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RIEMANNIAN 4-SYMMETRIC SPACES

J. Alfredo Jiménez

ABSTRACT

This thesis studies the theopry of Riemannian 4Y4-symmetric
spaces. It follows the methods first introduced by E. Cartan
to study ordinary symmetric spaces, and extended by J. Wolf and
A. Gray and by Kac.

The theory of generalized n-symmetric spaces was initiated
by A. Ledger in 1967, and 2- and 3-symmetric spaces have already
been classified. The theory of 4-symmetric spaces is com-
pPletely new.

The thesis naturally divides into two chapters. The first
chapter treats the geometry of the spaces. Their homogeneous
structure and their invariant connections are studied. Thé
existence of a canonical invariant almost product structure is
pointed out. A fibration over 2-symmetric spaces with 2-symmetric
fibers is obtained. Root systems are used to obtain geometric
invariants. Finally a local characterization in terms of
curvature is obtained. |

Chapter II centers on the problems of classificatibn. A
local classification is given for the compact spaces in terms
of simple Lie algebras. A global formulation is given for the
compact classical simple Lie algebras.

A final section is devoted to invariant almost complex
structures. A characterization is given in terms of their
homogeneous structure. It is shown that they can bear both

Hodge and non-Kdhler structures.
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INTRODUCTION

The theory of Riemannian 2-symmetric spaces was initiated
by E. Cartan in 1926. Ever since, this theory has become a
central subject in differenfial geometry. One of the most
important features of this theory is its connection with the
theory of semi-simple . Lie groups. This connection is a source
of very detailed and extensive information about the spaces.
It was through it that E. Cartan accomplished their classifi-
cation.

Owing to the importance of 2-symmetric spaces and to the
wealth of their geometric structure, it is interesting to
search for spaces whose theory provides in a natural way an
extension of their theory.

In 1967, A. J. Lédger [29] initiated the study of general-
ized Riemannian symmetric spaces (see also P. J. Graham and
A. J. Ledger [30]). He showed (cf. [16]) that on a Riemannian
manifold (M,g), the existence at each point p in M of
an isometry with p as an isolated fixed point was sufficient
to ensure that M was a Riemannian homogeneous space. Hence,
the definition of Riemannian n-symmetric spaces is rather
natural. Furthermore, the main property of the Cartan spaces
is preserved. That is, the spaces are homogeneous manifolds
of a well defined type (cf. Section 2), and therefore their
theory is related to the theory of Lie groups. Hermitian 2-
Symmetric spaces provide a large class of examples which are
n-symmetric for any n. On the other hand, 0. Kowalski [1u4]
showed the existence of generalized n-symmetric spaces (of
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arbitrary order n) which are not m-symmetric for m < n.
Also, he has classified these spaces in low dimensions
(dimension =5).

Following Cartan's methods, J. Wolf and A. Gray gave in
[28] the general structure theory for finite order inner auto-
morphisms of the compact semi-simple Lie algebras. Then they
accomplished a complete classification of the 3-symmetric
spaces. These. spaces are Riemannian manifolds which have
associated in a natural way an invariant almost complex
structure. A. Gray [8] éhowed that they are nearly Kihler
manifolds and obtained a characterization of these spaces in
terms of their curvature tensor.

The purpose of this thesis is to study the theory of
Riemannian Y-symmetric spaces and to obtain their classi-
fication (for the compact simply connected 4-symmetric spaces).
The coverage of the thesis is best explained by the following
description of its contents.

The thesis naturally divides into two chapters. The first
one is mostly concerned with the Riemannian geometry of the
spaces, whereas the second chapter centers on the problems of
classification. An additional last sectionris devoted to the
study of invariant almost complex structures on these spaces.

Sections 1-3 are rather general and all the theory con-
tained in them goes over (regular) n-symmetric spaces. Special
emphasis is put on the important role of the regularity con-

dition. This condition implies that the spaces can be



represented as homogeneous manifolds of the form G/K, where
G 1s a connected Lie group with an automorphism of order four
whose fixed point set is (essentially) K. The existence of
a unique invariant connection on the principle¢ bundle
G(G/K,K), invariant also under the symmetries, is proved.
This connection yields a (local) characterization of the
spaces. These results are (implicitly) contained in [16].
Although the proofs here are someuwhit easier.

In Section 4 we point out a geometric feature that is
intrinsic to UY-symmetric spaces. These spaces have canonically
associated an almost product structure invariant under the

symmetries.

™ = Vet (orthogonal decomposition).
One of these distributions 1s integrable - we call it the
vertical distribution V. It is shown that it defines a

regular foliation and that M admits the (locally trivial)

fibration

() F <

W < =

with B affine 2-symmetric and F Cartan symmetric. We
study the Riemannian geometry of these fibrations. From our
definition of UY-symmetric spaces it is clear that they are
refleétion spaces, and also that the above fibrations corres-
pond to the fibrations obtained in [17]. However our proofs

are straightforward, and no allusion is made to the theory of



reflection spaces. In his work, [17] 0. Loos 'did not make
any reference to any Riemannian metric. Thus all the
Riemannian geometry of these fibrations is new and may serve
as a model to study the Riemannian geometry of reflection
spaces and more generally the geometry of Riemannian submercsions.

In Section 5 we study the geodesics of M under the
assumption that the fibration (*) is a Riemannian submersion.
The main application of this is a description of the focal
points of the fiber F in terms of root systems.

In a different vein, in Section 6, we set about finaing
a local characterization in terms of curvature of Riemannian
4-symmetric spaces. Here the motivatibn comes from various
sources. On one hand, Riemannian (locally) 2-symmetric spaces
are characterized by having parallel curvature. Then,
K&hler manifolds have parallel almost complex structures.
Also, Riemannian 3-symmetric spaces are nearly Kdhler manifolds
for which the curvature tensor satisfies (VXR)XJXXJX =0
for all vector fields X (see [8]). Thus we pose the problem
of finding a characterization in the "same spirit" for
Riemannian 4-symmetric spaces. We obtain one in terms of the
symmetry tensor S (the analog of an almest complex structure),
the fundamental form of the distribution #H, and the curvature
of M,

Chapter II begins with a small section on the de Rham
decomposition of Riemannian 4-symmetric spaces. We show

that the corresponding group of symmetries also decomposes.



In Section 8 we classify the automorphisms of order four
of the compact semi-simple Lie algebras. The section is
néturally divided into two parts. Part (a) treats the case
of inner automorphisms. The classification here is carried
along the same lines as in [28]. This method is very suitable
for our purposes in Seétion g.

We obtain the fixed point sets of the automorphisms and
of the squares of the automorphisms, and give the corresponding
tables for all the Lie algebras. A description of the base
space B and the universal cover of the fiber F in (%) is
given for each one of the entries in the tables. A global
formulation is accomplished for the "classical'" Lie algebras?
Part (b) follows the same pattern as part(a), but now for the
outer automorphisms. Here we follow Kac (see Helgason [9] Ch.X).

Section 9 is concerned with almost complex structures on
Rieménnian b-symmetric spaces invariant under the symmetries.

It is shown (with one possible exception) that the compact
simply connected almost Hermitian Wb-symmetric spaces have non-
vanishing Euler characteristic. These spaces are characterized
as UY-symmetric spaces with a standard representation of the
form G/K with K the centralizer of a torus. Every
Hermitian 2-symmetric space of the compact type is one of these
spaces. We also show that compact 3-symmetric spaces with a
similar standard representation are also almost Hermitiah Y-
symmetric. It is shown that almost Hermitian U-symmetric spaces

(which are not Hermitian 2-symmetric) can have invariant Hodge

We show that the important idea of duality in Cartan spaces
can naturally be extended to UY-symmetric spaces. We also obtain
the duals for the "classical" Lie algebras.



structures - hence in particular they are algebraic - and
can also have invariant non-Kiahlerian structures (as opposed

to the Cartan spaces).



CHAPTER 1

RIEMANNIAN GEOMETRY OF RIEMANNIAN L4-SYMMETRIC SPACES

§1. Definition of Riemannian 4-Symmetric Spaces

In this section we start with the definition of Riemannian
L-symmetric spaces. They are Riemannian manifolds endowed at
each point with a symmetry of order four that preserves the
metric. Although the definition of these spaces arises as a
natural way of extending the definition of Cartan (symmetric)
spaces, their study can be fairly more complicated if an
additional restriction is not imposed on them. Following
Ledger [ 71 we include in our formal definition a regularity
condition on the symmetries. Geometrically, this is an in-
variance condition which says that the set of symmetries is
invariant under conjugation by the symmetries themselves.

The consequences of this condition are more conveniently
expressed when looking at them from the point of view of

group theory. Such spaces have a transitive group of isometries.
A result which is independent of whether or not the regularity
condition is imposed. However, the regularity implies that

the spaces can be represented as the homogeneous manifolds

G/K where G 1is a connected Lie group with an automorphism

of order four whose fixed point set is (essenfially) K.

This fact in turn will make feasible the classification of

these spaces.



A Riemannian Y4-symmetric space is a connected C%-
Riemannian manifold (M,g) together with a family of

isometries (sX) bfin M)9 with the following properties:

(i) For each x in M, the isometry s, 1is of order
four and has x as an isolated fixed point. 84
will usually be called the symmetry at x.

(ii) (Regularity condition). For any two points x and

y in M, the symmetries 5, and Sy satisfy

S o s = s o S5 . (l)
b y s (y) X
X
Comments. Clearly the above definition can be extended to
symmetries of arbitrary order n, see for example [13].

For technical reasons it seems desirable to assume complete-
ness in the definition, however, this will be a consequence
of the fact that Riemannianl b-symmetric spaces are homo-
geneous Riemannian manifolds. Condition (ii) is not part of
the original definition of n-symmetric spaces, but since we
shall exclusively be concerned with the case when they are
regular, we include it from the very beginning. The reason
for this restriction is not an arbitrary one: There is a
great difference between n-symmetric spaces and Cartan spaces,
whereas that for Cartan symmetric spaceslthe condition that
the symmetries be the geodesic involutions immediately
guarantees their uniqueness, for n-symmetric spaces this

uniqueness is missing. Thus, the map s that assigns to



each point x in M the symmetry s, can be rather arbitrary
and complicated to work with, hence the imposition of such a
restriction.

That regularity is the right sort of condition can be
seen from different points of view. On one hand it is an
inyariance condition on the set of symmetries (conjugation
by the symmetries themselves does not alter the set). On
the other hand, it still allows us, up to some extent, to
parallel the theory of Cartan spaces, especially when using
Lie group theory and obtaining the classification for the
compact spaces at the end of the present work. We prove
here that this condition is satisfied by the Cartan spaces:
Since we have to prove equality between two isometries, we
only need to show that their differentials coincide at one
point (and then use the exponential map and connectedness).

We show that the differentials of s o s and s_ oS
X y S X(‘ab X

coincide at y, x and y any two points in M,

(sxosy)* = (SX)* O(Sy)* = (s )y o-Ip y = _(Sx)*

y s, (y) y y y y
The first equality is merely the chain rule. The second
equality is a consequence of the fact that Sy is the
geodesic involution at y, and therefore it has the negative

of the identity map of TyM as its differential at vy.

Analogously we have:



SX(Y)OSX)"" - (SS (y):': 0(‘SX)*' - _IT O(S )"‘

v X Sx(y) v sx(y) y

-(s_ ).
x
Yy

as we wanted.

A similar argument can be used to give an alternate
description of the regularity condition. For this, define
the symmetry tensor S5 as follows:

S is the tensor field that associates to each point x
in M the differential of the symmetry at x, i.e.

SX = 8, x. S 1is a tensor field of type (1,1) and preserves
the met;ic. Furthermore, condition (i) in the definition
implies that S 1is of order four and has no eigenvalue +1.

As done for the Cartan Spaces, we take the differential at

y of both sides in (1):

(s )

(s

x)*YO(Sy)*y s (y) *sx(y)o(sx)*y'

Using the symmetry tensor S, this can be written as

(2) (s ), ©8 = S

)y y _SX(y)o (SX)*y (X,y in M)

and as remarked above, by connectedness, the equality of the
isometries in (1) is equivalent to the equality in (2).
Therefore, the regularity condition (ii) is equivalent to the

condition:

10




(ii)' The symmetry tensor S is invariant under the

action of the symmetries (SX) (X in M)

We shall see that S is not only differentiable, but
analytic. Note that for the Cartan spaces, S 1is minus
the identity tensor, this gives an immediate explanation of
the fact that they are always regular symmetric spaces. The
tensor S will play a prominent role in what follows.

In general, it will be said that a tensor field is s-
invariant if it is invariant under the action of the

symmetries (SX).

§2. Riemannian 4-Symmetric Spaces as Homogeneous Spaces

One of the central results in the theory of Riemannian
n-symmetric spaces is that their groups of isometries act

transitively on them.

Theorem [16]. Riemannian n-symmetric spaces are homogeneous

Riemannian manifolds.

The idea Qf the proof is to show that if we take the
closure in the full group of isometries of the subgroup
generated by the symmetries (SX), then the orbit of one
point under the action of this group is the whole manifold.
Since the manifold is assumed connected and since this
orbit is closed, it is only necessary to show that it is

open. A thing that can be seen by using the symmetries.

11



An interesting consequence of the proof is that instead
of having to work with the full group of isometries we can
now restrict our attention to a group which is closely re-
lated to the symmetries and which is still large enough to
act transitively and to carry information of the geometry
that the symmetries induce on M. By connectedness, the
identity component of this group also acts transitively.

We denote it by G. It turns out that G 1is well suited
for our work. In fact, a complete characterization of
Riemannian UY-symmetric spaces can be given purely in
terms of G. See Proposition 1 below.

M can be written as the homogeneous space' G/K, with
K the isotropy group of G at a point 0 in M. G acts
effectively on M, and K is compact,

The symmetries (SX) may or may not belong to G,
nevertheless by conjugation they induce automorphisms (OX)

on G:

-1
o : G > G, ox(g) = s o0gos (g € G.)

Fach of theseautomorphisms is of order four, and for 0qo

from now on denoted by o, the fixed point set G% satisfies

Gg c K c 67 where Gg is the identity component of c°.

This relation is a consequence of the regularity condition

(1) in the definition. It can be seen as follows: since the

12



symmetry tensor is invariant under the symmetries themselves,

it is also invariant under G. In particular, if k is any
element in the isotropy group K, then k*0 ° 8, o-kgi
equals SO hence k o 8g © k—l =8, fqr all k in K,
i.e. k=s50°ko sal for all k ¢ K. This shows that k
belongs to the fixed point set 69, To see that Gg cK,
we take a one parameter group exp tX, t € R, in va and

show that it is contained in K, i.e. we show that
exp tX -0 = 0 for all t in IR. Since 8y has 0 as an
isolated fixed point, all that is necessary to prove is

that the curve y(t) = exp tX .0 1is left pointwise fixed by

SOZ

so(exp tX-0) = sOCexp tX°sal(OD= S,0exp thsal(O)= (expstX) - 0

0

and since exp tX Dbelongs to Gg, we have that fhis is
equal to exp tX -0 as we claimed.

We shall see later on, that conversely, the condition K
open in GO implies the regularity condition (1). (Proposition
below in this section)

It is interesting to write the above results at Lie
algebra level. Let g4 Dbe the Lie algebra of G and ¥ the
Lie algebra of K. Let ¢ (same letter) be the automorphism
on ¢ induced by o¢. Then ¢ 1is the fixed point set of o.

Let v be the eigenspace of ¢ for the eigenvalue -1. Then

13



g ® v 1s the eigenspace of 02 for the eigenvalue +1.
Let h be the eigenspace of 02 for the eigenvalue -1.
Since o is an involution on 9, 6= €@ v @ h.

We claim that this decomposition is Ad(K)-invariant.

In particular G/K becomes a reductive homogeneous space:

Proof. Let V € v and k ¢ K, we show that Ad(k)V ¢ v by

showing that o(Ad(k)V) = -V. But this is an easy calculation
o(Ad(k)V) = Ad(ok)oV = Ad(kdoV = ‘—Ad(k)V.

Analogously if H € h +then Oz(Ad(k)H) = Ad(Ozk)OzH =
-Ad(K)H € h.
For the sake of organization we summarize all the above

results as the following:

Theorem. Let (M,g,s) be a Riemannian U4-symmetric space.
Let G Dbe the closure, in I(M,g), of the subgroup generated

by the symmetries (SX). Then

(1) G acts transitively on M, and for a fixed point
0 in M, M can be written as the homogeneous space

G/K with X the isotrcpy group of G at 0.

(ii) Conjugation with respect to s the symmetry at

O’
0 induces an automorphism o of order four on G

such that the fixed point set 9 satisfies

1y



(iii) ©Let 4 Dbe the Lie algebra of G , and let o be
the induced autormorphism by o on g. Then 4

splits into the three vector spaces
A = § ®v Bh

where ¢ 1is the Lie algebra of K, v 1is the
eigenspace of o for the eigenvalue -1. and h

is the eigenspace of 02 for the -eigenvalue -1.

This decomposition is Ad(K)-invariant and G/K 1is a

reductive homogeneous space. /17

The canonical projection 7 from G onto G/K defines
a principal bundle with structural group K. It will usually
be denoted by G(G/K,K). The differential m, at e has
kernel = p and maps v ® h isomorphically onto TK(G/K).
This space in turn is iéomorphic to TOM' We shall always
identify these spaces.As a consequence we have that any G-
invariant structure on M corresponds uniquely to an Ad(K)-
invariant structure on v ® h. Also, any X ¢ § gives rise
in a natural way to a Killing vector field on M. The one
parameter group exp tX can be regarded as a one parameter
group of isometries on M thus defining a flow and hence a
vector field X. By definition, X is Killing. The
correspondence X+ X from 9 into x(M) is a Lie algebra .
antihomomorphism.

The following proposition gives a characterization of

homogeneous manifolds that are Riemannian UY-symmetric spaces.

L5



Proposition) Let G be a connected Lie group, and

0:G6 > G an automorphism of order four. Let K be a sub-
group with Gg c K c GO, and write 4 = ¢ ® v ® h as in
Theorem 1. If <,> 1is any inner product on v & h which
is both Ad(K)- and o-invariant, then <,> induces a G-
invariant metric on G/K which makes G/K into a Riemannian
bL-symmetric space.

The proof is rather standard, the details can be found

in [ 14]. We shall only mention how to construct the symmetries

(SX), and show that the regularity condition is satisfied.

Construction of the symmetry s at 0= K € G/K: Since

0
'K(:GO, 0 induces a diffeomorphism sy, on G/K that makes
the following diagram commutative
G —s G
m l i
| .
G/K —— G/K
S is the symmetry at 0. (The condition Gg ¢ K ensures
that 0 1is an isolated fixed point). If now x = g 0 1is

any other point in G/K, g in G. Then. 5., is defined by

s, = 8°8, og-l. (0f course, it is necessary to show that it

is well defined).
To prove the relatioh s o8 =35 o5 , z =38 (y), we
X y z X X
first establish the following identity
i

°o g osal = o(g) or 5y°8 = o(g) o S5 for all g in G. (*)

16



(Note that here we are thinking of the elements of G as
acting on G/K, 1in general it will be clear from the context,

how these elements are regarded).

~v

Proof of (*). Let g-0 be any element in G/K, g in G.

Then sq og(g-O) = sO(gE-O) = So(w(gg)) = 7eo(gg) =

o(g)o(g) « 0 = olg) » 1o(g) = a(g) es.on(g) = al(g) osO(E-O).

0
/77
Write s = gos, o g-l s = g'los,_o (g')—l where
X 0 > Ty 0 >
x = g+0, y=g'+0, then =z = sx(y) = go sdog_l(g'-o) =
g o so(g—lg'-o) = go o(g—lg')(so(o)) = go(g-lg')- 0 thus
- -1, ° ° vy~ -1 .
s, = golg “g'") sS4 o((g') “g)g ~. We now compute S, °8,°
-1 -1, -1 » -
s,°8, (go(g ~g") ° 8 o ag((g') Tglg 7)o (g °8,°8 )
= g°85° (g7tg") o g ° (g trg:
= o o -1 o LI ° 1y~ = o
= (g 85°8 Yo (g 54 (g") ) = 5. Sy'
§3. Invariant Connections on Riemannian 4-Symmetric spaces
In what follows we use some well known facts about in-
variant connections in homogeneous spaces. (See for example

(12] vol. IT, Ch. X). (M,g,s) 1is a Riemannian 4-symmetric
spuace. As a homogeneous space is reductive with respect to
the decomposition ¢ =9 ® v ® h given in (iid above.
Therefore on the principal bundle G(G/K,K) there exists a
canonical connection T (called in the literature the connec-

tion of the second kind with respect tothe given splitting).

17



This connection is defined by the requirement that the
horizontal distribution on - G be given by the right
translates of m = v ® h. It is G-invariant, i.e., G
acts on G/H as a group of affine transformations. What
is more interesting is that the‘symmetri,s are also affine
transformations with respect to T, a result that follows
immediately from the fact that the splitting of ¢ is o-
invariant. This connection is very special as can be seen

from the following uniqueness result.

Proposition. On the principal bundle G(G/K,K) there

exists a unique G-invariant connection T which is also
s;invariant. Furthermore, it coincides with the canonical
connection with respect to the splitting of the Lie
algebra ¢ as given above.

Covariant differentiation with respect to this connection
will be denoted by V. The proof is rather standard. The
existence part has already been established above. As for
uniqueness, the idea is very simple, all that has to be done
is to show that if a connection T on G(G/K,K) 1is both
G-invariant and s-invariant, then the difference tensor
defined by DY = vXY - VXY, X, Y din X(M) dis uniquely

X
determined in terms of V and the symmetries {SX}, i.e.,
D is independent of the connection V. Where 7is fhe Riemannion eannection,
Recall that every tensor that is G-invariant is parallel

with respect to any connection on G(G/K,K). In particular,

since the symmetry tensor S 1is G-invariant, Vs = o.

18



Hence, for any - X,Y in X(M),

(V,8)Y - (V.,8)Y = - (V.S)Y = (DS)YY = DSY-SDY
X X X : X : X X

and using the fact that both V and V are invariant under
the symmetries it follows that D 1is S-invariant, the
term on the right hand side of the above equality can be

written as DXSY - SDXY_= DXSY - D:'SY = D(I—S)XSY' S 1is

SX
nonsingular, of finite order and does not have eigenvalues

+1, hence TI-S 1is nonsingular and D has .the form

1

DY = - ( S)S Yy X, Y in X(M). v

X RERTR
Note: This proposition compares with the similar result
that in a Cartan symmetric space there exists a unique
connection which is invariant under the involutions.

The connection V has some interesting properties that
justify its introduction: it is a metric connection, i.e.
the Riemannian structure g is parallel with respect to V
(Vg = 0). 1In fact, a more general result is true, and this
is that any tensor field on G/XK which is G-invariant is
parallel with respect to V. Hence, as G acts as a group
of affine transformations, G 1leaves invariant R and T,
the curvature and torsion of V vrespectively, it follows
that VR = 0 and VT = 0. Also, we have already used the

fact that VS = 0.

