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Abstract

A model is presented that describes the non-relativistic
scattering of electrons from light atoms at energies above
the single jionization threshold of the target. The simplest
form of this approximation is considered, and application
made to elastic collisions with hydrogen and helium atoms.
Tﬁis requires the numerical solution of a second order integro-
differential equation, and a technique that achieves this is
discussed.

$upplementiné this model with a distorted wave approxi-
mation gives a description of the excitation of any target
state., This is illustrated for the 1%S » 25, 2°S and 2°F
transitions in helium and the 1ls + 2s transition in hydrogen.

Diffefential; integrated and total cross-sections are
presented in the energy range 50-200 eV for hydrogen and
50-500 eV for helium. In addition, the relative populations
and phases of thehmagnetic sub-levels of the 21P state of
helium, following excitation from the ground state, have been
computed. :

Finally, thefuse of dispersion relations as a consist-~
ency check on experimental data is-demonstrated for electron-

neon and positron-helium scattering.
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INTRODUCTION

The work presented here is concerned with a theoretical
gtudy of the scattering of electrons from atoms at non-
relativistic velocities, By limiting the investigation to
collisions with light atoms it is ensured that the total
orbital and spin angular momenta are separately conserved,
and the relevant dynamical equation is therefore that of
Schrldinger.

The scatiering of electrons at energies below the single
ionization threshold of the target is adequately described by
the close-coupling spproximation. There iz, however, no
satisfactory model for the intermediate energy range, where
the velocity of the electron is high, but not so great that
its interaction with the target can be freated ag a pertur-
baticn., Frevious results in this intermediate regicn have
been abtained for the most part by extending the range cof
application of the low and high energy approximations, and
those relevant to the present work will be reviewed in
Chapter 1. It is partly the objéct of this iﬂvestigation
to propose a model that will give an adeguate description
of scattering at intermediate energies, and this will be
presented in Chapters 2 and 4. The applications to the
particular cases of hydrogen and helium are considered in
Chapters 3 and 5 for elastic and inelastic scaettering respec-
tively.

Of the weasurable cuantities that express the result of
an eglecwiron-a2tom collision,; we will caleculate the ratio of
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the scattering amplitudes for +the excitation of magnetic
subsitates, the differential, the integrated and the total
cross-sections, In assessing the wmerit of a psrticulax
approximation, it is essential to compare qguantities that
provide as fine a test as possible; +this is well illustrated
by the Born approximation which while predicting total cross-
sections that agree favourably with experiment at certain
energies, gives very poor values for the differential cross—
section. However, the techniques reguired for the measure-
ment of the ratio of scattering amplitudes for magnetic sub-

state excitation are very new, and there is & corresponding

n

lack of hoth data and theoretical predictions Jor this quantity.

7

The presént work will therefore concentrate mainly on the cal=
culation of differential cross-sections,

It is also proposed *to use conjectured analylic proper-
ties of the scattering amplitude to sﬁow how the congistency
of experimental data may be sssessed, and this will constitute
Chapter 6.

All enalysis shown will he for electron-hydrogen scatter-
ing, unless otherwise indicsted, and we will work in atomic
units thfoughout, Finally, since graphical and tahular rep—
resentation of resulis serve different purposes, it is felt
desirable to present the differential cross-sections of this

work in both forms,



Chapter 1 bSeme Approximate Models of Scattering

J

1.1 'The Second Order Potential HMethod

The dynamicsal equation for asn electron, with co-ordinates
ESPRR. interacting with an avom whose N electrons have co-
ordinates rq «.. Iy is, within the framework discussed in the

Introduction

[N 3 . ‘ , '
{ Z[ -;-LV,, + -::"1 “+ Z ;—} "TX(FJ.. w+| '%(\ . N“) (1a1)

where ¥ 5 =|z;-r;l,

mass, and a time-independent formulation has been assumned.

the nucleus has been taken as centre of

In particular; for scattering from the state ¢ (£l oe EN)

of say hydrogen, (1l.1) i3 subject to the boundary conditions

-~ - ——~—— ‘E" -t o | '.';‘\'Mr_'_ 0
Ylon) Some Sd)e T« DAL, (e (1.2)
fin r.
[
. - .th‘\
Kol S WOPRATS (1)

™
where fmn(e), gmn(e) are the direct and exchange scattering
amplitudeé respectively. The range of m is over all possible
channels, which are said to be open if km2>0’ and closed

otherwise,

The total wave function may be expanded exactly as

Flos) = L A Rale) + J{dm(am(m (1.4)



and couations for the coefficients Fm(r) are found Ly substi-

tuting (L.4) into (1.l1) giving

[ ki)l = 2] V(s Fale) (1.5)

where

~
P
v

o
N

~r

Lot
Vo (2) = e, G100 7, 7 5| B le)

Y ‘

and the sum over m' includes an integration over the continuum,

The boundary condition

. .y
ll-:{n:\v‘.' !ﬁn\r

+ -Q,v“\ ‘-e\l

-
—
—
O
(¢

(1,7)

7|®

follows immediately from (1.2).

Castillejo et al (1.960) have shown that the coefficients
Fr(z) in (1.4) are, unlike F (x), discontinuous functions of K.
A; appropriate choice for the path of integration over K, to
avoid this singularity, then leads to the alternstive houndary
condition (1,3). Castillejo et al (1960) have also shown that
these boundary conditions arise naturally when the to%al wave

function is properly symmetrized:-

T em) ='2;{¢M(‘:J‘Fm(r—h ¢m(tz)‘:m(t‘\] (1.8)

where the functions Fm(g) are now continuous, for m in the
contvinuun,
The approximation of the truncated eigenfunction expan-

sion ig obtzined (Massey and Burhop 1969) on truncating the



sum in (1,5) at some finite value m' = M. Alternatively,
the expansion (1.4) may be trunceted, snd the resulting
¥(zy,r,) used as a trial function in the Kohn variational
principle (Mott and Massey 1965). The best choice for the
functioﬁs Fm(g), in the sense that if the error in W(El,EZ)
is to first order then the error in the scattering amplitude
will be to second order; is then given by the solution of
(1.5), subject to (1.7).

Note that the possibility of rearrangement does not
arise in this approximation unless the tirial function is
properly symmetrized at the outset. In any case, the approxi-
mation is expected 10 be inadequate for applications at
energies above the ionization threshold, since only a few of
the infinitely many open channels are then taken into account.
Mittleman (1960, 1961) has suggested that an effective poten~
tial way be introduced into (1.5) that partly mskes allowance
for those channels excluded from the expansion, the specisl
case of truncation to one channel being considered. The
generalization of this work to an arbitrary ﬁumber of chaunnels
was made by Mittleman and Pu (1962), Subsequent werkers
(Mittleman 19270, Joschain and Mittleman‘1971, Bransden and
Coleman 1972, Alton et al 1972) have expressed this effective
potential in configuration space, and illustrafed different
methods for its implementation,

Pollowing Bransden and Coleman (1972) we adopt (1.5) for
states m< M, This then becomes approximate when we choose to

obtain Fr;{r)? for m' >, from:-



ot ' (1.,9)

Ve introduce the free particle Green's function G-(knz; Tyr!)

with outgoing wave boundary conditions satisfying the equation
2 'y fL - ' - Moo
‘QV + ‘K“}G\h‘n )‘:1‘:) - S((-' - ) ' (1010)

and we have explicitly,
‘ e:"’\“\f'tl‘
T, t .
Gk 30,0 )= -~ (1.11)
( L -2 -’) L“T" “. ||‘
(1.10) may nov be used to solve (1.9) the solulion of which,
on substitution into (1, 8) gives for m <M

78+ Ralfa () = I-Z\/,W( WE s g

(1.12)
+ ~+Z er Ko (20 ) o ()
M -
where
4
‘<M z G \krﬂ“ Y - s - )\J( et (t ;\,\"‘\,“( ) (1,1'))
2ty
The infinlte -summatlon in (1,13) is now removed on replacing

2 . -
km" by an aversge energy Ez and performing closure on the

target states ¢ gl) to give

mli
. { ™M
Koo (8,0 = (15 8,1) L\’rw(‘l»'.')‘__"m NN )1 (1,14)
. mteg

where



(¥ | 1 } i\
\[Mn-\'(.‘:- :‘:‘) = d:j; Sb:(.::u) \-‘._:__::‘-\ R | Fotan BN ¢ml (‘-}‘)

Pl x| . (1.15)

The non-local potential K (x,r') is of second order in
the interaction, and its introduction into the truncated
eigenfunction expansion, together with the subsecuent closure
approximation, is the second order potentisl method of
Bransden and Coleman (1972).

Referring to (1.9), it is noted that the conseauence of
the closure approximation is to replace ki" on the left hand
side, by the constant k2, On setting m' = X and using (1.10)

-

the continuum functions FK(E) are found tc bhe

™1
—- A -1'. t r\ 7o\ - (Y
FE(E) = 2L 0\": G(h ):it)z_‘/!&rv\“ (t)\-m“(‘;} (]016)
sl
end, by inspection, are continuous functions of X, The boundary

condition (1.3) is therefore replaced in this method by

W . -1
';tl(. LB l) O : (loJ?)
and to allow foxr exchange a reformul'.lon using a symmetrized

expansion of the form (L.8) is required.

1.2 The Close-Coupling Approximation

The equations of the previous section wefe derived in a
honfiuuraclon space, and zre not tractahle a#s they stand,
The use of partial wave series, however, allows the equations
tq be expressed iu a form amenahle tc numerical soluticn

without further approximstion. This will be illustrated here



for the truncated eigenfunction expansion approximation, sud
the total wavefunction will also be symmetrized. When the
truncation is physically chosen so that all the strongly
coupled states associated with a particular transition are
represehted, in addition to those providing the mein contri-
bution to the polarizability of the atom, then we obtain the
close~coupling approximation (Burke and Smith 1962),

In particular for electron-hydrogen scattering, let I
and (nzlml) be the co-ordinates and guantum numbers of the
bound electron while those of the precjectile are y, and (zzmz)°

The expansion for the total wave function (1.4) may then he

Yl =3 iy, @)% Y NN

(1.18)

where Yz () is a spherical hd rmonic (Schiff 1968) and v

denotes the set of guantun numbgrs (n Jm~£2m2)a Foillowing
Percival and Seaton (1957) it is noted that our neglect of
spin-orbit coﬁpling ensures that the total orbital and spin
angular momenta are constaunts of the motion. We transform
thereforé to the representation that is comwpletely specified
by the-set r E(nﬁlzzLM), L and M heing the guantum numbers of

total orbital angular momentum, and also properly synmetrize

the wave function to give

Y (.‘"u z\) = 2 ( h{: |(~ Y!‘.JL,@;_M (E' ’E'*) ¥ | (1.19)




where the scecond term is obtained from the first on inter-

change of ry and Yoy S is the total spin and intbhe notation

~of Rose (1957)

Yienlind) = Z; L M) Yo (B0 (1) (1.20)
C(lllzL g My, M) is the Clebsch-Gordon coefficient, with
M= oy + m, and the triad ﬁlﬂzh satisfying the triangle
inegualities. Percival and Seaton (1957) show that substi-
tution of either equation (1.19) or its truncation into the
Kohn variational principle (Mott and Massey 1945) leads to the

-
radial equation for f:(r):—

L0 = 22 V) - W ] 610

where Vv = (n2122) and

(r.21)

3 & Lok (g,
A

= 2, ¢ Ra LI (1.22)

In their notation:-

\/:v.(r) = ‘S“" +Z‘r\ (E‘EIQ i )"j \Lar, 'ﬁ;‘%")

~
[
°
N
gl
~—

and

Wo, (6L = (1) Z 9Lttt “‘i ()
| - (1.24)
[“h (Pag, €5\0) + &, (e v~ €) /is(.’r’,..».a!ﬁf‘b.‘

where in genrersl
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o, (0lr) = | 0B ) g
o fnmx“'((‘"ﬁ)
and
N
A(r—x{'«) 8 i (x) 8 o - (1.26)
' “o

with the coefficients fA and € defincd as

{: Q.Q, L“‘\L) Jdt ()\ Lllﬁ(” d(,\( L;{‘.Q:,t ("\.,’«J (L 27)

L. -8

FCLACY 29
o Y tpt
= (-) 9, (t,0,¢, E\v) (1.28)
. . . th
Finally, E is the total energy, €y the enexrgy of the n"
state of the atom snd B - €y % knz.

Burke aznd Schey (1962) show that, for electrons incident

upon the ground state of an atom, (1.21) has the bvoundary

condition
C" “(kh‘“-cz%)
£ ()~ sin(k, v-("v‘la i-T e (1.29)
~ =0
where the partial wave amplitude vas is such that for the
o
scattering amplitude we have
. ol <
.{:S ( = L ('LLH)'T“ % ( G)) (1.30)
v, 0) - R, v, T LS o
Lo

v, being the guantum numbers of the incident channel, Iqua-

T A P N . L B = P :
ien (Ll.2)) with a suitable truncation of the v' summation is



the close-coupling approximation, and Burke et al (1967) note

that it has been most successful at

o)

nergies where the chamnnels
excluded by the truncation are closed. A review of the appliw

cations of this model is given by Moiseiwitsch and Smith (1968).

1.3 Impact Parameter Approximztion

In contrast to the previous section, the ecuations of
Section 1,1 may be derived with additional approximation in
an inpact parameter space.

th

¥or an electron incident upon the i state of a hydregen

atom, the total wave function is expanded es
X iRyt (g -ER/K _
CRAR 2 ¢ (nye & ¢ (b ,2) (1.31)

where the projectile has incident wave vector kj and co~

fedl

ordinates I'o such that Ly = Zgi + E. Substituting (1.37.)

into the Schrodinger equation for the total system, the trans-—

ition amplitudes cn(p,Z) are found to satiefy

a -\ | "(- ",)?-/‘Rs'.
a—?:Cn(E ﬂg -_L—;Z;‘Vr (‘.d) ;’J \\_.:_ )'f;;.)

(1.32)
only after assuming: -
i)  high velocity, such that
(g,-¢ 3 a (% o '

Calb,2) &K = Ci(h,2 (1.33)

N\a? L = ©

TORE 3z’ dz %)
and ii) rectilinear propagation in the &i direction, so that
AEERE- (1.34)
oa C}?'

th(r) is- defined in (1.6), and (1.%2) is subject to the bound~

ary condition



O
2
£
19
«r
i
&
~
[
G
>

(1.%5)

i
In the notation of eguation (1.1) the exact scattering ampli-
tude for a perticle colliding with 2 composite N-electron
target and so causing an i -+ f atomic transition is (Bransden
1970)

~Re b N
( o |¢{‘ (.‘:\ N}\,(v’ N.».‘\Y(‘“ N")AJ N+((l“36)

“r‘s(_a)"-"
where V(£1 0o £N+1) is the projectile target interaction.
Our demi-classical approximation to the scatteriang amplitude
is therefore

¢ \ 1(Ri-R)-02 b(n \)

HOERIALITIN 7 Ve, (b0e Ok, (1.37)

J
for clectron--hydrogen collisions.
At high energies Byron (1“71) 9how% that kimkf'u(gfwgi)/ki

and his approximation of (x =K ) L by k. -k allows us to
p £

wiite
. f-]
! "‘5@)-‘.’1 (Ri-ke) b L(EL’"EL)EL
< ~ e e (1.38)

Lfter substitution of (1.38) iuto (1.37) and combination
of the exponents in Z we recognire the summand as being that
of (1.32) and obtain |
g i\ N
S J

v {,
e 3
LK

T (e\

o
:wl“’



where the boundary condition (1.35) has been used.
Both (1.%2) and (1.3Y) cen ve simplified by making the
decomposition of the surface element db into bdbdd. The ¢

dependence of the transition amplitudes is extracted on

defining
- Mn¢
Q‘n(baz)e = c"'\(.tl )2) . (1.40)
Hence, (1.%2) becomes
a . \ ."(En-%‘j) \-’K-L
6-11; 0\'\ (‘O,i‘} - -“_{’:sznu (b)i) e’ QJ (b ).E') (1041)
J
where
“(M "N\t\}?‘!’
Vo, (bt Va; (b,2) (1.42)

After substitution of (1.40) into (1.39) we take § to be along
the direction of the momentum transfer q = ks kf, The expo-
nent i(gifgf).g then becomes ?(ki+kf)b sin % cos¢ which at
high energies mZikib sin % cos 9, and using the integral repre-
sentation for the Bessel function of the first kind:-
m '
W ixwsy Tmp
J bc) _7) X e e dp (1.43)
i c

we obtain finally

N\‘."'l

W(&) (-i) Y_&& (b,+®) - 8“-}3% A s(n%) bdo  (1.44)

g0 agreeing with the expressions of McCarroll and Salin (1968) -

and Wilets and Wallace (1968).

1Y g L . - - 6. [
The diiferential and total cross-sections, %ﬁif and Qif’
u ol e

are defined by
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o
) { dv, (0,9) | .
Q“_S;M’Hj&ws@) ;ﬂ (1.452)
and
X Y :
4% RE\QW(B,QS)\ (1.45b)

The impact parameter approximation to the totai cross-sectiom
is therefore, in units of a e ,(VWilets and Wallace 1968)
k¢ v ,
Q.. = w3 \a (b,rs)}= S| bodb (1.46)
(%' h‘ £
>
Equation (1,41), after truncation to M channels, is the
trupcpbed eigenfunctior. expansion in the impact parameter
approximation, and the second order potential method is now
used, as before, to allow for the effect of the excluded
states, Proceeding 28 in the development of (1.9) the trens-

ition amplitudes are then such that

"l.

e (BN
aC\ b“'\:___’-‘ M'.z‘a b 2
g'i f\( v& th Z‘:‘Vn“?'('b"}) “() )
& : (1.47)
Ve
"\'Z'lz \d\.. Kaw (2,2 ) oy, (6, 2')
v (LAY J-Wb
where the second order potential is
- : (1]
\('\u\(nc)l‘)_: \-\}f\ﬁl\("s )%;\’,?") = i:\"l (.‘7 %)V’M(‘) Eﬂ
(1.48)

¥ g &:& (ﬁ.“"'é) 3 - LE (_Eﬂ,‘*{ )Za }
N P‘i'

[

-2 o .
£~ where B is the total energye.

_a

- . P A
and € = B - re}



The above fermulation has heen applied, with some success,
to the scattering of electrons and protons frowm hydrogen and
helium atoms by Bransden et al (1972}, Sullivan et al (1972),
Berrington et al (1973) and Begum et al (1973), However, their
adoption of a semi~classical approximation, together with the
neglect of exchange, limits applications to scattering at the
higher intermediste energies. TFurthermore, despite there heing
no reliable estimate for the range of applicability of their
approximation, Bransden and co-workers presented results for
electron energies as low as 50 eV,

A similar approsch was proposed by Joachain and Mittleman
(1971) who considered a one channel approximation to (1.12) by
setting'le, and in addition.eikonalized the scattering wave
function:-~

Bt LA
iy = et e (1.49)

Joachain eand Mittleman (1971) made further approximations,
however, to the resulting eocuation for the phase A(E,Z), which
results in their model being less satvisrfactory than that of

Bransden and Coleman (1972).

