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ABSTRACT

This thesis deals with some phenomena connected with
_iesonance production or formation, at low energies, and/of their
subsequent decay. It is subdivided into two almost independent

parts :

The first part (chapter II) is concerned with /™M

production in {J~N scattering and a possible charge asymmetry

in their decay. Ve explicitly calculate the asymmetry for the reaction

r]+p—4>-‘rfv\-1\° E;+ caused by interference of «J production
with uncorrelated 37y production. Assuming C-invariance for

the S -decay, we find that interference terms with a coherent 313
background cannot explain the whole of the asymmetry experimentally .

observed,

The second part (chapters III and IV), deals with K-N
scattering. 1In chapter III, examining the possible Lorentz-invariart,
parity-conserving couplings of the t-channel exchanges to the
éxternal particles, and afterwards reggeizing them, we are able to
construct simple models for the processes KN—> KO\ énd KN—-»-K*N,

which are capable of giving a satisfactory fit to the data over a

wide range of energies. For completeness, a simple model for elastic

KN scattering is also presented. In chapter IV we use the results
of chapter III as input into a K-matrix machinery, from which we
get a unitary isoscalar KN scattering model, analytically colvable,

vhich reproduces several basic features of recent phase shift
. . + A\ . .
analyses, in particular a wide JP =-%— exotic resonance 32" (1780).°
: o]
\




CHAPTER 1

INTRODUCTION

I-1  Physics Today.

o

Despite the number and the efforts of the present day
ph&sicists workihg on Elementary Particles, the abundance of
published work, and the large amount of the experimental data
becoming available every day, our theoretical understanding of this
field of physics has been progressing rather slowly during the past,
two decades. A few isolated successes should be mentioned, such
as the invention of Regge parametrization, the discovery of SU(3)
symmetry of strong interactions, and the construction of renormalizable
unified Field Theories of weak and electromagnetic interactions.
Nevertheless, the present state of affairs in Elementary Particle
Physics is rather confusing, and no one can .claim to have a clear
understanding of the situation. Perhaps the most .awkward point
about our time (energy) Physics, is the belief in various, distinct,
fundamentally different in nature intéractions (strong, electromagnetic,

. . *
weak, superweak, gravitational )

* Had this thesis been written, say, two hundred years ago, this
parenthesls could had been replaced by (electric, magnetic, '
gravitational),
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between all the known particles. Hadrons (plenty of them) enjoy-allh
.of them, but leptons (which are only a few), are not allowed the
luxury of strong interactions *, Tﬁére is also the photon, which

has on}y electromagnetic interactions.

Although there is a total lack of any complete, unified
~theory of Elémentary Particles, some fundamental nrinciples and
some general properties (cxact or approximate), that such a theory
- if existing - should enjoy have been realized (e.g. summetries -
conservation laws, asymptotic behaviours, e.t.c. ). The Theorist
of our time, proceeds to make "models" of limited validity which
obey such principles and have .such properties, and by means of
these models he tries to "understand" what is going on in the
excliting word of Elementary Particles. He becomes temporarily
happy when he thinks that his model may "explaih" something (= may
be a limiting or a special case of The Theory ); then some new data
or new models may emerge which are in contradiction with his model,
and he becomes sad. Whether we live in the eve of great revolutions,
or we have reached the asymptotic abilities of the human mind - for
1ts present bielogical age - remains to Be seen.

* But see also reference 43), and references therein, where the
possibility that, at very high energies, levptons may exhibit "strong"
interactions is Qiscussed.

\
. ._‘.
\



I-2 Strong Interactions.

In this work, we concentrate on the strong interaction,

and we now outline very briefly some very basic concepts, which we.

shall rely uvon ; for a full treatment df them, we refer to the

standard textbooks (see, e.g. references 2),22),58),59),60) ). To

start, we 1list a few established pronerties which the strong

interaction is believed to obey :

(1) Lorentz invariance.
-(2) Causality .

(3) Unitarity (conservation of probability).

(4) Analyticity (only singularities demanded.by unitarity, are

allowed £o the scattering amplitude ).

(5) Crossing symmetry.

(6) . Conservation of charge.

(7) 8SU(2) symmetry (exact in the absence of electromagnetism)

(8) 5SU(3) symmetry (approximate)

(9) s,B,L conservation (Strargeness, Baryon andALepton number

conéervatiop )

(10) P,C,T conservation.

(11) Regge asymptotic behaviour.

(12) Duality (very avproximate).

The projection* of any unified theory of micronhysics onto what we
now call strong interaction physics, should have these properties ;
the more of them a present time "mode1" allows f?r, the nicer and

more realistic it is thought to be. \
\

* This projection may be thought of either as a "low energy limitﬁ,
or as a subgroup of a more general group, or ... :
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Although the Lagrangian Field Theory has proved to be

the approach to electromagnetism, and # usefull tool in treating
"weak interactions, the magnitude of the strong interaction coupling
constant, does not allow any sort of simple perturbative approach

to strong interaction physics. The S-matrix (Heisemberg) approach
has proved much more fruitfull as far as the strong interaction 1s
concerned. Because of its éhort range, the probability for a strong
transition from an initial state |i) to a final state |f) , may

be written as :

Sgy = (£]8[1) ' (I-1)
where the states |i) , \f), may be thought of, as being non-
interacting. Conservation ofiprobability requires the S-matrix to
be unitary :

s*s =1 = ss” (I-2)
. Any conservation law may be built into the S-matrix which directly

links theory with experiment.

It 1s customary to separate . the pfobaﬁility amplitude
for ﬁo interaction by defining the Tematrix : |
S=1I+iT | (1-3)
which we relate to directly measurable quantities in Apvendix F,
where our kinematics and normalization conventiéns are defined.
'_Mandelstam analyticity requires thequmatrix eleﬁgnts to have only
isolated singularities in the form of poles or cufg, only where and
when they are required by unitarity.
" Unitarity and Analyticity, supplemented with crossing

symmetry (Field Theory’s substitution law) are the three most



fundamental principles reigning in strong. interactionsf which if
combined together, lead to powerfull links between theory- and
experimentally measurable quantities (e.g. Dispersion Relations) ; at
one time they were even thought of as capable of providing the .
solution to Physics. They also lead toll asymptotic bounds, .such

as the Froissart bound

. - 2 . ' A
Tey, Z=1)l & constant x t(logt)® 'as t—» o0 | (I-4)
(z=cos Qt)
which c:—innot, obviously, be satisfied by any v"ele'mentary particle"

exchange with spin e)l .

Petz)y | (1-5).
m*- ¢ .

Tp.2) =

Regge Theory provides the way out of this difficulty : the
amplitude is expressed in terms of its singularities in the comnlex
‘e-.plane. E.g. if only a pole in the position e = o((t) , with

signature § is allowed, we have :

B& ~SR®
2SW\T\ o(k\_\

7-(5) z2) = /3[7!)

(I-6)

As t varies, the pole moves on the trajectory o((t) ‘on the £~
plane; and when it passes from any integral physical values of- é R
we have bound state poles. This idea (Mandelstam, Chew, Frautschi),
originally produced and heavily used for 2—» 2'reactions, has been

' employed for multihadron physics as well. ‘\

v

\

* Of course, they are true in all ;hysics ; but it is the strong-
interactions where they have proved to be so0 usefull.



More recently, the idea of Duality (Harari, Freund,Dolen,

Horn, Schmid ) was put forward :

2 Yol ) 20 T e

ith 3 Retaust Pole

Resonance
O :]E:m evon (I-7D)

That is, the average sum o#er all resonances which fprmation, in the

12

s-channel of a 2-3p 2 process, governs the behaviour c;f the low energy
scattering, amplituc_ie, equals the sum over the Imaginafy parts of all
Regge poles, which exchange in the t-channel dominates the high ‘
.energy behaviour, of the same amplitude. There is also an aristocratic
t-channel singularity, the Pomeron, which is dual to any béckgrqund

‘s-channel scattering.

The lack'of s-channel resonances in certain processes leads
- through duality - to the idea of excflange degeneracy between ‘Ehe
Regge trajectories of several mesons. For example, there seems to
be little resonance activity in. K+p scattering (see chapter IV), in
contrast with the abundance of K p resonances ; we nmw} consider
high energy K+p—> x° b” scattering, which is governed by the _
exchange of 'f and Aa Regge poles (f has negative charge parity), \;. .
and take the asymptotic behaviour of the sum of the contributions A\

> Regge poles to the scattering amplitude :

(I-6) of the f: and A
'““’(S\l‘) dS\“ -uw(A >y of, ()

7"_' -1+ € s .
= (1-8)
F(—L) 25““\0(3%') +F( > Qsmno(,\&.) S




. = ? -

" Hence, the easiest way to satisfy equation (I-7a) with the left hand

slde exactly zero, would be to require that
Lpih) = & : = - S (1-9)
VAR NOREV I AR A0

Venezlano has written down, an analytic expression for thé
232 amplitude,;whicﬁ'obeys crossing symmetry, duality and Regge
. asymptotic beha?iour at the same time., This idea is being made
sophisticated to a large extent, in theé ambitious Dual Resonance

~ Models,




I-3 What is this Thesis about 2

There are one hundred and forty five entries in the latest

particle tables 64)

of the Particle Data Group (~ 55 of them are
mésonic and ~90 baryonic ; there are also the leptons Y ,¥, €, f‘).
One hundred and thirty four of them decay strongly and they are
called resonances. Although, theoretically, a resonance is defined
as a pole in the unphysical s sheet, experimentally, it is recognised
in formation as a counterclockwise Iabp in the Argand plot of a
particular partial wave, or even more loosly as a bump in a total
cross-section_if it is not caused_by-apparently kinematical effects.
In production, a resonance may ‘be seen as a bump in the invariant

mass plot of the particles in which it decays, but again, such

bumps may be of kinematic origin.

In this thesis, dealing with low energy strong interaction
phenomenology, we attempt to understand some awkward phenomena
connected with resonance production and/or formation, and/or their

decay, and/or resonances which are awkward themselves., The diagrams

which we are going to play with, will be of the general form :

n,K M (eson resonance)

R (egge exchange)

N | = ——Blaryon | resoncx'nce)_



That is, our primitive underlying dynamics, responsible for scattering
is the exchange of a certain object, and scattering occurs as a

~ consequence of momentum conservation. As implied by this picture, wé
.will find it convenient, most of the times, to parametrize our

. amplitudes in terms of Regge poles., But this description may

correspond, approximately, via duality to s-channel resonance formation.

In the first part of this work (chapter II) we deal with
the intriguing question of whether any charge asymmetry in the )
or M decay Dalitz plot should be interpreted as a result of C-
8)

violation in substrong interactions. These resonances are produced

in 1] -N interactions, and interference with coherént production of
tgéir decay products may be responsible for some charge asymmetry 11);
but how much ? We make a simple exnlicit model to éalculate tﬁe

W —> ﬂ+ ﬂ'ﬂo charge asymmetry (« produced in v\N—ewB )
caused by interference of the Ww-signal with uncorrelated 31
background, produced coherently under the wi-signal. We start with
a very simple Regge model for 3 production via rfp-—%» u6&§+ ’
"and for the w—> T'7"n® decay we employ the standard C-invariant
amplitudevas) ; we then calculate our principal background amplitudes
in terms of an equally simple Regge model for T\N-—ﬁrT\D& , and the
knovn T\ Dphase shifts 50) . Ve are always carefull about the
phases.of our amplitudes, since they are so imvortant as far as
interference terms are concerned. In all cases, we come to the
conclusioﬁ that the signal - background interference mechanism, although
capable of producing asymmetry of the correct gign, it cannot

quantitatively account for the whole of the asymnetry experimentallylu)’l5)
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obsérved. But before being tempted to look for any exotic explanations
of the excess asymmetry, we are of the opinion that we should await

for more accurate experimental data (gigh statistics experiments 10)
in MN— ﬂqN' did not confirm a substantial charge asymmetry in

qL;_;.11+T\'T\° which had been found earlier ?) ).

In chapter III we turn to K-N scattering ; we make'high
enefgy models for KN—» KON and KN—» K'N , that is, the dominant
inelastic channelsin low energy KN scattering. We start with
elementary t-channel exchanges, and write down the amplitudes which -
are allowed to be non-zero by our Lagrangians, obtaining information
about their residue structure, - We then alter our dynamics, replacing
the Feynman propagator by the Regge propagator. Thus, we succed in ’
having a concise picture of the exchanges which are important in each
amplitude and our work in chavter IV is greatly facilitated. Despite
their simpllicity, the success of our models, in fitting the dif. cross-
sections and broduction density matrix elements 40)7’ 42) ,45)=> 51)
over-a wide range of energies, is remarkable 32). We also make a very
simple, purely phenomenological model for KN elastic scattering (P-
dbminated). Its main use is to show quantitatively that the non-
diffractive, elastic KN amplitudes are very small compared with the
T} -exchange amplitude in KN—> KN y as well as the vector and fensor
meson exchange amplitudes in KN—> KiN , for the I = O channel. This
fact, greatly simplifies our apmoachin chapter Iv,.where we input
these purely non-diffractive pole.amplitudes, after extrapolation
to very low energy, crossing into tﬁe s=channel, and partial wave
projection, into a K-matrix model ?4). Amplitudes for the'awkwafd

.channel K*N-i> K*N are also required, which we are able to model,
) ’ \
3

Y



- 11 - !

via SU(6), in terms of those for KN—>» K'N . e get out a unitary,
corrected for cuts, mainly diffractive isoscalar KN scattering

62)

model , which despite its simplicity (it is analytically solvable),
can account for the qualitative features of the favoured solutions

of a recent BGRT, I = 0 KN phase shift analysis 70); in particular,

: +
it contains a Z; (1780) mexotic" resonance 63),64) 3¢ P =-%- ;
and it strongly favours negative S, and P, scattering lengths.

2z 5 R

2
-Although we had assumed exact duality and strong exchange degeneracy

- at the input level - we got output t-channel structure, which
should be considered to be dual, via unitarity, to TJ=-exchange in

KN—> K'N .




CHAPTER II

CHARGE ASYMMETRY IN w(+)—> T\"n\"7° DECAY .

II-1 Introduction

1) 6

RKZ'——; arnTy/ ﬂxg—» TN 2.107%¢0

reveals an apparent CP non-conservati.on in Ke—» Zq decays. This

The measurement

is because the system 'T\+q' has a definite CP, and since out of

the K°, K°.we can construct the two Ki,

both decays KZ—» 1N ang Ki—a,» MW n E cannot .simultaneously

KZ vith CP =%1, then,

conserve CP, Conventionally, we assign CP = +1 to T]+ \'\' s-state, -
CP = +1 to Ky, and CP = -1 to K3, 80, Ky—> T|' 7] is the CP

non-conserving decay (reference 2), page 117 ).

If one insists on considering CP conservation as part of
the definition of the weak Hamiltonian Hw,then, one is led to the
_ conclusion that Kg—-a T\+T)' is due to the possible existence 33,4

of a new, CP non-invariant, interaction H the 'streng;th .of which

3)

F°
depends on its behaviour with réspect to strangeness. If HF is
assumed to conserve sfrangene,ss, then, for the.coupling constants
(c.c.) it is estimated 3) Bp ™ 1035',” (or mag;Fi\i 102 , the
_dimerisibnl'e'ss c.c. ) ; if only |DS} =1 is all']_.owed,

\
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then g ~ 10725, -—10'3gw , while if |Ms| = 2 s allowed as well,

9
8y - W

P, but it is invariant under T and CP, while HF would violate C

and T but be invariant under CT and P. Now, Ky—» T|'m” can

then gp~ 107 The usual weak Hamiltonian H, violates C and

+
Ko hl
proceed via the second order term HH ! Y o
H H

F w -
, "

and so0 it is much slower than K§-=-> T\+\'\' wvhich proceeds via

f: v
H, alone : 2 . . It is also remarked 5)

that, since the electromagnetic Hamiltonian of the strongly
interacting particles may violate C and T , this '"new" interaction
HF , might be of electromagnetic origin, entering as a second

2 2

order effect, in agreement with the estimation mng ~ 10"° , being

of fhe order of the fine structure constant.

The decays ) —> AT T and w —> r\+'\1"ﬂ°

(also P 0% via f—‘*f interference 6)

, see below )
would provide a nice test 7)’ 8) of the existence of such a relatively
strong C non-invariant interaction. We can have the transitions :

( a neutral 31} state with isospin I, has C = -(-l)I )

w

G=4

Gaad 'Vl .
C=e %‘\“\‘W“ T C=-1, T=02 ,G=-1/>k C=-1

Tee or 3

So, the interference between the C = +1 and C = -1 amplitudes,
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could possibly result in an asymmetry in the energy distr;bution
of A}

be an absolute proof of C non-invariance in «J or 'vZ " decay .

