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T have_néver done anything 'useful'. No
discovery of mine has made, or is likely .

_to make, dzreetly or. zndtrectly, for good

or ill, the Least dszérenae to the amenity.
of the world ..o I hqve Jjust one chance of

'escaptng a verdict of cdmpZete'triviaZity;. .
that I may be gudged to ‘have created some-

thing worth creattng And that T have created_'
something is undeniable: the question i8
about its vaZue. '

* G.H. Hardy (1877-1947)

A Mathematician's Apology -



ABSTRACT

The purpose of this résearch is the utilization of experimental
structure function moments to test various models of the quark energy-
momentum distribution inside the nucleon and to extend these models

to discussion in a wider context: the contemporary interacting field

“ theory of quarks and gluons (Quantum Chromodynamics - QCD); and static

properties of the nucleon.

A comp]eté connecfion be tween a general quark energy-momentum

distribution and the structure function moments is presehtéd and a cure

for the pathology of the lack of necessary kinematical restrictions in

these models is extensively validated.
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CHAPTER 1  INTRODUCTION AND THE QUARK PARTON MODEL ~

The proliferation of particles that were experimentalIy'dfscovered
in the 1950s prompted Ge]I—Mann and'ZWeig () to.indebendently suggest
that all these particles could be bUi]t from more fundamghta] éntitiés,
namely quarks. Moreover the early high—enefgy inelastic éTéctrOn-pkoton
~ scattering expErimeﬁts @ demonstrated'gimilar.featurés to lower energy
electron-nucleus Scéttering which reveé]ed the composite nature of the
;ucleus, and could thus be evidential that the proton was in tufn |
a]sb a compasite object, containing moré-fundémental partic1é$ called
partons. Subsequénf experiments haVe-accurate1y reaffirméd our:hbtions
of the e]ementary'natﬂre of quarks, in the'heasurement of fhe magnetic
moment ratio ub/un,'and the pdintlike.structure of partons in deep-
inelastic scatterfng:-there is as yet no evidence to suggest thét.the |
properties of quarks are different'from those of partons..

" This then is the very simple model (naive'parfon model) which’
provides our point of departure: the proton is composed df three
free quarks, or partons, of types'u, u, d (to additive]y'exp1ain the
proton’s SU(3) properties). Since we-will be primarily concerned with
inelastic lepton scattering off such a proton we méke the further
aséumption that the photon or vector boson couples minimé]]y to the
quarks in the proton. | |

In Chapter 2 we'derive'fundamenta] re]ationshﬁps_betwéen the
experimenta] strUcture'functidhs and a general distribution'in'ehergy
and three-momehtum of the quarks inside the proton. fhe deep-inelastic
" structure functions are kinematically restricted to the region 0 < x < 1
whereas, if our quarks are 1n1£ia11y free and mass]ess_ﬁith vafying'
energy, thé kénge of x is unlimited; fhe same'pathology oc;uks in the

cavity approximatioh to the bag model (). We refer to such a model as

———
o

Uniyg,
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the = model. The cure is to replace x by TOge(T-x) to fprMu1ate:a |
Log ,(1~x) model. The comparison between these two models is-extenéiVe1y
inveétigated. |

In Chapter 3 we define-ahd relate thé'moments_of thé'strucfuke
functions with various properties-of such a distribution in the context
of both thé_x model and the 1oge(1Fx) modeT; the two-sgbseqUent éhapters
discuss recent experimeﬁtal analyses .of the nucleoh structﬁre functidns
and the possibilities of fitting the data with different modelled
distributions.-'

However experiments have alsé shown ® that ‘the qUaka'carhy
only 45% of the proton's momentum. Thé interacting fie]d theory of
quarks and gluons (Quantum Chrbmodynamiés - QCD) then pictures the
quarks bound by g]uonQexchange and it is_these gluons which carry the '
missing momentunm. The.modifications_fﬁus.required to our'§fmpfe'm04e1
and consequent scaling violations are discussed in Chapter 6.

Finally, with reference to specific fitted momentum distributions
of thé constituent quarks, we Ca1cu1ate the ratio of the axial-vector
and vector chp}ing constants of the nucleon, GA/GV; as an'examp1e
of a static.propérty of the nucleon, and describe further applications

of various aspects of this work.



CHAPTER 2  QED DERIVATION OF THE STRUCTURE FUNCTION

Consider the inelastic Scattering of leptons on nucTeons via one partic]e
exchange. Our kinematjcé] variables are defined in figure 1, where % may be
an electron or neutrino, and writing the energy transfer in the laboratory

system as:

VEE-E | (2.1)
and the invariant four-momentum as:
0 = -q2 = -(p-p')?
-2m2+2EE'-2|p| [p' [cose

Thus at high énérgy where the lepton mass
may be neg]ectedf | |

Figure 1. Inelastic lepton- n 5B . _
~nucleon scattering Q2 = 4EE's1n2-§ . . - (2.2)

Further the mass of the produced hadronic System is given by:

W2 = (P+q)2

M2 + 2P-q + q2

M2 oMy - Q2 23

in the laboratory. | | o |
The nafve parton model assumes that the mOmentum'trahsfer in figuré 1T

is sufficiently high.to considerlthe inelastic léptpn scqftering Procéss as

dqe to incoherent e]asti; scattéring off the point-]ike cbnstifuénté, initia11y_

considered as free quarks by ignoring any 1nteraétion. Thus:

k2

(k+q)?

i.e. _ Qz' '2k.q = 2le.q'

where x is the fraction of the proton's momentum carkied.by the quafk;'In'thé

laboratory frame P-q = Mv, so we may write the dimensionless variable x as:

- N

2
X X
2Mv

nt



Figure 1 1is now replaced by figure 2 for the case of electron scattering,
summing over all quarks. The'mass-condition

on the struck quafk gives:
(kgtv) 2 = keg]?
i.e. 2k vig2-2|k||g|cosa = 0
or Mx = ko-kCOSa - (2.5)

Since the initial quark is also aSsumed to be

kgok)  (KgoK)

Figure 2. Electron-quark
scattering

free and massless then:
Mx = ko(1-cosa) (2.6)

The differential cross-section is then just as in QED_@Q, i.e:

d3pl d3k’ mzmé ' 1 S
do = e (28t T i (@
(zn)3'(2n)3-EE'k ki VP I

where F is the flux of incident particles and V is the spat1a1 vo]ume of
interaction. Integrat1ng over d3k' and writing d3p = |p'|2dp'de' = |p"|E' dE dn
we -get:
2 2m2|p! 2
d2o _ qumeLg | IM|2 1

— §(2m2-2EE +2|p||p |cose+2k- q) - (2.8)
dE* dg' Ek, - (2m)2 VF |

Since we are not in the quark's rest frame we must average over ahg]es o

between quark and photon for a spherically symmetric quark distributian. From' |

equation (2.6) X then ranges from zero to 2k o/M * and: |
d2o - 2m2m2|p | M[2 1 f dcosa & 2m2 2EE' +2|p||p |cose 2|k||q]c05u+2k v)

dE'dg" Ekd (2m)2 VF [ ) dCOSa
. m2m2 M 2 '| . . . . . )
_mgnelp'l M| - (2.9)

- z_Ekgm (21)2 | R

* A.C Davis and E.J. Squires, Phys. Lett. 698 (1977) 249, refer to th1s as the -

mass- she11 allowed region.



dE'da’  4n2q* 4Kk2E|q]

The invariant amplitude |M|2 is fofma]]y written Op

M2 - Zmez-,:zqu{(k"p'”k'p) F (P (') - RE(K'K) - nR(p' ) + onZnd)
e | o | (2.10)

after summing over final spins and'averaging-over'initial Spins..Since-the
experiments measure the differential cross-section for e]ectkon scattering off
a proton the factor VF in the proton rest frame is given by 6.
Mp-P)? - m2W”
F = € -
' EM

1 | o (2.11)

since my, is negligible, and thus |p'| ~ E'. Substituting equatidns (2.10) and

(2.11) (neglecting terms proportional to'mé, ma) into equation (2.9): .

d2¢ et  E!

{tepyteny + @men} (2.12)

Define Mandelstam variables for the electron— quark intekactiohr

s = (p+k)2 = (p'+k')2 _ _ .
= 2kep = 2k'ep! - - (2.13)
T L e L o
. 2kep' = 2k'ep S (2.14)
t = (p'-p)2 = (K'-k)2 |
- q2. | - (2.18)
Hence:
(k') (k-P) + (K'-p)(k+p')} = {52 + (s4t)2) R (A1)

In the laboratory system define:

p = (EsECOSG.sESinSQO) ‘ . ‘ (2_"7)



e

£
I

= (V,QZ,O,O) (2.18)

=~
!

= (ko{kOCOSa,kOSinaCOSB,kosinasiﬁB) ' (2.19)

where cosg = 0, cos?g8 =} for a spherically symmetric quark distribution. .The

on mass shell conditions for the final electron and quark then give respectively:

2Ev - g2
cosp = ——— (2.20)
2qu
2kgv + g2
cosa = ——— (2.21)
2k0qZ
Therefore:
S = 2kep = 2k6E(1—c05acoSe-sina56§§sine)
2 : _ .
= "9 (EMx-kg+2EKD) (2.22)
q? BN _ .
z _ _
and
s?2 =52+ 2E2k2ZsinZasin2e
4o ' - :
= § 2+ 1 (q2+4EE" ) (q2+4k ,v+4k2) | (2.23)
- 8qt - .
5 .
Further:
(s+t)2 = s2 + 25t + t2- | |
Therefore: |
{gﬁ + (s+t)2} = 252 + 2§q2 + g*
gl
- 29" ek +2K0) 2 + 9 (q244EE" ) (240K vedk2)
q'-! v 4q’+
z
" 20 ek +2EK0) 4+ g
q§ v
= gg{sz(E+Mx)2 - 2vqZ(E+Mx) + q} +-5q2(q2+4EE') + 2vq3k (1-%% S

- 4v2k0(E+Mx)(1-%§)'+ Ko (QZH4EE" ) (vik,) + 2v2k2(1--—o }



- L Lava(Eam)2 - 20G2(EM) + a + 1G2(QPHEE') + vk (2vEHI2EE 492)}

N+

where the kg terms. have been neglected. Using equation (2,2)'and

v(E+Mx) = vE - 392, this leads to:

— 5 ' b g2 2FE1 '
(2 + (5#)2} = BMXEE'sin2 2 {1 ¢ ZEE' 390 9% QRET Eg(2v2+1255'+q2)}
q; v2 k2 vt 8
| (2.25)

Substituting equation (2.25) into_equatiOn (2.16) into equationi(Z.]Z) gives:

2 i 1 l..
d2% et iy MxsinZ _.{1 ¢ 2EE' , 3q% 9%, Q%E +-Eo(2v2+1ZEE'+q2)}
dE'de'  4n2q* - 2k3 qg v2 vtov2 v v
. f (2.26)
Using
5 2.5 . . . ' : '
Yo -9% . g - Bk, M2 | (2.27)
qg vZ o : v 2v2 ' '
2EE' _ Mx e. | - (2.28)
v2 vsinZE o :
4 242
3q% _ 3M2x (2.29)
vt v2 .
S92 aMx | (2.30)
vZ oy
2FE 240 .
Q2EE' _ _ M2x2 (2.31)
vt v2sin2d
2
equation (2.26) reduces to (up to terms of order v72):
2 4 '
d% . __e'pa M {s1n22 l(Mx+[2k0-3Mx]sin2.g)
dE'de'  4w2q* . 2k3 v
1 6Mx 2lux-12k, 15028y - 2.32)
+=5(6Mx [k -Mx] +4x [ Mx-12k ] in 5)} - (2.32)

~ We may compare this with the standard deep-inelastic electron-proton

cross-section formula ©:



%0 _-_et E'Z'{E; v (%0 - Ez)sinzg} | - (2.33)
dE'de' 4n2q4 v M v : ' . |

and deduce the dimensional relationships be tween F, and F, and the Feynman

variab}e X by equating the coefficients of sinzg in equations (2.32) and (2;33):

| , ) |
FL(xov) = X (1 4 2[koMx] 4 o1y (2.34)
4k2 v v2 '
0 : :
2- 2 =Myl . . ’ :
Fo(xov) = MX2 (g 4 BlkgMX] g T  (2.35)
2k§ v o w2’ :

We -have already noted prior'to equation (2.9):the range of x fof which this

on mass shell picture is justifiable, namely:

0 < x < EEQ - '- (2-36)
M S o

Noting the relationship (2.4) the above equations can be simply rewritten:

FL(x,02) =M% (1 4 Ax[kgMx] g 1) (2.37)
42 2

F(x,02) = M2X% (74 12Mk[kgMx] g 1 | . (2.38)
22 2 S

In figure 2 we have imp]icit]y assumed a'singlé value k for the initial

~momentum of the free quark and thus ignored confinement. This can be

phenomenologically remedied by considering a'distribution in energy and

three~-momentum of the quarks, P(ko,k); normalised such that:

TT e kedkp(k k) =1 (2.39)
00 ' : _

Our previous argument then only requires modification in equation (2.8),

through:



OM-.s'

% +1 '
" f dkgk2dkP(k,,k) j_l dcosa 6(2m§ - 2EE' + 2|p||p'|cose + 2|k[|a|cosa)
0 = Lo .

©o [+ ]

R G Pa— - | (2.40)

2
0 Iuxek_| al
0

using equation (2.5). Equation (2.35) then becomes, to_]eadihg order:

2y 2 .
Fo(x) =“—4-2x—(9k59 kdkP(k o 5k) . o (2.41)
0 0 Mx-k,|

This equation expresses the experimental structure function of a single quark

in terms of the general distribution in enefgy and three-momentum of the

quark. The reader will note that the range of x is no longer Timited through . 
equatibn (2.6) but can, in principle, take any value (unless a cut-off-is
imposed on k), whereas kinematics réstricts x to the reéion 0<x<1.

