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ABSTRACT

In general this thesis is concerned wifh high energy
elementafy particle physics and in particular iﬁ discusses the
interactions in the framework of the multiperipheral context,

The first chapter is a general‘introduction to the field
where different observables of interest, such as cross—section
_and multiplicity, are defiﬁed and discussed.

In the second chapter after introducing different multi-
particle productign mechanisms, such as multiperipheral and diffractive
" models, we put more emphasis on the former and study different models
of the type.

The impact parameter space is a suitable place to work in,-

80 we.transform the multiparticle amplitude to this space and extract
interesting results out of it in chapter 3. Especially the works of
Henyey - and Jedach-Turnau are emphasizgd in this chapter. We show
that it is hard to reconcile the model with the experimentally observed
. radius of elastic scattering as a function of energy.

The fourth chapter is abou; the interference diagrams of the
multiperipheral model in the unitarity equation. -As energy increases
the number of such terms increases rapidly. We have estimated their
effect in Henyey' and Jedach-Turnau types of calculation and have added
them to-the 'standard' result. It is found that, as far as the radius
is concerned, these extra terms (ni-1 of them) do not make a significént
“contribution.

In chapter five a modification of the basic multiperipheral
amplitude 1is introduced in order to improve agreement with experiment.

-

This successfully reprcduces the krnown results.
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1.1. Opening

Physics has been defined long time ago as’the science that
studies nature. Nature consists of different sorts of matter. Some

150 years ago man happened to discover that matter itself was made of

PURE Chiand

smaller bits and later called these bits 'elements'. Elements are
neatly classified in Mandaleev table according to their atomic
quantum numbers. This &as,the realm of 'modern' physics till late

" eighteen hundred. The theory of relafivity of Einsteir and quantum
mechanics of Dirac were two pushing forces that made Physics to change
its stationary st;te to a mobile one. The resulting motion brought
physics to the territory of discovery of new particles. Thus & new
‘set‘of particles were added to the previously established proton,
'ueutron,‘electrbn-and photon~éollection. According to the latest data
particle group1 information there are nearly 150 'eleﬁentary' particles
now. Thevdazzling éttractién of simplicity once more hinted man %o

. sﬁggest that these elementary particles themselves were made of just
three 'more' elementary particles, called quarké. Indeed, apart from
- recently discovered ¥y particles2 all of the presently established
particles could be described in terms of the standard quarks: Sincé
quarks aré not experimentally seen, this fact casts some doubts as

"to whether or not they are physically existing objects. There is,
however another method of classifying the elementary particles, never

mind this is not as plausible as the quark model classification scheme.

This invokes the idea cf the way the particles interact. Hence particles

are nested in strong, weak and electromagnetic cages. What the thesis
is concerned zbout is a small section of a huge subject called strong

interaction.

What one observes during an experiment in a high energy laboratory




is that two colliding beams of particles produce some outgoing ones.

The information that one extracts from such scattering processes, atv

a given lab. momentum, includes the number of produced particles, the

number and angles at whick the secondaries emerge, momenta and energies

the produced particles carry out and the type of particles. The next

step 1s that these rather raw information are transférmed into the

language which is understandable to‘the theorists, The usage of

" the translated information is that, for example, it guidés phenomenologists

to the most appropriate way of simplifying the phase space. In a later

étage, data is a test that confirms how 'reasonable' a specific model is.
The outliﬁe of the present cﬁapter is to briefly summarize the

situation of data at high energies which is of direct interest to us.

By 'high energy' one thinks of those energy ranges in which the effect

of masses of incoming particles areAimmaterial and'we-are well above the

resonancé region. The chapter will serve to define notation and

conventions which we try to use consistently throughout the present work.

g et




1.2. INTRODUCTION

The result of two or more particles intgraction is the emission
"and produﬁtion of some secondaries which obey a set of congervation lavis.
The secondaries could be studied upon in different ways. One way is to
consider every iﬁdividual of the produced particles. This corresponds
to the following type of interaction, |

a+b — = 1 4+2 4+ - - +n
"This is referred to as an exclusive process. As the energy of the system
increases, n grows too (fig. 1.1) and it gets more'difficult to study all
of the particles éne by one. Hence the idea of one particle inclusive‘
process, introduced by Feynman. Here one considers oniy one type of
particle. The process is,
a+b—>c +x,

where x represents anything which does not include c-type particles.
There is, however, another type of procesé which is less inclusive.
. This is referred to as semi inclusive process. A typicgl exaﬁfle
would be the following,

a+ b —— ¢ + neutrals + x.
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Fig 1.1 The average charged particle miltiplicities
per inelastic collision for all available date ahove
10 Gev/c. The dashed curve is the result of a 1nd it
to data.




1.3. AMPLITUDES
Let us suppose that l i > - and ‘ f > show respectively
the state of particles before and after collision takes place. These

two states are related through a scattering amplitude which is defined

as . <‘Fl$“> . As the quantum mechanics indicates, the square of

. r z . . -
the amplitude, [{pIstc? l is proportional to the probability
of initial state li)» being scattered into the final state »|'€> .

- The conservation of probability imposes a very strong constraint upon the

scattering ampiitudes in general. This could be formulated as the

following, A '

L (elsinplnistiiy =1 .

n .
The complete intermediate state l“) covers all poséible states that
P& could get transformed into. A pictorial representation of this

constraint is given in fig, 1.2. This is referrad to as the unitarity.

- condition. In operator notations, the condition takes the familiar

form
.
It is customary to separate the probabiiity amplitude for no interaction
by defining the A matrix,
g = I ¢ A
A could be related to measurable quantities. Mandelestam analyticity
demands that at most only isclated singularities, poles or cuts, could
M@e accozmodated in A, provided that they are required by unitarity.
Elastic amplitudes occupy a particular place and deserve more attention.
Therefore we shall say one word or two about_eléstic scatterings.
Elastic scattering is a diffractive proééss. This means that
&hr/<it )b has an energy independent, or at most weakly dependent,

structure. This fact has been displayed in fig. 1.3 for proton -

proton elastic scattering which extends up to ISR energy range.




St (emGev?)

-}
b

wa. g;‘f :sm) 78 o Allobyetal  (1955,972)
(1963,195) & Bortuetvs et ol (1972)
(19651 100 © This experiment
01966) ’ . Most points are interpolated
150 —5e S (00,

eta  (957)
(1565)

® Cocconi etol.  (1955)

BN RN v 1yl 1

¥ - — 03

”.'a
n-l

1

+40?
4103

sy
(B
g

\

. CENTRE - OF-MASS ENERGY SQUARED, S {Gev?)

elastic scattering

20 X €0 YO 20030 600 100 2000 6 W00




Shrirkage of (PP) diffractive peak is also a phenomenon associated
with elastic scattering., The rate of shrinkage, which is measured

‘according to a 'slobe parameter' b(s), defined by,

L(S) =
b(s) ot (d'ﬁblﬂlf)e—:o

is a slowly wvarying function of energy (fig. 1.4). A final remark to

be added is the dominance of imaginary part of the elastic amplitude

" over the real part of it at high energies. This conld be infered by

a comparison of 0};1_ and (*U'/J.t and is supported by datal‘

(see Fig. 1.53).
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1.4. CROSS-SECTIONS
Totéi cross-section, O tet is one of the measurable quantities,
'which helps to clarify the hadrons interactions as well as their
structures. For instance; the fact that O tet of hadrons are of the
order of tens of millibarns suggests that hadrons are objects with
characteristiquimension of a fermi.

The total cross section is defined as

Ory(s) = S jd‘? IA(P.P,,——-»‘%’.-“‘?.\)I

Z
where d é?n, is the n-particle phase space element,
n .
ALt
4% - T i) shp-z%) -

(X3
The kinematics is defined in fig. 1.6.

e, L a0 )
() ——n o)

Yy v

q (< In )
'(Eig;71.6)
B C .
" Imposing unitarity conditions upon forwaid elastic scattering, one
arrives at the opticzl theorem. The theorem relates total cross-—secticn,
which is experimentally measurable quantity, to the forward elastic

scattering amplitude, o
Tm AL(S teo) = S Onils) .

Mueller4 has geperalized this theorem to a far more complicated case,
thet is one particle inclusive reaction. His generalizztion connects
igélgsive crosg sections to éhe forward multiparticle amrlitudes. The
generalized theorem has been extensively used in the phenom2nology of

' /
multiparticle processes jointly with Regge phenomenolegy. Dia-

gramatically one could show these two theorems as in figure 1.7.

There are a number of general and rmodel independent theorems

-y ™
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which are observed by cross sections. The first one, which puts.
a limit on the growth of Ot is called Froissart bound.>
The beauty of this theorem is that it is a general and model

independent statement. It states that the total cross section for |

e

any process cannot grow faster than (2»5)2 as S—» oo,

Oia (8) £ const (Ens)®

The second one is known as the Pomeranchuk theorem.6 This simply

states that the total cross-section of either particle and anti-

particle become asymptotically equal,

Gy (5) —-—"""9:; (s) .

o S oo

The last statement is that total cross—sections of particles belonging

to the same isospin multiplets are the same,.
Ot (2:bj) = Otex (Pubi) s

where a,., oy as well as bi and . belong to the same

~ isospin multiplets.

Experiments,7 done within a broad range of energv, indicate
that total cross—-section is a very slowly varying function of §,
fig. 1.8, and that about twenty per cent of it is due to elastic
scattering channel (fig. 1.9). At this stage it would be iateresting
to ask the following question : What is a total cross-section built

up of? The total cross—secticn is made up of some prong cross—sections

~which, following Horn and Zachariasen,8 are called topolcgical cross-

sections, On .. The topological cross-sections ere changing rapidly

with emergy9 (fig. 1.16), but this happens in such a way that when

" adding up all O to produce Oft the result becomes roughly constant.
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It is worth mentioning that as energy increases the more important
On comes from higher prongs.

Tq close this section we end up by plotting On versus "
for proton-proton scattéring.lo’ It is customary to compare this with
a poissonian distribution. If the difference between these two curves

. is not very distinct at medium energy (50 gev/c) one certainly gets

broader tails at ISR energy range as shown in fig. 1.ll.
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1.5. MULTIPLICITIES .

The average multiplicity, (“) , 1s defined as

o
Zt\o—n

nel

{ny

ol
x
%)
r

]

-
™
3
51

. Fig. 1.12 indicates that, roughly speaking, the average number of charged
particles in PP inelastic collision is about 12 at ISR er;ergy range.
One expects that the bulk of this is pions. It is clear, then, that at
_low:. energies protons’ are dominaﬁt. As we go to higher energies pions
take over the protons at a quite early stage and later rise in proportion
to the total multiplicity. 'The number of protons does not increase rapidly
at ISR‘_as compared to that of pions. Of course we must observe an
increase in (“p) simply because antiproton shows a rising. A way
to explain this is by invoking th_e idea of leading particle effect to be
~ described i'n the seventh section. . Thekleading particlt:: takes the bulk
of the available energy and what remains is not enough to create a heavy
- PF pair. | |
Detecting neutrally cha;rged particles was a difficult process. So
it was no surprise :that ur.1ti.1 three years ago data on charged pérticles
multiplicity, (Y\‘)-, was availabie only. It was also generally believed
that <“r.'r> a % dn, VY was a good estimate of the total
multiplicii:y. The first evidepce on the neutral multiplicity came out
..during the Batavia éonference in 1973.' The represented results showed
that (“07 s as long as it is kinematically allowed, increases with
energy, very much in the same way as (‘«'\c) does. The correspénding

data have been summarized in fig. 1.13. Fig. 1.14 shows that {(n.7
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grows very slowly with energy,11 more likely as s,
'47\-7—.:&*5 L~ S

This relaticnship is one of the pré&ictions of a multiparticle model,
namely multiperipheral model, which is going to be the subject of the
following chapter. Comparing the data with the top and bottom lines,

the kinematically allowed maximum and minimum number of produced

. particles, in fig., 1.1l4, one concludes that the production mechanism

uses a small amount of its available energy in creating particles,

the bulk of it manifests itself in the kinematical energy form of the

secondaries.
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1.6, DEFINITION OF VARIABLES

The representation of data should be regarded carefully.

This depends quite a lot on the type of variables one chooses. The
choice of variables thus will result on the conclusion that whether

or not somé features.are important. To understand this better, a known
animal_islplotted on different scales.10 As one coﬁld see in fig. 1.15,
different parts of the pig have been emphasised less or more according
to the type of the plane he uses. The situation is more'or less like

" this in the high energy particle physics.

The frame of'reference we are mainly going to work in is thé
centre of mass fréme, unless otherwise indicated. The incoming particles
A and B have four momenta P (E, fp those of the secondaries are
q (W, g). The three momenta g could be further decomposed into two
components, qL.and i&. qy is called the longitudinal component and ie
parallel to the colliding axis of pafticles'A and B; E& is the transverse
~ part of 'q and is perpendicular to the longitudinal axis. The usefulness
of this deéomposition more or less lies on the fact that the transverse
. momenta are highly supressed as datal? show {(fig. 1.16). This, clearly,
reduces:the threevdimensional phase space to 6ne dimension and, therefofe,
greatly simplifies the calculatioms.

| One can, nbw, introduce the reduced longitudinal momentum which

frequently is referred to as the Feynman13 variable, x. It is defined by,

.

