

Durham E-Theses

The visco-elastic properties of skeletal muscle

Fowler, William Smith

How to cite:

Fowler, William Smith (1974) The visco-elastic properties of skeletal muscle, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8145/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
THE VISCO-ELASTIC PROPERTIES OFSKELETAL MUSCLE
A thesis presented in candidature
for
the degree of Doctor of Philosophy
by
William Smith Fowler B.Sc. (Glasgow)
Department of Zoology, University of Durham
Durham
October, 1974
gubhan :xy

ACKNOWLEDGEMENTS

I would like to record my appreciation of the continuing encouragement and support given by Dr. A. Crowe in the 1aboratory and during the preparation of this thesis. I should particularly like to thank Professor D. Barker for allowing full use of the resources of the department. Thanks are also due to Professor F.V. Smith (Dapartment of Psychology) for providing computing facilities; to Mr. D. Hutchinson for his assistance in preparing the photographs; to my wife for reading the manuscript; and to Mrs. V. Penn for the preparation of this typescript.

This work was supported by a grant from the Muscular Dystrophy Group of Great Britain.

CONTENTS

Page
I SUMMARY 1
II INTRODUCTION 3
III THEORY 10

1. The three component model 10
1.1 The parallel elastic element 10
1.2 The visco-elastic element 11
1.3 The transfer function 11
1.4 Imposed 1ength changes 12
1.41 Dynamic phase ($0<t \leqslant T$) 12
1.42 Static phase. ($\mathrm{T}<\mathrm{t}$) 12
1.43 Ramp stretch 12
1.5 Tension changes as a result of an imposed ramp stretch 13
1.51. During the dynamic phase 13
1.52 During the static phase 13
2. The five component model 14
2.1 The transfer function 15
2.2 Changes in tension as a result of an imposed ramp stretch 16
2.21 During the dynamic phase ($0<t \leqslant T$) 16
2.22 During the static phase ($T<t$) 16
IV MATERIALS AND METHODS 18
3. Anima1 preparation 18
1.1. Rat 18
1.2 Hamster 19
1.3 Tortoise 20
4. Apparatus 21
2.1 The stretching apparatus 21
2.2 Recording of data 22
2.2.1 Methods 22
2.2.2 Accuracy of length change measurements 23
2.2.3 Accuracy of tension measurements 23
2.3 Temperature regulation (tortoise) 24
5. Methods of analysis 24
3.1 Amplitude and velocity of stretch 24
3.2 Linearity 25
3.3 Static and dynamic elasticity 26
$3.4 \frac{1}{2}-$ and $\frac{3}{4}-$ decay times 26
3.5 Determination of $\mathrm{E}_{1} \mathrm{~B}_{2}$ and V_{2} 27
3.5.1 Rat and hamster muscles 27
3.5.2 Tortoise muscle 27
6. Comparison of results with the model 28
4.1 Rat and hamster muscle 28
4.2 Tortoise muscle 28
7. Muscle length and isometric force generation 28
5.1 The initial 1 ength of musc1e 28
5.2 Consistency and performance of preparations 29
8. Determination of the constants of isometric contraction 29
6.1 The maximum tetanic tension 29
6.2 The half-rise and half-fall times of contraction 30
9. Analysis of pooled data. 31
7.1 Rat and hamster muscle 31
7.2 Tortoise muscle 31
10. Units of measurement 31
11. Curve fitting by computer 32
9.1 Sing1e exponential 32
9.2 Double exponential 34
12. Statistics 35
10.1 Mean and standard error 35
10.2 t - and d- tests 35
10.3 Coefficient of correlation 37
v RESULTS 38
13. Linearity 38
1.1 Rat soleus musc1e 38
1.1.1 Re1axed musc1e 39
1.1.2:Tetanised muscle 39
1.2 Hamster, tortoise and rat ECRL muscle 39
1.3 Determination of $E_{1} \quad E_{2}$ and V_{2} 40
1.4 Comparison with other results 402. Time course of tension changes over thestatic phase41
14. Comparison of relaxed and tetanised muscle 42
3.1. Rat soleus musc1e 42
3.2 Hamster, tortoise and rat ECRL muscle 43
15. Comparison of fast and slow muscle of rat 43
4.1 Rat, ECRL musc1e 43
4.2 Dimensionless ratios 43
4.3 Comparison of rat soleus and ECRL muscle 44
16. Normal and dystrophic muscle‘ 45
17. Comparison of other pairs of muscles 46
18. Effect of temperature on components of
tortoise muscle47
7.1 Relaxed muscle 48
7.2 Tetanised muscle 48
19. The five component model 49
20. Tension changes used in discussion of the
Huxley mode1 of musc1e 50
VI DISCUSSION 51
VII REFERENCES 88
APPENDIX I Abbreviations 100
21. The visco-elastic constants of soleus and extensor carpi radialis longus (ECRL) muscles of the rat, gastrocnemius muscles of normal and dystrophic hamsters and gastrocnemius muscles of tortoise have been studied.
22. The transfer function between length and tension for a three component Maxwell model is developed.
23. The response of this model to a ramp stretch is found. During the static phase of the ramp, this is a single exponential decay.
24. Skeletal muscle is compared to the Maxwell model.
25. The model applies only to iinear systems. A11 five muscles are linear, in both relaxed and tetanised states, within the range 0.0 mm to 0.26 mm stretch.
26. Stress relexation in muscle is shown to be reasonably we11 represented by the three component mode1.
27. The constants E_{1}, E_{2} and V_{2} of the model all increase upon stimulation.
28. No differences can be shown between rat soleus and ECRL muscies in respect of their visco-elastic constants.
29. The values of E_{1} for normal and dystrophic hamster gastrocnemius muscle, in both the relaxed and tetanised states, are significantly different. The values of E_{2} are also different, but not those of V_{2}. The isometric tensions and contraction times are significantly different in tetanised muscle.

- $2.0 \subset T 1975$

10. Two other pairs of muscles are compared and differences shown between the values of E_{1} and E_{2} of tetanised muscle.
11. The values of E_{1}, E_{2} and V_{2} of tortoise gastrocnemius muscle in the relaxed state decreases as the temperature increases, in the range $5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. In tetanised muscle E_{1} and V_{2} increase with temperature, while E_{2} increases in the range $5^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ then decreases slightly. The isometric tension has a similar relationship to temperature as E_{2}.
12. A five component Maxwell model is shown to give a better fit, to the stress relaxation, than the three component model.
13. The findings of the thesis are discussed in relation to current theories of muscle contraction.

II INTRODUCTION

The aim of this thesis is to examine some of the rheological properties of muscle. Although these properties should be considered from both a thermodynamic and mechanical point of view, it must be remembered that one of the functions of muscle is to control a mechanical system. It is necessary to be able to describe the mechanical properties of muscle before attempting a description of the wider, more complicated systems, such as limbs, of which muscles form a part. It is therefore justifiable to set up and examine mechanical models of muscle which may not be thermodynamically acceptable. In the introduction, some historical background is given, and this is followed by a detailed plan of the work. In subsequent sections, skeletal muscle is compared to a three component Maxwell model consisting of one viscous and two elastic elements (see Fig.3.1a). In the theory section the transfer function between length and tension, for imposed ramp length changes, is derived. In the next section the results obtained from the application of ramp stretches to muscle are compared with the model. Different muscle types are then compared in the relaxed and tetanised states and the effects of temperature on the visco-elastic constants of the model are examined. The application of a five component model to muscle is briefly discussed.

Historical background

Several reviews of the properties of skeletal muscle have been written. The biochemical basis of muscle action is well covered by Needham (1971) and the dynamic
properties have been recently reviewed by Close (1972). In 1960 Pringle presented a paper on modelling of muscle. However, the immediate historical background to the present research is presented here.

It has been known for a long time that muscles possess elastic properties. Muller (1837-40) in the early nineteenth century pointed out that muscle obeyed the laws governing elastic bodies, and in 1846 Weber wrote that excited muscle could be looked on as a new elastic body, with new stiffness and new natural length. Heidenhain (1864) and Fick (1882), on the other hand, put forward the view that stimulated muscle was not just a new elastic body, the result of a change in elasticity, but that the force and heat production properties of active muscle were the result of some inner change in the muscle.

However, in 1913 A.V. Hill reverted to the idea that stimulated muscle could be looked upon as a new elastic body, and that the energy of this new elastic body could be liberated either as tension or as heat (see also A.V. Hill, 1913-14). Later, in 1922, A.V. Hill introduced the concept of visco-elasticity playing a large part in determining some of the properties of muscle, for example the speed of contraction. To some extent this overcame the problems of non-reversibility of muscle elasticity. By 1922, then, views were again held that some at least of the properties of muscle could be explained in terms of elasticity and viscosity.

Since then several models have been put forward which attempt to simulate muscle behaviour.

Models of muscle

Levin and Wyman (1927) postulated a model consisting of three components, an undamped elastic element in series with a damped elastic component. This model, it was suggested, gave a better representation of the behaviour of muscle than the A.V. Hill 1922 model, which consisted of a single damped elastic component.

A paper was later published by A.V. Hill (1938) in which he found that the total energy liberation (work + heat of shortening) was a linear function of the load, decreasing as the load increased. The relationship between load, velocity of shortening, work and heat of shortening could be written in the form:

$(P+a)(v+b)$	$=b\left(P_{0}+a\right)=$ constant,
where $\quad P$	$=$ actual load on the muscle,
P_{0}	$=$ isometric tension,
a	$=$ shortening heat,
b	$=$ increase in total energy,
and $\quad v$	$=$ velocity of shortening.

This equation (Hill's characteristic equation)
gave a hyperbolic curve when plotted using values of a and b derived from energy measurements. The same hyperbolic curve could also be obtained by plotting the falling off of the velocity of shortening, v, as the load, P, on the muscie increased.

These findings 1 ed A.V. Hill to the conclusion that stimulated muscle could once more no longer be regarded as a new elastic body, that shortening and heat production of stimulated muscle were not due only to viscous and elastic
properties but were the result of the regulation of reactions providing the energy for contraction.

Here, then, is a situation where muscle is seen to have properties which are apparently visco-elastic in nature but may be biochemical in origin. A.V. Hill therefore postulated a model consisting of a contractile component (the damped elastic component of Levin and Wyman) in series with an undamped elastic component.

In 1957 A.F. Huxley published.a paper in which he put forward the idea that force generation in muscle could be the result of two sets of protein filaments, actin and myosin, sliding over one another, with chemical bonds being formed and broken as they pass. This hypothesis has since been substantiated and further developed (e.g. A.F. Huxley \& Peachey, 1961; H.E. Huxley, 1964 \& 1965). Any subsequent modelling of muscle must take into consideration the work of A.F. Huxley.

Bahler (1968), for example, has postulated a model of muscle which consists of a contractile element, or force generator, having viscous-like properties, in series with an undamped elastic element and with a parallel elastic element associated with the relaxed muscle. This model has been used to simulate isotonic force/velocity relationships and the isometric generation of force by the muscle, but the modelling of force generation is complex.

Study of the three component model

It has been suggested (Crowe, 1970; Apter \&
Graessly, 1970) that muscle may be represented by a three
component visco-elastic model. Such a model is the simplest which can represent stress relaxation in muscle. Changes in muscle upon stimulation may be simulated by changes in the visco-elastic coefficients, and in the unstretched 1 ength of the elastic elements of the model.

In this thesis such a model has been examined, using stress relaxation techniques, in order to determine whether differences in mechanical properties of muscle can be predicted by changes in the visco-elastic coefficients of the mode1.

Visco-elastic models of muscle can be represented in two ways (Pringle, 1960), either as a Maxwell model or as a Voigt model (see Fig.2.1). Such models are mathematically equivalent and are not logically distinguishable. Any properties of muscle which can be described by one can also be described by the other. However, in the analysis of stress relaxation, where tension is recorded in response to imposed length changes, the analysis becomes simpler if the Maxwell model is used. All data given in the later sections of the thesis refer to a three component Maxwell model as shown in Fig. 3.1a.

In the Theory section the transfer function of the three component Maxwell model is derived. This transfer function relates tension in the system to changes in length with the form of a ramp stretch (see Fig. 3.2), in terms of the viscous and elastic elements of the model. A similar transfer function for a five component model is also derived.

Using the transfer function of the three component model, the limits of linearity have been determined within

Fig. 2.1 Visco-elastic models of muscle. a) The
Voigt model. b) The Maxwell model. Elastic
elements are represented by \sim, and viscous elements by :

b.
which the model can be applied to skeletal muscle. Working within these limits, differences in visco-elasticity between relaxed and tetanised muscle are. examined. As already noted, earlier authors have attempted to explain muscle activity simply as a change in elasticity (Weber, 1846; A.V. Hill, 1913). This view has subsequently been shown to be wrong (Fenn, 1924; Wilkie, 1954). However, although activity in muscle is not purely the result of setting up a new elastic body, elasticity of muscle, as measured by stress relaxation, does change upon stimulation, and these changes are discussed in relation to later theories of muscle contraction.

- The next topic to be investigated was whether or not differences in contraction properties of muscle (maximum isometric tension and the time taken to contract) are accompanied by differences in the visco-elastic constants of the model. Since A.V. Hill (1922) introduced the idea that the speed of contraction of a muscle is related to the visco-elastic properties of that muscle, several workers have looked for some correlation between speed of contraction and elastic properties (Buller et.al., 1960a \& b). Wells (1965) and Close (e.g. 1965), in particular, have done much work on the comparison of fast and slow muscles of the rat. Two muscles of the rat, the soleus and the extensor carpi radialis longus (ECRL), have been compared in this thesis. In addition the gastrocnemii muscles from normal and dystrophic hamsters have also been compared.

If the visco-elastic constants of muscle are related to the contractile properties, how then will these constants relate to temperature? Several authors have looked at the effects of temperature on passive and active muscle (e.g.

Washington et al., 1955; Close \& Hoh, 1968; Yeatman et.al., 1969; D.K. Hill, 1970). The effects of temperature on the properties of tortoise gastrocnemius muscle have been examined and these results are discussed in relation to the other findings of this thesis and to previous1y published work. Finally, the results are discussed in relation to current theories of muscle contraction and possible improvements to the model are suggested.

1. The three component model
A. Maxwell model consisting of two elastic elements, E_{1} and E_{2}, and a viscous element, V_{2}, as shown in Fig. 3.1a, was used.

If this model is regarded as a linear system, then the transfer function, G, can be derived for tension changes, F, in terms of imposed length changes, L.

This model contains a time-dependent viscous element. The derivation of the transfer function therefore includes first order differential equations.

In terms of the notation of the Laplace Transform,

$$
G(S)=\frac{F(S)}{L(S)} .
$$

The tension generated is the sum of the tensions generated by the elastic element, E_{1}, and by the viscomelastic element containing E_{2} and V_{2}. This can be expressed as

$$
F(S)=F_{1}(S)+F_{2}(S) .
$$

1.1 The parallel elastic element

The tension generated by this element is the product of the modulus of elasticity and the imposed length change.

$$
F_{1}(S)=E_{1} L(S)
$$

Fig. 3.1a The three component Maxwell model, consisting of a parallel elastic element, E_{1}, and an elastic element, E_{2}, in series with a viscous component, V_{2}. In this system the overall length, L, is equal to the sum of the lengths of the series elastic element and the viscous element, that is

$$
L=x_{1}+x_{2}
$$

Fig. 3.1b The five component Maxwell model, consisting of a parallel elastic element, E_{1}, and two visco-elastic elements $\left(\mathrm{E}_{2}, \mathrm{~V}_{2}\right.$ and $\left.\mathrm{E}_{3}, \mathrm{~V}_{3}\right)$.

1.2. The visco-elastic element

The change in length, L, consists of two components, the change in length $\left(X_{1}\right)$ applied to E_{2} and the change in length (X_{2}) applied to V_{2} (see Fig. 3.1), thus:

$$
L(S)=X_{1}(S)+X_{2}(S)
$$

From equations 3.4 and 3.5 , the tension change, $F_{2}(S)$, can be found in terms of the length change, $L(S)$.

$$
F_{2}(S)=E_{2}\left\{L(S)-X_{2}(S)\right\}
$$

and

$$
F_{2}(S)=V_{2} S X_{2}(S) .
$$

When $\mathrm{X}_{2}(\mathrm{~S})$ is eliminated, this gives

$$
F_{2}(S)=E_{2} L(S)-\frac{E_{2} F_{2}(S)}{V_{2} S}
$$

or

$$
F_{2}(S)=\frac{E_{2} V_{2} S}{E_{2}+V_{2} S} \cdot L(S) .
$$

1.3 The transfer function

The transfer function of the three component Maxwell model can now be obtained by substituting equations 3.3 and 3.6 in equation 3.2 , giving

$$
F(S)=E_{1} L(S)+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S} \cdot L(S),
$$

which in turn gives

$$
G(S)=\frac{F(S)}{L(S)}=\left\{E_{1}+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S}\right\}
$$

1.4 Imposed length changes

If the applied mechanical stretch is in the form of a ramp of height H, and of dynamic phase duration, T, as shown in Fig. 3.2, then the Laplace transform for the length change, $L(S)$, can be derived.

1.41 Dynamic phase $(0<t \leqslant T)$

The Laplace transform of a ramp starting at time $t=0$, of unit height and of slope $\frac{1}{T}$ is as follows:

$$
\mathrm{L}(\mathrm{~S})=\mathcal{L}\{L\}=\frac{1}{\mathrm{TS}}
$$

1.42 Static phase $(T<t)$

The Laplace transform of a second ramp, similar to that of equation 3.8 but starting at time $t=T$; can be derived:

$$
\mathcal{L}\left\{L \sim=\frac{1}{\mathrm{TS}^{2}} \cdot \mathrm{e}^{-\mathrm{sT}}\right.
$$

1.43 Ramp stretch

Equation 3.9 can be subtracted from equation 3.8 to give the Laplace transform of a ramp of the form given in Fig. 3.2,
Fig. 3.2 The ramp length change (L) applied to skeletal muscle. The ramp
applied was of height, H, and consisted of two phases, a dynamic phase, of
T seconds duration, where the length changed with constant velocity, and a
static phase, where the length remained constant at the new value.

1.5 Tension changes as a result of an imposed ramp stretch.

It is now possible to derive the transfer function for changes in tension, F, in the model, in terms of an imposed ramp stretch of height, H.

> 1.51 During the dynamic phase
> From equations 3.7 and 3.8,
$F(S)=\frac{1}{T S^{2}} \cdot\left\{E_{1}+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S}\right\}$.

Taking the inverse Laplace transform, the tension resultant from an applied ramp stretch of height, H, would be

$$
F(t)=\frac{E_{1} H}{T} \cdot t+\frac{V_{2} H}{T} \cdot\left\{1-\exp \left[-\frac{E_{2}}{V_{2}} \cdot t\right]\right\}
$$

1.52 During the static phase

From equations 3.7 and 3.10
$F(S)=\frac{1-e^{-S T}}{T S^{2}} \cdot\left\{E_{1}+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S}\right\}$.

