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ABSTRACT 

In general t h i s thesis i s concerned with high energy 

elementary p a r t i c l e physics and i n pa r t i c u l a r i t discusses the 

interactions i n the framework of the multiperipheral context. 

The f i r s t chapter i s a general introduction to the f i e l d 

where d i f f e r e n t observables of in t e r e s t , such as cross-section 

and m u l t i p l i c i t y , are defined and discussed. 

I n the second chapter af t e r introducing d i f f e r e n t m u l t i -

p a r t i c l e production mechanisms, such as multiperipheral and d i f f r a c t i v e 

models, we put more emphasis on the former and study d i f f e r e n t models 

of the type. 

The impact parameter space i s a suitable place to work i n , 

so we transform the m u l t i p a r t i c l e amplitude to t h i s space and extract 

i n t e r e s t i n g results out of i t i n chapter 3. Especially the works of 

Henyey; and Jedach-Turnau are emphasized i n t h i s chapter. We show 

that i t i s hard to reconcile the model xdth the experimentally observed 

radius of. e l a s t i c scattering as a function of energy. 

The fourth chapter i s about the interference diagrams of the 

multiperipheral model i n the u n i t a r i t y equation. As energy increases 

the number of such terms increases rapidly. We have estimated their 

e f f e c t i n Henyey and Jedach-Tumau types of calculation and have added 

them to the 'standard' r e s u l t . I t i s found that, as far as the radius 

i s concerned, these extra terms (nI-1 of them) do not make a sign i f i c a n t 

contribution. 

I n chapter f i v e a modification of the basic multiperipheral 

amplitude is introduced i n order to improve agreement with experirujnt. 

This successfully reproduces the known results. 
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1.1. Opening 

Physics has been defined long time ago as the science that 

studies nature. Nature consists of d i f f e r e n t sorts of matter. Some 

150 years ago man happened to discover that matter i t s e l f was made of 

smaller b i t s and l a t e r called these b i t s 'elements'. Elements are 

neatly c l a s s i f i e d i n Mandaleev table according to the i r atomic 

quantum numbers. This was the realm of 'modern' physics t i l l late 

eighteen hundred. The theory of r e l a t i v i t y of Einstein and quantum 

mechanics of Dirac were two pushing forces that made Physics to change 

i t s stationary state to a mobile one. The resul t i n g motion brought 

physics to the t e r r i t o r y of discovery of new p a r t i c l e s . Thus a new 

set of part i c l e s were added to the previously established proton, 

neutron, electron and photon co l l e c t i o n . According to the latest data 

p a r t i c l e group^ information there are nearly 150 'elementary' particles 

now. The dazzling a t t r a c t i o n of sim p l i c i t y once more hinted man to 

suggest that these elementary particles themselves were made of j u s t 

three 'more' elementary p a r t i c l e s , called quarks. Indeed, apart from 
2 

recently discovered particles a l l of the presently established 

p a r t i c l e s could be described i n terms of the standard quarks'. Since 

quarks are not experimentally seen, th i s fact casts some doubts as 

to whether or not they are physically existing objects. There i s , 

however another method of classifying the elementary p a r t i c l e s , never 

mind t h i s i s not as plausible as the quark model c l a s s i f i c a t i o n scheme. 

This invokes the idea of the way the par t i c l e s interact. Hence particles 

are nested i n strong, weak and electromagnetic cages. \^at the thesis 

i s concemv-jd about i s a small section of a huge subject called strong 

i n t e r a c t i o n , 
Wtiat one observes during an experiment i n a high energy laboratory 



i s that two c o l l i d i n g beariis of particles produce some outgoing ones. 

The information that one extracts from such scattering processes, at 

a given lab. momentum, includes the number of produced p a r t i c l e s , the 

number and angles at which the secondaries emerge, momenta and energies 

the produced particles carry out and the type of p a r t i c l e s . The next 

step i s that these rather raw information are transformed into the 

language which i s understandable to the theorists. The usage of 

the translated information i s that, f o r example, i t guides phenomenologists 

to the most appropriate way of simplifying the phase space. In a l a t e r 

stage, data is a test that confirms how 'reasonable' a specific model i s . 

The outline of the present chapter i s to b r i e f l y summarize the 

s i t u a t i o n of data at high energies which i s of direct interest to us. 

By 'high energy' one thinks of those energy ranges i n which the effe c t 

of masses of incoming particles are immaterial and we are well above the 

resonance region. The chapter w i l l serve to define notation and 

conventions which we t r y to use consistently throughout the present work. 



1.2. INTRODUCl'ION 

The re s u l t of two or more particles interaction i s the emission 

and production of some secondaries which obey a set of conservation lav?s. 

The secondaries could be studied upon i n d i f f e r e n t ways. One way i s to 

consider every individual of the produced p a r t i c l e s . This corresponds 

to the following type of i n t e r a c t i o n , 

a + b — : »• 1 + 2 + • • • + n 

This i s referred to as an exclusive process. As the energy of the system 

increases, n grows too ( f i g . 1.1) and i t gets more d i f f i c u l t to study a l l 

of the pa r t i c l e s one by one. Hence the idea of one p a r t i c l e inclusive 

process, introduced by Fe3mman. Here one considers only one type of 

p a r t i c l e . The process i s , 

a + b *• c + X, 

where x represents anything which does not include c-type p a r t i c l e s . 

There, i s , however, another type of process which i s less inclusive. 

This i s referred to as semi inclusive process. A typi c a l example 

would be the following, 

a + b ^ c + neutrals + x. 

» ECMOLAK£ 

10- » 50 100 200 KO 1000 2 COO 1000 iO COO 
PloD (C«V/e). 

Fig 1.1 The average charged p a r t i c l e m u l t i p l i c i t i e s 
per i n e l a s t i c c o l l i s i o n f o r a l l available data above 
10 Gev/c. The dashed curve i s the result of a InS f i t 
t o data. 



1.3. AMPLITUDES 

Let us suppose that i ^ and | f ^ show respectively 

the state of pa r t i c l e s before and after c o l l i s i o n takes place. These 

two states are related through a scattering amplitude which is defined 

as ^ " f l S l O quantum mechanics indicates, the square of 

the amplitude, l < f [ S l c ) |^ i s proportional to the probability 

of i n i t i a l state being scattered into the f i n a l state I - f ) • 

The conservation of probability imposes a very strong constraint upon the 

scattering amplitudes i n general. This could be formulated as the 

following, 

n 

The complete intermediate state 1*^^ covers a l l possible states that 

1 i y could get transformed i n t o . A p i c t o r i a l representation of this 

constraint is given i n f i g . 1.2. This i s referred to as the u n i t a r i t y . 

condition. In operator notations, the condition takes the familiar 

form 

c 

I t i s customary to separate the probability amplitude for no interaction 

by defining the A matrix, 

s = r +^ ft 

A could be related to measurable quantities. Mandelestam a n a l y t i c i t y 

demands that at most only isolated s i n g u l a r i t i e s , poles or cuts, could 

be accommodated i n A, provided that they are required by u n i t a r i t y . 

E l a s t i c amplitudes occupy a particular place and deserve more attention. 

Therefore we s h a l l say one word or two about e l a s t i c scatterings. 

Elastic scattering i s a d i f f r a c t i v e process. This means that 

(ci(r/ott ) cJL an energy independent, or at most weakly dependent, 

structure. This fact has been displayed i n f i g . 1.3 for proton -

proton e l a s t i c scattering which extends up to ISR energy range. 
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Shrinkage of (FP) d i f f r a c t i v e peak i s also a phenomenon associated 

with e l a s t i c scattering. The rate of shrinkage, which i s measured 

according to a 'slope parameter' b ( s ) , defined by, 

i s a slowly varying function of energy ( f i g . 1.4). A f i n a l remark to 

be added is- the dominance of imaginary part of the elasti c amplitude 

over the real part of i t at high energies. This could be infered by 

a comparison of (3^^ and and i s supported by data 

(see Fig. 1.5). 
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1.4. CROSS-SECTIONS 

Total cross-section, (Tttit i s one of the measurable quantities, 

which helps to c l a r i f y the hadrons interactions as well as their 

structures. For instance, the fact that CTroT of hadrons are of the 

order of tens of m i l l i b a m s suggests that hadrons are objects with 

characteristic dimension of a fermi. 

The t o t a l cross section i s defined as 

where ct i s the n-particle phase space element, 

The kinematics i s defined i n f i g . 1.6. 

(Fig. 1.6) 
c 

Imposing u n i t a r i t y conditions upon forward e l a s t i c scattering, one 

arrives at the opt i c a l theorem. The theorem relates t o t a l cross-section, 

which i s experimentally measurable quantity, to the forward elastic 

scattering amplitude, 

Mueller has generalized t h i s theorem to a f a r more complicated case, 

that i s one p a r t i c l e inclusive reaction. His gcneraliziiuion connects 

inclusive cross sections to the forward m u l t i p a r t i c l e amplitudes. The 

generalized theorem has been extensively used i n the phenomenology of 

mu l t i p a r t i c l e processes j o i n t l y with Regge phenomenology. Dia-

graaa t i c a l l y one could show these two theorems as i n figure 1.7. 

There are a nvmiber of general and model independei\t theorems 
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which are observed by cross sections. The f i r s t one, which puts 

a l i m i t on the growth of f j i t i s called Froissart bound.^ 

The beauty of t h i s theorem i s that i t is a general and model 

independent statement. I t states that the t o t a l cross section for 
2 

any process cannot grow faster thanC-^^) *• o° , 

The second one i s known as the Pomeranchuk theorem.^ This simply 

states that the t o t a l cross-section of either p a r t i c l e and a n t i -

p a r t i c l e become asymptotically equal. 

The l a s t statement i s that t o t a l cross-sections of particles belonging 

to the same isospin multiplets are the same, 

where "̂C > w e l l as and «(. belong to the same 

isospin m u l t i p l e t s . 

Experiments,^ done wi t h i n a broad range of energy, indicate 

that t o t a l cross-section i s a very slowly varying function of S, 

f i g . 1.8, and that about twenty per cent of i t is due to el a s t i c 

scattering channel ( f i g . 1.9). At t h i s stage i t would be interesting 

to ask the following question : What is a t o t a l cross-section b u i l t 

up of? The t o t a l cross-section i s made up of some prong cross-sections 
g 

which, following Horn and Zachariasen, are called topological cross-
sections, CTn . The topological cross-sections are changing rapidly 

9 

with energy ( f i g . 1.10), but t h i s happens i n such a way that when 

adding up a l l Cn to produce Ot^t the result becom.es roughly constant. 
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I t i s worth mentioning t h a t as energy increases the more important 

CTn comes from higher prongs. 

To close t h i s s e c t i o n we end up by p l o t t i n g C5"n versus ^ 

f o r proton-proton s c a t t e r i n g . I t i s customary t o compare t h i s w i t h 

a poissonian d i s t r i b u t i o n . I f the d i f f e r e n c e between these two curves 

i s n o t very d i s t i n c t at medium energy (50 gev/c) one c e r t a i n l y gets 

broader t a i l s a t ISR energy range as shown i n f i g . 1.11. 

o 10 
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Chorged Porllcle. V.ultlplicity 

F i g 1.11 
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1.5. MULTIPLICITIES 

The average m u l t i p l i c i t y , , i s defined as 

Fi g . 1.12 i n d i c a t e s t h a t , roughly speaking, the average number of charged 

p a r t i c l e s i n PP i n e l a s t i c c o l l i s i o n i s about 12 at ISR energy range. 

One expects t h a t the bulk o f t h i s i s pions. I t i s c l e a r , then, t h a t at 

low,energies protons are dominant. As. we go to higher energies pions 

take over the protons a t a q u i t e e a r l y stage and l a t e r r i s e i n p r o p o r t i o n 

t o the t o t a l m u l t i p l i c i t y . The number of protons does not increase r a p i d l y 

at ISR as compared t o t h a t o f pions. Of course we must observe an 

increase i n ^ ^ p ^ simply because a n t i p r o t o n shows a r i s i n g . A way 

to e x p l a i n t h i s i s by inv o k i n g the idea of leading p a r t i c l e e f f e c t to be 

described i n the seventh s e c t i o n . . The leading p a r t i c l e takes the bulk 

o f the a v a i l a b l e energy and what remains i s not enough to create a hea^/y 

PP p a i r . 

