric h at P ¢

'
\

Proof:- See Kabayashi and Nomizu [IZJVOLII, page 15_.‘

R
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Letpe M, for each N € MP-L » Ay is & symmetric linear transforma-
tion on MP. Define a réal-valued function on Mp—‘- by ‘/m (trace Ay’. From'
linear algebra,_there exists a unique element H &€ MP such that !/m (trace AN) =

g(N,H), for every N GMI;-L . H is called themean curvature normal at p € M.

M is said to be a minimal submanifold if H is identically zero on M, i.e. if

trace AN = 0, NGMp.

Definition 1.5.6. M is said to be a totally umbilic at x € M, if AN, for all

N e M)-(J— is equal to Al, where A is any scaley, and I is the identity trans-
formation of MX. M is called a totally umbilic if it is a totally umbilic at

each of its points.

1.6 Almost Complex Manifolds: -

Definitions 1.1.1. and 1.1.2. can go over to define a complex manifold
. : -1
by replacing R" by €™, and we assume that the function f g = rbgo CP‘,L
L]
is holomorphic, i.e. its co-ordinate functions can be expanded in convergent

power series at each point of its domain.

Definition 1.6.1. Let M be an n-dimensional mam'.fold\, then M is said to be

an almost complex manifold, if there exists a fixed teﬁ‘sor field of type (1,0,
such that if this tensor field, ] say, is regarded as a C, (M) - linear map
of & (M)=3{M), then ] satisfies ]2 = =1, where I is the'identity transfor-

mation of 3.

Any complex manifold carries in a natural way an almost complex

structure.’

Proposition 1.6.1. Let M be an n-dimensional almost complex manifold. Then

(i) n is even.
(i) M is orientablc—j-e. it admits a differentiable n-form, which vaﬁishes

nowhere on M., ‘ ' : ‘-

Proof: - See Kabayashi and Nomizu[lA_],Vol. 11, Chap. IX, page 121.
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A smooth map f:M—>M"' , where M and M' are two almost complex
manifolds with almost complex structures ] and J' respectively, is said to

be almost complex if

@poj' = ]“o(_df)

On the other hand if M and M' are complex manifolds, and (df)o] =

J'o(df), then fis called holomorphic.

The Nijeenhuis tensor (or torsion tensor) of an almost complex mani-

fold M, with almost complex structure J,is a tensor of type (1,2) defined by -
EOLY) = [X, Y]« TOX,Y] « T[XIY] = [X,0Y], for all X, Y& SM).

] is said to be integrable if E is identically zero on M,

Proposition 1.6.2. An almost complex structure is a complex strucmre_,}.e.

the underlying manifold is a complex manifold, if and only if,the almost complex

structure is integrable.
~ Proof:- Sce Kabayashi and Nomizu [_—14], Vol 11, page 124.

Proposition 1.6.3. Let M be an almost complex manifold with almost complex

structure J. Suppose that | is integrable. Then,there exists a unique complex

structure on M such that ] is the natural almost complex structure.
Proof:- Sée Helgason [10]page 285.

. Definition 1.6.2. Let (M, g) be an almost complex Riemannian manifold with

almost complex structure J, and Riemannian connection:\v , ifaX,Y) =
é(]X,]Y) for all X,Y & ((M). Then M is called an almost Hermitian manifold

with almost complex structure J.

For an almost Hermitian manifold, the Kdhler 2 - form F is defined by
the formula F(X,Y) = ;g,(]}(,:Y), for all X,Y € ((M). T is a skew symmetric

differentiable 2-form.
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Extending the Riemannian connection \/ to act as a derivation on tensors
of M, M is called
(i) Kihler if VX(])Y = o, for all X,Y € XX (M).
(i) Nearly Kdhler if VX(J)X = o0, for all X € 26(M).
(iii) Quasi K4hler if \7)'(,(])Y + V]X(]X]Y) = 0, for all X,Y € X(M).

(iv) Hermitian if E = o on M.

In Gray\: 7] it is proved that the class of Kdhler manifolds is a subset
of both'the classes of nearly Klhler and Hermitian manifolds. On the other
hand, the class of nearly Kdhler manifolds is a subset of the class of quasi

KH4hler manifolds.

Definition 1.6.3. Let M and N be two almost Hermitian manifolds, and let M&N.

Then M is said to be an almost Hermitian submanifold of N,if JX € ¢ (M)

whenever X€ 3¢ (M), where ] is the almost complex structure on N.

This means that the almost complex structure on M is the restrictions

of the almost complex structure of N to M.

Proposition 1.6.3. Any almost Hermitian submanifold of a K#hler, nearly

Kdhler, quasi Kdhler or Hermitian manifold has the same property.
Proof:- See Grayl_-7:] .

Proposition 1.6.4. Let N be a quasi K#hler manifold, and let M be an almost

Hermitian submanifold of N. Then M is a minimal submanifold. In particular,
any almost Hermitian submanifold of a nearly K4hler manifold is a minimal

submanifold.

Proof:- See Gray[7] .
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CHAPTER 11

Lie Groups and Homogeneous Spaces

2.1. Lie Groups: -

Definition 2.1.1. A Lie group G is an analytic manifold, which is also a

group, such that group multiplication, and the taking of inverses,are analytic

operations, i.e.

G XG——>G by (g,H)}——> goh
and G —m——>G by g}___>g—|

are analytic.

Definition 2.1.2. Let G and G' be two Lie groups, and let f:G~—>G' be a

map, then fis called an analytic Lie group homomorphism if f(gh) = f(g){-'(h) ,'

for all g, heG, and f is an analytic Lie group isomorphism, if fis an

isomorphism, and f is analytic.

Definition 2.1.3. Let G be a Lie group, and let H=G be a submanifold of

G, which is also a Lie group of G using the operations of G. Then H is

called a Lie subgroup of G.

Let G be a Lie group, and let & € G. The left transformation

La : G—>G of G onto itself is an analytic diffeomorphism given by,La(b)

=ab, beG.

Theorem 2.1.1. Let G be a Lie group, and let H be a closed subgroup of

©
G. Then H may be given a unique C structure in such a way as to make

it a Lie subgroup of G, whose topology is the subspace topology.

Proof:- See Hausner and Schwartz[9], page 77.
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Let Go be the largest connected component of a Lie group G,which
contains the identity e. Go is an open, -invariant, Lie subgroup of G, and
it is generated by a neighbourhood of the identity e in G. (cf Hausner and

Schwartz [9] , page 37-38.).

Definition 2.1.4, Let M be an n-di mensional manifold, and let G be a Lie.

group acting on M, i.e. evéry element of G is a transformation of M, where

group multiplications are composition of transformations. Suppose that the
L]

map f : G X M—>M defined by f{g,x) = g(x)is C , for xe M,and ge G.

Then G is called a Lie transformation group of M.

G is said to act effectively if.gx = x for x€ M implies that g = €. G is
said to act frecelyon M,if the only clement of G which has a fixed point on M
is e. G is said to act transitively,if for every x,y € M, there exists a geG

such that g(x) =y.

Definition 2.1.5. A manifold which has a transitive Lie transformation group,

is called a homogeneous manifold.

Definition 2.1.6. Let G be a Lie group which acts transitively on a manifold

M. Let x € M be a fixed point, the subgroup H of G -'\yhose elements leave
. x fixed,is called the isotropy group at x ¢ M. H = Eg eG l g(x) = x} . The
orbit of x, denoted by G(x) is the set Eg.x eM , g E:G} . ‘

Proposition 2.1.2. Let G be the group of isometries acﬁng on a Riemannian
manifold M. Let x € M be ‘any point, then the isotropy subgroup of G at

is compact.,
Proof:- See Helgason[lO], page 169.

Proposition 2.1.3. Let H be a closed subgroup of a Lie group G, denote

by G/H the space of left cosets gH with the natural topology. Then the coset

space G/H has a unique analytic structure;such that G is a Lie transformation
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"group of G/H. In particular, the projection 'I'I':G—>G/H given by TT (a) =
- aH, aeG, is real analytic.

Proof:- See Chevalley [4 ]pages 109-111.

Proposition 2.1.4. Let G be a Lie group which acts transitively on a mani -

fold M. Let H be the isotropy subgroup of a fixed point p € M. Then H is

closed, and G/I-I is diffeomorphic to M under the map

G —s
£ /H M

given by f(g H) = g.p , geG and peM.
Prool: - See Helgason [10], page 114

Definition 2.1.7. The group H* of linear transformations (dh)'r‘(e)
: . I

( heH) of G/H is called the linear isotropy group.

Definition 2.1.5. Let G be a Lie group, and let geG.

Suppose that H is the subgroup of G generated by g, i.e.
H =EhEG / h= gn , nis an integer}
Then g is a generator of G,if closure H = G. G is monotonic if it has a

generator.

Let s be the unit sphere with its standard ™. structure (cf Brickell
and Clark [3]page 116). Consider the manifold
T" = s'x ...xS'  (n-times)

T™ is called an n-dimensional torus. T is diffeomosphic to ﬁ{n/zn .

Proposition 2.1.5. The torus T" is monotonic, and the generators are

dense in T" .
Proof:- See Adams [1], page 79.

Proposition 2.1.6. A compact, connected, Abelian, Lie group is

isomorphic to the n-dimensional torus T , where n is the dimension

of G.
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Proofi- Sce Adams [1] , pages 15-16.

2.2 lic Algebras: -

~ Dafinition 2.2. 1. A vector space V over a field X (non characteristic 2)

\

is called a Lie alsebr_a, if there exists a bilinear map \
[,] : vXV—sV
which satisfies the followihg conditions

@ [X,Y.] - =[v,x] ; X,YeV
(ii) [[X,Y],z] + [[Z,X],YJ + [[Y,ZJ,X] =0

X,Y,Z¢V. Condition (ii) is called the Jacobi identity. From (i). it is easy

to deduce that [x,x] - o, for all Xe V.

Let W be a subset of V, then W is called a subalgebra of V,if
[X,Y] € W, whenever X,Ye W, it is called an ideal of V if [X,Y Je W,

whenever X¢W and YE V.,

Let f: V—>U be a linear transformation of the Lie algebra V into

the Lie algebra U, then fis called a homomorphism if f [X,YJ = [f'X,fYJ )

for all X,Y € V. 1f fis 1-1, onto, then it is called an isomorphism. 1If

V = U, and f is an isomorphism, then fis called an automorphism.

Let G be a Lie group, and let La : G—>G, be a left transformation.

A vector field Z € 9€(G) is said to be a left invariant vector field, if it is

invariant under the differential of L , for all a € G, i.e. if (dLa)Z = Z, for

all a € G. Denote by g the set of all left invariant vector fields on G.

g = E_Xe‘-v‘é(G) / Xoy = (dLg)Xh, hec}
If X,Ye g, then the Lie bracket }_—X,Y] is alsoin g, i.e. EX,YJ is a

- left invariant vector field on G. Given a tangent vector X¢€ Ge’ where € is the
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. Lanad
identity of G, then there exists a unique left invariant vector field X on G
S
such that Xe = X. gis called the Lic algebra of G.
Let 1 be a Lie subgroup of a Lie group G, let g and h be the Lic

algebras of G and H respectively.. Then h is a subalgebra of g. On the other
“hand,if h is a subalgebra of g, then there corresponds a unique, connected, Lie

subgroup of G, whose Lie algebra is h (Cf Chevalley[l;.], pages 107-109).

Given a finite dimensional vector space V over a field K, let GL{V) |
be the Lie group of all invertable endomorphisms of V. It is well known
that the Lie algebra of GL(V), is the set of all endomorphisms of V, denoted

by gl{V), with bracket operation
[A,B] = AB-BA , A,B egl(V.

Definition 2.2.2. Let W be a Lie algebra over a field X, and let V be a

finite dimensional vector space over the same field X. A homomorphism of

W into gl(V) is called a represcntation of W on V.

Consider the map
ad : g—>g &®
defined by the linear transformation
(adXXY) = [X,Y] , forallYeJ
@ [x,Yy]x» = [[%,Y] 4]
and  ([adX,adY ] X2) = (adXadY - adYadXXZ)
- [x vzl =[x [X,ZU - —[[Y,Z] ,x]
- {[z.x) Y] - [[x¥] .z ]

which shows that ad is a homomorphism of g into gl( J ), i.e. ad is a represen-

tation of g into itself. This representation is called the adjoint representation

of g. The center C(g) of gis defined to be the kernel of ad (kerad). C(g) is
an ideal of g. The image of ad (Im @) is a subalgebra of gl(V). More generally,
if f is any homomorphism of a Lie algebra V to a Lie algebra U, then the kernel

of f is an ideal of V, and the image of f is a subalgebra of U.
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Definition 2.2.3. The adjoint group Int (g) of g is the analytic subgroup of

GL(g), whose Lie algebra is ad(g).

Definition 2.2.4. Let g be a Lie algebra over R. Leth be a subalgebra of

g, and let K be the analytic subgroup of Int (g) which corresponds to. the
subalgebra ad(h) of ad(g). h is said to be compactly imbeded subalgebra of
‘g, il X is compact. g is said to be compact if it is coémpactly imbeded in

' itself.

[y

Proposition 2.2.1.Let f : G—>G' be a homomorphism, ig—:t gand g' be the
~ Lie algebras of G and G' respectively. Then (df) is a homomorphism of g.

into g'. If fis an isomorphism, then (df) is an isomorphis;‘n.

Prool: - Sct Hausner and Schwartz [9] , page 55.

Definition 2.2.5. An affine connection {7 of a Lie group G is said to be
left invariant, if each left invariant transformation of G is an affine trans-

formation with respect to {/ .

Proposition 2.2.2.There is 1-1 correspondence between the set left-invariant

-affine connections \/ of G, and the set of bilinear functions d : g x g—s-g,
where g is the Lie algébra of G, given by
~ ~s ~
dX,Y) = (VEY), , whereX_ =X,Y_ =Y

Proof:- See Helgason [10] , page. 92.

Proposition 2.2.3. Let G be a Lie group, and let X e g be such that ')‘(Je = Xe Ge._ .

Then there exists a unique analytic homomorphism f : R—>G such that ff(‘ (o) =
X, and that f')"((t) = ’)\(J(fi(t)), for all telR, i.e. f)"(‘ is a maximul integral curve

of')\(l.

Proof: - See Sagle and Walde [22_], page 120.
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Definition 2,2.6. Let G be a Lie group with Lie algebra g, let X € g be such .

that 'i”e = X. Suppose that fsv((t) is the analytic homomorphism of R into G

(of proposition 2.2.3.). Define the exponential map of G by

exp: g —>G : X—> f)"(‘ (D
Note that for all s ¢R
exp sX = fs")z (D= f)"(' (s),

and  oxp (5-!-1:)‘}\\" = exp 5’)\(,. expt’)\(’,' s,t €R.

Definition. 2.2.7. A onc-parameter subgroup of a Lie group G is an analytic

homomorphism of R into G.

RV Y4
From above, we see that the map exptX, XeJ is a one-parameter

subgroup of G.

Consider the left invariant affine connection \/on G, which corresponds
to the bilinear map d(X,X) = o, for all Xe g. With respect to this connection,
a one-parameter subgroup of G is a geodesic, and the exponential map of G

agrees with the exponential map defined in Chapter I.

Proposition 2.2.4. Let 8: G—>L be a homomorphism of a Lie group G

to a Lie group L, let g and 1 be the Lie algebras of G and L respectively.
Then

exp ((de)e X) = ©(expX) ; Xeg
Proof: - See Helgason [103, page 100.

Let Ad(a) : G—~——G be.a map given by hf—s aha™! >
it is analytic isomorphism of G. By proposition 2.2.4. Ad(a) induces an
automorphism of g, the Lie algebra of G, also denoted by Ad(a). We also

have for Xe g

1

exp (Ad(a)X) = Ad(a)(exp X) = aexpX a — ; aeG

For every aeG, Ad(a) is an isomorphism of G, hence we have a

Ay
7
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homomorphism defined by al—>Ad(a) of G into GL(g), it is called the adjoiht o

representation of G.

2.3 Scmisimple Lic Algebras: -

Definition 2.3.1. Let g be a Lie algebra over a field of characteristic zero.-

Consider the following bilinear form

BX,Y) = Tr(adX adY) on g X g; X,Ye¢ g where Tr means the trace
of adXadY. B is called the Killing form of g.

Let f: ge—sg be an automorphism. Then (ad(fX)XY) = [fX,Y] ,
X,Ye g,and (foadXof ™' XY) = £ [X,f ' Y] - [x,Y]

Therefore ad(fX) = foadXof !

_Definition 2.3.2. A Lie algebra g over a field of characteristic zero, is

said to be semisimple if the Killing form is nondegenerate ie. its rank equal
to the dimension of g. g is said to be simi)le if it is seﬁisimple and has no
ideals except $o and g. A Lie group is called semisimple (simple) if its

Lie algebra is semisimple (simple).

Using that for any automorphism f of the Lie algebra g, we have
ad(fX) = foadXof ™! , and that for any endomorphism of g, Tr(AB) = 'I_'r(BA),

it is easy to show that

(i) BUEX,fY) = BX,Y) X, Yeg '
Gd - BX, [Y,2] ) - Bz, [X,Y] ) - B, [2,X]) ; X,Y,Zeg

Proposition 2.3.1. Let g be a semisimple Lie algebra, and let h be an ideal of

g. Let b be the set of elements X € g which are orthogonal to h with respect

to B. Then h is semisimple, and b is an ideal. Also
g=h@ b (direct sum)

Proof: - See Helgason [10—_}, page 121.
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As a conscquence of proposition 2.3.1. we sce that the centre of a
semisimple Lic algebra isE_o_}, and that if we continue decomposing h and b

to their constituents idealsye have
8= £9---08,
where every gi' (i=1,...,7r)1is a simple ideal of g.

2.4 Reductive Homogeneous Manifolds: -

Definition 2.4.1. Let G be a connected Lie group, and H a closed subgroup

of G. The homogeneous space G/H is called reductive if the following condition
is satisfied. In the Lie algebra g of G, there exists a subspace m of g such that
g=h & m (direct sum), where h is the Lie algebra of H, and such that Ad(H)

1_1ic1_r_1, for all h € H.

We can always identify m with the tanget space (G/H) o (o =H), under

the projection™TT : G—E’/]_[.

Definition 2.4.2. A homogeneous space G'/H provided with a G-invariant
Riemannian metric g is called a Riemannian homogeneous space. G/H is said

to be naturally reductive if it admits an Ad(H)- invariant decomposition

g = h & m,satisfying the condition

8( [X,ij! Z) = g(xy £Y,Z]E); X,erem

From Gray[S] , we have the Riemannian connection is given by

| 2(VXY,Z>P - =<k, [v,2] >P_<Y, %,z P <Lz, )_’x,Yj>p

peM; X,Y,Zem

Hence if G/H is naturally reductive, we have the Riemannian connection is

given by

2<vaaz>p =. <[X7YJ ’Z>P , PeM, X,Y,Z¢ m
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heorem 2.4.1. Let G/-H be a reductive homogeneous space with a fixed

decomposition of the. Lie algebra g of G,i.e. g=h P m, and Ad(H)mecm
Then there exists a 1-1 correspondence between the set of all G-invariant
affine connections on G/H and the set of all bilinear functions d on m X 31
with valué§ in m, which are invariant by Ad(H),i.e. (Ad(h)) d(X,Y) =

AAI(X, AAWDY),for X,Y & m, and he H. The correspondence is given by
diX,Y) = (VYD) (o=H)

X, Y are vector fields on G/H' such that X .= X, ?’0 =Y, where we identify

- the tangent space at o with m.
Proof: - See Nomizu[21], Chap. II - 8.

Proposition 2.4.2. Let G/H be a reductive 'homogeneous space, with a

decomposition.of the Lie algebra g of G given by g=m @ h, where

Ad(H) me m. Then

(L There is a natural 1-1 correspondence between the set of all G-invariant
almost complex structures ] on G/H and the sct of linear endomorphisms
]o of m satisfying
(D ]02 =] , Iis the identity transformation,
2) Joo Ad(a) = Ad(a)o]o , for every Q¢ H;
when H is connected, we have instead of (2)

(20 ], 0 AAY) = Ad(Y)o]_ , foreveryY €h

(i) An invariant almost complex structure ] on G/] 1 is integrable,if and

only if,the corresponding linear endomorphism ] o of m satisfies
BRORSICIE R ANES NS A NELA DX v1, = o
for all X, Y€ m

Proof: - See Kabayashi and Nomizu [14 ], Vol. II, page 219.
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CHAPTER 1II
Riemannian Symmetric Spaces

In this Chapter we give a brief account of the results on Riemannian
(locally) symmetric spaces which are of interest to us. The actual proofs
of the results are of importance in later work, and consequently we also

include them.
We will not consider affine (locally) symmetric spaces, since they
do not play any role in our work.

“

3.1 Riecmannian Locally Symmetric Spaces

Definition 3.1.1. Let (M, g be a Riemannian manifold, if for each point

'p eM, there exists a neighbourhood Up of pin M, and a local geodesic sym-

metry Sy of p such that s‘p is an isometry of UP, then M is called a Riemannian

-locally symmetric manifold.

The local geodesic symmetry .SP at-each point p € Up has the property

that (ds_)_ =—1_, where I_ is the identity transformation. "
PP P % g

Theorem 3.1.1. Let (M, g be a Riemannian manifold. Then M is a Riemannian

locally symmetric space,if and only if,the sectional curvature is invariant under

all parallel translations.

Proof: - Let peM, then the sectional curvature of the two deminsional vector

space spanned by X,Y € Mp is given by

K - &R GY,X)

Ap().( ,Y) |

Suppose that M is Riemannian locally symmetric. TFor all X,Y,Z, W e (M)

we have
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.
(VyR0ONZ = Yy ®RX,N2) — R X,NZ — R, VZ - ROz
Since Sh is an isometry in a neighbourho'_?d Up of p, 1hen

(s ) [(VWRXX,Y)Z] - (vdspW'R)(dst,dspY) ds 2

But ds =-1P , therefore we have

P

(VWR)p = o for all peM, and this implies that VWR = oon M.

Assume that X,Y are orthonormal unit vector fields on U,.since M
is a Riemannian manifold, therefore /g = o on M, and the invariance of

K follows.
For the converse, we consider first the following Lemma. |

Lemma:- Let A be a ring with identity element e , such that 0Oax= o ;
for a o in A. Let E be a module over A. Suppose a mapping B: ExExExE—A .

is quadrilinear and satisfies the identities

() BX,Y,z,T) = -B(Y,X,Z,T)

m  BX,Y,Z,T) = -BX,Y,T,2)

(e B(X,Y,z,T) + B(Y,Z,X,T) + B(Z,X,Y,T)

1]
[0}

| Then. ' _ o ‘

(D B(X,Y,Z,T) B(Z,T,X,Y)

|

| If in addition to (a), (b), and (c) B saitsfies

(e) B(X,Y,Y,X,)=0, forallX, YE E |

then B = o
Proof:- Sece Helgason [IO]page 69.

Let ¥ be a curve joining two points p, q& M, and let T be the

parallel translation along ¥ . IfX,Y ¢ Mp’ we have
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‘ gp(Rp(X,Y)Y,X) gq(Rq("a’X,"T’Y)’TY,'YX)

(PR 00,7 X0

and g (R (X, Y)Y, X) 2

Let B be the quadrilinear form given by
BX,Y,2,T) = gq(Rq(’Y'X, TYYOYYZ,7YT) - gq(ﬂ’ (RP(XY)Z),’Y T) S
for X,Y,Z,T € M, then B satisfies the conditions of the above Lemma

)
*v B = o, so

TR X,YZ) = RTXTYITZ ie. TR =R
% q P q
. VXR = o for each X € XX(M).
The diffeomorphism s, of Up defines a new connection '—§7 on Up by
CON VY = Vdspx ds.Y , forX,Ye 2

Let Rand T be the curvature and torsion tensors with respect to \/ . Then

(dsp)( T(X,Y) = T(dsP X, dspY) = 0

and
(ds p)((VWR)CX,Y)z) - (\ZSPWR)((dst,dsPY) ds 2) = o
for all W,X,Y, ZeX(M).
OT - VR - o We XW).

Now, (ds XR(Y,Y)Z) = R (ds_X,ds Y)ds_Z
p P PP

But dsp = —1 , this implies that Rp = R . Hence by proposition 1.3.3.
we have s, an affine transformation. But Sy induces an isometry on Mp,

Hence, by proposition 1.4.2. we have S an isometry of Up' This completes

the theorem. /

From proposition 1.3.4. we see that every Riemannian locally symmetric .
space is a real analytic manifold with a real analytic connection with respect -

to the atlas consisting of normal co-ordinate systems.
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Remark:- The definition of an affine locally symmetric space (M, /) is
similar to definition 3.1.1., where we replace the isometry Sp by an affine
transformation. Analogous to theorem 3.1.1.,a manifold (M,\/) is an .

affinc locally symmetric space,if and only if\/R = o on M.

3.2. Riemannian Symmetric Spaces: -

Definition 3.2.1. A Riemannian manifold (M, g) is said to be a Riemannian

symmetric space, if for each xe M, the symmetry s  can be extended to

a global isometry of M.,

Proposition 3.2.1. Every Riemannian symmetric space is complete.

Proof:- Let ¥, , ogtg£a, be a geodesic between two points x, yeM.

Using the symmetry Sy we can extend Xt beyond y as follows. Set

X::1+t - Sy( Xa-t) oLtga Y/

Theorem 3.2.2. Let M be a Riemannian symmetric manifold. Then,

(D The set I(M) of isometries on M is a Lie transformation group of M.

(ii) I(M) is transitive on M.
Proof:- See Kobayashi and Nomizu Vol. II [14 |pages 223-224.

From proposition 2.1.4. Chapter 11, we sce that a Riemannian
symmetric manifold is diffeomorphic to the homogeneous space G H° where G
is the Iidentity component of the group of isometries, and H is the compact
subgroup of G which leaves a fixed point of M fixed. The diffeomorphism

is given by gH-——» g.p, where p is the fixed point of M fixed by H; and geG.

A

Theorem 3.2.3. Let M be a Riemannian symmetric ma‘ipifold. Let G be the

identity component of 1 (M), and H the isotropy subgroup of a fixed point .

peM. Then,
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(i) The map o— : IM)—1(M) given by gl—> spogo:sp" is an involutive

9 -
(o~ = 1G , but o £16) automorphism of G, such that H lies between
H o~ and (H)o, where H,- is the subgroup of G of all fixed points of o—,
and (Hg— )o is the identity component of H _ . Also H contains no normal

subgroup of G other than 5_(‘3} , where & is the identity of G.

