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I have never done anything 'useful^. No 

discovery of mine has madet or is likely 

to makej directly or indireatly^ for good 

or illJ the least difference to the amenity 

of the world . . . . I have cust one ohanoe of 

escaping a verdict of complete triviality^ 

that I may judged to have created some­

thing worth creating. And that I have orea,ted 

something is undeniable: the question is 

about its value. 

G.H. Hardy (1877-1947) 

A Mathematician's Apology 



ABSTRACT 

The purpose of this research is the util ization of experimental 

structure function moments to test various models of the quark energy-

momentum distribution inside the nucleon and to extend these models 

to discussion in a wider context: the contemporary interacting field 

theory of quarks and gluons (Quantum Chromodynamics - QCD); and stat ic 

properties of the nucleon. 

A complete connection between a general quark energy-momentum 

distribution and the structure function moments is presented and a cure 

for the pathology of the lack of necessary kinematical restrictions in 

these models is extensively validated. 
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CHAPTER 1 INTRODUCTION AND THE QUARK PARTON MODEL 

The proliferation of particles that were experimentally discovered 

in the 1950s prompted Gel 1-Mann and Zweig W to independently suggest 

that a l l these particles could be built from more fundamental ent i t ies, 

namely quarks. Moreover the early high-energy inelastic electron-proton 

scattering experiments demonstrated similar features to lower energy 

electron-nucleus scattering which revealed the composite nature of the 

nucleus, and could thus be evidential that the proton was in turn 

also a composite object, containing more fundamental particles called 

partons. Subsequent experiments have accurately reaffirmed our notions 

of the elementary nature of quarks, in the measurement of the magnetic 

moment ratio vip/Up* and the pointlike structure of partons in deep-

inelast ic scattering: there is as yet no evidence to suggest that the 

properties of quarks are different from those of partons. 

This then is the very simple model (naive parton model) which 

provides our point of departure: the proton is composed of three 

free quarks, or partons, of types u, u, d (to additively explain the 

proton's SU(3) properties). Since we will be primarily concerned with 

inelast ic lepton scattering off such a proton we make the further 

assumption that the photon or vector boson couples minimally to the 

quarks in the proton. 

In Chapter 2 we derive fundamental relationships between the 

experimental structure functions and a general distribution in energy 

and three-momentum of the quarks inside the proton. The deep-inelastic 

structure functions are kinematically restricted to the region 0 < x < 1 

whereas, i f our quarks are i n i t i a l l y free and massless with varying 

energy, the range of x is unlimited; the same pathology occurs in the 

cavity approximation to the bag model (3). We refer to such a model as 

SECTION 



the X model. The cure is to replace x by logg(l-x) to formulate a 

log (1-x) model. The comparison between these two models is extensively 

investigated. 

In Chapter 3 we define and relate the moments of the structure 

functions with various properties of such a distribution in the context 

of both the X model and the logg(l-x) model; the two subsequent chapters 

discuss recent experimental analyses of the nucl.eon structure functions 

and the possibi l i t ies of f i t t ing the data with different modelled 

distributions. 

However experiments have also shown W that the quarks carry 

only 45% of the proton's momentum. The interacting f ield theory of 

quarks and gluons (Quantum Chromodynamics - QCD) then pictures the 

quarks bound by gluon-exchange and i t is these gluons which carry the 

missing momentum. The modifications thus required to our simple model 

and consequent scaling violations are discussed in Chapter 6. 

F inal ly , with reference to specific fitted momentum distributions 

of the constituent quarks, we calculate the ratio of the axial-vector 

and vector coupling constants of the nucleon, Gy /̂G ,̂ as an example 

of a stat ic property of the nucleon, and describe further applications 

of various aspects of this work. 



CHAPTER 2 QED DERIVATION OF THE STRUCTURE FUNCTION 

Consider the i n e l a s t i c scat ter ing of leptons on nucleons via one par t ic le 

exchange. Our kinematical var iables are defined in figure 1, where i may be 

an electron or neutrino, and writ ing the energy transfer in the laboratory 

system a s : 

q=p-p'=(v,5.) 

Figure 1. I n e l a s t i c lepton-
nucleon scat ter ing 

V = E - E ' (2.1) 

and the invariant four-momentum a s : 

Q2 = -q2 = - (p -p ' )2 

= -2m2+2EE'-2|p| |p' |cose 

Thus at high energy where the lepton mass 

may be neglected: 

(2 .2) Q2 = 4EE's in2 | 

Further the mass of the produced hadronic system i s given by: 

W2 = (P+q)2 = M2 + 2P-q + q2 

= M2 + 2Mv - Q2 (2.3) 

in the laboratory. 

The naive parton model assumes that the momentum t ransfer in f igure 1 

i s s u f f i c i e n t l y high to consider the i n e l a s t i c lepton scat ter ing process as 

due to incoherent e l a s t i c scat ter ing o f f the point - l ike const i tuents , i n i t i a l l y 

considered as free quarks by ignoring any interact ion. Thus: 

k2 = (k+q)2 

i . e . Q2 = 2k.q = 2xP.q 

where x i s the f ract ion of the proton's momentum carr ied by the quark. In the 

laboratory frame P-q = Mv, so we may write the dimensionless var iable x a s : 

2Mv 
(2.4) 



Figure 1 i s now replaced by f igure 2 for the case of electron sca t te r ing , 

summing over a l l quarks. The mass condition 

on the struck quark gives: (E .P ) ( E ' . P ' ) 
\ 

electron 

quark 

(ko+v)2 =.|k+a|2 

i . e . 2kjjV+q2-2|k| l^jcosa = 0 

or Mx = ko-kcosa (2.5) 

(ko,k) (k^.k; ) 

Figure 2. Electron-quark 
scat ter ing 

Since the i n i t i a l quark i s also assumed to be 

free and massless then: 

Mx = kQ( l -COSa) (2.6) 

The d i f f e r e n t i a l c ross -sec t ion i s then j u s t as in QED , i . e : 

da = 
•d3p' d3k' m2m2 1 

— (̂ TV)** 6^ (p'+k'-p-k)|M|2-
(2Tr)3 (2^)3 EE'k^k; VF 

(2.7) 

where F i s the f lux of incident p a r t i c l e s and V i s the spat ia l volume of 

i n t e r a c t i o n . Integrating over d3k' and wri t ing d3p' = |£ ' |2dp'df i ' = |£ ' |E 'dE'df i ' 

we get: 

d2a 2m2m2jp-| |M |2 i 
= ^ ^ ~ 6(2m2-2EE'+2|pi|p'|cose+2k.q) 

dE'dfi' Ek„ (2ir)2 VF 
(2.8) 

Since we are not in the quark's res t frame we must average over angles pc 

between quark and photon for a spher ica l l y symmetric quark d is t r ibu t ion . From 

equation (2.6) x then ranges from zero to 2kQ/M and 

d2a 2 m M p' I M|2 
= q e ^ I _ J . ^ 

dE'dn' Ek, 
0 

1 dcosa 6(2m2-2EE'+2|p[|p'|cos9^2[k||qjcoscH-2knv): 

(2IT)2 VF J _ ^^dCOSa 

(2.9) 
|2 1 

2Ek2|q| (2Tr)2 VF 

* A.C Davis and E . J . Squ i res , Phys-. Lett. 69B (1977) 249, re fer to th is as the 

mass-shel l -a l lowed region. 



The invariant amplitude |M|2 is formally written (^: 

; { (k ' -p ' ) (k .p) + (k ' .p)(k.p' ) - m2(k'.k) - m2(p'.p) + 2m|m2 • 2 - ê  
2ni>2q 

(2.10) 

after summing over final spins and averaging over in i t ia l spins. Since the 

experiments measure the differential cross-section for electron scattering off 

a proton the factor VF in the proton rest frame is given by (̂ ): 

/ (p .P)2 - ni2M2' 
VF = - ^ = 1 (2.11) 

EM 

since m̂  is negligible, and thus |p ' | =: E ' . Substituting equations (2.10) and 

(2.11) (neglecting terms proportional to m2, m̂ ) into equation (2.9): 
e q 

d2a e V E' f ^ 
= (I<'-P')(k-P) + (k'-p)(k.p') (2.12) 

dE'dQ' 4Tr2q'* 4k2E |q | >- J 

Define Mandelstam variables for the electron—(j-warfe interaction: 

s = (p+k)2 = (P'+k')2 

- 2k.p = 2k'.p' (2.13) 

u = (p ' -k )2 = (p-k ' )2 

= -2k.p' = -2k' .p (2.14) 

t = (p' -p)2 = (k ' -k )2 

= q 2 (2.15) 

Hence: 

{(k ' .p)(k.p) + (k ' .p) (k .p ' ) } = Hs2 + (s+t)2} (2.16) 

In the laboratory system define: 

p = (E,Ecos0,Esine,O) (2.17) 



q = (v.q^.O.O) (2.18) 

k = (kQ,kgCosa,kQsinacos3,kQSinasine) (2-19) 

where cose = 0, COS23 = 1 for a spherically symmetric quark distribution. The 

on mass shell conditions for the final electron and quark then give respectively: 

2Ev - q2 
cose = (2.20) 

2Eq^ 

2koV + q2 
cosa = —^ (2.21) 

2k,q^ 

Therefore: 

s = 2k'p = 2koE(l-cosacose-sinacosesine) 

= -5!v(E+Mx-ko+^) (2.22) 

and 

s 2 + 2E2k2sin2asin2e 

s" 2 + _ q ^ ( q 2 + 4 E E ' ) ( q 2 + 4 k j j V + 4 k 2 ) (2.23) 

Further: 

(s+t)2 = s 2 + 2st + t 2 

= " s 2 + 2 i q 2 + (2.24) 

Therefore: 

| s 2 + ( s + t ) 2 | = 2 s 2 + 2 s q 2 + qt 

= ^v2 (E+Mx-k + ? i l ^ ) 2 + J [ ! ( q 2 + 4 E E ' ) ( q 2 + 4 k - v + 4 k 2 ) 

q^ • ° V • 4 q 5 

^\(E+Mx-k +?!So) + q'* 
q^ ° V 

•^ |2v2(E+Mx)2 - 2vq2(E+Mx) + q̂  + i q 2 ( q 2 + 4 E E ' ) + 2 v q 2 k n ( l - — ) 
qz!. ^ ^ ^ " V 

- 4v2ko(E+Mx) ( l -^ ) + ko(q2+4EE')(v+ko) + 2 v 2 k 2 ( l - ? ^ ) 2 | 



-9^|2v2(E+Mx)2 - 2vq2(E+Mx) + q^ + Jq2(q2+4EE') + vk(j(2v2+12EE'+q2) 

where the k 2 terms have been neglected. Using equation (2.2) and 

v(E+Mx) = vE - i q 2 , this leads to: 

{s^ + (s+-tp} = 8MxEE'sin2 4 ^ ' / l + !!L + - 5! + S!!! + !k(2v2+12EE'+q2)\ 
^ q^l v2 v'̂  v2 \,^ 3̂ J 

^ (2.25) 

Substituting equation (2.25) into equation (2.16) into equation (2.12) gives: 

MYci 'n2i „5f 9FF' ^0"+ n2 n2rF' U . . „.1 d2a = ^ E 
dE'dn' 4Tr2q't 

Using 

= (1 - - ^ 
v 2 

2EE' Mx 
v 2 v s i n 2 ^ 

Sq"̂  _ 3 M 2 x 2 

v 2 

_ 2Mx 
x)2 V 

2kg q^' 
(2.26) 

( l - ^ + ? 5 M 2 x 2 ) (2.27) 
2v2 

q 2 E E ' _ M 2 x 2 

A v 2 s i n 2 | 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

equation (2.26) reduces to (up to terms of order v " 2 ) : 

= E'2 i ^ j s i n 2 i + l ( M x + [ 2 k o - 3 M x ] s i n 2 | ) 
dE'dfJ' 4Tr2q'* 2 k 2 l 2 L 0 2' 

+ -^(6Mx[kQ-Mx]+Mx[^Mx-12ko]sin2|-)| (2.32) 

We may compare this with the standard deep-inelastic electron-proton 

cross-section formula {^): 



d2a . e** 
dE'dfi' 4Tr2q't 

E ' 2 + ( E l - f 2 ) s i n 2 | | (2.33) 
• M M M 

and deduce the dimensional relationships between F^ and F^ and the Feynman 
A 

variable x by equating the coefficients of sin22 in equations (2.32) and ( 2 . 3 3 ) : 

F,(x ,v) = J ^ ! ^ (1 + + 0-1) ( 2 . 3 4 ) 
4 k 2 V v2 

0 

F J x , v ) = J ! ! L ^ 1 + 0 _ L ) ( 2 . 3 5 ) 
2k2 V v2 

0 

We have already noted prior to equation (2.9) the range of x for which this 

on mass shell picture is jus t i f iab le , namely: 

0 < X < (2.36) 
M 

Noting the relationship ( 2 . 4 ) the above equations can be simply rewritten: 

F , ( x , Q 2 ) ^ m x [ k ^ - V [ x ] ^ Q 2.) ( 2 . 3 7 ) 
4 k 2 Q 2 

F , ( x , Q 2 ) = ! ^ (1 + ^^M^-^^] + 0 ± ) (2.38) 
2k2 Q2 Q'* 

In figure 2 we have implicitly assumed a single value Ik for the in i t ia l 

momentum of the free quark and thus ignored confinement, This can be 

phenomenologically remedied by considering a distribution in energy and 

three-momentum of the quarks, P(ko,k), normalised such that: 

J J d k o k 2 d k P ( k o , k ) = 1 ( 2 . 3 9 ) 
0 0 

Our previous argument then only requires modification in equation ( 2 . 8 ) , 

through: 



f f dkok2dkP(ko,k) j"^^ dcosa 6(2m2 - 2EE' + 2|£|lp'|cose + 2|khq|cosa) 
0 0 ® 

OO CO 

dk„ 
0 

kdkP(ko,k). 

iMx-k I 21^1 
(2.40) 

using equation (2.5). Equation (2.35) then becomes, to leading order: 

M2x2 
F2(x) = f dko ' kdkP(ko,k) 

Mx-kJ 

(2.41) 

This equation expresses the experimental structure function of a single quark 

in terms of the general distribution in energy and three-momentum of the 

quark. The reader will note that the range of x is no longer limited through 

equation (2.6) but can, in principle, take any value (unless a cut-off is 

imposed on k^), whereas kinematics restr icts x to the region 0 < x < 1. 

The calculation of structure functions in the cavity approximation to the 

bag model (3) encounters the same pathology because of lack of translational 

invariance, but this may be cured by replacing x by -log (1-x). This has been 

demonstrated in the two-dimensional bag W and we adopt the same prescription 

in the integral of our fundamental relation, equation (2.41), but leaving 

the 'coeff icient' x2 which is of kinematic origin. Thus: 

F,(x) 
M2x2 f dk, kdkP(ko,k) 

Mlogg(l-x)+kj 

(2.42) 

This then ensures that the structure function goes to zero as x goes to unity. 
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CHAPTER 3 COMPLETE CONNECTION BETWEEN THE EXPERIMENTAL MOMENTS AND THE 
QUARK DISTRIBUTION IN TWO MODELS 

The arguments of the previous chapter are incomplete since we have 

only considered the 'direct ' contribution to the structure function (see 

figure 2 ) , which can be fully represented as the sum of the three Feynman 

diagrams in figure 3, namely: 

( i ) The familiar 'direct ' contribution. 

