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The Impact of Climate Change upon the Snowmelt Hydrology of an Upland UK 

Catchment 

Calum Alexander Baugh 

 

Snowmelt hydrology is important in the winter flow regime of upland catchments in the UK 

as it can attenuate the extremes of the river flow hydrograph. The sensitivity of snow 

accumulation and melt to changes in climate, in particular to increases in temperature, 

could impact upon the variability of the winter flow regime. The potential impacts of this 

change are increases in flood risk and decreases in low flows. Hence this project 

investigated the consequences of projected climatic change upon snowmelt hydrology of 

the Dacre Beck catchment in the English Lake District. A distributed snowmelt model was 

created which spatialised temperature and precipitation data across the catchment. The 

model accumulated snow when the temperature fell below 0°C and applied one of three 

temperature-index snowmelt equations to melt the accumulated snowpack. The model 

was driven using stochastic baseline and projected (2050s medium emissions) weather 

series calculated using the UKCP09 weather generator. The results showed a large future 

reduction in both winter snow accumulation and the magnitude of snowmelt hydrology. 

However, the limited hydrological process representation of the model meant it could not 

reliably forecast changes in the winter flow regime. Therefore the snow accumulation and 

melt equations were incorporated into the physically based Connectivity Runoff Model 

(CRUM). This improved model was calibrated to observed discharge data within a 

Generalised Likelihood Uncertainty Estimation (GLUE) framework before being run with a 

sample of baseline and projected UKCP09 weather generator series. The results showed 

that both high and low flows in the winter flow regime were likely to increase which 

contradicted previous expectations but it was unclear about the role of snowmelt 

hydrology in these changes. Further investigation using temperature perturbed weather 

series found that these changes in the winter flow regime were most likely caused by 

increases in rainfall which overrode the impact of changes in snowmelt hydrology.  
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3 

 

1.1 Introduction 

Snowmelt hydrology attenuates the variability of the winter hydrograph of a catchment 

(SEPA, 2008) by reducing peak flows and supplementing low flows. Peak flows are 

reduced during periods of snow accumulation by storing water on the hill slopes thus 

reducing the amount of water that reaches the outlet. After a snowpack accumulates it is 

subjected to number of different energy fluxes (Figure 1.1) which can raise its 

temperature to the point where it begins to release melt water. If this release occurs 

during long periods devoid of precipitation it can supplement low river flows (Dunn et al., 

2001) which are important for in-stream ecological conditions. However, if a large pulse of 

melt water release coincides with a high rainfall event then peak flows at the catchment 

outlet can be exacerbated leading to downstream flooding such as the January 1993 

River Tay floods which inundated 780 homes in Perth causing £10 million of damage 

(Black and Anderson, 1993). Previous analysis of monthly trends in winter flows in 

Scottish catchments which were affected by snowmelt showed that flow variability 

increased over the last 40 years, high flows increased up to 46% and low flows decreased 

by up to 13% (SEPA, 2008). These trends were attributed to an increase in air 

temperatures associated with an increase in the number of Atlantic frontal weather 

systems which occurred each winter. Projections of future climate suggest that this 

warming trend will continue (Murphy et al., 2009) hence it is likely that winter flow 

variability will increase further. This thesis aims to extend the previous research by 

coupling projections of future climate to a hydrological model that deals with snow 

accumulation and melt. This methodology will then be used to assess future changes in 

the snowmelt hydrology of an upland catchment in the English Lake District.  

 

In this chapter the fundamental physical processes behind snow accumulation and melt 

(Figure 1.1) will be explained before outlining their importance in the winter flow regime of 

upland catchments in the UK. The sensitivity of these processes to climatic changes will 

then be outlined allowing the identification of research needs in snowmelt hydrology. 

Finally, from these research needs, the aims of this project will be formulated.       

 

1.2 Snow Accumulation and Distribution 

Snow is the solid state of precipitation which forms in the atmosphere in the presence of 

water vapour, ice nuclei and an air temperature at or below 00C (Gray and Prowse, 1993). 

Ice nuclei are often initiated by dust particles around which ice can form eventually  
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5 

 

growing into snow crystals (Gray and Prowse, 1993). In order for these snow crystals to 

reach the ground in their solid state the underlying air layers through which they fall must 

also be at or below 0°C. In the UK these meteorological conditions are most common 

during the winter months (December to February). The incidence of UK snowfall during 

the winter months has a positive relationship with elevation (Figure 1.2 (a) & (b)) where 

areas above 500 m have the greatest amount of snowfall (Jackson, 1978a). This is 

caused by adiabatic processes (no energy enters or exits an air parcel) which create a 

temperature lapse rate with increasing elevation. When an air parcel rises it expands 

(Danielson et al., 2003) which reduces the internal energy thus lowering the temperature 

(McIlveen, 1992). The temperature lapse rate within the UK is reported as 8.5°C km-1 

(Lawler, 1987; de Jong et al., 2009). A positive relationship between precipitation amount 

and elevation also exists due to orographic forcing where moist air is forced upwards 

causing it to cool and freeze (Birkeland and Mock, 1996). The rate of increase of annual 

precipitation with elevation in the UK is reported as 2.8 mm km-1 (de Jong et al., 2009). 

Snowfall amount is therefore enhanced at higher elevations (Barry, 1992), above 500 m in 

the UK (Figure 1.2 (b)), due to a combination of colder temperatures and increased 

precipitation delivery (Gurtz et al., 2005).  

 

Some of this snow may be intercepted by vegetation before it is able to reach the ground. 

In boreal forests interception can store up to 60% of cumulative snowfall by midwinter 

(Pomeroy et al., 1998). Vegetative properties including branch strength, flexure, needle 

configuration and orientation, mass and surface area (Gray and Prowse, 1993) influence 

interception magnitude as does the vegetation type (see Chapter 3 Eqs. 3.1 and 3.2). 

Deciduous trees intercept much less due to losing their leaves in the winter. Scottish 

Spruce canopies can hold in excess of 20 mm of snow water equivalent (SWE), (Ward 

and Robinson, 2000) which is the equivalent amount of liquid water stored in the 

snowpack. During a snowfall event, the canopy gap fraction decreases due to the 

interception of snow flakes in the narrower gaps. This builds up small bridges between the 

gaps decreasing the gap fraction of the vegetation which positively feeds back to increase 

the amount of interception (Gray and Prowse, 1993). The maximum interceptive capacity 

of the vegetation is reached when the amount of snow falling to the ground is balanced by 

the amount that is intercepted. 
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Snow cover distribution displays areal variability across three spatial scales: macro- 

(106km2), meso- (linear distance 100 m-1 km) and micro- (linear distance 10-100 m) 

scales (Gray and Prowse, 1993). Variations at the macro-scale are due to dynamic 

meteorological effects e.g. standing waves in the atmosphere which lead to regional 

differences. Redistribution along relief and vegetative features due to wind affects the 

meso-scale whilst variations in airflow and transport patterns affect the micro-scale.  

 

Redistribution by wind processes affects these last two scales through three mechanisms: 

creep, saltation and suspension (Gray and Prowse, 1993). The latter two are the most 

significant where snow particles are bounced along the surface and held in the air by 

turbulent diffusion respectively (MacDonald et al., 2009). Consequently snow can be 

transported until it reaches an area where the energy available for transport by wind 

decreases, such as a topographic hollow, leading to deposition and hence spatially 

variable snow accumulation (Ward and Robinson, 2000).Wind transport can also induce 

snow loss through sublimation where snow changes from a solid phase into water vapour 

and enters the atmosphere (MacDonald et al., 2009). 

 

Each of the snow accumulation and redistribution processes lead to a complex spatial 

distribution of snow depth across the catchment (Ward and Robinson, 2000). This in turn 

can affect the spatial distribution of snowmelt, wind redistribution for example can lead to 

deep snow accumulations within topographic hollows which can release melt water for 

long periods of time (Dunn et al., 2001). Hence, the next section explains how an 

accumulated snow can begin to produce snowmelt.     

 

1.3 Snowmelt Processes 

Once a snowpack has accumulated it is subjected to a range of energy fluxes (Figure 1.1) 

including net radiation Qn, turbulent transfer Qt, advective energy Qa and ground heat Qg. 

These first three occur at the surface of the snowpack and the fourth at it base i.e. the 

snowpack interfaces with the atmosphere and the ground. The total input from all these 

fluxes is the total energy flux available to melt the snowpack Qm (Hock, 2005): 

�� � �� � �� � �� � ��      (Eq. 1.1) 

Net radiation is the sum of net short- Qsn and long- Qln wave radiation fluxes: 
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�� � �	� 
 ���         (Eq. 1.2) 

Short-wave radiation is electro-magnetic solar radiation between wavelengths of 0.2-4µm. 

The amount received at the top of the atmosphere is referred to as potential clear-sky 

direct solar radiation (Hock, 1999). On average however only 47% of this energy reaches 

the earth’s surface (Gray and Prowse, 1993) as it is attenuated by reflection off clouds, 

scattered by air molecules and absorbed by molecular structures (United States Army 

Corps of Engineers (USACE), 1998). Global radiation is the amount of short-wave 

radiation which reaches the surface and can be calculated as a function of cloud cover, 

slope, aspect and exposure (Fu and Rich, 2002). The reflectivity of the snowpack (albedo) 

however, means that a percentage of the global radiation incident at the snowpack 

surface is reflected back into the atmosphere. The magnitude of reflection depends on 

snowpack properties such as wetness, impurities, particle size and density (Gray and 

Prowse, 1993). Such properties vary spatially as well as temporally (USACE, 1998) due to 

variable rates of snowpack metamorphosis (Pomeroy et al., 1998, see section 1.3 for an 

explanation of metamorphosis) which are caused by variable receipts of each energy flux. 

Hence the impact of short-wave radiation receipt upon snowmelt production is highly 

variable across the snowpack.  

 

Long-wave radiation occurs from reflection of short-wave radiation off the atmosphere and 

forest cover as well as emission from the Earth’s surface (USACE, 1998). Some of the 

short-wave radiation absorbed by the snowpack can be radiated back into the atmosphere 

as long-wave radiation since snow is a near-perfect blackbody emitter (USACE, 1998). 

Consequently long-wave radiation often represents a loss of energy from the snowpack 

hence its negative sign in Eq. 1.4. Where there is a significantly dense forest canopy 

however, the emitted long-wave radiation from the snowpack can be reflected off the 

canopy and re-enter the snowpack thus contributing towards the total energy balance.  

 

Turbulent transfer is the exchange of energy between the atmosphere and the snowpack 

due to sensible heat advection and latent heat of condensation (USACE, 1998). Sensible 

heat advection Qh, is affected by the local temperature gradient above the snow surface 

Ta-Ts (the difference between air and snowpack temperature respectively), and the 

corresponding wind speed uz: 

�� � � ����� 
 �	�      (Eq. 1.3) 
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Where Dh is the bulk transfer coefficient for sensible heat which can be assumed equal to 

De (bulk transfer coefficient for latent heat, Suzuki et al., 1999), its value lies at an order of 

magnitude of x10-3. Latent heat of condensation Qe meanwhile is affected by the 

atmospheric ea, and snow surface es, vapour pressure and the corresponding wind speed: 

�� � �  ����� 
 �	�     (Eq. 1.4) 

Where De is the bulk transfer coefficient for latent heat which represents the evaporation 

rate from the snow surface, it can be calculated from the slope of the regression between 

evaporation and the bulk formulae, typical values range between 0.0021 to 0.0004 

depending on vegetation canopy coverage (Suzuki et al., 1999).  

 

Heat conduction from the ground is a very small component of the overall energy budget 

and is deemed to be insignificant over periods shorter than one week, but over an entire 

melt season it can produce a large amount of melt (USACE, 1998). Its contribution is 

estimated using soil temperature gradients dT/dz, measured near the surface in an 

equation for steady-state, one-dimensional heat flow by conduction (USACE, 1998):  

�� � � ���
���     (Eq. 1.5) 

Where k is the thermal conductivity of the soil (W K-1 m-1) which represents its ability to 

conduct heat. Typical values range from 0.15 to 1.5 W K-1 m-1.  

 

A key source for advective melt energy is from rain that falls directly on the snowpack. 

Rain has a positive temperature as it occurs on positive degree-days (USACE, 1998) 

hence when it enters a snowpack it transfers this positive energy to the snow crystals. For 

a snowpack which is already melting the magnitude of melt will increase due to the 

additional input of energy. In the case of a snowpack whose temperature is below zero 

rain water will enter and refreeze releasing its latent heat of fusion raising the snowpack’s 

temperature increasing its vulnerability to melting (Gray and Prowse, 1993). The energy 

input from rain on snow can be estimated as a function of the rainfall amount Pr (mm), and 

rainfall temperature Tr (°C) which is assumed to be equal to the air temperature (USACE, 

1998): 

�� � �� �� � �� 
 �	�             (Eq. 1.6) 
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Where Cp is the specific heat of rain, ρw is the density of water and Ts is the snow 

temperature (°C). 

 

The relative importance of each flux varies as a function of spatial and temporal 

components. Differences in land use can lead to spatial variations, for example forest 

canopies dampen turbulent fluxes (Ward and Robinson, 2000) since they shelter 

snowpacks from high wind velocities. The relative importance of each energy flux can vary 

diurnally; at night for example the receipt of short-wave radiation is greatly reduced. 

Variations can also occur between days due to changing weather conditions, during windy 

conditions for example the turbulent transfer of latent and sensible heat are the most 

important energy fluxes. In the UK it has been shown that the main source of energy for 

melt in the UK is the turbulent transfer of latent and sensible heat (Ward and Robinson, 

2000) which occur during the mild and windy conditions often associated with Atlantic 

frontal weather systems (SEPA, 2008). 

 

The sum of all these energy fluxes can be converted into a melt water amount M, through 

(USACE, 1998): 

  ! � "#
�$$%.'()*�     (Eq. 1.7) 

Where 334.9 is the latent heat of fusion of ice which is the heat absorbed when it changes 

phase from liquid to solid, B is the thermal quality of the snow which depends on the 

amount of free-water contained within the snowpack (Singh and Singh, 2001), values 

range between 0.8 to 1.1 (USACE, 1956).  

 

1.4 Runoff from Snowmelt 

In order for the snowpack to produce melt water which can be converted into runoff both 

the cold-content, which refers to snowpack temperature, and liquid-water-holding 

capacity, which refers to snowpack liquid water saturation, conditions must be met. To 

meet the cold-content condition the snow temperature must be raised to 0°C. This occurs 

through the process of metamorphosis (ripening) which commences when there is a net 

input of energy into the snowpack. This process transforms the snow from being loose, 

dry and subfreezing to coarse, granular and moist at 0°C (USACE, 1998). Once the snow 

reaches these conditions it has satisfied the cold-content condition and is said to be ripe 
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(Gray and Prowse, 1993). Any additional energy input into ripe snow means that melt 

water can be produced. This melt water will not however begin to percolate through the 

snowpack until the second condition, the maximum liquid-water-holding capacity, is 

exceeded.  The matrix of the snow crystals is able to hold a certain amount of water 

against gravity. When this amount is reached the liquid-water-holding capacity condition is 

met and any additional input of water is able to percolate through the snow matrix. These 

conditions are first met at the surface of the snowpack where the energy fluxes outlined 

above are at their greatest. Since these fluxes have a greatly reduced direct influence on 

the underlying snow layers the melt water produced at the surface must percolate 

downwards and release its energy so that the two conditions are met for the entire 

snowpack profile.  

 

Melt water produced at the surface percolates downwards under gravity into the colder 

snow immediately below it and refreezes releasing its latent heat of fusion. Eventually the 

temperature of the snow immediately below the surface will become isothermal at 0°C. It 

will then receive melt water from above as well as producing its own which will be held 

within the snow matrix. Once the maximum liquid-water-holding capacity is exceeded melt 

water can then percolate to next cold layer of snow immediately below. The process is 

repeated until the two conditions are met for the entire snowpack making it able to 

produce runoff. 

 

The process above is referred to as the advance of a wetting-front which separates the 

upper layers which can produce runoff from those beneath which cannot (Prowse and 

Gray, 1993). Irregularities in the advance occur due to the presence of ice layers within 

the snowpack which deflect flow leading to concentrated flow-fingers (USACE, 1998). 

Spatial variability in melt water production therefore exists within a snow pack.   

 

1.5 Impact of Snowpack Accumulation and Snowmelt Runoff upon Hydrology 

In the UK, snowpack accumulation and melt can decrease the variability of the 

hydrograph at the catchment outlet (SEPA, 2008). When precipitation enters a catchment 

as rain it immediately begins to route towards the outlet (although some may be lost 

through evapo-transpiration, Chapter 6). During periods when the amount of rainfall 

exceeds the catchment’s soil moisture capacity large amounts of runoff are produced 

which reach the outlet in large quantities over a short period of time leading to extreme 
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flows. However, when a snowpack accumulates, it provides a storage zone preventing the 

precipitation which fell as snow from routing towards the outlet. During this time less water 

reaches the catchment outlet reducing the magnitude of the outlet hydrograph. Soulsby et 

al., (1997) observed a reduction in the hydrograph of a Feshie sub-catchment during a 

prolonged period of snow accumulation in January 1994. The peak flow during this month 

was 10 mm day-1 which was lower than the peak flow of 30 mm day-1 in the milder 

January of 1993 (Soulsby et al., 1997).   

 

Once a snowpack begins to melt, it releases runoff gradually which supplements low flows 

during prolonged periods devoid of precipitation (SEPA, 2008). When a cycle of melt 

coincides with a dry spell it supplements the water delivered to the outlet by baseflow thus 

reducing the severity of low flows. Dunn et al., (2001) found that this process contributed 

up to an average of 10 m3s-1 to stream flow in Mar Lodge (a sub-catchment of the river 

Dee, 293 km2). They found that this effect was greater after winters of high snow 

accumulation and could still contribute to river flows in the following July (Dunn et al., 

2001). Low flows can impact negatively upon the in-stream ecological conditions, for 

example they can reduce the dilution of nitrates (Whitehead et al., 2009). Consequently 

snowmelt supplementation of low flows can improve the ecological condition of the river 

channel within a catchment (Chapter 2 section 2.6).    

 

Melt water release can also instigate temporal fluctuations in the outlet hydrograph as was 

observed in the diurnal hydrograph oscillations in a Feshie sub-catchment (Ferguson, 

1984). These oscillations were synchronised to diurnal air temperature fluctuations which 

some have hypothesised to be linked to diurnal short-wave solar radiation receipt 

(Harding, 1986). Since solar radiation receipt is at a maximum at midday and minimum at 

midnight the release magnitude of melt water follows a similar temporal oscillation. 

However hourly modelling studies in the Monchyle Burn and Trout Beck catchments found 

the solar radiation budget to be negligible (Moore et al., 1999). Instead they found that 

sensible heat exchange and latent heat of condensation were the most important fluxes. 

Both of these, in part, are related to air temperature which is in turn related to diurnal 

short-wave solar radiation receipt.  

 

However, in extreme cases large pulses of melt water release which coincide with periods 

of intense rainfall can exacerbate extreme high flows. On these occasions more water is 
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routed to the outlet which can exceed the river’s bankfull capacity resulting in flooding 

(Reed and Field, 1992). For example flooding on the River Tay in January 1993 was 

caused by a large input of rainfall coinciding with snowmelt (Black and Anderson, 1993). A 

large snowpack had accumulated over the previous six days which was followed overnight 

by a large input of rainfall (56.8 mm recorded in the Earn catchment) and a temperature 

increase of 4-6°C. This resulted in a peak flow of 2269 m3s-1 at the Ballathie gauging 

station (Black and Anderson, 1993). The occurrence of these events is rare due to small 

probability of extreme snowmelt and extreme rainfall occurring simultaneously.  

 

Despite their rarity, the damaging consequences of floods resulting from extreme 

snowmelt and extreme rainfall prompted the Flood Studies Report (1975) and subsequent 

Flood Estimation Handbook (1999) to incorporate snowmelt into its calculation of the 1 in 

100 year return period flood protection level. The reports took the median annual snow 

depth from 100 meteorological stations from 1946-1964 and multiplied the data by 7.5 to 

obtain the 100 year maximum snow depth. Assuming the density of snow was            

~0.13 g cm-3 enabled snow depth to be converted into SWE. A statistical relationship 

between the changes in daily snow depth and maximum air temperature was then 

developed. This relationship informed that a maximum snow melt rate of 42 mm day-1 was 

possible (Houghton-Carr, 1999). It was found that the 100 year SWE figures could sustain 

this melt rate for five days hence this information is included when calculating the 

protection levels for a 1 in 100 year flood event.  

 

However this protection level has been questioned since it was based on data from 

stations mostly at lower altitudes (Archer, 1981). Hough and Hollis (1997) found that this 

protection level was only adequate for a 10 year return period at Pennine and Scottish 

sites but suitable for a 1000 year event at low altitudes in England. Figure 1.3 reinforces 

the first conclusion of Hough and Hollis (1997) showing that upland areas (defined in 

Figure 1.2 (b)) are capable of producing melt rates which exceed this protection level. 

Therefore, the contribution of snowmelt to flood risk varies across the UK depending on 

the magnitude of the accumulated snowpack in accordance with local meteorological and 

physical conditions. 
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The impact of snowmelt hydrology in the UK is most pronounced in upland areas (Figure 

1.2 (b)) where temperatures are colder (Figure 1.4) and precipitation is higher (section 

1.3, de Jong et al., 2009) allowing greater winter snowfall (Figure 1.2 (a)) and hence 

snowpack accumulation. Since a larger snowpack has a greater influence on the winter 

flow regime (Soulsby et al., 1997) this means that the signal of snowmelt hydrology is 

more distinguishable in upland catchments. Lower elevations have warmer winter 

temperatures (Figure 1.4) meaning that less precipitation falls as snow, instead it falls as 

 

 

 

 

 

Figure 1.3 Areas of the UK which exceed the FEH 1 in 100 year snowmelt 

protection level. Adapted from the Institute of Civil Engineers (1996) 
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rain. Consequently the winter flow regime at low elevations is dominated by a rainfall 

signal meaning catchments at these elevations will display greater winter flow variability 

than upland ones.   

 

1.6 Sensitivity of Snowmelt Hydrology to Projected Climatic Change 

As explained above, the role of snowmelt hydrology is related to temperature and 

precipitation (Kingston et al., 2009) meaning that it is sensitive to changes in these 

variables. Temperature controls the partitioning of precipitation between rain and snow 

where warmer temperatures will reduce the amount that falls as snow. The greatest 

sensitivity to temperature change has been shown to occur in areas with a mean winter 

temperature between 00C to 50C (Mote et al., 2008) due to their close proximity to the 

freezing temperature. Consequently small changes in temperature in these areas can 

have a large impact on the number of negative degree days and hence the number of 

snowfall days. As Figure 1.4 shows, much of the UK falls between these isotherms during 

the winter with most of the upland areas having a mean winter temperature very close to 

00C. Winter temperatures of upland UK areas are projected by the UKCP09 (Murphy et 

al., 2009; see Chapter 4) to increase between 2-40C by the 2050s. The greatest impact of 

this in Scotland was found to be above altitudes of 400 m (Harrison et al., 2001). The 

smaller snowpacks that accumulate in warmer temperatures would then be subjected to 

an increase in energy fluxes such as sensible and latent heat, for example, which are 

related to air temperature (Hock, 1999). The consequence of this is that the smaller 

snowpacks would melt faster which would increase the rate of decay from the initial melt 

release as they are depleted in a shorter time. Future increases in winter temperature 

therefore would be expected to reduce the magnitude of snowpack accumulation and 

increase the rate of snowpack depletion due to melting with these changes being most 

pronounced in upland areas. 

 

Changes in winter precipitation have a secondary impact upon snowpack accumulation 

and snowmelt hydrology as they are controlled by changes in temperature. Winter 

precipitation in upland areas is likely to increase between 0-10% (Murphy et al., 2009) so 

more snow may fall during an individual snowfall day. However, the increase in 

temperature means that more of this precipitation would actually be partitioned as rain 

thus reducing the impact of precipitation change upon snowpack accumulation. The 

increase in rainfall could increase the advective energy flux (Eq. 1.6) and hence increase 
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melt but, as mentioned above, sensible and latent heat have been shown to be the most 

important energy fluxes in UK snowmelt hydrology (Ward and Robinson, 2000). Therefore 

changes snowmelt hydrology from precipitation changes may be small and therefore 

difficult to detect. Instead, changes in precipitation are most likely to affect changes in the 

overall winter flow regime as discussed below. 

 

The contribution of snowmelt hydrology to the winter flow regime in light of climate change 

is likely to decrease (Arnell and Reynard, 1996) as smaller snowpacks will release less 

melt water. Changes in the winter flow regime therefore are likely to be affected by 

increases in the amount of precipitation partitioned as rainfall and increases in the overall 

amount of precipitation. This would be expected to increase the variability of the winter 

 
Figure 1.4 UK Mean winter temperature between 1961-1990. Adapted from the UK Met 

Office website, from: (http://www.metoffice.gov.uk/climate/uk/averages/ukmapavge.html#)  
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flow regime as the attenuating role of snowpacks is reduced. Observations of monthly 

winter stream flow trends in Scottish catchments affected by snowmelt hydrology between 

1961 to 2008 found that the flow regime became more variable (SEPA, 2008). In three 

upland Scottish catchments high flows (denoted by the 5th percentile of the flow duration 

curve (Q5)) increased between 16% to 46% and low flows (denoted by the 95th percentile 

of the flow duration curve (Q95)) decreased between 5% to 13% (SEPA, 2008). 

Consequently, climate change could see the winter flow regime of upland UK catchments 

become dominated by rainfall as the contribution of snowmelt hydrology declines.   

 

1.7 UK Snowmelt Hydrology: Research Needs 

The impacts of climate change upon UK snowmelt hydrology are already well 

conceptualised as outlined above. Previous research however has focussed upon trends 

in observed data and changes in future snow accumulation. To date there have been 

limited studies which have extrapolated these changes to assess future changes in 

snowmelt hydrology and the implications for the winter flow regime. Therefore it is the 

overall aim of this project to: 

 

Investigate the impacts of climate change upon snowmelt hydrology and their 

consequences for the winter flow regime of an upland UK catchment 

 

It was decided to focus upon a single catchment rather than a general region so that a 

modelling approach could be used to calculate the impact of future climate scenarios upon 

the winter snowmelt and general flow hydrology. The modelling approach was split into 

three research questions so that changes in snow accumulation, snowmelt hydrology and 

the winter flow regime could be dealt with explicitly: 

 

1) How will snow accumulation change in the future climate in comparison to present 

conditions? 

This question will aim to assess the changes in the amount of snow fall in the catchment 

during the winter since this governs the size of the accumulated snow pack. Snow 

accumulation then in turn affects how much snow is available to melt and thus contribute 

towards snowmelt hydrology. Previous research showed that warming winter temperature 
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trends from 1961 to 2004 led to a 30% reduction in number of days of snow lying in the 

winter (Barnett et al., 2006). It is unclear however, whether changes in precipitation 

magnitude will compensate for some of the reduction in snowfall.  Additionally it will look 

at how the proportion of snow to rain changes as this could be used to infer possible 

changes in the winter flow regime. It will achieve this by spatially distributing present and 

future weather series across the study catchment and modelling the amount of snow and 

rain that falls in each series. 

 

2) How will changes in climate affect snowmelt hydrology? 

The second question aims to assess how changes in snow accumulation combine with 

changes in climate to affect the snowmelt hydrology of the study catchment. Warmer 

temperatures are likely to decrease the magnitude of snowpack accumulation and 

increase the magnitude of the energy fluxes. Therefore, it is likely that the nature of 

snowmelt hydrology will change. Smaller snowpacks may decrease the amount melt 

water released into the catchment but the increase in the energy fluxes may override this 

by releasing larger pulses of melt water in initial melt events. Therefore changes in the 

nature of snowmelt hydrology will be assessed by comparing high and low flow statistics 

from present and future climate conditions of hydrographs composed solely from 

snowmelt. If the high flow statistics show a declining trend then this would mean that the 

increase in the energy fluxes is unable to compensate for the accumulation of smaller 

snowpacks. The snowmelt hydrographs will be generated from a hydrological model that 

will be developed to accumulate and melt snow.  

 

3) What are the implications of changes in climate and snowmelt hydrology for the 

winter flow regime? 

The final research question will address how changes in snowmelt hydrology in 

conjunction with climatological changes affect the winter flow regime of the study 

catchment. The winter flow regime of many upland UK catchments is affected by 

snowmelt hydrology hence future changes in climate are likely to instigate changes in the 

outlet hydrograph. Analysis of observed data has shown an increase in hydrograph 

variability due to warming temperature trends. It is likely therefore that this trend of winter 

flow regime change would continue in light of UK climate change projections. Changes in 

high flows will be assessed by comparing the Q5 and number of peak-over-threshold 

(POT) exceedence events for the winter hydrographs from present and future climate 
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conditions. Low flows meanwhile will be assessed by undertaking the same type of 

analysis for the high flows but for the Q95 and 7 day consecutive low flow statistics 

(Novotny and Stefan, 2007). The hydrographs used to derive the flow statistics from each 

weather series will be generated by developing upon the hydrological model in the second 

research question to deal with rainfall-runoff processes. This will enable it model the 

hydrograph that results from both snowmelt and rainfall. 

 

The rest of this thesis describes how the overall aim of this project was achieved by 

investigating each of the three research questions outlined above. The next chapter 

explains which catchment was selected for this project and how it was affected at present 

by snowmelt hydrology. In preparation for the development of a hydrological model that 

can deal with snowmelt, Chapter 3 reviews the existing modelling approaches before 

selecting one that was appropriate for this project. Chapter 4 then describes the 

development of a model that could spatialise a given weather series before a hydrological 

routine was added to it using three snowmelt models from the approach selected in 

Chapter 3. Present and future weather series were then generated in Chapter 5 and 

applied to the model developed in the previous chapters. The results from this enabled an 

analysis of changes in snow accumulation and snowmelt hydrology thus beginning to 

answer the first two research questions. A rainfall component was then also added to this 

model in order to answer the third research question. The discussion of the model’s 

results however found significant process deficiencies so Chapter 6 explained the 

incorporation of each snowmelt model into an existing physically-based hydrological 

model. Chapter 7 then applied this model, within an uncertainty framework, to the same 

weather series to assess changes in the winter flow regime of the study catchment and 

the role of snowmelt hydrology in these changes thus providing an answer to the third 

research question. Chapter 8 then presented the findings for each research question 

whilst simultaneously explaining the limitations of the approaches used in this project. 
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Chapter 2 

Study Catchment Context 
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2.1 General Context 

It was explained in Chapter 1 that this project would focus upon the changing role of 

snowmelt hydrology in an upland UK catchment. Therefore it was important to select a 

study catchment that displayed a clear snowmelt signal during the winter. However, it was 

also important to select a catchment that was suitable for the application of a hydrological 

model as this would be used to assess the changes both in snowmelt hydrology and the 

winter flow regime. The Dacre Beck catchment, Cumbria, UK, was selected as the study 

site for this project. This chapter firstly describes the characteristics of the catchment that 

affect snow accumulation, its subsequent melt and its impact upon the winter flow regime 

(sections 2.1 to 2.4). Then it outlines the hydrological characteristics of the site (land use 

and management, soils, geology and channel network (see section 2.5)) which make it an 

ideal location for the application of a hydrological model.  

 

The Dacre Beck is situated in the north-west of England in the Cumbrian Lake District 

national park (Figure 2.1). It is situated 8km south-west of Penrith and 16km east of 

Keswick, the A66 which bisects it east-west providing direct access to both settlements. 

The catchment covers 36 km2 upstream of the village of Dacre (Figure 2.1) and is a sub-

catchment of the river Eden which exits into the Solway Firth 10 km north-west of Carlisle. 

The region in which it is located receives between 10 to 20 days more snowfall per winter 

season than the majority of the UK (Chapter 1 Figure 1.2(a), UK Met Office). This greater 

initial snow accumulation therefore would be expected to enhance the role of snowmelt 

hydrology in the catchment making changes easier to detect.  

 

2.2 Elevation 

Dacre Beck has an elevation range of 371 m, the lowest elevation is 163 m near the outlet 

at Dacre (Figure 2.1) and the highest is 534 m at the summit of Great Mell Fell (Figure 

2.2). The relief of the catchment is relatively shallow near the outlet and rose gently 

towards the north-west but is much steeper in the south-west corner due to within-

catchment geological variations (Figure 2.10).  

