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ABSTRACT
The Blue River ultramafic body is one of many
"alpine" peridotites intruded into the Sylvester volcanic
series in northern British Columbia. The primary dunite-
harzburgite assemblage consists of olivine (Fo_.,-Fo_._.).

89 95

enstatite (En_, -En_.), and spinel. The spinel chemistry

90 92

is variable, dunite spinels give a Crxl00/(Cr+Al) ratio
of 58 and above, and peridotite spinels are invariably
below this figure. The assemblage, which was evidently
intruded hot as it has formed a "hornblende hornfels"
facies amphibolite aureole, is inferred to have equilibrated
with volcanic magma, present in the form of bodies of
gabbro.

The body has been truncated by the Cassiar batholith.
Metamorphism has effected both the primary assemblage,
and also an early generation of marginal serpentinite.
Isograds have been established which mark the incoming of
metamorphic olivine, tremolite, olivine with talc, and
enstatite.

Metamorphic olivine porphyroblasts in the outer
aureole of the batholith are zoned. They have an inner
turbid core enriched in Fe and Mn, and a clear outer margin
enriched in Mg. Ni will enter olivine only in the absence
of sulphur. A maximum core to margin range of Fo__-Fo

85 97

was found 4,000m from the contact.




Above the olivine with talc isograd the assemblage

is influenced by increased fO,. Primary spinels in both

2
peridotite and serpentinite are oxidized. Al substitutes
in the serpentine structure to form chlorite, and the
spinel absorbs Fe, Mn and Ni., The Al content in the
chlorite increases towards the batholith contact. Meta-
morphic olivines are weakly or non zoned, and they reach

a composition of Fo Metamorphic enstatite is similarly

95°

Fe depleted, at En93.
The body underwent partial alteration to antigorite

during the waning stages of thermal metamorphism, and

more pervasive serpentinization on cooling. Euhedral

olivine porphyroblasts in a matrix of relict serpentine,

retain their original outlines, and they undergo volume

for volume replacement. The lizardite-chrysotile assemblage

contains abundant brucite, which envelopes serpentine

pseudomorphs after metamorphic olivine. This is indicative

of cation mobility during serpentinization.
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CHAPTER 1l: INTRODUCTION
1.1 Introduction

Regional mapping, by the Geological Survey of Canada,
showed that the Blue River Ultramafic body displays a
number of significant fe-tures. These reflect its
genesis, and its subsequent metamorphic history. The body
is one of many "alpine" ultramafic intrusives in a major
greenstone belt in northern British Columbia. It differs
from most in having a pronounced thermal aureole. The
intrusive appears to have been emplaced, while hot, into
low grade spilitic volcanics. In addition, the body is
itself intruded by lenses of gabbro, which are not found
cutting the country rock volcanics. The gabbroic bodies
appear to have a genetic association with the ultramafic
rock.

The ultramafic body has been truncated by the Cassiar
batholith, and serpentinized ultramafic material has been
metamorphosed in the aureole of this batholith. Strain
free olivine "kernels", developed in serpentinite, were
attributed to thermal metamorphism. The early survey
work was followed up by a more detailed study, which
essentially confimed the observed relationships, and
expanded the study.

The present study is a continuation of the earlier

work by Gabrielse (1955, 1963), and Wolfe (1965, 1967).
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It incorporates Electron Microprobe data not available to
either of the previous workers.

The chemistry of the "primary" mineral phases are
considered individually, and the assemblage as a whole is
considered in the light of the observed tectonic features.

The metamorphic mineralogy, and mineral chemistry, is
considered in some detail, as it is possible to establish
metamorphic isograds, and cryptic chemical variations, on
approaching the batholith contact.

Parts of the ultramafic body have been serpentinized
twice, once during normal serpentinization of the "primary"
assemblage, and once after regeneration. The body thus
presents natural data on the classic serpentinization-
regeneration reactions, first established experimentally
by Bowen and Tuttle (1949). The two olivine producing
reactions that they propose have both been identified, and
the chemistry of each reaction has been investigated.

Although the water-source problem has largely been
resolved in favour of an external country rock source,
there is still much controversy over the question of
volume increase during serpentinization. Reserpentinized
metamorphic olivines clearly indicate that volume for
volume replacement can occur, with the accompanying
migration of Si and Mg.

The widespread occurrence of serpentinite has tended



to concentrate research into problems concerning the
hydrational, serpentinization process, Thayer (1966),
Hostetler et al. (1966), Page (1967), Coleman (1971),

Engin and Hirst (1970). The reverse process of dehydration,
and olivine regeneration, has received less attention,
although recent work by Trommsdor ff and Evans (1972),
Springer (1974), and Frost (1973), has done much to

redress the inibalence. The present study is designed

to discuss the regeneration process further.

Sample and outcrop data are given in Table 1.1, and
mineral assemblages in sectioned samples are shown in
Table 1.2. This data can be found in Appendix I.

Individual mineral analyses are referred to by
table number in the text. Tables of mineral data have
been assigned to Appendix II: although some tables, con-
taining averaged values, are retained in the body of the
text.

Whole rock analytical data is similarly referred to
by table number in the text, although the data is located

in Appendix III.

1.2 Location
The Blue River ultramafic body is situated in the
McDame Map Area, at latitude 59033', longitude 13000',

in N.T.S. block 104P/12W (Figure 1l.1).

3
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Access to the body, which forms a twin lobed elongate
lens, 6 x 3.2 km in areal extent, is to all practical
purposes restricted to the helicopter service at Watson
Lake, Yukon Territory.

The body is situated at the headwaters of Spudusob
Creek, a tributary of the northeasterly flowing Blue River;
which forms part of the Liard-Mackenzie river system. The
creek is the largest of seven which drain a corrie complex
elevated between 1,500 m and 2,400 m, in a hanging valley,
450 m above the level of the Blue River.

The body crops out in the Stikine Ranges, which mark
the western limit of the glacial alluvium of the Liard
Plain, and the onset of the more mountainous Cordilleran

region.

1.3 Previous Investigations

Initial mapping by Price (1949), (in Gabrielse (1963))
and by Gabrielse, 1950-1954, led to the publication of
the McDame Map Sheet, (Map 1110A, scale 1" = 4 miles),
and Geological Survey of Canada Paper 1954-10.

The discovery of asbestos on Mt. McDame in 1950, and
the subsequent development of the Cassiar Asbestos
Corporation Orebody, which came into production in 1954,
stimulated economic interest in the McDame ultramafic-
greenstone belt. Gabrielse developed the field study into

a doctoral dissertation at Columbia University, in which
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he investigated the relationship between asbestos form-
ation,and regional structure. In addition, he considered
problems associated with serpentinization, and in part,
olivine regeneration, (Gabrielse, 1955). Much of this
work was later published as Geological Survey of Canada
Memoir 319, "McDame Map Area, Cassiar District, B.C."
(Gabrielse, 1963).

In 1962 Wolfe mapped the intrusion at a scale of
4" = 1 mile, and his map, which was published with
Geological Survey of Canada Paper 64-48, has served,

(with modifications), as a base map for the present study.

Wolfe developed the study of olivine regeneration as
part of a doctoral dissertation at Yale University (Wolfe,
1967). His study, which is based on an optical interpretation
of thin sections, and X-ray diffraction data from a suite of
evenly distributed ultramafic samples, substantiates the
earlier observations, and covers the associated topics of
the marginal amphibolite zone, and low temperature "rod-
ingitization".

The Blue River body has, at various times, been
prospected for asbestos, chromite, and, following reports
of Heazlewoodite (Ni3SZL by Wolfe (1965), for Nickel. It
was as an exploration geologist for Rio Tinto Canadian

Exploration that the author visited the body in 1970 and

1972.




1.4 Regional Tectonic Structure

Figure 1.1 shows that the McDame Map Area lies within
the Omenica Crystalline Belt, which is one of the five
tectonic elements which make up the Cordilleran Orogen
in western Canada. The principle geological components
of each element are shown in Figure 1.2.

The North American Craton, exposed as the Canadian
Shield, Figure 1.1, extends westward under the Interior
Platform, and it is thought to underlie the Rocky Mountain
Thrust Belt.

PreCambrian and Paleozoic sediments derived from the
Craton are deposited as a flatlying, westerly thickening
wedge over much of the Interior Platform. Sediment also
accumulated west of the Craton edge, in the Cordilleran
Geosyncline. This was subsequently deformed and metamor-
phosed into the Omenica Crystalline Belt. Metamorphism
and uplift, initiated in the Devono-Carboniferous period,
culminated with locally intense deformation between the
Triassic and the Cretaceous. The geosynclinal sediment
underwent high grade "Barrovian" metamorphism, Figure 1.2,
and a number of gneiss domes upwelled in the core of the
belt. 1In addition, batholiths of granodiorite and granite
were intruded along the length of the belt. During the
Cretaceous much of the belt was emergent, and shedding

sediment onto the Interior Platform. Plastic deformation
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Figure 1.2 A Sketchmap of the North American
Cordillera, from Monger et _al. (1972).
The map shows the main geological
components of the structural elements
given in Figure 1.1.




in the core of the unit, accompanied by isostatic uplift,
caused brittle deformation of miogeosynclinal shelf
sediments on the edge of the Craton. Sediments piled up
in a series of north-easterly moving thrust sheets, within
the Rocky Mountain Thrust Belt.

Monger et al. (1972) note that the sediment within
the Omenica Crystalline Belt is clearly craton derived,
and there is no evidence for rocks west of the crystalline
belt prior to the Devonian-Mississipian boundary. 1In
proposing a "plate-tectonic" model for the Cordillera,
they consider the Columbian Zwischengebirge, the Coast
Plutonic Complex, and Insular Fold Belt, Figure 1.1, 1.2,
to be allochthonous.

The Sylvester Group, discussed in this study, is the
earliest evidence for non-cratonic eugeosynclinal rock in
the Canadian Cordillera. It consists of a belt of basalt,
chert, and ultramafic rock, 160 km by 30 km in extent. It
overlies miogeosynclinal sediments from the McDame Group
with apparent conformity; although they show no sign of
contamination by intruded dykes of basalt. Monger and
Ross (1971) consider this problem, and they state: "it has
been suggested by J. Dercourt (personal communication),
that these rocks are allochthonous Ocean floor material

that has been thrust eastwards over continental crust".

The Sylvester Greenstone belt evidently survived the
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relatively mild orogenic activity in northern British
Columbia, although it was deformed, and intruded by the
Cassiar Batholith.

The Columbian Zwischengebirge is interpreted as
being a similar slab of ocean floor material. It was
fault bounded against the Omenica Crystalline Belt by
subduction along the Pinchi-Teslin Fault system, during
the Permo-Carboniferous, Monger et _al. (1972). The unit
represents a block-faulted eugeosynclinal plateau. Early
Carboniferous volcanism was basaltic, but later Triassic
volcanism was largely andesitic. Sporadic volcanism
occurred in the Cretaceous, Eocene and Pleistocene periods.
The original basalt slab shows no obvious sialic floor,
and it is almost devoid of clastic sediment. The basalt
is associated with large amounts of limestone. The Unit
is cut by a number of major transcurrent faults; these
are often associated with ultramafic bodies, and locally
with Blue Schist facies metamorphism.

The Coast Plutonic Complex is similarly considered to
be an allochthonous "Island arc", brought into juxta
position with the eugeosynclinal assemblage by subduction
along the Yalakom-Shakwak Fault system, during the Permo-
Triassic period, Monger et al. (1972). The Coast Plutonic

Complex consists of pre-Jurassic to Mid-Cretaceous plutonic

rocks, intruded into a limited post Lower Mesozoic stratig-
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raphy. Although intrusive activity was concentrated
in this unit, some intrusions penetrated the Columbian
Zwischengebirge.

The insular Fold Belt is a similar mix of eugeosyn-
clinal volcanic material, Island arc volcanics, and

younger plutonic rocks.

1.5 Regional Geology

The McDame Map area. Gabrielse (1963);, can be sub-
divided into five geological units, which conform to the
regional northwest-southeast trend. (The relevant units

are shown in Figure 5.1).

1. Cassiar Batholith (Cretaceous).

2. Nizi Group Limestone (Lower Carboniferous).

3. Sylvester Group Volcanics (Devono-Mississipian(?)).

4. Good Hope Group - McDame Group (PreCambrian-Devonian).

5. Horseranch Group Metasediments (PreCambrian).

(i) Horseranch Group

A fault bounded block of regionally metamorphosed
and partially granitized miogeosynclinal sediment crops
out in a double plunging anticlinal structure, within the
Horseranch range. Outcrop is restricted to an area of 450

km2, and metamorphism does not extend beyond the bounds of

the fault block.
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(ii) Good Hope Group - McDame Group

The pattern of sedimentation established in Proterozoic
time continued until Middle Devonian (Givetian) time . A
thick succession of miogeosynclinal sandstones, shales,
limestones and dolomites, accumulated on the Cassiar
Platform, Gabrielse (1967). This was a structural high,
which is now occupied by the Cassiar Batholith. An
enormous thickness of sediment accumulated to the east,
in a structural basin, the Kechika Trough, (Douglas et al.l1970).
The sediments are extremely variable in facies and in
thickness, and deposition was periodically interrupted
by uplift and erosion. In contrast to the early variable
sedimentation, deposition of dark fetid dolomites and
limestones of the McDame Group was uniform over a large
area of northern Canada, Gabrielse (1967). The lower
dolomites contain abundant amphipora, and the upper
limestones contain stringocephalus sp. These date the
unit at Givetian; Late Middle Devonian. Miogeosynclinal
sediments crop out over much of the McDame map area, and
underlie much of what is now the Liard Plain, an area
covered by Pleistocene to recent fluvio-glacial detritus.

The McDame Group and the overlying Sylvester Group,
have been deformed into a major synclinorium, the McDame

Synclinorium, Gabrielse (1963).
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(iii) Sylvester Group

The Sylvester Group crops out in the McDame
Synclinorium, and it is restricted to a single northwest-
southeast trending belt of volcanic rocks, approximately
20 km wide, in the core of this structure.

The contact between the McDame Group and the Sylvester
Group is "almost invariably a fault", Gabrielse (1969),
although there is a good stratigraphic correlation between
the two units. Gabrielse considers that there is little
or no hiatus between the two groups.

The lower part of the Sylvester succession consists of
interbedded slate, silicious argillite, chert, subgreywacke,
and chert pebble conglomerate. The sediments are typically
eugeosynclinal, in marked contrast to the earlier strata.
The sediments, which locally reach 1,000 m in thickness,
are non-fossiliferous, although Gabrielse (1955) records
that indistinct fossils, possibly radiolaria, were detected
in one section of well bedded chert. The volcanic rocks
comprise a thick succession of eugeosynclinal, submarine,
lava flows, '"spilites", graded tuffs, and agglomerates.
These contain interbedded argillite and chert similar to
that found in the basal unit, and also ultramafic intrusives,
which occur at the base of the volcanic assemblage, Gabrielse
(1967, 1969). Ultramafic bodies are found along the length

of the synclinorium, at more or less the same stratigraphic

horizon. 13




The Sylvester Group marks a distinct change in style
of deposition. A typical eugeosynclinal assemblage occurs
on the site of the Cassiar Platform, in the so-called
"Sylvester Trough". The trough contains an enormous
thickness of volcanic material, around 5,000 m, mainly
consisting of massive structureless flows. No extensive
areas of pillow formation are recorded in the succession.
The synclinorium marks the eastern limit of volcanic
activity in the trough.

Earlier volcanism in the miogeosynclinal assemblage
was extremely limited. Remarkably little evidence of
basalt magma intrusion is recorded for the Lower Palaeozoic
succession, and no extensive areas of dyke and sill formation
have been noted by Gabrielse. Basic volcanism also appears
to have ended abruptly at the end of Sylvester time,
(Gabrielse, 1967).

The overall similarity between the Sylvester Group
assemblage and Oceanic Crust has been noted. The isolated
nature of the volcanism supports tectonic emplacement of
the eugeosynclinal assemblage on to the sinking Cassiar
Platform. 1In view of the strong stratigraphic correlation,
it may be that a sliver of oceanic crust was obducted onto
the floor of the sinking Platform.

The Sylvester Group is unconformably overlain by
Lower Carboniferous sandy limestones of the Nizi Group.

This implies a late Devonian-Mississipian age of emplacement
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for the volcanogenic assemblage. There is some evidence
for tectonism at this time. Gabrielse and Wheeler (1961)
note regional and local unconformaties to the west, and
report differences in metamorphism. This orogenic period,
the Caribooan Orogeny, uplifted the Omenica Crystalline
belt, and it remained a positive tectonic element from
then on.

A complicating factor to the age of the Sylvester Group
is the occurrence of Permian fusulinids in limestones which
cropout in the eastern corrie wall of Spudusob Creek,
(Plate 1.1). Fusulinids collected by Wolfe have been
identified by Ross (1969) as being Parafusulina, of Permian,
Guadalupian age. The limestones appear to be conformably
overlain by volcanic rocks identical to those of the
Sylvester Group. This suggests that some of the Sylvester
volcanics are younger than had hitherto been thought (Wolfe,

1965) .

(iv) Nizi Group

The Sylvester Group and the underlying McDame Group
are both unconformably overlain by well bedded sandy
carbonate strata of the Nizi Group. These contain volcanic
fragments (Gabrielse, 1963), and an abundant foraminiferal
fauna, at their type locality on Nizi Creek, about 80 km

southwest of the Blue River, The base of this unit is
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assigned a late Visean to early Namurian age (Mamet and
Gabrielse, 1969). The Sylvester Group .should thus have
been emplaced and partially eroded by Lower Carboniferous

time.

(v) Cassiar Batholith

A large elongate composite batholith has intruded
along the western margin of the McDame Synclinorium.
Although it crudely conforms to the regional trend, it
intrudes both mio- and eugeosynclinal assemblages, and
it truncates regional structures. It is essentially late
to post tectonic in character, and it has imprinted a thermal
aureole on low-grade regional metamorphic rocks. At the
head of Spudusob Creek it truncates and metamorphoses
rocks of the Blue River ultramafic body.

The batholith has been dated by K-Ar methods at 101
M.Y.,where it crosses the British Columbia-Yukon border,
(Gabrielse, 1967), and coexisting muscovites and biotites

give ages of 123 M.Y. and 139 M.Y. respectively, at the

south end of the batholith. It is thus considered to be

Cretaceous in age.




CHAPTER 2: LOCAL GEOLOGY AND STRUCTURE

2.1 Local Geology

The Geoloéy of the Blue River Ultramafic body,

Figure 2.1, is taken from Wolfe (1965), with only a few
minor amendments. Mapping conducted in 1970 and 1972
confirmed most of the field observations made by Wolfe;

the principle exception being the identification of a

) distinct zone of metamorphosed marginal serpentinite,

along the western contact. This unit includes the isolated
pods noted by Wolfe (1965).

The recognition of a distinct western contact zone:
and also the realization that late faulting and retro-
gressive serpentinization has influenced spatial relation-
ships, and lithologies, enables a re-evaluation of the

structural model proposed by Wolfe. The double syncline,

adopted in G.S.C. Map 17-1964,(Paper 64-48), to explain
the twin lobes of the body, is reinterpreted in terms of a
fault controlled structural model.

The present day rock distribution, in and around
the ultramafic body, is the result of a prolonged history,

during which the body has undergone at least four

development stages.




I. Initial Intrusion of the Ultramafic body.

II. Tectonic Emplacement of the Eugeosynclinal
Assemblage Mississipian(?)

III. Thermal Metamorphism of the ultramafic rock
Cretaceous .

IV. Retrogressive serpentinization and faulting.
Cretaceous - recent .

Each stage has influenced the spatial distribution
of mafic and ultramafic rocktypes; and differences in
lithology and structure have altered the response to
later events. The geology displayed in Figure 2.1 is the
result of the overprinting of each of these development
stages on pre-existing structural and metamorphic conditions.
The structural evolution of the body may be inferred
not only from the present day spatial relationships, but

also from the inherited rock textures and mineralogy.

2.1 Structural Evolution

I. Initial Emplacement
A primary ultramafic assemblage, consisting of
anhydrous peridotite and dunite, was emplaced into the
volcanic assemblage prior to obduction during Stage II.
The body must have been hot, as it has metamorphosed
volcanic rock to amphibolite for a distance of 130 m from

the contact. The amphibolite is foliated parallel to the

sharp, and planar, amphibolite-peridotite interface (Plate 2.1).
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The foliation, which suggests a dynamic component to the
emplacement, dies out away from the contact, and the
amphibolite passes into country rock volcanic material.

The contact amphibolite mineralogy suggests Lower Almandine
Amphibolite facies conditions (see Chapter g); and the
contact temperature is inferred to have been around
600-650°C.

The ultramafic material is thought to have equilibrated
after emplacement. The peridotite-dunite assemblage is
granulated and deformed, in contrast to the segregated
gabbro. Following Wolfe (1967), the body is thought to
have been intruded as a largely crystalline "mush", with a
small percentage of basaltic magma. Mineral equilibration
temperatures, estimated in Chapter 3, suggest an intrusion
temperature of around l200°C. The magma possibly segregated
into pods and lenses on cooling to around lOSOOC,about the
temperature estimated for the final exsolution of diopside
lamellae in enstatite.

The country rock volcanic material is largely
unaltered "spilite". Regional metamorphism never went
beyond the Greenschist facies, and they probably equilibrated
at, or below "Quartz-albite-epidote-almandine" subfacies

conditions. This suggests a maximum temperature of 5500C,

Winkler (1967).




Pressure estimates are far more difficult, as volcanic
rocks are relatively insensitive to pressure,within the
greenschist facies. A pressure of 4-5 kbars is considered
reasonable, although it could be appreciably higher.

The ultramafic body is one of many found close to
the base of the volcanic series. This may be fortuitous,
or it may mean that the major structural break lies not at
the base of the Sylvester Group, but below the volcanic
component of that Group. This might explain the apparent
lack of hiatus between the McDame Group, and the Sylvester
basal sediments. If this is the case, the ultramafics may
have been intruded immediately prior to obduction. They may
well have been emplaced along the same structure, that later
obducted the assemblage as a whole. A schematic represent-
ation is given in Figure 2.2.

The local structure is complicated, and although
amphibolite represents an original contact, minor movement
on it has occurred subsequently. The original shape and
size of the body is not known.

The peridotite has a well defined structural fabric,
based on the layering of pyroxene in a rock composed largely
of olivine. Wolfe (1965) shows that this primary banding
is not related to an internal fold system, (unless it be
isoclinal). No fold noses were observed, either in the

field, or on plotting foliation data on a stereographic
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Figure 2.2 A schematic section illustrating a possible
structural model for the obduction process,
during Stage II. Peridotite blebs are intruded
along the base of the obducted slice.

0.F.S. = Ocean Floor Sediment,
M.S. = Miogeosynclinal sediment.
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projection. Wolfe shows that the foliation cuts the present
day bedding at an angle of 450. It could possibly have
paralleled the amphibolite border at the time of intrusion.
Bodies of gabbro are concentrated along the western contact,
Figure 2.1. Although they might be expected to occur along
the top of the structure, they appear to be at the tectonic
base, as Sylvester sediments, and McDame limestones,lie

to the west.

II. Tectonic Emplacement

The ultramafic body underwent a period of deformation
and marginal serpentinization prior to the intrusion of the
Cassiar Batholith. The deformational history, following
emplacement during Stage I, probably started with obduction
of both the ultramafic and the volcanic assemblages onto
the Cassiar Platform, and ended with deformation of the area
into a major synclinorium.

Breccias have formed along tectonic contacts, and
primary ultramafic material has been serpentinized. 1In the
vicinity of the batholith; where metamorphism has regenerated
the marginal serpentinite, the original brecciated texture
is preserved in the metamorphic assemblage. Along the
western contact regenerated dunite replaces both matrix,
and breccia fragments,in the vicinity of sample location

point 60159, Figure 2.3. Similarly regeneration has formed
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a talc-olivine assemblage from serpentinite breccia, at
point 61535, in the northeast, (Plate 2.2, Figure 2.3).

Contact marginal serpentinite zones are inferred to
represent active movement 2zones during Stage II. The
amphibolite border is disrupted in the west, and water
evidently got into the cold, or cooling, peridotite. The
western contact was thus active during tectonic emplacement.

Figure 2.1 shows that the body consists of two lobes
r separated by an intervening slice of volcanic material,and
amphibolite. This plunges out to the north, and the two
lobes join. The slice is thought to overlie a thrust plane,
the Heazlewood Thrust. This is inferred to run parallel
to the creek, at the foot of the volcanic escarpment (Plate
2.3). The thrust probably extended north of Heazlewood
Creek, in the manner shown in Figure 2.4. A schematic
section through the body is given in Figure 2.5. This
illustrates the inferred structure for the body, as it is
now exposed.

Serpentinization evidently occurred between the footwall
of the Heazlewood Thrust, and the fault-bounded eastern
contact. This arrangement may explain the difference in

width between the western and eastern marginal serpentinite.

Metamorphism during Stage III is thought to have obliterated

the Heazlewood Thrust north of Heazlewood Creek.
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AMPHIBOLITE=A V

Figure 2.4 A schematic representation of the structure
of the Blue River Ultramafic body prior to
the intrusion of the Cassiar batholith.
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Two small thrust faults have emplaced a small sliver
of volcanic and amphibolite material into serpentinite,
below the Heazlewood Thrust. This crops out near the

junction of Heazlewood and Two Post Creeks.

ITI. Thermal Metamorphism
The Cassiar Batholith forms a sharp intrusive contact
perpendicular to the trend of the regional structures, (Plate
2.4). It cuts both the western and eastern marginal serpent-
inite zones, and also the intervening "primary" core region.
Metamorphic isograds have been established, which reflect
the orientation of the northeast-southwest trending batholith

contact. The inferred relationships are shown in Figure 2.6,

IV. Retrogressive Serpentinization

The body underwent two periods of retrograde serpent-
inization. These have altered the lithology and structure
of the body.