(i) Let gand h denote the Lie algebras of G and H, respectively. Then
h = E Xeg {(dc")e X = X}, and if we have m = EXeg (do-)c X = -Xj,
theng = h @ m (direct sum). Let TT be the natural map TT:G—>M
given by g j—-g.p. Then (d'I'l')e maps h onto Egz and m isomorphically

onto M__.
P

Proof:- (i) That o— is an involutive automorphism of I(M) is abvious, and
since it maps connected components to connected components, then it maps

-

G to itself. Let he H, then '.'sp h s and h induce the same map of MP,
alsoh(p) = p = S5 h Sp- '(P)= Hence, from theorem 1,4.3. we have

s hs “Lhfor allh H. This implies that HesH o
Let St>g.1 S €R , be a 1-parameter subgroup of Ho~. Then G“(gs)=gs.

S - = .v S = sla Q "NC 1t ‘ S ' 1
Also (bg g Xp) = (go bp)(p) g,(p). Hence the orbit ng(p) ER}} is
fixed by s_ for all S€R. But pis an isolated fixed point of Sl'), this means
that the orbit 2 g (p) /SEFR }must reduce to p. Hence g €M, but g_is a
l-parameter subgroup of HG_ , and (Ha')o is the identity component of H—.

This implies that (Hs-) € H, and we have
(Ha—)o < Hco Ha_
Let T be a normal subgfoup of G in H. Let g be any element of G.
Then for ecach ReT, there exists k"e T such that k'g = gk. Hence k'g(p) =

gk(p) = g(p) for all g &G 5 i.e. if xgM, and since G is transitive on M, there
exists g'€ G such that g'(P) = x, and we have k'.g'(p) = kix = g'(P) = X,

But G acts effectively on M, so k' = ¢ , and therefore T = Eeg .
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(i1)  Let h' be the Lie algebra of H. Let Xeh', then we have from
proposition 2.2.4. that

exp (de)), X = o (expX) = expX
Vo (dci-)(1 X =X

Hence h' < h.

Conversely, let X&h, then exptX; te¢R, is a 1-parameter suBgroup

of G. From proposition 2.2.4. we have

exp (do=), tX = o= (exptX) = exptX
or 5,0 exptXo sp-i(p) = (exp t XXp)
sp((exp tX)PN = (exptX)p)

Hence (exptXX(p) is a fixed point of S5 but s D has p as an isolated
fixed point, therefore the orbit S CexptXXp) [te lR} must reduce to p.

Hence exptXeH and X € 1!
h = h'

i
The direct decomposition comes from the identity
' X = X+ @Mp X)+ 3 X~(de), X)

From propositions 2.1.3. and 2.1.4. we see that G acts transitively
- on G/H, and G/H is diffeomorphic to M. The projection TT : G—>M maps H

onto p, therefore h < kernel (dTT), .

Now, let X € kernel (dTT), , then if geCm(M) we have
o = ((ATD)g XXg) = X(goTD) = E (% glexptX.p) } t = ©

Let s €R, and consider the function g* (@) = glexpsX.q); qeé M. Then
d 4 -
o = Ed_t g*(exth.p)}t -0 = },&—t g(exth.p)} f= s

which shows that g (expsX.p) is constant in s.g is arbitrary and we have
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(exp s XX(p) = p for all s €R, and so Xeh. Hence (dTI')e vanishes on h. \

So rank TT equals (dimension of g - dimension of h), which equals
(dimension of G - dimension of H). Hence
rank TT = dimension G/H = dimension M.

Hence (dTT)C maps m isomorphically onto Mp' This completes the theorem. //

Definition 3.2.2.. Let G be a connected Lie group and H a closed subgroup.

The pair (G, ) is called a symmetric pair if there exists an involutive
analytic automorphism o= of G such that (Hg-) o&He=H , where H _ is the
set of fixed points of g—, and (H°"')o is the identity component of H-. If in
addition the group Ad(H) is compact,(G,H) is called a Riemannian symmetric

pair.

Theorem 3.2.4. Let (G,H) be a Riemannian symmetric ‘pair. Let TT denote

the natural .mapping of G onto G/H, and put o = TT (€).' In each G-invariant
Ricmannian structure Q on G/H, The manifold G/H is a Riemannian symmetric

space. The geodesic symmetry’s  satisfies

s'oo‘l'i‘ = TTo o~
T (o () = 'so'T(g) Sy gcG

where Y (g is the action of g on G/H .

In particular, S5 1s independent of the choice of Q.

Proof: - Let o~be an arbitrary analytic involutive automorphism of G, such

that (He-) <= H=H,—. Identify the Lie algebra of G with G , the tangent

space at the identity. The eigenvalues of (do)p are +1, hence g = hé m
(direct sum),  where h is the Lie algebra of H. For X€m and keH we
have

o (exp AdQOtX) = o~ (Ad(k)exptX) =o"(k exthk-‘ )

o~ (k) o~(exptX) (k™) = kexpld e tX k!

- Ad(K) exptX = — exp AdGIX , @ teR
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so that (do)e AKX = — Ad(K)X; for all Xem
Thus m is invariant under Ad(HD.

\

(dﬁ)e is an isomorphism of m onto (G/H);, let heH and“'XeLn. Then

TT (exp AADEX) = TT (Ad(R) exptX) = TT (h exptX h™")
- hexptX h™'H = hexptXH = TMTT (expltX)); teR
Hence we have

(dTT), , AdWX = 4T (W o d TT (X)
This means that the isomorphism (dTT)e commutes with the action of H.

We have (G,H) aRiemannian symmetric pair, this means that Ad(H)
is compact, using Weyl's theorem (Cf Matsushima EZO]page 279, the.re exists
a strictly positive definite quadratic form B on m invariant by Ad(H). Consider
the form T = BO(d'.I."I.')e_' on (G/H)o’ T, is invariant under all the maps

dT(D, heH, since for X (%)) we have

T @TMX) = Bo@TDe ™' @TM(X) = Bo (TT), ™' (4TT), Adh)
@), ™" (X = BAAMWETD) &' (XM = BoTD), ™! (0 = T 0

‘Let the correspondent symmetric bilinear form on (G/H)OX(G/H)O be

Q.- Forceachgq eG/H, we define QqldT(gXX ), dT(gXY ). = QO(XO,YO),

, G . G . G o~
gecG , )\o, YOG(. /I-[)o9°n( /H)q X ( /H)q , where 7 (g). o = q.

Since B is invariant under Ad(H), this guarantees that Qq is well
defined. The analyticy of ”I_’(g), g € G, ensures that Qq is an analytic

Riemannian structure on G/H, invariant under G. Define Iso : G/lﬁc/] T

by the condition s ooTl' = TT oo—~. Then s o s an involutive diffeomorphism

‘of G/H onto itself, and we have (dso);) = =I.

Now so'oTl'(gg') = _c';oo T (@(g'H) = TToo(gg") = o (o (gOH
= T ((@XTT(e(gM) = (T (g) o s NgH)
soo'\’(g) =T () o s, + &8 €G

4
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' G . -
Let g€G, q =T (9.0, and let X, Ye&( /H)q’ then the vectors X = aT (g™,

YO

d T (g~ ")Y) belong to (G/H)o. Consider the following

Q, o(q)((ds SX,3ds YD = Qg (@ (ds jodT(gXX ),ds jodT((Y )
= Q, e q)(d’l’(r(g))ds X, AT (@ ds (Y ) = Qlds (X),ds (YD)
= QXY ) = QX_,Y) = Qqar(eXX), dT(eXY )

= Q X,Y)

Thus s o s an isometry. If p is any arbitrary point in G/H such that

% = 1T'(a)o, the symmetry at p is given by sp = T (ados o7 a ') //

Remark: - The proof of the theorem 3.2.3. clan go over if we consider an
affine symmetric space instead of Riemannian symmetric space, where we
replace the isometries by affine transformations. Also, similar to theorem ‘
3.2.4., if we are given a symmetric pair (G,H), then G/H is a reducﬁve
hon1ogeni§us space, and has an affine connection such that it beocmes an

affine symmetric space.

From theorem 3.2.3. we see that a Riemannian symmetric space

.. induces a pair (g,s), where :

(D g is a real Lie algebra

(i) s : g—sg is an involutive automorphism

(iii) Let h be the sét of fixed points of s, then h is a compactly imbedded
subalgebra of g. ' _ ;

(iv) Let 3 be the center of g, thenh N 3 = 292

Definition 2:2.3. A pair (g, s) which satisfies the above conditions (i), (ii)

and (iii) is called an orthogonal symmetric Lie algebra. Itis said to be

effective, if it satisfies (iv) also.

Let G be a connected Lie group with Lie algebra g, H is a Lie

subgroup of G with Lie algebra h, then the pair (G,H) is said to be associated
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with the orthogonal Lie algebra (g,s). | '

Let (g,s) be an orthogonal Lie algebra, and let (G,H), (G',H") be
associated to it. If M and H' are connected, and G' is simply connected.
Then M' is closed and (G', ') is a Riemannian Symmetric pair'.. If His
closed in G, then G/H is Ricmannian locally symmetric for each G-invariant

metric, and G' / is the universal covering manifold of G/H .
- I_Il

a N

3.3. Hermitian Symmetric Spaces

Dcfinition 3.3.1. Let M be a connected Hermitian manifold, with complex

structure J, then M is said to be a Hermitian (locally) symmetric space, if
each point p € M is an isolated fixed point of an involutive holomorphic

“isometry S5 (in a neighbourhood U of p in M) of M.

Denote by H(M), the group of all holomorphic transformations of M,

then the group of all holomorphic isometries of M is given by
CAM) = HM) N (M)

where I(M) is the Lie group of all isometries of M. A(M) is a closed s'ub-
group of I(M), hence it is a Lie transformation group of M, it contaiﬁs all
thé symmetries on M, and this ensures that it is transitive on M. Let peM,
and H the isotropy subgroup at p, then M is diffeomorphic to AO(M)/H, wh.ere

A (M) is the identity component of AM). -

Proposition 3.3.1. Let M be a Hermitian symmetric space, then M is-Kdhler.

Proof:- Let J be the compléx structure of M, and since each element of

A OCM) is a holomorphic isometry, then by definition we have

- dT(ge] = JedT(® ) ge‘Ao(M).
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LetxeM, and S the symmetry which leaves x as an isolated fixed point.

'l.']_\.c'n. '
(VXY = 'VX(]Y) - T Y , X,Yée(M).

@s.) [N ] = s XL - (@s JTNEY)

R

Vas ox Kds, Y - I%sstxw

AV X)X]) (d‘sx)Y

as

But dsX = —I1
(VX:DY = 0

which is the condition for a Kdhler manifold. //

Proposition 3.3.2. Let a Kdhler manifold M, with complex structure J, be

a locally symmetric space as a Riemannian manifold. Then M is Hermitian {s c% 5

Symmeiric.

- Proof:- LetxeM, and let U be a normal neighbourhood of x in M. For any
y € U, let o~be the geodesic from x to y. The symmetry s maps Ix upon
itself, and since 'svis an affine transformation, and ]'is parallel alongo—,

we have

\
1Y

S qu) - Js X(y)

i.e. s maps ]y the same as it is parallel translated along the 'imagé of o~

under s_ to the point s MOPR

Thus S, preserves ] and M is a Hermitian symmetric, this completes

proof. //

Proposition 3.3.3. Let (G,H) be a Riemannian symmetric pair. Put o = TT (&),

where TT is the natural map of G onto G/H. Let Q be any G-invariant Riemannian
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structure on G/H , and let A be an endomorphism of (G/H) o such that

@ A% - -1
1 QUAX,AY) = X,V ,  X,YyeCL,

({i1) A commutes with the elements of the linear isotropy group H¥.

Then G/ has a unique G invariant almost complex structure J,
H

such that ]0 = A, and that /“ is a Hermitian symmetric space.

Proof: - From proposition 2.4.2. (i) Chapter 11, such a unique almost
complex structure exists. That M is an almost Hermitian manifold follows

from the fact that each Q and ] is G-invariant.

If ¢— is any involutive automorphism of G such that (1-15-)0:: HeH -
| then we have ‘s 0TT = TToc~ and soo'r(g) =Y (c—(g))o':so (theorem 3.2.4.).
Let peM, ZGMP, choose g€ G, such that g.o = p, let Z_ = d’\’(g'\ )Z.

Then using the relation dsO]o = ]od so’ we have

ds (J,2) = ds V(@] Z, = AT (@) 0] (ds Z))

1

]S'OP (dsodT(g)éo) = ]s D ds _2)
Hence ] is invariant under So

Let g be the Lie algebra of G, h the Lie algebra of H, then we have
g = m & h (direct sum). For any X,Ye& m , we have EX,YJE h.
Hence the integrability condition o-f] follows from proposition 2.4.2. (i) |
Chapter II. The complex structure on M corresponding to ] (sce prbposition--
1.6.3. Chapter I) due to its uniqueness is invariant under each s D’ PEM.

Hence M is Hermitian symmetrié space. //

3.4 Totally Geodesic Submanifolds: -

Definition 3.4.1. Let M be a Riemannian manifold, and lct S be a

submanifold of M. Suppose that at each point p€ S , we have the geodesic
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Xt of M determined by every X € SP, lies in S for a small value of the

paramecter t, then S'is called a totally geodesic submanifold of M.

Proposition 3.4.1. A submanifold N of a Riemannian manifold M is totally

gcoodesic if and only if its second fundamental form is identically zero.
Proof: - See Hermann [ll], page 338.

In the notations of Chapter I, section 5, this means that for any

arbitrary point p € M
V.X,Y) = o ; XbLY €M
% ) P
and from proposition 1.5.3., we have that
AN(X) p = ° ,NeMp—L , XeMp

Proposition 3.4.2. Let M be a Riemannian locally symmetric space, and

let S be a totally geodesic submanifold of M, then S is a locally symmetric

space.

Proof: - Let p be any point in S, and suppose that Yt be a geodesic start-ing
from p. Since S is totally geodesic, X.t lies in S for small values of the
parameter t. Hence, we can obtain a geodesic symmetry of p in S by the.
restriction of the geodesic symmetry of p in M. p is arbitrary, and so we

have S as a locally symmetric space. //

Riemannian symmetric spaces contain plenty of totally geodesic submanifolds.

‘Define a Lie triple System of a real Lie algebra g, as the subspace mof g

such that [X, [Y, Z]] € m , whenever X,Y yZ€m . Itis proved in Helgason
[10], page 189 that if we have a Riemannian space M = G/H, and g = p®h
is a fixed decomposition of the Lie algebra g of G, then, any Lie triple system

of ¢ contained in p, gives rise to a totally geodesic submanifold of M.
S D, 8 _ Y 8
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CHAPTER 1V
Riemannian s-Manifolds and Riemannian k-S ymmetric Spaces

Generalized Riemannian symmetric spaces were first introduced
in Ledger flG], then in Ledger and Obata [17]s-manifolds were defined.
s-Manifolds are divided into two parts, affine s-manifolds and Riemannian
s-manifolds, which generalize the affine symmetric spaces and the Riemannian
symmetric spaces of E. Cartan. In this thesis we are mainly concerned

with Riemannian s-manifolds.

Riemannian s-regular manifolds form a subset of Riemannian s-
manifolds. Many results of Riemannian symmetric spaces can be generalized

and are valid for Riemannian s-regular manifolds.

4.1. Riemannian s-Manifolds

Definition 4.1.1. Let (M, g) be a connected Riemannian manifold, and con-

sider the map s: M—>I(M) such that for each X eM, s(x) = s, is a symmetry
at x, then M is called a Riemannian s-manifold and den‘o‘ted by the triple -

M, g,s).

The family of symmetries E_sx | xe M3 is said to form a Riemannian

s-structure on (M, g).

Definition 4.1.2. Let S be the tensor field of type (1,1) on M such that
S, = (s , x €M, then S is called the symmetry tensor field. A.

Riemannian s-structure is smooth if S is smooth.

Sx is an orthogonal transformation of Mx’ and it does not fix any
vector of Mx except the vector o, therefore Sx does not have 1 as an

eigenvalue, and since it is non-singular, it does not have zero as an

eigenvlaue.
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For a connected Riemannian manifold M, @ , the group I(M) of
isometries is a Lie transformation group of M . with respect to the compact -
open topology (Cf Kabayashi and Nomizu [13] Vo. 1, page 239). Fora
transitivity of M), an important theorem due to F. Brickell, whose proof

is found in [17] , states,

Theorem 4.1.1. Let M be a Riemannian s-manifold. Then I(M) is

transitive on M?

This theorem shows that M is diffeomorphic to the homogeneous space
G/H of proposition 2.1.4., Chapter II, where H is the isotropy subgroup of

a fixed point p€M.

Remark 1 Affine s-manifolds are defined similarly to Riemannian s-manifolds,
each symmetry (affine symmetry) Sy x €M is an affine transformation, and
I(M) is replaced by ACM), the Lie group of all affine transformations on M.
The transitivity of A(M) is provéd in [17] , where it is assumed that the
symmetry tensor field S defined by Sx = <dsx>x is smooth, which is not the

case for Riemannian s-manifolds.

4.2 Riemannian (Locally) s-Regular Manifolds

Definition 4.2.1. An (M, g,s) is called a Riemannian s-regular manifold,

if the symmetry tensor field S is smooth and invariant by each S.1 XE M,
’ \
i.e. if X€X(M), we have \
\
ds, (SX) = S(ds X)

In this case the Riemannian s-structure is called regular.

Pr0positio.n 4.2.2., Let M be a Riemannian s-regular manifold, then for

all x,y, 3 € M, such that sx(y) = 3, we have

T r—————— s i o — ~s
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Proof:- We have for any X € (M)

dsx(S X)y = Ssx(y) (dsxX}) = S s(dsny)

(ds 3 o dsx)(Xy)

Ve (dsx o dsy)(X)P

or d(.'sx o s ))(X)).

But s o sy(y) = sx(y) = 3, and s

§1(93 o sx)(X}) | '

os (y) = 53(3)

"
W

3

" Hence by theorem 1.4.3., Chapter 1, we have

sxosy=ssosx.//

Definition 4.2.2. Let (M, g be a Riemannian manifold which satisfies the

following conditions,

(D At each point xeM we can assign a local symmetry which has x as

an isolated fixed point.

(i)  The tensor field of type (1,1) defined on M by S, = (dsx)x for all
x €M is smooth and locally invariant by each x. Then M is called a

Riemannian locally s-regular manifold.

From the defintion of a Riemannian s-regular manifold, we see that

it is also a Riemannian locally s-regular manifold.

Remark 2 Affine (locally) s-regular manifold is defined similarly to Rieman-

nian (locally) s-regular manifold, where the symmetry tensor field S is

already smooth, and each symmetry is an affine transformation.

Remark 3 Riemannian symmetric spaces are nothing but Riemannian s-regular
manifolds, such that each symmetry ig involutive, and where the regularity

condition is trivially satisfied. The symmetry tensor field S at any point xéM

is given by S)’c = =1, where I is the identity transformation of Mx' :
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Let (M, @) be a Riemannian locally s-regular manifold, with Riemannian

~ convections Y. Define a new affine convectionvon M by
VoY = Y - DX,Y) , X, Ye€Hm

where DIX,Y) = ( Y _gy-1xSXS 1Y)

here S - 1 is non-singular, since S does not have eigenyalue 1, and S -1 is

invertable.

Graham and Ledger[G:\proved that all the symmetrics Sy gceM are
affine transformations with respect to the affine connection -ﬁ Thé affine
manifold (M,%) is complete, and admits an analytic atlas in which S is
analytic, If E and T are the curvature and the torsion tensors respectively,
then {7-12 = 6 T = ﬁg = o. In [6] it is also shown that the relation
between Riemannian (affine) locally s-regular manifolds and Riemannian (affine) .
s - regular manifolds is similar to the relation between Riemannian (affine)

locally symmetric manifolds and Riemannian (affine) symmetric manifolds.

4.3. k-symmetric spaces: -

(D k22 is any integer

Definition 4.3.1. A Riemannian locally s-manifold M which has at each point

P M, a.local symmetry sP such that spk = id, where k2> 2is the least

positive integer of that property, is called a Riemannian locally k-symmetric

manifold . The local symmetry is called, local k-symmetry and the s-structure
Esp ’p € M} is said to be or ord_er k. M is said to be a Riemannian k-symmetric

manifold if each symmetry sp, P M can be extended such that its domain is the

whole of M.,

[ —
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Theorem 4.3.1. (first proved by A.W.Deicke)

Let M be a Riemannian s-manifold, then M admits an s-structure of

order k, for some integer k2.

Proof:- Let peM, and let H be the isotropy subgroup at p, then the sym-
metry at p, speH. Since M is a Riemannian manifold, then by proposition
2.1.2., Chapter I, H is compact. It is sufficient to prove the theorem at
p only, since at any other point q €M, the symmetry is given by g o sp° g;"_l,
Whére g € I(M), the group of all isometries of M, and g(p) = q.

Let C be the subgroup of H generated by 85 the closure C of C in
H is an Abelian closed subgroup of H, hence it is a compact Abelian Lie

~group. We have two cases to consider.

D If the connected component Co of C is trivial, then T is finite and

the theorem is proved.

(i)  1f T is not trivial, then by proposition 2.1.5., Chapter Il it is a
torus. By proposition 2.1.4., the elements of finite order .are

dense in Eo' /

Let M be a Riemannian locally k-symmetric manifold, k 22, suppose
that the map s. : M-—>I(M) is differentiable, let p €M be any point, then
in a neighbourhood U of p in M we have 511: = 1identity in U, this implies
that 511: = I, where I is the identity transformation of Mp' The eigenvalues
of'Sp are kth roots of unity, and since S is continous on M, each root is
constant over M. _S‘P is real, non-singular, and does not have 1 as an
eigenvalue, then the possible eigenvalues (we let S act on the complexifica-
tion M; of MP) are -1 and pairs of conjugates w, YWy ean ’wr’;’r' Since

we are dealing with a Riemannian locally k-symmetric manifold, S_ is an
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orthogonal transformation of Mp. There exists an orthornormal frame
geiz, i=1,...n, wheren is the dimension of M, of Mp such that the

matrix representation of Sp related to the mentioned frame is given by

-
o
-1
\
-1
cosd>1 - :-'sin“/’1
cos¢ sind,
'I.\ .
Cord, = Sinb,
Sl'h¢r COS"’r
A Y
v A Y
X X
b & X
-
L .
wher‘ewl = cos<f’1 + \’ -1 sin‘f’l Yooy T’r = cos‘f’r - V-l sin#;.
-1 t
Let T_ = S_+ S =S _ + 5
P P P p P
t t\t t
| I T = S S = S + S = T
p = Sp S5, p P
Hence Tp is symmetric., Let the eigenvalues of Tp be ko’ ceey )\r’ then from

the symmetry of Tp we have M_ = Mpo@. . '@Mpr (direct sum), where M

P PJ

(j = oy...,7)is the eigenspace which corresponds to the eigenvalue A i The

ij's are orthogonal to each other.

Suppose that X & ij :
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ar TP(X) = xjx .

\

. .\
o Y. -1 -
(Sp + Sp_ ) &) pX) '-:'SP(SP + Sp XX) SP(TPX)

A}
Y

ST (S X)
PP

AX) = ALS X
S AX) = A X)
Thatis S,X€M . if Xe€M_.

P PJ PJ

Hence we have on M mutually orthogonal differentiable distributions

Mg,...,M o The symmetry tensor field S decomposes into the‘»_form

S = So@......GBSr
where S, acts on M, - A= o0,70.,1)
(An outline of the above calculations can be found in Ledger and Obata [17] ).

M. J. Field [5] made some studies of k-symmetric spaces, where he
used the same notations, and followed a similar style of Kobayashi and Nomizu

[5], Chapter XI.

He defined a k-symmetric space as a quadruple (G,H,s,k) G is a con-

nected Lie group, H a closed subgroup of G with (HS)O_C_ HeH,, where H

is the subgroup of G of fixed points of s and (H ) is the connected componén-t"i_
of Hs’ and s is an automorphism of order k of G. Field did not show that a
k-symmetric manifold in the sense of definition 4. 3.1. determines a quadruple
(G,H,s,k) as in his definition. He also defined a k-symmetric Lie algebra

as a quadruple (g, h,s,k,), consisting of a Lie algebra g, a subalgebra h of

g, and an automorphism of order k of g such that h consists of all elements
. of g which are left fixed by s. Then he used the following Lemma for a
natural decomposition of the associated k-symmetric Lie algebra of a

"k-symmetric space.

Lemma 4.3.2. Let T:V=—>V be a linear map of a finite dimensional vector

space V into itself, and suppose that f{(t) = g{t) h(t) are polynomials such that
KT) = o, and g(t) and h(t)
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are relatively prime. Then V is a direct sum of the T- invariant

subspaces U and W, where U = kernel g (T) and W = kernel h (T).

Proof: - See Lipschutz[l9._-l Chapter 10, page 232.

Combining the work of Field[_.SJaﬁd the proof of theorem
3.2.4, Chapter III, it can be shown that a quadruple (G,H, s,k
as defined above, with the assumptioﬁ that Ad (H) is compact

. determines a Riemannian k - symmetric manifold as in the definition

4.3.1.

Theorem 4.3.3. Let (G,H,s,k) be a quadruple, G iﬁ\a connected

Lie groﬁp, H is a closed subgroup of G with (Hs)o < H CHS, and
s is an automorphism of G of order k. Further assume' that Ad(H)
is compact. In each G- invariant, s - invariant Rieman;';\ian structure
Qon G/H , the manifold 'G/H is a Riemannian k - symmetric
manifold. :The symmetry s o(o =H) satisfies |
s C’o'ﬂ'= To o

Toe() = sé\'(g) s,

whereTT: G-—>G /H is the natural map, and71(g) is the action of g on

G/u.

Proof: - s induces an automorphism (ds)e of the Lie algebra g of .

G, such that (ds)]; = 1. Consider the polynomial f (1) = 1. (t-1D .

k-l+

(k14 .41, where g = (t-1) and h(®) = "1+ .. .41 are
relatively prime. Moreover f ((ds)e) = O. Hence we have a

decomposition.

g=hedm
where
| h= EXeg I(ds)eX = X]
andm=£XEg_|X +(de), X + oot @F DX - o}

Let Xem, and k€H. Then for teR we have
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s(exp Ad(kXtX)) = s(Ad (k) exp(tX)) = s(k exp(tx)k'l)

- 8o s (exp(tXN 0 sk = k o slexpltXNok™
= Ad(k) s(exp(tX)) = Ad(k) exp((ds)e tX)

- exp(AdGX(ds)y (BN

Ci.e. (ds), (AdKXtX)) = Ad(kX(ds), (tX))

Now

CAAGXX) = —AdGRXds), (0= . . . ~ Ad(kXds), <100

= —(ds)g (AIGXXD-. . .~(ds)e" T (AdXXD

i.e. Aci(}l)mc m , and therefore G/H is a reductive homogeneous space.