( i i ) The 'sea' contribution, in which a quark-antiquark pair is 

created by the incoming photon. We consider only this 'sea ' 

mechanism due to confinement and ignore the perturbative QCD 

contribution of figure 4. 

( i i i ) The 'Z-graph' contribution which contributes negatively to ( i i ) 

since the created quark is excluded from occupying the ground 

state along with the 'valence' quark. 

yfXjCXIXP 

( i ) ( i i ) ( i i i ) 

Figure 3. Graphical representation of the contributions to the structure 
function F2(x) 

• > 

Figure 4. Perturbative gluon contribution to the 'sea' 



n 

We define the ' d i r e c t ' contribution in ( i ) by I (x ) so that from equation (2.41) 

we wr i te : 
00 00 

I ( x ) = 
M2 f dk, l<dkP(k^,k) 

Mx-kJ 

(3.1) 

Comparing the kinematics of the 'Z-graph' and ' d i r e c t ' contributions 

in the Bjorken l i m i t i t i s straightforward to demonstrate (see Appendix A) 

that the 'Z-graph' contribution i s obtained by x -» - -x in the ' d i r e c t ' 

contr ibut ion. Hence the 'Z-graph' contribution may be wr i t ten: 

I ( - x ) 
M2 

Y 
f dk. kdkP(ko,k) 

Mx+kn 

(3.2) 

Temporarily ignoring the color and spin of the quarks the total 

contribution to the structure function ^y^) (divided by x^) * from a 

s ingle quark i s : 

fq(x) = I (x ) + A- (3.3) 

where A' represents the remaining ' s e a ' contribution a f ter subtraction of 

the 'Z-graph' contribution ^ i . e . when the quark i s produced in an energy 

state above the ground state occupied by the 'valence' quark. S imi la r ly 

the contribution from an antiquark i s given by "I" : 

f - ( x ) = I ( - x ) + A' (3.4) 

* Our notation i s defined by wri t ing the CalIan-Gross re lat ionship ^ as : 

2xFi(x) = F2(x) = E e ? x f . ( x ) 

§ J . S . Bel l and A . J . G . Hey, vhys. Lett. 74B (1978) 77, re fer to th is l a t t e r 

contribution as the antiparton "valence" term, 

t Bel l and Hey Cop. oit.) e f f e c t i v e l y have - I ( - x ) here since they neglect 

color oand f lavor in the i r equation (28) . 
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where no ' d i r e c t ' contribution e x i s t s and no 'Z-graph' subtraction i s 

required since no Pauli exclusion pr inc ip le operates to prevent the antiquark 

from occupying a ground s ta te . 

The color and spin of the quarks are now considered in a three valence 

quark model and th is leads to modifications due to reappi icat ion of the 

exclusion p r inc ip le : the quark produced in the 'bubble' diagram of figure 3 ( i i ) 

Qcm. be in the ground state with energy k̂  i f i t has a d i f ferent color or spin 

to the valence quark. Consequently (see figure 5 ) : 

= 21 (X) + 4A + A' (3.5) 
X 

where A represents the ' s e a ' contribution when the quark i s produced in 

the ground state (but with d i f fe rent color or spin to the valence quark), 

i . e . : 

A = I ( - x ) (3.6) 

The factor 4 derives from the exclusion pr incip le: of the s i x possible 

states (3 c o l o r s , 2 spins) the ' s e a ' quark i s excluded from the two valence 

quark s t a t e s . S i m i l a r l y : 

td l i^ = I (x ) + 5A + A' (3.7) 

S\I\j<i 
u 

4 u 

d 

Figure 5. The ' d i r e c t ' and ' s e a ' contributions to the u-quark structure function 
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We have assumed SU(3) symmetry so that no d is t inc t ion i s made between 

u and d quarks in I ( x ) . We make the same assumption about I ( - x ) , thus 

neglecting any possible e f f e c t the extra valence u quark may have in 

constraining u production in the ' s e a ' re la t ive to ci production. Also: 

= I ( - x ) + 5A + A ' (3.8) 
X 

I ( - x ) + 5A + A' (3.9) 
X 

Rearranging equations (3 .5 ) - ( 3 .9 ) gives: 

I (x ) = i V ^ - i f u i i ) - lA' 
2 x 3 x 6 

= _ s f j O O _ 2 A ' (3.10) 
6 X 

I ( - X ) = i V ' ^ ^ - iA 
6 X 6 

i ! d i i ^ - iA ' (3.11) 
6 Y 6 

The electromagnetic structure functions are given by the relat ionships 

2xF^P(x) = F f ( x ) = ^x(f^(x)+fjj(x)) + I x ( f d ( x ) + f j ( x ) ) + i x ( f 5 ( x ) + f - ( x ) ) 

+ ^x(f^(x)+f_(x)) + • • • • • (3.12) 

2 x F f ( x ) = F | " (X ) = ^ x ( f j ( x ) + f j ( x ) ) + l x ( f ^ ( x ) + f - ( x ) ) + lx{f^ix)+f^{x)) 

+ i x ( f j x ) + f - ( x ) ) + (3.13) 

where isosp in re f l ec t ion has been used. Therefore: 

F^2P(x) - F^/^(x) = i x ( f^ (x )+ f - (x ) ) - i x ( f^ (x )+ f j ( x ) ) (3.14) 

Using equations ( 3 . 5 ) - ( 3 . 9 ) : 

F 2 ( X ) - F ^ ) = i ( I ( x ) - I ( - x ) ) (3.15) 

x2 x2 ^ 



(3.16) 
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The neutrino structure functions can s i m i l a r l y be wri t ten: 

^l^M = 2x(f^(x) + f_(x) + f^{x) + f - ( x ) + • • • . . ) 

F f ( X ) = 2x(f^j(x) + f^-(x) + f - ( x ) + f^(x) + ) 

x F f (x) = 2 x ( f j ( x ) - f_(x) + f^(x) - f_(x) + ) 

x F f ( X ) = 2x(f^(x) - f j ( x ) + f_(x) ~ f^(x) 4- ) 

where the factor 2 derives from the coupling of axial and vector currents . 

We expect the charm contribution to be small because of the larger mass 

of the charmed quark and experimental evidence ^̂ ''̂  further suggests that the 

strange contribution i s of the order of only 2% of the total quark + antiquark 

contr ibut ion: we thus neglect both charm and strange contributions in 

equation (3 .16 ) . Averaging over a nucleon target composed of an equal number 

of neutrons and protons: 

F 2 - ( x ) = x( f^(x) + f j ( x ) + f - ( x ) + f^{x)) (3.17) 

^^fi^) = x( f^(x) + f^(x) - f - ( x ) - f^-(x)) (3.18) 

and subst i tut ing equations (3 .5 ) - (3 .9 ) we get: 

^ i V ) = 3 i (x ) + 21 I ( -x ) + 4A' (3.19) 

^ f ^ l ^ ^ = 3 I (x) - 3 I ( - x ) (3.2Q) 
X 2 

which can be inverted to give: 

24I(x) = !^l^^ + l^^lfi^ - 4 A ' (3.21) 
x2 x2 

24I ( -x ) = f l V ) _ xF^'^(x) _ ^^ 22) 
x2 x2 
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We define the moments of the ' d i r e c t ' contribution by: 

u = f x " l ( x ) d x = r x " { I ( x ) + ( - l ) " l ( - x ) } d x (3.23) 
" - 0 0 0 

From equation (3.15) th is can be writ ten in terms of the experimental structure 

function moments: 

u (n odd) = 3 / x" { F 7 ( X ) - F7 ' (x ) }dx (3.24) 
" 0 2 

Taking n=l in equations (3.23) and (3 .24) : 

CO 

y = J xl (x)dx 
J- -oo 

= 3 f ^ { F f ( x ) - F f ( x ) } 
0 X ^ ^ 

=1 (3.25) 

where the l a s t equal i ty follows from imposing the charge constraint in 

equation (3.14) and assuming an SU(3) symmetric sea . Equation (3,25) 

expresses the Adler sum rule (^^), and the experimental value i s 0.81, the 

small X region being inaccess ib le This consistency j u s t i f i e s our 

previous assumption about the SU(3) symmetry of I ( - x ) . The va l id i t y of th is 

sum rule i s equivalent to normalising the 'd i rec t ' contribution such that: 

f x l ( x ) d x =1 (3.26) 
-00 

I 

Using equations (3 .21) - (3 .23) we can a lso write: 

% = 1 f x " - ^ { ( F f ( x ) + 7 x F f ( x ) ) + ( - l ) " ( F f ( x ) - x F ^ ^ x ) ) } d x - I A ^ (3.27) 

where A ^ i s the nth moment of the remaining ' sea ' contribution and vanishes 

i d e n t i c a l l y in equation (3.27) for odd n. Moreover the ' s e a ' d is t r ibut ion i s 

expected to be small and concentrated a t low x (i^), the even moments thus being 

neg l ig ib le : consequently A ^ may be omitted in the following analys is without 
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undue error . The right-hand s ide of equation (3.27) i s a l inear combination 

of the neutrino structure function moments and i s thus well provided with 

data (see Chapter 4 ) . Again taking n=l: 

Oft 

-vN. = 1 J F^ ' \x )dX = 1 
3 0 

This i s the Gross-Llewel lyn Smith sum rule '̂̂ ^ which has the experimental 

value W around 1.06 ± 0.16, thereby consistent with the normalisation 

c r i t e r i a of equation (3 .26 ) . 

We now consider the moments of I (x ) in terms of quark momentum 

d is t r ibu t ion referred to in equation (2 .39 ) . Thus using equation (3.1) to 

evaluate equation (3.23) for a d is t r ibut ion P ( kQ , k ) : 

oo 

dk. M_2 

2 
x"dx 

M2 

2 

0 

It 

kdkP(ko,k) 

|Mx-kJ 

r dk f • x"dx 
• 

kdkP + ' x % 

G ' ° ^ -00 ko-Mx . ko • 
M 

kdkP 

Mx-ko 

kn+k 

M2 • dkof kdkP x"dx + 
• 

kdkP 
2 

0 ^ ko-k 0 
M 

ko 
M 

("dx'. 

1 

2(n+l)M' n-i 
dk, 

(3.28) 

kdk{(ko+k)"+^ - (k„ -k )"+ ' }p (k j,k) (3;29) 

So for consecutive n values: 

= J J ^ d k o k 2 d k P ( k o , k ) 

3 M \ k o / / 

M2 ^ ^ M2 \ / 

M2 = 

(3.30) 

(3.31) 

(3.32) 
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^ 5 M 3 \ k / M3 M3 

= ± / k ^ \ + - 1 2 - / k 2 k 2 \ + - l ( k S ) 
3Mt 

3 5 
7M5 \k / M5 \ M5 \ M5 

(3.33) 

(3.34) 

(3.35) 

where we define 

< k ^ s > . k'̂ +'dk P(k„,k) (3.36) 

The various combinations of mean properties of the d is t r ibut ion in 

equations (3 .30) - (3 .35) can therefore be speci f ied in terms of the experimental 

moments' values of equation (3 .27 ) . 

We can do a s im i l a r ana lys is in terms of the logg( l -x) model alluded to 

at the end of Chapter 2 , viz. by replacing x by-log (1-x) in equation (3 .1 ) : 

I (x ) 
M2 dk. kdk P(ko,k) 

Mlogg(l-x)+kJ 

(3.37) 

The evaluation of equation (3.23) i s then modified (we denote the moments in 

th is model by L^) : 

00 . CO 

L„ = 
M2 

' x"dx • dko 

2 
kdk P(k„,k) 

0 | M l o g J l - x ) + k J 

M2 

2 

f dk. 
,l-exp(-^^o) » 

x"dx kdk P x"dx kdkP 

M1ogg(l-x)+kQ l-exp(- | j ) ) -Mlogg(l-x)-l^ 

M2 kdk P 
2 

0 

l-exp(-!|o) 

x"dx 

l-exp(-'^o^^) 

kdkP 

^l-exp(-'^()±!^) 

x"dx 

•I-exp(-'g) 
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M2 

2(n+l) J 

00 00 

f dk, kdk 
(r k«+k r- kn -k 

[1 - exp(- ! i i i^S] - [1 - e x p ( - ^ ) J P(ko.k) 
^ M M J 

(3.38) 

After expanding the brackets for consecutive n (see Appendix B ) , we 

can write expressions corresponding to equations (3 .30 ) - (3 .35 ) : 

Li = 

oo . 00 

• f dk„k2dkP(k„ ,k ) - - l / k A + - ^ ( k 2 ) + - ^ < k 2 ) + 
2 M \ k / 2M^ / 6 M 2 \ / 6 1 ^ 2 ^ " / 

00 00 

• f d k „ k ^ k P ( k , , k ) + - < k o ) ) ^ - ( - ^ ( k ^ ) + ^ < k § ) ) 

l ( _ L / k ! ) , i . A 2 k \ . J _ / k 3 \ ) . 3 1 ± / ^ , x , TO / k 2 k 2 W ± / k J \ ) M3 M3 120 3M't 

' ' v . < r > ^ ^ s ( ' \ ) 80 7M5 ^k. M5 M5 ̂ M5 
—̂̂ -7<̂ '> ^T (^ '^O> + 4 < k ^ k s > ^ ^ ( ^ e ) ) (3.39) 

L , = ( 1 / L N + i / k o ) ) - 2 ( J - / k 2 \ + J - ( k 2 \ ) 
3 M \ k / M \ / M 2 \ / M2 \ / 

+ 2 5 ( J _ / k _ \ +_2. / k 2 k \ + l / k 3 \ ) . 3 ( 2 ^ }0_ y^,2^y ̂  ± ) 

+ 3 0 1 ( _ l / k l v + i _ / k ^ k A + A / k 2 k 3 \ + l / k 5 \ ) 
360 7 M 5 \ k n / M5 \ ° / M5 \ ° / M5\ ° / 

! ^ ( l / k 6 \ + I.(k'*k2) +^(k2k5) + I ( k 6 \ ) + (3.40) 
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L = ( - A 2 \ + l / k i ) ) - + + l / k 3 \ ) 
3 M 2 \ / M 2 \ ° / 2 5 M 3 \ k / M3 \ ° / M3 \ ° / 

+ L 3 ( l / k ^ \ H. 1 0 / k 2 k 2 \ + i - / k ^ \ ) 

. 3 5 ( X 7 k ! \ H - A / k ' ^ k A + - ^ / k 2 k 3 \ + l / k 5 \ ) 

12 7M5 ^ k / M5 ^ ° / M5 \ ° / M 5 \ ° / 

^ 5 1 ( l / k 6 \ + 1 /k '^k2\ + ^ / k 2 k 4 \ + l / k 6 \ ) (3.41) 
+ /in M 6 \ / M6 \ 0/ M6 \ 0/ M6 \ 0 / ' ^ ' 

^ i ' i i < ^ ' ) \̂ <̂ '̂ §> ^ii'^'i) \ - ' 

•0 

M6 \ / |V|6 \ V \ V M6 

' ' = ? < ^ ' > ^ i < ^ ^ ^ » > ^ ; ^ < ^ ^ ^ » ^ ( 3 . 4 5 ) 

In equations (3 .39) - (3 .45) the moments in the logg(l -x) model, L^, are 

expressed as l inear combinations of the moments in the x model, M ,̂ and in 

pr inc ip le these l inear combinations form an i n f i n i t e s e r i e s . Normalisation 

common to both models i s defined by equation (3.26) rather than by equations (3,30) 
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and (3.39) separately . In t h i s respect ' renormalisation' in the logg( l -x) 

model i s automatic i f the f i r s t moment, L^, i s set equal to i j j ( q 2 ) , which 

w i l l be assumed to equal unity in accordance with the Adler and Gross-Llewellyn 

Smith sum r u l e s . Ja f fe and Ross (15) incorporate the Jacobean factor ( l - x ) " i 

to achieve the same s a t i s f a c t i o n . 
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CHAPTER 4 EXPERIMENTAL MOMENTS ANALYSIS 

Recent experimental analyses of nucleon structure functions have 

concentrated on the moments of the structure functions since QCD gives 

d i r e c t predict ions for the behaviour of the la t ter ^^^K Kinematical 

considerations allow the lowest moments to be meaisured more accurately 

than the structure functions themselves. This is our motivation for 

ca lcu la t ing the moments of the quark d is t r ibut ion in equations (3.30)- (3 .35) 

and ( 3 . 3 9 ) - ( 3 . 4 5 ) , so that accurate experimental data can be u t i l i z e d 

through equation (3 .27 ) . 

