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ABSTRACT

The aim of the present studywas to understand the mechanism
respeneible for the-exceptionally high magnetostriction
exhibited by the heavy rare earths. Magnetostriction
constants )\5’2,)\20“’2 and)\la »2 of order €= 2 for
- gadolinium, terbium and their alloys were measured using a
resistive strain gaﬁge technique. The temperature dependence
of these magnetostriction constaﬁts was observed from liquid
helium<temperature to close to their Curie temperatures
for Gd; 90%Gd-10%Tb, 70%Gd-30%Tb, SO%Gd-SOZTb, 10%Gd—90%fb
and Tb. The adequacy of theoretical predictions of the
teﬁperature dependence was tested with the results of these
measurements. The observed temperature dependence of )~6’2
over the entire fange of temperature and alloy compositions

except for pure Gd, was found to follow closely the variation

predicted by a theory termed as a single-ion model. The same
coﬁclusion resulted from the measurements of )\ZCI,Z aﬁd
k_;x.’z but with less reliability. The extrapolated values
of the conetents at OK for Gd andvits experimental temperature
depeﬁdence are consistent with results of. other investigatidns
on gadolinium. The magnetostriction constants of the alloys
varied-linearly with the terbium concentration, again showing
that the éingle—ion magnetocrystalline interaction is principally.
responsible for the magnetostrictive effects due to terbium
ions.

Some suggestions are included for improvements to experi-
mental and analytical techniques and for the extension to

other alloy systems.
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CHAPTER 1

MAGNETISM , SOME . BASIC CONCEPTS

l.i-‘Introduction

' Magnetism is a vast field of study and of interest to
many’ééientists and teéhnologists. Many particles, even
sémé electricaliy neutral ones such as neutrons, possess
elementary magnetic moments. Magnetic phenomenai are
encountéred everywhere from the subatomic to the cosmological
scalés,; The origin of magnetic forces, despite the fact
that these were known from ancient times, remained obscure
until quantum mechanics was developed at the turn of this
cenﬁury. Since theﬁ, continuous research and development
has.iﬁcreased our understanding of magnetic properties'
and‘has led to a deeper insight into the fundamental structure
. of sqlids. This has enabled magnetic materials to find

a wide range of applications. Indeed the scientific and

technélogical applications of magnétism are now so extensive
énd diverselthat the physics of magnetic phenomena has
become one of the most important and rapidly developing
branches of natural science.

The magnetic interaction between spatially separated
materials is carried by the magnetic field. It is now
firmiyiestablished that the main source of the magnetic
field is due to the motion of charged particles, e.g.

the spin of electrons.




A quantitative measure of the magnetism of a particle
is its magnetic momentl& which can be defined 1in terms
of a current I. flowing in an elementary closed loop

as
L - 1af (am?) 1.1

wheré a 1is the area of the loop and % is a unit vector
perbendicular to the plane of the loop and whose direction
is-deﬁermined'by the right hand rule.

‘The magnetic field H can also be defined in a similar
way by the field inside a loﬁg solenoid carrying a current

I as -

H = NIA (Am™ ") 1.2

wheré{N is the number of turns per meter.

>Thé S.I. system of units is adopted in this thesis.
Both u;and H are the most basic quantities in magnetism.
Anqtﬁer,quantity of interest is the magnetization M.
This is defined as the magnetic moment per unit volume
and has units A m—l. In free space the magnetic field

intensity H produces a magnetic induction or flux density

By given by

By = HoH 1.3

whereLLo is the absolute permeability of free space and
has a value of 4 TC .10/ (Henry per meter) or (H m 1),
If the space where H is acting is filled with any

méterial then the flux density B is given by,




B =g (H + M) | | 1.4
g/E = Wt - -WE) : 1.5
=M (1 + k) 1.6

The quantity B/H = L is known as the absolute permeability
of'thé material and M/H = £ is the absolute susceptibility
of»;he material. The ratio ofLLA£)=+lr is the relative
permeability. If a magnetic dipole poésessing magnetization
M is brought into a region of magnetic induction BO’ it
exberiences a torque T given by

I :M/\EO 1.7

The magnetic potential energy density Eh,which is the
work done on the magnet, is by convention taken to be zero

for M and By perpendicular to each other. For other

angles
0
Eh = V/. M B, sin® .de 1.8
/2
= —M . 'EO . 1.9

SuBatomic.particlés such as electrons, protons and neutrons
all possess magﬁetic moments. However, whilst the atoms

Qf many elements have a magnetic moment, the free atoms

of some elements have zero magnetic moment because thé
'various'orbital and spin components completely cancel

each other. The complexity and diversity of atomic structure
lead to a large variety of magnetic properties. The

bulk magnetic.properties of any material further depend

upon temperature, that is, on the thermal energy and in

solids on the complicated interatomic forces in the crystal.




The susceptibility of magnetic materials varies over a
wide.fange from 10_6'to 106 and may even have negative
values. It is thus convenient to classify substances
info a number of groups according to their principal
properties. A brief description of some of the principal
groups is given in the following sections.

1.2 _Diamagnetism

The resultant magnetic moment of the atom is mainly
dué-té incomplete electron shells. Atoms with closed
shells such as inert gases, have zero magnetic moment.
In 1ionic compounds, the transfer of electrons which occurs
in the formation of the ions gives both positive and negative
ions a closed shell structure. Covalent bonding may also
lead fo a similar state. Materials having no atomic or
molecular magnetic moment have very small and negative
sugceptibilities. These substances, such as inert gases,
~copper, gold and many organic compounds, are grouped as
diamagnetic‘materials. Each electron, on account of its
orbitél and spin motion possesses a magnétic moment . |
The épplication of a magnetic field produces a torque
upon ‘the system which causes the orbitalénd spin axes
to’precess about the field direction. This change, according
to Lenz's law, is such that it opposes the cause which
produces it. All the electrons of the material are affected
inthiS'way and produce a negative magnetization. Actually
diamagnetism is present in all substances but in non-
diamagnetic materials their relatively very large positive

response dominates the diamagnetic effect.




The negative diamagnetic susceptibility is always

very weak and is not very strongly temperature dependent.

The:induced magnetic moment as outlined by Kittel (1976)

on the basis of Larmor's precession theorem is given by

p, - -z e’B/ (4m). (fz> 1.10

where(f2> = 4x2> + <y2>is the mean sqaure of the
pérpendicular distance of the electron from the field
axis through the nucleus!

The diamagnetic susceptibility per unit volume is
_given by the classical Langevin equation,corrected for

a numerical error by Pauli (1920) as

- 2
‘ _ NZe 2
Kgia = - . > 1.11
- m
where N is the number of electrons per unit volume.
- The same formula is obtainable in quantum theory

in which orbital electrical motions are considered.

1.3 Paramagnetism

.Paramagnetic materials, unlike diamagnetic ones,
possess an atomic or molecular magnetic moment. Their

susceptibilities are positive and thus their relative

permeabilities are slightly greater than unity. Langevin

(1905) first gave a classical derivation for the calculation

of paramagnetic susceptibility. He treated the atomic

magnétic moments as being sufficiently far apart for

particle interactions to be neglected so that the assembly

behaved as a paramagnetic gas . He then applied Maxwell-

Boltzmann statistics for perfect gases and derived the

following expfessibn.




M(T) M(0) (Coth x - 1/x) 1.12

Coth x - 1/x = £(x) 1.13

i

or . m

where x =,LLB/5?3 B is the magnetic induction, ly is Boltzmann's

constant, T is the temperature on the Kelvin scale, m
_ M(T)/M(0) is the reduced magnetization, and £(x) is
“known as the Langevin function.

| Briilouin (1931) considered paramagnetism quantum-
mechanically. This imposes restrictions on the orientation
of magnetic moments in applied magnetic fields whereas
in the classical derivation all possible orientations are
takeﬁ.into account. The magnetic moment}.l.J of each atom
of'holecule wiil precess about the field direction such

that the resolved components of llj along the field

direction are

Ry = eMip 1.14

‘where g is the Landé factor, M is the magnetic quantum
number which has values:
M = O, 1, 2, i J if J is an integer or

1/2, 3/2, ... J/2 if J is half integer
9

I

and}LB = he/2m = 1.165 x 10—2 Wb m and is known as the

Bohr magnetron.

The total magnetic moment per atom is

L = glgIB(J,q) 1.15
_(2J+1 2J+1 1 o
where B(J,00 = (57=) Coth (53=)t- pyCoth (f)  1.16

‘and is called the.Brillouin function.

Here J is the total angular momentum quantum number




of the ion and

‘A = gIMRBy/kT 1.17

The'élassical situation is a particular limit of the quantum
4case With the hypothetical state of very large J and 2J + 1
alioWed positions giving a virtually continuous distribution
of orientationms. 1In this case the Brillouin function

B(J, Q) reduces4to‘the Laﬁgevin function £(a). The volume
susceptibility is given by

ko= nglI0 e DPg g = % 1.18

where n is the number of atoms per unit volume. Equation
1.18 is known as the Curie law and C is the Curie constant.
According to the Curie law, the paramagnetic

suécéptibility is invefsely proportional to the temperature
and does not depend upon the megnetic field. In ionic
solids, Weiss (1907) proposed an aligﬁing'interaction
between neighbouring ions giving rise to an equivalent
magneticifield, known as the Weiss field. This field
is:pfobortional to the magnetization, and is superimposed
upon.the applied>fie1d. The presence of the Weiss field

modifies Curie's law to
ko= c/te) 1.19

where 8_ is the paramagnetic Curie temperature.

It may have positive or negative values. This dependence

of £ on the temperature is known as the Curie- Weiss law.
The characteristic magnetic susceptibilities of dia-

magnetic and paramagnetic substances is shown in Figure 1.1.
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Fig. 1.1 Charactéristic maghetic susceptibilities of diamagnetic

and paramagnetic substances (after Kittel, 1976).




1.4 Ferromagnetism

- In some materials, known as ferromagnetic, the atomic
dipole moments tend to align-themselves parallel to each
othef.by a force now known as the exchange interaction; this
results in spontaneous magnetization. This magnetization
is:present in ;he material even in the absence of an external
field. Thermal agitation which increases with temperature,
tends to disorder this alignment. Thus,'above a character-
istié temperature Tc,called the Curie temperature, the
spontaneous magnetization disappears and the material

exhibits paramagnetic behaviour and obeys the Curie-Weiss

lawf.Howéver,a ferromagnetic material 1in spite of its
spéntaneous magnetization may still havé zero macroscopic
magnetization in the absence of an external field. Weiss
(1907) first explained this phenomenon satiéfactorily

by thé domain hypothesis, that is small fegions of atomié '
moment alignment oriented in various directions with a
resultant zero mégnetization. In ferromagnetic materials i
a small applied field produces a magnetization many orders

of hagnitude larger than in a paramagnetic substance.

The ferromagnetic suséeptibility is field dependent.

The peneval behaviour of a ferromagnetic material is well
dwucfibgd by the typical B-H curve shown in Figure 1.2.
WHéﬁ:tho field applied to a demagnetiZed‘specimen is increased
from zero, the OCD portion of the curve is irreversible.
Magnetization increases with field and eventually approaches

. a saturation value Mg beybnd which B varies linearly with
applied field H. The ma jor magnetic hysteresis loop may

have minor or subsidiary loops superimposed upon 1it,




Fig. 1.2 Magnetic characteristics of ferromagnets.




depending on the way in which the applied field is varied.

The magnetization M. retained by the material when the

fiéld is brought to zero from saturation magnetization

value is known as retentivity or remanence. The value

oflthe magnetic field HC required to destroy the retentivity

is called the coercivity. The B-H curve is characteristic

of fhe material; The temperature dependence of the spontaneous
magnetization is shown in Figure 1.3.

1.5 . Antiferromagnetism

In certain materials such as MnO, chromium and some

rare earths, the exchange interaction is negative and

thus the magnetic moments of the neighbouring atoms align i
antipafallel to each other. These substances are known ,
as éﬁtiferromagnetic. They have. zero net moment at temper-
atures below a certain ordering temperature T known as ]
the Néel temperature. The Néel temperature is given by

22 '
T _ J(J + l)ng FB Nw 1.20

N
. 6 k .
where Nw is the Weiss constant.

The susceptibility.is small at low temperatures because
n['s(réng exchange interaction, it increases with temperature
and becomes a maximum at T as the thermal agitation weakens \
the-exchange forces. At higher temperatures such sub-
stances assume paramagnetic behaviour and possess small
susceptibility;

= C/(T + e, ‘ - 1.21

where 8, is the extrapolated Curie temperature.




Magnetization — >~

Temperature ——

Fig. 1.3 A typical curve of temperature dependence

of spontaneous magnetization.




There is yet another related class of magnetic ordering
found in substances with negative exchange interaction
like antiferfomagnetics but with a net spontaneous magnetic
momeht. These materials are called ferrimagnetic although
the phenomenon is also sometimes known as uncompensated
antiferromagnetic ordering. Néel (1948) explained this
pheﬁomenon by the ordering of magnetic moments of unequal
magnitudes at two different lattice sites antiparallel
to each other. The temperature dependence of the magnetic
suéceptibilitiés of para-, ferro- and antiferro- magnetic
matefials is shown in Figure 1.4. Magnetic ordering and

related phenomena are discussed in more detail in Chapter 2.
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CHAPTER 2

MAGNETIC ORDER

2.1 Introduction

As mentioned in the previous chapter about the types
of magnetism, in certain materials some sort of magnetic
ordefing exists below characteristic ordering températures.
Ferromagnetism, antiférromagnetism and ferrimagnetism
are the most common examples of magnetic ordering. In
these materials the magnetic moments align themselves
through various forms of exchange interaction and thus
their magnetism may be classified és cooperative magnetism.
Diamagnetism and ideal paramagnetism are examples of
non-cooperative magnetism in which the individual magnetic
moments (induced orAspontaneous) are independent of each
other. The characteristic ordering temperature below
which an ordered magnetic structure with a net moment
occurs is called the Curie temperﬁture T. in ferro- and
ferrimagnetisﬁ.'vln antifefromagnetics ordering without a
net moment takes place below theNeel temperature T
and-ih spin glassés the traqsition to the spin glass state
takes’piace‘at ﬁhe spin glass temperature TSG' In anti-

ferromagnetics the change from para to antiferromagnetic

occurs at T, and that from antiferromagnetic to ferromagnetic

. (if it exists) at T.-

2.2 - Ferromagnetism and the Exchange Interaction

- The existence of spontaneous magnetism in ferromagnets

'is-due to (i) © the presence of a magnetic moment associated

with the total angular momentum of the electrons in the

unfilled shell and (ii) = the presence of an interaction




field between electron spins of neighbouring atoms aligning
the'Spin moments parallel to each other. Types of alignment
other than parallel are also possible and will be discussed
later.‘ When all the magnetic moments align themselves
‘parallel to each other, which is the case of ferromagnetism
at abSQlute zero temperature, the material then has maximum
saturation magnetization.' Thermal vibrations tend.to
disofder this ﬁagnetic structure. As the temperature

is increased gradually, the thermal agitations become

more “energetic until at some stage the thermal energy
becomee comparable with that due to the ordering forces.

At a,critical temperature T, known as the Curie temperature,
there exists no magnetic order and so the spontaneous
magnetization disappears. The material then behaves

as paramagnetic above the Curie temperature and obeys

the Curie-Weiss law. The Curie temperature thus reflects
the magnitude of the force of the exchange interaction.
Weiss = explanation of the interaction on the basis of

a mblecular field NwMA(the Weiss field) proportional

to magﬁetization M is purely phenomenological and is’

simpiy a convenient device. In quantuﬁ mechanics, as
pointed out by Heisenberg (1928), this ordering is the
combination of coulomb forces and the applicatioﬁ of

the ?auli exclusion principle. These ordering forces

are electrostatic and are several orders of magnitude
greeter than pure magnetostatic ones.

The state of an electron can be represented by its

spin and orbital components. There are only two spin

AN




stateé, parallel or antiparallel with respect to a certain
direction - that of the external magnetic field; according .
to fhe Pauli principle no two electrons can be in the

same qﬁantum state. So electrons with the same spin
state_(symmetric spins) must have an antiéymmetric spatial
state if the other quantum numbers are identical and
vice-&eréa. This leads to a force of. repulsion between
similér spins and a force of attraction between opposite
spin ‘electrons in the single spatial wave function.
This'fprce is known as the exchange force. On the othér
hand when two electrons approach each other, they give |
rise to a coulomb interaction W(1,2,a,b) where 1 and

2 are the elecﬁron_positions and a and b those of their atoms

respeétively. W may be represented as
‘ 2, 2 2 2
W= e [vy, + e/r  —e/ry - e Ity 2.1

where r. . are the distances between positions i and j.

Extending the concept to atoms with several electrons with .
arbitrary spin, Van Vleck (1945) derived the energy of

the exchange interaction for a system of N atoms as

v N N

E - -j;}i_:l T4 5. - §j 2.2
whefé J.. is function of atomic distance rij’ which varies
exponehtially'With distance from the nucleus and is known
as an exchange integral and Si and Sj are the spins of
i and j electrons respettively.‘ The exchange integral

is given by




- 14 -

Jal') ;’/] \D:(up;m}(kl)bmxpa(Z)drldzz 2.3

where 4@(1) and ¢%(2) are the wave functions for the
electrons at positions 1 and 2 in their atoms a and b
respéctively;anml}( is a coulomb interaction Hamiltonian

and is a function of inter-electron and electron nuclear

distances. -Thus the Pauli principle together'with the
coulomb interaction make the levels of the atomic spin
system dependent on the relative orientations of the
spins._ Spins are parallel if Jij is positive and anti- ‘
parallel if Jij is negative. For direct inter-atomic

exchange, J. . can be positive or negative depending on

ij
the baiance between coulomb and kinetic energies. The
variation of the exchange integral with the ratio of
nuclear separation to radius of active electron éhell
is shown in Figure 2.1.

| In cases where the wave functions do not overlap or

overlap only very little the exchange interaction may

take place indirectly. In insulators the exchange interaction

may be- through diamagnetic ions, radicals or molecules.
This comparatively long range indirect exchange interaction

is known as superexchange (White and Geballe, 1979).

In rare earth metals where the incdmplete 4f shell
is an iﬁner éheil and screened by other shells the conduction
electrons ére polarized by direct exchange interaction with the
4f hagnetic eléctrons and so couple the magnetic moments.
ThisAinteraction is knan as RKKY interaction after the
first investigators Ruderman and Kittel (1954), Kasuya (1956)

and Yosida (1957).
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Fig. 2,1 Variation of the exchange energy of magnetization
with the ratio of nuclear separation R to the

radius of active electron shell r (after Bethe, 1933).




In the indirect exchange interaction J can be positive

or ﬁegative as in superexchange in insulators or even

osciliatory as in the RKKY interaction. In the RKKY

-interaction a hagnetic ion induces an oscillatory sbin

polarization iﬁ the conduction electrons in its neighbourhood. '
The_conduction electrons try to screen out the»magnetic

moment on the ion. The strength of this screening polar-

ization decreases with increasing distance from the ion,

but its effect is relatively long range. This modulation

of spin polarization influences the magnetic moments

of other ions within the range which leads to oscillatory

indirect coupling. In disordered system the RKKY interaction

can sohetimes lead to positive and negative coupling

which may cause a conflicting interaction known as frustration.
In crystals, coupling between the magnetic ion and the

crystal lattice also exists. The crystal lattice if

anisotropic will.cause an anisotropic electric field

at the ion which leads to an anisofropic exchange interaction.
Another source of anisotropy is spin-orbit coupling.

In this interaction the effective magnetic field of an
orbital motion of the electron acts on the electron's
intrinsic moment which is associated with spin (Cullity,

1972, and Hurd, 1975). In ferromagnetic materials, every

ion has an identical, spontaneous moment and occupies

an identical crystallographic site. The exchange integral

J is éverywhere positive. The variation of spontaneous
magnétization with temperature, and the recipfocal of |
the susceptibility above the Curie tempeyaturé T. is

'shown in Figure 2.2.
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 At Oor near room temperature, iron, cobalt, nickel
and gadolinium are examples of crystalline ferromagnetic
elements and metal alloys which are of various compositions-
of Fe, Ni, Co and B can be amorphous ferromagnets when

prepared by splat cooling (Cahn, 1980).

2.3 - Antiferromagnetism

| Antiferromagnetism like ferromagnetism is a cooperative
phenomenon characterised by long range order among identical
spoﬁtaneous moments. The exchange integral in antiferro-
magnetic substaﬁces like FeO, Mn and Sm is negative and
thus there is no overall spontaneous magnetism. In some
cases it is found that there are two sub-lattices each
of which possess moments which lie parallel. Although
the moments on the sub-lattices almost cancel they cannot
do so éxactly as they are not quite collinear (Yafet and
Kittel 1952). The non-collinearity in antiferromagnets
leads to weak ferromagnetism. The exchange energy operator
for the sub-lattices, according to Heisenberg, has the form

}(:Zlekl/_s\..gkiz ad 2 §'§k > 4
ex K ] G '

wheré J.k is the exchange integral between nearest neighbours
for the two magnetic sﬁb;lattices and the sum is over
‘all the ad jacent pairs. It is generally the average value
of clockwise or anticlockwise spins in the molecules as
theiexchange between clockwise and anticlockwise spins
proceeds at a very high'frequency, 10 kHz,and the average
value is.very neérly the same as the total spin of a sub-
lattice (Anderson, 1951). Marshall (1955) introduced another

term associated with the magnetic anisotropy in the Hamil-




tonian énd wrote the Hamiltonian operator as
| - k[ 2 2 2 2
,. K Xj<sxj v S0 X (Sh + syk)] 2.5

for the energy of magnetic anisotropy with axial symmetry.
'Hére.k is considered a convergent factor and is lower than
the exchange integral ij.
In most antiferromagnets the magnetié coupling is

by supérexchange via non-magnetic ions etc. As the.temp—
erature increases, the increasing thermal energy as in

the caéé of ferromagnets, leads to disorder in the magnetic’
coupling until at the Néel temperature T the material
becomés paramagnetic and obeys the Curie-Weiss law (1.2).
In some substances, e.g. the rare earths, cooling in zero
field from T, (the Curie temperature) results in a change
from éntiferromagnetism to ferromagnetism. Theoretical
ideas were expériﬁentally verified using neutron diffraction
by Shull et al. (1951). The neutron possesses an intrinsic
magnétié moment and is scattered by an ordered system of
moméhCS‘thus revealing information about both positional
and magnetic ordering. Antiferromagnetic arréngements
andlneutron lines for MnF,, after Erickson (1953) are shown
in Figpre 2.3. | |

| :‘A typical temperature dependence of the reciprocal
suséépfibility of antiferromagnetic substances is shown

in Figufe 2.4, where X“ and X_L are susceptibilities

when the field is applied parallel to and perpendicular

to the spin axis respectiveiy. When the field is per-

pendicular, the.magnetization takes place by the rotation of each




Fig. 2.3 (a) The antiferromagnetic arrangement of the magnetic

ions for MnF,, FeF,, and CoF?. The dark spheres

2'
represent the fluorine ions.

_

(100)  (110)(0014101) (111) (210) (201)

T=300°K

Intensity (arb. unifs)

| ! l ! I ! |

10 20 30 40
b 0 (degrees)

'(b) Neutron diffraction pattern for MnF2 ‘below and
above the Néel temperature.
(after Erickson, 1953).
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F'G 214. Temperature dependence of the reciprocal susceptibility
of an a.ntiférromagnetic substance (after Chikazumi, 1964).
Ga is the asymptotic Curie temperature.
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spin from the spin éxis. In polycrystalline materials

the 'susceptibilityxipoly is the average between the two
cases; Thg intersection of 1/)( with the abscissa is
called the asymptotic Curie temperature. Spin rotation

is shown in Figure 2.5. In some antiferromagnets, ferro-
magnétic behaviour may be induced below T by strong
vapblied fields. This phenomenon is known as metamagnetism
(Stryjewski and Giordano, 1977). A general pﬁase diagram

is shown in Figure 2.6.

2.4 Ferrimagnetism
' This is again a magnetically ordered magnetism based
on an indirect or superexchange interaction with a negative
exchange integral. The magnetic moments are strongly
coupled in vérious non-parallel arrangements. Ferrimagnetic
matéfials unlike antiferromagnetic substance show spontaneous
magnétism. In the simplest case, the magnetic moments
‘of the ions at two magnetic sub-lattices are not equal
so fhe difference of the two moments in antiparallel
coupling give rise ﬁo spontaneous magnetism. The ions may
be of the same element or of different magnetic species.
Different-numbers of ions at two sub-lattices with identical
moments also lead to a similar state. Various possible
férromagnetic afrangements are shown in Figure 2.7.
Ferrimagnetism was first observed in ferrites.
These are iron oxides with a divalent metal ion M and
denoted by the genéral formula MO.FeZOB. M may be Mn+2,

+2

Fe+2, Co+2, Ni+2, Cu+2, Zn+2 or Gd Most of these

compounds have the spinel structure. Antiferromagnetism
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Fig. 2.5 Spin rotation in an antiferromagnetic substance

(after Chikazumi, 1964).
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isja special case of ferrimagnetism with identical anti-
_parallel momentsﬁon two sub-lattices. The temperature
dependence of ferrimagnetism is qualitatively similar

to that of ferromagnetism below the Curie temperature.
Above the temperaturevTE the paramagnetic subsceptibility
does not exactlyifollow the Curie- Weiss law but has
curvature particularly near T.. _Amorphous ferrimagnetism -
;also emists, but in this case the sites in two.suh—lattices
vhaveurandOm positions e. g alloys of the form RE- Fe2

RE is a heavy rare earth like Tb or Gd. Fe-RE coupling
1svant1ferromagnet1c whereas Fe-Fe and RE-RE couplings
are;ferromagnetic.

2.5 Helimagnetism

'gLnySubstancesAexhibiting helimagnetism the magnetic
moments are.so arranged that in layers perpendicular
- to some common. axis they lie parallel but -their direction
in the‘planevvaries in a progressive manner along the
' axis‘resulting.in a helical moment arrangement; -Heii—
magnetism was first observed in MnAu by neutron diffraction
In the heavy rare earths, because of the long and osc111atory
nature,of the’RKKY-exchange, various periodic structures
'such as ferro,_helix; cone, antiphase etc. are frequently
formedi Theseiare shown in Figure 2.8 ( after Crangle,
1977 . page 87) The external magnetic field induces
complex changes in the periodic magnetic structure of
all the heavy rare earths except gadolinium which has
a simple ferromagnetic nature. Magnetic order also changes

from one arrangement to another w1th a change in temperature
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Fig. 2.8 Variety of magnetic structures found in the
metallic heavy rare earths (after Crangle, 1977).




The'magnetic structure and transitions of heavy rare
eartﬁs are given in Table 2.1.

In'géneral, ferromagnetic order at low temperatures
changeé to paramagnetism at high temperatures through
various intermediary periodic arrangementé.

2.6 Magnetic Anisotropy

_'~It is commonly observed in ferromagnets that the
| magnetization takes up certain preferred crystallographic

directions. This indicates that the internal energy

function has minimum values in those particular directions.

The dependence Qf internal energy on the direction of
spontaneous magnetization is termed magnetic anisotropy.
In a 3pecimen-of any shape other than a sphere the shape
of the crystal causes the magnetic energy to depend on

direction because of the demagnetization energy due to

the formation of free poles leading to magnetic interaction.

Similar effects are produced by applied or residual stress.

This anisotropy is called shape anisotropy. Shape anisotropy

disappears in the case of a sphere and has a maximum

for the case of an infinite cylinder. In addition to

the shape or stress effects, there is generally a magnetic
anisotropy which depends on the crystal symmetry of the
material and is known as crystal magnetic anisotropy
or‘méghétocrystalline anisotropy. Preferred directions
'are.calied easy directions. In Ni these are the cube
diagoﬁais <111>,-in iron they are the cube edges <100>

and in Co the easy direction is along the hexagonal axis




[oooqv. However in the rare earths which also have hcp
structure more complicated situations occur. For example,
terbium has its basal plane b-axis as the easy axis and
gadolinium shows an easy cone. Magnetocrystalline energy
is defined as the work required to magnetize the material
along certain directions compared to an easy direction.
This energy is actually a free energy if the work is
performed at constant temperature. The existence of
crystalline anisotropy may be demonstrated by the magnet-
ization curves of single crystal specimens as shown in
Figure 2.9.

2.7 Atomic Origin of Magnetocrystalline Anisotropy

In a crystal the electronic charge clouds of ions
are distorted due to the crystalline lattice field.
The spin-orbit coupling consequently makés the spin
oriéntations anisotropic. There are two common models
which are considered responsible for the electron charge
alighheﬁt in the lattice. These are the single-ion model
and the two-ion model. These two models are applicable
to hagnetic ions with localized moments. Materials in
which the active electrons are itinerent also show anisotropy,
but this cannot be diécusséd in terms of either of these
simple models. The anisotropy models are discussed briefly

in the'following sections.

2;7.1 Single-Ion Model
In the single-ion model the crystalline electrostatic

field which reflects the crystal symmetry is thought

to distort the electronic charge of the ion. The electronic
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Fig. 2.9 Magnetization curves for single crystals of iron,
nickel,cobalt, and gadolinium ( a to c after
" Honda and Kaya, 1926 and d after Nigh et al. 1963).
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charge distribution is governed by the orbital angular
quantum numbers of the electrons. The spin-orbit inter-
action then links the spins to the crystal lattice. In

this model, the active electrons are treated as localized

to their ions as in the case of magnetic insulators. The
inner, active electrons of the rare earths are also localised
to their ions. The Hamiltonian expression for such a system

is'given by Darby and Isaac (1974) as

”}('= gPBEm'§'+ VC(E) +1<SL +}AB§O (L + 2S) 2.6
where B is an effective molecular field representing the
exchange interaction of the single-ion with its neighbours,
Vc(r5 is the crystalline field potential,;(SL is the spin-
orbital coupling and B, is the external magnetic field.

