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A B S T R A C T 

The object of t h i s thesis i s to investigate the predictions 

of the MIT bag model for hadronic scattering. Chapter one provides 

an introduction to the model, describes the results of the MIT group 

and presents the zeroth order c l a s s i c a l scattering solution of Wu et Al . 

In chapter two we show how to relate t h i s to experiment and explain 

why the model needs a quantum treatment and the inclusion of quark-

quark interactions to make i t r e a l i s t i c . I n chapter three we t r y to 

improve the naive quantum-mechanical model of chapter two. I n chapter 

four we consider e x p l i c i t models for the quark-quark interaction and 

i n chapter f i v e we show how these effects may help the bag model to 

predict the correct form of the nucleon-nucleon interaction. I n 

chapter s i x we consider a modified bag model without sharp boundaries 

and attempt to discover the scattering properties of t h i s model. 

Chapter seven consists of a summary and conclusion. 
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C H A P T E R O N E 

1. Introduction 

Considerable experimental evidence has accumulated i n recent 

years i n support of the idea that hadrons are composite. The most 

popular model of composite hadrons i s the quark model, but so f a r 

a l l attempts to is o l a t e and observe the quarks have f a i l e d . This 

means that some of the required properties of quarks are contradictory; 

for example, deep i n e l a s t i c scaling suggests that quarks are l i g h t and 

e s s e n t i a l l y non-interacting, whereas the non-appearance of quarks can 

most r e a d i l y be explained i f they are massive and have strong i n t e r ­

actions . 

Numerous approaches to the problem of quark confinement have 

been developed recently, a l l of which assume that quarks may be 

c l a s s i f i e d i n t r i p l e t s of su(3) colour, that hadrons are colour sing­

l e t s and that the sea of -qq pairs c a r r i e s no quantum numbers. 
« 

One of these approaches, the MIT bag model, describes hadrons 

as composite systems with t h e i r internal structure being associated 

with quark and gluon f i e l d variables. Unlike ordinary f i e l d theory, 

where we hang f i e l d variables on a l l points of space, the f i e l d s describe 

only the substructure of an extended object and so we hang the f i e l d 

variables only on the subset of points which are inside of the object. 

We c a l l t h i s set of points a "bag". As usual we associate the quantized 

amplitudes of the f i e l d s with the creation and annihilation operators 

for p a r t i c l e s . However these " p a r t i c l e s " w i l l be present only inside a 

hadron since the operators are constructed from f i e l d s which e x i s t only 

i n the i n t e r i o r of a hadron, so we have guaranteed quark confinement. 

There i s an analogy here with phonon f i e l d s and spin wave f i e l d s . 
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To construct a set of equations which mathematically describes 

such a si t u a t i o n , Chodos et Al. ( l ) take a Lagrangian density 

* ' * f i e l d s " B 

with Lagrangian L = ^dV ?L 5 ( R ( 0 - x ) 

where R ( t ) describes the region of space occupied by the bag. So 

the f i e l d s supply the k i n e t i c energy of the system and the potential 

energy i s given by B times the volume. Thus the model i s covariant. 

As an example, a bag i n one space dimension containing a free 

scalar f i e l d <f> would have 

L = J<U \ - B \ 

where 1. and ~E, are the end-points of the bag. The equations 

of motion for fi, zo and z^ would then be obtained by requiring L_ 

to be stationary with respect to arb i t r a r y variations of ^, Z q and z^. 

The above Lagrangian formalism turns out to be inadequate to 

describe fermion f i e l d s . However the dynamics can be given i n terms 

of the energy-momentum "tensor by requiring l o c a l conservation, i . e . 

^ O 

where 

so 
r 

where r y i s the normal to the space-time surface swept out by R ( t ) 

and i s such that ryrv** •= - 1 

So on the surface X = R ( 0 we require l y T ^ = 0 

This gives us the boundary conditions. 
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With our example of a free s c a l a r f i e l d , 

so i y T * v = o -> either (a) r y S " ^ * O ai\<A I W 1 - B = O 

or (b) <j> -- constant a*ck - C> 

Either choice leads to a Lorentz covariant theory. We w i l l 

normally work with the D i r i c h l e t boundary conditions ( b ) . 

A bag containing fermion quarks interacting v i a coloured 

gauge f i e l d s can be obtained from 

the standard quark-gluon Lagrangian with the extra B term. 

The equations of motion are found to be 

with boundary conditions: 

i c ° 
U rk <4- - if* 

-1. F ^ . F ^ * 1 r>.o ̂  • - "B - ° 
on the surface. 

The MIT group propose this as a r e a l i s t i c model of a hadron. 

De Grand et Al . (2) have solved these equations of motion for the 

case of a s t a t i c spherical bag and have calculated the energies of 

the low l y i n g hadron states to f i r s t order i n SJrVwi P i t t i n g t h e i r 

free parameters B, ^/UT , Ms and Zo, where Ms i s the mass of 

the strange quark and Zo a constant related to zero-point energies, 

i 
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to the masses of the IL J A N and t*/* they produce quite a good 

spectrum of the 3 " T > baryons and the J = 1, 0 mesons, (see 

chapter f i v e ) . They also obtain magnetic moments, weak decay constants 

and charge r a d i i i n reasonable agreement with experiment. Thus i t 

seems that the bag model i s quite good for predicting the s t a t i c 

properties of hadrons. This thesis w i l l be concerned with the bag 

model predictions for the scattering properties of hadrons. We s t a r t 

with the simplest system, the c l a s s i c a l s c a l a r bag i n one space 

dimension. 

2. The one-dimensional s c a l a r bag 

This system has been solved exactly. Following r e f . ( l ) , we 

find that the Lagrangian, 

L = $ { " "B. \ (1.1) 

gives r i s e to a free f i e l d equation, 
* 

together with the boundary conditions, carv 1 - "*•» > * i / 

4> . O (1.3) 

i ^ r - - -b • d.4) 

I f we define l i g h t cone variables -c t 
"X - t - 1 

then eqn. (1.'2) becomes ^r-^r " 0 w h i c h h a 8 

(1.5) 

solutions 



5 

The "boundary conditions (1*3) and (1.4) become 

(1.7) 

(1.8) 

where f 1 , = ^ and X--T^/oc) , 4 = 1,7. i s the 
at. ovx. 

equation of an end-point. 

Differentiating (1.7) w.r.t x we get 

k (T-. (*)) dra + <&'M = o (1.9) 

and substituting this into (1.8) we obtain 

- % l»'Wlm d.io) 
This means that sJlr'M ^ c ^ * ) so that the length of the bag 

measured along the "C direction i s constant. Similarly i f we denote 

the end-points by x = x^ (x) and repeat the above procedure, t h i s 

time d i f f e r e n t i a t i n g (1.7) w.r.t. x. we find that the bag "length" 

i n the x direction i s also constant. We s h a l l see that these 

conditions determine the scattering. 

We now consider the c o l l i s i o n i n the CM frame of two 

i d e n t i c a l bags with v e l o c i t i e s ± whose end-points meet 

at t = 0 : 

. . Pig. 1.1 

1- --

+..U 
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The constant length conditions mean that YH i s p a r a l l e l to AX 

and XE i s p a r a l l e l to DY. At point Z the bags are free to 

move apart again as above, r e s u l t i n g i n e l a s t i c scattering i n 

which the f i e l d s acquire only phase s h i f t s . Prom r e f . (3), 

i f 

then 

i n AXOB 

i n COYD 

i n OXZY 

0 » f x (*) + g l (x) 

0 - * 2 (X) + g 2 (x) 

0 ~ *2 to + S1 (x) 

0 = f1 (*-b) + g 1 (x) i n GZYH 

0 - f g ( t ) + g 2 (x-b) i n EXZF 

So we see that i n fact the two bags pass through each other, 

rather than bounce back. This i s obvious i f we construct the 

above diagram for incident bags of different lengths. 

The diagram c l e a r l y shows that the time taken for the bags 

to move through each other i s l e s s than i f they had not interacted. 