We r e l y on the ABCLOS bubble chamber group ana lys is 
(17) 

which combines 

neutrino and antineutrino data from low energy interact ions in Gargamelle 

with higher energy data from BEBC: s p e c i f i c a l l y we have values and errors 

for both the structure functions and the i r moments at various 
Q2 (18). 

However, s ince bubble chamber neutrino experiments are of l imited s t a t i s t i c a l 

precision compared with counter experiments, we further u t i l i s e the CDHS 

counter group r e s u l t s for neutrino and antineutrino interact ions in iron 

to check consistency where poss ib le , although this i s l imited because only 

the structure functions and the i r n=2 and n=3 moments are published from 

the CDHS experiments. In the following ana lys is Nachtmann moments are used; 

the di f ference between these and Cornwall-Norton moments i s unimportant at 

th is l e v e l . 

In equation (3.27) the moments of the 'd i rec t ' contr ibution, y^ , are 

expressed as l inear combinations of the experimental neutrino structure 

function moments and in Table 1 we present the experimental values and 

errors for (with A ^ set to zero) a t various q2 As we have seen in 

§ The values of q2 given in Table 1 correspond to average values according 

to the binning; these w i l l d i f f e r s l i g h t l y from the published q2 values 

for the structure functions (see Table 1 in re f . 17) since the structure 

functions are interpolated to fixed q2 whereas the moments are binned 

in d i f fe rent q2 intervals. 
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equation ( 3 . 2 8 ) , should equal unity in agreement with the Gross-Llewellyn 

Smith sum rule and th is i s assumed in Table 1. In experiments the measured 

quantity i s xF^ , which i s theore t i ca l l y expected to go to zero as x goes to 

zero, and the x denominator in the sum rule thus presents problems at small x. 

The CDHS group incorporate an extrapolation to x=0 and get f a i r agreement with 

the expected quark parton model predict ion ( c / the i r sect ion 6.5 with Table 2 

in r e f . 17 ) . 

Through the expansion of the exponential in equation (3.38) the moments in 

the logg( l -x ) model, L^, were seen in pr incip le to be l i n e a r combinations of 

a l l (m ^ n ) , and, s ince the range of x in the x model i s i n f i n i t e , the 

higher moments 1^ need not necessar i ly be negl ig ib le . A straightforward 

approximation from the x model to the logg( l -x ) model ( for example by 

truncating the s e r i e s in equations (3.39)- (3 .45) ) i s thus impossible, and 

to compare the models forms for the distr ibut ion P(kQ ,k) w i l l be chosen such 

that the in tegra ls in equations (3.29) and (3,38) can be performed a n a l y t i c a l l y . 

I t w i l l be s u f f i c i e n t to perform the subsequent analys is by select ing 

moments a t s p e c i f i c values of q^ from Table 1. However, for completeness, we 

include the relevant moments at a l l ava i lab le q2 and the subsequent ana lys is 

i s presented in such a way that the fast id ious reader can reproduce the resu l ts 

at any q 2 , thus invest igat ing the q2 dependence of d is t r ibu t ions . Of course 

a more in terest ing q2 dependence a r i s e s through the second term in equation (2.38) 

and th is w i l l be examined in Chapter 6. 
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Table 1. The values for the moments y^ (see equation (3.27)) from 

experiment at d i f fe rent q2 

q2 GeV2 n 

1 1.0000^''^ 
2 0.1756 ± 0.0348 
3 0.0561 ± 0.0210 
4 0.0278 ± 0.0081 
5 0.0116 ± 0.0049 

0.387 6 0.0061 ± 0.0019 
7 0.0027 ± 0.0012 
8 0.0014 ± 0.0004 
9 0.0006 ± O.O0O3 

10 0.0003 ± 0.0001 
11 (a) : 
12 (a) 

1 1.0000^^^ 
2 0.2339 ± 0.0254 
3 0.0891 ± 0.0158 
4 0.0419 ± 0.0070 
5 0.0220 ± 0.0047 

0.592 6 0.0113 ± 0.0021 
7 0.0064 ±0 .0014 
8 0.0034 ± 0.0006 
9 0.0020 ± O.O0O4 

10 0.0010 ± 0,0002 
n 0.0006 ± O.OOOl 
12 (a) 

1 1.0000^^^ 
2 0.1930 ± 0.0169 
3 0.0826 ± 0.0097 
4 0.0403 ± 0.0047 
5 0.0239 ± 0,0033 

0.837 6 0,0125 ± 0,0017 
7 0,0080 ± 0,0012 
8 0,0043 ± O.00O6 
9 0.0029 ± O.00O4 

10 0.0015 ± 0.0002 
11 0.0010 ± 0.0002 
12 (a) 
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q2 GeV2 n 

1 1.0000^''^ 
2 0.1787 ± 0.0175 
3 0.0620 ± 0.0055 
4 0.0304 ± 0.0023 
5 0.0171 ± 0.0020 

1.225 6 0.0098 ± 0.0011 
7 O.0062 ±0 .0009 
8 0.0038 ± 0.0005 
9 0.0025 ± 0.0004 

10 0.0016 ± 0.0002 
11 0.0011 ± 0.0002 
12 0.0007 ± 0.0001 

1 1.0000^^^ 
2 0.1828 ± 0.0218 
3 0.0500 ± 0.0045 
4 0.0221 ± 0.0022 
5 0.0118 ± 0.0016 

1.732 6 0.0072 ±0 .0010 
7 0.0046 ± 0.0008 
8 0.0030 ± 0.0005 
9 0.0021 ± O.00O4 

10 0.0014 ± O.00O3 
n 0.0010 ± 0.0002 
12 0.0007 ± 0.0001 

1 1.0000^''^ 
2 0.1755 ± 0.0250 
3 0.0479 ± 0.0049 
4 0.0200 ± 0.0016 
5 0.0098 ± 0.0010 

2.449 6 0.0059 ± 0.0006 
7 0.0036 ± 0.0005 
8 0.0025 ± O.00O3 
9 0.0017 ± O.00O3 

10 0.0012 ± 0.0002 
11 0.0009 ± 0.0002 
12 0.0007 ± O.OOOl 

1 1.0000^''^ 
2 0.1455 ± 0.0247 
3 0.0338 ± 0.0063 
4 0.0138 ± 0.0020 
5 0.0061 ± 0.0011 

3.873 6 0.0036 ± 0.00O7 
7 0.0020 ± 0.00O5 
8 0.0013 ± 0.0004 
9 0.0008 ± 0.00O3 

10 0.0006 ± O.00O2 
11 (a) 
12 (a) 
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q2 GeV2 n ^n 

1 1.0000^^^ 
2 0.1549 ± 0.0206 
3 0.0414 ± 0 . 0 0 7 8 
4 0.0162 ± 0.0034 
5 0.0089 ± 0.0024 

7.071 6 0.0045 ± 0.0016 
7 0.0031 ± 0.0013 
8 0.0018 ± 0.0010 
9 0.0013 ± 0.00O9 

10 0.0008 ± O.00O7 
11 0.0006 ± O.00O6 
12 (a.) 

1 l.OOOO^''^ 
2 0 .1204 ± 0,0174 
3 0,0278 ±0 ,0092 
4 0,0098 ± 0,0049 
5 0,0030 ± 0,0042 

14.100 6 0,0013 ± 0,0026 
7 0,0001 ± 0,0024 
8 (a) 
9 (a) 

10 (a) 
11 (a) 
12 (a) 

1 1,0000^*^^ 
2 0,1114 + 0,0105 
3 0,0254 ± 0,0042 
4 0,0090 ± 0,0022 
5 0,0031 ± 0,0019 

20.000 6 0,0015 ± 0,0017 
7 0,0005 ± 0,0012 
8 (a) 
9 (a) 

10 (a) 
11 (a) 
12 (a) 

1 KOOOO^''^ 
2 0,1000 ± 0,0127 
3 0,0244 ± 0,0041 
4 0,0083 ± 0,0022 
5 0.0032 ± 0.0019 

28.284 6 0.0015 ± 0.0013 
7 0.0007 ± 0.0013 
8 0.0005 ± 0.0010 
9 (a) 

10 (a) 
11 (a) 
12 (a) 
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q2 GeV2 n ^n 

1 1.0000^^^ 
2 0.0809 ± 0.0105 
3 0.0243 ± 0.0036 
4 0.0085 ± 0.0017 
5 0.0034 ± 0.0012 

48.990 6 0.0017 ± 0.0008 
7 0.0008 ± 0.0006 
8 0.0005 ± O.0O04 
9 (a) 

10 (a) 
11 (a) 
12 (a) 

1 1.0000^^^ 
2 0.0746 ± 0.0O99 
3 0.0217 ± O.0O25 
4 0.0076 ± O.OOlO 
5 0.0032 ± O.0O07 

63.246 6 0.0016 ± O.0O04 
7 0.0009 ± 0.0004 
8 0.0006 ± 0.0O02 
9 (a) 

10 (a) 
11 (a) 
12 (a) 

1 1.0000^^^ 
2 0.0755 ± 0.0904 
3 0.0201 ± 0.0136 
4 0.0069 ± O.0O23 
5 0.0031 ± O.OOOB 

77.460 6 0.0016 ± O.0O05 
7 0.0010 ± 0.0004 
8 (a) 
9 (a) 

10 (a) 
11 (a) 
12 (a) 

(a) The moments are l e s s than 0.0001 for these n values 

(b) The Gross-Llewel lyn Smith sum rule i s assumed correct 

see equation (3.28) 
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CHAPTER 5 THE QUARK DISTRIBUTIONS 

In Chapter 2 we introduced a normalised distribution in energy and 

three-momentum of the quarks, P (ko ,k ) , to phenomenologically account for 

confinement and in Chapters 3 and 4 we defined the moments of this 

distribution and related these to the experimental moments of neutrino 

structure functions. We now test various models of the quarks' motion by 

attempting to f i t various parameterizations of P(kQ,k) to the data in its 

explicit form in Table 1. 

§5.1 Models with free, massless quarks 

In the f irst instance we ignore confinement and consider the deep-

inelastic lepton scattering as due to incoherent elastic scattering off 

free, massless quarks, the final-state interactions taking place on a much 

longer time-scale and thus being disregarded. It is evident from Appendix A 

that such a model with quarks remaining on mass shell will have the 'sea' 

contributing in the unphysical region x < 0 and consequently .Fg î"*̂  xl̂ s 

will be identical in the region x > 0 (see equations (3.19) and (3.20)). 

This pathology will be rectified in §5.3 when confinement is taken into 

account. 

For the present,.with |k_I = k g , we may rewrite equations (3.30)-(3.35) as: 

= 1 (5.1) 

M2 = — (k> (5.2) 
3M ^ ^ 

M 3 = A ( k 2 ) (5.3) 

M = I ^ ( k 3 ) (5,4) 
CMS \ / 1+ 5M3 

= 4 ( k A (5.5) 
5 31̂ 4 \ / . 
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and these equations may iri turn be equated with the experimental numbers 

(at any q )̂ given in Table 1. 

With the definition equation (3.36) a simple generalization of the 

Cauchy-Schwarz inequality in terms of the moments ^̂^̂  requires thg following 

inequalities to be valid: 
a+b 

< i» ) <k^) > (k 2 > ^ ; .(6.7) 

provided & ^ b), which may be rewritten in terms of M̂ : 

^ 1 3 - V 3 - ^^2. ^0 (5'8) 
8 

A =MM - M > 0 i5S) 
15 , 1 5 2 3 

= M2M6 - ^ M 2 > 0 (5.11): 
21 

25 
A , • = M,M, - - M 2 > Q (5.12) 

35 3 5 24 ^ 

= MA .- -̂ M§ > 0, • (5.13): 
35 

Therefore initial criteria for the simple model of free, massless quarks 

are that the quantities A must be positive. Taking values for from the 

experimental moments in Table 1 the values for A at various q2 are calculated . 

in Table 2. We see that the criteria are satisfied except for the larger 

moments, where the experimental errors are more substantial; the discrepancy 

is not serious and, for initial orientation, we may proceed with models 

incorporating free, massless quarks. 
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Table 2. The quantities A defined by equations. (5.8)-(5.13), which are 
required to be positive 

q2GeV2 A 
1 5 

A 
2h 

A 
26 . 