Taking the inverse Laplace transform, the tension resultant from an applied ramp stretch of height, H, would be

$$
F(t)=E_{1} H+\frac{V_{2} H}{T}\left\{\exp \left[-\frac{E_{2}}{V_{2}} \cdot t\right]\right\}\left\{\exp \left[\frac{E_{2}}{V_{2}} \cdot T\right]-1\right\}
$$

or, if t is measured from the start of the static phase (t_{1} of Fig. 3.2), then

$$
F(t)=E_{1} H+\frac{V_{2} H}{T}\left\{\exp \left[-\frac{E_{2}}{V_{2}} \cdot t\right]\right\}\left\{1-\exp \left[-\frac{E_{2}}{V_{2}} \cdot T\right]\right\}
$$

Equation 3.12 can be expressed in the simplified form

$$
F(t)=A+B \cdot \exp [-C t]
$$

where

$$
A=E_{1} H
$$

$$
B=\frac{V_{2} H}{T}\left\{1-\exp \left[-\frac{E_{2}}{V_{2}} \cdot T\right]\right\}
$$

and

$$
c=\frac{E_{2}}{V_{2}} .
$$

2. The five component model

Consider a Maxwell mode1, similar to that of Fig. 3.1a but consisting of three elastic and two viscous elements, arranged as in Fig. 3.1.b. In terms of the Laplace transform the transfer function relating length to tension, $G(S)$ of equation 3.1 , can be derived.

The tension, $F(S)$, generated in the model is the sum of the forces in the elastic element and the two visco-elastic elements,

$$
F(S)=F_{1}(S)+F_{2}(S)+F_{3}(S)
$$

The relationship between the tension generated, $F(S)$, and the imposed length change, $L(S)$, is the same for both viscoelastic elements,

$$
F_{2}(S)=\frac{E_{2} V_{2} S}{E_{2}+V_{2} S} \cdot L(S)
$$

and

$$
F_{3}(S)=\frac{E_{3} V_{3} S}{E_{3}+V_{3} S} \cdot L(S)
$$

2.1 The transfer function

The transfer function of the five component
Maxwell model can be obtained by substituting equations 3.3, 3.6 and 3.16 in equation 3.15 to give

$$
F(S)=E_{1} L(S)+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S} \cdot L(S)+\frac{E_{3} V_{3} S}{E_{3}+V_{3} S} \cdot L(S)
$$

This equation can be rearranged to give

$$
G(S)=\frac{F(S)}{L(S)}=E_{1}+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S}+\frac{E_{3} V_{3} S}{E_{3}+V_{3} S}
$$

2.2 Changes in tension as a result of an imposed ramp

 stretch. The transfer function for changes in tension, F, in terms of an imposed ramp stretch can be derived.

2.21 During the dynamic phase

From equations 2.8 and 2.17,

$$
F(S)=\frac{1}{T S^{2}}\left\{E_{1}+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S}+\frac{E_{3} V_{3} S}{E_{3}+V_{3} S}\right\}
$$

Taking the inverse Laplace transform, the tension resultant from an applied ramp stretch of height H, would be

$$
F(t)=\frac{1}{T S^{2}} \cdot t+\frac{V_{2} H}{T}\left\{1-\exp \left[-\frac{E_{2}}{V_{2}} \cdot t\right]\right\}+\frac{V_{3} H}{T}\left\{1-\exp \left[-\frac{E_{3}}{V_{3}} \cdot t\right]\right\} .
$$

2.22 During the static phase

From equations 3.10 and 3.17 ,

$$
F(S)=\frac{1-e^{-S T}}{T S^{2}}\left\{E_{1}+\frac{E_{2} V_{2} S}{E_{2}+V_{2} S}+\frac{E_{3} V_{3} S}{E_{3}+V_{3} S}\right\}
$$

Taking the inverse Laplace transform, the tension resultant from an applied ramp stretch of height H, would be $F(t)=E_{1} H+\frac{V_{2} H}{T}\left\{\exp \left[-\frac{E_{2}}{V_{2}} \cdot t\right]\right\}\left\{\exp \left[\frac{E_{2}}{V_{2}} \cdot T\right]-1\right\}$

$$
+\frac{V_{3} H}{T}\left\{\exp \left[-\frac{E_{3}}{V_{3}} \cdot t\right]\right\}\left\{\exp \left[\frac{E_{3}}{V_{3}} \cdot T\right]-1\right\}
$$

or, if t is measured from the start of the static phase (point t_{1} of Fig. 3.2) then

$$
\begin{align*}
& F(t)=E_{1} H+\frac{V_{2} H}{T}\left\{\exp \left[-\frac{E_{2}}{V_{2}} \cdot t\right]\right\}\left\{1-\exp \left[-\frac{E_{2}}{V_{2}} \cdot T\right]\right\} \\
&+\frac{V_{3} H}{T}\left\{\exp \left[-\frac{E_{3}}{V_{3}} \cdot t\right]\right\}\left\{1-\exp \left[-\frac{E_{3}}{V_{3}} \cdot T\right]\right\}
\end{align*}
$$

Equation 3.19 can be put into the simplified form

$$
F(t)=A+B \cdot \exp [-C t]+D \cdot \exp [-E t]
$$

where

$$
A=E_{1} H
$$

$$
B=\frac{V_{2} H}{T}\left\{1-\exp \left[-\frac{E_{2}}{V_{2}} \cdot T\right]\right\}
$$

$$
c=\frac{E_{2}}{V_{2}}
$$

$$
D=\frac{V_{3} H}{T}\left\{1-\exp \left[-\frac{E_{3}}{V_{3}} \cdot T\right]\right\}
$$

and

$$
\mathrm{E}=\frac{E_{3}}{V_{3}}
$$

IV MATERIALS AND METHODS

1. Animal preparations.

1.1 Rat

Young albino rats having a body weight of 170 g to 230 g . were used. They were initially aneasthetised with Urethane (Ethyl Carbamate - B.D.H.) in normal saline, $200 \mathrm{mg} / 100 \mathrm{~g}$ of body weight, injected intraperitoneally (We11s, 1965). This was subsequently supplemented with ether, during the course of the experiment.

The muscle, which was either the soleus or the extensor carpi radialis longus (ECRL), was arranged so that its tendon could be isolated and attached to the stretching apparatus. The fascia and connective tissues were removed to allow freedom of movement (Denny-Brown, 1929), yet the blood supply and proximal insertion remained intact. A length of nerve sufficient to allow tetanic stimulation by external electrodes was left attached to the muscle. All unused branches of the appropriate nerve were cut. The tendon was attached to the stretching apparatus by a length of pre-stretched stainless steel wire.

The animal was placed in a holding frame and rigidly held at the joint appropriate to the muscle under investigation, so that the tensions in the muscle produced no movements in the limb. The initial length of the muscle was set at about resting length so that, upon the application of the mechanical stretch in the unstimulated state, there
was no slack to be taken up before a tension change could be observed. This was in the range $2.6 \mathrm{cms}-2.8 \mathrm{cms}$ for soleus muscle, and $1.4 \mathrm{cms}-1.5 \mathrm{cms}$ for ECRL muscle. A rectal temperature of $37^{\circ} \mathrm{C}-39^{\circ} \mathrm{C}$ was maintained during each experiment.

Stimuli to the nerve were provided by a Devices Mk.III isolated stimulator which was triggered by a gated pulse generator (Devices, 2521). The frequency of stimulation applied to the soleus muscles was 40 pulses per second and to the ECRL muscles, 65 pulses per second. In both cases an interval of two minutes was allowed between successive cycles of stretch or stimulation.

1.2 Hamster

A non-dystrophic, commercially available line of Syrian hamster (Mesocricetus auratus) was used for the study of normal muscle. These animals were between 80 and 90 days old and the body weight of each was in the range $90-100 \mathrm{~g}$. Experiments on dystrophic muscle were performed on animals from a dystrophic in-bred line of hamsters (B 14.6 strain from Bioscience Laboratories, Bar Harbor, U.S.A.), first described by Holmburger (Holmburger et al. 1962a \& b). These animals were 80-95 days old and the body weight of each was between 65 and 90 g .

The gastrocnemius muscles of each animal were set up as in section IV.11. Care was taken to separate this muscle from the underlying plantaris and soleus muscles. The muscles were initially set at about resting length. This was 1.3 cms in normal musc1e and $1.2 \mathrm{cms}-1.3 \mathrm{cms}$ in dystrophic muscle. A rectal temperature of $36^{\circ} \mathrm{C}$ to $38^{\circ} \mathrm{C}$ was maintained throughout each experiment.

Stimuli were applied to the sciatic nerve at a frequency of 50 pulses per second for both normal and dystrophic muscle. A two minute rest period was allowed between successive cycles of stretch or stimulation, as for rat muscle.

Each muscle was subsequently sectioned and stained for general structure using Weigert/van Geisen staining technique (Carlton \& Drury, 1957). Phosphorylase activity was also checked by the method of Takeuchi \& Kuriaki (1955), as modified by Eranko \& Palkama (1961).

1.3 Tortoise

Adult tortoises (Tustedo graeca) were pithed and the gastrocnemius muscle removed, together with a length of the sciatic nerve. This preparation was mounted in a muscle bath and immersed in Ringer's solution. The composition of this solution in g. per 1itre was $\mathrm{NaCl}, 6.5$; $\mathrm{KCl}, 0.15$; $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.16 ; \mathrm{NaHCO}_{3}, 0.5 ;(S e l i s k a r, 1926)$. The Ringer's solution was aerated and circulated by a stream of gas consisting of 95% oxygen and 5% carbon dioxide (see Fig.4.1).

The distal tendon of the muscle was clamped firmly to the base of the muscle bath. The proximal end of the muscle, with a short section of the femur, was then attached to the stretching apparatus by a length of previously stretched stainless steel wire.
The temperature control system used in tortoise in-vitro experiments.
A. Gas cylinder, with reduction valve, containing 95% oxygen and 5% carbon dioxide.
B. Perspex muscle bath, containing Ringer's solution.
C. Bubbler mechanism for circulating and aerating the Ringer"s
Dolution. E. Thermometer.
F. P.V.C. tubing for circulation of Ringer's solution in temperature control bath.
G. Temperature control bath.
H. Tempette thermostatically controlled heating unit.
J. Inlet from cold water tap.
K. Outlet to sink.
Fig. 4.1

The initial length of the muscle was set at about resting length, which was about 3.4 cms in each case.

Stimuli were applied to the nerve at a frequency greater than that required to produce complete tetanus at $30^{\circ} \mathrm{C}$. This frequency was 30 pulses per second. The interval between successive cycles of stretch or stimulation was not constant, as for rat and hamster muscles, since the time required to cool the muscle through $5^{\circ} \mathrm{C}$ was not constant. In no case was this interval of time less than the two minutes allowed for rat and hamster muscle.

2. Apparatus

2.1 The stretching apparatus

The muscle was fixed to the movable spindle of an electromagnetic vibration generator (Goodmans V50

Mk.I). Movement of the spindle was brought about by feeding the voltage signal from a testwave generator (Servomex LF 141) into a current amplifier, the output of which was fed into the coil of the vibration unit. This movement was recorded by a Honeywe11 LD 11 Linear Displacement Transducer.

The output of the displacement transducer was subtracted from the command signal of the waveform generator in order to achieve a feedback control of the stretch applied to the muscle. A filter was introduced into the loop
to damp out the natural resonant frequency of the system. These techniques allowed the input signal to be accurately followed by the spindle of the vibration generator.

Some problems were encountered with the stability of the system. In particular, oscillations were set up in the vibration unit if the gain of the differential
amplifier was too great. This could, to some extent, be prevented by adjustment of the preamplifier gain and the balance of the current amplifier.

At times the testwave generator tended to an instability, which resulted in the vibration unit moving to the stretched position without any external trigger pulse being applied. The circuit of the testwave generator was checked, but no fault found. Triggering, in this case, was probably caused by fluctuations in mains voltage. Experiments carried out at night did not suffer from this particular problem.

2.2 Recording of data

2.2.1 Methods

Tension changes in the muscle were recorded by an Ether UFI Load Transducer placed between the muscle and the spindle of the vibration unit. The outputs of the load transducer and the displacement transducer were simultaneously displayed on a Tektronix 502A dual beam oscilloscope. Records of 1 ength and tension changes in the muscle were made by taking single frame 35 mm photographs of the oscilloscope display. Measurements were taken from these photographs for subsequent ana1ysis.

Length and tension signals of the in-vitro tortoise experiments were also recorded on an Ampex 3000 FM tape recorder and subsequent1y analysed on an IBM 1132 computer.

The events of the testwave generator, camera, tape recorder and stimulator were triggered by timed pulses from a Digitimer, type 3290.

A block diagram of the apparatus is given in Fig. 4.2.
2.2.2 Accuracy of length change measurements

The output of the 1 ength transducer was checked against a vernier gauge after each day's experiments and a calibration curve drawn. The output voltage was linear over the range of movement applied to the muscles. The ramp height for any particular input signal could be determined to within $\pm 0.005 \mathrm{~mm}$. This represents an error of about 5% for the smallest stretch and about 0.6% for the largest.

2.2.3 Accuracy of tension measurements

Photographs of oscilloscope displays were projected onto graph paper, and measurements of tension changes taken to the nearest 0.5 mm . The smallest tension changes recorded gave movements corresponding to a distance of 20 mm when projected. Tension could therefore be measured to within $\pm 2.5 \%$ of the smallest forces. Large tension changes were accurate to within $\pm 0.15 \%$. Analogue tension changes recorded on magnetic tape were digitised and stored within a computer. The

tension intervals for data from tetanised muscle were 4.5 x $10^{-3} \mathrm{~N}$, representing an error of 1% of the smallest tension change recorded and 0.15% of the largest. Tension changes in relaxed muscle' were digitised with intervals of 4.5 x $10^{-4} \mathrm{~N}$. This represents a possible error in the range $0.5-2 \%$ of the forces measured.

2.3 Temperature regulation (tortoise)

The Ringer's solution in the muscle bath of the in-vitro tortoise experiments was constantly circulated through a temperature control unit (see Fig. 4.1.). A stream of 95% oxygen and 5% carbon dioxide was used both to circulate and to aerate the Ringer's solution. A Tempette heating unit was used in conjunction with cold tap water to regulate the temperature. Using this method, the temperature of the saline in the muscle bath could be controlled to within plus or minus $0.25^{\circ} \mathrm{C}$.

3. Methods of Analysis

3.1 Amplitude and velocity of stretch

It has been shown by Gasser \& Hill (1924) and by Abbott \& Aubert (1952) that contracting muscle subjected to stretch may be irreversibly damaged, and any tension development subsequent to the stretch is then reduced.

The length of stretch applied to muscle by Gasser \& Hill to produce this effect is not clear, but by comparing Figs. 4 and 8 of these authors, an estimate of 10 mm can be obtained. The velocity of the applied
stretch was then in the range $8-200 \mathrm{cms} \mathrm{sec}^{-1}$. Abbott \& Aubert applied stretches of 4 - 5 mm at a velocity of $0.05-3.0 \mathrm{cms} \mathrm{sec}^{-1}$.

At the higher velocities of stretch applied by the above authors, a slip was induced, giving a reduction in the tension developed by the muscle. These stretches were probably outwith the elastic limits of the crossbridges (Sugi, 1972).

In the present study, the maximum amplitude of stretch was 0.85 mm and the velocity did not exceed $1.4 \mathrm{cms} \mathrm{sec}^{-1}$. These stretches were not great enough to induce the slip phenomenon (a form of which is given in Fig. 4.3a and b) and were probably within the elastic limits of the cross bridges (see Discussion).

Stretching muscle at the amplitude and velocities used in the present experiments did not usually result in any subsequent reduction in isometric tension. The muscles were therefore not being damaged. If any reduction in tension did occur, the results were discarded.

3.2 Linearity

The relaxed muscle was tested for linearity by. applying a series of ramp stretches of varying height, H, but of constant dynamic phase duration, T. The resultant tensions were measured at points during the static phase of the ramp. The range of linearity was then determined from the Height/Tension graph.

The tests were repeated for muscle in the
stimulated state. The muscles were subjected to ramp stretches while undergoing tetanic contraction, and from

Fig. 4.3a Tension produced during a ramp stretch of 0.85 mm , applied to tetanised rat soleus muscle, at a velocity of $13.60 \mathrm{~mm} \mathrm{sec}{ }^{-1}$. The 'slip' phenomenon, probably similar to that of Sugi (1972), is indicated by an arrow.

Fig. 4.3b Length (upper trace) and tension (1ower trace) during a ramp stretch of 0.34 mm applied to tortoise gastrocnemius muscle at $15^{\circ} \mathrm{C}$. The stretch velocity of $10.20 \mathrm{~mm} \mathrm{sec}{ }^{-1}$ has induced a tension slip (indicated by an arrow), which is probably similar to that of Sugi (1972).
these tensions the corresponding values of an unstretched contraction were subtracted. This gave the amount of tension due to the mechanical stretch.

3.3 Static and dynamic elasticity

The difference between tension at the end of the static phase of the ramp, and tension in the absence of a ramp is defined as the static tension change and is equivalent to A of equation 3.13. The amount of static tension change per unit of stretch is the static elasticity, and is given in units of Nm^{-1}.

Similarly, the difference between the peak tension at the end of the dynamic phase of a ramp and the subsequent steady, or near steady, tension at the end of the static phase, is defined as the dynamic tension change. This is equivalent to B of equation 3.13. The amount of dynamic tension per unit of stretch is the dynamic elasticity and is given in units of Nm^{-1}.

These quantities have been used in the discussion to relate the results of this thesis to the model of muscle first put forward by A.F. Huxley (1957).

$3.4 \frac{1}{2}$ and $\frac{3}{4}$ - decay times

The time taken for the tension in a muscle to fall from the peak value at the end of the dynamic phase to the point where the tension is equal to ($A+\frac{1}{2} B$) is termed the half-decay time of the muscle. The equivalent time for the tension to fall to ($A+\frac{1}{4} B$) is defined as the $\frac{3}{4}$ - decay time.

3.5 Determination of $\mathrm{E}_{1} \quad \mathrm{E}_{2}$ and V_{2}

3.5.1 Rat and hamster muscle

In order to determine the values of the viscous and elastic components, and to test the model, the tension records of ramps of a height within the linear range were used. The dynamic phase, T, of stretches applied to the muscles was of 0.0625 seconds duration. Initially it was assumed that the component of the tension due to the ramp stretch could be fitted to the curve of equation 3.13. The plateau tension at the end of the static phase of the ramp was measured to give the value of A. The peak tension (that is, the tension at the end of the dynamic phase) was measured to obtain the value of B. The value of the half-decay time was used to determine C, as in Fig. 4.4. The values of B_{1}, E_{2} and V_{2} were then determined according to equation 3.14.

