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ABSTRACT

We discuss the algebraic geometry of
certain finite enerzy, static field configurations
of an SU(N) Yang - Mills - Higss theory in the

1limit of a massless scalar ficld and how it may be

‘applied to their construction. Ye develop a

systematic way of locating solutions with spherical

‘or cylindrical symmetries. Consideration of the

fields' regularity is extended from SU(2) to SU(3)

" ag also is the description of the general monopole

configuration.
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Introduction

Magnetjp mopopoles first enteréd thc.worid of physics
as a means>of explainiﬁg the quantisation,of electrib charge.
'Diraé‘léonsidered a quantum field theory of electpic'and magnetic
chargcs whose consistenc& dehanded a relation of the'type

e,oa-z IH\V\)G\ where ¢ and % are respectlvcly electric and

magnetic charges, M is an integer and M Planh s constant.

Such a monopole may be described by taking a sémi—infinité
magnet along the ¢ -axis with one pole at‘the origin whose vector
»potentla] ano fleld strength tensor w111 be non-singular except
on the magngt itsclf. We can chop off all but th pole by adding.
to the fie;d strength tensor the " Dirac string ",

€45k 4“3 $OLyyn, | . "'m-.(o,o,n
‘iwhefe 9 is the pole strength, to leavé ﬁﬂ, ,‘so redefined,
éingular at'the.pfigin>0nly. The quantlzatlon condition of Nirac
is that thié extra'term in _F- will be unpndblcal Ap elcctron
will fail to notlce it 1f on pompletlng a C1rcu1t of the string
'_it ﬁndergpe‘ no overall change in phase. The uohn-Aharovov L%
wperlwent tells us that thls phase factor,

| e 0k

i- the pclevant phy51ca1 quantity and also that 1t 15 unity if

the magn_etllc flux in the strlng, 5 , obeys the. sald rclatlon.

, With the advent of spontaneously brokép gduge theories
'itfwaé'fouhd thatvelectric charge quantization could be described
by thc breaklnm of a compact gauge symmetry group dpwn to factors'~
2010 of which wags the UU) gauge group of clcctromaﬁnctls.. Such
-‘“a thcory howpvcr also admits solutions which are e"tcnded non-
alngular, of finite energy and posoess a magnetlc 2harge as was

SoRaAN umvsnsn,

50CT 1982
8CIENGE LIBRARY, A .

L
p01nted out 1ndcpcndcntly by 'tHooft and Polyalov.

Suppose we have a tube of confinced nwugngtic Flux §




entering the sﬁfface of a finite sphere. Ve may wrifé the vector
pétential.in‘the vaéuum oﬁtsidé'the tube as evkgﬁ%' and since
~the flux is | é“’\hf' whlch is to be non-zero, . A4 must be
rltivalued on ¢ , a loop enclosing the flux tube.

If thevgaugg group is »UU) s will represent some
intégral nuﬁber‘of Qindings around'the \“0 manifoid;_a circle, If

A is to be'a.qontinuqus function on the sphere no deformation.

of C can alter this numbef'pf windings and so we cannot con£ract
) it elsewhere.on the'spheré withoup enclosing aﬁother-tube of the
game flux. Thus in a'QU) gauge theory we are allo&ed strings of
flux but.no'mondpbles. | |

If howevef \Xﬂ is embedded in a gauge -group with compact -
,coverj_,n'g' ﬁ‘roup; such as. SL(2) | whose'manifold is a».s—sp.here ( the
ééverin group of Uh) is the real line- ), such an 4 which winds
around the 00) subgroup ( for SDh) s a circle on the aplerc ) can
"be contlnuously deformed to a constant. Henqe the flgx does not
‘géed‘to'leave the:sphere.and‘there must be a mqnﬁpolc inside

~which can be non-singular because no Dirac. string is needed.’

For a long t1me only the - s1mp1est exp11c1t solutlon and
sdme'goneralizations were known., These were the charge { spnér;cal
Bogqmoinyi'—Prasad—Sommefficld ( Brs ) monopole in an W) gauge
A gfdug k.%nd,itr trlQlal and non-t11v1a1 sphcr1c11 cmbeddln"s of
" charges | to \n-\ in %U(,vx\ s
- At the'séme'time work had been going 6n in-dnother éféa

' of clwss:cal conflguratlons in field theorlcs : the instanfoh

- solutlons of the pure Yang-Mlllg equatlons. 1These arc solutions

’df:the,self-dual and'antiself—dual equations,

. F/A‘

“”.By'Virtue of the Dianchi identity they are automatically solutions.

T ﬂgépvct Fex = F;\,

of the full equniinhs of motion,

)/A,F,'N = 0O ) ),«f_'w* =0




S

In parfiéular the équivalénce of'theée configurafidns,and:
certain hqlomorphic véctqr bﬁndles over a twistor space had heen
' establishegi;lThCSé holomorﬁhic bundles could be studicd directly
as in the Atiyah - Qard construciipnla 3 or.as sub-andlcs embcdéed
~inatrivial bundle, the Atiyah - Drinfield- Hitchin - Manin
. construction. ]In_the former.dpproach tﬁe bundie is dcscribed by
a Hérmitian patching function, hqibmo;phic on the iﬁtersections of
cqordinate patches on twistor space fronm which the fields can 5e
,recoverod‘via a spiitting procedure ( sec chaptef II ). In the
‘1a£ter the rank W bundle is embedded in a rahk  \A§\ hundle
_and the conncction fields defined by projection baclk,

a};\ < ‘\5*‘ %/A'“ -

\J is an (V\-\\z,}x\n matrix of gquaternion entries 1;'11ich lics in
the null space of ‘an (ﬁk\k%(ﬂi\ﬁ operator, linear in X , ﬂﬁ
For self duality‘ .A?L must be real and ihvertiblé. This second

‘approach proved more fruitful for underétanding the instanton.,

.In the limit of a massless, scalar field the first order,
etdtlc monopolc equatlons are equivalent to the itatlc sector of the
instanton Cquatlonu and so the ‘above constructions werc 11glenented
in the search for " multimonopoles ", higher charge solutions in

SU(¥) and other gauge groups about whose existence there had been
v s . Lol -. . I
some doubt until Taubes gave an existence proof. ilat multi-
monopoles might have static configurations, in the BPS limit, was
L : tn . .
reaSonablc as,Manton had shown that to low order in perturbation
,theory the regul ion of widely separated and equal charge monopoles
vas exactly cancelled by the long range scalar force. O'laifeartaigh
(] ' ' ‘

~ et al. had also shown that higher charge solutions with cylindrical,

‘buﬁ_dot spherical, symmetry might be expected.

(10 .
Nahm ad\nted the ADIM constructlon to the BDS monopole

l\Sl

Qéipg differential operators following Manton and Rossi who

houdht of it as ap infinite string of instontons, But generalization




of this was to be difficult.

Real.prog?eSSjcame from Wérd vho provided a charge two
axially symaetric §0ﬁ)<m6nopole, But with only fivé degrees of
freedom, using fhe Atiyah-Ward constructioé which seemed now to
be tailored for monopolés rather than instanton:. This was followed

N W
by axial solutions of arbitrary integer charge. None of thesec had
any iﬁtcrnal degrees of freedom abdve the three translations. and
“two rotations of @he axis and appeared to be localised. Weinberg
had shown that the geﬁoral solution of charge‘ n should have &n -\

free parameters.,

. w) B
Tndependently a Hungarlan group managed to find these.

‘solutions as well but using the BHcklund transformations of the

Ernst equation, to which the Bogomolnyi' equations reduce under

L)
“axial :ymmetry.

_The first " separated " multimbnopole,,u solution of

, , tan
_seven degrees of freedou, was agaln found by Ward and generalised

. : 223 .
“ by, Corrlman and Godcard to a charge N\ fanlly with &wne=\ degrees

tof freedom. That this family contains the general solution was

11!}‘ . L .
thcn shown by Hlbydln. ‘The parameter space is complicated and

S ‘ [&4)
vl;ttle underatood.

Meanwh1le the Hungarlan r*-r‘oup recovered the sane solutlonc

oL 11s )
_-byjapplying the inverse scattering method to the monopole cquations.
.Finaily‘Nahm‘was able to transform'the monopole problem

for an arbitrary group into a simpleq&hape along the lines of the

'ADHM”constrdction'inQOIVing an ordinary linear differcnfial operator

. A . 3 N
1 0.8

3 - &t X 108 |
f,wifh"appotential satisfying the non-linear cquation,

A---%'. - \.P\‘,Q‘\& Z“(‘. 8(%-},3 and %v\ic

-Thc flelds arce constructcd as before. The dcscrlptlon is rather

‘implicit and so, whilst it obv1ates some of the technical dlfflcultles'




s.

of thc Atlbal—Ward approach, 1t 1s by no means tr1V1ﬂ1 to 1OCJtG
? ]

even known solutions a1th1n it.

Sohc patching functions have heen found for the Atiyah-

fi30,2%)
~Ward construction in Sots), ’

For a complete review of the state of the art see ref, {31 1.

In this thesis we shall concentrate our “fforts on the
Atiyah - Wafd constructioq in V(%) , but with excurszions to SUCh\
We shall start by setting up the problem, discussing the
boundary conditions oﬁ the Higgs field, deriving the Bogonolnyi'
<equat1ons in the Pragad Sommerfield limit and defining thn magnetic
—-charge. Then we shall review the twistor idea in two, four .and
three dimensions, representing thc self-dual and Bogomolnyi!'
equationc asAinfegrabiliiy conditions and preceﬁting Ward's ansHtze
and some’ genéralizatichs'fcr Sohﬁ . Working within these aﬁsﬁtze
ve 80 oh, by a consideration of the effect on twistor variables of
4real opqcc rotatlons, to 1dent1fy famllles of'cylihdpically and
spherically symmetric-monopoles,in $Uh) and Soﬂbr@covcring old
solutions and discove;ing some new ones. This further enab 10° us
-’_to find éh algorithm for classifying spherical mopopoles in S“Vﬁ .
Next wc consider the problem of pfoviné the regularity
c, of:fhévsolutions‘on' “i’ . In the absence cfvany seneral proof
Qe pfocecd.by exampie : a charge two cylindrﬂxﬂly's'ﬁmctric family
inoW® ., | | |
Finally we ccnsidér the general mcltiﬁcnqppie in SU(3Y,
‘dl cusﬁlnb come cventualities not present in 30(?) . This work
'_Jénd‘its generali?atiqn to SLUw) is sti;l undcr'étudy and a number

‘of questions arec not answercd completely.

Within this construction'most of the outstanding problems
are tec‘nlca] and apjarently very complex j; a general proof of the

f-i..el«l.s' regularity ; a more explicit understunding of the parameter




- gpace of the‘generéi_topfiguratién.

It is iﬁportant to pqderstand thé connecfion-witthahm's
modification»of the ADIM construction. This may préviﬂc a neans
‘.of finding criforia‘on Qr that éuarantee the régplarity of tle
correspoﬁdiﬁg fields."In the ADHMﬁ form tﬁis follows from-the
invertibility of a second order elliptié differential operator and
in the Atiyah;Ward cohstruction from that of a finite diﬁensional
-matrix defiﬁed én N} . 'The traqe'of-the squafé of the Niggs field
appears to-ﬁaveva similaf expression ( sce appendi; ) in'tcrmsléf
the détefminants of both these .objects. One cén éonjecturc that
éhesé detefminants are equal. But Nghﬁ's operator is of the form

| A = -(%%\H N Al + Xt

on a set of compact intervals and so is positive definite,




Chapter I

The Statié-Monopole'Egggtions

1.1 The.Lagrangian

L) 8 -
We cons1der a Lagrangian density of the‘Shape ,
\ MV

where the trace is over the 1nd1ces of the Lie algebra of a gauge
group .%} . The scalar flehi ¢ belongs to the adjoint representatlon'
of this algebra and F is the curvature 7L -form of a Lie algebra

valued connection f ,

3 -, v A by = AR a4 AAN | LN ’“/“l"/‘

: and is Hermitian if “ is Hermitian.

D  is the covariant derivative with respect to this
- connection, L

F “and b# ~both. transform covar1ant1y under the action of the

gauge_group .

¢—-’5M ,
Pt—-’v_\(\g-—‘tﬁdls

 ahd so the tracé‘operatibn ensures the gauge-invariance of the first
two terms bf 39 .
'XV(¢) is also gauge invariant, a. potent1a1 function of
'the séalar field whlch we shall take to have the form,
1
AW = g (e gt e)

ﬁhqre N and C are,constants.

We shall be seeklng static solut1ons to the equatlons of .
. fes,32)
mbtianof this Lagrangian and we can make the gauge choice R, =20 .

Hence the energy density is :

‘f‘f * )\Hﬂ

L
i3

*’Yv




1.2 Asymptotic symmetry breaking.

Note that the potential V($) has minima only for
non-vanis hlnm valuec of the scalar ( Higgs ) field. Since for a
finite energy solution we require that '} vanish asymptotically,
we must make choices of such non-zero field values on the sphere at
infini‘ty and cach such choice leaves V with some residual symmetry.,

[34,32)
the unbroken symmctry group H’

Suppose ¢= 49 wvhere Q-»o as ¥-»o and & is

a function of angle only such that Tr clq'-_ ¢ . ‘Then,

\ %
Vidtg) = 7 (LTeag & Trgt)
- The residual symmetry will be the group generated by those W e 'Qa

which leave V(clﬁ\'tﬂ invariant under the action -9\,(‘&?\\ , that

“is, those for which,

Tr ag = v L W'gw
o L4,

So W e Hd.c .Cb, y a subgroup commuting with ® .

Now Tr "= C and so, locally on S" \

40,4 = X', o, 46, "
.dn.d '\»\'6\ °§ (9 \\?\\-\—* 03(9 \“ . We may choose o, to beiong to
the Cartan subalgebra of -%, and hencc to be a traceless diagonal

matrix, _
‘(o = A"“S ( d‘,dg‘ Ve ““\
" : :
where 24
\

The unbroken symmetry will then depend on the sroups of

équal o!;'s . If in general wve have,

o, @‘*IV\

>\

‘where ZV\ d;= O and t\\- =W then locally, as Lie algebras,

W, (® W) [y

For example, SVU(3) may break to U_(\)! V() or V() and

SUlE) to VLY x VLY x VLY, VERYRVULY , LRY XSV, or VY .

A further conscquence of the non-:eio vacunm cxpcctatidn




4.

“value of ¢ is the labelling of possible solutions by the elements
of a homotopy group. The condition Trd*z ¢ means that O is
‘a map from St ', the sphere at infinity, into ‘%/“ : that is, it

‘1s an c¢lement of T L’%’é&\ ‘If ‘%' is conpact and simply connected
S ACYARIE AT
If 3'\' has a \.)l,\} factor then ‘]\'h{\ will have a component y4 .
‘The solutions can be labelled by ( at least onec ) 1ute:cr which
can be 1dont1f1ed with a charge ( or set of charges §$ﬂ In a physical
theory the Higgs fleld will select a partlcular UU\ subgroup and
the associated 1rteger be 1dent1f1ed with the magnet1c charge of

134)

_'electromagnetlsm.

1.3 The"‘Pras.ad-Somme.'rfield limit.

Because we are in a static theory the eﬁerby of a-
t'éonfigiur_ation willvbel’ the integral over & of the Lagrunqan
density, whiéh.we-Write; o :

£ = {8 ekt log m
.,‘;'Hére . 3; = l, eiskpw is the magnetic field. Completing the

-square in the 1ntegrand we obtain :

L (B Dv el %r ANTERY SRTAY m

Now s L )
EHNE R fv;t.s:bs¢\_.-,= Tvk'x (534 - @ B¢ +8,(0;,4)
= v \% Us DRSS s34
\ R = 'eu\ﬂ“ \’\,’)v_“ .- the B‘i-anch;-_identity, and s_o_;

8 ;&.\.@(\\n Tvtw .\} X&S‘MH)

Tﬁffﬁhéfg&thé‘surfdcé intégfal is ‘taken over the sphere.at infinity.

