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ABSTRACT

A critical review of some cﬁrrent

malaria models is given in which a new

model of superinfection is presented. An
alternative malaria model, partly stochastic
and party deterministic, is then proposed

and results of the simulation of the model

- are discussed. Simplified versions of the
model are used to analyse longitudinal survey
data from a World Health Organization malaria

project. carried out in Northern Nigeria.
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INTRODUCTION

The last 80 years have seen much work devoted to the
quantitative.aspects of the dynamics of malaria. This work
has produced models that are largely deterministic, and are
developments and extensions of the pioneering model of Ross
(1911). One major criticism of these models is that they
emphasize the host-vector relationship almost to the total

neglect of the host-parasite interaction (Najera, 1974).

In this thesis, our main objective is to propose a
partially stochastic framework of malaria infection aimed at
including some salient features of the interactions between
the host and parasite populations. We attempt to achieve the
latter by incorporating assumptions based on known empirical

results about the host-parasite relationship;

In order to gain understanding of the disease and
appreciate the complexity of its biology, we give some

epidemiological background in Chapter 1.

In Chapter 2, we give a critical review of some of the
better known deterministic models. We also propose a new

model of the phenomenon of superinfection.

Chapter 3 contains a summary of some results of semi-
Markov processes to be used in subsequent chapters. One of

these results is believed to be new.

Chapters 4, 5, and 6 constitute the main body of the
thesis. 1In Chapter 4 we formulate a hybrid semi-Markov model
to describe the course of the disease in an individual from

when he is infected to when he is susceptible again. Attempts
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are made to formulate the distributions of times in each
stage of the disease so that they reflect some specific

biological features and are also mathematically tractable.

In Chapter 5 we discuss the steady state solution of
the model formulated in Chapter 4. The more complex cases

are investigated using simulation methods.

In Chapter 6, we simplify the previous model and use
it to find maximum likelihood estimates of the 'infection'
and 'recovery' rates using malaria survey data from the
WHO Garki project.

We conclude in Chapter 7 with a summary of our results

and some suggestions for possible future research.
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CHAPTER ONE

BACKGROUND TO MALARIA

1.1 Introduction

Malaria, probably one of man's most ancient diseases
(Harrison, 1978, page 1), is caused by multiplication of
parasitic protozoa of the Qﬁhﬁs Plasmodium, first in the
liver, and then within the blood cells of its victim.
-Malariaiinfections are characterized by fever, enlargement
of spléen, anaemia and a chronic relapsing course, and among
children and non-immune adults they result in fatal complic-

ations in more than 10% of cases (Benenson, 1975, page 189).

Although over fifty species of malaria parasites have
been identified, only four are associated with man : Plas-
modium (P.) falciparum, also known as malignant tertian, is
the most lethal of the four; P. vivax, formerly known as
tertian or benign tertian, seldom fatal;-P.'malariae, gener-
ally mi}d but stubborn quartan fever; P. ovale, the rarest of
the four and found mostly in the West coast of Africa, is
very much like P. vivax. It is generally accepted that man
is the only main reservoir for these species (Benenson, 1975,
page 190: Sambasivan, 1975). The variousAspecies of the
parasites also differ in such details as their morphology,
pathdgénicity, incubation periods, relapses and duration of
infections. In addition to being the most serious in severity
of attacks, P. falciparum is the most prevalént species.
Henceforth, and unless otherwise stated, We shall be coﬁcerned

2 3SEP 1982
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solely with infections due to this species alone.
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The disease is transmittéd naturally through the
bites of infectious female mosquitoes of certain species
of anopheles. Rare but direct transmission from man to
man can however occur by either injection, or transfusion
of blood of infected persons, or by the use of contaminated
hypodefmic syringes. Congenital transmission of the disease
to the child may also occur when the mother has had bouts
of malaria during the later months of pregnancy (Russell

et al., 1963, page 455; Benenson, 1975, page 190).

Malaria is now confined largely to the tropical and
subtropical areas of the world, although in the past it
existed in the majority of the countrieé dn the globe
(Sambasivan, 1975; Harrison, 1978). It is estimated that
over 400 million people still live in areas-of high malaria
infection risk (Bruce-Chwatt, 1980). Figure 1 shows the
various areas where malaria poses serious health problems.
The whole of tropical Africa is highly endemic with the dis-
ease, and it is a serious health hazard in parts of Asia,
Central and South America. In tropical Africa, in partic-
ular, it is recognized as a major impedimént to economic
deveiopment because of the incapacitating and debilitating
effects it produces in its victim. Moreover, instances of
high prevalénce of the disease usually coincides with periods

of intensive agricultural activity.

The disease has thrived in these areas despite efforts

through the World Health Organization (WHO); and local

governments of these areas, to try and control or erad-

~icate it completely (see Section 1.6 for control). There
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are various reasons for this léck of progress. First, there
are the ecologically favourable conditions for mosquitoes
(vectors) breeding coupled. with the poor health services,
inadequate material resources to wage a consistent war
against the disease, and the lack of technical expertise in
these regions. In addition, more recently a Very serious
problem has emerged of the parasites and mosquito vectors
developing resistances to the drugs and residual insectic-
ides, respectively, that have been traditionally used to
combat the disease (Bruce-Chwatt, 1969, 1979; Sambasivan,
1975; Gilles, 1981). This, together with man's activities
such as the setting of agricultural projects involving

large bodies of water are all contributing to the resurgence
of the disease in areas where it has been previously con-

tained, for instance in Sri Lanka and some parts of India.

The disappearance of malaria in developed countries
has been due to a combination of favourable factors, both
natural and man-made. First, the low temperatures to be
found in most of these countries limit the transmission of
the disease in that P. falciparum requires a temperature of
at least 20°C for its development in the mosquito
(Sambasivan, 1975; Bruce-Chwatt, 1980) (see;also Sectidn
1.4). Secondly, the rapid socio-economic developments of
the bast few decades have reduced considerably the sources
.0of the vector breeding; Finally, there are the extensive
network of health services now avéilable fogether with the
active participation of a population motivated by a better
awareness of their health needs. Nonetheless, the risk of

importing cases is on the increase with the rise in volume
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and speed of international travel. For iﬁstance, in Britain,
1,670 cases of P. falciparum malaria were recorded in 1980,
of which seven were fatal. The mid-year figure for 1981

stood at 584. (Gilles, 1981).

- In order to gain an understanding of the disease and
appreciate its biological and ecological complexities, we
shall provide, in the rest of this Chapter, brief outlines
of its biological background, and factors influencing its
transmission, both natural and man-made. The next section
.(1.2) carries a short historical note on»early understanding
of malarié. In section 1.3 we sketch the 1ife-cycle of the
malaria parasite, followed by the life—cyéle of the malaria
vector (section 1.4) and endemicity of malafia (section 1.5).
In section 1.6 we outline some of the means of control avail-
able, both old and new, either through the human population
(sub-section 1.6.1).or the vector population (sub-section
1.6.2). We conclude with a note on a WHO malaria study

project carried out in Nigeria (sub-section 1.6.3) from 1970

to 1976.

'1.2 A Historical Note

The name malaria comes from the Italian expression
'"mal' aria", meaning bad air. The French called it Paludisme
from the latin word '"Palus', which means marsh. These names
are indicative of.the views held in ancient times, which‘
associated the disease with swamps, marshes and foul air.
(Harrison, 1978, page 24).

‘Early developments of scientific knowiedge of malaria
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were dominated by two nationalities, first the Italians and,
later, the.British. For the Italians, this was probably
because of the endemic malaria situation which had existed
in Italy since ahcient time, and as for the British, their
vast colonies were almost all malaria infested. It was,
however, the Frenchman, Laveran, who first discovered the
parasites of malaria, while working in Ndrth,Africa in 1880.
He was probably influenced by an earlier discovery of his
countryman, Kelsch, who observed some black pigments in the
blood from corpses of malaria victims. Laveran's discovery
took almost four &ears to gain acceptance ds most resea;chers
at the time believed that the disease was caused by some
bacteria to be found in swamps, and not by parasites (ibid,
page 11). This view of the disease was changed when, in
1884, an Italian, Camillo Golgi, reported observing and
recording the asexual reproductive cycles of what he iater
called P.malariae, in human blood. Soon after he also dis-
covered those of P. vivax and malignant malaria of the type

originally identified by Laveran (ibid, page 15).

According to Harrison, the suspicion. that mqsqgitqes
were somehow connected with malaria was ancient and fairly
:common among people in malaria infested areas. HoweVer, it
was Patrick Manson who, in 1894, first cdnceived the idea
that mosquitoes were actual carriers of maléria. It is
| conceivable that Manson's own discovery in China, during the
: 1870'5, that mosquitoes were carriers of fiiarial worms,
gaVe him the cue. But he thought peéple contracted the
disease through contact with water previously contaminated

by dead infected mosquitoes. Another Italian, Amico Bignami
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counteredthis with an alternative view that malaria was
passed to humans by mosquitoes during feeding. It is inter-
esting to note that between them, Bignami and Manson had in
fact solved the riddle of malaria transmission as we know
today, from man to mosquito (Manson) and from mosquito to

man (Bignami), but neither thought the other was right.

It was left to Ronald Ross who was himself introduced
to malaria in 1894 by Manson to demonstrate experimentally,
vusing birds, the transmission of malaria by mbsquito in the
way suggested by Bignami. Soon after, Bignami himself and a
fellow countryman, Grassi, showed that the'disease was sim-
ilarly transmitted to humans by mosquitoes. - This was
followed in 1898 by the discovery of Graséi that the

Anopheles mosquito was the sole carrier of malaria.

It must be pointed out that some of»these discoveries
were fraught with fierce controversies and credits for them
were also often in dispute. In addition, it must be
emphasized that those mentioned here are but a few of the
‘many who pioneered scientific research in éhd made signif-
icant contributions to our understanding of malaria. Among
these isvthe Canadian, MacCallum who, in 1897, was the first
'to observe the process of sexual conjugation of malaria
parasites, the American, Koch, who demonstfated the existence
of the chromatin substance in the flagella of the parasite
- and the Frenchman, Maillot who pioneered the‘development of
successfui qﬁinine therapy to the disease. The book by

Harrison (1978) provides a lucid account of the history of

the disease.
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1.3 Life-cycle of the malaria parasite

The malaria parasite undergoes a complicated cycle
of development that requires two hosts. The definitive host
or the mosquito vector is where the parasite:achieves sexual
maturity, and the process is known as sporogony. The asexual
multiplication of the parasite or schizogony, takes place in
man, the intermediate host. Schizogony has two distinct
phases of development; the tissue phase, called the pre-
erythrocytic phase, which occurs in the (parenchyma) cells
of the liver, and the erythrocytic phase which takes place

in the red blood cells in the main blood streams.

To be able to understand the various'stages of the
development of the disease, we shall sketch below only the
general outline of the 1ife¥cycle of the parasite. Figure 2
is a schematic diagram of the cycle. An excellent and
concise book on the subject is that by Bruce-Chwatt (1980)

from which much of what follows is drawn.

(a) The Human Host

A man is infected by an inoculation of sporozoites -
the final product of the process of sporegoﬁy - when bitten
by an infectious female anopheline mosquito. These spindle-
shaped parasite forms circulate in the peripheral blood for
about 30 minutes, during which some are destroyed by phago-
cytosis. Those that survive enter and lodge in the paren-
chyma cells of the liver, to initiate the pre-erythrocytic
stages of their development. Within the parasitized liver
cells, the nuclear ﬁaterial of the Plasmodium divides

repeatedly to form between 1,000 to 40,000 daughter forms
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called merozoites. After abouf 5% to 7 days of development,

the infected cells burst to release thousands of these

‘merozoites into the surrounding tissue and blood-stream.

Most .of these merozoites, now known as trophozoites, then
invade red blood cells to begin the erythrocytic phase,;
others get phagocytized.

Incidentally, in the case of P. vivax-and P. ovale,
pre-erythrocytic stages are usually followed by a secondary
exo-erythrocytic (E.E.) phase, during which some of the
merozoites re-infect fresh liver cells instead, thus repeating
the process (see Figure 2). However, more recently a different
explanation of this léte liver schizogony.has emerged. Some
malariologisfs now believe that it is caﬁSed by late-developing
sporozoites, rather than by re-invasions of the liver cells
by merozoites (Bruce-Chwatt, 1980). Thus,‘the idea that
relapses are caused by secondary exo-erythrocytic phase is
now a matter of some contention. Moreover, it is not yet
clear what causes this condition of "dormancy' to occur in

one species and not in others.

Each trophozoite that invades.and seftles in a red
blood cell grows and multiplies asexually to form a developing
schizonf. After about 48 hours the red blood cells con-
taining the matured schizonts rupture, each releasing.up to
24 merozoites plus some organic debris into the blood plasma.
Some of these merozoites are phagocytized while others
attack fresh red blood cells, initiating the production of
another generation of merbzoites. The cycle is repeated
until a very heavy blood infection results which, if unchecked

by either drugs or immune mechanism (see sub-section 1.5.1),
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méy mean the death of the host: It has been suggested that
in non-fatal cases, and in the absence of re-infection and
intervening treatment, the duration of infection in
falciparum malaria seldom exceeds 1 year (Russel et al.,
'1963, page 40). The maximum number of pérasites in a host
is usually found about 8 days after parasites are detected

microscopically (Belding, 1965). /

Clinical symptoms of the disease often appear after
2 to 3 days of erythrocytic phase depending on the resis-
tances of the host. At this stage the density of parasites
in the body is such that paroxysms of fever ensue. The host
beCOmés shivering cold with body temperature rising up to
40°C or more. After several hours he begins to sweat prof-
usely. This is followed by some relief and a feeling of
weakness. TFever then resurges about every day accompanied
by severe headaches, frequent vomiting and‘anaemia. The
latter is due to the(destruétion of the red blood cells by
the process of schizogony. If untreated the disease may
become severe and debilitating. In the caée of P.falciparum,
infected red cells get trapped in tissues and narrow vessels
of the inner organs, thus blocking and slowing down the flow
of blood. If this occurs in the brain, thé.host goes into
a coma and death éoon follows. In general, the incubation
period, which extends from the time of infection to that
of first appearance of clinical symptdms,-varies from 9 to

14 days, with an average of 12 days (Russel et al., 1963, Ch.12).

Several erythrocytic cycles later, gametogony sets in.
After invading fresh red blood cells, some merozoites do not

divide; instead, they grow into male and female gametocytes.
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Little is yet known as to whaf actually triggers their prod-
uction or the precise point at which gametogony begins.
They appear to arise spontaneously from asexual division.
In the case of P. falciparum, the sexual-fdrms appear about
10 days after the onset of the erythrocytic phase. Onée
formed, gémetocytes do not undergo any further development
in the host except circulate in the peripheral blood, where
they can be sucked into the mid-gut of a mosquito when it
takes blood meal from the human, thus initiating the spor-

ogonic phase of the parasite development.

':The number of gametocytes produced is vafiable and 1is
usually high in falciparum infections, mﬁéh more so than in
any infections by the other species. As ‘to their duration
of life, the studies of Jeffrey et al. (1956) and, more
recently, Smalley et al. (1977) estimate.if to be about 20
days. Their finding is at variance with, for instance, that
of Hawking et al. (1971) which says gametocytes are short-
lived, or that of Russell et al. (1963) which suggests the
figure of 120 days. Smalley et al. also observed that
gametocytes are removed in the spleen, whiéh;is to be expected
since one major function of the spleen is the removal of debris

and parasitic invaders.

(b) The vector

Once inside the mosquito each male gametocyte produces
up to 8 thread-like micro-gametes while the female form
develops into a macro-gamete. Fertilization.occurs'when the
nuclei of a micro-gamete and a'macro-gamete fuse to produce -

a motile, elongate cell called ookinete. The ookinete

develops to form an oocyst which in turn divides repeatedly
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to form sporozoites. When a méture oocyst ruptures it
releases thousands of spindle-shaped sporozdites into the
body cavity and a large number of them find théir'way into
the salivary glands of the mosquito. When taking its next
blood meal, the mosquito injects sporozoite?burdened saliva
into its victim (man), thus completing the cycle that .
perpetuates the Plasmodium indefinitely unless the cycle is
interrupted somehow. The entire sporogonic process takes

from 10 to 14 days.

1.4 Malaria Vector

There are more than 200 recorded species of anopheles
mosquitoes of which about 50 are considered responsible for
the transmission of malaria parasites in.man (Russell et al.,
1963, page 269). Some species of anopheles'are also vectors
of filariasis and certain virus, for instance Plasmodium
aedes'in Yellow fever (Service, 1980, page 22). We give

below a brief description of their life-cycle.

The full life-cycle of a mosquito involves 4 stages
of which the first three are aquatic : thé egg, larvae, pupa
and the adult stages respectively. After the eggs are laid
on water, under favourable conditions, théyfhatch into larva
within 2 days. The larvae stage lasts about 5 to 7 days,
and the pupa stage, 2 days. Temperature and species are the
main determinants of the durations of these aquatic stages.
“In all, it takes from 9 to 11 days to Complete the life-
cycle. After that the adult may live, from a few days to

a few months, depending on the temperature and humidity.

The adult is particularly vulnerable to dry weather.
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However, it can survive through dry as weil as cold weather,
simply by adjusting its pattern of life and adopting a
depressed state of physiological activities (Sambasivan,
©1975). Of crucial importance perhaps is the longevity of
the adult female vector since it is the only one that bites
blooded animals to obtain blood for the development of ité
ovaries. Even under the most favourable conditions, it
cannot transmit malaria until it has survived the period of
sporogony. Once infected a female vector remains infected
and a transmitter of the disease for the rest of its adult
life. |

The'significance of temperature aﬁd humidity in
connection with the transmission of malaria also extends to
the development of the parasites of the disease inside the
mosquito. In general, P. falciparum requires a minimum tem-
perature of about 20°C to develop in the mosquito. The
pdrasites cease to develop pbelow the temperature of 16°C.
The ideal tehperature is considered to be from about 20°C
to 30°C and a mean relative humidity of at least 60%. These
two factors, namely temperature and humi@ipy, combine to
link malaria wit% rainfall, particuiarly in the tropics and
sub-tropical areas, a point which we shali exploit in

subsequent chapters.

1.5 Endemicity of Malaria

Since we shall be primarily Concerned with endemic
rather than epidemic malaria, we propose to describe briefly
some of the main characterisfics of endemic malaria and sémé
of the factors influencing endemicity. We begin by stating

the epidemiological distinction between ehdemic and epidemic

malaria.
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When malaria is said to be éndemic in a community, it
is usually ﬁnderstood to mean the habitual presence of malaria
within the community due to natural local trénsmission. It -
is epidemic when its occurrence in the community is in excess
of normal expectancy. Both cases are a result of interactions
of various factors affecting the bionomics df man, mosquito

and the parasite in the local environment.

Endemicity is further classified according to the
degreeS'Of incidence and intensity of cases of the disease.
The classification ranges from hypo-endemicity, in which
transmission is lbw and the effect of maiérié is unimportant,
to holo-endemicity, where transmission is perennial and of
high intensity, resulting in marked level of immunity responses

in all age groups, especially in adults.

1.5.1 The Immune Mechanism

An important aspect of endemic malaria is clearly
that of immunity.- Unlike in the case of other diseases such
as yellow fever, immunity in malaria does not bestow complete
protection from the disease upon a person. It serves rather
as an éctiVe defence mechanism to limit the multiplication
of Plasmodium, modify its effects on the body and generally
assist in repair of tissues damaged by thé disease (Russell
et al., 1963, page 425). Immunity is eifher natural or

acquired. We proceed to give brief descriptiongof each type.

(a) Natural Immunity

Natural immunity is .independent of previous infection.
It is either passed to the child from thé mother, thrdugh

the placenta, or it is of genetic origin. pris known to
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act on both the asexual and the sexual erythrocytic stages
of the parasite (Manson's Tropical Diseases, 1982, page 45).
This presence of natural immunity in children in endemic
areas probably explains why such children enjoy protection
from the severity of the disease until they are about

3 months old when the immune mechanism acquired from their

mothers begins to weaken.

