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Abstract

This thesis is concernned w%th Dual Eesonance Models,
and in particuvlar with their algebraic structures. Chapter
one is an introduction to the subject of dual models, in
which the known models are surveycd, and their most import-
ant features are indicated.

Chanter twoc dcals with the calculation of the deter-
minants and other functions of infinite dimensional matrices
which arise in the calculation of fermion and off-shell
dual amplitudes. After explaining how these functions arise,
a group-theoretical method of calculating tlhem is given,
which is much simvler %han previous methods.

In Chapter three receut work on supersymmetry and
graded lLic algebras is reviewed, and its relevance to thec-
retical particle vhysics in general and dual .nodels in
particular is indicated. The algebras underlying the imown
dual wodels, including the recehtly suggested 0(N) algebras,
are seen to be graded Lie algebras.

In Chapter rcvr it is pointed out that the finite
subalgebras of these (infinite) dual rodel algebras are simple

graded Lie algebras. Representations of these subalgebras
are constructed vsing the superfield formalism of supersymmetry.
Some of these representations extend to representations of the
infinite algebras, and in certain cases they can be used to
construct Fock space realizations of the generators of these

(graded) algebras.

In Chapter five n-point armplitudes corresvonding to
!
the O(1l) algebras are constructed using bilinear forms
which arc invariant under their finite subalgebrus (described
in Chapter four). The 4-point amnlitudes are investipgated,

and it is found that theoir mass-spectrum contains ghost states

for HY» 2, and for N=2 cxccot in two space-time dimensions.
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Chapter 1. Dual Resonance Models.

Introduction: The concept of duality in strong interaction
(1),

physics was first introduced by Dolen, Horn and Schmid
They had studied the conslraints imposed on S- matrix elcments
by analyticity and crossing symmetry, using the techniques

of finite energy sum rules. They found that the direct-

channel resonances and the cross-channel Regge poles provided,
in an average sense, equivalent descriptions of the same
phenomena,

To obtain a scattering amplitude which satisfies
analyticity, crossing symmetry, Regge behaviour and Lorentz ‘
invariance is a non-trivial task. Tne discovery by Venezianoca)
of a four-point crossing-symmetric scattering amplitude with
linear Regge trajectories inltiated the subject of dual
resonance models., This amplitude possesses an infinite number
of poles (corresponding to narrow resonances) in the &= or
the t~- channel, and duality is explicitly satisfied: the
sum over the s- channel poles is actually egual to the sun
over the t- channel poles.

It was soon discovered that Veneziano's amplitude
(3,4)

could be generalized to an n- point amplitude which is

based on the same principles, and is completely factorizable.

A vowerful operator formalism was developed(5_O)WhiCh

ecnabled a proof to be given that the model is free of indefinite-

). . -
metric ghosts(9’. Although the n- point amplitude is explicitly

non-unitary, constructed as it is from narrow resonaunces, &

: : (10)
procedure for unitarization of the amplitudes is known .
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The model developed from Veneziano's original L-point
amplitude possesses remarkable mathematical consistency.
There is however very little freecdom in the model, and as it
stands it is physically unrealistie: the mass speclrum is
wrong, there are no fermions, and the model .works best in an
unphysical number of dimensions of spacd-time.

To find a way of changing the model in a way which pre-
serves-its good gualitative features and its mathematical
consistency, and improves the undesirable features Neveu,

(11,12) developed a model which embodies

Schwarz and Ramond
the principles of Veneziano's model, and includes fermions.
However the mass speclrum, whilst an improvement on the
Veneziano model, is still unrealistic, and the model still
vworks best in an unphysical number of dimensions of space-tinmc.
; . (13)
There are a number of excellen” reviews of dual models ’
and in this chapter we intend only to give a brief introduction
to the subject, placing an emphasis on those aspects which will
be of use ir the remainder of this thesis. We shall also
(14)

briefly describe the new models suggested by Acemollo et al s

which we shall consider in more detail in later chapters.




1.1, The Veneziano Model

The amplitude first written down by Veneziano was a pro-
posal to describe T+ MW scattering. Adapted for the case of
scattering of four identical spinless particlies (with no internal
quantum numbers)
ks , S= (k.-r |<,_)1

te (e ka)
kg w > (|<.+ kg)L
the proposed amplitude is
CFG,tw) s Al E)« Alt,w) + Alw,s)
where A(s,t) = r‘(-—ol(s))r'(—o((t)) (1.1)
M(-als)-lt))

and o((s) = o(0)+x's is a real linear trajectory function. A(s,t)

et

is an Euler beta~ function, and can also be written in integral
form as

I -~ -
A(S,t) > dx x_“w (l—-x) led-| {1.2)

(-]

The amplitude A(s,t) has a number of important properties.
Crossing symmetry is obvious. More imvwortant is the property
that it can be exprezsed as a sum of pole lterms in either the

s or t channel; exrlicitly we can write

5 R, (¥) 9 2. (s)
A(s,t)=Z n-ols) Z n —ot(t)

where 1zn(x> 2 J_ r‘(&(x)+n44)
al o o) 1) (1.3)

We see that Rn(x) it a polynomial of dcgree n in ¥. Hence the
residue Rn(t) of the pole in s at {(s)=n is a polynosial of

degree n in t; analysing this in terms of angular functions,




this residue can be expressed in terms ol spins less than or
equal to n. This corresponds to the existence of daughter
trajectories below the leading trajectory, with particles at
the same masses as on the leading trajectory.

We note that if {(0)=1, the residues R are such that
there are no odd daughters. The condition #(0)=1 is in fact
required for the consistency of the model when generalized to
n- point amplitudes; we can take the slope of the trajectory to
be d;%, so that the leading trajectory is o{{s)= l+%s .

The other most important feature of A(s,t) is that it is
Regge-behaved at high energy. Using Sterling's formula we seec

that
Al ) ~ () M- uin)

as ‘S|—9 o (since we are working in the narrow-resonance
approximation, we must take this limit away from the real axis).

The amolitude F(s,t,u) in this limit is

oyt - (™) g0
{14 lt) sin motls)

exactly as expected for an even-signatured Regge pole.

The n- point amplitude is a generalization of the integral
form of the amplitude (1.3)(3). It is best written down in
terms of Koba-Nielsen variables(q): associate with each

particle of momentunm ki a point z; on the unit circle, and write

the generalization of A(s,t) as

A,‘(k.,..,kn)'— ‘l‘_l_}_ ﬂ- (7.i—7_

, Iﬂl.(j':'n
d‘lx\bc

[ Py

)"“'l‘j[ﬁ (1;—1;")&)4]

vhere dvabc = d'z.ﬂ sz ch (1.6)

(7-«" 2(,)(25—'2 r.)(zc - 2“)
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and the integral is round the unit circle, maintaining the
order of the z's. We note that the bracketed term in the
integral vanishes when ol(0)=1. An has simultaneous poles in
(n-3) channels, lying on Regge trajectories 0(;‘-)"- lf%_’;'j, vhere
sijz(ki-h.-t-kj)a.

An important fcature of An is that it is invariant under
the projective or Mobius group SU (1,1): A is invariant

under a Mobius transformation
Z, = azZ;+b ad -be = | (1.7)
C'Z;-!'d
An can in fact be written in terms of (Mobius invariant) cross
ratios
(24’23; Ziqlzj“) = (zc‘zj)(zi-n"z'ﬂ (1.8)
. 6‘;"234')('1;—: - Zj)

The factor 4V , = in (1.6) can be thought of zs béing

due to this projective invariance. If we were to integrate

over all z, in (1.6), without the factor 4V

(
a constant times Anils).

s we would obtain

L)
O-J
Q

This constant is essentially an
integral over the group measure, and it is thie that we are
factoring out by including dvabc'

A (kyy.ooo0,k ) is invariant under cyclic {k——p ki+l)
and anti-cyclic transformations. To obtain the full amplitude
we should sum over all inequivalent vermutations of (kl,...,kn),
just as in (1.1) for the 4-point casec.

The full amplitude has all the desirable features of the
h-point amplitude. It can be written as the sum of simultaneous
poles in (n-3) channels. It exhibits multi--Regge behaviour,
that is Regge behaviour in subenergies, when certain ratics of
those subenergies are held rixed. Tt is alsc fully factorizable

(16)

with finite degeneracics,
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In order to analyse and understand the structure of the
amplitude more clearly, it is useful to introduce an operator
formalism. 1In this approach we use an infinite set of harmonic
oscillator-type operators aéb, n2 ¢, waich satisfy canonical

commutation relations
.|..
[al,al]=Lak" alf])=0
vt v
[of of1- -9 6,

The indexiﬁ.runs over O, 1, ... , D - 1, denoting one time

ﬂ’ﬁ\."- 1)1‘... (109)

dimension, and (D - 1) space dimensions., It is often more
convenient to use dg. s, defined by
o{[nﬁ:af n(,’.:'-f:'a.ff
| A5 - p"
[atf ol.:]= S (1.10)
’ j nim, o
where p“ is the momentum operator.
If qr'is the position orerator conjugate to ;p"'L s then

we define generalized pcsition and momentum oreraters Q"and pl hy

QP(2)=f'/ﬁ";fklajz-ﬂz?,o'}xﬁ(ﬁzm
00
Prl2) - iz 4%, Z T (1.11)
dz o

We introduce a vacuum state |0) which satisfiles diﬁb):O

for n2 0. Then, defining the Fubini-Veneziano vertex(6’/)
-ik-Qlz) Lu* (1.12)
V(z,k)'—.e Dz

we can consgider a scattering amplitude for n ground-state
particles given by

Aye | M [T (a2, <ol T Vi, k10D
I in e (1.13)

be
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where the integration is taken round the unit circle, maintain-
ing the order of the z's, as before. It can eusily be shown
that this 1s precisely equal to the Koba-Nielsen form of the
amplitude (1.6).

We would now expect the states of the model to be those
generated by the creation operators dj: acting on the vacuum
|0> . Because of the sign of the commutation relations
satisfied by 0(-?1, the states created by these operators have
a negative norm; they are ghost states which nmust decouple
from the physical states if the model 1s to be at all rcalistic.

The ghost states do in fact decouple from the physical
states(l?), provided that the dimension of space-time D€ 26.
This is possible because the states of the model satisfy gauge
conditions which restrict the space of physical states. The
situation is analogous to that in QLED, where the longitudinal
components of the photon deccuples because of gauge conditions.

To specify the gauge conditions of the Veneziano wodelg

we need to introduce the Virasoro operators(a)
L.= —4d " PMR): 0t
" . Z . 2); n:o0ti .
) (1.14)
IJ-T[LZ

vhere the integration is round the unit circle. These satisfy
the commutation relations

D

(1.15)
(Lo Lo * (o)l + 33 mlo=1) S !

nim, o

Acting on the vacuum we find that Ln|d>=0 for n -1.

An cperator is said to have conformal spin J if it

saltisfies

[L"‘) X("')] 2 fzd -n T ) X(2) (1.16)
dz
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In particular, we note that wa(z), PM(2) and V(4syk) have
J=0, -1, %ka respectively. When 6{(0)=1l, the mass of the
ground state is 3k%=-1, so V(z,k) has J=-1.
Using (l.14) and (1.16), the n-point amplitude (1.13) can

6)

(
be written in an explicitly factorized form as *

A ole M WlLk) P V(L) P V(L E,)e Y0

where - ‘ (1.17)

Pl de 00" - 1 (- 1)

Snmgrernas ey

o Lol

and V(1l,k) is V(z,k) evaluvated at z=l. Thus the n-point
amplitude has been writien as a2 succession of vertices and

propasators, corresponding to the diagram

[
k k ik
) L 3 s - - - net
5 } } - I

.

Now consider a tree state l\PQ‘defined os
Al (1.18)
> = V)PPV ka.)e™ % 10>
For ®(0)=1 this satisfies
( (1.19)
Lo=Lo~l+n)lgpd> =0 n 2|
It is this gauge condition which 2llows the decourling of
certain states from the physical states, and in particular
decouples all of the ghost states from the physical states

for D€ 26. (17




We note that this only works for 0((O)=1; in other cases
there are ghosts coupling to the physical states. This condition
means that the ground state of the model has mass %k2=;1: it
is a tachyon. This undesirable feature, together with a leading
trajectory that passes through o{(0)=1l, means that the spectrum
of the model is physically unrealistic. Furthermore, the model
prefers to work in 26 dimensions of space-time. The tight
constraints placed on the model by requiring the cancellation
of ghost states mean that the mondel cannot simvliy be modified

to rectify these faults; new models must be found.




- 3]0 =

l.2. Representations of the Prcijeciive Group

Before we go on to discuss the construction of further
dual models, it is convenient to discuss some aspects of the
projective group, since this is an important feature of the
Veneziano model and its extensions. In particular we wish to
consider the representations of SU(1,1), since we shall use
these in later chapters.

The Virasoro algebra (1.15) has a finite subalgebra spanned
by ( L°)L¢,g which is isomorﬁhic to the algebra of SU(1,1).
The quadratic Casimir operator of this algebra is

C=Lo(Lo+1)—L, L, (1.20)

The group SU(1,1) is (isomorphic to) the group of real

2 x 2 malrices with determinant=l. We can think of these as

operating on a 2-vector

/
A-.(f)._.,,r s fa b\(¥ ad-he=] (1.2
{

1 1 c 4 7

. APe ettt 18) 53 et
The Lo, L+l can be represented as 2 x 2 mairices »  Considering

«

terms of the iform (}' 7#) ve see that they are napped into
other terms of the same form by the transformation (1.21); hence
they are suitable for use as the basis of a representation

space for other representations of SU(1,1).

In particular, consider ternms (fv)u-(i41)kﬁnwhere k is
fractional and m is an integer. J and k are left invariant by
the transformation (l.21). J is in fact related to the Casimir
operator of (1.20); ihe eigenvalue of C iz J(J+1).

The invariants J, k can be used to classify the unitary
(18-20)

irreducible representations of SU(1,1) Requiring that

the represertation be single-valued restricts kX to be an integer
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or half-integer. TFor J2 O we may construct (2J+1) dimensional
representations; these are necessarily non-unitary, as we are
dealing with a non-coumpact group.

For J<0 there are various classes of unitary irreducible

representations., In particular we have the revresentations

(1 —
Dy T<o,k:-T meo12..
= — _ (1.22)
_DJ J<o, ks 3J m= 0 -l -2 .
(_1
ba.o) 3"; /‘z‘_ \L: 0 mo 0’1‘],1_'2__.

As explained above, these revresentations can be realized

on a representation space sonanncd by a basis

k -
ITum = N(Tk,m) (T 7) ( ]m (1.2%)
N/
where N(J,k,m) is a normalization factor., The representation

T k)
a

matrix D is defined by

- (%" \kem
ljkn«.)' z N(jklm)(fl ').l (j/)?’)
=2 D00 (M) 1T hew)

where A is the transformation (1.,21).

(1.24)

The normalization factors are determined from the condition
D(L_l)zD(Ll)T , and for the ﬂ” , D7 representations can be

talken to be

N(T k:tT,m)= [ [ ~lj) (1.25)
m!
We can obtain (non-unitary) representations of the

generators {LO,LUI for J, k outside the above restrictions.

- . . ()
In particular we can consider the representation Di in the

limit J = O-., This can he used to construct a Fock space

A T T T SR

e o
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realization of the generators { LO,L+1Y (13) which coincides

with the Virasoro expression (1.14).




le3, The Neveu-Schwarz llodel.

An extension of the Veneziano model was proposed by

(11)

Neveu and Schwarz who introduced anti-commuting annihalation

and creation operabors bg', bgf satisfying

IR AN

(1.26)
Foyovt) v
{br)l"; 3' —3/*' S"S
where r,s= k-;;i,-n . The vacuum is now uandcrstood to satisfy

br"lo) =0 as well as 0(,?{0)::0 for n2 0., Using the K's and the
b's to construcet amplitudes gives a model with more structure
than the Veneziano model,

Neveu and Schwarz introduced a new field H' (2z) defined by
o9

HF(2) - 2. bl

Fe-e0 (1.27)
(where bf;zbgr). This field can be used to construct new

Virasoro-type guvage operators ﬁs

(b) "
La = _bdz 2" : W) dit(z):
bniz dz
When added to ﬂﬁ’ ccnstructed fromtﬁfas in (1.14), this gives

L, : fﬁ)+ Uf):
D L
[L,\,L,‘] cl-m)lnem + T nlnt 1) Sﬂwn,o (1.29)

This is of the same form as (1l.15), with a different c-number

(1.23)

term.
A further set of operators Gr’ r half-inlegral, can be

defined (217,

G_ az 2_ H(?-)'P(z)

2.n~?.. (1.30)

which form a closed algebra with the Ln's

[ Ln, C‘r] ’(% - r) G’wrr
gc’r, G.x} : 'ZLN-S *%_("L'%t-) Srfs,.-n

(1.31)
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If we consider the commutator of Ln with H’L(z), and compare
it with the definition of conformal spin (1.16), we find that it
has J=-%. Under SU(1,1) transformations,IIr(z) transforms as
a (J==%, k=)) representation (it is built from terms of the
form z**™with k=1).

