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SUMMARY

A brief summary of some fundamental concepts and relationships
needed for the theory of electronic structure of many electron systems
with an emphasis on Molecular Orbital theory is presented. Basic concepts
behind core and valence electron ionizations in particular their experimental
and theoretical aspects are briefly discussed.

Binding and relaxation energies have been computed by ab initio
methods with modest basis sets for series of small molecules and their
shifts studied as a function of electronic environment. A comparison has
been drawn with the available experimental data (ESCA). The empirical
correction of Koopmans' theorem for differences in relaxation energies at
different sites within a mnlecule has been studied for lavge systems.

Ab initio calculations have bheen carried out on NZ' co, CO2 and the
relevant core and valence hole states to lnvestigate differences in geometries
and force constants. From these calculaticons vibrational band profiles of
photoelectron spectra (ESCA and UPS) for these molecules have been computed
and compared with the available high resolution experimental data. The

differences between CO and CO, with particular emphasis on the band shapes

2
of their ESCA spectra are investigated. Binding and relaxation enexgies
pertaining to the core and valence levels of these three molecules have

been computed with various models at different basis set levels and their
trends studied. Relaxation energies have bheen compared with the localization

characteristics of the appropriate molecular orbitals. Calculations

indicate that the 025 hole state is localized.
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ABBREVIATIONS

AO Atomic Orbital
A.U, Atomic Unit
BE Binding Energy
CI Configuration Interaction
CNDO Complete Neglect of Differential Orbital
DOMO Doubly Occupied Molecular Orbital
EBS Extended Basis Set
ESCA Electron Spectroscopy for Chemical Analysis
eV Electron volt
GPM Cround State Potential Model
GTO Gaussian Type Orbital
h Planck's constant
HF Hartree-Fock
Ip Ionization Potential
KE Kinetic Energy
LCAO Linear Combination of Atomic Orbitals
MC Multiconfiguration Interaction
MO Moleculaxr Orbital
PE Potential Enexgy
PES Potential Energy Surface
RE Relaxation (Reoxrganization) Energy
RHF Restricted Hartree-Fock
RPM Relaxation Potential Model
SCF Self Consistent Field
SOMO Singly Occupied Molecular Orbital
STO Slater Type Orbital
TPM Transition Potential Model
UHF Unrestricted Hartree-Fock
UPS Ultraviolet Photoelectron Swectroscopy
VB Valence Bond
*
XorX indicate that a core hole has been created on the atom X
S R T T VI
] [
< ... |Mi ee. > E .e. M ...dt where M is an operator

A matrix with a general element Mij 15 dénoted using the fat symbol formalismn

asM . The same applies for vectovs-
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MANY ELECTRON

CHAPTER I

THEORY




Abstract.

This chapter contains a brief survey of some fundamental concepts and
relationships needed for the theory of electronic structure of many electron
systems with special emphasis on Molecular Orbital (MO) theory.

Firstly we state the problem: we need to solve the electronic
Schrbdinger equation for many electron systems. For this we need the
appropriate Hamiltonian and a proper form of the wave functions. Having
determined these, we solve the Schrldinger equation to a first approximation
by the Hartree-TFock method. We find that the concept of density matrices
and Slater's rules for evaluation of complicated integrals are valueble tools
not only in the Hartree-Fock approximation but generally in MO theory. The
ICAO method is introduced to solve the Hartree-Fock eguations ard to analyse
the resulting wave function. The main deficiency of the Hartree-Fock theory
- the correlation error is pointed out, and various schemes for overcoming it
are briefly discussed. Finally a brief description of the computer program

ATMOL 2 used for non-empirical LCAOC MO calculations is given.



J.l. Schrbdinger Equations.

a. Molecular SchrBdinger Equation,

With any state of a molecule is associated a wave function EET which
depends on the nuclear and electronic coordinates and on time, t. The time
evolution of the wave function is governed by the time dependent Schrbdinger

equation
§E

QR B = ip —T ce. (1.1)
T 5,

where’aQT is the total Hamiltonian (energy) operator to be specified below,
The stationary states of the molecule, i.e. those states for which energy
ET is well defined, are described by the wave function of the form
E ., = Ypexp(-iE t/h) eee (1.2)
where WT is independent of time, and a solution of the time independent
eigen-value equation

%Q,TWT = E¥,, cen (1.3)

which is called the Molecular Schr8dinger equation. We shall consider time

independent molecular stationary states exclusively in what follows. (Although
in theory this may not be justified a priori for the discussion of photo-
ionization phenomena, it will become clear later on that our discussieons based

on the time independent Molecular Schr8dinger equation are entirely adequate,)

b. The Electronic Schrbdinger Eqguation.
The Hamiltonlan operator (?{T) for a system of N nuclei (g,h, ...) of

coordinates X and n electrons (i,j, ...) of coordinates x has the form

N 2 n 2
Ry =Xoem) == 1 —2ov? - 1 A v tex)
g=1 B1°M_ 9 i=1 su“m ne

+V )+ VO (X) cee (1.4)
ee nn

with all relativistic and spin effects neglected, where
N n Ze”
%

.
1g

RS
g\\?\“ﬂ:‘-:i R

27 0CT197¢

§€ 1k
Lia-AR.




1 n n e
V (x) == ¢ ' —
ee 2, 4 a4 X,
i=1 j=1 "ij
] N N Z Zhe2
v == 5 1 Ao cee (1.5)
! “ g=1 h=L “gh

(Prime ' indicates that terms for which two indices become equal are to be
omitted in a double sum, and subscripts n and e stand for nucleus and electron
respectively.)

In oxder to find a wave function describing electronic motion for fixed
nuclear coordinates we have to invoke the Born-Oppenheimer approximal'_ion,l
which amounts to separating the nuclear kinetic energy term from’Xi(x,x) and
considering only the part of the Hamiltonian vhich depends on the position
but not the momenta of the nuclei, (%{e). Mathematically this amounts to:

N 2

N, =- 1 h2 - 2 ee. (1.6)
g=l 8T M g
g
%Qix,x) -cyﬁn(X) = ?ﬁé(x,x) ees (1.7)

We assume that TT can be written as a prodvct of electronic and nuclear
wave functions

‘YT = ‘l’e(xlx) X ne(x) LI 3 (1.8)

where the electronic wave function is defined in the Electronic Schr®dincer

equation
R (x,X) ¥ (x,X) = E_(X) ¥_(x,X) eee (L)
and the nuclear function is given by

(R ) + E 0IX _(X) =EX _(X) eee (1.10)

Thus using the Born-Oppenheimer approximation we have separated the totel
wave function into an electronic and a nuclear part. The electronic wvave
function is obtained for various fixed positions of nuclei by solving (1.9j.

This gives an electronic energy Ee which if plottad as a function of X



gives rise to so-called potential energy curves which we shall discuss in more
detail in later chapters. This electronic energy Ee is referred to as a
potential energy, determining the motion of the nuclei (hence the term potential
energy curve) so that the Schrbdinger equation for the nuclei has the form
(1.10). However we shall only be concerned with solving the Electronic
SchrBdinger equation (1.9). (The range of validity of the Born-Oppenhbeimer
approximation is described e.g. in reference 2,)

Now we shall direct our attention towards determining the form of the

5

electronic wave function Weo

1.2. Determinantal Wave Functions.

a. Pauli Principle and Antisymmetric Wave Functions.

The wave function for an electron system We(x,x), vhich we chall now

simply write as ¥ = T(xl,xz, ceey xn) depends on n celectronic coordinates

xi = (ri.'gi)' each consisting of a space coordinate x, and a spin coordinate

gi' In order to fulfil the Pauli principle we require that the wave functiorn

¥ should be antisymmetric under the permutation P of the coordinates

2y = p
Ly(xl,x ceey xn) = (=1) W(xl,x ...,xl) cee (L.11)

2! 2’ n
where p is the parity of P, i.e. the number of transpositions in which P can

be factorized.

Consider now an arbitrary trial function f(xl,x cenp xn) without

?l
symmetry properties. By means of the antisymmetrization operator
AR

HFo= a7 p-1Pe ee. (1L12)
P

where the sum is taken over all n! permutations, we may construct a wave

function

=1
v = Af = DT EDPPEX Xy, ey 1) cee (1.13)

P 4 2



which can readily be shown to possess the requisite anti-symmetryy property
{(1.11). The arbitrary function f may be constructed as the sum of components
of different symmetry types, and by means of the operator (1.12) we have simply
selected the anti-symmetric component and multiplied by (nl)5. This follows
from the fact that the operator (n!)-%d%;can be shown straightforwardly to be

a projection operator fulfilling the characteristic relation O2 = 0, and by
means of such an operator we can always select a compdnent of any desired
symmetry type. If the operation is repeated we chall be left with the same
component, hence the relation 02 = 0.

b. Spin Orbitals.

Although we are interested in many electron functions it is reasonable,
both from & physical and a mathematical view point to construct them from one

electron functions, so~called spin orbitals.

A spin orbital is a function of coordinates of one electron and is usually

written in the form

(6 (x) a (§)
v(x) = or
o (x)B(§)
where ¢(r) represents the spatial part and o and B are two spin functions

which are needed to span the spin function space of a particle with spin %.

It is important to distinguish between spin coordinates and spin

functions, o and B. The functions are defined ocnly for two values of their
arguments which are conventionally chosen to be i.5°

af) =1 B(s) =0

a(-%) =0 B(-%) =1 «ee (l.14a)

From l.14a it follows that o and B form an orthonormal set.



Sarachral = zlac)? =11+ 0.0 =1,
Setrsgrat =z]s4)? =1.14+00=1,

3 2 - ) = = T4
LYa(é )B(§ ydag = Ea(g)B(i) 1.0 + 0.1 = 0. ve. (1.14b)

c. Expansion Theorem.

Let us introduce a certain orthonormal and complete set of spin orbitals

{wk(xﬁ as a basis such that

<il 94> = =
il 3 Swi(ij (x)dx = &, ee. (1.15)
where Gij is the Kronecker delta, and further let us assume that every

normalizable functicen Y (x) of a single electronic ccordinate x = (r,j ) may be

expanded in this set:

Px) =
k

™M 8

lckl,bk(x) eee (1.16)

(The validity of such an expansion theorem has been carefully studied in
mathematics, and hence requires no proof in the context ef this work.)
If we instead heve a normalizable function W(xl,xz) of two electronic

coordinates we can first consider x, as a fixed parameter and e:xpand it

according to (l1.16) with respect to x The coefficients c Ck(x2) are

1° k-

normalizable functions of x2 and by expanding once more with respect to X, we

obtain

8
3

W(xl,xz) = I ¢ (xz)w;(xl) = 1

I (xl)wﬁ(xz) ees (1.17)

c, U
IR kiL'k

-~

r

For a normalizable function ¥(x,,x

1r¥preree xn) of n electronic coordinates we have

similarly

W(xl,xz, cewr xn)

[« -]
E - k ‘l‘.k ) i l'l.' v ee { L]
_ (‘(kl 5 n)w X (xl)¢k'(x2) b, (xn) {1.18)
kl,k2’ es ey kn'—l 1 2 n

-l
Projecting the anti-symmetric component of {1.18) by the operator (n!)ift
defined by the equaticn (1.12) we obtain directly a normalized and anti-

symnetric wave function satisfying the relation (J.1l1).



Rz cliykyens K DU ()Y 06) cuid ()
K, 1K reees k 1 2 n
1772 n=1

-1 " o P
] - {
{nY) ) c(kl k2... kn)L( 1) Pwk (xl)tbk \xz) ...wk (xn)
kl'kz"'° kn 1 P 1 2 n

i)

-1.
X c(k1 k2 .ee Ln)det [wk (xl),wk

kl'kZ""' kn=l 1 2

(n!) (x2),...,wkn(xn)]

= I C(klkz"' kn)det[ wk (xl) ¢k (xzh..qwkn(xn)] eee (1.19)

< <. ... < )
kl k2 kn 1 2

where the operator P permutes coordinates of electrons (not the suffixes of

the spin orbitals).

Every selection of n one electron indices kl-< k?<... < kn is called

an ordered configuration K and the function

)
= vy 2
WK(xl,xz,...,xn) = (n!) det.[wk (xlhwk (x2), ...,wk (xn)]
i 2 n
U () U (%) ee. ¥ (x) |
kl 1 kl 2 kl n

1 U (XD, (%) ... P (x)
TR k2 1l k2 2 k2 n

. . LR (]-.20)

b e G0) e by (x0)
n n n

is the normalized Slater determinant belonging to this configquration. In
(xl,xz, seeyp xn) space the functions WY taken for all ordered configurations
AY

form an orthonormal set. Taking CK = (n!)%c(kl k., eeas kn) we can write

2
(1.19) in the form

W(xl,xz, cees xn) = ;CKWK(XI’XZ' ey xn)

K ees (1.21)



Thus every normalizable anti-symmetric wave function can be expressed as

the sum of a series of Slater determinants built up from a complete basic
set of one electron functions. This statement is in fact a basic theorem in
the method of configuration interaction which will be discussed in the
latter part of this chapter.

c. Slater's Rules for Calculation of Matrix Elements.

As we have seen the Slater determinants are natural building blocks
in constructing many electron functions. It is therefore essential to ke
able to manipulate such quantities. In particular the need often arises for
calculating matrix elements of various kinds of operators with respect to
Slater determinants. Such rules were derived by Slater3 for the case of
orthonormal spin orbitals. (The general case without the orthonormality
constraint has been treated by wadin4 whose rules form a basic procedure
for the Valence Bond method which will be briefly discussed at the end of
this chapter).

A Slater determinant, if written cut explicitly as a sum of products, is
a very complicated function. The determinants are most easily handled by
means of the anti-symmetrizer (1.12), and it should be recalled that a
Slater detérminént is the anti-symmetric component of a product of spin
orbitals

D(x, /%, ...,xn) =;Ft[wl(xl) by lx) .. wn(xn)]

= fc%’a(xl,xz, cor X)) vee (1.227

We shall derive one of Slater's rules explicitly and then state the
rest., Consider the case in which we want to calculate a matrix element

< DIQI D > where the operator 2 is a sum of equivalent one electron operators

n .
Q = r Q ees (1.23)



The index i in Qi means that Qi operates on function xi and since Q
is symmetrical in the indices i, we have for any permutation P a commutator
relationship

(p,2] =0 eee (1.24)

which implies

LA,Q]l =0 eee (1.25)

Knowing that the anti-symmetrizer is a self-adjoint operator (d{,+ =\f£ )
satisfying the rela_ioankg = nl;%f*ye oktain by means of the 'turn-over'*
rule the following result:

<plel p> = <ABle|AE > =

<EBlATQ KBS =<2 AR | &> -

-’ » Y
T <zlak  [R>=zenP<glalpr > LLo@en
P
Let us consider the terms in Q one by one starting with 1 =1, i.e. Ql.
We need to evaluvate
v (1P B . » e o
L-1P<® | 9 [p2>=<® |0 | E >+
1 1
P
1F2 <P | P [B >+, eee (1.28)
where Pl is an. identity operator. The first term in (1.28) becomes
< 1|91|1 ><2[2><3]3> ... <k|k> ... < n[n > =
< la > LR N 102
J|Ql|]'. (1.29)

where the general term

*If an arbitrary cperator T has a domain D then for any two functions

TI

Wl and Wz belonglnglto DT we have

4
<'1“{'l v,> = <vl|'r|‘¥2> eer (1.26)



- 10 -

-t 1 — *(y { pr = A o> = “eo ]--
<kl > = fu o) e o) ax S“’k (2 )y = 60 30)
;Since electrons are indistinguishable and

= l_ ¥ =3
<ilefi> = e e xpax e (1.31)
The second and higher texms in (1.28) involve terms
< 9 > = J y 23
k|J ka(X)wj(x)dx eee (1.32)

which are according to the orthonormality constraint (1.15) equal to zero,
hence they vanish. The contribution to (1.27) £rom the integrals involving

92 is obtained in exactly the same way and amcunts to

< 12 5 = * (37 I 4
2|92. S"’g (2,000, (x,)ax,
= * a2y
¢2 (x )Qlyz(x )dx eee (Lo33)
due to the indistinguishability of electrons.
Therefore

n
< k|o k> =

<DlQD>= 7
k=1

LEJ e =1

Sw ’(x )Q * (3, )o_\l e

?,

k=1
ALl of Slater's rules can he obrvained in a sjwmilar way aud arc swmerised

below.

1) Overlap integral:

<D D, >= * & 8 . ... 8 cee (1.35)
12 k12'1 2 2 kng'n

! . 5 = Cy= h 36)
where okj,?l_i Jw kj(x)ygj(x)dx eee (L3

2) One electron operators:

i) Diagonal elements:

<Dl |D> = ):<1»|9[1r> eee (1.37)
R 1

i k=1
ii) The case wj ﬂ-wu (i.e. two detcrminanis differ in one spin orbitzl

only, where we replaced {, crbital by wr}:
1 d

-

- ] ) ~ e sl . ~
~ ])! iniluj > = < J'Qllh b . e (quB)
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iii) Zero in all other cases. eee (1.39)

3. Two electron operators:

i) Diagonal eclements:

<Dl ,Ip>=2% kg _(1-P )|k > eeo (1.40)
>3 ij k<4 12 12

ii) The case wz > wU:
<p| T o |p, > = <ke|a,0-p )|Kv > eer (L.4D)
i>g X .

iii) The case wk ad wu; ¢2 > wU:

HY
< = - 9
| T D, >= < ke|a,(-P )uv > eee (1.42)
iv) Zero in all other cases,
The notation in (1.40) means
. o\ -
< k& |912(1 P o luuy
* * - { { T =
Slb (x )wl(xz)ﬂlz(l Plz)v“(xl)vu(xz)chlcx2
* * -
SV PUF ()0 0, (M ()
* * ] =
Sug w20 0, (x) ) (x)) ax, ax,
< k2@, v >=- < xelQ,jon > cee (1.43)

1
=7 (the electron repulsion operator) one
. 12
often uses the Mulliken notation which visualizes the interacting electron

For the special case when 912

densities:

eoe (1a44)

< kg l-—-,uu > =§ Ve U ()W e ¥ () Gx ax, = (kulev)

12
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1.3. Density Matrices.

a., Definitions and Properties of Density Matrices.

In this section only an outline of the important definitions and

properties associated with these quantities is given. FPFurther details are
. . 4-7
available in standard references.
We define a series of density matrices of various orders (first, second,

th th
soe p p_ r eoscoe n-= )

P (x']x ) = n.S W’(x', X, ...,xn)W (xl,xz, ceey xn)dxzdx3 cee dxn ees f1,.45)
r? (x]x 'x X ) = {n VW*(x XK eXos eoer X IV(X X 4X peeey X )AX 00 dx (1.46)
\2/) Lo LIRSS K Lt LR A n
' ' . = {10 Else§ g v
(xlx2 ceo xplxlm2 .o xP) (p)‘gw (xl,xz,..., Xpﬁykf"" xn)
* (v
y (ul,x?,...,x 1" n )dxp+1... ax_ eoe (1.47)
N 1 " * 1 - AR
T (xlxz... xnlxlxz... xn) ¥ (x! ,xz,..., xn)W(xl,xZ,..., xn) e (l.4E8

where W(xl,xz,..., xn) is a normalised wave function fulfiliing the anti-

n!

n
tx diti 1.11 d E ST v e
symmetry condition ( ) and () BT (n-p)

The meaning of the primed co-

ordinates will be explained below.

We shall now calculate the expectation value of the one electron operator
n

M= 7z Mi to illustrate the use of density matrices.
i=1, ’

n
.,xn) X MiW(xl,x

< M>= ( ¥*(x_,x
1 .
=1

\) ,...,X)dxdx...dx -

Ly ] ]..49
2 n 172 n ( )

2,-.

A typical term in the sum (1.49) can be written as

S e gy K XM Xy R eee X )0 ARyee G el (1050)

The condition (1.11) allows us to write (1.50a) as

Pi+ Py

h i . . -
(-1) SW*(ki,xz,.u., xl, ceoy xn)Miy(xi,xz,..., xl,... xn)dx]dxz... dhi...dun

eea (1.5Ch)

Because i and 1 arc dummy indices, we can write (1.50b) as
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* D) - . ’ ‘
JEW (xl,xz,.,., Xipeeer xn)MlW(xl,xz,..., xi,.t.,xn)dxldxz... dxi... dxn (1.50c)

Consequently ccllecting all n terms we yget

dx eos(1.51)

<M>= n SW*(xl,xz,..., xn)MlW(xl,x g n

areeer xn)dxldx

(1.51) can be conveniently written as

= * ' - 1. 5%
< M> n 5 [MlW (xl,xz,..., xn)W(xl,xz,..., xn)]%£=x1éxldx2..,dxn eeo{l.52)
Using (1.45) we get

1 a
<M>=n 5 [M,T (xilxl)]x'=xldx1 eee (1.53

Here we have introduced the convention that in the integrands(l.53) and

(1.52) the operator M, shall work only on the unprimed coordinate x. and

1 1
that after this operation has becn carried out we put xi = X5 before the
actual integration.
Generally for an operatorx
n 1 n 1 n
Q= QO + ZQi + 5T Lt Qi_ + —3-|— L Q'iﬂ'k-l. cee ree (1.04)
i=1 *i,4=1 M " i,%,k=1

we obtain in a similar way

<o> = <vylely> =

N 1.4, e 2 Tort | o Yy As:
N+ ~)QLF (xllz.l)dxl + &ulzr (xllenlxt;u_lLJ

(o] 2 2

' 3 L 1 ] [
£ 7 X X few eve (1,55
+ Q55T (xlx2x3|xl 2x3)dxldx2dx3 + (1.55)

where the meaning of the primed indices again indicates which coordinates
the operators operate upon before the integration.
We shall show in the next sections how density matrices can be useful in

MO theory.
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1.4, The llartree-Fock Method.

a. Introduction.

There are many ways of looking at this fundamental approximation. From
the point of view of the expansion (1.21) the Hartree-Fock (HF) approximation
means that this expansion is truncated to one single term. The ingredients
in this single determinant - the spin orbitals - are allowed to vary so
as to minimize the expectation value of the total Hamiltonian with respect
to the determinant. The resulting Hartree-Fock equations are effective
one electron equations for these spin corbitals.

In the literature one encounters a whole series of abbreviations like
RHF', VHF, SUHF, SEHF, SOHF etc. These refer to the specification cof certain
conditions imposed on the basic Hartree-Fock approximation and some will be
briefly discussed in a later part of this chapter.

For many atoms and molecgles in certain states,; e.g. 'shake-up' states
and for many open shell systems it is however not possible to restrict the
treatment to one determinant and the method of configuration interaction
(which we shall also mention later on} has to ke used. The following
discussion refers primarily to closed shell cases, but may readily be
extended tq some open shell systems.

b. Invariance Properties of Determinants.

We shall be working primarily with an orthonormal set of linearly
independent spin orbitals satisfying the relation (1.15) in order to make
use of Slater's rules. Justification for this restriction stems from a well
known relationship in mathematics.

D' =D . det {OLY cee (1.56)
where

D= Fely, (x)) ¥y(x)) ov W (x)] vee (1.57)



D! = ‘}E[¢i(xl) ¢5(x2) . w;(xn)j ees (1.58)
and - is a non-singular nxn matrix transforming one set of spin orbitals
YW= Lo 0yeee ¥ ees (L.59)
to another set
Yo o= [¥js--- 9] ce. (1.60)
by means of a linear transformation
'q"/'= VROV ce. (1.61)
From the equation (1,56) it is obwvious that D' represenis the same physical
situation as D. Since we work with a set of linearly independent spin
orbitals we can always choose the transformation matrix dA. such that the
resulting spin orbitals are orthogonal to each other.

c. IEvaluation of the Energy Expression.

In mathematical language the first step in the BF approximation implles

evaluation of the following energy expression

< /"&b >
< D|D >

eee (1.62)

whexe D is given by (1.57) and the Hamiltonian used here is the operator

given by (1.7) which if written in atomic units has the form:

7 7
\
L =:—;-.Z' E.g_..}_l. - .%.xAj -
g.h gh i~
z
p-9 4+ Ly L er (1.63)
i 2 , .Y,
ag,1 19 1,7 1]

The individual sums are over all electrons and nuclei and we use ths

2 .
notation 4, = Vi. Using Slater's rules we obtain

<plp>=1 eeo (1.64)
' 1., Z9%n
and < D!EQ| D>= Zp' =+ .
2° R
g,h"gh
n 1 Z n |l-P12l
B LI I < kg—=5rt > vee (1.85)
k=1 : g “lg k,9=1 12 i



d. Derivation of the Hartree-Fock Equations.

The next step involves the applicotion of the variation principle to the

wave function (1.57) which implies minimization of the expression (1.65)
with respect to the spin orbitals, i.e.

s<p|®|p> =0 ver (1.66)
The expression (1.65) has been derived on the assumption that spin orbitals
are orthonormal. When we start varying the expectation value of ¥
we have to introduce a device which keeps them orthonormal, since otherwise
Slater's rules are not valid. This is most directly done by introducing a

set of undetermined constants Ak the so-called Lagrangian multipliers and

9:'
varying the expression

n
<p[®[p> - = A, < k2> oo (1.87)
k,8=1

for arbitrary variations (6¢l,6w2,..., Gwn), which is the melhod elanovated
in many textbooks.

Alternatively we may introduce Lagrangian multipliers in a different
way. In the method due to Dshl et al.8 we firstly obtain with the help
of the Slater's rules § < D|& | D > as a @ifference of < D!EQID >

¢+6w

and <nl®|D > where < D|D > is an energy ezpression similar to (1.65)

V] P8y
where we have replaced spin orbitals § by spin orbitals ¢ + dd. Ignoring

higher than the first order terms in 8¢ we obtain

n
~ — . ’ o
§ <D|M|D> = E f\< a.pk[hl] Yy >+ <1pk[hl.| <Supk >}\ 4

k=1
n 1-P_, {1-P 5 | (1.68)
Z < 6\" l’,) . l'l).YJ)n> -+ <]JI ‘\p —————— | Gl'l'l ‘4, > sen -
K, =1 k"2 ox, |TRTA k72| ri, | k'R
1 Zq
= e (— 4 ) - v
where hl (2Al ) )

g “1g
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Using the notation

n
FEF(1) = h) + I (wg(xz)u-plz)wl(xz) ver (1.69)
12
we can write (1.68) as
n | C \
§ <D|®R|D> = E §.< 6¢lel¢k >+ <y P >4 cee (1.70)

k=1
vwhere F is a one electron Hartree-Fock operator. We further require that the

new spin orbitals i} + 8¢ remain orthogonal. That is

A

J = s -
<yt Sy, + 8> Ul Vg >+ <oy, >

e

! > < >
< Wl8y >+ < by [y,
0+ < 5¢k|d'94>+<k'lk,5£>+0=5<kl1>=0 vee (1.71)
where we have ignored the second order term and used (1.15). The orbitals
satisfying (1.66) and (1.71) are Hartree-Fock spin orbitals. Of these n

,,..,\Y :}

denoted by Roman subscripts are occupied [wl,wz,..., wk...,wg n

and the remaining ones denoted by Greek subscripts are unoccupied or virtual

Ly ¥ oyeedds

n+l’ ?n+2,..., WA,..., .’
The conditions (1.66) and (1.71) should be valid for all varialicns

(6w1,6¢2,...,6wn) of spin orbitals, therefore it must hold for any particulaxr

instance, and fér cur purpose it is sufficient to consider a variation of

the form

awi = C¥, /s 5¢k = 0 for k#i, eee (1.72)

where C is a reel constant and Wl is a fixed virtual HF orhital. These
variations will certainly satisfy (1.71) because
< i > = < Sy (Y >+ < ¥ > =
§ < il s, v, AR

*
C<¥ |y, >=0 ceo (1.73)

Furthex, the variations (1.72) imply for (L.66) -

* R
cC<vy ¥ ¥, >+Cc<V¥ [FlY, >»=0 cee (1074)
A 1 L A
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where we have used the notation in (1.70).
Repeating the same procedure with variations when

Sy, = iC¥, ; & =0 for kii eee (1.75)

we obtain .
*
- iC<‘P}‘|F,‘Pi>+ ic<‘l’ilFI‘l’)\> =0 eee (2.76)
(Note: Symbol i when not used as a subscript denotes a complex number.}
Combining (1.74) and (l.76) we obtain

< WiIFlWA > = < Y[F|¥, > =0 eve (1.78)

which holds for any occupied spin orbital Wi and any virtual spin orbital Wu.

If we now expand FY. in terms of occupied and virtual HF orbitals we

k

obtain
[}
n
F¥, = I Ve, + I Ye. vee (.79)
) £=1 H=n+1 K

then we can show that the coefficients Euk are zero,
Proof: If we multiply (L1.79) by a fixed virtual spin orbital Wﬁ and
integrate we get for the LHS

jw:(xl)F(l)wk(xl)dxl =<y ¥ > ... (1.,80)

This is equal to zero due to (1.78). The RHS of (1.7¢) becomes

(o]

<ule > Eop ¥ T < ufv>e
1 v=n+l

g

... (1.8L1)
2 vk

{Note that v and y are dummy indices.)
Using the crthogonality condition (1.15) the expressicn (1.81) reduces to
cuk which must be equal to ()..80) hence to zero.
Having proved that cuk = 0 we can write (1.79).
n
FY, = e .Y i i=121,2,...n eee (1.82)

(Note that kx, £ and i are dAummy indices.)



These n equations (1.82) are Hartree-Fock equations which the orbitals
Wl,W2,...Wn have to satisfy. These cequations can be written in the matrix

form

Fy =Y & ... (1.83)

where'ﬂﬂ'and ¢ are 1xn and nxn matrices respectively.

TR PRI
21 - o

W = =

W =w,v,...v ] ¢ !
E;J Cnn
Ml _

ees (1.84)
The coefficients Ekj' the Lagrangian multiplierxs, arxe elements of a
P . . « g " o
Hermitian matrix since F is a Hermitian operator, Therefore ¢ can be

diagonalized by a unitary transformation
t

JEY - £ e

=¢e8§,, eas (1.85)
1

]
ij ij

. N R Y P
where the nxn matrix g)}satlsfles

\JUr - UJ -1 (1.86)

Multiplying (1.83) by\\y from the right and ucing (1.83) ard (1.86) w

e geo
Py = g e (8D
where qﬂf'_=(%¥\ﬂ «ee (1.88)

We may note that the operator F (1.69) is defined in terms of the
original HF orbitals. We shall prove later on however that F is
independent. of the way in which the orthonormal set [Wi} is chosen, henca
I'' = P, therefore we are justified in carrying out the unitary trans-
formation (1.85).

Thus we cbtain a set of equations in theix cancnical form

FY, = ¢,Y, i=1,2,0ee, 1 cee (1.8
i i'i
where we have dropped the primes for notatiovnal couavenience. Equations of

- co o 9 . . -
the type (1.89} were first dcrived by Fock™ bazed on the =2arlicr vork of
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1 - .
flartree 0 and are generally known as IHartree~Fock equations. We shall
come back to the solution of (1.89) after a brief analysis of the
results already derived.

e. The I'ock-Dirac Density Matrix.

