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Of making many books there i s 

no end and much study i s a 

weariness of the fl e s h . 
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ABSTRACT 

A small a i r shower array of radius 60 HI i s described which w i l l be 
A g 

used i n i t i a l l y to study extensive a i r showers i n the range 10 to 10 

p a r t i c l e s i n s i z e and to supplement existing research programmes into hadron 

and muon spectroscopy i n the Cosmic Ray Laboratory of the University of 

Durham. 

There are fourteen p l a s t i c s c i n t i l l a t o r detecting elements, i n the 

f i r s t stage of construction of the array, located i n a hexagonal geometry 

around the Physics Department. 

An important feature of t h i s array i s i n i t s data handling procedures 

i n which the i n i t i a l array data are assembled i n analogue form, dig i t i s e d 

and then transferred to an on-line I.B.M. 1130 computer disc for subsequent 

a n a l y s i s . The array has been made as v e r s a t i l e as possible whilst retaining 

a measure of s i m p l i c i t y . I t may be triggered i n a variety of ways depending 

upon the mode chosen and upon the peripheral experiments and may also be 

added to with the minimum of electronic modification and delay. Because of 

the d i g i t i s a t i o n technique used one i s able to provide instructions, when 

the data are being analysed, to compensate for any d r i f t i n the electronics 

automatically. 

A preliminary shower s i z e spectrum, based on over 200 hours of operation, 

has yielded a spectrum i n the range 

8.10 5£ N £3.10 6 

with an i n t e g r a l exponent of Y t
 = "2,6 + 0.2, 

r 



i i 

PREFACE 

The work described i n t h i s thesis was c a r r i e d out during the period 

1973 to 1975 w h i l s t the author was working under the supervision of 

Dr. M. 6. Thompson i n the Cosmic Ray Group of the Physics Department i n 

the University of Durham. 

During t h i s time, the author has been responsible for the design and 

commissioning of the A i r Shower Array, the data handling electronics, the 

a n a l y s i s of the a i r shower data and, with his colleagues, i n the calibration 

and running of an experiment to measure the number spectrum of A i r Showers 
4 6 

i n the range 10 to 10 p a r t i c l e s . The deduction of the number spectrum 

from the observed experimental data has been the r e s p o n s i b i l i t y of the 

author. 

The design and operation of the array has been described by Rada et 

a l . i n the Proceedings of the XlVth International Conference on Cosmic 

Rays (Munich, 1975). 
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CHAPTER ONE 
COSMIC RADIATION - ITS NATURE AND IMPORTANCE 

1.1 Introduction 

The intriguing problems of the fundamental processes of nature have 

commanded the i n t e r e s t of the ph y s i c i s t for a very long time. Measurements 

of the properties of the Cosmic Radiation, made i n the hope of understanding 

them more c l e a r l y , have presented a challenge since t h e i r discovery some 

60 years ago. The observed energies and isotropy of the radiation have 

demonstrated that the sun, probably the most obvious source, i s not the 

main contributor. 

1.2 The Discovery of the Radiation 

For more than 100 years i t has been known that a i r possesses a 

s l i g h t e l e c t r i c a l conductivity. I n 1899 - 1900 a careful study of th i s 

phenomenon was made by E l s t e r and Ge i t e l (1899), Geitel (1900) and Wilson 

(1900) using elestroscope techniques by observing the rate at which e l e c t r i c 

charge was l o s t . The conductivity of the a i r inside the electroscopes was 

found to be permanent, despite the continual removal of the ions from i t bj. 

an e l e c t r i c f i e l d . I n consequence, i t was inferred that the ions were 

constantly being produced i n the a i r of the electroscopes by some external 

agency. Rutherford and Cooke (1903) soon found that the ionisation could 

be reduced by screening the electroscopes with a heavy layer of lead,from 

vhich i t was concluded that the cause of these effects lay i n traces of 

radioactive material residing i n the environment of the apparatus. Thus 

i t was assumed that i f t h i s was the cause of the ionisation then the ionisa­

tion i n t e n s i t y would f a l l off with the increasing a l t i t u d e . I n the expectation 

of t h i s e f fect Gockel (1910, 1911) ascended in a balloon and made observa­

tions at various heights. He found the expected effect to be present, but 

only weakly. 

Between 1911 and 1914 Hess and KolhBrster extended the balloon observations 
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to greater a l t i t u d e s and found that above a few hundred metres the conductivity 

began to increase again. This increase persisted up to an altitude of 9000 

metres where measurements were discontinued. To account for the observed 

fa c t s Hess proposed the hypothesis that the ionisation was produced by a 

penetrating radiation from outside the earth. Even at t h i s early stage he 

r e a l i s e d that the radiation could not be coming i n a large part from the 

sun since the ionisation was found to be about the same at a l l times of the 

day. 

1.3 Observations of Cosmic Rays under Water 

Confirmation that the source of the radiation was e x t r a t e r r e s t r i a l 

came when Millikan and Cameron (1926) lowered sealed electroscopes to various 

depths below the surface of two Californian lakes - Arrowhead Lake at 1554 m 

above sea l e v e l , and Muir Lake at 3600 m above sea l e v e l . The ionisation 

f e l l off rapidly within the f i r s t metre or so, thereafter decreasing more 

slowly as the depth increased. 

By comparing the i o n i s a t i o n rate of the electroscopes a t equal depths 

under water, a discrepancy was found but when the depths were made equivalent 

by accounting for the additional 2046 m of a i r above Arrowhead Lake the observed 

values of ionisation were found to be i n close.agreement. On the assumption 

that the i n t e n s i t y of the rays were the same at both l o c a l i t i e s the r e s u l t 

showed that the intervening a i r between the two lakes acted only as an 

absorber and did not contain sources to any noticeable extent. 

1.4 The Discovery of the Latitude E f f e c t 

A number of workers r e a l i s e d that the nature of the primary p a r t i c l e s 

could be investigated by studying the variation of the Cosmic Radiation 

i n t e n s i t y with latitude by using the earth's magnetic f i e l d . Charged prima­

r i e s would have t h e i r t r a j e c t o r i e s affected in the magnetic f i e l d whereas 

uncharged p a r t i c l e s would be unaffected. Millikan and Cameron looked for 

such an e f f e c t i n 1926 but f a i l e d to find any systematic change. Clay (1927), 

on voyages covering a larger range of latitudes than Millikan and Cameron, 
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found a positive e f f e c t . A. H. Compton (1933) concluded that, a f t e r a world­

wide survey of cosmic ray i n t e n s i t y measurements, his r e s u l t s correlated much 

better with the geomagnetic latitude than geographical latitude, proving 

conclusively that a t l e a s t part of the radiation was charged. 

The mathematical theory of the e f f e c t of the earth's magnetic f i e l d on 

incoming charged p a r t i c l e s had been worked out i n considerable d e t a i l by 

St firmer to t r y to account for the aurora borealis. The theory was suitable 

for i t s application to cosmic rays and Le Maitre and V a l l a r t a (1933) calculated 

the allowed orbits and t r a j e c t o r i e s of a l l cosmic p a r t i c l e s i n the v i c i n i t y 

of the earth. 

For p a r t i c l e s that enter the earth's atmosphere, as i n figure 1.1, 

v e r t i c a l l y and p a r a l l e l to the geomagnetic lines of force a t the poles there 

i s l i t t l e interaction. At the equator the magnetic f i e l d i s perpendicular 

to the direction of the cosmic rays and th«- interaction i s greater resulting 

i n the effect that the l e s s energetic cosmic rays are deflected away from 

the earth more than at the magnetic poles. Only those p a r t i c l e s exceeding 

a cut off energy are able to reach the earth's surface and t h i s resembles a 

cut off i n the energy spectrum that i s latitude dependent and i s 

p . s 14.85 cos^GeV/c X min 
where \ i s the geomagnetic latitude (Jory, 1956). No p a r t i c l e s below th i s 

momentum can reach the surface of the earth at a given X̂. 

Since the main geomagnetic f i e l d of the earth i s directed from South 

to North a positive incoming p a r t i c l e would be deflected towards the east. 

This gives r i s e to an East-West effect i n which the observed i n t e n s i t y of 

cosmic rays are greater from the West ttexifrom the East. This asymmetry 

has been c o r r e c t l y interpreted and f u l l y demonstrated experimentally as 

being caused by an excess of p o s i t i v e l y charged cosmic rays, mainly protons. 

1.5 The Origin of Cosmic Rays 

Observation of cosmic ray i n t e n s i t i e s show that the sun must 
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ac t u a l l y be the source of at le a s t some of the lower energy ( 3 10 GeV) 

primaries. At times of high solar a c t i v i t y an increase i n the cosmic ray 

i n t e n s i t y i s found but the sun can only account for a small fraction of the 

t o t a l . Since the cosmic rays are nearly isotropic around the earth their 

o r i g i n i n such a point source as the sun i s precluded and one must look for 

sources and mechanisms that may e x i s t i n the deeper regions of space for 

t h e i r production and acceleration. 

Following the suggestion of Fermi (1949, 1954) cosmic rays have thei r 

o r i g i n i n i n t e r s t e l l a r space and are accelerated to high energies by the 

g a l a c t i c magnetic fields as they stream through the arms of the galaxy. 

The cosmic ray p a r t i c l e i s ejected from the surface of some s t e l l a r body 

with an appreciable energy and s p i r a l s i n the l o c a l magnetic f i e l d . This 

p a r t i c l e then in t e r a c t s with another magnetic f i e l d moving rapidly towards 

i t whereupon the p a r t i c l e i s re f l e c t e d and gains energy. I f t h i s 

p a r t i c l e i s trapped between two f i e l d s of th i s kind then i t w i l l steadily 

gain energy u n t i l i t i s able to leak out. This acceleration mechanism 

may continue u n t i l the p a r t i c l e reaches the earth where i t i s observed. 

On the basis of t h i s theory i t i s predicted that i t would be favourable 

for p a r t i c l e s to be created i n the v i c i n i t y of magnetically active stars 

where they w i l l a l s o acquire the bulk of thei r energy. Supernovae, pulsars, 

g a l a c t i c n u c l e i - a l l have been suggested as potential sources and a l l may 

be correct. 

1.6 The Nature of the Cosmic Radiation 

Valuable information can be derived from the mass composition of 

the primary cosmic rays as regards t h e i r mean age and possible production 

mechanisms. I t i s found that even Z elements are more abundant than odd Z 

elements and that L i , Be, B are much more common i n the cosmic radiation 

than i s estimated for the univ e r s a l abundances. 

Hitherto only d i r e c t measurements of the composition have been made 
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i n the energy range from ^10 MeV to --'100 GeV by using balloons and s a t e l l i t e s 

carrying emulsion stacks and ionisation calorimeters. The composition of the 

primary f l u x f o r Ep < 1000 GeV i s given i n Table 1.1 a f t e r Juliussen (1975), 

normalised to a percentage of the t o t a l . Those figures depart from those 

of Ginzburg and Syrovatskii (1964) i n the respect that the abundances clearly 

depend on energy. The r i s e i n the abundance of iron with energy i s perhaps 

due p a r t l y to in t e r a c t i o n and spallation i n the i n t e r s t e l l a r medium, energy 

losses caused by solar modulation and, most l i k e l y , as a consequence of the 

production mechanisms at source. For higher energies the chemical composition 

i s not certain due to the low f l u x of cosmic rays rendering direct methods 

of detection i n e f f i c i e n t . 

Table 1.1 

Composition of Cosmic Rays at High Energies 

z Elements 
Kinetic Energy per Nucleus (eV) 

i o 1 0 i o 1 1 i o 1 2 i o 1 3 

1 Hydrogen 58+5 47+4 42+6 24+6 

2 Helium 28+3 25+3 20+3 15+r/ 

3-5 Light nuclei 1.2+0.1 1.1+0.1 0.6+0.2 

6-8 Medium nuclei 7.1+0.4 12.2+0.8 14+2 

10-14 Heavy nuclei 2.8+0.2 6.7+0.5 io±i 

16-24 Very heavy nuclei 1.2+0.2 3.6+0.4 4+1 

26-28 Iron group nuclei 1.2+0.2 4.5+0.5 10+2 24+7 

» 30 Very, very heavy 
nuclei 

0.007+0.004 

The observation of the L group of nuclei being about 10 times more 

abundant than the universal abundance suggests that these are products of 

sp a l l a t i o n of heavier nuclei from t r a v e l l i n g through i n t e r s t e l l a r matter. 

Taking t h i s assumption fur t h e r , one i s able to calculate an approximate value 
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of the amount of matter through which the cosmic rays i n t h i s energy range 

have tr a v e l l e d . Using the r a t i o of the abundances of the l i g h t nuclei to 

the medium nuclei and the available cross sections f o r various spallation 

reactions, Shapiro and Silberberg (1968) have calculated the average amount 

of matter traversed by cosmic rays required to create the observed L/M 
-2 

r a t i o . They obtained the value of A = 4.0 + 1.0 g cm which corresponds 

to an average age f o r the cosmic radiation of a few m i l l i o n years. 

I t should be realised that t h i s i s a very crude estimate (alternative 
3 

estimates based on the e/B and ~ H e , ratios give values of t h i s order) 
He+ He 

but i t appears as though the majority of the cosmic radiation has a l i f e t i m e ] 
of less than 20 m i l l i o n years. This i s small when compared to the age of 

9 
the Universe of about 4.5 x 10 years and the dimensions of the Galaxy. 

1.7 The Primary Energy Spectra 

The spectra of the primary radiation can be expressed i n a variety 

of ways; the choice usually being determined by the method of measurement. 

Thus use may be made of energy or momenfum effects or magnetic r i g i d i t y by 

using the geomagnetic f i e l d as a momentum analyser. 

A survey of the data that i s at present available i s presented i n figure 

1.2 from the summary of Wolfendale (1973). The various domains i n which a 

p a r t i c u l a r kind of investigation i s most e f f i c i e n t are included. For energies 

below about 1 GeV dir e c t measurements can be taken, as i s the case with 

s a t e l l i t e s . Good data on the spectra of the more abundant elements have been 

obtained, notably those of Garcia-Munoz et a l . (1971) who used cosmic ray t e l e ­

scopes aboard the IMP-5 s a t e l l i t e of 1969 when solar a c t i v i t y was a minimum. 

Figure 1.3 shows the Garcia-Munoz et a l . spectra. The s t a t i s t i c a l accuracy of 

the energy spectra o f the primary pa r t i c l e s becomes increasingly poor as the 
12 

energy of the primary increases. Beyond about 10 eV per nucleon there i s 
v i r t u a l l y no direct information about particles with Z greater than one and 
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the energy spectra must be in f e r r e d from ground level observations of the 

protonic and muonic fluxes v i a an interaction model. There i s a degree of 

confidence i n these calculated spectra because they f i t smoothly with the 

di r e c t observations and the extensive a i r shower data. For a recent review of 

cosmic ray composition see Juliusson (1975). 
14 

The spectrum measured beyond about 10 eV i s investigated by means of 
the extensive a i r shower technique i n which the atmosphere amplifies the 

1 t 0 detect the resulting shower] % 

e f f e c t of a single high energy primary to such an extent t h a t ^ p a r t i c l e 

detectors need to be spread over large areas at detection l e v e l . The spectrum 

thus obtained yields data on the energy of the incoming p a r t i c l e and hence 

the spectrum's energy axis must be labelled 'energy per nucleus*. I t i s i n 

t h i s energy region that there exists much contemporary interest i n the cosmic 

radi a t i o n . 

12 

1.8 Summary of the data about Cosmic Rays with Ep > 10 eV 

Features which are relevant to the problem of the o r i g i n of the 

cosmic ra d i a t i o n can be summarised as follows:-
-3 12 ( i ) Energy: the t o t a l energy density i s about 1 eV cm . That above 10 eV -2 -3 i s about 2.10 eV cm . 

20 
( i i ) Energy Spectrum: extends beyond 10 eV and has a d i f f e r e n t i a l slope of 

12 15 -2.6 from 10 eV to 310 eV and ^3.2 above t h i s . The 

t r a n s i t i o n of the slope changes over a r e l a t i v e l y small range 

of energy. 
12 

( i i i ) Mass composition: above 10 eV very l i t t l e i s known, 

( i v ) Isotropy: no s i g n i f i c a n t anisotropy has been observed. 

Any theory that i s formulated i n respect of the o r i g i n must therefore 

embody the above observations. 

1.9 The Astrophysical Significance of Cosmic Rays 

I n any attempt to explain the observed features of the primary 



12 spectrum above 10 eV the properties of the galaxy and i t s environment need 

to be considered. The shape and magnitude of the spectrum i s of direct 

relevance to the understandingand ascertaining from where the particles 

o r i g i n a t e , how they are accelerated and how they propagate through space. 

Recent work by Karakula et a l . (1974) ha*,1 suggested that the majority of 
14 15 

cosmic rays with energies between ~ 10 eV and "5.10 eV are of pulsar o r i g i n . 
12 

The nuclear physics of the processes beyond 10 eV can be inferred by rel a t i n g 

secondary cosmic ray phenomena (ground level observations) to the primary 

energy spectrum through an in t e r a c t i o n model. This, at present, i s the only 

way i n which u l t r a high energy nuclear physics can be investigated since 

modern machines are incapable of providing particles of s u f f i c i e n t l y high 

energy to investigate these reactions. I t has been discovered that w e l l 
12 

established rules governing nuclear physical processes below 10 eV are not 

as successful as expected i n the cosmic ray energy domain. I n particular 

the 'scaling hypothesis' of Feynman (1969) appears to be contradictory to 
12 

experiment beyond 10 eV. 
19 

Direct measurements on the primary spectrum beyond 10 eV are of 

p a r t i c u l a r interest since i t i s at about this energy that the Big Bang 2.7°K 

black body re-imant microwave radiation should begin to attenuate the protonic 

f l u x by electron pair and pion pair-production. 
12 

1.10 The .Shape of the Primary Spectrum above 10 eV 

The i n t e g r a l primary energy spectrum has recently been surveyed 

by Kempa et a l . (1974) and i s summarised i n figure 1.4. An interesting 
14 15 

feature of t h i s survey i s an apparent bump i n the region of 10 eV and 10 eV. 

Above t h i s bump % i s -2.1 w h i l s t below i t i s -1.6. 

Attempts to explain t h i s feature have been undertaken by several authors 

(Kempa et a l . (1974), Karakula et a l . (1974)) as being the result of a c o n t r i ­

bution from pulsars using as a basis the mechanism of Ostriker and Gunn 

(1969) although the details of the acceleration process are not w e l l understood. 
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The agreement with observation i n t h i s region i s interesting and perhaps 

s i g n i f i c a n t . Should the e f f e c t be genuine then i t would imply a galactic 

contribution to the i n t e g r a l f l u x f o r t h i s energy region. Isotropy measure­

ments and d i f f u s i o n calculations of cosmic rays w i t h i n the galaxy support 

t h i s view. 

I t has been thought f o r a long time that the cosmic rays of the highest 

energy were a l l extragalactic since galactic magnetic f i e l d s would be 

unable to contain them and because there i s no observable anisotropy i n t h i s 

region. Proposals made by Greisen (1966) that there should be a cut-off at 
20 

about 10 eV i n the primary energy spectrum have recently been investigated 

by Strong et a l . (1974) i n some d e t a i l . This cut-off arises from photonuclear 

reactions with the 2.7°K Black Body radiation. Figure 1.5 shows the composite 

primary spectrum of Strong et a l . (1974). The l i n e marked Kempa et a l . 

(1974) i s the best f i t l i n e of Figure 1.4. The figure shows the onset of 

electron pair production (c.lO^eV) and pion production (c.5.lO^eV) which 

are c l e a r l y v i s i b l e . Although there can be no question of exact agreement 

between the pulsar and extragalactic contributions and experiment, close 

agreement does warrant further study. 

Observations of a i r showers at the highest energies, notably those of 

the Haverah Park and Sydney arrays are shown i n figure 1.6 from a summary of 

C. J. B e l l et a l . (1974). I t i s evident from thejedata that no cut-off i s seen 

and kHis is • at variance with the predictions of Strong et a l . (1974). Modi­

f i c a t i o n s to the e x i s t i n g theory following a suggestion by Brecher and 

Burbidge (1972) invoking a measure of containment w i t h i n galactic clusters 

a r i s i n g from the presence of magnetic f i e l d s which may be present, overcomes 

the problem to a great extent but a more accurately defined spectrum i n t h i s 

region i s undoubtably required. 

1.11 The Significance of Cosmic Ray Studies 

From what has been said e a r l i e r i t can be seen that the study of 
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the cosmic ra d i a t i o n can y i e l d a wealth of information of phenomena over 

the extreme ranges of the s p a t i a l and temporal scales. I n r e l a t i n g these 

processes a picture of both galactic and nuclear structure can be obtained. 

Nuclear Physics at the extreme energies encountered i n the cosmic radiation 

cannot, ac present, be investigated i n a laboratory experiment and i t i s 

u n l i k e l y that they w i l l be f o r a very long time. I t i s for these reasons 

that there i s s t i l l much a c t i v i t y i n t h i s f i e l d . 

I n an attempt to interpret the ground level observations of secondary 

effects i n i t i a t e d by a primary p a r t i c l e above the earth's surface, models 

of nuclear processes must be constructed i n order to explain the observa­

t i o n s . Many models to describe the general features of interactions have 

been used and i t i s regretted that progress i s hampered by the poor quality 

of the information a t present obtainable i n cosmic ray nuclear physics. 

1.12 Nuclear Interactions 

There exists a vi&dlth of good data on nuclear physical phenomena 

up to energies of about 300 GeV that has been provided from p a r t i c l e accel­

erator experiments. More recently the C.E.R.N. Intersecting Storage Ring 

f a c i l i t y lias enabled a detailed examination of p a r t i c l e physics to about 

30 GeV centre-of-mass which ha*' played an important role i n establishing 

a datum fo r the i n t e r p r e t a t i o n of nuclear phenomena at cosmic ray energies. 

I n p a r t i c u l a r the scaling hypothesis of Feynman (1969) >which i s a l o g i c a l 

extension of these data^predicts an asymptotic behaviour of p a r t i c l e 

interactions at higher energies. 

Implications of the scaling hypothesis as applied to these energies 

have been suggested by Wdowczyk and Wolfendale (1972,1973a) from which i t 

i s derived that scaling i s v a l i d i f an increase i n the primary mass i s 

allowed. As yet very l i t t l e i s known about the primary cosmic ray mass 

but fluctuations observed i n extensive a i r showers by Khristiansen (1971) 

suggest that there i s at least a s i g n i f i c a n t f r a c t i o n of the primary 

pa r t i c l e s that are protons. Using the assumption that mo3t of the primaries 
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are indeed protons then studies of the longitudinal development of extensive 

a i r showers can give evidence of which treatment i s applicable. 

From these measurements the form of the m u l t i p l i c i t y d i s t r i b u t i o n 

can be derived since the position of the shower maximum i s related to 

the length of the electromagnetic cascades resu l t i n g from neutral pions. 

A low m u l t i p l i c i t y suggests long electronic cascades with a shower maximum 

low i n the atmosphere whereas a higher m u l t i p l i c i t y would resu l t i n shorter 

cascades and a shower maximum higher i n the atmosphere. Figure 1.7 shows 

a d i s t i n c t inconsistency between the scaling suggestions of Feynman, which 

predict a logarithmic r i s e i n m u l t i p l i c i t y , and that observed at energies 
13 12 1A* greater than c.10 eV. I n the energy range of 10 eV to 10 eV, which i s 

s t i l l i n the cosmic ray energy region, scaling seems to apply from the 

approximate constancy of the charge r a t i o of muonsv and the slope of the pion 

production spectrum derived from the observed muon spectrum. 

Other features of t h i s hypothesis are the expected constancy of the 

m u l t i p l i c i t y of secondaries that carry a particular f r a c t i o n of the primary 

energy and the rapid saturation of the mean transverse momentum pfc of 

these secondaries - f i t * 0.4 CeV/c. From the analysis by Adcock et a l . 

(1970) of the data from the Utah group of Coates et a l . (1970) a mean 

transverse momentum somewhat higher at (0.60 + 0.05) GeV/c i s found which 

i s again at variance w i t h the Feynman suggestion. 
14 

Cosmic ray data above 10 eV imply a m u l t i p l i c i t y law proportional 

t o E^ where f) i s about 0.25 (Adcock et a l . (1969), H i l l a s et a l . (1971)) 

which suggests a more thermodynamical treatment of p a r t i c l e production 

(Hagedorn (1965), T o r s t i (1975)). Taken together i t would seem evident 

that scaling i n i t s simple form becomes less and less applicable as the 
12 

energy increases above 10 eV but i t seems possible that there could exist 

two types of treatment cf the nuclear physics - that of a scaling and that 

of a thermodynamic nature. 
1.13 The Importance of Extensive A i r Showers 

The r d l e of extensive a i r showers i n an e f f o r t to understand the 
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nature of nuclear processes at the highest energies cannot be denied. 