Thus we have an attractive force. At l e a s t the model w i l l give 

the correct sign for the nuclear force1 I n principle these 
« 

interactions involve no free parameters (once B has been f i t t e d 

to the nucleon mass, say.), so i f we can calculate them we have 

a c r u c i a l t e s t of the model. This w i l l be considered i n chapter 

two. 

There i s one p e c u l i a r i t y i n the above system. At time " t -

we have an ambiguity. The bags can remain together and o s c i l l a t e : 

A 
> 

t --

1-- O 

Pig. 1.2 
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The solution i s not unique even i f a l l the i n i t i a l conditions are 

specified. This i s because at point Z we have: 

( i ) 0=0 
( i i ) eqn. (1.8) i s s a t i s f i e d for both possible solutions 

( i i i ) two surfaces of discontinuity i n the p a r t i a l 

derivatives i n t e r s e c t . 

I n c l a s s i c i a l mechanics t h i s type of non-uniqueness i s resolved 

by requiring that for s u f f i c i e n t l y small time intervals the action 

i s a minimum, not merely an extremal. This does not seem to be 

possible i n this case. 

I f we reverse the process i n Pig. 1.2 by r e f l e c t i n g i n the 

l i n e t = 0 we obtain a f i s s i o n process. Thus we see that there are 

scattering solutions, fusion solutions and f i s s i o n solutions for the 

wave equation (1.2) with boundary conditions (1.3) and (1.4)* I n the 

next chapter we s h a l l investigate the scattering solutions. 



C H A P T E R TWO 

We now attempt to estimate the strength of the interaction 

described i n the previous chapter and compare i t to the known 

strength of the strong interaction, as seen, for example, i n the 

binding energy of the deuteron. 

1. The c l a s s i c a l binding energy 

Consider f i r s t a s t a t i c bag with end-points at "1 - * ^ 

containing set of N complex sc a l a r f i e l d s <fcf where <* labels the 

type of quark. , 
tlx 

L = f JMUU) ( 2 t l ) 

This gives equations of motion 

with boundary conditions: 

' ° * (2.3) 

J { l ^ - H t - l ^ = - B (2-4) 

at =2. - 1 | z 
The ground state solution of (2.2) s a t i s f y i n g (2.3) i s 

(2.5) 

The charge normalisation condition for a single p a r t i c l e to be 

associated with each f i e l d ^ i s 



From t h i s condition we obtain IA*! " 4r ' 8 0 c 1 1 0 0 3 * 1 1 ^ 

phase we can write 

The non-linear "boundary condition (2.4) oan "be used to determine 

the length of the bag. We obtain 

The energy, i . e . the r e s t mass, of the bag i s given by 
i l l 

Putting N = 3 and M = J % , the mass of a nucleon, this equation 

gives us the value of the bag constant B. V/e ignore at t h i s 

stage the fact that t h i s model does not distinguish between the N 

and the A . 

I f we put N •= 6 we can have a bag with the quantum numbers 

of the deuteron with mass = 2 J (>7TS 

The re s u l t i n g binding energy i s 

^ 1 M K - K l j O ~ l " 1 ) M* ^ SOO MaV. (2.10) 

This calculation can be done with spinor quark f i e l d s i n 
i 

three dimensions. Chodoset A l . (4) find that M^N and so we have 

£»E = ( Z - T.V* ) 2i 3 > 0 0 MO/. (2.11) 

I n the c l a s s i c a l bag model these states would e x i s t . I t i s 

clear that they do not resemble the deuteron since the binding 

energy i s far too large and the radius too small. 

This, however, i s not surprising since we do not expect to 
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obtain the deuteron i n a c l a s s i c a l calculation. The c l a s s i c a l deuteron 

would have the neutron and proton stationary at the deepest part 

of the interaction potential. This would be at the centre, i . e . zero 

separation, unless there i s a hard core. Note that in a standard 

nuclear physics calculation of the deuteron the hard core plays 

very l i t t l e r o l e . I t i s quantum mechanics, not repulsive forces, that 

give the deuteron a large radius. 

2. A Quantum Mechanical Model 

I n three dimensions i f we view the interaction as a simple 

fusion then f i s s i o n of two bags and i f we assume that the f i s s i o n i n g 

of the six-quark bag i s a slow process on the time scale associated 

with the motion of the massless quarks, then we may adopt a Born-

Oppenheimer picture where the mass of a deformed s i x quark bag i s viewed 

as a potential. I n t h i s way we obtain a potential which, when the 

r e l a t i v e separation R i s zero ; .Kas Vfcjo &E 300 Mev. At a r e l a t i v e 

separation of R = 2Rjj where Rjj i s the nucleon radius, the potential 

i s zero. 

To turn from a c l a s s i c a l treatment to a quantum mechanical 

one we i n s e r t t h i s potential into a Schrfldinger equation and calculate 

the energy eigenvalues. 

I n one dimension, i f x i s the separation of the centres of the 

two bags t h i s equation i s 

Using conservation of energy we can r e l a t e the potential V ( x ) 

to the r e l a t i v e v e l o c i t y T _ v ( x ) by 

+ (2.12) 

V ( 

Ok) ^ V M 

1/7. 
2. (2.13) 
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Prom Fig. 1.1 the time taken for the two "bags to pass 

through each other i s . This i s related to the 

r e l a t i v e v e l o c i t y by 

(2.14) 

This gives us information about the "average", potential. 

Note that the potential i s v e l o c i t y dependent. Since the deuteron 

i s a low vel o c i t y system, w0 «• 1. } (2.14) s i m p l i f i e s to 

P w 1 (2.15) 

I n principle the calculation could be done for the c o l l i s i o n 

of three-dimensional bags. Unfortunately there i s no simple method 

i n 3-d analagous to the use of constant length conditions i n 1-d. 

One thing we can say i s that i f we regard a as the diameter of a nucleon 
« 

and consider a c o l l i s i o n with zero impact parameter then F i g . 1.1 must 

hold up to t • \±* 0 even i n 3-d. This i s because the points on 

the spheres diametrically opposite the point of impact cannot know 

about the c o l l i s i o n u n t i l they intersect the l i g h t cone coming from 

the point of impact. 

Bo as a working hypothesis we assume that (2.15) holds i n 3-d, 
i . e . , 

1 . - fST $ - p ^ = T (2.16) 

where R i s the sp a t i a l separation of the centres of the two bags. 

To proceed we must know the shape of the potential. I n 

principle, i f we could attach an unambiguous meaning to the position 

of the individual nucleon bags during the c o l l i s i o n , t h i s could be 



determined from the scattering solution. However this i s not 

possible so we must guess the shape. We r e c a l l that the c l a s s i c a l 

solution corresponds to putting the p a r t i c l e s at the centre of the 

potential, i n which case V (R = 0) would be equal to the 

c l a s s i c a l binding energy, 

V M - C*--*2.*)MN ^ 3. C O t"UV 

Then parametrising the shape by 

V OO * - V [ . ) ( l - £ V P , o< t <. cx ( 2 . i 7 ) 

inserting i n (2.16) and integrating, we find 

We can now use t h i s potential i n the Schrodinger equation (2.11) 
and perform a var i a t i o n a l calculation of the binding energy. 

_ -bR 

We use a t r i a l wave function = B S to minimise 

*^~7T7^r^ with respect to b, where \-\ - - ^ l + "V (.«•) 

and <C^\^y ~ LIT ^ tCdR P^e" 
o 

The re s u l t i n g binding energy i s approximately 125 Mev. 

(The correct deuteron binding energy ( 2 Mev) would be obtained 

from t h i s calculation i f we had V(o) = 60 Mev.) 

Now due to the greater freedom i n 3-d i t i s l i k e l y that 

^~ i s not equal to h a l f of the interaction time as i t was i n 1-d, 

i . e . , we expect that more can happen a f t e r t h i s time i n 3-d, than i n 

1-d. Thus we expect that (2.16) gives an overestimate of the average 
depth of the potential. To allow for t h i s we can rewrite (2.16) as 

2- - x ^ $ rite <2-i8> 
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To estimate X we suppose that the average of the potential 

i s reduced by the same factor as "V (o) i n going from one to three 

dimensions, i . e . by a factor of • „, - 0'S"S~ . Then we 

obtain X * 1.35» p — 0.35 and the binding energy i s 

about 70 Mev. 