1.4 The Born Series

~

It is convenient to define an integral operator G, such
that

v

L) = o el )l (1.50)

2

for some functicn Z(z), where G(kn;

r, r') is defined by (1.10).

Adopting the Linstein summation conveniion, whereby a term with
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a repecated index is summed over the full range of that index,

the solution of (1.5) may be written compactly as

Fm(‘:.) = ‘Smn\{lm(‘;) + E;Mumm- Fm'(r) (1.51)

\ -

vhere wm(z) is the plane wave solution to

,‘_V"*""wﬂ\!’m(t‘) = QO o (1.52)

i 1 = J
and U (x) =2V _.(z)
The Born series for the scattering function is generated
by the iteration of (1.51), the terms being of surcesesive

powers in the interaci{ion:-

Lid L, ~F o \
FM = CSQM\PN\. * G M\)\Mr-\' ‘."”M‘ Sﬂql" % GM \"‘MM' C.rm‘lJ"M'm" ‘.P;m‘“ (s atn (1 o 55 4
Using the explicit form of the Green's function, (1.11), we

have that as r+«, for fixed r',

.‘k'\‘. == : ‘5‘“'2.

\ e (1.54)

i ®

1, \ -
G(\m':,t):w ol

where the vector_g'n is of magnitude kn and in the direction‘%o
Substituting (1.54) in (1.50) we deduce
|k“|‘ ® 'h' r;
~ - i .
G (t) ~ - € th‘ e - {_(r,') (1.55)

\
* * > 00 bw ©
[+]

Equation (1.55) is now substituted into (1055)_and the result-
ing expression compared with the boundary condition (1.7) to

give the Born series for the scattering amplitude
oD

1.48) = 7: '{“'em (1.56)

N



- L7 -

where, for exaumple,

-1k L \k,. '
S(\"G\(%) = o dr @ \{M (';‘)Q-‘ (1.57)
and ‘e .
- ' \ -1 Rm-f 2
Fo () = "L-“S"\E“’\“ & NG 2 (g gy
Y e Ra. 0y
inlt &
with cosb = Em°5n

The models in which the scattering amplitude is approxi-
mated by fp, (0) and [ Ty (6) + Fp,(8)7] are called the first
and second Born epproximations respectively,

-The polarization ci an atom by an incoming electron
results.in an attractive interaction hetween them which, being
of long range, affects only small angle scattering. AT the

intermediate energies this polarization potential dominates
the elastic scattering in thg forward directicn, and its
neglect by the first Born approximation leads to a character-
istically flat maximum at 0=0, in ceountrast to the experimen-
tally observed sharp peak. Injeed, EBl(O) is independent of
energy for elastic collisions and eguals 1 for hydrogen,

It should be noted from the work of Castillejo et al
(1960) that the presence of the 2p state in the close-coupling
approximation of Burke et al (1963) accounis for only 66% of
the polarizability of the atom. The c¢lose-~coupling results
are therefore similarly defective in the forward direction
for elastic scattering above the ionization threshold.

Regarding +the sécond Born approximstion, it is not

possible to evaluate the integral (1.58) exactly and the
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simplification of Holt and Hoiseiwitsch (1968) is to replace
k? in the Green's function by an average energy Ez for all j
higher than some value N; closure is then performed on the
atomic ctates ¢j(§). This model includes the effect of polar-
ization, and the results obtained show the expected peask in
the forward direction. Doubts remain, however, as to the
consistency of the approximation. TFirstly, it is difficuli

to choose = value for k2 that is justified on physical
grounds. Woollings and McDowell (1972) indicate that the

best agrecement with experiment is obtained with the choice of
Holt et al (1971) where k° is taken to be the energy of the
lowest lying state not explicitly represented in the j svoma-
tion in (L1.58). Secondly, while the second Born amplitude
includes all terms to gecond order in fhe petential , Kingston
et al (1960) show that the corresponding differential cross-
section excludes some fourth order terms, Thirdly, Byron and
Joachain (197%) show that for k. sufficiently large and denot-
ing the momentum transfer by g

I ale) . 180y
G N e v

L
for elastic scattiering, while {there is a further contribution
g RT -
of order kz from the term fBzo Thus the second Born approxi-
7

-2
mation neglects some terms of order X~ from hoth the scattering
2 O

amplitude and the cross-—section. TFinally both first and
gecond Born approxvimations neglect exchange and will therefore

certainliy be in error for energies lesz than 100 eV,
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1.5 The Glauber Approximation

When the projectile~target interaction vanishes for Z
larger ithan some finite value the exponent in (1.%2) will
always be small for sufficiently high energies., It is

agsumed therefore that

Q b I - -
5'1(:"("’1\) thz__\’.\i(sz\c;‘(b?’c) ~ (1.60)

This has the exact solution

%
, ( ) ! . 3
Calk,?) = ‘\dg B (t)exp T \!'UZJ-')*:\M’-'J%"-}‘L(‘Z) (1.61)
- o0
which may be verified by substituting into (1,60) and perform-

ing closure of the j states,
The Glauber spproximation (Glauber 1959) to the scattering

amplitude is then, from (1.39),

. ta. b f ‘;x(.\-,- ) °\
3 - \ . 9v - ® =1= ] ( ",
f @ -Bidbds e Tl g (62
where the Glauber phase X (b,r) is
e
' \ \
X(v,c)= - E V{b 2" v)dt (1.63)
L
- B

Frenco (1668) puts r = s + £ Ej, where s is the projection

of r onto the plane containing b, and finds this phase to be

2, Ah-s)

X(\Zs‘:\ * % Un (1.64)

There are several undesirable features inherent in the
Glauber spproximation including the logarithmic divergence of
the elasgtic cross-sectiow in the forward direction, the selec=

tion rule’ Ao for s—p transitions, and the prediction of



identical resultes for electron énd positron scattering. The
latter two deficiencies have been removed in a modification
proposed by Byron (1971), but this results in a considerably
more complex approximation.

The Glauber approximation shares with the first Born
approximation the distinction of yielding differential and
integrated cross-sections in closed, though complicéted,
eznalytic forms (Thomas and Gerjuoy 1971) for electron-hydrogen
¢ollisions. This no doubt accounts for the surprising amount
of attention that it has received, even though there seems to
be little possibility of it providing .definitive cross-~sections
at the intermediate energies, The applications can be traced
from the recent work of Franco (1973); in each case the
effect of exchange has been neglected, very little work having
been done on the evalvation of the Glauher exchange amplitude
(Tenney and Yates 1972, Byronm and Joachain 1972).

The expansion of the exponential in (1.,62) allows the

Glauber amplitude to be expressed as a power series in the

interaction
G - =
o' A ¥
T‘QH Z" G (1.65)
where
E, - -Lh‘ ‘{,“ d\\) 6\ ‘%'\"’ B -
Go m oo Y ¢4; (,E)X(E,t\ d;(:) _ (1,66)

Expansion (1.65) is the Glauber eikonal series and PTo~

vided that the 72 axi ctor of ths
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scattering angle, the first {term equals the first Born apprux-
imetion EBl (Glauber 1959, Byron et al 1973),

The rate of convergence of (1.65) has been investigated
by Yates (1974) who finds it to be rapid for electron-hydrogen
scattering at energies where the Glauber approximation itself
ie valid. This provides an alternative means for calculating
the Glauber amplitude and is especially useful for collisionsz

with complex atoms.

1,6 The Eikonal-Born Series

For sufficiently high energy kz, each term in the Dorn

geries way be written for nx2 as

E’En Y L“-‘ "‘t\(%‘ & L“ (i._g-i) (1"67\]

U R"
and for scattering by Yukawa potentials Byron et al (1973)

provide convinecing evidence that the correspending term in

the Glauber eikcenal sexries 1s

F,o= AL (1.68)

Ga Yt
R .
where An(q) is identical withthat of (1.67) for sl) momentum
transfers q.

For electron-atom collisions, the long range forces
present make the above relationships invalid for n=2 at small
momentum transfers (Byron and Joachain 1973, 1974). However,
it has been conjectured by Byron and Joachain (1973) that
(1.67) and (1.68) are true for ny% at all momentum transfers,
although this is net possible to demonstrate by direct com-

-

putation. On the basis of this hvpo cgis, Byron and Joachain
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(1973) suggest that the tern fG% (=ReEB3) be added to the
second Born amplitude so that 21l terms in the Born series
for the scattering amplitude are included to order k—z, The

resulting Eikonal-Born series (EBS) approximation is then

@f?s(e\ = g: ‘-t- Re € +£- . b lef%l (1.69)

By combining this with the approximation of Ochkur (1964)
for the exchange amplitude, the effect of exchange is also
included to order k™2,

The application of the EBS method to elastic electron-
hydrogen and helium scattering has been made by Byron snd
Joachain (1973, 197%a, 1974) and gives agreement with differ-
ential cross-section measurements betiter than that of previous
models, MHowever, despite the success of this method, some
reservations must be expressed. Firstly, as it is the dif-
ferential cross-section that is compared with experiment, it
would be more proper to demand conasistency in this guentity,

1

to a given 6rder in k~—, rather than inthe scattering ampli-

Ly
e

tude. The EBS method in fact, while working to order k in

fif(e), only includes two of six possible terms of order k_4
in the cross-section. From Table I of Byron anddJoachain

(1973) we can estimate that at 300 eV and 30° the inclusion

of one of these neglected terms, Im-i:B2 Im§G4, would lower their

cross--section by 6%. There is always the possibility of can-

cellation between the excluded terms however, and further

investigation into this is requirédb “econdly the Ochkur

approximation is a high energy approximation to the Born-

Oppenheiner exchange amplitude snd we must guestion its use,
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as well as the adoption of the asymptotic expression (1.67),
for energies as low as 50 eV, Finally, it is difficult to se

how the method could be systematically improved to give con-

~sistency to higher orders in k—l, in order to extend its

application throughout the intermediate energy range.,

1.7 The Distorted Wiave Born Approximation

We consider now an exact expre531on for the scatterlng
amplitude, known as the two potentiai Iormula (Rodberg and
Thaler 1967 p321). This relatipnship_may be approximated in
a variety of ways, the most widely used form being knowﬁ as
the distofted ﬁave Born approximation (DWBA). We derive this
here for the case of electron-hydrogen scattering, and include
the possibility of exchange by using the correctly symmetrized

wave function for theé total system, namely

'Y s(rir) = 'i’( Lt ,‘)+(-t\ Y (.0 (1.70)

where I and I denote the space co-ordinates of the 1n1t1a11y
bound and incoming electron respectlvely.

Let H0 be the unperturbed Hamiitonian.with eigenstates
@(;1,52) and eigenvalue equal to the total energy i, then wé

have ' _
{HQ-E]Q(:“:J = O (1.71)'-

and

{Hq*V'E]i’s(tn‘:J =0 (1.72)



where V is the projectile target interaction,

We next define the distorted wave X(;l,gz) by

LMo V- e]X (et = 0 (1.75)

for some as yet unspecified potential Vl.

We further introduce the function &(x,,r,) defined by
. S
Llonr) = Bl ) # Bl e ) e YT (0t (1a70)

which consequently is asymptotic to a superposition of products
of outgoing waves and bound state wavefunctions,

Nor re-writing (1.72) as
H 3 .. { Tn -
_ {H»"‘-'E]Ys(t.u:z)‘:— - (V- T ey, {1.75)
we substitute (1.74) in the above and invoke (1.71) to give
- C . - i A S )
\_Ho*\"\ b]g(su‘:?.\ - (V"\'I)'\:LS\(.:\:S:I\,\!“V‘(E "'I\E‘-,r_:-‘> +

ORI A dCAEN (1.76)

Finally, we recall equation {1.73) and solve (1.76) vy

the technique described by lott and Massey (1965 p75). From

" the boundary condition for E@hﬁ&? we then deduce the two

potential formula for the scattering amplitude,

\ Pk U
Q‘w(e\ = -.{.“ d\"-:xd‘tl}'\; (.‘-'n‘.'.\)&\" - \I:\ﬂfs(‘:n‘:g =

\ o P
- ?’:“tf“*‘ Xe (ot IV @ (5,00 et
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This formula may be simplified by the judicious choice of Vls

opecifically, if we put

Xe(ro,0) = @, (5%, (5) (1.78)

and
ke
Ll - -" -1 -

é (-n- } - ¢{,(,‘.\\,"& : (1.79)
then from (1,77) we seec imnediately that choosing V1 Yo depend
only on the co-ordinates Lo of the incoming electron causes
the second integral in (1.77) to vanish for inelastic scatter-
ing, due to the orthogonality of ths bound ct te wavefunctions
¢f(£1) and ¢i(£1)° A suitable choice for v, is the static
interaction potential between. the projectile and atom in the

final state, fo(£2)9 and the two potential formula then

becones
g \ 5
'g'.g(e\) = _{ﬁ i Sy x (-n 1;‘_\,‘ \!“ (l‘ \}l vyt

(1..80)
4 (-\) ﬁf (t,,t )1
where it is stressed that the above is still exact.
Ve note that in the above derivation the imposition of
" incoming rather than outgoing wave boundary conditions on

Ws(E]sig) leads to the alternative two~potential formula:-

\c;&(@,; = -,ll“ de, de *1 (_‘,r‘)[\; V]X (r,r) -

| de de, 3,'9 (r” DV, X (.- \ (1.81)
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which may be simplified in identical manner when Vl is chosen
this time to be the static potential in the initial state, Vii’

giving

h@= g At‘dflhi (‘3-"2:)?‘:‘33“?; (cz,ﬂr lv-

in
% .
-Vu(tll X (£o,ts)

The generalization to the case where Vl is

(1.82)

)
o
Q
w
)
o}

as a complex

potential is given by Rodberg and Thaler (1967 p326

S~

The DWBA now consists simply of approximating9’+j(£ﬁ,£?)
- v + : : - :
in (1.80) by X (z15x5), or alternatively using Xp (xy52p) in

placg of ?'f(gl,zz) in (1.82) to give, after zome rearrangement,

DWER v , *, « . S

S;".e (9) = "ﬁ}\\ﬁds‘&‘;z e (tnm) Y R (ent) = (-0
\ %~ 8 . .
i‘.'“&d‘.":-.&!zxx (‘:ntb[mv‘})(é(gz,g‘) (1.83)

where a) Vy is V..(x,) in which case V is the post interaction
or b) v, is Vii(ET) in which case V is the prior interaciion.
The forms a) and b) are derived from (1.80) and (1.82) respect~

ively. The first term in (1.83) is the direct scatteriug

+ amplitude, while the second is the exchange amplitude.

The evaluation of (1.8%) requirves us to generate the
function ;&532), where o is either i or ¥, Substituting (1.78)

into (1.73) we deduce that it satisfies the equation

[v",%_ kz‘) xoﬁ(tt‘) = 2% eao&(fzyxo&(tl) (1.84)

Thig should, in principle, be solved with either oubgoing or

incowing wave boundary conditions. However, we note that in



5
N
-2

!

(1.83) the complex conjugate of X f(rz) is reguired, and from

the general relationship (Bransden 1970 p35)

[t o) = (0 (1.85)

we conclude that (1.84) is solved with outgoing wave boundary
conditions for o equal to both i and f.

The DWBA with its assumption that distortion in either
the initial or final states is predominsntly due to the static
interaction, is expected 1o give good results for transitions
between weakly coupled states. Ixcellent agreement with
experiment has indeed been obtained by Madison and Shelton
(1973) for excitation to the 21P level of heliuv

anally, ve note that an exprcuijn similar to (1.83)has
been obtained by Mott and Hassey (1965 0420) from the truncated
eigenfunction expansion, which they call the distorted wave
approximation. This differs from the DWBA expression for the
scattering amplitude by having Vl ecugl to kiz e 2£f, vhere

e, is the energy of the bound state 9,(zr).
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Chapter 2 Fresent Model of FElagstic Scattering

2.). Lpplicability

In this chapter we propose to expand +the equations of
the second-order potential method (1,12 and ;,13) in partial
wave series, This avoids the uncertainty concerning the val-
idity of the impact parameter approximation used in its
previous applications, and also permits the effect of exchange
tc be included. In principle, the number of terms explicitly
represented in the method can then be varied to give & gencral
description of both elastic and inelastic sc&%ﬁuring of cherged
particles by any light atom, at energies above the first ion-
ization threshold. The resulting model however is very com-
plicated and it is wore expedient to consider first of all the
simplest approximation of truncating (1.12) at M=l. This is
called the one channel approximation and gives 2 description
of elastic scattering only. It elso restricts spplications to
scattering from atoms of low polarizability; hydregen and the
lighter inert gases for instance. Tor e¢lectrom-alkali scatber-
ing,FQB% of the high polarizability comes frdm the first
excited‘p state (Bransden 1970 p227), and in this case at
" least a two-channel approximation is required.