-One genetic characteristic known to mitigate the
severity of infection in man is the presence of haemoglobin
S (Sickle—cell trait) in the blood. Thié abnormal haemoglobin,
common among communities in East and West Africa, has been
observed to protect the carriers against'mélaria; its presence
in the blood apparently does not favour the growth and
Adevelobment'of the parasites in the red blood cells (ibid,

page 427). . . . .o wen

:HQWéVéV;V-' © it gives rise to é condition called a crisis,
a painfull state during which the patient is gravely incap-
)aciﬁated and cannot rest unless given a stfong pain killer.
Although it has been postulated that-hereditéry factors other
' than haemoglobin S, such as haemoglobin C and Glucose—é—.
phosphété dehydrogenase (G-6-PD) deficiency; haemoglobin E,
and thalessamia protect against lethal effects of malaria,

the only convincing evidence to date conéerns sickle cell

haemoglobin and G-b-PD deficiency (Lucas et al., 1981, page 179) .

(b) Acquired Immunity
By far the most important defence mechanism in'man
is acquired immunity. Its main function is to accelerate

the phagocytosis of merozoites and debris in the blood and

also reduce the average number of merozoites produced by a
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mature schiiqmt (Garnham, 19663. Acquired immunity is built
up gradually in the body as a result of a series of infec-
tions over time. According to Garnham, it is produced only
during the asexual erythrocytic stages of'fhe malaria
parasites. So far as is known, neither the_liver stages nor

gametogony produce it, nor are they affected by it.

There is evidence that acquired immunity is associated
With significant increase of gamma—globuiin and various types
‘of antibodies in the blood (Collin'and Skinner, 1964 - ;
Bruce-Chwatt, 1965). Field studies made largely in Africa
over the past two decades have revealed é positive cor-
relation between the rising concentration of serum gamma-'
globulin and the acquisition of clinical immunity to
p.falciparum (McGregor, 1974; Molineaux et al., 1980,

Chapter 6); see Chapter 6, section 6.5.

The situafion in an endemic area may be as follows.
From the ége of 6 months to about 2 yearé, children become
very vulnerable to acute and fatal attacks'of malaria as
their natural immunity (acquired from motﬁér) wears out with
age. Thereafter, those who survive, build up acquired
immunity as a result of re-infections (and relapses in the
case of P.malariae and P.vivax). At firsf it serves to
modify the severity of clinical symptoms, thén, later,

reduce parasitamia (Dietz et al., 1974).

One important feature of acquired immunity is that
it enables malaria to be a self—limifing disease. In the
.absence of fresh transmission, even without specific
treatment, it tends to clear away an infection after some
time. It has been suggested, as-mentioned earlier, that

the life-span of most untreated, non~-fatal infections of
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_ P.falciparnm seldom exceeds 1 year (Russell et al., 1963).
However, on its own, once established, immunity may be lost
over a period of 2 years or more after the infection has
been cured and transmission eliminated (Sambasivan, 1975).
Thus persons who have left an endemic areavfor more than
three years will have lost their acquired immunity and may

suffer a few severe attacks on returning to the area.

Finally, it is worth mentioning that acquired imm-
unity is generally strain-specific. That.is; while it may
serve'tb profect a person from the severity of infection
of a local strain, it offers no similar prntection against
a strain from another area (Sambasivan, 1975). Furthermore,
as mentioned before, immune response to P. falciparum
~gametocytes is uncertain. According to Smalley et al., (1977),
although some form of antibodies against'gametocytes are
prqduced, these are either not as effective as those for

merozoites, or not produced by every gametocyte carrier.

1.5.2 Human Activities

A number of man's habits affent the spread and perp-
etuation of the endemicity of the disease. For instance,
persons whose occupations keep them out—doors at night run
a grent'risk of being bitten by infectious mosquitoes. Or,
if they happen to be infected, they may infect more
mosquitoes which in turn may infect other susceptible
memberlef the community. Ironically, some of the activities
of man meant for economic development, such as the construction
of dams, the irrigation systems and bther'engineering works
involving large bodies of water, usuélly boost the malaria

risk of an area unless adequate measures are taken to
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| prevent fhe creation of new moéquito breeding_places (see
next section on control measures). Finally, the movements
of small or large groups ef persons in search of work,
grazing grounds or because of civil distufbances or disasters,
often occur in most of these malarious areas (see Fig. 1).
Consequently, new strains are frequently traded around,

thus perpetuating the disease to the detfiment of the efforts
of those engaged in either controlling or eradicating the

disease.

It ‘must be emphas1zed that what has been said of the
d1sease SO far is only a very simple form of an otherwise
complex biological process which still has plenty of

un-answered questions.

1.6 The Control of Malaria

A wide range of measures aimed at edther contrqlling
or eradicating malaria have been developed QQer the years.
However, the contemporary history of the fight against
the d1sease is more or less that of retreat Thebinter—
national effort to rid the world of malaria has been spear-
headed by the World Health Organization (WHO), and malaria
has been for some time now put on the list of '""diseases
under surveillance'". In 1935 and 1956 the,8th and 9th
World Health Assemblies adopted a policy of malaria erad-
jcation. 1In 1969 they revised their policy down to that of
eradication plus control. A year before,'Sri.Lanka, one
of_£he,areas in which malaria was considered wiped out,
experienced an epidemic of P. vivax malaria affecting more
than 1.5 million people (Bruce- Chwatt 1975- Harrison,

1978; Gilles, 1981). The 1dea of total eradication of the
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disease particularly in tropical Africa is now considered
unattainable. Emphasis is on containment and control aimed
at reducing the morbidity and mortality of the disease in
these areas. Some of the socio-economic aﬁd'ecological
reasons for this change of‘strategy have already been
enumerated in our introductory remarks. Wé shall outline
belowvsome of the measures being used to control the
disease. The measures may be grouped under.two headings;
namely those for the protection of susceptible individuals
and ﬁhose directed against the vector as Strategies to

" protect entire communities.

1.6.1 Susceptible Individuals

| People who move into endemic malaria zones from areas
free of the diseaée do not have resistance to the lethal
effect of the disease and therefore need to take extra
precautions. = The risk also extends to individuals who
normally live in these zones but have been away in malaria-
free areas.for a long time. The regular-intake of anti-
malaria drugs such as chloroquine, daraprim (taken once
weekly) and paludrine (daily) minimizes this.risk. Other
measures include the siting of dwellings éWay from potential
breeding places of the vector, screening of iiving guarters
and the use of bed nets, protective clothing and mosquito
repellents at night to prevent mosquito bites, and the use

.0of insecticides in aerosol dispensers.

There are a number of preventive measures being
researched of which the development of vaccines against mal-

aria is one (Gilles, 1981). An overwhelming difficulty with
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the development of malaria Vacéines is that antigens on which
these vacéines are.based are often stage specific. Thus,
a vaccine based on antigens from the liver stages may have
~no effect on the erythrocytic phase of the disease'(Cohen,

1979) and vice versa.

The most promising form of malaria vaccine is that
based on antigens from the erythrocytic phaSé of the par-
asites. The possibility of the production of these antigens
- for mass vaccination has been enhanced by the development
of a technique of continuous cultivation of erythrocytic
forms of P. falciparum (Trager and Jensen, 1976). However,

there are sfill some problems to be surmounted.

Using current techniques, it is difficult to exclude
pathogens from materials prepared for the vaccine and the
risk of contamination with blood group substances is high.
Much more serious perhaps is the situation that immune
response of a given population is likely to be influenced
by such factors as genetic differences, blood group spec-
ificity and haemoglobin combinations (Piazza et al., 1972).
At present the vaccine is being tried on animals. Cohen
(1979) has warned of its use being extrapolated to man

without careful evaluation and thorough preparations.

The treatment of acute and chronic cases of the
disease may be affected by the use of drugs such as quinine,
amodiaqgine, chloroquine, quinine sulphate or dihydro-
chlpride (Benenson, 1975, page 194). 1In pérts of South
America,'SOuth—eﬁst Asia and the western Pacific regions,

- where P. falciparum infections are chloroduine—resistant,

the use of quinine followed by a regime of pyrimethamine
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is suggested (Gilles, 1981; Benenson, 1975, page 194). A

recent drug, mefloquine, found to be effective against
multidrug-resistant strains of P. falciperum, has yet to be
produced on a commercial scale. Up-to-date descriptions

of treatments of P. falciparum infection haye been published

by Hall (1976) and Bruce-Chwatt et al. (1981).

1.6.2 The Vector

Control measures against the vectors are directed at

the vector breeding and their larvae and adult,forms.

(a) Prevention of breeding

Various methods to prevent vector breeding inciude
draihage-andlfilling breeding places which result in reduction
of. anopheline breeding habitats. However,'usually a good
knowledge 6f the breeding preferences of the,local vector
is essential for selecting the method of coﬁtrol. For
example, for Anopheles (A.) umbrosus in Western Malaysia
v.ahd A, 1euco$physus in Sabah (Malaysia) that prefer shaded
breeding places, clearance of overhanging vegetation has
been used with considerable success (Sambasivan, 1975).
Another method sometimes used is to coloniie_mosquito breeding
places with predatory fish such as guppies.

fb) Larvicide

Measures to control the vectors with:Iarvicides are
also common. They involve, for instance, thé‘usé of mineral
| bils to form.films over water surfaces which suffocate and

ultimately kill any larva or pupa present in the water. Other

subsfances include Paris green, DDT and some more recently.
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developed organo-phosphorus compeunds such as temephos and
fenthion. But DDT has long term adverse effect on aquatic
life and is less used in this fashion then as a residual
insecticide (see following subsection). On the whole, the
effectivenees of anti-larval method varies with the partic-

ular vector species involved.

(c) Use of Residual Insecticides

Probably the single most important:centrol measure
directed af the adult vector is the use,iqnce or'twice a
year, of residual insect?cides. Usually ip liquid form,
these insecticides are sprayed on walls of dwellings where
fheir residﬁals remain for a long time. Mosquitoes get
poisoned and eventually die when they come to rest on these
walls before or after meals. DDT has beenvby far the most
widely ﬁsed and the most popular. It is easy to use and
transport. it also has prolonged residuai effect and is
the least expensive of all insecticides. It has been
successfully used in the past in eradicating the d1sease in
a number of countries in Central America and parts of the

Carribean (e.g. Cuba). (Sambasivan, 1975).

. In areas where DDT has either been discouraged beeause
of side effects or abandoned because of vector resistance
to it, organo-phosphorus based compounds such as Malathion
ahd Dichlorvos (DDVP) are being tried. 1In particular,
Malathion has.low toxicity to man but it is more expensive
than DDT. Other replacements are the more recently developed
carbonate compounds such as propoxur (OMSSB) Propoxur is
a very efficient residual 1nsect1c1de For instance, itl

can kill mosquitoes 10 to 30 metres outside a house sprayed
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with it. 'However, it has the disadvantage that it is 8 times
more expensive than DDT and this puts propdxur beyond the

reach of most malaria-ridden developing countries.

(d) Other Methods

These other methods are mainly aimed at inhibiting fhe
evolution of resistance in mosquitoes to insecticides, and
they are still at their development stages. The goal is to
extend fhe effectiveness of existing insectieides. This_is
métivatéd by the fact that the costs of developing and
purchasing new insecticides are becoming prohibitive. More-
over, resistance by a vector to a particular'insecticide may
also extend fo a new insecticide as in certain DDT resistance
cases and synthetic pyrethroids (Chadwick et al., 1977,

" Prasittisuk and Busvine, 1977).

It has been noted by Muir (1975, 1977) Comins (19?7)
and others (-Curtis et al., 1978) that migfation of insects
“in populatipns untreated with a given insedticide would tend
to delay the evolution of resistance in a neighbouring colony
of treated iﬁsects. It has been suggested therefore that
insecticides should be applied in alternating sectors of
a ''grid" in which adjacent sectors are sprayed with, for
instande, chemically unrelated insecticides. One other
proﬁosal suggested by Curtis et al. (1978), is that ofArez
inforcement of natural immigration by the release of artif-
iCially reared male mosquitoes that are susceptible to a
spedific insecticide. These.are supposed to re-introduce
susceptibility of genes into the progeny.of the resistant

population. With the technique of rearing mosquitoes on a
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lafge scale becoming well’estabiished (Singh et al. 1974,
Dame et al.,.1974), the létter method appears promising.
- However, the idea of increasing the population of man-biting

insects.inff;a community may not at first be particularly

appealing.

1.6.3 The WHO Malaria Surveys in Garki

As part of its global‘effort to control malaria, the
WHO initiated in 1969, what is now known as‘the Garki Project.
The project, which was multi-disciplinary in scope, was based
| on a serieé df longitudinal field surveys ofAfhe human pop-
ulation,.together With mosquito and meteorological surveys
carried out in Garki, Kano State, Nigeria,_in-conjunction with

the Government of the Federal Republic of Nigeria.
The project‘had three specific objectives (Molineaux

et al., 1980, page 21) -

. (1) to study the epidemiology of malaria, which involved
the meésurement and study of entomological, parasitalogical
“and serological variables and their relationships. It
also included the measurements of meteorological, dem-
ographic and clinical variables.

"~ (2) to measure the effects of such control measures as the
use of residual insecticides with and without mass
drug administration.

(3) to construct and test a mathematical model that would
simulate the transmission of the disease under various
control strategies.

A comprehensive summary of the results of the studies carried

out so far by various members of the project team, in pursuit
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of the abové objectives, has recently been published as a

WHO monograph (Molineaux and Gramiccia, 1980).

The demographic—parasitalogical Sur?eys were éimed
atA00vering the entire population of sixteen selected villages
in the area, and were carried out in three-phases. In the
first phase, surveys were conducted every ten weeks from the
end of the wet season in November 1970 tdxthé end of the

- dry season in May 1972. Throughout that period no attempts

" were made ‘at treatment (except probably in the most serious

éases) or control of malaria. Consequently, these surveys

afe called the baseline surveys. The second phase known

as the intervention phase, in which surveys wére also conducted
evefy ten weeks, commenced from April 1972.to October 1973,
dﬁring which:certain control strategies were applied to some

of the v1llages while others were left untreated as control.

The thlrd and last phase, or post-intervention phase, extended
from November 1973 to the end of the project life, February
1976. During this period selective drug admiﬁistration was
carried out, partlcularly in villages covered by mass drug
administratlon in the second phase. The aim was to protect
these v111ages whose populations' immune responses had
apparently been weakened from lethal malarla attacks. Through-
out the project infants were surveyed twice as many times as

the adults, that is, about every five weeks.

We shall subsequently (Chapter 6) be'concerned_only with
the data from the baseline phase, and in particular the paras-
1taloglca1 data. These data, (as well as those»in the other
phases) were obtalned by the collection and examination, at

each survey and for each person, of a thick blood film, 11nked
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by an identification code number of the person. The blood.
film was exaﬁined by means of a microscope, for 200 fields,
and the person was then classified, at that particular survey,
as positive for P..falciparum asexual forms; ﬁ.falciparum
gametocytes, P. malariae or P. ovale respectively, if any of
these were observed in any of the 200 fields, and the number
~of positive fields recorded. Otherwise he was classified as

negative, that is, free from parasitamia.

As regards those surveys for gathering sero-
immunological data, these were carried out iﬁ“selected
villages twice a year, in conjunction with the demographic-
parasitalogical surveys, one in the dry season and the other
iﬁ the wet season. The surveys involved the‘collection
of blood samples from fingerpricks into heparinized caraway
tubes and filter papers on which several tests were then
" performed. Among the tests were those to determine quantit-
atively the levels of immunoglobulins G and M, using techniques

described in the paper by Mancini et al. (1965).

The information gathered in the Garki Project is
be11e§ed to-provide a better basis than was- previously avail-
able, for the quantitative study. of malarla and the planning
of malaria control. Before the project was undertaken all.
malarla surveys on man were, with a few exceptions (Krafsur
and Armstrong, 1978), cross-sectional prevalence surveys
(Russell et al., 1963). The Garki data do provide the opport—A
unity to obtain good quantitative assessments'of some of the
Akey factors governing malaria transmission such as age and
seasonality. In Chapter 6, we shall use some of the data to
' recov-

~estimate such parameters as human rates of infection and

ery rates by age-group and season.
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CHAPTER TWO

REVIEW OF QUANTITATIVE STUDIES OF MALARIA

2.1 Introduction

Early attempts to apply mathematical techniques to the
'transmiséion and control of malaria are attributed to Ross
(1911,. 1915, 1916, 1917). Much of later studies were
exténsions of some of his original ideas. Macdonald (1950,
(a,b), 1953,.1955, 1957, 1965) considered-{arious determin-
'istic aspects of the spread of endemic malaria the essence of
which could bé‘traced back to Ross's pioneering work. Other
workers include Martini (1921), Lotka (1923),_and Moshkovskii
(1950;v1967). Lotka, in particular, studiédlexteqsively the
various equafions proposed by Ross and illuStrated his |
'solﬁtiéhé of fhe equations by numerical examéles. Wéite
(1910) considered the relationship between the number of
mosquitoes in a Iocality and the malaria rate; also based
on:Roés&s ideas. ‘Others who have devoted some attention to

malaria -include Armitage (1953) and Bailey ( . 1975).

Kérmaék and McKendrick (1927) have discussed a simple
determinisfiC‘model of the transmissioﬁ of malaria and
obtained an approximéte result for the threshold of an
epidemic; that is; some level of the disease prevalence below
which it dies out but abgve which it maintains itself, A
- stochastic analogue of the deterministic ghggsgg;u has been
| derivedlby.Bartlett (1964, 1966). Oyelese (1970) and Rao

et al.(1974a,b) have also derived various forms of the

threshoid theorem also using stqchaStic models.

Recent.developments on the subject are due to Dietz dnq
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his colleagues at WHO (1974) Wﬁose model is specifically
based on the Garki project described in the last Chapter
(section 1.6); More recently, Aron and May (1980) have
reviewed the basic model of Macdonald. They have also
modified it Siightly by incorporating such aspects of the
disease as latency and immunity. An‘earlierAreview of the
subject is contained iﬁ the book of Bailey (1975,

Chapter 17).

Attempts have also been made to model the barasite
population in the intermediate host. Elderkin et al,(1977)
have modelled the parasite population and the acquisition
of immunity in which both the parasite population and
immune response vary continuously with age. Before that,
Marcus (1970) has used the method of branching processes
to modél_the cyclic development of the paraéifes inside a

mammalian host.

In the next four sections we outline briefly the
essential aspects of some of the above-mentioned models.

We begin with the basic deterministic model of Ross.

2.2 . The Basic Model of Ross with Extension
Ross's basic model is defined as a sét of differential
equations. ' With t representing the time variabie, the

equations are

dx = b'f'u(l-x) - vx o (1)
dt
du = b'fx(a-u) - V'u : (2)
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where

x : proportion of human population ihfected;

u : the density of infected mosquitbes per head

- of human population;

~a : the overall female mosquito density per

person;

f : proportion of infected persons who are also
infectious;

f' : proportion of infected mosquitoes that are

also infectious;

Yy : human recovery rate;
b' : mosquito man-biting rate;
v' : mosquito death rate

By hsing the proportion infected inAthé-human popul-
ation, x, and the density of infected mongitoes, u, as the
dynamic variables, it is assumed that the-populatioﬁs
iﬁvolved are, each, approximately constant.- The first
equation.describes changes in the proportibn of pérsoné
infectéd. That is, new infections are acquired at a rate
that_depends on the mosquito man-biting rate, b', the density
ofAinfectious mosquitoes, f'u, and'the proportion of persons
not infected, (l—x); from which is subtracted the proportion
of infected pefsons who have recovered, Yx. Equation (2)
describes changes in the density of infected mosquitogs.
These depend on the proportion‘of infeétious persons, . fx,
fhe man-biting rate, b', the density'qf uninfected mosduitoes,

(a-u), and the loss term, v'u, which results from the death
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of infected mosquitoes. Throughout the sequel, by either
a mosquitovor~a vector, we shall mean the female anopheles
mosquito.

To acﬁieve the simplicity in the preceding formul-
atibn, a number of key assumptions are made, in addition
to that of constant human and vector populations. For the
human populations, the possible effects of migration are
ignored and no new susceptibles are allowed.  It is also
assumed that the death rate of humans is hégligible relative
"to their recovery rate. As for the mosquitoes, once
infected they are assumed to remain infected for the rest of
their lives. Although the mortality rate among infected
mosquitoes is believed to be higher than ﬁhat among healthy
ones (Anderson and May, 1979), fhey are aésumed to be the
same in the model. Furthermore, an uninfected mosquito
gets infeéted whenever it bites an infectious.host. It has
been suggested, however, that the infectiousness of a
diseése to a mosquito depends partly on the age of the.
inféctive,-especially in endemic.areas. According to
'SambasiVan-(1975), gametocytes from long-staﬁding infectives
are less iﬁfectious to the vector than those of younger
infectives. This is probably why, in endemic areas, children
show greater gametocyte densities than older members of the
| community, thus_serving as the méin reservoiriof infection.
Also neglected in the model is the length of(the sporogonic
cyéle in the vector even though it is comparable with the
life—spah of the vector. Nor does the model take account
of the various stages of development of the parasites in the

human host such as the latency period. Thus the model ignores
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completely the host-parasite relationship of the disease.
Despite these short-comings, the model reflects the basic

features of the interactions between the populations of

human hosts and mosquitoes.