High temperature antigoritization occurred in the early
waning stages of thermal metamorphism. Antigorite replaces
both primary, and also secondary "regenerated" olivine:; and
some appears to be formed from pre-existing serpentine.
Antigorite formation is associated with movement along the

Nickel Creek Thrust, a fault which overlies the volcanic

amphibolite slice. This fault appears to truncate the old
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Figure 2.6 A schematic representation of the

structure of the Blue River ultra-

mafic body during Stages III and 1IV.
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Heazlewood Thrust, north of Heazlewood Creek, and it takes
up a direction subparallel to the batholith contact.
Possibly the fault is controlled by a major transverse
extensional joint set, which was established during
deformation of the McDame Synclinorium. Movement along
the fault allowed access of water to the footwall, and
much of the regenerated rock has been altered. Faulting
may be a response to the initial expulsion of water, and
the change from ductile serpentinite to brittle dunite,
during metamorphism,Raleigh and Paterson (1967) .Movement
along the top of the amphibolite-volcanic slice, Figure 2.6
is shown by antigorite serpentinite breccias,in the vicinity
of sample location point 61627, Plates 2.5 and 2.6.

Lower temperature serpentinization to lizardite and
brucite occurred away from the granite, and also along the

batholith contact. In addition, chrysotile asbestos micro-

veins formed in areas of both antigorite serpentinite, and

of lizardite serpentinite.
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CHAPTER 3: PRIMARY ULTRAMAFIC INTRUSION

3.1 Lithology and Structure

The area underlain by primary anhydrous ultramafic
material is designated as Unit (1) on the accompanying
map, Figure 3.1. The bulk composition of the primary
intrusion is that of a "four-phase peridotite". It con-
sists of the assemblage:

olivine, orthopyroxene, clinopyroxene, spinel.
According to Wolfe (1965), the body consists of olivine (1),
85-90%, enstatite (1), 10-15%, diopside (1), 1%, and spinel
(1), 1%. The suffix (1) in this study is used to relate
the mineral to the development stage during which it was
formed.

The small amount of clinopyroxene means that the
lherzolite component is low, and the body is comprised
largely of dunite (Plate 3.1), and harzburgite (Plate 3.2).

The distribution of the two rock types leads to compositional

banding, which is an important internal texturél feature.
Harzburgite layers rich in pyroxene are separated by
pyroxene free layers of dunite. The widths of each are
variable: from 1.0 cm banding, to 100.0 cm banding in most
instances, although some dunite zones exceed 50 m in width.

Harzburgite is the predominant rock type. The layers are
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Figure 3.1 A sketchmap of the Blue River Ultramafic Body,
showing sample location points, and the ultra-
mafic units defined in the text. Reactions (6)
and (8) are given in Table 5.4. They represent
metamorphic isograds.




gradational, based on a uniform olivine matrix, and
individual bands often die out along the strike. The
layering, or "flow banding", as it was termed by Gabrielse
(1963), is enhanced by the concentration of spinel grains
into planar lenses and stringers parallel to the pyroxene
bands.

The primary assemblage appears to be superficially
unaltered, and fresh "apple-green" dunite weathers to a
buff brown rind, with a smooth sandy surface. The rock
is granular, coarse to fine, and it has a distinct tectonic
fabric in hand specimen.

Pyroxene phenocrysts in the harzburgite interlayers
weather out into relief as rusty red "warts", on an other-
wise smooth weathering olivine surface. The rock is similarly
deformed, and pyroxenes may be visibly fractured.

Although Unit (1) is essentially primary, the rocks
have undergone minor interstitial serpentinization. This
has affected rocks within Unit (3c) to a far greater extent.
Although the character of Unit (3c) is unquestionably
primary, it has undergone some serpentinization, and also
subsequent thermal wmetamorphism. The pyroxenes and spinels
are largely altered, but the granulated primary olivine
matrix remains, and the tectonic fabric is retained.

Compositional banding is still recognizable, as shown by
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Wolfe (1965), although harzburgites look appreciably more
rusty and altered than they do in Unit (l). Units (1) and
(3c) form a primary core region within the ultramafic body,
Figure 3.1. The distribution of primary olivine, which
defines the core region, is given in Figure 3.2.

Wolfe (1965) notes that the compositional banding bears
no obvious relationship to the present day contact, and it
bears no relation to a recognizable fold pattern. North
of Heazlewood Creek, Figure 1.3, the banding displays a
moderate to steep south to southwesterly dip, discordant
to observed contacts. South of the Creek, the foliation
appears to be subparallel to the contact between Unit (1)
and Unit (3a). This latter Unit, Figure 3.1, represents a
serpentinized and lzter metamorphosed band, which was
probably originally dunite. Spinel textures and chemistry
will be shown to support this assumption. This band has
acted as a locus for intrusion of bodies of gabbro, and
both they, and the foliation probably originally paralleled
the intrusive contact. The dunite band, and the gabbro,
appear to be cut out north of Heazlewood Creek.

Gabrielse (1963) attributed "flow banding" to flow
differentiation of the type observed in salt domes. This
study shows th=t tectonic differentiation following equil-
ibration is unlikely, and the layering probably represents

flow differentiation of a crystal mush, followed by
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Figure 3.2 Distribution of olivine (1).
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equilibration with a fluid phase, (gabbro).

3.2 Mineralogy and Mineral Chemistry
(1) Olivine (1)

There is no sensible difference between olivine which
occurs as a matrix within harzburgite, and olivine which
occurs as dunite. Deformation is a constant feature
throughout the core region, and olivine textures reflect
varying degrees of cataclastic deformation. Least deformed
samples, such as 60874 and 60886, appear to be found at
a distance from recognizable faults, and the more highly
deformed samples, such as 60893 and 60902, were collected
close to zones of dislocation,where least deformed, as in
Samples 60874, 60886, (Plate 3.3 ), the olivine is seen
to be elongated within the plane of the deformational fabric.
Crystal outlines are irregular, and grain sizes are variable.
Grains with a length to breadth ratio of 10:1 were observed
in some samples. These large, strained, granulated crystals
are very often set in a matrix of fine grained polygonal
granoblastic fragments, (Plate 3.3 ). The larger fragments
display shadow extinction, and have strain lamellae
parallel to (100). Strain lamellae and associated kink
bands grade from diffuse to sharp, Wolfe (1967), and they
eventually yield by fracturing parallel to the lamellae,

as in Samples 60196, 61615 and 60893, (Plate 3.4 ). Some
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samples also display fractures parallel to (00l),
perpendicular to the lamellae. These fractures are less
well developed, and they tend to form "en echelon" rather
than as continuous planes (Plate 3.3 ), Ragan (1963).

With increased granulation, large strained crystals
disrupt to form domains, within which stress-strain effects
are accommodated in isolation from the parent grain. 1In
the early stages, areas of constant birefringence define
original grain outlines, (Plate 3.5). With increased dis-
ruption, original relationships are lost, and the domains
themselves granulate into smaller subdomains. Fracture
induced polygonization tends to homogenize the rock, and
reduce the sense of planar orientation in the rock fabric.

Some olivine crystals and domains appear to have been
"shattered" into micro-domains or platelets, which retain
the overall crystal outlines of their hosts. In Samples
60893 and 61615, (Plate 3.6), shattering evidently post-
dates kink-band formation, as individual lamellae and kink-
bands are shattered.

Some small olivines in the groundmass of the deformed
rock show no sign of internal strain and they have sharp,
straight or curved, (concave inward), faces. Intergrain
contacts give angles around 1200, the angle of minimum
interfacial energy, and they resemble the annealed olivines

described by Ragan (1969).
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The main period of deformation must have predated

Stage II serpentinization, as intergranular serpentine

has exploited the deformational fabric. Sample 60196

contained intergranular serpentine. This was subsequently
transformed into Al serpentine, and in Sample 60186, inter-
granular serpentine was regenerated as olivine (3), (Plate 3.2).

Much of the regenerated olivine formed above the talc
isograd is also granulated and deformed, Samples 60202,
61600, (Plate 3.8). This, and the occurrence of antigorite
serpentinite breccias along the Nickel Creek thrust,
indicates subsequent deformation during Stage IV reserpent-
inization, (Chapter 7). The deformation did not include
formation of lamellae, or internal crystallographic dis-
tortion, but it resulted in granulation of regenerated,
and perhaps also primary olivine.

Experimentally deformed olivines were found by
Raleigh (1967), to form kink bands orientated parallel to
(010) and (00l), when the crystals were deformed below
l,OOOOC. Above l,OOOOC kink band orientations parallel

(100) and (00l1). Perhaps the original deformation was

at high temperature and later shattering occurred, on the

third orthogonal axis, in response to lower temperature

deformation.




Olivine (1) Chemistry

Primary olivine analyses are given in Table 3.1, and
compositional data is displayed in Figures 3.3, and 3.4.
Average olivine analyses for those samples which coexist
with analysed spinel, and/or orthopyroxene, are given in
Table 3.2.

The main chemical variable in natural olivine is the
Fe content, as defined by the Mgx100/(Mg+Fe) ratio, or
"forsterite" content. The Blue River olivines appear to
be homogenous, not only at the scale of a single polished
thin section, but also on the scale of the body as a
whole. Figure 3.3 shows that the average forsterite content
is relatively constant throughout the core region of the
body. There is no evidence for systematic cryptic variation
across the foliation trend.

The two histograms in Figure 3.4 show that there is
little difference between dunite and peridotite derived
olivine. The overall compositional range is Fo__-Fo

89 95’

which compares with a range of F087—Fo95 determined by

Wolfe (1967), from a study of olivine X-ray diffraction

data. The effective range is somewhat less, from Fo90 5~

with a mean composition around Fo This data is

Fogs.5° o1°

consistent with forsterite ranges observed in other "alpine"

type peridotite bodies.
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Figure 3.3 A sketchmap showing the distribution of the
average olivine (1) forsterite content. Values
have been rounded to the nearest percent.
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Figure 3.4 A frequency distribution plot of olivine (1)

forsterite content, in rocks of dunite,

of peridotite composition. The sample lith-

ology is as defined in Table 1.2, and the

olivine (1) data is from Table 3.1.




One exceptional sample, 60237, has a far higher
Fo content than the rest, Figure 3.4. The sample is a
spinel rich dunite, and in having a Fo-rich olivine, it
resembles similar olivines from olivine bearing chromitites,
noted by Challis (1965), and Rodgers (1973). Irvine (1967)
accounts for this Mg enrichment by local re-equilibration
between olivine and spinel on cooling. The Fe partitions
in favour of spinel, and Mg in favour of olivine., This
effect will only be noticeable where the model proportion
cf spinel is high, and olivine correspondingly low.

Simpkin and Smith (1970), show that igneous olivines
systematically increase their Ni content, and decrease their
Mn content, with increase in forsterite. They established
trends of Mn and Ni depletion, and enrichment, based on
naturally occurring igneous olivines. The Blue River
olivines contain amounts of Mn and Ni compatible with their
igneous origin, Figures 3.5 and 3.6. The amount of Mn, as
MnO, is low: between 0.08% and 0.23% MnO. The amount of
Ni, as NiO is slightly variable; between 0.19% and 0.47%
NiOo. Table 3.3 contains comparable data from other bodies.

Olivine contains negligible amounts of Ti, Cr, and Ca,
as might be expected from its petrogenetic envirxonment,
Simpkin and Smith (1970). The amount of Al allowed in the

olivine structure is negligible, and no significance is
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Table 3.3

"Alpine" peridotite olivine compositions
Fo Nio% MnO%
1. Blue River 89.5-94.6 0.19-0.47 0.08-0.23
2. Burro Mt. 90.7-92.7 0.28-0.47 0.14-0.19
3. Vulcan Peak 88.8-94.4 0.25-0.47 0.05-0.10
4, Oregon 90.0-90.5 - 0.13-0.14

5. Papua 91.6-93.6 0.2 - 0.4 -

1 = This study; 2 = Loney et al (1971); 3 = Himmelberg

and Loney (1973); 4 = Medaris (1972); 5 = England and

Davies (1973).
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attached to the Al traces observed in some samples.
. s 3 .
Similarly the amount of Fe allowed in the structure is

limited, and all the Fe is calculated as FeO.

(ii) Orthopyroxene (1)

Primary enstatite phenocrysts occur as single crystals,
and as crystal clusters, within the harzburgite and lherzolite
components of the ultramafic assemblage. Stable enstatite
grains are restricted to Unit (1), Figure 3.7. They are
subeuhedral to subrounded, and 1.0-1.5 mm in width. Minor
amounts of relict enstatite were also observed in Sample
60226; the relicts occur within talc.

The enstatites contain exsolution lamellae, and some
also contain exsolved blebs of clinopyroxene. Both appear
to be orientated parallel to (100). As noted by Wolfe (1967),
this textural feature is similar to that shown by Bushveld
enstatites. Exsolution lamellae are commonly observed in
"alpine" peridotite enstatites, as by Challis (1965), and
by Loney et al. (1971). Exsolution presumably reflects
inability to accommodate Ca in the enstatite structure, as
in Samples 60163, and 60168.

Enstatites are commonly deformed, and the cleavage
parallel to (100) is often warped. Some show strained
extinction, and kink bands occur in Samples 60163 and 60874,

Plate 3.9 . Fracturing may occur perpendicular to (100),
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Figure 3.7 Distribution of enstatite (1).




and parallel to the (00l) kink band. Deformation appears
to post-date exsolution of the lamellae.

Many enstatites enclose rounded crystals of olivine,
and a few enclose small subeuhedral grains of spinel.
Similar textural relationships were observed by Jackson
(1961), in the Stillwater Complex, and Challis (1965), in

New Zealand ultramafics.

Orthopyroxene (1) Chemistry.

Orthopyroxene analyses are given in Table 3.4, and
averaged analyses are given in Table 3.5. The compositional
range is small, and although the pyroxene lies within the
field of enstatite, it lies close to the field of bronzite.

The enstatite component, as defined by the Mgxl100/(Mg+Fe)
ratio, ranges from En -En . This range compares well

90.4 91.4

with a range of En —En92 given by Wolfe (1967). This range

89
was obtained by refractive index studies on six enstatites.
The range of Fe, or ferrosilite substitution is clearly
restricted, and the actual Mgxl00/(Mg+Fe) ratio is similar
to that of the coexisting olivine. Figure 3.8 shows that
near 1l:1 partitioning of Mg and Fe occurred, with a slight
excess of Mg going into enstatite. This relationship is
fairly common in "alpine" peridotites, and similar data

from a number of comparable bodies are also plotted. The

Mg:Fe ratio, and its distribution between the two phases,

is remarkably constant, O'Hara (1963).
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Medaris (1972) has shown that the distribution of Mg
and Fe is a useful guide to equilibrium, but that it is not
a reliable temperature indicator.

The analyses given in Table 3.4 are of host enstatite
th=t has already exsolved clinopyroxene. They are not
representative of the initial enstatite formed, and they
should not be compared directly with wet chemical analyses.
In practice the proportions of Fe, Mg and Al do not differ
substantially between host and lamellae, and the only major
influence will be on Ca. Probe analyses should be somewhat

lower than wet chemical analyses. Loney et al. (1971)

discuss this point. They record a range of 0.7-1.1% CaoO
in probe analysed Burro Mountain enstatites. The somewhat
higher Blue River values, up to 2.5% Ca0 in Sample 60094,
may reflect incipient "rodingitization", as discussed in

Chapter 7. Textural evidence supports this.

A major potential variable in the enstztite composition
is reflected in the A1203 content. This covers a range

from 2,25-3.25% A1203. The A1203 content is shown on
Figure 3.9 with a range in additional analysed "alpine"
enstatites, derived from a variety of differing occurrences,

Green (1964), Kornprobst (1969), Loney et al. (1971),

England and Davis (1972), Challis (1965), Medaris (1972)

and Himmelberg et al. (1973).
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Figure 3.9 Al_O_ solubility in orthopyroxene. En(l) and En(3)
re%e% to primary and metamorphic Blue River enstatites
respectively.

Additional data: 1 = Lizard, England, Green (1964)

2 = Ben Bouchia, Morroco, Kornprobst (1969)

3 = Dun Mt., New Zealand, Challis (1965)

4 = Qregon, U.S.A., Medaris (1972), (zoned
core to margin)

= Burro Mt.. U.S.A., Loney et al. (1971)

Vulcan Pez2k, U.S.A., Himmelberg et al. (1973)

7 = Papua New Guinea,Davis and Engl=and (1973)
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The A1203 content appears to be independent of the
coexisting spinel A1203 content, and the enstatite thus
appears to be saturated in Al, Figure 3.10. This contrasts
with the observations of Loney et al. (1971), on the Burro

Mountain body, and Himmelberg et al. (1973), on the Vulcan

Peak intrusive.

(iii) Clinopyroxene (1)

Small, euhedral, primary, clinopyroxene crystals are
intimately associated with enstatite. Granular diopside
crystals, up to 0.4 mm in diameter, occur around the margins
of some of the larger enstatites, as in Sample 60094. 1In a
few cases the diopside forms discrete 1.0 mm phenocrysts,
as in Sample 60226, but these are rare, and subordinate to
enstatite.

Diopside also occurs in lamellae, and as exsolved blebs,
in orthopyroxene. Possibly much of the granular diopside
was also originally exsolved, as it bears a strong affinity
for enstatite. Challis (1965) describes a similar relation-
ship between the two phases.

Diopside appears to remain as a stable phase below °
the level of the tremolite isograd (Chapter 5). Lamellae
in a "bastite" in Sample 60067, have survived serpentinization,
regeneration, and reserpentinization, Plate 3.10. Similarly

Sample 60033 contains apparently original, granular,
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diopside. Elsewhere, in Sample 60041, the diopside appears
to have been remobilised into scattered lozenges. The
stability of diopside contrasts with the instability of
the gabbro clinopyroxene during serpentinization, and it
makes the Ca source problem during rodingitization difficult
to explain. Gabbros in serpentinized harzburgite have been
Ca metasomatized to rodingite.

The solubility of diopside in enstatite is a function
of temperature, and Al_O_ content. An increase in the

2 3

A1203 content results in a decrease in the mutual solubility,

MacGregor (1967).

Clinopyroxene (1) Chemistry

Clinopyroxene analyses are given in Table 3.6, and are
displayed in Figure 3.11, (a pyroxene quadrilateral). The
analyses may be grouped in terms of textural form into
granular , matrix diopsides, and lamellae diopsides within
enstatite. Averaged analyses for each variety are given
in Table 3.7. The lamellae population appears to be lower

in Si0O,, and MgO, and correspondingly enriched in A120

2 3’

and Cr203. There is insufficient data to delineate two

distinct populations. The observed differences may
represent disequilibrium, or possibly stages of exsolution.

Once exsolved, matrix diopside might be influenced by the

other coexisting phases.
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As enstatite and olivine are in equilibrium with
spinel, Figure 3.20 and 3.21, it is likely that they are
in equilibrium with each other, and that diopside lamellae
are more or less in equilibrium with olivine.

The analyses are relatively homogeneous, in terms of
the pyroxene quadrilateral, Figure 3.11, and they are
similar to diopsides analysed by Loney et al. (1971),

from the Burro Mountain.

(iv) Chrome Spinels (1) (Picrochromite)

An estimated 1-2% of the primary ultramafic material
consists of discrete, disseminated, crystals of chrome
spinel (Wolfe, 1967). The spinel conforms to the pyroxene
based compositional banding in the rock, and it locally
concentrates into disseminated and massive lenses a few
centimetres across, which lie in the plane of the rock

foliation. Within such concentrations the spinel is often

fractured, and serpentine forms a matrix for disrupted
chrome spinel, and for granulated primary olivine (60237,
Plate 3.11).

Discrete spinel crystals are found disseminated
throughout both peridotite and dunite, in the primary
core region of the intrusive, and they also occur in regions
of serpentinite, and metamorphosed serpentinite, Figure 3.12.

They vary slightly in both form and size. Small, 0.25- 1 _ o mm
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euhedral, translucent red spinels are found in all the
dunite samples, and some of the harzburgite samples. The
spinels are rarely fractured, but most have rounded corners,
presumably acquired during the main period of olivine
granulation, see Samples 60152, 61615 (Plate 3.12). The
spinels show no sign of internal zonation, and rarely
contain inclusions. A second variety of disseminated
spinel occurs in rocks of peridotite, (harzburgite and
lherzolite), composition. The spinels are larger, ranging
from 0.5-4.0 mm in diameter. They are characteristically
interstitial in form, and they are irregular in outline.
The association between pyroxene and this spinel is locally
strong, and this variety of spinel is occasionally found to
poikilitically enclose both enstatite, and olivine, Samples
60094, 60163 (Plate 3.13). The association is best

displayed in those "lherzolitic" samples which contain

recognisable diopside. There is a range of transitional
textural varieties, which show a progressive development of
an interstitial texture, associated with pyroxene in
peridotites. Large irregular spinels are not found in dunites,
but small euhedral spinels may coexist with large irregular
ones in peridotite, as in Sample 60168.

Textural evidence suggests that small euhedral chrome

spinels formed early with olivine, and that both pyroxene

and irregular spinels formed somewhat later.
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Spinel (1) Chemistry

Prima?y spinel analyses are given in Table 3.8, and
average spinel analyses are given in Table 3.9. The
spinel composition lies close to the field of picrochromite,
as defined by Simpson (1920), and it falls within the
compositional prism utilized by Stevens (1944), and by
Irvine (1965, 1967), Figure 3.13. Both Stevens and Irvine
show that natural spinels deviate little from the stoichio-

. ++ 4+
metric formula, R R 6

294" They attribute observed deviation

to impurity, analytical error, and subsequent hydrothermal
alteration. This last may cause an imbalance in the Fe2:Fe
ratio. Addition of appreciable Ti may also influence the
stoichiometry of the spinel structure. In practical terms
spinel is considered to acheive the "ideal" formula, which

requires a Ro:R ratio of 1:1. The distribution of

203
Fe (total), as determined by electron microprobe analysis,
may be calculated using the "ideal" formula, by assigning
appropriate amounts of FeO to the tetrahedral site, and
Fe203 to the octahedral site. The distribution was
achieved using the method of Carmichael (1967), in which
Ti traces are assigned to the ulvéspinel molecule.
Structural formulae, based on 32(0), are given in Tables

3.8 and 3.9.

3 . . .
The amount of Fe contributing to the total trivalent

cation content, Figure 3.14, is small, and the spinel
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Figure 3,13 A spinel compositional prism, from Irvine
(1965). The prism shows the principle
compositional end members, and the main

spinel ratio plots.




Figure 3.14 A trivalent cation plot.
Primary spinel (1) inferred to hzave been
derived from a dunite host is given as a
closed circle, and spinel derived, or
thought to have been derived from a
peridotite host, is shown 2s a cross.




usually contains less than 10% Fe3 in octabedral
coordination., This presumably substitutes for Al and Cr,
within the "normal" spinel structure. The main substit-
ution trend involves Al and Cr, and a solid solution
series was observed between Cr rich and Al rich spinels.
There are two separate, but sympathetic substitution
trends, which give a compositional spread within the

four phase system, FeCr_O, 6 -MgCr

294 -FeAl_O,-MgAl,_O

204 2 4 2°4°
Substitution of Al for Cr in the octahedral site, as noted
above, is the main substitution trend, Figure 3.14. 1In
addition Mg substitutes for Fe in the tetrahedral site,
Figure 3.15. Mg substitution is only readily apparent

at high values of Al.

The only other significant cation is Mn, which occurs
as tr=ces of up to 0.5% MnO. The Mn content appears to be
highest in those spinels enriched in Fe and Cr, and least
in those enriched in Mg and Al.

The variable Crxl1l00/(Cr+Al) ratio in Figure 3.15,
reflects a range in A120 content from 8.5-40.0% Al1_O

3 2 3’

and a concomitant Cr203 range from 60.5-27.5% Cr,_O The

273"

average Al 03 content shows no obvious systematic relation-

2

ship to primary banding, across the body as a whole, and

compositional extremes are often closely distributed,

Figure 3.16.
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Sketchmap showing the distribution of the
average Al_O_ content in spinel (l1). Values
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Figure 3.16




The spinels are homogenous, and consistent at a
scale of the individual thin section, but they are very
variable across the body as a whole. Comp=red with other
spinel suites from "alpine" assemblages, quoted by Irvine
(1967), the Blue River spinels cover almost the entire
recorded compositional range, and have a wider spread
than most suites, Figure 3.17. This is remarkable in a
body of at most 25 km2 areal extent.

The spinel chemistry shows a strong correlation with
host rock lithology. The sample population was subdivided
into two primary and one secondary group, and they are
plotted accordingly on Figure 3.15.

1. Peridotite: Any sample containing recognizable pyroxene,
bastite, or other pseudomorph after pyroxene, within

the area of the polished thin section, Table 1.2.

2, Dunite: Samples in which no pyroxenes, or pyroxene

pseudomorphs, were observed, Table 1.2.
3. Regenerated Dunite: Samples of metamorphosed

serpentinite which retain relicts of primary spinel.

The textural distinction between spinels of dunite and
peridotite host, and the progressive textural change from
small euhedral to large and interstitial, is reflected in
a chemical change from Cr to Al rich spinel.

Although similar trends have been recorded, for

instance by Aumento and Loubat (1971), for Mid-Atlantic
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Figure 3.17 The compositional range observed
in spinels from a number of
ultramafic bodies.

l1=MacGregor and Smith (1963)
2=Loney et al. (1971)
3=0Onyeagochi (1974)

4=Engin and Hirst (1970)
5=Aumento and Loubat (1971)
6=Stoll (1958)

7=Challis (1965)
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Ridge material, most "alpine" spinel populations are either
too small, or are given with insufficient host rock data to
interpret the significance of host rock lithology. 1In

the case of the Mount Albert intrusion, Quebec, MacGregor
and Smith (1960) relate the spinel composition to the
country rock contact, and not to compositional banding.

