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Abstract

In this thesis work is described that arose out of a study
of harmonic Riemannian manifolds. A definition of haf;onicity
is given and from this it is shown how the Ledger conditions on
the curvature of a harmonic manifold may be derived in principle
and the first four are written down. The first three Ledger
conditions are put into local co-ordinate form and simpler

conditions are derived, the most important being the super-Einstein

" condition. The idea of the Schur property is also introduced. The

mean-value work of Gray and Willmore is described and extended as
far as the r® term under some simplifying conditions. Finally
there is an investigation of the extent to which the compact
classical simple Lie groups with bi-invariant metrics can satisfy

Ledger's first three conditions.
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Introduction

The work contained in this thesis arose out of a study of
Riemannian harmonic manifolds. These were originally considered by
Ruse fifty years ago fo be manifolds in which there exist solutions
of Laplace's equation on a neighbourhood of éach point which were
functions only of the radial distance from that point. Since tﬁén
the only examples found of harmsnic manifolds.are the rank one
symmetric -spaces. This has led to the so-called fundamental
conjecture of the subject: a Riemannian harmonic manifold is a
rank one symmetric space. The resolution of this conjecture still
seems far off and awaits either a new approach to harmonicity or
new examples of Riemannian manifolds which can easily be tested
fof harmonicity in the hope of finding a counterexample.

In Chapter 1 we define harmoniéity using the determinant of
the metric tensor in normal co-ordinates. The first four Ledger
conditions for harmonicity are derived, as are similar conditions
derived by using the trace of the metric tensor and the trace of
its inverse. It is noted that these conditions come from matrix
differential equations which have similar properties and are
worthy of investigation in their own right.

Chapter 2 contains a description of the first three Ledger
conditions in local co-ordinates. The second and third are rather
complicated, so at the expense of losing some information simpler
2-tensor conditions are derived. This leads in the case of the
second condition to the notion of a super-Einstein space.
Harmonic spaces are super-Einstein but the reverée need not be

true. Also we introduce the idea of the Schur property for



symmetric 2-tensors, the guiding example being the Ricci tensor.
We give some conjectures on the 2-tensors derived from further
Ledger conditions which, on the face of it, cannot be resolved
by the methods of the chapter.

In Chapter 3 the work of Gray and Willmore on the power series
of the mean-value of a function over a geodesic sﬁhere is described
and extended. It is shown, rather disappointingly, that at least
as far as r® term the mean-value power series gives no more
information concerning harmonicity than.is already contained in
the first three Ledger conditions.

Ledger was the first to show that if a symmetric space is
harmonic then it is rank one. We show in Chapter 4 that the
classical Lie groups with bi-invariant metrics whicﬁ are not
rank one are quite a long.way from being harmonic in the sense
that only two can satisfy Ledger's 2nd condition and none satisfy
the thir&; This work has been generalised and extended to
symmetric spaces in a joint paper with A, Gray and T.J. Willmore
currently in preparation.

In all chapters M is an n-dimensional connected analytic
Riemannian manifold with metric tensor g and arc length s . The
sign conventiqn for the curvature temsor is that of [GR], [H]
and. {E]. The Einstein summation convention is assumed throughout,

apart from §3 of Chapter 3. The end of a proof will be denoted by [:].
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Chapter 1 Definition of Harmonicity and Some Necessary Conditions

We first define the very useful tool of normal co-ordinates about
a point of a Riemannian manifold, then using these we give one of the
classical definitions of harmonicity. (For other definitions and their
equivalence, see [RWW] pp. 34 - 43) The major part of this chapter is
concerned with deriving information of a tensorial nature from this
definition. The method used is that of [B], Chapter 6, with a slightly
different emphasis. As is usual in this subject, the information comes in
form of the vanishing of nearly all the terms of a power series, giving
rise to an infinite number of necessary conditions for harmonicity which,
when taken together, are sufficient. We only consider the first four

of these.

§1 Normal co-ordinates, the function Gm and the matrix A

There is associated with each point of a Riemannian manifold a
geometrically defined class of logal co~ordinate systems which, whén
used in calculations, give information about the geometry of the
manifold. These are the normal co-ordinate systems and will be used
extensively in what follows.

We define normal co-ordinates about a point by using the exponential
map. Let m € M. The exponential map at m, exp , is a diffeomorphism of
some neighbourhood of 0 in TmM onto some neighbourhood of m in M. By
definition, the injectivity radius i(m) is the supremum (possibly
infinite) of positive real numbers € such that exp |§(0,e) is a
diffeomorphism onto its image. We shall say that the image of the open
ball radius i(m), denoted Vm’ is the maximal nérmal co-ordinate
neighbburhood of m, and we co-ordinatise it as follows. Choose an

orthonormal basis of TﬁM, (U3, ;.5@ﬁﬁn%u3nd define normal co—-ordinates

;o i,
FRO G ,
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6 S xn) of a point i € Vm by

(1.1) 3 ()

ti‘ i =1, ..., n,

if n eme(tjUj)'

A normal co-ordinate neighbourhood of m is:a nhd of m contained in
Vm with the obvious parametrisation.

As the image of a straight line through O in TmM is a geodesic
through m-in M, a geodesic.through m restricted to Vm has the equation

in normal co-ordinates
(L.2) xl(s) = sa, i = 1, ..., n,

where ai are the components of the tangent vector of the geodesic at
m-with respect to (Uj, .., Un). |

Note that the definition of normal co-ordinates requires a
choice of orthonormal basis of TmMr However it can be easily seen
that any two sets of normal co-ordinates about m are expressible in
terms of each other by én orthogonal_matrixf

We shall often refer to tensorial equations as being "in
orthonormal co-ordinates"..This.means that we have cﬂosen a point m
of our manifold, a system of normal co-ordinates about m, and have
expressed the components of the tensors evaluated at m in
these co—-ordinates.

We also define a geodesic ball and sphere, centre m, radius r,
for r < i(m). These are the images under expﬁ of a béll and sphere,
centre 0, radius f in TmM..

qm is a real-valued function defined on Vm for each m€ M as

follows. Let gij be the components of the metric tensor in a set of
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normal co-ordinatés about m, Then
(1.3) Qm = Jdetg.

Note that this definition is iﬁdependent of the choice of orthonormal
frame.

We are ready to define harmonicity of a manifold.

Definition: A Riemannian manifold M is harmonic if for each pt
m € M, the function o, is a function of distance from m only.

We wish to translate Fﬁis condition into information about the
curvature of the manifold. Thé ﬁost direct way of doing so would be
to exploit the available poﬁer'series expansion of qm about m as
given for example in [GR].  However we follow the method of [B]
which is, in fact, similar to:Gfay's metﬁod of calculation.

The first step is to exploit (1.2) as tﬁe equation for geodesics
tﬁrough m;

Lemma 1.1 In normal co-ordinates.tﬁe vector field_s<f%%i, where

ci are constants, is. a Jacobi vector field along any geodesic through
m restricted to v

Proof We demonstrate that s ci jli is the variation vector field of

ox

a variation through geodesics of any geodesic y with equation

i i i i ' i . i . .
Y (8) = sa fore +# a.Whenc = a, sc is obviously

2.
ax1
a Jacobi field along .

Consider the two parameter family of vectors s(ai + tci)Ui € TmM.
For small enough s,t tﬁese are contained in the ball radius i(m).
Their images under exp are then seén to be geodesics through m
giving a variation'through geodesics of y., The variation vector
field is then seen to be s ci %i along- v. : D

If we denote tﬁis vector field by J(s), tﬁen along vy it satisfies
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the vector differential equation

(1.4) v.V.,J + R(Y,J)y = 0,
Yy

with initial conditions

i
30 = 0, V30 = c'u;

. i 3 i ? _ i
eince VYJ ) = Vy(sc =i Y(0) = V?(s)c %1 .(0) = ¢ Ui)'
Let us denote by E1(s), ..., En(s) the parallel translation of

Uls eees Un along y. We can thus define an nxn matrix of functions A

along vy, restricted to Vm, by '

(1.5) s 2 = A,.E., i = 1, ..., n

From Lemma 1,1 _s-a—ii are Jacobi fields alongy, and A is the matrix of
components of these with respect to a parallel frame.
It is easy to determine an ordinary differential equation satisfied

by A by substituting the Jacobi field AjiEj into (1.4) to get

2 v Y v = 1 =.
d AjiEj + AjiR(y,Ej) Yy = 0,1 1, ..., n
ds?

By taking the scalar product with Eg‘ we get
a2 | = {4 =
d%4,; * AR 0, i,2 L, veus m,
ds?

where R is a symmetric matrix of functions along v defined by

R, = B(R(LEDTE), i, = 1, vvu, ne

In matrix form this can be expressed by

(1.6) A" + RA = 0.
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The initial conditions for this equation are
(1.7) A(O) =0, A'(Q) = I

(since A' (O)U = V (A,.E.)(0) = vV, (

1155 552300 = U,

The 31gn1f1cance of A is its relationship with em. From (1.5)

9 T
2 = = = =
8 gij g(s 1 ’ R axJ g(Akl k’ A E ) AkiAk.j (A A)ij .
Thus concisely
(1.8) s2g = ATA.

Taking determinants, we have

(1.9) o = L deta.
m sn

Remark 1 Note that powef series expansion of g can be found from

that of A by (1.8). However we will give later an easier method of

finding the expansions of the determinant and trace of g.

Remark 2 This approach in defining Gm is essentially that of [B].

However there em is defined directly from A by (1.9) and has the

advantage that it is defined along the whole length of the geodesic.
Before we come to the calculation of the power series of em,

we prove a rather unexpected property of em in a harmonic manifold.

We show that em.is, loosely speaking, the same function of s for each

m ¢ M. Precisely:

Proposition 1.2 Letm e M, and ry < i(m). The injectivity radius is

a continuous function on M and thus attains its minimum on B(m,rj), igp(m)
say. Then if M is harmonic, qn(r) = eﬁ(r) for r < iy(m) and
fi e g(m,ro).

We first need a lemma, a classical result in the theory of

differential equations.



Lemma 1.3 Suppose m, Y and A are as above. Let B be a matrix satisfying

the same differential equation (1.6) but with initial conditions

@reuha¢w‘h
B(t) = 0, B'(t) = -I, )\t # 0.

Then B(0) = AT(t).

Proof We know that

A" + RA

0, A(O) 0, A'(0) I,

B" + RB

0, B(t)

0, B'(t)

-I.
Transpose the first equation and postmultiply by B, and premultiply
the second by AT. On subtracting, the symmetry of R gives

ATvg - aTgn = o,

We can integrate this to

AT'B - ATB'

C ., C constant,

and the result follows from substituting in the prescribed values at

0 and t. ' _ [:]

. 0
Proof of Proposition 1.2 Let fi € B(m,ry) and U € T.M. We shall show
- : n

that dfr(U) = 0 where fr is the real-valued function defined on

[¢]
B(m,rg) by
fr(ﬁ) = Qm(r), r < io(m),.ﬁ € g(m,ro),

As fr is continuous (when expressed as a power series in r; the
coefficients are polynomials in the curvature tensor and its covariant
derivatives, so it is, in fact, analytic) this will prove the
proposition.

We are assuming r < i(f), so Gﬁ(r) # 0. We consider a geodesic ¥y

(parametrised by arc length) through i such that y(r) = # and



y'(r) L U. Let- y(0) = p. As r < i(i), it and p are not conjugate

along y. Thus there exists a l-parameter family of geodesics Ye such

that v (0) = p, yo = v and g%(vt(r))(o) = U,

Applying Lemma 1.3 to each Y. We see that, on taking determinants,
C] = 0
Yt(r)(r) p(r),
= O =
and so df(0) = at(GYt(r)(r))(O) 0. [:]

This proof is based upon [B] p.. 157, but the proof there has been

modified to overcome a few. apparent problems.

§2 The power series expansion of Qm and other functions

Our method of calculation. depends on the following classical

result on the derivative of the determinant A of a matrix function M.
(1.10) (log A)' =. tr(M'M 1),

We are led to a consideration of the matrix A'A”l, Unfortunately

for small s
(1.11) A = sI + 0(s2)

by (1.7), and so A”! is not defined at 0. However 1A is invertible
: s

in a nhd of O with inverse sA”!l, and so we consider the matrix

C = sA'A7l, which is well-defined for small s.

Using (1.9) and (1.10) we find that
(1.12). s(logem)' = trC - n.

It is as well to point out now that the title of this section
is misleading. We will not calculate the power series of em, but

rather that of 1og0nl via (1.12). This is enough for our purposes



as qn.is a function of s alone iff ‘log® 1is a function of s alone.
m

The power series of Qm-can be calculated from that of log qm, e.g. by

use of the formula @' = @ (logo)'.

An elementary calculation shows that C satisfies
(113) sC' = =-s2R - C2 + C.

Unfortunately this equation has a singular point at O, but, in the
.analytic case, inspection shows that given C(0) and C'(0). all the
other_derivativeé of C at O can be found, and hence a unique solution
is generated.*

We calculate

C(0) = 1im sA'A™! = 1im A' lim sA™l
s +0 s >0 s8=>0
= I.I = T,
Also since A"(0) = 0, equation (1.11) becomes
A = sI + 0(s3),
Hence (sA™1)'(0) = 0 and
C'(0) = A"(0)(sA™1)(0) + A'(0)(sA™1)'(0)

= 0.

We are now in a position to calculate the power series expansion
of C as far as we wish from the following recurrence relation for
the derivatives of C at 0, derived from (1.13).+

. P72 C (p-
@e®© = -1 rPD () - 5 (B) @@ c®P o) 3502

X Iboo fstews bwk C e symmeiie an C1 salisteo the some Lypakion end
Y. . ondakwns ok O
This torrecks the formuba. v (8]



The first nine derivatives are given here:

c()

c' (0)
c(2) (0)
c(3) (0)
0(4?(0)
c(5) (0)
c(6) (0)

c(7) (0)

c(B)(o)

C(9)(0)

i,

0,

- %R(O) '

- 3R'(0),

12r(2) (0) - &R(0)R(0),
Pr(3) (0) - $(R' (0)R(0) + R(O)R'(0)),
Pr( (0) - 4R (IR (0) - BE(R(2) (0)R(D) + R(O)R(2) (0))
BRORORO),
glR<5><o> - R®G) (0)r(0) + R(OIR(3) (0))
B®' (OROR©) + R(OR(OR(0)) - IER(OIR’ (O)R(0)
822 (0)r'(0) + r' ()2 (0)),
3$r(6) (0) - B®RM™ (0)R(0) + R(OYR(H) (0))
280®(3) (0)R' (0) + R' (O)R(D (0)) - LE414R(2) (0)r(2) (0)
2-%6(11(2-)(O)R-(O)R(0> +'R(0)R(O)R(2) (0)) - 188Rr(0)R(2) (0)R(0) -

§2(R' (O)R' (O)R(0) + R(O)R'(O)R' (0)) - 230(R" (0)R(0)R' (0))

S b
‘"loo o

(O)R(O)R(O)R(O) _
1rR(7)(0) - 82®) (0)r(0) + R(OYR(S) (0))

55 R(4) (0)R' (0) + R' (O)R()(0)) - 21-2“(R(3)(0)R(2)(0)

+ R Or( (0)) - Z5TIR) ©)R(OIR(0) + RORORD (0))

28R (0)R(3) (0)R(0) - 18.8R' (O)R' (O)R' (0) - 2L;21r(2) (0)R' (0)R(0)

39, 12R'(O)R(O)R(2)(0) - 81R(0)R(2) (0)R' (0)

39:122(2) (0)R(0)R' (0) - 81R' (0)R(2) (0)R(0)

2L:218 (0yR' (0)R(2) (0) - 222(R' (0)R(O)R(O)R(0) ~+R<0)R<o'>1f<<o>R' (0))

29.7

= =5 (R(O)R' (0)R(0)R(0) + R(OIR(OIR' (0)R(0)) .-
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We next give the traces of these matrices:

£rC(0)
trC' (0)
trc(2) (0)
erc (3) (0)
erc(®) (o)
trc (5) (0)

trc (6 (0)
tzc(7) (0)

trc(8) (o)

trc(9) (o)

rR(0),

l\la_l.m (.:LN -

rR' (0),

—

B LrR(O)R(0)

—

12¢xr(2) (o) -
10

Werr(3) 0) - YLerr' (0)R(0),

fmed

Yierr(#) (0) - Perr' (0)R'(0) - 4Berr(2) (0)R(0)
32:rR(0)R(0)R(O) ,

%}trR(5>(6) - $err(3) (0)R(0) - 3ferR' (0)R(OYR(O)
e ® o1 0. Y (1.14)

$err(6) (0) - 8lrr(*) (0)r(0) -280:xr(3) (0)R' (0)

- 16485,2(2) (0)r(2) (0) - ﬁ%ﬁéﬁtrR(Z)(o)R(O)R(O)

830¢rr" (0)R' (0)R(0) - YZEtrR(0)R(0IR(OIR(0),

38R (7 (0) - 188:xr(5) (0)R(0) - 108trR(Y) (0)R' (0)

5618, +p(3) (0)r(2) (0) - 28:18rR(3) (0)R(OIR(0)

9.18trR' (O)R' (O)R'(0) - 2:18¢+r(2) (0)R' (0)R(0)

13:18¢yr(2) (0)R(O)R' (0) - usglatrR'(O)R(O)R(O)R(O).