Applicetion of our model will be made therefore to electron
scattering from hydrogen, for which the bound-state wavefunctions
are kmown exactly, and from helium, this being the simplest of
the inexrt gases. There are considerable probvlems in carrying
out secattering experiments with atomic hydrogen, which is

reficcied in the scarcity of the data. “The success of the

-1

sent model wil

-

hye therefore be judged for the most part by
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compsrison with the large numbexr of electren-helium measure-
ments that have been nade. The snalysis required will be
illustrated as usuval for the case oi electron-hydrogen col-

lisions,

2.2 Many Chennel Partial Wave Formulation

The partisl wave formulation of the second order potlential
method is most easily derived from the close~-coupling equations
(1.21). Choosing a value forv, N say, such that states having

w N are coupled only to those with VKN we have

if\\::(b) = 2}:_ \'\/\/\/m,,(r) FL\,-(q v § N (2.1)
and
L) = 22 VW, (D FL () veN (2.2)
viz , )

where the sbbreviation

VW, () = Vo) = Wy () (2.5)
nas been introduced, and all other qgquantities are defined by
equations (1.22) to (1.28),

Proceeding as in the develcpment of (1..9) we introduce
. the free particle radial Green's function gz(k2n;r,r’) satis=-
fying outgoing wave boundary conditions, which is the solutiom

of
d. 9, (REyr ) = S(e-r') o (2.4)

and is given explicitly by (Bransden 1970 pl4)

T v\ (|)[

G, (oo ) = ik et e e YW (R (2.5)



where r, = min(r,r'), », = max(r,r') and j,(x) and h(l’(x)
are the spherical Bess el functions of the first and third
kind defined by Abramowitz and Stegun (1965 pa37). The

solution of (2,2) is now expressed as

°0 N

F;-()'?.&de(kn)rr)LV\/\] (r)\: (+) o)
° o v >N
which on substitution into (2.1) gives for v<¥
| N
= L .
J;,“ F:(‘.) = 1\,Z?|VWVvI(“\Fv‘(.“) +
o0 l L‘ Ee' ‘
4 WZ}_—_ g L e W (VL () ;-_v‘,\‘_.,) (2.7)
SR VAP ST L

In obtaining (2.7) all exchange terms that are to second order

in the potential, such as vv'(r) v'v*'(r ) and W) (r) x
b
Uy

ViV
physically to exchange polarization effects which are generally

1 (r'), have been neglected. These terme corre5pond

considered to be smail (Caliaway et al 1868), particularly at
the energies considered here.

ixamining the ranges of the subscripts v,v' and V' in
(2.7), it is seen that v and v'' are never equal to v', and

the Kronecker deltass in the definition (1.23) of V (1) and

V%,V;.(r') are therefore always zero. This a]lows us 1o
replsce the rroduct of poteuntials in (2.7) by V ,(r) Vo  (x
where
N (h\.{.-’k, G E £ (9‘.&&. \L)G (e, 008, ) =
e vv“ ! (2.8)

% \ﬁ'\(-pﬁneph\z:\ \") t}\' (P“‘,.: Pr\-\n"ﬂ \‘-‘)

')
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Furthermore, replacing kn' in the Green's function by an

average snergy k- allows the closure of the P ,2,\Y) states
1
in (2.8) 1o be invoked, provided thuv the v' summation in

(2.7) is extended over all va‘ues. Specifically, we have

3
L... ni‘.‘(”?n‘? y Y“ Y‘{(.t') Fr\‘li“ (r‘)
r\
e
pid 7 C‘;(“-'-"“)

VMY
e |
e,

(2.9)

whiﬂb allows us to write

z\ﬂ;(?r\l. el \ )\’jx("-'l‘ “‘"L"‘) |

wioy
-y 3 P A
U

where we have introduced the definition

N
-
(@)
g

(4]

' [ LM
1—\5‘ (P\%\.(‘r\ "| (\l‘_) “)U, A (r 13 T RN I((- )\:\) d\)g; (2011)
\50 Mo )‘“('r k) N\ﬁ‘a){b‘ 'H(r‘)k)

Finally then, the closure approximation together with the

redec ement given by (2.8) simplify (2,7) to the form:-

80 = 2 ) v W @Y T R

vtz ":';\‘Q,

'y 2
9 (2,12)
* N " B . . ;“’
<Enu) erg (®r, DI \.ﬁ..(‘-..\{,,‘ ()
. 2
for vsk, where
nal \
; -
‘l‘"\“& ua:n (‘_i‘d) - AN (()'\Q AM Y ““ + ) -
o (2.13)
- ‘:l" :l{‘ij'n”’ § h.\ \J\ \‘ €':'3[,'-\ i,“\" “ "':j}



and all other quantities are defined ineither this section,
or in Section 1,2.

It is emphesized that (2.12) is equivalent to the second
order potential equations in configuvration space (1.12),
except that the present method also includes'all first order
exchange terms in the chaunels v <N, In both formulations the
introduction of the closure approximation necessitates a

. —2
choice for the average energy k™.

2.3 The One Channel Approximation

Iquation (2.12) samplifies considerably for the approxi-
mation of retaining one channel explicitly, s¢ that N=1. fThe

sets of guantum numbers v and v'' become (1022) and(lOzzi')

T

=

espectively and (2.12) becomes

\. [ L . -
L P () = 1\’w\ot1\o&; Q Froa QRS z-m-j‘"*(”lt' L)
2y WXL,
xl; prpl wcN Z’r‘ I“z. AR 3 ( N\ r“ { (2.;14)
N (u‘lg"l 09‘2. \L) grk\:‘ .)rlt") _\‘io\o \r'r / "\02.1" k?)
: “o ?
with
o

Hmw (‘. ".l> = ?'-"}\)\‘ (9‘:\‘-‘..).. \:’}X(P\: \r\l%,\‘(("‘ 1\-‘-") %
* S, 0

‘In Appendix A it is shown that the angular coefficient

(2.15)

ijo Yelo

fx(ozg'ﬁl'ﬁg' L) is given by

\ 1 \El‘-(“ ’-Q |"‘" -‘:; r ~ Q. Q| L
e N ER F T

<2 baad s s

1
AT Mt \ o o o

b

(2.16)

where the notation for the ¥Wigner 3-3 symbol is that of

semsiah (LG64).  The expresgion for the coefficient f\(£1|22|
”n 0o

o' L) feliows immediately frow (2.16) together with the
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relation (Percival and Seaton 1957)

UHE RN ERNUSN R R (

e

The appearance of the Krenecker delta 622L in (2,16) is
to be eﬁpected, since it expresses the fact that for collisions
with the s state (21=O) of an atom, the total angular momentun
L equals that of the incident particle, Lo
. The coefficients gk(022022'|L) and fA(OQZOQQ‘IL) which
are-implioit.in the term \/M\mzlm’ are casily Tound from

(1.28) and (2.16) %o be equal to & 5“ S
L

“In a gimplified notation thereiore, in wrich £ denotes
the incident angular momentum :zud thesuperscript S distinguishes

between singlet and triplet solutions, equations (2.,14) and

(2.15) hecome

_r.s*_‘lm:-_ﬂ_ﬁﬁ];':(N) = V() EL () #
_0\\‘ et )
% < (2.18)
'LX Y_K:’(r'b‘)-\- \\Q(\-'r')} Fi(r') o
where |
N N (fo° \r)
V() = =2 % Yo lFobo (2.19)

end the evchango and second order potentia 1 kernels equal

KE () = CY b ()0 () \',‘_‘L"__(f_'_) v (6,- %8, ]

241 ax® (0 J (2.20)

[+

oy - u v . (
WO NGz R ) @) RN (R x 2
’ ’ AT O
(74}
RN \ 1 N o ,
) Z""'lﬂ“ (\0 ¢ "") { ;3_“" \?“ ‘P!\ ) - Qnakjo[\?m )b ( \"‘)I
N ¢ L%
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Eo is the ground state of the =ztom and as usual ko“ = 2(E-€J
For each value of A, the number cf terms in the n

summation is finite, since the 3~ symbol vanishes unless

ny % and A are such that n+2+) is even and [A-&|<ns<i+2,

The boundary condition for (2.18) is, from (1.29)

(hor-CT)
S : Awy S ot “
Fo(r) 7 sinlke-tL) + 7, (2,22)

and con obtaining the partial wave amplitude Tzﬁ the scatter-
ing amplitude fS(O) is calculated from (1.30), Finally on
summing over the final and averaging cver the initial spin
statés we obtain the differeuntial cross-section for elastic
electron-hydrogen scattering:-

doe = Loyt e 2 g o)
e < L1l 2 1ol g

hW)
s
3]
\\I‘
~

Comparing (2.18) with the work of Jonhn (L960) shows our
one channel model to be the static exchange approximation
with the addition of a non-local potentizl to account for
the‘distortion of the atom and the loss of flux into the |
inelastic channels.

The many channel partial wave ecguatioans for electron-
helium scattering are derived through a development identical
to that of Section 2,2, but beginning with the close-~coupling

equations of Burke et al (1969) rather than those of (1.21).

s

pecialising to tne one channel case then gives, 2s before,

O]

the static exchsnge approximation with a wnon-local potential,

However, Burke ot al (1959) make the assumption that the

reducticn of the exchange kernel which is carried out when



the bound state helium functions are exsct, is still valid
when spproximate wave functions are used. This introduces
an error which they suggest may be quite large for the
S-wave phsse shifts. An alternative procedure (Drukarev
1965 pl27) is to anticipate that approximate helium wave

functions must be used,; sand to reduce the exchange kernel

form resulting from this latter method, rather than that

|
\ in a manner consistent with this. We choose to use the
’ of Burke et al (lyed),

Defining the helium radizl wave functions by

- . ¢l(t‘>t1\1 = P‘QU.‘\" \(ou(,‘?_.\ ‘?_‘.ﬁ_g_l:\ \{oo(ez) (2-24)

~ "l

the one-channel equations for electron-helium scattering are

therefore

o0
1 ! \ Yy .
FRASIG) ICEENETACE 13 (K () 4
A ) . ° (2,25)
| \
EACRIACTEY
where the static petential -and exchange kernel are now
(Drukarev 1965)
1 .
V() 2t v 2y (R (2.26)
and
L RN . , :
Kelo oY= - o (N8l min L) g (v 1) & (2.27)
(A1) oy (e r)
with
. N b ~ﬂ§_\ Y= Vyfeye L L& E
¢ _ = ¥ - Vv UKy * s SRS + +
m'(.‘.:r\) ] \G( )% 2 {) ( ) ' ! 1(;\-\'2

B S 1 _ o6
0. '\'x\,‘; '_’L. ' + % e, (\) Q‘ﬁ‘ ("m(r) ¥ P\ﬁ\ c:\: o (_v'} (2.28)
3 T2 ant’
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The second order potential hp(rsr’l is equal to A times

7

that defined by (2,21). where the function F,,(r) is now of
course given ty (2,24).

The reduction of the conufiguration space exchange kernel
of Drukarev (1965) to the partiel wave form of {2.27) is out-
lined in Appendix B, and the explicit expression for ql(r,r')

is given for the case of PlO(r) having the particular form

Hr (e~ ce"br)e Veiuves for the varameters N, a

b
~

have been given by Byron and Joachain (1966) and this approxi-~
mation to the helium ground stzate wave function will he used
in tpe application ﬁf cur ons chantel wodel.

The partial wave amplitude Tg and scattering awplitude
£( ) are obtained from the condition (2.22) and definition
(1.30), the superscript S now beingz umnecessary as there is
only one final totel spin state. The dififerenticl cross-—
secticn for elastic electrcnfhelium scattering is then

dv - \ &)\ (2,29)
Aadl

The evalvation of the in{egrals yO(Plozlr) and ZQQ(P102|rr‘)
is required in the present approximation in order that Hl(r,r')
may he calculated, While the former integral is easily expres-
sible in analytic form, the latter recuires closer examination.

. : 2 )
In general; (P]OLlrr') will be a linear combination of

2
“L8

integrals of the form Mg(alrr')F where

[
Iy
_ TR S PR T LA
My (eire) = ) ot L 22) s L) dac (2.70)
A RAvgp g ,ll., ’
o ‘ max (F,% ) maex (v ,a}
Intreducing the nctation r =win{r,r’) and x =max{r,r') (2,30)

. <y e o = o 1 ol S L S . -
e expressed as the sum of thrse integralsi-
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e -ty 28
- (_P<\">) L b (}\-J‘C (2531\}

vy -

Aglee) & 8y (wlir) + Co (xlret) (2.32)

Recurrence relations for & , By and C are obtained
following integration by parts, and these are given in
tppendix C together with their initial values. The expres-
sions for yO(P102|r) are presented in Appendix D,

Due to the complicated form of the seccond order povential,
it will be useful to derive an asymptotic expression for
hz(r,r') as r, becomes large. Examiration of the defining
equations for z (Plozlrr').and yO(Plozlr) (PLU'Ir') shows
that for large r, these terms become equal. Furthermore, it
is seen from Appendix C that , (aJr3') venishes ~xponentislly
for large »,, while An(alrr' and Bn(a[rr') behave as ;>*1”n“

We have therefore that

L ~ — 22\
'i\l\ (.PIQ \‘\P\ . —.)00 \‘“*i - (”-‘367’)

where Sn(r<) iz some function of ¥, that may be found from
the recurrence relations for An and Bn’ and the particular
o o w 2 ) , .
relationshin between Znn(flo |rr') and M_(o|rt). Referring
1171 R (1l

to equatien (2.21), the leading term in the asymptotic expan~

—

Y

sion of h,(rﬁl-, is thuz of order »_ 7, and arises from ths

=1 contribution:-



Y

h (“ v —-th >— (7A+‘)5A(Erk)kf\(ﬁp>)% (\-\6\7
A28y - 3 Dou;
x S,(r) + 0O (r;u‘“)

M2 ' (2.34)

Introducing explicit expressions for the 3-j symbols

_ 2
(1 2] 9,) from Messiah (1964), (2.34) becomes
0 0 O

for =0

\r\ (‘“ “)'\” - L b'r; S;(’c) :)‘[\':F;)‘i"\(‘\(.;i‘\_ (2.35)

<D
I‘ Q) ?)Q"

and for '2740

-2 ket S (v ) - (Y, -

h (b ' ) :\:; Z(tzh\ ".\(7;) [QM«\U‘Q\' \"‘1-& (k "'>) ¥
. ‘"\

+ (Q.-“\)\) (Rr‘)\htﬂ :’ j

N
N
)
‘\-'.i
N
~—

To illustrate the calculation of $,(r.) we comsider electron-

hydrogen scattering where, since Py,(x) = 2re™F

2, (02 e") = WM (2ler) (2,%7)
while from Appendix C
3 3¢ ¢ 7 )
M, (2\er) ~5 % (rex2ez v 3 (2.38)
and therefore from (203;) we have
St = 2 - 3e S (revaa ety @9
VT ~



2.4 The Average Energy

The introduction of an aversge energy is an esscential
feature of the second order potential approximetion. Although
a value could be assigned to E2 on a purely phenomenclogical
basis, the predictive nature of our mcdel is ensured by
requiring that %° be chosen on theoretical grounds.

I'or an electron incident on the ground state ol an atom,
the force of longest range is that resulting from #he polarizs-
tion of the atom by the charged perticle. Castillejo et al
(1960) show that for large distances » from the atom; the

glectron then moves in a potential

& -t
U (r) = - ;.; 2o (2.40)

where oy is the dipole polarizability of the atom. Oince this
is also the potential resulting from the distertion of an atom
by a static charge it is inferred that the adisbatic epproximo-~
tion, in which the projectile's velocity is neglected, is
valid at sufficientliy large distances from the :tom.

Our choice for EZ will therefore be such that for large
r equation (2.18) becones

¢ +\l‘:“q_(_§_:_‘) F:(»)’:; 2V (r)Fy(r)+ u?(b\vz(.)

At (2.,41)

Since the exchange kernel vanishes exyponentially at large

distances, this is equivaleunt tc the requirement that
XN
L\ R (e Y ES ) Wo (#) B () (2.42)
i A7) e Q(\")Q\b ~_.” ?(r (r- coly

(SIS W)
0



where hﬁ (r,r') is the second order potential iun the adiabatic
approximation.

Now Bransden and Coleman (1972) give the free particie
Green's function in the adiabatic approximation as

AD . o N\ S(ﬁ‘f)
G (hﬂ>t,t) - 57;:353 (2.47%)

Also the partial wave expansion of G(ki;g,;') is

1 UR:“I- ')
G(riye ) = Z(zu It 50 P (wy0) (2.44)
Ll"\ ~
vhich may be verified by substituting (2.44) intce (1.10) to
give (2.4).
Consequently substituting (2.44) into (2.4%) and invert-
ing the result allows us to deduce that

RG 0y - (-t (2.45)
%‘1 (kn )‘\)“) ‘ 1(5 'Fn) !

where we have used

d(ws@—wse)é(sé ¢') (2.46)

S(e -ty = 5(“'

Use of the adiabatic approximation to the radial Green's
function (2.45) instead of (2,5) ard proceeding as before

with the derivation of the second order potential then gives

W0 S E e (W) -

r . ' P ' ~
% ‘i;‘:nfs(?“‘k \\-r') - \ﬁc(("‘: \h\\bn(.?\oi ‘i“ ‘) é:\'ck (204'7)

-



We next note that the orthogonality condition of the 3~j

symbols

%

S FRAYES Qlis\

pA u (‘S \ A

Z(hﬁ\.h) o, M/ Am) M} fam ‘S“"L“’\z (2.48)
Q‘_ 1 £ S ‘

allows the A summation to be carried out, and therefore suh-

stituting (2.47) into (2.42) and integrating over rl gives

the multipole expansion for Ub(r):_

L ’

1 o<« v,
Ue(r) ~~ ET—'E)Z—O{E\[“M(PW\“")’ Yo (1000 (2.49)

From the discussion at the end of the previous section

we see that the monopole term in the shove expansion vanishes,

and the leading contribution to the polarization potential

comes from the dipole term (n=1), in sccord with the result
of Castillejo et al (1960), .In fact from (2,%3) and (2.39)
we find that for electron~hydrogen scattering
. 3 .
.tk\(?\o \“‘) :\_;; o : (2.5C)
and in this cese it is concluded- therefore that the average

energy E2 must be chosen so that

2 N 9
_—" = - |- = 7 (2051)
€,-¢ Z :

where it is recalled that k02 + 2e0 = EZ + PE.

The calculstion for electron-helium scattering proceeds
in exactly the same way and it is found that € - ey = L13,

where we note however thet this value now depends on the cholce

p]

of wave funetion. Yo summarize therefore, the average energy



is for hydérogen

- % .
ko= RS 3 (2.52)
and for helium
-1 2 - ,
h™ =k, - 226 (2.53)

2 . . . . co
where ko is the energy in Rydbergs of the electron incident

uﬁon the ground state.

2.5 The Sasskawa~-Austern Iteration

The present cne channel model for elastic sc

o
ct
ot
o]
]
W
&

reouires the solution of a single second--order integro-
différential equation. The close coupled equations of Burke
and Schey (1962) despite containing integral terms can be
reduced to a set of coupled diffefential equations. This is
not possible in our cése, however, due to the presence of
the non~local potential., It is proposed thervefore to adapi
en iterative scheme introduced by Sasakewa (1963) and sub-
sequently médified for applications in nuclear physics by
Austern (1969) and Soper (1972).

The equation to be solved, (2,18), is written compactly

(2.54)

a . , LI . .

where U is an integral operator, and &0 is defined by (1.22).
From (2.4) the solutioun of (2.54) satisfying outgoing wave
boundary conditions is easily found to be

ol

. - . . - . “ Prasd . . - ‘oo
I (3]
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-where we hzve written

Selkar) = Rovj, (her) ™57 s{n(k‘;-eg) (2.56)

this being the solution ofgfon(r) = Q0 that is regular at the

origin. - The function e9+(x) is also introduced, given by

M

+ . ) ;(hor‘-(’!l') )
ee(n)f=cackz bf):::: 2 : (2.57)

50 that the radial Green's function (2.5) may be re-wiitten

“.

P

\J1
(0]
SN

o \ &
L. WY - - R X
%{(ko )h;" ) - b\nsq{har<)eg(l‘o(‘>)
Now substituting (2,58) into (2.55), and defining the ceaf-

ficient T2 by

0

\ A .
Tt_ - Eo Se_(.ko") W ‘:Q(‘“\J as (?‘L”

O

)

o
together with the integral operator P by

"N

P “TQ ("\ =

= |-

[SY) ) .
: A - \"
, {Qg("\,"\SQ_U’\gr')“ Se(kur)?,: (_ilo\'v)kut%z("‘ )b\/\"\ (2°6()‘)
e : .

allows equation (2,55) to be expressed as
+ N
Folr) = Selkgr) + To & (he) + P Fp(n (2.61)

In the limit as r>wP Fz(r) obvicusly vanishes, and on
recalling the asymptotic forms (2,56) and (2,57) comparison
cf (2.61) with (1.29) shows that T, in fact is the partial
wave amplitude.