.=z —

. - w0

where qtmax is the maximum value that q is kinematically allowed to

take. At high energies, with a good approximation, one could write xs as,’

A ql...‘

X" > L e -

=
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The domain of definition of X is between 1 and -1, -l LREHL
Particles A and B have k values 1 and -1 respectively. It is evident
. that the particles not moving with A or B, and have definite 9.
value, will end up at X = 0 as energy increases (S —» o).
Phenomenologically speaking, ig does not seem to be so inﬁeresting to
map almost all particles to one point. Hence, one introduces a new
one dimensional variable Y,

4i

-1

1]
& /N
" Diagram 1 particles not moving with A or B are mapped to the centre at S.

often called the rapidity, It is defined as

- - Wi+,
Y =4 O i
v =,

= 'a-\ ‘”;*Y‘l.
mT

: Ly
where the transverse mass, wm; is defined as

. - PO 2 3
m; - (a9,

)VL

J

et being the mass of the ith particle. The groﬁth of Y takes plece

according to @€w S as energy increases., The maximum and minimum

. : 3
values of Y, are determined by Lz. & _S_.; and -4 L =5
e YA "'c .
<

respectively.
The rapidity has twc advantages over Feynman X variable. The

—

first one is that all particles are eveniy located in the rapidity space.
The second advantage is that under Lorentz boost with velocity -,

" the rapidity changes additively, that is

. I ~

y(‘_ — Y" = \{'- ﬁ'\(" »

where
~y

\L' = ”‘.“""9‘-\ - AtV
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in any case, eithér of ( 95, X, -‘;q'.. )-and (S, ;7'. ) make ;51 complete
get of variables which are capéble of describing the high energy
phenomenon.

With due regard toa 2 —p 2 process, the reason why we
require three parameters for one particle inclusive réaction, rather
than two, that is one extra parameter, tc describe a process is that

the missing mass, M, is a variable itself and is not fixed by M = Mg
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1.7. INCLUSIVE CROSS~SECTIONS

As mentioned before, inclusive processes correspond to reactions
like
A+ B ———» (C + anything else (X).
The corresponding invariant. cross section, which is somet;imes called

single particle distribution is defined by,

C
fo @ 0%

TN Tee) o &Gy 1Ak,

na k Vo,

where summation over K is done over particles of type C. The. invariant
cross—section is experimentally a measurable quantity, since do/ d.37
is the probability per unit incident flux of C being produced in
momentum element d3q. In order to make the quantity d-°'/oL’q frame
independent one multiplies. that by ®. The phase space element
could be written in terms of other \;ariables already defined as follows:
£1 = &tqr,* ke _ d—t?«p oy

w A w
The “fact that the phase space could be written in the form of rapidity
times .transverse momentum and that kinematics does not permit Y to
exceed a certain limit, given an energy of course, and that data suppress
the growth of ’q}, suggests that one could thiuk of the phase space as

a bottle where the particles momenta are the position vectors of gas

__molecules, namely Feynman - Wilson gas, inside it (fig. 1.17). As the

energy increases, the length of the bottle gets bigger and essentially

in the asymptots the motion of gas molecules inside could te considered

one dimensional.
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Leﬁ us see now what one could unde;stand from the experiﬁents.
First of 'all, data14 show that there is a strong exponential fall off
in theAtransverse momentum (fig. 1.18). This is one of the striking
features of multiparticle reactions at-high energy. Plotting 9
against '3}. one finds that evénts cluster along the longitudinal
axis indicating that transverse components are strongly damped. The
average value one finds for (‘-7.1) from a fit to data, whether the fit
is Oxf(-ﬂ‘]:-) or o«f(—ﬁ‘l-‘-), is that it is roughly .33 gev/c for X
and +45 gev/c for K and P, The situation for gL is soﬁehow
u‘different. For instance the type of particles plays a role here.
qu example, plotting PP inclusive cross-section versus x, one finds
that proton stays relatively flat as compared to pions or kaéns
(fig. 1.19). What this means is that a final particle, which has some
quantum numbers as those ;f 6ne of'the.initial pérticles, retains an
important fraction of the available energy. .This situation.is often
referred‘to as the 'leading patrticle effect', |

In generzl, P ,the inclusive'distribufion, is a function of
Ss 9 aud ‘§Ep . Data14 sﬁppogts the idea that at higher energies
the invariant cross-section becomes a function of only two variables,
X aﬁd 6.1. )

$» »

< - ) [ 4 -
f;\e.(s,'ﬂ_,‘i‘r) —_ ‘ﬁ\BA(‘) i) ~

This is referred to as the Feynman13 scaling. The statement could be
~verified empirically by ccmparing thé low energy and ISR energy range
data. This has been shown in fig. 1.20, Perhaps it is worth mentioning
that ﬁhe scaling region is reached sooner for pions, and possibly kaons
whereas for other particles one must go toﬁards higher energies (fig. 1121).

Koba et al16 three years ago suggested the following form of

scaling <n) On __ o £( 2“33) .
o ‘ Ciast 3=
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Fig 1.20 Approximate scaling of the negative particles
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Fig 1.21 ,
(cee also fig. 1.18)
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This gives a very good fit to the PP data if one éupposes that
. . A
f( <77) RS
Figure 1.22 displays an excellent agreement with data.

As energy increases the inclusive distributions tend to
a limiting value for any qlab asymptotically. This was first
observed by the authors of reference17 who thought of the secondaries
as some fragments of the initial particles. This is called.limiting
fragmentation. Surprisingly this already holds at low energies (fig. 1.23).

.Viewiﬁg the role of projectile as a mere catalyéer . which
enables the fragmentation to occur, one comes ‘across to the statement
that the inclusive distribution is.independeﬂt of the projectile in the
target fragmentaticn region, apart from an overall normalization factor
proportional to O3t (AB) . The figure 1.24 is a supporting fact to
the above mentioned statement.

Another interesting thing to pbserve is tﬂe development of a
plateau if one ploté the inclusive cross-section versus rapidity as in
figure.l.ZS;- This happens in the centrai region which is far from the
target as well as the projectile region. The central region is sometimes
called pionization region. This is because in this reéion pienic
inclusive distribution is more dominant. Perhaps it should be zdded
that some ninety per cent of the secondaries are pions. A comparisca

between different produced charged multiplicities in PP scattering is

given in fig. 1.12.

-




no . 1 ’l Ll l T ' L] ] T l 1 fT

. 10 -
03 ]
4
6
A -
c
V.
. 001 -
0001 - ) : : -
[N U Y N I NN U U N S S L
05 10 15 20 25 30
n/<n> .
' g a . .o -
©. . Plotot <n> ;i-f:‘ a3 & function of 7= for bubble-chamber data with py, & 50 GeV/e
Fig 1.22
. w’pow‘.mmlnq :,:f:‘&: . 29« ¥’ anything __‘,:f::,:’
10 5 A ' Y -4 10 F
Fr B B
F v ]
. . el N l_.
10’ - 10’
Lot 1 ¢
o * o - 3
L ] ]
» ° 10} ~ 10
N E e 3
S I F
A L ] s
' - | ‘ - a
»
3o || 40k
[ 1l ¢
| 1 | SR |
G4 0.2 0 04

LOWG. MoM, OF v%, 5'*" | Gevie

Fig 1.23 Limiting fragmentation observedl
for accelarator data at lab, momenta of 8
and 16 Gev.




49 fiGevre)']

Cror () dpu

BEAM+p—e 77~ + (ANYTHING)

I \ l T ] T l
ﬂﬁﬁa
6,’—’ ﬁ.’_ .
05 1= , %
B ora
0.2 - e & | NonexoTiC”
\\\'w .
o.l P Q\ \Q\I "EXOT]C'
91 . b\\ ’ ’
005 ~
0.02 BEAM pgean (Gev/e)
0.01 O —=—p 28.5
T V —-— | K* 12.7
! ——— + M.S.Chen et al.
0.005 1= i ° T T [PRL26,1585 (1971)
0.002 — + oo L 24.8 _
A Y 9.3 SLAC-BERKELEY-TUFTS
0.001 t— This Experiment
] ! 1 1 ] 1 i
3

0 i 2

Fig 1.2%4




0 8T b /o
. o 0
PT-OoL Wt‘_
Ve Y e —— — . _ _g -
o e Yo TV v
. : o6
04 Gere
- \
—_— -—— =YV — -
?o vvoo o o S V- —
0.6 Ges/e. (o]
o T e~
o \\\v‘l
o
0.8 Ges/e
P T W
o] ~ 4 .-23-. l (;CJ74£-
't ° )
v | |
o
O — — v
O.l IV— ~ 0. "ZGQJ-/C.
O
The Rap}di'[-y "p,af'eau’
v Vs = 5;53 o |
o V§= I/ C’"&I‘
1 : 1 L “ | l i
02 o4 0.6 0.8 1.0 L2 ycm

Fig 1.25 rapidity plateau for X as seen at two
: different energies,




33

1.8. CORRELATIONS

The purpose of introducing correlations is to discover some
regularities, additional to what have been previously discussed, which
data may seem to possess. The way to study correlation is by means of
a correlation function. The two particle correlation function is

defined in analogy of Feynmean gas:

_4_.5 - (%ﬁlf g;‘a?.)(&l—: d—%b)

G (YY) <
&(“( t-) oor av,dye ot

Nofing that the first term on the right hand side is the probability
of finding simultaneously gas molecules on the locations 1 and 2
. (i.e. particles with momenta qq and.éz) and that the second term is
the multiplicaticn of the probabilities of finding a single molecule
in 1.and another one in 2 one gains some insight into the meaning of
correlatioﬁs. For example, if _CZ (YI;YZ) = 0 for all values of Y1
and Y2, then this means that the two particles are uncorreLated in
Y, and Y,,. Of course different conservation laws correlate the

1 2
17

particles, ' therefore practically no-correlation is not likely to

occur in nature.

To have an overall estimate of the correlation one may introduce

_an integrated correlation function
-F‘.(S) = S[n dq“] Cl'(qqu_)"'iqd:) - *
'

A poiséonian fit to the topological cross-sections reveals that f£,,
-.the multiplicity moment, is zero suggesting the absence of correlations.

Therefore, f becomes a useful téol in evaluating the strength cf

correlations betweeﬁ the particles. in other words, f2 measures the

deviations of a multiplicity distributicns from a poissonian fit




3

looks like we plot

v
since £, = ( “(“")7 - 4n) 70 see how £

2 2
it against S. The rise of it indicates correlations amongst secondaries.
(fig. 1.26). g

| In general there are two types of correlations : short range
and longlrange correlations. Short range correlation (SRC), as is
implied by its name, says that the éorrelation function will be negligible

if the particles under consideration exceed a certain distance in the

rapidity space (fig. 1.27). One way to formulate this is the following

Lot @ ap[-W-wl/a] L Ao,

where A is defined as the correlation length ;nd theoretically is
around 2.

The confrontation of SRC idea with data indicates the presence
of long range correlations. This is because SRC predicts f2 to grow
like 1nS but data increases faster, possibly as 1ns? (fig. 1.28).

As short range correlation is kﬁown to exist, it suggests that
the emitted gecdndaries should form some sort_oi clusters. Anothef
way to look at Ehié is as follows. The leading particle takes away a huge
amount of energy and what remains must be shared amongst a considerable
number of pion secondaries. This suggests that these pions will have
almost same rapidities, therefore they are fcr;ed'to come out in clusters.
So, briefly speaking, the production mechanism proceedé in the following
manner. From the collision of initial particles some clusters get

..produced. These clusters subsequently decay into the final particles.

‘To estimate number of particles per cluster would te an interesting item
to study-gf we shall do it now.

Let us put the probiem in a slightly different way and ask the
following question. What is the adequate emergy to produce n clusters?

Had there been just one particle per cluster the calculation of energy
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Fig 1.26 The integrated two particle correlarion

function as a function of energy in up
interaction, .




i

Fig 1.27




37

would have been easier:
5= A e
. A L

where a and b are the coefficients in () =& Ws vl and A= uf(-?‘)'
& is 2 (0) if initial particles have positive (zero) overall charge.
In deriving this equation one has assumed that there are as many

neutral particles as positive or negative ones. It is, however, unlikely
this situation to happen. Thus, to determine the averagé number of
(negatives) particles we introduce the following method. Using charge
_conservation law for, e.g. n, = 3'inAPP scattering case, we see that

the only possible formation likely to happen is

Cluster one Cluster two : Cluster three

overall charge + ' + ‘ 0
Bearing in mind that clusters can decay.in such a way that each of

them preserves charge conservation law, one can write the:following

" possible decay modes

Cluster one Cluster two Cluster three
~ overall charge + ' + 0
} 4+ + - i+ +- 1+-0

decay modes ‘ s
' j 0O+ j 00+ tooo

where the numbers (Pi) are to serve the 'weighing' purpose. The

calculation of energy is straightforward now:

Zen
¢ nn‘
5 = A exp(—= )

- Q. hc\

- with A as defined above. For the example under study, using Harari's fit
{n) =- B4 L~ S - 2.14 , we find S = 102.6 gev, as the energy for
producing three clusters in PP scattering.

For the sake of completeness we would like to state that in the
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section we implicitly realized that the integrated correlation
functions were connected to .the topological cross-sections. The-
suspicion arose when we noted that if O n was poissonian fé became
zero. To try to connect those two quantities together explicitly we

18

come across to the so called generating function, @Q(2), The function

~is defined as

a@) - ZZ on

" with " @) = Oar.