The calculation of structure functions in the cavity appfoximatfon to the

bag model (9 encounters the same patho]dgy because of lack of translational !
invariance, but this may be cured by replacing x by -1oge(1-x). This has been
demonstrated in the two-dimensional bag (? and we adopt the séme prescription

in the integral of bur fundamental relation, equation_(2;41), but 1eaving'-

the 'coefficient' x2 which is of kinematic origin. Thus:

Fo(x) = 22X2 1 %Ko | akp(k k) o (2.42)
| 2 | Kk, ) o | _
0 [M]oge(1-x)+k0|

This then ensures that the structure function goes to zero as x goes to unity.
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- COMPLETE CONNECTION BETWEEN THE EXPERIMENTAL MOMENTS AND THE

QUARK DISTRIBUTION IN TWO MODELS

The arguments of the previous chapter are incomplete since we have

only considered the 'direct' contribution to the structure function (see

figure 2), which can be fully represented as the sum of the three Feynman

diagrams in figure 3, namely:

(1)
(1)

(iii)

Figure 3.

Figure 4.

The fam111ar 'direct' contr1but1on

The ‘sea' contribution, in which a quark ant1quark pair is

" created by the incoming photon. we consider only this ‘sea’

mechanism due to confinement and ignore the perturbative Qch

contribution of figure 4.

The 'Z-graph' contribution which contributes negatively to (ii)

since the created quark is excluded from occupying the ground |

state along with the 'valence' quark.

_——_—}-———-—
Ko

(1) | (i1) | ()

Graphical representation of the contr1but1ons to the structure
function F,(x)

O

Perturbative gluon contribution to the 'sea



R

We define the 'direct' contribution in (i) by I(x) so that from equation (2.41)

we write:

(-] [+ <]

dk,

I(x) = Ko kdkP(kO;k) - (3.1)

l\:lz
N

o

"Mx'k.() |

Comparing the kinematics of the 'Z—gréph' and 'direct' contributions
in the Bjorken limit it is straightforward to demonstrate (see Appendix.A)
that the 'Z-graph' contribution is obtained by x —-x in the 'd1rect'

contribution. Hence the 'Z-graph'’ contr1but1on may be wr1tten

[+ ]

I(~x) = I Ko | kdkp(k,1k) |  (3.2)
0 |

le
o

Mk+k0

'Temporarily ignoring the color and spin 6f the quakks the total
contribution to the structure function FZ(X) (divided by x2) * from a
single quark is:
f (x) = I(x) + A" - | . 3.3
9() (x) | (..)

X

- where A' represents the remaining ‘sea’ contribution after subtraction of
the 'Z-graph' cbntribution 5, i.e. when the quark is produced in an energy.
state above the ground state occupied by the 'valence' quark. Similarly

the contribution from an antiquark is given by *

fg(x) = 1(-x) + &' | - (3.4) -
x . o .
* Qur notation is defined by writing the Callan—Gross-re]ationship (@ as: |
2xFy(x) = Fz(x) = 1 e?xf.( X)
i

§ J.S. Bell and A.J.G. Hey, Phys. Lett. 74B (1978) 77, refer to th1s 1atter
contribution as the antiparton "valence" term.

t Bell and Hey (op. eit.) effectively have -I(-x) here since they neg]ect
color and flavor in their equation (28). '
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where no 'direct' contribution exists and no 'Z-graph' subtraction is

required since no Pauli exclusion principle operates to preveht the antiquark

from occupying a ground state.

The color and Spin of the quarké are now considered in a three valence

quark model and this leads to modifications due to reappIication-of'the

exclusion principle: the quark  produced in the 'bubble' diagram of figure 3(11)

can be in the ground state with energy k0 zf it has a different color or spin

to.the valence quark. Consequently (see figure 5):

FuX) 2 oor(x) + 4a

where A represents the 'sea' contribution when the quark is produced- in

the ground state (but with different color or spin to the va]enée quark) ,

i.e.:
A = I(-x)

The factor 4 derives from the exclusion principle: of fhe:six possible
states (3 colors, 2 spins) the 'sea' quérk is excluded from the two valence

quark states. Similarly:

Fa®) - 1(x) +.58 + &
X

Y
=
A 4

A\ 4

> ¢

(3.5)

(3.6)

(3.7)°

Figure 5. The 'direct' and 'sea' contributions to the u-quark structUre'function
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We have assumed SU(3)'symmetry so that no distinction is made between -
u and d quarks in I(x). We make the same aséumption about I(-x), thus
neglecting any possible effect the extra valence u quark may have in

constraining U production in the 'sea"relative to d production. Also:

) 2 1(-x) +5a +
X .

fa(x) . I(-x) + 5A + &'
X

~ Rearranging equations (3.5)-(3.9) gives:

1(x) = (¥ 2 afgx) 1,
2 x 37 6
= Ta sfglx)
X 6 6
1(-x) = fg(®) 14
6 x 6
- 1fg(®) - 1

The electromagnetic structure functions are given by the relationships @.

_?XFéP(X) - F%f(x) = %x(fu(x)+fu(x))f %x(fd(x)+fa(x)).+ % (fs(x)+f§(x))j

b AX(F(0)4F5(x)) + oo

|
-
N D
=
-
x
Srg®
]

2xrﬁ"(3) _ = Ex(Fg(R)+g(x) + Ix(F (04Fg(0) + %g(fs(x)+f§(x)) |

Boff (ywVaf (x)) 4 covee
+ 5x(fc(x)+f6(x)) +
where isospin reflection has been used. Therefore:
e e - .
F00 = FU) = Te(f,(x)+5(x)) = Ix(Fy(x)+F5(x)

Using equations (3.5)-(3.9):

Fezp(X) - Fezn(x) =._;.(I(X) - I(-x))
" x2 x? | '

(3.8)

(3.9)

(3.10)

'(3.11)

(3.12).

(3.13)

'-(3.14)._'

(3.15)



The neutrino structure functions can simi1ak1y be written:

F:p(x)

Fyl(x) = 2x(fu(x) + fa(x) + fe(x) + F(x) 4 -oee

XF3P ()

XFy(x) = 2x(F, (x) = fz(x) + fg(x) - f(x) + .f...f

where . the factor'Z derives from the coup]ing of axial and vector currents,

2x(fd(x) + fa(x) + fs(x),+ fE(X) 4 oo

2x(F4(x) = fo(x) + F (x) - Fo(x) + -0

(3.16)

We expect the charm contribution to be small because of the 1arger mass

of the charmed quark and exper1menta] ev1dence (10 further suggests that the

strange contribution is of the order of only 2% of the total quark + antiquark

contribdtion:.we thus neglect both charm and strange contributions in’

equation (3.16). Avéraging over a nucleon target composed of an equal number

of neutrons and protons:

FaN(x) X(fy(x) + fx) + Flx) + F3(x))

N
XF} (X)

K(F,(x) + Fy(x) - () - £3(x))

and substituting equations (3.5)-(3.9) we get:

N
Fo (X) = 31(x) + 211(~x) + 44"
X2
XF3N(x) |
3 (X) = 31(x) - 31(-x)

which can be inverted to give:

V) xF“N(x)

241(x) = - 4y
() = 2l ) - 45

wN wN
281(-x) = F2 (X) _ XF7(x) _ gy

(3.17) .

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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We define the moments of the 'direct' contribution by:
po= [ x" x)dx = f X {I(x) + ( 1M1 (-x) }dx | - (3.23) -

From equation (3.15) this can be written in terms of the experimental structur¢

function moments:

w (nodd) =3 [ x" P (x) - P (x) bax | (3.24)
n 0 2

Taking n=1 in equations (3.23) and (3.24):

-]

f xI(x)dx

-00

¥y

i XFeP(x) -FE"(x))
0 x :

-1 o | :  (3.28)

where the last equa]ify follows frém imposing the charge'consfraiht in
equation (3.14) and assuming an SU(3) symmetric sea. Equation (3;25)_"
éxpresses the Adler sum rule (13, aﬁd the exﬁerimental valqe is 0.81, the '
small x regioh being inaccessible (12, This cohsistency jQQtifiés our
previous assumption about the SU(3) symmetfy 6f.I(-x). The validity of this |

sum rule is equivalent to normalising the 'direct' contribution such that:
IOXI(X)dx =1 i - | (3.26)
Using equations (3.21)-(3.23) we can also write:
.= éL.foxh {(F"N x)+7xFVN(x)) + (-1) (FvN(X) XFvN(X))}dX - lA. .(3527)
whgre A! is the nth moment of the remaining sea contr1but1on and van1shes
identically in equation (3.27) for odd n. Moreover the 'sea’ d1str1but1on is

expected to be small and concentrated at 1ow x (19, the even moments thus being

negligible: consequently Aﬁ may be omitted in the following analysis without
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undue error. The lm'SJh’c'-hand's1‘de-o1"equation (3.27) is a linear combination .
of the neutrino structure funct1on moments and is thus we11 provided with
data (see Chapter 4). Aga1n taking n=1:
TEEVLACLES B - (3.28)

This is the Gross-Llewellyn Smith sum ru]e (1@ which has the expehimental
value @9 around 1.06 * 0.16, thereby consistent with the norma]1sat1on
criteria of equation (3.26).

We now consider the moments of I(x) in terms of quark momentum
distribution referred to in equation (2.39). Thus using equation (3.]) to

evaluate equation (3.23)'for a distribution P(k,.k):

(2] o« o0

5 -
Moo= M1 xNax | 9k dkP (ko k)
n 0™
2 ) K,
0 |Mx k ol
- ko
: ) - M "o 0 ©
- J 950{ xdx | kakp + | x"dx { kdkP}
2 ) ko' )
0 ko=Mx Ko . Mx-kq
k_o M k0+k .
) - L M o0 M
_w { ‘_’LO{ [ kdkP [ xdx + [ kdkP J x"dx} |
TR ek ke
M, = —-—-1—n_1 [EEO [ 'kdk{(ko+k)n+1 - (ko-k)n+1}P(k JK) (3.29)
2(n+1)M k ' g0t SR
0 : .
. 0
So for consecutive n.values:
M= 'jo fodkokzdkP(ko,k) o (3.30)
M, =_ L +_< (b | S (3.31)
M3-—<k2> + k2> : - o - (3.32)

M?
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1 B o
M, = — e <_> +_ k2k + v <kg> | : | | (3.33) |
] |
Mg = m<|<l+> | + 3M‘+ <k2k2> + — - <kg> | - (3.38)
' 1 /K6 3 ' -
Me = . Ms <k‘+k0> t k2k3> k5> o (3.3)

where we define:

Ky = [ e, [ Racrngn (.36
_ _ 0 0 _ B
The various combinatfons of meaﬁ properties of the distribution in
equations (3.30)-(3.35) can therefore be .spec.ified in terms 6f the experimental
moments' values of equation (3.27)_'.' | |
We c.an' do a.simiiarf analysis in terms of the ]oge(1-x).mode1 alluded to

ét the end of Chapter 2, viz. by r_ep]écing X by—1oge(1-x) in equation (3.1):'

oo

q(x) = [k, kdk P(kook) o (331)
2 | kg B o : -

[M]oge(1-'x)+ Kol

The evaluation of equation (3.23) is then modified (We denote the mdments in

this model by Ln):

2 -] [+] . . l. .
L = H_I ox [ kg kdk P(k. k) |
n 9 k 0 : _
- 0 |M1 09¢ (1-x)+k, |
,r 1- exp(-—°) - o w
- M| dkg { x"dx kdk P + | xMdx kdk P }
2 L ' ) k :
0o - - M]oge(1—x)+k0 1-exp(——rjf) -Mlog -(1-x)-l%‘__
Y ® 1-e.xp(-—N?) © 1- exp(-—‘iw
= +k0 { kdk P | x"dx + | kdkP | x"dx ' }

o 0 1—'exp(—'50M15) 0 ' '1-exp(-ﬁo)
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[+:]

- : | : . _ 1 3
o L= 'Mz Jgﬁo [ kdk {[] - ex_p(-E.Olk).]nH -1 - exp( IiQ‘\;—)]n+ } P(kgsk)
_ M
0 .

"o2(ntl) ] Kk, |

0 _
(3.38)
After expanding the brackets for consecutive n (see Appendix B_); w_e.

can write expressions cor‘responding to equations (3.30)-(3.35):

0o . 00

o '.k2 3 :
.L1 = J fodk k2dk P(k k) - p k—0> - Eﬁ<k°> + 6M2<k2> + 6M2<k2> TR
dek k2dkPk ,k) -Eﬁ ___> —<k0> +EM; k2> +__ k2>)

’g's_pﬁ _>+ ..2_<k2k0> ¥ k3> +f§)ﬁ: k4 +3Mq<k2k2>+ W<k4>)

K6\ .