From the proof of theorem 3.2.4., Chapter 1II, we can construct a
. Riemannian structure Q, invariant by G. We define s : G/H——)G/H by

k.
o

by theorem 3.2.4. that ¥ (o=(g) = s, oT(® o s, » for all g€G.

s ol = 77 0 s ,it is casy to verify that s ‘- = identity. We also have

Our aim now is to prove that s o is an isometry, having that done,
then any symmetry at any point p eG/H is given by s, = Yo S, © T (g 1),
where p =Y (g+0, ge&G.

LetgeG, q =T(g+0, letX,YE (G/H)q , then the vectors
/

X, = Mg hoo, Y, = arg IXY) belongto Cf),. Letx”, Y em,

) / /
such that Xo = (dTl')e X o)’ and Yo = (dTT)e(Y o)‘ Then

Qu; () (s X0, (85 )N = Q ((ds)od T (XX, (ds. ) odTLeXY )

Qo @T(s() (s XX ), aMs(Nds XY ) = Qds XX ), (ds XY )

/
- Qs o (dTy, (X1, (s )0 @M (YD = QAT o (s), (X, MMEs)(Y

/ / / ’ / /
- Bls), (X5, Ws)y (YD) = BX ¥ ) = Q, (T, (X ), W@y (¥ )
= QO(XO,YO) = Qq(X,Y)

Where B is the corresponding symmetric bilinear form
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on m X m induced by the quadratic form B on m of theorem 3.2.4.
Also B (ds) (X' D, (ds) (Y D) = B X',y Y' ) since B is s-

invariant by assumption. //

(1D kD2 is any odd integer

Proposition 4.3.4. Let M be a Riemannian locally k - symmetric

manifold, where k is odd, then there exists an almost complex

structure ] on M, which makes M into an almost Hermitian manifold.

Proof: - Since k is odd, the symmetry tensor field S does not have
-1 as an eigenvalve, and hence the eigenvalues appear as pairs of
conjugates. From the calculations in part (D) of this section, we

see that at each point peM, the tangeﬁ{ space Mp = Mp1$ . 'eMpr

(direct sum), and hence we have mutually orthogonal differentiable
distributions on M, My, ...., M, where Mj G=1...., 1) |
corresponds to the eigenvalues cos".’,ttr-_i 5in4>j_‘. Also the
symmetry tensor field decomposes into the form

S=5 19 ® S..
.where SJ' acts on Mj' Consider the matrix representation of S at
a point peEM with respect to the orthogonal frame mentioned of
part (D. It is in the form. - ‘ _ T
‘cos 4’1 - sin ¢,
‘sin ‘bl - cos P

N
TN

cosf}”r - smd;
sm4’r cos’#’r
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If we restrict ourselves to the way Spj acts on M_. we have the matrix
representation of Spj in the form

— : | 7

. - sin¢.
c054;J i i

\

“gin®. cos P,
st sJ

\ )
\
R
cos “’j - s_in“J?
- | sin, 30s$ ]
o Spj = (cos d’j) I + (sintbj) ]pj J
where I is the identity transformation of ij and ]PJ.: M J—)ij such that
Ipzj = -1, and this is true forallj = 1,...,r. :

Let ]p = ]pl (<5] "'e]pr

- then ]p: M p—'_>~Mp is a linear transformation of Mp such that ]I? = -]l and

this is true for all p€M, hence we have an almost complex structure ] on M.

With respect to the orthogonal frame mentioned; each ]pj G=1,. yT)
can be represented by the matrix
- N
0 -1

1 o0

0 -1
nd 1 0_4

hich is orthogonal. H for all peM, J_ =
which is o gona ence for all pe M, ]P ]p‘e @]pr
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is orthogonal, and this implies that M is an almost Hermitian manifold with
respect to J. //

Proposition 4.3.5. Let M be a Riemannian locally k-symmetric space, where

k is odd, let ] be the associated almost complex structure on M. Then the

following are equivalent.

(i) M is locally regular.

A

A

(ii) Each local symmetry is almost complex with respect ;6'9 J.

Proof;- (i) for simplicity, let X be a vector field on M \n;lfi‘ch belongs to the

distribution M,. Letp €M. Then (ds_) (SX) = (ds )(SX)
j P q P q
=(d'['.x ind, .'x]
s p) (cos 4’1) q + (sin J) (IqJ q)
= J(ds_X in®_ )(d .
(cos4’J)( S5 q) + (sm4’1)( s po]qJ)(Xq)
Now, if qu qu, then dstq&'- MSP(q)J" because if we assume that dsp)((-l
belongs to another subspace, Ms, (Qr say, then we have from the regularity
of M that, . : ' . \
S (ds X ) = ds_(5 X))
s (@"°p @ = 9 BoXq
- or .
(cos ﬁ)(dspxq) + (sin 4'1') ]SP@(dSPXq)
= 4)ds X ) + (sing) 4a X N
(cos J)( S5 q) (sme#J) 55 (]q q) ‘
But Xq is perpendicular to ]qu, and since sp'ié an isometry, we also have
_ dstq is perpendicular to dsp(]qxq) and dstq is perpendicular to ]sp(q)(dspxq).

v+« (cos ¢‘r - cosqu)(d-spxq) =0 = c054’r = cos‘f’j

and we must have ds X €M N
P q s (q)j

If Ssp(q)(ds qu) = é:{'(cos#’ig dstq + ffind’i)]sp(q)gdspxq)

‘then by similar argument as above we can show that dstqG Msp(q)j
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» . S (dstq) = Ssp-(q)j (dstq) = 1_-(c05 ‘I’J.) I+ (sin4’j) Jsp-(q)ﬂ (dspxq)
= (cos#’j) (dstq) + (sin‘#’j) gs"(q)j o dsp) (Xq)
Since cos dj*oand simb#o for all j=1, ...,r, we have
(dsp)o ]qJ = JAS (p)o (dsp)

which is true for all j= 1, ..., r. Hence we have
(dsp)o ]q= ]sp_(q)o (dsp)
and this proves that sp is an almost complex local isometry.

(i) Assume that each local symmetry is almost complex with

respect to J, i.e. if peM
(dSp)O ]q = ]S (q)o (dsp)

But]q=]q1@ ....@]qr. Therefore |
j=l, cesa,T

(ds p)o (]qj) = (] ) o (ds p)

and this gives us that for X € M ) gwve have
q q)
$) (ds X ing, ) (X
(cos J) ( s, q) + (sm<PJ) (dspo ]qJ) ¢ q)

= (coscl’j) (dstq) + (sin‘f’j) {J 0 dsp) (Xq)

s (@)
.PQJ

[
or

(dsp) (SX)q = Ssp(q) (dstq),and hence M is regular /

Proposition 4.3.6. Let C (M) be the group of all almost

complex isometrigs on a Riemannian k - regular symmetric
manifold, where k is odd. Then C (M) is a transitive Lie

transformation group on M.

Proof: ) For all peM, 8¢ C(M),-and since in the proof of
theorem 4.1.1. in[17] only symmetrics are used, we coné{ﬂ\&de
that C (M) is transitive on M. Let gfnzbe a sequence of almost
complex isomefries which converges to f in I (M). By assumption,

the symmetry tensor field is continuous, and hence, the assosiated
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almost complex structure J is continuous. We have df o]= ]__o‘dfn,

for all n, from the continuity of ] we see that dfo] = ]6-\0' and
-9

feC(M), Hence C(M) is closed in I(M). By proposition 2.1.1.

Chapter 1, we see that C(M) is a Lie transformation group of M.//

Let M be a Riemannian k - regular symmetric manifold,
where k>2 is odd integer. Let G be the kinggeAAdnideied ‘IDW"‘“%S
component of C(M), the group of almost complex isometries on
M. Let x€M be a fixed point, and denote by H the isotropy
subgroup of G atx. Finally, let ] be the associatea\almost
complex structure on M. Now, we w111 give a proof Qnalogous

to the proof of theorem 3. 2 3. Chapter I1I1.

\
\

Theorem 4.3.7. Let M be a Riemannian k - regular symmetric

manifold, where k>2 is odd integer. Then

(D The k - symmetry s_ induces a k - automorphismo—of G

defined by
(g =s,0g¢ sx'1 , for all geG
If Hc_is the subgroup of G of fixed points of g=~. Then
(Hp), CHE H,-

where (He?) o is the identity component of Hg-. Also H contains

no normal subgroup of G other than e .

(i) Let g and h denote the Lie algebrasof G and H respectively.
Thenh = EXeg I (ded, X = X}, and if we have m =2Xeg | x

4 (do-)e‘ X+ .ouan + (do-'): 1x- } Then g = meh (direct sum)

Let7rbe the natural map7: G =>M given by gy gex+Then
(do?_ maps.h onto.z(_)lard misomorphically onto M.
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Proof: (i) o~: C (M)—>C(M) is-an automorphism of C(M), and since it .
maps connected components to connected components, it is also an automorphism'

of G. Now

o2 = —(o(g) = (s 0gos ™ = s20g0s 2
! {
: | .

r-]-((g) =0 ( o 1(g)) sxk ) g"o sx'k = g,

which proves that o—is a k-@utomorphism of G.

Let hgH, then at x we have

[ae] , = (ds, odhods)™h,

[(_(cosd’ N+ (sin )]1) @D .. G)((cos4> )N + (siné )] )] o dho

LiCcos )l + Gsin )] ) @ ..  Ccosep 1 + (sm<bv)]r)] -1

[(Ccos 1 + Gsindh)] D @. - @cos L + (singdl V], o dho
[((cos 4’1)1 + (sin )] ) @ . .@lcosg Il + (sin 4})]1-)-1] .

E(cosd’l)l + (sin® )] I@®. .. @lcosdIl + (sin ‘br)]r)]x odho
[(‘(cos ¢J1 + (sin ‘ﬁr)]r)k-l@' c@llcos I + (sin 1)Jl)k-1]x

[where from linear algebra we used that if T : V—»V is a linear automorphism of

a finite dimensional vector space V, and T = T1$T2 with respect to T-invariant

direct-sum decomposition, then T'1 = Tl'1 @D T2'1 and T = TZQ le

But h is an almost complex isometry i.e. forall j=1,...,r, (d_h.) o ]xj =Ixj 0{6“1)
lae-m] - @w
X X

Alsoo= (h) (x) = (sx oho sx'l)(x) = xandh®@ = x

v+« 6(h) = hand HeH -

The rest of (i) is similar as in proof of theorem 3.2.3.

(ii) From propos1t1on 2.2.1. (da-)e is an automorph1sm of g of orderki.e. -

(do") -1=o0 _
Consider the polynor_nial Kt = tk -1 = (t- 1)(tk'1 +004 1)
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where g(t) = (t-1) and Kt) = 1y .+ 1are relatively prime. B
Moreover f((do)p) = o.
Hence by Lemma 4.3.2., we have

£ =h®m

where h = kernel glldede) = EXeg( (dede X = X} _
and m = kernel h((de)e) = EXGg ,X+(do—23)( ot (dr)e k-1 y-. og

The rest of (ii) is as in the proof of theorem 3.2. 3. /

Proposition 4.3.8. Let M be a Riemannian k-regular symmetric manifold,

where k >2 is an odd integer. Let ] be the associated almost complex
structure on M. Then every almost Hermitian totally geodesic submanifold

of M is k-regular symmetric.

Proof: - Let P be an almost Hermitian totally geodesic submanifold of M.
Let x€P be any point. Then for any X€& Px’ ]XGP)c since P is an almost

Hermitian submanifold. If S is the symmetry tensor field on M, then

sxx ) [.(( cos 4, L + (sin +)] ). . .@«(cos 1 + (sin 4>'r)]r)]x()()

v S X = (dsx)xXG Px , and for any positive integer 1 , such that _-

X
1<k

1
| S, Xe Px

this implies that S)l:X = X 4 i.e.. S)]: is the identity on P_ .

Further P is totally geodesic, this implies that ‘s__x is an isometry

“in a nei ghbourhoéd U of x in P, and that '5;3: = identity in U. Hence any
symmetry in P is obtained by the restriction of a symmetry in M, and the
almost complex structure on P is the restriction of the -almost complex
structure ] on M. This insures that each symmetry is almost complex isometry,

and P is a Riemannian k-regular sy-mmetric./

»
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CHAPTER V

Riemannian 5-Symmetric Manifolds

In this Chapter, we shall consider the case of a Riemannian (locally)
5-(regular) symmetric manifold. Of course, all the results in Chapter 1V
section (4) part 11 go over when k = 5. We will generalize some of the

results valid for (pseudo) Riemannian 3-regular symmetric manifolds studied

by Gray [8]

In section 5.1. we state the important theorems of a (pseudo) Riemannian
3-symmetric manifold. Section 5.3. deals with the curvature relations of a
Riemannian locally 5-regular symmetric manii;old. Finally, in the last section
of this chapter we discuss some properties of a Riemannian 5-regular symmetric

manifold, when considered as a reductive homogeneous space.

5.1. Riemannian (locally) 3-Regular Symmetric Manifold

A Riemannian manifold M, which admits at each point x €M, an (a local)
isometry of order 3, having x as an isolated fixed point was studied by Gray-
[8]. He defined such a manifola in a different way from definition 4.3.1., -
when k = 3, but as we shall see later if the regularity condition is imposed,

the two definitions come out to be the same.

Gray[ 8]first considered an almost Hermitian manifold M with almost
complex structure J. Then by puttingS = -3 1+ '—372], where 1 is the
identity, he showed that at each point p € M, there exists a neighbourhood .
U and a diffeomorphism s o’ V—-bU;_such that s is of order 3,and has p as
an isolated fixed point. Further (ds P)P = Sp. A family of local cubic diffeo-
morphisms on a manifold M is then defined as a map pi—)sp, which assigns
to each point p € M, a diffeomorphism sp on a neighbourhood U of p in M,

and has p as an isolated fixed point. It is then proved that this family give
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rise to & smooth almost complex structure ] on M, called the canonical v

almost complex structure of the family.

Definition 5.1.1. (Due to A. Gray) A Riemannian locally 3-symmetric space

M is an analytic Riemannian manifold M together with a family of cubic dif-
feomorphisms p j—s D’ such that s » is a holomorphic (almost complex)
isometry, in a neighbourhood U of p in M, with respect to the canonical
almost complex structure of the family. If the domain of each local cubic

isometry is all of M, then M is called Riemannian 3-symmetric space.

Graham and Ledger [6]showed that a Riemannian 3-symmetric manifold
M defined as in definition 4.3.1., when k = 3, always admits an analytic
atlas, where the sy'mmet'ry tensor field S is mlmlytic. If M is regular, then
by proposition £}.3.5. each symmetry is an almost complex isometry (holo-
morphic in definition.S..l .1.) with respect to the almost complex structure J,
(called the canonical almost complex structure in definition 5.1.1.) and finally,

from proposition 4.3.4., the symmetry tensor field is given by

S=-31+ Vg/z]

from this, we see that a Riemannian 3-regular symmetric manifold is in

fact the same as Riemannian 3-symmetric space defined by Gray [_8] .

Proposition 5.1.1. Let M be a Riemannian locally 3-regular symmetric

manifold. Then

(@) rRK,Y,zZ,w)=RUX,JY,Z,W)+ R(X,Y,]JZ,W) + R(X,Y,Z,JW)
X,Y,Z,we X |
GV ®RXX,Y,z,W)+ YV (RXIX,IY,]Z,JW) = o, V,X,Y,Z,We&XM

Proof: - See Gray [8] page 24.

Theorem 5.1.2. Let (G,H,t,3) be a symmetric quadruple, where G is a’

connected Lie group, H is a closed subgroup of G with (H) < HCH,
. . 9

-
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. and tis an automorphism of order 3 of G. Further, assume that Ad(H) N

is compact.

() In each G-invariant, t-invariant Riemannian structure Q on G/.H, the
manifold G/] jisa Riemannian 3-regular symmetric manifold.

(ii) If we write (dt)e m ==3l+ 3/2], then ] induces the almost complex

structure on G/H, and Q is almost Hermitian with respect to J.

Proof:- (i) Exactly the same proof of theorem 4.3.3., where in this case
k=3, andt=s.

(if) See Gray [8], page 35.

Proposition 5.1.3. Let M be a Riemannian 3:regular symmetric manifold,

with almost complex J. Then the follo\ﬁng conditions are equivalent.

(i) M is naturally reductive.

(i) * The almost complex structure ] is nearly K#hlerian.

- Proof:- Sec Gray [8], page 36.

Using proposition 5.1.3. we have the following

Proposition 5.1.4. A totally umbilic almost Hermitian submanifold M of a

naturally reductive Riemannian 3-regular symmetric manifold N is a

naturally reductive Riemannian 3-regular symmetric manifold.

Proof: - From proposition 5.1.3. N is nearly K#hler. By proposition 1. 6.4._,__
M is a minimal submanifold, but M is totally umbilic, i.e. if p € M is any

-point, then using the notations of section 5, Chapter I, we have
Ay o= A1
where ) is a scaler and I is the identity transformation of Mp.'

trace Ay = aN = o &> \- o

]
Ve AN'? = o , for all peM.




(61) -

+ + M is a totally geodesic almost Hermitian submanifold of N. By '

proposition 4.3.8. M is a Riemannian 3-regular symmetric manifold.

From proposition 1.6.3. M is a nearly Kihler, hence by probosiﬁon

5.1.3. M is naturally reductive. //

Gray [ 8 ]gave a classification of (pseudo) Riemannian locally
J-regular symmetric manifolds, his arguments depended on a joint work
done by him: and Wolf [25 ].

Proposition 5.1.4. Let M be a/Riemannian s-manifold of order k, such that

the only eigenvalues of the symmetry tensor field S of M are & and e

( @ is not real). Then either M is locally symmetric, or k = 3, \,
Proof: - See Ledger and Obata [17].

Riemannian 3-symmetric manifolds appear in the recent work of Ledgér
and Pettitt [18] . They consider a metrizable s-regular manifold (M, $)
(i.e. for some metric g, M is a Riemannian s-regular manifold) for which
the symmetry tensor field S has a quadrati; minimal polynomial, in this
case (M, s) is called a quadratic s-manifold. Such manifolds are found to
‘admit an almost complex structure J. It is also proved that either all the
‘symmetries are of order 3 or J is integrable, and there exists a metric g
such that (M, g) is Hermitian symmetric with respect to J. ' A classification

up to equivalence of all compact quadratic manifolds (M, s) is given.

One may ask about a classification of a metrizable s-regular manifolds
for which the symmetry tensor field S has a minimal polynomial Sq +o( 53+
ﬂ 52 +¥S+VY1 = o, and in general a classification of a metrizable s-regulqr
manifolds, for which the symmetry tensor field S has minimal polynomial

Ss™4+ ... +Y1 = o, where m is an even integr > o. .
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5.2 Riemannian (locally) 5-S ymmetric Manifolds: -

If we put k = 5 in definition 4.3.1., we get the definition of a

' Riemannian (locally) 5-regular symmetric manifold.

In the following proposition we will prove a statement similar to
the one given in proposition 5.1.4., where we assume that the symmetry

tensor field has four distinct eigenvalues.

Proposition 5.2.1. Let M be a Riemannian s-manifold of order k, such

that the eigenvalues of the symmetry tensor field S are 6, , 6‘ , Bland é.,
where all the ©'s are distinct ( el’ 92 are not real). Further assume that

ei?':ﬁ:el and 922 #+ 92. Then either
(1) k=5 or (ii) M is locally symmetric.

Proof: - At each point X € M, denote the 6,~ eigenspace and 92-eigenspace
of Sx on the complex tangent space M:‘( by le and N2x' Then their complex
~ conjugates 'le and NZX are the O, -eigenspace and -éz-eigenspace. Let

Dl, Dy, D 1» and ']32 be the complex distributions which assign N, , N,_,

N, and N ox atx. If X and Y are complex-valued vector fields, then

[sx,sY],

s, [X,v] = sy [x,¥], - [as,%,ds,Y],

Consider the following cases

2
(@)) (X,YEDI); [—91)(, elYJx = 91 [X,Y_]x , then either E)QY_JX =0

i
or one of the following is valid

. 2 3 2 .G
(C)) 91 = 92 , (@i 91 =" 92
(2) (X,YeD, ; [sz, o], - 922 [X,Y] ., then either[X,Y] = o

or one of the following is valid

. 2 5 y 2
(1) A 62 = 91 ’ (11) 92 = 61
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(» X,YeD) ; [51x, ey], - 82[x,Y],, then either x,Y], -8

or one of the following is valid

o + and this implies that either

A

w 82-8, , G 82

\

[X,Y] x = O y oronme of the following_:ii_s valid

W ©2 -6, , ) 62 - B, (the same as (1)
- -, . .
4  (X,YeDy) 2 [sz’ ovl,- & [X,Y] . then either [X,Y] L=

or one of the following is valid

/

(¢)) 522 = 91 , (G 522 - 91. , and Ithis implies ‘that either
EX,Y]X = o , or one of the following is valid

(i)- 922 = 51 . , (i) 922 = _91 (the same as ) |

(5) (XEDl,YeDZ). ; :[Gl'x, ey], - Ql 8, [X,Y],. One of the

following cases is valid

1) 8.6,- & , G) B 6 = 6, =G 8, e,- 6,
Gv) 91 92 = 52 ) [X,Y] < = © \
(i) and (ii) are rejected. For (iii) 91 92 = 51 @91 92 52 91 = 51 —’2 91

{=$912'= 52. For (iv) 91 92 62®922 = 91. Hence either

rX,YJ 7<= o , or one of the following is valid

. 2
€] 91 =
(6) (xenl,
V)] X €D,,

2
YeDl)

YEeD2)

following is valid.

—

©

.. 2
, (i) 92

i L_eiX, e1YJx |

; [91X’ 52\{]x - 6 ,[x,Y], . Oneofthe

BRI DA T

05, [l - BT, o |
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W -~ 06,- 0, G) 6,6, -06,, Gii) 6,6, ¥ 6, G(v) 6,6, -8
»  [xy], =0

(i) and (ii) are rejected. For (iii) 9152 = 92®922 = 91, and

for (iv) 919_2 = §1®912 - 92. Hence either EX,YJx = o',. or one

of the following is valid

. 2 " 2

(L) 92 = 9;. , (G 91 = 92.

€2)) (XEDZ, YeDl)- ; =E92X, alex - 9251 [X,Y]x. One of the
following cases i¢ valid: -

(1) 8,6, -0, G) 6,6 -6, , Gi) ©,6, - 8,,

(v 8,6, - 52, »wxY] -o .
(i) and (ii) are rejécted. For (iii) —91 e, - _91® 912 = 92, and for .\\_"

(iv) 91 92 = 92@ 922 = 91. Hence, either EX,Y]x = 0, Or
one of the following is valid

€)) 912 =8, () 9;‘ = 91 (the same as (7))

€°)] (X€D2,Y€52? H [szg §2Y]x.:‘.:= 6252 [X’Y]x = [X,YJ;%[X,YJX=O

'(10). (xeD,,YeD,) ; felx,GzYJx ) 92[X,Y]x. One of the

following cases is valid

—

(i) 9162 - 8., o, Giid) 9192 - 6, ivw 6,8,-6,

@ 8,8, - 8 N:

v) L_X,YJX = Q

(i) and (ii) are rejected. For (iii) 91 52 = 91® 512 = 52, and for

1

L
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6.0

185 = 92@ 922' = .61.' Hence, either[X,Y:lx = 0, or one of the

following is valid.
(i) B2 . 5 (i) 62 - 6 ( the same as (5) )
1 2 2 1
All the cases from (1) to (10) are reduced to
( -
™ W 912 = 6, or (b 912 = “62 or Gii) [X,Y] <= ©

and (1D (i) 952 = 91 or (i) 922 - 61 or (iii) [X,Y]x = 0

and (D () 62 = 6, or G €2.- 6 or Gid [x,¥] = o
and (V) () €7 -. 6, or GD O - 6, or G [X¥] -o

Assume that (1) (i) is valid i.e. 912 = 92. Square both sides we |
have 914 = 922 . This with (ID) (i) gives 914 = 91@913 = 1 which
is rejected, while 914 - 93 with (1D (ii) gives 914 - 51@-?915 =1
(I11) and (1V) do not give any new information. Similarly, if we assume that
(D (i) is valid, then this with (ID) (i) give 9; = 1, while with (1) (ii) give

923 = 1, which is rejected. (III) and (1V) do not give any new information.

Finally, assume that [X,ij = 0. From theorem 2.1.4., M = G/H,
where G is the largest connected component of the Lie group I(M) of all '
isometries of M, and H is the isotropy subgroup of G at some fixed point
xXEM. G/H is a reductive homogeneous space, with fixed decomposition of-
the Lie algebra gofG,i.e. g = h @ m (direct sum), where h is the Lie
algebra of H, and m is a subspace of g such that Ad(HXm)cm . Denote by
m © the complexification of m, and since we have [X,YJ = o, for all
complex vector fields X and Y, we have [mc , QCJ g.hc, where hc is the |

complexification of h. We also havem = mcn g

Yo [mom] - [859h8 2 g]' - [ o Jnecrna-n

i.e. [m y El] < h, and this proves that M is locally symmetric space. //
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Remark: - In proposition 5.2.1., the conditions that 912 #* 91 and 622 +* 9.2
are clearly necessary, as it is shown in the following example due to Dr.

R. B. Pettitt, to whom I am very grateful.

Example:- Let (Ml,gl) be 56 (the six sphere) with the usual metric and let
s be the 3-symmetric structure defined via the representation G2/ SU3" Let
\V) ) be the levi-Civita connection of g, and S, the symmetry tensor field.
The eigenvalues of S, are cos” 2'"'/3 + i sin 2_"'{3, and {/ 18 1)'—'# o. Let

(Mz,gz) be fRz with the usual flat metric, and let Sy be the k-symmetric structure

defined by (52) b " rotation about p by 2-";](. Let VZ be the Levi-Civita
connection of 8o and S 2 the symmetry tensor field. The eigenvalues of

52 are cosz-"-/k + i'sin 21T/k' Define the product s-manifold
M, g,8) = (M1XM2,gIXg2,'91X32) » S = 8, ® S, is the symmetry

tensor field of M and {J(S) = vl(S 1)Qv2(5 2). Since vl(S 1) $ o, then

2 . 2T
/3 + i sin /3 and cos 2.“}

'V (S)$p.‘ The eigenvalues of S are cos
k

+

Thus if k is any integer >3, (M, g,s,) is a Riemannian regular

s-manifold for which S has eigenvalues @ , @ ,0(9'= Wk < 02 =

211}3<7r, but neither locally symmetric nor 5-symmetric. //

o
Let M be a[Ri&mannian locally 5-symmetric manifold. Let S be the
\
symmetry tensor !ield on M. The eigenvlaues of S are the 5th roots afunity,

and since they appear in pairs we have three cases to consider

(€)) cos 27’]5 + 1 sin TT/S are the only eigenvalues ‘of S.
(ii) cos 4'11/5 + i sin ATVS are the only eigenvalues of S.
2T,

/5 + i sin 211/'5 _énd cos 41175 + isin 4.“;5 are eigenvalues

ofS. ( = V—l)

(iii) ~ All cos
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In cases (i) or-(ii) the symmetry tensor field S has only two eigen- ‘
values conjugate to each other, but the square of one eigenvalue does not
equal the conjugate of this gigenvalue, hence by proposition 5.1.4., M is
locally symmetric. For calse (iii), and using proposition 5.2.1., we see
that M is not locally symmetric. From now on we will only consider the

case when the symmetry tensor field S has four distinct eignevalues.