 

Higher altitudes are be cooler than the rest of catchment due to the adiabatic temperature 

lapse rate (Chapter 1 section 1.1) meaning more snow is likely to accumulate here. The 

steeper relief is likely to decrease the catchment’s response time from receiving rainfall to 

it reaching the channel network. Typically, steeper gradients mean shallower overlying soil 
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profiles which reach saturation quicker than deeper profiles. Hence they begin producing 

runoff earlier which increases catchment connectivity. In turn, this delivers larger 

quantities of water over a shorter period of time increasing hydrograph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

variability. The high elevation of Dacre Beck therefore, is likely to enhance snow 

accumulation and its steep relief would be expected to enhance the variability of the 

hydrological response. Many of the slopes at the higher elevations have a north-east 

aspect. Being located in the northern hemisphere means these slopes are shaded from a 

large quantity of the solar radiation energy flux. Consequently snowpacks on these slopes 

Figure 2.1 UK (inset, from Edina Digimap (http://edina.ac.uk/digimap/), Crown Copyright for 

UK outline) and local context of the Dacre Beck catchment 
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melt more slowly which may be important in the supplementation of low flows (Dunn et al., 

2001).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Climate 

The catchment annual average temperature over the period 1971-2000 is 8.3°C and the 

average winter (December to Febraury) temperature over the same period is 3.5°C, with 

January being the coldest month (data from the Newton Rigg gauge 8 km north-east of 

the site at 169 m elevation). Within the north-west England region the catchment is colder 

than areas at lower altitudes or nearer the coast (annual average temperature between 9 

to 10°C). It is however, warmer than areas at greater elevation e.g. central Lake District 

(annual average temperature between 3 to 6.5°C).  

 

 

 Figure 2.2 Dacre Beck elevation and channel network (blue line). 

Data from Edina Digimap (http://edina.ac.uk/digimap/) and 

resampled to the 50 m resolution at which the hydrological model 

was applied 

Great 

Mell Fell 
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During some winters the mean winter temperature can drop much closer to 0°C. For 

example during the 2009/2010 winter the mean temperature was 0.9°C. Furthermore, the 

application of the temperature lapse rate (Chapter 1 section 1.1) showed that mean winter 

temperature over 1971-2000 at the summit of Great Mell Fell was 0.4°C and was -2.2°C 

for the 2009/2010 winter. Therefore snow is likely to feature regularly at the higher 

altitudes of the catchment and throughout all elevations during cold periods.  

  

Annually the catchment receives an average of 1074 mm of precipitation (data from the 

Hutton Green Close Farm gauge within the catchment at 169 m elevation covering the 

period from 2000 to present), 30% of this falls during the winter (December to February). 

Most winter precipitation comes from frontal air masses coming off the Atlantic from the 

south-west. These deliver precipitation at a constant rate and often in sufficient quantities 

to bring soil conditions close to saturation. If a frontal system is immediately followed by 

another one which delivers its precipitation on the already saturated catchment then large 

quantities of surface runoff can be produced. In extreme cases this leads to flooding such 

as the November 2009 floods at Cockermouth. In this example, two large frontal systems 

reached the study catchment in quick succession, the latter of them delivered 314 mm of 

rainfall in 24 hours. This resulted in a peak discharge of 26 m3s-1 on the 19th November 

recorded at the Dacre Bridge gauging station (section 2.4).  

 

Since most winter precipitation in Dacre Beck falls in frontal systems it is expected that the 

role of snowpacks in dampening hydrograph variability will be heightened. In milder years, 

for example, more precipitation will fall as rain which will then be delivered to the 

catchment outlet over a shorter period of time in greater quantities (section 1.4). Hence it 

is possible that in the years when the snowpack accumulation was lower than average the 

risk of downstream peak flows may have been heightened, this possibility is explored in 

the next section.    

 

Dacre Beck received an annual average between 30 to 45 days of snow falling over the 

1961-1990 period (UK Met Office) which increased by 5 days for every 100 m increase in 

elevation. Therefore, by applying this altitudinal increase to the altitude of the Hutton 

Green Close Farm rain gauge (169 m), it was found that the summit of Great Mell Fell 

should have received an annual average of between 47 to 62 days of snow falling. Of this 

annual total between 30% to 55% of the snowfall days were observed to occur during the 
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winter period (UK Met Office). Once snow had fallen UK Meteorological Office 

observations found that it lay on the ground in Dacre Beck for an annual average of 

between 30 to 50 days and a winter average between 20 to 30 days.  

 

2.4 Hydro-Climatology 

Observed measurements of catchment outlet discharge were available at a daily 

resolution from the Dacre Bridge gauge 

(National River Flow Authority ref. 

76811, Figure 2.3) from the 22nd 

August 2000 to the 22nd April 2010. This 

data was collected and supplied by the 

Environment Agency. The Dacre Bridge 

gauging station is an open channel site 

which obtains discharge from a rating 

curve which converts measurements of 

river stage to discharge. Measurements 

of high flows can be distorted by flow 

diversion when a river goes out of bank. However at this gauge there is a bridge just 

downstream of the station which acts as a topographical funnelling feature ensuring that 

none of the flow is diverted.                                                                                                                                

 

The daily discharge hydrograph across the time series (Figure 2.4) showed distinct 

seasonality where flows intensified in the winter and declined in the summer in response 

to precipitation trends. For example the 2006/2007 winter saw many consecutive days of 

precipitation exceeding 10 mm which brought the catchment to saturation (as described in 

section 2.3). On December 3rd 2006 36 mm of precipitation fell on the already saturated 

catchment so most of this was converted into surface runoff. This quickly routed 

Figure 2.3 Dacre Bridge gauging station. 
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to the catchment outlet thus producing a peak discharge of 15m3s-1; the second largest 

flow of the season.  

 

The observed discharge series (Figure 2.4) showed that winter flows intensified, this also 

meant that winter flows were more variable as there was a greater difference between the 

high and low flows. This variability can be demonstrated by comparing the flows from 

exceedence probabilities obtained from a flow duration curve that represents high and low 

flows. The flow duration curve shows the exceedence probability for a given flow in the 

observed discharge series, low flows for example have a high exceedence probability. 

This probability for each flow measurement can be calculated by ranking all of the 

discharge values in descending order, assigning each a rank to each (1 for the largest), Mr 

before calculating the exceedence probability Po:  

  �+ � 100 . � /0
�12�            (Eq. 2.1) 

Where n is the number of records.  

 

The exceedence probabilities that represent high and low flows are 5% (Q5) and 95% 

(Q95) respectively. Therefore the variability of winter flows were assessed relative to the 

variability of summer flows by finding the Q5 and Q95 flows for each season. The high 

flows were 5.6 m3s-1 for winter and 1.6 m3s-1 for summer whilst the low flows were 0.3m3s-1 

and 0.03 m3s-1 for winter and summer respectively. The difference between the high and 

low flows were greatest for the winter season thus showing that observed flows were most 

variable during this season.  

 

As was discussed in the first chapter (section 1.4), the high and low flows during the 

winter should be impacted by snowmelt (SEPA, 2008). Therefore comparing these two 

percentiles for six winter seasons was expected to demonstrate the impact of snowmelt 

hydrology upon the observed winter flow regime. It was expected that for seasons which 

featured a large amount of snowfall the Q5 would be smaller and the Q95 would be 

greater than seasons which did not have as much snow.  

 

The results of this analysis (Table 2.1) appeared to affirm the expectation for the Q5. The 

2006/2007 season had the least amount of snowfall and the greatest Q5 whilst the 
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2008/2009 season had the greatest amount of snowfall and a lower Q5. However the 

latter’s Q5 value was not the lowest when compared to other seasons as was expected. 

When the 2008/2009 season was analysed in more detail it was found that high rainfall 

events had occurred throughout the season which resulted in high outlet discharges.  For 

example 35.5 mm of rainfall fell on January 12th 2009 which led to a high discharge at the 

outlet (10.1 m3s-1). Consequently the Q5 from this season was higher than other seasons 

that experienced fewer high rainfall events relative to the amount of snowfall.  

 

A link between snow fall amount and Q95 was however, much harder to distinguish since 

the difference between each Q95 value was much smaller. The 2006/2007 season had 

the smallest value however the value for the 2008/2009 season was only 0.04 m3s-1 

greater. The latter season had the largest total snow fall so it was expected that the Q95 

value would have been one of the highest. Further analysis found however that towards 

the end of the season there was a prolonged period devoid of both a snowpack and 

precipitation. Therefore there was a reduction in the amount of water being routed to the 

outlet which led to a decline in the river discharge. Consequently, like Q5, trends in Q95 

were found to be affected by other factors in addition to snowmelt hydrology. 

Season 

Total 

Precipitation 

(mm) 

Mean 

Temperature 

(°C) 

Total 

Snowfall 

(mm) 

Q5           

(m
3
s

-1
) 

Q95         

(m
3
s

-1
) 

2003/2004 302.7 4.1 32.3 3.65 0.21 

2004/2005 298.3 4.8 24.6 3.87 0.27 

2005/2006 148.0 3.3 11.0 3.96 0.23 

2006/2007 520.8 4.9 5.6 7.78 0.14 

2007/2008 439.9 4.5 20.0 4.82 0.25 

2008/2009 261.2 2.8 49.1 4.17 0.18 

 

 

 

A snowmelt signal therefore could be detected in the hydro-climatic summary of the 

observed winter flow regime (Table 2.1) however its clarity was not as great as was 

Table 2.1 Dacre Beck hydro-climatic summary over six winter seasons 

(December to February) within the discharge hydrograph series  
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conceptually expected. Instead, as explained above, the signal’s clarity was influenced by 

rainfall events which occur during the season. Therefore the snowmelt hydrology of the 

Dacre Beck was dominated by a rainfall-snowmelt signal where processes from both 

combined to create a hydrograph which was not as variable as a rainfall-only signal and 

not as dampened as a snowmelt-only signal.  

 

2.5 Catchment Hydrology 

The previous sections in this chapter showed that the winter flow regime of Dacre Beck is 

currently impacted by snowmelt hydrology making it an ideal study catchment for this 

project. The next stage in confirming the catchment’s suitability was to then assess the 

factors which affected its general hydrology. These factors included topography, land use 

and management, soils, geology and the stream network. Each of these factors affected 

the role of physical factors in transferring water from the landscape into the channel 

network before exiting at the outlet. Consequently they could affect how the catchment 

could be represented by a hydrological model. Therefore the subsequent sections 

assessed each factor and whether its role in Dacre Beck meant hydrological modelling of 

the catchment was appropriate.  

 

2.5.1 Topography 

Topography affected how water moved downhill under gravity towards the channel 

network. For example, where the slope was steeper it was expected that water would 

have rapidly moved towards areas of gentler relief e.g. the valley floor. Water would have 

then collected in these gentler reliefs and when a threshold of water accumulation was 

exceeded a channel network would be initiated. The topographic wetness index, TWI 

could be used to show the spatial distribution of these processes of topographically 

induced water accumulation. It showed the tendency of water to accumulate at any point 

in the catchment (Beven and Kirkby, 1979; Quinn et al., 1991) and could be calculated by: 

�34 � ln � 7
89: ;�           (Eq. 2.2) 

Where α was the cumulative upslope area draining through a point per unit contour length 

and tanβ was the slope angle at that point (Quinn et al., 1991). In order to calculate the 

former this project conducted an analysis of flow pathways within the catchment was 

undertaken using the Multiple Flow Direction Algorithm (Freeman, 1991; Quinn et al., 

1991). Conceptually, the algorithm calculated the upslope area for each point in the  
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catchment and then distributed this amongst all of the neighbouring cells of a lower 

elevation. The fraction of upslope area assigned to each downslope neighbour, ∆Ai was a 

function of the downhill gradient where steeper gradients received a greater fraction: 

∆=> � ?@�89: ;ABA�
∑D89: ;EBEF                 (Eq. 2.3) 

Where Au was the total upslope area, tanβi and Li were the slope angle and contour length 

of the ith neighbour and ∑tanβjLj was the sum of the slope angle and contour length for all 

downslope neighbours. This allowed the upslope area of one point in the catchment to be 

distributed amongst all of its neighbours which lay below it.   

 

This project initiated a channel network when the upslope area for a cell exceeded a 

threshold value which was proportional to the amount of water that accumulated in a cell. 

Beyond this threshold, flow pathways were calculated using the D8 Linear Flow Algorithm 

(O’Callaghan and Mark, 1984) which assumed that flow was only routed to the lowest 

neighbouring cell. The value of the linear flow threshold was selected by running the flow 

pathway algorithms with a range of threshold values. Each run produced an output of cells 

for which the D8 algorithm was applied which can be interpreted as a channel network. 

For the run whose pattern of cells most closely represented the observed channel network 

(Figure 2.1), the linear flow threshold value associated with it was selected to be used in 

the final calculation of the distributed α values.   

 

The results above were then combined with distributed slope data (Figure 2.5 (b)) which 

was calculated from a DEM of the catchment to calculate the TWI (Figure 2.5 (a)). It 

showed that water accumulated in the valley floors beneath the slopes. For example at 

Great- and Little- Mell Fell (Figure 2.2) the steep slopes meant very little water could 

accumulate there. Instead the water moved downslope to the valley floor where the 

gentler slope meant it could accumulate due to the reduction in gravitationally induced 

runoff velocity. The close proximity of the steep slopes to the valley floor also had 

implications for runoff generation and hillslope-channel connectivity as was discussed in 

the subsequent channel network section. 
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2.5.2 Land Cover 

Land cover affects the amount of precipitation that was intercepted and then lost through 

evapotranspiration. Additionally the depth and structure of the roots could have affected 

how much water could infiltrate into the soil matrix and hence the runoff production 

potential. Modification of land cover by anthropogenic management practices can alter the 

natural land cover hydrology. Naturally the Dacre Beck was entirely forested but 

clearances in the middle ages for agriculture left a lasting legacy upon the catchment. 

Using the National Land Use Database (NLUD, 2006) land cover classification scheme it 

was found that three land cover types dominated the catchment: improved grassland, 

coniferous forest and unimproved grass/moor (Figure 2.6). The properties which affect 

evapo-transpiration and infiltration-surface runoff partitioning for each are outlined below 

and summarised in Table 2.2.  

 

Improved grassland occurs throughout the majority of the catchment especially at lower 

altitudes and on the gentler slopes. It reflects the area where the unimproved grass/moor 

observed elsewhere in the catchment has been modified in order to be suitable for hill-

sheep farming and silage production. Vegetation in this land cover consists mostly of 

short, meadow grass (Figure 2.6 (b)) which is kept at a maximum height between 15 cm 

to 20 cm through a combination of grazing and harvesting. Short grass typically loses less 

water through transpiration than other land covers due to its lower stomatal conductance 

which is directly proportional to the leaf area index which in turn is proportional to 

vegetation height (Shuttleworth, 1993). Improved grass cover also lost less water through 

evaporation than other land covers because it had a greater albedo (~0.25 (Markvart and 

Castaner, 2003)). Consequently it absorbs less incident solar radiation so less energy is 

available to evaporate the intercepted precipitation on the canopy. As a result this land 

cover loses less water through evapotranspiration so more is available to be partitioned 

between infiltration and overland flow. According to the United States Department of 

Agriculture Soil Conservation Service (SCS, 1986) this land cover will produce a moderate 

amount of overland flow. Their suggested curve number (which ranged from 30 to 100 

where lower values mean a lower propensity to produce surface runoff) for pasture 

grassland in ‘good’ condition for hydrologic soil groups B and C (whose hydrologic 

properties were most similar to the soils which underlay this land cover in Dacre Beck as 

was described later in this section) lay between 60 to 70. This means that  
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improved grass will produce a slightly greater amount of overland flow than infiltration 

which was mostly explained by soil compaction by livestock. 

 

Small pockets of managed coniferous forest plantations are present in the catchment, for 

example Greystoke Moor plantation near Penruddock. The tree canopy in these 

plantations has a much greater leaf area index than the other two land covers due to the 

greater canopy height. Furthermore it has a much reduced albedo value of approximately 

0.09 (Barry and Chorley, 1992) thus this land cover can intercept, and hence 

evapotranspire, much greater amounts of precipitation. The denser canopy is also able to 

intercept large amounts of snowfall (Chapter 1 section 1.1) and withhold it from impacting 

upon the hydrological processes below. The winter hydrology of this land cover therefore, 

can have had a much diminished snowmelt signal. The initial management practices in 

forestry plantations can enhance the amount of surface runoff and sediment that is 

delivered to the channel network. However the plantations in Dacre Beck are well matured 

enabling the development of an extensive root network which creates macropores that 

enhance infiltration. Furthermore the extensive nature of the root network means it takes 

up more water than other land covers. Consequently more water is able to infiltrate over 

the same period of time. The SCS curve number for this land cover is approximately 55 

although the original report did not explicitly deal with coniferous forest. However, this land 

cover only accounts for only 5.3% of the catchment area. As such, it is likely that the 

effects described above will be negligible upon the hydrology of the entire catchment.  

 

Unimproved grass/moor occurs mostly on the steeper slopes and hill summits of the 

catchment where the soils are too waterlogged or thin to sustain improved grass. 

Vegetation type ranges from long grass to bracken, both of which have a greater canopy 

height than improved grass. Hence the leaf area index is greater and so are 

evapotranspirative losses. The albedo value is expected to lie in between the values for 

the other two land covers at 0.15. The more extensive root networks associated with this 

land cover as opposed to improved grass are likely to enhance infiltration into the soil. 

However, the waterlogged properties of the underlying soil associated with this land cover 

in the catchment are likely to override this effect.   
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2.5.3 Catchment Soils 

The soils which underlie the land cover affect how much water can infiltrate and how 

quickly it can percolate away from the surface thus allowing further infiltration. For 

example, a profile with small infiltration capacity and a slow percolation rate only allows a 

small amount of surface water to enter. As a result, the majority of the water at the surface 

will become overland flow. Soil properties which affect this include the hydraulic 

conductivity (the ability of the soil to transmit water (Rawls et al., 1993)), porosity (relative 

volume of pore spaces (Kutίlek and Nielsen, 1994)) and the profile depth.  

 

A combination of wet winter conditions and the hydraulic soil properties mean the soils in 

Dacre Beck (Figure 2.7) are seasonally waterlogged leading to saturated conditions and 

runoff generation. For example the Winter Hill class, which underlies most of the improved 

grass land cover, has a much lower hydraulic conductivity than the root layer (Table 2.3). 

Consequently water can infiltrate into the root layer and percolate relatively quickly but 

slows once it reaches the lower layers impeding any water that infiltrates subsequently. 

Conversely the soil classes at the higher altitudes are well drained. For example the 

Manod class found on the summits of Great- and Little- Mell Fell (Figure 2.2) has a much 

faster hydraulic conductivity but it is also much shallower reducing the amount of water 

that the soil can store. The underlying bedrock on these hills has a much slower 

Land Cover 
Dominant 

Vegetation 

Vegetation 

Height (m) 
Albedo 

Soil Conservation 

Service Curve 

Number 

Improved 

Grassland 
Grasses 0.15 - 0.20 0.25 60 - 70 

Coniferous 

Forest 
Conifer 10 0.09 55 

Unimproved 

Grass/Moor 

Coarse 

Grasses, 

Bracken 

<1 0.15 60 

Table 2.2 Land cover properties affecting evapotranspiration and infiltration-

surface runoff partitioning 
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hydraulic conductivity so infiltrated water will accumulate at the soil-bedrock interface thus 

saturating the surrounding soil. More water then infiltrates into the soil and percolates 

down to the saturated area causing the upward migration of the saturated area. Since the 

soil profiles are so shallow it takes a minimal amount of time before the saturated area 

reaches the surface. Beyond this point, any water which reaches the soil surface will 

become overland flow.    

 

2.5.4 Catchment Geology 

The nature of the bedrock beneath the catchment affects how much water is lost to 

recharge. In this process soil water percolates downwards to replenish groundwater in an 

unconfined aquifer. Usually this water re-emerges into the channel network at an aquifer 

but none are present in the Dacre Beck catchment. Therefore it can be assumed that 

 

Figure 2.7 Dacre Beck soil classification after the Soil Survey of Northern 

England (1976) 
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groundwater aquifer contribution to stream flow is nil or negligible hence the amount of 

recharge can be assumed as a loss of water. The magnitude of recharge depends upon 

the porosity, hydraulic conductivity and permeability of the bedrock (Smith and 

Wheatcraft, 1993) which is related to whether the bedrock is a fluvial deposit, 

sedimentary, carbonate or igneous or metamorphic rock (Freeze and Cherry, 1979).   

 

Basal Conglomerate covers the majority of the catchment (Figure 2.8) with the rest 

covered by volcanic terrain, a lava flow, metamorphosed rock and carboniferous 

limestone. The conglomerate represents a shallow marine transgression where sediment 

was deposited at the shoreline and then cemented together above an unconformity. The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Bedrock geology within Dacre Beck. Data from the British Geological 

Society, accessed through Edina Geology Digimap (http://edina.ac.uk/digimap/). 
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hydraulic properties of this rock type (Table 2.4) are very similar to that of sedimentary 

sandstone with porosities as low as 1% and hydraulic conductivity at a x10-10 ms-1 order of 

magnitude (Freeze and Cherry, 1979). The south-west corner of the catchment is 

dominated by the volcanic terrain of the Borrowdale volcanic groups formed by an 

Ordovician volcanic island arc. Their hydraulic properties are affected by the mode of 

extrusion, where permeability is greatest in the direction of basalt movement, and geologic 

controls on fracture development (Smith and Wheatcraft, 1993). The latter affects the 

formation of tuffs and agglomerates and whether or not these are welded. The porosity of 

a welded tuff is 15% and 30% for a non-welded tuff (Smith and Wheatcraft, 1993). These 

controls also affect the amount of fracturing which occur due to shear stress. Fractures 

can increase permeability and hydraulic conductivity since water will flow through them 

much faster than through the crystal lattice of the rocks. An unfractured volcanic bedrock 

has a hydraulic conductivity four orders of magnitude slower than fractured volcanic 

bedrock (Smith and Wheatcraft, 1993). The Rhyolitic lava flow may represent a volcanic 

eruption late in the Ordovician period which was not incorporated into Borrowdale volcanic 

group. Nevertheless its hydraulic properties and those of the metamorphosed sand- and 

silt-stones of the Skiddaw group are very similar due to the important role of shear stress 

fracturing in determining hydraulic conductivity and permeability. The carboniferous 

limestone in the north-west corner of the catchment was formed from calcite deposits in a 

warm tropical sea during the Carboniferous period. It has a relatively large porosity of 20% 

for coarse, blocky limestone (Freeze and Cherry, 1979) but its brittle nature meant it 

fractured easily under shear stress resulting in secondary permeability which increased 

the hydraulic conductivity by a few orders of magnitude.  

Bedrock Name Porosity (%) 
Hydraulic 

Conductivity (ms
-1

) 
Permeability (m

2
) 

Basal Conglomerate 1:5 10
-7

:10
-10

 10
-14

:10
-17

 

Borrowdale Volcanic 

Groups 
0.1:10 10

-6
:10

-14
 10

-13
:10

-21
 

Carboniferous 

Limestone 
20:35 10

-5
:10

-9
 10

-21
:10

-16
 

Rhyolitic Lava 0.1:10 10
-6

:10
-14

 10
-13

:10
-21

 

Skiddaw Group 0.1:10 10
-6

:10
-14

 10
-13

:10
-21

 

 

The bedrock that underlies the Dacre Beck catchment drains very slowly meaning that 

relatively little should be lost to recharge. Instead it would be expected that water would 

accumulate at the soil-bedrock interface leading to saturated soil conditions.  

Table 2.4 Bedrock hydraulic properties value ranges  



42 

 

 

2.5.5 Channel Network 

The channel network affects the level of connection between water on the hill slopes and 

the outlet. An extensive network for example would enhance the amount of connection 

thus delivering greater amounts of water to the outlet in a shorter period of time. In Dacre 

Beck the channel network (Figure 2.9 (a)) is mostly confined to the valley floors although 

its headwaters extend onto the hillslopes of the south- and north-west corners. The 

headwaters are very narrow and are fed mostly by overland flow; their course follows the 

path of steepest descent down to the valley floor. The extent of the headwater network 

varies temporally with expansion occurring during high precipitation events especially 

during the winter when these events are more frequent. Multiple headwater channels then 

converge at the valley floor forming a single channel which routes towards the outlet. At 

Great Mell Fell, for example, three headwater tributaries converge near Matterdale End. 

The resulting channel is wider and deeper and is confined to a narrow valley floor 

between the hills of Great- and Little- Mell Fell (Figure 2.9 (e)). As the channel routes 

towards the outlet, following the path of steepest descent, it collects more water and 

becomes wider and deeper. There are two main tributaries in the catchment draining the 

south- and north-west corners which converge near Hutton. Beyond this point the 

discharge of the river increases and the channel is less confined by the topography hence 

it begins to meander. This flattening also allows the river to go out of bank during high 

discharge events as shown by the presence of deposited sediments on the river bank 

(Figure 2.9 (d)). Since the river is able to expand laterally, its width increases with 

downstream distance more than depth (Figure 2.9 (b)). Consequently the river depth can 

become very shallow during low discharge events.     

 

The nature of the channel network within Dacre Beck impacts upon both flood risk 

downstream in the Eden valley and in-stream ecology. For example, on the 8th of January 

2005 the Dacre Bridge gauge recorded its highest reading of 22 m3s-1. The associated 

storm hydrograph passed downstream and converged with the storm hydrographs of the 

other Eden sub-catchments which led to extensive flooding of the River Eden at Carlisle. 

In Dacre Beck the close proximity of steep slopes, which are often saturated during storm 

events, to the channel network enhances overland flow connectivity. This delivers more 

water to the channel network over a shorter period of time giving the catchment a flashy 

response to storm events. Since the channel is confined within a narrow valley it cannot 

go overbank during storm events hence most of the water is routed directly to the outlet in 

a very short period of time enhancing flood risk downstream. As mentioned above,
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the catchment consists of two main sub-catchments (one draining the south-west corner 

and the other the north-west). If the peak discharge from the storm hydrographs of each 

sub-catchment simultaneously reaches the confluence at Hutton the storm hydrograph at 

the outlet will be amplified hence increasing downstream flood risk. 

 

2.5.6 Anthropogenic Management and Intervention 

Human activity within the catchment is mostly centred round hill sheep farming which has 

led to widespread deforestation centuries ago. The improved grassland land cover 

provides perennial grazing land for livestock hence it is subjected to compaction and the 

use of fertilisers. The former decreases the hydraulic conductivity of the upper soil layer 

hence it produces more overland flow. If an excessive amount of fertilisers are used then 

the remaining nutrients will be taken up by the increased overland flow. This will then be 

inputted directly into the channel network impacting upon its physical habitat quality. 

Elsewhere afforestation has taken place in plantations such as Greystoke Moor. Initially 

these can increase overland flow and suspended sediment concentrations in the channel 

network but in mature plantations (such as those in the Dacre Beck catchment) these 

issues revert and the land cover actually reduces the amount of overland flow produced.  

 

The channel network in the valley between Great- and Little- Mell Fell has been modified 

through straightening and the construction of a similar parallel channel. This increases the 

amount of water delivered to the outlet over a given period of time hence increasing 

downstream flood risk. 

 

Land use management and river channel restoration both in the catchment, and across 

the Eden, has become a high priority for the Eden Rivers Trust (ERT) and the associated 

Adaptive Land Use for Flood Alleviation (ALFA) project. Both of these use the catchment 

as a study site to investigate new techniques in order to reduce downstream flood risk and 

improve in-stream ecology. 

 

2.6 Ecology 

In-stream ecology in the Dacre Beck and across the Eden catchment have gained 

increased interest since 1996 with the formation of the ERT. This organisation undertook 
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annual fry-density electro-fishing surveys since 2000 within Dacre Beck to establish the 

habitat quality for Salmon and Trout. Results in 2009 (ERT, 2010) for the former species 

found that fry-density was poor or altogether absent throughout the catchment. However 

the results from 2002-2008 found that fry density for this species was excellent. 

Meanwhile the 2009 results for Trout found excellent fry-density in the south-west corner 

showing an improvement upon the 2002-2008 results, however, they were absent from 

other areas of the catchment unlike the 2002-2008 surveys. The results of the surveys 

and their inter-annual variability may be in part due to inter-species competition but 

catchment and channel network factors are also likely to provide an explanation. For 

example, fry-density for both species was either poor or absent throughout the entire 

survey period in the north-west corner of the catchment. Afforestation in this area can 

produce high amounts of eroded sediments which are carried in the channel and cause 

silting of spawning gravels. The maturity of the plantations however made this scenario 

unlikely, instead the alkaline nature of the bedrock and hence the soils may affect all 

water that entered the channel hence altering the pH beyond tolerable limits for both 

species. The hydro-climatology of the discharge series also affected in-stream ecology as 

it controlled the physical habitat variables such as velocity, depth and width. Salmon and 

Trout redds (nests) are vulnerable to these during the winter, if low flows are prolonged 

then depth declines and the redds can be exposed to freezing air temperatures. A 

prolonged low flow period could also reduce velocity and channel width which reduces the 

level of in-stream dissolved oxygen (Whitehead et al., 2009) and the availability of areas 

with suitable conditions for a particular species (Walsh and Kilsby, 2007). The attenuating 

role of snowmelt hydrology could therefore ensure that in-channel conditions, particularly 

velocity and width, remained within suitable ranges for the native species.  

 

2.7 Study Catchment Overview 

The Dacre Beck is an ideal study-site for a project focused upon snowmelt hydrology as it 

is situated in a region of high winter precipitation which combine with low winter 

temperatures to produce large amounts of snowfall. A snowmelt signal from these 

accumulated snowpacks is detectable in the present winter flow regime thus increasing 

the clarity of any future changes in snowmelt hydrology. High flows feature regularly in the 

winter hydrograph due to the thin, slowly-draining soils in combination with the wet winter 

climate frequently causing saturated conditions and hence a flashy hydrological response. 

It was shown that these winter high flows were attenuated by snowmelt hydrological 

processes. Low flows are also important in this catchment for in-stream ecology due to the 

presence of spawning species, however the role of snowmelt hydrology in attenuating 
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these is unclear. The bedrock consists of slowly draining rock types and there are no 

aquifers present in the catchment which simplifies computer model representation of the 

hydrological processes (explained in Chapters 4 and 6). Anthropogenic intervention in the 

catchment is largely through agricultural land management. There are no areas of water 

abstraction and urban land cover is negligible as there are no large settlements within the 

catchment. Consequently natural hydrological processes dominate and are only impacted 

in a manner that can be dealt with during the parameterisation process of the selected 

hydrological model (see Chapters 4 and 6). Therefore this chapter has selected a study 

catchment that is ideal for highlighting changes in snowmelt hydrology and their impacts 

upon the winter flow regime. The subsequent chapters focus upon developing a 

hydrological model for this catchment that represents snowmelt processes before 

modelling the impacts of climate change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

 

 

 

 

 

 

 

Chapter 3 

Snowmelt Modelling 
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3.1 Snow Accumulation Modelling 

In order to achieve both of the project’s aims (Chapter 1, section 1.6) it is necessary to 

model the processes of snow accumulation and melt where the output from the latter can 

be fed into a conventional hydrological model (Figure 3.1). Fundamentally snow 

accumulation and melt modelling must achieve three operations at each timestep: 

extrapolate existing meteorological data to snowpack, calculate rates of snowmelt at 

different points and then integrate snowmelt over the current snowpack area in order to 

estimate the volume of new meltwater (Ferguson, 1999). This chapter will firstly review the 

existing methods of modelling snow accumulation (section 3.1) and melt (section 3.2) and 

select those that are most suitable for this project. Then it will outline the construction of a 

distributed snow accumulation and melt model (section 3.3) which will be applied to the 

Dacre Beck in subsequent chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Decision chain used to invoke snow accumulation and melt modelling 

processes 

 Precipitation 
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As explained in Chapter 1 (section 1.1) snow crystals can form in the atmosphere but in 

order for these to fall as snow on the ground the air temperature must not exceed the 

threshold temperature beyond which precipitation falls as rain (Figure 3.1). The value of 

this threshold temperature is not necessarily the same as the threshold melt temperature 

applied to the snowpack as it can remain frozen up to 50C due to evaporative cooling 

(Ferguson, 1999). Typically the value of threshold precipitation temperature is around 00C 

with some studies putting it at 0.010C (the triple point of water) (Lòpez-Moreno et al., 

2009). For simplicity, this project will assume that the threshold precipitation temperature 

value is 00C. Therefore the snow accumulation model in this project will assume that 

precipitation will fall as snow if the temperature is equal to or less than 00C.    