Fock9 and Diracll introduced the quantity
n
= *
p(xl,xg) Pi?k(xl)wk(x2) «se (1.90)
where {wk} are orthogonal spin orbitals defined in (1.57) and satisfying
(L.15). This quantity p(xl,xz) is called the Fock-Dirac matrix and can
be shown to be invariant under a unitary transformation of spin orbitals,
i.e,:-
n
T = * =
Mxl,hz) b ¢k(xl)wk(x2)
k=1
n
=1z
k=

—~
—
.
w
[

~

]wiﬁ(xl)¢i(x2) ven

!

where ="(Jdluj W= [wl Yoy eee w3

and \J is a unitary matrix satisfying (1.86).
wadin4'5 has shown using Slater's rules that a density metrix cf order P
defined by (1.47), where W(xl,xz,..., xn) is replaced by D defined in
(L.57), is expressible in the form

PP xtstees x' %% 0nn %) = Scdet{p (x!,x.)) oo (1.92)

12 p' 12 o) p! i’

For the particular cases of p = 1 and p = 2 we have

C (et - oy oo (1.93)
I (xllxl) P (x1s2)) ( j
'_ .1 Ty )
2 ' 1 ﬂ(hl,xl) (xltz. ; ;
P (x!x!x %) = = coe (1.949)
l 2 L 2 . 2 ( 1 x ) 'xty )
pixye¥y - 2720

These relationships show that the Fock-pirac matrix is identical to the

first order density matrix, and that this determines the higher ordex
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density matrices and hence the entire physical description of the system,

Finally it is useful to deduce a couple of important relationships.
It is worthwhile pointing out that D(xi,xl) is a kernel of a density
operator . (For properties of kernels, see e.g. R. McWeeny7). The
full array F) is a matrix representing the density operator referred to
the basis {wk}. It is trivial to show using (1.90) that

<
Joxgez Do e = pxpix,) cer (1.95)

and _Y D(xl,xl)dxl = n eee (1.96)

5,6

, cee o8 X .
It can also be easily verified ' that the relationships expressed in

(1.95) and (1.96) lead to the following watrix relationships

2
FD ED eee (1.97)

Tr( @ ) n ees (1.98)

which we shall need in the forthcomning sections,

f. Hartree-Fock, Coulomb and Exchange Cuwerators.

We shall now make use of the Fock~Uirac density matrix (1.90)
introduced in the previocus section. Using (1.91i) we may re-write the
effective BF operator (1.69) as

(" (1-P,) p (x,,%5)

F= F(l) = h1 + u) T, dx2 eee (1.99)

The relationship (1.99) shows that the operator ¥(l) depends on the spin
orbitals {Wi] entirely thrcugh the quantity p(x2,x§) which we havz shown
through (1.91) to be invarient under a unitary tFansformation. Therefore
the HF operator F is also invariant under a unitary transformation and
the relations (1.83) - (1.88) are justified.

The second term in the expressicn (1.99) can be written as

(lvPlz)p (xz,xé)

” = C(1) + X(1) ees {(1.100;
12



where
(\p(xz.xz)
C(l) =J —_?—-— dx? K] (1.101)
pix, ,x2)
and  X(1) =S ~E2 2 2 ver (1.102)
12 -

C(l) is called the Coulomb operator.
Note that we can remove the prime from the second coordinate in C(l). This
Coulomb operator represents the potential at position 1 due to the charge
distribution p. It is a multiplicative operator which is sometimes referred to
as a local operator.

The exchange operator #(1) has a different character. If we operate

on an arbitrary function ¢(xl) we ohtain

P..plx, ,xNd(x))
x(1)¢(xl) = _QS 12 272 1 ax

r12 2

p(x, ,x)éd(x,) p(x.,x. ) (x,)
=-S L 2 2 ax. = —S L2 2. ax ese (1.103}

- ') -
¥12 2 Y12 2

P12 is an operator permuting non-primed cococrdinates xy and x2. This means
that to carry out such an operation it is not sufficient to know ¢ at Xq

We need to know ¢ for all values of its argument since it appears to be in
the integral. The exchange operator is non-locai. This is an aspect which

is important to keep in mind in band theory and in certain recent MO theories.

g. Orbital Energies and the Total Energy.

We can write the total energy of the system in the HF formalism in terms

of the Fock-Dirac density matrices. Combining (1.65) and (1.90) we obtain

E _‘=\D|¥_’ D>=l'L'_—'— + S"l p(x., +
HF 1
(th gh
(1-P_.)p(x ,x )p O, ,xl)
1. 12 171 2772
2 S dxl""' 2 e a (1-104)

t12
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On the other hand from (1.89) and (1.99) we obtain

n n
- = < I = S (] w1
E € E <y Fl‘l‘k > S Fli)p(x),xiddx

(1-p )p(xl,x‘)n(x (x1)8x_dx
= Shlp(xl,x:'l) + E 12 - 2 2 L2 ... (1,105)

12
Comparing (1.104) and (1.105) we obtain
1 Z Z] n
Bgp = 5'2' R - Le, -
g,h gh k=1
(1-P. Jp{x. ,x")p(x,.x!)
l-g 12 11 2 2 ax_dx e (1.106)
2 r12 1 2

This is a very Iimportant relationship showing that: the total HF energy

EHF is not egqual to the sum of orbital energies. 'This is because the

electronic repulsion is counted twice in the sum of orbital encrgies (1.105).

The last term in (1.106) corrects for this.

12
h. KXoopmans' Theoren,

We assume that an atom or a molecule in a certain state is described by

the HF determinant

D =ﬁn[wl\v2... ¥ eee ¥ ] ee. (L.107)

with spin orbitals Wi satisfying (1.89). The simplest possibie description
appropriate for a corresponding ionized system would Le a cdeterminant with n-1

rows and columns, in which one of the spin orbitals (WP) is missing:
N

+ = 1 fy vy
Dk Jln-1 L_\ll‘x’z... ‘Pk'-l\yk-l'l.'.wn-] ee. (1.108)

The corresponding Fock-Dirac matrices are related by
4
p(x,x') = pk(X.X') + Wy(x)vﬁ(x') eee (1.109)
Using the expressicns (1,105) and (1.106) together with Slatexr's rules we can

show (for an initially cicsed shell system) that

E+ - E = - < lelk > = —g

1.110)
HF , k HF ( !

" ceoe



This implies that the neyative of the orbital energies can be interpreted

as the ionization potentials. This is often referred to as Koopmans'
t‘heorem.12 We may note however that in deducing (1.110) we have neglected

all reorganization of the electrons consequent upcn ionization - the so-~called
relaxation, because the remaining spin orhitals in (1.108) are taken to be

the same as in (1.107) which is of course only an approximation. Purther
details on this topic concerning mainly calculations of ionization energies
and the importance and consequences of relaxation (rceorganization) phenonena

.will be discussed in subsequent chapters.

i. The Self~-Consistent Field Method.
} At this stage we may now discuss the solutions of the Hartree-Fock
] equations (1.89). The main problem in the solution cf these equations is
associated with the fact that the Hartree-Fock operator F(1l) (1.99) itseif
depends cn the solution‘i of the equations (1.89).

Although exact solutions of HF equations are limited to a few special
cases, the concept of self consistent fields (SCF) provides in principls a
formalism for approximate solutions to any desired degree of accuracv.

The general philosophy behind the approach is to 'guess' an initial set of
{Wko 1. These can be used to construct the Fock-Dirac matrix

n

V&
pP0x,xt) = 5 ¥ O gy (O gy . (L.111)
k=1 X k
which gives the first approximation of the effective H} operator F(o) (1.99).

- . , s 1 , . ., .
Then the next set of apprcximate spin crbitals {Y¥ ( )} is obtained from (1.89)

(o)

by regarding F as a fixed operxator

() , (1) _ (1)
PR T m Y,

k

ene (1,112
The whole procedure is repeated until the Fock-Dirac matrix» no longer chanyces
(wvithin a certain tolerance) on further iteration. The orkitals which

generate the final Fock~Dirac matrix are then said to be self-consistent with




the potential field they generate and the whole procedure is called the self-
consistent field method. In practical calculations there are two main streams
in handling the SCF idea: numerical and analytical methods. In the numerical
methods the problem is in one way or anothexr reduced to an integro-
differential cquation which is solved numerically. The analytical methods

are characterized by the use of a known set of basis functions. The unknown
solutions are expanded in these basis functions, and the problem is reduced

to a set of linear equations for the corresponding coefficients.

j. Open Shell Methods.

Most of the expressions derived in this section on the Hartree-Fock
method apply strictly speaking to closed shall systems. However calculatiocons
on open shell species (in our case on core and valence ionized states) are
becoming increasingly important and are part of an essential routine Lo any
theoretical chemist. Therz are several procedures to tackle the problem of
open shell molecules, all based on the HF theoxry and its various extensions,

; 5 13
The most eommonly used techniques are:~ Roothaan's Open Shell Method,

14 . . R .
Nesbet's Method, and the UHF method discussed in a latexr =section.

1.5. The LCAC MO Methed.

a. Basic Procedure.

The main analytical method for colving the HF equations is the method in
which llolecular Orbitals are constructed as Linear Combinations of Atomic
Orbitals, the LCAO MO method. In this apprcach each Hartree-Fock molecular

spin orbital is expanded in terms of a set of basis functions

m
Y = . =
Y= I ¢ (e i k=12...,0 wee (1.113)
H=1l
= { , S
where <P {6 ¢, -0 4D eee (1.114)

is a set cf m basis funclions whose form will be discussed latexr. If the

complete set.dﬁ is used {(i.e. m iz infinite), the final result will approach
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the Hartree-Fock limit. In practice, however, one truncates the expansion so
that m is finite. In ordex to be able to construct at least n linearly
independent solutions, it is necessarv that m > n.

One way of introducing the LCAO procedure is to use expansion (1.1l13) as
the means of solving equations like (1.112) where the operator F is
temporarily fixed. Inserting (1.113) into such equations we obtain

m

m
LFy X)e . =¢€ L ¢ (x)c (1.115)
= B vk Lu=l U

u}: Tt ee

¥
Multiplying (1.115) from the left by a fixed basis function ¢3(x) and

integrating we obtain

n m

uilFU“ cuk = EkuilAUUChk ees (L.116)
which can be re-writcen as

m

uil[Fuu - CAUu]cu = 0 eve (1L.117)
where we have left out the index k for convenience and where

P, = $‘¢3(x)n~¢u(x)dx oo (1.118)

A w= -S¢3(x)¢u(x)dx ceo (1,118}

There are m equations of the type (L.117), because v = 1,2,..., m and they
form a set of linear equations which have nron-trivial solutions only if the

determinant of their coefficients vanishes

det{ F - €A } = o. cee {1.120)
vl

Ul

The solution of (1.120) yields m eigenvalues €

" and for each € we get

a corresponding set of coefficients Cuk; U= 1,2/e0., m, Tt is convenient

to arrange them in a column matrix
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Cx ~ , e. (1.121)
c k
u

c k
S
and to collect all such columns in a square matrix of dimensions mxm

< N —

T
oo €1 = n vee {1.122)

J/

For the original problem we need however only n such vectors, which is why
the two concepts occupied and virtual spin orbitals are introduced.
(In most applications the occupancy of orbitals in successive SCI' cycles is

determined by the Aufbau principle.)

C (mm)matrix
. f\\——‘}'\.—.-..\ ‘
G; =[¢lﬂ,2-oo ¢n¢n+l..._¢ ] =

m

~= o =

occupied virtual

|
I ee. (1.123)
I

C (0 b
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It is worthwhile to mention briefly the practical solution of the
proklem (1.120), The evaluation of det{Fuu - aAuu} is not very practical
and therefore we re-write the general expression (1,117) in matrix notation
as

F . =AC'E e (1.124)

This is a standard matrix eigenvalue problem vhich can be tackled by
diagonalization of the hermitian matrix . Two well known procedures for

. . 1
this process are Jacobi and Householder methods described e.g. by Cook. >
The presence of the overlap matrix;éﬁ in (1.124) which superficially seems
to complicate the diagonalization of the Fock matrix can be overcome by

. . . cr s 15
various standard numerical procedures again described e.g. by Cook.
. [~ O
There are several mcthods used for guessing the initial matrixﬂ_
for the iterative procedure. The simplest way (even if not the most efficicent)
}
is to diagonalize the one electron Hamlltonian operatox matriXmﬁl and the n
. ‘. . s @ -
eigenvectors of lowest cigenvalue will define . ~. Note that a general

elenent of thejil matrix is

hlU;=~g¢;(x)h]¢u(x)dx eee (2.125)

where h) = - (A, + I ) oo (1,126
' T 9 7ig

b. The Charge and Bond Order Matrix.

In the LCAO MO approximation the set of occupied Mq0.'s is written in
a matrix as
W= (V.Y ... veo (1,127
W [y, ¥, L (1.127)
Using (1.113) and {(1l.114) we can write (1.127) es
he oA n oy sy
W= db eee (1.128)

The M.0.'s are orthenormal

r\“r-*“QHr <C\“H” O\Hr > = /;; cee (Loiz)
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but the basis functions {1.1J4) in general are not orthogonal

DT = <Pldh>=A =4 vee (1.130)

If one thinks of a row function {1.127) as a matrix with the column labelled

by discrete indices 1,2,...,n and the rows by a continuous index x, i.e.
-~

Wl(xl)wz(xl)..,wn(xl)

Y o(x )Y (x.))...¥ (x,)
r\\\ﬁ{: 1,72 222 n-2 ee. (1.131)

Wl(xw) .« e e Wn(x i

L]

N

then the Fock-Dirac metrix can be written as

(30 =YYt =W s <Y oo (1.132)
We can rewrite (1.132) in terms of basis functions. Using (1.128) in (l.£32)
we getl

G > @ Q1 <dpl =idp > R <ol e (1133

w

The matrix

L Yy YL

"
.

eee (1.134)

=
"
Pommie g

-+
]

L—-—_——_————-J

is often referred to as charge and bond order matrix and is in fact tha
Fock-Dirac matrix in the particular renresentation . It is trivial to
check that the relaticn (ln97)5b’? =1fD implies
RaR=R vee (3.135)
and the relation (1.98) TrSF)= n implies
Tr(AR) = T™r({RA) =n ce. (1,136}

c. Population Analysis.

™

The cliarge and bond order matriz ns tegether with the bond overlap

; . . . , 16
matrix Ay are used in the so-called Mulliken Population Analysis tc
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analyse the results of ULCAC MO calculations.

We shall illustrate the Mulliken procedure for restricted Hartree~l'ock
(RHF) wave function whose Qain characteristic is the equivalence restriction.
For closed shell species this implies

¢2i_1(k) = ¢i(k)a(k)
wZi(k) = ¢i(k)B(k) eee (1.137)

where ¢i is a spatial part and o,8 are spin parts associated with spin

orbitals ¢21—

and V},., respectively.
1 2i
71 O 1 ! i rati Vel S
Applying (1.15) Logéi angd w2j {oxr Yoio1 and ¢2j-l)' integrating over the
spin factors and using (1.14b) we obtain
> = -.'{--'
< ¢i|¢j aij (1.138)

The determinant (1.57) now becomes

D = JFtly) (a(l) ¥, (2)p(2) ¥, (Nald e b, BT .. (1.139)

n/2
and we nov have to solve n/2 Hartree~Fock equations (1.89)
FYp = e ¥, 1=1,2,.0., 7/2 .. (1.140)
in the LCAO MO approach the Q: ' matrix (1.123) now has the foirm
.o ] eee (1.147)

/
(L=N: 1¢2"°¢ n/zr n/2+1' n

Q_(mxn/z)matrlx
For closed shell systems with n/2 doubly cccupied molecular orbitals

(DOMOS) we obtoain by using (: from (1.141) in the equation (1.134)

R=CC* e (1.142)

wherxe an element of the above matrix is given as
n
/2
R,,= 1 c, C, . eea (1.143)
R

We define an overlap population matrix \f{7with an element

W.,. = 2R, A | ee. (l.144)
ij 13713
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where Aij is an overlap integral connecting basis functions i and 3 defined by
(1.119).

In the Mulliken approach
V., = LW, eoe (1.145)

corresponds to the population of basis function j.

The chaxge a4, assigned to the atom A is then given by

A
= - - 47 sow .
q4, 7A g‘j (1.146)

where ZA is the atomic number of A, and the sum is taken over all basis

functions centred on atom &A.
The overlap population matrix\v¢7can also be used to calculate bond

overlaps (which can be split into ¢ and 7 comgonents) ketween atows B2 and

9aB

B in a given molecule.

all A all B
= 2 % L ) L] \
g ? g wij (1.147)
j i
all B
( Z implies that the summation is taken over all i's which are indicesz of
i

basis functions centred at B only for a given j which is an index of a given
basis function centred at A.) These bond overlaps may ke used to give us
information about a strength and a geometry of that bond.

Although we have not considered cpen shell species in any detail, it is
worth mentioning that a similavr anaivsis can be carried out for molecules with
unpaired electrons. Hexe in addition to a closed shell density matrix

R,=C 2@_; ve. (1.148)

we define an open shell density matrix

. +
Ry =C.1C, oo (1.149)


http://Mul.lik.en
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where qu and Qil denote eigen vector arrays asscciated with DOMOS and SOMOS
(singly occupied molecular orbitals) respectively. Similarly the overiap
population matrix formed from DOMOS Még has an element

= 2(R ces . )
(Wz)ij 2( 2)iinj (1.150
and the corresponding matrix elements of\Nﬁl is

Wy ),y = LR LA, eee (1.151)

In an analogy with the expression (1.145) we define

(V2)j = 7 (w2)ij ess (1.152)

15 ) 143 eee (la.153)

which correspond to the contribution from DOMOS and SOMOS respectively to the

Mulliken population of the basis function j. Further

Vj = (Vl)j + (V2)j ees (1.154)
corresponds toc the total Mulliken population of the jth basis function and the
equation (1.146) gives again the total charge on atom A. Finally bond overlaps
between a pair of atoms from DCMOS and SOMOS can be calculated from the expression
(1.147) using appropriatc elements of the matrices\,/\//—2 and\ﬂyl respectively,
and the sum of these can again tell us something about the strength and the
geometry of the bond under consideration.

There are a number of weaknesses associated with this approach to
elabecrating details of electron distributions in molecules. Notably assigning
electvon population to a given atom, because a basis function is centred on that
atom 1s a simplification, especially if the bhasis function concerned is
diffuse. Further, it is arbitrary to divide Lhe overlap terms equally between
the centres concerned (see expressions l.144, 1.150, 1.151). The next drawback

stems from the fact thath (anng 1,“? ) is basis set dependent which ccmes

2

clearly from the invariance property ofjD (see (1.91)) and dependence of

Zgﬁ on basis functicrns. This clearly implies that charges on atoms (and beond
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overlaps between tham) are basis set dependent. The classic example is the CO
molecule where not cnly different basis sets give various absolute values of
charges, but also give different relative charges (i.e. signs) on carbon and
oxygen. This is clearly illustrated in Table 1l.l.
Table 1.1.
Charges on Carbon and Oxygen in CO Molecule Calculated with Different

Basis Sets. (Details of these Calculations will be Discussed in the
) Later Chapters)

1
Basis Set Charge on Charge on
Carbon Ooxvgen
STO 4~31G -0.076 +0.076
Double Zeta Slater +0.451 -0.451
Extcended Siater +0.356 . -0. 356

Despite these limitations the Mulliken population analysis is conceptually
close to qualitative ideas about charge distributions in molecules, and am we
shall see in the next chapters, it can be very useful tc a theoretical chemist
when cautiously used; particularly if the emphasis is on intexpreting trends
and differences for a series of closely related molecules.

Often a more useful method of looking at the electronic charge digtribution
in a molecule.is by use of density contour maps. In this approach the

electronic Gensity at o point in space r is evaluated

3 C o faa ’on 33
p(r) Lzrtij(‘ni \-L)‘bj \—-) eo s (ln]JJ)

i3

(This expression is for closed shell systems. For open shell molecules we
have to consider again

£, (X)), plgr), (R?)ij and (R])ij')

An arbhitrary grid of densities is usually preduced and from these conteurs aie

built up by employing an interpolation procedure. We shall be using these
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contours (and in particular difference contours) to indicate changes of
electron dengsities in different regions of a molecule as a consequence of
electrxonic reorganizations accompanying photoionization.

d. Basis Tunction and Basis Sets.

We have already mentioned that in the ILCAO-MO procedure each molecular
orbital is expanded according to (1.113) in terms of a set of basis functions.
Exponential or Gaussian functions are most frequently employed for this
purpose.

Exponential Functions.

The use of exponential funétions was first suggested by Slater17 and
functions of the type
arimL 8 ce. (1.156)
are therefore called Slater functions or Slater--type orbitals (STO's),
where A is a normalization facter, n is a principal numher and } is an
orbital exponent. Angular dependence is usually introduced by multiplying
(1.156) by the appropriate spherical harmonic Ylm(3,¢).

Gaussian Functions.

The use of Gaussian functions or Gaussian type orbitals (GTO'e) in
electronic structure calculation was first suggested by Boys.l8 By analogy
with (1.156) the radial dependence of a Gaussian function may be written as

Bx“e"“r2 eee (1.157)
where n is the analogue of the principal quantum number in the Slater
function case. Angular dependence may be again introduced by a factor
Ylnl(e,¢). However the more usual form of Gaussians including both radial
and angular dependence is often introduced by a function of the form

L2
oxPy zfe 0T ... (1.158)



vhere p, q, s are integers. Funetions of the type (1.158) are called
Cartesian Gaussians. J1f, for czxample p = q = O and s = 1, the function is of
Pz symmetry.

The main attraction of Gaussian functions is their well known prope:-rty]9
which is: that the product of twe Gaussian functions Ga and Gb centred
on different points a and b is itself a Gaussian function centred at a point
e located on the line joining these points.

Thus

< GaGb’?l_‘ IGCGd > = < Ge!—;l——! G > ees (1.159)
12 12
Therefore three- or four—-centre integrals which are very time consuming in
ICRO MO calculalions are reduced to relatively simple two-centre inlteqgrals.
The majoxr drawback to the use of Gaussian functions is that they
do not resemble atomic ovrbitals very closely. In particular the S type
Gaussian function lacks a cusp at the nuclecus and also ites property at
large distance is very different from a true behaviour. Figure 1.1 clearly
illustrates this where a comparison is made with a Slater type orbital, the

latter being a somewhat better approximation.

——

e —

-

ST0 ¥ . ) GTO



- 36 -

The Minimal Basis Set.

The basis set is usually described as minimal if ii contains only one
function for ecach atomic orbital occupied or partly occupied in the atomic
ground state. For molecules with only first row atoms a minimal basis set
consists of a l1ls function for hydrogen and ls, 2s, 2px, 2py, 2pz functions
for the other atoms. The functions in a minimal basis set are usually
Slater functions.

The most important problem is to find the values of exponents i_ for
various atoms. The original method for finding these makes use of empirical
rules deduced by Slater.l7 The present modern procedures ccnsist of
variation of % values in repeated atomic SCF calculations for the ground
electronic state of each atom until a set of % 's is obtained giving the

. . , . ,20,21
lowest possible minimal basis energy. Clementi™ '

and his co-worlers have
produced tables containing such best atom exponents, and the expconents in
reference 20 have been used in this present work and are reproduced in
Appendix 1. Atcm optimized basis set exponents are usually used directly

in MO calculations even if a molecular enviromment is often quite differcont
from that of a free atom, becauce optimization of expcnents in moleculer
envircnments is generally not computationally practical. Therefore it is
preferred to extend the size of a basis set if a greater accuracy of
calculation is desired.

A qinimal Slater basis set is conceptually simple, but requires a
computation of complicated multicentre two-electron integrals. To overcome
this problen, Foster and Boys22 sucgested tc expand cach STO in terms of
linear combinations of n Gaussian functions (the STO-nG method). This

4 oa
23,24 In their

scheme was extensively tested by Pople and his co-workers.
technique the coefficients and exponents of the Gaussians are optimized by

a least squares method to fit a Slater orbital of unit exponent. The
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Slater exponent is then chosen and the Gaussian exponent scaled
accordingly (scaled Gaussian exponent = least squared optimized
exponent X (Slater exponent)z). The coefficients of the Gaussians obtained
from the least squares expansion and the scaled exponents are then used in
the STO-nG expansion.

Stewart25 has also obtained an expansion of Clementi26 STO SC¥
AO's (which are Hartree-Fock orbitals) in terms of Gaussian functions
for the first row atoms by the method of least squares. The coefficients
and exponents of the Gaussians from this expansion form ingredients cof the
go~called HF-nG minimal basis set which closely resembles the STO-nG
set, The HF-nG expansion is primarily useful in calculations on noleculies
containing electronegative atoms like oxygen or fluorine, because it
is well known that the shapos of the atomic crbitals of these elements are
not very well reproduced by a simple exponential function.

Split Valence Basis Set.

Pople and co—workers27 have intrcduced a slightly more flexible hasis
set, the so-called split valence 4-31G kasic set. In this set each
inner shell is represcnted by a single basis Ffuaction teken as a sum cf
four Gaussians, and each valence orbital is split into inner and ouier
parts described hy three and one Gaussian functions, each part being
varied independently. Depending on the way the expansion coefficients

24 e 25
and Caussian expeonents are determined we obtain STO 4-31G, HY 4-31G

and LEMAO (least energy minimal atomic orbitals) 4~31G27 split valence
basis sets.

These split valence basis sets are relatively econcmical to use and
are capable of describing the main features of the changes of atomic size

and angular distortion which occur in a molecule. We shall sec latev on

that wvhen the concept of an equivalent core atom is incorporated into thesa
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split sets, then they can be useful in calculating fairly accurately
wave functions of coxc hole state species.

Double Zeta and Extended Basis Sets.

An improvement in the overall SCF energy can be obtained with double
zeta basis set. This set includes exactly twice as many Slater functions
as the minimal basis. For the first, second and third row atoms double
zeta basis sets have again been determined by successive ground state SCF
calculations until the best possible sets of i values are obtajned.28’29’3O
Appendix 1 contains exponents for double zeta bhasis set used in this work,
which have been taken from reference 28.

In oxder to approach the Hartree~Fock limit triple or extended
basis sets (E.B.S.) have to be employed. 1In this work the extended basis
set (E.B.S.) have employed best atom exponents due to MclLean and

]

. 21 . 4
Yoshimizre. The values of these exponents are again tahulated in

Appendix 1.

Gaussian Basis Set.

A large body of literature with carefully optimized CGaussian basis

. . . 32,33,34
sets of various sizes is well known. 77!

These sets have been optinlized
for ground state of atoms by varying the Gaussian exponents o in (1.157)
or (1.158) and minimizing the SCF energy.
It is already been pointed out (Figure 1.l) that a STO provides a
more adequate description of atomic functions than a GTO. For this
reason it is necessary to use a larger number of Gaussian functions
compared with Slaters in order to achieve the same accuracy. If there are

m basis functions then it can be shown that in the LCAO MO procedure

m(m+1 )_
2

Humber of one-electron integrals (p)

N
)

+1
Nunber of two-eclectron integrals (t) = Ei%—~h =

4 K 4
-é‘--(mi 4 2m3 + 3m2 4+ 2m) mo
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Even if it is easier to evaluate a 'large' number of 2-electron integrals
over Gaussians than relatively 'fewer' such integrals over Slaters, a
relatively large number of Gaussians introduces a problem of storage space
for the integrals. Further the time required to build up and diagonalize
a Fock matrix (1.124) rapidly increases (the fastest diagonalization
procedures are roughly proportional to the cube of the matrix dimensions),
and the iterative process converges very slowly when large basis sets are
used. The above problems have led to the use of contracted Gaussians,
linear combinations of Gaussians with fixed coefficients.35'36 In this
technique, then, only the integrals over the contracted functions are
stored and in solving the SCF equations only the coefficients in each MO
of the contracted functions must be determined. This approach allows one
to exploit the analytical properties of Gaussians in integral evaluation
and yet save on storage space and keep the time required for the SCF
iteration at a reasonable level. How much accuracy is lost as a result of
such contractions depends a great deal on the skill with which the initial
basis of the Gaussians is contracted. This probiem is discussed clse-
where.35'36'37
It is worthwhile noting that most calculations in this wofk have
been performed with split valence 4-31G basis sets which are relatively
small, but incorpeorate the advantagecus principles discussed above,
Integration is done ovex Gaussian functions vhich are contracted, a fair
amount of flexibility is retained in the valence region (which is in
principle of double zeta quality) and the idea of atomic orbitals is

presexrved.

Polarization Functions.

As we have already pointea out a Hartree-Fock limit can only be

achieved in principle with an infinitely large basis set. 'This is not a
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very practical suggestion, and a majority of calculations are done only
with basis functions representing each atomic orbital occupied or partly

. . w38 . . .
occupied. However as emphasized by Nesbet inclusion of 'higher functions'
(e.g. 2p for H, 3d for Cl, 4d for Br) can lead to a substantial decrease in
SCr' energy and an improvement of some computed expectation values of
various properties of the molecule. TFortunately these properties are not
too sensitive to small variations in exponents of polarization functlionsg,
and it is often enough to make rcasonable choices of these exponents basced

s __ 3 39 L -

on optimized small molecule calculations or even to refer to simple

s 17 40
empirical rules such as Slater's or Burns' rules,

e. Semi-Emnpirical LCAO MO Methcds.

The main difficulty in using the LCAO MO method for actual calculatinons
is to compute the matrix elemeats of the Eartree-Fock operator (1.118)
which involves a computation of a large nurber of three- and four-cenire
two-electrxon integrals. In the so-called ab initic methods all integrais

arxe conputed, but in semi-empirical procedures a numbel of integrals is

either set to zero (e.g. some two centre and all three and four centre
integrals) or estimated empirically from parameters of dGifferent kinds
taken from experimental data. Consequently a great amount of accuracy is
lost but the computation time is drastically reduced thus allowing larger
systems to be studied.
Various semi-eupirical schemas have bheen devised over the years
differing mainly in the degree of approximation invelved. The methods for
4]
a treatment of m electrons explicitly are Hlickel (HMO) and PPFP methods,
The well known methods which include all valence electrons are known in

~

4z
their abbreviated form as CNDO, INDO, NDDO, MINDO, BEHIMO techniqgues. “



The nature of the projects presented in the following chapters are
such that only a non-empirical treatment is feasible. But one should not
underestimate semi-empirical methods because presently and also in the
near future a great majority of the problems in chemistry will be
comprutationally impossible to be tackled by ab initio methods. Knowing
their advantages, limitations and pitfalls, semi-empirical methods can be

a valuable tocl to any theoretically minded chemist.