The knowledge about Ow will determine the form of QR). The

multiplicity momenta could easily be derived from ),

d™ L. Ac)
ﬁ“‘ = d%«v—- /2“‘ |

The relationship between @QC2) and On is
L8
On = — — [2-0
n! Azt .

" The above three equations provide the explicit connection we were

looking for.
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1.9. REGGE THEORY

The idea of analytically continuing é physical t-channel
partial wave scattering amplitude in compleﬁ angular momentum
»j, plane was introduced by Regge in 1959 for the first time in his
pioneering work concerning the potential scattering. This continuation
is the féundation of building a theory, namely Regge theory, which
despribes qualitatively most of the asyﬁptotic phenomenological
features of high energy physics. For a comprehensive review of the

subject, out of a very vast amount of reviews available in the

literature, one of the references mentioned in 19 may be consulted.

As we are more interested in the elastic scattering we shall
very briefly outline below the Regge theory for a 2 —» 2 process.
In this theory the amplitude takes the following form

o=t 1{‘.‘(” -k (€)

AGst) ~ Alt) (-e ) g
where /3 (t) is a product of some residue functions and ot(t), the
so called Regge trajectory which is a function of t, is characterigtic
of the exchange& channel. Obviously we must have () ¢} in order
not to %iolate the Froissart bound. Studying the trajectories in a
Chew -Frautschi plot.(Reck versus t) data suggests that the
trajectory is a straight line (fig. 1.28), so that we may write

| & (€) = Alo) o' E

It is clear from the figure that bosons are located where the trajectory

'"‘pg§ses through integer (half integer for fermions) values.

For 'ordinary' trajectories data is compatible with the following,

A (o) = o

Y =\
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Considering the optical theorem we can calculate the total cross-section,

O ~ £ Om ACste0)

&C0) —\
T~ Q ,

The constancy of Ogr in the intermediate energy range suggests that,

ACo0) =| ,

corresponding to an object named Pomeron, called after Pomeranchuk. The
two immediate implications of this for elastic scattering are as follows.

The ratio of real to imaginery parts of the elastic amplitude, for

. small t with the assumption of vacuum quantum numbers for the Pomeror,

is related to the Pomeron slope,

RB oy b anee
OmA e P ’ '

~guggesting that the flatter the pomeron the less real part there is. The

second implication concerns the differential cross-section. It is easy

to see thét,
LAt S
;__L — L

2

‘which displays the shrinkage property of the differential cross—sections,

since t is negative., The shrinkage is conveniently studied by a slope

parameter b(s),

b(s) = 24 2.5 ,

Qﬁich has been previously seen (fig. 1.4); It seems clear, by a c&mparison
witﬁ data, that & for the pomeron is around .3, which makes it rather
differeﬁt from other Regge trajectories.

With dﬁe regard to fig. 1.2, we have mentioned a few words about

the left hand side of the equation. In the next chapter
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we shall study some of the proposed models related to the right hand

gide of the equation. In the third chapter a comparison of the both

sides of the unitarity equation will be given. We shall see that
there are cases where the equality does‘not always hold. Thus to
improve the situation we consider the interference terms in the fourth
chapter. This we find to be not the answer to the problem. In the
final chapter an improvement to the (multiperipheral) model will be

suggested. It will be seen that this will preserve the equality sigmn.

Rexx 31

A IR TS 2 3
tiGev?

Fig 1.28 A Chew-Frautschi plct for
the well established meson resonances.
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CHAPTER THO

MULTIPERIPHERAL MODELS




2.1, INTRODUCTION

It has always been interesting to try to describe and explain.

different and frequently occurring phenomena in terms of a very few

"basic things. For example, since the time of Isaac Newton till the

beginning of the present century, almost everything occurring in the
domain of physics could have been satisfactorily explained by a very
simple formula : Fz m®.

In theoretical physics the way by which we explain a set of

events (data) is through constructing models (either theoretical or

>‘phenomenologica1). Some models were found to be more popular than

the others. These were the ones which, as fhey stooZ or after some
refinements and improvements, succeeded in explaining mofe phenomena.
Or, even they had the power to predict things which were not known then!
The best examplé I could think of is the quark model and the prediction
of the fl particle. | |

In high.energy elementary particle theory; amongst very many
types of models, essentially two models seem to be of particular iﬁtérest.
They are the éo;called diffractive and non-diffractive models. In this
chapter we shall study in some details different types of non diffractive,
explicitly speéking multiperipheral, models and see how they cope with

data. A few words will also be mentioned about the other model.
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2.2. DIFFRACTIVE AND NON-DIFFRACTIVE MODELS - A GENERAL SURVEY

It is generally believed to be the case that there are two
different p;oduction mechanisms at high energy, namely diffractives
and multiperipheral, which are responsible to describe the data. i
‘These are the two extrémes of the production'mechanisms. The picture
below shows how these processes look like, together with their
secondary rapidity distributions.

¢
?

b B b ‘ b

gingle nova (high mass state) double nova

i . production productiorn
W\ ML W \// | | A\ \Yf MY,
multiperipheral mechanism three different processes of diffractive mechanis

with clusters

The multiperipheral model is a straightforward generalization of
the peripherél approach to two particle production amplitudes. The
multiperipheral amﬁlitude has contributions from S=channel resonances or
t-channel exchanges. Regardless of what are exchanged or what are proéuced
(the two question marks in the figure), which are refinements in the
amplitude in order to have a better agreement with data, all fall in the

category of multiperipheral model. The multiperipheral model is of short
range correlation naturz. Once thefiﬁteraction occurs the secondaries
‘I;ée all knowledge of the initial colliding particles, contrary to the
fragmentation models which have the idea that the initial states maintain
much of their identity throgghout the collision processes, Just from the
topological configuration of the multiperipheral ‘model the following

vemarks could be made,




b5
i) in its simplest form the distributicn of topoiogical cross-section
(On) versus n is Poissonian. |

(ii) logérithmic growth of {n) in energy variable.

‘iii) éonstaﬁt rapidity gaps of the secondaries.

iv) .scaling |

| Thg other mechanism is the diffractive model. In the Regge
language diffractive process means.Pomeron exchange. As it is clear
from the picture the colliding particles a and b become excited under
impact to froduce high mass objects and the break up-to give the
' observed secondaries. - The fragﬁents are grouped together in rapidity
with a big gap separating them. Assuming that the total cross—section

remains finite,
Lo = 42
n .

one can still get a logarithmic increase for average multiplicity,

"0 £ Lens

X
Ozt ™ '

- A natural way of consistency preservation is to assume that,

Let us compare scme of the properties of these two models below.

i) We know that outgoing particles carry very little transverée
momentum. Neither shorf range correiation nor fragmentation models
h\pggdic; this effect. This is a basic input of the model in both cases.
ii) As a direct consequence of oL(o0) =\ one gets a central plateau
in the mu}tiperipheral model. In the second mechanism the plateau does
not occur‘so straightforward1y3 but of course it is quite poésible to

accommedate this in the model. Irn other words the central plateau is

. : . .15
an input for fragmentation modeils.
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Once one gets the flat central plateau, the logarithmic

increase of the average multiplicity follows easily, since
Iy = 2= f oy

iii) O, 1is one of the places where the prediction of the mechanisms
differ. Particles in the multiperipheral model are produced élmost
independently (i.e. a roughly poisson shape is n for 0"n), with the peak
moving slowly to higher values as S increases. Whereas in the other

model the peak of 0 n in n remains constant. The increase in 0 n

_is coming'bnly from the extension of the tail at high n (see fig; below).

o
On 7N ' " g
% /” I..Q t ’ 0
i’ ' y
1‘ '\ Y\
! ‘.l . RN SL
L)
\ N
* o ‘\‘
\
n n
- multiperipheral diffractive

The total cross-section, at higher energies, tends to be constant in
this diffractive model.- In the framework of multlperlpheral mcdel
adjusting the coupllng constant ana AL , it is possible to have
either a constant or a variable Ot .

iv) Diffractive and multiperipheral models differ profoundly at

the level of two particle inclusive reactions. For instance the

integrated corrslation function,

£4) - fdyay, COwLuLM)

where

(= 5 (L AT

C;_ (‘(u qt/ Y) = (;‘- O'-Hl Yot "‘12

\
6;‘;!’ “ldYL

has different behaviours, depending or the type of model under study.

' T .18
The short range correlaticn models give,

-2,
AT R4

68 2 ARS8 T TVl At 4 el ML Oy
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_(1-ots) Y
‘F,‘(‘{) ———”Y' oyth + € s ,
4 ~ 0

K (S) being the leading angular momentum singularity next to the

Pomeron. Fragmentation models predict,

- /2,
4i(Y) — cC e

‘{-aon ’

ey T,

which is not linear in Y.
Just by noting the strong energy variation of data in two
and four prong topological cross-sections (Fig. 2.1), it seems

inappropriate to think of the diffractive models as the sole production

mechanism.

T ()

Fig. 2.1

Incorporating the two production mechanisms into one, Harari and
Poliowici as well as Fiollawiski and Miettinenzo introduce a new
model, a two component model (multiperipheral and diffractive models
as the components) which produces nice results. Their procedure is
to write O n as

On = My - OLY\
multiperipheral diffractive

En passant,it is interesting tc see that when n = 2 one gets the

familiar old two component duality21

A + f;r — /&“;“;ﬂk v / bocitgrenmd.
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Next they define parameters D and M by

;d'“"'DO-;M& )
Z“.fm,,—.MO‘M)

with the obvicus constraint that
D+ M= \
Using seven parameters to fit different sections cf data they find

Ot = &O anb,
O = T b,
Gt = 33 b
But, perhaps most interesting of all is the value the& get for D and M:
D= .16
M= .8,
which is indicative of the fact that the contribution of multiperipheral
model to the prodgction mechanism is almost 5.5 times more than that of
the diffractive part. This is a good support of approximating the

production mechanism by the multiperipheral model.
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2.3, MULTIPERIPHERAL MODELS

The multiperipheral model is a generalization cf the singly
peripheral description of high energy scattering. For a multiparticle

final state, such as | : ' : :
vE . :,
%, ' .

S~ | ’

= Se
the collision is called (singly) peripheral if for that process the

momentum transfer, \tl is smaller than a given number, say <T=z.Sg",
el €

The calculation of tam<. with the high energy approximations, results

in the following criterion,
S Se
o
Genéralising this to a multi-peripheral proceés of n-blobs,

S

-, =

-—r—é)’é Swn

one requires,

3

+Ts €T

=

( T could be interpreted as some mean inter blob momentum transfer).
To show, for example, how the logarithmic increase of mean multiplicity

arises naturally in these models, we make the approximation that

..-Then . Se <
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which, taking the logarithm of both sides, shows that
{ny ~ X~ S

In the remaining of this section we shall study three different models

belonging to this category.
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2,3a  'ABFST MODEL

Interest in a multiperipheral model like that of Amati-Bertocchi-
. Fubini-Stanghellini and Tonin (ABFéf) which was proposed in 196222
derives from its relevance in describing such features of high energy
scattering as Regge behaviouf for elastic amplitudes and total cross-
sections, scaling and logarithmic growth of the multiplicity in |
. multiparticle production reactionms.
The basic idea of the model is that thé absorptive part of the
elastic scattering amplitude can be computed‘from a multiparticle
production amplitude which factors into a product of unspecified blobs,

the number of which is restricted by the amount 6f the input energy ( Vs),

connected by single particle °

» %

propagators. In the original
model the outgoing particles

as well as the internal lines

A > 7

are pions. As it is clear from the picture

(Fig. 2.2) .the final state particles

emerge in paifs*. The reason for this K_’_

0
is due to the G-parity ccnservation -
rule. This, in a sense, implies that iﬁ ‘ 1.1‘6 a
the ABFST model cluster formation is

. . . (Fig. 2.2)
built in automatically. ‘ .

The repetitive nature of the production amplitude together with
—~-the s-channel unitarity give rise to an integral equation for elastic

scattering (s-channel abserptive part, to be more precise),
a A ¢
-~ /
A(PLK e) = 50'\ P V(P,F{,Q) Sl a) A( )k, &)
(2.0
where X = ImA and S (é 8.) is a multiplication of the propagators,
i \

w (@) o (A7)

3(1{@) .
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and the four momenta are defined as illustrated in fig. 2.3 which also

exhibits a diagramatical representation of the equation (2.1).

i

Fig. 2.3
._V is the input to the model which most of the times is formulated by
considering the phenomenology. For instance Amati et al had éupposed
the imaginary part of the iow eﬁergy R scattering amplitude for V*.
The integral equation (2.1) is of a particular importance. Since '
“its solution give§ rise to a lot of interesting results, described at
the beginning of_this subsectién, which are compatible with data. Indeed
by alloéating a power dependence to the amplitude A = S‘t$ they?? arrive
at the conciﬁsions that asymptotically, |
i) cross«s;ctions behave as a power of the energy.
ii) multiplicities grow logarithmiéally with the energy.
iii) constant inelasticity.
: 'To-stretch the‘analytidal soluticn for the integral equation (2.1)
es much as possible in order to express the high energy properties of

_physical scattering amplitudes in terms of singularities in the partial

Mf Other models include inclusion of a high eanergy tail represented by
" Pomeron exchange or the use of duality to replace the lcw energy direct
channal resonances by the exchange of lcwer lying Fegge trajectories
(P, £ ) in the t—channel in addition to the (P exchange.
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wave parameter plane. one should be prepared to ﬁo some sacrifices.
This is due to the fact that the eigenvalue equations for the Regge
trajectory involve fairly complicated kernels and cannot be solved
exactly. The sacrifices represent themselves in two standard
'appréximatiOns usuélly one meets at this stage. TIt, howevér, éurns
out that once the approximation is made the rest of the calcualtion
can be carried put.mote or less exactly. It will be fair to say that
‘the best support for validity of the two approximations is that their
results are similar to the exact numerical éalculations.