As yet they provide the only means of investigating the properties of 
12 

what occurs at energies i n excess of 10 eV and i t appears as though they 

w i l l be the main contributor to t h i s sector for a long while. The study 

of extensive a i r showers also provides a valuable t o o l for investigating 

the conditions of the galaxy and beyond and i t i s to these two ends that 

the extensive a i r shower needfto be pursued. 
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CHAPTER TWO 
EXTENSIVE AIR SHOWERS 

2.1 Introduction 

Extensive a i r showers have been widely studied since t h e i r discovery 

i n 1938. Their existence implied that the energies of the particles causing 

the e f f e c t were f a r greater than those previously studied by geomagnetic 

means. 

At the time of t h e i r discovery the most energetic radiations known were 

gamma-rays and so i t was natural to assume that the originators of these 

showers were of the same character but with energies several orders of 

magnitude above those previously encountered. Theoretical work by Bhabha 

and H e i t l e r (1937) successfully accounted for the observations made i n 

cloud chambers (Auger et al«, 1939) and thus the gamma-ray o r i g i n propagated 

sand became a widely accepted model f o r many years. Other experiments 

(Froman and Stearns, 1938) showed the existence of a 'penetrating' component, 

capable of traversing several centimetres of lead, and on the basis of the 

electron-photon cascade model were d i f f i c u l t to i n t e r p r e t . Since 1946 the 

a c t i v i t y i n extensive a i r showers has been considerable and from the results 

of balloon borne experiments i t became clear that many of the high energy 

primaries were atomic n u c l e i , mainly protons and helium. The discovery 

of the TT- mesons i n the cosmic radiation gave a clearer picture of a i r 

shower development and added impetus to the quest to understand the 

phenomenon more c l e a r l y . Soon the focus of attention turned towards the 

o r i g i n of the p a r t i c l e s and t h e i r interaction with matter and these form 

the main problems i n cosmic ray physics at the present time. With the 

progress of high energy p a r t i c l e accelerators, a c t i v i t y i n a i r showers 

has Increased considerably. With the energies now available at which the 

cross section for multiple p a r t i c l e production predominates, detailed 

information that i s necessary i n interpreting the characteristics of a i r 

shower development may be obtained. 
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This present chapter i s devoted to the study and interpretation of 

a i r shower phenomena i n which the characteristics of the observed features 

are discussed. Individual aspects w i l l be considered i n some d e t a i l and 

the t h e o r e t i c a l implications necessary for t h e i r understanding i n terms 

of the nuclear processes w i l l also be presented. 

2.2 General Description of the Extensive Air Shower 

For an observable e f f e c t at sea level the energy of the i n i t i a t i n g 
13 

primary p a r t i c l e must be i n excess of about 10 eV. The c o l l i s i o n of this 
primary with the nuclei of the constituents of a i r produce many secondary 

o -15 p a r t i c l e s , mostly pions; the "A" decaying in less than 10 5 i n t o two 

gamma quanta and the IT — decaying i n t o muons and neutrinos. With the mean 

free path of the proton primary being 70 - 80 g cm i t implies that i t s 

f i r s t i n t e r a c t i o n takes place between 10 and 30 km above sea-level. Direct 

information regarding t h i s i n i t i a l i nteraction has been obtained only at 
13 

the r e l a t i v e l y low energies of less than 10 eV with the aid of photographic 

emulsions. Reviews of t h i s work have been done by several authors (see, 

fo r example, Fowler and Perkins, 1964). In general one of the nucleons 
i n t h i s i n t e r a c t i o n takes o f f about 50% of the primary energy (at least 

13 

a t 10 eV) and i t i s natural to associate the primary p a r t i c l e with i t . 

This, the pions and surviving nucleons from the interaction continue 

fur t h e r down i n t o the atmosphere and interact again producing many more 

pa r t i c l e s i n the ensuing c o l l i s i o n s . The electromagnetic cascade i s 

constantly rejuvinated by the lf° decay gammas through pair-production 

and bremsstrahlung and contributes by f a r the most numerous component at the 

observation l e v e l . The particles i n such a cascade can reach out to large 

distances from the shower axis and t h i s i s mainly due to the coulomb 

scattering i n the atmosphere. As the available energy, provided by the 

nuclear cascade, gets divided amongst the increasing number of shower 
p a r t i c l e s , the mean energy per p a r t i c l e decreases u n t i l the energy that 
i s l o s t by io n i z a t i o n becomes greater than the energy los t by bremsstrahlung. 
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For an electron t h i s occurs at i t s c r i t i c a l energy of 84 MeV and beyond t h i s 

point the number of shower particles decreases. 

The rSle of the charged pion i n the generation of an a i r shower i s i n 

rejuvenating the nucleon cascade and i n producing rations. The mean l i f e of , 

charged pions I s , such that they have a f i n i t e p r o b a b i l i t y of interacting with 

the n u c l e i of a i r molecules before decaying. Due to the r e l a t i v i s t i c time 

d i l a t i o n , the pions w i t h energies i n excess of about 10 GeV tend to interact 

before they decay w h i l s t those w i t h lower energies tend to decay rather 

than i n t e r a c t . The muons that are the progeny of the decay pions have the 

very much longer l i f e t i m e of 2 ^ and t h i s , combined- with the time d i l a t i o n 

factor^ give large mean free paths indicating that> i n general, a l l muons can 

survive to sea l e v e l . The muon has a larger mass than the electron and 

consequently i s not scattered t o the same extent, but because of t h e i r 

greater penetrating power muons can be found at great distances from the 

shower core. This feature i s also due to the muons created i n the i n i t i a l 

interactions of the primary and surviving to observation level whereas other 

p a r t i c l e s are not able t o do so. 

This general picture of a i r shower development has been b u i l t up over 

the l a s t three decades, based upon observations from emulsions and small 

extensive a i r shower data and i t i s thought that t h i s broad picture w i l l 

not change appreciably f o r i t s application to showers of the highest 

energies which are currently being investigated. A schematic diagram of 

a i r shower development i s given i n figure 2.1 i n which the appropriate 

numbers and t o t a l energies of each component are included. 

Effects due to the passage of shower particles i n t h e i r journey to the 

observation l e v e l that are produced by mechanisms other than the type 

discussed include Cerenkov l i g h t emission and radio frequency radiation. 

The radio frequency emission i s created by the transverse current of the 

shower p a r t i c l e s , mainly electrons, being deflected by the geomagnetic 
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f i e l d . This phenomenon has been extensively studied i n recent years and 

continues to be so at the Yakutsk and Haverah Park arrays. I t i s thought 

by some workers (Allan et a l . , 1973) that the pattern of the radio l a t e r a l 

d i s t r i b u t i o n can give information about the longitudinal development of a 

shower and i n p a r t i c u l a r about the height of shower maximum. The extent 

to which t h i s height i s found to vary can give a clue as to the nature of 

the i n i t i a t i n g primaries. Cerenkov l i g h t , produced i n the atmosphere as 

a r e s u l t of the passage of highly r e l a t i v i s t i c a i r shower pa r t i c l e s , i s a 

feature that i s being investigated for detection of very large extensive 

a i r showers and w i l l be discussed i n a later section. 

2.3 Nucloar Physics and the A i r Shower 

Because of the very nature of the a i r shower and i t s complexity of 

formation detailed calculations must be undertaken to interpret the 

phenomenon. I n general i t i s only through the models of the high energy 

inte r a c t i o n s , which are not c l e a r l y understood, that a consistent picture 

can emerge of the processes involved. Any deviation from what i s experiment­

a l l y observed fawn that predicted by theory entails a modification to the 

model u n t i l s a t i sfactory agreement i s achieved. On thi s basis, i t i s 

apparent that the nuclear physical models are an important feature for 

the understanding of the a i r shower. The standard model employed i n t h i s 

s i t u a t i o n , which i s most usually regarded as the datum to refer other 

models, can be summarised as follows ( a f t e r de Beer et a l . , 1966). 

( i ) High energy nucleons lose, on average, 50% of t h e i r energy i n 
_2 

each c o l l i s i o n . Their i n t e r a c t i o n mean free path i s 80 g cm . 

Both of these quantities are energy independent. 

( i i ) The secondary p a r t i c l e s are mainly pions and are created i n equal 
•I* — _o numbers of-jf , i f and IT . 

( i i i ) The energy d i s t r i b u t i o n of the pions i n the laboratory reference frame 

i s given by the empirical r e l a t i o n of Gocconi, Koester and Perkins 

(1961) and i s 
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in(E ) E n(E ) v 

where n(E q) i s the m u l t i p l i c i t y of the produced pions, E
Q the 

transferred energy, G the average energy of the pions i n the back­

ward cone and 

r " 2 ( * G 0 - %n ( E q ) G ) / n(E Q)' 

i s the average energy i n the forward cone, 

( i v ) The f r a c t i o n of energy lost by a nucleon which does not appear as 

pions i s assumed to be ne g l i g i b l e , 

(v) The secondary pion m u l t i p l i c i t y , n , i s given by 
8 

n = 2.7 E * s p » 

wi t h E i n GeV, for the c o e f f i c i e n t of i n e l a s t i c i t y , K, at 0.5 and 

n • 2.7. 2^. (KE ) * for a l l K, s p 

( v i ) The d i s t r i b u t i o n i n transverse momentum, P t , of the produced 

pions i s that given by Cocconi, Koester' and Perkins 
2 

f ( P t ) " Pt/PD «cp <-Pt/P0) 
where the mean transverse momentum, 2p Q i s energy independent 

0.4 CeV/c. 

( v i i ) The pion interactions are catastrophic and the energy spectrum and 

m u l t i p l i c i t y relations of pions produced i n pion interactions are 

taken to be that given by the same function as for protons with 
_2 

K - 1. Piqns have an inte r a c t i o n length of 120 g cm . 

( v i i i ) The form of the i n e l a s t i c i t y d i s t r i b u t i o n i s 
f(K) = -U+«c)2 (1 - K)"ln'(t*K& with * = 1.414. 

2.4 Review of Extensive A i r Shower Components 

The various components found i n a i r showers f a l l under three broad 

headings: the electron, the muon and the nucleon components. Each w i l l 

be treated separately and features of special interest w i l l be discussed. 
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2.4.1 The Photo-Electron Component 

The main component that characterises an a i r shower i s the photo-

electron component which i s by far the most numerous but not the most 

energetic f r a c t i o n . The l a t e r a l d i s t r i b u t i o n of the density of the 

electronic component i s commonly referred to as the structure function 

and i t has been measured by many groups at sea level and mountain altitu d e s . 

The results p r i o r to 1960 have been summarised by Greisen (1960) who has 

combined the results from a large number of experiments to obtain a single 

experimental r e l a t i o n . This equation has stood up remarkably w e l l through­

out the years and i t i s s t i l l believed to give a good representation of 

the true structure. I t i s claimed to be indistinguishable from the average 
3 

experimental d i s t r i b u t i o n for showers with sizes varying between 10 and 
9 -2 -2 10 p a r t i c l e s , atmospheric depths varying from 537 g cm to 1800 g cm 

and r a d i a l distances of 5 cm to 1500 m from the shower axis. This function 

i s 

where p i s the density of particles per square metre for a shower of csize 

N at r a d i a l distance r metres, i s the characteristic scattering 

length f o r electrons i n a i r and i s frequently called the Moliere u n i t . 

I t has the value of 79 m at sea le v e l and about 120 m at mountain altitu d e s . 

At distances less than 100 m from the axis t h i s expression becomes a close 

approximation to the th e o r e t i c a l function of Nishimura and Kamata (1952, 

1958) f o r a pure electromagnetic cascade with an age parameter,s , of 

1.25. This i s perhaps due to the major electronic contribution i n th i s 

range. A s i m p l i f i e d version of t h i s formula has been suggested by Greisen 

(1956) as 
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where C(b) i s a normalisation factor such that 
(* 

J 2 n « * ) x d x ' l ' .here ' x = T. • 

Some values of C( s ) against s are given i n Table 2.1. 

Table 2.1 

s 0.5 0.75 1.0 1.25 1.50 1.75 

C(s) 0.16 0.29 0.40 0.45 0.41 0.28 

Assuming that the l a t e r a l d i s t r i b u t i o n i s independent of shower size, 

the electron density a t the r a d i a l distance r from the shower axis may be 

given as 

p (N,r) = ~ • f ( r ) ( 2 ' 3 ) 

r l 
I t has been found by some workers (Hasegawa et a l . , 1962) that the 

electronic structure function depends upon the method employed i n detection. 

Geiger-Mueller counters represent w e l l the actual density d i s t r i b u t i o n 

w h i l s t that measured with p l a s t i c s c i n t i l l a t o r s i s s l i g h t l y steeper (uie to 

the dependence of the s c i n t i l l a t o r response on the energy spectrum of 

the electromagnetic component. This i s i l l u s t r a t e d i n figure 2.2 using 

the structure function of Hasegawa et a l . , and the Greisen structure 

function for s = 1.25. The Hasegawa function i s : -

, » , , ) = -K-'/UO) ( 2.4) 

Measurements of the Sydney group at sea level ( H i l l a s , 1970) give a 

much f l a t t e r d i s t r i b u t i o n function than that of Greisen and i s due to 

the observation of a large proportion of multi-core events f o r showers 
15 

induced by primaries of energies approximately greater than 10 eV. I t 

i s expressed by: 



* 10 

enMBGO 
gawa(1962 
^8105,1970) 
ey .{Hillas.WQ) 

100 

Radial distance (m) 

1000 

Figure 2-2. Comparison between the air shower lateral 
structure due to several authors, normalised 
to-N = 105. 



20 

f ( H , r ) - 2.1210"3 j^jrj exp(" r/75) (2.5) 

From measurements of the l a t e r a l structure by the use of a neon hodo-

scope, the K e i l group ( H i l l a s , 1970) f i n d that the r e l a t i o n 

z>(N,r) - 1.08 x 10~ 2 N
 n - exp ("%0> (2.6) 

f i t s t h e i r data s a t i s f a c t o r i l y . A comparison of these functions i s i l l u s ­

t r a t e d i n figure 2.2. For a l l cases there i s good agreement i n the range 

10 m < r < 300 m 

and the observed discrepancy i s p a r t l y due to the experimental errors i n 

the core location of the i n d i v i d u a l experiments. 

2.4.1.2 The Longitudinal Development of an A i r Shower 

The electron component, although representing only a small fr a c t i o n 

of the t o t a l energy of an a i r shower, i s an important measure of the stage 

of development of the a i r shower and has featured i n many theoretical 

treatments and experimental measurements. Although i t has not yet been 

possible to measure the t o t a l shower size at d i f f e r e n t depths i n the 

atmosphere fo r a v e r t i c a l shower, t h i s information has been obtained from 

many showers by making equi-intensity cuts i n the size spectra recorded 

at d i f f e r e n t zenith angles (Linsley et a l . , 1962, La Polnte et al-, 1968). 

Data derived from the Chacaltaya experiment by Bradt et a l . , (1965) are 

shown i n figure 2.3 plotted w i t h the a e r i a l data of Antonov et a l . , (1971) 

obtained at a height of 10 km. The curves so obtained show that the electro 

magnetic cascades i n i t i a t e d by i n d i v i d u a l interaction? of nuclear active 

p a r t i c l e s are r e l a t i v e l y short and that they are subject to large fluctua­

t i o n s . The shortness of these cascades indicate a rapid d i v i s i o n of the 

energy of the uuclear active p a r t i c l e s ; that i s a high m u l t i p l i c i t y of 

the secondary p a r t i c l e s . The growth and decay of the shower i n the atmos­

phere i s t y p i f i e d by the depth at shower maximum. Figure 2.4 shows the 

variations i n the depth of maximum development and electron shower size 
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at sea l e v e l with primary protonic energy (a f t e r Dixon and Turver, 1974). 

Results from various theoretical treatments are included. I t appears as 

though there i s satisfactory agreement between the data from these theoretical 

studies; s l i g h t differences being due to the differences i n the models 

adopted. Shower longitudinal development can be further specified by 

the v a r i a t i o n i n the absorption length with electron size. From the work 

of Dixon et a l . , (1974a) the shower attenuation length can be given, 

from computer simulations, by 

= 47.7 i n N e + 32.0 g cm"2 

and ^ B = 25.0 i n N e + 95.0 g cm"2 

where andXg refer to the attenuation lengths under the Greisen (1956) 

electron cascade approximations A and B which, under approximation A, take 

i n t o account the radiation loss of electrons and the gain i n electron 

number from pair-production from gamma-rays. Under approximation B, there 

i s included an additional term allowing for ionisation loss. 

Contemporary int e r e s t i n the longitudinal development has focus sod 

on the p o s s i b i l i t y of the mean height of maximum development, linked with 

the i n d i v i d u a l fluctuations of t h i s quantity, being related to the i*ate 

of development which r e f l e c t s the nature of the primary cosmic ray p a r t i c l e 

and the details of t h e i r high energy interactions (Turver, 1973). I t i s 

expected that protonic or l i g h t nuclei i n i t i a t e d showers w i l l show greater 

fluctuations i n the longitudinal development than i s the case for heavier 

primaries. A consequence of 'heavy' i n i t i a t e d showers would be a decrease 

i n the average depth of maximum development and a lack of large fluctuations 

i n observed showers. Figure 2.5 i l l u s t r a t e s the average development of 

computer simulated v e r t i c a l showers of Dixon et a l . , (1974b) f o r superposition 

and p a r t i a l fragmentation assumptions of the heavy nucleus break-up. The 

difference between showers induced by assuming a superposition or p a r t i a l 

fragmentation hypothesis becomes important as the primary energy increases. 

The choice of fragmentation model makes l i t t l e difference to the electron 
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cascade at 10 eV but i t has some ef f e c t on the muon component. 

2.4.1.3 The Age Parameter 

The age parameter i s a quantity that characterises the stage of 

development of an a i r shower. For s less than one the shower i s 'young' 

and i s capable of further development. For s greater than one the shower 

i s 'old' and i t s size i s decreasing and for s equal to one the shower i s 

at i t s maximum development w h i l s t f o r s greater than two the particles 

remaining i n the shower have become less than one. Nishimura and Kamata, 

(1950), i n t h e i r treatment of the longitudinal development of an a i r 

shower define s to be the solution of 

where t i s the atmospheric depth i n radiation lengths, E q the primary 

electron energy, £.& the c r i t i c a l electron energy (84 MeV), E G i s 21 MeV 

and A ( s ) given by 

(dtfei&en, 1956). This equation gives s to be a function of the r a d i a l 

distance from the core and can be replaced by 

s s 3 t / ( t + 2ln(£o/e) + 2 l n ( r / r 1 ) ) 

Theoretical predictions of the age parameter using the standard model 

of de Beer et a l . , by Karakula (1968) f o r various shower sizes, are given i n 

figure 2.6. The v a r i a t i o n appears to be larger than that observed experi­

mentally by Vernov et a l . (1970) whose observed values are shown. Monte 

Carlo simulations of showers by Dixon and Turver (1974) show a decrease 

i n the age parameter with increasing shower size but the increase of Vernov 

et a l . could be interpreted as a r i s i n g from a f l a t t e r d i s t r i b u t i o n function 

than that given by equations 2.1. and 2.2. I t i s found, however, that the 

structure function i s f l a t t e r at large r a d i a l distances from the core and 

steeper at fjnall&r r a d i a l distances. Since large showers are measured at 
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generally larger r a d i a l distances, the age parameter should be larger than 

average. This i s indeed found to be the case: the average age parameter 

at small ( <20m) distances being about 1.15. The observation of the near 

constancy of the age parameter suggests a high degree of equilibrium between 

regeneration by the nuclear active component of the electromagnetic cascade 

and i t s absorption i n the atmosphere. 

The effect of the age parameter on' the structure of a shower i s 

i l l u s t r a t e d i n figure 2.7, a f t e r Galbraith (1958). 

2.4.1.4 Fluctuations i n A i r Showers 

Fluctuations i n a i r shower parameters are linked with primary mass 

and can be obtained only i f there i s a large proportion of protons i n the 

primary beam. Possible sources of fluctuations i n proton i n i t i a t e d showers 

are the depths of the f i r s t i n t e r a c t i o n i n the atmosphere of the nucleons 

and the v a r i a t i o n i n the c o e f f i c i e n t of i n e l a s t i c i t y i n each interaction. 

Variations i n the d i s t r i b u t i o n of number ( m u l t i p l i c i t y ) and energy of the 

secondaries may also give r i s e to fluctuations i n shower development. The 

amount of f l u c t u a t i o n expected f o r the age parameter i n proton i n i t i a t e d 

showers, at ground l e v e l , i s about 4% - 8% and depends upon the model of 

the nuclear physics employed to deduce th i s value. The fluctuations 

expected for heavier nuclei should be negligible because i t i s generally 

assumed that a heavy nucleus i n i t i a t e d shower may be considered as a 

superposition of several smaller showers, thus averaging out any strong 

v a r i a t i o n i n in d i v i d u a l cascades. 

Simulation studies by Ueda and Ogita (1957) suggest the depth of the 

f i r s t i n t e r a c t i o n of the primary nucleon with an a i r 'nucleus' as a 

dominant parameter i n a shower's development and the simulation studies 

of Dixon and Turver (1974) between the depth of the f i r s t i nteraction, 

shower size at sea l e v e l and depth of shower maximum are shown i n figure 
15 

2.8 f o r an of 10 eV proton i n i t i a t e d shower. These data indicate 

that a large degree of v a r i a t i o n does exist i n the observed shower size 
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from a primary of fixed energy. Observations of fluctuations i n shower 

size by Vernov et a l . (1968a)of 5% - 6% i n the age parameter can be taken 

as a strong i n d i c a t i o n of a predominantly protonic f l u x at about lO^eV. 

Greater variations i n the age parameter determined by s c i n t i l l a t i o n counters 

i s probably due to fluctuations i n s c i n t i l l a t o r response. Fluctuations i n 

other a i r shower parameters have been treated i n d e t a i l by means of computer 

simulations by Dixon and Turver (1974) to which the reader i s referred. 

Another useful parameter, sensitive to the primary mass composition, 

i s the r a t i o of the central electron density to the t o t a l number of 

par t i c l e s i n the shower. This i s due to the rough proportionality of the 

central electron density to the energy per nucleon whereas the shower size 

i s i n d i c a t i v e of the. energy per nucleus.The results of Samorski et a l . 

(1971) are i n agreement with predominantly protonic primaries. 

2.4.2 The Muon Component 

Muons carry rather more precise data r e l a t i n g to a shower than do 

electrons. This i s because of thefc r e l a t i v e l y weak interactions and also 

because they represent the directions of emission of t h e i r parent p a r t i c l e . 

Thus, studies of the l a t e r a l d i s t r i b u t i o n s of muons y i e l d valuable 

information on t h e i r parents'transverse momenta and longitudinal development 

of a i r showers. The l a t e r a l and energy distributions of muons i n a i r showers 

as a whole are connected with the characteristics of the nuclear interactions 

a t these high energies. In general, measurements of the muon number spectrum 

at ground l e v e l enables one to calculate a rather more accurate primary 

spectrum. This follows from the long shower attenuation length of muons 

i n the atmosphere. Detection of the muon component i s much more d i f f i c u l t 

than that of the electrons because of the i r much reduced density. The 

construction of large and w e l l shielded detectors i s required which tend 

to be much more expensive due to t h e i r large area and large amount of 

absorbing material. Muons i n extensive a i r showers provide, i n general, 

less detailed information than do unassociated muons. Magnetic spectrographs 
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are capable of extracting good q u a l i t y data on individual muons but suffer 

from t h e i r high cost and small area and thus are unable to give a complete 

picture of muons i n a i r showers. Their use i n a i r shower experiments do$st 

however, y i e l d data relevant to the nuclear interactions i n which7T-mesons 

are produced. 

2.4.2.1 The Lateral D i s t r i b u t i o n of Muons 

A quantity that i s much more readily obtained than the t o t a l muon 

number i s the density of muons above a particular energy threshold at 

various r a d i a l distances from the shower core. Early work on the detailed 

form of the muon l a t e r a l d i s t r i b u t i o n function was done by Clark et a l . 