; Thls la.s_t ‘te:rm d_épeinds only upon thec boundary conditions and hence

.'-éﬁ'fhé‘réleVant element bf'ﬁ‘t“).
L , \ "

Now let us consider the Prasad-Sommerficld limit A= o ,




\o.

in which ¢ becomes massless and so mediates an infinite range

scalar force, say, - \
w

- Then within a gziven topological sector the cnergy will he minimised

33

by either of the Bogomolnyi' equations,‘ )
TD§¢ = t.}q

taliting on the value,

g

{ a5, e ($9:4)
¢
Pl Vg

> 0

w

in either case.

We may also interpret ew\ = S‘_AS;TTH%;) as the
“total magnetic flux in the direction spec;;ied by the symactry
'Ibrealv:ing. For a finite energy monopole 3.‘ is o (1‘4\ and so );é—)o .
The Higss field is asymptotically covariantly constant and on a
coordiﬁate pétch of the sphere at infinity will be a gauge
‘transformation of, say, its value on the % -axis,
| ¢c ~ %y = v%.“e

We shall assume that X“;,él =-o(%4\ ’ asymptotiéally,.so that,

. . | B o~ v“°?"s .
Then \%i,4) = 0(,;,53 and W, and ®, commute. So we choose

them both ‘to lie in the Cartan subalgebra,
WMo = “2\'_‘ ) do = i\i

Now the minimised energy, or the flux, is, -
z as; ¥ \-‘ d- 2V ant G
o xSx NS Le- ¥ oy v

= 4 A W wmy

(28)

“where KVS is the Cartan matrix, 'TVQH; “5)




i,
From the long range behaviour of the magnetic ficld a
' [99,34)
. generalisation of the Dirac quantization condition can be deduced,
The Higgs field is covariantly constant and is asymptotically an
_element of 1\'.‘("8’,“\ ‘Since 1(1(‘5/40“51‘(‘“) ve seek a map from !

" to }* . To construct it we consider a series of closed loops,

with one fixed point,'which pass around the sphere.

Y e.§k is aéfinedlby'integrating the equatioé éflcovariant
:constﬁncy (’whiCh depends only on %; ) along eqch lpop; As the
looﬁ énéémpasses thé sﬁhere, so W ‘traces ouf a.éath in‘yk ~and
_Fhisvpath.is clbsed énd'so will be an element of:ﬂ‘(1¥§ provided, -

vy (UTs wop) = A

( Ye have taken € =\ ; otherwise the covariant derivative is
‘simply 9; 43e¢W{ and a factor & appears in the exponent 6f the

',qUantiZation condition.)

The quantization condition can be solvedlto see that w

_ o : - L 134 40)
belongs to the weight lattice of a Lie group dual to 1* and so

the magnetic flux is restricted to discrete values. .
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Chapter II

i . (#8,13 ]
The Atiyah-Ward Construction

2.1 The lLaplacian in two dimensions.

The motivation behind the twistor approach“”to solving
‘differcntial equations is to replace a ( complicated ) differential
equation on one manifold by a holomorphic structure on another
( complex } manifold in such a way that the holomorphic structure
absorbs those equations. A simple instance is the following. Ve
consider the equation th=00n “fh and wish to replace it by an
analytic objcct. We note that any analytic function of a complex
variable satisfies VF¢'=O by virtue of the Cauchy-kRiemann equations.
So we identify N} with a copy of the complex plane € by choosing
unit orthogonal vectors ¢.,&y in ﬁ} and making the correspondence,

‘\5.‘@_,‘*'\?50_-3 “«> ’\S»*‘i'\;\s
between vectors on W? and complex numbers. 7The usual real structure
is defined by 1 =» =% or U(Qn!5§=(%xj'§§\ In particular the
gradient operator ! -2 '3,‘_-& i%f?ﬁgwbere %:u-is. Laplace's
equation becomes 35# =0 and so $= &(‘3}-&5(3?\ , for both § and
%- arbitrary analytic functions. They will be fixed by constraints

of reality and the boundary conditions.

2.2 The Laplacian in four dimensions.

Although we have a éhoice of complex structure for Rt this
amounts only to a change {2 Y for ‘b\ﬁ =2\, or a cﬁange in orienfation
%é% and these do not alter the form of f . In nore than two
dimensionsAhowever the situation is complicated by the extra variety
of complex stiructures available. Were we to solve the same equation

a
on “J there are many ways we can make an identification with ¢ by

choices of 6rthogona1-planes.

) AL ST 0
In fact the general solution is

= = §Cd3 § (3, ,0)




(S.
c e ‘93 _ X . : .
where uw=24X%, W=3-= and 3= t-if, X=9%4ix . X isa
complex variable and C a contour which passes around an open annulus
in the complex plane which remains singularity free for all 2 and X .
We can write s and v as

M= X2 41X SV = %@y tiX-l4

= (ﬁ)d)“)°5 ) Lo = (—d £.o \5 )

are an orthogonal basis of \Q? depending upon { = x47R . M and %V are

where ¢y = (o,-1,-a,8) , &r=Ll-Y0 =B, - )

then the variables on f} . 3 parametrizes the complex structures and
must be eliminated by the contour integration. We note that i’ is
defined only up to the addition of any function analytic within and

on the contour.

The relations between , and $ can also be written

(—x zyk'g l 3 )

in which case ( < is the quaternion representation of
X %

I.x=({|’°)")r%): 0\, - 1 6%
(. -‘%\\o ‘1\\ ’;"C\ c\) ".‘3\: {o\

W

Now think of of Q" as a real slice of (,u( by allowing ¢ , ¢, X and X

to become indepéndent complex variables, ‘defining a real structure by
(“S,/M\)) —)(}.;—,‘{’ ~P ) or /‘,-73\‘- ARN3 for T: (-‘o
and ;\z-(a\*\T . Then “"\-—1 describes the slice RY . For specified
values of S, and' v , (#) is then the equation of a plane in ¢t
It is null because AQ*((»'S‘;A%._Ai*AX.Iu =0 for non-trivial (1 %) . 1t
is, in fact, antiself-dual,

2aWy -2y VO,“ = -'lz v < L‘to'w-t —_f-rwar\

for any two such null separations 2 an¢ W . Because they are null

their quaternion representations factor into tensor products of
two-gspinors : %“, = p%y , W“B' = WpSy  , g’ T () 3\

and so are easily seen to satisfy antiself-duality which, in the same

1G]
notation, can be written :

%QB/N$$’ - %‘s’ NQ“/ = %%’ U\)&“,— %‘h' V\)“Er
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The pairs (1,9 ,(}«,'S\)) are defined by such a plane only
up to a complex fador. So the antiself-dual planes in C*correspond
to the points of QY up to such an equivalence, ‘that is, to the points
of WAG:) - at least up to a copy of ?,(C) for the planes at infini'ty.
“;(C) is then the ( complex projective ) twistor space, holomorphic
functions on which lead, via contour integration, to solutions of

the four-dimensional Laplacian.

2.3 The Laplacian in three dimensions.

Clearly in three dimensions we cannot apply quite the same
procedure as above but we might modify it in one of two ways. BEither
we factor out one of the \R* coordinates or we repiace R by a four
dixﬁensional manifold and put a complex structure on this. In fact

the first approach leads to the second in the following way.

If ¢ is to be independent of, say, t we must have,
|
#2 N §C°\S*(X’s> wvhere Y =M~V .

% belongs to \?.((.), the Riemann sphere, and %Y is a quadratic form.
Specific values of § and )y give rise to a straight line in “23

defined by the real and imaginary parts of the equation

Y = X%'- 'l%'&—i

namely : % = ut+ey
where 1 - . - <
W = — ) $-4Y),83% -1\ , T
- \ws\ {33y, 83 1) 83
\g AT _3) + '3§ kxz.t <% _,,)3 W = o
) — —— w— - - ) ; oy =
= (um d (e Y

Likewise every such straight line gives rise to a pair (3)10

simply by writing % in stereographic projection
41l ;43 -y
w1’ Wey | ek
‘then choosing a complex structure on each tangent space to the sphere

and making the correspondence,

¥ - Y -Lmr)v\ = Gy Vg g — S - 1Yy




I1s.

., _ § _]_’3 . .
where, for instance, Qo = 3 ,S\g oo are unit

tangential ve_cto‘rs to S . Then

Vo~ iTg = Llggeitay.) k‘o—mg\

= (9, ¢ - LS - \si) =

. ‘ : %6 -1 ?.
using the fact that % = & 1-0’ e In partlcular the point X% € R

. 2
~defines such a vector field on S by virtue of the pencil of stra1ght

-lines passing through it.

'.At-eaeh poiht @ of S* there is a ¥ , defined hy Aproje‘ction onto
'the tangent plane '1t W , which gives rise to the .section
» (X-s - 255 - %) % |
of the tangent bundle to the sphere looked at as the’ holomorphic
-'tangent' bundle of “’(C) The real structure on \?;(C) then hecomes on
-“?\\C) (’) K) - (-— ,*() or (&,%) > (-4,8). It simply reverses the '
d1rect10n of the stralght line. In general a sectlon (avs‘*\m.(- c,\
will be real if B - - '
| ' _o\gz.‘—t'\rg-kc'z —(;/,s-.,;. B/,g*-l\"{’-;
‘where .tne"minu,s sign comes from the derivative of ‘/.‘g . So a=-¢
and'_ .\: -\ : giv;ing three degrees of freedom, Clearly YY is real
'and hence the txustor correspondence for &3 is between stralght
_"_ lines 1nﬂ13and p01nts of ‘\’?(C), and between points of \Y. and real
) sections of Tﬁ@)
| Y S" is the four di'mensilonal Riemannian manifold with which .

A . .w'ei Kr'v‘e‘;x)léc,e.‘kz and which we endow with complex and real structures.

2.4. The Self-dual equations.
. . L L 3 '
These twistor correspondences for R and ll_ also turn out

to be useful in solving some of the non-linear cquations arising in
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Yang-Mills Theory, notably the (anti)self-dual equations,
and the Bogomolnyi' equations,
D¢ = Xiéi)k Fsx
In the first instance, consider the operatbrs :
R )AL : A ) -
iLQ%* 35,) W= ak?z-&&%x§
=) < L L
053 AL (0 405)
- So n= 1('3\'3\“}31.) and 'l\SgL’S,)\,\')-.%;&\X,f\,v\:—a . They are the
(anti)holbmbrphic derivatives on C& . Now we modify them to
act on the principle fibre bundle of a angéMills theory by adding a
~connection term : - _ o
_— ’ 4 . Y - ™ ‘. .
v = Q + (k%* “x) v W g T *-.L(k'% &j‘ﬁx)
- ; - oo - ‘
The paxr of linear equat1ons

V-‘; V,,-\-o

'where & is now an vx—component complex vector . are compatlble

)

‘(1ntegrable ) prov1ded
| [vhvl xv--v‘,v%nv,l
that is, prov1ded Yang 8 equat1onsﬂwgre satlsf1ed :

Fig « Fxg =0,  Fax=Fgg=0
The iptegrabi1ity condition is equivalent to the vanishing of a
Eﬁfvature and~Sinéé'a‘ and ﬁi are vectors in an antiself-dual plane
it is the_gelf dual part of Fay which vanishes.

Hehce the’seif#dual équations are naturaliy coded into the
. ‘£ﬁtegfé5i1ity of a linear system. 'Thesé linear equations'are the
,equatlons of parallel transport over the antiself- dual plane. If we
Achoése a po1nt and a correspond1ng value for * on each plane, this -
':w111'spec1fy the vector f1eld on the wnole plane. $o for each plane,
‘ geach 1C ¥ XY ; we have a vector and hence a vector field over WJ@)

‘la‘sect;pn of a rank W vectqr bundle. It is then the theorem of

Atiyah and Ward‘ }that it is the holomorphic veetgp bundles of rank - -

" v over R), with certain other properties, which correspond to
N A p . : A
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those Yang-Mills connections which have self-dual"curvat_ure. Such a
bundle w111 be defined by a transition matrix 5 such that 73‘05 =0

and’ '}‘5 =0,

2;5 The‘Bop;om_olnyi.'.eg:‘;uatio.nsf

‘In the.secqnd insténce; the.nonopoie equdfibne, let us
_define the ope.rator“s,' E | L
D= gv_—-'lf | R T)-.Vonvq
‘Then .the equatlon of parallel transport »s =0 defines on cach
A:stra1ght line a vectot field and as above‘ we c‘loose a po;nt
.( holOmor‘phica.Ily in the .coordinates of“w\@)) and a value for the
.fleld "thereat. So at each pair (’s,’() we have a vector and hence a
vsectlon of the rank W vector bundle over 1\@) Agaln every such
’holomorphic vector bundle, with certain other properties,,corresponds
to a solutlon of the Bogomolnyi' equatlons, ‘without boundary condltlons.

.The equatlons themselves arise in the follovwing way..

? . takes (0,» -forms to (0,ph) -fdr-ms on the bundle defined
by '§S=O..I'VA If "Ss ‘is to .be a form on this bundle , and not on some
-'larger space, then l'és must vanish. This will be the case if
L'b 'ﬂ © . But,

Lo, - ‘é,Vo*. Wq\ = Vo - Vq+ 1 hyg Ai%¢
Hland 'S0, taklng real and 1mag1nary parts,

&of'%f , Tyt = Ve

Eo_f all dii"ections W these {:uo equatlons gnie_ the full set with

-the correc,t:. orientation of \Y} .

A’s”we have seen, the two twisfer spaces 'us.ed above are

'»“'related by factorlng out a real ( time ) translatmn in \2 . Likewise

- 1f_ we 'set =0 in vv\ and V.L thelr comnutat10n relation reduces.

‘N:

tg ﬁhg‘tjhpge equatigns :
| ‘.Vg "“%*\o‘\ \rv‘g{'\o, i\ —O
| i AP PR \.V; I5\ =




| " |
For the ident'ification Qo= ¢ these are tho Bogomolnyi' equations-
again. These monopoles " belong " to the stéticosector of the self-"
‘dual equations. | o

In this way the problem of constructiné nonopoles is

reduced to one of fTinding bundles, that is , of specifying patching'
functions, .tnat give: rise to fields yhich satisfy‘the boundary
conditions, are Hcrhitian and reéular. ‘So let us sce how wc maj
recover,thc fields'from the bﬁndlo,

; I { ) T
2.6 The Higgs and Gaugé fields.

Let us takc tne self-dual constrnction.;.We can cover.“;t)'?|@)
'Qwith a pair of coordinafe patches.U.,.on which - M\< ¢ , and Voo ,

'. on whicn Y8\>1;Q . Thc patching function then spéCifies how the

vector space at each point of -\)o(\\)w ’transtrms under the change

'_of coordinates > -‘,—s._ At each point of Vo wcA choose a point in tne '

respectlve plane Xo é holomorpnlc function of thc ¢oordinates, and

l::speclfy, agaln holomorph1ca11y, a vector Y, at thls point. SxmllarJv'
.‘we select.an fX on tne same plane, holomorph1ca11y in the Vg coor-

Adinétcs'and sPccify a \XQ'. Then the patch1ng»funct10n 9 will

satlsfy,‘\knss(x X,\\Y,. But to each such plane in c‘!’ there is only

i one~real_ ;po:.nt, L and tha equatlons of parallel transport tell
us that, gy o)(x W, Y = & X g
o whcre VP,,_ 5(7»\0 = VM' 0)(\,‘&@) = O . Hence the function
| 5 " splits ", Y = g‘(x,’x‘w) MY, %e) | |
o - ) : " \f\ ' ". | ' QLNS
”‘in'to;-f:.actors hol‘omorph'ic on each patch. - Further, fj‘rom the covariant
‘ constancy of the factors \A \L we can recover'the'ﬂiggs and gau.geA‘ '

: Y
.flelds ( rememberln"‘ that ’%t ° and 1dent1fy1ng Q with (f

.(..i%% -&'SQx < i¢ + By &#S“x\\/\'\rz (o




.
Now W is holomorphic at 3“» .