Obviously the model as i t stands i s f a r too naive to give a 

decent answer. 

3« Quark-quark interactions 

One obvious source of error l i e s i n the fact that i n the above 

model the N and the are degenerate. To break this degeneracy we 

must include quark-quark interactions which i n turn w i l l contribute 

to the deuteron binding energy. To investigate the possible effects 

of t h i s we consider a spin and isospin dependant interaction between 

quarks, given by the interaction Hamiltonian 

where A, B and C w i l l i n general be functions of the separations 

of the quarks, but we assume them to be constant over a distance of 

the order of the deuteron radius. 

We can calculate the matrix elements of th i s operator for 

the proton, neutron, delta and deuteron states, denoted by l P > 

I N > , and I D> respectively, using the wavefunctions ( 5 ) : 

- l"2p*fUpr + 2.p>|*rv4. + 2. ru pt pr - pf p-V »vt — p? rvr pV 

Ax,.* 
(2.19) 

plr p ? fV> ^ p + tvt p tY» p t p t pT p 

1 N > --- 1 - 2. m p*. iw — Ztvrnt p*> """2-p ptnAW + n? pT i-fYMYl1 + 
(2 .20) 

+• ruptrv? + Mft+p'V ^. ptrvrnv pr > 



where p and n refer to quarks and T , ^ denote spin up 

and spin down. 

Now the deuteron i s an I = 0, S = 1 state, antisymmetric 

with respect to interchange of nucleons, so 

To calculate the matrix elements we need the following r e s u l t s : 

<plTL=c|p> - < t | 6 « 1 ? > - (b 

p l -c v \ n *> = < r I 6 y I ̂  > - - - i 

<:rv l x a | p > = <.<v My I - X 

I N > I P > 1 

(2.21) 

(2.22) 

< r\ \-c* I p> = < ^ U v 1 T"> = O 

< n | t * | n > - <M> I U I » - I 

And from these we obtain, 

<Ppl-Sr,.-£i\pp> = O f I "MO - I 

(2.23) 
<r> p^ i i . " C i I rip"? = ^ r i f e i ' ' . i U f > = - I 

<. ftp\:s.».^lprO a < < V M | i ^ > - "2, 



The matrix elements of H can be written, 

where | x > stands for ! P > , |N> err |£*^> , and 

< D l W | D > - < P | - E > ^ | P > < N | N > 
+ ~bf\ < P I P > s: Nl I " S r ^ I N > 

4 3>E> <C P I &cf»i|P"> d"N (N*> 
+ 3.3 < p \ p > < H I t,.6 7 \ N > 
+ * l <TP,N I P ; N > 

4 <Pl"S-..TCi ^ i . 6 - L|P><TWIN> 

+ < P I P > < N I "£.."£1 6i-£-7 |N1> 
4 C l c < P ^ I T , . ^ ^ , . 6 t | P , M > 

(2.24) 

(2.25) 

F i n a l l y , using wave functions (2.20) with r e s u l t s (2.23) i n 

expressions (2.24) and (2.25) we obtain 

<£ & | H I £ > > = 3A + 3B + 3C 

£ P \ W V P > = -3A - 3B + 15C (2.26) 

< D > M l D > — 9 A - 5 B + % 

and since H i s SU(3) symmetric we have 

<P\Wi\P^> = C N I H I W > 
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I f we attribute the Z\ - N mass difference to t h i s 

interaction we have 

M A - M.T = 6A + 6B - 12C 

The contribution of t h i s interaction to the deuteron 

binding energy i s then 

A E 1 N T = 3A - B + C 

There i s nothing more we can say without further 

assumptions about the r e l a t i v e magnitudes of A, B and C. For 

example i f we assume that the quark-quark interaction i s 

mediated by coloured vector gluons, then according to De-Grand 

et Al. ( 2 ) , the dominant contribution comes from the spin-spin 

interaction, i . e . H - "B 4>. ^. f e . : 

and M N ^ &"B> 

&E, N T = - TS> 

This gives us a contribution to the binding energy of - 50 Mev, 

so this interaction does bring our crude estimates much closer 

to the observed value. 

We might worry at t h i s stage about the effects of the 

quark-quark interaction on the simple scattering picture of 

f i g . 1.1. This problem w i l l be discussed i n d e t a i l i n chapter 

four. 

4. Conclusion 

Quite apart from these "technical", problems of doing 

the calculation i n three dimensions and of taking into account 

quark-quark interactions, our procedure so far i s inadequate 

at a more fundamental l e v e l . We have solved a c l a s s i c a l scattering 

problem and used the r e s u l t i n a Schrodinger equation to find the 

bound sta t e s . This i s unsatisfactory as the scattering problem 

and the o r i g i n a l free states should also be treated quantum 
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mechanically, i . e . we should obtain a wave equation for the 
energy eigenstates d i r e c t l y from the or i g i n a l lagrangian. This 
problem w i l l be tackled i n chapter three. 

Note that i n t h i s model the deuteron w i l l appear most of 

the time as i t does i n conventional nuclear physics, i . e . 

as a proton plus a neutron. The fact that i t spends some 

time as a six-quark bag i s the mechanism responsible for the 

nuclear force. Support for t h i s picture comes from a paper by 

Frankfurt and Strikman ( 6 ) , who use the parton model to examine 

the effects of small inter-nucleon distances i n the deuteron. 

From the parton viewpoint the spacetime picture of nucleon-nucleon 

interactions as multimeson exchange looks doubtful at small 

distances and they argue that at distances comparable with the 

nucleon s i z e the deuteron can be described n o " t a s a system of 

two nucleons but as a system of s i x quarks ( c a l l e d the kneading 

e f f e c t ) . The repulsive core i n t h i s model i s a r e s u l t of the 

kneading of quarks from different nucleons and has the same origin 

as the cutoff of transverse momenta for the partons i n deep 

i n e l a s t i c scattering. They estimate that the probability of 

the quarks being i n a kneaded configuration i s about 5$. 
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C H A P T E R T H R E E 

1. The quantization of one-dimensional "bags 

I n the quantization procedure given i n r e f . ( l ) the deuteron 

binding energy would not d i f f e r greatly from the c l a s s i c a l value 

found i n chapter two, section one. Certainly there i s no v/ay whereby 

a term corresponding to a k i n e t i c energy associated with the r e l a t i v e 

separation could a r i s e . This i s b a s i c a l l y because the length of the 

bag i s not, i n this treatment, a quantum variable. We propose to 

modify the Lagrangian to remedy th i s "defect". 

We consider f i r s t a one-dimensional bag, containing a single 

complex scalar f i e l d , described by the lagrangian 

(3.1) 

We are not interested i n the c l a s s i c a l equations of motion or 

boundary conditions but we choose to impose the condition 

This allows us to put 

where 1 = Z G - i s the length of the bag, 

and ZQ = •)• Z^ i s the centre of the bag. 
2 
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Then ( 3 .1 ) becomes 

JL 

where 

- A* A~ nJ™ z <-UI-f*> ^ - B i 
(3 .4 ) 

and the scalar product i s defined by 

Yfe define momenta 7Tn, 7T^ and 7T"%D , conjugate to An, 1 and Z Q 

i n the usual way, Thus, 

(3 .5 ) 

7T t =T[2f-gA^A*<e..KM-MGO> - C^A^Ao <-UU*-W>l€*> 

•* < ^ K * - ^ a ) ^ > * tesV- A*£*<-G*K*-^l^">( ( 3 . 6 ) C.̂  J!. J 

7T^ 2£f-™A.* A n <<?~U\> - w? /£ A* < ^ t e f t > 
V, 8. C 
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Now using (3 .5) i n (3 .6 ) and (3 .7 ) we obtain 

7 r A - " 2 £ { - f f A B 7 r . < € . i ^ i ^ > * h.c.^ ( 3 < 8 ) 

~~ A n 7 T m < c « l ^ > K c I (3 .9 ) 

from which we see that 7T^ and 7l\„ are not independant variables 

and so the length of the bag i s not an independant quantum variable. 