3.5.2 Tortoise muscle

Values of the visco-elastic constants for tortoise muscle were determined by applying ramp stretches with a height, H, within the 1 inear range and of dynamic phase duration, T, of 0.0625 seconds. Analogue tension data from these experiments were stored on magnetic tape. A fortran computer program was written to receive the data from the Ampex tape recorded, digitise it by means of an interface (WDV, Munchen), and store the resultant information on a magnetic disc in the computer. A second fortran program was written to perform a least squares fit
u
of equation 3.13. $\quad C=\frac{-\ln \frac{1}{2}}{t_{1 / 2}}$.

of the data of the static phase of the ramp, for the curve of equation 3.13 (see section 9.1 on curve fitting). This gave the constants A, B and C of equation 3.13 , and hence the values of E_{1}, E and V for the three component model.

A second least squares fit of the data was found for a curve of the form given by equation 3.20 (see section 9.2 on curve fitting). This gave the five constants of equation 3.20 and hence the values of $\mathrm{E}_{1}, \mathrm{E}_{2}$, $\mathrm{E}_{3}, \mathrm{~V}_{2}$ and V_{3} of the five component model, from equation 3.21.

4. Comparison of results with the mode1

4.1 Rat and hamster muscle

The fitted curve was compared to the experimental tension records in order to determine how well the experimental curve was an approximation to a single exponential. The fitted curve was obtained by plotting the curve $A+B . \exp (-C t)$, using derived values of A, B and C .

4.2 Tortoise muscle

The experimental tension was compared to a curve consisting of a single exponential, $A+B \cdot \exp (-C t)$ and to a curve consisting of the sum of two exponentials, $A+B \cdot \exp (-C t)+D \cdot \exp (-B t)$.

5. Muscle length and isometric force generation

5.1 The initial length of muscle

The resting length at which each muscle was
initially set was near to the maximum in situ length of that muscle. This length corresponds to a position on the

1 ength/tension plot of Gordon et a1 (1965, fig.12) near to a sarcomere length of about 2.0 رum. At this position, tension changes which were due only to moving the muscle onto a different part of the length/tension plot, would not be expected to be very great in response to a small change in length.
5.2 Consistency and performance of preparations

In order to ensure consistency of performance of the stimulated muscle, each ramp stretch app1ied to tetanised muscle was preceded and followed by tetanic stimulation without stretch. If these two records were identical and showed no signs of fatigue, it was assumed that the behaviour of the muscle was also acceptable during the intervening contraction subjected to a ramp stretch.
6. Determination of the constants of isometric contraction.

6.1 The maximum tetanic tension

The values of the maximum isometric tetanic tension given in the Results were taken as the maximum tension above resting tension, developed by the muscle during the period of stimulation. In the case of rat soleus and tortoise gastrocnemius muscles, the isometric tension was still increasing slowly at the end of the period of stimulation. The maximum tension given for these muscles is the tension developed just before the removal of the stimulus. The maximum tension given for these two muscles is therefore slightly less than the
muscle is capable of developing at that particular length. The tension developed by rat ECRL and by hamster gastrocnemius muscles reached a maximum a few milliseconds after the onset of stimulation, and then declined slightly with continued stimulation. The values of maximum isometric tension given for these muscles are the maximum which could be developed at that particular length of the muscle.

6.2 The half-rise and half-fall times of

contraction.

The time, T, from the end of the latent period to the development of one half of the maximum isometric tension is defined as the half-rise time of the muscle. The method of measurement of this parameter is given in Fig. 4.5. The time from the cessation of stimulation to the point where the tension is halfway between resting tension and the tension at the end of stimulation, is defined at the half-fall time of the muscle. These parameters were found to be simpler to measure than the twitch times (Close, 1964) or the maximum rate of tension development (Drachma \& Johnston, 1973). The half-rise and half-fall times were used as a measure of the relative speed of contraction of the different muscle types, and were used to give relative values of the rate constants f and g of equation 14 of A.F. Huxley (1957).
Fig. 4.5 Measurements taken in order to determine the contraction time, T_{2},

7. Analysis of pooled data

7.1 Rat and hamster muscle

Variations in the values of the visco-elastic constants of any one muscle were reduced by plotting the constants A and B of equation 3.13 against the height, H, of the ramp stretch. Values of A and B were derived from the slopes of these graphs. The constant, C, of equation 3.13 was taken as the mean value of C of the larger stretches of the muscle, within the linear range of A and B.

The values of E_{1}, E_{2} and V_{2} for rat and hamster muscle, presented in the results section, were all derived from such pooled data.

7.2 Tortoise muscle

Each tortoise muscle was subjected to many tetani over a range of temperatures. To reduce the overall number of tetani, only one ramp (of 0.26 mm height) was applied to the muscle at every temperature. Several stretches, with varying height, H, were applied at temperatures of $5^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ only. Values of the constants A, B and C , using pooled data, were obtained only at these latter temperatures.
8. Units of measurement

Muscle tensions and length changes are expressed in newtons (N) and metres (m) respectively. The elastic constants, E_{1}, E_{2} and \dot{E}_{3} are expressed in newtons per metre
(Nm^{-1}). Since $\frac{\mathrm{E}_{2}}{\mathrm{~V}_{2}}$ and $\frac{\mathrm{E}_{3}}{\mathrm{~V}_{3}}$ must have the dimension s^{-1}, the quantities V_{2} and V_{3} are given in newtons seconds per metre (Nsm^{-1}).

By the techniques used, T and H of equation 3.13 could only be measured to two significant places. Other measurements were accurate to three significant places... The values of A and B of equation 3.13, the maximum isometric tensions and the contraction times are therefore given to three significant places. The values of the constant C of equation 3.13 and the constants E_{1}, E_{2} and V_{2} of equation 3.12, the calculation of which involve T and H, are given to two significañ places.

9. Curve fitting by computer

9.1 Sing1e exponential

The digitised experimental data were fitted to the curve of equation

$$
y=A+B \cdot \exp [-C t] \text {. }
$$

If y is sampled at equal intervals of time, h,
then

$$
\begin{aligned}
& y_{n}=A+B \cdot \exp \left[-C t_{n}\right] \\
& y_{n+1}=A+B \cdot \exp \left[-C t_{n+1}\right], \\
& y_{n+2}=A+B \cdot \exp \left[-C t_{n+2}\right],
\end{aligned}
$$

where
and

$$
\begin{aligned}
& t_{n}=n h, \\
& t_{n+1}=(n+1) h \\
& t_{n+2}=(n+2) h
\end{aligned}
$$

B can be eliminated by multiplying equation 4.1 by $e^{-c h}$ and subtracting this from equation 4.2. This gives

$$
y_{n+1}=y_{n} \cdot e^{-c h}=A-A \cdot e^{-c h}
$$

Repeating this for equations 4.2 and 4.3 gives

$$
y_{n+2}-y_{n+1} \cdot e^{-c h}=A-A \cdot e^{-c h}
$$

A can then be eliminated from equations 4.4 and 4.5 to obtain
or $y_{n+1}-y_{n+2}=e^{-c h}\left[y_{n}-y_{n+1}\right]$.

Equation 4.6 is equivalent to the line

$$
\begin{aligned}
Y & =M X, \\
Y & =y_{n+1}-y_{n+2}, \\
M & =e^{-c h} \\
X & =y_{n}-y_{n+1} .
\end{aligned}
$$

and

Using the tension data from the static phase, the least squares fit was found for equation 4.7 , hence the value of M. The value of C in equation 4.1 can then be derived
from M, since

$$
c=\frac{-\ln M}{h}
$$

The value of A in equation 4.1 can be derived by inserting C in equation 4.4 and summing both sides, then

$$
A=\frac{\sum y_{n+1}-e^{-c h} \sum y_{n}}{n\left(1-e^{-c h}\right)}
$$

The value of B in equation 4.1 can be derived by inserting the values of A and C into this equation and summing both sides to give

$$
B=\frac{\sum y_{n}-n A}{\sum e^{-C t_{n}}} .
$$

This gives the three constants of equation 4.1.

9.2 Double exponential

In order to fit data to the curve of the equation

$$
y=A+B \cdot \exp [-C t]+D \cdot \exp [-E t],
$$

it was initially assumed that one of the exponential terms had a large time constant (C of equation 3.20), relative to the other. This exponential would decay to zero at an early stage of the second, slower exponential decay, as in Fig.4.6.

To derive the slower exponential, the procedure described in section 9.1 was applied, but starting at time

$$
t=t_{0}+x,
$$

where t_{0} is the start of the static phase and x has a value of 10 msecs .
Determination of the two decaying exponentials of the tension
during the static phase of a ramp stretch (for five component model only).

The exponential derived in this way was then extrapolated back to time t_{0}. The resultant curve was then subtracted from the experimental curve and a second exponential fitted to the remainder. This was repeated in an iterative procedure with increasing values of x, to give the best least squares fit.
10. Statistics

10.1 Mean and standard error

Two methods of presentation of the values of E_{1}, E_{2} and V_{2} have been used. For rat soleus and ECRL, and for hamster normal and dystrophic gastrocnemius muscles, the values of the components are given for each muscle, along with the mean, \bar{x}, of these values. In the case of tortoise gastrocnemius muscle, the mean and standard error, S.E., are given for $\mathrm{E}_{1}, \mathrm{E}_{2}$ and V_{2} at each temperature interval. Bessel's correction for small samples was applied in the calculation of the standard error. The formulae used were
and

$$
\begin{aligned}
\bar{x} & =\frac{\sum x}{n} \\
\text { S.E. } & =\frac{S . \sqrt{\frac{n}{n-1}}}{\sqrt{n}}
\end{aligned}
$$

where

$$
s^{2}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1} .
$$

10.2 t'- and $d-$ tests

In sections $3.1,4.3,5$ and 6 of the results, comparisons have been made between the means of two sets of
values of E_{1}, E_{2} and V_{2}.
A variance ratio test was first applied to determine whether the sample variances were significantly different, or whether it could be assumed that the true population variances were the same. The value of F^{\prime} was determined from

$$
F^{\prime}=\frac{\mathrm{S}_{1}^{2}}{\mathrm{~S}_{2}^{2}}
$$

where F^{\prime} is the variance ratio and S^{2} is the variance. The 1 evel of significance was then determined from tables of F^{\prime} (given in Lindley \& Miller, 1971). The variances were taken as being significantly different if F^{\prime} was greater than the value of F^{\prime} at the 5% level, for $\mathrm{n}_{1}-1$, $n_{2}-1$ degrees of freedom.

If the variances were not shown to be significantly
different then a t-test was applied to the data (Bailey, 1959, pp 47-49), where

$$
t^{\prime}=\frac{\bar{x}_{1}-\bar{x}_{2}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

and

$$
s^{2}=\frac{\sum x_{1}^{2}-\frac{\left(\sum x_{1}\right)^{2}}{n_{1}}+\sum x_{2}^{2}-\frac{\left(\sum x_{2}\right)^{2}}{n_{2}}}{n_{1}+n_{2}-2}
$$

The level of significance of the values of t^{\prime} were then determined for $n_{1}+n_{2}-2$ degrees of freedom.

When the variances were taken as being
significantly different, the value of d was determined
where

$$
d=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

This value was then treated as having a t^{\prime} distribution and the significance level determined from tables of t^{\prime}, with f degrees of freedom, where

$$
f=\frac{1}{\frac{u^{2}}{n_{1}-1}+\frac{(1-u)^{2}}{n_{2}-2}}
$$

and

$$
u=\frac{\frac{s_{1}^{2}}{n_{1}}}{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

10.3 Coefficient of correlation

In section 7.2 of the results which deals with the effects of temperature on tortoise muscle, a possible linear relationship between the series elasticity and the maximum isometric tension was checked. The correlation coefficient for these two variables was found from

$$
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \cdot \sum(y-\bar{y})^{2}}} .
$$

The significance level, P, of this correlation was then determined from tables of r, for $n-2$ degrees of freedom (Bailey, 1959, pp 78-80).

V RESULTS

1. Linearity

Abstract

Before proceeding to determine whether muscle can be represented by a three component Maxwell model, the range of linearity of muscle must be established, since the transfer function between length and tension of the model, derived in section III, applies only to linear systems.

If the system is linear, then the constants A and B of equation 3.13 will have a linear relationship to the length of stretch, H. The constant C of the same equation will be independent of H .

The range of values of H within which muscle satisfies these conditions was determined.

1.1. Rat soleus muscle

Relaxed and tetanised muscles were subjected to a number of stretches ranging from 0.09 mm to 0.85 mm . The tension developed during the static phase of each ramp stretch was fitted to an exponential of the form given in equation 3.13. The values of the constants A, B and C of this equation were calculated by the methods described in section IV.3.3. These values are given for one muscle (muscle number 1 of Table 5.3) in its relaxed and tetanised states. Those for the relaxed muscle are presented in Table 5.1 and for tetanised muscle in Table 5.2.

Ramp height mm	A N.	B N	C $\mathrm{s.}^{-1}$
0.09	0.006	0.006	4.3
0.17	0.014	0.009	10
0.26	0.021	0.024	10
0.34	0.032	0.029	12
0.43	0.043	0.034	14
0.50	0.054	0.047	14
0.59	0.068	0.059	13
0.67	0.109	0.078	14
0.76	0.143	0.120	14
0.85			

Table 5.1 Rat soleus muscle: relaxed

Ramp height mm	A N .	B N .	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~s}^{-1} \end{aligned}$
0.09	0.024	0.200	12
0.17	0.042	0.389	12
0.26	0.072	0.538	13
0.34	0.087	0.643	13
0.43	0.102	0.706	13
0.50	0.126	0.753	13
0.59	0.149	0.813	17
0.67	0.167	0.849	14
0.76	0.191	0.873	14
0.85	0.209	0.909	13

Table 5.2 Rat soleus muscle: tetanised

1.1.1 Relaxed muscle

The length/tension curves of the constants A and B of relaxed muscle are given in Fig. 5.1. These constants are linear over the range of stretch from 0.0 mm to 0.4 mm .

If the muscle behaves as a linear system, then the value of the constant C should be the same for all amounts of stretch. The results of Table 5.1 indicate that for relaxed muscle the value of C is reasonably constant, apart from the value obtained from a stretch of 0.09 mm . At this 1atter level of stretch the tensions generated were small (see Fig.5.2) and the constant C was difficult to measure.

1.1.2 Tetanised muscle

The 1ength/tension curves of the constants A and B of stimulated muscle are given in Fig. 5.3. The constant A can be seen to be 1inear over the whole range of stretch applied, while B behaves in a linear fashion only within the range of stretch from 0.0 mm to 0.26 mm .

The values of C, given in Table 5.2, are reasonably constant over the whole range of stretch.

1.2 Hamster, tortoise and rat ECRL muscle

The constants A, B and C (of equation 3.13) calculated for normal and dystrophic hamster gastrocnemius,
Fig. 5.1. Linearity curve of the constants $A,(\bullet)$ and $B,(O)$,
of equation 3.13 , for relaxed rat soleus muscle (muscle number 1 of
Table 5.3).

(N) e0.sos

Fig. 5.2 0.09 mm stretch applied to relaxed rat soleus muscle. Upper trace, length record; lower trace, tension record.

The small tensions generated made it difficult to determine the constant as in Fig. 4.4.

Fig. 5.3 Linearity curves of the constants A, (\bullet), and $B,(O)$,
of equation 3.13 for tetanised rat soleus muscle (muscle number 1
of equation 3.13 for tetanised rat soleus muscle
of Table 5.3).

tortoise gastrocnemius and rat ECRL muscle were all found to be linear, within the 0.0 mm to 0.26 mm range of linearity found for rat soleus muscle (see Figs. 5.4, 5.5, 5.6 and 5.7).
1.3 Determination of E_{1}, E_{2} and V_{2}.

The values of E_{1}, E_{2} and V_{2} of the three
component Maxwell model have been determined using values of A, B and C derived from ramp stretches that fall within the linear range of all three constants, in both relaxed and tetanised muscle. The values of E_{1}, E_{2} and V_{2} for tortoise muscle at $15^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$, given in Table 5.12, were calculated from stretches of 0.26 mm only. In all other results A and B were plotted against ramp height and the values of A and B, used to determine the visco-elastic constants, were found from the slope of these lines. The value of C was taken as the mean of all C within the linear range.

1.4 Comparison with other results

Since A represents the parallel elasticity of the system, E_{1} will be 1inear within the linear range of A. The series elasticity and the viscosity are both directly proportional to B, if C is constant over the range of 1inearity of B. The series elastic element, E_{2}, and the viscous element, V_{2}, are therefore linear within the range of stretch of 0.0 mm to 0.26 mm for contracting muscle. In Fig. 3 of Cavagna (1970), the linearity of the series elastic
Linearity curves of the constants $A,(\bullet)$, and $B,(O)$, of equation 3.13 for a rat ECRL muscle. a) relaxed muscle b) tetanised

Linearity curves of the constants $A,(\bullet)$, and $B,(O)$,
Fig. 5.5
of equation 3.13 for a normal hamster gastrocnemius muscle.
a) relaxed muscle b) tetanised muscle.

b)

0

Fig. 5.7 Linearity curves of the constants $A,(\odot)$, and $B,(O)$,
of equation 3.13 for a tortoise gastrocnemius muscle. a) relaxed
muscle b) tetanised muscle.

a)
element of frog gastrocnemius muscle is compared with the corresponding results for frog sartorius of Jewell and Wilkie (1958) and rat gracilis anticus of Bahler (1967). Of these three muscles, two of them, frog gastrocnemius and rat gracilis anticus, appear to be linear within the range of stretch used in this study, that is, up to stretches of 1.3% of resting length. However, in all three muscles compared by Cavagna, the stress/strain curve of the series elastic component becomes non-1inear and relatively the stress increases at higher strains. This is in contrast to the graph of Fig. 5.3 where relativel.y the stress of B, which is directly proportional to the series elasticity, decreases with increased strain.

The results of the three authors quoted are all derived using the isotonic quick release method of Wilkie (1956).

2. Time course of tension changes over the static phase.

Changes in tension during the static phase of ramp stretches were compared with theoretical tension changes predicted by the simple three component model. On1y stretches within the range of linearity as determined in section 5.1 were applied. A typical tension record of tetanised rat soleus muscle, from which measurements were taken, is given in Fig. 5.8a.

The constants A, B and C of equation 3.13 were derived from tensions produced during the static phase, as in

Fig. 5.8a Length and tension traces of rat soleus muscle. Trace A is that of a ramp stretch applied to stimulated muscle, superimposed on an unstretched tetanus. Trace B is the tension produced when a ramp stretch is applied to relaxed muscle. Trace C is the ramp stretch applied to the muscle. Time markers, derived from the digitimer, seen at the end of the length trace, are spaced at intervals of 0.10 seconds.

Fig. 5.8b Length and tension records of rat ECRL muscle. The sequence of traces is the same as that in Fig. 5.8a. Time markers are at intervals of 0.10 seconds.

a.

b.
section IV. 3.3. This derived curve was then plotted over the time course of the static phase and compared with the experimental tension (see Fig. 5.9).

These results indicate that the simple exponential predicted by the three component model is a reasonable, but not perfect, fit to the tension record.

3. Comparison of relaxed and tetanised muscle.

3.1. Rat soleus muscle

The viscomelastic constants E_{1}, E_{2} and V_{2} were determined for soleus muscles of the rat, in the relaxed and tetanised states. Typical length and tension records of a ramp stretch applied to this muscle are given in Fig. 5.8a.