1.6, Beyond the Hartree-Fock Limit.

a., The Statement of the Problem,

The experimental ecnergy of a molecule is different from the Hartree—
Fock enexrgy due to spin, relativistic and correlation effects. We can
write

E =E__ '+ E + E + E_ .,
expt HF corx relat spin

oo (1.260)
The spproximations inherent in using a non-relativistic spin
free hamiltonian arc negligible for molecules containing first row atoms

as far as the work in this thesis is concerned. Therefore Ere]'i ar.d
Lat

Egpin can be ignored in terms of their contribution to the tot=l enexgy.

By contrast the inclusion of correlation effects is of some importance
since allhough the absolule magnitude of Ecorr is small compared with LHP
for the systems of interest in as far as this thesis is concerned the

contribution to energy differences cen often be significant.

b. Coxrrelation of Electrons.

Ignoring spin and relativistic cffects eguation (1.160) now bhecomes

E = E + B s (1.161)
expt Hr corr

The exaclt expression (eguation (1.53) whexre Q is replaced by the
Hamiltonian defined in (1.63)) for total energy may now be written as

<> = eoe (1,162)

E + B
iy cory



where EHF is the Hartree~Fock cnergy defined by (1.104), and Ecorr

is the coirelation energy. According to (1.162) the correlation energy

is defined as the difference between the exact energy and the energy at
the HF limit. Thics definition is due to wadin._43 Correlation energy

is therefore a mathematical quantity telling us the error in the energy

at the HF limit. The physical reason for this error can be easily seen
from the following consideration. The HFF treatment neglects instantaneous
repulsions between pairs og electrons and instead considers an average

interaction. In reality an electron in a molecule (or an atom) will have

instantaneous interactions with all other electrons due to Coulombic

repulsions. These interactions will not be the same as the average
interaction included in the HF procedure. The difference of these two
interactions 1is the origin of the correlation exror vhich is partly
accounted for in the case of electrons of the same spin by the anti-
symmetrizer {1.12}. The antisymmetrizer correlates electrons of the same
spin, because it does not allow more than one electron of 8 certain spin
to occupy a given spatial orbital. wadin43 has demonstrated this
quantitatively using the second order density matuvices.

The-proﬁlem of correlation can be basically handled in two ways.
Either we ignore the errors associated with correlation or we try Lo
estimate them.

c. Cases where a Correlation Exror can be Ignored,

There are many problems in chemistry where we can jgnore with
confidence the effects of electronic correlation. In this work Hartree-
Fock energies have been primarily used to calculate potential energy
surfaces (PES's) and ionization energies of some molecules.

i) Scme important aspects of PES's, namely equilibrium geometries

and force constants can be successfully predicted within the
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Hartrec~Fock formalicw. This cemes clearly from Fig. 1.2,

PIE4

Yig. 1.2

Experimental and HI'" PES for a diatomic molecule

where we have sketched a computed and an cxwerinental potential
enerqgy curves of a diatcmic molecule. The point to be noticed

is that the HF curve lies above the experimental, but the

shape of the two cvrves is pretty well the same around the
minimum, one beiny almost parallel to the other. Conseyuently

the computed Re values (equilibrium bend distances) are noxmally
clese to the observed values (usually few lLwndredths cf an
Angstrbm too small) and also the vibrational frequenciecs (thus the
force constants) are well reproduced by HF functicns, being
usually slightly larger as the

ize of basis set decreases.

«

0

These aspects of PES's have been quantitatively discussed e.g.
L 44 . . . . .
by Cads and his co~workers, The same situation cccurs in

nmultidimensional PES's oi polyatomic molecules whexoe equilibrium

from IIF wave functions.
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ii) One of the main methods for calculating lonjzatlon potentials
is the A SCF method. In this technique ionizaticn potentials
are given by

HF BF
Ip = E - E eer (1.163)

= ®(ion) (neutral)
vhere it is assumed that correlation corrections uniformly
lower the total enerqgy of the grcund and ionized states of a
given molecule. We shall discuss this in slightly more detai
in the context of calculations of ionization potentials,

There are also other quantities of chemical interest such as
barriexs to rotation45 or heats of isodesmic reactions46 where changes
in correlation cnexgies are small.

However the most important drawback of the IIF treatment is its
incorrect hehaviour at large internuclear separations. This is also
illustzated in Fig. 1.2. The reason for this con be readily appreciated
by expanding the detexminental wave function and this reveals the
contribution at large internuclear distances of spuricus icnic terms.
Therefcre we cannot describe bend breaking and stretching. Further, nheats
of atomization, discociation energies and heets of reactions (apark
from isodesmic xeactions) are inadeguately described within the Hartree-

Fock formalism.

d. Methods for Trcating Electronic Correlation.

Many of the current approaches to Lhe correlation energy problemn
dexrive from the pioncering studies of Hylleraas in the vexry early days
of the development of guantum chemistry.

i) The Pairx Population Method.

In this technique which is originally due to Hollister and

53 , . s
Sinanoglu the correlation encrgy is evaluated from

) eve (1.16G4)



where cij's are atomic pair correlation energies weighted by the atomic
orbital pair populations pi's. (The value of a particular pi is conveniently
obtained from the lMulliken population analysis. It is in fact a population
of the atomic orbital i obtained as a sum of populations of basis functions

(1.145) compromising this oxbital.) We can further split Ecorr into inter-

and intra-atomic terms,

! . + B . ces (1.1653a)
cory corr-inter coxrr-intra

depending on whethey the pairs of orbitals are located on the same or
different atoms.
49 . - . ,
Snyder and Basch have employed this method to estimate corielation
corrections to some values of healts of reactions. They used Hesbetl's work50
to guide then in preparing a set of Fij's for atomic orbitals of the first

row atoms, which are listed in Table l.2. However only s,j's corresponding
AL

to atomic orkitals on the same atom can be calculated by Noshet's nethed,

and therefore only the E . component can be evaluated. However
corr-intra

49 . o . . intexr
the same authors have also estimated empirically values of AEﬁor" for

~ -~

the already mentiored reactions and they showed that this was in general

. intra . ,
of Lhe same order of magnitude as AEcorr but of opposite sign.

. , inter |
It is.cleer from this work that AEcor is strongly dependent on the

connectivity and that although for isomeric straight chain or cyclic systems
inter . . , . . .

Ahcorr was approximately constant in comparing cyclic with acyclic
compounds marked differences were apparent. The relevance of this will becone
more apparent when we come to discuss the relative importance of correlaticn
encrgy corrections to calculated ionization potentials by the ASCF method.

The expression (1l.164) applies strictly to closed shell species. For
open shell molecules with one unpaired electron (e.g. core and valence

hole states) an extra texrm has to be subtracted from it. Thus

i g , A -
lntrd(hole state) = Ikp.e,, + ¥ p.p.c.. - Thp.E,, eee (1.165b)
corr . CLTid PR S B Ay i7ii
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where p:‘corresponds to the contribution from the SOMO denoted by A

to the Mulliken population of the ith atomic orbital. The last term in

(1.165n) will compensate for the hypothetical correlation of % an electron

of a and 4 an electron of f spin in A which is included in the first term.
We have been using this Pair Population Method in our laboratory with a

51,52

reasonable success, and therefore the present work also makes use of

this technique of estimation of correlation energies.

ii) Removal of the Symmetry Constraint from the Conventional Hartree-Fock
Scheme

o e

In the conventional Hartree-Fock scheme, which we have so far
discussed, it has always bheen assumed that if the system studied has certain
svimetry properties contained in the total Hamiltonian , the soluticns to
the Hartree~TFock equations would always be symmetry-adapted, i.e. foimm a
basis for the irreducible transformation. Mathematically this is expressed
in an eigen-alue equation

AD =D eee (1.166)
vhere /\ is a symmetry operator. However confusion arises from the fact
that the exact eigenfunction ¥ and the approximate eigenfuncticia D
have different properties. We know that if

| RA =AX een (1.167)
is fulfilled then
| Y =AY ese (1.168)
is essentially a consequence of

Ky = EY ses (1.169)

For the approximate eigenfunction D one replaces the cigenvalue relation-
ship (1.169) by the variational principle

§ <piI¥Ibp>=0 vee (1.170) = (1.66)
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However no rigorous proof has been presented which would allow one
to deduce the relationship (1.166 ), therefore the relationship (1.1686)
should be considered as a constraint which necessarily raises the energy
above the absolute minimum <X > (1.162). In the ccnventicnal treatment

of the Hartree-Fock scheme due to Roothaanl3'54

often referred to as RUF
(Restricted Hartree Fock) one starts out from the two basic equations
6§ <DIR |D>=0; AD=2AD eos (1.171)
but if one drops the symmetry constraint and considers only the relationship
§<pD|X]J]D>=0 ees (L.172)

one obtains unrestricted Hartree-fock (UHF) scheme, and the corxresponding

HF functions are no longer symmetry adapted. This is a symmetry dilemma

in the Hartree-Fock scheme discussed more fully by Ldein.55 If one looks
for the absolute minimum of the energy one loses the symmetry propertics

and since the correlation enewvgy (1.16G2) essentiallv refers to the difference
between the exact energy and the energy in the conventional (RHF) Hart:ee-
Fock scheme a very large part of this corxrelation energy depends on the
symmetry constraint (l.166).

We can lock at this UHF scheme frem & diffierenc angle. Ia Lhis
technique the total wave functicn is apprcximated by a single determinant
where electrons with djifferent spins may have different orbitals. Solution
of this problem is described in many textsG'42 and the enerygy lowering
over the corresponding RHF wavefunction can be substantial.. The smaller
correlation error associated with the UHFF scheme can physically be interpreted
to originate from the fact that if we let electrons with different spins
occupy different corbitals in space then they got a chance to avoid each
othexr in dccordancé with the influence of the Coulombic repulsion and
their motions are partly correlated. However this extra Jdegreec of £freecom

is refiected in the inability of the total wavefunccion to represent a



pure spin state, in other words the single~determinantal wavefunction is
not an exact eigenfunction of the spin operator Sz.

It is worthwhile pointing out that RHF and UNF wavefunctions give the
same energies for any closed shell species. This derives straightforwardly
from the variational and Pauli exclusion principles, since if 2 electrons of
opposite spins are indistinguishable then they have the same spatial
wavefunction. Table 1.3 clearly shows this for c1l . Further, the data in
Table 1.3 indicates that the difference bhetveen the energies of core hole
state species as calculated from RHF and UHF wavefunctions is minute.

The reason for this is that the correlation hetween core and valence
orbitals is quite small as can readily be seen from the atomic orbital pair

correlation energies displayed in Table 1.2.

Tabhle l_._.'_i__.__

2 comparison bebween RHF and UNF calculations of ground state enexqgy
and corce hinding energies of Cl” ion. (The basis set used was un-
contracted basis set of 10s and 6p optimized goussian functions taken
from A. Veillard, Theoretica Chim. Acta, 12, 405 (1968)).

RHF ’ UHE i
1
: 501,159 et I5C1L.159 ev |
E a1 12501.159 eV 125C1.159 eV
'Bels 2810.22 eV 2809.94 ev
Bezs 266.24 eV 266,18 eV
Be 196.03 ¢V 195.93 eV
2p ‘

Binding energies computed as energy differences between

ground state and relevant core hole states.

There are cther more sophisticated methods hased on similer ideas to the
Ui technague which further lowexr the HF enerqgy and can at the same time
precerve certain synmetry propcerviecs while rebaining the independent

56
particle moedel {one ocrbital poer electiron) 2.4g. PUAF, SEHF, SO,
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The basic theory has been elaborated in each case however not ali of the
computational aspccts have been considered.

iii) Correlated Wave Functions.

This method is based on the idea of introducing the interelectronic
distance r12 in the wave function itself which is then called a ‘correlated
wave function'. We shall not discuss the dstails of this technique43

as it is not directly relevant to the present work.

iv) Superposition of Configurations.

One of the most common procedures to go beyond the Hartree-Fock limit
is to abandon the independent particle model and introduce superpocsition of
configurations. In the HF scheme we truncate the expansion (1.21) after
one term. In the method of superposition of configurations we keep more
than one determinant in the expansion and then cptimirze that finite expansion.

Basic_idea - CI

The best known procedure within the content of a superposition of
configuration is the method of configuration intexaction (CI) formalism.

In principle a starting point is & complete set of knovn spin orhitals vhich
we can choose to be orthonormal (L.15). They can b2, and indced most
usually are, obtained for example from HF calculations. Then a set of
coefficients CK {(cf. (1.21)) can be found such that the expansion (1.21) is
the exact solution of the n~electron SchrBdinger equation

KY = EY ces (1.173)

In practice we work only with a finite numkber M > n of spin orbitals
l|'l' (::); k = ].'2,00..'M s e o (1.174)

With these we can construct all possible nxn detexminants and use an

expansion of these

‘PM = z_ C_:DK ees (1.175)



as the trial function in a variational calculation. There arxe

c = (M) = M!
“u ( n\) n! (Ml-n!) eee (1.176)

such determinants, but in practice the expansion (1.176) can be further
reduced by symmetry., Minimization of the expectation value

< WMIBQ IWM >
< WMIWM >

X > = eor (1.177)

with respect to unknown coefficients CF leads to a well known set of linear

N

secular equations

izl[H<L -E§, 1C =0; K=1,2,...s £, eee (1,178)
where the integrals
Bep, = < Dl [py >
Spp, = < DDy > eoe (1.179)

are calculated using Slater rules. These equations have non-—-trivial
solutions only if the determinant of the ccefficients vanishes

o g - = 1 \
det{hKL EGKL} o) eee (1.180)

A CI calculation is in principle computationally simpler than a 1IF
procedure once we have obtained a st of spin orbitals (1.174), Lecause
it is a linear problem. The difficulties with many-centre integrals are
the same but the solution of (1.,178) and (1.180) is not a great problem
nowadays, bscause several numerical proccedures exist in finding the
lowest eigenvalues of the matrix {HKL}° The maijor difficulties in any CI
calculation is the problem of finding the most important configurations

which represent the maximum amount of electronic correlaticn if one is to

obtain ressonably good energy values using only a few configurations.



MC-SCF.

In the UF method we put one of the coefficients CK equal to 1 and
all others to zero, and then optimize the spin orbitals. In CI we fix the
spin orbitals, but optimize the coefficients CK' The Multi Configuration-
SCF procedure offers a combination of these two ideas. A relatively small
number of configurations is often adequate to choose, and the correspoending
expectation value of the total Hamiltonian is minimized with respect to
both spin orbitals and coefficients. The resulting wavefunction is vexry
accurate but unfortunately demapds an enormous amount of computer time for
molecular systems and the method is often computationally unstezble.

Valence bond method.

While on the subject of superposition of configuraticns it is only
legical to discuss bricfly similar ideas which are iavolved in the Valence
Bond (VB) method. The literature on the theory of the VB methed is ennriious
and has its origin in the very beginning of quantum chemistry. In summary,
the steps in the full VB method are:

i) Teake the set of all atomic orbitals of the atoms in the molecule

together with the spin factors o,8 and foxm a set of spin orkitals.
ii) TYorm determinants from selection of spin orhitals which reflect
the likely electronic structure of the molecule.

iii) Forma linear combination of these determinants (cf. {(1.175)) and

optimize the numerical coefficiente C

K
The last step is a linear proklem which has the form (1.178) and
(1.180), where however DK's are the determinants of step (ii).
The rules for evaluation of the matrix elements (L.179) involving
determinants of step (ii1) were derived by LBwdin and they are often referred

, 4 . . .
to as LBwdin rules. These matrix elements are very complicated indeed

because they consist of integrals invelving non-orthogonal spin orbitals,
Yy G



and their computation is the greatest handicap of the V.B. method.

The VB wavefunction describes bond breaking correctly (provided the
requisite pairing schemes are included) as it does not emphasize ionic
terms at large internuclear distances (for a siﬁple discussion of H2 see
e.g. reference 57),; but its hehaviour at equilibrium distances in many
cases is not as good as that of the HF wavefunction. This is indicated foxr
H2 in Fig.'l.3. To get around this problem Goddard and his co-workers have
started to use the generalized valence bond (GVB) method.57 The wave-~
function used in this technique is of a similar nature as in the
traditional VB method, but in addition we solve for the orbitals self-
consistently at each R {internuclear distance) just as in the Hartree-

Fock method. This combines the best attributes cf both the HF and VB
methods and leads to a wavefunction that adequately describes potential
enexgy surfaces at both short internuclear distances and at the dis-
sociation linait. The three curves for I, (HF, VB and GVR) are sketched

2

in Fig. 1.3,
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It is worth pointing out that there is little difference between MC-SCF

and GVB methods when they arc both carried out to their full extent.

1.7. Computer Programs for Ab Initio Calculations.

a. Introduction.

The theories behind Quantum Mechanics with a special emphasis on MO
theory were largely claborated during the 1920's and 30's, but it is only
with the help of modern electronic computers and appropriate computer
programs bhoth devised in the second part of this century that people have
been able to use these theories to solve certain problems in physics,
chemistry and biclogy. The writing and the development of ab initio
programs requires a lot of labour by various teams of people. Some of the
familiar names are IBMOL, POLYATOM, ATMOL, MOLECULLE, ALCHEMY and they aie
usually available through international organizations such as Quantun
Chemistry Program Exchange (QCPE). In this section we shall limit ourselves
to a brief description of the ab initio program ATMOL 2 which has been
used entirely throughout this woxrk.

b. Description of ATHMOL 2.

ATMOL consists of several prcgrams (packages) vhich were originally
devised by Hilliexr and Saunders in the late 1960's as ertensions to the
POLYATOM and IBMOL svstems. Several additions and improvemenls have been
done since namely by Saunders, Guest, Chiu and Recdwell workinuy presently
at the Atlas Computing Laboratory, Chilton, Didcot, Berks, U.K.

As in most ab initio programs ATMOL 2 has the following essential
stages.

i) Computation of integrals over basis functions and if rxequired

transformation of these integrals over contracted functions.
ii) Assenbly of the Fock matrix and its diagonalization. This step

is iteratively repeated until required self-cousistency is obtuined,



1ii) Analysis of a molecular wave function in the form of e.q.
producing Mulliken population analysis, generation of electron
density and molecular electrostatic contours, calculation of
expectation values of some l-electron operators (e.g. dipole and
quadrupole moments) etc.

There are two integral packages in ATMOL 2. The first one is used
for computation of molecular integrals over GTO's which are then stored
in a contracted form using either normal Gaussian basis sets or STO-nG,
HF-nG, STO 4-31G, HF 4-31G basis sets. Stewart's least square minimization
results24 described in section 1.5d are used in both STO~nG and HF-nG
expansions. They are permanently stored in a standard library. The othex
package computes integrals over STO's and is an adaptation of a system duc
to R.M. Stevens (Harvard University). We have founa the latter package
particularly efficient for calculations on linear wolecules with double and
extended Slater basis sets. Both packages make use of symmetry properties
of a molecule since in a highly symmetric molecule many integrals will
be zero or equal within a sign and these do not have to be ve-calculated.

The iterative part of the ATMOL 2 can be implemented with three
di.fferent packages. Firstly, the closed shell (RHF) SCF program which has
been used iﬁ calculating the energies of ground stetes of molecules. The
open shell cases are usually tackled by the (RHF) SCF package for ‘'half
closed' open shell species. The open shell program has been used for
calculating energies cf mainly core and some valence ionized states of
certain molecules. This was achicved with the help of Lock directive
which causes iterated molecular orbitals to be selected on the principle
of mazximum overlap with trial molecular orbitals thus over-riding the

Aulbau principle, The third iterative package is the (UHF) SCI' program.



This program is mainly useful for calculating wave functions of frece
radicals, and as was printed out in section 1.6d it has no advantage over
the (RHF) SCF packages a5 far as calculations of core binding energies is
concexrned.

Use has also been made of the Mulliken population analysis program
for calculating charges and bond overlaps and the package for the graphical
analysis of molecular wave functions to generate electron density contour
plots.

Presently work is being undertaken to genesrate a CI package which
will be useful in the context of this work to calculate potential cnergy
surfaces of valence excited ionized states (so-called shake-up states).
The ATMOL manual which contains all the details concerning the ATMOL 2
programs and further informaticn concerning the development cf the
more advanced ATMOL 3 system can be obtained from:--

Atlas Reception Desk,

Science Kesearch Council,

ACI:,

Chilton, Didcot, Berkshire,

OX11l 0OQY, ENGLAND - U.XK,
All the calculations in this work have been performed on the IBM 270/1%5
computer aﬁ the Rutherford Laboratoryv via the remnote satellite staticn

GEC 2050 in Durham.,



CHAPTER IX

PHO'COIONTZATION AND RELATED PHENOMENA




Abstract.

This chapter is divided into two parts. Firstly we shall discuss
the fundamental concepts hehind coxre and valence electron ionizations and
the two well-knowm spectroscopic techniques ESCA and UPS for measuring
binding energies (ionizaticn potentials) of these electrons. Multielectron
processes (shake-up and shake-off) which accompany core and valence
electron ionizations are also considered.

The second part of the chapter deals with various methods for
calculating binding energies. Firstly the methods based on Koopmans'
theorem and the A SCF technique are introduced. They form a theoretical
background for the discussion of electronic and nuclear relaxation
accompanying photoionization. The importance of the sudgen approximation
is stressed, and its ccnseguences with regard to the theory of multi-
electron processes are considered. It is pointed out thaet transiticns
involved in photoionization processes are vertical and that the core hele
states are localized in nature.

The rest of the chapter deals briefly with scome other metheds for
calculation of ionizotion potentials. They include ihe relaxed Yoopmans'
model, the equ;valent cores approach,; the transiticen operator method, various
potential ﬁodels, the MS Xo technique, and the approach based on the one-~

particle propagator.
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2.1. Photcionization Processes.

a. Core Electron Ionization and ESCA.

Localized electrons vhich do not take part in chemical bonding are
predominantly either of s or p character, e.g. 1ls in C; 1s, 2s, 2p in Cl
and they are referrxed to as core electrons. Their importance has bhecn
stressed with the development of ESCASB-60 (Electron Spectroscopy for
Chemical Analysis) which is an experimental technique for measuring their
energies which are often referred to as binding energies (BE) orx ionization
potentials (IP) (i.e. an energy or potential tc remove an electron from
its orbital to infinity).

In order to knock out a core electron from its orbital we need a high
(1253.7 eV) or AlKa

enexgy photon source such as MgKa (1486.6 evV)

1,2 1,2

which can be with the state of the art of instrumentation highly mono-
chromatic.Go Nowadays it is true enough that studies of vaseous and solid
samples areconsidered to be straightforwa:d experimental routine whereas
liquid phase studies require special instrumentation associated with the
necessity for differential pumping. Therefore studies of liquid samples
have only been applied in a small number of cases.GO

If the incident beam has energy hu and KE is the kinetic enexgy of
the ejected electron then the binding energy is given by

BE = hu - KE eee (2.1)

where we have neglected the recoil energy of the sample. This rslationship
is unambiguous for gasecus samples, but for solids the situation is more
complex. If one is interested in the binding energy relative to the
solid sample's vacuum level one must correct for the contact potential58
between the sample and the spectrometer (provided the sample and the
spectrometer are in electrical contact, that is hoth have the same Fermi

level) ; which is just the difference betwveen their work functions.


http://The.tr

BE (fermi) = hu - KE (spect) - ¢ (spect) oo (2.2

BE (vacuum) = huv - KE (spect) - ¢ (spect) + ¢ (sample) eee (2.3)
Here ¢ denotes a work function, KE (spect) is the kinetic energy of the
electron when it enters the spectrometer (analyser). On entering the
‘analyser the electron is accelerated by an energy [¢{sample) - ¢ (spect) Je.
However binding energies as calculated by theoretical methods presented in
the next sections refer strictly speaking to isolated gaseous molecules
and appropriate correcticns for heats of sublimation, All{sub), must be made
to make a detailed comparison betwcen a binding energy of a mclecule in a
gaseous and a solid state as is indicated on the Born cycle diagrem
shovn in Fig. 2.l1. Electronic reorganization (relaxation) effects
consequent upon core clectron ionizations will ke discussed in some detail
later in this chapter, but it is worthwhile pointing cut at this stage
that the method which will be prescnted adequately describes intra-
molecular reorganization energies. IHowever reorganization energy in a
solid sample has in addition an intermolecular term which can slightly
modify binding energies of solids in comparison with gases such that
direct theoretical comparison is inappropriate even when due allowance has
been made for work function and lattice sublimation terms. To summarize,
in order £0 compare binding energies of solid samples which are
experimentally measured with respect to the fermi level (2.2) (for
operational convenience) with absolute binding energies of gaseous
isolated molecules (2.1) we must take into account the work function of the
sample, heats of sublimaticn of the neutral and the core hole state
molecule and in any theoretical comparison we must also consider intex-
molecular reorganization effects. However the last two effects are of o
minor importance and they will tend to cancel together with the work
function correction when we make comvariscns between chemical snifts
(differences of binding energies for a certain core hole level) measured
experimentally with respect to the fermi level (ABE (fermi)) and chemical

.

shifts of gaseous species.
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Aftex a loss of a core electron from a molecule (cr atom) A
by the process
A + hu1 o (A+)* + e ces (2.4)
the hole state (A+)* species in their ground electronic state can relax
by two fundamental processes.
i) X-~ray emission
af)y* ——> at 4 hv, cee (2.5)
where electronic transition occurs from a higher orbital to £ill a core
hole.
ii) Auger process
ahr —= 2™y e, ce. (2.6)
Auger emission is radiationless process in which an electron from a
higher orbital undergoes a transition to f£ill the'hole in a lowec crkital
and simultaneously a seccond electron is ejected from the system. The
Auger process is much more likely for light elements whereas heavy atome
usually relax by X-ray emission. These relaxzation processeg must not be
mixed with electronic and nuclear relaxation (reorganization) phencinena

accompanying core election ionization.

b. Valence Electron Ionization and UPS.

Electrons occupying valence orbitals (e.g. 7 in CO) axe usually of a
delocalized nature. They determine important chemical and physical
properties of molecules (e.g. their shape, bonding, reactivity) and the
development of photoionization techniques in particular ESCA and UPS
(Ultraviolet Photoelectron Spectroscopy) which measure binding enexgics
(ionization potentials) of these electrons has considerably improved
cur knowledge of these propertics.

i) Esca.

We have discussed this technique in the context of core electron
icnization. Even if ESCA is mainly a teoi for looking at core levels, its

relative impcrtance in studies of valence elecclrons has been emphansized in

-
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many texts.sg"60

ii) UPS.

The major difficulty with ESCA is the relatively high inherent line-~
width of a conventional lonizing source. Even if monochromatization
techniquesGo are gradually overcoming this problem it is still convenient
in many cases to study valence electrons with low enexrgy (thus narrow
natural linewidth) photon sources in the vacuum U.V. region, namely He (1)
and He (II) discharxges with photon energies 21.2 eV and 40.8 eV respectively.
Such spectra can reveal considerable details concerning vibrational fine
structure accompanying photoionization of a molecule. The technique is
commonly referred to as Ultraviolet Photoelectron Spectroscepy (UPS)62
and it is a sister technique to ESCA, because the principles involved
in measuring binding energies are the same in both techniques. Whereas
ESCA is suitable mainly for studying samples in the solid and gas phases,
samples for UPS are usually handled in the gas phase though they may bo
studied as condensed £ilms.

An intecesting point is that the linewidth of peaks correspcnding to
a given valence photoionization is dififerent when studied by ESCA und UPS
and an ad@ition the relative intensitics differ substantially because
the photoelectric cross-section is strongly dependent cn the enexgy of the
ionizing source.

c. Multielectron Processes.

It is well known that an electron ionization is very often
accompanied by simultaneous excitation (shake-up) or emission (sheke-off)

59,64
of a valence electron. 9.6

These multiclectron processes give rise to
satellite peaks with lower kinetic cnergy than the direct photoionization

peaks,

KE =hy =~ BE - R eee (2.7)
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whexre Ed is the energy of the shake-~up or the shake-off process. This is
illustrated in Fig. 2.2 for a core electron ionization. We shall be

discussing intensities of these satellite peaks with respect to the main
peak within the sudden approximation in slightly more detail in the next

section.

2.2. Methods of Calculating Binding Fnergies.

a. Koopmans' Method.

It has already been pointed out in Chapter I, Section 1l.4.bh.
that the negative of the orbital encrgies fer an initislly closed shell

system can be sct equal to the ionization potentials

This comes clearly from Koopmans' theorem (1.110), whose major deficiency
is that it assumes no changes in spatial distributicn of molacular spin
orbitals on photolonization. We shall be showing in scveral examples in
the following chapters that this approximation not only predicts absolute
values of binding energies incorrectly, hut even in scme cases the
chemical shifts are wrongly described with this mogdel.

b. The A SCI Technique and Electronic Relaxzation,

The major'drawback of Xoopmans'! theorem is that it relies solely on
the ground state properties of a wave function. Binding energy howevexr
depends as much on the properties of the final (ionized) state as it
does on the properties of the ground state wave function. In the A SCF
technique we calculate the binding energy of an electron as the difference
between the eneray of the ionized and the ground state of an atom or a
molecule

ion Fground _

BE = E - AE cee (2,9)



- 64 -

SHAKE - OFF SHAKE-UP
virtuatl

- —

A
Eg

e
Ed

® G ® ®

valenc @ lof ® O

e (4] © @

)

\\\Ef\ e KE
hv hv

KE: hv-BE - Eg KE=hv-BE-Eqg

PHOTO!CMIZ ATINN

@ @
@ ®
G <]
KE

N

KE = hv-BE

KINETIC ENERGY ——+-

Fig. 2.2.

Shake-up, shake-off and the main photoionization process. The three

peaks in the kinetic erergy curve correspond to the three precesses.
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Within the Hartree-Fock formalisw the experimental energy of a molecule

or ion can be written as a sum

- = +E + 4 ¥ ae e L] E 'Y
L‘expt Eyr corr T Frelat T Espin (2.10) (1.160)

It has becen pointed out in Chapter I, Section l.6.a. that Espin and

Erela£ are approximated to be zero, therefore (2.9) becomes

BE = (AE)HF + (AE)corr eee (2.11)

(AE) * for a valence electron ionization can be ignored with some

relat

confidence as the relativistic energy stems primarily from the core

electrons. Veillard and Clementi65 have estimated Erelat for the first

and the second row atoms. Fox carbon (with Clq BE v 300 eV) they arrive

at the value of 0,188 eV and for Argon (with Arls BE v 3200 =V) 232.958 ev.

{Both of these values include spin effects.) Thercefore (AE)relat for

core electron ionization can to a good approximate be neglected for
first row atcms but for accurate values of absolute binding energies of

heavier atoms (4F) can be of some importance. (AE) can however

relat relat

be ignorxed for these latter elements if we are interested in the values of

chemical shifts (i.e. differences in binding energies), hecause A(AE)ch1t
SENy -

then approaches zero.