At each point peM, we have Mp = Mpl @ Mpl’ and this gives
rise to two differentiable distributions M1 and M2 onM , S = 51@ 52,

where S, = (cos 211)5)1 + (sin 2-"/5)]1 and S, = (cos 475)1 + (sin 477/5)]2,“-.

and ] = ]16 ]2 is an almost complex structure on M. We will always

refer to the almost complex structure mentioned above.

5.3. Curvature Relations in Riemannian Locally 5-Regular S ymmetric

Manifolds

Proposition 5.3.1. Let S : V—»V be an isomorphism of an even dimensional

vector space V. LetV = V,®V, (direct sum) , S = S, @5, , such that
Sj (Vj) = V]. (G = 1,2). Suppose that S; = (cos 2175,)1, + (sin 2.“-/_5)]1

' ~ 4T 4T _ . . .

and S, = (cos /5)12 + (sin /5) Jo» where IJ. = VJ.—-%VJ. is the identity
transformation, and Jj = VJ.—-> Vj (j = 1,2)is an almost complex structure
on VJ sLet & and P be two tensors on V of type (4,0) and (5,0) respec‘-

tively, such that they satisfy the following conditions

x (X,Y,Z,W) = —X(Y,X,Z,W) = —&x(X,Y,W,Z) = X (Z,W,X,Y)

F,X,Y,z,W) ==pW,Y,X,Z,W) =—=FV,X,Y,W,2) = B(V,Z,W,X,Y)

for all V,X,Y,Z,W&V. Suppose that S preserves & and P

(1Xi) 1fX,Y,Z,W belong either to V; or V, or X,YeV, and Z,wev,
or X,ZGVl andY,WeVz. Then

® (X,Y,Z,W) = XK,JY,Z,W) + X(X,Y,JZ,W) + &UX,Y,Z,]W)
and oA (X,Y,Z,W) = & (X,JY,]Z,]W)

wf :
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(ii) If X,Y,ZeV, and WeVz. "Then . ' R

=3xX,Y,Z,W,) = « (X,]Y,Z,W,) + o (JX,Y,]Z,W) + oc(JX,Y ,Z,JW)
and XX,Y,Z,W) = o(X,JY,]JZ,JW)

(iii) IfXeV, and Y,Z,W €V2. Then

S.N(X,Y,Z,W) = X(X,JY,Z,W) + X(X,Y,]Z,W) + X(X,Y,Z,]W)
and XX,Y,Z,W) = —X(X,]Y]Z,]W)

- (2)1) If V,X,Y,Z,W belong either to Vl or V,. The;i,
-10P (V,X,Y,Z,W). = B QV,]X,Y,Z,W) + B(V,X,]Y,Z,W)
+ POV,X,Y,1Z,W) + BQV,X,Y,Z,]W) + ﬁ(V,JX,JY,Z,:‘W) _
v POLIX,YIZW ¢ BOVLIX,Y,Z,W + FOV,X,IY,IZLW)
+ P OV,X,IY,Z, W) + BV,X,Y,]Z,]W).

+

+

Gi) 1fV,X,Y,Z€V, and WeV, or V,X&V, and Y,Z,WeV, or VeV,

1 1
and X,Y,Z,WéVl orV,Z ,W€V2 and X,YeV1 orV,Y,W eVz and X,Z _eVl. Then

2 PV, X,Y,Z2,W) = B QV,IX,Y,Z,W) + ...+ B (V,X,Y,]Z,]W)

Gi) U V,X,YeV |5Y ,WeV, or VeV, and

orV,Y,Z,WeV, and XeV,. Then

1 and Z,WGV2 or V,X,ZeV

X,Y,Z,WeV, or V,WeV, and X,Y,Z ev,

2fw,x,Y,z,w - B aY,x,Y,Z2, W+ ...+ f ,X,Y,1Z,]W)

Proof: - Let Z€V be any vector, then Z = X + Y, when XeV,and Y€V,. '_

: 522.

2 2 .
SIX@S,Y = 5,5, XD s, (S, \

Y/

X + (sin 2 5)]1)() ' \‘_

((cos 21%)11 + (sin ZWS?]l) ((cos 27“/5
@ ((cos 4-”/.5)12 + (sin 4-"/‘5)]2)(0:05 41’}5) Y + (sin 4“W/S)IZY)
= I:(cos2 2795))( + 2(sin ZWS)(cos z-n/;;)Jlx -(sin2 2-"}5))(] o

@(cos4 AWS?Y + 2(sin 4-"/_5).(<:os 4.‘”/-5) JoY -(sin2 [ﬂ/-s)Y]




(69)

- eos 4TX + (sin 4 010 @ (eos 2TTY - (sin 2_'.'/-5) el
- ([cos 4T> 1, + Gsin 4—.'75) ) @ [(eos 2-”_/5) 1, - (sin 2“]52_]2] XZ)
Similarly, we have
%2 = (feos 4Ty - 64T 1,] @ [(eos 1, + Gain 2T, ) x2)
24z = (feos ZW1; - Gin 2T 1) @ [ (cos 4T 1, - (otn 4Tf1, X2
and S8z - z | | |
We have S preserves &, ie. for all X,Y,Z,W € V, we have
&K (X,Y,Z,W) = & (SX,SY,SZ,SW) = x (52,52 522, 52W)
- ot (5%x,8%Y,5%2,5%W) - w (s%X,s%Y,5%z,5%w) ... @

LetX =X +X2,Y=Y +Y Z=2

1 1 2’

1t Z2 and W = W1 + W2,.where "='X1, Y1

. 2 2 2 2
Hence X X,Y,Z,W) = &~ 5_ 2= 5 X (X,,Y.,Zy W)
i=1 j=1 k=1 m=1 )

1’71

This gives 16 terms, to prove (1) of the proposition, we make use of the
condition & satisfies, and this requires us to.consider only 6 cases which

are given in (i), (ii) and (iii) of part (1).

W@ X,Y,Z,WeV From@ we have

1
o« ((cos 2_‘-95))( + (sin 2-”/5.,)]X, (cos 21.r/5)Y + (sin 2."/'5}]Y, (cos 2-"2').)2 +

~ (sin .2-"}5),]2), (cos .2“/-5)W + (sin 2T!’—5)]W) =XX,Y,Z,W) ~~--- )]

|+

K ((cos 4-“75)X + (sin 4175_)])(, (cos 4175 Y + .(sin 4-"/-5,)IY, (cos 4T’_;5)Z

(sin 4-";5-_)12, (cos 477}5)\”, + (sin 4-",4’—5.)]\}!) = XX,Y,Z,W) s« (i)
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Using linearity of o¢,and add (i) to (ii) (in each equation 8 terms '
out of 16 are cancelled), we have |
2(cos4 2-”25 + cos4 41?5) XX,Y,Z,W) + 2(c052 2-"-/5‘ sin2 2175=+ coé2 4-"/5'

2 4T

sin /5)_
xEx,'-l'(Jx,]Y,z,-W) + X (JX,Y,]Z,W) + o<(]x,Y,z,]W)‘t-+ oK (X,]Y,JZ,W)
R K,IY,Z,IW) 4 O((X,Y,]Z,]W)] 2sin’ 2We v sind 4T
O((IX.IY,IZ,]W) = 40X,Y,Z,W) ~ - - - (iii) "
From the appendix (5) (i), (ii) and (iii).we have |

e o &,Y,2,W) '+ ¢ [xax,1v,z,w) + UX,Y,]Z,W) + (X, Y,Z,]W)

+ K CIY,JZ,W) + 0 OKLTY,Z,0W) + (X, Y,0Z,0W) ] + P

KX, ]Y,]Z,JW) = 2X(X,Y,Z,W) , or

A OX,JY,Z,W) + & (X,Y,]Z,W) + K(X,Y,Z,JW) + K(X,]Y,]Z,W)

+ o X,JY,Z,JW) + XX,Y;JZ,JW) + SDQ(JX,IY,]Z,]W) = SM(X,Y,\Z,W)-'---(iv):‘;

Replace X,Y,Z,W by ]X,]Y,]Z;]W in (iv) \:;re have
X (X,JY,Z,W) + X(X,Y,]Z,W) + &(JX,Y,Z,]W) + K(XJY;JZ,W)

4 0 (K,IY,Z,IW) + K(X,YLJZ,IW) + 3KK,Y,Z,W) = SKUX,TY,]Z,JW)=-(v)

From (iv) and (v) we get . N

\

5R(X,Y,Z,W) - 3XUX,IY,]Z,IW) = 5KUX,JY,JZ,IW) - 30X,Y,Z, Wy

" or ' X X,Y,z,W) =X (JX,]Y,]Z,JW) - - - - - . (vi)
Using (vi) we have

K (X,Y,Z,W) = K(X,]Y,Z,W) + X X,Y,]Z,W) + X (X,Y,Z,]W)

R

ML N 2 DT DTN
= R A . A

OO  Xx,Y,Z,v,ev,
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From above we see that the coefficient of S, are exactly the same as
the coefficients of 512, and the coefficients of 522, 523, and Sé’ are ei-actly

the same as the coefficients of Sl4 y Sl’ and Sf respectively. Hence from
. . \

equation () we are going to get exactly the same equations as in (1) (iXa) |

but this time we have X,Y,Z,W€V,, and this gives us that
X X,Y,Z,W) =,' X (JX,JY,JZ,JW)
and % X,Y,Z,W) = X(X,]JY,Z,W) + & (X,Y,]Z,W) + % (X,Y,Z,JW)
(1)iXe) X,Y€V, and Z,We€V,. From equation @ , we have
® (cos 2 X + (sin 2T, cos 2oy t(sin2 V)Y, (cos 4]0z
Wsin® ")z, (cos‘*_‘rls)w f(sm“_“]s)JW) - 2KX,Y,Z,W) R ¢
% ((cos 4 /X *(sin® /X, (cos 4 T/Y Hsin 4T/ Y, (cos 2_"/52

{cos 2-"/5)]2, (cos 2—'95)w:;(sm 2-“/5)]W) - 2X(X,Y,Z,W)~ ~ - - GD)

Using linearity of & and add (i) to (ii), we have

2(cos? 2Tf/' 2 4T / + cosz.4v5 cos? 21T/ YXX,Y,Z,W)+ 2(cos2 2n /5
sin® 4T/ + c052 4-"75‘ sin? 2T/ [ KX, Y ,1Z, W) + (X, ]Y ,Z W]

+2(s1n2 -"75 sinZ & /5 +sin? 41'75 sin? 27 /S)K(]'X,]Y,]Z,]W) =

LXK X,Y,Z,W)

From the appendix (6) (i), (ii) and (iii) we have

KX, Y, Z, W) +RX,Y,JX,TW) + X(X, JY,]JZ,JW) = 3AX,Y,Z,W) ~--(iii) |

Replace X,Y,Z,W by JX,JY,]JZ,JW we have

K JX,IY,Z, W) + X X,Y,]Z,]W) + R(X,Y,Z,W) = 3 R(JX,]Y,JZ,JW)~ = --(iv)

From (iii) and (iv) we have

X X,Y,Zz,W) = X(JX,JY,JZ,]W) -- - <" .. . ...

Hence from (ii))we get

o’ (JX,IY,Z,W) = A X,Y,Z,W) ~ - ~ - . <« o . .. .i)

s

(7 T

el
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Replace Y, Z by JY, JZ in (vi) we get | - '
XX, Y,]Z, W) = & (X,]Y,]ZW)

But from (v) we have & (X,JY,JZ,W) = & (JX,Y,Z,JW)

e JX,Y,JZ,W) + 0 OX,YL,Z,0W) = 0 s = (vii)

Hence from (vi) and (vii) we have
®(X,Y,Z,W) = X JX,]Y,Z,W) + &(X,Y,jZ,W) + xJX,Y,Z,]JW)
(1XiXd) X,Z€V; andY,We€V,. From equation D we have

 (cos 27X £ Gsin 2TIDIX, (eos Y ¢ Cstn 4TIOTY, (cos 272 3 Cotn 2“/5)14.:
(cos 4TIowW + Gsin 4 TOTW) = 2K(X,Y,Z,W) ~ « - -~ - )
X (eos X  Coin 4TI, (cos VY T (oin 2TIY, eos 402 1 (otn 412,
(cos ZMow ¥ (oin 20wy = 26X,Y,2Z,W) ~ === - - @0
Using linearity of & , and add (i) to i), we have

14 |
2(cos2 2175 cos2 4175 + c052 4/5 cosz_ 2,775) X X,Y,Z,W)+ 2((‘.os2 2TI/'5 smz AL +

RN S T -

cos? 41/r5 sin? 2175)[°< gX,Y,jZ,W) + o (X,]Y.,'Z,JW)] "
2sin? 2T sin? 4T + sin? 4 5 sinz-z-n;S)K(]X,IY,]Z,]W)_
= 4XX,Y,Z,W) - - - - - - -~ e~ ()
From the appendix (6 Xi),(ii) and (iii), we have;
X (JX,Y,]Z,W) + XX,JYZ,]JW) + o((f)(,]Y,]z,]w) = 3o((x,Y,z,W)-;---(iv)§
Replace X,Y,Z,W by JX,]Y,]Z,]W in (iv) we get | -
& (JX,Y,JZ,W) + X(X,]Y,Z,]W) + XX, Y,Z,W) =:\--,_3°((]X,]Y,]Z,JW.)"-tv)

_ \
From (iv) and (v) we get :




)

INCX,Y,Z,W) - X OX,]Y,]Z,]W) = 30QX,JY,]Z,JW) — ,M(x,){.z,W)
or & (X,Y,Z,W) =X(X,]Y,]Z,JW) - -~ - - - - PR

In (vi) replace Y,Z by JY,]Z we get

K (X,JY,JZ,W) = K OX,Y,Z,JW) - = = - - - - - - (vid)

Using (vi) in (iv) we have

M-(]X,Y,]Z,W) = XX,Y,Z,W)~ - ... - - .(v.ii.i)

In (viii) replace Y,Z by JY,JZ we get

-X(OX,IY,ZW) = X(X,]Y,]Z,W) = X(X,Y,Z,]W)
or o (JX,IY,Z,W) + 8 (JX,Y,Z,JW) = o

\" (/24 (XsY’ZsW) = DK(JX,]YZ!W) + X (]er’.Izl\”) + 0( (JX1Y9Z’IW)
(1Xii) X,Y,Z€V, and WEV,. From equation () we have |

(%4 ((coszT/rs)X + (sin 21}—5)IX, (cos 2-“/—S)Y _+_(sin. 2-H}S)JY,' (cos 2175)2 + (sin 2-“}5)12,
(cos #TIW + (in STIOIW) = 2K(X,Y,Z,W) - - - - - -ao @

X ((cos ZJ/rS)X + (sin 4 5)]X, (cos 4175)Y + (sin 4175)“ , (cos 4."./S)Z + (Sinm'-/s)]z,
(cos ZIW T Gsin ZTIOIW) = 200(X,Y,Z,W) ~ - - - - - - G

Using linearity of & , and add (i) to (ii) we get
'. ' 2(cos3 2—’75 cos[*-"/’5 + cosd 41}5 cos 217/5) D((X,Y,Z,W)‘ +

U | -
Acos? 2175 sin 2775 sin 4 /5 . cos? 41}5 sin 2“/5 sin 41‘}5) [O((X,Y ,JZ,JW) +

X X,JY,Z,]JW) + (]X,Y,Z,]W)] + 2(c052175 sin? 2“;5 cos 4."/5 +

cos 4175 sin2 4 /5 cos ZWS)EM(X’JY JZ,W) + X (X, Y,]Z, W) +0& (JX’N’Z’W)]

Ay v
+ 2(sin3 2175 sin 4"}5 - sin3 4TT/5 sin 2 /5) oL (JX,IY,]Z,JW) = 4L (X,Y,Z,W)
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From the appendix (7)(i),(ii),(iii) and (iv) we have
- ["((]X,IY,Z’W) + X(JX,Y,]ZW) + X (X,Y,Z,JW) + A(X,]Y,]Z,W) \
+ K (X,IY,Z,]W) + < (X,Y,]Z,W) | + K OX,]Y,JZ,]W) =Tk (X,Y,Z,W)- - =Ciii)

In (iii) replace X,Y,Z,W by JX,]Y,]JZ,JW we have

— [OX,7¥,Z,W,) + (X, Y,1Z,W) + K (X, Y,Z,]W) + ol(X,]Y,]Z, W)
+ 00 CXLTY,Z,IW) + K QK Y,TZ,0W) | + Y, Z,W) = TAGX,TY,JZ,TW) s oo ()|

From (iii) and (iv) we get
_7o((x,Y,Z,w) - X (JX,IY,]Z,]W) = 7x(Jx,]Y,Jz,jW)-O((X,Y,z,w)
Voo (X,Y,Z,W) = K OX,TYLIZ, W) s e - - e -.‘ Y &' |
Using (v) in (iii) we have |

—3“(X,Y,Z,W) = N(]XJY!Z’W) + X (]ny!]ZrW) + &K (]X’szyJW)

(1Xiii) X €V, and Y,Z,WeV,

1 )
& ((cos 2755>x + Gsin 21X, (cos 4TY + Gsin “TIDIY , (cos 4TT)2 + (sin “12,
(cos 4 ToW 1 Goin TOIW) = 280X,Y,Z,W) wm ~ ool Ll @

X (cos 4Tx + sin 4TI, (cos 2TY ¥ (sin 2 TYPY, Ccos 2z ¥ (otn Tz,
(cos 2"PS)WI(sin:”/TS)]W) - 20(X,Y,Z,W) =~ ~ « o - . - SN

Using linearity of¢{ , and add (i) to (il) we get

N/
2(cos 2175 c053 47; + cos 4."/—5 c053 2775)0(()(,\{ yZ, W)+ 2(cos 2.-")5 cos 4 /5 sin2 4-"}5 |
.+ cos 41}-5 cos 21}—5 Sinz ZWS)[X(X,Y,]Z,]W) + “(X,IY,Z,]W) +X (X,]Y,]Z,W)] ’
+ 2(sin 2175 sin 4175 c052 47@ - sin 4-’T/.S sin 2]}5 c052 2.";5)[0( Jax,Yy,z,Jw)

+& (X,Y,1Z,W) + & §X,]Y,Z,W) | + 2 (sin 2T sin3 4775 ] sm4775 sind 2795,
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o (JX,1Y,]Z,IW) = 4&K(X,Y,Z,W)
From the appendix (7)(i),(ii),(iii) and (iv) we have

—[M(X,Y,]Z,]W) + XX,]Y,Z,]W) +D((X,]Y,]Z,W)] + [O( gx,Y,z,jw)
.+ “(JXsY,]Z’W) + D((JX,]-Y,Z,W)']—O((JX,JY,]Z,]'W) = 70((X,Y,Z,W)‘\‘ ‘(iii).

In (iii) replace X,Y,Z,W by JX,]JY,]JZ,]JW we have

—[(X(]X,]Y,Z,W) + X (X,Y,]JZ,W) +& (]X,Y,Z,]W):] +[0‘ X,JY]Z, W)
+O((X,]Y,Z,]W) +o((X,Y;‘]Z,]W)]—XCX,Y,Z,W) = 70((]X,]Y,]Z,]W)‘\\\(1V)'

Add (iii) to (iv) we have

“[N X,Y,Z,wW) + M(JXJY;JZ’]W)] = 7[°<(X!Yi29W) + X (]stY’]Z9]W)]
or X (X,Y,Z,W) = =X(X,]Y,JZ,JW) ~ « < . '

N 6 ')
Using (v) in (iii) we get
3“(X!Y!'IZ’W) = X (]X;]Y,29W) + O((]X,Y,]Z,W) + D((]X,Y,Z,]W)

(2) We have S preservesﬁ y i.e. for all V,X,Y,Z,W V, we have

2
BV,X,Y,Z,W) = B (SV,5X,5Y,52,5W) = B(s?v,52X,5%v,5%2,5W)
- f s3v,s3x,s5%y,s%z,5%wW) - ﬁ(s‘*v,s“x,.s‘*v,s‘*z,s‘*w) NSNS,

LetV = V, +V,, X = x1+X2’ Y = Y1+Y2, W = W;+ Wy Z4Z, ,where

VXY 1,2, W, €V, and Vo, X0, Yo, ZoW, €V,

2 2 2 2 2
Hence F(V,X,Y,Z,W) =2 2 e o UYLz, W)
i=1 j=1 k=1 =1 n=1
This gives 32 terms, to prove@ of the proposition, we make use of the
condition p satisfies, and this requires us to consider only 12 cases, which

are given in (i),(ii) and (iii) of part@ of the proposition
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2 W@ V,X,Y,Z yWEV,. Then from equation @we have !

. !
B ((cos 210V + Gsin 2TV, (cos 2]X ¢ (sin 27 31%, (cos 2TY + (sin 23y, |
5 5 5 5 5 5 z
(cos 275)2 + (sin 2175)12, (cos 2175)w + (sin 2775)Jw) - 2B(V,X,Y,Z, W)~ - - - - @
F((coa 47 MV + (sin 417 )]V, (cos 417 )X + (sin 4T7 NX, (cos 477/ )Y + (sin 4""/- )y,
5 5 5 5 5 5
(cos & ’7_;))2 + (sin *719)Z, (cos 4’75>w + (sin 4’75>1w) = 2BV, X,Y,Z, W) v s G|

Using linearity of ﬁ , and add (i) to (ii) (in each equation 16 terms out

of 32 are cancelled), we have

2 T

2(c055 2-'7/-5 + c055 41}‘5) F'(V,X,Y,Z,W) + 2(c953 2."75 s-in2 2775 + c053 47’/—5 sin /5)

[F(]V,JX,Y,Z,W) + B OV, X,JY,2,W) + £ OV, X,Y,1Z,W) + ﬁ(]v,x,v,z,]w)
'+ B (V,IX,1Y,Z,W) + F vax,Y,0Z,w) + B(V,IX,YZ,]W) + ﬁ(v,x,JY,]z,w)'
P BRIV, 2,0 + BOV,XY 2,080 ]+ 2eos 2T smAZVS+ cos T sin D)
[ﬁ(]v,]x,w,]z,w) + F(]V,]X,]Y,Z,]W) + F'(]V,]X,Y,]Z,]W) I
+ ﬂ’(]v,x,_]Y,]z,]w) + [J’(v,]x,w,]z,]w)J - 4BW.X,Y,Z,W)
From the appendix (8)(i), (ii) and (iii) we have

_.['g(]v,]x,v,z,w) + ﬁ(]V,X,]Y,Z,)Y)_ + F(]V,X,Y,]Z,W) +ﬁ(JV,X,Y,Z.JW)
+ B (V,IX,0Y,2,W) + B (V,IX,Y,1Z,W) + F (V,IX,Y,Z,JW) + B (V,X,IY,jz,W)
+ B (V,X,0Y5Z,0W) + BV,X,Y,]Z,0W) - @ QV,IX,IY,]Z, W)

- BAVLIXIY,Z,0W - B (V,IX,Y,IZ,IW) - f(]v,x,]Y',.Jz,JW)

. F(V,]X,JY,]Z\,]W):] - 15BOV,X,Y,Z,W) - - = = = m - e (i)

In (iii) replace V,X,Y,Z by JV,]JX,JY,]JZ, we get



an

—[F(]V,]X,Y,Z,W) + B QV,X,0Y,Z,W) + P AV,X,Y,1Z,W) +B (JV,X,Y,—Z,JW)-
+ BOLIXIY,Z, W+ BOV,IXYLIZ, W+ BOV,IX, Y, Z,0W) ¢ BV, X,1¥,]Z, W)
+ B (V,X,]Y,Z,JW) + F(V,X,Y,]Z,]W;- B (v,1x,1Y,1Z,]W) - F(JV,X,JYJZ,M:I
- B (]V,]X,Y,]Z,]W)- - é’(]V,]X,]Y,Z,]W) - P(V,X,Y,z,W)]
- ISF(JV,JX,JY,]Z,W) R ¢ 2
Subtract (iv5 from (iii) we have

-F(JV,JX,]Y,]Z,W) + €(V,X,Y,Z,W) - 15[ﬁ(v,x,Y,z,w) . F(]Q,Jx,]y,]z,wj;
HenceF(V,X,Y,Z',W) = ﬁ (]Y,]X,]Y,]Z,W)'s“.(v)

Similarly, if we replace V,X,Y,W or V,X,Z,W or V,Y,Z,W or
X,Y,Z,W by JV,]JX,]Y,JW or JV,JX,]JZ,]JW or JV,]Y,]Z,]JW or JX,]JY,]Z,]W

respectively in (iii) and each time we sub. tract the result from (iii), we get
F(V,X,Y,Z,W) = F(Jv,]x,]y,z,]w) or B(V,X,Y;Z,W) =‘9(]\},Jx,Y,Jz,Jw)
or?(V,X,Y',aZ.,W) = BAV,X,IY,]Z,JW) orﬁ(v,x,Y,z;W)= V,IX,IY,]Z,TW) |
respectively. Hence (iii) is reduced to |

- 1ofV,X,Y,Z,W) = B QV,IX,Y,Z, W)+ ...+ B(V,X,Y,]Z,]W)

2) ()M V,X,Y,Z,WeV,

Sinc_e the coefficients of 52,522,53, and 524 are exactly the same as

thg coefficients of 812 ’ Sf’ y S 1 and 5.13 respectively, hence from equaFi,on @,

~ we are going to have exactly the same equation as (iii) in (2)(i)(a), and we use

the same calculations done there to get

\

= /o F(v,'x,\r‘,z,w) = PAVLIX,Y,Z, W+ oou s ﬁ(v}\x;v,]z,JW)

\




(78

2XiiXa) V,X,Y,Z€V, and WeV,. From equation @ we have
8 (eos 275% & (sin 2TV, (cos 2T £ Goin ZWS)]XI;:‘\__(cos 2T9Y + Gin 200y, |
(cos 27 + (sin 2T 1z, (cos *Tow ic;;m 4Torw) - 2 Bev,x,Y,2 W (@)
B eos “Tv 1 (oin ATV, (cos ATx 1 Coin ATIX, Ceos ATY + Caim FTIY |
(cos 4Tz i'_(sin 4Tz, (cos 2T75>w ¥ (sin 2175>JW) - 2BV, X,Y,Z, W) va e G
Using linearity of p’ , and add (i) to (ii), we have
2cos 27 cos” 4T+ cos 4T cos” 2T OV, X,Y,Z,W) + z(cos‘qf 275 sin 2%
sin 475 - cos® 4775 sin 4775 sin 2175)[,?(V,X,Y JZ,7W) + B (V,X,1Y,Z,]W)
¢ BOVL,IX, Y Z,1W) + B (]V;X,Y,Z,]W)_-’ . 2(cosz’75 sin® 2775 sin 4175 -
cos 4T, 503 6T, o 7T |
x[p’?v,]x,]v_,]z,]w) + F(]V,X,]Y,]Z,]W) +F(]V,]X-,Y,]z,1w)+P(JV,]X,]Y,Z,]W)].
+ Acos 2T sin 4T + cos 4T sin” 279 Fav.ix, .1z, w N ‘
- AF-(V,X,Y,Z,W) o \
From the appendix (9)(1),(1.1)(111) and (iv), we have
ﬁ(v,x,Y,]z,Jw) * ﬁ’(v,x,]Y,z,]w) + B v,x,Y,z,1W) + f QV,X,Y,Z,]W)
+ B OV, IX,0Y,02,0W) + B UV, XY, Z,0W) + OV, IX,YLIZ,0W0 + BQV,IXG Y, Z,)W,
~2fqv,1x,1Y,J2,W) - 6 (V,X,Y,2,W) ~ = s - -e (i) |
In (iii) replace V,X,Y;Z by~]V,]X,]Y,]Z, we have
'—-[‘9(]V,]X,]Y,Z,]W) + B QV,IX,Y,]Z,]W) +‘3 (V,X,JY,1Z,JW) + BV, X JY, JZ,JW)
\ +'3(]V,X,Y,Z,]W)+ﬁ(V,]X;Y,Z,]W) + BV, X,IY,Z,JW) +]6’ (v,x,Y,]Z';JWﬂ |

‘ —ZF(V,X,Y,Z,W) =éﬂ (]VrlvaY)]Z’W)‘.