D e tecting n e u t r a l l y charged p a r t i c l e s was a d i f f i c u l t process. So 

i t was no s u r p r i s e t h a t u n t i l three years ago data on charged p a r t i c l e s 

m u l t i p l i c i t y , f was a v a i l a b l e only. I t was also generally believed 

t h a t ^hg^'^ -a. ̂  <C*̂ c was a good estimate of the t o t a l 

m u l t i p l i c i t y . The f i r s t evidence on the n e u t r a l m u l t i p l i c i t y came out 

.during the Batavia conference i n 1973. The represented r e s u l t s showed 

t h a t f long as i t i s k i n e m a t i c a l l y allowed, increases w i t h 

energy, very much i n the same way as -(^^c^ does. The corresponding 

data have been s;imnarized i n f i g . 1.13. F i g . 1.14 shows t h a t ^ n_ ̂  
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grows very slowly w i t h energy, more l i k e l y as 

This r e l a t i o n s h i p i s one of the p r e d i c t i o n s of a m u l t i p a r t i c l e model, 

namely m u l t i p e r i p h e r a l model, which i s going t o be the subject of the 

f o l l o w i n g chapter. Comparing the data w i t h the top and bottom l i n e s , 

the k i n e m a t i c a l l y allowed maximum and minimum number of produced 

p a r t i c l e s , i n f i g . 1.14, one concludes t h a t the production mechanism 

uses a small amount of i t s a v a i l a b l e energy i n c r e a t i n g p a r t i c l e s , 

the b u l k o f i t manifests i t s e l f i n the k i n e m a t i c a l energy form of the 

secondaries. 
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1.6. DEFINITION OF VARIABLES 

The r e p r e s e n t a t i o n o f data should be regarded c a r e f u l l y . 

This depends q u i t e a l o t on the type of v a r i a b l e s one chooses. The 

choice of v a r i a b l e s thus w i l l r e s u l t on the conclusion t h a t whether 

or not some features are important. To understand t h i s b e t t e r , a known 

animal i s p l o t t e d on d i f f e r e n t s c a l e s . A s one could see i n f i g . 1.15, 

d i f f e r e n t p a r t s of the p i g have been emphasised less or more according 

to the type of the plane he uses. The s i t u a t i o n i s more or less l i k e 

t h i s i n the high energy p a r t i c l e physics. 

The frame of reference we are mainly going to work i n i s the 

c e n t r e of mass frame, unless otherwise i n d i c a t e d . The incoming p a r t i c l e s 

A and B have four momenta P (E, those of the secondaries are 

q (W, The three momenta £ could be f u r t h e r decomposed i n t o two 

components, q̂ ^ and q̂ ^ i s c a l l e d the l o n g i t u d i n a l component and i s 

p a r a l l e l t o the c o l l i d i n g axis of p a r t i c l e s A and B; ^ i s the transverse 

p a r t of £̂  and i s perpendicular t o the l o n g i t u d i n a l a x i s . The usefulness 

of t h i s decomposition more or less l i e s on the f a c t t h a t the transverse 
12 

momenta are h i g h l y supressed as data show ( f i g . 1.16). T h i s , c l e a r l y , 

reduces the three dimensional phase space to one dimension and", t h e r e f o r e , 

g r e a t l y s i i i q ) l i f i e s the c a l c u l a t i o n s . 

One can, now, introduce the reduced l o n g i t u d i n a l momentum which 
13 

f r e q u e n t l y i s r e f e r r e d t o as the Feynman v a r i a b l e , x. I t i s defined by, 

where q . " ^ i s the maximum value t h a t q i s k i n e m a t i c a l l y allowed t o 

take. At high energies, w i t h a good approximation, one could w r i t e x^ as,. 
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The domain of d e f i n i t i o n of X i s between 1 and - 1 , - I 4J^4"*^^ • 
P a r t i c l e s A and B have X values 1 and -1 r e s p e c t i v e l y . I t i s evident 
t h a t the p a r t i c l e s not moving w i t h A or B, and have d e f i n i t e ^ l . 
v a l u e , w i l l end up at X = 0 as energy increases (S -r-
Phenomenologically speaking, i t does not seem to be so i n t e r e s t i n g to 
map almost a l l p a r t i c l e s to one p o i n t . Hence, one introduces a new 
one dimensional v a r i a b l e Y, 

\g. . _ X 

/ 1 \ 
Diagram 1 p a r t i c l e s not moving w i t h A or B are mapped to the centre at S. 

o f t e n c a l l e d the r a p i d i t y , I t i s defined as 

where the transverse mass, tr*,- i s defined as 

-y^x being the mass of the i t h p a r t i c l e . The growth of Y takes place 

according t o -Cvi S as energy increases. The maximum and minimum 

values of Vt are determined by ~ - — and - 1 ^ — r ~ " ' 

r e s p e c t i v e l y . 

The r a p i d i t y has two advantages over Feynman X v a r i a b l e . The 

f i r s t one i s t h a t a l l p a r t i c l e s are evenly located i n the r a p i d i t y space. 

The second advantage i s t h a t under Lorentz boost w i t h v e l o c i t y i ^ , 

the r a p i d i t y changes a d d i t i v e l y , t h a t i s 

where 



22 

I n any case, e i t h e r of (. ̂ , K > ) and ( V,' > t^. ) make a complete 

set o f v a r i a b l e s which are capable o f de s c r i b i n g the high energy 

phenomenon. 

With due regard t o a 2 —' » 2 process, the reason why we 

r e q u i r e three parameters f o r one p a r t i c l e i n c l u s i v e r e a c t i o n , rather 

than two, t h a t i s one e x t r a parameter, t o describe a process i s t h a t 

the missing mass, M, i s a v a r i a b l e i t s e l f and i s not f i x e d by M = THe, > 
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1.7. INCLUSIVE CROSS-SECTIONS 

As mentioned before, i n c l u s i v e processes correspond t o reactions 

l i k e 

A + B >- C + anything else (X; . 

The corresponding i n v a r i a n t cross s e c t i o n , which i s sometimes c a l l e d 

s i n g l e p a r t i c l e d i s t r i b u t i o n i s defined by, 

P*̂  A CO djC 

where summation over K i s done over p a r t i c l e s of type C. The. i n v a r i a n t 

c r o s s - s e c t i o n i s experimentally a measurable q u a n t i t y , since c t ^ 7 

i s the p r o b a b i l i t y per u n i t i n c i d e n t f l u x o f C being produced i n 

momentum element d q. I n order t o make the q u a n t i t y ^^/di^ frame 

independent one m u l t i p l i e s t h a t by 0 . The phase space element 

could be w r i t t e n i n terms of other v a r i a b l e s already defined as follov/s: 

CO ^ 

The f a c t t h a t the phase space could be w r i t t e n i n the form of r a p i d i t y 

times transverse momentum and t h a t kinematics does not permit Y t o 

exceed a c e r t a i n l i m i t , given an energy of course, and t h a t data suppress 

the growth of 9»p ^ suggests t h a t one could thirJc o f the phase space as 

a b o t t l e vThere the p a r t i c l e s momenta are the p o s i t i o n vectors of gas 

molecules, namely Feynman - Wilson gas, i n s i d e i t ( f i g . 1.17). As the 

energy increases, the l e n g t h of the b o t t l e gets bigger and e s s e n t i a l l y 

i n the asymptots the motion o f gas molecules i n s i d e could be considered 

one dimensional. 
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Let us see now what one could understand from the experiments. 
14 

F i r s t of a l l , data show t h a t there i s a strong exponential f a l l o f f 

i n the transverse momentum ( f i g . 1.18). This i s one of the s t r i k i n g 

f e a t u r e s o f m u l t i p a r t i c l e r e a c t i o n s at high energy. P l o t t i n g 

against 9 T one f i n d s t h a t events c l u s t e r along the l o n g i t u d i n a l 

a x is i n d i c a t i n g t h a t transverse components are s t r o n g l y damped. The 

average value one f i n d s f o r ^ ^ T ) from a f i t t o data, whether the f i t 

i s 9 9 f { - ^ f j ) or M t f i s t h a t i t i s roughly .33 gev/c f o r X 

and .45 gev/c f o r K and P. The s i t u a t i o n f o r qL i s somehow 

d i f f e r e n t . For instance the type of p a r t i c l e s plays a r o l e here. 

For example, p l o t t i n g PP i n c l u s i v e cross-section versus x, one f i n d s 

t h a t p r o t o n stays r e l a t i v e l y f l a t as compared t o pions or kaons 

( f i g . 1.19). What t h i s means i s t h a t a f i n a l p a r t i c l e , which has some 

quantum numbers as those of one of the i n i t i a l p a r t i c l e s , r e t a i n s an 

important f r a c t i o n o f the a v a i l a b l e energy. This s i t u a t i o n i s o f t e n 

r e f e r r e d t o as the 'leading p a r t i c l e e f f e c t ' . 

I n general, ̂  ,the i n c l u s i v e d i s t r i b u t i o n , i s a f u n c t i o n of 

5 > *?t, aud • Data^^ supports the idea t h a t at higher energies 

the i n v a r i a n t cross-section becomes a f u n c t i o n of only two v a r i a b l e s , 

X and 9,̂  » 

13 

This i s r e f e r r e d to as the Feynman s c a l i n g . The statement could be 

v e r i f i e d e m p i r i c a l l y by corqparing the low energy and ISR energy range 

data. This has been shoxm i n f i g . 1.20. Perhaps i t i s worth mentioning 

t h a t the s c a l i n g r e g i o n i s reached sooner f o r pions, and p o s s i b l y k a o n s 

whereas f o r other p a r t i c l e s one must go towards higher energies ( f i g - 1.21). 

Koba e t a l ^ ^ three years ago suggested the f o l l o w i n g form of 

s c a l i n g < ^ > ^ — ^ -PC . 
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Fig 1.21 
(see also f i g . 1.18) 
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This gives a very good f i t to the PP data i f one supposes that 

<»v> 

Figure 1.22 displays an excellent agreement with data. 

As energy increases the inclusive distributions tend to 
lab 

a l i m i t i n g value for any q asymptotically. This was f i r s t 

observed by the authors of reference^^ who thought of the secondaries 

as some fragments of the i n i t i a l p a r t i c l e s . This is called l i m i t i n g 

fragmentation. Surprisingly t h i s already holds at lov7 energies ( f i g . 1.23) 

Viewing the role of p r o j e c t i l e as a mere catalyzer which 

enables the fragmentation to occur, one comes across to the statement 

that the inclusive d i s t r i b u t i o n i s independent of the p r o j e c t i l e i n the 

target fragmentation region, apart from an overall normalization factor 

proportional to (T+^t ( f ^ ^ ) . The figure 1.24 i s a supporting fact to 

the above mentioned statement. 

Another interesting thing to observe i s the development of a 

plateau i f one plots the inclusive cross-section versus r a p i d i t y as i n 

fig u r e 1.25. This happens i n the central region which is far from the 

target as well as the p r o j e c t i l e region. The central region is sometimes 

called pionization region. This i s because i n t h i s region picnic 

inclusive d i s t r i b u t i o n is more dominant. Perhaps i t should be added 

that soma ninety per cent of the secondaries are pions. A compariscn 

between d i f f e r e n t produced charged m u l t i p l i c i t i e s i n PP scattering i s 

given i n f i g . 1.12. 
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1.8. CORRELATIONS 

• The purpose of introducing correlations i s to discover some 

r e g u l a r i t i e s , additional to what have been previously discussed, which 

data may seem to possess. The way to study correlation is by means of 

a correlation function. The two p a r t i c l e correlation function i s 

defined i n analogy of Feynman gas: 

Noting that the f i r s t term on the r i g h t hand side is the probability 

of f i n d i n g simultaneously gas molecules on the locations 1 and 2 

( i . e . p articles with momenta and and that the second term is 

the m u l t i p l i c a t i o n of the pr o b a b i l i t i e s of finding a single molecule 

i n l a n d another one i n 2 one gains some insight into the meaning of 

correlations. For example, i f (Y^^Y^) = 0 for a l l values of Ŷ  

and Y^, then t h i s means that the two particles are uncorrelated i n 

and Ŷ . Of course d i f f e r e n t conservation laws correlate the 

p a r t i c l e s , t h e r e f o r e p r a c t i c a l l y no-correlation i s not l i k e l y to 

occur i n nature. 