* and T~ . The detection of such an asymmetry would

Lee (in reference 8) ) gives the direct experimental implications, -

on the Dalitz plot of such a C violation. Also, according to 1\:he
change in isospin HF can do ( \AI\ = 0,2 or \AI] =1,3)

it will be present in ) decay, «/ decay, or in both.
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II-2 The " —» 37T decay and the Yuta-Okubo mechanism

Numerous experiments have ‘S;en performed (exhaustive
lists may be found in references 11) and 13) ), to detect any
asymmetry in the v —> 1™ 7° decay. From the analyéis in
reference 8), one expects the AI = O piece of the C-violating .

PC . 0™ %™ 7° final state, to produce

transition to the J
a sextant asymmetry on the Dalitz plot, while its NI = 2
pilece to lead to a charge asymmetry. But since the .AI =0
transition is considerably suppressed 3) by angular momentum-
like barrier factors, an M -decay asymmetry study is primarily

a probe for the NI =2 C-violating transition.

The ‘experimental situation is. somewhat controversial.
.For example, some time ago,Gormley et. a1.9) fbund evidence: for
a charge asymmetry, of = ( 1.5%0.5 )% (for the definition of
the charge aéymmetry and other relevant quantities, see Appendix
A ), and no evidence for sextant asymmetry ( 0.5 % 0.5% ) in
"1-'—> T\+T\-T\° decay with 'V)_,s produced in the reaction
“;P-—? "n.n (PL = 0.72 GeV/c , 36,800 "'{s- ), in line with the
expectations from the previous section. On‘the other hand, more

100 4n'a high statistics experiment with

recently, Jane et. al.
» )

" s from the same reaction, ( Pr, = 0.718 GeV/c, 165311 - M s)

found no evidence for either charge ( o = 0.28 = 0.26 % ), or

sextant ( 0.2 £ 0.25 % ) asymmetries.

Even if we believe that some charge asymmetry is

experimentally possible, it is not stréightforw'ard to conclude
. ' \

A

\
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that it is directly associated with C-violation in the v —> W n™7°
s _ :
decay. Since we cannot have 7] s available independently of a

certain production mechanism, Yuta and Okubo 1)

suggested that
the charge asymmetry, if any, observed in their decay, might be
caused by interference between Wz production and subsequent decay,

with some 37 Dbackground, coherently added to the V] signal.

They write

)

. LN
n-
f‘°

P "

and find ( for a quick derivation of the Yuta-Okubo formula see
Appendix A ), that the upper limit of the asymmetry which may be

produced via this mechanism is @

ili

(o
O<vmx;c = 2ol ° (A-12)

M On

where V«q_ (hm..z ) is the intrinsic (experimental) width of the
WI, and Cfé (CT% ) 1s the cross-section associated with the
background (nz-signal). To get the upper 1imit\(A-12), two aé- .
sumptiohs are made (sece Appendix A) about the béckground, namely
that all of it is in a (1) J*C = 07" , (i1) charke asymmetric
state . If this is the méchanism responsible for ;py charge
asymmetry in ﬂl-decay; this asymmetry should presumably vary with

energy, and should depend upon the production mechanism; so, if it

persistis as we vary the energy and change the production mechanisﬁ,
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then dne could start talking about possible C-violation. Possible
background mechanisms would be :
//’V]f\o
- - A" : ° ‘
T‘Y? — A > M Y "”_f A ,e.t.c.
\\} °
in ¥
. ‘\ \NT‘*“-
Note, that it 1s possible to have sméll asymmetry in the background,

as it is experimentally observed 9) , and at the same time, most of it

being in a charge asymmetric state (see Appendix A ).

Applying (A-12) for the <~ parameters ( ﬁq = 4 KeV,
~ ~ . 0
hm% * 10 MeV , Op/Oy = 1/10 ) we get & __ =1.6% , so it would
seem possible to explain some charge asymmetry in M —> WfFTY-T\O
decay via the Yuta-Okubo mechanism. But of course, what we have

estimated here, is the maximum allowed asymmetry,and the assumptions

(1) and (ii) which we made above in order to derive (A-12), are very

difficult to accept without further discussion. In fact, Gormley

et al 12)

parametrizing the background in a consistent with their
experiment way, find no more than o(max = 01§3'% asymmetry being
possible by the Yuta-Okubo mechanism. On the other hand, Taggart 13)
does a simple, explicit calculation, taking into account the most

impo}tant charge asymmetric and charge symmetric background diagrams,

and- finds no more than C‘max = 10"2 % .

To conclude this short review, the present situation with
the M —> T 77" N° decay is that interference of the v) -signal
with a coherently added background can only explain a very small

charge asymmetry (of the same sign as it had been experimentally.

observed'g). some time ago ) , but the most recent'experimental_

10)

results . are consistent with no asymmetry in this decay.
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II-3 Charge asymmetry in «f —> 37T decay.

\

The deca\\} W ——> '\'\"'\'_\'“o is tested 14), 15) with
about 4000 uJ’s, from the reaction T\+i)—> ub'\‘\+p at 3.7 GeV/c.
A significant charge asymmetry, o =18 X 5% , is observed in the
w  Dalitz plot for the channel T\+p—> bON'F (see figure II-1,
from reference 14) ). This large effect is localized in t'

1
(t = lt-tmin} swhere t is the momentum transfer for p to D) ,

2

being most prominent for 0.08 & t' < 0.20 GeV® ; outside this region,

the asymmetry is consistent with zero (see fig. II-2, from reference
14) ) . The asymmetry is observed strictly on the «f signal and

not in the background (see fig. 1I-3, from ref. 14) ). Note, that

16)

3 -
in a previous experiment y with 4,200 W s from K p—» W ‘\,

0

no evidence for charge asymmetry in the W —> T1+q'q decay

had been found.

As analysed by Abrams, Goldhaber, and Hall 177 the
observation of a charge asymmetry on the «J =Dalitz plot provides

unambigyous evidence for the presence, in the region of W/ =mass ,
G

of a coherent 33y production amplitude with I =1 and

PC

J = 1-+ (see also Appendix B for an explicit proof that this

coherent amplitude should necessarily have JP =_l—, if it is going
to interfere with WS production )., At least four different
possible dynamical interpretations of this interfering amplitude

have been suggestedll‘“)’ 15), 17), 18) :

(1) The AI =1, C-violating decay of w 8) , as discussed in
section 1II-l. But this mechanism may be ruled out, since it would

présumably affect all w events, rather than a restricted subsample ,
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as observed,

(11) The AI = 0 decay of the JPO, produced coherently with the
W (C-violation in electromagnetic interactions 5) s a8 briefly
mentioned in section II-1 ) ; but notice that the t' region in

which the asymmetry is observed, does not completely overiap with
the region 0 ét' <. 0.14 GeVa, of the known f -« coherence 6)’192
(iii) A Yuta-Okubo interference mechanism, of the type examined in
the previous section. ‘
(4v ) A possible exotic resonance, f , with 1% =17, JPC o 1=

and mass near the mass of the S .

In the remainder of this chapter, we concentrate on mechanism
(iii) (for a discussion of (ii) and (iv ) see e.g. reference 18) );
»applying (A-12) for the W' parameters ( f;,sla MeV, Am, = 100 MeV,
GB/C'w &~ 1/20 ), we get &

max = 20% 1 But.some care is required
at this point : Apart from the fact that the Yuta-Okubo formula

is a worse approximation for the 05-9377 decay (W is much broader
than the %] ), putting sian = 1 in (A-8) is not justified . |
Because, as discussed in Appendix A,-siqf essentially measures the
mean strength of the interference between the charge asymmetric

part of the background and the resonance production amplitude. Evep
if the whole of the background is in a charge asymmetric state, only

that part of it which is in an J%

= 1- .state is goiﬁg to interfere
with o production (see Appendix B ) to give'asymmetry, if any .
But the lowest 3% 1~ state haé two pions in a P =T state,
and the third, with a relative ang.‘momentum 1, with respect to them

(see Apvendix B, table B-1 ) so it is rather unlikely that this high

ang. momentum configuration will contribute significantly at such

A

\
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low energles as the mass of the «F 20) (unless the exotic .j;

particle exists, as mentioned above ).

In view of the above argument, it is not straightforward
to draw any definite conclusions from the Yuta-Okubo formula (A—la)[
as it stands. In the following section we proceed to make an |
explicit simple model for «§ -production and background, contributing
to -\-\-"'p—-) 1\+“'t\° AN**, and caleculate the charge asymmetry
which may arise by a Yuta-Okubo type mechanism. .
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II-4 Model for «wf-sipnal - background interference in

T p—s o N'* \

As first suggested by Berger in 14), we coherently add -

the diagrams :

n "

\\@< .
in° ) !
-l |
O \Byg
11 - o
? A\"O

the first of which represents peripheral production of «5 via Jo
and B exchanges (which subsequently decays into 11+T1'T)° ),
wvhile the second 1s thé assumed principal baékground mechanism,
the blob representing the full T -T] scattering amplitude, while
in its lower part we have T\ p—> T{ﬁfﬁ scattering, which goes

" via ‘Jb ‘exchange. The 37T system in <Bl(2) may, of course, be .
found in any JP state, but by calculating integrals of the form

e.8.

‘JFM&ITF = gi]—%-

(11-2)
.we leave the S production amplitude to choose that piece of the
background it wants to interfere with. In figure II-4 we plot the

dif. cross-section for T'p—> WS Nt at 3.7 cev/c 2% (a) and
11+p-e> 1\0 Df+ at 3.84 GeV/c 25) (b), together with their geo-
metrical mean (c¢). Looking at this figure one could hope to explain,

with diagrams (II-1), even the t'-dependence of the asymmetry in
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15)

the experiment by Abrams et. al. , discussed in the previous
section, although the t' interval in which the said geometrical
mean is largest does not completely coincide with the region of

2 ). Ve now

maximum charge asymmetry ( 0.08 < t' £ 0.20 GeV
dlscuss in some detall every separate piece of our diagrams A and

Bi(ay ¢

The T\+p—-> CJA'H' process.

For the t-channel centre of mass (t-CM) helicity amplitudes
we write (we labei the helicities with the name of the corresponding

particle ) :

P Cp § . Kb B B A (4 _
g?s_,wu, =- f;m(:) g@_) (—2—;) d + F’ (i\ g(t) (—S-s-‘)) " (I;-B)
§.% A L PR
‘o,
where : %@2) = -1+ € d - (II=4) .

the _P'B signature factors, and for the Regge trajectories vie

have, approximately :
df t = 5’— st 5 0(5 & = % (I1-5)
£B

The residues () are smooth functions of t; assuming that

/owh
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we are at energles asymptotic enough, so that the séparation of t-

channel helicity amplitudes into natural/unnatural parity exchange

26)

pleces may be justified, we can have some information about

them by looking at the «J decay density matrix elements, in the

Jackson frame, at 3.7 GeV/c 24) :
B
We have P (t) 20 (identically), Fob(t)# 0 (a large .ﬁ)o ) and

2
<F,,, )= () e (R fray = (P fra)

where the residues are averaged over t and the p,A helicities: Let

22) from

@\'?N N ,me be the overall rotation-crossing matrix
t-CM to the s-channel «J rest frame; then, the ampl:l.tudes we ‘need,

will be : ( see (F=9))

Qo - I R,,B o S2n

P>, [\

B Ay (L)

§ ol (B B
YR IR A CEXTCS s

: §,B R £B .
¢ D o -
where X?,w' N) Tk ¥ N5 Pl ’E,..,rft) (1I -7)

will again be smooth functions of t (R depends on t only as s—=s o0 )
The elements of @\ are complicated functions of t; but remembe.ring
that at least five variables ( out of eight ) will eventually be
integrated over (see II-2), we re_quire only a "mean" description of

the processes involved and put :
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R = <2) - () 86"+ @ T

where we have assumed that all 5 helicity states are produced
with equal probability in its rest frame (from the s-channel reaction
r\"p—) u)N'*' ), and the average of the residues is taken over both
t, and helicities. The crucial point, as far as interference terms
are concerned 1s that, at high energies, the Regge phases are inde=-
pendent of the helicities of the particles involved., In view of
these arguments, it would be superficial to start with a many-

—

parameter good fit for S¢e in (II-3) ; we only need to

observe, that by taking 5, = GeVe we can fit the slope of the

pwh

dif. cross=section for ﬂ+§—+ uuhﬁ' at 3.7 GeV/c 24) .

. The 'ﬂ*'p--—) n° AH pProcess.

In complete analogy with N p—w N"" ; for the
Bl P—> B} KH amplitudes, we write :

~ $ ) oo Ly :

T\'?B = ﬁ‘h&) %Qﬂ %*') f (t-channel CM) (1I-9)
ol oy

—n = % ,bQL\ .gtb ( \ (s-channel, w5 rest frame) (II-10)

¥

\

oo (1) |
N => <“ > = (S?> 3-?@) (%.) Y (II-11)

\
AY
kY
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(residues averaged in helicities and t )

2

Taking 8, 1l GeV™ we can have a resonable '"mean" slope for the

25)y 27) | por the channel nop—>n " N7

dif. cross-section
required in Bl’ note that it is the u-channel of T\"'p—-)- .“o N+,
and the crossed particles are spinless. So, in the approximation
=
m“'.!.' 1‘0
hence the corresponding helicity amplitudes should be equal, one

y the s-channel CM and the u-channel CM coincide,

by one, in any frame (because crossing from u-CM to s-CM does not

involve any change, and from then on they rotate together ).

The W —> TITT1~" 1 decay.’

For the invariant amplitudes describing the o —» Tj*1™y°

decay we have 28) : (C-conservation)

. -
7; X W (f “ﬁ,)'—g("")- (1I-12)

where w% is the 3w invariant mass and f):_ ’ F_ are the 3-momenta

of ', TI" in the o5 rest frame. Putting our z-axis along
the direction : ‘g“‘”\ -—::’— 5
Ere (Rl

M become helicity amplitudes

T. » 50 for amplitude A in (II-1) we have :

where 5; is the «S 3-momentum, T

il

ph _Zw'_ "\m-w'l”‘n% W\w-w'lua%—:

i

<‘5\> (11-13)
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" V-]  amplitudes

~We now estimate the T)-V] scattering amplitlides required

in our background diagrams Bl(z)' Since we are interested in 371

invariant mass near the mass of the <« , we need Mo S mJ, in
order to have m3“ & mu)29) » 50 we need an accurate description

of our W -7 -amplitude below the J° mass, through the availableBo).
phaée shifts for S

o ? Sp-and Py waves, For the n-m amplitudes
of definite isospin I we have : (see Appendix F)
o = gws? > (2L +1)a{ I - (IT-14)
: 2 | . .
with R S - (II-15)
¢ decotg? -i

where q is the 2n centre of mass momentum. We put
q2€+lcot S{I = fi (q) | ' (I1-16)

and interpolate simple polynomials in q, through the f%(q) values
found from the T\T\ phase shifts, taken from Morgan's review 30)

(see Figure II-5) . We find : (all units in GeV.).

0 - - 2 ' (II-17a)
fo(q) = 0.6-5.17q

1 (II-17b)
f1(q) = 0.09-4.76q*-5.25¢° g

2

' - - g2 (II-17¢)
fo(q) 5.76+26.12q~37.31q .
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ﬁ. MOROAN'S REVIEW
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FIG. ITI-5 Polynomial interpolations for the quantities

f% = q22+1 cot&% . Phase shifts from reference 30).

All units in GeV .
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Expressions (II-17) are consistent with the results of a recent
compilation 51) of "\ -T scattering lengths,. For the

'ﬂ"'\'\"—; T\+T\- and T\+T‘°-—-.» ’_\\+1\° scattering amplitudes, we

have

T(+_) = 131'° + i-Tl + %T"' (Ii-lga)'
1 .2 .

T(+°) =37 + 3T - (I1-18b)

If combined with (II-11l), these amplitudes give for. our "average"

background amplitudes :
(o)

G

wheré pi(2> is the four-momentum of the pion which is exchanged in

Bicay °

‘1—
RIS

Results and Conclusious.