A 
35 

A 

(a) . 
0.387 0.0214 0.0074 0.0015 0.0002 -0.0002 +0.0000 

(a) 
0.592 0.0276 0.0114 0.0013 0.O0O6 0.0001 -0.0000 

0.837 0.0407 0.0148 0.0005 0.0005 0.0003 -0.0001 
(a) 

1.225 0.0261 0.0120 0.0013 0.0007 0.0001 -0.0000 
(a) 

1.732 0.0124 0.0085 0.0014 0.0007 0.0001 +0.0000 
(a) 

2.449 0.0132 0.0067 0.0011 .0.0006 0.0001 +0.0000 
(a) (a) 

3.873 0.0100 0.0046 0.0008 O.O0O3 +0.0000 +0.0000 
(a) 

7.071 0.0144 0.0066 0.0007 0.0004 0.0001 -0.0000 
(a) (a) (a) 

14.100 0.0115 0.0020 0.0004 +0.0000 -0.0000 +0.0000 
(a) (a) 

20.000 0.0114 0.0022 0.0003 0.0001 -0.0000 +0.0000 
(a) (a) 

28.284 0.0132 0.0024 0.0002 O.OOOl +0.0000 +0.0000 
(a) (a) 

48.990 0.0169 0.0026 0.0001 O.OOOl +0.0000 +0.0000 
(a) (a) 

63,246 0.0154 0.0026 0.0001 O.OOOl +0.0000 +0.0000 
(a) (a) 

77.460 0.0137 0.0026 0.0001 0.0001 +0.0000 +0.0000 

(a) Where the quantity is less than 0.0001 the sign is stated. 
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§ 5 . 1 . 1 F r e e , m a s s l e s s quarks w i th a s i n g l e f i x e d energy 

We begin w i th the s i m p l e s t p o s s i b i l i t y of a f i x e d energy k^ f o r the 

quarks which remain on mass s h e l l . The c o n t r i b u t i o n to the s t r u c t u r e f u n c t i o n , 

from a s i n g l e quark i s then g iven by the l ead ing term of equat ion ( 2 . 3 8 ) : 

I ( x ) = i l i ( 5 . 1 4 ) 

a uniform d i s t r i b u t i o n which s a t i s f i e s the n o r m a l i s a t i o n requirement (3 .26 ) 

2k 
over the range 0 < x < — o . With Ik I = kg ( f i x e d ) , the f i r s t four moments a r e 

M 
g iven by equat ions ( , 3 . 3 0 ) - ( 3 . 3 3 ) : 

= 1 ( 5 . 1 5 ) 

M„ = + h = i k „ ( 5 . 1 6 ) 
3Mko M 3M 

V [ . = ^ + ^ = I k Z ( 5 . 1 7 ) 

M = ± l . ! 3 i . ! ^ = Iik3 ( 5 . 1 8 ) 
• 5M3kQ M 3 M3 5M3 ° 

E q u a t i o n s ( 5 . 1 6 ) - ( 5 . 1 8 ) thus o f f e r an immediate t e s t o f t h i s e lementary model 

when equated wi th the exper imenta l moments y^* from Table 1, viz: 

lo = 3 = (1 ) i . ( ^ ) i ( 5 . 1 9 ) 
M ' t 2 ^ 1 6 ^ 

The v a l u e s o f t h e s e q u a n t i t i e s and t h e i r e r r o r s are d i s p l a y e d i n f i g u r e 6. 

I t i s not s u r p r i s i n g to f i n d t h a t , even w i t h i n exper imental e r r o r s , the 

e q u a l i t y ( 5 . 1 9 ) cannot hold i n genera l and that a model wi th f r e e , m a s s l e s s 

quarks o f f i x e d energy i s incompat ib le w i th the d a t a . However, i n the next 

s e c t i o n , a m o d i f i c a t i o n w i l l be seen to l e a d to c o n s i d e r a b l e improvement. 
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3.20 

Figure 6. The moments quantities referred 
to in equation (5.19) and their 
error bars 
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§5.1.2 Free, .massless quarks with varying energy 

In considering a distribution of free, massless quarks with varying 

energy we seek to include the smallest number of parameters which will give 

a reasonable f i t to the experimental moments, although in theory an infinite 

number of moments and therefore an infinite number of parameters will be 

needed to precisely determine the function. For guidance on this point the 

method of Yndurain (20) been utilized (see Appendix C and the comments 

therein) to show that the f i rst three moments (including normalisation) are 

adequate for our purposes to reconstruct the structure function and we thus 

include three parameters (including normalisation constant) in our distribution: 

P ( k Q . k ) = (1 + a k ^ ) 6 ( k - k^ ) (5 .20) 

The form of this distribution allows us to perform the necessary integrals 

analytically in both the x model and the logg(l-x) model. 

When this form for the distribution is substituted into equations ( 3 . 3 0 ) -

(3 .32) for the x model the integrals may be performed straightforwardly and 

equated with the experimental moments at various q2: 

Ml = N ( 1 + A . \ = v.^(q2) = 1 (5 .21) 

„^ = i N / L . l i ) = „ ( , 2 ) ,5 .22) 
^ 3MU2 a 3 / 2 

M3 = ^ ( 4 - ) = ^3(q') (5-23) 
^ M2\a3 • 

This allows solutions a ,a (at various q2) given by: 

..M . ± ^%/ - ^5 24) 
^3 

, . f 4 - 3 a M y A / 4 - a 2 M 2 , \ ' ^^^^^^ 

8 - 3oiMy2/ \12- aWuJ 
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Our normalisation constant, N, may be obtained from equation (5.21): 

N-i = l + i 
a a' 

(5.26) 

To illustrate the procedure which may be adopted if one wishes to 

examine the q̂  dependence, we select the experimental moments at the particular 

q2 = 2.449 GeV2 from Table T and obtain the following two sets of solutions: 

aM = 4 . 8 8 4 or 17.100 (5.27) 

aM= -1.285 or -85,293 (5.28) 

NM = 6.628 or -4,288 (5.29) 

The second set of solutions is inadmissible because of a negative normalisation 

constant which thus prevents the distribution in equation (5.20) from 

remaining positive definite. 

We test the consistency of the f irst set of solutions by calculating 

the structure function Fj (or xFg) through equations (3.1) and (3.19) 

(or ( 3 . 2 0 ) , recalling that in this model there is no 'sea' contribution at 

x > 0) and comparing with the combined BEBC and Gargamelle structure functions 

of ref. 17. With the distribution (5.20) equation (3.19) (or (3.20)) becomes: 

F f ( X ) (or xF f ) = (1 + ako)dk„ (5.30) 

Mx 
2 

3NMx2 -aMy 
(1 + aMy)dy (5.31) 

X. 

2 

which may be integrated directly (21) to give: 

F f (x ) (or xF""). h ^ - (a - a )MEi( -^) 
X 2 

(5.32) 
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With the admissible values of a , a and N given by equations (5 .27) - (5 .29) 

this function is shown in figure 7 along with the experimental xFg'*' from 

ref. 17: i t is evident that by fitting only the first three moments more 

emphasis is attached to xFg than Fg and, for clarity, we show only the 

former for comparison. Within the naivety of the model and the large 

experimental errors the agreement is adequate. However, at large x our 

structure function takes on small negative values due to the negative value 

of a: we will return to this point later. 

We now perform the same procedure in the log (1-x) model. With the same 

distribution (5.20) equation (3.38) becomes: 

L . = - N M i - ( l j+^ + al^-^^) 
n 2(n+l) 

(5.33) 

where: 

rn+i (1 - e )"^^dk, 

- X { ' l)"' f""'M(pm+l)^log.(pm+l) 
2m=o \ m / 

rn+i i Z l o - e 

(5.34) 

= ( - 1 ) " ^ (-l)""^-'"f ""̂  VogJpm+1) 
m=o n+1 -m 

(5.35) 

and 

aM 

(5.36) 

Therefore, in the logg(l-x) model, the analogous equations tP (5.21)-(5.23) 

are: 
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vN xF 

1.5 

1.0 

0.5 

H xFg'? from ref. 17 

Structure function in the 
X model given by equation 
(5.32) 

Structure function in the 
' 1O9Q(1"X) model given by 

equttion (5.47) 

0.0 0.5 1.0 

Figure 7. Comparison of the structure functions in different models,at 
q2 = 2.449 GeV2 with the combined BEBC and Gargamelle data 
points (only statistical errors and estimates of smearing and 
center-of-bin correction are incorporated in error bars). 
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1-1 

2 2 ' 

4 \p m=o \m / rn=o A 2-m / / 

Ui(q^) = 1 (5.37) 

3 

L2 

•-3 

— f - I (-!)'"( (P'"+l)'^°9e(P'^+l) + «M I (-l)'-"" ( ^ \ log fpm+1)' 
6 \ pm=o \ m / m=o \3-m/ / 

^ (̂q )̂ , (5.38) 

^ f i l (-l)"'f^Vpm.M)2log^(pmH-l) - a M i {-^r"" ( ]^og^{m^^)] 
8 \ pm=o \m / m=o \ 4-m / / 

= M3(q2) (5.39) 

Note that in this model our distribution is automatically 'renormalised' 

by assuming that P j ( q 2 ) = 1, so that the Gross-LLewellyn Smith sum rule is 

satisfied. After expanding the summations and eliminating N, the solution for 

p ( i .e . a ) is given by solving the equation: 

F(p,y2(q2)) = G(p,y2(q2) . i i3 (q2) ) (5,40) 

where 

F(p,y ( q 2 ) ) = 6(l-y2)(P+1)^1oge(P+T) - 3(2-y2)(2p+1)^1oge(2p+1) + 2(3p+l)2logg(3p+l) 
' ' 6(l-y2)logg(p+l) - 3(2-y2)logg(2p+l) + 21ogg(3,p+l) 

(5.41) 

G(p,y2(q2).v.3(q2)) = 

4(l-!i3)(p+l)2lpg^(p+l)-2(3-?!i3)(2p+l)21og^(2p+l)+4(l-ii3)(3p+l)^^ 
M2 V^2 3y2 

-(4p+l)21ogg(4p+l) 

4(T-iis)logg(p+l) - 2(3-?li3)iogg(2p+l) + 4(l-3^)logg(3p+l )• - logg(4p+l) 
^2 "̂2 2 

(5.42) 

The solution for a is then: 

V a = ^ =ii^ (5.43) 
2 2 , 
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The normalisation constant, N, is then most easily obtained from equation (5.37). 

Again specifically at q2 = 2.449 GeV2, we obtain the following two sets 

of solutions: 

aM = 9.703 

aM = 811.883 

NM = 0.162 

or 

or 

or 

124.942 

-53,916 

-72.802 

With the distribution (5.20) the structure function is given by the 

modification of equation (5.32): 

Ff (x ) (or XFf) = 3NMx2 2(l-x) 
oM 
2 

logg(l-x) 
(a-a)MEipiog ri-x) 

\2 ^ I 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

With the admissible values of a , a and N given by equations (5.44)-(5.46) 

thr̂ s function is compared in figure 7 with the structure function in the 

x model and the experimental values at q2 = 2,449 GeV̂  from ref. 17. The 

logg(l-x) model maps the region 0 < x < « onto 0 < x < 1 and this gives 

better agreement with the data than the x model, in which the contribution 

from x > 1, although small, is significant in fitting the n=3 moment when 

weighted by a factor x. 
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§5.2 A model with free, massive quarks with varying energy 

We now investigate the effect of giving the quarks a small, constant 

mass whilst retaining them on mass shell. Our approach will be along the 

same lines as in the massless case, i.e. §5.1, 

With k2 = k2 - m2, where m is the quark mass, we may write the moments 

equations (3.30)-(3.35) as: 

= 1 (5,48) 

- i H l / l X (5.49) 
3M\ / 3M\ky 

M3 (k2) - ^ (5.50) 2 /k2 \ _ 

16 . ,o\ 12m2 V . m> , 1 M = i ^ / k 3 \ - ! f l i : / k \ + — ( A (5.51) 
5M3 V 0 / 5M3 \ °/ 5M3 \ k / . 

M3 = i i / k ; \ . l ^ V k 2 \ +!!!! (5,52) 
3M̂  \ ^ 3M'* ^ •/ Mt 

Me = l i <ke> - ^ ^ ( k 3 > . ^ < k o ) - ^ ( I ) 
7M5 \ / 7M5 \ / 7M5 \ / 7M5 ^k./ 

(5.53) 

Q 

where the 'natural' definition of ^k") follows from equation (3.36): 

00 

<k; )= f k X ( k o - " ' ' ) P ( ^ ' ^ ) (5,54) 
m 

With this definition the revised moments inequalities of equation (5.7), 

in terms of kg, can be tested and (in some cases) used to determine bounds 

on the quark mass imposed by the values of experiment. Analogous to 

equations (5.8)-(5.13) we have: 
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^ 3 = ^^M3+i!^) -1(M + I ! l ! / l ) ) 2 > o (5.55) 
13 1 3 ^2 8 2 3M\k^ / 

3M2 ^ 3M'* 3' 3 ^ 2 ' (5.56) 

(M2 + - ( - \ )(M, + + ) -l̂ (M3 + iLV > 0 ( 5 . 5 7 ) 
^ 3M ^ k / ^ 5M2 2 5 M 3 \ k / 15 3 „2 

^ :?M \ k / ^ 7M2 7M'* ^ MS \ko/ 

9m2„ . 4mV 1 25(M + 2ILM,. + :t iL./_L\ ) 2 > 0 (5.58) 
21 2 5 M 3 \ k 7 

A , , = (M3 + ^ ' M _ + ^ ) - 25(M + EILV + 2 ! n ! ! / l \ )2 > 0 ( 5 . 5 9 ) 
35 3 1^2'̂  5 3^2 3 3,^,^ 2.^ 5M2 2 5M3\k / ^ 

0 

m + 9!L̂ M, + . 1 . ) , 2^2 27m_̂  ^ 5,^ . 
5M2^ 5M3\ko / ' 7M2 7M̂  ' 7M5 

- 36(M + !L'M3 + — > 0 (5 .60) 
. 35 3M2 3 3MU 

Equations (5.8)- (5.13) can be retrieved by letting m ^ 0. Moreover, by 

substituting the relevant experimental values y^ from Table 1 the quantities 

A reduce to quadratic expressions in (^-^ or, in the case of A ^ g , a direct 

inequality in m which is satisfied at all q2 for all m » 0. However, the 

requirement of positiveness of the quantity (̂ ^̂  does allow a determination 

of lower limits on m; for example, at q2 = 2.449 GeV2, inequalities (5.58) 

and (5.60) respectively lead to the bounds : 

m ^ 0.47 GeV (5.61) 

m 5. 0.20 GeV (5.62) 

However the relevant quantities Agg and Aî g both involve several moments, 

thus compounding their accompanying errors, and l i t t le significance should 

be attached to (5.61) and (5.62). The validity of the other inequalities for 
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all m > 0 at q2 = 2.449 GeV2 allows us to continue with this model with 

free, massive quarks. 

We adopt the following distribution with free, massive quarks: 

•ak2 P(k„,k) = N(k. - m)e'''" (1 + ak„ + bk2)6(k - y k 2 - m 2 ) (5,63) 

The form of this distribution is chosen to allow an analytical evaluation 

of the relevant integrals in the x model but precludes the logg(l-x) model. 

For various a and m we treat N, a and b as parameters to be determined by 

the f irst three moments equations. It seems reasonable in this respect to 

restrict our attention to the ranges: 

1 < aM2 < 300 . (5.64) 

0.01 GeV < m < 0.50 GeV (5.65) 

Using Appendix D, equations (3.30)-{3.32) become: 

M, = Ne°""^jar/? erfc m /S"(— m2 \ ^ e •am' 

4 / ^ / 4a2 
-am2 

•m 

- - a m 

+ b /Te r f c m/S*-4=:(2am2 - 3) - -—-(am2 - 4) 
L 8 / a 5 4a3 

•am'' 

2a2 
(am2 - 1) . 