Data obtained from experiments on nine soleus muscles are given in Table 5.3. The maximum isometric tension generated, the contraction time and the value of the viscoelastic constants are given for each muscle.

The values of E_{1}, E_{2} and V_{2} for each muscle increase upon stimulation. The values of E_{2} and V_{2} increase by factors of 23 and 25 respectively, while there is a smaller increase, by a factor of 3.1 , in the case of E_{1}. Similar changes in E_{1} and E_{2} can be observed in Figs. 2 and 3 of Sugi (1972).

There is considerable variation within the results presented in Table 5.3. Some of this variation may be attributed to variations in the size of the muscle and
Fig. 5.9 Comparison of the tension decay (continuous line) during the
static phase of a ramp stretch with the exponential curve (chain line)
fitted to the three points indicated. The tension trace is that of a
0.26 mm stretch applied to a rat soleus muscie.

Muscle number	Isometric tension N .	Contractio time s.	E_{1}		E_{2}		$\begin{gathered} \mathrm{V}_{2} \\ \mathrm{Nsm}^{-1} \end{gathered}$		E_{1} Stim. E_{1} Relax.	E_{2} Stim. E_{2} Relax.	$\frac{\mathrm{V}_{2} \text { Stim. }}{\mathrm{v}_{2} \text { Relax. }}$
			Relaxed	Stimulated	Relaxed	Stimulated	Relaxed	Stimulated			
1	0.939	0.303	80	250	110	3100	10.0	240	2.9	- 28	26
2	0.758	0.281	115	190	140	2500	11.0	210	1.6	18	19
3	0.810	0.400	85	290	110	2500	10.0	220	3.4	23	22
4	0.610	0.359	60	210	120	2100	8.7	170	3.5	17	19
5	0.660	0.440	70	220	120	2000	8.6	220	3.1	17	26
6	0.948	0.279	80	1.70	110	2700	7.9	240	2.1	24	30
7	0.939	0.276	40	240	92	2800	6.3	220	6.0	30	35
8	0.958	0.282	110	220	190	2600	16.0	230	2.0	14	14
9	0.939	0.241	55	200	80	2900	6.3	240	3.6	36	38
Mean values	0.840	0.318	78	220	120	2600	9.4	220	3.1	23	25

Table 5.3 Rat soleus muscle

Abstract

variations in the maximum isometric tensions generated. It can be seen from the results in Table 5.4 that the changes in each component upon stimulation are high1y significant.

3.2 Hamster, tortoise and rat ECRL musc1e

Changes similar to those seen in rat soleus muscle can also be observed in the other four types of muscle examined. In every muscle the value of E_{1}, E_{2} and V_{2} increases upon stimulation (see Tables 5.5, 5.7, 5.8 and 5.13). The increase in the value of E_{2} and V_{2} is always greater than the increase in the value of E_{1}, except in the case of one dystrophic hamster gastrocnemius muscie.

4. Comparison of fast and slow muscle of rat.

4.1. Rat ECRL muscle

The visco-elastic constants were determined for ECRL muscles of the rat. Typical 1 ength and tension records of this muscle are given in Fig. 5.8b. Data from experiments carried out on nine muscles are given in Table 5.5.

4.2 Dimensionless ratios

If a muscie behaves according to the simple three component system, then it should be possib1e to determine values of E_{1}, E_{2} and V_{2}. These values are presented in Tables 5.3 and 5.5 for rat soleus and ECRL muscles. However,

	$\begin{aligned} & \text { Rat soleus: } \\ & \text { relaxed } \\ & \text { (mean values) } \\ & \quad n=9 \end{aligned}$	Rat soleus: stimulated (mean values) $n=9$	$\text { N.S. } \underset{\substack{F^{\prime} \\ \text { significant }}}{\text { not }^{\prime}}$	t^{\prime} or d	P
E_{1}	78	220	$\begin{gathered} 2.07 \\ \text { (N.S.) } \end{gathered}$	$\begin{aligned} & t^{\prime}=8.69 \\ & o_{f}=16 \end{aligned}$	< 0.001
E_{2}	120	2600	127.3	$\begin{aligned} & d=20.8 \\ & { }_{f}=8.13 \end{aligned}$	<0.001
V_{2}	9.4	220	72.01	$\begin{aligned} d & =25.1 \\ o_{f} & =8.22 \end{aligned}$	<0.001

Table 5.4 Comparison of rat soleus muscle in

Muscle number	Isometric tension N .	Contractio time s.	E_{1}		E_{2}		$\begin{gathered} \mathrm{V}_{2} \\ \mathrm{Nsm}^{-1} \\ \hline \end{gathered}$		$\frac{\mathrm{E}_{1} \text { Stim. }}{\mathrm{E}_{1} \operatorname{Re} 1 \mathrm{ax}}$	$\frac{\mathrm{E}_{2} \text { Stim. }}{\mathrm{E}_{2} \text { Relax. }}$	$\frac{V_{2}}{} \text { Stim. }$
			Relaxed	Stimulated	Relaxed	Stimulated	Relaxed	Stimulated			
1	0.270	0.061	73	290	94	1000	13	130	4.0	11	10
2	0.329	0.073	110	270	27	1200	30	170	2.4	44	5.7
3	0.325	0.080	170	280	44	950	15	180	1.6	22	12
4	0.242	0.061	130	3.30	86	720	17	87	2.5	8.4	5.1
5	0.311	0.061	53	170	32	490	8.3	114	3.2	15	14
6	0.488	0.080	88	300	74	880	13	76	3.4	12	5.8
7	0.868	0.080	65	180	63	1300	13	360	2.8	21	30
8	0.576	0.080	40	240	22	1200	6.8	410	6.0	54	60
9	0.384	0.080	61	290	48	2100	10	350	4.7	44	35
Mean values	0.421	0.073	88	260	54	1100	14	210	1.8	26	20

these values take no account of the dimensions of the muscles. The muscles themselves do not conform to a regular geometrical shape and it is therefore not easy to express these constants in terms of a sample of unit size.

If it is assumed that there is little variation between the dimensions of a relaxed muscle and a tetanised muscle, then the dimensionless ratios
$\frac{E_{1} \text { tetanised }}{E_{1} \text { relaxed }}, \frac{E_{2} \text { tetanised }}{E_{2} \text { relaxed }}$ and $\frac{V_{2} \text { tetanised }}{V_{2} \text { relaxed }}$, may perhaps be used as a basis for comparing muscles of one type with those of another.

4.3 Comparison of rat soleus and ECRL muscle

It can be seen from Table 5.5 that there is considerable variation in the values of the visco-elastic constants derived for each ECRL muscle and that this variation is greater than that observed in soleus muscles. This can be illustrated by comparing the range of the parameter E_{1} for each type of muscle. The value of E_{1} for tetanised soleus muscle varies from $170 \mathrm{Nm}^{-1}$ to $250 \mathrm{Nm}^{-1}$, while E_{1} of tetanised ECRL muscle lies within the range of $170 \mathrm{Nm}^{-1}$ to $330 \mathrm{Nm}^{-1}$.

In Table 5.6, the means of the ratios of each constant, the means of the isometric tensions generated and the means of the contraction times for soleus and ECRL muscles are compared. From this table it can be seen that the isometric tensions of the two muscles are significantly

	Rat soleus (mean values) $n=9$	$\begin{aligned} & \text { Rat ECRL } \\ & \text { (mean values) } \\ & \quad n=9 \end{aligned}$	$\begin{aligned} & \text { F' } \\ & \text { N.S. }=\text { not } \\ & \text { significant } \end{aligned}$	t^{\prime} or d	$\begin{aligned} & \mathrm{P} \\ & \text { N.S. }=\text { not } \\ & \text { significant } \end{aligned}$
$\frac{E_{1} \text { Stim. }}{E_{1} \operatorname{Relax}}$	3.1	1.8	$\begin{aligned} & 1.06 \\ & \text { (N.S.) } \end{aligned}$	$\begin{aligned} & \mathbf{t}^{\prime}=0.203 \\ & o_{f}=16 \end{aligned}$	N.S.
$\frac{E_{2} \text { Stim. }}{E_{2} \operatorname{Relax} .}$	23	26	5.51	$\begin{aligned} & d=0.439 \\ & o_{f}=11 \end{aligned}$	N.S.
$\frac{\mathrm{v}_{2} \text { Stim. }}{\mathrm{v}_{2} \operatorname{Relax}}$	25	20	5.55	$\begin{aligned} & \mathrm{d}=0.745 \\ & \mathrm{o}_{\mathrm{f}}=11 \end{aligned}$	N.S.
Isometric tension	0.840	0.421	$\begin{gathered} 2.08 \\ \text { (N.S.) } \end{gathered}$	$\begin{aligned} & t^{\prime}=5.30 \\ & { }_{f}=16 \end{aligned}$	< 0.001
Contraction time s.	0.269	0.073	18.06	$\begin{aligned} & d=13.6 \\ & o_{f}=9 \end{aligned}$	<0.001

Table 5.6 Comparison of rat soleus and ECRL muscle

```
different, as are the contraction times. However, no
significant differences can be shown between the three
components, }\mp@subsup{E}{1}{},\mp@subsup{E}{2}{}\mathrm{ and }\mp@subsup{V}{2}{}\mathrm{ , by this method.
```


5. Normal and dystrophic muscle

Experiments were performed on fourteen normal and on thirteen dystrophic hamster gastrocnemius muscles. Transverse sections of the dystrophic and normal muscles are reproduced in Figs. 5.10 and 5.11. The dystrophic muscle fibres shown in Fig. 5.10a vary in diameter from $30 \mu \mathrm{~m}$ to $80 \mu \mathrm{~m}$ and almost all of them have centrally placed nuclei. Several of the dystrophic muscle fibres (those indicated by arrows in Fig. 5.10a) have lost their angular outline and are stained darker than the others. These darker fibres showed no evidence of phosphorylase activity, whilst all other fibres showed moderate (see two fibres in the top left of Fig. 5.10c) or intense activity. This is illustrated in Fig. 5.10b; where abnormal muscle fibres are shown enlarged and stained for general structure, and in Fig. 5.10c where the same fibre is shown stained for phosphorylase activity.

In Fig. 5.11: a section of a gastrocnemius muscle taken from a hamster from a non-dystrophic line is shown. The fibres of this normal muscle vary in diameter from $40 \mu \mathrm{~m}$ to $110 \mu \mathrm{~m}$. No rounded, dark-staining fibres were present in any of the muscles from non-dystrophic hamsters. However, many of the fibres had the centrally placed nuclei, which

Fig. 5.10a A section of a gastrocnemius muscle from a dystrophic hamster. Magnification is x192. The abnormal, rounded, dark staining fibres are indicated by arrows. Note the centrally placed nuclei in many of the fibres.

Fig. 5.10b One of the abnormal fibres of Fig. 5.11a at increased magnification (x 325).

Fig. 5.10c The same section as shown in Fig. 5.11b but stained for phosphorylase activity. Note the total lack of activity in the abnormal fibre.

$60 \mu \mathrm{~m}$

$60 \mu \mathrm{~m}$

Fig. 5.11 A section of gastrocnemius muscle
from a normal hamster. Magnification x 368.
Note the absence of any abnormal fibres.
would not be expected for normal muscle (Holmburger, 1966).
Typical length and tension records of normal and dystrophic muscles are given in Fig. 5.12a and Fig. 5.12b respectively. Data from the experiments on these muscles are presented in Tables 5.7 and 5.8. Muscle number 11. in Table 5.8 is the only muscle in which the increase in E_{1} upon stimulation is greater than the corresponding increase in E_{2}. The normal and dystrophic muscles are compared in Table 5.9. As the same anatomical muscle is examined in both normal and dystrophic animals, it should be possible to make a direct comparison between the values of the viscoelastic constants, without the necessity of comparing dimensionless ratios.

These two types of muscle are compared in both the relaxed and tetanised states. As may be seen from Table 5.9, in both the relaxed and tetanised state, there is a significant difference between the values of E_{1} derived from normal muscle and those derived from dystrophic muscle. The values of E_{2} also show these significant differences, while no differences are shown between the values of V_{2}. In addition the isometric tensions and the contraction times of the two groups of muscles are shown to be significantly different.

6. Comparison of other pairs of muscles

Of the five muscle types which have been examined, tortoise gastrocnemius musc1e at $15^{\circ} \mathrm{C}$ and normal hamster

Fig. 5.12a Length and tension traces of a ramp stretch applied to normal hamster gastrocnemius muscle. Trace A is the tension produced by a ramp stretch of 0.26 mm applied to tetanised muscle, superimposed on an unstretched tetanic contraction. Trace B is the tension produced when the same stretch is applied to relaxed muscle. Trace C is the ramp stretch applied to the muscle. The time markers at the start of the length trace are spaced at intervals of 0.10 seconds.

Fig. 5.12b Length and tension traces of a ramp applied to dystrophic hamster gastrocnemius muscle. The sequence of traces is the same as for normal hamster muscle. Time markers are at intervals of 0.10 seconds.

a.

b.

Muscle number	Isometric tension N .	Contraction time s.	E_{1}	$\mathrm{E}_{1} \mathrm{Nm}$	E_{2}		$\begin{gathered} \mathrm{V}_{2} \\ \mathrm{Nsm}^{-1} \\ \hline \end{gathered}$		$\frac{E_{1} \text { Stim }}{E_{1} \text { Relax. }}$	$\frac{E_{2} \text { Stim }}{E_{2} \operatorname{Relax}}$	$\frac{V_{2} \text { Stim. }}{V_{2} \text { Relax. }}$
			Relaxed	Stimulated	Relaxed	Stimulated	Relaxed	Stimulated			
1	2.70	0.056	48	710	42	3600	1.5	220	15	86	150
2	3.21	0.056	36	860	43	2400	1.3	180	24	56	140
3	4.55	0.056	52	690	63	4800	2.3	300	13	76	130
4	2.94	0.064	80	730	83	3500	5.3	270	9.1	42	51
5	4.00	0.064	99°	940	65	4100	3.6	330	9.5	63	92
- 6	2.94	0.081	100	630	106	3500	5.4	310	6.3	33	57
7	2.31	0.048	82	850	53	2700	2.6	150	10	51	58
8	3.90	0.065	95	850	76	4000	3.2	i80	8.9	52	56
9	3.94	0.065	38	940	51	4100	1.4	210	25	80	150
10	2.70	0.065	48	790	54	4000	2.5	400	16	74	160
11	4.30	0.065	85	730	73	4100	3.8	280	8.6	56	74
12	4.74	0065	26	1100	45	3800	2.2	320	42	84	140
13	3.21	0.065	58	920	47	4700	2.8	310	16	100	110
14	4.60	0.059	76	990	76	4100	1.7	220	13	54	130
$\begin{gathered} \text { Mean } \\ \text { values } \end{gathered}$	3.57	0.063	66	840	63	3800	$2: 8$	260	15	65	107

Muscle number	Isometric tension N .	Contraction time s.	E_{1}		E_{2}		$\begin{gathered} V_{2} \\ \mathrm{Nsm}^{-1} \end{gathered}$		$\begin{array}{ll} \mathrm{E}_{1} & \text { Stim. } \\ \hline \mathrm{E}_{1} & \operatorname{Re} 1 \mathrm{ax} \end{array}$	$\frac{\mathrm{E}_{2} \text { Stim. }}{\mathrm{E}_{2} \text { Relax. }}$	$\frac{\mathrm{V}_{2} \text { Stim. }}{\mathrm{V}_{2} \text { Relax. }}$
			Relaxed	Stimulated	Relaxed	Stimulated	Relaxed	Stimulated			
1	3.87	0.110	42	310	41	1700	4.9	220	7.4	41	45
2	2.60	0.110	18	500	29	1900	3.1	210	28	. 65	68
3	3.24	0.110	18	510	31	2200	4.8	400	28.	71	83
4	2.35	0.098	28	530	42	2200	4.1	460	19	52	110
5	2.73	0.110	24	540	27	1800	3.6	250	22	67	69
6	1.67	0.167	11	250	22	1200	1.3	110	23	54	85
7	1.96	0.110	44	540	37	1400	2.6	310	12	38	119
8	2.14	0.119	24	310	40	1600	5.0	490	13	40	98
9	2.21	0.119	21	770	48	1800	2.4	330	37	37	140
10	1.79	0.119	13	730	20	1200	3.0	340	56	60	110
11	2.84	0.119	12	540	38	1500	2.3	320	45	39	140
12	2.19	0.104	25	790	29	1500	2.0	280	32	52	140
13	3.01	0.110	39	690	49	2000	5.9	400	18	41	68
Mean values	2.51	0.116	24	540	35	1700	3.5	320	26	50	98

Table 5.8 Dystrophic hamster gastrocnemius muscle

		Normal hamster gastrocnemius (mean values) $n=14$	Dystrophic hamster gastrocnemius (mean values) $\mathrm{n}=13$	$\underset{F^{\prime}}{\substack{\text { not } \\ \text { significant }}}$	t^{\prime} or d	$\begin{gathered} P \\ \text { N.S. }=\text { not } \\ \text { significant } \end{gathered}$
Relaxed muscle	E_{1}	66	24	5.11	$\begin{aligned} & d=5.96 \\ & o_{f}=18.2 \end{aligned}$	<0.001
	E_{2}	63	35	3.96	$\begin{aligned} \mathrm{d} & =5.03 \\ \mathrm{o} & =19.5 \end{aligned}$	<0.001
	V_{2}	2.8	3.5	$\begin{aligned} & 1.10 \\ & \text { (N.S.) } \end{aligned}$	$\begin{aligned} & t^{\prime}=1.36 \\ & o_{f}=25 \end{aligned}$	N.S.
Stimulated muscle	E_{1}	840	540	$\begin{aligned} & 1.75 \\ & \text { (N.S.) } \\ & \hline \end{aligned}$	$\begin{aligned} & t^{\prime}=5.51 \\ & o_{f}=25 \end{aligned}$	<0.001
	E_{2}	3800	1700	3.91	$\begin{aligned} & t^{\prime}=10.6 \\ & 0 \\ & \mathbf{f}^{\prime}=19.5 \end{aligned}$	<0.001
	V_{2}	260	320	$\begin{aligned} & 2.22 \\ & \text { (N.S.) } \end{aligned}$	$\begin{aligned} & t^{\prime}=0.68 \\ & t^{0}=25 \end{aligned}$	N.S.
Isometric tension	N.	3.57	2.51	$\begin{aligned} & 1.69 \\ & \text { (N.S.) } \end{aligned}$	$\begin{aligned} & t^{\prime}=4.84 \\ & 0_{f}=25 \end{aligned}$	<0.001
Contraction time	s.	0.126	0.116	$\begin{aligned} & 1.02 \\ & \text { (N.S.) } \end{aligned}$	$\begin{aligned} & t^{\prime}=3.47 \\ & 0_{i}=25 \end{aligned}$	<0.002
Table 5.9 Comparison of gastrocnemii muscles from normal dystrophic hamsters						

gastrocnemius muscle develop maximum isometric tensions which are similar, with values of 3.25 N and 3.57 N respectively. These two muscles are very different with regard to their contraction times, with values of 1.51 seconds and 0.126 seconds respectively. The isometric tensions, contraction times and the visco-elastic constants of the stimulated muscle are compared in Table 5.10. It can be seen from this table that both the parallel elasticity, E_{1}, and the series elasticity, E_{2}, are significantly different, but there is no significant difference between the viscosities of the two muscles.