It is apparent from Figure 3.15 that there is very
little overlap between the dunite and the peridotite
derived spinels. The two populations are transitional,
and they break at a Crx100/(Cr+Al) ratio of 57.5t2.5.
Dunite spinels have a value above this, and peridotite
spinels have somewhat lower ratios. Table 3.10 gives the
spinel compositional range of both populations, in terms
of structural formulae. Spinels 60196C(l), and 60874A(l),
mark the transition point from dunite to peridotite. The
slightly high Fe3 content of the former probably reflects
incipient hydrothermal alteration during Stage III. The
excess Fe3 appears to be substituting for Al, rather than
Cr, Table 3.10

The critical Al content in Sample 60874A(l), is 24.5%
A1203, and dunites can readily be differentiated from
peridotites in Figure 3.16 on this basis. Similarly
spinels in the third population must either be dunite or

peridotite derived. A combination of chemistry and texture

should be adequate to decide which. Samples 60157, 60159,

19




Table 3.10

Limiting Spinel Compositions

1. 60237 C(1)*
2+ 3+ X \
M F Al C
Fey.3 M3.7 (Feo 5 By g CF15 6) 05, Dunite
2. 60196 C(1)
re2" M (Fe3t a1 cr. )oO Dunite
4.6 "93.4 1.0 “'6.5 “T8.4' "32 v
3. 60874 A(1)
2+ 3+
A . .
Fe4_9 Mg3.l (FeO-3 17.1 Cr8.5)032 Peridotite
4, 60160 A(l)
2+ 3+ ] ]
Fez.5 Mgs.5 (Feo.5 AllO.S cr5.0)032 Peridotite
*Details of composition and nomenclature are
given in Table 3.8.

xStructural formulae, based on the generalized

2+ 3+
formula R8 R16 032.




and 60035, contain small euhedral spinels enriched in Cr

and Fe, they are in all probability dunite derived. The
spinels in Samples 60209, and 60907, are far more irreqular,
and as they are Mg and Al enriched, their host meta-
serpentinite is thought to have been derived from peridotite.
The apparent bias towards dunite derived relicts probably
reflects the greater susceptibility of Al rich spinel to
alteration during Stage III metamorphism. Much of the
ferritchromit observed in the vicinity of the batholith is
considered to be altered peridotite spinel.

A large number of samples containing relict dunite
spinel were found along the western contact, in Unit (3a).
They probably represent a thick band of dunite formed
along this contact. The band appears to have acted as the
locus for the intrusion of a number of gabbroic bodies.

The structural formulae in Table 3.9, and the
Mgx100/(Mg+Fe) ratios given in Figure 3.15, show that dunite
derived spinels have a relatively scattered range, from 40
to 60. This scatter may in part result from olivine spinel
re-equilibration, as attributed to Sample 60237. Variable
amounts of Fe may substitute in the spinel on cooling.
peridotite spinels show a more marked trend towards Mg
enrichment.

In Figure 3.18 the Fe3 content, in relation to the

total trivalent cation content, is plotted against the
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Mgxl100/(Mg+Fe) ratio. The dunite and peridotite
populations overlap, but the Fe and Cr rich dunite-spinels
appear to have a lower Mgxl00/(Mg+Fe) ratio. The regen-
erated dunite spinels, which may show some incipient
alteration, appear to have lower ratios still. The

Fe3 content appears relatively fixed, and relatively low,

suggesting a low activity of oxygen.

(v) Cation distribution and Equilibration

Irvine (1965), discusses the thermodynamic basis for
partitioning between spinel and olivine, and Jackson (1969)
has extended the theory to enable usage of equilibrium data
as a geothermometer. The distribution of Mg and Fe is
complicated by the presence of trivalent cations in the
spinel structure, nevertheless, the following Mg and Fe

exchange reaction has been established:

++ . +++ _ : ++
Fe 810.502+Mg(Cn¥AH§Fex- )204 = MgSlo.502+Fe
+++
(CnxAHBFex )204

The values o, [3, and X , refer to the fractions of
Cr, Al and Fe, respectively in octahedral coordination in
the spinel structure, and they sum to unity. The thermo-
dynamic equilibrium coefficient (KD) may be defined by

the following equation, if one assumes ideal solid solution




behaviour, Irvine (1965), Jackson (1969).

++
X ol Mg. X chr Fe

K =
++
D X ol Fe .X chr Mg

++
where X 0l Mg and X ol Fe are mole fractions of the

end members, MgSi and FeSi respectively, and

0.5%2 0.5%2

X chr Mg and X chr Fe++ are the fractions of divalent
cations in the spinel.

Using the following equation, presented by Jackson
(1969), it is possible to deduce the temperature of
formation of an analysed equilibrium pair, using Gibbs
free energy data; or alternatively it is possible to
obtain the compositions which will coexist, at a given

temperature.

5580 &+1018 @ -1720% +2400

0.90«+2.56 B -3.08% -1.47 LnK *
(Lnk = logn KD)*

The value T is in degrees Kelvin. Analytical error,
deviations from stoichiometry, and uncertainties in Gibbs
free energy values, are obvious sources of error, and
Jackson suggests a reliability of no more than t300°C.

The Blue River primary assemblage is thought to
represent an equilibrium assemblage, and temperature

estimates are presented in Table 3.11. The estimates
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Table 3.11

Spinel - olivine Geothermometer

Sample KD TOC Rock-type
60075 12,01 1160 Dunite
60196 13.59 1030 Dunite
60237 l6.53 1106 Dunite
60902 13.99 1140 Dunite
60094 6.09 1159 Peridotite
60160 4,11 1231 Peridotite
60163 4.79 1213 Peridotite
60876 5.38 1210 Peridotite

Comparative Temperature Ranges

Location Temper ature Range oC Source

Blue River 1030-1231 This study

Burro Mt,USA 1098-1335 Loney et _al. (1971)

Vulcan Peak, 915-1365 Himmelberg et al.
USA. (1973)

Oregon, USA 1200-1410 Medaris (1972)

New Caledonia 1180-1300 Rodgers (1973)

Temperatures based on thermodynamic data from Irvine

(1965) and Jackson (1969)., Mineral data is shown in
Tables 3.2 and 3.9.




range from 1030°C - 12300C (tBOOOC) with a slight
compositional bias towards higher values associated with
peridotite pairs. Whether this difference is real, or it
represents some systematic difference related to the
appreciably lower KD values is not known. The assemblage
is considered to have equilibrated at a more or less constant
temperature and pressure. In view of the silicate-spinel
equilibration, which is inferred to occur on cooling,

some of the temperature range, in particular the low
value of llOGOC recorded for Sample 60237, may reflect

a minimum value.

The other temperature ranges given in Table 3.11
were derived by a number of workers, using the same method.
The similarity is striking, although the range in material
is large. The somewhat higher values given by Medaris (1972),
for some unusual harzburgites in southwest Oregon, are
reasonable in view of the Al rich nature of the ortho-
pyroxene, and its other high T and P features, Figure 3.9.
The effect of pressure on the KD value, representing
equilibrium between olivine and spinel, is apparently
small, Irvine (1965), and it is possible to construct
theoretical equipotential surfaces, which represent
equilibrium compositions for a given temperature.

Theoretical and observed olivine compositions are

compared in Figure 3.19, after Loney et al. (1971). The

82




v

*91e60196

v

0.3

03 04 05 06 07 08 09 10

. S |

Figure 3.19. A spinel cation ratio plot, after Loney et al

(1971). The plot has been contoured to give
the theoretical coexisting olivine Mg cation
fraction at lZOOoC. The contours are for
values of 0.900, 0.915, 0.93C. Observed
olivine Mg cation fractions are given for
each analysed coexisting pair.




observed olivine, coexisting with a given spinel compos-
ition, lies close to the theoretical composition. This
argues in favour of an equilibrium assemblage. Figure 3.19
has been contoured according to spinel compositions, which
at a given P and T, will equilibrate with olivine or
pyroxene of fixed Mg/Fe ratio.

The above contours are in part a function of the
Fe-Mg distribution coefficient, attained by equilibrium
partitioning between spinel and olivine. Figure 3.20,

after Irvine (1965), and Rodgers (1973), shows the Cr

fraction in the spinel, YZE, plotted against an Fe-Mg
distribution coefficient, 1n (l XSPV(l X;;)X;g .

According to Irvine this relationship should give a
straight line, slope K, if the conditions attained are
equilibrium, and the amount of Fe3 is constant. The Blue
River data indicates that equilibrium was attained, at a
coefficient of K = 2,9, which compares with the value of
K = 3 used by Irvine to construct his equipotential lines;
based on Mount Albert data. The deviation of Sample 60196
from what is otherwise a remarkably straight line, is a
function of the abnormal Fe3 content, and incipient
alteration. A similar plot shows the equilibrium relation-
ship between orthopyroxene and spinel. The Cr content is
directly related to the Al content of the spinel, and the

equilibrium distribution of Al between these two phases is
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Figure 3.20 An olivine (1) - spinel (1) equilib-
ration plot, after Irvine (1965), and

Rodgers (1973). An Mg-Fe distribution
coefficient is plotted against the Cr
cation fraction in spinel. The value
(K) represents the slope of the line,

1 = 60094, 2 = 60876, 3 = 60163, 4 =
60160, 5 = 60196, 6 = 60075, 7 = 60902,
8 = 60237.
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important, Fig.3.21.
Powell and Powell (in press), have established an
exchange reaction between olivine and clinopyroxene.

2CaMgSi,O_+Fe_Si0, = 2CaFeSi

2061Fe,519, 206 1M9,510

4

The content of the clinopyroxene MI site is non-ideal,

and it is expressed as a regular solution. Mixing para-
meters were obtained, and calibrated against iron-titanium
oxide temperatures. These enable equilibrium olivine-
clinopyroxene pairs to be used as geothermometers. The
pressure dependence of the geothermometer has been
calculated at SOC per kilobar.

The following equation may be used to determine

temperature (T), in degrees Kelvin, at a given pressure (P).

-2XA1 (920000+3.6P) -0.0435(P-1) +10100

XMg,0l XFe, MI
XFe,0l XMg,MI

8+2R1n -714.3(2XAl1)

The symbols XMg, XFe and XAl denote the mole fractions
of these elements in olivine, and in the clinopyroxene MI
site. The value for Al includes other trivalent cations
in octahedral coordination . The value for R is the gas
constant.

The equation defines P-T lines, and assuming a pressure
of between 5 and 10 Kbars, it is possible to estimate
olivine-clinopyroxene equilibration temperatures. These

+ .
are shown in Table 3.12. The value of 1050-50°C is probably
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Figure 3.21 A spinel (1) -~ enstatite (1)

equilibration plot, after Irvine
(1965), and Rodgers (1973). An
Mg-Fe distribution coefficient is
plotted against the Cr cation
fraction in the spinel. The value
K is the slope of the line.
1=60094, 2=60876, 3=60163, 4=60160.
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Table 3.12

Clinopyroxene - olivine Geothermometer

Temperature oC

Sample 5 Kbars 10 Kbars 15 Kbars
60160 L 1066 1094 1122
60094 M 1047 1077 1106
60094 L 1066 1094 1123
60876 M 1058 1087 1116

Temperatures based on thermodynamic data from
Powell and Powell (in press). Mineral data

is shown in Tables 3.2 and 3.7.




a realistic exsolution temperature. The diopsides which
occur in peridotite, are more calcic, and less aluminous
than the gabbroic diopsides, Table 8.1. They do however
contain approximately equal amounts of trivalent cations.
The lamellae diopsides probably exsolved after segregation

of the gabbro into bodies and lenses.

(vi) Discussion

The Blue River Ultramafic body is classified as an
"alpine" peridotite. As noted by Wolfe (1967), it displays
many of the characteristic features of this ultramafic
group. It consists of granulated and deformed dunite
and harzburgite, and it has evidently been tectonically
emplaced into a greenstone assemblage.

The olivine forsterite content, Fo is normal for

91’
"alpine" peridotite, but slightly high for stratiform
cumulate material. In addition it is homogenous, and there
is no evidence for Fe enrichment across the body. Similarly
the Ni content is homogenous, Figure 3.22. The Ni content
is a sensitive indicator of magma fractionation, and in

a stratiform sequence a marked depletion might be expected,
as was found by Irvine and Smith (1967), for the Muskox
body. Wager and Mitchell (1951) estimate that Ni part-

itions in favour of olivine, out of basalt magma, at a

ratio of 12:1. Primary sulphide might influence this, but
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Figure 3.22 Plot of the distribution of the aver age
NiO content in olivine (1).




none was found in the Blue River body.

Irvine (1967) recognized that "alpine" type bodies
have a far wider range of spinel composition than do
stratiform cumulate bodies. In this sense also, the Blue
River body is typically "alpine".

Irvine (1967) shows that spinels which have
unquestionably precipitated from a basaltic magma are
invariably enriched in Cr and Fe. He presents data from
the Stillwater, Bushveld and Great Dyke of Rhodesia
intrusives to support this. His data shows that spinels
within stratiform cumulate sequences have Crxl100/(Cr+Al)
ratios of 58.0 and above. This ratio almost exactly marks
the break between Blue River dunite and peridotite derived
spinels, Figure 3.15. Dunite derived spinels are similar
to stratiform and they could thus be magma equilibrated.
Peridotite derived spinels are too Al and Mg enriched to
be derived directly from basalt magma, under comparable
P-T conditions.

This relationship may be fortuitous, but there should
be an explanation for the spinel textures, chemical range,
and the somewhat coincidental occurrence of gabbro. This
invites speculation.

The presence of two Al _O_ bearing phases in harz-

273
burgite, suggests that the body may not be homogenous,




and the harzburgite layers may be significantly enriched

in Al., Wolfe (1967) quotes nine dunite analyses, and four
peridotite analyses, derived by X-ray fluorescence. The
former give an average value of 1l.5% A1203, and the latter
a value of 2.4% A1203. In spite of interlayering, there is
a detectable difference.

Figure 3.9 shows that primary enstatite contains a

constant value of 2.75-3.0% Al1_O

203~ Any excess Al, over

that required to "saturate" the enstatite present, appears
to be within the spinel. Dunite spinels never contain
excess Al over the basalt equilibration value; thus the
presence of enstatite appears to be significant in the
process which enriches the spinel. There are two possible
processes, one metamorphic and one magmatic, which might
influence the spinel.

Green (1964) and Medaris (1972) both present data
on the metamorphic re-equilibration of Al rich enstatite,

according to the following reaction:

Al enstatite + olivine = Al spinel + enstatite.

This process does not involve a wholerock chemical
change, and it presupposes flow banding of Al rich
enstatite or spinel, with later equilibration between the
two. This equilibration would presumably form a P-T

controlled enstatite, with a fixed A1203 content. This

92




relationship is not inconsistent with the data, but it
does not explain the spinel textures.

Irvine (1967) proposed that Al rich spinels might
be derived from original Cr rich spinels, by continuous
reaction between minor amounts of trapped interstitial
magma, and the primary mineralogy. This process accounts
for the interstitial form of the spinel in peridotite, but
it is less easy to reconcile with the primary banding.

The twc processes are not irreconcilable, flow
banding of olivine with both Al enriched enstatite and
a spinel, may have been followed by equilibration with
magma, and possibly incomplete magma segregation.

England and Davis (1973) describe harzburgites, from
Papua, New Guinea, that contain enstatites with a very low
A1203 content, Figure 3.9. The coexisting spinel is
similarly low in Al, and the rock, which floors an
ophiolite sequence, resembles an Al depleted residuum left
after partial melting.

Hancock (1964) described a harzburgite slab, similar
to the one above, in Borneo. His X-ray determinations of
A1203 content in spinel and enstatite show a systematic
variation across the Mt. Tawai ultramafic body. Basal (?)
harzburgites give the following; Enstatite, 6.0% A1203.

Topmost (?) values are 2.4% Al_O

5050 and

spinel 40.0% A1203.

18.0% A1203 respectively. This systematic decrease implies
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compositional change, possibly by increased partial melting,
or Al p=rtitioning on equilibration with magma.

Unlike the Mt. Tawai occurrence, which is a slab,
probably with a P-T gradient from top to bottom, the Blue
River body reflects a constant P-T environment, as it is
such a small occurrence. The variable here is rock
chemistry, perhaps the result of incomplete partial melting,
prior to intrusion. Peridotite is thus "contaminated" with
excess Al that it has not been able to shed into the magma.
It is envisaged that the original flow differentiated
harzburgite contained Al rich enstatite, and possibly also
spinel. During the equilibration process Al partitioned
into magma, where available, or, if not, into spinel. The
The overall trend is probably one of Al depletion, leading
to the basalt-equilibrated harzburgite described by

Davis and England (1973). The dunite is already Al

depleted.




CHAPTER 4. TECTONIC EMPLACEMENT AND SERPENTINIZATION

4.1 Tectonic Emplacement

The simple tectonic model, proposed in Chapter 2,
suggests that hot, anhydrous, peridotite "mush" was
emplaced into wet "ocean floor basait", immediately prior
to obduction of the greenstone assemblage, onto McDame
Group carbonates, and Sylvester Group sediments.

The ultramafic body was probably transported from
deep in the earths crust, to relatively shallow depths.
Movement was accompanied by local tectonism, and the
formation of the breccias referred to in Chapter 2. This
change in level was presumably accompanied by cooling, and
as suggested by Wolfe (1967), a temperature gradient was
probably set up between the core and the contact.

Gabrielse (1969), notes that the Blue River body is
the only ultramafic body within the Greenstone belt to
have retained a significant "core" region, of unaltered
primary peridotite. This is in spite of the marginal
serpentinization. Possibly the body retained enough
residual heat to prevent all but marginal serpentinization

during Stage II.

4.2 Serpentinization

The only indisputable evidence that serpentinization

occurred prior to the intrusion of the granite, comes from
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the metamorphic textures described in Chapter 5. Meta-
morphism in Units (3a) and (3b), Figure 3.1, presupposes
a pre-existing serpentine-brucite assemblage. Figure 3.1
brings out the marginal nature of this process.

Units (3a) and (3b) can be extrapolated to the south-
east, into Unit (2). This lies beyond the influence of
the granite, and thus on the hydrational side of the olivine
isograd, shown in Figure 2.6, It is not possible to date
the time of serpentinization in Unit (2), except to say
that it could have continued throughout Stages II, III and
IVv. Sample 60094 was the only specimen found to retain
primary olivine, all other samples are serpentinites. Water
released during metamorphism in Units (3a) and (3b) may
actually have contributed to serpentinization in Unit (2),
during Stage III.

Unit (2) contains serpentinite formed from the primary
peridotite mineralogy, and as such it is probably fairly
representative of the material metamorphosed in Units (3a)
and (3b).

Two varieties of serpentinite were found. Most of the
area is underlain by "bastite serpentinite”" derived from
harzburgite, but sheared contacts are comprised of a darker,
brittle, fibrous serpentinite.

Shiney, light-green, "bastite" pseudomorphs after

enstatite (1) occur in a light grey-green, mottled, matt
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textured serpentine, (Plate.4.1). The bastite serpentine
appears to retain the prominent (100) cleavage of enstatite,
and in some cases primary diopside exsolution lamellae
remain. In other cases the lamellae appear to be replaced
by magnetite, (Plate 4.2). The discrete lozenges of diopside
shown in Plate 4.3, are thought to represent a younger
generation of diopside, for the reasons given in Chapter 7.
Similarly the chlorite found in some samples is thought to
result from spinel (1) oxidation during Stage III, (Plate
4.4).

Sample 60094, Plate 3.14, contains highly granulated
olivine relicts set in a matrix of interstitial serpentine.
The serpentine forms a mesh around relict olivine granules,
and these are pervasively altered from margin to core. Where
total replacement has occurred, vein serpentine surrounds a
mesh, which displays the characteristic "hour-glass" texture,
Plate 4.5. Magnetite grains appear to concentrate in the

early vein serpentine, rather than within the mesh itself.

Sheared serpentinites, found near present-day contacts,
are matt textured, fibrous, foliated and very often slicken-
sided. Dark green-black lenticular masses of brecciated
serpentinite are enclosed within polished blocks. 1In thin
section the fibrous nature of the serpentine is apparent,
and the mesh texture is missing. The serpentinite character-

istically contains appreciable magnetite.
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In Units (1) and (3c) alteration of enstatite (1)
to bastite is inferred from the subsequent metamorphism,
and remaining serpentine relicts. Minor interstitial
serpentinization, and asbestos formation,is also inferred

from the metamorphic textures described in Chapter 5.

4,3 Serpentine Chemistry

Table 4.1 lists serpentine analyses, from those
samples in which the serpentine can be shown to be formed
from the primary assemblage. As noted, these may not be
strictly Stage II serpentines, but they are serpentines
presumably formed from the same primary material, under

similar conditions. The chemistry appears to be fairly

consistent throughout.
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CHAPTER 5: PROGRADE METAMORPHISM

5.1 Intrusion of the Cassiar Batholith

The batholith intrudes along the southwest margin
of the McDame Synclinorium, Gabrielse (1963), Figure 5.1.
It intrudes rocks belonging to both the miogeosynclinal
McDame Group, and the overlying eugeosynclinal Sylvester
Group.

The batholith contact is sharp, and, apart from Lhe
local occurrence of aplitic dykes cutting metasedimentary
rocks, there is little recorded evidence of country rock
contamination. Hornfelsed sediments near the contact
appear to have a steep, tectonically induced, easterly
dip, suggesting forcible emplacement. Contacts are
locally schistose, Wolfe (1967).

A number of small sattelite stocks crop out along

the batholith contact. Due west of the Cassiar Mine a

small stock is notable for its high xenolith population,
Gabrielse (1963).

The contact between the Cassiar batholith and the Blue
River ultramafic body, Figure 5.2, is well displayed along
the back wall of the Nickel Creek Corrie, Plate 2.4.

The contact is planar, and it can be traced for a distance
of 2 miles, (3.2 km) and over a relief of 1000 ft, (307 m),

Wolfe (1965). It trends N.35°E and dips 77°NW, and is

thus markedly discordant to the regional structure. The
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Figure 5.1 A sketch map showing the regional geology
in the vicinity of Cassiar Townsite, (arrowed).
Data from Gabrielse (1963), McDame Map area,

and from Gabrielse (1969), Jennings River Map
grea.

S=McDame Group sediments

V=Sylvester Volcanics and Cherts
U=Ultramafic rock

X=Cassiar batholith
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Flgure 5.2 A sketchmap showing the northeast
corner of the Blue River Ultramafic
Body, (adapted from Wolfe (1965)),
showing the location of the ultramafic
intrusives in the vicinity of Black
Friday Lake.
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direction is consistent, as a trend of N.30°E, dip 70°SE
was observed, offset 4 km along the strike to the south-
west. The batholith may have intruded along a fault
plane, as it closely parallels a dominant regional joint
set, perpendicular to the axis of the synclinorium,
Gabrielse (1963). The occurrence of and isolated body
of ultramafic rock in the vicinity of Black Friday Lake,
in the extreme northeast corner of the map area, Figure
5.2, favours this argument. There is no evidence for
movement along the contact after emplacement of the

batholith.

5.2 Batholith Composition

The Cassiar batholith consists of medium to coarse,
pinkish-grey, homogeneous, granitic rock with varying
proportions of plagioclase, (oligoclase to andesine),
quartz, and microperthite. Modal proportions quoted by
Gabrielse (1963), and Wolfe (1967), are plotted on Figure
5.3. Biotite and chlorite are the principle mafic

minerals, except near contacts and inclusions, where

assimilation leads to the development of hornblende and
sphene. 1Inclusions of diorite, consisting of "hornblende-
plagioclase-biotite sphene" assemblages are locally
common near contacts. Microperthite phenocrysts
preferentially develop in the vicinity of such inclusions,

Gabrielse (1963).
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Figure 5.3 The modzl composition of the Cassiar batholith.
Estimates denoted (X) =re from Gzbrielse (1963),
and estimates denoted (+) are from Wolfe (1967).
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Assimilation of limestone along some contacts has
basified the intrusive, which develops zoned calcic
plagioclase, and a green-blue pleochroic hornblende,

Wolfe (1967).

5.3 Contact Metamorphism

The batholith intrudes a variety of different
rock types, and their varied response to thermal meta-
morphism should act as a guide to the P-T conditions
operative during emplacement of the batholith. By
extrapolation it should be possible to fit the metamor-
phism of the ultramafic body into a more generalized
contact metamorphic framework.

Data on the thermal metamorphism is limited.
Gabrielse (1963) quotes the work of MacDougall on the
"Contact" Group of Mining claims, adjacent to the contact,

west of Cassiar Mine, and he also gives generalized data

for the northeast batholith contact. Wolfe (1967) gives
more specific data about the contact in the vicinity of
the ultramafic body.

Rocks within the aureole have been subdivided into
four lithologic categories, which reflect the extreme
range of primary rock composition, they are (i) metamorphosed
sediment, (ii) metamorphosed carbonate and skarn, (iii)
metamorphosed volcanic rock, and (iv) metamorphosed

ultramafic rock. The first three are discussed on the
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basis of the available data, and the fourth is an integral

part of this study.

(i) Metamorphosed Sediments

Argillaceous sediments have been hornfelsed and
recrystallized within an embayment separating the main
batholith from a stock, due west of the Cassiar Mine. The
embayment, which constitutes the "contact" Mining claim,
thins from 500 m to 170 m, and forms a pendant within
the batholith.

Bedded Al-rich shales have altered to a black,
spotted hornfels.,consisting of the assemblage "cordierite-
orthoclase-quartz-biotite". This assemblage also contains
a biotite rich variety,which occurs as angular inclusions
within the stock, Gabrielse (1963).

Near the ultramafic body pelitic sediments are
schistose parallel to the contact, Wolfe (1967). This
foliation locally extends for 100 ft, (31 m), either side
of the contact, and is used as evidence for forcible
emplacement. The schist contains the following assemblage
within 50 ft, (15 m), of the contact:

"Quartz-staurolite-almandine-muscovite-biotite"
Further out the following assemblages are recorded;
"Quartz-biotite-muscovite-orthoclase * garnet"

"Quartz-epidote-hornblende-plagioclase"

"Quartz-hornblende-biotite-andesine".
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The first two assemblages are recorded by Wolfe (1967),
and the third by Gabrielse (1963). How far out these
assemblages extend is not clear, as, although the sediments
are hornfelsed for 1000 ft, (307 m), from the contact,
Gabrielse (1955) records actinolite and chlorite in the
matrix of sediments, "away from granite".