An iterative sclution of (2.61) has been proposed by

{5 ] PR S - { YVt
Sasekawa (1963) and has been re-expressed by Austern (1969)



in a form mwore suitable for numerical applications. Jn this

method a zero-order trial solution is chosen as

[ ] (0)
FO ) = selkee) + T w,” ()

——~
Ny
]
()]
N

)

where T, (o) is as yet undetermined, and wzko)(r) is a function

selected so that wg(o’(r)"nlcf

=7 ¢, (k,v). Solving the above

equation simultaneously with (2.59) gives for r (o)

o
LY
o = Selke) Bsy ey e
T( - - r o
R, * ) Se (ke U W, () o (2.63)
]

A solution P(l)(l) may now be found satisfying the inhomo-

genous differential equation

) r.(u)
d F (+) = () (2.64)
which is however not a suitable first order solution since
it is asymptotic to ths same function as the zero order solu-

. 1)
(0) + (k r). A new function wz(*’(r)

tion, namely sﬁ(kor) 4-T
is therefore calculated such that

= ey (Y,
FQ (P\ = SQ(hors + ‘Q WQ (P) (2065)

and the first order solution taken to bhe

- () ' () (\‘)
Eo (M) = sp(Rer)+ Ty () (2.66)
vihere Tp(l).is given by the right hond side of (2.63), but
Y, . (o) : .
with nx‘*’(r, in place o mq\ (r), This process is continued
A



\ ' i

) L (n) . th . .
until the veluve of Tp° / from the n iterate agrees with
p (0=L1) i ot ified toleranc

i\ to within 2 specified tolerance,

In actual computation by this method (2.64) will be
solved numerically, and the requirement that the solution
Fén)(r) must give the same value for thepartizl wave ampli-
tude Tén'l) as Fén"l)(r) provides an extremely useful check
on the numerical accuracy, for each iterate,

Austern (1969) formulated the Sasakawa method in terms
of stsnding wave boundary conditions, and chose the trial

function wy(o) to be

o

W, \v) - C((hov) Fee r>v,
= N(SQ(‘KQ!‘-} For g , (2,67)

where N | = cz(koro)/sk(koro) and c,(x) is related to the
spherical Bessel function of the second kind yn(x) according

10

co

CQ(*.»L\ < - 3“'31(“) ~ (.»S(:L-_(.f_{) (2.68)

xk <) O
This choice is well suited to applications in nuclear physics
where in the sufface - model it is assumed that the incoming
particle interacts with the nuclear surface only; +the para-

me ter rs is then taken to be the radius of this surface,

There can be little justification however for adopting this for

atomic collisions, particularly as it imdoses 2 discontinuity

(o)

in the derivativeg of W (r) which is undesirable for numer-

icsl work. We ¢l

A ~
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s ) 2840
W =[\ ~exp (-5 ]Ca(‘%” * e S(Rer) (2.69)
2.60

which has the correct behaviour both at large r and near the

origin where it is proportional to r2+1.

2.6 Higher Fartial Wave Corrections

In the psrtial wave formulation it is in principle
néceséary to solve the radial equations (2,18) for all values
of z,such that the resulting TQ gives a non-negligible con-
tribution to the scattering amplitude. At the intermediate
energies considered in this work a large number of partial
waves are expected to cohtribute, which would require a pro-
hibitively large amount of computer time. In any case the
use of the present one channel approximation.for higher partial
waves would be unnecessarily wasteful as one would expect a
semi-classical approach to be valid for the angular momentum
states of large 2.

Now from (1.44) the elastic scattering amplitude fIP(e)
in the impact parameter approximatién to thé second order

potential method is

w0 .
4 .
¥ (9) - - Lk‘ X [Qi(b)-"w)" ‘]Uo(lhib&.’\%) bd\: (2.70)
° - .
and using the expansion (Newton 1966 p586)

kT, (2xbsin?) :-lzcum 3,0 (2k0) Py Les0) 2.71)

in (2.70) we find the partial wave amplitude to be
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7]
e .
T, = -k, K_Qi(bfm)" l}J'u“ (kb)) ab
. (2.72)

where as usual

53”(\3) = \E Z(uu)'\':r Pe(ws®) - (2.73)

t tz=a

The transition amplitudes af(bg+<® are tabulated for
electron-hydrogen and helium scattering in unpublished sup-
plements to the work of Bransden et al (1972) and Berrington
et al (1973). It is proposed therefore to solve hoth the

radial equations (2.18) and the integral (2.72) for only

/

] N P
those 2 up to a value, L say, where T, and Tﬁl become equals
The contribution to the scattering amplitude of all partial

waves with 2>L is then found immediately from
| 0 | '
R 1 b .t(’ . -
400y = §7(0) - 1 T Pt (2.74)
S
Lo

with fIP(e) computed from (2.70),


http://Bra.ns~cl.en

iy

Chepter 3 Application to the elastic scattering of electrons

from hydrogen and helium atoms

3.1l Numerical HMethods

The second order potential Hb(r,r') was evaluated from
(2,21),.and it was found that no more than thirty terms were
required in the summation over A, The generation of the
integrals AQ, B2 and %’ reguired for zﬁg(Plozlrr') was by
the two term recurrence relations of Appendix C, those for
A, and C, being inhomogenousf} The latter can in general be
unstable, in that a mechine error in the initial walue AO or
CO i equivalent to introducing a fraction ¢f the homogenous
solution, OSubseguent amplification of this error during
recursion may then result in a considerable loss of signifi-
cant figures from the required solution (Gautschi 1061).

Examinaticn of the equations of Appendix C shows that
the recurrence relation for CQ is stable in the forward
direction for all £, while that for Az is stable up to a
valueﬁ.:ar<. For values of ¢ greater than this we use re-
currence in the backward direction, the initial value of AR

being chosen from the asymptotic expansion for largeg -

-0t Q47 _
Aglalred~ & v s wre v e d a0 (301)
(20+43) Pt W (ley(ates) J

The spherical Bessel functicons were also generated by a
combination of forward andéd backward recursion, ‘the criteria
for stability having heen established by Corbsto and Uretsky
)

(3.95¢

-~ i 0



Figure 1 shows a contour plot of Im [ ho(r,r')/rr')]fcr
electron-hydrogen scattering, with k = 0,1, This illustrates
well the typically rapid variation of the kernel in the region
of the origin, with comparatively smooth behavicur clsewhere.
On the bssis of this structure, it was decided that for r and
r' preater than some value Ty it would be sufficient to obtain
hy(r,r‘) by interpolation in an array set up at the beginning
of the computation, An empirical value of 1.2/1{0 was used for
L and for r and r'<ro the kernel was evaluated each time it
was required. In interpolating hy(r,r') it should be remem-
bered that the kernel has discontinuous derivatives at r=v',
and interpolation should therefore he confined to points
either in the region r<r', or in the region r>r', Finally,
it is noted that from (2,35) we expect Im[ b (r,r')7] to have
zeroes at lines of constant r and r', corresponding to the
zeroes of the function jl(Er)g for sufficiently large r_;
this is in fact clearly illustrated in figure 1.

The Sasakawa-Austern iteration described in Section 2.5
reguires the solution of the differential ecuation

Ay
3

where the function g(x) arises from the integration over the

f0)yx) + 9(x) (3.2)

second—-order potential and exchange kernels and the wavefunction
of the previous iterate. The integral with kernel hn(r,r'),
together with those required for the calculation oi‘ik(n), was
evaluated by in"bglaclug over successive subintervals with the

nethod of Clenshaw and Curtis (1960). As noted by GLnuLeman




72) this can be regarded as an expansion of the integrand

.()

£ =
QRS
either in a Chebyshev series or as a Fourier cosine transform;
which is then integrated term by term,

In either case the N point quadrature formula obtained is

4t N
, = § " (e 2
-?(n\d\x 'z_“ \;I)l-r\" (3.3)

where the sum is over even values of n only, the symbol '!
means that the first and last terms should be halved, and &,

is given by ,

"
O, = 7_2_ § (s BS) cos wsn (5.4)
~N N

La1° particular method of integration was chosen because,
as shown by Smith (1965), it recuires fewer points to obtain
a specified accuracy than any other method, with the exception
of Gauss guadrature. Its adventage over the latter method 'is
that there zre reliable error estimates available for a given
number of ﬁoints, and moreover doubling the number of points
requires less effort. The implementation of the technique was
based on the work of O'Hara and Smith (1968) and Oliver (1972),
from which the error estimates were also taken,

The integral over the exchange kernel reguires the evalua-
tion of yz(Plon(n)lr), This is calculated at. the beginning
of the (n+l)th iterate for the set of values ri=ih, vhere h is
some increment and i = O, 1, 2..,, and is most economically
done using a step~by-step method. We use Simpson's rule (Davis
and kebindwitz 1967 pl9) here, and subseguently interpolate in

ag required.

T . (H,I )



In evaluating semi-infinite integrz2ls it is usual to
replace the upper limit of infinity by some large finite
value R, and then to sum the integrals over successive sub-
intervels of this range. Yor the integral with the second
order potential kernel, R was chosen as the point where the
integrand had reached its asymptotic form; +the integral
from R to « was then evaluated analytically. The integrand
of the exchange term, beirg of short range, presented no
difficulties,

The differential equation)(BoZ) was solved by the Numerov

nmethod (lielkanoff et al 1966) which replaces (3.2) by the

algoxrithm
e - S\ - -
b = Qr\i-\ qu“ =L -k L‘\ Yn i b g“" jf\-l
' L tn
odm . * (3v>5)
- h (%HH-‘ ‘03-\"'9«;‘3
\
where h = Xpl ™ ¥y = %y 7 Xgq and Yo+l denotes y(xn+1) with
a similar abbreviation for f(x ,,) and glx ). For integra-

tion out to 0.4 atomic units h was taken to be 0,02, this being
increased to 0015/1c0 for x> 0.4a .

The Sgsakawa-Austern iteration was found to converge
rapidly for all angular momenta except ¢=0, Typically for

electron~hydrogen scattering at 100 eV the criterion

- r "(1 Tt bl "I._i Sand . - > . . - .
%,( ) - Tﬁ(n 1/ I/%Jn 1) < 0,125% was satisfied on the third
iteration for 2:4 and the fourth iteration for 1g<2<3.

For the £=0 ginglet case the convergence was improved

o
41}
[N
=
R

e technigua of Burke gnd Seaton (1¢71) whereby the wave-
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*h jterate is taken as the average of F, (n)(r)

function at the n
and F, (n- 1)(r), at 100 eV however seven iterations were still
necessary to obtain convergence. For energies less than 50 eV
the triplet £=0 iteration did not converge at all, the diffi-
culty being associated with-fhe presence of-the exchange
integral., This was rectified by including only a small
fraction of the exchange kernel on the first iterate; this
fraction was then gradually increadsed on each successive
iterate until before convergence was achieved it was equal to
one.

Thé'integrals (2.70) and (2;72) were evaluated by expres—
sing them as a sum of an infinite series of aéfinite integrals
whose limits of integration are successive zeroes of the Bessel

functions J (2kb) or Jo(2kb sin.%). Each integral was then

29+1
computed by the method of Romberg (Davis and Rabinowitz 1967
plé6). As each successive term in the series of integrals
alternated in sign, it was found to be extremely useful to
employ the Euler transformétion'(Davis and Rabinowitz 1967
p99) to speed up the convergehce of the sum of these terms,
As is usﬁal in the calculation of semi~infinite integrals such
as (2,70) and (2.72), the upper infinite limit is replaced by

gome -finite R, This, of course, introduces an error which we

may however bound by using the relations
0

L
S-‘P(b)Iuﬂ(,\\’Nb N Q-(R)[IO(A&)J«?.ZS,_(,(XR)] (3.6)
R | | o=t

A

and

S (\3) J(de)db ¢ g(R)S T, (Ab)db
f ._ R (3.7)



i
I
i

which, provided that £{b) and g(b) eve positive decreasing in
the range R<bge, follow immediately from Bonﬁet's ferm of the
second lMean Value Theorem (Whittaker and Watson 1963 p66)., The
integral on the right hand side of (3.7) is computed using the
polynomial approximation of Hitchcock (Abramoﬁitz and Stegun
1965 p48l),

The solution of the radisl equation (2.18) required approx-
imately 5 minutes CPU time on en. TBM 360/67, for each partial
wave amplitude. At all energies considered it was found that
satisfactory agreement with the impact parsmeter approximation

to Ty was obtained for £>7.

3.2 Results
a) Fartial Vave Amplitudes

ipP . .
T that is required for the present
2’ 5

The calculation of

©

model provides an opportunity for determining the velidity of
the impact parameter approximation used in previous applica-
tions. Since the latter neglects exchange, the second order
potential radiasl equations (2,18) and (2.25) were first ot all
solved with the exchange kernel set egual to.zeron The dif-

. . . D . .
ference between the partial wave awplitude T so obtained, and

e

that calculated from (2.72) is then due o the semi~-classical
approximation alone,

IPIZ for

Table I compares the values of |T’:D |2 with |‘l‘2
£=0 to 7, for electron-hydrogen scattering at 54,4, 100 and
200 eV, and the same guantities are tabulated in Table II for
electron~helium collisions, It is clearly seen that for the

case -of helium the impact parzmeter approximation is very poor

at 50 eV, the S wave value ITO** being in error by 50%,



Byven at 200 eV there is g subsils

This error for £=0 decreasss to 30% at 200 eV. On the other

hand fer hydrogen at 200 eV the error in |T0D|2 is no greater
. - Nci - . 1 113 2 .
than 10%., Ior energies greater then 50 eV ITy |© is seen to
agree with the corresponding cuantity in the partial wave
treatment at 2=T7, for both hydrogen and hellume
- 4 . . 2 .
Also included in table II sare the values of |1 | for

electron~helium scattering in our one channel model with

exchange. As would be expected from its short range behaviour,
. . D2

comparison with |T2 |© shows that exchange has the greatest

effect upon the S wave values, and for 2=7 (where IP IP!‘

n D12y . . - " L
|7,719) it can be counsidered negligible. It should be noted
that even at 200 eV, where exchange has often besn considered

D,?

to be negligible in other models, |T ie incresased by 15%

by the inclusion of this effect.

b) Elastic Scattering of electrons on hydrogen

In figures 2a) to 2¢) we show the differential cross-

ctron-

0]

sections predicted by Lhe piescnt model for elastic el
hydrogen scattering at 54.4, 100 and 200 eV, They fall somewhat
below the absolute 50 eV messurements of Teubner et al (1973),
and those of Lloyd et al (19¢74) at 100 and 200 eV. However,
from the discussion of Teubner et al (197%) it can be deduced

that the error in both sets of data is up to *35% in absolute

value, and up to 10% in shape particularly at the larger angles;

our results are not therefore inconsistent with the measure-

ments. The degree of improvement achieved by replacing the
approximations of Bransden et a2l (1972) with a full wave treat-
ment and incluling exchange ig striking, cespecially at 54.4 eV.

tiel correction at smaijler

Qo
o]



angles, where the S wave partial wave amplitude has greatest
effect.

Pigure 2a) a2lso shows the resulits of other theoretical
viork at 50 eV, The failure of the Born and close-coupling
approximations to prédict the forward peak, diﬁcussed in
Section 1,4, is well illustrated. The EBS results of Byron
and Joachain (1974) are quite different at small angles from
those of the present work, but Ehey are also within the error
bounds on the data. Figures 2b) and 2c) show the EBS results

! of Byron and Joachain (1973) at 100 and 200 eV and it can be
seen that as the energy incrcases their results become very
close to ours, even for small angles. The work of Chen et al
(1973), ﬁho consider the Glauber and Glauber-sngle approsina-
tions, should also be mentioned. The latter is .a modification
of the Glauber approximation to sccount for trajectories other
than straight lines, and gives results quite close to the
present work, but slightly lower at smell angles. In contrast
the Glauber approximation predicts cross-sections that for
angles greater than 150 are very clese to the results of

| Bransden et 2l (1973), this being shown in figure 2b) for

100 eV,

c¢) IBlastic Scattering of electirons on helium

Figures %a) to 3f) display the present electron~helium
differential cross-section results at 50, 160, 2006, %00, 400
and 500 eV, Comparison with experiment is bindered however
by the conflicting nature of the available dats, particularly

at energies ¢f 100 and 200 eV. %Yo sasess the reliability of

the data, we mnote first of 21l that ths absolute 500 eV measure~

l\



ments of Bromberg (1u6Y) are generally regarded as being highly
accurate, and it is expected that his receunt data at 200, 300
and 4C0 eV (Bromberg 1974) is also good., 'This is confirmed by
the good agreement found between the latter results, those of
Jansen et al (1974) and to a lesser extent the data of Chamber-
lain et al (1970). This seems to indicate that the measure-
ments of Crooks and Rudd {1972) are %oo high; indeed recent
relative measurements by Sethuraman et al (1¢74) when norma=-

lized to Bromberg's at 500 eV and 60° sugg

(J

est that those of
Crooks and Rudd (1972) are consistently 20 to 25% too large in
the_;ange 30—1500

Bearing in mind that the experimental situation still has
to be safi gfactorily resolved, it can be said that the agree-
ment at small angles between our results and the data is very
good., The extent to which we agree with the measurements of
Bromberg (166G, 1974) at 400 and SOOleV is especielly gratify--
ing. At large angles our cross-—sections fall consistently
below those of Crooks and Rudd (1972) by at the most 30%,
Figures 3d) and 3f) however, show that we arc in good agreement

ith the large angle results of Sethuraman et al (1974) and

Oda et al (1972), which are relative measurements normalized
to the 500 eV values of Bromherg at 60° snd 30° respectively.

Iigures 3 also show the results of +the impact parameter
approximation to the second order potential method used by
Berrington et al (1973). As in the case of scattering from
hydrogen, it is seen that the effect of “he semimclausiJal
gpproximetion in this energy region is considerzble. DLven at

500 &V the result

,-,-

s of Berrington et al (1.973) dif from ours
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by over 20% at the smsller angles,

At energies in the range 200-500 eV the IBS method gives
resutts that lie very close, at smsll zngles, to those of the
present model and for this reason have not bveen displayed. As

would be expected, the difference between the two meihods

[

begins to show at lower energies, and is clearly seen in figure
3b) for 1C0 eV. 'The cross-sections predicted by the EBS model
for large angles have bheen calcﬁlated by Byron and Joachain
(1673a), and from figures 3b), 3c) and 3e) it is seen that they
are different from those of the present work at all energies

and are in fact quite close to the data of Crooks and Rudd
(1¢72). Figure 3c) also shows the result of the Glaubsr spprox-
imation (Byron snd Joachain 1973a) which, as vias found for
electron~hydregen scattering, lies close to the curve of the

IP model.