R ENCREICNE <k-2k3> ()
12 1 7 ' o
+FE£)M6 k6> +M5 <k‘+k2> + <k2kl+> +_<k6> ..... | (3.39)

1o +i (k) 2<¢<k2> +;—-2<_ks>>
Py > FEGORIECHY EM_<"“> ¢ ey v o (k)
#3001 —> + k4k0> +M§§<k2kg> +M]§<kg> ):

360 7M5

g(&:—s <k6> * [;1?; <kkk§> + 54?5 <k2kg-> + #<k8> ) +  ..... o ..(.3_40)‘ o
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e e o e ek el i b L

| L -(_<k2> +M2<k2> 554—3' __> + k2k> + <k
VI () 4 10 ) ()

] o
L, 5M3< > + = <k2ko> + — <k3> -l\i; <k‘+> 3M4 <k2k2 + — " <k‘*>
1401 /K 1
+ ? i 6> | <k“k = '<k2kg> + e <k_g> )

- 5(_ <k6> + L M6 <k'+k2> + L v <k2k“> fMG <kg> ) + | | | (3. 42)

L, - (_<k‘+>+ o ety +_._<k‘+> %LM< > 23 <k‘*k0> +M5<k2|%3> +M5<k5>)
S Y G D R ) e
L -( 5<_> +_ kKo - <k2k3> +._<k5>) |
- 4(—<k6> e <k‘*k§> + M—é G _<k6> ) + O (3.44) ._
- l6<k6> + L (k'+k2 +_ <k2k'+> + L <k + SECIE i .'.(3--45)
In equations (3.39)-(3.45) the moments in the 1oge(1'-x) model, L, are

expressed as linear combinations of the moments in the x model, -Mn;_ and in

principle these linear combinations form an infinite series. Normalisation

4 M4 MY | | |
35, 1

RGO <k3> ) |
A 7 7 5 S
25(,\7,5<k6> ¥ Ve <k“k§ + M—6<k2kg) + <k5> ..... - (3.41)

t

common to both models is defined by equation (3.26) rather than by eqdations (3.30)
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and (3.39) separately. In this respect 'renormal isation' in the_1oge(]-x)

model is automatic if the first momeni, L,, is set equal ‘to ul(qz),'whicﬁ

will be assumed to equal unity in accordance with the Ad]ef and Gross-Llewellyn
Smith sum rules. Jaffe and Ross (19 incorporate the Jdcobéan factor (1-x)71

to achieve the same satisfaction.
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CHAPTER 4  EXPERIMENTAL MOMENTS ANALYSIS

Recent eXperimenta] analyses of nucleon structure futhions have
concentreted on the moments of the structure functions since QCD-giVes
.direct prediCtions for the behaviour of the latter (16, Kiﬁematical
considefations a]]oﬁ_the lowest moments to be measured more accurately

than the structure functions themse1ves. This is our motivation for
calculating the mohents'of the quark distfibution in equations (3;30)-(3.35)
and (3.39)-(3.45), so that accurate experimental data can be ut111zed
through equat1on (3. 27) | | _

We rely on the ABCLOS bubble chamber'gfoup analysis (1»IWh1ch combines
neutrino-and.antinQUtrinp data from 10W energy.ihteractions in Gargame11e
with higher energy data from BEBC: spetiftcai]y we have values and errors
for both the'structure'functions and their moments at varidus qé (19),
However, since bubble chamber neutrinb_experimente.are of limited statistical
precision compared with counter experiments, we further uti]ize the CDHS |
counter group results.fer neutrino and ahtineutrino interietions in.irbn'(ﬂ

“to check consistency where possjb]e, a]though.this is limited because only.
the structure functions and their n=2 and1h=3 moments are published from.
the CDHS_experimEnts, In the following analysis Nachtmann moments are'used;
the difference between these and Cornwall-Norton moments 1s-unimportent at
this 1eve1. |

In equation (3.27) the moments of the l-d1'r.ect' contribution, Mo are
expressed as linear combinations of the experimental neutrino structure
function moments and in Table 1 we_present.the experimental va]uestand

errors for u . (with o' set to zero) at various q2 %. As we have seen in

5 The values of q2 given in Table 1 correspond to average values according.
to the binning; these wi]]Idiffer slightly from the published q2 va1ues'
for the structure functions (see Table 1 in ref. 17) since the structure
functions are 1nterpo]ated to fixed q? whereas the moments are binned
in different q2 <ntervals.
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equation (3.28), u; should equal unity in agreement with the Gross-Llewellyn .-
Smith sum_ru]e and this is aésumed in Table 1. In experfments the measured
quantity is xF3 R WhiCh is theoretica]Ty expected to go fo zéfo as X goes to
zero, and the x denomindtor in the sum rule thus presents probtems éf small X.
The CDHS group incorporate an extrapolatiqn to x=0 and get féir égreement with
the expecteq quark partdn model prediction (cf.their sectibn 6.5'with Table 2

in ref. 17). | '

Through the expansion of the eXponeﬁtia]_in equation (3.38) the moments in
_the-]oge(l-x) model, Ln’ were seen in principle to be 1iﬁear combinations of
all Mm (m > n), and, since the range of X in the x model is infinite;'the
highéﬁ.moments-Mm need nqt necesSa?i]y be negligible. A straightforward
approximation from the x.mode1 to the 1oge(1-X) mode]l (for examp]é by'
truncating the series in equations (3;39)-(3.45)_) is thﬂs impossible, and
to compare the models forms for the distribution P(ko,k)-wi11 be chdseh-suqh
=that_ the integrals in equations (3.29) and (3.38) can be ﬁerformed ana]yticé]]y.

It will be sufficient fo perform the subsequent ana]yéis by selecting
moments at specific values of q2 from Table 1. However, for compTetenéss, we
include the relevant moments at a11 available 2 and the subsequent ana]ysis
N is presented in such a way that the fastidious reader éan reproduce the results
at any g2, thus investigating .th.e.q2 depehdence of distributions. of c0ur§é
a more interesting q2 dependence arises through the second term in eduation (2,38) :

and this will be examined in Chapter 6.



Table 1. The values for the moments . (see equation (3.27)) from .
experiment at different q2 ' o

2 2
g% GeV n ¥n
1| 1.0000(®
2 | 0.1756 + 0.0348
3 | 0.0561  0.0210
4 | 0.0278 + 0.0081
5 | 0.0116 + 0.0049
0.387 6 | 0.0061  0.0019
7 | 0.0027 +0.0012
8 | 0.0014 + 0.0004
9 | 0.0006 + 0.0003
10 | 0.0003 * 0.0001
" “a)
12 {a)
1 ~ 1.0000(P)
2 | 0.2339 + 0.0254
3 | 0.0891 + 0.0158
4 | 0.0419 £ 0.0070
5 | 0.0220 + 0.0047
0.592 6 | 0.0113 + 0.0021
7 | 0.0064 + 0.0014
8 | 0.0034 + 0.0006
9 | 0.0020 + 0.0004
10 | 0.0010 + 0.0002
11 | 0.0006  0.0001
12 (a)
1 1.0000(P)
2 | 0.1930 + 0.0169
3 | 0.0826 + 0.0097
4 | 0.0403 + 0.0047
| 5 | 0.0239 + 0.0033
0.837 6 | 0.0125 + 0.0017
' 7 | °0.0080 = 0.0012
'8 | 0.0043 * 0.0006
9 | 0.0029 + 0.0004
10 | 0.0015 = 0.0002
11 | 0.0010 + 0.0002
12 (a)
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2 2
Q4 GeV n My
1 1.0000(P)
2 | 0.1549 + 0.0206
3 | 0.0414 +0.0078
4 | 0.0162 + 0.0034
5 | 0.0089 + 0.0024
7.07 | 6 | 0.0045 + 0.0016
7 | 0.0031 + 0.0013
8 | 0.0018 + 0.0010
9 | 0.0013 + 0.0009
10 |. 0.0008 * 0.0007
11 | 0.0006 + 0.0006
12 " (a)
1 1.0000(?)
2 | 0.1204 £ 0.0174
3 | 0.0278 +0.0092
4 | 0.0098 + 0.0049
o 5 | 0.0030 + 0.0042
14.100 6 | 0.0013 + 0.0026
7 | 0.0001 & 0.0024
8 (a)
9 )
10 - (a)
1 (a)
12 (a) -
9 1.0000(P)
2 | 0.1114 "+ 0.0105
3 | 0.0254 + 0.0042
2 | 0.0090 + 0.0022
- 5 | 0.0031 + 0.0019
20.000 6 | 0.0015 + 0.0017
7 | 0.0005 + 0.0012
8 (a)
9 (a)
10 (a)
11 (a)
12 (a) -
1 ~ 1.0000(P)
2 | 0.1000 £ 0.0127
3 | 0.0244 + 0.0041
4 | 0.0083 + 0.0022
5 | 0.0032 + 00019
28.284 6 | 0.0015 + 0.0013
7 | 0.0007 + 0.0013
8 | 0.0005 + 0.0010
9 (a)
- 10 (a)
1 (a)
12 (a)
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2 2
qs GeV n My
1 1.0000(®)
2.} 0.0809 = 0.0105
3 0.0243 + 0.0036
4 0.0085 + 0.0017
5 0.0034 + 0.0012
48,990 6 |. 0.0017 + 0.,0008
7 0.0008 + 0.0006
8 0.0005 + 0.0004
9 | (a)
10 (a)
11 (a)
12 (a)
1 1.0000(P)
2 | 0.0746 = 0.0099
3 0.0217 * 0.0025
4 | 0.0076 + 0.0010
: ' 5 0.0032 + 0.0007
63.246 6 0.0016 + 0.0004
7 0.0009 + 0.0004
8 | 0.0006 x 0.0002
9 | (a)
10 (a)
11 (a)
12 (a)
1 1.0000(P)
2 1-0.0755 + 0.0904
3 0.0201 + 0.0136
4 0.0069 + 0.0023
5 0.0031 + 0.0008
77.460 6 0.0016 +-0.0005
7 0.0010 + 0.0004
8 (a)
9 (a)
10 (a)
11 (a)
12 (a)

(a)
(b)

The moments are less than 0.0001 for these n values

2%

The Gross-Llewellyn Smith sum rule is assumed correct -

see equation (3.28)
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CHAPTER 5  THE QUARK DISTRIBUTIONS

In Chapter 2 we introduced a normalised distributjon ih.enérgy and
three-momentum of the quarks, P(k,,k), to phenomeho]ogiéaT]y account for
confinement and in Chapters'3.and 4 we defined_the moments of this
distribution and related these to the experimental moments df neutrind
structure functions. We now test various models of the_qdarks' motion by
éttempting to fit various parametérizations of P(kq,k) to the data in its

explicit form in Table 1.

'§5.1 Models with free, massless quarks

In the first instance we ignore cdnfinément'and consider the deep-
inelastic lepton scdttering as due to incoherent.elastic scattering off
free, mass]eés quarks, the finalFstate ihteractions taking place on a much
16nger time—sca]e'and thus being disregarded. It is evident from.Appendix A
that such a model with quarks remaining on mass shell will have the. 'sea’
contributing in the unphysical region x < 0 and bonsequent1y,F2 and xF, '
will be identical in the region x 50 (see equations (3.19) and (3.20)).
This patho]ogyzwi11 be rectified in §5.3 when confinement is taken into

account.

For the present, with |k| = k,, we may rewrite equations (3730)-(3.35)

My =1

M, =34_M<k>
2

My = = (k2)

M, =_é1|~f_3 k)

Mg = 3%6;<k4>

as: -
(5.1)

('5.2)".
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| and. these equat1ons may in turn be equated w1th the exper1menta1 numbers
' f(at any q2) given 1n Tab]e 1 | o : |
© With the def1n1t1on equat1on (3 36) a s1mp1e genera11zat1on of the

- Cauchy Schwarz 1nequa11ty 1n terms of the moments (19 requ1res the fo]]ow1ng

1nequa11t1es to be valid: . | _ o
i @r°V149d_a # b)s_whlch_may be-rewrttten_tn terms-ongni
9

='M1M3 .qu.> 0. - B N : .; a ;Q.' o 1_(5?8)":.
gt L . T

>
|

- S P A

>
[H!

oy T Mth ) ]5 > O_ : o o ..(5.10);Eej

[
in

>4
N
o

t

M3MSJT.EZME ?-Q . h - .h.. _ | AR ..__:.__ ."(5112)f1g

46 = MuMs-'1§§M§,> Oa o - . | . o o ﬁ'l'(§ii§)hfn

=
i

Therefore 1n1t1a1 cr1ter1a for the s1mp1e mode] of free, mass]ess quarks
are that the quant1t1es A must be pos1t1ve Taking va]ues for M from the o
exper1menta] moments in Tab1e 1 the values for A at var1ous q2 are. ca]cu]ated
in Tab]e 2. We see that the cr1ter1a are sat1sf1ed except for the 1arger .
- moments where the exper1menta] errors are more substant1a1 the d1screpancy |
is not serious and for 1n1t1a1 or1entat1on we may proceed w1th mode]s

- incorporating free, mass]ess quarks.



Table 2. The quantities A defined by equations (5.8)

required to be positive .

~(5.13), which are

| .q2GeV2 13 Bis | Paw | e a5 | Pwe |
0.387 0.0214 | 0.0074 0.0b15 0.0002 '-0.00bZ  +0.0&§8'.
0.592 0.0276 | 0.0114 | 0.0013| 0.0006 - 0.0001'-f0.0358-
0.837 | 0.0407 | 0.0148 ‘| 0.0005| 0.0005 | 0.0003 [-0.0001
1.225 | 0.0261 | 0.0120 | 0.0013| 0.0007 | 0.0001 '-o.oo(oao).'
1.732 0.0124 | 0.0085 0.0014 | . 0.0007 0.000]_ +0.0g§2
2.449 | 0.0132 0.0667 .0.001]' 0.0006 | 0,0001 +0.0ggg
3.873 | 0.0100 | 0.0046 | 0.0008| 0.0003 10,0000 +o.oo(oao)
7.071 | 0.0144 | 0.0066 | 0.0007 | 0.0004 l0.0001 -0.0358
19100 | 0.0115 | 020020 | 0.0004 | +0.0050 |-0.0060 '+o.oo(oao)
20.000 | 0.0114 | 0.0022 | 0.0003| 0.000] -o.do(oao) +o.o'o(o_ao)
28.28 | 0.0132 | 0.0024 | 0.0002| 0.0001 |40.0000 +o.oo(oao) |
48.990 0.0169 | 0.0026 0.0001 0.0001 +O;Oggg. +0.0ggg_'
63.246 | 0.0154 | 0.0026 | 0.0001 | 0.000] 10.0000 '+o.oo(béo)-
77.460 | 0.0137 | 0.0026 | 0.0001| 0.0001 +o.op(oac)) '+o.oo(oao)

(a) Where the

quantity is less than 0.0001 the sign is stated.

29
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§5.1.1 Free, massless quarks with a single fixed energy

We begin with the simplest possibility of a fixéd enefgy ko'for the
quarks which remain on mass shell. The contribution to the structure function.
from a single quark is then given by the leading term df equation (2.38):

1(x) = * - | | s
Zkg :

~a uniform distribution which satisfies the normalisation requiremeht (3.26)

over the range 0 <X < 2ky, With k| = (fixed), the first four moments are

given by equations (3.30)-(3.33):

Moo= - | S - (5.15)

M= <2 koo By - (5.16) |
M, M 3M | S o R

My =X 4 KL 2y2 - - T (5.17)
M2 M2 M2 - |

M - 'k‘+ .+ 2k2k0+ k3 - 16 k3.. o N . . (5.]8) .