 

It was also mentioned in Chapter 1 that processes of interception and wind redistribution 

affect the accumulation of snow within a catchment. Interception, I (kg m-2) can be 

modelled as a function of snowfall and vegetation canopy properties (Pomeroy et al., 

1998): 

   4 � G�4. 
 4+� H1 
 �IJ KAL. M             (Eq 3.1)     

Where c = snow unloading coefficient (~0.7 for hourly time steps), Io = initial snow load     

(kg m-2), Pi = exponential function of snowfall (kg m-2 unit time-1), Cc = canopy density 

(proportional coverage, and I* = difference of maximum snow load: 

4. � NO P=4 �0.27 � %S
(	�         (Eq 3.2) 

Where Sp = tree species coefficient (kg m-2) [~6.6 for pine, ~5.9 for spruce], LAI = leaf 

area index (m2 m-2), and ρs = fresh snow density (kg m-3).  

 

However the above equations are only applicable to forested parts of a catchment. Since 

only 5.3% of the Dacre Beck catchment is forested (Chapter 2, section 2.5.2) it would be 

expected that interception plays a minimal role in the catchment’s snowmelt hydrology. 

Hence it can omitted from processes which are included in this project’s distributed snow 

accumulation and melt model.  
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Redistribution by wind saltation can be modelled as in MacDonald et al. ( 2009): 

      T	��� � UA � ( VW.
� ��.X 
 ��.X 
 ��.X�     (Eq. 3.3) 

Where ci = ratio of saltation velocity to friction velocity (~2.8), e = efficiency of saltation   

(1/4.2 u*), ρ = atmospheric density, g = gravitational acceleration (9.81 ms-2), u* = 

atmospheric friction velocity and u*n and u*t are portions of u* applied to non-erodible 

roughness elements such as vegetation. 

 

Redistribution by wind suspension can also be modelled (MacDonald et al., 2009): 

T	V	� �  V.
YZ [ \��]�^_ � �

�`��a�. b]        (Eq. 3.4) 

Where kv = von Karmen’s constant (0.41), zb = affected by the time available for the 

vertical diffusion of snow particles from h* calculated from turbulent diffusion theory and 

logarithmic wind profile, ηm = mass concentration of blowing snow at height z and zo = 

aerodynamic roughness height.  

 

Many of the terms in Eq. 3.3 and Eq. 3.4 however, are calculated from vegetation data 

such as stalk density which is not available in Dacre Beck so it is not possible to apply 

these equations in this study. However the geographical and topographical context of the 

catchment means it is reasonable to expect that wind redistribution of snow is minimal. It 

is located in the north-west corner of the Lake District and its slopes are mostly oriented in 

a west to north-west direction hence it is sheltered from the prevailing south-westerly 

winds of the region. Furthermore its steep topography means it is much more sheltered 

than the topography of plains catchments where wind redistribution is observed to be 

significant (Gray and Prowse, 1993).  

 

3.2 Snowmelt Modelling 

 Once a snowpack accumulates it can begin to receive energy from the surrounding 

physical fluxes, outlined in Chapter 1 (section 1.2), and eventually produce melt water 

runoff. There are two types of snowmelt model in common use: Energy Balance Models 

(EBMs) and temperature-index models (Hock, 2005). The former approach is physically-

based as it accounts for the underlying physics of snowpack energy fluxes whereas 
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temperature-index modelling is empirical since it assumes a linear relationship between 

ablation and positive air temperature (Hock, 1999). The following sub-sections (3.2.1 and 

3.2.2) review both approaches giving examples of models from each in order to assess 

their suitability for this project. Suitability will be judged by assessing models from each 

approach according to their process representation and data requirements. As shown 

above, some processes such as interception are unimportant in the Dacre Beck, so if a 

model accounts for additional, and otherwise unnecessary, processes it will only serve to 

add to output uncertainty (see Chapter 6) rather than data quality. The meteorological 

observations available to drive a snow melt model in Dacre Beck are: minimum and 

maximum daily air temperature and daily precipitation. Therefore, if a snow melt model’s 

data requirements exceed this, it is highly likely that it will be non-applicable in the Dacre 

Beck. A synthesis of both approaches will be given in section 3.3 allowing a suitable 

snowmelt modelling approach to be selected. 

 

3.2.1 Energy Balance Modelling  

Many different EBMs are in existence (a review of some EBMs is given in Table 3.1) with 

a wide range of complexity. The SnowMIP investigation (Etchevers et a., 2002; 2004) 

compared 26 and 23 EBMs respectively and found four bands of complexity; very simple 

(1 layer and simple energy budget), simple (1 layer and detailed energy budget), complex 

(2 or more snow layers) and very complex (include internal processes of snowpack). 

 

Complex and very complex EBMs account for multiple layers within the snowpack in order 

to account for non-linear heat exchange close to the surface and internal energy transfer 

processes. An example of a complex EBM is given in Koivasulo (et al., 2001) who use the 

SNTHERM.89 and UEB models to represent a 2 layer snowpack. This added complexity 

was found to improve the results of snow heat balance and liquid water content in 

comparison to simpler models, but only had minor effects for calculated bulk SWE and 

snow melt (Koivasulo et al., 2001). Since this project only requires modelling of snow melt 

production it unnecessary for it to use a model from these classes of EBM complexity as 

results of a similar quality can be obtained from much simpler models.  

 

Simpler EBMs treat the snowpack as a single layer such as that outlined in Lòpez-Moreno 

(et al., 2009). In this model the energy budget considers the energy change associated 

with the melting of frozen soil moisture and snow, the snowpack is treated as an evolving 
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one-layer pack characterised by; temperature, mass and density. At each time step, 

radiative and turbulent fluxes are calculated followed by heat storage in the snowpack 

allowing the calculation of snowmelt. Atmospheric data including; screen air temperature, 

dew point temperature, anemometer-level wind magnitude, precipitation, surface pressure 

and incident solar radiation are inputted at an hourly resolution (data can be downscaled 

from an RCM using a cosine function, Lòpez-Moreno et al., 2009). The results of 

SnowMIP (Etchevers et al., 2004) show that models of this relative simplicity can 

adequately represent snow melt production over a range of snow cover climates. However 

it is not possible to obtain all the data required to drive the model as data downscaled 

from an RCM can only be used after the model has been calibrated using observed data.  

 

An attempt was made by Walter (et al., 2005) to build an EBM which has minimal data 

requirements. The model also treats the snowpack as a single layer which is subject to 

the same radiative and turbulent fluxes. Approximations are used instead of input data to 

calculate the magnitude of each energy flux thus reducing the data requirements to daily 

minimum and maximum air temperature and daily precipitation. However this introduces 

uncertainty into model results as the approximations mean the precise magnitude of each 

flux cannot be determined. For example in calculating the sensible heat exchange instead 

of using wind speed measurements from the site a constant windspeed equal to the 

geometric mean of the nearest measurements is used. Additionally, in calculating the heat 

form convective vapour exchange the vapour density of air is assumed to be equal to the 

saturation vapour density at the minimum daily air temperature. Whilst these assumptions 

may be physically reasonable they may not suffice as precise replacements. 

Consequently this introduces uncertainty into the results which reduces their quality to a 

level that may be achievable through even simpler temperature-index modelling. 

 

Reference Model Type/ Name Description Data Input Complexity 

Zeinivand and De 

Smedt, 2009 

EBM  Calculates energy 

balance of 

snowpack before 

converting to 

snowmelt 

Minimum, 

maximum and 

mean daily air 

temperature, 

windspeed 

2 

 

 

Table 3.1 Summary of the EBMs consulted reviewed by this project. Complexity ranges from 

1-4. 1 is very simple, 4 being very complex (see Etchevers et al. 2004 for a full definition). A 

comparison of more EBMs can be found in Table 2 Etchevers et al. 2004.   
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Jost et al., 

2009 

EBM Looks at role of forest canopy 

in snowmelt, 2 layer canopy 

model 

Air temperature, wind 

speed, vapour 

pressure, 

precipitation, 

longwave and 

shortwave radiation 

3 

Lòpez-

Moreno et 

al., 2009 

EBM Snow modelled as evolving 1-

layer pack characterised by 

temperature, mass and 

density. Changes in albedo 

over time and cloudiness are 

parameterised. 

Screen air 

temperature, dew 

point temperature, 

anemometer-level 

wind magnitude, 

precipitation, surface 

pressure and incident 

solar radiation 

2 

Walter et al., 

2005 

EBM Calculates change in SWE by 

accounting for all energy 

fluxes, many assumptions 

about values of input 

coefficients 

Daily maximum and 

minimum 

temperature, day of 

the year, geographic 

latitude 

2 

Debele et 

al., 2010 

EBM Sum of heat fluxes to calculate 

change in heat content of 

snowpack, lump catchments 

into altitudinal HRUs 

Precipitation, 

temperature, solar 

radiation, relative 

humidity 

2 

Debele et 

al,. 2010 

EBM – 

SWIFT 

algorithm 

As above cell but use of 

algorithm to calculate 

snowmelt for individual pixels 

Same as above and 

elevation, slope and 

aspect for each pixel 

(extracted from DEM) 

2 

Koivusalo et 

al,. 2001 

EBM- 

SNTHERM.8

9 

2-layer treatment of snowpack 

to calculate internal 

processes, water treated in 3 

phases 

Net shortwave 

radiation, downward 

longwave radiation, 

air temperature, 

relative humidity, wind 

speed, precipitation 

3 

Koivusalo et 

al., 2001 

EBM- UEB 2-layer treatment of snowpack 

processes- soil and snow 

layer 

Same as above 3 

Table 3.1 cont. Summary of the EBMs consulted reviewed by this project. Complexity ranges 

from 1-4. 1 is very simple, 4 being very complex (see Etchevers et al. 2004 for a full 

definition). A comparison of more EBMs can be found in Table 2 Etchevers et al. 2004.   
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3.2.2 Temperature-Index Modelling 

This form of model has been commonly used for modelling snow melt due to the wide 

availability of air temperature data, its computational simplicity and its generally good 

performance relative to physically-based EBMs (Hock, 2003).  There are three levels of 

complexity in this approach: basic, improved and enhanced, Table 3.2 provides a 

summary of different models from each.  

 

The most basic approach of temperature-index modelling involves deriving the gradient of 

the linear relationship between observations of daily air temperature, T and snow melt 

runoff, M (Johnson, 1966), the value of this is called the degree-day melt factor, K. The 

resulting factor can then be used in a temperature-index equation as follows: 

! � c�� 
 �+�         (Eq. 3.5) 

Where To = threshold melt temperature hence (T-To) represents the amount of positive 

degree energy available to melt the snowpack. This approach was successfully used by 

Johnson and Archer (1972) to calculate snow melt production during a flood event in the 

UK. The success of this approach is due to its high correlation with energy balance 

components such as long-wave radiation and sensible heat flux which account for 75% of 

the energy balance available for melt (Hock, 2003).  

 

Improved temperature-index models were developed to increase the percentage of the 

energy balance represented in the temperature-index equations. Some have included the 

heat flux from rain-on-snow which was found to empirically relate to snow melt by 

(USACE, 1956): 

! � 0.0126�� � �          (Eq. 3.6) 

Where T = Temperature of rainfall assumed to be equal to the air temperature and Pr = 

amount of precipitation falling as rain. The value of 0.0126 is similar to the degree-day 

factor in Eq.3.5 and derived in a similar manner but relates rainfall amount and 

temperature to melt water. An example of this inclusion into a temperature-index model 

can be found in Zeinivand and de Smedt (2009): 

! � Dc � �c �>� . � �F . �� 
 �+�          (Eq. 3.7) 
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Where Krain = is the rain-on-snow factor which is 0.0126 in Eq. 3.6.  

 

The above however were derived at a daily resolution hence they cannot account for sub-

daily energy fluxes which have been shown to affect diurnal melt water production 

(Ferguson, 1984). Further improvements therefore were made by incorporating clear-sky 

short-wave solar radiation into temperature-index models. Clear-sky direct short-wave 

radiation, S can be calculated as follows: 

        N � NIe��sin Phi cos N� 
 cos Phi sin N� cos =� sin  � cos Phi cos N� �
        sin Phi sin N� cos =� cos  cos l� � cos  sin N� sin =� sin l��    (Eq. 3.8)   

Where Sc = solar constant (1367 Wm-2), Oe = orbital eccentricity given by: 

e� � 1 � 0.033 cos �Xno�p
$Sq �          (Eq. 3.9) 

Day is given according to the day of the year. Referring back to Eq. 3.6, Lat = latitude of 

the study site (Radians), Sl = slope angle (radians), Az = azimuth angle of the slope which 

is the slope aspect in degrees, A converted to radians by: 

=� � 180 
 = � n
2st�          (Eq. 3.10)                         

Back to Eq. 3.8, D = declination which is calculated using day angle, Da: 

 �
0.006918 
 0.399912 cos � � 0.070257 sin � 
 0.006758 cos�2�� �

0.000907 sin�2�� 
 0.002697 cos�3�� � 0.00148 sin�3��      (Eq. 3.11) 

Where Da is calculated by: 

� � Xn�o�px2�
$Sq      (Eq. 3.12) 

Back to Eq. 3.8, Ha = hour angle which enables the process to represent sub-daily melt 

processes, it is calculated as a function of solar time, St: 

l� � H15 �2Xttx�yWxqt�
2tt �M � n

2st�       (Eq. 3.13) 
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Where St is calculated from the time, T in hours, longitude, Long in degrees and the day 

angle, Da: 

 N� �
� � �4 Pz_{� � |0.000075 � �0.001868 cos �� 
 0.032077 sin �    


          0.014615 cos�2�� 
 0.04089 sin�2��}229.18                     (Eq. 3.14) 

 

Hock (1999) included S into a temperature-index model as follows: 

! � �2
� c � h	�+�  N� ��          (Eq. 3.15) 

Where n = number of time steps per day (24 if modelling at an hourly resolution) and asnow 

= radiation factor empirically relating S to M.   

 

However the manner in which solar-radiation has been incorporated into temperature-

index modelling in improved approaches fails to account for cloud cover and snow pack 

reflectivity or albedo. Enhanced temperature-index models such as Hock (1999) and 

Pellicciotti et al., (2005) incorporate these effects. The former accounts for cloud cover 

through a ratio of clear-sky solar radiation, S to the amount reaching the surface, Gs:  

! � H2
�  c � h	�+�  N �~�

y �M ��    (Eq. 3.16) 

The latter meanwhile accounts for the effects of albedo, άl and the amount of solar 

radiation reaching the surface: 

! � c �� � h	�+��1 
 ����	           (Eq. 3.17) 

Albedo of new snow can be calculated as a function of its density (Walter et al., 2005): 

�� � =� 
 �=� 
 =�� ��O �
 �%��(�
t.2X ��       (Eq. 3.18) 

Where Ax = maximum albedo (~0.95), A’ = albedo from the previous day, Rp = water 

equivalent depth of snow and ρs = density of new snow calculated as a function of solar 

radiation and air temperature. If no new snow falls, the albedo of the existing snow pack 

decays as a function of the time step: 
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�� � 0.35 
 �0.35 
 =�� . ��O �
 H0.177 � ^_ �?�xt.$q
?�xt.$q�X.2SM�t.%S

(Eq. 3.19) 

Measurements of solar radiation at the surface however are not available for the study site 

meaning that it is not possible to implement enhanced temperature-index approaches. 

However the use of the other two approaches may be suitable for this project as they 

account for the most significant energy fluxes in UK snowmelt hydrology. Furthermore 

there is no literature proving that enhanced approaches perform significantly better than 

the others.  

 

 

Reference 
Model 

Type 
Process Representation Data Input Parameters 

Johnson and Archer, 

1972; Moore et al., 

1999; Beven, 2002; 

Fontaine et al., 2002;  

Kayastha et al., 2005 

Basic Positive Daily Air Temperature  
Daily Air 

Temperature 
Degree-Day 

Debele et al., 2010 Basic 
Daily Positive Air Temperature 

and Snow pack Temperature 

Daily Air 

Temperature 

Degree-Day 

computed 

as a 

sinusoidal 

function of 

day of year 

Hock, 1999 Basic 

Daily Positive Air Temperature 

Disaggregated to Hourly 

Resolution 

Daily Air 

Temperature, Time 

Steps per Day  

Degree-Day  

Zeinivand and De 

Smedt, 2009 
Improved 

Positive Daily Air Temperature 

and Precipitation 

Daily Air 

Temperature and 

Precipitation 

Degree-day 

and Rain-

on-Snow 

Jackson, 1978a; 

Reed and Field, 1992 
Improved 

Positive Daily Air Temperature 

and Wind Speed 

Daily Air 

Temperature and 

Wind Speed 

Degree-Day 

and Wind 

Speed 

Hock, 1999; 2003 Improved 

Positive Hourly  Air 

Temperature and Clear-sky 

Solar Radiation 

Hourly Air 

Temperature and 

Clear-sky Solar 

Radiation 

Degree-

Hour and 

Solar 

Radiation  

Table 3.2 Summary of different Temperature-Index models reviewed for this project. 
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Moore et al., 1999 Improved 

Positive Hourly Air 

Temperature, Wind 

Speed and 

Precipitation 

Hourly Air 

Temperature, Wind 

Speed and 

Precipitation 

Degree-Hour and 

Wind Speed  

Hock, 1999 Enhanced 

Hourly Positive Air 

Temperature and 

Short Wave Solar 

Radiation at 

Surface 

Hourly Air 

Temperature and 

Solar Radiation at 

Surface 

Degree-Hour and 

Solar Radiation  

Pellicciotti et al., 

2005 
Enhanced 

Hourly Positive Air 

Temperature, Short 

Wave Surface 

Solar Radiation and 

Albedo 

Hourly Air 

Temperature and 

Surface Solar 

Radiation 

Degree-Hour and 

Solar Radiation  

Bengtsson, 1986; 

Martinec, 1989 
Enhanced 

Hourly Positive Air 

Temperature, Short 

Wave Surface 

Solar Radiation and 

Albedo 

Hourly Air 

Temperature and 

Surface Solar 

Radiation 

Degree-Hour, Solar 

Radiation and 

Albedo 

Li and Williams, 

2008 
Enhanced 

Hourly Positive Air 

Temperature, Short 

Wave Surface 

Solar Radiation and 

Albedo 

Hourly Air 

Temperature, 

Surface Solar 

Radiation 

Degree-Hour, Solar 

Radiation and 

Latent Heat of 

Fusion 

 

 

3.3 Snow Melt Modelling Synthesis 

As described in sub-section 3.2.1, EBMs provide a physically based approach to snow 

melt modelling. Multi-layer EBMs provide an unnecessary dimension of complexity as it 

was shown that they do not improve the modelling of snow melt production especially in 

shallow snow packs such as those in the UK (Etchevers et al., 2002; 2004). However the 

extensive data requirements of all EBM types goes beyond the observational data 

available in the Dacre Beck. The use of physically reasonable assumptions may enable 

their implementation but it is likely that the uncertainty this introduces would be to the 

detriment of their quality in comparison to temperature-index approaches. Hence the 

decision was made not to use EBMs in this project and instead focus on implementing a 

temperature-index method.  

Table 3.2 cont. Summary of different Temperature-Index models reviewed for this project. 
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Three levels of temperature-index process representation have been assessed in the 

second sub-section. Basic and improved approaches attempt to account for the most 

significant snow melt energy fluxes through empirically derived relationships. Enhanced 

approaches attempt to improve the physical basis of these through the inclusion of effects 

such as albedo and cloud cover. Insufficient data however is available in Dacre Beck to 

drive enhanced temperature-index models. It may be possible to make physically 

reasonable assumptions in order to implement them but it then it would be more 

appropriate to use the assumptive EBM of Walter et al., (2005) due to its greater physical 

basis. It was decided therefore that this project would implement either a basic or 

improved temperature-index model.  

 

None of the literature cited by this project however, showed that either the basic or 

improved approach outperformed the other when modelling snow melt production. The 

decision was made to implement three different temperature-index models each 

accounting for a different magnitude of process representation. Firstly a basic equation 

such as Eq. 3.5 would be implemented followed by the inclusion of rain-on-snow 

processes such as in Eq. 3.7 (Zeinivand and de Smedt, 2009). Thirdly a sub-daily 

equation accounting for clear-sky short-wave radiation such as Eq. 3.15 (Hock, 1999) was 

chosen. The empirical rain-on-snow equation of Eq. 3.6 (USACE, 1956) was added to the 

third equation in improve upon process representation beyond the other two. The next 

chapter describes the implementation of each selected temperature-index equation within 

a distributed snow accumulation and melt model of the Dacre Beck.  
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Chapter 4 

Distributed Snowmelt Model 
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4.1 Model Construction 

This chapter describes the construction and verification of a distributed snowmelt model 

which represents processes of snow accumulation and melt across the altitudinal range of 

the study catchment. Snow melt is modelled using three equations from the temperature-

index approach reviewed in Chapter 3. The model then routes all snow melt and rainfall at 

each point in the catchment to the outlet enabling the production of an outlet hydrograph. 

The first section of this chapter (4.1) describes the construction of the model including its 

input data requirements, spatial discretisation and process implementation. Secondly in 

section 4.2, the model’s behaviour is tested to ensure it behaves realistically by checking 

that mass is conserved and that it responds in a realistic manner to changes in its 

parameters (sensitivity analysis). 

 

4.1.1 Input Data 

The distributed snowmelt model constructed in this chapter requires gridded elevation 

data in the form of a Digital Elevation Model (DEM) and temperature and precipitation 

data. Raw DEM data were obtained from the Ordnance Survey Profile Digital Terrain 

Model dataset at a 10 m resolution however it was resampled to 50 m. This reduces the 

model run time, due to the reduced number of computation points. However, it still allows 

the model to represent hill slope scale processes as the average hill slope length was 

over 100m. The study catchment was delineated from the DEM using the Watershed 

Delineation Toolbox in ESRI ArcGIS 9.2. The delineated DEM was then used to calculate 

slope and aspect which form inputs into the solar radiation calculation of the Hock (1999) 

equation discussed in the previous chapter (Eq. 3.15). The temperature and precipitation 

data used in this study was obtained from the UK Met Office MIDAS database. It could 

also be generated from the UKCP09 Weather Generator (Jones et al., 2009) so that the 

model could be used to predict the impacts of climate change scenarios.  

 

4.1.2 Spatial Discretisation and Process Implementation 

The temperature, Ta and precipitation, Pr data are obtained in point form hence they need 

to be spatially distributed across the catchment DEM. This is calculated using the lapse 

rate equation where either the temperature, Ta(i,j) or precipitation, Pr(i,j) for a point in the 

catchment DEM is given by: 

���>,�� z� � �>,�� � D��>,��P�F � ��� z� � �   (Eq. 4.1) 
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Where Z(i,j) = elevation difference between gauge elevation and elevation at point (i,j) and 

LR = temperature or precipitation lapse rate (0C or mm m-1). The physical explanation and 

suggested values for both the temperature and precipitation lapse rates are outlined in 

Chapter 1 (section 1.1). After this spatial discretisation, the model is then able to 

implement the following set of decisions for each point in the catchment at each time step 

(Figure 4.1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

A point in the landscape is assumed to accumulate snow when the temperature is below a 

given threshold (00C) and the precipitation falling at that point and timestep is greater than 

0mm. If however, the temperature at a point is greater than the threshold temperature (the 

threshold melt and accumulation temperatures are assumed to be the same) and a 

snowpack is also present, one of the three snowmelt equations chosen in Chapter 3 

(section 3.2.3) is implemented.  

 

The first snowmelt equation (Snowmelt Model 1) is a degree-day approach widely cited in 

the snowmelt literature (see Chapter 3 Table 3.2): 

 

Is 

Temperature 

<0
0
C? 

Start 

Yes 

Is 

Precipitation 

>0? 

Add to 

Snowpack 

Store 

Yes 

No 

No Action 

Is 

Precipitation 

>0? 

No 

Yes 

Route 

Rainfall to 

Outlet 

Is  

Snowpack 

Store >0? 

Yes 
Apply 

Snowmelt 

Equation 

Route 

Snowmelt to 

Outlet 

No 

No 

No Action 

Figure 4.1 Decision chain implemented by the model for each point in the 

catchment DEM for each timestep. 
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! � c��� 
 �+�       (Eq. 4.2) 

Where M = amount of snowmelt produced (mm day-1), Ta = air temperature (0C), K and To 

are parameters of the degree-day factor (mm 0C-1 day-1) and threshold melt temperature 

(0C).  

 

The second snowmelt equation (Snowmelt Model 2) is from Zeinivand and de Smedt 

(2009) which includes the effects of air temperature and precipitation: 

! � Dc � �c �>� . ��F . ��� 
 �+�    (Eq. 4.3) 

The parameters in this approach are K, To and Krain (mm mm-1 day-1) is a rain-on-snow 

factor relating a daily amount of precipitation to the amount of melt water it produces. 

 

The third snowmelt equation (Snowmelt Model 3) is a combination of the hourly equation 

from Hock (1999) and the rain-on-snow equation from USACE (1956) which enables 

greater process representation: 

! � ��2
� c � h	�+�N� ��� � |c �>���� .  ��}          (Eq. 4.4) 

Where n = number of time steps per day and S = clear-sky short-wave solar radiation               

(W m-2) calculated using the aspect and slope grids described above and the method in 

Chapter 3 (Eqs 3.8 to 3.14). The parameters are Krain and asnow (W m-2 mm-1 hour-1 0C-1), 

the latter is a radiation factor linking short-wave solar radiation to the amount of melt water 

produced. Hock (1999) found the left-hand side of Eq. 4.4 to work best when the threshold 

melt temperature was held at 00C hence To will not be considered as a parameter in this 

equation.  

 

Any precipitation falling at a point in the catchment when the temperature is above the 

threshold is treated as rainfall. It, along with any snow melt produced at the same point at 

that time step is routed by the model to the catchment outlet (see Chapter 2 Figure 2.1) 

as overland flow. The outlet hydrograph is constructed as a function of the concentration 

time for each point in the catchment. For example, if a point in the catchment takes eight 

hours to reach the outlet then the amount of runoff at that point is added to the hydrograph 

eight hours later. The time taken for each point in the catchment to reach the outlet is 
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calculated firstly by working out the distance between it and the outlet using the Multiple 

Flow Direction algorithm (Freeman, 1991; Quinn et al., 1991) for hill slopes and the D8 

Linear Flow Algorithm (O’Callaghan and Mark, 1984) for channels (see Chapter 2 section 

2.5.1). It was then possible to work out the time taken for each point in the catchment to 

reach the outlet using the distance at each point and assuming a constant flow velocity of 

0.2 m3s-1. This value was chosen by applying the Darcy-Weisbach head-loss equation of a 

fluid through a pipe re-arranged to solve for flow velocity V to the slope of Great Mell Fell 

(Chapter 2 Figure 2.2): 

� � �X��o��
�B           (Eq. 4.5) 

Where Hl is the head loss due to a reduction in pressure caused by friction, a value of 130 

was chosen based upon the maximum value of the head loss coefficient in Hazen-

Williams equation which is applicable to fluids up to 15.50C. The maximum value was 

chosen as this represented a high magnitude of head loss which is feasible on a rough 

and steep hill slope. Dp is the diameter of the pipe which in this case was chosen to be     

3 m as this had been used in previous hydrological modelling (Lane et al., 2009). 

Gravitational acceleration g was calculated from the vector of vertical gravitational 

acceleration (9.81 ms-2) along the slope at Great Mell Fell, the resultant value was       

3.93 ms-2. A value of 75 was chosen for the friction factor f which represents roughness 

along the slope as this had again been used in previous hydrological modelling (Lane et 

al., 2009). Finally, the slope length L of Great Mell Fell was calculated from the DEM to 

give a value of 500 m. A constant velocity had to be used as it was not possible to 

represent the dynamic relationship between velocity and depth as concentration time 

calculation was based upon average flow conditions for each point within the catchment. 

  

The maximum time taken was 17 hours and 40 minutes hence the model was run at no 

greater than an hourly resolution in order to capture the hill slope processes. Snowmelt 

Model 1 and 2 can only be applied at a daily resolution since this was the resolution upon 

which field studies derived them. Therefore these models are aggregated to a daily 

resolution after running the model for hourly time steps, the results from Snowmelt Model 

3 would be left at an hourly time step.  The hydrograph can be composed either solely 

from snowmelt runoff or both rainfall- and snowmelt-runoff.  
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4.2 Model Verification 

4.2.1 Mass Balance Testing 

Ensuring that the model solves the above equations correctly can be achieved by 

checking that water mass is conserved where the output of water is equal to the amount 

inputted. For each point in the catchment at each time step, t the following mass balance 

ratio was implemented: 

�h�_ � N_z��h^^ � N_z�OhG���x2� �  �h�_ � N_z���^i � N_z�OhG����   

(Eq. 4.6) 

The left-hand side of Eq. 4.6 refers to the inputs and the right-hand side represents the 

outputs. Mass conservation would be achieved when the value from Eq. 4.6 was equal to 

zero, values greater than zero would mean water was being created and values smaller 

than zero would mean water is being lost.  

 

To check mass balance the model firstly was set up using hourly temperature and 

precipitation data from the gauge at Keswick (situated 16km west of the catchment) for 

the December 2009-February 2010 period with November 2009 acting as a warm up 

month. Then Eq. 4.6 was implemented at each time step, the results confirmed that the 

model was conserving mass.  

 

4.2.2 Sensitivity Analysis 

Sensitivity analysis is an intermediary process connecting both model verification and 

calibration (see chapter 6) since its results can be used to inform both (Trucano et al., 

2006). Firstly, it acts as a check on the robustness of the model’s logic (Wainwright and 

Mulligan, 2004) ensuring a physically realistic response to alterations in the model 

parameters. Secondly it quantifies the amount that each parameter contributes to output 

variability (Saltelli, 2000) i.e. its sensitivity, and thus which parameters contribute to output 

uncertainty. A sensitive parameter therefore will constitute a relatively large amount of 

output variability and hence uncertainty.  

 

 



68 

 

4.2.2.1 Parameter Identification 

In designing a sensitivity analysis experiment the first step identifies the parameters that 

require analysis (Saltelli, 2000). These are inputs into the model equations which cannot 

be confidently constrained to a precise value due to spatial and temporal variability (Kirkby 

et al., 1992). For example temporal variations in the UK precipitation lapse rates have 

been attributed to air mass movements where frontal rainfall during the winter strengthens 

the relationship between rainfall and altitude (Lawler, 1987). The lack of a precise 

constraining value propagates through to model output uncertainty and variability hence 

the need for the sensitivity analysis to focus upon this these parameters. The parameters 

that will be studied in this section are outlined in Table 4.1. 

 

Upon identifying the parameters, the sensitivity analysis must focus within a range of 

physically realistic values. Each value range defines the parameter’s space and the range 

of realistic values reflecting its uncertainty bounds due to it not representing sub-grid 

processes (Beven, 2002) such as temporal and spatial variations. It is important that the 

range is physically realistic as the results will be used to inform the calibration and 

uncertainty evaluations (Chapter 6). These will sample the same parameter ranges hence 

if the range is unrealistic there is a possibility that the final model results will be physically 

unrealistic.  