In Table 5.11 normal hamster muscle is compared with rat soleus muscle. In this pair of muscles the contraction times and the maximum isometric tensions are both high1y significantly different. The parallel elasticity and the series elasticity are also highly significantly different for each muscle, but as in the comparisons made in Table 5.10, no difference is shown between the viscosities of the muscles.

7. Effect of temperature on components of tortoise muscle

Tortoise gastrocnemius muscle was stretched in the relaxed and tetanised state at temperatures within the range of $30^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ (which was the 1 ower limit of the cooling apparatus). Stretches were applied at temperature intervals of $5^{\circ} \mathrm{C}$. Typical length and tension records for tortoise muscle at $30^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ are given in Figs. 5.13a and 5.13b.

	Tortoise ($15^{\circ} \mathrm{C}$) gastrocnemius mean values $\mathrm{n}=9$	Normal hamster gastrocnemius mean values $n=14$	$\begin{aligned} & \mathrm{F}^{\prime} \\ & \text { N.S. }=\begin{array}{l} \text { not } \\ \text { significant } \end{array} \end{aligned}$	t^{\prime} or d	```P N.S. = not significant```
E_{1} stim.	1200	840	9.84	$\begin{aligned} & \mathrm{d}=2.54 \\ & \mathrm{o}_{\mathrm{f}}=9 \end{aligned}$	<0.05
E_{2} stim.	5400	3800	6.91	$\begin{aligned} & \mathrm{d}=2.60 \\ & \mathrm{o}_{\mathrm{f}}=9 \end{aligned}$	<0.05
V_{2} stim.	360	260	3.53	$\begin{aligned} & d=2.03 \\ & o_{f}=11 \end{aligned}$	N.S.
Isometric tension N.	3.25	3.57	3.17	$\begin{aligned} & t^{\prime}=0.68 \\ & \text { o } f=21 \end{aligned}$	N.S.
Contraction time s.	1.51	0.13	2232	$\begin{aligned} & d=5.85 \\ & { }_{f}^{o}=8 \end{aligned}$	<0.001
	$\text { Table } 5 .$	Comparison of with tortoise	al hamster gas rocnemius muscl	$\begin{aligned} & \text { nemius musc } \\ & \text { t } 15^{\circ} \mathrm{C} . \end{aligned}$	

Table 5.11 Comparison of normal hamster gastrocnemius muscle

Fig. 5.13a Length and tension traces from a
0.26 mm ramp stretch applied to tortoise gastrocnemius muscle at $30^{\circ} \mathrm{C}$. Trace A is the tension produced by the application of a ramp stretch to tetanised muscle, superimposed over an unstretched tetanus. Trace B is the tension produced in relaxed muscle when a ramp stretch is applied, and trace C is the applied ramp stretch. The time markers at the end of the length record are spaced at intervals of 0.10 seconds.

Fig. 5.13b Traces similar to those of Fig. 5.13a, but at a temperature of $5^{\circ} \mathrm{C}$. The time markers are spaced at intervals of 0.10 seconds.

Results were obtained at $30,25,20$ and $15^{\circ} \mathrm{C}$. Thereafter the apparatus was left to cool to $5^{\circ} \mathrm{C}$ and further stretches applied to the muscle at this temperature. The apparatus required a considerable time to cool at the lower temperature and it was therefore not possible to equilibrate the temperature at $10^{\circ} \mathrm{C}$. Mean values of the constants E_{1}, E_{2} and V_{2} of seven muscles in the relaxed and tetanised states are given, for each temperature interval, in Table 5.12.

7.1 Relaxed muscle

The values of E_{1}, E_{2} and V_{2} for a single muscle are displayed graphically in Fig. 5.14 and the equivalent graphs for the mean values of these constants are given in Fig. 5.15. It can be seen that the visco-elastic constants all decrease in value with increasing temperature, with the largest decrease taking place in E_{2}.

7.2 Tetanised muscle

The values of $\mathrm{E}_{1}, \mathrm{E}_{2}$ and V_{2} for a single muscle are displayed graphically in Fig. 5.16 and the equivalent graphs for the mean values of these constants are given in Fig. 5.17. In the stimulated state, the parallel elasticity, E_{1}, increases with increasing temperature. The viscosity does not vary a great deal but has its highest value at the lowest temperature. The value of the series elastic element, E_{2}, is $10 w$ at $5^{\circ} \mathrm{C}$, increases to a maximum at $20^{\circ} \mathrm{C}$ and then decreases once more above this temperature. The maximum

Table 5.12 Effect of temperature on the visco-elastic constants of tortoise gastrocnemius muscle
Fig. 5.14 The effect of temperature on the values of the elastic
constants, $E_{1}(\square)$ and $E_{2}(\Delta)$, and on the viscous constant, $V_{2}(Q)$,
for a single tortoise gastrocnemius muscle (muscle number 1 of
Table 5.13) in the relaxed state.

The effects of temperature on the mean values of the elastic
(-) ,
p^{N}
The effects of temperature on the mean values of
constants, $E_{1}(\square)$ and $E_{2}(\Delta)$, and on the viscous constant,
for tortoise gastrocnemius muscle in the relaxed state.

Fig. 5.16 The effects of temperature on the elastic constants,
$E_{1}(\square)$ and $E_{2}(\Delta)$, and on the viscous constant, $V_{2}(\bullet)$, for a single tortoise gastrocnemius muscle (muscle number 1 of Table
in the tetanised state. The rise in viscosity between $15^{\circ} \mathrm{C}$ and
$5^{\circ} \mathrm{C}$ is indicated by a dotted line.

Fig. 5.17 The effects of temperature on the mean values of the elastic
constants, $E_{1}(\square)$ and $E_{2}(\Delta)$, and on the viscous constant, $V_{2}(O)$,
for tortoise gastrocnemius muscle. Inset is the effect of temperature
on the mean maximum isometric tension, for comparison with the series
elasticity, E_{2}. The rise in viscosity between $15^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ is
indicated by a dotted line.

isometric tension increases with temperature with a Q_{10} of 1.4 between $5^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$, reaching its highest value at $25^{\circ} \mathrm{C}$ then decreasing slightly at $30^{\circ} \mathrm{C}$. There is a similarity between the relationship to temperature of both the series elasticity and the isometric tension. The relationship between E_{2} and the isometric tension is linear ($\mathrm{r}=0.949, \mathrm{P}$ 人0.02) over the range of temperature from $5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
8. The five component model

Values of the visco-elastic constants of the three component Maxwell model are given in Table 5.13 for seven tortoise gastrocnemius muscles at $25^{\circ} \mathrm{C}$. Values of the viscoelastic constants of the five component model were derived for the same muscles (Materials and Methods, section 3.3.2). These values are presented in Table 5.14.

The value of the parallel elastic component of each muscle is the same for both models. The value of the series elastic element, E_{2}, is smaller in every case, in the five component model than in the three component model. In most muscles the viscous element, V_{2}, remains unaltered.

In Fig. 5.18 the experimental curve is compared with curves derived from each model. The experimental tension decay can be seen to be best fitted by a curve which can be predicted by the five component Maxwell model. This curve consists of the sum of two exponential terms, one of which has a large decay constant and the other a relatively small one.

Muscle number	Isometric tension N.	Contract time s.	$\text { Hon } \begin{array}{cc} \mathrm{E}_{1} \\ & \mathrm{Nm}^{-1} \end{array}$		$\begin{array}{r} E_{2} \\ \mathrm{~N}^{-1} \end{array}$		$\begin{gathered} \mathrm{V}_{2} \\ \mathrm{Nsm}^{-1} \end{gathered}$		$\begin{gathered} E_{3} \\ \mathrm{~N} \mathrm{~m}^{-1} \end{gathered}$		$\begin{gathered} \mathrm{V}_{3} \\ \mathrm{Ns} \mathrm{~m}^{-1} \end{gathered}$	
			Rel axed	Stimulated	Relaxed	Stimulated	Relaxed	Stimulated	Relaxed	Stimulated	Rel axed	Stimulated
1	6.64	1.51	160	2000	140	4800	74	800	240	1400	2.9	35
2	3.79	1.15	100	1400	100	4300	32	380	8.6	740	0.33	13
3	6.11	1.36	150	1700	120	5600	12	710	37	300	0.81	12
4	3.56	1.27	170	1900	110	5800	27	- 480	37	1000	1.2	24
5	1.95	1.62	65	810	59	4000	7.4	310	71	400	1.5	20
6	1.86	1.86	210	1000	170	3800	70	200	220	44	4.6	0.70
7	5.60	0.7	99	1400	87	5600	16	710	50	67	1.7	19
Mean values	4.21	1.35	140	1500	110	4800	34	510	95	560	1.9	18
Table 5.14 Tortoise gastrocnemius muscle: five component Maxwell model Temperature, $25^{\circ} \mathrm{C}$.				Tortoise gastrocnemius muscle: five component Maxwell model Temperature, $25^{\circ} \mathrm{C}$.								

Fig. 5.18 Curves fitted to the tension decay (continuous line, a) of
the static phase of a ramp stretch applied to tetanised tortoise
gastrocnemius muscle at $5^{\circ} \mathrm{C}$. Curve b , (dotted line), is the fit of the three component model, and curve c, (chain line), is the fit of the five component model.
The root mean square difference (of 30 equidistant points) for
the three component fit is 0.52 N and for the five component fit is 0.14 N .

9. Tension changes used in discussion of the Huxl ey model of muscle.

In the discussion, tension changes in relaxed and tetanised muscle are related to the model of muscle derived by A.F. Huxley (1957). Differences between rat soleus and ECRL muscles, and between the gastrócnemius muscles of normal and dystrophic hamsters, are discussed in terms of this model. Changes in the responses of tortoise gastrocnemius muscles with temperature are also examined.

The tension changes related to the Huxley model
are given in Table 5.15, for rat muscles, Table 5.16 for hamster muscles, and Table 5.17 for the muscles of the tortoise.

TETANISED MUSCLE
Maximum isometric tension (N)
Dynamic elasticity (Nm^{-1})
Static elasticity (Nm^{-1})
$\frac{1}{2}$-decay time (s)
Half-rise time (s) Half-fall time (s)
Half-fall time (s)
Maximum isometric tension (N)
Dynamic elasticity $\left(\mathrm{Nm}^{-1}\right)$
Static elasticity $\left(\mathrm{Nm}^{-1}\right)$
$\frac{1}{2}-d e c a y ~ t i m e ~(s) ~$
$\frac{3}{4}-d e c a y ~ t i m e ~(s)$
RELAXED MUSCLE
Dynamic elasticity (Nm^{-1})
Static elasticity $\left(\mathrm{Nm}^{-1}\right)$
$\frac{1}{2}$-decay time (s)

6900：0干	020＊0
$0 \cdot 2 \mp$	¢
$I \cdot \varepsilon \mp$	$\dagger 2$
210＊0耳	$\varepsilon I \cdot 0$
OS干	$0 \downarrow \dot{S}$
28干	00ヵI
8107	IS'Z
$2500 \cdot 0$ ¢	$060 * 0$
${ }^{\text {®200 }} 0$－	$850^{\circ} 0$
$\cdot \mathrm{g} \cdot \mathrm{S}$	บยวส
IIHCOצ̇ISX	

安	バ1	$\begin{aligned} & \text { N } \\ & \mathbf{O} \\ & 0 \\ & \dot{O} \\ & \text { +1 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{O} \\ & 0 \\ & \dot{0} \\ & +1 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{O} \\ & +1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & +1 \end{aligned}$	$\begin{aligned} & 0 \\ & +1 \\ & +1 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \\ & \dot{0} \\ & \dot{+} \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ +1 \end{gathered}$	n \dot{m} +1	＋ O O － ＋1
		$\begin{aligned} & \text { M } \\ & \stackrel{\circ}{\circ} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{n} . \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \circ \\ & \text { in } \end{aligned}$	¢	$\begin{aligned} & \infty \\ & + \\ & 0 \\ & 0 \end{aligned}$	\＄	ल	-1 0 0 0

TABLE 5．16 Normal and dystrophic gastrocnemius muscles

STIMULATED MUSCLE	$30^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$15^{\circ} \mathrm{C}$		$5^{\circ} \mathrm{C}$	
	Mean	S.E.								
ha1f-rise time (secs)	0.44	± 0.064	0.65	± 0.093	0.70	± 0.093	0.75	± 0.12	1.3	± 0.17
half-fall time (secs)	0.48	± 0.083.	0.61	± 0.10	0.91	± 0.19	1.43	± 0.32	4.2	± 1.0
max.isometric tension (N)	4.1	± 0.064	4.1	± 0.67	4.0	± 0.58	3.2	± 0.50	2.1	± 0.34
dynamic elasticity (Nm^{-1})	3600	± 288	3400	± 460	3700	± 350	3400	± 380	3300	± 350
static elasticity (Nm^{-1})	1800	± 204	1400	± 156	1100	± 92	1200	± 145	1000	± 75
half-decay time (secs)	0.059	± 0.017	0.053	± 0.0077	0.049	± 0.0043	0.047	± 0.0039	0.089	± 0.0081
$\frac{3}{4}$ decay time (secs)	0.25	± 0.043	0.28	± 0.073	0.15	± 0.014	0.14	± 0.012	0.54	± 0.091
RELAXED MUSCLE										
dynamic elasticity (Nm^{-1})	130	± 12	120	± 20	160	± 28	240	± 79	260	± 21
static elasticity (Nm^{-1})	150	± 15	140	± 21	190	± 67	240	± 75	250	± 37
half-decay time (secs)	0.095	± 0.014	0.10	± 0.017	0.13	± 0.015	0.082	± 0.012	0.08	± 0.01

Tortoise gastrocnemius muscle

VI DISCUSSION

In section V of the thesis results are given which are derived from 1 ength changes applied to muscles of the rat, hamster and tortoise, both in the relaxed and contracted states. The static and dynamic tension changes, and the half-decay times were determined for each stretch. These figures were used to compute the dynamic and static elasticity for each muscle and were also used to compare the behaviour of each muscle with a linear Maxwell model consisting of two elastic elements, E_{1} and E_{2}, and a viscous element, $\quad V_{2}$:

These results will n ow be considered in relation to the sliding filament model of muscle which was proposed by A.F. Huxley (1957) and extended by A.F. Huxley and Simmons (1970, 1971), and A.F. Huxley (1974). A summary of the Huxley model is given before correlating the results of this thesis with that model.

The Sliding Filament Model of Muscle

Structure of muscle fibres

Muscle fibres contain the two filamentous proteins, actin and myosin (Straub, 1943; Szent-Gyorgyi, 1943). These filaments interdigitate between one another (H.E. Huxley, 1953). The myosin is confined to the A bands of a muscle fibre (Hanson and H.E. Huxley, 1953) and the A bands maintain a constant length when the muscle is lengthened and shortened (H.E. Huxley and

Hanson, 1954; A.F. Huxley and Niedergerke, 1954). This has led to the structure of the contractile proteins of muscle being represented as in fig. 1 of A.F. Huxley (1957).

The length of the myosin filament is about 1.60,um (Page and H.E. Huxley, 1963) and the actin is about 1.95/um long (Page 1968). It is probable that the 1 engths of these two filaments remain fairly constant during activation of the muscle (H.E. Huxley and Brown, 1967). Length changes in muscle are brought about by the two sets of filaments sliding over one another.

The repeating unit of these interdigitating proteins in a muscle fibre, the sarcomere, varies in length as the filaments slide over one another. The maximum force is generated by a muscle when the 1 ength of the sarcomere is 2.0-2.2pum (Gorden et a1., 1966). It is likely that this sarcomere length is constant within the vertebrates (A.F. Huxley, 1974).

In addition to the proteins actin and myosin, it seems probable that there is another series of filaments, which are continuous throughout the myofibril (Carlsen et al., 19'61; Sjostrand, 1962; McNeill and Hoyle, 1967; Walcott and Ridgeway; 1967).

Generation of force by a muscle

It has been shown by Ramsey and Street (1940), and by A.F. Huxley and Ni.edergerke (1954), that the tension which can be generated by a muscle during isometric contraction depends upon the length at which the muscle is held. Alteration of muscle 1 ength and hence
a change in the area of overlap of the filaments alters the force generated, but has no effect on the rate of shortening of the muscle, under conditions of zero load (A.F. Huxley and Julian, 1964; Gordon et a1., 1966). This would indicate that force is generated by structures acting in parallel within the sarcomeres, and that these structures have an intrinsic maximum speed of shortening. The rate of shortening of a muscle would then be the sum of the speed of shortening of each sarcomere in series within a muscle fibre.

One aspect of this shows up in muscles with a different sarcomere length from that found in the vertebrates. Muscles with more numerous but shorter sarcomeres should be capable of more rapid rates of shortening while those with longer sarcomere lengths should be slower. A relationship of this kind has been shown in arthropods, where sarcomere length varies greatly from one muscle to another (Jasper and Pezard, 1934; Atwood et al, 1965).

Cain et a1. (1962) have shown that during muscle contraction adenosine triphosphate (ATP) is converted to adenosine diphosphate (ADP) and inorganic phosphate (Pi).

These relationships indicate that force is generated by some mechanism in the overlap zone of actin and myosin. These force generators act.in parallel to generate a force, and the rate of shortening is the same for each. The generation of force within the sarcomeres is coupled to the supply of energy from the breakdown of ATP.

It is probable that force generation is initiated in response to the release of calcium ions from the transverse membrane system which invaginates throughout each muscle fibre. (see Ebashi and Endo, 1968, and Ebashi et al, 1969).

Action of the force generators

The force generators, or cross-bridges, can probably be identified with projections from the myosin molecules observed by H.E. Huxley (1957, 1963).

Since the total length of a myosin molecule is about 0.2 رum (Rice, 1961; Zobal and Carolson, 1963; Rowe, 1964) and the amount of sliding in a single contraction may be as much as 1.0 um, it is unlikely that any one cross-bridge remains intact throughout a contraction. It is likely that there is a cycle of forming, breaking and reforming of each cross-bridge. According to the hypothesis for the mechanism of muscle contraction put forward by A.F. Huxley (1957), the tension, P, generated during an isometric contraction is:

$$
P=\left(\frac{f}{f+g}\right) \cdot \frac{\mathrm{msw}}{21}
$$

where $\quad m=$ the number of binding sites on the myosin, per cubic metre.
s m sarcomere length
$w=$ the maximum work done in a cycle at one site
$1=$ separation of binding sites along the actin filament
$f=$ rate constant governing formation of cross-bridges
g - rate constant governing breakdown of cross-bridges.