* BMk, M3 M3 5M3°
Equations (5.16)-(5.18) thus. offer an immediate test of this e1émentary”mode1

when equated with the expérimental moments Mo Mg and My, ffbm Table 1, via:

' The'va]ues of.these'quantities.ahd'their errors are disp]gyed'in figureIG;
It is not'surprisihg'to find that, even within experimenta1-érrdr$, the
equajity'(5.19) cannot hd]d in general and that a mode] with fréé, ma$s1ess
-quarks of fixed energy is incompatible with the data. However, in tﬁe nexf.'

section, a modification will be seen to lead to considerable improvement.
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. . _" Figure 6. The moments quantities'refErred_
3 | . to in equation (5.19) and their
' error bars :
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§5.T.2 Fkég,:massiess'quarks with'varyihg energy _
In considering a.distr{but%oniof free, massless quarks;With.varying
energy we seek to fnc]dde the smallest number of parameterg which will gfve
‘a reasonéblé fit:to_the experimental moments,ta1though in theory ankinfinite
number of moments and therefore an infinite number of parameters will be
'needed to precisely determine the function. For guidance on thiS'point the
method. of ¥Yndurdin (20 has been utilized (see Appendix C and the Eommeﬁts
therein) to show that the first thréé mdmeﬁts (including normalisation) are
adequate for our burposes to reconstruct the structure function and we thus -
inc]udé thrég parameters (including norma1isafion constaﬁt)'ih opf distribution:
N “ok | S ' :
Plkosk) = NE—2 (1 +ak ) 6(k - k) o ~ (5.20)

2.
kO

-~ The form of this distribqtidn aj]ows us to'berfOrm the'neceQSary integfals
ané]ytica]]y ih both the x model aﬁd the 1oge(1-x) modeT.: |

When this:form for the;distribution is substitdted info equations (3.30)-
(3.32) for theﬂx'model'the'infegrals may be pefformed.straightfdkwérd]y and-

equated with the experimentaT moments at various q2:

My = N(]—.“? 3*)= u,(q?) =1 o ) s
N1 2a PR | o
M = 2o+ 22 = 2 . . 5.22
AL B e __ - G2)
_“zN(Z 6a> 2 o s
My =22+ 28) 2 y(q2) . (5.23)

This allows solutions a,a (at various g2) given by:

+ O T - 4. | - ' "
oM = Mg £ 2 - dug - o (5.24)
i, - o2M2 . - ' o
L. (4 3aMu2>a ) (4 a2M u3)a o ~ (5.25)
8 - 30!.M]J2 12 - a2M2u3 . . . -



33

Our norma]isqtiqn constant, N, may be obtained from;equation (5.21):

N1l - - (5.26)
" | o | ,

To illustrate the procedure which may be adopted if'One wisnes to _
examine the q2 dependence ‘we se]ect the exper1menta1 moments at the part1cu1ar

q2 = 2.449 GeV?2 from Tab]e 1 and obta1n the fo]10w1ng two sets of so1ut1ons

oM = 4.884 or  17.100 - (5.27)
aM = -1.285 or - -85,293 | (5.28)
NM = 6.628 or . -4.288 | - (5.29)

The second set.of sdiutions 1s'inadmiésib1e because of a negative normalisation
constant which thus. prevents the d1str1but1on in equation (5;20) from |
remaining posit1ve definite. _

We test the consiStency of.tne first set of solutions by calculating
the'strncture function F, (or xF3) through equations (3.1).and (3.19)

(or (3.20), recalling that in this model there is no 'sea' contribution at

x > 0) and comparing with the combined BEBC and Gargamelle structure functions’

of ref. 17. With the distkibutjon-(5;20)-equation (3.19) (or (3.20)) becomes:

INM2y2 | =Ko - S _ o
(x) (or xF“N) - 3WMxZ | e %01 + ak, )dk, | | (5.30)
. = _ - | - B
' 0
Mx
%
| = 3NMX { (] + aMy)dy- o ' o (5.31)
! X o -
| 2

which may be integrated directly 1. to giVe:

aMx - . ' :
2[5 - ' - : . . o
FN(x) (o szN)=-3NMX.{2e_ 2 fa- o HE “Mx] S (5.32)
2 |x . - 2 | R




emphasis is attached to ngN than F

4

With the admissible values of a, a and N given by équations'(5.27)-(5.29)-

wN

3 from

this function is shown in figure 7 along with the experimental xF

ref. 17: it is evident'that by fitting only the first three moments more

i

5 and, for clarity, we show only the

former for comparison. Within- the naivety of the model énd the 1drge
experimenta] errors the agreement is adequdte; HoWevef, at iarge X odr
structure function takes on small négativé values due to the hegatf?e-Va]ue
of a: we will return to this point later.

We now perform the same procedure in the log,(1-z) model. With the same

distribution (5.20)'quation (3.38) becomes:

Ly = ?M (17" + a1y o o (5.33)
" oo(n+l) 2 | - o |
where: o
| " 2
~ak -=20
Ir11+1 - J e 0(] e M )n+1dk0
k2
0o 0
n+l . o ' | : L o
=€§ (-1) ( )(pm+1)zloge(pm+1)_ o - (5.3)
~ 2m=0 Am ' ' o ' SR
. N o
-ak -==0
™. J € 201 -e MyMig,
o'kq . .
n+1 - | |
= (-1)"y (- ( n+ >1og (pm+1) . - (5.35)
om=0 n+']-m e_ _ B
and
pz=2- o L (5.36)

oM

Thereforé, in the Toge(1-x) model, the analogous équations to (5.21)-(5.23).

are:
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I
|
XF\3)N b —g—
1.5 |
é | xF:N'frdm ref. 17
; i Structure funct1on in the
: x model given by equat1on
’ (5.32)
10 Structure function in the
Tog_(1-x) model given by
equ§t1on 5.47)

0.0 0.5 0

_ ~ Figure 7. Comparison of the structure functions in different models, at

; | - q2 = 2.449 GeV2 with the combined BEBC and Gargamelle data

' points (only statistical errors -and estimates of smearing and
centér-of-bin correction are incorporated in error bars).
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. 2 2 o . -
L, 5.'“&(‘-_2 (-1)" ( )(pm+])21og (pm+1 - aM } (_-1)-2-'_'“("_Zm)wgé.(r’m”))'-

4 \pm=0 m=0 =
=w(e?) = 1 | o - (5.37)
L, = M(l )3j (-1):"_‘( 3) (-'.pm+1)2llog (pri+1) + aM ; (-1)3"“( 3 ) Tog (pm+1))
6 \ pm=0 ‘\'m e - m=0 3-m e B
= 1,(q?2) | | | . (538

- .
w
L}

y ' 4 |
= Nﬁ!(l-i (-n" (47)(pm+1)21oge<pm+1) - am | <—1)“‘"‘(*4 ) loge<pm+1))
-~ 8 \pm=o m ' | m=0 \4-m. '

u3(q?) o o (5.39)

.Note that in this model our distribution is autdmatica]]y ‘renormalised'
by assuming that ul(qz) = 1, so that the Gross-LLewellyn Smith sum rule is
satisfied.-Aftér expanding the summations and eliminating N, the so}htion for

p'(i.é. a) is given by solving the equation:

FPouy(02)) = G(Panyla®)ong(@?) o (540)
where
'F(p,uz('qz)) = 8(1-w )(p”)%g (p+1) - 3(2- “z)<29+1)21°9 (2p41) + 2(3p+1)2109 (3p+1)

6(1 u2)1oge(p+1) 3(2 uz)log (2p+1) + 21og (3p+1)
(5.41)

6(Psu,(92)s1,(02)) =

4(1-“3)(p+1)21og (p+1) 2(3: 2“3)(zp+1)21og (2p+1)+4(1- us)(:sp+1)21og (3p+1) -
H M 3uy '
2 ' 2 2 -(4p+1) 210, (4p41)

4(1-“3)109 (p+1) - 2(3-2“3)109 (2p+1) + 4(1- 3_3 Tog,(3p+1)- - 1og (4p+1)
My n2 o :

| (5.42) :

The solution for a is then:

a=0f o6 . - - | ~ (5.43)
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The normalisation constant, N, is then most easily obtained ffom equation (5.37).
Again specifically at'q2 = 2.449 GeV2, we obtain the fo]iowing two sets

of solutions:

9.703  or 124.942 - ~ (5.44)

oM =
aM = 811.883 or  -53.916 - © (5.85)
NM = 0.162 or -72.802 - | . (5.96)

- With the distribution (5.20) the structure function is given by the

- modification of equation (5.32):

: oM
PN (or x)N) < ML 200-X) 7 oo (ﬁ"hogeu-x)) (5.47)
2 loge(l-x) 2 C _

-

“With the admissible values of a, aand N given by equations (5.44)-(5.46)
g

ynctiqn is compared in figure 7 with the structure function in the

x model and the éxberimenta]lvalues at q2 = 2.449 GeV2 from ref. 17. Thé_
1ogekl-x) model maps the region 0 < x < » onto 0 < x < 1 and 'this giVe;
bétter agreement with the data than the x model, in which the contribution
from x > T, although small, is significant'in fitting the n=3 moment when

weighted by a factor x.
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§5.2 A model with free, massive quarks.with vafying ener§1 

We now 1n9estigate'the effect of giving the quarks aZSmall, constant .
mass whi]sf retaining them on mass shell. Our approach wi]] be along the
éame'1ines as in the massless case, i.e. §5.1. |

With k2 = k2 — m2, where m is the quark mass, we may write the moments

- equations (3.30)-(3.35) as:

- . o s |
R .
", - ﬁ% (i3  _1§; . ) | -:_ o - _(5750) 
" _= 5M3 <k3> ]:;3 o) 5M: <klo> o B o | | (551) |
" <""> ]:s;“~2<k%>." *E‘Z' | . o (552)
e R By Ry e

iwhere the 'natural’ definition of <kg> follows from equation (3.36):

(kQ} = J kdk (K2 = m2) P(k k) - | o | (5.54)
A | ,

With this definition the revised moments inequalities of edUation (5.7)»

in'terms of'ko, can be tested and (in some cases) used.to determine bounds
on the quark mass imposed by the values of experiment. Ana]dgous to

equations (5.8)-(5.13) we have:
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Byg = M (M, +E2-)- (n +__< > )2 > 0 _. | B | (5.55)
: 8m Sm m2 :

Aye = Mo(M. + —M, + =) - &M, + =—)2 >0 :
15 1(;5 M2 2 oy 3( 3 M2) > _ - _(5.56)
Ay, = (M, +.__.<__> M + M + gTE < > 16(M + 2)é >0 (5.57).

24 5M2 2 2 : -

25m2 - 27m"

o>
i

M

0 = (M, +.TE.<J_> )(Mg + Y T M, + — <__>
- ° S ks T M2 T e

9m?2

-25(M, + =M +.-_ —\ )2 O o : ' 5,58 |
ol M2 2 53 > ” - %39
L m2, 8m2, . 5mY 9m? L
Aoe = (M, + Py, + Sy, 4 20 25(M + =M, TN LR (5.59)-
350 73 2T g2 g et g2 2 5M3 >
Im2 , 25m2, . 2Im*, . 5mé
A, = (M, + =M +-—— J(Mg + =——M —
T w2 ? 5M3 Ko > Mzt e " 7M5 < >
s, + 81»43 Pt (5.60)

355 ° . aM2 T g

Equations (5.8)-(5.13) can'be retrieved by 1etting m ~+ 0. Moheover by

| subst1tut1ng the relevant exper1menta1 ‘values My from Tab]e 1 the quant1t1es

A reduce to quadratic expressions in <i?_ or, in the case of Als, a direct
1nequa11ty inm wh1ch is satisfied at a]] g2 for all m 0 However, the
requirement of pos1t1veness of the quantity <—¥> does allow a determination

of lower limits on m; for example, at q2 = 2.449 GeV2, 1nequa11t1es (5 58)

: and (5.60) respect1ve1y lead to the bounds :

m > 0.47 GeV | - - (5.60).

m>0.20 GeV = o R (5.62)

‘However the relevant quantities A,s and A, both involve several moments,

" thus componnding their accompanying errors, and']ittle-significance ;hou]d

be attached to (5.61) and'(5.62). The validity of the other inequalities for
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| all m > 0 at q2.= 2.449 GeV2 allows us to continue with this'model wifh
o ~ free, massive quarks.

We adopt the'following distribution with free, massi?e quarks:

k2

P(kysk) = N(k; - m)ef“ (1 +aky + bk2)s(k - /kZ-m2) | (5.63) .

The fofm of this distribution is chosen.tb allow an ana]ytiéa] evaluation
of the re]eyant 1ntegraTs in the x model but precludes the 1oge(1-x) model.
For various o and'm we treat N, a and b as parameters to be'détefmined by
the first three'moments'equations. It seems reasonable in'this.resbect to
restrict our attention to the ranges:

1 < oM2 < 300 o o -' (5.64)
0.01 GeV < m < 0.50 GeV ) . (5.65)

Using Apbendix D;'equations_(3.36)4(3.32)9bé¢ome:

-am?

1 _ 2 ' 2\
M, = Ne®™ {a [/1_7 erfc m/cT( 3_ -2 ) + & m]
. | 8/a° 4/03/ 44
1 m | emom? ' m . :
+ b[/E_erfc m/a ——(2am2 - 3) - ———(om? - 4)] + /merfc Mo —(2om? - 1)
8/a5 © 4a3 - 4/a3
—om?2
- & (am2 - ])}
222 - - :
=ufe?) =1 - (5.66)
SR O o | gmam?
M, = — {a[?? erfc mv/a — (-20.2m*+50m2-6) + (a2m*-3am2+8)
3M 4/05 208 -
1 e
o+ b[/w? erfc mv/o (2¢2m"*5am2+30) - m(am2—14)] R
- : 8/a7 | 4a3 - |
e ] | - et s
+ /1 erfc m/a (2a2m*-50m2+6) + m -.__E1(-am?)}
' 2

4/a5 - a?