In order to write an amplitude, a new vertex is defined(ll)

1 (R §
V(z k) 2 [(.H(Z):e-tk-ﬂ(z-) : Z.‘k :
| (1.32)

This has conformal spin J=%k2—%, so0 that it transforms in the
same way as the Fubini-Veneziano vertex under projective trarns-
formations, provided that %kez—%. As in the Veneziano model,
this condition is actuwally necessary for the consistency of
the model, and we assume that it holds in the following. It
means in particular that the ground state of the Neveu-Schwary
model is also a tachyon, with mass mL=—%.

The n-point Neveu-Schwarz amplitude is

Ave § Tdes Lol TT iz, k) 10Y

AV, v (1.33)

where dVabc is the projective invariant measure dafined before
(1.6). A is invariant under SU(1,1), since the vertex trans-
forms in the same way as in the Veneziano case. This amplitude
has simqltaneous poles in (n-3) non-overlapping channels which
can be explicitly displayed by writing (1.43) in a factorized form,
analagous to (1.17):

A,ﬁ (0 'e'lk'.”(‘-bi V(!,k;_>z'i"“ V(I,kn_l)kﬂ.ﬂ e “$10)

ol * (1.34)

where V(1,k)=k.H(1) Vo(l,k)

and Vb(],k) is the Veneziano vertex {1.12) evaluated at z=l.




The above form of the amplitude is called the ':T', form.
It is sometimes more convenient to work with the 3; form, given
by removing the k.b terms in (1.3%4) to give

A = <ole™ V(L) 1 oot Vi, Je™v]o>

L-t  Lami (1,35)

Both of these amplitudes represent the scattering process

corresponding to the diagram

v .iT

In the.% formalism we consider the 1- particle state to be
k.hf: e”*% o) , in the ,7; formalism we have redefined it to
ve €K% | © > .

As in the Veneziano model, there is the pogssibility of
negative-norm states, created by Kf; and also by Efr. If
these are to decouple from the physical states, ve require
gauge conditions on the physical states; furihermore we expect
more gauge conditions than in the Veueziano model as there
are more ghost states to be decoupled. TFor k2=—} the gauge

conditions satisfied by a tree state

vy = ‘ i

in the 3& Tormalism are

L,"V'> = U-o+ n-%5)lw> nel
Ge lW) = (Loer-%) |4 Feh (1.36)

where IVQ) is obtained frmn“#)by replacing the first vertex
V(l,kl) by Vo(l,kl). These gauge conditions are sufficient to
ensure that the ghost states decouple from the physical states,
provided that DélO(aa) .

The n~point amplitude can also be written in a Torm that
P I
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is very similar to the Koba-Nielsen form of the Veneziano

. (23) o . . 6.
amplitude (1.6) . To do this we introduce variables 9;

associated with each particle ki, in addition to the variables Z, .
The 8; satisfy
¢ 1.
{9;,953 = 0 =86; (1.37)

An integration over ©; can be defined (24)

[40: = 0 [de: 0, = |

by

(1.38)

' 2
The n-point amplitude can then be written as (1k;=‘%)

- F ™ 'kfkj
A, s | dz; TTde: N (2-2;+8:8;)

Y]

dV,,, J (1.39)
We shall see in later chapters that this form of the amplitude
is particularly useful for studying the properties of the
"supergauges" G, .

The Neveu-Schwarz model has a Built-in 'G-parity':

a state has even/odd G-parity as it is created by an even/odd
number of bt operators. The n-point amplitude An vanishegs for
n odd, Because of this it is tempting to identify the ground
state of the model as the pion. Isospin factors can be
incorporated in An by use of the Chan-Paton factors(25>.

The trajectories of the Neveu-Schwarz model are spaced
at half-unit intervals, rather than at unit intervals as in
the Veneziano model. The leading trajectory still passes
through &€ (0)=1; however the pole atik2=—1 is cancelled from
the speetrum, and the ground state varticle is the pole at
%ka=—%. Although the lower~-lying states tear some resemblance
to the physical mass-spectrum of strangeness-zero mesons, the
similarity ie far from satisfactory. In particular the pion
should not be a tachyon! Alsc the candidates for the ? and

W have significantly different masses ( the r actually having
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zero mass) and the leading trajectory still has intercept «(0)=l.
Thus the Neveu-Schwarz model, ﬁhilst an improvement on the
Veneziano model,; is still physically unrealistic,

An important feature of the Neveu-Schwarz model is that
it can be extended to include fermions, as shown by Ramond(la).
Anti-comrsuting operators Jtlfor n=0,¢ 1,2 2,... are introduced
satisfying

r 1 v v

d’—n : d’f\ {d:,du.}’ "Sr gm-rn,o (1.40)

The basic field ¢f the fermion sector is a generalization of

the X matrices

~n
[F(z) = ¥eidm Xf,‘;a dl = (1.41)
‘ (@ _ e D
The Virasoro operator Ln can be extended to ’--,.\--L,,\-i*...n

by defining

1) - "%’JZ 2t M2). 408 neo,.

n dz (1.42)
Defining further cperators Fnby
Fas £4de 2 M) PR neot.
Lwiz (1.43)

we find that the operators Ln’ F form a closed algebra

m
[LA,LM] = (""M)Lnfm + % '”-3 St\.nn,e

[ La Fu] 2(3-m) From

{ Fa, Fmb 2 ~2lpom + 2 .t nem,o (1.44)

Acting on Fr&)with LO, L‘*l’ we find that Ff transforms as a

(J=-%, k=0) represcuntation of SU(1,1).
A vertex for the emission of 2 meson from a fermion line
can easily be constructed using the field [, and using this

an n-point amplitude for the process

e - = - -y
== -
i
1
!

i
L e e m - =
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can be written down(al). In this diagram the solid line is a

fermion, the broken lines are mecsons. The tree states of the

model

lp> =

satisfy L and F gauge conditions, provided that the meson momenta
ki satisfy %kiaz-%. This suggests that the meson states should

be those of the Neveu-Schwarz model, and this is in .fact so.

These gauge conditions are sufficient to decouple the ghost states

from the physical states when D=10 ( the critical dimension of the

Neveu-Schwarz model) and the mass of the fermion M is zero(lj).

As in the meson case, the amplitude may be written in two
forms, Sl, and J,_ « The fermion propagators in ?' and ?,_ are

-1 - . o
and (Fo) . respectively. The f&

(omitting spinors) (Lo)
amplitude is actually the correct one; the Ez amplitude contains
an extra factor of ML =0 . However the :?‘ states satisfy sinmple
gauge conditions; it is often easier 1o calculate in the ;7,
formalism with M 30, extact the factor of M and then sct M =0

to zive the correct ( 3&) result.

The other vertex which must be »present in the theory is

the fermion emission vertiex

where the meson line couples to a Neveu-Schwarz state. This must
be a more comnlicated object than the nrevious vertices considered,
: ror
as it has to transform the Fock space spanned by {‘iwnJJ‘ to
ror .. (26)
that spanned by { d—n, hd.} . It was found by Thorn to be

(omititing spinors)




- Ly -

(1.45)

where T is quadratic in the b's and d's. The inclusion of two
such vertices in an amplitude leads to expressions involving
the determinants of infinite dimensional matrices(27) which
are difficult to evaluate. We shall show in Chapter Two

how such calculations may be simplified.
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1.4, Off-Shell States

In all of the models discussed so far, anplitudes have
been written down for the scattering of n ground state
particles on their mass-shell. The extension of the Veneziano
model to an amplitude containing one or two off-shell states

(28)

(currents) was achieved by Schwarsz and Wu A more general

operator formulation of the off-shell sector of the model was
(29)

suggested by Corrigan and Fairlie + This requires the

introduction of commuting overators c

AR

, T half-integral,

satisfying

po ot . v
¢, = ¢C, Cr,Cg ] = "3,‘- r+s,o0 .
(1.46)
Consider the field RI'(2) defined by
. r -
‘R"(z):—«.z—-(cfzfcfz’)
Y {r (Le1y?)

This can be used to construct Virasoro operators L:) satisfying
© (C)] ] © D v L
[Ln JLmle (n-m)bm + 12, nln's ng,o (1.48)

and a vertex

Vﬂ(z. L): :e-ik-lh): Lg_k‘ (1.149)

2

in the same way that the field Q’L(z) is used in the Veneziaao
model. R¥(z) transforms as a (J=0, k=l) representation of
SU(1,1). The n-point amplitude for ore off-shell particle,
(n-1) on-shell (Veneziano) ground state particles can then be
written using vertices VR sandwiched between the c-sbace
vacuun ’O)o

T™e amvlitude referred to above describes the process




where the wavy line is the current. To write down amplitudes
with more than one current we need the vertex for the emission

of a current from a meson line

:

This can be obtained from the one-current amplitude by rearranging

the operators to display (n-1) ordinary Veneziano vertices and
one other vertex, now considered between a-space vacua '°>ag .
The one-current vertex is a complicated object which maps from
the a~spacc to the c-space and back to the a-space; it is very
similar to two fermion emission vertices (1.45)(29). This
complicated form of the vertex leads to the evaluation of
determinants of infinite-~dimensional matrices,; and wmakes the
computation of amplitudes containing two or more currents
difficult.

The off-shell amplitudes described &bove are unsatisfactory
for a number of zeasons. The ground state form-rfactor for a

(29)

current of momentum Q is

D ldy oy EUR

o I-v¥ (1.50)

} which diverges. Also the scheme is only consistent when D=16,
‘ as opposed to the critical dimension D=26 for the Veneziano

model.<30)

A one current amplitude for the Neveu-Schwarz model can

(29)

also be written down s at least for the configuration

This works for D=10, the same as the critical dimension for the

Neveu-Schwarz model. Also the form-factor is now finite.
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A one-current vertex may be written down(31) but it is
difficult to prove that it satisfies apvropriate gauge conditions.
Multi~current amplitudes will be even more difficult to compute

than in the Veneziano case, and generally the off-shell sector

(30)

is still not completely understood




1.5. String lModels

In an attempt to provide an underlying physical picture
for the Veneziano and other dual models, the string model was
developed. This is a Lagrangian theory based on an action

first proposed by Nambu(Ba)

describing the motion of a free
(infinitely thin) string moving in D dimensions of space-time.
The action is a natural generalization of the action for the
motion of a free point particle,
A free (massless) voint particle moving along a math xr(t)
paramelrized by T is described by the action
T !
A - ' 1 ‘1 -
(A_&) <
T at

A is equal to the length along the path, and the variational

(1.51)

principle gives that the particle moves along a path vhose
length is stationary with respect to small variations,

To generalize this to a free(massless) string, we
parametrize the surface traced out in space-time by the
parameters & , T y and define the action such that the
area traced out by the string is stationary with respect to
small variations:

—
A : | dode (a_’ia_i‘.)L —(?_’_‘ \1(")_’1)1
Jo T do/\Jt

. 1
The integrand of A can also be written as./;det g, where g

is the metric on the surface traced out by the string:

9iy = 4. dx (1,00 = (o,%)
do. Jo. (1.53)
' J
The classical and quantum dynramics following from (1.52)

have been thoroughly investigated(samsh).

VWie note that A is
invariant under local re-parametrization of the surface

¢, —> 6"(6",“5))"6/(6)1) (1.54)




This invariance means that there is ar underlying gauge group
in the theory; the generators of this group of transformations
correspond exactly to the gauge algebra of the Vencziano model,.
In fact, after quantization, the spectrum of excitations of the
string is precisely that of the Veneziano model. The leading
trajectory is described by the excitations of a sbtring of
constant length rotating about its centre, with the ends moving
at the speced of light(Bh).

Since there is a gauge invariance in the theory; the
action (1.52) has to be quantized in a particular gauge. As in
QED this can either be an explicitly Lorentz-covariant gaugc,

(34)

or a non-covariant gauge In the first case it must be
checked after quantization that the physical states of thec system
decouple from the ghost states created by the ocverators ag'r s
as described in Seetion l.1l. In the second casc we can eliminate
such operators at the classical level, but then Lorentz invariance
must then be checked after quantization; it was found that the
theory is only Lorentz invariant if D=26 and thc ground staie
is a tachyon, maz—].

In order to yrove the complete equivalence of the string
model and the Veneziano model (in 26 dimensicns at least), a
theory of interacting strings is necessary. This was constructed
by Mandelstam(35) who showed that the %-string vertex is formed
by allowing one string to split into two others. Further

(36

[y,

investigation showed that a 4-string vertex is alsc necessar
The string picture can be extended tc the Neveu-Schwarsz
'(37)33) 1 1 - » . .

model : although not totally satisfactorily as the sinple
underlyins geometrical picture becomes obscured. It is possible

that a geometrical picture of the Neveu-Schwarz model might be




- 25 -

obtained using anti-~commuting variables [ as introduced in

(1.37)(3951}0). (l|.0)

Zumino has constructed a complicated action

which seems to give the Neveu-Schwarz gauge conditions., Other
attempts to provide a geometrical picture of the Neveu-Schwarz

model involve putting some extra structure onto the Veneziano

(41)

string + A string picture of the off-shell states has been
Z

suggested by Green and Shapiro()o).

A second-quantized field theory of strings has heen develowned

(36).

by Kaku and Kikkawa
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1L.6. O(M) MHodels

Until recently the models that we have describied were,
apart from minor modifications, the only consistent dual models
(except for the non-planar Shapiro-Virasoro model which we shall

mention later). Ademollo et al (42)

nave recently suggested
gencralizalions of the Virasoro and supergauge algebras on which
dual models are based. These generalizations will be described
in more detsall in Chawnters 4 and S.

They can bhe regarded as extensions of the (zi,e;) form
of the Neveu-Schwarz amplitude described in Section 1.3%., and
correspond to associating N @' ( 9? withel=1,...,N) with each
particle ki. The Veneziano and Neveu-Schwarz models can be thought
of as tﬁe cases N=0 and 1 respectively. The elements of the
algebras generate certain transformations on (z,9d); in part-
icular the set of local O(N) transformations on p* igs included,
hence their description as O(N) models.

Fock-space representations have only been found for the
0(2) algebra and one other algebra derived from the 0(4) algebra,
and these have been investigated by Ademollo el 31(43).

However amplitudes can be written down for all O(H) models as will

be shown in Chapter 5.




1l.7. Sumnmary

In this Chapter we have discusscd the most important planar
dual models. There are other models which can be obtained {rom
the Veneziano or Neveu-Schwarz models by introducing internal

(L4y)

symmetries in a way which reduces the number of space-time
dimensions of the model. These do not introduce any basically
new factors into the theory.

The only other consistent dual model is the non-planar
Shapiro~Virasoro model. This is based on a generalization of the

: . : : (45) .- o
Veneziano 4-point function due to Virasoro which exhibits
non-planar duvality: s,t and w channel v»cles are all present in

one term. The extension to an n-point amplitude was discovered by

Shapiro(46> to be
- Tt -k; k.
Av\— I—-—-“lzll_ W IZ;'—Z)'l J
AVpe) 16iejen (1.55)
where

(d Ve )L = d'z, d'z, 2.

2 2 *
(Z-o. -2 b) (Zb“lc) (Z.;—' 2“)
The integration is over the whole z-plane, and we wust have

%k12=-2; the leading trajectory thus has intercept £(0)=2. An

operator formalisi for this model can be develowed using two setis
of oscillators Qﬁ'and Z: , and factorization of the amvplitude
shown in the same way as Tor the Veneziano model. It is probable
that this model describes the pomeron sector of the Vencziano
model.,

The poreron arises in the Veneziano model on consideration
of non-rlanar loop diagrams. It has intercevt twice that of the
Veneziance model leading trajectory and half the slope, which is
in rough agreement with the real world; unfortunately this nmeans

that it has intercept ®(0)=2 which is totally unrealistic.
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Consideration of non-planar loops in the Heveu-Schwarz
model also leads to the identification of pomeron terms,
again corresponding to a leading trajectory of intercept X(0)=2
and slope half that of the Neveu-Schwarz model. It might be
expeclted that this is a general feature of dual models.