The terms V_(r) and 1{EL in the above Hamiltonian give
rise to magnetocrystalline anisotropy. The crystalline
field V_(r) at position r can be expressed in terms of

spherical harmonics representing crystal structures as

L ,m ,m
V. (r) = Eﬂ Al YT (e, @) | 2.7

where the coefficientsAAE depend on the inter-ionic sep-
aration and are thus temperature sensifivé. The A?

can,Be experimentally determined by electron spin resonance
studiéS.(Abraham and Bleaney, 1970). The crystalline
field'can alsd be expressed in terms of convenient equivalent
operators OE whic h- are polynomials in L or J and were

introduced by Stevens (1952). Thus

v, = ) B .0 | 2.8




where. the coefficients Bi are given by

.vm L m
BL:=<r > AL(I.L 2.9

where dL are constants known as Stevens factors and the
averaging is performed over the ionic radial wave functions.

The spin orbit interaction }g; is given by

W =SS o8 oLy | 2.10
where

2,00 2.2 4 |
S = ¥/ (2me?) . 1/r, .duldr, 2.11.

and U is the central ionic potentiai.

in the Calculétion.of the free energy of the system,
VC énd}(SLare_ﬁreated as perturbations on the exchange
and. Zeeman interactions with the quantization axis usually
taken to be that of Bm; This gives the energy of a single-~
ion E; as a function of alignment of B_ in the crystal.

The partition function Z is written
Z = };exp( Ei(e)/kBTy ’ _ 2.12
and the free energy E per ion is given by
E = —kBT loge(Z) | : .2.13

The free energy thus obtained for a collection of such ions
is a fﬁnction of the direction of magnetization relative
to the crystallographic axes.

In rare earth ions the spin-orbit interaction is

strong compared to the crystal potential and the ionic
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states are characterised by a total angular momentum J.
Therefore, the anisotropy is determined solely by J. For
a hexagonal system, the single-ion anisotropy Hamiltonian

can be expressed according to Elliot and Stevens (1953) as

| 2 4
W a = BAZE DY) +B AGE" Y (D)

py 824> 2wy al P Y8+ v ) 2.14
where'A? are crystal field potentials, &, P and ¥ are constants
and Y(J) are spherical harmonics.

1
2,7.2 Two-ion Model

‘Van Vleck (1937) first developed this modellwhich
takes account of the possibility that the anisotropy may
also be due to the dependence of the interaction energy
on the shape of the electronic charge cloud of the nearest-
ne ighbour ibns.A It plays an important role in determining
the'ahisotropy for materials such as Gd+3 which have no
orbital moments particularly for spin S = 1/2 (Yosida,
1968,‘and Darby and Isaac, 1974). In the rare earths
it is' thought to contribute along with the single-ion model
fo the overall anisotropy. Van Vleck (1937) scaled by

a function C,.(r..) the classical electromagnetic coupling

1y "ij
between two ionic spins which have too small anisotropic
contribution by superimposing the spin orbital coupling

on the exchange energy between the neighbouring spins in

a second order perturbation to give

_ A -2 '
Cij(rij)(Si.Sj—BfSi.Rij)(Sj.rij)rij )v 2.15

: 2 2 3
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The interaction between nearest-neighbour ions, called
the pseu&o—dipolar interaction, is often strong. The
fourth.order perturbation known as the pseudo-quadrupole
interaction gives the correct magnitudé of anisotropy
in‘cﬁbic materials. The pseﬁdo—quadrupole interaction
is given by |

gl ST CINER LI IR 2.17
The éoUlomb interaction 'hi and exchange interactioﬁ
‘}{é% yield anisotropy by fifth and third order perturbation
calcﬁlations;

In rare earth metals the interaction is indirect
via the RKKY interaction as mentioned earlier.

2.8  Magnetostriction

During the process of magnetization:in ferromagnetic
and ferrimagnetic crystals a chaﬁge'in the dimensions |
of the specimen is generélly observed. This phenomenon
is known as magnetostriction. The crystal anisotropy
energy is dependent on the interatomic spaciﬁg of the
lattice. Any éhange. in the interatomic spacing causes
a further contribution to the free energy of the system.

" The interaction between the magnetization and the lattice

is the origin of magnetostriction. The interatomic energy
can be‘expanded in Legendré polynomials as

W= g(h)+ (¢052¢—1/3)+q(a)(c054¢-6/7c052¢+3/35)+é.18
where ¢ is the angle between magnetization and the'bénd

direction between the pair of magnetic atoms.
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TheAfirst term is thé exchange interaction term
and is independent of magnetization direction and so
does th contribute to magnetostriction during rotation
of the magnetization vector in the crystal. It produces
a change in the volume of the specimen at the onset of
ferromagnetism. The volume change due to magnetization
is known as volume magnetostriction. The alignment of
a thermally agitated spin system by a strong applied
fieid can also change the value of the first term. The
volume change due to this phenomenon is known as forced
magnetostriction. The thifd term which is due to the
cryétal anisotropy also contributes to volume magnetostriction
but its value is small compared to that due to the second
term. - The shape of the specimen also affect the volume
magﬁetostriction due to the formation of free poles or
the magnetostatic energy, and the phenomenon is called
the”form effect. The volume magnetostriction is isotropic.
It ié the second term which plays a significant part
in thé magnetostriction during the magnetization process
of ferromagnets due to the rotation of the magnetization
vector in the crystal. This is the magnetostriction
that forms the basis of the present study. The second.
term can be written in terms of(],i and Bi,f the direction
cosines of spontaneous magnetization and the laftice
straiﬁ'respectively ( Chikazumi, 1964). |
w =0 )[(}%otp)z-ﬂ 2.19
={(r £ 14 3 . .

The enefgy thus expressed is called magnetoelastic energy




Emagél' Magnetoelastic energy is a linear function of
strain tensor components and is counter-balanced by the
elastic energy Eope The minimization of the total energy

E = E + Eel’ yields an expression for magnetostriction

magel
for a particular structure. A typical magnetostriction

expression for a cubic crystal is

3

% - 7h 100 {i;“ib% - ’i’} |

+ 3N11 OG0 81By + Gp0uP,Py + Gy BB ) 20
where the ﬁ's are the direction cosines of the direction
in which the strain is observed and?\loo and)\l11 are the
straiﬁ$ along the [100) and [111] directions respectively.
The.representation of magnetostriction will be discussed
‘in Chapter 4.,

Magnetostrictive strain increases with appiied field
and attains a maximum saturation value as shown in
Figure 2.10. At first, on increasing the field from
zero, a displacément of the 180 degree domain walls takes
place in the demagnetized ferromagnet, in both cubic and
uniaxial hcp crystals,which does not contribute towards
strain. Domain structure is'discussed»in the next section.
Then in the tubic system; the displacement of 90 degree
walls also takes place dufing which strain may occur and
finaily the specimen becomes a single domain with the
magnetization direction along the easy axis. Further
increase in the field rotates the magnetizétion towards
the external applied field direction. The saturation
magnetbstriction strain corresponds to the strain due to

rotation of magnetization from easy directions to the field




Fig. 2.10 Magnetostriction as a function of the field
intensity (after Chikazumi, 1964).




'direétion.
2.9  Domains

_Ferromagnetic and ferrimagnetic materials may be
found ﬁitheCMmagnetizéd state despite the existenée of
spontanéous magnetization. Weiss (1907) explained the
situation by assuming the existence of small regions,
uniférmly magnetized in the preferred direction and oriented
in such a way as to give‘zero overall magnetization.
These uniformly magnetized regions are known as domains.
Doméiﬁs are separated by thin layers in which the direction
of mégﬁetization gradually changes from the orientation |
in one-domain to that in the other. The transitional
boundary between the domains is called a domain boundary
wall. Domains are formed to reduce the very high magnet-
ostatic energy due to the formation of free poles at
the surface which would occur if the specimen were magnetized
in the same diréction i.e. as in the single domain case.
The subfdivision of the specimen into smaller domains
redﬁces the magnetization energy, yet the process is
restriéted by the other internal energies; the creation
of the domain wall itself needs energy.. The process |
of sub-division continues until the energy-required to
establish an additional boundary is'greétef thén the -
réductiqn in magnetostatic energy gained by sub-division
intoifurther smaller domains. A domain wall must have
a finite width. Abrupt change in the magnetization across
a single atomic plane between the domains involves extremely

high exchange energy. The rotation of the spin vector




takes place gradually in small steps over a numser of
atomic planes known as the wall thickness (Bloch, 1932).
Figure'Z.ll shows the transition in spin orientation

for a 180 degree Bloch wall, i.e. a domain boundafy between
two domains with antiparallel magnetization where the
rotation occurs about the wall normal. At the same time
a domain wall cannot be infinitely thick due to the anisotropy
energy.which does not favour spins oriented away from

the easy direction. Domain wall thicknesses and their
energy'wére extensively treated by Lifgshitz and Landau,
(1935). The formation of free poles is often avoided

by small secondary domains as shown in Figure 2.12.
These domains prevent any leakage of magnetic flux and
are known as closure domains. Magnetostriction may also
influence the domain structure. A further term in the
energy expression originates from the magnetostrictive
straiﬁ and is known as the‘magnétoelastic energy. This
muét be included in any energy minimization. Domain
struCtﬁre is also modified around inclusions to avoid
free poles. Various modified doméin structures are shown
in Figure 2.13. If the size of the crystal is reduced,
the domain wall energy increaSes‘felatively until -a stage
is reached where the formation of the domain wall is
energetically unfavoured and the specimen then behaves

as éAsingle domain. There is in fact a large variety

of domain structure. Except in very éimple systems,

it is very difficult to predict the exact domain structure
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Fig. 2.11 {a) Spin configuration inside a Bloch wall
{b) Angle of deviation ¢ as a function of position (after Smit and Wijn, 1959).
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Fig. 2.12 Examples of Weiss domain configuration in which
flux closure occurs (a) single domain structure,
domain structure of a material with .
(b) small crystal anisotropy (c) large crystal
anisotropy (d) uniaxial anisotropy (f) large
magnetostriction, and (e) tendency of domain
deformation for 4 material with positive -

magnetostriction (after Chikazumi, 1964)..
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 but observed structures can usually be understood on
the basis of the minimization of the sum of the various

energies of the magnetic system.

W = wex + Wk + Wk + WM + Wy 2.21

where Wex is the exchange, Wk is anisotropic, Wy 1is
magnétoelastic, WM is magnetostatic and Wy 1is the domain
wall energy.- The application of the field in the
simplestvcase causes displacement of the domain walls

such tﬁat the domain with magnetization directionﬂclose

to thé,field grows at the cost of other domains, as-shown

in Figure 2.14. Finally the specimen becomes a single
domain and possesses a technical saturation magnetization.

A very'small field only may be required for this procesé.
Impeffections of one kind or another hinder the movement

of domain walls and result in smaller initial permeabilities
and large coercive forces. Further increase in the field
-rotétes the domain magnetization towards the field direction.
This process needs comparatively a much stronger field

and indeed very high fields are needed in the case of
strongly anisotropic materials to rotate the mégnetization
towards the hard direction. Domains can be experimentally
observed by the Bitter method (1931) in which fine particles
of magnetic powder are spreadvon the sufface of the specimen.
The magnetic field gradient near the domain boundaries
attracﬁs the particles towards the'boundaries and reveals

the domain configuration which can be photographed through




v Fig. 2.14 Domain wall displacement and rotation c{ magnetization:
(a) initial configuration, ' |
(b) magnetization in[‘lOO], and

- (¢) magnetization in[110] directions.
(after Chikazumi, 1964).
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a microscope. The magnetic powder is usually in colloidal
suspension in a liquid (a ferrofluid). Other techniques
used for domain studies include the Kerr and Faraday
methods based on rotation of the polarization of reflected
or transmitted light, electron beam techniques and X-ray

diffraction topography (Tanner, 1976).

TABLE 2.1 °

Magnetic structures and transition temperatures of the

heavy earth metals (after Crangle, J., 1977).

Element
Gd ferromagnet —» paramagnet
’ 293 .
Tb ferromagnet —» helix - paramagnet.
‘ 220 230
Dy - . ferromagnet —» helix -» paramagnet
85 179
Ho cone -> helix —= paramagnet
20 132

Er . cone —»antiphase cone »-sinusoidal collinear —-paramagnet

‘ 20 53 85
T square-wave collinear-s-sinusoidal coliinear-e.paramagnet

w 35 58

Yb ‘ 'paramagnet
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CHAPTER 3

PHYSICAL AND MAGNETIC PROPERTIES OF RARE EARTHS

3.1 Introduction

The rare earths are a group of metallic elements
consisting of scandium, yttrium, laﬁthanum and ﬁhe lan- -
thanides. The lanthanides are the fourteen elements
lyingzbetween atomic numbers 57 and 71 of the periodic
tableQ» They are trivalent 4f shell transition metals.
After element 57 electrons are gradually’added‘to the
inner 4f eiectronic shell of the atom as the atomic number
increases, leaving the number of valence electroné un-—
disturbed. The rare earth elements have very similar
chemical properties. Their magnetic properties stem
from unpaired electrons in the 4f shell. The rare earths
are further subdivided into two groups; the light rare
earths which are elements up to europium and the heavy
rare earths, from gadolinium to lutetium. Almost all
the rare earths crystallize in a hexagonal close packed
structure. At room'temperature, light rare earths have
double hexagonal close-packed structure with the exception
of samarium which has rhombic and europium with bcc structure.
The heavy rare earths have simple hexagonél close packed
structure with the exception of yttrium which is fcc
at room»temperature but at low temperaturg.is hcp. At
higher témperature these elements undergo transitions

in structure through fcc to -bcc. Basic physical properties

at room temperature of the rare earths are given in Table 3.1.




- 32a -

TABLE 3,1
Room tempecrature physical properties of the rare earth metals and their melting and boiling points®;
dhcp = double-hexagonal close-packed, fce = face-centered cubic, bee = body-centered cubic, hep =
' hexagonal close-packed i

Rare Metallic  Atomic Melling Boiling
earth Crystal  Lattice constants (A)  radius volume™ Density  point point
. metal 2 structure ao c (&) cm’/mol) (giem®)  (°C) (o))
La 57 dhtp 3.7740 12171 1.8791 22.603 6.145 918 3464
Ce 58 fcc 5.1610 — 1.8247 20.698 6.770 798 3433
Pr 59  dhep 3.6721 11.8326 1.8279 20.804 6.773 931 3520
Nd 60 dhcp 3.6582 11.7966 1.8214 20.584 7.007 1021 3074
Pm 61 dhep 3.65 11.65 1.811 20.248 7.260 11042 ~ 3000
" Sm 62 rhomb? 3.6290 26.207 {.8041 20.001 7.520 1074 1794
Eu 63 bce 4,5827 — 20418 © 28.981 5.243 822 1529
‘Gd - 64 hep 3.6336 5.7810 1.8013 19.904 7.900 1313 32713
Tb 65 hcp 3.6055 5.6966 1.7833 19.312 8.:229 1356 3230
Dy 66 hcp 3.5915 5.6501 1.7740 19.006 R.550 1412 2567
Ho 67 hep 3.5778 5.6178 1.7661 18.753 8.795 1474 2700
Er 68 hep " 3.5592 5.5850 1.756¢€ 18.450 9.066 1529 2806%
Tm 69 hcp 3.5375 5.5540 1.7462 18.124 9.321 1545 1950
Yb 70 fectt 5.4848 —_ 1.9392 24.843 6.965 819 1196
Lu 71 hcp 3.5052 5.5494 - 1.7349 17.781 9.340 1663 3402
Sc 21 hep 3.3088 5.2680 1.6406 15.041 2,989 1541 2836

Y "~ 39 hep - 3.6482 5.7318 1.8012 19.894  4.469 1522 3338

* After Beaudry and Gschneidner (1978).

** Data for coordination number 12. . .

t Rhombohedral is the primitive cell. The close-packed layer stacking is ABABCBCAC with
symmetries chhchhchh in nine layers.

t1 Low temperature form is hep.

Table itself is after Legvold (1980).
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Fig. 3.1 Close packed stacking arrangements found in rare earth
metals (after Legvold, 1980).




Eu, Er, Tm and Lu show no transitions. The several '
close packed atom stacking arrangements found in rare
earths are shown in Figure 3.1.

3.2 Preparation and Purification of Rare Earths

- Rare earths, with the exception of scandium, have
not'beén found in nature in ores containing a single
element alone. Natural deposits uéually contain a mixture
of various rare eafth elements. Common deposits of minerals
rich in rare earths are monazite, zénotime, bastnaesite,
gadolinite and smarskite. Physical properties of the
elements vary with impurity confent. To study their
intrinsic properties, high purity is very important.

High pufity in the rare earth is achieved by using stérting
~materials and reducing agents as pure as possible and

then purifying the product. Electrolytic methodé for
prepéring rare earth metals produce reasonably pure metals.
The other very sdccessful method for producing highly

puré rafe earths is metallothermic reduction. In this
technique the rare earth oxides from the minerals are
converfed to florides by anhydrous HF and 60% Ar. The
rare eérth floride is then reduced by Ca at temperatures
above the melting point when the metals settle down and
CaF, slag floats. Residual floride and'other‘volatile
gimpﬁrities are removed by vacuum melting in which the
metalé are.heéted in vacuum to temperatures of between

500 to 1000 degrees Centigrade above the melting point.

Rare earth metals are further purified by distillation

Ieaving behind the less volatile impurities. The highest
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purity is achieved by the §olid state electrotransport
method. In this process a large d.c. current is passed
through a rod made of the metal to be purified, at a
temperéture 100 to 200 degrees Centigrade below the
melting point of the metal. The electric field traﬁsports
fhe impurities to one end of the rod. The process is
carriéd out under very high vacuum or in a pure inert gas
and takes several weéks or even months. The fate of
.transpbrt of impurities increases the greater the electric
field but the maximum field is limited by the cooling

rate of the rod. Only those rare earths which have low
vapduf pressures at the melting point can be purified

by this method. Jordan (1974) reviewed the principle

of this method while Peterson (1971) has discuésed the
experimental details. Peterson and Schmidt (1972) studied
the electrotransport velocities of C, N, and O in gadolinium
whilst Carlson et al. (1975) have studied their impurity
concentration. Extensive studies are being made by Jones
and éo—wbrkers at the University of Birmingham. Jordan

et al. (1975) purified commercial Tb by the electrotransport
method. Hukin and Jones (1976) refined Tb by zone melting
in an atﬁosphere oprdre argon with induction heating. |
lLarge grains are obtained if the samples purifiéd by

the electrotransport method are maintained at a high
témperature for a long time. Other methods for growing
singie crystals-include recrystallization;‘vapour deposition,

Bridgeman and Czochralski and zone melting processes.




3.3 Electronic Structure of Rare Earths

The electronic configuration of the rare earths

(lanthanides) has the Xenon structure (1522522p63523p6

10 24p64d105525p6)

3d™V4s with two or three outer valence
electrons (6s2 or 5d6s%) and a gradually filling electron
shell»AEN, where N is a number from zero to foﬁrteen.

The 4f electrons are relatively closely bound to the

6 eiectrons .

nucleus and are shielded by the eight 552 5p
In sQlﬁs the valence electrons are readily transferred |
to other ions while in metals they férm the conduction
band. ° Thus normally the'rare-earth ions are tripositive
with all electrons in the closed shells except for the
4t electrons. With the exception of Eﬁ and Yb, the

mean ionic radius continuously decreases with increasing
Z bécause of the further contraction of the 4f electroné
shell caused by the greater positive charge Z of the
nucleus as the atomic weight increases. This behaviour
is known as lanthanide contraction and is shown in Figure
3.2. iThe total ionic angular momentum J is given by
Hund's ru1es; (i) the lowest lying electronic state for
the electrons in an incomplete shell haVing same n, {
quantum numbers has maximum multiplicity 2S + 1 within
the cbnsﬁréint of Pauli's exclusion principle and (ii)
the maximum orbital angular momentum consistent with

this multiplicity, (iii) the total angular momentum

J is_given by J = L-S for less than half filled shell‘
(light rare earth) and J = L+S for more than half

filled shell (heavy rare earths) .. Strong spin-orbit




coupling of the 4f electrons results in low magnetic
moments for the light rare earths and high magnetic moments

for heavy rare earths. Theoretical saturation magnetic

moments gJ in terms of the Bohr mangetch.LlB for tripositive

rare earths areshown in Figure 3.3, g is the Land€ factor.
In energy band calculations of the rare earth metais
the Hamiltonian for the many electrons in a solid can
be written as
2
I(Zoul - Z: _i' 2: Z: ES_ +§; 2;
] i Iﬁfdw i i T

. - 3 -'
where.ri, Pi are the position and momentum of the ith

3.1

I\J

électrdn, ><Z is the position of €th nucleus , m and

e are the mass and charge of the electron and Z is the

nuclear charge. The Hartree -Fock approximation is employed

to transfqrm this many body problem into a one body problem

using the‘ Slater determinant wave functions (Slater,

1965, 1967). This reduces the problem to an independent

electron one, neglecting elecfron—electron correlation

of bpposite spin electroné; The electrons move in an

average periodic potential due to the ions and all the

othef‘electrons The exchange potential is

22/% ' Xy 3 Pplr)
r ] ¢ (r)

a

\%
Xa

where- ¢a(r) - is the orbital part and X is the spin
_ part of the basis function Slater determinant.

In the augmented plane wave method, the wave functions

for,the.Séhrodinger equation are spherical waves inside
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the muffin tin (MT) sphere and are plane Bloch type waves
outside. the sphere. The wave function inside MT is

1, mof om
Prr) = eZm TRV (r) 3.3

where AE are crystal field parameters and Yam(

r) are
the spherical harmonics, r is measured from the centre
of the MT sphere.. The function outside the MT sphere
is

11 ' :
) (r) =§:An exp (i(k +.kn).r ) 3.4

where k_are reciprocal lattice vectors.

The two wave functions are matched at the surface
of the MT spheres which gives linear relation between -
C? and A,. Dimmock and Freeman (1964) calcuiated the
paramagnetic bands for Gd which explains the observed
anisotfopy in the electrical resistivity.

3.4 Magnetic Properties

The 4f electron wave functions are confined close
to the nucleus and are very localized. The direct

Heisenberg exchange interaction does not occur. The

magnetic order observed in rare earths is due to an indirect

interaction (RKKY) via conduction electrons. . The.observed
polarization of the conduction electrons supports this
intefaction. The RKKY interaction wasdiscussed in Chapter
2 Section 2). Neutron diffraction studies revéal the
magﬁeﬁic structuré. Koehler (1972)-présents a review

of this work. The magnetic structure of the heavy rare

| earths at various tempefaturesis shown in Figure 3.4.

Gadolinium is a simple ferromagnet with a half filled




- 37a -

GADOLINIUM TERBIUM - DYSPROSIUM

NS

fFerro HFerro lParal fFerro | Helix JPcru iFe’rro Helix HPura
D 2432934K 0 2195 2315k 0 89 1MK

~ 7

Ho| e -
=

HOLMIUM \ THULIUM

oo i
- il
N ol
v

S |

0 2 BKO 2 528K 0 256K

Fig. 3.4 Magnetic ordering in the heavy rare earths as found by
neutron diffraction (after Legvold, 1980).




4f electron shell and‘has S = 7/2. The easy direction

is along the C-axis just below the Curie temperature

T. and moves away forming an easy cone around the C-axis
below 240K. Terbium has helical ordering between 230K
to.219.5K. The magnetic moment lies in the basal plane.
Below 219.5K it becomes ferromagnetic with the g—axis'

as an easy direction. Dysprosium has similar magnetic
ordering to terbium except that the 4-axis is easy.
Dysprosium has helical structure below the Néel temperature
179K. The inter-layer turn angle is 43.2 degrees. The

turn aﬁgle decreases with decreasing temperature and
finaliy attains the value 26.5 degree at 89K - the Curie
temperature chekm7Mﬁch it is ferromagnetic (Wilkinson

et al., 1961). The elements with Z higher than gadolinium
have strong magnetic anisotropy due to the asymmetric charge
distribution of 4f orbital electron wave functions.

Holmipm also has two magnetic transitions, its Néel
temperature T, is 133K and Curie temperature is 20K.

The mégnetic ordering between T and T, ié'helical similar
to terbiﬁm and dysprosium. In the ferromagnetic region

it has e helical cone structure along the C-axis with

a cone angle of 80 degrees. It thus has a finite and constant
component of magnetic moment along the C-axis. The turn
anglel¢ isVBOdegrees (Koehler et al., 1966). .Erbium

shows tﬁree magnetic transitions. At the Néel temperature, 85K,

it undergoes a change from para to antiferromagnetic

ordering. Below T, = 20K it has the same magnetic structure
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as 5f.holmium in this temperature range. It has complex
antiférromagnetic structure with another intermediate
transition temperature TH = 52K. Between T, and Ty,

it has a C-axis modulated (CAM) magnetic structure.
Thevﬁagnetic moment in CAM remains along thé'e—axis but its
magnitude varies sinusoidally along the C-axis. The
period of oscillation is constant having 7 magnetic layers
(Cable et al., 1965). Between an intermediate temperafure
Th

structure showing an antiphase domain cone plus a helix.

and 'TC, there is another complex antiferromagnetic

" Several layers have a constant magnetic moment pointihg
along the ¢-axis followed by the same numbers of layers
with the same magnetic moment pointing downwards. Thulium
has the CAM magnetic structure between 58 and 32K and
below 32K it has ferromagnetic structure. The magnetic
moméqp always remains parallel to fhe E—éxis.
3.5 Gadolinium

" This is the only rare earth element which is a simple
ferrbmagneto The magnetic moment rises sharply when
it is cooled below its Curie tempefature 293.4K (Wohlfarth,
' 1980)_in the presence of a small magnetic field. The
moment falls off and becomeé a minimum at 170K due to
the éasy direction moving away from the C-axis and then
rises again on further cooling. Earlier measurements
by Nigh et al. (1964) are found to be in agreement with
the later neutron diffraction studies of Cable and Wollen

(19685-and with the torque measurements on single crystals

by Corner and Tanner, (1976). Their measurements are
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shown in Figure 3.5 (a and b). Legvold et al. (1953)
measured the electrical resistivity of polycrystalline

Gd wﬁilst Nigh et al. (1963) studied a single crystal
of‘gadolinium. The temperature variation of the electrical
resisfivity‘F of Gd polycrystals and of Gd sihgle crystals
are shown in Figure 3.6 and 3.7 respectively. Nigh et

al. (1963) showed that the saturation magnetization follows
a T3/2 law between 50 to 200 K and a 722 law below 50K.
Roeland et al. (1975a) and White et al. (1975) measured

the saturation magnetization of gadolinium as 7.63PB

while the expected value would be gJi= 7HB. This slight
increase in the measured value is thought to be dué to
the.polarization of the 5d conduction electron band.

The paramagnetic effective moment found by Nigﬁ et al.

was 7;98pB which agrees with the expected value of g /glgilj_
= 7;94“B. The paramagnetic Curie temperature Qf gadolinium
is isotropic and equal to 317K both parallel and perpendicular
to the C-axis. (9“ =9 - Qp = 317K). The specific

heat measurements by Griffel et al. (1954), Voronel

et al. (1966), Lewis (1970); Simons and SalamonA(l974)
and‘.Wells et al. (1975) all show good correlation with

the resistivity behaviour. The results of Griffel et

al. (1954) along with:those of Jennings et al. (l960)

for lutetium (showing the phonon contribution) are given

in.'Figure 3.8. The dashed curve represents the magnetic

_ specific heat.
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3.6 Terbium

This has two magnetic transitions like ttie other heavy
rare éarths. The turn angle in the helical structure
between 219.5K to 230K decreases slightly with temperature
from 20 degreeé just below the Néel point to 18 degrees
before rising again at the Curie temperature. Térbium
is a,étrong basal plane anisotropic element. It requires
a very high ﬁagnetic field to magnetize it along the
G—aﬁis and it is even possible that in this attempt at
magnetization it might suffer sudden recrystallization.
The other heavy rare earths also show similar behaviour.
The helical phase can be suppressed by an external field'A_
of 0.8 Tesla. The saturation magnetic moment found by
the‘high field -~ low temperature extrapolation method
is 9.34 Ky against an expected value of gJ = 9.0y ( Roeland
etval;, 1975a). The sufplus 0.34HB is a lot less than
the O.63HB of Gd and it is assumed that the addition
of the 4f orbital moment causes a decrease in the overlap
of the-Sd'conduction electrons and'4f wave functions.

The barémagnetic susceptibility of Tb is anisotropic,
higher in the basal ﬁlane than along the T-axis. .The
paramagnetic Curie temperature along the E—axis,eP is
equal to 195K and in the basal plane Sp = 239K. These
results of Hegland et al. (1963) are shown in figure
3.9. Kasuya (1966) attributed this anisotropy to the
crystal field. The electrical resistivity measurements
of Hééland et al. (1963) are shown in Figure 3.10. The
spin disorder resistivity part, after subtraction of

the phonon contribution is shown by the dotted curve.
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An external field suppresses the helical phase and results
in brbadening of the peak at T . Later resistivity measure-
menté by Sze et al. (1969), Nellis and Legvold (1969)
confirmed the spin wave energy gap of width 1.9Mev.
Jennings et al. (1957) measured the specific heat,of’
terbium dver a wide range ofAtemperature.and their results
are shown in Figure 3.11. A slight kink at 219.5K

: correépond to GC while the sharp peak at 228K coincides
with the Néel temperature. Again the dotted curve shows
the magnetic part of the specific heat after subtraction.
of the phonon and electron parts.