Equilibrium states of the disease méy be found by

setting %% = g% = o in equations (1) and (2), and solving

for x and u. This results in two sets of solutions.
(i) X =Uu=o0 ' (3)

and

_ab'’ ff' - yv' . |
(11) X = b'f (.Y+ ab"fl) | (43,)

_ab'?2ff' - v .
b XE AN I A D) . (40)

Lotka (;923b) carried out studies of approximate
time dependent solutions of equations (1).énd (2), near
fhese poihts of equilibrium, with V' replacéd by u'. the
birth réte of mosquitoes; This substitution was made by
Ross (Béiiey, 1975 p.315) who assumed,thatvthe birth-and
death;fatés of mosquitoes exactly balanced each other. It
is unclear as to what this substitution was meant to achieve.
In his investigation, Lotka found that for a given set of

parametric values in the expression,

t2 t
ab'nff (5)

the solution to these equations tends only to one of the two
equilibfium solutidns, depending on wﬁether (5) is less than
"or equal to unity, or not. More specifically, the solution
tends to (4) if expression (5) is greater thén unity,
~otherwise the trivial solution is stable. This has been

interpreted to imply that, if (5) does not exceed 1, then
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a few malaria cases introduced into a malaria-free community
will not result in any epidemic or endemic situation, and
the disease soon dies out. Otherwise such an introduction
will culminate in the disease reaching endemic proportions

given by (4) (Bailey, 1975, p.316).

2.2.1 The Basic Reproduction Rate

- Expression (5) has given rise to the éoncept of 'basic
reproduction'rate' of Macdonald, (Macdonald, 1952, 1957), which
is conventionally denoted in the literature by Zo. }If'we
replace ' in (5) by V', then the basic reproduCtion rate is
given as |

| o = 2IL , (6)

W .
This is usually interpreted as the averagé number of seéondary
infections contracted from a single infected person in a
large popuiation of susceptibles. If Zo is less than unity,
the disease soon dies out, otherwise it will persist to

assume endemic proportions ultimately.

An intuitive interpretation of Zo gi?en by Bailey
(1975, p.317), is as follows. For a single primary case with
a recovery rate of y, the average infection time is 1/y ,
during which he will have infected ab'f/fy moéquitoes. Each
of these mosquitoes lives an average of time.%,, during which
it will have administered a total of b'f'/v"' infectious bites,

largely on susceptible humans. The total number of secondary

cases 1is provided by the producf (ab'f/y) (b'f'/V').

Recently Aron and May (1980) have derived Zo using a

geometric phase-plane analysis. The horizontal axis corresponds
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to'x, the proportion of infected persons, and the vertical
axis represents the proportion of infected mosquitoes,

u/a, which they denote by y. The area of the graph is Split
into 4}domains by 2 isoclines corresponding tb %% =0

and g% = 0. The intersections of these isoclines are the .
equilibrium points. Equation (6) is obtainéd by dividing

5P
the initial slope of the y-isocline (E/Qﬁ; by that of the

x-isocline !?gb'f). Their result is reproduged in figure 3.

Their analysis suggests that small changes in either
the man-biting rate, b', or in the mosquitd‘density, a, are
more likely to result in significant changes'in the prop-
ortion of persons infected when be' is émall than when it
is large. This, they considered, is a vindication of
Macdonald's argument in support of usingib'k‘ as an ihdex
of stability. Thus in areas where mosquifoeé biteman
relétively often (larger b') and have long expected life
(small v'), bvv' is high and malaria tends to be endemic
or 'stable'. Epidemic outbreaks occur in areas where mos?
quitoes bite.less and have shorter life-span'(b'/v' small)
('unstable' malaria). . |

‘The parameter f‘ is in eésence the lafency parameter
for the mosquito. Let the incubation period of the parasite
within the mosquito (sporogonic'period) be assumed constant
énd denoted by T . Since an infected mosquifo becomes
infectious only after the completion of the sporogonic phase,
f! ﬁay be interpreted as the probability that it is still

alive by then, and approximately

f' = exp(-Vv'1), : _ (7)
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so that
. ab'2f exp(-v't :
_exp( ) | | (8)

Zo =

"It is from (8) that Macdonald (1957) argued that, as
control measures directed at the mosquito vecfors, 'insect-
icides are ﬁore effective than larvicides'. The larval
combonent enters Zo linearly through a, so that the red-
uction of mosquito larva by a factor of two, . say, would
only half Zo,whereas doubling the adult death rate would
affect an exponential reduction in Zo. Moreover, a Sporog-’
onic cycle lasts roughly as long as the aquatic stages of
development (see Chapter 1, section 1.4). 'This observation
'was 1afer to change the strategy of controi.measures against

mosquitoes (Harrison, 1978, Chapter 23).

2.2.2 Seasonal Variation of prevalence

It_has been léng established (Boyd, 1949, Peter and
Standfaét, 1960) that in regions of endemic malaria, prev-
aience of the disease has a steady seasonal pattern from
year to year. As an illustration, Aron and'May (1980) -
examined hospital records of monthly maiaria_cases, befope
control by DDT, from two different lbcalitieé, in Sri Lanka.
They found that for regions of high trans@ission, the
records exhibited steady seasonal patterné ovér the years,
quite distinct from localized fluctuations. Such patterns
tend to follow those in mosquito populatioh density. The
peak of mosquito population density occurs'either before
(Boyd, 1949, page 636) or during (Chrisfophéré, 1949, page 703)
the peak of human malaria cases. According to Boyd, the.peak

of prevalence among mosquitoes is preceded-by'both the human
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and mosquito density peaks.

Aron and May (1980) have considered incorporating this
seasonal effect into the basic model of Ross. They introduced
a third differential equation in addition'too(l) and (2) that
describes the dynamics of the mosquito population. In our

notation, this third equation is equivalent to

%% = w(t) - v'a " , (9)

where they define w(t) as the "rate of emergence'" of mosquitoes
per person. w(t) is made to vary sinusoidaily over the yeor

so that the mosquito density, now a function of time, t, also
varies sinusoidally but with some lag. Since only the human
population is now assumed constant, equation (1) remains
unchanged while equation (2) is-modified accordingly, and takes

the form .

R = bprix(amu)- 2 ey - (10)

Graphical representations of the solutions to which the system
of equations (1) (9) and (10) tend, for large t, exhibit
qualitatiVe agreement with the observations of Boyd mentioned

earlier, with regards to the relative timing of the peaks.

2.3 Superinfection

The model of Ross assumes that-an infécted person is
not re-infected. However, it is generally known that, in areas
of endemic malaria, human hosts may harbour simultaneously
infections by different species (Cohen, 1973; Molineaux and
Gramiceio, 1980, pp.134-H). Furthermore, not only can different

"strains of a single species flourish side by side in the human
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host, but the same strain may re-infect the host should the
re—infection occur before sufficient'body resistance is
developed against the strain. These types of infections are

examples of the phenomenon of 'superinfection'.

Although Ross (1916) had mentioned the effect of
superinfection, he ignored it entirely in his model, thus
assumihg secondary infections as lost. Macdonald (1950a)
noted the omission and proposed a modification to the model.
in which infections would arrive in the body'ﬁnd run their
course indepehdent of each other. Curiouély, the model that
ultimately emerged is one in which successive infections
~queue up-to express themselves only when the’previous infec-
tion hasvrun its full course (Macdonald 1957; 1973; Fine
1975ij Bailey, 1975 page 318). Diefz has sihce proposed a
model that embraces Macdonald's original idea (Bailey,

1975 pp.318-20). Aron and May (1980) have mehtioned construc-
ting some models of superinfection in which:re;infections are
successively more easily shed father than'being totally indep-
endent of each.other. These models are said to lie between
those'of Dietz and Ross. We shall propose another super- .
infection model, which is a modification of Dietz's model, in
which thé rate of a re-infection decreases-as the number of
infecfions (broods) in the body increases.

To incorporate the models of superinfection we write
4the.basic équation (1) in the general form:
= - h(l-x) - Bx | - (11)
'where h denotes the préportion of the population receiving

infectious bites per unit time (h = b'f'u); it is also called
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the inoculation rate. R is the rate of recovery from all
infections in the body. The various modelsdefine R as

follows:

Ross ¢ R =y , (12)

Macdonald : R ={ (13)

Dietz P R h/{ exp(%) 1} C(14)

where Y is now defined as the elimination rate of an infection

from a single brood.

quuation (14) has been arrived at by modifying Ross's
originai model into a hybrid model in thelsenée that super-
infection is treated as a homogeneous stochastic immigration-
death process (Bailey, 1975, pp.319-325). 'As an alternative,
if we view superinfection as a queueing proceés in equilib-
-rium, with both the arrivél (infection) and service (recov-
| ery)times exponentiélly distributed, then:both equations (13)
and (14).aré simply special cases ih which broods are assumed
to arrive and depart according to the’dueue M/M/S; to use
Kendall's notation for queueing processes (Kleinrock, 1975,
page 399; Takacs, 1962, page 160). Macdonald's model assumes
S, the number of sérvers, equals 1 (M/M/1), while that of

F

Dietz corresponds to an infinite number of servers, that is
- M/M/e.

To obtain a general expression for R, the overall
recovery rate, we proceed as follows. Let pk denote the
:'proportion 6fwthe human population with exactly k broods,

k 20. Py may alsb be viewed as the probability of a human

host having exactly k broods. 1In time &t, the proportion of
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the population whibh complefely recovers is given by

Y% Gt.+‘o (6t), since only persons with oge brood can move

by one step to the susceptible state in the infinitesimal
time §t. Now, the proportion of the population with at least
one brood is 1 - Py, SO that the overall recovery rate is
given by (Bailey, 1975, page 325). x

R = YH (15)
1-p

o

Thus both models are expressible in the form (15), differing

only in their,expression for j

For the M/M/1 queue based model, we.ha§e p, = 1—h/y
whenever h < vy, otherwise P, = O. The inequality h < y
is thé well-known necessary and sufficient éondition for
efgodicity in the M/M/1 queue (Kleinrock,'1975, p.95). We
also havelp L= po(%). Equation (13) is obtained by substit-
uting for P, and p , in (15). Similarly, we note that, in the
case of M/M/w, we have p_ = e B/ ana P, alsq equals p_ (%),

which if sUbStifuted in (15) yields equation (14).

2.3.1 A modified Dietz Model

.As stated earlier, we now propose a modification to
Dietz's superinfectidn model. We assume that the occurrence

of re-infection becomes more difficult as more broods get

established in the body.

The modified model is an example of a queue of type
-M/M/~ with discouraged arrivals. One specific and simple
case is that of an harmonic discouragement of re-infections

with respect to the number of broods present in the body.
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Thus, p, now becomes
o k-) |
pp, = p_ .0 h/(i+l)
k o i=o (i+1)y

h,k 1 : (16)

where

R C) S -
E (y k! k!

Py = ;/{1+k—1

- -l.o/b.%

where I_(.) is the modified Bessel function of the first
-kind with bfder zero. So, if we use the new expressions
(16) and (17) for pl(k=1) and Po respecti%ely in equation

(15) we obtain

R o= n/drgedhiy ) - as)
" Qur model of Superinfeétion falls somewhere'bétween that of
Dietz and Ross, as we shall illustrate subsequently. It is
inferésting to note-that, in this respect the'model is similar
to those mentioned by Aron and May.

The expressions of Zo corresponding to the various

-v'T

models, when h is replaced by b'ue , are as follows
ab'? f
Macdonald i Zo = v'(yev T_b,u) ._y>h
® Y<h -(19)
: -v'T
1 1
Dietz : Zo = 3?uf {exp(g—g%———)al} (20)

. ' , _ ab'f b'u} -Y T »
Our Model : Zo  = GTE—{Q)(Z(—V—) e )-1}  (21)
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A cursory inspection of equations (19), (20) and
(21) indioates that the qualitative conclusion reached by
Macdonald about insecticides being more effective than
lafvicides (as>control measures against mosquitoes), can
still be drawn from either of expressions (20) and (21). It
is worth noting that mosquito density no longer enters linearly
in any of the three expressions of Zo. This becomes clearer
"when u is replaced by ay in these expressions, where, as
‘before, y denotes the proportion of infected mosquitoes.
However, because of the double exponential expression of v'
in (20) and fhe exponential behaviour of Io(’) for large
arguments, (Arfken, 1970, page 511), changes in Zo would
tend to be greater in the last two equations than that in

(19), given the same change in say a or v'.

2.3.2 Discriminating Among the Models

, The difficulty of discriminating among these models has
- been pointed out by Aron et al (1980). They suggest oOne
reaeon for the difficulty to be the observation that under
conditions of constant infection rate and constant brood

, eliminatioo rate, y, the parameters h and R are related in

an identical way for all the modele. To illustrate this,
they solve equation (J]) to obtain the age-prevalence curve
x(t), which is

x(t) = L(1-g7%%) (22)

where L #vh/(h+R) is the limiting prevalence rate and K = h+R,
With R defined by either of equations (12); (13) and (14)

‘(and‘now also (18)), of the various models. Now, irrespective
of any of these models, L and K are related by the equation |

h = LK , (23)
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Onelimplication of (23) is clearly that, given any
two of the quantities h, L and K, a value of Y can be
computed which is dependent on the model used. For illus-
tration, some results of estimating h and vy for the models of
Ross, Dietz and Macdonald are reproduced (Aron et al., 1980)
in Table 1. These estimates are based on the values of L
and K obtained by Macdonald (1973, pages 104—106) using
equation (22) to fit age-prevalence data from Freetown and
Kissy, both in Sierra Leone. We have added to the content

of the table (last column) the corresponding estimates of Y

as computed by our model.

Clearly the new estimates of Y lie between those from
Dietz's and Ross's models. vIt may also be noted that the
new.model appears to provide more stéble estimates of Y
- for high’va1Ues of L than, say, that of Dietz. That all the
‘"models at iow values of L approach the model of Ross in which
supefinfection is excluded, is to be expected. They all
‘reflect the negllglble occurrence of superlnfectlon at such

low levels of disease prevalence.

The general relationship between Y and the other
parameters L and h, for the various models may be further
‘illustrated as in Figure 4. The figure is the result of
plotting Y/h (the horizontal axis), the relative elimination
rate of a brood, against L (the vertical axis), the limiting
pre&aleﬂce rate. Again it is clearly seen that our proposed
model lies between the models of Ross (thick unbroken line)
and Dietz (thin unbroken line). The figure also shows that
all models are bounded from below by the model of Ross and

from above by that of Macdonald.’
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Howéver, to be able to distinguish.amoﬁg these models
we réquire some independent methods of estiméting Y. With
such an independently obtained Y we may theh use, for instance,
Figure 4 to compare the adequacy 6f the models. This may be
carried out by using the discrepancies between the L values
as obtained from the graph with tﬁose obsefved from the
population, to set up a simple statistical tést of either

rejectiﬁg or accepting a particular model.

There are a number of difficulties in obtaining such
independent estimates of Y. Among these are the problems
of detectability and relapses, and ethical'reésons preventing
measurements under laboratory conditions (Aron et al., 1980).
If, in addition, we consider the variation among parasite
strains and racial groups, then Y becomes a very elusive

parameter to estimate with sufficient accuracy.

If has.been suggested that an indepehdent estimate of
h, on the other hand, may be obtained eithér from cohort
_studles of 1nfants in hyperendemlc areas (Pull and Grab,
1974; Molineaux and Gramiccia, 1980,pages 125 126), or from
known proportions of persons ever infected, expressed as a
function of age t. In either case, R is set to zero, so
thaf the solution of equation (9), confined té the relevant

group (for instance, infants) becomes

x(t) = 1-e Bt (24)

from which we obtain

h loge(l-x(t))/t (25)

According to Aron et al. one way to investigate the

effect of superinfection is to carry out comparative studies
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between fwdipgpulétions in which the brood elimination rates
are assumed to be identical. Such studies may be between
closely adjacent communities with differenthfransmission
~rates as in Segal et al. (1974), or, compérisons of the
seasonal vériations in recovery rates forba single group of
individuals as in Krafsur and Armstrong (1978) and the Garki
data (for example, Bekessy et al., 1976; also Chapter 6). As
will be seen later (Chapter 6), all the models of super-
infection tend to predict longer recovery times during high
transmission seasons and shorter recovery times during
off seasons. However, these statements are‘at best suggestive

and not a consequence of the models.

2.3.3 Concluding Remarks

Briefly, the. phenomenon of superinféction is important
in elucidating the nature of the prevalence of endemic malaria.
Its inclusion is therefore imperative in any ﬁodel vying for
realism{ Hdwever, any attempt to discriminate among the
:different mode1s of superinfection is beset with the problems
~of inadequate data. In addition, Macdonald's model is at
variahce with his original assumption. The model of Dietz
which is based on the correct interpretation of Macdonald's
original concept, although reasonable, does ignore another
important effegt of the disease, namely immunity, and possible
competitidn amonglbroods (Molineaux et al.,_1980; Singer
et al., 1950). Thé modification we have made to Dietz's
-model is an effort to take the latter into account. In the
| nexf section we review some of the attempts to allow for

immunity and, in particular, the integrated malaria model

of Diefz.



_pérsons with parasites in their blood are capable of making

" mosquitoes infectious, hence the distinction. The rest of
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v2.4 The Model of Dietz et al.

| The model of Dietz et al. (1974) is considered to be
the mosf practical and realistic yet. It is:a deterministic
model-although some of its assumptions are based on stochastic
concepts.l'It'attémpts to incorporate the idea.of superin-
_fection iq the way_modelled by Dietz and described in the
last.section; seasonal_variation-and the effect of immunity.
In:diSCussing the model we éhall use the original notations

of the authors.

The human population is split into two classes, one
immune and the other non-immune. Each class is further

divided into several epidemiological categories : negatives

or susceptibies, that is persons with no clinically

detectable parasites in the body, denoted by x, for non-

immune and x, for the immune; incubating,:persons with
parasites:ih the liver only denoted by X, and'x“ for the
noﬁ-immﬁne and immune respectively; the positives, persons
with parasitgs in the blood, denoted by yghand v, for non-
immune, and y3 for immune classes. The notdtions LI i=1,..,4
and 3 ‘i =1, 2, 3, refer both to the proportions and the
categories of the human population af a given time t, and they
add up to unity. Here, a unit time is considered as one

day. Figure 5 is a diagrammatic representation of the model.

The positives consist of infectious, v, and non-infections

yé (nonéimmune) and Y, (immune). It is assumed that not all

the parameté}s denbte rates of transfers between categories
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i

and are defined as follows (Bailey, 1975, page 324).

o
i

birth and death rates of human population for

" all categories;

o
]

infection rate (time-dependent) -as before;

Q
1]

~transfer rate from infectious to non-infectious

category in the non-immune class;

Q
]

transfer rate from the non-immune (non-
infectious) class to the immune

(non-infectious) class;

]
!

transfer rate from the ihcubating cétegory
of either class to eithef the infectious
(nqn-immune class) or the non-infectious
(immune class) categofies; given by

(1-6)Nn(t-N) ;

R ,R = recovery rates of non-immune and immune classes
1 2 ’

‘respectively given by h/{ exp(gf)_l } o, i=1,2

Here, N is the incubation period of infection in man and
Yi is the elimination rate of any one brood. From the
expression of Q, it is assumed that immunity has no

influence on incubation.