(79)

. \

Add (iii) to (iv), we get

-Z[FCJV.JX,IY,Jz,W)+F(V,X,Y,Z,W>J = 6[?(]V,]X,]Y,]Z,W)+'9 (v,x>,\',z,w3

orF(V,X.Y,Z,W) +F(JV,JX,IY,-JZ,W) - o NN, |
Use (v) in (iii) we get ' \
Z[F(V,X,Y,JZ,]WMﬁ(V,x,]Y,Z,Jw)+F (V,']x,Y,x,]w)+(5’(]v,x,Y,z,]w)] _
= Aﬁ(V,X,Y,Z,W) ------------------- (Vl)

vl

In(v) veplace V,X by JV,]X, then replace V,Y by JV,]JY and finally .

replace V,Z by JV,]JZ, and add the three results, we get
B aV,IX,Y,Z,W) +lE’(V,X,IY_,]Z,W) +{3(¥V,);,H,Z,W) + B (V,IX,Y,]Z, W)
'+ﬁ' gv,X,Y,JZ,w) +'(5’ (V,IX,JY . Z,W) = 0 vn a vn.a ~(vid)
From (vi) and (vii) we get
z/?(v,x,‘(,z,w)=ﬁ(]v,]x,v',z,w) + F(Jv,x,w,z,w)+(5’(]v,x,Y,]z,wi'
| +f?(Jv,x,Y,z,JW)+f(v,1x,]Y,z,W) -+{5’(v,]x,Y,]z,W)+(6’(v,]x,Y,z,Jw>
+B (V,X,1Y,JZ,W) fﬂ(v,xzn,z,]w) +/?(V,TX,Y,]X,]W)
2XiiXb) V,X€V, and Y;Z,We vz; From equation (2) we have
£ (eos 2TV 1 Goin 201V, Ceos 2%+ Coin 21X, eos 4Tpp¥ 2 Goin 4Ty,
(cos 477/5)2 + (sin 47@)]2, (cos 47Zs)w + (sin 477S)Jw) =2 ﬁ(v,x,Y,z,Q) Sovl (D
(cos 4TV + (sin 4TIV, Ccos 4TI + Gsin 4TDIX, (cos 2T ¥ (sin 2TQIY,
(cos 2Tz T (sin 21012, cos 2 W T Csin 2I0gw) - 2BV, X,Y,Z, W05+ ()
Using linearity of ﬂ and add (i) to (ii), we have

A

: 2 2
2(cos '217/_5) cos3 477/-5 + cos 4 /S cos3 2-’.’}S)I?CV,X,Y,Z,\}J) +




80 -

. T T2 2 f
+ 2(c052 2 /5 cos 4 ;5 sin 4775 + cos & 7; cos ,2-"/5 sin2 ZT}-S) [F(V,X,Y,]Z,]W) '

+f’ (V,X,JY,Z,JW) + ﬁ(V,X,IY,JZ.“DJ

-+ 2(cos 21}; sin 2775 cos2 4 5 sin 47/2 - cos 4T1/’5 sin 4175 c032 2 5 sin2T75>
[F(V,]X,Y,Z,]W)+ﬁ(V,]X,Y,]Z,WHF(V,]X,]Y,Z,W)+F(]V,X,Y,Z,]W)+
B GV, X,Y 1230 + ﬁ(]v,x,w,z,wﬂ + .2(cos 27:,_., sin 275 sin 47; - cos 41;5
' sin 47?5 sin 2775) [F VX, JY,12,1W) +B (]V,X,]Y,]Z,]W)] . Kein 47/r5 'coé321/rs |
v sin 2775 cosd 471/-5) |

2 2
X P(JV,]X,Y,Z,W) + 2(sin2 4’75 cos 2'75 sin 2'7; + gin 27/1'5 cos 4775 s_in2 41}“5) '»

[F(]V,]X,Y,]Z,]W) + ﬁ(]V,]X,IY,Z,]W) fﬁ(]V',]X,]Y,]Z,WZL 4F(V,X,Y,Z,W)
From the appendix (10) (i), (ii), Gii), (v), (v), and (vi) we have
T BOXYIZ W BOLXIYLZ,IW0 + AU IZ, W+ BOVLIX,Y,Z,IW

+ POV,IX,Y,IZ, W+ BOVLIX,IY,Z, W)+ f OV, X,Y,2,1W) + £ OV, X,Y,]1Z,W)

+ ﬂ(]V,X,JY,Z,Wh 3-[{3(v,]x,]Y,]z,]w)+ (?(]V,X,]Y,]Z,]W)]
- 3B GV, IX,Y,Z,W) - D?(]v,]x,Y,]z',JWM BGV,IX,IY,Z,]W)
+ F(JV,JX,JY,]Z,Wﬂ = 13F(V,X,Y,Z,_W) R el € € 2Y.
| In (iii) replace X,Y,Z,W by JX,]Y,]Z,]W, we have
- ,8(V,]X,IY,Z,W)+.'3(V,]X,Y,]Z,W‘)H.+ P (V,1X,Y,Z,]W) + ﬁ(V,X,]Y.,]Z,W)
| v B OLX,0Y,Z,0w s BOV,XYIZ,0W) - B QYLIX,IY,IZ W) - F(JV,]X,-]Y,Z,-]W]
 - ﬁ(]v,]x,y,]z,]wh 3[—F(]V,X,Y,Z,]W) - P(V,]X,Y,Z,]W)]

- SF(V,X,]Y,]Z,W) - [—F(]V,X,JY,Z,W) - F(]\},X,Y,]Z,W)



@n-
_p(]v,x,Y,z,]w)] = 13ﬁ(V,]X,]Y,]Z,]W) . sl . - Gv)

From (iii) and (iv) we get

13[9(V,X,Y.Z,W)+ 3F(JV,]X,Y,Z,W) - 3[F(V,]X,]Y,]Z,JW)+ (]V,X,JYJZJW)]E
= 13WV,IX,IY,1Z,W) - 3FQV,X,]Y,1Z,]W) -3[F(v,x,Y,z,w>--f GVIXY, Z, W),
orF(V,X,Y,Z,W) = ﬁ(V,]X,IIY,]Z,]W) ------- RN () I

Similarly, in (iii) if we replace V,Y,Z,W by JV,JY,]JZ,JW and compare

the result with (iii) we get

13(5’(V,X,Y,z,w) + 3P AV,IX,Y,Z,W) - 3[F(V,JX,JY,]Z,]W) + ﬁ(]V,X,]Y,]Z,]W)}

- 13___'}’(JV,X,JY,]Z,JW) - 3;f(v,]x,w,]z,]w) ) ;[ﬁ(v,x,Y,z,w} -ﬁqv,pc,\;z,w):]

orﬁtv,x,Y,z,w) =ﬁ(]v,x,JY;]z,Jw) v |
In (vi) replace V,X by JV,]X and add the result to (v'), we get

B . x,Y,z,w)+ F(V,JX,Y,Z,W) = o s s m s e (vii)
Using (v), (vi) and (vii) we have

ﬁ(]V,]X,Y,]Z,JW) + ﬂ (]V,]X,]Y,Z,]W)+ /?(JV,]X,IY,]Z,]W)

- - [Bav.x Y.z, W+ B GV,X,Y,12,W + B GV,X,Y,2,1W) ]
- = [BOV,1X,3Y,2,W) + BOIXYIZ,W) + B (V,1X,Y,Z,1W) ]
e <JB CVXYIZIW s B VXY, 2, W0 s fOV,X, Y12, W)
This with (v), (vi) and (vii) in (iii) gives .\-
.-—[F(]V,]X,Y,JZ,JW)+-F(IV,JX,IY;Z,]W,)+P(]V,]X,IY\T;]Z.,W)J o
: =l9 (v,X,Y,Z,W)

Hence (iii) is reduced to

2/5’(v,x,Y,z,W) =/?(Jv,.]x,*{,z,w)+ 4,@(V,X,Y,]z,]w) |
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(2XiiXc) VeV, and X,Y,Z,W¢V,. From equation(2)we have S

B (eos 4TV + (sin HIIV, (cos 2 Yo% £ Csin 21X, Ccos 2T Y + (sn 2 Tom,

(cos 2 /5)2 1(sm /5)12, (cos 2 /S)W + (sin "};)]W) = 2F(v,x,Y,z,W)~ v @

g Ceos 2TV 7 (sin 2T1Y, Ceos 4T & Cotn #T1x, Ccos 4 TY 4 Gotn Ty,

(cos 4 Tz £ Gsin 4TI1Z, (cos ATIW + (oin 4TITW) = 2 f(V,X,¥,Z, W00 v G |
Using Linearity of fS’ , and add (i) to (ii), we have

4
2(cos 2775 cos 4775 + Ccos 4775 cqs )?(V X,Y,Z,W) + (cos 2 /5 cos /5 sin 41; |

+ cos /5 cos /5 sin 1‘}5)[18 (V,X,Y,]Z,]W) +P V,X,IY,Z,JW) +F(V,X,]Y,]Z,W)

| .
+BCV,IX,Y,Z,]W) + B(V,1X,Y,]Z, W) + B (v,]x,]Y_,z,w)] " 2(c052]75 sin 4175

+ cos 4T sin 2T, 5)(5’(v IX,TY ,]Z,]W) + 2sin V._; sin 2T cos 2T
- sin 4775 sin 75 cos 5)[F(]V,X,Y,z,]w) +F(]V,X,Y,]Z,W)
+f GV, X,IY,Z,W) +{3 (JV,JX,Y,z,w)] + Asin 4“;5 cos 75 sin 175- -
in 27/'; cos 4775 sin & 5)[(3’ AV, X,0Y,3Z,1W)+ B (V,1X,Y,]Z,]W)
. ‘9(Jv,]x,JY,z,]w)+ﬁ(]v,]x,]v,]z,wﬂ = AF(V,X,Y,z,w)
From the appendix (9)(1),(ii),(iii),(iv) and (v), we have
-2P(V,]x,w,]z,]§r)+[,6’(]v_,x,Y,z,]w) +.F av,X,Y,JjZ,w)
+ BQv,X,1Y,Z,W) +P.(]V,]X,Y_,Z,_W;_} +[ﬁ(]V,X,IY,'JZ-,JW)
+8 QV,IX,Y,1Z,1W) +f QV,IX,1Y,Z,1W) +B QV,1X, 1Y, ]2, wﬂ
=5‘? WV,X,Y,Z, W~ = =~ « - - — == (iii) |

In (iii) replace X,Y,Z,W by JX,]JY,JZ,]JW, we have
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4

_2f3’(v,x,y,z,w)+[_ﬁ(]v,1x,w,]z,w)p- F(JV,]X,]Y,E.,,]W) | | .
- BaV,IX,Y,1Z,1W) - ﬁ(]?,x,w,]z,]w} [-F(JV,JX,Y,Z,W)
] F’(JV,X,]Y,Z,W) -‘Q(JV,X,Y,]Z,W) ‘? (]V,X,Y,Z,]Wj |
-6 B OVXTYIZ,IW - - - - - - GW)
Add (iii) to (iv) we have
-2[F(V,X,Y,z,w)+-('>’(v,]x,]Y,]z,]wﬂ
=‘5[_‘,6’ (V,X,Y,Z,W)+F(V,]X,]Y.;']Z,JW)j
or P’(v,x,Y,z,w)+/9(v,]x,j-Y,]_z,JW) co W
Use (v) in (iii) we have
Z'ﬁ(V,X,Y,'-Z,W)= Bav.IX,Y,Z,W) +f (Jv,x,]Y,z,w)+ﬁ(]v,x,v,]z,W) \
¥ '5'(]V,).(,Y,Z,]W) ~~~~~ S e ..(v{) |

In () first replace X,Y by JX,JY ', then replace X,Z by JX,]Z,

and finally replace X,W by JX,]JW, and add the three results we get

BWIXIY,Z, W)+ BIV,X,Y,IZ,IW) + BOV,IX,Y,]Z, W)

-+ F(V,X,]Y,Z,th BV, IX,Y,Z,JW) + F(v,x,JY,]z,w) = 0 ~~~ --(v-'_ii) .
Using (vii), (vi) can be .written as

ZF(V,X,Y,Z,W) - P (]v,]xl,Y,z',w)Jr oo+ fOVX,Y,1Z,1W)

2)iiXd) V,Z,WeV, and X,Y€V,. Then from equation(2) we have

Blcos 4TV £ Gsin 4'75>1v, (cos 2-‘75»( + (sin 271X, (cos 27/ + (sin 2"’/5)1\(,

' (cos 4TIz £ (sin 4 JIZ, (cos 4 TOW 1 Csin 4?_,));w))=_ 2BV, X,Y,Z, W) (D)

\
\\
v -
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| ' W -
(cos 2 7.5)\’ + (sin 2“}5)]\/’ (cos 4 /)X + (sin 4“/'S)JX, (cos 41}5Y + (sin 4-‘.95)]'Y ‘
(cos 2 '75)2 : (sin 21‘}5)]2 , (cos ZWS)W + (sin 21;5)]W)) = 2 F(V,X,Y yZ yW) e (ii)

Using linearity of ﬁ , and add (i) to (ii), we have

3 2 3 2 : 2
2(c;s 4175 cos 275 + czos 21?5 cos 4175) ﬁ(V X,Y,Z,W) + 2(cos 4175 cos 2-175
sin 4175 + cos 21r/Scos 4775 oin 5) [(? ,X,Y,]Z,JW) + ﬁ(]v X,Y,Z,JW) +

ﬁ(]V X,Y,]Z, W)] + 2(cos 4 /5 cos /5 sin 17 sml" /5 - cos 2% cos4 /5 sin /5
.2
S1in 5)

X[F(]vx Y,Z,W) + F(VX]Y Z,JW) + p(VXJY 1Z,W) + ﬁ(v ]XY Z]W)

3 2
+ P(V X,Y,]Z, W)+F(]V X,Y,Z,W) + 2(cos" 4/Ssm "\ /5+ cos 27 sin 1.95)

2 2 2
F (V,IX,JY,Z,W) + 2(cos 475 sin. 21)5 sin 417 + COs / sin /5 sin 2795)

.
fFB(v JX,TY,IZ,TW) + F(Jv ]X,IY Z,Jw)+ BQv,Ix,1Y,jz, w)] + Asin 2 Js cos 21r/5
/S - sin’ /5 cos /5 sm /5) [ﬁ(]v X,JY,1Z,JW) + B(V,IX,Y,]Z, ]W)]

- 4F(V,X,Y',Z,W) :
From the appendix (10)(1),(ii),({ii),{v),(v) and (vi), we have

B(V,X,Y,]Z,]W) + BV,X,Y,Z,]W) + F(V,X,Y,]Z,W) + £ (V,X,]Y,Z,]W)
+ PCV,X,IY,]Z, W) + g (V,IX,Y,Z,]W)+ B(V,]X,Y,]Z, whp’(]v,x,ry,z,\#)
+ B V,IX,Y,Z,W) -3@(V]xwzw)-[p(v1x1YJZJw) |
o+ fe(]v X IYL,Z,JW) + F(]V X, JY,J]Z, w)__] + 3[F(JV X,IY,JZ,]W) \.
v BAV,IRY,IZ, 0] = 13FCLXY,Z,W0 8 s s oo s -G

In (iii) replace V,Y,Z,W by ]V JY,]Z,]W, we have

p’(]vxn{ Z,W)+ B(V,X,IY,]Z, W)+F(VXIY Z]W) + F(]VXYJZ w)
S+ BAVIX,Y,Z,IW) - FQV,IX,TY,1Z,W) - B V,IX,TY yZ,]W)
+ POV, X,Y,1Z,JW) - F(v IX,TY ,]1Z,JW) + 3 F(]v 1X,Y,]Z,]W)
-[-Bav.x,y,z,w - BV, IX,Y ,JZ, W) - ﬁ(VJXY z ]W)J
' 3[F(V,X,Y,Z,W) B (V,IX,]Y,Z,W)] - IBF(JV,X,JY,]Z,]W) )

. From (iii) and (iv) we have
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13ﬁ(V,X,Y,Z,W)+ 3F(V!]X;IY,Z,W) = 3#(]V,X,IY,]Z,]W) - 3F(]V,]X,Y,’]Z,]W) ’

= 13FQV,X,IY,IX,IW) - 3FQAV,IX,Y,12,W) - 3RCV,X,Y,2,W )+ 3FCV,IX, IV, Z,W) |

orF(V,X,Y,Z,W) - ﬁ(]v,x,]Y,]z,]w) N )

Similarly, if we replace V,X,Z,W by JV,JX,]Z,]JW in (iii) and compare

the result with (iii) we have

13 BV, X,Y,Z, W)+ 3V, IX,IY,Z,W) - 3,9(]V,X,]Y,]Z,]W) - 3FQV,IX,Y,]Z,]W)

= 13BAV,IX,Y,1Z,]W) - 38 GV, X,1Y,1Z,]W) + 3BV, JX,IY,Z,W) - 3BCV,X,Y,Z,W)

| -or ﬂ V,X,Y,Z,W) =  QV,JX,Y,]Z,JW) + = , K v (vi)
From (v) and (vi) we have by replac;;é X,Y by JX,JY in (v)
P(V,X,Y,Z,W)+f?(V,]X,]Y,Z,W) = 0 (vii)
Using (v) , (vi) and (vii) we have

,5’ (V,JX,IY,JZ,JW) + £ QV,JX,TY,Z,]W) + £ QV,JX,JY,]Z, W)

- [ﬁ(]V,]X,Y,Z,W) + BOVIX,Y,IZ, W)+ B (V,IX,Y,Z, W) ]

- [BUVXIY,2,W) + BOV,X,IY,1Z,W) 4 BOV,X,IY,2,0W)

- [{;’(V’,X,Y,Jz,]w) +,S’(Jv,X,Y,Z,JW) + F(IQ,X,Y,JZ,JW)]

This with (v) , (vi) and (vii) in (iii), we have

] [F(v,]x,]Y,JZ,]W) + BAV,IX,IY,Z,]W) + IP(IV»IXJYJZz“’ﬂ

= ﬁ(v,x,_Y,z,W)
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Hence (iii) is reduced to .
ZB(VXYZW) p(]V X,Y,Z,W)+ ...... +B(VXY]Z]W)
- 2X 11)(e) V Y,WeV, and X,Z¢&V,. From equation @ we have
ﬁ((cos / )V"'(sm 4_“"/ )]V (cos 27 T/ )X (sm 2 / )IX (cos 4-ﬂ-/ i
(sm4 /5)]Y (cos /5)2 (sm2 /S)JZ (cos / )W't(sm T/S)]W =

2B(V,X,Y,Z,W) ..... )

Pieos 2T/ vsin 2 T, (eos T/ xE(sin * TINX, (cos 2 T/ Y F
Gin 2 T [N, Ceos 4 T /2t sin 4T/ 12, (eos 2T | W (sin 2 T/ W) -
2B(V,X,Y,Z,W) ..... (1)

Using linearity of B, and add (i) to (ii) we have
cos 2 /5 sin 1T/5 am /g . 4'rr/ 47T/ TT/S)

cos 277/ cos

\\‘

2(cos 34—"/ cos 217/ + cos 2'“'/5 cos 4-"75) B(V X,Y,Z,W) + 2(cos 4Tr/5 '

EP(Vy)(’Y yJZ ,]W)_+ p(V y X,JY v]sz) + P(VJX.,sz’]W) + p(V,]X,]Y,Z,W)'+ )

l" BV, X,Y,1Z,W) + BAV,JX,Y,Z,W)] + 2cos # T/ cos 22TT/5 sin 2411/5
-+ cos 2T/ cos 24T sin 2O BWV, X, 1Y, Z,1W) + BAV,X,Y,Z,JW)

+ BAV,X,]Y,Z w} 2 (cos 341T/5 sin 22'ﬂ/5 + cos 321)'/5 sin 2+Tr/5)

P(V 1X,Y,]Z,W) + 2(cos &m /5 sin 277/5 sin 477/5 + sin 2'7775 cos 77/5
sin 47f/5 [ﬁ(v IX,JY,JZ,]W) + BOV,JX,Y,]Z,]W) + B(V,JX,]Y,]Z, W)]

+ 2 (sin 77/ sin 34-'7-/5 cos 27’/5 - sin 2-"75 sin 4'77/5 cos 4 TT/S)

fp(]v X,]Y,1Z,JW) + BGV,JX,]Y,Z ]W)]= 4BV, X,Y,Z,W)
| From the appendix (10) ), Gi), Gii), Gv), (v) and (vi), we have

« BOV,Y,]Z, W) + BV, X,]Y,]ZW) + B(V,]X,Y,Z,JW) + B(V,]X,]Y,Z,W)
+ BAV,X,Y,JZ,W) + p(]v,]x,Y,z,w)]+[p(v,x,]Y,z,]w) + BGV,X,Y,Z,]JW)
+ p(]v,x,]Y,z,w)]- 3p(V,IX,Y,]Z,W) - ﬁB(V,]X,]Y,JZ,]W)
+ BAV,JX,Y,]Z,JW).+ BAV,]X,]JY,]Z,W)] + 353(]V,X,]Y,]Z,]W)
+ BAV,IX,IY,Z,JW)] = 13BOV,X,Y,Z, W) cviininiienneinennes, (iii)
In (iii) replace V,Y,Z,W by JV,]JY,JZ,JW, we have B(V,X,]Y,Z,W) +
BAV,X,Y,Z,]W) - p(]V,]X,]Y,]Z,W) - BUV,IX,Y,]Z,JW) + B(V,X,]Y,Z,]W)

4 p(v;jx;Y,]z,JW)]+[P(Jv,_x,\/,'J.z, W) 4 B(V, XTIz, W)+

ﬂ(V,X,Y, IZ)KW)J'B;? (JV; O-X)IY)Z,JWJ-‘L—‘ ﬂ(JV;'SX,y,Z,W)

- o et e e
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- p(V,]X,]Y,Z,W) -'p(V,]X,Y,Z,]W)) + SE3(V,X,Y,Z?W)

— POLIX, Y02, W= 13BOV,XGIY,JZ,IW) e, iv) ;

From (iii) and (iv) we have |
13B(V,X,Y,Z,W) + 3p(V,]X,Y,]Z,W) - B[]B(JV,X,]Y,]Z,]W)
. p(Jv,jx,JY,z,JW)} 13UV, X,JY,]Z,JW) - 3BUV,IX,JY,Z,TW)
- s[p(v,x,Y,z,w) - p(v,]x,Y,]z,W)] or B(V,X,Y,Z,W) = B(V,X,]Y,]JZ,]W)

Similarly, if we replace V,X,Y,W by JV,]JX,]JY,JW in (iii), we have
13V, X,Y,Z,W) + 3PIV,IX,Y,]Z, W) - 3[BAV,X,]Y ,JZ,]W)
+ BAV,JX, 1Y, Z,]W)] = 13BQV,I1X,]Y,Z,IW) - 3PAV,X,JY ,JZ,]W)
: SEP(V,]X,Y,]Z,W) ¢ POV, X, Y, 2, W) or B(Y,X,Y,Z,W) -
P(Jv JXGIY 3Z, W) cieieinennnns R PR TR (vi)
In (v) replace X, Z by JX,JZ and add the result to (vi), we get
BV, X,Y,Z,W) + BOV,TX,Y,JZ,W) = 0 teuvniinineiaeeaenas (vit)
Using (v), (vi) and (vii) we have, B(V,JX,JY ,JZ,JW) + BAV,IX,Y,]Z,JW)’
+ BAV,JX,JY,JZ,W) = - [BAV,JX,Y,Z,W) + B(V,JX,]Y,Z,W) +
PV,IX,Y,Z,1W)] = - [BAV,X,Y,1Z,W) + BV, X,]Y,]Z,W) + POV, X,Y,]Z,]W)]
- . ﬁé(v,x,JY,z,JW) + BAV,X,Y,Z,JW) + P'(]V,X,]Y,Z,W-)] |

This with (v), (vi) and (vii) in (iii) gives

—-[P(Y,Jx,l'y',lz,lm + BAVLIX,Y,JZ,0W) + BAV,JX,IY,1Z,W)] = BOV,X,Y,Z,W)