To have an overall estimate of the correlation one may introduce 

an integrated correlation function 

A poissonian f i t to the topological cross-sections reveals that f ^ , 

,the m u l t i p l i c i t y moment, i s zero suggesting the absence of correlations. 

Therefore, f becomes a useful tool i n evaluating the strength cf 

correlations between the p a r t i c l e s . In other words, f ^ measures the 

deviations of a m u l t i p l i c i t y d i s t r i b u t i o n s from a poissonian f i t 



since f.^ = X^Ci^-O/ _ <»».>. ggg looks l i k e we plot 

i t against S. The r i s e of i t indicates correlations amongst secondaries, 

( f i g . 1.26). 

In general there are tv70 types of correlations : short range 

and long range correlations. Short range correlation (SRC), as i s 

implied by i t s name, says that the correlation function w i l l be negligible 

i f the p a r t i c l e s under consideration exceed a certain distance i n the 

r a p i d i t y space ( f i g . 1.27). One way to formulate this i s the following 

where /\ i s defined as the correlation length and theoretically i s 

around 2. 

The confrontation of SRC idea with data indicates the presence 

of long range correlations. This i s because SRC predicts ^° grow 
2 

l i k e InS but data increases faster, possibly as Ins ( f i g . 1.26), 

As short range correlation i s known to e x i s t , i t suggests that 

the emitted secondaries should form some sort of clusters. Another 

way to look at t h i s i s as follows. The leading p a r t i c l e takes away a huge 

amount of energy and what remains must be shared amongst a considerable 

number of pion secondaries. This suggests that these pions w i l l have 

almost same r a p i d i t i e s , therefore they are forced to come out i n clusters. 

So, b r i e f l y speaking, the production mechanism proceeds i n the following 

manner. From the c o l l i s i o n of i n i t i a l p articles some clusters get 

_produced. These clusters subsequently decay into the f i n a l p a r t i c l e s . 

To estimate number of particles per cluster would be an interesting item 

to study as we shall do i t now. 

Let us put the problem i n a s l i g h t l y d i f f e r e n t way and ask the 

following question, '̂/hat i s the adequate energy to produce n clusters? 

Had there been j u s t one p a r t i c l e per cluster the calculation of energy 
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Fig 1.27 
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would have been easier: 

S - A e 

where a and b are the coefficients i n <*^-> ' and '^»«^(~'5-)' 

«<. i s 2 (0) i f i n i t i a l p a r t i c l e s have positive (zero) overall charge. 

I n deriving t h i s equation one has assumed that there are as many 

neutral p a r t i c l e s as positive or negative ones. I t i s , however, unlikely 

t h i s s i t u a t i o n to happen. Thus, to determine the average nxmber of 

(negatives) p a r t i c l e s we introduce the following method. Using charge 

conservation law f o r , e.g. n̂ ^̂  = 3 i n PP scattering case, we see that 

the only possible formation l i k e l y to happen i s 

Cluster one Cluster two Cluster three 

o v e r a l l charge + + 0 

Bearing i n mind that clusters can decay i n such a way that each of 

them preserves charge conservation law, one can write the;.following 

possible decay modes 

Cluster one Cluster two Cluster three 

o v e r a l l charge + + 0 

+ - + - J + - 0 
decay modes > 

| 0 0 + ^ 0 0 + i O G O 

where the numbers (P^) are to serve the 'weighing" purpose. The 

calculation of energy i s straightforward now: 

, Z p.- n.-

wi t h A as defined above. For the example under study, using Harari's f i t 

(.^.y - 2 , 1 ^ ^ we f i n d S = 102.6 gev* as the energy for 

producing three clusters i n PP scattering. 

For the sake of completeness we would l i k e to state that i n the 
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section we i m p l i c i t l y realized that the integrated correlation 

functions were connected to the topological cross-sections. The 

suspicion arose when we noted that i f 0"n was poissonian f 2 became 

zero. To t r y to connect those two quantities together e x p l i c i t l y we 

come across to the so called generating f u n c t i o n , T h e function 

i s defined as 

with = CTcit. 

The knowledge about CTn w i l l determine the form of ^C*).The 

m u l t i p l i c i t y momenta could easily be derived from /Q.('^) , 

The relationship between QCi.) and 0~r\ i s 

The above three equations provide the e x p l i c i t connection we were 

looking f o r . 
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1.9. REGGE THEORY 

The idea of a n a l y t i c a l l y continuing a physical t-channel 

p a r t i a l wave scattering amplitude i n complex angular momentxmi 

,j, plane was introduced by Regge i n 1959 f o r the f i r s t time i n his 

pioneering work concerning the potential scattering. This continuation 

i s the foundation of building a theory, namely Regge theory, which 

describes q u a l i t a t i v e l y most of the asymptotic phenomenological 

features of high energy physics. For a comprehensive review of the 

subject, out of a very vast amount of reviews available i n the 

l i t e r a t u r e , one of the references mentioned i n 19 may be consulted. 

As we are more interested i n the ela s t i c scattering we shall 

very b r i e f l y outline below the Regge theory for a 2 — 2 process. 

In t h i s theory the amplitude takes the following form 

where v/S(t) i s a product of some residue functions and c< ( t ) , the 

so called Regge tra j e c t o r y which i s a function of t , i s characteristic 

of the exclianged channel. Obviously we must have «xCo) ̂ ) in order 

not to .violate the Froissart bound. Studying the trajectories i n a 

Chew -Frautschi p l o t (Re<\ versus t ) data suggests that the 

tr a j e c t o r y i s a stra i g h t l i n e ( f i g . 1.28), so that we may write 

^ it) ^ »cCo) ^m! t • 

I t i s clear from the figure that bosons are located where the trajectory 

passes through integer (half integer for fermions) values. 

For 'ordinary' t r a j e c t o r i e s data i s compatible with the following, 
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Considering the o p t i c a l theorem we can calculate the t o t a l cross-section. 

The constancy of (TJjr i n the intemediate energy range suggests that, 

corresponding to an object named Pomeron, called after Pomeranchuk. The 

two immediate implications of th i s for e l a s t i c scattering are as follows. 

The r a t i o of real to imaginary parts of the el a s t i c amplitude, f o r 

small t with the assumption of vacuum quantum numbers for the Pomeron, 

i s related to the Pomeron slope. 

u P 

suggesting that the f l a t t e r the pomeron the less real part there i s . The 

second implication concerns the d i f f e r e n t i a l cross-section. I t i s easy 

to see that, 
j ^ ' f c JUS, 

which displays the shrinkage property of the d i f f e r e n t i a l cross-sections, 

since t i s negative. The shrinkage is conveniently studied by a slope 

parameter b ( s ) , 
b Cs; ^ 2./ s , 

r 

which has been previously seen ( f i g . l.A). I t seems clear, by a coqparison 

with data, that <^ for the pomeron i s around ,3, which makes i t rather 

d i f f e r e n t from other Regge t r a j e c t o r i e s . 

With due regard to f i g . 1.2, we have mentioned a few words about 

the l e f t hand side of the equation. In the next chapter 
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we sha l l study some of the proposed models related to the r i g h t hand 

side of the equation. In the t h i r d chapter a comparison of the both 

sides of the u n i t a r i t y equation w i l l be given. We shall see that 

there are cases where the equality does not always hold. Thus to 

improve the si t u a t i o n we consider the interference terms i n the fourth 

chapter. This we f i n d to be not the answer to the problem. In the 

f i n a l chapter an improvement to the (multiperipheral) model w i l l be 

suggested. I t w i l l be seen that t h i s w i l l preserve the equality sign. 

Fig 1.28 A Chew-Frautschi p l o t f o r 
the w e l l established meson resonances. 
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MDLTIPERIPHERAL IMPELS 
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2.1. INTRODUCTION 

I t has always been interesting to t r y to describe and explain 

d i f f e r e n t and frequently occurring phenomena i n terns of a very few 

basic things. For example, since the time of Isaac Newton t i l l the 

beginning of the present century, almost everything occurring i n the 

domain of physics could have been s a t i s f a c t o r i l y explained by a very 

simple formula : F« i^^''*. 

I n theoretical physics the way by which we explain a set of 

events (data) i s through constructing models (either theoretical or 

phenomenological). Some models were found to be more popular than 

the others. These were the ones which, as they stood or after some 

refinements and iii?>rovements, succeeded i n explaining more phenomena. 

Or, even they had the power to predict things which were not known then'. 

The best example I could think of i s the quark model and the prediction 

of the ifl» p a r t i c l e . 

I n high energy elementary p a r t i c l e theory, amongst very many 

types of models, essentially two models seem to be of pa r t i c u l a r i n t e r e s t . 

They are the so-called d i f f r a c t i v e and non-diffractive models. In th i s 

chapter we shall study i n some details d i f f e r e n t types of non d i f f r a c t i v e , 

e x p l i c i t l y speaking multiperipheral, models and see how they cope with 

data. A few words w i l l also be mentioned about the other model. 



2.2. DIFFRACTIVE AND NON-DIFFRACTIVE MODELS A GENERAL SUR̂ TEY 

I t i s g e n e r a l l y b e l i e v e d to be the case t h a t there are two 

d i f f e r e n t production mechanisms a t high energy, namely d i f f r a c t i v e s 

and m u l t i p e r i p h e r a l , which are responsible t o describe the data. 

These are the two extremes o f the production mechanisms. The p i c t u r e 

below shows how these processes look l i k e , together w i t h t h e i r 

secondary r a p i d i t y d i s t r i b u t i o n s . 

(3 

s i n g l e nova (high mass st a t e ) 
production 

double nova 
production 

J L JUL 

m u l t i p e r i p h e r a l mechanism three d i f f e r e n t processes of d i f f r a c t i v e mechanis 
w i t h c l u s t e r s 

The m u l t i p e r i p h e r a l model i s a s t r a i g h t f o r w a r d g e n e r a l i z a t i o n of 

the p e r i p h e r a l approach to two p a r t i c l e production amplitudes. The 

m u l t i p e r i p h e r a l amplitude has c o n t r i b u t i o n s from Srchannel resonances or 

t-channel exchanges. Regardless of what are exchanged or what are produced 

( t h e two question marks i n the f i g u r e ) , which are refinements i n the 

amplitude i n order t o have a b e t t e r agreement w i t h data, a l l f a l l i n the 

category o f m u l t i p e r i p h e r a l model. The m u l t i p e r i p h e r a l model i s of short 

range c o r r e l a t i o n nature. Once the i n t e r a c t i o n occurs the secondaries 

lose a l l knowledge of the i n i t i a l c o l l i d i n g p a r t i c l e s , contrary to the 

fragmentation models which have the idea t h a t the i n i t i a l states maintain 

much o f t h e i r i d e n t i t y throughout the c o l l i s i o n processes. Just from the 

t o p o l o g i c a l c o n f i g u r a t i o n o f the' raultiperipheral model the f o l l o w i n g 

remarks could be made, 
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i ) i n i t s simplest form the d i s t r i b u t i o n of t o p o l o g i c a l cross-section 
( ^ ) versus n i s Poissonian. 

i i ) l o g a r i t h m i c growth o f ^ n " ^ i n energy v a r i a b l e . 

i i i ) constant r a p i d i t y gaps of the secondaries. 

i v ) s c a l i n g 

The other mechanism i s the d i f f r a c t i v e model. I n the Regge 

language d i f f r a c t i v e process means Pomeron exchange. As i t i s c l e a r 

from the p i c t u r e the c o l l i d i n g p a r t i c l e s a and b become excited under 

impact t o produce high mass objects and thai break up to give the 

observed secondaries. The fragments are grouped together i n r a p i d i t y 

w i t h a b i g gap separating them. Assuming t h a t the t o t a l cross-section 

remains f i n i t e , 

one can s t i l l get a l o g a r i t h m i c increase f o r average m u l t i p l i c i t y , 

A n a t u r a l way of- consistency p r e s e r v a t i o n i s t o assume t h a t . 