3.7 Binary Rare Earth Alloys

Rare earths form solid solutions with each 6ther
with-the exception of Eu and Yb. The alloying of a heavy .
rare»eArth metal with a lightrare earth causes competition
between the two crystal structures hcp and dhcp favoured
by heavy and light rare earths respectively. Around
thenmiddle concentration of heavy and light rare earth
alloys the samarium structure is observed. Legvold et
al. (1977a) observed that the saturation magnetic moment
of alloys of gadolinium with Sc, Y, La, Mg, Yb and Th
corfelated with the c/a ratio of the sample.but the drop
in the ordering tempefature showed a linear relationship
withvrésidual resistivity and not wﬁjlc/a.. Fujiwara et
al.-(1977) studied a large number. of intra-heavy rare
earth alloys. Legvold (1978a) plotted ordering femperature
vVersus averége spin factor C]_Sl(S1 + 1) + C282(S2 + 1)

thch'followed the straight line established by the pure
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elements. Here Cq and C2 are the atomic concentration

of the alloy components. Legvold et al. (1979a) measured
the résidual resistivity of one atomic percent of heavy

rare earths in thorium and found that the atomic volume
difféfence between the host and solute was a major con-
tributor to the residual resistivity.' On adjusting the

spin only resistivity data of Makintosh and Smidh (1962) for
the volume effect, the resistivity was found to be proportional
to S(S + 1). Earlier Bozorth (1967) observed that‘the
magﬁétic ordering temperatures were proportiohal‘to the

two third power of the average de Gennes factor G of

the alloys. Ordering temperatures observed by Fujiwara

et al. (1977) are shown in table 3.2.

3.8 Gadolinium Based Alloys

The alloys which have de Gennes factor G » 11.5
remain ferromagnetic without any intermediate antiferro-
mégnetic phase. Gadolinium is the only metal which has
G >11.5. The gadolinium based alloys can be ferromagnetic
at all temperatures in the magnetically ordered_region.» The
magnetization versus temperature curve is continuously
decreasing for a ferromagnetic phase only. If.an anti-
ferromagnetic phase exists, a peak occurs at the Néel
témperature. Thoburn et al. (1958)-studied Y- Gd alloys.
Their results showed that Y-Gd alloys have'only the fgrro—
magnétic phase for gadglinium concentrations of 70% or more,
only the aﬁtiférromagne;ic type for gadolinium concentration

of less than 60% and two types of magnetic ordering in the inter-

mediate region for 60 to 70 percent gadolinium. The
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TABLE 3.2

Pressure effect on magnetism of heavy rare carth alloys. After Fujiwara et al. (1977)

(S(S+1) T. T Tw 8, AT, AT, ATy 46, Nett 1 A4na Magnetic
ap AP AP AP nae AP structuret
(10 degbar™") (10~*bar™")
Gd 158 292.6 304 -1.56 - 1.46 8.1
Gd-50% Tb 13.9 262.4 270 -1.30 9.0 ,
Tob* 12 230.0 230 -08 -075" 97 -0.96 HS
Gd-25% Dy 14 265.0 274 -1.10 8.8
Gd-50% Dy 12.3 233.0 240 -1.00 9.5 "
Gd-75% Dy 10.55 v 155.2 203.0 203 -106 -066 —0.51 10.2 -0.50 HS
Dy* , 8.8 87.6 178.0 148 -128 -044 -0.17 10.7 -0.62 HS
Gd-25% Ho 13.35 253.8 265 -1.20 8.7 .
Gd-25% Ho 109 172.0 206.7 213 -0.84 -076 -—083 9.5 0.55 HS
Gd-75% Ho 8.95 168.6 158 -0.54 -0.40 10.1 -0.10 HS
Ho* 6.0 125.0 87 -040 -0.39 11.0 0.06 HS
Gd-25% Er 12.8 247.3 255 —1.05 8.4
Gd-50%% Er 9.8 171.0 184.8 200 -048 —-0.66 -0.68 8.4 0.40 CAM
Gd-75%% Er 6.8 131.8 111 -046 -0.72 9.4 0.60 CAM
Er* 38 82.0 39 -024 -053 10.2 0.34 CAM
Tbh-50% Dy 10.4 150.8 204.4 201 -096 -061 —046 10.2 -0.80 HS
Dy-25% Ho 8.1 166.5 143 -042 -0.09 110 -0.50 HS
Dy-%0% Ho 7.4 154.7 126 -040 -0.12 11.0 “=0.30 HS
Dy-75%¢ Ho 6.7 141.5 108 -040 -0.26 11.0 —-0.05 HS
Dy-25% Er 7.55 156.5 126 -04t -020 108 -0.38 HS
Dy-50% Er 63 132.2 94 -038 -0.32 10.6 -0.05 HS
Dy-75% Er 5.08 103.4 63 =030 -048 10.4 0.15 HS
Ho-25% Er 5.45 113.5 73 -035 -0.46 10.9 0.15 HS
Ho-50% Er 4.9 98.6 54 - =034 =056 10.7 028 HS -
"Ho-75¢% Er 4.35 84.6 4 -028 -0.55 10.4 0.30 HS
Tm 20 58 . -17 ‘ 9.9 CAM

t 1S = Helical screw structure, CAM = c¢-axis modulated.

* H. Fuji. 1969, J. Sci. Hiroshima University, ser.-A-11 33, 43,
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plot of Néel temperature T ,the Curie temperature T, and
the paramagnetic Curie temperature 6p for Y-Gd is given
in figure 3.12. The magnetic moment values per gadolinium
atom in Gd-Y alloys were larger than the theoretical
ones of tripositive Gd in both ferromagnetic and paramagnetic
states. Thé values of ordering temperatures and magnetic
moments after Thoburn et al. (1958) are given in Tablé
3.3. The hyperfine studies of Dreyfus et al. (1967)
sho@ that gadolinium rémains in the normal trivalent
state. The later neutron studies by Child and Cable
(1969) showed that the Néel temperature of Gd-Y alloys
follows reasonably well the mean curves of the Gd-R alloys
as shown in Figure 3.13. The turﬁ angle varies from
50 degrees for very small G to zero degfees for G =
11. Bagguley et al. (1980a)obtained the same results from
magnétization and microwave studies.

ih Gd-Lu alloys, the helical structure changes to
ferfoﬁégnetic only in high magnetic fields for alloys con-
taining more than 45% Lu while gadolinium rich alloys
are only femxmagxiic‘(BO% Cd or more), (Bozorth and Gambino,
1966){ In 50% Gd-Lu alloys.the»helical phase changes
into 'fan' structure 'FM1' at a crical.field Hé and -then
to ferromagnetic ' FM2' above a higher magnetic field
H, . The-magnetié moments are always larger fhan the
theoretical 7}ﬁ3value, O.SSHB excess for pgre'gadolinium

to more than 1PB in some alloys. A summary of Néel temperatures

and Curie temperatures for various Gd-RE alloys as given
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Fig. 3.12 Plot of the Néel temperature T _, the ferromsgetic Curie
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ep(o) in the Y-Gd system (after Thoburn et al., 1958).
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Fig. 3.13 The ordering temperatures versus de Gennes factor:
T of Gd-Y (o) and Gd-Sc (n), and T, of Gd-Y (o) and

Gd-Sc (w). The full line represents the mean curve of
p for Y-RE alloys. (after Child and Cable, 1969).
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by Bozorth and Gambino (1966) is plotted in Figure 3.14.
‘Bozorth and Suits (1964) observed T, and T, for Gd-Dy
alloys by magnetization and resistivity measurements.
The difference between T, and T, for 50% or more gadolinium
~concentration i s shown in Figure 3.15. The magnetic
behaviour of gadolinium alloys with Ho, Er or Tm is

very close to Gd-Dy alioys (Bozorth and Gambino, 1966).

In general gadolinium rich alloys are ferromagnetic

while gadolinium weak alloys have at least one anti-

ferromagnetic phase and T, follows a universal law:

T = 46.7 c2/3 | 3.5

3.9 Terbium Based Alloys

Terbium alloys,differ. from those based on gadolinium
becahse terbiuﬁ has a Néel temperature T, at 230K and
ferromegnetic TC at 219.5K. The helical structure dis-
appears for 14% Nd, 6% Pr ( Curry and Taylor, 1976), 5%

La (Bufgardt, 1976) and 2% Th (Burgardt and Legvold,

1975}. At higher concentrationslof light rare earths

with tefbium, the crystal structure changee to Sm type

and causes large changes in the magnetic properties.

The magnetic ordering temperaturequ terbium alloys with
non magnetic Y, Lu (after Child et al., (1965)from neutron
diffraetion measurements) and Sc (after Child and Koehler,
1966) are shown in Figure 3.16. The magnetie phase diagram
for terbium alloys with heavy rare earths, Dy, Ho, Er

~and Im is shown in Figure 3.17. T and T for Thb-Dy

varies linearly with alloy concentration ( Fujiwara et
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al., 1977). For Tb-Ho only T is linear (Koehler, 1972).

The situation is more complicated in the case of Tb-Er

due to the difference in 4f charge densities. T varies
smpofhly until 90% Er concentration (Koehler, 1972).

TheiTﬁ and T, variation of Tb-Tm alloys shown in Figure

3.17 are after Hansenand Lebech, (1976). It was difficult

to determine the ordering temperatures at the positions marked

A and B.

TABLE 3.3

Magnetic moments and ordering temperatufes in
the Y-Gd system (after Thoburn et al., 1958).

Gadolinium (K) T (K) 9

percentage T c p(K) LlsatqlB) Lleff(Ug)
25’ 111 102 8.66
50 182 186 8.49
60 197 95 217 7.79 8.63
66.7 211 229 7.63 8.84
75 2 252 7.63 8.84
83.3 262 266 - 7.55 8.72
90 281 280 7.47 8.84

100(Gd) 289 302.7 7.12 7.93




CHAPTER 4

FORMAL REPRESENTATION OF MAGNETIC ANISOTROPY
AND MAGNETOSTRICTION

4.1 Magnetocrystalline Anisotropy

~Magnetocrystalline energy, i.e. the energy required
to magnetize a crystal in a specific direction with

respect to crystallographic axes is given by
M .

. S .
ka/V _=[ B, .dM ‘ 4.1
O

whefe'V is the volume of the crystal and ys is saturation
magnetization.

_ In a cubic system this energy is assumed to be a
function of the direction cosines al’ a, and 0% of the
magnetization vector M; with respect to the crystallographic
axes and.can be expressed in an infinite power series
in the direction cosines (Akulov, 1931). The function
must have the symmetry of the crystal, e.g. it must be
indepéhdent of a change in sign of any o, and therefore
odd pOWers and cross terms such as a&ﬂ& will not appear
in it. Further the condition that it must be invafiant
witﬁ respect to an interchange of any two o's, requires

in the second—degree term C1“§ + cza% + c3a% that

€y = Cyp = Cq 4.2
and as
- 2 2 2
Q1 +a2 + a3 = 1 . 4.3

no énisotropy results from this term. The allowable fourth-
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degree terms arc (x,i" + ag " 0(,[3* and d%d% , “gag . o(%tx%

but these can be expressed linearly in terms of one

another by the relation

oy - b

2.2 2,2 4
ok oy + 0(,2(13 + 0(.3 1 1 4.4

Thus the first non-vanishing non-constant term may be
taken as Kl(d%d%.+ a%a% + G%a%) where K, is a parameter
dependent on temperature. The next term of sixth degree,
on similar reasoning, may be written as sz%agqg. It

is found experimentally that the first two terms are

usually sufficient to represent the crystal anisotropy.

Hence for a cubic crystal, the expression is

2 22,2 4

o 2.2 2 2 2

For crystals of symmetry lower than cubic, various
expressions for cryétal anisotropy energy are used of
which é‘few have become conventional. For example in
crystalé of hexagonal symmetry, anisotropy cah be expressed
in powers of sin @, where 6 is the angle between the
magnétization M and the hexagonal axis [0001] as (Mason,
1954).

Ek/v = K, + Klsinze + K2$1n49 +’K3Sin69

s K451n69 . cos 6¢ 4.6
where ¢ is the angle between the projection of the magneti-
zation vector on the basal plane and an a-axis [1150}
and K_ are témperature dependent anisotropy constants.

The coshd term represents a six fold symmetrié basal

plane anisotropy. Generally the second-degree term

is of major importance and usually in practice second-




and'fOurth—degree terms are sufficient to express the
actual anisotfopy energy. The expression may be written
in terms of sin n® which is a convenient form for Fourier
analysis (Pearson, 1979). However, in theoretical models
anisotropy is usually expressed in terms of spherical

harmonics as
o0 +Q

Fk/y = ZZ "‘”‘egs_ | 4.7

where K? are anisotropy constants and YF (9,¢) are spherical

harmonics

- et @-m
YQ (6,¢) = (-1) 4 T (Qem)! sz(cos 8) exp(i|m|¢)

4.8

where Pem(cos 8) are associated Legendre polynomials;

- ! -
“Plcos 6 = (-1)" (28 - 2m)! (Cos 9)2 2m
A 0
2'mi (¢ - m)1 (L - 2m)

4.9
Due'to‘orthogonality of spherical harmonics, truncation of
the series of Equations 4-7 does not affect the accuracy
of the lower order coefficients. This expression is also
convenient when compariﬁg experimental results with

theoretical predictions (Birss & Keeler, 1974). The

expression for a hexagonal system is (Cogblin, 1977);

AF‘ . .

k/ 0 9 0 16,6

Vo= K+ K (e OY(9)+ KeYe(e) + Kg¥g(0,8) *
4.10

where Y° stands for spherical harmonic Y°(9,¢) of and

¢
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m =.0 -values, because Y€(9,¢) does not depend on ¢.
More commonly magnetocrystalline anisotropy is expressed

using the Legendre polynomials, P(cos6) as

Ek/V = Kg + Kng(cose) + KZPa(cose) + K2P6(cos e)
+ KCsin® cos6g + ... 4.11

Volkov: et al. (1981) considering reduction as well as
transformation of symmetries, gave another form of the

expression namely -

4 _ 30 cose +3)

1" 1A
: Ek/ = K1(3 coszeel) + K2(35 cos
\"
2

1]

+ K3(231 cos69 -'315 o0549 + 105 cos“B <~ 5)

+ K4 sin69 cos 6 4 + ... 4.12

1 .
where the K are anisotropy constants and the terms are

orthogonal,Thel(Hsare related to each other in Appendix I..

4.2 Temperature Dependence of Anisotropy

The énisotropy is usually a sensitive function of
temperature. It is found experimentally that it drops
more rapidly with increasing temperature than the spin-
orbit interaction indicated by the ''g" Land€ factor of an
ionv(ratio of the total angular moment J to the magnetic
moment) and much faster than magnetization. The main
cauSe'Of its rapid fall with temperature is thermal
agitation. "Thermal vibrations produce a spread of spin
direction about the hard and easy directions and so lower
the‘éverage energy in the hard direction and increase
it along»the easy axis. Consequently, the énisotropy
decreases Wwith narrowing.energy gap due to loss of parallelism

between'individual spins (Akulov, 1936). "
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In determining anisotropy, the average energy of
all the spins is required. As magnetization is the average
of the projection of all the spins on the magnetization
vector, the ratio of magnetization at temperature T,
M(T), to the magnetization at 0°K, M(0), with all spins
' parailel is a good parameter to describe the spin distri-

butions. This ratio is known as reduced magnetization

’;m(T) . M . : 4.13
‘ M(0) _

The temperature dependence .of anisotropy is.frequently
expressed empirically as a power law in terms of reduced
magnetization

KD () 414
K(O)

where K(T) and K(0) are anisotropy constants at temperature
T and O K respectively. Akulov (1936) theoretically
predieted that in a cubic system the variation of Kl-
should obey a tenth power law which is in good agreement
witﬁ the experimental data for iron at low temperature.
Ni was found to follow a fifteenth power law. Birss
and wellis (1968) showed that.the power is reduced to
10 if.thermal expansion effects are removed.

Anisotropy energy associated with each ionic spin '
at absolute zero temperature can be written;

L(S) = K. (0) @(S) | 4.15
N % ¢ f@ |

where N is number of spins per unit volume, K (0) is

¢

the Zth order anisotropy constant at 0°K and _}? (S) 1is
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a normalized polynomial in spin operators or a unit vector
along the spin axis expressible in spherical harmonics
suiting the crystal symmetry.

This equation also applies to individual spins in
a single-ion model which are under the influence of the
cryétalline field and are disoriented by thermal.agitatioﬁ.
The anisotropy energy per unit volume for a spin distri-

bution may be written ( Callen and Callen, 1966);
: - n
E/V = F K (0) {Yp) (@) AR
¢
where §' is a spin unit vectoreﬂmi&is a unit vector

along the magnetization. The spin distribution is given

by Callen and Shtrikman (1965);

exp(xM') 417

+§ exp(xM')
M=-S

where Pm' is the probability of S'. & = M and X is some

function of temperature. The averages are given by

<Y?(’s")>= <YP') > 418

4.19

+1 '
f YzO(M) exp (xM' )dM'
= - +1

/ exp (xM' )dM'
21

The integral can be expressed in terms of hyperbolic
Bessel functions (Keffer, 1955);

+1 o :
/ V/ (M') exp(xM")dM' = Tp 1(x) 4.20

-1




and
4l +1 .
u// exp(xM')dM' = l// Yg(M')exp(xM')dM' = I%(x)
-1 -1

4.21

where In(X) are hyperbolic Bessel functions of order
n. The theoretical temperature dependence of anisotropy

constants may be written as

. (o] '
NALURIR S 4 S V= L L P
: +3
Keto)  YPIsH Dy, Ty
A

where I€+; is the reduced hyperbolic Bessel function
2

of order €+%, X 'is related to the reduced magnetization
m :

m(T) = <cos 8'> = £(x) = 13/2(x) 4.23
where §(x) is the familiar Langevin function:

£(x) - coth(x) - A 4.24
: X

Thus the most general form of the temperature dependence

may be written as

CKH(T)
e = 1 1 (&

Hmer., 4.25
At low temperatures this equation reduces to a 2(€+1)/2
power law ‘
: 1 A
K(T) = Kz((n(m(T))e‘e+1)/2 4.26
which is in good agreement with the Akulov and Van Vleck

results. At higher temperature it has the form

¢
K (T) _Kg (O (m(T)) . - 4.27




Brenner (1957) used the Boltzmann distribution and obtained

the following temperature dependence
Ky (T /g (o) = 1 - 10/3 € + 35/9(1-0)e2(m(1))"%  4.28

where t = T/T and the reduced magnetization m(T) is as

c
given by the Langevin- Weiss formula

‘m(T) = coth (3m(T)/t) - ¢£/(3m(T)) 4.29

At low temperature the equation reduces to the 10th power
law but gives an increased power at higher temperature.
An equivalent expression for hexagonal crystals is given

by Carr (1958);

' 8 3 10
Ky (T) :4(K1(O) + %/5K,(0)) (m(T)) —8/7K2(O)(m(T)) +
| 4.30
or K (T)z K (0)(m(T))>
and . also Ko (T) = Ky(0)(m(T))'0 4 ‘ 4.31

The Kz‘dependence was consistent with the 10th—powef

law but equation 4,30 could not explain the change in
sigh_of.Kl(T) for Cobalt at abquf 500K and this was possibly
due.to thermal expansion effects. Temperature dependences
wereidérived on the basis Qf spin-wave theories, treating
the misorientation of siﬁgle spins in proximity to others

as péft of a cooperative temperature dependenﬁ excitation
by Pal.(1954),_Keffer (1955), Turov and Mitsek (1960)and
Hausmann (1970 ). Theée formulae show the standard 10th
,bower law and do not make any real change in the theoretical
predictions. Cooper (1968) gives a review of these spin-

waves calculations.




- 55 -

The above theories are based on cylindrical symmetry
of the spin direction about the magnetization axis.
Brooks (1969) suggested that the enormous anisotropy
in sQﬁé of the rare-earths, e.g. terbium and dysprosium
which have their easy axesin the basal plane, effects
axial symmetry of the spin distribution. In this case
spin precesshx1 is compressed into the easy'basal plane
whichZincreases the power fall-off of the basal plane
anisotropy and reduces the basal plane anisotropy;
Egami (1972) and Brooks and Egami (1973, 1974) following
a spin-wave theory, obtained a temperature dependence

of anisotropy:

s ) ((g+1) | (L(8+1)-4)
_,KQ(T)/KE(O) = (m(T))™" /%/(l—b(T)) . /2
4.32

and

o 0 0(8+1)/ Lt-1)/
KG(T)/KQ(0) = (m(T)) 3/(1+b(T) 2

4.33

where b(T) is termed the ellipticity parameter and is

related to the spin

2 2
| S % -8
b(T) = L * : 4.34

252
where ‘Sy and S, are the transverse components of spin
S.
At higher temperatures the spin precession becomes
more.symmetricalvand a normal power law is restored.
In ferbium at lower temperatures, (1-b(T)) is proportional

to m(T) and leads to




- K2(T)
2 o (m(1))? 4.35
’ O
K5 (0)
and ‘KZ(T) 36
« _ oc  (m(T)) 4.36
Kg(O)

These bower laws are theoretical and according to Cogblin

(1977), there is no definite experimental evidence for

them. In cubic crystals, K, requires AthAorder perturbation

caléulations by the spin orbit coupling of the unperturbed

energy-bands. Large contributions to K1 are expected. .

where there is band degeneracy which are rapidly reduced.

by raising the temperature. The temperature dependence

is tﬁus not immediately related to a power law but needs

to be computed by the direct methods of perturbation !

theory with the effect of temperature included by the

use of Fermi statistics. The Fermi distributibn is

smearéa out by alloying which introduces a mean free

path éffect (Wohlfarth;1980). Generally, magnetostrictive

effects are excluded from the theoretical analysis while

actuai measurements involve magnetostrictive contributions.
Rhyne and McGuire (1972) considered magnetoelastic

effeCtS in the anisotropy and obtained, in a single-ion

model ,

A

I

5/9 4.37

6
6(0)
"In a two-ion model, Callen and Callen (1965) have shown

that the temperature dependence has the general power
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law variation as given in equation 4.26. Van Vleck (1937)

showed that Kg depended upon a power of m(T) varying

from:2‘to 4 as temperature increases for a pseudo-dipole

interéction. In the pseudo-quadrupole interaction for

cubic materials for KZ the power decreases from 6 to

5 at higher temperatures. Considering the molscular

fiéld{along with pseudo-quadrupole interaction, a power

law of 10 decreasing to about 5 is found and is the same

as in equation 4.27. | |
| Yang (1971), combined single- and two-ion models-

and obtained expressions for Ky and K, hexagonal anisotropy

constants:
; "A HA " 2 A 2
Kl(j)/Kl(O) - E1Tg/p + £9Ig/p + 81 (m(T))" + gy(I5/5)°
4.38
and
hol hy, (Te;,)? 439

t 1]
The coefficients fé and h£ are derived from the one-ion

model While g!, g; and h; are from the two-ion msdel.

and fI frsm a combination of both. These relations

are claimed to be in agreement with the experimental

data of cobalt and gadolinium, but the significance of

this is not so convincing with the iarge number of disposable

parameters available.

4.3 Magnetostriction

' The magnetostriction of a material is a result of
the interaction between the magnetic anisotropy and exchange

energy and the elastic energy. Equation 2.20 gives the
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expression for cubic crystals. Amore precise expression
taking into account higher order terms is
RTINS g
+ hy (20,0, B, + 20,06B By + 2050, B3P1) + hy(S - 3
« g (04 + ogP; + a3 - 35 - 3)
+ hs(20,00050,B) + 20, G p)By + 2000407 Bsy)

4.40
whereCXand Pare the direction cosines of the magnetizatibn
and the direction in which strain is observed respectively
as defined earlier, and S = a%a% +a§a§ + d%“%. For
anisot.ropy Kq ‘negative,% in the h3 term is omitted (ChikazUmi,
1964). Mason (1954) obtained an expression for the magnet-
ostriction in the hexagonal matérials.

aljg = a0 a,p, + (o - a3)p,)°

It

+

2 2 2
By (0@ +a,Ry)° - (4B, - ,f)
2 2 2 2.2
2 2 2
3) + F0L3( 3)+Hd3p3(orlpl + 0(2(52)

2 2 2 2,2
+ TOASPL (0 Py + o)) + J(X3(1—b3) + KO3 pg 4. 41

S+

2 a2 2 2
EASp5(1-a 1-03) +Gp5 (1-%

oy

The contribution from the coefficients J and K is negligible
in the case of cobalt but they are neceséary for terbium.
The free energy of the system, to first order perturbation,
is of the form (Callen and Callen, 1965);
F:Fm+He+<Hme>+<Ha> _ 4.42
whe‘re-Fm is the unperturbed free energy of the spins system
Hga is the elastic energy associated with homogeneous
str'ai»nvcomponents S 2 ’Exy’eyz and sz and the average

xx’Cyy
of magnetoelastic energy Hme and magnetocrystalline anisotropy
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energy Ha are carried out in the unperturbed density
operator of the spin system. Equilibrium strains are
obtained by minimizing the free energy.

- The elastic energy may be written as

. ‘.‘ - '
- X Y ych ¥ gledghsi 4.43
PR i i i
where [T is a sub-group of the chemical point group for
. ]
the n-dimensions and E& "~ are the strain functions

(i =1,2,...n); j in the superscript represents two such

Mést complete results, on the basis of the group
theoretical representations for the allowed strain, have
been obtained in a series of papers by Callen and Callen
.(1963;'1965 and 1966). Magnetoelastic energy may be
written in terms of one- and two- ion magnetoelastic

r .

coupling constants BiJ and D

ij’

DYDY B';.,(f)e'i_’jkir’_j'(f)‘

£f I J,J J
-y 3 an (ngE'—JKer,g)
(f,g) T 33"

4.44
where.g?J are irredﬁcible hexagonal strains. Kri"j(S
and Kg}j(sf,S ) the Basis functions are one- and two- ion
spin polynomials of order ¢ . Superscripts[,j label the
irreducible representatioh of the crystal group and i labels

the basis function while f and g are lattice sites.

Minimization of this free energy with respect to




strain yielded the magnetostriction expression of order

£=2 for hexagonal substances;
al - «, ®,0,2 )\ ®,2 2,42 1
Aty AT 1-g)+)\ B ?\ (1 - g -3
N&¢,2.2, .2 1 ¥,2,1
AV MO & +)~ (E(px_Py (& ZE By X y

¢ )&l RO IPY, 4.45

whefe?\“’ and)\ 'O contain only two-ion coeff1c1e-nts
are related to the anomalous thermal expansion and are
independent of magnetization direction. %qfo is the
basal'plane strain whileikg’o is along the C-axis and they
are the same type of strain as of corresponding =2 modes..
)?’O’strains vary only with the magnitude of the magnet-
izatioﬁ. o, ¥ and € are the strain modes,o is dilation
in the basal blane<(><§’2) and along c-axis ()@;’2
preéering the hexagonal symmetry,¥ is the distortion
of the hexagonal symmetry into orthohombic (circle to
.ellipse in order 2) and € is C-axis shear. These modes
are illustrated in Figure 4.1 after Clakaet al. (1965).
The six magnetostriction éonstants are expefimentally
determiﬁed quantities. The equation 4.45 of-Clark et
al. and corrected by Callen(1968)'has been used
to measure the magnetostriction constant in the present
work.

Callen and Callen (1965) also gave an expression
for magnetostriction in slighfly differently defined

temperaturé and field dependent magnetostriction constants

%fg,k. as
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Fig. 4.1 The four possible magnetostriction strain modes in
L = 2 order for hexagonal symmetry arising from
o , ¥, and € representations (after Clark et al., 1965).
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Callen and Callen(1965) relatedkg’k magnetostriction to
equilibrium strains and to the stiffness constants.