+ /Fer fc —{2am^ - 1) 
4>^ 

= Mi(q2) = 1 

M„ =; 
3M ^ . 

am' 
/̂ r erfc m ^ " — (-2a2mH5am2-6) + ^ — 

4 / ^ 2a3 
•(a2m't-3am2+8) 

-am 2 r 1 o 
+ b /^Terfc m^ -̂!—(2o?m -̂15am2+30) - m(am2-14) 

L 8/a^ 4a3 

1 p'Oim- 5 
-+ /Fe r f c m/ST -L-(2a2m'+-5am2+6) +- m - 1 

4/a5 2 
Ei(-am2)| 

= ^^(q^) 

(5.66) 

(5.67) 
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M = ^^i^U erfc m^T—i_(-6am2+15) + 7m 
M2 I I - 16/a7 8a3 J 

r m _-am2 -1 

+ b / r erfc mv^—Hl— (6am2-15) + 1 (am2+24) 
L 16/a7 8a'* -I 

-am2 1 
+ /if erfc mv^-^(2am2-3) - —(am2-4 ) 

8 / ^ 4a3 i 

= y3(q2) + m2 (5.68) 

One can then patiently eliminate the normalisation constant, N, from 

equations (5.66) and (5.67) and from equations (5.66) and (5.68) to 

obtain two siinultaneous equations in a and b: 

f,^(a,m,y2(q2))a + f^2(«''"'^'2(^^))b = g i ( « ' " ' ' ^ ( ^ ' ) ) (5.69) 

f2i(a,m,y3.(q2))a + f22(a,m,y3(q2))b = g^a,m,y3(q2)) (5.70) 

where: 

f n ( a . " i , y J q 2 ) ) E /Terfc m^T—!_ (-8a2m5+20am3+l2y^Mam2-24m-18y,M) 
^ 16/a5 2 2 

•am2 

8oi3 
(4a2mt-12am2-6y2Mam+32) (5.71) 

fi2{a»"''M2(q^)) = >^erfc m^"-L(2a2m'*-6y2Ma2m3.l5om2+9y2Mam+30) 

•am2 

.4a3 
(am3-3y.Mam2+12y-M-14m) (5.72) 

f 2 i ( a , m y 3 ( q 2 ) ) E /Fer fc m/^T—!—(2a2m^+2y3M2a2m2-9am2-3y.3M2a+15) 

•am2 
^ -(am2+y.M2a-7) (5.73) 

8a3 ^ 
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f^2(a.rn,y3(q^)) = ^ erfc mi/^T—1-(-2 [y3M2+m2]a2m3+9am3+3u3M2am-15m) 

^-am2 
+ 1 ([u3M2+ffl2]a2m2-3am2-4M3M2a+24) (5.74) 

, Sa** 

gj(a,m,vi2(q^)) = »^erfc mv^—!—(-4a2m't+12u2Ma2m3+10am2-6y2Mam-12) 
8/a^ 

e 
•am2 

4a 2 
•(6y2Mam2+4m-6u2M) (5.75) 

g2(oi ,m,P3(q2)) E / iTerfc m/a"—!—(2a2m5+2y3M2a2m3-3ani3-y^M3am+3m) 

-am2 

4a 3 
(a2m'*+y3M2a2m2^2am2-y3M2a+4) (5.76) 

The distribution (5,63) will remain positive definite for all kg > m 

provided: 

b > 0 (5,77) 

.a2 < 4b (5.78) 

These two conditions, impose severe restrictions on the admissibility 

of solutions for a,b, which are computed and presented in Table 3 for the 

above ranges of a and m at the specific q2 = 2.449 GeV2; the normalisation 

constant, N, is computed from equation (5.66), I t is evident that an average 

value can be taken without undue error: 

m = 0.01 GeV (5.79) 

aM2 = 79.5 (5.80) 

aM = -11.48 (5.81) 

bM2 = 32.95 (5,82) 

NM'̂  = 1.20x105 (5.83) 
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Table 3. The sets of solutions to the moments equations at q2 = 2.449 Gev^ 
with the parameterized distribution (5.63) 

m GeV aM2 aM bM2 

0.01 77 -11.21 31.41 1.09 X 105 

0.01 78 -11.31 32.02 1.13 X 105 

0.01 79 -11.42 32.63 1.18 X 105 

0.01 80 - n . 5 3 33.26 1.23 X 105 

0,01 81 -11.64 33.88 1.27 X 105 

0.01 82 -11.75 34.51 1.32 X 105 

Following the procedure of §5.1.2, the structure function Fg 

(or xF, since our quarks are on mass shell ) may be calculated with the 

distribution (5.63): 

-vN, -vN, F - ( x ) (or xF - ' ) 3N!fxi [ AF i^ (k^ ,^ jg -a (k§ -m2)^ .^ ^ ^ ^^2^^^^ 5̂ 84) 

h(x) 

where: 

h(x) = M̂ x̂  + m2 

2Mx 
(5.85) 

Thus, with z2 = a(k§ - m2) , this becomes: 

F f (X) (or xFf )=3NM!x! 
^ ^ 2a2 

v^(a - bm)Ig + a( l - am)Ij^- m/o^I^ + bl, (5.86) 

where 

z2e"^ dz 

h(x) 

(5.87) 
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Z2 . . z 2 

/z^ + ani2 

h(x) 
00 

2 

e ' dz 

( z2 + dm2) 

h(x) 

z 2 / z 2 + am^ g dz 

h(x) 

(5.88) 

(5.89) 

(5.90) 

and: 

h(x) E •/M2x2 - m2 

\ 2Mx 
(5.91) 

The structure function is computed with the set of parameters given 

by equations (5.79)-(5.83) and displayed in figure 8. Notwithstanding the 

double peak (which is caused by the dominance of the ' k 2 ' term with 

coefficient b at high x and could, in principle, be eliminated by imposing 

a further restr ic t ion) , the agreement of this massive x model with 

experiment is good and should be compared with the analogous massless example 

of an X model (§5.1.2 and figure 7) . 



45 

vN 

1.5 

1.0 

0.5 

»-X-H xFg"̂  from ref. 17 

Structure function given 
by equation (5.86) 

0.0 0.5 1.0 

Figure 8. Comparison of the structure function in a model with free, 
massive quarks, at q2 = 2.449 6eV2, with the combined 
BEBC and Gargamelle data points 
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§5.3 Models with off mass shel1, mass!ess quarks 

In this section we take account of confinement by treating massless 

quarks in various off mass shell models with a 'sea' contribution in the 

physical region x > 0. A particularly useful analogue is the MIT bag model (23){2^) , 

in which the quarks l i e in eigenmodes of energy. Further possibi l i t ies of a 

varying energy as well as a varying three-momentum will be considered in 

§5.3.2 and §5.3.3.. 

§5.3.1 Off mass she l l , massless quarks with a single fixed energy 

With quarks of zero mass and fixed energy, ko, the familiar moments 

equations (3.30)-(3.32) in the x model are: 

M̂  = 1 (5.92) 

M- = ( M ) +Jio (5.93) 
3MkQ M 

M, = (}i> + i o (5.94) 
3 • M2 M2 

Equating with the relevant experimental moments from Table 1 i t 

is straightforward to deduce the following solution for k̂  at any 

particular q2 : 

io = lu (q2) ± 1 /̂9^2 (q2) . 8y (q2) (5.95) 
M !t 2 4 2 . 3 

From figure 6 i t is evident that real roots for kp are only permitted 

by the experimental uncertainties in ^2 then a range of possible 

kg can be deduced within these experimental limits at various q 2 , and 

this is shown in Table 4. The moments at high q2 incorporate large 

experimental errors as the structure functions creep towards x = 0, 

so that any conclusions on the solutions to equation(5.95) must be 
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Table 4. The range of kg allowed within the bounds of experimental 
errors at various q2, in an off mass she l l , massless quark 
model with a single fixed energy 

q2 GeV2 Minimum Value 
of kg/M 

Maximum Value 
of kg/M 

0.387 0.083 0.233 

0.592 0.172 0.217 

0.837 (a) (a) 

1.225 (a) (a) 

1.732 0.126 0.181 

2.449 0.119 0.182 

3.873 0.080 0.176 

7.071 0.118 0.145 

14.100 0.076 0.131 

20.000 (a) (a) 

28.284 (a) (a) 

48.990 (a) (a) 

63.246 (a) (a) 

77.460 0.022 0.227 

(a) No real roots to equation (5.95) exist for these q2 values 
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considered unreliable in this region. On the other hand a fa ir ly consistent 

range of kg is obtained as q2 goes from 1.732 GeV2 to 14.100 6eV2, and 
k 

the average value, _o_= 0.141, is taken as typical within the bounds of 
M 

experimental errors. Although we are unable to similarly deduce a value 

for kp in the logg(l-x) model, i t is not unreasonable to assume that this 

' typical ' value is applicable to fac i l i ta te the following comparison of 

the models for different bag radi i . 

The massless quark distribution in three-momentum in the ground 

state of the cavity approximation to the MIT bag model is given by 

^sin(k - k J R sink„RsinkR^2 P(k) =. NR6 
\kko(k -ko)R3 k2kgR'+ } (5.96) 

where R is the bag radius and normalisation may be fixed by the f i r s t 

moment in the x model: 
00 

k2dkP(k) = 1 (5.97) 
•'0 

The shape of the probability distribution, k2p(.k), is shown in figure 9, 

and in general the most probable value of k will be greater than the on 

mass shell value because of confinement. The oscillatory nature arises 

from the r igidity of the bag boundary, and the f i r s t minimum in kR is 

given by the second solution (k f k )̂ to the equation: 

cot kR - — = cot k.R - ^ (5.98) 
kR kgR 

Normalisation could then be fixed by imposing a cut-off in k in equation 

(5.97) corresponding to this minimum: this is found to be unsatisfactory 

because of d i f f icul t ies in adaption to the logg(l-x) model, so we will 

return to the question of normalisation shortly. 
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k2p(k) 

Figure 9. 

koR 

The probability distribution of massless quarks in the 
ground state of the cavity approximation to the MIT 
bag model 

The structure functions may be calculated for any k̂  in the bag in 

both the x model and the logg(l-x) model, using equations (5.96), (3.1) , 

(3.2) , (3.37), (3.19) and (3.20). Moreover i t is straightforward to 

investigate the effect of changing the bag radius R with kg fixed. The 

structure functions in the x model and the logg(l-x) model are compared in 

figures 10 and 11 for R = 9.0 GeV-i and 15.0 GeV-i respectively and kg/M = 0.141, 

the ' typical ' value referred to above. To cpmpare directly with experiment 

we must f ix the normalisation: equation (5*97) i s equivalent to the Gross-

Llewellyn Smith sum rule (see equations (3.28) and (3.30)) and the 

validity of the latter is taken to prescribe the normalisation in the 

following manner. As referred to in Chapter 4 di f f icult ies are encountered 

at small x when evaluating the area under the calculated structure function 

Fg (x). We thus assume that the experimental value. 
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- I I L . 

0.5 1.0 

structure function in 
logg(l-x) model 

, Structure function in 
" X model 

R = 9.0 GeV-i 

i = 0.141 
M 

0.5 1.0 

Figure 10. Comparison of structure functions in different models 
within a bag framework for k̂ /M = 0.141 and R = 9.0 GeV"̂  
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0.5 1.0 

xF vN 

- I I i _ 

Structure function in 
logg(l-x) model 

Structure function in 
X model 

R = 15.0 GeV-^ 

i o= 0.141 
M 

- 1 1 I 

0.5 1.0 

Figure 11. Comparison of structure functions in different models 
within a bag framework for kg/M = 0.141 and R = 15.0 GeV-̂  



52 

F f (x)dx = 1.09 (5.99) 
• ' o . i 

as given in figure 21 of ref. 4, i s consistent with the Gross-Llewellyn 

Smith sum rule. This normalisation prescription is then applicable to the 

1ogg(l"X) model calculations of the structure functions, and the direct 

comparison with experiment is shown in figures 12 and 13 for R = 9.0 GeV"̂  

and 15.0 GeV"i and k̂ /M = 0.141. This latter value was an average over the 

ABCLOS group's q2 range from 1.732 GeV2 to 14.100 GeV2 and the CDHS group's 

data provides a very convenient and more accurate structure function analysis 

over this range for neutrino energies 10 to 20 GeV (see Table 3 of ref. 4) 

and i t is this data which is uti l ized in figures 12 and 13. The good 

agreement with Fg (x) for a bag radius of 15.0 GeV-i is not conclusively 

duplicated with xFg (x) but i t should be pointed out that the CDHS data 

of figure 13 is not entirely consistent with the BEBC data at low x (where 

q2 is comparable) of figure 7. Notwithstanding this i t would appear that 

a radius much larger than the bag value of 5 GeV-i (2'*) is required from 

this analysis. As clearly demonstrated for the x model in ref. 25 the position 

of the structure function maximum is determined by kg/M and a larger bag 

radius produces a narrower structure function. These features are carried 

over into the logg(l-x) model. I t is interesting to note that, with 

kg/M =0,141, good agreement is obtained when R = 15.0 GeV-i, thus well 

satisfying the linear bag boundary condition. 

The momentum sum rule (25) can be evaluated in each case: 

.1 
F^'^(x)dx = 1.02 ; R = 9.0 GeV-i (5.100) 

F2'^(x)dx = 0.47 ; R = 15.0 GeV"! (5.101) 
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H Fg for neutrino energy 
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(see Table 3 of ref. 4) 
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Figure 12. Comparison of structure function in logg(l-x) model 
within a bag framework for kn/M = 0.141," with CDHS data 
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for neutrino energy 
range 10 < E^ < 20 GeV 
(see Table 3 of ref. 4) 
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Figure 13. Comparison of structure function in log^fl-x) model 
within a bag framework for k̂ /M = 0.141, with CDHS data 
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The CDHS group find a value 0.44 + 0.02 over the relevant neutrino energy 

range, thus confirming our agreement for a bag radius of 15.0 GeV"i. 

Ja f fe 's treatment of structure functions in the cavity approximation 

of the bag suffers from the pathology of 'x models', namely their 

extension outside the physical region 0 < x < 1 because of lack of 

translational invariance. Further the momentum sum rule was vvell saturated 

in the physical region: 

|-i 

•'o 
F f (x)dx = 0.93 (5.102) 

A more direct i l lustrat ion of the improvement which can be achieved 

in the logg(l-x) model is thus obtained by comparing Jaffe 's structure 

functions (measured from the parton distributions in his figure 7) with 

our calculation for R = 9.0 GeVwhen the momentum sum rule is also 

approximately saturated. Two caveats should f i rs t be entered: Jaffe takes 

R = 7.0 GeV~^ from the bag f i t to the average mass of the N-A system 
(23) 

and, more importantly, the 'sea' contribution of figure 3 ( i i ) is 

neglected in his calculations, with the consequence that and xF3'^ 

dif fer only by the small 'Z-graph' contribution. A more accurate i l lustration 

can thus be obtained by comparing with our structure function F̂ *̂  or xF '̂̂  

with the 'sea' subtracted, i . e . the quantity 3x2l(x) of equation (3.19) or 

(3.20). This is shown in figure 14 where the average of Jaffe 's Fg*̂  and 

xFj"^ i s taken (the difference i s negligible above x = 0.5) . Even with 

these caveats the improved features due to the logg(l-x) model are evidentj 

namely i ts forced restriction to the physical region and! i ts more 

reasonable width and peak. 
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Figure 14. Comparison of bag structure functions: 
( i ) in the logg(l-x) model with R = 9. 
( i i ) a la Jaffe with R = 7.0 GeV"! 

