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ABSTRACT

The object of this thesis is to investigate the predictions
of the MIT bag model for hadronic scattering. Chapter one provides
an introduction to the model, describes the results of the MIT group
and presents the zeroth order clasgsical scattering solution of Wu et Al.
In chapter two we show how to relate this to experiment and explain
why the model needs a quantum treatment and the inclusion’'of quark-
quark interactions to make it realistic. In chapter three we try to
improve the naive quantum~-mechanical model of chapter two. In chapter
four we congider expliecit models for the quark-quark interaction and
in chapter five we show how these effects may help the bag model to
predict the correct form of the nucleon-nucleon interaction. 1In
chapter six we consider a modified bag model without sharp boundaries
and attempt to discover the scattering properties of this model.

Chapter seven consists of a summary and conclusion.




CHAPTER ONE

l. Introduction

Considerable experimental evidence has accumulated in recent
years in support of the idea that hadrons are composite. The most
popular model of composite hadrons is the quark model, but so far
all attempts to isolate and observe the quarks have failed. This
means that some of the required properties of quarks are contradictory:
for example, deep inelastic scaling suggests that quarks are light and
essentially non-interacting, whereas the non-appearance of quarks can
most readily be explained if they are massive and have strong inter-
actions.

Numerous approaches to the problem of quark confinement have
been developed recently, all of which assume that quarks may be
classified in triplets of su(3) colour, that hadrons are colour Sing-
lets and that the sea of @q pairs carries no quantum numbers.

One of these approaches, the MIT bag model, descriﬁes hadrons
as composite systems with their internal structure being associated
with quark and gluon field variables. Unlike ordinary field theory,
where we hang field variables on all points of space, the fields describe
only the substructure of an extended object and so we hang the field
variables only on the subset of points which are inside of the object.
We call this set of points a "bag". As usual we associate the quantized
amplitudes of the fields with the creation and annihilation operators
for particles._ However these "particles" will be present only inside a
hadron since the operators are constructed from fields which exist only

in the interior of a hadron, so we have guaranteed quark confinement.

There is an analogy here with phonon fields and spin wave fields.
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To construct a set of equations which mathematically describes

such a situatioh, Chodos et Al., (1) take a Lagrangian density

A = ‘xfields - B

with Lagrangian L = Scﬁf Z O(R®Y-Xx)

where R (1) describes the region of space occupied by the bag. So

the fields supply the kinetic energy of the system and the potential

energy is given by B times the volume. Thus the model is covariant.
As an example, a bag in one space dimension containing a free

scalar field ¢ would have
2. (t)

L= §de {ogt0d -BY

Tolt)
where 2. and %, are the end-points of the bag. The equations

of motion for @, zo and z, would then be obtained by requiring Sd* L

1

to be stationary with respect to arbitrary variations of ¢, Z, and 2y
The above Lagrangian formalism turns out to be inadequate to
describe fermion fields, However the dynamics can be given in terms

of the energy-momentum tensor by requiring local conservation, i.e.

3T = O
where T™ = (T, v Be™) 8 (rmy-x)
s0 T 2 (Tl + Bg™) § (R -X)

where n, is the normal to the space-time surface swept out by R (%)
and is such that .t = -4
So on the surface X = R(t) we require n,,T'v =0

This gives us the boundary conditions.



3
With our example of a free scalar field,

T 2 PG - (NP -B)

so T =0 either (a) And'd =0 and [3I°-B

i
0]

"
0

or (b) = constant and - |3¢I2-B

Either choice leads to a Lorentz covariant theory. We will
normally work with the Dirichlet boundary conditions (b).
A bag containing fermion quarks interacting via coloured

gauge fields can be obtained from
3 a—~—

the standard quark-gluon Lagrangiaﬂ with the extra B term.

The equations of motion are found to be
M m »
g,-s Fj,.v = ‘%’LPG‘.XV‘-P

P - L‘l; + & (a-ﬂéy‘u ‘\’i = O .

with boundary conditions:

AN

r\»FS = O

A¥adg =

- v DD P - = O
LELE* 4 ynd Wy B

on the surface,

The MIT grouﬁ propose this as a realistic model of a hadron.
De Grand et Al. (2) have solved these equations of motion for the
case of a static spherical bag and have calculated the energies of
the low lying hadron states to first order in nyhn Fitting their
free parameters B, D/ , Ms and Zo, where Ms is the mass of

the strange quark and Zo a constant related to zero-point energies,



to the masses of the JL , & , N and w they produce quite a good
spectrum of the I = %> L  baryons and the J = 1, O mesons. (see
chapter five). They also obtain magnetic moments, weak decay constants
and charge radii in reasonable agreement with experiment. Thus it
seems that the bag model is quite good for predicting the static
properties of hadrons, This thesis will be concerned with the bag
model predictions for the scattering properties of hadrons. We start

with the simplest system, the classical scalar bag in one space

dimension.

2. The one-dimensional scalar bag

This system has been solved exactly. Following ref. (1), we

find that the Lagrangian,
2elt)

_ L= o {oud"d - 1515 (1.1)
! ()

gives rise to a free field equation,
¥ = 0 (1.2)

together with the boundary conditions, on =, % ,

¢ = o0 (1.3)
181" - [ - ' (1.4)
If we define light cone variables T = t+=
x =t -2 (1.5)
P32

then eqn. (1.2) becomes se%. = 0 vhich has

solutions

¢(:t,x\ = £y + %("“) (1.6)
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The boundary conditions (1.3) and (1.4) become

flue) + g(x) = © (1.7)
'1. rd
Cra)g't) + @' f(mm) = -1 B
(1.8)
where = 31‘{;-. ) %l= g—z and T=Tifc), 4=04,2  ig the
equation of an end-point.
Differentiating (1.7) w.r.t x we get
N du 4 gflx) = © (1.9)
dx
and substituting this into (1.8) we obtain
. kS
3—% > £ el (1.10)
This means that S%'0® = dTl*) g5 that the length of the bag

measured along the T direction is constant, Similarly if we denote
the end-points by x = x; (<) and repeat the above procedure, this
time differentiating (1.7) w.r.t. ©we find that the bag "length"
in the x direction is also constant., We shall see that these
conditions determine the scattering.

We now consider the collision in the CM frame of two

identical bags with velocities vy whose end-points meet

at t =0 :
E F & H
+ .
> T 1a Fig. 1.1
N N e
/ N\
2z )( \/ ————— = ‘%’.

N /
AN /
Ol—a —--— T=zo



The constant length conditions mean that YH is parallel to AX
and XE is parallel to DY. At point Z the bags are free to
move apart again as above, resulting in elastic scattering in
which the fields acquire only phase shifts, From ref. (3),

if g = £ (®) + g, (x) in AXOB

g = £, (%) + g, (x) in COYD

then g = £, () + 81 (x) in OXZY
g = £, (%D) + 8; (x) in GZYH
g = £, () + g, (x=b) in EXZF
So we see that in fact the two bags pass through each other,
rather than bounce back. This is obvious if we construct the
above diagram for incident bags of different lengths,

The diagram clearly shows that the time taken for the bags
to move through each other is less than if they had not interacted.
Thus we have an attractive force. At least the model will give
the correct sign for the nuclear force! 1In principle t@ese
interactions involve no free parameters (once B has been fitted
to the nucleon mass, say.), s0 if we can calculate them we have
a crucial test of the model. This will be considergd in chapter
two,

There is one peculiarity in the above system. At time t =

we have an ambiguity. The bags can remain together and oscillate:

+ = 2e Fig. 1.2




The solution is not unique even if all the initial conditions are
specified. This is because at point Z we have:

(1) #=0

(ii) eqn. (1.8) is satisfied for both possible solutions

(iii) two surfaces of discontinuity in the partial
derivatives intersect.

In classicial mechanics this type of non-uniqueness is resolved
by requiring that for sufficiently small time intervals the action
is a minimum, not merely an extremal. This does not seem to be
possible in this case.

If we reverse the process in Fig. 1.2 by reflecting in the
line t = 0 we obtain a fission process. Thus we see that there are
scattering solutions, fusion solutions and fission solutions for the
wave equation (1.2) with boumdary conditions (1.3) and (1.4). In the

next chapter we shall investigate the scattering solutions,



CHAPTER TWO

We now attempt to estimate the strength of the interaction
described in the previous chapter and compare it to the known
strength of the strong interaction, as seen, for example, in the

binding energy of the deuteron.