As we have nointed out, dual models describe many of the
qualitative features of strong interactions, but suffer from
severc defects. The most important of these are the existence
of a tachyon, the incorrect leading trajectory, and the unphysicsl
number oI dimensions in which the model works best. In these
circumstances it might be imagined that the amplitudes are not
very usaful phenorienologically. Nonetheless Veneziarno-type
arnplitudes have teen used, with a physical leading trajectory,
in phenomenological fits to exverimental data, often with
surprisingly good results,

It may be hoped that one day the fcorrect! dual model will
be discovered which will incorporate the good qualitative features
of the existing dual models, but will not suffer from their defectsz,
Even if this is not the case, their stuay will have been worthwhile;
not just for the discovery of an elegant and complex mathematical
structure stemming from a simple 4-point amplitude, but also as a
workshop Tfor ideag about strong interactions where concepts such
as duality can be explicitly realized. Their study has also led
to the devclopment of new areas of research such as supersymmetiry
and graded Lie algewras (both described in Chapter 3), vortices

(47)

in gauge field theories and models based on simple geometrical

1 [s
principles, such as the bag model(46).
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Chapter 2. Some_Calculations Using Groun-Theoretical Methods

Introduction: 1In the introductory Chapter we described briefly

the fermion emission and one-current vertices, and pointed out
that the evaluation of amplitudes containing them requires the
calculation of quantities (such as determinants) built from
infinite dimensional matrices. In this Chapter we shall
explain in more detail how these quantities arise, and how
their evaluation can be simplified by making use of the group

representation properties of the underlying fields.
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Pele Determinants in Fernmion and Off-Shell Amvlitudes

The determinants (and other functions) of infinite
dimensional matrices which arise in fermion and off-shell
amplitudes de so hccause the vertices in these models satisfy
more comnlicated gauge conditions than ths vertices in the
(on-shell) meson sectors of the Veneziano and Neveu-Schwarz

models. '[he fermion emission vertex

Y

(26549)

is given by

d
V(z,k)= CZL-‘ W(z):e';k'ab):

(2.1)
where %k2=0, and W(z) is given by

W(z) = Lol expiAlz)+B@)] 1),
A{z) %_' Z_ b,-Ar;(z)bs

Bla) --i 2 L, doy Bar(2)b,8° (2.2)
W(z) is constructed so that it satisfies
[ls=2) W(z) = W(z) f1lx)
d{x-2) Ix (2.3)

which requires the infinite dimensional matrices A and B to Dbe

A.-_s('z)-’: lzr+5 r-s 'é, ’é_ )(_'Dr-rs-u

W

1 res \t-5/\5-3)

-r . n-T+g

R lz)= 1 2" /n—a. S
Py \r-% (2.4)
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which we denote by < Fﬁ\ « For D=10 and {ermion mags =0

- 3
this satisfies the gauge conditions' 991

<cE|L_n=<cEI(L0+"‘“8")) n |
00

CFElG., = <FF| ) o5 G reh
$=

+ »
where d“=(-l)r stl . ( ~?) ( '%)
r+s |\r-% ] \s~-%

The first gauge condition is similar to that satisfied

v

(2.5)

by the meson states. However the second is significantly
different; G_. acting on {F F| gives rise to an infinite
number of 'reflected' G's. If we consider G_,. between two
such states <f5f5lc-_,, .. lfrED> G_,. acting on <F—El
gives rise to an infinite number of G's, each of vhich acting
on lF|E> gives an infinite number of G's, and so on; the
gauges are reflected back and forth.

Consider an amplitude

N

This consists of a meson propagator between two \|3F3>- statecs,.

(52)

As shown by Olive and Scherk the propagator is not the

usual meson propagator of the Neveu-Schwarz model. A correction
factor is necessary, because ¢f the reflecction property of the

G gauges, in order that the spectrum of physical states coupling

in the residues of this propagator is just that of the HNeveu-

Schwarz model. The corrected propagator is

{ )
. ii xLo'i
. X Al (2.6)

where the correction factor is

A(x)= det (i- M(Af}

(2.7)

and
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We note that Mrs is related to Ars defined in (2.4) by

Ars’ !i(Mrs - MSI’)

The value of A(x) was guessed by Schwarz and Wu
(53)

(2.8)
(28)

and proved by Corrigan et al s Who evaluated the L~fermion

L

This requires the computation of Zl(x), as well as the

amplitude

quantities det(1-A%) and vT'(l—AZ)-lv, where A is ArS(A) and

V. is given by

!
{ “1 Vo7
V'_ 2 "l‘_“f{"l) A ('-“,_) - 3,3, ..

The evaluation of these functions was carried cut by an

(2.9)

indirect method:related quantities were introduced, differential
equations for these quantities were set up and solved, and
these 1esults were then uscd to calculate the required functions.

Z
In this way it was found(5)) that

AG) = (1-3)% 5 (- x)
vV(-8)"y = i;\' {1- (|"'\L)'/Lg (2.10)

A simpler method of calculating these functions will be

Y

described in the next section,
Another amplitude in which a corrected propagator must
be used is the 2-fermion 2-meson amplitude written in the

form

k| k‘f
K-~ - - - -k

. - . R . " 51
The fermion provagator in this case (omitting spinors) Ls()*)




(2.11)

where K(f;1) is the complete elliptic integral of the first

kind. We can also calculate this amplitude in the form

k, k

3

o @ wm e
P ]

k, k.,
in which case the propagator is uncorrected. Hence we expect
the two fermion emission vertices to give rise to a factor
which cancels the K({x') in the denominator.
In calculating this amplitude we find that the following

guantities arise

Sa(2) £2)™ (1 )( Ay L,

Iy n (2.12)
and we obtain a factor
d-1 b,
§e o) lee)  det (-T2 (2.33)

where

re W (=T W,

This can be evaluated to give(as)

§ = K(k)(l—?\l)‘i s

Correction factors such as those described above also
occur in the off-shell model, because of ithe structure of the
one~current vertex, which is similar to two fermion emission
(29)

vertices. For exsmple Corrigan and Fairlie showed that

the one-current state couvling to Neveu-Schwarz mesons
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can be written as
! -t
(@)l J dx ‘o
(W(Q)I satisfies gauge conditionsidentical to those satisfied

by the fermion <F!'7'-\ state. Hence if we calculate the fermion-

meson form factor

we find that it is given by
l Lok -
Cr)l | dx x™®™* JFF>
o X ..’l(x) (2.15)
where 8(x) is the correction factor defined above. Evaluation
of this gives a finite answer, in contrast with the divergent

(29).

form factors of the Veneziano model




2e2¢ Groun=Theoretical Calculation

As pointed out in the first Chapter, the projective
group plays an essential role in the theory of dual models.

The underlying fields from which the vertices and gauge
operators are constructed transform as irreducible represent-
ations of SUﬁl,l). The Virasoro gauge operators Ln constructed
from these fields always contains a subalgebra isomorphic to
that of SU(1,1). To see this in the cases of the ¢ and d

Fock space representations we actually have to redefine the
gauge operators Lﬁf& instead of the definitions in Chapter one,
we take Lc‘;d+?‘; .

The ¢ and ¢ gauge ovperators differ from their a and b
counterparts in another respect: the SU(1,1) subalgebra does
not annihilate the vacuum. In fact (with the redefined l:;d )
we have

b
Lilo}= 0 Loley=qgley L,ley %0 (5163
. 7
where lo} is the ¢ or d space vacuum as appropriate. Since
L_1 lo» 40, we can consider various expectation values with
resvect to e?t- [O0) , and this proves a useful thing to do.
States such as this arise naturally using the fermion

emission vertex:

d
\, (2;k)1(9>k' = eZL—l I°:>d

(2.17)
and it has already been noted 9 tnat
. d
AL . t 1t
e" o), - eyphfam.a ~bdrat
- (2.18)

where w(%)and'Txﬁ)are as in (2,12). Similarly we find that (%9




C N
ehb- | o), - exp (4 ctPet) o),
where 'P'_s = -()\[" M N)rs (2.19)
Nrs = A Srs

Consider now the function
C (4
AL AL,
F:|= <:c>l<3 ‘e o)
¢ (2.20)
We can rewrite this using (2.19), and evaluate it using the

identity(24’56)

L Lyt eyt
_<o‘e,_xA8 oH¥TBY [0 =Edet(l ;AB)I

(2.,21)

-D
* 2

The - or + sign is used according to whether B'satisfies
canonical commutation or anti-commutation relations respectively.
Applying this identity to (2.20) gives
-2
z r N
Fﬂ = E det (1-P ) {
(2.22)
We can evaluate (2.,18) in a second way, using the
group property (easily checked for the two dimensional

representation of the L's)
p.)

e -k, . L
AL L. = A b- 6 ehg =1
e leP - e o ‘“"AP) e o
(2.23)
Using this together with (2.16) we find that
_p/
Fo= (1-2") ™
' ( ) (2.24)
Since P=-N"TMN, we have shown that
Y,
&
det (1-M?) = det(1-7) = (1-3*)
(2.25)

This is the correction factor O\ (%) for the propagator in the
L-fermion amplitude, as defined sarlier.
The other quantities of interest involving the A and M

matrices can be evaluated, given (2.25), provided that we also

know
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T -\
CN (‘#Ml)"v (2.26)

We can calculate this by evaluating in two ways the quantity

ALS <
F, = c<°,e Y oxee ﬂ-cfeM" 1°>¢

(2.27)
where Ke = (NV)r ;‘)r = (N—' \‘)r r=%~:%~;-
Evaluating F2 using (2.19) and (2.21) gives

-b
4 -]
Foe=Qdet (omt)] * v (-M) v
A {de (l.ﬂ ) v’ (1-M") (. 28)

To calculate F2 in a different way we use (2.23) to write

- .
- v 8 T -
Fo = (-3) % (ol RN xec ye R () 10p (2.29)
R(A) is given by‘
A <
T Lcl —)'L"
R(A)=e™ e
(2.30)

and it is the representation in the ¢ Fock space of the
projective transformation
R : = — _| z - A

=X |-x= (2.31)
NHow we use the fact that the off-shell field R’ﬁ(z) transforms

as a (J=0,k=}) representation of SU(1,1), as noted in section l./.
This means that under a transformation
A:z_é) 62 4+ b ad-be = |

the Fock space representation of A acts on ¢, as
00

A C, A—l : Z_ Cs D(:ri) (A>

Sz—00

(2.33)
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,
Clearly D(o’7) satisfies D(A)D(B)=D(AB). We can obtain an

integral expression for Drgo’%) from (1.24) which 15(57)
0}) _ L
D” (A\)‘- S ig_ -\.)S (aj+b) (cbrd) rns=t3..
L0 J 2niy (2.31)
[ =
where the contour C is
C

piT”

%
o - -2
T

Inserting R (A IR( A ) between x.c and y.c-r in (2.29), we

can use (2.33) for the case A=R(A ) and calculate F

-b.
8
F; s (l- A?) A
5 J1T= (2.35)
Thus, using (2.28) and (2.25), we have that

T 2\7! _____._.)‘
V (I‘M) V = Y

P to be

(2.36)
) s T, 2 ~1 KPR
From the above results we can calculate v (1-A%) v, which
is in agreement with the result given in (2.19).
We can calculate the corresponding determinants and
functions involving S,T and w by considering expectation values
d
by A
with respect to € ‘102‘. For example crnrsider
d d
ALC
F, - (ole’“‘” 3™ o) "
37 4 . d (2.37)
Using (2.23) we can write this in a form similar to (2.29).
The fermicn field F‘”(z) transforms as a(J=-3,k=0) revresent-

ation of SU(1,1), and 3% is the zero mode of nr , 50 that

under the transformatiou R(A ) we have that

0

- 5o0),
R ¥RG = Z CEY. (?) (2.38)

n=-~K
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P : I
(Here we are writing F; for xJE X; Jw\ ) o Using this we

find that D
Fo= D) ¥ (1-92) 8
(2.39)
(-30)
Dmn can be cbtained in integral form as

¢t o M-n M- -m-j

b,:.«)(A)=)£é5LU (Mg) (cyed) ™%
cimv ‘_‘j

(240)

where the contour C is the same as above. In particular we

see that
D7 (R) = (-2 k()

where K( A ) is the conmplete ellivptic integral of the first

(2.41)

kind,
F3 can also be calculated using (2.18) and (2.21),

and we find that
L D
b

(1) (1) et or) ™ = k) (-3)°

|
where T = WT(I"'TL) W

(2.42)

This expression is more complicated than the previous cases
because of the zero mode terms in (2.16), which are not
present in (2.17).
Vle can also calculate
o d d
Fo - d(ole"l" p b lo),
(2.43)

in two ways, and in doing so we find that

(I*r)b { det (1’71)1% = (l—-l‘)

-b
D
8

(2e44)
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Finally we have the algebraic identity

det (1-5%)= (1-¢*) det(1-T%)

Using these results we can calculate the remaining quantities

(2.45)

which arise in fermion and off-shell amplitudes., For example

det (1-5%) = K(a) {1=»

(28)

(2.46)
as previously calculated
Hence we see that, using the properties of the projective
group and its representations, we have been able to give
simpler derivations-of_the functions of infinite dimensional
matrices which arise in amplitudes than those previously

available,
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Chapter 3. Sunpersymmetry and Graded Lic Aleebras

Introduction: In order to understand some of the features

of the algebras underlying dual models, in particular the O(N)
models, it is useful to discuss some preliminary ideas. The
properties of the G gauges in the Neveu-Schwarz model have
led to the consideration of theories other than dual models
which possess a symmetry under transformations which mix up
fermion and boson operatcrs; such theories are called super-
symmetric theories. The algebraic structure underlying this
supersymmetry is now understood to be that of a graded Lie
algebra (GLA}.

Graded Lie algebras were the subject of mathematical
interest some 15-20 years ago when their role in deformation
theory was discussed. Interest in them has recently been
revived, stimulated largely by the interest of the physics
comnunity, and a number of mathematical results concerning
GLA's are now available,

‘ In this Chapter we shall review the concevt of
supersymrietry and some of the features of GLA's, with a view

to applying them bto gain further insight into the algebraic

structure of dual models.




3,ls  Supersymmetry

Supersymmetry first arose in dual models with the
extension of the Veneziano model to the Neveu-Schwarz model.
The introduction of additional anti~commuting operators br
leads to the definition of 'supergauge' operators Gr in
addition to the Virasoro gauge opefators Ly , as explained

in Chavnter one, These operators form a closed algebra

b
[L“’LM] ‘-(V\'W\)Lum +g ﬂ(’\z-l)tgp.fn,o
[L'\, Gr] 5(%—") Gm—r

D
{G.—, G's} = szr-f-S + (P '!“") Sns,o (3.1)

As we shall see later, these relations (without the c-number
terms) are typical of GLA's,
The operators Gr have the property that orerating on
a boson state they give a fermion state, and vice-versa.
(In this section only we use boson/fermion state to mean
a state created by a commuting/anti-commuting operator.) For

i

example,
IA
G 0 10> = — b 10} (
3.2)
Theories possessing an invariance under transformations which
map boson states to fermion states and vice~versa are called
supersymmetric theories.

(58)

Gervais and Sakita realized that the suversynmetry
invariance can be expressed as the invariance of an action
under transformations in which boson and fermior fizlds are

mixed up. TFor cxample, consider the actien corrvesponding to

free boson and fermion fields in two dimensions

3

- ! i —
1- dxoc«’X,['i(Dsé) -1 le’-Dt/’{ (3.3)
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where %’ is an anti-commuting Majorana Z-spinor. This is
invariant (subject to suitable boundary conditions) under the

infinitessimal conformal transformations

> d+e-06¢

Y)-— [ l1+a’ © w(x)
o l+ih (3.4)

wvhere
£ (x)2( 4lalx )+ bx2), 5 (o) -bx.)))

together with the supergauge transformations

> f.iny
Vo> brE.ud P (3.5)
where ® is an anti-commuting Majorana svinor that satisfies
¥r3"a,. n = 0
» (3.6)
The Lagrangian itself is not invariant, under supergauge
transformations, but the action I is.

(59)

Vollkov and Akulov extended the idea of supersymmetry
to four dimensions. They considered actions which are
invariant under the Poincare group together with suvnergauge
transformations which are generalizations of (3.5). The
Lagrangians are made up irom ordinary fields which devnend

on the svace-time variables xlh. A better formalism was

" soon developed(bo)

which enabled the transformations involved
to be expressed more compactly: this involves the introduction
of superfields.

Superfields are functions of the space-time variables «
together with the further variables 6; . Thesc @!s have
the properties described in (1.37): they anti-commute amongst
themselves, and commute with x F. In particular ( 64)2=0;

hence a superfield é(x’ﬂa;) can always be written as a

polynomial in e; ; since if we have n 94 s the monomial ggm.g;““
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must vanish. The coefficient of each 9&. ..9",, term is a
function of x"only.

The bvasic supersymmetry transformations are cbtained
using ’-{-O'u, chosen so that { 9;‘5 forms a Majorana spinor.
It is often more convenient to use the notation of dotted
and undotted spinors(6l), where we consider a 4~spinor to
be written as a complex 2-spinor 8 =( So,) together with its
conjugate spinor§=( éa, ), a,a=1,2.