By Monte Carlo phase space integration (standard FOWL has
been employed ),we calculate the Dalitz-plot distribution (II-2),
together with the 37| -invariant mass distributions for positive
do
Aw“l x%o

for amplitudes A and B in (II-1). Although we may estimate the

and negative x, , -using expresions (II-13,19)

\ | .
<ﬂ>—w_\7'_\'__'€z__ T(+o) ' (II1-19a)

<'ﬂ> F\_L\?i' T(ooy (1I-19b)




- 33 -

absolute normalization of our diagrams, we vary the ratio. A/B

and search whether we can have a substantial asymmetry in the Dalitz
plot, and at the same time, a reasonably low background. It 'turns
out that although we get an asymmetry of the correct sign, we would
need a very high background in order to .make it as large as expe-
rimentally observed ; if we have an wJ -signal to background ratio
15-5, we get no-more than 1-3 % net overall asymmetry, both in the
Dalitz plot and in the wJ signal, in the 3V} -invariant mass

distribution. In figures II-6-» 11l we give a sam_ple of results
- B
for otf(t) =3+ +t, O(B(t) =t , 8, = 1l GeVZ, and (X-‘)/(X ):i

In figures II;6,7 we show the quantities .and the

co
dw'lr X20
Dalitz plot distribution , tog‘ether with its x,y projections,
calculated from diagram A only, which is completely symmetric with
respect to T\" » T . We get an asymmetry o = 4.3 %, which should
be interpreted as a random fluctuation of the Monte Carlo events
generator ; we subtracf‘. it from latter results. In figures

II-8——> 11 we show the same quantities, but for O, /GB o 3)7 .

TABLE TII-1
OT“'IO_B G‘”]X)o/o‘:]x-(o O(

Experiment | 20.44 1.54 . 11835%
“[Aonly [ 103 | 430%
Model' | 704 | 110 [ 525%
| 3.05 114 '8.20 %
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Our results, -are summarized in Table II-1 ; we define :

O:,]x>o = AO" (average in'tﬁe interval o.77sw‘}$ 0.80 GeV)
) AWl /xxo
O'B] = _A_Q: (average in 0.85$W‘}$0.95 GeV ) .
> .
X<° A llz_
W /xZo
Ow — O-w]X)Q +6:.:] X<0 - _ o (III-ZO)

o—é B od&]x)o + o-:b]x«o

(The «J Dband is defined by 0.762 sw‘l’g 0.803 GeV ; FOWL calculates |

_oi‘. AO“ ywhere Op 1s the total cross-section, or the |
' \
T dwi[x2o

"normalization factor" of our histograms in figuresl‘,_‘ II-6—» 11 )
We have checked the stability of our results against changes of

the Regge .i:rajecto;'ies O(f ’ o(B ’ the constant By » ‘and the ratio
B :
<Xf>/< ¥ > ; but the only parameter on which the asymmetry

depends crucially is the ratio A/B .

What about the t'-dependence of this asymmetry ? It is

do
dt’ %Z0

“difficult to calculate accurately , since double selection’
of events is required (both in the S -band, and for x2 O ), and
we need to gencrate a very large total number of events (this is

also the reason we use a sharp A Y. Although generally we have
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t> i%ﬁ? y & ;lear dip in SLET for.
t |
x>0 x<o

2

do
dt

0.08 éstf £ 0.20 GeV- does not appear to be present. We may have a

qualitative understanding of the.t dependence of our asymmetry re-

membering that the interference terms in this model fall exponentially .

with t , hence large t s do not contribute significantly to our

asymmetry., On the other hand, we have checked thaﬁ wvhen replacing

the constant <Xg> by t<%?> " (a flipping JO ) the results

[ *
presented above do not change substantially. So, we arrive at the
)
qualitative conclusion that neither the very small, nor the large t s

contribute significantly to the small asymmetry generatedxby 6ur

mechanicm.

We conclude that the W -signal - background interference
mechanism, can explain only a small fraction of the charge asymmetry
observed in the <Lf-9ffg\-T\° decay. This result may be quali-
tatifely understood, if we remember that ;

(1) The experimentally observed background is very low.

(ii) The <« occuples a very small region in tHe phase space, soO

the background cannot vary significantly inside it, to produce much
asymmetry. . -

(iii) The 3n 1~ state involves high angular momenta so it starts
contributing significantly at.energies higher than the « mass, as
discussed in detail in the previous section, and as proved by the -
fact that most of the x) 0 = x<0' asymmetry in our j;—:"-l-z
distributions, in figures II-8,10, is introduced at energies higher
" than the «J mass. |

# This is because the small t values are suppressed by
phase space factors.
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In view of the situation in n—> ﬂ+ﬂ-n° decay, discussed

in section 1II-2 , before considering more exotic explanations -
( discussed in section II-3 )  of a possible charge asymmetry in
W D Trtw'v\o decay, we should await for more accurate data.

[P




CHAPTER - III

THE KN—~> KN, KN, K'N PROCESSES .

IIT-1 Introduction.

In this chapter we turn to KN scattering; our ultimate
aim will be to understand possible exotic bumps in K'™N total

. cross-sections (chapter IV). Here, we examine in some detail the

inelastic KN channels dominating at low energies, namely KN—> KO,

KN—> K N, and we try to understand the nature of their t-channel
32}

exchanges on a concise basis. In view of the work to come next,
it is desirable to have a very clear plcture of the exchanges which
are important in each helicity amplitude. The philosophy we édOpt

in treating our dynamics greatly helps in achieving this aim ; to
construct our KN—> KA, K N amplitudes , we proceed in the
"following two steps : -

(1) Guided by the measured values of the donsity matrix elements

for the produétion of the high spin particle , we find the particular
way of coupling the pseudoscalar and.vectbr meson exchanges-treated

as "elementary"'" objects - to the external part;cles , which 1is

consistent with the data , and then :




_:lr( -

(11) We reggeize our amplitudes , retaining any relations imposed
~on them by (1) ,assuming exchange degeneracy between vector and
tensor mesons . Thus , we always have our amplitudes parametrized

in terms of Regge poles.

Finally , for completness we give a §ery simple Regge
model for elastic KN scattering. Since this process is dominated
by pémeron-exchgnge-even at very low energles , it cannot be treatqd
in the way described above , but a purely phenomenological point

of view has to be adopted.

The fits we are going to present should nét'be thought as
the best results of careful chisquare minimizations ; this has
béen done during the past decade (see e.g. references 33) and 34) ;
ex haustive 1ists of references for Regge fits for the KN—» KN ,
KD, K'N reactions may be found in reference 35) ) , and it is
not our purpose., Here , we want to succeed in a concise and
unambiguous determination of the exchanges which are important in
each amplitude. This is very important , e.g. for K'N—» K N, in
decidiﬁg.unambiguously whether any exotic . K*N resonances do'exist-
see chapter IV. On the other hand , we demonstrate that much simple:
models can fit the data equally well as some sophisticated ones. We
always manage to have no more than one or two free parameters ,
which can be easily determined. We believe these models to be quite
realistlic, at least in a global sense , although they do not succed

in describing every detailed aspect of the data, as discussed below.

\.
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IIT~2 The KN—> KD channel.

We start by considering KN—3 KD scattering, where we
can only have JO, Aa exchanges, in four independent helicity
amplitudes., Since this reaction has a Is = 1 component only, éll
K'p—» K°AY, k*a— x° & , K*A° channels are simply related
by isospin, so we explicitly discuss the K+p-ﬁ> k° bf+ channel

only, for which we have the best data.

Lorentz-invariant couplings

The success of the Stodolsky-Sakural 36) model in predicting
+
the {; particle density matrix, enables us to use the ML (magnetic

37)

dipole) .transition Lagrangian for the JpcsN vertex :

L - 95&1:)0 EJ""?]‘ Kv(f _'_E-)? At (ITI-1)

while the only parity conserving coupling of a vector meson to two

pseudoscalar mesons may be written : | .
< - g'[#’,‘bj«ﬁé -(r2) 7?.7/4]‘ (1rz-2)

our notation is clarified by diagram III-l.
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DIAGRAM  III-1

Using these (phenomenological) Lagrangians, the t-channel (Born)
 helicity amplitudes, which do not vanish, may be calculated (see
Appendix C=-1) :

(H
T - 20
-
J’

Or, finally :

E Gy Vo) S ERRp)" s

)

7:; _ 33 C;b(s,*) [(’Y) mb) {']/ (TII-4)

212 2V"‘m£

€5

7. 7 ] | |
$3 = V3 /iy | (III-5)

# Throughout this thesis, we use the notation m = Wy s r = My,
M = mes , while <t’(s,t) is the Kibble function (the equation of the

physical region boundary) of the process under discussion. We label

our helicities by the name of the corresponding particle.
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Relation (III-5) leads to the famous Stodolsky-Sakurai predictions

for A production

ﬁs =%, _1031 =0, /C;-l_= b (III-6)

and it is by now well checked that these are satisfled, at least:
in a mean sense, over a wide range .of energies (see e.g. figures

III-2,3b,4 from references 40), 41),42) ).

\,

One may also calculate the s-channel helicity amplitﬁdes

directly from Lagrangians (III-1,2) (see Appendix C-1) :

(> (=)
- _ S0 -
é% = {27:;__'5 = F w_\%; (\-\-D—?.D LosG) cos% (III-?a}

5

_ ©) )
—Té% = @7—%11 = F ws:;_n_i (\-D —QD@$9) 5‘\4).%

(I1I-7b)
M

F and D are functions of s, the form of which is given in Appendix
Cc-1 (Cc-18,21) ; © is the s-channel scattering angle. It may now
be checked (see Appendix C-l) that the relation ‘ZjT(s)la;éle(t)la
is satisfied, a fact stemming from the locality af our Lagrangians
(III-1,2). It would be an academically interesting exercise to
calculate the angular distribution and total cross-section for-
K+p-—> K°[§++. using amplitudes (III-?) as they stand. Figure III-1
shows the results of this calculation (which éhould be compared
with the data on'figures I11-5,8) , and two maj&p diseases of strong
interactions calculations using firqj order pertdrbation theory are

manifested :

(1) not enough peripherality
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FIG. III-1 First order perturbation theory predictions for the differential
++
and total cross-sections for K+p—9KPA : ( p-exchange,

M1 ﬁransition:at the' ppA vertex ) ; x=cos6_ .
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(1ii) infinitely rising total cross~section.

Kinematic singularities.

It is interesting to note, that the t-channel amplitudes
(III-4) have the correct kinematic singularities 22) required e.g.
by crossing matrix considerations. Let us explicitly construct the
kinematic-singularity-free amplitudes, for this process, corresponding
to amplitudes (III-4) (F‘t)denote the assymptotically parity
conserving amplitudes; F(') =0 22) ) s

i M)

RO ST U TN

"
/

(111-8).

> Jq-bq- S\V\O£ Tk‘h--: ﬁ@ W\}--{_ A
| 34 =
Here, 6% is_the t-channel scattering angle and
a = te(m, tmo )2 , b =t-(m +m )° (C=7)
+ Myt K ’ + P— A

(see also equation (C-1l) of Appendix C). So, besides the basic

. 1 '
dynamics of this problem ( P-exchange, <3 : ) the kinematic-
wy,—i

singularity-free amplitudes contain factors which vanish at‘t-
channel thresholds and pseudothresholds, something to be expected
since angular momentum consérvation is nicely built into Lagrangians

(III-1,2) (the crossing matrix is diagonal at high energies ).




Regeeization

Now, retaining relation (III-5), and the residue structure
predicted by couplings (III-1,2), we want to alter the underiying
dynamics, replacing the Feynman propagator in (III-4) by the proper
"Regge propagator" (e.g: as in reference 38) ). Since JO and Az
are the only allowed Regge exchanges, for the helicity amplitudes
which are free of physical-region-boundary singularities (free from

kin. singularities in s) we haﬁe :

7= -, 1k) oLy M ) -1d, (b dk‘q;M
[ LM L AT R PR R
F A 2':»’\'“\0(3@\ 230 /u 25"')no(A&h \‘2‘”
k=M -
= %-\‘\K‘,B\") IS (%ls‘% ("\=\r'5\> (I11I-9)

where we got the second equality by assuming

P Az Sorthy
o =d 4 = o = by = —Lo2 (II1-10)
fL*) A, (" SR /?A Q) f;ﬁ L) 7o)

that is, strong exchange degeneracy between ,f> and Aa (see section

I-2), and a usual ghost-killing mechanism 55)

, since we need our
amplitudes for -1<Lcosf %1 , and at low energies. We now

reggeize amplitudes (III-4) by the substitution :

j> ’ P d'i ;
-U .
u:)f"-f > r(l—q') (2 oo (I1I-11)

80, we end up with :
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! |l?' ']1_ d-{
Ty -6l - ot 64, Teo (597 aan

For our jo -Aa trajectory we have

Agpy =1 + o('(t-m; ) (I11-13)

with oc = 1 Gev2 y while the natural unit 39) in our problem is

8, = ‘,,\_\lmmh' ~ 0.5 , so the only "free" parameter we have is the

over-all normalizaiion.

Comparison with experiment

Before proceeding to a comparison of the cross-sections

to which amplitudes (III-12) lead, with experiment, let us check
once again how good the Stodolsky-Sakurai predictions (I11-6) are.

In figure III-2 (from reference 41) ) we show the AH' production

density matrix elements at low energies (pL_= 1.21-1.69 GeV/c ) ,
and the agreement with the Stodolsky-Sakural predictions (dashed
lines) is, in a mean sense, satisfactory. In figure III-3b (from
.reference 42) ) we show that they remain good, except for small t,
at p. = 4.6 GeV/c . In figure III-4 (from reference 40) ) the
averaged over t density matrix elements are shown,-ffom threshold
up to 5 GeV/c , and the agreement with the Stodolsky-Sakurai pfe-,

dictions is remarkable.
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FIG. ITI-2 From reference ULl) .
' A" production density matrix elements, compared with

the Stodolsky - Sakurai predictions (dashed lines ) .
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FIG. III-3 From reference U2) . -
- (a) Dif. cross-section for K+p79K°Af+. at D = 4,6 GeV/c ,
compared with the fit of reference 33) .
(b) The corresponding density matrix elements ; - the dotted
lines are the Stodolsky - Sakurai predictions. Dashed
' crosses are from the reaction . K n =K A , at ;

essentially the same momentum, from reference Uu8) .
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In figures III-5,6 we show low energy, 1.21<p; <2,17 GeV/c,
dif. cross-sections for K'p—> K° A™* (data from references 40) ,
41) ), compared with the present model, and the agreement is generally
satisfactory, except for the lowest energies, pLé1.29 GeV/c where
Regge éeems to have ceased being good. It is interesting to note
that had we used amplitudes (III-4) as they stand, we could have
" fitted the lowest energies data (compare with curves on fig, III-1).
This remark may not be uncorrelated with the observation that

exchanges tend to behave as "composite" when the ratio is

=
i/o('
large : at presently available "high'" energies, this ratio is large

for strong, but small for weak or electromagnetic interactions (the
Regge slope o(' may be thought as characterizing the square of the
foundamental length associated with the interaction under consideration)
; on the basis of this observation alone, one argues that, at truly
asymptotic energies, leptons will reggeize as wéll (see reference

43), and references therein). 1In figure III-7 (data from reference

L42) ), we show that the model extrapolates satisfactorily to higher
energies, p; = 4.6 GeV/c ; for comparison, in figure III-3a (from
reference 42) ) we show the same data, compared with the sophisti.cated
Krammer and Maor fit 59), Finally, in figure III-8 we have total
K+p-—) K° &H' cross-section data (compiled in reference 41) )

compared with the prediction of this model, normalized to the data

at 4.6 GeV/c shown in figure III-?. Again, we see that Regge fails
below p ~ 1.4 GeV/c (sinse our N is sharp, we have a KD

threshold at higher momentum).
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FIG. III-5 Dif. cross-sections for K+p -¥°A™ at various low

- energies, compared with the model of section III-2'.
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FIG. III—6_ Same as in PFigure ITI-5 , at different energies .
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ITI-3 Model for the KN—s» K N process.