 

Parameter ranges can be identified by reviewing existing literature which have undertaken 

detailed fieldwork at locations similar to the study site. Providing the previous research 

that is consulted undertook fieldwork in similar environments to the Dacre Beck their 

parameter ranges should be applicable. The ranges for each model parameter are 

outlined in Table 4.1. A slightly wider range than that identified from the literature was 

used in order to verify that the model behaved unrealistically when using unrealistic 

parameter values. In the case of the rain-on-snow and threshold melt temperature 

parameters no literature could be found to inform realistic ranges. Instead base case 

values were identified from previous studies and a range was based around them.   
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Parameter (units) [Model] Range (Source) Range Used Base Case (Source) 

Temperature Lapse Rate      

(
0
C m-

1
) 

-0.0045 :  -0.0125    

(Harding, 1979) 
0:-0.02 

-0.0085 

(de Jong et al., 2009) 

Precipitation Lapse Rate    

(mm m
-1

) 

0.000151 : 

0.000531     

(Lawler, 1987) 

0 : 0.001 

0.00032 

(Lawler, 1987) 

Degree-Hour 

(mm Hour
-1

 
0
C

-1
) [Hock, 

1999] 

0.5 : 2.5 

(Hock, 1999) 

0 : 3 

1.8 

(Hock, 1999) 

Radiation Coefficient   (W
 

m
-2

 mm hour
-1

 
0
C

-1
) [Hock, 

1999] 

0.0001 : 0.006 

(Hock, 1999) 
0 : 0.01 

0.0006 

(Hock, 1999) 

Rain-on-Snow 

(mm mm
-1

)   [Hock, 1999; 

Johnson and Archer, 1972] 

No Source Found 0 : 1 

0.0126 

(USACE, 1956) 

Degree-Day 

(mm day
-1 0

C
-1

) [Zeinivand 

and de Smedt, 2009; 

Johnson and Archer, 1972] 

0.029 : 0.383 

(Singh and Singh, 

2001) 

0 : 0.383 

0.17 

(Singh and Singh, 2001) 

Rainfall Melt Rate 

(mm day-
1 0

C
-1

) [Zeinivand 

and de Smedt, 2009] 

0.0005 : 0.01 

(Zeinivand and de 

Smedt, 2009) 

0.0005 : 0.01 

0.0032 

(Zeinivand and de 

Smedt, 2009) 

Threshold Melt 

Temperature (
0
C) 

[Zeinivand and de Smedt, 

2009; Johnson and Archer, 

1972] 

No Source Found 0 : 1 

0.000002 

(Zeinivand and de 

Smedt, 2009) 

 

 

 

 

Table 4.1 The parameters contained within the distributed snowmelt model and 

their ranges and base case values identified from previous literature. 
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4.2.2.2 Strategy 

A strategy was required that enabled the identification of output variability within each of 

the input parameters. The simplest way of achieving this is through the identification of the 

elementary effect of each parameter (Campolongo et al., 2007). One-at-a-time (OAT)  

(Morris, 1991) is widely used (Hamby, 1994) to identify these elementary effects where 

each parameter is independently varied whilst holding all others constant. It is also a very 

economical method as it only samples the local parameter space. The effects of varying 

each parameter are quantified by replacing the model output with an objective function. 

Then the partial derivatives of the output objective function are computed with respect to 

the input factors (Campolongo et al., 2000) thus quantifying the elementary sensitivities of 

each parameter.  

 

The OAT strategy was implemented in this sensitivity analysis for each snowmelt equation 

within the distributed model. Each parameter within each snowmelt model would be 

analysed individually by sampling within the prescribed range, whilst holding all others at a 

base case value. The model would then be run for each sampled value within the 

parameter’s space, the output variability would be assessed after each run by using an 

output metric. It was decided to use the output hydrograph composed solely from 

snowmelt-runoff as this was the key process of this project. 

 

4.2.2.3 Sampling of the Parameter Space 

Each parameter range identified in Table 4.1 required sampling in order to produce a 

suite of different input realisations for which the model was run. The sampling needed to 

sufficiently represent the entire parameter space whilst simultaneously being mindful of 

computational feasibility. Random (Monte Carlo) and stratified (Latin Hypercube) sampling 

techniques are commonly used to generate input parameter suites however their 

suitability required assessment of their design and computational cost.  

 

Monte Carlo sampling, used in the Formal Bayesian and GLUE (Beven and Binley, 1992) 

uncertainty evaluations (Jin et al., 2010), was developed to deal with physical problems 

containing a moderate number of parts (Metropolis and Ulam, 1949). In this method 

random processes select values from a predefined range informed by a posterior 

probability distribution (von Neumann and Ulam, 1945) representing the likelihood of 
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occurrence of a particular value within a predefined range. Fieldwork data collected at the 

study location is often used to inform this distribution (Kirkby et al., 1992) but was not 

available for this project. Consequently a uniform distribution whereby every value within 

the range has an equal likelihood of occurrence must be assumed for the ranges in Table 

4.1. For the Monte Carlo method this may mean that many samples must be taken before 

it can confidently be assumed that the entire parameter space has been adequately 

represented thus reducing computational economy. It is possible to update the probability 

distribution using the Bayes equation as more runs are undertaken (Beven and Binley, 

1992) but other sampling strategies may prove to be more useful before this option needs 

to be considered.  

 

Latin Hypercube stratified sampling splits a range into equi-probable strata based upon 

the cumulative distribution of the data and randomly samples one value from within each 

(McKay et al., 1979). This approach has been described as a compromise procedure 

whereby it incorporates desirable features from both random and stratified sampling 

(Helton and Davis, 2003). It requires fewer runs than the Monte Carlo method (van 

Griensven 2005) since it subdivides the data distribution leading to more representative 

random sampling of the overall space. McKay et al., (1979) showed that it outperformed 

Monte Carlo random sampling under certain conditions of monotonicity (where a function 

is preserved) and if only a few parameters dominate (Campolongo et al., 2000). However 

a lack of a prior probability distribution in this sensitivity analysis for the parameter ranges 

means a uniform distribution would have to be assumed for the cumulative distribution. 

Therefore the form of Latin Hypercube sampling that would be used in this project would 

have more in common with conventional stratified sampling. In this case, a range is split 

into bins of equal width and a value is randomly sampled from within each. Alternatively 

systematic sampling could be implemented where samples are taken at regular 

increments. This however risks decreasing computational economy since small increment 

values are required in order to prevent the sampling systematically missing trends in the 

data. Therefore stratified Latin Hypercube was felt to be the most suitable sampling 

strategy as it was the most effective at balancing the trade-off between accurately 

representing the data range and maximising computational economy. For each parameter 

twenty samples were generated from within the predefined range and the model was run 

for each. 
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4.2.2.4 Output Metric 

An output metric enables the quantification of elementary sensitivities by condensing the 

model output into a single statistic which can be compared against the statistics from 

other parameter realisations. In hydrology the Nash-Sutcliffe metric (Nash and Sutcliffe, 

1970) which calculates the goodness of fit between the observed and simulated 

hydrographs is often used. However comparisons between the two hydrographs over the 

2009-2010 winter found the model simulated the observed hydrograph extremely poorly 

since it only routes water as runoff i.e. it ignores base- and subsurface-flow. No attempt 

was made to calibrate the model, this would be undertaken after the snowmelt models 

were incorporated into a physically-based hydrological model (see Chapter 6). Instead, a 

different output metric was selected that demonstrated the model response to changes in 

the input parameters but did not require calibration.  

 

The selected metric needed to capture the flow variability which has been highlighted as 

an important feature of UK snowmelt hydrology (SEPA, 2008 (see chapter 1 section 1.4 of 

this thesis)). No single metric is able to confidently represent both high and low flows for 

which snowmelt plays an important regulatory role (Black and Anderson, 1993; Novotny 

and Stefan, 2007). For example the Nash-Sutcliffe metric (Nash and Sutcliffe, 1970) 

biases towards high flows since it squares the residuals before summing them. Therefore 

two metrics, the 5th percentile of probability exceedence (Q5) from the flow duration curve 

(see Chapter 2 section 2.4) to capture high flows and the 95th percentile (Q95) for low 

flows were used to assess the model’s parametric sensitivity. However in testing the latter, 

it was found that the flow duration curve became 0 m3s-1 from the 55th percentile upwards 

so the Q95 would remain permanently at 0 m3s-1. This was especially true when the 

simulated hydrograph was composed solely from snowmelt. It is caused by the 

discontinuous nature of snowmelt in the UK meaning that there are significant periods of 

zero snowmelt runoff during the winter period either when a snowpack is present and not 

melting or altogether absent. Instead, it was decided to use the 50th percentile as a metric 

of low flows as this represented some of the lowest flows in the simulated hydrographs. 

 

4.2.2.5 Sensitivity Assessment: Full Range Analysis 

Firstly, for every parameter sample from all the parameters in all three snowmelt models, 

both output metrics were calculated. After the model had been run for every sample within 

a parameter’s space, a suite of output metrics from each run was produced. The 
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sensitivity of the model output to each change in each parameter was then be assessed 

by comparing each metric to those of a base case model run. The base case run used 

values for each parameter which previous literature cited as producing the best results. 

The metric from each model run from each parameter sample was compared to the base 

case run by calculating the percentage difference. After this was done for all the samples 

from each parameter for each metric a graph of parameter sample value (x-axis) against 

the output metric percentage difference (y-axis) was plotted for each metric. This showed 

how changes in the parameter value impacted the output value allowing a judgement 

about whether the model behaved as was expected to be made. 

 

The results of this analysis for each snowmelt model can be found in Appendix 1. One of 

the main observations from these response curves was the similarity and dissimilarity 

between the output metric responses for some of the parameters between each of the 

three models. For example the degree-day responses of Snowmelt Model 1 and 2 are 

identical but that of Snowmelt Model 3 is different (Figure 4.2).  

 

This may be because the degree-day parameter in the first two snowmelt models (Figure 

4.2 (a) and (b)) was varied over a much wider range relative to the base case than the 

parameter in the third snowmelt model (Figure 4.2 (c)). In the first two it was varied 

between -100% and +135% of the base case whilst in the third it was varied between -

100% and +67% in accordance with previous literature (Table 4.1). Therefore the 

response curves from Snowmelt Model 3 may only represent a small section of the 

response curves from the other two snowmelt models. There was no justification however 

in extending the range of this parameter in Snowmelt Model 3 as this was the range that 

the original literature found to be physically realistic (Hock, 1999). The similar shape of all 

the response curves from all three provides evidence to support this explanation. Overall, 

the shape of the third snowmelt model degree-day response curves appear to 

approximately match the shape of the first two-thirds of the response curves of the other 

two snowmelt model. For example, the Q5 response surface of Snowmelt Model 3 

(Figure 4.2 (c; i)) has a similar gradient and shape to the Q5 response curves for the first 

and second snowmelt models (Figure 4.2 (a and b; i)) above the value of                    

0.25 mm Day-1 0C-1.  
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The shape of the degree-day parameter response curves for both metrics in all three 

snowmelt models show an approximately non-linear increase with an increasing 

parameter value. This positive response is conceptually realistic for the Q5 metric (Figure 

4.2 (i)) since greater parameter values mean more melt is released per positive degree air 
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Figure 4.2 Response surfaces from the sensitivity analysis for the degree-day/hour parameters for 

the (a) first, (b) second and (c) third snowmelt models for the (i) Q5 and (ii) Q50 output metrics. 
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temperature leading to an increase in the overall magnitude of average and extreme melt 

releases. However it would be expected that the Q50 metric (Figure 4.2 (ii)) would see a 

decreasing response as more snowmelt would be produced at the first time step at which 

melt occurs. Hence subsequent time steps would inherit smaller snowpacks which 

produce less snowmelt. This could be explained by the non-linear nature of the response 

curve where initially there is a very steep gradient which gradually flattens when the base 

case value is approached. Some of the initial steep gradient represents an area of the 

parameter range regarded as unrealistic by previous literature. The extension of this 

gradient into what is otherwise regarded by previous research as realistic parameter 

space may signify that these values are unrealistic for the context in which this study is 

applying the models. When the gradient begins to level out it may be that a threshold is 

passed where the parameter values are more realistic. In this case, if only the levelled-out 

part of the curve is analysed it becomes evident that the response negatively decreases 

by approximately 10%. No such decrease is observed in the Q50 response of Snowmelt 

Model 3 if a similar analysis is undertaken however this may relate to the smaller range 

over which the parameter is varied as discussed above.  

 

The response curves of both metrics for the rain-on-snow parameter in the second and 

third snowmelt models differ but have similar trends. They differ because they use 

different rain-on-snow equations and sample the same parameter over different ranges. 

The parameter in the second snowmelt model is sampled over a narrower range than the 

third snowmelt model for example. The Q5 metric, for both snowmelt models, shows a 

positive relationship with the parameter value which is conceptually realistic since greater 

parameter values increase the vulnerability of snowpacks to melt from rainfall events. 

Conversely, the Q50 metric for both snowmelt models shows a negative response as 

more snow is melted during initial rainfall events for higher parameter values so less snow 

if subsequently available to melt.  

 

All temperature lapse rate metric response curves for all three snowmelt models are 

identical with each displaying an initial rising limb followed by a decline. Initially increasing 

the temperature lapse rate from zero increases the area within the catchment where snow 

can accumulate and hence the possible source areas of melt. When no temperature lapse 

rate was applied the majority of precipitation would have fallen as rain and hence not 

contributed to the snowmelt hydrograph. The decrease in melt output shown in all 

objective functions may be caused when the lapse rate enables temperatures at high 
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altitudes to prevent snowmelt. There may be insufficient snowfall at lower altitudes to 

compensate for the loss of melt input leading to an overall decline in the snowmelt 

hydrograph series and all associated objective functions.  

 

Each of the precipitation lapse rate response curves responds positively to an increase in 

the parameter’s value. The increased lapse rate means more precipitation is inputted to 

the catchment so larger snowpacks can accumulate. When these larger snowpacks melt 

they contribute more melt to the hydrograph series increasing its overall magnitude as 

well as extreme high and low flow events. Hydrograph variability also increases because 

the difference between conditions of maximum and no snow pack presence increases. 

The nonlinear responses of Snowmelt Model 2 differ from the linear responses of the 

other two snowmelt models. The different responses of the second and third snowmelt 

models may be explained due to their differing representations of snowmelt from rain-on-

snow. However the similarity of the response curves in the first snowmelt model, which 

does not represent this process, and the third either nullifies the previous explanation or 

indicates that the inclusion of the USACE (1956) equation makes little difference to the 

model output in this context.  

 

The threshold melt temperature response curves of the first and third snowmelt models 

are identical for both metrics. The Q5 response curves show an initial rising then 

decreasing limb. The first limb may be due to the reduction of events and locations at 

which melt can occur allowing larger snowpacks to accumulate releasing more melt later 

on thus increasing extreme flows and the differences between maximum and minimum 

snowpack conditions. The decline appears to begin beyond 0.70C which may represent 

where the difference between air temperature and the threshold becomes so small that 

snowmelt due to positive-degree air temperature significantly declines. This will reduce 

the magnitude of melt water release during extreme events and hence the variability of the 

overall hydrograph series. The Q50 response curve shows a consistent negative trend 

due to the reduction of potential melt from positive-degree melt. As explained above the 

difference between positive air temperature and the threshold melt declines as the latter 

increases thus reducing potential melt. This effect is expected to produce a consistently 

negative response curve as shown in the Q50, it is unclear why this is not the case for the 

Q5 curves. 
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Snowmelt Model 3 responses to changes in the solar radiation parameter all show a non-

linear change where the Q5 is positive whilst Q50 shows a negative trend. Increasing the 

solar radiation coefficient is expected to produce a positive response in the first metric 

since it will increase the potential snowmelt amount meaning more is released during 

each melt event increasing the overall melt hydrograph magnitude and that which is 

released during extreme events. This increases the rate at which snowpacks decay 

leading to a reduction in the amount of melt during low melt events hence increasing the 

variability of the melt hydrograph series. However there is a brief rising limb at the start of 

the Q50 response curve which contradicts the expected response. It is unclear whether 

this may represent a physical instability within the model or be an outlier resulting from the 

sampling strategy. Denser sampling around this area for example assuming a uniform 

distribution would distinguish if this outlier is a physical instability or a product of the 

sampling strategy.  

 

Overall the majority of the response curves presented in Figure 4.2 and Appendix 1 can 

be attributed to a realistic physical process. Outliers and instabilities are present and may 

be the result of narrow parameter ranges, sparse sampling in that area of parameter 

space or the nature of the output metric used. Further work should consider either denser 

sampling or undertaking field work to find physical, site-specific explanations of the 

instabilities and outliers.  

 

4.2.2.6 Sensitivity Assessment: Response Comparison Analysis 

The assessment in the previous sub-section was not able to accurately compare the 

sensitivity of each parameter because of the difference in parameter range magnitude 

relative to the base case value for each parameter. For example the degree-day 

parameter in Snowmelt Model 3 is varied between -100% to +66.6% of the base case 

whilst its radiation parameter is varied between -100% to +1566.7%. Therefore it was 

decided to re-assess parameter sensitivities by using standardised ranges of -50% to 

+100% relative to the base case value for each parameter. Twenty samples were 

systematically sampled from each range in order to maximise comparability. Each 

parameter realisation was then run and the same output metrics were calculated and 

compared to the base case run. The resultant response curves for each parameter were 

plotted on a graph (percentage parameter value change relative to base case on the x 

axis and percentage output metric change relative to base case on the y-axis) for each 

metric. The range (maximum y-axis value minus the minimum y-axis value) was then 
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calculated for each response curve enabling the parameters to be ranked in order of 

sensitivity (the greatest range being the most sensitive) for each metric. Those which were 

most sensitive were likely to contribute the most to model uncertainty.  

 

The results of this comparison analysis are shown below in Figure 4.3. They show that 

the temperature lapse rate parameter is the most sensitive for all snowmelt models and 

for both metrics which is then followed by the degree-day (degree-hour for Snowmelt 

Model 3) parameter. The precipitation lapse rate is the next most sensitive for the first two 

snowmelt models but it ranks after the solar radiation parameter in Snowmelt Model 3. 

The threshold melt temperature response curve is flat in the first two snowmelt models 

along with the rain-on-snow parameter in the second. This latter parameter is the least 

sensitive in the third snowmelt model but shows a slight response unlike its response in 

the second. 

 

It is realistic for the temperature lapse rate to be the most relatively sensitive parameter 

since it controls whether accumulation or melt processes are induced at a particular time 

step and location. Furthermore when a snowpack accumulates the temperature lapse rate 

impacts upon its vulnerability to melt especially at higher altitudes as a smaller 

temperature lapse rate is more likely to expose the snowpack to positive temperatures 

recorded at lower altitudes. Therefore because of the temperature lapse rate’s influence 

over the rest of the snowmelt and accumulation it is the most relatively sensitive 

parameter.  

 

On the above basis it would also be expected that the precipitation lapse rate would be a 

relatively sensitive parameter. It controls the rate of precipitation increase with altitude 

affecting the total amount of precipitation which accumulates in the snowpack and hence 

the amount that is available for melt. The response range however is less than that of the 

temperature lapse rate perhaps because rather than controlling which processes occur, it 

only affects the magnitude of them. Another explanation may be that the precipitation 

lapse rate is an order of magnitude lower than the temperature lapse rate. This means 

that the precipitation lapse rate is varied by an order of magnitude lower than the 

temperature lapse rate in this comparison analysis. However looking at the full range 

response curves from the two parameters from the previous section, the precipitation 
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Figure 4.3 Sensitivity assessment comparison analysis response curves for Snowmelt Model 1 (a), 2 (b) and 

3 (c). (i) refers to the Q5 metric and (ii) is the Q50 metric. The x-axis on each graph is percentage change in 

parameter value from the base case. Note: the rain-on-snow parameter in (a) is not discussed in this chapter 

or subsequently included. The Melt Factor parameter is another name for the Degree-Day parameter. 
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lapse rate only has a maximum response range of 18% whilst the temperature lapse rate 

has a response range of approximately 50%. Even when the parameter variation range is 

expanded the temperature lapse rate is still the more sensitive of the two. The 

temperature lapse rate therefore may be the more sensitive of the two because it controls 

which processes occur rather than solely their magnitude.   

 

The other parameters, all contained within the snowmelt equations, show that the degree-

day is the most sensitive, alongside solar radiation melt for Snowmelt Model 3, whilst the 

threshold melt temperature and rain-on-snow melt barely respond. These results are 

dependent upon how each process in each parameter is represented within the snowmelt 

equations. The degree-day parameter is of at least one order of magnitude greater than 

the other parameters meaning it produces some of the greatest potential snowmelt within 

the equations. Since it produces more melt it would be expected that the results from the 

equations are most sensitive to changes in this parameter. Unexpectedly the radiation 

coefficient in the third snowmelt model, which is two orders of magnitude lower, is almost 

equally sensitive. However in order to convert the amount of solar radiation received by 

the catchment into a realistic amount of melt a very small parameter value is required. 

Therefore the process this parameter represents actually produces an equal amount of 

melt to the positive degree-day process explaining why the two are almost equally 

sensitive. The rain-on-snow and threshold melt temperatures however are not relatively 

sensitive perhaps because the melt produced by the processes they represent is not very 

large. It was not yet possible however, to rule these parameters out from the calibration 

and uncertainty evaluation due to their apparent insensitivity as they may still have had 

significant interactive effects with other parameters in the snowmelt model.  

 

4.2.2.7 Sensitivity Assessment: Parameter Interactions 

Neither of the previous two OAT sensitivity assessments above were able to reveal the 

effects of parameter interactions which may have occurred throughout global model space 

(Jacques et al., 2006; Beven, 2009). OAT strategies may find minimal elementary effects 

in one parameter however this does not mean its role in output uncertainty is insignificant 

due to its potentially important interactions with other parameters. Furthermore the 

previous two strategies did not explore global multidimensional parameter space as fully 

as other methods. OAT is only able to explore a very small area of the global parameter 

space (Sulieman et al., 2009). Variance based methods such as Sobol’ variance 

decomposition (Sobol’, 2001) are able to account for parameter interactions by identifying 
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n-dimensional effects throughout a much more extensive global parameter space (Saltelli 

et al., 2006; Beven, 2009). However they are informed by n-dimensional Monte Carlo 

sampling which, as explained above, was not economical for this study. 

 

Instead parameter interactions can be assessed qualitatively over a global scale by 

creating a two-dimensional response contour where an apparently insensitive parameter 

identified from the previous analyses is simultaneously varied with a parameter with which 

it is conceptually expected to interact. The shape of the response contour can be used to 

qualitatively assess if parameter interactions are occurring (Kirkby et al., 1992). Latin 

Hypercube sampling was used to generate the parameter realisations which were inputted 

to the model. For each realisation the percentage change for each model output objective 

function was calculated. A response contour was then created by plotting an xyz graph 

where the x-axis and y-axis were the percentage changes in the parameter values from 

the base case and the z-axis was the percentage change in the output metric. However a 

problem was found with the Latin Hypercube sampling. If 15 samples were taken from 

each parameter range the first parameter’s first sample was then randomly paired to a 

sample from the second parameter. In this case the posterior distribution was unknown so 

each sample in the first parameter had an equal likelihood of being paired with any 

sample in the second parameter. This was rectified by creating a function which paired 

each sample within the first parameter to every sample in the second parameter. 

Therefore if 15 samples were created a total of 225 parameter realisations were 

generated. It was intended that the results of this analysis would be able to judge if an 

insensitive parameter identified from the previous two assessments actually could be 

eliminated from the subsequent calibration and uncertainty evaluation of the hydrological 

model (Chapter 6). 

 

It was decided to run this assessment firstly between the apparently insensitive threshold 

melt temperature parameter and the relatively sensitive degree-day parameter for 

Snowmelt Model 1. The two parameters were expected to interact since threshold melt 

temperature affects the amount of positive degree energy inputted into the degree-day 

melt equation. High threshold melt temperature values would be expected to interact with 

low degree-day melt values reducing the overall magnitude of melt water that is produced. 

If conclusive results were obtained from this initial assessment (Figure 4.4 below), then it 

was intended to extend it to other parameters and the other two snowmelt models. 
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The vertical lines in Figure 4.4 (a) demonstrate threshold temperature insensitivity up to a 

degree-day value of 0.15 mm day-1 0C-1. Before this, for a given degree-day value, a 

change in the threshold melt temperature resulted in a minimal change in the Q5 metric. 

Beyond this point on the x-axis the contour plot has an unusual shape where the contours 

become almost horizontal and unstable. This trend may be caused by the response 

sensitivity of the degree-day melt parameter becoming flatter as shown by the respective 

response curve in Appendix 1. The horizontal contours mean that changes in the degree-

day melt value do not effect changes in the objective function. However when the 

insensitivity of this parameter combines with that of the other it produces the unusual 

contour pattern that resulted in this study. 

 

The response contours of the Q50 response surface (Figure 4.4 (b)) show a diagonal 

pattern which qualitatively indicates interactions between the two parameters (Kirkby et 

al., 1992). The output metric decreases with higher threshold melt temperatures and low 

degree-day melt values whilst increasing when the opposite case is true. Interactions may 

be evident in this objective function and not the others because its values are of a much 

lower order of magnitude. The Q5 for example is five orders of magnitude greater than the 

Q50. Smaller analysis values mean that it is easier to detect small trends so interactions 

are present but may actually be insignificant. However it is difficult to assess how 

significant these interactions are in comparison to the other elementary and higher-order 

effects which are present in the model. 

 

It was not possible in the analysis above to ascertain whether an apparently insensitive 

parameter has significant higher-order interactions with other parameters. The qualitative 

nature of the analysis meant even though some interactions were found their significance 

could not be judged.  

 

Quantitative assessment methods such as Analysis of Variance (ANOVA) and Sobol’ 

linear decomposition (Sobol’, 2001) are able to judge both elementary and higher-order 

effects. The former quantifies the difference in mean model responses from samples of 

each parameter and decomposes it into elementary and secondary-order effects (Tang et 

al., 2007). 
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Sobol’ linear decomposition meanwhile, uses Monte-Carlo quasi-random sampling to 

calculate elementary and higher-order effects before comparing each against the total 

variance to ascertain its relative importance. The elementary effects, Vi of variations in 

parameter Xi  to model, Y are calculated as in Beven (2009): 

�> � ��D��x> ¡|£�¤F     (Eq. 4.7) 

Secondary effects, Vi,j with parameter, xj are then calculated as in Beven (2009): 

�>,� � ��> , ��D��x>�|¡|£>}F 
 �> 
 ��    (Eq. 4.8) 

Where Vj is the elementary sensitivity from parameter, xj. This process could be continued 

to find the nth-order sensitivity however the significance of these effects beyond the 

secondary-order is often negligible. For example, the ANOVA method only analyses up to 

the secondary-order. After all the elementary- and secondary-order effects have been 

calculated they are summarised to find the total model variance, V(Y) (Rosero et al., 

2010): 

��¡� � ∑ �> � ∑ ∑ �>,� � ∑ ∑ ∑ �>,�,Y�1¥¦2,X,…Y�Y�¨��¨>>�¨>>>       (Eq. 4.9) 

Where, kx represents additional parameters. Sensitivity indices, SI can then be calculated 

for each parameter’s elementary and higher-order effects: 

N4> � �>|��¡�       (Eq. 4.10) 

N4>,� � �>,�|��¡�          (Eq. 4.11) 

N4>,�U � N4> � N4� � N4>,�          (Eq. 4.12) 

Where, SIci,j  is the total effect of parameters xi and xj. All of the indices range from 0-1 

(Jacques et al., 2006) making it simpler to ascertain their relative significance. 

 

Previous research has shown that the Sobol’ linear decomposition provides more robust 

sensitivity rankings than ANOVA (Tang et al., 2007). However since it is informed by 

quasi-random Monte-Carlo sampling its computational cost is much higher than the other 

method. Since this study has no prior knowledge of each parameter’s posterior distribution 

many more runs would have to be undertaken before a representative sample of 

parameter realisations is achieved. It was decided not to proceed with either method due 
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to the reduced computational efficiency of the Sobol’ method and the lack of robustness in 

the results of the ANOVA method.   

 

4.2.3 Sensitivity Analysis Synthesis 

This analysis had the aims of testing the reality of the model output variability to changes 

in the input parameters and assessing which were the most sensitive. Altering each of the 

parameters one-at-a-time and assessing the changes in two output metrics showed that 

all of the resulting trends (Appendix 1) could be explained as being physically realistic. 

Comparing each parameter response curve on the same axis (Figure 4.3) showed that at 

least three parameters in each model were relatively sensitive in comparison to the 

others. It would be expected that parametric uncertainty would mostly arise from these 

three and will be assessed in the next chapter. However it was not possible to rule out 

apparently insensitive parameters from the next stage of analysis as it was not possible to 

use a method which could quantify each parameter’s elementary and higher-order effects 

relative to the others (Figure 4.4). 

 

4.3 Conclusions 

This chapter has described the construction and verification of a distributed model which 

can apply three different snowmelt models across a DEM of the study catchment and 

route the resulting snowmelt and rainfall as runoff to the outlet. Each of the snowmelt 

models used accounts for a different range of processes from a basic degree-day 

approach to an improved one that represents positive air temperature, short-wave solar 

radiation and rain-on-snow. The resulting model was then verified firstly by ensuring that 

water mass was conserved for each point in the catchment at each time step. Secondly, a 

sensitivity analysis was undertaken and concluded that the model behaved realistically in 

response to changes in its input parameters. It also identified sensitive parameters in each 

snowmelt model but was unable to confidently rule out any as being insensitive. The next 

chapter will apply this distributed model to analyse the effect climate change upon 

snowmelt hydrology in the study catchment.  
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5.1 Climate Change Modelling: UKCP09 

This chapter outlines how the distributed model developed in Chapter 4 was applied to the 

Dacre Beck using climate change scenarios in order to assess how snowmelt hydrology is 

likely to change in the future. Firstly (section 5.1), the methodology of deriving climate 

change projections for the UK will be reviewed. Then a suitable climate change scenario 

will be selected and hourly weather series for the catchment under this will be developed. 

The impact of this scenario upon climatological variables such as temperature, 

precipitation and snow accumulation will then be assessed (section 5.2) before applying 

the weather series to the model and analysing the impact upon snowmelt hydrology 

(section 5.3).  

 

The UK Climate Projections 2009 report (UKCP09 [Murphy et al., 2009]) provides the 

most recent projections of climate change within the UK applied across a 25x25 km grid 

for three different thirty-year periods (2010-2039 [2020s], 2040-2069 [2050s] and 2070-

2099 [2080s]). It forces the future climate using one of three emissions scenarios, low, 

medium and high which correspond respectively to the B1, A1B and A1FI scenarios in the 

IPCC Special Report on Emissions Scenarios (SRES (Nakicenovic et al., 2000)). The 

results from the UKCP09 are presented as probabilistic changes in climate variables. That 

is, a range of possible changes are presented based on uncertainties in the methodology 

due to natural variability, incomplete understanding of the climate system and future 

emissions (Murphy et al., 2009). A Bayesian statistical framework is then used to assign a 

likelihood to each possible outcome. The results of this process are then presented to the 

user as with a likelihood frequency assigned to each probabilistic projection for each 

climate variable. 

 

5.1.1 UKCP09 Methodology 

A summary of the methodology will be given in this sub-section however a more detailed 

explanation can be found in section 3.2 (page 49) of the UKCP09 projections report 

(Murphy et al., 2009). In deriving these probabilistic projections the UKCP09 had to firstly 

define the possible uncertainty space of the climate model and then assess the likelihood 

of a sample of points within that space. Uncertainty space was defined firstly according to 

incomplete representation of the climate system by the HadCM3 global climate model. 

Key process deficiencies within this model were identified within the ocean, sulphur and 

carbon cycle modules (Murphy et al., 2009). Sensitive parameters within these modules 
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were identified and prior likelihood distributions for each were defined. An ensemble of 

280 members was then sampled from these distributions. Uncertainties in the model’s 

response to changes in CO2 concentrations were then assessed by running each 

ensemble member, from the previous step, in the HadSM3 model (which is similar to 

HadCM3 but computationally less demanding due to its treatment of the ocean as a ‘slab’) 

with double the current CO2 concentration. The number of ensemble members run was 

insufficient to represent the entirety of the feasible parameter space so a statistical 

emulator (Rougier 2008) was trained on the results and run for many more ensemble 

members. This would enable integration over the entire parameter space allowing 

estimates of historical and future climate variables. The previous step gave uncertainty 

estimates of equilibrium climate change but uncertainties in transient changes over the 

21st century were assessed by running a 17 member perturbed physics ensemble 

sampled from the previous ensemble members. Each ensemble member was inputted to 

the HadCM3 model and driven by historical changes in greenhouse gas concentrations 

from 1860 to 2000 and by the A1B SRES scenario from 2000 to 2100. In order to 

integrate these results over the entire parameter space relationships between the 

transient and equilibrium (from the previous step) responses were developed using a 

timescaling method (Harris et al., 2006). This method involves normalising the regional 

climate equilibrium response and then scaling this by the transient response of the global 

average surface temperature (Harris et al., 2006). Additional uncertainties in earth system 

processes such as ocean transport and the sulphur cycle were included by re-running the 

perturbed physics ensemble including parameter cases sampled from the parameters of 

the respective processes.  