Rocks within the embayment presumably formed
cordierite and orthoclase by the following reaction:

(1) 6 muscovite + 1 biotite + 15 quartz = 3 cordierite

+ 8 K feldspar + 8H20.
This assemblage defines the "K-feldspar-cordierite"
contact metamorphic facies of Winkler (1967). The reaction
should proceed at 640o t 20°C at 2 Kbars, according to
Winkler ; and this would indicate such a temperature
within the batholith embayment.

Staurolite and almandine together define a subfacies
of the almandine amphibolite facies of regional metamor-
phism. The increase in pressure required to attain such
a facies is unlikely, although tectonic overpressures may
occur. Staurolite has been recorded in metamorphic
aureoles, Pitcher and Read (1960); and Winkler (1967)
states that staurolite and muscovite will replace
cordierite in rocks of suitable composition. Similarly
Chinner (1962) suggests a restricted,but stable, field of

almandine in a thermal environment.
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The stable association of "muscovite-biotite-quartz"
precludes K-feldspar-cordierite hornfels conditions. Both
hornblende and plagioclase are stable, and albite and
chlorite absent. The sediments are thus assigned to
the hornblende hornfels facies. These sediments, which
extend for an unknown distance from the contact, have
probably been subjected to the following reaction.

(2) Chlorite + tremolite + quartz = hornblende +
anthophyllite + H20

This reaction, which marks the onset of hornblende

hornfels facies conditions, proceeds at 560o * lOOC at

2 Kbars, Choudhuri et al. (1967). The true temperature

was probably lower, as the original rock contained

actinolite not tremolite.

Within the inner aureole of the batholith, sediments
probably did not reach 640°C.in the vicinity of the

ultramafic intrusion, but they were presumably heated

to around 560°C.

(ii) Metamorphosed Carbonates and Skarns

Limestones have recrystallized to a sugary "marmorized"
limestone within the embayment area. This is finely
interbedded with sedimentary hornfels and skarn. A mixed

sequence has been metamorphosed to the following laminate

assemblage.




"Garnet-diopside-calcite"
"Orthoclase-cordierite-biotite"
"Diopside-orthoclase"
These confirm the K-feldspar-cordierite hornfels
conditions indicated for this area. The absence of
woll astonite may be a compositional phenomenon.

Near the ultramafic body Wolfe (1965) reports that
limestones, dolomites, and calcareous dolomites are
recrystallized for 1000 £t, (307 m) ,from the contact,
and silicious dolomites form a "calcite-forsterite"
assemblage for a distance of 75 ft, (23 m) ,from the
contact.

Winkler (1967) uses this assemblage to mark the
onset of hornblende hornfels conditions, provided the
ratio C02:H20 in the fluid phase is above 1:3. When
this condition is satisfied, the following reaction
will proceed at 530°f10°c, at 1 Kbar, Metz (1967).

(3) Tremolite + 11 dolomite = 8 forsterite + 13 calcite
+ 9 CO2 + H20.

Tremolite was not reported by Wolfe, and the
following, anhydrous, reaction probably gave rise to
this assemblage, under similar P-T conditions.

(4) 2 dolomite + 1 quartz = forsterite + 2 calcite + CO2
The temperature indicated is compatable with hornblende

hornfels conditions within the inner aureole of the

batholith.
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(iii) Metamorphosed volcanic rocks

Although outcrop is poor in the immediate vicinity
of the batholith, Wolfe (1967) reports the following
hornfels within 500 ft ,(153 m), of the contact.

"Quartz-hornblende-biotite-plagioclase"
This assemblage passes outward into the following
hornfels, which itself passes into typical type I
Sylvester volcanic rock, as defined by Gabrielse (1963).
This exhibits a similar mineralogy, (see Chapter 8).

"Quartz-actinolite-albite-epidote-calcite

* chlorite"

This assemblage belongs to the albite-epidote facies
of thermal metamorphism,and it is also transitional
to the regional "spilite" mineralogy discussed earlier.
Onset of this facies is established by the following
reaction, Winkler (1967).
(5) 1 kaolinite + 2 quartz = 1 pyrophyllite + 1 H20
This reaction proceeds at 400°C at all geologically
realistic pressures;and thus the ambient regional
maximum temperature attained was probably, (on this

basis),in excess of 400°c at some stage.

(iv) Metamorphosed ultramafic rocks
Blue River ultramafic rocks in the aureole of

the batholith have been metamorphosed for a distance

of 5000 m from the nearest exposed contact, which is
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along the back of the Nickel Creek Corrie, Figure 5.4,
(Plate 2.4 ).

The batholith truncates Stage II structures, and it
cuts both the relatively unaltered "core" region, defined
by Units (1) and (3c),on Figure 5.4,and also the highly
serpentinized marginal regions, defined by Units (2), (3a)
and (3b). The compositional differences between the two
are reflected in the metamorphic mineralogy, and although
the pattern of metamorphism is similar in each case, there
are significant differences. Figures 5.5 to 5.10 show
the spatial distribution of the following prograde meta-
morphic phases, olivine (3), tremolite-anthophyllite, talc,
ferritchromit (spinel (3)), Al serpentine (including
chlorite), and enstatite (3).

The body is subdivided on the basis of the talc
isograd into an "outer aureole", defined by Units (1)
and (3a), and an "inner aureole" defined by Units (3b)
and (3c), Figure 5.4. These represent metamorphic zones
based on the incoming of olivine (3), according to the two
classic olivine producing reactions,established by Bowen
and Tuttle (1949). Within the "outer aureole" it is
possible to define an additional isograd, based on the
first appearance of tremolite. Similarly within the
"inner aureole" the first appearance of prograde

enstatite (3) marks a further isograd.
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Figure 5.4 A sketchmap showing the location of prograde
metamorphic isograds. Isograd re=ctions are
given in Table 5.4.
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Figure 5.5 Distribution of metamorphic olivine (3).
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Figure 5.8 Distribution of ferritchromit 2»nd chromium
magnetite, (spinel (3)).
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Figure 5.9 Distribution of Al-serpentine and chlorite.
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Figure 5.10 Distribution of metamorphic enstatite (3).
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Meta-Peridotite (Unit (1))

Contact metamorphism is barely discoverable in
Unit (1), which retains its primary, Stage I assemblage,
It remained essentially anhydrous during Stage II, and
was consequently inert during prograde metamorphism. A
few "bastite" pseudomorphs after enstatite (1) were
formed during Stage II, especially along the northern
contact of Unit (1), and these show partial to complete
regeneration to an olivine (3) pseudomorph. The Stage II
bastite retained the outline and internal structure of
the host pyroxene, and in particular, it retained the
pronounced cleavage parallel to (100). This cleavage
controls much of the later olivine growth. 1In samples
60874 and 61552 olivine has nucleated around the margin of
the bastite, and has started to grow inward ,(Plate 5.1).
Inward growth is controlled by the inherited cleavage,
and a patchwork of short elongate olivine crystals replace
the serpentine. Relict serpentine within the growing
olivine fringe recrystallizes, and coarse euhedral
magnetite crystals are invariably found within the
pseudomorph, (Plate 5.1).

In sample 60153, large olivine (3) mosaics, pseudo-
morphing bastite, attain diameters of up to 4.0 mm. The

replacement olivine appears to show a greater crystallo-

graphic control by the original fracture pattern,than by

119







enstatite cleavage. The replacement olivine, (Plate 5.2)
is clear, fresh, and unaltered, although the matrix
olivine (1) is largely serpentinized at a later stage,
(see Chapter 7). The extra stability is thought to be
a function of mineral chemistry, (see Chapter 6).
Irregular access of water during Stage II evidently
led to the formation of bastite in rocks which contain
relict enstatite (l1). In Samples 60876 and 60160,
partial regeneration has occurred close to primary
unaltered enstatite.

Table 5.1 shows the assemblages attained in Unit (1),
and Table 5.2 summarizes the probable reactions involved.
The development of olivine without talc implies
that the pseudomorphs are formed by reaction (6), which

presupposes a brucite component to the original rock.
(6) Serpentine + brucite = olivine (3) + H20
Clinopyroxene lamellae are stable in primary
enstatite throughout much of Unit (1), (Plate 3.1»; but
cease to be stable above the tremolite isograd. Samples
61552 ,and 61556, contain tremolite needles and blades,
overprinted on the primary lithology. They commonly occur
in the vicinity of bastite pseudomorphs.
The occurrence of tremolite below the talc isograd,
Figure 5.7, suggests a serpentine-diopside reaction,

such as that indicated by Evans and Trommsdorff (1970),

Table 5.2.



TABLE 5.1
Metamorphosed Ultramafic Rocks
Unit (1) and Unit (3c¢)

Assemblages, and representive Samples

outer aureole

Reaction (6)

+ . +

- Bn(l), Spinel(l), Serp, Magnt) - 01(3)
(60153, 60874)

(01 (1),

Reaction (7)

(01(1), Spinel(l), Serp, Magnt) t 01 (3) t tremolite
(61552, 61556)

inner aureole
Reactions (8,9, 10)

+
(01(1),- Spinel(l)), Al serp,Ferritchromit, tremolite
(60186, 60174)

Y o13) ¥ talc

Reaction (11)

(01(1), Spinel(l)), Al serp, Ferritchromit,
(60196)
Anthophvllite

Reaction (12,13)

(01(1)), 01(3), Tremolite, Ferritchromit, Chlorite
(60341)

Hornblende, anthophyllite

Relict primary mineralogy, and metamorphic assemblages
in the "core" region of the ultramafic body. Underlined
phases represent their first occurrence according to
the associated reaction.




TABLE 5.2
Metamorphosed Ultramafic Rocks

Unit (1) and Unit (3c¢)

Reactions:

(6)

(7)

(9)

(10)
(8)
(11)

(12)

(13)

outer aureole

Serpentine + brucite = 2 olivine (3)

+ 0
3H2

5 serpentine + 2 diopside = tremolite +

6 olivine (3) + 9H20

inner aureole

Spinel + serpentine = Ferritchromit +

Al serpentine + SiO

2

Enstatite + diopside + Sio2 + H20 = tremolite

5 serpentine = 6 olivine (3) + talc + 9H20

9 talc + 4 olivine = 5 anthophvyllite + 4H20

Al serpentine = chlorite

Chlorite + talc + tremolite + SiO2 =

Anthophyllite + hornblende + H20
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(7) 5 serpentine + 2 diopside = tremolite + 6 olivine (2)
+ H20
The tremolite isograd is placed 2000 m from the batholith

contact, Figure 5.4 and 5.6.

Meta-Peridotite (Unit (3c¢)) .

Above the talc isograd, in Unit (3c), there is a
marked increase in the degree of alteration. Excepting
Sample 60226, enstatite is completely lacking, Figure 3.7,
and primary spinel shows a far greater degree of alteration.
There is an overall increase in the apparent degree of
hydration, and the effect of this is shown by the observed
assemblages and reactions in Tables 5.3 and 5.4.

Above the isograd some, although not all, bastites
show sign of regeneration, and those that do, may show
either partial development, as described for Samples
60195 and 60341, or complete replacement as in Samples
60174 and 60186 (Plate 5.3). Complete replacement forms
a controlled mosaic approximately 3.0 mm in diameter,
with flecks of talc intimately associated with the
replacement olivine. Complete replacement may be
inhibited by the formation of Al serpentine and chlorite
at the expense of primary serpentine. The bastite is
thus "poisoned" structurally. In Sample 60341 (Plate 5.4)

regenerated olivine granules form stringers within a

chlorite pseudomorph, which itself has replaced Al
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TABLE 5.3
Metamorphosed Ultramafic Rocks

Unit (3a) and Unit (36)

Assemblages

outer aureole
Reaction (6)
(Spinel (1), Serp., Magnt.), : 01 (3)
Reaction (7)

(Spinel (1), Serp., Magnt.), 0l1(3), Tremolite

inner aureole
Reaction (8, 9,10)

. . +
01(3), Al serp., Ferritchromit, Talc, -

Tremolite
Reaction (12,14)

01(3), En(3), Chlorite, Tremolite,

Ferritchromit.

Relict primary mineralogy, and metamorphic
assemblages within the marginal serpentine.
Underlined phases represent their first occurrence,
according to the associated reaction.




TABLE 5.4
Metamorphosed Ultramafic Rocks

Unit (3a) and Unit (3b)

Reactions:

(6)
(7)

(9)

(10)
(8)

(12)

(14)

outer aureole

Serpentine + brucite = 2 olivine (3) + 3H20

5 serpentine + 2 diopside = Tremolite +

6 olivine (3) + 9H20

inner aureole

Spinel (1) + serpentine = Ferritchromit +

Al serpentine + SiO

2

Enstatite + diopside + 8102 + H20 = tremolite

5 serpentine = 6 olivine (3) + talc + H20

Al serpentine = chlorite

Talc + olivine (3) = enstatite (3) + H20




serpentine.

Original bastites retain their outline, and those
that show only partial,or no regeneration of olivine, are
replaced initially by an intimate association of Al
serpentine and fibrous tremolite, with or without talc.
In Samples 60185 and 60186 bastites consist of an outer
fibrous tremolitg fringe, and an inner anomalous "berlin
blue" birefringent Al serpentine.

The primary, olivine (1) based texture of the rock
is retained, although intergranular serpentine changes
its chemistry, but not its structure. In Sample 60196
"typical" intergranular serpentine is Al rich.X-ray
diffraction data (Appendix IV) confirms the structural
state of the mineral. The development of Al serpentine
is related to the hydrothermal alteration, and oxidation

of primary spinel to "ferritchromit", a name applied by

Engin and Aucott (1971). The degree of alteration appears
to depend on the proximity to the batholith, and the
composition of the primary spinel. Large, irregular, Al
rich primary spinels, as described from peridotites in
Chapter 3, show signs of incipient alteration as far south
as Samples 60071, and 60160, below the talc isograd.

Above the isograd alteration is far more pervasive,
although, as noted earlier, Figure 3.12, relict red

spinels do remain. Halos of Al serpentine start to
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develop around primary spinels, as the first stage in
the oxidation process, (Plate 5.5). Al serpentine
replaces interstitial serpentine and olivine (1), and
forms a felty fringe around the spinel (l1). Wolfe (1967)
notes that an inner halo of dirty fibrous "kammererite"
forms around the spinel, and an outer clear zone of
"penninite" forms along the contact with olivine (1).
The former is birefringent grey, and the latter an
anomalous "berlin blue" colour, Samples 60071, 60226,
(Plate 5.6 ). In fact, (Chapter ), there is little
compositional variation; they fall with a limited Al
solid solution range, and the feature is probably one
of crystallinity. Thus oxidation of Al spinels, and
later oxidation of Cr spinels, leads to the conversion

of all the serpentine from Stage II not already regener-

ated to olivine (3), into Al serpentine. 1In addition,
the halos indicate a direct reaction with olivine in
the presence of water. During oxidation the spinels
become blackened and irregular, and loose their red
translucency in thin section. Alteration proceeds
inwards, and red cores often remain.

Tremolite is a common metamorphic mineral above
the talc isograd, laths and needles between 0.2 mm and
2.0 mm long, occur as individual blades, and as clusters,

imprinted on the primary olivine and secondary serpentine,
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(Al serpentine), matrix. They are often broken and
fractured as a result of minor intergranular movement,
but they are rarely disorientated, (Plate 5.7 ).
Anthophyllite blades and needles, similar to
tremolite in mode of occurrence, appear in Sample
60196, a sample which, on the basis of its spinel (1)
chemistry,is dunite, and thus deficient in Ca.
Although talc is widespread above the isograd,
it is not abundant, and it occurs principally as small
flakes disseminated between granulated olivine (1)
relicts, within the remnant matrix. It also occurs
with tremolite and Al serpentine in bastite pseudomorphs,
and in Sample 60226,replacing relict enstatite (1).
Alteration of serpentine to Al serpentine

undoubtedly hinders olivine (3) generation in the

"serpentine” matrix, and thus reduces talc formation.
Interstitial olivine (3) overgrowths on olivine (1)
were observed in Samples 60186, 61615, (and possibly
in Sample 61560, below the isograd). The overgrowths
form a meshwork replacing serpentine. They are in
optical continuity with their enclosed fragment, they
form sharp intergrain contacts between rounded and
granulated fragments, and they stand out as a result

of preferential serpentinization of olivine (1), during
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Stage IV, (Plate 3.7 ). This latter feature suggests a
compositional difference, analogous to that observed in
the bastite pseudomorphs in Sample 60153. The amount of
interstitial serpentine which has been regenerated in
Units (1) and (3c¢) is small, which suggests that very
little water got into the "core" region, inspite of the
highly serpentinized nature of the marginal zones.

Retrogressive reserpentinization, which reverses
the talc forming reacticn, may lccally account for the
scarcity of talc.

Talc and.olivine (3) were probably formed by
reaction (8), Table 5.2, the higher temperature re-
action established by Bowen and Tuttle (1949).

(8) 5 serpentine = 6 olivine (3) + talc + 9H20

This reaction is probably inhibited by reaction (9),

which alters the composition of the serpentine.

(9) Primary spinel (1) + serpentine = ferritchromit +
Al serpentine + SiO2

Substitution of Al for Si in the serpentine structure

produces an excess of Si, which is probably absorbed

by the following reaction, (10).

(10) Enstatite (1) + diopside (1) + SiO2 + H20 =

tremolite.

As noted, ( excepting Sample 60226), neither primary

pyroxene phase was observed above the isograd. Although




considered a high temperature reaction by Boyd (1959),
a reaction like this explains the formation of tremolite
in a system in which serpentine is contaminated by Al,
preventing reaction (7).

Anthophyllite produced in Sample 60196 presumably
forms by the experimentally determined reaction (11),
discussed by Greenwood (1963).

(11) 9 talc + 4 olivine = 5 anthophyllite + 4 HZO

The reaction temperature suggested for this is around
670°C at 2 Kbars. This is unrealistic in terms of the
associated rock types, and a lower temperature is
suggested. This is probably reasonable, as the
anthophyllite formed contains appreciable Fe, (Chapter
6).

Samples 60199 to 60174 were collected along a
sharp ridge that forms the back wall of the corrie
complex. The back wall of this ridge falls away into
a granite-floored corrie, (Plate 5.8), which drains to
the northeast, and is largely scree covered and inacc-
essible. For this reason Unit (3c) was only sampled
in the vicinity of the contact in one location, that
of Sample 6034l1. This sample displays a slightly
higher grade mineralogy.

Partially regenerated bastites appear to be

forming colourless anthophyllite, and a green pleo-
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choric hornblende (Plate 5.9), according to reaction (13),
established by Choudhuri and Winkler (1967).
(13) Chlorite + talc + tremolite + SiO2 =

anthophyllite + hornblende + H20
This reaction proceeds at a temperature of 540° - 10°C,
below 1 Kb PH20' the reaction is however pressure sensitive,
Figure 5.11, and above this pressure anorthite becomes a
stable phase. This reaction, close to the contact, is in
good agreement with the observed countryrock data, and it
suggests hornblende hornfels conditions within the "inner

aureole". The reaction also suggests a low P below

H20

1 Kb.

As noted earlier, Al serpentine has completely
recrystallized to chlorite in this sample. Chlorite
pseudomorphs replace bastite (Plate 5.4), and sharp
crystalline laths replace a halo of Al serpentine (Plate
5.10), whether chlorite is formed by reaction, or
structural transformation,is not directly apparent. As
it pseudomorphs an original Al serpentine halo, it may
result from a structural transformation from a 7 R
septachlorite, or serpentine lattice, to the true 14 o
chlorite structure. This transformation has been observed
by a number of workers, including Yoder (1952,who suggested
a transformation temperature of 500o - 520°C, Nelson and

Roy (1958), Gillery (1959), and Velde (1973). Velde suggests
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lower transformation temperatures, but also a compositional

control.

Meta-serpentinite (Unit (3a))

The two bands of marginal serpentinite which flank
the "core" region have both been subjected to the same
metamorphic process, and they display similar rock textures
and isograds on either side of the core.

In marked contrast to Unit (1), Unit (3a) is strongly
metamorphic in character, consisting largely of secondary
regenerated olivine (3), in a relict serpentine matrix.
Retrogressive serpentinization during Stage IV has markedly
reduced the amount of surviving olivine (3), especially in
the east, Figure 5.5, but it has not influenced the texture
of the rock, and enough remains to establish the pattern
of metamorphism below the talc isograd. Textural evidence
suggests that metamorphism regenerated olivine up to 5000 m
from the batholith contact in the west, and for 4000 m in
the east, Figure 5.4. A few weak textural traces were
detected below the transverse fault which cuts the body
across Claim Jumper Creek.

The main metamorphic feature is the characteristic
"oolitic" texture noted by Gabrielse (1963) ,and Wolfe
(1965, 1967). This is well developed in Unit (3a),
particularly in the west, and along Spudusob Creek in the

east. The texture derives from the development of evenly
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spaced olivine porphyroblasts:; which grow at the expense of
serpentine into either a mutually interfering mosaic, in
which most of the serpentine has been exhausted, Samples
60171, 60206, or into descrete crystals with sharp
euhedral outlines, as in 60157 and 60035 (Plates 5.11).

A third variety, no longer preserved as olivine, developed
in samples such as 60055 and 60056. Scattered, rounded
cores of olivine (3) were formed, but sharp euhedral out-
lines were never attained, (Flate 5.12). The size and
number of secondary olivine porphyroblasts is seen to
increase from Sample 60143, on Spudusob Creek, to Sample
60038, and conversely the amount of recognisable bastite
is seen to decrease.

Granules of relict primary clinopyroxene appear to

have remained stable in Samples 60029 and 60033, and
lamellae remain unaltered in a distinct bastite,within
Sample 60067. This suggests that "harzburgite" serpentinite
regenerates to secondary dunite, but perhaps not as readily
as original dunite derived serpentinite. The development
of olivine (3), in Samplks 60029 and 60033, is not as good
as in Samples 60035 and 60102,which are nearby. Bastites
are thus lost during progressive metamorphism,

In hand specimen olivine "kernels", or porphyroblasts,
are found to be small, 1.0 mm to 3.0 mm in length, and

approximately uniform in grain size. They appear spherical
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or elongate-euhedral in outline, and they give thé rock a
coarse granular appearance. The rock is usually foliated,
with olivine grains orientated in planes, and separated by
planes of apple-green translucent serpentine. The retro-
gressive serpentinization of olivine to a dark green
serpentine imparts a distinctive mottled appearance to the
rock, a feature which first drew attention to the rock,
(Gabrielse, 1963). 1In addition, weathering of exposed

sur faces hydrates magnetite to rust, in the porphyroblast;
and brings out white weathering brucite, coating the inter-
face between regenerated olivine (3), (or a serpentine
pseudomorph thereafter), and the matrix serpentine, as in
Samples 60102, and 61592 (Plate 5.13).

The metamorphic foliation is irregular and distorted,
but parallel to the western margin, within that zone. Along
Heazlewood Creek there is a strong foliation subparallel to
the floor of the Heazlewood Thrust. The foliation may be
partially inherited from the Stage II serpentinite, but it
may also reflect activity along these contacts during
regeneration. In the northeast, Samples 60128 and 60109,
foliation is subparallel to the Nickel Creek thrust, and
the batholith contact. The variation in foliation is thus
a complex result of inherited foliation, and operative

tectonic relations at the time of metamorphism. No simple,

single, factor appears to be responsible.
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In thin section most of the larger olivine (3)
porphyroblasts appear to be strongly zoned, with a dark,
turbid, circular, inner core, and an outer clear margin.
The turbidity appears to result from the concentration of
minute gas bubbles, and the inclusion of minute crystals
of magnetite, which occasionally hydrates and stains the
core region brown. Turbid cores vary in intensity, some
samples such as 60171, 61567, and 60157, are particularly
strongly cored. A single turbid "core" may centre one
crystal of olivine (3), or several, (Plates 5.14,5.15).
Growth was evidently point centred, and depending on the
scatter of nucleation centres, single or multiple crystalled
kernels were developed. Sample 60157 contains a few large
crystals, where as Sample 61636 contains a mosaic of small
weakly cored granular crystals. Continued growth leads
to mutual interference, and a polygonal mosaic, Sample
60227, (Plate 5.16). Patches of serpentine may remain,
and in these patches euhedral growth continues, with
slightly rounded corners, Sample 61632 (Plates 5.17,5.18).

Samples 60894 and 61531 are crossed by a number of
planes which consist of strongly cored olivine porphyro-
blasts. In Sample 60894, (Plate 5.19),the amount of marginal
olivine formed within the plane is limited, and it would
appear that the cores were continuous within the plane.

It is interpreted as a fracture along which gas flowed







during the initial period of dehydration. Fast crystall-
ization of core olivine, along the fracture,led to the
development of cored olivine, within a generally less
strongly mottled rock. Possibly small flecks of serpentine,
trapped during fast early growth of core olivine,dehydrated
to develop the observed gas bubbles. Spherical cores of
olivine are enclosed by clear crystalline olivine margins,
(except as noted in Samples 60055, 60056), and this suggests
a slower more controlled period of olivine growth, with

gas released during dehydration diffusing out through the
serpentine matrix, and established fractures.

Although some samples, such as 60171, display evenly-
spaced, uniformly cored olivines, presumably representing
one nucleation period, others, such as 60157 and 60035
contain a range of sizes and intensities, representing
continuous nucleation. Sample 60157 in particular, has
small interstitial "marginal type" olivine grains among
the cored porphyroblasts, (Plate 5.20).