At t h i s stage i t becomes necessary to make some approximations. 

We make the assumption that, i n the f i r s t few sta t e s , only 

the lowest modes w i l l be s i g n i f i c a n t l y excited and therefore we can 

truncate the series ( 3 . 3 ) . This has an interesting effect on the 

structure of the equations. To investigate t h i s put An = 0 for r\>M 

Then 
00 IN 

"Hi. = H I f- n ^ A«7T« X ™ + K.c.7 

(3 .10) 

where we have used the notation Xmn = ^ 

However from (3-5) 

TT^ - 1 A : - i a e 4 v - u i f < <-r P J * - > 

which implies, that for rr\ "> hi) 

. ' (3 .11) 
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So inserting (3.11) into (3 .10) we obtain 

TTSL = t,H A n T T ^ X ^ + L e t 
met n-=i 1 A*- J 

«\=M4-i i\n pi.i C A 

(3 .12) 

I n the same way a similar expression can be obtained for 7T%6 

These show that the v e l o c i t i e s 1 and ZQ can now be expressed i n 

terms of momenta and co-ordinates and so the lagrangian i s no 

longer singular ( 7 ) . Thus we can continue with canonical 

quantization. 

The integrals i n (3 .4 ) are straightforward and we obtain 

* 2 { - 3 ^ £ U . -Jus— fliAoii] 

- " B A (3 .13) 

To consider the ground state we truncate the s e r i e s (3 .3 ) 

after only one term, and we write A^ • X + iY where X and Y are r e a l . 

Then 

W 2. 
(3 .14) 



I n t h i s approximation the motion of the centre of mass of 

the "bag decouples from the motion of the f i e l d s , i . e . we have no 

Zo X terms i n (3.14)» so we can choose to work i n the "bag r e s t frame 
m 

and put Zo = 0 

The conjugate momenta are now given "by 

7i\ = + -L X i 
7r y ^ JLv + ^ y i 

Solving these equations for X, Y and X we obtain 

b * b V b ^ V ^ ) * 

The Hamiltonian i s given by 

where <x = ' 3 a«\c\ fc> =. \+t*Vz 

(3.15) 

(3.16) 

Substituting equations (3 .16) into (3 .14) and (3.17) we obtain, 

(3 .17) 

•2 ft 
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To obtain the energy eigenvalues of th i s Harailtonian we wish to 

Bolve Uvj> •«• E l|». To obtain a wave equation v/e make the usual substitutions 

7T X - - ^_ etc., taking care with the ordering of the 

operators to ensure that H i s hermitian. To simplify the form of the 

wave equation we use polar co-ordinates defined by X = n~ Gco& 

Y » rv o v ^ S . Then the Hamiltonian (3.18) can be written i n 

the form 

W ^ Mo + H' 
(3.19) 

where 

lV - ~ fa^ --W<^_1 - L I l k . - I ' r A . l (3 .21) 

We see that Ho i s j u s t the Hamiltonian of a two-dimensional 

harmonic o s c i l l a t o r . The correction term H i s positive definite 

and so increases the energy of the eigenstates. We s h a l l see that 

t y p i c a l l y i t gives a small correction. 

The charge normalization condition ( 2 .6 ) now becomes 

J 2 ( x Y - y > 0 - l (3.22) 

This i s a f i r s t class constraint (7) and i s used to r e s t r i c t the 

space of possible eigenstates to those s a t i s f y i n g 

< * I - & \ * > * • < * ! * > ( 3 . a ) 

I t follows that a bag containing one p a r t i c l e w i l l have wave-function 

e ; 5 i f K 4 ) (3 .24) 
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The lowest eigenatate of the Hamiltonian, i n which the wave-function 

i s independent of & represents the "empty "bag". 

lie now wish to invest igate the consequences of t h i s 

quantization on the binding energy of the deuteron. 

2. The binding energy of two quantum bags 

We consider a prototype model of the deuteron as fo l lows . 

We assume our world contains two sca lar f i e l d s ^ and ^ 

A bag containing a s ingle quark corresponding to one of these f i e l d s 

w i l l represent a nucleon and a bag containing both f i e l d s w i l l 

represent the deuteron. The general izat ion of the previous sect ion 

to a world with two f i e l d s i s straightforward and leads to a 

Hamiltonian 

M - H o + W' (3.25) 

where 

u ^ -JL(V.i^Vi) + j£ fvi+tr?} + BJ> (3.26) 

(3.27) 

^ - 1 
2 

We f ind eigenstates by a v a r i a t i o n a l ca lcu la t ion using 

factor i sed wave-functions i f where the <f( vi are 

talcen to be the eigenfunctions of (3 .26 ) . This turns out to give 

a reasonable approximation s i n c e the correct ion due to M i s smal l . 
•a. 

We use ^[l) - j ^ e ~ ^ ° a <3-28) 

where o\. and A are v a r i a t i o n a l parameters. 
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The "deuteron" state requires a single p a r t i c l e i n each 

f i e l d , so following (3.24) we take as i t s wave-function 

The "nucleon" states have j u s t one f i e l d excited so 

(3 .29) 

(3 .30) 

we put 

F i n a l l y we need a wave-function for the "empty-bag", 

The energies of these states are given by E — < ">-t- < n 

Now < H o > -

Q t O 1 (B£ + ("^^)gr) 1 W ) > 
^ 1 0 1 4 > ! 0 > (3.32) 

til 

where n, = 1 or 2 depending on whether the i f i e l d i s i n the ground 

state or f i r s t excited state. This j u s t comes from the spectrum of 

the pair of two-dimensional o s c i l l a t o r s i n (3 .26) 

To simplify H we write or, =. KGOS<̂  , £ , 

and since H contains no derivatives w.r.t. fi| , ^ or ^ we 

have 
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j^.ov, ao, f i d * , aex dfl ̂ '^ 

S Tg %dR d l 

i . e . the angular integrations cancell 

So i n calculating using (3.34) we can use, instead of 

(3.29) - (3.31), 

(3.34) 

-IE ft _ <* ff4 

Using (3.35) i n (3.32) and (3.34) and integrating we 
obtain, for <|*o » 

(3.35) 

So F = 
woo — 

71 

f " B ^ 4 + €i^)«x"ll (3.36) 

we now require - ^ - to minimize the energy. 

Now = O implies that 

(3.37) 
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. (3 .38) 

Numerically t h i s i s found to have a minimum at yS * 1.2, when 

Exactly the same calculations are used to evaluate the 

energies i n states lf ; 0 and ^„ The re s u l t s are shown i n 

the following table: 

Z 3 <*> <U„> < n 7 E e 

Empty bag Moo 0.57 1.2 3.60 3.15 0.45 2.83 

one-quark bag 0.61 2.2 4.02 3.67 0.35 3.46 

two-quark bag O.65 3.0 4.46 4.16 0.28 4.00 

A l l energies are i n units of 

The (X 8 are i n units of V̂TT 

The l a s t column ref e r s to the exact eigenvalues of 

obtained by minimizing Eo = B l + (fti*ft*}2E w.r.t. 1. 
1 i ' 

We see that the corrections due to H , i . e . due to quantum 

fluctuations i n the length of the bag are of the order of 10$. 

We assume that the observed mass i s equal to the energy 

above the ground state (empty bag), Thus 

n N ^ <H>LO - <H>OO 

I f we ignore the quantum fluctuations i n the bag length then 

the binding energy obtained from the values i n the l a s t column of 
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the table i s 

Including the effects of quantizing the length, i . e . using 

the values of <LH> obtained by the v a r i a t i o n a l calculation we 

obtain 
£>F - 7 . r u - l^o O 

So the quantum fluctuations i n the lengths have the effect 

of reducing the binding energy of the two-particle bound sta t e . 

This i s j u s t the effect we were seeking. 

There i s one interesting consequence of the above treatment. 