19



However, there is a draw back of the connection V
with respect to the Riemannian connectiqn vV, V in general
will not be torsion free, thus T(X,Y) = VXY - VX - [X,Y1#0
for some X, Y ¢ X(M). Actually, this is an essential
difference between V and V, because if T = 0, then
V = V. As a consequence we would have that VR = 0 and
‘hence that the space is Riemannian locally 2-symmetric.
Note that T = 0 ‘is equivalent to VS = 0. If M is
simply connected, then M 1is a Riemannian (globally) 2-
symmetric space (cf. [16],ASection 5).

It is possible to give in terms of V a local character-

ization of Riemannian U4-symmetric spaces purely tensorial.

Proposition. Let (M,g) be a complete simply connected,

connected, Riemannian manifold, and let S be a tensor field

of type (1,1) of order 4 with no eigenvalue +1.

Let DY = - (V 1 $)87Y  for X, Y € x(M
(I-8)77X

ol
3
Q.
<|
=<
n

+
VXY DXY.

Then (M,g) 1is a Riemannian U4-symmetric space with symmetry

tensor S if and only if

(i) g, T and R are S-invariant, and

(ii) Vg = VT = VR = VS = 0

Here T and R are the torsion and curvature of V respect-

ively.
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Proof. This is only a slight reformulation of Theorem 4.11
in [15]. The local s-regularity in the condition (ii)(a)

is here replaced by V$ = 0. /17

§4. The Almost Product Structure of A Riemannian 4-Symmetric Space

We have already seen that a Riemannian UW-symmetric space
is a reductive homogeneous space G/K, with Ad(K)-invariant
decomposition of the Lie algebra of ¢ given by 4 =p ®v @ h.
Here v & h 1is isomorphic to TOM under the canonical pro-
jection 7 :6G + G/K. It follows that G/K has an induced
almost product structure. The definition of this structure
is rather standard, its consequences, however, are very
remarkable. It turns out that one of the distributions
defines a regular foliation, that the leaves of this foliation
are Cartan symmetric spaces and that the space of leaves is
in a natural way an affine 2-symmetric space. Furthermore,

in the compact case, this fibration can be regarded as a

Riemannian submersion with base a Cartan symmetric space.

Definition of the almost product structure. At each point

x € M, we define VX to be the subspace of TXM given by

V., = g4 (v), where g ¢ G 1is such that g-.0 = x and

0
where v ¢ g has been identified with w,(v) c TOM’ in
particular, VO = m,(v). Analogously, HX is defined to be

g, (h). Because of the Ad(K)-invariance of the splitting of
0 :
f, VY and H are well defined and G-invariant. Also,
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TXM = VX ® HX for all x 1in M. Actually we can say more
as the splitting of § is o-invariant, then VY and H#
are s-invariant, i.e., invariant under the symmetries
(sx)x in M., Also,since v 1is the eigenspace of ¢ for
the eigenvalue -1 and h 1is the eigenspace of 02 for
the eigenvalue -1, v and h are orthogonal one to each
other, and hence V and H are orthogonal complementary

distributions, i.e., if V and H are vector fields with

values in V and H vrespectively, then g(V,H) = 0.

Remark. It is possible to describe V and H by means of

the symmetry tensor. (Recall that the symmetry tensor is the
tensor field of type (1,1) defined by SX = 5, X TXM > TXM).
At each point x € M, VX is the eigenspace of "Si for the
eigenvalue 1, and HX is the eigenspace of Si for the

eigenvalue -1. Observé that this characterization of V and
H is true at 0 because Sg°m = Moo, and since S 1is

G-invariant it is true elsewhere.

The projections onto V and H are given by

They will usually be denoted by V and H respectively
(same letters). The distributions V and H do not share
the same properties. On one hand we‘have that H is always
even dimensional, in fact, the restriction of S to H

induces on it an almost complex structure. In general H
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may or may not be integrable. On the other hand, V is
always integrable. Furthermore, it is autoparallel with
respect to the Riemannian connection, thus defining a
foliation on M with totally geodesic leaves.

In order to prove that V 1is integrable, we use the
homogéneous structure on M to explicitly define the integral

submanifolds.

Let G/K be the usual coset representation of M, and
let J ¢ G be the fixed point set of 02. J 1is a closed
subgroup and contains K. As K 1is compact, it then follows
that J/K is a closed submanifold of G/K. Let FO be
the connected component of J/K containing the point K = 0.
Then FO is also closed in G/K and can be written as the coset

space L/K, where L is the (closed) subgroup of J that

leaves FO invariant

Proposition. Let FO be as above. Then

(1) FO is an integral submanifold of V.

(ii) TFor each x din F the symmetry S, leaves F

0’ 0

invariant.

(1i1) FO is a complete totally geodesic submanifold.

Proof. We first prove (ii). We start by showing that it is

only necessary to prove that 5 preservesb FO: Let x Dbe
an arbitrary point in FO = L/K, x = K for some & € L.
Then the symmetry at x 1is given by s, % ko Sg ° 2_1,
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therefore SX(FO) = Ros 02—1(F ) = o5 o Z_l(L/K) =

0 ‘0 0
R o SO(L/K). It follows that s, DPreserves FO if and
only if so does I In order to prove that Sy leaves

invariant FO’ we show that sO(J/K) = J/K, then by

continuity and the fact that 8¢ leaves 0 fixed, the
result will follow. But that s, Ppreserves J/K dis an
immediate consequence of the relation we o = Sg°m (since

o(J) = J and J/K = w(J) = m(cd) = s.onw(J) = SO(J/K)).

0

Furthermore, this relation, in terms of elements, tells us
that sO(gK) = so(ﬂg) = mo(g) = o(g)X for all g € G. 1In
particular sg(RK) = OZ(R)K = K for all & ¢ L, this is,

SSIFO = id. This shows that FO with the induced Riemannian

metric and with the restrictions of the symmetries (SX)XG FO

becomes a Cartan symmetric space. Note that J/K 1is the fixed
point set of sg, hence it is a totally geodesic submanifold

of G/X, 'in particular, since FO is open in J/K, FO is

also a totally geodesic submanifold of G/K. This proves

(iii). It is now easy to see that FO is an integral sub-

manifold of V. As noted above, J/K is the fixed point set

of sg, thus at 0, TO(J/K) = TOFO is the fixed point set

of g which is VO'. At any other point x = 2K € L/K

0
we have V =2, (V) = l*(TOFO) = T Fy as claimed. /177

0 0
An immediate consequence of (i) is that V is an

involutive distribution. This can be seen as follows: Let

x = gK be an arbitrary point of G/K, then because of the
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G-invariance of V, gFO is an integral submanifold of - V
through x. Furthermore, it is also totally geodesic and

invariant under the symmetries (sy), y € ng. Hence, we

have proved the following theorem.

Theorem. The distribution V defines a foliation on M
with leaves complete totally geodesic submanifolds. Further-
more, each leaf inherits in a natural way the structure of

a Cartan symmetric space. /17

Up to this point we have looked at the structure of
each one of the leaves separately. What ié also an important
result is that this foliation is in fact regular, that is,
the space of leaves has a natural structure of differentiablé
manifold which makes the canonical projection into a differ-
entiable submersion. All this is very straightforward, oné
only has to notice that L 1s a closed subgroup of G,
and hence that the quotient space G/L 1s an analytic mani-

fold. Thus we have the following locally trivial fibration

L/K €& G/K

J

G/L

(see for example [12] Vol. I Ch. 1). Note that L satisfies

2 2 .
Gg cLc@’ , which says that G/L is an affine 2-

symmetric space. Thus we have proved the

Theorem. Every Riemannian 4-symmetric space fibers over an

affine 2-symmetric space with fibers the integral submanifolds
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of the distribution V. 1In particular, all the fibers are

isometric to a Cartan symmetric space. /177

This suggests the adoption of the following terminology:
V and H will be called the vertical and horizontal dis-
tributions respectively.

There is one interesting case that deserves special
attention, this is when M is compact. Here we have that
all the above groups are compact and hence G/L can be
endowed with a G-invariant Riemannian metric that makes
it into a Cartan symmetric space. Furthermore, the metrics
on G/K and G/L can be chosen so as to make the projection
a Riemannian submersion. Thus in the compact case, we may
think of a Riemannian A4-symmetric space as the total space
of a locally trivial fibration over a Riemannian 2-symmetric
space with fiber a Riemannian 2-symmetric space and with
projection a Riemannian submersion.

We shall study this type of fibrations in.the following

section.

§5. Geodesics and Riemannian Submersions. Focal Points

The geodesics of the connection V issuing from 0
have an explicit description in terms of the decomposition
of the Lie algebra § =¢ D v ® h in §2, they are the
orbits of 0 by the one parameter groups exp tX with X
in v ® h. In general, they do not coincide with the geodesics

of the Riemannian connection. This is the condition for a
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Riemannian homogeneous space to be naturally reductive
(with respect to the given splitting). Cartan symmetric
spaces are always naturally reductive. This is a consequence
of the uniqueness of a connection invariant under the
geodesic involutions. Thus ¥V and V are the same. A. Gray
has shown that Riemannian 3-symmetric spaces-are naturally
reductive whenever the associated almost complex structure
is nearly Kahlerian, see [8 ]. As for Riemannian Uu-
symmetric spaces I do not know whether or not they are
naturally reductive with respect to the abové splitting.
However, for geodesics issuing from 0 with initial
direction on either v or h a similar description as
orbits of one parameter groups can be given.

The result for geodesics with initial direction on v
is an immediate consequence of the Proposition in §4 and
the similar result for Cartan symmetric spaces. As for

geodesics with initial direction on h, we prove

Proposition. Assume the projection w:M > B in §4 1is a

Riemannian submersion. Then for each X € h, the orbit
of 0 under the one parameter group exp tX 1is a horizontal

geodesic in M.

~s

Proof. Let X be the induced Killing vector field on M
by X. It is necessary to show that Vy? vanishes identi-
cally along the curve vy(t) = exp tX- 0. We prove separately

that both V(Vyy) and H(Vyi) vanish at 0. Then the
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result will
an integral

At the

follow since X is Killing and exp tX+* 0 1is

curve.

origin X 1is horizontal, hence U(V§X)O = A%DXO-

in O0'Neill's notation [20], and since AXY = % VIX,Y] for

any pair X

V(V§X)O = 0.

and Y of horizontal vector fields,

To prove that H(V§§)O = 0 we only make use of the

square of the symmetry s

2 ~ .
SO(VXX) is

2

SO*

(V§X)O

. 2 . .
0 Since sy 1is an isometry,

sz—related to V s X, hence (SS(V§§))O =

0 SS§ 0
is equal to (V QNSS%)O' By #ilevsor nafuve . of
80X

V(.)X, we can substitute (SS§)O by -X.. Thus we have

0

sg (Vy%)o =-V§ (SS?) and taking horizontal components:

—H(V&X)OZ ~H

0

(V% sé?). To conclude we show that s

2
0 0

X = -X

along exp tX - 0.

Assume this for a moment. Then our last relation gives
—H(Vyy)o = —H(Vyoséi) = H(VyOY) = 0 which is what we wanted
to prove. Thus we only have to prove that sé% = =X along
exp tX 0. By definition, (Sgi)exp tX « 0 = SS* %SBQ(exp tX.0),

now § at t

(s) = exp s

(sé%)exp tX « 0 =

Note that 52

hat point is the tangent at 0 of the curve

X -saz(exp tX-0) thus

SS(T(S))

2 -2
a a4 {soexp sX s," exp tX « 0}
dslg = ¢ sl g - g

exp tX 802(0)

it
(D
w
J
+
Q
>
o
1

0 exp - tX'-0 1is
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also equal to sg exp tX * 0 since 862(0) = 0. As sg = id,

2 -2 .2 2 _ 2 B
gexP sX Sq S¢S ©XP tX -0 = 8, exp sX exp - tX =0 =

sgexp(s—t)x- 0 and using again the last remark this is equal

we have s

to exp - (s-t)X + 0 which is exp - sX - exp tX <0, and

differentiating with respect to s at the origin we get

“X exp tX -+ 0 which is what we wanted. | i
Having described the horizontal geodesics issuing from

0, 1t is now possible to describe the horizontal geodesics

issuing fromany other point x on the fiber F_.,. Tor this

0

we use the fact that PO can be written as the homogeneous

space L/K with L a group of isometries not only of FO
but also of M. Then x = 2«0 for some & in L. Hence
the horizontal geodesics issuing  from x are of the form
vy(t) = f2Cexp tH+0) with H din h. +v(t) can be written
as y(t) = 2 exp tH Q_ll- 0 = exp Ad(R)tH & - 0 =
exp t Ad(f)H - x. i.e., «y(t) 1s the integral curve of the
induced Killing vector field Ad(2)H that passes through x.
Note that h is Ad(L)-invariant, hence Ad(f2)H is an
element H' in h. This shows that the horizontal geodesics
along the fiber FD are the integral curves of the induced
Killing vector fields H with H in h. 1In particular,
the normal bundle to FO, V(FO), is parallelizable.

Using this characterization of the horizontal geodesics,
it is possible to give a description, similar to the one

given for conjugate points in a Cartan symmetric space,

for focal points to the fibers in terms of roots of the Lie
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algebra of g.

For this, we let M = G/K be as usual the coset
representation of a Riemannian 4Y-symmetric space, but
now with the additional assumption G compact and semi-
simple. We also assume the fibration in 34 to be a Riemannian
submersion. Under these conditions, we describe the focal
points of the fiber through 0. In doing so, we need to
recall some results for conjugate points on Cartan symmetric
spaces, see [91 Ch. VII, and quote a result by O0'Neill
in [ 21].

The Lie algebra § of G 1is compact and semisimple,
the automorphism o of order 4 gives the splitting
8 = ¢®v ®h and if we set A =g @ v, then g = A & h
is a symmetric Lie algebra of the compact type with involution
o’ satisfying ozlk = id and 02|h = -id. The manifold
B = G/L is a Cartan symmetric space. h is identified with
the tangent space of B at 0 and the Riemannian exponential
map is the exponential map of G restricted to h followed
by the canonical projection 7w from G onto G/L.

Let « be a maximal abelian subspace of h and let

h
& be a maximal abelain subalgebra of § generated by ah.
Let 6 be the complexification of € in Qc. Then & is

a Cartan subalgebra. The root system of ﬂ¢ with respect
to ¢ 1s denoted by A, and Ag denotes the set of roots

in A which do not vanish identically on @,. Then we have

h
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Proposition. The point X = Ad(%)A 1is conjugate to 0 in

B if and only if «a(A)€ nv-1(Z-0) for some o ¢ Anh, A is
an element in @. (Note that any element is of the above form,
since h = UQELAd(l)ah)' We recall the following result by

O'Neill, [21].

Theorem. Let @:M + B be a submersion, v :[a,b]l] - M a

horizontal geodesic. Then the following integers are equal:

1. The order of y(b) as a focal point of the fiber F
along .

2. The order of y(a) as a focal point of the fiber F

along v.
3. The order of conjugacy of the end points of @wey along

T o Y.

With this in mind we can state (same notation as above)

Proposition. Let H € h. Then the point exp H. 0 in M

is a focal point of the fiber FU along the (horizontal)

geodesic exp tH+0 if and only if o(A) ¢ nv/(Z-0).
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§6. A Local Characterization of Riemannian U4-Symmetric Spaces

Riemannian Y-symmetric spaces in some sense resemble
complex manifolds. Both of these classes of spaces have
.associated in a natural way a tensor field of type (1,1) of
order four. In the case of complex manifolds, this tensor
i's the induced complex structure JX on each tangent space
TXM. In the case of a Riemannian U4-symmetric space, this
tensor is the symmetry tensor S. The main difference between
these two types of structures is that whereas J never has
eigenvalues Ql; S in general may admit -1 as an eigen-
value. In fact, in order to avoid falling into the realm of
symmetric spaces it is convenient to assume from the outset
that -1 1s an eigenvalue of S,

This analogy provides us with a wealth of questions.
Concretely one may try to parallel the theory of complex
manifolds and hence one can always ask if a theorem in complex
geométry has its counterpart for Riemannian U-symmetric spaces.

A better understanding of complex manifolds is obtained
if one first studies them from the more general setting of
almost complex manifolds. Then, the first fundamental result
is that an almost complex manifold with almost complex structure
J 1is a complex manifold with induced complex structure J if
and only if the torsion of J vanishes identically. (The
torsion of J is defined to be N(X,Y) = 2{[JX,JY] - [X,Y] -
JIX,JY] -J[JX,Y]} for X, Y ¢ X{M)). This result is purely

of the complex differential geometry of M and no allusion
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is made to any sort of Riemannian geometry. When a Riemannian
metric is introduced so that it is compatible with the comflex
structure, then we have an Hermitian metric. In this setting,
the basic result is provided by the characterization of Kahler
manifolds: Let (M,g,J) be a Hermitian manifold, then it is

Kahlerian if and only if VeJ =0 for all X ¢ X(M).

In [15] are investigated those Riemannian n-symmetric
spaces (M,g,s) for which the symmetry tensor S is integrable,
in the sense that its torsion vanishes. (The torsion is
defined as S°[X,Y] - S[SX,Y] - S[X,SY] + [SX,SY].) It is
proved that integrability of S 1is equivalent to S being
parallel. Moreover, it turns out that the Riemannian manifold
(M,g) underlying (M,g,s) is Riemannian 2-symmetric.

The question of integrability of S being settled,
we take a different approach to study Riemannian UY-symmetric
spaces, our aim being to arrive at a local characterization of
these spaces. For example, we have that Riemannian 2-symmetric
spaces are characterized (locally) as those spaces for which
its curvature tensor is parallel. Riemannian 3-symmetric spaces
are characterized in terms of their associated almost complex
structure J (see [8 1) as those spaces for which (VXJ)X = 0
(nearly Kdhler condition) and also (VXR)XJX wgx = 0 for all
X ¢ X(M)., Also, as we pointed out above, Kdhler manifolds are
defined to be Hermitian manifolds with V,J = 0. In the light

X
of all this, we pose the following problem:

(P) Given a tensor field S of type (1,1) of order four and
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with no eigenvalue +1 -on a Riemannian manifold (M,g),
under what sort of geometric restrictions is S the symmetry
tensor of a family of symmetries?

There does exist an immediate answer. This is given by
the theorem of Cartan-Ambrose: S must preserve g and all
the covariant derivatives V(n)R of the curvature tensor R.
0Of course this result is of local nature and we also have to
check if the regularity condition of the induced isometries is
satisfied. However, this is an infinite set of conditions.

Thus we shall start by searching for a finite set of conditions.

We would like this set to be geometrically appealing and easy

to manipulate. We have already obtained a finite set of

necessary and sufficient conditions in Section 3. There, it
was stated that a Riemannian manifold (M,g) - M complete and
simply connected - is a Riemannian UY4-symmetric space with

symmetry tensor S if and only if

(i) g,T and R are S-invariant, and
(ii) Vg = 0, VT = 0, VR = 0, VS = O
the bars denote covariant differentiation, torsion and curva-

ture with respect to the connection defined by

T.¥Y = V.Y - (V 5)s™ 1y X,Y € X(M) (see §3).

X X (1-s)"1x
The idea now is: given a Riemannian manifold (M,g)
complete and simply connected with a symmetry tensor S as

above, state explicitly the above conditions (i) and (ii) in
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terms of the Riemannian connection. Our final results are

given at the end of the section summarized in two theorems.
To begin with, we shall write the difference tensor

Dxf = -(V(I S)_lXS)S_lY in a more appropriate way for our

calculation;. For this we use S-invariance and the induced

almost product structure on M.

The S-invariance of D simply means SDgY= D_,SY.

X SX
Thus SDVXVY = DSVXSVY = DVXVY, hence VDVXVY = 0, and
also using 82 instead of S, HDVXVY = 0, i.e., DVXVY = 0

for all X and Y.

This is a relation that should be expected since the leaves
of V Dbeing totally geodesic Cartan symmetric spaces admit
a unique invariant connection, thus V = V on the leaves and
DVXVY = Q.

Similarly we have

- X = vy =
H(DHX(HY)) = 0, V(DVX(Hy)) 0, V(DHX(VY4) 0.
We omit the proofs.

From this we have that DXY decomposes into three parts

DXY = VD XHY + HD XVY + Hp XHY.

H H v

We associate the first two terms on the right to define the
tensor -AXY. We shall see that this tensor is the same as
the tensor A as défined in [20]. Since both H and v
are invariant under the group of symmetries, VH = 0 and

Vv = 0. Now,
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0 = V(VHXH)HY = Vv XHY - VHY

y XHY = Vv X(HY) + VD

H XHY;

H H

‘This shows two things,on one hand, that #{ 1s auto-parallel
with respect to V, and on the other hand, that

VDHXHI = —VVHX(HY).

Analogously, if we write down explicitly the relation

0 = H(Tyy VIVY  we obtain HD, VY = -HV, VY. Thus

H¥X HX

D,Y = HDVXHY - HV

Y - HY = D, HY - A Y.
% V "AY H % Y XY

H¥X HX v

. o1 o . 1 i
It is easy to check that HDVXHY = 5 H(VVXS)SHY = 2(VVXS)SHY.

The H can be suppressed because V 1is totally geodesic with

respect to V.

Finally we have: DJY -A Y + %(VVXS)SHY

X X
TY = uoY - ALY + E(y, S)SHY
X X AX 2 7VX
for all X.,Y in XM (1)
Y = +
and recall that AX HVHXVY VVHXHY.
The task we have now is: given the connection V in

(1), obtain a set of geometric restrictions which ensures that
the relations in (i) and (ii) above are satisfied. The way
we proceed is as follows: first we unwind the conditions in
(i) and (ii) and then show that what we obtain is indeed a
good set of restrictions.

In all that follows ¥X,Y,Z... will denote smooth vector

fields on M. Note that the S-invariance of g can always
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be assumed without any loss of generality.

The condition Vg = 0

It is well known that for a connection with parallel
torsion and parallel curvature, torsion and curvature pre-
serving linear transformation can be realized by means of
affine transformations (locally), the extra condition we have:
Vg = 0 then means that these transformations will turn out
to be isometries whenever they preserve the metric at one
point. In our present situation this will be the case for the
symmetries we are searching for to answer (P).

As Ay is skew symmetric .with respect to the Riemannian
metric, we are left with the condition that (VVXS)SH be skew-
symmetric as well in order to have ng = 0. This immediately
implies that it takes vaiues in the horizontal distribution.
We should have g((VUXS)SHY,UZ) = ~g(HY,(VUXS)SHUZ) = 0.
Conversely, we claim that if H(VVXS)SHY) = (V,,5)3HY, then

¢
(VVYS)SHY is skew-symmetric.