For the sake of clarity, we have not shown the results of
either the extended polarized petential approximation of LaBahn
and Callaway (1969) or the seéond Born approzimation of Holt
et al (1971). Vhile these models predict the expected peak in
the forward direction, they both give differential cross-
sections that differ in shape from the experimeutal curves at
angles less than 300u In particular, the agrecement with
Bromberg (1969) at 500 eV is poor.,

Prom the pesrtial wave amplitudes T?, we also calculated
differential cross-sections in the present approximation with
exchange neglected, and it was found that for energies greater

thaa 200 eV the contributicn from exchange is less than 10%.
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d) Integrated and Total Cross-Sections

The elastic scattering amplitude in the forward direction

is related to the total cross-section by

Qe = % Tw[500)] G

where QTOT is in units ofoaoz. Equation (3.8) is known as the

optical theorem, which we now use to calculate the total cross-
section for electron-hydrogen and helium scattering from our
knowledge'of_the scattering amplitude. In addition, we cal-

culaté the total elastic or integrated cross—-section by

W, __-X AT AL = m&\&(e)\‘ A (ws ) (3.9)
AL

-1

These two quantities are tabulated in table III for electron-
hydrogen scattering at 54.4, 160 and 200 eV, along with the
values of Bransden et al (1972). It is seen that the two
‘formulations of the secbnd order potential method pfedict
values for QTOT that agree quite well, dgspite the disparity
between the results for integrated and differential cross-
sections. This illustrates that to distinguish betweén
theories, a more ekacting test than a compérison of prédicted
total cross—sections is required.

In table IV integréted cross-sections for electron-
helium scattering are seen to be in excellent agreement with
‘the results of Vriens et al (1968) at 100-400 eV and with |
that of Bromberg (19639) at 500 eV, This very good sgreement

is also obtained in the extended polarization potential approx-

|
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imation of LaBghn and Callaway (1969), but is not found by
either Holt et al (1971) or Berrington et al (1973) whosze
results are too high and low respectively.

Table V displays the present resulits for the real part
of the forward scattering amplitude and QTOT for electron~
helium scattering. The ratio of the imaginary to real parts
of the scattering amplitude is seen to be in very poor agree-
ment with the dispersion relation results of Bransden and
¥eDowell (1970). This seems to be & result of Iﬁ [f(o,sz]
increasing too rapidly with decreasing k2° In contrast the

values for Re'[f(O,kzjj

obtained by Byronm and Joachain (1973)
with the EBS method are quite close to those of Zransden anc
McDowell (1979), but unfortunately the ELS values for

Im [I(O,k2X] are not available. We have nct included in
Table V the results of the eikonal optical moﬂcl of Byron

and Joachain (1974a) which gives values for Re [} (0 12“]
agrecing to better than 1% with those of the present work.

2

-

The behaviour of Im'[?(dik )j]at low energies is reflected
in an apparent divergence of the forward scattering intensity,
in contragt to the dispersion relation results of Bransden and
McDowell (1970) which indicate a fairly broad maximum at about
80 eV, This is shown in figure 4, which also illustrates that

the same Dbehaviour seems to be common to all methods thal use

an average excitation energy.

<3 Discussiocn

The results obtained by the present model of elastic

scattering clearly show the inadeguacy cof the impact para-~
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meter approximation used in pre#ious applications of the
second order potential method. Iven at energies of 200 eV
for hydrogen and 5C0 eV for helium there is still not
satisfactory agreement between the two formulations., We
suggest therefore that it is inzccurate to vse a seni-
classical approximation to the scattering amplitude for
energies less than twenty times the singls ionization thres—
holds; within this energy regigh, its use is recommended as
an approximation to the higher partial wave amplitudes.

The present results also indicete that including the effect
of exchange modifies differential cross-~section by more.
than 10%_for energies less than ten times the ionization
threshold. Alton et al (1972) have carried out a partial
wave treatment of the second order potential method for
electron~hydrogen scattering 2t energies helow 80 eV, with
the neglect of exchange. Ve therefore expect an appreciable
error in their results.

Over the energy snd angular range considered, the pfesent
approximation gives agreement with differential cross-section
measurements equalled only by the EBS results. However, the
predictions of the two models differ, somewhat surprisingly,
at large angles even at 400 eV. A possible reason for this
discrepancy is that there are certain third order terms which
the EBS method includes, but which are lacking from our one-
channel model &nd may coutribute to large angle scattering.

Relerring to (1.12), the present approximation for the con-

3

s
fimuretion coxwane elantd fuonetion is the solutd -
--— .\\A-L Ca Uil =4 o A LR . U P R ) -l.'-L (YA ods W2 LV 5 W [ LN Ty Py - 01‘-

of
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(24 RE)F = 2V, Fp o M & Vo GV, F (3.10)

P ""(s-\o ]
“"l"':o
where the integral operator Gm is defined by (1.%0)., Recellin
the definition of the plane wave ¥(r) given by (1.52) the

solution of (%.10) is

- O
mEo

Fozd o+ 26,V F v ¥ G,z Vom GaVao ¥y (3,11)

Iteration of the above equation then shows that the present
approximation takes into account the third order terms

v RY, 1
on Vno loo’

“

while neglecting those of the fovwm V_ ¥V V. e
g - an o nm Mo

Llthough the latter third order terms are included in the
EBS'method, we do not bhelieve that thié accounts for the
large angle discrepancy between the twoe models. I'irst of
all, Byron and Joachzin (1974a) remark that these

terms are likely to affect small angle scattering cnly, and
this has been confirmed by preliminary calculations by Van-
derpoorten (1974) who found that adding the effect of the
terms Von Vnm Vmo to the second order eikonal optical model
gltered the cross-section at wide angles by only 1%. Secondly,
Bransden et al (1972) and Berrington et &1 (1¢73) found that
their elastic scattering results were altered only at small
angles on using a four channel rather than a one channel
approximation. The signiiicance of this is that the four
channel model takes into account the additicnal third order

terms V ' ) where m is g haii 4 We sugeest :reior
erms V . Nnm Imo viere m is less than 4. e sugeest therefore

that the large angle discrepancy is moye Likely Yo be due 1o
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the failure of the IEB35 method to work to a consistent order
™% in the differential cross—section.

In connection with the rapid increase of Im [f(O,k2)j
for decreasing k2, it is seen from (2.52) and (2.53%) that
when the energy of the incoming electron reaches the value
2(§—€b), the average energy %2 vanishes., This occurs at an
energy below the ionization threshold for hydrogen, but at
an energy of 30.7 eV for helium, and its effect on the scat-~
tering amplitude remeins to be investigated. We note also
that there is no justification for our use of the same value
of average energy in both the real and imaginaxy parts of
the second-order potential. 4 better aspproximation would be

to supplement the work of Section 2.4 with a physical choice

=2 S . .
of k“ for Im [h, (r,r']] but whether this would remove the



Chapter 4 Present Model of Inelastic Scattering

4.1 A Distorted ¥Wave Approximation

The description of +the excitation of a 1light atom to an
arbitrary state due to electron impact is contained within the
many channel formulation of the second order poL ential method,
provided that an appropriate numbher of channels are represented
explicitly., In practice, the solution of eguation (2,12) is
a major computational task, even with ¥ chosen %o include only
the n=1 and 2 levels. It is more awppropriste therefore to
consider an alternative description of inelastic scattering,
but one which neverthelegs utilizes the second onder potential
nethod,

Referring to (1.80), it is proposed to approximate the two

potential formula by setting, for eiectron-hydrogen scatltering

™

"—\’ (s, ,)~ c,) (e)F .9(3,,‘ (4.1)

where Wﬁ ) is the solution of the one channel approxiwmasicn
to the second order potentisl eoguations (1,12) znd (1.14), snd

S5 1s the totsl spin, This approximation is expected to he
superior to the DWBA since it includes the effects of exchange,
polarization and absorption on the distorted wave in the
PR . Se.
initial channel, P.”(z,),

From the viork of Section 1.7 it is seen that the present

model of inelastic scattering therefore approximates the

amplitude for direct scattering by

S x VP ~
T e B YN (VB (N F

: t["_-\

€ -3 {
v ! v '\.!’n‘lﬁ‘:)

N
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while the expression for the exchange amplitude is

s |

: X .
339 (\6\ = -.i:\:\' XO‘\E‘ D\Eu -QS.:(“.‘) X& ((:Z) \LV - V-‘;(.' (EIS] X
-5
% gt(lz) ‘ri, (‘:\X

where we emphasize that in (4.3%) the potential V must be the

(4.3)

post interaction

\ \
V=2— - - ,
\P_‘_&\ 0 (4.4)

A1)l other quantities in (4.2) and (4.3) have been defined
previously in Section 1l.7. The differential cross-zection

for excitation to the state f is then

\ _
dv._ \ ky © bes . S s 2
&—- - :‘- E L ')S'*\)\(;-Ie(b)v?r (-\} Cj'e(-o)‘i (495)

Szo

For electron-helium scattering the direct and exchange smpli-

tudes are

et e
‘Q““_(e)t"z.ﬁg ‘ 3¢( '\‘-c‘)x (‘3\) \/VJ ( Vi ))Y (‘3) (405)

and

(E)Il‘- 03— ;. gd\l i)? d(‘ Q‘ (P,, 1)7( (}‘53\- V#G(Sl)] »

X ?‘{,(‘;13‘:3) ¥;(:|> (4o7)

where ¢n(£1’£?) is the bound wavefunction for the state n of

helium, and *the interaction is now

V \ . | Z
g - S ) .M—_. - (408)
ooy} Ve-g) "
fo(£3) ig the watrix element of the abvove interacticn with



respect to the state ¢f(£1,£2),'and xf—(gz) is defined by
(1.84),
The differentisl croszs—section for excitation to a

singlet state of helium is then

O‘(q ( 3>“L)

g
AL X H-.;(G\— wc(e}\ (4.9)

;-,xr

while for the spin forbidden transitions, which can only take

place through electron exchange we have

' 2
dl\.]_. (‘tS%FFL) = 3“(— \0\_. (e\\

an R, VT (4.10)

¢

Since the one channel scattering function Fi(g) is
“generated during the calculation of the elastic cross-sections
for hydrogen and helium described in the previcusz chapter, the
present model of inelastic °catterlng requires litlle extra
effort in order to obtain excitation cross-sections It is
also apparent that transitions to any state f can be considered
with approximately the same amount of computation; subject of
course in ‘the case of helium to the aveilabhility of accurate
wave functions,

In common with the DWBA,; the present model has the dis-
advanfage that it represents the optically forbidden transi-
tions more poorly than those that are allowed., This would be
overcbme to some extent if we were to use the second order
potential approximaticn to the total wave function for the
system, rather than the elsstic scatiering wave function,

From Section 1.1 it 1l seen that the former is given by
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(wl‘.(tncl') = ¢L(E\)c\,<t—1) N 7'>.:. g’“(s‘\ .

NEL

o \dr GRS £y e IV (e VR (ey) (4.12)

e now extend the n summation over the infinite range, perform
closure on the states ¢n(£) and substitute the result in (1.80),

giving for example the direct amplitude as

\ Cae=r o S/, v, \ 4,12)
b S landn X GV Vo ()5 )6 (e 0y (4022)
with V (r) ] v]m(r r') detined by (1.6) and (1L.15) respee~

tiveloo Reference to (1.14) shows the one chaonnel second
order potential kernel Knm(x,g') to be contained in (4,12),
and the improved approximation to the direct scattering
anplitude is therefore written more concisely as

s{v

s(2) \ & )
o =50 -5 &‘*Sﬁa&{ Xo (3% {n)F 0 (1)) (4013)
5(1) |

where i”f (6) is our originzl distorted wave approximation
given by (4.2). It is seen that the evaluation of £ ("(0)
is of a complexity intermediate between that of the solution

of the many channel équations (2.12), and of the calculation
¢ 50

l 1

Jo




In actusl computation we work with radisl rather than
configuration space wave functions, and the angular momentum
decomposition of the scattering cmplitude must be made for
each process under consideration. We will therefore require

the following partial wave expansions for 1nc distorted wavesie

'X :} 5~( \ (1QL‘\3£ (ﬁ;»)uc(g&-ﬁ} (4,14)
. Iy \2 v
and
s = ps
L T (2041) _gh( ) e (R \, (4.15)
\

(e
e elastic second order potential functicn fg(Lj.) is

{
obtained from the solution of (2.18) and (2.25) for hydrogen

N
N
J1

and helium respectively, while the eqgustion for the distorted

wave % (ker) is found on substituting (4.14) into (1.84) +o

be
’ o0
al \ 7._ Q(Q’.‘,‘)_\ o L v 5‘ IQQ. \ .
(;‘.l*- R ¢ _;;_Ja\.c(q&b) = 2L _.\-.‘:; (1‘) 3(2‘("{4v~} | (/l’]())
. Q‘:n
where
+1
Q(| \ o -Q\-t AL - S NP
Vee ("" (B_f&‘.} O«U‘vi Pg(“\.&-ﬂ\{sz(?)i)tl(."‘.&-ﬁ) (4.17)
2L
-\

4.2 28 State Lixcitation of Hydrogen

We choose as ouxr model of ls»2s excitation of hydrogen
the distorted wave HpPIC\1W81LﬂN given by couations (4,2),

(4.3) and (4.5).



Consider first of all the direct scattering amplitude.
Since i and f are both s states; the matrixz element Vfi(g)
has no angular dependerice, and hence substituting the expan-~

sions (4.14) and (4.15) into (4.2) gives

1 $ | I v
.Q. _ - > 4\\() (U)Se) \'Q. (4—.]8‘)
-G k- .
where the direct partial wave amplitude ty 1is
5
L,z -= e 3, (k WY Vi ( ¥ (ko) (4.19)
C R £° .
)
Now comparing the expression for the distoried wave
scattering amplitude given by (4.2) with that of the first
Born epproximation (1.57) and uvsing the partial wave expansion

of a plane weve

Bik.e - Se (k) A
-t . LR N
e—-’ . = L(- ) (7 ) \“. Pe('ks.t) (4020)
: Lo
it is clesr that the Born approximation to the partial wave
amplitude tBQ 1s obtained by replacing x, (kfr) and 1S (kir)
in (4.19) by 5 (kfr) and s, (kir) respectively. Hence
6 9 *
T - = V . :
ht hg C\v\‘ S (\i“) S (h \) (4_021)
°

Since the above is much easier to compute than ty, the latter

. . ; B
was calculated only for valuszs of 2 wp to L for which tL = tL o
The correction to the distorted wave amplitude for 2>L is then
& 6, 3
" Y oL L - 3
S‘"-.(.(.("’\ - -g».n(e} - T > (204 Q(m.&%) tf, L
X Wi _ \[Qazz)

Y lze
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The Born scattering amplitude fff(e) is given by (1.57), eznd
introducing the momentum transfer q = Ki - k. the expansion
(4.20) allows us to write, for s transitions

% - 2 ® .

£ () = - 3 oo v 5o (9 ey Vi () (4.23)

o
In particular using the expression for Vls2s(r) given in

Appendix D, for 1ls-2s transitions we have

£% (o) = "8‘/1 \-_R @) 3R (3)] (4.24)

2

vhere
[+
o - A€
R“(X\) T-‘-S % Ol So(lr\t (4.25)
' o
with R, (N = f}r_ ond R (N = -2 R, \(f\\)
)‘1_‘_%1 OA

Por the czse of exchange scattering, the exchenge partial

wave zmplitude gy is defined by

o0
s \ o
Y (®) = K QZ-(MMWQ(‘“&’ It

(4.26)
and from (4.3), (4.14) and (4,15) we find
-2
= o hie) | a(e ﬁo 5 )]
At \u(whg ¥( RIRLN x‘h) wfC 4.27)
where
ﬂ(") ?10(“\ (4.289)

znd
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‘ &
(é(p‘) - ()Za(‘\§ a‘(.\lzszs * - \?'O}Co) (4.29

The notation for A(A|R) and yg(ABlr) is thet of (1.26) and

(1.25) and we recall that P_, (r) is the radial part of the

m\
vefu , - ~ \ P 2 The € e
bound wavefunction 9 1 g (r) Ylm(g, mnﬂ(r;,r. The function
22 o " - .
Vooe (1) required for the generation of x,(k.r) from equation

(4.17) is equal to & (r), and both this and V ()

Q&VQSQS
are given in Appendix D.

1sla

. ; - R .
~The partial wave Born amplitude g, is obtained by re-

(kir)

-

placing f (k ;*) and X, (% r) by

£

5, and sg(kf r) in
unatlons (4,27) to \4929), As hefore the distorted wave
amplitude g, was calculated for increasing ¢ until nggLB.
However, since the partial wave series for the exchange
anplitude (4,26) is expected to converge much more rapidly
than its direct counterpart (4.18), the contribution for

£>I was found merely by evaluating ng until convergence was

achicved.

1

' 4
4.% 275 and 2°S Excitation of Helium

For a description of the 25 excitaticn of helium we con-
sider the approximations (4.6) and (4,7) to the scattering

amplitudes. The partial wave expansion of f..(s) follows

if
exactly as in the previous section to give a direct partial

vave anplitude tp with exactly the same form as (4.19), but

(r) x"*(kfr) and

vith Vls?s Je X,

i&(kar) appropriate %o helium

soattering. In other words f (k.,r) is the solution of (2.25),
»N -
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(r),

= (v " H - Wi i g o + i AT sl )
and Vg, 2L\;) together WLth.VquS(r) are tabulated in Appendix D

xg(kfr) is the solution of (4.16) with V;§25(") zagg"vzsgs
for the particular case of Hartree-Fock approximate wave func-
tions,
The Born approximation to the direct amplitude is calcula-

ted easily by substitution of the helium form for V, , (r)
into (4.23), 2ud is as before a linesr combination of the
functions Rn(x) defined in (4.25)., Its evaluzbion then allows
the same technique to be used for the calculation cf the highex-
partial weve corrcction as was used in the previous section.

. For exchange scattering we introduce the following separa.-

tion for the 218 and 238 wave functions

. P ¢ 7_ A te
¢ng -l)-ZB b “_( \\(00 (-o\ ‘GO(EL\) i' g‘u"w|7.\l \4 ) \

2.

where the + and -~ signs correspond to singlet and triplet
states respectively. The corresponding expression for the
ground state is thet of (2.24),

The exchange ampiitude for helium is then found to he

given by (4.26) and (4,27), but in this case we have

d(v) =0, () AR, 05) * {Pa}, e 910}  (4.31)

and

B0) = 2 ()] A 0ul#) 8 (Ve )
- Q(A\@‘Qaso)l

r ”
+ .y P
s \‘?‘_oq--{vkhk



where we have put

A(r) = 9, (Po P le) (4.33)

The amplitude gQB and the corresction for the higher partial
waves in (4.26) are found in the manner described in the previcus
section,

We alsc propose to investigate the imporfance of éllowing
for distortion in the final state by using a simplified dis-~
torted wave approximation in which ngﬁj) in (4.6) and (4.7)
is replaced by the plane wave eel£f°£3. This is equivalent to

using sp(k r) instead of x2+(k r) in the partial wave smplitudes,

giving
o0
1 . \ s T
tl = - -R-l; XQ\,[- ga(\““.‘) \/\S‘LS (‘\) ‘E'QU"L“) (4.34)
o :
and ' .
o) .