I f our world contains k fundamental f i e l d s then the empty bag has 

approximate r e s t mass E (as i n the f i n a l column of the table) 
o ' 

given by 

CO...... - *!L + 

on minimizing w.r.t. 1. 

The single p a r t i c l e bag has lowest energy, 

So i f the r e s t mass of the "nucleon", i s i d e n t i f i e d , as above, 

with the difference then i t becomes 

This depends on k. This means that, for example, the mass of a 

hadron which contains no charmed quarks depends on whether charmed 

quarks e x i s t or not. Whether t h i s i s desirable or not i s , at the 

moment, a philosophical question. I f we do not find i t acceptable 

then some other method for subtracting the zero-point energies w i l l 

be required. 
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3. The method of quantization 

V/hen this calculation was f i r s t attempted we used 

the Feynman path integral method (8) to obtain a wave equation. 

A wave function ^i^i^) s a t i s f i e s an integral equation 

-!P (3.39! 
where the amplitude f o r a system to go from state a to state Tq, 
K, (b, a) can be wri t t e n as a sum over a l l paths, i . e . 

where S 0>,~1 * L f e c . i / O 

Feynraan showed that i n a lagrangian where -XL only appears 

up to the second degree, i . e . when the path integral i s a Gaussian 

then the kernel K i s always proportional to the classical action 

i . e . , si. Sa (3.40) 
* 

Now our hag Lagrangian (3.1) gives a Gaussian i n t e g r a l and 

so we expected to be able to use t h i s method. 

The wave equation i s obtained from (3.39) by considering 
an i n f i n i t e s i n a l time i n t e r v a l ' t i - ' t , =• 2 i n which case 

and S < ^ " * L e l (3.W) 

Inserting these approximations into (3.40) and (3.39)» doing 

the Gaussian integrals w.r.t. ^ and expanding to f i r s t order i n 2. 

(second order i n ̂  ) we obtain a wave equation, i . e . an equation 

involving ^ , M and . 
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Using expansion (3.3) our "bag lagrangian i s 

L-cl = L c l ( A , , A, , J , 1) 

and "by the above method we obtain a wave equation f o r the bag 

states. However the wave equation obtained i s not the same as 

that given by (3.20) and (3.21), obtained by canonical 
quantization. Thus we have to look a b i t more closely at the 

path integral method. One obvious possible problem i s that the 

coefficients of X , V and _fl i n (3.14) are not constants. 
To see what effect, t h i s has we consider a lagrangian. 

and we ask under what conditions on w i l l the path i n t e g r a l 

method give the same wave equation as canonical quantization. I n 

the l a t t e r method 

7TX ^ n v i 

(3.42) 

So ^ - J - m: - 4 - , ^ (3.43) 
i s our wave equation 

For the path i n t e g r a l , l e t 

i - | «i = £ (3-44) 

i . e . xCO = K -5 + ^ 

I n the lagrahgian we replace "f fa) by i t s average value i n the 

int e r v a l and write Sc\ - Lfc\ 
Now f * £ $ 4 c*t«t ck (3.45) 

o 
So f a { ( ^ 8 , 0 

And c , . ^ -*• ? n"1 (3-46) 
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Equation (3.39) "becomes 

(3.47) 

and since ^ i s a function of X, S and £ only we can do the 1̂  

integration to give 

—cfi _J 
To obtain the wave equation we integrate and equate terms of the 

same order i n . I n order f o r the wave equation to he 

ide n t i c a l to (3.43) we require 
( i ) U s e ^ ( ^ T . i 

( m ) ji?A i d s e 4 ^ r ^ f f = ^ 
( i v ) ^ A f as ( ^ f 7 = i f 

One condition which follows immediately from these four 

i s that must be an even function of & . This i s 

already enough to rule out the bag lagrangian (3.14). This has 

a term ^ X2" which i s equivalent to having "fW = "X i n (3.42). 

Then _ £ 

ft 
= x - S/z 

* ( i f * - J i ' ^ - s y " 1 

which i s not an even function of S 

This explains why the path integral method does not reproduce 
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the same wave equation as the canonical quantization method 
for our "bag model. 

( 



C H A P T E R F O U R 

In chapter two, section three, we saw how the effects of 

quark-quark interacLions could improve our estimates of the 

deuteron "binding energy, "but we did not consider the consequences 

of this f o r the simple scattering process described i n chapter 

one. To do t h i s we now add an interaction term to the Lagrangian 

and attempt to solve the re s u l t i n g equations of motion. Yfe shall 

write down an interaction "between scalar f i e l d s without involving 

gluons or other exchange pa r t i c l e s . 

1. A simple interaction 

The simplest choice i s to make the interaction energy-

proportional to the product of the f i e l d s i n the overlapping 

region. Although t h i s i s rather u n r e a l i s t i c i t gives r i s e to nice 

equations of motion and allows us to see what might happen. So 

i f ^, i s the f i e l d of one bag, and the f i e l d of the other, 

we write 

^ A ( tf<t>z
 + # 4 ) 

(4.1) 
Then the t o t a l Lagrangian density "becomes 

^ * yk+*«A * - A W (4.2) 
The equations of motion obtained from t h i s Lagrangian are 

= - A 6 
(4.3) 

The boundary conditions are obtained by requiring <y 

on the boundary, where (\^.nA< - - 3. 

O 

(4.4) 
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Now T " frbWu ^ 

So (4*4) "becomes 

The D i r i c h l e t "boundary conditions are obtained by putting 

V^, = ft, n Y
 ; - f>z^ OA "VKe boundary ^ S 6 

(4.5) 

(4.6) 

we now have 

* 

Also, since 2>V4( and " ^ " ^ j . are proportional to «\v' on the 

boundary, <f>, and are constant on the boundary and 

using the argument of Wu et A l . (3) (see next chapter), t h i s 

constant i s zero, i . e . 

c£( = c£x = O on boundary (4.7) 

We now consider a pair of one-quark bags moving towards 

each other and coming i n t o contact at t = 0. we wish to solve 

equations (4.3) with boundary conditions (4«6) and (4*7) f o r 

t > o. 

The f i e l d of a stationary bag i n i t s lowest excited state 
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or 

Simil a r l y a bag with end-points at zt-0
) at t = 0 

boosted i n the opposite d i r e c t i o n i s described by 

</>, - A ^ e " 1 * ' * " ^ - € - » u , t w > t w * 1 7 

Transforming-to l i g h t cone co-ordinates 

(4.8) 

with end-points "Z-^o, JL i s given by 

_L 

0 = A | e - ( 2 £ 

where A = 2 ~ A = 

Taking a Lorentz transformation from the rest frame S 

to a frame S moving with v e l o c i t y •+ V~ with respect to S we 

obtain the f i e l d of a bag moving with v e l o c i t y - v r i n the lab 

frame ( i . e . the centre of momentum frame) 

So V * 

or ^ * V( * ' + u-t') ( 4 > 9 ) 
t = b- (t' *- ) 

And so the f i e l d of bag 2, dropping primes on the lab 

frame variables, i s 

(4.10) 

(4.11) 

•yC = " t - l (4.12) 
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and w r i t i n g to - kb'(i + v r ) 

we have 

to 

- e 5 

0 X A j e - e 

(4.13) 

(4.H) 

The picture we have i s t 

A D . - ?TT/W 

Fig. '4.1 
The f i e l d s (4.14) describe the si t u a t i o n up to the lines AB and 
BC. For the square ABCD we want to solve equations (4.3) with 

d * o ow -£=• o (4.15) 

and 

^ ~- A ? aw - o (4.16) 

I f we define 

Cj5 = 4> + cf^ 
(4.17) 
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then equations (4-3) become 

g> -H A CP (4.18) 

i.e. 