2
Proof. g(H(VVXS)SHY,Z) = g(HviS HY - HSVVXSHY,Z)

-1

- _ Y = - -
= g(_HvVXHY HSVVXSH y2) g<VUXHY’ HZ) g(vVXSHY,HS 7)
= UXg(HY, = HZ) =~ g(HY, - 7 HZ) = VXZ(SHY,HS ™ 2) + g(SHY, v HS™ 7).
Recall that S—l|H = -S, and using the S-invariance of g
we obtain
- ; - = +
= g(HY,VVXHZ) g(SHY,VVXHSZ) g(HY,VUXHZ HSVVXHSZ)

2 -
= -g(Y,HV  HS"Z - HSV | HSZ) = -g(Y,H(V, S)SHZ). /17
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This shows that H(VVXS)SH is always skew-symmetric with
respect to the Riemannian metric g for any X € x(M). In
particular, the condition Vg = 0 is satisfied if and only
if H(VVXS)SHY = (VVXS)SHY for all X and Y in x(M).

Since S 1s nonsingular and preserves the distribution,
we can express this condition as saying that (VVXS)H is
horizontally valued for all X. That is, V(VVXS)HY =
VVUX(SHY) - VS7VX(HY) = 0, but VS =SV = -IV = -V, thus
the above is ~uiwwes to V(VUX(SHY*'HY)) = 0 or
V(Vy[(I+S)HY]) = 0. Again, I+S is nonsingular on #H,
thus it can be omitted, this yields UVVXHY = 0. Since V
and H are orthogonal complementary distributions, this is
the same as writing VUV, (#Y) = VVX(VY) for all X, Y € X(M).
(Here is the one row calculation of this fact:‘ g(HVVXVY,HZ) =
g(Vyy VY, HZ) = —g(UY,VUXHZ)), i.e., we have shown that the
condition Vg = 0 is equivalent to the condition
VVUX(VY) = Vyyx (V).

This last condition has two interesting consequences,
firstly, i1t is immediate that the vertical distribution is
integrable: to see this we compute the Lie bracket

[vX,vYy] = VVX(VY) - VVY(VX) = VVVX(VY) - VVVX(V%z = VLVX,VY],

i.e., the Lie bracket of two vertical fields is a vertical
vector field. Secondly, if T 1is a leaf of the foliation,
then F is a totally geodesic submanifold.

VY = v

This is clear, since the condition VUV vy

VX VX
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precisely expresses that covariant differentiation of a
vertical vector field with respect to another vertical vector
field is a new vertical vector field.

Conversely, if V is an involutive distribution with
leaves totally geodesic submanifolds, then VVVXVY = VVXVY.
(This is but the definition).

In conclusion we have

Proposition A . Let (M,g) and S be as in (P) above.

Assume that g is S-invariant, and let ¥V be the connection
defined in (1). Then g is parallel with respect to V,
(i.e., Vg = 0) if and only if the vertical distribution

defines a totally geodesic foliation of M.

As it was proved in Section 4, this foliation must have
the following two properties. On one hand the leaves should
be isometric to a Cartan symmetric space, and on the other
hand, the foliétion must be regular. We anticipate a little

and note that since both connections V and V coincide on

"

the vertical distribution, it follows that R R on V
and also S-invariance will imply that VR = VR = 0 on V.
This says that the leaves are locally 2-symmetric spaces.

The problem is then to see when they are globally symmetric.

As for regularity, little is known to me.
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For the rest of this section V 1is assumed to be auto-

parallel with respect to the Riemannian connection V (i.e

* o

Vg = 0).
In the following lemma, we prove some relations that

will be useful in our computations.

Lemma. Let U, V, W denote vertical vector fields, and

H, X, L horizontal vector vields. Then

(1) VUV = VUV
(ii) T H = (v H- Sy _SH)
v 2V v
(iii) VHK = HVHK
(iv) VHV = VVHV.
arR hore ., both V and H are auto-parallel with respect
to V.

The proof is very simple, one only has to unwind the
definitions. For example (i) is an immediate consequence of
our assumption that V be auto-parallel. It is also clear
that V and H are auto-parallel with respect to V.

For the rest of the section, U, V, W will always denote
vertical vector fields, and H, K. L horizontal ones.

We now study the condition VS = 0.

The method we follow will be the same throughout the
section. It consists of computing for each tensor under
consideration each one of its components withwrespect to the

vertical and horizontal distributions. Thus for VS we have:
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(VVS)W = VV(SW) - S(VVW) = —VVW - (—VVN) = 0 where we have
used the condition V auto-parallel with respect to V.

VU < T Gy - L 1

(VVS)H = VV(SH)-S(VVH) = 2(VV(SH)--SVV(SSH))--2 S(VVH—SVV(SH))

) or L1 1
(by (ii) of the above lemma) = 2(VV(SH)i-S(VVH)) —Q(S(VVH) +

v, (sH)) = 0. (VHS)V = 0 as a consequence that H 1is auto-
parallel with respect to V. Finally we have to compute
(VHS)KA: Wﬁ(SK) - S(VHK) using (iv) above, we have that this

can be written as HVH(SK) - HS(VHK) or simply as H(VHS)K.

That is (VHS)K H(VHS)K. In conclusion we have:

Proposition B. Let (M,g) and S Dbe as in (P), assume

further that V 1is auto-parallel with respect to the Riemannian
connection V. Then VS = 0 if and only if H(V 8K = 0

for all H and K horizontal vector fields.

The condition VS = 0 <can thus be interpreted for the
horizontal distribution as the equivalent of the Kahler

condition. In fact, we can draw the following corollary:

Corollary. Let N be any connected submanifold of a Riemann-
ian 4-symmetric space (M,g,s) whose tangent bundle is S-
invariant and is contained in the horizontal distribution.
Assume further that N 1s complete totally geodesic. Then

N is a Hermitian 2-symmetric space with S as its complex

structure.

Proof. The totally geodesic condition implies (VHS)K =

H(VHS)K = (VHS)K for all H and K tangent to N, and
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since for a ub-symmetric space VS = 0 holds true, then

(VHS)K = 0 for all H and K tangent to N, i.e. S
defines a compiex structure on N which is Kdhler. Further-
more, the squares of the symmetries define involutions that
leave S invariant and hence N is Hermitian 2-symmetric as
claimed. Of‘course here we are using the well-known fact that
a complete totally geodesic submanifold whose tangent space is
left-invariant by an isometry then the submanifold itself is
left-invariant by the isometry.

There is one point that deserves some attention. From

our presentation it appears as if the conditions Vg = 0 and
VS = 0 were related in one direction, that is, that using
Vg = 0, then we arrive at the result that VS vanishes

identically if and only if H(VHS)K = 0. Actually we have that
VS = 0 is a much stronger condition that the vanishing of Vg.

Concretely we prove:

Proposition B'. Let (M,g) and S be as in (P). V the

Riemannian connection and V as given in (1). Then VS = 0
if and only if V is auto-parallel with respect to ¥ and
H(VHS)K = 0 for all H and K horizontal vector fields. In

particular we have that VS = 0 implies Vg = 0.

Proof. Let U and V be any two vertical vector fields, then

(VVS)U = VVSU - SVVU = —VVU - SVVU, hence this vanishes if and

only if SVVU = —VVU i.e. if and only if VVU remains vertical,

which is precisely the condition that V be auto-parallel with
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respect to V.
Having proved this, the rest of the calculations performed
to prove Proposition B hold true, hence the result follows.

We now study the torsion T of the connection V. As

pointed out at the end of Section 3, the main difference

between this connection and the Riemannian connection is that

m

whereas T 1s always identically zero, T in general does not
vanish. In fact, we remarked that if T vanishes idéntically,
then VS also vanishes identically and hence the underlying
Riemannian manifold is a Cartan space. Thus T is an interest-
ing tensor, it measures how far is a U—symmetrib space from
being a 2-symmetric space. As usual, U and V are vertical
and H and X horizontal. The assumption remains the same:

V auto-parallel with respect to V. Note that both connections
coincide on V, hence T(U,V) = T(U,V) = 0. Thus we only

have to compute T(V,H) and T(H,K). An easy calculation

from the definitions shows that

— 1
T(V,H) = (V,S)SH + ALV  and
T(H,K) = ~V[H,K].
_ 2 _ _
Observe that (VVS)SH = VV(S H) - SVV(SH) = -VVH SVV(SH)

is always S-invariant, because if we substitute S—lV by V
and S—lH by H and apply S on the left we obtain:
(s7tm - s%y -1
S 7V S TV

-1

our original expression. Here we have used S "H = -SH and

(ss™tu)y = -SY,(SH) - V. H, which is
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our assumption V auto-parallel with respect to V. Hence
we have that T(V,H) is S-invariant if and only if AHV

is S-invariant. On the other hand, T(H,K) gives us
precisely the measure of how far is H from being integrable
which is in accordance with our previous remarks since in this
case, 1f H 1is integrable, then it defines a complementary
foliation of V with leaves complete totally geodesic sub-
manifolds with a natural Hermitian structure on them, and
hence, our space would be (locally) the produqt of two

Riemannian 2-symmetric spaces. In conclusion we have

Proposition C. The torsion tensor of the connection V 1is

given as follows:

T(U,V) = 0 (V  is assumed auto-parallel)

= 1

T(V,H) = §(VVS)SH + AHV

T(H,K) = -VLH,K] = -AK + AH.
Furthermore, %(VVS)SH is always S-invariant. Hence T is
S-invariant if and only if both AV and -y[H,K] are S-
invariant. In particular, if A is S-invariant then T is
S-invariant. /17

It should be pointed out that although the condition
VS = 0 was interpreted as some sort of Kdhlerian condition,
this condition and the condition that T be S-invariant at
first do not seem to be very geometrical, and it looks as if

given one tensorial condition we are only obtaining a new one.
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However, it must be remembered that we pursue a final set of
conditions where all of thanareinterﬁoven. We still have to
study the conditions that R be S-invariant, and that

VR 2 0 and VT = 0.

We now study the curvature tensor R of the connection

V. As usual U, V and W denote vertical vector fields,

and H, K and L horizontal vector fields.

Proposition D. Let (M,g) and S be as in (P), and let

V and V be respectively the connection defined in (1) and

the Riemannian connection. Assume VS = 0. Then the curvature

tensor R of V satisfies the following relations

(a) R(U,VIW = R(U,VIW
= . 1 1 _1
(p) R(U,V)H = > R(U,V)H--2 SR(U,V)SH u(VUS)(VVS)H +
1
~ E(VVS)(VUS)H
(¢) R(U,H)V = VR(U,H)V
(d) R(V,H)K = % HR(V,H)K—%— HSR(V ,H)SK
(e) R(H,K)V = VR(H,K)V - Agh v + AL ALY
= - _ 1
(f) R(H,K)L = HR(H,K)L-AHAKL +A AL Z(VV[H,K]S)SL.

Before proVing this, we state a proposition which gives the
conditions under which R is S-invariant. Then we give a

joint proof of both propositions.

Proposition D'. Given the same notation and assumptions as

in Proposition D, assume further that the tensor field A is

S-invariant. Then R 1is S-invariant if and only if the
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following conditions are satisfied:

(a) VR(U,H)V

0

(B) HR(V,H)X

SHR(V ,H)SK

(y) VR(H,K)V and HR(H,K)L both are S-invariant.

Proof (0Of Propositions D and D'). The idea is the same as we
have been using, We study each of the components of R

separately.

Recall that the condition VS = 0 1is equivalent to V
being auto-parallel with respect to V and to H(VHS)K = 0
(both conditions taken together, see Proposition B'). We
shall use these conditions repeatedly without any further

mention. Also we shall use relations like SV = -V, S_lV = -V

and S™YH = -sH.

(a) This follows because V 1is auto-parallel with
respect to V and hence VVW = VVW remains vertical and we
have R(U,V)W = R(U,V)W. Since S restricted to V 1is
minus the identity, it is clear that R(U,V)W is S-invariant.

(b) By unwinding the definitions, the following relation

can be obtained: R(U,V)H = % R(U,V)H - % SR(U,V)SH

1 1
+ E[SVUVV(SH) - VUVVH] - E[SVU(SVVH) + VU(SVV(SH))]

1 1 .
- FISV, v, (SH) - vV H] + L[SV (S H) + v, (SV,(SHNT.

We shall work with the second row (by skew-symmetry with the

third). Note that SVUVV(SH) - VU(SVV(SH))=—(VVS) (VV(SH)),
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and also VUVVH - SV (Sv H) = (VUS)(SVVH), adding up these
two expressions we obtain - (VUS)(VVS)H. From this the

result follows. Note that the way in which we have associated
the terms in our very first relation shows that R(U,V)H is
S-invariant. (Also, we can recall the procof of Proposition C
together with the final relations). However, we can give a
“straightforward proof of this fact. Note that we have to show
that R(U,V)H = SR(S™'u,s"v)s™ H = -SR(U,V)SH. Thus S-
invariance reduces in this case to prove that R(U,V) commutes
with S. (For this one has to observe that R(U,V) preserves
the horizontal distribution H). But that R(U,V) commutes
with S 1is an immediate consequence of the fact that

(VVS)H = 0 which is part of our assumptions (see also the
proof of Proposition B). Hence we have that R(U,V)H is
S-invariant.

(¢) R(U,H)V = V. V.V-V.V uv -

U'H H [U H]
VU(UVHV)-VHVUV-V[U’H]V = VVUVHV UVHVUV -

= V(V V., V-9 V V-V

YWtV 1 ~VH [u,u1’? = VRWW,HV.

As for the S-invariance of this term, we shall see that it

yields condition (a). R(U,H)V is S-invariant if and only if
RU,MV = sR(s™ U, mys™ v = -SR(U,SH)V but R(U,SH) preserves
V, hence we must have R(U,H)V = R(U,SH)V or R(U,(I-S)H)V =

The term (I-S) can be omitted since it is nonsingular when

b7



restricted to H, thus the last relation can be interpreted
as saying that R(U,H)V is S-invariant if and only if
R(U,H)V vanishes identically. By what we have already proved
this is precisely equivalent to the vanishing of VR(U,H)V,

and hence condition (a).

(d) Some routine calculations yield the following relation:

< .1 1 1
R(V,H)K = 5 HR(V,H)K - > HSV (SVHK) + 5 HVH(SVV(SK)) +
gy (SK) - = HV
2 VIV,H] 2 HLV, H]
To simplify this expression we now use our assumption VS = 0.

Thus in particular we have H(VHS)K = 0. With this in mind

the above expression reduces to

R(V,H)K = % HR(V,H)K - % HSR(V,H)SK.

For S-invariance we show that R(V,H)X must vanish
identically: If R(V,H)X is S-invariant, then in particular
it is SQ—invariant i.e.
ROV,IDK = S%Res™%v,s7%m (s %) = SPR(V,H)K = -R(V,H)K,
Thus R(V,H)K 1is S-invariant if and only if it vanishes
identically. Using what we have just proved, we must have

HR(V,H)K = HSR(V,H)SK which is condition (BR).

(e) R(H,K)V = VHVKV-VKV V"v[H,K]V = VH(UVKV)— VK(VVHV)

vv (v V- Hv V) - VVK(V V- Hv V) 'VV[H K]V- VVH[H K]

VR(H,K)V - AHAKV + AKAHV'
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As we have already assumed that A is S-invariant, the
last two terms are also S-invariant, hence R(H,K)V is

S-invariant if and only if VR(H,K)V is S-invariant.

(f) R(H,K)L = ’v'HVKL-vKVHL-ﬁ[H',K]L HYHY L -
HVKHVHL—HVH[H,K]L—VV[HbK]L = HYL(V, L-vv, L) -
HVK(VHL'VVHL)‘HVH[H,K]L '% VV[H,KJL ¥ % SVV[H,K]SL

- HR(H,K)L—AHAKL+AKAHL+% VV[H)K]L+% 57y 01, 1 75L
Note that the last terms can be written as - %(VU[H,K]S)SL’
and so R(H,K)L = HR(H,K)L—AHAKL+AKAHL-%(VV[H,K]S)SL.

For the S-invariance of this term, we have already shown
(see the comments before Proposition C) that (VVS)SH is
S-invariant, and since V[H,K] = AHK-AKH we have that if A
is S-invariant, R is S-invariant if and only if HR(H,K)L.
This together with the last part of the proof of (e) accounts

for (¥). The proofs of both propositions are now complete. ///

Remarks. As it was pointed out at the beginning of this section,
a set of necessary conditions to solve problem (P) is given by
the fact that the curvature tensor R of the Riemannian

V(D)R must

connection V and all its covariant derivatives
be S-invariant. Here we shall only study the S-invariance of
R and see how it compares with the S-invariance of R as

already given in Proposition D'.
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Proposition D". Let (M,g) and S be as in (P). Assume that

the vertical distribution V 1is totally geodesic with respect
to the Riemannian connection. Then the Riemannian curvature
tensor R is S-invariant if and only if the following set of

conditions 1s satisfied.

(a) R(U,V)H = -SR(U,V)SH

(b) HR(U,H)V = -SHR(U,SH)V

(¢) VR(V,H)K = VR(V,SH)SK

(d) VR(H,K)V = VR(SH,SK)V

(e) HR(H,K)L = -SHR(SH,SK)SL

(f) VR(U,H)V = HR(V,H)X = HR(H,K)V = YR(H,K)L = 0. e

From this we have

Corollary 1. The same notation and assumptions apply as in

Proposition D'. Assume further that R is S-invariant.

Then R 1is S-invariant.

Proof. We would have to check that conditions (a), (B) and

(y) of Proposition D' are satisfied, but this is trivial. /77

The advantage of this corollary is that the S-invariance
of R 1is now easily stated in terms of the S-invariance of
R. The drawback is that it is not equivalent. S-invariance

of R 1is stronger. Note also that R simplifies

Corollary 2. The notation and assumptions are as in Proposition

D. Assume also that R 1is S-invariant, then R ig given as

follows:
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(a) RU,VIW = RU,VIW

R _ 1 1
(b) R(U,V)H = R(U,V)H-H(VUS)(VVS)H-+u(vvs)(vUS)H
(¢) & (d) R(U,H)V = TR(V,H)X = 0
(e) RUH,K)V = VRWH,KIV-ALAV+AAV
— _ 1
(£) R(H,K)L = HR(H,K)L—AHAKL+AKAHL——2-(VV[H,K]S)SL.

The remaining two conditions we have to work on are
YT = 0 and VR = 0 which tell now that V is. invariant
under parallelism. At this point, instead of following our
general procedure we look at the relations for T and R
given in Propositions C and . D and note that it is more
convenient to break them up into parts which should vanish
separately. More concretely we have that T can be given
in terms of the two tensors (vv(.)S)SH(°) and A, and that
R is given in terms of R and these two tensors. Now then,
each one of these two tensors is also S-invariant for a
Riemannian U-symmetric space, therefore, both of them must
be V-parallel, i.e. we must have: V[(VV(O)S)SH(°)] = 0 and

VA = 0. With this in mind, we can state the following:

Proposition E. Let (M,g) and S be as in (P), and let V

be as given in (1). Assume that VS = 0 and that both A and

R are S-invariant. Then V is invariant under parallelism

el

(i.e. VR = 0 and VT = 0) if and only if the following

conditions are satisfied:
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(a) VA = O

(b) Vv, ySISH(:)) = 0
() (VRY(WU,VW = 0
(d) (VRI(U,V)H = O
(e) (VWR)(H,KDV = 0
(£) (VHR)(H,K)L = O
Proof. From the previous remarks and the formulas fof T and

R it is clear that if conditions (a) through (e) are satisfied,

then both R and T are V-parallel.

Assume now that V 1is invariant under parallelism. Then
we claim that (M,g) Dbecomes a Riemannian UY-symmetric space
with symmetry tensor S. To prove this we have to see that
conditions (i) and (ii) in Section 3 are satisfied. (i) is
immediate from Proposition C, Corollary 1 and our assumptions.

To prove (ii), it remains to show that the condition Vg 0

is satisfied. But this follows from VS = 0 (see Proposition
B').

In Section 3 we pointed out that any tensor field invariant
under the group obtained by taking the closure, in the full
group of isometries of (M,g), of the group generated by the
symmetries was V-parallel. Since the tensors we are consider-

ing satisfy this condition, the result follows. /17

Thus we have to study conditions (a),...,(e) of Proposition

E. We start with (a).
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Lemma 1. In addition to the assumption V auto-parallel
with respect to V, assume that A 1is S-invariant. Then

VA is given as follows:

(a) (§VA)HK = % VR(V,H)K-% VR(V,SH)SK
(b) (VA K = V(v A)K
() (T A) K = % HR(V,H)W+—% HSR(V, SH)W
(d) (VAW = H(YA) W,

Proof. It should be pointed out that since both distributions
V and H are orthogonél and auto-parallel with respect to

V, and that V 1is a metric connection, then it is only
necessary to compute the above four components of VA, (the

others vanish).

(a) (VVA)HK = VV(AHK)-A§VHK-AHVVK
1 1 1 1
= P + = _— + =
VVAHK 3 AVVHK 5 ASVVSHK 5 AHVVK > AHSVVSK.

In order to simplify this expression we first prove the

following identities:

ASVVSHK = VVv SH

SK; A.SY.SK = yv_ vy.SK
v v

H

and VVVVSHSK = —VVVVHK.

We shall only prove the last one:

= = = P = -— l( .
VVVVSHSK VVVVSHSK VVASHSK VVSAHK VVVVHK VVVVH
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(The first two can be proved in an analogous way, it is only
necessary to use the S-invariance of A).

It follows that (VVA)HK can be rewritten as

1 1 1 1 _
VIyTH =g Vg u®* 2 VW su®K m g VVgTyK T g ViguTySK =

1 1 1 1 1
+ = + = K= = =
VRCV,EYK+ 5 UV 9K+ 5 vo, 9K - 5 VvaHK*-2 VVVVSHSK+2 VVeyVy

1

5 SK.

Using the fact that V is torsion free the second and fourth

term of the above expression combine to give - % vy K, the

VVH
third identity proved above then allows us to rewrite the whole

expression as follows

1 1

1 ; 1 1
- = - = + = = i
5 VR(V,H)X 5 VVVHVK 5 VVVVSHSK-F2 VR(SH,V)SK"’2 VV[SH,V]SK
= L yrv,mk-2 pv o k+ I gy sK+E yR(SH,V)SK.
2 2 VeV 2 vV 2
'H SH
The term WV SK can be rewritten as follows:
Vsu’
Y SK + v SK because of the totally geodesic condition
VsyY HY gV
of V, the first term vanishes identically, whereas the
second which is equal to AA VSK can be written (because of
SH

the S-invariance of A) as A or VVV VK where for the

H

last relation one uses once again the totally geodesic condition.

K
AHV

Substitution of this expression in our last equality yields the
desired relation.
(b) and (d) are straightforward. One only has to unwind

the definitions.
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Finally we prove (c): (VyA) W = VVAHW"AEVHW-_AHVVW =

-1 1
= S AW-57, (SALW)) - Z(A A W) - ALV W.