F f (X) or x F f (X) 
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Structure function in 
logg(l-x) model 
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Jaffe 's X model 
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§5 .3 .2 Off mass s h e l l , massless quarks with independent energy and 
three-momentum 

In an attempt to consider a general off mass shell model without 

fixed energy a five-parameter distribution separable in energy and three-

momentum is hypothesized: 

P(kQ,k) = C k^P e-^^o k̂ q-"̂  e-^^' (5 .103) 

where we expect a , B > 0 and p, q » 0 . This form for the distribution 

permits a straightforward determination of the necessary integrals in 

equations ( 3 . 3 0 ) - ( 3 . 3 4 ) (22), leading to: 

M =-^iSJJlU: = y •(q2) = 1 (5.104) 

2 a P ^ l . 

M, - if^lSJlJl + 3 ( P ^ 1 ) V ,^(q2) (5 .105) 
3M\^ gp . a / 

M 3 = ± f q - ± l . ( P ^ ^ ) ( P - ^ ^ ) \ = P 3 ( q 2 ) (5 .106) 
. ^ M2\ e a2 y 3 

^ _ 1 /a(qH-3)(q + 2) , 10(q + 2)(p + 1) , 5(p + 3)(p + 2)(p + 1)^ 

5M3\ 62p 3a a3 / 

= w,(q2) (5 .107) 

l /(q + 3)(q + 2) ^ 10(q + 2 ) (p + 2 ) (p + 1) 

M'ty $2 330,2 

, (p + 4 ) ( p H . 3 ) ( p + 2 ) ( p . l ) \ „ (5^108) 

I t is straightforward to demonstrate that these equations do not 

permit rea l i s t i c solutions for a , B , p and q in the sense of the provisos 

mentioned after equation ( 5 . 103 ) . Eliminating the quantity (q + 2 ) / g from 

equations (5.105) and ( 5 . 1 0 6 ) , a may be expressed as the following function 

of p: 
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„ M , 3M,P ± / 9 . , 2 p ^ - 8u3(p^ - .1) 

2y, 

A further relation between a and p may be obtained by eliminating the 

quantity (q + 3)(q + 2)/32 from equations (5.107) and (5.108) and using 

equations (5,105) and (5.106): 

aM =1 ^fa(P' - 1) ^ '^^b^(P' - 1)^ - V^a(P' - D ( " P ^ ^ ) Y (5.110) 

where 

~7A 

a = - L (5^3^^- 3y^u^) (5.111) 
3p2 

b = ^ U^- Zv^v^) (5.112) 
3y2 

Through equations (5.105) and (5.106) the provisos q > 0,, 3 > 0 

demand: 

aM > (5.113) 

a M > ( ( P - ^ I ) i L ± i ) V (5.114) 

Equations (5.109) and (5.110) and the lower bounds of (5.113) and (5.114) 

are shown in figure 15 where the moments Up(q2) have been taken from Table 1 

at the specific q2 =2.449 GeV2. 

The positive solutions for a and p do not satisfy the requirements of 

(5.113) and (5.114) and this is found to be generally so at a l l q2. In the 

l ight of the relative successes of the distributions in §5.1.2, §5.2 and 

§5.3.1 the consequences of the distribution (5.10.3) wil l not be pursued 

further. 
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Figure 15 The re la t ionships between the parameters a and p 

of the d is t r ibu t ion (5.103) 

Equation (5.109) 

Equation (5.110) 

The lower bounds 

as expressed by 

(5.113) and (5.114) 
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§5 ,3 .3 Off mass s h e l l , massless quarks with independent energy and 

deviation from mass shel l 

As an extension of the previous sub-section we seek a four-parameter 

d is t r ibut ion separable in energy, kg, and a quantity k - ko« which i s a 

measure of the deviat ion of the (massless) quark from i t s mass s h e l l : 

P(kQ,k) = C kj, e " " ! ^ " ^ol e'^l"^ " "̂ ol • (5.115) 

The parameters C , a and u can be determined for various EQ by equating 

the f i r s t three moments, y i g . equations (3 .30 ) - (3 .32 ) , with the experimental 

quant i t ies y ^ , 3"*^ v^^- Using the required integrals evaluated in 

Appendix E » these equations lead to: 

M 
\2 31 3 ' ° ' • ~ 2 ~ r / V 

3^ a \a'^ ( a - y ) ' 

( E o ( a + y ) ( a - y ) - 2 y ) } = y^(q2) = 1 (5.116) 
2ae"^^0 

(a+y )2 (a -y )2 

Mg = — | — ( a ^ ' ^ E j + 12a2y2E2(a2+y2) + 24a'* + 24a2y2 + 24y'») 
3My^ '•a^ 

24e i - ^ V H « 2 v , 2 + y 4 ) + Y(a+y)e""^0 - 2ae"^'^Qy. 
a5 ( a - y ) ( a + y ) y / 

+ i t j l ( a S 2 E ' 4 + („2+6^2)(2„2E2+4)) - i L ! ! ^ ( a 2 + 6 y 2 ) 

• 2aE„e-^Eo . . 2e-^^o ^ 2 ,^ -aE„ . , - y E | 

( a+y )2 (a -y )2 ° (a+y)3 (a -y )3 i 



61 

2C | H i ) ( a ^ ' + E j +'4oi2u2E2(3(,2+5^j2) + 24a^ + Sa^u^ + 120y't) 
If, 5 

( a - u ) ( a + y ) 2 
(2oiE(j(a+y) + a - y ) 

i i - ( e " ^ E a - e 
( a - y ) : 

• a E o j ' , 

+ J L & ( a V E ; 5 + 2a2E2(a2+10y2) + 12a2 + 120y2) + 12?_!^(a2+10y2) 

- 2e-'^^o/ 6ayE2 6yEo(3a2+y2) 3 

( a + y ) ( a - y ) ( a+y )2 (a -y )2 ( a + y ) 3 ( a - y ) 3 (a+y)'^ 

( a - y ) 
^(e"'^^o - e-"^o)} = y3(q2) (5 .118 ) 

El iminat ing the normalisation constant C from equations (5.116) and 

(5.117) and from equations (5.116) and (5.118) allows solut ions for a and 

y by solviftjg the two equations: 

1 2a'^y2E3(4Eo-3My2(q2)) + 12a'^Eo(3Eo-My2(q2)) + 12a2y2Eo(8Eo-3My,(q2)) 

+ 72 a2+ 192y2 + 48' 

a-' . a - ' ay ' y 2 ( a - y ) ( a - y ) ^ 
SJVq?)-

( a - y ) 2 

•6aEo(Eo-My2(q2)) . 12ay(2Eo-My2(q2)) ^ 24a 

. ( a + y ) ( a - y ) ( a + y ) 2 ( a - y ) 2 y 2 ( a - y ) ( d + y ) 

(a+y)3 ( a - y ) 3 
(5.119) 
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2E. ct'*y2E§{.2E2-M2y3(q2)) + 2a'*(7E2-M2y3(q2)) + 2a2y2(20E2-3M2y3(q2)) 

+ 18a2 + 240y2 +.24-

+ e"̂ ^̂ o 

6 (14-M2y (q2)) 
1+ 3 . 

2)) + .̂ 24_ _ 2M2y3(q2) _ 6 12 ^ M2y3(q2) 

a2y2. ( a - y ) ' * y 2 ( a - y ) 2 ( a - y ) 2 j 

4ay(3E2-M2y3(q2)) _ 2aEo(E2-M2y (q2)) _ 24aE( 

B (a+y )2 (a -y )2 ( a + y ) ( a - y ) 

1 

y2 (a+y ) (a -y ) 

12yEo(3a2+y2) _ .12/ 1 _ . . ^ . 

• ( c i+y )3 (a -y )3 y2(^(a+y)2 (a-y.)2y (a+y)^ ( a - y ) ' 

We a lso consider a s l i g h t modification to the d is t r ibut ion (5.115) 

by imposing a minimum 'ground s t a t e ' energy E Q , i . e . : 

P (k - , k ) =;C.k. e - ^ ^ ^ - M e"^l' '-^ol B{k^-E^) , 

(5.120)^ 

(5.121) 

Of course the integra ls over k in our previous analys is remain 

ident ica l and the only modification required i s to the lower l im i t in 

in tegra ls oyer k̂ ,̂ which i s now E^ instead of zero biecause of the e function. 

Again using Appendix E , the f i r s t three moments with the d is t r ibut ion (5.121) 

become: 

2^^Ji^(.a3E3+3a2E2+6aEo+6) + - ^ ( a E o + l ) - - 1 ^ ° ( ( a + y ) E o + l ) [ = y i (q2) = 1 
y3 ^a^ (a+y) ' 

(5.122) 

2C;| j^((X^y'*Ej+4a3y'*E3+12a2y2E2(a2+y2) + 24ay2Eo(a2+y2) + 240** 
3My5<-a5 

+. 24a2y2 + 24y'+) 12e"^^o 

(a+y) 

+ i^jjL(a'*y2E^+4a3y2E3+2(a2+6y2)(a2E2+2aEo+2)) 
My3 >oi5 

(a+y) 
. ( (a+y)2E2 + 2(a+y.)E. + 2 ) =-u (q2) . (5.123) 
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M„ = — {—(aV'*E5+5a3y'*E;;+4au2E2(aE,+3)(3a2+5u2)+24E„(a'*+3a2p2+5^it) 

+72ay2+24a3+120H!) - i ? l ^ ( ( a + y ) E Q + 1) 
a (a+y)2 

+ J L l i ( a % 2 E 5 + 5 a 3 ^ j 2 E H 2 a E 2 ( a 2 + 1 0 y 2 ) ( a E +3)+12E ra2+10y2)+12a+l^) 
° 0 0 0 ^ 0 . M 2 y 3 l a = a 

' _.e~^^o 

• (a+y)'^ 
((a+y)3E3+3(a+y)2E2+6(a+y)EQ+6)} = y3(q2) (5 .124) 

The two simultaneous equations for a and y are then obtained in an ident ical 

fashion: 

1 aS2E3(4Eo-3My,(q2)) + a3y2E2(16Eo-9My,(q2)) + 6a^,Eo(3Eo-My2(q2)) 

+ 6a2^,2E (8E -3My,(q2)) + 6a3(6E -My jq2 ) ) + 6ay2(16E -3My , (q2)) + 36a2 

+ 96y2 + ,24a'*" e"^^o 

y2(a+y)2 
3My2(q2)y2((a+y)EQ + 1) - 12(a+y) 

3e-^^o 

(a+y)' 
(a+y)2E2 + 2(a+y)E^+ 2 (5 .125 ) 

a5y2E3(2E2-M2,^(q2)) + et%2E2(l0E2-3M2y3(q2)) + 2a5EQ(7E2 -M2y3(q2)) 

+ 2a3y2E^(20E2-3M2pJq2)) + 2a'*(21 E2-M2y^(q2)) + 6a2;,2(20E2-M2y ^(q2)) 
0 •• "3 

24a'* 

•0 "3^ 

+ 84a3E„ + . 1 1 ^ + 240ay2E„ + 84a2 + 
•0 • ,.2 , ° • ,,2 

+ 240y2 

(.M2y^(q2)p2-12)((cc+y)E^ + 1) 

e'^^Q (.a+y)3E3 + 3(a+y) 2E2 + 6(a+y ).E +.6 (5 .126) 
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Using a computer we find that solut ions to equations (5.119) and (5.120) 

and equations (5.125) and (5.126) may be obtained with very large a and y. 

For example, with E^ = 0.01 GeV and moments taken at q2 = 14.100 GeV2, 

aM -v- 200 (5.127) 

yM 50 (5.1.28) 

This leads us to conclude that a very narrow d is t r ibut ion around EQ 

i s demanded by the data , revert ing us to §5.3.1 where a f ixed energy 

d is t r ibu t ion ( i . e . 6-function in k^) was employed. In the l i g h t of the 

s a t i s f a c t o r y nature of the ana lys is in that sub-sect ion, the consequences of 

equations (5.127) and (5.128) w i l l not be pursued further. 
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CHAPTER 6 SCALING VIOLATIONS 

In the previous chapters, and s p e c i f i c a l l y in the def in i t ion of I (x) 

through equation ( 3 . 1 ) , the second term of order Q"2 in equation (2.38) has 

been ignored and the subsequent structure function ana lys is in Chapter 5 

has been independent of Q2 at f ixed x and thus independent of any mass s c a l e . 

This i s the phenomenon of sca l ing in the naive parton model, deriving from 

the assumption that the i n e l a s t i c lepton scatter ing occurs through incoherent 

e l a s t i c scat ter ing of f po in t - l i ke quarks. However, both the ABCLOS and CDHS 

data c l e a r l y demonstrate a v io la t ion of scal ing (2^), the structure function 

^2^^*^^^ f a l l i n g at large x and r i s i n g at smaller x as Q2 increases . 

Three possible sources of such e f fects are: 

( i ) Kinematic correct ions due to non-negligible quark and target masses, 

which may be accomodated by a modification of the x variable 

( Q 2 +. m2 - m?) + / ( Q 2 + m2 - m?)2+4m?Q2 
C = —I ^ ^ — J - 1 - (6.1) 

2M(v + / v 2 + Q 2 ) 

where lii^., m.j: are the i n i t i a l and f ina l quark masses and M i s the 

target mass. This var iable then reduces to the x of equation (2.4) 

at large Q 2 . 

( i i ) Other neglected properties l i k e the transverse momentum and of f mass 

she l l e f fec ts of the quarks, which ar ise in twist - four operators in 

the operator product expansion and are of order M2/Q2, where i s 

the fundamental sca le of the strong in teract ions, phenomenologically 

estimated at about 400 MeV ( 2 9 ) , 

( i i i ) Logarithmic correct ions due to the quark-gluon interact ions of 

quantum chromodynamics (3°) . The agreement of such QCD predictions with 

experiment i s extensively claimed (3i) but i t i s worth pointing out 

that some authors (3^ have commented that the higher-twist terms of ( i i ) » 

besides becoming s i g n i f i c a n t below 4 GeV2, may account for the high 



66 

experimental value of R, the ra t io of the photoabsorption total 

cross sect ion for photons of h e l i c i t y zero or ± 1 . However i t i s 

agreed that the Q2/v2 e f fec ts in ( i ) cannot be the sole source of 

sca l ihg v i o l a t i o n , and i t i s th is point on which we wish to focus in 

th is chapter. 