_‘2_ . \ r . e \ "
%Q:h‘i(lu‘) (-U...i‘.e(hlp)\_-o((\s)\jq'((’wgc\r)—deo (S(P)J (4.75)
[¢]

witha (r) a8 before and
6= [ A(0a11) (3 1005) - A(A10S)]

SUEIS

It is seen that this approximation greatly simplifies the

(4.%6)

exchange amplitude, since the two integrzals in (4.36) that
involve the final state wave funcition may be evaluated ana-

lytically, while the integral (Ilou2|r) in (4.%5) can be
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expresgsed in lerms aticns. Hore precisely

we have that y r) is & comhination of integrals of the

form
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From some hasic recurrence reletions for the spherical
¢
essel functions znd their derivatives (Abramowitz and Stegun

1965 p439 10,1,19-10.1.24) it is not difficult to show that
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The initial values Mo(kr), No(kr) and E](kr) are found trivially,

that for Nl(kr) requiring the computation of ‘the exponentisal

integral of the first kind with complex argument E,(z),
. N e

(Abramowitz & Stegun 1965 p22s).

4.4 21P Execitation of Helium

The partial wave decomposition of the direct and exchange

amplitude 1s rather more compliceted for the 11
then that of tho
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nomentum of the final atomic state, For this reason, we will



congider the direct amplitude only, and use the simpler model
discussed at the end of Section 4.3 in which we account for
distortion only in the initial state. 7Prom (4.6) therefore
the scattering amplitude for direct excitation to the 21Pm

state of helium is

Ry

e (0,9 = - = Nao e 717N ($)Vi (»)F() (4.41)

{
\

where the angular dependence of the matrix element Vigop (x)
m

has been separated out, Defining the partial wave amplitude

.tjllll by

|
/ALt

' i
520, (8,9) = ¢ Z(Ul% \)t (’q (ws8) 2 (4.42)
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m . . ' . . ca
where I (x) is the legendre function of the first kind, the
usual expansion of the scattering wave functions in (4.41)
gives
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1o excitation is then
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The differential cross section for 2
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It follows frow the work of Blatt and Biedenhara (1952)
that the sum over the magnetic substates in (4.46) can be done
algebraically after substitution of ecuvation (4.,42). The
resulting expression then gives the differential cross-section
in terms of the integral Azj(l,k) rather thaﬁ the partial wave
amplitudes, and in general for excitation to the ngm state is

dq'..ibﬂ '
i Z An (0, M) Ang (1,6 L_snl(q‘elx.xz\\_‘)&(me) (4.47)
L.

\
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where
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WERAN PRI (4.48)
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While the alternative expression above isg useful as a

check on the numerical work involved in obtaining (4.46), we
note that the loss of information regarding the ezcitation to

magnetic sub-levels is undesirable. In pasrticular, it prevents
the calculation of the polerization frscticn of impact radia-

tion, which for 15,1 transitions is (Percival and Seaton 1958)

P = Qoo (4.49)
Qo+ Q,
and of +the parameters (Eminyan et al 1973)
Me) = _Tel® - (o)
TO(B)"'Q_II(B) 4050/
and
' | i
X(8) = You "“f'..’“..g‘j."':f'-"s ~ Fon™ I"”"Q“’"P? (4,51)
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where the differential snd total cross-sections for excitation
to the magnetic sub--level m have been denoted I_(6) and G
respectively. It is woerth noting at this point that the
expression given by Flannery (1970) for Pf is appropriate to
hydrogen, and not helium. The walues for Pf‘given by Mlannery
and Berrington et al (1973) are therefore incorrect.

The Dorn approximation to flssz(e) is used to obtain +the
higher partial wave correction in a manner identical to that
of the previous two sections. TFrom (1,57) we have that

_ ?-"‘ % a ®
o (&) = [y \"M(‘DX:\”‘"S’\(W\/‘sm“) (4.52)

supstituting the expression for V]s?’ (1) given in Appendix D

into (4.52) the Born awplitude is easily expressed in terms

H
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of the function
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where we have

S )= - At S (a): =ha'h - X
..\( \) 0" X o(\ qﬁl on 5 %1.‘ 12
1 -
S (8 = 2o, and S“(x\v-_--ﬁr\g“ (3) (4.54)
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Chapter 5 Application to the execitatio

pur}

1 of nydrogen and helium

atoms by electrons

5.1 Numerical Mefhods

The evaluation of the direct matrix element (4.19) reguires
a single numerical integration, while for the exchange matrix
elements (4.27) and (4.35) a double integration is necessary
when distortion is included in the flna state, These integral
were evaluated by a A—point Gauss guadrature, and the accuracy
checked by doubling the number of points in the suitably chosen
subintervals,

. When a plane wave is aasumed for the final scattering
state, the functions Mz(kr) and Hﬂ(kr) required zre generated
by the recurrence relations (4.39) and (4.40), whose stability
may be assessed in the menner of Gautschi {1961)., It iz fourd
that recurrence for 1\’1’2 and NQ is stable in the reverse znd
forward directions respectively. The exponential integral cf
complex argument was computed from its continued fraction rep-
resentation by the algorithm of Beam (1060).

The solution of eouation {4.16) in order to obtain the
distorted wave in the final channel was by the method of
Kumerov, the algorithm being that of (3.%) with g(x)=0. A
facility was incorporated whereby the step length was doubled

every five steps whenever (yn+3~yn+3)/yn+3<g,'where

R S R W (5.1)
\_ . ~ - \ L
( -‘-_L('ms)\()m (‘L‘ = n)‘f’n.n, (“ (f\w)“ﬁﬁn 7
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€ 15 a specified tolerance dhd all other quantities have been
defined in (3%.5). The alteration of h was only carried out,
however, if it was consistent with generating at least thirty

values of x,(ker) for each loop of the distorted wave,

5.2 Reesults

S w—. = e

a) Genieralized Oscillator Strengths

The calculations for helium made use of approximate
target wave functions of the Hartree-Fock type, andit is

important to have an estimate of the crror introduced by this

c"‘

particular choice. This is conveniently done Dby using
calculate the generalized oscillator strengths for 275 and 2
exceltation, which are related to the first Berrn differentisal

cross~section by

\ |2
\5(.“8'?"‘.“) = (‘1 -k )\ H-\L(D!:Ng (

]
A

1
>

o
L

The resulting function of the momentum transfer q is then ¢

Q

=
L
1

pared with that obtained by Bell et sl (1969) using highly
accurate many-parameter wave functions.

Figure 5 shows'§(118+2 3) calculated with the 215 funciions
of Flannery (1970) and Byron end Joachain (1974h). Vhile these
wave functions giﬁe very close agreement with the "“exact"
results of Bell et al (1869} for small momentum trans sfers,
for q2>4 there is an increasing discrepancy between the Flannexry
and the exact values until at q2=16 the former is %0% too high.
In conirast, the Iyron znd Joachain wave functlion gives very

good agreement with the exact cscillator strengths for all



momentum transfers in the range considered,

Loy oY) obtained with the 2°P

Pigure 5 aleso compares $(1°
function of Goldberg and Clogston (193%9) and quoted by Flan-
nery (1970), with the "exact" values of Bell et al (1969)., In
this case,; there is good sgrecement for q2<2, hut there is a
considerable disparity at large momentum itransfers, with the
Goldberg snd Clogston value being more than 70% too large at
q2=16¢ The claim made by Elauncrv (1970) éoncerning the relia~

i 1. 1 . . . 3
bility of the 275 and 2°F wave functions used by him would
therefore seem to be misleading,

. The above results are not surprising since the angular

correlation between the bound electrons is. a much more important
effect for thne 21P wave function than it is for the 21”
(Vanderpoorten 1970). In the absence of a more reliable

Hartree-Fock 21P function we will use the Goldberg and Clog-

7

P

ston (L938) form together with the more matisfsctory choice

y

of Byron and Joachain (1974b%) for the 25, The ground state

[¢

wave function in all the above caleculations using Hartree-Fock

functions was that of Byron and Jeachain (1966),

1

b) 1155238 Bxcitation of Helium

The energy region from 65.4 eV to 24,58 eV for electron-
helium scattering is interesting in thet it contains the thres-
holds of the doubly excited states, These produce narroew
resonances (Smith et al 1973) which we will unfortunately not
be abie to predict with the present model, There is however
zn additional broad resonance, centred about 50 eV (Crooks

et al 1672, iall et sl

i""'

$73) <he effect of which is 0 give a
very dezy mwinimum in the differentisl cross-section for 279

excitation, and this we would hope to reproduce,



The results of the present approximation, in which the
distortion in the initial state is by the static exchange and
second order potentials and that in the final state is due to
the static potential alone, are displayed in figures 6a) .- 64)
for energies of 50, 81,63, 100 and 150 eV, 1In figure 6a) the
present model is seen to reproduce the overall shape of the
differential cross-section measurements at 50 &V quite well,
although the minimum is notl as p}onounced as experiment would
suggest, and in the forward direction our results are a factor
of 2 smaller. Despite this, the present model gives results
superior t0 those obtained by other calculations. Ve have
also computed the DWBA, and a comparison of the two curves
shows that including the secconu order and exchange poventials
in the initial channel both accentusties the dip, and raises
the cross-section in the forward and tackward directioﬁs,
Figure 6a) also shows that accounting only for distortion in
the initial chamnel gives poor agreewment with the data, but
this is still to e preferred to the Born~Oppenheimer apyproxi-
mation which, although having a similar shape, is a factor of
four larger, and is therefore not shown. Both the present
results and the DWBA can be seen to he better than those of
“the first order many_body theory ot Taylor (1974). Tinally,
the close coupling calculations of Ormonde and Goliden (1973)
while.giving the deep minimum at 70° are a factor of 10 too
small av 100, and are not shown.

From figures eb) - d) it is apparent that the present

appear at 8l.03 eV and i3 pronounced by 150 e¥, This also
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appears, less conclusively, in the measurements at 100 and
150 eV, and the agreement between the date and our.resulﬁs
at these energies is once again superior to that of other
approximations,

At 100 eV we see that except in the for“;rd direction,
the DWBA again gives better results than the model of Taylor
(1974). Tor hoth 81.63 eV and 100 eV we display the results
of the recent plane wave apnrox1matﬂon of Mathur and Rudge
(1974) which although radically differen® from the Bormn-
Oppenheimer values can not be considered as an improvement
on the latter.

In table VI our calculated values for the total 275
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crosé—séction in the present approximstion, t
Born-Oppenheimer approximation are presented. These are coti-
pared with the theoretical vaitues of Mathur zund Budge (1074)
and those of the Ochkur-~Rudge approximation (Morrigon and
Rudge 1967) together with the data of Crocks and Rudd (1972),
Vriens et al (1968a) and Suzﬁki and Tekaysnagi (1974). Our
results agree quite well with the data., 2nd we note that the
approximation of Mathur and Eudge {(1274) is for total cross~
sections greatly superior to the Born-~-Oppenheimer approxima-

tion, although this is probably fortuitou

1. 5le n .
c) 1 a+235 Bxcitation of Helium
The differential cross-sections predicted by the present

- 1. . . . - : . .
model of 275 excitation of helium, in which the direct and
exchange matrix elements are evaluated with the elastic scat-
teriug function of Section 2,7 in the initial channel and the

usual static distortion in the final channel, are presented in



figures Ta) = 7d).
At 50 eV we see that our results are in fair agreement
with the data, but fail to predict the minimum at 45° and the
rising cross-section in the backward direction shown hy the
measurements, They constitute 2 significant iuprovement over
our DWBA resultse however., We show also the effect of taking
a plane~wave in the final channel and considering the direct
scattering amplitude only. The resulting curve is in poor
aéreement with the data, but is Little worse than the predic-
tion of the Glauber approximation (Yates and Tenney 1972).

. '"he first order many~body calculation of Taylor {1474)
gives better agrecment with the data than the present model,
although it exhibits the sawme. behavicur as ours in tioe forward
and backward directions. This is somewhat surprising, as in
the 235 case the many-body results were poorer. Wes also
mention the recent work of Bave and Heenen (1974) whose
second order dizgonslization method gives results which are
strongly peaked in the forward direction, follow the data of
Crooks and Rudd to 60° but then fail to predict the rising
cross-section for angles larger than this.

The values given by the first Born approximstion have
not been shown on any of the figures 7a) to d); since it is
well known that they give poor agreement with experiment
(Rice_at al 1972), Calculations were also performed at 50 eV
using the 21S funetion of Flannery (1970), snd it was found
that the present results were a2ltered by less than 59,
. chat at 8L.6% eV there is again good

agreemeint betwean the present results and experiment at smsll




and large angles, with our model failing to predict the dip at
45%, As at 50 eV, the resulis are better than those of the
DWBA, although they are inferior to those given by Taylor (1974}
except at large angles, The coulomb projected Born approxima-
tion of Hidalgo and Geltman (1972) agrees well with the present

sults for angles up to 400, but beyond this it decreases too
rapidly.‘ The results of both Bave and Heenen (1974) and Yates
and Tenney (1972) lie below those of Hidalgo and Geltman and
are nolt shown.

At 100 and 150 eV we see that the present results are in

good agreement with the measurements at all angles. We display

"'\

nlso at 100 eV the present results calculated frowm the dirvect

scattering amplitude only, and se

@

that the =ffect of exchauge
is considerable, especially at the larger angles.

The results of the impact parameter approxzimation to the
second order poitential method were unfortunately computed by
Berrington et al (1973) only for angles.up to 20%. Prom their
unpublished transition amplitudes we therefore used (1l.44) and
(1.45) to obtain large angle values, The results of this cal-
culation are shown at 100 eV as the curve IP, 2nd it is seen
that there is little agreement with the data of Crooks and kKudd
(1972), although the model is seen to be superior to that of
Hidalgo and Geltman (1972) at lerge angles. A&t 100 eV the
Glauber epproximation (Franco 1973) is again in poor agreement
with both theory and experiment, and is not shown. Ve note
that both Baye and Heenen (1974) and Berrington et al (167%)

~
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In table VII we present our disterted wave results for
1" : 1 ] al ] .
the total 275 cross-section, together with those of Berring-
ton et al (1973), Joachain and Vanderpoorten (1S74) and the

Born approximation. Commparison with experiment is difficult

Y]

due to the conflicting nature of the dsta of Rice et al (1c72)
and Lassettre (1965) but it would seem that our results are
too high, a result we would expect from inspecfion df the
differential cross~sections, |

| Finally, we have calculated the distorted wave Born
approximation to the direct partial wave amplitudes t, at
100 eV, using both the Byron and Joachain functions of
Appendix D, and the configuration interaction wavefunctions
of Venderpoorten (1975)0 Frov the values given in table VIII
it is appareni that the use of the more accurate 118 and 213
- functions alters t, by less than 5%, %e point out, however,
that the exchange partial wave amplitudes g, are likely te¢ be

more sensitive to the choice of wavefunction.

]. 5 ~ YT LR [ rT -
d) 1 &+d1I Excitation of delium

The results of the present calculastion of the differen-

1P excitation of helium at %0 and

tisl cross-sections for 2
100 eV are displayed in figures 8a) and 8b)., We recall that
for this particular transition our model considers the direct
scattering amplitude only, and assumes -a plane wave final state

with second order potential distorticn in the initial state.

in view of thesimplicity of this approximation, the agreement

. : s . o
with experiment is surprisingly good for angles less than 407
ay the }arger snglen, however, the cross-—-zections decrease oo

7

roridly, Hevertheless, we expect our lerge angle values to be



better than those of Terebey (1974) who used the Glauber
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approximation., At 100 eV the latter small angle results
not been shown a8 they lie very close to ours.

We have also calculated, from the unpublished transition
amplitudes of Berrington et al (19 ;7%), the large angle differ-
ential cross-sections predicted by theimpact parameter approxi-
mation to the second order potential method., These are also
displayed in figures 8a) and 8b) andit is seen that this model
gives quite good agreement with experiment at large anglecs.
liore significantly we see that for angles less than 40° the
results are very close to those of our distorted wave approxi
mation, even at 6=0,

At 100 eV the results of Hidalgo and Geltman {(1272) are

shown, and are seen to reproduce the shape of the

U

experimental

curve gquite poorlys they are in fact inferior to the resulis

(v

of the present model at small angles, Concerning other theo
retical values mnot shown, we note that the DWBA of Kadison and
Shelton (1¢73%) gives excellent sgreement with the data of
Crooks and Rudd (1972), while the results of Joachain and
Vanderpoorten IGIL) obtained by the eikonal distorted wave
model of Chen et al (1972) are quite similar to those of
our model, for angles less than 60°, The inadequacy of the
first Born approximation and its variants has been clearly
demonstrated by Truhlar et al (1¢ 70) and they have not there-
fore bheen considered.

In figures %a) and Gb) we shpw the values predicted by

wave model for the m
Yave noce 10T U .
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T
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-
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defined by (4.50), which is the fractional contribution to



. 86 =
the differential cross-section of the mzgnetic substate m=C.
These are compared with the data of Iminysn et al (1974) at
50 and 100 eV, and in addition to the experimental points we
nave of ccurse thet A at 6=0° must equal one. . It is seen that
our resulis are in good agreement with the measurements at
both energies, At 50 eV the Born approximation gives values
that lie very close to ours, but this is likely to Be fox-
tuitous as figure 9b) shows that there is no agreement at
100 eV, Of the other theoretical results availahle at these

energies we see that both the many-body work .of Taylor (1974)

and the eikonal disteorted wave model of Joachain and Vanders
poorten (1974a) are in very poor agreement with our results
and the measurements, It is mentioned at this point that the

[50]

measurements of Bminyan et al (1974) essume the axis of quan-
tization to lie zlong the direction of the incident momentum;
it would therefore be erroneous to include in figures 9z) and
b) the results of theories that do not make this choice, such
as that of Berrington ¢t al (1973),

Figures 10a) and 10b) show the values ofX (6), the rela-
tive phase hetween the m=l and m=0 scatiering smplitudes,
given by the present model at 50 and 100 eV, The agreement
with the experimental results of Eminyan et al (1974) is very
poor, which is rather surprising in view of the success with
which our model predicted A(8). In contrast, we see that at
100 eV Joachain and Vanderpoorten (1974a) obtzin much bhetier
agreement with the data using their eikonal distorted wave
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JdJoachein and Vanderpoerten (18742) find that on using a static
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rather than a Glauber distorting potential in their model
(which is that of Joachain and Vanderpoorten 1974) there is
a significant deterioration of the égreement, This is showmn
in figure 10b) where we see that their choice of a simpler
distorting potential lowers the value of X (8) at 45° by 1L5%.

e) 1s-2s Brcitation of Hvdrogen

The present model of 2s excitation of hydrogen is des-
cribed in Section 4.2 and at 100 and 200 eV gives results for
the differential cross-sections which we show in figures lla)
and b). wWe also obtained DWBA results which at both energies
are consigstently higher than those of present method, but by
no mdre than 10%, and fcr the sake of clarity these are there-
fore not showiin. The effect of exchange waé investigated by
calculating the differential cross-sections from the direct
amplitude (4.18) alone., It was found that =t 106 eV the
neglect of exchange increased the cross—-section by 10% at
900, while there was no change at small angles.,

Figure 1) also shows the coulomb projected Born results
of Geltman and Hidalgo (1971) and the distorted wave results
of McDowell et al (1973), both of which fall considerably

. N}
below the present results at 9O

although all three approxi-
mations are in reasonable agreement inthe forward direction.
This behaviour is to be expected from the results for helium
excitation where the coulomb projected Born results were also
foundtto be much lower +than those of the present model,
Furthermore, the calculation of KcDowell et al (1973) is very
similar Lo oux simplified model where we consider second order

[ al

potential distortion in the initial channel only, and for




helium this was found to give wuch smoller values than those
of the more complete distorted wave model,

Figure 1la) also shows the results of the second order
diagonalization method of Baye and Heenen (1874a) which show
the same strong peak in the forward direction thet has already
been noted for 18 excitation of helium. Other small angle
results for 100 eV that are not shown are those of the Glauber
approximation (Tai et al 1970) which lie between the present
results and those of Baye and Heenen (1974a), 2nd the eikonal
¢istorted wave results of Joachain and Vanderpooften (1973)
which lie slightly lower than ours.

in table IX we show the results of cur calculzation of the

1s~>2

i

total

w

cross=section at 100 and 200 eV with both the
present approximation and the DWBA. We also display the
results of other calculations and from left *c r»ight the
entries are in descending order of magnitude. It is seen
immediately tha+t the negiect hy the DWBA of the polarization,
absqrption and exchange in the initial channel makes it a
rather poor approximation for the total cross-secticn. On
the other hand, the results of the present model secem guite

satisfactory when conmpared with those of the other models.