The transformations that we consider are transformat-
ions in the 8~dimensional 'superspace' { x/, 3‘,,,6;,. ).
generated by the g;enera,i:ors of the Poincare group i’PI‘, T’Quf,

together with four supersymmetry generators Qa,Qé which

v

satisfy anti-commutation relations amongst lhcmselves and

. . . v (60 . .
commutation relations with P/ ’ Jatr (6 ). ¥le can define

three functions of xr,eh,e by

é(x 0, 9) 'exr -1x-P1+i08Q+iQB )

@ (X 9 9) CXF(-‘\X Pf19Q)e)(}>(

b, (x,68) - exr(-ix-Pf.;aé)exruem (3.7)
Using the algebra of [PP, J'“, Qa,ﬁé} we can calculate
the effecte of transformations generated by these operators

on the functions in (3.7). For example, a sapergauge

transformation acting on § is given by

itQeiQE T
et +1 j‘i("[h a) 6()\ +1.90 £ -;id" ] 9-«2& g)fi)

(0, )05 =(1,6;) (Gu)ap: (1, -0:)

and 0'1. are the usual Pauli malrices,
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The supergauge transformations for jé' §” ﬂ. differ
slightly; the other transformations have the same effects on
all three expressions. These transformation laws, such as
(3.8), con be abstracted from the definitions (3.7), and
superfields @l,él,ég defined by their transformation
properties alone. '

Given a superfield f , transforming as one of the types
in (3.7), tcovariant' derivatives D can be defined with the
property that DQI i1s a superfield of the same type as LD .
For example, the covariant derivatives acting on type é, are

D::;_.,l&o',..g—a'* E:E_—'

26 a0 (3.9)
Thesc covariant derivatives can be used to simplify the forn
of the superfield under consideration. In the case off ve

i
could impose the constraint
D@I(x,9}9)= 0 (5.10)
Since ‘this condition is invariant under all of the trans-
foruations considered, él subject to (3.10) is still a
superfield, However it is independent of é s and may be
written as
§,(Y~,9) = P(x) + Ba¥ali) + Eapba Bb F(x)
(3,11)
Internal symmetrics can be incorporated into the
supersyrmmetry scheme by attaching indices correspondirng to
a representation of some symmetry sroup to the 8 and é '5(62)°

In this case there are more covariani derivatives,; and more

possibilities for imposing constraints such as (3.10).



http://possibiIibj.es

- 46 -

The superfield formalism can easily be adapted to the

. . L% .
two dimensicnal case(*)’GB’ch). Now there are two translation
generators PP', one Lorentz generator JOL, and two supersymmetry

generators S], 82 such that S= Sl is a Majorana spinor (there
S
2

is no need to use dotted spinor notation in this simple
case). Using a representation of the X -matrices
K°= o X’: o ~
I 0 | 0 (3.12)

we can take the charge.conjugation matrix C::X;. The Majorana
constraint on a spinor o then gives

o = ( - D(z_,ul) _

(3.23)
The superspace (x,8 ) now conzists of xf‘,r.=0,1, and

two O 's which are the coemponents of a Majorana soinor § = e,\

)

The grouv element can be written in analogy with (3.7) as
CE (x,8) - exl:.[—'xx-'f’-f'«és)
*exp (-ix-1>—i9,_S.+i9,S,_) (3.34)
The generators form a closed algebra:
P DY - r
[pr,?7]: [?1,5,]= 0 £5,5,0 203-7).s
] . A o
LJFV,Pa]=13vxPP-13P P
I e P .
[j ) S,_] 8 1(0’ )o\bgb (3.15)
vhere ¢™Y: 'gi ['K’:f"_] . We note in particular that
{ sl,sag =0. This means that the superfields £, _@z,
defined in the same way as for the four dimensional case(3.7),
are actually equal.tx)é: there is only cne tyne of superfield

in two dimensions.




...}_"7._

The relations (3.15) can be used to express the
transformations generated in terms of transformations on
(KP’ 8.), as in (3.8). These are most conveniently expressed

by introducing "light-cone" co-ordinates x4 = x. % Xy . Then

o=

. (<2}
under a Lorentz transformation e_“"j
[& ]
X _— e 0 p
-0

X. O e X.

91) — e B 0 al
8. 6 e*”/\8, (3.16)

) LRS ) .
Under a suvergauge transformation @ , wherel is a 2-spinor,

we find that

Xp => X -;sxxra

f\
6 — B8+ (3.17)
i.e. X, — X,.-t-'\.@(;,g; g,_ —p 6‘,_-”)(;_
X. —> X_.-14,8, 8, — 8, +d,

We see that the two sets of variables (x,,8,), and (x.,8,)

transform amongst themselves; this is because i gl S P_ ,SJ

and {3°,P,, 5,] are both subalgebras of the algebra (3.15).
The above alpgebra may be extended to consider conformal

transformations oa Xp s rather than just Lorentz transformations.

Conformal transfcrmations are defined by

(xo,)h) ~— (Xt:', X.')

where bl{_; ) 3_’;5_,’ on' - 3_&’ (3,18)
Yo ¥, A%,  d%,

In terms of x4+ , these differential equations are satisfied
by
H !
XP = X.Q.) X—= S(X—)
(%.19)
vhere f and g ave acbitrary functions. We also require thatl

9 transforms as a conformal spinor; that is, under the
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transformation (3.19), B must transform as

Y

Bl - ( 3’()&_)) " B ) 0, ({"(x*))’l 6. (3.20)

The infinitessimal parameterlx in the supergauge

transformations must satisfy (3.6), which gives

0((;() = 0(.(!_)
0(»(!.’) (z.21)

With this proviso the suvergauge transformations for
infinitessimal o{ are just those given in (%.17), and the

conformal and supergauge transformations form a closed system.

We see that again’ each set of variables (x,, 8,), (x., @,)

transforms within itself; heuce we may consider superfields
which depend on (x4, 8, ) only. If we put z=x, and § =16,
the transformations in infinitessimal form are
conformal: Z = zZ+u(z)

B (1+5u'(z))8

supergauge:

(3.22)
z >z + #(2)0

f— 8+ u(z)

These are just the transformations that are generated by the
infinite dimensional algebra iL“ , Gr‘ of the Neveu-Schwarz
model(ha), as will be exnlained in Chapter four.

In four cdimensions also the conformal algebra may be
extended to a supersymmetiry algebra(65). In this case
it is necessary to add a further comruting-tyve generator,
corresponding to K: transiormations, to the 15 generators of
the conformal gréup, together with 8 supersymmetry generators.

The L4-spinor parameter & (x) of a supergauge transformation

must be a Majorana spinor satisfying a generalization of (3.6)

(32,0 %3 ~gpn T3 lfx) = 0

(3.23)
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This requires ®{ to have the form
o (%) = + Y x
) XO X [} (3.2’_‘.)
where M;and M, are constant L4-spinors, giving 8 parameters
corresponding to the 8 supersymmetry generators. The details
of this 24 dimensional algebra are given in Corwin, Ne'eman

and Sternberg(66).




]
\n
o
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3e2e Graded Lie Algebras

The algebras described in the previous section are all
examples of graded Lie algebras (GLA's - also called pseudo

(67) (68)

Lie algebras In the next

and Lie superalgebras
two sections we shall describe some featurces of GLA's,
following mainly the papers of Nahm, Scheunert and Rittenberg

(67,69) (70)

and Pais and Rittenberg
A GLA is a graded (non-associative) algebra whose

multiplication behaves partly as a commutator and partly as an

anti-commutator. They were first studied in connecticn with

(71) and Hopf algebras(72), and

work on deformation tﬂeory
have recently been further studied in view of their occurrence
in particle physics.

In order to define a GLA, we recall the definition of
graded vector spaces and graded algebras(73). A vector
space V is graded over the integers Z if, for each ne Z, there

is a subspace V)1 of V, and

b3

\/"” @Vn

1z 0 (3.25)
In fact we are oniy interested in vector spaces graded over ZZ’
the two element group fO,l] of the integers mod 2; so that V
has the form
V- Vo @V 3.26)
VO is called the even subspace, and Vl the o044 subgpace.
The grading of V is described by a linear map d,: V-»V, the

grading aulomorohism, defined by

ol
¥, (x) = 1) « x e W (3.27)
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Given two graded vector spaces V and Vl, there is a
natural graaing that can be defined on L(V,Vl), the space
of linear mans from V —% Vl. Even maps are defined as those
wvhich map VO—) Vol, V1—> Vll, and odd maps VO-—> Vll,Vl——y VO]'.
In particular we have the graded vector space L(V)=L(V,V) of
linear maps of V into itself, and we can write L(V):Lo @ Ly

where

r_..
o
o ————
<
S
t

isel_(\/) IS(VO)C Va,ﬂ(‘/,)c V..{
'Yﬁe L(\{),ﬂ(\/a)c\/.)ﬁ(\l‘)c o} (3.28)

In a gimilar vway we can define a grading on the space B{V,Vl)

of bilinear forms on V and Vl.

t—
P
<

o —

L

An algebra A is graded if it is graded as a veclor space
A=A, ® A| (%.29a)
and its nmultipiication satisfies
c X 8eZ
A Ap AeHP ) P L (%.29b)
that is, the usual rule for the multivlication of even and odd
elements is satisfied,
A graded Lie algebra is a graded (non-associative) algebra
A=Ay @ A, vhose multiplication, denoted by a bracket { ),

satisfies the identities

Ex,yy - (F7FCy o

(X, Ly, z) = 44?‘,7).2)*(")"’5(‘ v, 4%,2)) (3.30)

where Xe¢ Ag , Ye Ag , Zel. The second identitiy is a
generalization of the familiar Jacobi identity of ordinary Lie
algebras. Ve note that Ay equipped with the rules (3.30) is

an ordinary Tie algebra.




As an example of a GLA, take A to be any graded

associative algebra, and define

Yy = Dyl XeAy Tehg @,pr30,0)

(X,Y> = {X,Y} XCA,, \/éAu (3%,31)
This is a GLA. In particular we can consider a graded vector
space V, and take the associative algebra L(V) of linear mps
of V into itself. Equipped with the rules (3.31), L(V) is
then a GLA which we denote by nl(V); it corresponds to gl(V)
in the theory of ordinary Lie algebras. If V is n dimensional,
then pl(V) is the algebra of n x n matrices, with grading induced
from that of V as in (3.28), and nmultiplication as in (3.31).

Given a GLA A, and a graded vector space V, a (graded)
representation of A in V is a homonorphism of A into pl (V)
(just as with an ordinary Lie algebra G we would have a
homomorphism of G into gl(V) ). In particular the map

adA:A ~> pl(A) defined hy

ady (X) (Y) = L,Y>  X,Yeh (3.32)

is a representation of the algebra A in the vector space A,
called the adjoint representation.
We note that, if U is an Ao-invariant subspace of A

(Ao,u> C U (3.33)

then the adjoint representation ad, induces a representation

A
of AO in U, called the adjoint representation of AO in U,adu,
which is defined by

udu(a)(u)= {a,uwy ach, uel
(3.34)

In particular, because of the grading condition

(Ax,Ap> = Aoup

(3.35)
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we see that AO and Al are AO invariant subsnaces; hence we have
adjoint revresentations of AO in AO and Al’ The adjoint
representation of AO in AO is just the usual adjoint represent-
ation of AO considered as an ordinary ILie algebra.

Given a representation of a GLA A in a representation
space V, we can associate with this.representation an invariant
bilinear form ¢von A defined by

¢\r(0-,1:>)= G(Xvaubv) &,BeA
(3.36)
where av,bv are the representations of a,b in V, and Xv
was defined in (3.2?).: We denote the "generalized trace" in
(3.36) by Tr(avbv). If V is finite dimensional, we choose a
basis {V,,...... Vm] of Vo and {Vmar,.-,Vmen3 of Vi. a and

b are then (m + n) x (m + n) matrices, and if we write

« p
ayby - Y § (3.37)

where d,ﬁ,x)s are block matrices, (( is m x m ete., then the
bilinear form (3.3€) is given by
dyla,b)- Tr(ayby) =i~ 1§
(3.38)

If A is finite dimensional, we can consider the adjoint
representation and define an even invariant bilinear form
on A as above, called the Killing form of A.

In the remainder of this Chavter we consider only finite
dimensional GLA's, and we find it convenient to write
G=Ay, U=Ay 5 so that A=G ® U, Taking a linearly independent
set of generators i ﬁul=\qm, Vﬁg where f Qm: m=l,...,dO]
span G and i V“ : X.zl,...,dl\span U, we can write the

multiplication { D of (3%.34) as
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?
[Qm,Qn]= an?

[ Qu, Vel = Rl Vs
{ Ve, VP} A::F Qm (3.39)

The adjoint representations of G in G and U, adG and adU

respvectively, are given by their actions on the generators of G:

a&r}-'an""’(Qm)?: f

n mwn

6  ~f
a.(iu: Qm— (Qm)ot * Frs (2.40)

The adjoint representaﬁion of A maps the generators of A into

(do + dl) pA (do + dl) matrices

O.C{A: Qm — (Mm o )

© Nmn
O-JAI Vu_ — 0 Xu)
e41)
y“ 0 (3 t
(70}
where M, N, X, Y are block matrices, Mmis do b do etc, .

The Killing form ¢ is given by its acltion on the generators
X,‘ of A, and we define the metric

9pv * P X0) = Tr (ad, Xe . ad, X,) .

Then, in the notation of (3.39),

B o«

3Mh B ﬁnm = "\mn - Fmoﬁ ng
¥ m ¥ m
Gup = Frnw Apx - Fmp AKB' - "3pa
3mu 3 3um = 0 (3.43)
where hmn is the usual metric tensor for the ordinary Lie

algebra G.

(3.04)
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A quadratic Casimir opcrator K may be defined by
K= 3PVXFXV
(3.45)
(where gf’v is the inverse of g pv ) which commutes with all
the generators XP .

We can now ask whether the tyves of GLA's can be
classified in some way. One way to do so is to classify the
simple GLA's: a GLA is simple if it contains no non-trivial
(gréded) ideals. The simple GLA's have all been classified
(68’69’7q)and in the next section we shall give the classificat-
ion.

We note here one important difference between simple
GLA's and simple Lie algebras. For an ordinary Lie algebra
with metric tensor hmn’ G simple =y det h # 0. For simple
GLA's no corresponding statement can be made about gfw . In
fact, there exist simple GLA's which have 8 pw identically

equal to zero.
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3e3%. Simvle Graded Lie Algebras

In order to classify the simple GLA's, it is convenient
to congider two cases sepcrately, as the adjoint representation
of Gin U is or is not completely reducible.

a) ad; completely reducible

In listing this class of simple GLA's we follow Scheunert,
Nahm and Rittenberg(69). Vle do not reproduce their arguments,
but list some results which are useful in carrying out their
classification.

The adjoint representation adU of G in U is completely
reducible if and only if G is reductive, that is if

G = C"o x® G, (B'L*G)
where GO is the centre of G (GO,(}> =0, and ¢’ is semi-simnle;
note that G’/ =<a,q) .

Given that adU is comvletely reducible, then either adU
is irreducible or it is the direct sum of two irreducible
representations. In this second case, the odd subspace U can
be written as the direct sum of twe G-invariant subspaces

U: v'gu”

where

o n .,l )
(uu'> o u">: 0 (3.47)
S
CvLu'y= 6

If the centre GO of G is non-~trivial, then it is cne

dimensional, and the representation ad, is reducible. Further-

U

more, there exists a (unique) element et-:.GO such that

{e,u'> w' Ve'el

"

<e,un> . __“u theuu (3.48)
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If the ordinary Lie algebra G is semi-~simple, then the

generators of G can be written in a standard Cartan basis® (>
[n;,H;]-0 .
[Hi,Ec] : 4 Ea
[Eo_)E_a] &';H;
e, E6] ¢ NapEayb  (atb#o)

where 1 is the rank of the algebra; the ay and a® are the

[1Y

(3.49)

covariant and contravariant roots; Nab is a normalization
factor. If in addition the metric tensor B pv of the GLA A is
non-degenerate, the bésis (3.49a) can he extended to a basis of
the algebra A, with additional generators Vgg (which span the

odd subspace U) satisfying
[H;,Vo;]= os Vg
[Em,\/u] : Swu M@,.,L VP
{ Ve, Ve = fupow W

{ Vot,‘/p} ’,"Soup ‘f'«x,-u M—o‘ap (a:-;‘@.;-&o) (%.49D)

The details of 5, f, M are given by Pais and Rittenberg(70).

The d;are the weipghts of the adjoint representaticn of G on U;
to each weight K there corresponds a root a such that
a=20 [V Vx}3o0
(3.50)
Using these results, all the simple GLA's with adU

(69)

completely reducible can be discovered Wle give a list of
the resulting c¢lasses of simple GLA's in terms of subalgebras
of pl{n,m), the graded algebra of (n + m) x (n + m) matrices,

which in block form are

X:= [A B
cC D (3.51)
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where A is an n x n matrix etc,; the multivlication O is

given by
( X, X'y = AA-A'A+BChBe BD-B'D+ AR AR
cA'-c'A+Dc’-D'c dN-dp+ces'e'p
(3.52)

1) The svecial linear GLA spl(n,m) is defined by
5fun,m)=SX&Pl(mm)‘T;(X)= 0?