Hence (iii) is reduced to
2’3(V y X,Y,Z,W) = P(]V JX,YL,Z,W) 4 .., + P(V,X,Y yZ ,JW)
2)(ii)(a) V,X,YeV;, and Z,W V,.. Then from equation (%) we have
Blcos 2T/ v * (sin 2 T/ IV, (cos 2 T/ ¥ Gsin 2 T/JX, (cos 2 /Y
*sin 2 T/QIY, (eos 4 Tz * Gsin * T /N1Z, (cos # T/ W * (sin 4T /)W)
= 2BV, X, Y, Z W) ettt e e e e @
Plcos T/ * (sin 4 TSV, (cos 4T/ X * (sin 4 T/, (cos 4 W)Y
*Gsin 4 /1Y, (cos 2 /902 Tsin 2 T/ 01z, (cos 2 T/W 7, (sin 2 T/ w)

= 2BV, X, Y, Z, W) ittt ittt ittt et e (i)
Using lieasity of B, and add (i) to (ii) we have

2cos 3 2T/ cos 24T/ + cos %4W/g cos 22T/) BIV,X,Y,Z,W)

+ 2cos 32 /g sin 24T/ g + cos 34T sin 2317/5) B(V,X,Y,]Z,JW)

+ 2cos 2275 cos 4T/ sin 5T sin2fy= COSH]_ cos 27T/

rd
- -

Sin 4T} sin 27 ,
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[-F(V X,JY,Z,JW) + BV, X,]Y,]Z,W) + BWV,]X,Y,Z ]W)+,3(V X,Y,]JZ,W) |

+ POV, XY, 2,90 + BV, X, Y12, W)+ 2(cos 2T/ sin 22T/5 cos 24T

+cos 4T /g sin 47r/5 cos 27T/5)[}3(v JX,]Y,Z,W) + BOV,X,]Y,Z,W)
+ BAV,IX,Y,Z,W)| + 20cos 2 T/ sin 22T sin 24 7c + cos 47 /.
sin 477/ sin 22T D[PV, 1,X,1Y,1Z,JW) + AV, X,IY,1Z, ]W)+ P(]v ] XY,
iz, JW)J+ 2sin 92T cos 4T /e sin 4T = Cos’/ sin 2 /5 <in 4r)
[[pav,xiy,z,jw) + p(]v,Jx,]Y,Jz,W)j= 4BCV,X,Y,Z,W)
From the appendix (10) (i), (i), (ii), (iv), (v) and (vi), we have
- 3PV, X,Y,JZ,]W) -D3(V,X,]Y,Z,]W) + BV, X,JY,JZ,W) + BV, JX, Y, Z,]W)
+ BV, IX,Y,JZ,W) + BAV,X,Y,Z,]W) + BAV,X,Y,1Z, W) ]« [ BV, 1X,TY, Z,W)
+ AV, X,]Y,Z,W) + p(Jv,]x,Y,z,W)] -[BV,IX,IY,1Z, W) + BOV,X,TY,
1Z,JW) + BAV,JX, Y ,]Z ,JW)]- 3ﬁ3(]v,]x,]v,z,JW) + p(Jv,]x,]Y,]z,w}
13BOV,X, Y2, W) ceveiteeaene e eaeean s Covnnens i)
In (iii) replace V,X,Y,Z by JV,]X,]Y,]Z, we have,3BQV,JX,]Y,Z,JW)
- EpaV.IX,Y,1Z,1W) + BAV,IX,Y,Z,W) - BGV,X,]Y,]Z,]W) :
+ BAV,X,IY,Z,W) - B(V,IX,]Y,]Z,]W) + B(V,]X,]Y,Z,W)] +[,]3(]V,X,Y,JZ.,.W)
+ POV,T X,Y,JZ,W) + BV, X, Y, JZ, w] ﬁa(]v X,Y,Z,JW) + POV, JX, Y -Z'i]W)
+ PV, X,JY,Z ]W)] 3=V XY ,1Z,1W) + POV, X, Y, 2 W) = 13 GV, 1X,1Y,
JZ,JW) - s s s s e o e s e L (W)
From (iii) and (iv) we have
- 3[BAV,TX,IY,JZ,W) + BV, X, Y, Z W)]- 13[ROV, X, Y,Z, W) +
CBOVLIX,IY,JZ,W Jor POV, X,Y,2,W) 4BV, IX,IY 12, W= 0 e W)
In Giii) replace V,X,Y,W by JV,JX,]Y,JW and compare the result

with (iii) we have

- 3E3CIV X,JY,Z ]W)+}3(V X,Y,Z W)J— 1(’[‘3(\/ X,Y,Z W)+P(]V X,

IYZ]W)JorP(VXYZW)+P(]V TXATY 3 Z 3 JW) eeevnerernnnncenns (vi)
In (v) replace Z,W by JZ,]W and add the result to (vi) we get

BV, X,Y,Z,W) + BOV,X,Y,0Z,0W) = 0 i el
Using (v), (vi) and (vii), consider the following \\\

P(V,]X,]Y,]Z,]W) + P(]V,X,]Y,]Z,]W) + P(]V,]X,Y,]Z,]W)
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=.P(]V,K,Y,.Z,]W) + POV, IX,Y,Z,JW) + BOY,X,IY,Z,IW)
- BOV,X,Y,JZ,W) + BOV,JX,Y,JZ,W) + BV, X,JY,jz,w) |-t
= -[pOV,I%,3Y,Z, W04 BAV,X,TY, Z,W) + BAV,IX,Y,Z,W)]
This and (v), (vi), (vii) in (iii) gives
- [p(v,]X,JY,]Z,]W) + p(]v,x,jY,]z,JW)+P(]V,]X,Y,]Z,JW§]=
BV, X,Y,Z,W) -
Hence (iii) is reduced to
- 2P0V, X,Y,Z,W) = B(V,X,]Y,Z,]W) + p(\f,x,]y,]z,W) + BIV,IX,V,Z,JW)
+BOV,IX,Y,1Z,W) + BAV,X,Y,]Z,W) + BOV,X,Y,Z,JW) |
But from (viii) we have o |
POV, JX,]Y,Z,W) + BQV,X,JY,Z,W) + BOV,JX,Y,Z,W) = B(V,X,Y,Z,W)
= - B(V,X,Y,]Z,]W)
Hence e finally have
- 2B(V,X,Y,Z,W) = BAV,IX,Y,Z,W) + BOV,X;]Y,Z,W) + BV, X,Y,JZ,W)
+ BOV,X,Y,Z,JW) + P(V,]X,JY,Z.,W)# BV, JX,Y,]Z,W)
+ BOV,JX,Y,Z,JW) + BV, X,]Y,1Z,W) + BOV,X,]Y,Z,JW)
+ BV, X,Y,JZ, )W)
2) Gii) () V,X,ZeV], and Y,WeV, . Then from equation (2) we have
Bltcos 2 T/ Vitsin 2T 1) IV, (cos 2 /0% * (sin 2T /X, (cos 47 /5Y
AT i, (con 2 Wz . (oin 2 T/SIZ, (eos 4T 1900 % Goin 4T [opw)
= 4BV, XY, Z, W)t ireeieaiiianaanan e reee e e )
Bllcos 4 T/ * Gsin® W11V, (cos 4 T/X * (sin 4 T /X, (cos 2T/o)Y
+ (sin 2 7T/5)IY , (cos 4 TOS)Z *_ (sin % T/S)]Z , (cos 2’ _TT/5W ¥ (sin 2-n}S)JW) =
LBV, X, Y, Z, W) tiiieneninaninnnsnncanssannannaned e eeesntenane (i)
Using linearity of B, and add () to (ii) we have | |
2cos 32 Mg cos %47/ + cos 34“/5 cos 22"'3'7/5) BV, X,Y ,‘Z_I",W)
+ 2(cos 22 n]s cos 4\1’/5 sin 21T/5 sin AW/S - cos 2417/5 cos 2“/5 sin 2.“/5
sin 4~’T/S)fp(v,x,y,]z,JW) + BOV,X,]Y,1Z,W) + BOV,JX,Y,Z,JW)
. PVLIX,0Y,Z,W) + BOV,X,Y,Z,JW) + p(]v_,x,]Y,z,w_)]+ 2(cos 32'”/5




(90?:'-'

sin 24 7 + cos 34T/ sin 227/ B, X,JY, Z,JW) + 2Acos 2W)e sin 227/

cos 24'”/5 + cos 41T/5 sin 24 /s cos 22TT/5) [p(v‘,]X,Y,]Z W) + BV, X,Y,]Z,W)

+ BV, JX,Y,Z,W)]+ 2(cos 2 W/S sin 24“'/5 sin 227/¢ + cos 41T/5 sin 2z‘T-/5

sin 2417/5)[}3(]V,X,JY,]Z,]W)-+ BV, JX,IY ,JZ,JW) + p(]v,]x,]Y,z,]wﬂ

+ 2(sin 4-"75 cos 4TT/S sin 32-"/5 - sin 34-"‘/5 sin 2 Tr/5 Cos Z‘yg)[ﬁ_(JVJJX,Y,JZJJW) -

+ BAV,IX,IY,JZ,W)] = 4BV, X,Y,Z,W) C
From the appendix (10) (i), (i), Gii), (iv), (v) and (vi), we have

- BE(V,X,Y,]Z,]W) + BOV,X,Y,1Z,W) + P(V,JX,Y,Z,]W).Jr BV, JX,]Y,Z,W)

CBOV,X,Y,Z,]W) + ﬁ(]v,x,JY,z,W):l - Sﬁ(v,x,JY,z,JW) +[_ﬁ'(v,1x,Y,]z,wf
+ ﬁ(]v,x,Y,]z,w)+ﬁ(Jv,Jx,Y,z,wﬂ -[ﬁ(v,]x,]Y,]z,JW)+ﬁ(1v.,x,JY,]z,JW)
+ Bav,ix,0v,2,1w)] - 3[}5’(]V,]X,Y,]Z,]W) + POV, IX,1Y,1Z, W) ‘
= 13,3(V,X,Y,Z,W)- S (1 1))
In (iid) replace V,X,Z,W by JV,]X,]Z,]W, we have

= [BOY XY,z W - BOVLIX,IY,Z,0W) + BOV,X,Y,IZ,W) - BOV,X,TY,IZ,IW)
¢ BOV,IX,Y,1Z,W) - BOV,IX,TY,IZ,0W)] + 3BQV,IX,IY,IZ,W) +
[BGV.X,Y,z,JW) +B (V,IX,Y,Z,]W) + B (V,X,Y,]Z,]W)] -[.F(]v,x,w,z,w) ,
B, IX,Y,Z,W) - BOX,IY,1Z,W) - 3] BOV,X, Y, Z,W) -pov.x, v, z,w)]

= ISP(]V,]X,Y,]Z,]W) - - - - - .. (W

~ From (iii) and (iv) we have

- 3[ﬁ(]v,]x,Y,Jz,]w) +ﬁ(V,X,Y,Z,Wﬂ - 13[F(V,X,Y,Z,W) +P (]Y,]X.,Y,]Z,]WEL

or F(V,X,Y,Z,W) + BQV,IX,Y,JZ, W) = 0 ----(

Similarly, if we replace Y,X,Y,Z by JV,]X,]JY,]Z, and we compare the

result with (iii) we have

_3[F(V,X,Y,Z,W)+ﬁ(]v,]x,]Y,]z,W) - IB[F(V,X,Y,Z,W) +

Fav,1x,1¥,12, W)
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or B (V,X,Y,Z,W) + ﬁ GV, JX,JY,JZ,W) = 0 =~ - -(vi)
In (v) replace Y,W by JY,JW and add the rfsgu to (Vi) we get

B, x,Y,z,w +-ﬂ (V,X,]Y,Z,]W) = 0 = = - - (vid)
psing (v), (vi) and (vii), consider the following

POLIXIY,IZ,IW + B OV,X,IY,IZ,W) + B (V,IX,IY,Z,1W)

PV, X,0Y,z,W) + LW, IX,IY,Z,W) + £ (V,X,]Y,]Z,W)

BaV.X,Y, 21w + B W,IX,Y,Z,IW + B (V,X,Y,]Z,]W)

-D?_(v,]x,Y,].z,W) + [S’(JV,X,Y,JZ_,W) ¥ ﬁQV,Jx,Y,z,W):]

This and (v), (vi) (vid in (iii) gives
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-ZF(V,X,Y,Z,W)=[/3(V,X,Y,]Z,]W)+ ﬁ(v,x,]Y,]z,v;b:fﬁ(v,Jx,Y,z,]w)
+ﬁ(V,]X,]Y,Z,W)+F(JV,X,Y,Z,IW)+P(]V.,X,]Y,Z_,W)j"_ |
But from (iti) we have
F(V,]X,Y,]Z,W)+F(JV,X,Y.;]Z,W)+ﬁ(]V,]X,Y,Z,W):/9(V,lX,Y,Z,W.)

- B, x,1v,2,1W)
Hence we finally have
2Fw,X,Y, ZW)-. BAV,IX,Y,Z,W v + BV, X,Y,1Z, W)

(2)Chiyce)d ! VeV
and X,Y,Z,WgV,. From equation(2)we have 'B [gcos 2l /S)V'\'(sm /5)]V

(cos /S)Xf (sin4/5)]X,(cos_ /S)Yt(sin /S)JY,(cos /5)zf(sin /5)]Z,

47

» YWt(sin? " )]w] -2 BV, X, Y, Z, W)+ @)

(cos

A
\

ﬁ [(:cos4 Sij(sin /5)]V ,(cos /S)XI.(sin /S)JX ,(co 52 WS)Y;(_sinz 77.5)]Y ,
(coszw/-S)Z F(sinzﬁs)]z ,(cosmT/s)W'.T_' (SmZTI/S) ]\}g =2 F(.V W X,Y,Z, W) .- 200 (i)

Using linearity of ﬁ , and add (i) to (ii) we have

4 4 2
2(cos‘2"/5cos 4"[;:’ + cosurlscos 2")5) ﬂ(V,X,Y,Z,W) + 2Ccoszr75cos

2 2 2
n 4’75 + cosz‘wscos 2,7531n 2”}5) L‘F(V,]X,]Y,Z,W) + F w,JX,Y,]Z,W)

AL
/s

+ ﬁ(V,]X,Y,Z,]W) +P(V,X,]Y,]Z,W) + P(V,X,]Y,Z,]W) +ﬁ(V,X,Y,]Z,]W)]
4 4 |
+ 2(c052175 sin 4“;5 + cos[*‘n}5 sin 2"}5) F(V,]X,]Y,]Z,]W) + Z(Sin2775

s 471'/5 sin[’}s - sin4775 sinzT}S c‘os 2175)[/9 gv,X,Y,Z,]JwW) +BQV,X,Y,]Z,W)

' T 3
+ ﬁ aqv,X,JY,z,w) +/9 (]V,]X,Y,Z,W‘)J + 2(51112"/5 cos[‘v/_5 sin 4175 -
3
sin4”}5 sin 2], cosz%)[/? AV, X,1Y,1Z, 1) +BAV,IX,Y,1Z,1W) +

B AVIXIY,Z0W0 4 B OV,IXTYIZW] - 4 fO XY, 2w
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Fr om the appendix G @, Gi), Gii), (1v) and (v) we have
-2 BV, 1%,0Y,12,19 - [ BAV,X,Y,2,19) + B AV, X, Y,1Z,W) + BGV,X,]Y,Z,W |

+BAV,IX,Y,2,W) -[Fclv,X.JY,Jz,Jm+ﬁ<1v,1x,Y.Jz,Jw5

+ BOV,IX,TY,Z,1W) + Pav,ix,1v,12,w)] - 6,B(V,X,Y,Z,W)' D)
Replace X,Y,Z,W by ]X,]Y,]Z,]JW in (iii) we have

2BV, X,Y,Z,W) -[—F(]V,]X,]Y,]Z,W)_-‘B (]V,]X,]Y,Z,]W)l

- F(]V,]X,Y,]Z,]W) -F(]V,X,]Y,]Z,]W)] [ ﬁ(]V,]X,Y;Z.“D

- PGV, X,1Y,Z,W) -B AV, X,Y,1Z,W) -F(]V,X,Y,Z,JW)J -~

= 6F (V,IX,Y,1Z,1W) ____.__(i.v) |

From (iii) and (iv) we have

-2 ['F(V,]x,]Y,Jz,JW) + f’(v,x,Y,z,W)J -6 !_—P’(V,X,Y,Z,W)

+ PO, 1%,0Y,32,0W)ong KV, X, Y, 2, W) +P(v-,jx,]Y,Jz,JW) -0 W

Using (v) in (iii) we have

-Zﬁ(V,X,Y,Z,W) =[?(]v,]x,Y,z,W) +(6’ gv,X,JY,Z,W) +(S’(JV,X,Y,]z,W)

+F(]V,X,Y,Z,]W). (vi)

Also if in (v) we first replace X,Y by JX,]Y, then we replace X, Z by jx_, jZ

and finally we replace X,W by ]X,]JW, and we add the three results we have

PV IX,0Y,Z,W) + BV, X, Y,1Z,]W) + f OV JX, Y, 1Z,W) +B (V,X,_]Y,Z;]W)
+B (V,IX,Y,Z,]W) +F(V,X,]Y,]Z',W) g'o —_— (yid) |

Equations (vi) and (vii) give : “

-2 BV, X,Y,Z,W) = FQV,IX,Y,Z, W)+ « . o F(v,x,:{'-,_]z,]w) |

-2) (i) (@) V,We Vo and X,Y,Z2¢V;. From equatioh @ we have
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Pltcos* Tovicsin® IpIv, (cos? Tox t Gsin? JIX, (cos? JOY * (sinZWS)JY, |
(cos? IT/S)z * (sin? "/—5)12, (cos‘*nfs)w < (sin 41TIS)JW:} - 2(3(V,x,Y_,z,W) ___.<1)
P [(cos? TV 3 (sin? v, (cos® TX t (stn® X, (cos® Y *
(sin‘*Tr/S)JY, (cos ";5)2 * (sin® 7r/s)]z, (cosé 'T/S)w 7 (sin® 7"/5)]w] -
2ﬁ('v,x,Y,z,W) I ¢ )

. Using linearity of ’3 , and add (i) to (ii) , we have

2 3 2 3 |
2(cos 4 175 cos 2"-/_._-) + cos 217/5 cos 4.7?5_) F(V,X,Y,Z\»W) +

2 2

2(cos4Tr/5 cos 2 Tl/; sin? nis sinz‘-‘T/5 - cosz-“’/5 cos 4"“-/5 5‘in41.'}5 sinzv/S)

[ 07X, Y,12,090, B 0V, X0, 2,0W) + BOV,IX,Y,Z,1W) + £ AV, X, Y,12,W)

2 -
21T/5 cos 211/5

: 2
+ FGV,X,]Y,Z,W) + F(]V,]X,Y,Z,W):} + 2(cos 4-”’/5 sin
. 2 2
v+ cos® T sin 4T cos 2T [—(Q(V,X,]Y,]Z,W) ¢ BOV,IX, Y12, W)
3 2 3, 200
+ ,]X,]Y,Z,W)] + 2(cos 21!'/5 sin 41r/5 + cos 477]5 sin 2_"/5) 
. 3 - 3 '
‘5 gv,X,Y,z,JW) + 2(cos47r/ sin 2-IT/ sinZ’Tr/ - cosz.”} sin 4-”} SmZ'H;)
5 5 Sin g 5 5 sin” /s
S 2 2,
fﬁ (V,TX,]Y,1Z,]W) + p’(Jv,]x,JY,]z,W)] . 2(cos,2"}5 sin 2Tr/5 sin 411'/5 |
2 2 | -
+ cos* T sin 4775 sin 27/ f,? AV, X,0Y,1Z,1W) + B QV,1X,Y,12,]W)
v B OV,IX,IY,2,00] = 4B V,X,Y,2,W)
From the appendix (10) (i), (i), @ii), (iv), (v) and (vi) we have : - \
_[‘,8 (V,X,Y,]Z,]W) + B (V,X,]Y,Z,]W) + f (V,]X,Y,Z,]W)
+f GV, X,Y,1Z,W) + £ QV,X,]Y,Z,W) + p’qv,]x,Y,z,w§]+f'£(v,x,]Y,]z,W)_

+ ‘9 vV,I1X,Y,]Z,W) + ﬁ(VJX’JY’Z’W)] - 3[F(V,]X,]Y,]Z,]W)

+ F(JV,X,Y,Z,]W) + IQQV,]X,]Y,]Z,W)] -[FUV,X;JY.IZ,J\W




v FVax,Y,1Z0W 5 B aV,IX,IY, 2,10 =13‘E(V,X,Y,Z,W)_.;__

In (iii) replace X,Y,Z,W by JX,]Y,]Z,JW, we have
-[F(v,]X,]Y,Z,W) +f VLIX,Y,1Z,W) + f OV, X,1Y,1Z, W)

. /:’(Jv,]x,]y,z,JW) - /9(]V,]X,Y,]Z,]W) - ﬁGV,X,JY,JZ,JWﬂ. | _

.+[—F(V,]X,Y,Z,IW) + B, X,TY,Z,TW) + fOVLX,Y,Z,00)] |
3[ PO XY, 2, W - BQV,I%,TY,Z,W - f OV, X, Y, 2,00

. [_ qu,;x,y,z,wﬁ f av,X,jY,z,w) -ﬁqv,x,Y,]z,W)]

=13/1’(v,1x,]Y,]z,JW) Giv)

From (iif) and (iv) we have

3[F V,IX,Y,]Z,W ) + (é’(]v,x,v,z,]m+/4(]v,]x,]y,z,]w5]
A3 BV, X,Y,2,W) - 3}_'/? (V,X,Y,2,W) - B QV,IX,]Y,JZ,W)
[ GV, X,Y,Z,5w) -3 VLIX,TY, 2, or fIV,X,Y,Z,W)

&)

+ f (V,IX,]Y,]Z,]W) = 0
. Similarly if in (iii) we replace V,X,Y,Z, by JV,]X,]Y,]JZ and compare
the result by (iii) we have

BOLXY,Z,W) . (3(JV,]X,JY,]Z,W)=O (vi)

In (v) replace V,W by JV, JW and add the result to (vi), we get

(vii)

ﬁ(v,x,Y,z,W) + FGV,X,Y,Z,]W) =0
Using (v), (vi) and (vii), consider the following

B UV, X,1Y,1Z,1W) + FUV,IX,Y,1Z,1%) + POV, IX,IY,1Z,W)

P AV.IX,Y,Z,Wy+ FQV,X,]Y,Z,W) + B QV,X,Y,Z,]W)

BOV.IX, Y, 2,10 + B OV, X,0Y,2,0W) + F OV, X, Y,12,]W)
- - [BWXIY,12,W) + BOV,IX,Y,IZ,W) + B OV,IX,IY,Z,W)]

(95)

| _(iii)

)

— (viii)
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This and (v), (vi), (vii) in (iii) gives |
- [ pav,xavaz,w ﬁ(]V,]X,?,JZ,_JWM BAV,IX,]Y,1Z,W)] |
- {5‘ (V,.X,Y,Z,W) |
Hence (iii) is reduced to ‘
-2/5’(v,x,Y,z,W) = ﬁ(v,x_,Y,Jz,]w)-'i} ﬁ(v,x,JY,_z\“-_,]w); ﬁ({/,]X,Y,Z,]W.)