=ua?) | . . o e



(e uy(a2))

| ., - “an? -
My = 2Ne - {a[/? erfc m/a ]__ (~-6am2+15) + & 7m
M2 L - 16Va7 8u3
' m | e om? NE
+ b[/?'erfc m/o ——— (6om2-15) + (am2+24)
]_6/01.7- . 8ot -
m emam?
+ V/m erfc ma———(2om2-3) - (am2-4)}
: ] 443

_=-“§(q2) + m2

One can then patient]y eliminate the normalisation constaht, N, from

equations (5.66) and (5.67) and from eqUations (5.66) and (5.68) to

obtain two simultaneous equations in a and b: .
f.ll(o"’m’uz'(qz))a + flz(a,m,uz(qz))b = gl(Qsmsluz(q.z))

f2.1-(°"9_msu:-3l.(q2))a + fzz(o‘qmsU3_(q2))b = gz(q,m-,u3(q2))

where:

-fll(a,m,ué(qz)) = ¥ erfc mva. T__ (-8a2m5+20qm3+12u2Mam?-24mr18p2M)

16v0°

e-am2 :

+ = (40.2m*~120m2-6u ,Mam+32)
803

F1plaamn,(42)) = /T erfe myaL(2a2n'6uMaZn?-15am+9p Mam+30)

' 8va

‘-om2
.eozm

403

(am3-3yzmam2+1zuzm-14m)

V1 erfc mva- 1
T 16Va7

(202n"+2y M202m2-9am2-3y M2a+15)

-am2
- Je 3 (om2+u M20-7)
8a ' o
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(5.68)

(5.69)

(5.70) -

(5.71)

(5.72)

(5.73)



O Typlemug(e) = A erfe mie

(-2[u3M2+m2]a2m3+9qm3+3u3M2am715m)
o .

+ & ([u3M?+m2]a2m2-3am2-4u3M2u+24)

- om2
gt
9, (@smou,(q2)) =
' 2 8/
- 2
S
4a?
gz(as.m.sus('qz)) = !/Tl'—eY'fC m/(!—':_g

-am?2

40,3

provided:

8va

/m erfc m/ELJ——(-4a?m“+l2u2Ma2m3+10am2-6uéMam—12)

: (61,Mom2+4m=-61,M)

(2a2m5+2u3M2a2m3-3am3;u3M3dh+3m)

(a2m4+u3M2a?m2—2am2*u3Mza+4)

b>0

These two conditions. impose severe restrictions on the admissibility

j - -_. : - ' a2 < |
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(5.74)

~(5.75)

~ The distribution (5.63) will remain positive definite for all k;, >m.

of solutions for a,b, which are computed and presented in Table 3 for the

_aboVe_ranges of o and m at the specific q2 = 2.449 Gev2;'the'normalisation

(5.76)

(5.77)
(5.78) |

constant, N, is computed'from equatioh (5.66). It is evident that an average

value can be taken without undue error:

_ m
~aM2
aM
bM?
NMH

0.01 GeV

79.5
-11.48
32.95

1.20x10°

'(_5';79)_ |

(5.80)

| (5.81)

(5.82)
(5.83)
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Table 3. The sets of solutions to the moments eqUationS_at q2 = 2.449 Gev?

with the parameterized distribution (5.63)

mGeV | oM2 | M | bM2 MY

0.01 77 | -1.21 | 31.41 | 1.09 x 105 |
001 | 78 | 1.3 '32.02 | 1.13 x 108

0.001 | 79 | -11.42 | 32.63] 1.18 x 105

0.01 80 411.53 | 33.26 | 1.23 x 105

0.01 81 | -11.64 3.3.8_8 1.27 x 105

0.01 g2 | -11.75 | 38.51 | 1.32 x 105

Following the procedure of §5.1.2, the structure fun¢t10n Fy,
(or.xF3 sincé our quarké are_bn maés shel1) may be calculated with the

distribution (5.63):

() (or xFl) - 3WEZ [ g ;"‘-.Z(ko-m)e'”-"ﬁ'"'z)(-] + 2k + bkZ)dk,
h(x) 0_

- where:

Thus, with z2 = a(kj - m?), this becomes:

ag2[ : .
SNMZx [/E(a - bm)I, + o1 - am)I - mva3I, +"b13]

'.QN_ wNy, _
Foo(x) (or xF7) =

20
where:

I, = I.zze_?zdz = QF(%, (ﬁ(x))z)
h(x) |

(5.84)

(5.85)

(5.86)

(5.87)
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Il - Ee——— e d_Z ) - ’ . . (5.88) _
= | vzZ + om? : g . : . o
h(x)
T 22 -z2 : A ' (5.89
I,2| ————e " dz - o y _ )
} (22 + am2?)
h(x)
oo 72 _ : | o o o
I, ] 2222 + am? e © dz o o (5.90)
h(x).
and: : .
— 22 - m? : - ' :
R(x) = /J(u) . - o (5.91)

2Mx

The structure function is computed with the set of parameters given

by equatibnsf(5.79)-(5.83) and displayed in figure 8. Notwithstandjng the

‘double peak (which is caused by the dominance of the 'kg' term with

coefficient b at high x and could, in principle, be eliminated by imposing

‘a further restkictipn), the agreement of this massive x model with

experiment is good ahd should be compared with the analogous massless example

of an x model (85.1.2 and figure 7).
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1.5 |

p—}-Q xF"N from ref. 17°
Structure funct1on g1ven
by equat1on (5. 86)

1.0

0.5

0.0 0.5 - 1.0
Figure 8. CompariSOn of the strﬁcture function in a'mdde]'with free, -
massive quarks, at g2 = 2.449 GeV2, with the combined
BEBC and Gargame]]e data points
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§5.3 Mode]s_with'off mass shell, massless. quarks

In this section we take account of confinément by treating massless

quarks in various off mass shell models with a 'sea’ éontkibution in the

physical region x > 0. A particularly useful analogue iélthe MIT bag model (29 (21)

in which the quarks 1ie in eigenmodes of energy. Further- possibilities of a

varying energy as well as a varying three-momentum will be cdnsidéréd_in

§5.3.2 and §5.3.3..

§5.3.1 ~Off mass shell, mass]eSsIQUarks.with a single fixed energy

" With quarks of zero mass and fixed energy, ko, the familiar moments

equations_(3.30)-(3.32) in the x model are:

M1_= 1 .

M2 =<EE> +_k.0
_ 3Mk0 M

M3=¥<Ef> + K3

o M2 M2

Equating with the relevant expérimenté] momentsffrOMfTable T it
is straightforWard to déduce the fb]]oWing solution for ko'at any
particular q2 .

Ko= 3, (a2 + 1/ 7 T2y o 7y
M_O qu(q ) % Ev’9112 (9 ) _8u3(Q-)

From figure 6 it is evident that real roots:fok ko are only permitted

by the experimental uncertainties in uy and ug; then a range of possible

kg can be deduced within these experimental limits'af various q2,,and_.:'

this is shown in Table 4. The moments at high q2 1ncorporété.]arge
experimenta] errors as the structure functions creep towafds x =0,

so that any conclusions on the solutions to equation(5.95) must_bé )

(5.92)

(5.93)

(5.94}_

- (5.95)
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Table 4. The range of k, allowed within the bounds of ex?erimental_

errors at various q2, in an off mass shell, massless quark
mode] with a single fixed energy

42 Gev? © Minimu Value | Maximum Value
: of ky/M. | of ky/M
0.37 | 0.08 - | 0.233
0.592 o.izz L e
0.837 | (a) . ()
Tes | (@) | (a)
v | 0% 0.181
2.449 o9 | 0.8
3.873 | 1 0.080 _' :  ' 0.176
70m | oms | o5
14.100 0.076 0.131
20000 | - (&) |  (a)
| 28. 284 @ | ()
48.990 @ | (@)
63.246 (a) @) |
77.460 0.022 | 0.227.

(a) No real roots to_eqdation (5.95) exist for these q2 values



considered unre11ab1e in this region. On the other hand a fa1r1y cons1stent
range of k; is obtained as q2 goes from 1. 732 GeV2 to 14. 100 GeV2, and

the average value, E__ 0. 141, is taken as typ1ca1 within the bounds of -

experimenta] érrorsv Although we are unable to s1m11ar1y deduce a value
for k, in the 1og (1—x) model, it is not unreasonable to assume that thi§
'typ1ca1' value is app11cab1e to fac111tate the following compar1son of
the models for different bag rad11 '_

. The mass}ess quark distribution in tnree-momentum in'the ground
state of the cavity approximatiOn'to the MIT bag,hodel is given by (29

s1n(k - k )R .sinkoRsinkR 2
P(k) = NR® - —
kko(k -kg)R3 - k2kZR*

(5.96)' ?

fWhero R is the bag radius and norhalisation may be fixed by the first . .

moment in the x model:

[+

[ ke = 1 | o (s.97)
o A - S )

The shape of the probability distribufion, kzP(k),'ié shownfin'figure-g,
and in genéral the mosf probable value of k will be greate} than the on
mass shell value becauée of conffnement The osci]]atory.nature ariSes
. from the r1g1d1ty of the bag boundary, and the first minimum 1n kR is

_-g1ven by the second solution (k # k ) to the equation:

cot kR - - = cot koR - —l— S | .'(5-98) 'f

kR . k R
Normalisation could then be fixed by imposing a cut-off in k.in'equation
(5.97) corresponding to this minimum: this is found to be unsatisfoctOry _

| because of difficu]ties'in adaption:to the 1oge(1-x) model, so wé will

return to the question of normalisation shortly.
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k2P(K)

kR

koR

F{gure 9. The pkobdbi]it&-disﬁribufion'of Massjeés”qQQrks in the
ground state of the cavity approximation to the MIT
bag model -
The structure functionsﬁmay be cq]cu1ated for any k, in the bag in
both the x model and the log (1-x) model,-usihg'eqﬁéfions“(S.QG), (3.T);.-
(3.2), (3.37), (3.19) and (3.20). Moreover it is straightfo}ward tﬁ'_ B
investigate.the effect of changing the bag radius R with kq'fixed. The
structure functions in the x model and the 1oge(1-x) modé1 are compéred.in
figures 10 and 11 for R = 9.0 GeV- and 15.0 GeV-! respectively and k /M = 0.141,
. the 'typica]‘ value referred to above,_Td compare directly with_experiment_
we.must fix'the'nofma1isatibn{ équation (5597) is equiva}enf to the Gross-
: L]éwe]]yn Smith sum rule (see eqﬁat%ons (3.28) and (3.30)) and.the
validity of the latter is taken to prescribe the norma]iéatiqn in the
fo]]owing manner. As referred to in Chapter 4 difficulties are encountered
af small x when eva]uating the area under the ca1cu1ated structure function

A\ .
FBN(x). We thus assume that the experimental value,
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Structure function 1n

,/// log, (1-x). mode1

,Structure function in
.~ x model

= 9,0 GeV-1

R
K=0.141
Mo

'Figuré-lo. Comparison of structure functions in different models

w1th1n a bag framework for k /M = 0. 141 and R = 9. 0 GeV"

i
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0.5 1.0

| . Structure function in
;/// .1oge(1-x)'mode]

~ Structure function in

--"  x model

R = 15.0 GeV-l
ko= 0.141

; Figure 11.

1.0

Comparison of'strQCture functions fn different models -
within a bag framework for k,/M = 0.141 and R = 15.0 GeV-!
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duplicated with xF,

~this analysis. As clearly demonstrated for the x model in ref. 25:the position -
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0 - _ ' o
J FN(x)dx = 1.09 - o . (5.99)
0.1 : '

as given in figure 21 of ref. 4, is consistent with the GrdsS-L]éwe]jyn .
Smith sum rule. This normalisation prescription is then applicab1e to fhé
1oge(1-x) model ca1cu1a£16n$ of the strdcture functidns,‘énd the difect: |
comparison with experiment is shown'in_figures 12 and 13 for R =.9Q0 Gev-1 |
and 15.0 GeV.'"1 and k /M = 0.141. Thfs Tattér value was'an average oyer'fhe '
ABCLOS.groupls g% range frpm 1.732 Gev2 to 14.100 GeV2 ahd'the CDHS "group's
data provides a very convenient énd more éccukate structure function analysis
over this range for neutrino enérgfes 10 to 20 GeV (see Table 3 of ref. 4)
and it is this data whi;h is utilized in figures 12 and i3. The'good:
agreement with FXN(x) for a bag radius of 15.0 GeV-1 is not conclusively

N(x) but it should be pointed.out that the COHS data.

of figure 13 is not entirely consisfent with the BEBC dafé"at-iow X (Wheré
g2 is comparable) of'figure 7. Notwithstanding this it would appear that

a radius much- larger than the bag value of 5 Gev-1 (29 is required from

of the structure function maximum is determined by k,/M-and a larger bag
radius produces a-harroWer structure function. Thése féatgfes are cérried‘
over into'the ]oge(l-x) modei. It is ihteresting to note fhat, With
ko/M'="0;141; géod agreement is obtained when.R = 15.0 GeV“i? thus well
satisfying thé.lineah bag boundary condition. | |

The momentum sum rule (26) can be evaluated in each case:

1 S
J \Z)N(X)dx = 1.02 5 R= 9.0 GeV-l . o . (5.100)
0- A2
LN o o
FY(x)dx = 0.47 3 R = 15.0 GeV-! - ) 5.101)
] T2 . | , 101) .

0
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F;N for neutrino energy

“range 10 < E < 20 GeV
(see Table 3 of ref. 4)

= 9.0 Gev-!

R=15.0 GeV-1

0.5 10

 Figure 12.  Comparison of structure function in log (1-x) model

within a bag framework for k, /M = 0.141, with CDHS data
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ngN(x) r W o L
_ - XFg~ for neutrino energy
range 10 < E_ < 20 GeV.
(see Table 3 of ref. 4)
1.0 | = 9.0 Gev-!
T =15.0 GeV !
0.5
0

0.5 o .l.d

Figure 13.  Comparison of structure function.in ]oge(l-x) model
within a bag framework for k /M = 0.141, with CDHS data
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The CDHS group find a value 0.44 : 0.02 over the relevant neutrino energy

range, thus confirming our agreement for a bag radius of']S 0 Gev-l.