W-
VVH SVVSH H'V

Using the S-invariance of A and the totally geodesic

condition on V this can be written as

-1 ‘ _1 [ -
= 2(vV(HvaJ)--SvV(HvSHSW)) 2(va Hﬂ+sva SHW) HVHVVW-

\ v

The projection H can be taken out of all the parentheses and

associating we have

1 1 1 1
= = + — - = + =
5 HRCV,H)W + 5 Hv[V,H]w 5 HVHVVW 5 HSVVVSHW
1 1 1
-5 vava - 3 SvaSva -3 sHv[V)Sij.

The last two terms correspond to the second term in the second
parenthesis by means of the vanishing of the torsion of V.

Note the following two identities:

2 _ -
S HVHVVW = SHVSH(SVVW) = -5HV W and

su'y

HY W = HY W = A W = ~SA W
V..V HVHV AHV ASHV VSH

n
1
@
wn
<1
=

The third equality follows by S-invariance of A. Hence, the
third, fourth and seventh terms of our above relation combine
to give % SHR(V,SH)W whereas the second, fifth and sixth

add up to zero. This proves (d). v /77

As an immediate consequence we have:
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Corollary. The same hypothesis as in the lemma. Assume also
that R is S-invariant. Then A is V-parallel if and

only if

3]
o

Ka) V(VLA)HK

I
[en]
.

(b) H(VKA)HW /117

We now study condition . (b) of Proposition E.

1t

Lemma 2. Assume VS 0. Then

[VH(VS)]VK = HR(H,V)SK - HSR(H,V)K.

Proof. [vH(vS)]vK = VH(VVSK—SVVK) - (V‘V‘HVSK—SV?]'HVK) -

(VV(SVHK) - SVVVHK).

This expression can be rewritten as follows. (Here is one point

where one has to use the assumption VS = 0)

= HR(H,V)SK + HV SK + HSR(V,H)X + HSv[V H]K

[H,v]

v SK + Sy K.
VVHV VVHV

Since [H,V] - VVHV = H[H,V] + VVVH = H[H,V] (recall that

VS = 0 implies that V is totally geodesic), the above

relation can be written as

=HR(H,V)SK + HSR(V,H)K + HV SK - HSV

HIH, V] Him,vi<

Finally, once again use the fact that VS = 0 implies

VHSK = SVHK to obtain the desired formula. /77
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Remarks. If R 1is S-invariant, then the term we have just
computed vanishes identically. In this case, the remaining

term to be computed is given by [VW(VS)]VK however I have

~not succeeded in finding a curvature relation like the one

we obtained for the cther component.
In the following two lemmas we study conditions (c¢) and

(d) of Proposition E.

Lemma 3. Assume { auto-parallel with respect to V and

R S-invariant. Then

(a) (V, RI(U,VIW

v (V. RY(U,V)W

0 Vo

(B) (VHR)(U,V)W V(VHR)(U,V)W.

Proof. (o) 1is immediate from the totally geodesic condition

for V. As for (B) one only has to recall that VHV = VVHV

and use the following relations: R(YX,U)V = YR(X,U)V,

R(U,VIVX =VR(U,V)X. We prove the first:

R(YX,U)V R(%(I+82)X,U)V - % R(X,U)V + % R(S?X,U)V by

S-invariance R(Szx,U)V = R(X,U)V and the result follows. [///

As a consequence we have that V has to be a foliation

by locally 2-symmetric spaces.

Lemma 4. The same hypothesis as above

— _ ~ 1 )
(a) (VWR)(U,V)H = (VWR)(U,V)H+-Z(VWS)SR(U,V)H

1
5 R(U,V)(V,S)SH



(B) (VKR)(U,V)H = H(V,R) (U, V)H.
We omit the proof and only point out that to prove (B)

the following relation is used R(VVKU,V)H = HR(VKU,V)H. /77
In the following lemma we study condition (e) of Propo-

sition E.

Lemma 5. .Assume V auto-parallel with respect to V and R

S-invariant. Then

Tl

= 1 1
() [V, (VRII(H, IOV = STy, (VR I(H, X0V + 3Ly, (VR) 1(SH, SK)V

it

(B) [VL(VR)](H,K)V_ V[vL(VR)](H,K)V.

Proof. (a) [V (VR)I(H,K)V = §W(VR(H,K)V)-VR($WH,K)V -

- S 1
UR(H,VWK)V-VR(H,K)VWV = VW(VR(H,K)V)-§ VR(VWH,K)V +
> YR(SV, SH,K)V - = YR(H,V, K)V + = YR(H,SV, SK)V - VR(H,K) V7,V
2 W e 2 >TW 2 >TW ’ W o
By the S-invariance of R we have VR(H,SX)V = -YR(SH,X)V

and VR(SH,SK)V = VYR(H,K)V, it is now easy to see how the

result follows.
(8) [VL(VR)I(H,K)V = V¥ (VR(H,K)V) - VR(HY, H,K)V -

VR(H,HVLK)V-VR(H,K)VVLV.

We work with the term VR(HVLH,K)V, recall that H = %(1—82),
a substitution and using S-invariance of R we obtain that

the term is equal to VR(VLH,K)V. It is also easy to see that
R(H,K) o V = Vo R(H,K) <(use S-invariance of R). Hence our

above relation becomes
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= VVL(VR(H,K)V) - VR(VLH,K)V - VR(H,VLK)V - VR(H,K)VLV.
From this, the desired result follows. i
The next lemma gives a description of condition (f) of

Proposition E.

Lemma 6. Assume that V 1is auto-parallel with respect to V
and that R 1s S-invariant. Then the following identities

hold true.

() [VV(HR)](H,K)L:

N

HOTR) (H,K0L - = HS (7 R) (SH,SK)SL

gy [V

i (HRYJ(H,K)L H[vH

0 0

(HR) 1(H,K)L.

Proof. (a) 1is almost immediate, one only has to use the
S-invariance of R in a straightforward fashion.

(8) Tor this use the relations HR(HX,H)K = HR(X,H)K
and HR(H,K)H = HR(H,K) which follow immediately from the

S-invariance of R (cf. the proof of our previous lemma). ///

We can now restate Proposition E as follows:

Proposition E'. Let (M,g) and S be as in (P), and let V
be as given in (1). Assume that VS = 0 and that both A
and R are S-invariant. Then V is invariant under parallel-

ism if and only if the following conditions are satisfied.
(a) 1. V(VLA)HK =0 2. H(VKA)HW =0

(b) [VW(VS)]VK =0
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0 (i.e. The leaves of V are

(c) 1. V(VV RY(U,V)W

0 Riemannia.n locally 2-symmetric

spaces)

N

0

U(VHR)(U,V)W

1 1 )
(d) 1. (V R)(U,V)H + 5(V S)SR(U,V)H - 5 R(U,V)(V S)SH = 0

I

2. H(VRI(U,VH = 0

(e) 1. [V, (VRYI(H,K)V + [V (VR)I(SH,SK)V =0
2. VIV (VRYI(H,K)V = 0

(£) 1. H(VVR)(H,K)L - HS(VVR)(SH,SK)SL =0

2. HIV, (HRYJ(H,K)L = 0 /77

o

Comments. The fact that for a Riemannian U4-symmetric space

R and all its covariant derivatives V(n)R must be preserved
by S can be used to restate Proposition E'. We shall do
this next. For this we shall only use the S-invariance of

VR. At this point it is. clear which of the components of VR

vanish, so we leave it to the reader to write explicitly the

"proposition for VR analogous to Proposition D".

Proposition E". The same notation and conditions as in

Proposition E'. Assume further that VR is S-invariant. Then

V is invariant under parallelism if and only if the following

conditions are satisfied.
(a) 1. V(VLA)HK'= 0 2. H(VKA)HW = 0

(8) [VW(VS)]VK =0
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1 1 )
(Y) (R)(U,VOH + 5V, SISR(U,VIH - 2 R(U,V) (7, SISH = 0.

Proof. We have to check that conditions (a) through (f) of
Proposition E' are satisfied whenever (@), (B8) and (y) are
satisfied. (a) and (B) account for (a) and (b), (y) accounts
for (d.1). Thus we have to show that the remaining set of
conditions follows from the S-invariance of VR. That this
is so is clear for conditions (e¢), (d.2) and (f.1). We now

have to work on conditins (e) and (f.2).
We start with (e). From S-invariance we have
_ gL sy = g7t
(VWR)(H,K)V = S (VSWR)(SH,Sh)SV = S (VWR)(SH,SK)V

and since we are taking covariant derivative with respect to a
vertical vector field, i1f we take the vertical and horizontal
components they will be preserved, in fact we have VV(UR) =
UVVR and VV(HR) = HVVR, hence each one of these components
must be S-invariant separately. Apply this to the vertical

component to obtain the result, i.e. from the above relation

we have
[V, (VRYJ(H, IOV = §TT[V (VRYI(SH,8K0V = ~[7 (VR)I(SH,SKV.
Therefore (e.l) holds true.

As for (e.2), we know that V(VLR)(H,K)V = 0 (since it

has three horizontal components), it is also easy to see that

it decomposes as follows:

V(VLR)(H,K)V = V[VL(VR)](H,K)V + VVL(HR(H,K)V)
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we claim that each of these two terms is S-invariant and hence

they vanish. It is only necessary to prove the S-invariance

of one of them:

s"lvaL(HR(SH,SK)SV) - s'lvaL(SHR(H,K)V) (by S-invariance
of R).

Note that this can be written as S_lASL(SHR(H,K)V) and since

we have assumed that A is S-invariant, the result follows.
The proof of (f.2) is similar to this one, here we have

that H(VH RY(H,X)L = 0 (odd number of horizontal components),

0
decompose this tensor as H[VH (HR)J(H,K)L + HVH (VR(H,K)L) .
0 0
Note that the second term is equal to AH (VR(H,K)L) from
0

which it follows that it is S-invariant and hence that must

4

ys

vanish. _ /77

We summarize all the above results in the following theorems.

Theorem. Let (M,g) be a complete, connected, simply connected
Riemannian manifold. Let S be a tensor field on M of type
(1.1), of order four, with no eigenvalue +1 that preserves g.

(i) Define V¥ as the distribution for the eigenvalue +1
of S2 and H as the orthogonal complementary distribution.

Then V defines a totally geodesic foliation if and only if

the connection

= 1
= - 4+ =
VXY VXY AXY Q(VVXS)SHY
is a metric connection, i.e. Vg = 0. (Here AGY = HV VY +

VVHXHY and V and H denote the orthogonal projections onto

the distributions).
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(ii) The tensor field S 1is parallel with respect to
V if and only if V defines a totally geodesic foliation
with respect to V and H(VHS)K = 0 for all H and KX
horizontal vector fields (i.e. lying in H) ("Kdhler condition"

for H).

(iii) Assume VS = 0 and that A, R and VR are S-
invariant. Then the connection V is invariant under
parallelism (i.e. VR = 0 and VT = 0) if and only if the

following three conditions are satisfied:

(a) 1. V(VLA)HK 0 2. H(VKA)HW =0

(B) [VW(VS)]VK =0

1 1 -
—(VWS)SR(U,V)H-§ R(U,V)(VwS)SH = 0. ///

(y) (VWR)(U,V)H4‘2

It is now immediate the local characterization of

Riemannian 4-symmetric spaces.

Theorem. The same notation as above. Then (M,g) is a
Riemannian 4-symmetric space with symmetry tensor S if and

only i1f the following conditions are satisfied.

1. The distribution V defines a totally geodesic

foliation with respect to the Reimannian connection.

2. H(VHS)K = 0 for all H and K vector fields on

H (Kahler condition).
3. A, R and VR are S-invariant

4. Conditions (a), (B) and (y) of (iii) of the

above theorem are satisfied. » /77
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CHAPTER 11

CLASSIFICATION OF COMPACT RIEMANNIAN q-SYMMETRIC SPACES

§7. De Rham Decomposition

In Riemannian geometry, as in mathematics in general,
one of the fundamental problems is that of classification.
That is, given a class of spaces, then write down a list
of these spaces that completely exhausts all the possibilities.
Our task in this and the next sections is to find a method
that allows us to classify Riemannian U4-symmetric spaces.
Here we shall only consider the compact simply connected
case since it is technically less difficult than the general
case. The idea we follow is essentially the same as that
used by Cartan to classify Riemannian 2-symmetric spaces.
The geometric problem is translated into an equivalent
problem in terms of Lie algebras, and then by means of the
theory of root systems worked out.

The basic building blocks in Riemannian geometry are
the irreducible Riemannian manifolds, i.e. manifolds whose
holonomy group at a point p -and hence at any other point
q - acts irreducibly on the tangent space. Thus, towards
a classification of the Riemannian U-symmetric spaces, it
is first necessary to describe their irreducible components.
In this respect, the most general result has already been

proved by Kowalski [13]. We quote it:
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Theorem. Let (M,g) be a simply connected Riemannian
n-symmetric space and let M = MO X Ml X, .. X Mr be its

de Rham decomposition, where M, is a Euclidean space and

Ml,...,Mr are irreducible. Then each Mi is a Riemannian
ni-symmetric space with n. a divisor of n, i = l,..:,r.
The idea of the proof is very simple. First note that
since M 1is homogeneous, it is complete and the de Rham
decomposition theorem can be applied. Let p be a point in

0 1

composition of the tangent space into irreducible components

M, and let TpM =V, @V, 9...8® VP be the orthogonal de-

(with respect to the holonomy group action), then for each

i, 1 =1 = 1r, there exists an integer ki such that

k. k.
(s ). Y(v.) = V. and (s ),* restricted to V. has no
. p iy l l p iy l

eigenvalue +1. Since each Mi is complete, it follows that

k.
(sp) * preserves Mi’ defining in this form a symmetry at

P of order n. with niki = n. Then using the identity

component of the closure of the group generated by the

symmetries (sp) it is possible to obtain symmetries for

Mi at any other pointwhich satisfy the regularity condition.
For the particular case n = 4, the theorem yields the

de Rham decomposition of a Riemannian U4-symmetric space.

Theorem. Let (M,g) be a simply connected Riemannian U4-

symmetric space, and let M = MO X Ml X .. X Mr be its
de Rham decomposition where My is a Euclidean space and
Ml""’Mr are irreducible. Then each of the components is
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either a Riemannian 2-symmetric space or a Riemannian
Y-gymmetric space.

The outline of the proof of the theorem shows that some
powers of the symmetries preserve the components Mi of M.
We now show that for a Riemannian UY-symmetric space more
can be said, that is we prove that the symmetries (sp)

preserve the de Rham decomposition.

Proof. With the above notation we have to prove that ki = 2
can never happen. If there exists an 1 for which ki = 2,
then (sp)2 restricted to Mi is an isometry of Mi of

order two with p as an isolated fixed point and Mi

becomes a Cartan symmetric space. Then Mi X Sp(Mi) is
invariant under sP with both factors Cartan symmetric
spaces. Then, the symmetry tensor S defines an almost
complex structure when restricted to the tangent bundle
T(Mi><sp(Mi)). But since S 1is invariant under the symmetries,
it is invariant under the involutions of each of the factors.
Hence Mi><sp(Mi) is a Hermitian 2-symmetric space. There-
fore its de Rham components are also Hermitian 2-symmetric
spaces. Furthermore, their complex structures are induced

by the restriction of the complex structure on Mi X Sp(Mi)
to each of the factors. In other words, the symmetry tensor
S preserves each of the tangent bundles TMi‘ and T(SpMi)'

This gives a contradiction since it was assumed L 2. /77

66



The significance of the above result lies in the fact
that if now G 1s the identity component of the closure
of the subgroup generated by the symmetries, then G
preserves the de Rham decomposition and hence decomposes as
a product GO X Gl X, . .X Gr with each Gi aéting transi-
tively on Mi’ Hence we have M = G/K decomposes as
M o= My ox Ml XX Mr and also M = G/K = GO/KO XGl/KlX...X
Gr/Kr with Mi = Gi/Ki’ 0 =i =1r and Gi ~plays the
role of G for the factor Mi.

Thus the classification of Riemannian U-symmetric
spaces is equivalent to the classification of homogeneous
spaces of the form G/K with G endowed with an auto-
morphism o of order four such that' Gg c Kc ¢” and G/K
Riemannian homogeneous with a o-invariant inner product
(see Proposition in §2). However we should have the require-
ment that G/K be irreducible as a Riemannian manifold.

Here the situation differs from that for Riemannian
2-symmetric spaces. For these spaces the isotropy group K
acting on TOM coincides with the action of the holonomy
group. Thus an explicit criterien can be given between
irreducibility of the space (M,g) as a Riemannian manifold,
and of G/K as a homogeneous space.

As for Riemannian U-symmetric spaces, there does not
seem to be any relation, at first, between irreducibility
in the above two senses. It looks as if the problem of

classification should start by being a topological one, i.e.,
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classify all the possible irreducible homogeneous spaces

G/X, with G and K as above, do this, without any
reference to a particular Riemannian metric, and then give
some sort of information with respect to the metrics that

such a homogeneous space can bear so as to become a Riemannian
b-symmetric space.

The classification of the simply connected homogeneous
spaces G/K with Gg c K c G? o an automorphism of order
four on G, 1is equivalent to the classification of the
pairs (g§,0) with g a Lie algebra over R and o an
automorphism of order four. Thus our objective will be to
classify the pairs (4,0). The problem in general is a
technically difficult one, hence we restrict ourselves to
the case when G/K 1is a compact manifold. Since we also
want it to be Riemannian homogeneous, it is natural to ask
that K be cémpact. A1l this in turn is equivalent to asking
that the group G be compact and semisimple. And using
Weyl's theorem is equivalent to assuming that the Lie
algebra 4 be compact and semisimple. Thus our aim is
the classification of the automorphisms of order four of

compact semisimple Lie algebras over R.
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§8. Automorphisms of Order Four of Compact Semisimple Lie
Algebras

We set about classifying the pairs (g ,0) with g a
compact semisimple Lie algebra and o¢ an automorphism of
order four. We accomplish this in two steps, first we
consider the case when o0 1s an inner automorphism, and
then the case when ¢ 1s an outer automorphism. TFor the
first part we follow the work by Wolf and Gray [28].
Whereas for the second part we mainly follow the general
theory as in Helgason [9].

We feel that even though the method in Helgason is
rather more general - it yields a classification for both
inner and outer automorphisms of finite order at once,
the method by Wolf and Gray is rather straightforward and
gives the same information without having to resort to more
general and abstract constructions, in fact, their method
has the advantage of giving in é very explicit fashion -
as we shall see - the form of the inner automorphism in
terms of the elements of a maximal abelian subalgebra of ¢ .

A complete and detailed exposition of these methods
would require a treatise on the subject. 'Since most of the
general theory is already written, we start by briefly
summarizing the main result that will be needéd for the
classification. Along the way we explain the notation that
will be used. Finally, we solve the technical points for

the case of symmetries of order four, and draw the corres-
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ponding tables. The basic references are the two sources
already mentioned above. We mainly adopt Helgason's
terminology and notation.

An equivalence relation for the set of pairs (g ,0).

Given a pair (g,0) with 4 a compact semisimple Lie algebra
and 0 an automorphism of order four, the corresponding
compact simply connected homogeneous space 'is constructed

as the quotient space G/K where € 1is the (compact)

simply connected Lie group with Lie algebra g4, and ¥

is the necessarily connected fixed point set of the
induced automorphism G on G. G/ can be endowed with
certain metric - not necessarily unique - so as to become a
Riemannian U4-symmetric space. The natural question is now:
when do two given pairs (ﬁl,ol) and (32,02) give rise

to equivalent manifolds? If there exists an isomorphism

¢ Dbelween

81 and 8, such that

8, — @,

is a commutative diagram, then ¢ induces an isomorphism

~s

d):Gl > G such that akkl) = K and hence it induces a

2 2°
diffeomorphism ¢ :él/Kl > @2/?2 that preserves the

symmetries, 1i.e.
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8 = ¢ o s o ¢ 1 for all x in él/kl'

Thus the pairs (@1,01) and (02,02) induce the ,
same class of UY-symmetric spaces - diffeomorphic underlying
differentiable manifolds. Hence, we consider two pairs
(gl,ol), (92,02) as equivalent whenever there exists an
isomorphism ¢ Dbetween 84 and 8, which makes the above diagram
commutative. Conversely, it is straightforward to see that
if there exists an isometry between two Riemannian U-symmetric
space (Ml,gl,sl), (MQ’gQ’Sz) that preserves the symmetries,
in the above sense, then it induces an isomorphism at Lie
group level between the symmetry groups G1 and G2. Furthermore,

the induced automorphism between the Lie algebras makes the above

diagram commutative. i.e. (gl,ol)and (32,02) are equivalent.

(a) Inner Automorphisms of Order Four of Compact Simple Lie
Algebras

We shall classify the pairs (g,0) up to equivalence.
Reduction to the case g simple is straightforward since any
inner automorphism leaves invariant the decomposition
8= gy P...®g of ¢ into its simple ideals. Thus we
classify the inner automorphisms of order four of compact
simple Lie algebras.

In what follows g denotes a compact simple Lie algebra

and G the compact wilh bruicleewier Lie group whose Lie algebra is

8. The group of inner automorphisms of g4, Int(g), is the
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subgroup of GL(g) whose Lie algebra is ad(g), the image

under the adjoint representation of g into 44(8). By
definition, g compact means Int(g) compact in the usual
topological sense. § semisimple implies that ad(g) is

isomorphic to g and also that it coincides with the algebra
0(g) of derivations of g. Since 23(g) 1is the Lie algebra

of the group of automorphisms of g, Aut(g), it follows that
Int(g) is the identity component of Aut(g). It is also true
that Aut(g) 1is compacf, a result that follows from the fact
that Aut(g) is a closed subgroup of the orthogonal group

0(g) with respect to the Killing-Cartan form which is negative
definite. In particular we have that the quotient group
Aut(g)/Int(g) dis finite.

Another way of describing the group of inner automorphisms
is by means of the adjoint representation, we have Int(g) = Ad(G).
By-connectedness, the exponential map exp:g§ + G is sur-
jective, therefore any inner automorphism 6 can be written
in ‘the form 0 = Ad(eip x) for some x in g . Hence, the
problem of classification of inner automorphisms of order four
is equivalent to classifying the elements x 1in g such that
Ad(exp x) is of order four.

Since the classification is up to conjugation, an
important reduction of the problem is attained as follows by
taking a maximal torus T in G. Recall that if tO is the
Lie algebra of T, then g is the union UgeGAd(g)tO.

This implies that every element in G is of the form

exp Ad(g)H for some g in G and some H in IO. But
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exp Ad(g)H = glexp H)g—l, and taking the adjoint representa-
tion: Ad(exp Ad(g)H) = Ad(g)Ad(exp H)Ad(g_l), i.e. every
inner automorphism is conjugate - within the group of inner
automorphisms—=to an element in AdG(T), the image of the
maximal torus T under the adjoint representation of G

into Int(g). Therefore attention can be restricted to the
elements in IO.
The algebra to is a maximal abelian subalgebra in g,
then when complexifying, £ = Ig becomes a Cartan subalgebra
of gc.