1. The c¢lassical binding energy

Consider first a static bag with end-points at = = * %

containing set of N complex scalar fields ¢

0.» where « labels the

type of quark. Se ,
da

L = Sd; {g'(b»ﬁb“q‘,) - 3} (2.1)

-0

This gives equations of motion

B"¢“ = 0 (2.2)

with boundary conditions:

P = © (2.3)
B < s

- + 4
at 2= 7
The ground state solution of (2.2) satisfying (2.3) is

—art
¢d = A. € T CD';'%% (2.5)

The charge normalisation condition for a single particle to be

associated with each field ¢, is
fia

; gd% (g - aig] - 2 (2.6)
it iy ]



From this condition we obtain IA,F = %F » 80 choosing the

phase we can write
-art :
¢ = -Le_ k3 con T (2.7)
U T '
The non-linear boundary condition (2.4) ean be used to determine

the length of the bag. We obtain

x-= ﬁ%? (2.8)

The energy, i.e. the rest mass, of the bag is given by

§it}
b¢“l+ |2
M = -§hd% §T (1% 1381%) + B3

2 ,i N B . (2-9)

Putting N = 3 and M = My, the mass of a nucleon, this equation

gives us the value of the bag constant B. We ignore at this

stage the fact that this model does not distinguish between the N

and the A . )
If we put N = 6 we can have a bag with the quantum numbers

of the deuteron with mass Mg = 2 J?\'—B-‘

The resulting binding energy is

AE = 2My -Mg = (2= 2%Mu = 500 Mev. (2.10)

This calculation can be done with spinor quark fields in
three dimensions. Chodoset Al. (4) find that M.okN&'and so we have

AE = (2-2*)Mu =~ 300 Mev. (2.11)

In the classical bag model these states would exist. It is
clear that they do not resemble the deuteron since the binding

energy is far too large and the radius too small.

This, however, is not surprising since we do not expect to
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obtain the deuteron in a classical calculation. The classical deuteron
would have the neutron and proton stationary at the deepest part

of the interaction potential. This would be at éhe centre, i.e. zero
separation, unless there is a hard core. Note that in a standard
nuclear physics calculation of the deuteron the hard core plays

very little role. It is quantum mechanics, not repulsive forces, that

give the deuteron a large radius.

2. A Quantum Mechanical Model

In three dimensions if we view the interaction as a simple
fusion then fission of two bags and if we assume that the fissioning
of the six-quark bag is a slow process on the time scale associated
with the motion of the massless quarks, then we may adopt a Born-
Oppenheimer picture where the mass of a deformed six quark bag is viewed
as a potential. In this way we obtain a potential.which, when the
relative separation R is zero has Vic)= sE = 300 Mev. At a relative

.

separation of R = 2Ry where Ry is the nucleon radius, the potential
is zero,
To turn from a classical treatment to a quantum mechanical
one we insert this potential into a Schrddinger equation and calculate
the energy eigenvalues.

In one dimension, if x is the separation of the centres of the

two bags this equation is

-l dY 4 Ve plx) = E g(x)

2(%) dx*

Using conservation of energy we can relate the potential'\/(x)

(2.12)

to the relative velocity LV (x) by
L (%) @nF - 4 (2)Erer + Ve

2

Uq,

o = v — WV (2.13)
> 2 (=) [ Ve i




t 1
From Fig. 1.1 the time taken for the two bags to pass

through each other is ey . This is related to the
relative velocity by
a
2 - § =
{+Vo -z 2V
- 2.14
S 2 | Vot - N ( )
—o ™

This gives us information about the "average", potential.
Note that the potential is velocity dependent., Since the deuteron

is a low velocity system, Vo <<1 | (2.14) simplifies to

a
_ dx
o FS [Ne (2.15)

In principle the calculation could be done for the collision
of three-dimensional bags. Unfortunately there is no simple method
in 3-d analagous to the use of constant length conditions in 1l-d.
One thing we can say is that if we regard a as the diameter of a nucleon
and consider a collision with zero impact parameter thén Fig. 1.1 must
| hold up to t = (f%; even in 3-d. This is because the points on
the spheres diametrically opposite the point of impact cannot know
about the collision until they intersect the light cone coming from
the point of impact.
Bo as a working hypothesis we assume that (2.15) holds in 3-4,

ioeo 9

200 = {Va ar (2.16)

where R is the spatial separation of the centres of the two bags.
To proceed we must know the shape of the potential. 1In
principle, if we could attach an unambiguous meaning to the position

of the individual nucleon bags during the collision, this could be
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determined from the scattering solution. However this is not
possible so we must guess the shape., We recall that the classical
solution corresponds to putting the particles at the centre of the
potential, in which case V (R = 0) would be equal to the
classical binding energy,

VE) = (-29M = 300 MaeV

Then parametrizing the shape by

V(K)*‘V(ﬂ(‘"%)‘LP S<R <o (217)

)
inserting in (2.16) and integrating, we find
( | — ) = ——-—_\._ or >~ _|-
P 2. J?__ 23 ) P a
We can now use this potential in the Schrodinger equation (2,11)
and perform a variational calculation of the binding energy.

-bR
We use a trial wave function ¥y = RAe to minimise

<Q“\H\W> - -\ 2 -

—<wws Vith respect to b, where = o V" + V(Rr)
bR .

and SYilY > = L ga‘dk Ate”

The resulting binding energy is approximately 125 Mev.
(The correct deuteron binding eneréy ( ~ 2 Mev) would be obtained
from this calculation if we had V (0) = 60 Mev.)

Now due to the greater freedom in 3-d it is likely that
f‘—f‘q‘, is not equal to half of the interaction time as it was in 1-d,
i.e., we expect that more can happen after this time in 3-d, than in
1-d. Thus we expect that (2.16) gives an overestimate of the average

depth 61‘ the potential. To allow for this we can rewrite (2.16)

as

2o = N § 1——_37%—\ (2.18)

o~



To estimate A\ we suppose that the average of the potential

is reduced by the same factor as A\ (o) in going from one to three

dimensions, i.e. by a factor of :f:—:—.).,: = 0'SS , Then we
obtain A = 1.35, P = 0.35 and the binding energy is
about 70 Mev,

Obviously the model as it stands is far too naive to give a

decent answer,

3. Quark-quark interactions

One obvious source of error lies in the fact that in the above
model the N and the A are degenerate. To break this degeneracy we
must include quark-quark interactions which in turn will contribute
to the deuteron binding energy. To investigate the possible effects
of this we consider a spin and isospin dependant interaction between

quarks, given by the interaction Hamiltonian

% (2.19)

M = 2 {A'SA-'SS + B_G.;.és + C(:b;ﬂ(ﬁu Q))l
where 4, B and C will in general be functions of the separations
of the quarks, but we assume them to be congtant over a distance of
the order of the deuteron radius.

We can calculate the matrix elements of this operator for

the proton, neutron, delta and deuteron states, denoted by P>

IN> , |6> and | D> respectively, using the wavefunc'tions (5):
P> = F\%‘ l'zp'm&p‘r + lpfmw +'1n.»prpr - PTpP¥NT — ptnrpl

— P¥nIpY — NIPIPT — NTPTPL - PLPT AT S

lN> = FT\E" \"7_n1p.»n1‘ — 20Tt pé -'ZP.LMM + P‘HNM‘ + Nt pr n¢
(2.20)
T APTAT ¢ WAV o DIATRY ¢ adnt p >

(&' = |prprpe D>
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vhere p and n refer to quarks and 1 y Vv denote spin up

and spin down,

Now the deuteron is an I = 0, S = 1 state, antisymmetric

with respect to interchange of nucleons, so

ID> = é{ IP>INS — lN>lP>’g

To calculate the matrix elements we nced the following results:

KPIT=x|p> = <Méx)T> = O
LPITXx InD = 1 | éx1dD 2 |
<n|Tx |[P? =<¥ 16| = |

<NYTx (A » & 161D F o

<ply I PP = <G Ir>=0
LplTyinD = <M 16, 14> = -
<t lTylp> = <y |6yl =

A
<ALTy InD =2 C¥ léytd> =0

(2.22)
<plTelp? = <¥16=12D = |
<PpITa in> = <1\ 62| VD = o
<n\‘tsl?> = <y loa ' ™D =20
<AlTelny = &4 1 &l ¥D=—]
And from these we obtain,

<PPIELE PP D = <MYV &b I = )

KoNIELTELIAND = KWL L bl D> = |

PRI TSl pad = <t et A E RS

. (2.23)
<nplTaTiAapy = Jri 606y ld TH = —| '

KPALTLTLAPY = <ribube D= L
<APIECELIPAD =<TE PGl (DD = 2



The matrix elements of H can be written,

<XIHIXD = BA X I ELTL XD + BB X b X>

vhere |x>

DiMIDS =

+ 3C X)) (BTN 6) IXD>

stands for P> | IND> o [A&> , and

2A Pl T PSININD
+ A KPIP> N | =0T IND>
+ A <P, NITOT) P, NS

4 BB PP ENIND
+ 3B <PIP>INLESIND
+ AR <CP,N| &b | P,ND>

1 3¢ CPITOT. & 6P OININD
+ 3C <PIPODINI] T T2 & 620ND
*de <PNITRT Scbe PN
-4dA < PNl TLEI(IN, P>

- A% < P)N| &6 I NP

— Ac <ION|T T 606 IN, P>

Finally, using wave functions (2.20) with results (2.23) in

expressions (2.24) and (2.25) we obtain
BIHIE N = 3A+ 3B + 3C

ZPIK I'P> = =3A - 3B + 15C

<DiH D>

and since H is SU(3) symmetric we have

<PIMIPD = INIHINTS

(2.24)

(2.25)

(2.26)



If we attribute the /\ - N mass difference to this
interaction we have

Mp=-Mg = 6A+ 6B~ 120

The contribution of this interaction to the deuteron
binding energy is then

AE, = 3-B3+22c

There is nothing more we can say without further
assumptions about the relative magnitudes of A, B and C. For
example if we assume that the quark-quark interaction is
mediated by coloured vector gluons, then according to De-Grand

et Al. (2), the dominant contribution comes from the spin-spin

interaction, i.e. H= 5B —é:» 8:.85
La%y
a,nd MA— MN = ()B
AE(NT = — B

This gives us a contribution to the binding energy of - 50 Mev,
so this interaction does bring our crude estimates much closer
to the observed value. '

We might worry at this stage about the effects of the
quark-quark interaction on the simple scattering picture of

fig. 1.1, This problem will be discussed in detail in chapter

four.