The magnetostriction'constants of Callen and Callen,'
(1965) and those of Clark and Callen (equation 4.45)
were -shown by Coqblin (1977) to be related by the following

expressions;

}\O:_’O -3 ()\o_;1 - BN, 447
4,}\02&,0 i ?15 (Xxn v 2 ﬁ>\d21) 4.48
%2 - '—1—(){';2 - B3X,,) 4.49
_7_\‘;’2 - 213)\ o+ 23N ,,) | 450
)\8;2 _ | 4.51
PN N | | | | 4.52

Mishiama et al. (1976) derived a higher order formula
up to 2#4 which adds the following terms to equation

4.45
N4 1-B2) 602 + 3/5) A5 ‘*p (702-602+>/5)

N LoD @) +2B B OO Td-1)

&t B R ) (B ocz)(7az-3)
X “(8p, B AR (02-o2) - ) (o -60gaLl)

yxy X y
4.53
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The magnetostriction constants given in Clark and Callen
(Eq 4,45)Aand.intheextended higher order expression (Eq.
4.53) (Mishima et al., 1976) are related to the magnetostriction

constants of Mason's expression 4.41 as:
. 54
’

4§, b X0 2 340 34
N R N U D

2 NY,4 x,0 16,2 3oc;4 28,4
c= 50NN, D=\ ‘g>\1 +g>\1. "?{’-

3
' %0 2 o,k o4 13008
E=-Ay -2 ——?\ + TN - 2 A
3 3

’ o d ; 534
oS0, 2 %2 8)\ 1
| €0 1 7 11
G =AY - IN%2 L a4, €,2 | - D54
' 2 372" 7 80 H =2 e

654 X x,2 534
TSN B VERED W9 LD
o A 371 16 3
EERNRREIVERE S e ‘.5

Alstad and Legvold (1964) and Bozorth and Wakiyma (1963)
used a simplified magnetostriction expreésioh given by
Bozorth (19545 to répresent the magnetostriction of
gadolinium. The expresion is given as

2
30/ = N (@ P, + A B )° - P (X B+ AP
| vi 2 2
+>\B((1—az)(»1_ﬁz)' - (axBx +»°‘ypy) )
2,02
s Ao ((1-0,)Bo-B, (X B roLp )

+ 4)\D(){zaz (axBX * o"ypy) ' 4.53




The constants in 4.55 are related to those of Clark and

Callen used in equation 4.45 by Rhyne (1972) by
52
N7 = Aa A
)\?’2 = - L2 (XA +>\B)

2
;>\2 = _>\C

[

Birss (1959) gave another expresion for magnetostriction:

| 2 2 2
A =R, + RPS + (Ry + RyP)(1 -a])

¢ (RyOP, + Rg(o B +0(B)) (KB +&B )
4.57

Its magnetostriction constants are related to those of

Bozorth (1954) by Coleman and Pavlovic (1965) by
R, = )\,B |
Ry = >\c ‘>\.B

4>\D ‘7\C —>\A'

~
Il

and

4.4 - Temperature Dependence of Magnetostriction

" The temperature dependence of all magnetostriction constants

is chéracterized entirely by (i) the one—ion Lf(T,H),

(ii)jthe two-ion LfgtT,H) and (iii) the»isotropic\ffg(T,H)

correlation functions ( Cogblin, 1977). These functions

have been discussed in detail by Callen and Callen (1965).

Callen and Strikman (1965) have shown that for all the

renormalized collective excitation theories the one-ion

averages are the same functions of magnetization and

Rs = AxAg B




so one-ion magnetostriction coefficients can be expressed
as functions of magnetization. Callen and Callen (1965)
obtained a temperature dependence of the magnetostriction

constants of order ¢ in the one ion model as
A -1
A = A0 Ty (87m (T)) 4.59
In the paramagnetic region

A ¢
I€+%(X) —» m (T,H) 4.60

wherevx = £_1m(T).
The notation used in this section is the same as that
defiﬂed in Section 4.2.

At low temperatures

A

IQ+%(X) = 1 - [€(3+1)/2x)]+ e 4. 61
and m' = I - 1 - 2 4.6
/7 X ' f@+1)

Hence - I€+%(x) =1 - (£(¢+1)/2)(1-m) +..=m 4.63

The theoretical temperature variation is in good agreement
with the experimental measurements of cdnstants %f’z
and )6’2 for dysprosium by Clark et al. (1965). Their
results along with the theoretical temperature dependence
are Shown in Figure 4.2, |
‘The two-ion longitudinal correlation function in
the.thebry of mangetostriction which arises from the
modulation by the strain of spin interaction energies,
such as dipolar, péeudodipolar and exchénge energies,
£, (T, (Spz Sz - 386 - 5> 4.6
wheré.§ and_§g are spins of electrons in ion f and

g respectively. At sufficiéntly low temperature and
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Fig. 4.2 The magnetostriction coefficientsof dysprosium

of Clark et al., 1965 compared with the theory
of Callen and Callen, 1965. ‘




when f and g ions are close enough to be strongly correlated,

this function satisfies the 30(€+1) - power law, whence
3 <2 1 3

When ions f and g are sufficiently far apart, the spins
are iﬁdependent, then the power 3 of reduced magnetization
iﬁ'equation 4.65 becomes 2. The mz(T,H) temperature
Aepenaence is valid for almost all temperatures while

the:m3(T,H) dependence holds only at low temperatures’

for near neighbours.




CHAPTER 5

PREVIOUS STUDIES ON MAGNETOCRYSTALLINE ANISOTROPY
- AND MAGNETOSTRICTION OF Gd, Tb AND THEIR ALLOYS .

5.1: Introduction

The availability of high purity rare earth crystals
led to extensive systematic investigations into the properties
of these materials. The magnetic properties result from
an interplay of forces of comparable magnitude, e.g.
indirect RKKY exchange interactioﬁ, single-ion érystal—
fieIdAanisotropy , magnetoelastic effects and two-ion
anisotropy. One of the most interesting properties of
Th, lLike most other rare earth ferromagnets,ié the huge
.magnetic anisotropy éompared to the ferromagnets of the
iron group. The theoretical temperature dependence of
magnetic anisotropy involves values of magnetizatibn.

The magnetization of gadolinium has been studied by Ellioﬁ
et al. (1953), Graham (1963), Nigh et al. (1963), and
Feroﬁ-and Pauthenet (1969). Magnetization measurements

on terbium have been made by Hegland et al. (1963), Rhyne
et al.:(1968), Feron (1969), Roeland et al. (1975) and
Bagguléy et al. (1980a,b). The values for gadolinium |

and terbium alloys have been givenAby Nikitin et al.
(1977)'and Bagguley et al. (1980a,b). Very recently Corner
et al.(1983a) measured the magnetization of high purity
Gd, ‘Tb and their alloys at Genoble, France and his results
are very close to those of Bagguley et al. (1980a,b).

The values:used in the analysis of present work are those
of Corner et al. and are given in Table 5.1. The deri-

vation of magnetostriction constants of the ac and bc-plane
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TABLE 5.1

Temperature variation of the specific magnetization(}é

(emu/gm) of Gd/Tb alloys (after Corner et al., 1983a).

Pure Gd

Temp.
K
4.2

25.6
50.0
74.8

100.1

125.1

150.0

175.0

200.0

225.1

250.1

275.1

300.1

0]

271
270.1
265.8
257.0
248.0
236.0
224.0
210.0
196.0
176.5
148.5
110.0
0

90%

T(K)

4.2
25.5
50.1
74.7

100.1
125.1
150.0
175.0
200.0
225.0
250.1
275.1

Gd

0

277.0
276.0
271.4
263.5
253.0
242.3
229.5
215.0
198.8
178.5
150.0
100.1

70% Gd 50% Gd 10% Gd Pure Tb
K 0 TK ¢ TK ¢ TK O
4.2 289.2 4.2 302.2 4.2 320.7 4.2 329.0°
25.6 288.1  25.6 301.0 20.3.320.3 25.6 327.5
50.1 283 50.1 295.6  50.1 313.5 50.1 320.3
4.7 274.5 74.7 286.1  74.7 301.5  74.7 308.9
100.0 263.7 100.1 274.7 100.0 289.5 100.1 297.7
125.1 261.0 150.0 255.8 125.0 280.7
150.0 237.0 150.0 246.0 200.0 195.0 150.4 232.8.
175.0 228.0 220.0 150.0 200.0 196.5
200.0 202.5 200.0 205.5 240.0 - 0 210.0 171.9
220.0 183.6 220.0 181.2 260.0 O 220.0 136.5
240.8 158.6 240.1 148.2 | 230.0 0
260.0 118.2 260.1 69.8
280.0 0 280.0 O




crystals of the present work is based on the magnetocrystalline
anisotropy constants. The unspecified use of "anisotropy"
would refer to magnetocrystalline anisotropy. The terbium
and gadolinium binary alloys provides an insight into

the interactions respoﬁsible for anisotropic behaviour

in terbium. Gadolinium pure metal has a very small aniso- .
tropy compared to the very high anisotropy energy density
of~ferbium metal. The crystalline fields of gadolinium

and terbium are almost identical and the elements form .
continuous solid solutions. The presence of gadoiinium

in terbium would not be expected to change the single

ion contribution to the terbium anisotropy because of
unéhanged érystalline environment for each terbium ion.

Thus gadolinium acts as an ideal diluent for terbium.

5.2 4Maghetocrystalline Anisotropy of Gadolinium

The magnetocrystalline anisotropy of gadolinium
has. been studied by Corner et al. (1962), Graham (1962,
1963, 1967), Darby and Taylor (1964), Birss and Wallis
(1964), Belov et al. (1968), Tajima (1971), Tohyama .
and Chikazumi (1973), Corner and Tanner (1976) and Mihai
and_ Frénse (1976) by torque ﬁethods and from magnetization
curves by - Feron and Pauthenet (1969) and Feron et al.
(1970a;b). More recently Smith et al. (1978), using
high.purity single crystals produced results which may
be regarded as the most reliable currently available.
The disagreement between previous measurements of uniaxial

anisotropy is attributed to the impurities particularly

the oxygen content. Smith et al. (1977) found that
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inclusions of non-magnetic impurities affected the measure-
ments_of the first anisotropy constant and the easy direction
of magﬁétization'significantly in gadolinium. The temperature
depéndehce_of the first three magnetocrystalline anisotropy .
constants for gadolinium as defined in equation 4.6 is shown
in Figure 5.1. The anisotropy energy surface, constructed

on fhe,basis of equation 4.6 at various temperatures is

shown in Figure 5.2a and b. The temperatﬁre dependenée

of aﬁisotropy constant K, was found to be associated Qith
singlé— and two-ion mechanisms, K, on single;ion mechanism
only and Ky, followed the 2lst-power law with respect to
reduced maghetiZation.

5.3 'Magnetocrystalline Anisotropy of Terbium

Measurements of magnetocrystalline anisotropy of

Th are extensiveé and have been made by Rhyne and Clark
(1967), Bly et al. (1968), Rhyne et al. (1968), Du Plessis
(1969), Feron (1969), Wagner and StanfordA(1969), Feron

et al.;(1970a,b), Shepherd (1976), Birss ét al. (1977a,b),
Nikitin ‘and Arutyunian (1979), Birss et al. (1981) and
Corner (1983b). The various techniques used to determine
magnétic anisotropy constants include torque magnetometry,
analysis of magnetization curves and magnetostriction
co-efficients, rotating sampie magnetometry and ferro-
magnetic resonance. The table 5.2 shows the quoted values
of magnetocrystélline anisotropy of Tb along witﬁ the
‘'method used to obtain them.

The temperature dependence of the first anisotropy

constant Kg studied by Rhyne and Clark by torque.
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Anisotropy Constant (104 J m-3)

-10 1 1
100 - : 200 : 300

Temperature (K)

Fig. 5.1 The first three anisotropy constants
| of gadolinium (after Smith (1978)).
Experimental points were measured ét 101 tesla, and

the dashed lines represent "infinite-field" values.




| Temp. (K) Method - value (3 m™%) _Author(s) - Dats|
0 . -Torque - - 55 x_AoN_ - Rhyne & Clark awmq
© 80 e , 46 x 107 - be .
H_a.w;_ , . _.3mo:mnwmmnwoaﬁi . ) u.m.x_dow. Rhyne et al. 1968
0 | Torque (Paramagnetic Extrapol'n)| = . 27 x 107 -{. . DuPlessis 1969
0 Magnetisation (565 + 1°10) x 107 Féron s
80 T, 3+5 x 107 L, -
0. .ﬁouwoawoaonwn nmoo:m:nm. 3e1 x 107 Wagner & Stanford ’s .
v 0 ‘Magnetisation - 35 x 107 Nikitin & Arutyunian{1979|
D 0 ys | T(0va6 + o.anvqx 107 Féron 1969
s 80 - . 025 x 10 v v
k6 o Magnetostriction 2+42 x aow Rhyne & Clark 1967
’s - 80 ) ' 069 x 10 'x) | ’s
s 0 Torque 2+44 x 10° Bly et al. 1968
’) 80 ' 10 x dom S | KX
., 0 s 2¢9 x 10° DuPlessis 1969
.\4 0 Magnetisation (185 + 0°18) «x 10° Féron ’s
.nn 80 29 ' | 10 x 10° | ar- . .ﬁ
ve LD R.S.M. 2°96 x.10° Birss et al. 1977}
» 80 0°9 x 10° IR
., 402 Torque 3+5 x 10° Nikitin & Arutyunian|1979
e 78 ’h 0:92 x 10° ,s ys

Table 5,2, Values of the Anisotropy Coefficients of Terbium.

g9
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magnétometry follows the/fs/2 single~ion variation as
prediqted by Callen & Callen (1966). The results of

Feron from magnetization curves also fit very well with
the single-ion model. There is discrepancy between the
temperature dependent behaviour of K66 = K4 as reported

by different authors. The results of Feron, Rhyne and Ciark
(1967) and Bly et al. (1968) follow a ?9/2_?5/2 dependencg
which is purely of magnetoelastic origin on the model

of Rhyne and McGuire (1972), while those of Birss et

al. (1977a,b) are in good agreement with a single-ion model
and follow an ?13 /2 1aw; These results are shqwn in

Figure 5.3A and B.

5.4‘Magnetocrystalline Anisotropy of Gd/Tb Alloys
A;Magnetocrystalliﬁg anisotropy constants of various

Gd/Tb alloy compositions have been measured by Tajima

and Chikazumi (1967b), and Tajima . (1971), Nikitin and

Arutyunian (1979), Bagguley et al. (1980a,b), Hawkins

(1982)3 Corner (1983b)and Paige (1983). Bagguley et

al.'uéed a different method, microwave resonance techniques,

to determine the anisotropy‘constants. The anisotropy

was .measured dﬁring an oscillation of local magnetization

vectorsvin an effective field. The dynamic nature of |

the Egéhnique resulted in fundamentally different anisotropy

values in some cases. Corner derived the anisotropy

constants Kg from the magnetization curves assuming that

(o]
Kg

and higher coefficients in the uniaxial anisotropy
te
expression are zero. Nikin and Arutyunian also found

higher order constants negligibly small. The comparison
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between the existing data is illustrated in Figures 5.4,
5.5 and 5.6. The values of the constants are expressed
in a single convention for direct comparison. Some of
the”diffe?enceé'in the results may be due to different
techniques. Tajima accounted for the differences in

his values and those of Rhyne and Clark (1967) by a coﬁ— 
bination of three effects, (i) that his inclusion of -

KZ and Kg constants (which were ignored by others)
.could reduce the pure Tb results by 10%, (ii) that the
values of the.c/a iattice parameter ratio are different

in pufe Tb and in its alloys, and (iii) higher
magnetostrictive effects in pure Tb than in the alloys.
The results of Feron (1969) disagree with the first reason as
he included KZ ‘in the calculations; this is consistent

with the orthagonal ~ nature of the constants. The
coefficients of the anisotropy of terbium Qould be expected
to be linear with the Tb concentration in the Gd/Tb alloys
if the origin of the anisotropy of Tb is of a single-
ion'natufe.' The recent work of Corner (1983b)shows a

fair agreement With the single-ion model. The temperature
dependence of Kg for 90% Gd/Tb follows ?5/2 (single-

ion) whilé Kg for the same alloy includes a fraction
of‘two—ion contributions in addition to the ?13/2 single-
~ion variation. Kg for 79% Gd/Tb seem to follow an m3 power
law while for 25% Gd/Tb annf‘power law is found. The
temperature variations of Kg for Gd, Tb and their alloys

is given in Table 5.3. These are the values used in
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TABLE. 5.3

Temperature variation of the Magnetocrystalline

anisotropy constant Kg (107 J m™3) for
Gd/Tb alloys (after Corner 1983b).
- 90% Gd 70% Gd 50% Gd 10% Gd Pure Tb
T(K) = K T(K) 'K‘z’ T(K)  KJ  T(K) KS.  T(K) K9
0.0 .258 0 0.97 0 2.1 -0 5.0 . 0 5.87
20.0 .256 4.2 0.966 20 2.08 4.2 4.9 4.2 5.86
40.0 .249 25.5 0.934 50 1.94 . 20.4 5.03 -25.7 5.83
50.0 .241 50.1 0.878 70 1.78 50.1 4.66 50.1 5.33
70.0 .223 70.0 0.80 100 1.50 74.7 3.92 74.7 4.6
100.0 .196 100.0 0.66 120 1.40 100.4 3.33 100.1 3.96
120.0 .176 120.0 .57 150 1.00 125.0 2.74 125.1 3.16
150.0 .144 150.0 .43 170 0.81 150.0 2.08 150.0 2.27
175.0 .124 175.0 .33 190 0.62 175.0 1.51 175.0 1.55
200.0 .096 200.0 .23 200 0.52 200.0 0.92 200.0 0.84
220.0 .074 220.0 .15 240 0.16 220.0 0.86 220.0 0.38
250.0 .04 |



the calcu1ation of the bc and ac plane magnetostriction
conétants. The temperature variation of the existing
data. of anisotropy constants for Gd, Tb and their alloys
is, over all, in favour of the single-ion nature of the
anomalously high anisotropy of Tb.

5.5 Magnetostriction of Gadolinium

Gadolinium has L=0, so there is no total orbital
momentum contribution to the total moment. The magnetjzation
curves are characteristic of its almost isotropic ferro-
magnetic behaviour. It has the lowest saturation magnetization
value at absolute zero, 268.2 emu/gm = 7.55PB,in the N
series Gd-Er due to the s—state character of the ion.

The é-state character also rules out a single-ion anisotropic
contribution to magnetostriction. Its magnetostriction

is small compared to the other rare earths with large
sidgie—ion contributidn. The two~ion origin of the magneto-
striétion of Gd makes it difficult to predict théoretically
Sits témperature dependence. The magnetostriction of

Cd hés.been studied by Belov et al. (1961), Bozorth and
Wakiyama (1963), Alstad and Legvold (1964), Coleman (1964),
Coleman and Pavlovic (1964), Belov et al. (1968), Bartholin
and Bloch (1969), Bartholin (1970) and Mishima et al.
(1976). The lattice parameters of Gd were studied by
Banister et al. (1954), Darnell (1963a},and Darnell and
Cloﬁd-(1964). Bozorth and Wakiyama and Alstad and Legvold
ﬁsed‘the simplified expression for magnetostriction (4-55)
with only four independent coﬁstants 7\A’>\B’>\C and)\D

of drdor { - 2 and determined these constants by the strain




(107 JIM*)

K,

rig 5.4 K, AND K, VS COMPOSITION AT 0K FOR Tb,.Gd,,

ALLOYS: COMPARISON

1

10

1

‘X BAGGULEY ET AL.

+ CORNER

b DUPLESSI1S

O FERON

e NIKITIN AND >mcq<czu>z
v RHYNE AND CLARKE

o RHYNE ET AL.

© WAGNER AND STANFURD

e PAIGE

D_l

°o—@

% Tb

100

(A¥TER PAIGE,

1983)

(10° J/M°)

K,

X BAGGULEY ET AL

® BIRSS ET AL.

O BLY ET AL,

4 CGRNER

D DUPLESSIS

a FERON

e NIKITIN AND ARUTYUNIAN

¥ RHYNE AND CLARKE (a- &. uuwx»wv
< PAIGE

FX—0— 4

<0

100

'Ll



FIG55 K. VS

TEMPERATURE FOR Tb,Gd,. ALLOYS: AFTER PAIGE (1983)

11 1 o
0 -~ po_
o .
10 ~a PURE TERBIUM DATA
_ e ¢ CORNER
o D DUPLESSIS
9 o O FERON .
I Rt 'y @ NIKITIN AND ARUTYUNIAN
. ~~ o, ¥ RHYNE AND CLARKE
\ N . A o RHYNE ET AL.
8 - A N ‘a . A : © @ WAGNER AND STANFORD'
~
~ .
o mel 0% RN ° PATGE
® -~ I/ﬁOAZ R t/
\N . ~ ﬁ.b\ ﬁ /D
om— r»lll V - // q/ N
no e M\u Th \ N N e U
M T v:@I\MﬁvO.t-. - /I AN
lllﬁu N . N N\
|IJ 0 - e LIRS ’/ /./
~ - // ///;
o i //,b/, g~
Hu\ m ] “lllll /Iful.l
o . //I N :I#r/u'
d ~. ~xn
- /,9 ///4/
< 4P RSURRNN- N,
. I///W/// :l,:l
/0///m/ 1/,
> So% o , Y-SR
x.ll Tt m\”’d-lf'ﬁmusCPM(v ’ ”1’/’“/ //
. . lllllllllr ~ /..m o
2 S %,
0 - 35% To (8Accuiey)
a .
0
0

TEMPERATURE (K]

Qil




10° M)

K.

K. VS TEMPERATURE FOR Tb.0Gd,.,. ALLOYS;

A (AFTER PAIGE, 1983)

\ A i
y . Fig 5.6
v &+ _
N\ ‘\
v\ \
v \
A\\‘\ !
A N
\\- \ \
\
Vv ok |
Vo : - PURE TERBIUM DATA
AT
Vo " 4 BIRSS ET AL,
AN U O BLY ET AL.
: Vo ) DgpLsssxs
| 4.9 AR © O FERON
*"‘O}J",(c NRR ® NIKITIN AND ARUTYUNIAN
o N & \A‘\ - ' A RHYNE AND CLARKE a-AXIS
NSNS N ! v RHYNE AND CLARKE. b-AXIS

RSN o PAIGE
g

TEMPERATURE (K]




gauge technique. These four magnetostriction constants
are related to those of Clark and Callen's expression
(4.45) by the equation 4.56. The results of Alstad and
Legvold‘(1964) are shown in Figure 5.7. The results

of Boéorth and Wakiyama are very similar to thése. A
marked change in slope of)\A was observed where the easy
direction of magnetization tilts away from ¢-axis. The
temperature dependence is different from that of the
single%ion model. The change in sign in O\A _>\B) =)\K

is an-effect of two-ion origin. This reversal of sign
in )\X before Vanishing is in agreement with the méasure—
ments of other authors. . Coleman -and Pavlovic (1965)

have aiso studied the temperature dependencé of magneto-
striétion using another magnetostriction expression (4.57)
in tefms of exchange magnetostriction constants‘which
are'independent of magnetization direction and depend
only on the magnitude of magnetization. These constants
are rélated to those of Bozorth (1954) by equations 4.58.
Callen:and ‘Callen (1965) have fitted the experimental
valués.of 7\¥ determined by Coleman (1964) by an

expression having single-ion and two-ion contributions

Al - 351 x 10731 ) (£ (m))-243 x 107n” 5.1

where the Symbols have their usual meaning as defined
in eduntion 4.22. The fit is remarkable for the entire

range of temperature.

' The results of the measurements of forced magneto-
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Fig.45.7 Temperature dependence of the four t = 2 order
anisotroypic magnefostriction contants for gadolinium

(after Alstad and Legvold, 1964).
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strictibn by Bozorth and Wakiyama (1963), and Coleman
anleavlovic (1965)'along with the theoretical esfimations
of Tonegawa (1964) based on the model of Yosida and

Watabe (1962) are shown in Figure 5.8. The forced magneto-
striction is approximately linear to the field strength
and is independent of magnetization direction. The results
in field strengthsabove 10 kOe, free from ordinary
anithfopic magnetostriction‘CKA,7\C), show that expansion

)ﬂllmeaéured parallel to the C-axis is aboPt 20 times the
contréction 7\L measured perpendicular to the e;axis,

- Saturation magnetostriction measurements by Mishiama

et al. (1976) are shown in Figure 5.9. They determined
‘the constants by Fourier analysis of the saturation
magnetostriction and included higher order terms up

to order 8'111'%§’e> to explain the experimental results.
Theifxnmted values arelgiven in table 5.4.

5.6 Magnetostriction of Terbium

'Terbium has total orbital moment L = 3, spin S =
3 and J =L+ S =6. It has basal plane anisotropy, the
_ig—axis being the easy axis, the A-axis is a hard axis
in the basal plane and the C_axis is the hardest axis. .
The.single—ion interaction leads to phenomenally high
magnetic anisotropy and giant magnetostriction. The
field fequired to magnetize terbium along the C-axis
is of the order of 100 tesla (Legvold, 1980). Magneto-

striction measurements on Tb in magnetic fields up to

15 kOé.for temperatures above 80 K were first reported

by.Nikitin (1962). Darnell (1963a,b) measured the lattice
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'Fig. 5.8 The temperature dependence of the forced niagnetostriction

coefficients of Gd,)\"a.nd >\..L' parallel_ and perpendicular to
the 'c‘:faxis respectively, o represents the results by Bozorth
and Wakiyama (1963), —— by calculation of Tonegawa (1964),
and -~-- those by Coleman and Pavlovic (1965).
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TABLE 5.4

‘Magnetostriction coefficients at zero Kelvin in units of
1073 (after Legwid, 1980).
o,2 2 2 36,2 3,0 1302 y®,0 130,2 3,4
Element \ 13 )\29 )\v3 )\ ’ )\13 _% ]’. >\23 __1/3)\123 K ’

Gadoliniun®) 0.14 -0.13  0.11  0.02 _ _ _

Terbim®  —2.65) 9.08) 8.7  15.0° 0.8 4.3 2.1
Dysprosiumb)_ - - 9.4 5.5 -2.0 7.3 1.
Holmiumb) - - 2.5C) - -3.9 7.1 -
Erbium®’ - - o519 L 003 6.2 .

TABLE 5.5

Magnetostriction constants of Gd/Tb alloys at OK in units

of 10™% (after Joraide, 1980).

SR LI G AL ok
95%Gd - 5% Tb 3.22 | 1.55 2.8
80%Gd - 20%Tb 5.5 - 3.6 0.65 6.4
50%Gd - 50%Tb  14.4 - 10.7 1.15
25%Gd -

70%Tb 25.3 - 16.6 27.6

(a) After Mishima et al. (1976).
(b) After Rhyne (1972).

(c) Extrapolated from paramagnetic range using single-

ion theory.
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Fig. 5.9 Magnetostriction constants of gadolinium as functions
of temperature (after Mishima et al., 1976).
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parameters of Tb by X-ray techniques and deduced the
thermal dependence of the magnetostriction coefficients
between 77K and room temperature. Magnetostriction and:
forcedvmagnetostfiction for the same temperature range
have been measured by Du Plessis (1969a,b) and Du Plessis
and Alberts (1965, 1968). Rhyne and Legvold (1965) have
méasured the magnetostriction of Tb over the wholé'range
of témperature of‘magnetic ordering in applied fields

up to 30kDe by strain gauge methods. Darnell (1§63)

and Rhyne and Legvold (1965) used the expression fér
magnetostriction (4.41) derived by Mason for a hexagonal
system with the assumption that the magnetic hqment remains
in the basal plane. The coefficients A,B,E,F and J in
this expression correspond to order { - 4,.while the

other éoefficients correspond to 8-0and &= 2. The
most complete and accurate measurements of coefficients

A and- C by Rhyne and Legvold (1965) are shown in Figure
5.10. The temperatufe dependence fits very well with

the fheorétical temperature variations predicted by Callen

and Callen (1963) given in equations 4.59 i.e. A follows
N

L9/2 , ‘
dependence of forced magnetostriction, which is a field

N -
(£_1(m)) and C follows 15/2 (£ Lm)). The temperature

dependence of linear magnetostriction expressed as ~(5Q/Q)/5H,
in the %, b and © directions for Tb in magnetic fields
‘up to 30kOe parallel to the %—axis is shown in Figufe
5.11. It shows maxima around the Neel temperature.

The_vélues near the Curie temperature are field dependent

and do not represent true saturation forced magnetostriction.
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Fig. 5.10 Temperature dependence of the magnetostriction constants
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Fig. 5.11 Temperature dependence of forced magnetost:iction of Tb,
' ' field parallel to the ‘beaxis .

(Both figures are after Rhyne and Legvold, 1965)
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Du Plessis used the Clark and Callen expression (4.45)
to Qetermine the magnetostriction constants. The temperature
dependénce of )3’2,)~2a"2 and €,2 observed by Du Plessis
fitsHQery well with ls/z(ﬁ—l(m)) over the whole temperature
range except for )f’z near the Curie temperature for
measuréd values smaller than 2 x 10_4. His results,

which are similar to those of Rhyne and'Legvold are shown
in Figure 5.12 a,b. Bartholin et al. (1970, 1971) cal-
culated the spontaneous magnetostriction which fits Better
witthhyne and Legvold than Darnell. Finkel and Belovol
l1973, 1974) also investigated strains of polycrystalline
Tb -and Dy with X-ray diffraction techniques and the changes
in the a and b directions are directly comparable with

the results of Rhyne and Legvold. Their‘épplied field

of 3T waé insufficient to produce a single domain in

Tb bélow 40k due to basal plane anisotropy of Tb. Martin
reanalysed the results of Rhyne and Legvold to allow

for the multidomain nature of the samples. As a result
the vélues of A and C changed slightly and are in reasonable
agreement with measurements of Keeler and Pearson l1978) in
a field of 4T using a capacitance technique. Houmann

+
et al. (1975) found that C follows m2.42-—.04 while A

follows _m7'5 .15 with temperature. The difference
betWeen the expressions and the larger power of reduced
magnetization is suggested to indicate the two—ionhcon—
tributions. The extrapolated values of various magneto—
strictlon constants at OK for Tb after different authors

are given in Table 5.4 along with those of Gd.
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5.7 Magnetostriction of Gadolinium and Terbium Alloys

1Térbium is an f-state element exhibiting strong
aniéotropy and high magnetostriction. On the other hand
gadolinium being an s-state element has weak anistropy
and magnetostriction. Gadolinium and terbium form continuous
solid solution with each other with hexagonal closed
packed structure. The Tb-Gd alloys have an antiferro-
magnetic helixphase between the para- and ferromégnetic
phaSesvonly for Gd concentration less thané at. %, and
show a direct transition from the paraﬁagnetic to the
ferfomagnetic phase for the remainder of the alloy series
(Fujiwara et al., 1977). The fermi surfaces of Tb and |
Gd are quite close in their structure (Taylor and
Darby 1972). Gadolinium thus acts as an ideal diluent
to Study the single- and or two-ion behaviéur of Tb metal.
The magnetic properties of the rare earths have been
studiéd extensively, but there are not many magnetostriction
measuréments on particulaf Gd-Tb alloys. Nikitin et
al. (1977) investigated magnetic, magnetostrictive and
electric properties of single crystal terbium-gadolinium
alloys. They measured the'spontaneous magnetostriction
defbrﬁétions)\éc along_the C-axis and)\ob along the %—
axis using strain gauges by subtracting the phonon part
of the‘therﬁal expansion (AQ/Q)ph from the experimental
(ng/[fl and (Aﬂ/e)l curves measured in the magnetic
field along the easy axis of magnetization. The phonon
part. for each alloy was obtained from the thermal expansion

curVes of non-magnetic lutetium with correction for the




change of Debye temperature assuming that the largest
elongatlon AQ/Q)ph is a universal function of T/GD,

where GD is the Debye temperature. )}3 was obtained
from the difference between the longitudinal and the
transverse magnetostrictions in the basal plane. The
constants )}32 and?\ob decrease linearly with increasing
gadélinium concentration as would be expected for a single-
ion ﬁodel. The constant)\oc varies diffefently with
change in concentration. With increasing gadolinium
concentration, it remains constant up to about 50% gado-
Iinium; then decreasés, has a minimum in the region 60-
70% Gd and finally increases rapidly afterwards. Their
results are shown .in Figure 5.13. These magnetostriction
conStants used by Nikitin et al. are linear functions

of those of Clark and Callen's (Nikitin et al. (1976))

as follows: :

Na =M ¢ 3R |

= 1y,

%b =§\§‘:° QX"" > o

M&asufements of various magnetostriction constants
fér,terbium gadolinium alloys were also made by Joraide,
(1980) by rotating magnetization with respect to
crystéllographic axes using resistive strain gauges,
at the University of Durham. The magnetdstriction constants
of order {= 2 of the Clark and Callen expression 4-45
were. measured for four alloy compositions in magnetic
fieids up to 13 Tesla in temperatures ranging from liquid
heliﬁm to room temperature. -The observed temperature

variafion of )g,Z for the alloys is shown in Figure 5.14.
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Temperature variation of magnetostriction constants,
curve 2 and 3 represent spontaneous magnetostriction

along b and ¢ axis respectively (after Nikitin
et al., 1977a).