An additional restriction can be obtained by introducing
the Weyl gfoup with respect to IO. The Weyl group is de-
fined to be the group of inner automorphisms that preserves
to. W is isomorphicAto the quotient NT/T where NT
denotes the normalizer of T in G. Both NT and T have
the same Lie algebra 10, and NT ©being closed in G 1is
compact, thus NT/T is finite. We consider the orbit space
W\IO: If two elements Hl and H2 in tO belong to the
same orbit, then there exists an element t ¢ T such that
Ad(t)Hl = H2, hence Ad(exp Hl) is conjugate to Ad(exp HQ)
by means of the inner automorphism Ad(t), i.e. two elements
on the same orbit induce equivalent automorphisms. The
description of W\tO is given in terms of the Weyl chambers.

For this, we let £ be the complexification of to, since

to is a maximal abelian subalgebra of g, £ 1is a Cartan
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subalgebra of @ﬁ, the complexification of g. Let

QQ = t+ ) ga (direct sum)

be the root space decomposition of gm with respect to <&.
Here A denotes the root system. We denote by

V= {a

l,...,an} a system of simple roots, and By B o= Zmiui
the maximal root. A Weyl chamber is defined to be a connected
component of the subset of to where all the members of

¢y are different from zero. Then we have that the orbit

space W\IO can be identified with the closure of any one

"Weyl chamber. TI.e., more precisely, it is true that if C

is a Weyl chamber, then each orbit intersects C in one and

only one point. Therefore every element in tO is conjugate

to an element in C.

C 1is still too big for our purposes, therefore we make

a further reduction as follows: 1In tO we define the diagram

of g to be the set

D(g) = {HE Lo (H) € 2m/=1 % for some 'u € A}.
Let tr = IO - D(g), and let P0 be a connected component of
tp whose closure 50 contains the origin.

Let FA be the group of affine transformations of to
generated by the reflections in the walls of PO, then the
orbit space /tO/FA is equivalent to FO' Since the group
r, can be described as the semidirect product of W and a
sublattice IA of the unit lattice t, = {H €1t,:exp H = e},
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it follows that every element in G is conjugate to aﬁ
element in exp(?o).

If we take the Weyl chamber C to satisfy the condition
that a; be positive on -v-1 C for all i, and take

P, © C, then

0
-v-1 PO = {He¢-V/-1 IO: ai(H)Z 0, i = 1,...,n, and p(H) <27w}.
We put Dy = L PO' D is a simplex in V-1 IO and it
2my -1

1s defined as

90 = {xe /-1 tora(x)=0, 1= 1,...,n, uix) =11}

and it has vertices {uo,v .,vn} given by

100

vz 0, a.(u.) = =5 ..
i m., "ij

Furthermore, every element in G 1is conjugate to an element

of exp(2nv-1 90). Thus we can restrict our attention to DO'

Now, let x € 9 g = exp(2nvY-1 x) and 6 = Ad(g),

0°
when is 6 of order four? I.e., when is it true that

82 # id Dbut 8u = id. Since the adjoint representation
gives an isomorphism between G and 1Int(g), this is
equivalent to ask g2 # e and gH = e. For this to be the
case, we ought to have ui(2x) ¢z for some i, énd

ai(ux) € Z for all 1.

. _ ¢n _ -
Write Ux = J._ . a;vy, then n, = a.(4x) = a;/m, €%,
n.m,
and a. = n,m., thus x = )._ % y. and we must have that
1 11 i=1 4 1
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some n. is not even. The following basic proposition
(contained in W. GI[28]) gives a normalization of the x's
so as to restrict the range of the coefficients nym. and

thus it will lead toward the classification.

1 to’
2my-1

x ¢ L £ but kx € 1 t , and replace by

om/-1 € om/-1 €

0° with w € W and vy € 1 t
2mv/—1 ©

and decompose x = ) —=2% v., where n. = a.(kx) € Z.
k 1 1 1

Propositionl. Let x ¢ and k > 0 be an integer

such that

a transform w(x) + v € 9

Make this transformation in such a way as to minimize

Z?_ m.n.. Then
i=1 171
(i) 0 =n, <k and 0 < n.m. < k, and yn.m, =
i i ii
implies that mj > 1 whenever nj # 0.
(ii) nj = k/2 if mj = 13 and

(iii) the sets I_ = {i:n,=t} have cardinality

|T,1=1 and |I,| < k/t, and I, 1is empty for

t
t > k/2.

Using this normalization we now list all the possibilities

for inner automorphisms of order four.

Proposition?2. Let 6 be an inner automorphism of order four

on a compact or complex simple Lie algebra g. Then 6 1is
conjugate, by an inner automorphism of g, to Ad(exp 2m/-1 x)

where x isas given below.
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(i) % = = v. with m = 1.
b 3 ]

(ii) «x = %(u fv.)  with m, = m =1
_ 1 . _
X =T = v, with m. = 2,
2 3
C . 1 .
= = +y ., + = = =
(111) =x u(ui Uj vk) with m. mj m 1
1 .
x = =(2v.+v.) with m.= .2, m. = 1.
L 1] 1 |
_ 3 . _
X = — v, with m = 3
b ) ]
1 : ) i}
x = =(2v.+v.) with m. = m. = 1
4 1] 1 J
(iv) x = l(v.+v.) with m. = m. = 2
271 ] 1 3
X = V. with m. = 4,
i i

Proof. The cases are listed so as to have

(i) pl4x) = 1 or Znimi 1, which clearly has the only

solution given above

- 1
n, = m, = 1 X =T = V..
1 1 S
(ii) p(ux) = 2 or Jn.m, = 2, here we have n. = n, =
il i 3
m, = mj = 1 which gives one solution, also nj =1,
mj = 2 is another solution giving rise to x = % Uj
as required, however, the solution nj = 2, mj = 1

is ruled out since n, should not be divisible by

two as remarked above, or also we would have
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. . 1 t and x would
] ] 2TV -1 €

induce an automorphism of order two.

(iii)  plux) = 3; Znimi = 3. The above solutions are
clearly vakid, one more solution could be n, = 3,
m, = 1, i.e. x = % v but by normalization,
n, < % = 2, thus it is ruled out.

(iv)  H(ux) = b, Znimi = 4. We cannot have
1 .
= = + + + = = = =

X u(ui Uj Vi vi) with m, mj m, m, 1 by

normalization (see (iii) in the normalization ).

Neither can we have x = Uj with n, = m, = 2.
This would give an automorphism of order two.
The same applies to x = l(v.+u.) with n, = n, = 2,
21 ] 1 ]
m. = m. = 1, /77
i j

As for the fixed point set of an inner automorphism, a
root system can be given in terms of the roots of 8. The

following proposition is also in W.G.I. [28].

Proposition 3. Let g Dbe a compact simple Lie algebra with

simple root system ¢ = {al,...,un}, and 6 an inner auto-

morphism of g. Normalize X, so 8 = Ad(exp 2n/-1 x)

_ on . : .
where x = Zizl c,v, €®,. If u 1is the maximal root of
g so that uplx) = Xci, then wx’ defined as follows, is a

simple root system for ﬂe, the fixed point algebra of 6:
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L {@i €y rey F 0}, if u(x) <1

<
1

{ai €Y oc. 0} U {-pu}, 41if yu(x) = 1.

1

Using these last two propositions, we draw the following
table. It gives a complete list of the possibilities for x
an element in V-1 to inducing an automorphism of order four
8 = Ad(exp 2nv-1 %), the fixed point algebra @e, and the
simple root system wx of ﬂe.

Here ~ denotes equivalence in the full group of auto-

morphisms.
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TABLE I
6
% |
g L 8
8 1
1 TV empty ol
@ , n>=2 1 1
n M Ui[’\'u Vn—i+l] {al,---:ai_l,cxi+la--->o¢n} “l—l(a ﬂn—_‘._@@'
o A
1 T t N
— + 1 <] 5 f
g ? 1 ’+(Ui Uj),(l j) {Ocla :ai_l: l_]_@ @j—i—l
2.
1 .
~=(y + f . ce a0 g
L u(ur Us) * Gig127 20y &)mn—j® ¥
1 {r-1,s-r-1,n-s} = SMEL :an}
@ 61} {i-1,j-i-1,n-j}]
Ly +u.+u ), {0 seeeng. -3 @, ®a
i Ty Tk 1 >Hi-1° i-17 j-i-1
i< 7 . ®
1<j<k 05410 ey _q3 mk—j—l
1
be—(v_+v_ty ) if : .3
. ; D D
L' "r "s Tt aj‘f‘l, 30Lk_la ﬁl’l—k ¥
‘ {r-1,s-r-1,t-s-1,
(lk+la-"9an}
n-t} = {i-1,j-1i-1,
k_j_lan_k}]
Loy 1.),i<d {ar v 0, @a, .
I L i-1’° i-17 §-i-1
1 . 2
[NH(QUPWS) if PSRRI S j0 ¢
i-1 = n-p aj+l"' ’an}
j-1 = n-s]
Remark. For a global formulation see below.
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TABLE I (cont.)

0
X
8 v 8
L 1
> —_
{,n, nz?2 7Yy {a2, ,un} k’.n_l B P
1 a 1 e 1
= V_(25i< . . L D .
" T 1 2 i(2 i=n) {al’ S i-1 r’n—l T
O———.‘" o
- 2 a ce.,0 )
o b a i+l? >’n
I3 -
Lv syou)(esisn) | ofa,...,0, 8, Bg @
o1 2 *Ti-17 i-2 n-i
2 I(J; @ ; %1417 ’an}
\
1 <
=(V ., +V 2=i<j< . - b, © a0,
2 0 o 2( i j)( <i<js<n) {al, T : joi-1
. 5 & @D
%1412 ’aj—l b, 3 QA
aj+l,...,an}U{~u}
Remark. A global formulation is given below.
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TABLE T (cont.)

3]
1 5
® Wx 0]
€ ., nx3 Lu {a o } a B gab
4 Yn 1’ >"n-1 n-1
= <4 <y . [ ®
5 v (1<i=n-1) {al, TP i %oy P
2 0a
1
2 $ a SUEEIEREL.
2
g%v +2u, X1=i=n-1) {o, e een0, o5 ® a @;@2
. 4 "n i 1° il i-1 n-i-1
2 l} o -1 }
H n ul‘rl"”’an—l
1 o :
n 1
— + 1<i<i=n- p . .
2( v \)j)( i<j=n-1) {al, LT : ® a]—l—l
Y oe . ogl
1+l 7-1 n-j
aj‘rl""’an}U{_u}

Remark.
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TABLE I (cont.)

0
2 X v 0
 ,n=4 1 1.
=y - b
n 4 1 {a2, ’an} n—l‘jat
! al 1 1 1
2 — v NS o A R R b B
o, 5V by v ley o1 n-1 9%
-y
2 0 o 1 1 2
=(v_+ ~=(v_+
[ 3 u(vl vn)[ u(vl Un~l)] {oy> 20} no 2%
1 2
. . + )
l q(un_l un) {oy > a 5} np @%
\ — v, . (2<i=n- . R 5 . .
o 91 15 o 2 Ul( si=-2) {al’ P i-1 ® %n—l ¥
n—l }
%5410 20
1
=(v_+ + - i
RN CPSERRRL WY, n-3 ® 4
l(u +2y,)(2<i<n-2) {0,050 ; DY DY
N 1 - 2’ it S i-2 -1
a-i+l,...,an}
L 420)) {aysnees0r o3 6, @8
b n-1 i 1 i-1 1-1 n-i~1
[M}T(un+2ui) “i+l""’°‘n—2 D 3:2
(2=<i<n-2)
- :
= + e
L(2u 4y ) {ayseeesa_) e
1
[V i +
L 4(2U1 Un~l)]
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TABLE I (cont.)

8 0
% b 8
1
b, K(Qvn—lﬂ}n) {CTERRRET P 8 o, ® ¥
1
(continua- (~2v +v_ )1
. L n n-1
tion)
1 1 2
v vy Jru ) {aysea ) a _, 0
Lv.+u.)(2<ici=n-2) {aysneesa, o3 b, @6
2' V1Y = = 1 i-1 1 j-1-1
o . se v o a0 5 1
+ - ' .
i+l j-1 D &n—j ® 3
(],j+la"' QQQ}U{-U}

Remark. A global formulation is obtained below for all the entries

but the one corresponding to (%n,mn_369$3).
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TABLE I (cont.)

2]
fi s by f
8 1 ] 1
2 g
-U? 7 Y, {ul} 1 Y
2 o
2 3 ' 1
Y, T Y {az} Ql d g
1
§ 1 | 1
= e
o u 5y {a2,a3,au} 3 ® g
26 a

{a.,0

1700,

w
0 &——0=0
(o3
N
N
<
=
(- )
w
2]
&
}—l

T 3 ) @ @8 1
3 T Yy {al,ocs,auj 1 P 5 &%
2 au ) ]
+ N —~ @ . 6
—2'(vl Uu) {ocz,a3}U{ pl 1 & 5 N
. f_ q
Vg _ {al,aQ,au}J{ ul g @ ﬁl

Remarks. Although the two given automorphisms of 02 have
isomorphic fixed point sets, they are not conjugate. Hence the
corresponding compact simply connected H—symmetfic spaces are not
isomorphic.

For fu we can state

Proposition. Two inner automorphisms of order four of fu with
isomorphic fixed point sets are conjugate, (aciually within the

group of inner automorphisms).
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TABLE I (econt.)

. 0
8 X v 6
¢ 1,rnd b
6 LA u6] {a2,---,a6} 5 693;
lo o, n
H(Ulﬂjﬁ) {0‘2""’0‘5} bu b 3
2 0 a
“ 3
2 3 1 1
5 > ) s > Q H
c_>u~—~c2) A {al Oy 0y >0 a6} g DY
2 0 a .
5 1 1 . 1
e : R D 8
b 5 U3[ > VSJ {OLl”()Lzaoc‘+ asaaB} 6, &8, & v
6
| Euovou) {oyst, 50 500 } 6 ®¢°
1Y 22> %50 y ¥
Evi(u +2v_)]
b "6 5
l(\)4'2\1) {a 50,50, 0.} il &8 @Q"Q
T 5 22737 e 3 1
1
~=(y _+
[ u(us 2u3)]
1 2
= +2 E
u<"1 u2) {aa,au,as,as} 8, 9%
1
rr—(y _+2
LI}UG v2)]
2 { } | 8 56 o0 oy
m vy al,a2,a3aa5,a6 5 @ 1 & 5 DY
1
Lo o) fayse i) b, ©8
B (2u v )]
y VeV
Lo wo) { e wa o0 o
5 U3 5 al’a2,a4,a6}U{ U} 1 .3 1
1 ’ .
- @ ‘ {
St (6] 50,505005)0(u} | 0 8,00 o
1
E“E(U2+U5)]
Remark. The following is true.
Proposition. Two inner automorphisms of ¢ with isomorphic

6
tixed sets are conjugate.
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TABLE I (cont.)

9
] X b )
3 1
2 I o
1|1 ; o1
, > vl {a2, ..,a7} 56633
o Q
32 3 1
_ el
— v . ] €
;———3 a, > Ve {al, ,as,oc7} 95 D 1 DI
30a
5 |1 : 1
= a8 <
2 V2 lagsag, sa b 6 2%
2 0 o
6
lrch i(v+2u ) {a.,ee. 0} 3 @32
747 701 2° g 5
1 2
u’(\)7%‘2\)6) {al,...,as} &5&9.‘;
1 2
=(v_+2 ;
4(V7 U2) {al,as, ,a6} ﬁs YA
3 ) 1
T Vs {al,uz,uu,...,aﬁ,%} ﬁl @ﬂS %
3 ) 1
Vs fog e oy s0g50,) 6, ®0, 9%
1
—v_+ N - a8 pé ¢
SV ) {ays- . sagio, Ui-u) |08 9 ax'
Loy v ) {an s yo U -y} 6 a8 3!
2 71 2 32777y 15
Lev +v ) { J{-u} 6, ®a. o¥T
SV, tVg @ya0gs0) 50 50, u 1 5 ©F
v, {al,az,aS,aS,aB,a7}U{—u} ¢‘3\® a, ® 33

Remarks. The following is true.

Proposition. There are two nonconjugate classes of inner automor-

phisms of order four of ¢, whose fixed point sets are isomorphic

to ﬁltﬁmsfaﬁé. With this exception, any two inner automorphisms of

order four of @6 with isomorphic fixed point sets are conjugate.
Comment. The geometric difference between the two options for
a_. Do e9$1 is the existence of invariant almost complex structures

1 5
(see Section 9).
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TABLE I (cont.)

6
0 % b ]
e 1 1
8 5 Vl {GQ’ 9(18} !b7 @@
2 oo
1 1 el
= v {oo ,0vesa } e k%
b b o 2 8 1 7 7
3 3
6 3 a (-93,’1
0'O“-O OLU, H V2 {alaaas" ,OLB} 7
2
5 )as 3 fl
— 5 { ®
L N v7 {ul, ,a6,a8} ¢ e ® ﬂl
6
1 ) , el
356 o, 5(U1+U8) {0‘2""30‘7}U{ ul )bB ® ﬁl &
2 00 . _
8 \J3 ~{al,a2,au,...,a8}U{ v} ﬂl ©ﬂ7
_u O ]
U6 {ul,...,a5;a7,a8}U{—u} be @@3
Remark. The following is true.
Proposition. Any two inner automorphisms of order four of ¢©

with isomorphic fixed point sets are conjugate.
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Description of the base space and the universal cover of the fiber

The next step in the classificafion of compact Riemannian
L-symmetric spaces 1is to obtain the global formulation of the
above tables. I.e. we should draw a table of all the compact
simply connected coset spaces M = G/K where G. is a compact
connected Lie group acting effectively, g = ge the Lie algebra
of K and 6 an inner automorphism of order four. We shall only do
this for the classical Lie._algebras. (see the end of this section).

We shall conclude this section with an application of the
local classification to obtain some more information of the
geometry of these spaces. Recall that in Section 4 we saw that
a compact Riemannian 4-symmetric space fibers over a compact
Cartan symmetric space with -fiber a compact Cartan symmetric
space. Furthermore, this fibration éan be regarded as a
Riemannian submersion. Thus, if M = G/K 1is the compact
simply connected Riemannian 4—;ymmetric space corresponding to
one of the entries in the above tables, it is interesting to
describe the fiber and the base space. For example one could
ask whether or not the fiber is an Hermitian 2-symmetric space.
The answer to this question is equivalent to anéwering whether
or not the total space admits an almost complex structure
invariant under the symmetries. These structures will be
studied in Section 9. Here we will describe the base and the
fiber in general.

Let (g,ge,e) be an entry in the tables, let G be fhe
compact simply connected Lie group associated with g, and

let K be the connected subgroup of e corresponding to ge,
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then G/ 1is the simply connected 4-symmetric space associated

with (g,ge,e). (Note that & does not necessarily act

effectively on G/K). Let 6 (same letter) be the induced

2
automorphism on G, then the fixed point set @e of 62 is
2 2
a compact connected subgroup and both E/@e and @6 /X are

compact Cartan symmetric spaces and the diagram

'Vez ~ —~~
G /K &— G /K

-

2
gre®
gives the fibration of G/K. Thus the way we proceed to
2
give the information of the fiber F = @e /K and the base

~s "Je 2
space B = G/G
2
8 of © in our above tables and then we find out for
2

(§ 8 ) which is the compact simply connected Cartan symmetric

is by first describing the fixed point set

space associated with it. This space will be the base space B.
We do the same for (gez,ge). The space associated with this
pair will be the universal cover of the fiber F. |

Proposition 3 gives a description for ge, 0 = Ad(exp 2m/-T x),
x € ito whenever p(x) = 1, ai(x) > 0. Thus this proposition
could be applied to our present situation whenever 2x ¢ ®0,
where x 1s as given in Proposition 2. However, this is not
always the case. The proof of this proposition yields the
result that 2x ¢ ®0 if and only if x 1is of one of the

following forms:
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x
1
=
<
)
e
+
g
=S
1)
-

]
1 .
X = E(V'+U') with m. = m., = 1
1 1 J
X = 1 V. with m. = 2
2 ]

Hence, for these three cases we obtain an explicit description
2
of de . The following tables give this information. The

first table explains how to construct a root system for

V.
2 2%

QG out of a root system ¢y for g. It also says whether
2
or not de is the centralizer of a toral algebra. (For this

we use Proposition 2 of Section 9 below). In the second table

. 8 . . .
we write x and @ as given 1n our tables above, and instead

: 2
of giving the root system wx of ge, we now write ge'.

For equivalences amongst the different inner autormophisms
and for notation and the extended Dynkin diagram, we refer the
reader to TABLE T.

% i Y

X 2%

1 .
~v,,m,=1 | {o,€p:c_=0} {a.€p:c, =0} 9 is the centralizer of a
4 1 1 1 1

toral algebra

=(v,+v_ ), | {a, éep:c,=0} {a.ep:ic.=0}U{-pu} 8§ . is the centralizer of a
i i i i i

N toral algebra
m,.=m_=1
1]
1 92
= v., {a,€p:c =0} | {a.€p:c,=0}U{-u} |8 is not the centralizer of a
2 + + * . toral algebra
m,=2
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Remarks. In Section 9 it is shown that for these three cases
ﬂe is the centralizer of a toral algebra, and hence that.the
corresponding spaces are almost Hermitian 4-symmetric. The
above table then shows that for the first two cases, the base
space is an Hermitian 2-symmetric space,; whereas for the third
this is not so. Of course, the fiber in all these cases is
always Hermitian 2-symmetric.

Algo, note that for the first casé, X = % Vj’ mj =1,

ge = 06 This means that the squares of the corresponding

symmetries are in fact the geodesic involutions and hence

that the original space is Hermitian 2-symmetric.

2
0 §)
] % 8 il
1 1 1
[} =
1 ¥ V1 ¥ T
1 v f Da faxl ] of @
E i -1 I'l—i 1~-1 n-1i 3:
nn,n22
1 .. . . . 2
ty . L . .. .
E(Ui Uj)’(lq) ﬂi-leaj-l-l@mn—j S ﬁn~]+1@aj—1—l®rl
1 1 1
—_ Vv <]
TS) b1 ©F bpop ©F
6 ,u=2
n 1 g%
- <q<
7 vy(2si=) 05-196,:® by B8y
1 1 1
= Q
Llun “n—leas‘, n—lEBt
en,n23
1 .
5 v;(1=isn-1) | 0, @ _i@E’l ¢, ®e .
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9
] X f
1 1
n Vl a’n—l o¥
1 .1 1
T Vntn Vn—l] LI ey
1 1 2
~ +
b ,nzk vt dplu tu )] L &
1 2
= ¥ ®
M(Un—l vn) mn—2 ¥
Lu.(zfiSn-Q) a8,  ®b earl
2 1 i-1 n-i
1 1
8, 7 Yo a, 9%
1
1
5 vl e:3 B
fu
1 1
2 Yy 65 0%
1 1 1
L ul[ m v6] b DF
1 2
=(v_+v
5 (V1 7V) b, 9%
e
6
1 1
— vV
5 Vo 8 oF
1 1 1
2\)3[2\)5] ml@aue}ax
|
i
1 1
‘ y V7 eg OF
|
‘ 1 1
2 Y1 by ©F
‘g
1 1
5 Vg %5 B al ¥
1 ’ .- 1
2 V2 0y OF
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2
0 6
8 X g 8
1 1
e =
8 5 Ul b7 @ b8
1
1 .
= D e @
2 Vs ®7 7 9%
Remarks. It should be desirable to have a general algorithm

which could work for the remaining cases of x. A thing one
can do is to carry x, by means of reflections, into 9 . In
this way we could obtain an equivalent automorphism of order
four for which Proposition 3 could be applied. I have not

yet found a general method to do this.