4. Conclusion

Quite apart from these "technical", problems of doing
the calculation in three dimensions and of taking into account
quark-quark interactions, our procedure so far is inadequate
at a more fundamental level. We have solved a classical scattering
problem and used the result in a Schrodinger equation to find the
bound states. This is unsatisfactory as the scattering problem

and the original free states should also be treated quantum

16



mechanically, i.e. we should obtain a wave equation for the
energy eigenstates directly from the original lagrangian. This
problem will be tackled in chapter three.

Note that in this model the deuteron will appear most of
the time as it does in conventional nuclear physics, i.e.
as a proton plus a neutron., The fact that it spends some
time as a six-quark bag is the mechanism responsible for the
nuclear force. Support for this picture comes from a paper by
Frankfurt and Strikman (6), who use the parton model to examine
the effects of small inter-nucleon distances in the deuteron.
From the parton viewpoint the spacetime picture of nucleon-nucleon
interactions as multimeson exchange looks doubtful at small
distances and they argue that at distances comparable with the
nucleon size the deuteron can be described not as a system of
two nucleons but as a system of six quarks (called the kneading
effect). The repulsive core in this model is a result of the
kneading of quarks from different nucleons and has the same origin
as the cutoff of transverse momenta for the partons in deep
inelastic scattering. They estimate that the probability of

the quarks being in a kneaded configuration is about 5%.

17



CHAPTER THREE

1. The quantization of one-dimensional bags

In the quantization procedure given in ref. (1) the deuteron
binding energy would not differ greatly from the classical value
found ih chapter two, section one, Certainly there is no way whereby
a term corresponding to a kinetic energy associated with the relative
separation could arise. This is basically'because the length of the
bag is not, in this treatment, a quantum variable. We propose to
modify the Lagrangian to remedy this "defect".

We consider first a one-dimensional bag, containing a single

complex scalar field, described by the lagrangian
%1("‘\

L= S [ e - &3 6.0

% (1)

We are not interested in the classical equations_of motion or

boundary conditions but we choose to impose the condition
¢t = O at =T, R . (3.2)

This allows us to put

¢(%|‘\'\ = Zr\:; nn D}/V\ %Lr(z-1°+ %) (3.3)

where 1 = Z2 - 2. is the length of the bag,

1

0" ZE + Z1 is the centre of the bag.

2

and 2




Then (3.1) becomes

<Plop> - <¢' P>

—
]

LI

- B

= 212 {/-\.:\ lir\ <emlRay -~ %‘:_ Am An L <eml(R-2) LD
n m

L

T o n f A IRRON RS - (%r/.i; A 2 <emifa>

=y Ane CEmI@N>  F AT AL A 47 K (2720 4D
% 3

+ M‘A:\ A.\-Q'Z'.; Kl (R-WHh> + D_"_‘.__‘rf.i A:\ Ané:' <‘(o'\l’€n>
e,

2
= AZ Am NI K f o> z — Ry
L
(3.4)
where j€a> = o o (-2 + %)
14> = %(_%—%u-;%
and the scalar product is defined by
e
<alb> = S dz a‘@® b)) .
- .

Ve define momenta /Tn, 7Ty and

in the usual way, Thus,

TTa = 2 {A:n<_e““\e“> -~ ’;—’{Af.é <Fmla-2)|en> - %En:.éo <lee.\>§
m -

7\}, y conjugate to An, 1 and 2

0

(3.5)

Tl = E'Z: {‘9:-: A;An <eml (WD -~ ‘%A’Mé,‘ LR 1€n>

+ 2““\1’!1":. B <@ D> + 7-_1_‘;‘_’_‘1A:“ An 2o <Al (=26 (3.6)

l‘b
TT;, = §§ “.‘gi\‘: Ar\ <e"\i(«>

4+ Lamn?
¢

- o AL Aa CEmiea>

A:n Ani((ml(?:-iu)l(.\> + ’va\'.'rzA; An 25 (,(m\_‘“>} (3-7).
22
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Now using (3.5) in (3.6) and (3.7) we obtain

EZ -“TA,\Tm<em:cz-m|€n> + h.c.g

A

(3.8)

=z:§}{—:\i7_rA,,7Tm Cemlfa™> + hoc % (3.9)

nwm

from which we see that 71y and TI'"% are not independant variables
and so the length of the bag is not an independant quantum variable.
At this stage it becomes necessary to make some approximations.

We make the assumption that, in the first few states, only
the lowest modes will be significantly excited and therefore we can
truncate the series (3.3). This has an interesting effect on the
structure of the equations. To investigate this put An = O for n>N

Then

@ N

.m).—zzg nTrAnTmen + kcg

' = ZN!i‘ %'%Annm)(mn + kl(l} Z: Eg =0T AnTTw Xenn  + k‘%

mel A ma=NH nee

(3.10)

where we have used the notation Xmn = < @ml(3-%)14n™>

However from (3.5)

n.'l.

TN ™ %Al—iéﬂ/\;x?m—iogk}r/\:<ﬁlem>

N N
T = -2 7 PTA Xom A<¥\€m -
£ per _Q"- AP P §| P > ‘ (3.11)




21

So inserting (3.11) into (3.10) we obtain

N N
R CRUN SR
PR g 2,7 |
+ 0 z zz gqu APA“XP"‘ Kmn + I'\-C-'%
W=+ A= Pl
P N"__b‘(
vaR Y U iﬁzg‘A;An <hplem> Xmn + hic
MENG nNYg P-..| ﬂ-
(3.12)
In the same way a similar expression can be obtained for 7F§°

These show that the velocities 1 and Zo can now be expressed in
terms of momenta and co-ordinates and so the lagrangian is no
longer singular (7). Thus we can continue with canonical
quantiiation.

The integrals in (3.4) are straightforward and we obtain

l_ = 2‘{ AnAn + Q(A Ar\"AAA") + 2 (HQ&I"L)AHAV\ M ibn“zA“A ‘I\:EZA:Ah’g
)Y a_ 29 22

L~ Tl
) nt-m m‘l.-“ LW\M\Y(M-'\\I @

+ T { SIom Al Aede —2mm A, - bm  pf g, dd. i
m,N
(man 0dd)

™t —n
ll\-u\ Qven (Mﬂﬂz (M-n\-'.

wEn

+ z‘ {n‘:-“j\m‘l A"\ An L« m{ A:n An‘é_ + Lo (mlent) A.:\ An it‘i
L

B (3.13)

To consider the ground state we truncate the series (3.3)
after only one term, and we write Al = X + iY where X and Y are real.

Then

L

L(%+v?) + _!5_7'(\+1\‘/e)(x‘+\/‘) + 4 (XX + YY)
) 2
(3.14)

+ T (KLY )2 - T (KTt -
u ™ () —BY



In this approximation the motion of the centre of mass of
the bag decouples from the motion of the fields, i.e. we have no
éo )‘( terms in (3.14), so we can choose to work in the bag rest frame
and put éo =0
The conjugate momenta are now given by
T, = 2% «+ L X g

TT, = _,Q\} + %‘/ﬁ:

T . ‘ ’ 3.15
T = %—,(“%)(*‘*‘l‘)f_ + L (xX+vy) (3.15)
Solving these equations for J'[, 1; and 4 we obtain
X = (‘*9- bl xravr T * be iavr 'Y b XLyt 9
v = A XY - - Xl T - v —_—
Y bQ Kayr 'R + (QQ b0 xl-\-\/’-) ‘7 b Xievt e
) = - _X -2 Y m o+ 42
-Q b Xty Wx F eyt Y b(\(l"'\n') »Q
(3.18)
where o = LT3 and b= 1+wY3
1+ nt/b
The Hamiltonian is given by
H o= %W o« YTy TR = (3.17)
Substituting equations (3.16) into (3.14) and (3.17) we obtain,
H o= L (mem?) ¢ — (ORI + XY TR, YY)
2 2 0(w Y5 ) (XY
w24 2. 2. (XT'Ta + YT, Ta)
(1w23) (XN ) (3 (X
. TE(xvyY) + BR (3.18)

9
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To obtain the energy eigenvalues of this Hamiltonian we wish to
solve Hq;n Eq».To obtain a wave equation we make the usual substitutions
Ty = ~4 2 etc., taking care with the ordering of the

X
operators to ensure that H is hermitian. To simplify the form of the

wave equation we use polar co-ordinates defined by X = & )
Y= DiV\é; . Then the Hamiltonian (3.18) can be written in
the form .