Using (1.12) necessary conditions for harmonicity can be deduced

from these equations. This will be done in the next section.

Remark Normal co-ordinates about a point are but a special example

of Fermi co~-ordinates associated with a submanifold. The construction

of the matrices A and C along a geodesic perpendicular to the

submanifold is similar; in fact they satisfy the same differential

equations but with different initial conditions. An exposition of

this generalisation is given in Appendix I, together with a rather

surprising property of C.
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We now digress from [B] to illustrate a similar method of
obtaining the power series expansioné of the trace of the metric
tensor in normal co-ordinates and the trace of.its inverse. This
is of interest as Willmore in [W2] has introduced the idea of
k-harmonic manifolds which are manifolds where the kth symmetric
sum of the eigenvalues of the inverse of g in normal co-ordinates
is a function of s alone. Thus n-harmonic is equivalent to harmonic;
.and l-harmonic is defined using the trace of the inverse of g.

We have already noted that
s2g = AlA

and that the expansion for g could be found from that of A. It would
be convenient if we could find a differential equation for_ATA. However
the best we can do is find one for AAT which, while not the same matrix,
has the same eigenvalues. Let us denote the matrix j;AAT by D and its

8

inverse by E. (By (l.11) D is invertible in a nhd of 0.)

~ Proposition 1.4 D and E satisfy the following differential equations

and initial conditions:

(1.15) sD' = -2D + CD + DC, D(O) = I, D'() = O,
(1.16) sE' = ' 2E - CE - EC, E() = I, E'(0) = O.
Proof This follows easily from
' = s(tanlyr = - 20T . s.JEA'(A'lA)AT + s.LEA(AT(AT)'l)(AT)'
g2 g2 s2 52
and
pE’
D'E + Ep* = 0. T
The initial conditions are easily derived from those of _E.A:
g

T We alao nesd Bk € symmliie Cpasg §)
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(LM © = 1, (LA)'(© = o. L]
s 8

(1.15) and (1.16) lead to recurrence formulae for the derivatives

of D and E at O:

p-2 -« X + d dﬂ“’))
P = 1 () «®© 2P0 + PP o) c®io)y ) p s
k=2
(® P2 3Y (009 gy 5P (2 1) (O _ad'%\
2P0 = -1 (?) «®© %P0 « "0 P onyy s
k=2 .

With our knowledge of the first nine derivatives of C we can write

those of D and E,. However, we will give just the traces: .

trD(0) = n,
txD* (0) = 0,
exd(2 (0) = - %tiR(0),
trd(3)(0) = - trR'(0),
e (0) = - 2exr(2)(0) + Herr(0)R(0),
exD(®) (0) = - $trr(3)(0) + ftrR' (O)R(0),
erd(8) (0) = - Herr(®) (0) + Ferr' (0)R'(0) + EerR(2) (0)R(0)
- 18trR(0)R(0)R(O), | (1.17)
exd(7) (0) = - 3trr(5) (0) + *Etrr(3) (0)R(0) - 2utrR' (O)R(O)R(O)
+ 33trR(2) (0)R! 0), |
trd(8) (0) = - Yerr(6) (0) + 2°°trR(4)(0)R(O) + 12528,,2(3) (0)r" (0)
+ 2er(2) (0)r(2) (0) - B3:32¢+r(2) (0)R(0)R(0)
- 16s'asgtrR‘ (6)R' (0)R(0) ";Tg“trR(O)R(Q)R(O)R(O),
erd(9D ) = - Lerr(? (0) + E22trr(5) (0)Rr(0) + 26£xR(H) (O)R' (0)

. '16.549trR_(3) (0)R(2) (0) - 18&; 38trR(3) (0)R(0)R(0)

- 8. 17trR'(0)R'(0)R't0) - trR(z)(O)R'(O)R(O)

8. 161

- 8:161 2(2) (0)R(O)R' (0) +- &%

= BerR' (0)R(O)R(O)R(O) ,
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trE(0) = n,
trE'(0) = o,
e (2 0) = 2trr(0),
| trE(3)(0) = trr'(0),
erE(") 0) = Lerr(2(0) + Lerr(0)R(0),
erE(5)0) = *trr(3)(0) + 8trR'(0)R(0),
trE(6) (0) = 3exi™ (0) + BFerr' (0)R'(0) + L9%err(2) (0)R(0)
+ 2Lerr(0)R(0)R(0), (1.18)
erE(70) = FtrR(5)(0) + 22trr(3) (O)R(0) + 51£xR(2) (OYR' (0)
+ 80trR'(0)R(O)R(0),
trE(®) (0) = Gerr(6)(0) + 280err(W) (0)R(0) + 285226+ (3) (0)R' (0)
+ 2l R (2) (0)r(2) (0) + 28:3%rR(2) (0)R(0)R(0)
+ 1281 (0)R' (O)R(0) + 2322 erR(0)R(O)R(O)R(0),
@ (0) = 8D (0) + Lerr(5) 0)R(0) + 14uexr (™) (0)R (0)
+ T80 (3) (0)R(2) (0) + 22558:1(9) (0)R(0)R(0)
+ 16.31trR"(O)R' (O)R' (0) + 18271, (2) (0yR' (0)R(0)
+ 18271 1:2(2) (0)R(O)R' (0) + E4£BYerR? (O)R(0)R(O)R(D).

83 The first four harmonic conditions

Using now our equations for the derivatives of trC, (1.14), we
can write down some necessary conditions that trC only depends on s.
Before we do so, we change our notation slightly (2 la Besse) to

emphasise the choice of imitial vector of the geodesic we have been

considering. Thus we shall denote the endomorphism from TmM to TmM

given by V -+ R(U,V)U for U,V € Tﬁn by RU and the endomorphisms given

: (n)
v ... R(UVU by R "

The definition of harmonicity requires that trC should depend

by V =» v

only upon distance along the geodesic and not upon the initial
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direction of the geodesic so the derivatives of trC at O must be
independent of the initial direction. From Proposition 1./?we see
that they must also be locally constant as we allow our initial

point to vary, and, as we are assuming M connected, globally constant.
We would expect, then, from equations (1.14) to have 8 pieces of
information to make use of. This, however, is not the case, and the
total information is summed up in the following theorem.

Theorem 1.5 (Ledger) Suppose M is harmonic. Then for any U € UM,

the following equations hold for constants K,H,L,M:

(1.19) trRU = K,

(1.20) trRR, = H, .
- 1 pt =
(1.21) 32trR R R - 9trR' R L,

(1.22) 3trRU(2)RU(2) + 8trRU(2)RURU - 50trRﬁR6Rﬁ
| ' : + 72trR.ul%RURU = M.

Proof (1.19) is obviously derived from the formula fof th(Z).
However assuming (1.19) immediately implies that trc(3) = 0, so
no new information is derived from that condition.

Again, assuming (1.195 we get (1.20) from the formula for
trc{*), Once more no new information is gained from the formula
for trc(5) as it is, assuming (1.19), a constant multiple of the
derivative of (1.20).

(1.21) and (1.22) are derived similarly. One assumes the
previously gained conditions to obtain them, and one finds also that
under these conditions the next (odd) condition is a constant multiple
of the derivative of the condition preceding it. [:]

Conjecture Assuming the conditions for harmonicity derived from
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(2p+1) is

the formulae for trC(k), k

= 2, vsas 2p—-1, then trC
a constant multiple of the derivative of the condition derived from
trC(ZP).

Conditions (1.19) - (1.22) are known as the first four Ledger
conditions for harmonicity. The kth Ledger condition, which welshall

(Zk), assuming the

denote by-Lk, is derived from the formula for trC
previous k-1 Ledger conditions.
It is of some interest to investigate the conditions derived

from equations (1.17) and (1.18). These are set out in the following

proposition.

Proposition 1.6 Suppose at each point of M trD is required to depend
only on s, then the following equations hold for constants K, Hyy

Ly, My, for any U € UM:s

trRU = Kl'
tRRy = i
(1.23) 16trRURURU + 13trRﬁR6 = Lj,
13.13trRU(2)RU(2) - 37.8trRU(2)RURU + 23.50trRIR'R,
| + 32.13trRR R R, = M.

Similarly, if the same is required of trE, we have the following

equations for constants Ko, Hg, Ly, My,and any U € UM:

trR; = K,
trR R, = Hy,
(1.24) 32trR R R - 9t:ci{['IRI'J = Ly,
3tk ()R (2) + 8eer (DR R - SOLrRIRIR
+ T2trRR R R

M20
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Proof We first note that if trD or trE is assumed to be a function of
s at each point, then by a similar proof to that of Proposition 1.2,
it must be the same function of s at each point. For, according to

Lemma 1.3, in that notationm,
trAAT (t) = erBTB(0) = trBBL(0),

and the rest of that proof carries through in the same way.

The proof of the current proposition uses the same method of -
proof as Theorem 1.5 but see Remark 1 below. [:]
Remark 1 As is seen when the calculations in Proposition 1.6
are carried out, equations (1.15) and (1.16) have the same property
as equation (1.13):-the odd derivatives give no new information,
at least as far as the ninth derivative. Again we conjecture that

this happens for all the odd derivatives.

Remark 2 It will be noted that conditions (1.24) and (1.19) - (1.22)

are identical, and this leads to the obvious conjecture:

trC constant function of s over M <=> trE constant function of s over M.
Willmore [W2] has proved the '=>' part, but the converse is as yet
unproved. It may be asked why the trace of the inverse of g should

be closely related to the determinant of g rather than the trace of

g itself. The only light we can shed on this is to observe that the
forms of equation for C and E are similar (try substituting C for E

in equation (1.16)).
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Chapter 2 Local Co-ordinates, Super-Einstein Spaces

In this chapter the conditions for harmonicity are put into
local co-ordinate form. This leads to the definition of super-Einstein
space which is an Einstein space with an extra condition on the
curvature. We prove some curvature formulae in super-Einstein spaces
and also introduce the notion of the Schur property which seems to

be shared by a number of 2-tensors in this theory.

§1 Harmonic conditions in local co-ordinates

We return to our mormal co-ordinate system about m € M and
. . ' P i
suppose a geodesic y through m has initial vector U = a Ui and

hence equation

i i . .
y'(s) = a's, i =1, ..., n,
then along v,
= i jkz—?—c 1 = i—a—'
RYV R jkza v a’ s for vector field V v 5%l
‘Thus at m
- @
RUUk R jkmﬁn)a azUi,
and

trRU

pjlom)aJaz, where p is the Ricci tensor.
Ledger's 1lst condition, (1.19), states that
trR, = K, VU € IM,

and this leads to
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v _ i
p z(m)a a KGlea a ,
since U is unit and gjzﬁm) = sz' As this is true for all choices
of the a's we have
where by definition S(Ti i ) is the sum over all permutations
19 oo k
of the free ij, ..., ik i.e.
S(T, ) =) T ...o0(i),
11’ see g lk oesk k

where Sk is the symmetric group on k objects. As p is symmetric we

can rewrite (2.1) as

(2.2) pjzon) = Ksz in normal co-ordinates

about m and so M must be Einstein.

Considering now L2, (1.20), we have at m

BB T i i p q_s
RURUUk kzﬁn)a azk qisﬁn)a a Up.
Thus

_ (ni k j 2qs
trRURU R jka qis)(m)a aaa.,

Ledger's 2nd condition Becomes, in normal co-ordinates based at m,

(2:3) SRy ipRkagy) @ = HSG 6 )
(Note that because gij(m) = sij we can write contracted sums with
all indices downstairs).
Noting that R'?V = v (R* i )aJvk “ail
= VrRisz IykgtaT a—::l '
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and

(p) i joary r, ok d
J = V 3 s o -
R YV £1 een. rpR szaaa _ abPv i’

we can write down L3 and L4 in normal co-ordinates based at m:

(2.4) S<32RiajbRkacRmcha - 9ViRjaka2%nahb)(m) = LS(Gijskzth)’

(2.5) S(3Vinka2meanaqb * 8Vinka£mebncRpcqa

- 50V.R.

i Jakbviambncchaq *7

2R 23b%kb 2c mendtpdqa) (m)

= MS(Giijlﬁnnapq)'

In later sections weishall gain useful information from (2.3)
and (2.4) but (2.5) is too unwieldy to be of much use. It was originally
hoped that the first three conditions with some manipulation might
lead to the proof of the fundamental conjecture, but this has not
been the case. The conjecture has been proved by Lichnerowicz and
Walker (see [B], p.166) in the case of dimension 4 from the first
three conditions, but this makes heavy use of the low dimensionality.

We now discuss a notion which occurs frequently in this context,
the easiest example of which is contained in the following well-known
theorem of Schur.

Theorem 2.1 Suppose the curvature of M satisfies p = fg for some
function £, Then if dim M # 2, f is a constant.

Proof In orthonormal co-ordinates we are given that

(2.6) pij = faij’

Applying Vi to both sides and summing, we find



Using the 2nd Bianchi identity, this becomes

.20

l.=f'
n
Comparing the last two equations we see that if n # 2, then V.f = 0

and f is a constant.

L]

In the light of this, we shall say that a symmetric covariant

2-tensor T defined on M has the Schur property if, given T = fg

for some function f, then f is a constant. Further, we shall say

-that a symmetric covariant 2-tensor T defined on M has the Schur

property of order k if it has the Schur property except when dim M = k.

Thus the Ricci tensor has the Schur property of order 2.

§2 Consequences of L2. Super-Einstein spaceé.

We can gain a 2-tensor relation by putting k

We recall Ledger's 2nd condition in orthonormal co-ordinates:

S(

R; aibRkagh’

HS(Giijz).

% and suming from

1 to n. As we carry out many calculations of this kind, we write

this one out explicitly,

Proposition 2.2 If the curvature of M satisfies L1 and L2, then

it also satisfies.

(2.7)

where

Riabchabc = 8613

S

£((a+2)H - K2),

in orthonormal co-ordinates,
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Proof It is necessary to consider the permutations on 4 letters,

2 of which are the same, say ijkk. We first write down those with

i preceding j:

ijkk, ikjk, ikkj, kijk, kikj, kkij.