On the other hand, note that for all these cases it is
now possible to identify the base space, and somehow, by
inspection, to do the same for the fiber (i.e. the universal
cover of the fiber). In what follows, we will do this.
Actually we shall go beyond these three cases and shall give
a complete description in all possible cases. We do it as
follows.

Let 4 be a simple Lie algebra over € or a compact
simple Lie algebra over IR, and let © = Ad(exp 2mvY-1 x) be
an inner automorphism of order four as given in the tables.
1. Study the inner involutions o :g ~ g and-  describe their

fixed point sets go. Observe that if 6 : g -9 is an
2

inner automorphism of order four, then 6 :4-g is:an
2

inner involution, hence ﬁe must correspond with some

09,

9y




2. Given go as in 1, study all inner involutions

0 :go > QO and their fixed point sets (g°)F.

3. Find out which sets (go)p correspond with the Lie

algebra ge

In most cases (see below for the few exceptions) the
correspondence in 3 is one to one avoiding any possible
ambiguity.

The simplest cases are when 4 1s an exceptional Lie
algebra. We start with them.

The classification of the involutions of the simple Lie
algebras over € is given in Tables II and III in Helgason
[9] pp. 514-515. Actually, these tables only give the fixed
point sets of the involutions, however if two involutions on
a simple Lie algebra g over € have isomorphic fixed point
setg, they are conjugate. Since we shall be identifying the
base space and the fiber, we shall be continuously referring
to Table V in [9] pp. 518, where a complete list is given of
the simply connected irreducible Riemannian 2-symmetric spaces.
(Table IV p. 516 gives the Lie groups for the simple Lie

algebra over € and their compact real forms).

f =9,
This simple Lie algebra has only one involution. This

involution is inner and has as its fixed point set a

198
In particular this shows that the automorphism
8 = Ad(exp 2mv-1 x) with x = % v, or Xx = % vy as given

95



in Table I do not give rise to 2-symmetric pairs, i.e. the
couple (Q,Be) is not a 2-symmetric pair. The base space
of the fibrations 8 associated with the 2-symmetric pair
(gz,ﬂl @ﬂl) and hence it is the compact simply connected
Cartan symmetric space given by (@é(_lu),gn(2)+sn(2)). It
has rank 2 and dimension 8., The fiber is associated with
the 2-symmetric pair (ﬂl @ﬂl, a, @;4). Here we have no
problem in finding out which are the corresponding factors
(because we are dealingwith inner automorphisms). These are
given by (ﬂl,ﬂl) X (ﬂl,ml). The first factor is trivial
and the second corresponds to (8®(2), #3).  The compact
simply connected Cartan space is SU(2)/S0(2) = SO(3)/SO(2)2582.
It is the two-dimensional sphere, and has rank one. There
are two possibilities for the fiber, either it is S2 or it
2

is R the real projective plane. However, ZRIP2 is ruled

out since 1t 1s not even orientable.

g = Fu.

This simple Lie algebra has two involutions. Both of
them are inner and their fixed point sets are given by Gu
and “l @® 33. Now, the inner involutions of these two Lie
algebras yield the following fixed point sets
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Thus we can draw the following table

the case

g':

89

diagrams and notation.

which

As usual we refer to Table I

also includes

for the Dynkin

9 e2 Base
q X g 8 Space|Universal cover of the fiber
1 1 2
=Y & @9
6 2 2 5P E G 5
2 3 1 2
v (&) [
M) ﬂl 3 @ G S
1 1 . 2
—v ® ]
7Yy 93 3 ¢ FI S
Iy 5, ® :rl ] FII ]S0(9)/S0(7) x S0(2)
2 4 3 I
N A A e @l ®e | FI  |sp(3)/uU(3)
T T
1 . 1 2
5<U1+Uu) @ & 32 D D e FI ™ x (Sp(3)/sp(1l) x Sp(2))
v ®
3 a3 ﬂl Eu FII S0(9)/S0(6) x S0(3)

Here G. FI, FII stand for the corresponding compact
simply connected Riemannian 2-symmetric spaces in Cartan's

list. They are given by (g ) 81w (2) +3w(2)),

2(-14

(f ),8p(3) +gu(2), (fu(_525,30(9)) respectively. Their

4(-52
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dimensions are 8, 28, and 16 respectively, and their

ranks 3, 4, 1 respectively.

We now draw tables for g = € €0 eg We omit the
details.
6 e2 Base Universal cover
g X § g Space of the fiber
1 1
¢ = @ » @ v %
5 m v, »5 tl 5 ¥ EITI
L(\J +v ) b @1’2 b &)t’l ETIIT S0(10)/50(8) x 80(2)
L 1 6 L 5 ’
1 . 2
= ) a @4
> U2 é15 Q,”l 5 1 EII S
1 _
= & Da B ¢ 4
5 Vs 8, pt N EIT su(s)/s(usxul)
% Loy v2u )| & @¥? b pal
LV t2v, " s®T" | EITT | 80(10)/U(5)
Lv +2v )| a o8 o? 8 ®a_ | BT s2 x (SU(6)/S(U XU_))
u 1 5 3 1 5 1 ] Y 2
1
E(vl+2u2) NH@QQ ss@xl EIII SO(LOy/U(5)
3 : 1 y
2y 8 pf pa @ 6 of g
P Yy ,00, 88 ;o (®% | EII su(e?/o(u3x U3)
1 2 1
E(2ul+u6) bu®x %5@2 EIII S0(10)/50(8) x SO(2)
1 el
L 8 Ha @t dY @
2(\)31-\)5) 1 5 1 55 3_"1 EITII S0(10)/50(u) x S0(6)
Lov v ) a 96 08 ot | o @ | ErIT SO(10)/S0(u4) x SO(6)
2 2 1 1 3 5
Remarks. * Here the total space coincides with the base space,

This means that the squares of the symmetries are the geodesic
involutions and hence that the total space is an Hermitian 2-

symmetric space of the given type.

*% These sie the only caseswhere some ambiguity arises. We
2
have two possibilities for 6 ° (however a direct computation in
terms of root systems shows that “5 69@1 is ruled out):
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b, © %' with fiber S0(10)/U(5) or

. . 2
ﬂS £87 with fiber S° x SU(B)/S(USXUl);

EIT stands for (eG(—78)’ an(6) + 8u(2)). It has rank 4 and
dimension 40.
EITI stands for (c6(—78)’§° (10) + R). It has rank 2 and

dimension 32.

0 62 Base
9 X ()] q Space | Universal cover of the Ffiber
1 \
e7 ‘: vy € éﬁ%l eéatl EVIT %
2
1 L S
1 a E
> vy hG@r RN VI
L v b D @1’1 a b EVI S0(12)/S0(10) x S0(2)
2 Y6 5 1 1”6 :
L, & gl 4 EV SU(8)/S(U, xU_)
2 V2 6 7 771
1 2 ,
Z(y_+2 b @ ¢ w3t | BvIT
4("7 ul) DY 6 EIII
1 2
= b & ¢
4(U7+2U6) O 6(9@’1 EVIT EIII
Lo, v2u) | 8 e a@d | EvI | s? x (50(12)/U(6))
y vy o2 5 1" 6
3 i}
s f @a A pd E
Y l@ 5@1'1 2% VI S0(12)/u(s)
3 ,
= [} a q
T Ve 4@ 2@1'1 7 EV su(s)/s(usxua)
1 1 2
L a D8 @b aph 2)/80(4 0(8
2(U1+U6) l@ £ ¥ B | BVI sv x (S0(12)/S0(4) x S0(8))
1
= a @t ¢ g EII
2(u1+v2) l@ 5@3:1 6«91'1 EVII
1 e . 1
A O/ P T E
§{v2+u6) © 5@1’1 6P EVII 1T
8 B8 Ha 6 od
v, éﬁ iﬁ 3 l) 6| EVI 50(12)/50(6) x s0(6)
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Remarks. * Here the total space and the base space coincide.
The squares of the symmetries are the geodesic involutions.
This space is Hermitian 2-symmetric.

ot ot
“w e

* In these entries some ambiguity arises since there are two
2
possible candidates for ge :

¢, ® b, with fiber of type s? x (S0(12)/S0(10) x S0(2))

b © xl with fiber of type EIII.

However a direct computation in terms of root systems rules

out the first alternative.

8 e2 | Base
g X g g Space | Universal cover of the fiber
]_ .
[ R ¥ b :
. | 3 ; e by EVITI| SO(16)/S0(14) X S0(2)
1 . 2
= v ¢ @ a @ EIX
2 '8 7 v 17 S
3y 8 prt b EVITI| S0(16)/U(8)
T 7 8
3. .
v LN f ¢
= Vo ¢ B0, & 8%, | EIX EVII
1 : 2
(Vv +v » O8 ® a_®¢
(v ) | b en 3t 8%, | EIx 5% x (EVII)
a
v, 8@, 6. ®¢ | EIX EV
ve bs@ﬂé 98 EVIII| $S0(16)/S0(10) x S0(6)

For the classical Lie algebras one could follow the same
procedure. However, it is possible to describe explicitly the
automorphisms of order four by means of their standard matrix
representations. We shall so this next. Note that a global

formulation will be readily available.

Continued on p. 107
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The Automorphisms of Order Four of the Classical Compact Lie
Algebras

Here we describe the automorphisms of order four of the
"classical" Lie algebras in much the same vein as Ch. X §2 in
Helgason's book [9]. The main result is that we can obtain the
compact simply connected 4-symmetric spaces associated with
these Lie algebras. In fact, a complete description of the
fibrations of these spaces is given. We list for each one of
them both the fiber and the base space. Furthermore, the idea
of duality for 2-symmetric spaces is extended to UY-symmetric
spaces. This extension is very natural and provides us with
a large class of examples of noncompact U-symmetric spaces.

A description of these dual spaces will also be given. Here
we shall only consider inner automorphisms. For the outer
automorphisms we refer to Section 8.(b).

Let w be a compact simple Lie algebra and 6 an auto-
morphism of order four of u; let u =u® + v+ h be the
decomposition of u into "eigenspaces" of 6 (see Section 2
for details). Then (u,@Q) is a 2-symmetric Lie algebra of
the compact type and its dual Lie algebra 8q ° (ue+v) + V71 h
is a 2-symmetric Lie algebra of the noncompacf type. g, is
a real form of the complexification g':ttc and is also a
b-symmetric Lie algebra. It has the same fixed point set and
the same "vertical space" as t. Hence the corresponding simply
connected Y4-symmetric space is Riemannian Y-symmetric with the

same compact fiber as its dual. Note that duality does not go

over the fibers.
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Here we list the "classical w, that is, gu(ntl),
80(2n+1), 80(2n) and 8p(n) and for each give various 8.
We shall show that these 8 exhaust all the possibilities up
to conjugation. The simply connected Riemannian 4-symmetric
spaces corresponding to (w,8) and g are also listed,
along with the fiber and the base spaces.

The link between finite order automorphisms of a simple
Lie algebra ¢ over € and a compact real form n (of g )
is given by the following proposition. (The proof in [9]
p.442 for the case n = 2 works in general). Here Aut{g ,n)
denotes the set of automorphisms of order n for a Lie

algebra g.

Proposition. Let g ©be a simple Lie algebra over € and n

a compact real form of 8§ . The mapping

T Aut(® , n)/Aut(e) - Aut(g ,n)/Aut(g)
induced by s'—*sc is a bijection. : /17

For the definitions and notation of the classical Lie
groups and their Lie algebras we refer to [9] Ch. X.

The unit matrix of order n will be denoted by In’
and we put

, -1 0 - o I I I

_ P - n - 1{ "p,a "p,q
I = b J 9 R
p»q 0 I n . p>q VI\-I I

Psq Psq
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P p
0 I 0 0 0 I 0 0
K = q , L = q
P>q 0 0 -I_ 0O P-4 -I_ 0 0 0
p p
0 0 0 I 0 0 0 I
q q
0 0 I 0 J 0 0
Psq P
0 I 0 0 J =20 -I 0
L = r,s PEYERS o]
P-4, 5 - 0 0 0 0 I
b.q r
0 0 0 I
r,s
Remarks. 1T and J are orthogonal and have determinant
- q,p P,q,r

_114 ‘ K
(-1)*. On the other hand, Jn, Rp,q’ 1p,q’ Lp,q,r,s all belong

to S0(2n), SU(2n) and Sp(n) (for n appropriate)

8 =4 ,n > 1, ®=8n(n+tl).

The following proposition yields the classification of the

inner automorphisms of order four of ap.

Proposition. Let 6 > a (n>1) Dbe an inner automorphism

of order four. Then its fixed point set ﬂi is one of the

| following.
|
3 .
. a ¢ . .
(1) i1 @ j-i-1 @tik_j_l ® LI @ T, 1=i<j<k=n,.
.. 2 . .
(ii) 6. 1 ® “j—i—l ® “n—j ® 3, l<i<j<n.
(1ii1) 6. ®0 .0 ml, 1 <1i=n.

Conversely, each one of the above sets can be obtained as

the fixed point set of an inner automorphism of order four of

109




L Furthermore, the choice of this automorphism is unique

up to conjugacy. . /17

Corollary. Two automorphisms of 4 > 1N > 1 are conjugate if

and only if their fixed point sets are isomorphic.

Proof. If both automorphisms are outer a glance at the

classification table in Section 8(b) yields the result.

Remarks. In our classification tables (Table I) we have that
for 8 the automorphisms induced by x = %(ui-ij) and

X = %(QVi'ij) (i <j) both have the same fixed point set,
hence they are conjugate (within the full group of automorphisms
of ﬁn). For a proof of these results one has to apply the
general theory as exposed in Helgason [9] Ch. X.

To construct the inner automorphisms of order four of
ge(n+ 1), we regard this Lie algebra as imbedded in 8p (2n+2)
in the usual way, that is:

Let X € 8n(n+l), and write it as A + iB with both
‘A and B real, the imbedding is

A B

A + 1B~ ( ) € 80(2n+2).

-B A

The inner involutions of 8u(n+l) (up to conjugation)

are X XTI where p+ q=n+ 1, p=g=1. When

I
P->q4 P»Qq
gt (n+l) is regarded as sitting inside 890 (2n+2), these

involutions are given by Xm= K X ¢ se(n+l) ¢ 86(2n+2).

XK,
pP,q P»4

The fixed point sets of these involutions are su(p) &t & 8n(q)

0
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where tO is a one dimensional center. Note that in the

complexification this set corresponds to a ®a ® 3
p-1 n-p

1

l<ps<n, which is (iii) in the above list. This tells us that
the corresponding Y-symmetric spaces are in fact Hermitian
2-symmetric with geodesic involutions the squares of the

symmetries. These spaces are

SU(p,n+l—p)/S(Up><U ), SU(n+1)/S(Up><U ) (l=p=n).

nt+l-p n+l-p

The automorphisms of order four on 8u(n+l) c 88(2n+2) are

-1

X Lp,n+l—px Lp,n+l=p

l<ps=n.

(i) As it was pointed out, the matrix belongs

X L7t
bs4,T,s Ps4,r,S
defines an inner automorphism on 86 (2n),

L
pP»>g,r,s
to S0(2(p+g+r+s)) and hence. X L

n =pt+tqgq+r+s., The clue here is that this automorphism

preserves 8w (n). (This has to be proved).
Thus we let 8% (n+l) c 88(2n+2) and define @ by

, -1 .
x> Ly i,k~3,j-i,n-k+1’

i,k-3,5-1,n-k+1% L

(l<si<j<k=m.

8 1is an automorphism of order four whose fixed point set is

A 0 0 0O . . o
- e (]~ 1 -k+
2 0 B 0 O) Acw(i), Bew(k-3), Ceén(j-i), D ew(n-k+1)
B 0 0 C O ~
o o o p/|Tr(A+B+C+D) = O.

Note: The description of w is given regarding 8u(n+l) <
g7 (n+1,C), a description of w 0 in 86(2n+2) would require

an 8x8 pattern. Let
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o (q
}__J
m o

N
o
o o

g; €U(L), i = p,q,r,s

S(U_xU XK%NXUS) = 0
p e 1T det g; 7 1

0
w
o

0 0 0 gy
The corresponding simply connected 4-symmetric spaces are

-j+i,n-k+j-i+
SU(k-3+1i,n-k+j-1 l)/S(UixUk_j XUj-i>(Un-k+l)’

SUR+1)/S(U; X Uy 5 xUs i xU 1 0), (L=i<j<ksn).

The fiber is

S(u )/S(UixU . xU., . xU )

k=341 * Vnoxrgoivn k=3 *Ys_1 ¥ Unixn

and the base spaces are

SUCk-3+1,n-k+j-1+1)/S(U, _ )

3417 Unoxrg-ing

SUGHL) /S sy s XU s 5y)

(ii) This case is similar to (i). Again let

3w(n+l) ¢ 30(2n+2) and define 9 by

-1

i,ﬂ"j+l,05j—ix Lian"j+l,o,j—l l=<=1<3]<n.

X = L

Note that this is the same as taking i = 0 or k = n+1l
in (1).

The corresponding simply connected UY-symmetric spaces are

SU(n-j+1+l,j-1)/S(Ui><Un_j+l><Uj_i),

SU(n+l)/S(Ui><Un_j+l><Uj_i), (l<i<js<sn)
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with fiber

S(U u. .)

Uj_i)/S(U].L X Un-j+1 x 5-1

n-j+i+1"

and base spaces

SU(n-3+i+1,3-1)/S(U U, )

n-j+itl * Yy-i

SU(n+1)/3(U ).

n-j+ivl X Y51
All this can be summarized as follows

Theorem. The compact simply connected H4-symmetric spaces with

nonvanishing Euler characteristic associated with @ > n> 1 are

SU(P+q+P+S)/S(UpquerXUS) pz0,a=1, r>1, s>0

with fiber

S(U x U Y/S(U_xU xU_xU.)
s P q r 8

p*q r+
and base
SU(p+q+r+s)/S(Up+q><UP+S). /17
g = 6]—1’ HEQ’ ® = 36(21"1-!-]_)

Proposition. Let 0 :g¢ 0> ﬁn be an inner automorphism of

order four. Then its fixed point set § g is one of the
following:
2
. @ . ; .
(i) jop @ ﬁn—i & T, 2<i=n
(i1) 6,  eg ., o 2<isn
1-1 n-i i -7
‘.- 1
b, a, . @ . D =i<js
(iii) : ® §-io1 ﬁn—j T, 2=i<j=n
(iv) 6 ezt
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Conversely, each one of the above sets can be obtained as
the fixed point set of an inner automorphism of order four of
6 - Furthermore, the choice of this automorphism is unique up

to conjugacy. /77

Corollary. Two automorphisms of 6> D >1 are conjugate if

and only if their fixed point sets are isomorphic.

(i) Let 6 be conjugation on 86(2n+1) with respect to

Ji—l,?,?(n—i)+l (2 =i =n). The corresponding simply

connected H4-symmetric spaces are
SOO(Qi*Q,Z(n~iﬁ3)/U(i—1) x S0(2) x S0(2(n-1)+1),
SO0(2n+1)/U(i-1) x 80(2) x SO(2(n-1)+1), (2<i=n).

(ii) Let 8 Dbe conjugation on 86(2n+l) with respect to

J (2=i=<n). The corresponding simply

i,0,2(n-1i)+1°

connected 4-symmetric spaces are
SOO(Qi,Q(n——i)+1)/U(i)X S0(2(n-1)+1),
S0(2n+1)/U0(1i) ¥ S0(2(n-1)+1), (2= i< n).

(iii) Let 6 be conjugation on 8e(2n+l) with respect to

Jj-i,?i,Z(n—j)+1’(25 i< js<n). The corresponding

simply connected U-symmetric spaces are

50,(2(3-1),2(n=3+1)+1)/U(3-1) x 80(21)x 80(2(n-3)+1),

S0(2n+1)/U(3-1)x S0(21i)x S0(2(n-3)+1) 2= i <j= n.
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(iv) Let 6 be conjugation on 3e(2n+l) with respect
to Jl 02n—1. The corresponding simply connected
b

L-symmetric spaces are
800(2,2n-l)/U(1)><SO(2n—l), S0(2n+1)/S0(2) x SO(2n-1).

These spaces are Hermitian 2-symmetric with geodesic
involutions the squares of the symmetries.

In conclusion we have the following

Theorem. The compact simply connected 4-symmetric spaces

associated with %1, (nz2), are

SO(2n+1)/U(3-1i) x S0(2i) x SO(2(n-j)+1) 0 =i < j

1A
3

with base space

S0(2n+1)/S0(2(j-1)) x S0(2(n-j+i)+1)

and fiber
(S0(2(3=-i))/U(3-1)) x (SO0(2(n-3j+i)+1)/S0(21i) x SO(C2(n=-3)+1N. ///

Remarks. For 6 (n=2), there are no outer automorphisms

of order four. Thus the above spaces are in fact all the
possible compéct éimply connected U-symmetric spaces associated
with it. When 1 = 0 or 1, we obtain the corresponding

almost Hermitian 4-symmetric spaces. (See Section 9.)

g = En, (n>3), ® = 806 (2n)

Proposition. Let 6 : bn > bn, n = 3, be an inner automorphism
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of order four. Then its fixed point set bi is one of the

following
(i) a_ , @3>
n-3
(ii) « ®1§2
n-2
e 2
(iii) (a) “j-l ® an—j—l @3, 2=<3jJ<=sn-2
2
a -
(b) 52 ® bn_j ® 2, 2 =3 =n-2
(iv) a. &t . @ 31 2 = = n-2
5-1 -3 s =3 s
1 .
(v) bieaaj_i_l@bn_j@g;, 2 <1< jsn=2
X

(vi) (a) a Forrd
n

Furthermore, for the case (ii) there are precisely two non-
conjugate inner automorphisms of order four which have

2 . . .
ﬁn-? ® 3 as a fixed point set. TFor each remaining case,

there correspond as manynonconjugate inner automorphisms of

order four as many times as it appears in different series. ///

(i) I have not yet found a global formulation for this
case, however a glance at the classification of the
inner involutions of %1, n > 3, yields the result
that the corresponding base space must be
S0(2n)/S0(4) x SO(2n-4), and that the universal

cover of the fiber must be 82 x82 x S0(2n-4)/U(n-2).