(3.19)
where
= -1y o+ ot
He ¢ v o BL (3.20)
= -2 1 L STIPVEN
Wow = Z oy -gwg (oh 8- 478 ] o)

a+weis)

We see that Ho is just the Hamiltonian of a two-dimensional
harmonic oscillator. The correction term H ‘ is positive definite
and so increases the energy of the eigenstates. We shall see that
typically it gives % small correction.
The charge normalization condition (2.6) now becomes
QXY =¥yx) = 1 (3.22)
This is a first class constraint (7) and is used to restrict the

space of possible eigenstates to those satisfying

<_Lp|&(iy-\;«x) ¢> = e

<G lig 1¥>= <uivy G.23)

It follows that a bag containing one particle will have wave-function

or
’

b (vot) = €Y ne) (3.24)



The lowest eigenstate of the Hamiltonian, in which the wave-function
is independent of e represents the "empty bag".
Ve now wish to investigate the consequences of this

quantization on the binding energy of the deuteron.

2. The binding energy of two quantum bags

We consider a prototype model of the deuteron as follows.
We assume our world contains two scalar fields 15‘ and éz
A bag containing a single quark corresponding to one of these fields
will represent a nucleon and a bag containing both fields will
represent the deuteron. The generalization of the previous section

to a world with two fields is straightforward and leads to a

Hamiltonian
)
M= Ho + M (3.25)
where :
- 2
o = (FRA08) + T (vt + B (3.2
e -2 - _ - ' [>—Lfr ired -1
M C\-m‘l{B){QEQ- %”‘g—m %NZET‘& z]u"."'”"t“ QS‘[ 2 "%" 2 ¥ 2
(3.27)

We find eigenstates by a variational calculation using
factorised wave-functions L[»'('Y, &) 4)( Q) where the q/( v 9) are
taken to be the eigenfunctions of (3.26). This turns out to give
a reasonable 'approxima.tion sinc e the correction due to Hl is small.

2
-tk

Ve use LHQ_‘) = ,QPe z (3.28)

where A and /& are variational parameters.

|



The "deuteron" state requires a single particle in each

field, so following (3.24) we take as its wave-function

“iD, -T2 D, Tt ~tal®
$p=meer metrer ﬂpe ¢

(3.29)
The "nucleon" gtates have just one field excited so
we put
19 Tl T w2 p 1a”
=T e’ e x e = /] e
Finally we need a wave-function for the "empty-bag",
=L ~Twt P —dad"
Y, = €' e=™ 7 o= (3.31)

[4
The energies of these states are given by E = SHe>+ W2

<H°> = <q‘| He , “p>
< L7

Now

= QW) ] (BL+ (W) [$lR) >
P4 TARAR N (3.32)

where n, = 1 or 2 depending on whether the ith field is in the ground
state or first excited state. This just comes from the spectrum of

the pair of two-dimensional oscillators in (3.26)

l -
To simplify M  we write m = Rews¢, Mz~ Romg |

l ) -
= =2 1> -1 - Lled _aed o
Then M (‘,,“1{3)[‘57. '-z'%ra -71: T [QSQ ?_K.)—IZ -%] (3.33)

{
and since ™ contains no derivatives w.r.t. 94 ,gz or ¢ we

have



26
<w>

)

< wIiHiy>
Ul

- $mar 40, wydw, 0, M ¢'HY
o dw, 40, wodw, 4O, 40 4"

S R*aRr di YWY
§R*r ol Y¢

(3.34)
i.e. the angular integrations cancell
So in calculating <™'7 using (3.34) we can use, instead of
(3.29) - (3.31),
~T p2 <% (0%
G o= ReE preH
~X R - gt
Yo = ReEF QPe™%
Y, - eﬁz‘:_gz ﬁﬁ e_o’i[l
(3.35)
Using (3.35) in (3.32) and (3.34) and integrating we
obtain, for \k,o ’
’ = T F{F“"\ + 4 o("t
<H >oo 143 P(}""l?_) (l WF)
<MeZeo = B [(Bo 4 7w o)
I (p¥1e) £
So B, = [l {Boc‘“" + 2 () o+ 5.*_‘__“1’3)«"1 (3.36)
I (p¥n) 1wy s
We now require %;:f = %%‘" = O to minimize the energy.
Now %g = O  implies that
AL
oA = B (\+vwuy)
et + M) (3.37)
“p
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\J\+w:s [ 4fs
- (3.38)

Numerically this is found to have a minimum at ﬁ =~ 1,2, when

<HD,. = 360 [wE

CHZoo = 315 B

<WM' Yo = OLS wB

Exactly the same calculations are used to evaluate the
energies in states ¢, and \-P" The results are shown in
the following table:

= /3 <Wy <My KW | E,

Empty bag Wo 0.57 1.2 3.60 3.15 0.45 2.83
one-quark bag d, 0.61 2.2 4.02 3.67 0.35 3.46
two-quark bag b, 0.65 3.0 4.46 4.16 0.28 4.00

All energies are in units of Jﬁ'

The X S are in units of S/

The last column refers to the exact eigenvalues of Ho

obtained by minimizing Eo = Bl + (ﬂ-*"t)% w.ret. 1.
We see that the corrections due to H' y 1., due to quantum
fluctuations in the length of the bag are of the order of 10%.

Ve assume that the observed wuass is equal to the energy
above the ground state (empty bag), Thus

My = <HDe = <HYD,

Mo = <HD, - WY,

If we ignore the quantum fluctuations in the bag length then

the binding energy obtained from the values in the last column of




the table is

AE = Wi-Mo & 004 ITE = £ Mw

Including the effects of quantizing the length, i.e. using
the values of <™2 obtained by the variational calculation we
obtain

AE = ™Mu-Mp = O

So the quantum fluctuations in the lengths have the effect
of reducing the binding energy of the two-particle bound state.
This is just the effect we were ;eeking.

There is one interesting consequence of the above treatment.
If our world contains k fundamental fields then the empty bag has
approximate rest mass Eo (as in the final column of the table)

given by

[

1]

BL + kr
']

= L (kTS

on minimizing w.r.t. 1.

The single particle bag has lowest energy,
(F)io .o = 2 {(raym &'

So if the rest mass of the "nucleon", is identified, as above,

with the difference (E).o = (E)s..o then it becomes

My = 2 (TT—(;' [(h«\-\\"l - b."l]

This depends on k. This means that, for example, the mass of a
hadron which'contains no charmed quarks depends on whether charmed
quarks exist or not. Whether this is desirable or not is, at the
moment, a philosophical question. If we do not find it acceptable
then some other method for subtracting the zero-point eneggies will

be required.

28



3. The method of quantization

VWhen this calculation was first attempted we used
the Feynman path integral method (8) to obtain a wave equation.

A wave function ‘-P("-*') satisfies an integral equation

P(xe,t) = gc\:q(i-) K (carte) i, t) Ylacsts)
-0

(3.39)
where the amplitude for a system to go from state a to state b,
K (b, a) can be written as a sum over all paths, i.e.
b .
S S{bal
K, = § ex D ¢+)
(=3
Th .
where S [bed = Sdi L(y=st)
Ta
FPeynman showed that in a lagrangian where =c only appears
up to the second degree, i.e. when the path integral is a Gaussian
then the kernel K is always proportional to fthe classical action )
i-e. ‘i S \. (3-40)
i K(ha) = Fu,t.)er "™
| Now our bag Lagrangian (3.1) gives a Gaussian integral and
| so we expected to be able to use this method.
The wave equation is obtained from (3.39) by considering
an infinitesinal time interval t,-t,= &€ in which case
x12) 2 Wh(=Za,W) 4+ € DU (AT
b)) = () W (7:t)
~ - D (x,.t S t
‘-"(-’fl)tl) ~ LP (%) h S%-C( 2t) + % b_;(«l‘l(‘xh \)
and Sf—\‘ > & Lc.\ (3.41)
: Inserting these approximations into (3.40) and (3.39), doing
the Gaussian integrals w.r.t. \-l and expanding to first order in £

(second order in W ) we obtain a wave equation, i.e. an equation

involving 2% Y& and 2¢
O WY du dt




Using expansion (3.3) our bag lagrangian is
Lo = Lo (A, An ) ’Q' ‘é)

and by the above method we obtain a wave equation for the bag
states, However the wave equation obtained is not the same as
that given by (3.20) and (3.21), obtained by canonical
quantization. Thus we have to look a bit- more closely at the
path integral method. One obvious possible problem is that the

’ . L 3
coefficients of % s v’ and & in (3.14) are not constants.

To see what effect. this has we consider a lagrangian.

L = v%sc?- + Ji{(x).él

and we ask under what conditions on {(x) will the path integral
method give the same wave equation as canonical quantization. In

the latter method

M s
Ty = frx)y .
o= 'i\Fv\.lT’: +z—€‘¢:)Tr;

So By = —-L N L '

2m  Sx? 2€E) dyr
is our wave equation

For the path integral, let

() = X geme) = Y
A < e
* e C I
ies - x(@E = K=& + ‘3—5

In the lagrangian we replace =) by its average value in the

interval and write St =T ¢ Lt

- T

Now £ = + S £ (etx) dt

So o= T(x59)

And " m 81 + 'E x
\ St = a2 = 1

30

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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Equation (3.39) becomes

o Am—s‘ ".L'E_h,l
Yy t+s) = A \dsdy € T @ T Y (x-5,Y-h ,t)
Pl ‘§” ' (3.47)
_wfw
?L‘)i- 5-2__%&; :ASdet\e?—i F 13 {q)_s —»‘L%—\é—'
| T\ ot + 7
| +S%&1+235m% b‘?&i%

and since is a function of X, dand € only we can do the h

integration to give
L s V32
D <€ - 8® L ’24' DY (248
W+i§; - ASdS {(4‘ Sb—;qé+sb_:‘£1) _;i +é ax‘l(f ) }

To obtain the wave equation we integrate and equate terms of the
same order in < , In order for the wave equation to be

identical to (3.43) we require

(i) JFA fds o (2" .