Let us very briefly describe here what the approximations are.
We first partial wave projeét the equation (2.1) in the t-channel

with the first term of the sum separated:

BL (“/:F) =VL (C/f) + SVL (C/ cnt) AL(M’{) O‘M )

where AL and VL are the t-channel partial wave projections of A and V.
v includes the propagators. i, f and int are the abbreviations for

initial, final and inter-mediate states respectively.
e - . . . . s . 23
The first approximation is called factorizable kernel approximation.
The method is just to write the kernel as something similar to the following

equation:

e

~G (v) .
Vot) s VU@ Vo)

The factorizetion is subject to the condition that it retains the correct
‘behaviour at the physical boundary. The method gives a (Fredholm)

denominatcr, D
L,
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from which Regge trajectory ofAreal‘and complex poles can be derived
(DL = 0).
The second approximation,24 that is the trace approximation,

for the eigenvalues of an integral equation with (Fredholm) denomirator
DL (gt) is to write .
DL(gt) =\- ¢ T Ver--
cim g STeek) dix
and to incorporate the full kernel singularity structure in the first
term and to ignore higher terms in the denominator. The Regge poles,
' again, occur as the zeros of DL in the L variable.
The calculations show that the slope is always proportional to
L n~3k- . Supposing that the intermediate states have masses 1 and
those of i and f states are w., one arrives at the following numerical

results for the leading trajectory (Poﬁeron) with o=\ |

°"o: A c‘:(n:l" , %": L.‘L%“" s Ocx = 3% b

It could be worth stating that there is one secondary pole near every
negative integeﬁ 2 (t = 0).

Finally we summarize the section at the following diagram.
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2.35 CEA Model

Another mﬁltiperipheral model, with Reggeized rungs was
introduced by Cﬁan Hong-Mo, loskiewicz and Allison.25 The modulus
of the n-particle amplitude corresponding to the model is

e Se e Cn | o 4o A St by £
'A"‘ -~ —n—(%‘s*“ ) ( ‘o~ )d ( b'-b)

ve)

(2.2)

where . . -
Sf = (q.’ +q|‘4|) ~(mian=ia)

k- (fu- é;q")z-

and o« is the intercept of the Regge trajectory with the t = O axis.
The constants bi’ g;» C and a détermine the ti deperdence, the coupling
constant, the strength of Regge type and phase space contributions and
the energy scale respectively.

~ The i&ea behind thelparametrizafion of the amplitudes was
three fold,

i) the amplltude is fully Reggeized if the S of the final particles

are large.
ii) the amplitﬁde ig partly constant whenever some Si are small.
iii) there is a smooth intérpolation between (i) and (ii).

It is. not difficult to see that the amplitude (2,2 fulfills these

criteria For instance when all S, are large, that is,
Si » e
5; » bi

... the amplitude takes the following form
. Qy A ’ ]
1A\ V& () e 2 2.3)
0 %
where i = o,

The equation (2.3) has the form of a fully Reggeized amplitude.

S 3 . e '
Studying the -x‘3~a-f«(n-\)7P vreaction, CtA fit very successfully




o7

the data for the single particle distributions of AR and P such as
<qT) and q.. = distributions at energies up to 16 gev/c.

One of the points that was not discussed in the paper is the

effect of the phases. In fact the inclusion of phases changes some

27-28 For example, a

of the predictions of the model drastically.
Reggeized phase gives a steeper slope for the overlap functicn as

shall be seen later.

el
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2.3c CHEW-PIGNOTTI MODEL

The model was proposed in 1968 and is one of the most popular
multiperipheral models.26 We shall study the model in some details and end
up the chapter by saying a few words about the multiperipheral bootstrap.

The figure (2.4) shows a pictorial form of the model. The rungs

. (8)
are Reggeized and therefore give a contribution of i to the
amplitude and it shall be exploited later. It
. > %
In the laboratory frame of o {yh
. .  ——"%
reference where particle aris at rest and N
LS
. -b is moving along a direction, say z, : ‘b — '7’
S
we have the following, B _§; | -9
-~ > . V& S-.
P“-. (Mo\) 0) 0) > "'_""—qni "
?b = (mb '“"“‘113) b 2 t“'l) ’ L
' b Y n-t
- - . ' > +~—q
q‘ = (M.‘.‘. uﬁ-’\‘f. ) qT‘- P MT‘.MJ\"L‘) y) n
Fig. 2.4

where the transverse mass ™™g is defined as,

' !
Cemg = (et iy
and also - '
~Y
e =1/s .
The phase space element is C ' .

L

te \
v}

2o - T &% (za-fr)

which, because of the separation of longitudinal and transverse

—_kinematics could be written as

. " : . n - . \1). 9
42, = ‘;Tf‘ Ay oty 8 (297;) B(Zmre-memae).
. ’ n -V Y
.S<J§M’r’.e J-ﬂnu-n—-be ) A
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In the strong ordering approximation ( Yiy » V¢ ) and also ignoring
-2 ' : ) -
the 9, terms in the “™M.. we can approximate the last two delta

functions of the phase space by

€ g(%-%) 8 (to~Ya-Xu)
ey

where
Km = "QAA ~ b)Y

=)

(g

xb -~ ‘2\» an

g,

Writing the phase space in terms of the rapidity gap variable, Zi=Y-Me

and making use of the first ® functim above to do the integration over ‘{,)

. -we get,
Y PN
’ - N n o " )
a0 - U eIl dz 8(29%) 8(x-22)
. 2o MMy ,-=\ =2 ) -
where o X= Y~ Xu—Xp

=Y

The squared amplitude in the model is written as

. - :
-, K .
A L wn 2 Aem
‘ A,. \ = % ﬂ ( Sl‘,i‘*\) )
N
with 5 M - Z
T
Sil'\§\ = (q("q“*' ) — M,“ MT-'Q\ < = M. M‘ﬂ‘.. <

Mo Y

Hence the calculation of {3, ,

n-\

- n ol ‘
On « e\{ -(%L ﬂ (g"'"*')z d(pn )

Vet

~—-.ig easy now:

A BT M (24 ) i’
G < 3 e [ oz 8¢s-z20)
Iz)
eh yQal-2) h
Y,
2

ni
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Summing over n one gets the total cross-section

Gu = ZOw
-2 @‘Ls)"
- S ; n!
el —2 s
= ens
> <
. v .
= SLA‘* _1.*% (2.5)

Supposing that the total cross section is constant one gets
2dg, ~ l—t‘abs— (@]
Putting this back into (2.4) one obtains a poissonian type of

distribution for the topological cross sections:

~9tL.5

. n
On =(°5 o.s) o

with an average multiplicity which grows logarithmicaily:
<r\) = %"-Q-TS’ ‘ (2.6)
_The fact that ©n turns out to be poissonian is suggestive of
there being no correlations amongst‘the secondaries, fz =0
(see Appendix A}.
The éduétion (2.5) shows a sort of bootstrap modei. It is

a well known fact that the dominance of a Regge pole results on

Aok -\

The comparison of (2.5) and (2.7) yields,
\
Aok = 2 Ao —V g ’ (2.8) -

‘where dw. ~ is the input Regge trajectory. The equation clearly

indicates that not all . could be pomeron (unless 31 =0).

Calcualting LT in terms of the others
B \ L ’
i = 3z (d‘w-*-\‘\"’% ) p)
with the numerical values
A gk =V
‘.
gt - 1.6

_one gets
A =-. 25
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which does not seem fo be too good. A way round this is a lower value
for g2 (g2 2~ 1), which means, considering the equation (2.6), the
intfoduction ;f clusters. |

We end the section by summing up the multiperipheral bootstrap

model in fig. (2.5).

N

et

F(g 2.5




CHAPTER THREE

Many Bopy AMPLITUDES AND ELASTIC SCATTERING




3.1. INTRODUCTION

The present chapter, in a way, is a confrontation of the first
two chapters in a specific case study which we hinted in the last
section of the first chapter. Let us introduce the problem more
explicitly here.-

We know that as a direct consequence of the S-matrix unitarity
the following could be written,

o : ® : -
1 ' "B
I’M A (PQ)PBI Pb'l ?5’) = Z jd'Qh Ah (P“'Pb; ql)“"b\)A'\(Phlej '/"'C(o)

n>»1 .
(3.1)

where Ael | is the elastic scattering amplitude describing a + b —» a'b
and Ah is the n-particle production amplitude for a + b—» 1, 2,~--- ,n
and d P, is the phase sPaée element.

In theory, as one understands from the equation, a 'nice'
multiparticle amplitude inserted to the right hand side of (3.1) must
be able to generate the correcf elastic scattering process. So, the

| problem we are going to study here is to see if a Chew—Pignotti'type
of model, which adequately describes the‘main features of the inelastic
scattering daté, is eligible to produce the correct forward diffraction
peak as well., In the next section we shall deal with the problem in

the impact parameter space.
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3.2, IMPACT PARAMETER SPACE (HENYEY WORK)

As in tﬁe 2 —# 2 processes one could guess that the impact
parameter space is pefhaps one of the suitéble places ﬁo study multiparticle
processes at high energies. Thinking of the impact parameter as the
transverse position of a scattering particle Ane could go from (qL, QT)
space to (qL,'E) space.29 The Fouriér type of transformation establishes
a relationship between the multiparticle amplitudes in these two spaces

(see Fig. 3.1 for the notations)

b
e}

~ - d'q 1 -
ACki ;%) = j I@a)n JA(‘I P A) 8 (T ) (3.2)

The transverse momentum conservatlon»SPfunction has made the transformation
a little different from an ordinary Fourier transformation. The inverse

form of the equation (3.2) is written as follows (see the Appendix B for

its derivation),

- . -

' 2+ (4] S R I SIS
A(95,9.) = Grn) S?&tdfbde, JAG A &dy)

Using the unitarity relation together with the separation of longitudinal

kinematiés from that of transverse, one ends up with,

. ~ 4 n oun; L4y
Im Ay (B)- (2:) §Jﬂ\[ \zw)‘di ] ﬂ(q’-a’ '1‘)
. ’e

A, ar) §(2%) 8(Z %)
N ;
S;( ji C;)d - Vrg ) .
J= | | (3.4)
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- — 4 (w9, A, )
Y Q, -
' — % (02,9, ,4,)
14, ' f
14,
. "Qu-z. ’ -
— A (On0 B0, )
Q-1 | 4
L Y -
> > q'\(c\’“) qq‘n) qL»n )
(Fig. 3.1)
where - - '
, ’ 9.. . A .
9. = q".)' - 5 = A; -

-l

: . r I
A is the momen tum transfer in elastic scattering ( L~ -0 ).
The transformation of A and A* to the impact parameter space in the
~~equation (3.4) (b and b' respectively) by using equation (3.3) and

by
doing the integrations over qr and bj in turn yields
J‘ .

T A“‘(E) - Z‘U’_:‘:.f'“(z*lcu)1 ‘(’R [ol%&' %]8( Z}?TJ)
"_ ' Jo\

z
L~ - q . t *.4 !""A' . A
8_(2&{;-&)01?[\&.(2!;3 \?31 )] S(ZLd) .‘A \LJJ‘{LJ')! .

(3.5)
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The application of equation (3.2) on (3.5) results on

- Tom A._((b) Z ux) th) j/( [OU’ d:},

-y W

8(T9) S(z"o,,--ﬁ) &z

g ( b- 2: \») | Ak, a !

(3.6)

The equation (3.6) is the central result of the reference 10. It

resembles an optical theorem at each impact parameter. The equation

-, states that the imaginary part of the elastic scattering is given by

the sum of all cross-sections at each impact parameter. The application
of the result on an exponential multiperipheral model for the multiparticle
amplitude with the approximation that momentum transfers do not include

the longitudinal part results on the following form for the Im Ael,

L
Iwnﬁd(t) ~ ex9[<'X‘>C"‘()§—L‘] , (3.7

where n is the multiplicity, R is the step size in impact pérameter
space and (‘X(> u is an average over certain summation of Feynman
type quantities. <0¢>vand r2 vary very slowly with energy such that
they could be conéidered as constants (the paper uses these values for
(‘X‘) and R2 at n = 10 : <‘X‘) = ,6 and R2 = 10.9 gev-z).'

The comparison of (3.7) with data (i.e. the overlap functions:3
the imaginary part of the elastic scattering with the contribution of
~*€iastié scattering itself excluded) shows that the multiperipheral

model introduces a tigger slope which grows very fast with energy

(see figure 3.2).