The magnetization values used were obtained from the
intérpolated curves between magnetization of Tb after
Hegland et al. (1963) and Gd after Nigh et al. (1963).

The temperature dependence of Kx’z does not seem to follow

a single-ion variation particularly at lower Tb concentrations.

The fit with a single-ion mechanism does improve towards
the Tb rich end but does not cover the entire temperature
range even at 75% of Tb. The coefficientk‘zx 2 does

not ithcrea‘se much up to 50% of Tb but quite significantly
for 7'5% of Tb. The temperature variation does seem to
follow the single-ion dependence very well but for 75%
of Tb the fit is excellent. The temperatﬁre dependence
of )\o;,z for alloys is shown in Figure 5.15. Similar

curves forxf"z and )\6’2 are shown in Figure 5.16 and

o2

- 5.17 respectively. The value of >\1 was observed

to vary linearly with the alloy composition while the
other constants varied in a roughly exponential manner.
The temperature variation of )\20"?; )\10"2 ahd xe 2 was
not capable of being well represented by any simple theo-
retiéa_l model. The alloy containing 507% Tb showed a
better fit with a model containing contributions from

both single- and two-ion mechanisms. The temperature
dependence of )\6’2 does not fit to aﬁy theoretical models
for 5% of Tb alloy but for 20% of Tb the fit is reasonable
with the model containing both single- and two-ion con-

tributions. The extrapolated values for these constants

at O K are given in Table 5.5.
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in the model for the determination of the above
magnétostriction'constants Joraide (1980) assumed, from
the saturation observed for these constants against
increaging applied field, that the magnetization waé
following the external field and was continuously rotated
thréugh 180°. This made the derivation of the constants
possible from the amplitude measurements of the peak
to peak variation of the strain observed. The assumption
that the magnetization follows the field closely is
reasonable in the.case of the )?’z,conétant where
rotation is confined to the basal plane. The very high
anisbtropy of the terbium gives cause for justifiable
doubts about the validity for rotation in planes containing
the Ganis.v Thevcalculation of magnetization angle with
reépect to the applied field from the anisotropy Valués
shows that the magnetization is only pulled a few degrees
out of the-basal plane for alloys close to the terbium
rich end and it never passes through the C-axis for the
available fields. The saturation observed might be due
to.aﬁchoring of the magnetization after a few degrees
rotation from the easy axis and the increase in the strength
of'the field was not enough to cause further rotation.

'To understand the real mechanism of the interaction
of fhe terbium ions leading to the giant magnetic anisotropy
and magnetostriction it is important to study the temp-
eraﬁufe dependence of these phenomena. Magnetic anisotropy
has been very recehtly and extensively investigated by

Hawkins (1982), Paige (1983) and Corner (1983b) at Durham
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in addition to previous work by the other researchers.

The magnetostriction measuremenets made by Joraide (1980)

do not cover the entire range of alloy composition. In

the stuay of the temperature dependence, the terbium ions
should be gradually diluted with gadolinium ions in order
toidifferentiate between the various possible theoretical
interactions. The temperature dependence of magnetostriétion
)\VT)/)\(O) of Tb-Gd alloys has not been established by
Nikitin et al. over the entire range of the alloy composition.
It was thought desirable to complete the study over the
wholé range of alloy composition. It was also thougﬁt
necessary to remeasure the )\o: »2 and)\zd 2 .constants
using magnetization directions rather than applied field
ones.for the reasons pointed out earlier. Study of the
90%-Cd'— 10% Tb, the intermediate composition, was also
needed to investigate further the anomalous behaviour of

7\2°¢’2 constant reported by Joraide for the 80% Gd -

20% Tb specimen.




CHAPTER 6

EXPERIMENTAL TECHNIQUES AND APPARATUS

6.1 Determination of Magnetostriction Constants

- The magnetostriction constants of order e = 2 were

measured using the expression of Clark and Callen (4.45):

' 6,0, 2. 3,02 NOL2,, g2v w2 1. 3%,22,.2 1
&z{= =B s s AP @ - ) NG CE

201 02 o2y 2 2 2
| )3‘ [aegpy) @-a) v 2B pod ]+ 0% + BK RO

where thea's and P's are the direction cosines of magnet-

ization and of strain respectively.

6.1.1 The st&nt?@z

To find the )5’2 constant, strain was measured along
A
the. b-axis of the basal plane crystals. The direction
cosines then have the following values when the magnetization

A
lies at an angle of © to the b-axis,

a, = sin® P, = 0
oy = cos8 and p& = 1 6.1
= 0 Rz = 0

oy
Substituting firstp's and then a's in equation 4.45, yields

equations:

Sy o (04 M 2
Ay =AT? APl - D - NPl - ad) 6.2

and ‘
ol X | .
>\b = 1’0 —.%)1’2 - % %:2(sinZ6 - cos?0)
x,0 117&,2
:?\1 - 3-11 + cos26 . : 6.3

’ A
Now if the magnetization is rotated from the b-axis to

the orthogonal g—axis, i.e. from 8 = O to & = 90° then
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the constant )?’2 can be derived from the difference

of the strains

NS 6=90 2
A - Ap - N\ 6.4

6.1.2 The Constant )\01(’2

If the strain is measured along the a-axis of a
. . ~
crystal with the disc plane perpendicular to the b-axis,

then the strain direction cosines are:

B = 1

B, = O ,
B, = O 6.5
and we get:
A 3,0 NK,2, 02 1,2, 2 2
”)\a =AY (o - 3) + 5@ — ozy). : 6.6

The magnetization in specimens, other than the basal plane
ones, does not remain in one plane throughout the rotation
pfocess. If the initial applied field lies along the
g;axis and is strong enough, the magnetization will lie
along the a-axis. If this field is now rotated towards
the E-axis its component in the a-axis direction will
decrease. The sample will split into two sets of domains
in each of which the magnetization vector will rotate

in the basal plane towards the immediately adjacent %f
axés at 30° on both sides of the original a-axis because
of the large basal plane anisotropy. There will also

be a rotation of the magnetization towards the E—axis,

indeed both changes will take place simultaneously, but
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their relative importance will depend upon the terbium
cbhcentration, the temperature and the applied field.

The 'shape anisotropy makes the alignment of magnetization
albng the %—axis perpendicular to the plane at the disc
eﬁergetically unfavourable. We assume that the magnetization
liéS along an arbit rary direction making an angle © with the
C-axis and that its basal plane projection makes an angle

# with the 3-axis. The direction cosines of magnetization

are, then;

a, = sinb cosgl
o, = sin® sing 6.7
X, = CcosO

The substitution of &’s gives an expression which can yield
chx,Z by observing the change in strain for rotation
of magnetization from an angle of 90° to the C-axis to
an angle O:
>\a =)\°1(’0 + )\?’Z(COSZG - %)+%>\U’zsinze(coszsz{—sinzsé)

. 6.8
For B  along a-axis, 6 = 90°, ¢ = 0 and for B  parallel to

the'g-axis, # = 30 and M makes an angle © with the C-axis.

Hence

A0 8 - W Zeos?e 2 -k sin®es 4

6.1.3 The Constant §L2

This constant is determined in a similar way to constant
. : A . :
7\2“"2but measuring the strain along the c-axis for the

bc or ac plahe ¢rystals. Then the direction cosines

of the strain are,




X
I
o

0 6.10

g =1

and the magnetostriction expression becomes

P
I

®x,0 &,
ANe =N +)A5 2(012 - %) . 6.11

Substituting the direction cosines of magnetization as

given in 6.7, we have

o _
>\c =>\2’0 +>\%’2(cos26 - %) . 6.12
Hence for the rotation of magnetization from an angle

of 90° to an angle © with the C-axis

AL - = A eos" 613

where © is the angle of magnetization with the C-axis. M
is along the applied field B,- A detailed discussion
for the case when M does not lie along B, follows in
C‘ﬁapter 8, in the derivation of constants)\f{"2 and XZOL ’2.

6.2 Method of Measuring Strains

The deformation of the crystal can be measured by
a variety of means. The most commonly used methods include
X-ray diffraction, resistive strain gauges and capacitative
trénéducers. Measurement ‘techniques at very low temp-
erature and in high magnetic fields are usually limited -
byiépace. Bﬁlky X-ray equipment cannot be used con-
veniently and the capacitance method also has operational
difficulties at low temperature. A method using resistive

strain gauges seemed the most appropriate technique for




the‘present work. It is simple to use and has been very
commonly employed to measure magnetostriction siﬁce it
was introduced by Goldman (1947). This method also has
some inherent sources of errors, (i) the magnetoresistance
effect; this effect has been reduced to a negligible limit
by the use of Karma gauges, (ii) misalignment of the gauge
with respect to the desired direction; with a little
skill and careful fixing of the gauge it was found possible
to achieve an accuracy of alignment within one degree,
(iii) the uncertainty in the gauge factor, the value of
tﬁe gauge factor quoted by the manufacturer was previously
checked by Joraide (1980) and waé found reasonably accurate.
Moreover the uncertainty in the gauge factor is very small
vand causes no significant error in the measurement of
veryllarge magnetostriction like that of Tb, (iv) it is
an indirect method and depends upon the bond of the adhesiQe
between the gauge and the specimen, (v) the adhesive used
to hbld the specimen causes some restriction to the free
magnetostrictive deformation of the specimen. Its effect
is minimized by the use of cotton wool pads placed on
both sides of the specimen.
6.3  Specimen

 -'The spécinenswere produced at the Centre for Material
Science, University of Birmingham. The Gd and Tb metals
were purified by the solid state electrotransport technique.
The‘Single crystals of various alloy compositions were

then grown by melting the parent metals in the desired

ratio. Suitable grains were selected in the ingot and
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the single crystals in the form of discs about 5mm dia.
and 1mm thick were cut with disc planes perpendicular
to 4-, b- and C-axes by electrospark errosion under
pafaffin.

6.3.1 Specimen Preparation

" The specimens were polished mechanically with grade
6M 3 diamond lappingvcompound for about half an hour followed
by“polishing-with grade 1M% compound using dialap fluid
for the same length of time. The specimen holder assembly
of the polishér was degreased withethanol. before changing
to a lapping wheel carrying IM% compound. The specimens
were then chemically polished in 50% nitric acid and 50%
acetic acid for 2 to 4 minutes. The chemicai reagent
waé-kept stirred throughout the polishing and the specimen
was immediately given a thorough wash in dry acetone.

'>6.3.2 Specimen Orientation

The back reflection Laue method was used to find .
the orientation of the crystallograhic axes of the specimen.
The polished specimen was fixed on a brass holder ( Figure
6.29) with Durofix and was mounted on'a two circle goniometer.
Tﬁe position of the edges of the brass specimen holder
wefe noted with respect to the vertical axis of the gonio-
meter with the help of a travelling microscope. White
X-rays from the Mo anode tube which have minimum absorption
coefficient for Gd and Tb were used. The series of Laue
spots from Ehe X-rays reflected by the specimen were photo-
graphed by a simple polaroid cassette camera with an

intensifying fluorescent screen. The camera was placed




. between the radiation source and the specimen. The film
uééd was a 57 high speed polaroid film. The distance

of the film from the specimen was kept ét 3 cm. A preliminary
picture was taken with 25mA and 40kV setting of the X-

rays generator with exposure time of 10 minutes. The
centre of symmetry was brought to coincide with the centre
of the incident beam by turning the crystal about vertical
axisland tilting the disc plane towards or away from the
beam so that the axis perpendicular to the disc plane

Qas parallel to the incident radiation. The final Laue
pattern was recorded with 25mA and 30kV settings for .20

to 30 minutes exposure time. The crystallogfaphic axes

in the disc plane were recognized by comparison with a
cémgﬁted transparent print-out of the Laue spots from

a hexagonal crystal with the same film to specimen distance.
The angle of the axes with respect to the vertical was
measured on the film using a protractor.

6.4 Fixing of Strain Gauge on the Crystal

Modified’Karma'gauges (M = M, Micro-Measurements

- of type WK-06-050- AR-350)were used. Karma alloys have
an‘approkimate composition, 80% of Ni, 20% of Cr with
smali quantities of Al and Fe and have very low magneto-
resistance, even at liquid helium temperature (Greenough
aﬁd:Underhill, 1976). These gauges are fully encapsulated
with high endurance leads, can be used over a wide range
of temperature and have the most extreme environmental

capability of a general purpose gauge when self-temperature

compensation is required. These gauges can be used in




- 88 -

a wide range of temperature from 4K to 563K.' The gauge
factor is 2.04 £ .02 at 297k. Its variation with temp-
érapure is shown in Figure 6.1 as supplied by the manu-
facturer. The recommended Micro-Measurements M-Band 610
high—temperature epoxy adhesive suitable for this temperature
raﬁge with WK-gauges was used. The brass specimen holder
waé fixed using Durafix adhesive on a turn-table of a
microscope calibrated in degrees. The cross-wire of the
microscope was aligned with the reference edge of the
holder and then the turntable was rotated by an appropriate
amount so that the desired crystallographic axes became
paréllel to tﬁe cross—-wires. Thin layers of M-Bond 610
Qere coated on the cleaned crystal surface and the strain
gauge was allowed to dry for 30 minutes. The strain gauge
wés then placed along the chosen axis. The specimen was
covered with a thin sheet of teflon, placed in another
brass holder shown in Figure 6.2b or ¢ and was spring clamped
to.énsure even pressure during heat treatment. The clamped
sbecimen was placed in an oven at room temperature

and then the temperature was raised slowly about 8 degrees
perminute to 150°C and was kept constant for two hours
before cooling it down slowly to room temperature. This
form of heatAtreatment followed the reéommendations of

the manufacturer as shown in Figure 6.3. In basal plane
sahples, one strain gauge was fixed along the b-axis only
énd.two gauges were fixed on ac or bc plane crystals along

both principal axes in the disc plane. The second gauge




TEMP IN °C » - 88a -

-195-150-100-50 0 150 100 150 200 250
T T T 11 17T 1 3% o
+ ———1+ H— 2% &
T L | %
] Il ) 1
SRR 14 35
1IN EREL [ %20
T v, . -2
L g
SN ERU '396~—§§
1 4 | ‘ﬁ -tl'% E
NN i b
1R )
T =
-300-200 -100 0 100 200 300 400 S00

TEMP IN°F

- Pig. 6.1 The thermal dependence of the gauge factor as supplied by
the manufacturer. :

Pig. 6.2 The hoiders for'cryatal mounting and its heat treatment,

GLUE-LINE TEMP IN
X 50 75 100 125 150 175
| ceF
' .
|

N

TIME IN HRS
O =W O

75 125 175 225 275 3% 375
GLUE-LINE TEMP IN F

Fig. 6.3 Qhe time versus temperature manufacturer's recommendation
. f6F éuring M-Bond 610 adhesive. - '




- 89 _

was fixed when the first was heat cured, on the other
side of the crystal at right angles to the previous one
and was heat treated in the same way as before using the
holding device (6.2c).

6.5 Measurements of Magnetostriction

The resistance of a wire depends upon the dimensions

of the wire as

R = ff/é | 6.14

where jo,is the resistivity of the material of the wire,
L - the length and an the area of cross section. The resi-
sténce of the strain gauge thus changes with the deformation
cf the crystal to which it is attached. The gauge sensitivity
K,élso kndwn as the gauge factof,is,defined as the ratio
of the change in gauge resistance to the strain

K - (‘—‘-E) G 6.15

The gauge factor is also expressed after Brophy (1977):

K = 1+ 204098 6.16
al :
where O is Poisson's ratio and F the resistivity
for'the gauge material. The change in resistivity with

strain represented by the third term in equation 6.16

is negligible in the cése of Karma ailoys. The value

of Poisson's ratio is close to 0.5, so the value of the

gauge factor K is approximately 2. The actual value supplied
by‘the manufacturer is 2.0 I .02.

'~ The resistance changes of the gauge were measured




with a Wheatstone bridge shown in Figure 6.4. Another
strain gauge called a dummy was cemented on a commercial
poljcrystalline copper disc and plaéed close to the active
strain gauge‘on the test specimen so that both gauges

are in the same temperature and magnhetic field environment.
The strain gauges were connected in the adjacent arms
Qf>the bridge. The dummy gauge is used to compensate

the magneto and thermal resistive effects. Using a
detector system of high input impedance compared to the -
bridge resistance, the small change in the resistance

of a bridge arm can be observed.

When the resistances in each arm of the bridge are
the same then A and B are at the same potential and there
isAno‘output signal. For a small change in the
resistance of active gauge, i.e. from R to R + AR, Vi

and V, have the following values.

v, = v .R _V
' 2R 2
and
V(R + AR)
V2 = - =
2R + AR

v (1 + 2R/R)
2 (1 + 2R/2p)

wheré V is the bridge voltage for AR &R

220 (1+ ) (1=
= v (1 +—‘LR)
2 2R

So the output voltage e is
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_ _ V. aR
e=Vy, -Vy =7 -

which is related to the-strain by gauge factor K
K - al

t
Hence the strain

al _ e 6.17
0 VK

The strain deduced from the above expression depends upon
bridge supply voltage so é very stable supply voltage

was needed. The stabilized supply described by Unvala

~and Green (1974) and constructed by Joraide was used.

Its circuit diagram is shown in Figure 6.5. It consists

of two stages. The input voltage of 27 voltd.c. was
supplied by a Farnell stabilized power unit. The output
voifage of the first A741 integrated circuit was stabilized
at about 12V by comparing a fraction of this voltage with
that. of the reference 5.6 Vzener diode, which was used

as the power supply for the second i.e. the final output
vol#age was stabilized by two transistors BFY52 and 479

to 2.85V. Since (4/VK) is of order unity the output
voltage (in volts)is of the same order as the strain and
ﬁeéds to be amplified for recording accuratély. A low
dtift amplifier described by Unvala et al. (1976) consisting
of a MAT-01H/308 was initially used. It was found non-
linear around zero input voltage. Another amplifier

again described by Unvala et al. in the same paper using

a 321/308 1i.c. operational amplifier was constructed.

Later it was found more convenient and reliable to use
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a very stable built-in amplifier of the Datron 1051 Digital
Multivoltmeter. This amplified the input voltages 10
times which was sufficient gain in the case of our strongly

magnetostrictive Tb alloys.

6.6 Magnetostriction Insert

| This consists of two parts connected by a 160cm long
‘stainless steel tube of diameter 19mm and wall thickness
25mm. At the upper end there is a rotating mechaniém
cthisting of a horizontal shaft bearing a helical pinion.
Matching racks are attached to the upper and_lower ends
of a vertical stainless steel tube referred to as the
push'rod, passing down through the main staiﬁless steel
tube and>thrOUgh a vacuum seal. The push.rod can be moved
up énd dbwn through the upper rack and pinion mechanism
by .the horizontél shaft. The shaft is driven by a stepping
motor through a 100:1 ratio gearbox. Also mounted on
the same shaft is a potentiometer to provide a voltage
proﬁortional to the movement of the push rod. The top
section of the upper driving system is shown in Figure
6;6. The driving system restson abrass head containing
vacuum seals through which the various leads pass. The
magnetostriction insert has the disc shaped specimen
ﬁbunted in the brass measuring assembly (illustrated in
Figure 6:7) éttached at its lower end. The specimen is
contained in a small cylindrical brass box shown in Figure
6.8, being cemented into the box around its edges by
Durofix adhesive. Small pads of cotton wool are placed

over and under the specimen before the 1lid is attached.
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The box is soldered to a brass helical pinion which can
bg rotated by the vertical movement of the rack at the
lower end of the push rod which is actuated from the head
of the insert. Thus theAspecimen may be rotated in a
vertical plané which is necessary as the magnetic field
is vértical. Leads from the strain gauges are soldered
to flexible-enamelled copper wires which are brought out
of the box and taken to the centre of the 1id where they
are anchored using Durofix. From there leads are looped
td terminal.posts on the body of the assembly from which
screened leads pass up the tube to which the assembly
is.attached}l-A dummy strain gauge cemented on commercial
polycrystalline copper 1is placed near the box. In addition
‘a small auxiliary heater of resistance 40 ohm at 300K
is provided below the assembly and a goid/iron (0.03%)
with chromel thermocouple is mounted close to the specimen
bO*. The rig so constructed forms an insert to a Thor
Cryogenics superconducting solenoid mounted with its axis
vertical. The insert fits into a chamber of diameter
24.7mm which caﬁ provide temperatures between 4.2K and
300K.
6.7 The Magnet

The Thor Cryogenics super conducting solenoid was
used fbr the measurements of magnetostriction of Gd/Tb
alloys. It provides a maximum central field of 14 Tesla
and a field uniformity of ¥ 5 x 107 over a cylindrical
fegion of length 30mm and diameter 20mm. The centre of

the field is about 150cm down from the top flange of a




chamber of diameter 24.7mm providing access to the field.
Various parts of the magnet are shown in Figure 6.9. The
solénoid is composed of a number of windings the outer ones
being of niobium-titanium alloy while the inner one is
of_ﬁ%bium—tin alloy. The solenoid is keﬁt immersed in
the liquid helium during the operation to maintain its
superconducting state. The 1iquidAheiium boil—off'rate
is reduced to a minimum by a high-vacuum jacket, super
insulation consisting of a large number of radiation
reflecting mylar sheets, a liquid nitrogen shield and
a special cbpper radiation shield cooled by the liquid
helium boil-off. The maximum field attéinable in a super-
conducting solenoid depends upon the critical field of
the superconducting material above which the superconducting
properties disappear. For the present magnet this limit
is 13 Tesla at 4.2K, though fields up to 14 Tesla may
be obtained by reducing the pressure over the helium reservoir
to reduce the operating temperature to 2K.

The specimen chamber is surrounded by the inner Qacuum
chamber (I.V.C.) which isolates the specimen space from
the liquid heliumireserQOir and makes the variation of
the temperature of the specimen possible without excessive
increase in the liquid helium boil-off. The specimen
is cooled down by a helium gas flow regulated by a needle
valve situated between the sample space and the helium
réservoir. A heater and a carbon glass resistor sensor
are incorporated in a block at the bottom of the I.V.C.

chamber in the path of the gas flow. The temperature
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of the specimen may be varied and maintained by a Thor
temperature controller model 3010 II using either the
magnet heafer and sensor or the auxiliary heater of the
magﬁetostriction insert and its thermocoupie. The
temperature of the specimen is varied by changing the
flow rate of ﬁhe helium gas and current in the heater.
The gas flow is maintained by creating a pressure difference,
maximum 2 lb. per square inch,lbetween,helium reservoir
and the sample space. In practice the pressure of the
sample space was reduced. It was found more convenient
to'ﬁse the auxiliary heater for temperature variation
rather than using the magnet heater.

A control board was constructed to evacuate the sample
aﬁd helium reéervoir chambers, fill them with helium gas,
flush out any nitrogen or air before liquid helium transfer.
This is fitted with vacuum gauges, valves, pressure in-
dicators, non-return.pressure release valves and vacuum
aﬁd gas control valves.

- The current to the magnet coil is supplied by a Thor
power supply, Model 610. The coil current is varied by
an electronic programmer, Model 2020, to the desired level
at a suitable rate. If the rate of change of current
is too fast, it may result in the magnet becoming normal
or'resistive and hence generating great heat. Such a
feaction is termed as ''quenching'". The solenoid may be
pgt into persistant mode by making the superconducting
switch, within the magnet, superconducting and thus making

the solenoid independent of the control unit. The
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persistant mode provides greater stability of the field
and lower helium boil off as no current is passing through
the supply leads which may in fact be removed. The switch
may bé energised (made resistive) to bring the magnet
into active mode by passing 35 to 50 mA current through
a built-in heater. The magnet field is-directly proportional
to the coil current. A current of 4.2A produces a field
of IT. The coil current is measured by sensing. the voltage
acfoss a shunt. resistor in fhe power sﬁpply unit. A Thor
liqﬁid helium level meter Model 8020 displays the heiium
depth in mm sensing regulafly at predetermined internals
'USing'a.superconducting wire probe.

 The magnet was precooled with liquid nitrogen., The
golenoid was kept immersed in liquid nitrogen for two
days prior to the transfer of liquid helium. Cooling
down of the magnet and the process of the transfer of
liquid helium is described in the magnet handbook.

6.8 "Acquisition of Data

A block diagram of the equipment is shown in Figure
6;10. The system is connected to a PET microcomputer
via a MINICAM interface. The microcomputer programme
provides for the driving of the system.by étepping motors
at fixed angular intervals, observing the output values
of the strain gauge circuit through analogue to digital
(A/D) modules at each step, till the crystal is rotated
by 185°. The crystal is then turned through.190° in the
reQerse direction at .a constant speed by pushing the rod

downward. The crystal is then brought back to the initial
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zero setting thus eliminating the backlash of the system.
The data is recorded while the rod is being pulled up
(pushvrbd in tension). This obviates any possible error
due to bowing of the push rod, particularly when the magnet-
ization crosses the hard direction, and ensures uniform
turning of the crystal in the magnetic field. The intervals
may be set at a predetermined level, but usually a half
rotatibﬁ of the specimen is covered by 90 steps. However,
any sections of the fotation where the strain is changing
rapidly, hay be expanded down to a minimum step of 4'.
New.initiai.and final limits of the rotation can also '
be set. At the start of this experiment, the computer
programme records the specimen particulars. The time

at tﬁe start and completion of the rotated is also noted.

An additional output to an x-y recorder enables curves

of strain versus field angle to be plotted during the
specimén’ratation in the field. At the completion of

the cufve, the microcomputer calculates the total strain

and ﬁhén asks for the new settings of the variables (field
and temperature) for the trace of the next curve. The

screen of the microcomputér displays all the step by step
information during data collection. Provision for recording
data on cassetté tape and also for printed‘output is included.
The curve particulars such as temperature, field, sensitivity
of the x-y plotter etc. are recorded with each curve. Audio

signals are given at various stages of the data collection

and also after any desired pause necessary to alter the




experimental setting.
The computer programme for the automated operation

of the experiment is given in Appendix IL

6.9  Calibration of Apparatus

(i) Thermocouple: The e.m.f. of the gold/iron (.03%)

with chromel (British Standard) was observed with the

junction at room temperature, in iced water, in liquid

nitrogen and in liquid helium with the reference junction

at 1idﬁid nitrogen temperature. The e.m.f. veréus témp—

erature curve for the thermocouple is shown in Figure

6.11. 'The e.m.f. is linear with temperature down to that

of 1iqﬁid nitrogen but between 77K and 4.2K is significantly

non-linear. A:calibration point at liquid hydrogen

temperature would have been desirable to draw the curve

betweéﬁ liquid nitrogen and liquid helium temperatures

but this was not available. An attempt was made to compare

with a gold/iron (.07%) with chromel ( American Standard)

theerCouple but that also showed similar non linear variation

in this region. The maximum error in measurement of the

tempefature in this region is not thought to be more than

three degrees. The changes in the saturation magnetization

and in the anisotropy constants at low témperature are

not very'rapid and this uncertainty in temperature does

not cause any significant error.

(ii) Magnetic field of the magnet: A probe, shown in
Figure 6.12, was constructed with a search coil at one

end to measure the magnetic field of the magnet. The

seatrch coil could be moved from the top of the magnet
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to the centre of the magnet through a vacuum seal. The coil
~has 29 turns and the average diameter of the coil is

- .98cm. The integrated e.m.f. of the search coil was

read by the L.D.J‘ flux meter, Model 710, when the Coil

was moved from the top of the magnet to the centre of

the field in a -ve mode only, in 4 and 12 Tesla fields.