Tr(X) is the generalized trace defined in (3.36), so that

(3.53)

with X as in (3.51), we have
Tr(X):0 56 A=tD
(3.54)
The Lie algebra G of spl(n,m) is sl(n) x sl(n} x U(1).
For n ¥ m, spl(n,m) is simple. When n=m, spl{n,n) has a
non-trivial (one dimensional) centre generated by the 2n x 2n

unit matrix:

En { I>\ (l: 31“) (3.55)

(vhere A is a scalar). The quotient algebra
Sr[(n,n)/zn

is simple.

2) The orthosvmwlectic GLA 0Sp(2n.m)

Define the 2p x 2p matrix
E- = 0 1?
-1P O (305?)
Then the subalgebra of pl(2p,m) consisting of all matrices X

of the form (2.51) satisfying

ATE+EA-=O
DPT- -D
C=BE (3.58)
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is simple, and has Lie algebra G=Sp(2p) x O(m). It is called

the orthosymplectic GLA 0S(2p,m) (p,m® 1). We note that 0Sp(2,2)
is isomorphic to spl(2,1).

3) Consider the subalgebra of pl(n,n), n% 3, consisting of

matrices X satisf{ying

A":-D B8':B (CT--C
t{A)=0

(3.59)
This is a simple GLA, which we call b(n). Its Lie algebra is
G=sl(n).
4) Consider the subalgebra of pl(n,n), n2 3, called d  and
defined by
d, - (AB Aeglln) ,Be sl
B A (3.60)
The centre of d is z_ as in (3.55). The quotient algebra
d /z 1is simple, and has Lie algebra G=sl(n).
5) There are also some exceptional simple GLA's, aralogous to
the excevtional Lie algebras. These coasist of:
i) A one parameter family of 17 dimensional
simnle GLA's, whose Lie algedbra is
81(2) x s1(2) x s1(2)
ii) A 31 cimensional simple GLA whose algebra
is s1(2) x G,
iii) A 40 dimensional simple GLA whose Lie

algebra is sl1(2) x 0(7)

These are all of the simvle GLA's of this Lype; they are
called the classical simvle GLA's, in analogy with ordinary
Lie algebras, they can be lisled in another way, which reflects

the use of the results quoted at the beginning of this section
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by Scheunert et a1(69).

We write A=G @ U, and ignore the ex-
ceptional algebras.

I, G simnle

There are 2 cases:
i) Killing form non~degenerate: AZ0Sp(2p,1) p? 1
ii) Killing form degenerate:
U irreducible: Agdn/zn n% 3

U reducible: A%b(n) n2 3

'H

G semi-simple, but not simvnle

There are 2 cases:
i) U irreducible: AZ0So(2p,m) p3l, m% 3
ii) U reducible:  G=Ggy x G by (3.46)

G’ not simple: AZspl(n,m) n,m¥ 2

or Aéspl(n,n)/zn nz 2

G' simple: AZ 0Sp(2p,2) pE 1l

or AZspl(2,1)

All of the GLA's which are of interest in ph&sics to date
are related to classical simple GLA's. For compleleness we
mention very briefly the other type of simple GLA,

b) ad, not completely reducible

The above GLA's are all matrix algebras, snd corresvond
to the classical Lie algebras. There are further simple
GLA's defined in terms of the derivaticns and differential

(68)

forms on a Grassman algebra If A is the Grassman alsgebra
on the n variables XyseoasXy with the natural grading, the
(graded) algebra of derivations on A, W(n), can be written as
the set of elementszif‘-a;, where p;e A, and ai(x‘;): 5‘.3 . W(n) is

a simple GLA for np 1.
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Two distinct algebras,) and S, of differential forms
on A can be defined, generated by the anti-commuting (commuting)

defferentials dx, (4 x,):

L dx,, ..., dx, $.dx,.. 8xa

M (3.61)

The grading on A is cxtended to (Ll and S by putting dxi odd,
g:%_even. Every derivation on A induces derivations on JfL and

S; three further sets of GLA's can be defined as subalgebras of

the -algebras of the derivations ondk and S. TFurther details

(68)

are given by Kats

PR
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3.4, Graded Lie Algebras and Physics

As we have stated in section 3.l., supersymmetry is an
example of a GLA in physics, and we shall see below which are
the relevant GLA's, However the earliest avpearance of GLA's
in physics was the f,d algebra which arises in tne consgsider-
ation of representations of SU(})(76).

The generators of SU(3) can be represented by 3 x 3

traceless matrices +%;, i=l,...,8. which satisfy

[%.'Xi,'i')\j]" fvliju('i)\k)
{k;, 'XJ‘}_ : % §;J- 1+ L Ay,

The fijk are the structure constants of SU(3). If we write

(3.62)

matrices f,,d. as
i?7i

(£ )Jk g Uk (d{)jk" di_jk

then the adjoint representation Fi of SU{3) is given by

(3%.63)

Fi=-ifi, which satisfies

F. F : { F
[ Pl Tk (5.64)

We can also define D =d i and these satisfy

As they stand the D's and F's do not form a closed algebra.

However, if we redefine F; and D, to be the 16 x 16 matrices

Fi z —;Jr; 0 b‘-_ = O d_;
o _;{-,\ 4 o (3.66)

then we do have a closed algebra: i¥1
[Fl)FJJ E 1‘F\Jl¢ . ‘
[D:,,FJ-] : 1I:J';-. Dy 3677
[D:,553 - - diju F
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We recognize (3.66) as the adjoint representation of the
GLA (3.67). The algebra (3.67) is the simple GLA ds/z3, as
in section 3.3.

The f,d algebra can be generalized to SU(n), and such
algebras are known as the Gell-Mann-Michel-Radicati algebras(7?).
They are precisely the simple GLA's-dn/zn, ny 7.

Now consider the four (svace-~time) dimensional supersymmetry
algebras. The 24 dimensionsl algebra of Vess and Zumino(65)
based on an extension of the conformal transformations is(after
complexification) precisely the simple GLA spl(4,1)<74). The
14 dimensional algebra based on an extension of the Poincare
group(sg) is not a simple GLA; it may however ve obtained
from the simnle 14 dimensional GLA 0Sp(4,)) by an Intnu-~Wigner
type contraction.

The ordinary Lic algebra of 0S(4y1) is (isomorpaic to)
the de Sitter algebra SO0(3,2). The 10 generators of this
(78)

algebra can be represented by

fWab=XaXb=—Mba [@¢b;aﬁ=h“vﬂ

(3.68)
( where ¥, =i¥,). If we define new generators(74)
Mo, = Mg, a,bl,.. 4
Mas » MMas (3.59)

and perforas a contraction by letting A 0, we obtain the
Poincare algebra, with Mas-a pF s and thne other
generators —* Lorentz generators.

If we now take the 4 odd generators of OSp(4,1), Fgu

(71)

say, and define new generators

E“ -3 Fa (3.70)
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then in the limit A~» 0, (3.69) and (3.70) together give the
14 dimensional supersymmetry algebra.

The two (space~time) dimensional supersymmetry of dual
models is infinite dimensional, because of the special prop-
erties of the conformal group in two dimensions; however, it has

a finite subalgebra spanned by {LO,L G 1 o This algebra

1902
is the simvle GLA 05p(2,1). We shall see that the O(N)

(1+2)

algebras of Ademollo et al are also related to simple GLA's,

Finally, in the graded Riemannian geometry of supergauge

(79)

theories s one considers manifolds that can be locally
mapped onto a flat (graded) svace with orthosymplectic metric.
Hence we see that all of the GLA's that have arisen in

physics to date are eitlher classical simple GLA'S, or are

closely related to them,
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Chapter L. Revresentations of Orthosymnlectic Algehras

Introduction: In this Chapter we are going to explore some

asnects of the algebras underlying the known dual models.

The gauge algebra of the Veneziano model is (up to c-number
terms) the infinite algebra corresponding to the conformal
transformations in two dimensions. It has a finite subalgedbra
which gencrates the Mobius transformations of one complex
variable; this group of transformations is isomorvhic to the
symplectic group Sp(2).

The supergauge aléebra of the Neveu-Schwarz model
(without c-numbers) generates conformal and supergauge trans-
formations on the variables (z,0 ) where § is an anti-commuting
variable, as in (3.22). This algebra has a finite subalzebra
!LO’Ltl’Gi%} which is isomorphic to the orthosymplectic
algebra 0Sp(2,1);this will be explained in section 2.

Further extensions of the conformal algebra which have
been proposcd corre=spond to the generators of certsin trans-
formatiocns on the set of variables (z,em), where 8{{=1,,.., XN
labels the vectour representation of an C(X) symmetry. This
0(N) algebra contains the conformal algebra as a subalgebra,
and has a finite subalgebra which is isomorphic to 0Sp(2,N).

e wish to study in particular some representations of
these algebras, as they are useful in constructing amplitudes
and Fock-space operators for the corresponding dual nodels.

Some of the details of the representations have been

relegated to an apnendix.
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4,l. The Virasoro Algebra

As explained in Chavter 1, the Virasoro algebra is
spanned by an infinite set of gauge operators Ln’ which
satisfy the commutation relations (1.15). If we omit the

c-number terms, these relations are

ZLﬂ,Lm] = ("“""“)Lﬂ-rm

(4.1)
The algebra (4.)) can be realized by putting(BO)
nel —_
Log=2""d -nJ2"
dz (4.2)

where J is any number.' This realization is appropriate for
showing that the algebra(L.l) corresponds to the generators of
conformal transformations. If we consider an infinitessimal
transformation generated by the L s (1_+ %;qupqﬁ, ve find
that (with J=0)
(l-a-ZMMIL_“)‘L = 2+ule)
" (4.3)
where “-(Z)"’ Z“‘r\?jt
This is Just the form of an infinitessimal conformal trans-
formation, as in (3.22).
If we congsider the action of (4.2) on zk'm, where m is
an integer, we obtain a linear combination of terms of the

’

kem
form z" ', wherc m'

is arn integer. Hence, the vector svace

. kim P 1 : . : . A - 3
with { =z : méf\as a basis is mapped into itself by Ln. Ve
can represent Ln as an infinite dimensional maitrix with resvect
to this snace.

We write the basis of this vector space as(ls)

Vo, = ﬁ](:ﬂ!c,W\)Z.kfw‘
(haly)
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where N(J,k,m) is a normalization factor; different choices
of N(J,ky,m ) give equivalent representations. Operating with
L, as in (4.2), we find that

(T k)

(44 5)
(3,%)
gives a matrix representation.b of Ln’ satisfying (4.1).
Instead of considering Ln as in (4.2) acting on elements

of the form (4.4), we could consider a vector space spanned by

J
basis elements z' zk*T and write L_’1 as
" Pl Ié.)
L-ﬂ - 1 (z az. _“Z bzl (’4—06)
[ETN

J is invariant under L-n’ so that we can consider z'~ z for

fixed J, in which case L_n takes the form (h.2). It is some-

times convenient to write(so)
2= 337 z = ;C7 (4e?)

L_n may then be written in terms of f and 7 derivatives (see

appendix),

As explained in section 1.2., the vecter svaces described
above can be used to derive the representations of the SU(1,1)
subalgebra of (4.1) svanned by iLO’Lklz s and the grouv gener-
ated by this algebra. There are different classes of represcnt-
ation of SU(1,1), some of which which were given in (1.22).

& - .
- The D&’ representation is obtained when JC O and k=~J. 1n this

case the subspace spanned by ‘z"riq”1 m:O,l,..olis invariant
under SLO’L!I} s and has no invariant subspaces; hence the rep-~
resentation ﬂ? °f$L0’L:1] cbtained as in (4.5) is irreducible.
Similarly, for J4 0 and k= J, the subspace spanned by

S 2T T, m=0,~1,..) 15 invariant, giving the irreducible repre-
gsentation D;’ « The normalization factors for these renresent-
ations may be fixed by requiring D(Ll)zD(L_l)T, which gives
N(J,k=tJ,m) as in (1.25).

The revresentation Dz’can be used to obitain a Fock-space
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realization Of'{Lo’Lxl} (18). We put

Li= -2 “':f'b:)n (Li)a (i20,11)

AM2ZO s (4.8)

T . . t
where a;‘ are canonical creation operators. If we take aﬁ‘

to be the usual Veneziano operators, introduced in Chapter one,
and consider (4.8) in the limit J-» 0 (from below), then we
obtain the usual operator expression for the Virasoro
generators (LO’Ltl? , as defined in (1,14), provided that we

take the zero modes(la)

»J"lj Qg ) «]'.23_ &F: —_ -FP
: (4.9)
A Fock space realization of all the Virasoro generators
Ln can actually be obtained using the revrcsentotions of (4.1).

Take J=0, k{0, and consider the vector space spanned by

V. = J Wem

Z
" Kem (’-l-.lO)

The derivative expressions (4.2) for L induce a (non-uvnitary)
representation.1$°h)(Ln) of (4.1) on this svace by (4.5). Ve
can novw use this revresentation in the limit k-~ 0 to obtain
the usuval expression for Virasoro generators (1l.14); we put

5 it .
L %;a Q.Im .DM‘F(L“)C&F .

= l.iM ""2_
le-p O

n
where

o' T - q,t (mp0) a'[,-a,? (pro) (yab)
&'t :-ia, (m<o) a'r=-£a; (pee)

ﬁa;,ﬁa;f——'y]:

The factors of i associated with the a's in (4.11) just cancel
similai factors in D‘on)which arise because of the normalization
factors in (4.10)}. Ve note that, although we started with a

representation of the conformal algebra (i.l), the Ln defincd

in (4.11) satisfy the Virasoro alpgebra(l.l5).
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For J 2 0, J half-integral or integral, there is an
irreducible representation of SU(1l,1) of dimension (2J + 1) (|q);
since SU(1,1) is a non-compact group, this representation is
necessarily non-unitary. In the present formalism, these
representations ecan be realized on the vector space
i z'Iza : a=J,J—l,...,-J‘ , Which is invariant undcr‘LO, Ltll‘
The case J=0 (distinct from the case J£ 0, J—»0) gives the
trivlial representation Li=0. We shall look at the cases

=% and J=1 in a little detail; it is convenient to use the
7‘7 notation of (4.7).

In the J=1 case, we consider the 2 dimensional space
of vectors (f,7). Using the derivative expressions in the
appendix for Li’ we find that

(?,q) - (1,97 =(3, n) Do)
(L4e12)

(80)
) .

(ﬂ: (o o ) L, 11(%. ) L“= ¢ -l
i o0 o -% ¢ o (Lhel3)

In the J=1 case ve consider the 3 dimensional space

gives the usual 2 dimensional representation for LO,L

L]

of vectors (7‘,?1,ft ), and we find the revresentation

Ll: ‘ L LD: - L-l= -2
| -1

(L}ollf.)
If we compare this with the adjoint representation of SU(1,1),
given by the structure constants
A A
(a‘i X/“)v - c,kv .
(4015>

where X = (L

r

1 !LO ’L__l) and

(v . A (4.16)
L )7‘,><V ] - cth ><§
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wve find that this is orecisely the J=1 representation(i4.1/).
The metric tensor

alu, ='f% (QJ{ X’.. ad )(v)

(4.17)

and its inverse can be used to define a quadratic Casimir
(18)

Co5 fLolton)~ Ll ]

operator

(4,18)
For a given J this has eigenvalue C=3J(J+1); the represent-
ations (4.13), (4.14) each give %J(J+1)1 as they must by
Schur's lemma.

Consider now the transformations on f and.ﬂ realized
by the group generated by the algebra YLO, Ltl} . As in
(1.21) these are
; — (0; k f ) - ;\ I
" c d[\y " (4a19)
where ad-bc=l; z=,Z7 undergoes a lMobius transfermation(l.7).
The matrices A satisfly

Aﬁ.( { A.: l
-1 -1 (4.20)
which is just the condition for A to belong to the symnlectic
group Sp(2). 1In particular, the transformation A& leaves

invariant the bilinear form

(%, 7. . ’)({;) = e lz-2.)

This bilinear form is intimately connected with the

(4.21)

{illing form, the invariant bilinear form obtained using the

meiric tensor Buv - In fact we find that the Killing form is

SR 29 % AT MR R W PR

je22)
-] Y\- "L.\ (L 2
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This is just the square of the bilinear form (4.21). If we
wish we can write Mobius transformations as 3 x 3 matrices A
acting on (71,77,7l) and satisfying det A=l and ATgA=g.

We have developed the details of the representations in
this section so that we can see easily how they extend to the

graded cases. Revresentations of the Virasoro algebra have

been studied in a more rigorous fashion by Goddard and Horsley.