N

‘ ovgrlap function (mb)

3.3. THE WORK OF, JEDACH-TURNAU

' . . T . . .
The approximation of ti sty which was applied in the
 previous section, was the point of criticism by Jedach and Turnau.
What they claim is that the replaéement of exp At of each internal
' w I3 I3
line of the multiperipheral chain by enf at: is not at all convincing.
They find that the bounds on transverse momenta are provided by the
longitudinal part - b}', of momentum transfer rather than its
T - ' . "
transverse part t. . Let us see below how the 9p dependence enters

the calculation through tiL.
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m
bi= b« b

where
T

!:.‘m = - (Za'rk)

sy

]

and )
b < (Ea- 0wy o (P o T, )

Ky

L_c0u1d be written in the following form:

.ti

L ; . i L :
b = (Ea- ,‘:Q“_pa,,,z;qx)(f,‘.—zuu +h-Z9,) (3.8)
The insertion of momentum and energy conservation rules

L J v oo
?m “‘E‘ql_“ = -?b + Z q[_“' ’

K=o

v N )
..:\ Ks.‘q]

in equation (3.8) gives

(;:; = “_ [E“ -P‘L-“'{; ( UK-qu)] [ E, +P;L-éh('uu+ Uy )]

Since
A . -
QK—QL“z’MK exp (t Ye) )
where
“‘ - kY al
U m‘k * qu
\\\\\ thus ) v
L ' i e “Me Yy, ™ o Yk
E «-(ma2e « ZTom e )(™be - X ™Mt ) (3.9)
M= R ’

. L . .
To make the transverse dependence of t,~ more explicit we do some
i

approximations; _
" ™
M\K - < e )
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supposing equal spacing in the rapidity state one gets

iom -y S
Lm € ety €<

ko ' - A

\~e

. L b HE Yn

Z “‘\‘ \ A e (Mq\) < - & :

[ TY N ’

t- ef'°\

Making use of these two relations and

. Na =M, . . A
e x e L e
Y% Y b AP
e e L <

in the equation (3.9) one comes to the approximation that

L e o2
b =K >
- (-H*- (3.10)
where YL RS W '
is the gap size and experimentally is a small number ( -ol-c 'n ).
Therefore the transverse momentum distribution is controlled
by the longitudinal part of the momentﬁm transfer. Thus approximatding
tiL =0 feqﬁitéé a bigger value for Q in order to fit the
transverse momentum distribution, hence strong shrinkage. Taking t;
as well as tiL into consideration, Jedach and Turnau arrive at the
result that the shrinkage is in accord\with data but has smaller values,
in two versions of‘multiperipheral model CtA and CP, (Fig. 3.3). The
samebconélusion has been reached by Teper.32
The situation becomzs more iﬁteresting if we consider another
paper by Henyey.33 There he claims that data is indicative of the fact
that amplitudes have either no, or at least less, dependence on the

longitudinal part of the momentum transfer. Let us briefly explain

the argument. Equation (3.10) shows that tiL is a rapid function of
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the rapidity gap d. Since experimentally d is a small number the
factor N
- d
e
-y
- <)

will be a large one and therefore, if tiL present, will dominate t{*

% -

Theoretically, from equation (3.10), one has
{4y ‘
[r-A O — .
T ) A2
Comparing this with data (fig. 3.5) one finds no similarity, so possibly

the dependence of the amplitude on tiL is very weak.,

However, the elastic slope for an amplitdde of the form

. . eAZT L
Al < e o,

' . . 34
- where t  is the total momentum transfer, is 3

1

B = <0 XR Y .

-

Comﬁaring this Qiﬁh the slope of equation (3.7) one concludes thatAthe
inclusion of tiL_pnly replaces X by % . Since x=8
the previous result of Henyey has not beenAmodified too much. Therefore
whether or not one enters tiL into the calculations the problem of
proportionality of slope and multiplicity, which is ruled out by data
but prediéted by multiperipheral models (fig. 3.5), remains a mystery}

| The inclusion of puases does not seem to remedy the problem either.

For instance, the effect of corresponding a phase of the form of
oﬂo[i’—‘; 4Ct)]) 5 vhere

K(E) = Lo x < E

——t



T2

£
i

Relative importance of

transverse

1 average gap size 2

Fig 3.b

Plab=100 Gev

Jedach-Turnau effect included

10 15 20 25
maltiplicity

Fig 2.5




73

Py 1 X

adots o13seT®

£q7oTTdiaTow  palaByod

ugau

1000

Loo

100

4o

Fig 3.6




T

9
to each of the links not only does it not help to cure the problem
(27, 32)

but makes the situation worse too : the. slope, now, increases
fasterﬁ See figure (3.7). |

In the next chapter we shall investigate the effect of criss-
cross diagrams in the unitarity equation to see if it couid help to
overcome the probieﬁ. The effect of clusters will also be studied.

But before ending the chapter we would like to introduce the random

walk picture.

i ey A




gflope of the overlap function
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Fig 3.7
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3.4. THE PRANDOM WALK PICTURE
| We might have introduced the idea of the random walk pictu;e
right after the equation 3.7, but v}e post;.poned it to a separate section
so that not dnly the flow of the text was not deviatéd but we could
also derive the equation. ‘ | |

The part of the multiparticle amplitude we are interested, in

terms of the (n-1) independent transverse momentum transfer , QTS ’

" is
-
- ii—' - 8
Ay = e (3.10)

with the notations as in figure 3.1.

The overlap function is40 .
. n-t ﬁ (QT' 4‘21-. )

od L - ) 3
IMA<A>=fﬂd4qe

Jgs!

where A is the momentum transfer in elastic scattering and we have

' e Aq. - D(Z X;) )
- Q":i Z\:—:..u. T =y ‘
‘ ~ =~ N

o - a-‘-“- — KJ A .

Hence

]
P>
R
Cr

=
writing % in terms of an average,

i O

)2 9(; = (A=) XD

one obtains, 2
y (nxt> A
22.. (na) <X&>

£
damﬁ(g)‘='e ¥ ’

LY 2 el
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which is the equivalent of (3.7) in A= space.

‘Defining the radi}u‘s, R, by
v .
R = L A&ty Ch=td
weé note that
R = Vi

which is a way of presenting the random walk notion,

1




CHAPTER FOUR

INTERFERENCE ~ DIAGRAMS
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4,1, INTRODUCTION

Since the original paper of Michej&a, Turnau and Bialas28
'there have been many discussions of whetﬁer_the multiperipheral model
of particle production gives, through unitarity, the correct t-dependence
of elastic.scattering. We saw in the third chaﬁter that neither Henyey
nor Jedach and Turnau type of calculatioﬁs, with or without including
phases, helped to improve the situation in which the predicted radius was
too small in the lower energy region and augmented too rafidly as a
function of energy compared to experiment.

In this chapter we shall try to investigate the efféct of the
interference diagrams in the unitarity equation and see if they
could improve the situation. We shall begin first by_reviewing some

of the earlier attempts which were made along this direction. Then

the way we have handled the diagrams will be presented.

g




80

4,2, SOME EARLIER WORKS

It has usually been the cése that people make the assumption
that the interference terms contribute té the calculations negligibly
and therefore they are discarded completely. The supporting argument
is that graphs with crossed lines have larger t values than the nc-crossed
ones and therefore because of the sharp cut off in t thej are damped.

This argument does not, however, show that even if a single crossed line
graph is small, the sum of all of them would be small éoo; since there
are so m;ny of them.

Despite this argument there have been several attempts to consider
the interference diagrams in different multiperipheral models. For
instance Snider -and 'l‘ow35 discuss the problem in an ABFST type of model
and Teper 32, 36'uses a Reggeized version. The effect of the interference
diagrams on rapidity correlations has élso been studied.37 .We briefly
review these calculations. |

In the framework of ABFST model; Snider and Tow consider the

following amplitude for XX —s NK process corresponding to fig (4.1).

. ) r‘\l.(q\qu J P“) a\) 'T;_ (qnq, qh J QE—‘ /] Pb)
AB(PQ;PB; qU"-aq‘) = ————1—-—_:-_— c= T a: LY
- P n .~ ~n
(al- ~n) t " (4.1)

The four momenta of the equation (4.1) are defined in the same figure.

T, is the off shell 2 —# 2 ® R scattering amplitude. =

+t
q
N %
- Q. .
9
9
Q, “

Qy.
g
m———— q_.‘

(fig. 4.1)
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Insertion of this amplitude in the unitarity equation and letting

the lines cross would mean that there will be some additional terms,

' - )
%;l:i%gii[:
4
4
)l

therefore the kernel as well as the inhomdgeneous term has to be
modified. Considering the case where n = 4, they group the interference

terms in three different categories as shown in fig. 4.2,

. | ' /

o\ o (0 s 0w 0 s (R

e | ' : \
(3) o ‘ '

(b)
. ; » ' /
tt * \/ (C) ‘ '.

(Fig. 4.2)

The terms on the right hand side show the sum of 4, 16, 4 graphs of
the figure. They are the uncrossed, single crossed and double crossed

terms. The figure shows that the integral equation, from the forward

_absorptive part, will be transformed from its standard form to something

g+ \ ] =

tt

more complicated such as the following,

e vl



Of course the new kernel is not complete in that it is not capable of

generating terms like

4t

'

§=

/o N\
The authors believe that the contribution of terms similar to these
will be very smell, which in turn means that tﬁere is no need to
have infinité'AGmﬁer of terms in the kernel. Using the trace approximation
’to_get the position of the pqle and comparing that with the result one
could get from the standard kernel they conclude that the effect of
criss cross diagrams as far as the output vacuum pole position is concerred
is not important. Of course it is quite straightforward to note that
this smaii change will amount to a larger change in the topologicai
m\qzoés sections at high energies. This is part of the story. The other
part concerns those arguments which are in favour of the importance
of the interference diagrams. In referaence 37, for example, éne finds
that the inclusion of thése terms in the iﬁtegrated six prong rapidity

. . -~ . . “+ .
correlation function of R pairs in K P —» six charged prong states -

- W,
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brings the theory to match very well with the experiment (fig. 4.3).

In a similar way to Snider and Tow, Teper 2 also considers

diagrams which are .a mixture of only neighbouring crosses and

the uncrossed qnés. He uses a Reggeized model and concludes that

the additional .terms have the effect that they bring the enefgy'
dependence of the slope of the overlap function closer to that of
the elastic scattering but with the drawback that the absolute size
of'the slope is now much less than the one observed experimentally.

In this work we add together the effect of the interference

diagrams. We first describe our method of calculation on a

particular diagram.

40 do;
A, dyy

L
207

10

d'0%

Sy av, S(n-11-%) [ G, -

-9

g e
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4,3. GENCRAL TREATMENT OF THE DIAGRAMS

The input to the model is shown in fig (3.4), where the 't-dependence
‘ ) . at; : .
of the amplitude arises from a factore e ' , associated with each internal

line. The value of A can be found by comparmg with expenmental qT

distribution in inclusive processes. The other q'(u"q" W )
_ ) : _ A J "
parameter of the model is the mass of the Q &
. o &
. . e g8 s ™~
produced objects and their multiplicity. If L 139
we assume that they are pions then the mass
is known and we can read the multiplicity 5 = <
. at t )
directly from data. However it is well L —
. N
known that studies of correlation require
the production of clusters decaying into “;-—.—->———<
. o - g dhfta |
several pions, so it is necessary to assume . - < :
. q‘\(‘J' 7;.,‘1,,)
a value of the cluster mass and the
average multiplicity of each cluster o (Fig. 4.4)

(a mass of | So =1 gev has been allocated for the cluster mass).

Let us rewrite two of the equations of the third chapter here again,

.
-ty

- n ;(?J_. L) . o a n _
_,q(l. qﬁ) ‘m[d%‘ e . ]A(‘?TJ- ) 8) (&) 4.2)

=

i@ ST ey ay) 5(z ) (20 -15) §(Zhi) -

J=

‘ ' L
g‘,(‘:‘ 2 3(?- Ld')‘ \ A (ba"qﬁx')l

(4.3)

where the rapidity is defined by

\. ("-’,j"'qb'
sz‘T R 20 s

(RN .
J q".x
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. ) : (8
and P is the centre of mass momentum ( S= 4P°) .
As mentioned earlier the amplitude will be supposed to have the

following form,

~ - : q Eg L. (4.4) ,
A( 71}; 7Lj) = esf A by | ’ :
where - ' ‘ ;
. i .
tj:- (Pa-_ZQf) )
(LAY
L i )
* + - - > t
= (=L )(A-297) -(Z9)
1’2y . I's) =
We have defined the longitudinal variables a as |
, \
q, = CJ‘- b q(_’ ]
which are related to the clustér mass, So, by
49 - s
P (4.5)
Using the momentum conservation,
. '1;‘ . ) 3 - ) . ..
- (29 Y(F-T9)-(ZL 9.) . 4.6)
e J4 (Y '
g
An important property of the components q 1is that under Lorentz
transformations along the longitudinal directions they transform-like38
* te t
9 — e g

"§o that their ratios will te invariant under those transiormatioms,




4.3.a. The Longitudinal Calculation

‘For the time being we shall not consider the transverse part in
. . L3 - L
equation (4.6). In the same equation R (= Eo- fa ) is small

so that with a very good approximation we can write (4.6) as

. o J o
t: =- S, ( Zx\')(?ixl'\) ’

s l“.jbl = (4.63)
* where we have defined
FY
X\. = q"
. W
We shall define the matrix M.:,’ by the following equation,
n-t. )
=) . .