The meter display is related to the field B by

B - @_ _ Display reading x Scale factor

kG/cm3
NA  No. of turns of the coil x area.

of the coil

where the product of the display reading and the scale
factor is a reading of the field in kilomaxwells.
The fields measured in thiswéyréver differed by.more
;Fhan 2% from those obtained using the maker's conversion
“ factor (T for 4.2A). The actual strength of the current
in the superconducting solenoid is difficult to ﬁeasure
bbecause of the unknown induced back e.m.f. of the solenoid,
”though this dies away with time over a long period. The
field measurements of the magnét using the field probe are
»given in Table 6.1.
(iii) Gauge Factors: The gauge factor had been calibrated
by Joraide (1980 )by measuring the magnetostriction of a
Ni single crystal using the gauge faétor value supplied
- by the manufacturer. The agreement between the observed
Qalues of magnetostriction constants and the results of
other workers (e.g. Chikazumi, 1964)>was reasonable proof

_bf the accuracy of the gauge factor within 1.
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TABLE 6.1

Magnetic field measurements of the solenoid using search

coil.

" Magnetic field
using Manufacturer's
current field factor

Current in the
Solenoid

Mean LDJ display
of 10
measurements

Scale factor
- Measured field
Difference in fields

Experimental
Current
to Average
Field
Factor Manu-
facturer's

4 Tesla

16.866 A

90.32 ¥ 1.7kM

10

3.97 £ .06 T

- .8%

4.248 T 06AT”
4.19
4.13

12.02 Tesla

50.68 A

139.51 % 2 kM

20
12.25 % .06 T
+ 1.9%

1 1

4.137 ¥ .04AT”

£0,05 aT" !

+0.01 AT ¢
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(iv)Bridge Sensitivity: The output voltage of the bridge

circuit corresponding to changes in the gauge resistance
are related under the condition of equal resistance in

each arm of the bridge. The resistancesof the gauges

change with temperature. The effect of various bridge

Settings such as starting the curve with zero output voltage
of the bridge or in an offset position greater than the
normal operational variation were observed on 90% Gd Tb
g—axis crystal at 208K in field of 4 Tesla. Identical

magnetostriction curves were produced with no detectable

change either in the size or in the shape of the signal.

" Hence confidence was developed in the sensitivity of the

bridge that the changes in the resistance in the experimental
variation range cause no appreciable error in the recorded

data.

Magnetoresistance of the strain gauges: Magnetoresistance

~of strain gauges of Karma alloys is claimed to be very

small. It was measured by cementing a strain gauge on

a polycrystalline copper disc of 5mm diameter and 1mm

in the magnetic fields 8 and 12 Tesla at temperatures

from liquid helium to about 180K. The maximum average

strain observed at 12 Tesla and at liquid helium temperature

5

was 1.5 x 1077 including all the other experimental errors.

‘The strains at higher temperature and lower field were

not detectable. Hence the magﬁetoresistance effect for

most of the data collection was negligibly small.
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CHAPTER 7

THE MAGNETOSTRICTION CONSTANT %ﬁ,Z OF
Gd, Tb AND THEIR ALLOYS

7.1 Introduction

The magnetostriction constant )?’2 was measured for
gadolinium, terbium and their alloys, 90%Gd-10%Tb,
70% Gd-30%Ib » 50%Gd-50%Tb and 10%Gd-90%Tb in the temperature
range from liquid helium to about the Curie temperature
in magnetic fields of up to 12 Tesla. Variation in strain
was measured along the %—axis of the basal plane crystals
corresponding to a 180 degree rotation of the magnetization
vector. TheA constant >\U 2 was determined using Clark'
and Callen's expression, equation 4.45, in its simplified form
as given in Chapter 6 in equation 6.3 for the particular
case of.the strain measurements along the %—axis of the
basal plane crystals to yield the constant )\K’Z. The
angle 6 used in equation 6.3 refers to the angle between
the magnetization vector and the P-axis. The constant>\b”2
is the total variation in the strain when the magnetization
is rotated from the d-axis to the %—axis or vice versa.
The magnetizatién vector follows the external field as
will be discussed in the next section dealing with data
records. In this simple case, )?’2 can be determined
by measuring the peak to peak amplitude of the curve,
a precise knowledge of the exact angle of magnetization

is not necessary and so the external field angle may be

taken as the angle of magnetization.
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7.2 Typical Data Records

According to the equation 6.3 for the constant }7’2,
the change in the strain follows a cos 28 variation when
the magnetization is rotated in the basal plane. The
recorded strain versus field angle curves 'show good agreement
with the theoretical cos 26 variation. The symmetry,
continuity, smoothness and the cos 20 dependence of the
curves are all clear indications that magnetization is
actually being rotated in the basal plane of the crystal
and closely following the applied field direction. Typical
expefimental éurves recorded by the x-y plotter are shown
in Figures7.1, 7.2 and 7.3. The curve in Figure 7.1
is for 90%Gd-10%Tb taken at liquid helium temperature
in a‘magnetic field of 4 Tesla. The curves other than
those for pure Tb show.almost no hystersis in their forward
and reverse traces which also indicates that the magnetization
is following the external magnetic field very closely.
The amplitudes of the curves decrease with increase in
temperature. Figure 7.2 is the curve for the same crystal
in the same field, but at higher temperature 147K with
the same sensitivity and bridge setting. The amplitude
is a minimum for pure gadolinium and increases with higher
terbium concentration in the alloys. The shape of the
curves remains the same for all temperatures and for all
specimens except for those for pure terbium. These curves
showed some hysteresis and were lacking complete symmetry,
whereas the curves for 90%Gd-10%Tb crystal show no such

hysteresis. A typical curve for pure terbium is shown
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in Figure 7.3. The terbium curves become symmetrical at
higher temperatures.

7.3 Field Dependence of the Strain

The magnetostriction traces were taken in various
applied fields increasing to double the previous field
in each step up to'12_Tesla. The amplitudes of the curves
i.e. ){K’Z were found to increase slightly with increasing
field at the lower field end and to saturate in fields
from 4 Tesla to 12 Tesla, except for pure terbium. The
increasing field aligns the domainsand for the saturation
magnetostriction curves makes the specimen a single domain
crystal. The field was increased to the strength where
no further increase in the ')j 2 value of the trace
was observed whilst the temperature was kepf éonstant
at 4.2K. The temperature was then varied while keeping
the field constant. The field dependence of the .X?’z
constant is shown in Figure7.11 and7.12 for 50%Gd-50%Tb
and 10%Cd~90%Tb specimens reépectively.

7.4 Temperature Dependence of theConstant %ﬂZ

The variation of the >\X,2 constant with temperature
was observed in magnetic fields producing saturated
magnetostriction )}’2 signals. To be sure that the
field Was strong enough to produce single domains in the
basal plane and that the measured values of the constants
were saturation values, another set of temperature variation
was observed at a higher field. The two sets of curves

were identical except that slightly higher values of the constants




- 104 -
were found for highef fields at temperatures close to T..
The most complete account of the theoretical temperature
dependence of magnetostriction is given by Callen and-
Callen (1965) as has been discussed earlier in Section
4.4, Their expression for the temperature dependence

using the single-ion model iS$

7.1
where $(2+%) is the reduced Bessel function which is the
ratio of the hyperbolic Bessel function of order (l+%)
fo the hyperbolic Bessel function of order %. The argument

of the reduced Bessel function is the inverse of the familiar

LLangevin function related to reduced magnetization 'm' as

A

Six) = 13/2(x) = coth(x) - 1/x = m . 7.2

An attempt was made earlier to measure the magnetization
for the above alloy specimens using the [Faraday balance.
'he values obtained were lower than those measured by
Bagguley et al. (1980b) or Corner et al. (1983&5. The
lower values were mainly due to the available magnetic
field being inadequate to produce saturation magnetization
and the force of friction between the specimen container
and the walls of the measuring insert as the specimen

was always pulled towards the sides by the radial field
gradiant of the solenoid. Due to the availability of the
recliable magnetization values of Corner et al. (1983a) further

modifications in the Faraday equipment were not made.
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Iﬁ the calculations of the theoretical temperature dependence,

the reduced magnetization values were obtained from the

magnetization measurements of Corner et al. (1983a).

The argument of the reduced Bessel function was calculated

numerically by thé microcomputer using Newton's iteration

method. The computer programme is listed in Appendix

I1I. The corresponding values of the reduced Bessel éunctions

were obtained from the table of Joraide (1980).adapted

after Welford (1975). The observed magnetostriction constant
X}"Z values versus temperature‘along with the reduced

magnetization and corresponding feduced Bessel function

values are given in Tables 7.1, 7.2, 7.3, 7.4, 7.5 and

7.6 for each composition. The theéreéical temperature

dependence of magnetostriction has been discussed in detail

in Chapter 4. The adequacy of various theoretical models

for temperature dependence was tested using a least-squares

method best fit with the experimental results. The computer

programme is listed in Appendix IV. Figures 7.4, 7.5,

7.6, 7.7, 7.8 and 7.9 .show the observed‘temperature dependence

of the constant )F,Z along with the theoretical dependence

curves for each composition of the specimens. The simple

square power of reduced magnetization dependence (the

two-ion model) did not provide a good fit and was giving

higher values of the constant in comparison to the observed

ones with increase in temperature. Similarly the fit

of the ?5/2?9/2 dependence of the Rhyne and Mc Guire (1972)

- model, which considers magnetoelastic interaction between

ions, is also not good. Its dependence falls much more
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TABLE 7.1

The temperature variation of the constant Aﬁ’z for
_pure Gd along with the values of reduced magnetization

and Bessel functions.);d’2 values are in units of 10_4

Field

T‘ U’Z A A
in Tem o yr) ™ Is/2 Lo /2 11372
Tesla
0.5 4.2 .95 1 1 1
1 4.2 1.2 1 1 - 1 1
2 4.2 1.2 1 1 1 1
4 4.2 1.2 1 1 1 1
4 63 1.0 .965 .8992 .7023 4770
4 106 64 .906 L TL4T .3790 .1351
4 137 .43 .851 .6237 L2177 .046
4 172 21 .785 4974 1128 .0138
0K
Least squares 1*.15  1.05%.12  1.5%.16. 1.77%.34
fit A\ (o) values (a) (b) . (c) (d)

The values a, b, ¢, and d are extrapolated O K values of the

IR . 2 " p
constant using least squares fit to m™(T), Ig /9, Ig /X
A ~ ' ' : . '

19/2 and 113/2 respectively.
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TABLE 7.2

The temperature variation of the constant %F;Z in
units of 10™% for 90%Gd-10%Tb along with the values of

reduced magnetization and Bessel functions.

g 552 nZ(r) 1 T, 1
Tesla i?P. A (T) " 5/2 9/2 13/2
4 4.2 10.8 1 1 1 1
4 50 9.97  .956  .9364  .8035  .6320
4 - 82 8.66 .895  .8473  .5769  .3172
4 100 8:16  .848  .783  .4458  .1872
4 120 6.5  .789  .7037  .3164 - .0945
4 147 5. 702 .5915  .1857  .0342
4 152 5.2  .689  .5776 .1731 - .0300
4 178 4.07  .598  .4729  .0981  .0108
4 184 3.86 .575  .4554  .0885  .0090
4 216 2.83  .452  .3289  .0382  .00217
4 258 1.47 .248  .1656  .0078  .00017
4 264 1.26  .213  .1375  .00524  .00009

8 4.2 10.8 1 1 1 1

OK least squares £it g 54  10.15 17.91  22.65
values : +.45 +.26 +2.6 +4.7

(a) (b) (c) (d)

The values a, b, c, and d are extrapolated 0 K values of the
A A
constant )\'6 »2 using least squares fit to mz(T), 15/2, 15/2><

A A

. I9/2_and 113/2 respectively.
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TABLE

.3

The temperature variation of the constant )?’2 in

units of 1073 for 70%Gd-30%Tb along with the values

of reduced magnetization and Bessel functions.

Field
in
Tesla K

~

4.2
4.2
35
100
138
162
180
210
247
274
291

o 00 00 0 00 O 00 o o 0o

Temp.

PR RN NN
L] -

.09

.939
. 706
452
.306
.222

O KLeast squares fit

values

m2(T)

.978
.846
724
643
.573
.450
.255

.. 049

1.97%.08

(a)

A A A
Is/o Iy/2 I13/8
1 1 1
1 1 1
L9675 .8957 .7936
L7347 3629 .1239
.6191 L2129 L0642

.5236 130 .018
446 .084 .0082
.328 .038 .0022
.166 .008 .00018
.031 .0002 0

0 0 0

2.16%.05 3.42%.07 4.01%.1
(b)  (c) (d)

The values a, b, c, and d are extrapolated O K values of the

A A

constant )\5’2 using least squares fit to mz(T), 15/2, 15/2>(

S

A
19/2 agd 113/2 respectively.
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TABLE 7.4

The temperature variation of the constant X?’Z in units -
of 10_3 for 50%Gd-50%Tb along with the values of reduced

“magnetization and Bessel functions.

Field

. A A A
Tesla e ){(i‘% (1) Is/2 L9 /2 L1372
1 4.2 3.41 1 1 1 1

2 4.2 3.46 1 1 1 1
4 4.2 3.41 1 1 1 1
8 4.2 3.41 1 1 1 1
4 43 3.34 .978 - .9675 .8957 .7936
4 82 2.91 .895 .8473 .5769 .3172
4 122 2.25 .769 .680 284 .076
4 .158 1.74 .637 .5199 1277 L0172
4 204 1.12 .438 .3159 - .0347 .0018
4 226 .786 .324 .2222 .0151 .0004
4 260 . 421 .057 .0355 - .0003 .000001
O'K Least squares 3.21 3.42 - 5.04 5.87
fit values *.15 *o06  t.sa 1.3
(a) - (b) (c) (d)
The values a, b, ¢, and d are extrapolated O K values of
the constant )? »2 using least squares fit to mz(T), ?5/2;

A A A~
15/2)(19/2 and 113/2 respectively. i
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TABLE 7.5

The temperature variation of the constant )?’2 in units

of 1073 for 10%Gd-90%Tb along with the values of reduced

magnetization and Bessel functions.

Field A N A
In . e Xﬁ%% mz(T) Is/o Ly/2 Li3/2
1 4.2 6.91 1 1 1 1
2 4.2 7.07 1 1 1 1
4 4.2 7.07 1 1 1 1
8 4.2 7.17 1 1 1 1
4 47  6.83 .953 .929 784 .601
4 82  5.93 .876 .820 .518 .254
4 122 4.56 757 .669 .258 .064
4 158 3,48 .608 482 .103 .012
4 205  1.93 .336  .230 .017 .0006
4 245 .735 0 0 0 0
0 K Least Squares fit 6.74  7.2x107°  11%2.1  13.2
values o *.28  *.25 - 3.4
- (a) (b) (c) (d)
4 4.2 5.90%
8 4.2 5.94%

. % For explanation of the different lower value, see

text Page 108.

The-values a, b, ¢, and d are extrapolated O K values

of the constant )?’2 using least squares fit to mz(T),
A A A N : ' '
15/2, IS/ZX 19/2 and 113/2 respectively.
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TABLE 7.6

The temperature variation of the constant A}’z in
units of 1073 for pure Tb along with the values of

reduced magnetization and Bessel functions.

Field

A A : A -
L R )305) mZFT) Isja loj2 li3ge
12 4.2 6.58 1 1 1 1
12 22 6.02 .982 .9732  .9136  .8272
12 36 5.22 .976 .9644  .8861  .7758
12 71 4.04 .899 .8519  .5872  .3289
12 104 3.35 .815 .7381  .3683  .1276
12 133 2.86 .719 .6143  .2080  .0423
12 146 2.74 .664 L5473 L1479 .0225
12 181 2.49 484 .3636  .0493  .0033

O K. Least squares fit 5.38 5.67 7.83 - . 8.9
values t.3  t.29 i1 *1s

(a) (b) (c) (d)

The values a, b, ¢, and d are extrapolated O'K values
2(

T),

of the constant )?’2 using least squares fit to m
n N . A

A ' A )
15/2, 15/2x I9/2 and 113/2 respectively.
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Fig. 7.4 The temperature dependence of)\v«’z for Gd ‘at 4 Tesla,
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sharply than the observed dependence. "l‘he/fS/2 dependence
model proposed by Callen and Callen (1965) on the basis
of single-ion interaction fits very well. The fit with
the pure gadolinium is not good but it becomes better
for 90%Gd;u%Tb alloys. The agreement is good for 70%Gd-30%Tb,
50%Gd-50%Tb and -107%Gd-90%Tb. Again pure terbium is an
exception. The agreement covers almost the entire temp-
erature range. The dgree of best fit can be judged
from the percentage error in the.values computed using
the least-squares method: |
Percentage of Gd 100 90 70 50 10 0
Percentage krror 11.4 2.56 2.31 1.75 2.44 5.11

7.5 Composition Dependence of %?’2

For each theoretical temperature dependeﬁce there
corresponds a zero-temperature value of the magnetostriction
constant ‘ﬂS? .  The best fitting single-ion model curves
yielded‘the best zero temperature values for each composition.
Theée values are very close to the experimentally observed
values at the lowest temperature 4.2K. The zero-temperature
values )f(Q% are plotted against alloy composition
in IFigure 7.10. 'The variation with composition is seen
to be close to a linear one, with the exception of one
measurement for 10%Gd-Tb. For comparison the reported

values of Joraide (1980) and Nikitin (1977) are also

shown in the same figure.

Ca . AN
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7.0 NDiscussion of the Results

The zero temperature saturation value of the magneto-
striction constant %?(5% of pure gadolinium coincides
with the value reported by Mishima et al. (1976). The
zero temperature values for the other intermediate com-
positions measured by Joraide (1980) are about half the
experimental interpolated values from the present measurement.
The lower values of the constant observed by Joraide
could be due to some systematic error of the apparatus.
According to equation 6.17, the measurements of the strain
depend upon the value of bridge voltage. The bridge
voltage may vary for each setting of the bridge balancing
resistor suitable for the pérticular case at the time
of data recording. He migﬁi always have used the value
of the bridge voltage recorded during his earlier measure;
ments on a nicKel specimen. In the present study the -
bridge voltage was actually measured throughout for each
setting of the experiment. The changes in the resistance
of the gauges due to variations in temperature or magneto-
strictive strain have little effect on the bridge voltage
and cause no detectable error in the measurements. Another
reason for lower valueé could be an unnoticed accidental
change in the amplification of the amplifiér,but that
seems very unlikely.

The values of Joraide do not vary linearly with
composition of the alloys, the magnetostriction versus
composition curve tends to have an exponential form.

The values of the constants measured by Nikitin et al.

<
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differentiate between the values for 10%Gd-Th with confidence.

The other experimental values of the set can accommodate
both values though they favour very much the later and
repeatable value.

The temperature variation of >\U’2 was measured
for the four compositions (95%Gd-Tb, 80%Gd-Tb, 50%Gd-Tb
and 25%Gd-Tb) by Joraide (1980). His temperature dependence
has already been discussed in section 5.7 and the variation
is shown in Figure 5.14. In general his dependence does
not agree with any of the common theoretical models for
the whole set of specimens and for the entire range of
temperature, though the fit to the single-ion model is
not bad in certain cases. Nikitin et ali do not provide
the temperatufe variagion of the alloys except for tﬁe
507.Gd=5071Tb glloy. Th%bmagnetization dependence of

}? »2 for this alloy has been shown to follow the
single-ion moael dependence given by equation 7.1. Their
technique fbr measuring the magnetostriction constants is

v
different, thus the field is applied along certain
crystallographic directions and the strain is measured
along orthogonal 3, b and & crystallographics axes.
The magnetization vector is not rotated in-the specimen.
The constants are derived by subtracting the phonon part
of the strain obtained from the Ehérmal—expansion curves
ol Tutetium

7.7 Conclusions from the Temperature and the

Composition Dependence Results

The temperature dependence of the experimental
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results fitsthe theoretical dependence predicted by the
single-ion model extremely well for alloys containing

more than 10% Terbium. The agreement is reasonable for
10% terbium concentration, but is not good for pure
gadolinium. [For this the >\X 2 constant seems to follow a
two-ion dependence but again the fit is not perfect.

The composition dependence of %}’2 also follows that
expected from a single-ion model where the strain is

a consequence of interaction of individual Tb ions with
the crystal field and a linear variation would be expected
on dilution of Tb ions with Gd ions. The conclusion

based on the experimental data is in agreement with that
of Nikitin et al. based on their magnetostriction and
magnetic anisotropy measurements. In the opinion of

the author, the entire experimental temperature and com-
position dependence of the constant )\j,Z of all the
alloy compositions is strongly in favour of the single-
ion crystal field mechanism for the origin of the magnet-
ostriction of the terbium-gadolinium alloys.

The situation is simple in the case of )ﬁ’z since
the basal plane anisotropy of the terbium metqi is considerably
less than the axial anisotropy. Determination of the
other magnetostriction constants is very difficult because
of the giant anisotropy of the terbium. A knowledge
of the actual angle of magnetization vector is necessary.
A detailed discussion of the procedure for determining
the other constants and their results will be given in

the next chapter.

@
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CHAPTER 8
THIE MAGNETOSTRLICTLON CONSTANTS )\1“’2 AND

AS2? OF Gd AND Gd/Tb  ALLOYS

8.1 Introduction

The second order constants ?\10("2 and )\? 2 were
measured for Gd and Gd/Tb alloys of composition 90%Gd-
10%Tb, 707Gd-30%Tb, 50%Gd-50%Tb and 10%Gd-90%Tb in the
temperature range from liquid.helium to near their Curie
temperatures in magnetic fields of up to 12 Tesla. There
were two types of specimen. The pure Gd and the 50%Gd-
5071h specimens contained % and ¢ axes in the plane of
the disc while all the other specimens were ac plane
discs. The measurements of strain along the C-axis yield
the constant)\za"2 and the measurements of strain along
A- or %-axis of fhe specimens containing the %—axis in
the pléne of the disc yield the constant>\fx’2 when the
effect of the constant )}32 has been allowed for. Again
the Clark and Callen magnetostriction expression given
in equation 4.45 was used to represent the magnetostrictive
strain. The equation is further simplified for the particular
cases to yield expressions for?\la’z and >\20L,2 in equations
6.9 and 6.13 respectively. The early measurements were
made using one gauge at a time. The observed curves
were not so simple as those for 7Gx’2. The strain variations
for the full curves were not as expected from their rep-
resentétive equations. Due to the complexity of the

$
curves, it was necessary Lo measure the strain along
t

both principal axes in the plane of the disc at the same




- 112 -

time. Two strain gauges were cemented at right angles

to each other, one on each side of the specimen, and

the strain variations along both axes were recorded on

a single sheet using the x-y recorder. This revealed
more useful information, very helpful in understanding
the internal magnetization process. The lack of symmetry
of the strain versus field angle curves in general and
deviation from a c0s28 theoretical variation in particular
for strains along the e—axis, is a clear indication that
magnetization was not following the external magnetic
field direction. At low temperatures, terbium has very
high magnetocrystalline anisotropy and calculation showed
that the magnetization never passes through the hard
direction (Cc-axis) particularly towards the terbium rich
end of the alloy series. The equations 6.9 and 6.13

can be used to determine the magnetostriction constants
if the precise direction of magnetization'with respect

to crystallographic axes is known. This is a completely
different situation from that for the constantiky’z where
the peak to peak amplitude of the strain variation curve
alone was required. The constants represent the magneto-
striction due to the rotation of the magnetization in

the ac or bc plane.

8.2 Determination of Direction of the Magnetization

If the field is finite, but still strong enough
to prevent domain walls from entering the crystal, the
magnetocrystalline anisotropy may cause the magnetization

vector to be not always parallel to the applied field.
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In a simple case when magnetization is rotated completely,
this distorts the periodic curve of magnetostriction
versus angle of rotation in an infinite field, without
changing its amplitude as shown in Figure 8.1. In our
particular case the magnetization vector is not rotated
completely and so it is necessary to find the direction
of magnetization at every point. " This can best be done
by reference to the free energy function F thatvmust

be minimum in the equilibrium state. Let the magnetization
lags behind the external field By by an angle & when B,
makes an angle(v with the C-axis as shown in Figure 8.2.
The torque Ly experienced due to the angular dependence
of the magnetic field energy P’M==~MSBOCOS8 is given

. by differentiation with respect to } as

I N
L, =-2(F.,) Sg(MSBOcOSSJ

= - M_B,sinj. 8.1

0
The representation of the magnetocrystalline anisotropy
energy is given in equation 4.6 for the hexagonal system.
The anisotropy constahts other than K, are comparatively
small and can be ignored in the calculation of the angle
of magnetization with the C-axis. Hence the anisotropy
energy may be written as

F, = K, sin’® 8.2

K 1 :
where © is the angle of magnetization with the C-axis.

The torque Ly can be expressed as

F
L = -‘Q_E = - 2 Klsin 6 cos 6. 8.3

K 26

In the equilibrium state, the total torque L is zero.
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Figo 8.1

/

"Fige 8.2

3 axis
\

Magnetostriction strain versus field angle

éw

A
> a-axis

The magnetization and field angles with respecf to the c-axis.

B and/or T
,Tgcreasing

Fig. 8.3

90

Variation of the angle between field and magnetization due to

field and temperature. ‘

(1) Represents no rotation of magnetization at all, the case
when §0 = 0 or K1 =00,

(2). 1imited rotation of magnetizationm, part 1 of Fig. 8.4 (b),

(3) full rotation of magnetization,part 2 ofAFig. 8.4 (b), and

(4) infinite field case when magnetization closely follows the

external field.
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- -2 Klsine cosf - MSBOsinS = 0
8.4 -

Ly

or
- K,sin 28
sind - . L 8.5

By

which can be expressed in terms of the angle of the external

M
S

field as
—K,sin 2(¢:+SJ
sin S = 1 , 8.6
©Bo Mg
because 8 = % + Q9 -

The general analytical solution of this eqﬁation is complicated.
However, it can be solved numerically for fixed angle 4}
of the external magnetic field. The angle § Dbetween
magnetization M and the external field B, was calculated
for every five degree interval of the angle y’ from 90

to 0 degree by the microcomputer using Newton's iteration
method. The computer programme is listed in Appendix

V. Hence the angle of magnetization © with respect

to the 8—axis, which is the sum of %’and d , is known
for all diréctions of the applied field. There are two
cases referred as full or limited rotation of the magnetization.
When the external field is along the G-axis, the angle

% = 0 and the angle § 1is equal to the angle of magnetization
with the C-axis. Let this angle be ©'. From equation

8.6, we get

- M B
cos 8' = s 0 8.7

2K
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-M_B
. s 0 , . . -
For “jﬂ(“‘! <\l, there is a finite value of ©' and hence
1

magnetization is not rotated completely but stays behind
the external field by an angle © '. This is the case

of limited rotation. When magnetic field is increased,
or K %s decreased by increasing temperature, then

0

- —— | may increase to one or greater. For that
2K
1

case ©' = 0 and so there is full rotation of magnetization
from the easy axis to the hard axis. The variation of

the angles  and 6 of the magnetization with respect

to the external field and the C-axis is illustrated in
Figures 8.3 and 8.4 respectively.

8.3 Typical Data Record

The situation in the case of constants )\{X,Z and
)f; »2 is not simple and a variety of curves was observed.
In the 1imited rotation case, the magnetization not only
stays behind the external field as it attempts to rotate
it towards the C-axis but it also rotates in the basal
plane. Let us consider the general case of an ac plane
specimen. When the magnetic field is applied along the
a-axis the magnetization will tend to lie along the a-
axis rather than along the'%—axis easy direction. We
start with a moderate field sufficient to align the magneti-
zation along the g—axis, but still too weak to rotate
it completely towards the hard direction, the C-axis.
As the applied field is now rotated towards the E—axis,
its component along the a-axis decreases and the magneti-

A

zation tends to lie along the easy b-axis. The specimen

is split into two sets of domains in each of which the
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gsee text page 127.
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magnetization vector will rotate in the basal plane

towards the immediately adjacent %—axes at 30 degrees

on either side of the original a-axis. It will remain

in the basal plane and will not rotate towards the c-

axis because of the giant axial anisotropy of the terbium
ions. The rotation of the magnetization in the basal

plane causes a strain along the a-axis due to the %F,Z
contribution while no appreciable strain occurs along

the a—axis. The strain variation along both 3 and ¢

axes for a 70%Gd-30%Tb specimen at 4.2K temperature and

in thevfield 0of 0.5 Tesla is shown in Figure 8.6. If

.the field strength is increased, the magnetization stays
longer along a-axis before splitting takes place as can

be scen from the curves in Figures 8.7 and 8.8 for the

same specimen but in higher fields of 1 and 2 Tesla res-
pectively. It can be seen in Figure 8.8 that the field

is beginning to rotate the magnetization towards the
C-axis. Further increase in the field rotates the magneti-
zation more and more towards the C-axis and causes a

flick from one side of the c-axis to the other as the

field passes through the G—axis, in the case of a limited
rotation. During the flicks, sharp changes occur suddenly
in a variety of ways. A simple case is shown in Figure 8.9
for the same specimen but in 8 Tesla and at 140K. At
higher temperatures, anisotropy decreases and full rotation
of magnetization takes place as is shown in Figure 8.10.
Further increase in témperature always decreases the

amplitude of the strain variations and also the curves

become smooth and symmetrical. This is the overall picture
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Fig. 8.6 Typical strain versus field angle curves for Gd

b
. . . . 0.707 70,30 | A .
at 4.2 K and in field of 0.5 Tesla; strains are along a~axis (1) & c-axis (2).
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Fig. 8. w .Typical strain versus mewn angle. curves for oa

140 K d of
qo o 30 at 4 and in field o
8 Tesla; curves 1 and m represent strain mwosm mwmxwm and onmxwm respectively.



116e

A

a-axis

Fig. 8.10 Typical strain versus field angle curves for Gd
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c-axis

A

_ 0.707°0.30
8 Tesla; curves 1 and 2 represent strain along a-axis and along

at 220 K and in field of

A . .
c-axis respectively.
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of all the observed curves. The curves in general represent
full rotation of magnetization towards the gadolinium

rich end and at higher temperature in high fields. At

low temperatures the curves represent limited rotation

of magnetizatidn and become very complicated towards

the terbium rich end. The typical curve for Gd representing
full rotation is given in Figure 8.11. In specimens
containing % and ¢ axes in the plane of the disc, the

curves are similar to fhose described above. The explanation
of the form of these curves must however, be slightly
different. It is extremely difficult to hold the specimen
so that the applied field rotates exactly in the disc

plane. If, due té slight misalignment, a component of
applied field normal to the disc arose during rotation

this could cause the %-axis directions lying at 60° to

the disc plane to be energetically more favourable than
those in the plane. This would lead to alstfain in the
basal plane %—axis direction due to the rotation of the

magnetization vector through 60°.