 

Probabilistic projections of equilibrium climate change to doubled CO2 were then 

estimated within a Bayesian framework which weighted the climate variables across the 

entire parameter space according to observed values as well as their associated errors. 

The latter reflects the likelihood that a given parameter case provides a representation of 

the system processes that is consistent with observations, this discrepancy was due to 

structural errors. The magnitude of discrepancy was assessed using a multi-climate model 

ensemble (Randall et al., 2007), where the emulator of the HadSM3 model was used to 

find the best multivariate fit between it and the multi-climate model ensemble member 

(which was assumed to represent the real world).  
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Thus far the UKCP09 methodology had worked at the 300x300 km resolution of the 

HadCM3 general circulation model (GCM). The probabilistic projections derived above 

needed downscaling to a finer resolution in order to be useful at the regional scale for 

which they were intended. A perturbed physics ensemble of 17 regional circulation model 

(RCM [25x25 km resolution]) variants were produced which sampled uncertainties in the 

effects of regional scale processes such as mountainous terrain. The parameters in each 

RCM ensemble corresponded to those in the perturbed physics ensemble of the GCM 

outlined above. Downscaling was then achieved by developing statistical relationships 

between changes simulated by the RCM and changes at the nearest GCM point (Wilby 

and Wigley, 1997; Wilby et al., 1998) for five separate time periods (1950-1979, 1980-

2009, 2010-2039, 2040-2069, 2070-2099, Murphy et al., 2009).  

 

The above methodology was able to account for the most significant uncertainties in 

projecting climate change and assign likelihoods distributed across the parameter space. 

The next stage was to apply the above Bayesian framework in order to produce the final 

probabilistic projections for a given SRES scenario. For example, using the A1B 

emissions scenario a Monte Carlo sample of 106 members of the parameter space is 

produced using the statistical emulator. This produces climate variables for the observed 

period and the projection time period under an equilibrium response to doubling CO2. An 

interim weight for each sample is calculated based on observed values for each climate 

variable. At this stage, uncertainties in the emulator, observations and model structure 

have been accounted for. A sub-sample of 25,000 members was then taken from the 

Monte Carlo sample using the interim weights to ensure a wide range of the parameter 

range is covered. Time-dependent climate changes for each sub-sample member were 

found by applying the timescaling technique, introduced above, and by forcing a simple 

climate model from 1860 to 2100 using historical and future forcing agents which are 

aspects of the climate, such as CO2 concentration, for which changes in these can feed 

through to change the overall climate. The forcing agents were sampled from the 

uncertainty ranges from the emulator, timescaling error and process representation. Final 

weights were then calculated for each sub-sample based on emulated values of present-

day climate and change indices for surface temperature. A further sub-sample of 10,000 

members was taken for each 300x300 km GCM grid square from the 25,000 sub-samples 

based on the ratio of final weights to interim weights. The climate variables in each grid 

square for each sub-sample member were then downscaled to the 25x25km RCM grid 

squares using the statistical relationships derived above.  
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To demonstrate the UKCP09 projections the above procedure was applied to the area 

that covered Dacre Beck using the medium emissions forcing scenario. The sampled 

probabilistic projections for the mean winter temperature and total winter precipitation 

were then presented as probability density functions {PDFs (Figure 5.1 [a] and [b])}. The 

PDF describes the relative likelihood for a random variable to occur at a point in the x-axis 

space. In this case it shows the likelihood of change (frequency [where a greater value 

means greater likelihood]) in the given climate variable being that at a given point in the 

space of possible change values. Interpreting the first graph shows that winters in the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1 Probabilistic projections from the UKCP09 report (Murphy et al., 2009) for (a) 

mean winter temperature and (b) winter precipitation for the 25x25 km RCM grid cell 

covering Dacre Beck. The probabilistic range is calculated using the method described in 
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area are likely to become warmer, with the greatest likelihood at 1.90C warming with 

increases of 0.30C and 4.10C representing the marginal likelihoods. Meanwhile, winter 

precipitation is most likely to increase by 13% with an increase of 40% and a decrease of      

-4.5% representing the marginal likelihoods. In terms of snowmelt this could mean more 

precipitation falling as rain and smaller snowpacks which potentially may increase the 

winter flow regime variability of Dacre Beck. However, this methodology can only produce 

projections of climate variables at a minimum of a monthly temporal resolution. Since this 

project is focused around daily and sub-daily flow variability it is necessary to obtain an 

understanding of climate change at a finer temporal resolution. Such an understanding 

can be made possible by using the UKCP09 Weather Generator. This can produce 

weather series at a daily and hourly resolution and will outlined in the next sub-section. 

 

5.1.2 UKCP09 Weather Generator 

The weather generator is a stochastic model that generates synthetic time series of 

rainfall, temperature, humidity, potential evapotranspiration and sunshine amount. It is 

stochastic in that the “state of the system at one time does not completely determine the 

state at the next time” (Jones et al., 2009). The generated time series are synthetic 

because they represent the characteristics of the climate system e.g. mean monthly 

rainfall, but are not a prediction of the time series that might be observed. In essence, the 

weather generator is intended to predict changes in the climate system characteristics 

rather than act as a deterministic forecasting tool of future climate series.   

 

 

 

 

 

 

 

 

 

 

 

Firstly the weather produces a 

stochastic time series of rainfall 

using the Neyman- Scott 

Rectangular Pulses (NSRP) 

approach (Cowpertwait et al., 

1996a). In this method (Figure 

5.2) storm origins are placed in the 

time series at a Poisson rate 

(Rodriguez-Iturbe et al., 1987). 

From each storm origin a random 

number of rain cells are generated 

(Cowpertwait et al.,  Figure 5.2 Schematic representation of the NSRP 

approach. Adapted from Jones (et al., 2009). 
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1996b). Each cell is independently displaced from the storm origin by distances 

exponentially distributed. The duration and intensity of each rain cell are exponentially 

distributed by two parameters. At any time step in the series the total intensity is given as 

the sum of intensities active at that point (Cowpertwait, 1991). This approach has been 

found to better represent observed characteristics including zero rainfall depth properties 

than others such as the Bartlett-Lewis model (Velghe et al., 1994; Onof et al., 2000). Each 

of the above parameters was varied on a monthly basis to allow for transient changes in 

the rainfall characteristics. The model was calibrated to observed rainfall statistics, mean 

rainfall rate and proportion of dry days for example, by adjusting each of the above 

parameters (the parameter affecting the number of rain cells was the average number of 

cells per storm) in an optimisation routine (Jones et al., 2009). Monthly rainfall statistics 

were obtained from the 5x5 km gridded dataset of the UK (Perry and Hollis, 2005) for the 

1961 to 1990 period. This dataset was generated from rainfall data from 4400 stations 

using a two-stage multiple regression where each monthly statistic was regressed with 

geographic factors followed by interpolation of the residuals (Perry and Hollis, 2005). The 

regression and interpolated surfaces were then added together to obtain the gridded 

datasets. The optimisation routine sampled the global parameter space, ran the model for 

each sample and assessed its goodness of fit using an objective function which calculated 

the differences between the observed and modelled rainfall statistics (Kilsby et al., 2007). 

Hence a value for each parameter was selected that enabled the model to accurately 

simulate observed rainfall statistics, yet the processes that each parameter invoked were 

random allowing the model to generate stochastic rainfall series.    

 

The other climate variables were then generated from the rainfall series using Inter-

Variable Relationships (IVRs) which relate rainfall statistics to those of each climate 

variable (Jones et al., 2009). The IVRs were derived using data from 115 weather stations 

distributed across the UK for the 1961-1995 period. Seasonal cycles of the mean and 

standard deviation from the climate variables were removed by subtracting the mean and 

dividing by the daily standard deviation. Deriving each IVR from rainfall in a conventional 

regression framework is not possible as rainfall is not always present (i.e. there may be 

sustained dry periods) yet the other climate variables still need calculating. This issue was 

solved by deriving each IVR for each of four rainfall transition states: dry day after dry day, 

wet day after dry day, dry day after wet day and wet day after wet day (Nicks and Harp, 

1980). Mean daily temperature, Ta and daily temperature range, Ri IVRs were modelled as 

first-order autoregressive processes (Jones et al., 2009): 
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�� � h2��x2 � ©2 � � ; �> � hX�>x2 � ©X � �   (Eq. 5.1) 

Where a and b are the regression coefficients and e is the correlation coefficients between 

Ta, Ri and Pr for each month and each rainfall transition state. The remaining variables 

(relative humidity and sunshine duration) were then determined through regression 

analyses with rainfall, mean daily temperature and daily temperature range. To ensure 

that the model accurately represented the climate variables other than rainfall during dry 

periods the model was fitted to the mean and standard deviation values for each variable 

for every half month for every rainfall transition state by adjusting the parameters in the 

regression analyses. It should be noted that stationarity in these IVRs is assumed for 

projections of future climate series.  

 

All of the weather statistics and IVRs from each of the 115 weather stations were then 

interpolated onto the 5x5 km rainfall dataset grid using topographic variables so allowing 

the weather generator generate time series which replicate small-scale (5x5 km) spatial 

variability. Finally, all the generated weather variables are converted into absolute values 

using adjusted means (including change factors) and standard deviations. Change 

factors, α are used to force the generated time series by the probabilistic climate change 

projections from the UKCP09 (see sub-section 5.1.1). They are applied for each month on 

a multiplicative basis for rainfall statistics and additive for the other climate variables 

(Jones et al., 2009). So, in the case of the former the change factor, άc would be applied 

in the following form: 

�«V� � �U�¬	          (Eq. 5.2) 

Meanwhile an additive change factor is applied in the form (Kilsby et al., 2007): 

�«V� � �¬	 � �U           (Eq. 5.3) 

 

As mentioned in Chapter 4 it was necessary to run the distributed snowmelt model at an 

hourly resolution hence the outputs from the UKCP09 weather generator needed to be at 

this resolution. The UKCP09 developed a methodology which enabled the weather 

generator to produce weather series at an hourly resolution. Firstly, rainfall was modelled 

using estimates of hourly observed statistics from 35 stations over the 1976-1995 period. 

The model could then generate hourly rainfall series using a combination of hourly and 

daily rainfall statistics, derived from the above methodology. The inclusion of daily 
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statistics enabled the subsequent parameterisation in the fitting to process to be 

constrained to physically realistic values (Jones et al., 2009). The other climate variables 

were then generated by deriving the IVRs at an hourly scale and interpolating to the     

5x5 km grid. Checks were then made to ensure that the hourly statistics when aggregated 

to a daily resolution were equal to those derived directly from daily observations.  

 

Before the weather generator is put to use in this study its limitations must be appreciated, 

a summary of them will be given here (see Chapter 5 of Jones et al., 2009 for a detailed 

discussion). Firstly its reliance upon IVRs means that it lacks a physical basis which 

restricts its accuracy in forecasting extreme events since these events often go beyond 

the range used to derive the IVRs. Projections of climate change anticipate extreme 

events to become more frequent in the UK such as convectional thunderstorms or hot dry 

spells. However, this project focuses upon winter where extreme climate events are not 

frequently observed and are not expected to change significantly (Murphy et al., 2009) so 

this limitation should not affect the results of this project. The methodology used to 

generate hourly data suffers from the assumption of stationarity between daily and hourly 

statistics. Such stationarity may not apply but no data is available to perturb the 

relationships. This project will account for this by projecting weather series at a future time 

period sufficiently close to the control period thus reducing any potential changes in these 

relationships.    

 

5.2 Climate Change Modelling: Dacre Beck 2050s Medium Emissions 

In order to begin answering the first research question posed in Chapter 1 (section 1.6) 

the UKCP09 weather generator was applied to the Dacre Beck. It was intended that the 

results from this process would show changes in winter climate variables that affect snow 

accumulation. Therefore it was hoped that this would enable preliminary hypotheses 

about potential changes in the winter hydrograph to be formulated.  

 

Firstly a future climate period and emissions scenario were selected, climate change 

would then be assessed according to these. It was decided to assess climate change in 

the 2050s (2040-2069) as this was sufficiently distant from present conditions making 

changes easier to detect yet not too distant so that the change factors were subject to 

high uncertainty. A medium emissions (A1B) scenario was selected as this represents the 

median emissions estimate within the weather generator, rather than the estimates of the 
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high and low scenarios. Next, the set of 5x5 km weather generator grid cells which overlay 

the Dacre Beck catchment were selected and the weather generator was run for 100 

randomly selected samples of the input parameters (including the change factors). This 

produced 100 30-year stochastic simulations of the baseline period and another 100 of 

the future scenario climate period. In each simulation, each of the 29 continuous winters 

(December to February) were isolated, then climate statistics which affected snow 

accumulation and melt were calculated. These statistics included mean winter 

temperature, the mean winter temperature at the highest altitude (calculated by applying a 

lapse rate equation to the mean winter temperature), total snow and rain accumulation, 

total sunshine hours and total direct solar radiation. The mean winter temperature and that 

at the highest altitude would give an indicator of the likelihood of snowfall during that 

season. It was expected that trends in temperature would influence trends in snow and 

rain accumulation. These statistics could then in turn be used to infer possible changes to 

winter hydrology, for example if rainfall increases then the hydrograph variability may 

increase (Chapter 1 section 1.4). Finally, by assessing total sunshine hours and direct 

solar radiation it may be possible to estimate changes in the solar radiation energy flux 

that is incorporated within the third snowmelt model used in this project (Hock, 1999; 

Chapter 4 section 4.1).  

 

After each statistic had been calculated for each continuous winter within a stochastic time 

series the mean of each statistic across the entire time series was calculated. For each 

statistic, this produced 100 hundred values for the baseline period and 100 hundred for 

the future scenario period. The future change for each temperature statistic was shown by 

plotting probability density functions (PDFs) of the baseline and scenario values which 

would demonstrate if the mean temperature exceeded the 00C threshold in a future 

climate. PDFs were calculated for each of the 100 values for each statistic for each time 

period using the mean and standard deviation of each value series. This assigned a 

likelihood frequency to each value enabling a preliminary assessment of uncertainty within 

the climate projections. Change in the other statistics was assessed firstly by calculating 

the percentage difference between the values in the baseline period and those in the 

scenario. PDFs of the percentage change for each statistic were then calculated and 

plotted using the same method described above.    
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5.2.1 Projections of Winter Temperature 

The graphs below show the weather generator projections of mean winter temperature 

throughout the whole catchment (Figure 5.3 (a)) and at the highest elevation (Figure 5.3 

(b)).  
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Figure 5.3 Probabilistic estimates of the mean winter temperature for the baseline (blue) and 

scenario (red) periods across the whole catchment (a) and at the highest elevation (b). 
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Results from the first graph (a) showed that mean winter temperatures across the 

catchment were most likely to increase by 1.7°C however there was a wide spread in 

uncertainty from a warming of 9.5°C to a cooling of 6.5°C. This spread was caused by the 

method of calculating the mean catchment temperature whereby at each time step the 

temperature from the weather generator was firstly spatialised across the catchment using 

a lapse rate equation. The large elevation range within the catchment (Chapter 2 section 

2.2) meant that temperatures at each time step across the catchment were highly 

variable. Hence when the mean temperature of all the values across the catchment at 

each time step was calculated it would have been subject to a large amount of elevation-

induced variability. Calculating the mean temperature across the whole catchment for 

every winter season in each time series therefore, would have meant a wider uncertainty 

spread due to the incorporation of both spatial and temporal variability.   

 

Projections from the second graph (b) for the scenario period showed a much narrower 

uncertainty spread as this assessed temperature change at one point in the catchment 

hence it was not subject to spatial variability. It showed that the mean winter temperature 

at the highest elevation (534 m) was most likely to increase from -1.75°C to 0.5°C. 

Furthermore the majority of the PDF curve lay above 0°C which meant that it was highly 

likely that a large number of winter days at the highest elevation in Dacre Beck would be 

above the freezing temperature.  

 

Consequently the above results implied that less snow was likely to accumulate within the 

catchment including the higher elevations. Therefore it was reasonable to hypothesise 

that more precipitation would fall as rain which would have consequences for the winter 

hydrology of the catchment. Changes in snow and rain accumulation were analysed in the 

next section in order to verify these preliminary conclusions.     

 

5.2.2 Projections of Winter Snow and Rain Accumulation 

From the above projections in winter temperature (Figure 5.3 (a) and (b)) it was 

anticipated that this would result in a decline in snow accumulation and an increase in rain 

accumulation. The accumulation of snow and rain was calculated firstly by summarising 

the amount of each within the catchment at each time step. A point in the catchment was 

assumed to contain snow fall if its temperature was lower than 0°C and the amount of 

precipitation falling was greater than 0 mm. Likewise, if precipitation at a point in the 
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catchment was greater than 0 mm and its temperature was greater than 0°C then rainfall 

was assumed to occur at that point. This enabled the sum of snowfall and rainfall across 

the catchment to be calculated at each time step (day). The sum of snow and rain 

accumulation for each winter within each stochastic time series was then calculated 

before the mean winter snow and rain accumulation across the time series was 

calculated. The percentage change in winter snow and rain accumulation were then 

calculated and plotted on the PDFs shown below (Figure 5.4). 

    

 

 

 

 

 

 

 

 

 

 

The above projections complimented those in the previous figure as they show that 

warmer temperatures by the 2050s will be accompanied by a decrease in snow 

accumulation and an increase in rain accumulation. A 49.5% decrease and a 57.0% 

increase were the most probable projections of changes in snow and rain accumulation 

respectively. As was expected, this showed that a decline in snow accumulation would be 

met with an increase in rain accumulation. The discrepancy between the decline in snow 

and increase in rain accumulation (the extra 7.5%) was caused by the increase in overall 

precipitation falling during the winter as forecast in the UKCP09 report (Figure 5.1 (b)). 

Uncertainty in the amount of precipitation change may also explain why the spread of 

results in the rain accumulation PDF is greater than in the snow accumulation PDF 

(Figure 5.4). Therefore the results above could be interpreted as suggesting that more 

precipitation would fall during the winter and that proportionally more of this would fall as 

rain. It would be expected therefore that if the weather generator had only been perturbed 

 

-100 -50 0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

Change in Precipitation Variable (%)

F
re

q
u

e
n
c
y

Change in Winter Total Rain and Snow Accumulation

 

 

Total Rainfall

Total Snowfall

 

Figure 5.4 Projections of percentage change in winter snow (red) and rain (blue) 

accumulation by the 2050s under a medium emissions scenario. 
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by changes in the temperature (as opposed to including precipitation perturbation), the 

decline in snow accumulation would have been matched by an equal increase in rain 

accumulation. The implications of the above results for the winter hydrology of Dacre Beck 

were expected to mean an increase in hydrograph variability. The decline in snow 

accumulation would have meant smaller snowpacks which in turn would have reduced 

their role in high flow attenuation and low flow supplementation.    

 

5.2.3 Projections of Winter Solar Radiation 

The weather generator produces daily values of sunshine hours and total direct solar 

radiation which is important for the solar radiation component contained within the third 

snowmelt model (Hock, 1999). The sum of total daily sunshine hours and direct solar 

radiation were calculated for each winter season within a time series and an average 

value across each time series was calculated. The percentage change for both variables 

was then calculated, in the same way as snow and rain accumulation before being plotted 

onto PDFs shown in Figure 5.5. 

  

 

 

 

 

 

 

 

 

 

 

 

The results (Figure 5.5) showed that the winter sum of both total sunshine hours and 

direct solar radiation were likely to increase by 70% and 20% respectively. This would 

 

-100 0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Change in Solar Radiation Variable (%)

F
re

q
u
e
n
c
y

Change in Winter Short Wave Solar Radiation

 

 

Total Direct Solar Radiation

Total Sunshine Hours

 

Figure 5.5 Projections of change in the winter sum of total direct solar radiation (blue) and 

total sunshine hours (red) for the 2050s period under a medium emissions scenario.  
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mean an increase in the solar radiation energy flux meaning that the smaller snowpacks 

which accumulate, in accordance with warmer temperatures (Figure 5.3 (a) and (b)), 

would melt more rapidly potentially increasing the variability of the hydrograph. However, 

the wide spread of results (550% and 500% for sunshine hours and direct solar radiation 

respectively) meant it was not possible to state a probable change in either variable. For 

example, the maximum probability frequency for both variables is of an order of 

magnitude of x10-3 (Figure 5.5). This wide spread of results could be due to a large 

amount of uncertainty within the change factors from the UKCP09 used to perturb the 

climate statistics in the weather generator. Therefore it was not possible to confidently 

state whether either solar radiation variable would increase or decrease.     

 

5.2.4 Dacre Beck Weather Generator Conclusions 

The application of the UKCP09 weather generator (Jones et al., 2009) to the Dacre Beck 

catchment showed that under a medium emissions scenario the mean winter temperature 

across the catchment will have warmed by approximately 1.7°C by the 2050s. Mean 

winter temperature at the highest altitude is likely to rise above 0°C which could reduce 

the number of days during the winter when snow is falling at any point in the catchment. 

This result was reinforced by the projection of a 49.5% decline in snow accumulation 

during the winter. In turn, rain accumulation was projected to increase by 57.0% through a 

combination of warmer temperatures partitioning more precipitation as rain and an overall 

increase in the amount of winter precipitation. It was not possible to obtain clear 

projections of the solar radiation flux which was most probably due to large uncertainty in 

the change factor by which the weather generator perturbed the relevant climate statistics. 

Overall, these results suggest that the snowmelt hydrology of the Dacre Beck may decline 

in significance in the future as smaller snowpacks accumulate and more precipitation is 

partitioned as rain. In order to assess the validity of this conclusion, the next section 

applied weather series from the weather generator to the distributed snowmelt model 

developed in the previous chapter.  

 

5.3 Application of the Distributed Snowmelt Model 

The results from the previous section allowed the formulation of the hypothesis that 

projected climate change would lead to increased winter hydrograph variability in Dacre 

Beck by the 2050s. This section aimed to test the validity of this hypothesis by applying 

the weather series to the distributed snowmelt model and analysing changes in the output 
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hydrograph. Firstly, the weather generator was run to produce 100 hourly series for the 

baseline and 2050s scenario periods for the same medium emissions scenario. Each 

weather series was then applied in turn to each snowmelt equation within the distributed 

snowmelt model. The snowmelt-only and snowmelt-rainfall hydrographs were extracted 

from each of the 29 continuous winters within each weather series. From these 

continuous winter periods the Q5 and Q50 were calculated for both hydrograph types. The 

percentage change in these statistics between the baseline and scenario periods were 

then calculated and plotted as PDFs for each snowmelt equation (Figure 5.6 and 5.7).  

 

 

 

 

 

 

 

 

 

 

 

 

The projections from the above figure suggested that high flows derived solely from 

snowmelt will decrease from between 15% for snowmelt model 2 to 40% for the third 

snowmelt model. The third snowmelt model projected the greatest decrease because it 

incorporates more energy fluxes than the other two. It accounts for positive degree air 

temperature, rain-on-snow melt and clear-sky direct solar radiation all of which are 

projected to increase by the 2050s (see previous section). For example, total direct solar 

radiation was projected to increase by 20% (Figure 5.5), albeit with a wide uncertainty 

range, which would mean an increase in the amount of snowmelt produced by the solar 

radiation flux within the third snowmelt model. The decrease of low probability 

exceedence snowmelt flows is consistent with the projection of warmer temperature and 

decreased snow accumulation (Figure 5.3 and 5.4 respectively) whereby smaller 

Figure 5.6 Projections of change in the winter Q5 of Dacre Beck by the 2050s under a 

medium emissions scenario from the snowmelt-only hydrograph (SO) and snowmelt and 

rainfall hydrograph (SR) for each of the three snowmelt equations in the distributed 

snowmelt model (SM1, SM2 and SM3). 
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snowpacks accumulate thus reducing the amount of melt water they can release. It would 

be reasonable however to expect the increases in the snowmelt energy fluxes, such as 

positive degree air temperature, to compensate for smaller snowpacks by producing more 

melt water per time step. For example, if the daily average temperature is projected to 

increase then more snow will be melted each day. What the above results (Figure 5.6) 

show however, is that the increases in these fluxes are insufficient to compensate for the 

decrease in snow accumulation. 

 

Results from the combined snowmelt-rainfall hydrographs (Figure 5.6 (SR)) meanwhile 

projected an increase in winter Q5 of 30% from all three snowmelt models. This increase 

could be due to the increase in winter rainfall (Figure 5.4) in light of warmer temperatures. 

When precipitation enters the catchment as rain it immediately begins to route towards the 

outlet (see Chapter 1), in the distributed snowmelt model it does this as surface runoff. 

Whereas when it falls as snow it is stored on the hill slope and releases melt water slowly. 

Therefore if the proportion of rainfall relative to snowfall increases (as projected in Figure 

5.4) it would be expected that more water will be delivered to the catchment outlet per 

time step hence high flows would be expected to increase.  

 

Projections from the third snowmelt model of winter Q5 for the combined snowmelt-rainfall 

hydrograph have a much wider spread of results (-40% to +130%) when compared to the 

other two snowmelt models (-5% to +65%) and hence a lower probability frequency 

across the range. This could be because the Q5 values were taken from the hourly 

hydrograph of the third snowmelt model but from the aggregated daily hydrograph of the 

other two. Typically, sub-daily hydrographs display greater variability than daily ones, for 

example in Dacre Beck the peak flow on December 3rd 2006 was 34.7 m3s-1 from a 15 

minute hydrograph yet after aggregation to a daily hydrograph the value became 19m3s-1 

(see Chapter 2 section 2.4). Therefore the hourly hydrograph from the third snowmelt 

model would have displayed greater variability than the other two snowmelt models hence 

the projections of Q5 would also have been subjected to this causing them to be spread 

across a wider range.  

 

The projections and PDFs of Q5 from the first and second snowmelt models are very 

similar for the combined snowmelt-rainfall hydrographs and are also reasonably similar in 

the snowmelt-only hydrographs. This could be due to the relative unimportance of the 
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inclusion of the rain-on-snow flux in the second model which is the only difference 

between the two. The parameter governing this flux was found to be relatively insensitive 

in the sensitivity analysis carried out in the previous chapter (Figure 4.3 (b)). Hence the 

small difference in results between the two models (Figure 5.6) may reinforce the results 

from the sensitivity analysis. An additional explanation for the similarity is that by including 

rainfall into the output hydrograph it overrides the differences between the snowmelt 

models. When the hydrographs were composed solely from snowmelt, subtle differences 

between each snowmelt model could be observed. However, when rainfall was included 

these differences became less detectable, the difference in the most probable change in 

Q5 was 5% between all three models whereas it was 25% when the hydrographs were 

composed solely from snowmelt. Therefore the similarity in the projections between the 

first and second snowmelt models are mostly probably the result of a combination of the 

two explanations outlined above.         

 

 

 

 

 

 

 

 

 

 

 

 

The projections of Q50 change (Figure 5.7) suggest a decrease in the snowmelt-only 

component for all three snowmelt models from 40% to 70%. This is consistent with the 

projection of decreased snow accumulation (Figure 5.4) as this will result in smaller 

snowpacks throughout winter which release smaller amounts of melt water. Therefore the 

winter snowmelt flow duration curve will consist of lower flows hence the flow at the 50th 

percentile will decrease. However the projections from the combined snowmelt-rainfall 

Figure 5.7 Projections of change in the winter Q50 of Dacre Beck by the 2050s under a 

medium emissions scenario from the snowmelt-only hydrograph (SO) and snowmelt and 

rainfall hydrograph (SR) for each of the three snowmelt equations in the distributed 

snowmelt model (SM1, SM2 and SM3). 
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hydrographs of the first two snowmelt models contradict the expectation that low flows will 

decrease as they exhibit a most probable increase of 40%. This could be due to the 

increase in winter precipitation (Figure 5.1 (b)) being coupled with an increase in the 

number of days of precipitation falling which would mean shorter dry periods so low flows 

would increase. However, analysis of the weather generator series showed that the 

number of days of precipitation falling during the winter was not projected to increase 

(Figure 5.8).    

 

 

 

 

 

 

 

 

 

 

 

 

 

This means that if snowmelt release is decreasing and the number of precipitation days is 

not increasing it would be expected that the Q50 of the combined snowmelt-rainfall 

hydrograph should decrease by the 2050s. Conceptually, it is possible that because more 

precipitation is falling the amount of water stored in the soil will increase thus enhancing 

low flow supplementation with soil water flow. However, since the processes of infiltration 

and soil water flow are not included within the distributed snowmelt model this does not 

explain the results found above. Instead it is likely that process deficiencies within the 

distributed snowmelt model are the cause. As mentioned above, the model does not 

account for the processes of infiltration and soil water flow as it routes all snowmelt and 

rainfall to the catchment outlet as surface runoff. This will be problematic during dry 
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Figure 5.8 Projections of change in number of winter precipitation days in Dacre 

Beck by the 2050s under a medium emissions scenario. 
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periods when, in reality, any snowmelt or rainfall that does enter the catchment would 

infiltrate very quickly. The infiltrated water would then be routed to the outlet through soil 

water flow which is much slower than surface runoff hence during the transit time the 

discharge at the outlet would continue to decline. In the case of the model however, any 

snowmelt or rainfall during dry periods is routed as surface runoff which would reach the 

outlet very quickly in comparison to soil water flow leading to an unrealistically large 

amount of low flow supplementation. Hence, when more precipitation falls as rain by the 

2050s more water reaches the outlet, even during relatively dry periods, thus low flows 

actually become higher. Interestingly however, the projections from the third snowmelt 

model show a wide spread of results centred on a change of 0%. As mentioned above, 

the wide spread of results is due to the hourly time step of this snowmelt model. The 

hourly time step of this snowmelt model may also explain why the most probable 

projection of change is almost negligible because at this resolution low rainfall and hence 

discharge values are very small. Hence, detecting changes in these small values is very 

difficult and can produce a wide range of results.  

 

Overall, running the distributed snowmelt model using stochastic weather simulations for 

the baseline and 2050s periods under a future medium emissions scenario showed that 

the role of snowmelt is likely to decline in its contribution towards both high and low flows. 

The projected increase in winter rainfall is likely to cause an increase in the magnitude of 

Q5 flows as well as in Q50 flows. However the poor process representation of the 

distributed snowmelt model jeopardises the validity of the Q50 results and needs further 

investigation.  

 

5.4 Climate Change Modelling Conclusions 

This chapter has shown that projected climate change is likely to see warmer and wetter 

winters in Dacre Beck by the 2050s under a medium emissions scenario which are likely 

to cause a reduction in snow accumulation and hence melt water production. Using these 

projections, the distributed snowmelt model found that winter snowmelt hydrology was 

likely to decrease. The model however was unable to assess the impacts of changes in 

snowmelt hydrology upon the winter flow regime due to its poor physical basis. It was 

decided therefore to incorporate each snowmelt model equation within a physically-based 

hydrological model and to re-perform the above analysis.  
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6.1 Hydrological Model Selection 

In Chapter 5 it was argued that there was a need to incorporate each of the snowmelt 

equations into a physically-based hydrological model in order to improve the process 

representation involved in the generation of high and low winter flows. Analysis of low 

flows produced from the distributed snowmelt model (Chapter 5) raised concerns on their 

validity due to the model treating all snowmelt and rainfall as runoff. Therefore, since the 

hydrological model developed by this project had poor process representation, it was 

decided to improve upon an existing physically-based hydrological model by incorporating 

each of the snowmelt equations. This chapter will firstly outline how a suitable existing 

hydrological model was chosen before outlining the changes that were made to it in order 

to enable the incorporation of snowmelt. The final part of this chapter will then calibrate 

the model output to an observed hydrograph and assess the uncertainty with explicit 

treatment of uncertainty from each of the snowmelt equations. This chapter therefore 

intended to create a physically-based hydrological model of Dacre Beck for which the 

climate change impacts upon winter high and low flows could be assessed using the 

same methodology as the previous chapter.  