The success and simplicity of the model for KN—» KO,
developed in the previous section, makes it serve as a guide in
constructing an equally good model for the more complicated KN-J)K*N
channel, to which we now turn. Here, we can have P , V1, W =f,
JO—Aa exchanges. But 1f the pomeron is an sSU(3) sihglet, then,
in the limit of exact SU(3), it decouples from this reaction, and
we do not expect it to become important until all the meson exchanges
have become negligible, as is well established experimentally (see-

, figure III-9 - from reference 44) ; but see also reference 52) for
a discussion of a possible SU(3) non-singlet E’-exchange). As
in the previoué section, we start by considering the possiblé '
Lorentz-invariant, parity conserving couplings of the pseudoscalaf

and vector meson exchanges to the external particles.

pseudoscalar meson exchange

We first look at pion exchange ; Lagrangian (III-Z),
together with the usual

o£ = jmvr; ?Xs‘ngb (I1I-14)

- coupling of the pion to NN (and these are essentially the only
parity conserving couplings avallable), lead to the following t-

channel helicity amplitudes for KN—i;-K*N (see Appendix C-=2) :




(m)
] _ . P X -
7;5"'\' = Uy fs jk:,f?ﬁwq RS =
7
L Fyr
M1” e, : SNS Svo (III-15)

= & -
%\f\“‘\]c}NNj\ Hﬁ"-'\’— "\M" (\)

where 6%1(2) for the Yelastic'(cex) reaction - see Appendix D-3 -
and a, = (M % r& )2 -t . We multiply and divide .by the K mass

in order to make all factors in this amplitude -explicitly dimensionless
(to facilitate comparison with T} -exchange amplitude for K*N—-)K'N
in chapter IV ) ; of course, w<’a could had scaled with any constant

~1 GeV

Amplitudes (III-15) lead to the wéll-known predictions :

foo=l’ fl-l""f]_o"o ' (I11-16)

for the decay density matrix elements of the vector meson, when
produced via ) ~exchange only. Although we cannot_ isolat‘e the T\-
exchange contribution in KN—-—» K*N, looking at the data in figures
IIT-14-=>17 we can make the following simple observations in support
of these predictions : |

(a) For small-t, where Tl-exchange is largest, we have a lérge

ﬁoo and a small -Pl—l . |

. (b) For the cex reaction, where the TT-exchangé.‘ contribution is
doubled, we have a larger foo and a smaller _ﬁ.-\l than in the
"elastic" reaction. "'

kY

(¢) As the energy becomes larger, foo(j)l-l) is getting smaller
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(larger) (the pion dies down with energy more quickly than the vector
and tensor mesons ),

(d) The prediction Revfblo = 0 is more or less well satisfied,

We now reggelze amplitudes (III-15) by the substitution :

M lr./i 1 e‘t“d" S N (111-17)
m}r- + ’ 2 Se -

having in mind that the evasive pion (oct% 35) ) is ruled out by the
data‘; by substitution (III-17) we accept the presence.of con- .
spiratorial or absorptive effects. Finally, anticipating tbe vork
in chapter IV, where we will WAnt to partial wave analyse this

amplitude analytically  (this was alsb the reason for choosing an

S

« ' X
?g-) Regge behaviour, instead of (i:ik&) , as in the
o .

2So

previous: section), we make the residue constant, by taking its

value at t = 0., So we end up with :

() \

_Wo | ‘ ‘(III-1_8)..

M

- . - 2 N '.\. . N

vector meson exchange

We now turn to vector meson exchange ; the ‘only par;ty
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conserving coupling of a pseudoscalar meson to two vector mesoné nay \

be written as : .\.'
S P &
L - 3 55 & onpe /:ﬁji‘: A,‘.. Aj, (1II-20)

but for the coupling of the vector meson to NR we have several

choices, e.g. :

A
| j"SZD/‘(}bIA; | (I11-21)

n K
j '7ZJ'/,,>[) /4‘; R 2/ 72,'];-”05‘“ ')[; A 5 etc_l _(_I_II-a.lla)
(diagram III-2 clarifies our noﬁa—tion )

(A

DIAGRAM 1III-2

Already, success in the previous section, would favour a BB cbupling

of the type (III-21), which if combined with (III-20) leads to :

(M) sl . .
- _ -'1 3‘ —_— _ » f P * . .
7—}; NN = Tﬂ%_{: rU(N) %(N) aff.)“"/tz ﬁ‘n RJ‘ 60‘) (III-??)

N
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Notice the similarity between (III-22) and (III-3) : here, we have

" the 24 and € fields uncorrelated ; in order to go from (III-22)

to (III-3) we have to couple them into a Schwinger~Rarita spinor

UDE + From (III-22) we find (see Appendix C-3) :

7’:‘:& 23/ S:oQL (awm* -U @. QJ S

PTox NN g k1 (III-23)

leading to the immediate predictions :

_)Ooo=flo=°» _)01-1=‘l (III-24)

Again, from the data on figures III-l4-=5 17, we see that at higher
energlies, where the pion is small, ,Fl-l approaches 0.5, except
at small t where the plon is largest. The prediction Re,f)lo =0

persists, and it is always satisfactory.

Consider now Lagrangian (III-20) coupled with a BB

current of the form '933},'#’ -« In Appendix C-=-3 we find :

7;‘5'*‘:"‘7 = '19% 6,3}«}3 }i* ‘(N)X}%(N) EZ,:,* (I11-25)

f
So
TOJNN =0 . (III-26a)
, maq' sS40 2 .
7’} 325, = - M\;ﬁ: ;‘\'}; Qq*q_) - (1I1-26D)

?g' ]icosQ£ ll_
my-t

NI=
]

CQ+Q ) (III-26¢) .
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hence, for the K* density matrix elements we get :

_jobo = Jplo =0 (I1I-27)

ﬁ _. 4 5‘\v\19{+%,§_._(('_osze{._-i)
-1 — 9

* (I11-28)
sSwrO 4L -\--—w—]%:(Cpg'e-Lﬁ-i) :
That is 3
in-l'“ 4 for |tl~ o0 ' (I1I-29a)
Jal-l”“ 0 for  |t| ~ n® (I1I-29b)

.From the data in figures III-l4—>»17 we cannot find evidence in
favour of (III-29), on the contrary, jol-l , in general, increases
with t. In fact (III-29b) should persist at all energies, even if
] =exchange 1s appreciable, provided that it mainly contributes to
To;pﬁ , but at no available energy we see evidence for (III-29b).
0f course, (IIT-29a) cannot be checked confidently since at small

t, pion exchange camnnot be neglected, even at higher energies.

The above example, shows that &pﬁrqy-.is the favoured
BB current for this process. Reggeizing (II1I-23) py'substitutioh
(III-11) - ©but with s-u =2 2s - and putting back the t-channel
initial state threshold branch point, which should be present in-
(II1-23) (it contains all other kinematic singularities required >°))

, Wwe end up with.: )

M) (M)

T T fe oA
« 41 — —- S ._I..
23 T~ M-z T ()’4’(5,{, Fo-a) (——50) oo ()
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wvhere strong exchange degeneracy in the form f+A2‘= u)fy:: 2M
has been taken into account (see section I-2) and o is the common

f A5y W, £ trajectory.

Natural-Unnatural parity exchanges

From the above considerations, we have learned two important

lessons :

, .
(1) ™\ -exchange contributes mainly to the production of K* 5 with
helicity zero, and it is mainly non-flipping the NR vertex.

(i1) Vector (and by exchange degemeracy also tehsor) meson exchange"

produces mdainly helicity-one K*,s, and it is mainly non-flipping.
We now come to consider, what experlment tells us about the relative
contributions of naturgl/unnatural parity exchangeS‘to the various
helicity amplitudes for K+p-—> K*+p . In figure IIIglo, we plot
the quanti.ties O‘; ( O'I-{ ), which - in the s—»o0 limit - measure 26)
the averaged over t percentage of natural (unnatural) parity exchange
contribution to the production of K"s with helicity K'(dafa from
references 42), 45), 46), 47), 49), 50), ). This figure, makes
| clear that unnatural parity exchange contribution to Tl-NV _is
very small, in fact consistent with zero for pL 4.6 GeV/c : on

the contrary, l'Nﬁ are mainly fed by natural parity exchanges,

3 H .
as the large CTI indicates, in agreement with the previeous conclusion
that only W, f,‘P , A2 contribute to Tl;Nﬁ . Unnatural parity
exchanges contribute mainly to To'Nﬁ , and become more important -

. Aoy .

at lower energles, again in support of the previous statement,
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that the pion mainly feeds the T° NF amplitudes;'

Comparison with experiment.

We next come to a quantitatiVe'comparison of this model
with experiment (selected data from references 42), 45)=> 51) ;

for an exhaustive list of references to data, see reference 62) ) .

" We -have our Regge trajectories fixed :

L[} : ]
Ky = oy (tend ), o =1+ o (t-nZ, ) (TIr-31) -
ﬁith slopes also fixed
' ' -2 \
O(,"= A =1 GeV (I1I-32)

We then find s, from the slope of the dif. cross-sections -ﬁi? ,
and the ratio ?IX from  $.0 /S -

In figures III-=11l-3 13 we plot the dif. cross-sections
for K+p-€> K*+p at various energies covering the range

2.11 & < 12.7 GeV/c , and the agreement with this model is

PL
satisfactory, except for small t at the lowest energies (The small

t peaks-fig.III-13- are typlcal evidence 5°) for absorbed T -
exchange, while here we have a pure pole model - see section IV-25.'
There are some over-all normalization probléms - the absolute
normalization between the curve at 4.6 GeV/c and the group of curves
between 2.11 and 2.72 GeV/c differ by a factor of 1.4 which may not

be too bad if we remember the inconsisfencies between different

experiments as far as over-all normalization is concerned. For 8g
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FIG. III-11 Dif. cross-sections for K+p ->th s compared
with the model of section III-3 .
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we find the natural and satisfactory value :

: 1 1 \
8, = 1 GeV* = -;a: == (III-33)

in accordance with the Veneziano model.

In figures III-14—> 16 we plot the cofresponding density |
matrix elements. Again, we have consistency although both ,f%o
and f)l-l may seem to be somehowrlarge, presumably because we have
some contribution from the amplitudes we have completely neglected. \}
In figure III-I? we plot the.density matrix elements for K*p—# K*%p

- . ’
and K p——> K-%n at 4.6 GeV/c (in this model all the corresponding
do . * * 4
observable quantities J?T ’ ,?oo' f%s&' 5310 for K*p—> K “p,

K'n— K"°p and X"p—> K °n should be the same ). The agreement
is satisfactory, and this provides good evidence that we have cor-
rectly distributed our exchanges between our amplitudes, and that
exchange degeneracy between vector and tensor mesons works ( -in
the cex reaction, the pion contribution is doubled; s0 with exd
mesons 1n  T,;.y; , We correctly predict both the relative

magnitudes and the t-dependence of ,f%o , }31_1 ) o We find:

?/X = 1,34 (III-34)

and for the normalized residue constants:

_m
i

60 , ¥ =45 Gev™> 1f normalize to ref. 42)  (III-35a)
7L, Y= 53aev 1f normalize to ref. 50)  (III-35b)

-
"

For reasons explained above, in this model the. Regge

=
behaviour was given by (s/so) with 8, = 1 GeV2 e« The agreement
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2
, With s = \I pHm©

as in the previous section, in which case the model can extrapolaté_

&

is generally slightly better if we use (;;u)
_ 0

to even lower energies, Note, that the analysis of the t-channel
exchange contributions to KN —> K*N , recently done by Michael 52), .
is consistent with the gross features of this model, except from

his conclusion W -f >j>-A2 _ while here; we have Wa-f = y-A

2
( and a non-flipping j.) ) which is rather unconventional.

There are two important features of the data ( see e.g.
the recent review by Eisner 53) ) which are nbt accounted for by
this model, namely the striking difference in .Pl-l + between
K'p—> K% and K'm—> K*o-p ( 5—"1_1< 0! ), and the difference
in slope between the K'p—> K 'p and Kp—> K ~p dif. cross-
sectioﬁs. Now, a pure pole model, cannot accommodate the differenée
in polarization between K’p—-ﬂ(’on and 'K+n—>K*°p,but .a n-cut,interfering :
with the y -pole, is needed 53) in order to explain it. On the
other hand, one could fit the difference in slope between the
K'p—> K*+p and K p—> K*'p dif. cross-sections by assuming exd
breaking, in which case a different constant 5, would correspond to
each meson. But here, we insisted on a pure pole, exchange degenerate

model, in anticipation of the work to follow (see chapter IV) .
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III-4 Simple model for elastic K'N—» KN scattering.

We now consider, for completeness, the elastic K+N——> KN

channel, which obviously cannot be treated in the same way as K*
and D production, since it is known to be dominated by pomeron-

exchange. Since only some gross qualitative features of this model
are going to be used in chapter IV, we write down the following simple
phenomenological amplitudes for pomeron ( P) and meson (M) exchanges

| (as in the past two sections, we ;assume strong exchange degeneracy

between f, Asy w, £):

R+ = 16 O_;o(_{_s—)q,p<t) ' ’ E- =0 ‘ | ) (III—36)

M.. -

where

I
-1
+
+
o
[o]
=
T
=
~~
ct+
-
+
]
]
—
+
1
.
b
[/}
Sl
e ——
=
~~
)
~
~
]
W
ﬂ
|

o(F({_) - 1+o/,,'£ 5 Omb = & +a(,:, £ (III-38)

and we fix

!/
o, =0.6GV2 ;3 o =1.0 GeV"

" M

O’Tw is the total assymptotic K'N cross-section, and we take

2 (III-39)

O’;o: 18 mb, These amplitudes lead to the following simple expressions
for the dif. cross-sections (see also Appendix D-3) :

I
a}O’ —_ 1 ?’*w M \ ) ? - _§__
71 - Z
CH_. Cex 6417f> SOM Som

(ITI-40)




do| -
dt QQ 6‘\\'\)3 'So“‘\
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Som

4 | %:;*H:l??:( S Tdm:_,_ (o;f'/zs/s—i’l-’-)w}%(xn-u)

By fitting the cex dif. cross-sections at ~12 GeWe ™) ?7%)

. ' . do
we can determine soM (in order to fit the slope of 1—{:- ) and

F+-+ , Fh (in order to fit the small curvature for small t of

ff‘ ) ; we find

. 2 . - -1
8oy = 0-75 GeV© ; F** = 20 , ]3+_ = 4O GeV

(III-42)

Then, we go to the elastic K*p dif. cross-sections 56) and find

Sop » in order to fit its slope ; we find :

: 2
sop = OI.2 GeV (ITI-43)

g .
The absolute magnitude of ;Al-} Q_Q is correctly predicted by using

oo .
- the values of F’H ’ ?.'__ found from the cex reactigns and Op= 18 mb.

Figure III-18 shows that this fit is in. good agreement with the data.

We next look at the elastic K+p polarization ; since

lﬁ'+l >> M.H. ? M_,__ s We have :

.-O

}
|
I
4P
e
>
<
)
iy

+
[l

B 5-/2 H:\'Il e,xf[o(,\: J Si_m _.0(} /?5%,:] (TII-44)
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In figure III-19 we compare this expression with the data 57) y and

the agreement is not impressive ; the only thing we can say is that "-\ . b

we correctly predict the magnitude of the K"'p polarization.

In this model we have :
{Mﬂ_’}k'faPr } e:’“"(”\_@‘\ [M TFJ

so, for the K™p polarization, we get.::

kvpakrp (III-45)

R'p = cos\"o{M(t) PK*p (III-46_)_

Hence, by varying O(M(t) , the model may be able to account. for
K™p polarization as well. So, despite its crudeness, this model is

able to account for several feaf.ures of KN—p» KN elastic scattering.
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ITI-5 Conclusions.

First of all, we should mentioﬂ that factorization would.
immediately lead to predictions (III-6) and (III-24) - for vector
and tensor meson exchange only = in KN—>» K*C; « Now, looking at
high energy data for this process (e.g. from reference 45), at
~13 @eV/c ), where the pion exchange is expected to be smallest,
we see that these predictions are no good at all. This observation
would lead to the sad conclusion that the couplings which predictioné
(I1I-6,24) followed from, are not of universal validity. But, of
course, the plon exchange pole is so close to the physical region,

61)

that it cannot be assumed - to be negligibvle even at energles

as high as 13 GeV/c .

To conclude, we have shown, that quite simple models .
for KN—» KA, KN—> K'N, KN—> KN, assuming :
(1) Strong exchange degeneracy between all JO » Ay yw, £
(11) magnetic dipole type transition at the NAP  vertex for
KN—>» KA , while having the behaviour of the amplitudes at t-
channel thresholds and pseudothresholds determined by the chosen
Lorentz-invariant couplings (and this behaviour turns out to be |
the same as suggested by crossing matrix or t-channel angular
momentum considerations ) H

(1i1) coupling of the vector mesons to the NR pair of the form

’{1'—3\‘(\\/ A\‘. for KN-—> K*N, while not caring much about the
residue structure of the plon exchange amplitudes (we are using

these amplitudes far from the t-channel thresholds and

pseudothresholds ) ;
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(iv) 1large ﬂ?-exchange contribution in elastic KN—> KN scattering,

are able to give a satisfactory over-all description of the dif. i\-

cross-sections and production density matrix elements over a rather
wide range of energies, although there are aspects of the data in
disagreemeht with these models, the most serious of which seems to be a

+ 0
negative Jol-l for K'n—>» K 'p .

N\

i amee amomegtnin e ma 3 tm




CHAPTER 1V

LOW ENERGY ISOSCALAR KN SCATTERING.

.IV=1 Introduction.