SO' let -
Qx w %1 Dy We =

in both these
equations,»then,

and,’

W 4 L R

Similarly, letting 430 in the equations for W' gives,

*"\%ho a i ¢§“%\\l-‘-&o
and, - th\l‘ *1“;(\7.

=0 .
Hence :

¢ - -:._\ w'}k\\w '\Lv‘%%\ks
My =z - & (Wb + 100 R

BNy -

Q1)
= -\ h:"\i\lo )

-\
Bx = ".\'\.w "X\*w
where Mo = W x=0) a'x)d R, = \l("s’«t’). From these ex press1ons for the

fields we can in principle chéck their regularity, always provided

that we can achieve the splitting of the patching function.

2.7 Ansitze for patching functions.

The fields will be Hermitian if the bundle is, that is,
X |

it A5 =0 (-_;,?), according to the real structure on T¥{). This
will be the case if

_\2‘4\;\” and we can check the reality of the
fields directly

4*'-—»

from the above'expressions

¥
\-L \'%‘%\\'\' .-\ - %B\\* o-\)

0

ARPANANE Yihe Me)
$

ete.
The boundary conditions are less easy to satisfy. Originally

A i gl
the Atiyah-Ward construction was intended'for use with instanton
' - : : 18

solutions.

They sﬁggested

an ansatz for V1) instanton patching
functlons which was exp11c1t1y spllttable and of the form,

03 K ) . Tor a positive
integer UQ and where § is regular on 05“03.

These correspond to
those bundles wh:ch can be expreosed as extensiong of a

tandard' -
“llne bundle, Th1u turned out not to be very useful for that problcm
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3
but the analogous ansatz on R> is useful for the monopole problem,

1)

Here the suggested bundle is an extension of a tensor product of

the previous line bundle with a \X\) line bundle
te¥  gy)
-2 .
o) L e ¥

) :
Hitchin has shown that this ansatz contains all those static

monopole solutions to the Bogomolnyi' equations which have as

boundary conditions,

Mgl = A= % a0l
9 .
,S'm\\‘“\ = 0 )
ol = o)
|
oty
aere Nt e ana LG i3\ 58)
Clearly such a function does not satisfy the reality

condition. But 0_) is unidue only up to the equivalence,

o ¥ a o f
where o is holomorphic on \)w , and P\ on \)o . These simply
represent holomorphic changes in the ‘Q“ -fibre of the bundle. So

it suffices to write reality in the form : % -4 5

A suggestion for an ansatz in SUW) is the following :

Ao, : I !
'Stxk\; P P\; - . ; ?\Y
_______ ) E
' 11. 0 | ’ ‘,
o IS Qq‘;l\t: ey .. ... , 91? Twl;s 0

S':. --—.—-._T_.______ﬁ___, =\

I
o o ' ? .
S | DR ,'@3)
' ' : | . ' =\
___]L__f______ ____;_*___ . P
. ) w.d; =0
AR :3“”'&% e

where Q;i is a matrix of functions of dimension MWM;xW; and the
diagonal blocks are WM;xw; . In particular for the case 0(;#”(5 for
all 4,3 , of " maximal symmetry breaking ", this becomes an upper
triangular matrix, M=\ , =9 . "It is not clear wvhat the M,‘ should
be, but choosing them to be M;xWMN; identity matrices does give

some solutions.
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Without loss of gcnefality. we iay order the A; in a decreasing
fashion down the diagonal. F‘odusing matrices an:ilytic in "§\ apd 3
on the left and tﬁe'right respectively we can extraéf the factors
e,di\‘ from the diagonal and then,' using upper triangillar matrices

with unit diagonal entries, chop off the upper and lower reaches

of the Laurent expension of 9;') in ¢ , so that,

© vy Ai "
Viy = T %y % 2 T gf',\ Y

Then if Ai > Li ' !(')’Lio and we can simplyrear-ra'nge the order

of ~&; and lﬂ . Strictly spéaking these equivalence transformations
are not bundlevequivalénces because they are not functions of ¥/ and
%Y respectively. But the second sét of factors rcduce to unit
.matriAces iﬁ the %90 and $»m limits, so they do not éffect the
evaluation. of the gaﬁge fields and the first set hehave as gauge-

transformations of the conventional type.
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Chapter III

Examples of monopoles in SVR) and S\‘S)'w_ith cylindrical and

spherical symmetry.

2.1 Real patching functions.

The constraint of realit& imposed 'upon'.tl*_xe ansatz for %
ilnplies a fairly restricted form for the f,"- . As it stands % i;
upper triangular but 1t suffices that 5( ,‘() be bundle equivalent to
S(":,x). Further, any P\ which is not upper triangular will put SR
into a form in which the constraint can be satisfied, .
ah = A qf o (34)
| and multiblying‘ on the left by some & will tlxeﬁ_ani';unt to no nore

‘than a further bundle equivalence.

{n)
) For SO this condltlon reads : L
Lodf . ) - o
| P‘\\‘S e By “11'519' + A f -6‘“ (- S‘) e *“"‘? By 1) ¢ “¥ ]
-4 -y -2 Ly ull - . - L e
Rud e Aad e A Q,*‘ LS B 9) ¢ k
JES———— d :

where. a,, = { “\)(.")) , so effectively {4 .,-'; and tile coefficients
'of‘$ are complex conjugated. Because ““, is analytic in % " and a&l
in.\/ys the equation, A 4 :
| Mt 2 Bl o (31)
'1mp11es that le is a- polynom1a1 of degree ?A in. S . So,
i& = 'S “11 = 1& VMnK
'where ff. ““ is of degree 1U>w) in S . Then we can write,
Y= ¢ Tr(x- %) - (33)
foftC- fealvand where the ¥{ , the zeros of ﬁ¥ ., are either real
 qr'éppear.in conjugate pairs.,
The off diagonal equations are eoulvalent and tell us that

Fq.“x-\»‘go.
= 3
v N (‘*)

:ﬂe shall use upper case letters for functions analytic on U,qndA

lower case for those analytic on Vg . f and § can be related up

to a bundle equivalence but the above form for ¢ vill do for now,.
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The remaining reality co.n‘dition-reduces_ to. Vet A =4 ,
_since A QS\\I)()and S0, \ _&}’F |
U
N A
We dem'and'_that“st‘\) . divide \.,.%‘.F fo give a function analytic
on Vo . | o . .

| .A.Apre.cisely"a‘nal-pgou.s‘ pr.oceduré for 3\){3) produces tvo
pdlyno’mials ¥, and "»3'.of demrées A A, and 'k '>/ in ¥ from

condltlons like (31) on Q\)“ and Wy respectlvely. For the 855

_ ‘ ' \K, ~s 3 d’-x ' ) )|
fn n 3¢ N 1?“’\6\&3
. - .\v\

we obtain :

: ' . o I L 1 ’ "3
.81-3":" &0' *3 FQ—.. . ~¥x;
. ; W‘s ) ‘\Y'S— -'E (K 333
. d\y SK . ) ¥ '
.,?\‘s?_" \‘_\._g'_- % \‘Q' _\F&i ) BS)

v ws_ ‘ '\\?;\Ys

'_Agaih ) a.nd. G, and & and ¥ can be rélated up to
' &Y |
bundle equlvalence. Note that the coefficient of the e’ term of ?\%

is essentlally the product of those in ?n and ?’l% .

We have here chosen the case where the e(. are'a_ll dis_tinct
Vwcorr-espondlng to >max1mal symmetry brealung, U(I)x\)(\) in the limit
0(\7. e(.,’ and for 4, _11, e becomes zero up to equlvalcnce and we recov rer
a % of the form o_f‘the ansatz (1-3) with M,:. 1,_ . - In what follows. |
| N we shal'_lvA_:res_trict attention to uppef triangu_lgr p:itc_hing functions .

-and hope that we might recover at least parts of the other symmetry.

breaking sectors as such limits.

‘- 3.2 -Rotational symmetry.
Within this ansatz we can start by looking for x:\onopolgé '

‘-whi-ch have some symmetry. This is easier than the problem of fihclirig_ S
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In .a gauge theor& notions of symmetry have'to 'be slightly
modified. Let g;n“xv be a point transfornnétibn of ® . a
éymmetric .objéct S obeys a relation iike,_ | :
| S(r'xe) = RSGOR

where ¥ is the representation of the symmetry pértinont to the
type of object § . S s cq\fariant, that is, e\rery such change
in the underlyirlg' manAi_.on]_.(‘] can jaccontodated' by a- gViAv\e_r} type of change'-
in S so that'it looks the same in.thé néw coord'ina‘tes. However,
in a gauge theory' the gauge cdvariant quantities, like F/” , and the-
phys1ca1 gauge invar 1ant quantltles, like "v(ff',,»), are not the
: canon1ca1 ones, - So v{mlst Ff“’- needs to obey a relation of the
.'a_bov-e sort, the potentials % do not. |

Now ‘l.mc’}er gauge transformations the potentials transform
inhomogenously : | F( os" A n g‘ do)\ - 03.\ ?(k\ S
It. is. then necessary for the symmetry of F only that P\ transform

symmetr1ca11y up to such a gauge transformatlon :‘ .

Aleter) = 5 RAYy ;“do;
In the language of the vector bundle over tw1otor space
.b"‘however th1ngé are snnpler.- Here the action of ¥ on » induces
an dctlon g on the p01nts of ‘W.@)and we ask that the bundle
‘remaln 1nvar1ant under this action in the sense that

g(g(sm\ = o gu,x) A

-_‘:wherel& énd R are holomorphlc on \). and Vo r‘espectiv.ely.' ’i‘he'
“ relatlon of the pa1r o and R to the real ispace and gauge .

) ltransformation_s. is _not 51mp1e.

- If 4 represents a rotation in R about an axis W
- thr‘»éugh an angle @ then a vector W changes its coordinates in .

: “the’ fol]towing manncr

s wsfu A(1-wse)®WM & SO WAR




1<, o
'In terms of the quantity =\ 4 @& this can be
represented by :

\r Ty —> Wy('i{ef-a\(\«f-% wp(L0ow

But \+4@. is real and of determinant zero for. S_A?'-_\

. Hence
it is a fensorlppoduqt_of a spinor and its conjugate
‘/'L
L Cu = = / ) Ux
‘ T T A W @ k\* Wy —Oh
_ (4w
C(w W@ S

' Then under a rotatlon ﬂ\ transforms thus :

P
FEE R RUIE 22) “1( \

If u is the coordlnate on S of the tw1stor space then

S is the ratio.of the two components of %\ and hence undergoes a

W R
Mobius transformation ,

*;—_. -\&tg},_.;_’ “w. _ ”"‘-1\-!3_&;-} . ‘.«s-,;
_ > M $ﬂ|fiﬂt A RS«
e 43 «Ms |

A vector fleld Y¥lv) can be written K
Y - §, 9 -1V -6
2 s ) [ vay o\ A
N .\ti» \’V'& 3
“ It:wil1 tfansform fo‘; C : . o R  ; 
C(pead) swL , \ 1
S Lesany \(s B, 1) 55 vy )\ 3 \ |

el
sest e o NI

and so : -

v —>  (gseay (- Pay ¥
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Undér‘an infinitesimal rotation,
&%\'*ii ) F'ﬁ’l{'\'"& _

‘ | for ¢ and \P\ small,
we have : DN \.l\i "{@(_—\9’)3 X \'\1-&19\,.5\

X Q'K*X\—Q“\f“p\lﬁ - ('\\4\-1‘-9\’3\.

and -so

o > X '7»9.": % \W\-‘O)'SVW-'JK'QQ ‘5 t ("1*'9) bos K’QQS

For symmetry we demand that the transﬂformed 3 be bundle
equlvalent to the or1tr1na1

(=) sy lg R)

P\l

| L —@5 X 0le e

where & and Q are now traceless and O(i,“]&)

Thus for each
degree of freedom we obtain a differential equation

The holomorphic constraints on’ %Y, B and & ectc, as

well as the reality of 08 are enough to allow us to solve these
equations without difficulty

- 343

Cylindrical symmetry in V(1) .
f'or B=0 these eguations become .
At Mg LB | L
13

2
LY ¥ *sef“ P

A ' .
o © ‘5@.%' “\\ . “1\_ q‘\

.,,( g"‘(“k

.‘e -
il o « g,q
The simplést component is

LR A oy
oo
L e ¥ O\z\ = “1.\ '$ e
Since “;\ Qq, arec. to be functlons of % '&“

1
and 3 ?WS'.
respect;vgly they cannot cancel the exponent1a1< and

1d, unless ® =0

!




iy,
we must have .At\"'o» ! =0 , ‘But & sets the scale of the Higgs

field and cannot be zero.
The - twvo diagonal entries give
- for constant ¢ .

Us1ng txe same argument as above we may, dlsconrcct the

ey
‘ »e,'x and e, X p’\rts of the remaining equatlon to give, using the

" real form’ QSQ) of ¢ ,

which we rewrite as :

S )

Now :F 1s a function of *§ and K’& . 'I"_h.eﬁrc'efor'e'if Y
‘ di\}i.des it being a p’ol_yn'omia-l-.of order .( .in X , ,A it will push
v'out a factor ‘3 trom € . But if W divides F it must also

: _.di'vide ‘ -&- to prevent ? hav1ng 51n~u1ar1t1es in’ U ﬂ\)b. glnce
&- is a_'f_‘un_ctlon of '5_ and ’('S this pushes out a factor ’$

" ':T-hen e ’hd_s lt‘he.for'm ‘,, ' .
| P o= <A F.’(x,xs\eﬁs" fg"(,%f‘/;)e:“x
‘which is. p_r'ecisely that removable by a bundle equivalence :

P T S . - -
O 3T o | u" o

<

'So we may. assume some part of \Y ‘does not divide F o .Since'
f/\\’ must have the same X-dependent poles, the same part does not -

1d;V1.d.e f .
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However, R\'L may only have poles outside U° . Thercfore
CS'-}) implies P\n=o . Similarly &,=0 . Hence the arguments of

| the derivatives in Qﬁ‘}) are functions of ¥ alone
3 o -
‘_\_3. - i) ‘f‘ - § 39)

F A and 'S mlllst ‘both have suitable factors of $§ to cancel
the power ‘Sc \-.’l_lich is only possible if C€O0 and. C20 . So
C=0 . But fu:rthef, since F and '& can only be functions of ¥
if they are also functions of < . iﬁdependence of the latter implies

that of the former and F and * are constant, F, and {—, .

' fb,13,18)
chce the general form for cyllndrlcal symm C‘tI‘J iz
oY ol
X .
T (¥- )

where the 9.-, are constant, any more general Y-dependence being
incompatible with %8) - The constants Fo and &'o must be cho.sen

‘t:o prevent ?‘ from having. YX-dependent singularities. Choosing
40(1:1 we need F°/$° = (-l)& and the ¢€; ‘to be d distinet

choices of the form ':;T\\'“ . Regularity of the fields then

(1)
requires that they take the values :
| L L3 43 ¢ A=) o
ST oA e T,

The means of proving regularity will be discussed in chapter V .

3.4 -Spherical symuetry in SU(2).