 

There are a large number of hydrological models in existence, such as Topography Model 

(TopMODEL (Beven and Kirkby, 1979; Quinn et al., 1995; Beven, 1997)), Soil Water 

Assessment Tool (SWAT (Neitsch et al., 2005; Easton et al., 2008)), Systeme 

Hydrologique Europeén (SHE (Bathurst, 1986a;b and Abbott et al., 1986a;b), Probability 

Distributed Model (PDM (Moore and Clarke, 1981; Moore, 2007)) and the Connectivity 

Runoff Model (CRUM (Reaney et al., 2007; Lane et al., 2009)). In order to select the most 

suitable, each model was compared according to a set of criteria that reflected the 

requirements of this project. The criteria included that the model was physically based, 

that it had simple data requirements and its code structure was easily modified. By 

assessing each hydrological model using these criteria it was found that the CRUM 

(CRUM2D v3.1 (for original CRUM see Reaney et al., 2007, for CRUM2D v3.1 see Lane 

et al., 2009) was ideal for this project. Although it was initially conceptualised for hill-slope 

event-scale modelling of semi-arid catchments (Reaney et al., 2007) it has been used in 

the UK at a catchment-scale with successful results. For example, it was applied to the 

Upper Rye in North Yorkshire to characterise space-time patterns of overland flow 

connection (Lane et al., 2009). It is a physically based model; its process representation 

will be described in the next section. It also has minimal data and parameter input 

requirements with the intention that it could be applied to any UK catchment using national 

datasets (Lane et al., 2009). In terms of the former, it requires daily rainfall and minimum 
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and maximum temperature, all three of these are available in Dacre Beck. The CRUM 

code is structured using an object-oriented approach whereby each process is contained 

within a module making it easier to modify existing processes and add new ones (Reaney 

et al., 2007). Before the application and development, CRUM had no treatment of snow 

accumulation or melt so a new snow module needed to be created in order to incorporate 

the snowmelt equations.  

 

6.2 Connectivity RUnoff Model (CRUM)  

CRUM2D v3.1 is a fully-distributed, physically-based, object-oriented model which has 

been applied to hydrological modelling in the UK (Lane et al., 2009). Two of its founding 

facets were that it should use minimal input data and parameter sets which are available 

at any catchment within the UK and that its spatial representation of process description 

should be explicit (Lane et al., 2009). The latter facet means that the model is fully-

distributed (whereby the process equations are applied to each pixel within the DEM) 

which was originally intended to be useful in land management applications. However in 

this project the fully-distributed spatial representation of CRUM will allow for spatial 

variations in snowmelt due to the temperature lapse rate and catchment characteristics 

which affect solar radiation such as hill slope aspect and gradient. CRUM is physically-

based in that the equations used to represent the processes deal explicitly with the 

physical forces behind the processes as opposed to being empirically derived, such as the 

temperature-index snowmelt equations. The object-oriented structure of CRUM means 

that it deals with an object, in this case water, routing it through a series of modules which 

represent the various physical processes. A brief description of these processes is given 

below but a more detailed description can be found in Appendix A of Lane et al., (2009).  

 

The process modules are structured into four sections: weather, point hydrological 

processes, landscape and river channel network (Lane et al., 2009). The weather section 

uses three variables: rainfall, temperature and solar radiation to drive hydrological 

processes and vegetation growth for the first two variables respectively. Temperature is 

also used alongside solar radiation to calculate evapotranspiration rates, the latter is 

calculated using the same method outlined in Chapter 3 (section 3.2.1). The rainfall is 

downscaled to the per-minute scale in order for the model to capture the point 

hydrological processes, such as overland flow, which occur at this temporal resolution. A 

rainfall generator (based on Mulligan, 1996) is used that: reads daily rain depth, generates 

individual storm totals using a Monte Carlo model, generates per-minute rainfall intensities 
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using a Monte Carlo model which uses parameters from the observed data before finally 

placing the storms at random points in the day (Lane et al., 2009). The per-minute 

parameterisation is obtained from observed tipping-bucket rain data. Although such data 

does not exist within Dacre Beck previous testing of CRUM in Dacre Beck found that good 

results can be achieved if tipping-bucket data from within the North Yorkshire region was 

used (Pattison, 2010). Temperature data is also downscaled to this resolution using an 

equation in the weather generator which relates daily minimum and maximum air 

temperature to the current time of the day (Lane et al., 2009).  

 

  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

or transmission to the surface, Pt. The magnitude of evaporation is calculated from the 

Priestley-Taylor (Priestley and Taylor, 1972) equation of potential evapotranspiration. 

After the incorporation of snowmelt the sum of Pd and Pt will be partitioned either into 

rainfall, R or snowfall, S depending on whether the temperature is above or below 00C. A 

description of this incorporation is given in the next section. Currently however, the sum of 

Figure 6.1 Point and landscape hydrological process 

representation of CRUM2D v3.1 adapted from Reaney 

et al., (2007) before incorporation of snowmelt 

processes. See text for a definition of each term. 

The point hydrological processes are 

calculated for each spatial unit in the 
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description of these processes 

(Figure 6.1) will be given in this 

section, a more detailed, quantitative 
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equations is given in Appendix A of 

Lane et al., (2009). Firstly at each 

time step, precipitation, P enters a 

point and is divided between 
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Pd and Pt enters the surface depression store where runon, runoff from the point upslope, 

is added. The depth of this store is determined from the surface roughness and gradient 

(Kirkby et al., 2002; Lane et al., 2009). Water in this store can then infiltrate downwards 

into the soil matrix store, runoff laterally to the next cell or evaporate, E. The magnitude of 

evaporation from the vegetation and soil surface occurs at the potential rate determined 

from the Priestley-Taylor equation, the evaporation rate from the soil surface is reduced 

as a function of soil moisture. Infiltration is determined using a simplified equation of the 

Green and Ampt (1911) equation (Kirkby, 1975; 1985). Runoff is generated either through 

infiltration excess, saturation excess or return overland flow (Lane et al., 2009). Infiltration 

excess runoff generation occurs when the rainfall rate is greater than the current 

infiltration capacity of the soil (Dingman, 1994). Hence in this situation infiltration occurs at 

the maximum rate and the excess water becomes runoff. Saturation excess runoff 

generation occurs when the maximum water holding capacity of the soil store is reached 

as no additional water can enter the soil hence it becomes overland flow (Kirkby, 1978). 

Return flow is the process of through flow in the soil matrix store exceeding the storage 

capacity hence the excess overflows into the surface depression store.  

 

Water infiltrating into the soil matrix store is joined by through flow from the upslope cells 

and it can then exit the cell through transpiration T, evaporation E, through flow to the 

downslope cell and runoff generated by return flow. Evaporation and the transpiration are 

calculated from the Priestley-Taylor equation with the latter being related to the leaf area 

index of the vegetation, the rooting depth and amount of water available in the soil. 

Recharge is determined by the hydraulic conductivity at the base of the soil and the 

bedrock conductivity. Water is assumed to be lost through this process hence CRUM is 

not suitable for catchments with a significant groundwater component, such as those 

dominated by Carboniferous Limestone. Dacre Beck is dominated by igneous rocks 

(Chapter 2 Figure 2.10) and although some limestone is present it was not expected to 

significantly affect the hydrological processes within the catchment. Through- and hence 

return flow are calculated as part of the landscape processes section explained below.  

 

Landscape processes affect the lateral movement of water from the cell to the next one 

downslope via the processes of runoff and through flow.  In order to model through flow 

the soil layer is firstly divided into a dynamic layer which is the saturated zone and an 

overlying unsaturated zone. Through flow in the saturated zone is determined through 

Darcy’s law whilst the flow in the unsaturated zone is considered to be negligible. Runoff 
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is dealt with as being a combination of laminar, transitional and turbulent flows (Lane et 

al., 2009) so the Darcy-Weisbach equation is used to calculate its velocity into the next 

cell. The amount of runoff is divided between all downslope cells using the FD8 multiple 

flow direction algorithm (Quinn et al., 1991, see Chapter 2 section 2.5.1 for a description).  

 

Flow through the river channel network is modelled using the Muskingham-Cunge 

approach (Ponce and Lugo, 2001). Each river reach is associated with a landscape cell, 

at each time step flow enters the cell from overland flow, soil through flow and discharge 

from an upstream cell if there is a connection. The discharge from the cell is calculated as 

a function of the discharge at the previous time step and inflow at the current and previous 

time steps (Lane et al., 2009). 

 

6.3 Incorporation of Snowmelt into CRUM 

Each of the three snowmelt equations from Chapter 4 (Eqs. 4.2, 4.3 and 4.4) were 

incorporated into the CRUM2D v3.1 structure as shown in Figure 6.1. A new class called 

CSnow was created which lay below the canopy class and above the depression store 

class (Figure 6.1), each of the snowmelt equations were added into this new class. This 

meant that when a water object entered a cell in landscape it would still be subjected 

firstly to interception. The sum of Pd and Pt would then be inputted into the snow class as 

snowfall if the temperature at that landscape cell was lower than the threshold melt 

temperature thus allowing a snowpack to accumulate. If at the subsequent time step the 

temperature at that landscape cell was equal to or greater than the threshold melt 

temperature one of the three snowmelt equations would be applied to the accumulated 

snowpack within that cell. The resulting melt water would then be added to rainfall in that 

cell and would enter into the depression store. The variables that were required in the 

snowmelt equations, including temperature, rainfall and solar radiation were read in from 

the weather generator class (CWeatherG). Each of the parameters for each snowmelt 

equation were defined in the main parameter input file along with a setting which informed 

the model of which snowmelt equation to apply.  
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The temperature lapse rate 

equation was included into the 

weather generator class by 

creating a temperature modification 

grid which overlaid each landscape 

cell. Each cell value of the 

modification grid was calculated by 

subtracting the elevation of the 

weather observation station from 

the elevation of the respective 

landscape cell and then multiplying 

this by the temperature lapse rate. 

The temperature at the landscape 

cell can then be found by adding 

the temperature from the weather 

generator to the respective value 

from the modification grid. It was 

not necessary to add a 

precipitation lapse rate equation 

into CRUM as it already scaled 

precipitation depth with altitude 

using a spatially distributed scaling 

factor (Lane et al., 2009) obtained 

from spatial pattern maps such as 

those found in the Flood Estimation 

Handbook.   

 

The output mass balance of CRUM after the inclusion of these equations was assessed in 

order to verify that water mass was being conserved. A mass balance equation similar to 

that in Chapter 4 Eq. 4.5 was already contained within CRUM, using this it was found that 

CRUM was still successfully conserving mass. The assessment of the sensitivity of the 

parameters, including those of the snowmelt equations, as part of the calibration and 

uncertainty assessment process is outlined in the next section.  
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Figure 6.2 Point and landscape hydrological process 

representation of CRUM2D v3.1 adapted from Reaney 

et al., (2007) after incorporation of snowmelt processes 

(shown in blue). See text for a definition of each term. 
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6.4 Calibration, Uncertainty and Sensitivity Assessment 

6.4.1 Calibration and Optimisation 

Calibration is the process of adjusting the model inputs so that its outputs are a 

reasonably realistic representation of reality (Gupta et al., 1998). The need for the process 

was borne out of the realisation that no hydrological model is a perfect representation of 

reality (Beven, 2002). Instead, the processes that are included within a hydrological model 

are approximations of processes that occur at a finer spatial or temporal scale. In CRUM 

for example, soil water through flow in the soil profile is approximated by the kSat 

(saturated hydraulic conductivity) parameter. For a model that represents multiple 

processes, such as CRUM, there will be many parameters. A suitable value for any given 

parameter that best represents the wide variety of spatial and temporal conditions within 

the catchment must be chosen in order for the model to produce realistic results. 

Fieldwork could be undertaken to ascertain a realistic value for each parameter but it 

would be very difficult to carry this out at the spatial and temporal resolution that was 

required by the model. Furthermore, fieldwork is unable to deal with interactions between 

the different parameters as it derives a value for each in relative isolation. The most 

efficient method of finding suitable values for each parameter is through a computational 

optimisation routine where all of the model parameters are adjusted simultaneously until 

the optimal model output has been achieved.  

 

Firstly, in order to assess how good the model is at representing the physical system, it 

must be run for a calibration period. This is a period of time for which observed input, daily 

precipitation and minimum and maximum temperature, and output data, river discharge 

hydrograph are available. The model is then run using the input data in order to produce a 

modelled output discharge hydrograph which can be compared to the observed discharge 

hydrograph. The goodness of fit between the observed and modelled hydrographs can be 

quantified through an objective function which differs from the output metrics used in 

Chapter 4 (section 4.2.2.4) as it is intended to assess goodness of fit as well as sensitivity.  

 

The calibration period that is used must contain a wide range of catchment conditions in 

order to maximise the robustness of the analysis. Previous research found that the length 

of the calibration period was of secondary importance to the information contained within 

the period (Yapo et al., 1996). Juston et al., (2009) found that a calibration period of 

between 2 to 3 years contained sufficient information to robustly calibrate a hydrological 
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model. It was decided to use a calibration period from May 2007 to May 2009 as this 

would enable the analysis of two continuous winter seasons. The 2008/2009 winter was 

one of the coldest winters over the period for which the observed hydrograph was 

available whilst the 2007/2008 winter was relatively mild with 20mm less snowfall (see 

Table 2.1 in Chapter 2 section 2.4). It is therefore reasonable that this calibration period 

represents the range of winter conditions that the hydrological model would have to 

represent.  It should be noted that the model was actually run from January 2007 but the 

calibration analysis was only started in May 2007, this was to ensure that the model had 

accurate initial conditions.  

 

There are a number of objective functions available which can quantify the goodness of fit 

between a modelled and observed hydrograph. The most common of these within 

hydrological modelling is the efficiency statistic of Nash and Sutcliffe (1970): 

®N �  «̀ x«
«̀            (Eq. 6.1) 

T+ � ∑ �¯ 
 °̄�X�>±2      (Eq. 6.2) 

T � ∑ �¯² 
 ¯�X�>±2        (Eq. 6.3) 

Where q = observed discharge, q- = mean observed discharge and q’ = modelled 

discharge. This produces a result ranging from -∞ to +1 where negative values imply the 

model is of a poorer quality than a random number generator with the same mean as the 

observed flows and a positive result implies that it is better. This objective function was 

used in this calibration as it gave a clear indication as to the predictive quality of the model 

output and has been widely used in previous hydrological modelling studies (Lane et al., 

2009). However, because this objective function squared the difference between the 

observed and modelled discharge values (Eq. 6.3) the resulting statistic could be biased 

towards the prediction of higher flows. Since this project was concerned with both high 

and low flows another objective function was applied simultaneously. Lane and Richards 

(2001) suggest the relative mean absolute error (RMAE) as being a suitable objective 

function for the prediction of low flows: 

�!=� �  2
� ∑ �³x³²

³ ��>±2      (Eq. 6.4) 
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Where n is the number of predictions in the output time series. Therefore both objective 

functions were used in a multi-objective calibration procedure (Li et al., 2010). This would 

ensure that the parameter set which best modelled high and low flows would be found.  

 

Next, the parameters within CRUM that were to be adjusted along with those in the 

snowmelt equations were chosen. A sensitivity analysis similar to that in Chapter 4 

(section 4.2.2) could have been carried out to identify which ones were sensitive and 

hence which ones should be included within the calibration procedure. Previous work 

carried out in Dacre Beck found that the parameters listed in Table 6.1 were the most 

sensitive and was able to define their feasible ranges (Pattison, 2010).  

Parameter Minimum Base Case Maximum 

Saturated Hydraulic Conductivity 

(kSat), [ms
-1

] 
2 x10

-5
 2x10

-4
 2x10

-3
 

Hydraulic Conductivity Decay 

with Depth, (kDecay), [ms
-1

m
-1

] 
-1.00 -3.00 -7.00 

Root Layer Depth, (rootDepth), 

[m] 
5x10

-4
 5x10

-2
 0.10 

Root Layer Saturated Hydraulic 

Conductivity, (rootkSat), [ms
-1

] 
2 x10

-5
 9x10

-3
 2x10

-3
 

Soil Depth Channels, (SD 

Chan), [m] 
0.30 1.00 1.50 

Soil Depth Ridges, (SD Ridges), 

[m] 
0.35 0.80 1.50 

Soil Depth Slopes, (SD Slopes), 

[m] 
0.10 0.16 1.20 

Porosity, [Dimensionless] 0.05 0.20 0.80 

 

 

Automatic optimisation or hill-climbing algorithms were developed in order to find the 

optimal parameter set (Beven, 2002) within the total parameter space (outlined in Table 

6.1). These techniques operate within pre-defined ranges for each parameter and aim to 

Table 6.1 The hydrological parameters within CRUM that were included in the calibration 

process including their feasible ranges. 
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find the peak of the response curve for each 

parameter (Figure 6.2). In the idealised example in 

Figure 6.2 the hill-climbing technique would start at 

one of the tails of the response curve. The techniques 

would then generate a random sample from within the 

feasible parameter space. The model would then be 

run with the sampled parameter set and the change in 

the gradient of the objective function response curve 

would be assessed. The resulting response gradient 

informs the technique about where in parameter space 

to take the next sample in order to climb the response curve. When the peak of the 

response curve is found the technique has found the best parameter set. In reality the 

shape of the parameter response curve is not as simple as that in Figure 6.3 as there 

may be multiple local optima. Algorithms such as the Shuffled Complex Evolution (SCE 

(Duan et al., 1992)) have been developed to enable searches in parallel which allows 

global information about the response surface to be shared (Beven, 2002). However the 

concept of identifying an optimal parameter set does not provide any assessment of 

uncertainty within the modelling process as it assumes that only one single parameter set 

provides a good representation of the system being modelled. 

 

6.4.2 Uncertainty Sources 

Within any hydrological modelling study the results will be subjected to errors arising from 

different sources including input and calibration data errors, structural errors within the 

model and parametric uncertainty (Beven, 2002; McMillan et al., 2010). Each of these 

error and uncertainty sources combines to create predictive uncertainty in the model 

output. In this study, input data errors could arise from errors in the rainfall and 

temperature gauging. For example because the precipitation gauge is located at a low 

elevation within the catchment it is possible that it might not record every precipitation 

event. In catchments with a large elevation range some precipitation events can be 

confined to the higher elevations. Whilst a precipitation scaling factor is included within 

CRUM to account for the increase in precipitation with altitude, if the gauge fails to catch a 

precipitation event then this may propagate through to produce errors in the model output. 

Errors in the input data could be assessed by including data from neighbouring gauges 

however these gauges were found to be located at similarly low elevations. Furthermore 

the network of neighbouring gauges was sparse, the closest precipitation gauge was at 

Tirril located 4 km outside of the catchment. Therefore the incorporation of additional 

Figure 6.3 Conceptual response 

curve for a single model parameter 

 

 

Parameter 
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gauges would be unable to assess the uncertainty arising from the failure to catch 

localised precipitation events and was not included in this assessment.  

 

Errors in the calibration data relate to the observed discharge hydrograph series and can 

arise from the rating curve used to derive the discharge from stage measurements 

(McMillan et al., 2010) as in Dacre Beck (see Chapter 2 section 2.4). Uncertainties in the 

rating curve can result from errors in the measurement of stage and discharge, 

extrapolation of the curve beyond the maximum gauging and cross-section change due to 

vegetation growth or bed movement (McMillan et al., 2010). It was likely however that the 

errors associated with each component of the total rating curve error would be small. 

Errors in stage and discharge measurement can be caused by errors in the equipment 

however previous research found that these errors were only significant in extreme flows 

(above 100 m3s-1 (McMillan et al., 2010)) much greater than those in the Dacre Beck 

discharge record. In addition, the maximum discharge (14 m3s-1) during the calibration 

period chosen in this analysis did not exceed the maximum gauging value (26 m3s-1). 

Finally, vegetation growth and channel change were not expected to provide large 

sources of uncertainty as there was no vegetation in the channel and the cross section at 

the gauging station only had a very thin layer of sediment overlying the bedrock (see the 

picture of the gauging station cross-section in Chapter 2 Figure 2.3). Furthermore, 

previous studies which found channel change to be a significant uncertainty source 

focussed upon large braided channels such as the Wairau River in New Zealand 

(McMillan et al., 2010). These channels have very different geomorphological 

characteristics to the comparatively small channel at Dacre Beck. Therefore, uncertainty 

in the observed discharge data was not analysed as it was expected that, for the reasons 

explained above, it would not contribute a large amount to total uncertainty in this 

analysis.       

 

Structural errors arise from the conceptual process representation within a model. These 

represent the assumptions of the modeller as to the processes that are important within a 

catchment. However a different model set up by a different modeller is likely to account for 

different processes that are in line with what they perceive to be important. Both models 

may yield reasonable representations of reality so the structural errors are the differences 

between the outputs of the different realistic models. The structural errors of CRUM could 

be assessed by comparing its output with those of other hydrological models but there 

was insufficient time to set these up. Instead the structural errors of each snowmelt 
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equation within CRUM could be assessed by comparing their predicted output whilst 

holding their parameter values constant.  

 

Finally, parametric uncertainty occurs when multiple parameter sets produce realistic 

model outputs (Beven and Freer, 2001). The classical optimisation approach aimed to find 

the best single parameter set whilst rejecting all others. However there is no physical 

basis for rejecting a feasible parameter set that produces realistic model outputs. Instead, 

the optimum parameter set identified by classical optimisation routines is a product of the 

hill-climbing technique used. Therefore, when there are multiple parameter sets that 

produce realistic model outputs the uncertainty arises from how to estimate the physical 

system from the space of feasible parameter sets (Beven, 2006). This type of uncertainty 

led to the application of the theory of equifinality (Beven and Freer, 2001) and is one of 

the principles associated with the Generalised Likelihood Uncertainty Evaluation (GLUE) 

method discussed in the next section.  

 

6.4.3 Uncertainty Assessment 

This process aims to attach a probability to the modelled output resulting from a given set 

of inputs. For example, in order to account for parametric uncertainty a suite of randomly 

sampled parameter sets, Θ will be generated. Each parameter set, θ will be inputted into 

the model producing a time series of output predictions, q’ which in this case is discharge. 

The aim is then to assess the predictive uncertainty associated with this predicted time 

series by comparing it with observed data, q. In this project it was intended to assess 

parametric uncertainty within Θ and then to compute the banded uncertainty ranges. The 

parameter sets, θ which lay within this range would then be used as inputs to run the 

model with climate change data in the next chapter. The existing methodological 

approaches used to perform an assessment of modelling uncertainty are discussed 

below. 

 

The statistical theory of Bayesian inference has been widely used in uncertainty 

assessments of hydrological modelling. It is an extension of Bayes’ theory whereby 

observations, in this case the discharge series produced by the model, are assigned a 

probability that a hypothesis may be true. The hypothesis here is that the model with its 

given inputs such as θ gives a good representation of the hydrological system in question. 

Formal application of this theory assigns a probability distribution of predicted (modelled) 
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flows from a posterior distribution for a given set of inputs, θ (Romanowicz et al., 1994). 

The posterior distribution for a series of predicted discharge time series, P(θ|Y) is based 

upon the prior distribution of inputs, P(θ)  and a likelihood function, L(Y|θ) (Jin et al., 2010) 

��´|¡� � B�µ|¶�·�¶�
[ B�µ|¶�·�¶��¶ �P�¡|´���´�          (Eq. 6.5) 

A detailed description of how to implement this within hydrological modelling is given by 

Romanowicz et al., (1994) and Thiemann et al., (2001) but a brief explanation is given 

below. The prior distribution reflects existing knowledge of the system before the 

modelling of the catchment has begun. Previous work carried out in similar catchments 

may allow a prior distribution for an input parameter with a likelihood distribution similar to 

that in Figure 6.3 to be created. A suite of parameter sets is then randomly sampled from 

within the defined space of each parameter according to the prior distribution. The model 

is then run for each set within the suite, the likelihood function and hence posterior 

distribution is then calculated for each set before integrating across the entire suite as in 

Eq. 6.5. Concern has been raised that in many cases in hydrological modelling there is 

insufficient data to define a prior distribution without biasing the resulting posterior 

distribution (Beven and Young, 2003). Proponents of the methodology however suggest 

that the prior distribution is not meant to be interpreted literally (Mantovan et al., 2006). 

Instead, providing that a sufficient number of parameter sets are sampled, the method 

should be able to converge upon a stationary posterior distribution regardless of any initial 

bias from the prior distribution.  

 

The likelihood function is calculated from data produced from the hydrological model and 

combined with an error model to represent the errors arising from the structure and input 

data. In order to construct the error model the modeller must make prior assumptions 

about the shape of errors contained within the predicted series. For example Romanowicz 

et al., (1994) constructed the following error model:  

¸�. 
 \ � ∑ �>�¸�x>. 
 ¹� � º�·>±2             (Eq. 6.6) 

Where ή, άi and έt are parameters for the mean (which was assumed to be constant), 

autoregressive parameter series and the residual (assumed as normal white-noise error 

with variance σ2). Prior distribution information is required for each of these parameters 

hence to obtain the marginal posterior distribution for the input parameter set the joint 

posterior distribution must integrated with the error model parameters (Thiemann et al., 

2001). Other studies assume different error models, for example Jin et al., (2010) assume 
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a simpler error model based solely on έt, the model residuals, which previous work found 

worked better for models at a monthly time step (Xu, 2001). In the case of a monthly 

model the assumptions that the model residual errors: 1) had a mean of zero and constant 

variance, and 2) were mutually uncorrelated (Xu, 2001) were found to be valid. Hence this 

error model was appropriate for the study of Jin (et al., 2010) but would not necessarily be 

applicable to CRUM which operates at much shorter time steps (two minutes to six hours).  

 

Convergence upon the stationary posterior distribution can be achieved through a 

recursive inference whereby the posterior distribution is continually updated after a suite 

of runs (Freni and Mannina, 2010). For example a Monte Carlo Markov Chain algorithm 

(McMillan and Clark, 2009; Jin et al., 2010) starts from an initial parameter set and 

randomly generates new ones based on the prior distribution. The model is then run using 

these sets and the posterior distribution is calculated. The next set of parameter sets are 

then generated from the posterior distribution which is now treated as a prior distribution, 

the new posterior distribution recursively updates the previous one using Bayesian 

inference statistics (Thiemann et al., 2001).  

 

So far the paragraphs above have described convergence towards a posterior distribution 

for the parameter space. Once this has been achieved for both the hydrological and error 

model parameters the optimal point on the posterior distribution can be used to calculate 

the predictive uncertainty. Therefore taking the optimal parameter set, the associated 

predictive uncertainty can be calculated by (Romanowicz et al., 1994): 

��¸�. » ¸� � Φ ½ ¾x¿
À/D2x7AÂFÃÂ

Ä       (Eq. 6.7) 

Where άi
2 is the square of the autoregressive error in the parameter series.  

 

Overconditioning of the information contained within the data is a significant point of 

contention with the formal Bayesian methodology. For example, in selecting an error 

model assumptions about the nature of the errors are being made before any information 

specific to the model application is available. This in turn can potentially affect the final 

posterior distribution and the subsequent assessment of predictive uncertainty (Beven et 

al., 2007). Realistically in hydrological modelling studies there is often insufficient data 

available to reliably inform about the true nature of the errors within a model. The most 
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problematic assumption is one of stationarity in the errors when, realistically, the errors 

are likely to be non-stationary (Beven et al., 2007). Uncertainty in the error model 

however, combined with uncertainty in the structure of the hydrological model, is likely to 

give rise to equifinality (Freer et al., 1996). Therefore, instead of there being an optimal 

parameter set there may be multiple feasible sets that provide a good representation of 

the physical system (Beven and Freer, 2001; Beven, 2006). In response to this realisation 

the GLUE method (Beven and Binley, 1992) was developed to deal with multiple feasible 

(behavioural) parameter sets.   

 

The GLUE method was developed in response to the possibility of equifinality within 

parameter sets (Romanowicz and Beven, 2006). It is intended to be used when there is 

very little prior information available to the modeller about the nature of errors within the 

model (Beven and Young, 2003). It a less formal approach to uncertainty analysis as it 

applies fuzzy averaging procedures to subjectively defined objective functions (Jin et al., 

2010), which are in turn transformed into likelihood functions. To implement GLUE a 

feasible range for each parameter must be specified (Freer et al., 1996) from which a 

suite of parameter sets can be generated by either random or Latin Hypercube sampling. 

Next, an objective function that adequately represents the available information content in 

the observed and modelled data is defined, it is then incorporated into the likelihood 

function. Finally, an acceptance criterion for the chosen objective function is defined. All 

parameter sets which exceed it will be treated as behavioural ((are a good representation 

of the system) Figure 6.4) whilst all others will be rejected as being non-behavioural. In 

this sense the GLUE method uses dotty plots of the parameter space and a predefined 

criterion to select behavioural parameters, as shown in one-dimensional parameter space 

in Figure 6.4. This differs from the formal Bayesian method whereby a single optimal 

parameter set is selected by convergence upon the peak of the posterior distribution 

curve, such as the one-dimensional parameter curve in Figure 6.3. Upon identifying the 

behavioural parameter sets, GLUE then averages across behavioural parameter space by 

calculating the likelihood function between 0 and 1. The inclusion of all behavioural 

parameter sets in the averaging procedure allows GLUE to account for larger variance 

due to a non-additive error model (Romanowicz and Beven, 2006) as opposed to the 

formal approach which makes specific assumptions about variance from an error model. 

The averaging approach is an extension of the Hornberger-Spear-Young (HSY) sensitivity 

analysis (Spear and Hornberger, 1980; Hornberger and Spear, 1981) whereby parametric 

sensitivity is assessed by comparing the likelihood distributions of behavioural and non-

behavioural values. The resulting likelihood distribution presents the modeller with a 
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possibilistic range of predictive uncertainty as the bounds do not represent a true measure 

of predictive uncertainty as in the formal approach (Beven and Binley 1992).  

 

 

 

  

 

 

 

 

 

 

 

 

The inclusion of larger variance within the error model by GLUE has been criticised as 

introducing incoherence into the resulting posterior distribution (Mantovan et al., 2006). It 

has been argued that by forgoing the formal Bayesian inference approach GLUE has 

limited learning capabilities resulting in a less well defined posterior distribution (Mantovan 

et al., 2006). In essence, the criticism is that accounting for a wider variance through 

subjectively defined objective functions and averaging procedures does not mean GLUE 

is any more reasonable at defining predictive uncertainty (Gupta et al., 2003; Mantovan et 

al., 2007).  

 

Therefore, two established methods exist for quantifying predictive uncertainty. The first is 

a formal approach which requires many prior assumptions about the nature of errors 

within the model and may possibly lead to over-conditioning of the available information. 

The second is a less formal averaging approach which requires few formal assumptions 

instead requiring subjectively defined objective function criteria. The resulting likelihood 

distribution function from this approach is likely to be much wider and at the risk of being 

incoherent in that it over-estimates the predictive uncertainty range. In this project the only 
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Figure 6.4 Dotty plot of the temperature lapse rate parameter with a 

subjectively defined objective function criterion value of 0.65, red line. 

Each dot represents a single model simulation. 
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prior information available is the feasible range for each parameter. Furthermore the 

structural errors within CRUM are likely to have a complex structure due to the large 

number of physical processes it accounts for. To date there has been no work undertaken 

to assess the nature of the errors within CRUM therefore use of the formal approach in 

this project would need to make strong assumptions which may not hold true. The 

decision was taken therefore to assess predictive uncertainty using the GLUE method in 

light of the lack of prior information. The next section describes how it was implemented in 

this project. 

 

6.4.4 Implementation of the GLUE method 

The GLUE method is conventionally used to assess parametric uncertainty but it can also 

be applied to the assessment of other uncertainty sources including structural and data 

input (Beven and Binley, 1992). As mentioned in section 6.4.2 it was not possible to 

assess uncertainty in the boundary condition and calibration data due to a lack of 

information. It was also not possible to assess structural uncertainty within the CRUM 

structure as it was not possible to obtain a sufficient number of hydrological models which 

contained snowmelt or their source codes so that each of the snowmelt models could be 

added. Instead, it was decided to assess the structural uncertainty of each snowmelt 

equation that was added into CRUM. This would be achieved by holding the hydrological 

parameters constant and running the calibration period with each snowmelt equation 

using their respective base case parameter values identified in Chapter 4 Table 4.1.  

 

To ensure that the assessment of snowmelt structural uncertainty was realistic, the 

hydrological parameter set that was used had to be behavioural. This was achieved by 

undertaking an assessment of parametric uncertainty of the hydrological parameters in 

Table 6.1. It should be noted that the hydrological parameters were varied whilst using the 

first snowmelt model and holding its parameter values at the base case. It was believed 

that if the behavioural hydrological parameter sets were selected before the inclusion of 

snowmelt there may be a risk that these sets would no longer remain behavioural after the 

inclusion of snowmelt.   