The initial dark green serpentine formed in bastite-
serpentinite during Stage II is progressively altered by
the development of olivine porphyroblasts during Stage III.
The characteristic "hourglass" texture is lost, and a felty,
fibrous serpentine is developed, that envelopes the porphyro-
blasts, and forms a relict serpentine matrix below the talc

isograd. The nature of this matrix is obscured by retro-
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gression to antigorite during Stage IV, above its retro-
gressive isograd. In Samples 60035, 60102 and 60157, the
matrix remains, isolating euhedral crystals, (Plate 5.21).
The regeneration process is independent of the spinel
phase, and relict red primary spinels remain scattered
throuéh Unit (3a). Some Al rich spinels show partial
alteration to ferritchromit and Al serpentine, Sample 60143,
but the alteration tends to be minor and superficial;
particularly for small euhedral Cr rich spinels, such as
those found in Samples 60157, 60159, 60021, and 61577.
Alteration increases towards the talc isograd, and becomes

significant in the area now retrogressed to antigorite,

Sample 60907, 60109 and 60069. Some spinels are altered
to, or coated by, magnetite, presumably formed during
Stage II.

The contact between Unit (1) and Unit (3a) is remarkably
sharp, and as noted,there is little material transitional
between the two. The contact is easily traced in the west,
as the weathering pattern differs. The change appears to
be sharp and transitional, as between Samples 60241 and
60160, two neighbouring but totally different rocks.
Similarly the contact between Unit (3a) and Unit (3c) is
sharp and well exposed up the waterfall section below
Ice Lake. Samples 60226 and 60227 fall on different sides

of the line. A weakly mottled regenerated rock appears

to pass into a granulated Pprimary rock with little or no
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tectonic break. Minor evidence for tectonism along that
contact comes from control of olivine (3) by fractures,in
Sample 60227, gas flow fractures, in 60894, and recrystallized
asbestos, in Sample 61525,

Close to the Unit (1) contact, (Heazlewood thrust?),
Sample 61525 contains a distorted vein of recrystallized
asbestos. The vein reaches a maximum width of 1.0 cm,
and a length of approximately 12.0 cms, tapering to each
end. It has a coarse olivine orientation perpendicular to
the vein walls, as in chrysotile asbestos cross-fibre. In
thin section,coarse,clean,granular olivine (3) crystallize
an off-centred medial partition of fine magnetite dust
(Plate 5.22), This in particular is indicative of prior
asbestos veining.

All the olivine (3) produced below the talc isograd
is assumed to have formed according to reaction (6). Early,
fast, crystallization of core olivine on crossing the isograd,
was followed by a slower development of later olivine,
presumably as the serpentine-brucite assemblage attained
equilibrium with olivine, under the prevailing P-T
conditions. The amount of relict serpentine decreases
towards the talc isograd, and even asbestos (chrysotile(?))
has recrystallized just below the isograd. Samples 60109,

60117, 61623 and 61625, all contain tremolite without talc,

overprinted as blades on the secondary olivine. This is
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taken as evidence for reaction (7), within the regenerated

unit.

Meta-serpentinite (Unit (3D))

The small area of marginal serpentinite in the west,
that lies above the talc isograd,has undergone retro-
gressive metamorphism to a talc-antigorite assemblage
consequently most of this section refers to the well
exposed eastern area of talcose, regenerated dunite. The
talc isograd appears to cross the Nickel Creek thrust, and
a distinct block of talcose rock, (Plate 3,1) appears at
the entrance to the Nickel Creek Corrie. The white to brown
weathering of the rock, and its rounded outcrop,is character-

istic of talcose rock. Some rocks retain a distinct foliation,

Samples 61597 and 61611, and this is defined by parallel
planes of distinct but weakly cored olivine (3), with inter-
vening planes of Al serpentine, (chlorite), or talc. The
trend of this foliation appears to be consistent, sub-
parallel to the batholith contact, and also to the Nickel
Creek thrust, Figure 5.2, (Plate 5,23).

In hand specimen the rock is faintly mottled, and
sandy textured. The amount of matrix is usually small,
and except where retrogression has occurred, the rock
resembles dunite. Broken rock is black inside, with fine

flakes of talc disseminated about dark coloured olivine

144




kernels, both set in a dark green Al serpentine matrix.
Tremolite, which is a common to abundant metamorphic
mineral in most rocks, such as Samples 61600 and 61607,

is rarely visible in hand specimen. Patches of tremolite,
talc and Al serpentine appear in "clots" within the rock,
very often close to, or associated with, a spinel phase.
These, in thin section, appear to represent bastites, which
have acted as centres for the development of these phases,
Otherwise tremolite needles occur, as they do throughout
Unit (3c), randomly distributed over regenerated, (but not
primary), olivine. Blades and needles, singly and in clusters,

are often broken and fractured, but again they do not appear

to be disorientated (Plate 5.24).

Talc and Al serpentine are intimately associated with
each other, and with highly irregular oxidised crystals of
ferritchromit, (Plate 5.25). Relicts of fresh red spinel(l)
are remarkably rare, small euhedral relicts were observed
in Samples 60209 and 60894.

The talc and A; serpentine associated with diffuse
and highly altered ferritchromit is poorly crystalline
and intergrown. Talc, which tends to be present in greater
amounts than in Unit (3c¢), also occurs separating discrete
olivine grains, (Plate 5.26). Retrogressive alteration of
olivine (3) to serpentine during Stage IV appears to

correlate with greater interstitial talc and Al serpentine

145




(chlorite),crystallinity, Samples 61535, 60137, 61598.
Brown birefringent laths and bundles of Al serpentine
recrystallize from the "berlin blue" birefringent, felty
matrix, Al serpentine, Such recrystallization is seen

in Samples 60202 and 61607.

Olivine (3) in Samples 60894 and 60206 appears to be
transitional, with cores formed by the lower temperature
reaction (6), and margins formed by the higher temperature,
talc producing reaction, (8). Evidence for this consists
of a pronounced inclusion ring, and crystallographic break
surrounding the olivine core, (Plate 5.27). The olivine
is typical of that found below the isograd, except for
this inclusion ring, which also marks the locus 6f a
number of crystal lattice defects, (Plate 5.28). Areas of
matrix serpentine in Sample 60894 have been converted into
talce, (Plate 5.27); as the rock contains a stable primary
spinel, and no excess Al.

Above the isograd olivines tend to be smaller, up to
1.0 mm in diameter, less strongly cored, and mutually
interfering, except around original bastites. They thus
form a mosaic of irregular polygons, (Plate 5.29). Samples
60172, 61607 and 60209, are texturally not dissimilar to
lower grade olivines in Sample 60171. The olivine, along
with the tremolite, has undergone granulation (and minor

reserpentinization), which complicates the mosaic, but does
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not induce strain in the crystal lattice.

In the extreme northeast corner of the map area,
orthopyroxene is stable within 300 m of the batholith
contact, Figure 5.10. Above the orthopyroxene (enstatite
(3)) isograd, olivine is coarser grained, up to 2.0 mm
in diameter, Sample 60215, and homogeneous. There is
little or no evidence for core formation. The polygonal
olivine mosaic has been more or less exploited by retro-
éressive serpentine, (Plate 5.30), Samples 60213, 60215,
although the coexisting enstatite seems to remain stable.
During retrogression black spinel, ferritchromit, has
partially altered to magnetite and small cubes of green
spinel (Plate 7.7 ). Al serpentine has altered to chlorite,
Samples 60213, 60215, 61603, and talc has largely been
removed.

Enstatite (3) distribution is very restricted, and
none was observed in Unit (3c¢). The enstatite occurs as
single crystals, and as clusters up to 5.0 mm in diameter.
Crystal outlines are irregular, and some crystals, although
fresh, display wavey extinction. Many crystals appear to
pseudomorph bastite, in which magnetite was deposited
parallel to what were the original lamellae, similar to
bastites in Samples 60041 and 60094, (Plate 4.2 ). The
new pyroxene thus replaces the old, (Plate 5.31), and the

bastite was not converted to Al serpentine.
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Enstatite was probably formed according to reaction (14),

Table 5.4, as described by Bowen and Tuttle (1949).

(14) Talc + olivine (3) = En(3) + H20

Possibly olivine pseudomorphs after bastite were subsequently
converted back into enstatite (3) according to the above
reaction, suggesting that regeneration near the granite
predated oxidation of the spinel.

Tremolite is found in the assemblage,much as it occurs
below the enstatite isograd, overprinted as laths and needles
on the olivine (3) matrix. There is no evidence for antho-
phyllite and hornblende formation according to reaction (13),
although reaction (14) might suggest a temperature in excess
of 600 oC at 1-2 Kbar PHZO' Bowen and Tuttle (1949).
Recrystallized talc and chlorite occur in Samples 60199
and the ex-dunite Sample 60218, although whether by a
prograde reaction, or a retrograde reaction is uncertain.

The formation of enstatite is not attributed to the
chlorite break-down reaction established by Fawcett and
Yoder (1966), reaction (15), inspite of the presence of
traces of green spinel.

(15) FeMg chlorite = olivine + enstatite + spinel.

This reaction would require a temperature in excess of
700°C, at a pressure of above 3.5 Kbars PH20' At lower
pressures cordierite should form. The unrealistic P-T

conditions, and the modal proportions of the phases make

this reaction unsuitable.




CHAPTER 6: METAMORPHIC MINERALOGY

6.1 Mineral Chemistry
Regenerated olivine Unit (3a)

The electron microprobe analyses given in Table 6.1
and illustrated in Figures 6.1,6.7, indicate the compositional
range found within this metamorphic olivine population as a
whole, and also within individual analysed samples.

The population has a variable Mgxl00/(Mg+Fe) ratio,
as defined by the forsterite content, and Mn is seen to
increase sharply with increase in Fe.

The physical core to margin zonation observed for these
olivines is reflected by a pronounced chemical zonation.
Turbid olivine cores are enriched in Fe and Mn, and the
clear outer margins are- Mg rich, with local enrichment of
Ni.

Simpkin and Smith (1970) have documented a trend
towards Mn enrichment with Fe, and Ni increase with Mg, in
"igneous olivines", Figure 6.1. & 6.2. Although olivine (1)
adheres to the trend pattern, olivine (3) evidently does
not. In particular the trend towards Mn enrichment is far
faster and greater than is anticipated in igneous olivines.
The anomalous trend is chemical support for a metamorphic
origin. In addition the zonation is from an Fe rich core

to a Mg rich margin, which is counter to most olivine
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zonation in igneous rocks, which relates to cooling of the
rock. In a metamorphic environment the reverse is true,
and prograde metamorphism is concerned with heating.

There is a strong correlation between the intensity
of the core turbidity and the degree of chemical zonation.
Sample 60157, (Plate 5.20), shows a maximum range in forsterite

content from Fo_._-Fo

g5 97’ and others such as Samples 60035,

and 60171 cover a similar range. Figure 6.3 shows the
range of forsterite content found in each analysed sample.
Most appear to straddle the mean olivine (1) compositional
value of Fo_., but a few are either depleted or enriched

91

in Fe relative to this composition. Sample 60109, (Fo.,),

94
is infact the only analysed sample that gives consistently
high values, relative to the original olivine (1) value of

Fo This sample is weakly cored, it contains recognisable

91°
magnetite dust, and thoroughly altered spinels. These
spinels have evidently taken up excess Fe and Mn, depleting
the silicate system, Table 6.9. Secondary spinels, ferrit-
chromit, analyses illustrate this point. Perhaps signif-
icantly the sample lies close to the talc isograd, as its
chemical characteristics are similar to that of the Unit (3b)
olivine population.

In contrast, Samples 60067, 60021, and 61637 appear
to be enriched in Fe, as no olivine above Fo has been

89
detected. In the case of Sample 60021, preferential
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serpentinization and alteration has probably removed all
the Mg rich end member olivine, as cores appear to be
surrounded by a pronounced serpentine reaction halo.
Metamorphism perhaps did not go so far, and produce so
much Mg rich olivine, or that produced has been removed.
Table 6.1, Samples 60021 and 61577 are similar in their
olivine chemistry, only in the latter, remnants of Mg rich
olivine remain.

This argument cannot apply to Samples 60067 and 61637.
Sample 61637 consists of a large area of olivine (3) in the
form of a complete polygonal mosaic., Some has been retro-
gressively altered to serpentine, (antigorite), but the
texture of the rock, (Plate 6.1 ), suggests a large area of
homogeneous Fe and Mn enriched olivine. There is no core
formation, and the mosaic has a very strong foliation
across it. This fabric, and the close proximity to a major
lithologic contact, suggests recrystallization of a
schistose serpentinite,depleted in Mg relative to Fe and
Mn. Similarly Sample 60867, a serpentinite breccia,
contains mosaic fragments similar to those in Sample 61637.
These areas of Fe and Mn olivine mosaic are set in
serpentine within which a second generation of olivine (3),
the marginal Mg rich variety, is nucleating. Presumably
serpentine depleted in Mg formed early Fe Mn rich olivine,

which got caught up in a breccia of less Mg depleted
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serpentine., This later nucleated Mg rich olivine. This
suggests a strong correlation between composition, time,
and temperature.

Similarly,in Sample 60067, a relatively homogeneous
mosaic of Fe Mn enriched olivine was formed throughout
the rock. 1In this case the original sample was uynquestion-
ably harzburgite. The absence of Mg again correlates with
an area of tectonic activity, below the Heazlewood thrust.
Removal of Mg, presumably as brucite or carbonate, is
favoured over enrichment of Fe and Mn, as both retain a
similar level to that reached in "normal" cored olivine .
Similarly the retention of bastite outlines in Sample
60067 argues against mobility of appreciable Si.

As noted, bastite pseudomorphs in Unit (1) show partial
alteration to olivine (3). In Sample 60153, this leads to
the formation of markedly Fe enriched olivines, Table 6.2.
The composition is slightly anomalous, even for Mn enriched
olivines, as the Mn:Fe ratio is wrong, Figure 6.1. Being
set in relatively unaltered peridotite, Mg was probably
able to deplete, without the opportunity for Mn to enrich.

Core to margin zonation in Sample 60157 appears to be
representative, and the evidence suggests simple alteration
of composition with time. ©No oscillations or composition
breaks were detected in the samples analysed, although

granulation and reserpentinization has upset the spatial
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Figure 6.5 MnO variation with olivine (3) forsterite
content., MnO depletion, from "core" to
"margin", is shown for a number of zoned
metamorphic olivines located in Unit (32).
Analytical data is shown in Table 6.1,
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(3b) have been
differentiated, and weakly or non zoned olivines
are shown as closed circles,

160



20r Mn0 Wt%

1.8}
1.61
A
1.2}
\

0-8

-

06}

OQL -

0-2}

A

0+0 A A A L N A A .
85 86 87 88 89 90 91 92 93 94 95 96 97

FORSTERITE

Figure 6.7 MnO vari=tion with olivine (3) forsterite
content. Composite di=agram, taken from
Figures 6.4, 6.5, 6.6. The figure illustrates
the wide range in olivine (3) "core" composition,
and the restricted range in "marginal" olivine
composition.




relationships, and makes this difficult to prove.

In Figure 6.4 the MnO percentage is plotted against
forsterite content. It is apparent that Sample 60157 has
a uniform Mn depletion gradient, and that turbid cores
have a high MnO content. The semi-turbid core region

extends from Fo - Fo

90 93’ and passes from the region of

Mn enrichment into the region of Mn depletion, based on an
average olivine (1) MnO value of 0.13 % MnO. At values
of Fo96 and above, Mn is effectively absent. This simple
relationship is found in other analysed samples, Figures
6.4 to 6.6. The data shows that within any given sample
the gradient gives a remarkably even slope, but that the
depletion gradient is variable from sample to sample.
Figure 6.7 shows the various depletion gradients plotted
together. It is apparent that high values of MnO

correlate with a variable forsterite content, and in two

Sample 60157, and Fo__,

extremes, 1l.0% MnO occurs in Fo 93

87’
Sample 60133. In each case the final, marginal type,olivine
falls within a relatively restricted compositional field,
and the important variable is not the amount of MnO in the
system, but the amount of Fe, as reflected in the forsterite
content. The initial core composition must depend on the
bulk rock composition, at the time of initiation of reaction

(6), and the oxygen fugacity, temperature and pressure will

influence the trend thereafter, to marginal type olivine.
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Removal of Fe through substitution in the ferritchromit
lattice will influence the gradient, and cause a steepening
of the slope. Significantly Samples 60133 and 60206, which
lie close to the talc isograd, both have steep slopes. The
important factors therefore, are initial availability of
Fe, and the degree of oxidation.

Ni is not found in the Mn rich olivine core, but it
does occur in variable amounts in the outer margin. Sample
60157, in particular, contains up to 0.67% NiO. Similarly
marginal olivine in Sample 61632 contains 0.57% NiO. In
spite of substantial Mg enrichment some samples contain
no Ni in their outer marginal olivine, as in Samples 60867,
61635. Those that do contain traces, Samples 60035, 60171,
60102, contain little more than is found in olivine (1).
There is little evidence for Ni concentration. The dis-
tribution of Ni-sulphide in Figure 6.8 shows that it tends
to be concentrated in Unit (3a), and there is a strong
negative correlation between availability of sulphur, and
concentration of Ni in olivine margins. Sample 60157,
and Sample 61632 contain no significant sulphide, whereas
Sample 60867 is considerably enriched in sulphide. This
suggests that Ni is not easily reincorporated into the
olivine structure, and that it has a stronger affinity for

sulphur, where present.
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Figures 6.9(a) and (b) show point sections across one,
single, cored crystal of olivine (3), from Sample 60894.
Although above the talc isograd, this sample has close
affinities with those below, (Plate 5.27). The sections
show the marked depletion of Ni in the inner core region
of the olivine, and its early enrichment during the first
stage of marginal olivine development. The same crystal
shows a gradual but progressive Mn enrichment from margin
to core, much as discussed earlier.

Metamorphic olivine analyses, given by Frost (1973), fall

within the forsterite range Fo_, -Fo with most around

20 94’

Fo They indicate a variable, but significant trace of

91°
Ni, up to 0.47% NiO, and a generally low MnO content, up

to 0.18% MnO. One exception however, contains 0.95% MnO
at F094.9.

Springer (1974) indicates a forsterite range of F°89-97’
based on partial analyses of metamorphic olivines from the

aureole of the Pine Hill intrusive. He also records MnO

values of up to 0.3%.

Regenerated olivine (Unit (3Db))

Above the talc isograd regenerated olivine is either
Fo90 or above. The core to margin zonation is less evident
physically, and also chemically. Samples close to the talc

isograd do show some Mg enrichment, from Fo_,-Fo in

927 %95
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Samples 60206 and 60209. The amount of Mn enrichment

is very small, and the distribution is far less regular,
Table 6.3. The amount of Ni present in the rock is
however significant, although again scattered. In neither
case is sulphide present, and there is no evidence for

Ni loss. Figure 6.10 shows a NiO histogram for Unit (3b)
olivines, compared with Unit (3a) zoned olivines. Figure
6.11 shows a comparable MnO plot.

There appears to be a tendency for these olivines to
attain a uniform composition, and a maximum value of Fo95
is found north of Nickel Creek, in Samples 60213, 61598,
and 60137. This value is similar to that found in the
outer margin of zoned Unit (3a) olivines, and the bulk
of the talc isograd olivines would plot close to the
cluster point on an MnO v Fo plot.

There would appear to be a trend towards Mg enrichment
along the northeast contact of the body, and straight
temperature control is unlikely. Once again the avail-
ability of Fe is crucial, and some Fe has to be removed
to attain these values. Thus the Fo content correlates
with degree of spinel oxidation, and modal percent ferrit-
chromit. This feature is borne out in the succeeding
sections, where it is shown that not only Fe, but Mn and

Ni are also absorbed as divalent cations into the ferrit-

chromit structure.
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In contrast, regenerated olivine pseudomorphing
bastite in Unit (3c), Samples 60174 and 60186,is not
dissimilar to primary host olivine. They are approximately

Fo__-Fo

9 91" Table 6.2, although they tend to be depleted in

Ni, reflecting the initial host pyroxene chemistry. This
is unlike the neighbouring olivine (1). Pseudomorphs in
Samples 60179 and 60180 are from within regenerated dunite,
and as such they are similar to "normal" regenerated
material in those samples.

Oxidation of spinel above the talc isograd has
evidently altered the Fe, Mg, Ni, Mn, distribution pattern,

and consequently compositions are slightly erratic.

Enstatite (3)

Metamorphic enstatite analyses, Table 6.4, show that
the regenerated phase is significantly different from the
primary enstatite (1) phase,in terms of composition. The

Cr_ O FeO and

metamorphic mineral is depleted in A1203, 203

Ca0, and it is enriched in MgO and SiO The two popul-

¢
ations are distinct, and a metamorphic origin is indicated
by chemistry as well as texture.

The two analysed samples, Sample 60213 and 61603,
give Mgxl00/ (Mg+Fe) ratios slightly above the coexisting

olivine value, Figure 6.12. Ideal 1l:1 partitioning of

Fe and Mg was nearly attained, and a near equilibrium

environment was probably reached.
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Frost (1973) also gives metamorphic enstatite analyses,
and these are plotted on Figure 6.12. They too have
attained near equilibrium conditions with coexisting olivine,
but they have recrystallized with a near primary Mgx100/ (Mg+Fe)
ratio. There does no£ appear to have been the same removal
of Fe from the silicate system. Similarly partial analyses
by Springer (1974) indicate an enstatite range of En89_94.
Figure 6.12. The primary enstatite composition is unknown.
Springer also records a very low CaO content, and an A1203

value of 1.6%. This compares with an average Blue River

value of 1.46% A1203.

Serpentine (Unit (3a))

Metamorphism of a serpentine-~brucite assemblage has
produced zoned olivine porphyroblasts within a modified
serpentine matrix. This foliated matrix serpentine is
presumably stable at the level of metamorphism which
produces "marginal" olivine (3).

Retrogressive serpentinization has in many cases
altered the porphyroblast olivine to a serpentine-brucite
assemblage, but the two serpentines are texturally quite
distinct. It is not known whether the chemistry of the
matrix serpentine was altered during Stage IV, but
crystallographically it has remained unaltered.

Matrix serpentine analyses, from Samples 60021, 60035,

60102 and 61632, are given in Table 6.5. An average value
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along with data for other serpentine types, is given in
Table 6.6. This Table includes an analysis of chrysotile
cross-fibre asbestos from the Cassiar Asbestos Mine. This
closely resembles matrix serpentine from Samples 60021 and
60102. Both are very reduced in FeO, and have approximately

equal parts SiO, and MgO. Samples 60035 and 61632 contain

2

significant traces of A1203 and Cr203. These are
incompatable elements in the olivine structure, and they
would be expected to concentrate in the serpentine. The
amount of oxidation of the spinel is important in this
regard, as is the amount of regeneration. Presumably with
modal decrease in serpentine, the rncompatable elements
will concentrate in the lattice.

Above the antigorite isograd, it is difficult to
differentiate between recrystallized matrix serpentine,
(above), and antigorite derived from olivine. In a few
samples it is possible. Samples 61623, 61625, 60206, and
61635(?) contain "antigorite" largely formed at the expense
of matrix serpentine, as indicated by rock textures. These
analyses are presented in Table 6.7. These "antigorites"

contain appreciable Al O3 and Cr_O_ in solid solution,

23

and Sample 61525 contains over 4.0% A1203.

2
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Al serpentine and chlorite Unit (3b), Unit (3c)

Above the talc isograd Al serpentine and coarsely
crystalline chlorite show no sign of conversion to anti-
gorite, and they very often coexist with a 'pure' serpentine
derived from Stage IV olivine serpentinization.

Al serpentine and chlorite analyses, Table 6.8,
indicate a variable Al_O_ content between 10.0% Al_O

’ 23 23

in Sample 60133, and 18.0% A1203 in Sample 61603 The

A1203 content thus increases towards the granite, in both
core and marginal units, and it can be contoured crudely
parallel to the batholith contact, Figure 6.13. The values
thus appear to be related to temperature.

The Al content is divided between tetrahedral and
octahedral sites, and the following substitution trend

appears to be operative.

V.
a1tV ai"t - siMg

Al has been allocated to both octahedral and tetrahedral
sites,in the following manner. Assuming a correct Si value,
and no additional tetrahedral components, AlIV is assigned
to the site to complete site occupancy. Excess Al is
assigned as AlVI to the octahedral site. The sum of the
trivalent cations in octahedral coordination should equal
the amount of Al in tetrahedral coordination, in order to

+
balance the charges. The amount of Fe3 is unfortunately
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Figure 6.13 Plot of the distribution of the average A1203
content in Al serpentine and chlorite.
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unknown, but there is a close correspondence between the
total amount of cations in the two lattice sites, Figure
6.14.

The Al serpentine compositional range falls between

the two following end points:
MgllAl( [Sl7Al] 020)(OH)16
Mg, AL, ([ Si_Al] o0, ) (OH),

The poorly crystalline Al serpentines appear tc be
penninite, Deer, Howie, gnd Zussman (1962), although most
of the recrystallized chlorites appear to be clinochlore,
with a slightly higher Al content. Also plotted.in Figure
6.14 are the matrix Al serpentines from below the isograd,
chlorites from the Twin Sisters body. Onyeagochi (1974); and
a suite of analyses from Frost (1973). The latter are
"chlorites" from the Ingalls Ultramafic Complex in Washington,
and are taken from a similar contact meta-peridotite. Frost
also noted an increase in AlIV towards the contact, and he
considered that the chlorite structure broke down to form

spinel, forsterite and enstatite, at the following composition.

Moy 6Pla.4 ( [515 6Bly 4 1050) (OH)yg

This level of substitution was not attained at the contact

of the Cassiar Batholith, and there is no evidence for this

break down reaction.
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Velde (1973) has shown that Al serpentine is stable
over a wide compositional range in the serpentine-amesite
system, below 450°C. Below this temperature all the
analysed samples could exist with the 7 R serpentine
structure.

Experimental work in the system MgO-A1203-Si02—H20
suggests that two fields exist above this temperature, one
with a serpentine structure, and impure serpentine composition,
and the other with a chlorite 14 R structure, and an Al rich
composition. The compositional break at the level of the
talc isograd supports this, although conversion to the
chlorite structure appears to be sluggish above the isograd.
X-ray diffraction data indicates that many samples retain
their serpentine structure, until either the higher temper-
ature/Al content regime, near the contact, or the addition
of a new serpentine phase aids recrystallization.