Although much work, both theoretical and experimental has
63),64)

been done towards the understanding of the actual cause of
the bumps seen in the total KN cross-sections, (see Figures IV=-
1,2 from references 65) and 70) ) it is not clear yet whether they
are to be associated with "exotic" resomances or net. For an

excellent review of the experimental situation, and a description

of several phase shift analyses and related work, we refer to Dowell's

review 63) ; here, we are going to review very briefly those works

of most immediate connection to ours.,

-

In particular, Aaron Amado and Silbar 66)

inelastic Z;’é with JP =-l- 2 Just above the K*N threshold,

, get two highly

2 ’?'_
drived by the rapid opening of this channel and a subsequent
67)

modified phase shift analysis s, with some theoretical input
(inelasticity parameters 7 ) from that calculation, confirms
these results, and shdws that such resonances would not conflict

with the established Jo-Aa exchange degeneracy. It is iﬂteresting
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to note that calculations. on.the same lines 68), show that some
knowvn T\ -N resonances are drived in the same way, by the rapid

opening of the ‘Jo and [ production channels in T{N scattering .

More recently, strong evidence for an elastic Z; in the
fz1 wave; below the K'N threshold (~1,70 GeV ) is found 69)
in Hedegaard-Jensen, Nielsen and QOades’s KN scattering calculations
using partial wave dispersion relations, in the same fashion as in

T-N scattering.

BGRT Collaboration’s most recent I = 0 phase shift

analysis 70)

» has two solutions (C and D, consistent with cex . _
polarization) with a large,, highly elastic, looping counterclockwise
P% wave below the K'N threshold. If the favoured solution D is
assumed to be resonant, and fitted with a Breit-Wigner form plus a
quadratic background, the fit ylelds a resonance mass of 1.74 GeV
(~1.80 GeV in the previous BGRT I= O KN phase shift analysis /1),

1.78 GeV in the Particle Data Group tables 64) ), with a width of
about 0,3 GeV and an' elasticity of x = 0.85.

The results of many existing phase shift analyses of the

63),64)

I-= 1 channel , are rather inconclusive 63) ; but the clear
bump in the I = O elastic cross-section at pL==O.7 GeV/c (see
Figure IV-1b), and the suspicion that.the T| -exchange in KN-A;K#N
(which is a 9 times larger effect in the I = 0, than in the I =1

66),67) y Via unitarity,.for

- cross-section) would be responsible
any duality breaking effects (sece also section'IV-6), hint that the
best place to look for any Z*’s is the T = O channel. 1In the

following, we are going to concentrate on isoscalar KN scattering,




- 92 -

not only because of the above mentioned reasons, but also because
of the relative simplicity of this channel : The dominant KnN
inelastic channel (Kn\m\ N may be neglected below: S.}u 2.0 GeV ) is
almost exclusively (~ 90 %) taken up by K*N. So, in the suspected
mass region of a possible Z; (1.7 & S%.é 2.0 GeV ), we have, to a
good approximation, to deal with a two-channel problem, since the
narrow K may be treaté@ as stable without essentially.affecting
reality. In the I =1 channel, .not only is there the additionai
KO threshold, but also the wider [ could less realistically bq

treated as stable,




IV=-2 Philosophy.

To proceed, we adopt the following philosophy, which has
been developed by several authors 73)—> 76),78) as discussed beloﬁ,
and is described in the following three'steps :

(1) We. start, by constructing a non-unitary Born approximation for
the two channel-(K+N, K'+N) problem, in the form of non-diffractive,
high energy, Regge pole amplitudes. Exact duality 72), hence strong
exchange degeneracy will be assumed in this input stage. Already,
‘the work in chapter III provides us with the necessary KN-——» KN and
KN—> K'N amplitudes, in.the required form; in the following section
we are going to estimate the K N—>K'N amplitﬁdes, through SU(6).’
(ii) We extrapolate our input Regge models down to the K“N threshold
reglon. Duaiity is the guiding principle, but some care is required
since our amplitudes are predominantly real, and it is not easy to
understand how can only two channels contributing, in our simple

model, to the unitarity sum :
i | A% b 3 1(Iv .1)
PmT o o g;.jcl% Z PTyen] + L[k 3_ReTey]

(o= [x“N—» kN , 1 =[x k'n] )

add up to make the second term on the right hand side of (IV-l)

constant (The F 1ie the main contribvutor to TmT_ , while &

ReTncC sq" ). However, the success of our modeis in chapter III

in fitting the data from p; ¥ 13 GeV/c dpwnitoipL = 2 GeV/c ,

justifies this extrapolation (the K?N threshold.as at pLﬁsl.u GeV/c).
. _ : \
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(11ii) We interpret these "input" Regge pole amplitudes as K-matrix
elements, and find the unitary, corrected for cuts 35) T-matrix :
T = K(I-1pK) ™ = K+ifK-K-faKiK-K- . (IV-2)

or, in a pictorial notation :

f
+
+

+ ¢ 0. o

Thus, we build the low energy pomeron, from purely non-diffractive
high energy scatiering 73) - any t-channel strﬁgture found as

output will be dual to this pomeron. This K-maf?ix unitarization
is what wili effectively introduce £he necessary absorption of Ty;
exchange in XN——» K*N., which, as pointed out at fﬁg last subsection
of section III-3, was the reason for the small t pecaks of K+p—a-K.+p
dif, cros;-section (Fig. III-13), not described by our input pure
pole model of section III-3. One could also hope that the effective
cut corrections introduced in this way might also explain,thé |
difference in polarization between K p—> K"°n  anad K+n->-K*°p

(see seotion III-3), but we do not want to pursue this point further.

Explicit.calcglations along the above lines have been
proved successful in the past, 1In particular, Lovelace first
. identified 74) partial wave projections.of the 34 amplitudes (which
have poles on the real axis) fo.'r the coupled =T, RK system, with _
K-matrix elements, and successfully calculated '1yn phase shifts.

For the I = 2 smooth "exotic" channel, the full B, structure is

L SN

\~

irrelevant, and simpler estimates of the Regge exchanges are equally
: : \ .
successful. Also, unitarizing Regge amplitudes by the same method, Ve

~he was able to make good few parameter fits for T\N, KN, RN
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scattering 75? + On similar ideas, the Schrempp’s Finite Energy

‘Sum Rules (FESR) 76) are based : FESR, for pole terms only, are
written for processes in which both poles and cuts are important,
where the bare poles are identified with K-matrix eleﬁents ; then,’
é.g. the K-FESR for the p-pole exchanged in T]"p-.—_;v\'\on is satisfied
more accurately and more locally than the'ﬁsual 77) FESR. The

idea of building the Pomeron (F ) via equation (IV-2), from pure
Reggéon exchange is employed in Drechsler’s.qalculation 78) y, from
which he gets a re#onable output P. similar ideas are also applied
in calculating the P contribution for the K+p chaﬁnel ; '
specifically 79) . ' |

The important new feature which we have present in this
problem, is large T1]-exchange amplitudes in the KN—» K*N and
K*N—s K'N channels. We shall presently show that, in the I =0
channel, all vector and tensor meson amplitudes in KN——» KN and
KN—> K'N may be neglected, to a gqod approxima%ion, as compared
with 1] -exchange in KN—> K"N. G&ided by this ;?sult, we shall -
assume later that only Ty-ekchange is important f&r K‘N-—) K“N
as well (we consistentiy neglect the F as ihput).  This is the
decisive éimplification which allows an analytic solution. For the
"1 =0 KN—> KN (see Appendix D-3) and at s% = 1.83 GeV where
the amplitudes are to be unitarized, the model developed.}n section -
III-3 predicts the ratio of vV -exchange (III-18) to M-exéhange
amplitude (III-30) to be '\ﬂ/Ml ~ 7 at t = -0.05 GeV2 falling to
"T\/M‘ &~ 2at t = -0.5GeV>., So, it is an excellent approxihgtion,
especially after partial wave projection, to retain only the TT- .

exchange amplitude as-fér as the low energy, I =0 K’ production
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is concerned. To seec that M-exchange amplitudes in KN elastic
scattering are very small as compared with the 17 -exchange ones °
in K= production, it suffices to observe that the ratio of K*

54),55),80)

cex cross-sections » to non-cex K vroduction cross-
sections 41),42),45)=> 50) (7)-dominated), is about 1/5 for small t.
More quantitatively, the model amplitudes (III-37) for KN—» KN
constructed in section III-4, together with the Tj-exchange

amplitude (III-18) for K. production, predict the ratio of the

real part of T|-exchange to non-flip (flip) meson exchange amplitudes -

2

m M , falling

to be about 22U - 5 (BG_T.T-.-: 10) at' t = =0.05 GeV
++ +-

to about m

ReTT RelT

~ 2) at t=-=0.5 Gévar'for the I =0
++

channel and at s% = 1.83 GeV. Figure IV-3 demonstrates these
results. On the same figure, we also plot the ratio of the real

part of the y-exchange amplitude to its imaginary part,

%ﬁ%% , to demonstrate that especially after partial wave projection,_
it may be considered as real, to a good approximation. We will

identify with KJ* matrix elements the real parts of the T =~

exchange partial wave amplitudes, Re T‘J*' , but numerically \TIJ*'I B
are checked to be little different, so little or no ambiguity in

this ldentification is present.
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~2 by (GeVick

Rem Re™w Remn

" FIG. IV-3 The ratios =— , 1— ST as explained in
. Inm ’ M, 7 M~

section IV-2 , for I=0 and.at ‘/-s=1.85 GeV.
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IV-3 Model for the K N—s K'N channel.

Unitarity couples in the channel K N—s K'N , and it
turns out that it is important in determining the properties of
the elastic KN scattering output in oﬁr model. We can again
have T, M, f exchanges in the t-channel, but we need only
be concerned with TY\|~-exchange, since we neglect all difractive
amplitudes in the input, and guided by the KN— K*N fesults, we
assume that all vector and tensor meson exchanges may be neglected -
‘as compared to the 11-exchahge. We proceed as in chapter IIi, |
and using Lagrangians (III-l4, 20) (which are essentially unique),
we calculate in Appendix C-2 the following t-chﬁnnel Born helicity

amplitudes for pseudoscalar meson exchange in K*N-—v K'N :

. ' ’/1 . _b
* =)yt
ﬂk\i;uﬁ = c'c)\ak-r\c& t td) (-4 g’“-' g"; S“‘u (1v-3)

NN T M?"-'a‘: 4

where O = 1(2) for elastic (cex) scattering (see Appendix D-3).

Ve can confirm which amplitudes are non-vanishing by simple t-channel

angular momentum-périty considerations., Analogously to (i11-17),
we .reggeize (IV-3) by the substitution : -

M > ﬂr\ .§,~>°(W (IV=-4)
M-t 2 e

As with (III-17), there may be some ambiguity as far as the scaling
- constant is concerned ; we again chqpse here the'\K* mass, M .
Note,.that here the evasive pion (oﬁfl 35) ) is required by

unitarity and analyticity - otherwise we would get s-channel p-waves
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not vanishing at threshold*. Taking again the value of the residue
at t = 0 we end up with the following non vanishing t-channel

helicity amplitude (no nucleon flip allowed) :

* -1nd & |
T, = W Lre (s> " .

where : -see (III=-19)-

3
() 2 %\“F*“%NN‘\ N\Q'- \Aq_ c}\<\‘*\_\ (1v-6) '

Thus, our proceedure starting.with elementary particle exchange,
was able to determine the awkward K*N-qe K”N channel from the
measurable KN-—;»K“N scattering in terms of one parameter, nameiy

the ratio of coupling constants B k™ /gKK'“ + This parameter

may be determined by SU(6) to be OL)
Avrer . o2 4 (Mg Q2 + ﬂ&)z (1V-7)
Dren 3 MM M |

and in the approximation M = ?f y We get
o 2 92 ' =
M M 1 F |

_ Ay

*In this case, reggeize by : 1} % 8 S one would

my —t "8,

"~ have to introduce the proper threshold behaviour, when required, by

hand., We have checked that - providing the constant remains the
same - this would not alter qualitatively our results in section

Iv-4 (but would lead to a somehow lighter Z; ).
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In the following table IV-l, we summarize the non-diffractive, pure
pole, high energy t-channel pion exchange amplitudes, which, if
. exXtrapolated to low energy, dominate the KN—> K‘N and K.N-4> K'N

processes near the K*N threshold for Is = 0.-

TABLE  IV-1

wy | on= o (b-mT)
ah o h GV

T

-nof
. . ive Y (s
kN—>K*N [ T = F—_Q_— (—S—o)

. *4lb L e ™
G N e &) cs

—p
o
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V-4 Phase shifts.

As explained in section IV-2, we now imagine the
input amplitudes, in table IV-1l, being extrapolated near the K'N
threshold., Since we shall pfeseﬁtly need the s-channel partial waves,
we now have to cross these low energy, t-channel amplitudes into the
s-channel. Luckily enough, the limits of the crossing angles (F-11)
for our processes, as q—» 0 (s%=9 1.83, KN threshold) are very
simple - see equations (E-3,4) - and the crossing matrices (F-10)
corresponding to KN—» K'N and K 'N—» K'N take very simple forms.
In Appendix E we summarize the simple algebraic calculation leading
to the s-channel amplitudes (E-5,6), at the K'N threshold. Note that
all of the flip s-channel ampl;tudes (E-5,6) vanish identically in
the forward direction (x=cos 6;:1) as they should do (conservation of
angular momentum), because of the properties of the crossing matrix.
We shall then extrapolate these amplitudes slightly (150 MeV) above
and below the K'N threshold - 1.7£s%4 2.0 GeV is the reglon of
interest to us, as discussed in the introduction of this chapter -
where we have q3$%§;<b Since the parity conserving (s-channel)
partiai wave amplitudes (pcpwa) come out to contain only élternate
powers of q, we can achieve further great simplification at no loss,
by working to lowest order in q consistent with the proper thresﬁold
behaviour - (F-24) - that our parity conserving partial wave
amplitudes should enjoy. To lowest order in q - see (E-8,9,10) -
the K N—> K*N are real, so there is no ambiguity as far as their
interpretation as K-matrix elements is concerned, while, as explained
at the end of section IV-2 we shall assoclate with K-matrix elements

the real parts of KN—> K'N input amplitudes.

The next step is to find the partial wave projections
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(F~18) of the low cnergy s-channel amplitudes (E-5,6) and construct
the corresponding pcowa (F-23). This is also done in Appéndix E ;"the
square root factors of the d-functions nicgly cancel the square
root factors multiplying our amplitudes (E-5,6), so we are left with
integrals over polynomials in x., We then construct our pcpwa, which
come out to have the correct threshold behaviour (F-24), and this
provides a good. check of this calculation, and a check for the sélf-
consistency of this model as a whole, since it was a completely
non-trivial thing to happen! We then'interpret these amplitudes as
K-matrix elements, after removing their explicit threshold factors

= se¢ (E=12--»15) - since the K-matrix elements (F-22) should not

- have any threshold branchpoints on the real axis.

We can now immediately obtain the expressions.for the KN

isoscalar phase shifts, inserting (E-12—» 15) into (F-22), and
Y .
using (F-21). For J° =k (S% and P% waves) we get for q> O

2
(above the K‘N threshold ) :

a

S - -
3‘5?‘\(\&1’)”- _ | | (IV-l'9)

CO‘LS: = 1+11(Kir)1‘2ﬁi°1'}(§.+
A (eeig )

Continuation below the K'N threshold is by q—» ila] . For

*
J° =—2-_ ( P, and D, waves) the inversion of the 4x4 matrix leads
Y 2 ’

(IV-10)

2
to much move involved formulas, whiqh we do not write dowvn, byt

A

directly input into a small program?%o compute thé\corresponding ' |

Argand plots of figure IV-4,
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From (IV-9,10) we see that we can never have an SOl

resonance in this-model, but the P01 wave may contain an elastic

resonance below the K N threshold;?if KgI is such that the

quadratic equation:

Le\2 Ly |
4 '\1\1(\(0\)_ ¥ 2\ \C]\ Ko\ = 0 (IV-11)

has a solution for |q|> O. With our parameters listed in table IV-l’

* p 1% 3
we get a Z, with J =5 at 8 = mp = 1.778 GeV (as it has
already become élear, we define the resonance mass as the energy

at which cots for the coresponding wave becomes zero ) ; the

/
icoresponding width (defined as YR/a = =1/ (cot S}) )si- _ s-} )
= °R

is I‘R = 0.405 GeV. From (E-13c) and (E-10) we see that the mass

of this resonance does not depend on the constant s in the

o ?
determination of which we had some ambiguity (difference in slope
between K'p—> k"*p and K p—s K ~p - see last subsection of
section IV-3 ), but it crucially depends - through ? - on the

strength of T‘-exchange in KN—» K*N which we bellieve to have

determined unambiguously ), and of course, on the SU(6) prediction

(IV-?7) for the ratio SK‘K’W /gKK.“ , which may be considered as a

quasi-free parameter in our model.