Let us compare some o f the p r o p e r t i e s o f these two models below. 

i ) We know t h a t outgoing p a r t i c l e s c arry very l i t t l e transverse 

momentum. Neither s h o r t range c o r r e l a t i o n nor fragmentation models 

p r e d i c t t h i s e f f e c t . This i s a basic i n p u t of the model i n both cases. 

i i ) As a d i r e c t consequence o f oCio^ \ one gets a c e n t r a l plateau 

i n the m u l t i p e r i p h e r a l model. I n the second mechanism the plateau does 

not occur so s t r a i g h t f o r w a r d l y , but of course i t i s q u i t e possible t o 

accommodate t h i s i n the model. I n other words the c e n t r a l plateau i s 
J . 15 

an i n p u t f o r tragmentation models. 
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Once one gets the f l a t c e n t r a l plateau, the l o g a r i t h m i c 

increase of the average m u l t i p l i c i t y f o l l o w s e a s i l y , since 

i i i ) (3Vv i s one of the places where the p r e d i c t i o n of the mechanisms 

d i f f e r . P a r t i c l e s i n the m u l t i p e r i p h e r a l model are produced almost 

independently ( i . e . a roughly poisson shape i s n f o r CTn), w i t h the peak 

moving s l o w l y t o higher values as S increases. Whereas i n the other 

model the peak of (T n i n n remains constant. The increase i n <r"n 

i s coming only from the extension of the t a i l a t high n (see f i g . below). 

m u l t i p e r i p h e r a l d i f f r a c t i v e 

The t o t a l c r o s s - s e c t i o n , a t higher energies, tends to be constant i n 

t h i s d i f f r a c t i v e model. I n the framework of m u l t i p e r i p h e r a l model, 

a d j u s t i n g the coupling constant and o^J^ , i t i s possible t o have 

e i t h e r a constant or a v a r i a b l e O^at . 

i v ) D i f f r a c t i v e and m u l t i p e r i p h e r a l models d i f f e r profoundly at 

the l e v e l of two p a r t i c l e i n c l u s i v e r e a c t i o n s . For instance the 

i n t e g r a t e d c o r r e l a t i o n f u n c t i o n , 

where 

has d i f f e r e n t behaviours, depending on the type of model under study. 

The s h o r t range c o r r e l a t i o n models g i v e . 18 
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o<CS) being the leading angular momentum s i n g u l a r i t y next t o the 
45 

Pomeron. Fragmentation models p r e d i c t , 

- — > C 

which i s not l i n e a r i n Y. 

Jus t by n o t i n g the st r o n g energy v a r i a t i o n of data i n two 

and f o u r prong t o p o l o g i c a l cross-sections ( F i g . 2.1), i t seems 

i n a p p r o p r i a t e t o t h i n k o f the d i f f r a c t i v e models as the sole production 

mechanism. 

40 loo <ia i<m 

F i g . 2.1 

I n c o r p o r a t i n g the two production mechanisms i n t o one, Har a r i and 

P o l i o w i c i as w e l l as F i o l l a w i s k i and M i e t t i n e n ^ ^ introduce a new 

model, a two component model ( m u l t i p e r i p h e r a l and d i f f r a c t i v e models 

as the components) which produces nice r e s u l t s . Their procedure i s 

t o w r i t e 0"n as 

(5T> = im„ 

m u l t i p e r i p h e r a l d i f f r a c t i v e 

En p a s s a n t , i t i s i n t e r e s t i n g to see t h a t when n = 2. 
21 

f a m i l i a r o l d two component d u a l i t y : 

one gets the 

<J i-
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Next they define parameters D and M by 

IV 

w i t h the obvious c o n s t r a i n t t h a t 

Using seven parameters t o f i t d i f f e r e n t sections c f data they f i n d 

<J^ -= Ao^W, 

^ 33 — • 

But, perhaps most i n t e r e s t i n g of a l l i s the value, they get f o r D and M: 

D = .16 

M " .'84, 

which i s i n d i c a t i v e of the f a c t t h a t the c o n t r i b u t i o n of m u l t i p e r i p h e r a l 

model t o the production mechanism i s almost 5.5 times more than t h a t of 

the d i f f r a c t i v e p a r t . This i s a good support of approximating the 

p r o d u c t i o n mechanism by the m u l t i p e r i p h e r a l model. 
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2.3. MULTIPERIPHERAL MODELS 

The raultiperipheral model i s a g e n e r a l i z a t i o n of the s i n g l y 

p e r i p h e r a l d e s c r i p t i o n of h i g h energy s c a t t e r i n g . For a m u l t i p a r t i c l e 

f i n a l s t a t e , such as 

the c o l l i s i o n i s c a l l e d ( s i n g l y ) p e r i p h e r a l i f f o r t h a t process the 

momentiim t r a n s f e r , I t ^ i s smaller than a given number, say Z^-Sf^^^ 

I fcl x< • 

The c a l c u l a t i o n of h,„^ w i t h the high energy approximations, r e s u l t s 

i n the f o l l o w i n g c r i t e r i o n . 

G e n e r a l i s i n g t h i s t o a m u l t i - p e r i p h e r a l process of n-blobs. 

one r e q u i r e s . 

( ?^could be i n t e r p r e t e d as some mean i n t e r blob momentum t r a n s f e r ) . 

To show, f o r example, how the l o g a r i t h m i c increase of mean m u l t i p l i c i t y 

a r i s e s n a t u r a l l y i n these models, we make the approximation t h a t 

Then s / " ^ < t * ^ " ^ " ' 
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which, t a k i n g the l o g a r i t h m of both sides, shows t h a t 

I n the remaining of t h i s s e c t i o n we s h a l l study three d i f f e r e n t models 

belonging to t h i s category. 
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2.3a ABFST MODEL 

I n t e r e s t i n a m u l t i p e r i p h e r a l model l i k e t h a t of Amati-Bertocchi-
22 

F u b i n i - S t a n g h e l l i n i and Tonin (ABFST) which was proposed i n 1962 

der i v e s from i t s relevance i n d e s c r i b i n g such features of high energy 

s c a t t e r i n g as Regge behaviour f o r e l a s t i c amplitudes and t o t a l cross-

s e c t i o n s , s c a l i n g and l o g a r i t h m i c growth of the m u l t i p l i c i t y i n 

m u l t i p a r t i c l e production r e a c t i o n s . 

The basic idea of the model i s t h a t the absorptive p a r t of the 

e l a s t i c s c a t t e r i n g amplitude can be computed from a m u l t i p a r t i c l e 

p r o d u c t i o n amplitude which f a c t o r s i n t o a product of uns p e c i f i e d blobs, 

the number of which i s r e s t r i c t e d by the amount of the input energy ( /s ) , 

connected by s i n g l e p a r t i c l e 

propagators. I n the o r i g i n a l 

model the outgoing p a r t i c l e s 

as w e l l as the i n t e r n a l l i n e s 

are pions. As i t i s c l e a r from the p i c t u r e 

( F i g . 2.2) .the f i n a l s t a t e p a r t i c l e s 

emerge i n p a i r s . The reason f o r t h i s 

i s due t o the G-parity conservation 

r u l e . T h i s , i n a sense, implies t h a t i n 

the ABFST model c l u s t e r formation i s 

b u i l t i n a u t o m a t i c a l l y . 

The r e p e t i t i v e nature of the production amplitude together w i t h 

-the s-channel u n i t a r i t y give r i s e t o an i n t e g r a l equation f o r e l a s t i c 

s c a t t e r i n g (s-channel absorptive p a r t , t o be more p r e c i s e ) , 

(2-0 
where A = ImA and S ( A ) i s a m u l t i p l i c a t i o n of the propagators, 

ft 

( F i g . 2.2) 
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and the f o u r momenta are defined as i l l u s t r a t e d i n f i g . 2.3 which also 

e x h i b i t s a dia g r a m a t i c a l r e p r e s e n t a t i o n of the equation ( 2 . 1 ) . 

9-p' 

F i g . 2.3 

V i s the i n p u t t o the model which most of the times i s formulated by 

consid e r i n g the phenomenology. For instance Amati et a l had supposed 

the imaginary p a r t of the low energy 3tTC s c a t t e r i n g amplitude f o r V*. 

The i n t e g r a l equation (2.1) i s of a p a r t i c u l a r importance. Since 

i t s s o l u t i o n gives r i s e to a l o t of i n t e r e s t i n g r e s u l t s , described at 

the beginning of t h i s subsection, which are compatible \d.th data. Indeed 
«t 22 

by a l l o c a t i n g a power dependence t o the amplitude A = S <p they a r r i v e 

a:t the conclusions t h a t a s y m p t o t i c a l l y , 

i ) cross sections behave as a power of the energy. 

i i ) m u l t i p l i c i t i e s grow l o g a r i t h m i c a l l y w i t h the energy. 

i i i ) constant i n e l a s t i c i t y . 

To s t r e t c h the a n a l y t i c a l s o l u t i o n f o r the i n t e g r a l equation (2.1) 

as much as pos s i b l e i n order t o express the high energy p r o p e r t i e s o f 

, p h y s i c a l s c a t t e r i n g amplitudes i n tenns of s i n g u l a r i t i e s i n the p a r t i a l 
* Other models i n c l u d e i n c l u s i o n of a high energy t a i l represented by 

Pomeron exchange or the use of d u a l i t y t o replace the lew energy d i r e c t 
channel resonances by the exchange of lower l y i n g F.egge t r a j e c t o r i e s 
(f^,J*) i n the t-channel i n a d d i t i o n t o the (P exchange. 
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wave parameter plane, one should be prepared t o do some s a c r i f i c e s . 

This i s due t o the f a c t t h a t the eigenvalue equations f o r the Regge 

t r a j e c t o r y i n v o l v e f a i r l y complicated kernels and cannot be solved 

e x a c t l y . The s a c r i f i c e s represent themselves i n two standard 

approximations u s u a l l y one meets a t t h i s stage. I t , however, turns 

out t h a t once the approximation i s made the r e s t o f the c a l c u a l t i o n 

can be c a r r i e d out mote or less e x a c t l y . I t w i l l be f a i r t o say t h a t 

the best support f o r v a l i d i t y of the two approximations i s t h a t t h e i r 

r e s u l t s are s i m i l a r to the exact numerical c a l c u l a t i o n s . 

L e t us very b r i e f l y describe here what the approximations are. 

We f i r s t p a r t i a l wave p r o j e c t the equation (2.1) i n the t-channel 

w i t h the f i r s t term of the sum separated: 

where Â ^ and V̂^ are the t-channel p a r t i a l wave p r o j e c t i o n s of A and V. 

Vj^ i n c l u d e s the propagators, i , f and i n t are the abbreviations f o r 

i n i t i a l , f i n a l and inte r - m e d i a t e states r e s p e c t i v e l y . 

The f i r s t approximation i s c a l l e d f a c t o r i z a b l e k e r n e l approxiiriation 

The method i s j u s t t o w r i t e the k e r n e l as something s i m i l a r t o the f o l l o w i n g 

equation: 

The f a c t o r i z a t i o n i s subj e c t to the c o n d i t i o n t h a t i t r e t a i n s the c o r r e c t 

behaviour at the p h y s i c a l boundary. The method gives a (Fredholm) 

23 

denominator, D 
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from which Regge t r a j e c t o r y of r e a l and complex poles can be derived 

(Dj. = o) . . 
24 . 