(4.19) 

with 

<g - - <3? ~ on x t o 

Equations (4*19) are solved using Riemann's Method (9) which t e l l s 

us that given <£. on 3C=o and on ~c -O 

the solution of 3£j§ + L - d i s 

$ £ < r 0 - [>*]' > Ccr .^ICU; + c i * (4.20) 

where the Riemann function K fri"5-") ) s a t i s f i e s 

with £ - 1 csw x « ' (4-21) 

To f i n d R, l e t 

then (4.21) • becomes 

(4.22) 

with R = 1 on y = 

R = 1 on = 

0 
0 (4.23) 
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Taking Laplace transforms of (4.22) with respect to y, we get 

But o n ^ = 0 , £ « | ^ 

=?> c •»• A. 
P 

and the inverse transform of t h i s i s 

(4.24) 
So the Riemann function f o r 3> i s 

and since SV̂ -**-1} •= I 6 fc*-^ the Riemann function f o r $ i s 

= X 0 (M£.X-X')U--C<)') (4.25) 

Now (4.20) becomes 

(4.26) 
where 
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Similarly we have 

(4.27) 

where I - W>) * $ ds e ^ J o 6 ^ ) 
To calculate X +(a,b) we use ^oC 3^ = Ci ^' } L *- ' 
i.e. 

Now 

and similarly 

Substituting these expressions into (4.26) and (4.27) gives 
us 3E and £ , and hence <J) and 4>^ in ABCD. We now assume that ^ 
is small and expand everything to first order in A . So 
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(4.32) 
i> <f>(r>0 - + M ^ ( l - e " ^ ) - <\Ax£ 

The expressions (4.33) t e l l us what the f i e l d s are i n 

the region o < < l^ fuj 

We now wish to see what happens f o r X">"2n/u/ i . e . i n the region 

"beyond l i n e CD i n Pig. 4.1. We know that <j£, and (f> must "be zero 

on some l i n e 3C=3C"I£T) passing through point C, i.e. the point 

(X-i^c) = > ° ) .We can make 4>x and <f> zero on t h i s 

l i n e "by a suitable choice of ^ and on x = 0 using 
arc *>̂ c 

Riemann's method. We can then use the "boundary condition (4*6) to 

determine the slope of t O 
On X ~~ ̂ / t u we have, from (4*32), 

(4.33) 

(4.34) 

Now Riemann1s method t e l l s us that f o r 

' to- we have 
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(4.35) 

> = _ A [ i - e - * « * ) - Aft 7T ^ 4- £ + 2 

~- -AAx-^ ( -e"^) + X A X X L 4- £z2r (4.36) 

So f and g must be such t h a t : 

(a) -f+fr - - f - ^ - o on "c -

(b) 0, » <k " ° ^ ^ = 

( 0) ^C"f + ̂  = O to oCÂ j (4.37) 

Using the fact that X, ( ^ j \ - O we see that these 

conditions are s a t i s f i e d by 

(4.38) 

(4.39) 
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Now using (4.39) the "boundary condition (4.6) becomes, to 0£A ) # 

i & d r * - B. 

i . e . 3 -- - ^ B (4.40) 
where .+ , 1 * -.J. 

JsX 

From (4.39)» 

So on =. ~xt (x we have 

T - - I w ^ d ^ l ^ r - 7_ATT j A I"1 dbc, D£/A 10 X ( (."O (4.41) 
dec 

Using (4.8), (4*13) and (4.41), equation (4.40) "becomes 

-A.-a - ( - 1 ^ B - A- A ow\ LU-=C,CO? 
"2- D dx. i Z- U>' 2- > 

4£, ^ UJ! f 1 - A id' ix/A UJX, co 1 dx C B ui J (4.42) 
and t h i s i s the slope of the boundary of the bag X. - ̂ c, ( r *) 

The zeroth order term, eta' - — j u s t gives us the slope 

of the boundary i n Fig. A.l, i . e . with no quark-quark interactions, 

as i t should. This i s a good check f o r the above calculation. The 

f i r s t order term adds a small o s c i l l a t i n g motion to the boundary. 

We can integrate equation (4.42) as follows:-
we have 

<d£.« ^ id + o£VS d x to- ' 



and putting t h i s back i n t o (4.42), we obtain 

4*1 -ir 1^! f l — A. \J oî w UJ'"C 7 dx to 1 s w j 

^ rc,Cĉ  i ( i t + A. w.' ceo Co'x +• coTvskxrcf 

t u t = o . ; so 

correct to O ^A) 

We can do exactly the same calculation to f i n d the motion of the 

bag i n the region x. ~> ^"tyco 

We f i n d that the boundary X - X t f x . ^ i s given by 

X, - W/x-UT^ + X UJ' / cxauj'o: - ccr* 2-trCu' ") 

We can now extend Pig. 4.1 as follows:-

Pig. 4.2. 
•> 

We do not know at the moment whether the bags s p l i t up 

again or not as they did i n the simple scattering picture. 

Note that at T X . ^ X , ^40 and 4± 4 O so 

they cannot s p l i t at t h i s point, which they did before t h i s 

interaction was introduced. We might think that they would s p l i t 

up again at a small distance, of order S t from o_ - "C - llT 
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So we put -x. - ^ J + € i , " C " — + and require c/>, =• 4-L - ° 

using (4.39) with (4.43) and (4.44), 

O - A f c r * - 1 * - ! } - A f l i ( T g + <£,) 

o - - Aft. u } i - e~Aw,?l I + /^TV" 

and t h i s implies that €, - ^ iC" , so we 

cannot s a t i s f y the boundary condition (£t •=. 4>^ — O 

at any point near x - "X 1 1 2 TVUT 

I f we a n a l y t i c a l l y continue <£, and <j>^ given by 

(4*39) to the region -x. "> we do not come to any 

more zeros of or <£> so i t seems that the bags cannot now 

s p l i t up but w i l l o s c i l l a t e as i n Fig. 1.2. with a small sinusoidal 

perturbation of the boundary. So our interaction (4.1) forces them 

to s t i c k together. We w i l l now consider a more r e a l i s t i c type of 

interaction. 

2. A current-current i n t e r a c t i o n 

The standard way to write down an interaction between two 

charged f i e l d s i s as a product of currents, 

- A ^ (4.45) 

where 

. A - (4.46) 
So the Lagrangian density becomes 

- c4V, W oM<̂  + <£A V. <A* a-^ ] (4.47) 
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The equations of motion obtained from t h i s Lagrangian are 

(4.48) 
and the boundary conditions, obtained as i n the previous section 

are, 

* - ^ = ° ' (4.49) 

-<fr4>^ti^4, * 4Al»<£^#] + B - c> (4.50) 

The equations of motion (4*48) cannot be readily solved 
as i n section 1, but working to O^A) we can put the zeroth 

order solutions i n the right-hand-sides of (4.48). 

Note that i n one space dimension the Lagrangian density has 

dimension (mass) , so the f i e l d <f> i s dimensionless. This 

implies that the coupling constant X i s a dimensionless 

parameter. 

The zeroth order solutions to be inserted i n (4.48) are 
the solutions when there i s no quark-quark interaction, i . e . 

4 M . A. (e-"*-i) 

(4.51) 

for o <r 3= < ttr/ur , o < X < l^l^o , 

Here |f\,|*- ^ but A, and A,, could d i f f e r by a 

phase so we keep the l a b e l on. 

Putting (4.51) into the right-hand-side of (4.48) we 



obtain 

These equations can be r e a d i l y integrated to give 

or u 

where we have used | f i i l l - |Ail"* -

Nov/ we require 

OA 

$ i - & 

and these conditions determine "ft } <y, } -f^ and 

and (4*53) becomes 

crvs X e O 
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Note that at zx. - X - 1Z£ ) c£ = q6>t - O and 

that boundary condition (4.50) i s also s a t i s f i e d and so the 

bags can s p l i t again at t h i s point. 

On X - 1^1 L*S 

<L •= o 
1 (4.55) 

So the equations of motion, together with the boundary conditions 

($( - ^ = O on -XL - ^1 (."O are s a t i s f i e d for X"> l l T 

with 

<£>z * c> (4.56) 

So now T - - <-o* l A i l ^ 2. cc£> u i f x - ^ i C c } " ) . dbc, 

and boundary condition (4*50) gives 

— 1 R ^ - 1 R w 

^ dc, , u/ (4.57) 

So the boundary now i s exactly the same as i t was without quark-quark 

interactions. The two bags j u s t go through each other as before. The 

only difference i s that the amplitude of the f i e l d i s changed by a 

factor (1 i o OC^) • This j u s t corresponds to 

a change of phase. 