(ii) We must find two nonconjugate automorphisms of order

four with the same fixed point set.
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Let 6, 80(2n) > 86(2n) be conjugation with respect
to Rn-l,l’ and let 0, :80(2n) »>30(2n) be con-
jugati i.th t to J . B

32ga ion wi respgc n-1,0,2 ecause

Rn-l,l = Jn and Jn-l,0,2 = I2n—2,2’ they are

nonconjugate. The corresponding simply connected

Y-symmetric spaces are

(81) SO0*(2n/U(n-1) xU(1), S0(2n)/U(n-1) xU(1)

(62) SOO(Qn—Z,Z)/U(n—l) x S0(2), S0(2n)/U(n-1) xS0(2).

At first there does not seem to be any difference in
the compact case however, the corresponding fibrations

are given as follows:

U(n) /U(n-1) xU(1)>80(2n) /U(n-1)xU(1)  SO(2n-2)/U(n-1)=30(2n)/U(n-1)xS0(2)

(el)

(iii)

J (0)) J

S0(2n)/U(n) S0(2n) /S0(2n=2)xS0(2) .

(a) Let 8 be conjugation on 8e(2n) with respect

to R (2=j=n-2). The associated simply

j Jn—j ’
connected U-symmetric spaces are

SO*(2n)/U(j)xJ(n=-3), S0(2n)/U(3)xU(n-3j), (2=jJ=<n-2).

(b) Let 6 be conjugation on 8 (2n) with respect

to J (2<3<n-2). The corresponding

j-1,2(n=-3),2

simply connected U-symmetric spaces are

50,(23-2,2(n-3)+2)/U(3-1) x S0(2(n-3)) x S0(2)

SO(2n)/U(3-1) x S0(2(n=3)) x S0(2), (2<3j<n-2).
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(iv)

Let ©6:80(2n) - 8s(2n) be conjugation with

respect to J (2= j= n-2). The corres-

j,0,2(n—j)’

ponding simply connected U-symmetric spaces are

SOO(Qj,2(n—j))/U(j)XSO(2(n-j)),SO(2n)/U(j)XSO(2(n—j)),(2§j§n—2).

(v)

(vi)

Let ©: 80(2n) » 80(2n) be conjugation with respect

to J (2= i<j=n-2). The associated

j-1,21i,2(n=3)

simply connected 4-symmetric spaces are

SOO(Z(j-i),2(n—j+l))/U(j—l) x 30(21) x S0(2(n-3)),

S0(2n) /U(3-1)x80(21)%xS0(2(n-3)), (2= i<j<n-2).

(a) Let 6 :80(2n) - 80(2n) be conjugation with
respect to Rn 0" The corresponding simply connected
3

L-symmetric spaces are

S0*(2n)/U(n), 5S0(2n)/U(n)

(b) Let 6 :80(2n) » 80(2n) be conjugation with

respect to J The corresponding simply

1,0,2n-2"

connected 4-symmetric spaces are

800(2,2n—2)/80(2n-2)x S0(2), S0(2n)/S0(2n-2) x S0(2).

The spaces in (a) and in (b) in (vi) are Hermitian 2-

symmetric with geodesic involutions the squares of the symmetries.

In conclusion we have

Theorem.

The compact simply connected Y4-symmetric spaces with non-

vanishing Euler characteristic associated with %n,(n>3), are given

by
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Total Space Base Space -Fiber
(b 6 ox)*
n’ n-3
S0(2n)/U(n-1)xy¢1)| S0(2n)/Uln) U(n)/U(n-1)xU(l)
S0(2n)/U(3)xU(n-3) S0(2n)/ (S0(23)/U(3))x
1<3 S[%-n] S0(2(n-3)) x S0(23) (S0(2(n-3))/U(n=-3))
S0(2n)/U(j-1)x So0(2n)/. (S0(2(3-1))/U(j-1))x
S0(2(n-3))=xS0(21) SO0(2(3-1))%x80(2(n=3+1)){ (SO(2(n=-3+1))/S0(21i)x
0<i<jsn-2 S0(2(n-3)))
S0(2n)/U(n) S0(2n)/U(n)
Remarks. * Needs to be given a global formulation. The base

space in this case is given by S0(2n)/S0(4) x SO(2n-4) and the

universal cover of the fiber by 82 X 82 x (S0(2n-u4)/U(n-2)).

8 = ¢ , (n>2) n = 8p(n)
n .

Proposition. Let 6 :e¢ - ¢ be an inner automorphism of order

n
four. Then its fixed point set eg is given by one of the
following
1
a ¥
(1) no1 @
(ii) &, . @e . @ 1 <is=n-1
1-1 n-1 ’ - -
e ‘ 2
] D a < -
(iii) i1 B0 i1 ® T, 1 <=1isn-1
1 . .
i €. &R/, . . i -
(iv) i @ 5-5-1 ® en_] ®3xr , 1l <1< 3j=n-1

Conversely, each one of the above sets can be obtained as
the fixed point set of an inner automorphism of order four of
en. Furthermore, the choice of this automorphism is unique up

to conjugacy. /17
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Corollary. Two automorphisms - of € of order four, (n>2),

are conjugate if and only if their fixed point sets are isomor-

phic. i
We now construct the corresponding automorphisms for each

fixed point set.

(i) Let ©: 3p(n) > 8p(n) be conjugation with respect to
RO . The corresponding simply connected Y-symmetric
3
spaces are

Sp(n,R) /U(n), Sp(n)/U(n).

These spaces are Hermitian 2-symmetric, the geodesic
involutions are the squares of the symmetries, i.e.

the vertical distribution is trivial.

(ii) Let 6 :8y(n) > 8p(n) be conjugation with respect to

L (l<i=n-1). Here 8% ig given by

i,n-1’
w(i) ® 8v(n- 1), The corresponding simply connected

L-symmetric spaces are

Sp(i,n-1)/U(1)xSp(n-i), Sp(n)/U(i)xSp(n-i), (lsis=n-1).

(iii) Let 6 : 8p(n) =+ 3p(n) be conjugation with respect to

R , (l1=isn-1). The corresponding simply

i,n-1

connected 4-symmetric spaces are

Sp(n,R) /U(1)xU(n-1i), Sp(n)/U(i)xU(n-1), (l=i=n-1).

(iv) Let 6 :8d(n) »8¥»(n) be conjugation with respect to

L (l=i<j=n-1). Here the fixed point

0,3j-i,i,n-3°

set is given by ®(j-1) @ 8¥(i) ® 8P(n-j). The
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corresponding simply connected Y-symmetric spaces are

Sp(j-i,n-j+1)/U(j-1)xSp(i)xSp(n-7),

Sp(n)/U(j-1)xSp(i)xSp(n-3), 1 =i < j £ n-1.
In conclusion we have the following

Theorem. The compact simply conencted 4-symmetric spaces

associated with en’ (n=3), are

Total Space Base Space Fiber
Sp(n)/U(i)xU(n-1) Sp(n)/U(n) U(n)/Uu(i)xu(n-1)
0<i=n-1 |
Sp(n)/u(j-idx Sp(n)/(Sp(j-i)x | (Sp(j-1)/U(j-1)» x
Sp(i)xSp(n-3) Sp(n-j+i)) (Sp(n-3+1)/Sp(n-j)xSp(i))

0=si<i=sn-1

Remarks. ¢ has no outer automorphisms of order four. Hence
the above spaces provide all the compact simply connected H-
symmetric spaces associated with €. (n=3). The spaces
appeafing in the first row, and those in the second row with

i = 0 are the almost Hermitian U-symmetric spaces associated

with ¢ (n=3).
n
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(b) Outer Automorphisms of Order Four of Compact Simple Lie
Algebras

As for inner automorphisms, we first reduce the problem
of classification of the pair (§,s) with § compact semi-
simple and ¢ automorphism of order four, to the case when
g 1is simple. The difference is that if g = gl@...eﬂn is
the decomposition of g into its simple ideals, then ¢ does
not necessarily preserve it. However it can at most permute

the factors. Let {j be an orbit by o. Since

i,...,ﬂr‘}

0 1is of order four, it will contain at most four elements.

We assume the indices are such that O(Qi) and so on,

= i+l’

with o(g_ ) =g.. Then o restricted to g.®...d is an
T i i r

automorphism of order four with each one of the ideals iso-

morphic to g Thus we may think of gi®...@gr as
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0i®...® 8. and of ¢ as the automorphism (Xi""’xr) >
__\/'—-“
r-i times

(o(x ) ,x.,X%. I ). o 1is outer if either the orbi

R TR I B >Tr-1 1t
Y contains more than one element or if o :g r 085
is outer. Hence we can restlrict our attention to outer

automorphisms of order four of compact simple Lie algebras.
The way we obtain the classification of the outer auto-
morphisms of order four of the simple Lie algebras over € is
by a direct application of the general method exposed in [ 9 ]
Ch. X. We will not give the defails of this method. We shall
only enunciate the main theorems and then proceed to the
classification. At the end of the section, -we give explicit
descriptions of the fibrations of the spaces. Once again
the global formulation is presented for g ‘classical".
Let g be a simple Lie algebra over €, then there
exists a one to one correspondence between automorphisms
o of ﬁ. of order m and Zm—gradations of 8.

g = @ieZ 8 ;- Associated with each one of these gradations
m

xl and

is the covering Lie algebra L(g,o) = &. @j nod m

] €%
the covering homomorphism ¢ : L(g,0) - g defined by

¢(ka) =Y (Y ¢ % mod m). The main point is that by
studying the Z-graded Lie algebras L(g,o0) (g simple) one
obtains a description of all Zm—grad ations of simple Lie
algebras. The idea is to develop the weight theory for

L(g ,0), that is, the analog of the root theory for g
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Thereby one establishes an isomorphism L(g,0) ~ L(g,v),
where v 1s an automorphism of a very special type, namely
induced by an automorphism of the Dynkin diagram. This
results in an explicit description of ¢ in terms of v,

The diagrams associated with these covering Lie algebras
are given in the table in p. 503 in [ 9 1. For the notion of
canonical set of generators we refer to the same book, page

482, We now state the main theorem.

Theorem. Let g be a simple Lie algebra over ¢, v a fixed
automorphism of g of order k (k = 1,2,3) induced by an

automorphism of the Dynkin diagram for a Cartan subalgebra &

of §. Let g = ©. g; be the corresponding 7%

5 -gradation.

k

The fixed point set hY of v in % is a Cartan subalgebra

of the (simple) Lie algebra aY. TFix canonical generators

0
Xi’ Yi, Hi (1=1i=n) of 08 corresponding to the simple
POOtS Qs+ s0 in A(Qg,hv). Let EO be the lowest root
of L(g,v) of the form (ay,1) and fix X, # 0 in g7
such that xXO E'L(q,v)uo. Let (SO,...,sn) be integers = 0

without nontrivial common factor. Put m = k Zg a;s, where
the a;, are the labels from the diagram of L(g8,v) corres-
ponding to the simple roots EO’ Ei = (ai,O), (l=i=sn). Let

€ be a fixed m-th root of unity. Then:

(1) The vectors X "Xn generate g and the

09
relations

o(X.) = ¢ X. (0=1i<n)
1
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define uniquely an automorphism of g of order m. It will

be called an automorphism of type (so,...,sn;k).
(i1) Let il, .,it be all the indices for which
S, F...¥ 8, = 0. Then 8 (that is g%) is the direct sum

of an (n-t)-dimensional center and a semisimple Lie algebra

whose Dynkin diagram is the subdiagram of the diagram ﬁ(k)

in Table k consisting of the vertices 1 .,1.. (See

1’ t

table in [9], p. 503).
(iii) Except for conjugation, the automorphisms ¢ exhaust

all n-th order automorphisms of 8.

Theorem. With the notation of the above theorem, let o be

an automorphism of type (s .,sn;k). Then

0"
(i) o 1s an inner automorphism if and only if k = 1.
(ii) If o' is an automorphism of type (sé,...,s%;k‘),

then ¢ and o' are conjugate within Aut(g) if and only if

k = k' and the sequence (50,...,sn) can be transformed into

1

the sequence (SO,..

g(k).

.,sﬂ) by an automorphism wo of the

diagram
We now classify the outer automorphisms of order 4 up to

conjugacy. The equation to solve is 4 = k 22:0 a;s.. However,

since we are interested in outer automorphisms, the second

theorem tells us that k = 2. The following are the solutions.

(i) a. = a. = s, = s, = 1.
1 ] 1 ]

t
N
-
wm
1
=

(i1)  a.
i
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. o . . .
In case (i) ¢ has one dimensional center, whereas in

. 3] . .
case (ii), is semisimple.

Outer Automorphism of Order Four of the Simple Lie Algebras

o o
8 8 ] 8
a a _
2 1 a 13)
2n-1 en—l 3}
a ¢.Ps . n>2
2 - @&
n 7 n-j an-l 3}
n>1 1<i=n
[0 ) . b 6. ,n _t_ﬁML&Q}
2n-1 b1®°n—1 n+l i-1 "n-1i-3 73
n>2 QSiSn—l n>l lEifn, ijfn—i
¢ ¢ @Q}
Pa
*s 939 6 3
ey
%% 1

Remark. For bn+l there does exist symmetry for the diagram

and hence some restriction 0 =< i' < [%(n+l)] has to be made

to avoid repetition. Also, any two automorphisms giving rise

to the same entry (0,@0) are conjugate.
2
We now set about finding 00 . We follow the method as

‘ explained in part (a) of this section. We start with ¢ . and
‘ ﬁzn,n:>1. These cases are straightforward. We omit the details.

For notation we refer to Helgason p. 518.
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2
8 gg 90 Base space Universal cover of the fiber
oa o
¢, 8,0, a9, — su(6)/s0(6)
6,94, 35@3-1 EIII (80(10)/80(7)xS0(3)) x R
e oyt @ a0 EIT 5 x (SU(6)/5p(3))
i . .
on ej@ﬁnq' By q® su(2n+1)/ (su(23)/sp(3)) x
1 lsi<n s . @3; S(UQjXUQ(n—j)+l) (SU(2(n-3)+1)/s0(2(n-§)+1)) x R
2(n-3)
Remark. EII and EIII stand for the compact simply connected

Riemannian 2-symmetric' spaces in Cartan's classification list

(see Helgason pp. 517, 518).

a
2n

matrices of trace

By considering as the Lie algebra of complex

(2n+1) x (2n+l) 0, we can give an

explicit construction of its outer automorphisms of order four.
Note that all we need to do is to construct outer automorphisms
of order four whose fixed point sets are as given in the table.
Then recall that any two such automorphisms giving rise to
the same entry OQ,QO) are conjugate. Therefore, these
will in fact be all the possibilities.

One further comment. It turns out that these automorphisms

leave invariant the compact real form 8u(2n+l). Thus we

would rather work with this Lie algebra. As a consequence,
at the end we obtain a global formulation, That is, we obtain

the compact simply connected b-symmetric spaces associated with

o
2n

the entries (ﬂzn,m ) o outer of order four.
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The following notation will be useful (see Helgason [ 9 ]

Ch. X, §2). In will denote the unit matrix of order n,
and put
=T 0 0 I
P n
I = s J =
P-4 0 I n -1 0/
q n
J . 0
For 0< i=< n-1 define ). = n-4 , and define
* 0 I,.
21+1

o, : 3w(2n+l) ~ 8u(2n+1l) as the automorphism g, (X) = I X Z;l.

Here the bar denotes conjugation in the usual sense.

Claim. 0. is of order four and has fixed point set given by

3 (n-1i) x 8e (2i+1). (I.e. complexifying

gp(n-1i,€) ® 80 (2i+1,C) = ¢_ .®6 .). Furthermore,

n-i i
2 _ . .
Oi(X) = IZ(n—i),2i+1 has fixed point set
gu(2(n-1)). x tO x 8¢ (2i+1) (here tO denotes a one-dimensional
center). The proof of this fact can safely be omitted.

Thus Oi, 0 <i=<n-1 are all the outer automorphisms
of order four (up to conjugation). Denoting by the same
letter the induced automorphisms on SU(2n+l), we have that
the corresponding cdmpact simply connected UY-symmetric spaces
are given by SU(2n+1)/Sp(n-1i) x S0(2i+1).
2(n-1)*Y2i+17>
+1)/Sp(n-i) x SO(21i+1).

The base space is given by SU(2n+1)/S(U
and the fiber by S(UZ(n—i)XUZi

Sche. ‘matically,we have
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Q

8,y Uy 90 /SP(n=i) xS0(2i+1) < SUC2n+1)/Sp(n-1) x80(2i+1)

SU(2n+l)/S(U2 U )

(n-i)V2i+1’"

We can do the same thing for “Zn—l n>2. Now instead

Jn_l 0
of Y. and o., define R. = 1 =1 =n-1 and
1 1 0 IQi

Claim. F&(Qiifn—l) is an automorphism of order four with

fixed point set §p(n-i) ®84(2i) (i.e. complexifying

4 ®b, 2=i<n-1). Furthermore P

n-i i i~ IQ(n-i),Zi

point set 3u (2(n-1)) x ty X guw(2i). (to is a one-dimensional

center). The corresponding fibrations are given by

has fixed

S(U2

(n_i)XUQiVSp(n—i)XSO(Zi)‘+ SU@n) /Sp(n-1)xS0(2i)

SU(2r1)/S(U2 xy

(n-1i) Y23’

On the other hand we have p. : 8®(2n) - 8n(2n) with fixed

1

point set 8¥(n-1)®86(2) when complexified becomes 1

en_l$@

one dimensional center. The corresponding fibration is given

by
S(Uzn_2XU2)/Sp(n-l)XSO(2)€» SU(2n)/Sp(n-1)x30(2)
SU(2n)/S(U2n_QXU2).
This is the only case where the fiber and hence the total
space appear to admit invariant almost complex structures. How-
ever, this 1s not so. Note that the base is always an Hermitian
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2-symmetric space in the three cases.

For &, 4 (n>1) there is still one more outer auto-
morphism of order four. This automorphism must have as its
fixed point set ﬂn—l@ xl. However, I have not yet found an
explicit description as in the above cases.

We now consider g = b (n>1). The Lie algebra of

n+l’
complex skew symmetric matrices of order 2(n+l) and take its
compact real form 8o (2n+2).

Let 2 =1+ 3j=n-1, 1 =41i=n-1, 0 = j. Define

ntl-i-j :
Y. = I and 05 go(2n+2) > 8o0(2n+2)
- . ‘
0 23%1,21-1 Xe §..X Jit
i3® Lig.

Claim. Oij is of order four and its fixed point set is given

by w(n-i-j+1) ® 86(2j+1) ® 80(2i-1). (I.e. when complexified

A }eBIleﬁﬁthGi_ ). The fixed point set of

n-i-j 1

2 C .
Uij = Iz(n+l—i—j),2(i+j) is given by 86(2(n+l-i-j)) X
30(2(i+3)). /11

Since conjugation by zij also induces an automorphism
of S0(2n+2), we have that the corresponding fibrations are

given by

(S0(2(n+1-i-3))/U(n+1-i-3))=x(S0(2(i+3))/S0@2j+1)xS0(21i-1)) s>

S0(2n+2)/U(n+1-1i-3)xS0(23+1)xS0(2i-1)

S0(2n+2)/80(2(n+1-i-3))xS0(2(i+3)).
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We now consider (in the above situation) the excluded

possibility 1+ 3j = n. In this case we have
Jl 0 ‘
Yoo = and _0,. :80(2n+2) » 80(2n+2)
netd o I.. . noij
27+1,21-1

-1
X = nZin nzij'

(We put the index n to remember that i+ Jj = n).

Claim. noij is an automorphism of order four whose fixed

point set is given by 8o (2) x 80(23+1) x go(2i-1). (In the

complexification it is given by Qgsaﬁjtﬁﬁi_l i+3 = n,
. 2 . .
= @
1=i=n). nGij 12,2n has f}xed point set 890(2) ® 8o0(2n). ///

Once again we obtain an induced automorphism on S0(2n+2),

and hence, we obtain the corresponding fibrations

S0(2n)/S0(2(n-1)+1)%x50(2i-1)<«» SO(2n+2)/S0(2)xS0(2(n-i+1)xS0(2i-1)

S0(2n+2)/80(2)x80(2n).

There 1s one outer automorphism of order four for bn+l’
which we ought to determine, this automorphism has fixed point
set an_l(BQA. (It corresponds to i =1, j = 0 in our

classification tables). For this, take conjugation on 8e(2n+2)

with respect to the matrix (Jn 001 ). The fixed point set is
b
0 (1,0)
i (n). The ¢orresponding fibration is

S0(2) x (30(2n)/U(n))=> S0(2n+2)/U(n)
¥
S0(2n+2)/S0(2) x S0(2n).
For the entry (dz,ml) one can do a direct computation. One

obtains:
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SU(2) = U(2)= SU(3)
.

c d

g:(ab)H Odet'go

o]

0

0

U(2)/SU(2)= SU(3)/SU(2)
¥
SU(3)/U(2)

b

d

The dual spaces are given as follows.

SU(2n+1)/Sp(n-1)xS0(2i+1)
0<i=n-1, n>1
SU(2n)/Sp(n-i)x S0(21i)

1<i=<n-1, n>?2
SU(3)/sSuU(2)

S0(2n+2)/U(n+1-i-j) x
SO(23+1)xS0(2i-1)
2<i+3j<n-1,

l<isn-1, 0£j, n>1

S0(2n+2)/80(2) x
S0(2(n-1)+1)x80(2i-1)

l=i=n, n>1

S0(2n+2)/U(n)

SU(2(n-1),21i+1)/Sp(n-1)xS0(2i+1)
SU(2(n-1),21)/Sp(n-1)xS0(21)

SU(2,1)/8U(2)
50,(2(n+1-i-3),2(i+j))/

U(n+1-1-3)xS0(2j+1)x50(21i-1)

800(2,2n)/SO(2)XSO(2(n-i)+l) X

S0(2i-1)

800(2,2n)/U(n)

The following table is a summary of our above discussion,

it gives the description of the fibrations for the compact

simply connected 4-symmetric spaces with vanishing character-

istic associated with the '"classical" Lie algebras.
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*P2UTP1QO ©q 01 SPY UOIJIBTNWICT TeqoT38 V 5 ~SYJBPWSY

((u)n/(uz)0s)x(z)0s (UzZ)0Sx%(2)0S/(z+uz)0s (u)n/(z+uz)os

T<U ‘usisT ‘u=(+T

(T-TZ)OSx(T+(T=u)2)0s/(uT)0Ss (Uz)0Sx(z)0S/(Z+uz)0s (T-TT)0SX(T+(T-U)Z)0S%(Z)0S/(C+UZ)0S

((T-T2)0Sx(T+Lz)0S/((L+T)2)0S) T<u “[z0 ‘T-USTST ‘T-usl415¢

x ((C=T-T+uw)n/((L-T-T+u)z)0S) ((L+T)Z)0Sx((E~T-T+U)T)0S/(Z+UZ)0S (T-T2)0Sx(T+Lz)0oSx(L-T-T+Uu)n/(Z+uz)0S

(2)ns/(z)n (¢)n/(e)ns (¢)ns/(eHns

-u T-u
A.mw.m.w.ﬁ enH Nev u.n

Z<u ‘T-USTST

Aﬂmvomxﬁﬂucvam\ﬂﬂmeAHucvaVm AHmeﬁﬂnnvavm\ﬁcvam (12)0sx(T-u)ds/(uz)NS

T<u ‘T-UST30

T+Te, (T2 T (FM8hy g/ (T+uz)ns (T+72)0Sx(T-u)ds/(T+UZ)AS

(T+Tz)0Sx(T-u)ds/( )S (

asq1J sords aseg sords e33O

M MUBJ < 9 MURJI ‘TRPOTISSEBIO Y
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§9. Almost Hermitian 4-Symmetric Spaces of Positive Characteristic

An almost Hermitian U-symmetric space is a Riemannian Y-
symmetric space which has an almost complex structure invariant
under each symmetry and which is compatible with the Riemannian
metric. Examples are provided by the Hermitian 2-symmetric
spaces of the compact type and the noncompact type. These
are always simply connected and have the characteristic property
that their isotropy groups are not semisimple and therefore have
nondiscrete centers. Actually, these spaces are Hermitian
n - symmetric for any n (see [27]). Here we shall be concerned
with compact almost Hermitian 4-symmetric spaces with nonvanish-
ing Euler characteristic. We show that these spaces are charac-
terized as the homogeneous manifolds of the form G/K, where
G 1is a compact connected Lie group acting effectively on G/K,
and X 1is a connected (closed) subgroup of maximal rank with
the following two properties. (i) It is the identity component
of the fixed pointset of an (inner)automorphism 6 of G of
order four inducing fhe symmetries on M, and (ii) it is the
centralizer of a torus. We then classify them.