To unearth spherically symmetric monopoles we impoze the
ext.x;a two equations of (‘S‘) upon @, . Taking the first of the pair,
agéip the upper triangularity of 3 implies that of B ana b .
The-diagonal eritries give |

- \
B“ = C k\i = C"'-S({“(X)

for some new constant C .

oy -dy
The remaining equation splits inte & and € _ parts :
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“’l&ox _ X“o _?_
)

i A = %

sy 3 “ﬂ - "{l\’n*ugu'dx\-u\_

Since A»0 we may extract the -% terms from the first of

these obtaining :

"oy - A
5 (%) = §

and so, up to a mutiplicative constant,“{‘o“ . The remainder is

‘then-
! L

But X.q_ 1s allowed no such singularities, so‘%n':‘o. and ¢ =0 .
The other equation simplifies now to :
7-9‘%°(.¥§\) = -k"'G"'S)& |
which implies' L=\ and 5“_ is conétant.

The last member of (S-Q leads to the same result. Hence
T3
there is a unigue sy\nerically symmetric monopole ‘in SU(’L\ given by} )
' o Yy

gy = Fo & -2 (3:10)

where the choice -s-.--F. renders the singularities acceptable. Its

regularity will be discussed in a later chapter.

3.5 Cylindrical' symmetry in SU(S).

The above arguments extend with some added complexity to
the 3.\)\‘5\ case. We shall restrict attention to the instance where
the o, are all distinct, The limits in which a pair become equal

do give examples of V(1) breaking.

Looking first at small rotations about the <% -axis, @ .
ar.ld & are again upper triangular and the d.iagon,al terms in fho
| ~ first of Cquationé (’S-(,) give, |
’Ll} = A3 - A3 ; 7= ,1,% -




So.

and so we write : A.),‘ = Ay« ¢y

%y = -Ayxg

where ¢, , (o , (g are constant and have zero sum.

Disconnecting the terms in € R from the upper off-
diagonal entries and using the real forms (’;ﬁ) for the f;; leads

to three sets of equations :

n
9 (6% v\ ™ 4,
LS Esk‘:,{\ YSRGS 1

> Qy\\)

N, -Lq
(a %ys 1. —“\'L _ L'L
1y RK — )% st
\
9 _& .s“rs “1‘5 'L'S 1
s\ — ) = -0
3
(3-
8 ¢ ‘s-'i\'\\\'q, Wy 3 l"L )
Ls %",s ( ——\E— ) - 'L's\s J
v 2 K“%\%}‘S e L3 G w
W\ Q. = =Aa% T« Qg T,
P A R L,
LA™ k e )3 = Rpt' - an %3 b (313)
? ' -y -4 L,
TR T (R T WG S U
W\ Ny W Wy ’
where V\\-':‘ = -',7_((.{-(', -4 'A'g\) , so that,
“\3 '—“‘," —“1'.5 - 1’1 .

By a bhundle equivalence argument similar to that in the

SV(1) case we can remove any of the arbitrary functions which
divide by ¥, or WYy .

Then, either because we can replace G and 3 by =zero




.
or by the argument from poles in G/\x\ and %/\Q‘ , we have R‘lzo
and Q=0 . Similarly Q=0 and P\.rs-.-.o . From these it
follows in QS‘\'S) that Q=0 and Q‘\S"o . So all the arguments
of the derivatives in Q’;‘\\-\‘S) are either zero or Y-independent.
Hence either =0 or {3 = {“ii ~?'i,)(“ and the ¥,; and Y,
of Y, and W\, are constants, C\ and Ca; .

Suppose now that Q.. %O . Then,

& _ " (M)

n \ $,(x)
& , - 3—“\1 ‘% K%,V"\.Q :
W —

¢.1%)

where ¢,(}0 is of order ?‘Sl| and gives the common poles which
do not divide G and 03 . & and a are polynomials in Y alone
of degrees N\\.L and W,, respectively. Then the §- dependence

of @ implies :

cws D L AR | ogm \
A By —
‘ $, )
Therefore 0 & My & N dh -4y oo
Also,
-A & ‘ ~
T N P A T S T (VR
AL ?\ P\
and 0 € WMig £ Ny ¥ * ) Y . These ineqgualities imply,
Ly € My S0 , L 2h > L i4,)

Similarly, if ?.,_S-#O we obtain :

¥ - .5"“13 gt")“‘u\

A B L6
-A\ _ ~
F.;S. = X3 "1 ¥ A Mt’s\
AL ¢3 (R

where ¢3 has degree —Ysg-g(sand,
O € Wy € Mgt Ay—7Py

0 ¢ Mgy € ~Vay -—1-,_-?3




L1

so that : o¢ “‘L’s < L\ ’ Ls ¢ Y'; S \;'(13—1(;\

We can identify the following cases :-

Case (i). N, divides G , W, divides % .

. dyy
Then . %0 , Q'u,g © and ?\3 loses its @ ? term :
A% A

“ 0, ' SX -W ~
Q\s b _— X \"....g'..- _ g(.x)
W\ Way

by (‘S'\";) . The analyticities of W\¥%,4)and \\(‘[.\.‘ls)tllen require
O$V\\3 €0 since we can only extract positive powers from the
‘former and negative from the latter. This means that H and W are
constant since any ¥ -dependence must be accompanied ‘5y $-dcpendence.,
'\\[\‘ and 'W;‘ must have the same ( constant ) poles in ¥ to ensure
fis is anmalytic in VU,0VUq . Therefore X =.Ady ,43z0and §
looks exactly like the §. of SU(v) , but with & and -« replaced
by o, and oy . Regularity will be ensured by the same choices of
constants C; , up to a factor of &,-dy , as in the earlier case

‘and we have embeddings in SVU(8) of SV(2) cylindrical monopoles.
Case (ii). Wy divides § .

frn ¥ O and,
-n ~ ct\\‘ ~
?\'L - ~$ n G(X)M\q)@ = S(X,W\n\e,
% (¥)

?w will vanish or not according to whether W, divides W

R

and WS divides W or not, since f=o by its divisihility by Wy . If
it does not vanish it will have the samelform as in case (i) and for

the same reasons. l(z-:o and *‘ is a selection of ?\ factors from
Y -
Case (iii). ", divides G .
| This is similar to the previous case.
Case (iv). ", does not divide ¢ , Wy ‘does not divide F

Since Mg = dy4Wp4WNy, s fig has the general form : _
o~ ~ *
oM ( WYy %Y . A FMe) e
W Wy ¢,

1

i

?l",
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(a) ~If Y, divides W and Ny divides \y then ¢, divides F ,

¢3 divides %and,
° S Y\ S “13 S "'v\-us -—11. —Ys

0 £ T { WMy € Wy *\\“LL

These imply Wy, ? Mqy . But W, €0 , Wy 30 so both

vanish and —(\f,?\ . *'S”YS . So,

. &, e Y o R,k ¥
w = —
N,

~ 4 “ :
. 3% x ¥ (.K) l\\ QO(“'X

fry =
Ny
fe = ©
(b) Y, does not divide W , \Q.s does not divide W . As

in case (i), Mqz0 and Y and W are constants. All we can say in
' d
general, since the Q‘X term in ?\3 is determined from those in
?\'z, and e'l.& , is that enough cancellation must occur between
~ “~ ) ’ ~ Y
¢‘ and ¢ ,and ¢5 and o to ensure that the poles in SF/¢’ ¢S in

-\ -\
Uy NV balance the distinect poles in ¥, and WYy

(c) N, divides M or Wy divides W . In this case My

is no longer zero and the usual remarks apply as regards singularities.

It is not easy to analyse these cases further without
choosing particular values for the X; + The gr»cétest frecedom scems
to belong to case (iv)(b). The simplest choice iz 4, =\, Ay =0, Ly =-\
in which case Y, = ¥-¢, , W, = ¥-C3. Then W =-v ,

“1’37-“ andQ
0 My € W 0¢ WMy € \owm

O § WMy ¢ W 0 ¢ Moy € \ey

C AN

So M=\ or O .

In the first case

~ v g{.x
< (G"*KG\\Q\ ¥ 4.¢

fra =

X- ¢,




Yag =
¥- ¢y
Y 45X v N Y
g\s = \E.i 4 W e < Fo %o & )
| Lo ¥-Cs - cHlY-¢3)

~
By a bundle equivalence argument we can choose G, = £, =0 .
It is then easy to choose the remaining constants in such a way as to

remove the apparent singularities :

QRO Y-

?\'n, = 3
X~ ¢\
Jole 4, (¥-G) (‘3.\()
Cay = 3
X- ¢3
dy  Aly-¢i-¢s) o
?‘3 - ("'c$)\'\°er * @1 Y (’(—(|)\/\°Q, '5K
(- ¢) (- t4)
‘*\c\—“;c—s —*3(3—*'&(\
where \'\o = _E.'z.————— and \"o - - .
3~ : Co-¢Cs

This appears to be an " elongated " cmbedding of the
' L]
charge one SVUW?) monopole. It has been shown to be regular and

the limit ¢,=Cy yields a spherically sym-etric, simplec embedding
in the ?‘3 position,
For W\ =0 we get the same functions but without their

powvers of § .

If we choose similar functions for @, und .91'3 in

(]
the d,zo , 4,=% ansatz we can identify the following family :

L3 1 4 & Ay Gy
Q -Q
Q= 9.

dy, (Y- €\ (316
“1“ "3‘ * *‘L} c—; '
oL k53 (_K - C‘s\

'&0" e = Cy > ¢n = ¥-C 43" ¥- ¢ X\ = w': = ¢' ¢3




3¢.

d d A
Q’t.x N \’\OQ, \‘K ¥ \ . d-sY
?\3

dy ora &X-Q\\(‘(-Cg\

3w

and where e.(“ Cy

©vaty) oy :n°\

e"(‘sc': *“\"\_ e d\ g 4oy €y

w o Q’(mcs\ N R
. = -

dyCatalC o, Cy & dy Oy ~ }
sz \\_Q\3 .

This will be shown to be regular and may perhaps be a
superposition of twe differently embedded VW) monopoles of
" separation " C,-Cq ., In the limit d,=¢, which must be very
carefully taken, we obtain a patching function eguivalent to one for
118}

\)(?a) breaking. When ¢,=¢3 we recover the known spherical solution

of charge two to be discussed in the next section.

3.6 Spherical symmetry in SU{3).

Not all the above cases possess spherically symnetric

examples.

In the lower two equations of (7;-6) %, bV, £ and ¢

will again be upper triangular.

The diagonal terms yield
N = . \
Boo= B, b= W -3 lhi-yai)

€ = "-'i * Sklnxu;\ , Cii = B

’
for \2; and \2.- constant.

In any of the cases where ?|$.—.o we have the eguation ,
¥ A dy Ay o
°© = ("5'—5" 3{(\?‘5 = %‘33 e x*%n?u'\;?n-\\s'ﬁ e ¥

and similarly for € and ¢ . If %, and §34 are non-vanishing

A A ' .
this gives By = % 'W, SI.‘_.& and %, =W, b «nd so also,

from the 0;4“ term,

LI l'“n ~ A -MN,
sl} S‘S‘ =-\'\'|.F "5 ® 3 = 0

since the




8.
left hand side has positive powers and the right hand side negative
powers of 5 . Thus only %"' and \"L's fail to vanish. The Q)

equation becomes :
g A\ ‘\X \ »
(- LRt = B3 (s L a g

. . _ vy . :
in wvhich the & term is @

9 [ % . .

The $-dependence implies ¥,=%k, . But this leaves us with an
equation whick for d ¥4, has no finite polynomial solution and

we have no spherical monopoles here.

So suppose (q3=20 as well., In this case %..,_ and \)“_

only remain. The equations we have for @, are

3 4, d,
%'S 3 %K) e\‘l, = g“"s e 8 *(('hl"k\\* (l qu)\) ?\1_ —kﬂ.’s e 1X

9
('S as T ¥ \?n = \x‘S e “«((b’oh) 3Lk W ~ a;g *o 0¥

(3-13)
<

The @ term in the first gives

Mt § | & AN\ AN A -~
~%% (.%‘ X ‘ "-)\‘ = Bl ‘*(h;-h.\'ﬁ e

1
Now if ¢'-‘ had a pole jn ¥ other than at Y =0 it would be made
second order by differentiation and could not be compensated on the
right hand side. So, up to a multiplicative constant, ¢, < Y .

Similérly ¢3 = th . Also the “$-dependence requires that ‘Qu—.\z‘

As a result,
"“n."*u‘\ " ~ _A‘_“
B = X %\ rama) ¥

Since & can have no factors of ¥ we can only avoid poles in %n..
if -4y ~W,,=0 and & is constant. Likewise 3 is constant

| ahy :

and P, AW, x4d, =0 , from the ¢ " term in the other of

equations (’S- \3) -
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The remaining equations are

‘ - %—X"s = dy¥ g - b,%
~ ~ A
X %S G = “}\XG x € %

The SQdel)endence requires that MWMg4+ 1.‘_’(\ 7o
which can both be written

\-—Y\)O ¢

“\1**1‘\’\ T

W3 -\

¥h

and A“k“\\"\ S O

So ?\ = { and we have for
the patching function
. Y x d, -
L Ky L VY
< *10’0{\X Al 4 G,e o
X
D o .3‘ LY o (3-18)
-12-1 d
o © Sl
J
Similarly in the case 8,3 =0 ,
[ M o
RS Te ¥ o /o) ]
A= | -2 o A Y, §, oY
o o AL AL
¥
o o -1 dyy
J
Neither of these can be split unless

=0

then simply embeddings of the charge one , SU(2) monopole.

The more interesting case occurs when ?\S %0

we obtain, ¢|=XY' and ¢-5=X-Y3 from the

R« equations.
reduce to the following shape, for example

' =~V -\
%

-
-

(raetd& a2 (5) = 3 einds

The non-singularity of B,y reguires

R, < R,
((p-A-wa) & =Y %5\ ¥

have no poles at Y=o .

and that

-t

This means that

Y\ "A’ -~

They are

This time

The others

N,

S0t
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. Yy . .
either ;&(7_-;0 or P =1 . But the companion eguation to the
above is , v\ \
w- “-h 1
‘.kd d'l)") - %%Xx = '\\1,")

and this clearly requires that %f.=\ . Together with similar
results from the other three sets of equations we find,
v\\'l."‘&\
—V\q;s —A-L = -\

—“1'5‘13 - \
Since A\*'\z‘\'ks =0 we have A,=1 , A,=0 and .l.5=-2_ .

Finally we obtain for the patching function :

‘5“' ed"‘ "'s?n. s ]
= Ay -\ v
A o ¥ 5 8as
- d
o o ‘51' 0 ¥
w‘here‘, having chosen Ao = d ) €°.= ;:— '
n B
~ "‘ d x d\
b = °‘—§ e -2 “\
g (31a)
~ o
Pay = (Q't\"e‘ “3
°(-.;5K
o
r il e o ¥ ¥
? v = X c(_— -‘c <
LAY, da Ay oy, s

and d;; = 6(;—0(3. We need all three exponential terms in ?‘s to

satisfy the regularity condition.