If data from the coexisting pairs in Samples 60184,
61598, and 61603, Figure 6.15, gives the minimum Al content
allowable in the 14 R structure, at a given temperature,
then Sample 60184 suggests 450°C, and 61603 suggests a
contact temperature of 550°C, by extrapolation of Velde's
solubility data, Figure 6.16. This a;sumes no change in
the A1203 content on reserpentinization. In effect the

solubility gap increases with grade, and the olivine -

"chlorite" - talc field, Figure 6.15, increases in size.
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alteration trend is thus towards magnetite sensu stricto.

The spinel structure stgrts out "normal", with 8R2 cations
in four fold coordination, and 16R3 cations in six fold
coordination, and it finishes with the "inverse" spinel
structure of magnetite. This has 8R3 and 8R2 in four-fold
cordination, and 8R3 in six-fold cordination. The
alteration process thus involves structural change as well
as chemical alteration.

The trivalent cation plot, Figure 6.19, shows that Al
is readily replaced by Fe3, and that little Al is retained
in the spinel structure. This substitution is fundamental
to the metamorphic development of the inner aureole, as Al
is released into the silicate system, and Fe is removed from
it.

Primary spinel (1) has a variable Al content, ranging
from 20% of the trivalent cation content in dunite to 70%
in some peridotites. This variation has been shown to
influence the stability of the spinel, and a few relict
chrome rich spinels, as in Samples 60209 and 60196, have
remained relatively unaltered. These samples contain
coexisting primary spinels and ferritchromites, and
Figure 6.21 shows the essentially simple cation for cation
substitution which occurs. Similarly Sample 61633 illustrates

3

. 3
the simple replacement of A1 by Fe . If a constant Cr3

content is retained in the structure, some dunites might be
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Figure 6.21 A trivalent cAtion plot. showing tielines
between primary spinel (1), and coexisting
ferritchromit, and/or magnetite.
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lexpected to have lower contents of Fe3. The fact that
they do not, either indicates predominantly harzburgite
derived spinel, or else minor replacement of Cr3 by Fe3.
Although both factors may apply, and many are undoubtedly
peridotite derived spinels, other samples give evidence
for loss of Cr3, e.g. Sample 60185, Figure 6.21.

The concentration of ferritchromit analyses with
just in excess of 50% Fe in the trivalent state suggests
an intermediate composition between that of spinel, and

of magnetite, in the following manner.

2 3 3 n [1] >
1) R 8 (Al 8Cr 8)O32 normal" spinel(l)
2) R2 (Fe3 Cr3 )O "normal" ferritchromit
8 8 8" 32
3 3 2 . \
3) Fe " _(Fe _Fe _)O "inverse" magnetite

8 8 8" "32
Sample 60209 contains both primary and ferritchromit

oxidized spinels, these illustrate the above "normal"

varieties.
2 3 3 3
la)R 8(Al 7.2Cr 7.6Fe 1.0)032' (60209B1)
2 3 3 3
2b)E38(A1 O-2Cr 7.lFe 8.4)032' (60209A3)

The distribution of samples containing this intermediate
spinel is shown in Figure 6.22. It is perhaps significant
that they define a band crudely parallel to the talc
isograd. Samples 60209, 60206, 60137, 61525, 61552 and
60186 in particular contain a limited range of ferrit-

chromit composition, equivalent to the cluster on
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Figure 6.19. This is further brought out in Figure 6.23
where the Cr3:Fe3 contents of these spinels are compared
with the more highly altered population defined by Samples
61598, 61600, 61603 and 61607. These lie closer to the
batholith contact, and they, and in particular Sample
61600, illustrate the simple Fe3 for Cr3 replacement which
occurs. Magnetite is invariably Cr3 enriched in this group.
Below the talc isograd there appears to be a similar
gradient away from the above ferritchromit composition,
as found in Samples 61635, and 60867, but commonly samples
coexist with relatively pure magnetite, Samples 60907,
61633, 61635, 61637. Ultimately away from the contact,
samples such as 60153, 60102, and 61637 contain primary
spinel (1) with magnetite, and no intermediate phase,
Figure 6.22.
Textural and chemical data suggests the following:
1) coexisting spinel (1) and magnetite during bastite

regeneration (Samples 60153, 60874).

2) partial "oxidation" to ferritchromit margin (Sample
60196) .
3) complete alteration at the talc isograd. (Samples

60206, 60209, 61625).
4) conversion of ferritchromit to Cr3 magnetite with

grade increase (Samples 61600, 61598).
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. . 3 .
5) partial alteration to Cr magnetite, and also pure
magnetite generation during retrogressive serpen-

tinization (Samples 61635, 60907).

Alteration in the trivalent cation site is accompanied
by similar Fe2 enrichment in the divalent cation component,
Figure 6.20., The ferritchromit cluster, with an Fe3x100/
(Fe3+Al3+Cr3) value of around 57, appears to have an Mgxl00/
(Mg+Fe2) ratio between 10 and 30. Subsequent alteration
reduces the ratio, and the composition of magnetite should
be attained. In fact the ratio in any given sample appears
to be variable, and no convincing Mg: Fe substitution trends
can be established within a given sample. One reason for
this may be the additional and variable content of Mn and
Ni taken into the spinel structure. Table 6., and Figures
6.24 and 6.25, show that Mn and Ni both increase with degree
of oxidation, or Fe203 content. The scatter in both cases
is broad, but Mn and Ni appear to differ in one respect.

Mn is enriched during early alteration to ferritchromit,
as in Samples 60206 and 60209, and it reaches a maximum
of around 1.0% MnO. It then depletes rapidly, and late
magnetites contain only traces. The distribution in
Samples 61600, 61635 and 61625 and others, Figure 6.24,
illustrates this point. Mn presumably substitutes for Fe2
in the spinel structure during early regeneration, as it

does in olivine.
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Figure 6.24 MnC variation with Fe,05 content. Primary
spinels are given as closed circles, and

oxidized ferritchromit and magnetite (spinel
(3)) are represented by crosses.
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In contrast, Ni enrichment in ferritchromit, Table
6.9, Figure 6.25, is continuous, and there is only a slight
suggestion that Ni, as NiO, declines with increase in Fe203.
The points are scattered and only a general trend can be
inferred from the data. It would seem that Ni is held in
the matrix longer than Mn, and that it partitions between
late olivine (3) and spinel (3). There is no free sulphide
above the talc isograd, Figure 6.8, and Ni does not appear
to be removed as a sulphide phase, it rmains within the
olivine and spinel structures.

A significant feature of the spinel alteration process
is that it removes Fe from the silicate system. The modal
proportion of spinel in the rock is therefore important in
governing the olivine composition, as is the overall rock

Fe content. High Fe and reduced spinel might account for

the olivine Fe content in Sample 61600.

Amphiboles

The chemical analyses given in Table 6.10 show that
two amphibole varieties are found in the inner aureole of
the batholith. They both appear to be a stable product of
prograde metamorphism. The most common phase is tremolite,
as shown by the analyses. The tremolite composition is
fairly pure, and the Mgxl100/ (Mg+Fe) ratio is high. Figure
6.26 shows that there is a slight trend towards Mg enrich-

ment within regenerated rocks. Samples 60184 and 60185
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Figure 6.26 0livine forsterite content plotted against
the Mg/Mg+Fe ratio in amphibole. The symbols
are as shown in Figure 6.18. Additional data
from Frost (1973) are also plotted.
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are lower in their Mgxl00/(Mg+Fe) ratio, but Sample 61612,
which contains slightly more forsteritic olivine than is
usual, has a relatively high ratio in its tremolite.
Regenerated rocks in Unit (3b) are found to contain
Mg rich silicates, and with £he exception of Sample 60213
this holds true for the analysed tremolites, Figure 6.26.
The reason for the anomalous Fe content in Sample 60213
is uncertain, it may relate to the addition of a new phase,
enstatite, which is not Efound in any of the other analysed
tremolite bearing rocks.
There is no apparent enrichment in trace elements,
unlike the situation for olivine (3), and the analyses
are largely free of Mn, Ni, and Ti. The only real
variable is Al, which ranges from 0.12% to 2.18%. The Al
is largely in the tetrahedral site, as AlIV.
Six similar tremolite analyses from the thermally
metamorphosed Ingalls Ultramafic Complex, are also
shown in Figure 6.26. These give a similar trend towards
Mg enrichment, and similar overall values, Frost (1973).
The two analyses from Sample 60196 indicate that the
rock contains anthophyllite. These give an average Mgx100/
(Mg+Fe) ratio of 89.62, slightly lower than the coexisting

average olivine (1) value of Fo Also plotted are

90.68"
three comperable analyses from Frost (1973).




Talc

The talc analyses in Table 6.1l1 indicate a fairly
consistent talc composition. The amount of Fe in the
structure is small, and the analyses indicate a Mgxl100/
(Mg+Fe) ratio of 98. This value appears to be independent
of coexisting olivine composition. The talc structure
appears to contain a trace of Al, presumably in the
tetrahedral site. The amount is generally small. Talc
also contains a significant trace of Ni in octahedral
coordination. The overall totals are low, but distribution
between the two lattice sites is reasonable. Again the
composition is very similar to that observed by Frost
(1973) in a similar thermal environment. Talc MgxlOO/Mg+Fe
ratio is plotted against coexisting olivine forsterite

content in Figure 6.27.

6.2 Discussion

The outer aureole contains a stable olivine (3) -
serpentine assemblage. This, in the absence of talc, is
a strong indication of regeneration according to reaction
(6). This reaction requires the presence of brucite in
the original Stage II serpentinite, although this is
difficult to prove directly.

Page (1967) records brucite within the Burro
Mountain body in California. He shows that the brucites

are Fe enriched, and that they contain between 18 and 32
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mol percent Fe(OH)2 in solid solution. They apparently
display a uniform spatial distrikution, with Fe rich
brucites favouring low density marginal serpentinites.

If this relationship is general, the Blue River Stage II
brucite might also be expected to contain appreciable Fe.
Whether Mn similarly concentrates in the brucite structure
is not confirmed, but analyses quoted by Deer, Howie and
Zussman (1962) indicate that it does. They record 0.38%
MnO in brucite from serpentinite.

Ball and Taylor (1961) have shown that the brucite
breakdown reaction to periclase can be considered in terms
of cation migration, and a relatively constant number of
oxygen atoms per unit volume. By their model, the original
structure breaks down into "donor" and "acceptor" regions.
"Donor" regions release water, and the cations migrate to
"acceptor" regions, which only loose protons. This model
is thought to account for lattice simularities between
the phases, and the change from hexagonal close packing
to cubic close packing within the lattice. They also note
initial dehydration at 400°C, a somewhat lower temperature
than recorded by Fyfe (1958), at around 550°C.

Ball and Taylor (1963) continue their argument for
inhomogeneous dehydration, and the setting up of "donor"
and "acceptor" regions, in a study of serpentine dehyd-

ration. They use a similar model to explain the topotactical
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relationships between olivine pseudomorphs after a
serpentine host. This model was adapted by Brindley and
Hayami (1965), in order to account for the late occurrence
of prograde enstatite, and the apparant requirement of
excess Si. Their process is summarised in Figure 6.28
from Brindley and Hayami. This indicates that the

following reaction occurs in a brucite free system.

(3MgO.ZSi02) = 1.5(2MgO.Si02) + O.S(SiOz)
Anhydrous Forsterite Silica
Serpentine 87.5% 12.5%

Eight unit cells of serpentine become nine unit cells
of olivine. 1In so doing, "donor" regions release water, and
donate (6Mg+l1Si) to the "acceptor" region, in exchange
for 16 protons. The "donor" region is left with an excess
of Si. In a brucite bearing gock,which contains similarly
mobile cations, the serpentine "donor" region might well
become a brucite "acceptor" region, and form olivine by
the following reaction.

. . +
= +
2Mg(0H)2 + 5102 Mg25104 H2

In reality, once nucleation has occurred Fe and Mn display
greater cation mobility than Mg, and they concentrate
preferentially in both "acceptor" and "donor" sites,
leaving a Mg Ni enriched serpentine-brucite assemblage.

The temperature at which serpentinization occurred
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is unknown, and although several estimates for reaction (6)
have been made, the point is still open to debate. Similarly
the regeneration temperature is open to question. Early
experimental work in the system MgO-SiOZ—HZO indicates a
temperéture of around 365°C at 1 Kbar, Bowen and Tuttle
(1949). Kitahara and Kennedy (1967) indicate a similar
temperature.

Fe substitution in the olivine (1) structure is
thought, by Page (1967), to considerably lower the reaction
temperature, his thermodynamic data on brucite, (albeit at
1 atmosphere), indicates the Fe content strongly influences
the stability of brucite. Further indications of low
temperature serpentinization are given by a study on the
oxygen isotope fractionation between serpentine and
magnetite, Wemer and Taylor (1971). They suggest form-
ation of 1lizardite-chrysotile assemblages at between
85°c and 185°c.

Scarfe and Wyllie (1967) also indicate a significantly
lowered reaction temperature in an Fe buffered system,

They suggest a temperature of around 320°C at 1 Kbar,
comparable to serpentinite weakening temperatures recorded
by Raleigh and Paterson (1965) for brucite serpentinite
transformation from a ductile to a brittle state.

In addition Johannes (1968) indicates a lowering of

the pure Mg brucite-serpentine reaction temperature and
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this is considered to represent a more realistic maximum,
as it was established using minerals rather than oxides.
The difference between the Scarfe and Wyllie, and
Johannes plots, Figure 6.29, presumably represents all
or part of the serpentine-brucite-olivine (3) stability
range, and progressive metamorphism presumably alters the
phase compositions, as illustrated in Figure 6.30. The
matrix becoming progressively enriched in Mg and Ni, and
the olivine (3) initially concentrated in Mn and Fe at low
temperature, and depleted with T increase. Matrix

serpentine remains in any of three situations.

1) Brucite depleted in the rock (Samples 61637,
60067)

2) Insufficient temperature to complete reaction
(Samples 60055, 60021)

3) Al substitution blocks serpentine structure.
(samples 61625, 60171)

The serpentinization process produces magnetite,
and following Hostetler et al (1966), peridotite probably

reacted according to the following variant of reaction (6).

(6a) 9(Mg 3

81205(OH)4 +

i0 ,+ 10_+12.
)28104 (Mgo. Feo.os)SlO 12 595H20 +

0.9257%0.08 92

0.0885 0, = 5(Mg, g.Fe ).

2'595(Mg0.85Fe0.15)(0H)2 + 0.177Fe304 + 0.874 MgO.
Textural evidence suggests that the magnetite is not

reabsorbed into the olivine structure, and the rock should

start out with an excess of Mg. In reality the availability
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of oxygen is crucial to regeneration, as noted, the MnO
content is a variable independent of olivine (3) forsterite
content. The oxidation of spinel, and removal of Fe has
established a series of depletion gradients. Possibly,
below the talc isograd, Mn is a function of temperature
and pressure, and Fe has a variable response to f02.

Above the talc isograd both Fe and Mn partition
in favour of ferritchromit, possibly during initial
heating at a relatively high foz. The rock presumably
still contained a brucite component, and the body probably
passed through the reaction field of reaction (6) to that
of reaction (8). The relative importance of each is not
known, although weak cores, and overgrowths in Sample 60894
indicate some influence of reaction (6). The reaction (8)
temperature is as problematical as that of reaction (6).
Bowen and Tuttle (1949) suggest 500°C, although Scarfe and
Wyllie (1967) suggest a lower value of 450°C at 1 Kbar.
The first is based on 'pure' Mg rich materials, and the
second is conducted in an Fe buffered system. King et al.
(1967) use thermodynamic data to create a theoretical
reaction curve similar to that described by Scarfe and
Wyllie (1967), Figure 6.29.

The experimental work of Velde (1974), into the
stability of 7 R ana 14 8 "chlorites" is in good agreement

with the above estimate for the talc isograd. After a
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compositional break at the level of the isograd, the
"chlorite" compositional range decreases towards the
contact.

Increased oxygen activity above the isograd has, as
noted, fundamentally influenced the mineralogy, and the
following variants appear to have occurred, in addition

to reactions (6) and (8).

(6b) Serpentine + brucite = olivine (3) + FeO +H20

(9a) spinel (1) + serpentine + FeO = Ferritchromit +
- ° Al serpentine + SiO2 + MgO

5 + MgO + H20 = tremolite

(11a)talc + olivine (3) = enstatite (3) + H20

(10a)Diopside + SiO

These reactions take place in Unit (3b), but similar

reactions occur within Unit (3c).

(9b) spinel (1) + serpentine = ferritchromit + Al
serpentine + MgO + SiO2

Spinel oxidation is not dependent on the olivine
producing reaction, and ferritchromit can form by modal
reduction or release of Mg and Al. The formation of
Al serpentine and tremolite occurs as before, but antho-
phyllite is formed in Sample 60196, not enstatite.

A survey of the relevant literature shows that there
are only a few well documented occurrences of metamorphic

olivine, and most of these are from a thermal environment.

A number of studies in the last few years have contributed
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to the understanding of the regeneration process, both

in thermal metamorphism, Springer (1971, 1974), Frost (1973),
Trommsdor ff and Evans (1972), and in regional metamorphism,
Evans and Trommsdorff (1970).

Bowen and Tuttle (1949) use the observations of
MacDonald, that olivine 'kernels' are found in the aureole
of the Sierra Nevada batholith, as evidence to support
low temperature olivine regeneration.

Seki (1951) describes progressive metamorphism of
the Miyamori ultrabasic body, Japan, in the aureole of a
granodiorite batholith. He records metamorphism 4 km
from the batholith contact, and suggests the simultaneous
formation of zones 1, 2 and 3, Table 6.12. He considers
antigorite to be retrogressive, analogous to the Blue
River situation. Zone 2 is similar to the Blue River
inner aureole. The enstatite-green spinel assemblage
is interesting in view of the experimental work discussed,
and the apparently retrogressive spinel f;und in this
study. Seki compares the chemistry of fresh "diallagite"
(clinopyroxenite?), with a tremolite-antigorite replacement,
and concludes that FeO, Fe203, K20 + Na20, A1203, and TiO2
are depleted during contact metamorphism. This presupposes
no loss during serpentinization.

Yamaguchi (1964) describes the regeneration of

serpentinite to 'dunite' in the aureole of a granite
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1)

2)

3)

4)

TABLE 6.12
Seki (1951)

Miyamori ultrabasic body (Japan)

Olivine-enstatite-(Al?) green spinel-
cummingtonite-talc-tremolite

Olivine-tremolite-anthophyllite-talc-
chlorite

Olivine-tremolite-antigorite

Antigorite.



intrusive and ring dyke complex at Obira Mine, in Kyushu,
Japan. He describes and illustrates olivine veinlets and
porphyroblasts, his descriptions fit the Blue River outer
aureole occurrence very well., His mineral assemblages,
Table 6.13, suggest regeneration by reaction (6), in a
non-oxidising environment.

Yamaguchi also describes massive dunites from the
crystalline schists of Higashi-Akaishi, Shikoku, Japan.
These apparently contain two olivine types, one "clear",
and one "turbid". The "clear" olivine contains up to
0.78% Ca0, Yamaguchi (1964), in contrast to a maximum
recorded "turbid" olivine value of 0.35% Ca0O. The
description clearly fits that of a zoned olivine as
discussed in this study. Granulation may have destroyed
the core to margin relationship. CaO was not concentrated
in the Blue River olivine, core or margin, possibly as
Ca0 was either removed as tremoiite, or else migrated into
'rodingite' during Stage II. Simpkin and Smith (1970)
correlate high CaO content with a low pressure environment.
Whether this holds for metamorphic olivines is not known.

Springer (1971) discusses the contact metamorphism
of ultramafic rock within the aureole of the layered mafic,
(olivine gabbro), Pine Hill instusive complex, in the foothills
of the Sierra Nevada. An aureole which extends for up to

6000 m from the contact gives the metamorphic assemblages
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1)
2)

3)

TABLE 6.13
Yamaguchi (1964)

Obira Mine, Oita (Japan)

Olivine

Serpentine-tremolite-olivine

Serpentine




shown in Table 6.14. Springer estimates a contact
temperature of 770o : 25°C at above 1.5 Kbar, based on
experimental work. His assemblages correlate well with
those of Seki (1951). An inner green (Al rich) spinel-
enstatite assemblage passes outward into an assemblage
containing anthophyllite, and this passes into a talc-
chlorite-tremolite zone. Springer notes FeCr spinel,
which presumably means oxidation in the aureole, as
described in this study. This was not recorded by Seki,
but it may have been present. The presence of chlorite

in the outer zone suggests "inner aureole" conditions
throughout, in comparison with the Blue River body. Textural
evidence suggests that the green Al rich spinels described
by Springer, are identical to those found in the Blue
River body, and a similar origin is inferred.

Frost (1973) describes regeneration of a serpentinized
peridotite in the aureole of the Mount Stuart batholith in
the Central Cascades of Washington. The aureole apparently
extends for 2 km, and it contains assemblages, Table 6.15,
compatable with both inner and outer aureoles. Zones 5 and
6, correlate with the outer aureole of the Blue River body,
and Zones 1-4 with the inner aureole. The contact temperature
is taken to be 730°C at 3 Kbars, based largely on the

chlorite breakdown reaction to produce Al rich spinel and

enstatite.
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TABLE 6.14
Springer (1974)
Pine Hill Intrusive Complex (U.S.A.)

1) Olivine-enstatite-~Al spinel-hornblende-

FeCr spinel

2) Olivine-anthophyllite-chlorite-tremolite

FeCr spinel

3) Olivine-talc-chlorite-tremolite-

FeCr spinel

4) Olivine-antigorite-chlorite-tremolite-

FeCr spinel




TABLE 6.15
Frost (1973)

Ingalls ultramafic body (U.S.A.)

1) Olivine-enstatite-spinel.

2) Olivine-enstatite-chlorite

3) Olivine-enstatite-anthophyllite
4) Olivine-talc

5) Olivine-serpentine-tremolite

6) Olivine-serpentine-diopside




Trommsdor £f and Evans (1972) describe progressive
thermal metamorphism of antigorite schist in the aureole
of the Bergell tonalite in Italy. They record the assemb-
lages shown in Table 6.16, and they establish similar
isograds to those observed in the Blue River body. There
is however, one important difference between the two. The
Malenco serpentinite had already undergone "alpine"
regional metamorphism to an antigorite-olivine-diopside
body prior to thermal metamorphism, Peters (1968).
Trommsdor £ff and Evans state that antigorite-brucite is a
stable pair prior to the formation of olivine, and as such,
the following reactions are metastable relative to a

slightly higher temperature "polymorph".

(6c) Chysotile + brucite = 2 forsterite + 3H20
(7b) 5 chrysotile + 2 diopside = 6 forsterite + tremolite
+
9H20

(8b) 5chrysotile = 6 forsterite + talc + 9H20
Metastable or not, the above reactions do have application
in natural situations, and on the basis of the present
study, oxidation, and thus Al availability appears to be
a stabilizing influence on antigorite.

Another occurrence of metamorphic olivine is recorded

by Oliver and Nesbitt (1972) from altered ultramafic rock

in the Western Australian greenstone belt south, of Kalgoorlie.
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1)

2)

3)

4)

TABLE 6.16
Trommsdorff and Evans (1972)

Malenco serpentinite (Italy)

Anthophyllite-olivine-tremolite

Talc-olivine-tremolite

Antigorite-olivine-tremolite

Antirgorite-olivine-diopside
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Olivine "megacrysts" up to 2 cms in diameter give a spotted
appearance to the rock. They record relict "spinifex"
guench textures preserved in regenerated olivine, which
suggests a constant volume replacement. They also note

the conversion of chlorite to olivine, with further
generation of chlorite, a feature which may account for

the progressive concentration of Al in serpentine in the
system pertaining to the Blue River. They also record

a variable, but low forsterite content, which they

correlate with bulk rock chemistry.
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CHAPTER 7: RETROGRESSIVE SERPENTINIZATION

7.1 High Temperature Serpentinization

Some of the ultramafic body underwent high temp-
erature alteration to antigorite. Antigorite appears to
be the principle retrogressive serpentine phase for a
distance of 2400 m from the batholith contact, Figure 7.1.
Minor lizardite-chrysotile serpentine formation occurred
along the batholith contact, as noted ea;lier, but this
probably post-dates the development of antigorite.

Feathery blades of antigorite overprint olivine (1)
and tremolite in Unit (3c), and occur intimately associated
with talc in Unit (3b). Above the Nickel Creek thrust
antigoritization is weak and sporadic, but below the thrust,
in Unit (3a), antigorization is pervasive down to its
isograd. Thus although olivine (3) is well displayed above
the fault, and in the talc zone, and also below the anti-
gorite isograd, it is largely altered to antigorite in
the footwall of the thrust.

The presence of a discrete antigorite isograd implies
a thermal relationship to the batholith, and suggests that
antigorite was not formed during cold, pervasive, late-
stage serpentinization.

In Samples 61567, 61637, and 60171, matrix serpentine

initially formed during Stage II, and modified during
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Figure 7.1

Distribution of antigorite serpentine, and
the line of the (retrogressive) antigorite
isograd.
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Stage III,is recrystallized to antigorite, with little
destruction of the olivine generated during Stage III. The
amount of olivine converted directly into antigorite
increases below the Nickel Creek thrust; Sample 60109
displays both matrix recrystallization and olivine
alteration, and Sample 60907 is almost completely altered
to antigorite,(Plate 7.1). In hand specimen &Samples are
hard, dark green, matt textured, and very often jointed
and sheared. Some joints are infilled with apple green
amorphous serpentine, and others contain microveins of
chrysotile asbestos (Plate 7.2). The original mottled
and foliated regenerated texture may remain, although
increased antigoritization reduces its intensity. The
foliation of the rock is subparallel to the Nickel Creek
thrust, along Heazlewood Creek, Samples 60066 to 61539, and
similarly along Nickel Creek from Sample 60130 to 61611.
It seems likely that movement occurred along the
thrust after, and perhaps during, the main period of olivine
regeneration, and that antigorite formed in the waning
stage of the thermal event. The occurrence of antigorite
as the matrix for a tectonic serpentinite breccia at
sample location point 61629 in Unit (1) also suggests that
movement occurred along the fault at this stage (Plate 2.5).