We adopt the following method. I t has been shown (3^ that the inclusion 

of the f i r s t order term ('^Q"2) in the structure function of equation (2.38) 

i s equivalent to the l ight-cone and operator product expansion techniques 

of Barbier i et. at. 
(28) 

which y i e l d the scal ing variable 5. Maintaining 

massless quarks on mass s h e l l , the moments of I (x) in the x model now 

include correct ions {of. equation (3 .29 ) ) : ,n 

(n+l)M 

on 

nr i 
2.) 6-2 

n+2 

(n+l)M n-i 

n+2 n+3 Q?M""^ 

24(n+l)2 

<lk„k"'*"^P(kJ 0 0 ^ 0' 

(n+2)(n+3) Q2 
(6.2) 

Hence: 

Ml = f k§dkoP(k„) - ^ < k o 2 > = y , (q2) 
0 Q 

(6.3) 

' ^ - v ^ ' ^ y • ^ <^°> = ^^^^^^ 
(6.4) 

(6.5) 

Repeating the ana lys is of §5 .1 .2 . ( in the x model at q2 =2.449 GeV2) 

the corrected solut ions for a , a , N are found to be: 

aM = 6.392 

aM = -1.265 

MM = 7.439 

(6.6) 

(6.7) 

(6.8) 



67 

The s t ructure function ( e / . equation (5.30)) i s then given by: 

k2 
Mx 
2 

( l +ak , ) ( l , 1 2 M x [ y - Mx]|^^^ 

3NMx: 7^ _ 12M2x2 ' 
. oMx 

2-e" 2 . ( a - a ) M E i ( - ^ ) 
X 2 

18NM3x3 
aMx 

i e 2 . Ei(-?iM^) 
a 2 

(6 .9) 

This f i r s t order corrected structure function is compared with the zeroth 

order parameterization of equation (5.32) in figure 16. The correct ions have 

a small e f f e c t and we assume that the set of parameters (5 .44) - (5 .46) 

adequately accomodate the inc lus ion of the f i r s t order correct ion in the 

logg( l -x ) model a t q2 =2 .449 GeV2, so that the q2 dependence of the 

structure function in th is model may be d i rec t ly investigated through the 

modification of equations (5.47) and ( 6 . 9 ) : 

-vN 
F r ( x , Q 2 ) | o r X F - ' ) = 

3NM2x2 ^ _ 12M2x2\ 
* n9 I 

2( l -x ) 

oM 
2 

18NM3x3 

'L logg(l -x) 

2 

- ( a - a ) M E i ( ^ l o g g ( l - x ) ) 

(1-x) '^ - E i [^ ! logg( l -x ) ) (6.1P) 

To make a d i rec t comparison with the ABCLOS data we compute th is function 

for varying q2 at center-bin values x = 0 .05, 0.15, 0 .25, 0.35 and 0.50 

(x = 0.80 i s not included since there are experimental discrepancies 

between the GargamelTe and BEBC data at th is value) . The resu l ts are displayed 

in f igure 17. L i t t l e s ign i f icance should be attached to the absolute magnitude 

of the structure function s i n c e , as f igure 7 demonstrates, at s p e c i f i c 

center -b in values the uncorrected, parameterized function i s sometimes higher, 

sometimes lower than the experimental value at that point, and only at 
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(a) 

(b) 

Structure function 

given by equation (5.32) 

Structure function 

given by equation (6.9) 

Figure 16. Comparison of the structure function f i t t e d to the moments 

in the x model, 

(a) to zeroth order 

(b) with f i r s t order cor rec t ion , 

at q2 = 2.449 GeV2. 
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x = 0.50 i s good agreement obtained. The f i r s t order cor rec t ion , and. 

correspondingly the target mass e f fec ts of ( i ) , i s then unable to s u f f i c i e n t l y 

account for the high q2 decrease in the structure function at x > 0.30, 

requir ing some further sca le v io la t ing mechanism, namely the QCD ef fects 

referred to in ( i i i ) . 
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CHAPTER 7 THE RATIO G^/Gy 

In §5.2 the parameters of a d is t r ibut ion with f ree , massive quarks 

with varying energy were deduced from the experimental structure function 

moments. We now apply th is d is t r ibut ion to ca lcula te the vector and the 

a x i a l - v e c t o r coupling constants of the nucleon, G^ and G^. These operators 

are defined by: 

G y ^ ^ Y o ' l ' (7 .1) 

G A ^ ^ Y g Y s ^ (7.2) 

where i s the plane wave solut ion to the Dirac equation for a pa r t i c l e 

of mass m. The detai led ca lcu la t ion i s performed in Appendix F , including 

the quark energy-momentum d is t r ibut ion and the SU(6) fac tor , to give: 

m 

(1 +l!!L)dk k2dkP(ko,k) (7.3) 

0 

With the normalised d is t r ibut ion (5.63) and the def in i t ion ( 5 . 5 4 ) , 

therefore: 

GA=i+10!!l/L\ 
9 9 \ k / 

= 1+I0_(4(k\ - 3y (q2)M) (7.4) 

where equation (5.49) has been used. Using Appendix D, or deciphering 

equation (5 .67 ) , the relevant quantity ^k^^ i s given by: 
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/ k o ) = N { ^ [TTe°""̂  e r fc m^"(Ja2m2(am-^) + la(l-am-bm2) + l i b ) 

+ m/^(a2m2(am-l) + a(am2+3)(i.am-bm2) + b(a2mt+5dm2+i5))' 
2 2 It . 

+ _L[(a2m'++2am2+2)(a-bm) - am(am2+l)(l+am-bm2) +a2m3 ] | (7.5) 
2a3 J 

Assuming that the dependence of G^/G^ on the momentum t ransfer in 

the decay i s neg l ig ib le , i s taken at q2 = 2.449 GeV2 and each set of 

solut ions in Table 3, conveniently label led by the vallie of a . may then 

be used to give a value for the r a t i o : these are displayed in f igure 18. 

The n o n - r e l a t i v i s t i c quark model predict ion of A (3*0 i s also indicated, 
3 

as i s the experimental value of 1.253 ± 0,007 
(35) . 

I t should beemphasized that the value given by equation (7.4) i s for 

on mass shell quarks with a very smal l , but non-zevo, mass. A d i rec t 

comparison with the of f mass shel l model of §5.3.1 requires modifications 

to the bag d is t r ibut ion of equation (5.96) to include massive quarks: 

P(k ) = NR6| 
^sin(k-ko)R 

2kko(k-ko)R3 

to+mv /oj-m 
+1 

0) 

sin(k+ko)R 

kko(k+ko)R3 0) 

sihkoRsinkR 

k2kjR'* 0) 

(7.6) 

where 

0) 2 = k2 + m2 (7,7) 

I t must be reca l led that the normalisation i s prescribed to s a t i s f y the 

Gross-Llewel lyn Smith sum rule (see the arguments on pages 48 and 52) , 

Using the parameters which gave good agreement with the structure functions 

in §5.3,1 (kg/M = 0.141, R = 15.0 GeV"! ) , equation (7.3) then reproduces 

the bag model r e s u l t s ince our quark mass i s very small and the l inear 
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3 . 

0 

-1 

-2 

-5 

Non- re la t iv is t ic quark 

model prediction 

Experimental value (3^ 

Bag model prediction 
for quark mass 10 MeV ^36) 

77 78 79 80 81 82 
aM2 

Figure 18. The ra t io G^/G^ for the model §5.2 and for each set 

of solut ions in Table 3, label led by the value of aM2 
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bag boundary condition i s well s a t i s f i e d with our parameters: the value 

for G^ in the bag depends e s s e n t i a l l y on the product k^R and only weakly 

on the quark mass (23)(se), in f igure 18 we indicate the value 1.10 as an 

extrapolat ion to mass 10 MeV from Table I of ref . 36. 

To obtain an approximate comparison with the massless case we 

surmise the following general izat ion of equation (7 .3 ) : 

'A = 1 ri + ^A^^ - kgl ^ d k o k 2 d k P ( k o . k ) 
kn 

0 0 

which, with f ixed quark energy, becomes: 

(7.8) 

^ ==1+1°. f / | k 2 - k2| k2dkP(k) (7.9) 

Employing the bag d is t r ibu t ion with massless quarks, equation ( 5 . 9 6 ) , 

and again with ko/M = 0.141, R = 15.0 G e V ^ we compute: 

G A = 0.93 (7.10) 

Notwithstanding the approximate nature of equation (7.8) , th is value 

and the values of G^/G^ givein in f igure 18, obtained using the parameters 

deduced from the experimental structure functions, allow us to conclude 

that these two phenomena are not incompatible. 
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CHAPTER 8 CONCLUSIONS AND ONGOING SITUATIONS 

Within the framework of the quark parton model a fundamental 

re la t ionsh ip between the st ructure function FgCx) and a general d is t r ibut ion 

in energy and three-momentum of the quarks, P ( k Q , k ) , was derived in 

Chapter 2, and reformulated in tenns of the moments in Chapter 3. However 

i t was noted that the range of the Feynman var iab le , x , was unlimited, 

a c h a r a c t e r i s t i c of s o - c a l l e d x models, and, in order to r e s t r i c t x to 

i t s k inematical ly allowed region, 0 < x < 1, we invoked the replacement 

of X by - l o g ^ ( l - x ) , thus constructing log (1-x) models for comparison. 

Our main conclusions or iginate from Chapter 5, in which d i f ferent 

modelled d is t r ibut ions were tested against the data. They may be 

surrimarized thus: 

: ( i ) ili^th free* massle^s qiiarks (thus ignoring confinement) i t i s 

necessary to have a varying energy to obtain reasonable 

agreement with experiment; moreover, the expected improvement 

in agreement in the logg( l -x ) model i s well demonstrated. 

( i i ) With f r e e , massive quarks agreement could be achiei/ed with 

a parameterized d is t r ibu t ion in which the quark mass was 

10 MeV. An ana ly t i ca l comparison with the l.ogg(l^x)model 

was precluded in t h i s c a s e , and this part of the wprk remains 

to be completed numerical ly. 

( l i i ) lising the MIT bag model jas an analogue for the confinement 

iiiechanism, the improvement i n the structure function behaviour 

in the logg( l*x) model was a g a i n j e x p l i c i t l y demonstrated. 

Moreover, experimental agreement necessitated a fixed quark 

energy ==<)*13 GeV and a bag radius a 15 GeV"i. These values 

d i f f e r considerably from f i t s to the hadron spectrum but the 
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l i n e a r bag boundary condition remains well s a t i s f i e d 

( i v ) I t was shown that two examples of models with o f f mass s h e l l , 

massless quarks with independent energy and three-momentum, and 

with independent energy and deviation from mass s h e l l , were unable 

to f i t the data. 

The possible sources of correct ions to the scal ing phenomenon of 

the naive parton model were considered in Chapter 6, in par t icu la r the 

incorporation of kinematic correct ions in our analysis through the 

inc lus ion of the f i r s t order Q-2 term. Within the context of the f ree , 

massless quark model of §5.1 .2 i t was demonstrated that a sca le 

v io la t ing mechanism beyond target mass e f fec ts i s required to explain 

the decrease in the structure function with increasing q^ at x 0 .3 . 

Much recent attent ion (̂ ^ has been devoted to the re la t ive s i z e 

of the h igher - twis t terms and the logarithmic scal ing v io la t ions in QCD 

referred to in Chapter 6. Having treated target mass e f fec ts equivalently 

through the Q-2 term in the expression for the structure function 

(equation ( 2 . 3 8 ) ) , the inc lusion of other ef fects which are departures 

from the naive parton model picture ( s p e c i f i c a l l y quark transverse 

momentum, which has a twist - four form) and the consequences of the 

second order Q""* term (a h igher- twist contribution) must be considered. 

The overal l x dependence of the l a t t e r term may be deduced quite 

straightforwardly by extending equation (6.9) to order Q-H and then 

compared with the x dependence hypothesized from quark-counting arguments (38); 

a more physical ins ight may then be developed. 

In Chapter 7 we endeavoured to make the connection between the 

deep- ine las t ic structure function ana lys is of the previous chapters 

and a s t a t i c property of the nucleon, namely the rat io 'G^/Gy. Although 

th is requires some refinement the compatibi l i ty suggests further appl icat ions 
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of our parameterized d i s t r i b u t i o n s : the calculat ion of nucleon magnetic 

moments; and nucleon charge r a d i i , where inconsistencies between structure 

function behaviour and the sign of the neutron charge radius may be 

resolved within the framework of the MIT bag by including admixtures 

of higher bag states 
(39) . 

However th is contradicts our conclusion that 

a lower quark energy than the bag ground state i s required to f i t the 

s t ructure functions. These ca lcu la t ions can be performed with f ree , 

massless quark d is t r ibut ions as well as bag d is t r ibu t ions , as instanced 

for Gy /̂Gy in Chapter 7. 

Our analysis may a lso be extended to polarized structure functions 

with a view to the s e n s i t i v i t y of the Bjorken sum rule ('̂ o) to l igh t quark 

masses in t h i s respect the use of the f ree , massive quark d is t r ibut ion 

with d i f ferent u and d quark masses would be interest ing * , 

These then are some of the conclusions which may be proffered and 

the further appl icat ions which are at various stages oi" development. 

* I t has come to the author's attent ion that the e f fects of an anomaly 

in the divergences of the ax ia l -vec tor current , ignored in r e f . 41, 

cancel the isospin v io la t ing correct ions to the Bjorken sum rule due 

to d i f fe rent u and d quark masses - see D.J . Gross, S . B . Treiraan and 

F. Wilczek, Phye. Eev. D19 (1979) 2188. 
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Appendix A. 'K inemat ic re la t ionship between ' d i r e c t ' and 'Z-graph' 

contributions to the structure function 

Compare the ' d i r e c t ' and 'Z-graph' contributions (see f igures Al and 

A2) and apply the mass condition to the f ina l quark in each case . Then: 

in the ' d i r e c t ' c a s e , 

so, in the Bjorken l i m i t , 

In the 'Z-graph' c a s e , 

so, in the Bjorken l i m i t , 

(ko+v)2 = |k+a|2 

2koV+q2-2|j<| |£|cosa = 0 

2v(kg-kcosa) = -q2 

(ko-v)2 = |k-q|2 

2kov-q2-2|l<| lalcosa = 0 

2v(ko-kcosa) = q2 

(A . l ) 

(A.2) 

Therefore, defining x through equation ( 2 . 4 ) , we see that the 'Z-graph' 

contribution can be simply obtained from the ' d i r e c t ' contribution by replacing 

X with - X . 

(v . a). 