Jaffe s treatment of structure functions in the cavity approximation _
of the bag (3 suffers from the patho]ogy of 'x models’, namely their
extension outside the physical region 0<x <1 because of lack of
trans}attonal invariance. Further the momentum sum ru]eimas_welllsaturated

in the'physica1.region:

I FXN(x)dx = 0.93 . B : ' - : - {5.102)
0 : o : : : ,

A more direct i]TUStration of the improvement which can be achieved .

in the 1og'(1#x) model is thus -obtained by-comparing Jaffe'S'structure

funct1ons (measured from the parton d1str1but1ons in his’ f1gure 7) with
our ca]cu]at1on for R = 9.0 GeV~! when the momentum sum rule is a]so
approximately saturated. Two caveats shou]d f1rst be entered Jaffe takes
R = 7.0 GeVl from the bag fit to the average mass of the N-a system (23)
and, more 1mportant1y, the 'sea’ contr1but1on of f1gure 3(ii) 1is

wN FvN

neglected 1n his ca]cu]at1ons with the consequence that Fo and X

d1ffer only by the small 'Z-graph' contr1but1on A more ‘accurate 111ustrat1on
can thus be obtained by compar1ng w1th our structure function F"N or xF"N
w1th the 'sea' subtracted, i.e. the quant1ty 3x21(x) of equation (3.19) or
(3.20). This is shown in figure 14 where the average of Jaffe's F\’N and

N is taken (the difference is neg]1g1b]e above x = 0.5). Even with
these caveats the 1mproved features due to the 1og (1-x) mode1 are ev1dent,

namely its forced restriction to the physical region and 1ts more

'reasonab]e width and peak
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Figure 14.  Comparison of bag étructure functions:
(1) in the Tog (1-x) model with R = 9.0 Gev-!
(ii) & Za Jaffe with R.= 7.0 GeV-!
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§5ﬁ3;2 - Off mass shell, massless quarks with independént enérgy and
three-momentum - - _

“In an attempt to ‘consider a general off mass shell mode] without
fixed energy a fivé-parameter'disfribution separable in energy-and three-.

momentum is- hypothesized:
. . _ _ 2 . . :
P(k, k) =C kop o eko 2041 -Bk? | o - |
where we expect o, 8 > 0 and p, q > 0. This form for the diStribution

permits a_straightforward-determination of-the necessary integrals in

equations (3,30)-(3.34) (22, Teading to:

M, = C(q.+ 1)! z- = (@) =1

20 p+1 Bq+ L
M, =[xl *2) 3+ ”>= uy(a?)
- M\ ep o/

| M, - _1_<4+ 2, (p+N)(p+ 2)>= u3_(qz)

MZ_ B | a?

v o 1 f(ar3)(@+2) , 100+ 2(p+1) , 5(p+ 3)(p + 2)(p + 1))
toosM\ o s2p B w3 )

_ ﬁ4(q2)

M= 1[(a+3)(a+2) [ 10(a +2)(p+2)(p +]1)
, oy g2 - 3802 '
+<p+@@+3up+mw+i>=%mq

alt

It is straightforward to'demonstrate_fhat these equations do ﬁot
permit réalistib.éo]utidns for a, B, p'and q in the sense of_the_proviSOS'
" .mentioned aftek equation (5{103).'E1im1natihg_the anntify.(q + 2)/g from.
 equat16ﬁs (5.105):and (5.106), o may be expfessed'as'the-fo]]bwing fﬁnction

of p: .

'(5__.103)

(5.104)

(5.105) |

(-_5.:1-0'6) :

(5.1'07)"_'

(5.108)
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oM =_3u2P'i Y9u,2p2 - Buz(p? - 1)
| 2ug |

A further re]ation between o and p may be obtained by eliminating the

quantity (q + 3)(q + 2)/B2 from equations - (5 107) and (5 108) and using
- equations - (5 105) and (5.106):

- B2 1) 2 AT IR Za(p2 - 1)(p2 - 4) !
_ _ 2a
where
aé]_(Suu -3u2u5)__
3u2 '
S .5 ' '
bz — (n, - 2u,u,)
o 3u2 '

fThrough equations (5 105) and (5. 105) the provisos q o >0 -

demand:

NIERCETAL
U, .

Equations (5.109) and:(5 110) and the Tower bounds of'(5-113) and (5.114)

are shown in. figure 15 where the moments M, (q2) have been taken from Tab1e 1

at the spec1f1c q2 = 2.449 GeV2

The pos1t1ve solutions for o and p do not.satisfy the requ1rements of
(5 113) and (5.114) and this 1s found to be genera]]y $0 at all 42, In the
Tight of the re]atlve successes of the d1str1but1ons in §5.1.2, §5.2 and -
5573;1 the_consequences ef'the distribution (5.103) will not be'punsued

further.

(5.109)

(5;116)-

(501

(5.112)

'(5.113) y

DN
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,_-FiQure-lS; __The relationships befween.ﬁhe'paramefers'a éhd'p

of the distribution (5.103)

. , _— Equation (-5..109)
| - Equation (5.110)
| _ - . The Tower bounds

Il _ | y3 as expressed by
I/ o (5.113) and (5.114)
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§5.3.3  Off mass shéT] mass]ess quarks w1th 1ndependent energy and
dev1at1on from mass she11

As an extension of the previous sub-section we seek a fdurfparametér
-distribution separable in energy, ky» and a quantity k - ko,-Which i§ a

measure of the deviation of the (massless) quark from its mass shell:

- (5.115)

The parameters C o and u “can’ be determ1ned for various E, by equat1ng
the first three moments, viz. equat1ons (3. 30) (3 32), w1th the exper1menta1
‘quantities “1’ u, and “3. Us1ng the requ1red 1ntegra1s evaluated in
Appendix E, these equatTOns ]ead to.

M =2_‘3{_.Q-2"E(a2|-:-g+6)+4__%+e°‘5_?__+5L- )
i3l o3 o a2 a*  (o-u)2

Zae' Eo . - T o : '
B (a+u)(a'u) - zu>} wE = (s16)
otu o=y, : : S
i _Mé = 2 { (u” “E“ + 12a2u2E2(a2+u2) + 24a” + 240242 +- 24u")
. - o 3Mu

-akEp | : N -
- .——24e (a“+a2u2+u”) yo 12 :-<(a+p)e'°.‘E° - Zae'“EQ)}_

oS (omu) (otu)
ZC‘{Z (ot ZE“ + (a2+6u2)(2a2E2+4)) te  0(a24642)

o HEy ;HEy o
ZqE 0® " 0 ((uz-uz)E -4y) - e 70 + (e q - e qu)}

() 2o | (o) (auP

@) - B A U
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. .M3 = __Z_C__{E-E_O(aqquJa +‘4d2u2E§(3a2+5u2) + '24&'-} + 6.(!2U2_ +]20u'+) . ’

M2u5 o
~-aE o -ukE ' '
. 24e6 O(a%+3a2u245y%) = 128 0 (54F (atu) + a - u)
e

(a-u) (atn)?

(a-n)2
o [ . ~oF o
+ ﬁ{EEo(auu-ZEg + 202E2(a2+10u2) + 1202 + 12042) + 128__U(q2410u2)
M2u3 a5 : ' a6 :
e MEg/_oEf _ _6ouEf _ GuEy(3aPnu?) 3
Alotu)(a-u)  (a+u)2(a-u)2 - (a+u)3(a-u)? o (atu)®
P ) < e
.(a_u_).q . .

. Eliminating the normalisation constdnt'c from-eqdations (5.116) and

'(5.1]7) and from equations (5.116) and (5.118) allows so]Ufions for o and

u by soTVfﬁgjthe two equations:

o

L L
+ 72 a2+ 192p2 + 48°-‘—J
. 2

‘ [Za"uZEg'MEo—sMuz(qZ)) + 12040 (3Eg-Mu,(a2)) + 120202 (8Eg-3Mu,(92))

(5.118)

+ 8 6 =0
(a+u)®  (a-u)3|

i e-an'§§_+'95Pz L2, M(e%) 1B (22 12 L 6 3Muy(e?) f':
Had  0®  ap? a2 ot w2(a=u) . (o~u)3 . (a=u)?
_ eHEq [6aEg(EgMuy(a?) 1203(2E-Muy(42)) 2o
- L (atu)(amn) (otu)2(a-u)? w(a-u) (o)

| (-5;.119)



62

ﬁ[q“uZEg:(.é;g.-M%g(qZ)) + 20%(7E3-M2u3(g2)) + 202u2(205;873l;4?u3(q2))

o

+ 1802 + 240u2 +,24°‘_}
- po o u2

+ emaEo[E (14 W2y (q2)) + B0, B M2ui(q2) 6 12 sza(qzq
coo et b aZy2 a2 (amw)* " 0%(a-u)?2  (a-u)?
N »é-.qu"4ag(53Eg,-Mzg§(q?)) _ 20E,(E3-M2(q2)) _ 24ak
| (o) 2(amu) 2 (atu) (amu) .~ u?(a+) (amp)
i 12ul?0(3a.+uv) 1_2 L B P = 0 - (5.120)°
"(afu)3(a-u)3 Cu?\(at) o (amw)? (a+u)“ (a-u)® -

We a]so cons1der a s]1ght mod1f1cat1on to the d1str1but1on (5.115)

by 1mpos1ng a m1n1mum ground state energy Egs 1.€.

P(ko,k);;‘ck-o»e a(ky-Ep) “'kkl 8(ky=Eg) . CL (5.121)

' Oflcbdr5e the integrals over k in our previous ana]ysis'remain
-jdentica]jand the only modification required is to the ]oWer']im{t in’
integra1§ oi§r:k0,5which“isAnow E, instead of zero because of the @ function.

Again using'Abpendix E, the first three momehts with thé distribution (5.121)

become:
| M‘ = 2CIu%  3p343 2E 2460 é 2 (of 1 50 h) - 2y =
M= = -—( 3+302E2+60E (+6) + —(aE +1) - -((a+u)Eg+1)p = uy(q%) = ‘

w3l - : a? - (atp)? ' E ' ' 4
oo : . | O (5.22)
. M, - _gg-{lg( u5E3+4q3u“E8+12a2u2E§(a2+u2) + 24au2E6(a2+u2)'+ 240"
2.3 : . '
. - -uE
+ 24(12112 + 24 4y - 4 1_2_e__0}

.(q+u)
 + ZC,{l( Va2 (024607) (aEFH20EG2)
te'ﬁgo'
. (a+u)3

@ - (5.123)

(o) %3 + 2anEy + 2} =,
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M: = _EE,{j—(a“u”E3+5a3u“E8+4au2E§(aE&+3)(3a2+5u )+24E ( 443a2u2+5p")
M2u5 q5_" _ - . .

. C y UE , :
: +72au2+24a3+]203—) 12e ((a+u)E0 + 1)}
© s : ; ’ o (a+u)v2 -
Lo L2F 5453, 2F Y 2(2 210 ]ZOH
+ — MS( E +5a pe E +2aE ( +10p2 )(aE0+3)+12EO(a +10p2 )+12 +—)
BTN . AR .
A e_pEO | o : ' ' o .
- ((a+u)3E3+3(a+u)2E§+6(a+u)E0+6)} = ua(qz) (5.]24)
(atu)" ' ) .

The twb»Simu]taneous’equations for o and are'then obtained‘in an identical
fashion:;‘Lff |

_JE{%“Q?E3(4E5-3Mu2(q2)) + a3u2E2(16E-9Mu,(q2)) + 6aE((3E My (q2))

o : . . . o

+ GaQu?E'(8E_;3Mu-(q2))'+'6a3(6E0-Mﬁ2(q2)) + Bau?(16E -3Mu,(q2)) + 36a2

e

. ; _ E;
+ 9602 +: 240‘} RSN {3Mu (q2 u2((wt)Ey + 1) = 12(at)
- " ‘ug uz(a+u)2 : . E
) 3e'uE ' U . |
- B +u)2E2 + 2(a+u)E + %] = 0 h - . (5.125) -

b, (a+u)3‘

- ab

L +.2a3H2E (20E2-3M2u ,(02)) + 20“(21E%jM2u3(q2)) + 6a2u2(20E2-M2y (q2))

e (2E3 M (02)) + auE(10E7-3U2(92)) + 205K (TES Hony(a)

. ) '+
L+ 8k 3E y 2 Eo + 200au2E + Bha? + 2ha” 24ou%}

T - u?
f”éQ”Eo SR | |
+ ;;z;;agg[}mzu3<qz?ug T?)((é+u)E0 + 1)]
ik | S ) 3
. e "o [(a+u)3E3 + 3(a+u)2E2 + 6(atu)E, + 6} -0 )
. (a+u) » . ' | N ) ‘
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Using a computer we find that solutions to.eQUations (5¢119) and (5.120)
and equations (5.125)'ahd (5.126) may be obtained with very large o and yu.

For example, with E, = 0.01 GeV and moments ‘taken at q2 = 14.100 GeV2,
oM ~ 200 o | - (5.127)
wM'n 50 | S (5.128)
This leads us to conclude that a very narrow distribution around Eo
; is'demanded~by the data, reverting us to §5.3.1 where a fixed energy
distribution (i.e. S-function in kb) was employed. In the light of the

'satisfactory'nature of the amalysis in that sub-section, the consequences of -

equations (5.127):and (5.128) will not be pursued further.
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CHAPTER 6 SCALING VIOLATIONS

In the prev1ous chapters and spec1f1ca11y in the def1n1t1on of I(x)
“through equation (3.]), the second term of order Q72 in equat1on (2.38) has
been ignored and the subsequent'structure function anaiysis;in Chapter 5 |
‘has been -independent ‘of Q2 at fixed x end_thus'independent,of any mass scale.
This is the phenomenon of scaling in the naive pdrton mode1,-deriving from |
the assumptiOn that the inelastic 1epton scattering occursfthrough-fncoherent_
elastic scatterind'off point-1ike quarks.uH6wever, both the ABCLOS and CDHS
data clearly demonstrate a uiolation of sca]ing'(zﬁ the structure.function
F (X x,Q2). fa111ng at large x and. r1s1ng at sma11er X as 02 increases.