(1958) i n which muons with energies greater than 1.2 GeV i n showers, whose 
5 8 

size was i n the range 2.10 to 2.10, were studied. Their experimental 

data was reduced by Greisen (1960) to the form 

where 0 (N,r) i s the density of muons pp-r square metre f a l l i n g at a core 

distance r metres i n a shower of size N. Investigations of the varia t i o n 

i n structure with energy threshold by Lne Cornell group (Bennett et a l . } 

1962) give the r e l a t i o n 

e . - v =-fe)°-^- 0- 7 5(-M(#)(#)°tr 
i n which E^is i n GeV and for which the equation holds v a l i d i n the range 

1 GeV - 10 GeV. Subsequent measurements of the l a t e r a l density of muons 

i n t h i s low energy ( < lOGeV) region do not show any marked deviation from 

these equations for r approximately greater than 20 metres. Typical data 

are summarised i n figure 2.9. The s o l i d curve i s equation 2.8 and the 
7 

data have been normalised to a shower size of 2,10 par t i c l e s . From data 

such as these i t may be said that no serious deviation from t h i s r e l a t i o n 

i s observed. The f l a t t e n i n g of the observed data at small r a d i a l distances 

has been ascribed p a r t l y to errors i n the shower core location (Wdowczyk, 
1973). 
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Murthy et a l . (1968) have compared the predicted l a t e r a l d i s t r i b u t i o n 
•7 

f o r 1 GeV and a shower size of 3.10 particles with equation 2.8, 

using a number of d i f f e r e n t models, for core distances between 1 m and 1000 m. 

In a l l cases i t i s found that the models predict steeper d i s t r i b u t i o n func­

tions than have been observed. Computer simulations of the muon density show 

a steepening also as both the muon energy and r a d i a l distance increase. A 
comparison between the observed muon l a t e r a l d i s t r i b u t i o n s and | 

- ,v 
theoretical predictions, based on the standard model, show that 

] 

the model predicts narrower d i s t r i b u t i o n s than are observed. Wider 
• . I 

d i s t r i b u t i o n s would require larger pion transverse momenta or the i 
production of muons higher up i n the atmosphere. Inte r p r e t a t i o n .» •! 

•l 
of the l a t e r a l d i s t r i b u t i o n suggests, then, that i t s width relates »- j 

to the transverse momenta of the particles,' the height of o r i g i n "j 

and the m u l t i p l i c i t i e s i n the f i r s t interactions, a l l of which are 

cr u c i a l parameters i n i n t e r p r e t i n g the development of the a i r shower. 

2.4.2.2 The Total Number of Muons 

Integration of the l a t e r a l muon density over r gives the t o t a l 

number of muons, Ny,, with energies exceeding Ê , i n a shower of size N. Thi3 

number, N^, i s approximately proportional to the number of electrons N. 

raised to the power \. This proportionality i s found to hold over a rela­

t i v e l y wide range and the index i s not very sensitive to the muon energy 

threshold. That there i s a s l i g h t v a r i a t i o n of the index with energy may 

be explained by the deviation of muon number from proportionality to 

primary energies but i t i s small f o r a l l threshold energies. 

2.4.2.3 Fluctuations i n the Muon Component 

I t i s w e l l established that muon parameters fluctuate by much smaller 

amounts than do the corresponding electron parameters although similar 

trends are present. Studies of the fluctuations of the muon number to the 

electron number, i n p a r t i c u l a r the r a t i o of the width of the size fluctua­

tions against size have been investigated by many groups; for example 
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Gawin et a l . (1968), Hasegawa et a l . (1962), Vernov et a l . (1968a) and 

PidcocX(1967) and comparison w i t h the expected distributions based on the 

de Beer standard model show goodagreement. The observed greater degree 
t o m o o n 

of the fluctuations i n the corresponding electron^ratio are mainly caused 

by the greater fluctuations i n the t o t a l electron number. 

2.4.2.4 High Energy Muons 

There exists much contemporary interest i n high energy muons - from 

the point of view of t h e i r energy spectrum and charge r a t i o - i n deducing 

characteristics of high energy interactions. High energy muons come 

d i r e c t l y from the i n i t i a l interactions and because of t h e i r weakly 

i n t e r a c t i n g nature are easily observed. By studying the muons1 parameters 

a picture of the processes of muon production and hence nuclear physics 

may be deduced. The sea l e v e l muon spectrum i s related to the primary 

cosmic ray spectrum v i a the nuclear interactions i n the atmosphere. The 

muons are produced, i n general, as a re s u l t of the decay of i f s and K's. 

From the point of view of i n t e r p r e t a t i o n of muon phenomena one starts 

w i t h the d i f f u s i o n equations that govern 1f- and/*- spectra and develop 

these according to the assumptions and approximations that may be 

considered appropriate. A complete review of the general method of 

solution of those equations has been given by Fowler and Wolfendale (1961). 

A recent review of high energy muons has been given by Thompson (1973). 

2.4.3 The Nuclear Active Component 

The rol e of the nuclear active component i s i n the development and 

sustenance of an a i r shower. I t i s t h i s component that, i n terms of energy 

dominates the shower and i s responsible for creating the mesons and other 
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strongly i n t e r a c t i n g p a r t i c l e s that w i l l rejuvenate the ntuon and electron 

fractions ( f i g u r e 2.1). The hadrons are far less numerous than other 

shower particles and are r e a l l y only distinguished from electrons by t h e i r 

large energies. 

A sensitive parameter to the assumed model of high energy interactions 

i s the t o t a l number and energy spectrum of hadrons i n a shower of fixed 

primary energy (Greider, 1973) and which may be deduced from the l a t e r a l 

d i s t r i b u t i o n of hadrons. The l a t e r a l d i s t r i b u t i o n has been measured by a 

number of authors f o r various energies and shower sizes and at various 
4 6 

a l t i t u d e s . For showers w i t h i n the electron size range of 4.10 to 4.10 

par t i c l e s at sea l e v e l , Kameda et a l . (1965) gives the d i f f e r e n t i a l l a t e r a l 

density d i s t r i b u t i o n as: 
|0(E,r,N) dEdr = 0.35N°'35E"1,2e" / r o dEdr 

where r = 2.4N 0 , 3 2 E~ 0 , 2 5 

o 

and N and E are measured i n units of 10"* particles and 100 GeV respectively. 

Results from other groups are shown i n figure 2.10 and correspond to 
5 6 

shower sizes between -10 and ~110 p a r t i c l e s . Calculations of the hadronic 

energy spectrum based on the predictions of the de Beer (1966) standard 

model agree w e l l with the observed data i f allowance i s made for a small 

increase i n the mean transverse momentum from 0.4 GeV/c to 0.6GeV/c. The 

transverse momenta of hadrons i n nuclear interactions i s one of the most 

d i r e c t l y observed quantities that can be obtained from the study of hadrons 

i n showers. From observations of multicore structure i n a i r showers 

(Dake et a l . , 1971) i t was concluded that there existed, i n the nuclearactive com­

ponent particles with transverse momenta of about 10 GeV/c. However, 

these conclusions are doubtful since there i s inconsistency between similar 

experiments (Miyake et al.,1970, Samorski et a l . , 1971). Recent work by 

Aseikin et a l . (1975a)suggest an increasing transverse momenta with energies 

above 100 TeV. 
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Table 2.2 

References f o r the data used i n figure 2.10 

Reference Energy Threshold Range of A l t i t u d e of 
of hadrons (GeV) shower size observation 

(gem - 2) 

Chatterjee et a l . 200 1.8.10 -3.2.10 800 
(1968) 

Miyake et a l . 200 3.105 - 10 6 550 
(1970) 

Van Staa et a l . 200 1.3.105 - 3.2.106 730 
(1973) 
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2.5 Cerenkov Radiation i n A i r Showers 

Following the pioneer work of Galbraith and Jelley (1953) into 

Cerenkov radiation from a i r showers, there has been much a c t i v i t y i n t o 

i t s experimental and t h e o r e t i c a l aspects i n the hope of using the effect 

to detect very large ( > l 0 ^ e V ) a i r showers (Protheroe, 1975). Arrays, 

constructed from simple Cerenkov detecting elements, could be made 

r e l a t i v e l y cheaply and extremely large with possible detecting areas of 
2 

1000 km since wide separations of the detectors would be possible. An 
2 

array of 1000 km could detect about 10 a i r shower events with energies 
19 

exceeding 5 x 10 eV per year and thus would improve the bleak s t a t i s t i c s 

i n t h i s energy region by a considerable degree. I t has been suggested 

by Efimov et a l . (1973) that the Cerenkov pulse shape can be d i r e c t l y 

r e l ated to the shower development as a consequence of the delaying effect 

of the a i r on the produced l i g h t and the temporal spread of the electron 

shower disc. This would enable data from extensive a i r showers at various 

stages of t h e i r development, from observations at one l e v e l , to be 

accumulated. Experimental results from Bosia et a l . (1972) have shown 

that structure to the Cerenkov pulse, i f observed with nano-second sensit­

i v i t y can show up multiple cores i n showers whilst Orford et a l . (1975) 

have taken t h i s idea further to extract other parameters as shower front 

curvature and core distance. 
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CHAPTER THREE 
THE AIR SHOWER EXPERIMENT 

3.1 Introduction 

We have seen i n Chapter 2 how a primary cosmic ray, incident upon 

the upper layers of the earth's atmosphere,creates the seed of an a i r 

shower and w i t h the m u l t i p l i c a t i v e properties of the atmosphere amplifies 

the primary event in t o a cascade of many types of p a r t i c l e that may be 

observed covering a large area at observation le v e l . Because of the very 

nature of the a i r shower being spread over many square metres the detecting 

elements of an a i r shower array must be spread over a similar area. The 

energy of the primary p a r t i c l e dictates the size of the shower both i n the 

number of pa r t i c l e s and the area of i t s shower fr o n t . Consequently, the 

size of an a i r shower array w i l l l i m i t the maximum shower size that can be 

successfully analysed. 

The general design of an a i r shower array takes the form of several 

p a r t i c l e detectors spaced at intervals over a large area: each detector 

being able to measure the f l u x of particles that pass through i t and by 

some means convert t h i s f l u x i n t o a quantity that i s capable of being stored 

or recorded and subsequently used i n the analysis of the a i r shower event. 

To determine when an a i r shower event has occurred, and therefore i n i t i a t e 

a data storage sequence of operations, depends upon the experiment but as 

a ru l e a combination of detectors i n a coincidence mode furnish t h i s 

signal. 

3.2 The Ground Parameters 

Prior to the design of the Durham array account was taken of what 

parameters were to be measured by i t . Essentially these are the shower 

electron size, the shower core location and the direction of a r r i v a l of 
such 

the shower f r o n t . Quantities/as multiple cores and shower front radius 

of curvature could not be measured easily because of experimental d i f f i c u l t i e s 

which w i l l be described i n l a t e r sections. I n order to determine these 
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former quantities the parameters to measure are the electron density at 
each detector and the r e l a t i v e times between detectors when the shower front 
passes through them. Thus, w i t h these basic data the shower size, direction 
of a r r i v a l and point of impact of the shower core can be calculated; the 
accuracy of which depends upon the accuracy i n measuring the observed 
quantities. 

3.3 A i r Shower Arrays 

There have been a great many a i r shower arrays b u i l t i n the last 
3 

twenty years, many of which have operated i n the shower range of 10 to 

10^ p a r t i c l e s , yet there s t i l l exists a great deal of uncertainty about 

the detailed shape of the shower size spectrum. Only a few large arrays 

have been b u i l t (Havexah Park, Volcano Ranch, Sydney and Tokyo - Turver, 

(1973)) which have contributed to the i d e n t i f i c a t i o n of large a i r showers 

i n i t i a t e d by primaries of the highest energies. Table 3.1 summarises the 

pertinent features of important arrays that have recently been reported or 

are s t i l l i n operation. No attempt has been made to make the table exhaus­

t i v e . Major differences between arrays are those of t h e i r detecting elements 

and i n t h e i r geometries. Figure 3.1 i l l u s t r a t e s the geometries of several 

arrays i n Table 3.1 from which i t i s seen that a large v a r i a t i o n exists. 

3.4 The' Durham A i r Shower Array 

Preliminary wx>rk on the Durham Array began i n January, 1973 when 

calculations were performed i n order to deduce the most suitable geometry 

and detector locations. I t was found that the detector sites did not 

severely e f f e c t the response of the array to showers of various sizes and, 

a f t e r some consideration;the most suitable sites on which to put the 

detectors suggested an eq u i l a t e r a l t r i a n g l e geometry. Figure 3.2 shows 

the arrangement that i s used at present. I t can be seen that use i s made 

of the strong symmetry of the Physics Department roof i n providing two arms 

of the array. I n order to maintain a symmetrical arrangement extra detectors 
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Figure 3-1 The geometries of five air shower arrays 
listed in Table 3-1. 
(a) Kolar Gold Fields, (b) Ootacamund (Ooty), 
(c) Moscow (1965), (d) Haverah Park, 
(e) Sydney (i). 
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were located i n positions that made a hexagonal geometry i n which similar 

types of detectors i n similar positions should behave i n similar ways. 

A l l of the array detectors i n figure 3.2 are plast i c s c i n t i l l a t o r s . 

There are fourteen i n a l l . Each detector is viewed by a number of photo-

m u l t i p l i e r tubes to record the p a r t i c l e density and, i n addition to these, 

on seven of the detectors i s a photomultiplier tube that i s used i n 

measuring the time of a r r i v a l of an a i r shower fro n t . Four sizes of 

s c i n t i l l a t o r are used, mainly because of t h e i r a v a i l a b i l i t y i n the labora-
2 

to r y , but the 2m s c i n t i l l a t o r s were specially manufactured fo r the array 
by Nuclear Enterprises of Edinburgh. Of a l l these detectors the central 

2 
and 2m detectors are the most important. This i s because they furnish 

the fast timing as w e l l as density measurements. The central detector i s 

also used to define the s p a t i a l and temporal o r i g i n of the array. 

The presence of walls and buildings near to some of the detectors 

n a t u r a l l y r e s t r i c t s the zenith angle acceptance for showers that w i l l be 

accepted fo r f i n a l analysis. However, a l l showers collected are analysed 

but only those whose cores f a l l w i t h i n the array and whose zenith angles 

are less than 30° w i l l be used to produce f i n a l spectra. I n the near 
2 

future up to ten 0.3 m l i q u i d s c i n t i l l a t o r s w i l l be located w i t h i n the 

array t o improve the accuracy of the estimation of the showers1 parameters 

whose axes f a l l w i t h i n i t . 

3.4.1 The Response of the Durham Array 

I n order to understand and inter p r e t the results produced by any 

experiment i t i s necessary to know how i t responds to the phenomena being 

observed fo r without t h i s knowledge the results w i l l be of li m i t e d usefulness. 

One can estimate very simply the expected response of an a i r shower array 

i f i t s dimensions and detector areas are known. Figure 3.3 i l l u s t r a t e s 

the method used, taking the s i m p l i f i e d structure function of Rozhdestvensky 

et a l . (1975), 
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, - r/60 
f (N, r ) = 2.10"° N ~ 

and drawing curves f o r various shower sizes. I n the case of the Durham 

array the smallest detector i s lm x 1m and thus no information on shower 

structure i s obtainable below 1 metre. The v e r t i c a l l i n e at 1 metre 

l i m i t s , then, the minimum r a d i a l distance to which useful data may be 

obtained. The diameter of the array i s 120 metres and although showers 

f a l l i n g outside the array may t r i g g e r the experiment they w i l l not be 

used i n the f i n a l analyses because of the increased inaccuracy of the 

showers* parameter measurements. Thus, a v e r t i c a l l i n e at 120 m provides 

an upper l i m i t on the maximum r a d i a l distance that i s useable. 

I n considering the dynamic range of pa r t i c l e density measurements i t 

i s clear that the smallest density that can be measured i s one p a r t i c l e 
_2 

i n the largest detector. This corresponds to 0.5 m for t h i s array since 
2 

the area of the largest s c i n t i l l a t o r i s 2 in , The largest density that can 

be measured i s largely governed by the saturation l i m i t of the p a r t i c l e 

density measuring electronics and at present th i s corresponds to 80 

pa r t i c l e s per square metre. With the introduction of logarithmic 

amplifiers t h i s upper l i m i t w i l l be increased to over 500 particles per 

square metre. These four boundaries therefore l i m i t the magnitude of some 
of the parameters which are measured. I n this case the shower size response 

3 7 

i s about 10 to about 10 part i c l e s and these represent the upper and lower 

l i m i t s of successful shower analysis. By imposing t r i g g e r i n g requirements 

these values w i l l change and r e s u l t i n a smaller area than that defined i n 

f i g u r e 3.3. 

In a more detailed treatment of the array's response one needs to take 

i n t o account those parameters that w i l l influence the detection of an event. 

I n p a r t i c u l a r these are the detectors coordinates (x., y. , z.), t h e i r 

areas and t h e i r e f f i c i e n c i e s . Those parameters that are more easily 

varied, such as the t r i g g e r i n g c r i t e r i a - these are the tr i g g e r density 

threshold and the detector coincidence combination - are allowed to vary 
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to f i n d the most suitable combination that gives the response that i s 
2 

required. I n these calculations only the central and 2 m detectors were 

considered. This was because these detectors possess the fast timing 

f a c i l i t y and i t i s necessary to have an estimation of the shower a r r i v a l 

d i r e c t i o n before a f u l l event analysis i s possible. 

Having decided on the positions of the detectors and t h e i r areas, 

various combinations of t r i g g e r i n g c r i t e r i a and density threshold were 

selected f o r investigation. This would lead to a much more thorough under­

standing of the array's response and c a p a b i l i t i e s . To do t h i s an electron 

structure function needs to be assumed and i t was taken to be the Greisen 

(1960) function: 

?(-)°' 7k) 3' 2 5( l +^) ™ 
The procedure involved to calculate the a i r shower array's response was 

to calculate the array's Effective Collecting Area, A e > This area represents 

an area that may be considered as being t o t a l l y e f f i c i e n t i n detecting 

showers and i s n a t u r a l l y shower size dependent. What was done was to 

simulate the a i r shower array on a computer and f i r e showers of a particular 

size at the array at random zenith and azimuthal angles and random core 

locations (the random zenith angles were modulated by a cos 0 d i s t r i b u t i o n ) 

w i t h i n the r e s t r i c t i o n s of the array acceptance c r i t e r i a . For each shower, 

the p a r t i c l e densities, ft. , at each of the triggering detectors were 

calculated from which the detection prob a b i l i t y , p. , f o r a given p a r t i c l e 

threshold, m, could be determined. These p r o b a b i l i t i e s , when mu l t i p l i e d 

together, give the array t r i g g e r i n g p r o b a b i l i t y f o r recording a shower with 

the same size, core location and a r r i v a l direction. By f i r i n g i n many such 

showers the average array t r i g g e r i n g p r o b a b i l i t y can be deduced and t h i s , 
i 

m u l t i p l i e d by the geometrical area of the array i n which shower axes are 

accepted, Ag, gives the array e f f e c t i v e c o l l e c t i n g area, A g . I n effect 

what i s calculated i s 
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A 
e 

8 IT p (X , Y ) dA (3.X) 
i = 1 i c c 

with the product extending over a l l triggering detectors and with the p^s 

being averaged over many (0,^>)at the same (X , Y ) . Defining 

p = TT p i ( xc» Yc } ( 3 - 2 ) 

i = i 
equation 3.1 can be re-written as 

•A 
A f 8 PdA 

i 8 » 

Hence, A = P. A (3.3) 
e g -

3.4.2 Calculation of the Average Triggering Probability 

For detectors w i t h 100% efficiency, p^ may be given by the 

poissonian p r o b a b i l i t y of a pa r t i c u l a r density, /? , on a detector of area 

exceeding a p a r t i c l e threshold of m as 

p i i 
Pi ^.s.^m) - e 

n=m 
_ (3.4) 

n: 

This i s generally true and applicable to geiger tube arrays, but with 

s c i n t i l l a t o r s the detecting elements tend to have efficiencies that depend 

both on the number of particles incident on them and on t h e i r p a r t i c l e 

threshold. I f the ef f i c i e n c y i s defined as £(n,m), where n i s the number 

of p a r t i c l e s and m i s the p a r t i c l e threshold, equation 3.4 becomes 

-p.s. } (p.s ) n 

n=0 

The function t- i s a function of the detecting elements and has to 
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be determined empirically. Figure 3.4 i l l u s t r a t e s what i s meant by the 
effi c i e n c y for s c i n t i l l a t o r s . The curves n = 1, 2, 3.... are the s c i n t i l l a t o r 

response curves to 1,2,3 particles incident upon the detector. The 

v e r t i c a l l i n e at m indicates a p a r t i c l e threshold and i s generally set and 

adjusted by an electronic disciminator i n the laboratory (jjj 5.2JL). The 

eff i c i e n c y for two particles on the detector i s the r a t i o of the area under 

the curve n = 2 to the r i g h t of the v e r t i c a l l i n e to the t o t a l area beneath 

the curve. Similarly for n = 3,4,5 i t i s seen that the efficiency 

quickly' approaches uni t y i n t h i s case. For 100% e f f i c i e n t detectors the 

eff i c i e n c y function i s a step function with the efficiency becoming unity 

at m. 

S c i n t i l l a t o r response curves cannot be produced easily for greater than 

about two p a r t i c l e s . This i s because of experimental d i f f i c u l t i e s , especially 

i n the extended acquiring times, with many p a r t i c l e telescopes (§ 4.7), due 

to the low cosmic ray f l u x of m u l t i p a r t i c l e events. To overcome this problem 

m u l t i p a r t i c l e spectra can be derived from a single particle's response by 

folding i t upon i t s e l f as many times as one requires. Thus, a two p a r t i c l e 

spectrum i s obtained by folding a single particle's with i t s e l f and normalis­

ing the area beneath the curve to be equal to that beneath the single p a r t i c l e ' s . 

A three p a r t i c l e d i s t r i b u t i o n may then be obtained as a result of folding a 

two p a r t i c l e d i s t r i b u t i o n with a one p a r t i c l e spectrum, and so on. I n t h i s 

way many multiple p a r t i c l e d i s t r i b u t i o n s can be deduced and the efficiency 

fo r detecting n particles with a detector threshold of m can be quickly 

obtained. B r i e f l y , to produce an empirical single p a r t i c l e d i s t r i b u t i o n * 

f o r a detector, a telescope technique i s usually preferred i n which the 

response of the entire detector i s included. This technique suffers from 

the disadvantage that the p a r t i c l e d i s t r i b u t i o n thus obtained corresponds 

to a d i s t r i b u t i o n of % 1 particles and so to create a pure single p a r t i c l e 

spectrum the multiple p a r t i c l e spectra must be removed from i t . Calculations 

based on the density spectrum of Hayakawa (1969) gave a contamination of 
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--3 % f o r ^ 2 part i c l e s i n the > 1 p a r t i c l e d i s t r i b u t i o n as experimentally 

observed. This i s a small contribution but could introduce s i g n i f i c a n t error 

i n the production of m u l t i - p a r t i c l e spectra i f i t were not removed. Start­

ing w i t h the ^ 1 d i s t r i b u t i o n , which i n i t s e l f i s a good approximation to 

a pure 'one1, a better approximation can be obtained by folding the 1 

with i t s e l f and then normalising the area beneath the new d i s t r i b u t i o n to be 

37. of the o r i g i n a l and subtracting t h i s from the >/ 1 . I t was with t h i s 

almost pure single p a r t i c l e d i s t r i b u t i o n that the efficiency terms were 

calculated. 

Using equations 3.2, 3.3 and 3.5 the array effective c o l l e c t i n g area 

as a function of N was calculated. As would be expected as the shower size 

increases so does A u n t i l a shower size where A i s equal to A . For the 
e e ^ g 

g 
Durham array t h i s corresponds to a shower size of about 10 par t i c l e s . Figure 

3.5(a) i l l u s t r a t e s how A*ft,varies f o r several triggering c r i t e r i a and figure 

3.5(b) shows, for comparison, the effe c t of calculating A&with and without 

e f f i c i e n t detectors; here ft i s the array s o l i d angle. 