(C
It is known that the so-called maximal embedding of SO()
in SUK’S) has a spherically symmetric monopole whose behaviour is

determined by thc functions :




.

d
' g \ e W Q’dﬂ‘ | de\
= QY= -\ — x — & —
Ll v dn.d\'a °('b\ dt\ °(1,\ QS'L
b\ ¢ —of, ¥ ~ oo\
L= s e e, Sl
v dndyy dy sy dyy A2

where the d; are associated with the direction of asymptotic
symnetry breaking., Then the Higgs field on the T -axis is given

by :

e & 8|+ h L)

AL 1 Y’"K
where \'\\z &‘AS(\,?\,O) and M ,= 0\(0‘;)\0,\,-\) span the Cartan subalgebra
of SVB) . If we assume o> &, %y , then the asymptotic

behaviour of ¢ is @

/ d\ o 0 ' \ o o
¢ 1 .
'L¢ —> o dy 0 -<\o o o

That the patching function (%-\‘\) sives this monopole is

strongly suggested by the facts that,
- \
%\5 e -{1_ Q‘('XB

and BBy - DD = %,, Q. %)

This generalises the pattern in SU¥) where
9 )
\'o el Sur
'L¢(°)°)‘%\ —_— ( o} _‘\ %Yk\“ ?'X\T‘

and 03\.1_ S)\_".:“- .

It also suggests a generalisation to SUM) for the

charge " -1 spherical monopole :

Li=wn=t , Az w3, e Loy 23-M, Ap=A-n




{0.
iy = O ) Y2

INTEIYL : . - B30
\S'Ll,‘\**)\ ) dh\‘ 3 - & 3
. ¢ \ 1“ d“‘l , 14

mih

ay -

¥ we

That these assertions are true will be seen in the following
chapters when we discuss spherical symuetry for SUWMM) and do some .

explicit splitting calculations.
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Chapter IV

The classification of spherically symmetric monopoles

for an SU(“) gauge group.

Using the experience gained in the last chapter we can
go on to solve the equations of spherical symnetry in SOMY ,
using methods developed in this context but from a diffewnt point
‘ ' [44,48)

of view by other authors. ¢tirst we establish some notation by

briefly reviewing the root theory of SV(W) .

4,1 The root decompostion of SVUW) .

In general the Lis algebra of a Lie group can be decomposed

o W)
in the following manner,

; (+) (-
L= W@E = M@ E"®Ee"
- where “ is a set of ¥ commuting cenerators { ¥ heing the
rank of the group ), the Cartan subalgebra, dnd E the set of
' generators remaining. € is spanned by d-v eigenvectors
( ‘J. the dimension of % ) under the adjoint action of H ,

e

P ‘whose eigenvalues oAg are real vectors in an ¥ dimensional

Euclidean space. The basis of this vector space corresponds to

a choice of basis for the:Cartan subalgebra

L4, E) = o€,

E = (“n“t).“. “Y\l

The vector eigenvalues are called roots. If 5& is such
a root then so is -%,; .

Further, we can find a ( non-unique ) basis of ¥
simple roots which span the set of all roots in suéh a way that
each root is a linear sum of the simple roots with coefficienté

\ , O or =\ and such that the coefficients are cither all
non-negative or all non-positive., These arc the positive and

‘negative roots respectively which give the further decomposition
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€t = Eu\@ EH

W
The Ei and E?’ are the raising and lowering operators

of the algebra. For instance, in SU($) we have , -

\ ‘ \
M, = -\ A A \ N
0
4y °c \ o .
B 2| oo o 4,= (2,0
o 0 o
© o o
)
E'L - o 0 i‘t ’&'\nﬁ\
O o ©
@y ° o !
€, = © 0 o 4y (\,R)
0 0 o

where d,d, is a choice of simple roots. We may draw the root

-

diagram :

»

Any pair of roots subtending an angle of 2“65 constitute a simple

E-(.\ < ET(‘“

0 { | and has root -<%;.
, ' Q) : .
We note that the Ei corresponding to simple roots

multiply by addition of roots in the sense that,
&
Ef,\ eq‘.“ = E-(;\ vhere o4, 4 d3 = oy
{(x) (¢
‘but B, €, Y- o

These properties generalise easily to SU(w) ., We can
choose the raising operators of the simple roots to be upper, of f-

diagonal matrices with a single unit entry, of which there are




&3,

=\ | the rank of 3SV(W)
)
€ = 8&,“\
The roots are V\\V\v\\ in number, of equal length and form a
M-t
symmetric Wlwa) -simplex in R .
(4) (4) .
If ©{ and E" are raising operators of roots «;

(k) ) 13 &
4y , then one of E;)E', and E)\ E‘-()

and
will be the raising operator
of A« 4, , provided this sum is also a root. The other product

will be zero. If the sum is not a root both will vanish.

The basis we have chosen above for W is the Chevalley
basis. 1In SVUlW) it consists in choosing for W, (\¢mgw-\) the

s S !
diagonal matrix , ! \

2. } n-w
; ‘0

and choosing the normalisation N\m so that the roots have length

L . Considering the raising operator of a simple root :
‘,\;\. Ew) = (0, U R G20 T N O 1) O\ Cw

CI oyt
so that , (W -1y Vo, & (mx) N, = &

and : N, = ﬁ/m\.

In this basis the Cartan matrix is ,
K = Te (W) = 285

It is useful at this point to rephrase the discussion of

(ALY
symmetry breaking in this language.

We want to solve the equation,

l*)»\\ = O

where & = &W | yhere & is an v -vector. Let W be a

general element of the Lie algebra of -Lb« ,
14~

W = Z‘\l\‘\‘\t * Z‘_ (\\(?E?ﬁ* \‘(.&'\ e(")y




&4,
Then the comuutation condition is, by the definition of root,
T (e4Wed -2y WE') = o

and by the linear independence of the Ej this vanishes only for
those roots which are orthogonal to @ . Clearly too the ki can
be non-zao. Then the unbroken symmetry group will be gencrated by
the Cartan subalgebra and the raising and lowering operators which
correspond to these roots. The roots so selected with the requisite
clements of \{ will generate subgroups and products of subjiroups
of 23 and }{ will also contain what remains of the Cartan
subalgebra as a handful of VW) factors.

In SUlY) for example, the simple roots can be chosen
to be : | 4 = (2,0,0)
4 = (-,8,0)

- -1,

4y = \o, R’ "r;\

and there are four generic possibilities :

P

d = \ 5’-(0;0,(&\ 4-dy =0

\ ) '

A a.4; =0 ¥ = vy x suy
g (it d)) =0
\

d = \ a = * & -

"_\ » 32l &’ G) ii‘;:o 1 o= oy xsoky

- - % SV(1)
(0(\* 4y % wo":)
-1}-3

A = 9"'(54,€£ ,‘Si\)x. ' @

9 - ) G & ._ 5.53—,0\%-:\){\);(3\)(2)
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; " 4,2 Spherical symmetry.

Now we shall attempt to find a way of locating the
spherically symmnetric monopoles in any given ansatz, that is, given
values for the &; . ‘e shall be guided by what we know of the simpler

cases.

The full equations of spherical symmetry arec :

‘).x%.sos = a0 - a0y o (&)

(2 -5$2)a: by - (k)

(¢ v xg )= b (e3)

The fact that the differenticl operator in (&1(3)) is
holomorphic away from = 0(00) allows us to use just the bundle
transformation of similar analyticity and to assume that b and %

-

are no more than degree 2 in ¥ and % respectively.

The operator ‘5% can introduce no poles at “$=0,00 and

s0 P\ and & must be constant. We choose them, after the

precedent of SO%) , to lie in the Cartan subalgebra
N = “;\i , &= 5'\1

In the upper triangular ansatz % has a diagonal of

the form, 4-\1

diay (o) = %~ wur(dHy)

-~

where: &\j - )\.‘askl.,kh .. A“\ and 4&-W= A;“ﬁ(*" ..dy)s Then
‘these diagonal coiponents of (‘t-\) give

Then,

)

d
\>~

X

[{ g
\2
1

{
o
(L)

{

and the form,

-
>
<
LA
x

i

Ay Lo

o

< A (¥9) %

”K(’()"ﬁ = (E's)




%6, M
~ ’ e- -X ;
where ¢ is upper triangular with diagona%&,satisfics both the

VAW
ansatz and equation (&) quite generally. A factor of Y1i-°
has been pulled out from each side to simplify the other two

equations. They become

LA LAN
L . PR TR TGO B T Y Ly
-boy = ,BM,&!\« 34\505 %\% < %.% N

i
‘—ﬂ
4
r
P
—
Pl
S
Vg
)—
x
e
o¢
S
/—— N~

A%

We could remove the \_’3,‘;\!\ term by introducing
suitable powers of Y into the form of QY . DBut this would have
to be done in reciprocal ways for each equation. So it is
convenient to set t=o0 and we do not appear to lose any generality

this way. Certainly, € =0 for spherical symmetry in SU(%).

We write \ and YS in the shapes,

‘A'= - ¥’ ! AP

and -the above_equdtions reduce to

H

- .,
YR = (YY) e Q)
‘.

vt O ¥ -LAw
¥ 5l . skm} %m -

Now @ is upper triangular and can be written ,
)
G'— #'\i “« z_ ‘S'E‘
A
where £§*) is the set of positive roots. Using the formula,

which is easily proved,

2 R N R L
Q/ Ei Q. - “'
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we obtain,

~ .
The diagonal elements of ¢ then require that Q

A
P

Otherwise the right hand side must be independent of % , so that,

L U
B; = S 6ilY)

If @; is to be at most quadratic in <\ ‘ié.a_(; has to
take on the values -\ , ©O or |\ , in which case (S; ' must be

of degree at most O \

s or ©

respectively in ¥ . If for

a particular root “:LL.‘%; is some other value then the corresponding
B; vanishes. 1In fact the case :‘é-t_(i'--\ is also unacceptable

term 1into ?ﬁ :)"
1S

-1
because it introduces a X

which could only
- 1
come from something like ¢ ¥

and this is disallowed on jzrounds
of reality and singularity.

(L &)

can ecasily be solved in the case where for those

\145, which vanish we choose §; 1‘(;;\3- so that no X'\ term
appears. In that case,
r R o &
%3’)‘ - W« L BiE, ) . towstant
¥ W) .
LA L
T~ - ) ~ &‘t) 1'
and so : o = (E» MY\i‘\iK*L (’%E.X\ >
: S A‘“Uﬁ
where (M consists of those positive roots which have {Lg .

The same form can be deduced from the equation in \%

such a % has the correct singularities, that is, it
has no poles at Y =0

but only at %=0 , ®=0@. To sce this

consider a typical term in the expansion of the exponential

'neglecting powers of 3§

-LAM v W wm LAM
AR - . E. re -
VV\\Y \d“ ! EG)(K)G' v )K X

-

()
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The effects of the matr1c1a1 exponents of X’ on a
w-lhd,

. 53] '
general Ei is to multlply it by a power X . But the worst

behaviour 1n the expan51on of the bracketed term must come from a-

.n’

eoncatenatlon of M\vrals1ng operators for-wh1ch. 5 & 0,4 provided

the sum of their roots is again a root. But then the scalar

product-of &V,twith‘this root must be less than or-equal to wm

and so M-—k«i‘),o Thus all the powers of ¥ appearlng are pos1t1ve

‘or zero and %5 1s_holomorph1c except at W=0 y @ .

Reality is. less easily proved. Spffice_it;to say that

‘v‘all thelknown'spherical monoﬁgles are of this form for &, and i

real.

elThe constrelnt that there be at least ene root for wh1ch
& i =V4 is_eleerlytyery restrictiVe,on £ o It is alwaysl
sufficient to Iook at the véluee for the simplevreets te see
which, if any, other roots have either of these values.‘ Hence,

glven an -&' ( that 1s, a choice of asymptotlc behav1our for the

Hmagnet1c fleld ) thcre may or may not be correspondlng pherlcally
symmetrlc mon0poles. But for small enourh sultable valuesof L
'they w111 exist and 1n thlS case L selects rooto of the Lie

.algebra and the monopolea are conotructed from these in a s1mp1e»‘

'lway@,(&»() .

The orthogonality of X- with'spme‘set>of'roots has been

”'digeuSSed,AIready undef the guise of symmetry breaking. It will
' happeh,wheﬁ sets of the K‘ are equal. If in such a case wve

«chQQée the cOrresbohéing «; to be equal also then the relevant

~ .-

Bi can be gauged to zero.
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4.3 Results for SU) ana SOB) .

To see that we do indeed recover the results froa
chapter IIT consider first SUIX) and SU3) . The former has only

one positive root, length L , and éo 40_( =A only for L=\ .

11
2

We have a single monopole with patching function :
\ .
=\ LY
) S w 3T
AN = k 'g) “p \.k&“\ \ ?\E"\‘s\ (%%)

‘ - \ 0 \q) 0 \ : .
where \‘\\ >\ o -/ and 'E\ Z\o0o o e It can be revritten in he

familiar form,

B 0\ gp [ 4Y B\ [N o

L o C"S)\'L ? o -dY ) (‘6‘35%

= %
A -
(o) oo A 4

SU(S\ has three positive roots,
= (B0) Ay ((G,R) Ay Ak

There are two possible & , in view of thec ordering of the X;

2=01,R) Sha e Y hde A LU 2 dia(1,0,)
\ \ 1 '
£ UL8)  ybas Lhdes Y A8 Ai(io)
\
Note that we do not have J_-V_\ = | \ . Although

-1
“there is a spherically symmetric monopole in this ansatz, it occurs
for ‘(\.-.0(1_ ( breaking to UR) ) in which case it is bundle
: eqﬁivalent to thic first of the above cases.
-
In the second case only «4 contributes to 0) and we

@ : :
simply have an 23\ embedding of the SOUR) monopole.
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In the first case there are three possibilities.
. ’ ~ ~ . .
If only one of @+ and (.1 is non-zero, we again have

embeddings of the 3SUB) monopole :

v p o ST o
d
o dCK V) ) 0 Q'ar ?
o o %% “ 0 o KM

If neither vanish,

., O ‘ N 0
; y 2\ d, \ o ¥ ©
N = o ' O |¥lo v ¥\ o v o
- 0o o o ' -
o o Y > o o =

. where we choose ;,. ‘-6; = { . But this is eas:Lly verified to be

the maximal embedding of charge L that we recovcrcd earlier, Q}\\)

4.4 SUU?) and ma\:J.mal embeddings.

The Chevalley basis is :

\ ' \
b e N Y
. i - - .=
Ml e SR £ B R R (Y ‘.
0 | o 3
ané the simple roots : ‘ ‘
o . -t -
5\1(1)9;0\' ‘ 5'& = ("\ﬁ)aox . 533_(.0) —é t-g)
We identify the following cases.
(i) . \ A vor & \ K I
AWM= o ) 43(1’1ﬁ’.ﬁ\' :;‘:'!"«;}-" 3,340 =

Ly
We have non-vanishing @i for the d, and ditdat ey

'““pogitiOnsm The second'givés a simple SV embedding.

(ii) \

All roots contribute, This must include charge one simple




S\

embeddings and their superpositions as well as case (i).

(iii)
1
W - ° . VW@ ) A\
l:“ - ] ] é - (\' &'?;\ ) ‘.‘.éi‘\ =4 'T;A"S‘l. 50)%5'535
-1

Only 4.4 %144y does not contribute. It will have a
pair of simple embeddings for dy, and dy and two embecddings of the

SV(3) charge two monomle,(ﬁh '-(-L"“f!) and (c_L‘.»(u_(‘, ‘-‘s)

(iv)
' t v § 6 \
\ - - - ,-—1— - . -l . -‘
&'\i” -\ l-&"('?."l_(’s’ " ! 155"-’,453‘;’,
L l."é"ﬁt’-‘\
llere is only one simple embedding at 2, .
(v)
3
LH - -\ \ ) _&: L\,C'S,-r‘\ ) \—z&‘_(\‘—\ié:(‘ -_!.lé.,s,s_'
-3

Only thé.simple roots contribute. It is the maximal
.embedding in SUW) of charge three when all of §|,6;'Ez are non-
zero. Otherwise we have two émbeddings of the charge two, SU(3)
- monopole.at (4,,d2) and (®,%y ), a charge two double embedding
of SLUR) monopoles at (d,,dy) and three simple cmbeddings at each

of the simple roots.