This section was motivated by the following two results
for Riemannian 2-symmetric spaces: (i) Every almost complex
structure invariant undér the geodesic symmetries is integrable
and (11) if in addition this structure is compatible with
the Riemannian metric, then it is Kdhlerian. Hence,.it is
natural to ask whether or not an invariant almost complex

structure on a Riemannian b-symmetric space is integrable or
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if compatible with the metric is Kdhlerian. From our repre-
sentation of almost Hermitian Y-symmetric spaces with non-
vanishing characteristic it will turn out fhat they admit
invariant complex structures which are not only Kdhler but
also Hodge. In particular they are algebraic manifolds.
First of all, we solve a more basic problem. This is

the question of existence of such almost complex structures.

Q) Decide which of the compact Riemannian Ud-symmetric
spaces with nonvanishing Euler characteristic admit an invariant

almost complex structure.

The way we proceed to answer (Q) is as follows:
First>we prove that these spaces have a decomposition into
"simple factors" (for details see below) and that each of
these simple factors also belongs to this same class of spaces.
The simple factors are quotients of compact simple Lie group
Now we can use all the information éontained in the classifi-
cation tables of Section 8. From these tables, we distinguish
between two possibilities for ¢ (the Lie algebra.of fixed
points of the automorphism 6): (i) ¢ is the the centralizer
of a torus, (ii) ¢ 1is not the centralizer of a torus. In
the first case it is immediate that the corresponding space
admits an invariant almost complex structure. For the second
case, we draw tables of these spaces. The final result being
that only those spaces falling into the first class do admit

invariant almost cbmplex structures.
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It should be pointed out that in a more general setting,
Wolf and Gray (see [28]) have already given a complete descrip-
tion of all almost complex manifolds (M,J), M = G/K, where
G 1is a compact connected Lie group acting effectively on M,

K is a subgroup of maximal rank (this is an equivalent way of
saying that G/K has nonvanishing Euler characteristic), and
J 1s a G-invariant almost complex structure on M.

We could reformulate our original question (Q) as follows:
from the deséription given by Wolf and Gray find those spaces
which are Riemannian 4-symmetric.

First we recall a decomposition that holds in general
for compact homogeneous spaces with nonvanishing Euler charac-
teristic. The details may be found for example in [24]. Let
M = G/K be a homogeneous space where G 1is a compact connected
Lie group acting effectively on M and K is a connected
subgroup of maximal rank. As K contains the center of G,

this means that G 1is semisimple and centerless. - Now

(1) G = G1 X, . WX Gr, K = Kl X, . .X Kr, M = Ml X, ., . X MP

where

G. 1is simple, K, = X n G., M. = G./K..
i i i i i

Following Wolf and Gray, we shall refer to (1) as the decompo-
sition of M = G/K into simple factors. The point is that if
M = G/K is assumed to be an almost-Hermitian 4-symmetric space,
then its simple factors are also almost-Hermitian U-symmetric

spaces. This is the content of the next theorem.
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Before stating the theorem, we shall make a comment on
the notation that we shall be using throughout this section:
It has already been proved in Section 2 that every Riemannian
b-symmetric space can be represented as an homogeneous spéce
of the form M = G/K, where G 1s a connected Lie group of
isometries acting effectively on M which is invariant under
conjugation by the symmetries and K, the isotropy group at
a point 0 ¢ M say, 1s an open subgroup of the fixed point
set c® where 8 is the automorphism on G induced by
conjugation by the symmetry at 0. We shall refer to such a
representation as a standard representation. Whenever a
Riemannian 4-symmetric space is written as coset space, it
will be understood that it is by means of a standard represen-
tation.

Let (M,g,J) be an almost Hermitian U4-symmetric space.
Then the set of isometries of M that preserves the almost
complex structure is a closed subgroup of I(M,g) and is
therefore a Lie transformation group of M. We denote this
group by A(M). It is transitive on M since it contains
all the symmetries. The identity component AotM) of A(M)
is also transitive on M. Let 0 € M and let K be the
subgroup of G = AO(M) leaving 0 fixed. With the auto-
morphism g - sogsal of G (denoted by 6), M = G/K is
a standard representation of M with the additional property
that the almost complex structure J of M 1is G-invariant.

In particular, if M 1s compact with nonvanishing Euler
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class, then M has a standard representation with the follow-

ing properties:

(a) M = G/K, G compact connected Lie group of isometries
acting effectively on M which also preserves the almost
complex structure J.

(b) K 1is a closed connected subgroup of maximal rank.

(¢) The automorphism 6 of G 1is an inner automorphism
of G. It actually can be written as 86 = Ad(k) for some

k € K.

In particular, these spaces are simply connected. The proofs

of (b) and (¢) can be found in §4 of [28].

Theorem 1. Let (M,g,J) be a compact almost Hermitian Y-
symmetric space with nonvanishing Euler characteristic. Let

M = G/K be a standard representation with properties (a), (b)
and (c) as above. Then M = G/K decomposes into prime factors

as in (1), i.e.

G = Gl X X Gr K = Kl XuuaoX Kr’ M = Ml X X Mr
where
G. 1is simple, K. = Xn G, M. = G./K,
i i i i i i
Furthermore, each of the prime factors Mi = Gi/Ki is also a

compact almost Hermitian UY-symmetric space with nonvanishing
Euler class, and the representation Gi/Ki is standard and

satisfies properties (a), (b), (c) as well.
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Proof. First we quote a result which gives us the induced
Riemannian metrics and the induced almost complex structures

on the prime factors.

Proposition 1 (see §4, [28]). Let T be the class of tensor

fields of one of the following types: complex structure,
almost complex structure, Riemannian metric, almost Hermitian
ﬁetric or Hermitian metric. Then the G-invariant tensor
fields of type T on M = G/K are just the tensor fields
£ = El b..,.d gr where in the above notation, Ei is an
arbitrary Gi-invariant tensor field of type T on Mi'
The proof of the theorem is now very straightforward.
The automorphism of G -is inner, therefore it decomposes
into a product 8 = 91 X, ., WX er of inner automorphisms of
the factors Gi' Clearly Ki ig left fixed by ei which
implies that Gi/Ki is a standard Pepresentafion of Mi'
6. = Ad(ki) for some ki € Ki (by (c¢)) and hence the

symmetries preserve the metric and the almost complex structure.

Thus question (Q) can be reformulated as follows:

(Q') Let (M,g,J) be a compact almost-Hermitian U-symmetric
space. Assume that M admits a standard representation
M = G/K with properties (a), (b) and (c), and such that G

is a simple Lie group.

Problem: classify these spaces.
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The rest of this section is devoted to solving this
problem. This will be done from the point of view of Lie
algebras.

First, since we are dealing with inner automorphisms,
we distinguish from the tables in 88.(a) when ¢ is or is
not the centralizer of a torus. For convenience we quote
the criteri~. that gives us necessary and sufficient conditions
that the fixed point set of an inner automorphism be the

centralizer of a torus. (See [28] Prop. 2.11).

Proposition 2. Let g = Ad(exp 2¢v-1 x) be an inner auto-

morphism of a compact simple Lie algebra ¢ with maximal

root u = miwi, in a simple root system ¥ = {wl”"’wﬁ}'
Normalize x = Zg_ c.v, as in Section 8(a). Then

1=l 171
1. 8% is the centralizer of a torus if and only if one of

the following two conditions holds true
(l.a) u(x) < 1;
(1.b) u(x) = 1, c, > 0 implies that m, > 1, and

{mi: c, > 0} dis a set of r =z 2 vrelatively prime integers.

2. 8% is not the centralizer of a torus if and only if the
following three conditions are satisfied

(o) ulx) = 1,

(BY ¢, > 0 implies m, > 1,

1

(vy) {mi :ci:>0} either has just one element or is a
set of r z 2 integers with greatest common divisor

p=2, 3, or M,
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In the former case of (iii), x = vj and 6 has order
mj > 1; 1in the latter case of (iii) if © has order k
then p divides k.

A direct application of this criterion to the description
given in Proposition 2 in Section 8.(a) of the inner auto-
morphisms of order four of the compact simple Lie algebras,
yields the result that for the first three cases there (i),

v

(1i) and (iii), the corresponding fixed point set ¢ of

® = Ad(exp 2m/-1 x) 1is the centrl izer of a torus. Whereas

for the forth case ge is not the centralizer of a torus.
From the classification tables in- Section 8.(a) it is

now easy to draw the following table which gives a complete

/-1 Zq

Ad(exp 2nv/-1 x)

list of the possibilities for x an element in

inducing an automorphism of order four 6 =

is not the centralizer of
6

such that its fixed point set ﬂe

a torus. wx is a simple root system of g We refer the

reader to the tables in Section 8.(a) for notation and the

Dynkin diagrams.

9 X b N
§_on=2 %(ui+vj)(2§i<j§n) lagoeeenay 3ops ’djsl; b, e . 4
ay4p0r 20 JUEN) @b, . oy
e,n=3 | (v v ) (siciml) | ag,e a0y a5 | ey ®@a ;)
aj+l,...,an}U{—u} @en_j'@.l‘l
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[ % v i
1 . . )
> + 2<i<9<n- . ¢
ppon=h |5V U (255550-2) ) Hayseeeay 30y g seeesay g5 ) b ey )
. 1
aj+l’ >0, JU{-p} tan_j@Q’
1 1
=(v_+ - ] D
fq 2(\Jl Vu) {aQ,aB}U{ ul 6,9 ,0F
vy {al,“Q;au}U{ ul aS(Ba
1
= - : a
e 2(\13+v5) {al,uz,uu,ue}U{ p} 8,9a,0 l@rl
1 .
Uf- ,
58Vy1V5) {oy 0y 0,0 3U{-u) “169“1(9“2’.“'92;L
(v +v)]
2 25
¢ i(\) +v ) {a, 5ovasa, 30, FU{-n} a Da D> i'ﬁ,@'l
7 271 6 222538 [ I
. l_
+ e - a @®
5(\)1 UQ) {ocs, ,0L7}U{ u} ﬂscﬁ@ L
1
U_+v _ - ' ¢
5( ot ) {al,aS,au,aS,%}U{ ul ﬂl@aSch’l
vy {al,az,aa,as,aG,a7}U{—u} qsdéald)ﬂg
1 ’ . )
‘ et _ WY I}
8 2(ul+ua) {ag,...,oa7}U{ ul b oDa, DY
‘ : - - a_ <
vy {al,aQ,aq, ,aS}U{ ul l&)ﬂ,}
; - dea
Y togsenvsagsa, a0 dU{-ul b @8,

The problem now is to decide whether or not each of the

spaces in the above table admits an invariant almost complex

structure. Wolf and Gray have classified the spaces (G/X,J)

where G 1is a compact connected simple Lie group, K 1is a

connected subgroup of maximal rank which is not the centralizer
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of a torus and J 1s an invariant almost complex structure on
G/K [28]. Thus a case by case inspection shows that none of
the spaces in the table admits an invariant almost complex

structure. Hence we have proved the following

Theorem 2. Let (M,g,J) be a compact almost Hermitian
b-symmetric space with nbnvanishing Euler characteristic.

Let M = G/K be a standard representation with properties

(a), (b) and (c). Assume further that G is simple. Then

M = G/K 1is one of the spaces listed in Section 8.(a) excluding

the spaces that appear in the above table.

Theorems 1 and 2 yield the classification of compact
almost Hermitian W-symmetric spaces with nonvanishing Euler
characteristic. The following theorem gives a characterization

of these spaces.

Theorem 3. Let (M,g) be a compact Riemannian Y-symmetric
space with nonvanishing Euler characteristic. M admits an
invariant almost complex structure if and only if M has a
standard representation M = G/K where K 1is the centralizer

of a torus.

Having answered question (Q) we now turn to study the
geometry of these spaces. One thing that is worth pointing
out is that the classification was obtained mainly by using
the symmetries (homogeneity) and the invariant almost

complex structure. No allusion was made to any kind of
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Riemannian metric. We shall now start doing this. This is only
a -beginning and in no way constitutes an exhaustive treatment of
the subject. We shall answer the original questions that motivated

this section, through the relation between 3-.ahd Y4-symmetric spaces.

(Ql) Decide whether or not an invariant almost complex

structure on a Riemannian 4-symmetric space is integrable.

(Q2) Decide whether or not an almost Hermitian 4Y-symmetric

space is a Kdhler manifold.

Using our characterization in Theorem 3, (Ql) and (Q2)

have the following (partial) answers.

Theorem 4. Let (M,g,J) be a compact almost Hermitian UuY-
symmetric space with nonvanishing Euler characteristic. Then
M admits an invariant almost Hefmitian metric which makes it
into a Hodge manifold. In particular, M is an algebraic

manifold.

Remarks. This theorem does not affirm anything about the
original almost Hermitian structure, it only ensures the
existence of such a structure with the stated properties.

For a proof see [28], Section 9.

On the other hand, we prove that every almost Hermitian
h-symmetric space admits invariant almost Hermitian structure

which is non-K&hlerian, hence solving (QQ).
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Theorem 5. Let M be an almost Hermitian U-symmetric space.
Assume that the vertical distribution V has positive dimen-
sion. Then M admits an invariant almost Hermitian metric

which is non-K&hlerian

Comments. The condition that V¥ be nontrivial is necessary;
otherwise the squares of the symmetries would be the usual
geodesic involutions and hence the space would be Hermitian
2-symmetric and in particular Kdhler. Examples of spaces
where this happens are provided by those corresponding to the
entries where x = % vy with m. = 1 in the notation of
Section 8.(a), (Proposition 3, and the tables).

Before we prove the theorem, we give a criterium which
tells us when a Riemannian Y-symmetric space is an almost
Hermitian Y-symmetric space. This theorém points in a
different direction to Theorem 2. First, the nonvanishing
condition on the Euler characteristic is dropped, second, it
holds true in general whether or not the space be compact or
noncompact and third, no mention is made to any transitive
group of isometries. As an application, we shall use it at-
tﬁe end of the section to decide for the majority of cases,
when the compact simply connected space (with vanishing Euler
characteristic) corresponding to one of the entries in the
classification in Section 8.(b) is an almost Hermitian 4-

symmetric space.
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Theorem 6. Let (M,g) be a Riemannian 4-symmetric space.
Then (M,g) 1is an almost Hermitian 4-symmetric space if and

only if the fiber of M is an Hermitian 2-symmetric space.

Proof. Assume M 1is an almost Hermitian UY-symmetric space,

and let J denote the invariant almost complex structure on M.

a3

Claim. J preserves both the vertical distribution V and the
horizontal distribution #H. The proof can safely be omitted.

Note that SJ = JS where S 1is the symmetry tensor.

Thus we have that the restriction of J +to the fibers
defines an almost complex structure on them. These fibers
are Cartan symmetric space, and since the geodesic involutions
are induced by the symmetries (of M), they leave invariant
the almost complex structure. Hence the fibers are Hermitian
2-symmetric.

For the converse, let J be the complex structure on the

fibers, then we only have to define an invariant almost complex

structure on H. But this is provided by S when restricted
to H. Define J =J on V¢V and J =S on H. /17
Proof of Theorem 5. The idea is very simple. We use the

almost complex structure J on M constructed above and
observe that if it is Kihlerian, then a new structure J can

be defined which is non-Kahlerian.

In general, for an almost Hermitian UY4-symmetric space we

have (VVJ)W = 0, V(VHJ)V = 0 and H(VHJ)K = 0. Thus, the
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space is Kahlerian if and only if the following three con-

ditions are satisfied:

(VVJ)H =0, H(VHJ)V = 0 and V(VHJ)K =0,

Now observe that the second and third conditions establish

a relation between J and S:

H(VHJ)V = HVH(JV) - SHVHV = 0 and V(VHJ)K = VVH(SK) - JVVHK.

Hence if J 1is Kihlerian, the new almost complex structure J

defined as follows
J =-J on V, J =8 on #H will not be Kihlerian. /77

Invariant almost complex structures on compact U-symmetric
spaces with vanishing Euler characteristic.

A glance at the classification table in Section 8(Db)
shows that with possibly the exception of the space associated
with (“Zn—l’an—léxl)’ none of the spaces admits an invariant

almost complex structure.

Remark. The difficulty in deciding whether or not the spaces
associated to (ﬂzn_l,ﬂn_lexl)are Hermitian 4-symmetric springs
from the fact that the fixed point set of 02 does not have
an immediate description. (Here o 1is the corresponding éuto—
morphism of order four of e?n—l)' However, the author con-

jectures that this space is not almost Hermitian Y-symmetric.
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We state the following conjecture.

Conjecture. Let (M,g) be a compact simply connected almost

Hermitian 4-symmetric space. Then M has nonvanishing Euler

characteristic.

The relation between 3- and Y-symmetric spaces.

We have already pointed out that the Hermitian 2-symmetric
spaces are Hermitian n-symmetric for any order n. On the
other hand, since J. Wolf and A. Gray [281 have already
classified the 3-symmetric pairs (G,K) with G compact
simple, it is also interesting to see which of these pairs
will also correspond to b-symmetric pairs. We shall see that
all the pairs which are "good candidates" are in fact u-
symmetric. As an application of this relationship, we shall
be able to give a final answer té question (Ql) in the
negative sense, (that is, not all invariant almost complex
structures are integrable).

First we describe what we mean by a "good candidate".
Consider a 3-symmetric pair (G,K). (We shall always assume
G compact and simple). Then either rank K = rank G or
rank K < rank G. The second case, is immediately ruled out
by classification. Thus we are left with the case of equal
rank. That is G/K must have nonvanishing Euler character-
istic. We now resort to the canonical almost complex structure
of a 3-symmetric space. This structure is G-invariant, thus,
in particular, if the pair (G,K) is U-symmetric, it will be

invariant under the symmetries of order four (because they
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necessarily are inner). Hence G/K would have to be an
almost-Hermitian Y-symmetric space. Then Theorem 3 above,
tells us that in this case K has to be the centralizer of

a torus. This tells us that a compact 3-symmetric pair

(G,K) (G simple) 1is a "good candidate" to be a u-symmetric
pair only if K is the centralizer of a torus. We shall

prove that this condition is sufficient.

Theorem. Let (G,K) be a 3-gsymmetric pair with G compact
simple Lie group. Assume further that rank G = rank K and
that K 1is the centralizer of a torus. Then (G,K) is a

b-symmetric pair.

Remark. If (G,K) is a pair as in the theorem, then K 1is
connected and G/K 1is compact simply connected. Hence, the
problem can be transformed into a problem on Lie algebra.

Thus we prove:

Theorem. Let (g3,g) Dbe a 3-symmetric pair with g compact
simple Lie algebra. Assume further that rank B = pank 0
and that ® is the centralizer of a toral subalgebra. Then

(g ,8) 1is a U-symmetric pair.

The following proposition is the analog of Proposition 2
in Section 8(a). It gives the local classification of 3-
symmetric spaces - which is what we need. Tor notation we

refer to Section 8(a).

Proposition ([281p. 87). Let ® be an inner automorphism of

order 3 on a compact or complex simple Lie algebra 8.
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Choose a Cartan subalgebra and let ¢ = {al,...,az} be a

simple root system for 8. Then ¢ is conjugate in the

inner automorphism group of g to some 6 = Ad(exp 2m/-1 x)
1 .

3

where either x = m.v. with 1 =m. =3 or x = l(_u.+u,)
11 371 ]

i
with m. = m. = 1.
.t

Remark. A complete list of the possibilities for x, the

]

fixed point set 06 and a simple root system wx of g7,

up to conjugacy in the automorphism group of g > can be
found in the tables in [28] pp. 88-89.

The next step in our program is to decide for which of the
x's as described in the proposition, 0% is the centralizer of
a toral subalgebra. But for this we can apply the criterise
given in Proposition 2 in this section. This yields the

following conclusions.

(*) If x = L m.v. with 1 =m. £ 2 or x = i(u.+v.) with
3 7171 1 3771 ]

m, = mj = 1, - then Qe is the centralizer of a toral

subalgebra.

(*%) If x = % mov. with m, = 3, 8 0 is not the centralizer

of a toral subalgebra. Thus we restrict our attention to (¥%).

If x = % m.v. with m. = 1,2. Then 8 0 =9 9 with

i'i i ‘

o = Ad(exp 2mv-1 % miui) and o is of order four. Analo-
gously for x = %(ui+vj) with m, = mj = 1, we have that
8% - 4¢ with g = Ad(exp 2w/-1 %(Ui+vj)) and o is of order
four. This completes the proofs of the theorems.

We now apply this to answer (Ql) (and hence (QZ))'

A. Gray [8] showed that every 3-symmetric space admits a

nearly Kahler structure. TFurthermore, he showed that the
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structure is Kahlerian if and only if the space is Hermitian
2-symmetric ([{8] p. 353). On the other hand, in [15] it

is proved that M = SU(S)/T2 is not homeomorphic with the
underlying manifold of any Riemannian 2-symmetric space.
Since M 1is a 3-symmetric space, the above two results say
that its nearly Kahler structure cannot be Kdhlerian. Since
the almost complex structured a non-Kighler nearly Kdhler
manifold is never integrable, and since the pair (SU(3), Tz)
is also 4-symmetric, we obtain an example of an invariant

almost complex structure on a Y-symmetric (and also on'a 3-

symmetric) space which is not integrable.
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