The model is formulated as a set of non-linear
difference equations amenable to iterativefsoiution by
_ computer. Thus, let'ij.E ij(t) = xj(t+1)exj(t), ji=1,...,4,
and Ay; = Ay,(t) = y;(t+1)-y;(t), i = 1,2,3, then the

equations are given as follows, with the time argument
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suppressed except where a time-lag is involéed,

(i) Ax = Ry - (h+ &)x + §;
1 12 1
(ii) Ax = hx - @Qx(t-N) - §x ;
v 2 1 1 2 :
(iii)  Ax = Ry -(h +§)x ;
. . 3 23 . 3 i
(iv) , Ax = hx -@x (t-N) - éx
4 3 3 Y A
(v) Ay = Qx (t-N) - (o +8)y
(vi) Ay = oy -(a + R + 8)y ;
2 11 2 1 2
(vii) Ay3 = ay * Qxa(t—N) - (R2 +8)y (26)
) 2

The expression for § is derived as follows.
Transfers_from x2 to y1 at time t consist of persons infected .
at time t—N with infection rate h(t-N). If the death rate
is §, then the proportion of survivors after time N is
approximately (l—G)N. Therefore, the proportion-transferred
toy, at time t is (l—G)Nh(t-N)xl(t—N), which, when equated
to the first term of the right side of (26 (v)) gives the
required.relétion. The eépressions for Ri’ iu= i, 2, are
':DietZﬁs model.of superinfection (equation (14)), with yl and
Y as thé eliminatién rates of single broods for y2 (the
noh-infedtious positive non-immunes) and yaA(fhe non—infecfious
'.positive.immunes) fespectively. It is assumed that individuals

in yé recover faster than those in yz.so that Yl < yz

As the infection rate, h(t), is made to depend on the
vector population it will change with the géason. An explicit
expfession for h(t) is given in terms of a.quantity called
vectorial capacity; denoted in the literature by C(t) |
(Garfett—Jones,»1964; Garrett-Jones and Shidrawi, 1969).

C(t) is defined as the total number of biteé distributed by

those mosquitoes surviving beyond their sporogonic cycle of
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4duration'r(days), having bitten a single individual on day t.
Using some of the notations defined earlier (section 2),
C(t) is given as

£

2.-V'T
c(t) = 22— | (27)

.That is, C(t) is the product of the average number of bites~
per person per day (ab'), the proportioh of mosduitoes

surviving for T days (e—\”T), the average life expectancy of
surv1vors ( /v ) and the average number of bites of a surviv-
ing mosquito per person per day (b'). Note that the mosqulto

density, a, is-time-dependent.

An approximate expression for h is given by

h(t) = g (1-exp(-C(t-M)y, (t-N)) } " (28)

Where g is interpreted to mean the probabilify thet a bite
actuélly infects a susceptible person. The expression in

the curly bracket is'derived as follows ; Infectious persons
on-day:(t—N)y (y (t-N)), make on day t and thereafter (through
the mosqulto population) an average number C(t—N)xA(t—V),

vof potentlally infectious contacts with each member of the

' human population. By assuming that all these bites occur on
day t itself and that fheir number has a Poisson distribution,
 the probablllty that any given susceptlble person receives at

least one infectious bite is given by 1- exp { C(t N)Y (t- N)}

Dietz et ai. also derived an expression for what they
call the-critical~vectoria1 capacity, denoted by C*, below
which the disease cannot maintain itself af an endemic level.
This is based on setting the reproduction rate Zo to unity.

The expression is obtained by finding, in terms of C, the
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average number of secdndary cases that result from a single
primary infection. Thus the mean period during which a case
Vis infectious is (a1+6)_1. During this timeq for small
vectorial capacities the person makes approkimately gC
successful contacts per unit time. Hence, |

_ gC =1

or | . Cx* (al+6)/g- (29)

As mentioned already, the development of the model
by Dietz et al. was closely linked with the Garki project.
It has been'applied to the baseline data ef the project and
has provided'whaf the authors consider a good fit to the
_ observed variation in malaria prevalence by age and season
of the-erea.- It has also been used more recently to predict
the epidemiological pattern of another endeﬁic malarial
community in Kenya (Molineaux et al., 1978); It has yet to be
appiied to_epidemiological circumstances fé; removed from

" those prevailing in tropical Africa.

2.4.1 Some Extensions

_As it stands the model.assumes that immunity once
‘gained, is net lost. However, this is far.from the case.
Mention has been made already of the fact that immunity
wears off gradually when transmission in an area is signific-
‘antly reduced by use of some form of control (Chapter 1,
Sectioq*l.fb. Moreover, immunity is also yeduced when a

person remains uninfected for some time (McGregor et al.,1966).

A model of loss of immunity has been suggested by

Aron et al. (1980),-in which they allow immunity loss to

decrease with increasing value of the infection rate. The
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derivation has some parallel with Dietz's superinfection model

and it is of the form:

A =h/ { exp(hT) - 1} , (30)

‘where X is the'rate of moving out of the immune to the non-
immune State, and T denotes the mean time ‘immunity lasts in
the absence of re-infection. Equation (30)'is incorporated
into a simple SIRS (§usceptible—lnfected—gécovered/lmmune—§uscep—
tible) model, represented by a set of linéér'differential
,equatibns; They make a study of the solutions to these
equations uhder various assumptions about infection rates
and immunity levels. Théir result indicates that gradual
reduction of transmission when initial rates of infection is
high, may dimiﬁish the level of naturally acquired immunity
in adults and actually raise their prevalénqe level before
allowihg it to fall as h continues to fall. Real age-
prévalence.curves studied by Boyd (1949) ékhibit trends
similar to'fhe theoretical results of Aron et al. Clearly,
thislsituation may have serious implications for control
programﬁeé because such a rise in prevalenée>curve may be
indistinguishéble from that due to actuai lack of success 6f

the application of a control measure.

Another shortcoming of the model by Dietz et al. is
~the assumptioh that immune persons, when infected, never

~ become infectious. We have already mentioned that acquired
-immunity plays almost nb part in the removal of gametocytes
(see Sécfibn 1.5). It does, however, affect indirectly

the densify of gametocytes in the blood since it removes

.some of the merozoites which would otherwise give rise 1o



ffesh gametSCytes. Even so, according to Yekutiel (1960)
mosquitoes can get infected by gametocytes occurring in
.such small numbers as to escape detection eééily. One
way we Wbuld include the contribution 6f.é11 infectious

persons is as follows.

' Let y; represent both the category and proportion
of persons who are infectious and immune, and let Ys( >Yl)
denote their transfer rate into the non-infectious but
immune\State, y3 . If q is the ratio of gametocyte
density of infectious immunes to those of infectious non-
immunes, or some appropriatély chosen parameter, then the

infection rate,'h, now becomes
h(t) = g{ 1-exp(-C (t-N) (y (t-N)+qy, (t-N))) } (31)

The modification adds one non-linear difference equation

to (26) (Figure 6)

Ay = Qx_(t-N) - (y_*8)y (32)
: l+4 2 3 b4 s

In addition equation (26 (vii)) now becomes

Ay =y y +yy - (R +8)y (26 (vii)' )
"3 2 2 3 4 22 3

In general, g < 1, a consequence of the réduction of merozoite
Vdensitv due to immunitv. Clearlv. expression (31) vorovides
an estimate of h which is consistently higher than that of

A:Dietz et al. Thus, h reaches saturation level at slightly

lower vectorial capacity than in (28).
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-In endemic areas and more so during high trans-
mission period, yq is bound to be high and'its efféct may
not be negligible as assumed by Dietz et alﬁ One implic-
ation is that a lot more effort may be required at the
initial stages of a control programme before a noticeable

change is realized in h.

. The parameter g in equation (31) is"a simple way
of‘incorporating the magnitude of the parasite burden in
the human population. It has been argued that since the
populafion of malaria parasites can exist at various
densities within infected persons, then tﬁe epidemiological
manifestations of the disease depend on thesé guantitative
aspects of infection rather than on mere presence Or
" absence of'parasites in the body. Besides; it is a common
occurrence that, because of the cyclic nature of the
development of the parasites in the blood,-some negative
fesults of éxamination of blood slides may be false
(Boyd 1949; Miller, 1958). It would be interesting to see
how significant an improvement these modifications would

bring about in the model.
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2.5 The Continum Model

The model of Elderkin et al. (1977), which is based
on the suggestions of Dietz in cooperation with other malaria
epidemiologists at WHO, is constructed to féke into account
the aspects of malaria described in the last paragraph of the
preceding section. The model attempts to deécribe the
dynamics of malaria in a host rather than its traﬁsmission in
a community as in previous models. In the model, the immune
response and the magnitudes of the burden éf the various
forms'of the parasite in the human host are made to be both
age- and time-dependent. But, it is the time independent

(age—depehdent) version that the authors conéider in some

detail.
The set of equations that define the‘model is as follows:
. : _ o  =38v )
(i) dy =V [ de g(v)dv - py ;
dt
(ii) dg = aye—pT—vg :
o dt
(iii) dp = wy - v(e-p,) ; (33)
: dt

where, y is the population density of asexual blood stages
(merozoites) of the parasites in the host,-g is the density
of.gametocytes in the blood, and p is the death rate of the
asexual forms or level of resistance of the host. The three
variables are all dependent on the age of the host, denoted
here by t. The parameters in the model have the following
heahing}

V : the ”biting rate'" of the mosquitoes and is

interpreted similarly to C, the vectorial

capacity in the model of Dietz et al.
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¢ :  human mortality rate;

a : the rate of reproduction of gametocytes ;

(cf. al and a2 in section 2.5) ;

v : the death rate of gametocytes ;
u : rate of increase in level of immunity ;
y : vrate of loss of immunity.

The equations are interpreted as folioWs. The change
in y depends on g, the density of gametocytgs transférred to
mosquitoes given by V{:Ge_évg(v)dv. This is the product of
the 'biting rate' V, of the mosquitoes and the density of
gametOCytes in all persons surviving to an agé v, éwée-avg(v)dv.
The loss_tefh, pg, is the death of merozoites due to the
immune response of the host. As for equation (33 (ii)),
increases in g are proportional to the merozoites conditional
on their surviving for a time T, where their approximate

probability of survival is given by e PT

. Gametocytes are
also reduced at a constant rate v, by vg. 1In the last
equation (33'(111)),9 increases proportionaily with y at a
constant rate y. In the absence of merozoites (y=o),p is

" made to decrease at a constant rate y to a value Py the

immunity level of a new-born child, hence the term y(p —po).'

Conditions for the existence of non-trivial solutions
to these equations is summarized in their theorem 1.1. That

is, given- the initial conditions:

o}
v

(1) y(o) =y o
(i) glo) = g° 20 ;
(iii) p(o) = p° 2o (34)
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then the set of equations (33) has at least one solution
which may be either trivial (y = g = p = 0) or noﬁ—trivial

depending bn the following conditions

(a) yO = go = 0 ; there is only a trivial solution

?

0]
“(b) V >a"l(v+6) (p0+5)emax (Po,Pp T

there is a non-trivial solution, otherwise
there is a trivial solution if

' : . o}
Vo<l (vr8) (p *8)e™ M Por P T

An iﬁportant feature of the model is that it allows
for resistance to be re-inforced only in the presence of
asexual blood forms of the parasites. It also allows for
it to erode in the absence of the asexual stages of the
parasite. These assumptions are in agreement with.empirical
evidence outlined earlier (Chapter 1, subsection 1.5.1) with

regard to the process of the acquisition and loss of immunity.

The main epidemiological conclusion of the model is
that gametocyte reservoir increases with increasing trans-
mission at low vectorial level (V), but that, as immunity
bﬁilds up gradually with increasing transmission the resefvoir
eyentually subsides (Aron and May, 1980). ;This property is
exhibited by Figure 7, reproduced from Elderkin et al. The
interpretation of this result could be that a moderate
reduction in transmission from a high transmission 1eve1'is
likely to increase the prevalence of the disease among

adults, that is, things will get worse before getting better.
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CHAPTER THREE

ON_SEMI-MARKOV PROCESSES

3.1 Introduction

‘We proceed to sketch some of the mathematical tools
and derivations to be used in subsequent discussions. .Since
the basic model to bé considered in the seqﬁel is semi-
Markovian, the discussion here will focus on the theory of
semi—Markov'processes, ahd in particular,'ohAthose features

of the theory deemed pertinent later on.

The ideas of semi-Markov processes were independently
conceived by Lévy (1954) and Smith (1955). About the same
time, Takdcs (1954) introduced essentiall& the same type of
stochastic processes and applied them to some problems in
counter theory. Since then, various aspeqts.of the process
have Been investigated, under the general name of Markov
renewal pfocesses, by Pyke (196la,b), Taga (1963), Pyke and
Schaufele (1964) and Moore and Pyke (1968).' Recent expos-
itions of the theory are by Cinlar (1969, 1975) and Hunter
(1969). Weiss and Zelen (1965) discuss parameter estimation
problems of models based on semi-Markov theory in'the context
of application to clinical trials. Other workers on parameter
estimations iﬁclude Lagakos et al. (1978).(on right—censored
data) and Thompson (1981). An example of application in the

social sciences is that.of Ginsberg (1971la), who uses it to

model social mobilities in the United States. Ginsberg

(1971 b, c) has also made a critical appraisal of the applic—

ation of semi-Markov theory in modelling migration in general.
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In section 3.2 we give basic definitioné and introduce
some notations. We derive the transition probabilities of
the process in section 3.3 followed by their limit values 1in
section 3.4. Section 3.6 contains the only. new results in
this chapter, the joint limiting distributioné. These are
derived using the formula of forward recurrence time distrib-
utions outlined in section 3.5. A simple illustrative
example is given in section 3.7. And we conclude with a few
remarks_(section 3.8) about the appropriateness of semi-

Markov models in general.

3.2 Definitions and Notations

We consider a stochastic process wﬁich moves from one
to another of a number of states 1, 2, ..., N, in which
successive states visited, denoted by the set {Xo’Xl"" },
form a discrete time Markov chain with transition probab-
ilities { pij }, i, =1, 2,...,N. Here, XO denotes the
initial sﬁate of the process and Xn’ n=1, 2,..., the state
immediately following the nth transition so that

Xne {1, 2,...,N } . Further, let {Tn, n=1, 2,..} be positive

random variables such that
gt = i =1 T ~ = 3 4
Prob { f.ln<t | X, X .. X i, X.=j, ..1,..2,...,Tn_1} Hij(t)
for all n = 1, 2,.. (1)

Hij(-) is assumed to be an honest probability distribution.

n - .
Let S = z Ty» S, = 0, define 7, = X, for

Definition 1. K21

S <t<Sn+1 and suppose Sn > ® a.s. Then the process

{Zt’t >0 } is called a semi-Markov process (Cox and Miller,

1977, page 352; Pyke, 196la).
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The number of states of the process, N, may be either finite

or infinite. 1In our case, N is assumed finite.

The process is also characterized by'én N x 1 vector

of initial probabilities, A = (a , a ,...,aN), defined by
- 1 2
a; = Prob { X, = i }, i =1, 2,_...,NN, and satisfying
(i) a, >0, i =1, 2,...,N, (ii) L a.= 1.
1 — ) J=1 1
N
i .. = p,.H.. ‘ . = 3 F;.(t
We define FlJ(t) leng(t)’ and W, (t) jélFlJ( )
Since Hij(-) is assumed honest, we have
N
lim Wi(t)_= L lim Fi.(t) =1 ' , (2)
o j=1 toe 1Y i=1,2,...,N

Consequently we may define pij = 1lim F. .(t).
t>oo

Let ¢ij(-) be defined for all i,j and t > o, by
-¢ij(t) = Prob { Zy = ] IZO =1} (3)
Thus, ¢ij(t) is the probability that the process, initially

in state i, is in state j at time t.

Unless stated otherwise, matrices of any doubly
subscript quantities will be denoted by their corresponding
letters underlined. For example, F(') = (Fij(')) The

corresponding Laplace transforms will be distinguished by

* o -
superscript (*). Thus for 6 > o, f (8) = [e etf(t)dt.
- o
In the case of Laplace - Stietjes transforms we shall
* - .
use (**). That is, £7(8) = f"e”®%as(t). In addition,

o)
wherever convenient, functions may be written with their

arguments suppressed, provided this causes no ambiguity.
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The following additional notations will also be used

in the sequel. They are defined for all i,j and t >0, and

\

are assumed finite

(1) gy o= [T ()
(ii) w; = émtdwi(t)
(iii) o, = ém(t—ui)z dw, (t) | (4)

It is clear from the definition of Fij(.) that

D
171 "ij , (9)

3.3 The Transition Probabilities

The functions ¢ij(-) may be expressed recursively.
By the argument of total probability, they are expressed as

follows (Cinlar, 1969; Pyke, 1961b; Feller, 1957).

_ N t
035(8) = 855(1-W(0)) + T S F (1) O (t-1) (6)
i,j = 1,2,..,N; t>1>0

where Gij is the usual kronecker delta function. Equations

(6) are derived as follows. The first term on the right arises
from the case i = j and the situation that the process never
left state i during the entire time t. The second term is

the case in which the process left state i fbr some inter-

mediate state k, and eventually reached state j at time t.

If we denote the diagonal matrix (dijWi(-)) by W(t),
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then equations (6) may be written compactly using matrix

notations. Thus,

S B(t) = (I-W(t)) + (Ead)(t) (7)

where (Eig)(-) is the matrix convolution of E(.) with &(.).
To solve fbr 9(.), we use the Laplace transform of (7).

For 6> o

1 * * sk
I - W (8) + 6F (8). & (8). (8)

X
$(9) =

Solving for 9*(9), equation (8) yields

27(8) =

@ |

(I-0F "(6)) ™' (1-8W"(8)) (9)

The inverse in the right is well defined since Fij(O) =0

and N is finite (Pyke 1961Db).

The whole process depends only on the pij's, Hij(-)'s
and the initial probability distribution A. 1In par?icular,
given F&j(.)'s (or pij's and Hij(.)'s),in theqry, equation (9)
can be used to obtain @ij(.)'s. This is significant in that
it provides the means to express @ij(-)'s in terms of the
parameters of the underlying process, which may be useful

for statistical analysis.

3.4 Limiting Behaviour of @ij(-)

One other useful property of @ij(.) is its limiting
form as t tends to infinity. In matrix notation, let ¢ be

defined by
9 = lim o(t) (10)

t+oo

where the limit operation is carried on each element of

2(-). In terms of Laplace transforms these limits are given
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by (Cox and Miller, 1977, page 355)

9 = limit {60*(8) } : (11)
8 >~ o

A rearrangement of equation (9) gives

o = lim {8%*(8) }
f»o0
= lim 6(I- 0F*(8)) 'x lim = (I-8W*(8)) (12)
80 = 6v0 8 :

provided these separate limits exist.

Since W**(8) = 6W*(9)

W(O) = gW* (6), the second term on

the right becomes 1lim (I-W**(06)).

8-0

D |+

Since this expression becomes indeterminate for 6=o

(W**(o) = I), we need to use L,Hospital's rule to obtain

the limit. Thus

.1 _ d
lim & (I-W**(0)) = g5 Wx*(8)| 4o,
Shge)
= /Ttaw(t)
O
- M (13)

where M = (dij ui), the diagonal matrix whose positive elem-
ents are the unconditional mean holding times of the states
of the process.

As for the limit of the inverse term, we put (Howard,

1963) (noting that F**(6) = 6F*(8)-F(o) and F(0)=0),

1

U*(8) = 0(I-F**(6) ) ~ (14)

or UX(8) — U*(8)F**(8) = oI (15)
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Now, the matrix U*(6) exists by virtue of the existence of

the inverse term in (9). Taking limits of (13) as 6+0 yields

U*(o) = U*(o) P - (16)
where the transition matrix, P, is substituted for E** (0).

If we assume that the embedded Markov chain of the
process is ergodic, then, its limiting state probabilities
are unique and independent of the initial state (Chung,

1968; : _ . Cox and Miller, 1977,
page 10l1). This result is easily extended to the case in
which the process is irreducible positive-recurrent and
periodic (Feller, 1957, page 321).

Let Il denote the row Vecior of the limiting probab-
ilities of the embedded Markov chain. This Vector must

satisfy the equations

(1)

=
1]

=

o

I, =1 (17)

[ A

(ii)

,+.+,N, are the elements of the vector

[}

Il
—
[\

where’ Hj >0,
II. Because of the uniqueness of the solution of (17) the

rows of U*(o) must each be proportional to the row vector I

To obtain the proportionality term the results from

equations (13) and (16) are substituted into'(l2) to get
o = Ux(o)M - (18)
The elements of 9 must be of the form

.. = U*..(o .= kK. M.y, ' 1
1] lJ( ) uJ 1HJ“J (19)
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1

where u*ij(o) is the (i,j)th element of U*(o), and Ky is a

constant of proportionality between the ith row of

U*(o) and II.

N
Since I ¢..= 1, then
= ij

J

N

k;, = 1/% T u, 20
i é:; 55 (20)

which are identical for all. states.
Hence
M.u. .
6 . = 3% o | (21)
ij - N .