. The pattern for maximal embeddings means that for each
SU(V\)V w:e} get .a ne\-;' charge wW-\ monopole in the ansatz vhere _i_
is '(N.,N;, e W), so /_(‘B = ding (wt,m3, .. oW ) and the

pétéhing~function‘is;

L4 {4 voo.. 0!
v dy \ O

R CONRC] | NG

-0 . -
X
<
N

which is precisely Q}QO) .

«
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For the other possible é - there is generally room

for maximal embeddings from lower groups and for their superpositions .

It remains to ennumerate all the possibilities and to
check their reality and regularity. When we have c‘ompletcd the
splitting we shill sec that Qtl)‘) is the charge M-\ solution of

ts) '

earlier worlk.




the post hoc necessity of showing that a given patching matrix can
be split in a regular fashion, that is, in such a way that the
Higgs and Gauge fields do not have singularities.

18 )
5.1 The SVUR) splitting procedure.

We start by looking at the simgest case : v is,

NS IO

© et
where X = .'SX ’7-‘8 - "‘3:‘ and we can write
3 2 Lexg)
- X -
oL A RS b3 ) o
% - 3 2\ - oL4%-%)
o S\ o o e

$3
Chapter V
Regularity of the fields ' '
The real bugbear of the Atitah-Ward construction is
where ‘é = 9 ’4?(&\%-&'&)(\\ . Now we can attempt the splitting

in two stages. Let,

L

WX °§ Uy R VM,

!
-A
0 ‘SL 0 \ o 3 0 \

|
|

| | N |
: | St Wa'tT 4 8 A WS

; o - o

~
If we expand § as a Laurent series on an open anrulus

in VU, AVg , in the '\ -plane,

[+ ]

~ A o { dy ¥

?‘_2;0\&?? where ?V‘-.a\‘% '{X g
¢

. B
we see that “h. and \"h. can be chosen so that 4§ has only the




4.

coefficients between -A&\ and L-\ ,
A=t o
RN
-K4\

)Y
and the splitting of % is now equivalent to that of % .

To calculate the fields proper it is more circumspect to

. A
choose “\1. , W. to have no constant terms, in\whi-ch case ¢

will consist in the central 1A%\ ( instead of LA -\ )
) ~

coeffi~cients of § . Then MY = Ml = A, and the splitting
~

of 9 gives the correct factors to caculate ¢ and Qi , (1)

modulo the exponential factors extracted at the start.

~

For proof of regularity however the first choice of ¢
serves us more simply. Accordingly we seek to solve the four
equations At N a

> o~ \/\ .
‘S& Z 3 O h\-‘. L
-4 - .
. " . ’
o) <A R W,

1= LI ({\)

~

. ~
Using the Taylor and Laurent expansions of & and W

we obtain :

~ [N
N . ~ ~ ~ ~ Ak ~
Wi, = hh‘,l—l Raper * Ry 8t - X Ryt

and,v' from the coefficients of positive powers of 'S,which vanish

on the right hand side

"

~ " ~ ~ "
\7-1.-,& Qsar % ‘Lu,;,-\ Ragan % - - - - . ARy 0 = O

\Ru,x R-ax ¥ R A Qopan v oo o ¥ Rij08,= ©

.-
N ®

+ [} [}

hu‘,L o * hli,l—\ 'S
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. ~ N L ~
" We can solve this system for ( h.“- v, ‘L‘iﬂ- e .. "nli L)
? ’ )
A ~ ~

in terms.of h\'i,o , then use (§-1) to relate \/\‘-S’o to \2,—5’0 .

LY
Then we make a choice of gauge, by fiXing \7..'3,0 say, and so
~

o
obtain \A‘w\ = \Aﬁ,o and thus the fields from (‘L-‘L) .

But the system's solubility depends on inverting the Axh

-

matrix , ' i
~ ~ ~
: ?-&«\ ?-xn_ ?—us - ?o
~ -~ P ’
?r&ﬂ_ ?—kﬁ‘s/ I . ///
~ 4 ’ Ve
7
S = | frn o 7 Si: = Q
4 g ' H - g’l—\«’\ks
- . Ve
’ s/
s
e
4
’ ~
~ . . ,
90 - gl—\ J
~

So for a givén ¢ we need to calculéte et S and
show that it is non-vanishing throughout \?} . In this evént we
can c,alculate'explicit forms for the fields, although this is in
general extremely messy and unenlightening. The form of 3& S
however is often quite interesting. It also allows us to check

the asymptotic behaviour of the Higgs field via the eqguation :

11
Te ¢t = Gt - 2T WIS
‘ ' . 1) .
which has been shown to be generally true for V() . aia udalogous
18,7
formula has been demonstrated for some cases in SU(.% .

5.2 The SO(3) splitting procedure.

In S\){‘S) the splitting procedure is complicated by the

greater variety of diagonal entries. Let us take the form :

Y
R Q.“X Cin ¢ g

T




<.

for m»wmypo vhich includes the case we shall want to consider in

detail. The cases W €0 can be similarly treated.

" As before we may remove the exponential factors and then

truncate ?,',' . However, because of the way thc upper triangular

matrices Y| and W affect the entries of 9 ,

. W ~
\‘ \l\n_ \\\.s 3 Sn Tw \ “\1 “\3
. ™ ~
A v 0 -\ Mgy
o VoW
© o \ °o % °© o
“ ~ A w ~ T oeWewm ~ -~
\“ % “\1 X gh, ‘\'.S \“l- '5 “\‘5 X 2\3'*'5 \’\\3 ‘\\\\a‘x‘s* “;‘5‘!1.
- . ‘ - . *‘S“ “IB\K\Q_
0 ~ =W
B Wy X Qg 4 Wiy
o) o) S

one each of the truncated portions of ?“_ and §,y reappear in

R

nw-\

~ -

§\~L = Z ?\1—,?% .
wdy

wWey
~ ~ r
Q"G - i Q‘VS )"vb l

~W\-WAj\

.4 | "t )

but, o - 3
?\3 = z, Y \‘5,‘:‘b
-V g\

where ’

. ~ ~ w ~ o~ » o~ ¥ "l ~ S

t‘s - 2\3 ".S k ?\'L Q'Ub - k t Y“—,"S \ki Q‘S)S‘S ))
. : W -0

Examination of the real form for {4 ,(3:5), shows

that this apparent awvkwardness is a blessing in disguise, for it
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~

removes the term in §y

1% 9 . Lay [SX-F) & dia (% + X 1<)
Wy

which would otherwise present difficulties to contour integration.

Taking Cauchy coefficients of the nine equations,

. A A ~ »
‘S“ . W \'-\i \‘\i
WA W = "
o S n o | 21 Wy
' WV » 'y
0 Y |2 “

then gives a linear system whose solubility depends on inverting
the kv\;‘w\\ xiwa wx} matrix S , shown on the following page.

For a few simple cases

ws A \ S = .Y\s;o
N\ = O

~

Y b ”~\

3§ =
it
PO
w
1!l
'—d!
g

g%,o g"’)"\

I 3
)¢ 3,

[1]
o P
w
1]
yro?
3
Q

]

~ -
l SRy Yg.o - g“)\ gu:'\
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, for an S\)(%) patching fqncfion.

S

The matrix

Ti o My o 0 '
~ :U
1< € .so* .Ermu«.few
JwI(CaJXD (] G
(l(/?l.w..%ﬁw a;J(J/ :”J mlm‘.ﬂ—& - ..w.
WEw 3 0S L varm 3L Sy a0y w-C-15a
N ¢ - = mm.d
Wrwa 303y “w s 1s a0 )
w 3
ﬁ PN
Wirw O
, Y
oﬁ.@. . . e Tf.ﬂ.m Y . o ,
~ ~ -0 \*wug . l_s‘.rw [
' -; . X .onn .-)‘ ,
. O . <,
: * ,+$...::M
. , O ”
Is..ﬁ& i . .. _-f.ﬁw O .
- ~ J ~ 0.L
~—~—

2e- N
WA &

~— - N
[ w-tw O
m. —f»..ew

V- S : . . . e'sy
N S
w61 .. . . a'ay

Ml e

Trw-unsg

[R5V
: 1

N
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5.3 Regularity of maximal embeddings

Before we do an explicit example of this complexity,
let us consider the simpler case of the vmax}imally embedded, charge
"\ -\ spherically symmetric monopole in Sb(k) Because of its
symmetry it is necessary to show that it splits satisfactorily in

one radial direction. If we choose the % -direction then x‘xo=-1T

in

and the only §-dependence of O is that of the powers of S

the Q35 . So we must split :
' A e wa T 0
V] w-y |
= | °
' W3 U -upy
I ¢ 7% ?VH,V\
-wt 'u“r
L (v 0 e
)
vhere ._ i

3 3 "
T X (b))

&3 ,
) i

(5"

Examination of SURY, 3UI3) and SV(%) is enough to

R, )

-

convince us that ( choosing an anti-diagonal form for

y

D,

.bz/“‘

it

W,

where -
%\,V\-\'\—Y‘ T

|

\..
L OSV',N\-T
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v
and | Ed S = TJ }v

Further, the Higgs field is,
. 'Y \ .

Fl = AN s 5 LW, 2 (o)

T \ v

where we have used a basis for the Cartan subalgebra different to

that used in Chapter IV, namely,
W Wi

“w\ = o\ims o, ....0,\,-\,o... 0)
. From Q‘--) we see that the Pw have the shape

D = L‘SM ka—'l_v;)

r

(n-w)

The Qw\ are inffact ( see Appendix ) functions familiar from
earlier work[,‘ 11"rorh which we know that ¢ has precisely the above
form, ’_I‘hey are also non-vanishing except at the origin where they
have zeros of order Vv\\\n-w\) , exactly cancellevd by the factors

of v in D, to give a non-zero limit. Then So‘ts is novhere

vanishing on the %-aXis.

Spherical symmetry means that under a small rotation,
ﬁ > A A )

and so,

Wiwy = 0\(¢A\A(aﬁ , ‘b(d) - é?(€\hlb\

and since no singularities can be introduced this way we are able
-both to calculate the “i ‘and to argue that \ds is nowhere

vanishing throughout \Q3 .

5.4 Regularity of a charge 2 , one parameter family.

In general we must avail ourselves of the full splitting

procedure,

Those patching functions which have been shown to factor

LA A
to give smooth fields are the axially symmetric and some separated

ones in SV(2) , the "deformed " embedding of tic single I0)

i

[1—\;“’ ]
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L)
monopole in S\)\'S) and a family of charge 'L cxlindrical z::-c-t*.cg:r:lc;:
: 28} o}
in SUB) which includes both breakings to U('L) and \)l\} x\)(\) and

contains the charge . spherical one. We shall give the calculation

for the YWy VW) breaking.

~

It belongs to the ansatz L\j—. (2, 0,-'1,\ and the Q&)

once the WY(‘.\EX) has been factored out, are given by :

- AnV A p-e,
P . % St -0’1\}" )

Ay (pev -ey)

&

.st . '3.\ pf-&[* s 1nlvacy)

Al p-v-eq)
. 4 AR ITYS ,A
g‘s - e “ [ \A Q

Ay dagy (p-v =) p-v- &)

A® AN :

where W, = ¢ . ‘M R s_‘:_.o_(l‘_% , Sizcaid
) Sy $ tim And

te=C=-1} and JAR 'R 5 S U:%ki[s . ¢, and ¢, are complex

conjugate to cnsure the reality of mr .

To construct the function ‘E\.s we need the half expansions
0 L4 ‘ ~ ~ o
r
ZQ.M.'S and ?’m"ﬁ . The forms of Qi and {4 allow us to
\

find these simply by first separating off the terms in the numerator,

then dealing with the residual poles from the dencminator. Thus,
- \ ef‘“’* _ e‘““**tsc'l

-\
|, T cs-sms-m\-u,

* L . -
wvhere X'S','L = ‘84{("11 Ry and ¥, —'%*"f"-\ x XX

-\ *13(%* ) J\-u,\\) % Lﬂ
TR R
= At (8- %)
) Sulbred ef”’m* ty) | éuu‘*cq_ e.( wN e

Ak (5 -5)0 -3 A Cs-32) S;b*-»i\}

< -
where V{ = % X X/.Stt

P is a little more involved because of the higher

powers of % in the numerator which mean that more of the terms
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from e have to Le included. But we obtain the results

-\ "\ *1Sc'1/1 . ‘

0 Y2 , | .

N P P R
&‘L‘SLX’ c.,_\ R,

\
1*1\0\

~ o
Y < S
' ‘*ub('t\)

and so have,

| '3 't'—"( c,
-\0&*\1“*("* ‘:?‘_\“\d“&'.-i&h)\ 7 ]

\

. < al A ot
Y = 'l_ ) ‘—"-""l——_—'— -{'er(.“o*e \3 e \\\o‘\'@“ l)
s Ay, (X= )Y =) :

Lslvatya b e,
o AT E

\
Q:('n_()"'(‘\\ "'.‘ijd‘lsc'l Ft

L el d e | ,
+et " g daC £, Fz‘

where F‘ = M ALWR, x (Vv %) Mgl
Q,
C
F.L = M o R, & UA-— %} A‘\*msv't

[

~

~ ~ . R
Now all the functions @, , f4 and 2\} - have

singularities at $=o and Y=o only. We calculate their

Laurcnt cocefficients by integrating around a contour C enclosing

the origin B \ i | v
g\'l,\ = a{ g :;"S g\"’

c :

d.v oyl -t
W Y Xk (4S8 47)

-
-

Let C expand towards a circle at infinity. "Then we loze

s S s -\
the first term, whose behaviour is like  Qfp 2 « If we then
shrink the contour to zero we shall lose the other term, which
has behaviour @gp % ., but in so doing pick up the poles at
Y- '
%S, to get

.°(\1 *V‘ \ °(\1. .\‘ \;
: (W-e) ()f €)

e -Laac,

| .