3.5 The Response of External Devices and the Array i n a coincidence mode. 

I t i s the case with some experiments that there i s the need to 

investigate associated events w i t h showers. This imposes additional r e s t r i c ­

tions and l i m i t a t i o n s on the response of the array as determined above. What 

needs to be done i n calculating the response of the combined experiment i s to 

f o l d the external devices d i f f e r e n t i a l shower response (as a probability) i n t o 

the array response for whatever selection c r i t e r i o n i s i n operation at that 

time. Thus, i f P i s the t r i g g e r i n g probability of the external experiment 

for a shower of size N then the array and external experiment effective 

c o l l e c t i n g area w i l l be: 

A = P . P . A 
e array e g 
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I t i s a feature of t h i s array that i t can be externally triggered when the 
other experiment registers an event. I n t h i s case the tr i g g e r i n g probability 
of the array i s u n i t y i n the above expression for A q since t r i g g e r i n g by 
th i s method does not require the array to have s a t i s f i e d i t s own trigger 
requirement. 

3.5.1 The Bate of High Energy Kuons i n A.ir Showers 

Using the external t r i g g e r without satisfying the array event 

acceptance c r i t e r i a i s useful i f the external device triggers frequently 
4 

on events associated with very small (~10 ) showers since the array response 

to those showers of less than t h i s size f o r certain t r i g g e r requirements i s 

small. I t i s not recommended to t r i g g e r i n t h i s way for rare shower 

associated events since many useless showers' data w i l l be stored. This 

i s the case fo r high energy associated muon events which are much rarer 

than either unassociated muons or unassociated shower events. For these 

associated events the array and muon detector must be i n a coincidence mode 

i n order to reduce or eliminate useless data from being stored. With t h i s 

i n mind, calculations on the expected rates of high energy muons i n showers 

were performed considering the muon spectrograph, M.A.R.S., already i n 

existence i n the laboratory. 

3.6 The Muon Automated Research Spectrograph (M.A.R.S.) 

M.A.R.S. has been described i n d e t a i l elsewhere (Ayre, 1971; 

Whalley, 1974) and so only a b r i e f description of the experiment and those 

features relevant to the calculation of associated muon rates w i l l be 

discussed. 

The spectrograph (M.A.R.S.) b u i l t and in operation i n the Cosmic Ray 

Laboratory i n Durham was constructed t o study the momentum spectrum and charge 

r a t i o of muons i n the v e r t i c a l d i r e c t i o n and has been providing data since 

1971. I t s design enables the spectrum to be obtained up to and i n excess 

of 5000 GeV/c and allows data to be collected and stored automatically on 
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an on-line I.B.M. 1130. The form of t h i s instrument i s shown i n figure 3.6. 

I t can be seen to consist of four magnet blocks, i n which a f i e l d of approx­

imately 16 kG i s present. Between each of the blocks are s c i n t i l l a t i o n 

counters and trays of neon flash tubes which are used to detect the particles 

t r a v e l l i n g through the spectrograph and to determine t h e i r trajectory. The 

spectrograph has a minimum detectable momentum of 6.9 GeV/c, a maximum 
2 

detectable momentum of 5850 GeV/c and an acceptance of 408 cm 6; for muons 

of i n f i n i t e momenta through one side of the spectrograph. 

3.6.1 The Acceptance of M.A.R.S. 

The acceptance of the spectrograph has been defined by Whalley 

(1974) as "that amount by which the v e r t i c a l i n t e n s i t y has to be mul t i p l i e d 

i n order to give the rate of passage of muons through the three s c i n t i l l a t i o n 

counters." Because of the bending of the particle's t r a j e c t o r y i n the 

magnetic f i e l d t h i s acceptance i s momentum dependent. The acceptance i s 

also a function of the angles of incidence of the muon s t r i k i n g the spectro­

graph i n both the f r o n t (bending) plane and side plane of the spectrograph. 

Following the method of Whalley (1974), for the i n f i n i t e momentum caseyand 

representing the s c i n t i l l a t i o n detectors as planes as i n figure 3.7(a) 

the acceptance at i n f i n i t e momentum may be calculated. Consider the figure 

i n which AB i s the tr a j e c t o r y of the muon. The upper plane represents the 

top s c i n t i l l a t o r and the lower plaftft represents the bottom s c i n t i l l a t o r . 

For the purpose of calculating the acceptance the problem may be divided i n t o 

two parts: 

(1) the acceptance i n the bending plane of the muon "a 

tr a j e c t o r y 

(2) the acceptance i n the side plane of the muon's 

tra j e c t o r y . 

The bending plane being defined as the plane i n which the trajectory 
deviates from a st r a i g h t l i n e due to the magnetic f i e l d . 

Using the notation described i n figure 3.7(b) the acceptance i n one 
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plane i s given by 

0 

max 
A cc (vicos9 - V\sin0 ) d6 

max 
where 0 max 

and represents the maximum angle that a muon may have i n order to penetrate 

the two planes. 

Evaluating t h i s i n t e g r a l f o r both the bending and side planes gives 

thickness of the s c i n t i l l a t o r s ^ a small error i s present on t h i s acceptance. 

The acceptance fo r i n f i n i t e momenta muons for one side of M.A.R.S. i s 

A (w) = 408 + 2cm2 .sr. 

f o r other momenta i s not as stra i g h t forward due to factors such as the 

t r a j e c t o r y deviation and energy loss. The acceptance for the side plane i s 

uninfluenced by the magnetic f i e l d and i s thus only a function of incidence 

angle. The calculation i s similar to the above treatment for i n f i n i t e momentum. 

I n the general case the procedure i s to f i n d the acceptance fo r a given 

momentum averaged over a l l possible angles of incidence and to do thi s one 

na t u r a l l y needs the use of computing f a c i l i t i e s . Figure 3.8 shows how the 

acceptance of M.A.R.S. varies f o r muons i n a i r showers with P ^ 10 GeV/c 
r 

and shower size N. I n t h i s figure the array t r i g g e r i n g probability i s unity. 

The muon l a t e r a l d i s t r i b u t i o n i n a i r showers wo.s taken to be that due to 

Greisen (1960) and a "four-tray-acceptance" of the spectrograph was applied 

since f o r muon associated events the top measuring flash tube tray probably 

contains contamination from the electronic component. 

2,h A (<*>) (h + w j - h (h + w, ) -h cc 

Due to the uncertainty i n the knowledge of K,resulting from the f i n i t a 

cc 

The acceptance 
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Calculation of the muon's momenta and sign i s a simple process i n theory 
but i s n o n - t r i v i a l i n practice. In the M.A.R.S. case account must be taken 
of spuriously flashed tubes, the occurrence of bursts and knock-on electrons 
•which could make the track f i t t i n g process less w e l l defined. The M.A.R.S. 
data analysis takes these factors i n t o account and provides for various 
f i t t i n g options depending upon the q u a l i t y of the data present. I n i t s 
basic form the t r a j e c t o r y of a muon traversing the spectrograph i s defined 
by the f i v e measuring trays of flash tubes. These flashed tubes enable a 
track of a certain curvature to be cl e a r l y defined and from t h i s a momentum 
may be assigned according to 

where B = 16.3 kG and r^ i s the radius of curvature of the muon's trajectory. 

The sign of the muon i s given by the direction i n which the traj e c t o r y curves. 

A l l of the M.A.R.S. data i s d i g i t i s e d and analysis i s carried out on 

IBM 1130 and IBM 370/168 computers. 

3.7 The Hadron Chamber 

The second major cosmic ray research programme i n the laboratory i n 

Durham i s the investigation of hadron phenomena by the use of a chamber of over 

11000 flash-tubes. At present t h i s i s being used to investigate hadrons i n 

regions of large p a r t i c l e density i n cosmic ray a i r showers. I t has been used 

i n the past i n the search for quarks i n shower cores. Figure 3.9 shows the 

chamber. 

Hitherto the t r i g g e r i n g requirement has been to use a local p a r t i c l e 

density exceeding some preset l e v e l on the top of the chamber and t h i s 

e f f e c t i v e l y selects showers of greater than a particular size for investiga­

t i o n . Increasing the density discrimination level w i l l increase the mean 

shower size that i s capable of inducing a trigger. Consequently, data have 

been obtained from t h i s experiment w i t h only l i m i t e d knowledge of the i n d i v i d ­

u a l a i r showers that have caused the events. I t i s hoped that when the a i r 
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shower array i s used with the chamber much more detailed information w i l l 

be able to be extracted from i t . 

The data from the hadron chamber are produced on photographic f i l m . 

When the chamber f i r e s , a camera photographs the flashed tubes and then the 

camera i s wound on to the next frame. After a running time of the order of 

a day the f i l m i s retrieved and developed. This i s then scanned by eye for 

events of in t e r e s t and then analysed according to the q u a l i t y of the data. 

With a system as complex as t h i s chamber d i g i t i s a t i o n and computer analysis 

would be extremely d i f f i c u l t since i t would be a very complex task t r y i n g to 

quantify the pattern of tubes flashed. A visual scan, although much more 

subjective, does allow f o r a greater degree of f l e x i b i l i t y i n the searrh for 

i n t e r e s t i n g events and because of the low triggering rate (about one per 

hour) d i g i t i s a t i o n i s not j u s t i f i e d . The response of t h i s chamber has been 

calculated f o r a l o c a l electron density greater than 40 m by Cooper (1974) 

and i s shown i n figure 3.10. 

3.8 Measurable quantities 

From what has been seen i n the preceding sections i t i s eviden- that 

using the a i r shower array w i t h these two major experiments a great deal of 

detailed information may be obtained for each individual a i r shower event. 

The muon spectrograph can provide accurate measurements on muon momenta from 

less than 7 GeV/c to momenta i n excess of 5000 GeV/c for v e r t i c a l muons. From 

an assembly of the muon data the charge r a t i o as a function of shower size and 

momentum can be derived. The hadron chamber i s capable of providing more 

detailed data on the electron, muon and nuclear active particles structure 

functions f o r showers than i s the case f o r the a i r shower array alone. By 

selecting appropriate t r i g g e r c r i t e r i a f o r the experiments i n combination 

any one or more of these features may be investigated. 
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3.9 Accuracy of Measurement 

Accuracy i n the measurement of a physical quantity i s of prime 

importance i f any detailed understanding i s to be gained from the study of 

i t . The accuracy to which the parameters outlined above may be determined 

vary and are functions of tha instruments. I n the case of the muon nomenta 

what has usually been done,with many previous spectrographs, i s to add the 

maximum detectable momentum correction i n quad rature with the multiple 

scattering correction to define an error on the momentum Sv> given as 

maximum detectable momentum. 

An error on the sign of the charge of the muon only begins to be s i g n i f i ­

cant f o r momenta i n the region of the m.d.m. of the apparatus. Above th i s 

momentum the charge r a t i o tends to u n i t y . For the purposes of studying muons 

i n extensive a i r showers t h i s i s not an important consideration as associated 

muons w i t h momenta i n excess of 5000 GeV/c would be very rare occurrences. 

For determining p a r t i c l e densities i n a i r showers the Hadron Chamber i s very 

useful. This i s because the i n d i v i d u a l bracks of the cosmic rays are rendered 

v i s i b l e and thus may be easily counted. The knowledge of the extent of the 

absorber on and i n the~ chamber w i l l give a measure of the energy threshold 

that the pa r t i c l e s must exceed. The chamber projects a three dimensional 

event on to two dimensions, consequently reducing the amount of extractable 

information from i t , but i n some applications t h i s loss i s not important. As 

with many associated a i r showers i t i s of prime importance to know the main 

parameters of the a i r shower, v i z : the core location, size and a r r i v a l 

d i r e c t i o n . The errors present on these quantities w i l l be dealt with i n 

d e t a i l i n Chapters 6 and 7. 

f ( ? ^ . 3 ) 
Here c i s the scattering correction of 0.16 and p mdm is the spectrograph's 

3.10 V e r s a t i l i t y required f o r data c o l l e c t i o n 

As one of the b u i l t i n features of the array was the requirement of 
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v e r s a t i l i t y . The electronics have been so designed that the array may trigger, 

or be triggered by, an external device such that associated events can easily 

be collected. Because of the existence of several other cosmic ray experiments 

i n the laboratory i t became a fundamental factor to enable these and future 

experiments to be triggered when an a i r shower event occurs. Conversely,it 

could be desirable to t r i g g e r the array when an event of interest has 

occurred i n another experimental arrangement. This i s possible with the 

present system. 
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CHAPTER FOUR 

THE AIR SHOWER ARRAY AND ITS FEATURES 

4.1 Introduction 

The detector layout of the Durham Array, established p a r t l y by calcula­

t i o n and p a r t l y by the a v a i l a b i l i t y of detector s i t e s , i s shown i n figures 

3.2 and 4.1. Each of these detectors samples the p a r t i c l e density of an a i r 

shower event and relays i t to the laboratory. Seven of the detectors give 

time markers when the shower front passes through them and these, too, are 

relayed to the laboratory where they are converted in t o r e l a t i v e time differences 

and stored. The process of c a l i b r a t i n g these detectors and delivering the 

pulses i n t o the laboratory i s necessarily complex and formed a large part of 

the array preparation and construction. I n what follows the methods by means 

of which the data a r r i v e i n the laboratory are discussed. The various kinds 

of detecting elements are described and how the calibrated pulse height 

information i s presented to the data handling electronics where i t i s coded 

and stored. 

4.2 The A i r Shower detecting elements 

Many techniques have been employed i n the detection of particles i n 

a i r showers. Early workers r e l i e d on cloud chambers and geiger counters to 

detect and investigate a i r showers' properties. I n some applications these 
2 

devices are s t i l l used, for example Hazen et a l . (1975) use a 3m cloud 

chamber i n a quark search i n the cores of small a i r showers but geiger counters 

have, i n general, been superfeded by d i f f e r e n t detection devices which are more 

r e l i a b l e , e l e c t r o n i c a l l y easier to handle and capable of providing more detailed 

information. Neon hodoscopes, spark chambers and s c i n t i l l a t i o n counters have 

tended to replace the e a r l i e r devices as detection techniques become more 

sophisticated and i n the present experiment plast i c s c i n t i l l a t o r s are used 

throughout. 

One major probLem associated with the use of s c i n t i l l a t o r material l i e s 

i n i t s l i g h t attenuation length. This i s the characteristic length of 
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s c i n t i l l a t o r down which the l i g h t i n t e n s i t y decreases by e . Consequently, 

f o r large area detectors, account must be taken of the non-uniformity i n 

response whereas i n the case of geiger tubes, spark chambers and similar 

devices, these corrections are unnecessary. S c i n t i l l a t o r s do have a great 

advantage i n that they can be made i n large areas r e l a t i v e l y cheaply and the 

associated electronics required to detect the emitted l i g h t i s capable of 

long term s t a b i l i t y . I t was for these and other reasons that s c i n t i l l a t o r s 

are used i n the Durham Array. 

There are four types of s c i n t i l l a t i o n detector i n present use i n the array 

and they may be conveniently distinguished from each other by the fact that they 
2 2 2 

have d i f f e r e n t areas. The v a r i a t i o n i n detector area (2.0m , 1.6m , 1.0m and 
2 2 0.75m ) i s due to t h e i r a v a i l a b i l i t y . The 2.0m were specially fabricated for 

the array by Nuclear Enterprises of Edinburgh. Figure 4.1 shows that, whereever 

possible, detectors w i t h the same areas have been placed at equivalent positions 

w i t h i n the array to enhance the symmetry. This disposition also helps i n 

the monitoring of the detectors' responses which i s discussed i n Chapter 5. 

Characteristic of a l l of the detectors i s the s i m i l a r i t y i n how the s c i n t i l l a t o r s 

are housed, Figure 4.2 shows t h i s . The boxes that contain the s c i n t i l l a t o r s , 

photomultiplior tubes and associated electronics are made from wood and are 

weather proofed with bitumen paint and aluminium f o i l . On one edge of the 

box the E.H.T. u n i t (g 4.3.1), the head amplifier (§ 4.4) and the services 

box (§ 4.5) are mounted. Each detector box rests on an angle iron bed to raise 

i t o f f the ground surface both to prevent damp and to assist the c i r c u l a t i o n 

of a i r around the box. Each of the several legs are adjustable i n height 

to allow f o r uneven resting surfaces. Enclosing the detector box and bed 

i s a weather proofed hut, also made from wood that i s covered i n either cedar 

wood of roofing f e l t . A louvre panel on the front and rear assist the a i r 

c i r c u l a t i o n around the detector. These panels can be removed to gain access 

to the detector electronics. Each of the various types of detector have been 

constructed i n s l i g h t l y d i f f e r e n t ways to take advantage of t h e i r size or 

shape and w i l l be discussed separately. 
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4.2.1 The Central Detector 

The central detector, 'C i n figure 4JL i s of a type that i s not 
2 

found elsewhere i n the array. I t has a geometrical area of 0.75 m and because 

of i t s uniqueness i t was decided to locate t h i s at the central position. 

Figure 4.3(a) shows the salient features of thi s detector. I t consists of 

two i d e n t i c a l halves. Each h a l f consists of a 5 cm thick slab of NE102A 

p l a s t i c s c i n t i l l a t o r that i s viewed by two Philips 53AVP photomultipliers via 

perspex l i g h t guides, one on each end. Attached to one of the l i g h t guides 

on each ha l f i s a Philips 56AVP photomultiplier which supplies the timing 

pulse to which a l l of the other timing pulses are referred. The two halves 

are positioned side by side on an angle iron bed on the Physics Department 

roof and define the s p a t i a l and temporal o r i g i n of the array coordinate 

system. 

2 
4.2.2 The 2.0 m detectors 

2 
There are s i x 2m detectors and these form the backbone of the a i r 

shower array and i t i s w i t h these and the central detector that an event i s 

established. They consist of a 2m x lm x 2.5 cm slab of NE110 plasti c 

s c i n t i l l a t o r that i s noted f o r i t s long ("4m) attenuation length. The 

phosphor i s viewed by four 5" diameter EMI 9579B photomultiplier tubes 

f o r p a r t i c l e density measurements and one 2" diameter Philips 56AVP photo-

m u l t i p l i e r tube for fast timing. Timing measurements are only taken on 

these and the central detector to give a t o t a l of seven time markers. Figure 

4.3(b) shows t h i s detector's features. The 'slow' phototubes view the long 

edges of the phosphor and have no interviewing l i g h t guide as they were 

found t o be unnecessary. The " f a s t " phototube i s attached to a long edge 

of each phosphor with NE580 o p t i c a l cement. 
2 

4.2.3 The 1,6 m detectors 
These detectors, of which there are four i n a l l , consist of four 

i d e n t i c a l i n d i v i d u a l l y l i g h t proofed quarters. Each quarter i s a 2.5 cm 
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t h i c k slab of NE102A p l a s t i c s c i n t i l l a t o r and i s viewed by a Philips 53AVP 

photomultiplier tube through a perspex l i g h t guide, on one of the short ends, 

f o r the measurement of p a r t i c l e density. Figure 4.3(c) shows the detector 

and how the s c i n t i l l a t o r s are situated i n r e l a t i o n to each other. 

2 
4.2.4 The 1.0 m detectors 

Three of these detectors are to be found I n the a i r shower array and 

each i s located at about 25 m from the central detector. They are notably 

d i f f e r e n t from the other detectors i n the respect that the photomultiplier 

tubes view the broad faces of each of the 25 cm x 25 cm x 5 cm slabs of 

s c i n t i l l a t o r . This n a t u r a l l y increases the detector's response to almost 
2 

unity over a l l of i t s area. As w i t h the 1.6 m detectors, each detector 

consists of four i d e n t i c a l quarters that are in d i v i d u a l l y l i g h t proofed. The 

s c i n t i l l a t o r i s of an unknown composition and not of the highest quality, 

thus necessitating the type of photo-tube arrangement shown i n figure 4.3(d). 

4.3 The Array Photomultiplier Tubes 

Photomultiplier tubes are used with the p l a s t i c s c i n t i l l a t o r s i n the 

array t o convert the l i g h t output of the s c i n t i l l a t o r s i n t o e l e c t r i c a l 

signals that may be recorded and interpreted i n terms of shower front para­

meters at the detectors coordinates. I n a l l there are three types of tube 

i n present use: EMI9579B with a 12 cm photocathode, Philips 53AVP with a 

5 cm photocathode and Philips 56AVP also with a 5 cm photocathode. A l l 

possess standard S-ll(CsSbO) photocathode and have t h e i r peak response 

i n about the same region as the s c i n t i l l a t o r response. Figure 4.4 shows 

the much broader photocathode response that completely encloses the s c i n t i l l a ­

tor's spectral response such that any l i g h t quanta incident on the photo­

cathode could r e s u l t i n an e l e c t r i c a l signal. 

The base c i r c u i t s are i l l u s t r a t e d i n figure 4.5 and are of the high current 

design. This was chosen so that good l i n e a r i t y could be obtained for large 

pulses and so that saturation effects would be reduced. The tubes run on 

a negative E.H.T. supply and the output pulses from the 'slow' tubes are 
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negative with an exponential decay time constant of 20 microseconds. The 

'fast' tubes s i m i l a r l y run on a negative E.H.T. supply and have a negative 

pulse of ~5nS f .w.h.ra. The photomultiplier tube base c i r c u i t s are non-

standard i n the respect that the k-Dl voltage i s unstabilised. This was 

constructed i n t h i s way following the usual practice i n the laboratory but 

i t was decided to investigate the tubes' gain f o r various l i g h t inputs and 

E.H.T's to check on any deviation from l i n e a r i t y . Three methods of ascertain­

ing the photomultiplier tubes response were t r i e d , each based on a device 

that could provide l i g h t pulses that could create large (of the order of a 

few v o l t s ) signals from the tubes. The l i g h t output from the device was 

then reduced by using high q u a l i t y polarising f i l t e r s i n a crossed polariser 

technique. 
241 

Of the three l i g h t emitting devices used - an Am alpha-source i n NE110 
pl a s t i c s c i n t i l l a t o r , a neon tube operating i n i t s relaxation mode and a 

i 

pulsed l i g h t emitting diode - the pulsed L.E.D. showed greatest promise. In 
241 

d e t a i l i t was found that the Am source i n the p l a s t i c s c i n t i l l a t o r produced 

fa s t r i s e time pulses, of a similar kind produced i n the s c i n t i l l a t i o n detectors, 

but whose i n t e n s i t y was too low and rendered the device unuseable. The neon 

tube had a very slow (~ mS) r i s e time and was thus unsuitable because i t did 

not provide l i g h t pulses of the kind that were to be measured i n the detector 

and because the photomultiplier tube pulse r i s e time was severely affected 

by the l i g h t output r i s e time of the neon tube. The pulsed L.E.D. was 

considered most satisfactory because more control could be exercised over 

the shape of the l i g h t pulse. A simple T.T.L. bistable c i r c u i t was constructed 

to provide voltage pulses of ~80nS width and w i t h t h i s driving a standard 

L.E.D. r e l i a b l e and consistent phototube pulses were obtained of such an 

i n t e n s i t y that crossed polarising f i l t e r s could be used. The phototube 

pulses were i d e n t i c a l i n 3hape to the pulses obtained from genuine cosmic 

rays i n large area s c i n t i l l a t o r s and consequently the L.E.D. technique was 

deemed sat i s f a c t o r y f o r the phototube gain investigation. 
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The method used was t o pulse the L.E.D. at about 1kHz with the 

narrow voltage pulses. The l i g h t output from the L.E.D. was then reduced 

i n i n t e n s i t y by polarising f i l t e r s shown i n figure 4.6. By varying the 

angle © between the planes of polarisation of the two f i l t e r s the 

i n t e n s i t y of l i g h t f a l l i n g onto the photocathode was altered according 
2 

to the cos 9 law. The output from the anode of the photomultiplier tube 

base c i r c u i t was then taken d i r e c t l y t o the oscilloscope and the peak 

height noted. The l i n e a r i t y curves f o r the EMI9579B and Philips 53AVP 

photomultiplier tubes are shown i n fi g u r e 4.7. Typical operating voltages 

are about 1.6 kV and 1.9 kV f o r the EMI9579B and Philips 53AVP respectively. 

I t can be seen that f o r these voltages the phototube l i n e a r i t y , over the 

range of output pulses used, i s good. 