The corresponding terms on the LHS of (2.3) are now written down and

summed over k,simplifying where possible:

RiajbRkakb
R;akb®jakb ,
R;arbRkajb
Rraib®jakb
RkaibRkajb
RakbRiajb

And the RHS:

K2s, .,
ij

IR; b iakd °

¢ see Lemma 2.4 below

iR. .. R, .
iakb™ jakb

Riakb " jakb *

K25, ., .
ij

néij,

S..
1]
S..
1]
8,.
1]
8..
1]

né
ij
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Noting that the LHS and RHS are both symmetric in i and j, and thus

there is no need to consider terms with j preceding i, we get by adding,

3

3 2 -
R akbRjaxy * K855 = H(n+2) 8.,
and (2.7) follows easily. D
We shall denote the tensor R. R. by R...
iabc  jabe ij

Proposition 2.3 In an Einstein space, R has the Schur property of

order 4.

Proof We are given that

(2.9) £,

R. . R, = .y for some function f,
iabc jabce 1]

As in Theorem 2.1, we take Vi of each side and sum:

ViRiabchabc * RiabcviRjabc B ij'

By the 2nd Bianchi identity,

ViRjabe = VbPac = VePap = O in an Einstein space.
Also
RiachiRjabc = %RiachjRiabc (Lemma 2.4)
= |}
“Vj(RiabcRiabc)'

Thus we have shown that

Vj(iRiabcRiabc) = ij'

On the other hand taking the trace of (2.9) gives

1
;RiabcRiabc

and the proposition follows. [:]
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dimension 4 is defined to be an Einstein space with |[R|2 =

23

An Einstein space of dim > 4 which satisfies (2.9) has been
defined by Gray and Willmore [GW] to be a super-Einstein manifold. An
Einstein space of dimension ¢ 4 automatically satisfies (2.9). This

can be shown either by direct calculation using the Singer-Thorpe

- fom of- the curvature of a 4-dimensional Einstein manifold [ST]

or by the algebraic method of Patterson [PA], a description of which
will be given at the end of.this chap;er. A super-Einstein space of
RiabcRiabc
constant.

Examples of super-Einstein spaces are not difficult to find. Any
irreducible symmetric space is super-Einstein, since any 2-ténsor
obtained from the curvature tensor has covariant derivative zero
and by a theorem of Walker [WA] in an irreducible space it must be
a multiple of the metric tensor. Most known examples of Einstein spaces
are also super-Einstein, but Gray and Vanhecke have shown that there
exist metrics on spheres of dimension 4n + 3 which are Einstein, but
not super-Einstein.

As we have seen, a hérmohic manifold must be super-Einstein
(including the case of dimension 4. A'4—dimensioﬁa1 harmonic manifold

is locally symmetriec, so |R|2- must be constant.).

83 Curvature formulae in a super-Einstein space

In this section we prove some interesting relations between
various tensors in a super-Einstein space. First we make some
definitions. The following equations in orthonormal co-ordinates

define the tensors on the LHS:
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o
Rii = Riarb®jcfaRachd , ViRV.R = VoR bed"iRabed ,
R R R.. R R VR R
Rii 7 Rirab®jfcaRabed YRR = VoRibcd"aibed
Ti = VaRbcdeRbcdeiaef’
and the scalars
o o
R = R,., |VR[2 = V.RV,R = VR,WR,,
11 1 1 1 1
[o] [o]
R = R,,.
11

The next lemma is a consequence of the Bianchi identities, and

was used in the last section.

Lemma 2«4 Suppose Aij’ 1 gi,j< n, is é_set of numbers anti-symmetric

[] » . [ = l
in 1 and j. Then (i) Ainiajb EAinijab s
* 0 l )
Q1) AViResap = #845%Rijap -
: = 1 .

Proof (1) Ainiajb E(Aij Aji)Riajb

= 1 -

2 (Riaib ™ Raip)
= JA,.R.. . . . .
ij ijab * by the 1lst Bianchi identity.
(ii) Proved similarly, using the 2nd Bianchi identity. [:]

These results will be made considerable use of in the sequel, as
will the Ricci identity for the non—-commutativity of covariant
differentiation (see e.g. [E]5 and the fact that the 3~tensor
viijcdebcd is anti-symmetric in j and k in a super-Einstein space.

Generally there is no relation between the four 2-tensors
defined above even in an Einstein space. However we have the result:-—

Proposition 2.5 In an Einstein space with p = Kg,

o] [} . .
(2.10) Rij + 4Rij - VRiVRj = ZKRij - iA(Rij}.
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Proof By definition

A(Rij) ka(Riabch abc)

kaRiabchabc * 2VkRJ'.abcka_-]abc * R.-iabcvkkRjabc
(2.11)

2V. . R,

kb 1achjabc * 2VRJ'.VRj * 2R

{abe kb jake
(Lemma 2.4(ii) ).

By the Ricci identity,

YibRiake = VbkRiake * PhibkRhake T FnabiRinke T Ruxbiktiahe T PhebkRiakh ©

The Einstein condition implies. that ‘0 and

VokRiake
thbk.Riahc = KRiabc’ and so (2.11) becomes

A (Ri k| ) = 2 (KRiab ch abe * Rhikahakc.Rj abe * _Rhabk_Rihchj abc

* Rhckaiathja'bc) * ZVRiV-Rj ¥ 2(KRJ'.abcRJ' abc * Riabthjkahakc
* R abcRhabkfinke * RiabcRhebk®jakn ) ¢
Use of Ler;lma 2.4(i) gives

. o . 0 °
A.(Ri.j) " 4KRij - 2R - BRy. + 2VR; VR, . ]

Corollary 2.6 (i) In an Einstein space,

0 0 ' : .
R+ 4R - |VR|® = 2k R|% - $AC|R[?).

(i1) In a super-Einstein space, with R = Sg,
0 Q
R,. + 4R.. - VR.VR, = 2KS§..,
1] 1] 1] 1]

Thus in a super-Einstein space only three of our defined tensors
are independent. . We wish to see which combinations of these tensors

can have the Schur property on: a super-Einstein space. To this end we
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prove the following proposition (cf. proofs of Theorem 2.1, Proposition 2.3).

Proposition 2.7 In a super-Einstein space,

iy Q o 1o (9 _
(ii) Vi(Rij) = EVE(R) Tj’
iii) V,(V,RV,R) = v, (|WR|? - 4T, .
(iii) 1( iRV ) £ J(| |9 F
] 9
Proof (i) Vi(Rij) = Vi(RiathjchdRacbd)

R;anb i%5chatacbd * RianbRjcnd"iRacha

since the space is Einstein. But, by the 2nd Bianchi identity,

Riahb i%jchdacbd = Rianb"jRichdRachd * Fiahb"eRjindRachd

o &y -
=375 ® = Ry onb"iRjcnaRachd *

where an interchange of dummy indices has been made in the second term.

1 Thus
RiahbvichhdRacbd - %Vj(ﬁ)‘
Also
RiathjchdviRacbd B %RiathjchdvéRaibd (Lemma 2.4(ii))
= it

(Note that this formula holds if only the Einstein condition is assumed.)
s 0 o ' —
(1) Vi = Vi RinapPincaRabed

Rihab'i%jhedRabed * RihabRjhed"iRabed

again, as the space is Einstein. Then
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Rihab"iNjhcaRabed = RinabViRincaPaped  (Lemma 2.4(ii))
L. (R) |
- 3, ®.
Also
RihaijhcdviRabcd ZRihaijhchcRabid (Lemma 2.4(ii))

VeRabiaRabintjcnd *
using the super-Einstein condition and Lemma 2.4(i). Thus

Rinab®ined"itabea = T -

(iii) Vi(ViRij) vi(viRahcdijabcd)

ViiRabchjRabcd * ViRabcdvinabcd“
CGonsidering the first term,

= 2V (Lemma 2.4(ii))

ViiRabcdijabcd iaRibcdijabcd
Ry iaifhbed"Rabed * PRhbaitined” jRabed
* 2RhcaiRibhdijabcd * 2thaiRibcthRabcd ’

using the Ricci identity and the Einstein condition. Thus

ViiRabcdijabcd - 2KRabchjRabcd * RabhiRihcdijabcd B 2RaichRibhdijabcd

- 2RiahdRibcthRabcd’

since the space is Einstein. Using the super-Einstein condition we have

that

V..R. .V.R . A I
ii abed j abed =~ 37j ) =3 j( )

1
= —§Vj(lVR|2)
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by Corollary 2.6(ii). Finally, using the Ricci identity once more we

have

ViRabcdvinabcd viRabchjiRabcd * ViRabcdRhajithcd'+ ViRabcdthjiRahcd

* ViRabcdRhcjiRabhd."ViRabcdthchabch

2
éVj_(lle ) + 4ViRabcdRhajithcd

by changing dummy indices. Thus

2y -
viRabchinabcd évj(IVR| ) éTj‘ [:]

Proposition 2.8 1In a super-Einstein space where T ¥ 0, a necessary

9 0
and sufficient condition that a tensor of the form ARij + BR]._j + CViRVjR

" has the Schur property of order 6 is that

(2.14) A+ 2B +8 = 0.
If T = O then any tensor of that form has the Schur property of
order 6.

Proof As usual we suppose that

O [o]
(2.15) AR,, + BR,. + CV,RV,R = f£§,,
ij ij i] ij

in orthonormal co-ordinates for some function f. Taking Vi of both

sides and summing,
o o)
AV,(R,.) + BV, (R,.) + CV,(V.RV.R) = £,
(& R v v =
Proposition 2.7 gives

9o o)
(2.16) . %vj(AR +BR + C|VR|2) - (JA + B + ‘T, = V.E.
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On the other hand, taking the trace of (2.15) gives

¢} (o]
(2.17) 1 (AR + BR + C|WR|? = f£.
n

If T = 0 we see that AT% + B§ + C]VRI2 has the Schur property of
order- 6. Suppoée T # O and the tensor in question has the Schur
property of order 6, then for n # 6 f is constant and thus (2.14)
holds, by comparing (2.16) and (2.17).

Conversely if (2.14) holds the tensor has the Schur property of

order 6. I:]

Corollary 2.9 1In a 6-~dimensional super-Einstein space T = O.

M Take a 2-tensor of the form A-I%].-j + Bﬁij + CViRVjR where
A+ 2B+8C # 0.

Substitution of (2.17) into (2.16) when n = 6 gives
(& + 28 + 8OT, = 0. []

The final proposition in this section gives a list of identities
valid in a super-Einstein space, useful in this and the next chapter.

Proposition 2.10 In a super-Einstein space (with p = Kg, R = sg)»

(1) if Ti'jkzhm = S(vinkaSLthamb)’ then Tijkkm, = 8(-5ViRVjR - 4VRiVRj),

(ii) if Uijk!l,hm = S(:ViRjakaR,Rhamb)’ then Uijkkm = 8(5ViRVjR+4VRiVRj)'-,
¢ o0 -f — S(R ) h = 21§ 3%
(1) 3£ Vs seomm = S®ia5b kb acthona)® R Vigiupg = 8(7R; 5 - 3Ry,

27.
+ (3K3+7?KS)Gij).

(iv) if W, . = S(V.R

ijk #hmn i jakbRR,bthmcna)’ then W

= sa(lv (9 - 20 (=
ijjkies = ¥V R -5V, (R)

- 6Ti) ]
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(v) if X.

ijkShmn

S(vinkalehRmanb

), then'Xi

= 2y -
5 ikkad 48(3v, (|VR[?) -321,),

(vi) if Y. ), then Y,

= = - 2
iikebmn = 31 ;5kR eahbRmanb 15ikkee = 48(-9V; ([VR[?) +96T.),

Proof The method of proef is the same in each case. It is in principle
"the same as Proposition 2.2, but more laborious. All possible permutations
are written down and full use is made of the identities used in previous
propositions. I:l

Remark From Proposition 2.10 we note the following identities in

a super-Einstein space:

(2.18) = o0,

Tiskeas ¥ Yijkkas

(2.19) 3X = 0.

+ X,..
iijiees * Yijikkes
We also know that if we assume instead Ledger's 2nd condition,by

differentiating twice and three times we obtain

Tiseemm * Yisegm = O

3 0.

X skehmn ¥ Y15k hmn
Thus while it is clear that (2.18) and (2.19) hold in a space which
satisfies L2, it is not obvious why they hold when only the super-

Einstein condition is assumed. This must have a significance which

indicates an easier proof than the hard labour of Proposition 2.10.

§4 Consequences of L3

Ledger's 3rd condition which, it will be recalled, is derived

assuming the lst and 2nd conditions is, in orthonormal co-ordinates,

(2.20) S<32RiajbRkb2cRmcna - gviRjakbszmanb) = LS(Gijskzamn)'
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The next proposition is the analogue of Proposition 2.2.

Proposition 2.11 If the cﬁrvature of a manifold satisfies L1, L2 and

L3, then it also satisfies
O o]
(2.21) 16R,. ~ 20R,. + 3V,RV.R = N§,. for some constant N,
1] 1] 1] 13 )

Proof By setting k = £, m = n, summing and applying Proposition 2.10

we get
9o o]
32R,, - 112R,, + 15V,RV,R + 12VR,VR, = C6,., for some constant C.
1] 1] i3 1 ] 1]
Then applying Corollary 2.6(ii) we get (2.21). [:]

From Corollary 2.6 we have the following relation in a super-

Einstein space:
o o
R+ 4R - |[VR|2 = 2KSn,
and from (2.21)
o o
L6R - 20R + 3|VR|2 = Nn.

These formulae are of interest for if we can find another linearly
indepéndent linear combination of ﬁ,'% and |VR|2 which is constant,
we could infer that each of these was constant. If the fundamental
conjecture is true, then fhey must be constant; more impoxtantly
if |VR|? could be proved to be the constant O, then the conjecture is
proved. However, as yet, no third condition has been found, and
should one be found it Woﬁld be no easy matter to infer that
|[VR|2 = 0 (cf. [B] p.174).

Also .it is interesting to note that if, instead.of simplifying
the condition gained from trC(8) in Chapter 1 by use of L1 and L2,

we had assumed only that the space was super-Einstein,we would have



32

obtained

= 11
135V, Ry kb o Rhamb * 1471 1 Rcam hamd * 3%Riajb kb rchema’ = 'S5 50k oOhm)

whence, by use of Proposition 2.10, we would have arrived at (2.21).

Proposition 2.12 In a super-Einstein space, the 2-tensor

16%ij - 20§ij + BViRng has the Schur property of order 6.
Proof Its coefficients satisfy the condition of Proposition 2.8. [:]
We shall denote the 2-tensor 16%ij - 20?{ij + 3ViRVjR by ¢ij' |
We have seen that p has the Schur property of order 2, in an Einstein
space R has the Schur property of order 4, and in a super=Einstein
space ¢ has the Schur property of order 6. So we are led to a
Conjecture, SupposelT(k) is the symmetric 2-tensor derived from the
kth Ledger condition (which is derived assuming the preceding k-1
Ledger conditions) then T(k) has the.Schur property of order 2k.
However, as we have noted aboﬁe, there are grounds for a second
Conjecture, Suppose T(k) is the symmetric 2-tensor derived from the
2kth derivative of trC. If it is assumed that T(p) = Cpg fof
 constants Cp, l £ p £ k-1, then T(k) has the Schur property of

order 2k.

§5 Results of Patterson

In this section we describe some of the results obtained in a
recent paper of Patterson [PA]. In particular we note the discovery
of an infinite sequence of symmetric 2-tensors, all of which have
the general Schur property. However these are constructed from
algebraic combinations of the curvature tensor and do not involve its
covariant derivatives. We also mention some results of consequence
for low—dimensional harmonic manifolds.

Firstly we define the main tool of the paper, a contravariant
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tensor of order 2r:

(2.22) Jliizeeiplitioee iy e gl10(n) 10 (i) | i),
oeSr.0

It is seen immediately fhat the i's and j's are anti-symmetric in
pairs. We can now define a Sequence of contravariant 2-tensors
F(k),k > 1,by

g = oifveeedonlddneedong R
11123112 1ok-112kJ2k-1J2k *
E(k) are defined to be the corresponding covariant tensors obtained

by lowering the indices.