1

(i1) & A -_S’ds e"“8 s ()" = o .
(lll) r" A S ds e_ 21 g ('2-\{ |I'L :\E‘—\
. 2 A% 3/7 _ 1 €
(iv) &A gas 'R ( ) - i

One condltlon which follows immediately from these four
=\l
is that ({) must be an even function of & . This is
already enough to rule out the bag lagrangian (3.14). This has
a term '%_ X®  which is equivalent to having =) = ¢ in (3.42).

Then _ £

= 4 (=@ dt
§F=1 S

= 1 E(X~S+ %‘)d’t

= X - S/z

-\l

7 (2x = &)

Ul
> ()
which is not an even function of &

This explains why the path integral method does not reproduce




the same wave equation as the canonical quantization method

for our bag model,

. )

o



CHAPTER FOUR

In chapter two, section three, we saw how the effects of
quark-quark interactions could improve our estimates of the
deuteron binding energy, but we did not consider the consequences
of this for the simple scattering process described in chapter
one, To do this we now add an interaction term to the Lagrangian
and attempt to solve the resulting equations of motion. We shall
write down an interaction between scalar fields without involving
gluons or other exchange particles.

l. A simple interaction

The simplest choice is to make the interaction energy
proportional to the product of the fields in the overlapping
region. Although this is rather unrealistic it gives rise to nice
eﬁuations of motion and allows us to see what might happen. So
if qﬁ is the field of one bag, and qﬁz the field of the other,
we write

7£€: = A ( qé*¢k + ¢é+9é )
(4.1)

Then the total Lagrangian density becomes

L= BdtYd + W', - Al +dd) - B
(4.2)

The equations of motion obtained from this Lagrangian are
P = - A, (4.3)
3¢, = - A

v
The boundary conditions are obtained by requiring 0Nu =0

"

on the boundary, where NN = -2 (4.4)

33



v Y 4 ¥ _ AV
Now T™ ?bb,,ql\,\ ¢“ " %

O R N L S A M B AL A

[

S (3G + ded ) + B
+ A %Mv (d),"d)—,_ + (}‘; 4’:)

So (4.4) becomes

- LB\ - +
e 3BT B, + MWD TG 4 nNGIFY + 0, 2T,

— AT, - a4 TR o+ AT (d3d,+ 4,'d,) = ©

The Dirichlet boundary conditions are obtained by putting

7, = -2 nY ) 374, ‘-Pz‘\v on the bendary se (5

we now have -
—\Fl\z n” o~ l{ST-iznv + BnY + )\ﬂv(cbﬁd‘z*“'z* Cbt) = O

.

> B e IR = B o« A (did ¢4)

S %dIIG G, = —B - A (8161 4 D) (4.6)

Also, since 'b\'(t, and 'yd)z_ are proyportional to N on the
boundary, QS, and di,_ are conéta.nt on the boundary and
using the argument of Wu et Al. (3) (see next chapter), this

constant is zero, i.e.

(1)‘_ = cﬁl = O on boundary (4.7)

We now consider a pair of one-quark bags moving towards
each other and coming into contact at ¥t = 0. We wish to solve
equations (4.3) with boundary conditions (4.6) and (4.7) for

t > o.

The field of a stationary bag in its lowest excited state



with end=-points < -~© ,Q

is given by
-ikt .
¢ = JJ;-T- S bimkz

whore &

:;—r:[-“-_]sﬂ
—ak(t-3) o R

= b A [T ey

where A=2"-‘Jﬁ—r.'

(4.8)
Taking a Lorentz transformation from the rest frame S

/
to a frame S moving with velocity +V~ with respect to S we
obtain the field of a bag moving with velocity ~v~

in the lab
frame (i.e. the centre of momentum frame)
So 2 = ¥Y(r-vE)
¢ = Bt ~-ve)
or 2z =

¥(2'+vt')

(4.9)
+£ = b’(tl*’\r%‘)
D> 4~ = S(~-v)(x'-2)
t+2 =

i) (H+ )

And so the field of bag 2, dropping primes on the lab
frame variables, is

—ak3O-VY(1-2) <ak¥ (14v) (A=)
b= Aje _ o g

Similarly a bag with end-points at =2=© -2

(4.10)
at t=0
boosted in the opposite direction is described by
QS Ag Ak ¥ (1) (e-3) —ak¥ (i-v) (R4 )
= - (4.11)
Transforming- to light cone co~ordinates
< = t+2
>« = t-2

(4.12)
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and writing w = kR¥(+V)

(4.13)
—AWX -;‘w’t'g
we have 45. = A ? = - &
-awix -AWT
é= A -
(4.14)
The picture we have is At //nT_
<~ s Ag . T=O
A i " BC : X o
<D ' T=Uvw
AD . X = v/,
-— >1
Fig. .&-1
The fields (4.14) describe the situation up to the lines AB and
BC. For the square ABCD we want to solve equations (4.3) with
é - A ?e-kwx -]%
. .
and
¢ =0
- AWT
$.= A f ) e .g on X =0
(4.16)

If we define

1o

$+ ¢,
o - d-d ©(4.17)
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then equations (4.3) become

2P = -AE _
P = + A g_) (4.18)
l.€e
atﬁ__ + L@ = 0O
O DT 4
. (4.19)
T2 _AQ =o
DxDT g
with _
§ = Y = ¢. o~ <=0
3 =-® = ¢ on x=o0

Equations (4.19) are solved using Riemann's Method (9) which tells

us that given @ on =¢x=¢© andon —<T=0O

the solution of XE , LF =0 is
DO (19
<« x
P, = [ R .+ g[k.?_ﬁ] d< + g[ﬁ 5—5’5,] dx (4.20)
=0 _T J, ® =0
<zo o % =0 o -
where the Riemann function R (x,©; >, T') satisfies
R, AR = O
2 DT &
with R = 1 on T=<x' (4.21)
R = 4 on x-= ;r_’
To find R, let
la/ = JC—’CI
2, = t—t’
then (4.21). becomes
R, AR = O
oy Dk ¢ (4.22)
with R=1 ony=20
R=1 on \3,-= 0

(4.23)
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Taking Laplace transforms of (4.22) with respect to y, we get

ée'P‘isé_\;%d‘} +_>“;E =6
> [Fen+ plwery 127 -0
> P%—.; +%E =0
= R = ¢ Ei—é%‘y
Butonblno; Z = Se—mdb - L
> <= %.

— - Aly

and the inverse transform of this is R = So(VA Wy )

se R(ET;ET) = o (R=tee))

(4.24)
So the Riemann function for & is
R, = 3Jo ({aE=nx—<)')
and since Sol(+x) = To (=) the Riemann function for P is
R. = T, (A=) (4.25)

Now (4.20) becomes

~

' x - t
Tl = awA §ad €™ 3, (BxGT) - awh (g€ 5, (e
e °

= wA €T T (6X) - iwAe™ 1, (x,T)

(4.26)

where

Q .
T, @by = Sds @™? 5o (V3bs')
o
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Similarly we have

Pl = -awA€ I (mx) —awA e I (1T)

(4.27)
where  *- (Q\M = g ds e-‘wsIo (\J st)
o o R e
To calculate I, (Q\b) we use Jo (=) = Z' ) ('i)
R=oc k!)*
i.e. (
T, (ab) = > (—l) (M))kg sket™*y (4.28)
N U;'\‘
Now kol
k_iws - ‘“"'\ a® _ \z N hl‘.!] - (= k.,
g Se dS = [ (.u»)"- . +(mz_H Q_w)hu
_ .woa Z “" k! ah'“ N El)h k!
aco  (E-n)! Qw)““ (4_‘ w“)'“'

wa k-n k. o +L\L>h
S T by - @Y ™ o (4] -~ 7 (+2)

ko azo (4w)™' Rt (h_“y oo k. [ 2w}t (4.29)

and similarly

. - “ Ab)
AW (, .)n R Qk ( M)>
b * — -
T8 \Lz':o?o @™ ri(een) 3—”; 'D G (4,30)
Substituting these expressions into (4.26) and (4.27) gives
us @ and & y- and hence 4’. and ¢.,_ in ABCD. We now assume that A

is small and expand everything to first order in A So

p FV AWQ
T, (ab) = ;.fr' (qu‘ 1)+ %‘ QT»L7’~ (e**-1) - TL i%f
—M L e:‘wq_‘) + M a e.wuq (4.31)
« Quwyt G Aw
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D Tlx)= AfS™ e+ M (- €Y e (- e )z

aw

Q(‘C ,x\ - Aze;:‘wx_e—kw‘t_,zﬁg +M-) gx(|—édwt)+t(l _e-'th)g —A_AE'-_EEZ

waw
_ (4.32)
> Cé(_’t;ﬁ‘) - A(e-lwx_.) +‘:§_§rx (‘_e—.;wt) _ (V‘:‘tnf
) = - -4 X _)\A - - A\ X (\A <
Glodz A (1) Mx (1 - &™) et
(4.33)

The expressions (4.33) tell us what the fields are in
the region O <> < vy

o €Tt < Ut/fur

We now wish to see what happens for T > &/ i.e. in the region
beyond line CD in Fig. 4.1. We know that CZS' and QS,L must be zero
on some line x:x.(r) passing through point C, i.e. the point
CQDC.) = (7-_3 3 0) . We can make ¢‘ and ¢7_ zex.'o on this
line by a suitable choice of 28 and 2 on = = 0 using

T DT
Riemann's method. We can then use the boundary condition (4.6) to
determine the slope of =, (T)

On T = &/, we have, from (4.32),

§ = A1+ ) (e 1)

"

2awr

\

!