(ko+v, k+£) 

(ko.k) 

(v .a) 

(ko-v,k-c[) 

(ko.k) 

Figure A ] . 'D i rec t ' graph kinematics Figure A2. 'Z-graph' kinematics 
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Appendix B. Expansions of the integrand in the moments in the log^( l -x) model 

We can expand the bracket in equation (3.38) qui te general ly: 

^ n ^ 
1 - e x p ( - ! V i ) 

M 

n+i 
1 - e x p ( - I V l ) 

M 

n+i 

k k k 

( n + l ) e " ' ^ ° ( e ^ - e ' ^ 

.2!<o 2k_ 
(n+T)ng M"^g M 

21 

2k 

3ko 3k 3k 
^ (n+l )n(n- l ) ^ M M _ , 

3' 
( B . l ) 

The exponentials can then be expanded ind iv idua l ly , so that for consecutive n: 

E, = i . k o k - i . k ? k - i _ k 3 + 2 i .k3k + ! i_k„k3 - A k i ^ k - i . k2k3 - _ L k 5 
M2 M3 ° M3 3Mt • 3MV 2M5 ° M̂  • 2M5 

+ J L k ^ k + l L k 3 k 3 + _ J L k k5 - i - k H - ^ k H 3 - _2Lk2k5 
. 30M6 ° 9M6 ° 30M6 ° 20M7 ° 4M7 ° 20M7 ° 

- L _ k 7 + i ? Z _ k 7 k + _ ] ^ k 5 k 3 + _ l !Z_k3k5 + 2l!—kA7 + 
20M7 1260M8 180M8 180M8 1260M8 

(B.2) 

E , = ^ k 2 k + f _ k 3 - H k 3 k - ^ k , k 3 + f i_k;{k + f ° k 2 k 3 + ^ k 5 - l . k 5 k 12 25 25, 

M3 ° M3 M'̂  ° M"* ° 2M5 ° • M5 ° 2M5 M6 

iOk3k3, . !_k„k5 + J £ L k 6 k + H L k ^ k 3 + H - k 2 k 5 , J9L^ - J L k 7 k 
M6 • M6 60M7 12M7 20M7 ° 420M7 20M8 ° 

16^k§k3 - l ^ k g k s 
10M8 10M8 

23 

10M8 
kok7 + (B.3) 
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Eg = - l k 3 k f X k o k 3 - !£k^k - :^k2k3 - I k S t ^ k S k + ?^k3k3 + ^kA^ 

' M̂  ° M'* ° MS V M5 ° M5 M6 ° 3M6 °. M̂  ° 

- Z L k S k - 350kH3 . Z0k2k5 . 10_k7 + 8Lk7k + 567^5k:3 + 567,3^5 
3M7 " 3M7 ° M7 ° 3M7 SM^ • 5M8 ° 5M8 ° 

+ E_k„k7 + (B.4) 
5M8 ° 

E , = i O k > + 20^2^3 , 2_k5 - 30^5^ _ 100^3k3 - 30k^k5 + m ^ k + Z00k^k3 
^ M5 ° M5 ° M5 M6 ° M6 ° M6 ° 3M7 ° SM^ ° 

H- liPkgkS + 2Q_^7 . 50,7k - 350k5k3 - 350,3^5 . 50, ^7 ^ (B.5) 
M7 V 3M7 M8 ° M8 ° M8 ° M8 ° 

E - - i i k S k + i ? k 3 k 3 + I l k k5 . i ! k6k - i l 2 k ; i k 3 - 126k2k5 . 6_,̂ 7 + Z6k7k 
5 M6 ° M6 ° ° M7 ° M7 ° M7 ° M7 M8 0 

+ ! ^ k 5 k 3 + ^ k o 3 k 5 + Z!kok7 + (B.6) 
M8 . M8 ° M8 ° 

Eg = J i k ^ k + Z?k^k3 + I?k2k5 + L k 7 - ^ k 7 k - 392k 5k 3 - - ^^k^k^ + 

V\7 0 ° M7 M8 ° MS ° M8 ° M8 ° 

(B.7) 

E7 =i!ko7k + I l£k5k3 + 12!k3k5 + l!kok7 + (B.8) 
M8 0 M8 0 |V|8 0 „8 ° 
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Appendix C Reconstruction of Structure Functions from the i r Moments 

Although a general , po int - l ike reconstruction of a structure function, 

F , from i t s moments i s impossible, the use of normalised Bernstein 

polynomials allows an aoevage reconstruction of F given by (2°) * : 

? ( x „ / = m ! T ( C . I ) 

•̂ '•̂  k: £=0 £ ! (N -k -£ ) : ^^^^^ 

where F(Xj^ i s the average of F around the point Xj^ j ^ : 

.. k + 1 . 
'N,k N + 2 

k ^ 0,1 . . .N (C.2) 

and i s the nth moment and (N + 1) moments are considered. Under the 

reasonable assumption that F i s twice differenti.able (except at i t s endpoints) 

we can proceed further and reconstruct a pointu)ise function: 

f^('^N,k) = % , k ) -^^(^N.k) (C.3) 

where 

6 ( x , , ) / m i i w f : (C.4) 
2k.'(N+2)2(N+3) Z'O £ : (N -k - i l ) : '̂̂ ^ 

These formulae are used in an attempt to reconstruct the structure 

functions F^ and xF^ from j u s t the n=2, 3 and 4 moments at 7.071 GeV2 and 

to compare with the averaged experimental structure functions. The resu l ts 

are shown in Table 5; within the experimental errors the agreement i s 

s a t i s f a c t o r y . However i t must be pointed out that the moments used in t h i s 

reconstruction are n=2, 3 and 4 and do not include the 'normalisation moment' 

(n=l) incorporated in Chapter 5. Hence, in f i t t i ng the moments there in , we 

* Our notation d i f f e r s from that of Yndur^in in re f . 20 by re labe l l ing the 

to correspond with the notation of Chapter 3 - note, however, that in 

t h i s appendix the refer s p e c i f i c a l l y to either F^ or xF^ and not the 

l i n e a r combinations of Chapter 3. 
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ipiist not be surpr ised i f the reproduced structure ftinctioh does not agree 

too welT with the data. The use of more parameters and more moments would 

obviously give improvement ( in theory an i n f i n i t e number are required) , 

but we only wish to suggest the smal lest number of parameters which may 

be adequate. 
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Table 5. Comparison of reconstructed pointwise structure functions with 

experimental averages 

k X 
'V 

^2 6 Experimental 
Bin 

Experimental value 
of F2 

0 0.25 0:.980 0.057 1.037 0.2 < X < 0.3 1.141 ± 0.146 

1 0.50 0.423 -0.076 0.348 0.4 < X < 0.6 0.258 ± 0 . 0 5 1 

2 0.75 0.112 0.019 0.131 0.6 < X < 1.0 0.049 ± 0.049 

k X 6 ''3 Experimental 
Bin 

Experimental value 
of xF 

3 

0 0.25 0.765 0.051 0.816 0.2 < X < 0.3 0.792 ± 0.455 

1 0.50 0,431 -0.068 0.363 0.4 < X < 0.6 0.513 ± 0 . U 7 

2 0 . 7 5 0.158 0.017 0.175 0.6 < X < 1.0 0.107 + &.080 
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Appendix D Evaluation of the de f in i te integrals required in §5.2 

With the d is t r ibut ion (5.63) substi tuted in equation (3.29) the 

moments M̂  (n=l ,2,3) are: 

= Ne am' -ak2 
(k2-m2)(ko-m)e «^0(Uak„+bk2)dk„ = 1 

m 

(D . l ) 

M. = 4Ne am'̂  

3M 
ko(kg-m2)(ko-m)e"°'^^(l+ako+bk2)dko 

Nm2e am 

3M m 
e-^^od+ak +bk2)dk„ 

k„ 0 0 0 

2Ne am' 

M2 
k2(k2-m2)(k„-m)e-"^'( l+ako+bk2)dko 

m 

ail 
M2 

(D.2) 

(D.3) 

Expanding the integrands then demands the following integra ls (2l)(2^; 
no . 

L e''°''^o;dk. = - l E i ( - a m 2 ) 
kf 

(D.4) 

e-«ko dk^ 

m 

1 TTerfc mva: 
2 / a 

(D.5) 

where e r f c i s the complementary error function, and: 
00 

f ĵ n _ - a k 2 

m 

k'J e'^-^o dko = l a"^"2^^ r ( I ^ . am2) (D.6) 

where r i s the incomplete gamma function ('•^. After subst i tut ing and 

manoeuvring these expressions into equations ( D . l ) - ( D . 3 ) , equations (5.66)-

(5.68) w i l l ensue. 
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Appendix E Evaluation of the de f in i te integra ls required in §5 .3 .3 

With the d is t r ibu t ion (5.115) substituted in equation (3.29) the 

moments M̂  (n=l ,2 ,3) are: 

^1 = c k V « l ^ " ^ o l d k „ 
0 0 

k^ '^ l ' ^ - ' ^o ldk ( E . l ) 

M, _C_ 

3M 
e-«|l<o-Eolcik, kV^I'^"'^oldk 

• : m 

k2e"°' l '^o-Eoldkg f k2e*^l'^"'^oldi< = y^iq^) 
M 0 

( E . 2 ) 

M, = 
M2 

koe-^.l^o-Eoldko k'^e-^l'^-^oldk 

M2 J 
k3e •a|ko-E Oldk, k 2 e - H k - k o ^ , ^ ^ y3(q2) ( E . 3 ) 

We thus require the following i n t e g r a l s : 

k V ^ ^ ^ ' ^ o 'dk = e-^l'o I ^e'^l<dk + ê ^̂ ^ 
- 0 -

k"e"^^dk 

= e e " ^ f t ! . ! * r ! . . . . . H ) " - S i , 
,\i y2 y 

ko 
0 

+ e 
ykf 

n+1 

n-1 
:__ 2iCo_y 2n(nH)ko ^ . . . ^ + ( - 1 ) ' ^ ) - ^ + e ' ^ k o ^ . i ^ n + l ^ 

n+1 

(E .4 ) 

Making the replacements kg -»- E Q , V a : 
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k o V ^ ' ^ - ^ o l d k ^ 2 E ^ , 2 n ( n - l ) E „ " - ^ . 
+ (1 + ( - 1 ) " ) ^ 

a 

+ e"«^o(- l )"+1 n+1 (E .5 ) 

And: 

Vk^V^I'^o'^lole-'^kodk^ ^ e"«^o "k "e^"-^>''odk„ + e"^o f k^V^^-^^^^odk 

= ê °̂ ^o ^ ( a - , ) k „ ^ k ^ ^ i ^ V . . / 4 ( - l ) " - i l l 
. (a-u) (a -y )2 (a-y) 

e«Eo •("^-^Mjko/ko" n k o " - ^ \ . . . ^ 

: ^(a+ii ) ( a+u) 2 

•̂ ^o/̂ o" + i o l +!!! 
y(a+u) (a-y) (a+y)2 (a-y) 

n-1 _,c n-̂ 1 ' „ I 
o _ - ! ! ! a _ + . . . + (+1)"—il^ 

2 (a+y) 1^ 

: t ( ^ l ) " - J ^ V . e - E o ( . i ) " - ^ ni 
( a - y ) ' (a-w) 

n+1 ( E . e ) 

Armed with these expressions, and a f te r some rearrangement, equations (5.116)^ 

(5.118) may be extorted from/equations ( E . 1 ) - ( E . 3 ) . 

With the modified d is t r ibut ion (5.121) the moments M̂  are ident ical 

except for the lower l i m i t of the k̂  i n t e g r a l , which i s now E^ instead of 

zero. The in tegra ls over k w i l l remain the same but the integrals over kg 

w i l l now involve: 

••I a a ' 
n+1 

(E .7 ) 

and 

_k/e-^«^^"'^o)e"^''odko e - ^ ^ o ^ i n: 
,(a+y) (a+y) n+1 (E .8 ) 
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These two expressions can be simply read o f f from the second parts of 

equations (E .5 ) and (E .6 ) respect ive ly . Equations (5.122)-(5.124) then 

follow. 
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Appendix F Calculat ion of the ra t io Gyt̂ /Gy 

The vector coupling constant and the ax ia l -vector coupling constant 

of e decay are defined by: 

G. 5 f Y Y ^ (F .2 ) 
.A . 3 5 

Our intention i s to apply the model of §5.2 with f r e e , massive quarks 

with varying energy, hence f i s the plane wave solut ion to the Dirac 

equation for a par t i c le of mass m: 

^ = 7 ^ I u. e"^^^ . {F.3) 
v/2ko s V 

and u i s a suitably, normalised four-component spinor: 

u^ -- f ^ ' Ws \ (F.4). 

/kn-m o'k w. 

We re fer to the standard representation of Bereste tsk i i et al. 

to obtain: 

Subst i tut ing equations (F.3) and (F.4) into equation (F.6) and using 

(£- i ) (o - i ) - ( a 4 ) ( a . | ) + 2 i a . ( z A k ) (F.7) 

gives: 
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Sandwiching t h i s between nuclepn states gives the SU(6) factor 

and including the s p h e r i c a l l y symmetric quark energy-mpmentum 

d is t r ibut ion gives the r e s u l t of equation (7 .3 ) : 

^ = 5 

m 

(i + ^Hl^dkgkZdk P(l^ , k ) fF.9) 
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(10) M. Holder et a i . , P%s. Lett. 69B (1977) 377. |. 

(11) S . L . Adler , P%s. Rev. 143 (1965) 1144. jte 

(12) E. Bloom, Proe. Int. Symp. on Electron and Photon Interactions at High 

Energies^ Bonn (North-Holland, 1973) 227. 

(13) H. Deden et a i . , Jl/KcZ. Phys. B85 (1975) 269; 

V. Barger and R . J . N . P h i l l i p s , md. Phys. B73 (1974) 269. 

(14) D. Gross ^nd C.H. Llewellyn Smith, md. Phys. B U (1969) 337. 

(15) R .L . J a f f e and G.G. Ross, Miy Preprint (1980) CTP 835; 

' R .L . J a f f e , to be publjshed. 

(16) D. Gross, Phys. Rev. Lett. 32 (1974) 1071; 

D. Gross and F. Wilczek, Phys. Rev. D8 (1973) 3633, phys. ifey. D9 (1974) 980; 

H. Georgi and H.D. P o l i t z e r , Phys. Rev. D9 (1974) 416;. 

(17) P.C. Bosett i etal.i Nuol. Phys. B142 (1978) 1. ! . 

(T8) D.H. Perk ins, private communication. 

(19) G.H. Hardy, J . E . Littlewood and G. Polya, inecj-waZities (Cambridge Universi ty 

Press , 1934) 166; 

E. F. Beckenbach and R. Bellman, InecywaUties (Springer-Verlag, 1965) 102. 

(20) F . J . Yndurain, P% .̂ Lett. 74B (1978) 68. 



92 

(40) J.D. Bjorken, Phys. Rev. 148 (1966) 1467. 

(41) S.B. Treiman and F. Wilczek, Princeton preprint (1979). 

(42) M. Abramowitz and I . A . Stegun, Handbook of Mathematiaal Functions 

(Dover Publications, 1965). 

(43) V.B. Beres te tsk i i , E.M. L i f s h i t z and L.P. Pitdie\/skiU Relativistic 

Quantum Theory (Pergamon Press, 1971). 

/ / i f SCIENCE 

5 SEP 1980 
SECTION 