The second approximation, t h a t i s the t r a c e approximation, 

f o r the eigenvalues of an i n t e g r a l equation w i t h (Fredholm) denominator 

( ^ ) i s to w r i t e ' 

and t o in c o r p o r a t e the f u l l k e r n e l s i n g u l a r i t y s t r u c t u r e i n the f i r s t 

term and t o ignore higher terms i n the denominator. The Regge poles, 

again, occur as the zeros of D i n the L v a r i a b l e . 
L 

The c a l c u l a t i o n s show t h a t the slope i s always p r o p o r t i o n a l t o 

-€«w . Supposing t h a t the intermediate states have masses 1 and 

those of i and f states are rai., one a r r i v e s a t the f o l l o w i n g numerical 

r e s u l t s f o r the lea d i n g t r a j e c t o r y (Pomeron) w i t h o(« = \ ^ 

I t could be worth s t a t i n g t h a t there i s one secondary pole near every 

negative integer, ft ( t = 0 ) . 

F i n a l l y we summarize the s e c t i o n at the f o l l o w i n g diagram. 
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ABFST equation 

=. g2 5(s - If) 

Approximate the kernel as one or 
a sum of resonances. 

P a r t i a l wave project 
i n t 

Factorizable kernel 
approximction Trace approximaticfi 

Regge t r a j e c t o r y content of ABFST 
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2.3b CfcA Model 

Another m u l t i p e r i p h e r a l model, w i t h Reggeized rungs was 
25 

introduced by Chan Hong-Mo, Loskiewicz and A l l i s o n . The modulus 

of the n - p a r t i c l e amplitude corresponding t o the model i s 

^ IK ) ( — ) ( — ) ^̂  ̂^ 
where 

fc, - CP.' I,to" 
and o<,- i s the i n t e r c e p t of the Regge t r a j e c t o r y w i t h the t = 0 a x i s . 

The constants b^, g^, c and a determine the t:. dependence, the coupling 

constant, the st r e n g t h of Regge type and phase space c o n t r i b u t i o n s and 

the energy scale r e s p e c t i v e l y . 

The idea behind the p a r a m e t r i z a t i o n of the amplitudes was 

th r e e f o l d , 

i ) t h e amplitude i s f u l l y Reggeized i f the S. of the f i n a l p a r t i c l e s 

are l a r g e . 

i i ) the .amplitude i s p a r t l y constant whenever some S.̂  are small. 

i i i ) there i s a smooth i n t e r p o l a t i o n between ( i ) and ( i i ) . 

I t i s . n o t d i f f i c u l t t o see t h a t the amplitude (2.i} f u l f i l l s these 

c r i t e r i a For instance when a l l S. are l a r g e , t h a t i s , 

S. » a 

S. » b i 

the amplitude takes the f o l l o w i n g form 

where ^; 

The equation (2.3) has the form of a f u l l y Reggeized amplitude. 

Studying the p —> f * Cn-v) "K* r e a c t i o n , CtA f i t very s u c c e s s f u l l y 
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the data f o r the s i n g l e p a r t i c l e d i s t r i b u t i o n s o f and P such as 

^''T^ and d i s t r i b u t i o n s at energies up to 16 gev/c. 

One of the p o i n t s t h a t was not discussed i n the paper i s the 

e f f e c t of the phases. I n f a c t the i n c l u s i o n of phases changes some 
27—28 

of the p r e d i c t i o n s of the model d r a s t i c a l l y . For example, a 

Reggeized phase gives a steeper slope f o r the overlap f u n c t i o n as 

s h a l l be seen l a t e r . 
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2.3c CHEW-PIGNOTTI MODEL 

The model was proposed i n 1968 and i s one of the most popular 
26 

m u l t i p e r i p h e r a l models. We s h a l l study the model i n some d e t a i l s and end 

up the chapter by saying a few words about the m u l t i p e r i p h e r a l b ootstrap. 

The f i g u r e (2.4) shows a p i c t o r i a l form of the model. The rungs 

are Reggeized and t h e r e f o r e give a c o n t r i b u t i o n of 5,- -̂ ^ to the It 

V> 

It: 

amplitude and i t s h a l l be e x p l o i t e d l a t e r . 

I n the l a b o r a t o r y frame of 

reference where p a r t i c l e as:is at r e s t and 

-b i s moving along a d i r e c t i o n , say z, 

we have the f o l l o w i n g , S 

where the transverse mass ' ^ r p i s defined as, 

and also . ' • 

The phase space element i s 

which, because of the separation of l o n g i t u d i n a l and transverse 

-kinematics could be w r i t t e n as 

Fi g . 2.4 
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I n the strong o r d e r i n g approximation ( » Vi' ) and also i g n o r i n g 
the T̂,- terms i n the we can approximate the l a s t two d e l t a 

f u n c t i o n s of the phase space by 

where 

W r i t i n g the phase space i n terms of the r a p i d i t y gap v a r i a b l e ^ j 

and making use of the f i r s t € f u n c t i c n above to do the i n t e g r a t i o n over^, ̂  

-we g e t , 

where y ^ y - K ^ - X L ^ ^ 

^ V . 

The squared amplitude i n the model i s w r i t t e n as 

w i t h v<,.̂ ,_.,,. 2r.-

Hence the c a l c u l a t i o n of QTv ̂  

- i s easy now: 
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Summing over n one gets the t o t a l cross-section 

0^ - Z c r , 

8 ««s 

t-CC--J-^^"- (2.5) 

Supposing t h a t the t o t a l cross s e c t i o n i s constant one gets 

P u t t i n g t h i s back i n t o (2.4) one obtains a poissonian type of 

d i s t r i b u t i o n f o r the t o p o l o g i c a l cross s e c t i o n s : 

w i t h an average m u l t i p l i c i t y which grows l o g a r i t h m i c a l l y : 

< r > > - ^"--C^S (2.6) 

The f a c t t h a t 07;. turns out t o be poissonian i s suggestive of 

there being no c o r r e l a t i o n s amongst the secondaries, f 2 = 0 

(see Appendix A). 

The equation (2.5) shows a s o r t of bootstrap model. I t i s 

a w e l l known f a c t t h a t the dominance of a Regge pole r e s u l t s on 

The comparison of (2.5) and (2.7) y i e l d s , 
\ 

^ 2..<C^ , (2.8) 

where " ^ t - i s the i n p u t Regge t r a j e c t o r y . The equation c l e a r l y 

i n d i c a t e s t h a t not a l l o<iU could be pomeron (unless ^ = 0 ) . 

C a l c u a l t i n g " ^ i ^ i n terms of the others 

w i t h the numerical values 

one gets 
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which does not seem to be too good. A way round t h i s i s a lower value 
2 2 

f o r g (g » 1), which means, considering the equation ( 2 . 6 ) , the 

i n t r o d u c t i o n o f c l u s t e r s . 

We end the s e c t i o n by summing up the m u l t i p e r i p h e r a l bootstrap 

model i n f i g . ( 2 . 5 ) . 

t T 
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3.1. INTRODUCTION 

The present chapter, i n a way, i s a c o n f r o n t a t i o n of the f i r s t 

two chapters i n a s p e c i f i c case study which we hinted i n the l a s t 

s e c t i o n o f the f i r s t chapter. Let us introduce the problem more 

e x p l i c i t l y here.-

We know t h a t as a d i r e c t consequence of the S-matrix u n i t a r i t y 

the f o l l o w i n g could be w r i t t e n , 

(3.1) 

where A^^ i s the e l a s t i c s c a t t e r i n g amplitude d e s c r i b i n g a + b — r &!-*\a 

and A^ i s the n - p a r t i c l e production amplitude f o r a + b - — p 1, 2, — ,n 

and d <}>̂  i s the phase space element. 

I n theory, as one understands from the equation, a 'nice' 

m u l t i p a r t i c l e amplitude i n s e r t e d t o the r i g h t hand side of (3.1) must 

be able t o generate the c o r r e c t e l a s t i c s c a t t e r i n g process. So, the 

problem we are going to study here i s t o see i f a Chew-Pignotti type 

o f model, which adequately describes the main features of the i n e l a s t i c 

s c a t t e r i n g data, i s e l i g i b l e to produce the c o r r e c t forward d i f f r a c t i o n 

peak as w e l l . I n the next s e c t i o n we s h a l l deal w i t h the problem i n 

the impact parameter space. 



3.2. IMPACT PARAMETER SPACE (HENYEY WORK) 

As i n the 2 — p - 2 processes one could guess t h a t the impact 

parameter space i s perhaps one of the s u i t a b l e places to study m u l t i p a r t i c l e 

processes at high energies. Thinking of the impact parameter as the 

transverse p o s i t i o n o f a s c a t t e r i n g p a r t i c l e one could go from (q^^., q^) 
"* 29 

space t o ( q , b) space. The Fourier type o f tran s f o r m a t i o n e s t a b l i s h e s 

a r e l a t i o n s h i p between the m u l t i p a r t i c l e amplitudes i n these two spaces 

(see F i g . 3.1 f o r the n o t a t i o n s ) 

.2) 

The transverse momentum conservation 9 - f u n c t i o n has made the tran s f o r m a t i o n 

a l i t t l e d i f f e r e n t from an o r d i n a r y Fourier t r a n s f o r m a t i o n . The inverse 

form of the equation (3.2) i s v j r i t t e n as f o l l o w s (see the Appendix B f o r 

i t s d e r i v a t i o n ) , 

Using the u n i t a r i t y r e l a t i o n together w i t h the separation of l o n g i t u d i n a l 

kinematics from t h a t of transverse^one ends up w i t h . 

(3.4) 



65 

( F i g . 3.1) 

where 

I s - - '^H - fs/2. 

i s the momentum t r a n s f e r i n e l a s t i c s c a t t e r i n g ( fc -K. - ^ ) . 

The t r a n s f o r m a t i o n o f A and A* to the impact parameter space i n the 

equation (3.4) (b and b' r e s p e c t i v e l y ) by using equation (3.3) and 

doing the i n t e g r a t i o n s over q_ and b. i n t u r n y i e l d s 
j 

(3.5) 
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The a p p l i c a t i o n of equation (3.2) on (3.5) r e s u l t s on 

(3.6) 

The equation (3.6) i s the c e n t r a l r e s u l t of the reference 10. I t 

resembles an o p t i c a l theorem a t each impact parameter. The equation 

_states t h a t the imaginary p a r t of the e l a s t i c s c a t t e r i n g i s given by 

the sum of a l l cross-ssctions at each impact parameter. The a p p l i c a t i o n 

of the r e s u l t on an exponential m u l t i p e r i p h e r a l model f o r the m u l t i p a r t i c l e 

amplitude w i t h the approximation t h a t momentum t r a n s f e r s do not include 

the l o n g i t u d i n a l p a r t r e s u l t s on the f o l l o w i n g form f o r the Im A^^, 

X'vn/^'^Cfc) ^ e x p [ < ^ ' > ' ^ ' ^ - ^ ) ^ ' t ] , (3.7) 

where n i s the m u l t i p l i c i t y , R i s the step size i n impact parameter 

space and "̂X*"̂  i s an average over c e r t a i n summation of Feynman 

type q u a n t i t i e s . / and R vary very slowly w i t h energy such t h a t 

they could be considered as constants (the paper uses these values f o r 

< % ^ } and R̂  at n = 10 : <0l'> = .6 and = 10.9 gev"^). 
30 

The comparison of (3.7) w i t h data ( i . e . the overlap f u n c t i o n s : 

the imaginary p a r t of the e l a s t i c s c a t t e r i n g w i t h the c o n t r i b u t i o n o f 

e l a s t i c s c a t t e r i n g i t s e l f excluded) shows t h a t the m u l t i p e r i p h e r a l 

model introduces a bigger slope which grows very f a s t w i t h energy 

(see f i g u r e 3.2). 



6? 

H lOf. 

F. = 100 lab 

t(Gev2) 

F i g 5.2 

3.3. THE WORK OF, JEDACH-TURNAU 

The approximation of t ^ -yrj t ^ , which was ap p l i e d i n the 
31 previous s e c t i o n , was the p o i n t of c r i t i c i s m by Jedach and Turnau. 

What they claim i s t h a t the replacement of «i)c|o of each i n t e r n a l 

l i n e of the m u l t i p e r i p h e r a l chain by *̂ t,- i s not at a l l convincing. 