8.4 ‘The Field Dependence of the Constants

In the majority of the curves recorded to measure
tvhe constants)\loc 2 and >\§L ’2, the magnetization was
only rotated to a limited angle as discussed in the previous
section. The angle of magnetization was calculated from
the anisotropy constant to determine the magnetostriction
constants. The increase in the field strength mostly

resulted in rotating the magnetization to the same angles

for a smaller rotation of the applied field than in the
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=2x 1074

| 20 |

Fig. 8.11 Typical strain versus field angle oﬁHdmm for Gd at 140 K and in field of 4 eomww.
curves 1 and 2 represent strain along olmxwm and along .lmxpm Hmmvmo¢p<oww.
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woak Cields. The maximum variation of the strain of
the curve was not changed appreciably except in very
wéak fields. In fact, the weak fields were insufficient
to produce any measurable strain along the %-axis, except
for the pure gadolinium specimen. The high fields of
up'to 12 Tesla could produce reasonable curves only at
higher temperatufes for terbium concentration more than
10%.  The constantsxla 2 and)\zo‘ 2 were determined
using the actual angle of magnetization instead of the
total variation of the strain for 90° rotation of the
magnetization from g-or b axis to the.G—axis. The constants
thus obtained are believed to be the saturation magneto-
striction constants for their respective temperatures.

At low temperatures for the terbium rich specimens,
the magnetization lags more.and more behind the applied
field as terbium concentration increases because of the
very high anisotropy of the terbium ions. In fact the
avaflnble high fields cannot magnetize terbium rich specimens
along the hard direction at low temperatures. The magneti-
zation is rotated towards the ¢-axis but stays behind
even when the field is along the C-axis. When the field
rotates further and passes on the other side of the -
axis, then ét some stage it becomes energetically favourable
for the magnetization vector to lie on the same side
as the field. The magnetization vector then suddenly
jumps from one side of the T-axis to the other without
actually passing tHrough the C-axis to occupy a lower
encrgy position,  further away from the C-axis than its previous

position. This sudden jumping of the magnetization across
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the C-axis is referred to as a flick. During a flick

the information was lost and the strain variations could

not be usefully utilized. Attempts were made to rotate

the specimen very slowly, 4' per stép in the region where

a flick occurred, but even that did not improve the situation.
At low temperatures, the strain gauges frequently suffered
damage due to enormous torque and magnetostrictive strains.
The high fields could only be usefully applied at higher
temperatures to get maximum information. Most of the

data is collected in fields of 12 Tesla.

8.5 Determination of the Constants from Data Records

The angle of magnetization © was calculated for
every ten degree intervals of the applied field angle
and co%respoﬁding'strain variations were measured directly
from the curves.

The strain variation changes its sign when the applied
field crosses the principal axes. The stfain versus
the applied field angle cur?es show sharper turns around
the ¢-axis than around a- or %—axis. Referring to Figure-
8.9 the middle point C of the sharp turn was taken as
the orientation at which the C-axis was parallel to the
field and from there the position O of the direction
of the a- or b-axis was fixed 90° back from the potentiometer
voltage to the field angle ratio. The position O served
as the origin for the measurements and its strain as

the reference strain. The strain changes were measured

at 10° intervals from the origin O towards the ‘t-axis
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until S where splitting of the magnetization in the basal
plane took place. The strain measurements were made

only on the forward trace of the curve, taken while the
specimen was rotated slowly and the push rod was in tension,
with the help of a graticule on a transparent sheet.
Themerits of taking measurement on forward trace only

are given in the description of the acquisition of data

in Chapter 6. Knowing the angle © of the magnetization

and the corresponding strain variation, the constants

x 2
1

6.13 respectively.

and>\2m"2 are calculated using equation 6.9 and

Two approximations are employed for two extreme
cases. Initially the magnetization is assumed to lie
atong the a- or %— axis. The angle ¢ in the basal plane
of the magnetization with this axis is thus zero and
there is no splitting of the specimen into multidomains.
When splitting takes place, the strain variations along
5- or b-axis are much more rapid than along the C-axis.
The maximum deviation ¢ of the magnetization from the
a-axis for the ac plane specimens in 30 degrees towards
the next immediate %-axes on boﬁh sides of the a-axis.
In the caseiof bc plane specimen, it is 60 degrees towards
the other two %—axes on either side. The magnetization
has to cross the intermediate a-axes to be in the lower
energy state along the other P-axes. This intermediate
energy barrier makes the situation further complicated

for the bc plane specimens. The variation of the angle

‘ . 2 . .
¢ is then non-linear and so is the A}3 contribution towards
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the constant?\fx?z. The other extreme case is when the
field is along the C-axis i.e. ¢ = 0. Then ¢ has the
maximum value, 30 degrees for the ac plane speéimen and
may be 60 degrees for the bc plane specimens. In the

case of full rotation of magnetization, © = 0 and the
contant?\lcx’2 and)\éx’z can be calculated from the measure-
ments of the'peak heights. For the limited rotation of
magnetizétioh the exact strain variation for Y = 0 is

not known from the curves and so the constants cannot

be derived. However, the situation is simple before the
splitting:of the magnetization. The constants)\fx’z and
‘)\QX,Z were calculated for each angle of magnetization

" for every 10 degree rotation of the external field from

6 = 90° to the angle where specimen splits into dbmains
uSing the equations 6.9 and 6.13 respectively. The values
of the constant in the set thus obtained were reasonably
consistent within 2% for the curves in which some rotation
of the magnetization towards the C-axis took place. Deri-
vation of the constants wés réstricted mainly to this
region iﬁ the case of limited rotation. The constants
were also determined using the peak height for the full
rotation conditions. The>\2 »2 values were consistent
with the values calculated from the early part of the
curve. Further use of the peak height in the case of

)Ju“z will be discussed in detail in section 8.7.
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8.6. The Constant}\za’ 2

The measurements of)\gx’z are simpler than those
of)\fx’z for the reason that )}’2 contribution of the
rotation of the magnetization in the basal plane does
not affect the constant. The exact rotation in the basal
plane is very difficult to find for all the points on
the strain versus field angle curve. The uncertain )\5’2
part in the7\1 2 expression results in a higher error in
the>\1°(’2.va_lu‘es. To determine the constant}\zm’2 the
strain was measured along the C-axis and equation 6.13
was used. The sign of the constant)\za’2 for. pure gadolinium
is negative while for all the alloy specimens it is positive.

8.6.1 The Temperature Dependence of)\;x’z

o, 2 was studied for

The temperature variation of)\z _
Gd, 90%Gd-10%Tb, 70%Gd-30%Tb, 50%Gd-50%Tb and 10%Gd-90%Tb
specimens. The curves obtained for the pure gadolinium
are simple, smooth and symmetrical. They represent the
full rotation of the magnetization and show almost no
hysteresis as shown in Figure 8.11. A field of 1 Tesla
wasAenough to produce saturation in strain variation.
The temperature‘was varied at 4 Tesla which was much higher
than the field pfoducing saturation values. The observed
temperature variation is given in Table 8.1 along with
the values of the square of the reduced magnetization
and the ?5/2 reduced hyperbolic Bessel functions. The

observed temperature variation of the constant was tested

with the two theoretical temperature variations arising
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Fig. 8.12 The temperature dependence of 7\2 for gadolinium at 4 Tesla.
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The following paragraph is from page 123, before

‘the description of the 50%Gd-50%Tb specimen.

| Temperature variations for 707%Gd-30%Tb were observed
in fields of 4 Tesla and 12 Tesla. The values of the
constanté below'iiquid nitfogen tempefature are the same
for both fields but‘above 120K, 12 Tesla prodﬁced higher
‘values. The observed values of the constant are provided
in Table 8.3. The agreement with the sirgle-ion model |
dependence is good above liquid nitrbgen temperature But
~ below 80K thé expérimentallpoints are considerably higher
than the theoretical ones. The temperature dependence

~of the constant for 70%Gd-30%Tb is shown in Figure 8.14.
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ffom the single-ion and the two-ion models. The detaiied
discussion of these models is provided in section 4 of
Chapter 4; The-theoreticgl-temperature variation ?5/2
from the single—ioﬁ model (equation 4.59) does not fit
at all but the two-ion temperature variation (fn(T))2 as
discussed in equation 4.56 is a little better. The observed
data and the theqretigél temperature dependences are shown
'in Figure 8.12.A

In the caée of 90%Gd—10%Tb, temperature was varied
at 4 Tesla and at 12 Tesla. the values of the constant
increased with field. With just 10% concentration of . |
terbium, it was very difficult to collect precise information
of the constant below liquid nitrogen temperature. The
observed temperature variation along with the values of
anisotropy constant Kg and the other related parameters
is given in Table 8.2. The single-ion model temperature
variation ?5/2 fits very well with the average of tHe
observed data over the entire range of temperature. The
(m(T))2 variation does not fit at all with the experimental
results. The temperature dependence, both experimental
and theoretical, for 90%Gd-10%Tb is shown in Figure’8.13.

* ~
The 507%Gd-50%Tb specimen contained b and T axes in

the disc plane while all other alloy specimens were ac
plane discs. Temperature dependence of the constant

for this alloy was observed in fields of 8 Tesla and 12
Tesla. The experimental values of the constant produced
by 12 Tesla fieldAafe about 8% higher than those by fhe

8 Tesla over the whole range. No value of the constant

x See oposite paae
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from the single-ion and the two-ion models. The detailed
discussion of these models is provided in section 4 of
Chapter 4. The-theoreticel_temperature variation 35/2
from the single-ion model (equation 4.59) does not fit
at all but the two-ion temperature variation (fn(T))2 as
discussed in equation 4.56 is a little better. The observed
data and the theoretlcal temperature dependences are shown
in Figure 8.17.

In the caee of 907Gd-10%Tb, temperature was varied
at 4 Tesla and at 12 Tesla. the values of the constant
increased with field. With just 10% concentration of
terbium, it was very difficult to collect precise information
of the constant below liquid nitrogen temperature. The
observed temperature variation along with the values of
anisotropy constant Kg and the other related parameters
is given in Table 8.2. The single-ion model temperature
variation 15/2 flts very well with the average of the
observed data over the entire range of temperature The
(m(T)) variation does not fit at all with the experimental
results. The temperature dependence, both experimental
and theoretical, for 90%Gd-10%Tb is shown in Figure 8.13.
) The 50%Gd-50%Tb specimen contained % and ¢ axes in
the disc plane wﬁile all other alloy specimens were ac
plane discs. Temperature dependence of the constant
for this alloy was observed in fields of 8 Tesla and 12
Tesla. The experimental values of the constant produced

by 12 Tesla field are about 8% higher than those by the

8 Tesla over the whole range. No value of the constant

x See oposite page
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could be 6bserved beléw 130 K in the field of 12 Tesla.
The strain gauges in this region either damaged or just
came off the specimen. The experimental results are givén
in Table 8.4 while the temperature dependence comparison
with theoretical is shown in Figure 8.15. The single-

ion model dependénce does not fit very well but is better -
than the two-ion one. The experimental values fail more
fapidly with increase in temperature than the theoretical
variation. The combination of the contributions from

both models does not imprové the situation.

The 10%Gd-90%Tb specimen was most tedious to handle
and only a few points could be observed in a series of
attempts. Due to the limited data available, it was not
justifiable to test the adequacy of the temperature dep-
endence predicted by the theoretical models with this.
specihen. The témperature dependence of the constant
7\51’2 observed by Joraide (1980) does not agree well
with the singleQion model dependence for three compositions
but is good for 25%Gd-75%Tb alloy whose measurements were
made in a i3 Tesla field. His other measurements were
in much lower fields only up to 3 Tesla which were not
strong enough to rotate the magnetization appreciébly
towards the C-axis. The strain variations were mainly
occurring in the flick region. The measurements made
on one ailoy 50%Gd-50%Tb by Nikitin (1981) follow the
temperature dependence resulting from the single-ion

magnetocrystalline interaction.
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8.6.2 'Composition Dependence of)\gx’zA

The values of the constant were extrapolated to O K.
by the least squares method using the single-ion model.
The coﬁstant ?\5(5% versus terbium concentration of the
alloy is plotted in Figure 8.16. The constant increases
with the terbium cgncentration. The experimental composition
dependence of>\20%5) has a very nearly linear variation
with terbium concentration. The)\?(g) value of 50%Gd-
50%Tb reported by Nikitin (1981) is much higher than the
one obtained in the present study. Diréct'comparision
to find the discrepancy is difficult because of the different
techniques of measurementé. The values obtained by Joraide |
(1980) are much lower than the present ones. - The fields
he applied are believed not strong enough to produée full
rotation of the magnetization at low temperatures and
SO the amplitude of the strain variation was resulting
in the lower values of the constant. The composition
dependence from his results seems to have an exponential
form which is due to the rather lower values of the constant
except for 257%Gd-75%Tb. The experimental value of the
constant at OK.. for pure Gd is in agreement with Nikitin
(1981) and Joraide (1980). For the rest of the alloy
series, the experimental values are significantly higher
than Joraide's but lower than those of Nikitin.

8. 7' The Constant)\la 2

The constant was measured for Gd and Gd/Tb alloys -
of composition 90%Gd-10%Tb, 70%Gd-30%Tb, 50%Gd-50%Tb,

and 10%Gd-90%Tb in.the.temperature range from liquid helium
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to about their Curie temperatures and in magnetic fields

of up to 12 Tesla. As discussed earlier in Sections 8.5

and 8.6, the derivation of the constant)\lo‘"2 is very
difficult due to the complicated rotation of the magnetization
in the basal plane. To determine the constant strain was
measured along the a-axis for the ac plane specimens and
along the %—axis for the bc plane specimens. The Clark

and Callen expression. for magnetostriction given in Equatioﬁ
4.45 was further simplified in Chapter 6 to Equation 6.9

for the ac plane specimens. For bc plane specimens the
angle ¢ of the~magnetization in the basai plane is with

respect to the b-axis. The direction cosines of magneti-

zation and strain are

O, = sin® sing b =0
oy = sin® cos¢ and py =1 8.8
o, = cos® ﬁ% =0

instead of those given in equations6.7 and 6.5 respectively.
The equation 6.9 is a special case for ¢ = 30°. The general

solution which is the same for both types of the specimens,

is : :
}\10"2 = - secze(%xs’z(sinze cos2¢-1) +A)\90_>e
aorb
8.9
whereAkgO-—>e is the total variation in the strain measured
aorb

along a or b axis when the magnetization rotates from
angle 90° to an anglé 6 with the C-axis.
‘The equation 8.9 shows that the total strain variation

measured to determine)\ia’2 contains a contribution from
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)\3’2 due to the rotation.¢ of the magnetizétion in
thé basal plane. The values of the constant )F,Z for
’the specimens have been obtained and are given in Chapter
7. The expressioﬁ 6.13 for 7\2 »2 is independent of ¢
and so of 7\5’2. The values of the constant )20(’2 cal-
culated at various intervals were consistent. This is
not true in genéral for the determination of the constant
)\fx’z because the actual value of ¢ is difficult to find.
The angle ¢ can be calculated frdm the basal plane anisotropy
constant but the possible existence of an unknown perpendicular
componént of the applied field makes the calculated values
doubtful. The possible ¢ variation and its corresponding

2 is discussed here briefly.

effect on the constant:?\l(x’

The angle ¢ varies fairly uniformly from zero to maximum

30° in the ac plane specimens but in an uncertain way

which may lead to a maximum value of 60° in the bc plane

specimens. The spread in the values of the fraction of
)3,2 for the simple case of ac plane specimens is shown

in Figure 8.5. In the beginning part of the strain versus

temperature curve ¢ is zero which eventually becomes 30°

at some stage during the rotation of magnetization

from 90° to 0°. The curve (1) represents the fraction

of )\K,Z to be included in the derivation of the constant

‘7\1 »2 for.one extreme case in which ¢ remains zero.while

(2) applies to a situation near the other extreme when

¢ becomes 30° after the magnetization has rotated only

2°. 1In practice the value of the fraction of the %?,2-

contribution may have some value between those indicated by




- 128 -

the two curves. Thus the values of the constant calculated
at regular intervals of © might show a drift for any fixed
value of ¢ unless the calculations were in the region

where ¢ had achieved ité maximum value or it remained

zefo when the ')§’2 contribution followed the curve (2)

~or (1) rgspectiveiy. In situations where consis&ency

was not achieved, the derivation of the constant )\{x,Z
was restricted to the early or the end part of the curve
for the limited or full rotation of magnetization case
fespectively. The values of the constant derived in the
later case are more reliable and these were pbssible.only

at higher temperatures except for the case of pure gadoliniumm.

8.7.1 The Temperature Dependence ofikixfz

The strain variation versus .applied field angle curves
for pure gadolinium are simple and represent full rotation
of magnetization in the plane containing the C-axis.

The field of 2 Tesla was producing saturation strains.

The temperature dependence of the constant for Gd was
studied in field of 4 Tesla. The experimental points

along with the theoretical variations based on the single-
ion ?5/2 and two-ion nF(T)are shéwn in Figure 8.17 The .
agreement of the experimental temperature dependence is

not good with either of the models, but it is slightly
better with the single—ion-/fs/2 variation. This behaviour
of Gd is contradictory to that shown in the case of the
other constant)\;x’z. The sign of the constant is positive

and is opposite to that of )\20(’2.- The constant:)\lo"2

' has negative sign for all the Gd/Tb alloy specimens.
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The temperature dependence for 90%Gd-10%Tb alloy was
studied in a field of 4 Tesla. The observed temperatufe
variation of the conétant is shown in Figure 8.18. The
constant doeé not seem to follow any theoretical temperature
variation. The negative value of the constant at low
temperatures decreases in mag?itude, becomes positive
at 95 K and negative again above 140 K. The negative
contribution of the terbium ions towards the constant
7\fx’2 is jﬁst dominating the positive contribution of
Gd ions at low temperatures. The temperaturé dependences
of individual ions seem to follow different variations;

Gd the two-ion mz(T) variation while Tb the one-ion ?5/ ,
-dropping relatively more quickly at low temperature thaﬁ
- at high compared to that of mZ(T).
The QalueS‘of the constant for 70%Gd-30%Tb could
not be experimentally observed below 110 K. The variatioﬁ

of)\{u’z with temperature for 70%Gd-30%Tb along with the

theoretical variation is shown in Figure 8.19. The experi-

mental values do not follow very closely any of the two
common temperature dependences, but the agreement is
better with ?5/2 variation than that of mZ(T). The constant
has negative sign over the whole range of temperature
variation. 4

The measurements of the constant become more difficult.
for the 50%Td-50%Tb specimen. It was not possible to
measure the constant below 120 K with fields up to 8 Tesla.

" The data below this temperature was just possible in the

field of 12 Tesla but the risk of damage to the strain
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gauges then becomes very high. Figure 8.20 shows the -
éxperimental temperature variation of the constant?\lo‘"2
for 507%.Gd-50%Tb specimen along with the temperature varia-
tions suggested by two theoretical models. The agreement
of the temperature dependence with both models is of the
same order. Fbﬁ%;&%) values see tables 8.1 to 8.4.

The problem of measuring the constant becomes worst
for the 10%Gd-90%Tb specimen. The limited number of points
available near tﬁe Curie temperature with a large spread
in the values are really not enough to judge the adequacy
of the temperature dependence of the constant with the
theoretical one.-v

The temperature dependence of the constant )“la’z
observed by Joraide (1980) does not fit well with the
?5/2 theoretical dependeﬁce resulting from the single-
ion mechanism for any of the specimens. The 50%Gd-50%Tb
only showed a better fit with the dependence stemming
from the two-ion theory. Nikitin (1981) studied the constant
only for 50%Gd-50%Tb in the alloy series. - He claimed
that the temperature dependence of the constant follows
the dependence resulting-from the single-ion interaction.

'8.7.2 Composition Dependence of )\10"2

The extrapolated values of the constant )\1“((’)) to
0 k. were obtained using ?5/2 single-ion and mZ(T) two-
ion theoretical temperature variations by the least squares
method for each composition of the alloy. The variation
of .)Na(éf_with the terbium concentration is shown in

: 1 B
Figure 8.21. The values seemtolie along a straight




TABLE 8.1

The temperature variation of the constants )\%’2 and

)~d32 in units of 10™% for pure Gd.

1

Field a2 R

in TeRp N (h wfm I,

Tesla
4 4.2 -1.27 1 1
4 78 -1.38  .899 .849
4 91 -1.51 .862 .800
4 121 -1.50 .776 .685
4 145 -1.39 .700 .589
4

189 -1.29  .560 433

O K Least squares fit -1.75 ~1.92

values ) t 3.
}.l?rlleld Temp. )\a(,ig mZ(T) ,1\5/2
Tesla K 1

4 4.2 1.53 1 1

4 78  1.47 .90 = .850 -

4 91  1.37 .86 .802

4 121 1.07 .78 .685

4 145 .83 .70 .589

4 190 .5 .55 427

0 K Least squares fit 1.48 1.59
values *.09 * 06




The temperature variation of the constants )\Ozl’zand )\1

units of 10~

s 2 KO
Field oo N, (T) 2
In K 10*77
Tesla
12 4.2 4,13 .258
12 39 3.49 . 249
12 77 3.82 .218
12 86 3.18 .208
12 99 3.24 .197
12 124 2.88 172
12 156 2.14 .140
12 191 1.58 .104
12 221 1.08 .073
12 265 .76 .033
O K Least Squares fit
values
~ a,2
A (D)
4 4.2 -1.4 .259
4 44 -0.8 . 247
4 60 -0.6 234
4 64 -0.4 .230
4 108 +0.2 .188 .
4 141 -0.1 .157
4 171 -0.2 .126
4 203 -0.3 .092
4 232 -0.2 .062

4

O K Least Squares
values
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TABLE 8.2

for 90%Gd-10%Tb

fit

I+ W
Fopl

1
.964
.936
.929
.828
.726
.619
.506
.377

1x10™%  -1.04x10”
+ 3"

a2 .
in

.947
.907
.893
.754
.623
.497
.380
.090
4

+ .3 "
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TABLE 8.3

. s o2 .
The temperature variation of the constants )gézand )\f in

units of 10f3

for 70%Gd-10%Tb, (the values of Kg are
the average of Corner (1983b) and Hawkins (1982)/

Paige (1983)).

Ii?ield Terlgp.-. )\za('i‘% _‘;g 3 m? (T) /1\5/.2
Tesla 10 “Jm
12 4.2 2.538  1.100 1 1.
12 41 2.288  1.030 964 947
12 78 1.950  0.900 897  .849°
12 133 1.417 625 736 .634
12 172 1.060 435 601 .480
12 189  0.912 .360 537 412
12 220 0.570° .235 405 .290
0K Leaét squares fit 222 238
values . ' 143 iOﬂS
oL ,2
AL (T)
8 112 -.71 .73 81 .730
8 159 -.46 .50 .66 .537
8 190  -.29 .355 .53 407
8 223 -.18 .22 .39 273
8 245 .17 14 .27 .179
O K Least squares fit -.75 -.89

values , o *.07 *.05
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TABLE 8.4

The temperature variation of the constants )8%2 and

in units of 10—3.for 50%Gd-50%Tb.

. . d’z e} A
Field  Temp. )~2(T) Ky 2 (T) I
in K 77 3 5/2 -
Tesla 10" Jm™
12 131 3.344 1.20 .735 .632
12 190 1.574 .62 . 506 .376
12 203 1.260 .50 452 . 329
12 240 0.470 .16 .240 .158
12 242 0.383 .15 .224 .145
12 258  0.242 .04 077 .05
O K Least squares fit 3.88 4.8
values 1.42 t .3
o 2
A (D
12 130 -1.45 1.21 .74 .637
12 158 -1.36 .94 .64 - .513.
12 188 - .71 .64 .51 .385
12 229 - .50 .28 31 .210
12 255 - .38 .07 120 .073
0 K Least squares fit -1.936  -2.393

values *14 *.16

oS
Ap?
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Temperature (K)
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Fig. 8.20 The temperature dependence of )\1 for

GdO.SOTbO.SO at 12 Tesla.
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Percentage of Gd

-200

Least squares fit to the

extrapolated O K values

of the constant using I

variation, and 5/2
’ .

—~——  using n°(T) variation.

. .002
Composition dependence of )\1(0) for

Gd/Tb alloys. The extrapolated O K
values of the constant by least squares
fit to m2(T) variation are represented
by X and those to ?5/2 variation are

represented by *.
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line. The linear behaviour of the constant with the alloy
composition is not very good but is more conclusive than
its temperature dependence. The experimental values of
the constant at O K. fall in between those of Joraide
(1980) .and Nikifin (1981). In general the difference
between the values decreases towards the gadolinium end

of theISeries. The compositiqn dependence observed by
Joraide (1980) despite his unsatisfactory analysis of

the strain curves for this constant, has an excellent

linear variation.
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CHAPTER 9

DISCUSSION, CONCLUSIONS AND SUGGESTIONS

9.1 Introduction

The results of the measurements of the magnetostriction
constants )3’2, 7\{1’2 and -)ch,Z of order { -2 of single
crystals of Gd, Tb and their alloys have been presented.
in Chapters 7 and 8. The study of the temperature dependence
and composition dependence of these constants provide
a powerful tool to understand qualitatively the nature
of the giant magnetostriction exhibited by terbium metal.
The temperature dependence of tﬁe magnetostriction constants
was compared with those predicted by the theories based
on two-ion interactions and single-ion magnetocrystalline
interactions.

9.2 Results and Discussion

¥ ,2
The value of the constantlkjé) of Gd at zero temperature

is in agreement with that of Mishima (1976). The constant
)?’2 drops very sharply with increase in temperature.

It has positive sign in the observed temperature range
from 4.2K to 170K. The temperature dependence of '}?’2
for Gd does not. follow that expected from the single-ion
theory and the agreement with a simple two-ion model is
not good either. The temperature dependences of }?’2

for the other Gd/Tb alloys follow an 35/2 temperature
variation as proposéd by Callen and Callen (1965). The
agreement is very good for alloys containing more than

10% Tb. The composiﬁion.dependenCe of Gd/Tb alloys is

found linear with terbium concentration as is expected




- 133 -

from the éingLé—ion model. The dilution of terbium ions
with gadolinium results in separating terbium ions from
each other witﬁout affecting the crystal field. So, the
linear decline in the magnetostriction with the loss of
terbium ions is the direct consequence of the single-ion
crystalline field interaction.

The value of the constant ?\;c(c’)% 6f pure gadolinium
observed has the same valué as reported by Mishima (1976),
and is very close to that of Nikitin (1981), but is higher
.than Alstad and Legvold (1964). The constant %%?’2 is
negative and shows decreése in the value with temperature
and has minimum around 120K. Similar minima were observed
by Mishima (1976) around 120K and around 140K by Alstad
and Legvold (1964). The temperature dependence of the
constant for Gd cannot be explained by any simple theory.
The sign of the constant becomes positive for all the
alloy specimens. The )%?’2 constant for 90%Gd-10%Tb
shows reasonable agreement with a temperature dependencg
resulting from the single-ion model. The variation of
the constant with temperature for 70%Gd-30%Tb is also
in good agreement with an ?5/2 yariation. The fit of
the temperature dependence of the constant is not so good
for the 50%Gd-50%Tb specimen. The composition dependence
of the constant shows a linear variation with terbium
concentration but the measurements do not extend over
the full range of composition so that the result is not

’ ' 2
so convincing as that for )\K’ .
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x
x,2

The experimental value of)\l(o) is very close to
that of Mishima (1976) and the same as that of Alstad
and Legvold (1964), but higher than that of Nikitin (1981).
The constant has a positive sign which changes to negative
for the other alloy specimens. Representation of the
cdnstaﬁt by the single-ion function ?5/2 is not very good
~but this is still better than an m2(T) dependence. In
tﬁe case of 907Gd-10%Tb the gadolinium ions produce a
positive strain while the terbium ions produce a negative
one of similar magnitude. These strains however follow
different temperature dependences so that the constant
is negative at low temperatures, becomes positive around
90K and has maximum at 110K. the temperature dependence
cannot be represented by any one theory. The fit of thé
temperature dependence of the constant for 70%Gd-30%Tb
and 50%Gd-50%Tb with an ?5/2 single-ion variation is not
perfect but better than an mz(T) two-ion variation. Since

o

the temperature dependence of)\1 »2 for all the specimens

was not very well represented by IS/ single-ion variation,
2

the extrapolated zero temperature values of the constant
for each specimen were calculated by the least squares
A
method using IS/ and m?(T) variations. Neither set of
2

values thus obtained seems to vary linearly with com--

position.