(81)
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L.2. The Neveu-Schwarz Algebra

In this section we extend the idecas of the last section
to the Neveu-~Schwarz case by considering transformations on
[}
a supersnace (z ,z,o )« As noted before, the gauge algebra

of the Neveu-Schwarz model is (without c-number terms)

(Lo, Lod: (nemdlym
[.LR, Gr3 =(£}- "r) Gnqr
16 G5b = 2Ly (4e23)

This algebra can be realized in terms of derivatives of

{ . . . .
z',z and 8 , where®is an anti-commuting variable as

defined in (1.37):

L. =z"{r-z>_ 2’2 (mezz

l
3z ' 2 96
)
Qr:iq'gzéflrafi.+zif
dz 2z 26 (4o204)
Here 5"; is a left-hand derivative :§~e_0 =l. As in the
Virasoro case, it is sometimes useful to write L__n,G'__r in

terms of derivatives of § » W and 8 (see aovpendix.

We see that L and G acting on 2! zk"“ez where
V =0 or 1, leave J invariant, and for fixed J zﬁ%:may be
replaced in (4.24) by J.

We can consider the infinitessimal transformations on
z and B (J=0) generated by ‘Ln,Gr] « In the Virasoro case,

we found Tthat the Ln gererated conformal transformations on =z.

Now we find that the transformations

]. + Z u'\ﬂ L-—w

Lo+ 2 ey G (4.25)

ana
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generate the conformal and supergauge transformations(3.22)

on z and & (where u(z)=L unz" and o (z)=Z o ., 2% are the

A

parameters of the transformation(%.22) ).
Consider the vector space spanned by the basis
v 1T Kers pV
V: [\IM: N(J'kmv)z 4 6 :mez;v-. o,l}

for fixed J and k, where N(J,k,m,¥ ) is a normalization
factor. A natural grading can be defined on V by defining
vav to be even or odd as ¥=0 or 1 respectively. This space
is mapped into itself by L and G ; in ahalogy with (Le5)

we can represent X:Ln or Gr on this svace by the infinite

[
dimensional matrix D:;TX) defined by

X Vo = ¥y 'b::‘ (X) (4.27)

vhere sums over n and ¥ are understood. Actually, to write
this as a matrix representation we should incorporate (m,v )
into one index; however ve vrefer to write D(X) as in (4.27)
and understand that matrix multiplication imwuwlies summation
of ¥ indices as well,

Because the cderivative expressions (L.24) satisfy

(4.23), the matrices defined by (4.27) satisfy (4.23):

(D), DD = DX, %)

where () denotes commutator or anti~commutator, as defined

(4.28)

in Chapter 3.

The finite subalgebra of (4.23), spanned by {LO’Lﬁl’Gg%I’
is isomorphic to the simple GLA 0Sp(2,1). (We note that -
these generaltors are actually in the form of the standard
Cartan basis(3.49), and we see that the root-weight theorem

(3.50) is satisfied). We can now cousider k=-~J. The subsuace




(4.26) for specific values of J and k, and ask whether there
are irreducible representations of this subalgebra similar to
those which exist in the Sp(2) case. The finite dimensional
representations have also been considered by Pais and
Ritbenberg(70).

For J< O we can consider k=-Jd. The subspace spanned by
iz'j 2-1”“9? m=0,1,c00} ¥ =O,l§ of (4.26) is invariant under
0Sv(2,1) and has no invariant subspaces; hence we obtain
an irreducible representation from (4.27) which we call Dg’in
analogy with (1.22). Similarly, for k=J { 0, the invariant
13 Z:nmo": "

subspace spanued by i z =0,...: v =0,1 acts as a

representation space for an irreducible representation DJ( ).
The normalization factors H(J,k,m,v ) can be fixed by

requiring D(L_l)=D(Ll)T . For Dj” ,D§° we have

N{Tl=T mov) - ‘/r'(m-lzrﬂf
!

(l[»e 29)

These factors also ensure that D(G_;)zD(G )? , provided Lhat

3.
2
we define

DT e D

nm MR

‘\ . (Ll-o-jo)

that is the order of v,v' must also be interchanged; this is
just what we wculd expect, since, as vointed out previously,
(my v ) should really be considered as a single matrix label.
The representation Dgﬂ may be used to obtain a Fock-
space realization of 0Sp(2,1). We consider a: for v =0,1,
where
Yo I Py P
" a,= b

Q, = & nely (4.31)
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and an’br are the usual Neveu-Schwarz operators. Then if we

write !
| viv v
X = ~mznw aifbnm(x)am
vy'zo0,1 (4.32)
for X= {LO,Ltl,G:%l s where D is the representation ﬁ? in
the limit J—>»0, we obtain the correct operator forms of these
generators as in Chanter 1 (using (4.9) for the zero modes).

The representations D;;(Li) are diagonal in v, y' ;
hence we can obtain two representations of f LO’LiI‘ by
congidering D:; and D;;. These are just the ﬂ+’representations
defined in section 4.l., for J~» 0 and J=-} resvcctively.

As in the Virasoro case, we can in fact derive the Fock
space rcalizations of all the generators Ln;Gr by considering
representations of the full algebra(4.23), In varticular we
consider the representation induced by the derivative forms
(4.24) on the vector space(L.26) Tor J=0 and k0. Ve take the

normalization factors to be

N(O,k,m,0)=_\__ N(O,k,m,i) = |
JE:;; (4.33)

Then, for X=L_,G_, we can write
n’r

Xe =% lim:2 oD (0)a”

n A m
o ®»"
where k> v v
te t 1t 10 I
a , = Q, Ay ey,
e 1 "o
b bm+ax Qn *® L@*i) (L4e34)
and a;f ,a; are as given in (4.11). Agoin, although D is a

representation of the algebra (4.2%), the operators (4.34)
satisfy the correct algebra with c-number terms.
Concider aow the case J2 0. For J integral or half=-

integral, the (4J + 1) dimensional representation of 0Sn(2,1).
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As in the Sp(2) case, we shall look at the J=% and J=1 cases
in some detail.
In the J=} case we again use thef',7 notation, and

consider the space of vectors (§ » 957 9 ). Using (4.27) gives

the 3 dimensional representatioun

o\
-
1
-
—_—

L}
- L - L
PO - e e e e w - - e - « ., -
]
- \ !

(’-FQBG)

-
-
—

When J=1 we consider the 5 dimensional space of vectors
( «,ll ,fr,-’ R it ,1711'9,9.776 ). The resulting 5 dimensional
representation is precisely the adjoint revresentation, obtaincd
from the structure constants of the algebra as explained in
section 3%.2.

A metric tensor Bpuv for the generators Xf of the GLA
0Sp(2,1) may be constructed, as in (3.42), end its inversc used

to construct the quadratic Casimir operator, as in (3.45):

C-fg LLﬁzécqz

it

(4e37)
For a given J this has eigenvalue % J(J 4+ 1). The represent-
ations for J=+,1 each give%INJ'+ 1)1_50 that Schur's lemma
generalizes to this case(7o).

We can consider the transformations realized on z and 8
by the grouv generated by the algebra YLO’Ltl’Gt%I . The

infinitessimal transformations generated by (1+8 G 4 +ﬁ(~‘._}),
=2 2

where andP are anti-commuting parameters, are

7 > 24 (F‘?-+F)9

0 — ﬂ-f(o(z.+{3) sy
’ Llo:sﬂ
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Finite supergauge transformations, generated by successive

transformations of the type above, are

Z > 7. A2+ f
8 -—-*;(I-#L:,MF)G*r(n(z”@)

(4.38Db)
The (finite) projective transformations are
7 —> &.'L—'f'b 0 — | 8

ct +d Crsd (4.39)

when ad-bc=l,
A general finite transformation generated by ‘LO’L!l’Gi%i
can be written as
f
J o b o.F-l:oL ¥ ¥
- ¥
cF-Aol ¥/ = A |
subject to a 'generalized determinant' condition
dgtA: owl-'bc.-l-ﬁ(ﬁ'—’-l
(Lol4l)
This definition of the determinant of A coincides with that

given by Nath and Arnowitt(79)

for matrices in which some of
the elements are of anti-commuting tyve; this definition will
be explaned further in Chavter 5.

The supergauge transformations (L.38) are obtained from
(4.40) by putting b=c=0, a=d=l-%xF; the conformal transformations
(4.39) correspond tod::P =0, subject to ad-bc=l. In both cases
we are taking z= ;ﬁ.

The matrices A saltisfy the condition
‘r
A l

S - - -4 - (4o42)
I

- = -
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T . .
where A 1s defined as

0 ¢ : 4
A1=_b____d__;_ﬁ_‘
“lap-br) -(ep-da). (1+%p) (4ets3)

Note the change of sign of 2 elements in the bottom row
compared to the usual ftransvose of A. This ensures that the

transformation A leaves invariant the bilinear form
i
(E:. 7:, 7.81) h r;
_“‘ - ] - . 7&
v N8, (4.44)
We see that (L.L44) is aﬁti-symmctric under interchange of labels
1 and 2, since the 8's anti-commute. The orthosymplectic
transformations correspond to the natural gencralizstion of the
symplectic grouvr, the group which leaves an anti-symmeiric
bilinear form invariant, to the case where we allow anti-~
commuting as well as commuting variables.
We note that, in the Koba-Nielgen formulation of the Neveu-
. . . . » (2%) .
Schwarz amplitude, using anti-commuting 0's s expresslons
similar to (L.44) avpear as the natural generalizations of the
forms similar to (4.21) which appear in the Veneziano model.
We shall comment further on this in the next Chavpter.
Given four ( L', 1;, 1;9;), we can define a generalized

teross~ratio!

X: (11"-1. +glgs)(z-3 ‘Zﬁ-‘*eiglk)

(Z!'—ZJ +B'97)(21'14+91 g“J (l-hLI*.S)

Since tnis is constructed from invariant bilinear forms (4.L4),
it is invariant under 0S8p(2,1). However it no Jonger has the

simple oproperty that (l-x) is 21s0 a cross-ratio.
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If we also consider the invariant bilinear form const-~
ructed using the metric tensor g¥ and the 5 dimensional vector
( 1 ,f,) 2;"9 2!’70), we obtain the form

LY [ 3
= 7| 71, ('Z,*ZL + 9,61) ([_I 146)
which is just (minus) the square of the form (4.45), as in the

Veneziano case.
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4o3. The Fermion and Off-Shell A}gebras

In discussing the Neveu-Schwarz algebra in the
previous section, we only considered that vart of the
algebra corresponding to the (on-shell) meson sector of
the Neveu-Schwarz model, the gadge operators built from
ay and br operators. We might ask whether the formalism
can also be applied to the fermion and off-shell sectors
of the model,

(64)

Brink and Winnberg have shown that the fermion
amplitudes can be writ@en in terms of the z,ﬁ superiield
formalism, so we would'expect to be able to revresent the
fermion operators in a manner analgous to that usecd for
the meson sector. The gauge operators in the fermicn

sector are L and F_, where n,m= 0,%1,..., and they

satisfy the relations (omitting the c-number terms)

[Ln, L‘m] - ('h—ﬁ'\) vam

[ L'n, Fm] - (:}. - W‘) Fn-mm

{Fn,Fm}= VA - (47D
The F's satisfy almost exactly the same relations as the G's,
the only difference being that the F's are labelled by integers
whereas the G's are labelled by half-iniegers. Hence we can
immediately writc down a realization of Ln,Fm in terms of
derivatives of z ¢, z and B ; we take L_n to be as in (4.24)
and Fh to be the expression for Gr with r revplaced by m,

These realizatiorns can again be used to construct rep-

resentations of Ln and Fm on the vector space svanned by
{ 272%™ 87 ) . The only finite subalgebra of (4.47) is the

Mobius subalgebra { LO’Ltl? s 80 that we cannot look for finite




- 80 -

dimensional representations as before. We can however find
representations of the whole algebra (4.47), using (4.27).

Althcugh J is again invariant under the transformations
(4.47), k is not: Fn changes k¥ by ¥, The vector space svanned
by [z’s zk+m,z'1 zk"m"I b . m:O,tl,...} for fixed J and k is
invariant under (4.47), and can be-used to define a represent-
ation of the algebra (L4.47).

In particular we can consider the rcpresentation D
obtained by vutting J=0, k0, realized on the representation

space

k+m k+m=-%
| Z ‘-z m"G:m:O,tl,__

— 3

PP (Le48)

As in the previous cases, this represencation gives the usual
Fock space representation of the full algebra (l.44) (with

c-number terms). We write X:Ln or F_ as

m
X:lin 2 oD (X)) :
where (4.49)
al®te a) a,’ = a,
o' teodf a, = dn
e alt s )Y Y,
and a; t s aA are as given in (4.11).

A similar procedurc can be carried out for the off-sghell
sectors of the model, the off-shell meson sector consistiung
of ¢c_ and bs, and the off=-shell fermion sector consistirng of

L

c. and dn. In each case we can define a representation D on

the invariant subspaces
k+m+|1 le4m . }
¢, by: iN,,\z ;2 Bimeor,.

et e
Cr,"{:ﬁ [ N'Mz' '

"*m-'l- . (1-}-50)
, 2 ‘G:m_o,tl,..i
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1.
where Nm = (k+m+ 3) 2, This representation can be used
to construct the avpropriaté gaugé operators X as in (4.49),

where now we take

1o+ t 10

a, °* chf’a. a, - CML‘ (ﬂ>,o)
/ot . o .

Q, < -1 ('_w.’1 a, _=-1.Cm1" (‘n(o)

(4.51)
and a%_: bn+% or d_, as in (L4.34) or (4.49), as appropriate.

In all of the representations descrobed above, DQ;V (Ln)
is diagonal in v and v'; hence these matrices provide a
representation of the conformal algevbra (4.l). In particular,
if we consider the D s defined aboce in the limit k-» 0, then
in the fermlon case DOO gives the (J=0,k—p 0) representation of
the L , and D" gives the (J=-%.k=0) representation (waerc now
J,k are those appropriate to the Ln algebra, as in section L.1.;
in- the off-shell case, p?0 gives the (J=0,k=}) representation,
and D" gives the (J=-=%,k=}) or (J=-%,k=0) representation as

a" =b or d respectively.
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L.y, O(N) Alpgebras " /

The supergauge algebra of the Neveu-Schwarz model can
be generalized by considering transformations on z and 6 s
1
for&(:l,...,N(FZ). The infinitessimal transformations on

o
(z, 8 ) are given by

Jl ( l n) q....“n(z) 9«.‘” 9&,\
R Ny Oy, (x J) u,‘., o,..00, / 9“'-.. Gd" 9“
de = ne )00+ ) (4.52)

where® =1,...,§ and n=0,...,N form a closed system; the para-

meters £

are taken as commuting/anti-commuting as n is
even/odd. The conformal and supergauge transformations
correspond to n=0 and 1 resvectively. The n=2 transformatiouns
leave z unchanged, but perform a {local) O(N) transformation
on the 8's.

The gencrators of these transformations consist of one
set of Lm (n=0 transformations), N sets of G's, Gr(nzl transforn-
ations), IN(K-1) sets of |'s corresponding to local O(HN)
generators Tgp (n=2), together with generators corresponding
to higher (n» 2) transformations. The generators corresvonding
to ny and n2 satisfy mutual commutation/anti-commutation
relations as (nl+ na) is even/odd. Furtner details are given
by Ademollo et a1l%?).

The simplest algebra after the Veneziano (N=0) and Neveu-
Schwarz (N=1) cases is the 0(2) algebra which has one set of 0(2)

(
generators T and two sets of G's , G; and Gr2 « The algebra is\42):

m] (m-p) Mm (4.53)
[L C—dJ [’ -t) Cﬂ,r
{ (;:g 62T 28% Leus +8%F (r- 5T
[T, T.]= e
[Ta, L) * 7 Tnem
m, G ] = 7 d@ Cﬂ+f
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As in the previous cases, this algebra can be realized

. . . ' L
in terms of derivatives of z’, z, 8 :

L_“ = 2_“?7_2 "V\’L’é « ! lne) 9“‘3_

2z 22! 2 3%
(Y4 "'; x
G_.— : Zr ia 22_ -2¢~0“z'_3_ 42—‘1‘**("*";)9“655}_. (4e54)
3z ' 26 Job

n

n Ie‘;—éx "B"B"B.I ".2‘,\,'1_“-'6‘(92 7-';?;_1

Clearly these can also be written in terms of (f | ,qdu)

(see appendix). The transformations generated on z,auby (he54)
are just those of (4.25) (with N=2).

: PNA
We see that (4.54) acting on 27 ke et}

~O or i,
leave J invariant. This extends to the O(N) case, and we can
look for representations on the vector space spanned by
v 13 v, VL
{Vm=N(Tkmv)z. k™ gt g ‘mel V-:or}
[l 1 ) =
(14 55)
for fixed J and k. Representations are induced on this space
as in (L.27) by
viv (
nm

)(: V - \/ X)

(L4o56)
providad that the representation matrix is labelled by the
set v;.(vql, and in matrix multiplication we understand that
\% are to be summed over,

The finite subalgebra in the O(l) case is spanned by

o
{ LO slgq ,1,’T ]. and is isomorphic to the simple GLA 0Sp(2,N).