4.3.1 The E.H.T. Di s t r i b u t i o n 

Two E.H.T. units supply the high voltage to the two d i s t i n c t 

types of photomultiplier tube that are used i n the array. The 'fast' tubes 

are run o f f an NE4646 E.H.T. u n i t which i s capable of servicing the seven 

tubes. The 'slow' tubes run o f f an Ortec 456 and i s set to 2.4 kV i n the 

laboratory. This u n i t can supply the appropriate voltage to a l l of the 

'slow' tubes w i t h i n the anay. Going 'co each detector i s one co-axial 

cable thac carries the 'slow' tube power and t h i s i s distr i b u t e d amongst the 

four tubes i n the detector using a resistor chain, i l l u s t r a t e d i n figure 

4.8, which enables each tube's voltage to be adjusted independently of 

the others. This i s necessary as no two tubes work at exactly the same 

voltage. I n the case of a detector's 'fast' tube a single co-axial cable 

carries the power and at the detector there i s a similar resistor chain 

to adjust the voltage across the tube as required. 

4.4 The Detector Head Amplifiers 

The output pulses from each of the four density measuring phototubes 

i 
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are summed i n a mixer-amplifier at the detector. The amplifier (figure 
4.9) essentially consists of four emitter followers whose outputs are summed 
and amplified i n a^A702C d i f f e r e n t i a l amplifier integrated c i r c u i t . The 
output of t h i s device i s then fed i n t o another emitter follower c i r c u i t 
such that the now positive signal can be driven down the long lengths of 
cable i n t o the laboratory. 

Because many of the amplifiers are"used out of doors they become 

susceptible to v a r i a t i o n i n temperature and thus i t i s important to know 

the temperature characteristics to see i f any temperature correction need 

be applied to the output pulses. This was done by covering an amplifier i n 

a watertight jacket and immersing i t i n water of a known and st a b i l i s e d 

temperature. When i t was considered that the temperature of the amplifier 

had also become s t a b i l i s e d a measure of the gain was taken. This was done 

f o r a v a r i e t y of temperatures above and below 0°C and for the range of 

temperatures to be encountered the gain did not vary s u f f i c i e n t l y to 

warrant correction terms i n the analysis procedures. The amplifiers have 

been made i n such a way that they can be easily removed from the detector 

thus aiding periodic checking and servicing. A s t a b i l i s e d 24 volt,3A power 

supply u n i t i n the laboratory supplies thi? power to a l l of the amplifiers 

i n the array. 

4.5 The Services Box 

At each detector telephone and soldering i r o n f a c i l i t i e s are provided 

to enable audio contact between the detectors and the laboratory and also 

to assist i n e l e c t r i c a l repairs. A spare twin f l e x , similar to the ones 

carrying the soldering i r o n power, i s included should i t be required at any 

time i n the future. 

4.6 The Array Cables 

Figure 4.10 shows the layout of the array cable d i s t r i b u t i o n amongst 

the detectors. I n order to economise on cables and to reduce the number of 
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cables coming i n t o the laboratory the cables carrying the 'slow' E.H.T.( 

telescope E.H.T. (§4.7), low tension and services /go from detector to 

detector along the various arms of the array. The 'fast' E.H.T. and pulse 

carrying cables are in d i v i d u a l cables which go d i r e c t l y from the laboratory 

to the various detectors. The 24V low tension i s carried on screened four 

core cable (BICC 16.2.4C). Two of these carry the 24 v o l t s , the other 

two are spare. The coaxial cable i s RG58 C/U 50ft cable throughout down 

which the pulse information propagates with a 0.9dB per 100 m loss. This 

loss i n signal can be compensated fo r by increasing the photomultiplier 

E.H.T. to increase the size of the signal before being introduced to the 

cable. The frequency response of the cable i s such that no si g n i f i c a n t change 

to the pulse shape can be seen f o r either the density pulses or the fast-

timing pulses. 

4.6.1. The Temperature Dependence of the Pulse carrying Cables 

I n the case of those cables carrying the timing pulses i t i s necessary 

to know t h e i r e l e c t r i c a l length as d i s t i n c t from t h e i r physical length so 

as to be able to determine the time delay that i s introduced by the cables 

from each detector. I t was thought that this could be a function of 

temperature and humidity and so these characteristics were investigated. 

Two cables of similar length (100m) were coiled. One was maintained at 

room temperature i n a dry environment and constituted the reference cable. 

The second was enclosed i n a dry temperature controlled environment and 

a measure of the propagation delay of i d e n t i c a l pulses down the cables for 

varying temperatures were recorded w i t h the aid of a fast time base osc i l l o s ­

cope and an accurate variable time delay u n i t . After the dry environment 

characteristics had been obtained the cable was Immersed i n water and the 

temperature characteristics again measured. There was no observable difference 

between the wet or dry characteristics over the temperature range investigated 

(15°C to 47°C). The cable i n the wet t e s t was continuously monitored for a 

week and again no observable departure from the dry test was seen, thus 
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i n d i c a t i n g that the cables are waterproof. 

Over t h i s temperature range a temperature c o e f f i c i e n t of (-6.0 + 0.2) 
4* 1 o X 

10 nS m C was found and f o r the temperature ranges encountered on 

the ground surface and at subsoil levels of 30 cm no correction term need 

be applied. The expected v a r i a t i o n i s less than + 0.6 nS per 100m length. 

4.7 The Telescopes 

Two additional coaxial cables go to each detector and they provide 

f o r the operation of a subsidiary s c i n t i l l a t o r telescope at each detector. 

The telescope i s used i n the c a l i b r a t i o n and checking of the detectors' 

responses. The technique u t i l i s e d i s to use one cable to supply the telescope 

photomultiplier E.H.T. and to carry the tube pulse back int o the laboratory 

and t h i s i s achieved by using charge sensitive amplifier-discriminators i n 

the laboratory. By using the telescopes i n t h i s way the number of cables 

to and from each detector i s reduced and the requirement of an additional 

low tension power supply and head amplifiers i s obviated. The telescopes 

themselves are used to select genuine cosmic ray pulses from the detector 

photomultiplier tubes such that the p a r t i c l e spectra may be acquired on a 

multi-channel analyser (M.C.A.) i n the laboratory. 

4.8 Calibration of the Density Measuring Photomultiplier Tubes 

Each type of s c i n t i l l a t o r used i n the array possesses i t s own 

ch a r a c t e r t i s t i c response q u a l i t i e s and thus each must be in d i v i d u a l l y calibrated 

so that a complete understanding of the detectors' response i s obtained. 

As mentioned e a r l i e r , the detectors are not uniform and a contour map of 

each detector's response to a single p a r t i c l e has been constructed, using 

the subsidiary telescope, to define that region of the detector that was 

under investigation. Figure 4.11 shows the l i n e a r i t y contour maps for the 

mean pulse heights of the various s c i n t i l l a t o r s used i n the array. 

These contour maps contain v i t a l information regarding a detector's 

response to cosmic ray p a r t i c l e s . Because the contours are present one 

needs to define a mean pulse height per p a r t i c l e per detector. Having 
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obtained a contour map and a point on the s c i n t i l l a t o r where cal i b r a t i o n 

i s done (obtained from geometric considerations) the value of the pulse 

height a t t h i s point w i t h respect to the defined mean pulse height i s 

derived. I t i s t h i s pulse height that i s then used i n the c a l i b r a t i o n . 

4.8.1. Method of Calculating the Calibration Pulse Height 

The aim of c a l i b r a t i o n i s to set each detector's photomultiplier 

tubes to have an i d e n t i c a l response such that f o r a summed pulse from a l l 

four tubes i n the detector when divided by 100 mV w i l l give the number of 

pa r t i c l e s per square metre at the detector. 
2 

For a detector of t o t a l area Am and with n photomultipliers viewing 

the same single piece of phosphor one calibrates on a mean pulse height 

of 

j ^ j - mV per p i t per pa r t i c l e per m 

When a p a r t i c l e d i s t r i b u t i o n has been acquired on a , M.C.A. the most 

eas i l y measured quantity that can be related to the average pulse height i s 

the maximum, or mode, of the d i s t r i b u t i o n and i t was f e l t that i t would be 

quicker to calibrate on t h i s value rather than the mean. To introduce this 
quantity i n t o the c a l i b r a t i o n procedure and s t i l l r e t a i n the desired 100 mV/ 

_2 
p a r t i c l e m the relationship between the mean and the mode had to be found. 

For each type of s c i n t i l l a t o r used the r a t i o mean/mode was accurately deter­

mined a t the c a l i b r a t i o n point. I n fact i t was found that t h i s r a t i o did not 

vary more than + 4% over the t o t a l s c i n t i l l a t o r area of any detector. 

Consequently, the use of t h i s r a t i o , R, modified the c a l i b r a t i o n pulse 

height t o 

100 -1-2 

mV p ,m t m at the mode of the single p a r t i c l e d i s t r i b u t i o n . 

For those detectors which were not calibrated at the coordinate where 

the mean pulse height occurred account had to be taken of t h i s fact because 

of the phosphors'non-linear response. The r a t i o of the pulse height at the 

c a l i b r a t i o n point to the pulse height at the mean pulse height coordinate, g, 
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becomes another term which has to be applied to the c a l i b r a t i o n pulse height. 

The pulse height c a l i b r a t i o n equation thus becomes 

H = jfnlP m ^ P e r P m £ P e r p a r t i c l e m ̂  at the mode of the 
single p a r t i c l e d i s t r i b u t i o n at the c a l i b r a t i o n point. 

These values f o r the various detectors are shown i n Table 4.1. 

4.8.2 Experimental Method of Calibration 

The s c i n t i l l a t o r telescope used i n the c a l i b r a t i o n consisted of 

a 23 cm x 23 cm x 3 cm slab of NE102A plastic s c i n t i l l a t o r viewed by two 

Philips 53AVP photomultipliers i n a l i g h t t i g h t duraluminium box. The 

phototubes use positive E.H.T. and both the pulse and the E.H.T. are carried 

on the same cable. The two telescope cables from each detector go to 

NE4675 charge sensitive amplifiers i n the laboratory. Each of these ampli­

f i e r s supplies the E.H.T., removes the photomultiplier tube's pulse, amplifies 

and discriminates i t above a preselected threshold level to give a standard 

logic signal at i t s output. These logic pulses then go to a simple T.T.L. 

coincidence u n i t , the positive output signal of which opens a gate on an 

Analogue t.o D i g i t a l Converter (A.D.C.) on a M.C.A. enabling the p a r t i c l e 

pulse from the a i r shower detector to be stored i n the M.C.A. memory. 

I n t h i s way a pulse height d i s t r i b u t i o n i s b u i l t up on the M.C.A., 

from that region of the a i r shower s c i n t i l l a t o r as defined by the telescope, 

and a f t e r some tens of minutes a s u f f i c i e n t l y accurate d i s t r i b u t i o n i s 

obtained to gauge whether that p a r t i c u l a r detector's photomultiplier i s 

being supplied w i t h a voltage that i s either too high or too low. The 

E.H.T. i s consequently adjusted and another p a r t i c l e d i s t r i b u t i o n i s 

accumulated. When the peak of the d i s t r i b u t i o n nears the c a l i b r a t i o n value, 

extended acquiring times become necessary to gauge the value of the peak 

of the d i s t r i b u t i o n accurately. When the peak i s wi t h i n + 2% of the 

calculated c a l i b r a t i o n value that photomultdplier i s said to be calibrated. 

This process i s employed f o r a l l of the array's density measuring photomultiplier 

tubes. 
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4.8.3 Calibration of the Fast-timing Photomultiplier Tubes 

The fast-timing photomultiplier tubes can be calibrated i n a variety 

of ways depending upon how much information one wishes to extract from 

them. Unlike the density measuring tubes whose pulses are 

fast-timing pulses are only ~5 nS f .w.h.m. and unless these can be stretched 

to widths of the order of several microseconds pulse height distributions 

cannot be acquired. This i s because the A.D.C. has a f i n i t e sampling time 

of t h i s order. Using an Ortec LG105 fast pulse stretcher a pulse height 

d i s t r i b u t i o n of the 56AVP pulses can be stored on the M.C.A. By gating 

the fast-timing pulses, with the pulses from the density measuring tubes 

viewing the same phosphor, noise may be eliminated giving a clear p a r t i c l e 

spectrum. The E.H.T. to the fast-timing tubes can then be adjusted u n t i l 

the correct pulse height d i s t r i b u t i o n i s obtained. Calibrating i n t h i s way 

enables one to select only those taming pulses that exceed a value as 

determined by the fast discriminators i n the laboratory and thus may be 

related to a specific p a r t i c l e density such that time markers are produced 

only when a cert a i n p a r t i c l e density has been exceeded. 

A much simpler a l t e r n a t i v e method can be used since a l l that i s required 

from the fast-timing tubes i s a time mark when an a i r shower front passes 

through that detector. This method i s to adjust the counting rates of the 

fast tubes to be equal using some low discrimination level. Although i n 

t h i s case p a r t i c l e density information i s l o s t , i t may be obtained from 

the density measuring tubes i n the analysis procedures. At present t h i s 

simpler method i s used but the f i r s t method w i l l be employed i f i t i s found 

to be required. 

4.9 Summary 

Two sets of a i r shower data are acquired by the array electronics 

for each a i r shower event. One set consists of fourteen analogue signals 

representing the shower p a r t i c l e densities at each of the arrays fourteen 

detectors which can be reduced to p a r t i c l e densities by dividing by lOOmV. 
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The second set represents the timing information which consists of seven 

time markers. One of these markers defines the o r i g i n of the timing 

coordinate system and a l l of the other time markers are referred to t h i s . 

These r e l a t i v e time differences may then be used to obtain the zenith and 

azimuthal angles of the shower f r o n t . The timing data does, however, 

contain delays introduced by the f i n i t e propagation time of the electrons 

down the fast photomultiplier tubes the delay i n the pulse carrying cables 

and the delays i n the electronics, a l l of which must be removed before the 

data can be analysed. 

These voltage signals represent a l l of the experimentally available 

data that can be extracted from the electromagnetic cascade by t h i s array. 

The reduction of these data to useful quantities w i l l be f u l l y discussed 

i n Chapters 5 and 6. This chapter has attempted to show how the a i r shower 

array data are i n i t i a l l y collected and transmitted to the laboratory i n such 

a form that the data handling and storage electronics may handle i t before 

i t i s eventually analysed. 
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CHAPTER FIVE 
THE DATA HANDLING ELECTRONICS 

5.1 Introduction 

Chapter Four described how data are i n i t i a l l y produced at the 

several detectors and then followed the progress of these data to the point 

where they entered the laboratory i n a form ready f o r processing. I t i s 

with these data that the parameters of the a i r shower events are eventually 

evaluated i n terms of shower size, core location and a r r i v a l direction. 

Before these values can be produced the incoming data to the laboratory needs 

to be coded and stored, i n a form that can be interpreted i n terms of 

p a r t i c l e densities and time measurementsi. that can be retrieved from storage 

to be analysed. Storage of the data i s primarily on magnetic disc as binary 

information and i t i s one of the major features of the Durham Array that i t 

i s on-line to an IBM 1130 Computer. The on-line f a c i l i t y enables rapid data 

c o l l e c t i o n (an event i s coded and stored within 2 m3) and the obviation of 

any photographic means of data recording. Such a system saves on analysis time 

and reduces the dead time of the apparatus. 

The aim of t h i s present chapter i s to describe how an a i r shower event 

i s established and how the raw data are manipulated, coded and stored such 

that the next stage i n processing, which i s the event analysis, can take 

place on the larger IBM 370/168 computer. 

5.2 The f i r s t stage of Data Processing 

For the eventual d i g i t i s a t i o n of the a i r shower data the f i r s t stage 

i n the processing of i t i s to convert each signal i n t o analogue form. Data 

from the detecting elements of the array arrives i n the laboratory essentially 

as analogue information but the fast-timing data are not i n a form that can be 

d i r e c t l y stored. The p a r t i c l e density data arrive as positive 20^ S decay time 

exponential pulses and the timing data as negative 5nS wide scmi-gausaian 

pulses. The p a r t i c l e density information i s d i r e c t l y related to the p a r t i c l e 

density at the corresponding detector, as i s described i n §4.8 but the 
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fast-timing pulses, although t h e i r heights are related to p a r t i c l e density, 

are used only as time markers that r e f e r to the passage of the shower front 

through the detector. 

5.2.1 The Density Pulses 

The density pulses from each set of photomultiplier tubes at the 

detectors have already been summed, amplified and calibrated before they 

reach the laboratory and so very l i t t l e i s done to them at t h i s stage. The 

pulses are, however, fed i n t o a discriminator and buffer u n i t which acts 

as an interface between the input pulses and the various devices i n the 

a i r shower array data handling electronics. Figure 5.1 shows a schematic 

diagram of t h i s discriminator/buffer u n i t of which there are 24 i n a l l . On 

i t there are two analogue outputs. One goes to the Analogue Multiplexer, 

which w i l l be described l a t e r , and the other i s a buffered linear output 

that i s available f o r general use i n the laboratory. The discriminator i s 

a leading edge type ( f i g u r e 5.2) that uses a ^kllO high speed comparator 

as i t s basic element. The discrimination level i s preset i n t e r n a l l y e.nd 

may vary from 40 mV to 7 V. The discriminator outputs may be used i n a 

v a r i e t y of ways; the most important being i n the monitoring of the count 

rate of each detector (§5.9) and i n providing l o g i c a l signals for a coincid­

ence u n i t (§5.5.1). The input impedance of the combined u n i t i s 10 k i l , 

and t h i s i s i n p a r a l l e l with the Analogue Multiplexer's 50Si. As with a l l 

of the data handling electronics i n the laboratory, i t i s N.I.M. standard 

and each discriminator and buffer u n i t consists of eight discriminators and 

buffers, mounted on c i r c u i t boards, i n a double width N.I.M. 

5.2.2 The Timing Pulses 

Up to seven timing pulses enter the laboratory from the fast-timing 

detectors (see figure 3.2). They appear as pulses i n time but i t i s the 

relationship between the pulses that i s of interest and which w i l l give 

the a r r i v a l d i r e c t i o n of the shower. To reduce, then, these time differences 

to useful quantities, and i n p a r t i c u l a r analogue signals, Time to Amplitude 
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Converters (T.A.C's) are used. By using a common pulse to ' s t a r t ' the 
T.A.C's and using the detectors to furnish the 'stop' command an output voltage 
pulse i s generated whose height i s d i r e c t l y proportional to the time 
difference between the ' s t a r t ' and 'stop' commands. By using the central 
timing detector pulse to s t a r t the T.A.C's and ensuring that, f o r whatever 
angle an a i r shower should a r r i v e , t h i s pulse always arrives i n the laboratory 
before any other signal,the T.A.C. outputs w i l l bear a simple relationship 
to t h i s moment i n time. The central detector may then be used to define a 
posi t i o n along the time axis such that for those detectors that the shower 
f r o n t passed through f i r s t have smaller T.A.C. outputs than for those 
detectors which the shower f r o n t passed through l a t e r . The analogue signals, 
which are positive, 5HS wide rectangular pulses, contain as part of the pulse 
height, not only the shower f r o n t r e l a t i v e times but time periods as a 
r e s u l t of propagation delays down the various cables and through the various 
electronic devices of the system which muse be removed before sense can be 
made of the T.A.C. output. This w i l l be discussed i n §5.9 and Chapter 6. 
What i s important at t h i s point i s that the time marks between the i t h and 
cent r a l detector have been reduced to analogue signals, even though there 
appears to be contamination from other sources. 

Figure 5.3 i l l u s t r a t e s the event handling electronics i n which the 

T.A.C.'s are shown at the top r i g h t . Devices necessary for the successful 

operation of the T.A.C's include fast amplifiers and fast discriminators, 

also shown. When the timing pulses f i r s t enter the laboratory they are 

amplified and then discriminated. The fast N.I.M. logic signals then 

e i t h e r ' s t a r t ' or 'stop' the appropriate T.A.C. The discriminators possess 

two outputs, the second of which goes to a coincidence u n i t and can be used 

to establish the occurrence of an a i r shower event (§5.5.1). Accurate 

delay boxes are included i n the timing c i r c u i t r y to remove any small 

delays introduced by cables i n the laboratory. 

The T.A.C. outputs go to two devices for further processing. One is 
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a set of linear buffers and discriminators (§5.2.1) and the other i s the 

Analogue Multiplexer. At t h i s point, a l l of the data that have been 

obtained from the array detectors have been transformed i n t o analogue 

signals. The heightsof the pulses contain a l l of the dynamic data, that 

i s , data obtained from the shower f r o n t . What must now be done i s to f i n d 

some means of permanent storage. 

5.3 The Analogue Multiplexer 

Tha Analogue Multiplexer (A.M.) i s a device that was specially 

designed fo r use with the array. I t s chief function i s to store a shower's 

dynamic data fo r a short period of time (about 2 mS) a f t e r an event has 

been established such that the analogue signals may be converted into a 

form more suitable f o r permanent storage. 

The A.M. consists of two basic modules, again N.I.M. standard. The 

f i r s t i s the Master Unit which defines how many pulse heights are to be 

stored and which contains the external triggering command c i r c u i t r y . The 

second i s a Slave u n i t . (Plate 1). There may be as many as twelve Slave 

uni t s i n the t o t a l system, but t h i s depends upon how many analogue signals 

there are. Both the Master and Slave modules have the capability of storing 

eight pulse heights and the maximum number that may be stored by the f u l l 

system i s 99. The present system employs one Master and two Slaves making 

a t o t a l of a maximum of 24 pulse heights that can be temporarily stored. 

A command to i n i t i a t e the A.M. data "hold 1 cycle may be produced i n two 

ways, depending upon how one wishes to trigger the system. The f i r s t and 

simplest method i s to use the 'external trigger' on the master u n i t , (sec 

Plate 1 ) . I f a positive 5 v 2̂,S width pulse i s applied to the external 

t r i g g e r socket then whatever data are present on the Master and Slave units 

w i l l be stored i n those u n i t s . The second method i s more rigorous. On 

each Module exists two sets of thumb wheel switches to select conditions 

that must exist before an i n t e r n a l 'hold' command i s generated. The switches 

select an "X out of Y" coincidence c r i t e r i o n i n which at least X pulses 

from the f i r s t Y (maximum 7) inputs must be present. With the 'X of Y' 
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c r i t e r i o n , which can vary from 0 of 0 to 7 of 7, i s an additional r e s t r i c t i o n 

of the presence of a positive signal on the master input of any of the multi­

plexer modules. For a data 'hold' command to be generated, then, there 

must be a positive pulse on any module's master inputs and the 'X of Y' 

condition must be s a t i s f i e d on any module. The selection method used i n the 

present experiment lies between both of the above techniques i n which the 

A.M. i s set such that a pulse on the master input of the Master module i s 

s u f f i c i e n t to cause a data 'hold' w i t h i n the three modules. Acquisition 

by t h i s method has one great advantage - that the pulse used to i n i t i a t e 

the data 'hold 1 cycle may be of a constant size enabling the output amplifier 

(common to a l l 24 channels) to be continuously monitored throughout the 

running of the experiment and of being able to use an external coincidence 

c i r c u i t to establish the occurrence of an event. 

The A.M's inputs have 50 X). impedence and accept pulses between Ov and 

lOv i n amplitude. This corresponds, for the present system, to a dynamic range 
_2 

of approximately 0 Lo 100 par t i c l e s m . When used on the 'X of Y1 data 

hold method the X pulses must exceed the i n t e r n a l preset discriminates 

l e v e l (variable between lOOmV and 500 mV) and must be coincident to withi n 

+ 150 nS of the master input signal. The outputs are rectangular 4^S wide 

voltage pulses with a gain of 0.40. These output signals appear spaced i n 

time according to the frequency at which they are emptied by the Data Flag 

pulses. The droop on the outputs i s 250 mV/V/sec and becomes si g n i f i c a n t 

(^1%) i n t h i s experiment only i f the data storage cycle takes over 40 mS. 

With the a i d of the Analogue Multiplexer the dynamic array data can 

be temporarily stored. What can now be done, once that the analogue data 

are i n t h i s condition, i s to take each pulse height, d i g i t i s e i t and store 

i t i n a way that i s more permanent and accessible by electronic means. 

5.4 D i g i t i s a t i o n 

Data storage of analogue signals is a d i f f i c u l t and expensive 

technique. Transfer of the data from one device to another requires devices 
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whose gains are w e l l known,which makes systems very large and electronically 

cumbersome i f large amounts of data need to be stored. This i s why there 

i s the need f o r d i g i t i s a t i o n . By reducing the analogue signals to binary 

numbers, each d i g i t of which may be represented by memory elements being 

ei t h e r 'on' of ' o f f 1 , large quantities of data may be stored e f f i c i e n t l y 

and easily. This i s what i s done i n many applications of data storage, for 

data i n t h i s form can be easily manipulated and transferred from one loca­

t i o n to another. 