° -— - - swa. R

?n)‘ T { - .* - - - e ) _-——"-1;"_"
' Lkt W= 7% AR,
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Similar arguments lecad to complicated ex pro;s&onq for

~

the Y\%x
- 3 e-ta g 4
- 2 2 YWy .
?‘B = \ ry L { Siw d"us S\‘\d & 'nv\o(n\ SL\ AR,
! A'L\O{'L'S U Sin ‘*‘38 v Sinal S R
, \ i ny Q
o, R '
x M &150‘1 __ﬁ_‘ x t\ d,.Q, s LN 418 W ino-u. M A3 Qe
: . ' Q’u R‘ k‘,
poL oo et
B, *1‘\‘{1’3 ' X 8 '

{(.%*_Q)( Siw 4,8 5\“(‘3\

Siw d\ss

"("a* ‘S,Ct\) ( 3___—__‘“ Tt .S\"d\sv"
’ wn J\\;s 21

_ 3\ dn&t-(d“*n‘\*“s-\:ﬁ‘)
2‘L R|

- MR,

MR, )

\

v oS
+ 1 W&Q -5"”{13 M
x Mo R
s‘“ ‘(\38 31“&“5% &\—sk LYA O\Adl‘s kS * gM Q'L&Q s\,\ d‘_LR }




.

| Laye -’i oy d

- -——-.Q— . . . —

" '
A oy, %Ky 1iX$

.Y wady,d .s\;\cl,-,\"
u, OV T )

‘

_ (_"5* \ ’3 ( Snd % (\Ad\sv-t - S\l\iuvﬂ.(dh V\‘-‘.\S S\I\Ol\q_k\§

Sin °’\\s8 R R,
- Sl gy,
L
\.w\iuﬁ LIV S 'S '
- Wd R EN % U\'\d Q - .._"-'b\\ -s\l\dnk
y\,‘d\ss \3 ','.v\d‘ss W™l v“ d\i‘s“'}_ 1™y
¢ SRS I PO S T SR ¢ ‘\"“‘1?“ ")
%&‘C -'3,:"(\'58

3,0 - ?"‘)\ gl":,'\ = '

|

P

Andey 19

Y
£ d . AN L3 _ ““‘xus V') 4.k,
Siw o § R, Knd. b R,

+ t)molu&i.‘\_‘j_'}}\ X (A'\o{nk\_s\'\ AR, .;8.3\\4‘19. W o, Qe
R.\ R. R‘ '
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As o cheeck on the progress of the calculation we can
consider the limit $-» o in which we expect to recover the
spherically symmetric monopole for which.we have alrenady scen the

: ~ . 1 .
splitting work. So in 1\3'0 put R\=“a*"‘_§% ,,v\.,, %—x&,, te=o0
oand - X q.o y S0 we are 1'0«31iing on the g—‘ $¥C

Y‘ (\ =0, %-90 - . ,
3,0 ) 1"—-—“"“‘%% o(\.'_al“( 3\'\ 0(\3'5 ) O\I\ *1‘5% ‘o\'\ 0{\1‘% % A«Q“’%_s\\dn%\

*’ M k *1. CXA&‘{% e "dt$k&1-s% S\\d\'l.‘x - 3 d (x\d'u% “L\dn%>

B Andey
1 ( du \\ 1’3 \
A el CEu AL

‘h‘f;' Lo dan 9(“ w¥ - s\'\ L% $\1\3°l1_‘5 X 1"‘“'\"‘(\1‘5 AR Aoy
- € m‘( ey . efu‘i’:* o \
g ) da%s dpdey dsde

-,
So Y\,, (xs0,$20) = 9.... @, (1) ( sec Appendis )
’ *° \‘% o

Likewise,

3 v - ’ “*"
(.t\':.o— u, 91,3'.3()(96,%'—0\ = %',;z' Q,(2%)
: '

-~

and | ' hoth vanis he ¢ —aXi ilence wo r er
and .g“‘"‘ .,.?_‘,s" both vanish on tx}c s axis. n{qncc recover

the expected result :

{
Det S = - Tt Q(2%) Q.(23)
% : .
In gencral however we get the following expression :

Dok S = Y\'s,oQY\‘s,o Ly '.é‘t'»:'\\ - Y\‘S.\ T\';,-\

2, ¢ *idy S o 1
- Q’ . ( ‘1“ dl\s . ‘;V\ diss\

‘kc’ .i x *‘L\ A R °('\:5 .

EQmwnd) QR 85 R + 4 (amn) & R) BLR)

where '&, s }\_t = L"w“\)%* ‘7,,(0*{&\3
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c 4
The Qi Tunctions are sinple generalizations of
those governing the spherical behaviour and are given by the

formulace :
4R LR : oy R
¢ e Q
vimd d.5ma S Sina,8.qima,d  Simagdisimagd

~dR —dp -
. e e . Qm
R, &) = X %

Gach,d Sin kg8 dmalyf sy simdyBosindyd

- Finally we must show that MBS is non-vanishing through~
3
out R Tor some range of values of the parameter. ) .
By a translation of the origin along the - ¢ -axis we

may choose C=0 Putting 2‘-.1.‘_:- a.«'i\’ ' Ve£ S can be written,

o dnd ( W b Si du8>1_ Q02 Q:\'P’\\ "_ Q) (ub) @, (b

a4 M) V. “a N holxb' 6. W

‘for aeR , b €‘."§i, %\ . .The two bracketted terms z;u"e'
dependent only upon O and B respectively. We z:.';lrsE'z to show
that the first is hounded below and the sccond bounded above in
such a way that the second bound does not exceed the Tirst and 50
the difference is always non-negative. 1In fact the bounds are

equal and attained at a unique point. But in approachking this

point as a limit we can show that Yt S is not zero there.

For simplicity we are considering the casc vhen 0(1-;0 ,
o(\ = -'é{.bg of . Otherwise it may be the extrema are non-unique and

thn
9

the result is harder to show. So we wish to consider the function,

ik S = K (tosdd — wosha Zaa) (s ad - cos q_,{\,\“ |
- | 4 oty Bt - 3 - wh™

where K(%) has FPactorn of (\w\ 0(3) and so in non-venid shiag {or

o0<\%\« 1:{ ( and we already hnow that the 8§=o0 lizit is
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rezular ).

This is an even function of & and b , and

39 wa%_o\«u&\m
SR

M Lda - s ah \Ms¢$ o L GH% \ N &-ldog(‘“}“ d.\.\)\

(kate &Y
y u«-(‘:ﬁ [usd‘o *(\iu—k)(qﬂld "5 ‘*"1“ ”
(te«"-k%‘\ 7 e 1L\ elaa) 'La
if a>»0 |
with equality for & =0
P e e e )

A4

M Lo — Losad g
il 1,1 L) \j}i Y
(e 8" L8 T km—m I

zince Wy od 7/\—!—,‘&18‘ for  \g\ < 1‘:1 ’

M Laa ~ts o o
> , \'lo?'o("‘ x ) _E_f{__-
(e Y e

> o
for a >o
Hence the first term has a unigue mininum at Q=0 .

Likewise, consider,

) \(mas-w,zm‘]

o @ws2db - s dd \ oLl - osdS — Ny 'L:\. & sinlob

(sr-ue)*
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o('l'cosu\o-wsd%.(“_ «.ma&(\ns) w«d(é-\\ Sm'l«\»
1_u\t Ch
-y Wedy YR L) b

‘L .
& d Gos'lol\, - (0 d% ( | S oS )
Q N
§- &y A%
. 3¢l ¢ e . .
since -=%§ S 7 and oy is monotone 'dccrcasmg Tor
0<%« X . This is negative for Siw a.g ’. which is
T B

%

certainly the case for < — .
Hence the second term has a unique maximum at b=0 .

Rut further, .
(s &S - t)\wgg_\"’ \ (s as - wsLabY \
kalx 7 azo LA \

=0

and so 'Db’CS is non-vanishing except possibly at a=b=0 .

For & and % small,

\&s ~ \‘_\ OOSdS (0\&\7"') kell-*('osd% -\ ‘l

bt Y

which is non-rero in the range \‘o\<-1—‘i . This bound might be

pushed a ‘little higher by a more accurate analysis.

It has also been shown that in the U(‘L\'breakjn~ case, .

. 1 L8]
dy=dy = v, Az A . the ficlds are rezular for \%\( 3 .

In S\)l't) the imaginary displacenents of the constituents
of cylindrically symmetric configurations ave restricted to certain

discrete values., In SU(3) it appears that it can vary continuocusly

but it is not at all clear how this parameter might e interpreted.
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Chapter VI

The general wmonopole solution in S0y

Now we have a number of explicit patching Tunctions u;
mlght attempt to find the fully general classes of nmoro-ole in
(11)
an SV  zauze theory. This as been done for SV and the

{1%) :
solution shown to he couplete. " Similar methods can be used to

analyse the next case.

6.1 Multimonopoles in SOB) broken to VWXV,

e

In SUB) we have the following gauge freedom :
o = 98
for &, €SLBE)yhich leads to,

: L d
B = ?%1 St fn - (};‘l g
W “

fvs = %}- ‘S*"Q.d“ LY Ry = 2 -sx‘o;d‘x (6-1)
R Yh.\. R
' A ' Ay o
?\‘5 = “\‘5 < \e"t x v\& Q\'s X h‘s(qnq‘&_\zu}lm“ 3 1‘6

[

X “\.s ‘Z Ay dhy

- 'u fin - Ayt e

where \_l. ’ Ru and \ﬂgg are non-zero constants with \!“V,,-.,V-“ =\,

The reality conditions,
cive : B = Ry
w0, ¥y =

and, for instance,

A,
Ry = L ((~S\ ¢

»a$5

X X

Ry




F0.
. ey o 4 .
But we can reclate the coefficients Rr; and H;, via

the polynomial ¥, , so that ,

-4 I} L d \
Ry = -‘5__‘(9.*““,,3«(-\\“‘2\9—3\ *3L3¢33‘Lu

AL “*-n - ﬁ\“
and the extra term is simply a gauge transTormation iIf wve assume |

that “13 is non-vanishing in its region of gnalyticity,
. Ay d Y Y\ | 4
By 2 - '3,6_5 (™ fuy « L) e gt ) (62)

This assunption is only reasonable if at the same time we require
4, and YNy to have no common zeros, in view of the equation
-Ls A
\
gy Wy - 970 = BBy,

e shall cxamine the coincidence of zeros later.

e . . -\ .
Making similar assumptions about ﬂu , we find

| A AX Ay |
T "_)_\?:: L(“)A‘ @m\ 9'*\‘ e ’ w‘/é‘u} ((’3>

Necither of these hundle equivalences affect the third
function , d
1N X4 oY oy ¥ -
e Oy A g R A 3
X (‘_\\ e 1}%1\' N L_\\ 3o “3\ (6“,)

\Y\ “(\ Wy , W—s

?\3 =

The forms of @, and Quy are the same as that which
can be deduced for § in the V) case, except for the prescnce
of the polynomials upstairs. Nevertheless we can use the same

{3}
argument as in that .case and reproduce it herc.

-\
We have assumed that ¥0 in it reqgion of analyticity
. o : -

and so write it as an oxponcﬁtial,

R:\ = wxp(‘x‘-kfﬁ”*Y\%‘B °
where ¥, is of order A,-\ in 2§ , and &, is analytic on Uo .
Sihce then,

e YT
Wy = ¢ (- sty

wvhere %, is analytic on e , and
. _ T A "
ANk *
Ba) = et (Le by udy)

where '$1 is analytic on Voo , we can usce further bundle

equivalence tranzformations to write




(4

-A
\SS

L
\'\,g = .(-\‘Q
¢ 2 ®

Such a transformation will affcct the terms of @4 hut

4 ': d.\""
zK*X-*wse"& |)

not its canonical form which is a conscquence of reality.

If ¢, is not to have poles at the zecros of W, we

shall rcquire ,

L
Vxp K dyY + 'LT * 1'\\\ = - () Q}.s
Y=o : ¥,=0

and since \\" and "»s have no common zeros the right hand side

cannot vanish and these .consiraints are soluble. -

wWe have that,

&r\ ‘ . 1\ ’
. $ .
Y=L hOW)  ana g, = T =¥ )

° . N
up to a real constant as a polynomial of degree &\ in X . '\‘?\
can also be written, A s
¥, = YA
where '\‘25 has powers of % from -A, S to A,-S . Since

- k0

4 = 'V‘\\ implies Y (%) = \3(5( ?55 there are 1{A-8)+\ real

degrees of freedom in ws and so in '\\(‘ there are,
: A

| : 'L
Z (1 -)0) = L)
S=zo0 .
One overall constant factor can be removed by a bundte tronsformation,

' v
(6'2,) y leaving A\*').L\ depgrees of freedott.

The constraint on 'i,‘ is,

B, = Ty« A ) = Uiy resed,
K"Ls

TS | ’
wvhere ®|K,‘s\ 2oy« X, 2 L, a real polynomial of degree A -\

in ¥ . ‘Then the form of 'x,| implies,
Ayt
S
B9 = T ¥ O 0)
)

-\ . 4 -1 \s
@\T = °(1_\%y~\ X L")B X\r( '5\ 3 ‘x"fl"\
The analyticity of x.“ means Lhat ®\v for ¥>\ L no povers of
% in the rapge -Vi\ to V=) y that is
a3 S = YA\ £S€T-
23 W, = © - -vR) \




7L,

and that for =1\ , % d-__‘: @\,\ = 0(1'.‘ :_ (66>

About ®'.° we can say nothing. From the i‘ values T“t”\)‘s
of this polynomial of dcgree {\-—\ we may use the lagrange

interpolation formula,

X o 1
@ N)‘\ = ?"“‘2 v\s TYK K ‘X \
e s Tl A1
wvhkere the ¥ , the zeros of W\ y ore in genrneral functions

of % . Then the above conditions on @h" represent,

3401 .
\ 4 2;; (1s-1) (A=)

constraints on the ¥ l%).

Hence we arc left with,

Add x2y - @Ry

Uk -\
degrees of freedom.

The same argument in thce case of ?13 leads to a further
( independent ) -l('l.s-\ degreces of freedom, and the form

-A %
S R g R

(A4
—

P2y

where Y l¥%,9) is of degrece -Ay-\  in ¥ .
"It remains to consider wlat extra constraints might bc

imposed by the analyticity of @, . It takes the form ,

\x dx L, « 1 X
Yo = “"’ RS AEAR e "'f:‘__“}\
Ky YW W Yo

For Ay%o , 4 €-Ay , put,
Ny | wp (s - X - s g F)
o, oy (13- %3)

¢ | Ly- %

is the polynomial part of
s,

XS and % . Such a Qu satisfies the regularity conditions by

[}

and o function of

where

virtue of the fact that both {wn and $y do. Thus at '\Q\zo .

l
by gt Xy MRS ‘V' (-\3“ e

(- \) L] is non-sinsular,

e
\)(3 “?} 'Q \
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and at \\23-;0 )

t
d & Ay L, %=ty
N e e NN |
T & (1) Tﬂ “?s is non-singular.
\
The matrix A is : o \
Xy . J § ‘ . 1\
{0 S uE X5y f 5"‘%' =L, =S PF
1 e; — < (\- e 3
‘S\ ,\Y‘ ’\Q\ o
Ky
A= 0 0 ¢
- LA - -4
oM ¥y My ot N
which has determinant unity and is holomorphic in Vo s

and the llernitian form of % is shown on the following page.

Sty f o

The extraction of the factor & . in vy IS really
just a bundle transformation tc remove the excesé p@f@:‘s qf |
X in the exponentiated polynomial which are over and above

the degree of‘ 'Q\ . Clearly for A,_ £0 an analogous procedure

involving (\i\ should be undertaken.

This form of .?\3 satisfies all the requirements hut
involves no more constraints on the frece parameters. Thus we
.have a family of -~ l-\-“\-ls\ -1 degrees of freedom. 'this
agrees with tle result for VWX VW) breaking predicted by indax

(AL
~ theorem methods.




?
b I AR

4.

‘ \
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S\)(% multimonopole patching function in Hermitiun formn,

The

'3
?
Ly
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6.2 Coincidence of zeros

In SO@) a pair of coincidert monopoles in &3 -, the
axially symmetric charge L configuration',dbes not have coincident
parameters in twistor space. The polyqomial '\k is not allowed
double zeros. In SU(3) however wei have alrcady scen that hetween

'\Q\' and 'Qs we can have coincident zeros, the cylindrically
symmetric family ('S-lb) » and even zeros of order two in cach
polynomial, the spherically symmetric monoéole ('5'\@); f'or the
seneral maximal embedding we have even hig;her order zeros. With
a better understanding of the paramcter space it shoulu be possible
to recover these examples as limits using the iresults of the previous
section, where we'had‘to assume that “Q\ and ’Qs, had no comiion’
zeros'. WiAthout that unders-tanding wve can still attempt to see how

the arguments should be modified in respect of the matrix A .