The anomalous behaviour of the constant>\;x’2 for

80%Gd-20%Tb reported by Joraide (1980) was not observed
fdr the intermediate alloy 90%Gd-10%Tb specimen. Instead,

* for C‘fd
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the temperature variation of)\fx’z

for 90%Gd-10%Tb showed
avbehaviour similar to the anomalous one. But this can"
bé undérétOOd:On account of the comparable but opposing
contributions towards)\lcx’2 made by a large number of

Gd ions against a small number of Tb ions. The con-
tributions towat‘ds>\.2 > 2 are again opposing each other

but the one made by Tb ions is dominant.

9.2.1 <Conclusions

The study of the temperature dependence of the magneto-
striction constant )F,Z for the entire range of Gd/Tb |
alloy compositions and the composition dependeﬁce of the
constant is décisively in the favour of the single-ion.
magnetocrystalline interaction responsible for the giant
magnetostriction exhibited by terbium metal. The
temperature and composition variatiors of the constant

)\g"zAalso show reasonable agreement with the single-
ion model. The results of the measurements of the temp-
erature and composition dependence of the constant )\f"z
do not inspire a similar degree of confidence in making
a decision'about the nature of the interactions on their
own, but at the same time do not discard the single-ion
nature of the interaction. On the basis of the present:
study, the depéndence of the giant magnetostriction in
the basal plane on the temperature can be described by
_the relation 7.1 predicted by the single-ion magnetocrystalline

interaction theory. The very small magnetostriction of

spherically symmetric s-state gadolinium compared to thg
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giant magnetostriction shown by the terbium is a clear
indication that the origin of large values of the magneto-
striction of.terbium or heavy rare earths in general is

due to the interaction of the anisotropic 4f electronic
charge distribution with the crystalline field. The
concluéion is in agreement with the recent studies of
magnetocrystalline anisotropy of Gd/Tb alloys by Hawkins
(1982), Paige (1983) and Corner (1983b). It is also
consistent with the results established by BelovAef al.
(1968), Nikitin et al. (1976, 1977a and 1977b) and Nikitin .
(1981) on the basis of their anisoﬁropy énd magnetostriction
studies on the}single crystal heavy rare earth élloys.

The less strongly supporting )\20( 2 results and weak
support or neutral behaviour of the)\la"z measurements

to the conclusion is due to the assumptions made. Thdugh
the fermi surface of gadolinium is very close to that

of terbium yet it is not idential (Keeton and Loucks,
1966). It results in a non-linear deformation of the

Fermi surface in the alloys. The exchange magnetostriction
in the rare earths, depends on the singularities of the
Fermi surfaces ( Tonegawa, 1964). Therefore, one may expect
non-linear change in the magnetostriction constants of
exchange origin. Moreover, in the derivatidn of magneto-
strictive strains the constants of order higher than { = 2
are ignored. It is therefore, naturally difficult to
expect a perfect fit of the experimental results with

only one simple theory. On top of these, there are some
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limitations of the technique of the measurements leading
to errors in the results. These are discussed in the

following section.

9.2.2. Sources of Error and Limitationsof the'
Technique |

The analysis involved in the derivation of the constants
kza’z'éndixﬁa’z is based on a knowledge of fhe anisotropy
constants of fhe alloys of the specimens. Thus any error .
in the anisotropy constants will be incorporated in the
derived magnetostriction conétants. The effect of uﬁcertainty
in the values of the anisotropy constants was investigated
by recalculating the magnetostriction constants using
20% lower and higher values of the anisotropy constant.
It was found that the strain constants are quite sensitive
to a change in the Value of the anisotropy. The percentage
error resulting in the strain constants was not linear
and also varied with temperature and composition of the
alloy. The resultant percentage error varied between
half to twice és that of anisotropy.

The values of the constant >\20(’2 and >\1 o ,2 depend
~ on the angle of magnetization 6 and particularly }\f"z
is very.sensitive to the angle in the case of limited
~rotation. The angle © is calculated using anistropy constant
values as described in section 8.2. The determination
of the origin of the angle is discussed in section 8.5.
The sharp peak around the e-axis was taken as reference.

The reference is reasonable in case of full rotation or
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néarly full rotation of magnetization. But, in the case
of a limited rotation of magnetization it may shift because
the magnetizaﬁion may not jump immediately the field crosses
the C-axis. This could result in a considerable error
'in the values of the constant )\10( 2,

The strain gauge is an indirect method of measuring
strains. The strain measurements depend upon the bond
of the strain gauge. Though the bond M-610 is recommended
for the present experimental conditions yet it frequently
suffered damage when working in high fields and withithe
strongly magnetostrictive alloys in the terbium rich end ‘
of the series. The strain gauge may be suffering gradual
loss of bond Qith,the specimen before actually becoming.
detached. This could result in a decline in the values
of the constant.

The specimens are held in magnetic fields using Durafix

adhesive. To leave the specimens free to deform according
to magnetostrictive strains, cotton wool pads were placed
on both sides of the specimens. But, the small amount
of the adhesive round the edges of the specimen may spread
around and at low temperatures could cause considerable
constraint to the free deformation of the.specimen.

The possibility of the existence of a component of
magnetic'field normal to the plane of the specimen is
another source of error'for calculating angle ¢ and hence

‘affects the strain constants involving the contribution

from ?\K’ 2,
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9.3 Suggestions for Future Work

The present model for analysis of experimental data
to derive magnetostriction constants takes into account
the angle of ove;all magnetization resulting from the
magnetic moments of Gd and Tb ions. The easy direction
for Tb is the b-axis while that for Gd is inclined at
an angle to the C-axis which varies with temperature.
The magnetic moments of Gd ions will obviously rotate
more easily towards the field direction than Tb due to
the relatively very small anisotropy. The overall angle'
of magnetization thus may not be representing the true
rotation of the moments of terbium ions. The analysis
" should be improved to include the true rotation of the
magnetization due to terbium ions. Let us consider the
magnetizations due to individuél ioﬁs as illustrated in
Figure 9.1. The total magnetization of the alloy then
can be expressed as

M = (Mzq cos 51 + Mgy cos 521/'cosg 9.1
where MCd and MTb are the saturation magnetizations of
Gd and Tb respectively and interactions between those
moments are not taken into account. If the interaction
is of single-ion nature, the MGd and Mrp can be expressed
by the simple relation to the numbers of ions. Hence

M = LLGd’XN cos 51 + My (1-x) N cos 32 | ;9.2
whefeLLGd andLLTb are the magnetic moments of the Gd
and Tb ions respectively (the contribution of conduction

electrons being included), x is the percentage concentration
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A

Gd ,/ Gd

./ easy

;, direction

Tb -easy direction
——
b-axis

'Fig 9.1 Direction of magnetizations due to individual alloy

components relative to applied field and crystal axes.
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of Gd and N is the total number of ions.

For a given alloy composition in a fixed field applied
along a direction'specified by(p, gi can be calculated
from a knowledge of the anisotropy constants for Gd as
described'in Section 8.2. So XZ can be calculated using
Equation 9.2. 'Jé can also be obtained like 51 using
the anisotropy constants of pure Tb. The degree of agree—’
ment between the two 5& calculated values of Tb would
be another test of the single-ion nature of the interaétion
of the Tb ions; If the correlation proved to be good |
then it would indicate that changes should be made in
the technique for analysis of ?\101’2 and 7\20(’2 constants.
Instead of using the bulk anisotropy constants for the
alloy to determine the derivation of the Tb ionic moment
and hence ‘the value of 6, the anisotropy constants for
pure Tb should be used. A theoretical treatment would
then be required to calculate the bulk strain for a crystal
in which Gd and Tb ionic‘mOments are not colinear.

Other systems of alloys should also be studied for
exémple, Gd/ Tm. Thulium exhibits the C—axis modulated
ferromagnetic ordering. The results of the competition
between the non;colinear moments for various magnetic
ordering like CAM, cone plus helix, CAM plus helix, ferro
and ferri for different temperature and composition con-
ditions would reveal more useful information to understand
the complicated magnetic properties of the rare eartﬁs.

The technique to determine the constants certainly

. . 2
needs improvements to obtain the constant );’ and
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possibly other higher order constaﬁts. This would require
improvements in analysis techniques.and in the equipment
used for strain measurement.

The latter might be brought about either by improvements
to the existing equipment or by another approach to strain
measurement. The mounting of the specimen should be such |
that the field always remains in the specimen plane.

The rotation of the principal axes of the specimeﬁ with
respect to applied field needs to be most accurate. The
axes from the x-ray measurements should be correlated | w
to the rotation of the angle sensing potentiometer so
that the absolute knowledge of directions relative to
the field were available rather than inferring those
directions from the recorded curves. Alternatively, the
rotation of the specimen should be measured directly by

fixing a small coil on the specimen box in between two

other fixed coils. The central coil fed by an AC signal,
will generate a pick-up signal in the outer coils. From
the phase and amplitude of this the angle may be inferred.
Alternatively an X-ray technique which measures the
lattice parameters directly may be tried. This would
require considerable design genius to pfoduce apparatus
capable of using X-rays in the small space normally
available at low temperatﬁres with high magnetic fields.
Such methods might involve the determination of the constants
frdm the spontaneous magnetostriction which appears on
cooling through the Curie point along with a knowledge
6f the thermal expansion on the lines of Nikitin et al.

(1977b) .
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The fact that magnetization causes mechanical strains
implies that mechanical stress will affect the magnetization.
The study of magnetization of the samples subjected to
hydrostatic or uniaxial pressﬁres is another way of estimating
'magnetostriction. |

As a further alternative a dilatometer similar to
that described by de Lacheisserie (1975 and 1977), which
would also require major redesigninngf the magnetostriction

~insert, could be employed.
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APPENDIX I

Relation between the Anisotropy Constants and Coefficients

The magnetocrystalline anisotropy is most commonly
- represented using Legendre polynomials. The Legendre poly-
nomials occurring in Equation 4.11 can further be expanded

~in terms of cosines of even-multiplied angles as

P2 (cos ©8) = ¥ (1 + 3 cos28) Al .
P, (cos ) = gz (9 + 20 cos26 + 35 cos4e) A2
; |

Py (cos 8) = 517 (50 + 105 cos26 + 126 cos® +
+ 231 cos68) : A3

- These equations can be rewritten involving powers of sines:

P2(9) =1 - % sinZG' . Ah
P,(8) = 1 - 5 sin’e + 32 sin"e A5
P6(G)‘= 1 ~ %% sinze + l-g—g—sinae - Z%% sin66 A6

Thus equation 4.11 can also be expressed in terms of powers
of sines. The comparison of the new co-efficients with
. those of equation 4.6, yields relations between the aniso-

tropy constants of different representations given as

Ky = - % K9 - 5 K, - %1 Kp - ' A7
K2 = gg KZ + 122 KZ + ' A.8
KB—"%KE" . A.9
K, = K>, - | A0

- and correspondingly,
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o 2 16 176 «

Ky =3 Ky =57 Ky =937 83 - A.11

kS = %5.' K, ,}gf)i Ky.+ A12

o |

K6 = - "];9— K3 - A.13
231

Kg - K, . | A 14

'
In a similar way the co-efficients K 0 can be related

to K? asr
‘o ‘aﬂ - |
[0}

K, = KS | A.15
' .

KAO - @;[ K A.16
1]

K6O = \fg Kg A.17
' _

K66 - 4% Kg . : A.18
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APPENDIX 1II

Computer pfogramme for the automated operation of
the experiment. |

THe following programme written in BASIC for Commodore
PET was used to cqllect the magnetostriction data in con-
junction with a. tractor printer 4022. In this particular
programme A% = 10 is the address for the position potentio-

meter analogue to digital module while A% = 11 is for strain

gauge signals, and A% = 32 is of the module for the stepping

motor to turn the specimen in the forward direction while

A7 = 33 is for the reverse direction,

face.

rem magnetostriction data collection & analysis

ifw$="a"then gosub 3000:goto 50
ifw$="r"then 130
ifw§="c"then 1500
1fw$—"o"then 130

ifw$="1"then 2000

1fw$-"s"then 5200%

ifwg="

i"then 1300

ifw$=”v”then 1400

ifw$="p"then 1100

gosub 5990:goto 50

of the MINICAM inter-

mait27

poke1,0:poke2,148:a%k=1:n%=1:t%=1
dimx(200):dimy(200):dimk (100)

- dima(20):dimb(100):dimth(100):dimim(100): d1mk6(1 0)
dimmt (100):dimdt (100):dimms (100):dimm(100):dimt(100):dimq$(100)
dimgd(10):dimro(100) :
opent,4:print€l,chr$(147):closet

fi=+180: z=+2710 :
gosub 1000
prlntll ".
print“press the appropriate key to:"
print"":print“record the particulars---------- p"
print"":print"read current values of a/d------ v"
print“":print"run from present position------- r"
print"":print"run with temp. & field values---0"
print"":print"set new rotation limits--------- c"
print"":print"load the data from tape----~-~-- 1"
print"":print"know programme sections--------- s"
print"":print"or for ana1y51s/calculat10ns ---a
getw$:ifw$="" then 80




100
102
104
106
108
110
112
116
118
120
121
122
123
124
126
130
131
132
134
136
138
139
140
142
144
145
146
148

150.

151
152
153
154
155
156
157
158

159
160
164
168
170
172
174
180

190

200
210
220
490
500
510
512

‘print"crystal:"gd"%gd"(100-gd)"%tb; perp."ax$"-axis ("no")

forst=1tosn:sys57386:next s1
sb=sb-1:if sb=0 then return
forst=1to sp*600:next s
geta$:ifa$<>""then return
goto100

sn=3:sb=1:gosub100

print"hit any key to continue"
geta$:ifa$=""then 116
print"ok":return

gosub 110

goto130
t2=ti:sn=5:sb=10:sp=3:input"minutes *";t1:ift1=0then t1=20

printnd$;:print""t1"minute interval from":print""“ti$

if ti-t2<3600*t1 then 124
gosub100:print""nd$;nd%:return

Drint""
da = 18 : mo = 8

rem -- --

rem day & month

rem N

gd =70 :ax$ = "b": no = 1 :bo$="h"
rem -- - - -
rem gd% , perp. axis & no box
v=.3615:rem bridge voltage in volt
ga$ = W

rem - -

rem strain gauge is along ga$

rem

y$=" 5 mv/cm":x$=".2 v/cm":c$="1-13b"
rem -- ' -- -———

rem senstivity y , x & cassette

rem : ~ :

ag$="10 of datron 1051"

Fem ~-c-ceemcmeecn——a~

rem gain = ag$

ifw$="0"then 1200

ifw$="0o"then w="r":gosub 110

Drint”";

print"date: "da"-"mo"- 83 & time = "ti$ .
print“strain gauge is along "ga$"-axis in box "bo$
print"x sens.="x$" & b.voltage ="v

print"gain ="ag$
print"recorded on cassette : "c$

print"rotation limits: from "z" to "fi :print""
pp=0:print"curve no"qg", f="f$" & y="y$
print"temp.="t$" or t="t"&v= "v

print”step ‘rotation  signal x:a/d"
print"" :

x1=5000:xh=-5000

y1=5000:yh=-5000

at$=ti$:p=0:nn=32:es5=0:q1=0

r=1:¢r=97
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520 for i=r to rr

530 a%=10:d=usr(5):x(i)=((z
540 x(i)=int(x(i)*1000+.5)/
550 if xh <x(1) then xh =
560 if xlI x{(i) then xl =x
570 a%=11: y( )=usr(5)

590 if yh y(i) then yh =y
600 if yl >y( ) then yl =
610 r=xh-xl:am=yh-yl

620 printnd$;:print i,x(i),
624 pp=pp+1:if pp>3 then pp=0:print"";

630 1=i _

640 ifx(i)>(+.04)then684 :

642 getnn$:ifnn$<>""thengl=ql+1:ifql=1thenprint"turning slowly steps=";:pp=pp+
644 ifqt=1then nn= val(nn$)'q1~q1+1°got0652

645 ifgi1=2then654

646 ifqt>2thennn=32:printnd$;"back to normal with steps="nn" ":pp=pp+1!
647 ifg1>2thenqt=0

648 goto670

652 printnn:ifnn=0thenprintnd$;:input”steps,please*";nn

654 es=es+1

670 a%=32:n%=nn:t%=10:a=usr(1):a=usr(3)

674 a%=67:c=usr(2)

675 ifi=97thenr=97+1:rr=(97+es):goto5201ist685

680 next i . :

682 printnd$;:input"need further rotation*";a$ .

683 ifas= “y"thenr i:rr=i+es/4:g0t0520

684 ed$=ti$ |
685 for s1=pp to 3 :print"":next st . |
686 n8=(i-1)*32-es*28 :printn8,"no. of short steps"es

687 sn=3:sp=1 :sb=1 :gosub100

690 print“rotation="r"amplitude="am" at"ed$

700 a%=33:n%=n8:t%=10:a=usr(1):a=usr(3)

702 a%=67:c=usr(2)

710 a%=10:f=usr(5):printf;

720 if f>z+100 thenprint"*";:goto 750

730 a%=33:n%= 40:t%=10:a=usr(1):a=usr(3)

740 goto710

750 a%=32:n%=170:t%= 10:a= usr{1):a=usr(3)

752 a%=10:f=usr(5):

754 iff=z or f < z then printf:print"":goto757

756 a%=32:n%=4:1%=10:a=usr(1):a=usr(3):goto752

757 ift$<>""then770

758 sn=5:sp=2 :sb=10:gosub100

760 input'g,temp,field, v & ys*";q,t$,f$,92,ys$

761 ift$="n"then 50

762 t=53*val(t$)+77

764 if g2<>0 then v=g2

766 ifys$<>""theny$=ys$ :print’y senstivity is now = "y$

770 rem print “curve no "q

776 rem printnd$;

780 opent,4:0pen2,4,1:0pen3,4,2:0pend 4

782 g$="999 $9.999 s9999 999 $9.999 s9999"




- 148 -~

786 printf£1,"curve no."q" , temp.= "t$" or ="t"k & mag field = "f$
796 printg£?,"crystal:"gd"%gd"(100-gd)"%tb; perp."ax$"-axis("no")";
798 printf£1," recorded during ("at$" to "ed$")" .
800 print£1,"senstivity y ="y$", gain ="ag$"& bridge voltage ="v"volt"
801 rem print€1," & strain gauge is along "ga$"-axis '
804 print£1,"":print£1," no"tab(4)"radians"tab(6)"sg.o/p";

806 print£1,tab(11)"no"tab(4)"radians"tab(6)"sg.o/p"

808 printg1,""

810 for - i=1 to 1 step 20

812 print£3,g$:print€2,i,x(i),y(i),i+1,x(i+1),y(i+1)

813 p=p+1:ifp=5thenp=0:printf1

815 nexti

820 printft, "peak to peak amplitude ="am", rotation through "r"radions"
840 printf!,"":printft,"":printgl,"" :
850 close?l :close2 :close3 :closed

855 print"saving data on tape "

856 1ft$-”"then input"q,temp,field*"q,t$,f$:print""

860 opent,1,1t,"data"

865 pr1nt£1 da,"," mo

870 printil,gd;",";ax$;",“;ga$

880 printgtl,q;",";t$;",";f$

885 printf1,1

890 fori=1to 1

900 print&€1, i;",";x(i);", "y (i)

910 next i _

914 close 1,1,1

916 q=q+1

918 print"";: pr1ntnd$,

920 print"saved on tape"

922 sn=3:sp=3:sb=2:gosub 100

923 input'"need total strain*";a$

924 ifa$="y"thengosub9200

925 if v$="f"then gosub 4000

928 if a$="w"thent1=20:gosub 122:goto923

930 print"":printnd$:input" temp. , field , v & ys *";t$,f$,92,ys$
931 ift$="n"then 50

932 ifys$<>""theny$=ys$ :print""

934 t=53*val(t$)+77

936 ifg2<>0 then v=g2

940 printnd$;

960 print"":go to 190

970 stop

1000 nc=40

1050 r$="":nl$="":nf$="":nc$="":nb%="":if nc=0 then nc=40

1052 ifnf<>0then for st1=1tonf:nf$=nf$+"":nexts1

1054 ifnl<>0then r$="":for si=1tonl:nl$=nl1$+"":nexts!

1058 for st=1tonc:nc$=nc$+" ":nextsi

1064 for si=1tonc:nb$=nb$+"":nexts1

1070 nd$= r$+n1$+nf$+nc$+nb$

1074 return




3200
3210
3220
3225
3230
3250
3255
3260
3270
3290
3300
3310
3320
3330
3340
3350
3390
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APPENDIX TIII
Computer programme for calculating the argument of

the reduced Bessel function from the reduced magnetization.

print" langevin fn. argument x from reducd magnetization m"
print" by newton's method"
input"reduced magnetization*";m,sx

if m=0 then return

xz=sx: if sx=0 then x=.05
x1=((exp(x)+exp(-x))/(exp(x)-exp(-x))-(1/x)-m)
ifabs(x1)<0.0001 then3320

a=1.01%x
x2=((exp(a)+exp(-a))/(exp(a)-exp(-a))-(1/a)-m)
Xx=X-.01*x*x1/(x2-x1):print x

goto 3250

x=int(x*1000+.5)/1000

print"": print""x,x1:print""
print"need further x (y) ?"
get a$ :ifa$="" then3340
ifa$="y"then 3220

return '




4500
4510
4520

4530
4531
4532
4540

4550
4560
4580
4590

4600

4604

4610

4620
4630
4640
4650
4660
4664
4670
4690

4700
4710
4720
4730
4740
4750
4752
4754
4760
4764
4770
4780
4790
4794
4800
4810
4812
4814
4830
4832

4834

4836

4838

4840
4850
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APPENDIX‘ IV

' Computer programme for least squares fit.

pr‘lnt"” .

print" least squares curve f1tt1ng

pr‘lnt"" )
print“programme will fit data to one of the tfollowings "“;

print"& gives their errors”

print"press lp for linear ------"chr$(34)"y=k.x "chr$(34):print""
print" .1 for linear ------ "chr$(34)"y=m.x+c "chr$(34):print""
print" e for exponential ~"chr$(34)"y=a.exp(b.x)"chr$(34):print""
print" . p for power law --~"chr$(34)"y=e.x~f "chr$(34)
input“lp,1l,e or p*";k$

print"" _

if k$-”l” then print" fitting to a linear function y=m.x+c":c$="0"
if k$="1p" then print" fitting to a linear function y=k.x":c$="0o"
if k$="e" then print"fitting to exponential fn. y=a.exp(b.x)":c$="0"
if k$="p" then print" fitting to a power law function y=ze.x~f":c$="0"
if k$="n" thenprint" ok":return .

if c$<>"0" then 4540

rem ' _

input"curve no. & number of points *";q$,n

printuu'

for m=1 to n

input"pair of values, first x & then y *";x,y

printm" x="x" & y="y _ S

print"press any key to proceed, r to retype this value"

get b§:if b$="" thend720 ' '

if b$="r"then prlnt"retype" goto 4690

x(m)=x:y(m)=y

print”"next": next m

nn=n .

print"goto4760"

print"set of values is as follows

print"curve n0. "g$ '

rem print" x-value y-value"

for m= 1 to n

rem printm" "x(m)" ",y(m)

pr‘int"x("m")="x(m),": (umu)=|| (m)

next m

print“press any key to proceed or r to retype the set"

get b$:if b$="" thend812
if b$="r"then print"start again":goto 4660
rem for n=3 to nn
sx=0:5y=0:x2=0:y2=0:xy=0:d1=0
print'no x-value "y-value"
for m=1 to n
prlntm "x(m)" ",y(m):nextm
if k$-”e" then for m=1 to n :y(m)= log(y(m)) next m
if k$="p" then for m=1 to n :y(m)=log(y(m)): x(m)=log(x(m)):next m




if kK
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for m=1 to n
sx=sx+x(m):sy=sy+y(m)
x2=x2+x(m)<2:y2=y2+y(m)«2
xy=xy+x(m)*y(m):next m

| d=n*x2-sx+2

k=y2/xy: v=(x2-xy/k)/n
vk=(v*k«<4/y2)+.5
c=(x2*sy-sx*xy)/d
mm=(n*xy-sx*sy)/d
for m=1 to n :dl=d1+(y(m)-mm*x(m)-c)«<2:next m
sm=n/(n-1)*(d1/d)<0.5
sc=sm*(x2/n)*0.5
if k$="p" then 5150
if k%=“e” then 5050

="1" then 4980
print" fit to y=k.x has following values"
print"k="k"with error=+-"vk
rem input'next set*";a$:ifa$="n" then 3000
k(n)=k:k(10+n)=vk: rem goto 4650
print"and"- .
print"fit to y=m.x+c has following values"

print"m="mm"with error=+-"sm

print“c="c"with error=+-"sc""

rem print"press any key to continue"
rem get.a$ :if a$="" then 5004
fori=1tow*100:nexti

return .
next n

rint"curve no."q$ . v s .
or i=3 to n-1 :print"n="i" k="k(i)" error="k(10+i):next i
opent,4:printf€1,"curve no."q$

print€1,"n.pt. k error"
fori=3to n-1 :print£1,i" "k(i)" "k(i+10):next i

Cprint£1,"m="mm"error ="sm" and c="c" +-"sc:printf1:printft:closel

input"next set*";a$:ifa$="n" then 3000

goto 4650 '

print"fit to y=a.exp(b.x) has following values"
a=exp(c):sa=a*(exp(sc)-1)

print"b="mm" with error=+- "sm""

print"a="a" with error=+- "sa"" : :
next n: input"next set*";a$:ifa$="n" then 3000
goto 4650 .

print" fit to y=e.x<f has following values"

- e=zexp(c):se=e*(exp(sc)-1)

print"f="mm" with error=+- "“sm""
print"e="e" with error=+- "se""

return

input"next set*";a$:ifa$="n" then 3000
goto 4650




3600
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APPENDIX V

Computer programme for calculating angle of

. S . A .
magnetization relative to the c-axis.

print"lagging angle between magnetization and magnetic field"

,b0,ms,m6,dt

& any for next curve"

n print"could not calculate splitling angle":goto3750

3602 print"sin(lag)=(-3/2*k2)/(b0*ms*ro)*sin(2(sai+lag))"
3605 prlnt"lteratlon by newtons method"

3610 J$__Illl J O JJ 0 I$_Illl '

3620 print"press any key to continue but to end e
3625 get a$ ;. if a$="" then 3625

3627 if a$="e" then 3000

3630 jj= JJ+1 j=j+1

3632 input"crystal gd% & den51ty *": gd,ro.

3634 ifgd=0 then gd=gd(j-1)

3636 ifro=0 then ro=ro(j-1)

3638 gd(j)=gd:ro(j)=ro

3640 input'curve & t emp(emf)*",q$ t

3642 if t<>0 then t=53*t+77

3644 ift=0 then t=t(j-1)

3646 t(j)=t:q$(j)=q$

3650 input"k2(10«7),field,ms,k6(10<5) & d.theta*";k
3652 if k<>0 then k= K*10+7

3670 if k=0 then k=k(j-1)

3674 k(j)=k -

3680 mt=90:k6=m6*10«<5:if m6=0 then kb6=k6(j-1)
3682 if dt=0 then dt=5

3684 k6(j)=kb6:dt(j)=dt

3690 if b0=0 then bO=b(j-1)

3694 b(j)=b0

3700 if ms=0 then ms=ms(j- 1)

3704 ms(j)=ms: m(j)=ms(j)*ro

3706 print'"curve no."q¥

3708 print"":printgd"%gd-tb, b0="b0", temp="t"k"
3710 print"k2="k", ms="ms" & ro="ro

3711 print"k6="k6

3712 rem print"sai decreases from"mt"by "dt"degrees"
3714 prlnt"type r to retype , 1 for last curve
3716 get a$ :if a$="" then 3716 '
3717 if a$-"r" then j=j-1:jj=jj-1:90t03630

3718 if a$<>"1" then 3630

3720 for j=1 to jj

3730 k2=k(j):dt=dt(j):ms=ms(j):k6=k6(j)

3732 q$=aq$(j):t=t(j):gd=gd(j):ro=ro(j)

3734 m=m(j) :b=b(j):al=.1:a1=0:a2=0

3740° 11=36*k6/(b*m)

3742 if (11+--2-1)<0 the

3744 l1t=atn(sqr(ll«-2-1)):ss= 1nt(1t*180/)
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for i= mt-to O step'-dt

rintcury 'q
Brlnt basa p?ane$é fltlng starts at"(90-ss)
c=int (1000*(-3/2*k2)/b/m+.5)/1000
print"(- 3/2 k2)/b/m="¢c", bO-”b"& k2="k2:la=al:ifla=0 then la=.2

print“sai="i"& ms*ro="m""

d1—51n(1a)+c*51n(2*(i*/180+la&& :
print"lag= "int(1000*1a+.5)/1000" & dif="int(d1*10<5+.5)/10+5
if abs(d1)<.0001 then 3850 ' :
al=al+1: if al=6 then at=0 : a2=a2+1:la=.2+.1%a2

a=1.001*la

d2=sin(a)+c* 51n(2*(1*/180+a))
d=d2-d1:print,,d:if d=0 then la=al:goto 3770
la=la-.001*la*d1/d:if la=0 then la=.01
ifabs(la)>/2 then print"££"la:la=al

goto 3770
Im=1a*180/ :a1=0 :a2=0
print""i,la:al=1a

prlnt”sal-"l"degree & lag ="Im:th=i+lm:printth
Im(i)=int (10000*cos(th*/180)«2+.5)/10000:th(i)=th
for aa=1 to 99 :next aa:geta$

if a$="n"then 3600

next i
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