ZH(UQ
,Q,':l’(’ ,

The above results are summarized in the following

Theorem 1. Let { Z_; t>o0 } be an irreducible persistent

t b
and gperiodic semi-Markov process. If uj< ® j_i1,2,...,N,
then
Hjuj (22)
@ij(t)-+ N as t » o
oI
2=12 %

where the row vector, I, with elements Hj’ is the unique

solution of I = TP, and P = limF(t).

t>o
As expected, ¢ij is independent of the starting point i
and depends on the waiting time distribution only-through the

unconditional mean waiting times He 2=1,2,...,N.
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3.5 Forward Recurrence Times

We need to define some concepts on Mérkov renewal
process (MRP) and introduce some additional notations. An
MRP is the process corresponding to a semifMarkov process
which records, at each time t, fhe number of visits to each

of the sfates of the process up to that time.

More formally an MRP is defined as follows. Define
m(t) = sup { ngiol Snfft} and, mj(t), the number of times

Xk = j for 1ikim(t).

Definition 2 The stochastic process defined by the vector-

valued random variable M(t) = {Mx(t)""’MN(t) } is called a

Markov renewal process. It reduces to an ordinary renewal

process when N = 1.

Let Eij(t)’ i, 1,2,...,N, denote the Markov renewal
function; that is, Eij(t) = E { Mj(t) |ZO = i}. The function
is usually‘expressed in ferms of Fij(-) (¢inlar, 1969; Pyke,
1961b). Thus

(k). . v |
Fi3)(t) (23)

E..(t) =
1J i,3=1,2,...,N

b

k=1

where'Fij(k)(.) is the k-fold convolution of Fij(-) with itself.

The following notations are essentiélly those used by
¢inlar (1969). Let Pj(') denote the probability measure
conditioned on X = j. That is pj(.) = Prob {'IXO =3j}. 1In
addition let

sup {'n, S <t}

i

n(t)

V{ =S, (¢ +:t : the time until next
n(t) transition
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the state to be visited
next

t = Xty
+ -
The processes {Xn(t),vt } and .{Xn(t)'vt } are both
Markov whose state spaces are the Cartesian product

{1,2,...,N} x (o} ). The following results about these
processes are largely from Cinlar (1969) and are stated

without proofs.

Let XO = j and consider the event {Zt = Kk, V; <y},

(Zt =vXn(t))' Conditioning on Sl, and invoking the theorem of
total probability, we obtain the renewal equations
P.{zZ, =Kk V+ < } = SL (W, (t+y) w.(t)) + §4 ft dF.(u)
L g T ge, o d
+ . N :
P, {Zt_u— k, Vt—uf-y } i,k = 1,2,1..,N (24)

Since the first term in the right is bounded, then the solution

to (24) is given by (Karlin and Taylor, 1975, pp.184-5)

+ - ‘
P {7, =k, V[ <y} = S 4B (w) (W (try-u) = W (E-w) )i (25)
j,k = 1,2 ,N
Tius
If we denote n., = N then by
1
) Hz“z
=1

the basic renewal theorem, as t > @

<y }—»n—k— {Jy(l—Wk(‘ﬁ)) du ; (26)
T

s
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which is independent of the initial state j.

The following result is immediate from (25)

= 3 += + = t i T g
Pi{ Zt J, Zt A k, Vf_iy } é dEij(u) (ij(t+3—u) - ij(t—uD
i,j,k=1,2,...,N ; (27)
and hence from (26)
P..{Z = j 7zt =k V+ <y }-> n. fy(p -F. (u)) du (28)
i t S Tt — J 5 jk " jk
Hj :
i,j,k =1,2,...,N

which is again independent of the initial state 1i.

The next section introduces a distribution which is

of interest in its own right.

3.6 Joint Limiting Distributions

It may be of interest to obtain the probability that
a process arriﬁes in state i, say, at time t and then, after
a further period of time z, it is in state j; that is,
Prob {Zt =1, Z,,,= }. In particular we would like to
consider the case as t » «». An example of a situation in
which this may apply is if one wishes to find the steady
state probability that at two instants of time z apart,
the process is in states i and j, respectively. It should be

pointed out that this probability says nothing about which

states have been visited in between.
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The main results of the section is summarized by

Theorem 2. If Hij(t) is continuous in t for all i,j, then
Prob {Zt = i, Zt+z = j} - Rij(z) B as T >
where
n N Z '
R..(z) = i {Z [ (p,. -F. (u)) ¢ .(z-u) du
ij 71 k=, O ik " ik kj
+ sij é (l—Wi(u) Ydu } (29)
Proof : From first principlesand for all 1i,j,
Prob {Z,=i, 7, =j } = 1;1 / Prob { Z =j‘]Z=iZ+-kV+-u}
tT T Ttz ko1 U<z trz = T 't
dprob { z,=i, 7. =k,V.cu} 30)
x dPro =i, 2,=k,V.cu (30)

We now consider the probability terms under the integral
sign separately as t - ». By the Markov property it follows

that, for u<z,

i = 1 = += = - .
Prob {Z, = J |Zt =i, 2,7 kK, Vi u} ¢kj(z u) (31)

for all t 2 o. Also from (27) we note that

N

. + _ + _ o += +
Prob {Z, =i, Z =k, V. <u } o= milampm {z,C i, 2,7k, V¢ <u}
where, as before, ap = Prob { X, =m } . Hence
. .t + n. ,u '
lim Prob {Z, = i,Z, =k, V. <ul= "1 /(p 4 9

Since ¢kj(z—u) is a probability, it is bounded, and by virtue
of the continuity of the Hij(-), it is also continuous in

u( <z) for all j,k and z >o0. Consequently, the integral and
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limit signs may be interchanged (Billingsley, 1979, pages
286 and 288). Thus (30) becomes

N +

+
R..(z) = 1lim I f ¢,. (z-u)dProb{Z, =1, Z2, =k, V, < u }
1] too k=1 u<z kj t t t
N T '”'ni
= % f ¢ .(2Z-U) — (p - F, (u) ) du (33)
k=1 ucz CH 1k

which, on rearranging, by the theorem of total probability

yields the required result. That is

o by n; ik Fig(w. ) du

N (z-u)

5 . (p
/S (p., - F. d
- ( ik 1k(u) ) u

fO (p ik - Flk(u) ) d)kj(z—u) du

8 5 f: (1-W, (w) ) du }

If we sum (29) over j the result reduces to the limit

nj ", as expected, irrespective of any initial state. Thus
N N ” N
J=1 — k= ' j=1 ‘

{

A=W ) d )

=y { Qf (1-W, (u) )du + @j(l-Wi(u) ydu }
ku
=Ny (34)
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An analytically simpler form of Rij(z) is given by
the relation

2 1 oy
My

To arrive at this result, first we note that, from (29)

N N -
(1) T f F..(u) ¢, .(z-u) du = z J JdF., (v)¢(z-u) du
k=1 o 1K kJ k=1 o<u<z v<u 1k
N o
= X / [ dF.. (v) ¢, .(z-y-v) dy
k=) y<z v<z-y 1° kJ
(u=v+y)
Z [¢ e}
= é (¢ij(z—y) - 855 fodW (u) ) dy;
z-y
and
: F & (36
(ii) kil A pik¢kj(z—u) du = é]iqpik¢kj (z-u) du 0)
In addition, we may write
. . . Z N :
(iii) I (1-W,(u) Hdu = ki fz(Pik—Fik(u)) du

Substitutions of these results in (29) yields

N

Z
]
+Eisij é(l—Wi(u) Ydu
My ] |
+niéij fo (l—Wi(u) ) duh'
ﬂ—i Z N '
_ ny(8yu* o (2, Pty (W05 5 (ud) du )

=

, L N
as required. i i,3 1, 2, )1
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The Laplace transform of the system of equations
(35) is given by

Ri. (8) = "i (§ Ig * L

3.7 An Illustrative Example

When the distribution functions of sojourn times
between transitions are expressible as simﬁle rational
Laplace-Stieltjes transforms, reasonably simble reéults for
(35) and therefore (29) are forthcoming. For illustration,
we discuss the special case of a 2-state (N=2) stochastic
process, which can also be handled, probably more elegantly,

by other methods such as the method of renewal process.

The transition matrix P, of the embedded Markov chain

is of the form

L}
i

a a i,j =1, 2 (38)

We further assume that the times between transitions are
exponentially distributed, with parameters Aij >0, i, 1,2,
As a consequence, the distribution functions Hij(-) have the
Laplace-Stieltjes transforms H:; (8) = _iii_ ,

B+X. .
1]

from which we get

all)\ll - a‘].2>\12
* * B+ A, 0+ Xy,
F (8) =
25145, 322022 | :
6 +1,, 6+, | | o (39)
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If we now substitute for F*(¢) in (9), noting that

F**(0) = 8F*(8) - F(o) (F(o) = 0)), then we obtain

YRR 253043
oy (it ¢ ) S eercen )
11 JJ

i7 3 (40)

<
%
[N
=2
"
v

3
a..(6+ ao " A . ) a, . . Y S
i1(® a-i"3-1 3—12 + %43-i Faoiifis-i

L (e+kii)(e+k3¥i ai ) (6+>\i 3_1)(8+A3_ii)

Det (6)

i=73,

where Det (6) is the determinant of (l-eg*(e)). Explicit
expressions for the’Rij(-) are then obtained by substituting
(49) in (37) for the ¢:j(6) and extracting the inverse Laplace

transforms of the result.

Suppose that a,,= a,,= o, in which case X11= X22= o,
then the process reduces to an alternating Poisson process
and may also be analysed as such. 1In our example, (49) now

becomes in matrix form

A 8+ A
12 21 ‘
* B(O+AFA, | ) O0(B+A ,+ X, )
9 (8) =

0+A,, Aoy

6(O+X,,*) ) 6(6+A12+X21)

d p

(41)

From (37) R' (6) is found to be

. ' ;qL(e+A12) ""fj“‘le
!

0(0+A x4 ) :
:HpWA12 ‘qu(6+X21) (42)
o 2 2 ‘
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From (40) the inverse Laplace transforms are easily obtained.

S A, g(z) agn, o (1-g(2)

R(z) =

non,nf l-g(z) n,. (n,. *n, " g(2) ) (43)

where

g(z) = exp(-z(A +1i ) ) (44)
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3.8 Discussion

Like most stochastic models, semi-Markov models do

have some serious limitations as well as advantages.

First, finding the transition probability distributions,
¢ij(-)} is mathematically intractable, except for the most
simple forms of Hij(-). This is clearly shown in the example
in the last section. One way to proceed would seem to be by

simulation, a procedure to be pursued in Chapter 5, or by

numerical integration, as in Chapter 6.

A second difficulty with these models is that it is not
always possible to obtain data, from the processes being
modelled, in the level of detail that would allow adequate
model validation. Moreover, these models usually contain
many parameters for which only ad-hoc rangés of values may

be used.

An important advantage of semi-Markov models is perhaps
that they are quite flexible and can accommodate rather
complex situations. They can, for instance, be constructed
such that they incorporate the non—randoﬁ features of, and
the causal structures underlying the procesé being modelled
. (Ginsberg 1971 b,c). However, this advantage is diminished
to some extent by the-arbitrarily limited dependence of

sojourn times on jump structure.

In the next chapter, we propose and describe a semi-

Markov model of malaria, and suggest some forms for the

probability distribution functions for the sojourn times

in each state.
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CHAPTER FOUR

MODELLING THE TIME DISTRIBUTIONS

4.1 Basic assumptions

To recapitulate from Chapter 1, malaria transmission in
a community involves two different host populations and several
life-cycles of the parasite population, in addition to a host
of other socio-environmental factors. As a consequence, any
mathematical model of the course of the disease that attempts
at embracing these characteristics explicitly, is likely to
be intricate, impractical and may lead to intractable

mathematics.

One way to obtain a reasonable mathematical statement
of the course of the disease may be by constructing a hybrid
semi-Markov model. Such a model would be made to incorporate,
for example, some of the vector effects, deterministically
while treating as random the times spent by an individual in
some of the phases of the disease. It may be argued that the
vector population is usually large relative to the human
population, so that the inclusion of its effects as deter-
ministic would be both appealing and appropriate. An example
of combining deterministic variables with random variables
is that of Nasell and Hirsh (1973) and Nasell.(1976a,b, 1977),
in modelling schistosomiasis (Bilharzia) in an isolated
community. In their rather intricate model, the snail popul-
ation, analogous here to the mosquito population, is included

as deterministic in an otherwise stochastic model.

We shall consider an idealized situation of a rel-

atively isolated community in an endemic malaria environment.
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In addition, we shall assume that the community has an
approximately constant population, whose members are not
subject to birth, death or migration. Let us also suppose
that each member of the community belongslto one of four
basic categories with respect to malaria infection. These
categories are (i) the susceptible, (ii) 1atent, (iii)
infectious, and (iv) the non-infectious (but infected).
The sets of the.individuals in each of the categories will

be denoted by U, V, Y and Z, respectively.

As pointed out earlier (Chapter 1, section 1.5), both
the acquisition and loss of acquired immunity are gradual.
But, for convenience, we shall treat the degree of immunity
in an individual as discrete, such that persons who enjoy
high measure of immunity are classified in the higher immunity
levels, with the non-immunes constituting the lowest level.
The sets of individuals are accordingly sub-divided, each
info a finite number of subsets, Ui’ Vi’ Yi and Zi’

i =1,2,...,k, where k is the number of immunity levels.

4.2 Model Description

The model 1is best describéd by following the phases
through which one individual passes before and during an
infection. As we proceed through the phases, we shall
sometimes try and interpret empirical evidence to make
certain assumptions about, for example, distributions of
sojourn timesin these phases. We begin by assuming thét
the person has only just arrived into the suéceptible-cat—
egory at_immunity level i; that is, he is in set Ui at
time t = o, but was not there at t = o-. Figure 8 gives a

schematic diagram of the model.
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4.2.1 The Susceptible Stage

In this stage the person is free of the disease but
is continuously exposed to the risk of infection if bitten
by an infectious mosquito. As time goes by,'it is assumed
one of two situations may occur independently of each other.
The person either becomes infected and moves to the latent
set Vi’ or he loses his current immunity lével and slips into
the next lower level in the susceptible category, Ui—1
(1 < i < k). Thus, his rates of transitions to Vi and Ui—1
are given respectively by:
(i) Prob { U, » V, in (t,t+dt)} = Bi(t)af + o5 t)

(1)

(ii) Prob { u; > Ui_lin (t,t+8t)} = Aiét + o(6t)

where Bi(t) is the infection rate of the person at time t,
and Ai > 0 is the rate of loss of immunity. For i = 1,

Xi = 0. In addition, since acquired immunity is developed
only during an infection (Section 1.5), no transition to a

higher immunity level is expected to take place in this stage.

In the next section (4.3), we suggest and discuss a specific

form for Bi(t).

4.2.2 The Latent Stage

This phase covers the period between the time $porozoites

are introduced into the blood stream and the time the infected
person becomes infectious.
There are wide variations in the period, depending on

the particular strain or species of the parasite (section 1.1).

For P.falciparum, it is about 17 to 21 days. This estimate
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may be inferred from the following. First, we may recall
(section 1.3) that the pre-erythrocytic phase is estimated

to last from 5% to 7 days. Secondly, the sexual forms of

the parasite appear about 10 days after the start of the
erythrocytic ‘phase. And finally, other investigations
(Jeffery et al., 1955) have shown that gametocytes are
functionally mature only after about 2 to 4 days of the start
of gametogony. We shall assume as a first approximation, that
latent periods, denoted by’Tz, are constant for_each immunity

level 1i.

4.2.3 The Infectious Stage

Mature and infective gametocytes are now present in the
blood stream of the host. This is clearly the most crucial
phase of the disease as far as its perpetuation in a community
is concerned. Some of the factors that may be expected to
influence the infectivity of gametocytes, and hence the
infectious stage, include their longevity, density, sex ratio
and any immune response of their host that may either limit
their infectivity or persistence (Smalley et al., 1976). We

begin by considering the immunity factor.

Studies about the existence and nature of any immune
response to P. falciparum gametocytes are inconélusive (ibid.),
but as we mentioned earlier (section 1.5), if is currently
accepted that immune response has little or no effect on
gametocytes. However, it has also been shown (McGregor et al.,
1965; Molineaux et al., 1980, pages 115-118) that gametocyte

density appears to fall. as the age of the host advances, and

hence, with rising degree of immunity. This is usually
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interpreted to mean that individuals with high degree of
immunity are less infectious than those with low or no immune
responses (Dietz et al., 1974, Sambasivan, .1975). As regards
superinfection, it is known to have little or no effect on
gametocyte production; see for instance Dietz et al. It

should therefore have negligible effect on the distribution

time in this stage.

Smalley et al. also found that gametdcyte production
in a host usually rose to a peak, after which the gametocyte
population would begin to fall at approximately constant
rate. Furthermore, they observed that thé.ratio of the
female to male gametes was 4 to 1 and was maintained throughout
up to the depietion of their numbers. Thus both sexual forms

were equally likely to be removed from the peripheral blood

at all times.

No mention was made about when gametocyte production
attained its peak from the time gametogony set in. We shall,
however, assume that the time lapse is small relative to
the mean time gametogony lasts. Hence, with the rate of loss
of gametocytes taken as constant, it is postulated that
infectious times are exponentially distributed with mean<§
and Vi S Ve 1

We now consider the problem of gain in immunity. Tobie
et al. (1966a,b) conducted studies to demonstrate the production
and persistence of antibody response in a group of volunteers
infected with P.vivax. Theyobserved that antibody levels rose

abruptly about 6 days after the onset of parasitamia to

plateau some 8 days later. After about 3 weeks they gradually
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declined to low but sustained levels, following the elimination
of the parasites. Presumably, the low leveis were higher than
those before infection which would allow for the slow build-

up of these levels over the years.

Similar studies, carried out earlier by Collins et al.
(1964) for P.falciparum infections, were inconclusive because
of the few number (3) of the subjects involved. But their
results show strong similarity, and it is possible that the
situations for the two species may not be that different. Ve
shall therefore assume that immune responses,'for P. falcipafum
"infection, start building up towards the end of the latent

stage and attain maxima some time during the infectious stage.

Thus we shall suppose that the gain in.the level of
immunity in the modél takes place during the infectious stage
as shown in Figure 8. Furthermore, it will be assumed that
the boost in antibody response may be approximated by a Poisson
process of rate‘vi. Hence, given that a pérson is in subset
Yi for_time T, he may gain immunity and move to a higher level
Yo, with probability l—e-xaT. Otherwise, if the immune
response boost is below some threshold, he remains in the same

level of immunity (with probability e—Y;T), in which case

his next move is to Zi‘

4.2.4 The Non-infectious stage

Here, while the individual still exhibits the presence
of parasites in his blood, he no longer has any clinically
detectable gametocytes. On recovery the person moves into

the susceptible stage, still retaining his immunity level.

Unlike the previous stage, the effect of superinfection
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here is important. As this phenomenon has been discussed at
some length in section 3 of Chapter 2, suffice to recall here
that superinfection is supposed to prolong the presence of
parasites in a host. Moreover, the longer the person stays
in this state the more he is at risk of re-infection, thus
suggesting a time distribution with decreasing hazard function.
Because of its simplicity and flexibility, we propose a gamma
distribution of the non-infectious time, with parameters

H

r. and ¢,, where o < r, <1 for all i, and a, < Q.
i i i 1/r£- 1+1/ri+l
i =1,2,..., k=1. The last inequality is because persons

in higher immunity levels have faster recovery rates (section
1.5).

In the next section we dwell a bit further on the

distribution of the time to infection.

4.3 On the Distribution of the Time to Infection

The occurrence of successful infectious contacts on
a susceptible may be thought of as a time-dependent Poisson
process. Thus, if Bi(°)_is the hazard function of the dist-
ribution, the probability that at least one such contact is
made on a person before time t+v, given that he entered Ui

at time t, is given by (cf. equation (28) of Chapter 2).

Hy(t,v) = 1 - exp(~ A;(t,v)) (2)
where
t+v
Ay (V) o= 1{ g4 (u)du (3)

It would seem unrealistic to express 31(.) as a single

constant, except perhaps for relatively small time periods.
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For.instance,Bi(-) should depend in some sense on either the
vector population, the factors influencing it, the vector's
propensity to transmit the disease or on ail’of these. However,
as already stated (Chapter 1), these factors interact in
complex ways some of which are still not well understood. To
incorporate their effect explicitly is highly impractical.

In an attempt to overcome this difficulty, we shall prescribe

a rather simple and intuitive form for Bi(') which is aimed

at reflecting only the most salient features of these factors.