The ordinary Lie algebra formed by {LO, +1,I° %Pl s Sn(2) x O(NW).
As pointed out at the end of section 3%.3%., the adjoint revresent-

ation of S»n{2) x O(N) on the subspace of 0Sp(2,N) is irreducible

o
for 211 li except I=2; for N=2, ! Gfil snlits inte two subspaces,

(4e57)
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which satisfy fu,ui:fu, 0"l 0
(0T 1L, Ly, T

We can define representations of 0Sp(2,N) using (4.55) and
(4.56). In particular we can define irreducible representations
+)
DJ for J=-k€ 0, as in previous cases, usinpg the invariant

subsvace

v v,
{ N(T,k:—j,m,u)zljik’m o' ..M ", meZ,vi-.o,(}
(4.58)
The normalization factors, fixed by D(L1)=D(L_1)T
N(T k=T my) [ (m-23420)
. M‘- (I+r59)

These give D(G=D(G_.)Y and D(TF )=-d(7**)T , provided
7 -2

,are given by

that we define DT as in (4.30).
The revresentation DJ in the limit J-¥ O mey be uvsed
to obtain a Fock space of 0Sp(2,N) by writing
' ]
vt \vv v
X=-L a; " b (Xa
AMmko
v,v!

(L4.60)
where ai is a commuting or anti-commuting operator as (Vy+..+ ;)
is even or odd respectively.

In the 0(2) case, there is a Fock space representation
of the full algebra (4.52)(42’43). We can obtain this as in
previous cases by considering the J=0,k$0 representation D ,
induced by the derivative expressions (4.54), on the vector

space spannec by

i L 2", 2™ 0% flm z"‘"‘e'a‘:mezz

[ —_— )
——ey

In this way we obtain the Fock space representation given by

Ademollo el a1(43) if we write
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Xzl -3 Z a’vf‘bm ) ol

K-+ 6C
vv' (Lh.62)
op | i 2
where @, ~ 0, Ao ~ Qpyy
tl1e I [ of 2
r~ ]
% bn#,, Gn ~ bm'/,_

2 ! L8 . . . -
Here an’an/br’br are canonical comnuting/anti-commuting

operators, as in reference (43). Factors of (-i) must be

1
n

associated with a’ for n< 0, as in (4.11).

The overators (4.62) satisfy the algebra (4.53) with add-
(43) This

(43)

itional c-number terms. algebra can also be obtained

from the Heveu-~Schwarz algebra by writing the am,br operators

] .
of the Neveu-Schwarz modecl as am=am+-|az

m? br:b;+€b;, and yputting

Gr=G;+§G; : T, are then the generators which close the algebra
We shall come back to this point in the nexi! scction.

For W» 2, there is in general no suitable Fock space
realization of the full algebra of the transformations (L.52)
(#2’43’82)(the H=l4 case 1s an exception, as will be exnrlalined
in the next section). Actually Fock space rezlizalions of Lhe
algebra can always be written down. For any representiation D
of the algebra of (4.52) on.the vector svace(4.58), the

generators X of the algebra can be rcalized as

-2 oD (0 o

vv'
This pives the algebra without any c-~number terms. If we

(4.63)

wish to obtain a realization vhere ve identify a I ana
11

at

n * and obtain the algebra with c-rurbers, we have to consider

an exvression such as (4.62); this will only work if the
reoresentation D has sultable symmetry nroperties, and lor

Iy

general ¥ this is not the case.

Wo can obbain finile dimensioual reypresentations of 05 n(2,1

\r
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for J half-integral or integral, J% 0. ¥or J=% we have
a (2 + N) dimensional revresentation on the vector space
(¥ ,7 ,q@“), induced by the derivative realizations of the
generators. For J=1 we have a (3 + IN(N + 3) ) dimensional
representation on the vectors
(42, In, ¥, -29"09,-2,0%]. 290, 2598 24"
(4.64)
which is precisely the adjoint representation of 0Sp(2,N),
constructed as in gsection 3.2.
As in (3.42) we can construct a metric tensor gfy for the
generators X of 0Sp(2,N), and obtain a Casimir operator

WV,
17 4m gt
Jam g

v ”VN
C=gl XuX, « Acting on =z 8" in the O(H) case, we find

that the Casimir overator iz (up to an overall constant)
C~ TlTel-%)
(4065)
. . . «
Considering transformations of (1,7, 79 ) under the

grouv generated by the 05»(2,H) algebra

7 J
7| AT

416“ 19”‘ (4.66)

- we find that A satisfies the conditicn

| | !
A—r I A- . 1

- e = - = — —— e —

‘1, :lu (4.67)

vhere 1N is the I z H unit matrix, and AT is an obvious

~

gencralization of (4.43). In particular A leaves invariant the
hilinear form

C() ' v ; ( o c(\

(L,‘i’l,)",,G, ( I, e \ z 7[!72. zl_zi+6| BLI

|..'

k- AN ,i (4.68)
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The bilinear form in the J=1 case is just (minus) the square
of this, as in the Veneziano and Neveu-Schwarz cases. This
bilinear form occurs in the n-point amplitude for the O(N)
model, as will be explained in the next Chavter.

There is one exception to the above generalizations.
The algebra 0Sp{2,4) has a metric tensor gry which vanishes
identicually. However lthere is an invariant bilinear form,
and there is a 17 x 17 matrix which has the properties of
non-zero guv and which can be extrepvolated, either from the

cases N=4 or from the square of the bilinear form (4.68).
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he5. 0(2) and Quaternion Algebras

In the previous section we pgave some irreducible
representations of the 0Sp(2,N). There may however be further
irreducible representations which are tieeful, For examvle,
consider the 0Sp(2,2) algebra. From Chavter 3 we know that
this is isomorphic to the spl(2,1) algebra; hence there must
be a representation of osp(2,2) in terms of malrices of spl(2,1)
type, that is 3 x 3 matrices with (generalized) trace zero.

This representation is

i =1

1

- o

- —~—
o
—
e .

‘" (4.69)
It has been noted by Ademollo et al'’?’ thai the 0(2)
_algebra can be realized by transformations on (x, 8 ), where x
and 0 are given by
x:2+i0'¢ 0 0% 40"
(Le70)
Guided by tlis, we sunpose that the reprecsentation (4.69) acts

on (F > 1 ,79); e can translate the regresentation (4.69) intbo

a reslization of the algebra in terms of derivatives (see

anpendix), which generalizes to the full algebra (4.53).
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If we express the finite transfcrmations on (f ,7 ,78 )
as a 3 x 3 matrix A, then A ;atisfies
Lt !

441. :\ ‘: _ A\i -1 '

]

where AT=AT , and AT is defined as in (4.43). We see that the

' (ll--'?l)

matrix A =ehai satisfies (4.7)); hence the {graded) group of
matrices which satisfy (4.71) is actually spl(2,1) x U(1).
The bilinear form which is left invariant by snl(2,1) x U(1)
is
[¥ = = 3 i : - _
"{l,’]w’?l 9!) l ! j:. - 7.’71()(: X;"eaea.)
- 1

- - - -

I ARY XA {4.72)

where x:%ﬁ . Using (4.70) this is related to the Iform (4.68)

-
!
)

left invariant by spl(2,1) by
7},7,_()!.*X,.+9:91.)’2;’],1)(;,—7‘,1'9;9.)
. L2 Ko ou\t
- "17|l ,7&1(2,”25‘*9.81 ) N
(L.73)
This is just (minus) the square of the spl(2.1) form, except
1t 2 L . .
that 7,’%, has heen replaced by,qJ lv,l , reflecting the
additional U(1l) invariance.
Ve can also obtain infinite cimensional representations of
0sp(2,2), and the full 0(2) algebre, on subsvaces of ihe vector
s 7 v .
space spanned by (xl xke oY , where x' =f7. In varticular
we can conrider the J=0,k40 revresentation oi the full algebra,
and use it Lo oblain a Fock space realizaticn of ihe generators X:
[: ! - /v’-f ua UL
>< = lim —'1 . ())(1‘ .

)\M [ YO
k- o
vv'

(11-7’-})

{0

!
Qy =~ Gyrt1ay,

| .1 4
~
: bm", 1 Op

where
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,a;ﬁ for n4€0,

and we must associate factors of (~i) with a;o
as in (4.11). This gives exactly the Fock space realization
described before. In this way we see why the 0(2) Fock-space
realization is obtained from the Neveu~Schwarz model by
‘complexifying' the operators am’br: the representation space
on which it is based is similar to that for the Neveu~Schwarz
model, with real variables replaced by complex ones(4.70).

As pointed cut in the vprevious section, the O(N) algebrass
do not in general have a (suitable) Fock svace realization.
However there is another algebra which has a Fock space

realization; this algebra is obtained from the Neveu-Schwarsz

b. as

algebra by expanding the canonical operators as by,

quaternions (42’43>, rather than comuvlex operators as described
above for the 0(2) case. This quaternion algebra dces not
correspond to any of the O(H) algebras; it is however a
subalgebra of the 0(4) algebra(hz). It is made up of 1 set of
L, operators, 4 sets of G's, G., and 3 sets of T's, Tﬁ‘ﬁ,

satisfying the relations (omitting c-number termns)

[Ly\,Lm] (“'M)L\\-eu
[Ln,6%) - (2-0) ¢
£6%, e8] - 2501, ¢ 2l s) Tt

1"

- «¥ ¥ a0 ¥4

PR BRSPS Ll AP L

[,-:p 7::3:, . gmxﬂii SF&'—::(: écLJ- pzs Ssa’ m,“
4 R

[Tn ?, Lm] : T‘V\-rpm (4.75)

55~8&
where ¢ =1,...,4, and'quz-Emﬁ 5{0

There is a finite subalgebra of this algebra, the 1k

X ot s
imensional algebra spanned hy ‘L Ly, ,G¢1,To?] . This is

-
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isomorphic to the simple CGLA spl(z,z)/za, vherc Zis is the

1l dimensional algebra generated by the 4 x 4 identity matrix,
as explained in section 3.3.; s»l{(2,2) is the algebra of 4 x 4
matrices with (generalized) trace equal to zero., We can thus

obtain a projective representation of the finite subalgebra

by matrices of spl(2,2). A projective representation of a

GLA is (in analogy with the ordinary Lie algebra case) defined

to be a representation D(¥ ) of the generaters X/hwhich satisfies

0D = Mk x2) e b (g

vhere AF” is scne numbbr; thus a projective revresentation is

a representation un to mulitiples of the unit matrix. Since

the finite subalscbra is isomorvhis to spl(2,2%’i1113

follows that we can find spl(2,2) matrices which satisiy (L.78).
This projective representation is given in the avpendix; it is

very similar to the 0(2) representation (4.69). We sce th

it satisfies 2ll of the spl(a,a)/z2 relations, cxcept that

{6, 6379741
L6, 6 =273 = -2 ]

5 (4?7
Guided by the 0(2) case, we suppose that the (preoiective)

representation acts on (f ,7,1ug qwf), where the variables

are comnlex., VWe can translate the L x L matrices into express-

ions for the generators in terms of the derivabtives of x =(9ﬁ),

f 1 +* . . . .
x:}ﬁ , W 5, o The unit matrix is expressed as

, 09
~y i x —
1 l 2‘\- X 3){’ (1.|..78)

. 4 s . .
Hence if we vnerate on (x,& ) alone, the derivative expressions
for the generators form a closed algebra, and we can use them to

obtain genuine representations, not merely projective oncs,
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Furthermore, the derivative realizatione can be extended to the
full algebra (4.75) (see appendix).
In particular, we can consider the representation of the

full algebra induced on the space spanned by

|
e m—— kfm kK4 m oL lkKem 1 4
X w J 4 (ANA
iem » % ) Vleamei (4.79)

and use this in the limit k-»0 to obtain a Fock space
realization of the generators of the full algebra; we use (4.74),

vhere nov v=59”\5], and
f

‘1“00 ~ QJ +i¢1:

a,n“ ~ Q:iu 1 01:"

a;lo ~ b;,a *i b:e%

Q‘iﬁ ~ bzm-,t-t-i b“,",,‘ (4.80)

i,1 . . . .
where an/br are canonical commuting/anti-commutling operators,

1 ai? for n 0
n*“n ’

and factors of (-i) must be associated with 2
as before (4.11). This is the same as the realization obtained
by writing the Neveu-Schwarz operators as quaternions; we are
thinking ol the quaternion as made up of two complex narts,

The finite transformations A generaterd by the 4 xX 4

(projective) representation of sp1(2.2)/22 satisfy
(! | !
.r ) - ]
A' -1 A=<
—t L . L - -
N i
) , . , (-’{-081)

where again AT = AT , and A" is the obvious generalization of

(4.43). Ve note that (L.81) is alsoc satisfied by

A=eiv] -1,

|

' (L.62)
113_

so that the group of A satisfying (4.81) is actually
spl(2,2) x U(1) = U(l).

The bilinear form left invariant by this group is

Tl 7 —xa s O 0d)
‘I’Yl- X4 k™ 1

)

AN
N

(L,
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We see that one of the U(1l) invariances has factored out,
expressed as q;-»e"“»],-; the other is woiﬁei“ b)f‘.

If we define a metric tensor B pv Tor spl(2,2)/z2 using
the adjoint representation, we find that it vanishes identically.
However we can use the projective representation to define a

(7

non-zero g,, » Wec put

gpv = Tr(D(D())

(4084)
where D(x’,) is the projective recpresentation, and Tr is the

generalized trace. There is no ambiguity in {4.34), since

T e« 1) DX+ 51)]
= Te{ DO DUKY)

using Tr D(X,.):Tri =0. This is entrirely analagous to the

(4.85)

construction of a metric tensor for the ordinary Lie algebra

of 2n x 2n matrices with trace zero.
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Chanter 5. O0(N) Amplitudes

Introduction: In the last Chapter we considered the O(N)

algebras discovered by Ademollo et 31(42). In this Chapter

we shall consider the dual amplitudes corresponding to these
algebras; they are constructed from an obvious extension of
the (z,8 ) form of the Neveu-Schwarz n-point amplitude. This
sort of extension had been considered previously, but rejected
because it apparently gave a vanishing four-point amplitude.
We shall see that this.is due to the zero mass of the ground
state of the 0(2) model, and the fact that the amplitude had
been evaluated :in the j. formalism; evaluation of the

amplitude in the j

, Bauge gives a non-zero result.

Given the n-point amplitude for the O(N) model, we may
ask whether there are any ghlhost states in its spectrum. Ve
analyse the O(N) 4-point amplitude, with disappointing results.

Firally we point out how our technigues would avniy in

the quaternion model.
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5¢ls n-voint Amnlitudes

As explained in section 1.3%., the n-point amplitude
of the Neveu-Schwarz model can be written in Koba-Nielsen
form as a straightforward generalization of the Veneziano
n-point amplitude, where we have an anti-commuting variable 9; ’

as vell as a Zg variable, associated with each particle

An = ‘T}d?.;clg,' ﬂ (z.—~z-+9z9j)-k;‘kj
} ey /
dVAbc

dvabc is the usual Veneziano measure factor, and the 0

(5.1)

integrations are defined as in (1.38) by
JO{Q;:O fdg‘ 9"'.{

Ve note that if Qichanges by a factor,O;‘V ae;, then (5.2)

(5.2)

requires that 69‘--?{;:19; . The integrand of (5.1) (including

the measure factors) is invariant under a Mobive transformation

N

(4.39) on all (zi,Q; ) provided that }k$=-1.

I.l

The obvious generalization cf (5.1) to the case when ve

have 9?,0L=1,,,,aN, associated with each particle ki is the
w . e k-
[ [ B. X “\ <R
A“: “L‘ dl;aek ﬁ lz_.-sz.+@i 9)/
————e i‘j t )
‘{vdb( (503)

The integrand of this is invariant under a Mobius transformation

amplitude

(4.729), vrovided that %ki:(%le). However, if we consider the
h-point amplitude Aq’ we find that it is identically equal

l'\
to zero for N2 2, as was pointed out by Fairlie and Martin(aj’.

If we look carefully at the evaluation of the 4-voiat

amplitude, we find that the cause of its vanishing for N2z
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is a factor of the 0(2) ground state mass (=zero) in the answer.
The amplitude can be evaluated (as was done for the 0(2) case
by Ademollo et al(hs)) to give(Sq)
A, = Cy DN-w(s)) M(N-otft))
MN- ols) -« (£)) (5l4)

where 8(s) = 1 + %5 is the leading trajectory. This result may

easily bLe established by induction, since we may integrate over
all 9? in (5.3) to give an expression of the same form with
N-1 8's. By doing this, we find that
] 2
Coz1ky. Cu e

vhere %ké:%ﬁ-l is the O(K) ground state mass. Thus, for N2 2, Cy
contains a factor %kS:O.