It has been suggested (H.B. Huxley, 1969) that each of these cross-bridges consists of two components: an element which can rotate and an inelastic element which links the rotating head to the actin molecule. This proposed structure of the cross-bridge has been modified (A.F. Huxley and Simmons, 1971; A.F. Huxley, 1974) so that the link between the rotating head and the myosin molecule is elastic instead of inelastic, and further that the rotating head can exist in two, three or four stable positions, each with a lower potential energy than the one before. The cross-bridge head would be able to switch, reversibly, from one stable state to another.

To stretch the cross-biridge link, and hence generate a force, the cross-bridge head must rotate to a position of lower potential energy. This would require activation energy only.

The energy necessary to drive such a system could come from the final detachment of the cross-bridge head from the actin molecule, after the cross-bridge head has reached the position of lowest potential energy. This final splitting of the acto-myosin link would be coupled to the hydrolysis of a molecule of ATP (Taylor, 1972). Once detached, the myosin head would then become available for binding with another site on the actin molecule.

Repetition of this process would bring about the sliding of actin and myosin molecules between one another, with the subsequent shortening of the sacromeres and shortening of the muscle during isotonic contraction. The cycles of shortening of cross-bridges during an isometric contraction of the muscle would result in the generation of force.

Some variations on this theory of contraction of muscle are discussed by A.F. Hux1ey (1974).

The Response of Muscle to A1teration of Length

Stress relaxation following stretch

The application of controlled stretches to muscle has been used to study the properties of muscle and to help elucidate the mechanism of muscle contraction.

Gasser and Hiil (1924) applied ramp stretches of about 4.5 mm to the sartorius muscle of frog and found that at moderate velocities of stretch, probably in the range of $1.0-10 \mathrm{cms} \cdot \mathrm{sec}^{-1}$, the tension rose to a peak during the dynamic phase of the ramp and then decayed roughly exponentially to some new level of tension. At slow rates of stretch, probably $<1.0 \mathrm{cms} \mathrm{sec}{ }^{-1}$, the change in tension had the same form as the extension curve, and was reversible. At faster rates of stretch, up to $80 \mathrm{cms} \mathrm{sec}^{-1}$, Gasser and Hill found that the tension rose to a peak and then fell to a level below that of isometric tension, before redeveloping to some new level approaching that of isometric.

These findings were related by Gasser and Hill to a model of muscle consisting of a protein matrix in a fluid medium, with the proteins having different viscous and elastic coefficients in the passive and active states. The results of Sugi (1972) are similar to those of Gasser and Hi11 (1924). Moderate velocities of ramp stretches applied to the semitendinosus muscle of frog produced tension responses similar to those of the moderate velocity stretches of Gasser and Hill, and similar to those shown in fig. 5.8 trace A. Ramp stretches greater than 1% of the length of the muscle, and at velocities $>30 \mathrm{cms} \mathrm{sec}^{-1}$ produced tension responses similar to those of the rapid stretches of Gasser and Hill. However, the rapid stretches of Sugi for 1ess than 1% of muscle length did not show the decay below isometric tension, but continued to develop tension until the end of the ramp stretch, and then decayed to some plateau value. Sugi has explained his results in terms of the A.F. Huxley (1957) sliding filament model of muscle. Stress relaxation curves, similar to those for moderate velocity stretches applied to active muscle by Gasser and Hill, by Sugi and as seen in fig.5.8 trace A of this thesis, are also shown by Abbott and Aubert (1951). Stress relaxation following ramp stretches applied to passive muscle, similar to those of fig, 5.8 trace B, can be seen in the publications of Abbott and Lowy (1956), D.K. Hill (1968) and U11rich (1970).

Stress recovery following rel ease

When tension redevelopment following a constant velocity reduction in length is examined, two phases can be seen (A.F. Huxley and Simmons, 1970, 1971; A.F. Huxiey, 1974). In the example of Huxley and Simmons, the tension recovery of frog semitendinosus muscle at $0^{\circ} \mathrm{C}-4^{\circ} \mathrm{C}$ has a fast phase with a half time of about 0.5 msec - 1.0 msecs , and a slow phase with a half time of about 25 msecs .

Similar results to those of Huxley and Simmons have been shown in response to rapid constant velocity shortening or 1 engthening of glycerinated frog sartorius and tortoise illeo fibularis muscles.by Heinl et al.(1974).

Length transients in response to step changes in load, consisting of two phases, which may be equivalent to the tension transients of Huxley and Simmons, have been demonstrated by Podolsky (1960), Civan and Podolsky (1966) and by Joyce and Rack (1969).

A stress relaxation curve with two decay constants is discussed in relation to the results of this thesis.

Linearity of Tension Responses

Soleus muscles of the rat were subjected to stretches of up to 0.85 mm . The static tension changes in active muscle, as a result of ramp stretches, were linear up to stretches of 0.5 mm in every muscle, and in some muscles were linear over the range of stretch from $0-0.85 \mathrm{~mm}$. The dynamic tension changes of active muscle were found to
be linear for 1 ength changes up to 0.26 mm .

A ramp of 0.26 mm is equivalent to a length of change of about 1% of total musc1e length. However, soleus muscle of the rat has fibres which are approximately 50% of the length of the muscle (Close, 1964). A stretch of 1% of the muscie length would thus represent an increase in sarcomere length of 2%, if a11 of the stretch extended the fibres. If some of the length change is taken up by passive elements of the muscle in series with the muscle fibres (e.g. tendon - see Pennycuick, 1964; D.K. Hill, 1969; B1angé et al 1.972) then the 1inearity of the tension response is likely to be less than 2% of the sarcomere.

The range of linearity of the elastic components of rat soleus muscle would appear to lie within the range of 1 - 2% extension of the muscle fibres.

The value of the dynamic tension may depend on purely passive parts of the muscle or may also be due to elasticity within the cross-bridges of the muscle. The non-linearity of the dynamic tension change could be due to the mechanical breakdown of these cross-bridges, when the muscle fibres are extended by more than $1-2 \%$ of their length. If this is the case, the non linearity would be such that the dynamic tension change should become relatively smaller at longer extensions of the muscle. This is what is found in active muscle (see fig. 5.3). This non linearity of the dynamic tension may be still further increased, since the rise time of each stretch was constant, thus increasing the velocity of stretch with any
increase in amplitude of stretch. According to the A.F. Huxley theory of muscle contraction, increasing the rate of stretch will increase the rate of breakdown of cross-bridges.

Since the non linearity of the tension responses of passive muscle is the result of the tension becoming relatively greater at longer lengths of stretch (see fig. 5.1), it is unlikely that, these longer lengths of stretch, the static and dynamic tensions of passive muscle are a measure of the same parameter as in active muscle. The ECRL muscles of rat, and the gastrocnemius muscles of normal and dystrophic hamster, and of tortoise, were found to givelinear tension responses within the linear limits of stretch found for rat muscle. When discussing these muscles, tension changes have been used which correspond either to a 0.26 mm extension of the muscle or to a stretch which would give approximately a 1\% extension of the sarcomeres. In either case, the amount of stretch applied to the muscle is within the linear range of the tension responses.

Rat Musc1e

Dynamic tension changes and stress relaxation
The values for dynamic tension changes in passive and active muscles of the rat, and decay times of the stress relaxation curves are given in Table 5.15.

The dynamic tension changes observed in relaxed muscle may be due to the extension of inert parts of the
muscle (Guth, 1947; A.V. Hill, 1952; McNei11 and Hoyle, 1967; Rapoport, 1973), or they may be the result of the extension of cross-bridges within the passive muscle (D.K. Hil1, 1968, 1970). Alternatively, the dynamic tension changes of passive muscle may be due to a combination of these two possible processes.

If the dynamic elasticity of passive muscle is due to crossmbridge activity, then this activity could be expected to increase upon stimulation. If the dynamic elasticity of passive muscle is due to passive elastic elements in parallel with the contractile mechanism, then, when the sarcomeres of the muscle shorten at the expense of series elastic elements, during isometric contraction, the parallel structures would also shorten, giving a reduction in the dynamic tension. It can be seen from Table 5.15 that the dynamic elasticity increases upon stimulation of the muscle. The dynamic tension change in passive muscle is on1y about 5% of the dynamic tension change in active muscle, for the same stretch. It is therefore likely that dynamic tension changes in contracting muscle are due to extension of some part of the contractile mechanism of the muscle.

It is not possible to say whether the dynamic elasticity of passive muscle is due to passive or active elements of the muscle, nor is it possible to say whether the dynamic elasticity is measuring the same part of the muscle in its passive and active states.

If the dynamic elasticity is a function of the contractile mechanism of the muscle, it might be expected that some correlation should be found between the dynamic tension changes and the isometric force generated by the muscle. In fact a high degree of correlation was found for soleus muscle (r $\equiv 0.923$ giving a P value <0.001), but this correlation was not shown for ECRL muscles.

The value of the dynamic tension of active muscle can be calculated for a 1% increase in the length of the sarcomeres. Some cursory measurements of fibres of ECRL muscles indicate that they run for approximately 50% of the 1 ength of the muscle. A 1% in the 1 ength of the soleus muscles would correspond to an extension of 0.135 mm and the equivalent extension of ECRL muscle would be 0.0725 mm . These extensions presume a rigid tension, but for the purposes of comparison, may be legitimate.

The increase in the dynamic tension in response to a 1% extension of the sarcomeres, when calculated as a percentage increase over the isometric tension, is approximately 29% for soleus muscles and 16% for ECRL.

The value of the dynamic tension changes for soleus muscle is about the same order of magnitude given by Rack and Westbury (1974) for cat soleus muscle (35\% 50% for a 1% extension of the sarcomeres), though the values in this thesis are slightly lower. The figures quoted from Rack and Westbury refer to their "short range stiffness" within the muscle. The values of the dynamic elasticity quoted for rat muscle in this thesis are also
comparable in magnitude to the slower elasticity of A.F. Huxley and Simmons (1971), though it can be seen from their fig. 3 that the increase in tension in response to a 1% increase in the 1 ength of the sarcomeres is somewhat greater than those given here for soleus muscle.

In soleus muscles, the extensions of more that 1 - 2% of the sarcomeres produce non-1inear dynamic tension responses: It has been shown by Sugi (1972) that at stretches greater than 1% extension of the sarcomeres, and at rapid rates of stretch, the tension response shows a 'slip" phenomenon, attributed to the mechanical breaking of cross-bridges.

From these observations, it seems likely that the dynamic elasticity; as measured for contracting muscle of the rat, is a measure of elasticity within the crossbridges. The non-1inear tension responses of longer stretches are probably the result of the breakdown of crossmbridges.

It has already been noted that the value of the dynamic elasticity of ECRL muscles is low, compared with that of soleus muscles. From.fig. 5.8 it can also be seen that in soleus muscle there is a sudden decrease in tension at the end of the dynamic phase, and that stress relaxation during the static phase of the ramp is therefore biphasic in nature. The equivalent stress relaxation in ECRL is not biphasic (see also values of $t_{\frac{1}{2}}$ and $t_{\frac{3}{4}}$ in Table 5.15). The overall decay of tension is more rapid in ECRL than in soleus. If fig. 5.8 is examined, it can
be seen that the decay of tension in ECRL muscle is completed after 1.5 seconds, but in soleus muscle the tension is still decaying at the end of the static phase, after. 2.5 seconds.

If the dynamic tension changes are the result of distortion of crossmbidges, then subsequent decay in tension during the static phase of the ramp may be due to the breaking and reforming of these bridges. Some tension decrease at the end of a stretch has also been attributed by A.F. Huxley and Simmons (1971) and A.F. Huxley (1974) to visco-elastic changes within the cross-bridges. However, these tension changes are on a very short time scale (1-2 msecs) and probably cannot be observed in the results of this thesis.

When the muscle is stretched, it is possible that, some of the cross-bridges are extended into the region where none is made, but only breakdown can take place (c.f. A.F. Huxley, 1957). In the region where crossbridges can be both made and broken, some cross-bridges will be broken and more will be made, but since the new cross-bridges are not in an extended state, they will not have so great a tension as those which have just been broken. Interaction of cross-bridges in these two regions may explain the initial rapid decline in tension followed by a slower one, which is seen in soleus muscle.

If the above explanation of the tension changes is valid, then the events during the static phase of the ramp should depend on the rate of biochemical activity for
the making and breaking of cross-bridges (rate constants f and g respectively, of A.F. Huxley, 1957). The rate of breaking of cross-bridges: should then also be related to the decay of tension after a tetanus, and the rates of making and breaking of cross-bridges should be related to the rise in tension at the start of a tetanus. From Table 5.15 it can be seen that the half-rise and half-fall times of tetanus. are longer in soleus than in ECRL, indicating slower rates of reaction, f and g, in soleus muscle.

The faster rates of reaction of ECRL are seen to give a faster decay of tension to the final plateau level than is the case in soleus muscle (compare figs.5.8a and $5.8 b$).

The duration of the dynamic phase of the ramp stretch was the same for both soleus and ECRL muscles (0.0625s). If the enzymes of ECRL are relatively fast, then the readjustment of making and breaking of crossbridges would take place during the dynamic phase, as well as the static phase of a ramp stretch. This would mean that the static phase would start on a less steep part of the tension decay, and would also account for the reduction in dynamic elasticity seen in ECRL muscle. For this explanation to be valid it must be possible for the cross-bridges to be detached by the action of enzymes at relatively long lengths of the crossbridges. It may be possible for the cross-bridges to be acted on in this way (see A.F. Huxley, 1974 and Julian et a1., 1973).

Static Tension Changes

The static tension changes in response to a ramp stretch can be seen to be greater in stimulated muscle than in passive muscle. This is similar to the findings for dynamic elasticity. The increase in static elasticity upon stimulation is not so great as the increase in dynamic elasticity, the static elasticity of passive muscle being about 30% of that found in active muscle, both in soleus and ECRL.

In order to explain the change in the static elasticity, it is necessary first to try to correlate the static tension changes with particular structures of the muscle.

In passive muscle, it may be that static elasticity is a measure of some cross-bridge activity. This may be the case at short lengths of the muscle (D.K. Hill, 1968,1970) but it is 1ikely that passive elements also contribute to this tension. The passive elements which may play a part are the sarcolemma, at longer muscle iengths (Fields and Faber; 1970; Podolsky, 1964; Rapoport, 1973) or the postulated s-protein filaments linking actin molecules in a sarcomere (Guba and Harsanyi, 1966); Hanson and H.E. Huxley, 1960; McNei11 and Hoyle, 1967).

In active muscle, the static elasticity is always greater than in passive muscle. In this case, it is unlikely that the static elasticity is a measure of elasticity of passive structures in the muscle, since any
of these passive structures would be expected to decrease in length and hence exert less tension when the muscle fibres shorten during contraction. It is likely that the static elasticity of active muscle is situated in the contractile mechanism of the muscle.

Since the static elasticity of passive and active muscle is not a measure of the same parameter in each case, and since elements which give rise to static tension in passive muscle no longer do so in active muscle, then it is not surprising that no significant correlation is found between the static elasticity and the isometric tension generated by the muscle, in either sol eus or ECRL.

The application of a stretch which would give a 1% increase in the 1 ength of the sarcomeres gives corresponding increases in the static tension. When expressed as a percentage increase in tension over the corresponding isometric tension, this increase in tension in the muscle would be 3.21% for soleus and 4.27% for ECRL. The increase in the static tension is slightly greater in ECRL muscle than in soleus and this difference may be further increased, since the tension in soleus has not fully decayed by the end of the static phase. This excess of tension over the isometric can also be seen in the results of Sugi (1972), who showed that for bundles of stimulated frog muscle fibres, a stretch of 5% gave an excess of tension, after a hoid phase 1asting 0.2 seconds.

One possible explanation for the increase in the value of the static tension over the isometric tension is that the muscle is being stretched on to a different part of the length/tension plot of the muscle. In this case, the increase in the tension would be the same whether the muscle was stretched prior to stimulation or after stimulation. However, for this hypothesis to be true, the muscle would have to be stimulated at an initial length corresponding to the rising 1 imb of fig. 12 of Gordon et a1.g (1966). This is the on1y part of that curve where an increase in length of the sarcomeres by 1% would give a corresponding increase in force of 4%. However, for this to be the case, the initial striation spacing of the muscle would be less than one half that required to give optimum tension in the muscle. In the present experiments, this would mean that the muscle should have undergone a large initial shortening before the stimulation and stretch were applied. This is not likely to be the case, since the muscles were each fixed at about resting length prior to stimulation and stretch. It would have been useful to have measured the tension generated isometrically by the muscle, at the new longer length, so that tensions which were arrived at by different means could have been compared; unfortunately this was not done. However, it is unlikely that the passive tension increase is due to increased overlap of actin and myosin and subsequent increased numbers of crosis-bridges.

In his discussion, Sugi (1972) has suggested that crossmbridges may behave as though they are "lockedon" at small displacements, though rapidly broken down when the stress exceeds a critical limit at larger displacements. The extra tension of the static tension over the isometric tension would then be seen as the result of increased force in some of the cross-bridges. The mechanism of locking on is not given by Sugi, but one possibility is presented here.

Cross-bridges within the muscles can be broken by the action of enzymes, but this may only be possible if the cross-bridge head is at the position of lowest potential energy. It is also possible to snap the crossbridges mechanically if they are stretched above some critical limit. If the stretch applied to a muscle is sufficient to prevent the crossmbridges reaching this lowest potential energy position, but not long enough to bring about the mechanical breakdown of cross-bridges, then it is possible that after the redistribution of tension in the muscle, during the static phase, some of the cross-bridges will remain in an extended position, unable to be broken by enzymes. It seems likely, as was discussed in the section on dynamic elasticity, that the degree of stretch applied to the muscie would satisfy the conditions necessary for an excess of static tension over isometric tension to be set up.

Another possible explanation for the excess of tension over isometric is that when the muscle is stretched,
some sites on the actin and myosin which were not quite close enough to form cross-bridges, are now able to do so (Podolsky and Nolan, 1973; Podolsky, Nolan and Zaveler, 1969). Existing cross-bridges, since the stretches are within the elastic limits, will tend not to be broken down. The excess tension would then be due to the additional cross-bridges. On the evidence derived from rapid release of muscle, this theory has been largely discounted by A.F. Huxley (1974) and Ford et a1.; (1974).

Hamster Musc1e

The gastrocnemius muscles of normal and dystrophic hamsters were found to give linear tension responses for ramp extensions similar to those which gave linear responses in rat soleus and ECRL muscles. The linear responses of hamster muscle are therefore in the range up to approximately $2-4 \%$ extension of the sarcomeres. Al1 subsequent discussion of hamster muscle refers to tension responses as a result of stretches within this linear range.

Dynamic tension changes and stress relaxation

The values of the dynamic tension changes
and $t_{\frac{1}{2}}$ and $t_{\frac{3}{4}}$ values for the stress relaxation of the static phase of ramp stretches are given in Table 5.16 for normal and dystrophic hamster gastrocnemius muscies in both the passive and active states. These
results can be considered in relation to the discussion on rat muscles, and can also be used to compare normal gastrocnemius muscles with the equivalent muscles from dystrophic hamsters.