Mention has already been made, in Chapter 1, of how
malaria prevalence tends to fluctuate markedly with the
season in an endemic community. Usually, thé disease prev-
alence is highest at the peak of the wet season and least
during the dry season, coinciding with the rise (wet season)
and fall (dry season) in the density of the vector population.
Hencé and for the sake of simplicity a particular form for
Bi(‘) is proposed which contains a term varying sinusoidally
with time in addition to a constaht term. The sinusoidal
term is assumed to have a period of one year, the seasonal

cycle. Thus, for all i,
= -b! < ' <
Bi(t) bi(l bi cos wt), o bi 1 (4)

where w = 21/365 (365 being the number of ‘days in one cal-
endar year), or some other appropriate frequency value, and
bi is the relative amplitude of the sinusoidal modulation.
Without loss of generality, the origin of time t is taken

to be the beginning of one 'epidemiological' year, the period
between two consecutive minimum levels of disease prevalence,

assumed equal to that of a calendar year.
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If we substitute for si(.)ain (3), dropping the

subscript i for the moment, we get

t+v
A(t,v) =b J (1-b' coswu) du
t
b'
=b { v- = (sinw(t+v) - sinwt) } (5)
so that,
1 .
H(t,v) = 1 - exp { -b(v- 2'(sinu(t+v) - sinut))} , (6)
_ w
which reduces to the usual exponential distribution when b' = o.

This form (4) of B(-) has been used before to investigate
the seasonality effect of the prevalence of seasonally varying
disease in a strictly deterministic sense. 'Dietz (1976) has
used the form of g(-) suggested here as the infection rate
and applied it in a deterministic model. An analogous form
of g(-) is ﬁsed by Bailey (1975, page 138) also as an infection
rate in a deterministic model. We may recall (Chapter 2,
sub-section 2.2.2) that Aron and May (1980) have suggested
modifyingvthe basic Ross-Macdonald model by introducing a
variable vectorial density of the form (4). In a different
context, that of the study of cosﬁic rays,-Willis (1964) has
discussed some properties of a distribution whose hazard

function is essentially of the form (4).

Let u(-) and y (-) denote the first and second moments
1 2

respectively of the distribution defined by (6). Then

T vd _H(t,v)

u (t)
1 o

bTv (1-b' cosu(t+v))
(o]
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X exp'{ -b(v - gl(sinm(t+Q) - sinwt)) } dv

b /v (1-b' cosw(t+v))exp (-bv)

o)
. bb')j - o )j ~
% S (73— (31nw(t+v)—81nwt dv (7)
j=o i1
(sinw(t+v) - sinwt)}is replaced by its series

form. Although the integral seems unmanageable, an approximate

solution can be obtained when bb' << 1. In this case we drop

all except the first two terms of the series expansion.

Equation (7) then becomes

v

u (t)
1

b S v (1-b' cosw(t+v)) exp(-bv)
0

x {1+ %b—'- (sing(t+v) - singt) } dv

o0}

bb' , '
b (1- —— sin¥t) [/ v exp (-bv) dv

o)
+ %?— (b sinwt - wcoswt) J v coswv exp(-bv)dv
O .
' [eo]
+ %?— (Wsinwt + b coswt) [ v sinwv exp(-bv) dv
o)
(8)
On perfbrming the integration (Gradshteyn and Ryzhik, 1980,
page 198), and simplifying the result, we obtain
p (t) = 1 + ¢ sinwt + ¢ coswt (9)
1 b 1 2 .

where

(i) ¢ = - —PRW (5p2442)
1 (b2+())2)2
(ii) ¢ = - —BP_ (3p2_42)

N

(b2+(1)2)2
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Similarly, the second moment, u (t) is obtained as
- 2

2 .
uz(t) ~ 52 + d151nwt + d2 coswt R (10)
where
(1) a =20 ( G L
1 W (b2+w2)3 b2
(ii) d = 8b°Db' (b*-w?)
2 (b2+w2)3

The approximate variance o?(t), is then given by

o?(t) = L (d- ”C;) sinwt
2 1 5

to(a - Efgcoswt (11)
b

Thus both the mean and variance of the distribution are also
sinusoidal. When b' = o then c; = di = o for i = 1,2, and
we then obtain the familiar versions for the exponential

distribution.

4.4 Some General Comments

In this chapter, we have tried.to construct models
for the distribution of times between transitions, based on
some features underlying the process, coupled with mathematical
convenience. The rather ad hoc nature of fhe latter is partly
offset by the choice, ip some cases, of a flexible family

of distributions, namely the gamma.
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The classification of individuals into discrete cat-
egories of susceptibles, latent, infectious, non-infectious
may not be realistic. Mention has been made of the fact that
parasites usually exist at various densities within their
hosts, and that the epidemiology of malaria depends more on
these quantitative aspects of infection than on mere presence
and absence of parasites (Section 2.4). Moreover, the

acquisition and loss of immunity are gradual processes.

We also note that; in postulating the ‘hazard function
of the distribution time to infection, it would have seemed
more realistic if, for instance, vector density and proportion
of infectious persons in the community, were explicitly
included. However, this would have entailed intractable
mathematics. We expect that the expression suggested reflects

the combined effects of these factors.

In spite of the shortcomings mentioned above and certain
omissions (such as birth, death and migration), it is hoped
that the model described here portrays some of the more salient
characteristics of the disease and its persistence in an
endemic'environment, in a way capable of providing sensible
conclusions. In the next chapter, we discuss the application

of the model and its simulated version.
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CHAPTER FIVE

A SEMI-MARKOV MODEL OF MALARIA

5.1 Introduction

Having set up a semi-Markov framewofk to describe the
various stages of malaria infection, we now consider the model
in greater detail. In particular we shall discuss, for
several values of k (the number of immunity levels) the steady-
state solutions together with the results of varying some key
parameters. The more complex cases are investigated by
simulation procedures. We conclude by a discussion of some

examples of simulation runs and the deficiencies of the model.

5.2 The steady-state model

We begin by considering the case in which seasonality
has negligible effect on infection rates. This case should be
approximately correct over short periods relative to seasonal
variations. With b} =o, i =1,2,.... k, in equation (4)
of Chapter 4, and in the absence of change of immunity,'times

to infection are now exponentially distributed with means1/Bi.

The transition probability matrix P, of the embedded

Markov chain of the process may be written as

oy

Te)
I=)
lo

j©
=)
|
jo

P = (1)

f=}
f=
o
e

=
o
=
=
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where B, C, D and E are kK x k submatrices of the simple forms

0 o 0 0

b, 0 .. 0 0

B = ¢ b,.. 0 O
0 0t cp 0
_ —

c = o 0 +«- 0 O
0 0 +«. 0 1-b
- k|
_
o 4 - 0o o0 |
0 0 0 0
D = , , : .
0 0 ' 0 d_
o 0" 0 0
| _
1-d 0 o 0
1
0 1-d 0o 0
2
E =
o 0 l1-d,_ 0
0 0 1
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I and 0 are k x k identity and null matrices, respectively.

All the states in the model inter-communicate and,
thefefore, the embedded Markov chain is irreducible.
-Furthermore, if the chain is aperiodic then there is a unique
row vector I satisfying the system of equations (17) in

Chapter 3, which is

. =1, IH0,> o , jJ=1,2,..., m,
=

where m = 4k, is the number of states of the process.

Let ]I, I , E and ! denote the 1 x k row vectors
u v y Z

whose components are those of Il corresponding to the subsets

of U, V, Y and Z, respectively. Then, substituting (1)

for P in the vector equation IP = I, we obtain
(1) 1, = I[u§+g-z;
(ii) m, = I .C ;
(2)
(i) L = T +I D ;
Y !
i I = I
(iv) =, _Yg.

Thus, with the dimension reduced by blocking,it now becomes
quite simple to solve for . The unconditional equilibrium
probabilities, nJ,of being in any state j are then obtained

by substituting for the Hi in equation (21)of Chapter 3.
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We now consider the specific cases of k = 1,2. The
analysis for k > 3 may be carried out in similar fashion
although with increasing level of cumbersome but otherwise

straightforward algebra.

5.3 Two specific examples

(a) Case k = 1. 1In this rather trivial situation, it
is assumed that an individual's immune response is either
inoperative or that it remains unaltered by fresh attacks or

recoveries.

The process now reduces to a 4-state process, with the

transition matrix (1) given by
0 1 0 O—-I

P = - (3)

1 0 0 0

L ——

Clearly (3) defines a process that moves deterministically
from one state to the other. Alternatively, if P is thought

of as a (degenerate) doubly stochastic matrix, then all

stateé of the embedded Markov chain have equal chance of being

W

).

occupied in the limit with 1T = (i, %, %,

From the distributions of sojourn times described in

the last chapter, and noting b' = the expected durations

o,
1 l r

T, 3 5 for the susceptible,

., j=1, 2, 3, 4, are =,
o B
latent, infectious and non-infectious states (stages),

respectively. If we now substitute for Hj and uj in equation

(21) of Chapter 3, the unconditional probabilities, n;, are
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given by

. 1 3
(i) 1/{1 +B(T + g + % ) }; . (the susceptible state)

(ii) Bt /{ 1 +B(z+ % + Ly 3, (the latent state)
\ a
(4)
(iii)  B/{v(l+B(r+c + I))1; (the infectious state)
(iv) Br/{ a (1l +B(T+ %-+ 5))}; (the non-infectious state).

A rough idea of the result of varying some of the parameters
may be géined from these equations. For instance, the
(unconditional) probability of occupying the susceptible
state, n1’ is greater when the rate of infection g is reduced
by a factor of 2 than when the recovery rate % is doubled.

Thus, from (4 (i)) we have

2 - 1

2+R(t+ 1 + r ) 1 + R(t+ l + 1)
v o} : Y] 20, ,
gCx+3) |
(2 +g(t+ 1 +r)) (1 +B(r+ 1+ 1))
AV [0 v 20
> 0 (5)

This inequality may be interpreted to mean the following.
From the public health viewpoint, and all things being equal
(such as, for instance, the.cost per proportionate change in
parameters, facilities and expértise), the policy of using

insecticides aimed at a reduction in Q is preferable to that
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of, say, the application of mass drug administration, which
would bring about an increase in ¢ /r, the rate of recovery.
However, we have ignored here the fact that a reduction in
infection rate would also reduce superinfection and so
accelerate recovery. In this case the inequality (5) may not
necessarily hold. Furthermore, although some drugs such as
chloroquine are known to have no effect on the infectivity

of mature gametocytes (Smalley et al, 1977) most malaria
drugs do. So the application of mass drug administration
would also mean a reduction in the number of infectious indiv-
iduﬁls and therefore that of infected mosquitoes. The result
would be a fall in B, the infection rate. In view of these

remarks, inequality (5) may be considered only as illustrative.

(b) k = 2. Here the human population is divided only

into two groups, the immune and the non-immune. This model

may be thought of as a stochastic analogue of the modified
model of Dietz et al. in section 2.4. One difference to

be noted is that, here, we allow gain in immunity levels to
occur between adjacent infectious states (Figure 9 ), following
what has been stated in the last chapter (Secfion 4.2). Ve
further assume here that the latent times are “both equal

to T.

We have 8 states with the elements of P given Dby the

following submatrices (from equation (1)).

0 0| 1 0 o 4
B = , C = , D = ,
B b 0] B 0 1-b 0 0
1-a 0]
E =
- o 1] (6)

where () < b < 1 and ) < d < 1. Substituting for
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B, C, D, and E in (2) and solving the result, yield

1 = {7,1d/b,0, I d(1-b)/bN,Nd/b, Hi(l—d), nd/o} (T

where the probabilities are in the order of the subsets

v,Uu,VvV,V,Y,Y,Z, %, and
1 2, 1 2 1 2 1 2

=]
I
AN

(1 +d/b - d/2)" 1 (8)

We note that (7) can also be got directly from Figure 9

fairly quickly.

If we define by y the row vector of the mean sojourn

times in the 8 states, then

1 1 1-d d 1 r, r,
o= { = ==+ =, =, =, — (9)
jﬁ t B’ B+ v T Ty vy v o a }
2 2 1 1 2 1 2

From (7) and (9) we then obtain, as before, the limiting
probabilities of being in any state of the disease. We
write below only the probabilities of being in the susceptible

states (1 and 2). Those of the other states may be similarly

derived.
(i) n =01 /(B n )
1 1 1 o
(10)
(ii) n =n d4/{ b (g *x In }
2 1 2 2 (]
where
m
no i 55‘-1 HQ,]JQ, .
_ 1 d d _
= i rem oy T 9
1-d 4 d+ a-dr, + dr
+ 5 + -Y—l +b-\72 l] bOLZ } (11)
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As in the case k = 1, suppose we would like to use the
model to choose some form of control measure. One of the
criteria could be to choose one that would change the para-
meters affecting the largest increase in the value of say

n1 and n2 or their sum. For convenience we shall denote

nootn, by n.

Let us consider for instance the case d = 1. This
is the situation in which we assume that every infected
-individual from ﬁhe non-immune level always gains immunity.
This is probably a fairly reasonable assumption, considering

that immune response is boosted every time one is infected.

n is then expressed as ,

YIng (12)

o

3
i
=]
—~
U)l"—‘
+
> | =

1
1 2

where the transition probability, b, is now replaced by

A /(B + 2 ), and T and n_ are of the forms
2 2 . 2 1 o

(i) T =x /(4B +6x )
1 2 2 2
(13)
. _ 1 1 1 (B, +A 1 r
(ii) nO "Hl (E' +3\' +-Y—+ 2 2)('T+; +.&))
1 2 1 A 2 2

2

Using the notation of Dietz et al. (1974), let

u 03 .
Ri = ?5 , i =1, 2, be the rate of transfer from the non-
Ti
infectious state to the susceptible state. We shall choose

the Bi and the Ri as our typical parametérs of interest for
control purpose. [f we assume that all the parameters are

independent of each other, then it is easily shown that the
partial derivatives of (12).are negative with respect to the
Bi and positive with respect to-Rz. The signs indicate that

n increases as either the % decrease or R2 increases.
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Informally, we can compare the effect of n by varying either

of the parameters and examining the ratio of the appropriate

absolute partial derivatives of n.

Thus, for § and R for example we have,

Q2

T N | 1,1 z
(1) 58 HI(B 5 ) (TH+ 5 t® )/(ino )
2 1 2 2 2
Giy 0o mdk w1y a AR”nz
o3 2+ 28, /ORI
1
so that
1 . .
n ol M = (T 45,)R, 41 (15)
3B oR R+A
2 2 2 2

If 8, » << 1 then we expect that the right hand side of
27 2
(15) is always greater than unity, indicating that varying
3] will have the greater impact on n. . We give some examples
2

for illustration.

We shall use the following typical parémeter values;

the time unit is one day.

19 days (the mean of 17 abd 21 days as

T=
suggested in section 4.3)
1 = 20 days for all i (Smalley et al., 1977)
Vi »
16_ = 2 years - approximate period of time for
2 i . .
immunity to wear off (section 1.95)
s 1/Y = 7 days - mean time for antibodies to

attain maximum level.




-94-
The results of the computation of n for the various
values of the Bi and R; are given in Table 2. It is apparent
from the last two columns that n increases more when the B3
are reduced than when R2 is increased by a Similar proportion
(here by 10%). Also the percentage increases are greatest
(least) when initially the Bi are large (sméll) and R2 small
(large). it would seem, therefore, that directing control
measures at the Bi is a good overall strategy{ Moreover, in
practice, the resultant reduction in superfection would also

mean an increase in R .
2

5.4 Simulation of Model

As mentioned at the beginning of the chapter, if we
allow the infection rates to depend on time, then apparently
the only way to proceed is by simulation. In this section we
consider the special case in which the Bi(f) are expressed as
in equation (4) of Chapter 4., Using some judicious choices
of rate parameter values we should be able to gain some insight
of the progress of malaria transmission with the time of the

year. First we give a brief description of‘the simulation

procedures.

5.4.1 Method of Simulation
A FORTRAN program was written specifically to carry

out the simulation. The procedure adopted closely followé

the steps described in a book by Mihram (1972, page 232).

The simulation is performed with the aid of scheduling
routines. These routines maintain an event list oonsisting

of the next transition between states due to occur to each
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individual. This is necessary because of the non-Markovian

nature of the process.

Initially, arbitrary numbers of individuals are assignéd
to each state, and the event list is filled with the random
exit times from these states. Thus no atfempt is made to
start the process in equilibrium. Each cycle of the simul-

ation then consists of

(1) Advancing time to that of the earliest event

on the list.

(2) Retrieving a code from the list describing the

nature of the transition.
(3) Deleting the event from the list.

(4) Modifying the counts of individuals in each state

according to the transition code.

(5) Generating the random sojourn time in fhe new
state and the next state to be visited for the

individual concerned.

(6) Scheduling the corresponding time and transition
code on the event list.
Monitoring the progress of the simulation is achieved by
scheduling a '"report'" event at regular intervals of time on

the same event list.’

The random number generatorsused are the uniform
(GO5CAF), exponential (GO50BY¥) and gamma (GOSDGF) distribution
generators of the NAG routine library (NAG, 1977). The

scheduling and fetching subroutines, which implement the event

- list as a binary tree, were provided by Dr. Peter J. Green.
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The points at which decisiohs about the next state
have to be made in the model are shown in Figure 8. They are
specifically df two types : getting infected or losing
immunity level, and, retaining one's immunity'level or gaining

one in the infectious stage.

To generate non-negative random variables, given a
sinusoidal hazard function, we use the cumulative distribution
function transform method (Hammersley and Handscomb, 1964,
Mihram, 1972).  In this case the procedure.reduces to solving
(by Newton-Raphson method) the equation 2(%(u)du = a

unit exponential random variable.

5.4.2 Results of Simulation

The time evolution of the prevalence of the disease
has been simulated for the number of immunity classes k =1
and 3. The results are presented graphically in figures

10 and 11.

The latent periods are again assumed constant and equal
to 20 days for all immunity levels. The time distributions

are as described in the last chapter.

Figure 10 shows the proportions of uninfected (or sus-
ceptibles) over several years for the case k = 1. The graph
represents part of the simulation some years from the starting
point in time. The simulation is of a population of 1000
initially assigned all to the susceptible phase. Whatever

initial population distribution was used made little difference

to the speed with which apparent equilibrium was attained.

" The rate parameters were judiciously set initially
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as follows:

Infection rate : b = 0.02, b' = 0.95
Rate of loss Qf infectivity :v = 0.1

Recovery rate parameters : o = 0.015 , r = 0.5

The results of varying some of the parameter values are also

shown in the figure.

The periodic forms of the variation in the susceptible
population, and hence the infected, show very clearly in all
cases in the figure. As expected, the oscillation for
b = 0.02 is more pronounced than that for b = 0.01. 1In the
latter case (b = 0.01)a was set at 0.025 to account for
expected reduction in the effect of superinfection. From the
figure we also note that the proportion of uninfected is
coﬁsistently lower for higher values of b, a realistic response
by the model. For instance, the maximum percentage of
uninfected for b = 0.02 is about 85% while that for b = 0.0l
is 95%. Their minima are about 33% and 55% respectively. 1In
every case, the féll in the proportion of uninfected is slightly
steeper than the rise. This is explained by the availability
of a large pool of susceptibles accumulated over the dry
season. After the peak of infection at the height of the wet
season; relatively fewer uninfected individuals are left to
be infected. This non-symmetric behaviour of the modei is
manifested later in Chapter 6 when rate parameters are

estimated from actual field data, using simplified versiorsof
the model.

Figure 11 is the result of the simulation for k = 3.

Again we start with 1000 individuals, of which 200, 400 and
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400 are assigned to immunity levels 1, 2 and B,respectively,

in the susceptible category.

The following table contains the parameter values used.

Immunity level 1 2 3
rates
Infection bi - 0.02 0.01 0.01
b%. 0.95 0.75 0.5
Loss of
infectivity vi : 0.1 0.15 0.15
Recovery ai 0.05 0.03 0.03
r. 0.5 0.5 0.5
Loss of Ai 0.03 0.03 0.03
immunity '
?
Gain of '
immunity Yy 0.15 0.03 0.03

The result shows that, taking the three immunity . levels
together, the proportion of the uninfected population varies
periodically with time as in the case k = 1. Similar period-
icity patterns are discernible when the uninfected immunity
level 1 are considered separately. However, the number of
uninfected in'higher immunity levels actually increases during

period of high infection and falls in the dry season.
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One result of reducing the b, and increasing oy is
shown in Figure 11. The proportion uninfected of the less immune (1)
is now much higher than before. Although fewer people are
infected, the general vulnerability of the population is now
high. This observation is in agreement with reality as
manifested by the Sri Lanka experience (Gillés, 1981).
Reducing the rate of loss of immunity appears to check this
vulnerability. The general level of infectéd population falls

as it becomes more and more immune.