Proposition,2.13 . E(k) has the Schur property, k > 1.

Proof We work in orthonormal co-ordinates so that

E..(k) = oa.. . .. . R. . . . «..R, . . .
ij idge.eipk]ddgee odok i1ipiida’ " iok-1iokiok-1]2k »
where
o, . . ‘s . = Z € 8. 8. . 8. .
iigeeiprlijyeedok I PRRRCAE T {6 DRE ST {6 FDRRPRE SIR[G PN
: 2kl
We are given that
E..(k) = f£f6,. for some function f.
1] 1] _

As usual we take Ve of both sides and sum so that

(2.23) . ViEij(k) = ij.
But
V.E..(k) = V.(o,. . qss . R, . . . «..R, . . )
113 iy eipi|idre s dok iiadnda 12k-112kJ2k-132k

O.. . . . (V.R. . . . ...R, . . \ S
111---12liJ1---J2k 1 11123112 lok~-112KI2k-1J2k

Ro ] ] . oa-V.R- . . ] )
11127112 1 1ok~11l2kJ2k-1J2k

= ko,. p s . V.R., . . . +..R, . s .
(2.24) (£ SRPRE 1k AERRTE Py A S SE PR PR P 12k-112kJ2k-1J2k
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(since V.R can be derived from the other

R, . . . «..R, . . .
1111231312 12k-112kJ2k-1J2k
terms by even permutations of the i's and j's.).

= lko

.. . .. . V. R, . . . «..R, .. .
111---12k|JJl---J2k 12 111-71]2 lok~112kJ2k-1J2k
(by Lemma 2.4(ii) using anti-symmetry of i and i;)

(2-29) R TR P ET S AL TR IE PRt PAE P ot

(by Lemma 2.4(ii) using anti-symmetry of i; and 1i,).

Comparing (2.24) and (2.25) we see that both must be zero. Hence

from (2.23) £ is constant and E(k) has the Schur property. [:]
We can now derive from these tensors a sequence D(k) of covariant

2-tensors, k > 1, such that the kth has the Schur property of order 2k,

thus inviting comparison:with our T's of the last section. This is

accomplished by subtracting a certain term from each E(k). We define

scalars G(k), k 2> 1, by
G(K) = &, . (s o+ R .. o.eweRe . ..

11---12k|J1---J2k 11123132 1ok-112kI2k-112k

and covariant 2-tensors D(k) by, in orthonormal co-ordinates,

(2.26) : Dij(k)' = Eij(k) - G(k)Gij,

Proposition 2,14 D(k) has the Schur property of order 2k, k > 1.

Proof We calculate first the trace of Eij(k)' We have

E..(k) = a.. . . . R, . . . ...R, . . .
11 idyeedg|idy. . Jor 11123132 12k-112kJ2k-1J2k ,
Using the usual expansion of a determinant by the first row, we have
o.. . . . = §,.0. . . . ~8,., o, . . .
idyeseigp|idneecdox 1] 11'°'12k|J1---Jzk 1), l1h---12k|JJzo--Jzk

+ .0 = 6,, o, . }es .
1J2k 11.0.12kIJJ1010J2k—1'
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and so

a.. . .. . = (n - 2Kk)a. P .
111"°12k|1J ved] 11---12k|J1---32k'
_ 1 %

Thus

(2.27) Eii(k) = (n - 2k)G(k),

We are given that

D,.(k) = £8,, for some function £,
1] 1]

Once more we take Vi of both sides and sum:

V.E.

(2.28) ViDij(k) f

But, from (2.26),

v.D. . (k) ViEij(k) - VjG(k)

(2.29)

—VjG(k)

(see proof of Proposition 2.13).

On the other hand taking the trace of D'j(k)’
i

Dii(k) = Eii(k) - nG(k)
= =2kG(k) (from (2.27)).
Thus
f = D.,
O
n
(2.30) = ng_G(k).
n

Combining (2.28), (2.29) and (2.30), we see that if n # 2k, f must

be constant.
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Calculation reveals that D(1) is a multiple of the Ricci tensor
and D(2) is a multiple of following quadratic polynomial in the

components of the curvature tensor:

Riabchabc * Tpij * 2Riajbpab * 2piapja‘

Note that in an Einstein space this reduces to

R.. + C§,, ’ for some constant C.
1] 1]

D(3) requires a lot more calculation, but in a super-Einstein space

it is a constant multiple of this tensor:

2R.. = R,, + BS,.
ij ij i]

for some constant B.
Its having the Schur property is verified by Proposition 2.8.

This raises a number of interesting questions. Do there exist any
more naturally occﬁrring sequenées.of 2-tensors with the same property?
Is there an elegant.proof of the conjectﬁrés in the last section
similar to that of the propésitions above? The second question would
appear to require a different approach to the notion of harmonicity,

but one feels that the answer should be 'yes'.

It is easily seen that when n < 2k then

Ot111...12k]J31-~-J2k = 0

since it is anti-symmetric in the i's and there are 2k + 1 places to

put at most 2k different integers. Hence for n < 2k,.E(k) = O. This

quickly shows that (i) any manifold of dimensioﬁ £ 2hasp = fg for
some function £,

(ii) any Einstein manifold of dimension < 4 has

-

= fg for some function t,
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(iii) any super~Einstein manifold of dimension < 6

has the following property, in orthonormal co-ordinates:

o = =
R,, -R,, = Ts.. and T is constant for dim M < 5.
ij = Tij ij

Thus for a harmonic manifold of dimension 5, we have a third relation

between the three scalar invariants viz.

S o
2R - R = Constant,

o 9 ' )
and we can conclude that R, R, and IVR|2 are individually constant.
However as pointed out earlier, it still seems difficult to prove
that the constant in the case of |VR|2 is 0 and hence deduce local

symmetry.
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Chapter 3 The Mean-Value Theorem

In 1950 another characterisation of harmonic spaces was
discovered by Willmore [Wl]. Observing the well-known fact that
harmonic functions on R" are those with the mean-value property, he
found that harmonic manifolds are exactly those spaces in which
harmonic functions have the mean-value property. This chapter is
concerned with exploiting this by calculating the first few terms
in the power series expansion of the mean-value of a function over
a geodesic sphere and then using it to deduce properties of the
manifold. Most of this chapter is modelled on the paper of Gray and

Willmore [GW].

§1 Calculation of the mean-value: the preparation

Let us denote by Sm(r) the geodesic sphere centre m, radius r
(r < i(m), of course). This is the image under exp of the Euclidean
sphere of radius r in TniM’ which we denote by $(r). The volume eléments
of these two manifolds will be denoted by dws, dw$ respectively. The
meén—-value of a function defined on a nhd of m, Mm(f,r), is then given

by

3.1 Mm(f,r) = J fdws /I dws for r small enough.
8 (

Sm(r) r)

m
Willmore's result can then be expressed as the following theorem.
Theorem 3.1 A manifold M is harmonic iff for each pt m € M and each

function f harmonic on a nhd of m,
Mm(f,r) = f(m) for r sufficiently

small (see [W1] or [B] p.158ff).
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By expanding Mﬁ(f,r) as a power series in r, we can gain
necessary conditions for. a manifold to be harmonic by demanding that
the non—-constant terms vanish. We can also obtain results interesting'
in themselves concerning the vanishing of these terms.

The first step in finding this power series is to transform the
integrals over geodesic spheres to integrals over Euclidean spheres,
to which we can apply classical results.

* '
Lemma 3.2 If dws denotes the pull back of dw_, under exp s then

S

*
(3.2) dws = Omdw

$)
where qm is as before vdetg in normal co-ordinates.

Proof Let drM, drE be the radial 1-forms defined on a nhd of m and

a nhd of 0 in %{H by the corresponding radial functions. Then

(3.3) dwE = dw$ q d?E’_ de = dws A drM,

where dwE, de are the volume elements of QhM and M. Both equations

follow from the Gauss lemma which says that —2-(resp. 2
arM arE

length and is perpendicular to Sm(r) (resp. $(r)).

) is of unit

Also frgm the definition of qn we have

(3.4) du)* = o du.
Hence
do A dr, = (dugAdr)® = (@u)’ = o.da
S M S M “M m°VE
= Gm(dw$/\ drE)

%
by (3.3) and (3.4), and as drM = drE, the result follows. [:]
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We can thus write (3.1) as

M (f,r) = ‘f%dws* / dws*
$(r) $(x)

(3.5) - | £0,du, / Iemdm$
$(x) $(x)

by Lemma 3.2, where we abuse the notation slightly and consider f and
Gm to be defined on a nhd of 0 in TmM or a nhd of m in M, as suits
our needs.

The main tool in calculating the power series-is the classical
formula of Pizzetti for the power series expansion of the mean-value

of a function over a Euclidean sphere:

~

(3.6) [hdw$ / j dug = TGm ] G* Ew © ,
$(r) $(r) - k=0 k' T (§n+k)

where Ek is the kth jterate of the Euclidean Laplacian i.e.

ko 3%y

(3.7 AT = iiexi - axikoxik

(see e.g. [CH] p.287ff).

-~

With this in mind we define differential operators Am’ k>1,

on-a maximal normal co-ordinate nhd of m by

&k f = 7 ¥ BZkF T s ’
m axty axt e 9xlk axlk

where x1 ...x™ are a set of normal co-ordinates about m. Note that
K:Lf is however independent of the choice of normal co—-ordinates, and
k% -k
A = .
EH" = &

Applying (3.6) to (3.5) we have



41

I & T B (£9,) @)
k=0
(3.8 Mﬁ(f,r) = .

v (IyZk 1k
A O e G (9@

To gain information about the geometry of the ﬁ\anifold we need
to be able to translate information fr.:om partial derivatives of f
and Om with respect to normal co-ordinates into information concerning
the curvature tensor. Once again the usefulness of normal co-ordinates
is demonstrated in the next lemms.
Lemﬁla 3.3 (i) The partial derivatives of @m with respect to normal

co-ordinates about m at m can be expressed in terms of the. curvature

tensor.
(i) 5 \@m = 1 S(V; ... £)@),
. . - 1 ;
oxlye--3xlk k! k

' n, - : .
where (xl,- «e.y X ) are normal co-ordinates about m.
Proof (i) This was shown in the course of chapter 1.
(ii) In normal co-ordinates about m a geodesic y through m has

the simple equation
i .
Y(s) = as, i = 1, «v.y ny

The tangent vector along the geodesic has components a' and as Y is

a geodesic

vd (al) = aly,a' = 0, i = 1, .vvy Da
(3.9 s 3
s
The formula in {ii) is certainly true when k = 1, by definition

of VE. Indeed if we take the covariant derivative of f along y we could

et i i . .
write it hoth. asa Vif or a 9f . We can repeat this using these as our
oxt
scalar functions to get
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iy, (ad 35, (ata
a'v,(a"v.f) = a° 3, (a 9f.) along ¥,
11 ax’ E‘l

whence, from (3.9) and the fact that the a's are constant,we get
ajaivijf = ajai __g%£, along v.
9x13xJ
In particular this is true at m and as the choice of a's is arbitrary
it follows that
S(v;,8) m) = S(a_g__) (m) = 2!_32f (m).
x19x] xlaxJ
The result for any k follows from applying this a further k-2 times.
We shall need the.power series expansion.of © in normal
co-ordinates up to the seventh order term in the next section, so

we give it here:

1 ijk
(3.10) o, = 1l- % J(m)x: xJ - Tgvipjk(m)x xIx
J_ 3 jL 1 ij k. ¢
oo 5 T5R; gibkam ¥ P33P WE XXX
b a2 -2 5 i ik %h
* T P T 3R e eann * 3PP ) I F XX
A -3y 5
e 7 kaphg _E 1RJakb 2Rhagb VinkaR,thagb
18 2
763 anRkbchhcga ¥ ijpkzphg * 3RiajbRka2bphg
_5 j.k 2 h
+'2V ka 2phg 905 pkzphg)(m)x xx % x5
+ o (=2y - 2v..R ..R -8R .R._ R
WY skehPef T 3'ijk gahb gafb ~ 3'i jakb fbhc gefa

9 1 o
"2V %kam hRgarb T FPii%kamPer T TPi; kM ranb gath

2

2 V5P VanPer * 3 iP5k panbRgatb
__§§ ijk thegf

12 V; PP hpgf)(m)x xIx“x % x8x,

This is easily derived from the results of chapter 1. We now have all

we need to begin calculation of the power series of the mean value.
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In passing we note the following

Proposition 3.4, In a harmonic manifold formula (3.8) for Mﬁ(f,r)

becomes

MG = TG [ & o e £) @

Proof Simply note that qn is a function of r alone and

M (£,1) = | £dug / dug »
$(r) $(r)
and the result follows by Pizzetti. [:]

Corollary A sequence of necessary and sufficient conditions that

f be harmonic on a nhd of m in a harmonic manifold is

-k
Ef@ = 0 kK = 1,2, ... .

§2 The Calculation

We write
Mﬁ(f,r) = f(m) + A(m)r2 + B(m)r* + C(m)r6 + D(m)r8 + 0(rl0)

and the object of this section is to calculate A,B,C and D. However
B,C, and D will not be found in the most general situation, but under
simplifying conditions which will be made clear in each case.

If ﬁe multiply out the power series in (3.8) using the binomial

theorem, we find that, writing © for em,

-(3.11)  Am)

_21; (8, (f6) - £4 (0))(m),

(3.12) B(m)

1__(A2 (fe) - f§§<e>)(m) - L (& (£0)~£4 (0)) @A (0) (m),

8n(n+2) 4n2
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fm e bt B e,

(3.13) Cm) = 1 (A3(£0) —fA?’(G)))(m)
48n(n+2) (n+4) ™

-1 (A (fo) - £A (0))A2(0) (m)
16n2(n+2) ™

-1 (A%(fe) - fAz(e))(m)A (0) (m)
16n2(n+2)

(A (f0) - f£A q(9)) @ [A (0)12(m) ,
8n

(3.14) D(m) = 1 (A‘*(fe) -fA”(e))(m)
48. 8n(n+2)(n+4)(n+6)

- 1 (As(fe) - fAs(G))(m)A (0) (m)
16 6n2(n+2)(n+4)

"___(Az(fe) - fAz(e)) (m) (AZ(O)) (m)
64n2(nt+2)2 ™

- 1 (A (f0) - £A 2(8)) @A3(0) ()
16.6n2(n+2) (n+d)

‘ +__ 1 (A%(fe) - £42(6)) (m) [A (0)12(m)
32n3(n+2) ® |

+_ 1 (5 (fo) - £A (G))(m)[(ﬁ () ] Xm)
16n*

+_ 1 (A (fe) - fA (0))(m)A (6) (m)Az(G) (m) .
32n3(n+2) :

In the ensuing calculations we shall denote partial differentiation
of a function h with respect to xt by hi'

Calculation of A From (3.11)

Afm) = 1 (A (f0) - fi (9))(m)
2n
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Now %m(fe) = (f@)ii
= f,,0+ 2f,0. + f0O.,
ii i1 ii
so Am(fe') - fAm(O) = fiie. + Zfiei.

Evaluating the RHS at m we have, by Lemma 3.3 and (3.10),

fiiﬁm)eom) = Aiifﬁm),
fiﬁn)eigm) = 0.
So A - 1 Af.
2n

Thus we easily get

Proposition 3.5. Suppose f is defined on an open set U of M, A

necessary and sufficient condition that for eachm € U
Mh(f,r) = f(m) + 0(r") for sufficiently small r

is Af = O,

Recalling now Theorem 3.1, from the point of view of harmonicity
we are interested in the mean-value of harmoniC'funCtibns, so we shall
assume from now on that £ is harmonic on a nhd of m. However if we
had started with a general function and asked .that it had the mean-
value pfoperty where defined, it would have been forced to be
harmonic by Proposition 3.5.