Je have briefly discussed the correlation energy term (Ecorr)
in the previous chapter, and it was pointed out that this quantity is of
considerable importance in discussing various molecular properties.
Fortunately correlation energy for ground and core hole state species is
in many cases similar, and the net effect amcunts to (AE)Corr ¥ 0, One

would normally expect (AE) > O becausc ]E l should be somewhat
corx corr.

laxger for the neutral system with an extra electron than for the ion

* Many authors include spin effects into the relativistic effect.
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(correlation energy is a negative quantity). This is usually the case,
however for valence electrcns of widely differing localization characteristics
it is possible for the correlation energy to be largef*for the ionized
species. As a simple example Table 2.l1. shows the computed correlation
energy changes for core and valence ionizations in water. In the particular
case of the 2al (025) valence orbital the correlation energy increases

on ionization.

Table 2LLL

(AE)Corr in eV for H,0. Tasken from U, Geliue, Physica Scripta,

2
9, 133 (1974)

N
[V
—
o
(¥
2
P
o

Orbital ila (o
i

(LE) 0.5 -1.9 1.3 1.4 1.4
corx

b

Further examples are provided by the work of Clementic:'6 and Bagu567 who
have pointed out that Ecorr depends not only on the number of elechron
pairs, but alsc on the electron distribution vhich can change substantially
on ionization. ’It is clear from the above discussion that (:"AE)corr can

be neglectea in many situations, this is true in particular if we are

interested in chemical shifts. Consequently in core levels (2.11l) becomes

BE = (AE)HF eee (2.12)

The quantity defined on the R.H.S. of 2.12 since it is computed as an
energy difference from SCF calculations is often referred to as the
A SCF value.

Therefore we write (2.12) as

= 4 = SCF s e e 2;13
BE (Ar)HF A SCF _ ( )

* In this context 'larger' means greater in magnitude thus disregarding the

negative sign.
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Bagus67 was first to use the A SCF method. His calculations on F , Ne,
Na+, Ccl”, Ar and K+ were successful and this method is now very popular
amongst ab initio chemists. The present work relies heavily on the
A SCF technique, and it will be shown in the following chapters that
binding energies and especially their shifts are very well predicted with
this method even with relatively small basis sets (e.g. 4 - 31G).
Having defined A SCF we shall now define a guantity called relaxation

energy which is sometimes referred to as re-organization enargy (RE)

RE = =~ € A SCF eee (2.14)
Relaxation energy as defined by (2.14) is a positive quantity indicating
the difference between binding energies of an electron k defined by
Koopmans' theorem and the A SCF method. The relationship between the
experimental, Koopmans' and A SCF binding energies is schematically
shown in Fig. 2.2. Relaxation energies are by no mesans unegligible
even for valence levels. For carbon atcms with approximate core BE & 700 eV
they have values ~ 13 eV, We shall be studying properties of relaxation
energies in much greater detail in the forthcoming chapters. A physlcal
interpretation of relaxation energies is mads clear frem the following
consideration. If an electron is ejected from a core or a valentce level,
the remaining electrons will experience an increased potential at the nucleus
and relax (reorganize) to minimize the energy. This relaxation process
changes the spatial distribution of the remaining n-1 orbitals which is
taken into account in the A SCF method but not in Koopmans' theorem,
A change of the potential at the nucleus will be much larger if a core
rather than a valence electron is ionized because core electrons have a
larger scrcening coefficient. This is reflected in the values of relaxation
energies which are usually smaller by a factor of ten for valence as

compared with core electrons. (As an illustraticn, values of RE's for the
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Cls and 1lv orbitals in CO calculated with a double zeta basis set are
11l.4 eV and 1.8 eV respectively).
. . , 68 .. e s . .
Goscinski and Pickup have expressed this in a quantitative way.
Following their notation, i,j,k... denote occupied and a,b,c unoccupied
spin orbitals for the neutral molecule. For an ionization process associated

with spin orbital i they showed that through second order in perturbation

theory

\ l< ij” ia >l‘
- = + - eo
A Scr Ei .E (e - ¢€.)
J.a a J

(2.15)

where the integral symbol < ij]l ia > stands for

!
(1-P_.)
< ij _______r12 ia >
12

The second term on the L.H.S. of (2.15) represents elcctronic relaxation
censequent upon an electron ionization, and a careful investigation of this
expression indicates that its magnitude is larger on core rathex than
valence electron ionization. The expression (2.15) will also ke of some
importance during the discussion of the transition operator method which
will be presented at a later stage in this chaptex.

Although relaxation enerqgy is a theoretical quantity because
transitions.to Koopmans' states are not experimentally observed, it can
however be shown69 that the weighted average over the enexgies of the
direct jonization and associated shake—-up and shake-off peaks is equal to
the binding energy appropriate to the unrelaxed system as would be
obtained from Koopmans' theorem. A fundamental assumption in this
argument is that the n electron Hamiltonian is suddenly replaced by an

n-1l electron Hamiltonian and thus that a description in terms of time
independent theory is valid. The theoretical criterion for the validity of

the sudden approximatiocn is that70
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[Ef(nﬂqn'l') - Ef(nl)] Th<< 1 ees (2.16)

where Ef(nz,n'z') is the total final state energy resulting from a two
electron transition, Ef(nﬂJ is the total final state energy for a one
electron transition involving electron nf and T is the time of transit of
the n £ photoelectron past the n' #' subshell in leaving the atom. The
energy difference on the L.H.S. of (2.16) is just thé separation of the
intense one electron photoelectron peak from a cerxrtain two electron
satellite at lower kinetic energy (cf. Fig. 2.1). In a typical ESCA
experiment T/h @ l/65 eV-l thus for satellite separaticns as large as,
or more than 65 eV, the sudden approximation would appear to be violated.
Very few satellite peaks are so far away from the main peak, and thus
the intensity model presented below is justified. This would not be the
case in a UPS experiment where T/h approaches unity and thus the energies
of the observed satellite peaks do not satisfy (2.16).

The initial wave function of the n electron system is denoted by
‘i’i (n) and is expressed as an antisymmetrized product of the ul th one elecixon

orbital and a remainder. That is
i - n - )
¥ = R ¥ (n-) cee (2.17)

s i et .
The wave function Y (n) satisfies equation

Eei(n)wi(n) = Eiwi(n) eee (2.18)

where )ﬁi(n) is the n electron Hamiltonian. If the n{ electron has been
ejected rapidly then the resulting n-1 electron state is not an ecigen-
state of the final Hamiltonian but a mixture of such eigenstates. That is
P
a ¥'(n) = ¥ (n-1) = IC ¥ {n-1) vee (2.19)

TINLS

. . . th .
where am ig an operator annihilating an electron from the nl  orbital
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£
and the wave functions Wj (n-1) satisfy

Ry fon) =gl ¥imn G =0 cer (2.20)

le(n—l)wjf(n-l) £f (n,n 1) W?(n-l) (3=1,2,...) ee (2.21)
Index j is used to distinguish final states, and we have arbitrarily

chosen j=o to represent one electron transition final state with a fully
relaxed electronic cloud corresponding to the main peak of the photoelectron
spectrum. Integrating (2.19) from the left by a fixed function‘i (n-1),

assuming that < ka ij > = Skj one obtains

f
= -— 4 [
Cpy = < ¥4 (0-1) [ g (n-1) > eer (2.22)
The probability that the (n-1) electron system is in a state j after the

annihilation of an electron m is thus

P .= C = < ng(n—lﬁw (n-1) > 2 een (2.23)
J R

where ¥ P . =1
. mj

J=o
In ordexr for two wavefunctions to overlap they must have the same symnetyy
propexrties.

That is

AT = AL = AS = ag o= Mo = 0 vee (2.24)

Therefore the selection rules for transitions between two states with the
same number of particles are monopole allowed with a unit operator as a

perturbing operator. Substituting {2,22) into (2.19) we obtain

()
f f
\l’R = _): < ‘Pj \PR > \l’j ees (2.25)
J=0

Writing the enerqgy expectation value for WR(n»l) with the help of (2.23) we

obtain



[¢7]
R £ £ £ 2
= < = 3 ree 2

CDNETE R Y o | > sod © NiltR? (2.26)

or in terms of ionization potentials as
oo
_ R e f, 2 .
(IP)R = E(n—l) E" = .E < Wj WR > (.[P)j eee (2.27)
Jj=o
where (IP). = Ef - Ei I1f Wi is given in the H-F approximati
Pl 3 (n-1) . ] (m) S g n in e approximation,

then (IP)R is the energy of the unrelaxed system as obtained from Koopmans'
thecrem. The relation between (IP)R and the ionization energy (IP)o relating

to the fully relaxed state represented by Wz can be written as

£y, 2
< \l‘jl\{R >

™ 8

(IP)R = (IP)o + [(IP)j - (IP)o] ee.e (2,28

j=1
The second term on the L.H.S. of (2.28) represents relaxation energy as
defined by (2.14). It is a weighted average over the shifts of various multi-

electron processes with respect to the main photeoionization peak. The

coefficients are just the transition prokabilities, or in turn, the

()

experimental peak heights corresponding co each Wi The relationshin

{(n-1)"°

12.28) suggests that relaxation energies can be obtained from experimental
data. Strictly speaking this may be true, but practical difficulties in

calculating the weighted average from an experimental spectrum make the

62
relationship (2.28) of a purcly theoretical intersst. Manne and Aberg

. . + . ,
have estimated the relaxation energy of ls Ne species from an experimental
. ) 64 .
spectrum measured by Krause and his co-workers, and they arrived at a

value of (RE)etnt = 16 eV, vwhereas a more detailled apprcach by Meldener

and Perez71 relying on more accurate data by Siegbahn et al.59 vielded

(RE)expf = 22 eV which favourably ccmpares with the theoretical value by

; 67 _
Bagus (RE)Cal = 23 eV.
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So far we have assumed when calculating binding energies by the A SCF
method that both the molecule and the ion are in their vibrational ground
states, and zero point energies have not been considered. The latter
chapters will contain discussions on vibrational cecffects accompanying core
and valence ionizations in some detail, however it is worthwhile noting
that accurate values of vertical and adiabatic ionization potentials as
obtained by the A SCF method require a detailed knowledge of the potential
enexrgy surfaces of ground and ionized state species in particular
equilibrium gecmetries, force and sometimes anharmonicity constants. By a
vertical transition we mean a transition which involves the most likely
vertical change from a vibrational level v = O whereas an adiabatic
transition represents a vertical change from v" == O to v' = O level. Note,
that the term 'vertical change' implies that no changes in nucleax
geometry occur during the emission of th= photoslectron wvhich is the main
assumption behind the use of the Franck--Condon Princiyle.72—74 This assumpltion
is substantiated by the fact that photoemission occurs on a time scale of

=17 75 . X . - .
around 10 sec, vhereas a typical vibratiocnal frecquency is of the oxdex

of n 10'13 seconds.76

X X 77 . . .
Siegbahn et al. have demonstrated that intensities of various

vibrational components in the main photoionization peak for core levels in

simple molecules are governed by Franck-Condon factors (Fiq. 2.4) which

were originally discussed by Franck72 and Condon73' in calculating
intensities of vibrational components in electronic spectra. Claxk and
Admns78 have suggested that vibrational excitation plays an important part
in the band shape of some shake-up peaks and a theoretical analysis by
Gelius79 has indicated that Franck-Condon factors must be taken into account

when determining a transitional probahility between a ground state and a

vibrationally excited shake-up state.
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4 &
AB
PE
!
|
I
]
i
|
]
.'
I AR
\l
RIAB) AR
—_—d
AR

fj\f\f'ci l/’\y\ﬂ Yy  dT lz

Fig. 2.4.

4 schematic representation of the vibrational excitation in a hyrothetical

molecule AB. Franck-Condon factors are governed by the values of P_(,_{
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While on the subject of the A SCF method it is worthwhile briefly
discussing the symmetry properties of core holes, in particular whether they
are localized to a specific atom in a molecule or not. In molecules
containing no equivalent centres there is no doubt of the local nature of
the core hole since the ground state core orxbitals are very localized indeed.
The situation in molecules with two or more equivalent nuclear centroes is
less clear-cut because of the delocalized naturz of the core orbitals in the
HF approximation. For example if we remove a core electron from O2 do we

. . okt . + c
represent the ion by a structure 0——0 or by a structure O0-—-0 with
equal chances of finding the positive charge on each atom. An overvhelming

- . . . 80-84 |, _. . .
body of evidence in the literature indicates that in these cases the
correct description of the HF wavefunction is achieved with core holes
localized at one of the equivalent centres.
. . . . - . .80
The first evidence of this kind came from Bagus and Schacfer who

performed calculations on localized and delocalized ls hole states of 02
molecular ion. They found that the hole state calculations with g or u
symnetry imposed on the ls hole states gave a BE = 554.4 eV, When the
syrmetry restrictio:n was relaxed tlie HF eguaticns vielded two solutions at
BE = 542 eV corresponding to ls hole on each oxygen which favourakly agroes
with the éxperimental value of 543.1 eV. The authors pointed out that a
total wavefunction of proper Zg or Zu symmetyry can be formed from these
two leocalised hole states.

Snyder's model81 based on atomic chielding constants states that
delocalization of a hole over t centres produces a hole charge of %-on <ach

. . 1
centre with: relaxation energy per centre of approximately —, that for a

2
. 1 .

localized hole. The total relaxation cnexrgy for t centres would be t Lthat for

a localized hole. This model predicts relaxation enexrgy for Nlr hole 13.7 eV

which would be reduced to 6.8 eV if the hole were delocalized. Ghifes in
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core binding energies between N, and NH, as well as between CH

2

and C2H4

)
are both well predicted from Koopnmans! theoremBb thus indicating that
relaxation enexgies must be very similar in each of the two pairs which can

only be true if the holes are localized. HF calculations of binding energies

by the A SCF method in our laboratecry on systems like N, C s C HQ

2

1
Har Fpe Cy

2 2
and others correspond to experimental values only if the core hole states
are localized.

Another line of evidence supporting the localized nature of core holeg
comes from an elegant study by Murrell and Ralston82 who computed potential

energy curves for the HeZF ion., Their study indicates that the MO function,
which has the wrong dissociation limit,has a higher energy than the simplest
VB function for internucleaw separation larger than 2 a.u. showing that

the contraction energy from a localized positive charge is appreciably more
than that from two haif charges even when hcle exchange is importiant. The
comparison of core ionized N2+ with He2+ at large internuclear separations
where the ls overlap integrals are comparable clearly indicates that the

le core hole species of N2 are best represented by a function which takes

into consideration the localized nature of the coxe hole,
ko ]

q ; 83 . . -
Hillier and his co-workers tried to interpret shake-up spectra ci the

Cls peaks irn C203 and the Ols peak in CO uslng the relation (2.23f_in a

2
simplified form and thcy came to the conclusion theat certain satellite peaks
could only be interpreted with a localized hole state model.

An interesting study by H. Siegbahn84 indicates that the difference
between the energies cof localized and delocalized holes for a given system
disappears when a CI procedure {which takes into account correlation effects)

starting either from localized or delocalized Bartree-Tock equations 1s

adapted.,
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Many important points have been introduced in this section and we shall
discuss some of their aspects and consequences in the chapters to follow.

Now we shall return to other methods for interpreting ionization potentials.

c. Relaxed Koopmans' Ionization Potentials.
' _ 86 - . .

Liberman has suygested that the binding enexrgy is essentially the
arithmetic mean of the orbital energies for the Kth orbital in the cground
and hole state, that is

(BE), = -k(e, + &) (2.29)

n " € cse .
We shall refer to binding enerxrgies calculated in this way as relaxed
Koopmans' ionization potentials (binding enexgies). From a computational
point of view no extra labour is saved over the A SCF method because
calculations on both ground and ionic states must be performed. Liberman

36
used the relationship > (2.29) to calculate the BE of the Ar1 hole,

s
The valuve obtained with this method (118,0 A.U.)is in very good agrzement
. , 59

with the experimental value 117.8 A.U.

The empirical relationship (2.29) has been theoretically justified by
Hedin and Johansson.sl In their method based on a peolarization potential,
they derived an expregsion for a binding enerxgy of an electren in an
orbital k. .

=RE = + < v > seo o .n—

BE = € + % x| v |3 (2.30)
where !k > is the kth one electron orbital and VR is a relaxation (or
sometimes called polarization}) potential arising from the difference
between the Hartrce~Fock potential Vg of passive orbitals in the final

(k-hole) state and the initial state. Specifically

vo= 5oy, ® oy @

) eee (2.31)
R gk

L

They went on to prove that the relationship (2.3C) is nearly equivalent to

Libexrman's empirical rule (2.29). Finally it is worthwhile pointing out
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that the relationship (2.15) derived by Goscinski and Pickup is a
generalization of (2.30).

d. Other Techniques.

There are cther methods for calculation of bhinding energies apart
from the ones already mentioned but we shall dicscuss them only briefly
giving illustrative rather than comprehensive references as these techniquezs
have not been used in the present work.

i) The Equivalent Cores Approach.

The equivalent cores method of predicting shifts in binding enexgies
from thermodynamic data was developed by Jolly and Hendrickson.88 It is
based on the principle that

'"Wwhen a core electron is removed from an atom, mclecule or ion, the

valence electrons relax as if the nuclear charge on the aton had

increased by one unit.’'

Consider, for example, the shift in C binding energy between Ci,

1ls

r‘o
and CH3

* + —~— ~
cn4 — CH4 + @; AE = (BE)CH4 ces (2.32)

where * indicates a core hole vacancy (C1S in this case).

*. $ * 54 .
CH + + N5+ > NH + Cb AE = § .eo (2.33)
4 4 o
. . *5+ :
The reaction (2.33) is the exchange of the C core and the eguivalent core

-
+
species N> , and the energy 60 for this exchange process is called the energy

of core exchange. Summing up (2.32) and (2.33) we obtain

+ -
CH, + N5 —3» NH * + 55+ + e; AE = (BE) + 4 ave (2.34)
4 4 CH4 o
. Similarly for CHQF we cbtain
5+ + 5+ =
.,F' - '_“.\ \ * - S8 g = - o --r‘
CHJ + N S I\H3P + C7 + e; AE (BE)CH Ft 61 (2.35)

3
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Subtracting (2.35) - (2.34) we get

+ + + -
F o+ e 3 ; 5 o= D - D - -ea (2.2
CH,F NH4 NH.F' + CH, : AE (BE)CH3F (BE)CH4+ (6l 60) (2.26)
* *
It is assumed that 60 and 61 are small quantities because CI—I4 and NHZ, CH3F
5+ 5+

and NH3F+, é and N are chemically equivalent. In the strong form of
the equivalent core approximation 60 and 61 are put to zero, but it is
sufficient to have 61 - 60 = 0 (the weak form) to determine a chemical
shift. Therefore according to the weak form of the equivalent core
approximation the chemical shift between CH4 and CH3F is given by the heat
of reaction (2.36). Suchheats and corraspcnding shifts in binding

; X . , n 88-90
enexgies can be obtained either from thermodynamical data or from

92 93
! or semi-empirical LCAO MO SCF calculations.

an initio9
It has been mentioned in Chapter I, Section 1.5.d. that small basis
sets like 4--31G and 3G can be very useful in describhing core hole state
HF wave functions if the equivalent core model is incorporated into them.
McWeeny and Velenik94 were the first to suggest that accurate binding
energies can be calculated with small basis sets using the ASCF method
if the core hole state wave function is calculated with valence exponents
appropriate to the equivalent core species (e.g. N for C with core
electron defiéit). This is a reasonable suggestion because the valence
electrons of the hole state (e.g. EHZ) and the equivalent core species
{e.g. §H4) experience a similar potential due to the nucleus and the core
electrons associated with it which is different from that of the neutral
molecule (e.g. CH4). Investigation of such core hole state wave functions
in conjunction with calculations of binding anergies, relaxation encrgiaes
and force constants will be presented in the chapteis to come. Basis sets

based on this idea are referred to as coptimized basis sects.
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ii) The Transition Operator Method.

- . . 95
Goscinski and his co-workers have argued that if according to

Koopmans' theorem eigenvalues ei's of the Fock operator (1.99)
F=h + I<ji@lli@ > cee (2.37)
3

correspond to negative values of ionization potentials then an eigenvalue

equation associated with a transition operator (for an i-hole)

FiT(l)jT(l) = EjTjT(l) e, (2.38)

must give us ionization potentials which incoiporate electronic

relaxation. The operator in (2.38) is defined as

AW o=n 2 <3 @)T @ v s <T@ L 239

ifi

where 3 = 1,2,...,1,...n (n is nunber of electrons).

1

m

» . - (] ‘l‘ - .
This is a reasonable suggestion because the operatorvr Fi desicribes a

half-ionized state. An operator of this nature is called a transition

95 , T
operator., They went on > to expand an orbital energy Ei through

second order in perturbation theory and thus obtained

< i4llia s

EIT = e, + I ._...l_-).'..l_.].'__._..’_

i i B € ~ g.)
J.2a a ]

ee. (2.40)

which according to (2.15) is equal to ASCF for an i~hole. Thus we obitlain

- €, = A, SCF ... (2.41)

Therefore it is evident that the eigenvalue of the transition operator
r

Fi corresponds to the Ai SCF result. The direct subtraction of large
numbers is avoided but unfortunately as in the ASCF method one must make

a separate calculation for each hole state. Whereas the eigenvalucs

'I‘ m

T . . . .
Ej for j#i of F,” do not have a special importance the orbitals j*

(for all j) may he utilized in the calculation of generalized overiap
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9
amplitudes and transition probabilities. 6 Accuracy of ionization
potentials calculated by the transition operator method has been well
5,97

. . . 9 .
demonstrated by Goscinski and his co-workers who have also pointed

out the difficulties in the present model in describing localized core
hole states.97 The use of this transition formalism is justified not so
much for reduction of computer time but on account of its conceptual
framework which in particular leads to a transition potential model for

chemical shifts discussed further on in this section.

iii) Potential Models.

The first model proposed for calculating binding energies, and in
particular their shifts, based on electrostatic potential is the

charge potential model. This model relates core electron binding cnergies

with the charge on the atom from which core ionization takes place and
the potential from the charges in the rest of the molecule
E, =E +kq, + & 3 ce. (2.42)
i o i Ly T
it) ¥,
i}
where Ei is hinding enexgy cf atom i
q is charge on atom i
rij is interatomic distance between atons i and j
Eo-is a refercnce level
k is a constant which is approximately equal to the one centre
Coulomb integral bekween a core and a valence electron orn atom i.
The relation (2.42) was originally derived from purely classical electro-
. . , , , 59 .
static consideration by Siegbahn and his co-workers. It can houvsver
o - , 98 . ce .o
be derived from Koopmans' theoren anrd for this reason lt’ln pr1n01ple)
suffers from the same deficiency notaply that the binding energies obtained
by this inethod depend conly con ground state properties of molecules hence

do not take into account electronic relaxation. This difficulty can be
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partly cvercome if we consider k and Eo as adjustable paramcters

determined from a least squares fit of a series of similar molecules whose
binding energies have been measured cxperimentally. The charges qj are
obtained from the Mulliken pcpulation analysis and the use of semi-
empirical methods (such as CNDO) is particularly useful in predicting
chemical shifts in large systems which would be computationally too

. . , o ies . 99-101
expensive or impracticable to calculate from ab initio wave functions.
Alternatively we car use (2.42) to obtain 'experimental' ground state
charge distributions from experimentally measvured shifte in binding

. 102
energies.

The charge pctential model given by (2.42) is just one particulax
approach to calculate chemical shifts from ground state properties of a
molecule using electrostatic arguments. An alternative mcdel is that due

103 , . 5
to Swartz. Hethods of this kind ave generally called ground-stzte
, . ~ 104 105 , , .
potential models (GPM). Basch showed that a shift in potential energy
of an electron at a nucleus, Avn, provides a good approrimatlon to the
g 3 . k
shift in orbital energy bc
k

Ae” = AV eee (2.43)
n

Writing q
V= kq, + 3= ee. (2.44)
n i r,.
ij
w7ill give us an altcrnative derivation of the charge potential model
(2.42) for predicting chemical chifts.
. . 104 < s ' ; : 5 aay 4
Shirley and Davis have used Liberman's relationship (2.29) to
derive the relaxation potential model (RPHM) which depends not only on
the ground stote but also on the core hole state properties of a molecule

thus incorporating into it electronic relaxation. Starting with (2.298)

and using (2.43) we obtain



(BE)k = —%(Ek + c*k) eee (2.45)
A(BE)k = -%(Aek + Ac*k) ees (2.46)
A(BE)k = -E(Avn + AVn*) eee (2.47)

Invoking the equivalent cores approximation one obtains

A(BE)k = --!:(AvIl + Avn(z+1)) er. (2.48)

where Vn(Z+1) is the potential energy of a core electron at an equivalent
core nucleus.
Thus the CGPM gives

A(BE)k = - AV eo. (2.49)
n

and the RPM defined in (2.48) gives

A(BE), = - AV -~ AV .. (2.50)
k n

R .
where

v, = Lk[v (z+1) - v ] ... (2.51)
R n n

is the relaxation enexrgy in the RPM approximation which incidentally can
be combined with ab initio orbital energies to give an alternative wvay
of calculating binding energies. Davis and Shirley104 have discussed
some results obtained from the GPM and the RPM based on CNDO wave
functions-and they have shown as expected that in general the RPM version
gives better agreement with experimental results.

An alternative potential model for calculating core binding energies
which incorporates electronic relaxation is the transition potential

1 7
model (TPM) developed by Goscinski and his co-workers. 06,10

They base

their arguments on the transition operator technique discussed earlier in
this chapter. Thev point out that if the ordinary charge potential mode)
(2.42) depending on the ground state properties of a molecule can be

deduced from Koopmans' theorem by considering an expectation value of

98 . .
the Fock operator (2.37} then an equivalenit expression



E.”" =E +qu_ + ):;— ees (2.52)

can be derived by considering an expectation value of the transition
operator (2.39) where
T . . s s . .
Ei is the binding energy of atom i incorporating relaxation effects
of valence electrons
T , I . e
qi is a transition charge on i discussed below and

T T
Eo and kx are constants of the same nature as defined in (2.42).

The transitions charges qiT's are obtained from az CNDO wave function which
must be slightly modified, namely that Z;, the effective reduced charge of
atom i usually defined as the nuclear charge Zi winus the number of core
electrons (e.g. for Cls ionizat:ion ZZ = 4) is within the TPM mechanism
defined as the nuclear charge Zi minus the average number of core electrons
before and ofter ionizetion (e.g. for Cls ionizaticn ZZ = 4,5). This
implies that the atomic CNDO parameters for atom i are interpolated
between Zi and Zi+l. We can also use the TPM to calculate relaxation
energy which is given by

T
= 3 - 4 4’ [
(RE)i Ei E. «ee (2.53)

The most attractive feature of the TPM is that one calculation pexr .
icnized hole is needed which is 'safer' than subtraction of potentials
derived from two semi-empirical calculatiors. The TPM method has so far

been tested to calculate core binding and relaxation energies of some

106,107

carbon and boron compounds and seems to give more accurate results

i
than Shirley's RPM technique.104’“08

iv) Multiple-Scattering - Xa Method.

109
Slater has suygested that it is possible to approximate the
solutions of HF equations by replacing the non-local operator (1.102) with

a local exchange potential called X“. The electronic eguations obtained
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in this way are usually solved by the methcd known as the multi-scattering
(MS) or scattered-wave method. The MS Xa technique has the great advantage
that it requires relatively small computer time and therefore it can be
used successfully to describe electronic structure of large systemsl

vhich are of chemical interest (e.g. SFG) but its main purpose lies in the
field of solid state physics. The greatest disadvantage of this method

is the fact that the results of the MS Xa technigve depend on the initial
choice of Xu potential and on the boundary conditions.

Thus although the method describes valence ionized states reasonably
well for core hole states both absolute and relative binding energies can
be considerably in error. The strong dependence on parametrization and
inconsistent nature of the resulis suggests that the technique is unsuitable
for studving photoionization phenomena in gencral.

v) Green'ts Function Method.

A new viable alternative to more established wavefunction mechods
for obtaining information about molecular structure and especially
photoelectren spectra is what is believed @ more superior methcd based
oh a direct calculation of the one-particle prcpagator or Green's
. 112 y - . v oL ‘i
function. The advantage of the propagatcr formalism is that it
involves a direct method of calculating ionization energices and if necessary
. . . . , 68 .
it can take inte account electrcnic relaxation and correlation. Green's
function itself has been known in mathematics for a long time, but its
application to quantum chemistry is relatively new and so far only few
albeit successful calculations have becen reported particularly by Cederbauva
. 113-115 . 1 11,115,117
and his co~workers and the Florida group led by Ohrn. ' o
Further develcpments in this method especially with emphasis on computer
programs should bring more successful results in this exciting field of

quantum chemistry.
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Abstract.
Ab initio calculations have been carrxied out on an extensive series
of molecules for both the neutral species and core ionized states.

Substituent effects on C N. , O and F lavels have been investigated

1s’ "1s' "1s ls

and vhere available comparison has been drawn with experiment. Comparison
with Koopmans' theorem has allowed a rxelatively detailed study of changes
in relaxation energies as a function of substituent effect on a given corve
level. Whilst for Cls levels the computed shifts in core binding encrgies

are approximately linearly related to differences in relaxation energies,

for the N O, and F levels, the relative elecironegativity of the

1s’ T1s 1ls
substituent can invert the correlation. The empirical correction of
Koopmans' theoxem for differences in relaxation energies at: different sites
has been investigated for large molecules. The rosults compare well wat
the direct hole state calculations.

A theoretical analysis has also been made of differences in relaxation

enexgies for photoionization from the core levels of the sexies X nx

o7
for X = F, Cl, Br. It is demonstrated that whilst the change in welaxation
energies is largest for F2 with respect to NI, the contributinn o the
shifts in core levels is relatively larger for the series X, and HX for

X =Cl, Br. It is further shown that shifts in binding and relaxation

energies show very liitle dependence on core levels studied.
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3.1. Substituent Effects on Binding Energies.

(a) Introduction.