Had serpentine existed earlier, it should have regenerated







to dunite prior to antigoritization. This was not the
case, indicating late movement on the fault.

Further evidence for the retrogressive development
of antigorite is found in Samples 60186 and 61560, where
as noted earlier, antigorite has preferentially exploited
the core region of olivine (1), leaving marginal olivine
(3) unaltered (Plate 3.7 ). Textural evidence indicates
that the formation of antigorite is thus retrograde, and
not prograde. Within samples like 60907, which are
almost completely altered to antigorite serpentinite,
relict patches of olivine (3) appear to form a complete
mosaic, supporting the view that the whole rock had been
converted to olivine with only minor relict serpentine.

Along the western contact, in Unit (3b), olivine (3)
has been replaced by a talc-antigorite assemblage, which
again probably indicates movement and relatively high
temperature serpentinization in the waning stage of the
metamorphism, Samples 60179, 60180 (Plate 7.4 )

The stable spinel phase during antigoritization would
appear to be a ferritchromit, spinel (3), although many
samples retain relict primary spinel (l1). No samples
containing antigorite also contain the small cubic green
spinel, and its occurrence appears to be restricted to
the low temperature serpentinization stage.

Gabrielse (1955, 1963) describes the occurrence
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of antigorite in the aureole of the Cassiar batholith, and
he studied the serpentine varieties extensively. He
confirmed the occurrence of "feathery reticulate antigorite"
using differential thermal analysis, X-ray diffraction

data, and electron-photomicroscopy.

7.2 Low Temperature Serpentinization

Low temperature serpentinization to lizardite and
chrysotile occurred above the enstatite isograd in Unit (3Db),
and below the antigorite isograd in Unit (3a). Serpentin-
ization presumably also occurred in Unit (2), during Stage
IV, but as these rocks were never heated above the reaction
(6) threshold, they presumably underwent a continuous
alteration process from Stage II. The largely pervasive,
mesh texture, bastite serpentinite of Samples 60041 and
60040, are the norm, and relict olivine (1) found in
Sample 60094 is exceptional. The only e;idence of post
Stage II activity is the formation of chlorite, and slight
alteration of spinel. As the regeneration process is one
of dehydration, excess water may well have moved into
Unit (2), out of Unit (3a).

Good evidence for Stage IV serpentinization comes
from those samples which contain serpentine pseudomorphs
after olivine (3), Samples 60102, 60033, 60034, and 60157.

Euhedral regenerated olivine porphyroblasts set in a matrix
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of modified serpentine, from Stage II, are replaced by a
serpentine-brucite pseudomorph. The outline of the original
crystal is retained, and there is no evidence for volume
expansion. Outer margins (Plate 7.5) are clearly defined,
and the matrix and pseudomorph serpentines are quite
distinct. The crystal margins are very often bordered by
strongly birefringent flakes of brucite (Plate 7,5), which
suggests a reaction relationship, and cation mobility.

Serpentinization exploits cracks and fractures, and
it preferentially exploits outer Mg rich margins (Plate
5.20). Where both core and marginal olivine have been
serpentinized, as in Sample 60035, magnetite dust is clearly
concentrated in relict core regions, this reflects both
Stage II magnetite, and also magnetite formed during re-
serpentinization of a Fe rich core.

Samples 60102 and 60157 both have a pronounced brucite
margin around the pseudomorph, and this also acts as a zone
of magnetite deposition (Plate 7.6). These brucite
bearing samples initially formed olivine (3) by reaction (6),
and they then reverted to serpentine and brucite according
to the same reaction. The distribution of brucite, as
detected by X-ray diffraction methods, Figure 7. 2,
indicates brucite stability below the antigorite isograd,
but not above.

Primary spinel (1) remains stable, although it is
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Figure 7.2 Distribution of samples containing
anomalously large amounts of brucite;
as determined by X-ray diffraction.
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often coated with magnetite, Samples 60035, 60157. Some
samples which contained, or contain,Al rich primary spinel,
as in 60140 and 60143, were oxidized, and contain ferrit-
chromit. This is now surrounded by a well crystalline
chlorite. The occurrence of chlorite associated with
altered spinel away from the batholith contact, Samples
60018, 60023, 60062 and 60041, is ubiquitous in serpentinite,
in contrast to the Al serpentine found in regenerated and
primary dunite nearer the contact. The occurrence of
serpentine is thought to stimulate recrystallization of

Al serpentine to chlorite.

A few samples, such as 60143, and 60140, contain an
additional Al rich spinel phase intimately associated with
chlorite and relict ferritchromit. The spinel is light
green, translucent and granular , it occurs as cubes in
the vicinity of an altered ferritchromit (Plate 7.7).
Original relict spinel (1) in Sample 60143 remains, and
its analyses, Table 3.8, indicate a high primary Al
content,

Above the enstatite isograd, along the batholith -
contact, olivines have been altered to ribbon serpentine,
subparallel to the batholith contact, which is the main
fabric trend. Original olivine outlines remain, defined
by magnetite dust. Regenerated enstatite (3) remains
stable, although olivine (3) is largely altered. Ferrit-

chromit and Cr3 magnetite spinels are granular and
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resorbed in texture, and original chlorite halos have
recrystallized to a platey chlorite, Sample 61603, 60213,
and 60215 (Plate 7.8). 1In Sample 60215 the chlorite is
pleochroic and green, and other samples such as 61603 give
a greenish tint. This is possibly a function of Cr3 content.
The ferritchromit and chlorite are both intimately associated
with minor amounts of green cubic spinel (Plate 7.8). This
very often nucleates on ferritchromit, and may pseudomorph
ferritchromit, Samples 60199, and 61603. The assemblage
also contains large clearly crystalline laths of talc,
intimately associated with similar chlorite laths (Plate
7.9 ). These overprint the matrix component of the original
rock, and reserpentinized olivines are locally enclosed by
recrystallized matrix. Serpentine does not vein or cut
through the matrix, Sample 60199 (Plate 7.10). This late
talc appears to be recrystallized matrix talc from the
regeneration process, or alternatively a new generation.
If the latter case were correct it might be expected to
overprint regenerated olivine, but it does not.

Throughout Unit (3b), east, there is a strong
correlation between the amount of late serpentinization
and the degree of crystallinity of chlorite and talc,
Samples 61598, 60137.

Antigorite bearing rocks below the fault show little

sign of low temperature alteration, except in the form of
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veining by chrysotile asbestos (Plate 7.2). The formation
of clean microveins of cross-fibre asbestos is a significant
late stage feature, which also relates to a period of
jointing.
7.3 Serpentinite Mineralogy
Antigorite

Antigorite is formed from pre-existing, modified, matrix
serpentine, formed during Stage II, and also directly from
olivine. A group of samples which are chemically related
to Al serpentine, but are texturally related to antigorite
have already been described. These antigorites, in Samples

61625 and 60206, show a marked depletion in SiO,_, and MgoO,

2
and increase in Al_O Cr_O0_, and FeO, Table 6.7.

273’ 23

Throughout the rest of the area it is not possible
to determine whether the antigorite is olivine derived, or
derived from matrix serpentine, and a variety of analyses
are often obtained within a single sample. Many closely
resemble antigorites analysed by Trommsdor ff and Evans (1972)
from the Malenco serpentinite. An average of their analyses
is shown in Table 6.6. Antigorite analyses in Table 7.1
show that Samples 60907, 61633 and 61635, closely resemble
those recorded by the above workers, but they tend to have
a lower FeO content. Others more closely resemble the Al

rich matrix variety in Table 6.7, as in Sample 60171. Some

samples such as 60109 have both types.
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Discussion. Antigorite

Textural evidence both in this study and elsewhere
indicates that antigorite is a distinct high temperature
"polymorph" of serpentine. It has been recorded in areas
of regional metamorphism, with or without brucite,
Trommsdorff and Evans (1972), Jahns (1967), and it has
also been recorded from regions of thermal metamorphism,
Wilkinson (1953). Francis (1956) indicates that antigorite
may replace enstatite and olivine directly, or alternatively
may replace pre-existing mesh textured serpentine. His
study at Glen Urquhart supports the contention of Hess et al.
(1952), that the chrysotile-antigorite transformation is
sluggish, and that shearing stress is a prerequisite for
antigorite formation. This is not incompatible with the
observed association of antigorite with the Nickel Creek
thrust, and shear stress cannot be ruled out as a contrib-
uting factor to antigorite formation in the Blue River
ultramafic body.

Whittaker and Wicks (1970) deduce from a statistical
study by Page (1968), that antigorite contains a higher

Si0o,, and lower MgO and H

5 O contents than other serpentine

2
"polymorphs", and it also allows considerable trivalent

cation substitution in the octahedral sheet.

Recent experimental work by Iishi and Saito (1973)
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suggests that the MgO to SiO2 ratio is the critical factor,
and not trivalent cation content. They synthesised "pure"
antigorite between 450o and 550°C, with a MgO:5102 ratio
within the range 5.36:4 to 5.16:4. The formation thus
favours an excess of Sioz, or depletion in MgO. 1In

addition they found that antigorite was favoured by increased
load pressure.

The feathery antigorites identified by Gabrielse (1963)
have been shown to display a varied chemistry, from almost
"pure" antigorite to appreciably Al rich serpentine. Thus,
although some well defined antigorite, Sample 60907 (Plate

7.1 ) is formed, much is appreciably contaminated. A

variety of factors probably contributed towards antigorite

formation, during the waning stage of thermal metamorphism.

Lizardite-Chrysotile

Table 7.2 contains analyses of serpentines derived
from olivine (3) above the talc isograd. The analyses are
remarkably constant, in contrast to the antigorites described
above, Sample 60218 and 60199 contain slightly higher FeO
values, and lower SiO2 values. They may indicate contam-

ination by brucite. Most samples are low in Al and

203
Cr203 and relatively uniform in SiO2 and MgO percentage.
Some samples, such as 61603, give analyses not dissimilar

to that of chrysotile asbestos Table 6.6 , and comparable

to the "pure" modified matrix serpentine surrounding
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porphyroblasts in Sample 60021, and 60102, Table 6.5.

In Sample 60035, two varieties of serpentine were
identified and analysed, Tables 6.5, 7.3, and two impure
brucite analyses were obtained, Table 7.4. The data
shows that modified matrix serpentine approaches the

composition of serpentine sensu stricto, whereas serpentine

pseudomorphing olivine (3) is enriched in MgO, FeO, and

depleted in Si02.
The Sio2 depletion in Figure 7.3 suggests contamination

by brucite. Page (1967) describes how similar mixtures

define a trend between serpentine, and the composition of

brucite within the assemblage. Extrapolation of the

observed trend (based on very few points), suggests a brucite

composition of around 24% FeO, markedly more than the content

of the analysed (impure) brucites which margin the pseudo-

morph. These contain around 5% FeO. The constant volume

of the olivine pseudomorph strongly suggests cation migration

according to the following reaction, given by Hostettler et al.

(1966) .

(6 ) 5 olivine + 4H, O = 2 serpentine + 4MgO + SiO

2 2

704 gms + 72 gms = 554 gms + 161 gms + 60 gms
(220 cc) (221 cc)
This reaction requires the removal of appreciable amounts

of MgO and SioO The marginal brucite presumably represents

2-

material removed from the structure. Whether migration of
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Figure 7.3 Simple oxide plot, after Page (1967), showing
modified matrix serpentine (3),

and pseudo-
morphous serpentine (4),

in Sample 60035.
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Table 7.4

Brucite Analyses

60035J* 6003 5K* A

510, 2.56 5.05 -
FeO 3.54 3.73 1.37
MnO 0.07 0.08 0.38
MgO 78.47 60.67 67.96

NiO 0.20 0.22 -
84.84 69.75 69.71

*Contaminated brucite, surrounding a serpentine

pseudomorph after olivine (3), in Sample 60035.

A: Analysis 2, from Deer, Howie and Zussman (1962).

Brucite in serpentinite, Mt. Ramazzo, Italy.
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Mg is favoured over Fe, leading to the difference in
inferred and observed composition of the brucite, or the
FeO becomes reorganised as magnetite is not known. The
latter seems most likely (Plate 7.6 ). As the pseudo-
morphs still contain brucite, excess SiO2 must have been
removed. Whether this enters the matrix serpentine
structure, or is removed from the system is not known,
although chemical evidence implies loss. Conceivably
brucite could recombine with excess SiO2 to form more
matrix serpentine. There is however, no evidence to
indicate this. The pseudomorph "serpentine" contains
significantly more NiO than the matrix variety, indicating
that NiO was absorbed into the olivine, and subsequently
released.

In Sample 60102, Table 7.3 , there is no significant
difference in composition between modified matrix, and
pseudomorph. This suggests that serpentinization leads
to the formation of a chrysotile-like serpentine by diffusion

of excess SiO,, FeO, and MgO (Plate 7.6 ).

2’
Rocks which have undergone this form of retrogressive
serpentinization are found to contain appreciable brucite,
and this is easily detected by X-ray diffraction methods.
Figure 7.2 shows those samples which were found to contain

large amounts of brucite. Significantly they form a band

below the antigorite isograd, and above the olivine (3)

isograd. 23 7



Green Spinel (4)

Three green spinel analyses are given in Table 7.5,

The analysis from Sample 60199 is from a green pseudomorph
after ferritchromit, and those of Sample 61603 are of
cubes encrusting ferritchromit. All three show a marked
reduction in Fe3 and Fe2, and an increase in Mg and Al.
The analyses, and three comparable Al spinel (4) -
ferritchromit pairs frém Springer (1974) are plotted on
Figure 7.4, a trivalent cation plot, and Figure 7.5,
Mgx100/ (Mg+Fe) ratio plot. The analyses show markedly
similar trends.

Textural evidence indicates that Al spinel is
generated at the expense of ferritchromit, by substitution
of Al for Fe3 and to a lesser extent Cr3, and in addition,
of Mg for Fe.

Primary Al rich spinel (1), Figure 6.21, is stable
during serpentinization, when it coexists with magnetite.
Evidently ferritchromit is not stable during low temperature
serpentinization to lizardite-chrysotile, and the magnetite-
Al rich spinel (4) pair is re-established. This represents
a reversal of the oxidation trend, during less oxidising
serpentinization.

As noted, oxidation involves two stages, early
formation of ferritchromit by substitution of Fe3 for Al3,

and a later, slower, conversion to the "inverse" magnetite
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Figure 7.4 A spinel trivalent cation plot, with tie-lines
joining coexisting chromium spinel (3), and
green spinel (4), shown as crosses. Similar

data from Springer (1974) are shown as closed
circles.
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Figure 7.5 A spinel ratio plot, showing

co-existing ferritchromit,

spinel (3), and green spinel (4).
Additional data, from Springer
(1974), is also shown.

240



structure. Intermediate stages appear to be unstable,

and they must react with chlorite, the only available
Al rich phase, to produce a new Al-rich spinel (4). The
process is indicated schematically in Figure 7.6 . The
following reaction is inferred.

Ferritchromit + chlorite = Al Spinel + serpentine

+ magnetite

Muir and Naldrett (1973) found a miscibility gap
between magnetite and hercynite end members in igneous
ultramafic rocks from the Giant Nickel Mine in British
Columbia. Two spinels, one enriched in Al3 and Mg, and
the other enriched in Fe3, Ti and Ni exsolved on cooling
of the body. The Blue River body shows no sign of spinel
immiscibility, rather stability obtained by reaction, in

a system of variable f.02.

7.4 Carbonitization

Samples 60159 and 60241 consist of carbonate pseudo-
morphs after regenerated olivine, in a matrix of talc,
carbonate, and rare serpentine. This is further evidence
for Sio2 mobility, and for the loss of SiO2 from the system.
The carbonate pseudomorphs of magnesite, very often consist
of a clear well crystalline outer margin, and a less well
crystalline core. The inner margin between the two is

sharp (Plate 7.11) and the outer rim probably represents

carbonatized brucite.
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Carbonatization thus probably post-dates reserpent-
inization, at least in part, and it probably results from
one or both of the following reactions

4 olivine + 1H20 + 5CO2 = 1 talc + 5 magnesite

2 serpentine + 3C02 =1 talc + 3 magnesite + 3H20

These experimentally determined reactions depend largely
on the mol % CO2 in the fluid phase. According to Johannes
(1969), serpentine is only stable so long as there is less
than 3.0% C02, and more than 0.5% CO2 in the fluid phase,
at around 2 Kbars pressure. Below the lower figure
serpentine alone is stable. The talc formed is well below
the talc isograd, indicating formation by the carbonate
producing reaction.

These two samples, 60159 and 60241 represent a
localized occurrence of carbonatization, other samples
display carbonate traces, Samples 60069 and 60907, but
these are sporadic, and close to fault contacts, Figure 7.7

The pseudomorphous nature of the carbonate illustrates

mobility, although no SiO, veins were observed.

great SiO 2

2

7.5 Rodingitization

The areal distribution of rodingite, and of partially
rodingitized gabbro, correlates well with the distribution
of present day serpentinite, Figure 2.1. Rodingite is

found through Unit (2), where it is associated with
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Distribution of samples containing a
significant trace of carbonate, (closed
circles). Completely carbonatized samples
are shown as crosses.




serpentinized peridotite. It is also found along Spudusob,
and Heazlewood Creeks, in Unit (3a). 1In this situation it
is associated with serpentinized regenerated dunite. Along
the western contact, in Unit (3a), gabbro is plentiful, but
rodingite is minor. It occurs as an envelope around the
gabbro, and it appears to be pervading, and veining, inward.

The rodingitization porcess is known to correlate with
serpentinization, although the actual mechanisms and reaction
relations are poorly known. The source of the Ca is also a
matter of debate. The process could have taken place during
Stage II or Stage IV. The western gabbros survived pervasive
serpentinization, possibly because they lie in a Ca poor
dunite host. The diopside lamellae in primary enstatite
appear to have survived serpentinization during Stage II,
which mitigates against one potential Ca source.

Most of the rodingite is assigned to Stage IV, because
the mineralogy appears primary, and unaffected by metamor-
phism. The main mineral phases identified were hydrogrossular
garnet, epidote, zoisite, vesuvianite, and diopside. 1In
addition, veins of diopside, preh nite, pumpellyite and
albite have been identified cutting gabbro, amphibolite and
volcanic rock. The mineralogy was not studied in detail.

Diopside lozenges in serpentinites in Unit (2), are
secondary in origin, Plate 4.3, and diopside was found to

vein serpentine (4); which replaces metamorphic, olivine (3),
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above Claim Jumper Creek. 1In addition, primary enstatites
in Unit (1), and in Unit (2), Sample 60094, are corroded
and partially replaced by a new generation of diopside.
Relicts of enstatite (1), remain in a pseudomorph of
diopside (Plate 3.13). Analyses are shown in Table 7.6,
and aisplayed in Figure 3.11. This alteration process
accounts for the slight excess of Ca in enstatites from
Sample 60094,

Rodingite preferentially replaces feldspar, and relict
pyroxene may remain as a stable phase. When carried to
completion, the whole rock is converted into a hydro-
grossular-vesuvianite assemblage.

The rodingitization process is thought to alter gabbro
within serpentinite, and also amphibolite bordering

serpentinite.



CHAPTER 8. VOLCANICS AND RELATED ROCKS

8.1 Introduction

In common with most "alpine" ultramafic bodies, the
Blue River intrusion is spatially associated with basalt
volcanic material. Like many others it is also associated
with gabbro. The intrusion evidently metamorphoses pre-
existing basalt, and there is nothing to suggest a direct
genetic link between these twe rock-types.

Bodies of gabbro appear to intrude the ultramafic body,
and they are spatially restricted to the ultramafic intrusive.
The relationships suggest that the gabbro is quite distinct
from the volcanic material, and that it equilibrated with
the primary ultramafic intrusive after emplacement. Ultra-
mafic spinel (1) data, in Chapter 3, suggests equilibration
between mafic and ultramafic rock-types, if not a genetic
link between the two. The chemical similarities and
differences between the two mafic rock types, might be

expected to reflect this equilibration.

8.2 Sylvester Volcanics

Volcanic rocks, which crop out in the hanging wall
of Heazlewood thrust, consist of massive, aphanitic,
structureless, grey-green lava flows. Individual flows

are rarely discernable, except where they are interbedded
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with finely laminated tuff, argillite, or chert. Where
the thickness is discernable, it ranges from 1-5m.

Most volcanic rocks show some sign of alteration,
and many appear to be turbid and sheared. Original rock
textures are preserved, although most samples have been
altered to a greenschist facies mineralogy. The rocks are
"spilites", as described by Cann (1969).

Gabrielse (1963) subdivided the "greenstones" into
three categories, based on the degree of alteration or
"saussuritization". The various forms are gradational,
and they display only a crude pattern in regional distrib-
ution. Least altered samples appear to be found away from
the batholith contact.

Type (1) "greenstones", as defined by Gabrielse (1963),
consist of a crystalloblastic rock containing the following
assemblage:

"tremolite/actinolite-zoisite-clinozoisite-albite-

chlorite-carbonate".

Type (2) "greenstones" are less altered. They consist
of relict pyroxene, sodic plagioclase, chlorite and zoisite.
Pyroxene phenocrysts are often rimmed by fibrous amphibole.

Type (3) "greenstones", as defined by Gabrielse (1963),
are not found in the map area, (except in so far as they
resemble contact amphibolite). They consist of medium

grained metamorphic rocks with a diorite mineralogy, and
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they include pegmcatitic segregations of "diorite". The
rock consists of turbid albite, quartz, chlorite, =zoisite,
and a porphyroblastic amphibole.

The three categories represent differing degrees of
hydrothermal alteration and metamorphism. The differences
may represent variations in water availability, grain-size
pressure or temperature. Gabrielse (1963) suggests that
there might be a positive correlation between the occurrence
of the ultramafic intrusives, and the degree of alteration.
The mineralogic similarities between basal content amphi-
bolite at the Blue River intrusive, and Type (3) "greenstone"
overlying the Zus Mt. intrusive, Figure 5.1, supports this

view.

8.3 Gabbroic Intrusions

Sills, lenses, and dykes of fine to medium grained
gabbro crop out along the western contact of the ultra-
mafic body. Rodingite is found southeast of claim Jumper
Creek, in Unit (2), and along Spudusob Creek, in Unit (3a).

Very little gabbro was found within the "core" region
of the intrusive. One major dyke was found, Figure 2.1.
This forms the lip of Ice Lake, and it runs discordant to
the primary ultramafic foliation for a distance of around
1,700m. The dyke has been largely amphibolitized, and

chilled contacts were not observed.
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Gabbroic bodies along the western contact are
similarly amphibolitized, at least as far south as
Heazlewood Creek. These bodies also display an outer
skin of rodingite, and they are veined by rodingite
material. The amphibolite consists of altered plagioclase,
fibrous green-brown pleochroic amphibole, (hornblende),
and minor secondary quartz. No free chlorite was observed,
and epidote and zoisite are restricted to the outer
rodingite envelope.

This mineralogy suggests that hornblende hornfels
facies conditions, discussed in Chapter 5, extended out
as far as location point 61565, above Heazlewood Creek,
Figure 2.3. This position is about equal to the level of
the tremolite isograd in ultramafic rocks, Figure 5.4.

Below Heazlewood Creek, altered gabbro retains its
original texture, and as in ultramafic rock, diopsidic
pyroxene remains stable. Rodingite is again peripheral, and
there is a suggestion of grain size increase from margin
to core, within a gabbro body.

Relatively unaltered gabbro at the head of Claim
Jumper Creek consists of a sub-ophitic to gabbroic textured
assemblage, with a 1.5-2.0mm grain-size. The assemblage
consists of a fresh but variable diopsidic-augite, albite,
replacing plagioclase, granular epidote, and chlorite. Some

samples show a minor amount of fibrous amphibole replacing
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the pyroxene, but this is not extensive. This assemblage,
excepting the relict pyroxene, suggests albite-epidote
facies conditions in the outer aureole of the batholith,
as discussed in Chapter 5.

The pyroxene appears to be a variable diopsidic-augite.
It is locally twinned, and it is very often zoned. It has
an extremely variable 2V ranging from around 30 to 65.
Chemical analyses are given in Table 8.1, and are illustrated
on a pyroxene quadrilateral, Figure 3.11]. The pyroxene is
low in Fe, and it converges on a composition not dissimilar to
that of the ultramafic diopside (l1). The chemical trend, as
far as it is discernable,is towards Fe enrichment, and Ca
depletion. The pyroxene stability contrasts with pyroxene
instability, and alteration, in the volcanic suite.

The gabbro also contains what appears to be altered
skeletal ilmenite, in addition to albite and chlorite.
Probe data indicates that the albite is pure, around (Ans).
Chlorite occurs as fibrous interstitial patches, possibly
pseudomorphing an earlier phase. The chlorite appears to
be "diabantite", Deer, Howie, and Zussman (1962), analyses
are shown in Table 8.2. In composition the chemistry is
quite distinct from that found in the ultramafic rock, the

chlorite is Fe-rich and oxidized. It has an Mgxl00/Mg+Fe

ratio of 46.

291




8.4 Magma Chemistry

Samples of volcanic and gabbroic rock were analysed
using an X-ray fluorescence technique. Major element
oxides, minor element concentrations, and "CIPW" norms
are shown in Table 8.3, 8.4. These refer to volcanic and
gabbroic rocks respectively. The FeO content was determined
using a wet chemical metavanadate method, Wilson (1955).

The total Fe content, determined by X-ray fluorescence, has
been redistributed accordingly. Oxides have been recalculated
to 100%, to negate the influence of a variable and unknown
volatile content.

The analyses should be treated with caution, as all
rocks show some hydrothermal alteration. The volcanics are
"spilites", and as shown by Cann (1969), they are liable
to be depleted in A1203 and Ca0. Similarly gabbros are
susceptible to alteration, and the presence of rodingite
is an illustration of their susceptibility to Ca metasomatism.