H(l~ﬂ (e‘*“”‘_\) - (\A%x

2iwt

(4.34)
Now Riemann's method tells us that for

O<x < N >7_:"r we have




a1
&= {Tmadl, o ¢+ § (e 35] de
- od "Lcw,w
> = = dwA (1A e 1, (x, vg) +  flnx)
P = -awA (1 ‘;‘\T‘,,_) e (x,T-&) - )Agsc + 9(n=)

S T = A (-@™) - M (1) 4 Mz ieI) - o)

«
m = —A (‘_ -.wuz) +>\At(l wa) _[2-‘7_ 'L‘:’) + ‘d('l')x)
(4.35)
> ¢ = -A(1-e?=) - 4\A£‘_x + F_;:&
$. = ~AT((-em) M + £9 (4.36)
\ So £ and g must be such that:
(a) $9 . -2 =o on T= Wi
2
(v) ¢I "d’z. = © on e = X(T)
(©) WH+a) = O to o) (4.37)

N(£-9) = -(\("’"‘*.83 o o)

Using the fact that X, (% )=©O we see that these

conditions are satisfied by

| oawm®) 4 Aw A,
£’_fi‘a—_A(le )+,.Llwr’c(")

-AWQ(I) <) €,
‘('_:La' = >‘A Tll") (l ) - fLu/i <) G )

(4.38)

]|

> ¢
$>

A (e-:mm_ e_;\wx.Lﬂ) _ )\nzIw (x _x.(t))

-AA %TU -.sz) T‘lx)(l -4w=c.ct))z + ,\A (rx -q(x)x,(r))
LLJ;w . 19)




Now using (4.39) the boundary condition (4.6) becomes, to o) ,

lb¢(|7_ = - B
i.e. I = -iB ' (4.40)
h
B P A
Odx T ST

From (4.39),

at L swAe™® _ AA'T

D 2w

b¢ . . d *;(\A)I|Lt) d

2L = LJwA gxy AA T Gy

o> * a< e M W ST
So on o> = > (T) we have

I = —ml;{_?mr* ~ z,\nlm‘ac'%. Dim wx (T) (4.41)
Using (4.8), (4.13) and (4.41), equation (4.40) becomes
-%B - % {"?E%' B —%A o{mwx.tﬂg
-1
Cow AW )
> 3__3:___ — %’; g\ + £ w DW\wDC.LT\g
o C\I'z_bi‘{l—.é..‘f’_'W\' ,'t.g
a< w B w wx, (%) (4.42)

and this is the slope of the boundary of the bag x =,{x)

The zeroth order term, 3}_' 2 W

= v Just gives us the slope

of the boundary in Fig. 4.1, i.e. with no quark-quark interactions,
as it should. This is a good check for the above calculation. The
first order term adds a small oscillating motion to the boundary.
We can inteérate equation (4.42) as follows:=

we have

é_‘: ﬂ o(A
d< (" ¥ (\

> (=) = %‘J‘t + o (™)

S A wxl(t) = Aoév\w’t + O(z\"‘)
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and putting this back into (4.42), we obtain

Cﬁ:ﬂlg|~£\_u'odww't’g 4
dx w B W :
)
> X = w4 %k"__‘cmw‘t + constant
w

but X (W) =0. ) 80

:C‘('T)= a\,‘_}‘(_—c-‘lg) +% &L(mw‘t - u:s'Zlel) (4.43)

correct to O (A)

We can do exactly the same calculation to find the motion of the
bag in the region 3 > W/, |

We find that the boundary T = Ty (x) is given by

T, (%)= wl f - + A g’ oW - @ rw
o SG8) v 3 wx( = ) (4.44)

Ve can now extend Fig. 4.1 as follows:-
At

Fig. 4.2.

B el - m———D ‘E

- /\\\/\,

We do not know at the moment whether the bags splii_'. up
again or not as they did in the simple scattering picture.

Note that at x¥t=%f , $40 and &, #0 80
they cannot split at this point, which they did before this
interaction was introduced. We might think that they would split

up again at a small distance, of order A , from ar.:'c-—‘l:“;



So we put x = T +€,
W )

T=1T + 2. and require ¢ =¢,=0

using (4.39) with (4.43) and (4.44),

i.e.
- AW, <

O = A?e _‘3 _Anit (QJ-\— ic)

© = -M -Awt AR /T )t

iR L B N

and this implies that €, 0= 4ATT y SO We

cannot satisfy the boundary condition ‘b. = d*-;_ = 0
at any point near T = = v

If we analytically continue ¢, and ¢.,_ given by
(4.39) to the region = > Urlw we do not come to any
more zeros of QSI or d),_ so it seems that the bags cannot now
split up but will oscillate as in Fig. 1.2. with a small sinusoidal
perturbation of the boundary. So our interaction (4.1) forces them
to stick together. We will now consider a more realistic type of

interaction.

2. A current-current interaction

The standard way to write down an interaction bhetween two

charged fields is as a product of currents,

H, = A3

* + “3>
where J, = A d). ¥ é,

. A fdteg - el
So the Lagrangian density becomes
2 o= wadtdrg v PG -B
s AL FET Vb EE, - b vt
- B ondh + do 3G ]

(4.45)

(4.46)

(4.47)



The equations of motion obtained from this Lagrangian are

“X{2AMETY - 24 0d e+ 4o TG -4 ¥l

o5
B
I

05
B
(1}

- N[ W - 2 b, - KN -, W

(4.48)

and the boundary conditions, obtained as in the previous section

are,

, (4.49)
aﬁéi 0‘“¢| =+ b)l Qb‘“¢-‘ A g‘éf‘Af bﬁé a‘“¢z e ¢1+¢4 )Mdcfb«¢z

- Sud M f 4B ULIE T + B = o (4.50)

The equations of motion (4.48) cannot be readily solved
as in section 1, but working to O(A) we can put the zeroth
order solutions in the right-hand-sides of (4.48).

Note that in one space dimension the Lagrangian density 3(. has
dimension (mass)z, so the field ¢ 1s dimensionless. This
implies that the coupling constant A  is a dimensionless
parameter.,

The zeroth order solutions to be inserted in (4.48) are

the solutions when there is no quark-quark interaction, i.e.

(6.“" = A, (e_,lwx_'3

¢1(ﬂ - AL (\ - e—4Wt> (4.51)

for O <> < Wr O < T < TN

1

Here |AJ* = |Aal? but A and A, could differ by a

phase gso we keep the label on.

Putting (4.51) into the right-hand-side of (4.48) we




obtain

FD - L ZAWRA AR Q-;Mx(l ~ wowT)
Qx0T

z _.
ﬁ_‘. = 2ZAw?A= [A.lze Mt(\ - c.mw:c)
VST

These equations can be readily integrated to give

¢

~adw g e (x
kA .

-hoinwe) 4 (=) + gilx)

¢,

—A)
adwp e T
T

(x —d.)m'nwx) + 4 () + 3;_(9':)

where we have used JAl®= [Af = L

Now we require
qb‘ =° on == 0o
¢1 = A. (\ - e—-wut) ) =

é. - H. (e—‘lub(_| )

on T=O
¢z =0
and these conditions determine ¥ > F {2 and %=
and (4.53) becomes
95‘ = A.(G"‘wx.—\) - J\r\?t-%_ A, {e"‘wx—\>(-r. -4 povxw't)

qsz =

A-z..(“‘ e—»‘\wt) +""\%‘, Ar (e-—'\w‘t_ ‘) (:_c - a_)oimuux )
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(4.52)

(4.53)

(4.54)
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Note that at x:t:'%_‘; , Cﬁ,=¢,_=0 and
that boundary condition (4.50) is also satisfied and so the

bags can split again at this point.

On T= 7.1‘\[w'

¢, = ATE™ 13 (1-ad)

¢, = ©
A
(4.55)
So the equations of motion, together with the boundary conditions
(6. - ¢1 = O on = = ®, () are satisfied for T™> 2&;
with
. -awx —AW X, (T)
¢ = A(1-44) (7T - e )
¢, = © (4.56)
So now T = - w? A7 2 e sl - (T)) d=x
dT

and boundary condition (4.50) gives

— - - AXQ
\ B = \\B w‘
do . W (4.57)
b I_ —_—

So the boundary now is exactly the same as it was without quark-quark
interactions. The two bags just go through each other as before. The
only difference is that the amplitude of the field is chanéed by a
factor (1 =4A) o O . This just corresponds to

a change of. phage.