As we have previously indicated there have been numerous theoretical
calculations on core binding energies. However, there has been no previous
systematic study of a large range of substituent effects on different core
levels studied with a comparable basis set. For this reason substituent

effects on C, , N

1s 0 and F core levels in a range of both saturated

1ls’ Tls ls
: . . . ., 67
and unsaturated compounds have been investigated using the ASCF method.
. . . lis .
Experimentally determined geometrices werc employed where available,
otherwise they were estimsted using tables of standard bond distances and
118 . . . as oyt e .
angles. Preliminary studies indiceted, however, that binding energies
are relatively insensitive to small variations in geometry. (e.g. computed
Cle binding energies with ST0 4 ~ 31G basis set for staggered and eclipsed
=
conformers of CH3OH are 306.67 eV and 306.66 eV xespcectively.) The
emphasis i1 these particular calculations has been on shifts in binding
energies vather than absolute values and therefore we have chosen a rather
small basis at the 4 -~ 31G level whose limitatione are in this cace {i.e.
in considering shifts) to some extent relatively minor as has kean
. . 119 . 24
previouesly shown in our laboratory. (STO 4 - 31C expansions with
. 20 ;
Clementi's best atom exponents were usaed for all elements except
25
fluorine which has keen investigated with a comparable HF 4 - 31G basis”
as was suggested in Chapter I, Section 1.5.d.). As a preliminary check
the apsolute binding energy for the Cl" levels of CH4 is calculated to
=4
be 294.3 eV, In the next sections a getailed discussion of relaxation
energies will be given but at this stage it should be emphasized that by

comparison with the vesults from Koopmans' thecrem the basis undex-

estimates the magnitude of the relaxation enexrgy. As we have already
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pointed out this relaxaiion energy is associated almost sclely wilh the
valence electrons and the underestimation of this guantity with the
4 -~ 31G basis is readily understandable since the exponents are optimised
with respect to the neutral species. That this is the case may readily be
demonstrated by re-computing the total energy for the hcle state with
exponents appropriate for the valence atomic orbitals of the equivalent
core (viz. N in CH4). The excellent agreenent (Table 3.1) for the
absolute binding energies for the molecules studied by this approach is
most encouraging and indicates a computationally less expensive means of
calculating ab=olute binding energies, as compared to large basis
computation. In a subsequent chapter a detailed investigation cf the
basis set dependence of both absolute and relative hinding energies and
relaxation energies will be presented. At this stage, howevev, we may
note that diffcrences in both binding and relaxation cnergies are
adequately described with calculations at the 4-31G level at least as
far as systems based on elements of the first row of the periodic table
are concerned.

Now we shall turn ouxr attention to a discussion c¢f substituent
effects in saturated and unsaturated systems.

(b) Binding Energies in Saturated Svstems.

The range of substituents which have been studied are indicated in
Tables 3.2 and 3.3 with the primary substituent effect with respect to
the methyl substituenli taken as standard. Thig is more rxeasonable than
employing hydrogen substituent as reference since it is nct clear in
cases where strong hydrogen bonding is pcssible that the experimental
results refer to the free molecule. (CGround state energies of all molecules
investigated are tabulated in Appendix 2. Using these togetber with values

in Tables 3.2, 2.3, 3.6, 3.7, 3.10 and 3.1l will give us enexgies of
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Table 3.1,

Lffect of Optimised Core Valcnce Atomic Orbital Exponents cn Core

Binding Energies {in eV)

X Unoptimised Optimised.f Experimentala
gﬂ4 294,18 290.71 290.8
H29- 545.49 539.12 539.4
co 548,47 541.89 542.3
CO 300.78 296.71 296.2

+ In this context optimised is taken to mean that. the valence atomic
orbital expcnents correspond to the equivalent core species for the

hole state.

a T.D. Thomas, J. Chem. Physz., 1970, Ez, 1744.
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Table 3.2.

Substituent Effacts on Carbon Core Binding Energies (in ev)

Carbon:
X Calc. Exptl.a Exptl.e X Calc. Exptl.a Expt]..e
CH,~X cag  (0) (0) 0 XCHO  CH, 3.40 3.4 -
H 0.23 0.2 0.2 H 3.87 3.4 -
CHZF 0.61 - 0.43 NH2 4.30 -
CIlF2 1.26 - 0.86 OH 5.32 5.2 -
CF,  1.96 2.2  1.31 F 7.28 - -
CHO 0.57 0.8 -
NH2 0.89 0.9 - Miscellaneous
OH 1.55 1.8 2,1 CH39H?F 2.96 - 2.63
J 1 iF .04 - E.r.(
F 3.46 3.0 3.0 Cd3gf 9 6.04 5.29
CILCF,  9.13 - 7.88
Ci,=X CH,  0.22 0.3 0.1
FZEQ 10.73 - -
CHF  0.80 - 0.34
lcer 2.03 - -
CF2 1.54 - 0.57
FCCF 5.29 = -
NH 1.97 - -
CILCHF  3.17 - 2.72
0 3.87 3.4 -
CE,CF,  6.29 - 5. 34
HC=C-X  H 1.18 0.6 0.6
T 4,46 - -
a

Schwartz and Switalski, J. Amer. Chem. Soc., 1972, 94, 6298, Covllection of
experimental data from references: D,W. Davis, D.AT—Shirley and T.D, Thomas,
J. Chem. Phys., 92, 4184 (1970); T.D. Thomas, J. Amer. Chem. Soc., 92, 4134
(1970); D.W. Davis, J.M. Hollander, D.A. Shirley and T.D. Thomas, J. Chem.
Phys., 52, 3295 (1970}; K. Siegbahn et al., 'ESCA Applied to Free
Molecules', North Holland, Amsterdam (1969).

b Estimated from thin film measuremenis on benzotrifliuoride and benzene, Cf.
D.T. Clark, D. Kilcast and W.K.R. Muegrave, J. Chem. Soc. (D), 516 (1971).

¢ Estimated from thin film measurements on pyrrole, Cf. D.T. Clark and D.M.J.
Lilley, Chem. Phys. Lett., 9, 234 (1971).

d Calculated absolute binding energy is 293.95 eV.

e

D.W. Davis, M.S. Banna and D.A. Shirley, J. Chem. Puys., 60, 237 (1974).
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EEPle 3.3.

Substituent Effects on N, O, F Core Binding Energies (in eV)

NITROGEN

NH,-X

2

OXYGEN

HO-X

P\

JORTNE

c 0. O o P

h

[e]=]

Values as Table 3.2.(a).

X
CH
H
CHO
NH
OH

CH

CHO
NH2
OH

CH3
H

CH,,CH -
CHFCH
" CF..CH

2
CHO
NH2
051

F

R.W. Shaw and

Calc.
(0)
0.78
1.17
0.88
1.44
3.75

Ok
1.0
1.77
0.49
1.30
4,52

OB

2.24
0.28
.77

1.84
41

1.

0]
0.89
4.0

Exptl.a

(0)
0.5
1.0

0
0.8
1.5

T.D. Thomas, Chem. Phys.

Exptl.® BE(1s)

(0)

-0.60
0.36
1.97

CH,NH

CH,CHO

3

H, CHO
NH,,CHO

OHCLIO

OHCLO

FCHO

FZCO

CH?CH]

CLZC-x_2

HCCF
FCCF

Lett., 22,

Czlc. Exptl? Exptl.g
0.40 - -

0.60 -1.3 -
3.12 - -
~0.30 ~1.3 -
-1.37 - -
-0.17 =0.1 -

16 - -
40 - 0.34
.78 - 1.52
.84 - -

o w

P

127 (1973).

Extrapolated from experimental data cn fluoromethanes (see text).

Calculated absolute binding energy is 409.07 eV

Calculated absolute binding energy is 544.49 eV

Calculated absolute binding energy is 713,14 eV

D.W. Davis,

M.

Q

O

Banna and D.A. Shirley,

J.

Chemn.

Yhys., 60, 237 (1974).
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hole state species and respective Koopmans' values.) Where direct
experimental data is available,or where it may be inferred,the agreement
between theory and experiment is good. The shifts in binding enexgies are
in accord with chemists' intuitive ideas concerning the nature of
substituent effects viz. at the two extremes replacing H by Me or F

results in a shift to lower and hligher binding energies respectively for
all core levels. Of some interest is the fact that substituent effects are
such that in progressing across the series from C tc F core levels

1ls 1s

there is generally relatively little variation due to Me, NI OH and F

2 ’
substituents. The net effect is that the difference in shifts arising
from these substituents remains relalively constant for the different core
levels.

There is sufficient data available to consider both primary and
secondary substituent effects on core binding energies and these results
are shown in the case of fluorine substiitution in Table 3.4. The marked
consistency of primary and secondary shifts at carbon of v 3.0 eV and
nv 0.7 eV respectively are in excellent agreement with availabhle experimental
120
data obtained from studies of simple monomers and Zcx homopolymers,
based on fluorocarbon monomers. It is clear that for fluorine, the primary
and seconéary substituent effects, in not only saturated pbut also un-
saturated systems are essentially constant in accord with the oksexved

shifts in the fluorobenzenes.l By emplcying appropriate primary and
secondary substituent effects it is possible to estimiate shifts in core
binding energies for cther systems. In difluoroacetylene for example,

a shift of 4,06 ¢V is anticipated with respect to acetylene in accord with
a calculated value of 4.12 eV. The experimentally observed gas phase
shifts in the fluoromethanes by compariscn with the flucroethanes are also
well reproduced by this data for both the ClS and Fls core kinding

energies.
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Table 3.4.

Effcct of Fluorine Substitution on a and B Core Binding Energies

Primary (o) Secondary (B)

CI—I3-—CH3 (0) (0)
CHZF—CH3 2.96 (2.96) 0.61 (0.61)
CIin-CH3 6.04 (3.08) 1.26 (0.65)}
CF3—CH3 9.13 (3.09) 1.96 (0.70)
CH2=CH2 (0) (O)
CHF=CH2 2.95 (2.95) 0.58 (0.58)
CF2=CH2 6.07 (3.12) 1.32 (0.74)
H-C=C-H (0) (0)
F~-C=C-H 3.20 0. 86
H,C=0 (0) (0)
HFC=0 3.41 (3.41) 1.24 (1.24)
F2C--'O 6.86 (3.45) 2.40 (1.16)
H--C=N {0) {0)
3.3 1.09

F-C=N

The values in brackets refer to successive

Eregggigg_molecule.

4]

hifts w.r.t: the



(c) Binding BEnergies in Unsaturated Systoems.

A similar anelysis has been undertaken for some unsaturated species
(see Table 3.4). Reasonable agreement is again evident hetween the
calculated and experimental results where available. Introduction of a
double or triple hond to the core ionized centre is seen to have little
effect on the primary and secondéry shifts with the notable exception of the
01S shifts in the carbonyl compounds where the shift is approximatgly twice
as large. The primarxy shifts at the carbonyl carhon correlate quite well

with those observed at a saturated carbon, the shifts (with respect to

CH3) being slightly larger.

3.2. Substituent Effects on Relaxation Energies.

(a) Introduction.

The computational expense of performing colculations on core hole
states for each core level has meant that consicderable emphasis in the
literature has been placed on the intexpretation of shiftes using
Koopmans' theorem. As we have already indicated the enexgy lowering due
to the relaxation of the valence electrons in going from the neutral
nolecule to the core ionized species is quite appreciable in absolute
temms (of- the brder cof 10 - 30 eV for first row atoms). Previous
investigations in which comparisons have been made between Koopmans'
theorem and hole state calculations have shown that the relaxation energies
are closely similar for a given core level in a closely related series
of molecules.l19 Experimental data is available however which sugyests
that for different bonding envirouments there may be significant
contributions to shifts in core binding energies arising from differences
in relsxation energies. A particular example is the shift in carbon ls

levels for the meihyl and carbonyl carbons in acetaldshyde. Experimental



measurements both in the gas and solid phase give a shift between 2.7 and

2.9 eV. The shifts however computed from Koopmans' thcorem are always

smaller by approximately 0.4 eV, independent of the basis set, provided

a suitably balanced basis is employed. By contrast the hole state calculaiions
reported here are in excellent agreement with the measured shift in Cls

levels for acetaldehyde thus suggesting a small but significant difference

in relaxation energy at the two carbon atoms. In studying an extensive

series of molecules covering a number of core levels and a variety of

bonding situations we may investigate the importance of differences in

relaxation energy in contributing to these shifts.

{(b) Relaxations Consequent upon Ionizations of Cls Levels.

Firstly considering the data for core ionization at carbon, Fig. 3.1.
shows a plot of calculated shifts in binding energics versus diffcrences
in relaxation energies covering Cls levels in both saturated ard unsalurated
systems., It is interesting to note that binding energies span s range of
nv 7 eV whilst the corresponding range for the relaxetion energies is
N~ 1.5 eV, We have pointed out in the previous chapter that relaxation cnexgy
corresponds to weighted mean over all multielectron photoionirzation processes.
The fact that for the series of molecules studied here the relaxation
energies fall in a narrow band leads to two conclusions. Firstly, that only
shake-up and shake-off transitions of appreciable intensity must fall quite
close in energy to the weighted mean and secondly, that in general the
changes in relative intensities and transiticn energies for the multi-
electron processes must be guite subtle functions of electronic environment
such that the weighted mean remains constant.

Figure 3.1 clearly illustrates that there is a trend establishcd

between shifts and relaxation energies and this has also been noted rcecently



- lje -

'DCHZ o
0.2 + CH3 —X
onl ® F2 I\l‘.’ -
X" C=0
CH
00 ¢°3 ® CHy =X
-~ Z \
CHZI-
-01 «  oCHF,
CHO +
-0.2 NHy OCF3
+
N
OH e NH
~0.3 1
>
9

r
Z|H
-05 1 a*F
& CH;
-06 &
x
]
-07&'
“a
-08 évH
0 o
-09 ] NH-
. &5
4.0 { - OH
-11
-1.2 ®
l'.'
1.3 ]
0 1.0 20 30 4.0 _-5.0 6.0 70 80

SHIFT IN BE. lev)

]’1'{: .’-.1: .

Plot of A ’1fr1«‘ (s In relaxa xl". POETR Y VOTSUS ‘I'L]l: xu \ '11

CHETEY (huth it . Chhailc 48 ALeudere) et & VIS
HES


http://iol.ix.vfi-%3e!-

-~ 97 -~

for a limited series of molecules by Hillier and co-woxkers.l24 Good linear
correlations are observed for tha four individual series of molecules studied.
The relaxation energies are obviously lowest for those core levels
corresponding to the largest shifts in binding energy. This is not un-
reasonable since the valence electron clouds will already be somewhat
contracted in the neutral molecule. The gocd overall correlaticn between
shifts in binding and relaxation energies goes some way to rationalizing

why in general the charge potential model works so well. 1lndeed this is

. . , 98,125
not unexpected in the light of a recent analysis

of the contributions
to relaxaticn encrgies in terms of local and neighbouring atom contributions.

Both Lhe former and the latter contain charge dependent texms (Eqn. 3.1),

relax contr flow
E (mol) = E 00" (mol) + E, " (mol) .. (3.1
h:X A A
relax v , . s
where EA (mol) iec the total molecular relaxation enexrqgy for an ionization
. contr . . . - .
in the core of atom A, EA (mol) is the relaxation energy arising f£rom the

contraction of the local electron density around the centre A as a result

flow

of the increasing electron-nuclear attraction and EA (mcl) is the
additional relaxation energy which originates from the charge distribution
. - , \ ag, 125
in the whole molecule. Gelius and Siegbahn have further shown from
1 contr
the work of.Snyder 26 that EAOn (mol) may be further expressed as
contr
: = + 4 s .2
EA (mol) kqA 9A (3.2)

where 9p is charge on atom A in the neutral molecule, k is constant and EA
is the relaxation energy due to orbital contraction around the neutral atom.
As is evident from equation (3.2) the potential model as given in equation
(2.42) Qdoes indeed take this reorganization term intc account since

parameters k and £ are adjustable and arec obtained from a least squares

fit involving theoretically calculated charge distribution binding enerygies.



For Cls levels another feature which is of interest is the variation
of relaxation energy in going from what may be formally described as carborn
, 3 2 Vo , . . . :
in sp to sp and sp hybridization. The series which have been studied are
displayed in Table 3.5a. The data in Table 3.5a show that there is a
. . . . . . 3
consistent increase in relaxation energy in going from carbcn in sp to sp
2 . . .
and sp  enviromments. This is true for both primary and secondary carbcns
in both mono and disubstituted species. Electronic relaxation, as was
noted above, depends on the amount cf electronic cloud associated with it
. ‘s . 2 . .
and also on its mobility. Carbons in sp~ environment might be expected
to be particularly favourable in this respect since they are surrouvnded by
a substantial electron density which partly consists of mobile 7 electrons.
Table 3.5b shows shifts in relaxation energy for primary and seccndary
2 3 . ‘e . .
carbons at sp, sp° and sp enviromments. The shifts are egain consistent,
and indicate that as the number of fluorine atoms atvached to a cerbon centre
increases (regardless of its hybridizatios) relaxzation energy for both
primary and secondary carbons decreases.
There has been a previous discussion in the literature in the particuiar
case of the fluoromethanes of the relative consiancy of the relaxation encrgy
. . . . . 119 .
as a function of increasing number of fluorine substituents. In this

case the constancy was attributed to the cancellation of charge dependent

terms arising from local and nearest neighbour charge distirbutions. For the

has been pursued. The data are collected in Table 3.6. Considering firstly

the effect of substituents on the Cl, core levels in proceeding from Cl.

3 3

to CF3 as substituent, the binding energy increases by 1.96 eV and the
relaxation enerqgy decreases by 0.1%2 eV. From Mulliken population analyses

the changes in valence electron population in going from neutxal molecule

to the hole state have been computed for both the atem on which the core hole
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Core ABE ARE q A(A a A(An.)b
pop i

cHy-cn,° (0) (0) -0.061 (0) ()
9113-CFH2 0.6 -0.07 ~0.116 +0.026 +0.004
EH3—CF2II 1.26 -0.13 -0.164 +0,048 -0.005
933—CF3 1.9 -0.19 -0.209 +0.060 -0.021
Q_FH2—CH3 2.96 -0.14 0.439 -0.033 +0.029
EFZH—CH3 6.C4 -0.21 0.905 -0.088 +0.089
EFB—CH3 9.13 ~-0.,19 1.344 -0.169 +0.183
ABE - shift in binding cnexgies
ARE - differencec in reclaxation eneray
q - charge on C in neutral molecule
a - Apop = el.pop C*¥ - el.pop C (~ve indicates increased flow cf electronic

chaxrge)
b - Ani = sum over bonded atoms (pop X* - pop X)
c ~ A =

pop

~1.074, Ani = 0.773

- 10D -
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is located and the nearest neighbour atoms. There is little change acress
the series in populaticn of this carbon atom in the neutral wolecule. In
going to the hole state, whilst the cha#qe in nearest neighbour populations
is effectively constant, there is ccnsiderably less electron flow in the
case of CF, as substituent than for CH, and the relaxation cnergy decreases.

3 3

By contrast the effect of methyl substituent in the series CFnH - CH, is
- v

3-n
such that the change in population at the atom concerned and on the nearest
neighbours are similar in magnitude and opposite in sign. The laxge
decrease in population in the neutral molecule however results in the

smaller calculated relaxation energies in acceord with equation (3.2).

(o] and F Levels.

(c) Relaxation Consequent upon Ionizaticns of le, le 1s

In Figures 3.2 and 3.3 are shown similar plots of differences in
relaxation and shifts in binding energies for some N, 0, and F core hola
states with the data for carbon included for compariscn. hlthough for tha
Cls levels there is a clear correlaticn b.tween the two (as was previously
discussed) for the le, Ols and FlS core levels the relationship is less
clear cut. Of some interest however is the change in slope for the core
hole states of O and F. This can be wost simply »atisnalized by
consideration of a proctotype system MX-Y where the core hole cn X is being
investigatea as a function of change in substituent Y (with M remaining
unchanged). Thus when the effective electronegativity of Y is greater then
X there is a decrease in relaxation energy with an increase in binding
energy and vice~versa with the effective electronegativity of Y less than X.
This has been investigated for the C, M, O and F holes with a similar range
of substituents by means of a populaticon analysis, the results cof which a:ie
shown in Table 3.7. PFoi the neutral molecules the effect of the vecry
electionegative fluovine is to polarize the valence electrons. In going ko

the Fls hole state then there is a less effective increase in polarising

27 0CT1976

Loard
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Table 3.

7.

Core

CH,_-H

-3 a
cli,~CH,

CH,~CHO

CH,~NH,

CH,~011

CH,-F
N, -H

b
NH,~CH,

NH,,~CHO

BH,-NH,,
NH, -0l

Bﬂz-b

OH-H
on-cn,©
OII-CHO
OH-NH
OH-OH
OH-F

2

F-H
d
~CH
F-CH,
F~CHO

E-NI,,

Calculated absolute relaxation

ARE

-0.46
(0)
-0.12
-0.16
-0.25
-0.50

-0.63
(0)
0.10
0.07

-0.01

~0.56

-1.06
(0)
0.14
0.24
0.33

-0.36

-1.42
(0)
0.07
0.18
0.56
0.86

energy

Calculated absolute relaxation energy

Calculated absolute relaxation enerqgy

Calculated absolute relaxation energy

q
-0.146
~-0.061
-0.093
~0.027

0.029
0.331

-0.409
-0.287
~0.206
-0.288
~-0.278

0.039

=-0.419
-0.276
~0.177
-0.261
-0.233

0.033

-0.489
-0.482
~0.405
-0.395
-0.,307

is 11.42
is 14,18
is 16.40
is 19.48

eV
eV
ev
eV

AA
( pop)

+0.026
(0)
+0.052
-0.066
-0.099
~0.043

+0.024

(0)
+0.063
-0.050
-0.085
-0.055

+0.078

(0)
+0.021
-0.055
-0.100
-0.105

+0.085

()
~0.001
~-0.087
~-0.166
-0.311



pover from the core ionized fluorine atcrni and a similar decrease in electronic
flow to this centre is obsexrved. The flow will be smallest when the
effective electronegativity of the substituent is lowest, and from the
form of Figs. 3.2 and 3.3 will be in the opposite sense to the trend
exhibited by the ClS levels and hence contribute more to the relaxation -
energy. This is apparent for the Ols levels where with Y < X a positive
slope is observed which is reversed for the very electronegative F. It is
of interest to note that whilst the carbonyl oxygen exhibits considerably
larger differences in relaxation enexgies (than for the comparable HOX
series) the correlation with shift in binding energy is closely linear and
the slope negative. This is understandable on the basis that the combined
effective electronegativity of the =ClIX group is consistently less than
that of oxygen. Table 3.8 axhibits the results of Mulliken population
analysis on the remainder of the molecules studied.

It is of a considerable interest that for the series HX and X

2
(% = CH3, NH2, OH, F) the relaxation energy differences [RE(X2) - RE(HX)
0.46, 0.70, 1.39. 2.28 eV] are comparable to the calculated differences
in binding encxqy [BE(XZ) - BE(HX) - 0.23, 0.10, 0.3C, 1.8 eV]. This
supports the suggestion by Jolly and Perry127 that the former enexgies may
account for-the emall observed shifts in the analogous species with X = Cl,

Br in comparison with X = I’ and this will be investigated in the final

section of this chapter.
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Table 3.8.

Substituent Effect on Flow of Electronic Charge Consequent Upon Core Eleciyzon

core A pop'1'0'1'1-\.L"’1 A pop® TGMA® A pop“c A nid
§H3—CH3 ~1.074 - - 0.773
(*:H3—H -1,.048 - - l.048
SH3"NH2 -1.140 - - 0.955
SH3—OH -1.173 - - l1.081
Cu,or ~1.116 - - 1.116
B, C=cil, -1.050  -0.564 ~0.487 0.770
B, Conn -1.100 -0.662 -0.438 0.970
B,C=0 ~1.106 ~0.745 -0.361 1.106
HFC=0 ~1.120 ~0.754  -0.366 1.120
HEECH -0.820 -0.230 -0. 590 0.694
HCZCF -0.801 ~0.249  -0.552 0.614
FC=CH -0.897 ~0.301 -0.59 0.731
HC=N ~0.861 -0.394  -0.466 0.861
%nzscn3 ~0.797 - - 0.427
R, ~0.782 - - 0.782
Rucr, -0.887 -0.34L  ~0.546 0.564
N=cm ~0.786 ~0.079  -0.708 0.786
§H-CH3 ~0.632 - - 0.170
OH-11 o ~0.554 - - 0.554
OH-F -0.736 - -~ 0.736
§=CH2 -0.740 ~0.531  -0.209 0.740
o=c -0.691 -0.119  0.286 0.691

A pop = el. pop X* - el. pop ¥ (-ve indicates increased flow of

electronic charge).

b A popsn’MA = gigma el. pop X¥* . sigma el. pop X.
A pop" = 1w el. pop X* - 1 el. pop X.
d

i} n, = sun over bonded atoms (pop Z2* - pop 4).
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3.3. Estimation of Shifts in Binding Energies from Koopmans' Theorem

and Relaxation Energy Corrections

We have stressed above the impoxtance of electronic relaxation
concomitant upon core ionization and that between certain core hole states
there is an appreciable calculated error in their shifts if this is not
taken into consideration. There appears howevex in these small molecules to
be fairly systematic variations in the reorganization energies of a particular
atom in similar environments which may be quite general for the nearest
neighbour environment. The possibility then arises of making systematic
corrections to core level ionirzation energies as calculated from Koopmans'
theorem to estimate the core binding enexrgies. This is of considerable
irportance for comparison with ESCA stuvdies of largexr molecules since
computation with a basis set of comparable sizc would require considerable
computer time if the individual core hole states vere to be studied. As a
suitably complex test case we have the studicd bhiclegically important

~

. : . 128 s as .
b-aza-uracil. Experimental studies of core binding energies for an

The charge potential model (CNDO/2 charges) and Koopmans' theorem correctly

predict the ordering of N levels, however the shifts lhetween C4 and C

1s 6

is calculated to be small and in both cases in the opposite sense to that
inferred from the experimental correlations. It should e emphasized of
course that the measurements refer to the sclid phase and that extensive
hydrogen bonding may modify the vattern of binding energies that might he
expected from the free molecule. This will be discussed in detail

129
elsewhere.
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In studying relaxation energies as a function of structural type
however, it is clear that significant differences in relaxation energies
might be expected at different sites within the molecule. Direct hole
state calculations (ASCF method) have therefore been carried out and, from
the series of small molecules exhibiting the appropriate structural features,
estimates have been made of diffeiences in relaxation energies, which may
be used as corxections to Koopmans' theorem. The results are presented in
fable 3.9. The corrected Koopmans' theorem results are in excellent agreement
with direct hcle state calculations and in complete agreement with the
experimentally determined ordering of Cls and le levels.

The agreement between the estimated and calculated binding energies by
the ASCF method 1s most encouraging and thercfore offers an alternative
method foxr estimating binding energies in larger molecules consisting of

H, C, N, O and F elenents.
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Tabla 3

.9.

Shifts in Core Binding Energies

(eV) in 5-~Azauracil

8
(0]
H &
e
\?3 B3
c2 3 6
707w
|
)i
Core Koopmans' Theorem Hole State
N1 2.08 2.52
N3 1.15 1.82
N5 (0) (0)
Cc2 0.83 1.70
c4 ~0.19 0.54
c6 (0) (0)
07 0.54 0.92
og (0) (0)

o}

BE = Koopmans -~ RE

Estimated from EﬁZCHO
Estimated from §ﬁ=CH2
Estimated fiom NHZEﬁO

Estimated from HN:CH?

(14.29)
(14.72)
(10.56)

(11.16)

Estimated RrRE

—0.43b

~0.43°

c

(0)

"O.GOd

~0.60°

(€

]
Estimated BE®

1.43
0.41

(0)
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3.4. 1nvestigation of Electronic Relaxations Accompanying Core Tonizations

in the Series X? and ¥ (X = F, Cl, Br).

(a) Introducticn.

We have noticed at the end of the Section 1.3. an interesting trend

in relaxation enexGy differences for X, with respect to HX for the series

2

X = CH3, NHZ, OH and F for data pertaining to the C1 1s’ 0ls and Fls

levels respectively. The calculated relaxation energy differences of

¢ N
s

0.46, 0.70, 1.39 and 2.28 eV for this series closely parallel the calculated
differences in core binding energies -0.23, 0.10, G.30 and 1.8 for X =
CH3, NHZ' OH and F respectively. Thesc trends might naively be interprated
in terms of simple electronegativity arguments in that the greater the
electronegativity difference between H and X and the smaller the
polarizability of X (being both a substituent and the atom on which the
ccre hole is located) the larger we might expect the relexation enerqgy
difference between HX and x2 to be.

Jolly and Perry127 have investigated differences in relaxation
energies arising from core ionization in germanium compounds hy &
combination of ESCA, Auger spectroscopy and thecretical analysis of wodsal
systems. On the basis of these investigations the suggestion hes been maﬂe127
that in thé seriecs XZ' HX (X = F, Cl, Br) the small shifts in coxre binding
energies for chlorine and bromine compared to flucrine arise from a nuch

larger difference in relaxation energy for X, with respect to HX. On the

2
basis of the work presented in the previous secticn this suggestion wculd
seem to bhe implausible, since we would expect even on the grounds of a
simplistic rationalization that the relaxation encrgy difference between
X2 and HX would be in the order X = F » Cl, Br.

To investigate this situation ab initio calculations have been carried

cut on the serics X HX (X =TI, Cl, Br) forx the neutral mclecules and holc

2’



states in an attempt to resolve ambiguitiec in the interpretation of the
relevant experimental data. Additional points of interest which have

arisen from this work are a comparison of atomic versus molecular relaxation
energies and the investigation of shifts in core binding energies for
different core levels of the same element.

(b) Computational Details.

Two series of calculaticns have been carried out. Firstly for Pz,
HF, 012 and HC1l computations were performed on the neutral molecules and
core hole states with double zeta Slater hasis sets with Clementi's

best atom exponents28 and using the ATMOL adaptation of Stevens'

integral package. Secondly to enable a direct comparison to be made with
bromine compounds, calculations were carried on the complete series

(x2, HX, for X = ¥, Cl, Br) with more restricted basis sets. Clementi's
‘best atom exponentszo were used for H, Cl and Br in STO 4 - 31G expansion
whilst for fluorine an HF 4 - 31G expansion was employed. Polarization
functions of d type on Cl and Br and p» type on hvdrogen were alsc uscd

in STO 3G expansions. The d exponents for the halogens were estimated

.125 for Cl arnd

|

40 .
from Durns' rules (the values obtained wore 1.166 and

3
Br respectively), vwhereas the value of 1.1 used by Pople © was taken

=

for the p exponent of hydrogen.
The results detailed in the sub-sections to folloiwr pertain to the
. . 118

experimental geometries in each case.

(c) Double Zeta Calculations ¢of Relaxations Accompanying Core Ionizations

in F_, HF, C1

9 ) and HCI.