Conversion of the analogue information i s most easily and conveniently 

done wi t h an Analogue to D i g i t a l Converter (A.D.C.). This i s a device which 

accepts analogue signals and converts them i n t o binary numbers whose magni­

tude i s proportional to the height of the input signal. Thus we have a technique 

to d i g i t i s e the dynamic data. 

For each a i r shower event that i s collected a certain amount of informa­

t i o n r e l a t i n g to i t s i d e n t i f i c a t i o n and under what circumstances i t was 

acquired .1$ • as equally important as the analogue data when i t comes to the 

i n t e r p r e t a t i o n and analysis of the a i r shower event. This information may 

be essentially described as bookkeeping and f o r each event that i s stored by 

the data handling electronics a large amount of pertinent information i s 

stored alongside the dynamic data. These data are the ' s t a t i c ' data and 

are generally constant or slowly varying throughout an experimental run. 

5.4.1 The Data Gates 

The s t a t i c data are i n i t i a l l y assembled i n devices called Data Gates 

(D.G.), Hate 1, and perform several functions i n the computer interpretation 

of the event and i n the computer analysis. These gates either contain or 

transfer d i g i t a l information to the central command modules, D.U.S.T. (§5.6) 

and consist of: 

( i ) An Event Header to i d e n t i f y the beginning of the data for a 

pa r t i c u l a r event 9 

( i i ) A Run Number to i d e n t i f y a particular data co l l e c t i o n series, 
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( i i i ) An Event Number to i d e n t i f y individual events, 

( i v ) A Trigger Mode Data Gate which serves to i d e n t i f y how the 

data storage cycle was i n i t i a t e d , 

(v) An Operational Units Data Gate. This i s used to inform the 

computer analysis programmes which detection devices were i n 

operation at the time that an event was collected, 

( v i ) A Clock. This transfers r e a l time information to the storage 

electronics and represents the time at which an event was 

collected and 

( v i i ) Event End Data Gate to signal the end of the data for an event. 

5.4.2 The Event Header 

The event header i s a 16-bit word which i s constant throughout the 

experiment and defines the s t a r t of an event's data. The word, BFFF 

(hexadecimal), i s set up by the use of NAND gates i n a way similar to that 

shown i n figure 5.4(a). As the number i s constant, the switches i n th i s 

f i g u r e should be omitted and the input to the gates held high or low depend­

ing on the b i t i n the word. 

5.4.3 The Run Number 

This i s a 16-bit word that i s set by toggle switches on the front 

panel of the Run Number Data Gate. I t i s used to define a particular series 

of data c o l l e c t i o n and i s usually incrmented every few days. 

5.4.4 The Event Number 

Each event can be i d e n t i f i e d by th i s 24-bit number. The event 

number scaler that supplies the binary number i s a common scaler to several 

experiments i n the laboratory and therefore each event from the separate 

experiments may be related to each other through t h i s scaler. I f any 

experiments should have coincidental events then t h e i r event numbers w i l l 

be i d e n t i c a l . This i s useful i n r e l a t i n g inuon events i n M.A.R.S. or 

hadron events i n the Hadron Chamber to a i r shower events. 
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5.4.5 The Trigger Mode 

This i s an 8-bit word and instructs the computer analysis programmes 

how the data storage cycle was i n i t i a t e d . I t s c i r c u i t r y i s shown i n figure 

5.4(b). The various input pulses to the f l i p - f l o p s come from the triggering 

experiment which also provides a pulse to s t a r t the data acquisition cycle. 

Eight d i f f e r e n t experiments can be accommodated by the Trigger Mode data 

gate and f o r every event at least one b i t should go high. I t i s possible 

f o r a l l b i t s to go high, indicating a multiple coincidence. 

5.4.6 The Operational Units 

Because there are so many detectors for density and fast-timing 

measurements there i s the p o s s i b i l i t y that a l l of the detectors w i l l not 

be operating at any one time due to f a u l t s with the detectors. So that the 

analysis programmes can be instructed to use only those devices that are 

operational t h i s data gate i s used. The 32 toggle switches, some of which 

are spare, indicate by either being 'on' or ' o f f whether a device i s 

operational or not. Figure 5.4(a) i l l u s t r a t e s the c i r c u i t r y used to perform 

t h i s function. 

5.4.7 The Clock 

I n some work i t may be necessary to know when an event occurred. 

For example, to deduce galactic coordinates for the a r r i v a l direction of a 

shower or to r e l a t e t h i s array's events with another experiment i n another 

laboratory. The real-time data gate i s connected d i r e c t l y to a special scaler 

that i s counting at the rate of 1 kHz and is c r y s t a l controlled to better 
g 

than 2 parts i n 10 . 

5.4.8 The Event End 

When a l l of the array s t a t i c and dynamic data have been stored i n 

the buffer memory the las t word i s w r i t t e n i n . This i s a constant number, 

EFFF, and indicates that the event's data ha\B finished and that another 
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event may now follow i n storage. This c i r c u i t r y i s similar to the Event 

Headers. 

5.4.9 D i g i t i s a t i o n : Summary 

By using the Analogue Multiplexer with an A.D.C. and with the 

Data Gates already supplying binary information we have the s i t u a t i o n where 

a l l of the relevant a i r shower data are i n d i g i t a l form. What i s done with 

t h i s d i g i t i s e d data w i l l presently be discussed but before the data may be 

stored an event must occur. 

5.5 Establishing an Event 

An event may be established i n two ways: by either an 'internal' 

a i r shower t r i g g e r , i n which several preselected detecting elements i n the 

array register coincident signals, or by an 'external ' t r i g g e r i n which 

the presence of an a i r shower need not be required (see figure 5.3). The 

external t r i g g e r method can be used, f o r example, when another experiment, 

which records an event i n i t s apparatus, wishes to interrogate the a i r 

shower detectors to see i f an a i r shower is present. I n t h i s case a shower 

t r i g g e r may or may not be present and t h i s method i s useful i n investigating 

phenomena i n which small a i r showers ( ~ partic l e s ) i n i t i a t e t h i s otner 

experiment as the shower t r i g g e r i n g mode may be insensitive to t h i s size of 

shower. 

5.5.1 The Coincidence Unit 

The coincidence u n i t i s a simple device which, by preselection of 

detectors by toggle switches on i t s f r o n t panel, provides a coincidence 

pulse lyx S a f t e r the central detector pulse arrives i n the laboratory. I n 

r e l a t i o n to the occurrence of,an a i r shower event t h i s i s about 1.2^S afte r the 

shower fr o n t passes through the central detector. When thi s pulse i s produced 

i t i s directed i n t o three devices. One i s to increment the event scaler so 
a 

that /hew event number i s ready to be read in t o the buffer memory, the second 

sets the appropriate t r i g g e r mode data gate f l i p - f l o p and the t h i r d goes 
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to the master control module, D.U.S.T. and i n i t i a t e s a data storage cycle. 

The master control module now controls the order i n which the data are 

coded and stored i n a temporary buffer memory where the d i g i t i s e d data 

may remain for about half-an-hour. 

5.6 The D i g i t a l Unit f o r Storage and Transfer (D.U.S.T.) 

D.U.S.T. i s a complex device that controls the entire data acquisition 

and data dumping functions. I t supplies a l l of the appropriate commands 

such that the data are w r i t t e n i n t o the correct addresses i n the buffer 

memory and i n the correct order. When the memory (1024 x 8-bit words 

capacity) becomes f u l l i t i n s t r u c t s the on-line IBM 1130 to read out a l l 

of the stored data and to dump i t on to magnetic disc where i t w i l l remain 

f o r a few days before being transferred to the larger IBM 370/168 computer 

f o r analysis. No attempt i s made to give a detailed account of the c i r c u i t 

description but from what follows a general understanding of i t s functions 

may be appreciated. 

5.6.1 General Principles 

There are three modes of operation of D.U.S.T. which may be selected 

by the MT/AN/T switch on D.U.S.T. I I (Plate 1). These three modes (Memory 

Test, Analysis and Test) may be used to perform operations which may, from 

time to time, occur i n the running of the experiment and to check that 

D.U.S.T. i s acquiring data i n the correct manner. With the MT/AN/T switch 

on T, D.U.S.T. may be manually reset p r i o r to data storage at the beginning 

of each run. When D.U.S.T. i s reset four 8-bit words are read into the 

f i r s t four addresses of the memory. These words 00, 00, FF, FF are wr i t t e n 

i n each time D.U.S.T. i s reset, manually or automatically, and serve to label 

the core load of data as a i r shower data, and are used i n the analysis 

programmes as an i d e n t i f i e r . With the MT/AN/T switch s t i l l i n t h i s position 

i t i d i v i d u a l 8-bit words may be read i n manually by depressing the CYCLING 



68 

button. This f a c i l i t y i s used i n the daily checking of the instrument to 

ensure correct performance of the system. 

With the MT/AN/T switch on Analysis the device i s ready to accept 

a i r shower data. A 'startcycle command* enters the device at (FF,18) 

on figure 5.5 which originates from either an external or a i r shower 

coincidence signal. This command immediately presents a 'hold' command 

to the Analogue Multiplexers which now temporarily stores a l l of the available 

p a r t i c l e density and fast-timing data that was present on i t s inputs. The 

'start cycle 1 command also increments the Shower Event Scaler (Plate 1) 

and paralyses D.U.S.T. f o r the duration of a data read i n cycle. During 

t h i s time, which i s about 2 mS, no further a i r shower events may be acquired. 

With D.U.S.T. now i n t h i s condition i t begins to read i n the Data Gate 

information. 

The f i r s t Data Gate to be read i n i s the Event header. This i s followed 

by the Run Number, Event Number, Trigger Mode, Operational Units and the 

Clock Data Gates. The d i g i t a l data are read i n as 8-bit words but i n general 

most of the data to be read i n t o the memory are i n the form of 16-bit words. 

Consequently as each D.G. i s strobed the most s i g n i f i c a n t part i s read i n 

f i r s t and then the least s i g n i f i c a n t part second. A l l of the D.G. information 

i s read i n t o the Mullard MM1501 Core Store i n about 540^8. When the last 

8-bit word of the D.G's have been read i n a Data Flag pulse i s sent to the 

Analogue Multiplexer to release the f i r s t pulse height to be d i g i t i s e d by 

the A.D.C. When the A.D.C. has completed conversion which takes 

(6.0 + 0.02N)/AS 

where N i s the A.D.C. channel number, the A.D.C. presents a READY ( ( X , l ) , 

f i g u r e 5.5) signal to the D.U.S.T. c i r c u i t r y to indicate t h i s and then the 

d i g i t i s e d data appear on the D.U.S.T, data input lines (E,26). As i n the 

case of the D.G.'s the most s i g n i f i c a n t part of the word i s read i n f i r s t 

and then the least s i g n i f i c a n t part. The A.D.C. word consists of 10 b i t s . 

The two most s i g n i f i c a n t b i t s being read into a memory 8-bit word leaving 

6-bits permanently low. Upon completion of the two half-16-bit word read-in 
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cycle D.U.S.T. sends a clear A.D.C. signal to clear the A.D.C. output scaler 

and to wait i n readiness f o r the next A.M. pulse. After t h i s has occurred a 

second Data Flag i s sent to the A.M. whereupon a second analogue signal i s 

d i g i t i s e d by the A.D.C. and stored i n the memory. This process continues 

u n t i l a l l of the 24 A.M. channels have been interrogated. The A.D.C. i s 

again cleared, i n readiness f o r the next a i r shower event data read i n 

cycle and the f i n a l Event End D.G. i s read i n . Meanwhile the A.M. has 

automatically cleared i t s e l f and waits f o r the next 'hold' command. When 

the l a s t D.G. has f i n a l l y been read i n the paralysis of the D.U.S.T. 

c i r c u i t r y i s removed and the device waits for the next Start Cycle command. 

A maximuir' of 11 events may be stored i n the buffer memory i n t h i s way and 

when the 11th event has been stored the memory must be emptied before more 

a i r shower data may be acquired. 

5.6.2 The Fan I n Unit 

The d i g i t i s e d data are presented to D.U.S.T. by a method of strobing 

the appropriate D.G. to enable i t to release i t s data and by feeding those 

data through the Fan I n Unit. Figure 5.6 clearly shows that the device, 

which consists of 16, 11 input NOR gates, acts l i k e a funnel: channelling 

the several D.G.'s (including the A.D.C.) to one set of common outputs. 

The data, as i n i t i a l l y assembled i n the D.G.'s are real numbers, the outputs 

of the D.G.'s are the compliments of these numbers and because of the way 

they have been designed have a l l of t h e i r b i t s high when not being strobed. 

Only when a D.G. i s strobed does i t release i t s complimented information 

to the Fan I n Unit which then decompliments i t so that i t can bo correctly 

read i n t o the D.U.S.T. memory i n terms of two 8-bit words. 

5.6.3 The Laboratory Computer Interface 

Because there are three separate core stores i n use. i n the laboratory, 

and only one cable connected to the IBM 1130 from the laboratory t a device to 

enable j u s t one core store at a time to be emptied was constructed pr i o r to 
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the author j o i n i n g the group. This i s required such that i f two core stores 

need to be emptied simultaneously data w i l l not be lost due to a confusion 

of data being presented to the 1130. I n essence i t allows one core store to 

be emptied at a time whilst the others are temporarily restrained u n t i l the 

previous one has completed i t s dumping cycle. 

I n the case when D.U.S.T. has stored the eleventh event i n the MM1501 

core store commands are sent to the 1130, via the laboratory interface, to 

indicate to the computer than D.U.S.T. i s waiting to be emptied. The 1130 

then acknowledges these pulses by returning with a sequence of binary numbers, 

which are interpreted as core store addresses ((1,2), figure 5.5) and 

simultaneous computer address pulses (F,2). With the computer supplying 

the appropriate core store addresses, s t a r t i n g at 0, and a 'word-read-out 

pulse', i . e . the computer address pulse with each address, the memory i s grad­

u a l l y emptied. When the last word has been read out the computer address 

procedures are i n h i b i t e d and a l l of D.U.S.T.'s int e r n a l scalers are reset. 

D.U.S.T. then reads in t o i t s f i r s t four core store locations the core 

i d e n t i f i e r 0000FFFF. 

During the data read out cycle, which takes about one second, data 

ac q u i s i t i o n by D.U.S.T. i s i n h i b i t e d and only a f t e r the core i d e n t i f i e r 

has been successfully read i n i s D.U.S.T. again ready to accept more data. 

5.6.4 Other D.U.S.T. F a c i l i t i e s 

The t h i r d mode of operation, with the MT/AN/T switch on Memory Test, the 

contents of the memory may be interrogated to ensure that data have been succ­

e s s f u l l y read i n t o the appropriate core store address. By selecting the 

toggle switches on D.U.S.T. 1, at the address of interest and then by 

depressing the TEST PST push button on DUST I I the contents of that address 

w i l l be displayed on 8 red l i g h t emitting diodes on D.U.S.T. I , labelled 

Memory Output. Because the memory works on a read-write cycle the data 

at that address must be re-written i n t o i t w i t h i n O.^S otherwise the data 

are l o s t . This re-read i n i s enabled by the D.U.S.T. c i r c u i t r y gates 131-138 
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(D,21) i n figure 5.5. 

D.U.S.T. has been designed to be as ver s a t i l e as possible withi n the 

l i m i t a t i o n s of size and complexity that such a device could be b u i l t . Tts 

main feature, i n the l i n e of v e r s a t i l i t y , i s that i t can be easily adjusted 

to store up to 52 Analogue Multiplexer pulse heights per event and as many 

events that could successfully accommodate the memory. The D.U.S.T. complex 

was designed by Mr. J. A. Zabierowski and the author and was made into i t s 

operational form by the author. 

At t h i s stage the data now resides on magnetic disc i n the department's 

IBM 1130 computer. The way that i t i s stored and how i t appears on the disc 

w i l l now be discussed. 

5.7 The 1130 Data 

The d i g i t i s e d data are stored on magnetic disc as a sequential f i l e 

which contains a l l of the data from the three core stores of the M.A.R.S./Array 

apparatus i n the order i n which they were w r i t t e n onto the disc. The various 

core loads are i d e n t i f i e d by t h e i r c o r e - i d e n t i f i e r and may be manipulated 

accordingly. A t y p i c a l example of an a i r shower's d i g i t i s e d data i s shown 

i n figure 5.7(a). The figures are hexadecimal d i g i t s ; two d i g i t s making 

one 8-bit word that has been i n d i v i d u a l l y stored at an address withi n the 

buf f e r memory of D.U.S.T. From t h i s figure can be seen where the D.G. data are 

stored i n r e l a t i o n to the 'analogue'data. Figure 5.7(b) shows an event's 

data more c l e a r l y . I n t h i s case both the Event Header and Event End have 

been removed and the data are presented i n a more readable form. 

5.8 Summary: The on-line technique 

The data as i t now stands, on magnetic disc, remains i n t h i s condition 

f o r one or two days depending upon the a v a i l a b i l i t y of space on i t . I t i s 

now i n a form that i s permanent and easily accessible by programming techniques 

and may be manipulated at w i l l . The on-line technique enables rapLd data 

c o l l e c t i o n r e s u l t i n g i n quicker acquisition e f f i c i e n c y , reduced dead time 
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and obviates the need for any manual intervention with the data apart from 

the monitoring of the data acquisition electronics performance. 

5.9 The Daily Running of the Experiment 

Checks on the performance of a l l of the array electronics are carried 

out a t least once per day. Some of the checks are manual, some are semi­

automatic and others are f u l l y automatic. The automatic checks w i l l be 

described i n t h i s section and Chapter Six. 

Before each new run and at least once per day, the Data Storage Cycle 

i s checked to ensure that a l l of the Data Gates are operating and are being 

read i n c o r r e c t l y and that the analogue data are being stored, d i g i t i s e d and 

read i n t o the buffer memory i n the correct manner. The fast-timing electronics, 

including the presence of pulses and i t s transformation to analogue data by 

the T.A.C.'Sj are then checked. Tests done on the density measuring detectors, 

w i t h the Coincidence Monitor ( f i g . 5.3), include the monitoring of the integral 

count rate above a preselected discriminator threshold for each detector. 

These are then p l o t t e d each day such that any general trends i n t h e i r operation 

can be seen. Coincident rates between selected pairs and groups of detectors 

also keep <x. check on the detectors' performance and also provide some physics 

on the shower size spectrum and decoherence of particles i n a i r showers. 

Semi-automatic d a i l y checks are done on a l l of the Analogue1 Multiplexer 

channels that have acquired data during a day. For a l l of the • events c o l l ­

ected each day, histograms of the pulse heights that have been stored i n 

each separate multiplexer channel are created in the IBM 1130. Each detector * 

and T.A.C. w i l l have a similar pulse height histogram f o r each day of 

operation of the experiment i f the trigge r i n g c r i t e r i o n remains constant 

and i f the detector remains calibrated. Any deviation from that expected 

i n terms of the measurement of the mean of the spectrum, would resu l t i n an 

investigation of the detecting element to see why the mean pulse height 

h&d. changed. Typical d a i l y 1130 histograms are shown i n figure 5.8(a) 

and 5.8(b). 
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For figure 5 . 8(a), which represents a pulse height spectrum of the 
central density detector, the mean pulse height i s only of academic 

importance. I n the case of figure 5 . 8(b), which represents the T.A.C. 

d i s t r i b u t i o n f o r detector number 33, the mean (or, more p a r t i c u l a r l y , the 

mode) takes on a more s i g n i f i c a n t meaning. I f showers ar r i v e mainly from 

the zenith then the maximum of the d i s t r i b u t i o n would correspond to a 

zero time delay w i t h reference to the-central detector ( i f both detectors 

were on the same s p a t i a l Z-plane). Consequently, the distance along the 

time axis would represent the constant time delay due to pulse propagation 

down the various cables and electronic devices. This property of the 

d i s t r i b u t i o n allows f o r automatic calibration of the timing data. By 

defining t = 0 as the mode of the d i s t r i b u t i o n for each detector, and for 

each separate run, variations i n the d r i f t and gain of the timing electronics 

are no longer quantities that need be monitored, with the view of including 

them i n the analysis programmes to correct for d r i f t from the o r i g i n a l l y 

calibrated value, since they could be recalibrated each time the events 

are analysed. These T.A.C. di s t r i b u t i o n s are investigated i n more d e t a i l 

i n Chapter Seven as p o t e n t i a l l y useful distributions. 

By including a standard pulse ab cie of the analogue signals presented 

to the Analogue Multiplexer, the gain of the output amplifier of the 

device may be continuously monitored with each event that i s stored. Plotting 

t h i s pulse's histogram i n the same way as the p a r t i c l e density or T.A.C. 

pulses shows that the Analogue Multiplexer and A.D.C. gains are remarkably 

stable and vary "by no more than about 0.17o over a period of several days. 

5.10 The Time Sequence of Events i n the Data Processing Cycle 

From the instant an event occurs to i t being f i n a l l y , and as completely 

analysed as i t can be, could take from three days to one or two weeks and 

consequently t h i s i s the order of the turn-around time and because of thi s 

there i s the necessity to monitor as many variables as possible i n the 

laboratory w h i l s t the data are being acquired. I n t h i s way fau l t s can 
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be r e c t i f i e d i n a short time whereas i f the computer output was awaited 

before repair several days of useless data would have been acquired i n 

the meantime. 

Figure 5.9 gives the time sequence of events on a logarithmic plot 

i n the processing of the array data from i t s acquisition to f i n a l analysis. 

5.11 Summary 

I n t h i s chapter the processes by means of which the data, as they 

appear i n the laboratory as dynamic or static quantities, are temporarily 

stored i n the Analogue Multiplexer or Data Gates are coded and stored 

i n the D.U.S.T. buffer memory have been discussed. The stage where the 

d i g i t i s e d data are then w r i t t e n on to a magnetic disc f o r more permanent 

storage has been described and how a l l of the array electronics i s daily 

monitored, t o ensure t o t a l e f f i c i e n c y of the system, has also been 

presented. 

The sequence of operations to which the analogue signals are subjected 

are necessarily very important and must be f u l l y understood to ensure 

that erroneous data w i l l not be analysed i n the f i n a l stages of an event's 

progress Lhrough the experiment. I t i s hoped that every aspect of the 

pulses' progress have been s u f f i c i e n t l y investigated so that the d i g i t i s e d 

data contain uo contamination that i s not w e l l known and cannot be 

eliminated. 
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CHAPTER SIX 

THE DATA ANALYSIS 

6.1 Introduction 

Using the techniques described i n the preceding chapters i t has 

been shown how the data relevant to an a i r shower event are coded and 

stored on a magnetic disc on an IBM 1130 Computer. This chapter i s devoted 

to the data's i n t e r p r e t a t i o n by computer methods and takes the form of 

describing how these data are prepared f o r , and interpreted by, the analysis 

programmes. The data from the magnetic disc, i n t h e i r f i r s t stage of 

analysis, are transferred to either magnetic tape or a private disc and 

stored i n the Northumbrian Universities Multiple Access Computer's 

(N.U.M.A.C.) archives where they remain u n t i l required for analysis. 

6.2 The Aims of the Analysis 

I n general there are several quantities that can be deduced from 

the d i g i t i s e d data for each event: 

( i ) the times of a r r i v a l of the shower front at the timing detectors, 

( i i ) the nominal p a r t i c l e densities sc'each detector i n terms of 

electrons per square metre, and 

( i i i ) the Data Gate information. 

I t i s the object of the analysis procedures to reduce these data in t o 

quantities that y i e l d as much information about the individual a i r shower 

as possible. Such parameters include: 

( i ) the a r r i v a l d i r e c t i o n of the shower f r o n t , 

( i i ) the radius of curvature of the shower f r o n t , 

( i i i ) the shower core position, and 

( i v ) the electron shower size. 

The analysis of the data are carried out on the 17.U.M.A.C. IBM 370/168 

computer and i s done i n several stages. B r i e f l y , these are to convert the 
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raw data, as i n i t i a l l y assembled on the IBM 1130, in t o a form that can be 

handled by the IBM 370/168. This involves the conversion of the data into 

pseudo card images such tha t , as f a r as N.U.M.A.C. i s concerned, the data 

are on cards. These data are then sorted into groups ('runs') and 

s t a t i s t i c a l quantities are calculated on these to monitor the data handling 

electronics and for use i n i n t e r n a l c a l i b r a t i o n . The analysis i s then 

performed according to the amount of data available for each event. The 

sequence of the analysis i s important: data are f i r s t calibrated and 

converted i n t o useable quantities, the shower a r r i v a l direction i s then 

calculated followed by the core location and shower size. 