They f i n d t h a t the bounds on transverse momenta are provided by the 

l o n g i t u d i n a l p a r t , t,-^ , o f momentum t r a n s f e r r a t h e r than i t s 
T 

transverse p a r t t ^ . Let us see belov; how the q^ dependence enters 
the c a l c u l a t i o n through t . , 
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hi b. ̂  b, 

where 

and 

t ^ ^ could be w r i t t e n i n the f o l l o w i n g form: 

The i n s e r t i o n o f momentum and energy conservation r u l e s 

l i s I «»^l'-H 

i n equation (3.8) gives 

^ 1 l> j ^ ^ ^ J C t i - t i 

(3.8) 

since 

where 

thus 

To make the transverse dependence of t . ^ more e x p l i c i t we do some 

approximations; 
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supposing equal spacing i n the r a p i d i t y s t a t e one gets 

21 e. = < ^ > ^ - ^ 

t 

Making use of these two r e l a t i o n s and 

e oc e « «-

i n the equation (3.9) one comes t o the approximation t h a t 

fc,' - <'>- > (3.10) 

where v(,. ,M.>. , 

i s the gap size and experimentally i s a small number ( di<. '/n ) . 

Therefore the transverse momentum d i s t r i b u t i o n i s c o n t r o l l e d 

by the l o n g i t u d i n a l p a r t o f the momentum t r a n s f e r . Thus approximating 

= 0 r e q u i r e s a bigger value f o r ^ m order t o f i t the 
T 

transverse momentum d i s t r i b u t i o n , hence strong shrinkage. Taking t ^ 

as w e l l as t£^ i n t o c o n s i d e r a t i o n , Jedach and Turnau a r r i v e at the 

r e s u l t t h a t the shrinkage i s i n accord \d.th data but has smaller values, 

i n two versions of m u l t i p e r i p h e r a l model CtA and CP, ( F i g . 3.3). The 
32 

same conclusion has been reached by Teper. 
The s i t u a t i o n becomes more i n t e r e s t i n g i f we consider another 

33 

paper by Henyey. There he claims t h a t data i s i n d i c a t i v e of the f a c t 

t h a t amplitudes have e i t h e r no, or at l e a s t l e s s , dependence on the 

l o n g i t u d i n a l p a r t of the momentum t r a n s f e r . Let us b r i e f l y e x p l a i n 

the argument. Equation (3.10) shows t h a t t _ j ^ ^ i s a r a p i d f u n c t i o n o f 
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the r a p i d i t y gap d. Since experimentally d i s a small number the 

f a c t o r 
- A 

w i l l be a large one and t h e r e f o r e , i f t^^ present, w i l l dominate t ^ 

(see f i g . 3.4) • 

T h e o r e t i c a l l y , from equation (3.10), one has 

Comparing t h i s w i t h data ( f i g . 3.5) one f i n d s no s i m i l a r i t y , so possibly 

the dependence of the amplitude on t , . ^ i s very weak. 

However, the e l a s t i c slope f o r an amplitude of the form 

M r -c 

34 where t i s the t o t a l momentum t r a n s f e r , i s 
1 

S <Cn-i) 'Xr > . 

Comparing t h i s w i t h the slope of equation (3.7) one concludes t h a t the 

i n c l u i s i o n of t . ^ only replaces 0̂  by % , Since ^:s.8 

the previous r e s u l t of Henyey has not been modified too much. Therefore 

whether or not one enters t ^ ^ i n t o the c a l c u l a t i o n s the problem of 

p r o p o r t i o n a l i t y o f slope" and m u l t i p l i c i t y , which i s r u l e d out by data 

but p r e d i c t e d by m u l t i p e r i p h e r a l models ( f i g . 3.5)j remains a mystery. 

The i n c l u s i o n of phases does not seem to remedy the problem e i t h e r . 

For i n s t a n c e , the e f f e c t of corresponding a phase of the form of 

^ j ^ l c*. Ccc) J , where 
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<) 
t o each of the l i n k s not only does i t not help t o cure the problem 

(27 32) 

but makes the s i t u a t i o n worse too ' : the slope, now, increases 

f a s t e r l See f i g u r e ( 3 . 7 ) . 

I n the next chapter we s h a l l i n v e s t i g a t e the e f f e c t of c r i s s 

cross diagrams i n the u n i t a r i t y equation to see i f i t could help to 

overcome the problem. The e f f e c t of c l u s t e r s w i l l also be studied. 

But before ending the chapter we would l i k e t o introduce the random 

walk p i c t u r e . 



75 

§ 
• H •P O C 

O 
0) 

o 

10 100 1000 
S (Gev^) 

F i g 5.7 



76 

3.4. THE RANDOM WALK PICTURE 

We might have introduced the idea of the random walk picture 

r i g h t a f t e r the equation 3.7, but we postponed i t to a separate section 

so that not only the flow of the text was not deviated but we could 

also derive the equation. 

The part of the m u l t i p a r t i c l e amplitude we are interested, i n 

terms of the (n-1) independent transverse momentum transfer , Q-T̂ - f 

i s 

K ^ T J ' Jv\ ^ . (3.11) 

with the notations as i n figure 3.1. 
40 

The overlap function i s ^ 

(I) jTi <^X- ̂  

where i s the momentum transfer i n elasti c scattering and we have 

Hence ^ " ' ' " j ̂  AO 

T 1. O 

w r i t i n g ^ i n terms of an average, 

one obtains, ^ . C"-.)<'X'> 
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which i s the equivalent of (3.7) i n A - space. 

Defining the radius, R, by 

we note that 

which i s a way of presenting the random walk.notion. 



C H A P T E R F O U R 

INTERFERENCE DIAGRAMS 
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4.1. INTRODUCTION 
28 Since the o r i g i n a l paper of Michejda, Tumau and Bialas 

there have been many discussions of whether the multiperipheral model 
of p a r t i c l e production gives, through u n i t a r i t y , the correct t-dependence 
of e l a s t i c scattering. We saw i n the t h i r d chapter that neither Henyey 
nor Jedach and Turnau type of calculations, with or without including 
phases, helped to improve the sit u a t i o n i n which the predicted radius was 
too small i n the lower energy region and augmented too rapidly as a 
function of energy compared to experiment. 

In t h i s chapter we shall t r y to investigate the effect of the 

interference diagrams i n the u n i t a r i t y equation and see i f they 

could improve the s i t u a t i o n . We shall begin f i r s t by reviewing some 

of the e a r l i e r attempts which were made along this direction. Then 

the way we have handled the diagrams w i l l be presented. 
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4.2. SOME EARLIER WORKS 

I t has usually been the case that people make the assumption 

that the interference terms contribute to the calculations negligibly 

and therefore they are discarded completely. The supporting argument 

i s that graphs with crossed lines have larger t values than the no-crossed 

ones and therefore because of the sharp cut of f i n t they are damped. 

This argument does not, however, show that even i f a single crossed l i n e 

graph i s small, the sum of a l l of them would be small too; since there 

are so many of them. 

Despite t h i s argument there have been several attempts to consider 

the interference diagrams i n d i f f e r e n t multipcripheral models. For 
35 

instance Snider and Tow discuss the problem i n an ABFST type of model 
and Teper ' uses a Reggeized version. The effect of the interference 

37 

diagrams on r a p i d i t y correlations has also been studied. We b r i e f l y 

review these calculations. 

I n the framework of ABFST model. Snider and Tow consider the 

following amplitude for — n x process corresponding to f i g (4.1). 

The four momenta of the equation (4.1) are defined i n the same figure. 

T2 i s the o f f shell 2 —v 2 X scattering amplitude. 

( f i g . 4.1) 
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Insertion of t h i s amplitude i n the u n i t a r i t y equation and l e t t i n g 

the lines cross would mean that there w i l l be some additional terms, 

therefore the kernel as well as the inhomogeneous term has to be 

modified. Considering the case where n = 4, they group the interference 

terms i n three d i f f e r e n t categories as shown i n f i g . 4.2. 

III.LUUQ 

(Fig. 4.2) 

The terms on the r i g h t hand side show the sum of 4, 16, 4 graphs of 

the f i g u r e . They are the uncrossed, single crossed and double crossed 

terms. The figure shows that the int e g r a l equation, from the forward 

absorptive p a r t , w i l l be transformed from i t s standard form to something 

• j i i n i n i A 

more complicated such as the following. 



/ \ 

Of course the new kernel i s not complete i n that i t is not capable of 

generating terms l i k e 

The authors believe that the contribution of terms similar to these 

w i l l be very small, which i n turn means that there i s no need to 

have i n f i n i t e number of terms i n the kernel. Using the trace approximation 

to get the position of the pole and comparing that with the result one 

could get from the standard kernel they conclude that the effect of 

criss cross diagrams as f a r as the output vacuinn pole position i s concerned 

i s not important. Of course i t i s quite straightforward to note that 

t h i s small change w i l l amount to a larger change i n the topological 

cross sections at high energies. This i s part of the story. The other 

part concerns those arguments which are i n favour of the importance 

of the interference diagrams. In reference 37, f o r example, one finds 

that the inclusion of these terms i n the integrated six prong r a p i d i t y 

correlation function of H pairs i n K'*p—^ six charged prong states 
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brings the theory to match very well with the experiment ( f i g . 4.3). 
32 

In a similar way to Snider and Tow, Teper also considers 

diagrams which are a mixture of only neighbouring crosses and 

the uncrossed ones. He uses a Reggeized model and concludes that 

the additional terms have the effect that they bring the energy 

dependence of the slope of the overlap function closer to that of 

the e l a s t i c scattering but with the drawback that the absolute size 

of the slope i s now much less than the one observed experimentally. 

I n t h i s work we add together the effect of the interference 

diagrams. We f i r s t describe our method of calculation on a 

p a r t i c u l a r diagram. 
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4.3. GENERAL TREATMENT OF THE DIAGRAIIS 

The input to the model i s shown i n f i g (3.4), where the t-dependence 

of the amplitude arises from a factore e ' , associated with each int e r n a l 

l i n e . The value of % can be found by conqiaring with experimental q^ 

d i s t r i b u t i o n i n inclusive processes. The other 

parameter of the model i s the mass of the Q,' 

produced objects and t h e i r m u l t i p l i c i t y . I f 

we assume that they are pions then the mass 

i s known and we can read the m u l t i p l i c i t y 

d i r e c t l y from data. However i t i s well 

known that studies of correlation require 

the production of clusters decaying into 

several pions, so i t i s necessary to assume 

a value of the cluster mass and the 

average m u l t i p l i c i t y of each cluster (Fig. 4.4) 

(a mass of ^fsb = 1 gev has been allocated f o r the cluster mass). 

Let us rewrite two of the equations of the t h i r d chapter here again. 

11) »̂  ̂ f i r i<'T,-V)l -
(4.2) 

(4.3) 

where the r a p i d i t y i s defined by 
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and P i s the centre of mass momentum ^ ~ 4P ) • 

As mentioned e a r l i e r the amplitude w i l l be supposed to have the 

following form, 

t:-_ (p„-r^. ) ' 

•M r»i 

We have defined the longitudinal variables q^ as 

which are related to the cluster mass. So, by 

Using the momentum conservation. 

(4.4) 

(4.5) 

An important property of the components q i s that under Lorentz 
38 

transformations along the longitudinal directions they transform l i k e 

so that t h e i r r a t i o s w i l l be invariant under those transformations, 
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4.3.a. The Longitudinal Calculation 

For the time being we shall not consider the transverse part i n 

equation (4.6). I n the same equation ( - '** ) i s small 

so that with a very good approximation we can wr i t e (4.6) as 

j 

(4.6a) 

where we have defined 

We s h a l l define the matrix ^ij- by the following equation. 

(4.7) 

M,. i s an n x n matrix and can be easily calculated 

0 0 

0 0 

0 0 

n-1 n-2 n-3 . . . 1 0 

As the imaginary part of the amplitude depends on the square of 

the amplitude, there s h a l l be another t-dependence i n the exponent 

which may conveniently be w r i t t e n as 

(4.8) 

( I ' 
where Â *̂ of (4.8) i n general w i l l be a permutation of A\ i n (4.7), 
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We define a new matrix M as the sum of these two matrices. 
Therefore 

i s the exponential of the amplitude squared i n (4.3). 