2

The calculated absolute binding energies and relaxaticn energies arxe
given in Table 3.10. Both the absclute binding energies and shifts arc
in excellent agreement with experiment indicating the cverall adequacy of

the basis set. It is clear that the shifts in molecular core kinding
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Table 3.10.
Calculated Core Binding Energies and Relaxation Energies for F2, HE, 012
and HC1 (in eV)
Core Calculated Exptl. Calculated Exptl. R.E. ARFE
level B.E. (ASCF) B.E. shift shift
F, 1s 696.04 696.7" (0) (0) 23.39 (0)
HF 1s 693.95 694.0° ~2.09 -2.7 20.78 -2.61
F 1s - - - - 22.0%  -1.39
C12 1s 2822.63 - (0) {0) 31.¢ (0)
2s 278.54 278.7° (0) () 10.8 (0)
2po 208.71 - (0) (0) 11.7 (0)
2pT 208.57 - (0) {0) 1.7 {0)
HCL 1s 2822.09 - -0.54 - 30.5 -1.5
2s 278.13 278.3d -0.41 ~0.4 9.4 ~-1.4
2po 208. 34 - -0.37 - 10.3 ~1.4
2pn 208.13 - -0.44 - 10.3 -1.3
c1 1s - - - - 30.7%  -1.2
2s - - - - 9.3 -1.5
2po - - - - 10.4% 1.3
2pm - - - - 10.4%  -1.3

U. Gelius and K. Siegbehn, Faraday Discuss. Chemical Soc., 54 (1972).
R.W. Shaw.and T.D. Thomas, Chem. Phys. Lett., 22, 127 (1973).
T.X. Carrol and T.D. Thomas, J. Chem. Phys., 60, 2186 (1974).

W.B. Perry and W.L. Jolly, Chem. Phys. Letters, 23, 529 (1973).
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energies are calculated te be closely similar for all core levels.
The results do suggest however that small but subtle differcnces may be
detectable in shifts in going from one core level to another and indeed
recent high resolution studies tend to suppoxrt this View.60 The close
similarity of the shifts is interesting however since it is clear in
considering the core levels of chlorine that the binding energies and
relaxation energies span a substantial range.

Considering now the changes in relaxation energies it is instructive

to compare the results for the molecular species with those previously

125,132

reported for the free atoms by Siegbahn and co-workers. The

results fit into a consistent pattern. Thus for both X = F and Cl the

relaxation energies for HX and the atomlc species are calculated to be

lower than for X2.133

For X = I' che relaxation energy for HX is considerably lower than
for the atom whilst for the less electrnnegative chlorine the coirresicnding
energies arce about the same. From Table 3.10 we see that the ratio of

ARE to ABE for C12 and HCl is much larger than the corresponding ratic fou

F2 and HF. Therefore it would be cerrect to say that small changes in

binding energies for Cl., and HCl are accomnanied by large changes in

2

relaxation energies to compare with F, and HF, but on an absolute scalce

2

it is clear that differences in relaxation energies and binding energies

between Cl, and HCL {~ 1.5, &~ 0.5) are smaller than between £, and HF

t 2.6, 2.1) which is in accordance with our results for X? and HX

(X = CIi,, N4

3 ot CH, F) reported in a previous section.

(d) Limited Basis Set Calculations of Relaxations Acccmpanving Core

Jonizations in the Sexies FZ' HF, Cl? and HC1.

Since it did not jprove computationally fcasible tc extend the double

zeta 3later basis set calculations to Br2 and HBr, for comparison puiposes


http://speci.es

more restricted computationally inexpensive basis sets have been empluyed
as detailed above. This can be justified by the work of Clark and
Ada.msll9 and further substantiated by the work presented in Sections 3.1.
3.4. of this chapter which shows that absolutc magnitude of binding and
relaxation enexgies vary with the size of a basis set but the differences
and trends in these quantities are much less subject to such variations.
The results of the calculations are shown in Table 3.1l1l. It is
clear that to varying degrees the absolute binding energies are over-
estimated since the computed relaxation energies are too small. Shifts
in core binding energies however are such that in the series X2 - HX
the computed and experimental shifts are overall in reasonable agreement,
the orxrder being ¥ >> Cl > Br., Using the double zeta quality calculation
on the fluorine and chlorine compounds as yardsticks it is evident that
whilst the absolute magnitudes of relaxation energies are too small for
the restricted basis sets, the differences in relazation energies are
well reproduced. It is therefore inferred from the data in Table 3.11
that the relaxation ensrgy differences for X2 with respect Lo EX are in

oxrder F > C1l v Br which seems chemically very reasonable.



Table 3.11.

Calculated Core Binding Energies and Relaxaticn Energies for F, . HOF, C12, FCl

Br,. and liir (in eV)

2
Core B.E. Shift Exptl. R.E. ARE
level (ASCF)
F2 1s 697.66 (0) (0) 20.34 (0)
HF 1s 695.90 -1.76 ~2.7 18.06 ~-2.3
’ Cl2 1s 2834,32 (0) 13.1 (0)
2s 277.98 (0) (0) 8.2 {0)
2po 209.79 (0) 8.6 (0)
2pT 209.64 (0) 8.6 (0)
' HCl is 2834.07 -0.25 12.0 -1.1
2s 277.70 ~0.28 -0.4 7.2 ~1l.0
2po 209.53 -0.26 7.6 -1.0
2pT 209.36 ~0.28 7.6 ~1.0
Br2 1s 13283.00 (0) 8.9 (C)
2s 1737.90 (0} 7.6 (0)
2po 1580.88 (0) 7.8 (0)
2pm 1580.85 (0) 7.8 (0)
3s 248.65 (0) 5.6 (0)
3po 190.87 (0) 5.€ ()
3pm 120.59 (0) 5.6 (0)
HBr  1s 13282.63 -0.12 7.9 ~1.0
2s 1737.91 -0.0L 6.6 -1.0
2pa 1580.83 -0.05 6.8 ~1.0
2pm 1580.80 -0.05 6.8 -1.0
3s 248.58 ~0.07 ~0.1* 4.6 -1.0
3po 190.80 -0.07 4.6 -1.0
3pn 1%0.53 ~0.06 4.6 -1.0
* Reference d in Table 3.10. (It is not clear to which level this
value refexs).
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Ab initio calculations have been carried out on CO and N2 and relevant
core hole states with different basis sets to investigate differences in
potential energy surfaces (PES's), and in particular equilibrium geometries
and quadratic force constants. From thesc calculations vibrational bana
profiles of the core level ESCA spectra for these molecules have been
interpreted, obviating the need to rely on data pertaining to the equivalent
core species. The agreement with experimental profiles is found to bhe
excellent. The 0ls Jevels of CC, which have not becen subjected to detailed
theoretical analysis previously, are predicted to show substantial
vibrational fine structure in excellent agreement with recently acquired
experimental édata. The effect cf temperature on the band profiles has also
been considered. Theoretically derived core binding and relaxation energies
of these systens have been investigated both as a function of basis zet,
and of internuclear distance. Density difference contours have been
computed and give a straightforward pictorial representation of the
substantial electronic reorganizations accompanying core ionizaticons.

Small basgis sets with valence exponents appropriate to the eguivalent cora
species whegn used in lhiole state calculations describe bond lengths, force
constants, core binding and relaxation ensrgies with an accuracy comparable

to that appropriate to the corresponding extended basis set calculatiocus.
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4.l. Introduction.

The advent of high resolution ESCA instrumentation incorporating
efficient X-ray monochromatization has recently revealed for the first
time vibrational effects accompanying core ionization.60'77’79'134'135
The most detailed experimental and theoretical studies to date relate to
Cl,r N, and CO.60'77'79’134'135 The experimental data pertaining to

rhotoionization of the C and le core levels in these systems have been

1ls

interpreted semi—quantitatively in texms of computed Franck-Condon factors

with vibrational frequencies and bond lengths being derived from experimental
, , . 60,77,79 .

data of neutral and equivalent cores species. However previous

theoretical studies indicate that althouglhh in general the bond lengths

and force counstants for equivalent core and hole state species are closely

- . s es A E 136,137

similar, nonetheless small but significant differences are apparent.

Detailed theoretical investigations therefore of PES's for core ionized

specles in the particular case of N, and CO would appear to be particularly

2
appropriate at this time. For these simple systems the possibility exists
of a detailed non-—-empirical study incorporating an investigation of the
basis set dependence of tne computed parameters. This chanter contains

a survey of such an investigaticn togethexr with the results of calculated
equilihbrium bond lengths and force constants for neutral molecules and hole
states, absoclote vertical and adiabatic binding energies and electronic
reorganixations accompanying core ionizations.

The theoretically computed force constants and equilibrium bond lengths
have then besn used to calculate Franck-Condon factore and hence band
profiles for the core jionized states of CO and N2.

In the previcus chapter wve have discussed in detail the dependence cf

electronic relaxation energies for core ionized species on the detailed

electronic structure of the molecular system. In continuation of such
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investigations the relaxation accompanying core ionizations for N2 and CO
has been studied by means of density difference contours which lead to a

straightforward physical interpretation of the computed changes in bond

lengths for the core ionized species.

4.2. Computational Details.

Calculations have been carried out within the Illartree-Fock formalism
since we have pointed out in the first two chapiers that changes in
correlation energy are relatively unimportant in discussing equilibriun
bond lengths, force constants and binding energies for core levels of
first row elements. Non-empirical LCAO MO SCF calculations have therefore
been carried out on PES's for ground and hole states and equivalent core
gspecies. The calculations have been performed using the ATMOL system of
prograns implemented on an IBM 370/195. The bosis sets employed were
as folious:

1) sT0 4—31G24 and HF 4—31G25 using best atom exponents;20

2) double zZeta Slater using best atom exponents;28

3) extended Slater basis set which we refer to as triple zeta

31
Slater, using best atom exponents;

4) for hole states STO 4-31G and EF 4-31G with valence exponents
appropriate to the equivalent core species which we refer to as

optimized basis sets.

The mctivation for employing the bhasis sets described in (4) was supplied
by the results in the preceding chapter which show that the partial
optimization of exyonents yields absolute binding energies in excellent
agreement with experiment at a relatively small computational expense thus

creating a viable alternative to carrying out extended basis set calculations.
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In addition comparable ‘'optimized' doukle zeta basis sets werc investigatoed

and the 1relevant observations are discussed in a later section.

4.3. Investigations of Potential Energy Surfaces.

As a preliminary to studying the PES's (in particular equilibriunm
geometries and harmonic force constants) for the core ionized species, an
investigation has been made of bcth the neutral molecules and equivalent
core species. The procedure adopted in each case was to start from the
experimental geometries and compute parabolas from a grid corresponding to
an extension or compression of 0.1 A.U. A procass of successive refinements
was then carried ovt in which the minima were taken as starting points and
the intervals were decreased to final values of 0.0L A.U. which correspended
to a minimum of ten calculations. In the particular case of CF+ the
starting geometry appvopriate to the minimized TO* ouygen hele state
(discussed further on; was employed. The calculated bond lengths as a
function of bhasis set are compared with the experimental values in Takle 4.1,
Considering firstly CO and N2 it is cleer that even at the STO 4.31G level
the equilibrium bond lengths are quite accurately xeproduced (within v 3%).
Thie is also true for NO+ and by extrapolation for CF+.

Having computed snergy minima for these systems it is clearly of sonme
importance to establiszh iliat the shape of the potential energy curve in
the vicinity of the minima is also adequately described. In each case the
potential surface in the region corresponding to extension or compression
by n~ 0.15 A.U. was examined and fitted to a parabola. This involved the
computation of a few extra points such that a minimum of 15 points were
available for each curve. For this purpose only the STO 4-31G and triple

zeta basis sels were investigated,
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The derived force constants axe also given in Table 4.1. (Figure 4.1
for example shows the computed potential encergy curves for N2 with the
triple zeta basis set and indicates that the harmonic approximation is
extremely cgood in the region of small displacements.) Az might be expected
the small basis set tends to over-estimate thé experimental force constants
somewhat (by v 25%) whilst the triple zeta basis set gives a more accurate
representation. It ig clear however that even the small basis set adequately

reflects the steeper potential surface of N, with respecit to CO. {(Ratio

2
of force constants calculated 1.27, experimental 1.21.)

Having established that to varying degrees of accuracy as a function
of basis set the bond lengths and force constants for these ground state
systems may be treatecd within the Hartree-Fock formalism, we may now prcceed
to investigate the hole states for N2 and CO also as a function of basis

set. The analysis for the N Cc and O localized hole states procceded

1s' T1s “ls
along the lines discussed above and the results are shown in Table 4.2.
Considering firstly the results for nitrogen, with the exception of the
limited basis set HF 4-31G and STO 4--31G calculations with uncptimized
exponents (viz. exponents appropriate to the neutral molecule), it is clear
that a significant decxease in bond length is ccmputed in going from the
neutral molecule to the hole state. With valence exponents appropriate tc
the equivalent ccre species (e.g. O for the nitrogen with the core electron
deficit) the limited basis set calculations are in good overall agrcement
with the triple zeta basis set results. This is also clear from the
equivalent cores species (NO+) itself where experimental data are available
for direct ccuparison. The virtues of using computationally inexpensive
basis set (at the 4--31G level) vhere for the core ionized species partiai

ocptimization of expenents jis accomplished by taking cognizance of the
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equivalent cores concept has been already discussed in relation to absolute
binding energies. The work described in this Chapter would strongly suggest
that the approach is also successful in describing changes in bond lengths
and force constants (sce later) accompanying core ionizations. It may be
roted that the calculations consistently suggest that the bond length for the
hole state is somevhat greater than for the equivalent cores species.

For ClS and Ols hole states of CO an interesting picture emerges
in that calculations (independent of basis set) predict a decrease in bond
length for the former and an increase for the latter with respect to the
neutral molecule. The results for the small basis set calculations with
optimized exponents are in very good overall agreement with the triple zeta
basis set calculations. 1In this connection it is interesting tc note that
in general the ‘'optimized' small basis set calculations are in better ovzrsll
agreement with the triple zeta calculations than are those from the double
zeta basis set. This can almost certainly be traced to restrictions imposed
by allowing only the coefficients to be determined variationally for systems
which are strongly perturbed with respect to the ground stoate species and
for which the exponents are essentially optimized,

The calculations again indicate (the sole exception being those for

the doiuble zeta basis set pertaining to the C hole state) that the

1s
computed equilibrium geometries for the hole states are consistently larger
than those for the equivalent core species. The compariscns for the small
basis set calculations refer in each case to the 'optimized' exponents fox
the hole state species. This is of some importance in discussing vibrational
effects accompanying core ionization and will becoume apparent in a latex

section. The discussion thus far should emphasize that limited basis set

calculations pirovide a good description of changes in bond length accompanying



photoionization provided that for the core ionized species valence exponcnts
appropriate to the equivalent cors species are employed. If this 'partial
optimization'’ of valence exponents is not invoked then bond length changes
in general are typically predicted to be an order of magnitude too small
and may also have the wrong sign. This is also c¢learly evident Ffrom
recently published data.138

In oxder to make this point clearer we have investigated the relevant
core hele states with STO 4-31C basis sets in which the 'best atcm valence
exponents’ for the atom on which the core hole is located, have been varied.
To start with we have considered the Cls hole state of CO. Firstly 2p
exponents have been varied (while 2s exponents have been fixed at their
best atom valuezo) until a minimum for the binding energy was found
at §2p = 2.5 (zee Table 4.3). The same procedurc has becn repealed in

which 2s exponents have been varied while 2p exponents have been fixed at

2
their best atom value. © The minimum was found for {

= 1.9 (see Tab.ie
228

4.3). However the use of these 'optimized valence exponents' vields
BE = 295.53 eV which is 3lightly worse than the binding energy chtained
with nitrogen valence exponents (see Tables 4.3 and 3.1).

This is not entirely unexpected since in going frxrom an atom to a
diatomic moiecule the energy svrface as a function of orbital exponents is
orders of magnitude more complex. Thus whilst for atoms the corresponding
surface is effectivaly vartitioned such that exponents for e.g. 2s and 2p
functions may be separately optimized; for a molecule changing an exponent
of a o type orbital on one atom can considerably esffect the expouent for a
7 type orbital on the same atom because of tlie perturbation of the attached
atoms. A complete multi-dimensional optimization is impracticable for all

but the smallest systems (it would probably have been possible for the



Table 4.3,

Optimization of 25 and 2p Exponents of Carbon in CO at Experimental Geometry

with the STO 4-31G Basis Set

Best carbon 2s exponent = 1.6083 Best carbon 2p exponent = 1.5679

2p exponent Be (eV) 2s exponent _BE (eV)
1.8 298.00 1.7 300.39
1.9 297.22 1.9 300,24
2.0 296.65 2.1 300.49
2.3 295.88 2.3 300.68
2.5 295.87 2.5 300.74
2.7 296.09 2.7 300.81

2s = 1.6083, 2p = 1.5679° BE = 306.80 eV

2s = 1.9237, 2p = 1.9170b BE = 296,71 eV

Pest atom exponents £cr carbon.

b .
Best atom exponents for nitrogen.
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systems studied in this work given sufficient computer time), thercfore a
procedure for cptimization of wvalence exponents has been invoked in which

a plot of the best atom valence exponent520 for carbon, nitrogen, oxyger:

and fluorine versus the atomic number allows a straightforward interpolation
of the 2s and 2p exponents as a function of 'apparent' atomic number. The
values determined in this way are displayed in Table 4.4. The absolute
binding energies were then computed as energy differences between ground
states and relevant hole states (ASCF method). For the former, neutxal

best atom exponentszo were used whilst for the latiter the 25 and 2p
exponents were varied as a function of the 'apparent' atomic number as
indicated in Table 4.4. In all cases calculations were performed at
experimental geometries. Since the 2s and 2p exponents were both
systematically varied whilst the exponents for the core orbitals werxe
unchanged, we would not necessarily expect to obtein minima for the binding
energies computed as enerqy differences. Indeed the results displayed

in Fig, 4.2 clearly illustrates this. The important conclusion to be reached
from such a study, however, is that for these smAall hasis sets, in each cace
the calculated absolute binding ensrgies with the valence exponents forx

thc atom on which the core hole is located close to those appropriate to

the equivalent cores species and are in close agreement with the expevimentally
determined values.

For this reason and because of the computational expense the detailed
investigation of poténtial energy curves to obtain force constants was
restricted to the 'optimized' STO 4-31G and triple zeta basis sets. The
derived potential energy curves and force constants for both ncutral
molecules, core ionized and eguivalent cores species are shown in Figureu

4.3a and 4.3b.
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Table 4.4.

Interpolated Values of 2s and 2p Best Atom Exponents as a Function of ‘Apparent’

Atonic Number

Apparent atomic number 2s Exponent 2o Exponent
6.0 1.6083 1.5679
6.2 1.670 1.640
6.4 1.735 1.705
6.6 1.800 1.772
6.8 1.862 1.840
6.9 1.89%6 1.872
7.0 1.9237 1.9170
7.1 1.960 1.940
7.2 1.992 1.975
7.4 2.058 2.040
7.6 2.120 2.104
7.8 2.185 2.170
7.9 2.216 2.201
8.0 2.2458 2.2266
8.1 2.280 2.270
8.2 2.310 2.300
8.4 2.375 2.365
8.6 2.440 2.430
8.8 2.501 2.496
8.9 | 2.533 2.527
9.0 2.5638 2.5500

9.1 2.598 2.591
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Considering firstly Figure 4.3a with the data corresponding to
nitrogen, the computed decrease in equilibrium bond length for the core
ionized species is seen to be accompanied by a relatively small change in
force constant., Comparison of the triple zeta basis set calculations would
suggest that the force constants for the hole state and equivalent cores
species are essentially the same.

The situation with regard to carbon monoxide however is more complex
(Figure 4.3h). TFox the carbon ls hole state the decrease in bond length
is accompanied by the expected increase in force constant, with potential
curves being closely similar to that for the equivalent cores species,

For the 0ls hole state the potential energy well is considerably
broader indicative of a greatly reduced force constant with respect to the
neutral molecula.

These calculations overall would suggest therefore that to a firs!
approximation chanyes in bond length and force constants in going from a
neutral molecule to a given hole state are adequately described by
considering the cquivalent cores species. Depending therefore on whether
there is a decrease or an increase in equilibrium bond length in going fxom
the neutrai molecule to a given core hole state the equivalent core model
provides either an upper or lower bound respectively to the change in bond

lengths and in each case provides a lower bound to the force constant.
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4.4. Binding and Relaxation Energies.

(a) Binding Energies.

The wealth of data readily obtainable from the calculations on PES's
described in the previous section allows a comprehensive analysis of both
vertical and adiabatic core binding energies as a function of basis set
and theoretical model. The results are displayed in Tables 4.5 and 4.6,
where binding energies have been computed by the ASCF method, from
Koopmans' theorem and from relaxed Koopmans' values (all these techniques have
been discussed in some detail in Chapter II).

Considering firstly the data pertaining to nitrcgen, it is clear that
the calculated absolute binding energies are in good agreement with the
experimental data provided a sufficiently flexible basis set is cmployed.

The relaxed Koopmans' values closely parallel those derived from the hole
state calculations as might have been expected. The calculated 'adiabatic'
binding energies are virtually identical to the vertical values and this is

of some relevance when we come to discuss the vibrational effects accompanying
core ionizations.

It is interesting to note that with a medium size basis set (double
zeta) the use of valence exponents appropriate to the equivalent core
species for the core ionized system fortuitously leads to.calculated core
binding energies in almost exact agreement with those calculated using
best atom exponents appreopriate to the neutral atom, with neithex being
in particularly good agreement with experiment. This may be attributed to
the mutual interaction between the two types of variational parameters
viz. the coefficients and exponents.

A similar situation cobtains for carbon nmonoxide with the results for the

'optimized' small hasis sets being comparable with those for the triple zete
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Table 4.5.

Calculated Core Binding Energics for Nz*

N Binding Energy (eV)'I"r

. 1s
Basis Set Model1 Vertical (1) Vertical (2) Adiabatic
STO 4-31G K 427.4 427.6 -
Kr 415.1 415.1 415.1.
A 415.1 415.1 415.1
s10 4-316 (OPt) K - , - -
Kr 411.8 411.8 411.9
A 410.1 410.2 410.).
HF 4-31G X 427.4 427.4 -
Kx 414.4 414.3 414.3
A 414.3 414.3 414.3
P 4-316 OPt") K - - -
Kxr 410.4 410.5 410.4
A 410.9 410.9 410.9
Double Zeta K 428.6 428.7 -
Krx 411.7 411.7 411.7
A 412.6 412.6 412.6
Double Zeta(Opt') K - - -
Kr 411.8 411.8 411.8
A 412.6 412.6 412.6
Triple Zeta K 427.4 127.2 -
Kr 410.0 409.9 410.0
A 410.9 410.8 410.8

Experimental value = 409.9 eV (reference number 77},

K refers to Koopman's Theoremn.
Kr refers to Relaxed Koopmans' Theorem viz. k(e + e*).
A refers to SCF calculations.

Vertical (1) and vertical (2) refer to binding erergies calculated at the
experimental and theorectically optimized equilibrium geocmetry of the
ground state respectively.

Adiabatic refers tc bhinding energies calculated as energy differences
for the theoretically optimised ground state and hole state geomctries.
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basis sets. The substantial shortening of the hond length in going to the
carbon ls hole state is reflected in the significant differences that are
apparent in the adiabatic and vertical calculated binding energies. It is
interesting to note that for the double zeta basis sets the use of the
equivalent core valence exponents yields slightly better results for the

0 hole and slightly worse for the C

1s s hole than employing the neutral

1
best atom exponents. This is not unexpected on the basis of the data

previously discussed for the nitrogen core hole.

(b) Relaxatioid Energies.

C and O core

The calculated relaxation enexrgies for the M. ,
ls 1s 1s

levels as & function of basis sct are shown in Figure 4.4. In each case the
calculations refer to the experimentally determined eguilibrium gecmetrics
of the neutral molecules. A striking feature of this data is the fact that
the 'optinized' small basis set calculations give absolute values for the
relaxation energies in good agrecment with those calculated with extended
basis sets. Although the small 'unoptimized' basis sets characteristically
underestimate the total relaxation energy as has been pointed cut in the
preceding chapter, the trends in relaxation energies are well reproduced
by comparison with the extended basis set calculations. Thus the slopes of
the relaxation enexgy vs. change in atomic number are 4.3, 4.2, 4.6, 4.7,
4.6 and 4.6 foxr HIF 4.31G, HF 4.21G (opt.), STO 4.3.G, STO 4.31G (opt.),
double zeta and triple zeta basis respectively. This reinforces the
conclusicn reached in the preceding chapter that whilst absolute values of
relaxation energies are markedly basis set dependent, differences in
relaxation energies are relatively incensitive to the basis set employed.
It is of some interest also to consider changes in relaxation energies

as a function of the internuclear distance for the hole states considered
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Plot of calculated relaxation energies as a functicn of basis set versusy
the atomic nuwnber of the element on which the coxe hole is localized.




- 138 -

in this work. Detailed investigations of this particular aspect have been
carried out with double zeta quality basis scts and the results are
displayed in Figure 4.5, where the reference in each case is with respect
to the theorctically calculated equilibrium geometries for the neutral

molecules. For these closely related systems for the C N and O

1s” T1s 1s
holes the changes in relaxation cnergies are linear functions of the change
in bond length with positive slopes (viz. relaxation energy increases with
increasing bond length). It is clear however that in each case the changes
in relaxation encrgies represent a small fraction of the total relaxaticn
energices. The order of increasing slope of Cls < le < 01s follows the

order of increasing total relaxation energies.

(c) hnalysis of Electronic Relazaticns Accompanying Corz Ionizations

by Means of Density Contouvs,

Valence electronic relaxaticns (reorganizations) accompanying core
electron iorizations have been discussed@ in the preceeding chapter by
Mulliken population analysis. Whilst a consideration of population analyses
can provide a valuable qualitative picture of the substantial migrations
in electron densities which occur on core icnizaticn, the computaticnally
more expensive analyses in texms of detailed density difference contiour
maps are even mcre revealing, since they provide a three dimensiocnal
picture of the relaxation phenomena. This has recently been demonstrated
most effectively by Streitvieiser and coworkew:s,139 in the particular case
of the Cls and 0lS hole states of CO. Unfortunately the contours producecd
make it difficult to appreciate the substantial reorganizations of the
electronic charge distribution in the beonding rcgions which are obviously
of some considerable importance in discussing vibrational effects for the
core hole states. In the present work density difference contours have been
constructed using the ATIIOL program package for analysis of molecular wave-

functions, and employing a double zeta basis set.
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The areas studied were in each case divided into a mesh of 97 x 97
roints, and the derived density difference grid was then used to compute
the appropriate density differenc; contours. In computing the density
difference contours the same geometries were used for both the ground state
and relevant core hole states; these geometrices corresponding in each case
to those appropriate to the calculated equilibrium geometries of the neutral
molecules using a double zeta bhasis set (2.082 A.U. for N2 and 2.155 A.U. for
co) .

The planes chosen most effectively to illustrate the relaxation
phenomena are the molecular (XY) plane covering an area of 10 x 10 A.U. and
the plane perpendicular to the molecular axis bisecting the molecule. This
piane covered an area of 8 x 8 A.U.

The results for the le core hole in N2 and for the Cls and Ols heles
in CO are displayed in Figures 4.6a, 4.6b and 4.6¢c.* 1In each case the
solid lines correspond to an increase and the dotted contours to a decrease
in electron density on going from the neutral molecule to the hole state,

Considering firstly the contours for the molecular planes, the

extensive migration of electron density to the vicinlty of the atom on

which the core hole is located is clearly evident. It is also clear that

* Caption for Figures 4.6a, 4.6b and 4.6c.

Electron density difference contours for the hole states of N2 and CO
with regpect to the neutral molecules. (The selid contours indicate an
increase and the dotted a decrease in density in going from the neutral

molecule to the hole state and the markers 'X' indicate the position of

2
. 3 » ] -~
the nuclei.) Contours are given in units of (electron/Bohr™).
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there is a very substantial overall spatial. contraction of the electron
distribution in going from the neutral molccule o the core hole state.
That this arises largely from electronic reorganizations of the valence
electrcens may most readily be inferred by reference to the contours in the
immediate vicinity of the nuclei. It is clear that for the atom on which
the core hole is located there is a decrease in electron density in thig
region which contrasts sharply with the large increase in electron density in
the region appropriate to the valence clectron distribution. Along the
internuclear axes the contours corresponding to the molecular plane show
that there are substantial changes in electron density with an overall
increase in the region close to the nucleus on which the core hole is
located and a decrease towards the other atom. The planes perperdicular o
and bisecting the molecular axes are particularlv revealing in *his

respect since they show for bcth the K and Cls holes a mubstantial

1s

increase in -lectron density in the bonding region whilst for the OlS

hole there is an overall decrease. These contours therefore provide a

simple picterial rationalization for the driving force behind the decrease

in bond length accempanying le and Cl= core ionizatioun in nz and CO

respectively and the Zncrease in bond length in going to the Ols core hole

state for the latter.



4.5. Vibrational Fine Structure Accompanying Core Ionizalions.

(a) Introduction.

It has been shown in Section 4.3 of this chapter that the equilibrium

geometries for the core ionized species cf N, and CO are significantly

2
different f£rom those of the neutral molecules and more particularly the
potential energy surfaces (PES's) for the ionized species show substantial
changes in force constants.

The development of a high resolution spectrometer incorporating the
fine focussing X-ray monochromatization scheme has revealed significant fine
structure in the main core photoionization peaks for N2 and CO which had
previously gone undetected.60'77'79'l34'l35 An elegant discussion of the
interpretation of this fine structure in terms of vibrational excitaticns
accompanying core ionizations has been presented by Siegbahn and co-

workers.60'77'79

As it was previously pointed cut, howaver, it is not
entirely clear in the absence of a detailed theoretical examination that
force constants and changes in bond length derived for the eguivalent core
species will be entirely adequate in discussing this data. The detailed
analysis presented in Scction 4.3 indicates that the potential energy
surface for the equivalent cores species form a reasonable basis for the
semi-quantitative discussion of the vibrational effects. However two
differences were apparent with respect o the hole state species themselves.
Firstly as it was previously discussed, depencding cn vhether there is a
decrease or an increasge in eguilibrium bond length in going from the neutral
molecule to a given core hole state, the equivalent cores model provides
either an upper or lower bound respectively to these changes in bond

length. Secondly, the force ccnstents for the equivalent cores species

are consistently smaller than those for the corresponding hole states suct
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that the separation bettieen the vibrational levals is almost certainly

underestimated. Thus for the ClS hole state of CO and the N hole
s

1

state of N2, Sieghahn and co-—workers77 obtained an excellent fit to the
observed asymmetric line shapes by computing the relevant Franck Condon
factors taking separations between the vibrational energy levels of 0.29 eV
and changes in bond lengths inferred from the equivalent cores species
(NO+). The theoretical calculations detailed in the discussion in the
previous section, however, suggest vibrational frequencies of 0.33 eV for

the C1s and Nlo hole states of CO and N_ respectively. 2A furxther point of

2
interest is clearly an examination of the corresponding vibrational effects

accompanying core ionijzation of the O level in CO for which there appears

1s
to have been no previous detailed thecretical examination,; and for which
. . . . l40
high resolution experimental data have only recently become available.
The calculated vibrational frequency for the core ionized species in this
case is sub.tantially lower (0.22 eV) than for the other holes.