Calculation of B assuming Af = O throughout a nhd of m. (For

B in the general case see [GW]) From (3.12),

B(m) = __ 1 (&%(fe) - £52(0)) (m) - _1(R (f0)~- £4 _(0))(m)A (6)(m).
8n(n+2) b . n 4n2 T n m

From the calculation of A, we see that the second term vanishes under
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our assumption. Now

(£0)

VAL —-fA2 -
A7 (£0) - £ (B) D155~ P43

£....0 + 4F,,.0, + 2F,.0,, + 4E,.0,, + 4E,0, ...
iijj iij"j ii73j ij7ij i7ijj

Evaluating the RHS at m, we have by Lemma 3.3 and (3.10)

(3.15) £ @ow@ = %(viijjf+vijijf V5515 @
fllem)GjGn) = 0,
£ @0 () = 3V E@o @),
fii(m)ejjﬁn) = 0, in view of our assumption,

£ ey @) = -39, £ @)V, T(m) -

We define two scalar functions in which B will be expressed:

2 - ~
<%,V €> pijvijf'
<§T,V€> = V,tV.f.
i i
L 2 L /.
Thus- B(m) = 1 (fii" -3 <F,V €> - §'<VT,Vf ) (m).
_ 8n(n+2) 1 .
All that remains to be calculated is the expression for fiijj(m)'

We need the next lemma for this and calculations to follow.

Lemma 3.6 We have

(1)

Vjiikf v L(AE) + V. iPra’s £ + P of s

(ii) - v

V (Af) + vV, pkzvzf + pkzv f +p. ) k% +R,. V., £,

ijikf ijkg 18

(iii) v,.. f

i1k v k(Af)_+ (Vjpkk +V

i~ 2ka)v £+ opg¥sef

+ pjzvsz + ZRijkzvizf'
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Proof From the Ricci identity we have

Virif 7 kit T P

sz.
(i) results from.takihg Vj of this equation. (ii) and (iii) follow

from further applications of the Ricci identity. _ [:]

We see from this lemma that

= = 2 1 -
Vijijf vijjif A“f + 7v2-cvzf + pszka '

and so from (3.15)

1 ) )
Eris@ = V'r,Vf> +z<p,v2f>)(m),
since Af = O by assumption.
Hence, assuming Af = O,
B = -_1 (2 <p,v2f> +3<V'r,Vf>).
. 24n(n+2)
Note that a sufficient condition for B to vanish, given Af = 0, is

that the manifold is Einstein. Later we shall prove the necessity in
the following proposition.

Proposition 3.7 A necessary and sufficient condition that for every

m € M and every f harmonic on a nhd . of m
Mh(f,r) = f(m) + 0(xr®) for sufficiently small r

is that M is Einstein,

Thus we recover L1 from this term. We carry the conditions Af = 0
and M is Einstein over into ‘the calculation of the next term, as we
are interested in the circumstances where all the terms up to a
certain point vanish.

Calculation of C assuming Af = O throughout a nhd of m and M is
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Einstein (p = Kg). (For computation of C in the general case see

[GW].) Under our assumptions (3.13) gives

Cm) = 1 (A3(fo) - f&;(e))(m).
48n(n+2) (n+4)
‘We have that
73 £33 _
(3.16) Am(fe) fAm(G) fiijjkke + 6fiijjkek + 3fiijjekk

+ 12fiijkejk + 12fiijejkk + Sfijkeijk

+ 3fF 6f

1195k ¥ 1255015

e " OOt

We write down two scalar functions in which C will be expressed:

<1'{, v2f> R,.V,.f,
ij 1]

<v(_|R|2),Vf>

2
Vi(|R| )V, £

From (3.10) the required derivatives of @ are, under our assumptions,

I = 1
ijﬁm) = 3pjk(m) 3K6jk ’
eijk(m) = 0!

0.. (@) = -S5(-&R o+ 1x25, .6 ) (m)
ik @ 2T IRy oy Ragy * 356 6 ) @)y
L lg2 |

O jkan®™ = FTCIVR, R pany) @

Summing the last two in the familiar way of Chapter 2 gives

: 8.
%™ = 4_1!(—§Rjk * 1—85K2<5n'+4)6jk) (@) »
1
O™ = "% (RID@.

From the calculations of A and B, we see that our assumptions

imply

fii-(m) = 0, fiijj(m) = 0,
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and henﬁe (3.16) reduces to

A3 - FA3 = IR -2 2 >
A3(fe) - £A3(0) £iisie™ ~ 3 <.,v €> 5 (V(|R]?),VE) 3
so it remains to flnd'fiijjkkcn)' By Lemma 3.3

: - L
Go1D Frysia™ = 1500 * Viggent ¥ Viiguegt * Vit

* Vigikgkt Vit t Vigaad t Vigkagt
* Vakikgt t Viggkint t Vigkgit t ikt
* Vit Vst Vg ft @
2 ' . .
150Vt ¥ Vigeagd * Viggeant * Vigugikt
* 5 ek s

by the commutativity of the last two indices and the assumptions we have

made, Under our assumptions formulae (i) - (iii) of Lemma 3.6 become
(i) Vjiikf = Kij_f,
(3.17a) (ii) vijikf = 2vakf + Rijkzvizf’
(iii) Viijkf = 2Kijfl+ 2Rijklvi2f'
Thus Vijikjkf = Kvijijf = 0,
Vijkijkf = ZKvijijf + Vij(Rkijzkaf) = Rkijzvijsz (Einstein),
Vijieikt T ®Vig5f < O
Vikgin T EY05E Vi RN T ReigeVigaf
Viskeiit T V5055 Y 5 Ri 0% ® T Reigeigiael
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_ 1 . .

And Rkijlvijkkf = IRkijzvi(thzjvhf) (Ricci identity)
= 4 _ 1
= 2R 0Rnkei int * 2Rwije iMhke; 't
= %— <R,V2f> + % <V( |R|2) ,Vf> (by Lemma 2.4(ii)

Thus from (3.17)

Eiiipa® = 15Q2 <RsV2f> +%<V<IR|2>,Vf>)(m),

and
(B3(f6) - £A3(eN(m) = (15 <f{,V2f> - %:<V(|R|2),Vf>)(m).
Finally _
C = 1 (-8 <I'<,v2f> —-5<v(|R|2),vf>).
720n(n+2) (n+4) '
Note that a sufficient condition for C to vanish, given Af = O,

is that the manifold is sﬁper-Einstein.-Later we will prove the
necessity in the following proposition.

Proposition 3.8 A necessary and sufficient condition that for every

m € M and every f harmonic on a nhd of m

M (f,1) = f(m) + 0(r®) for sufficiently small r
is that M is super-Einstein.
Thus we recover the 2-tensor condition derived from L2 from this
term. We carry this condition over into our calculation of D.

Calculation of D assuming Af = O and M is super-Einstein, with

p = Kg, R = Sg. From (3.14) under these assumptions we see that

D(m) = 1 (B*(f0) - £A4(0)) (m).
' 48. 8n(n+2) (n+4) (n+6) n
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e - FAL =
Now Am(fe) fAm(e) fiijjkkue + 8fiijjkk202, + 24fiijjk29kz

* 4fiijjkkem * 328 sa®ie T 245155k
* 168 i e®iike 4B k% ke * %1115 %Kan
* 32f]k£ iijks 24fiij6jkk22 24f13913kk22

* A% knn Y 819 fken

We write down the scalar functions in which D will be expressed:

S
-~}
o
o
<
-3
~~
]
5

’ Ko} O
iajbRkath iikef? <V(R) ’Vf> V(R £,

(o) = 8o NCRUEERA
R ,V = RV, W(R),vE) = V.(R)V,E,
(8] o] !
< R ,v2f> = R;V;.E, <V(|VR|2_),Vf> = V. (|w®|)v. £,
2 = = .
<VR® VR,V f> V;RV.RY, .£, <T,Vf> TV, £

From (3.10) we can write down the required derivatives of © under

our assumptions:

L
ekl(m) = _3K6k2,’
Ojkz(m) = 0,
0, ., ,(m) = 1S(-1&R, + 3K25,.8, ) (m)
i jka (@ T T5R; ajbRkasy ¥ 35701 3%) (@
} 2
O k™ = 51,3( 3V; R kbR pahn) ™ ¢
- 15 _ 16
®; jkahg ™ 6—1,3( 18V; R akb ¢ *hagh - vinka!,thagb B3R, L ibRkbacthega
- 3KRiajbRka2b6hg B 9K 613 kg hg)ﬁn)'
_ 5o 8
0 jkthge™ = 7—1,3( 3Vi jkReanbRgars T 3Vi%jaxbRebhcRgeta
_ZVifkaathRgafb ¥ _KleVkRJLahb Roafn) @ -

As before we can calculate appropriate sums:
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Jsz(m) = Psz for some number P (see Proposition 2.2),

eiijkz(m) = 0 (since it is the symmetric sum of terms of

the form V, R and this is anti-symmetric in

Jabchabc

j and k in a super-Einstein space),

o) Q
eijkklz(m) = 6?22 (3ViRVjR - 20Rij + 16Rij) + Qsij | for some number Q,
Q : Q0
eijjkklzon) = 927' (-85V1(R) + 140Vi(R)).

The last two sums use Propositibn 2,10. Our assumptions imply that

fli(m) = 0, f.;..Gm) ; o,

iijj fiijjkk(m) = 0.

Thus

| Y - £XbL =
| (3.18) (Am(fe) fEm_(@))(m) (fiijjkkﬂ,lb + 16fijk20ijk2

o
+160(3V RV.R - 20R + 16R..)f..
71 h] ij

+24. 8(14OV (R) - 85V, (R))f )(m).
9.7!

To express f, in invariant terms we need the next lemma.

kz ijke

Lemma 3.9 In normal co-ordinates based at m

R, <R . (m) 3% (m) (<R o R v‘*f> + —§-<ﬁ,v2f>
1ajb kalb ax1i9x]oxkox’

1—1< V2f> L v(ﬁ)Vf>
1

.t <v<ﬁ>,Vf ) (m) .

Proof We have from Lemma 3.3(ii) that

. . ‘
ME m) = Ts(V,. E+V, . F+V, f4+V,. Ff+V, f
P pY Pws e A i3k ifjk ikg]j jikg jiik
* Varei® * Vkige® * Viagif t Vigief t Veagpd
+Vv_ .. f+ LE)(m) ,

2kij 23k1
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The lemma follows from repeated use of the Ricci identity to express
the permuted covariant derivatives in terms of the first, and then
use of the curvature identities to further simplify. [:]

Now

16£; 11 9% 3 ™

BB g SRy iy R ) )

-

= 5 24 R Rean ™

- .32 Y 2/ oo 1 /8 o2
(3.19) = 15( R-oR,V f + 3‘ R,V f - _2'1 R,V f

1 [oimy o 1 /o8
¥4 V(R),Vf> - 712<V(_R)-,Vf> ) (m)
by Lemma. 3.9. Tﬁe only term left to calculate is (&gf)(m) and the

1engthy calculation involved is given in detailed outline in

Appendix II. We quote the result:

(3.20) (BH)m = 1—02-5(56<R°R,V”f> +.24<§,v2f> +'1z<ﬁ,véf>

- § (m@m,v2) + %<v<§>,.,Vf> + 15 (v, 8> .

 Combining (3.18), (3.19) and (3.20), we have this formula for D,

assuming Af = O and the space is super-Einstein:

(3.21) D = x(n)(-112 '<R oR,V‘*f> - 48 <%,v2£> - 24<§,v2f>

+5 <vR®vR,v2f> + 42 <v(€€),vf> - 673<v(§),vf> )

'wﬁere x(n) = 1

48. 8. 105n(n+2) (0+4) (0+6)

We will also require D in a form involving partial derivatives,

so using Lemma 3.9 we rewrite (3.21) as

0
£ 100R

S AES I S

. [o]
490y My ¢ _ 233 9
+ 5ViRVijij +ig Vi(R)fi T8 V; (RE,) (m)

wlo

= - 3 80
(3.22) D@m) =x(n)( 112RiajbRka£bfijkz +8)
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§3 The use of the Cauchy-Kowalewski theorem

We now proceed to proving the necessary parts of the
Propositions 3.6 and 3.7 and a similar proposition for the next
term. This is by means of a well-known theorem in partial differential
equation theory, the Cauchy—Kowalewski initial value theorem, which
enables us to choose suifable test harmonic functions.

N.B. The Einstein summation convention is not assumed to hold
throughout thié section. All summations will be written explicity.

OQur first proposition is easily seen to finish the proofs of
Propositions 3.7 and 3.8.

Proposition 3.10 Suppose that for every f harmonic in a nhd of m,

there exist sets of real numbers T.,. (T., = T,.) and U. such that
ij “Tij ji i
n n
(3.23) ) T,. 9% _(m) + U, & (m = 0,
i,5=1 TJaxlaxd i=1 ‘oxl

(xl...x™) being normal co-ordinates about m. Then
T.. = A8,. i,j = 1, ..., n for some real number A and

U =0 i =1, ..., n.

Proof The Cauchy-Kowalewski theorem asserts that there is a

solution of the elliptic equation Af = 0 in a nhd of m such that

on the hypersurface x! = 0 both f and of take arbitrarily prescribed
' ax!}
values, say

f = ¢0(0, X2, LRCIE ) xn)’

100, x2, ..., x1),

;
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. . . . n
We express these functions as power series in the variables x2, ceey X%

n i n ij
Bo+ LBgx v L B+ eeen
i=2 i,j=2

¢ (0, x2, .;., x)

n .
1
¢1(0, x2’ ey x™) Yo * 2 Yix + 0

1=2

where we assume that Bij = Bji' Writing down the first and second

partial derivatives of f at m:

9f (m)
‘oxk

1]
w
.
L J
N
A
-
A
[}
-

3f_(m)
ox

_92f (m) . .
ax1ax] 1]

fi
<
)
-

(]
ool
-

N
/N

e
-
i
A

=]
-

32f (m)
ax loxk

]
-
=
-
()
n
o
N
B
«»

32f (m)
ox lox1 . i=2 ' i

n
1

Il o~18
Qo
W
=]
Q2
M
=

i The last equation follows from Af(m) = (Emf)(m)_= 0.

We can make all second derivatives of f at m zero by the choice

fl
o
N
/A
-
A
=]

For an f of this kind (3.23) reduces to

n
LU, 2Em) = oO.
i=1 “oxl

Then by a further choice of one of {Bk, k=2, ...,n}U{yp} tobe 1

and the rest O we see that
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Hence (3.23) reduces to, for any harmonic £,

n
(3.24) ) T, . 92f m) = O.
i,5=1 "3 oxipx]

Fix integers p,q, 2 < p,q < n, p # q, set all the B's equal to zero
except for qu = qu = 1-and set Y = 0,2 <k <n. Using an £
of this kind in (3.24) we find that

qu=0- | 2 £p,q<n,p?q,

as we assumed T to be symmetric.
Similarly fixing p, 2 < p < n,and setting all the y's equal
to zero. except Yp = 1, and all the B's equal to zero we find that

for an f of.this_kihd,

Tip = 0, 2 &p<n,

Finally fixing p and setting Bpp = 1 and the other B's and y's

equal to zero we obtain

-T11+Tpp = 0, 2

/A
o
A

n,
whence T,, = AS... [:]

We now turn our attention to the fourth term, and try to find

necessary and sufficient conditions for the first four non-constant terms

to vanish. From the previous section we recall that

(3.25) D@) = X(n)(-1l2R, . _Qtf
1anRka2'bax13xJaxkaxE
fo)
+ (%gRiJ. - -Lgﬂﬁij + 57.RV.R)__2f

oxioaxJ

O
+ (3%, (® - Bv, ®)ae )@

ox1
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for Af = 0 in a super-Einstein space. We see that sufficient

conditions for
M (f,x) = £(m) + 0(rl0)

are Af = 0, M satisfies [1 and L2 (and hence is super-Einstein) and

that the following identities hold in orthonormal co-ordinates:

(3.26) 16R,. - 20R.. + 3V,RV.R = N§,.,
1] 1] 1] 1]

0o (o3
(3.27) 28R - 17R = constant,

.Note that (3.26) is exactly the 2-tensor condition derived from [3.
Although it would be sufficient for N to be a function, the tensor
has the Schur property of order 6, and so N must be a constant for
n+ 6. Fo? n=6N is a constant because of (3.27) (using corollary
2.6). Also the constant in L2 need .only be a'fuﬁction, but the
super-Einstein condition derived from earlier terms ensures it is
a constant.