Realizing that 

we can wr i t e the longitudinal part of equation (4.3) i n the following form 

J / I I J c S(fs-I)(.)S(^-£ T.) • 
• o* • •«•» 

Defining a new dimensionless variable i n place of by 

X.' 
7 f ' 

we get 

(4.9) 

unfortunately there seems to be no exact analytic way of doing t h i s 

i n t e g r a l . So to proceed we maximize the exponential by those ^ti » 

say 5 ' , which minimize M,-j " î- \^ , 

and keep only the terms which are of the order of .̂ or t 

^* are subject to the two constraints which are imposed by the two 

delta functions of (4.9). 

Hence, 
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where 

Note that the terms linear i n , because of the choice of the J*. , 

cancel. Writing the 6-functions i n their integral form 

we get, , 

.•(•cv f j ^ ; - a s . ^ . j £.Co 

(4.10) 

The integration gives^ 

(4.11) 

Now doing the k and 1 integration one concludes that 

* proceeding from (4.10) to (4.11) we have assumed that Z is not a 
singular matrix. I f i t were singular we must have proceeded i n 
a d i f f e r e n t way. See the appendix C for the latter.case. 



where 
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-L, as we sh a l l see, w i l l serve the purpose of weighing d i f f e r e n t 

interference diagrams and w i l l appear as a coefficient of the term 

which includes the radius. 
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4.3.b. The Transverse Calculation 

Having dealt with the longitudinal part of the amplitude we 

sh a l l discuss the transverse part here. The procedure w i l l be more 

or less as before. We are mainly concerned with the term which we 

suppressed i n (4.6), 

which corresponds to the transverse part of the OTiplitude, 

As before l e t us define an n x n and symmetric matrix Z-,y by 

the following equation. 

The amplitude, now, looks l i k e , 
Oi ^ _^ 

One can transform t h i s to the b. space using equation (4.2), 
• 

where 

( r i " ; '̂̂ ^ J (4.13) 

and 

Matrix i s n x n and symmetric. 
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Let us rewrite the transverse part of equation (4.3) again. 

Once more we need to permute (4.13) 

and 

Hence, 

where, 

Matrix B^^ i s n by n and symmetric. I t could be, and i n most cases i s , 

singular. I n what follows we shall assume that i t i s singular. For 

the other case refer to appendix D. The fact that B̂ , i s singular 

does not mean that the in t e g r a l (4.14) w i l l be divergent at a l l . The 

reason for t h i s , i s the existence of the S-functions. This makes i t 

possible to get r i d of the zero eigenvalue corresponding to 

matrix B as i s explained below. Writing the delta function of (4.14) 

i n i t s i n t e g r a l form we get, 
i f If- 'Kih'W 

A 

According to appendix E one can do the integration over d b^ to get 

where 
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and i s the matrix which diagonali^es B̂ ^ to produce the 

eigenvalues ^ { . Matrix F̂ . i s defined i n the appendix E. Using 

the S-function, one can easily do the integration over x, 

where 

and 

One, therefore, f i n a l l y ends up with 

TCb) - ^ ^ ( - — ) . (A.15) 

The radius i s customarily defined according to 

(4.16) 

I t i s t h i s that Henyey finds to increase very sharply as energy 

increases and indead we confirm and see the same effect (Fig. 4.5) using 

his parameter values ( f o r uncrossed diagrams). 

Before going to compare d i f f e r e n t diagrams and see what t h e i r 

effects are, i t seems most appropriate to say a few words on the 

parameter /\ , The next section i s devoted to thi s and the way one 

assigns a value by considering the transverse momentum d i s t r i b u t i o n . 
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4.4. TRANSVERSE MOMENTUM DISTRIBUTION 

We, i n t h i s chapter, introduced the parameter y\ i n equation (4.4). 

I t i s clear i n there that ^ governs the t - d i s t r i b u t i o n of the 

amplitude. According to what t should be approximated t o , r e f e r r i n g to 

Henyey or Jedach-Tumau calculations, /\ can take values as high as 5.5 

or as small as 0.5. We shall assign that value f o r J\ which gives 

the best f i t to the transverse momentum d i s t r i b u t i o n s . 
8 

The invariant cross-section i s defined as (with the notations of f i g . 4.4) 

since we are interested i n the transverse part of the calculation we 

sh a l l consider that f i r s t . 

where 

T. i s the squared amplitude i n Henyey Case ( t •as t ) . 

L . i s sum of two symmetric matrices, 

S p l i t t i n g the matrix L.^ to a lower matrix N_ and the remaining 

we get 
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The f i r s t 6-function makes the integration over ?(̂ ^ easy, 

Writing the delta function i n the integral form and doing the integration 

over 9«jT̂ . and ignoring the uninteresting numbers l i k e iTf we 

obtain, ^ 

where " _̂  

The integration over x i s straightforward now; we get, 

(4.17) 

with 

and 

Fortunately the longitudinal calculation is what we have already 

performed. Therefore the only effect we may get from that i s the 
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following transformation f o r <<\ of (4.18), 

where £ i s given i n (4.12). 

Averaging over a l l f i n a l state transverse momentum distr i b u t i o n s 
39 * we f i t the data i n both Henyey and Jedach-Turnau type of calculations 

( f i g . 4.6). The best values one gets i n the two cases are, 

Henyey type 5̂  = 4.1 

Jedach-Turnau type A = 2.8 

We would l i k e to point out that i n determining these values we have 

considered only the uncrossed diagrams. Another point worth mentioning 

here i s that energy v a r i a t i o n has l i t t l e effect on the parameter ^ 

as i s clear from figure (4.7). 

Obviously the transverse momentum d i s t r i b u t i o n seen experimentally 

i s that of the observed p a r t i c l e s , yet we f i t the data with the calculations 

based on the clusters. Of course we might expect that there would be seme 

ef f e c t due to the decay of the clusters into the observed particles"but 

we anticipate that t h i s w i l l not be too important. 

* For Jedach-Tumau calculations see the next section. 
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data 

S = 102.6 Gev^ 

_ , s = 810 Gev^ 
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Fig h-.Ja 
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data 

S = 557.5 Gev^ 

S = 810 Gev^ 

Jedach - Turnau 

F i g if.7b 
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4.5. THE JEDACH AND TURNAU EFFECT 

As i t was mentioned i n section 3 of the t h i r d chapter one 

gets a transverse dependence from the longitudinal momentim transfer, t ^ ^ . 

This i s suggested to be taken into consideration as wel l . Here we shall 

demonstrate the change the additional term imposes on the calculations 

of the previous two sections i n short. 

Inserting 

K 

i n equation (2.14) we get 
I T . 

The f i r s t term on the r i g h t hand side i s essentially same as (3.6a). 

Therefore the longitudinal calculations are l e f t unchanged under th i s 
T 

e f f e c t . The second term i s new and must be added to t ^ , 

Hence, the inclusion of the Jedach and Turnau effect w i l l only change 

the diagonal entries of the matrix i n the subsections(3.3b) and (3.4) 

and, therefore, the remaining calculations w i l l be as they stand. 
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4.6. THE EFFECT OF INTERFERENCE DIAGRAMS 

Now that we have developed a method such that every individual 

diagram could be calculated separately we turn to i t s application. The 

numerical calculation has been performed i n the Rutherford High Energy 

Laboratories (REEL) 360 computer where CERN minimization routines have 

been * ^ r * ' - ^ 'used. The program has been developed i n such a way that 

given the parameter values and the type of permutation, i t calculates 

transverse momentum d i s t r i b u t i o n and the radius as well as the other 

required quantities automatically. Then i t averages over a l l interference 

diagrams, at a given energy, to give the effective quantities. 

To cut down the computer time and since omission of some diagrams 

such as those i n figure (4.8) are j u s t i f i e d according to the results 

one gets from the numerical calculations, we have reduced the number of 

diagrams corresponding to 3, 4, 5 intermediate states to 28 out of possible 

150 ones. These interference diagrams have been shown i n f i g . (4.9). 

Of course some of the diagrams, by symmetry, are representatives of two 

or four terms. For example, there are three more terms similar to diagram 

nimber 7 of fig - ( 4 . 9 ) . . Thus, by considering these extra terms, we i n 

actual fact are dealing vrith some 65 diagrams. 

The cluster production has been invoked both i n Henyey and Jedach-

Turnau papers to improve the s i t u a t i o n . Here we too shall consider the 

e f f e c t of clusters as well and check how important they play a role i n 

achieving a better agreement with data. 

The central aim i s to see how the radius behaves as compared to 

data. I n figures (4.10) and (4.11) we plot the radius of uncrossed 

diagram, with and without the formation of clusters, f o r Henyey and 

Jedach-Turnau cases respectively. I t i s evident from the pictures that 

cluster formation improves the situation s l i g h t l y but does not solve the 

problem. This i s one of the conclusions o.f--the^eference 32 as w e l l . 

2 9 JUL 1976 I i 
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Taking into account the interference diagrams we arrive at 

the figure (4.12) where cluster formation i s also included. Surprisingly 

enough, f o r the r e a l i s t i c values of /\ the inclusion of the interference 

diagrams does not overcome the problem either. I n fact , t h e i r contribution 
2 

i s so l i t t l e that as fa r as R i s concerned one could neglect a l l of the 

crossed diagrams. 

The parameter 5\ plays a crucial role i n the evaluation of the 

importance of the crossed diagrams. This seems to be part, i f not a l l , of 

the reason f o r the Teper's conclusion of up to 30% contribution to the 

slope from the crossed diagrams. To support this idea we plot yi-*" as a 

function of ^ i n (4.13) where 

The rapid v a r i a t i o n of JC" at small /I j u s t i f i e s the point, at least 

p a r t i a l l y . Using d i f f e r e n t values f o r S does not improve the case much 
o 

2 
eithe r . I n figure 4.14, f o r the sake of completeness, we plot R versus 
S f o r d i f f e r e n t values of the parameters 'X and S . 

o 

Therefore, we, disappointingly, come to the conclusion that adding 

the interference diagrams leaves the problem of sharp increase of radius, 

or a l t e r n a t i v e l y the slope of the pomeron, unchanged. We shall t r y to 

demonstrate another dynamics, i n the next chapter, which may be a solution 

to the problem. 
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I l l 

5.1. INTRODUCTION 

We t r i e d to f i t the data of the radius as a function of energy 

for the reasonable values of A which sa t i s f i e d the transverse 

momentum d i s t r i b u t i o n i n Chapter 4, with due regard to the interference 

diagrams. But, sadly enough, we concluded that these extra terms could 

not help us i n removing the d i f f i c u l t y which was introduced i n Chapter 

three. Therefore one should seek the answer somewhere else. But. before 

going to introduce the new model, l e t us b r i e f l y sketch some of the 

attempts which have been made towards improving the problem of 

during the l a s t two years or so. 
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5.2. WHAT HAS HAPPENED DURING THE LAST TWO YEARS? 

The si t u a t i o n studied so f a r , b r i e f l y , i s as follows. The result 

of Henyey on the problem of the slope of the pomeron, which could be 
^ 3 

derived model independently as w e l l , i s 

where (5.1) 

i s the density of part i c l e s per un i t r a p i d i t y i n the central region. This 

r e s u l t was c r i t i c i s e d by Jedach and Turnau on the ground that one should 

use f u l l momentum transfer and therefore (5.1) no longer holds. But, 

of course, then one would have some undesirable correlations between 

the transverse and longitudinal components. 

Since then there have been a number of attempts and out of them 
y 40 41 42 the works of Kubar-Andre et a l , C. Michael and Bialas and Sakai 

have thrown some l i g h t onto the problem. 