3. Conclusion
We have tried two possible types of interaction to investigate
their effects. The first type is not really an interaction in the

usual sense as it just corresponds to an off-diagonal mass term in
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the Lagrangian density. So although it gives an interestiﬂg:
result we do not take it seriously but just use it to show
how the calculation can be done.

The second type of interaction considered is possible
as a model of a physical process and so we do take it
seriously. The result is surprising. It says that when
quark-quark interactions are included in the bag the time
taken for the scattering is not changed. This means that the
"average", potential as in equation (2.16) remains the same,
even although the classical potential, the potential at R = 0, is
greatly effected by the interactions as shown in chapter two,
section three. This will be discussed further in the next

chapter.
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CHAPTER FIVE

We now discuss the results of the previous three chapters
and see what they imply about the nucleon~nucleon interaction.
We have seen that with no quark-quark interactions the

potential will look like
V(R)
I .

and will give a large binding energy for the deuteron.

The effect of quark-quark interactions is to lower the
classical binding energy -\J(o). The size of this effect depends
on the model used., For the most general type of interaction
discussed in chapter two the contribution to V() could vaxry
over quite a large range. We now consider the size of'this
contribution in two specific models; the MIT model and our model

of chapter four, section two.

ls. The MIT Model

In this model (2) the rest mass of a hadron has contributions
from,

(a) the bag energy %71‘233

(b) the quark kinetic energies

(c) the first order quark-quark interaction, and

(d) +the finite part of the zero-point energy.
These are calculated as follows:

(b) The strange quark is given a mass WMs %o break SL(3].



Solving the Dirac equation with the bag boundary conditions for a

static sphere, the field energy is

= N0x o Ng g + X
B = R eIt
where n = number of non-gtrange quarks

n = number of strange quarks
=<

| —wmR - \Jm"-ll‘-rx‘-

and . is the solution of tan x =

We write this contribution as Eq = T x(ma)
TR
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(¢c) The quark-quark interactions, mediated by an SU(3) octet

of coloured vector gluons, is calculated by analogy with electromagnetism.

The "electric", part of the interaction is long-range and is assumed
to be already included in the phenomenological bag term which gives

quark confinement., The "magnetic", spin-spin interaction is given by

AE = 7, &E; :
Aty
where a
@r o =

= 2 L as L (mi,m
3T R A“_(‘)Q

and the (Jas are known for each hadron using group theory.

(d) Since the fields which occupy the hadron are quantized
they will have a zero-point energy associated with them. Since this
effect is divergent a cut off is introduced and the dependence of the
zero-point energy on the cut off L is investigated. Cut-off

3

dependent terms turn out to be proportional to R” and are used to

renormalize B, Cut-off independent +terms are found to be of the
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form -~ Za/g wvhere 2o is a positive constant which in
principle can be calculated, although this is very difficult
for a sphere,and so 26 is left as a free parameter.

So the rest mass of a hadron is now

= S‘— R‘SB _L{._ (M 2 1 T a .
™ 37\_ - L 2. +Z;.'I(m) + ?_?}%Q.J I (ma,m;) } (5.1)

The non-linear boundary condition exists in order to balance the
pressures locally at the surface. This is equivalent to minimizing
M with respect to R. This leaves four free parameters : B , <o,
M, and %z/,m. to be fitted to the data as mentioned in chapter one.
The energy of a six quark bag can now be calculated. The
colour magnetic energy for an n-quark colour singlet nonstrange

baryon is

5E = g E[ne-0 + IEW < 3z@a] A (5.2)

For n=6we canhave ( &, T ) = (3, 0), (0, 3), (2, 1), (1, 2),
(1, 0) and (0, 1). The lowest value of M occurs for the case I =1 )
I = 0 which are the quantum numbers of the deuteron, and it turns
out that Mg =2.29 M, y so the deuteron is unbound,
classically, in this model.

Johnson (10) then envisages a potential which is + 0.29My at
R=0, zero at R = 2RN and has a region of atiraction for R <2R'N'
The region of attraction exists because as two three-quark.
bags approach each other and begin to overlap they lose
volume, and thus the energy decreases by B8V . If this
region of a.%.tra.ction could be shown to be deep enough we would

obtain a potential of the form that is usually associated with the



0
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nuclear force, i.e. \

2. The one-dimensional scalar model

We now calculate the contribution of the interaction (4.45)

to the classical binding energy -V(0). This is given by
o2

oE = SO\* 7<‘Qm-r.
-2

If we consider for simplicity two one-quark bags fusing to give a

two~quark bag this becomes
22

BE = =N S{HE%EYY, - 6, Wb - A EUAVE
Yy - ]
+ CA éf. B}* ﬁ*&‘ﬂ; }

(5.4)
To O@) we can use
¢. = A, e—.\w‘\'— co>»WR
~awt
fom P& cout (5.5)
where W=7 , IA = A TJF and L= ‘)’t_g is

the length of a two-~quark bag.

Inserting (5.5) iﬁto (5.4) we obtain
k3 .

AE

-A S W0 2eotwz + 2aofwi - 2 codwi pntw
-Qh-na

Nt L
-

But in this model Mn = 2JTB So

AE = A M
a{z'm™

ib

A. SO Ma,
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So the interaction, calculated to OCA)  has the
effect of adding 50\ Mev to - V(o) which was -500 Mev.
Obviously this is not enough to give the large soft core of the
MIT model, which would require A ~ I1O. '

However if the result of chapter four section two, that
the interaction does not change the time taken for the scattering,
could be shown to hold %o any order in A , then as — \/{o)
becomes positive the region of attraction would have to become
deep and we would obtain the standard nuclear potential.

It is possible %o check this point to O(AY) by
inserting the solutions (4.54) into the right-hand-sides of

equations (4.48) and integrating. This has been done and we

obtain, for © s X = I osts_g‘ )

¢4 = A (e--\wx _l) = '* AA; (E“‘”‘”‘_ )CT -Lowwo'c)

- XA (e (T - fmiwe )

'3 . ) T _=AWX '4‘
+-‘:—)\ A,w {‘-\;mwx-'%x+are, (l g{l@wc—ll

and at the crucial point o€ = T = W we obtain @&, =0,
We can also show that Cﬁt = O and that the other boundary
condition is satisfied +o OCA?) at this point. This means
that the bags can still split at X =T= Wy and we
strongly suspect that this holds to all orders in /\ . So
in fact this model may give the desired form of the nuclear

potential.
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CHAPTER SIX

l. Boundary conditions and soft bags

In the original bag paper (1) the boundary conditions for a

bag containing fermion fields cannot be obtained directly from the
Lagrangian -, -
L= LaG¥o2¢y -mPy -B

The problem is associated with the fact that only terms
linear in the derivatives of (-P appear in the Lagrangian and is
well known as the problem of solving the Dirac equation in a fixed
finite region. This problem is resolved by first allowing the
field to permeate all of spacetime and then proceeding to a limit
in which the field becomes confined to the required region.

This method has been used by Wu et Al (3) as an alternative
derivation of the boundary conditions for a scalar bag. In fact
this method has to be used to obtain egn. (1.3), i.e. =0 on
the boundary, as the standard method only gives 95 =" constant

on the boundary. The method consists of considering the action

S - é%dv sy el + dV{b»fib“@ ~viga (6.1)

nc\-—bos
obtaining boundary conditions from it, and taking the limit ™M-» o0

Variation of § by changing ¢ and & and keeping the

boundary fixed leads to

' =0 in bag (6.2)
F+)g =0 outside bag (6.3)
and Ne'd = nE on boundary , (6.4)

Continuity, i.e. ¢ = _é- on boundary, together with
(6.4) gives
b,u56 = bﬂi on \)ounéo.r\/- (6-5)



Variation of the boundary gives the other boundary

condition :
M’ -B = %IPT - MT'E  6.6)
Putting (6.5) into (6.6) we obtain
|¢1* = | B = r%‘ on boundary, (6.7)
When M is large the solution of (6.3) can be
written P = e":‘
where [ 2.3 1% ~ = 1
Thus | W&~ —M*(T)* (6.8)

The boundary conditions in the limit ™M-~» o0 are obtained
from (6.7) and (6.8), i.e.

¢=-O

[l = — B on boundary .

A "soft", bag is now defined to be an extended object defined
by the fields which are solutions to (6.2) and (6.3) subject to the
boundary conditions for finite M. So the field is ne longer zero
outside the "boundary", but will fall off exponentially.