The discussion to be presented below is within the harmonic
approximation and since it will become apparent that vibrational
excitations for the icnized states is restricted at normal temperatures to
the lowest few levels we may briefly consider the possible importance of
anharmonicities for these levels. As a model we may consider the ground
state of CO for which experimental data of a high order of accuracy are

. 141 . . . . .
well documented. For example the change in vibrational separation in
going from the 0 -+ 1 to the 5 »+ 6 transition amounts to less than 4%

(0.26 eV vs. 0.25 eV). Since the interpretation of the unresolved ESCA
data essentially involves a detailed lineshape analysis, such small changes
in vibrational separations arising from anharmonicity corrections may
reascnably be ignored. The effects of any slight anharmonicity would ba

expected tc be even less in respect of the calculated Franck Condon factors,
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which were computed using the recurrence relaticnzs derived by Ansbachern142
The discussion which follows has focussed on the following points:
(1) The computation of the vibrational envelope for core ionization
in N2 and CO from the theoretically calculated energy separations
and Franck-Condon factors, derived from the calculations at
the triple zeta level. This enables a detailed comparison to be
made with the corresponding analysis by Siegbahn and his co-
workers77 which is based solely on experimental data of ground
and relevant equivalent core species, and also allows an extension
to be made to a consideration of vibrational effects for the
(] o hole state in CO. 1In this investigation only transitions

1

involving the ground state (v" = 0) of CO and N2 need be
considered.

(2) Consequent upon the interpretation of the fine structure
accompanying core ionization in these systems as arising from
vibrational effects, to investigate the likely temperature

dependence of the overall bond profiles.

(b) Nitrogen Molecule.

The distinct asymmetry of the direct photoionization peak for the core
levels of nitrogen has been interpreted by Siegbahn and co—workers77 in
terms of excitation to the two lowest vibrational levels of the hole state.
It is evident from the comparison between the theoretical analysis presented
here and the experimental data that higher excitation must be involved.
Taking the individual component linewidths obtained from Siegbahn's analysis
(FWwHM* 0.37 eV) together with the theoretically computed vibrational energy

separations, an improved fit may be obtained to the experimental envelope.

* TFWHM -~ Full Width at Half Maximum.
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The derived Franck-Condon factors for the uv" = O to v' =0, 1, 2 are 80%,
19% and 1% respectively. A mecre critical test for the calculations

however is to take the theoretically derived change in bond length in
conjunction with the vibrational separation to compute the relevant Franck-
Concdon factors. Taking the experimental band prcfile together with the
theoretically calculated energy separations and I'ranck-Condon factors

one obtains almost exact agreement, using as the only variable the

FWHM of the individual components. The relevant data are displayed in
Figure 4.7, the derived 'best f£fit' FWHM of 0.39 eV of the individual
gomponents being in excellent agreement with that derived from the previous
analysis. This solely theoxetical analysis differs from that based on Cthe
equivalent cores analysis primarily in terms of the somewhat lower overall
contributionsg of the higher vibrational excitations.

(c) Carbon Monoxide.

i L S.
(i) Cls evel

A similar analysis te that presented for nitrogen has been carried
out for CO. An improved fit to the experimantal data wasg again obtained
when theoretically calculated enerqgy separation (0.33 eV) of individual
vibrational cbmponents of FWHM derived by Siegbahn77 (0.48 eV) was tecken.
This analysis reveals that the large change in bond length is accompanied
by the excitation of up to five vibraticnal quanta and the derived Franck-
Condon factors for the v“" = 0 to ' =0, 1, 2, 3, 4 transitions are 36%,
36%, 20%, 7% and 1% respectively. Again the more critical test of the
theory is by direct comparison of a solely theoretically based analysis
with the experimental. band profile. The guantitative nature of such an
analysis is clearly evident from the data displayed in Figure 4.8, the

derived FiHM for the individual componant of 0.54 eV is again in good
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agreement with that derived from the equivalent cores analysis. Before

an analysis of the vibrational effects accompanying core ionization of the
0ls level in carbon monoxide is presented one may briefly consider somec
previously published high resolution spectra134 for carbon monoxide since
these provide the only experimental criteria currently available in the
literature for direct comparison with the theoretical analysis. The
published high resclution data pertaining to the Cls levels of carbon
monoxide discussed thus far77 refer to a lower instrumental resolution than
that for nitrogen (e.g. FWHM for individual components 0.54 eV versus

0.39 eV from the analysis presented here). However, in an earlier paper134
in which a detailed description of the high resolution ESCA instrument
employing a fine focussed X-ray monochromator was described, core level
spectra for carbon monoxide were reported with composite linewidths of

0.65 eV and 0.52 eV for the ClS and Ols levels respectively. Unfortunately
the energy scale on which this data is recorded .in the literature is such

that a detailed examination of the asymmetry of the band envelope is not

feasible (energy scale 2.67 mm/eV Cla levels, 3.33 mm/eV O, _ levels). IZ

iR}

one therefore takes the theoretically derived analysis for the CJs levels

described abo&e and systematically varies the ccmponent linewidths to fit
the published FWHM for the higher re=zolution spectrum (0.65 eV) one obtains
the FWHM for the individual components of 0.32 eV which is in gecod
agreement with that derived from the analysis of the nitrogen spectrum
(FWEM = 0.39 eV) and that pertaining to neon (¥WIM = 0.39 eV) measured at

60,77,134

comparable instrumental resclution. The theoretically

simulated spectra for the C levels corresponding to this high resolution

1s
are shown in Figure 4.9 where the data have been plotted on energy scales

corresponding beth to the published data134 and to that employed in the

previous figures. Comparison of the theovetically calculated composite
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band proifile and the higher resolution experimental data shows them to be
in excellent overall agreement.

(ii) o© s Levels.

e et

As was previously noted, vibrational effects accompanying core
ionization of the Ols levels in CO are of particular interest since no
detailed analysis has previously been presented. The reason for this may
be partly attributed to the lack of experimental data pertaining to the
equivalent cores species CF+. An alternative approach to the investigation
of vibrational effects accompanying core ionizations has been attempted
by Domcke and Cederbaum,l43 who have based their work on a many body
formalism using Green's functions.

Whilst their analysis of the Cls vibrational envelope corresponds
reasonably closely &o that pfesented here, the fact that the O s core
ionized state has an equilibriuvm bond length somewhat. greater than that of
the neutral molecule leads to a divergent situation in the many body
approach. It wvas, therefore, not possible to investigate in detail any
vibrational effects, for the Ols hole state, however the authors conclude
that 'the 0ls eiectrcn is strictly non-bonding in the one particle
approximation} and state that 'this is in gualitative agreement with the
ESCA spectrum of CO which shows no detectable broadening'. The detailed
analvsecs which will be presented below indicate that both of these
conclusions are in error and thal significant vibrational effects are
predicted and may in fact be inferred from the available experimental
data.

The theoretical calculaticns detailed in Section 4.3 show that the
force constant for the 0ls hole state of CO is substantially smaller than

that for the neutral molecule, which accords with the increased bond length
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in going to the core iocnized species. Taking the force constants and
change in bond length derived from the theoretical analysis the energy
separations and Franck-Condon factors may readily be computed. In order to

simulate the vibrational envelope for the Olr level an estimate of the

FWHM for each component is required. The available data in the literature
from the high resolution gas phase studies indicate that the composite

linewidth associated with the ls levels of first row atoms is C, v 0.32 eV¥*;

N, 0.3% eV*; Ne, 0.39 eV.60'77'l34 It should be emphasized thet these

linewidths are largely determined by the instrumental contributions

(X~ray source, analyzer etc.) since it is known that the natural lincuidths

60,77,79,134,135

are considerxably smaller. It is clear that the linewidth

appropriate to the same instrumental resolution for the 0ls level should

therefore be ~ 0.39 eV. The highest resolution data for carbon monovide

show that vhen the composite linewidth for the C levels is v 0.65 eV

1s
. 134 e ) n .
that for the O.Ls levels is Vv 0,52 eV. The significantly broadened peak

for the 0ls levels may therefore be taken as prima facia experimental
evidence for vibrational effects. Taking a FWHM of 0.39 eV for the
individual components, the calculated FUHM for the composite spectrun
derived from the theoretical analysis is 0.52 eV in complete agreement
with the.experimental data. Unfortunately the published data is too

compressed to clearly show the marked asymmetry of the O core level,

1ls

so that the only experimental parameter available is the total FWHM.
figure 4.10 however, which has been plotted on a comparable scale to that

for the expanded C s spectrum clearly shows the vibrational effects which

1

should be evident in an expanded experimental spectrum of the 015 levels.

* These values for the Cls and le levels are those derived from the
e

theoretical analysis of the experimental data as described above.
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The fact that the O s spectrum of CO has a smaller FWIIM than the C

1 1s

spectrum and that the latter is more asymmetric stems mainly from the fact
that the individuval vibrational components in the 0ls spectrum are more
closely spaced than for either the cairbon hole or for the neutral molecule.
For comparison purposes the theoretically simulated Ols level spectrum is
also plotted in Figure 4.10 on: a comparable scale to that of the published
data. Superposition of this spectrum with that previously published, shows
the excellent agreement between the two.

The goodness of the analysis of the Ols levels has been fully
substantiated by further experimental data144 kindly provided for us by
Professor Kai Siegbahn and Docent Ulrik Gelius., The spectrum of the 0ls
levels of CO plotted on an expanded scale (Figure 4.11) has been obtained
by the Uppsala group144 employing the fine focus X-ray monochromatization
scheme. The asymmetry of the spectrum although less marked than for the
ClS levels is clearly apparent and the resolution of the spectrometer giving
a composite linewidth of 0.66 eV corresponds to the caomposite linewidth
of 0.82 eV for the Cls levels reproduced in Figure 4.8. Taking
theoretically calculated Franck-Condon factors together with calculated
vibrational energy separations (0.22 eV) we obtain the best overall fit
to the bagd profile using as the only variable the FilHM of the individual
components. This fit is also indicated in Figure 4.1l and is seen to be
in excellent overall agreement with the experimental curve (the minor
discrepancies at the leading and trailing edges may well arise from the use
cf purely Gaussian lineshapes since the individual compenents would be
expected to be hybrids arising from the convolution of a Lorentzian line
shape contribution due to the inherent width cf the core level and a

Gaussian from the spectrometer contributions). The derived FWIM for the

component peaks is 0.58 eV which is in excellent agreement with that
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calculated from the derived linewidths for the Ols level at higher
instrumental resolution (0.32 eV) and for the Cls levels at the same

(0.54 eV) and higher instrumental resolution (0.32 eV) based on a first~
order analysis of the composite linewidths taking the inherent widths of the

levels and the spectrometer contributions in simple quadrature.

(d) Temperature Dependence of Vibraticnal Fine Structure Profiles.

The interpretation of the band profiles for N c and O core

ls’ T1s 1ls

levels in N2 and CO as arising from vibrational progressions involving
the ground vibrational states of the neutral molecules in each case
suggests that a confirmation of this assignment could be made by
temperature dependent studies of the band profiles. Unfortunately the
vibrational enerqy spacings for these molecules are such that significant
population of other than v" = 0 level requires considerably elevated
temperatures. One needs to restrict oneseli therefore to a theoretical
analysis which would correspond to realistic experimental conditions,

and therefore the charge in band profile for N2 at 1800K has been
considered. The Boltzmann distribution is such that at this temperature
the populaticn of the v" = 0 and v" = 1 levelg are ~ 87% and v 13%
respectively. The vibrational profile arising from transitions from

V' =0tou' =0, 1, 2 and from v" = ) to v' =0, 1, 2, and 3 using

the theoretically calculated energy separations, force constants and
change in bond length previously discussed has therefore been considered
and the results are displayed in Fiqgure 4.12. The differences with
respect to the room temperature spectryum are small but significant and
should be detectable with current instrumentaticn. Thus the FWHM of the
high temperature spectrum sheuld be v 6.3 eV larger than that at room

temperature and the tails at higher and lower binding energies should

also be observable.
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An alternative experiment to this direct temperature dependent
study would be to investigate the high resoluticon ESCA spectra of
molecular beams where vibrational quanta of the ground state species
have been selectively excited by means of a tunable laser. There is
certainly great scope for both theoreticians and experimentalists in high
resolution temperature dependent and molecular beam studies of X-ray

photoelectron spectra.



CHAPTER V

THEORETICAL INVESTIGATIONS OF THE VALENCE IONIZED STATES

OF N2 AND CO
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Abstract.

Non-empirical LCAO MO SCF calculations at the double zeta level
have been carried out on N2 and CO and their valence ionized states. Changes
in jonization potentials, relaxation energies, equilibrium geometries and
harmonic force constants have been computed and comparisons drawn with
experimental data where available. In appropriate cases it is shown that
trends may be rationalized in terms of changes in 7 bond overlap
populations. The computed bond lengths and force constants have been used
to calculate ab initio Franck-Condon factors for the valence ionized states
and comparison with experimental data reveals overall qualitative

agreement.,
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5.1. Introduction.

In the preceding chapter investigations of core binding energies,
potential enerqgy surfaces and vibrational fine structures accompanying core
ionizations in CO and N2 have been described in some detail. This chapter
contains an extension of this work to the investigation of the corresponding
valence ionized states. Although thexre have been several previous studies
on both the core and valence ionized states of these simple

molecules44'77'143,l45~7 a

comprehensive study with a common basis set has
not previously been attempted, therefore theoretically calculated
jonization potentials (binding energies), reclaxation energies, vibrational
frequencies and equilibrium geometries of the ground and valence ionized
states of CO and N2 are reported here. The computations have been within
the Hartree-Fock formalism with basis sets of double zeta quality and
where possible comparison has becn drawn with experimental data. Changes
in equilibrium bond length and force constants have been correlated with

T bond overlaps in appropriate cases and the direct computation of

Franck~Condon factors provides a stringent test by drawing comparisons

between theoretically derived and experimentally determined kand profiles.
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5.2. Computational Details.

Non-empirical LCAO MO SCF calculations have been carried out within
the Hartree~Fock formalism since the arguments discussed in the Ffirst two
chapters and further substantiated by the results reported in the
preceding chapter suggest that changes in correlation enexrgy are relatively
unimportant in discussing changes in equilibrium geometries, force
constants and ionization potentials of ground and core hole state species.
Calculétions have been carried out on the ground state and all of the
valence hole states using the ATMOL system of programs implemented on an
IBM 370/195. Double zeta Slater basis sets with Clementi's best atom
exponents28 have been cnployed for this purpose as it would have been
too expensive to use triple zeta basis for such an extensive investigation
and the 'optimized' STO 4-31G basis set successfully used before is only

suitable for core hole state species.
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5.3. Investigation of Tonization Potentials and Relaxation Energies.

(a) Nitrogen.

The formal electron configuration for the nitrogen molecule may bhe

written:

0,167 (0,107 (o 2907 (0 2007 (m 2m0 " (0,200 %
Binding energies have been computed by the ASCF technique and comparison
with Koopmans' Theorem allows the direcct estimation of relaxation eneryiecs
accompanying ionization. The results are shown in Table 5.1 where comparison
is also drawn with results based on the 'relaxed Koopmans' formalism.

The adiabatic binding energies are smaller than their vertical
counterparts and the largest difference is for the A 2"u and C 2x+g states,
since these include the largest changes in equilibrium bond length with
respect to the neutral molecule.

The computed relaxation energies for the valence ionized states are
in the order B 2ZZ < B 2ﬂu < X 22; < C 25;. It is interesting to note tliat
the overlap between the deep lying valence 2s orbitals on nitrogen is
sufficiently large that the valence ionized C 22; state corresponds to a
delocalized hole vhich contrasts strongly with the situation fer the core
hole states discussed in the previous chapter. Wc shall discuss this
point in slightly more detail later on.

The relaxed Koopmans' method discussed in the second chapter was
originally derived and used to predict kinding energics and their shifts

7 Y
for core hole state species,86’8 1104, 108

but it is clear from the present
work that the method cen also be successfully extended to valence ionized
states.

It has already been pointed out in the second chapter that tne ASCF

nelhod does not predict binding cnergies for valence hole states as



Table 5.1.

Valence Ionization Potentials (in eV) and Relaxation Energies (in eV)

for N

9
Mode1? x 2t A 2 B 25" c %"
g u u g
(ASCF)v 16.64 16.88 21.14 40,91
A(ASCF)v 4,50 4,26 (o] ~19.77
(Kr)v 16.50 16.83 21.04 40.87
A(Kr)v 4.54 4.21 0 -19.83
K 17.53 17.68 21.80 42.30
A(K) 4.27 4.1.2 (0] -20.50
RE 0.89 0.80 0.66 1.39
(ascE) SO 18.61 19.05 22.86 -
aeoscr) SO 4.25 3.81 0 -
(ASCF)ad 16.54 16.31 20.98 38.72
A(ASCF)ad 4.44 ’ 4,67 0 ~17.74
(Kr)ad 16.41 16.27 20.87 38.55
A(Kr) 4.45 4.60 0 -17.68
ad
A (SCF) Zgrr 18.51 18.48 22.70 -
A (AscF) °FF 4.19 4.22 0 -
ad
(IP)v 15.57b 16.93b lB.?Sb 37.3°
A(IP)v 3.18 1.82 (o] 18.55
(1P) 15.57° 16.69" 18.75° -
ad
A(IP)ad 3.18 2.06 0 -
2 ASCF refers to binding energy calculated by the ASCF nethod,
Xr refers to Relaxed Koopmans' Theorem, viz. -k(e + €*),
K refers to Koopmans Theorem, viz. - ¢,
RE refers to rclaxation energy,
IP refers to experimentally measured ionization potentials,
Subscripts v and ad refer to vertical and adichatic respectively,
Superscript corr refers to electrcon correlation corrections.
b
Reference 62.
c

EFefercnce 59.
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accurately as it does for the hole states. Indeed in particular instances
it even predicts an incorrect ordering of various valence energy levels.
This fact is chiefly attributed to electron correlation {ignored in the
ASCF technique) which can substantially vary for valence orbitals with
different localization characteristics. An attempt has therefore been nade
to estimate correlation energy differences AE corr using the pair
population model described in Chapter 1, Section 1.6d. The results from
earlier workS2 reported in this laboratory indicates that the An:corr—inter
term can be neglected in discussing shifts in ionization potentials thus
leaving us with the evaluation of the expression 1.165b and the 'intra-'
component of the expression 1.164. The results of these correlation
corrections to vertical and adiabatic icnization potentials in the present
work are displayed in Table 5.1l. Ionization potentisls obtaired in this
way are somewhat larger £han the experimental values which most probably
arise from deficiencies in the basis sets employed and from the neglect
of the Ecorr—inter term, bﬁt far more important is the fact that the shifis
in binding encrgies using this approach are in betler agreement with the
experimental shifts. Furthermore it is interesting te note that

2

+
B . is larger for the A 2n state than for the X "I state thus
corr—intra u g

reinforcing the well known fact that correlation energy is responsible fox
an incorrect ordering of these two states at the Hartree-Fock limit.44
However the calculations performed in this work do not approcach the
Hartree-Fock limit and therefore fortuitously predict a correct ordering

of these two energy levels for vertical ionization potentials.

(b) Carbon Monoxi.de.

The formal electron configuration for the carbon monoxide molecule may

be written:
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2 2 2 2 4 _ 2
(Ols) (Cls) (lo)™ (20)" (1w) ~ (39)

An analysis along the same lines has been carried out for the valence ionized
states of carbon monoxide and the results are shown in Table 5.2. The trends

and the gross features of the data for CO are similar to those discussed for
N2.

It is interesting to note that in the particular case of X 2Z+ and A zﬂ
the calculations predict the correct ordering, which contrasts with the
situation for N2+. This arises because the difference in correlation energy
changes i1s insufficient to invert the ordering.

It is noteworthy that the difference between the calculated adiabatic
and vertical ionization potentials for the A 2n and C 2Z+ states of CO is
larger than the corresponding difference for the equivalent A zwu and C E;
states of N2, and this accords with the experimental data.

Further we may note that the relaxation encrgies accompanying
valence jionizations in CO are uniformly larger than those for N2 vwhich at
first sight might seem somewhat surprising since for the atoms the
relaxation energies for valence atomic orbitals increases in the series
C < N < O. However the results are readily understandable when due acccunt
is taken of the localization characteristics which determine to a large
extent the relaxation energy. For the C 2Z+ state of CO for example which

corresponds roughly to an O < lone pair the relaxation energy (2.16 eV) is

2
v 50% larger than for the corresponding valence jonized state for nitrogen
which we have previously noted is delocalized over the equivalent centres.
81 . .

Snyder has shown (as discussed in Chapter II, Section 1l.2.b) that
relaxation energy follcws roughly a guadratic dependence on charge. Hence on

. . , 2.+ +
naive arguments the relaxation enerqgy for the delocalized C Xg state of N)

+ .
should be approximately 0.5 of that for the atom (N ). The theoretically
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Table 5.2.

Valence Yonization Potentials (in eV) and Relaxation Energy (in eV)

for CO
Model® x gt A %x p 25t c %st
(ASCF) 14.40 16.22 20.49 40.91
B(ASCF) 6.09 4.27 ) -20.42
(Kx) 13.97 15.89 20.63 40.86
AKD) 6.66 4.74 o -20.23
K 15.68 18.05 22.10 43.07
A (K) 6.42 4.05 ) -20.97
RE 1.28 1.83 1.61 2.16
(ASCF)sorr 16.14 18.30 22.23 -
A(ASCF;3°rr 6.09 3.93 o -
(ASCF) _ ¢ 14.38 15.16 20.46 37.80
A (ASCF) 6.08 5.3 0 -17.34
ad
(Re) o 13.94 14.56 20.56 38.12
B(Kx) 6.6 6.0 0 -
A(SCF):grr 16.12 17.24 22.0 -
A (AscF) COFF 6.08 4.96 o -
aqa
(1P) 14.01° 16.91° 19.72° 3g. 3¢
A(TP) 5.7 2.81 0 ~18.58
(IP) 14.01° 16.53° 19.72° -
ad

1 -

a(IP) 5.71 3.19 o

See Table 5.1.

o

Reference €2.

Reference 59.
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computed results using a modified Hartree~Fock-S5later Method reported by
Gelius and Siegbahn125 (see Table 5.3) show that this is a reasonable
approximation, viz. 1.39 eV vs. 3.0 eV.* By contrast the relaxation energy
for the C 22+ state for CO is proportionately larger with respect to that
for the atom (O+) viz, 2,16 eV vs. 3.6 eV.

For the A 2ﬂ states a similar situaticn obtains, the relaxation enexgy

being lower for the symmetrically delocalized T system of N Thus the

9
computed relaxation energy for this state of 0.8 eV may be compared with that

+
for the atom 2.4 eV. For the corresponding state of CO since the LCAO

coefficients are largest for the O orbitals the relaxation energy might

2p

reasonably be expected to fall between the corresponding atomic relaxation

and C,, levels. This is in fact the case viz. 1.83 eV

energies for O 2p

2p

versus 1.6 eV and 3.2 eV respectively. Similar arguments may he applied

+
to the X and B states to rationalize the lower relaxation energies for the N2

+
compared with the CO species.

* Comparison of course should strictly be with relaxation encrgies computed
for the valence ionized atoms with the same basis set. Since however we
are primarily interested in trends and differences we have used previously

, 125 . . . . R
published data with more extended basis sets. The error involved in this

is likely to be extremely small since the relaxation energies are reasonably

well accounted for with the double zeta basis sets.



Atomic Relaxation Energies (in eV) for Ionization from Various Sub-
shells Obtained by a llodified Hartree-Fock-Slater Method (taken from
reference 125)

Atom 1is 2s 2p
H 0.0
He 1.5
Ii 3.8 0.0
Be 7.0 0.7
B 10.6 1.6 0.7
C 13.7 2.4 1.6
N 16.6 3.0 2.4
(o} 19.3 3.6 3.2
F 22.0 4.1 3.8
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5.4. Investigation of Potential Energy Surfaces.

(a) Description of the Method.

Potential energy surfaces for the ground and for all of the valence
hole states of nitrcgen and carbon monoxide have been calculated in the
manner described in Chapter V. This process has involved computing
equilibriuvm gyeometries, (Re)c, for these species and constructing potential
energy curves around each of the equilibrium positions. These curves have
then been used to calculate harmonic force constants, (We)c. Equilibrium
geometries and force constants are much less sensitive to electronic
correlation, and this has therefore been ignored.

(b) Nitrogen.

The calculated equilibrium geometries (Re)c and force constants
(We)c for the ground and valence hole state species for the nitrogen
molecule together with changes with respect teo the neutral molecule
are displayed in Table 5.4. For comparison purposes experimental values of
these two parameters and the appropriate changes are alsoc displayed in
Table 5.4. The overall agreement between the experimental and calculated
values of Fhe equilibrium geometries and force constants is very reasonable
even if the calculated changes are always slightly too large.

As expected the loss of the strongly bonding L 2p electron results

oP

in a significant increase in bond length (experimental increase = 7.1%,

calculated increase = 9.1%) and a decrease in vibrational frequency
(experimental decrease = 24.1%, calculated decrease = 26.7%). The
ionization of an electron from the Og 2p orbital results in a small increase
in bond length (experimental increase = 1.9%, calculated increase = 3.6%)
and a corresponding decrease in vibraticnal frequency (expcrimental decrease

= 10.3%, calculated decrease = 13.3%). Ionization of an electron from the
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Table 5.4.
Equilibrium Geometries (in atomic units), Force Constants (in eV) and Bond
Overlaps for N2 and Valence States of N2+.a
x Izt x 25t A %y p %5t c %5t
g g u u

(Re) 2.082 2.157 2.272 2.001 2.548
A(Re) o) -0.075 ~0.190 0.081 -0.466
A(Re)c% 0% ~3.6% -9.1% 3.95  |-22.4%
(Re) _ 2.074° 2.113° 2.222° 2.032° -
A(Re) o) -0.039 ~0.148 0.042 -
A(Re) ° 0% ~1.9% -7.1% 2.0% -

ex
IA(R)SI 0 0.077 0.219% 0.077 0.564
(We)c 0.30 0.26 0.22 0.34 0.17
A(We)c o) 0.04 0.08 -0.04 0.13
A(We)c% 0% 13.3% 26.7% -13.3% 43.3%
(We) 0.29% 0.26% o.22f 0.30% -

ex
A (We) 0 0.03 0.07 -0.01 -~

ex
A(We)ey% 0% 10.3% 24.1% -3.4% -
T overlap G.998 0.954 0.718 0.960 0.946

Re refers to equilibrium geometry,
Vle refers to equilibrium (harmonic) force constant,
Subscript c refers to calculated values,

Subscript ex refers to experimental values,

Reference 118.

Reference

| sy

44.

frequencies are used.

Reference 141.

Reference 62.

IA(R)SI refers to change in geometry computed from equation (3).

= 0.1l4]1 when experimental values of ionization potentials and
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o, 2s orbital results in a decrease in bond length (experimental decrease =
2.0%, calc. decrease = 3.9%) and an increase of the vibrational frequency
(experimental increase = 3.4%, calculated increase = 13.3%), whilst for the
strongly bonding Ug 2s orbital whose vibrational structure has not been
studied experimentally in any great detail, results according to these
calculations in substantial changes in the bond distance (calculated

increase = 22.4%) and the vibrational frequency (calculated decrease = 43.3%).
However it is quite likely that ionization of this inner valence electron
may lead to pre-dissociation, but more experimental evidence and detailed
calculations incorporating correlation effects are needed to investigate this
hypothesis. The data relating equilibrium geometries and force constants

of ground and all singly ionized species (including the localized le core
hole state species with (We)c = 0.31 eV and (Re)c = 2,058 A.U. computed with
the double zeta basis set) are graphically displayed in Fig. 5.1. The

main feature of this plot is its linearity which is not entirely surprising
in view of the preceding discussion.

As was noted the overall trends in computed and experimentally
determined changes in vibrational frequencies and equilibrium geometries
consequent upon photoionization of various valence electrons accord with
expectation bkased on the bonding, antibonding and non-bonding cheracteristics
of the relsvant orbitals. By contrast as shown in this work and by

]
others77,139,...43

the electronic reorganizations accompanying photoionization
of core electrons give rise to substantial changes in potential energy
surfaces despite the fact that they may be considered formally as non-
bonding. These changes are the results of electronic reorcganization

(relaxation) ef{fects of valence electrons accompanying core eclectron

ionizations, which are much larger than the electronic reozganization
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effects consequent upon valence clectron ionizations, since for core

electrons there is a greater change in potential at the nucleus.
Table 5.4 alsc contains values oflA(R)s|which are the computed

changes in equilibrium bond lengths inferred from the semni-classical

formula developed by Price.148

A(R)S2 = 0.543 (I - xa)u'lw'z «e. (5.1)
where || is reduced mass in atomic units,
w is vibrational frequency cf the ionized molecule in kcm—l,
IV and Ia are vertical and adiabatic ionization potentials
respectively in eVandlA(RJis the change in equilibrium geometry in
gngstroms.

It can be seen that the changes in equilibrium bond lengths
calculated using (5.1) are not much improved over the corresponding
changes computed from the ab initio calculations. This can be partly
attributed to the fact that the values of both the vibraticnal
frequencies, (We)c, and the ionization potentials (determined by the
ASCYF method) used in (5.l1) depend on the computed potential energy
surfaces of the hole state species and thus indirectly on the values cf
(Re)c. The A 2ﬂu state is the only ionized state for which there is an
experimentally observed difference between the adiabatic and vertical
icnization potentials. Using these values together with the experimentally
determined vibrational frequency, (We)ex, yields !A(R)si = 0,141 A.U,
which is in an excellent agreenent with the directly determined
experimental value A(Re)ex = 0.148 A.U.

It is noteworthy that the calculated differences in vertical and
adiabatic ionization potentisls show an almost linear correlacion with the

‘computed change in bond length on going from the neutral molecule to the

ionized state as might have been anticipatcd.



Table 5.4 also contains values of the m bond overlaps (from the
Mulliken population analysis) for the ground and valence hole state
species of N2 pertaining to the equilibrium geometry of the neutral
molecule. The loss of the m electron ohviously results in a decrease of
1 electron densilty giving rise to a small wvalue of the m bond overlap
for the A zﬂu species. Interestingly enough the 7 bond overlap also
decreases for the core ionized species (7 bond overlap with doublec zeta
basis set = 0.816). This can be rationalized@ on the basis that the
localized le core hole state of N2+ can, (according to the equivalent
cores approximation), formally be written as NO+. In this molecule, there
is a certain energy mismatch between the p atomic orbitals on N and O+
which take part in the 7 bonding which results in a decrease of the
bond overlap. The 7 bond overlap for the othexr jonized states is not much
different from that for the ground state niolecule, since ionization is in
each case from symmetrically delocalized o orbitals. The relevance of
the values of 7 bond cverlaps for hetercnuclear molecules in the context
of vibrational fine structure becomes more apparent in the case of CO.

(c) Carbon Monoxide.