3. Conclusion 

We have tr i e d two possible types of interaction to investigate 

the i r e f f e c t s . The f i r s t type i s not r e a l l y an interaction i n the 

usual sense as i t ju3t corresponds to an off-diagonal mass term i n 



the Lagrangian density. So although i t gives an interesting •• 

r e s u l t we do not take i t seriously "but j u s t use i t to show 

how the calculation can be done. 

The second type of interaction considered i s possible 

as a model of a physical process and so we do take i t 

seriously. The r e s u l t i s surprising. I t says that v/hen 

quark-quark interactions are included i n the bag the time 

taken for the scattering i s not changed. This means that the 

"average", potential as i n equation (2.16) remains the same, 
even although the c l a s s i c a l potential, the potential at R = 0, 

greatly effected by the interactions as shown i n chapter two, 

section three. This w i l l be discussed further i n the next 

chapter. 
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C H A P T E R F I V E 

We now discuss the r e s u l t s of the previous three chapters 

and see what they imply about the nucleon-nucleon interaction. 

We have seen that with no quark-quark interactions the 

potential w i l l look l i k e 

and w i l l give a large binding energy for the deuteron. 

The effect of quark-quark interactions i s to lower the 

c l a s s i c a l binding energy -V*(o). The si z e of th i s e ffect depends 

on the model used. For the most general type of interaction 

discussed i n chapter two the contribution to V 1°") could vary 

over quite a large range. We now consider the size of t h i s 

contribution i n two s p e c i f i c models; the MIT model and our model 

of chapter four, section two. 

1. The MIT Model 

I n t h i s model (2) the r e s t mass of a hadron has contributions 

from, 

(a) the bag energy t ^ T T ^ S 

(b) the quark k i n e t i c energies 

( c ) the f i r s t order quark-quark interaction, and 

(d) the f i n i t e part of the zero-point energy. 

These are calculated as follows: 

(b) The strange quark i s given a mass to break S U ( S ) . 
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Solving the Dirac equation with the bag boundary conditions for a 

s t a t i c sphere, the f i e l d energy i s 

where n = number of non-strange quarks 

n g= number of strange quarks 

and *x. i s the solution of tan oc •= 

We write t h i s contribution as £ -s 3C^rtV«) 

(c ) The quark-quark interactions,, mediated by an 5U{3) octet 

of coloured vector gluons, i s calculated by analogy with electuomagnetism. 

The " e l e c t r i c " , part of the interaction i s long-range and i s assumed 

to be already included i n the phe'nomenological bag term which gives 

quark confinement. The "magnetic", spin-spin interaction i s given by 

where , , * °> , \ < K , / > 
* e ; - x - ^ £ A i kx. \ k. X (wu,<*j) 

3TT R 

and the are known for each hadron using group theory. 

(d) Since the f i e l d s which occupy the hadron are quantized 

they w i l l have a zero-point energy associated with them. Since this 

effect i s divergent a cut off i s introduced and the dependence of the 

zero-point energy on the cut off -ft- i s investigated. Cut-off 

dependent terms turn out to be proportional to and are used to 

renormalize B. Cut-off independent terms are found to be of the 
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form - ~Z.C,/f^ where zlo i s a positive constant cuhich ir\ 

principle can "be calculated, although t h i s i s very d i f f i c u l t 

for a sphere (and so "i© i s l e f t as a free parameter. 

So the r e s t mass of a hadron i s now 

The non-linear boundary condition e x i s t s i n order to balance the 

pressures l o c a l l y at the surface. This i s equivalent to minimizing 

M with respect to R. This leaves four free parameters : B J 

(As cu\c\ ^Xtr *° ̂ e f i t t e d *° the data as mentioned i n chapter one. 

The energy of a s i x quark bag can now be calculated. The 

colour magnetic energy for an n-quark colour singlet nonstrangs 

baryon i s 

3 UIT L - 1 "R \J< 

For n = 6 we can have ( .Xj X ) = (3 , 0 ) , (0, 3 ) , (2 , l ) , ( l , 2 ) , 

(1 , 0) and (0 , l ) . The lowest value of M occurs for the case 3"-=- 1 J 

1 = 0 which are the quantum numbers of the deuteron, and i t turns 

out that H D . 2.29 1*1 N , so the deuteron i s unbound, 

c l a s s i c a l l y , i n t h i s model. 

Johnson (10) then envisages a potential which i s + 0 .29MN OA 

R = 0, zero at R = 2RJJ and has a region of attraction for R ^2RJJ. 

The region of attraction e x i s t s because as two three-quark. 

bags approach each other and begin to overlap they lose 

volume, and thus the energy decreases by "S> S V . I f t h i s 

region of attraction could be shown to be deep enough we would 

obtain a potential of the form that i s usually associated with the 

(5 .1 ) 
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5 i : 

nuclear force, i . e . 

2. The one-dimensional s c a l a r model 

We now calculate the contribution of the interaction (4.45) 
to the c l a s s i c a l binding energy -V('O). This i s given by 

til 

I f we consider for s i m p l i c i t y two one-quark bags fusing to give a 

two-quark bag t h i s becomes 

* e » -x $ {tftiMvk -4>X*A^ti-<t£4M?^ 

To 0£\) we can use 
, —«U>t-
0 t = a, e ccft»u>=t 

(5.4) 

and J L « J f where u> * J , |Ai|' a 

the length of a two-quark bag. 

Inserting (5*5) into (5.4) we obtain 

7. * "iir 

(5.5) 
i s 

But i n t h i s model M N * "Z-sfFB1 So 

^ X. S O M«V. 
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So the interaction, calculated to O O O has the 
effect of adding 50 \ Mev to - V7<>) which was -500 Mev. 
Obviously t h i s i s not enough to give the large soft core of the 
MIT model, which would require A. ̂  IO . 

However i f the r e s u l t of chapter four section two, that 

the interaction does not change the time taken for the scattering, 

could be shown to hold to any order i n A t then as — W o ) 

becomes positive the region of attraction would have to become 

deep and we would obtain the standard nuclear potential. 

I t i s possible to check th i s point to O ^ A X ) by 

inserting the solutions (4*54) into the right-hand-sides of 

equations (4*48) and integrating. This has been done and we 

obtain, for o s : x s 2 r J o s - c s ' £ r ; 

- x A* At <g (e- t e-.)(T - fa » ^ ) Z 

and at the c r u c i a l point "XL - "C - ̂ VCAT we obtain ^, — O , 

We can also show that (j> - O and that the other boundary 

condition i s s a t i s f i e d 1t? © £ A L ) at t h i s point. This means 

that the bags can s t i l l s p l i t at X.-~C~ ^/ur and we 

strongly suspect that t h i s holds to a l l orders i n A . So 

i n fact t h i s model may give the desired form of the nuclear 

potential. 

I 
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C H A P T E R S I X 

1. Boundary conditions and soft bags 

I n the original bag paper ( l ) the boundary conditions for a 

bag containing fermion f i e l d s cannot be obtained d i r e c t l y from the 

The problem i s associated with the fact that only terms 

linear i n the derivatives of appear i n the Lagrangian and i s 

well known as the problem of solving the Dirac equation i n a fixed 

f i n i t e region. This problem i s resolved by f i r s t allowing the 

f i e l d to permeate a l l of spacetime and then proceeding to a l i m i t 

i n which the f i e l d becomes confined to the required region. 