In the gastrocnemius muscles of normal hamsters, the static elasticity of passive muscle was found to be 1.33% of the static elasticity of active muscle. In the muscles from dystrophic hamsters, the equivalent figure is 1.75%. Since it was concluded from rat muscle results that the dynamic elasticity is not a function of the same anatomical part of the muscle in active and passive states, the absolute value of this increase is probably not important. However, the increase in dynamic elasticity upon stimulation of rat muscle is confirmed by these results, and it may be possible to use them in order to compare the two types of hamster gastrocnemius muscles.

The larger increase in dynamic elasticity observed in normal muscle is not due to differences in the dynamic tension of the muscles in the passive state, but to differences in the active muscles (see Table 5.16). The dynamic elasticity is much greater in normal muscle than in dystrophic muscle. From Table 5.16 it can be seen that the value of the maximum isometric tension is also greater in the normal muscle.

When the dynamic tension is expressed as a percentage increase in tension over isometric tension, for a 1% extension of the sarcomeres, a figure of 8.1% is
derived for normal muscle and 6.61% for dystrophic muscle. It can now be seen that the difference between the two types of muscle is small, and any dissimilarities between normal and dystrophic muscle do not show as differences between dynamic elasticities.

From fig. 5.12 it can be seen that in hamster gastrocnemius muscle, there is no sudden drop in tension at the end of the dynamic phase. In this respect, the response of the hamster muscles is more like that of rat ECRL muscle than rat soleus muscle. In the discussion of rat muscle, it was postulated that differences between muscles in the rapid tension decay following the dynamic phase could be the result of different rates of enzyme controlled breakdown of cross-bridges during the dynamic phase.

If the half-rise time and half-fall time of isometric tension are once more used as indicators of the rate constants f and g of A.F. Huxley (1957), then tension responses more like those of ECRL muscles than of soleus muscles could be expected since f and g of hamster muscles more closely resemble those of ECRL than those of soleus..

The gastrocnemius muscles are also similar to ECRL in that the plateau level of tension (the static tension) is reached about half way through the static phase of the ramp, after about 1.5 seconds, once more indicating faster acting enzymes than are found in rat soleus muscles.

On these grounds, it is reasonable to say that the 1ack of a sharp drop in tension at the end of the
dynamic phase may be due to relatively quick acting enzymes controlling the making and breaking of crossbridges.

Static tension changes

The static tension change in response to a ramp stretch was found to be greater in stimulated muscle than in relaxed muscle. This was the case in muscles from both normal and dystrophic hamsters and in this respect, the results are similar to those of rat muscle. In normal hamster gastrocnemius muscle, the static elasticity of passive muscle was 7.69% of the elasticity of active muscle: In dystrophic hamster muscle, the static elasticity of passive muscle was 4.54% of the elasticity of active muscle. Because of the number of variables involved in the calculation of these increases in static tension changes, it is not possible to correlate them with values determined for rat muscles. However, it may be possib1e to look for differences between the two types of hamster muscle in order to explain the different increases in static elasticity.

The static tension changes in response to a ramp stretch are greater in normal muscle than in dystrophic muscle, and this is the case for both active and passive muscle. The difference is not so great in active muscle, thus giving the larger increase in static elasticity seen in dystrophic muscle. The reduced static elasticity of passive dystrophic muscle may be the result of the presence
of the apparently inactive muscle fibres seen in fig.5.10. The low static elasticity of the muscle would probably be due either to reduced cross-bridge activity, or possib1y to the absence of thin s-filaments. Fewer active muscle fibres would also account for the reduction in isometric tension (see also Montgomery, 1975), while the overall size of the muscle remains about the same.

The static tension change for active muscle can be expressed as a percentage increase in tension over isometric tension in response to a 1% increase in the 1ength of the sarcomeres. When this is done, it is found that the increase in normal muscle is 2.7%, while in dystrophic muscle it is about 2.5%. No correlation was found between static elasticity and the maximum isometric force generated by the muscle. In this respect, the result is the same as for rat muscles.

It can be seen that there is no great difference between the values of the static elasticities of normal and dystrophic hamster, muscles, and the similarity of the two types of muscles in their dynamic tensions has already been noted.

These results verify those of Montgomery (1975) and Harris and Ward (1975) who found that there is a decrease in force generated in the muscles of dystrophic hamsters, when compared with the muscles of normal hamsters. These authors could show no differences in the mechanical, biophysical or pharmacological properties of the muscles.

Montgomery and Harris and Ward concluded that though some changes are apparent in the muscles of dystrophic hamsters, the myopathy is secondary to the cardiomyopathy present in the dystrophic animals.

It is clear that by means of the techniques employed in the present study, no differences can be shown between the visco-elastic properties of normal and dystrophic hamster gastrocnemius muscles. However, the results obtained from hamster muscles are consistent with those from rat soleus and ECRL muscles.

Tortoise Muscle

The mechanical properties of rat and hamster muscles were studied at the body temperature of these mammals, as given in sections 1.1 and 1'2 of Materials and Methods. These properties have been discussed in terms of the sliding filament model of muscle contraction. In this model, tension changes within a muscle are explained in terms of alterations in number and configuration of crossbridges linking actin and myosin filaments within the sarcomeres. Much of the discussion of rat and hamster muscle involved the making and breaking of cross-bridges. However, the rate of making and breaking of these crossbridges should be temperature dependent, since biochemical reactions are involved. At lower temperatures, the rate of the reactions should be slowed down, and this slowing down should not only affect the behaviour of the muscle under isometric stimulation, but should also have
consequences for the behaviour of muscle under controlled stretches, if such behaviour is to be explained in terms of cross-bridge activity. :

Tension during isometric tetanic stimulation

Muscles were stimulated over a period of 8.0 seconds. Although the isometric tension was still rising slightly at the end of this period, the trend of the records does indicate that the tension values reached were near maximum (see fig.5.13).

In spite of this inaccuracy, it can be seen that the temperature has a marked effect on the isometric tension. The tension at $20^{\circ} \mathrm{C}$ is two to three times the value at $5^{\circ} \mathrm{C}$. There is usually a slight increase over the range $20^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$. The pattern of isometric tension change over the temperature range from $5{ }^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ was a comparatively rapid increase in tension up to $20^{\circ} \mathrm{C}$, then a levelling off up to $30^{\circ} \mathrm{C}$ (see inset of fig.5.17 and Table 5.12).

Abstract

The half-rise time, as previousiy defined, decreased markedly with increase in temperature. Most of the decrease was over the range $5{ }^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$, with a further steady fall up to $30^{\circ} \mathrm{C}$. The value at $30^{\circ} \mathrm{C}$ was about one third of that at $5^{\circ} \mathrm{C}$ (see Table 5.17). It is noticeable that while the half-rise times are, reasonably consistent from muscle to muscle at $30^{\circ} \mathrm{C}$, there is quite a variation between them at $5^{\circ} \mathrm{C}$. A similar pattern of variation with temperature was seen when the half-rise times were measured.

However, when the values at $30^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ are compared (see Tab1e 5.17), the proportional amount of decrease of the half-fall time as the temperature is raised is greater than that of the half-rise time.

Several workers have studied the contractile behaviour of mammalian skeletal muscle when subjected to temperature changes (Isaacson et al., 1970; Truong et a1., 1964; Close and Hoh, 1968; Cullingham et al., 1960; Duodoumopoulos, 1959).

The present findings are in agreement with previous work in that the isometric tension decreases observed as the temperature is lowered, are accompanied by increases in the half-rise time and the half-fall time of the tension.

In the model of muscie contraction of A.F. Huxley (1957), the formation of crossmbidges has a rate constant, f, and the breakdown of crossmbridges has a rate constant, g. In terms of the Huxley model, one would expect the rate of formation and breakdown of cross-bridges to be slowed down at lower temperatures, and therefore the half-rise times and half-fall times to increase. However, the observed changes in these quantities could al so be dependent upon the time taken for the chemical reactions to become fully active or inactive with respect to the onset and cessation or stimulation. This point could be of importance in interpreting the increase in isometric tension with temperature, in terms of the Huxley model. According to the mode1, the isometric tension, P, is given by the equation on
page 54 of this discussion. If it is assumed that only f and g of this equation vary substantially with temperature, then, as the temperature is lowered, f should decrease more than g to obtain a smaller value of P. The present results, where the half-fall time increases by a greater proportion than the half-rise time, would suggest the opposite, if the half-fall time is considered on1y as a function of g and the half-rise time only as a function of f and g. However, such an argument is based upon the absence of relative movement between the actin and myosin as the tension changes take place. Possible movements due to extension of the tendon connection cannot be excluded, and such extensions could alter the relative positions of . the actin and myosin and therefore affect the cross-bridge activity.

In spite of the possibilities of other factors influencing the half-rise and half-fall times, it does seem reasonable to suppose that the observed changes are compatible. with decreases in the values of f and g with temperature.

Temperature effects on dynamic tension changes.

Changes in the dynamic elasticity of tortoise gastrocnemius muscle similar to those of rat and hamster muscle were observed. The dynamic, elasticity was always greater in stimulated muscle than in relaxed muscle.

The dynamic stiffness, as a percentage of the isometric tension, showed a considerable decrease as the temperature was raised. In most muscles, the value at 5 C
was about twice that at $30^{\circ} \mathrm{C}$. If no correction is made for variations in isometric tension, the change in dynamic stiffness over the range of temperature is not substantially a1tered. The greater part of the decrease took place over the range $5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}$ with a slight decay to level off over the range $20^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$.

When considered as a percentage of isometric tension generated in response to a 1% increase in the length of the sarcomeres, the dynamic tension change is 15% at $30^{\circ} \mathrm{C}$ and 27% at $5^{\circ} \mathrm{C}$. These figures are comparable to those found for rat muscle.

It is reasonable to suppose that, as in rat and hamster muscles, the dynamic elasticity in active muscle. is a function of the contractile mechanism. In the case of tortoise muscle, this is also confirmed by the correlation between the value of the dynamic tension change and the maximum isometric tension generated by the muscle. At all temperatures except $25^{\circ} \mathrm{C}$, there is a high degree of correlation between these two variables, and if the dynamic tension changes calculated at each temperature interval for each muscle are considered together, a linear correlation of $r=0.695$ giving a P value <0.001 is found. The regression line of this correlation does not pass through the origin, thus giving the proportionally higher dynamic elasticity at lower temperatures.

In the discussion of dynamic elasticity of rat muscles, a hypothesis was put forward to account for increase
in tension during the dynamic phase, and to account for any differences in the size of the dynamic tension change. In this hypothesis, it was suggested that the tension increase is due to deformation of cross-bridges and that these cross-bridges may be broken either mechanically or by the action of enzymes. It was further suggested that the amplitude and rate of stretches which have been applied to the muscles would make the mechanical breakdown of the cross-bridges unlikely. Some breakdown by the action of enzymes would take place and the greater the rate of action of these enzymes, the more cross-bridges there would be broken. This is consistent with the results from tortoise muscle. As mentioned in the discussion of isometric tension, the rate of formation of bonds, f, and the rate of breakdown of the bonds, g, both decrease with temperature, especially in the region $5^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$. This is also the temperature range where one would expect to find, and where there is, a relative increase in the dynamic stiffness.

This increase in dynamic stiffness with decreasing temperature can be explained by the hypothesis put forward to account for differences in dynamic elasticity between fast and slow muscles of the rat. However, this is not the only possible explanation of the temperature related changes in ela'sticity.

If the tortoise gastrocnemius muscie is a mixed fibre muscle, consisting of both slow and fast fibres (Crowe and Ragab, 1972.) then the rates of reaction, f and g,
of each fibre type may not change with temperature at the same rate. If the amount of dynamic tension, as a percentage of the isometric tension, is not the same for each fibre type, then the overall dynamic e1asticity could be different at different temperatures.

In this case, if the fast fibres stop contracting at a higher temperature than the slow fibres, as is likely, then the slow fibres must have a greater dynamic stiffness than the fast fibres.

Decay of tension during the static phase of the ramp

The mean values of $t_{\frac{1}{2}}$ and $t_{\frac{3}{4}}$ for tortoise muscle are given in Table 5.17. The half-decay times are very much shorter than the corresponding half-fall times for the same muscle at the same temperature. At $5^{\circ} \mathrm{C}$, the halfdecay time is $3-4 \%$ of the half-fall time. At $30^{\circ} \mathrm{C}$, it is about 8-10\% of the half-fall time. For any particular muscle, the half-decay time at $5^{\circ} \mathrm{C}$ is about twice the value at $30^{\circ} \mathrm{C}$ (see Table 5.17). Even with these discrepancies, it can be seen that the increases in halffall times with decreasing temperature show concomitant increases in half-decay times, possib1y both being determined, in part at least, by g, the rate of breakdown of cross-bridges.

In the discussion of stress relaxation in rat muscles, it was suggested that the reduction in tension is likely to be the result of the enzyme controlled breakdown and formation of cross-bridges. Further, it was suggested that if the rate of reaction, g, were slow, then
a sudden decrease in tension might be seen at the end of the dynamic phase, giving a biphasic aspect to the stress relaxation of the static phase. If the traces for active muscle in fig. 5.13 are examined, it can be seen that this sudden drop in tension takes place in tortoise muscle both at $30^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$. This biphasic aspect of the tension decay is also seen in Table 5.17, where it can be seen that the difference between $t_{\frac{1}{2}}$ and $t_{\frac{3}{4}}$ is larger than the value of $t_{\frac{1}{2}}$, indicating that the initial decay in tension is more rapid than the subsequent decay: It can also be seen that the difference is greater at $5^{\circ} \mathrm{C}$ than at $30^{\circ} \mathrm{C}$. This tends to substantiate the hypothesis put forward for rat muscle to explain the decay of tension during the static phase of a ramp.

The effects of temperature on the static tension changes

The effects of temperature on static stiffness are not so pronounced as the effects upon the isometric tension and the dynamic tension changes. The minimum value for this quantity was usually seen at about $20^{\circ} \mathrm{C}$. The value at $30^{\circ} \mathrm{C}$ was about the same as, or, in some cases less than the value at $5^{\circ} \mathrm{C}$. The value at $5^{\circ} \mathrm{C}$ was usually about twice the value at $20^{\circ} \mathrm{C}$ (see Table 5.17). The static tension changes, given as percentages of isometric tension for a 1% lengthening of the sarcomeres is 8.25% at $30^{\circ} \mathrm{C}, 4.7 \%$ at $20^{\circ} \mathrm{C}$ and 7.8% at $5^{\circ} \mathrm{C}$.

The excess tension over isometric tension can be explained as for rat and hamster muscles in terms of the
"locked-on" cross-bridges of Sugi (1972). The relationship between the static tension and the cross-bridges is further established here, since it is found that there is a positive linear correlation between the static tension changes and the maximum isometric tension generated by the muscles; when all muscle stretches at every temperature interval are considered together $\quad x=0.435$ giving a P value <0.01).

There may be relatively more "locked-on" crossbridges at $5^{\circ} \mathrm{C}$ than at $20^{\circ} \mathrm{C}$ and two possible explanations can be given which may account for this. The slower biochemical breakdown of bridges could allow a relatively high proportion of cross-bridges to remain in the "lockedon" state at the lower temperature, or, the slow muscle fibres of a mixed muscle contribute relatively more static tension at lower temperatures than do fast fibres.

The relationship whereby there is relatively more static tension at $30^{\circ} \mathrm{C}$ than at $20^{\circ} \mathrm{C}$ is more difficult to explain. Since the enzyme catalysed breakdown of cross-bridges would decrease with decreasing temperature, the relative increase in the proportion of cross-bridges remaining unbroken when the temperature is lowered from $20^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ is as expected. On this basis, the static tension relative to the isometric tension would be expected to further decrease when the temperature is raised from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, but in fact the reverse of this is found. Clearly the interaction between rates of making and breaking of cross-bridges, and the distortion of the cross-
bridges is not so simple as is suggested in this thesis.
It is, however, interesting to note from Table 5.17
that the value of $\mathrm{t}_{\frac{1}{2}}$ has a minimum at $20^{\circ} \mathrm{C}$ indicating the fastest rearrangement of cross-bridges at this temperature. The iṣometric tension also has its greatest value at $20^{\circ} \mathrm{C}-$ $25^{\circ} \mathrm{C}$ before decreasing slightly at $30^{\circ} \mathrm{C}$. It could well be that the proportionally lowest static tension at $20^{\circ} \mathrm{C}$ is in fact the expected result.

The Visco-E1astic Model

The three component model

Initially tension responses of active and passive muscle were examined to determine whether or not the muscle could be represented by a Maxwell viscomelastic model consisting of three components, as given in fig.3.1a.

Discussion of the results referred mainly to static and dynamic elasticities and to half-decay times of muscle. When the se quantities are related to the three component model it can be seen that the static elasticity, the dynamic elasticity and the half-decay time correspond respectively to the parallel elasticity, the series elasticity and the viscosity.

Some aspects of muscle length/tension relationships can be modelled by the three component Maxwell system. It is possible to make the model predict changes in static and dynamic tension in both passive and
contracted muscle, within the linear range of the model. However, it is not possible to predict the responses of one type of muscle using constants for the model derived from a different muscle type, since the static and dynamic elasticities vary from muscle to muscle. In addition to this, it has been shown for tortoise that the static elasticity is temperature dependent. In the three component model, the static elasticity would be represented by E_{1}. This, being a purely elastic element, would not be expected to vary with temperature.

Tension transients during the static phase of a ramp stretch can be monophasic, and approximately exponential, for example in rat ECRL and hamster gastrocnemius muscles: Such transients could be represented by the three component Maxwell mode1. The equivalent tension transients in rat soleus and tortoise gastrocnemius muscles are biphasic and could not be represented by such a simple mode1. Even in ECRL and hamster gastrocnemius muscles, the representation, though acceptable, would be superficial and would give no clue to the underlying mechanisms of muscle contraction. Another aspect of the muscie tension responses which could be represented by the three component model is the difference in tension between resting muscle and contracted muscle. The tension difference would \cdot be represented in the model as a decrease in the unstretched length of the parallel elastic element, or an increase in its elastic coefficient, or both. Tension changes during
the change from the active to the contracted state, and vice versa, would not be so easily predicted by the model.

The three component Maxwell model shows many deficiencies in the representation of muscle. The five component model

A Maxwell model consisting of five components, as given in fig. 3.1b would give a better representation of muscle, since tension transients could be more accurately predicted.

Such a model would give a better representation of tension changes during isometric contraction and relaxation of the muscle and would also give a reasonable fit to the biphasic tension decay found in rat soleus and tortoise gastrocnemius muscles, during the static phase of the ramp stretch. Both of these tension responses are difficult to predict using the three component model.

It was previous1y suggested that static and dynamic tensions are not due to the same structure in passive and active muscle: The transition from passive to the contracted states may be modelled by the five component model, but it is not possible to correlate components of the model with structures of the muscle during such changes. However, the properties of passive and active muscle may be correlated separately with the five component model.