The major element analyses, shown in Tables 8.3 and
8.4, indicate that both magma types fall within a restricted
range of basalt composition. The volcanic suite is slightly
more variable than the gabbro. The volcanic analyses are
similar to a single Type (2) basalt analysis quoted by
Gabrielse (1963). The analyses show a large degree of
scatter, and differentiation trends are not convincing.

The combined alkali plot, Figure 8.1, shows that both
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Figure 8.1 Total alkali v SiO_ plot, showing the alkali-
subalkali basalt divide proposed by MacDonald
(1968) .
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populations lie below the alkali-sub alkali divide proposed
by MacDonald (1968). The alkalis and in particular
the K content, are low.

Engel (1965, 1971), and Cann (1971) describe a number
of chemical characteristics which differentiate between
present day "ocean floor basalt" and continental basalt.
These include enrichment in Ca0, Al,_O. and Na/K ratio, and

23

a reduction in the K20 and TiO2 content. The two magma
types are both compatible with an ocean-floor origin.

Cann (1971) notes that superficial oxidation will
distort the normative mineralogy. He suggests that norms
should be calculated with all Fe considered as FeO. This
is a slight overcorrection.

Figure 8.2 shows the normative mineralogy plotted after
converting Fe to FeO. The gabbros are all olivine normative,
as are many of the volcanics. Olivine was not noted in
either rock-type, but it is susceptible to alteration. The
two populations contain roughly the same proportions of
pyroxene, olivine and feldspar. The proportions of normative
hypersthene and diopside are extremely erratic, Tables 8.3,
8.4.

The trace element data is also erratic. Some samples
appear to be enriched in Ba and Sr, and as such they display
"alkali" affinities. These elements are relatively mobile,
and this may just reflect redistribution during hydrothermal

alteration. 25 4
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olivine, in volcanic rocks and gabbros.
All the Fe is taken as FeO.
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Pearce and Cann (1971, 1973) have developed an empirical
discrimination technique, based on the comparatively immobile
elements Ti, Z2r, and Y. They present three plots which
discriminate between suites of rocks from known geotectonic
environments. Using these plots it is possible to compare
data, and infer a likely geotectonic environment for an

)
|
‘ unknown. They subdivide basalt populations in the following
' manner:

1l. Within Plate Basalts (Continental and Ocean Island).

2. Ocean Floor Basalts (Tholeiitic and Alkali ).

3. Low K Tholeiites (Volcanic Arc Basalts).

4. Calc-Alkali Basalts (High K Basalts).

Figure 8.3 discriminates against "Within Plate Basalt"
on the basis of Y content. Both suites lie within the
field of "Ocean Floor Basalt", but as there is some overlap
from the other two fields, this is not distinctive. Figure
8.4 shows that the Ti and 2r content discriminates against
"Calc-Alkali Basalts", but it does not preclude a "Low K
Tholeiite" origin. The remaining plot, Figure 8.5, uses
Sr, which is probably remobilized. It is thus unable to
discriminate between the two remaining fields. Sr appears
to concentrate in the gabbro.

‘The data suggests that there are no major differences

between Sylvester Volcanic Magma, and the magma that
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segregated out of the peridotite assemblage. They appear,
on balance, to resemble tholeiitic olivine basalts, with

"Ocean Floor Basalt" affinities.

8.5 Contact Amphibolite

The contact metamorphic aureole noted by Gabrielse
(1963), was described in a fair amount of detail by Wolfe
(1965, 1967). He presents data on a section across the
aureole; as it is exposed along Claim Jumper Creek. This
section was re-examined, and the data given by Wolfe appears
to be essentially correct. The section is summarized in
Table 8.5, from Wolfe (1967).

In common with other aureoles; and amphibolites
described from the borders of ultramafic bodies, Green (1964b),
Smith and MacGregor (1960), Pamic et al. (1973); the
amphibolites are crystalloblastic to nematoblastic, with a
pronounced foliation parallel to both the ultramafic contact,
(Plate 2.1), and volcanic bedding.

There are two parts to the aureole, an inner 2zone in
which feldspar is reduced, and the amphibole is.colourless,
and an outer zone, which starts approximately 17m from the
contact. This consists of a brown-green pleochroic hornblende,
with interfoliated albite, and sphene. The "gneissic-textured"
outer amphibolite passes outward into unaltered Type (1)

basalt, as defined by Gabrielse (1963).
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Table 8.5
Contact Amphibolite

Claim Jumper Creek Section¥*

Distance Assemblage Metamorphic facies
0' (Om) Hornblende Lower Amphibolite
2'(0,.6m) Hornblende-Grossular " "
5'(1.5m) Hornblende-Grossular- " "

Zoisite
50"' (15m) Hornblende-Zoisite- Albite-Epidote-
Albite(An ) Amphibolite

Sphene-Magnetite

150"' (46m) Hornblende—Albite(Anlo) Albite-Epidote-
Epidote Sphene, Amphibolite

Magnetite/pyrite.Quartz

400' (123m) Hornblende-Albite(Anlz) Greenschist.
Chlorite-Epidote.
Calcite-Sphene-Ilmenite.

*Data from Wolfe (1967).
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In the "inner aureole", the feldspathic component of
the gneiss has been replaced by grossular, or hydrogrossular
garnet, and the colourless amphibole is set in a matrix of
garnet, chlorite and zoisite. This mineralogy is not dis-
similar to the rodingite mineralogy, found where gabbros have
been altered in serpentinite. It is thought, from the present
study, that the "inner aureole" has been metasomatized; and
that like gabbro, it has acted as a "sink" for Ca and Mg,

It is thus not strictly metamorphic, and the contact P-T
environment, on emplacement of the ultramafic body, is
difficult to evaluate. Rodingitization is thought to proceed
during serpentinization, and it may be significant that Mg
mobility has been shown for the Stage IV reserpentinization
process, (see Chapter 7).

Table 8.6, and Figure 8.6, show that the dark outer
amphibolite is similar in composition to spilitic Sylvester
Volcanic rock in Table 8.3. It also shows that the white
inner amphibolite is appreciably enriched in MgO and CaoO,
and depleted in SiO2 and FeO.

In spite of the metasomatism, the aureole is still
attributed to dynamothermal intrusion of the ultramafic
body.

The outer aureole contains a mineralogy suggestive of
albite-epidote amphibolite facies metamorphism, Wolfe (1967).

The inner aureole is albite free, and pre-existing feldspar
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in MgO in the inner, "white" amphibolite.
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has been rodingitized. It is inferred that the feldspar
was plagioclase, and it is on this basis, and not the
presence of hydrogarnet, that the metamorphism is assigned
to the Lower Almandine Amphibolite facies. The contact
temperature must therefore have been in excess of 550°C,
and a figure of 600—650°C is more realistic for the actual
contact.

Wolfe considered that metasomatism occurred during
initial metamorphism, but later rodingitization is favoured

in this study.
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CHAPTER 9. CONCLUSIONS

9.1 Conclusions

The results of the present study confirm many of the
observations made by Gabrielse (1955, 1963), and Wolfe
(1965, 1967). The study goes further, and it attempts to
integrate the various peculiarities of the Blue River
Ultramafic body.

The data indicates that the body is a high tewperature
"alpine" peridotite. Field relationships suggest that hot
peridotite was intruded into relatively cold basalt, with
the consequential development of a dynamo-thermal meta-
morphic aureole. The relationships also suggest that only
minor structural reorganization has occurred subsequently;
and the body retains many of its "primative" structural
relationships, dating to the time of emplacement. This is
inspite of the fact that the whole greenstone assemblage
now overlies an enormous thickness of miogeosynclinal
sediment and carbonate.

Bodies of relatively undeformed gabbro are found along
what is inferred to be an original contact. The gabbro is
restricted to the ultramafic body, and it is concluded that
it was intruded into the basalt assemblage with the peridotite.
It probably segregated into pods along the cooler margins of
the body, at some stage after emplacement. The mafic-

ultramafic assemblage probably equilibrated together, in
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isolation, in the basalt sequence.

The peridotite is flow banded into dunite and
harzburgite layers. These display a slight compositional
difference. Excess Al is a feature of harzburgite. Mineral
analyses indicate that the enstatite Al content is fixed,
and the variable Al excess above that required for enstatite,
is found in the spinel phase. Dunites have Al poor spinels,
which are compatible with a derivation from a basalt magma.
The spinels display a continuous Al depletion trend from
harzburgite to dunite, and it is thought that this represents
incomplete segregation of Al out of an original Al rich
enstatite phase, in the primary peridotite. Enstatite
attained a fixed, P-T controlled composition, by partitioning
Al into magma, or into spinel.

Chemical analyses indicate that the host basalt compos-
ition is similar to that of the segregated gabbro. Both
have a composition compatible with their being tholeiitic
"Ocean Floor Basalts".

Temperature estimates, based on thermodynamic data on
coexisting mineral pairs, suggest an intrusion temperature
of around 1200°C, and a basalt segregation temperature of
around lOOOOC. The olivine deformational fabric, suggests
that the ultramafic body was largely consolidated, and

. o
subject to stress at temperatures in excess of 1000 C.
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The ultramafic body evidently underwent a period of
marginal serpentinization, as metamorphic olivine has been
identified as being formed at a later stage. The serpentinite
formed, is inferred to have contained a brucite component,
as this was evidently involved in the metamorphic reaction.

The Cassiar batholith truncates the Blue River Ultra-
mafic body, and isograds representing the incoming of meta-
morphic olivine, tremolite, olivine with talc, and enstatite,
have been established parallel to the batholith contact. The
olivine and enstatite reactions conform to the experimentally
determined reactions proposed by Bowen and Tuttle (1949).
Experimental work suggests that the batholith contact reached
a temperature of 580-600°C. This is based on the presence
of enstatite, and of hornblende and anthophyllite, and on
the composition of metamorphic chlorite. The outer olivine
isograd is thought to represent a temperature of 325—340°C,
based on experimental work on the brucite based, "olivine
regeneration" reaction, and also on experimental serpentine
dehydration work.

Olivine regenerated by the low temperature reaction
evidently formed point nucleated porphyroblasts, in serpentinite.
Early olivine is FeMn rich, and later olivine is MgNi rich.
Porphyroblasts are zoned, and the matrix serpentine is
modified by reaction. Brucite plays an important part in
the process, perhaps because it is relatively mobile, and

not silicate structured.
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Metamorphism involves massive dehydration, and
consequent volume decrease. It also marks a change from a
ductile to a brittle state. This may aid tectonism, and a
major fault appears to have truncated the body, in the
waning stages of metamorphism.

The metamorphism was accompanied by oxidation, and the
effect of increased fO2 on primary spinel has profoundly
altered the distribution of the trace elements Ni and Mn.

On oxidation the spinel releases Al, which enters serpentine
to become "chlorite", and Fe, (with minor Ni and Mn), enters
the spinel structure to form "ferritchromit" and chromium
magnetite. Above the talc-olivine isograd appreciable Fe
is soaked up by the spinel, and the olivine ceases to be
zoned. Olivine reaches a maximum forsterite content of
F°95'
The oxidation process is not restricted to areas of
metamorphosed serpentinite, similar reactions occur in
primary peridotite. Harzburgite Al rich spinels appear to
be more susceptible to oxidation than dunite, Al poor spinels.

During the waning stages of metamorphism the body was
faulted, and antigorite serpentine was formed. The distrib-
ution of antigorite is related to the Cassiar batholith
contact, and it is defined by a retrogressive isograd.

Pervasive serpentinization to lizardite and chrysotile

occurred at a later stage. It bears no relation to the
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batholith. Euhedral, zoned, metamorphic olivines are
entirely replaced by serpentine and brucite. Volume for
volume replacement seems irrefutable. Reserpentinized
rocks show a marked concentration of brucite, particularly
surrounding the replaced olivines. This is evidence for
cation mobility. Some euhedral serpentine pseudomorphs
after olivine are replaced by carbonate. The carbonate
replaces both the serpentine pseudomorph, and the brucite
envelope. This again reflects cation mobility.

Reserpentinization involves a drop in fO and a

2°
return to the oxidation state operative prior to oxidation.
Ferritchromit, with acomposition approaching magnetite,
appears to be unstable, and it reacts with chlorite to form
a green spinel rich in Al, This is not dissimilar to the
original primary spinel.

In general terms, the primary assemblage, which makes
up the Blue River Ultramafic body, has a bearing on the
composition of the Upper Mantle, from which it was almost
certainly derived. It has a bearing on the ultimate origin
of "alpine" peridotite, and on the equilibration processes
which occur between Upper Mantle peridotite, and magma,
formed by partial melting of some unspecified parent.

The metamorphic study has established the existence of

all three of the metamorphic reactions proposed by Bowen

and Tuttle (1949). It illustrates the importance of brucite
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as a mobile component during both metamorphism, and also
serpentinization. The "serpentinization-regeneration"
process is particularly significant in relation to geo-
tectonics, as serpentine has been postulated as a significant
phase in the lower crust and Upper Mantle, Hess (1955, 1965).
If this is the case, then regeneration will be important
during subduction, as a source of water, density change,
and change in structural state, from ductile to brittle.

The influence of oxygen is important, particularly with
respect to the distribution of Ni, an economically signif-
icant element. This is not readily taken back into the

olivine structure, in the presence of free sulphur.
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Appendix I. Sample Data

Occurrence and Location

Table 1.1 summarizes some of the more important out-
crop and rock data. Hand specimens were collected at most,
but not all the listed location points. The location number,
given in Table 1.1, is assigned to the relevant sample, and
to any additional data relating to that sample. Mineral and
chemical data can thus be correlated directly with sample
location, shown in Figure 2.3. Sectioned samples used in
this study are represented as dots in those text figures
concerned with mineral distribution. These sample numbers
are shown on a subsidiary sample location map, Figure 1.3.

Samples numbered in the 60000 series were collected in
the summer of 1970, and those in the 61000 series were
collected on a revisit to the area in 1972.

The sample location map, Figure 2.3, is a copy of
Map 17-1964, published by the Geological Survey of Canada.
The geology shown is that proposed by Wolfe (1565). Minor
amendments to this map, which result from the present study,
are shown in Figure 2.1. All three maps are located in
the map pocket.

The sample location points, shown in Figures 1.3 and 2.3,
have been allocated Universal Transverse Mercator, (U.T.M.),

coordinates, and these are listed in Table 1l.1l. The points
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are extrapolated from the four assigned locations shown on
Figure 1.3. These have the following coordinates

. (NW) 442100-6602600 09
(NE) 445500-6605500 09

(SE) 447400-6600500 09
. (SW) 445000-6590500 09

Uu.T.M
U.T.M
U.T.M
U.T.M

Table 1.1 also lists the rock-type, and a qualifier,
and in some cases the most important foliation, (F), or
joint set, (J). Samples powdered for X-ray fluorescence
wholerock analysis are listed as (XRF); although the data has
not been included in this study. Sectioned samples are shown
as (TS), and specimens which have been analysed using the
electron microprobe are listed as (P.T.S.).

Some samples also show an estimate of serpentine per-
centage, based on a crude determination of the rock density.
Specimens were weighed in both air and water, and the specific
gravity was calculated. In a simple system consisting of
olivine (S.G. = 3.25), enstatite (S.G. = 3.15) and serpentine
(S.G. = 2.50); it should be possible to determine the
serpentine percentage by means of the following relationship,
Wolfe (1965).

% serpentine = 471.029-147.058xS.G. (rock)

As noted by Wolfe, this relationship is not strictly applicable
in a system containing additional phases, such as talc,

tremolite, and chlorite.
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Ultramafic Mineralogy

Table 1.2 summarizes the phase content of each of
the sectioned ultramafic samples shown in Figure 1.3. The
specimens are listed by unit, so as to bring out the
textural and mineralogical characteristics of each unit.
The units are defined in the text, (Chapter 3), and the
unit distribution is shown in Figure 3.1, in the text.

Minerals have been identified, and assigned to a
development stage on the basis of rock texture, and mineral
chemistry. The development stages are discussed in Chapter
2,

The original rock consisted of dunite (D), and
peridotite (P). Where there is sufficient evidence to
determine the original lithology, this data is also

given.
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Appendix II. Mineral Data
Electron Microprobe Micro-analysis

The mineral analyses listed in this appendix were
obtained by electron microprobe micro-analysis, using the
Durham University, Cambridge Instrument Company, "Geoscan
Mark II" electron microprobe.

The petrological data given in Table 1.2 was obtained
from a study of a large number of polished thin sections,
and a few ordinary thin sections. The polished thin sections
were prepared by Vancouver Petrographics Ltd., on behalf of
Rio Tinto Canadian Exploration Ltd. The analysed samples
were chosen from among the polished thin sections; on the
basis of mineralogy and texture. Where possible all the
main coexisting phases were analysed.

Efforts were made to standardize operating conditions,
in order to avoid undue bias and all the coexisting phases
were analysed for the same elements, under the same conditions.
The one exception is found in Table 8.1, which lists gabbro
pyroxenes that have been analysed for Na and K. The general
methods employed are those described by Sweatman and Long
(1969).

The Durham University "Geoscan" was operated under a
high vacuum, at an accelerating voltage of 15 kV, and a
specimen current of 0.04 MA. The electron beam was kept
focussed throughout, giving a spot analysis of diameter

2_5FM.
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Secondary X-rays were analysed using a wavelength
dispersive system. The "Geoscan" has two spectrometers,
set at a take-off angle of 75°. These allow two elements
to be analysed simultaneously. One spectrometer was used
with a LiF crystal, and the other with a K.A.P. crystal.
Appendix Table 2.1 shows the optimum analysing conditions
for the nine main elements, and also conditions for the
alkalis, Na and K.

The wavelength dispersive system is based on a
comparative technique, and the standards used for each
element are also given in Appendix Table 2.1. These are
metals, simple oxides, and simple silicates of known
composition. The standards and the polished thin sections
were carbon coated simultaneously prior to use, and they
were both stored in a dessicator when not in use.

Data from the "Geoscan" was corrected for the effects
of atomic number, Duncumb and Reed (1968), mass absorption,
Heinrich (1966), and fluorescence, Reed (1965). Corrections
were made using an on-line Varian 620-100 computer. The
correction procedure was applied using the computer program
"Tim 3", written by Dr. A. Peckett.

The on-line computer was able to produce a corrected
analysis in a matter of seconds, and machine drift was
readily detected. The following procedure was adopted in

setting up the "Geoscan" at the start of a probe session.
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1. Standard peaks were located, and analysed, (5-10 x 10
second counts).

2, Standard backgrounds were analysed, above and below
the peak, (4-5 x 10 second counts each).

3. Unknown backgrounds were taken, above and below the
peak, (4-5 x 10 second counts each).

4, Unknown peaks were analysed, (6-10 x 10 second counts).

5. Results were calculated.

6. If the results were satisfactory, further unknown
peaks were recorded, and the process was continued.
If the results were not satisfactory, standard peaks

were relocated, and reanalysed.

Background values obtained for each phase were used
throughout a session, and they were not reanalysed for each
individual crystal. Background values were checked by taking
peak position values on minerals which contain the same
average atomic number as the unknown, but do not contain the
element in question. The two methods gave reasonably
consistent results, and where a descrepancy was found, the
lower value was taken. The Si background was determined in
this way. Data from Al,O_, is applicable to olivine.

23

Detection limits are calculated from the formula:

SEg;Rb/Tb

= mean peak counts/sec/%
= mean background counts per second
= counting time on the background.

328

where

g8 =



Calculation detection limits are in the range 200-500
ppm, (0.02-0.05%). The overall accuracy taking into account
counting precision and uncertainties in the correction
procedure, is probably in the order of : 2% of the amount
of the major constituents present. Trace elements probably
have a somewhat lower accuracy.

The probe analyses given in the succeeding tables are
all spot analyses made at one point, at one time. Brucite
was the only phase which readily deteriorated under the
electron beam, and in all other cases it was possible to
complete an analysis before this occurred.

Corrected analyses, with Fe (total) taken as Fe++, were
tabulated and recast into their atomic proportions, using
the computer program "Tablit" developed by Mr. E.B. Curran.
This program was also used to calculate end member compositions,
and the distribution of Fe2 and Fe3 in spinel, according to
the method proposed by Carmichael (1967).

Hydrated minerals are presented on a water free basis,
and the apparent percentage deficiency is taken to be the

water content.
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APPENDIX III
X-ray Fluorescence analysis

Sample Preparation

Samples were split into fragments using a Cutrock
Engineering hydraulic splitter. Weathered fragments were
removed, and the remainder were broken into a coarse
aggregéte, using a Sturtevant 2" x 6" Roll Jaw Crusher.
An aggregate sample, weighing 200-500 grams, was reduced
to around 100 grams by the process of quartering. The
sample fraction was ground to a fine powder, using a Tema
Laboratory Disc Mill, model T-100, with tungsten-carbide
Widia grinding barrel. Grinding took 3-4 minutes. A
small sample was removed after only 30 seconds, in order
to avoid the additional oxidation which may occur during
prolonged grinding, Fitton and Gill (1970). The sample
removed was used for a wet chemical FeO determination.

A few grams of fine powder were pressed into a
briquette, using a hydraulic press operated at 5-6 tons/
sq.in. A few drops of the organic binding agent "Mowiol"

were added to aid cohesion.

Major Element Analysis
Sample briquettes were analysed on a Philips PW1212
automatic spectrometer, after being loaded by a Torrens

Industries TE108 Automatic Sample Loader. This is capable
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of handling up to 108 samples in a run. Details of the
routine operating conditions used during X-ray fluorescence
are given by Reeves (1971).

The elements Si, Al, Fe, Mg, Ca, Na, K, Ti, P and S
were determined using a Cr target for primary radiation,
and an evacuated tube. Mn was analysed separately using
a W target.

A "fixed counts" operating procedure was used, in
order to minimize the effect of electronic instability
and voltage drift. A monitor was used throughout. The
time (T) taken to accumulate a predetermined number of
counts, (N), on the monitor, was applied to the next three
samples. The same procedure was applied for all elements,
and the samples were analysed in groups of three.

The international standards Gl, G2, Wl, T1l, Sl1l, GR,
GA, AGV-1l, GSR-1l, and BCR~l1l were used to calibrate the
data. The compositions of the International Standards
were taken from reviews by Flanagan (1969,1973).

The analytical data were corrected for mass absorption
differences between the standards and the unknowns, using
the iterative computer procedure described by Holland and

Brindle (1966), and Reeves (1971).

Trace Element Analysis
The elements Ba, Nb, Zr, ¥, Sr, Rb, Zn, Cu and Ni were

determined using a W target, and an evacuated X-ray tube.
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——

Ba

Zr

Sr
Rb
Zn
Cu
Ni

Appendix Table 3.1

Trace element calibration data

Detection Limit
ppm

N NN WW W W W o

411

Upper limit of

standards

5000

250
5000

500
1100
1000
1000
1000
1000

ppm



Analytical count data were converted into concentrations,
(ppm), using the computer program "Tratio", written by
Dr. R.C.0. Gill. This program uses the function (peak

intensity/background intensity -1) to compensate for
matrix and mass absorption effects, using scattered
background radiation as an internal standard. Corrections
for blank/contamination and K inter ference are also
included in this program. The nominal detection limits
for each element are calculated from the formula 3(5%),
where B is the mean background-under-peak, in counts,
averaged over all the determinations processed. Appendix
Table 3.1 gives the detection limit, and the upper limit
of standardization for each element.

The standards used were synthetic spiked glasses

prepared by the Pilkington Research Laboratory, (Latham,

England), for use in lunar investigations. The standards

are in two sets, in order to avoid inter-element inter ference,

as much as is possible.
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APPENDIX IV
4.1 X-ray Diffraction Data
Serpentine

The serpentine "polymorphs" were differentiated using
an X-ray diffraction technique. Serpentine smears were
subjected to Fe filtered CoKetradiation from a Philips
PW11l30 X-ray generator. Traces were run at a scan speed
of 1/4°Min, and a chart speed of 10mm/sec.

Antigorite was identified on the basis of a reduced
(020) reflection, and a diagnostic (910) reflection at
4.272. In addition, antigorite gives a pair of weak
diffuse reflections at 1.563 and 1.5418% respectively.

Chrysotile and lizardite could not be separated, and
mesh textured serpentinites appear to contain an element
of each. The (020) reflection is strong and markedly
skewed. The peak is very often split, suggesting a mixed
assemblage. A characteristic lizardite peak occurs with a
2.1482 spacing, and a pair of peaks occur representing
1.536 and 1.5032 respectively.

X-ray diffraction smears are very often contaminated
with olivine, talc, tremolite, magnetite, carbonate, and
spinel, and no systematic study was undertaken. Two
distinctive patterns were found, and these appear to
represent antigorite serpentinite and, mesh textured,

lizardite-chrysotile serpentine.
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Chlorite

Similar X-ray diffraction data was used to different-
iate between the 78 serpentine structure, and the 148
chlorite structure. Sample 60196 contains a "chlorite"

appreciably enriched in Al_O The "chlorite" resembles

273°
serpentine texturally, and X-ray diffraction data failed
to produce basal chlorite reflections. The mineral is
considered to be a septechlorite.

Sample 61600 contains recognizable recrystallized
chlorite, in addition to traces of retrogressive serpentine.
X-ray data indicates that at least some of the "chlorite"
is chlorite structured, as the following basal reflections

were found, in addition to the reflections observed in

Sample 60196.

af hk1

ool 7.20
002 14.45
004 . 29.20
005 36.20

Brucite

Brucite was observed in thin section, and its presence
in mesh textured serpentinite was confirmed by X-ray diff-
raction. Samples containing appreciable brucite are shown
in text Figure 7.2.

Brucite has a layered structure, with Mg atoms
separated by layers of (OH) ions. The structure produces

three main diffraction peaks, which readily identify the

phase. 4 1 7




ak hkl

4.77 (o01)
2.365 (101)
1.794 (102)

The layered structure may cause preferred orientation
on a smear mount. Orientation effects alone are not
enough to account for the difference in apparent brucite

content observed in Blue River serpentinite.
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