+ B (iv,x,Y,]z,W) +F (JV,X,-]Y,Z:W)fF(]V,]X,Y',Z,W)
But from (viii) we have
B v,X,1Y,1Z,W) + F V. IX,Y,1Z,W) + B (V,]X,]Y,Z,W) = ﬁ v,X,Y,Z,W)
= -ﬁqv,x,Y,z,JW) | |
Hence we can write
2B WX, Y,Z,W = BAV,IX YL, Z,W ko o+ fOV,X,Y,IZ,TW) __
2) (iid) () Xe V,, and.V,Y,:Z,WeVZ. From equation (@) e have - o
; r(c054 ViV £ (sin® 175)]v, (cos 2 T75)x * (sin? T7/5)]x,(cos‘”’"/s)\{ * |

(sin® 7r/S)JY, (cos® 7/5)2 t (sinz’_"}S)]Z,(cos[‘ V/S)w + (gin® 7T/S)]w]

=2 F(VsX,Y’ZsW) ® o '\\"'-

Blecos? TIov 7 (sin? VDIV, (cos® TIX t (sin¥ TIIX, (cos? MY

+ (sin‘?'-n‘/S)]Y,(cos2 7_’;5)2 + (sin2 77/5)]2, (c032 7)}5)W + (sinz-,T/S)]W]

-2 B, x,Y,z,wW) G

'Using linearity of ﬁ , and add (i) to (ii), we have

2(cos

4 4 - 2 : |
4'TTIS' cos2 17}5 + COS 21T/5c054-n—/5) ﬁ(V,X,Y,Z,W) + 2(cos 4 Tr/S cos2 7?—/5 |
2, 1 2 2
sin 4_”}5 + COSs 2-”}5 cosl’-“—/5 sin 2_"-/5) [—P av,X,Jy,z,w) +F(]V,X,-Y,]Z,W) i

B 1

| + F(]V_,X,Y,Z,]W) + F(V,X,]Y,]Z,.W) +[3 (V,X,]Y,Z,]W) "'F(val'Y’]Z’]wz-]
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3 ' 3 .
4."}5 sinzﬂ;S sin '75 - cos 2TT/5 sm47,75 sinzTr/S)J_—F w,1X,Y,Z,]W)

+2 (cos

1

+ F(V,]X,Y,]z’w) + IE(V!]X’]Y'Z’W)+/9 (]V,]X,Y,Z,W)J

41T/5 sin2 TT/S sin

+2(cos - cos

3
4T 2T,
Is Is

sin’ T sinszw./s)[F(V,]X,]Y,]Z,IW)
+ BAVIX,Y,JZ,0W) + BQV,IX,IY,Z,IW) + B QV,IX,]Y,]Z,W) ]
+2(c05277/5 sin 417 + cos* T sin427T/ D PGV, X,1Y,12,1W) = 46V, X,Y,Z,W)
From the appendix (9) (D, (iD), (iii), (iv) and (v),we have
]_'ﬁcv 1X,Y,2 JW)+p’(v 1X,Y,]Z, W)+ﬁ(v JX,JY,Z,W) +f (V,]X,Y,Z wz] '
= [BVIX,IY,1Z,0W) + £ QV,IX,Y,1Z,]W) + B (V,IX,]Y,Z,]W) ‘
+ Bav,x,1Y,2,W) | -2 QV,X,1Y,JZ,]W) = 6 8 (V,X,Y,Z,W)
Replace V, Y, Z, W by JV,]Y,]Z,]W in (iii), we have
- B av,1x,1Y,12,W) - B QV,1X,JY,Z,]W) - PQV,1X,Y,JZ,]W)
- B OV, 1%,1Y,1Z,0W) | I- B av,ix,Y,z,w - B, X, JY,Z,W)
- POLIX,Y,IZ,W) - BOV,IX,Y,Z,1W) ]
-2 BV, X,Y,Z,W) - 6[9(]V,x,]Y,]z,JW) |
Add (iii) to (iv), we have
-2):F(]v X,]Y,]Z, ]W)+ﬁcv X,Y zwﬂ =6[19 ,X,Y, zw)
« BAV,X,1Y,1Z,1W) ]
or (?(v,x,Y,z,w>+ BaV,X,1Y,]Z,]W) = 0

(iii)

Gv)

W)

Use (v) in (iii) we have
2B (V,X,Y,2,W) = £ (V,]X,Y,2,]W) + BV,IX,Y,]Z,W)
+ B (V,IX,]Y,Z,W) +15(]V,]X,Y,Z,W) - i)

In (v) first replace V, Y by JV, JY, then V, Z by JV, JZ, and finally
vV, W, by JV, JW and add the results, we have

Fav, X, 1Y, W)+ f O X,Y,12,1 + £ GV, X,Y,12,W)

+ F (V,X,]Y,Z,]W)'
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+FOV,X,Y,Z,IW) + ﬁ(V,X,]Y,]Z,W) = -O,hence we can write
-ZF(V,X,Y,Z,W) - ﬁ(]V,]X,Y,Z,W) + ...#ﬂ(V,X,Y,]Z,.]W)-This
complete the proof of proposition 5. 3. 1.//

" Proposition 5.3.2. Let M be a Riemanenan locally 5 regular symmetric -

manifold. Let J be the almost complex structure on M. Let Ml and M2
be the two differentiable distributions on M, such that at each point

PEM, we have M_ = M (&> Mpz;m_ |

()@ I X,Y,Z,W, are vector fields on M belonging either to M,

or My or X,Y €M, and Z,W € M, . X,ZeM, and Y,W . € M,
Then  R(X,Y,Z,W) = R(UX,]Y,Z,W) + RUX,Y,JZ,W) 4

R(X,Y,Z,]W) and R(X,Y,Z,W) = RUX,]Y,]Z,]W)

(i) IfX,Y,Z € M, and Wef"L-_n\en,—S R(X,Y,Z,W) = R(X,]Y,Z,W)
+ R(X,Y,]Z,W) + ROX,Y,Z,JW) and R(X,Y,Z,W) = R(X,]Y,]Z,]W)

DU X & Mand Y,Z,W € M, + Then 3R(X,Y,Z,W) =
R(X,]Y,Z,W) +RUX,Y,JZ,W) + (R]X,Y,Z,]W) and R(X,Y,Z,W) =
—RUX,]Y,]Z,]W)

W 1fV,X,Y,Z,W are Vedor fields on M belonging either to M,
or M,» Then —10(YyRXX,Y,Z,W) = (VJVR}(]X,Y,Z,W) + (7 3R
X,7Y,Z,W) + (V,RX,Y,1Z,W) + (V RXX, Y, Z,]W) + (VR
UX,]Y,2,W) + (FRXIX, Y,1Z,W) +(TARUX, Y, Z,TW) + (\R) -

X,JY,]Z,W)
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WV RXX, 1Y, 2,19) + (G RXX, Y,]Z,TW)

(i) Ifv,X,Y,ZeM tru’ldWéM2 or V X€M1 and.Y Z, We M2 or

1 .
VGMzandX Y, ZWéMl or V ZWEMzandX YG MEL or V YW(—MZ

and X,ZeM,. Then 2AV,RXX,Y,Z W) - (YZVR)(]X ¥,2,W) +.
(\Z,R)(x Y,1Z,IW) ’

Gi) 1fV,X,YE€M,; and Z,WeM, or V,X,Z €M, and Y,W¢ M, or
Ve M and X,Y,Z,We My or V,W, €My and X,Y,Z& My

V,Y,Z WeMz and X €M, * Then - Z(VVR)(X Y,Z,W) = (VVR)(]X Y,Z W)
+ oo+ NARXX,Y,]Z,IW)

Proof This follo,v).s from proposition 5.3.1 and that the Curva 'tu}f e

\
tensor R is determined by its value at a fixed point, say O EM. //

Remark In part (1) of the above proposition, we only considered 6
combinations of V.ector fields belonging to M1 and M2, where in fact

we have 16 combinations, but since the CUrva ture tensor field R

satisfies R(X,Y,Z,W) = - R(Y,X,Z,W) =- R(X,Y,W,2) = R(Z,W,X,Y)
X,Y,Z,WE X(M) any case which is not considered above, ‘can be
obtained from part (1). Part (2) in the above proposition may be treated '

in the same way.

. Proposition 5.3.3. Let M be a Riewannian locally 5 - regular sym-

metric manifold with almost complex structure ]

N

T e T
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Then

() fXeM, and Y,Z,W & M,, we have s (mE e dm - 44)

[C TR, Y,2,W) + (VyRUX,1Y,12,1W) | = 24 RG (DX, 1Y,1Z,1W)
4 [RX, VD Y,2,W) +RX,Y, VyDZW + RX, Y, Z, TfDW) -

R(X, ]VM])Y Z,W) - RUX,Y ]V\ﬂ) z,w) -Rux,Y,z, VJV(J)W)]

(6m-48) R(\Z,(J)x 1Y,1Z,1W) +@m-16) [ ROX, VDY, Z,W) + RUX, Y,

Mz, + R 0X,Y,2, (J)W)],where m--100r2or-2; Ve XM

or X,YGM1 and Z,W & -M.2

+

- () If X,Y,Z,W belong to either M, or M

1 o7 M2
or X,Zg Mjand Y,WEM, or X,Y, Z'e M; and W € M,, we have
(VyRXX,Y,2,W) + (VY RAX,IY,]Z,0) =0, - or
Wy RXX, Y, Z,W) + (V RXX,IY,1Z,1W) = (W, RXIX, IY, Z,W)

P + (VU RXX,Y,1Z,1W)

Proof: - (i) From proposition 5.3.2 we have R(X,Y,Z,W) + R(JX,]JY,]JY,JW)
-0 ~-=--~-M and 3 R(X,Y,Z,W) = R(X,]Y,Z,W) + R X,
Y,]Z,W) + RUX,Y,Z,JW) - = - - ---(2) . Takethe CoVariant
derivative of (2)  with respectto V. € E(M) we get 3] (Vi RXX,
Y,Z, W)+ R (W X,Y,2,W + RX, ) ¥,2,W) + R(X,Y, V, Z,W)
+R(X,Y,Z AR ):| {(V RXX,JY,Z,W,) + R (D X,]Y,2,W)

+ RUWRX,IY,Z,W) + RUX, V(D Y,Z,W) + R OX,] 4 Y, Z,W)
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+ R (JX,]Y, sz W) + R (X,]Y,Z V )+(VVR)(]X Y]Z,W)
+ R (VA X,Y,1Z,W) + R GVAX,Y,]Z,W) + R X, V,Y,]Z,W)
+ ROX,Y, VA, Z,W) + RX,Y,] \7,2,W) + R(X,Y,]Z, V,,W)
+ (W BUX, Y,2Z,1W) + R (G (D) X,Y,2,1W) + R X,Y,Z,TW)
- +ROX, N/, Y, Z,0W) + R OX,Y,V,, Z,1W) + R(JX,Y,Z,VV(']) W)
L ROX,Y, Z, IWw =0 <« . ... i (3)
In (2) if we replace X by \/, X, we have '
3R(va Y,Z,W) = R(vax JY,Z,W) + ROV, X,Y ]z W) +
R( VVX,Y,Z,]W) and we also have similar idendities if _m (2) we
replace Y,Z,W by VY, V/,,Z and V,, W respectively. Hence (3)

is reduced to 3(Vy RXX,Y,Z,W) - ¢\, R)(X,]Y,Z,W) - (Vv R)(JX
Y,1Z,W) - (V4 R0X,Y,Z,1W) = ROV y D X,1Y,Z,W) + R (X,
Vy D Y,Z,W) +R( VV(DX Y,lzZ, W)+R(]X Y,VyO z W) :
+ R (VD X,Y,Z,7W) -

“““ﬁ_slclg G‘E‘E"'.Slr,, \
12 0CT 1974 /,:'
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+R(X,Y,Z, Vi,,(DW) = -~ e (W)

From (1) and(2)wehave 3R(\/\ADX,]Y,]Z,]W) = - R( VV(])X,. |

1Y,Z,W) . - =R(ADX,Y,IZ,W) - RCV LD X,

Y,Z,]W) Hence (4}) can be written as 3( VVR)(X,Y,Z,W) - (VVR) :
Jx,JY,z,W) - (YyR(X,Y,]JZ,W) - (Vy ROX,Y,Z,JW) = -3R

(VD X,JY,1Z,1W) + R GX, VD Y,Z,W) + R OX, Y, VO Z,W)

+ ROX,Y,Z, \/yOW) - - - - - - - (5)

.In (5) replace X,Y,Z,W B}j JX,JY,]Z,]W, using that (VV NUX) =

-TCVW DX, wehave 3\, RXX,]Y,IZ,IW) - (Vy B

X,Y,JZ,]W) - (V) RXX,]Y,Z,]W) - (Vy RXX,]Y,]Z,W) - 3

RU V@ X,Y,Z,W) + R(KX,] VD Y,]Z,]W) + RX,JY,] M

Z,JW) + R (X,1Y,JZ,] Gy DW) ~+ v~ o<~ (6 Add (53 & (6), we fane

3LCVA RXX, Y, 2,W) + (ABGX,IY, 12,00 | - [C7R0X, Y, 2,W)




(103) -

~+ CVWRUX,Y,IZ,W) + (N7, RUX, Y, Z,1W) + ( V, RXX,]Y,]Z, W)
+ (W RY (XL TY, Z3wkN XX, Y,12,1W) = - 6R (Y, @ X, T,
12,0W) + 2[ R OX, Yy D Y,Z,W) + R (X, Y, Vy D Z,W) + R X,
Y,2, VO W)J - = - - (7)

From proposition 5.3.2. we have m ( VV R(X,Y,Z,W,) - EVWR)

Jgx,Y,Z,W) + (V']V R)(X;Iy,Z,W) + (v]VR X X,Y,]Z,W) + (VJVR) .- .(8)

X,Y,z,0W0 ] = (Vy RUX,]Y,Z,W) + (Y X, Y,1z,W) + (N, B

OGIY,IZ, W)+ CZ ROGIY, Z,1W) + C V7 B (X, Y12, 1) +(Y, RX(3XY,2 3w).

Wheire 9= 10 or 2 or - 2.In(8)rep1ace X,Y,Z,W by JX, JY,]Z,]W
and add the result to § , we have m ]:.( VY R(X,Y,Z,W) + (Vv R)
(X,3Y,1Z,7)] - f(V]VRx IX,Y,Z,W) + (Vg B (X,]Y, Z,W) +
(UpRICX,Y,IZ,W + (Vg R (XY, Z,0W0 ] + (VyRD
X,1Y,12,1W,) + (V) B OX, Y,1Z, 1) + (VR XX, IY, Z,]W)

+ (VJV R)(]X,]Y_,]Z,W)J =2 (VV R)(JX,JY,Z,W) + (VV R)
ax,Y,]Z,wW) ' |
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+ (NARIX, Y, Z,IW) + (AR, IY,1Z, W) + (R, Y, Z,JW)

+ (AR, Y,JZ, W] -~ - = - - - - (9)

Use (7) in (q) we have '(3 - %m)[.(WR)(X,Y,Z,W) + (vvR)
<JX,]Y,]Z,JW)]- %E -[( VpRUX, Y, Z,W) + (VR RXX,]Y, Z,W)

+ CUWRXX, Y,]Z,W) (VNR)(X,Y,Z,]W)] +]}VNR)(X,JY,]Z,]W)
+ (VRUX, Y,1Z,IW) + (75 RIX,JY, Z,TW) + (VNR)(]X,]Y,]Z,W)]
- - 6R(Z, DX, Y,12,1W) + 2| RGX, Vy DY, 2,W) + ROX, Y, ZADZ, W)
. R(]x,Y,z,VV(J)W)] ------- (o)

In (/o) replace first V,X by JV,]X then V,Y by JV,]Y then V,Z by
JV,]Z and finally V,W by ]JV,]JW,we have thé following four equations,
(3 - 1m0 [V RUX,Y,2,W - (70,1752, ) + § -
[ (AR, Y, Z,W) - (FYRIX,TY, Z,W) - (V yRX, Y,1Z,W)

- CARAX, Y, 2,80 |+ - CAROX, 1Y, 12,1 + (R
(X,Y,]Z,JW) . | |

LTS
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+ (UK, TY, Z,]W) +((,'(,R)(X,]Y,]z,w)]} =6R(]Vlv(])'
X,1¥,12,00) + 2[ - RO, MDY, Z,W) - R, Y, VpADz,W)

- RO Y, 2, Y DW) ] < - - -- Iy - 5 @-4m

[ (T, 1, 2,80 + (GRXK, Y, Z,W0 - (T RXK,IY,1Z,W)

- ORI, Z, W) ]+ CVRRXX, Y, 1Z,1W) - (7R
(X,1Y,1Z,7W) + (A, BUX, Y, Z,1W) + (VVR)(]X,Y\,ljz,Wﬂ}

= 6R (V3 DX, Y,]Z,]W) + 2 [ R(X,] VJV(])Y,Z,W) t ROX,]Y, Vi |
MZ,W) + RUX,IY, 2,/ OW)  ~ ~ - == (12) =

(3 - 4m) L—(VJVR)(X,Y,JZ,W) - (Vy RX,]Y, Z,]W)] —2 -
[- CTyRUX,Y,1Z,W) - CRRIK,IY,IZ W) + (V7 yRXX, Y, Z,W)

- CARX,Y,12,1W)) « [ CRXX,TY,Z,1W) + (V4 R)

0X,Y,Z,]W) - (VyRUX,1Y,IZ,]W) + (YYRXIX,TY,Z,W) =

6R (v]\,(])X,JY,Z,]W) +2 f R(]X,VJV(])Y, 1Z,W) - R(]X,Y,]VN(])Z-,W)
+ R(X,Y,]Z, VN(DWJ R R )

(3=-Ym) l_'(ngR)(x,y, 2, Tw) ~( VJ'VR ) (UX,TZJZ,W)j1% £~
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[- (VRXIX, Y, Z,IW) - VR, 1Y, Z,1W) - CYLRXX, Y,1Z, W)
+ ( AR, Y,Z w)j [(VVR)(X 1Y,1Z,W) +( VVR)(]X Y,]Z,W)

+ CVWRX,IY, Z,W) - (V ROUX,IY,1Z,1W0 = 6R (VoD X,1Y,12,W)
+2 ]_—qu VDY, Z,1W) + R(]X Y, VD X,]W) - ROX, Y, Z JVV (J)W) ()

Add (1), (12) ,13) el (14), we Rape L.H.S. equalto (3 - 4m)
(VNR)(]X Y,Z,W) +( VVR)(X 1Y,Z,W) + (VVR)(X Y,]Z,W)
+ (Vy XX, Y, 2 J'W)—CV RX(X,JY,1Z,]W) - (7 RX,Y,]Z,TW)
- (WRUX,IY, Z, W) + (vVR)(]X IY,1Z,W) -3 E_ EQVAY:)
X,Y,Z,W) + (\ARXJX,]Y,]Z, W]+ 4 f CARUX,IY, Z,W) +
(VU RUX,Y,1Z,W) + (VR (X, Y, Z,1W) + (7R, ]Y,1Z,W)

+ (VRX,TY, Z,TW) + (VVR)(X,Y,]Z,]W)j }

Use quations (/0) and (7) we have the L.H.S. is reduced to
@A - zm)g - 12 R(VAADX,JY,]Z,]W) +4[ R(X VV(])Y Z,W) +
ROX, Y, VyDZ,W) + RAX, Y, 2, W) -2 (34 md [ (R
X, Y,2,W) + (VROUX,]Y,1Z,1W) |
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-T}{-A[EvVR)(X,Y,Z,W) + (VRGX,1Y,1Z, 1% | + 12[—(VVR)(X,Y,Z,W) L
+ (VVR)(JX,]Y,]Z,JW):[ + ZAR(W(T))(;]Y,]Z,JW) - 8[rax, Z,mY,2,W)
ROX, Y, V, 0z, W) + R(]x,Y,z,Vvﬁj)W)]} = [-aaam? - 4]
[(VVR)(X,Y,Z,-W) " (VVR)(]X,]Y,]Z,]W)j + [ -1203-4m) -12:].
RCVLX,0Y,12,0W) + [4G - 4w + 4] rOX, 07,2, W)

L ROX,Y, V,mz,w) + R(Jx,v,z,VV(J)W)] |

The R.H.S. is equal to

G[R(]VJV(J)X,]Y,]Z,]W) + ROVX, Y,02,1W) + ROV 0X,1Y,Z,W)
+ RCVL0%,0Y,52,W + 2 -Rx, V0¥, 2,W) - R, Y, gz, W)

- ROGY,Z, \fyOW) - ROX,J Y, Z,W) RUX, I,V (DZ, W)

¢ ROX,IYZ, Vi OW) + RGX, V[, O0Y,1Z,W) - R(]X,Y,J_VJ\}(J)Z,W)

+ ROX,Y,12, ViyOW) + RUX, V[, OY, 2,1 + ROX, Y, 0z, 0w)
- R(]X,Y,Z,]VJV(])W)J'

‘Using equation () we have the R.H.S. equal to

24R( V] DX, 1Y, 1Z,JW) + 4Ez(x,V]V(J)Y,z,W) + R(X,Y,VJV(])Z,.W?
+ RKX,Y,Z, V0w - R(]X,]V]V(J)Y;Z,W) - ROX,Y,] V[ (0Z, W)

- R(]X,Y,Z,]VJV(])W)J

Hence from all this we have

| m? - 4m - 44) ((%R)(X,Y,'z,w) + (VVR)(JX,]Y,JZ,_]W)

= 2R( VJV(I)X,]Y,]Z,]W) + 4_E1(x, YVU)Y,Z,W) + R(X,Y,VJV(])Z,W
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+ RIX,Y,Z, V]V(])]W) - R(UX,] VJV(])Y,Z,W) - R(UX,Y,] WV(J)Z,W) -
; R(Jx,Y,z,JV]V(J)W)J - 6@ - 8 R (V,DX,1Y,]Z,]W) |
v 2m - ®[ROX, VY, 2, W) + RGX, YV 0z, W) + R(X,Y,Z, V0w

(ii) From proposition 5.3.2. we have

R, Y,Z,W) = RUX,]Y,]Z,]W) — . @,

and  kR(X,Y,Z,W) = ROX,JY,Z,W) + R(X,Y,]JZ,W) + R(X,Y,z,W)—()

where k = 1 or -3. As in part (i) of this proposition, if we take the covariant
derivative with respect: to a V€ M) of @ and we use the following equation

deduced from (2) by replacing X by V4 X

kR (VX Y,2,W) = ROVX,IY,Z2,W) + RGVEX,Y,1Z,W) + RO {X,Y,Z,]W)
a'nd similar equations deduced from (2) by replacing Y, Z, and W by V¥, Yz
and V,W. We have

_' KV RX, Y, Z, W) ] (VyRax,1v,z,w - (ZR)(X,Y,]Z, W)

- (Aax,Y,z,w) = RV,x,IY,2,w + RAOX,Y,12,W.

o R(VV(J)X,Y,Z,]W). + ROX, VDY, Z,W) + ROX,Y,V,(DZ, W)

+ ROX,Y,Z, V,(OW) —(3) |

From equations @ and@ we have

- xR(VLOX,1Y,1Z,1W) - R(VV(J)X,JY,-Z,W)_ + R(VV(J)X,Y.JZ,W)
+ ROVLOX, Y,2,JW)
Therefore @can be written as

k(R Y, z,w - (R0X,1Y,2,W) - VL max,Y,1z,w)

"
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= (WR(X,Y,Z2,0W) = kRCV(MX,]Y,]Z,]W) + R(JX,VV(])Y,z,w)

+ ROX,Y,V,(0z, W) + ROX,Y,Z, V,(Ow) @)
In@ replace X,Y,Z,W by ]X,]Y;]Z,]W and add the result to@we have
k [(FRx,Y,z,w) + (VVRXJX,JY,JZ,JW):] = (VRX,1Y,Z,W)

+ (VyRax,Y,5z, W)+ (VRX,Y,Z,0w) + (VRXX,]Y,1Z,W)

+ (RXX,1Y,2,1%) + (V[ RXX,Y,]Z,W) G)
where RGV,(X,Y,Z,W) + RCVLDX,IY,]Z,]W) = o
and  RX,JVLDY,1Z,0% + ROX, V,OY,Z2,W) - o

o

and  RX,JY,IV0z,0W) + R(Z,Y,V/(DZ, W)

where we used equation@ [Because of these three equations part (ii) of the
proposition is different from part (i), since in part () such equations give twice
each term instead of identically zero] . Use equation @ in equation part ¢V

we have
(m - 200 [( VR, Y, 2, W) + (VL ROUX,IY,1Z,1W) ]

(V[ R0x,Y,2,w + (V[ R,IY, 2% + (Y R, Y,jzw)

+ (?’VR)(X,Y,Z,JW_) - [‘(YVR)(X,]Y,]Z,]W) + (VyR0X,Y,1Z,1W)

+ (VyR0x,1Y,2,1W + (V[ Rux,1Y,12, W) —(6)

- In@we first replace V,X by JV,]JX, and then we replace V,Y by JV,]Y, and
“ then we replace V,Z by JV,;JZ, f'mally_,'we Yeflﬂce 2 V,Wby]V,]JW and we

add all the four reéulting equations we have
(m - 2k)§l_—(v]VR)(]X,Y,Z,W) v (Gyo,0Y,2,W + (VURXX,Y,1Z,W)
E (VyRXX,Y,2,1%)] - [(VJVR)(X IY,1Z,JW) +- (V R)(Jx Y,]Z,JW)

+ (V yRUX,IY, Z W)+ (VVR)(JX,]Y 1z, W)J}= AEEV RXX,Y,Z, W) £
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(V0ux, 0,12, - LCVmax,1v,2,w + (VR0X,Y,12, W)

+ (VR0X, Y, 2,1 + (VRXX,IY,1Z,%) + (VRXX,]Y, Z,]W)

+ (VRx, Y,1z,3w) @)
Use equations (5) and (&) in (7) we have
(m - 2K {(m 20 [ (TR, Y,2,W) + (VVR)(JX,]Y,]Z,]W)]g |
- AEBVVR)(X,Y,Z,W) + (%R)(]X,]'Y,]Z,]Wﬂ
(Vi RX, Y, Z,W) 4 (VVR)(JX,]Y,JZ,]wﬂ
or [('m - 2% - 4(k - 1)] [(VVR)(X,Y.,Z,W) - (VVR)(JX,JY,JZ,JW):] - o.
 Hence, ifk # 1andm =2, we have . o

NyBRX, Y,2,W) + (ZyR0X,IY,1Z,]W) = o

.

Ifk=1and m=2, we have from equation @ that
(VyRUX,Y,2,W) + (V[ RX,IY,2,W) + (V[ RXX,Y,12W)
v (VR0 Y, 2,00 - [V, 1v,5z,0w + (VgRax, v,5z, 5w

v (V[ yR0X,1Y,2,1W) + (V]qux,]v,]z,_wﬂ -0 (9

"In (@ replace V,X, by JV, JX, we have
(YR, Y, z2, W) - (VRX,1Y,Z,W) - (VR(X,Y,]1Z,W)
=-.(-VV-R)(]X,Y,Z,]W5 - [' (VVR)(]X,JY,JZ,JW) + (VVR)(X,Y,JZ,JW)
+ (VyRX,1Y,2,1W) + Vo, vz, ] - o
or (V,RXX,Y,z,W) + (,RX,]Y,]Z,]W) = (V\-,R)(JX,]'Y,Z,W)

(VX Y,02,W) + (R0X,Y,2,1W + (VRXX,IY,1Z, W)
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+ (VORXX,IY,Z,0W) + (VRXX,Y,]Z,]W)
This completes the proof of proposition 5.3. 3. //
Remark:- In fact, when k = 1 and m = 2, the two equations (ii)(5) and (i) (9)

are not independent of each other, since if in (i)(9) we put m = 2, replace V,X

by ]V, JX, and compare the result with (i) (9) we have (ii)(5) again.

5.4 Riemannian 5-Regular Symmetric Manifolds As Coset Manifolds: -

Let M be a Riemannian 5-regular symmetric manifold, with.associated
almost complex structure J, let G be the largest connected component of C(M),
where C(M) is the transitive Lie transformation group of almost complex isometries.
If x¢M is any point, denote by H the isotropy subgroup of G at x Theorem 4.3.7.
goes over when k = 5, and we have the homogeneous space G/H is isomorphic to M.
On the other hand, if G is any connected Lie group, H is a closed subgroup of G,
s is an automorphism of G of order 5 such that (HS)OC_: H(_:HS., where H‘s is the
subgroup of G of fixed points of s, (Hs)o is the identity component of H_, and finally,
if we assume that Ad(H) is compact, then theorem 4.3.3. is valid when k = 5, and

we have the coset space G/H is a Riemannian 5-symmetric manifold.

Proposition 5.4.1. Let M be a Riemannian 5-regular manifold and let M1 and M2_

be the two differentiable distributions on M.
(M  I1fX,YeM;. Then [X,Y], VYem,

(i) IfX,Yée M, Then [x,Y]', VXYGML

Proof: - Let P €M be any point,.we have Mp = M (4] Mp . Sp is a linear
P 2 :

transformauon of MP, and it can be extended to act of Mp , the complexification

of MP, denote this extension by Spalso. From proposition 5.4.1. we have four

complex distributions D,, D 1’ D2, D2 on M, corresponding to the four e1gneva1ucs

8, 6,6, ad b,
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€)) ‘Extend X, Y to be complex-valved vector fields on M, denoted also by

X,Y, then X,Y D,;®D,. Consider the following four cases .