For instance, allowing some correlations between neighbouring 

transverse momentum transfers Kubar-Andre et a l ^ ^ conclude that each 

step i n the impact parameter space i s followed by a step i n the opposite 

d i r e c t i o n and therefore the radius remains small. This, i n turn, means 

that the random walk should be replaced by the compressed walk: 

(random walk) 

(compressed walk) 
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This easily follows by transforming the amplitude from - space 

to i t s conjugate Bj - space; that i s from 

•'4 
to 

A. <clT ^ [ - i 
•A) 

The symmetric matrix i s defined by the following. 

I (• 0 o o o 
f I 0 O 6 - O 

" i j ~ C t I 0 0 O 
O 0 f- I 0 ^ 
.....^ 

One, now, gets for the average ^B^ . B̂  ^ 

let. = » 

0 elsewhere 

This i s the compressed walk as f i s negative. 

The afccommodation of spin i n the both ends of the multiperipheral 

model, on the other hand, seems to produce a non negligible effect. 

Bialas and Sakai*^ f i n d that the contribution to the overlap slope a r i s i n g 
-2 

from the spin of the leading clusters i s around 8 gev . They also 

conclude that the shrinkage could only be determined by the central region 

of the multiperipheral model. The points mentioned here have been best 
44 

summed up i n a paper by B.R. Weber. 



5.3. THE MODEL 

The form of the l i n k dependent amplitude which i s considered 

here and corresponds to the figure 5.1 i s supposed to be 

of the following form, "ol 

J (5.2) 

fix 
fix 

where 

( f i g . 5.1) 

The reason why the term i3j ^ j - t \ taken into consideration 

i s due to the following reason. 

which means that as ^'/l. i s a constant and fi^' - type terms have 

already been considered therefore produces nothing new. So 

the obvious thing to do at t h i s stage i s to consider ^i+v type terms. 

To proceed we w r i t e O-j^i. i n terms of (3^ . 

t j according to (4.6) may be w r i t t e n i n the following form, 

(5.3) 

(5.4) 
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The two terms i n brackets of (5.3) i n terms of x's become. 

since 

where & i s the r a p i d i t y gap size, 

therefore, 

h-V 

Hence, 

(5.5) 

where • . . '/n-v 

Going back to Qj we w r i t e . 

The Qj Qj^2 ^̂ '̂ ^ requires the calculation of (qj+j^ + ^° 

(5.3). Using (5.5) and (5.6), 
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.. Js>CCrx.)(r>c.-MV/̂  ^ ^ 

2 ^ Bearing i n mind that = Qj , the exponential term of (5.2) could 

conveniently be w r i t t e n as, using 5.4 as w e l l , 

(5.7) 

where j . 

Let us s p l i t into transverse and longitudinal parts, 

where . i * , t 'A i 

(5.8) 

J 

Now we shall be dealing with each of them i n the same way as i n the 

fourth chapter. 
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5.3a LONGITUDINAL PART OF THE CALCULATION 

The procedure here w i l l be almost exactly as the calculations of 

4.3a. Transforming x's by, 

F.^ becomes, . i j n 

where 

and 

Summing over a l l j ' s we get. 

= _ ft, Mi" t r i . (5.9) 

where i '/, 
0> -

and 

(u ^" c r 'I^S, 4̂ '̂ . 
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Remembering that the o r i g i n a l idea was to evaluate, 

r 
o r a l t e r n a t i v e l y , using 5.y, 

where the following transformation has been applied, 

ene, making use of the results obtained i n section 5.3a, obtains, 

(the matrix 2 there has been replaced by M^ here), 

, /j^v'' - 1 — 
SoiVx^ C^t^AH)"'- VA,y • 4f^f^.p,'- , i f W not singular 

(5.10) " 

i f M singular 

where 1) , Vj_ and ^ have been defined according to (4.12)' doing 

t h i s calculation we did not take into effect the dependence on transverse 

momenta, q l , of F.^. This w i l l be dealt with at subsection 5.3c. Now 
i ^ 

we t u r n to the transverse part of the theory. 
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5.3b TRANSVERSE PART OF THE CALCULATION 

Let us define 

T 
then the transverse part of the exponential, F̂  , becomes. 

hence, 

where the symmetric (n x n) matrix XV • i s defined by, 

with 

The matrix L̂ '' , with the exception of the inclusion of the factor y^. 

i s the same matrix, as i n 4,3b. 
5" T 

The f i n a l form of ^ F , now looks l i k e , 
J J 

(5.11) 
n-» Kit . 

0=1 ** 

where the n x n and symmetric matrix £. is defined by 
(0 0> 4 - k-A.v 

This form of the transverse part (5.11) f a l l s into the previously 

defined category (section 4.3b) and, thus, shall not be treated i n 

f u l l here. 
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The f i n a l answer i s 

L 

where 

wit h the notations already been used i n Chapter 4. 

The radius, accordingly, i s defined as, 
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5.3c THE JEDACH-TURNAU EFFECT 

The effe c t enters the calculation through Ŝ , 

T 
we w r i t e F̂  , with t h i s i n mind, 

F i n a l l y , 

*. Ay 

iM) ^ ^ '̂  ,1/1. 
where iL, = T (̂ -v S S J . 

The l a s t term i s the one which was absent from the calculations of 

subsection (5.3a) and should be added to (5.3b) which w i l l make the 

diagonal entries of the matrix Jtl^j s l i g h t l y modified. 

Noting that the transverse momentum d i s t r i b u t i o n formula i n 

th i s case w i l l be same as the one i n the fourth chapter, with the 

replacement by j6.^j, we f i n d the most suitable values for /\ and ^ 

(fi g u r e 5.2) and then plot the radius as a function of energy i n the 

figures (5.3) and (5.4) i n both cases. I t i s obvious from Fig. 5.3 

th a t , now, the value and the slope of the radius, i n Henyey's case, 

agrees with the experiment very w e l l . For comparison we plot the 
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r e s u l t of the fourth chapter as well. In f i g . (5.4), where the Jedach-

Tumau calculations have been included, s t i l l the problem remains 

unsolved and we get no agreement with data. 
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5.4 ON THE PARAMETER ^ 

In t h i s section we would l i k e to see what sort of effect 'J* 

introduces and why should i t be the case that i t adopts an opposite 

sign to that of the previously defined parameter ^ . 

We remember that T was introduced by the following type 

of equation. 

I n order to understand t h i s l e t us make use of the following, 

= - $ C V « H : V . A ? Cfli'-.aL) • 
As we should SUB over j, the summation running from 1 to n-^ for 

the interference term only, we get, 

J-_l J = l 

One easily writes, 

whence, 

Now i t i s easier to see what i s going on since /A(flj) could now 

conveniently be w r i t t e n as, 

wit h j ^ ^ J ^ ^ 

The f i r s t factor i s the term which was known from the previous chapter, 
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with the only difference that the coefficient ( /i-l''*! ) i s smaller 

allowing a slow energy v a r i a t i o n for the radius. We are not interested 

i n the l a s t term and indeed nothing much could be said about i t . The 

second factor i s new. I t i s obviously not varying with energy and i s 

j u s t a constant. This i s the term which gives a constant contribution to 

the magnitude of the radius. By choosing suitable values for the two 

parameters one could bring the magnitude and the slope of the radius to 

the point that would agree with data, as i n f i g u r e 5.3. 
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5.5 CONCLUSIONS 

We became fa m i l i a r with the problem the radius i s concerned 

wit h i n the t h i r d chapter. There we sav: that, by adjusting the 

parameters to produce the correct transverse momentum d i s t r i b u t i o n , 

the radius rises too sharply as the energy increases i n the m u l t i -

peripheral model. There have been some speculations f o r some time that 

perhaps the interference diagrams, created by the u n i t a r i t y , might 

have been helpful i n remedying the sharp increase of the radius and i n 

actual f a c t there were some attempts along t h i s l i n e which had taken 

the nearby crossed diagram i n the ladder. 

I n the fou r t h chapter, t r e a t i n g a l l prominent diagrams on the 

same foo t i n g , we concluded th a t , as long as the radius i s concerned, the 

contribution of the nl - 1. diagrams, as compared to the one uncrossed 

diagram, i s quite unimportant and therefore t h i s provides us with no 

solution. • 

Attempting to solve the problem of the radius, a new alternative 

was introduced i n chapter 5. This time we l e t the amplitude be l i n k -

dependent as well i n the multiperipheral context. This idea has been 

the subject of some recent papers where they take the nearby l i n k 

correlations into consideration-(transverse part of momenta only). I t 

i s shown i n the text that considering f u l l momenta Qj Qj+j^ ^VV^ °f terms 

produce essentially nothing new. So we concentrate on Qj+2 terms. 

We show that the modification to the basic amplitude i s quite adequate 

i n describing the energy dependence of radius along a big range of. 

energy. The agreement with data i s very good and may be considered as 

a support to the model. 
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I n t h i s part we would l i k e to show that i f the d i s t r i b u t i o n of 

O;,versus n i s poissonian then the two p a r t i c l e correlations function 

i.^ i s zero. 
i s of the following form: 

(Al) 

and f ^ i s defined as 
• f ^ , <nCH-i)> - <»v>^ 

Substituting (Al) i n (A2) 

|:»(3;a) X 
(A2) 

4 -

since we have 

»> • K I 

and 

thus 



A P P E N D I X B 

THE INVERSE TRANSFORMATION OF (3.8) 
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The equation 2 of chapter 3, suppressing the longitudinal variables, is 

(Bl) 

We have ignored the uninteresting factors of 2 .We shall make 

the ansatz that equation 3 of the same chapter is the inverse 

transformation of (Bl) and then v e r i f y that i t i s a l l r i g h t . 

(B2) 

(Bl) and (B2) could be combined together to produce 

(B3) 

The integration over b^ i s simple: 

f <c7t'%')\*^"^iC^n-^-0'^-

(vf^vv; 

The integration over the remaining b / s , i n turn, w i l l r e s u l t on: 

2 2 Now, leaving d q̂. out, the integration over d q^ by making use of the 

S-functions yields 



155 

Let 

then the q̂ ^ integration produces. 

The Lorentz invariance implies that l.h.s of (B3) and r.h.s. of (B4) 

are the same, which t h i s i n turn implies (Bl) and (B2) are inverse 

transformations of each other. 



A P P E N D I X C 

AN INTEGRATION (CORRESPONDING TO 4.10) 
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I n the process of integrating over £^ i n (4.10), we had assumed 

that the matrix Z^j was not singular. There are occasions, such as the 

uncrossed diagrams, where 2^^ becomes singular. The singularity is due , 

to the fact that the last column of the matrix has zero entries. Because 

of t h i s , the procedure from (4.10) to (4,11) w i l l d i f f e r s l i g h t l y as we 

sh a l l explain below. ' 

Separating the l a s t column of Ẑ ^ from the others, 

Z.. i s one order less than Z.,, where the l a s t row and column of 2 are 

taken o f f . Since Z. Vi = 1 , n, i s zero thus 
i n 

Writing 6-function i n i t s integral form and then doing the €^ integral 

f i r s t one finds 

^^^^ '^l-^^^Hiiin I 

where 



A P P E N D I X D 

AN INTEGPXATION (CORRESPONDING TO 4.3b) 
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We s h a l l repeat the calculation ot subsection 4.3b where the matrix 

B^j i s not singular. Let us rewrite the equation 4.14 here. 

Rewriting the S-functions i n th e i r integral form and performing the b^ 

int e g r a t i o n f i r s t we get ' ^ 

5 
The integrations over x and y are easy now, they produce. 

where . 

and 

6 = F. J K^i; 

Therefore the radius i s 
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I n t h i s part we would l i k e to evaluate the following i n t e g r a l , 

where B^j i s a symmetric and singular matrix. Let C be the matrix 

which transforms B to D, where D i s diagonal. 

Put 

and 

Since 

and 

• 3 , - - c o< , -

.then we can w r i t e I i n the following way 

The s i n g u l a r i t y of matrix B implies that one of the entries of matrix D, 

say /\n, must be zero. Therefore 
0 "•• A„ 

where 

The evaluation of f i r s t and second integrals are easy enough. 
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r - * 

Putting back ô v i n form. 

This i s the r e s u l t , but to make i t look neater l e t us define a new 

n X n symmetric matrix, F^^, by 

then 

IT 1-
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