This is analagovs to the fermion casc of the Weveu-Schwar:z
model, where certain amplitudes are not well~defined in the
gauge because of the vanishing of the fermion mass. Brink and

(64)

Winnberg shewed that (5.1) is in tact the z exuression,
and Phat the (correct) jlamplitude is obtained %y chunging the
measure factor
.,.L- —_— \_l____ 04 Be
dVabe dVabe 24-2¢ (5.6)
We should like to show how this can be related to the invariance
of {(5.1) under supergauge transformations.
The Veneziano measvre factor dvabc can be thought of as
arising from consideration of
Mz, 1 l2-2) 4™
LY (5.7)
We can rewrite this in terms of an integration over (n—B)zi,

with the other 3 z; fixed, together vith an inlegration cver
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the 3 varametlers a,b,c of the Mobius transformation which takes
the fixed zi's into their values in (5.7). The integral then
separates into an integration over the group variables (infinite
since it is a non-compact group) multiplied by the usual Veneziano
n-point function'1?), The factor (dvabc)‘l is then the Jacobian
of the transformation from the 3 zi's to be fizxed to the 3% grcup
variables a,b.c.

In the Neveu-Schwarz case, the integrand is built from
terms of the form (zi--zj +8;8; ). We note that this is just
( 75 )"! times the bilinear form (4o44), which is invariant
under the extension of ‘the Mobius algebra 1L0,Ltl,§%_]. The

terms [T dzidei are Just sufficient to cumvensate for the
4
-le;-k;

transformations of !]( .1 - under this algebra, provided that
. t J 6 s !
lCJ
2 -
%ki=—j, 50 that

d0; U (2, =2, +0,0,)7 "
ﬂfd'z‘ C(eg i‘j (L: ZJ ‘ev,) (5.8)

is invariant under the (graded) group of iransformations (4.40),
not just the Mobius transformations. Hence we would expect to

obtain the Neveu-Schwarz amnlitude by factoring cut an integration
5

over the groun, leaving the Jacobian of the transformation to

the group narameters, as in the Veneziano case.

Supvose that we fix (zl,ze,zs,ﬁ, @, ), and transform these
integrations to integrations over group variables a,b,c,d.,p.
An infinitessimal transformation generatcd by the 0Sp(2,1)
algebra is

( 1 cal, +bl el 0(6"3_-?‘3(".;)
o LS _ N
(5.9
The action of this on zi,e i is given by the derivative
expressions (4.24). The Jacobian that we require is
A(Zg)?-'l_L'Z], 91,91) (_)..lC:)

ala.b,c, o, p )
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To define this, we need a definition of the determinant
of a matrix in which some of the elements are commuting and
some are anti-commuting. Such a definition has been given by
Nath and Arnowitt(79); it corresponds to generalizing the
identity log (det A)=tr(lcg A) by revlacing the irace by the
generalized trace defined in section %.2, For a matrix written

in block form as
M = A B
C D . (5.11)

Where A and D have commuting clements, and B and C have anti-
commuting elements, Nath and Arnowitt's definition gives
det M= _det A
det(D-cA'B) (5.12)

Using (5.12) to evaluate (5.1C), we find

(z'l "'11.)(21 ”ZJ)(ZJ "Z,)

(Z.-Z,.) (5.13)

Thus we would expect the n-voint Neveu~Schwarz amvlitude to be

~k. le.

T‘dZ; d0;...d8, i)
: TT{z,-2; v 0:8y)
dVope  (2,-2.) ¢ (5.14)

We know that there can be no 9,6, dependence in this, since we
started with an expression in which all of Hu»ﬂ% were integrated
over, just as in the Veneziano case there is no dependence on
AR it can easily be checked exnlicitly for the 4-point
function that the 8,8, terms do vanish. Using the definition

of the @ -integration, (5.14) can be rcwritten as

e, k;

D'd"-i d 8; 9_._?_5._ TT (Zi‘—zid-eiej) (5.15)

Cl\lqbr_ (21—2'1) “J
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which is just the JLform of the amplitude(BM).
The extension of this to the O(N) case is now obvious.

The bilinear form invariant under the finite subalgebra
iLO,L!l,G:;,”gP; of the O(I) algebra is 7ﬂ1(21'22'+6:ef)’
as in (/.68). If we consider

TTde,doT (2, - +Q’."9?‘)'k" i

A iy ot
this is invariant under the transformations generated by this
0Sp(2,¥) algebra, provided that 3ki=(IN-1). Factoring out
this invariance gives a Jacobian factor, as above; the
O -integrations which-ﬁave beenremoved can be re-instated as

in (5.15), to give the.z form of the amplitude

® k.-l -
Md=z, d6; 0 o & ; o M) %
A - C LI de Og T\ z,-2.+0; 0;
d Vab, (2,-2¢) (5.17)
The constant Cn is now nou-zero for zll N. In narticular, the
L-point function is as given in (5.4), excent that ihe overall
constant is now non-zero for all N,
For N=2 the n-point amplitude (5.17) agrecs with the
expression obtained from the overator formulation of the

(43)

model For N2 2 there is nc Fock space realization of
the O(N) algebra, so there is no operator expression to

check (5.17) against. Tf we had a simple geometrical »nicture
of the z, form of the Neveu-Schwarz model, we could perhaps

oL 0! . .
understand log ;zi--z.j + B;Qj | 5 a Green's function, just as

log lzi-zjlis a Green's function in the Veneziano case.
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5e2e Ghosts

Now that wec have an n-point amplitude for the O(N) modal,
we can ask whether it is ghost free. In the Venezianc and Veveu~-
Schwarz models, we know that this is the case only when the
number of space-time dimensions is D€ 26 or 10 respectively, aund
that the upper limit is the critical dimension in which the
model is most consistent.

We consider the 4-point amplitude(Bu), given (up to a
positive constant) by

A, = T(N-wis)) P(N-a(t)
PIN- &ls)-a(t))
C(1-k,-ko) Pl k- k)
Mk, k) 5,18)

We note that, in the second way of writing this amplitude, the

value of N apnears only in the restriction on the ground state
mass: %ki:(%N—l).

Consider the residues of the leading trajectory woles of
A4 at®(s)=M for M? (IN-1)., Each residue can be deconposed into
a sum of terms, each of which corresponds to definite angulax
momentun; to do this we write the residue as a linear comrbination
of the angular functions appropriate to D dimensions. For D=4
these functions wculd be the Legendre polynomials; for general

D the relevani functions are the Gegenbouer volynomials

(-3 i
C;‘b %z). The condition that the amplitude be ghost-freec is

30-3

that the coeffiicient of each Cn

for n=0,1,...,M should %Lc
positive.

The residue of A, at the pole X (s)=M is given by
it 1 2 2}

Q(z): Cw IT S(ZN'M"J) 25~ [2k40) {
k=0

kM-t ) N
L(z) = eplan-m-3) [ (u-p-3)2*- (2k2) ]
. k:0
M odd

(5.19)

ﬁ evern




where Sy is a positive constant, and z is the cosine of the
centrc of mass scatteriung angle. We note that only even/odd
powers of z appear in R(z) as M is even/odd respectively, so
that there are no odd daughters in this amplitude.

Consider the case when M iz even. R(z) may be expuanded
as an even series of Gegenbauer polynomials, given (u» to an
unimportant wositive normalization factor) in terms of

(85)

hypergeometric functions by

£(>-3) n '
Cr ? (7-)7'(_0 Fu("\,‘l’l-r"z‘b'?t);%\.;z-t)

" (5.20)

The first four polynomials are given by

4(d-3)

C, () = |

Ci(n-g) (2) s (D’Dzz—l
Cz-(b‘.?) ( - ;(D-}' D-.-S) Z{+“ l(b_,_u)- & i

Ce™ (2) = 5 (3e3)d5)DT) 2 -po3NDe )2
+3{D+3)z2 -1

We see that D=L gives the usual Legendre nclynomialc.

£

5.21)

When N=0 or 1, t
1(D-3)

he Vencziono auwd Heveu~3Schwarz casss, the
coefficient of C in the residue at ® (s)=2 vanishes for
the critical dimension D=26 or 10 respectively. In the N=2
case, it vanishes when D=2, and Ademollo et al(AB) have shown
that the critical dimension of the 0(2) model is in fTact D=2.

For N¥2 it is easy to see that the ampiiltude possesses
gnosts. Consider the residue at & (s)=2N-2

H-D

Riz) = c ﬂ {‘1.1- (Zk-rl)”) (5.2

k=c

: NZd (Lk Ca.(b‘])

k—.o

(2)

l‘" \"g(‘l
‘B“-‘\.‘_rs ¥

27 0CT1976
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In the second cxpression we have written the residue as a sum of

Gegenbauer volynomials. VWe find that the coefficient Ao is

agﬁ;‘ kanst) | . in-2)+3
D-tetld-2) 3 (5.23)

For N=2,D=2 this gives ao=0, as noted above. For N} 2, the

overall constant is positive, and vie see that aN_?<.O for all
D2 2. Hence the svectrum of AL| as in (5.18) vossesses ghosts

for all N> 2.




5.3« The Quaternion Model

We have shown that there are ghosts in all of the O(H)
models, except for the O0(Z) model in two dimensions. The only
other model which has arisen from the O(l) algebras is the
quaternion model. Can we construct the n-voint amplitudc for
this model using the invariance arguments of before? We can
construct an amplitude, but it does not appear to be dual.

As pointed out in section 4.5., we can realize the
quaternion algebra in terms of derivatives of x,a£,<u‘. The

corresnonding bilinear form is

i:qz(z\"xz’*a-“») (5. 2)
Vle can also realize the algebra in teras of z,z',ea (the finile
subalgebra is given in the avvendix). If we pat
X:2-i(0 05 0°8%) - 5 0'0%0°6"
o= (9'- & 0*0%et) v i (0*+ 3 0'¢%8")
o : (03— 0'0% %)+ i [0+, 0'0%6%)
and act on x, W', @* only, then the two realazationz are the same.,
Ve would éxpect the n-point amplilude to bte obtained from
M sz;rig?‘ n (fi-—xj*r‘:}gmwj)
(N3 113

by factoring out the integration over the gr-oup variahles, giving

(5.25)

2 Jaccbian factor, as before. However; if we do thig and
evaluais the resulting fL-point amnlitude it is ro lonper
dual. )

(43)

Aderoilo ai al have shown that there arve in fact

ghosts in che gnaterrion model.,
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5.4, Conclusion

In this thesis we have emphasized some aspects of the
role played in duvual models by the conformal algebra-and its
extension to supergauge algebras. Most of this work was stim-

ulated by the discovery of Ademolle et al(hd)

of further
extensions of the conformal algebra in what had previously
thought to be a bightly constrained situation.

Ve have largely been concerned with the representations
of these algebras, and in Chapter 2 we showed how reprcsent-
ations of the projective group can be used to simplify the
calculation of functibns of infinite dimensional matrices;
which are otherwisc tedious to calculate.

In order to explain hew such revresentations exteund to
the supergauge algebras it was found convenient to explain
the formalism, and some recent results, of graded Lie algebras.
We listed the classification of simple GLA's, and noted that
the important (finite) graded algebras which have ocecurred in
physics to date are either (classical) cimple GLA's, Or derived
from them by contraction.

Ve have shown how representations of the (graded) Neveu~
Schwarz anéd O(N) algebras can be constructed in a manner
completely analagous to the conformal case, provided that the
conformnal variabvle z is extended to a suverspace of variables
(z,eu). These representations can be vused in certain cases to
construct Fock space realizations of the algebras; however the
O(N) zlgebras do not in general admit a (suitable) Fock space

realization.
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The finite subalgebras of the O(N) supergauge algebras
are the simple GLA's 0Sp(2,N), and it has been shown that the
invariant bilinear forms of OSp(2,N) are important for building
n-point amplitudes. Using them we were able to construct an
n-point amplitude for the O(N) algebras, even where no Fock snace
realization exists. Unfortunately-we found that all of these
amplitudes have ghosts in their spectrum, except for the 0(2)
model which has critical space~time dimension two, and in
which the only physical particle is in fact the massless ground
state(hs).
Disavppointing tﬁough the conclusion of the study of the
0(N) algebras is, we believe that it has been worthwhile, not
least for the examination of the graded Lic algebra structure
of the Neveu-Schwarz model. Ve have seen that the revresent-
ations of the meson and fermion sectors, on and off shell, of
the Neveu-Schwarz algebra are intimately connected. The (z,0 )
formalism seems to be such a natural one for doscribing iLhe
extension of the Veneziano model to the Neveu-Schwarz model,
that it may be hoped thal some simple geometrical picture of

4 1 O
the Neveu-Schwarz model in supersnace may scon be found()9’4 ),
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Appendix

In this appendix we list some details of the
representations of the orthosymplectic algebras and their
infinite dimensional generalizations which are referred to
in Chanters 4 and 5.

f-ﬂ Derivative Realigzations
|

The derivative realizations of the O(N) algebras for

N=0,1 and 2 are given by

(E}n ('_’_‘"_)IQ_—-(L-‘-_*Q:]Q_K n=0, ¢l
11 2 9y 2 31?

Cr = [3)7 (53 —ten) €52 et )62 ) et
T 6" 31 .

Ta=/[3

3 " 5“!‘,’9"‘_9_ —-n Z)’H J§+72 nz0t,
g
Y LCO L

The Virasorc algebra (N=0) consists of i Ln¥ ; the Neveu-

h
R
3
v

[

(A.1)

Schwarz algebra (N=1) consists ofan,Grz; with onz 8 = 9';
the 0(2) alzgebra consists of the full algebrs (A.1l) with
@', 8. In (n.1) the ¥ and7 derivatives are understood

L3
to be taken keening 79 fixed.




Metric Tensonrs

The metric tensors for some of the finite subalgebras

considered are (up to a constant):

ST(l) 3Fv =

- ‘

O5lr,l) g7 - sk

'l
1
[ ~1 ! ‘
OS?(Z,Q—) 3 z 9
. :
A PR
l 2
1'15.
| A
-—li
S ! }
Sr((i,ﬁ)/él 3 : 2 |
-1 |
2
2
2 _ o e .
R R
.
oL
i .
! 4.1
) * L
) S S
\ L 'i
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0Sn(2,2)=5n1(2,1)

The reallization of the generators of 0Sp(2,2) in terms

. . ) ! .
of.derivatives of (comnlex) x,x ,@ is

L—Hf— x"(x_a_ -nx'(_?_ +L{”*’)9,a) Nn:p t!

G, > x"'*(exa_ “2egx"2 ;ul) -

dx ox’ 28 -

G, - ix“"‘(’-ex_a_ +2r8yd ”_a_) nt
Ix v/ 28

T, - ax" (l,y’g_ . (9?_) n:0tl,..
Iy’ 28
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spl§2,2)[z2

The projective representation of the finite subalgebra

of the quaternion algebra by matrices of spl(2,2) is given by

' i ' it B

} fomf 7"86’

?

These satisf{y the (anti-) commutation relations of spl(2,2)/zzs

except for

( & . (A.5)
lei Gu%3= l/o“+{1
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By taking (A.4) to act on (f,q,7m37ul) we can obtain
a realization of the above matrices in terms of derivatives of
2
X= gﬁ ,x§r7, W' , W . These do not form a closed algebra

because of (A.5)s. However we note that i 1 — Zix'i, in deriv-

ative form. Hence if we operate on (x,wo() only, so that x'éfo,
X

we will have a closed algebra. Operating in this superspace,

we can extend the derivative realization to the full guaterniocn

algebra:

Lope x" 1% ¢ Llasy w3 |

x o+ Dw“f
! -4 '
G, - x" "{m'x'z +Xd +(r+5) '’ d
3x Jw' du
+ r-4 t [
G, = 4x {—w x9 +x3 —(r+}) 0w’ d
i dx o' du
3 ) \
G,rz Xr&{u‘xa +Xa_. *_(“.3) zo-‘_a_
}x }DL Ba'
o (A.6)
Q¢ T4 1{,0 x3.+xa_w(hi)“n;2—
Ox da* do'
T s iX ) o'd _u*d [|e-270
Ju d0”
S R N
e de!
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The realization of spl(2,2)/z, in terms of z.,z ; 0" M=

is given Ly

L= L (l- i 9910’9“)(1 d +2'3 ) s U P gmekeY )y
2t p A ]

}1’ 1z 99
Lo = 7 J_ + L 8‘(2_
n 2 %
L = 7—(’ _4 9'6’9’9")(7—2_ —2'3_) 42872 +_L£“PXJ3°‘9F“)K?_.
zt 2z 3 }5“ 2 Pl
G‘: z _I_(Guq._l_ E“PgJﬂ{‘aXBJ) Z._a_ +ZI?__) (A 7)
z 122, 2 3z '
(l- A Nl )
% 42 TN
6, - (9"‘—L eF¥5 ghovg )(z.a_ )+?~
pLs 2 2l 3%
N L R a*e‘a
w w0°
R B B L B L A
29(" 9p” 395

. / ‘. -
If we change variables to x,x ,&,w , W ot

and set 9- = Q_ - _a* =G, we obtain the subalgedbra of (A.6).
dy! ¥ Yo

, using {(5.24),
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