In figure IV-4a we plot the partial wave amplitudes 301

P | ' '
o1 PO3 D03 , and beslides the large resonant P 1 vave, two other

0
charachteristic features of this model are apparent, namely all

phase shifts are small near the K*N threshol&, and all our waves

\
\

\
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FIG. IV-b

‘(C)

Comparison between:

(a) I=0 KN phase shifts calculated as described in section
, from a K-matrix model ( reference points at V';1700,

TV-h

1820, 1827, 1830, 1950 MeV ).

(v)

Same as in (a) s but arbitrary 1nelast1c1ty parameters have
been introduced, as explained in section IV-l .

Phase shifts of the BGRT-D (Sens 7):

solution, as described
in section IV-1, from reference 70)

(referpnce points at:

VE=1700, 17h7, 1794, 18k0, 1887, 1932, 1977 MeV )




- 105 -

are negative below this threshold., Considering the crudenesé of this
model, we can say that the agreement of its qualitative featurqs |
with the prefered sﬁlution D of the recent BGRT phase shift analysis.
of the I = 0 KN elastic channel 70) shown for comparison in
figure IV-4c, see also the introduction to this chapter - is rather
-good, Of course, it is not safe to extrapolate'the present model
much below the K N threshold (say, below s% = 1.7 GeV ), but

we may well suspect that our pictgre would lecad to negative I =20

scattering lengths for 801 and P03 , ac suggested in reference 70).

The fit in chapter III indicated that the pion, which

is oxchanged in KN-——» K'N , does not have an exchange degenerate
partener (6.8, a B) ; if it had, we would not be able to fit f’oo .
What would the effect of such an object, exchanged in K N—» K'N,
be on our results, stated above ? The answer is, none in this model
- providing that the constant ? , determining the over-all strength
of T} +B exchange, remains the same - because, as we can see from
~(E~7b) and (E-10) » the pion signature factor does not contribdute,

2

in lowest order in q° , to the real parts of the K'N— K'N

amplitudes :

B3y - Lvcosnost _ Lox O(‘j‘*) O (1v-12)

2

If we assume that for some reason there is, after all, B exchange

in KN—> K'N , then its effect would only affect the 2  width

in this model, since because of the (inelastic) kinematics the.pion
signature factor contributes to the KN-J):K’N'amplitudes to lowest )

order in q2 - see (E-7a,8,9) - .
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What about any uncorrelated KT\ production ? We can

qualitatively feel its effect by introducing ficticlous ine}asticity,

v

parameters : (woo.'. 1.57 GeV )

M= 1-29(s ’/1‘“’0) (IV-13)

\
and put ¢
2i Seg

FTEE%’ "€ 73 i (IV-14)

" In figure IV-4b we illustrate the results of this calculation
(the parameters nz' have been chosen arbitrarily), and it is
apparent, that appart from the inelastic;ty introduced, the
qualitative features of our m-o;iol remain unchanged (but all our

amplitudes become non-zero at gq = 0).

As explained in section IV-1, in this model we treated K

as stable ; we may give it width via the easy prescription :

jq(?)"]") N\'L) - j 77‘(51 7, %) g(u’ - M z) J% _(IV-1.5). -

S(u,M‘J-) — > MF;» . (Iv-16)
(A-M2)* + (M) |

but it is checked that no essential change is made, because of the
smallness 0of its width, as argued in the introduction of this chapter.
In particular, all our waves become non-zero but very small at q = Q,
that is, the dip in our total I = O KN cross-section at K N
threshold persists., We may suspect that the negllected meson
exchanges in KN—a» KN could have filled the dip, as well as any

uncorrelated KT} production, as explalned above,
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IV~ An alternative unitarization technique.

An alternative method to unitarize our input partial
wave amplitudes, but with not so clear a physical meaning, would
be to iterate the partial wave unitarity-equations (F-19). Using
non-unitary input amplitudes very much similar to the-ones employed
in the previous.section, we have found that iteration of the systemA'
of partial wave unitarity equations (F-19) for the coupled channels
KN—> KN , KN—=> K'N , K'N—s K'N , may result in unitary output
isoscalar elastic KN scattering amplitudes with resonance-like

behaviour for certain partial waves. No particular model for the

.K'N-4> K*N channel is required, but these amplitudes follow in

terms of those for KN—> KN and KN—> K N by solving the .
unitarity equations and iterating the solutions. The J = 3/2
waves prefer to show counterclockwise slow movement in their Argand
plot in this model, and if they are interpreted as resonating, they

would suggest resonance masses much:above the KN threshold.

In figure IV-5 , we present a sample result of this
calculation, In (a) we show the J ="3/2 wave for the isoscalar
KN—s K'N channel ; the input is a reggeized pion in the t-channel

2 » and the output unitary wave is not

with slope o, =1 GeV~
+
much different. The output elastic J° =€% waves in (b) show

a resonance-llke behaviour, although the effect is very small,

We do not want to persue this discussion further, since

this calculation has met with several "technical" problems, especially -

with the convergence of our iteration procedure.

ST s

—————— —gp—
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(b)

Argand diagrams of the J = 3/2 partial wave, calculated
from the iterative model outlined in section IV-5 for:

(a) Input_pion exchange, and uvnitarized output for the I=0
KN- K'N channel(reference points at: \[&= 1840, 1932,
2022, 2109, 2193, 2274 MeV).

(b) Unitary output for the I=0 KN elastic channel ( reference
points at: V8= 1932, 2022, 2109, 2193, 227k, 2353 2430 MeV).

s
1
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Conclusions.

We have shown that the current ideas of exchange degeneracy .

and approximate duality can accommodate a Z; direct channel

resonance in the I = 0 K'N system, with the experimentally favoured

+
quantum numbers (JP =€% , m=1,778 GeV r= 0.405 GeV ), in

contraist with Aaron’s calculabions

66),67)  which would rather

favour S and D wave resonances, and in agreement with dispersion

relation calculations

69). The magnitude of T‘-exchange in

K'N—> K'N , adjusted by SU(6), was the crucial factor to produce

a P

resonance, and make 801 and Po3 waves negative below the

K*N threshold.

"
This object Z, will be 'dual- , via unitarity, to Y- .

exchange in KN—» K'N and K N—> K'N , and will break the

duality scheme to the same~gxtent as the pion cannot be accommodated

within it. Schematically, we would have the following "inconsistency":

In K'N—> KN assume : . then, get exd :

°"Z—"";‘>“<(=‘1—12%X — f*Aa=“‘+f=§M

\—_ﬁl
come
to conclude “
that this sum
wvas not zero ' r - .

come to K'N—s K N,
where we have

" ) K \’\—L/ k M+ N eXchanges

unitarity

the most obvious remedy to which would be to assume that equality (4),

duality, is only an approximate one, as everybody would have expectéﬂ!
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Needless to say that there is no reason either theoretical
or experimental to assume that all possible physical particle states
aré. aq or qqq (qqq) combinations, other than the principle'of

maximal simplicity - again an approximate one !




APPENDIX A '

CHARGE ASYMMETRY AND THE YUTA-OKUBO FORMULA 1)

Consider the decay R—3» M'MN° ; the polar coordinates

r,e in the usual Dalitz plot are defined by:

"L:_g_({.pl‘c::se) , ’]; = 3@.[4+rcos(2311 :,-.e)] (A-1)

n
where T, :l.s_ the kinetic energy of TT and Q='“'R"3mq ( mR(m“? is the
" resonance (pion) mass) The "“Cartesian" coordinates x,y are usually
defined as: x=(T -T_)/Q{5 , ¥=T /Q (A=2)
.Let N+(N_) be the number of events with x>0 (x<o0). Then we define
the charge asymmetry in the Dalitz plot by:
o yu
<x=ﬁ91% -
«*tN.

N_ | N,

—— 2

FIG. A1

We now want to estq’.mate the magnitude of the charge asymmetry,

which might appear in the Dalitz plot for the decay Re-y TTTT T ,

when R 1s produced in TIN—»RB, caused.by interference between the
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R-decay signal and some coherently added 3% background.

Ve write :
wt

R R ‘:‘.o -W . "“t ’
. 1\0
T= 4 -_-————-M &+B (A-l)
N 2 . e ) . W W\R'\".‘i‘

~where w=( p_+p_+p )2 (p , 15 the momentum of 11n), m, and Y; are the

R
macs and wldth of the resonance R, M_Ms MD where MS represents the

amplitude TyN——>» RB for R-production, while M, is the amplitude for

D
the R-decay, R-a-'q+‘\'1\°, and the background B may be thought 6f

.a8 belng separated into a charge symmetric (B+) and a charge
asymmetric (B_) part, that 1s B = B +B_ .

|

|
Fof the total cross-section in the region of R we have: '

|

o = (IR = i d P dut

= JF wi dw? : \M\2 QRQ(BM‘ 9_(‘3*- (M)
j w3 M [(Wi-w\vy«- (-‘:%)"+ (N'f-—w\n) ~( ) (N'a._m )’L (r )] (A-..5)

(F{a b } is that part of the phase space which remains if we leave
, , L BN BN ] '..
out the da, db,... integrations). Supposing now that R is sufficiently :

narrow, we.can: (a) approximate M and B by their mean values M and .

B, over F{w%}, and (b) anproximate.j \
i | v | 2\'\ g
y Z to get:
. (\N"'l'- _mp)'l. x L%_)'z. : (W m%) |

o

= 21
(%

DI R o
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For the cross-sections assoclated with events with x2 0 we have:

( O +0.=0)

- 9 S S
20;: (= .2j \—N\\ _ +* Q.ﬂ “R(}M(B-b N\%\) * _2_‘1 vﬁ %('B_ N\*) (A=7)
R © ® (W it
s0 for the charge asymmetry we get:

t = Sy " Y-, g N\* B
A = ‘;’”;’; -8 x G (\N\\ ) ﬁ\\w\\

sm? (A- 8)

To get the maximum asymmetry which may be produced by this mechanism,

we put: (1) sinj»-l (which means: that all of the background can interfere :

with the R-signal, that is, all of it is in the same JPc

state as R,
see Appendix B) and (ii) B_=B (all of the background is in a charge

asymmetric state)., So:

(' IBJ .
d = R - (A—9).
T

Let O'R( O"B) be - the cross-sections associated with the R=signal
(background), and BmR the 37| inv. mass region 3yer'whiéh R is

observed (in general, BmR>> rR) H wé."’.'-then estimate:

N
\

MR+—M"‘R “.\R‘\'%_BW\% . .
2 ‘h.\ =\*
W' Mg -3 b, “‘a\‘}i N

. M| ) ‘M\'LAW")"- ._‘ |
% =J oF (Wwhme)® + (o)t (" me () %\M\ (A-11)
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so for °(max we estimate:

o
d - [9-“(‘% . Os ] (A-12), Yuta =-Okubo formula

M xr hmk O'R

Note, that it is possible to have negligible asymmetry in the
background, as it is experimentally observed 9), 10) and at the same

time Bx Be , because:

, BO

EZVEE+\“E:—\ °
B\ B \> cosd ®

50 c(B can be small in the following cases:

(4-13)

0 %, »|®.1 > UM \E-\—\ 4&\@:-\ > (i) C°SB<<&




APPENDIX B

PARTIAL WAVE ANALYSIS OF A 2-33 PROCESS AND INTERFERING 2— i
AMPLITUDES . "

Consider the process .ab=<» 123, where particles 1,2,3, are

spinless; we start from relation (24) of reference 21), which for

three spinless particles 1,2,3, in their centre of mass frame reads :

I

1 .
2305 wim e pesnzed = 4ELN Ty »

$ ol x
Js\.,e 46 clm(G)Jsm@J‘@ Jéc}f @Mgm (@,@,9) x
@é)@)f/ 7‘ Y =z0 ‘;72 V,=0 75 ’)3:0 | (}‘3__1.)_

\P3M5wsm WO ‘}\;=°5_\-5=°> = \3M55W\> is the ané.

momentum state of the three spinless particles; J is the total ang.
momentum, while J is the ang. momentum of the 1,2 systen.
R¢,®J9I7‘ ”a‘°37,_”2"°3 73>\'b=°> = )123> is
the most general state vector we may construct for the three particles

1,2,3. For the explanation of the meaning of all other symbols, see
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reference 21). From (B-l), we get:

W23y < 2 cl @ (ep@,g)\lw\ 3vn> "(B_'a,_'_.

"3"\,

On the other hand we know how to construct the two~particle helicity
states |ab> ( e.g. reference 22) ); we have ( J*-=/J: "j:/ ) ¢

' 3 ‘o, (N ' | \
ab) « 2 Do (§86) MWk > - ey

We now combine (B-2) end (B-3) ( T,y . = <abl T | 123>

putting the ab system on the z-axis ( @M , (0,00) = SM' )
: i

and using ang. .momentum conservation <<'3"“\'_}:jt IT, ']N\")Sm > =
M3 4m : o | |
= SMM, S ();;_-n ) » to get:

JY

3})5“‘

34

which may serve as a "partial wave" analysis of a 2-—» 3 amplitude ;
note that in (B-4) 3’ is arbitrary, while from 2] ,g’p, ® only two

are independent.

We may now show explicitly, that two interfering amplitudes

Tz's,qL & Z_ clm(e %j‘ (&, ©,%) 7}]‘ (3;4).'
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wn -

d JP
of the type should necessarily have

b ~c |
particles 1,2,3, in the same JP state, in order that their interfe-
rence gives a non:vanishing contribution in the Dalitz plot distri-

bution for the decay R—» 123 (when in one of them the state J* is

resonant ),

First, consider the 2-f> 2 prodblem, and suppose (J¢=Jt-)t ’
ﬁ':j:.-ﬁ , 2= cos0, 5 1= 1,2 )

9\ c 5 4 N
< T oé.j..(i') (B-5)

4 N |

.
&

Then for the interference term contributing to the dif. cross-section
» Which may be thought of as being partly equivalent to a Dalitze
rlot distribution for the 2--» 3 problem 23), we have:

Uv&u&-) —~% 9, % 3 T
ﬁ oC QRQT\ \z o€ T(S)E(s)cjff' JJ“_}" " (B=6)

which in general does not vanish, while we have :

Qw&“\') I '
S oL Smi Ti(_:)T‘LG) (B=7)

We now show that this is not the case for the interference
term contributing to a Dalitz-plot distribution. We first reduce
the 2—» 4 problem to a 2—»3 problem; for, if the process ab-—» cl23.

is dominated by Regge exchanges in the bC channel, and it is periphe-

ral in t = (pb-pc )2 , the system (bT) may be considered as a quasi-
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2

particle b’ with n% =t :
.
2 |
: P
3 from abem a J i
30 {0 123 ch g'

o b{b

Indeed, in the « experiment, we have saﬁ = '7.8b,GeV‘2

cross-section decreases approximately from 2 ml'i/GeV‘2 to .2 mb/GeVa.
in the interval 0.0 €t & =0.6 GoV 24)’ s0 the separation of
a,b is much larger than that of b,c. One thus may hope, that the
'extrapolation of the proper ab'—-> 123 amplitude to values

milg, -.6GeV will not spoil its properties. If we now have (using'

(B-W) )

€ Ji ) | 2
2 =T, o 2_ J (9) g <}.>®3)T(s,x, (B-8)
3 t jn;' "’a 3)
b
.
(i=1,2, Nkl _jz: y 8=( Pa*Py )2 ), the interference

(]
integral on the Dalitz plot will be:

2 (inhr&-) 'JJa,S"\n '3,_3*3.31'"&
S < oo 2 Femy Tleny) (29

i

and it explicitly vanishes unless J1 = J2 » Q.E.D.

We can now trivially make the above formalism to conserve
parity. First, in constructing the l123> states, we may use the

relation

y while the dif.
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¢ PP
%,ﬁ 2_Z_<§yam \3“><SS'“"‘3“\>%35 % (B-10)

W ﬁa' ﬂ';"

and insert it to (B-2), in order Fo transform from a (j,J) representa-
tion to a (j,J') representation (3' is the ang. momentum of particle
w3n with respect to the "l2" system ), which is identlcally parity

" conserving. On the other hand, we know'aa)how to construct parity
elgenstates for the two-body ab' system in its centre of mass. So,

we may construct parity conserving partial wave amplitudes (pcpwa),
connecting states of definite J J' (and therefore of definite pari-
ty ), of the 123 system with states of definite JP of the ab' system.
It is_then clear, that in order that the ilnterference integral be

(]
non-zero, the interfering states should have the same both j and J

(%a_, %i%f’ ) . that 1o tho samo partty.
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TABLE B-1 : Ang.mom-parity of 3m states

)] -,
1€ J Al J'*'Jfl'
iy =N = 3% o
A P= ()44
No r 2 T
of o0 1 . 7 s

. 11 1 o127 1+ 2¥3Y 273 4
21 270 123 o123 4
3| 3t 27374




APPENDIX C

CALCULATION OF SOME FEYNMAN DIAGRAMS.