EJ = -~ S, M,J X; XJ' ; (’.J ='/“) (4,7)

M.. is an n x n matrix and can be easily calculated
600 . . .00

1 0 0 . L] L] 0 0

'"n-1n-2n-3... 10
As the itﬁaginary part of the amplitude depends on the square of
the amplitude, there shall be ancther t-dependence in the exponent

" which may conveniently be written as
A=)
. (W <) .
L& <-sihyxn o (Gsyem) 4.8)
4z . :

(v
‘where MY of (4.8) in general will be a permutation of M in (4.7),

Au _ (F)(“u) )
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We define a new matrix M as the sum of these two matrices,

(Y &

M = M“J + M:J

l'_"
Therefore

' -

'ﬁ(ztk*ztk') =z - ﬂSuM.‘JX;XJ

is the exponential of the amplitude squared in (4.3).

Raalizing that .

d\l,' = d—x—x‘—"

‘we can write the longitudinal part of equation (4.3) in the following form.

A X, S Mi: K¢ = . . s
Lo MUY N™ sw-borsw-} 5

Y
Defining a new dimensionless variable 3. in place of Xi by
X¢
5.‘ = 7;.;: J

we get

- .
. <. a3 ~ASo A"j Si 34' -\
2. G < s(L-ozge(k-zs)
3 s . 3; _ ﬁ'. ’ vf}' .
. - : .

A - (4.9)
tnfortunately there seems to be no exact analytic way of doing this
jintegral. So to proceed we maximize the exponential by those },- )
say 3: S which minimize My B3:3; »

[-] .
3( =3|' ~ & '
’ L 8
_ and keep only the terms which are of the order of Tor &
}: are subject to the two constraints which are imposed by the two
delta functions of (4.9).

Hence,

L mgey



-ASo M uSSa n -axzuijﬂ

Sm"‘i]e sciz >8<z"

|¢| Y

where

-; Y ' LS

zu i«i = My 30 Yy - M'J S G

. Note that the terms linear in Ei, because of the choice of the 3: >

cancel. Writing the §-functions in their integral form

we get, . o)
-\ - aS’ A"J 5{ SJ.

£‘ TYé.) e

l\\

e &) 5 -5 2y 6

Sw JR{"‘Z‘]& |

(4.10)
The E. integrétion gives*
| . . - . - My
£ oap (<28 My 3 3,7) %
B . ' 8/
™ (3;) (As) " JaAz
-J 2, 2 2
Sd,kdé fo( JCH z)('_tg ) )
_ : (4.11)
Now doing the k and 1 integration oﬁeAconcludes that
mp (355 5 57 ox
.g,, (4.12)

TG fas | (eT)™ (amn g

opm s =

* proceeding from (4.10) to (4.11) we have assumed that Z is not a
singular matrix. If it were singular we must have proceeded in
a different way. See the appendix C for the latter. case.




&9

where
.-  | ‘ | | . -
- : . = — ‘Zj;aﬁj
’ 4%50
' R T .
_ \ -
Fz_: pe—— Z Z"-J' 3; 3
AAQS. )
Bl -gTa.(h+xa
sc o Ta(y

¢

)

. -L, as we shall see, will serve the purpose of weighing different

interference diagrams and will appear as a coefficient of the term

which includes the radius.
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4.3.b. The Transverse Calculation

Having dealt with the longitudinal part of the amplitude we
shall discuss the transverse part here. ‘The procedure will be more

or less as before. We are mainly concerned with the term which we

-y W

suppressed in (4.6),

. du 2
k“' =-(qul‘;) ’
)

which corresponds to the transverse part of the amplitude,

Ay = T0 epl-2(5n)]

>

As before let us define an n x n and symmetric matrix lﬂy by

the following equation,

The amplitude, now, looks like,
_ . @ -
. —-— 1
A CqTJ.) - 9"”(" A LIJ qlr‘- . ?q\J ) .

One can transform this to the bi space using equation (4.2),

*

W o o

~ < K- \ .
ﬁ(b') = 4 . - » ("" 8';( blL
T wal (FEyy AT )
W=t
where
w U I -
T Y L L J -
B"J 3 4[ "J (Zc.::;-l) nr jrs EX B (4.13)
aﬁd

—— Jn' =1 V",s =.\,:: .

’

Matrix él)is n x n and symmetric.




.91

Let us rewrite the transverse part of equation (4.3) again,
n - \l}

T(g_) j ([&‘L]g(zbd) (b-Tx bd) Ifq}'(bd-)‘\ C 4.14)

- J-.b

 Once more we need to permute (4.13)

g - & T2 (85)

hy
and
B = By ~ &y
Hence, |
- VA1 - & ».f(ﬁ%f: D

where,

4 A 2 -l
e“ = - l‘wz(.n-t) ' [(EE’U ) MLQI NL\:,] '

- @)
Matrix Bij isnbyn ana symmetric. It could be, and in most cases is,
singular. 1In what follows we shall assume that it is singular. For
Fhe other case refer to appendix D. The fact that Bij is singular
does not mean that the integral (4.14) will be divergent at all. The
reason fér tﬁigiis the existence of the s-functions. This makes it
possibie to get rid of the zero eigenvalue corresponding to
matrix B as is explained below. ertlng the delta function of (4.14)

in its integral form we get,
o Ve (o (- %Y ) by .-

() = 1§, Jd‘xa‘y e XTI'[&L; e J bi b, )
. -0

J

L8

: ' 3
_According to appendix E one can do the integration over d bi to get

-~ .

- L iy.b - Cin A¢
T() =, Sfi'”‘ d'y e S (X - Zic,,, “l) ..r[ Ay (x=%9) (X -%; v)],

where

n-\ v a -
-t an L TOICES)
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and c(,' is the matrix which diagonalizes Bij to produce the
eigenvalues 7\;- Matrix Fij is defined in the appendik E. Using
the §-function, one can easily do the integration over X,

i‘;-l: _297("

T®w): b [aty e . ,
where
. " ’
e = Z F.‘J (,(6“' %{)(@" XS) J
l',.)‘s! -
and

®

n
\
(Zcan) /(T )
=1 Tz
One, fherefore, finally ends up with

o
4A8

TC) - ) ‘ (4.15)

'gL . ”f('

4P

The radius is customarily defined according to

. . L ANG .
R E (4.16)

It is this that Henyey finds to increase very sharply az emergy

increases and indezd we confirm and see the same effect (Fig.r 4.5) using

his éarameter values (for uncrc;ssed diagrams).'

Before going to compare different diagrams and see what their
effects are, it seems most appropriate to say a few words on the
parametef A . The next section is devoted to this and the way one

assigns a value by considering the transverse momentum distribution.

P,
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Fig 4.5
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4,4, ‘TRANSVERSE MOMENTUM DISTRIBUTION

We, in this chapter, introduced the parameter A in equation (4.4).
It is clear in there that . A governs the t-distribution of the
amplitude. According to what t should be approximated to, referring to
Henyey or Jedaéh-Turnau calculations, A can take values as high as 5.5
or as small as 0.5. We shall assign that value for J which gives
the best fit to the transverse momentum distributionms.

c . . . . . 8 . : . .
The invariant cross-section is defined as  (with the notations of fig. 4.4)

A’ dy &4

S LT R[] fa-Dieem
T 2s 24

f: o T do

Since we are interested in the transverse part of the calculation we

shall consider that first,

£ s S[Tw] Cin - 1) £ ) A Gl
where
(ACI1T = emplc AL TG 1)

is the squared amplitude in Henyey Case (t = tT).

L.. is sum of two symmetric matrices,
i _

Ly = (3 (L) -

Splitting the matrix Lij to a lower matrix Nij and the remaining

we get




95

j[T\' Xy, enp(- ;\z Wi - w)

VEf

‘ -2 -~ - PP - J) - -~
ja}q,,‘ “f’[a 9\'("54 ‘er +2 %f L.'t fzr,., - . )] §_(?.,}-7T)§ (;:_;7,]‘._ o0r

The first S«function makes the integration over %T easy,

T\ —AL M ?q' T (L,, Ty s2 9y (26, 7c.)
q“"r o
isf e g (zqv‘lr,)
_ Writing the delta function in the integral form and doing the integration
over - qvf and ignoring the uninteresting numbers like 2x we
obtain,
. -l - -~ )
, IR A PR T RL DA 2 His X
<
Sy = A (e dx ¢ e )
where ii 4
sl - LAy (L)

A I3 . - 3 »
The integration over x is straightforward now; we get,

with

and'

fc = 0(\ wa(-ﬂ-/%;q:) )

ab
(4.17)
-~
Ly = :f 'A%-/y;l ) 4.18)
A ¥ o ' y

A6+
gy

iyt§

. Fortunately the longitudinal calculation is what we have already

performed. Therefore the only effect we may get from that is the
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following transformation for oy of (4.18),
d|'—""7 2"(\ ’

where. L is given in (4.12).
Averagiﬁngver all final state transverse momentum distributions
we fit the data39 in both Henyey and JedachJTurnau*type of calculétions
(fig. 4.6). The best values one gets in the two cases are,
Henyey type _ a_= 4,1
Jedach-Turnau type | A=2.8
4We would like to point out that in determining these values we have
considered only the uncrossed diagrams. Another point worth mentioning
here is that energy variation has little effect on the-parameter ‘2
as is cléér from.figure 6.7).
Obviously the transverse momentum distribution seen experimentally
is tha; of the observed particles, yet we fit the data with the calculations
based on the clusters. Of course we might expect that there would be scme

effect due to the decay of the clusters into the observed particles but

we anticipate that this will not be too important.

* For Jedach-Turnau calculations see the next section.
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4,5. THE JEDACH AND TURNAU EFFECT -

As it was mentioned in section 3 of the third chapter one
gets a transverse dependence from the lbngitudinal momentum transfer, ti
This is suggested to be taken into consideration as well. Here we shall
demonstrate thé change the additional term imposes on the calculations

of the previous two sections in short.

Inserting
wh*q‘_k = Xk
"
L "~
—QLk - m\K &X.P L. _x.i
3
< _’_':.:. & 3“‘;‘5—.
Xx .
in equation (2.14) we get
. L 8
‘h!k
oI T Ll - Z L
Z- Ksiay Kol g”' .

The first term on the right hand side is essentially same as (3.6a).

Therefore the longitudinal calculations are left unchanged under this
effect. The second term is new and must be added to te s

b:p’:—(i; q'l‘ ‘(tx)(z
- e .

‘ltr

Hence, the inclusion of the Jedach and Turnau effect will only change

the diagonal entries of the matrix L  in the subsections(3.3b) and (3.4)

and, therefore, the remaining calculations will be as they stand.
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4,6, THE EFFECT OF INTERFERENCE DIAGRAMS

Now that we have developed a method such thae every individual
diagram could be calculated separately we.turn to its application. The
numerical calculation has been performed in the Rutherford High Energy
Laboratorles (RHEL) 360 computer where CERN minimization routines have

x(nﬂvd
%'t ‘Lsed The program has been developed in such a way that

_been
glven the parameter values and the type of permutatlon, it calculates
transverse momentum distribution and the radius as well as the other
required quantities automatically. Then it averages over all interference
diagrams, at a given energy, to give the effective quantities.

To cut down the computer time and since omission of some diégrams
such as those in figure (&.8) are justified according to the results
one gets from the numerical calculations, we have reduced the.number of
diagrams corresponding to 3, 4, 5 intefmediate states to 28 out of possible
150 ones. These interference diagrams have been shown in fig. (4.9).

Of course some of the diagrams, by symmetry, are representatives of two

or four ter@s. For example, there are three irore terms similar to giagram
number 7 of éiét(4.9)., Thus, by considering these extra tetms, we in
‘actual fact are dealing with somé 65 diagrams. '

The cluster production has been invoked. both in Henyey and Jedach-
Turnau papers to improve the sieuation. Here we too shall consider the
effect of clusters as well and check how impoftant they play a ;ole in
achieviné‘a better agreement with data.

The central aim is to see how.the redius behaves as compared to
data. In figures (4.10) and (4.11) we plot the radius of uncrossed
diagram, with and without the formation of clusters, for Henyey and

Jedach-Turnau cases respectively. It is evident from the pictures that

cluster formation improves the situation slightly but does not solve the

problem, Thls is one of the conclusicns of the reference 32 as well.
i iy
8
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Taking into account the interference diagrams we arrive at
the figure (4.12) where cluster formatioﬁ is also included. Surprisingly
enough, for the realistic values of A the inclusion of the interference
diagrams does not overcome the problem either.. In fact, their contribution
is so little that as far as R2 is concerned one could neglect all of the
crossed diagrams.

The parameter A plays a crucial role in the evaluation of the
" importance of the crossed diagrams. This seems to be paft, if not all, of
the reason for the Teper's conclusion of up to 307 contribution to the
glopeifrom the crossed diagrams. To support this idea we plot,Jt} as a
function of A in (4.13) where

-
.t Ruuu.vun.c\
A =

Repe

The rapid variation of 4% at small’ A justifies .the point, at least
partially. Using different values for So does not improve the case much
either. In figu:e 4,14, for the sake of completéﬁess, we plot R2 versus
S for different values of the parameters A and So.'