 

Conventionally GLUE requires the model to be run with many thousands of parameter 

samples, for example Romanowicz and Beven (2006) ran TOPMODEL 10,000 times for 

an evaluation period of three months at a twenty minute resolution. This project however 
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had a calibration period of two years and the time step of CRUM could range from two 

minutes to six hours which meant that the duration of each run was never lower than three 

hours. Consequently it was not possible to take this many samples, especially since 

further sampling was required later in this uncertainty assessment, so a more efficient 

sampling strategy was sought. Firstly the mass balance of water components, water flow 

to channels and water lost to evaporation and recharge, within CRUM were calibrated to 

the data available in the UK hydrometric register (Marsh and Hannaford, 2008). This 

register provided a list of summary flow statistics from the gauging stations run by the 

Centre for Ecology and Hydrology (CEH). Among these statistics is mean annual rainfall 

and mean annual runoff, the latter being the total amount of water in the river channel. 

These statistics were used as a measure of the ratio between total water inputted into the 

catchment as precipitation and the total amount of water exiting the catchment in the 

channel. Data was not available for the Dacre Beck (as the gauge is operated by the 

Environment Agency rather than the CEH) so data from the gauge at Pooley Bridge,     

1.5 km south-east of the catchment was used instead which gave a precipitation to runoff 

ratio of 77%. The parameters in CRUM that affected the amount of water lost to 

evaporation and recharge, albedo and bedrock conductivity respectively, were adjusted 

until the modelled rainfall to runoff ratio matched that of the observed data (the final 

values were 0.25 and 2.5x10-9 (ms-1) respectively).  

 

After the correct mass balance had been achieved a narrower range within the 

hydrological parameters had to be identified in order to justify taking fewer samples. This 

was done firstly by creating 20 parameter sets from within the total feasible parameter 

space and running the model for each of these and assessing the output using both 

objective functions outlined in section 6.4.1. This provided an estimate of where in the 

parameter space most of the behavioural runs would be situated. From this, a further 20 

parameter sets were generated from within this narrower range. The outputs from these 

were assessed and it was confirmed that better results were obtained from this narrower 

range, for example the Nash-Sutcliffe objective function ranged from 0.4 to 0.49 in this 

range compared to -0.1 to 0.45 from the total range. However, this method slightly 

contradicted the conventional application of GLUE as it involved convergence towards an 

optimal point in the parameter space meaning it would ignore potentially behavioural runs 

outside of this narrower range. However, in doing so this method may actually introduce a 

preliminary yet subjective form of statistical inference whereby it concentrates the 

sampling into an area of the parameter space which will have a high density of 

behavioural runs.  
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Next, 1000 parameter samples were generated from the narrower ranges outlined in 

Table 6.2. A uniform distribution was assumed for each parameter and the samples were 

randomly generated using a Mersenne Twister routine (Matsumoto and Nishimura, 1998). 

The model was run for each parameter sample and behavioural runs were identified as 

having a Nash-Sutcliffe value greater than 0.65 and an RMAE value between -0.05 and 

+0.05. Ideally, structural uncertainty would have been assessed by running the base case 

snowmelt equation parameter set with each behavioural hydrological parameter set. 

Preliminary testing however had shown that the difference between the three snowmelt 

models was very small so it was decided not to dedicate a large amount of the available 

computer resources to this assessment. Instead it was decided to run each snowmelt 

model with one behavioural hydrological parameter set, which was chosen at random and 

held constant for the subsequent simulations. The uncertainty within the modelled 

calibration discharge series due to the snowmelt models was then assessed by plotting 

the minimum and maximum discharge values at each time step. If there was a large 

amount of structural uncertainty then this range would be large and clearly visible on the 

graph.  

Parameter Minimum Maximum 

Saturated Hydraulic Conductivity 

(kSat), [ms
-1

] 
5 x10

-5
 9x10

-4
 

Hydraulic Conductivity Decay 

with Depth, (kDecay), [ms
-1

m
-1

] 
-2.00 -5.00 

Root Layer Depth, (rootDepth), 

[m] 
5x10

-4
 0.07 

Root Layer Saturated Hydraulic 

Conductivity, (rootkSat), [ms
-1

] 
5 x10

-4
 9x10

-3
 

Soil Depth Channels, (SD Chan), 

[m] 
0.75 1.20 

Soil Depth Ridges, (SD Ridges), 

[m] 
0.50 1.20 

Soil Depth Slopes, (SD Slopes), 

[m] 
0.08 0.80 

Porosity, [Dimensionless] 0.10 0.30 

Table 6.2 The hydrological parameters within CRUM after the identification of 

narrower ranges. 
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By comparing the uncertainty associated with the hydrological parameters and the 

uncertainty associated with the parameters of each snowmelt model it was possible to 

assess the parametric uncertainty within CRUM and each snowmelt model. The 

behavioural hydrological parameter sets identified in the procedure outlined above were 

used to assess hydrological parametric uncertainty. The single hydrological parameter set 

mentioned above was used alongside 300 snowmelt parameter sets for each snowmelt 

model. Fewer samples were taken than when the hydrological parameters were varied 

because there were only three to four parameters being investigated hence the size of the 

total parameter space was much smaller. The snowmelt parameter sets were randomly 

generated from the ranges outlined in column two of Table 4.1 in Chapter 4. Behavioural 

sets were identified using the same criteria as above, then for each behavioural set the 

winter Q5 and Q95 was calculated before a PDF was plotted for each snowmelt model. 

This would allow for a comparison of the uncertainty associated with the snowmelt 

parameters, a wide spread of results would indicate a large amount of uncertainty. The Q5 

and Q95 from the behavioural parameter sets of the hydrological parameters calculated in 

the previous paragraph were then added to the respective plots to allow a comparison 

between uncertainty from the snowmelt and hydrological parameters. 

 

Finally the combined parametric uncertainty of the hydrological and snowmelt parameters 

was assessed by simultaneously varying both. For each snowmelt model 1000 parameter 

sets were generated and the Q5 and Q95 were calculated from each behavioural 

parameter set and plotted as a PDF as above. If the snowmelt models contributed very 

little towards the total parametric uncertainty the PDFs would be identical. The results 

from this process could be explained by analysing the sensitivity of the individual 

snowmelt parameters using the HSY method (Spear and Hornberger, 1980). For each 

parameter in each snowmelt model the cumulative distributions of the values from the 

behavioural and non-behavioural runs were calculated. If the two distributions were 

significantly different then this would indicate that the parameter in question was sensitive. 

The significance of the difference was assessed using a two-sample Kolmogorov-Smirnov 

test at a 95% confidence level.  

 

6.4.5 Uncertainty Assessment Results: Structural Uncertainty 

The results from adjusting hydrological parameters (Figure 6.5) show a generally good fit 

to the observed hydrograph in terms of the timing of the peaks and the decay to lower 

flows. All the behavioural runs failed to represent the peaks observed in June of the 
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second year because the soil was too dry. Since this project was interested in the winter 

hydrograph it was decided to accept this error as it did not affect the winter flow 

predictions. Winter flows were generally modelled quite well however the peaks were 

consistently under-estimated. It was hypothesised that this might be due errors within the 

precipitation data where the gauge may have missed or under-caught precipitation events 

due to it being at a low elevation in the catchment. Consequently CRUM would have 

inputted less water into the catchment resulting in lower flows than were actually 

observed. The spread of uncertainty in the modelled flow was found to be quite small 

when compared to the uncertainty range calculated in previous applications of CRUM 

(Lane et al., 2009). This could be because the parameter samples were generated from a 

much smaller range which constrains the uncertainty in the behavioural runs.  

 

Assessment of structural uncertainty (Figure 6.6) found that the uncertainty contributed to 

the CRUM output from the snowmelt models was very small. The structural uncertainty 

bounds in the modelled hydrograph were very small and hardly visible in the resulting 

hydrograph. Plotting a scatter graph of the difference between the three modelled 

hydrographs at each time step (Figure 6.7) showed that the greatest differences were 

during peak flows in the winter especially the first winter. These differences probably 

occurred during large snowmelt events which would exacerbate differences between the 

snowmelt models. The differences may be larger in the first winter because there was 

more water in the catchment which would have resulted in larger snowpacks thus 

increasing the differences between the snowmelt models. Modelled discharge in the first 

winter is higher than the second supporting the idea that more water was in the catchment 

during this time hence any snowpacks that would have accumulated would have been 

larger. Overall these results showed that there was structural uncertainty within the 

snowmelt models but the contribution of this to total uncertainty in the CRUM discharge 

series was very small.   

 



1
3

2
 

 

 

M
J

J
A

S
O

N
D

J
F

M
A

M
J

J
A

S
O

N
D

J
F

M
A

M
048

1
2

1
6

2
0

M
o
n

th

Discharge (m
3
/s)

H
y
d

ro
lo

g
ic

a
l 
P

a
ra

m
e

tr
ic

 U
n
c
e

rt
a
in

ty

 

 

M
J

J
A

S
O

N
D

J
F

M
A

M
J

J
A

S
O

N
D

J
F

M
A

M

0 4
0

8
0

1
2

0

1
6

0

2
0

0

Daily Rainfall (mm)

M
o
d

e
ll
e
d

 U
n

c
e
rt

a
in

ty

M
o
d

e
ll
e
d

 (
B

e
s
t 

R
u

n
)

O
b

s
e
rv

e
d

P
re

c
ip

it
a
ti
o
n

F
ig

u
re

 6
.5

 T
h
e
 m

o
d
e
lle

d
 h

y
d

ro
g
ra

p
h
 (

b
lu

e
 l
in

e
),

 u
s
e
d

 i
n
 t

h
e
 s

tr
u
c
tu

ra
l 
u

n
c
e
rt

a
in

ty
 a

s
s
e
s
s
m

e
n
t,
 g

e
n

e
ra

te
d

 f
ro

m
 t
h
e
 i
n
it
ia

l 
a
s
s
e
s
s
m

e
n
t 

o
f 

h
y
d
ro

lo
g

ic
a
l 
u
n
c
e
rt

a
in

ty
 p

lo
tt

e
d
 w

it
h
 t
h

e
 p

o
s
s
ib

ili
s
ti
c
 p

re
d
ic

ti
v
e
 u

n
c
e
rt

a
in

ty
 b

a
n
d

s
 f

ro
m

 a
ll 

th
e
 b

e
h

a
v
io

u
ra

l 
ru

n
s
 (

s
h
a
d
e

d
 b

lu
e

 a
re

a
) 

p
lo

tt
e
d
 a

g
a

in
s
t 
th

e
 o

b
s
e
rv

e
d
 h

y
d
ro

g
ra

p
h
 (

d
a
s
h
e
d

 r
e
d

 l
in

e
) 

a
n

d
 o

b
s
e
rv

e
d
 p

re
c
ip

it
a
ti
o
n
 (

g
re

e
n
 l
in

e
).

  



1
3

3
 

   

 

M
J

J
A

S
O

N
D

J
F

M
A

M
J

J
A

S
O

N
D

J
F

M
A

M
02468

1
0

1
2

1
4

1
6

M
o
n

th

Discharge (m
3
/s)

S
n

o
w

m
e
lt
 S

tr
u

c
tu

ra
l 
U

n
c
e
rt

a
in

ty

 

 

S
M

 S
tr

u
c
tu

ra
l 
U

n
c
e
rt

a
in

ty

M
o
d

e
ll
e
d

 (
M

e
a
n

)

O
b

s
e
rv

e
d

F
ig

u
re

 6
.6

 S
tr

u
c
tu

ra
l 
u
n
c
e
rt

a
in

ty
 f

ro
m

 t
h
e
 s

n
o

w
m

e
lt
 m

o
d
e

ls
. 
A

t 
e
a
c
h
 t

im
e
 s

te
p
 t
h

e
 m

e
a
n
 m

o
d
e
lle

d
 (

b
lu

e
 l
in

e
) 

a
n
d
 m

o
d
e
lle

d
 

u
n
c
e
rt

a
in

ty
 (

s
h
a
d

e
d
 b

lu
e
) 

is
 p

lo
tt

e
d
 a

lo
n
g
s
id

e
 t

h
e
 o

b
s
e
rv

e
d

 (
d
a
s
h
e

d
 r

e
d

 l
in

e
).

  
 



134 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.6 Uncertainty Assessment Results: Parametric Uncertainty 

The parametric uncertainty of the snowmelt model parameters was found to be small in 

comparison to the uncertainty associated with the hydrological parameters contained 

within CRUM (Figure 6.8 (a) and (b)). The spread of winter Q5 resulting from the 

snowmelt parameters ranged from 3.68 m3s-1 to 3.74 m3s-1 whilst the spread from the 

hydrological parameters was from 3.47 m3s-1 to 3.85 m3s-1. Meanwhile, for Q95 the range 

spread from 0.219 m3s-1 to 0.221 m3s-1 for the snowmelt parameters and from 0.165 m3s-1 

to 0.254 m3s-1 for the hydrological parameters. The smaller uncertainty range of the 

snowmelt parameters may be because snowmelt processes only occur intermittently 

during the winter period in Dacre Beck.  Consequently their contribution to discharge is 

smaller than other hydrological processes that occur throughout the period such as 

through flow. The Q95 PDF curves are very similar for each snowmelt model but 

differences in the Q5 curves highlight structural uncertainty. The curves Q5 PDF curves of 

the first two snowmelt models are very similar as they both treat positive degree air 

temperature in the same way (Chapter 4, Eqs. 4.2 and 4.3). Their similarity may also 

suggest that the additional rain-on-snow process in the second snowmelt model 

contributes very little towards the output hydrograph. Conversely, the third snowmelt       
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Figure 6.7 Snowmelt structural uncertainty shown by plotting the differences 

between the three modelled discharge at each time step. 
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Figure 6.8 PDF curves of parametric uncertainty arising from the parameters within 

each snowmelt model (SM1, SM2, and SM3) and the hydrological only parameters for 

the winter (a) Q5 and (b) Q95 flows. 
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model treats positive degree temperature differently and includes a solar radiation process 

(Chapter 4 Eq. 4.4). In dealing with positive air temperature the third snowmelt model 

divides the degree-hour parameter by the reciprocal of the number of time steps per day 

which reduces the value to an order of magnitude lower than the other two snowmelt 

models. As a result this reduces the amount of snowmelt produced by this process and 

hence the uncertainty range associated with this. If there was a large amount of 

uncertainty associated with the solar radiation parameter then this would be expected the 

re-broaden the Q5 PDF of the third snowmelt model. However, because its PDF curve is 

so narrow it is likely that the uncertainty associated with this parameter is very small. 

Analysis of the sensitivity of the individual parameters in the next paragraph would be able 

to confirm whether this was the case.   

 

Simultaneously varying the snowmelt and hydrological parameters, as expected, did not 

increase the uncertainty range of the Q5 and Q95 flow predictions by a large amount 

when compared to the uncertainty range from the hydrological parameters alone (Figure 

6.9 (a) and (b)). For example, the uncertainty range of the Q5 prediction increased from 

0.57 m3s-1 to 0.78 m3s-1 after the inclusion of the third snowmelt model. The increase in 

the uncertainty range was smaller for the first and second snowmelt models which 

contradicted the results from Figure 6.8 (a). This had suggested that uncertainty from the 

third snowmelt model was smaller than the other two. The most likely explanation for this 

is that the wider spread in uncertainty was actually due to uncertainty in the hydrological 

parameters as new hydrological parameter samples were generated for each snowmelt 

model. This would suggest that the 1000 parameter samples used to create the 

hydrological only PDF were not enough to create a stationary uncertainty response curve. 

The solution therefore, would be to take more samples of the hydrological parameters, 

evaluate these and then attach the same parameter samples for each snowmelt model 

and evaluate their combined uncertainty. Using this method would firstly enable a more 

accurate quantification of the uncertainty range in the hydrological parameters. Then it 

would be able to evaluate the additional uncertainty contributed by the snowmelt 

parameters without reflecting additional uncertainty in the hydrological parameters. 

Results from the Q95 PDF curves (Figure 6.9 (b)) show a similar trend whereby the 

addition of snowmelt only increased the uncertainty range by a small amount. Snowmelt 

model one showed a larger uncertainty range than the other two when it would have been 

expected to have a similar range to the second as in Figure 6.8 (b)). Again this could be 

due to the same reason that led to the anomalous Q5 PDF curve of the third snowmelt 

model.  
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Figure 6.9 PDFs of parametric uncertainty arising from a combination of the snowmelt and 

hydrological parameters for each snowmelt model (SM1, SM2 and SM3) and the 

hydrological parameters only for the winter (a) Q5 and (b) Q95 flows. 
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None of the snowmelt model parameters were found to contribute to output sensitivity 

which explained why the addition of snowmelt added little to the uncertainty range of the 

winter Q5 and Q95 flow predictions. Instead, the most sensitive parameters were the 

saturated hydraulic conductivity, slope soil depth and porosity of the soil. The relative 

sensitivity of each snowmelt parameter to each other largely agreed with the results of the 

sensitivity analysis in Chapter 4 (Figure 4.2). For example, in the first snowmelt model the 

sensitivity analysis in Chapter 4 found that the temperature lapse rate was the most 

sensitive of the snowmelt parameters followed by the degree-day parameter and then the 

threshold melt temperature. The HSY response curves calculated in this chapter reflect 

these findings (Figure 6.10) as the differences in the behavioural and non-behavioural 

distributions of the temperature lapse rate were slightly greater than the differences in the 

degree-day parameter. Meanwhile the behavioural and non-behavioural distributions of 

the threshold melt parameter were very similar reflecting the insensitivity of this parameter 

and confirming the flat response curve for the same parameter in Figure 4.2 (a[ii])).  

 

The sensitivity curves for the parameters of the second snowmelt model (Figure 6.11) 

again largely agree with the results in Figure 4.2 (b). They showed that the temperature 

lapse rate was the most sensitive and that the threshold melt temperature was the least 

sensitive. However, unlike the results in the first sensitivity analysis the degree-day 

parameter was very insensitive whilst the rain-on-snow parameter showed greater 

sensitivity. This was unexpected as the results from Figure 6.8 appeared to imply that the 

rain-on-snow component of the second snowmelt model was fairly unimportant in 

contributing to output uncertainty. It was expected that the degree-day parameter in the 

second snowmelt model would have a similar sensitivity to that in the first as they both 

treat positive air temperature in the same way.  
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The sensitivity response curves of the third snowmelt model parameters (Figure 6.12) 

were also similar to those of the second snowmelt model (Figure 6.11). The temperature 

lapse rate was the most sensitive parameter followed by rain-on-snow with degree-hour 

being insensitive. Temperature lapse rate was also found to be the most sensitive in the 

first sensitivity analysis (Chapter 4 Figure 4.2 (c)). The insensitivity of the degree-day 

parameter slightly contradicted the findings of the first analysis but can be explained 

because of the multiplication of the parameter by the reciprocal of the number of time 

steps per day (Chapter 4 Eq. 4.4). The distributed snowmelt model had fewer time steps 

per day (24) than CRUM (180) so the latter would have multiplied the degree-day 

parameter by a smaller number resulting in less snowmelt from positive air temperature. 

Consequently this would reduce the importance of this parameter which would explain the 

narrower uncertainty band associated with this snowmelt model (Figure 6.8). Rain-on-

snow was found to be insensitive in the first sensitivity analysis, the result to the contrary 

in this chapter may also be due to structural differences between the distributed snowmelt 

model and CRUM. As mentioned above this would have significantly reduced the 

magnitude of the positive degree snowmelt process but the same downscaling was not 

applied to the rain-on-snow process which would have favoured the latter. These results 

highlight a limitation in applying temperature-index snowmelt models on a time step lower 

than that at which they were derived. Testing was undertaken to establish whether 

downscaling the parameters to the time step of CRUM solved this problem, for example 

scaling the degree-day parameter to a per-minute resolution. However this rendered 

snowmelt all but negligible within CRUM. Furthermore, since the snowmelt coefficients 

were empirically derived there is no physical justification for downscaling them to a 

smaller time step as there is no guarantee that the relationships will hold true (see 

Chapter 8 for a discussion of the limitations of the temperature-index method). Figure 

6.12 (d) showed that the solar radiation parameter was insensitive which contradicted the 

results of the first sensitivity analysis which found it to be joint second-most sensitive. 

Again this could be the result of temporal downscaling within CRUM as the parameter is 

added to the degree-day parameter after it has been multiplied by the reciprocal of the 

number of time steps per day.  
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6.4.7 Uncertainty Assessment: Discussions 

The aim of this section was to calibrate the parameters of CRUM and each snowmelt 

model to observed data whilst simultaneously acknowledging uncertainties throughout the 

modelling process. Uncertainty assessment was carried out using the less formal GLUE 

method due to the lack of prior information available in Dacre Beck. It was not possible to 

assess uncertainties in the input and calibration data or the structure of CRUM. Instead, 

structural and parametric uncertainties in the snowmelt models were calculated before 

analysing the combined parametric uncertainty of each snowmelt model with the 

hydrological parameters contained within CRUM. To this end it was found that 

uncertainties associated with the snowmelt models were small and did not add much 

additional uncertainty to that which already arose from the hydrological parameters of 

CRUM. At the same time it was not possible to determine if one snowmelt model 

performed better than the others as all three produced small improvements in both 

objective functions. Assessment of the sensitivity of each snowmelt model parameter after 

inclusion in CRUM yielded results that contradicted those found in the sensitivity analysis 

of the distributed snowmelt model (Chapter 4). It was hypothesised that these differences 

may have arisen due to the different temporal structure of CRUM affecting how each 

component in the snowmelt models was calculated. It is likely that the effects of this would 

be small, in line with the findings of this uncertainty assessment, but they highlight one of 

the limitations of using temperature-index snowmelt model beyond the timescale upon 

which they were derived. Their effect upon the final results of this project must be 

considered and will be the attention of more discussion later in this report (Chapter 8).  

 

6.5 Conclusions 

This chapter has improved upon the process representation of the distributed snowmelt 

model by including each snowmelt model into a physically based hydrological model. 

CRUM was chosen for its physical basis, minimal data input requirements and its code 

structure that enabled simple modifications. A new snowmelt module was constructed that 

enabled CRUM to accumulate snow and then melt it using one of the three snowmelt 

models. The new code was verified using the built-in mass balance routine which showed 

that water mass was still being conserved. Next, the snowmelt and hydrological 

parameters were calibrated to observed data whilst uncertainty in the model output was 

assessed. This identified a number of behavioural parameter sets from each snowmelt 

model although issues with temperature-index snowmelt modelling were also highlighted. 

Overall, the procedure in this chapter has produced a physically-based model capable of 
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modelling snowmelt hydrology along with an uncertainty framework.  These will be used to 

assess the impacts of climate change on the winter flow regime of Dacre Beck in the next 

chapter.  
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7.1 Selecting the Model Inputs 

In the previous chapter snow accumulation and melt were incorporated into CRUM v3.1 

(Lane et al., 2009) and a parametric uncertainty range was defined as a result of 

calibrating the model output to an observed hydrograph (Chapter 6). This chapter uses 

the hydrological model and its associated uncertainty framework along with the 

probabilistic projections of climate change (Chapter 5) to forecast changes in the 

snowmelt hydrology and winter flow regime of Dacre Beck. The results from this analysis 

will then directly inform the second and third research questions posed at the end of 

Chapter 1 and the discussion in the next chapter. This chapter firstly describes how the 

hydrological model inputs were created based upon the uncertainty frameworks of CRUM 

(Lane et al., 2009) and the UKCP09 Weather Generator (Jones et al., 2009). It then 

presents and assesses the results obtained from these inputs according to the impacts 

upon high and low winter flows. The results found that changes in the winter flow were 

contrary to observed historical trends in upland UK catchments affected by snowmelt 

(SEPA, 2008). It was difficult however to define the role of snowmelt hydrology in driving 

the changes in the winter flow regime as the output from the hydrological model did not 

define the contribution from snowmelt as in the distributed snowmelt model. Therefore 

further work was carried out to understand the role of snowmelt hydrology. 

 

To model the impacts of projected climate change CRUM had to be run using weather 

input data derived from the weather generator (Chapter 5) and parameter values from the 

behavioural parameter sets (Chapter 6). As mentioned in these chapters there is 

uncertainty associated with the magnitude of climate change and equifinality in the 

behavioural parameter space. To represent the uncertainty in the magnitude of climate 

change, 10,000 weather series for the baseline and future scenario periods from the 

weather generator were used to create PDFs of forecast change for each climate variable. 

Meanwhile, approximately 60 behavioural parameter sets were identified for each 

snowmelt model within CRUM which implied there were a total of approximately 180 

behavioural parameter sets as no single snowmelt model clearly outperformed the others. 

Therefore theoretically, to represent uncertainty in the projections of the climate change 

impacts upon the winter flow regime CRUM should be run for every combination of 

weather series and behavioural parameter set. This would have meant a total of 

3,600,000 simulations. Uncertainty in the results was however, represented in fewer runs 

by selectively sampling weather files and parameter sets which represented the total 

probable space of the variable(s) of interest to this project.  
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Uncertainty in the behavioural parameters sets was represented by sampling three sets 

from each snowmelt model from a likelihood distribution composed of high and low flow 

predictions. In this case the variables of interest were the winter Q5 and Q95 as they 

represented the extreme ends of the flow duration curve and were affected by snowmelt 

hydrology and hence potentially by climate change (Chapter 1 sections 1.4 and 1.5). 

Firstly, for each snowmelt model the winter Q5 and Q95 from the calibration period from 

each behavioural run (Chapter 6 section 6.4.6) was calculated. For each run the 

cumulative distribution function for the resultant Q5 and Q95 was calculated and added 

together. Then a new cumulative distribution function was calculated for this combined 

value series which re-scaled the values between 0 and 1 (Figure 7.1). The x-axis value 

which corresponded to the likelihood distribution values of 0.1, 0.5 and 0.9 were then 

calculated (Figure 7.1). The parameter set which lay closest to each value was then 

selected. These likelihood values were chosen as they represented the extreme prediction 

cases before the distribution became marginal and a middle case for which the probability 

of excedence was equal to that of non-excedence. The application of this procedure to 

each of the snowmelt models meant that nine parameter sets were chosen (Appendix 2 

Table 1), CRUM would then subsequently be run with each.       

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Combined Q5 and Q95 Cumulative Distribution

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

SM1 Combined Q5 and Q95 Cumulative Distribution 

Figure 7.1 The combined Q5 and Q95 cumulative distribution curve (blue solid 

line) which was used to sample three behavioural parameter sets from the first 

snowmelt model at three likelihood values (red dashed lines) 
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A similar approach was used to sample daily weather series from the weather generator 

according to the likelihood distribution of mean winter temperature. Temperature was 

chosen as it represents the mechanism controlling whether precipitation falls as snow or 

rain (Chapter 1 section 1.1) hence it affects the magnitude of snow accumulation and melt 

thus impacting the winter flow regime. A separate cumulative distribution of the mean 

winter temperature was created for the 10,000 baseline series (Figure 7.2) and the 

10,000 scenario series. For each curve nine x-axis values were taken at y-axis values of 

0.1 to 0.9 in increments of 0.1. The weather series whose mean winter temperature lay 

closest to each x-axis value was then selected. The range of these values, as above, 

represented the extreme ends of the distribution before it became marginal. Nine values 

were taken in order to equal the number of sampled hydrological parameter sets so that 

both uncertainty sources were treated equally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2 Methodology 

CRUM was run for every combination of the selected weather series and parameter sets - 

162 runs. After each run the winter high flows were assessed by calculating the Q5 and 

number of peak-over-threshold (POT) exceedence events. Both of these statistics 

recorded high flow events in the winter discharge series, the former was calculated from 
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Figure 7.2 Cumulative distribution of the mean winter temperature from the 

weather generator baseline series (solid blue line) used to sample nine weather 

series at nine likelihood values (red dashed lines). The same was repeated for 

the future scenario weather series.  
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the flow duration curve as explained in Chapter 2 (section 2.4 Eq. 2.1) and was also used 

in the analysis of the distributed snowmelt model (Chapters 4 and 5). The latter was 

computed by counting the number of discharge peaks throughout the entire winter flow 

series which exceeded a given threshold value (20.73 m3s-1). This value was obtained 

from the Environment Agency who had applied the Flood Estimation Handbook method 

(Robson and Reed, 1999) of analysing the observed discharge series and selecting a 

value which produced five exceedence events per year. The independence of the peaks 

was verified by using the criterion that two peaks must be separated by at least three 

times the average time to rise (Bayliss and Jones, 1993). Preliminary investigation of the 

modelled hydrographs found that the average peak rise time was one day so the 

independence criterion was set at three days.  

 

Low flows were assessed by calculating the Q95 and 7-day consecutive low flow 

statistics. The former was calculated in the same way as the Q5 but to represent the other 

extreme end of the winter flow duration curve. Q95 could be used as opposed to Q50 in 

Chapters 4 and 5 because CRUM accounts for more hydrological processes producing a 

more continuous output of water to the outlet. The 7-day low statistic (Novotny and Stefan, 

2007) was calculated for each discharge series firstly by calculating the lowest 7-day 

mean flow for each winter within the series and then calculating the mean value for the 

entire series.  

 

After all the runs had been analysed there were 81 values for each statistic for the 

baseline runs and 81 for the future scenario runs. The impacts of climate change were 

assessed by calculating either the relative change for each statistic for every possible 

combination of baseline and future climate scenario (6561 possible combinations) and 

then plotting the results as PDFs.       

 

7.3 Climate Change Impacts upon Snowmelt Hydrology and the Winter Flow 

Regime: Results 

The most probable projection of winter Q5 was an increase of 13% (Figure 7.3) although 

projections ranged from -13% to 53% signifying a large uncertainty contribution from the 

sampled weather generator files and behavioural parameter sets. These projections 

mirrored those from the distributed snowmelt model when rainfall was included into its 

calculations (Chapter 5 Figure 5.6).  
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Projections in POT exceedence events however were unclear as the changes appeared 

to be negligible (Figure 7.4(a)) with an uncertainty range of ±2 days. These contradicted 

the above projections in Q5 as they appeared to show that there would be very minimal 

change in peak flows whereas Figure 7.3 projections were centred round an increase of 

15%. Further investigation of the POT results found that there were only ever a maximum 

of three exceedence events in any of the discharge series, in half of the series the 

threshold was never exceeded. In the seven year observed discharge record (Chapter 2 

Figure 2.5) it was found that only one winter peak flow event exceeded the threshold. 

Therefore, it was decided to set a lower threshold value which would be exceeded more 

frequently thus increasing the clarity of future projections. A lower threshold value of       

10 m3s-1 was chosen as this was exceeded on average 8 times during the simulation 

period. The results from this re-analysis projected a most probable increase of two 

exceedence days within a range of -15 to 18 days (Figure 7.4(b)). These projections were 

in line with those of the Q5 (Figure 7.3) as they both projected an increase in winter peak 

flows by the 2050s under a medium emissions scenario. 
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Figure 7.3 Projections of change in winter Q5 of Dacre Beck under a medium 

emissions scenario according to uncertainty in the UKCP09 projections and 

behavioural hydrological parameter sets. 
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Figure 7.4 Projections of winter Peak Over Threshold exceedence events (at a daily 

time step) under a medium emissions scenario according to uncertainty in the 

UKCP09 projections and behavioural hydrological parameter sets. a) Original 

threshold value (20.73 m
3
s

-1
), b) revised lower threshold value (10 m

3
s

-1
).  



153 

 

Low flows, like high flows, were also projected to increase according to the Q95 and 7-day 

consecutive low flow statistics. The former projects an increase of 15% in a range of -38% 

to 100% (Figure 7.5), the direction of projection agrees with that of Q50 from the 

distributed snowmelt model (Chapter 5 Figure 5.7). Meanwhile, the projections of the 7-

day consecutive low flow agreed with those of the Q95 as they forecast a probable 

increase of 15% with a range of -30% to 80% (Figure 7.6).  However, according to 

previous research these findings contradicted what would be expected as low flows 

should decrease in light warming temperatures (Chapter 5 Figure 5.3) and hence smaller 

snowpacks (Chapter 5 Figure 5.4).   
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Figure 7.5 Projections of winter Q95 under a medium emissions scenario 

according to uncertainty in the UKCP09 projections and behavioural 

hydrological parameter sets.  