The content of the mnext theorem is that these conditions are
necessary.,

Theorem 3.11 Necessary and sufficient conditions that for every

m € M and every f harmonic on a nhd of m
Mﬁ(f,r) = f(m) + 0(rld) for sufficiently small r
are that M satisfies the first two Ledger conditions and
o 0
16R,. - 20R.. + 3V.,RV,R = N§,.,
ij ij it ij

o o
28R - 17R = C for N,C constants.
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Proof Sufficiency we have seen. We need to extend the earlier use

of the Cauchy-Kowalewski theorem to cope with fourth derivatives, so

we write

vl 1 v o i
Bo + ) B;x 5 L Byxx

¢o(0’ Xz’ ceey XM)

i=2 i, j=2 ]
n . . n
! 31' ) 6ijk"l"J"k ¥ 41"- )
Y i,j.k=2 Ti,j,k,8
+reey
n n .
0100, x2, ..., x0) = yp + ) y.x + Y y..xx
2 i
= = J
i=2 i,j=2
n .
1 3.
+ o5 2 Yesn R XK+ o0
3'1,j,k=2 ijk

where the y's and B's are assumed symmetric in every index.

ijk e

We first ensure that we are working with functions whose lst and

2nd derivatives at m are zero by choosing all Bi's, Yi's,

)
.. d
B i s an

Yo to be zero (see proof of Proposition 3.10). Our assumption implies

that the space is super-Einstein (Proposition 3.8), so we see from

(3.17a) that for an f of this kind

n n n
Y V..o f@) = Y V... fC@m = YV, .,fm = 0.
o1 jiik iml ijik i=1 iijk

Thus it is clear from Lemma 3.3 that

n
(3.28) Y 8% @m = o,
i=1 oxlox1ox]oxk

Thus we can, assuming that the above choice has been made, write

down the fourth derivatives of such an f in terms of 8's and y's:



3 (m)
axloxJoxKox

@“f (m)
ax1ox]oxkox?

a4f L@
— i
oxloxlaxKox

o4f (m)
oxloxloxlox?

oHf (m)
oxloxloxlox!
The condition that D(m)
n

a,b,i,],k, =1

(RiajbRka!Lb
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= Bijkl ’ 2 $£1i,3,k,8
= ijz’ 2\<j,k,21\<n,
n
= = L Biirgr 2 <k, t<n (from(3.28)),
i=2
n
= -1 Y0 2<8<n  (from(3.28)),
i=2
)
= B.. . (from (3.28) twice).
i,j=2 1133

vanishes reduces, with such an £, to

altf xz(m) = 0,
0x19xJ9xK 3

and this is equivalent to -

n
) (S(R, 3% )Y(m) = 0.
a,b,i,],k, %=1 iajb kath’ pL oxc) oxK o

For ease of notation we define

Ciike

n
= S¢ g RiajbRkaILb)(m)'

a,b=l

and the condition can be written as

n

i,j,k,2=1

(3.29) C1111 B“f
oxloxloxlax

n
+6 )y C
k,%

n

’J:k 2=

3 (m)
ox19x]joxkox?

1]
o

Ci5ka or

n
@) + 4} Cpyype—r B4 (m)
1 k=2 ! kaxlaxlaxlax

n

B4E_ (m) + 4 (m)
—2 LR ToxloxKax? k =2 le“ 1axJaxkax3Z

1Jk2_,_Q_L_£(m) = 0.

LyxJoxk
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As in the last proposition we make choices of the y's and B's
and use (3.29) to gain information about the C's. We make the
convention that '8_ . = 1, rest zero' means 'B and the B's

pqrs pqrs
obtained by permuting p,q,r,s are all equal to 1, the other B's are

zero'.

First set Yijk' = 0,2< 1i,j,k < n. (3.29) becomes

n n n n
Ciyrf L Bii::) =6 L C o () B )+ Y C,.poBii, = O,
r, ¢ . . s
11 i,3=2 iij] K, §=2 11k® 122 iike i,3.k,8=2 ijkf ijks
Choose qurs = 1, for distinct p,q,r,s, rest zero. Then
(3.30) Cpqrs = 0, 2 € p,q,r,s<n, p,q,r,s distinct,
Choose B = 1 r+# s, rest zero. Then
pprs
(3.31) Cllrs = Cpprs' 2 $pytys$n ¥ s,
Choose B = 1, rest zero. Then
PPPP
(3.32) C1111 - 6cllpp + Cpppp = 0,2<p < n.
Now we set Bijk!l. = 0, 2 i,j,ky% €. (3.29) becomes
I, ] )
- )C () v...) + C... .Y = 0,
k=2111k 429 iik 3.k, 2=2 1ike’ jke

Choose qur =1, for distinct p,q,r, rest zero. Then

(3.33) ¢C

Ipqr 0, 2 € psq,r < n, Psq,r distinct.

Choose Yppr = 1 for distinct p,r, rest zero. Then

(3.34) Cypyp = 3C 2¢p,rsn p#r.

lppr !
Choose vy = 1, rest zero. Then
PPP
(3.35) C111p = Clppp’ 2<p<mn,
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It should also be remembered that the choice of x! = 0

as the hypersurface for initial conditions was arbitrary and so

there are similar equations obtained by using xk

0, 2<k € n.,

We wish to show that the space satisfies L2 i.e. that

Ci ke
This is equivalent to

(
Ci ke

Ciikg
(3.36) <

Cyikk

Ciiik

,'
n

C....
1111

Proposition 2.2 involved the calculation .of

HS(Gijst)'
0,
0,
8H,
0,

24H,

1<

i,j

i,k,% distinct,

i,j,k,% € n.

3\

,k,2 distinct,

i # kS . *1\<i,j,k,2\<n-

i#k,

n

)

i=

proposition we see that, in a super-Einstein space,

n

(3.37) izlciikl
‘Let us take equation (3.32) and sum from p
. n n
(0= 1)Cpyy,y - 6p22011pp-f pZZCpPPP )
. n n
and s0  (n + 4)C ;- 6pzlc11pp + lecpppp =
Using (3.37) we see that
n

1Ciik£' From that

= Mékz for some constant M,

2 to n to obtain

But, as remarked earlier, we could have obtained a similar equation
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. i . . e
if we had chosen x~ = 0, 2 £ i < n,as our initial hypersurface.

We conclude that

(3.38)

Reconsidering (3.32) in the light of this we see that

Cllii

£

]
N
'—I

/A

n,

and again by the arbitrariness of choice of index 1 we conclude

that
I .
(3.39) Ciikk 3H', ik,
Taking now equation (3.34)
Clik = ik 2<sik<sm, i7fk,
and equation (3.35)
30111k'=' 3Chkik s
we find that, summing,
_ n
@+ DC e = 3.; Ciiree
: i=2 -
and hence that
n
(m +4C 0 = 31 Ciip,
i=1
However from (3.37), the R.H.S = 0 as k # 1, and we obtain by the
arbitrary choice of index 1
(3.40) C = 0, i# k.

iiik
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Taking equation (3.31)

Cligg = Ciiun: 2<ik,k s, k7L
and summing over i,
n
(a = DC ey = ) Ciipes
i=2
and thus
n
g = L G
i=1
Again by (3.37) the R.H.S = 0, as k # %, and as the choice of
index 1 was arbitrary
(3.4 C = 0 i,k, % distinct .

iik&
Finally from (3.30) and (3.33)

(3.42) = 0 i, j,k,% distinct.

Ciika
We have thus satisfied each of (3.36) in-(3.38)f-(3.42) and the
manifold satisfies L2,

This removes the fourth derivative term from (3.25), and we

can then conclude from Proposition 3.10 that

9 0
16R,. - 20R,, + 3V.RV.R = Ns¢..,
ij ij i] ij
Q 0 .
28R - 17R = constant. : [:]

It is interesting to consider the relationship between the Ledger
conditions and the conditions on the curvature derived from successive
terms of the mean value pbwer series in the manner above. The first
in either case is the same namely that the manifold be Einstein. The

second mean value conditions are obtained from L2 by summing over ome
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and two pairs of indices. The third mean value conditions are
L2 plus conditions obtained from L3 by summing over two and three
pairs of indices. An obvious conjecture is that the next set of
mean—value conditions will include L3 and the conditions derived
from L4 by summing over three and four indices, although verification
of this by direct calculation seems out of the question. We know that
both sets of infinite conditions are equivalent to the manifold being
harmonic and it is of interest to note that the mean-value conditions
seem to occur more slowly inasmuch as oné has to go further along the
sequence to find the corresponding Ledger condition.

We also note the possibility of gaining necessary conditions
on M by exploiting Proposition 3.4 and its corollary by use of the

Cauchy-Kowalewski theorem. However inspection of our formulae for

Er&('f(m) for k = 2,3,4 shows that the conditions found are exactly

those gained above.
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Chapter 4 Classical Compact Simple Lie Groups and the Ledger Conditions

This chapter contains an investigation of the extent to which
the classical compact simple Lie groups can satisfy the first three

Ledger conditions for harmonicity. It is well-known that a group of

this kind, when endowed with abi-invariant metric becomes a globally

symmetric space ([H] Ch. IV Section 6) . By a theorem of Ledger [L]

a symmetric space is harmonic if and only if it is a rank one
symmetric space. Thus the classical compact simple Lie group of rank
one must satisfy all the Ledger conditions and it is an interesting
question to ask whether any other classical comﬁact simple Lie group
can satisfy Lé éf L3 (they are all Einstein).'We answer the question
negatively for almost all of these groups by first finding necessary
conditions fér them to satisfy L2 and L3 and showing that these cannot

be satisfied. The main reference for this chapter is Pontryagin [PO].

§1 Classical compact simple Lie groups, their Lie algebras and root

systems

A compact simple Lie group gives rise to a compact simple Lie
algebra over [R and the classification of the former is carried out
via thé classification of the latter. This is achieved by means of
the root systems. We now proceed to give a brief description of the
root system of a compact semi-simple Lie algebra.(For full details
see [PO], Section 62.)

Let R be a Lie algebra over R, Then we can for each s € R

define an endomorphism of R, Py> by

p,(x) = [s,x], x € R.
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R is then compaét semi-simple if the Killing-Cartan form < , > given

by

<s,t> = trpspt, s,t € R,

is negative definite.. For the rest of this section we suppose R
to be a compact semi-simple Lie algebra.

For a € R let Sa be the sﬁbalgebra of elements commuting with
a. The dimension of Sa_varies with a; if it is a minimum for R then
a is, by definition, a regular element and Sa is a regular (or Cartan)
subalgebra. The dimension of Sa is the rank ofIR. A non-trivial fact
is that a regular subalgebra is commutative ([P0}, p.460). Because

the Killing—Cartan form is invariant under the adjoint group i.e.

| <[u,v],w> + <V, [U,W]> = 0, u,v;w €R,

each of the commutafive set of endcm.orphisms-{pS is € Sa} is
skew-symmetric with respect to the Killing-Cartan form. Hence they
have purely imaginary eigenvalues and common eigenvectors belonging
to the complexification of R, R®. The eigenvalues are pure imaginary
linear forms on Sa.i.e..we can write, if o is the eigenvalue

corresponding to. the eigenvector s

pg(r) = als)r , se5 .

We have the natural inner product ( , ) on Sa given by the restriction
of the negative of the Killing-Cartan form. Abusing our notation we

define the vector o € Sa’ the rootvector of ra, by
(4.1) p(r,)) = i(a,8)r .

The set of a's obtained in this way together with their pairwise inmer
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products form the root éystem of R,

The complexification of R resolves into the difect sum ofﬂfhe
complexification of Sa.and R“l’ cees Ruk where Rai is the eigenspace
corresponding to the rootvector a, . It can be shown that each_Ra.
is of complei dimension 1, and if jo is a multiple of o and is aiso
a rootvector then j = +1. The éigenspace corresponding to -o is
Ea ([PO] p.463).

A result by no means straightforward to prove is that if an
alternative regular subalgebra is chosen, the root system obtained
is isometric to the first ([PO] Section 64). Finally the classification
theory depends on the fact that a compact semi-simple Lie algebra is
determined by its root systeﬁ; a long constructive proof is required
([PO] Section 63). |

We give now the list of classical compact simple Lie groups

in its usual form:

Ar: Group of unitafy matrices .of order r+l with determinant 1, r > 1,

Br: Group of orthogonal matrices of order 2r+l with determinant 1, r > 2,
Cr: Group of symplectic matrices of order 2r, r 313,

Dr

: Group of orthogonal matrices of order 2r with determinant 1, r > 4.

-These groups are in fact defined for all values of r » 1, but

A]_ =] B]_ = Cl, Bz = C'2, A3 2 03,02 = Alel andUl = Sl. :

The corresponding Lie-élgebras are:

A_: Skew-Hermitian matrices of order r+l with trace zero, r > 1,

Br: Real skew-symmetric mgtrices of order 2r+l, r > 2,
Cr: Skew-Hermitian matrices of order 2r such that M e C if M = M
ford = (% 1Y), ¢y,
-I 0
D_: Real skew-symmetric matrices of order 2r, r > 4.
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The subscript gives the rank of each Lie algebra. The Killing-Cartan

forms are found to be:

e
@
&)
o o)

A classical compact simple Lie group is given a metric obtained

2(r+1) tr (AB),

(2r-1) tr(AB),

2(r+1) tr(AB),

2(r-1) tr(AB).

by translating a negative multiple of the Killing-Cartan form of the
associated Lie algebra by the group action. In fact, in each case,

we choose the metric such that a matrix of the form
0 1
-1 0

belonging to the Lie algebré has unit length.
Next we give the root systems of these algebras with the metrics
just mentioned. Let E® be an s-dimensional inmer product space with

orthonormal basis Ej, «.., Eg and let X(R) denote the root system of R.

Ar: A regular subalgebra can be considered to be the r-dimensional

) 1, i 1 1
subspace of Er+ given by vectors lei such that s + ... + sr+ = 0,
Then
Z(Ar) = {Ej = Ek’ j # k, j,k = 1, «o., r#l}.

(Ej can be taken to be the diagomal matrix with v2i in (j,j)

place, zeroes elsewhere.).
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B : A regular sqbalgebra can be considered to be E' and
Z(B_r) = {iEJ., jo=1, .., 13 iEj tE §<k jk =1, .., 1},

(Ej can be taken to be the matrix with 1 in (2j -1, 2j) place and
-1 in (2j, 2j -1) place, zeroes elsewhere.)

C_: A regular subalgebra can be considered to be E' and
X(Cr) = .{iZEj, =1, «e., 13 iEj + Ek j <k, juk = 1, ..., r}.

(Ej can be taken to be the matrix with i in (2j -1, 2j -1) place
and -i in the @j,2j) place, zeroes elsewhere.)