Tﬁer;fbfé,,we, disappointingly, come to the conclusion that adZing
tﬁe interference diagrams leaves the problem of sharp increase of radius,
or altg;nativel& the slope of the pomeron, unchanged. We shall try te

demonstrate another dynamics, in the next chapter, which may be a solution

to the problem.
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CHAPTER FIVE

A LINK [EPENDENT MODEL
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5.1, INTRODUCTION

" We tried to fit the data of the radius as a function of energy
for'thé reasonable values of A which safisfied the transverse
mbﬁentum distribution in Chapter 4, with due regard to the interference
diagrams.: But, sadly enough, we concluded that these extra terms could
not help us in removing the difficulty which was introduced in Chapter
three.  Therefore one should seek the answer somewhere else. But before
going to introduce the new model, let us briefly sketch éome of the:
attempts which have been made towards improving the problém of og;

_during the last two years or so.

ooy = -
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5.2. WHAT HAS HAPPENED DURING THE LAST TWO YEARS?

The situation studied so far, briefly, is as follows. The result

of Henyey on the problem of the slope of the pomeron, which could be

derived model independently as well,43 is

y
—_— ’

P 2 4?.}’.)

’

where . (5.1)
dnY
y = 7S
is the density of particles per unit rapidity in the central region. This
result was criticised by Jedach and Turnau on the ground that one should

use full momentum transfer and therefore (5.1) no longer holds. Eut,

of course, then one would have some undesirable correlations between

the transverse and longitudinal components. -

Since then there have been a nuﬁber of attempts and'out of them
the works of Kubar-André et al,ao c. Michael41 and Bialas and Sakai42
" have thrown some light‘onto the problem. |
For ipstance, allowing some correlations between neighbourinéb
‘ transverée moﬁegtum transfers Kubar—André et a140 conclude that each
step in the impact parameter space is followed by a step in the opposite

"direction and therefore the radius remains small. This, in turn, meens

that the random walk should be replaced by the compressed walk:

~(random walk)

S/=EN

(compressed walk)
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This easily follows by transforming the amplitude from 6& ~ space

- J
to its conjugate Bj - space; that is from

A, < Tr vf[“%CA-;; 5“513]
o o

- o E— .

to
~ A -
An e Tl wp [-44;8-5]
n ..‘)."r c 'J d
The symmetric matrix is defined by the following,
{t € 06 0---0
¢ 1 ooo0---0
- A=l o6t oo---0 .
0o €1 0 ---0
i’--. '-‘{

’ - £
One, now,’ gets for the average <Bi . Bj > :

N ST POV A
<G/ .8 = e hAry T o= lee g li-jl=n
0 elsewhere

This is the compressed walk as €&  is negative. .
The atgommodation-of spin iﬁ.;he’both erds of the multiperipheral

model, on the otﬁe; hand, seems to produce a non negligible effect.

Bialas and Sékai42 find that the contribution to the ovérlap slope arising

from the spin of‘the leading clusters is around 8 gev-z. They also

conclude that the shrinkage‘could only be determined by ‘the ceng?al region

of the multiperipheral model. The points mentioned here have been best

summed up in a paper by B.R.‘Weber.Aé

—
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5.3. THE MODEL

The form of the link dependent amplitude which is considered

here and corresponds to the figure 5.1 is supposed to be

of the following form, ' o 1Q
A
- . ) e e~ o

A _“ Q'Q'\'J' L ST | Py
S (5.2) '
. 1L___> T

" where b YA
: — > U
u
k=& -
- (fig. 5.1)

/

The reason why the term @ Qj,, 1is not taken into consideration

is due to the following reason,

(Q;- aﬁﬂ)t = T -
Q; M a;:ﬂ -2 4 QJ«\," v cout

. | . . .
Q%*\‘%(Q*Q&\\ - const, .

~—
S N
N

. R X
which means that as S¢/p is a constant and &; - type terms have

produces nothing new. So

already been considered therefore &;&;,,

the obvious thing to do at this stage is to consider & 54 type terms.

‘To proceed we write Q,‘ﬂ_ in terms of &g » _
(5.3)

Qai-n.. = Qﬁ - Cha~ e )
t. according to (4.6) may be written in the following form,
T n LY
be- (ZHN(T - (Z )
V-.Sﬂ r=\
4, - v
> - Z1
-5, (2 TX R

e (5.4)
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The two terms in brackets of (5.3) in terms of x's become,

* “ - - - - t o
Yy ~ 8542 = [ (A + e )C ‘?.s‘n Q) - ( ‘q-\-‘,ﬂ-l- q Ta‘u) ]

- - 1 ”L
X;ar. }
[so *_21 Xary (g, + Trp) .

X5+
gince
Vg =4a X5 >
@u ‘”f(%“'%) . |
- o«1w'6—8‘) p) ’ ~

where & is the rapidity gap size,

§ = o 5/'n-\ >

. therefore,
‘ y -
.xi—t—l = S- .
X
Hence,
\ - - L 8
. qJ-t\*alJav."“"a("z; (q'l.-u-\ qTJ'-rL)‘ ’
' (5.5)
' where B T ' 7/ 98 ~'[n= i
= Eo (?—+ s =+ Q ) .
going back to Qj'we write,
) QS = qu
,[(Z% (r?)~(f%r3]
[ £
R ey BT
Xr X -7 ) 1. ..\—‘l

The Q. Qj+2 term requires the calculation of Qj (qj+1 + qj+2) due to

(5.3). Using (5.5) and (5.6),
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| P o
QS Q‘la‘ﬂ x T ) VS dy [ (ZXe )T X )] -

- l[ J"—(\< Z:qT")‘L ‘ -
e [Ex(zx))™

-\ ‘L v
BlEx)E)n (G o ]
d‘ . J4\ Jg;

Bearing in mind that tj = sz, the exponential term of (5.2) could

conveniently be written as, using 5.4 as well,

N ,
={ AS.(ZXr)(ZX Mase (£X-) (26 _w.JE.K:x,xzx:')]_

& - 1 - i . -
4 i-r.(z.q,,. L {(zx..)(zxr‘)] - (7 9. )}
¢ r_;\' r T, 01\ ey
(5.7)

where

AW N (DK -t
= A_*T— 25, [(ZX )¢ )]

" Let us split Fj intc transverse and longitudinal parts,

L o

where

o T 5 e, . 3-__|
) _rpa V5 [@Ke) (ZXT) | 4 s, (THe) (2)

(5.8)

,:sL- ~AS. (va)(f-x"

v=34
L b
r » -~ T -
e sy (B [@W“f ) Gy

s

_Now we shall be dealing with each cf them in the same way as in the

fourth chapter.




117

5.3a LONGITUDINAL PART OF THE CALCULATION

The procedure here will be almost exactly as the calculations of

4.3a. Transforming x's by,

x\"= Xr + & - : . p
FjL becomes, o

N P + T - "o
et oo [ (26 B (zzu(:x;"z,) H(EEX)(D6)-

-ﬁtih:xr)(?:)c.r ) { irisj -ux‘s,.(zx,\»zz,)(ZX. -

~2
where :

A= Aso
Ay = AVS R
and ' . J ‘
& & \ . - > -1
{ et = (06 (EX @)~ (Z8)(IX &)

1

Summing over all j's we get,

EEL___,_{_ X, X" - ’,\.LZ [(Z:.Xr )(Exr )] -\-‘S‘So
d A R N

n4

S ] ;é—‘ "\\?
Y[ @)@ )

J=l

o ) [24 7
. PN ) . {rs /"\S X. x,_l
Hes E¢l -1 2'L '—_"_-.———_’-'———"’-F——“ T °® v Ay
+ % rs s 2 i) \((Z‘_x,-)(ZX( ) rs
< L&Ay et 5.9
shere | \ M - w Xr oo
(U = A Mrs Xe X; g QLE [I\ZX")(ZX" )] - ’I‘S."dr! s
03} '
Ry - (Zx 2xe) )
My &t = ZZ f(gaxzxr ) - (Fx) (2%
and .
L
SR S Y O e gV

- Hr; ZIaj"“ T Agrs z-ré)

(v A
M &&= —
i LA o f(—Zxr )Ex) '
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Remembering that the original idea was to evaluate,

“T °_‘x’% \'A(s,t>|L g(\[‘s-ﬁx‘g)g(\r; S Zx )

9=

L

or alternatively, using 5.9,

- —-A MYS E/ZS

v g:ﬁxj STY A5 e

where the following transformation has been applied,

(JE_ZKJS(J —ZX)

Xc_;vﬁ.'x;'
RGN
o= Vs Pcé")

and
ene, making use of the results obtained in section 5.3a, obtainms,

(the matrix £ there has been replaced by M here),

& LT x \h \

L= xg  Gamn ) 0 - if M not singular
. (5.10) |
ot gt il

L= g"ﬁ‘)‘(‘ @] )‘h. M,o)hn[z? (i‘“"v‘ )W 'X"‘ J.lf IW\ singular

where I} , I} and f} have been defined according to (4,12. In doing’
this calculation we did not take into effect the dependence on transverse
momenta, Gp of FjL. This will be dealt with at subsection 5.3c. Now

we turn to the transverse part of the theory.

i DA




119

5.3b TRANSVERSE PART OF THE CALCULATION

~Let us define

| U
4o 1 (e )

re\

then the transverse part of the exponential, FJ.T, becomes,

T & - -~ -
Bl (T )« (T 7, )",
hence,.
M . (R W=~
;é,’lj- = -y ?1*‘71‘-’ + _A_lé 7:1\..‘71-‘ ) L
where the symmetric (n x n) matrix Aura-_ is defined by,
n\
W _ L™ L
b,.‘. Ui 73 Z ( hy © G (nty) ?'T}‘u.)- %N

=)
with ;

6(x)=1\ "é X o ) -
=0 'é *-<° '

. ¥ . ) ) .
The matrix L‘ , with the exception of the inclusion of the factor M,
. , e

is the same méti:ix_ as in 4, 3b.

"-The tinal form of “;.:FjT now looks like,

Al W .
AN 4
L’ AN 9. 9y
Loy = OV 1
3= ¢ - .11)
: . . W, .
where the n x n and symmetric matrix f, is defined by
() N W S
. — L .. ]
i'}. 't. L,a. [ 'y

This form of the transverse part (5.11) falls into the previously
defined category (section 4.3b) and, thus, shall not be treated in

full here.

. gy WAt
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The final answer is

jﬁ [QLILI‘] gtjcz :';f ) é\)( I”Z (X\'E.l') "’4(:')‘ ) -

[

T (L)
| .
=4 vy,

where

o = ) Fy (A-x)(T-%i)

with the notations already been used in Chapter 4.

The radius, accordingly, is defined as,

R¥= 40
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5.3c THE JEDACH-TURNAU EFFECT

The effect enters the‘calculation through Sd"
o L ar
so = " & qq'\ .

We write FjT, with this in mind,
| j J > = E g Lo
RN N n ¢ So :E_.‘ 5.—-
Rt- SAER (T Z ) w(T(Z 2y s < s ) i)

. . " . : . 5 ) 'IL
= {M\("\ ZO:XV" QZXP)(£X;\) - ﬁ‘, "f\t [(i Xr) ( ZXr‘)] j +

- . N0, O A N B é;“
‘ * {(’l‘é)(r -’AZXa—)( ZXr\ ?Tr)~A" (ZX,-) ['M (Txr ) (Z xz't‘r)]}

Finally,

. - ¥ - ’ v &\ Y ';,.‘ 3 )

. . A . » .
& “n J =lfa q
~ T
» (BT -2 T - M fEx0 (2x7) ] (T SF)
. - . Y
T e (5.12)
| Unty MO
where A, = (e s ~ 3 ) '
The last term is the one which was absent from the calculations of
subsection (5.3a) and should be added to (5.3b) which»will make the
‘ (J)
diagonal entries of the matrix ‘eij ~ slightly modified.
No‘ting that the transverse momentum distribution formula in
Phis case will be same as the one in the fourth chapter, with the
. w o -
replacement by ‘e'ij’ we find the most suitable values for A and T
(figure 5.2) .and then ploi: the radius as a function of energy in the
figures (5.3) and (5.4) in both cases. It is obvious from Fig. 5.3

~ that, now, the value and the slope of the radius, in Henyey's case,

agrees with the experiment very well. For comparison we plot the
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’ ' result of the fourthchapter as well. In fig. (5.4), where the Jedach-

Turnau calculations have been included, still the problem remains

unsolved and we get no agreement with data.

e
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5.4 ON THE PARAMETER ¢
| In this seétion we would like to see what sort of effect #
introduces and why' should it be the case that it adopts an Opﬁosite
sign to that of the previously defined parémeter A. _ :
We remember that A" was introduced by the following type

of equation,
{1
 AQy 4 ME§ By
A(Q&) = —.),T < o .

In order to understand this let us make use of the following,

| N [
U P Y«
005050 =- 2 (8-a5a) « T (45 +%iw)

<

] L~
= = ,"‘i (QJ\I + Y2 ) = ,‘2 (QJ <~ Q)

As we should sum over j, the summation running from 1 to n-2 for

the interference term only, we get,
n3 "3

("Z’ A’Q.)'H, == [ (q.lﬂ"'q.lﬂ) * 7 Z (-QJ *Q“’")
=t o de=)

One easily writes,

n-\ 1 L L2 et o,
_.Z (Q *Q“,_) L @ —%(Q\*Q;*QA_L*Qnﬂ>
9= ‘

d=1

whence, ’
n3 , n-!

oo L L L ) Z-Q
- (i.‘-‘ Z (, qJ"ﬂ * qJ\'l'l ) - 2 (Q\ «Q -'fQ‘-; .\-\ +7
=) .

“—3

NPT @ =
-~ o=\

Now it is easier to see what is going on since A(&]) could now

conveniently be written as, .