<3 Discussion

The distorted wave approximation proposed-in Section 4.1
as a description of 28 excitation of helium gives good ggree-
meny with differential cross-sectlion mcasurements over the
entire angular range: In this respect it is superior to all

other calculations that have been performed, with the exception
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of the work of Taylor (1274) in the 21

S csse, The present
work when compared with the DWBA results shows that including
the effect of the second order and exchange potentials on

the distorted wave in the initial channel gives an improve-

>
]

ment at 50 eV of up to 20% and 25% for the 2°5 and 2°8 crogs-—
sections respectively., This improvement is, however, only
10% for the 2s excitation of hydrogen at 100 eV, but we should
note that this 100 eV incident energy expressed as a multiple
of the ionization threshold corresponds to an energy of nearlj
200 eV for helium. It is therefore not surprising that we sece
less effect for hydrogen than for helium excitition with the
particular encergies chouen here,

Although the reliability. of the ols and 2YF wavefunctions
has been examined, no such assessment was made for the 435
function of Morse et at (1935), Although the lastter is rather
crude by recent standards, work of Jeoachain and Van den BEynde
{1970) suggests that is is more important to use an accurate
bound state wave function in the initial channel than in the
final one., Ve do not expect, therefore, a serious error for
238 xcitation from our choicz of wave function.
The most serious deficiency in our model of s excitation
is the neglect of s-p coupling, which has teen shown by
Berrington et al (1973) to have a considersble effect for
helium 18 excitation in the forward direction. Indeed we

have seen here that for both hydrogen and helium the results

of models that include s-p couplinz (Baye and Heenen 197
and Berringteon et al 197%) are much more sharply peaked than

those that do not. The former models lhowever are hoth semi-
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classical approximations and fail +to adegqustely reproduce the
minimum that occurs for hoth 213 and 238 excitation av the
lower energies, and we suggest that a full wave treatment
with s-p coupling is necessary to sﬁow this effect.

The simpler distorted wave wethod that we have adopted
for P excitation gives good results at the smaller angles, and
the agreement in the forward direction with those of Berrington
et al (1973) illustrates that ols.olp ceupling is in this case
a small effect. On the basis of this alone, we therefore
expect that the use of the more complete distorted wave model
proposed for © excitetion will give geod resulis here also.
This view is further substantiated by noting thesi the DWBA
results of Madison and Shelton (1073) lie above the data for
energies less than 100 eV; recalling the degree of lmprove-
ment over the DWBA thet we found for b excitation, we conclude
that the more complete distorted wave model is likely to give
excellent agreement with experiment for 277 excitation.

The success with which the experimental values of A(0)
are reproduced by our simple model snd to a lesser extent
by the Born approximation makes us cuestion whether this
quantity will be of use in distinguishingz between theories.
The scarcity of both experimental snd theoreticel results makes
it difficult to be more conclusive, but at this stage, it would
seem that the evaluation of X(0) is likely to be of more use,
due to its apparent sensitivity.

Pinally, we note that the computationsl procedure adopted
nere for the s lransiitions i1s to sowe extent wasteful, in thav

30N N Y 1. - P B . k1 . -1 -t ] H ‘] 7".|,'
we calculate the distorted weve partial amplitude Ti until

i
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. - o . R . -
this becowes equal to the Born value Tk for some value L, in

) c s DWW
every case, however, we found that the amplitude T% becomes
- TH ] ‘VBA . - s . l ;.
equal to the D¥BA value T é “ for <l and it would seem to be

expedient therefore to use the three models {rather than cnly

F

two) for different ranges of %,



Chapter 6 The Use of Dispersicn Relations in Atomic Scatltering

6.1 Theory

The present investigation of electron-atom collisions has
concentrated on obtaining the scattering amplitude f(e,kz)
from either the asymptotic form of the scattered wave function,
or from approximations to the two-potentizl formula. If,
however, certain assumptions are made regarding the analyvic
structure of the function [f k%) =12 (o kij a third
approanh bﬁcomes avajlable in that it is possible to write
dow a dispersion re lation expressing the real part of f(e,kz)-

terms of its 1man1nary part. For potential scattering for
exanple it can be shown (Roman 1965 p210) that Re f(egkz) is
related to a Hilbert transform of Im f(G,k'), with an integra-
tion path that in general includes an unphysical region of the
qcabterlng awplwtuae,

Dispersion relations become of spe01a] interest for
scattering in the forward direction since the Hilbert trans-
form is then over-the'physical-region only, aﬁd the optical
theofem (equation 3.8) allows Iuw f(O,k2) to bé replaced by
the total cross-section, In particular Gerjuoy snd Krall
(1960, 1962) show that for electron-hydrogen and helium scai-
tering thi s-forward dispersion'relation has the form

;(v)

Re §(o,R) = § (0,8 * Z 1 Rt '%TFKQT TW K (6.)

. . s . - 2 .
vhere the total c¢ross—seciion is in units of ﬁao°, aand the

scattering amplitudss are of appropriste symmetry.

o



In deriving the above relatiouship, it is assumed that in
th lex energy plane the Tunction | £(0,k%)~£2(0,%%)] 1)
e complex energy plane the function | £(0,k" )= i)

. 2 Ly s
vanishes for large k-, ii) has a branch cut alcng the positive
real axis and iii) has poles on the negaiive real axis corres-
ponding to bound eigen-states of the total Hamiltonian, the

i PP -2
residues of which are R,(h ) e
The limiting case of (6.1) as P tends fto zero has heen

considered by Krall and Gerjuoy (1960) who deduce that

T - Y TG et
} J

where A denotes the scattering length. Equation (Go2) is an

(¢}

important sum rule, which must be satisric

(=2

d by the total cross-
section,

The utility cf (6.1) and the opiical theorem 55 a mweans
of obtaining a theoretical vslue for the forward scattering
intensity is rather limited. HHowever, provided that total
cross~section measuremxents have been mede for all energiss up
to those for which the Born and Bethe approximetions for ‘TOT(L )
become valid, cquations (6.1) and (6,2) allow experimentally
derived values of the forward intensity and scatltering length
to be computed. I'rom these, the consistency of experimental
data can then Dbe estimated, @s has been illustrated by the work
of Gerjuoy end Krall (1960), Krall and Gerjuoy (1960) and

Lawson et al (1966),

6.2 Avpplications

a) A consistency check of positron-halium measurements

Since the Born aud Bethe approximation to the total cross—



http://Krs.ll

section is expected to be valid at 400 eV, the measurements
of Canter et al (1273) in the range 2-400 eV in conjunction
with the low energy results for NOH(kB) of Canter et al _
(1972), Costello et al (1972), Jaduszliwer et al (1972) and
Jaduszliwer and Paul (197%), make pos 51h19 an analysis of
posifron~helium scattering using the equivalent of equations
(6.1) and (6.2)., Although the computation of the forward
intensity is at present without interest, accurate calcula~
tions of both fB(O,kz) and A have been made and it is proposed
therefore to use the sum rule to check the consistency of the
available data.

Ls there is mo bhound state of the positron helium system

(Spruch 1969) equation (6.2) becomes

(2]
| . '
- A 'F (O 03 _'-‘f QTD1SRIJ\ AR* (6.3)
o R

where fB(O,O) is in this-case the Born approximation to the
direct amplitude only.,.

Humberston (1973) has obtaine@ from the Kohn variational
principle a value of -0,472 for the pcsitron helium scattering
length. Combining this with the Pekeris (1952) value for fB(O

-0,791 we deduce that the data for (P ) must be zuch that

‘1OT

(6.4)

o

The inte egral was evaluated

by first obtaining a least

sguares it to the data which together with the Borrn-Bethe
ge

,0)



3

approximation gives the following snalytic forms:-
i) Tor 2 < ic® g 20 eV

Qe (K°) = 0,883 = 7.5k = 8,97 k> In k + 5.45 k° + 1.44 k
pop LK = 0.,88% - 7.5k - 8,97 nk+ 5.45 + l.44 k

(6.5)

4

ters, 18 data points giving x2 = 12.4)
ii) Tor 20 < k 400 eV
1 4 6\
Fer5 (26,7 = 12,2 1n k - 68,9/ + 63.9/k" - 21.3/k
(6.6)
(5 parameters, 14 data points giving x2 = 0,41)
11i) For ¥° > 400 eV
TOT(k ) = (6,197 - 4°L40/k + 2,875/K% 4 3.011 107k?) /K7

(6.7)

The analytic form for the low chergv fit of (6.5) was
suggested by the effective range formula of O'Walley (1963),

and predicts a scattering

oo

length of + 0,49, in good zgrecment

\

-
with the value of Humberston (1973). In fact (£.,5) gives
values of QTOT(kz) for energigs between O and 2 eV that agree
well with those obhtained from the variational phase shifts of
Humberston (1974). The Born-Bethe approximation (6,7) is that
of Kennedy (1968) and Inokuti et al (1967), this being the same
for both electron and poesitron scattering. _

Figure 12 shows the fitted wvalues of QTOT(kZ) together
with those given by the Born-Bethe approximation. The incon-
sistency of the data is obvious even without the calculation
of the left hand side of (6.4), as the messurements do not +tend
to the Born-Beths values with inecreasing eunergy. However,

mzking the 1nthvp Lation shown we £ind that the evaluation of




the left hand side of (6.4) gives the value 1,% and the sum

rule is satisfied to within %%. In order to be consistent

with (6,%) it therefore appears that pesitron-helium total

cross—-section measurements should reproduce the suggested
interpolation of figure 12, This cheice in ract seems to

have been vindicated by the very recent experiments of Jadu-
szliwer et al (1974) and Coleman et al {(1874) for energies
up to 400 eV,

b) Ixtension of electron-neon data analysis

The use of the dispers Jon relation and svm rvle cf
bection 6.1 is oav1ovsly limited to a consistency check of
mea sur@mnafs of total cross-sections and scattering intens-
ities near the forward direction. In geueral, to distinguish
between alternative data sets vwe reguire an analysis in which
a simultaneous best fit of parsmetrized ohase shifts to the
avellable measurement is attempted, However, in carrying out
a data analysls of this type, the dispersion relstion (6.1)
.can in principle he used to provi@g experimentally derived
values of lie f(b,k2) as & supplement to the experimental data

veing fitted, This hes been done for electron-helium scat-

6]

tering by Bransden and YicDowell (1969, 1270) who were success-

ful in being able to reject the differentisl cross~section

[o N

iate of Ramsauer and Kollath (19??) n favour of that of
Gihson and Dolder (1¢69),

.Thc extension of tno phase shift analysis to electron
scatlering from neon and argon has heen made by McDowell (1971),

. Lo .
i U‘\ aut 1 - y

Koo
FOAw Vi AL

~F
A \7 A

el u il T al
: A

the only difficulty in employing
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aparyv from some uncerteinty regarding the total cross—-section
data of Normand (19%0), lies in the evaluation of the Rorn

5

scattering amplitude It was

[eX)

ecided therefore to calculate
I“(O,k ) for electron-neon scattering, to permit the eﬁten—
sion of the work of McDoweil (1871).
We choose the wavefunctions of Weber et al (1970) and

Clementi (1965 Teble 01-C4) as two alternative choices for
the ground state of neon., IFor these Hartree-I'ock functions
the calculavion of the direct Born amplitude is then trivial,
while unpublished work of Brarnsden and liclowell shows that the
evchangc amplitude reduces to a form reguiring only one numeri-
cal integration,

Thé results of this computation enow firstly the sengi-

tivity of the Born exchange amplitude 2t zero energy to the

choice of wavefunction., OSpecifically, it wes found that the

direct and exchange contributions to the Rorn anplitude I (O;O)
were 3,174 and 5,90 respectively for the function of ¥eber st al
(1970)—, and 3,125 and 5.47 for th.at of Clementi (1965). This
B '
sensitivity of £°(0,0) has in fac t been reported previously by
Lawson et al (1¢6€) for electron-helium scattering. TFor
)
. X“#0 howiever we find that {there is close agreement between
. » ob 2 2 .
the values of £7(0,k") predicted by the glternative wave

functions.

vecondly cur calculstion shows that whichiever value of

By . R, .
£7(0,0) is azdepted, it is impossible to satisfy the sum rule
{6,2). Since there are no residue contributions for electron

an e e 4L e - VDTS SRR AL SR
neon scatitering, then we axpect thai
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_s:a(o)()) = - - Lo wr-g\:\:} AR

u.r( \) “'{ I'4 N
¢ \6:—8)

However, from the data of Hormand (1930) together with
the Bethe-Born approximation for QTOT(kg) the integral in
(6.8) is found to be 4.12, while O'Malley (19€3) gives for A
the value 0,24, It is expected therefore that the difference
between the Born direct and exchange ammlitudes should
~4,36, which is obviously incensistent with the valuss we have
obtained.,

Iiven allowing for the lack of wreliability or the Normand
data, it seems clear that for neon it is insufficient to use
Hartree~fock wave functious in the applicaticn of the forward
dispersion relation. It is suggested therefcere that
extension of the phase shift analysis of FeDowell (19710 io
incorporate the use of dispersion relationg requires the

. . ’ B 2 5
evaluation of £°(0,k%) by scourate confi igurat

wave functions,
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CONCLUS IORS

A model has been presented that describes the scattering

of electrons from light atoms st intermediate energies. A one

()
t
—
[~
-
w
oy
©
w

channel approximztion % been censidered and applica-

tion made to the elastic scattering from hydrogen end helium
atoms, This gives egreement with measured differential crose-
secticns equalled only by the EBS wethod, but unlike ocurs the
latter model is not amensble to systematic improvement. The
results of this work also highliight the inadequacy of semi-

(Y

classica

)

1 approximatiicns at intermediate energics,

The distorted wave approximetion used fof S ezcitation
was found for helium to give good agreement with experiment.
However, it failed fo correctly reproduce, at lower energies,
both the minimum and forwsrd psak in the differential crosge
section. This is attributed to the nsgliect ¢f bhoth s-p
coupling, and polarization and atsorptiou effects in ths
final channél, These deficiencies would not he present,
ho\ever, in a second order potential epproximation with the

=2 levels represented explicitly. We expect therefore that
this latter model will give excellent cgrcement with experi-
ment.

It is concluded that the results of the present work
provide sufficient justification for proceeding to an appli-
~cation of the many channel formulation of Section 2.2. Iin
addition, the exvension relevant to cother light atoms such as
scdium and lithium seewms to be warrsnted, In this way, it is

expected that definitive cross--sections will be obtained in
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the intermediate energy re ﬂion,'for excitation to states that
the model explicitly represents. Furthermore, the utility of
the distorted wave approxinstion as & supplement to the.above
method has been demonstrated.

The many channel second order potential method presented
here will have even wider application when suitably modified
to include channels that are closed. This will allow its use
to be extended to energies below the single ionisation thres
hold of the target. In addition for atoms other than hydrogen
it will then be possible to represent doubly excited states,
allowing the narrow shape resonances in the auteionization
region tc be studied. It is then forssesble that we would
have a single model giving a gcod description of electron-
atom scattering at all non-relativistic energles.

The resuit of the application of the disperaion relation
and sum rule shows that they_are valuable in establishing the
consiglency of experimental data. Their uze is limited however,
8s they reouire total cross- éection measurements %o bve avail-
able over a complete enexrgy range, ‘e have also seen that they
are difficult to appliy to complex atoms and in any case have

no applicaticn to inelastic scattering.
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Avpendix A

Phe coefficienis f,(ﬂjlzﬁiﬂblL) and g)(QLﬂoﬂlzolL)

The explicit form for the anguler coefficients introduced

in (1.27) and (1.28) is given by ecuation 36 of Percival and

~Seaton (1957). We write this as

"
-

.(;A(.P'I(I'Z.Q: 9;_ \\-) = (, [‘( o !)('M :4 ‘)('}.Q?_Jf 1\1(:1.1.1\* l)i\/l

g, A (Mi x) NN

O coOo/i2 Q0

(A.1
\ /LG LN )

where in order %o expl it ftheir symmetry properties, the

ClebschmGordan and Racah coefficients of Fercival and Seaton

(1957) have been expressed in terms of Wigner 3 and 6-3

-3 6
symbols defined by (Messian 1964 Vol, II)
L (-\‘)G‘_E.'f"’M e,
m, m,-M (20t !)v1 . Meta, M (A.23
and >
jelh Qs"\ WIS MY

' = ) WL 5 G
1}|Q{Q;X ( 3 (&ﬁ1 LY 73 s) (A.3)

The 6~j symbol is inverient undexr an interchesnge of
columns, and the interchange of any two momenta. in the lower
row with the corresponding pair in the top rows Therefore

on noting that conservetion of parity demands that

]
SRR (0.8

&
—h
[
|-
C-
=
in
,_i

immediately from A,1 that

&

BCIE\[:E "'~'-,_.

12 0T 974
SEorinn
~LIBRARY



LGNy = f ()

(A.5)

The properties of the 6-j symbol demand that the following

triads satisfy the triangle inequalities:-

1) (L0Y) 1) @AY 1a1) (00,0) av) (120 L) (

b
>
[e))
~—

where ii) and iii) are 8150 implied by the 3-] symbols.