A static soft bag with "end-points", at == TZ  ig

described by the fields,

¢| = o e-awtep% : 2 <-8

¢ = @, = beM gty -£cz< % (6.9)
by = e Mte : Lz

where  pr_ a1 (6.10)

and we assume ™M, 1 S>w,
Continuity of 9‘ and ;._?; at 2=t gz' gives
(al* = |d1* and b1z = |<l®

The mode with lowest energy is given by b = ¢ in which case
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a = d-and we have

qS- O\e—awt Ne
=

e
¢, = A €™ wmwe

(6.11)
d); = o e—»’suﬂ:e—f‘%

The boundary conditions

it = B

(3
Wl = -B + 2BY ar = =tly
and the charge normalisation condition

-2 ot ) > ” '
S8« 4 ( (e -gd) «4 (e -€6) = 2
o2 -0l Ly

can be used to determine

‘q"l) IAP- and

in terms of L

2. The interactions of soft bags

We now wish to consider the effect of another bag

approaching the first bag (6.11).

We work in the rest frame of the first bag, bag a, and

obtain the fields of +the second bag, bag b, by Lorentz transforming
(6.11).

If bag b comes in from =2 = + o@ with velocity — V-  then
the part of the field which first interacts with bag a is obtained

from boosting ¢|. in (6,11) and is

¢b - - eA-ﬂ-‘b eK?. (6.12)
where .
aSL = adw v/

6.13
K = a¥vw ¢+ 37 ( )

and C depends

on the position of bagbat T =©

When the bags are a reasonable distance apart the effect

of bag b on bag a will be small and we assume that we can write
the field of bag a as

¢= Y

(6.14)
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will have to satisfy
(24P, = O
Yy =©
T+ ™M) Yy =0

Now \P

2 < =%

2

S%SQ/Z
L <= < end-povit of bag b

Solutions are

At K=
$= he e
SL(Er= ASL (R —%)
4’7_ = B, e (er=) + B- e
where 'b3 depends on where bag b is at t = 0
Continuity of lP and g—g_ at = =1%_ gives,
- K. ~ASLRY AR
b.e + - B| 2 + Bz
—K2 ; ANy
K b‘ eK (X - 4_9.B|€—Anuz S e
- ~an iz
b!‘e\d'?. + b,,_e K21 - Ba e—tJL Uz - B’L e 4 .
KRl ~KRh antiz . -4tz
\ l(b3€ _Kb?_e— - JSLB|Q —A-Dl B’L
or
S 1 Rely - KRy 1 g i [ o ]
e e - (& |
i —ARR| L eMJlﬂ-lz X e..\th o B’z . emh o
= 3
ARy - lh o _e‘m‘ b, {
et ol ~v i b, K
L it "(6.16)
and this can be solved to give Bl’ Bz, b., and 'b2 in terms of b3.

To see what (6.14) implies for the motion of bag a, we write the

end-point of a nearest to b as

T )2 %+ DR (¢) (6.17)
we know that ’ d);l ‘:’-:1{1. _S\—"- (6.18)
and we use l ¢3 ]: s = to find &%, (6.19)
Now - (6.20)
| = [A2F + 22 goYy + O(bY)
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ad (O = &N .+ A2 I3 141 ot o (82d)

*=%+011 2=8

= 2+ LS l,%
(6.21)
So (6.19) becomes
B B g a
o T ‘ M + b%-,_[%%"p;';[‘% ¥ z[&(ét q;]%l%
ory
ta
A2, = T~ < [E“QSs 3]1=(’h
. (6.22)
S LA S P

Using (6.11) and (6.15) this becomes
ey ARt ~K2 Kllz
A2, = € 2‘1{2 e ( ‘b, &M afbse )

P lea]*
. _ b. oKL
Inverting (6.16) we obtain b, = B3 & , 80
(+w) il (5-1) wt
it ALE=1), 4A¥Vvw
br, = %2€ <) Ra_gc\;‘b e e Y 1
M lonl®
: (6.23)
St
= constant x & x oscillating function of t |,

So the end-point 2 =2, oscillates about 2 = !:2
with increasing amplitude as the second bag moves nearer.

This method is only valid for small 4’ ; 1.e. when the bags
are some distance apart, and so is not very relevant to a discussion
of hadronic interactions.

An alternative approach consists of writing the fields on

either side of the end-point =2 as

b -«»sz) 4w (t-32) JU+43) an(+-3)
¢ = ¢4’ = VA€ et BaC | 2s2
t -, ARt
d)'l_ = ¢1q*¢zb = e—“w e b e e.'ci ) 2 2%'{ (6.24)



59

where L and K are given by (6.13)

We use initial conditions

?.7_(0.) = O '
2.(6) = © , (6.25)
b
and continuity of &%, ¢b, %%‘q and 2_? at 2= 0 gives
As 30 2)
A= g (1t 5)
- K
B = "zi(l +aw
(6.26)
B, = %_U‘ :léo)
Soat (t,2) = (o,0)
96,(0;") = A+Az 4 B + B, = o+ b
é' (0,0) = aw(A+ALY+aR (81+8e) = awa+atb
w (2
d)' [O) o) : WA AL) -Jfl(@"i'sz) « -awt- bsL ' (6.27)
The motion of the end=-point fof small t will bg given by
2 () = ufo) + tRofo) ¥ AL+ Lo
L e (6.28)
~ -‘7: tl T, (0)
2
Now we know that | & Lm,“ o - %1 and we
wish to find 2, (L) such that lqg |2 - B
=2V M‘L

We can write, to OCtY) ,

e = 1900+ mlerd, « t[Rior] |+ 42t Baer],

f T, [b%t Mhl’o + Lt [E%,I‘i’("].,,o (6.29)

and using (6.28) we see that the fourth and fifth terms are of

higher order and can be dropped. Also, becuase of our initial
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conditions (6.25), we have

[gt lcmt]“ = o .10

]

and so (6.29) gives,
EA Y (L
P “ ‘
oY (¢ ]o,o (6.31)

To evaluate the expressions in (6.31) we need one useful

relation obtained from (6.30) :
[2ter],, = o
> 2Re [95'9'5]0'0 = O
> Re{ (@ib)*(iwa +ibYL = 0
Without loss of generality we can take a %o be real
and write b= by+4ib;
> Ra §aro(betabi) s iwon (be-ibi) 4 an bt ] = ©

and using (6.13) this becomes
Qb,,.x\rf‘— Ql)ﬂ KW + a\)‘;w + IInI"X\r)" = O (6.32)
Now to evaluate (6.31):

3 |l

DL z]o'c = - 22& {(Q‘*’b} (awz* \:Jl'z)*g + 2 Iaw+ BJ)- rL

¥* [(qb,r+ b1 ) (wt- v ) + 2ab vw)l - |L|z[w1*\f7f'1)]
_Y oo (why + ¥ b))+ abew?

but from (6.32) C\\),v v {bl"‘ = cxl:;.uu - ob.wur 8o
v a7
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g‘:-"- l?‘t]c,o = 81 [Q'T\:.?_‘\ei + QLJ\“'"“‘P - |b]z (Wz-t U"U"-‘)]

- Y [c\b;\w\rf' " gé,;r‘_@" - 7-45,00"]

+ ob,w?
(6.33)
Similarly, we find,
2 1' = QL-AN - QLN \ -] :
% |l ]o'o = [.74_ + &)+ ab, (6.34)
1)
so we can now write down 2 (o) although it is not easy
to see exactly what it means. However in the high energy limit,
i.e. large ¥ we get
" 1| abiw? . LN PO L
2,0 = ¥ [? + abuorl bt (wtsvir) |
b, 2
y - [ QDo 4 (atx ab, ) 1 ]
and using " S>>wr this reduces to
w ., T .
2. (o) ~ k-2 's lb\ P 6
. q'l A ab"' ( -35)
Now we know that to satisfy the boundary conditions we
need: -25'd
\a]?—: ﬁ_ and ]\;\1 - B
rl\‘l Mt

where d is the distance between the bags at t = 0.
Thus [b] < & and so ot +abs, >0 and hence "_:-z (0)
is always positive.

This suggests that there is an initial attraction between

the two baga.

3. Conclusion
If we choose to believe that the MIT bag model arises as some
limit of a more fundamental field theory, for example Creutz (11) '

has shown that the MIT bag can be obtained from the SLAC bag in this



way, then in this theory the hadron will not have sharp boundaries
and any calculation of interactions will have to take this into
account. We have seen in this chapter that this is unlikely to

be easy.
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CHAPTER SEVEN

l. Summary
We have attempted to find out whether or not the MIT

bag model is as successful in predicting the scattering properties

of hadrons as it is in predicting their static properties. Although
we have worked mosély in one space dimension for simplicity we have
found that the model does possess some of the required properties.
Using the deuteron as the canonical example of interacting nucleons
we have shown that, taking quantum mechanical effects and quark-quark
interactions into account, the bag model can reproduce a nucleon=-
nucleon potential of the required form. We have also tried to make
the quantum mechanical treatment more complete and have shown that
qualitatively this has the effect of reducing the binding energy as
required. Finally we have founé that for bags without sharp boundaries
it is'very difficult to obtain any conclusions about their scattering

properties, *

2. Conclusion

Any model of hadron structure and quark confinement which
hopes to be successful must be able to say something about the strong
interactions of hadrons. We hope ¥hat the above results have
indicated that the MIT bag model has some chance. The next step
must be to consider the collisions of three-dimensional quark/gluon
bags. Some work in this direction has been done by Low (12) and he
has shown that the model accounts qualitatively for the properties
of constant total cross sections, zero real parts of scattering

amplitudes and Feynman scaling.
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