A(ﬂo)-"i‘[(“*""z%] nf[«(a\.».Qﬁo z*QH-"‘i{"Z(m {,

With ‘ﬁbm
e »Ado

The first factor is the term which was known from the previous chapter,
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with the only differen;e that the coefficient ( A-—UPl ) is»smaller
allowing a slow emergy variation for the radius. We are not interested
in the last term and indeed nothing much could be said about it. Thé
gecond factor is new. It is obviously not varying with energy and is
just a constant. This is the term which gives a constant contribution to
the magnituae of the radius. By choosing suitable values for the two
parameters one could bring the magnitude and the slope of the radius to

2

the poinf that would agree with data, as in figure 5.3.




5.5 CONCLUSIONS

)

We became familiar with the probleﬁ the radius is concerned
with in the third éhapter. There we saw that, by adjusting-the
parameters to produce the correct transverse momentum distribution,
the radius rises too sharply as the energy increases in the multi-
peripheral model. There have been some speculations for some time that
perhaps the interference diagrams, created by the unitarity, might
have been helpful in remedying the sharp increase of the radius and in
actual fact there were some attempts along this line which.had taken
\ the nearby crossed diégram in the ladder. ‘- |

In the fourth chapter, treating all prominentidiagrams on the
same foofing, we concluded that, as long as ﬁhe radius is concerned, the

contribution of the n! - 1 diagrams, as compared to the one uncrossed

diagram, is quite unimportant and therefore this provides us with no

solution.

Attempting to solve the problem of the radius, a new alternative
wés introduced in chapter 5. This time we let the amplitude be link-
dependenﬁ as'Wéll,in the multiperipheral- context. This idea has been
the subject of some recent papers where they take the nearby link
correlations into consideration'(tranéverse part of momenfa only). It
is shown in the text that considering full momenta Qj.Qj+1 type of terms
produce essentially nothing new. So we concenfra;é on Qj Qj+2 terms.
We show that the modification to the basic amplitude is quite adequate
_%p describing the eneréy dependence-of radius along a big range of.

energy. The agreement with data is very good and may be considered as

a support to the model.

e e T
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!

In this part we would like to ghow that if the distribution of

O;gversus.n is poissonian then the two particle correlations function

f2 is zero.

(TRA is of the following form:

@) oY
LG No” P S

and £, is defined as

2
'p,’-. <?\CK—()>-<-'\->L _
o .3 nena) Oncs) Zn Onls)_v
® Tzones -1 P
Substituting (Al) in (A2)
. .
- L n ‘ L&")
,F Z nin-t) gﬂ‘\_{z ) Z“ (—z—;"" T
L‘-’ ,‘\— n » — *
> @7 oz =0t
" ni oy n!
" gince we have A N
S 1 5
. 2 e3
‘s (3 %)
;, ] = <
' 3e.s
. Sonin) X T @' e") (%"-e—-s) L
n n
and
n Lte. s
Z (%L.B.J) (%LL’) ry
w h!
- thus 9 E.3
(yes) & . _ i 1
fus ve.) 9-g~3
e,% ‘ <
(6]
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THE INVERSE TRANSFORMATION OF (3.8)
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The equation 2 of chapter 3, suppressing the longitudinal variables, is

- )
«

n N

-~ - by - ) -
?\(-\:;): .(ﬂ [0\1‘1; c\qé &]AC?;.)S (Zy)

-~

(B1)
We have ignored the uninteresting factors of 2 ., We shall make
the ansatz that equation 3 of the same chapter is the inverse
‘transformation of (Bl) and then vérify that it;is allright.
| n Y R R
A(‘?;‘) -y S}I\\:ALL; g,‘q“ %‘SJA(LJ-)S"(ZH)
(B2)
(B1) and (B2) could be combined together to produce
, Yy
A(q&-)—.n"SM.--ol‘!h db-don e A(e,)é (=) §'(Zk)
(B3)

-
" The integration over by is simple:

: _ § t(‘h, 7;)'0,_+---u (qn ) k.
A o § o e A o
ye (patbn)]

-~ - o

Acq,,)g (zq&) ”f[-a(% a ‘
=/

nb,, (‘I'L-Qz-‘h-t%)* *‘L (7.,-7..-41.»«%)

B - A

The integration over the remaining bj's, in turn, will result on:

- .‘ﬁ

. -' W - - - - ..I 'S ‘
A ) < St dtte A Yz RO YO R

Now, leaving dzqr out, the integration over dij by making use of the

s-functions yields
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- - h

. - -l -&, -, » "I / =N .:, E , _‘
ﬂ(qé',) =n jokl 9, A (9,%-%+% »9,-% 493 ,+--, q,-9, 2 4. ) Sl[n(q,.q, )..Z'i

.o —-.' - AL R ;, -‘,
SJ‘Q, A GG >4 ‘h*‘h,m,‘l, q,+°l..)8 (4-9+5Z% )

Let

>/

7y . I
d : 5 : ir'
1

VINg 5

-
then the 44 integration produces,

o

’ / !
/ A(g- £,0.-%,.-, %-%)
: = ) » ha > > A
ALY ) | B R (B4)
The Lorentz invariance implies that 1.h.s of (B3) and r.h.s. of (B4)

f are the same, which this in turn implies (B1l) and (B2) are inverse

.. transformations of each other.




APPENDIX C

AN INTEGRATION (CORRESPONDING TO 4.10)




In the process of integrating over Ei in (46.10), we had assumed
that the matrix zij was not singular. There are occasions, such as the
uncrossed diagrams, where Zij becomes singular. The singularity is due .

g
b

to the fact that the last columh\of the matrik has zero entries. Because
of this, the procedure from (4.10) to (4.11) will differ 'slightly as we

5

shall explain below.

n ‘- « ') -’ASoZ(;Lie- :
=[x5] w[—“a“'s'af’bsl--f[zg*i] oz i
_ Separating the last cblﬁmn of Zij from the others,
’ASZ 3TN

L=[7 8] ep[- M-M's“"‘ iy [‘“]e

n-y 45.[2.‘&&5;-2...2.5,‘ 2.6
Sdiv\ 8[&\ ( Zi-)] ¢ [ .._+Z 3 _]

)
I‘.
Zij ig one order less than Zij’ where the last row and column of 2 are

taken off. Since Ein ¥i = 1, n, is zero thus ‘ .

. , - ‘
onp[-25 M3 35 jﬂ.‘( ) A5 Fig 65 AALZn WY
dti) ¢ o elath-R0E]
) | R

Writing 6-function in its integral form and then doing the Ei integral

|}

firgt one finds
. I-asom;'s‘- i{‘] |
e~ (35" A
| T [aat T ffs(é.- 3.)()4 [

LS‘ -:'Zr&‘ -'Zus_




| ~ APPENDIX D

AN INTEGRATION (CORRESPONDING _TO 4.3b)




We shall repeat the calculation ot subsection 4.3b where the matrix

Bij is not singular. Let us rewrite the equation 4.14 here,
-~

n - : —
- Yy, = v~ ‘b ) R .L.J
@ -4 J{La] €28 £G-THR) -p[- 58 bt
J=
Rewriting the S-functions in their integral form and performing the';}

integration first we get N _ .
- *
| "e b -4 (Z By %X )
i) = 2o (dY e |
dsdB g B a0 N
' SA By xS+ AY By (Rierg) X

. Sd"x N | |

The integrations overIE and ;.are easy now, théy produce,
. rl\_z._ [_ bL
T(e) = K35 L~ 226

where). ' " N

'9\1.= 1, (xA) N |

B (ZR7) |

9 -:' ﬁ}' %l- ’XJ'_

and
-\ \ ~E3

Fe =00 - -y ( g 'y

i = By zg, g )& :
‘Therefore the radius is

R= 4NG
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In this part we would like to evalixate the following integral,
o

b ¢ c—?\ b _ By Bl
Sﬂ[oﬁa;e ] e v -‘,*

-—0® |~°‘

-t ey

I

2

where Bij is a symmetric and singular matrix. Let C be the matrix

which transforms B to D, where D is diagonal,

Oy = (cmgc>i&: )

Put ~> . :
By = b ; ( L.‘=&Z.C$i'°£)
. and - - )
—&| 2 C *\ -
Since | ' - o~
—y, -— -—
By beoby = D by b s
and - -~ :; ot
E *‘ .b‘ - Z °(\ b| 2
~ then we can write I in the following way
. ' ~ = T x - -
.‘ i . AL Py by -y
T TR Lan $0T

-0 =\

The singularity of matrix B implies that one of the entries of matrix D,

(2)
O " a. ’

say ﬁn, must be zero. Therefore

D

y s

S

. S o0 e L )TN: g s ] . By b |
. —co —os V=) .
where

. | N
. 4 0
E\g = ( A .

o ) o"n-\

. The evaluation of first and second integrals are easy enough,




» - | oim
Putting back & in o form,

’ n- n :
n-\ . - 1
. x W - 2y L (r Ci' ol,* J .
Ir= ——g N ( ? Ct‘n oy ) oa.f)[ 4 .‘Z,\ A ( o (S S ) |

This is the result, but to make it look neater let us define a new

n X n symmetric matrix, Fi" by

| . L .:'].‘ \ . R L’ .
By Aoty = % [ },-<.04C55°<") ’

T | ‘ el
|

- then

. xn-\ A.@J N . _ _‘- N .
;:ﬁ‘a- 5 (Lans) ﬁ[-p,w.«g] |

ve

-~




5.
6.

7.

9.
10.

11.

12.

13.

14,

15.

" 16.

17.

18.

19.

20.

21.

22,

23.

Particle Data Group,

Aubert et al,

Miettinen,

».Jacob,

Froissart,
Pomeranchuck,

Bogart et al
Whitmore,

Horn & Zachariasen,

Jacob,
Miettinen,
Morrison,
Frazer et al,
Feynman,

Bertin et al,

A.H., Mueller,

Koba et al;:

Jackson,

Mueller,

Colling & Squifes,
Collins,

1k1

REFERENCES
Rev. Mod. Phys. 45 (1973) 134,
Phys. Rev. Lett. 33 (1974) 1404,
CERN Preprint, TH 1906 (1974).
CERN freprint, TH 1683 (1973).
Phys. Rev. 123 (1961) 1053.
‘Soviet Phys. JETP 3 (1956) 307.

NAL Conf. 73/30 - EXP (1973).

Hadron Physics at very high energies (1973),
Pub = Benjamin.

Chicago Conf., Batavia VI (1972), 373.

4th British Summer School, Durham (1974).
CERN Preprint, D.Ph.1l /PHYS 73-46 (1973).
Rev. Mod. Phys. 44 (1972) 284.
Phys. Rev. Lett. 23 (1965) 1415.
Phys. Lett. 42B (1972) 493.
Chicago Conf. Batavia I (1971), 347
Nuc. Phys; B4C ' (1972) 317.

14th Scottish Summer School, Edinburgh (1973)
Appendix E.

Phys. Rev. D4 (1971) 150.

Regge Poles in Particle Physics (1968) Springer

Phys. Rep. 1C (1971) 104.

Fialkowski & Miettinen FPL B43 (1973) 61

Harari and Rabinovici

Dolen, Horn, Schmid

Bertocchi, Fubini,
Tonin

Amati, Stanghellini,

Fubini.

Balakerishnan
Dremin & Dunaerskii

PL B43 (1973) 49.
PR 166 (1968) 1768.
NC 25 (1962) 626.

NC 26 (1962) 896.

JMP 15 (1974) 247.




24.

25.
26.

27.

28.

* 290

30.
31,
- 32,

33.

' 35-

36.

37.

3s.
39.

40.

4l

42,

43.

44,

45.

Silverman & Ting,

k2

NP B35 (1971) 445.

Chan.Hong-Mo, Loskiewicz,

Allison

Chew and Pignotti

Sohlo

Michejda, Turnau,
Bialas

F.S. Henyey

F.S. Henyey

R.C. Hwa

C.J. Hemer and R.F.
Peierls

we are following the

Van Hove

S. qadach and Turnau
M. Teper

F.S. Henyey

F.S. Henyey

D.R. Snider and
D.M. Tow.

M. Tefér'n

R.F. Amann and
P.M. Shah

S. Fubini
Whitmore

J. Kubar-Andre,
M.le Bellac &
J.L. Meunier

C. Michael

A. Bialas & N. Sakai

Grassberger &
Miettinen

B.R. Webber

R.HWA

NC 57A (1968) 93.

PR 176 (1968) 2112
PRL 19 (1967) 614

Helsinki Univ. Prep. (1968) ISBN 951-45-0367-8.
NC 56A (1968) 241

PLB4S (1973) 469 . .
Univ. of Michigan Prep. (1973) UM HE 73-11
PR D8 (1973) 1331 :

PR D8 (1973) 1358

papers by Henyey.

RMP 36 (1964) 655.

PLB50 (1974) 369.

Westfield College Prep. (1974).

NPB78 (1974) 435.

Univ. of Michigan Prep. (1974) UM HE 74-2.

PRD3 (1971) 996.

Lett NC8 (1973) 929.

PLB42 (1972) 353

Scottish Univ. Summer School (1963).
Phys. Rep. 10C (1974) 3264.

NPB93 (1975) 138.

Liverpool preprint LTH &4 (1973)
PL 55B (1975) 81l.

CERN preprint TH 1979 (1975)

Cambridge preprint HEP75110 (1975).

PRL 26 (1971) 1143.