D_: A regular subalgebra can be considered to be E' and
}j(nr) = {iEj *E, § <k, ok =1, ..., 1},

(Ej can be taken as for'Br.)
The proof of this is given in [PO] p.495ff. The dimensioﬁs of

the Lie algebras can be found by adding the rank to the number of

root vectors. Thus

dim (Ar) r2 + 2r, dim (Br) = 2r2 +r, dim (Cr) = 2r? +r,

2r2 - ¢,

dim (Dr)

§2 A particular co-ordinate .system

We wish to cﬁoose an orthonormal basis of a compact semi-simple
Lie algebra which will make our calculations easier. This basis will
then give rise, in the usual way, to normal co-ordinates on a
neighbourhood. of the identity 6f the corresponding classical compact
simple Lie group.

Suppose we have chosen a regular subalgebra S of our Lie

algebra R of rank r. We take an orthonommal basis of S, ey, ..., e »say.
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Let us consider an eigenvector r, of Pgs 8 & S, o € Z(R), and

writing r, = x + iya we have from (4.1)
(4.2) [sx 1 = -(a,8)y,,
(4.3) [s;y,] = (o,8)%,.

Since the complexification of R is the direct sum. of the complexification
of S and {Ra’ o € X(R)}, and r_, = ;a’ we have that {e;, ..., e s
X 3y @ € I'} span R where I' is a subset of I obtained by choosing
just one of each a. (Here we use the fact that each Ra has complex

dimension 1.) We note that the choice of L is not ‘unique; any scalar

multiple is also an eigenvector.

Proposition 4.1 An orthonormal (with respect to a negative multiple

of the Killing-Cartan form) basis of R of the form {ej, cesl s
X sy O € '} can be chosen.
Proof The proof is based on the fact that the Killing-Cartan form

is adjoint invariant ([PO] p.452) i.e, denoting the given metric by ( , ),
(4.4) ([uQV]’W) + (V’ [u,w]) = 0,
and so would be true for any other adjoint invariant metric on R.

(i) For any choice of r, = x +iy, (xd,xa) = (ya,ya), since

for s € 8§

—(0,8) (y,5y) = (lssx 155,) (4.2)
= —(XOL’ [S,Yu]) (4'4)
= —(0,8) (x,x ) (4.3),
and we can choose s = o # 0. Thus by choosing ra' =.LL =_.'§L

=yl
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we can ensure that the real and imaginary parts have unit length.

(ii) (xd,y.a) = 0, since for s ¢ S

"(OL,S) (ya’xa) = ([S’xd.] ’xd.) (4-2)
=0 _ (4.4) .
(iii) (xa,xB) = (ya,yB) = 0; o # B, 0,8 & L', since for s € S
(a,s) (XOL’XB). = ([S’YOL] ’XB) (4.3)
= =y, [s,%,]) (4.4)
= (B,S)(yu,ys) (4.2).
But o cannot be a multiple of B so (Xa’xB) = (Ya’yB) = 0,
(iv) (Xu,ys) = 0, o # B,a,B € &', since for s € S
(0,8) (x ,y0) = (Is,5,155p) (4.3)
= =y, [8:5]D) (4.4)
= ~(8,8) (y,5%) (4.3).
Thus, as in (iii) (xa,yB) = 0.
(v) Finally (xa,s'). = (yu,s') = 6, s'e S, since for s € §
(a,8) (x»8") = ([s5y,]58") (4.3)
= 0 (4.4).

Similarly for Vo

(i) - (v) demonstrate that an orthonormal basis can be chosen of t';he

required form. : . EI
We denote the vectors of I' by aj, . , o, . The corresponding

k

basis of R {el, ..,er, xa,l,.yal, ..,xak,yuﬁ will ‘be renamed
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{.el,..., er, em1 eOL1

%k

structure take a particularly easy form with respect to this

basis viz, -

CQI- = 0. l
im
2’ .
(4.5) { Chy = (asepe,, ,t wherels<imsr,1
P P
L -
C ia| = (u'p’ei)sza v 1 < 2: < r+2k-
\ p P )

Note that in general, when referred to an orthonormal basis the

constants of structure satisfy
: k _ Al _ A
(4.6) C iy = C ki C

due to (4.4) and the anti-symmetry in the lower indices.

§3 A necessary condition for L2 and the main theorem

{ ses € ,eui}. Some of the constants of

<

We now make some observations about the curvature of a compact

P

<

Lie group G equipped with a bi-invariant metric. We use the convention

that the curvature tensor of G is given by

Re(X",Y)Z = [[X,Y],2], X,Y,Z ¢ T _G.

(This is in fact equivalent to considering G to be the symmetric
space G::G/{(g,g)|g € G}. See e.g. [CGW] Section 4. We do this to

avoid awkward factors of } in our calculations.) In a co-ordinate

system this becomes

i o el P
4.7 R ika c ij KL

Proposition 4.2 Suppose a compact Lie group G equipped with a

bi-invariant metric is Einstein with p = Kg, then it is super-

Einstein with R = K2g.

k,
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Proof We choose an orthonormal basis of the Lie algebra'of G

(not necessarily that of §2). Then in these co-ordinates

(4.8) ' pij(e) = Ksij'

As G is globally symmetric we need only prove that in these

co-ordinates

. P
Rij(e) K Gij'
From (4.7) we have
i k k p
| pi5(e) = R0 = €7 Chhye
Thus from (4.8) we deduce
k P -
% On the other hand
S S S
% Riabchabc(e) ¢ apC bcC an be (4.7)
S R, (S P
c apC an bcC be
i i b .c
= C C C C .
ap -aq pc pq (4.6)
- ket d
R (4.9)
= kc?, cP . . (4.6)
1p aj
- %2
K Gij (4.9

and the proposition is proved., (We can use (4.6) since the group

metric is bi-invariant and thus is adjoint invariant on the Lie

algebra). [:]
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Proposition 4.3 Suppose a compact Lie group of dimension n

equipped with a bi-invariant metric satisfies L1 and L2 with
constants K and H, Then
(4.10) . K2 = 2(n+2)H.
5
Proof From Proposition 2.2 we see that if an Einstein space
satisfies L2 then
IR|2 = 2n((n+2)H - K2).
3

However from Proposition 4.2
IR|2 = K2n

and the: proposition follows. . [:]

We return now to the cases of interest, the classical compacé
simple Lie groups, and the co-ordinate system of §2. If in this
co-ordinate.system we denote Rlalelalb(g) by H, then a group
cannot satisfy L2 unless (4.10) holds, where K can be calculated
from Rlala(e) for example. We now establish our main theorem by

calculating K and H from the root systems and seeing if they satisfy

(4.10). It is quickly seen from (4.5) that in these co-ordinates

_hh_ 2 fe o ot o= 1
.Rlalb = C laC T (az,el) , 1f a-bnualor a,’

0 otherwise,

Hence

. k
(4.11) R = R .. = szi(a“’el)z’

k
= = b
(4.12) | H Rlalelalb ZQZl(az,el) .
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Theorem 4.4 Of the classical compact simple Lie groups only

AL, A; and Dy can satisfy Lédgef's_an condition for harmonicity.
Proof We calculate K and H in each case from the root systems
given in §1 using (4.11) and (4.12) and show that only the cases

cited above can satisfy (4.10).

Af. We choose an ofthonormal basis (e1,..., er) of S such that

e; = E; - E, . We take &' = (Ei-E., i<j,i,j = l... r+l), Thus
_177F‘2 J
K = 2 z (oc,el)2 = 2(r+l), H = 2 z (a,el)“ = r+7,
agl' 2er!

Substituting these with n = r2 + 2r into (4.10) we find that the

condition is satisfied if

4(r+1)2

2(x2 + 2r + ) (x + 7)

or 0 (r = D(r-2(r + 2),

Thus only A;, A, can satisfy L2.

Br‘ We take the orthonormal basis of S to be El,...,Er and

' = (Ei’ i = 1,ee.,r, Ej + Ek’ j <k jk = 1,...,r). Thus
K = 2) (aE)2 = 2(2r=1), H = 2§ (a,E)* = 2(2r-1).
aeX! oel’
Together with dim (Br) = 2r2 + r we find that (4.10) is satisfied if
4(2r - 1)2 = F(2r - 1)(2r2 + ¢ + 2)
or 0 = (2r - 12 - D(r - 1),
Thus no Br’ r > 2 can satisfy L2. (Note that B; = A; can.)
Cr‘ We take the orthonormal basis of S given by Ej, ...,Er and
' o= (ZEi’ i=1,...,1, E, & Ej i< j, 1,5 = 1ly...,r). Hence

K = 2) (0,E)2 = 4(x+l), H = 2 ) (a,E* = 4(x+7).
ocel' ael’!
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Together with dim Cr = 2r2 + r we find that (4.10) is satisfied

if

16(r + 1)2

$@2r2 +r + 2)(x + 7)

or 0 (r - 1)@2r - 1)(r + 4).

Thus no C_, r > 3 can satisfy L2, (Note that C; = A; can.)
Df- Once more we take the orthonormal basis of S given by El,.....,Er

and X' = (Ei + Ej’ i<j, 1,7 = Lyaesrt). We find

K = 2) (0,E))2 = 4(r-1), H = 2% (a,ED* = 4(r - 1),

ael' ack’'
Together with dim Dr = 2r2 - r we find that (4.10) is satisfied if
16(r - D2 = 222 -1+ (r - 1)
or 0 = (r-D(2r -3)( - 4).
Thus only D, can satisfy L2 and the theorem is provéd. [:]

Corollary 4.5 There exist super-Einstein manifolds which do not

satisfy L2.

Proof Clear from Theorem 4.4 as all the classical compact simple

Lie groups are super-Einstein (Proposition 4,2). [:]
As to whether A, and 0, do satisfy L2, see §5.A; being

harmonic satisfies all the Ledger conditions. .

§4 The third condition

We can follow a similar procedure for L3. It has been remarked
before that in using this condition one should be aware that it has
been derived assuming the preceding Ledger conditions. However, in
the case of a symmetric space, they can be considered as being

independent, since the derivative of any condition is zero and hence
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cannot be used to simplify later conditioms. .

For a symmetric space L3 becomes
S(RiajbRkblthcma) = 'LS(Giijzahmg in orthpnormal co~ordinates,

Summing over two pairs of indices, and assuming the space is super-

Einstein with p = Kg,R = Sg,we see that a necessary condition
for L3 is
(4113) R..-X,, + (K3+ 9KS)S,. = (n? ; 6n + 8)L Su

- 283 Tij = i o)

. _ |
where use has been made of Proposition 2.;?iii);-

We now prove a similar proposition to Proposition 4.2.

- Proposition 4.6 Suppose a compact Lie group equipped with a
bi-invariant metric is Einstein with p» = Kg, then the 2-tensors
L o . o o
R, R satisfy R = K3g and R = K3g.

4

Proof Working in orthonormal co-ordinates:

o

Ri3(®) = R ahRjckaRacha (®
_ Al 2 . m ,a .n
= Ca® 1%l xkd® en® ba (4.7)
_ el a2 ) am 2 on

€ 22C en® en® kd® xb° ba
i a i om .8 b
= ¢ lac ch cmC kdC kbC nd (4.6)
= Rizcngjcdezknd(e) (4.7)
= iRicanjcdeznkd(e) (Lemma 2.4(i))
9o o)
i.e R = IR,..

ij ij
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Further ﬁﬁ - RikaijkcdRabcd(e) (4.7)
s e e e

e
iklcg'a'b

a m n
an ch cd
a
bm
. S, B .

RC 1 1m® anC.ab

P

C el ks

K3, ;. []

= C

- KC Cjkmc (4.6), (4.9)

=K2

Proposition 4.7 Suppose a compact Lie group of dimension n equipped

with a bi-invariant metric satisfies L1 and L3 with constants K

and L. Then
(4.14) 35k3 = 4(n? + 6n + 8)L,

Proof Combine Proposition 4.6 with equation (4.13), using

Proposition 4.2 to assert that the group is super-Einstein and

s = K2, | []
If we are given a compact simple group and the co-ordinate

system of §2 we can set L = (e) then L3 cannot

Riatbtibicticia
be satisfied unless (4.14) holds. Using (4.5) we see that

L = 2 2 (G,eL)Go
o
Theorem 4.8 The only classical compact simple Lie group which can
satisfy L3 is A,.
Proof All that is required is a calculation of K and L and to see

whether they satisfy (4.14).
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A. K= 2(r+1), L = p+31, n = r2 + 2r,
2

Hence (4.14) is satisfied if

35.8(r + 1) 3 2((x2 + 202 + 6(x2 + 2r) + 8)(r + 31)

or 0 (r = 1)(c"* + 36r3 + 30r2 - 68r - 108),

and it is easily verified that there are no positive integral
solutions apart from r = 1.

B.. K = 2(2r - 1), L = 2(2r-1), n = 2r2 + r,

Hence (4.14) is satisfied if

35.8(2r - 1) 3

8(2r - 1)((2_1:2+ r)2 + 6(2r2 + r) + 8)

or 0 = (2r - 1)(r - 1)(4r3 + 8r2 - 119r + 27),
and there are no positive integral solutions apart from r = 1.
C.. K= 4(r+1), L = 4(r+31), n = 2r2+r,

r

Hence (4.14) is satisfied if

35.64(r + 1)3 16(Qr2 + )2 + 6(2r2 + r) + 8)(r + 31)

or 0 = (r = 1)(4r* + 132r3 + 129r2 + 118r - 108),
and there are no positive integral solutions apart from r = 1.
D. K = 4(x-1), L = 4(-1), n = 2r2-r,

r

Hence (4.14) is satisfied if

35.64(r - 1)3 16(r - 1)((2r - £)2 + 6(2r2 - ) + 81)

or 0 (r - 1) (4r* - 4r3 - 127r2 + 274r - 132),

and there are no positive integral solutions apart fromr = 1. [l
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§5 Postscript

The contents of the previous sections have, at the time of
writing, been overtaken by events. An improved method of proving
Theorems 4.4 and 4.8 has been found which, as well as giving necessary
Egifsufficient.conditions for a compact simple Lie group to satisfy
any of Ledger's conditions, is easily generalised to the case of
symmetric spaces. For a complete exposition of thi$ method and .
the results obtained, the reader is referred to [CGW], which is
still in preparation. Below we give a brief description of this
approach together with some of the results.

Let G be a compact semi-simple Lie group and g its Lie algebra,

as usual. Let S be a regular subalgebra and x e S. Suppose we have

a co-ordinate system as in §2 and x = xlei. Then
- ot
p(x,x) Py X
SR S, B A
c sz kE X
= 2 X (u,e.)(a,e.)xlxj, using (4.5),
r 1 7]
OEL
= 2 Z (a,x) 2,
acl’

Thus using the Einstein condition we have

(4.15) 2y (a,x)2 = K(x,sz, . x €8,
o'

L2 can be written as

Dtk
(4.16) i RiéjbRkaszlix = = H(x,x)"4,

Again, using (4.5) we find that

i ik g
4.17) RiajbRkalbx X % X

2} (a,x)% xe8.
oexr!
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Combining (4.15), (4.16) and (4.17) we see that a necessary condition
for the group to satisfy L2 is that
(4.18) Y (ox)% = ACY (a,x)D) 2, A constant, x & S.
oel' aegl

On the other hand given that (4.18) holds for every x belonging
to a regular subalgebra then certainly (4.16) ﬁolds for all regular
elements of g. However the regular elements are dense in g (see [H]
p. 297 where it is shown that the set of non-regular elements has
dimension dimg =3) and thus extending by continuity we see that M
satisfies [2.