154 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

It was expected that the projections of warmer temperatures (Chapter 5 Figure 5.3) and 

reduced snowpack accumulation (Chapter 5 Figure 5.4) would have resulted in greater 

winter hydrograph variability (SEPA, 2008). The results above however, projected that 

both high and low flows would increase which agreed with the Q5 and Q50 projections 

from the distributed snowmelt model (Chapter 5 Figure 5.6 and 5.7). These unexpected 

results were explained in Chapter 5 as being the consequence of a combination of 

changes in temperature and precipitation. It was found that both of these variables were 

likely to increase by the 2050s which meant that more precipitation would fall as rain, then 

the amount of rain would be further increased by the greater amount of winter 

precipitation. Consequently, as was hypothesised in Chapter 1 (section 1.5), the results 

above and in Chapter 5 showed that the winter flow regime of Dacre Beck would become 

rainfall dominated as opposed to rainfall-snowmelt. These results however did not 

demonstrate the changing role of winter snowmelt hydrology of Dacre Beck as the trends 

were overridden by changes the general catchment hydrology due to changes in rainfall. 

The results from Chapter 5, when dealing solely with snowmelt, produced results which 

were closer to showing increased hydrograph variability however the poor process 

representation of the distributed snowmelt model meant that the results could not be 

interpreted as being physically meaningful. To demonstrate the change in snowmelt 
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Figure 7.6 Projections of 7 day consecutive low flow under a medium emissions 

scenario according to uncertainty in the UKCP09 projections and behavioural 

hydrological parameter sets. 
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hydrology CRUM was run with the climate scenarios which were perturbed by changes 

factors that only affected temperature and not precipitation magnitude.  

 

By assessing the consequences of changes in temperature only it was expected that the 

results would directly reflect changes in the snowmelt hydrology. For example, increasing 

the temperature may reduce the number of negative degree-days hence reducing 

snowpack accumulation thus reducing their attenuating role in the hydrology of the 

catchment (see Chapter 1 section 1.4). However the UKCP09 weather generator 

produces daily weather series for variables including temperature based upon 

stochastically generated precipitation (see Chapter 5 section 5.1.2). Consequently the 

weather generator could not be used to produce future weather series which only 

accounted for changes in temperature. Instead, as a form of sensitivity analysis, it was 

decided to perturb a baseline weather series from the weather generator with a range of 

different temperature change factors. In doing so, the precipitation variable would be held 

constant ensuring that any changes in the hydrograph were solely the results of changes  
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Figure 7.7 Cumulative distribution of mean winter temperature change (solid 

blue line) under a 2050s medium emissions scenario produced by the 

UKCP09 Weather Generator and the nine likelihood values from which the 

change factors were sampled (red dashed lines). 
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 1 2 3 4 5 6 7 8 9 

Change 

Factor 

(Celsius) 

1.40 1.75 2.05 2.25 2.45 2.70 2.90 3.15 3.45 

 

 

in snow and rain partitioning. A decision was made to perturb the mean winter 

temperature statistic as this summarised the magnitude of snowpack accumulation and 

melt over a winter season. Firstly a baseline weather series was selected by choosing the 

weather series whose mean winter temperature was closest to 0.5 on the likelihood 

distribution of all baseline weather series (Figure 7.2). Next, nine mean winter 

temperature change factors were chosen by producing a cumulative distribution of the 

mean winter temperature change PDF in Chapter 5 (Figure 5.3 (a)). The change factors 

were then selected by reading off the x-axis values that corresponded to likelihood values 

of 0.1 to 0.9 in increments of 0.1 (Figure 7.7). The baseline weather series was then 

perturbed by each change factor (Table 7.1) by adding it to each daily minimum and 

maximum temperature, the UKCP09 also dealt with temperature change factors in an 

additive manner (Chapter 5 Eq. 5.3). Each perturbed weather series was then run for 

each of the nine behavioural parameter sets and the same flow statistics as above were 

calculated. These were then compared to the nine sets of flow statistics from the runs of 

the baseline series which enabled PDFs of change to be calculated for each statistic.    

 

The high flow statistics from this analysis showed a projection of high flow decline by the 

2050s. The Q5 showed a probable decrease of 2.5% in a range of -13% to 10% (Figure 

7.8) whilst POT exceedence events (using the lower threshold values) showed a decrease 

of 5 days in a range of -10 to -1 days (Figure 7.9). These projected decreases were not 

expected as the temperature perturbation should only affect the partitioning of 

precipitation between rain and snow (evapo-transpiration would also be affected however 

it only represents a small part of the total catchment mass balance so changes in its 

magnitude would not significantly affect the winter flow regime). This was expected to 

decrease snowpack accumulation and hence their attenuating role so that the winter 

hydrograph would become more variable. The reason behind these results could be 

because of a reduction in snowmelt contribution to high flow events. As explained in 

Chapter 1 (section 1.4), flooding can result when a pulse of melt water coincides with a 

high rainfall event (Reed and Field, 1992). Therefore, in a warming scenario less snow will 

Table 7.1 Mean winter temperature change factors selected from the cumulative 

distribution in Figure 7.7. 
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accumulate in a snowpack prior to a high rainfall event meaning that there would be less 

water in the catchment during the event thus reducing the magnitude of the peak 

discharge. This possible explanation was explored for the 8th January 2005 peak flow 

event which coincided with other peaks to result in flooding downstream at Carlisle.  
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Figure 7.8 Projections of change in winter Q5 of Dacre Beck using the perturbed 

temperature change factors. 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
0

0.05

0.1

0.15

0.2

0.25

Change in Exceedence Days

F
re

q
u
e
n
c
y

Change in Winter POT Exceedence Events 

Figure 7.9 Projections of change in winter peak over threshold exceedence 

events (of the lower threshold value) of Dacre Beck using the perturbed 

temperature change factors. 
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During this event, over 200 mm of rain fell in a period of two days in some parts of the 

Eden catchment such as Wet Sleddale near Shap (Environment Agency, 2006; Roberts et 

al., 2009) resulting in a peak flows of 23 m3s-1 at the outlet of Dacre Beck, the highest in 

the observed discharge record (Chapter 2 Figure 2.5). Snowmelt contribution was not 

explicitly mentioned in the Environment Agency report however it was found by one study 

to have contributed to peak flows from the some of the upper Eden catchments although 

Dacre Beck was not mentioned specifically (Watkins and Whyte, 2008). It was decided 

therefore to use temperature and precipitation observations during this event to 

investigate the impact of perturbing the temperature upon the peak flow. The observed 

weather series was perturbed by each temperature change factor before each weather 

series was run for each behavioural parameter. The peak flow during the event was then 

calculated from each run and a PDF of peak flow change was calculated (Figure 7.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Projections of the January 8th 2005 peak discharge showed a very minimal change 

(Figure 7.10) which would appear to mean that changes in snowmelt would have a 

minimal impact on changes in peak discharge. However, it was explained above that there 

was no previous description of the contribution of snowmelt during this event in Dacre 

Beck. Therefore, if snowmelt had played a relatively small role during the peak flow event 
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Figure 7.10 Projections of change in the January 8
th
 2005 peak discharge using 

the perturbed temperature change factors. 



159 

 

it would be expected that changes in the snowmelt hydrology would not have had an 

easily detectable impact upon the peak flow event. To test this CRUM was re-run for a 

single behavioural parameter set but without the treatment of snowmelt. Peak discharge 

on January 8th 2005 from the resulting hydrograph was then compared to the peak 

discharge from the hydrograph produced from the same parameter set but with the 

inclusion of snowmelt, the difference would highlight the contribution of snowmelt 

hydrology (Dunn et al., 2001). It was found that there was a very small difference between 

these two values (0.54%) which meant that snowmelt contribution to the peak discharge 

during this event was very small. Therefore the above analysis was not able to confirm if 

the decreasing projection of winter threshold exceedence events (Figure 7.9) was due to 

a reduction in the snowmelt contribution to peak flows.   

 

The analysis of low flows found that there was very little change in the Q95 and 7 day 

consecutive low flow statistics (Figure 7.11 and 7.12 respectively). It was expected that 

perturbing the mean winter temperature would have decreased low flows as the 

consistent release of melt water would decline. The smaller snowpacks would have meant 

that flow  
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Figure 7.11 Projections of change in winter Q95 of Dacre Beck using the 

perturbed temperature change factors. 
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supplementation would be dependent upon rainfall whose temporal variability is greater 

(Chapter 1 section 1.4). Instead, these results may suggest that snowmelt hydrology in 

Dacre Beck plays a negligible role in low flow supplementation both at present and in the 

future. The supplementation of low flows from snowpacks is most important when there 

are prolonged days without precipitation (SEPA, 2008). At present however, during the 

winter in Dacre Beck the length of periods without precipitation was found not to exceed 

twelve days. These periods were too short to produce low flows comparable to those in 

the summer as they were surrounded by periods of high precipitation. This meant that 

there was sufficient water stored within the soil to supplement the river flow meaning that 

the contribution of snowmelt was very small by comparison. It was found in Chapter 5 

(Figure 5.8) that the number of precipitation days was not expected to change. Therefore 

precipitation-free periods were not likely to increase so soil moisture would still be able to 

supplement river flows in the future. As a result this meant that changes in snowmelt 

contribution to supplementation were difficult to detect as the trends would be overridden 

by soil moisture trends.  

 

 

 

 

-30 -20 -10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Change in Discharge (%)

F
re

q
u
e
n
c
y

Relative Winter 7-Day Low Flow Change
 

Figure 7.12 Projections of change in winter 7 day consecutive low flow of Dacre 

Beck using the perturbed temperature change factors. 
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7.4 Discussions and Conclusions     

The results from this chapter showed that the winter flow regime of Dacre Beck by the 

2050s under a medium emissions scenario was likely to change due to an expected 

increase in both high and low flows. These expectations agreed with the projections from 

the combined snowmelt-rainfall hydrographs of the distributed snowmelt model (Chapter 

5) but did not show the expected increase in hydrograph variability (SEPA, 2008). It was 

hypothesised both in this chapter and Chapter 5 that these results were the consequence 

of a combination of changes in snowmelt hydrology and rainfall. However because these 

results were derived from weather series where both temperature and precipitation were 

perturbed it was difficult to ascertain the role of snowmelt hydrology in these changes. 

Therefore a decision was made to perturb the weather series by only using temperature 

change factors so that changes due to snowmelt hydrology were more detectable. Results 

from this analysis found that high flows were likely to decrease and low flows were likely 

to see a minimal change. The decrease in high flows agreed with the projections of 

snowmelt hydrology from Chapter 5 (Figure 5.6) but again disagreed with the increase 

expected from the findings of previous research (SEPA, 2008). The results meant that 

less water was being routed to the outlet during peak flow events and it was argued that 

this may have been due to a reduction in the contribution from snowmelt due to the 

accumulation of smaller snowpacks. Analysis of the 8th January 2005 peak flow was 

unable to confirm this as it was found that the original event had a minimal contribution 

from snowmelt. Changes in low flows from this analysis were found to be minimal possibly 

due to the small role of snowmelt in supplementing flows during the winter. Instead it was 

hypothesised that the large amount of winter rainfall in Dacre Beck meant that the soil was 

able to store and subsequently release water which supplemented flows more than 

snowmelt.  

 

The synthesis above shows that this chapter was able to model future changes in the 

winter flow regime of the study catchment but was unable to explicitly assess the 

changing role of snowmelt hydrology. This was because unlike the distributed snowmelt 

model it did not feature an output hydrograph composed solely from snowmelt. Instead 

changes in snowmelt hydrology had to be inferred from a separate analysis of the future 

climate series. Previous studies have attempted to quantify the role of snowmelt in the 

winter flow regime by running a hydrological model for the same weather series with and 

without treatment of snowmelt processes (Dunn et al., 2001). This procedure however 

would require twice the number of model runs which may be problematic when applying a 

hydrological model within an uncertainty framework. Instead it would be more appropriate 
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to further improve the hydrological model so that it produced an output hydrograph 

composed solely from snowmelt. This would improve the analysis of the winter flow 

regime as it could assess the changing percentage contribution from snowmelt towards 

high and low flows.  

 

This chapter has outlined how the winter flow regime of Dacre Beck is likely to change by 

the 2050s under a medium emissions scenario. The results suggested that the role of 

snowmelt hydrology in these changes may be overridden by changes in winter rain 

accumulation. Further improvements to the approach in this chapter have been outlined 

which could be implemented in future studies which would simplify the quantification of the 

contribution from snowmelt hydrology to the winter flow regime. The next chapter 

discusses these results and further improvements in greater detail. It will also draw upon 

the results and discussions from previous chapters to formulate general conclusions in 

relation to the project’s overall research aim.   
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8.1 Introduction 

This project investigated the impacts of projected climatic change upon the snowmelt 

hydrology and subsequently the winter flow regime of an upland UK catchment. Previous 

research had shown that snowmelt hydrology was important in attenuating the extreme 

high and low flows of the winter flow regime (SEPA, 2008) but that its role was likely to 

change in future warmer winters (Harrison et al., 2001). However, little of the previous 

research within the UK had used projections of future winter climate to explicitly assess 

the impact upon snowmelt hydrology and its impact upon the winter flow regime. Changes 

in climate were likely to impact upon the processes of snow accumulation and melt and 

hence affect the winter flow regime. Therefore this project was split into three research 

questions which assessed changes in snow accumulation, snowmelt hydrology and the 

resulting impacts upon the winter flow regime. The next section re-iterates how each 

research question was investigated, outlines the key results from each and provides a 

discussion of any contentious issues with the methodology or the results before making 

recommendations for future work.  

 

8.2 Research Questions: Key Findings and Discussions 

1) How will snow accumulation change in the future climate in comparison to present 

conditions? 

 

Changes in snow accumulation were investigated as it affected how much was available 

to melt. This accumulation and melt balance would in turn affect the role of snowmelt 

hydrology within the catchment and the winter flow regime. Present and projected (2050s 

medium emissions) weather series from the UKCP09 weather generator (Jones et al., 

2009) were used to investigate this research question. Snow accumulation was modelled 

from each weather series by spatialising temperature and precipitation across the study 

catchment using lapse rate equations for each. Changes in total snow accumulation 

between the present and future weather series were then assessed from this modelling 

along with changes in the mean winter temperature across the whole catchment and at 

the highest altitude as well as changes in total winter rain accumulation.  

 

The results from this analysis found that the total winter snow accumulation was most 

likely to decrease by 49.5% which is likely to have resulted from the 2°C mean winter 

temperature increase across the catchment. The mean winter temperature at the highest 

altitude was found to increase above 0°C. Meanwhile, the magnitude of winter 
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precipitation falling as rain was projected to increase by 57.0%. A detailed interpretation 

and discussion of these results is given in the following paragraphs.   

 

The large decline in snowpack accumulation was due to the large temperature increase, 

in particular the increase of the mean winter temperature above 0°C at the highest 

elevation. The 0°C temperature was used by the distributed snowmelt model as a 

threshold to partition precipitation between rain and snow. Presently, winter temperatures 

at the highest elevations of Dacre Beck were often below this threshold value which 

enhanced snow accumulation. Projections of future winter temperatures at the highest 

elevation however, indicated that winter temperatures at the highest elevations in general 

were likely to be above this threshold value. Hence the more frequent exceedence of this 

winter threshold temperature resulted in a large decrease in snowpack accumulation 

within the catchment. The use of a threshold temperature to distinguish between rain and 

snow is subject to discussion as this empirically represents the physical snow atmospheric 

snow formation processes. Previous studies have confirmed the validity of this empirical 

approach for catchments at similar elevations to Dacre Beck (Barry, 1992) in producing 

realistic results of snow accumulation. The precise value of this threshold temperature is 

subject to local catchment conditions and was treated as a parameter in this study. 

However, it was found to be insensitive when included in a sensitivity analysis of the 

distributed snowmelt model (Chapter 4 section 4.2.2.6) and CRUM (Chapter 6 section 

6.4.6) hence it was treated as a fixed parameter. Furthermore this threshold value was 

used in previous studies of UK snowmelt hydrology (Harrison et al., 2001; Dunn et al., 

2001) to produce realistic results of snow accumulation. Therefore the approach used in 

this study to model snow accumulation was able to produce realistic results for the 

available climatic data.  

 

The results from this analysis continued from previous observations of present UK snow 

accumulation decline and confirmed previous modelling of future UK snow accumulation 

changes (Harrison et al., 2001). It had been observed that mean winter temperatures had 

warmed by 1°C from 1961 to 2004 (Barnett et al., 2006) which had resulted in reduced 

snowpack accumulation since this warming raised the freezing elevation (SEPA, 2008). 

Previous modelling of the future change in snowpack accumulation in Scotland using 

UKCIP98 projections found a continued reduction especially at elevations of 400 m 

(Harrison et al., 2001). Therefore the results from this project confirmed that continued 

warming of winter temperatures was most likely to result in the continued decline in snow 
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accumulation. The large reduction in snow accumulation may also confirm the previous 

finding that the greatest sensitivity was at 400 m elevation (Harrison et al., 2001) as the 

Dacre Beck catchment was situated at this level. Projections of temperature at the highest 

elevation confirmed that they were most likely to be raised above the threshold value 

meaning that the freezing level was often higher than the highest elevation thus greatly 

reducing snow accumulation.  

 

2) How will changes in climate affect snowmelt hydrology? 

 

This question was investigated to assess whether the role of snowmelt hydrology would 

be impacted by the expected reduction in snow accumulation or if the increase in energy 

fluxes would compensate for the reduced accumulation by releasing more in the initial 

melting of a snowpack. Changes in snowmelt hydrology were assessed by creating a 

distributed snowmelt model which used three different temperature-index snowmelt 

equations. Each of the UKCP09 weather series were then used to drive the model and 

changes in the Q5 and Q50 snowmelt hydrograph flows were analysed. If changes in the 

energy fluxes were sufficient to compensate for the reduced accumulation then there 

would have been a negligible change in both the high and low flows. The results found 

that high snowmelt-derived flows were likely to decline from between 15% to 40% whilst 

low snowmelt-derived flows were likely to decrease from between 40% to 70%. These 

large changes meant that the changes in the energy fluxes were unable to compensate 

for the large reduction in snow accumulation projected in the first research question.    

 

Projections of smaller accumulated snowpacks, found in the first research question, 

meant that less snow water equivalent (SWE) was stored on the slopes of the catchment. 

Therefore during large snowmelt events caused by large temperature increases, for 

example, less melt water would be produced hence peak snowmelt flows would be 

smaller. The decrease in high flows shown by these results also meant that the increase 

in the energy fluxes, such as latent and sensible heat which were related to air 

temperature, was unable to compensate for the decline in snowpack accumulation. The 

accumulation of smaller snowpacks also resulted in a reduction in snowmelt derived low 

flows. This was because warmer temperatures would have reduced the number of days of 

snow falling thus the frequency of small snowpacks which may have accumulated very 

infrequently under present conditions would become more frequent. Consequently, the 

small amount of melt water produced by these small snowpacks would also occur more 

frequently. On the snowmelt flow duration curve therefore, the low flow presently 
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associated with the 99th percentile would become associated with the 95th percentile under 

future conditions.  

 

All three temperature-index equations were applied at an hourly time step within the 

distributed snowmelt model. This may be contentious for the first and second equations 

which were derived at a daily resolution as these derivations may not have held at a finer 

temporal resolution. However, by aggregating the hourly hydrographs to daily values it 

was found that the results were not vastly dissimilar to those from the third equation 

(Chapter 5 section 5.3) which was derived at an hourly resolution. Another potential 

limitation of this analysis was the lack of validation to observed snow accumulation and 

melt data. It was mentioned above that the method of snow accumulation modelling was 

the most suitable for this project and that the threshold value was found to be insensitive. 

This suitability could have been confirmed by comparing predictions of snow accumulation 

depth for a point in the catchment with observations of snow depth at the same point 

(Dunn et al., 2001). Observations of snow depth were not available in the catchment, even 

if they were available it would only validate snow accumulation at a point rather than 

across the entire catchment. Instead, catchment scale snow accumulation could be 

validated by comparing results with optical satellite observations of snow cover (such as 

the MODISSCA product (Maurer et al., 2003; Roy et al., 2010)). However optical satellite 

imagery during the UK winter is often obscured by cloud cover making validation very 

difficult. Therefore there was insufficient data available to this project to ensure the 

accurate validation of the snow accumulation component of the distributed snowmelt 

model. Snowmelt production can be validated using lysimeter measurements at the base 

of a snowpack (Davis et al., 2001). Firstly however, this data was unavailable in the Dacre 

Beck, but secondly data derived from lysimeters is subject to a large amount of 

uncertainty due to the development flow fingers because of snowpack heterogeneities 

(Kattelmann and Dozier, 1999). Therefore it was not possible to directly validate the 

results of the distributed snowmelt model firstly, because there was insufficient data 

available within the catchment. Secondly the methods used to validate snow accumulation 

and melt models are often subject to large uncertainties which may only be able to 

constrain the models to a broad range of possibilities. In light of this, it is recommended 

that the results from the distributed snowmelt model are viewed as a sensitivity analysis of 

snow accumulation and melt processes to changes in climate rather than being taken as 

physically-meaningful predictions.  
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The decreasing magnitude of winter snowmelt hydrology under warming temperatures 

found in this analysis could explain the increase in winter flow regime variability observed 

in some Scottish catchments during the warming trend from 1961 to 2008 (SEPA, 2008). 

The results showed that the contribution from snowmelt was likely to decrease and that 

the amount of rainfall was projected to increase (Chapter 5 Figure 5.4) under warmer 

temperatures. Therefore the winter hydrograph was likely to become composed 

predominantly from rainfall as opposed to a more equal combination of the two sources. 

Consequently, the winter hydrograph would be likely to become more variable as the 

more consistent contribution from snowmelt was likely to decline. Therefore the future 

decline in snowmelt hydrology was found in this section to impact upon the winter flow 

regime. However, the winter flow regime would also be affected by changes in 

precipitation and not just snowmelt hydrology. Hence the full implications of climate 

change for the winter flow regime of Dacre Beck were also analysed and the results are 

discussed in below. 

 

3) What are the implications of changes in climate and snowmelt hydrology for the 

winter flow regime? 

 

The third research question aimed to assess the consequences of changes in snow 

accumulation and melt processes outlined in the previous two research questions upon 

the winter flow regime. Changes in the winter flow regime of the study catchment were 

modelled firstly by using the distributed snowmelt model and combining the snowmelt 

hydrograph with a rainfall hydrograph. However, the results from this were found to have 

been affected by the limited hydrological process representation of the model. Therefore 

each of the snowmelt equations were incorporated into an existing physically-based 

hydrological model (CRUM). Using this improved model, changes in the winter flow 

regime were assessed by running it with a sample of UKCP09 weather series and 

analysing the changes in flow statistics that represented high and low flows. It was 

expected that a reduction in the role of snowmelt hydrology, as forecast by previous 

research (Arnell and Reynard, 1996), would amplify the high and low flows of the winter 

flow regime.  

 

The results found that high winter flows were likely to increase; the Q5 was projected to 

increase by 13% whilst the number of winter peak over threshold events was likely to 

increase by two days. Low winter flows meanwhile were also projected to increase with 

both the Q95 and 7-day consecutive likely to increase by 15%. The contribution to these 

changes from changes in the snowmelt hydrology was investigated by re-running the 
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model with present weather series perturbed by a range of different future mean winter 

temperature change factors. The results from this found that changes in the snowmelt 

hydrology would be responsible for a reduction in high flows and a negligible impact upon 

low flows. Therefore, changes in the winter flow regime resulting from changes only in 

snowmelt hydrology were different to those resulting from the original UKCP09 data. It 

was hypothesised that this might be due to changes in rain accumulation dominating the 

signal of change in the winter flow regime. These results along with the possible 

explanations are discussed in greater detail below.    

 

 

The decreasing role of snowmelt hydrology in future conditions in Dacre Beck as 

projected in the previous research question was expected to result in greater variability in 

the winter flow regime. However, when CRUM was run using future projections of both 

temperature and precipitation the results suggested that both high and low flows were 

likely to increase. It was expected that these results were the consequence of an increase 

in the magnitude of future winter precipitation (Chapter 5 Figure 5.1 (b)). This would 

mean that more water would be inputted into the catchment over the same period of time 

hence flows across the season were likely to increase. The role of changes in snowmelt 

hydrology in affecting these projections was investigated by perturbing baseline 

temperature series with future change factors. It was found that changes in snowmelt 

hydrology were likely to decrease the magnitude of high flows and have a negligible 

impact upon low flows. The decrease in winter high flows could have been due to the 

reduction in snowmelt contribution to peak flows during storm events. Storm events can 

be accompanied by large temperature increases, 4-6°C during the river Tay January 1993 

storm event (Black and Anderson, 1993), meaning that a large amount of snowmelt can 

combine with large amounts of rainfall to produce high flows. Future warmer temperatures 

would mean that smaller snowpacks would accumulate, as found in the first research 

question, thus the contribution of snowmelt during storm events would be reduced. In turn, 

this would lead to a reduction in the flow magnitude during storm events. An attempt was 

made to demonstrate this mechanism for the January 2005 storm event but it was found 

that snowmelt did not play a significant role in the original event. The negligible changes in 

winter low flows due to changes in snowmelt hydrology meant that snowmelt 

supplementation of low flows was unimportant both in present and future conditions. 

Instead supplementation of low flows from soil moisture was likely to be more important 

than the contribution from snowmelt. However, the impacts of changes in snowmelt 

hydrology upon the winter flow regime were not present in projections of the winter flow 

regime when changes in precipitation magnitude were accounted for. As mentioned 
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above, high and low flows were projected to increase whereas changes in snowmelt 

hydrology should have resulted in a reduction in the former and a negligible change in the 

latter. Therefore it was likely that the signals of change in the winter flow regime would be 

dominated by changes in precipitation magnitude rather than changes in snowmelt 

hydrology. 

 

The incorporation of each snowmelt equation into CRUM meant they were applied in this 

study on a per-minute time scale which was beyond the scale at which they were derived. 

It was found in the application of the distributed snowmelt model that aggregating the 

resulting hydrographs back to their original temporal resolutions yielded good results. In 

this application however, it was found that this aggregation was unable to account for the 

effects of applying the equations at a finer time step. This was particularly evident in the 

third snowmelt equation where the large number of time steps per day meant the 

multiplication of its reciprocal with the degree-hour parameter reduced the positive air 

temperature component relative to the rain-on-snow and solar radiation components 

(Chapter 6 section 6.4.6). This contradicted the original conceptualisation of this equation 

which perceived the positive air temperature component to be the most important (Hock, 

1999). Rectification of this issue could be achieved by using a physically-based energy 

balance approach to snowmelt modelling as its equations are independent of the time 

step on which they are applied. However, as explained in Chapter 3, this modelling 

approach requires input data that was not available in the catchment. A simplified energy 

balance model was developed by Walter (et al., 2005) but its simplifications meant it could 

only be applied at a minimum of a daily resolution. Therefore future development of 

snowmelt within CRUM should aim to find an approach with a greater physical basis but 

one whose input data requirements are easily met.  

 

The development of CRUM in this project did not include the creation of a variable that 

described an output hydrograph composed solely from snowmelt as in the distributed 

snowmelt model. This meant that changes in the winter flow regime caused by changes in 

snowmelt were difficult to detect and could only be demonstrated by re-running the model 

with temperature perturbations. Further development to the CRUM code could be 

undertaken to produce a snowmelt hydrograph variable which could simplify future 

analyses.  
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The projections of increasing high and low winter flows found in this project reaffirmed 

previous predictions that the role of snowmelt hydrology would decline in warmer 

temperatures (Arnell and Reynard, 1996). However, they contradicted previous 

observations that the winter flow regime’s variability would increase during warming trends 

(SEPA, 2008). It was previously thought that the reduction in snowmelt would mean that 

the winter hydrograph would become predominantly composed from rainfall which was 

more variable than rainfall. Previous studies however made no observations of changes in 

the magnitude of precipitation during the warming trends. Hence when projections of 

precipitation increases were included into the modelling process it was found that both 

high and low flows during the winter increased due to the greater amount of water in the 

catchment. Therefore the impacts of changes in snowmelt hydrology upon the winter flow 

regime were likely to be overridden by changes in precipitation.  

 

However, when the impacts of snowmelt hydrology were treated in isolation the results 

still did not agree with previous observations. Instead, they projected that high flows would 

decrease and low flows would see minimal change. These different results could be due 

to the different role of snowmelt hydrology in Dacre Beck as opposed to the Scottish 

catchments from which the observed trends in flow variability increases were derived. In 

the Scottish catchments snowmelt hydrology has been observed to play an attenuating 

role in the winter flow regime of the catchments (SEPA, 2008). Meanwhile in Dacre Beck, 

snowmelt hydrology may only play a role in exacerbating high flows during winter storm 

events otherwise its role in attenuating flows may be much smaller than in the Scottish 

catchments. This could be explained as being the consequence of the Scottish 

catchments being colder (Chapter 1 Figure 1.4) than Dacre Beck enabling them to 

accumulate more snow (Chapter 1 Figure 1.2 (a)). As a result these greater snowpacks 

would exert a greater influence upon the winter flow regime than in Dacre Beck whose 

snowpacks are only able to play an occasional exacerbating role in winter high flow 

production. Therefore the consequences of climate change for snowmelt hydrology and 

hence the winter flow regime of Dacre Beck are likely to be different to the consequences 

for Scottish catchments. Further work should therefore be undertaken into understanding 

the different role of snowmelt hydrology upon upland catchments across the UK at 

present. These results could then in turn be used to understand the varying implications of 

climate change for the winter flow regime of upland UK catchments.  
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8.3 Recommendations for Future Work 

The main difficulty encountered in this project was relating changes in snowmelt hydrology 

to changes in the winter flow regime. Firstly, the hydrological process representation of 

the distributed snowmelt model was insufficient to confidently conclude about the role of 

snowmelt in the winter flow regime. Next, the inclusion of the temperature-index equations 

into the physically-based hydrological model resulted in the implementation of each 

equation at a time step much smaller than the time step at which they were derived. This 

was especially problematic for the third snowmelt equation. Then, since there was no 

explicit snowmelt output variable in the hydrological model, it was difficult to understand 

the role of snowmelt hydrology in the winter flow regime. Finally, no attempt was made in 

this project to directly validate the modelling of either the snow accumulation or melt 

processes, instead relying on the information in the discharge hydrograph.  

 

It is therefore recommended that future investigations undertake further developments to 

the physically-based hydrological model by incorporating an energy balance modelling 

approach to snowmelt which would be more compatible with the time step of the 

hydrological model than the temperature-index approaches. Then a snowmelt hydrograph 

variable should be included into the hydrological model making it easier to understand the 

contribution of snowmelt to the final output hydrograph. Attempts should also be made to 

validate the snow accumulation process to ensure that this component is behaving 

realistically. This could be achieved by using a different catchment where measurements 

of snow depth are available. Snowmelt could also be validated but as explained above the 

measurements themselves can be subjected to large uncertainties.   

 

8.4 Snowmelt Hydrology and its Future Implications for the Winter Flow Regime: 

Concluding Remarks 

A method was developed in this project to assess the contribution of snowmelt hydrology 

to the winter flow regime in light of projected climate change. The results showed that 

future forecasts of warmer temperatures are likely to result in smaller snowpacks and a 

reduction in the role of snowmelt hydrology in the Dacre Beck catchment. The 

consequences of this for the future winter flow regime in the Dacre Beck catchment were 

found to be overridden by future changes in the magnitude of winter precipitation. 

However, different results may emerge for other upland UK catchments due to their 

unique climatological factors. For example, previous research in Scottish catchments 
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found a more pronounced signal of snowmelt hydrology in the winter flow regime under 

present conditions (SEPA, 2008). In the case of Dacre Beck, this project found that 

projected changes in snowmelt hydrology were of secondary importance to the changes in 

total winter precipitation in the predicted impact upon the winter flow regime. Applying the 

same method to other upland UK catchments may however produce different results. 
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Appendix 1 

 

Sensitivity Analysis:  

Snowmelt Model Parameter Response Curves 
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Snowmelt Model 1: 
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Snowmelt Model 2: 
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Snowmelt Model 2 cont. 
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Snowmelt Model 3: 
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Snowmelt Model 3 cont. 
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Behavioural Hydrological Parameter Sets 
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