6.3 Methods of Analysis 

There are^several methods^ by whictiair shower data can be analysed^but 

i n general t h e i r aims are the same and these are to f i n d the best estimates 

of the parameters from the data available. I n every case accuracy i s the 

main concern and thus primary assumptions about the raw data(that i s , 

c a l i b r a t i o n ) need to be correct since i f not they may cause erroneous 

interpretations of what actually occurs at the detectors. Accuracy of *"he 
/ 

various shower parameters can be considerably improved by employing more 

^detectors since then large fluctuations i n p a r t i c l e density or timing 

measurements at i n d i v i d u a l detectors w i l l not severely bias the eventual 

calculated quantities. 

Numerical minimisation methods are techniques most widely used i n the 

analysis of a i r shower data (see, f o r example, Dennis, 1964, Komori, 1975a, 

Kaneko, 1975) and i n pa r t i c u l a r a Chi-squared minimisation i s most often 

employed. Analysis of the Lodz array data ( J . Wdowczyk, private communica­

t i o n ) i s a two stage process that i n i t i a l l y finds an approximate core 

location using a s i m p l i f i e d structure function and then uses t h i s value 

as a s t a r t i n g point f o r a more detailed analysis using the Greisen (1960) 

l a t e r a l structure function. The Tien Shan analysis algorithm locates the 
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shower core using the as stamp t ion of shower r a d i a l symmetry and the monotonic 

decrease i n the r a d i a l density of shower particles (Aseikin, 19756). 

6.4 The Analysis Procedures 

The main features of the analysis programmes l i e with i n the very 

v e r s a t i l e and comprehensive minimisation package (§6.4.2) i n which a 

the o r e t i c a l description of an a i r shower's structure i s f i t t e d to the 

observed quantities as measured by the various detecting elements i n the 

array. This i s enabled by i n i t i a l l y converting the raw data i n t o accurately 

calibrated quantities which necessitate a thorough understanding of the 

ac q u i s i t i o n electronics at the detector and of the data handling i n the 

laboratory. A second major feature of the analysis routines are that they 

can automatically compensate for any d r i f t s i n the acquisition electronics 

that may not have been corrected f o r i n the laboratory or that are not capable 

of manual adjustment. 

6.4.1 The Analysis Programme 

The entry to the analysis programmes begins by c a l l i n g the controlling 

subroutine CONTRL which directs the way i n which the analysis routines are 

c a l l e d depending on the analysis codes. These codes are read from a single 

l i n e f i l e which i s also used to store the last analysed evenfis run number 

and event number. These codes allow f o r various degrees of analysis and 

f o r the testing of the programmes with simulated data. The run number 

and event number of the l a s t analysed event are stored such that event 

analyses are not duplicated. Upon entry to CONTRL an int e r n a l clock i s 

started, to monitor the Central Processing Unit (C.P.U.) time consumed, 

the analysis codes are read i n a f t e r which a t i t l e page i s printed. 

The various degrees of analysis allow either for a quick summary of 

the data i n the data f i l e , a summary and data p r i n t out (that i s , no 

minimisation) or a f u l l analysis including minimisation. Figure 6.1 

shows a s i m p l i f i e d flow chart of the analysis routines that are at present 
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available and which are discussed i n t h i s chapter. 

A f u l l analysis begins by summarising a l l of the data present on the 

input f i l e . The summarising subroutine produces a table that indicates 

which runs are present, how many events are i n each run and where i n the 

data f i l e are the f i r s t and l a s t events i n each run. I f no data are found 

i n the specified data f i l e then a message i s printed and the programme 

terminates. This routine also checks for spurious runs that contain less 

than one D.U.S.T. core load of events (< 11) which would indicate a Pom 

Number Data Gate f a u l t . I f any such runs are found they are added to the 

previous run and a revised summary table i s printed. The summary table i s 

used i n several of the other routines to help i n the data manipulation. 

Upon a successful e x i t from t h i s routine the run i n which the last analysed 

event occurred i s found. This run's data are then read into an inte r n a l 

array by subroutine READ which also decodes the Trigger Mode end Operational 

Units Data Gate information. This routine also checks on the pu r i t y of the 

data and prints messages i f any of the data looks impure. Such messages 

are printed i f run numbers occur out of sequence (indicating a Bun Number 

Data Gate f a u l t ) , i f event numbers occur out of sequence (indicating an 

Event Number Data Gate f a u l t ) , i f the Analogue to D i g i t a l Converter has not 

been cleared a t the end of the l a s t acquisition cycle of the previous event 

or has picked up between events (which would r e s u l t i n a l l of the data gate 

information i n an event being i n error) and i f the data have been read i n i n ­

c o r r e c t l y from the source f i l e . A message i s also printed which indicates 

the number of events to be analysed i n the current run being analysed. I f 

the source f i l e contains no data, as a result of i t being erased or being 

f u l l of zeroes, the analysis i s terminated. These error messages are 

printed primarily to i n s t r u c t the person viewing the computer output that he 

should be aware of the several f a u l t s i n i t and do not, i n any way, attempt 

to correct the data before i t i s analysed. 
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A similar procedure to the d a i l y 1130 histogramming i s carried out 

following the data summary by subroutine COEFF. The routines that make 

up COEFF are very v e r s a t i l e histogramming programmes which can be instructed 

to display histogrammes of the input data and to calculate various s t a t i s t i c a l 

quantities f o r each Analogue Multiplexer input. For each Analogue Multiplexer 

input, the mode, mean and the standard deviation on the mean are calculated 

and returned to the main programme. These values serve a dual purpose. One 

i s to monitor the state of the Analogue Multiplexer data and the other i s to 

provide coe f f i c i e n t s which may be used f o r i n t e r n a l c a l i b r a t i o n . These 

values are printed out and stored for future use. 

When the monitor coefficients have successfully been evaluated the main 

analysis routine ANALYZ i s entered. This routine i s the main c a l l i n g routine 

f o r the various analysis option f i t s and the analysis remains i n t h i s routine 

u n t i l the preselected C.P.U. time l i m i t has been reached, as read from the 

i n t e r n a l clock. A previous routine has found the location i n the data f i l e 

which corresponded to the last event that was analysed. ANALYZ then begins 

analysing from the next record i n the data f i l e . The' f i r s t stage i n the 

analysis i s to convert the data, as stored i n the i n t e r n a l data array, from 

the integer data that i t now i s , which are essentially the numbers that 

were presented to D.U.S.T. by the A.D.C., into r e l a t i v e times of a r r i v a l of 

the shower f r o n t at the various detectors and p a r t i c l e densities as measured 

at each density sampling detector. To do this subroutine PREPAR ( i . e . 

'prepare') i s called from ANALYZ. PREPAR f i r s t takes one events timing 

data and subtracts from i t the correspondong mode value of the T.A.C. d i s t r i ­

bution as evaluated i n COEFF. This mode value represents time delays due 

to pulse propagation down cables and throughelectronic devices i n the 

laboratory and i s thus a constant quantity for t h i s run and should be for 

the duration of the experiment. I t i s , however, recalculated for each run 

because of the p o s s i b i l i t y of d r i f t i n g i n the electronics, temperature induced 

propagation delays i n the pulse carrying cables and because electronic 
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devices may have been damaged or altered i n some runs as a consequence 

of maintenance. Figure 6.2 i l l u s t r a t e s the time c a l i b r a t i o n procedure 

f o r the case when the timing detectors are not coplanar. I t i s found that 

these modal values do not change by more than two or three A.D.C. channels 

from one run to the next. The timing data thus obtained are now i n terms 

of p ositive and negative A.D.C. channels. The appropriate combined calibra­

t i o n c o e f f i c i e n t for the A.D.C., T.A.C. and Analogue Multiplexer (nS/channel) 

i s then applied followed by a further term which adjusts the time values 

to t h e i r correct values should the Analogue Multiplexer output amplifier or 

A.D.C. have d r i f t e d away from t h e i r c a l i b r a t i o n values. This f i n a l term 

i s obtained from storing a pulse of standard height with each event collected 

i n the laboratory and comparing i t s average value over a l l the run with the 

ca l i b r a t e d value. 

In a similar manner the density data for one event are taken and 
-1 -2 

calibrated using the standard pulse and the combined 100 mV p m , A.D.C. 

and Analogue Multiplexer c a l i b r a t i o n factor. Application of a calibration 

c o e f f i c i e n t obtained from COEFF i s more d i f f i c u l t i n t h i s case owing to the 

greater s t a t i s t i c a l v a r i a t i o n i n the mean of each Analogue Multiplexer 

d i s t r i b u t i o n . For t h i s reason no adjustment of the density data are made 

but instead a da i l y check i s made on the 1130 histograms (§5.9) to ensure 

that the various means are w i t h i n the range that they should be. This 

routine then p r i n t s out the calibrated data as i t now stands, along with 

the decoded Data Gate information, ready for the appropriate analysis. 

Subroutine PREFAB, also checks f o r the presence of data and the saturation 

of detectors and adjusts the operational units arrays such that the 

appropriate detecting element w i l l or w i l l not be included i n the minimising 

procedures. The t o t a l number of useful timing and density detectors are 

calculated to be used i n the next routine that determines the analysis 

options to be used. 
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There are four possible ways i n which an event's data can be analysed. 

The various options depend essentially on the amount of data present and 

are given i n Table 6.1 along with the quantity of data that are required 

fo r each option. The option chosen i s then used i n ANALYZ so that i t may 

route the analysis according to the most appropriate analysis. After the 
of 

analysis/each event by the minimising routines (156.4.2) the answers are 

w r i t t e n out and a time check made to see i f s u f f i c i e n t C.F.U. time remains 

f o r f u r t h e r events to be processed and analysed. 

The several analysis options have been designed to make the greatest 

use of the available data. Analysis option 2, which i s a three parameter 

f i t to the density data with assumed zenith and azimuthal angles i s not 

expected to y i e l d accurate res u l t s . I t i s used such that some parameters 

may be derived from an event that would otherwise be considered unuseable. 

6.4.2 The Minimisation of the Array Data 

The basis of the analysis programmes l i e w i t h i n the minimisation 

routines. These comprise the C.E.R.N, programme MINUIT (James and Roos, 

1971) which i s a very v e r s a t i l e and powerful c o l l e c t i o n of programmes-

Satisfactory performance of t h i s programme i s achieved through the use cf 

various i n t e r n a l checks which ensure that minimisation of the appropriate 

function i s being carried out correctly. I f MINUIT f a i l s to converge 

a f t e r a preselected number of t r i e s (16,000) the attempt w i l l terminate and 

the l a s t parameter values w i l l be returned. 

I n the case of the a r r i v a l d i r e c t i o n minimisation ̂ the timing data, 

t ^ , from those detectors that are operational are f i t t e d to a plane i n 

three dimensions using a least squares technique. Because the a i r shower 

array i s only 120 m i n diameter the measurement of the radius of a shower 

fr o n t i s very d i f f i c u l t . The t y p i c a l deviation i n times observed at the 

detectors from those of a plane would be about (6/R) nS where R i s the 

radius of the shower f r o n t i n kilometers. This deviation i s thus too 



Table 6-1 

The Analysis Options 

Analysis 
option Meaning # Times # Densities 

1 Insufficient data for analysis. 
No analysis done. < 2 < 5 

2 
Insufficient timing data for 
full analysis. Three parameter 
(X c yc > N) fit to the density 
data, 0assumed to be 0°. 

< 2 2£ 5 

3 Timing data used to calculate 
(0,0). 2:3 <3 

4 
Full analysis. 
Timing data used to calculate 
(0,0). 
Density data used to calculate 
(X C J Y C ,N) . 

2:3 2:3 
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small to be measured with the present array and c l e a r l y j u s t i f i e s the 

shower plane approach. For a shower front of radius R (km), zenith and 

azimuthal angles (0 , 0 ) passing through detectors with coordinates x^ and x^, 

the time difference of the a r r i v a l of the shower front ( t . - t . ) can be 
i J 

given i n 

(x^. - Xj)H + (y^, " y j ) m + (zi - Z j ) n + c [ ( ^ - t^) 

k - r r . - r .. r .) - c 2 ( t 2 - t 2 ) ] 
+ -1 i 1 J ± 1 — = 0 (6.1) 

2Rc J 

where jl = sinG costy 

m = sin© sin4j> 

and n = cosd 

I f the j t h detector i s used to define the s p a t i a l and temporal origin 

(see figures 6.3(a) and 6.3(b)) equation 6.1 reduces to 

x J - + y.m + z.n + c ( t . + 3 x 1 ) = 0 (6.2) 
2R c 

C l e a r l y for R = o C* the second term i n the brackets disappears leaving 

X i ^ + y i m + Z i n + C t i ~ 0 ^ 6 * ^ 

which i s uniquely soluble for two r e l a t i v e times and whose solution i s 

given i n Appendix A. 

This a n a l y t i c a l approach i s perhaps the most e f f i c i e n t method to use 

i n the case of 3 operational timing detectors since then there i s a unique 

solution for ( 8 , 0 ) . When the number of timing points exceed three a unique 

solution may not be possible owing to errors i n the timing values. In 

t h i s case a numerical minimisation approach can be useful and t h i s i s the 

technique employed. To simplify the analysis programmes a l i t t l e , the 

numerical method i s also used for three point f i t s as i t i s very e f f i c i e n t 

and does not require further programming. 

The minimisation method involves the minimisation of the function 



Figure: 6-3(a)fThe spatial co-ordinate system. 

/ s s. si' 
s-S 

s ' Shower s / ' / front / ' / J s ' ' 
s / 

R ' / 9 s 

s 
Cti 

(j> 
ct (i) 

Rgure:6-3lb).The timing measurement convention. 
(t|< is negative). 



83 

2 
calc ) 

w i t h the summation extending over a l l operational timing detectors. Once 

a f i t t o the timing data has been completed (whether "successful" or not) 

and i f there are s u f f i c i e n t density detectors operational the analysis 

proceeds by f i t t i n g a shower structure function to the density data 

by minimising the Chi squared function: 

where 6, calc i s the estimated error on the calculated number, (see Appendix B). 
and̂ fc." means particle" number at the i t h detector.! 

Ttle structure Tunctidn used i n the core location procedures i s that 

due to Hasegawa (1962) and was considered most appropriate for the i n i t i a l 

analysis of the shower data since t h i s d i s t r i b u t i o n represents the a i r 

shower structure as obtained from p l a s t i c s c i n t i l l a t o r detectors. 

I n t h i s stage of the analysis, the core location and shower size 

are minimised together as three independent variables. A t y p i c a l option 

4 analysed event i s shown i n figure 6.4 i n which the various quantities 

are explained. The figure shows the calibrated input and the calculated 

answers. 

6.5 Other Programme Features 

6.5.1 The Handling of Multicore Events 

The present array i s insensitive to multiple cores i n a i r showers 

but i n those cases where the Chi-squared surface have local minima, which 

could be interpreted as sub-cores, precautions are taken to ensure that 

they are not returned as f i n a l answers. Only global minima are required 

and these are taken to represent the best f i c s to the observed data. The 

method used to make the programme jump out of a local minimum i s that due 

to Goldstein and Price (1971) which consists essentially of transforming 

the function by dividing i t by i t s quadratic part and thus removing the 

l o c a l minimum. The programme then proceeds to seek a new minimum. I n 

2 
($=calc - #.obs) 

/.calc x 
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ef f e c t the method causes the programme to jump out of a good minimum to 

f i n d a better (deeper) one. I f t h i s search i s unsuccessful i t i s assumed 

that the lowest Chi-squared has been found and t h i s point i s then related 

to the best estimate of the core position and shower size. 

6.5.2 Contour Printout 

I f a printout of the contours used i n the minimisation i s required 

then a suitable command to the minimisation routines w i l l do t h i s . Figures 

6.5(a) and 6.5(b) show sets of contours corresponding to the f i t t i n g of a 

plane to the timing data and of a shower to the density data. 

6.6 Checking the Analysis Programmes wi t h Simulated Data 

Prior to the f u l l implementation of the f i n a l analysis programmes 

tests were done to f i n d out how w e l l they responded to simulated shower 

data. Showers were simulated on the computer according to the Greisen 

(1960) l a t e r a l structure function (equation 2.1) and f i r e d at the array 
i 

a t random zenith (modulated by a cos © d i s t r i b u t i o n ) and azimuthal angles 

wi t h random core locations to + 100 m of the central detector. Errors on 

the times of a r r i v a l of the shower fro n t and on the p a r t i c l e numbers were 

included i n these simulations to a maximum of plus or minus f i v e standard 

deviations and were modulated with a gaussian d i s t r i b u t i o n , i n the case 

of the times, and a poissonian d i s t r i b u t i o n i n the case of the p a r t i c l e 

number measurements. By examining the programmes' performances i n t h i s 

way, systematic effects introduced by the analysis could be i d e n t i f i e d and 

eliminated at some la t e r stage. 

6.6.1 The A r r i v a l Direction Evaluation 

The r e l a t i v e times of a r r i v a l of shower fronts as they pass through 

the array were simulated according to equation 6.3 and fo r each time 

measurement gaussian errors with a standard deviation of + 5nS were 

introduced i n t o them to a l i m i t of + 5CT. The computer analyses of these 
data i n t o the shower a r r i v a l directions are shorn i n figures 6.6(a) and 6.6(b) 

f o r zenith angle 0 and azimuthal angle 0. I t i s seen that f o r zenith angles 
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greater than about 40 the error on them becomes excessive. Consequently 

showers whose zenith angles exceed 30° are not considered as suitable 

events with which to produce f i n a l spectra. These data refer to f i t s 

using only three timing values (three point f i t s ) . Four point f i t s are 

found to give better angular accuracy. The maximum error on the zenith 

angles i s seen to be + 3° (0 ̂  30°) whilst that for the azimuthal angles 

i s + 7°. 

6.6.2 Core Location Evaluation 

Using the method described i n §6.6 of simulating a i r showers i n 

the l o c a l i t y of the array the shower axis coordinates before and a f t e r 

analysis were compared. Figure 6.7 shows the results obtained from dhowers 

whose axes were analysed to be w i t h i n + 100 m of the central detector and 

whose zenith angles were analysed to be less than, or equal t o , 30° fo r a 
g 

shower of size 10 p a r t i c l e s . Errors on the number of particles incident 

upon each of the 11 detectors used i n the simulation were modulated 

according to poissonian s t a t i s t i c s , again to a + 5 < r l i m i t . The f i g u i o 

shows than an accuracy of about 4 10 m can be obtained 'from the I 

analysis programmes f o r t h i s number of detectors employed and f o r ] 

showers that f a l l near to the centre of the array. 

6.6.3 Shower Size Evaluation 

From simulation of a i r shower events i t i s found that a i r showers 

are not, i n general, analysed to give the correct (input) shower size but 

rather a d i s t r i b u t i o n of shower sizes centred on the input value. This i s 

because showers that f a l l at large r a d i a l distances can be analysed as 

being smaller showers w i t h i n the array acceptance. The mean shower size 

of those shoxrers that have been analysed as within the array acceptance i s 

plo t t e d i n figure 6.8 against the shower size input. Figure 6.9 shows the 

r a t i o of the number of showers f i r a d i n the region of the array chat have 

s a t i s f i e d the array acceptance, to the number of showers as being analysed 
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w i t h i n the array acceptance. The increase i n f , f o r small showers, i s due 

to the i n e f f i c i e n c y of the analysis, essentially caused by the small number 

of detectors that contain p a r t i c l e density information, that makes minimisa­

t i o n more d i f f i c u l t . This makes the analysis programme attempt to f i t 

larger showers at greater r a d i a l distances than correspond to the input 

values. The increase i n f f o r large showers i s due to more and more 

p a r t i c l e density detectors becoming saturated and consequently eliminated 

from the analysis procedures. A i r showers with sizes greater than about 
7 

3.10 pa r t i c l e s would, a t present, saturate a l l of the detectors and thus 

be impossible to analyse. 

These figures are used to remove systematic effects from the shower 

size spectrum which have been introduced as a consequence of the method 

of analysis and w i l l be discussed again i n Chapter Seven. 

6.7 Analysis of Peripheral Experiments' Data 

The data from the other major cosmic ray research programmes i n 

the laboratory, M.A.R.S. (§3.6) and the Hadron Chamber (§3.7) are analysed 

.independently of the array data. The Hadron Chamber data are collected 

photographically and thus each event i s manually scanned during which the 

event i s interpreted. The M.A.R.S. data acquisition and analysis follows 

closely the array method i n which data are d i g i t i s e d and transmitted to 

the on-line IBM 1130 computer f o r storage and later analysis. The M.A.R.S. 

analysis has been described i n d e t a i l i n Wells (1973) and so only the basic 

features w i l l be described here. For analysable events, which are uncontam-

inated by more than one muon and an excessive number of discharged flash 

tubes i n the flash tube trays, the muon's momenta and sign are computed. 

A parabolic f i t to the discharged tubes i s attempted; the radius of curvature 

of the parabola being related to the muon momenta and the direction of 

curvature gives the sign of the muon's electronic charge. The maximum 

detectable momentum of M.A.R.S. i s i n excess of 5000 GeV/c and so thi s 
experiment can provide good accuracy f o r muon momenta less than t h i s . 
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Included i n the array analysis routines, and i n the array electronics 

i n the laboratory l i e s the provision to time the a r r i v a l of high energy 

muons i n M.A.R.S. with respect to the shower f r o n t . The time measurements 

are taken i n a similar manner to the fast timing techniques described i n 

§5.2.2 except that the muon time of a r r i v a l , detected by the bottom 

s c i n t i l l a t o r i n M.A.R.S. (fig u r e 3.6), i s not used i n establishing the 

shower zenith and azimuthal angles. What i s done with the time measurement 

i s to calculate the time difference between the a r r i v a l of the muon and the 

shower front a t the same point. Hopefully t h i s w i l l be used to extract 

data on the height of production of muons and on t h e i r transverse momenta 

but the experimental arrangements i n existence at present suggest that no 

data of any great d e t a i l can be obtained. 

6.8 Summary 

This chapter has shown how useful quantities are obtained from the 

laboratory acquired values and how these data are manipulated by the 

analysis programmes int o parameters which characterise a i r shower evtnts. 

The programmes have been shown to s a t i s f a c t o r i l y analyse these data by 

simulating a i r shower events on the computer and the v e r s a t i l i t y of tbe 

powerful analysis programmes has been i l l u s t r a t e d . The following chapter 

describes how the analysed data are used to produce useful cosmic ray 

spectra and quantities of physical in t e r e s t . 
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CHAPTER SEVEN 

THE INTERPRETATION OF RESULTS 

7.1 Introduction 

Analysed data from the array are stored i n data f i l e s separate ff»m 

the o r i g i n a l shower data and both are eventually dumped on to magnetic tape 

for permanent storage. Access to both the pre-analysis and post-analysis 

shower data i s simply a matter of loading the appropriate data f i l e on to 

a magnetic disc. These data f i l e s tend to be i d e n t i f i e d by th e i r run 

numbers which indicate a p a r t i c u l a r set of events collected, over a period 

of a few days, under the same acquisition conditions. Each of the runs 

are analysed separately before being grouped together to increase the 

s t a t i s t i c s of any pa r t i c u l a r d i s t r i b u t i o n since some runs' data may not be 

considered suitable f o r some applications, for example i n producing the 

shower size spectrum. The analysed data that i s stored on magnetic tape, 

contains a l l of the information that i s shown i n figure 6.4, i n a fovmat 

that allows f o r e f f i c i e n t storage and economy of filespace. 

As yet the a i r shower data represent only a preliminary evaluation of 

the array's c a p a b i l i t i e s and consequently the s t a t i s t i c a l accuracy oZ any 

measured parameter w i l l have to be poor u n t i l many more events have, been 

acquired and analysed. 

7.2 Data C l a s s i f i c a t i o n 

The various analysis options, shown i n Table 6.1, give a broad 

d i v i s i o n of the a i r shower data i n t o four main groups. Each group i s 

defined by the amount of dynamic data (§5.2) that was recorded and stored 

w i t h each event. Consequently, showers which were recorded i n many detectors 

w i l l be capable, of being analysed more accuiutely than i f not. Further 

c l a s s i f i c a t i o n s of the shower data are necessary and these may be defined 

by the r e s t r i c t i o n s imposed i n manipulating the data to investigate 

p a r t i c u l a r shower properties and are defined i n Table 7.1. 
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TABLE 7.1 

C l a s s i f i c a t i o n of the analysed a i r shower data 

Class Meaning 

A Well defined events: showers whose axes f a l l w i t h i n 

the region of ~ 100% detection pro b a b i l i t y . 