In previous sections of the discussion, a hypothesis was put forward which would account for differences in dynamic elasticity and differences in stress relaxation during the static phase of a ramp applied to
different muscle types. This hypothesis can be related to a five component Maxwe11 model, and the properties of the muscle represented by the components of this model.
E_{1}, the parallel elasticity of the model, would represent the force generated by the cross-bridges, and, on elongation, would also represent the additional tension due to stretched cross-bridges, giving the static elasticity.
E_{2} and V_{2}, one viscomelastic element, would represent the rate of breakdown of cross-bridges in the part of the muscle where cross-bridges can be broken down, but no new ones made.
E_{3} and V_{3}, the other visco-elastic element, would represent the forces due to the interaction of rate constants f and g, controlling the making and breaking of cross-bridges in the area of overlap of actin and myosin, where cross-bridges can be both broken and made.

Using these relationships for active muscle, it may even be possible, by the choice of suitable conditions, to represent the "s1ip" phenomenon of Sugi (1972), as we11 as the other viscomelastic properties of muscle. The model would still not be able to represent changes in static elasticity with temperature. Further refinement of the model would be necessary to achieve this.

In conclusion it is possible to say that the results of this thesis can be explained in terms of the Huxley model of muscle and, in a limited way, the viscoelastic properties can be represented by a five component Maxwe11 model.

VII REFERENCES

ABBOT'T B.C. \& AUBERT X.M. (1951). Changes of energy in a muscle during very slow stretches. Proc. R. Soc. B 139, $104-117$.

ABBOTT B.C. \& AUBERT X.M. (1952). The force exerted by active striated muscle during and after change of length. J. Physiol. 117, 77-86.

ABBOTT B.C. \& LOWY J. (1956). Stress relexation in muscle. Proc. R. Soc. B 146, 281 - 288.

APTBR J.T. \& GRABSSLEY W.W. (1970). A physical model for muscular behaviour. Biophys. J. 10, 539 - 555.

ATWOOD H.L., HOYLE G. \& SMYTH T.Jr. (1965). Mechanical and electrical responses of single innervated crab-muscle fibres. J. Physiol. 180, 449-482.

BAHLER A.S. (1967). Series elastic component of mammalian skeletal muscle. Amer. J. Physiol. 213, $1560-1564$.

BAHLER A.S. (1968). Modelling of mammalian skeletal muscle. IERE Trans. Bio-Med. Eng. 15, 249 - 257.

BAILEY N.T.J. (1966). Statistical Methods in Biology.
London: Eng1ish University Press.
BLANGÉ T., KAREMAKER J.M. \& KRAMER A.E.J.L. (1972).
Elasticity as an expression of cross-bridge
activity: in rat muscle. Pf1ugers Arch. ges.
Physiol. 336, 277-288.
BULLER A.J., ECCLES J.C. \& ECCLES R.M. (1960a).
Differentiation of fast and slow muscles in the cat
hind limb. J. Physiol. 150, 399 - 416.

BULLER A.J., ECCLES J.C. \& ECCLES R.M. (1960b). Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol. 150, 417 - 439.

CAIN D.F., INFANTE A.A. \& DAVIES R.E. (1962): Chemistry of múscle contraction. Adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature, Lond. 196 , 214-217.

CARLSEN F., KNAPPEIS G.G. \& BUCHTHAL F. (1.961). Ultrastructure of the resting and contracted striated muscle fibre at different degrees of stretch. J. Biophys. biochem. Cyto1. 11, 95-117.

CARLTON H.M. \& DRURY R.A.B. (1957). Histological technique for normal and pathological tissues and the identification of parasites. 3rd edn. London: Oxford Univ. Press.

CAVAGNA G.A. (1970). The series elastic component of frog gastrocnemius. J. Physiol. 206, 257-262.

CIVAN M.M. \& PODOLSKY R.J. (1966). Contraction kinetics of striated muscle fibres following quick changes in 1oad. J. Physiol. 184, 511 - 534.

CLOSE R.I. (1964). Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. 173, 74-95.

CLOSE R.I. (1972). Dynamic properties of mammalian skeletal muscles. Physiological Reviews 52, 129-197.

CLOSE R.I. \& HOH J.F.Y. (1968). Influence of temperature on isometric contractions of rat skeletal muscles. Nature 217, 1179 - 1180.

CROWE A. (1970). A mechanical model of muscle and its application to the intrafusal fibres of the mammalian muscle spindle. J. Biomechanics 3, 583-592.

CROWE A. \& RAGAB A.H.M.F. (1972). A histochemical investigation of intrafusal fibres in tortoise muscle spindles. J. Histochem. Cytochem. 20, 200-204.

CULLINGHAM P.J., LIND A.R. \& MORTON R.J. (1960). The maximal isometric tetanic tensions developed by mammalian muscle in situ, at different temperatures. Quart. J. Expt1. Physiol.45, $142-156$.

DENNY-BROWN D.E. (1929). The.histological features of striped muscle in relation to its functional activity. Proc. R. Soc. B 104, 371-411.

DOUDOUMOPOULOS A.N. \& CHATFIELD P.O. (1959). Effects of temperature on function of mammalian (rat) muscle. Am. J. Physiol. 196, 1197 - 1199.

DRACHMA D.B. \& JOHNSTON D.M. (1973). Development of a mammalian fast muscle: Dynamic and biochemical properties correlated. J. Physiol. 234, 29-42.

EBASHI S. \& ENDO M. (1968). Calcium ion and muscle contraction. Prog. Biophys. molec. Biol. 18, $123-183$.

EBASHI S., ENDO M. \& OHTSUKI I. (1969). Control of muscle contraction. Q. Rev. Biophys. 2, 351-384.

ERANKO O. \& PALKAMA A. (1961). Improved localization of phosphorylase by the use of polyvinyl pyrolidone and high substrate concentration. J. Histochem. Cytochem. 9, 585.

FENN W.O. (1924). A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J. Physiol. 58, 175 - 203.

FICK A. (1882). Mechanische Arbeit und Wärmeentwicklung bei der Muske1thătigkeit. Leipzig: F.A. Brockhaus.

FIELDS R.W. \& FABER J.J. (1970). Biophysical analysis of the mechanical properties of the sarcolemma. Can. J. Physiol.. Pharmacol: 48, 394-404.

FORD L.E., HUXLEY A.F. \& SIMMONS R.M. (1974). Mechanism of early tension recovery after a quick release in tetanized muscle fibres. J. Physiol.240, $42-43$ P.

GASSER H. \& HILL A.V. (1924). The dynamics of muscular contraction. Proc. R. Soc. B 96, 398-437.

GORDON A.M., HUXLEY A.F. \& JULIAN F.J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres.
J. Physiol. 184, 170-192.

- GUBA F. \& HARSANYI V. (1966). Myofibri11in - a new structural protein. in Symposium on Musc1e, 1966. Hungarian Acad. Sci., Budapest.

GUTH E. (1947). Muscular contraction and rubberlike elasticity. Ann. N.Y. Acad. Sci. 47, 715-766.

HANSON J. \& HUXLEY H.E. (1953). Structural basis of the cross striations in muscle. Nature, Lond. $\mathbf{1 7 2}_{2}$ 530 - 532.

HANSON J. \& HUXLEY H.E. (1960). The molecular basis of contraction in cross striated muscles. Structure \& Function of Muscle Vol.1 pp. 183-225.

HARRIS J.B. \& WARD M.R. (1975). Some electrophysiological properties of isolated extensor digitorum longus muscles from normal and genetically dystrophic hamsters. Exp. Neurol. 46, 103 - 114.

HBIDENHAIN R. (1864). Mechanische Leistung, Wärmeentwick1ung
und Stoffumsatz bei der Muskeltatigkeit.
Leipzig: Breitkopf \& Hartel.
HEINL P., KUHN H.J. \& RUEGG J.C. (1974). Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise.
J. Physiol. 237, 243-258.

HILL A.V. (1913). The absolute mechanical efficiency of the contraction of an isolated muscle.
J. Physiol. 46, 435-469.

HILL A.V. (1913-14). The heat production in prolonged contraction of an isolated forg's muscle.
J. Physiol. 47, 305-324.

HILL A.V. (1922). The maximum work and mechanical
efficiency of human muscles and their most
economical speed. J. Physio1. 56, 19 - 22.

HILL A.V. (1938). The heat of shortening and dynamic constants of muscle. Proc. R. Soc. B 126, 136 - 195.

HILL A.V. (1952). The thermodynamics of elasticity in resting striated musc1e. Proc. R. Soc. B 139, 464-497.

HILL D.K. (1968): Tension due to the interaction between the sliding filaments in resting striated muscle. The effects of stimulation.
J. Physiol. 199, 637-684.

HILL D.K. (1970). The effect of temperature in the range $0-35^{\circ} \mathrm{C}$ on the resting tension of frog's muscle. J. Physiol. 208, 725-739.

HOLMBURGER F., BAKER J.R., NIXON C.W. \& WILGRAM G. (1962a). New hereditary disease of syrian hamsters. Arch. Intern. Med. 10, 660 - 662.

HOLMBURGER F., BAKER J.R., NIXON C.W. \& WHITNEY R. (1962b). Primary, generalised polymyopathy and cardiac necrosis in an inbred line of syrian hamsters. Med. exp. 6, 339 - 345 .

HOLMBURGER F., BAKER J.R., WILGRAM G., CAULFIELD J.B. \&
NIXON C.W. (1966). Hereditary dystrophy-1ike
myopathy: the histopathology of hereditary dystrophy-1ike myopathy in' syrian hamsters. Arc. Path. 81, 302-307.

HUXLEY A.F. (1957). Muscle structure and theories of contraction. Prog. Biophys. biophys. Chem. 7, 255-318.

HUXLEY A.F. (1974). Muscle contraction. J. Physiol. 243, $1-43$.

HUXLEY A.F. \& JULIAN F.J. (1964). Speed of unloaded shortening in frog striated muscle fibres. J. Physiol. 177, 60-61 P.

HUXLEY A.F. \& NIEDERGERKE R. (1954). Interference microscopy of living muscle fibres. Nature, Lond. 173, 971 - 973.

HUXLEY A.F. \& PEACHEY L.D. (1961). The maximum length for contraction in vertebrate striated muscle. J. Physiol. 156, 150-165.

HUXLEY A.F. \& SIMMONS R.M. (1970). A quick phase in the series-elastic component of striated muscle, demonstrated in isolated fibres from the frog. J. Physiol. 208, 52 P.

HUXLEY A.F. \& SIMMONS R.M. (1971). Proposed mechanism of force generation in striated muscle. Nature 233, 533 - 538.

HUXLEY H.E. (1953). Electron microscope studies of the organisation of the filaments in striated muscie. Biochim. biophys. Acta 12, 387 - 394.

HUXLEY H.E. (1957). The double array of filaments in cross-striated muscles. J. Biophys. biochem. Cytol. 3, 631-648.

HUXLEY H.E. (1960). Muscie Cel1s. in The Cel1, vol IV, ed. Brachet J. \& Mirsky A.E. New York and London: Academic Press.

HUXLEY H.E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Molec. Biol.7, 281-308.

HUXLEY H.E. (1964). Structural arrangements and the contraction mechanism in striated muscle. Proc. R. Soc. B 160, 442-448.

HUXLEY H.E. (1965). Structural evidence concerning the mechanism for contraction in striated muscle. in Muscle. Ed. Paul W.M., Danie1 E.E., King C.M. \& Monckton G. Oxford: Pergamon Press.

HUXLEY H.E: (1969). The mechanism of muscular contraction. Science, N.Y. 164, 1356 - 1366.

HUXLEY H.E. \& BROWN W. (1967). The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. mol. Biol. 30, 383-434.

INPANTE A.A., KLAUPIKS D: \& DAVIES R.E. (1964). ATP changes in muscles doing negative work. Science 144, 1577.

JASPER H.H. \& PEZARD A. (1934). Re1ation entre 1a rapidité d'un muscle strié et sa structure histologique. C. r. hebd. Séanc. Acad. Sci., Paris 198, 499-501.

JEWELL B.R. \& WILKIE D.R. (1958). An anaiysis of the mechanical components of 'frog's striated muscle. J. Physiol. 143, 515-540.

JOYCE G.C. \& RACK P.M.H. (1969). Isotonic lengthening and shortening movements of cat soleus muscle. J. Physio1. 204, 475 - 491.

JULIAN F.J., SOLLINS K.R. \& SOLLINS M.R. (1973). A model for muscle contraction in which cross-bridge attachment and force generation are distinct. Cold Spring Harb. Symp. quant. Biol. 37, 685-688.

LEVIN A. \& WYMAN J. (1927). The viscous elastic properties of muscle. Proc. R. Soc. B 101, 218-243.

LINDLEY D.V. \& MILLAR J.C.P. (1971). Cambridge Elementary Statistical Tables: London: Cambridge University Press.

McNEILL P.A. \& HOYLE G. (1967). Evidence for superthin filaments: Am. Zool. 7, 483-498.

MONTGOMERY A. (1975). The isometric responses of fast and slow twitch muscles from normal and genetically dystrophic hamsters. Exp. Neurol. 46, 87 - 102.

MULLER J. (1837-40). Handbuch der Physiologie des Menschen. Coblenz: J. Hö1scher.

NEEDHAM D.M. (1971). Machina Carnis. London: Cambridge University Press.

PAGE S.G. (1968). Fine structure of tortoise skeletal muscle. Ji Physiol. 197, 709-715.

PAGE S.G. \& HUXLEY H.E. (1963). Filament 1 engths in striated muscle. J. Cell Biol. 19, 369-390.

PENNYCUICK C.J. (1964). Frog fast muscle. II A method of measuring internal series compliance. J. Exp. Biol. 41, 113-118.

PODOLSKY R.J. (1960). Kinetics of muscular contraction: the approach to the steady state. Nature, Lond. 188 , 666-668.

PODOLSKY R.J. (1964). The maximum sarcomere length for contraction of isolated myofibrils.
J. Physiol. 170, 110 - 123.

PODOLSKY R.J. \& NOLAN A.C. (1973). Muscle contraction transients, cross-bridge kinetics, and the Fenn effect. Cold Spring Harb. Symp. Quant. Biol. 37, 661-668.

PODOLSKY.R'.J., NOLAN A.C. \& ZAVELER S.A. (1969). Crossbridge properties derived from muscle isotonic transients. Proc. natn. Acad. Sci. U.S.A. 64, 504-511.

PRINGLE J.W.S. (1960). Mode1s of muscle. Symp. Soc. exp. Biol. 14, 41 - 68.

RACK P.M.H. \& WESTBURY D.R. (1969). The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J. Physiol. 204, 443 - 460.

RACK P.M.H. \& WESTBURY D.R. (1974). The short range stiffness of active mammalian muscle and its effects on mechanical properties. J. Physiol. 240, 331-350.

RAMSEY R.W. \& STREET S.F. (1940). The isometric lengthtension diagram of isolated skeletal muscle fibres of the frog. J. cell. comp. Physiol. 15, 11-34.

RAPOPORT S.J. (1973). The anisotropic elastic properties of the sarcolemma of the frog semitendinosus muscle fibre: Biophys. J. 13, 14-36.

RICE R.V. (1.961). Conformation of individual macromolecular particles from myosin solutions. Biochim. biophys. Acta 52, 602-604.

ROWE A.J. (1964). The contractile proteins of skeletal muscle. Proc. R. Soc. B 160, 437 - 441.

SELISKAR A. (1926). The action of ions upon the intraauricular conduction in the tortoise.
J. Physiol. 61, 172 - 184.

SJOSTRAND F.S. (1962). The connections between A-: and Iband filaments in striated frog muscle. J. Ultrastruct. Res. 7, 225-246.

STRAUB F.B. (1943). Actin. Stud. Inst. med. Chem. Univ.
Szeged (1942) 2, 3-15.
SUGI H. (1972). Tension changes during and after stretch in frog muscle fibre. J. Physio1. 225, 237-253.

SZENT-GYORGYI A. (1943). Discussion. Stud. Inst. med.
Chem. Univ. Szeged (1941-2) 1, $67-71$.
TAKBUCHI T. \& KURIAKI H. (1955). Histochemical detection of phosphorylase in animal tissues. J. Histochem. Cytochem. 3, 153-160.

TAYLOR E.W. (1972). Chemistry of muscie contraction.
A. Rev. Biochem. 41, 577-616.

TRUONG X.T., WALL B.J. \& WALKER S.M. (1964). Effects of temperature on isometric contraction of rat muscle. Am. J. Physio1. 207, 393-396.

ULLRICK W.C. (1970). Stress relaxation in muscle and theories of contraction. Physiol. Chem. \& Physics 2, 385-401.

WALCOTT B. \& RIDGEWAY B.B. (1967). The ultrastructure of myosin-extracted striated muscle fibres. Am. Zool. 7, 499-504.

WASHINGTON M.A., ARRIGHI M.F., STREET S.F. \& RAMSEY R.W. (1955). Q_{10} of the maximum tetanic tension developed by isolated muscle fibres of the frog. Science N. Y. 121, 445-446.

WEBER E. (1846). Muskelbewegung. in Handwarterbuch der Physiologie. Ed. R. Wagner. Braunschweig: P. Bieweg und Sohn.

WELLS J.B. (1965). Comparison of mechanical properties between slow and fast mammalian muscles. J. Physiol. 178, 252-269.

WILKIE D.R. (1954). Facts and theories about musc1e.
Progr. Biophys. 4, $288-324$.
WILKIE D.R. (1956). Measurement of the series elastic. component at various times during a single muscle twitch: J. Physio1. 134, 527-530.

YEATMAN L.A.Jr., PARMLEY W.W. \& SONNENBLICK E.H. (1969). Effects of temperature on series elasticity and contractile element motion in heart muscle. Am. J. Physio1. 217, 1030-1034.

ZOBEL C.R. \& CARLSON F.D. (1963). An electron microscope investigation of myosin and some of its aggregates. J. molec. Biol. 7, 78-89.

APPENDIX I

Abbreviations used in the text, figures and tables

```
    d = the ratio }\frac{\mp@subsup{\overline{x}}{1}{}-\mp@subsup{\overline{x}}{2}{}}{S.E.}\mathrm{ , where the means are not
        assumed to be of samples from one population.
    e = base of natural logarithms \simeq2.718
E.C.R.L. = extensor carpi radialis longus
    E
        model
    E}=\mathrm{ series elastic element of the Maxwell model
    E}=1\mathrm{ lightly damped series elastic element of the
        five component Maxwe11 model
    f = degrees of freedom
    F = force
    F'= variance ratio
    g = grams
    G = the transfer function between length and
        tension of the Maxwell model
    H = height of ramp stretch
    L= length
    m = metres
    N = newtons
N.S. = not significant
    P = probability
    r m correlation coefficient
    s = seconds
```

```
S.E. = standard error
    t = time
    t'm
    assumed to be of samples from one
    population.
    to m the time at the start of the static phase
    of a ramp stretch.
ty/2}= the time taken from the start of th
    static phase to where the tension generated
    is equal to half the tension at the end of
    the dynamic phase.
    T = duration of the dynamic phase of a ramp
    T1/2}=\mathrm{ the time from the end of the latent period
        of a muscle contraction to where the
        tension is half maximum.
    V}= viscous element of the Maxwell model
    V}=\mathrm{ smaller of the two viscous elements of the
    five component Maxwe11 model
    x}=\mathrm{ the mean of a number of samples.
```