5.4.3 General Comments

Although the model‘proposed here may not yield usable
results by analytic means, results from simuiation of the
model are in general agreement with some of what is known

about malaria.

The sinusoidal hazard function for the distribution of time
to infection seems to provide a picture of the process of the
disease which agrees qualitatively with reality. One inter-
esting result is that the rate of loss of immunity appears to
be a more decisive factor than say reducing the infection
rate. The efforts being expended to find a vaccine for malaria

is thus underlined.

One major difficulty with the model lies in the lack of
good data for validation. A better quantitative understanding
is required of the various phases of the disease to provide
more accurate éstimates of rate parameters and allow the

construction of more realistic models of transition time

distributions.
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CHAPTER SIX

SOME ANALYSIS OF THE GARKI DATA

6.1 Introduction

In the last chapter, we mentioned the lack of raw data
to assess the adequacy of the semi-Markov hodel. In this
chapter, we shall consider simplified versiqns of the model
to analyse some of the data from the Garki project described
in Chaptef 1 (section 1.6). In particular, we shall be
concerned with the estimation of 'apparent' incidence and
'apparent' recovery rates of malaria and other related
quantities, within different age groups. These rates are
said to be 'apparent' because the distinction, for instance,
between new infections and relapses from old infections is
not made in the Garki data. Sometimes incidénce rates may

be referred to as infection rates.

We begin by introducing a general form of the trans-
ition probabilities for a finite state Mafkov process. We
then focus on the special case of a 2-state Markov process{
which is essentially that of an alternating renewal process
(section 2). We also deri§e expressions for equilibrium
probabilities for a time-inhomogeneous version of.such a
process wheﬁ the elements of the intensity matrix vary period-
ically (subsection 2.2). The concept of embedding processes
in a class of continuous-time Markov chain is discussed in
subsection 2.3. 1In section 3, we estimate the incidence
and recovery rates by assuming exponeﬁtial (subsection 3.1)
and some other distributions (subsectiohs 3.2 and 3.3) for

the times to recovery, followed by a discussion of the results

QURHAM UN’VEHS/r},

2 3SEP 1982
SCIENCE | 1BRARY
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(subsection 3.4). Inhomogeneous Markov chain models are
considered in section 4, and applied to two sets of data.
The results are -discussed and compared with those from models

of the previous sections in the concluding section (3).

The analysis in subsection 3.1 is similar to that in
Bekessy et al. (1976) and Singer and Cohen (1950). However,
it was conéeived and largely carried out without prior know-
ledge of these papers. We have, nonetheless, incorporated a
number of ideas from them. For example, we had started by
using age group range of 5 years for the subjects in the
Garki project. But the ages that were recorded at Garki,
especially among the older subjects, were usually estimates
with a preference for multiples of 5 yearé. The grouping
advocated by Bekessy et al., and which we now use, attempts
to minimize this bias (Molineaux et al., 1980, pages 232-233).
We have also used their set of data (Table 5) for most of our
analysis. The condition of embedding a stochastic matrix,
generated by a given set of data, in a claSS of continuous-
time Markov chain is.that from the paper of Singer et al.
(1980). Other ideas from these two papers that have been
used in connection with subsection 3.1, are appropriately

referenced.

6.2 Transition Probabilities of Markov Processes

Following Singer et al., we shall assume that a two
parémeter family of finite NxN stochastic matrices, which we
denote by { P(s,t) }, o< s <t <t <=, satisfies the

following conditions (Goodman, 1970);
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(a) each element, pij(s,t) of P(s,t) is continuous

in (s,t), i,j = 1,2,...,N;

(b) B(s,t) = I, the identity matrix, if and only
if s = t;

(c) the Chapman-Kolomogonov equations hold; namely

P(s,t) = P(s,v) P(v,t) 0 <s<v <t

The matrix P(s,t) also satisfies the Kolomogorov

forward and backward equations, written in matrix notation as

(1) 3 B(s,t) = B(s,t) A(t), = P(t,t) = I;
T I (1)

P(s,t) = -A(s) P(s,t), PB(§,s)

Il
=

(ii) 3

s

provided 3 P(s,t) and 3 P(s,t) exist for all s < t.
9s ot

The elements aij(u) of the NxN matrix A(u) are bounded

measurable functions such that, for every u > o,

(1) aii(u) <o ,i=1,2,...,N
(ii) aij(u) >0 ,1i#%j=1,2,...,N : (2)
N
(iii) )} aij(u) = 0 i=1,2, ,N

j=1
The matrix P(s,t) may be viewed as describing an

inhomogeneous continuous-time Markov chain, with the elements

pij(s,t)‘as the transition probabilities frbm state 1 at

time s to state j at time t. A(u) is then the instantaneous

intensity matrix of the process.
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/

6.2.1 ‘The 2-state Markov process

In the case N = 2, P(s,t) may be written as,

—
1 —plg(syt) plz(S,t)

P(s,t) = " , o<sc<t (3)

p,, (s,t) 1-p,,(s,t)

where o < plz(s,t), p21(s,t) < 1, and the matrix A(-) may

be expressed in the form

— | -
- B(t) B(t)

A(t) = - (4)
| et ~a(t)

where o(t), g(t) > o.
Goodman (1970) has shown that if

t
sup f |aii(v)] dv < « , for all s and t, s < t, (5)
i
in addition to the conditions in (2), then the system of
equations (1(i))possesses a general solution P(s,t) that has
the properties (a), (b) and (c). The solution is also

absolutely continuous in s and in t, and satisfies the

system of backward equations (1(ii)).

In the case N = 2, suppose o(-) and R(-) satisfy (5).
Then using (3) and (4) we may write the forward eduations

in the form

(1) jLPIJS»t) g(t)(1 - plz(s,t)) - a(t)plz(s,t) ;

ot

(i1) 2p (s,t) = a(t)(L - p (s,£)) - 6(D)p, (s,t) (6)

ot
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Solving the above partial differential equations, we obtain

_ t t
(1) plz(s,t) = [ B(v)exp ( - J (a(u) + B(u))du) dv
S v
: (7)
: t t
(ii) p21(s,.t) = [ a(v)exp ( — [ (a(u) + B(u)) du)dv
S v
The inequalities
pll(s,t) p“(s,t) > det P(s,t) > o, (8)

where det P(s,t) denotes the determinant of P(s,t), follow

- trivially from

det P(s,t) =1 -p (s,t) -p (s,t)
t
= exp( - [ (a(u) + B(u)) du )
< |

> 0,

and

p (s,t) p (s,t) (1 -p (s,t)) (1 -p (s,t))
11 22 12 . 21

det P(s,t) + p (s,t) p (s,t)
- 12 21

> det P(s,t).
Clearly the equality holds only if either state is absorbing.

Det P(s,t) is interpreted (Karlin and McGregor, 1959)
as the probability that two individuals, each starting at
time s in states 1 (susceptible or negative state) and 2
(infected or positive state) respectively, and evolving
according to the law df the process, continue to occupy their
original states throughout the interval (s,t). The left side
inequality in (8) necessarily holds because the product,

p. (s,t) p (s,t), includes the probability of an even number
11 22 ’ .
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of transitions during the time interval (s,t). We note that
det P(s,t) > o as ls - t| + « , which means the tendency to
remain in one's initial state decreases as the time of contin-

uous odcupation of the state increases.

6.2.2 Periodic intensity matrices and equilibrium
solutions

It may be of interest to suppose that the elements of
the intensity matrix A(t) vary periodically with period y.
In that case, the equilibrium probabilities of the process,
if they exist, depend on t.

Let Eﬂt) = (Hl(t),Hz(t)) be the row vector of the
equilibrium probabilities. Then the equilibrium equations

are of the form

m(s) B(s,t) = n(t) . | (9)

with HI(S) + %(s) 1

Or

(1) 1,(s)(1-p (s,t) + T (s)p (s,t) = T (1)
(10)

(ii) T (s)p (s,t) + @[N(l-p (s,t)) = @ (t), s< t
1 12 2 21 2

T let t =s +ky k =0,1,2,....,

We expect that I&(s + ky) = ni(s) (because of periodicity of
A(*)) for all i, then (10) may be written as
(1) M (s)(L -p (s,s +ky)) + N(s)p (s,s +ky) = I (s)
(11)
(ii) T (s)p (s,s + ky) +I (s)(1 - p (s,s *+ Kky) =1 (s)
1 12 . 2 21 2

Solving for Hl(s) and Hz(s), we obtain

_ p21(s,sﬂqw
(1) [(s) = g _ (s,s¥ky)¥p__(s,5%Ky)
1
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p,,(s,s+ky)
plz(s,S+ky)+p21(s,s+ky) . (12)

(ii) T (s)
2

for all integer k.

The denominator of (12) may be obtained frbm‘(7) to be of

the form

;. Istky)
I(s)

s _
where I(s) = exp(- [f(a (v)+B(v)) dv). And since g(v) and
o .
B(v) are both periodic, we have

S+ky :
I(s+ky) = exp(- [ (a(v)*+ g(v)) dv)
(o]
= 1(s)i(E | | (13)

so that the denominator of (12) becomes 1 - I(y)k. We note
that, since g(v), g(u) >o, it follows trivially from (13)

that, if we set s = o and k = 1, we have o< I(y) < 1.

We also have

s+ky s+ky
p, (s,s*ky) = [ a(v)exp(- J (o(u.) +g(u))du ) dv
. S v .
k s+iy s+iy
= I ;S alw)exp(- s (a(u)+ g(u))du)dv
i=1 s+(i-1)y v
= (1 + I(y) + I(y)2+....;..%I(y)k—1)
S+y . s+v
x [ a(v)exp(- J (a(u)+g(u))du) dv
S v
_ a-1m® 14
- 1_I(y) p21(S,S+Y) ( )
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Similarly we may obtain the result -

p12(4S’S+kY) = —1:—1—(‘3}-)— p, (s,s+y) . (15)

By substituting l—I(y)k for theﬁdehominator and (14)

for the numerator of the right side of (12(1)5, we obtain

(1) m(s) =P, 55
! 1-I(y)
and from Hz(s) =1 —Iﬂ(s), (16)
(11) H(S) = p~12~(s:s~+Y)
2 1-I(y)

)

These results may also be obtained as limiting probabilities,

directly from (14 and (15) as k > (0o < I(y) <1).

6.2.3 The Embeddability Condition

According to Singer and Cohen (1980), a finite stochastic
matrix P is said to be embeddable in a continuous-time Markov
chain if there exists a two-parameter family of stochastic
matrices'g(s,t) satisfying conditions (a); (b) and (c), given
at the beginning of this section, in addition to P(o0,1l) = P.

A necessary condition for embeddability of matrix P of any

order has been proved by Goodman (1970) to be detP > o. This

condition has been shown to be also sufficient for 2 x 2
l\omogen,e,sus case)

stochastic matrici?{ and in this case is equivalent to trace

P > 1 (Singer et al. 1980) .

As pointed out by Singer et al., such a matrix P has
the disadvantage of being embeddable in unéountably many

inhomogeneous continuous-time Markov chains. But this same
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aspect may be used to advantage since it allows for some
degree of flexibility in the choices of suitable algebraic
forms for o(+) and B(+), based either on some nice mathem-
atical properties or some known characteristics of the process
under consideration. The matrix is,however,embéddable in a
unique homogeneous chain (ibid). It must alsa be poinfed

out that non-Markovian processes are capable of generating

stochastic matrices P such that det P > o.

They proceed to develop hypotheses to test, a priori,
whether or not a set of data may be embedded in a homogeneous
continuous time Markov chain. The null hypothesis, HO: det P> o,
is tested against the alternative hypothesis, }% : det P <o.

A three-way decision rule is used, based on some suitably

derived parameters 61 > o0, 1 =1,2.

Thus, let P be an estimate of P. Then, if

(1) det E 3>51, accept H_ ;
(ii) det E <@62, accept H1

(iii) —ézi det é 5_61 , there is inadequate evidence
either to accept or reject Ho’ probably an indication of
insufficient data. They do not say, however, what should be
done in such a case. The numbers 61 and 81 are derived from
asymptotic sampling distribution of P for given probabilities

of rejection,a1 and azrespectively.
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6.3 Estimating the Incidence and Recovery Rates

The 2-state model outlined so far is essentially a
simplified version of the semi-Markov model described in
Chapter 4. We have reduced the number of states from four to
two within each immunity category by combining the latent,
infectious and non-infectious states to form the positive
or infected state. The susceptible state is also known as
the negative state. A person is in state 1 or the negative
state if he has no microscopically detectable parasitamia

’in his blood, otherwise he is in state 2, or the positive state.
We note that state 1 is not a susceptible sfate in the real
sense, because the mere absence of parasitamia (checked by
microscope) is no proof of being free from the disease (Cohen,
1979). In addition to combining some of the stafes, we have
assumed there are no transitions between immunity levels.

These levels now correspond to age-groups. Our basic assum-~
ption is still that for each individual, the underlying
stochastic process between two successive observations is a

2-state semi-Markov prbcess, or alternating renewal process.

6.3.1 Homogeneous Markov Chains

The simplest version of the 2-state model, herein
referred to as model A, is one where the times of transition
between states are assumed to be exponentially distributed.
The model thus describes a 2-state homogeneous continuous-
time Markov process, where g(s,t) depends only on the length,
t-s, of the time interval (s,t) and so is equivalent to

$(t-s), o < s <1t, (section 3.3).
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Because of the homogeneity assumption, the elements
of the intensity matrix é(-), are constants so that equations

(7) now become

(1) 9, (t=8) = E={ 1 - exp(~(a*B)(t-5)) )

(17)

(i1) ¢ (t-s) = ;3= { 1 - exp(-(a*p)(t-5)) }

As mentioned earlier (section 1), model A is identical
to that applied by Bekessy et al to baseliné data of the Garki
project. This set of data is reproduced in Table 3. The
data are transition frequencies, nij of perSons observed in

state 1 at one survey and in state j at the next survey,

i,j = 1,2. Each entry is a 2 x 2 array

classified by age group and the pair of successive surveys.
The.age groups, seven in number, used here and in all sub-
sequent discussions are : less than one year‘(o < 1),
1-4,5-8, 9 -18, 19 - 28, 29 - 43 and 44 years and over.
Five pairs of surveys are used, which are (3,4), (4,5),
(5,6), (6,7) and (7,8); they are respectively 68, 78, 81,
76.and 70 days apart. The ages are all measﬁred from
survey 1.

The 2 x 2 tables are all treated as iﬁdependent samples
with separate parameter estimates. To carry out the estim-
ation procedure, wevassume the two rows of each entry to |

be independent binomial observations} The logarithm'of
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the likelihood function of an entry for the 2th survey pair

. is given by

% 2 ni_
log 0, ((t) + T log, ( N ) (18)
i=y iil

L(a,By%’) R « R
1,] 1)

where Ty, is the number of days between the #th survey

i = = n. + n,
pair, 2= 1,2...,5, n,, = n;, +n,, and
n, n, !
( ie ) _ ie ‘
n- n.. ! (n,=n..) !
ii ii i Tid

The maximum likelihood estimate of ¢ij(t2) is given by

~

¢ij(t£) =n i,j = 1,2.  We obtain the maximum

likelihood estimates of & and B of each entry by solving

i3/ 04,

(17), using the estimates of ¢ 2(tg) and ¢2(tz), with t-s
1 . 1

replaced by t

%
. $. log_(1-3 - § )
; = _ 21 e 12 21
(1) a tg(@lz = @21)
(19)
. $ log (1-¢ -8 )
.. - .12 e 12 2
(11) B | .tgl( ¢12+ @21)

where the arguments of dﬁj(') are suppressed.

The argument of the logarithmic term-in (19) is
det é, and must be positive for a and B to be estimated.
This is the embeddability condition pointed out in sub-section
2.3. Bekessy et al. héve suggested that a negative value of
det'é may mean the data are generated by an inhomogeneous
process which may still be Markovian. However, by the embeddab-

ility criterion this is not necessarily the case, a point
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noted by Singer and Cohen (1980).

Provided det § > o0, the estimated covariance matrix

A

of & and B, denoted by C(&,é), is given by the inverse of

the Fisher information matrix, computed at ¢ = & and B = é.

o - -1
5%L 3%L
da? 3adB
C(&,é) = -
32L 3°L
3098 3g2 ) a=a B=B (20)

The elements of the information matrix are:

(i) - 2L

502 {Sl($12V +$21U)2 * Sz($1zv '$1£U)2} /(stzUzvz)

2 . . . A‘ - . S )
(11) —.»283 = (8,(3,,V + 6,7 +8,(3,,V - 4.1} /(55 UV?)
(21)

Gii) - 2L - (w-vy{s § G V+ U
8&38 2 12 21 12

A~ ~ ~ ' - 2yy2
* S1¢21(¢12V+¢21U) } /(SISZU v ) ’

where
(1) U= -log (1-8 -4 )/t
.(ii) V-= ($12+$21)/ { (1—612- 821)t¢Qz } . (22)

(iii) Si = ¢ij(1 = ¢ij)/ni’ ’ i # j = 1;2

'Using equations (21), the explicit formula for the elements

of the covariance matrix (20) are then,

(1) var(e) = {Sz('$z1v-"$12U)2 +Sl($12v_$21 U)Z}/($1z+$21)q
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s Ay = 2 2 2 2 v_d 2 P 4
(11) var (B) = (S (B y+§, U)*+5 (§ V-3 0%} /(§ #6, )" (23)

n

(iii) cov(a,B) = (V-U)1 §,9, (6 ¥+&, U)+S,8, (8, V+8 ,UD} /(8 #8, )"

Equations (23) have also been derived by Bekessy et al. ((1i)

and (ii) only) and Mueller (in Singer and Cohen, 1980).

The results of applying model A to the data in Table
3 are listed in Table 4. These are the estimates of o and B
(columns % and 4f?ésp;cti§ely) and their respective estimated

‘ o (n brackets) -

standard errors (columns 3 and 4)) obtained from the estimated
covariance matrix. The table also contains the corresponding
:estimates for det® (column 6), which may be thought of as
some measure of embeddability. Clearly, none of the entries
of Table 5 violates the embeddability condition, although
about four values of det ¢ are relatively close to zero
(survey pairs (4,5) and (5,6) for both age groups of less
than one year (o < 1) and 44+ yearé): However, before we
proceed to discuss these results we would like to consider

other models that may also provide good, if not better, des-

criptions of the data.

6.3.2 Other non-Markovian Models

It may be argued that, while it is fairly reasonable
to assume that incidence times are exponenfially distributed,
the duration of én infection is not entirely memoriless.
Hence, in this section we explore some cases in which time to
recovery is assumed to have distributions other than expon-

ential. 1In particular, we consider the case where recovery

.,time has a gamma distribution with parameters r > 1, and a,

as suggested earlier in Chaptér 4, More speqifically, we
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TABLE 4

Malaria Recovery and Incidence rates
and their standard errors estimated
by model A, plus det @.

Age Recovery rate |Incidence rate!% correl. .
Survey | groups | (10” *day”!) (10" *day”!) |coeff. det ¢
pairs (years) (s.e.) (5895
(3,4) | 04 48  (13) 38 (10)! 28 0.
1-4 18 ( 3) 70 (16) - 4 0.
5-8 29 ( 5) 171 (30)i 60 0.
9-18 57 (7) 90 (12) 50 0.
19-28 108 (14) 50 ( 6) 53 0.3
29-43 179 (19) 59 ( 6) 72 0.
44+ 183 (25) 54 ( 7): 7 0.
(4,5) 0«1 , 85 (76) 323 (194) 95 0.
1-4 18 ( 4) 220 (34) 60 0.
5-8 21 ( 4) 233 (37) 64 0.
9-18 33 ( 95) 129 (13) 53 0.
19-28 95 (13) 89 ( 9) 69 0.
29-43 141 (17) 102 (10) 97 0.
44+ 178 (37) 125 (21) 91 0.
(5,6) 0<1 30 (16) 245 (73)] 69 0.
1-4 17 ( 4) 175 (35) 58 0.
5-8 29 ( 5) 204 (39) 79 0.
9-18 53 (7 123 (17) 66 0.
19-28 112 (13) 94 (11) 74 0.
29-43 166 (17) 89 ( 9) 82 0.
44+ 190 (28) 88 (14) 85 0.
(6.7) o<1 26 ( 8) 49 (15) ! 28 0.
1-4 16 ( 4) 149 (31) 54 0.
5-8 32 ( 6) 186 (35) 71 0.
9-18 63 ( 8) 93 (14) 60 0.
19-28 145 (15) - 47 (7 62 0.
29-43 | 191 (16) 42 ( 5) 65 0.
44+ 211 (24) 42 (7) 70 0.
(7,8) o<1 - 41 (10) 15 ( 6) 19 0.
1-4 11 ( 3) 111 (25) 37 0.
5-8 23 ( 4) 181 (30) 56 i 0.
9-18 | 54 (7) 71 (10) 44 . 0.
19-28 ' 115 (15) 44 ( 6) 50 0.
29-43 171 (18) 46 ( 5) 66 . O.
44+ 208  (32) 53 ( 8)| 175 | O.
'
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discuss the cases r = 2,3, assuming the process is in equilibrium.