Consider the special case of 2120, We have that i) now
gives 22=L, ii) givesA2i=A and the only triangle inequality is
for (4! Lﬂl) liguation (A.1) then reduces to

RS
-(:)‘(oiz z\\.) (\) .92.‘\‘.._*_.‘. (U h )ég:}_ ga;)\ (£67)

28 5 ‘00

where we have used (Messiah 1964 p9ls)

ji-T+3 N
gj i’ 0} - 8yt Sy
J T 9 [_('J.jw}(z:.'" * t)}y’; (A.8)

together with the symmetry of the 6-j symbol, and in addition
o J ?

(Messiah 1964 pQ210)

(O Y 2 e

- e (A.9)
00 O V'('L\‘\*‘) 7
The coefficient (91222i25|L) for the special case of
21=0 is, from (1.28) and A.T7)
¢, -
t t — { Y
g (o, 0 )= (1) 3, Se.;f\ (A.10)

Purthermore, on putting 21=0 we obiein from {(8.7) and (A.Q)
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{- (oL, 0t \L\ = 5% Y*e'&

(A.11)

il

3ot 0t |v) (4.1.2)

thus sgreeing with Percival and Seaton (1957 Table I).
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Appendix B

the Static Ixchange Approximation for Electron-Helium Scattering

We obtain the static exchange approximation from the hohn
variational principle, in the manner of Drukarev (1965 pi22),
except that we only make reductions that are consistent with
the helium wave functions being epproximate, This gives for

the elastic scattering function F(r)
9 e RE(E) = 2v()R(R) + 2\ W(e,r)F() ey (3.1)

where

R R Ot S AL TR LR A

1

.\0

(r) \ v §é°(53 (B2

. - and ¢10(£) is defined such thet

Brr) = ¢, (2) g, (n) | (8.3)

where ¢l(£1’£2) is given by (2.24), ZEouation (B.2) differs
from (26.4) of Drukarev (1965 pl27) in that we have not
assumed the hermiticity of the Laplacisn operator, this‘being
only valid for exact wave functions,

Ve now make a partial wave decomposition of (B.1) by

expanding

[}
—
Ioe
a
i
~r
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W(' Y= - ;5 (r)szg (x )S- P, ( ) ::_'\i(}_i'__) iy (‘7‘_’(?"_.?!)

€rmne A4t
max (v, ")

(B.5)
On substituting (B.4) and (B.5) into (B.1) and using
d?"P‘ “T P x:;' = P
R EDREY) = Heehs, .,
we obtain
e
' . !
\_J\} k- eu.m) (*) = 2V(0V§ MmﬂKL(H) £ () e
O (Be7)
whera
K (PT)" __\_ P\o(‘)‘)\o(\‘)m'“ (rv) + C‘,/“ r‘\U
L4 Q“(rr) (r.2)

ané we have used (2,24) and (B.3) to replace ¢, O\r). We note

that
: 2
- alugo L - 2
()= 2% _~1 YU (B.9)

and comparing (B.5) to (B.2), use of (B,2) then gives for
q(; ') the expression (2.28),
1. T ( n = " . ’ - . - -ar 'r"'.br‘
When l]O\l) is chosen to have the form HNr(e + ce )
the derivatives in (2.28) are easily evaluated, and the

integral over x gives a constant CTO’ where

N B T J- e S

to \ 8" (atb) L& Lcub)
P . ™ "o I U |
2t C [ \o«-')‘ ——
-i CL:’ ! - X + - :——-..,“" \'( “ | -
La+®) b eveY wel] (3.10)
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Now introducing the function

\n-"

~Qr -
D= nlaer-2) e v ebproa) e | (3.2

we can wiite the explicit fewm for qlr,r') as
1\ - y 7 R (O I .‘., -V r') « C L .
C‘/((‘)r> - P\u(rl)‘lu“)Y: _%' e .—(5: et !
‘ P \-'D [ -‘-—P AN i
2 0 (YD () + SR CEDP ()
2 o L e (B.12)

Choosing the parameters N, a, b and ¢ to be those of Byron and

Joachain (196%), the constant Gio is found to be

C\(\. = Ve Gw3d Y ' (Bal%)




Appendix C

Recurrence reletions
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for the integral M,(aler')

We consider the integral N&(alrrf) defined by (2.30)

Denoting

ﬁa(u\kﬁ>

then integration by parts gives for £>0

HE = (_7&»,‘\('2__“7.\) P"l-t -

0(2"”4‘\;.

where the arguments cf AQ and A

The initial value is

A = 2
G 3,“
LSRN

biwilarly we denote
o r-r')
B (x|

and f£ind that for >0

B, (xir")

Equation (C.%5) is solved subject to

' RO ~oF,
Bo(c-i.\r?") = g:“ (r< &+ _‘_\‘ - € ( N
= -4y

Gi'u‘}

and when v = 0
- ~

U+t
("< :r) )

b4 2142

-1 are thoce of (C.1).

- 2
- Pe +
«

and Az(alor“) = 0 for all %,

E< BQ-\(D(\ e

(C.1)

(CL.5)

(C.6)



L >
(c.7)
Finally, in writing
e
g w210 ol
C (a\re') = (rers 2L e da
Q‘\_ \ ) ( < .) ] (C.B)
s
we cohtain for 4>1 the relation
i o 0 _
e . >
Ce,: LRI VIR o (t:f\ (\ - ':“‘;\
(aL-y(22-2) (20-1) %) -2 (C.9)
with the initial velues
|\ -ty
(O “\“H) = oL (€.10)
o
and
. -l -
C.(ok\!"l‘\) = v e Ty \:'(nat‘,) (Co11)

The exponential integral of the first kind, is defined as
(Abramowitz and Stegun 196% p222)

oQ
£ (x) = Se“’ L oak

18

(c.12)

The integral My(alrr‘) is now obtained from the sum of A,

52 and Cz“




Appendix D

Wave functions and matrix elements of the interaction

1) Llectron-hvdrogen scattering

The normalized bound state wave function for hydrogen is

vritlten as

¢nw\ (c) = pﬁ_ﬁ,_(f_} APNG. (D.L)

‘u
and in particular we have
-t
P\o (~\ = Loz (b.2)
and
, \ r/2
# H \ e n h -
vu\b; q_ﬁ_(\l‘ )’i‘t “)03:’

From the above ecuations we cohtain the following expres-
- éj P

.. s N / r .
sions for the matrix elements delined by (1.6):~

: - ] \
\!\sw(t) = - (\ + 7)) (T.4)

n
~—

~ =3/ .
V\S'I.S (r) ~- 2;‘/3: < * (:’)'r + 2) | (1.5

and

o
Vasas (‘—-E = - Z;i‘_ (\X’3+ Lot w br %) (D.6)

2] Electron-helium scettering

The normalizesd ground state function of helium is written

87}
W

) £y o Y . '
¢/ Il.‘(‘ y ‘\ = (.--——-.| S g\'j-") N { : kY ! to ('-r L;' N 7 I_A (T) “ l—.i )
teg \<'3 1) ~ lDu (\. ) _.-,.i:__... !Oﬁ \"..:)
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while that for asn excited gtate is

0 ( \ P (
- e 4 Y Ay ™ \ A o, B Lo
¢“"¢M (r_i ) (:‘l) - .._wr__‘_' lon ("_&) _&%L‘Z "Vom (-.r‘.l} - 1?.' S t:-"' (D ,8\

L ES
where the + and - signs correspond to singlet and triplet
states respectively.

On adopting Hartree-Fock forms for (D.7) and (D.8) we

have
' - -b
Pm(r\ = M > (e, M+ Ce P) (D.9)
-2

Pal)= w2 (D.10)

ch(;3= Mzhv(E;F - ¢t Q“? ) (D.11)
and

~ Sk

Pn(f\“ Nl\vl@ (D.12)

The values of the parameters in the sbove radial functions
are, for the

i) 1S state (Byron and Jozchain 1966)

I.__t
G
()

a =141 b=261 c=0,799 N, =2,6051

ii) 275 gtate (Byron and Joachain 1974b)
P = 0.865 aq = 0,522 ¢y = 0.432784 N,y = 2.4705

1 19

o
0

iid) 273 gtate (WMo

0
o

1
e 25

5)

\

P = 1.57 g = 0,611 ¢y = 0,34081L N, ., = 4,20
) - AL 20
and iv) olp state (Goldberg and Clogston 1939)

s = 0,485 N21 = 0,7566

with-2 = 2 for all the sbove choices. Tor electron heliun

scattering the malyix slement of the interaction is



| - 2 \
\’nm (‘j) \d'" Jkr ¢ ( 0 2)‘» B :_! + “-_’“‘"_E‘ ;}Qjm(.t-)‘:z
(D.13%)
and in particular we have

V‘s"S ((:3 == NIS!S ‘)0(2 !?'“) * 2('\% (’L 3ot la) s ot ‘)o (7' _‘7.‘0)_‘! (0.14)
I!SIQ(P\ T - N\olS‘-‘;‘b(?—,“""'?} + c'\uh "‘L';_ )\o.‘.(,\) N c\ba(s , ‘7\'{"‘[\,‘ .
- Q.C‘\Je(3,\n-eb‘)] (D.15)

Voo (2) = = (W aeln 3, o o o 003)- S BENERTS
O

and

\jzszs (E) = = Nagas {f\ b,(2,22) f ’\l‘b’a(z:i* ?) - ‘3\\30(3' y BF t7'11”\/\3"“

. 1
2| ke (2,20 20,5 (3,049) +<-f‘~>q(.w,"~%ﬂ I ean

where the + and - signs in (D.17) denole as usual singlet
and triplet states.
Equations (D.14) to (D.17) have introduced the following

constantst: -

N‘S\S = ZN :-
Nigys = & N \i(:l:%\ * (bf?.) )
Nluv = 9N 2 M 'ﬁ"”“ i‘—(ai%ﬁ %(I;%-_:\s-\‘
{iags = WML (B.12)

together with
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@

&
)
>
R

. » )
“y

(m4$)§ (bt 8) (D.1e)

and in addition we have the auxiliary function bT(n?a)
.}

defined by

. 90
\ . Y. &4 L. L "‘
b (n ) = — {dnx € x50
Ly et Lt (D,.20)
241 L~ x| Heclly
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The particular functions required in eguations (D.1l4) to

(D,17) are:z-

(D213

(D.22)

(D.24)
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W
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2
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ithis work are obtained from equations (2,19) and (D.4) for

Pinally, the functions yO(P ir) that are required in

hydrogen and from (2,26) and (D.14) for helium, with V(r) =
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54.4 eV ‘ " 100 eV ' 200 eV
1o | a- b | a b [ b
o | .269¢0)  .391¢0) .237(0)  :295(0) 191(0)  .213(0)
1 | .560(1)  .736Q1) .528(1)  .670(1) .533(1)  .611(1)
2 | .51 - .188Q1) 153(1)  .202(1) 182() | .205(D)
3 | .611(2)  .696(2) .548(2)  .552(2) 694(2)  .767(2)
4 | .268(2)  .309(2) |. .246(2) .266(2) .294(2)  .314(2)
5 | 12602  .167(2) J12602)  LE36(2) | .135() .142(2)
6 | .615(3)  .718(3) 697(3)  .750(3) J711(3)  .720(3)
7 | .315(3)  .367(3) 404(3)  .435(3) 409(3)  .403(3)
Iéélé_i"

Electron-hydrogen elastic scattering:
'|T2_|2 in a) the impact parameter approximation

‘'b) partial wave treatment without exchange

Note: The notation X(n) implies that the number X must be divided

by 10°
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Energy Integrated Cross-Section Total Cross-Section
| (ev) - a b a 3 b
S4.4 609 1.03 e 4.02
100 .310 445 2.3 2,46
200 150 185 C1.42 1.43
Table IIL

: . . . 2
Integrated and total cross—sections in units of LE for electron-
hydrcgen scattering:
a) Impact parametetr approximation of Bransden et al (1572)

b) Present results

‘| Energy Present Results Experimental Results

(ev) |
50 ] 1.82 , - -
100, : .753 . .762
200 - 319 - .308
300 T 105 .190
400 ' S 138 . . .142

500 . : ".107 | T 108

Table IV

. . -2 .
Integrated cross—section in units of ma for electrcn—helium
scattering. Experimental result at 500 eV that of Bromberg (1949),

otherwise those of Vriens et al-(1968),




Energy ' Re {f(o,kz)} Tota;'

} : erss-Sgctlpn .

(eV) . a . . b c a '.b.

50 1.85  1.88 - 3,06 1.59

100 1.67 1.91 1.91 : 1.92 1.13
200 otes 1116 1.13 . .aséi
300 1.32 1.48 1.39 810 .697
400 . 1.25 1.36 1.30 . .636 .554
500 ©1.20 - .1.29 1.24 .533 462

Table V

Real part of forward scatter}ng awplitucde and total cross-section
(naoz) for electron—ﬁelium scattering.

a) Present Results

b) Values adopted by Sransden and McDowell (1970)

c) TEikonal-Born Series results of Byron and Joackain (1973)
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1 L2 ,
Table VII Total 1°§ - 21S Cross-Sections (ﬂan?) for electron-helium

scatterig&

JV - Joachain and Vanderpoorten (1974); BBC - Berrington et al (1973)

R - Rice et al (1972); 'L - Lassettre (1965)
Notation as for Table I

EN%§3§ Jv BBC PRESENT BORN §§i80e23>
50 1.5 (2) 2.25 () 3.03 @] 3.81 @] 1.8 @
81.63 2.2 (2)
100 i.és (2) .1'54 (2) 1.88 (2) | 2.25 ()| 2.1 (2
150 1.35 (2)

Table VIII Direct partial wave amplitudes for electron-

helium 115 > 215 excitation in the distorted

wave Born approximation, with
a) Hartree-Fock wavefunctions (Byron and Joachain 1966, 1974b)

b) Configuration interaction wavefunctions (Vanderpoorten 1973)
Notation as for Table I

DWBA DWBA
t t

Re 9 Im 9

0 [-6.79 (2) |-6.90 (2) |4.84 (2) [4.99 (2)

1 3.65 ()1 3.78 2 |7.11 (2 [7.22 (2)

4 1.76  (2) 1.83 (2) |5.81 (3) }5.89 (3)

6 5.67 (3) 5.92 (3) |1.03 (3) |1.04 (3

7 13.09 (3)] 3.24 (3) |4.22 (4) [4.20 (4)
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Figure 1

"

Figure 2

Figure 3

®igure 4

Figure 5

Tigure Captions

Contour plot of Im [ho(r,r')/rrfj for electron=-
hydrogen scattering.

Differential cross~sections for elastic electron-
hydrogen scattering 2t a) 54.4 D) 100 and c) 200 eV,
@ Teubner et al (1973);© Lloyd et al (1974); curve

I, present results; IP, Bransden et al (1972); EBS,
Byron aq§ Joachain (1973, 1974); CC, Scott (1965);

G, Glauber approximation of Chen et al (1673); B,

Born approximation.

Differential cross-sections for elastic electron-
helium scattering at a) 50 ©b) 100 <c) 200 d) 300

e) 400 and f) 500 eV. -

V Crooks and Rudd (1972);0 Vriens et al (1968);

@® Bromberg (1969, 1974); x Jansen et al (1874);

O Chamberlain et al (1970); 8 Sethuraman et al
(1974);® 0da et al (1972); curve P, present results;
IP, Berrington et al (197%); IBS, Byron and Joachain
(1973a); G, Glauber approximation of Byron and .
Joachain (1973a).

The differential cross-section in the forward direc-
tion for eléstic electron-helium scattering.

CurVe ?, present results; IF, Derrington et al (1973);
B2, Holt et al.(1971); JM, Joacha&n and HMittleman
(1971); DR, dispersion relation febulﬁs of Bransden
and McDowell (1970). | .
Generalized dscillator strengths for 218 and 21P
excitation of helium from the ground state due to

electron impact, with the wavefunctions of:-




Figure 6

Figure 7

Figure 8

O Bell et al (1969); ¥, Flannery (1970); BJ,
Byron and Joachain (1974b); GC, Goldberg and
Clogston (1939),

Differential cross-sectigns for the 118 > 238
excitation of helium by glectron impact at a)50

b) 81,63 c¢) 100 and d) 150 eV.

VCrooks‘ and Rudd (1972); © Hall et al (197%);
@Vriensl-et al (1968a); O Suzuki and Takayanagi
(1974); curve P, present results; DWBA, distor-
ted wavelBorn approximation; DVW-I, present direct
cross—-section with distortion in the initial state
only; T, Taylor (1974); MR, HMathur and Rudge (1974);
BO, Born-Oppenheimer approximation. '

1g

Differential cross-sections for the llS - 2
excitation of helium by electron impact at a) 50
b) 81.63 c¢) 100 and d4) 150 eV,

¥ Crooks and Rudd (1972); O Rice et al (1972);

@ Vriens et al (1968a); & Opal and Beaty (1972)

at 81.63 eVySuzuki and Takayanagi (1974) at 150 eV;
curve ', present results; DWBA, distorted wave Born
approximation; DW-~I, present direct cross-section
with distortion in the initial state only; D,
present direct.cross—section with both initial and
final state distortion; T, Taylor (1974); 1IP,
Berrington et al (1973); G, Glauber approximation
of Yates“and.Tenney (1972); HG, Hidalgo and Geltmen
(1872).

Differential cross-sections for the 118 > 21P

excitation of helium by electron impact at a) 50



Pigure 9

Figure 10

Figure 11

Figure 12

-

and b) 100 eV.

p

-

¥V Crooks and Rudd (1972); © Vriens et al (1968a);
OHall et al (1973); I Chamberlain et al (1970);
curve DW—I, present direct cross-section with initial
state distortion only; IP, Berrington et al (1973);
HG, Hidalgo and Geltman (1972); G, Glauber approxi-
mation of Terebey (1974),

The fractional contribution of the m=o0 substate to
the 118 > 21P differential cross-section for electron-
helium scattering at aj 50 and b) 100 eV,

® Eminyan et al (1974); curve P, present results;

T, Taylor (1974); JV, Joachain and Vanderpoorten
(1974a); B, Born approximation.

The relgtive phase between the m=1 and m=o0 scatter-

18 - 21P excitation of helium

ing amplitudes for 1
by a) 50 and b) 100 eV electrons.

® Lminyan et al (1974); curve F, present results;
JV(1l) and JV(2), Joachain and Vanderpoorten (1S74a)
using Glauber and static distorting potentials
respectively. |

Differential cross-sections for the 1ls*2s excitation
of hydrogen atoms by a) 100 and b)'200 eV electrons.
Q calculation of McDowell et al (1273); ¥ calcula-
tion of Geltman and Hidalgo (1971); curve P, present
resﬁlts; BH, Baye and Heenen (1974a).

Total cross~section for positron~helium scattering.
curve e++He, best fitto the data of Canter et al

(1973); curve e +He, values of the electron-helium

total cross-section of Bransden and McDowell (1969,



1970), ecual to the Born-Bethe approximation for

.k2 >20 Rydbergs; - - - present suggested values

for the positron-helium total cross-section.
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Figure 5
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Figure 6a
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Figure 6b
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Figure 6¢c
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Figure 6d
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Figure 7a
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Figure 7b
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| Figure 7c¢
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Figure 8a
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Figure 8b
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