" Three poss1b1e sources of such effects are: | |
(1) K1nemat1c correct1ons due to non- neg11g1b1e quark and target masses,

‘which may be accomodated by a mod1f1cat1on of the x var1ab1e (29

| (Q2 +. m% - m) + /(Q + m% - m2)2+4m202 . 61
o ZM(\) + /\)2+Q2) o o . (- )

where m R mf are the 1n1t1a1 and f1na1 quark masses. and M s the
target mass. Th1s var1ab1e then reduces to the x of equat1on (2 4)
at 1arge Q2 |
(i) Other neg]ected properties Tike the transverse-momentum_and otf magsf
| she11 effects of the querks which‘arise in twist-four operators in
the operator product expans1on and are of order M2/Q2 where M s
the fundamenta] sca]e of the strong 1nteract1ons, phenomenolog1ca11y
estimated at about 400 Mev. (29,
(ii1) Logar1thm1c corrections due to the quark-gluon 1nteract1ons of
| “quantum chromodynam1cs (30, The agreement of such QCD pred1ct1ons w1th
~ experiment is extensively c1a1med (3) byt 1t.1s worth po1ntJng out .
that some authors (53 have commented that the.higherftwist.terms of (ii);:

_besides becoming significant below 4 GeV2,. may account for the high
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experimenta1.ua1ue of R, the-ratio of the photdabéorotion-tota1;.r
crOSs sectdon for photohs of he]icity Zero or.tl;'Houever it is
agreed that the'Qz/v_2 effects in (i) cannot he thegsole source of

_ sca1ihg-violation; and it is:this point.on which uezuish to focus in
this chapter | | | |

We adopt the following method. It has been shown (39 that the 1nc1us1on

of the first order term (~Q~2) in the structure funct1on of equat1on (2.38)

1s equ1va1ent to the 11ght cone and operator product expans1on techn1ques
of Barb1er1 et. al. (ZQ which yield- the sca11ng variable E. Ma1nta1n1ng

mass]ess quarks on mass shell, the moments of I(x) in the X mode1 now

.1nc1ude correct1ons (ef. equat1on (3. 29))

- 2" i n+1 | 2 6.2M2 [ :n+3- -
My = 2 [ g P(k)+( - Ly B [k ki)
- (n+])an1 (I nf2 _n+3_:Q?Mn ' 0 9 o o
2" . L 24(n+1)2 o y : -
= ——— | dk kg (1 - ——— °)P k) - (6.2) -
(n+1)M7 " s (n+2)(n+3) Q? o o |
- Hence:
- ' 8 | o - e
Mrfksdkmko) -.—<k§> R N G
4 72 o e
M. = k - k3 =1 (q2) c (6-4) .
128 SN - o
e k2 -kt = u (qz) ' : : - (6.5),
> ) 5MQ2 < °>, ’ e D

Repeat1ng the ana]ys1s of §5. 1 2. (1n the x mode] at q2 = 2. 449 GeV2)

the corrected so]ut1ons for os a, N are found to be:

6.32 | L (6.6)

M -
a = -1.265 - S () B
L ONM = 7.439 - R . (6.8)
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The structure function (cf. equation (5. 30)) is then g1ven by
-ak

Nix,q2) (or w2y = AXZ e 00qpa)(1 4 ]ZMX[" [ Jak,
' 2 ] k2 Q2 |
' Mx e :
2 .

' 2f | é 2 U |
2 Q2 [x 2. :

s 18RI o 2 py(matlk) . L (6.9)

Qz a 2 o : o .

Th1s f1rst order corrected structure funct1on is compared w1th the zeroth
order parameterization of equat1on (5 32) in f1gure 16. The corrections. have .:, L
‘a small effect and we assume that the set of parameters-(5.44)—(5.46)
_adequately accomodate the inclusion of the tirst order,correétion in the '
109 (1-x). mode1 at q2 =2.449 Gevz, so that the q2'dependence*of the
structure function in th1s model may be directly 1nvest1gated through the

mod1f1cat1on of equat1ons (5. 47) and (6 9)

N Ny - 3NM2x2 _-12M2x2 C200 8 ke (™ 1ol
Fo (X’Qz)(qr_XF )._ .2 (t_ v )[ 1oge(1+x) _.(a_ )ME1(E;109¢(1 xﬂ
, 1am? o o .
NM 2 .faM 7oy,
| sz.[; (1-x) -.Et(zrloge(j-x)ﬂ | : .(G.tq)

To make a direct comparison with the ABCLOS data we cdmpute this fynction

tor uarying q? at center—bin'values % = 0 05, 0.15, 0. 25 0.35 and 0. 50

(x = 0.80 is not included 'since there are exper1menta1 d1screpanc1es |
between the Gargame]]e and BEBC data at this value) The results are d1sp1ayed
in f1gure 17. Little- s1gn1f1cance should be attached to the absolute magn1tude
of the structure function s1nce, as figure 7 demonstrates, at specific
center bin values the uncorrected parameter1zed funct1on 1s somet1mes h1gher,

“sometimes lower than the exper1menta1 va]ue at that po1nt and on1y at
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(a) . 'SfructureifUnction
. s L.

- "given by equation (5.32)

(b) _ Structure function -

- L4

~“" 'given by equation (6.9)
1.0

0 S o5 1.0

Figure 16. Comparison of the structure function fitted to the moments
| ~in the x model, | )
(a) to zeroth order
(b) _with first order correction,
. at g2 = 2.449 GeV2, o
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x = 0.50 is good agreement obtained. The first order corréctipn,-and.

-correspondingly the target mass effects of (i); is-then-uhable to sufficient]y

acéount for the high g2 decrease in the structure function at x > 0.30,

requiring some further sca]e,vio1ating'mechanism,.namely the QCD effects -

" referred to in (iii).
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In §5.2 the parameters of a distribution with freeg_massive'quarks

CHAPTER 7 THE RATIO G

with varying energy Were-deduced'from the expekimentaT sfrdcture function
moments. We now apply this distribdtion to calculate thé”veetdr and the
axial-vector coupling constants of ‘the nucleon, Gv and GA} These oberators

are defined by:

-
H

=Vyo¥ N t A VR

=
1

ER AR | (1

where ¥ is the plane wave solution to the Dirac'eqUation for a particle

of'mass m.'The detailed ca]cu]atioh is performed in Appendix F, including

'_the quark_energy-momentum distribution and the SU(G)-faCtor, to give:

(1+ )dkkzdkP(k )' o :_(_7,3-.)

’ 0
. E
9

-m

With the norma11sed d1str1but1on (5.63) and the definition (5.54),

o"__'—' 8

| therefore

SR "’f“<>

5 .10 o
"9 “g_m(4 (kgp = 3uyla2M) o | )

_where equation (5;49) has ‘been used. Using Appendix'D, or deciphering

eQuation (5.67), the relevant quantity <k0> is given by:
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(- {

| +_m/E(aém2(am-1) + u(am2+%)(1-am-bm2) + b(a2m4+§am2+1§))]
2 . 4"

[we“m erfc m/'1§a2m2(am -1) + q(]-am—bmz)-f %?b)

+ _lg[(a2m9+2amé+2)(a-bm) - am(dm2+1)(1+am-bm2f-+a?m3 ]}._ . | (7.5)

~ Assuming that the dependence of'GA/G - on the momentum'transfer in

 the decay is neg11g1b1e, uy is taken at q2 = 2.449 GeV2 and each set of

solutions in Table 3 conven1ent1y ]abe]]ed by the va]ue of. o5 may then.

be used to g1ve a value for the ratio: these are d1sp1ayed in f1gure 18.

The non- re]at1v1st1c quark model pred1ct1on of 2 : (39 is also 1nd1cated,

as ‘is the exper1menta1 value of 1.253 + 0.007 (39,
It should beemphas1zed that the va]ue g1ven by equat1on (7 4) is for
on mass sheZZ quarks w1th a very sma]] but non-zero, mass A d1rect

comparison with the off mass she11 model of §5,3.1 requ1res.mod1f1cat1ons

- to the bag distribution of.equation (5.96) to inc]ude_masstVe quarks:

. - k T NR6 S'In(k kO)R w+m % w-m % : S-|n(k+ko)R WM é | (w_ >§ .
ik . + = - ; ' — | - — .
o <2""°('< ko)R? < ) < > Kk (ko) R? () A

sinkoRsinkR Kw-mﬂ >2 o C(7.8)
o kAR e o N

w2=kZam2 o (7.7)

It'muSt be recalled that the normaTisatidn is prescribed'to satisfy the

“Gross-L1eWe11yn Smith. sum'rule (see the arguments on pages 48 and 52).
f Us1ng the parameters wh1ch gave ' good agreement with the structure funct1ons
'.1n §5.3.1 (k /M=0.141, R = 15 0 GeV~ 1y, equat1on(7 3) then reproduces

_the bag mode1 result since our quark mass is.very smal] and the 11near



o

p-

fNon-re]ativistic'quark'-.”

~mode] prediction

* — — Experimental value 89 o
Bag mode] prediction
for quark mass 10 Mev (36 .

77 7 19 & 81 82 |
' ' o ' aM2
Figure 18.  The katio'GA/GV for the model §5.2 and for each set

' of solutions in-Table 3, labelled by the_Va]Ue.of oM2
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bag boundaryucondition ié we]]lsatisfied with our parameters: the.ualue
' .for.GA in. the bag depends essent1a11y on the product koR end only weakly
~ on the quark mass @968, 1n figure 18 we. indicate the'uelue_1.10.ae an
extrapolatibn to mass .10 MeV from Table I of ref. 36.
'To obtain an_epuroximate'comparison with the maesZess case ue :

"surmi§e the fdlldwihg genera]izdtidn-of equation (7.3):

°A B g[ I < 2/“‘2 - k2|>dk0kzqk Pk, oK) o (7.8)

0 0

which, with fixed quark energy, becomes::
G 5, 10 /kz k2| k2dkP(k)' N X).
GV "9 9k . C T }

Employing‘the bag distributidn.with massless quarks, eduation (5.96),
~ and aga1n w1th ko/M-= 0.141, R =:15_0'GeV’1,_we compute:

ca:%

Sp=003 a0
Notw1thstand1ng the approx1mate nature of equat1on(7 8) th1s va]ue
"and the values of GA/G given.in f1gure 18, obta1ned us1ng the parameters o

deduced from the exper1menta1 structure funct1ons, a11ow us to conc]ude

thet_these two phenomena are not 1ncompat1b1e.



- CHAPTER 8 . CONCLUSIONS AND ONGOING SITUATIONS R
o W1th1n the framework of the quark parton model a fundamenta] o
| re1at1onsh1p between the structure funct1on Fz(x) and a_ genera] d1str1but1on
-:1n energy and three—momentum of the quarks, P(ko,k) was derived 1n
E Chapter 2, and reformu]ated in terms of the moments in Chapter 3. However L

- f1t was’ noted that the range of the Feynman var1ab1e, X, was un11m1ted

" a character1st1c of so -called modeZs, and, 1n order to restr1ct x to

"f_1ts k1nemat1ca11y a1lowed reg1on, D<x <1, we 1nvoked the replacement : |
| :eof X by -1og (1 x), thus construct1ng Zog (l—x) modéls for compar1son

: ' Our main conc]us1ons or1g1nate from Chapter 5, in wh1ch d1fferent
.g;mode11ed distr1but1ons were tested aga1nst the data. They may be

. summar1zed thus

:-”j_(i}ifﬁ%{hﬁfrées,mass1Ess7quarks-fthusfignorfngygohfiuement)-1ttis_ o
- neCessary to . have'a varying energy to:obtain reasonab1e*
.'agreement w1th exper1ment, moreover, the expected 1mprovement
“ '1n agreement in the 1oge(1-x) mode1 is we]] demonstrated
'.'f (ff) tw1th free, mass1ve quarks agreement cou]d be ach1eved w1th
o _.a parameter1zed d1str1but1on in wh1ch the quark mass was
: -10 MeV An ana]yt1ca1 compar1son with the log (l-x) mode]
- Was prec]uded in th1s case, and th1s part of the work rema1ns :
| '-gfto be comp1eted numer1ca11y | | _' '_ |
o :(iii)' Us1ng the MIT bag mode] as an. ana1ogue for the conf1nement
._jmechan1sm, the 1mprovement 1n the structure funct1on behav1our
' *':51n the ]og (1=x) mode] was aga1n exp11cit1y demonstrated
'._-_ rMoreover, exper1menta1 agreement necessitated a f1xed quark
f_:energy ~0 13 GeV and a bag rad1us x 15 GeV 1, These values

d1ffer cons1derab1y from f1ts to the hadron spectrum but the
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Tinear bag ‘boundary condition remafns well satisfied (24)
(1v) It was shown that two examples of models with off mass she]l
| mass]ess quarks w1th 1ndependent energy and three-momentum, -and
“with independent energy and dev1at1on from mass she]l, were unable

_to fit the data,

The poss1b1e sources of corrections to the sca11ng phenomenon of

. the naive . parton mode] were cons1dered 1n Chapter 6, in part1cu1ar the

1ncorporatlon of k1nemat1c corrections in our_ana]ys1s through the
jnc]usion of the first order Q-2 term. Within'the_context of the free,_
f massless quark mode1 of §5.1. 2 it:was demonstrated that.a scale |
v1o]at1ng mechan1sm beyond target mass effects is required to exp1a1n |
the decrease in the structure function w1th 1ncreas1ng q2 at x Py 0.3.

Much recent attention (37 has been devoted to the re]at]ve siie
of the higher-tuist teriis and the logarithmic scaling violations in QCD
referred to in Chapter 6. Having treated target mass effects-equivalentiy
through the Q-Z-term'in the expressiontforcthe3structure'function- :
(equation'(2338)), the inc1usfon of other effects which are departures
from the naive parton model p1cture (specifically quark transverse s
momentum, wh1ch has a twist- four form) and the consequences of the
- second order Q- term (a h1gher—tw1st contr1but1on) must be cons1dered.
;The overai] X dependence of the latter term may be deduced guite
stra1ghtforward1y by extend1ng equat1on (6. 9) to order Q~ 4 and then
compared w1th the x ‘dependence hypothes1zed from quark- count1ng arguments (39
~a-more phys1ca1 1ns1ght may then be deve]oped
In Chapter 7 we endeavoured to make the connect1on between the
'_deep 1ne1ast1c structure funct1on ana]ys1s of the prev1ous chapters
and a stat1c property of the nucleon, name]y the ratio GA/G A1though

this requ1res some ref1nement the compat1b111ty suggests further app11cat1ons

o
»
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of our parameteriied distributions: the calculation of nucleon magnetic

moments; and'nucleOn charge radii, where'inconsiStenCies-betWeen structure

' funct1on behav1our and the sign of the neutron charge rad1us may be
--reso1ved within the framework of the MIT bag by 1nc1ud1ng adm1xtures

of h1gher bag states (39, However this contrad1cts our conc]us1on that

a lower quark energy than the bag ground state is requ1red to fit the

structure functions. These calculations can be performed with free,
.massless quark d1str1but1ons as well as bag d1str1but1ons as instanced

"'for GA/G 1n Chapter 7.