C-l. Vector meson exchange in 0" 3 —> 0"%"'

We calculate the vector meson exchange Born terms in a

0"3*—s 0~ %" process (e.g. N\ production), using the couplings:

3 (M) i = cy%\‘«\; N ?: (?q* ﬁ\q l\t (I1I-1)

é 4, - g‘@?ﬂ: Py -(‘bﬁm *A) P\? (111-2)

Ib d ~
Tt
FIG C-1
(1) t-channel amplitudes . . (070" —> lli“ %_-’)

We arrange our momenta as in fig. C~2 -the
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'_TZ 2% particle's momentum lies on the positive
\\ . 1\9- | z-direcf%on - hence, we have ")\, = 5.,
\‘: . ')\a = -sé (s; are the spin-projections
l’\& / . and ‘)\-1 are the helicities; in the main.
, R ; Y text we always label helicities by the
X d \\g name of the corresponding particle), so
Q w%”s for 4J we will have to use expression
1

)
(D-1b) of Appendix D with =
X"i

FIG. C-2 ~ o
. _ ‘x , = , 80 "effectively"
B, = ‘)\a . Using (III-1,2), for the t-channel scattering amplitude

we have: (k="pa+pc=pb+pd)

) o g: \cl\a
a9 %) Yo Een B X =0 “ (?-p) ﬁ (c-1)

Now the term with _\i{:\%'_ vanishes since it contains

= » 2
W EJ..V'NLR k = O - (see Appendix D-2), and putting

- .

& 3 .
T = o W) Upad B B0 9 )

For the Schwinger - Rarita spinors, we have (e.g. reference 2)) ,

page 72 ) :
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'\A.(? ,_) '\»\{?‘,1) e(}.n | | : | (é-aa)
— )‘- oL
Wo) = &8s B Rpnel o

(The Clebsch-Gordan coeficlent —\%:?— in (C-2b), is the %— which

will finallj appear in the Stodolsky =Sakurai relation ).
Since we have the %T partiéle on the z-axis, we can put (see, e.g.

reference 2), page 62 )

(0] P
S = _L.. 2 € = .i. © " (C=-
' (ti) ‘(‘i‘ -3 ) (°) = vl o (Cc=3)
L'O" L EJ
50, looki.ng at Appendix D-2, and figure C;=2_, we have:
% v 8 T i . o
€ Eon PR = EB) Py -
-, O '\\, N\:Q (C-l}'a)

o ‘h.\__, . \E*
TR RCR 3‘““{=m R AR Lo

Ipbl Ipdl ,are the lengths of the t-channel CM
\

3-momenta, and et is the t-channel scattering angle. Now, (III-=3)

reads




¢ . o o
Bt = 2L R Veary R0 e

W\,, |

B

TU:) a igl"- :
W MRV IR o

We now calculate WV , looking at Appendix (D-1) :

N\

LV \ Q¥Mq)\Ec+ cl } - *—\'_: X
W(ese) Vo = Eeenfom) [‘X, X: T,

5.R & |
- - EQ"'M +E¢+W) -\' N
Eq+Mq Aa| = —l\? T c ( o |
n dig B Eorm WK% Ty, ) o
Hat (A) denotes "antiparticle”" Pauli spinor; we next define :
ay = t‘.-(rnb:!:-nid)2 y by = t=(n % mc)a (c-7).

hence:

\\)\,\ _41{_1\!'___‘ \&\\ 2{,2{—\; ] (c-8)

Also have :




E.Q_*MQ_‘\-Ee_l\-Mc, - 2¥'IZ (C=9)
(EQ““Q.YI'L (E Y J'/" ) b. \--.

Ua‘X [ ][10 C;”‘;] = -1 = (Xjro'arlx_ (c-1o§).
(X 63(7( ‘X‘. 53"7?* = 0O (e

(£) ®
/‘
3-8 Ty - w?ﬁ R e

=l:— I \P\,\ =10 \llt'l‘ b,

JE%

A
_ 2\?_‘ ?;L(s,{) [QN\Q\-M) ] (III-4,5)

a C
remembering that for a process : §-+><
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have (e.g. reference 22), page 175 ) :

2 2 . 2 Y |
4SPSQ\>PS¢J St\qles .E 4!:/2«/2 7 9{' = Sb@).}:) (¢-12)

(here, we have :

= ;
s

——
Iy
. m
=0
o
A\
\
=0
]

- ® - A+
(9-}—90 2)

Arranging our momenta as in

figure C=3, and proceeding as .

in (1), we get :

FIG. C-3
SRR )
1 ry v T
,E){)c = Wit 2% '\/\(?Q,)Q) E,Mx PP (ﬂ +& ) (c-13)
» v '
_-‘{—\ S \ — — . - a
r};q% - v;\l'?_%_‘._ %(ﬁ_: a‘_) u("n")@\‘ba\ \F{l S0 (C-14a)
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) mﬂ's Up..-

/)q%'. = —ﬁ u(&:‘) ) \FA\ P\s“') (C-14b)
where now P, 1P, 1 PyPy are j:he_ s-channel CM momenta,and 65 es 1s the
s=channel scattering angle. |

We now calculate 1AWU., using (D-la) and (D=2a), with:

%‘_ - [é] 2. tX_.‘. = [i] (c-15a) for particleé
2

! cos 8 | ‘5"\% _
g = > = (C~15b) for particle a
cx"i. 5‘“\% ex"i COS%—_ :

Ec"'“«c

U qt YW . * E P. %
u(&,\‘) u(?q,’\q) -'J(E ‘M%\(E 1) {CXX‘ <X\ ] |

-\
where, using : 4

Cos D -swb

- b . - s s )

6".\5' 6" '\pc_ FQ_*iPLKPq_..O’ = lﬁ\\ﬁ\ - ] (c-17) |

5‘\-')9 I
i

we can put :

— —_ KEQ*MQ)(EV\'WS
AT B |
LEq_*"_',\q_ . '\q‘ 4 X\Q (0-16.)_.
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AN

= (Eama) (\;dwﬂ | | . (0-18).

D (059 '5"\9
(X 'X‘\q- (XX 5\1\9 cose q('kd_ "-(0-19).-

Using (C-15), we find:

B“a’.‘i-: ‘\‘B__\i_\_z = (1*3-2‘!);059)(05% (c-20a)-\_\\.

p
1|
i

Bli“i = (‘L-D—')_Dcwbe) s‘\q% (C=-20Db)

and the signs come out correctly, as expected from parity conservation.

Putting :

| 'l"’- = (]| [t ¥ x ) |
R AN \I(“ D e

we end up with :

& -
13 = {-\ T._J. = w\ _i (UD -‘).DcosB) ©sS  (111-78)

v

(s) (s)
\BT'-%_ - F 5”’9 (1 D- 2Dc039)5")9- (111-70)

V

Pl
il
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As a check of our results, we verify the relation-

' ZIT (s)lq- = Z [TH—)IL « From (III-4,5) we have: .

s [TY* . (?9)(4i(s£;) [quc)z -L]

(qgaa)

while from (III-7) we get:

Z_IT(”I.L': 83\:2&,%\21%; (\-»D_"—?.DCOSgs) =

2
= (?39 'J;(S)J:)
S (m-H)*

where, we used (C-12). Substituting for coses ,

cosBy - SE+ S (2} -3 w7 ) + (Me-wb) (we —w)

C(F-5)

45/E”E} (c-al,*)

we can verify, that:

( '\'W\Q)(EC_\-M) Q-\-B 2DCOSQ) Q\]q»m‘_') Jc ., Q.E.D.

(E q 4-Wld)[ Ec#d) (1+0"2p 038,) (c-23)
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C-2 Pseudoscalar meson exchange in 07 (17) 3'—s 173

Here, we want to calculate the contribufion of the
pseudoscalar meson exchange Born term to the t-channel helicity

amplitudes for 0 '=—» 17%* and 173" —> 1°%* processes.

(1) 03— 13

d
of\\r’ﬂﬁ,: & = °g ‘\% <\>b ﬁr‘ N; (c-25)
1 Y _ | & = Q‘WX{Q( (\> | (III-14)

FIG C—--[0 Putting our momenta as shown in figure
| C-5, again, we effectively have xi=si
everywhere. Lagrangian (C-25) 1s the
same as (III-2), but now only one of -
the pgeudoscalar mé_§ons is external,

and a term vanishes.,
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Couplings (C-25) and (III-14) lead to:

rr*

BJB'XQ‘\C (/’.L)Xs %(Ipq Q) m £ ﬁ, GQ\A) (C-26)

and, clearly, Tzl; N '>‘c=° y since . é(tl) has neither O nor 3

component - (C-=3) = and ;b is on the z-axls; on the other hand :

R € - [Eos oo “’*m g 0 M - w%.( Py =
\a.a.

= aw (C-27) -, (look at (0-7,8? )

~ We now calculate "st% (see Appendix D-1; in our representation, g

. L : _ o I
according to reference 58), we have X5 = iYo Xl Xa ‘63 (1 0) $

Fa=-i;:§=;, ma=mc=m,Ea=Ec_E__g_3‘)
'U(F ,)) XS %{ﬁa 9 ) [ .-X 'X ]{- 5_] rX‘AQ
- x_ i EH1 y A E\-W\ ‘Xgﬁ
3 Q-i ” o _
= - :}'2_ "X)‘an = (—l) -é— ng‘:‘c ‘ . .(C-?8)

A _\_ .
- wher have found using the ressions for the ' Paulil
e we have foun X ‘qu sing expressions e ' Pau
spinors. given in Appendix D-2, since it is invariant under rotat:lions.

So, we end up with:

3;’" \a.ao

T | Ned |
/m;qq’)c =°§‘3 - ¥ am (\3 "1 §>‘q\§\éo (c-a9)‘
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§

It may be checked that these amplitudes obey the correct parity relations.

(i1) 173+ '— 173

b d |
&Pﬁ\»\,ﬁﬁi’" X, = %' 4: €y v P: P:‘ N; NA (III-20)

Ty v <£» - . 5 | III-14
a}/\ﬁ | OB(N)X ﬂ\) qD ' | ' )
FIG, C-6 .

We again put everything as in figure C-5, but now particle b, which
momentum lies on the negative z-direction, is an 1~ particle, so we

have to put ‘)b = =8,. We have :

o e = V1) 8 MB)

J A 3 2
Ay |

q-—
My

/ | -9 J‘-* » ¥
it S B R €00 €

Eha i* ?«

,F‘L" b\'}\,) * .L_(M) (c-30)
where we used (D-8) and (C=28)., Now we can immediately see that
TOOG‘)a‘)" - Tol;‘)\a‘kc = TlO;‘)\a')\c = 0 since F'd-and —é(O) have
‘\

3

A
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z-components only. Using (C=3) to calculate the triple product, we end
up with :

l?. Ou-
'l: EMB L] (1) 2

7515)4 Mahe = 9? = }ACS%Q,\ Ml (C-31)

and these amplitudes obey the cofrecﬁ parity relations .
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C-3 Vector meson exchange in 03" —» 173

We calculate the t-channel Born helicity amplitudes for
vector meson exchange in 0 37—y 173%, for two different - i-"'i-*lf

couplings, and for our standard 17170  coupling :

i = 3‘\2 E—yyf}zvfj AZ ‘h (III-20)

8‘ °8' 'N"\\’?: Ne, (111-21)
3' (W’Xv-'\" N—e. | (11;-21a)

FIG. C-7

Our conventions are :clarified in figure C-5; again everywhere we

effectively have ‘)\i =

(1) Use (III-21)

From (III-20) and (III-21) we get :

g, Xk
: = -iaq V FE e NS Pl
75:1 ")Q(kc -7 ?? v(ﬁ’)c) %(ﬁ ’QQ) B W\:" - ’C E’J"}‘R ﬁy QQ&) =

%

'U(.?‘_ 3%(&,’)‘3&“}«}) E F GO.[ (c=32)



- 135 -

Now YW 15 a scalar, and we evaluate it in a frame in which i;a lies
on the positive z-direction ( ﬁ; = -5; ) so, we may use the expressions

given in Appendix D-1 for the Paull spinors. We immediately find :

Teaa a0 =4 IR~ BN SN D

(look at (C-10) )'.

Using (D-8), (C-32) now reads:

II,_ - |
EJJD\;) (\Pq\%%f\\g) t FA \P\s")Q{Q Q) Ce=38)

So we see that no helicity flip is allowed at the ac vertex, and that

——td
= - . but
?O;'Xa‘)p . 0 since EE(O) hgs only z-component in our fraTe ( bu

m
*®
~—~
-+
N
n

+_‘{'i5.'_' - (C=3) - ). Looking at (C-7,8) we end up with :.

7;1‘433& W\ * 5\8% (awe-+) (2 “) S};}LSY\&\& (c-35)

Parlty relations check.

(i1) Use III-2la

Next, we couple (III-20) with (III-2la) to get :




e 98 PR M) e Epe LT S -

- 2 Eagpe R 1L VRN 8 H(R0) Ccm =

0

C{%% £ e(m*? T Py =

Where we used (D-8), since 'UXJ‘% is a 4=-vector. 'Aga:l.n, we have
-
To;‘)a‘\c = 0, since €(0) has only z-component, with the conventlons

on figure C-5; for the remaining amplitudes, we have @

'
T Q‘A;X = o}% '}: \?\ fU( }%X "DLU)Q ‘D | (C-37)

i

Y
0

where we have used. (C-3), and have defined the 3-vectors & += |51 IS

so that:
o oA, ' o
X« = Xx :Ix‘\). = 2= . (c-38)

Using the identity

_-\_.i

?5" o- = QQF‘ 3-? - ? 35(, ' | (0-3?)

._\

S ) o - S ] w0
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and the expressions for Y y WA in Appendix D-1 we find :
Tio a1y, U e W53
VRR)N (?qﬁ@ N \\Dq SRR_\;" E"X;\f °‘%\q (c-=40)

* A.‘.
= "‘." .
To calculate F).Q“ ’XXQO.Q:‘X')# , we have to use the rotated

Pauli spinors ( since this quality is not a scalar ) :

cos & A ~Siq |
2 1"
= == (c-41
m'}i. s\v\% ? rx\‘). (XL ’ ‘X" 'x-"-}_ Cos%: )
0 O .
and 2 0 ( for tne definition of the angle 0 , 8ee
0 ?_ ' -
0 O
figure C-5 9 - e ) ; we find :
L . : IS »
‘—!?:LL = ‘5\'\9 3 C‘i—‘?l. = \—Cﬂ‘e 5 (‘_‘i-!iz \-\-c_g')e ) ‘:\_2_ \iz—S\-p (C uaa)

f_;i-\i =-5m0 | ﬁz-\i _K-ma) 11. -Q+cm9))f\.;'-7_=-$\19(c-qab)

Already, these relations guarantee that our amplitudes do have the
correct properties under parity transformation; putting together (C=42,

40, 37 ) , we end up with :

7:-;55 = ;,g.gt w\“\‘_f\?‘d 5"']9{-._‘ T\ \i (C-43a)

7-13‘12"5 = mg‘%t {\‘\E\L\ (H—meh\) |  (C=43Db)




T

L
Ja

‘i_‘ n?j’i’: é)f/j}—?l é-_-C_oSQ{_—) | | (C-43¢)

ufhere : \-FA,\ = ;—23\—;]‘—1_ LQ*. Q'_B‘}Q‘. (C-44) _




APPENDIX D

SOME USEFUL RELATIONS

D=1 Dirac spinors.

Ve have 58), 59) : (f)' (E) is the 3-momentum (energy) of. the

Fermion of mass M, p = |B) > Y= (ic;‘) )

- ; , - .
R o Nion| 5 (%s |
Uen=Np) |, = (>-2a)t V(p,s) = N(py| E*M %1 (p-1b)
® Pls.p o s P &
EM s : o
L ' 4 ' L. d
To get "up" ("dowvn") state for a §To get mup" ("down") state for

)
"particle", put : ‘an "antiparticle', put =
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Normalization ' (a"-*?‘ 5‘? = ?L>

- 2 '
TRt

a; 2
. Z;_'U(?,s)'l)q;,s) = - N(\’) Kéé%v\

So, 1f we want to normalize to 2M,
Z;" W@nW(pss) = - Es—— VeV =2M
we have to choose : |

P

’&2%:_/\!_ T
(e game )

(D=3a)

(D-3b)

(D=4 )

(D=-5)
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D-2 An identity

We want to evaluate

_ . Az LV
S= S PP > (-6)

where 61{)4.)\” is the fully aniisymmetric tensor of fourth rank, P, and

p, are L-momenta (and we are in the a-c centre of mass frame), and Py €

may be any 4-vectors. First, observe that

2

Lo RRRS - & (‘E"M" " 'y*ﬁ') RERS =

= L ¢ D o e A A P
- 25"‘)‘“"?@?«: ?be - ri&)“‘%"?q?q?\,e =0 (>-7)
Now write:

= P P g A I R N ~ .‘\--\-‘
BT ASE E*_H"R LRe %j,,fogv\-av?qiﬁe =SS

hence, in Sl(sa) neither k, nor s can be equal to zero, so we can put

L
1

---p:, 50 Sl = 52 = 0, according to (D-7). On i:\he other hand, in

\

S', one of the k,}o must be equal to zero, so write, :

\,
\

!