This method has been used by Wu et Al (3) as an alternative 

derivation of the boundary conditions for a scalar bag. I n f a c t 

this method has to be used to obtain eqn. ( l . 3 ) » i«e» =• O on 

the boundary, as the standard method only gives cj> s.* constant 

on the boundary. The method consists of considering the action 

obtaining boundary conditions from i t , and taking the l i m i t M-^oO 

Variation of S by changing <f> and <][ and keeping the 

boundary fixed leads to 

* Y = ° i n bag (6 .2 ) 

- ° outside bag (6 .3 ) 

and i)f)P<fc = O ^ b ^ on boundary. (6 .4 ) 

Continuity, i . e . <jk - <[[ on boundary, together with 

(6 .4) gives 

t>/*(f) - ^ orv boundary. (6 .5 ) 
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Variation of the boundary gives the other boundary 

condition 

(6 .6 ) 

Putting (6 .5) into (6 .6 ) we obtain 

- | <£>\z - on boundary, (6 .7 ) 

When M i s large the solution of (6 .3) can be 

written 3? = ^ 

where | by*j I 7" ~ - 3. 

Thus | ~ - K * | ^ J * (6 .8 ) 

The boundary conditions i n the l i m i t M - » oo axe obtained 

from ( 6 .7 ) and ( 6 . 8 ) , i . e . 

A "soft", bag i s now defined to be an extended object defined 

by the f i e l d s which are solutions to ( 6 .2 ) and (6 .3) subject to the 

boundary conditions for f i n i t e M. So the f i e l d i s no longer zero 

outside the "boundary", but w i l l f a l l off exponentially. 

A s t a t i c soft bag with "end-points", at t *• * i s 

described by the f i e l d s , 

on boundary 

a e 
0x (6 .9 ) 

where 

and we assume M /* » LAJ 

Continuity of ^ and *2 at gives 

and 

(6 .10) 

The mode with lowest energy i s given by b = c i n which case 

1 
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a = d•and we have 

<pt - CK e e 

cp̂  - cx e <E 
The "boundary conditions 

\<t>\*- ~ 

and the charge normalisation condition 
-tlx JCII 

can he used to determine \<x\i } | A l a and ur 

i n terms of 

2o The interactions of soft bags 

We now wish to consider the effect of another bag 

approaching the f i r s t bag (6.11). 

We work i n the r e s t frame of the f i r s t bag, bag a, and 

obtain the f i e l d s of the second bag, bag b, by Lorentz transforming 

(6.11). I f bag b comes i n from ~=k. -t- o*> with veloc i t y — V then 

the part of the f i e l d which f i r s t i n teracts with bag a i s obtained 

from boosting <fi% i n (6.11) and i s 

£ b - c e M ^ (6.12) 
where 

Ji J L - Ji XoJ •+ NT XP 

K = AVV-U> + V P 

and C depends on the position of bag b at "L - c» 

When the bags are a reasonable distance apart the e f f e c t 

of bag b oh bag a w i l l be small and we assume that we can write-

the f i e l d of bag a as 
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Now w i l l have to s a t i s f y 

Solutions are 

"2. 

(6.15) 

where b^ depends on where bag b i s at t = 0 

Continuity of l|> and M at =e. - ^ 4 S i v e s i 

B , e 

Kb, e -2.B 

or 

e e - e 

e o -e 

^ i i e o 

M i c> 

I 

K 
(6 .16) 

and t h i s can be solved to give B^, Bg» b(, and bg i n terms of b y 

To see what (6 .14) implies for the motion of bag a, we write the 

end-point of a nearest to b as 

we know that 

and we use 

Now 

to find A ^ i , 

(6 .17) 

(6.18) 

(6.19) 

(6 .20) 
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(6.21) 

So (6 .19) becomes 

or. 

(6 .22) 

Using (6 .11) and (6.15) t h i s becomes 

Inverting (6 .16) we obtain b-j. - b>3 , 3 0 

(6 .23) 

=• constant x x o s c i l l a t i n g function of t 

So the end-point 2. = ̂  o s c i l l a t e s about t "= 4^ 

with increasing amplitude as the second bag moves nearer. 

This method i s only v a l i d for small <^ , i . e . when the bags 

are some distance apart, and so i s not very relevant to a discussion 

of hadronic interactions. 

An alternative approach consists of writing the f i e l d s on 

either side of the end-point •̂ •z. as 
J J t* a / b ^ -^tt«) ^ ( t - * ) ^Jtf++*) _-iJlO-*) 

(6.24) 
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where _fL and K are given "by (6.13) 

We use i n i t i a l conditions 

i z M ^ ^ , (6 .25) 

and continuity of cf>q, and ^ at ^ = O gives 

A,--

So at C*.*> - (°,<>) 

<f> (0,0) s. Ai + Aj 5i &i - cx-t- t» 

(6.26) 

The motion of the end-point for small t w i l l be given by 

1-z ^z.6<0 ̂  H * i ^ - ^ t e ) + 
(6.28) 

Now we know that I " ' t. 0
 - ^p. and we 

wish to find " ^ - i . 6*0 such that | < ^ j ? -

We can write, to O C^"1} 

' I , - * ̂ kwi,„ •t[iti#i ,]v *ttf@i.i*p]v 

f t ^ E & w l , . * it* C&wL*. ( 6 - 2 9 ) 

and using (6 .28) we see that the fourth and f i f t h terms are of 

higher order and can be dropped. Also, becuase of our i n i t i a l 
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conditions (6.25), we have 

- O 
(6.30) 

and so (6.29) gives, 

To evaluate the expressions i n (6.31) we need one useful 

r e l a t i o n obtained from (6.30) : 

>̂ ^ (cx+b)*CJuoex. -i J * _ b } ~ ^ - O 

Without loss of generality we can take a to be r e a l 

and write b - b„ •+ b; 

^ 'Ra. £ ^ J L a . (b^+AbA^ •+ A w o . * L ) - i J L |k|* ̂  - O 

and using (6.13) t h i s becomes 

Now to evaluate (6.31): 

but from (6.32) ^ f a o ^ u i _ cx.bj.'AT 8 0 
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(6.33) 
Similarly, we find, 

so we can now write down "^z (o) although i t i s not ecxvy 

to see exactly what i t means. However i n the high energy l i m i t , 

i . e . large ^ we get 

) - £ ^ ( a ^ a W ) J 1 ] 
and using T » w t h i s reduces to 

v U " a . ^ ^ (6.35) 
Now we know that to s a t i s f y the boundary conditions we 

need: _ —iXTA 

where d i s the distance between the bags at t = 0. 

Thus |b\ < cx and so O?- cxb/y > O and hence ^-z (<f) 

i s always positive. 

This suggests that there i s an i n i t i a l attraction between 

the two bags. 

3. Conclusion 

I f we choose to believe that the MIT bag model a r i s e s as some 

l i m i t of a more fundamental f i e l d theory, for example Creutz ( l l ) 

has shown that the MIT bag can be obtained from the SLAC bag i n t h i s 



way, then i n this theory the hadron w i l l not have sharp boundaries 

and any calculation of interactions w i l l have to take t h i s into 

account. We have seen i n t h i s chapter that this i s unlikely to 

be easy. 
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C H A P T E R S E V E N 

1. Summary 

We have attempted to find out whether or not the MIT 

bag model i s as successful i n predicting the scattering properties 

of hadrons as i t i s i n predicting their s t a t i c properties. Although 

we have worked mostly i n one space dimension for si m p l i c i t y we have 

found that the model does possess some of the required properties. 

Using the deuteron as the canonical example of interacting nucleons 

we have shown that, taking quantum mechanical effects and quark-quark 

interactions into account, the "bag model can reproduce a nucleon-

nucleon potential of the required form. We have also t r i e d to make 

the quantum mechanical treatment more complete and have shown that 

q u a l i t a t i v e l y t h i s has the effect of reducing the "binding energy as 

required. F i n a l l y we have found that for "bags without sharp boundaries 

i t i s very d i f f i c u l t to obtain any conclusions about t h e i r scattering 

properties. 

2. Conclusion 

Any model of hadron structure and quark confinement which 

hopes to be successful must be able to say something about the strong 

interactions of hadrons. We hope that the above re s u l t s have 

indicated that the MIT bag model has some chance. The next step 

must be to consider the c o l l i s i o n s of three-dimensional quark/gluon 

bags. Some work i n th i s direction has been done by Low (12) and he 

has shown that the model accounts q u a l i t a t i v e l y for the properties 

of constant t o t a l cross sections, zero r e a l parts of scattering 

amplitudes and Feynman scaling* 
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