So let us consider what happens wl}en zeros from "5(\ andA
\Q:,’ coalesce so that 'Q\g ¢\¢ and Q‘s'— ¢S¢ , and ¢' and
¢3 have no comon zcros. We shall use the symhol; for the
polynomials interchangeahly with their sets of zeros.
Now tf—; f\' . For suppose not. Then there is a zero i.n
¢ whose conjugate zero is not in $ . since ’Q\ -.‘\Qt it must
be in ¢. . Likewise it must be in ¢3 because é%v.ﬂ*; But
this contradicts f, (\¢$ =0 . Then we can write,
¢V‘ ¢: ¢‘,
where ¢,. consists of distinct real zeros and f,, of a choice of

one each of the pairs of conjugate zeros.
We still have the two relations which follow from reality :
A '&3 k‘ 1’
A = (M 3 =9 b ) febe g (O
and, for instance : A, ds!# L ‘(-;K
. 2
?1:'5 ¢ ¢r¢* ((

Let Y-¥o Dbe a,simple factor of ¢, . If K«‘(o‘fﬁ,&

Ay

then K‘Ya‘,’ Q*‘SI , for cthervisc ?.“ world Lave an arhitrary




6.
pole, and go ‘(-X.\\\n .But tlus contradlcts (%) }'!cnc" '\Acrb
factor of ‘fv divides b°th R“"and 9\9. and dls ~appears ouﬁ';
| of ?“: .. Tor s%’mpl.;“c';'t,—,r‘ let__lus A,assaume" f,-. 1 ' A
. Let ¢ be . ihc larbe.st par't of ¢ C‘;Vlclllr;;r 9\11 | and

¢M'. that dlvlchnm‘ “1‘5 L Then ¢“\““ and ‘# \““ also."
But the maxunhty of *w\ and ¢M tben 1mpllcs *Ml *w« ' ei_'rulAém.l‘fm...~
So, up to a./cons tant %w« ¢M and ' o :.

' ‘(S} *‘“Q‘“a £ W $ ¢~a9\u o

where the t11da d f‘unctlons have no zeros 1n comx‘on .1th ¢ e

| ('*) now 1mplles that , fl ‘w\ *m : and so 4 l*w\ _ \1thout

loss of gencrallty because we can reallocate conJu'"atc zeros in
¢e' '\nd ¢ . Thug. *w ﬂ'\y 'Q{\& .and
'
P\t‘s“n = (“1.1.'3 3 ¢3 ') ¢\
. J We can’ apply the previous . bundle equ1va1encc'arbuwcnt,
: replac:.ng “':'L by *((\‘) only 1f 'Q ‘» -1 ‘,' t'hqt‘ i‘g_,‘. *w\’ ~¢¢,, .

_ In this cdse :

: - I..-\'m ‘(1.‘6 X 'X; &1*“‘ *}‘?xs
b = - 2 ( @ ge T )
' Similarly, . ' . T .
. I - N !
. - \sx “\ ‘x 1’\ . *\'w‘ *1"‘ 1,'\ >
fo - (g o e
“and, o ' A ,-.(s‘.*' _
ands o b w «t\x [V (-\\,t;meﬁx*l;«l, ('*\? e ¥y -
’ s % - T 3 R T
> s ¢c¢¢ | ‘a‘s fc¢ ¢3¢c‘f¢.
Y«’egulamty of Q\-s at $s0 and é-s =0 is ruaran@eed -
by tlat oi‘ ?\1, i\nd ?1&_ provided (\ (é,so\ e"/‘; 1" and
7!. ' :
.(\.5\ (ds '=-°3 X3 . It is nqt casy to see nat “the "onnrhxl :
R -“ ' :
ch01cc of. tnc f.‘unctiog*_u:s : N-; and “-s‘ must, be"'fr'.on.x t_!;c a_nal;,ftlclt;,'

'¢onditions;;

Ay \ dx
430““\; (’3& d\!*l;«l Lg(e’s Py 14
Pty

but we have seen already in Ghapter - TII an exaqple for whish heth




#?.

: . ’
¢| and QS.,_ are constant and ﬂ-—K—-C\ , ,,-.X-C“\ . Tn tiis

. ' -\ + X
case none of the X's or QG and W, are  YW-dependent and

rerularity is easily satisfied.

8.3 ultimonopoles for SUB) broken to V@)

In the case of \Xi) brealiing we may apply a similar

argument to o patching function of the form :

L A )
S e ¥ © Cw
- S B
T o e ¥ §an
o) o ~':"Le,'1"’b‘J

to obtain the two similar functions

Ll -L d.
(e ¥ N - ¢ 9‘\3\

4?\3 "A &(

by = ,“Q(qux N "; 3 9‘133

where {Q ig of deygree 1L in % . Reapplying the argumenis ot

section 5.1 we arce able to reduce thess to
k]

-‘ . R
Loy & Xy «g-2,
?\S = \;Y‘ ( e X ¢‘ - 3 . | >

L !
TR P A Y A
o =S R

and have for the matrix R R

0

k * X.‘{ x-\
. AR

,S'LL ’\Y

x
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where ¢, .-.(ﬂ' ,. *L""' é;\ ‘and @ ~all have p-:.):._'éi";-: of . .‘3 ‘f.‘lro;ﬁ
-£ to A , auw satlofy |

m-w_‘

ensuring that §¢k P( .
The real form of - % is shown on thc iollo m; pn o,

‘.Tf. A is to he nen-singular at '\J(—.o wve must have tlzat=
- atl, el
* 1'1.*1'1

N divide . "s and lence also (-3) T xe "inc’c. »\? is

real. This and tm non- sing u]ar1ty of ?‘B at ! =0 ig f*l'lOU,_‘,‘A to

guarantec tihat of ?\‘5:‘ N For from‘ Qn at ‘\{mo we hmro,
R\

D PR ‘--" |

. B o VY=o L W'—o'_ ol

‘and hence ,- o oy T

o z’“‘('-t’.-\” ,

g\s\h' <. k\ - ("\ ¢l¢t
¥z0 ¥ ‘ N

'or, eqtuva]cntly since ¢¢z "'5‘.\.\? ,

—x-x x n* |

U(O

. —'de« 1w A N _1‘1 _1‘_1\' : -
\ ‘ Q? ( l-\\kb'*d'@— ‘ tA - )* \Mw\ Stnsu\n’ .

k=0

l‘:l"ut we can rewritc the térnm in brackets as, - .

S lk\-‘( e’(—‘xiﬁ.m )(\ "a.slzx"zt) % ‘—(_\ 'U(‘S)‘E (\*G‘IS -'A-l-;

'ﬂwhlcn V"lnE: ;e at \)(f-o e
' A S 128 )
'As an Qxample.cbnsider the patching function; :
)

B A e R AL
T ¢ a By

SO TR | e e

He)

i 4




M,

Hermitian form of the patching function for SUS) “..i)l‘()l:?n‘.'t() oky .

. - -jm-

| .. Kpr-? ? )

# f,

S
G v T

A. : f.& ' g.,,w-?. A oi ,.,,_

. .“. ..f%.*)..x.l »3l

,« }7 e

; a%n..- \ob.

E ,.K... Bﬁ..

..% ﬂf.u. X’ rv

.v x )
—.F.q—%.a.”u-.u.l
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We malte the following identifications, ' ‘32 = Xz *QQ/%S
X,=0 | ) ¢|'."(°°5§*9‘K) _ \
X . . . _
R e (eEowle

and then,

v = - @:;Y“ - R wel x X

q siwd
- ' Y Ttk :
So o= ’59\\ and R¢ aQ .- vanishes.

We can count. parameters as before. er‘l:;ay'c 41'&(1«\) in \Y
and );u-'c\\ in each c;f ¢| and Cf-,_ . O _i.‘s‘thon' uniquely
defined up to ( perhaps .) real‘lo‘.cation of conjuzate .r:“a.cf,ors in 0'* .
The regularity of Qqy imposes ('LL-\\“' cbnstrqints. Also at \\?:—O
we need Q,i‘-; -e,x"'“sk o¥ . As before this c!cfi%aés Xy by
Lagrange 1ntcrpolat10'1 but now the fact that,

¥, 068,9) = I. ¥' A,M

glves the. conotl;'alnts, § d'?s ) 'X’\,\r =0 "o for ST O, .Y~
and these arc only 'llz" Y = 1.-(11-_\\ in mnﬁher-. - Thus we arce
left with a fa:.livly of | '

62 (241 - (U-Y - ALa) = W R -4
degrees of freedom. Note that this is less than \'ll—?_ , the
number which wouhi be expected from taklnm the hmlt of U(\) e U(\\
brealting. In any case tﬁc ansatz is probably not wholly general

and ought to involve a XL block on the diagonal in place of

o
which we have used “SLQ,X 11_ .

Minally, it is necessary to show that the sorts of
patching functions used above yield the exp:reted charges and also
that they zive non-singular Higgs and gauye fielads.

Tn res poct of the former, if we conjecture tiat the
{281} '

formula, T\r'f' - C&u,{ - %VI \MMS




N | |

holds in: S’l\)(‘s\. " for thcl m?atr.tx dcflncd in 'C‘uthZ;l (‘ 7-) t!‘mn
the charge-can be shown to be cory ect. | }4or thc‘ 9‘) : sétisfi th'e A
Lq.?\ace, equaj;ion and th*e 9\") ' that is:’-- x-;hc.n".-,.'e p‘tul'l out thié._
- diagonal cxpon_éntial -i‘achbrs in % , thé'h satisfy‘.,l
A A TR
~In consequexice, s0 do all thcn‘ Laurent coc!‘flcmnt.... -’.encc they
_b‘ehavle' as '7. "f? Apr, F‘urtner the leadmg behavmur of -% is 1_;_he'}
same as thqtr éf ."Q,.s  , 'as 'V"- tends to ..1nf1n1ty, be'c:ausc the |
modifying tefms in Y!s are products of coofi‘1c1c~nts from L% :-j.‘.h_d'.
: "?‘LS . 'l‘he‘ 'sémc g;'oev.for the 'matr1x< S 1t<~clf :d we‘necc.‘. to -'fétain'
'only the f1rst Qﬁ'kt\xu‘ﬂbmtrlx in the dcflnltlon.' P,ut t‘xhn the
"~ large dlstancc behavxour of its dcterrunant, whlch cos nes fr‘on two
blocks of mmenmons &‘X\A‘d‘) and. (ﬂ((l.*l;\ , w1"l bc' ‘

M S ~ ‘,‘ Q}‘P oy ]l\ ‘. v WP °'\'|,~,Y‘\
~and éo, for thc tracc of the dl,us field squarcd

Ty {L . (.“t - !. (d‘gl\-\ el“k-,,\ N o(v,)
~w¢ ". (& 4\ A g(tLH d;*s\
| i%hi_ch aércos\vl thﬂxeexpresfnon fgp".lthe f._lvu‘x .}n, Chapgérj. I
As re(_,arlds the regularlt,j -of thc fleldo ail we can éay'at
prese.lni is thaﬁ thl'. 1s alrlght for small pcrttxx;'batlong auout those.

‘patching functions in S«.‘S\ whic}‘: I1ave.})¢en shown to give regular

fields.




o recasts thom in fbc familiar

an.

AEEendix
Tedt

: ' l‘ )
From.the work of previous author:

xis the Higgs field can be written ,.
_ e 4
1T &M

is the rank of SV and the “;

Y-

where W=\ are:

basis of the Cartan subalgebra,

\‘\;% kil\s ko',--'
satisfying, : S
' Te W = Ky

where Ki'; ,the Cartan matrix is :

(1 -1 © '
-\ L - o
©o -1 1 -lo
0 -t 1 -lo
;?\~;\\1\\f\ o
o ~1 .7 -
1 ' o -1 L}

The Q; -arc given by,

,iEL‘

0. . Wm0 Q
= 2 - g wX
‘where ‘the integers M; are such that,
: : : o : .u.\ :

A

. um '
and ueflne txe mawlﬂml embeddlng of SUhﬁ in. %ULM\

. satiéfy-the Toda lattice euuations in the form,‘

‘? 1er>=’““Qs’)~'f
The substitution, -
o Q=
shape ,.

e know t!

" no summation )

v L -'\a. "Q‘{\\iu ’\M )

for qphcrlcally synmctrlc monopolcq in Q\)(M)

nt on the

a choice of

.

'‘the
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The topological characteristic of the self-dual solutions
of a pure Yahg-Mills theory is,
X, = v BF
In the case of the static sector and the gauge choice Ro 20 | the
monopole equations, this becomes,

XM A'.’.. TY‘ F." F‘i

= l'vt -‘Y{gt

( see scction 2,2 )
m . . .
from our expression for q above, we have :

1e Qm 7; ‘Q\ \)(%)

‘l,)

(U

7: (54 23K o ”fa%,\

)

1 P
. 1 : M, Vo %, %
Yt(z\-mt*lvz‘ﬁ*ivﬁzﬂv\,i—r%>
ut consider,

f;v( f’ %‘3‘ 1\4 i h‘}

I T T

% h? wx?(;\(es%\~ ?% Vcs%'%«%\ |

1 Z Ky '3;\: .,*NE\«L"LA -1y \(\.3'3_;\;{ w?(éksmva
3] s

wvhere the last term follows from the symmetry of the Cartan matrix.

So the derivative vanishes and,

W 9
‘{: Ksj g b

Thus,

[\

. 'I.THQQ' ‘;,,(.7-:-“'»




9.
*an U (T a T catiyeac))
for Q@ , ® and C constants.

This can be written in the form :
o .
'LTTQ" =V\MS§

where,

)

£ = T k*/at\ Ve \ A .*%/‘_ x C *'sz:‘\\(\,kkm“\

Thc exponential terms make no conributi‘onbto X
. s . ¥ ' ' X .
X'M l.-..'. -7V &h\ \' TS (_Q‘/Y-“.i\]

and provide the constant in “f cg" s

M 1

Teg* = Gowb - ‘?_v‘x“ \1‘( (Q"/}“‘y}

We have written XM like this b‘ecause"‘ofits similarity
_ ‘ {aa) ’ E
.to a formula due to Osborn which follows from the . ADYWM
construction : . : ‘ '
’ T, 9 X\ :
Ay = D07 Wlax @)
e : | ‘ x
where 0 is the four-dimensional Euclidean Laplacian and AA
a real, invertible matrix. In Nahm's moc}ification A"A. is a
second order elliptic differential operator whose rcality corres;onds
to the satisfaction of the field equafions and whosc invertibility-
corresponds to the regulhrity of the fields.

The Q‘-' are very. interesting functions. 1In VI N

Q ) 2 "’(;\" ( -W d -\ " i )
o ;z\ ¢ U 4) Ld=o , dij=di-4 .-
and the Toda lattice cquations can he used Lo express “Qm in

terms of “Q\ cand its first 'L(,\M-\\ derivatives, with regpect

te Y ,




gs.

' 3 ( oy (m=y )

Q. = Dt R, KRB W,

nom O ) o
VSR\ ‘éi\ C !

GO}

Y\Q\
AT ' ey |
‘V\Q\ ) ' v '“ A\

‘The functions “Q'w\/y.v\,m for 'V\ms'm(“-m)"arei regt_xldr at  ¥= o -

In a"ctempting to follow up ‘the link wiih_the ADIIMN
. construction, one may remark that. the funé@ioné_ “Qw‘ /Y.“Qn are -

the determinants of a very simple set .of dif:f'erjc'nt'ial' operators.
Consider. the M-th order opcratof y
D = ( - 0(.;\') S
‘on the compact interval ‘_0,'\] , with associated boundary

conditions

. ;_%(o\ = oé“(o) - = %U“-‘\("\ ;O )
oWy = "’5“\(\\ = —-»qu(\\ =9,

for TV &wW £ -\ o

It is tedious, but not difficult,te show that,
Yk (WD) = "B/,
AW\\A."" /v“m

using as a Jdefinition of determinant,

= W 0D = T U%-MM

w:h_ere WG',\. is thé Green fun‘.ctionv,_
Dl w6, (16,67) = $(6-0)

under the relevant boundary conditions,

Such a get of M=\ W =th order operntors night be
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related to an elliptic %--nd order operator of atrix dimension-
-‘i\'\(v\‘a\) to recover Nahm's &A' operator hut this is not

evident,
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