B Well defined events but unsuitable f o r inclusion i n 

the shower size spectrum. 

C Option 2 data: events useful only i n conjunction with 

M.A.R.S. data. 

D Options 1 and 3 data, f a i l e d events. 

7.3 A l l Shower Data 

The d a i l y monitoring of the array yields data relevent to showers 

but which may not be reduced to give information pertaining to any individual 

event. The quantities that are continuously monitored (§5.9) are such thct 

the o v e r a l l performance of the array and the data acquisition can be main­

tained i n a satisfactory state. The d a i l y 1130 histogramming systems check does 

provide useful data that, i n the case of die Time to Amplitude Converter 

(T.A.C.) spectra (§5.9), may be i n d i r e c t l y related to the zenith angle 

d i s t r i b u t i o n of showers. The density histograms cannot easily be related 

to the gross features of the average shower detected by the array and are 

consequently used only to monitor the state of individual detectors. 

7.3.1 The Zenith Angle D i s t r i b u t i o n of Showers 

The zenith angle dependence of showers i s due to the absorption effe c t 

by the atmosphere on the a i r shower. With the increase i n the amount of 

matter traversed, as the zenith angle increases, showers soon reach t h e i r 

maximum and die away. The dependence i s most usually represented by 

1(0) 1(0) cos11© *»-V4f"\ (7.1) 
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where 1(0) i s the i n t e n s i t y of showers at a zenith angle 6 and n i s a 

function of shower size. Data from the daily accumulated T.A.C. spectra 

may be related to equation 7.1 through the histogram widths. Figures 5.8b 

and 6.2 i l l u s t r a t e what T.A.C. di s t r i b u t i o n s look l i k e . I f showers are 

collimated to be progressively more v e r t i c a l then the width of the d i s t r i ­

bution would decrease, hence n = n ( c ) . 

T.A.C. spectra were simulated on the computer by a process of f i r i n g 

showers (with an i n f i n i t e radius of curvature) at the array according to 

the appropriate zenith angle d i s t r i b u t i o n . Each of the T.A.C. distributions 

have d i f f e r e n t widths since each timing detector has d i f f e r e n t coordinates 

i n space and thus each must be i n d i v i d u a l l y investigated. To obtain the 

simulated T.A.C. spectra 10,000 showers with gaussian errors to plus or 

minus f i v e standard deviations (one standard deviation i s 5nS) were f i r e d 

a t the array. For each d i s t r i b u t i o n the standard deviation was calculated 

and plott e d as a function of n. The observed standard deviations, as 

derived from the T.A.C. da i l y monitoring, were calculated from many shower 

events and then compared wi t h the predicted curves. Figure 7.1 shows by 

how much the T.A.C. standard deviation for detectors 13, 33 and 53 vary 

w i t h n. Three experimental measurements are also displayed. The value of 

n = 10.0 + US' from these data can only be taken as an approximation since 

noise i n the T.A.C. di s t r i b u t i o n s w i l l tend to make the values of n thus 

derived smaller than i s the actual case. The mean shower size that corres­

ponds to t h i s zenith angle index i s not known owing to the fact that large 

showers, f a l l i n g outside the array acceptance, can trigger the array. 

The zenith angle d i s t r i b u t i o n constructed from i n d i v i d u a l l y analysed 

a i r shower events cannot be d i r e c t l y w r i t t e n i n a form l i k e equation 7.1. 

This i s because a s o l i d angle term, XL ̂  ̂  > need3 to be applied to the 

observed data: 

O = 271 (0080,- COSe » ) %<. (7.2) 
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Here (©^ - © 2 ) i s the zenith angle bin width. By dividing the observed 

frequency of events by the appropriate so l i d angle term the true zenith 

angle d i s t r i b u t i o n can be deduced. Data from Class A and Class B 

showers have been used fo r which the best f i t zenith angle dependence to 

these data gives a zenith angle index of 

n = 10.2 + 

fo r a median shower size of 4.5 . 10"*, and may be compared with the values 

of Ashton et a l . (1975) of 
+1.0 +1.9 

n = 9' 3-0.8 a n d n = 1 0' 0-0.9 
5 5 

for median shower sizes 2.7.10 and 5.5.10 respectively. 
Table 7,1a shows the observed zenith angle data. j 

7.3.2 The Shower Attenuation Length 

The aenith angle dependence of showers may also be interpreted i n 

terms of the shower attenuation length, A > which may be evaluated from 

the expression 

I(©) = 1(0) e x p - ( ^ £ f ^ c © - 1)} . V V V . (7.3) 

where X i s the atmospheric depth of observation and $ i s the int e g r a l 

shower size spectrum exponent. From the data of *H7" Class A and Class B 

showers an attenuation length of 

A = 165 + 40 g.cm"2 \»*iog Y ^ U ^ - t t n A X ^ U ^ ' l - O * 
has been derived using the method of Ashton et a l . (1975), This value has 

been plott e d i n figure 7.2, from a survey by those authors, f o r a median 
5 

shower size of 4.5.10 and i s seen to be consistent with these data. 

Possible interpretations of the shower attenuation length i n terms of nuclear 

physical models of high energy interactions have recently been investigated 

by Popova and Wdowczyk, (1975) from which they observe that t h e i r predictions 

give larger values of A than observed, interpretation of t h i s discrepancy 

suggest that a i r showers develop more rapidly i n the atmosphere than i s 
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Tab 1ft 7.1a 

The Observed zentih angle d i s t r i b u t i o n of 
Air Show'f-fs detected by the array and 
analysed os being w i t h i n 50a of the central 
detector and wi t h 6^30°. 

:Q No. Ob.." , No. per s'teradi 
(normalised to 1st. 

0 -5° 55 1.00 
5°~10° 137 0.83 
10°-15° 214 0.78 
15°-20° 222 0.58 
20°-25° 169 0.35* 
25°-30° 180 0.31 

A least squres minimisation of cos 9 to these 
data give n = 11.2 + 1.2. Removal of the areal 
cosO term gives a a 10.2 + 1.2, 
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predicted by the de Beer et a l . standard a i r shower model. With more a i r 

shower data a more thorough and extensive investigation of A versus N may be 

undertaken w i t h t h i s array. 

7.4 The Electronic Structure of A i r Showers 

The array data have been analysed according to the Hasegawa (1962) 

structure function with which the shower axes have been located and the 

shower sizes determined. This was used because i t was considered most 

appropriate f o r s c i n t i l l a t i o n detectors (Komori, 1975b) and because fhe 

average shower age parameter i s almost constant over the size range 

investigated ( f i g u r e 2.6). A more detailed investigation of shower structure 

would be possible by f i t t i n g a structure function with several parameters 

to the observed data, giving a greater insight into the characteristics of 

in d i v i d u a l showers. Allowance has been made i n the analysis programmes to 

include more parameters i n the minimising process, i f required. 

7.4.1 The Chi-squared D i s t r i b u t i o n of Accepted Events 

The structure function f i t t i n g procedure has been described xn 

Chapter Six and the function that i s minimised i s described i n d e t a i l i n 

Appendix B. That minimised i s the *X function and, a f t e r the application 
2 

of the event acceptance requirements on the shower data, a cut at some \ 

must be made that w i l l separate w e l l defined events from i l l - d e f i n e d events 

such that only the 'good' events are used i n deducing a i r shower properties. 

The magnitude of the cut, f o r the purposes of establishing the size spectrum 
2 

and the attenuation length, has been set at the mean plus two standard 
2 

deviations. For the ̂  d i s t r i b u t i o n s obtained t h i s corresponds to a cut 
that encloses about 95% of the data; that i s , those 5% of the data with the 

2 
largest \ are omitted. This cut i s somewhat a r b i t r a r y and there i s no cut 
th a t , s t a t i s t i c a l l y , presents i t s e l f as being more favourable than another. 

2 
T b e ^ d i s t r i b u t i o n of figure 7.3 i s of 200 accepted events from Run 62 for 
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showers between 2.10 and 8.10 p a r t i c l e s . This d i s t r i b u t i o n i s wider (by 

about a factor of 3) than that predicted based upon the assumption that a l l 

showers have the same age and t h i s discrepancy i s a t t r i b u t e d to the age 

d i s t r i b u t i o n of re a l showers. Further work on t h i s aspect i s required. 

7.5 The Shower Size and Primary Energy Spectra 

The size spectrum of a i r showers is studied mainly f o r the information 

that i t bears on the primary energy spectrum. However, conversion from shower 

size to primary energy i s not a straightforward process and i s very much 

dependent upon the model of a i r shower development used to derive the 

relationship between them. This important aspect 

of a i r shower work has been, and continues to be, investigated by many 

workers (e.g. Dixon et a l . , 1973, Shibita, 1975 and Popova, 1975) and i s 

s t i l l the subject of some uncertainty, due to the lack of knowledge of the 

appropriate nuclear physics. More uncertainty i n producing an energy spectrum 

from a i r shower data comes from the complexity of unfolding the observed 

shower data and from the fluctuations i n a i r shower development through 

the atmosphere to the observation l e v e l . Recent work into the EpiN 

conversion, ( ' t r a n s i t i o n c o e f f i c i e n t ' ) i s summarised i n figure 7.4. These 

data come from various t h e o r e t i c a l treatments, mainly involving Monte Carlo 

simulations of a i r showers, for d i f f e r e n t altitudes of observation. The 

curves marked D̂ ,Ê  and E^ refer t o sea level measurements from which a 

t r a n s i t i o n function, 

E p - 2.69.10 1 0 N 0 , 8 9 eV, (7.4) 

has been derived from the extensive and highly detailed work of Dixon et 

a l . (op. c i t . ) . 
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7«5.1. The Shower Size Spectrum 

Thus fa r the present array has not accumulated s u f f i c i e n t data for 

a detailed investigation of the size spectrum of a i r showers. The analysis 

of 10,315 events has yielded 1,474 Class A and Class B showers which are 

plott e d i n figure 7.5 before any correction terms have been applied. This 

spectrum has beer acquired using a t r i g g e r requirement of the central detector 

plus detectors 13,33 and 53 (figure 3.2), an energy threshold of ^10 MeV 
2 

per detector (1 p a r t i c l e m ) and a l i v e time of 218.82 hours. The acceptance 

c r i t e r i a were that the shower axes be analysed w i t h i n 50m of the central 

detector and that the analysed zenith angles were less than, or equal to 30°. 

I f the i n t e n s i t i e s i n fi g u r e 7.5 are m u l t i p l i e d by the factor f i n figure 6.9 

then a weighted least squares f i t to these data give, 
No. of showers per 

0.1 logarithmic i n t e r v a l b i n (17+3) 
N obs 
10 

-(2.85+0.22) 

for t h i s array and the above running time. 

The correction to ^ 0 t , s e r v e ( i t o Si- v e t n e real shower size N^ i s , from 
a least squares f i t to the data of fi g u r e 6.8, 

N bbs 
10v 

= (1.58+0.07) 
10 

By combining these two equations to produce the i n t e g r a l shower size 
10 2 

spectrum for r e a l showers and including the array acceptance, the cos " "8 

zenith angle dependence and the t o t a l running time of the experiment one gets 
n(>N r) - (3.7+0.9)10 •8 

N 

10 

-(2.6+0.2) 
-2 -1 -1 m s sr (7.5) 

for 8.105 ^ N $ 310 6 

r 
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From ' ' the spectrum review of K l l l a s (1975) (figure 7.6) and the 

results of i n d i v i d u a l groups (Table 7.2) the integral i n t e n s i t i e s a t 

N - 10^ are found to be cousistont with this present r e s u l t but the 

slope i s not. This i s probably due to the sparse data thus far> 

collected and used i n determining the i n t e g r a l shower size spectrum. 

Application of equation 7.4 to equation 7.5 given the slope of the 

i n t e g r a l energy spectrum i n the energy region 

5.1015eV < I p < 2.1016eV 

Y = -2.9+0.2 as i — 

Here again the discrepancy between H i l l as" best estimate and the present 

r e s u l t can bo a t t r i b u t e d to the paucity of data from this experiment. 
7.6 Discussion and Conclusion 

The data thus acquired by the present experiment and of i t s subsequent 

i n t e r p r e t a t i o n have shown that several modifications and in-depth investiga­

tions of the array and i t s response to showers, both as actually acquired 

and as interpreted by the analysis programmes, are needed. 

I t i s found that the array analysis i s rejecting many events that would 

be analysed as Class B showers due to them not having s u f f i c i e n t timing data 

to enable an a r r i v a l d i r e c t i o n to be computed and, as a consequence, are 

analysed as Option 2 (Class C) showers. This i s a serious problem and one 

that cannot be corrected f o r very easily during the analysis. However, the 

large f r a c t i o n of events " l o s t " i n t h i s way, about 35% of a l l showers that 

a r r i v e w i t h zenith angles less than 30° and at a l l r a d i a l distances, can 

be s i g n i f i c a n t l y reduced by u t i l i s i n g a d i f f e r e n t shower triggering c r i t e r i o n 

i n which the t r i g g e r i n g detectors, which must possess the fast timing 

f a c i l i t y , are nearer to each other than at present. This requirement can 

be met by t r i g g e r i n g w i t h detectois C, 11, 31 and 51 (figure 3.2) but, 

unfortunately, the l a s t three detectors are not yet operational. Thus i t 

must be that many showers w i l l be lost u n t i l these remaining detectors have 

been included i n the array. A l t e r n a t i v e to introducing the detectors mentioned 
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above a more rigorous t r i g g e r may be demanded. Because the detectors have 

a fast-timing mechanism t o t a l l y independent of the density measuring elec­

t r o n i c s , small p a r t i c l e numbers i n the triggering detectors may j u s t be 

s u f f i c i e n t to t r i g g e r the array but may be i n s u f f i c i e n t to register i n the 

fast photomultiplier tubes. To overcome this problem the p a r t i c l e detection 

threshold could be increased, r e s u l t i n g i n a greater detection efficiency 

by the fast phototube. Increasing the detector thresholds i n t h i s way 

reduces the number of smaller sized showers i n the observed shower spectrum 

(see figure 3.5) and so the ef f e c t sought, of increasing the number of smaller 

showers with timing information, i s reversed by the much reduced frequency 

of these showers t r i g g e r i n g the array. Clearly i t seems that i t i s a 

necessary requirement, i n the case of the shower size spectrum measurements, 

that detectors 11, 31 and 51 be used as array t r i g g e r i n g elements and not 

13, 33 and 53 as have been used h i t h e r t o . 



97 

CHAPTER EIGHT 

CONCLUSIONS AND FUTURE WORK 

8.1 Summary 

I n the preceding chapters the description of the Durham Array, 

i t s purpose and responses have been discussed. Chapter One gave a br i e f 

introduction to the hi s t o r y and the general f i e l d of extensive a i r shower 

phenomena and of t h e i r i n t e r p r e t a t i o n i n terms of broad astrophysical 

processes. Chapter Two took the a i r shower and dissected i t in t o i t s 

various components to look at physical phenomena on a much smaller scale. 

The following three chapters took the form of describing the construction 

and operation of the array and how the data are d i g i t i s e d and stored 

automatically. The analysis and inter p r e t a t i o n of the data are, by no 

means, simple tasks and topics relevant to the progress of the experiment 

thus f a r have been presented i n Chapter Seven. 

8.2 Present Status of the Experiment 

The present status of the Durham Array i s that of nearing completion, 

i n the respect that a l l but three of the o r i g i n a l l y proposed p l a s t i c 

s c i n t i l l a t o r detectors have > been deployed. The operation of the 

detectors (Ch.4) and of the data handling electronics (Ch.5) have been 

shown to be very satisfactory. The v e r s a t i l i t y b u i l t w i t h i n the Durham 

array makes i t easily extensible f o r up to 52 detecting elements (§5.6.4) 

such that much more information that i s not at present acquired with each 

shower event can be collected using the on-line technique. The analysis 

programmes which were, i n the major part, w r i t t e n by the author have been 

shown, by using simulated a i r shower data, to adequately analyse t y p i c a l 

a i r shower events that are collected by the array but further work on the 

i n t e r p r e t a t i o n of these data are necessary. 
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8.3 Development of the Array 

With the fourteen p l a s t i c s c i n t i l l a t i o n detectors i n the f i r s t 

phase of the development of the array i n s u f f i c i e n t accuracy i n the various shower 

parameters results f o r those showers whose axes f a l l i n regions where detectors 
2 

are widely spaced. Within the next twelve months several 0.3m l i q u i d 

s c i n t i l l a t o r detectors w i l l be located on the Physics Department roof to 

a l l e v i a t e t h i s problem to a certain extent, but i t i s not envisaged to 

include more p a r t i c l e detectors i n regions outside the department and so 

the present detectors there must be considered f i n a l . Extra detectors 

w i l l be positioned near to the experiments i n the laboratory to increase 

the accuracy i n determining the position of the experiments with respect 

to the shower core - a necessary consideration since without a good estimate 

of t h i s r a d i a l distance the q u a l i t y of the data produced by the experiments 

w i l l be reduced. The technique of delivering the pulse height data to the 

laboratory from the detectors i n the second phase of development i s inherently 

superior to the present technique. I n this case there w i l l be no head 

amplifiers at the detectors and the number of cables servicing each w i l l 

thus be reduced,. Charge sensitive amplifiers and E.H.T. d i s t r i b u t i o n units 

w i l l be located i n the laboratory to increase the efficiency i n checking 

and c a l i b r a t i n g the detectors to which they are connected. Pulses from these 

detectors w i l l be transmitted down the same cable that supplies the E.H.T. 

to the photomultiplier tubes (5" diameter), simplifying the data c o l l e c t i o n 

even more and enabling much greater f l e x i b i l i t y i n the operation and mainten­

ance of the detectors. 

8.4 Future Work 

Because the array has only been operational since September 1975 

there remains a great deal of work s t i l l to be done. Projects at present 

envisaged, or i n the process of preliminary operation, include searches for 

tachyons, a detailed investigation of the badron and low energy muon components 
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and detailed investigations of high energy single and multiple muons i n a i r 

showers, using a v a r i e t y of techniques with the existing flash tube chamber 

(§3.7) and muon spectrograph (§3.6). A continuation of t h i s present work 

w i l l increase the accuracy of the shower size spectrum and greater s t a t i s t i c s 

w i l l enable s i g n i f i c a n t shower anisotropy work to be done. Alternative 

shower analyses are planned to increase the efficiency and accuracy of the 

present analysis technique. 

8.5 Conclusions 

The work covered and presented i n t h i s thesis has been largely that 

of the construction and implementation of the Durham A i r Shower Array. The 

results that have been quoted should be taken only as those of a preliminary 

evaluation of the array's response and features of analysis and should by 

no means be considered d e f i n i t i v e . Nevertheless, i t i s concluded that the 

array's performance i s satisfactory f o r the investigation of extensive a i r 
4 6 

shower phenomena i n the range between 3.10 and 3.10 particles i n size. 

I t s on-line data handling procedures, and the variety of peripheral experi­

ments i n the cosmic ray laboratory, make the array a very useful acquisition 

to the research programmes currently being pursued here i n Durham. I t i s 

hoped that w i t h the use of the array much more useful and detailed work w i l l 
1 

be able to be undertaken i n r e l a t i o n to ground based observations and i n 

' t h e i r i n t e r p r e t a t i o n of the structure and the nuclear processes of extensive 

a i r showers. 
i i 

1 
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APPENDIX A. 
THE ZENITH AND AZIMUTHAL SHOWER ANGLES -
AN ANALYTICAL SOLUTION FOR THREE DETECTORS 

In this Appendix an analytical solution to the equations that describe 
a plane shower front i n terms of arrival times and detector coordinates 
is given. This treatment considers three timing detectors, i n which one 
detector defines the spatial and temporal origins, and from which a unique 
solution of the zenith and azimuthal angles are possible. 

Starting from equation 6.2: 
2 2 

„ r I Lv-i " c c i I 
Jt + y.m + z-n + c t . + I — — — 
L L L I 1 » 2Rc 1 

= 0 

where J. = sin 9 cos 0 
m = sin 0 sin 0 
n = cos © 

-1 = X l - + y l 4 - + z l -

R = radius of curvature of the shower front 
x l ' ^ l ' z l ' t l = i-^xae a n <* s P a c e coordinates 

and c = velocity of l i g h t , 

i t can be simplified by introducing the variable T̂  where 
K 2 

T- = c . ( t 4 + — ) = c u . i f R = c o 
1 1 2Rc 1 

to give 
XjJl + yjm + tijZ + Tj = 0 

For the two detectors whose 'times' are referred to the detector which 
defines the origin of the coordinate system one can obtain the simultaneous 
equations 

' x i * i \ M m - - i -
x2 yi) \ mj \-T2 - z

2 * 



By defining the determinant A to be 

A 
x2 y 2 

solutions for X and m are 

1 
A 

y i 

and 

1 
A 

1 ( - T I - v > 

2 ( - T 2 " Z 2 n ) 

These give the equations 

and 

- X 

= m. 

y l T l 
1 
A' y2 T2 y2 Z2 

X l T l X l Zl 
* 

- A . - 1 . 
A X2 T2 A x2 Z2 

.TL - je 

•n m 

These relations can be further simplified by defining new variables 
the coefficients of the above equations to give 

A + Bn = X 
and 

C + Dn = m 
Introducing the explicit expressions for Jl, m and n one gets 

A + Bcos© = sinO cos(5 
and C + DcosQ = sin© sin 0. 
Squaring and adding gives 

(WW 

9 JUr 
MOTION 

\iV76 ) 
» / 

file:///iV76


A 2 + C2 - 1 + (2AB + 2CD)cos0 + (B 2 + D2 + l)cos 20 = 0 
whose solutions are 

cos© » -(AB+ CD) ±((AB + CD) - (B 2 + D2 + 1)(A 2 + C 2-!))^ 
(B 2 + D2 + 1) 

and 
tan 0 = C + D c o s Q 

A + Bcos© 
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APPENDIX B 
THE CHI SQUARED FUNCTION AND THE PROBLEM 

OF SMALL PARTICLE NUMBERS 

2 
T h e ^ funct ion is often quoted as 

n 
2 X ' 2 

' V V 
E i 

i = l i 

= > (o, - E J 
(B.l) 

where 0̂  and E^ are the observed and expected frequencies i n the i t h bin 
of a distribution. In the general case, the denominator Ê  is replaced by 
c 2 

, the square of the error on the expected number Ê . I f the errors on 
are purely s t a t i s t i c a l then 

C^2 - E i (B.2) 

and equation B.l remains unchanged. In those cases where Ê  is small 
( 10) equation B.l is not a satisfactory approximation to use as a measure 
of the goodness of fit^and, for applications where poissonian statistics 
aPPly» equations B.l and B.2 cannot be successfully employed. 

True poissonian errors have been calculated by Regener (1951), to one 
and two standard deviation l i m i t s , and he discusses their significance in 
relation to small samples of cosmic ray counts. An approximation to the 
errors quoted by Regener can usefully be made and used in the ̂  function 
using 

£R + £R~ 
mean Regener error, £ p = 

K 2 
k 

~ n 2 + 0.5, (B.3) 
where 6 + and 6R are the asymmetrical Regener errors on a measurement of R 
n particles. This relstion is accurate to better than 4% for a l l n > 1. 
For large n normal statistics apply and the mean Regener error tends to 
n^ as n increases. 
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Additional to the s t a t i s t i c a l error in particle measurement, i n an 
ai r shower detector, is an uncertainty introduced by the detector i t s e l f . 
In calculating the efficiencies of the air shower detecting elements. 
(§ 3.4.2) spectra were generated for the response of an air shower 
detector to n particles passing through i t , from an empirical distribution 
for one particle. The standard deviations of these distributions is given 

The detector error, Ô , and the s t a t i s t i c a l error, nay now be 
combined i n quadrature to give the overall error on the measured nunber 
of particles: 

by 
OL = 0.660. n (B.4) 

for a l l n » 1. 

6R 

R 
2 

(B.5) 

Substituting the equations B.3 and B.4 into B.5 gives 

£ 2 - 1.436n + n^ + 0.25 

which is the error term that has been used in the function that is 
minimised i n the data analysis procedures (§6.4). 

For a detailed account of the goodness of f i t test see Cochran, 
W.G., Ann. Math. Stat., 23, (1952), 315. 
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