Tab;e 5.5 exhibits the calculated values of force constants angd
equilibrium geometries for the ground and valence hole states of carhkon
monoxide. Agreement with experimental data is again very reasonable
except for the results pertaining to the B 2Z+ state. This state arises
from ionization of the 20 electron which can ke described as belonging to
the lone pair on oxygen. On the basis of the equivalent core concapt an
analogy may be drawn with CF+. The large degree of polarity inferred from
this analogy suggests that double zets basis set is insufficiently flexible
to describe accurately small changes in the relevant potential energy

surface of this system.
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Table 5.5.

Equi librium Geometries (in atomic units), Force Constants (in eV) and

Bond Overlap for CO and Valence States of CO+.a

g 1ot i 25 A 21 5 25+ o 25t
(Re) _ 2.155 2.129 2.486 2.116 2.945
A(Re) _ 0 0.026 -0.331 0.039 -0.790
/A(Re)c% 0% 1.2% ~15.4% 1.8% -36.7%
(Re) 2.132° 2.107° 2.349° 2.208° -
A(Re)ex (6] 0.025 -0.217 ~-0.076 -
ARe) ° 0% 1.2% ~10.2% ~3.6% -
ex
| AR I 0 0.032 0.397% 0.038 1.299
(¥e) _ 0.28 0.29 0.17 0.28 0.09
pGie) _ o -0.01 0.11 0 0.19
A(We)c‘ 0% -3.6% 39.3% 0% 67.9%
(We) 0.27% 0.27% 0.20° o.21% -
ex
A(We) o 0 0.07 0.06 -
ex
Awe) ° 0% 0% 25.9% 22.2% -
ex
1 overlap 0.770 0.800 0.426 0.644 © 0.622
o overlap 0.031 0.413 -0.171 0.165 -
Total overlap |0.801 1.213 0.255 0.809 -
|

See table 5.4.

[o 2

Reference 118,

0

Reference 145.

o1}

IA(R)sl = 0.204 when experimental values of ionization potentials and
frequencies are used.
Reference 141.

Reference 62.
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The loss of an electron from the stronyly bonding 17 orbital or from
the lo orbital for which there is a substantiel electronic reorganization
results in both cases in substantial decreases in force constants and
concomitant increases in equilibrium bond lengths. In considering the
vibrational fine structure for these ionized states however the
possibility of pre-dissociation cannot be discounted.

For ionization of the 30 orbital which is computed to be essentially
non-bonding there is virtually no change in vibrational frequency with
respect to the ground state molecule. However the bond length is slightly
decreased (experimental decrease = 1.2%, calculated decrease = 1.2%).

It is of interest in rationalizing these results to compare the values of
i1 bond overlaps (Table 5.5) computed for the neutral molecule and the
ionized species pertaining to the equilibrium geoimetry of the neutral
molecule (2.155 A.U.). The loss of an eleclron from the 30 orbiital which
can be approximately described as the lone pair orbital on carbon can be
viewed as decreasing the effective energy m;smatch of the orbitals on the
constituent atoms (viz. the carbon is approximated by N+). One
manifestation of this therefore in a simplistic view is that the 1 bond
overlaps (which dominate the bonding interaction between carbon and oxygen)
should increase on going to the ionized species and this in turn suggests
that the equilibrium bond length should decrecase.

Yor the 20 orbital which roughly corresponds to a lone pair on oxygen,
the situation is the reverse of that for the 3¢ orbital since the effective
enerqgy mismatch between orbitals on carbon and cxygen becomes larger. As
a consequence the m bond overlap decrcases which on naive arguments
provides a rationalization for the increase in bond length and decrease in
force constant for the icnized species. We have already pointed out that

a basis set of double zeta guality is not svfficiently flexible (in the
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absence of detailed optimizations of exponents) to even qualitatively
describe the changes in gecmetry and force constants for this particular
state. This contrasts as we have shown vith predictions based on simple
considerations of r bond overlaps.

In the previous chapter detailed attention has been drawn to the
changes in equilibrium geometriecs and force constants accompanying core
ionization in CO with a variety of basis sets. It is interesting in this
connection to draw a comparison between the computed changes in v bond
overlaps for the core ionized species with that for the valence iocnized
species described above, with a common basis set (double zeta). Since the
previous work on core hole states did not include an investigation of
changes in force constants and bond lengths at the douvble zeta level, for
the sake of completeness these have been included in this worx and are
displaved in Table 5.6. The main qualitative features of these results

Table 5.6.

Equilibrium Geometries (in atomic anits), Force constants (in eV) and Bond

. +
Overlaps for CO and Core Hole States of CO ..

X lZ+ C (¢]
1s 1s
(Re)c 2.155 2.052 2.324
A(Re)c o 0.103 -0.169
b(Re) 3 0% 4.7% ~7.8%
e 0.28 0.33 0.19
A(We)c 0O -0.05 0.09
A(We)c% 0% -17.86% 32.1%
T overlap ‘ 0.770 0.776 0.386

are the same as those described in the preceding chapter with larger basis

sets but differ in qualitative detail especially for the Ols core ionized
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species. The w bond overlaps again reflect the overall computed changes in
equilibrium geometries and force constants thus paralleling the results for
the valence ionized states discussed above. It should be noted that this
simplistic analysis is only viable for these simple systems because the
total bond overlap populations are dominated by the m contributions.

The data relating equilibrium geometries and force constants of ground
and all hole state species are displayed in Fig. 5.2. The almost linear

2

display of the points (excepting the point pertaining to the B Z+ state)

is again worth noting.
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5.5. Investigation of Vibrational Fine Structure.

(a) Description of the Method.

In this scction we consider in detail the calculated vibrational fine

structure accompanying valence ionization in N_ and CO in an analogous

2
manner to that described for the core hole states in Chapter IV. The
approach involves the direct calculation of Franck-Condon factors from the
computed changes in equilibrium bond lengths and force constants in the

. et g , T s o . 142
harmonic approximation using Ansbacher's recursion relationships.
(b} Nitrogen.

Franclk~Condon factors are much more sensitive functiouns orf equilibrium

geometries than of force constants since the former appear in the relevant
. 142 . . . . .
expressions as differences whereas the latter mainly involve ratios which
are somewhat less sensjitive functions of the basis set. These sensitivities
are directly reflceccted in computed values of the Franck-Condon factors for
the valence hole states of nitrogen which are displayed in Table 5.7.
. . . 2.+ 2+ .

Considering firstly the X Lg and B Lu states vhcse experimental
equilibrium geometries differ by only 2% with respect to the neutral molecule;
the Franck-Condon factors computed using the experimental data are in good
agreement. with the observed intensities indicating that anharmonicity
corrections are relatively unimportant since the transitions involve
sections of the potential energy surfaces of the ground and the hole state
species which are well described by quadratic potentials. However the
Franck—-Condon factors computed with theoretically calculated geometries and
force constants are rather poor. This discrepancy may be attributed to the
fact that althocugh the theoretical calculations predict correctly trends ir
shifts ir equilibrxiuwn geometries, A(Re)c, the absolute values of the
changes which directly influence Franck-Condon factors are almost twice as

large as the experimentally obscrved changes.
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For the v ionized state for which the computed changes in force
constant and equilibrium geometry are substantial, the computed Franck-
Condon factors based on the experimentally determined values are in
reasonable overall agreement with the experimental data, however since up
to 8 vibrational guanta are excited the effects of neglect of anharmonicity
now beconmes more gpparent. The solely theoretically based results apart
from the intensity of the (0,0) transition are in reasonable overall
agreement with the experimental data.

{(c) Carbon lMonoxide.

The main features of vibrational fine structure accompanying wvalence

ionization in CO follow from the discussion given for N The results

9
are again displayed in Table 5.7.
+
It is interesting to note whilst that for the X 22 state of CO

theoretically calculated Franck-Condon Factors agree well with those
experimentally determined which is nct the case for N2. The calculations
also correctly predicted the more extended vibrational progression for the

2 + . + ; initi
A "7 state of CO compared with N2 . It is clear therefore that ab initio
calculations of the Franck-Condon factors for the valence ionized states

reqguires basis sets considerably better than double zeta Slater in guality

if a quantitative description is required.
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Ab initio calculations within the Hartree--Fock formalism have been
carried out on CO2 to investigate the vibrational bard profile of its
high resolution ESCA spectrum. This method has involved calculakions of the
equilibrium geometrices and the harmonic force constants, for the symmetric
and the antisymmetxic vibrational mrdes, of the ground and the core hole
state species. Comparisons have been drawn with similar investigations on
CO presented in Chapter IV. It is shown that the excitaticn of the anti-
symmetrié vibrational mode is responsible for the high value of the FWHHM
pertaining to the Ols peak. Binding and relaxation energies have been
computed for the core and all the valence electrons and the values of the
relaxation enexgies for the latter have been compared with their localization
characteristics. A possibility of a localized nature of the inner valenca

electrons is investigated.


http://specj.es
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6.1. Introduction.

A detailed study of ionization phenomena in simple diatomic molecules
has been presented in the two previous chapters. The discussion has mainly
focussed on ab initio Hartree-Fock investigations of binding and relaxation
energies, equilibrium geometries and harmonic force constants of the ground
and hole state species and vibraticnal band profiles of photoelectron spectra
of these systems. The validity of these ab initio studies has been
supported by the available experimental data and this has prompted an
extension of this technique to the investigations of the triatomic CO2
molecule whose high resolution ESCA spectrum150 exhibits an interesting
feature in that the Ols band is much broader than the Cls peak which 1s in
the opposite sense to that observed in the spectrum of carbon monoxide77
recorded at a comparable resolution and investigated theoretically in
Chapter IV.

Equilibrium geometries and harmonic force constants for both
symmetric and antisymmetric vibrational modes have therefore been
calculated for the ground and the core hole state speciec vhich have then
been used to compute Fraunck-Condon factors and hence band profiles of the
core ionized states of COZ'

Such an extensive study offers at the same time the possibility of

investigating binding and relaxation energies accompanyiny photoionizations

of both core and valence electrons.
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6.2. Computational Details.

Non-empirical LCAO MO SCF calculaiticns have been carried out withir
the Hartree-Fock formalism since we have shown on the work described in the
two previous chapters that changes in correlation enerxgy are relatively
unimportant in discussing changes in equilibrium gesometries, force constants
and ionization potentials of ground and hole state species. Calculations
have been carried cut on the ground, the core and all the valence hole
states of CO2 using the ATMOL system of programs implemented on an IBM
370/195.
The basis sets employed for the calculations on the Cls and the 0ls
levels were:-
(i) SsTO 4—31G24 using best atom exponents;20
(ii) for hole states 'optimized' STO 4-31G using best atom
exponents;20
(iii) double zeta Slater using best atom exponents?8
The calculations on valence levels were performed with basis set (iii) since
basis sets (i) and in particular basis set (ii) are in general more suitable

for calculations on corc levels.



6.3. Investigation of Binding and Relaxation Energics.

(a) Core Levels.

The localized 0ls and the Cls core binding energies have been
computed with various basis sets by Koopmans', relaxed Koopmans' and the
ASCF methods already described in the previous chapters, and the results

of these calculations are tabulated in Table 6.1, where tbe ClS and the 0ls
core binding encrgies for carbon monoxide have been displayed for compsrison
purposes. The trends in binding energies for both the Cls and the Ols
levels calculated with various models for the differing basis sets are
similar for both molecules. This feature is reflected in the values of

the chemical shifts Acls and AOlS between CO and CO2 (also displayed in
Table 6.1) which remain fairly constant at all levels of calculations

and agree reasonably well with the experimentel shifts of 1.4 eV and -1.5 eV
respectively.l52 This is also true for shifts in relaxation energies
displayed in Table 6.1. The difference between the adiabatic and the
vertical binding enexgies for the Cls levels of CO2 is almost zero whereas
for the Ols levels this difference is predicted to be 0.43 eV (see footnote
e, Table G.l). This strongly contrasts with the situacion in CO reported

in Chapter IV and is of considerable importance when we come to discuss

vibrational effects acccmpanying core ionizations.

(b) Valence Levels.

The formal valence electron configuration for CO

a2 a2 . b2 . b2 2 2
(og ) (cu ) (og ) (ou ) (Tru) ("g)

The values of ionization potentials (binding energies) with their

5 may be written:

shifts and relaxa®tion energies for outer and inner valence hole states
calculated at different levels of approximation are displayed in Table 6.2

and 6.3 respectively.
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Table 6.2,

Ionization Potentials (in eV) and Relaxation Energies (in eV)

for Outer Valence Hole States of CO?.a

Modelb X 2F A 2ﬂ B 2E+ C 22+
g u u g
K 15.2 20.3 20.1 22.1
A (K) 6.9 1.8 2.0 o
Kr 14.4 19.7 19.2 21.3
A(Kr) 6.9 1.6 2.1 o)
ASCF 14.4 19.7 19.2 21.3
A (ASCF) 6.9 1.6 2.1 o)
RE 0.8 0.5 0.9 0.7
(ASCF) . 16.6 21.7 21.3 23.3
coxxr
A (ASCF) 6.7 1.6 2.0 0
corxy
1P 13.8 17.3 18.1 19.4
A(IP) 5.6 Co2.1 1.3 o

Calculations performed at the theoretically optimized equilibrium
geometry of the neutral molecule.
See Table 5.1

(ASCT) refers (o ASCF + AE .
corr corr-—-intra

IP refers to the experimentally determined values (reference 62).
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Table 6.3.

Ionization Potentials (in eV) and Relaxation Energies (in eV) for the

Inner Valence Hole States of CO?.a
+
Mode1P p 257 b %y E 223 g 2yt
X 41.6 41..6 43.1 43.1
Kr 40.7 39.1 42.2 39.8
ASCF 40.7 39.6 42,2 39.6
RE 0.9 2.1 0.8 3.5

Calculations performed at the theoretically optimized equilibrium
geometry of the neutral molecule.

See Table 5.1.
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Considering firstly the outer valence levels, the data in Table 6.2
indicate that there is no difference between the ASCF and relaxed
Koopmans' values both slightly overestimating the binding energies in
comparison with the experimental data.62 Further the ordering of the

2.+ . 2 co s
B Zu and the A T levels is inverted compared with experimental data

. . . 155
which has also been observed by Horsley and Fink > in their extended
basis set calculations. A similar reverse of ordering of two closely
spaced 't and T levels has been observed for the two highest enexrgy levels

2.+ 2 . . . io s
(X Zg and A uu) in N, and discussed in some detail in Chapter V where

2
this phenomenon has been rationalized on the basis of the neglect of

changes in correlation energy in going from the ground to the ionized

state. An attempt has therefore been made to estimate AEcorr using the

pair population method described in Chapter I, section 1.6.d. and Chapter

V, section 5.3. end the modified ASCF values are shown in 1able 6.2.
Compariscn with the experimental data62 cuggests that the ionization
potentials corrected for AEcorr terms Aare grossly overestimated but their
shifts are improved. A similar observation in the case of N2 was noticed

and discussed in some detail in Chapter V. It was ncted in the preceding
chapters that relaxation energies of valence electrons depend largely on

their localization characteristics. Using the same arguments as in Chapter V
we can go some way in explaining why the relaxation energy for the T
electron is larger than for the L. electron, the former being delocalized
over 3 centies whereas the latter is delocalized only over the two

oxygen atoms. Similar arguments can be extended to explain the valuves of

the relaxation energies for the B 22: and C 22; states where however the
situation is slightly more complicated due to the complex delocalization
characteristics of the molecular orbitals consisting of 2s and 2p atomic

orbitals on the carhon and the two oxygens.



The results pertaining to 03 and oz irner valence electrons are
shown in Teble 6.3. The most interesting feature of these data ic the
possibility of a localized nature of the two ionized states because the
overlap integral between the Zs atomic orbitals on the oxygen atcms which
mainly compromise the two moclecular orbitals is quite small. The data
suggest that the degenerate localized states are lower in energy by more
than 1 eV than the corresponding delocalized states which are split by
1.5 eV. These results suggest that the ionized states of the oa and 02
electrons correspond to localized holes. It is interesting to note that
these states are sufficiently localized to be core like in nature and
one manifestation of this is that the shift in binding energy with

respect to the corresponding O level in CO is quite similar teo that: for

2s
the 0ls core ionized species. (A O25 = 0.8 ev, A Ols = 1.3 eV ag
calculated with double zeta basis set). It is also interesting to note
that the correspcnding shifts calculated for the delocalized O25 hole

are 0.2 eV and -1.3 eV for the ungerade and gerade respectively. This
localized nature of the O25 hole state ics of considerxable importance when
we come to discuss vibrational effects accompanying ijonizations because
the antisymmetric stretch can become vibrationally excited only if the
symmetry of the system changes on photoionization. The relaxation
energies &gain closely follow the localization pattern of the molecular
orbitals and fit into Snyder'ssl model discussed earlier on in Chapters
IT and V. The relaxation energy (0.8 eV) for the delocalized E 22; state
which extends over the 3 centres is more than 3 times smaller than the
relaxaticn cnergy (3.5 eV) of the corresponding localized E 22 state

which is made up mainly from the 25 atomic orbital belonging to one of the

oxygens (with atomic BPE = 3.6 eV*). The ungerade molecular orbital has

* Atomic relaxation encrgies are tabulated in Table 5.3.

R



contributions only from the 2s oxygen atomic orbitals, therefore the
. . 2_+
relaxation energy of the delocalized D Xu state (0.9 eV) is about half

+
that for the corresponding localized D 22 state (2.1 eV) which is again

made up mainly of a 2s atomic orbital of one of the oxygen atoms.



6.4. Investigations of Potential Enexgy Surfaces.

Investigations of PES's in this work bave involved computation of
equilibrium geometries and force constants of the neutral molecule, and

of the Cls and O corc hole state species. The extra three degrees of

ls
freedom of CO2 over the diatomic systems studied in the previcus chapters
have made tha analysis of the PES's more complicated because in addition
to the symmetric mode onc must also consider antisymmetric and bending
modes {the importance of the latter as far as vibrational analysis is

cencerned will be dealt with in a later section).

The neutral molecule and the C hole state species possess D

1s h

symmetyy, therefore their vibrations can be described by symmetric and
antisymmetric normal modes which can be depicted by quadratic potential

. 153 , ;. . : "
energy functions which are comparable to those for diatomic molegules.
Therefore equilibrium gecmetries and harmonic force constants for
symmetric and antisymmetric modes havc been computed for the neutral
molecule and the C, hole state in the manner described in Chapter IV.

1s

The situation is more complicated for the O species because the

1s
localized nature of the O1q hole states effectively destroys the th
symmetry exhibited by the ground state molecule. A detailed analysis of
0] 03 (] * 1] () ., .
the multidimensional PES of CO2 ion is needed to calculate accurately its
equilibrium geometxy and force constants. This however requires a
greatly increased amount of computing time and therefore to a first
approximation a simplified procedure was adopted which has proved to give
very good results needed for the vibrational analysis discussed in detail
1] * L ) - N}
in the next section. The calculations on CO? with the double zeta basis
set have shown that 2 simultaneous and equal compressions and extensions

of both carbon oxygen bonds produce a quadratic PES (which has been used

*
to compute the force constant for the 'symmetxric' stretch of COZ) with
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the minimum corresponding to the equilibrium geometry of the neutral
molecule. This result seems to suggest that the vibrational excitation of
what we refer to as the 'symmetric mode' of C62 is very small indeed,
because the Franck-Condon factors governing the extent of such excitations
depend largely on the difference in the equilibrium geometries of the
ground and the excited species, which has been discussed in some detail
in the context of diatomic species in the previous chapter. The equilibrium
geometry and the antisymmetric force constant of Csz were therefore
estimated from a quadratic curve constructed by a compression of one
carbon oxygen bond and a simultaneous and equal extension of the other
keeping the distance between the two ozygens constant and equal to that
computed in the neutral molecule. The results of such investigations are
given in Tables 6.4 and 6.5 where correspondincg data for the neutral and
the core ionized states of carbon monoxide are displaved for comparison
purposes.

Considering firstly the data in Table 6.4, it is clear that the
Cls hole state of CO2 has a slightly shorter equilibrium carbon-oiygen
bond length than the neutral molecule. A similar observation is noted
when ve compare the equilibrium geometries of CO and EO where however the
changes ARe are less basis set dependent but larger in magnitude. On the
other hand the carbon-oxygen* bond is substantially longer in the ols

1s

species of CO, than in the ground state molecule, the magnitude of the

2
*

change being comparable to that between CO and CO species and much

b
smaller than the change of the carbon-oxvgen bond length between CO2 and COZ'
This observation will become again significant when we discuss vibrational
fine structure accompanying coxe ionizatiocns.

'The computed force constants for the svmmetric and the antisymmetric

modes of the ground state, and of the Cls and OlS hole state are displayed

in Takle 6.5. The data seem tc suggest that there are no substential
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differences for both the symmetric and the antisymmetric force constants
between the neutral and the Cls ionized species. The force constant for
the symmetric stretch is predicted with all three basis sets to be
slightly larger for the Cls hole state species than for the neutral
molecule. This result seems to fit with an earlier observation discussed
above namely that the carbon-oxygen bond in 302 is only slightly shorter
than in C02. The calculations on the antisymmetric force constant seem
to be less consistent. The small basis sets predict a slight increase
whereas the double zeta basis set calculations suggest a small decrease on
going from the ground to the Cls hole state. The estimates of the force
constants for the Ols core hole state species where we have to a first
approximation ignored the interaction between the two modes again suggest
that these are subtle differences in the force constants on going frcm the
neutral to the ionized molecule.

The cuanparakle situation in the case of carbon monoxide is different,
as substantial differences in force constants (regardless of the basis set)
between the neutral molecule and the Cls and Ols species are predicted.

This has already been discussed in Chapter IV,
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6.5. Vibrational Fine STructure Accompanying Core Electron Ionizations.

(a) Introduct.ion.

It was shown in the two previous chapters that the method we have
employed for studying PES's of diatomic molecules yields results (in
particular equilibrium geometries and force constants) which cau be
successfully used to interpret and predict high resolution ESCA and UPS
spactra of these simple systems. We have therefore decided to use this
method to interpret Siegbahn's150 high resclution ESCA spectrum of CO2
which shows a remarkable difference betueen the two band shapes with
FWHM of the Cls and Ols peaks equal to 0.64 eV and 1.32 eV respectively.
This is a rather different situation from that previcusly discussed in
Chapter IV where we noted the reverse trend in the ESCA spectrum of CO
at approximately comparable resolution with respective values of FWHM
equal to 0.82 eV and 0.65 eV.

A theoretical analysis along similar lines discussed in Chapter IV
was therefore cerried out on both the Cls and Ols levels of CO2 with the
computed values of the equilibrium geometries and the force ccnstants
at the dcuble zeta level. The Franck-Condon factors werce calculated for

D

, . . . 142 . .
both vibrational. modes using the Ansbacher™ *“ recurrence relationships

. . . . 153
with appropriate corrections for force constants and reduced masses.

(b) ClS Levels.

The simulaticn of the C s spectrum of CC

1 has presentad no real

2

problem because the Dmh symnetry of the system is conserved cn photo-

ionization and therefore one needs to consider only vibrational

excitation of the symmetric modes (v
' 5:.0,0

}. The separation of the
indivicdual vibrational components of thig progression is governed by the

%
force constants of the symmetric mede of CO, (17.3 md/X) which corresponds

to the vibraticnal frequency of 0.17 eV. The simulation of the Cls



- 201 -

band was accomplished using this value (0.17 eV) for the separation of
vibrational components together with the computed Franck-Condon factors

*
2 and C02. The F@HM

of the individual components was taken to be 0.54 eV which is the same

for the transitions bhetween the symmetric modes of CO

*
valuc derived in Chapter IV from the ESCA spectrum of CO recorded at a

*
comparable resolution. The computed spectrum of CO, together with the

2

relevant Franck-Condon factors are displayed in Figure 6.1. The FWHM
compares favourably with that measured by Siegbahnlso (0.64 evV). This
good overall agreement supports the view that one does not need, to

a first approximation, to take into account the bending vibrations for the
construction of the band envelope of photoelectron spectra of C02, because
the PES for this mode is little perturbed on an electron ionization. This
is well documented in the UPS spectra62 of CO2 whosa well resolved
vibrational progrescions show virtually no vibrational excitation

of the bending mode.

(c) 0lS Levels.

The construction of the band envelope for the high resclution ESCaA

spectrum of the ols levels in CO2 is rather more elaborate because one

needs to consider vibrational excitations of both the symmetric and the

antisymmetric modes. (The results pertaining to the C spectrum discussed

1s
above suggest that the bending vibrations can acain be ignored to a first

approximation). However we have pointed out in the previcus section (6.4)

*
that the vibrational excitation of the symmetric mode of CO, is negligible

2
and therefore the band profile of the Ols peak is mainly governed by the
vibrational progression (0,0,va') of the antisymmetric mode which greatly
simplifies the vibrational analysis. The force constant of this mode for
C82 is computed to be 16.9 md/g which corresponds to a vibrational

‘requency of 0.32 eV. Taking the FWHM cof the individual vibrational
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components

— — — — — Vibrationai
FWHM = 0.60 eV
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68%
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Fig. 6.1.

Theoretically simulated C spectrum of CQ,. The four vilvational

“

components have FulM = 0.54 eV and are seperated by 0.i7 cV.
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components with their separations of 0.32 eV to be 0.58 eV (which is the
value derived in Chapter IV from the spectrum of CS recorded at a

comparable resolution) together with the calculated Franck-Condon factors
for the transitions between the antisymmetric modes of 002 and 062 yields
a broad band envelope with a FWHM = 0.94 eV which is shown in Figure 6.2.

The agreement with the experimental spectrum which exhibits a FWHM = 1,32 eV

is not as good as in the case of the C s spectrum since the model used in

1
interpreting it is cruder. Nonetheless the results obviously go some way
in explaining the reason for the overall shape and larger FWIIM for the

*
band profile of C02.

(d) Inner Valence Levels.

It was pointed out in section 6.3 that ionization of the 03 and 03
inner valence electrons leaves the ion in a localized state. Experimental
verification of this requires a high resolultion photoelectron spectrum.
However the experimental difficulties ar= such that at the present time
only relatively low resolution spectra are available in this energy recgion.
From the work presented above we would expect the localjzed states to
exhibit substantial vibrational broadening due to the excitaticn of the
antisymmetric modes (and also possibly the symmetric mode although this
seems less likely on the basis of the analysis prescented above for the
corresponding core ionized systems). On the basis of the calculations
described in this work it seems likely that the intexpretation of any

high resoluticn spectra of the O s region of CO, will be in terms of

2 2

vibrational progressions involving the antisymmetric stretching mode for

the localized hole states. This contrasts with the interpretation which
would previously have been presented on the basis of the excitation of only
symmetric modes for the ungerade and gerade symmetrically delocalized
states. Broadening in this case would have been interpreted as arising from

the split in energy between the two states together with the superimposed
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vibrational fine structure. Since the vibrational frequencies are

likely to be substantially different foxr the symmetry and antisymmetric

- -1
modes (viz. for the neutral molecule v = 1330 cm. l, v = 2349 cm. )
sym asym

the investigation of vibrational fine structure should readily reveal

the validity of the prediction of localized hole states for the O,)s levels

of C02.



APPENDIX 1

LXPONENTS FOR VARIOQUS




. . 2
Slater Minimal Basis Set Exponents. ©

H C N 0] ¥ Cl Br

ls 1.2 5.6727 6.6651 7.657% 8.6501 165.5239 34.2471

2s 1.6083 1.9237 2.2458 2.5638 5.7152 12.8217
2p 1.5679 1.9170 2.2266 2.5500 6.4966 15.5282
3s 2.3561 6.7395
3p 2.0387 6.5236
4s 2.6382
3d 6.5197
4p 2.2570

Slater Double Zeta Basis Set.28
H Cc N o r Cl
ls 0.9716 5.230% 6.1186  7.0623 7.9179 12,0587
ls* 1.22Z21 7.9690 8.9384 10.1085 10,0110 17.6501
2s 1.1676 1.3933 1l.6271 1.9467 4,9261
2s' 1.8203 2.2216 2.6216 3.0960 6.9833
3s - - - - 2.0091
3s! - - - - 3.3416
2p 1.2557 1.5059 1.6537 1.8454 5.3574
2p' : 2.7263 3.2674 3.6813 4,1710 9.5670
3p - 1.6092

3p! 2.8587



ls

3s
2s
2s
2p
2p
2p

2p
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Slatexr Lxtended Basis Set.3l

1.354

6.827

2.779

1.625

1.054

N

10.586

6.037

7.334

1,588

7.677

3.270

1.890

1.222

12,

418

.995

.681

.922

.818

.450

.744

121

.318



APPENDIY 2

GROUND STATE EMERGISS OF MOLECULES CALCULATED AT EQUILIBRIUM

GEOMETRIES

S —



Formula

——

cH 4

CH 3OH

C2H4

H2C=O

C=NH
Hy

HCN
N-
H2 COH

NH 5

co
H,0
CoHy
F2C=O

N
CH 3 H 9

CHe
HFC=0
NHZNHZ
H.F
anb
HC1

HBrb

b
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STO 4-31G6°

Enerqy (A.U.)

~-40.0076
~114.4004
- 77.6552
-113.2291
- 93.5412
- 92.3876
-168.004%
- 55.8903
~112.0932
- 75.5488
- 76.4343
-310.0826
~ 94,7332
~ 78.8562
-211.6671
-110.5695
~-154.2365
-458.14101

~-2560.7733

Formula

(CH3)CH=O
H2C=CHE
F_C:=CH

2 2

CZHSF

CoHaFy

CollsFy

FC=CH

FC=Cr

CH,F
3

CH202

NH, OH
2

CH 3(,:N

FCN
il 20 2
FOH

HF

Energy (A.U.)

-152.0985
-176.0707
-274.4807
~-177.2756
-275.7019
-374.1266
-149,2173
-273.1839
-138.4178
--187.6806
~-130.2461
-131. 2560
-190.7609
-149.8807
~-173.8648
- 99.5725
-1.97.7995
-915.0774
-5120.3646

Fluorine atoms have been investigated with HF 4-31G basis.

The basis set includes polarization functions of d type on the

halogens and p type on the hydrogen (see Chapter III).
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Double Zeta

Formula Enerqgy (A.U.) Formula Enexqgy (A.U.)
HF -100.0237 F, -198,7273
HC1 -460.0240 c1, ~9818.9239
co -112.67622 N, -108.86372
crt -136.7758% not -128.7592%
co,, -187.5109%
. a

® Triple Zeta
co ~112.7098 N, ~108. 9006
crt ~136.8210 No+ ~128.8504

sTO 4-31¢7

co -112.0941 N, -108.3419
cr' ~136.0360 no"  -128.1889
co, -186.5364

HF 4-31G6"

Cco -112.1746 N -108.3944
Cco ~136.1457 NO -128.2188

Energies refer to theoretically optimized
equilibrium geometries given in the text.
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