Our analysis may also be extended to po]arwzed structure funct1ons
w1th a view to the sens1t1v1ty of the BJorken sum ru]e @“» to light quark

masses 1), in th1s respect the use of the free, massive quark d1str1but1on

'w1th different u and d. quark masses would be 1nterest1ng *,

These then are some of the conc]us1ons wh1ch may be proffered and

.the further app11cat1ons which are at various stages of deve]opment

* It has come to the'aUthorfs attention_that the effects of anranomaly'

in the divergences of the axial-vector current, ignored in ref. 41,
cancel the isospin Vib]ating corrections to . the Bjorken sum rule due

- to different u and d quark masses - see D.J. Gross; S.B. Tre1man and
F Wﬂczek Phys. Rev. D19 (1979) 2188
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Appendifo.T*aKinematic're]atiohship between. 'direct’ and 'Z-graph'
| contributions to the structure function

' Compare the 'direct' and 'Z-graph' contributions (see figures Al and

A2) ‘and apply the mass condition to the fina] quark in eqch'Case. Theh:

~in the-'dir‘ecfI case, (kg+v)?2 =_I5¢g]2
| | 2k6v+q2-2|5J|QJCOSa_= 0
s0, in the Bjorken Tlimit, i _Zv(ko-kCOsg) =--q? B o (A.T)
In the 'Z-gfaph' case, - (kb;v)2 = |k-q|2 |

2kov-q2-2]k]| |g|cosa = 0

" 50, in the Bjorken limit, 2v(ko-kcosa) = @2 (A.2)

'Therefqre, defihihg,* througﬁ equation (2.4), we segathét the 'Z-graph";

.contribution can be'simp1y obtéined from.the.'djrect'_cbhtribution_by replacing

o x with -x.

O ; - (v,9).

(kv kb)) Y0 (kevked)

(kosk) (KgK)

- Figure Al. 'Direct' graph kinematics .  Figure A2. FZ-grabh' kinematics
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Appendix B : Expans1ons of the 1ntegrand in the moments in the 1og (1- x) model

We can expand the bracket in equat1on (3. 38) qu1te generaHy

o o ' n+1. |
- E, l: exp( k_+_k):| - [ - exp( k_lf)}
_ _ M | M

E =
”;50'5!_“;5__ %k 2 %
= (n+)e M (eM -e M) - (n+1)ne M (.e'M -e M)
: 2.
_ 3k, 36 3k ' '
f (nHin(n-1) WM TR - (8.1) -
3! . | ' o

Thé ‘exponentials can.then be expanded individually, so that_for -_cohs_e-cutiye n:

'1 Bk Bk - 2k g Mgy My s S 5 k- S zks - I s

Tawn s st ot as

M2 M3 _ '.M3 ) 3M‘+

3 3 s+ 31 eaes 4 il 3 yks - L Tk - 7 s - 21 LS

T 0 aE o e aow O g 20M7
k7 127 e 4 127 y5s 127 27 s 4 127 jkr g g2y

20M7  1260M8 °  180MS 180M8 " 1260M5 4

Ey =8k + 2pa = 1 ‘zk_ks + 25 v Bias 4 S yis 9 g

M3 S ERE TER T M5 ° WS M5 W6
- Bzrs - 2 ks +.§91_kgk + EQl_kgks + 300 o5 4 301 47 23
et W’ o7 127 20M7 ° a20M7 208 O

6 g 161 kgks S BT (B
ToM8 ToM8 10M8 T A : ' a
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£y = Bk B k3 - EQk i - BOzs . 4 ys 4 By 260k3k3 + 2

%y ys
MY we o MY WS M5 M6 0 3Me M6

0

79 ek - 30kus - TO¢ays - 1047 , 81 ik + 557k5k3 + 567k3k5 "
37 3M7 M7 M7 M8 sM8 ° 5me

8] k0k7 + --.....'-
5M8

E, = 1°k‘+k " 20k2k3 + 25 - s 10,55 30 45y ]40k5k . 700k“k3

M5 MS M5 - ME M6 M6 3M7 7. 3M7
+ ]40k%k5 " 20 7 . 50k7k 350k5k3 - 350kgk5 - §9k0k7 IR
M7 o 3M7 M8 M8 M8 M8

E = 12k5k + 3033 ]2k0k5 - B2ep - 210k“k3 ‘25k2k5 -5 47 4 T8y

TR TR T M7 % w70 AR A
‘ + 532k5k3 + 2325 4 Oy k7 4 e
‘ ye W
g = Mgk + 70k”k3 ¥ 42k2k5 2 g7 Sy - 5 B35 - By k7 +
. M7 M7 M7 . M7 " M8 - Ma MB M8 -
£, =187k + ]12k5k3 ‘]2k3k5 # 10 k7 v

M8 _ M8 ' M8 M8

(B.4)
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Appendix C Recqnstruction of Structure Functions from their Moments

A]though-a,geheral,-point-]ike reconstruction of a structure function,

~ F, from its moments is impossible, the use'of normalised Bernstein

polynomials allows. an average reconstruction of F given by'(gﬂ *:

R | _. - ;
_ S (NH)! -1 |
o) = e :) -,Eo *——-“M_EN_I)(_Q): Yotz UL

. n, . . .
where F(xy k)_is the average of F around the point x\ | :

Xk = 3 k=0,1 ...N S o | (p-;z)

andeun;iS'thelnth.mOment and (N + 1) moments are considered 'Under the

reasohable'assumption'that F is twice differentiable (except at 1ts endpo1nts)

'~ we can proceed further and reconstruct a pozntwtse funct1on;

Ly vt) 1) k) (ki) |
HI(N2)2(N3) g0 gl(Nken)! KR

BT (c.4)
These formulae'are used in an attempt to recbnstruct'the1struetu}e

functions F, and xF, from just the n=2, 3 and 4 moments at 7.071 GeV2 and

to compare with the averaged experimental structure fuhctions. The_reSU]ts

are shown in Table 5§ within the experimenta].errors the agreement is

“satisfactory, However it must be pointed'outfthat'the moments ‘used in this

reconStructfon are n=2, 3 and 4 and do not include the 'normalisation moment'

(n=1) incorporafed in_Chapter 5. Hence, in fitting the moments therein, we

ok Our'notation differs from that of Yndurin in ref. 20 by-relabe]]ing”the |

Hy to correspond with the notation of Chapter 3 - note, however, that in
th1s appendix the My refer spec1f1ca11y to e1ther F, or xF and not the
linear comb1nat1ons of Chapter 3. '



.'3.2.'_:'

ﬁ';m“5t not be SUPPP1sed if the. reproduced structure funct1on does not agree S

'“-'too well w1th ‘the data -The " use of more parameters and more. moments wou]d

'--'obv10u51y g1ve 1mprovement (in theory an 1nf1n1te number are requ1red), _
nijut we on1y wish to suggest ‘the sma11est number of parameters wh1ch may

..be adequate
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Table 5. Comparison of reconstructed pdintwise structure'functions with
experimental averages

Tk X Ez' 8 F, Experimental | Experimental value
Bin of F, '
0[0.25| 0.980 | 0.057 [1.037 || 0.2 <x<0.3 |  1.141 £ 0.146
1/0.50 | 0.423 [ -0.076 | 0.348 || 0.4 < x < 0.6 0.258 + 0.051
2|0.75 | 0.172| 0.019|0.131 || 0.6 <x < 1.0 |  .0.049 & 0.049
k X x'F3 ' ) xF3 11~ Experimental | Experimental value |-
_ Bin - of xF_~
. : : ' 3
0| 0.25 | 0.765| 0.051|0.816 || 0.2 < x < 0.3 0.792 + 0.455
1] 0.50 | 0.431|-0.068 | 0.363 || 0.4 < x < 0.6 |  0.513 £ 0.1%7
2| 0.75| 0.158| 0.017|0.175 || 0.6 <x < 1.0 |  0.107 # 0.080
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Appendix D Evaluation of the definite inteerals required in §5.2

With the distribution.(5.63) éubstituted in equation (3.29) the ~

~ moments M, (n=1,2,3) are:

L=
I

0 (° T :
= Ne™™" J (k§-m?)(ky-m)e qk0(1+§ko+bkg)dko -
m

 ane®™
M

_J ko(k%—mz)(ko-m)e'“k&(1+ako+bk§)dk0
. : | 0

' o

o
- Mm2e [ (kgm2) (kg™ ¢=okT(14ak 4k 2)dk,
M m k

0

.Pz(qz)'

_ 2Ne°‘m

k2 o
I k2(k2-m2)( ome” kG (14ak #bk2) dk,

uy(q?) + M2
M2 -

- Expanding the _integr-a_hds then demands the fb]]o_Wing’_ integr'alle_ ()3

. } 9" o

Lo i, = < LEi(-am?)
e k= o

ookE dk0 =1 /T erfe /e
o 2/a

where -erfc is the complementary error funct1on, and:

(n+1) ; (ﬂil m2)
2
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: where r is the 1ncomp1ete gamma funct1on 0”3 After subst1tut1ng and-.7 -

manoeuvr1ng these express1ons into equat1ons (D 1)-(D. 3), equat1ons (5 66)-

(5 68) w111 ensue.’

(D.1)

(0.2

(0.3

(0.4

(D.si-”

(D.6)
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iAppend1x E Eva]uat1on of the def1n1te 1ntegrals requ1red 1n 55 3. 3

W1th the d1str1but1on (5. 115) subst1tuted 1n equat1on (3 29) the

 moments M (n 1, 2 3) are:
-fmf-g C I kbe*a|ko‘Eo|dko [-kze‘vlk‘koldk'= 1 f_'."' L : o i'(E,]);,
. R 0 N o _ : S _ o
R
M S

Mo - -0
wy = & [ kgt koEola, [ e Kkolgy
M2 ¢ ' Ty .

'-'c'f'k%.e_'.“lk-o'*Eol_dk-g-'-f et lholae 02

S igeelbotola freetthalgeyyen e
M R - :

z;_.We thus reQUire the fo]low1ng 1ntegrals
3 ;iI_kﬂéfP1k‘konk - uk J:knepkak,+_eukd I kn uk

L _ n n-]': _. "!.' ' .Li- o
e S e (" g
A\e 12 o M 40

kg | kK" k" o\
. R u. L T / 470

2 2" 2k

: e | .H&_

+ ....'... + (-l + ( ']) ) n+] uko(-])n+]-2—h

O

| Making the replacements ky » Eq, b > ai
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o0

J ke alk, .Eoldk.o S 2y, (n-ET

o SR S ()
o ‘o o e

+e 0(1)_"+]_ 2+1 N (1) 0

-~ And:’
[ kgneme koBoleikogy < o7eo J_kone_(“'“)kodk-o +e%0 | i Nem(ehdkogy

R g R

(a-u) (a:u).-z. S (_o.t-u)

R 'k ' n-_'.__'k'm e
nen [ (f?) <( + () —Fﬂ>] -

a+u) (a+u)2 - (atu)

+ ee +] —————1 )
atyu) (_a-u)-.. ,(a-ﬂi_)_z (- u)2 ' ' + ( )(+u)

- '-uE <‘E "; onn.”+'nE0né] .nE "1 ' n!
( |

: + ('”n—'ﬂ"_ﬁﬁ) an( .l)n+1___';n_':l‘ﬁri : ._ o (E6)
(a=u) o (a u)" C e e
| ;eArmed w1th these express1ons, and after some rearrangement equat1ons (5 116)-
3'(5 118) may be extorted from equatlons (E. 1) (E 3)
'f W1th the mod1f1ed d1str1but1on (5 121) the moments M are 1dent1ca1
':except for- the’ 1ower 11m1t of the k 1ntegra1 wh1ch 1s now E 1nstead of

{zero The 1ntegra1s over. k wi]] rema1n ‘the same but the 1ntegra1s over k0

";7w111 now 1nv01ve

©o 00

- -a(k ) ' E [P TR S ()

; and _.

. mkn a(k E) Odk Eo_Eo_n_ BRI W 58
JE"- e - \leh) + 3 +"(ow'u')"“”]-' - { -)__




" These two expressions can be simply read off fkom'the second partS of
equations (E.5) and (E.6) respectively. Equations (5.122)-(5.124) then

-follow.
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-Appendix F - CaTcuTation of the'ratio G /G

' to-obtain:

The vector coup11ng constant and the axial- vector coup11ng constant -

of B decay are def1ned by

_‘iv. Frov

“with vary1ng energy, hence ¥ is the p]ane wave solution to the Dirac -

'equat1on for a part1c1e of mass ms:

S

/2,

"'.and u 1s a su1tab1y norma11sed four component sp1nor

us_ = < k0+m. S \

. We refer to'the'standard répresentation of Béreétetskii et qt. b3,

Gy =1
G, =

sg(ez O\
| 0 —ac2)

Substituting eQUations (F.3) and (F.4)-into equation (F.6).and using.

(9§@£w;wﬁn 0-2) + 2ig-(3K)

- .gives::

0ur 1ntent1on is to app]y the model of §5 2 w1th free, mass1ve quarks

Ry

(F2)

: -(-F.,s_')}'_-'_." -

(Fﬁ)
Ry

e



_ Sandwmhmg th1s between nucleon states gwes the SU(6) factor
2 (34) and 1nc1ud1ng the sphemcaﬂy symmetmc quark energy momentum o
o :-":d1str1but1on g1ves the result of equat1on (7 3) ' |

g (1 +k )dk Y dk P(I% k) o : oo o (F9)

.ml>m- .
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