If we revert to describing roots as l-forms on S, and
Wiseses Wy are the positive roots then a Lie group satisfies L2
iff -

10 v 2y2
izl Wt o= A(iz1 W )2, A constant,
where by wk we mean the symmettrised k-fold tensor product of w with
itself. The extension to Lk is obvious and the necessary and sufficient

condition is that
'3 2 .
2k k
Y (w,) =-A( ) Wiz) , A, constant.
i=1 i=1

It is a straightforward coﬁputation to check Theorems 4.4 and 4.8

aﬁd also to show that A, and D, do satisfy L2. One can also show

that no classical compact simple Lie group can satisfy Lk, k 3 B,o?aﬂ:{Hﬂm A,
When applying this method td the exceptional Lie groups an

important fact emerges. All of these groups satisfy L2, but Eg is

the first known example. of a manifold which satisfies L1, L2, and

L3 but which is not harmonic. Thus the first three Ledger conditions

do not characterise harmonicity, but they still might imply local

symmetry and so unfortunately the solution to the fundamental

co_njecture seems no nearer.
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Appendix I A,C and 0 in Fermi Co-ordinates

Suppose we are given a q-dimensional submanifold P of M and
let p e P. Then given a co-ordinate system in a co-ordinate
neighbourﬁood Wof p in P, (yl, ceey yq), and a set of orthonormai
vector fields on W perpendicular to P, (Uq+1’ ven Un)’ we can
define Fermi co-ordinates (xq, ...,xn) on a small enough neighbourhood

of p in M as follows:

1, ..., q,

n
<
-
=
~
-
m
[

: n
Xa(expﬁ(qu.'-ltjUj (n) ))

n
rylemg( L e0 ) = ¢

]
rt
-~

i = q+l, ..., n.

Informally: to find.the Fermi co-ordinates of a point m close to P,
follow the shortest geodesic Y from m to P and let ii be the point
where it intersects P. The first q Fermi co—ordinates of m are those

of #i in the co-ordinates (y1, «.., yq) and the last n-q are those

of the negative of the tangent vector of y at fi referred to the
basis Uq+1(n), cens Un(ﬁ).
Normal co-ordinates are the special case of when P is a single point.

We concentrate on a geodesic Y perpendicular to P emanating from
n .
p € P. It is easy to see that the vector fields s 2 cl_gﬂ and
. . . i=q+l 9xt :
g dl_i, ,cl, d; constant are Jacobi vector fields along Y, the former
i=1 ot
for the same reason as the normal co-ordinate case and the latter-

because it is easily seen to give rise to a variation in geodesics.

(Indeed, if we choose p = vY(0), then y has co-ordinates (0,...,0,

seq+1, cees sen) for constant e's, and (s,t) -~ (tdl; cens tdq;

+ . . . .
sel 1, cees sen) is the required variation.)
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As in the normal co-ordinate case we extend 5 (p), ... 9 (p),
ay dy
Uq+1(p), cees Un(p) along y by parallel translation and denote these
vector fields by E;(s), ..., En(s). Then we can define an nx n matrix

A along y by

3]
]
B>
=

i=1,...,4q,
(I.1)

]
3]
n
b

9o, . B, i = q+l, ..., n.
ox1 1]

Since the vector fields on the LHS are Jacobi along Yy, A satisfies
the same differential equation as in the normal co-ordinate case viz.

(1.2) A" + RA = 0,

but with different initia.ll conditions., Before-writing these down we
establish the convention of exhibiting nx n matrices as blbéks of
qxq, (n-q) xq, qx (n—q), (n-q) x (n—q) submatrices with the qx q
submatrix in the top left corner.

It is clear from (I.1) that

(1.3) A(0) = I O

To find A'(0) we note that

V,?(é_}%i)(o) = A:;i(o)Ej(o)o i= 1, ..., q,
Ui_(O) = z%i(o) = V?(Sé%i)(o) = Aji(o)Ej(o)’
i = gq+l,...,n.
. q : n
Thus, if v.( 3)() = M.. 3 (0) + N..U.(0)
¥ ki j.-z.l 1555 qu+1 LI

i =1, cees q
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we can write

(T.4) A'(0) = M O0\.

By taking inner products of (I.1) we see that in these

co-ordinates the metric tensor has the form

: T -
gij = (A A)ij y 1 < 1sJ'< q,
T ' . .
813 =S(AA)ij’ lis<q, qtl €3 €0,
T . .
gij = g2(A A)ij’ gtl < 1,7 € n.

On taking determinants we see that

(1.5) ép = 5" %eta,
where ép = JYdetg.

We wish to calculate the first few terms in the power series
expansion of ép and so, as in Chapter 1, we consider the matrix
C = sA'A"! along 7.

Proposition I.1 The matrix C = sA'A”! exists for s small enough,

and is independent of the matrix N occurring in (I.4).

Proof For small s we have, using (I.3) and (I.4)

A(s) = I+sM O + 0(s2),
sN sl
so A is invertible for small s > O, but not at s = 0. However

lim sA™! exists since
s +>0 :

n

detA(s) = s ~4 +-O(sn_q+1

)s

and the cofactor of any element of A is of the form Ksn_qﬂ + O(Sn-q) .
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Thus sA~! is an analytic function of s, and C exists in some nhd of
0 and is analytic.
As in the normal co-ordinate case C satisfies the differential

equation
sC' = -s2R-¢C2 +¢C

and is determined (in the anelytic case) by the Qalues of C(0) and
C'(0). Hence if we show that C(0) and C'(0) are independent of N,
the proposition is proved.

In order to find C(0) and C'(0) we.caleulate the first two

terms of the power series expansion of sA~l. Suppose

(T.6) sA™l = [Py Q\ +s/P; Q1\ +s2/P, Q,\ +o0(sd).
So To 51 T Sz Ty
We have that A" = -RA along Y so writing
R(O) = [R; Ry
Rz Ry
(the symmetry of R implies that Ry, = R3T and Ry,R,; are symmetric),

we have that

A"() = - [R] Ry I o0\ = /-R; ©
R3 Ry 0N ¢ -R3 O
Thus
_1A(s) = _1_ I o\ +/M o\ +5% -R; 0\ + 0(s?).
s s 2
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Multiplying (I.6) by (I.7) we find that

I 0 = _:_L_ Po 0 + PoM 'F-QoN +P1 Qo

S
0 I So 0 \ SOM+T0N+SI To

+ 8, -PgR; - QpR3 + PyM + QN + P, Q;\ + 0(s2).
2 2

_SORI - T0R3 + S]_M + TlN + Sz. T]_

2 2
From the first term we deduce that
Pp = 0, S = 0.
From the constant term we have that
Q = 0y, Tp = I, P; = I, S; = =N,

The coefficient of s must be zero, so

Q = 0, T, = 0.
Hence
sA”l = 0 0\ +s/I 0\ +0(s2).
0 1 -N O
Finall&
C(0) = A'(0)sA"l() = M 0 0O ©° = 0 O©
N I 0 I 0 I
C'(0) = A"(0)sA™1(0) + A'(0) (sA~1)' (0)
= -R; O 0 o\ +/M o I O =/M

-R3 0/ \0 I N 1/\-N o 0
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Remark As s(logép)' = trC - (n-q),
we see that ép is independent of N.
Calculation then gives -the following formulae for the first four

derivatives of trC at O:

trC'(0) = trM,
erc(2) (0) = -“5trR(0) - 3trR,(0) - 2tru2,
(3) 3 3 3
trC  (0) - = -5trR'(0) - 5trR;'(0) + 6trMR;(0) + strM3,
erc(W ) = -Rerr(2(0) - ferr;(2)(0) - FtrR(0)R(0) - YE2trR;(0)R;(0)

~#2trR,(0)R3(0) - $trR3(0)Ry(0) + 8txMR,'(0)

-32tTM2R; (0) - 2utrM“,
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Appendix II Calculation .of (Z;f)(m) in a super—-Einstein space

assuming f is harmonic on a nhd of m

We wish to calculate

C - L
EO® = 31 ) Te@omoieiomoomem® ®:

Because dummy indices can be interchanged, there are only 105
distinct terms on the RHS. These fall into two classes, 15 begin
with V T the other 90 with two different indices. The first class
can be igndred under our assumptions, for its sum is
s Tito@eiepmomom? ™
which, from our.calculation of C,we see to be zero (in fact each
term is zero).

| Our strategy will bg to calculate the sum of the other 90
terms by first considering all sixth covafiant derivatives of f
W{th two free indiées, say i and j, and then applying Vij'
Lemma II.1 Suppose T is a covariant 2-tensor then VlelJ = VjiTij'
Proof VijTij = 31 i RhlJl hj thjiTih (Ricecli identity)

sel,. + P, s T Pa L,
VJ1T1J thThJ p1hT1h_

- VT i L]

Jji 1]

Using the lemma we see that we only need consider those sixth
derivatives with i preceding j before applying vij' We write these
45 terms down in three classes according to the permutation of the

dummy indices:
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Thus under our assumptions

D@ = 15507 %5 Ay + 302+ P @.
Note that
P - AP AP - KDY - XD, 119 1o,
where X = A,B,C, since the last two indices commute.

Extensive use is now made of the Ricci identity to express
each term in terms of the one to the left of it (except, of course,
those in the first column). The initial sums without the use of our

assumptions are:

15
£=1 Aé?) = AP A{D (D e A 700 R T )
* svk(thiz neif ¥ Pin"kn;t * RnjieViend
* 3V Rugixnit * BnjinenD * Vieax Bojig'nd
* 2Ry anet T PR aime® * YPhiinThicef * Rakieinef
* PinVikh) * RpjikVhekef * PinVjensf
15 w©
kzl Bij = Bf;) * B(z) * 23(3) * 73(4) * 70 it * Rngic vaxn)
* 5V (P Vhie thiz thit * Rujie axnt
3V R 03T * BrgieTen® * Viegs Brjin"nl)
¥ Z(thikvzhsz * PinVasne®) * Ve RniieVhief * RokieVinef
PinVikn) ¥ Rpsingef T PinYiemed
15 (k)
kzl C;y = c(;) + c<2) + 20(3) + 7c<4) RCPRNE RS W

* Svk(thik genf) * 3ka(pih hit * BnjieVan®
ikg Brjia"h®) * 205 Vhigef * RuginVines

* e Rsienes® * Rujie menf * PinVineaf
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We now make the assumptions of Einstein and Af = O and recall

formulae (3.17a):

Vjiikf = Kijf,
Vijikf = 2KV, kf + R, ka zf,
Viijkf = 2KV, kf + 2R k8 12f

We have these formulae for the remaining A's, B's and C's:

(1) = g(1) = =
AjyT = By Vis V) = 0o
2) = p(2) = - %2
Af2 B{2 Vik Vsame® KoV, 48
(3) = g(3) : = 2
AP = B3 Y i T sieg® BV £+ T Ry T D),
(4) = - 2
AP = 9 Ty ® OV, £+ TRy D)
(8) - - 2
B = Vi Cameg®) = KV E+ 29, Ry ViegpD)s
cf) = ¢(2 = ¢(® = o,
1] 1] 1]
j ~(4) = ' = w2
i C3 ik gne;D KV 48

Our sums now simplify to

k) _ ' .
LA = L2V Ry oo + SR Vines t Rkt oVkinet

* Rkie akhit * P YkPhia kent t ViRhgiahif
* 3V Rpsien®) * Ve RngiahE) * 2Ry 5 i1R onies Vot
+ 51KRkij2Vk2f'+ 57K2Vijf,

15

kzl ng) = 219 Ry Vkes® * SRukinVieansT ¥ FRiiei o ieen;

* RukieVkinef T O BPniin wn t ViBngioThkef
* 3 Rosic"en®) * Yk Crsin"nd) * 2%y 5 RonksVast
+ 53Ry, V£ + STRRV, £,
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15

21 ci?) = AV Ry Vo) + 22K2Vijf + 18KR <,V oF
Summing,

15 :

21 (Aéﬁ) * Bé?) * Cé?)) = 3V Ry Vst * BRys o Viansf

* Reiokinet * O Rnkiakne;t * Fowin oen;t

ViRniekent ¥ kB0 Vaunt
2% R0 et t Vi Rys1 0 Vin D
3V Prsian?) + 4V Ry 10D
Yenr Bhjix'nd) * kak(ghjizv u5)
A2, s iiRomics VasE T T22KRy ;1 o Vieof
126K2Vijf.

+

+

+

+

+

+

We simplify further by means of the various curvature identities,

introducing the super-Einstein condition R = Sg,

33V, Ry 59k

£) = %gsvijf,
i _
! ki kanit ¥ Pakia kinet * SRukiakne;t * Ry ookt
= 13R..., R, V f +32 | V.f + gy £
ikhg siha kst ¥ PakaiPhjesert * 25V
11
* Rii o5 Reomk st * 2 Rui o VoRs jhk Vs ?

VieRnsia ant * O NiRhsia ket 2R hie

_ s, 5

= 120 R s et * 27 5Pk Biksa Vst * 2VRi sneRerng Vs
3 Rricen®) + 3V Ryii VD
= 6VthjiR,th2,f * 3VkRith,Rskh2vsf - 3st!l,kRshJZ.ivkhf

3.
* 2Rieafnisa knt * OBy iaPenac kst * 1Ry 10 nef
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ok ®niie"hE) * Ve PRugian® * i Ryzind

6k RhiaTne ) 3st2kRshzivkhf * 2Ryisenj

+ -Q'R +

sik 1Rhsk2,V £

+ ZKthikvkhf'

s1k£ sRthz h

Combining these and simplifying a little more,

15
1 @ 13 4 9, -

ij ij 10Rikh2sth£Vksf N 4thzithR,svskf

-2 - §
7VthkiSLthszvsf ViRhskR,stkR,vhf

ARk VeRashisE * lethRskth

+ 18V Ry < o Thke * 6 By a1 e D

48thi£ shzkvk £+ 24SV f

T 2
+ 136Kthi£Vh2f + 126K Vijf'
It is now that we take Vij of both sides. We recall that if a
covariant 2-tensor T is anti-symmetric then VijTij = 0 by the
Lemma. Also Vij(vijf) = 0 as the space is Einstein and

Vij(thithzf) = 0 as the space 1s-super—E1nste1n. We have
15

(k) (k) (k)
VlJ(kE iy * By ¥ ) - " 107, 5 Ry R she ks

A4 Ry i Rnjgs Vex )

Vi'(Vthkithksﬂ,vsf)

18V (v £)

£)

+

hi 0 s

+

6Vijkk(thithzf)

+

487, s (R 51 Renai Vs D
After much manipulation of the kind met in Chapter 2 we can

write each term on the RHS in terms of known scalar functions.

sJ?,thf

£
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o)
= R v2 _ i 2 - L
Vi (RikthjshILVksf) 2<R,V f> 5 <VR®VR,V f> i <V(R) Vf>
+ <?,Vf>’
1
= 4 = L
Vis (thMth 06V s ) <R ° R,V f> n <R v f> + 5 <VR®VR Vf>
QO
+ —é—<v(R);Vf> - % T Vf>
0, 1/0
- o ol 2 1 2
Vij(thiﬁshszksf) <R oR,V f> + <R,V f> + % <R,V f>
: - <VR®VR,v2f> + 7z <T,Vf>,
. 9 1 /0
= & 2 1 2
V5 i R0 Vpg ) = 2 <RoR,V f> + 2<R,V f> + 2<R,v f> .
- —;‘<VR®VR,V2f> + <T,Vf>,
Q o] ;
= - 2 1 2 1 2>
Vlj(ijhkiR.thsR,VSf) 2 <R,V f> 5 <R,V f> + 3 <VR®VR,V f
9 1/0 1
—<R,V2f> - 7(R,V > +7< VR@VR, V2f>
1/ 9 1
+ §<V(R),Vf> + 2—<V(R) Vf> <T Vf>

Summing we obtain the result:

vlJ(Vthjizvhsz)

(BHE) (m) = 155(56 <R oR, v4f> + 24<R v2f> + 12<R V2f>
| —§-<VR®VR,\72£> T%<V(R),Vf> —3-<V(R),Vf> ) (m) .

- 3 (1.9,
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