- e S J A N
5"‘5 - &"J‘?\”RP:?LQ “* &;ohva?‘- \‘:\E _'.‘

e femfe] e [ emle ]

\
\
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50: (Ea+Ec=t%)

¥ A v : o ' )
&,m,,,&\{ Ve = . | (D-8)

—lh
_ t% ? xp-\b-G' in a=-¢ CM frame.
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D-3 Isospin conservation in KN scattering

-
Consider a process of the type KN—s3 K N,where
k' = K, X, K'... For the"elastic" and cex channels we have

( fig.D-1 ) :

| K*p—s K p K' —> K'°p
K= K* K> K8
—_— | —_
Is=0,l _ IS=O,1
P ]\ 9) n T P
I,=0,1 : | ) I =1
FIGC. D-1

195D = 27 20> + o0 ) - \nE) - |11 (D-9a)
kx> = 27 (f10d + 00D ) ¥y = 1) (o-9m)

So, for the t-channel "elastlc and charge exchange amplitudes, we

\
have )

Té{') _grle =Ly g0y =0 (8) | pTp=)

b Toox (D-10)
Hence, for elastic KN—> KN scattering, we have .:.
p(t)
Teex _P -A2 (D-11a)
(t) = *}(f -a,) + Hw-1) + 3P o (D-11b)

while for KN-—> k*N :
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Tior = T *P-a, | (D-12a)
Tg;) = 3T + H P -ay) + Hw-1) | (D-12b)

For the s-channel amplitudes, we have (e.g. reference 60), page

240 )

Ig =0

L
i

(s) (s)
= Toy = 2T;x | (D-13a)

I¢ =1 (Sj - |
T Ty o _ ~ (D-13b)

J——
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TABLE D-1 Isospin decomposition of
the KA system: jei-2.

L e vl

NN e N RN B EINREE
ERE Y)Y L | I
ST S )
3| * g e e
2ok % g sl
NN I T e
255|5h) - ER | YL
D)) g I S
SENTEND | ) sl




APPENDIX E k

CROSSING RELATIONS AND PARTIAL WAVE AMPLITUDES FOR THE KN K*N AND

K'N—p K N PROCESSES .

In this Appendix we outline the algebraic calculation
required in chapter IV , We start with the t-channel amplitudes
'T\o and T‘Il for KN—>» K'N and K N—» K N respectively, cross them into
the s-channel, construct the s-channel parity coenserving partial wave
amplitudes (pcpwa) , and interpret their real parts as K-matrix

elements by removing their explicit threshold behaviour.

s-channel amplitudes,

Notation : ( r=my, m=my, M=m, s )
] ’ W o . *
R N—py KK (‘\'{o ) > KNe—» K N (TKN.;N )
R o * KN, —» KN (T )
M= K& (T|y) =—— 1M 22 YN,y KNy

We shall use the sign conventions of reference 22), according to
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reference 82). The crossing relation (F-9,10) of Appendix F gives :
' { X : '
! oy M i
N3N - (—l) og(“}k) NN 770 (E~1a)

. !
-7 J#Ny +Na, 2 4 % . |
//‘zNz skiN, T (- MM2 N, M}:z E, "7 n . (E-1Db)

where the matrix 14§a is given by :

S S s s 5
Mbq' = JSL (c04) OZ.sQQ‘%) "0[-519(‘“’") al_sq@’q) (E-2)

YV wb are the crossing angles of particleés a,b with helicities a,b.

It is now straightforward (although lengthy) to find the limits of the
crossing angles, (F-11) as the K'N threshold is approached ( q—»0 ,
VS — 1.83 GeV ) : (x=cos95)

(5o p) b —2e(U: 1) \
2GTP T G- BT >t e

COSUON. =

- (sri- M)t - 9m (M-} .
2\(5‘3\[?'{‘ @w\'-.-\;)‘[-z_ 2 ~-X (E-3b)

CosSWw Y =

Cosw, = (o M¥-w) (ke M=) -2 (M= )
205 Vo

N
+
Fed

(E-3c)

S‘“\“_"x —=0 , sMw A —> -\ s s e (g23q)
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(o4 M= w) L‘hllz - %
CosSW = =Cosw), = ———— . =lia
" T TaEqANEeE T 2 (B-4a)
TN B llt L_'
COSLO”\ = - COSU\JMZ = - (S Al —M \}\:\. P = il (E=4b)
2\'q (Aw= by > V2
S‘\V\UDN\ = '3‘\1U\JM2 —_— - \;.X (E=4c)
SMW,. = W _— \+X

Using (E-4), from the crossing relations (E-1,2) we find:

w D (] \+X
i L= Coswl, Cos N TN .,I -
ol Ly R TYQ. —> X 2 o (E-5a)

. _ . wﬁ*_mnl 1 — )

T L.l o= I——S\“m“ oy L+l O RS - (E=
31333 o T e T —\S z \"z e (B-%)

Tzil-'-‘—- - _“; Swwgk' . UJ_\\H-UAN 5 | =X* o
T:'i‘ 'O-L _ S‘\V\UO\;L < (UN\{—NN?_

1 — - >2MWey 1 ‘\+x *
i35 5 \{—T | .\\q \_\“ \ri' Tz_— W“ (E-63>

P
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T,

Nj-

. Wy, +y * .H’\—xl *
R x (‘ : ;
VFI-4 = cosu)kLSn?_L.__ y —> T\l . (E~6Db)

All other amplitudes for K*N-y-K'N vanish (only nucleon flip amplitudes

survive). _ : ' ' \

We next expand T\o and'T\Il amplitudes to lowest order in q

and take their real parts ( T‘Il is already real to first order in q ): .

@e\'{o = !\+?>\><1x

(E-7a)
*
Ty = < Olz (PX) - (E-70)

where :
/

: ¥odk
N= 2P D6 \ ¥ oSNl ool

3.1
b} o(o = W\ZE -~ W).L N\—\‘ (E-8)

Q“*M)'z«oot' pA M+w
Koo’
% = _%% So ! . ! ' ] WM
. Q‘HM)WM' of [T} SW Y\_o(_oo( + 2 (\Hosﬂdao( )\‘QM\{?—: (E-?) -
'(: — —:Z‘QEB

(E-10)

M™ >

pcpwa as K-matrix elements

We next partial wave project - (F-18) = amplitudes (E-5),
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and find the corresponding pcpwa from (F-23) which for our procesées

reads
Jzx 3 .
/FN'JN - 7;“1_;.” sy (—’) INI-; -N - (E-lla)
Jx = i 3
. -7 T
kN, sk Ny = 7’:2N1.) K N, T ( I) /FzNz..) -k, =N, (E-ll,b)

We interpret these pcpwa as K-matrix elements after removing their -

explicit threshold factors :

B it B
S I A
\“3. ‘io"i =
h\ 1 A _

v } 0 3 \<—z*=0 (E-izc)
L

72
N . \xim A
—_— = ————— (E-124d)
\?.‘ﬁ.‘n@m) > TV T {meM)
Ly 1 \<"* (E-13a)
2 z ¢ " \Qan M)
T\\ = kel = & T .
2.2 2 \‘2_“&'«‘_‘\1) ‘1 J I
ki =0  (zaz
i+ \("i*‘ <
L . \ \< =K = =——"— (E-13c)
2 2= 2 00 24V 1w M)
_‘Tzo'szou = X o G > |

-0\ = j_' P e 3 .
e R R N 24‘_')_1‘\@‘1_,“)1 \:?._- ) \<_\=‘_-_
’ ‘o~

o= O (E-134)

\
\
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] ]

3 3z x . .
Too =0 > }‘oo = 0 (E-13e)

| ‘BPg . \i+ B

3 3 3 \20V6 n{w+M) k_l-m)m-ma)
&T =‘R _\_-Li'-T\.\-—

-\ 155% V33 = N

N U . SRS

2AVE'q(mem) 3 24VEm(Men)

* .'s 2 ___EB 1 . k%*
QQTQ;Re[To-:- tT: \_}-_- senem

A | \<}j=-———A—— (E-lll+d)

v

24w QP/\-\-N\) 24n M*M)
=2 \(%_*
A‘O\s;z\“me) > ‘—4°ﬁ“(\‘\*M) (B-1y4e)

—)
T N
n W
3
R
i+
—
Ni= plw
L [S 1
]

A . \f\’i; N

2 T 43 nem) O

3.
Z

2 3
\<m‘-\<:. = O (E-15d)

PN ara— ——\— (E-141)
242w (weM) ° 24NZ 1y pn M) t
2y
,l_’—;:f- ) 7_1_5 c o w7 33w (E-15)
u - + JLo-y-L = + — .
272 43.—1@«“”’) J 2-
\<u = 0 (E-15b)
By . o3
' > \=__C
3t —ar 3 - e 9 ¢ k“’ \<°| ._m (E-15¢)
’)-l.o= }o; = '.,‘_7;_%30_ - * 9 - %
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ERS \<.3.'.+ c
= = oo (E-15e) \,
2r - 34 3 : -io o-\ dlgq'g‘“qm) _ \
2 2 2 2 ‘
r)_:lo = ’7;_' = _"_",L%.o__iz_ = I _£L ': . . \ -
' ’ AV (M) 3- 3.
| o k= ko = O (E-15¢)
3+
" -C
3t 3 --v = (E-15g)
2 z . 2 \6\'\ kw\t M)
= - -_C1 .
’)-:l"’ +7:]'E.\,’2_ + /6”(’”?‘/") b} %_
: )f-,-, = Q (E-15h)

. To finish with this tedious listing of formulas, we write down

P .t 3%
the full K-matrices for J° = % , 5 ¢

X

%

)
~_
o wi=
1+
o
‘J
/ [
I

(XIS
I+

(
pi
-+
T
Pl
"+
Pl
7]

{
-
[
-
!
-
Q
L
r

i
1 eV
Lol ¥

AW
4
~
9
i
o 14+
_(
Q9
(g

z

r
l,.: wI
H
7
(T
}
-
f

-
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APPENDIX F

NOTATION AND NORMALIZATION CONVENTIONS

With reference to d C
figure F-1, where each particle
! ? o (P (q)
of mass m_, etc. carries 4-mo=- -channel
a t) Ci
mentum Pgs etc, we define the T
' tchqnnel

usual Mandelstam invariants

by  FIG. F-1

2 2 . 2
s = (p+py )% t = Cp=p. )% u=(p~py)
Conservation of 4-momentun,
Pa*Pp = Pc¥Py
requires that these are related by :

s+t+u = Zmi
q

The s-channel centre of mass 3-momentum and scattering angle are

given by :

(F-1)

(F-2)

(F-3)




- 154 -

ﬁ; = ;\% [5—(%*"“\,)1][ S ‘(’V\q-mg’-] (F-4) |

00595 _. 5.1"' ‘S (211' - me:) +(m:'mt)(m2—mn
= (F-
45@&5 Ecl ' ! 5)

(similarily for all other particles/channels). We usually put :

P = Pgap » 4 = Pgeq (F-6)
The physical reglons for scattering are bounded by =-1% cos 95 <+l
etc , and the boundary is given by the equation : ( qD(s,t) is
the Kibble function )

Py = shic -5 (o) (o) - L) (i) -
- (W\:W\\:\' le\t\ Q_W\:L +W\K 'M.Lb - “’\:) = O (F-7)

We denote an s(t) -channel centre of mass helicity

\

amplitude by : . \
. (s) ; .\ _
_/cJ,'ala = <¢A\T]“\°\> (F-8a)
@ - |

' /cq)'afb = <CE\T\§\D> ~ (F-8b)

where the T-matrix is defined by_(I-B), and lab)», etc 1is the

usual Jacob and Wick helicity state. Lorentz invariancé‘requires
these amplitudes to be functions of the Mandelstam invariants only.
Crossing symmetry.requires that s-channel and t-channel ampiitudes
should be one and the same analytic fuﬁction of their variablqg,

when the helicities are measured from the same frame. The crossing
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matrix rotates the helicities from e.g. the t-channel centre of mass

82)

to the s-channel centre of mass, s0 we have

) . , 3]
’EJ.')“LLS’-\') = Z——" J\qc&_:,q\a“c'cl")d\; 7:’«;')'4'5’ K's)\'-) (F-9)

Q,8,64

where for the crossing matrix M we have :

Wi '\’*' 3-8
Mcéjq\q\dd;é.\a = (1) A &""0 A \o\“’b)é P‘BAKK*’A)(F 10)_

where .sa,etc are the spins of particles a, etc , and the crossing

angles q)a, etc are given by :

Co'suoq- = -Cs+m1-m1\(¥~m2-.mﬂ ‘2"‘;("“‘\;"’\\6"'4:*“&:)

4'\(5_{‘ Fsg\: E\;tu

(F=11)

etc (by cyclic permutation ) .

Throughout this work we normalize our amplitudes according
to reference 2); also, our unit is always the lGeV- ( unless otherwise
is explicitly stated ) . The dif. -cross-section,and density matrix
elements for the decay of particle "4" (in the ‘t-channel helicity !

frame ) are given by

Ay

do . _A 2y _
3t GA\\??S (Q-sQ*s-)CZS\,*&\ N (F-12)

k ) (Jc)

Nfuu q,l: c 59¢ 7;-«. 9¢C | (F-13)
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where, because of the orthogonality of the crossing matrix (F-10),

we have :
> % 12 ) 2
N\ ; b,c, I’—EA:‘Q\’ ksx\)’ = qz\’_c_& /—}:q)J_L (S,)t)/ (F-14)

The total cross-section for the process ab—% X (anything, at
sufficienty low-energies, in most of the cases, it may be well

approximated by quasi-two particle states ) is defined by :

& (ab) = Zj_}lk Jﬂq\mn | (ro159

and the unitarity relation (I-2), leads to the optical theorem,

which in our normalization reads :

G;.@b) 4 L%T\a \,LS =0) (F-16)

BCTIVEICIINNY zc)sl"-

The scattering amplitude may be expressed in terms of a

partial wave series

—
'7:!,@1, ®b = 3W5 \23*-\3 A QO TJ ab U (F-17)

' '
(x = CO0B 95, >\ = a=b ()\ = c-d) .
where J is the total angular momentum, and since it is conserved,

the partial wave_amplitudes (p.w.a.)

\

\

J

(/:J-)Ql, = 4 Jx o’ (x) 7:, qL (s)r) (F-18)

lers
A1
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express the probability for scattering with a particular angular
momentum J .

In terms of p.w.a. , the unitarity relation (I-2) reads :

N T2 T
‘A‘, ab o "7 C‘ Py K)'_,QL: xY; c.A (F-19)
(only two- particle intermediate states have been taken into account

in the probability sum implied by (I-2) )

The optical theorem (F-16) may now be written as

3 .
O;(QL) (28a+1)(251,+1) F Z—@s L)Z‘(}'"'"—)—L ob (F-20)

‘We may make our amplitudes identically unitary, by parametrizing

the p.w.a. as
3 2:'5.3

T _ 4. € -4

—}4; 91 (F-21)

or more generally :
.3

-{
) J .
( defn. of KJ_matrix ) | 7— = ’L/' (I ”'_f }‘3) (F-22)
P

where SJ ( ' ) are real, holomorphic functions of s. j3= q

is the diagonal matrix formed by the intermediate two-particle
channels momenta.

‘The partial wave amplitudes defined by (F-18), do not
connect states of definite parity. We may define the parity
conserving partial wave amplitudes (pcpwa) as linear combinations

~of p.we.a. "?a etc. is the intrinsic parity of particle a etc. )

- = mme— 1w



- 158 -~

= J-Sq-Sb 4

: 3
.TJ5Q\> = 7;.'3413 IIYLQ”(.L, (—)) 7:0"',—4.-‘: (F-23)

These amplitudes connect states of definite angular momentum and
parity. It is an immediate consequence of analyticity that at the

ab and cd thresholds (p—%» 0 and q=——» O respectively ), the pcpwa

should behave like :

;I,J* Y,

'
where fand ?" are the lowest orbital ang. momenta, consistent

with parity conservation, possible in the ab and cd channels

respectively.
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