@ (x,vep) s [xy,Y] - L_SXl,SYI] flxl, ev] - 82[x,Y
and S, ‘Z{lYl - svpxlspY1lp - \791)(1 e1Y1|p - 87 qlYllp

but 912_= 92 or 912 = 92, and in both casgs [xl’Yl]’ zlYl peMpz

@ . (X Y,€Dp: 8 [X5,Y,] - [sxz,sy:,,]p - [Elxz, 51Y2] _ 512[X2,Yﬂp

and SpVX Y, = vsx SYzlp = véx 91Y2]p - 67 szYé lp

2 2 172

but @12 = 92 or 912 = 52, and in both cases we have [-XZ,YZ_JP,VZYZ%MPZ

ESXPSY Eelxl’ eYsz

el[x,ﬂp - B(,Y]p =0 €My

@ (€D}, Y,e D) s, [%,,Y,]

]

and S qle - st SYZIP - glxl 6—’.1Y2lp = 9151 ZIYZ' Ip = Yllﬁf%!p

=0€ Mp2

w (X,€D},Y,€D)) : spfxz,Yl'] - fsxz,sy ]_—91)(2, BYJP.-.

e,e.[xz,ya; D‘z'Yﬂp - oeM,

and Spvszl - V5)(25"2_\1) - v51x2 oy, - 68 227 1 =Y2'Y.l -2

Hence if X = X1 + X2 and Y =Y, + Y2, we have

1

RER I A A Y,l, - I_—Xl,Ylj + [xl,vz] [XZ,YJ
" B(Z’YZJPE M2 |
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a_L.nd | ' :

Y +Y ' :

vx Xy ‘Z(lyl ,P i V41‘{2 lp f 2,6
P .

and this is true for -all peM. Hence (i) is proved

(ii) Here we also extend X, and Y to be complex-valued vector fields on M,

denoted also by X,Y, then X,YGD2 ) D,.

A similar proof is given as in part (i), where we have 92, 92 instead of

Proposition 5.4.2. Let M be a Riemannian 5-regu1ai~ -s&mmefric snanifold
¢)) IFX,Y&¢M; . Then

(x,v] = 1[x,v]

(i) IfFX,Y M2. Then

[1x,Y] - -1[x,Y]

Proof:- Let peM be any point. We have

[(cos /5)1 + (sin ‘75)] 'l@ [(cos 47 /S)I +(sin 4 /5)]]

D X,YEM,) , then by proposition 5.4. 1. [x, Y] € Myj. Wealso ‘have.
s [x.v] - [sxsY],
Sp fX,Y] = lj(cos 4775)1 + (sin 4"]5)]] fX,Y]p
= (cosATyS)[X,Y]p + (sin 41])5)] EX,YJP ‘ S~~~ .~'_.~~('i)

| [s X,s Y]p

[(cos 2-’7 )X + (sin 2-“/5)])(, (cos 2_'75)\’ + (sin 2TT/S)]Y—_‘J .

27

(cos /5) [X Y] +cos “ /g sin 2-";5( [X,]YJ > + []X,YJ p) o

Gsin? 21> [ 7] o Gid

, 91-. Hence we have L_X,Y] D’ VXY lpé Mpl’ and this is true for all pe M.

Mp2 .
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Subtract (ii) from (i) we have
2 .
[(cos 4”/5) - (cos 2"/5):] E(,Y]p + (sin 4175)].5(’\(]? - (cos 27}-5 sin 217/—5)
5 .
C([x,0v] 5 Dx,ﬂr) - (sin 2775) Ex,n{]é“e o v s (D
In (iid) replace Y by JX, we have
2 2
E(cos 4-0;5) - (cos 21;5) - (sin 2-9'5)] [X,]X]p + (sinlm}s)J [X,]X] b "
or[X,]X]p=o--'- v roo0 (i) |
We also have
[x+y, %+ ]Y]p -0 = l:x,Jx]p + l_—X,JY]p . EY,JXJP + [Y,]Y]p
.. Ex,]Y]p + [:Y,]X]p = (') [ I RN ()
 In (v) replace X by ]JX, we have
], - Dxd, -
or-EX,ﬂp + DX,]Y]P =0 vy 4, . G
Consider the identities

2 2 |
os 4'."/—5 = COS 21?5 - sin 2175. and 2 cos 2175 sin'2775 = sin 175

Using (v) and (vi) in (iii), we have

| [_(cos 5) - (sm /5) - (cos )J L—X Y] + (sm4 /5)] EX YJ

- (.e,m‘*/s)[ x,Y], - (sin” 2/5> [1x, JY]

R (sin 470 [x,YJ,- EX,\E,P) S o

' or []X,Yj - ] [xv]

GD 1 X,YEM 5 , then- [X,Y] €M, . Also we have

: | - :\
Sp[-X,YJP = ES 'X;.S Y]p- | |




. \ (1155. “
s [_X YJ - ((cos 2 5)1 + (sin /5)])(E){5Y] p)

- eos IO f], ¢ @ Tk, @
| [s x,s Y] [Ecos I + (sin 41X, Geos 4T+ Gsin Tiopy]
- (cos b /S)EX,YJP + (cos “Tlg sin 4T [, ], + Lix, Y] )
v Csin 4175) [1x, ]YJP - | (u)
Subtract (ii) from (i) we have |
2T, 24
(Geos 27 - (cos” 4T [x Y_‘I + Gsin 2T [X, Yl - Cos 4T sin 479)
<[x,1y] » X, - (sin 4/5> x5 S s )
In (iii) replace Y by JX, we have .
(cos 2775 cos 47 - oin 4775)' [x,]xjr + (sin 2Ty [x;]xjP=

or E(,JXJP =

From part (i) we have

[x,7] + [Y,Jx]p N (iv)
- and EX,Yjp + DX,]YJP = Qo~ =~ ~ =~ = = = = “Fv)
Consider the identities
2 2
COS.ZT};-) = cos (277- 277/'5) = cos-sw/‘s = CoS 4)7/'5'- sin 477;5

T T
and 2cos4 5 sin ZJI/-5 = sin8 /5 = -sinl2 /5

" Using (iv) and (v) in (iii) we have
2 2 2,1t
' [?cos 4775) - _(sin 4-"}5) -2 (cos 4“)5)] [X,YJP + (sin 27’)5)] [X,YJ D
+ (sin 2”/5) []-X,YJ o " (sin AWS)DX,]‘Z] b "
or. (sinzj}rs)(] [X,ﬂ p * DX,YJ p) -

o [x, -k,

This completes the prbof . //
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Let M be a Riemannian 5- regular symmetric manifold, we will
denote by <X,Y> , the metric g(X,Y), X,Ye H (M. We recall
the deflinition _°f a reducti-ve homogeneous space G/ H .to pe .naturaliy
reductive if

< [%yImz> -<x, [v,z]nd>  ,X,Y,zem

where if g is the lie algebra of the Lie group G, then' g=h @® m.

A\

Proposition 5.4.3. Let M be a Riemannian 5- regular symmetric
manifold, Assume that M is naturally reductive. Then'we have
C VDX = (Vg DX + chznx1

and (VDX + (VjxDAX) = 2 VX

Proof:- Consider the following cases 0
® < Gnx,z - ¢ Vi D%1,2, > + % 0x,,2,%
ZE XM | ’_ |

@ << Vxlj)x1’z1‘>.= < VXI(JX1>;Z,>- <J Vxlxl,z, >,
but <VX1(]x1),z‘> -+ <Wx].z>-0 .

where from proposition 5.4.2. wé have L_xl, 1%, ] -0 |
and <] Yz(lxl,zl> = - <x1X1JZ1> - -4 <xX,xJ .0z, >=-0 ) \
N <(Y§(1])x1,zl>.= 0o - - | BN
@ < (Vx1]>x1’zz> - < Vx10X1)’Zz>—< ] Z1X1’22> -
and for the same reason in (i) we have

<( VX]_DXP ZZ> =0
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P (Vxlj)Xl,Z>=O)foraHZ€-3€(M)

or-('Vxlnxf_ 0
@ <« Vxll)X2,2>.= <( Vxlx>x2,zl>'+ <« VX1DX2,22>_
® <R DXpi2y > = < Vg 0%0,217 = 1 Vg X502, >
<V %52, > = £ KD 1,25 = =<K% ] 02>
e 1%y %21 > - 4,0 X, 2] S

a0 TS =%, Dzpx ] >
- 1<%, [%012]S - 4<40%,02,7 %, - < Yx029:%;5
where from proposition 5.4.2., we have ] [2,X]] = []zl,xf_]
<G xzy - - <G 025 -4 <Tx] >

Vo<, % ] 0z > - b &, [%032,] N

. ,([_xl,]zlj X, - <% (]ZP X,

< (VD x,2,) = £ ‘Z(1<JX2>_,21> -<s Wlxz’z& -0
CRQAZMINE <% aXp,25 < YX2,22>'
<V %y, 2, - 1 (%1%, 12, - i<Kx,, [1%5,2, ] >
- -2<x1,] [x, A S - <X1’] [z, x2‘_1>
iy []zz,xzj> 1 %002, ]S
- %.< (X512, ] ,x1> - <VX2(122),X1> |
<1 X0020) - -<V¢1X2’Jzz > =4 x 0z
- --;-<x1, [x2,122]> - - <W(1<122),x1> .

x <(Vx1])x2,22>= 2<‘Z(2(]zz>,x1> .
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Replace X;, X, by JX;, JX,, we have
| <(V1X1D (]x22,22>= 2 <V>{2022)’]X1>
L[ 1%002,7] 0% = - %002, %>
<Ex2’122] X)) = '2< (Jzz) X1>
where from proposition 5.4.2. ][Xz,zzj - - I:sz,zé]
RS (vxll)xz + (ijll)lxz'zz> -0
But from (i) we have o
<Vpapec Vg D axp, 250
L« Vx DX, + (VX DIXy,Z > =0 . , forall ZE Fm
or (Vy DX, + (Vy D1, = 0 |
@ <V Dxl,z) <V ])X1,21> <<Vx J>X1,22>
o <V X2 -{V %P2, OV Xz Sy
< YGXP 2, =% s <[xp%, ] 12 1> - 1%, DX\'ZJ>
- 1<%,.] IRTAPE 'z(xz’] Lzpx ] > |
- 4<x,, [1z,,x] ) - 56(2, [x.1z,]>
- 1<z 7> - K 02.%, )
&1 Goxn e - iy -4 <Dy o>
- <X2' [X1'121]> ”<[X1']Zl] Xg | \ .
Y \7)(1(121),)(2> |
LV ey D 2K 0z, >
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Replace X;,X, by JX;,JX, we have
< Vi poxp,2, - 2 <_V]X1(121>,Jx2 S
- < [xgz 1%, > - <I0xgzy] J%,5
- <[x Jz,] ,x2>= 2 < Wy (]zl),x2>
<V RS -(V]X DIXp,2, ) =0
(1D <<\7 PXiZp D L% 0XD:25 ) - G %, x1,22>
< quxl)’22> - 345‘2’]"1:' 1 Zyp= 'T< [%,%,] » 2>
= '%<Jx1’ fxz’.22]> - %<X1'] [X2’22] > |
- -%(Xl,] fzz,x27> - %<x1, ]__]zz',x?:l>
_ -%{xl, [xz,]zzj> - %<L—x2,122] ,'x1>
- -<V K2 x1>
<1 sz Zyp = - <V X1,122> = -3 <[x2,x1] 123>
-1 <[_X1'X2] 12, = 1%y, [%5,02,] >
21 < [ %5002, ] %> - { VXZ(]ZZ),X1>
\" : <(VX215X1,22> 0
or (Vy oy - (VM DIz, > -0
This with part (i) we have

<V D% -(VX J)]X1,2> 0 ,forall Z € X(M)

@ < cvxszz,z S- <& (VX21>x2,;1>+ < %21>x2;22>

e ey
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w < Vi DX2r21> - < szqxz),z& - < VRN

<V axp.2,> - 1 [%0%,] 12,% =0
Since by proposition 5.4.2. we have [X,, 7%, | =0
<] YZ{ X012y > = - <W X2’]Zl> = -1 <EX2'X2] 12, > =0
L% ])xl,zl> 0 |
o <V px, 1 Zp> = (Y& Xy, 22> V% x2,22>
By the same reason in (i) we have

< Vx21>x2,22> -0

<< szj)xz,z> -0 , forall Z€ XM

(VXZDXZ -0

2

For any X€ 36(M) (X = X| + X,), we have
VX = (V% 5 D06+ Xp) = (B DX, + VDX,
. Vg D%, + cYZ(ZJ)xz
- (0% (G pxy —®
and this is the first relation required. In (D) replace X by JX \a.re have
(Vi + (VD = ¢ Ve D%p + (?(21>x1 . <V]X11>J'x2 . <VJ-X2DJX1

but we have

-V DXp 4. Y{lexz -0 (N DX, - cYgxzmxl -

(VXDX +( V]X])(]X) = 2( V]X ])]X1 ="2(VX Dxl v'\_
: 2 2 A_
| - | //\
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APPENDIX

The 5th roots of unity which do not equal one are
; 2Tl/' .
w1=€ 5 =c05275+isin25,w2=w12=€ =c054175+isin475- .

\
\\

6 o

3 i 4T 4
Wa=wy o o= 861}5=cos /5 + i gin /5= cos /5 - i sin

T
s 3Gi= =D

w4 = wl4 =é87:,_-> = CO8 8T/TS + 1 sinsTgs = co§ 2“}5 - i sin2175

Consider the polynomial Z5 = 1, its roots are the 5th roots of unity

including 4. Z = W;, also satisfies it. Hence

(w1 -1)(w14+w13+ y/12+wl +1)=0

Since w1 1, we have w14+w13+w12+w1 = -1,

from the above we have

2((:052 75 + c05471}5) = -1 @cos2 D}S + cos‘rﬂ/ﬂ5 = -1/2 @

‘- @ sin T cost T 1 fp s - 1 in?,

(iD) sin? Tr/5 coé 21}5 - 1/2 sin'[“ws

i) sin® 27 = 1,1 - cost 'l

(i) sin’4T = 1/,01 - cossT}—S) -0 - cc',sz‘")S ).
() c08?2W¢ = 1/, (1 + cos?T) |

(vi) cos‘?‘AT'—/S = 1/2(1 + c058175) = 1/2(1 + <;_052 5)

(i) sin (4175 + 2175) - sin4]175 c052.“25 + cos‘{"Tr/S sin 211'/5 | (a)_
sin (4175 -2 5) = sirﬁWs cosz-n-/s - c054175 sm2175 - (b)

Add (a) to (b) we get

2 sinéws cos 2-175 = sin61;5 + sin?‘-"}5 = - si.ﬁ[‘“/s - sinz-‘n;5 (c)




(122)

Subtract (b) from (a) we get \
\

2 cos4]‘75 SmZT/'S = s'm6-n/—5 - sinzws = - (sin[.',-r;5 + sinz-“/-s) ! ._ @

(i) cos (4 /5) = 034 “}5 coszT'}S - sin4-‘75 stWS | (a)
cos (4 /5 2“}5) = cos4 5 c0521|}5 + sin[m/5 sinzv/ ®)

Add (a) to (b) we get

2 c'054175 cosz-‘}s = cos61;5 + cosz-“/S = cos[:r?5 + cosz.'ys

But from @we have cos[J)S + coszTrs = - I/2

. w

. cosAVS cos? /5 = - 1/4 (c)
Subtract (a) from (b) we get .

2 sm /5 sm /5 = cos /5 - cosm? @

() cos 47/5 + cos 27’/5 = /2 a+ cos? /5) + (1 + cos4 /5)
=1+ /2 (cos 175-+ cos? /5) '

>
But from @,cos2 /5 + cosAT?S = - 1/2

. cosz4175 + co§221175 =1+ 1/2 (- 1/2') = 3/4
Gid s_in24175 + sin22175 =1- c05241'/5 +1- coszzws

Using (4)(i) we have

sin2 4-“75 + sin22--"r/5 =2 - 3/4 = 5/4
(iii) (coszTyS - cosm\-/s)2 = c0522n}5 + c0524-n75 -2 c:os2 175 cos[’-“}s

Using (4)(D) and (3)({iXe) we get

. (coszvs - cos™ 5)2 = ;/4 -2 (-1/4)‘= 5/4

2 2

3 3 |
(iv) cos 4175 + cos 275 = (cos 475 + COS 2-“/5)(cos 4175+ c-os 2175 - cos ATI/SCOSZ-WS

From 1 , (4) () and 3 (id) (C) we have

3, 3 A7 ' :
cos 4.1]/’5 +.COS 2'/5 = (D@ -G = -2x1

N

[




+ (iil) Let T = sin 2 /5 + sin

6)

| 4 4 s
5 () Let T = cos 2175 + COs 4\75

T = [—(1 + cos /5)] [— 2(1 + cos /5):]2
——[(1+2cos /5+cos 4/5)+(1+2cos /S-H-COS /S)J

2,
4t

= %[2 + 2 (cos4 /5 + COS /5) + (cos 5+ cos /5)]

Using @ and (4)(i) we have

T-if2+20pe2]-2ta+ - 7/16
2

(i) Let T = cos 275 sin

2
%

/5 + COS 4 /5 sin 5

Using - €2)(1) and (2)(id) we have

2
= % (sin 4‘7 + sin T}S) , using (4)(i) we have

T - %-5/4= /16

5

Using (2)(iii) and (2)(iv) we have

T = [ (1 - cos /5)]2 [ (1 - cos /S)J2

2
= —[(1 - 2cos4r/5 + cos 4 /5)+(1 2cos /5 + cos

2
]
= %[2 - 2 (cos VS + cos /5) + (cos /5 + cos /5):[
Using @ and (4)(1) we have '

T=3@- 269+ = /4

2

() LetT=2cos 27

-
/5 cos 4

s
Using (3)(ii)(c) we have

2
(i) Let T = sin 1} c05 /5 + sin 4 /5 cos 2\}5

2,7

= cos / 2
5 - cos

: 2,7 2 :
2175) + cos 2 Is (1 - cos 4-“)5)

221r

2 2
= COSs 4“;5 + cos 21}5 -2 cos /5

2
cos 4.“}5

(123)
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Using (4)(i) and (6)(i) we have
T = % - Tl!' = 5/16

2

_ 2
(iii) Let T = 2 sin 2“}5 sin

4T
ls

Using (3)(id(d) and (4)(iii) we have
T = 2[%((:052“/—5 - cos41]}582 =2 %(coszT;S - cos4175)2 = % 5/4 =3

3 3
7) (i) Let T = cos 2175 c054175 + cos 4“/-5 coszTyS

2

2
= coszn/s COSA“/—S (cos 2-“}5 + cos {;‘?5)

Using (3)(ii)(e) and (4)(i) we have

T= D@ = -3,

2 2
(i) Let T = cos 2‘75 sinZW/S sin{‘“}s - cos 4-“'/5 sinzT‘}s Sinﬂ‘/-S |

2 2

= sinzT?S‘sinZn}S (cos 2175 - cos 4175)

Using (3D , (4)Gii) and () we have

T = l('2052“'/5 - cosé’“}s)z (COSZ“}S +cos4“75) =_(‘5‘)(5/4)(-%) = - 5/16

2

2
(iii) Let T = cos2 “)5 sin 2“}5 cosA'-“)5 + cos4“/5 sin 41% cosz175

27

= cos /5 cos[*w/5 (sin2

2
2“}5 + sin 4175)
Using (3)(i)(c) and (4)(ii) we have
13D 5
T= ("3)( /4) = = /16

3 3;
(iv) Let T = sin’ 2195 sin4]75 - sin 4175 sin27r/5

T 2 2 :
= sin2 /5 sin4775 (sin 275 - sin 4175 )

Using (3)(ii)X(d) we get

m 2 2
T = l(cos2 /5 -cos4T75)(1 - Tos 2‘}-5 -1+cos 41I]S)

= - -i-(coszv/s - cosA-‘}S)z (cosz“ys# cos4775>
Using (4)(iii) and’ 1 we have
T oo DYDYy 5
T = (j' 2)(- 2)( /4) = /16
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5

5 3 2
cos 275 + cos “’75 = COS

3 2' i
2“/-5(1 - sin 2175)+cos 4‘75(1-5111 411'/5) E

(8)) LetT

3 1 . 3 C o
= cos 21}5 [1 -3Q - cos_f’_ n/'5)]_ + COS 4‘?5 [1 -4 - cos 2 '/5)]

3 3
= 3cos 21}'5 (1:+ cos AWS) + % cos 41}'5 (1 + cos 217/_5)

35T 3 2. 2.
3 Eos 2 /5 + cos 4_75 + cos 2175 cos 41T/5 (cos 2175 + COS ..4.“]5)]

Using (4Xiv), (4)(i) and (3)(ii)(c) we have

+

Tet[-ts D] - -1 - -1,

3 2 3 .2
cos 2‘75 sin 2‘75 + Ccos 4‘?5 sin

3 .2 3 2
= cos 2175 (1- cos 2“/—5) + cos 475 ¢! -vcos 4‘75)

4%

(i) Let T .

3 3 5,7 5
cos 2ly5+cos 475 - (cos 2/5+cos 4"/-5)

| Using (4)(iv) and (8)(i) above, we have

R R I
T  4oT 4
(iid) Let T = cos 2 /5 sin 2 /5 + cos 4-“)5 sin 4—"/-5

= /5 31 - cos  AT) /5)] + cos 4 /5[2(1 - cos 2 /5)J 2

| 2 |
= 4 Eos 2775(1-2CO515_E+®$2'_§-"+ cos AT/SEI -2 cos 275 + cos 2 /5)]

4T

= 1 [(cos 2“’/5 + cos 4“/5) - 4cos 2")5 cos 47}'5 + cos 275 cos /5

(cos 2 + cos 4 )j
Using (3) (ii) (c) and @ we have

T =4 340D+ (CDED = 1G+H = 3,

- S 4 4 N
O LetT = cos AWS cos 2175 + CcOS 2‘75 cos 4T
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- 3, 3
= cos 4175 cos 2“}5 (cos 4."/-5 + cos _2“/-5)

Using (3)(ii)(c) and (4)(iv) , we have

3

3 - |
(i) 'Let T cos 21753;5111 2175 sin 475 - cos 4175 sin 41r/5 sin 2175

3 3

2175 - cos 4175)

T
sin 2 /5 sin 41}'5 (cos

Using (3)(ii)(d) we have

22]7 24-"'

T - 1 (cos 21T/5 - cos 4175)2 (cos 5 +cos /5 + COS 2“}5 cos 4“'}5)

Using (4) (iid) and (Q)(iD(C), we have

Oy o 5
T = (2)( /4)(2) = /16 |
2 2 2 2
cos 4“}5 sin 4-“}5 cos 2‘,/'5 + cos 2‘“)5 sin 2?»‘/-5 cos
2 ' 2 .
= cos 4“/'5 cos 2“}5 (cos 4175 sin 4-‘}’5 + CcOs 2175 sin’ 21}‘5) y

(iil) Let T

4
I5

= cOos 41’}5 cos.z-v/s (-% sin 2-“/.5 sin 4“'/5 + % sin 41}5 sin 2175 =
Using (2)(1) and (2)(ii)

-3 3
cos 2“/5 sin 2 5 sin 4-‘75 - cOS8 475 sin 475 sin

2 2 2.y 2
4 (sin 2-“/-5 sin 4175 + sin 2/5 sin AT}.S)

2 2
sin 4.‘}5 sin 2175

m
(iv) Let T 2 /5

Using (3)(ii)(d) and (4) (ii) , we have
T = 4 (cos 21}5 - cos 4-,75)2 = ‘% 5/4 = 5/16
4 4
(v) Let T = cos 2]‘)5 sin 41}5 + cos 4'.Ws'sin 5 2175

T L
= cos 2 /5 [%(1 - cos.2 /5)]2 + cos 4“}5 [% (1 - cos 4175):]2

o
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.2 -

T
= %[cos 2 /5 (1 - 2cos 2“]5} cos 21;5) + cos 4T;S(l -2 cos 411/—5, +
2 -
cos 475)]
2 2

=+ [(cos 275 + cos 4‘75> -2(cos 2175 +eos A7) +
(cos3 2“/’ + cos 5)] |
Using (1) , (4)D) and (4)(iv), we have
T = % [E -1
(105(1) Let T = cos 2T cos” 4T cos 4175 cos 27

2 2
. cos 2“;5 cos 4.‘75 (cos 4“}5 + cos 2“}5)

2B-B ] = 4% - -

®{n

Using @ and (3)(ii)(c), we have

T = Yeh - -l

2 2 2 2
(i) Let T = cos 2175 cos 4-"/5 sin 41?5 + cos 4"}5 cos 2175 sin- 2175 :
m 2 -2
- 21)/‘-5 cos 47 Is | cos 2 /5(1 - cos 4“}5) + cos 4‘“)5(1 - cos 277/5)] :

/5[(cos /5 + cos /5) - cos /5 cos /5

| (cos 2-‘95 + cos & /5).]

Using 1 and (3(iXc) , we have

IR ] e )

I
U
0
o
n

2 7 ‘ 2
(iii) Let T = cos 21’/—5 sin 2175 cos - 4175 sin 41}5 - co's'ﬂr/s sin 4‘75 cos 2723
2 /5
m : ™
- cos 2 /s cos 4175 sin 2 /5 sin 41}’5 (cos 41‘}5 - cos 2-"/-5)

Using @ and (3)(ii)td), we have

T aamaa e
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N1 .
T = (-4)X-$Xcos 4‘?5 ccos BU% - B 5 -5,

where we used (4)(iii)

2T s 4T 321

(iv) Let T cos ‘75 sin © /- sin 5 - cos /5 sin; /5 sin /5

n

/5 sin /5 E:os /5(1 - cos /5) - cos 4% /5(1 - cos : 5)]

]

/5 sm4 /5 [-cos /5 - cos 47 /s) - cos /5 cos /5
(cos 4T /5 - cos /5)j
Using (3)(iD(d), @ , and 4 (iii), we have

- Weos 2 - cos 4T [14:¢- D) - -5, 1 - 15,

2 3 2 3
(v) Let T = sin 475 cos 2-‘75 + sin 21?5 cos 4175
3 2 3 2
= cos 2175(1 - cos 4“}5) + cos 4-'T/S (1 - cos 2‘\1’/5) \
3.% 3 2 2
= cos 21}'5 + cOS 4T75 - cos 2-“}5 cos 4"75 (cos 2175 + cos 411/-5)

Using (4)(iv), @ , and (3)({iXd), we have

15
T - -4-Ygp - JTh

2 2 2 2 A
(vi) Let T = _sin 4175 cos 2-“}5 sin 2-)}5 + sin 2“/5 cos 4-‘}5 sin 5
' 2 2 '
= sin 4-}75 sin 2-"/5 (cos /5 + cos 4‘11}5)
Using (3(iiXd), and@ , we have

- Weos 2T - cos A2 (- B - DD =

where we used (4)(iii)

4
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