Essentially, these models are examples of equilibrium
alternating renewal processes. Regardless of the distribution

bDrms, if we define ﬂij(.) as

lim Prob { Z_,, = j| 2, = i} , #j = 1,2 (24)

g >

Hij(t)
then Cox (1970, pages 85-86) has shown that

= - (_U.(t) ' i 1 = -
Hij(t) n; m i#3=1,2 | (25)

where, as before, nj is the limiting probébility of being in
. _ .
state j and the function w(t) has Laplace transform  (6)
given by
* X% * %
nuo _ (1-F(8))(1-F (8))
2 )

i) = 21

(26)
6 02(1-F, " (8) F. (8))

We note that here the transition probabilities of the embedded

Markov chain are simply p, =p,6 =0 and p,=p = 1.

In our particular case, we have

% %k _ B * %k _ o r
F,0) =g3 F,,0) = (G7p (27)
with M= 1 and M= L . We first consider the case r = 2,
B ' o

which we identify as model B. This is followed by model

C, where r = 3.

(a) Model B (r = 2)

We substitute (27) with r = 2 into equation (26)
and invert the resulting Laplace transform to obtain w(t).

The result is‘substituted into (25), and after some




-118-

simplification and rearrangement ,

i #J ='l,2
where
exp(ulat) { 2u2cos(u2at)+(3+2ﬁl)sin(uzat) }/2u2
g(O',B,‘?‘)t) = < o < p ¥ 8 (29)
exp(ulat)’{(3+2(u1+u2)) exp(uzat)
] ' +(3+2(u1—u2)) exp(fg;at) } /u, i
p>8
with
(i) u1 = -—(4+p)/4
((80- 0%) /4 o<p <8 (30)
(ii)' u2: <
(p2- 8p) /4 p > 8
L.

and p is the ratio of the mean recovery and infection rates.

If we apply model B to each of the 2 x 2 entries of

Table 3, we obtain, by the maximum likelihood method, the

following relations

=3
1
=>
—~
-
|
o
~
]

nij/ni' i # J = 1,2 . (31)

where all arguments are suppressed. Equations (31) immed-

iately lead to

"M
(1) n. = - i3
: 1 n n ,n n
12 2 21 1e -
(ii) g =1-n /n -n /n

12 le 21 2
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from which we also obtain

(n n )/(n2 n ) (33)

12 20 1 le

©
it

From the expression of g(a,8, 2;t) it is clear that
estimateé fér o and B can only be obtained by numerical
methods. To this end, it is required only to solve equation
(32(i1i)) for o, using for instance, the Newton-Raphson
method. Estimate for g is then obtained from the relation
28 = pa. The results of the computation are listed in Table 5.
The asymptotic covariance matrix is obtained'by evaluating the
derivatives by finite difference, and we use Romberg's inter-
polation method (é%eid, 1968, page 108, Fox and Meyers, 1968,

page 176), to reduce truncation and rounding off errors.

A quick comparison of the results in Tables 4 and 5
shows that the estimates of the rates of model B are consist-

ently lower than those of model A. But before a detail

P N

comparison, let us consider the case r = 3..

(b) Model C (r = 3)

In this model, the substitution of (27) into equations
(26) for r = 3, and the result of inverting the Laplace
transform, yield expressions identical to equation (28).

‘However, we now have g(a,B, 3;t) expressed as

3 3a§ + 8a, + 6 -
g(a,B, 3;t) = I = — exp(a.at) (34)
i=,3(2y,m2)(ay ma,) 1

where addition of subscripts is modulp 3 if it is greater than

3. The oaj, i =1,2,3, are the cube roots of the Laplace
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TABLE 35

Malaria Recovery and Incidence rates
and their standard errors (s.e.) estimated

by model B.
: ~Age [Recovery rate | Incidence rate |% correl.
. Survey | groups -y -1 -y -1 coeff
pairs | (years) (10 -"day *) (10 Aday )
2r (s.e.) B (s.e.)
(3,4) o<1 38 (10) 34 (¢ 9) 17
'1-4 17 ( 2) 66 (10) 31
5-8 26 ( 3) 153 (23) 61
9-18 48 ( 6) 77 ( 9) 34
19-28 87 ( 9) 41 ( 5) 37
29-43 135 (11) 45 ( 4) 58
44+ 138 (15) 41 ( 5) 57
(4,5) 0«1 59 (13) 224
1-4 16 ( 2) 198
5-8 18 ( 2) 207
9-18 29 ( 4) 113
19-28 75 ( 7) 71
29-43 105 ( 8) 76
44+ 128 (17) 89
(5,6) o<1 25 ( 6) 206
1-4 15 ( 2) 160
5-8 25 ( 3) 175
9-18 44 ( 5) 103
19-28 86 ( 8) 72
29-43 121 (10) 65
44+ 135 (18) 63
(6,7) 0<1 24 6) 45
1-4 15 ( 2) 138
5-8 28 ( 4) 161
9-18 52 ( 6) 78
19-28 111 (13) 36
29-43 141 (14) 31
44+ 154 (22) 30
(7,8) | 0O<1 37 (11) 13
I 1-4 10 (1) 106
5-8 21 ( 2) 164
9-18 46 ( 5) 58
©19-28 92 (10) 35
129-43 130 (11) 35
44+ 153 (19) 39
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transform w*®), and the a; are given by

(1) 1 c-d/c - 1 - P/§

©
Il

(ii) a_ =wc - Wd/c -1 - p/9 | (35)

(iii) a wic -wd/c -1 - p/9

where
(i) c = { T% (K - L/81)}
(i) d = -5(9-0)
(iii) w =1 + iéé
(iv) k = 1 *ele-l?d)

81

(v) L= 2p2-27p + 243

We still have the same expression for the estimates of
g(o, B 3;t) and o in terms of nij given by (32(ii)) and
(33) respectively.

Again we must resort to the Newton-Raphson technique
to calculate estimates of o and B. As in model B, we first
solve for o and then obtain B from the relation 38 = po,
The estimates of the parameters ffom the data in Table 3
appear in Table 6. Attempts 1o obtain their standard errors

by computing the asymptotic covariance matrices numerically,

as in model B, produced rather inconsistent results. This is
probably because of truncation and rounding off errors which

even the use of such refinement as Romberg's interpolation

techniQue could not reduce significantly.
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One way to get round this difficulty is to estimate

the variances and covariances of the parameters by Monte

Carlo techhiques as suggested for instance‘by Singer and

Cohen (1980). This involves generating say 1000 stochastic
matrices from binomial samples of sizes n1 and n2 , with

. .

parameters I&i =Iﬁi/lﬁ. i=1,2, respectivelyi The binomial
variates so produced are then used to compute the a's and

B's using equation (34) by. Newton Raphson or some other method.

The Monte Carlo estimates (subscripted mc ) are then obtained

from the equations

1000

(i) E _.(a/3) = 0.001 I (%)j
=1
~ 1000 A
(ii) E_, (B) = 0.001 jil (B)j
~ 1000 ~ : ~ 2
(¥ii) var_ (a/3) = 0.001 jg (a/3fj - (E . (a/3)) (36)
. = _

1000 A~

2 By 2
0.001 =1(B)j - (EmC(B))

(iv) varmC(B) ;

A .

1000

0.001 I (B);(0/3); = E (B)E, (0/3)

(v) COV(&/S,E)
mc

where the subscript j denotes a value of the respective
parameter computed from the j-th matrix generated (cf. Singer
et al.v1989). We used subroutiné GOSEDF from the NAG routine
-library (NAG, 1977) to generate these binomial variates for
each of the 2 x 2 array entries of Table 3. The Monte Carlo

estimates of the standard errors are the ones given in Table 6.
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TABLE 6

Malaria Recovery and Incidence rates
and their standard errors (s.e.)
estimated by model C.

Age Recovery rate | Incidence rate
Survey groups -y -1 -y -1
. (10 *day *) (1Q *day ') .| % correl.
pairs | (years) q)/{(s.e.) B (s.e.) coeff,
(3,4) 0<1 37 ( 8) 33 (7 11
1-4 17 (1) 65 (15). 100*
5-8 25 ( 2) 149 (24) 100%*
9-18 46 ( 5). 74 ( 9 31
19-28 81 ( 8) 38 ( 4) . 31
29-43 121 (10) 40 ( 3) 52
44+ 123 (13) 36 ( 4) 53
(4,5) o<1 53 (10) 200 (22) -18
1-4 16 1) 195 27) - 100*
5-8 18 ( 1) 202 (28) 100*
9-18 28 ( 2) 110 (10) 44
19-28 69 ( 7) 65 ( 5). 44
29-43 94 ( 8) 68 ( 5) 63
44+ 110 (16) 77 ¢ 9 79
(5,6) o<1 ' 24 ( 6) 199 (40) 43
1-4 15 (1) 158 (30) 100*
5-8 24 ( 2) 170 (27) 100*
9-18 42 ( 4) 98 (11) 48
19-28 78 ( 7) 65 ( 6) 52
29-43 106 ( 8) 57 (5) 66
44+ 117 (12) 54 (7 72
(6,7) 0<1 : 24 ( 4) . 44 (13) 27
1-4 15 (1) - 136 (28) - 100*
5-8 27 ( 2) 156 (26) 88
9-18 | 50 ( 5) 74  (10) - 42
19-28 | 100 ( 8) 33 ( 4) 45
29-43 124 ( 8) 27 ¢ 2) 56
44+ 135 (12) 27 ( 3) 61
!
(7,8) o1 36 (. 7) 13 ( 3) _ 5
1-4 ; 10 (1 106 (24) 100*
5-8 ‘ 20 (1) 161 (24) 100*
9-18 . 44 ( 5) 56 ( '8) 27
19-28 85 ( 9) 33 ( 4) 32
29-43 116 ( 9) 32 ( 2) 51
44+ . 135 (17) 34 ( 4) 66

* Note the high correlation coefficients between the rates
for 5-18 age groups.




-124-

While we defer, until a later section, the comparison
of the estimates of the recovery and infection rates obtained
by the various models, we need to note at this juncture that
from tables 4-gcorresponding estimates of these rates decrease
as r increases; that is, in the order of the models A, B and
C. As these rates are bounded below by o, it would seem that
as r > ® their values tend to some finite limit. However,
we have not been able to obtain explicit expressions for these
rates in terms of r; consequently we are not able to get
analytically expressions for the limit.  Nonetheless, we |
can obtain tight bounds for the rates if we consider an
example of a model in which recovery time is assu&ed to be

constant for each age group and survey pair.

6.3.3 A model with constant recovery times

This model, herein referred to as model D, may be
thought of as having gamma distributed recovery times in which
we let r+ » andog » o with r/joa = k fixed, to obtain a
concentration of probability at k (Cox and Miller, 1977,
page 258). 1In addition, we shall set a constraint on the
parameter space by aSsuming that times between successive
surveys do not exceed k. This has the result of restricting
the number of an individual's transitions befween successive
surveys to at most one. The model is not therefore correct in
the strict sense, for we need also to consider the case k < tg.
However, this case introduces the problem of deciding just how
many transitions to allow between consecutive surveys. Cases
have been recorded of uncomplicated P.falciparum infections
clearing within two months (Kitchen, 1949), and we have also

already mentioned the fact that some may last for as long as

1 year;
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To derive the conditional probabilities <ﬁj(t), we

proceed as follows -

Let T1 be the random time spent in stafe 1 before
moving to state 2, measured from the time of the first survey,
and exponentially distributed with mean %,Y,_the random
time spent in state 2 before moving to state 1, measured
also from the first of the two surveys but distributed unif-

ormly in (o,k). Let T be the random time spent in state 1,

and like Ti, distributed exponentially with mean 1/g. The

time between the surveys is tg,ﬁ =1,2,...,5.
Then,
(i) ¢12(t2) = Prob { T1 < tz}
LTt _Bt
I 7 e du =1-e¢e 2
O : i
(ii) ¢ (t )=Prob { Y<t,, Y+T>t, !} (37)
te : 1
=/ "Prob { Y + T > tll Y=y} gdy
(o]
t
= fo2 Prob { T > t, -y } = ay
1 Yy -B(t,-y) -gt
= K S Te L dy = (1 - e L) /Bk
(o]
t, <K
9 =1,2,...,5

As in previous models, we assume binomial sampling of
the transition counts, and use maximum likelihood estimators

of ¢ and ¢ (given in subsection 6.3.1) to obtain estimates
12 21
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for B and k, from equations (37)

>
Il

(i) -logg(1 - @ )/t

(38)

(ii) ‘k max { _tl¢12/(¢2110ge(1 - ¢12)t2 }

provided ¢ 2,@ # o orl. These limitations are analogous

1 21 .
to the embeddability criterion of subsection 2.2 which would
restrict model D only to data with no zero transition counts

such as those in Table 3.

A A

With the conditions, o < ¢ < 1, satisfied the

12’ 21
asymptotic covariance matrix, C(é,ﬁ), may again be obtained
by the inverse of the Fisher information matrix, computed at

8 =% and k = k.

— - -1
L 3L
9B * 3Bk
C(B,k) = - ) (39)
2L 3L
| 883k 9k? (=8, k= k

where, as before, L is the logarithm of the likelihood

function. The elements of the information matrix are given

by
. 3L _ w2 272 2 ~ 2 2% &
(1) - = V-{ S U%¢ + S ¢ (U+¢ H*} /(U%9 )
882 1 12 2 21 ‘12 12
2 ' _ ’
(i1) -2 f =5 U%* /v (40)
ok
| , )
(iii) - &L= s (u+d H$® /8%
aﬂak .2 12 21 12
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where now we have

(1) U = (1-9 )log, (1 -4 )
(1) V=t (1 -4 )
(iii) s; = ny/0 655(l-ey 0} 17312

From (40), the elements of matrix (39) become

) . A - A 2
(i) wvar(B) ¢1J {SIV }
(ii) var (ﬁ) = V?{ 8 U2$2+s $2(U+$ Y2} /{S S $2t1“$“}, (41)
. 1 12 2 21 12 1 212 21

(iii) cov (B8,k) = -(U+$12)/{ sl$2y2 }

k>t

The results of applying model D to each 2 x 2 array
entry of Table 3 are listed in Table 7. Inspections of
tables 4,5,6 and 7 show a consistent and gradual fall in the
estimated rates in the order of the models A, B, C and D.
That estimates of the rates from model A are higher than

those from model Dycan be shown to hold analytically.

Let a, = 1/k, where the subscript indicates the model

D
used. From equations (19) and (38), suppose k > tl’ then

clearly
oA = BA oge( ¢12 ¢21)
N ~ ”~ + AN
ap Bp (¢12 ¢21)
A
1 -
0g.(1-9 )
¢

12
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TABLE 7

Malaria mean Recovery times and Incidence
rates and their standard errors (s.e.),
estimated by model D, plus comparisons with
the results of model A

Recovery time Incidence : Comparison
Survey Age rates % Corr- with model A
pairs |groups (days) (10 *day ') el. ¢y g QA 1
(years) E (s.e.) B (s.e.) coeff. =— E—_
a.
D D
(3,4) o<1 275 (70) 32 ( 8) -11 0.15 0.19
1-4 591 (87) . 65 (14) -30 0.06 0.08
5-8 400 (56) 148  (23) -46 0.16 0.16
9-18 221 (21) 72 ( 9) -28 0.26 0.25
19-28 135 (11) 35 ( 3) -14 0.45 0.43
29-43 101 ( 5) 33 ( 2) -15 0.81 0.79
44+ 100 ( 6) 29 ( 3) -15 0.82 0.86
(4,5) o<1 208 (78) 182 (24) -20 0.77 0.77
v 1-4 635 (120) 194 (25) -39 0.14 0.13
5-8 559 (92) 201 (26) -45 0.17 0.16
9-18 357 (42) 108 (10) =27 0.18 0.19
19-28 159 (13) 59 ( 4) -19 0.51° 0.51
29-43 128 (7 57 ( 3) -19 0.80 0.79
44+ 117 ( 8) 60 ( 4) 220 1.08 1.08
(5,6) o<1 420 (170) 196 (39) -29 0.26 0.25
1-4 672 (128) 157 (28) -47 0.14 0.11
5-8 423 (59) 168 (25) -57 0.23 0.21
9-18 250 (22) 924 (10) -41 0.32 0.31
19-28 147 ( 9 57 ( 5) =22 0.65 0.65
29-43 119 ( 5) 45 ( 3) -27 0.98 0.98
44+ 113 ( 5) 41 ( 3) -28 1.14 1.15
(6,7) o<1 426 (115) 44 (13) - -18 0.11 0.11
1-4 672 (127) 136 (26) -44 0.08 0.10
5-8 373 (57) 154  (23) -53 0.19 0.21
9-18 211 (19) 71 ( 9 -36 0.33 0.31
19-28 118 ( 6) 27  ( 3) -25 0.71 0.74
29-43 103 ( 3) 21 ( 2) -22 0.97 1.00
44+ 99 ( 4) 20 ( 2) -21 1.09 1.10
(7,8) 0«1 279 (59) 13 ( 5) -9 0.14 0.15
1-4 959 (214) 106 - (23) . -31 0.05 0.05
5-8 488 (76) 161 (23) -42 0.12 .0.12
9-18 231 (23) 55 (7 =24 0.25 0.29
18-28 130 (10) 29 ( 3) -14 0.50 0.52
29-43 104 ( 5) - 26 ( 2) -14 0.78 0.77
44+ 95 ( 6) 27 (3 -14 0.99 0.96
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= 221 (42)
(¢ +¢ 1)IOge(l-¢ )
Sincé .
_ logg (1-¢ -0 . ) log (1-¢ )
”~ + N N
¢12 ¢21 ¢12
then
10ge(1—¢ - ¢ 3
12 21
§ + 9
12 21 > 1 ‘ (43)
_ 1Oge(l_¢12)
$
A /B\ 12
which implies o2 = -2 > 1.
, op  Bp
- Similar results are obtained when GD = %
2
While (43) still holds for EA , we now have
‘ B
D
~ ' A
ié _ ¢ 1oge(1—¢ -Ql)
a N + A
D ¢12 ¢21
A l _ N
> - ¢21 oge(l ¢12) ' (44)
¢
12

But since from (38 (ii)) we have (because k = tl)

t > - t2$ / {4 log (1= )},

L - 12 21 12
then,
_ ¢21 _<— 1 )
3, log (18 ,) .
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from which we obtain the inequality

o ¢)211()8:6(]'_(1)12) N 1 (45)

~

12
A possible explanation for the low estimates of the

rates from model D compared with those from A is that, model
A allows for several transitions between consecutive surveys
while model D is restricted to at most one transition only.

It could be said that model D under-estimates the rates.

- From tables 4 and 7, we observe thaf the discrepancies
between the estimates of the rates by models A and D are
greatest among the older age groups. These are the groups with
genegally high recovery rates most of which have their
reciprocals (expected recovery times as by model é) less . .
Ehan the times between surveys. The quantities %é - 1 or
Zé_ - 1 may be used to assess the levels of discregancies
bgtween:corresponding estimates. These aré*given in the last
two columns of Table 7. Among the youngér age groups (0O - 8),
these values are largest during the wet season (survey pairs
(4,5) and (5,6)), the period of high infection rates
and low recovery rates. Overall, these quantities are large
for high rates and small for low rates. Despite these dis-

crepancies, all the four models give qualititively similar

patterns of results with respect to age and season « -

We note in passing that model D may be used to describe
data that are inconsistent with class of continuous-time
Markov models. Some of the transition counts in the inter-

vention and post-intervention phase of the Garki project are
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of this type. For example, transition counts of infants in
certain villages in Garki, at surveys 21 and 22 are given

by Singer and Cohen as the matrix,

— -

68 28

A7 4

Since det ¢ has the same sign as det (hij) and det (nij) =
68 x 4 - 28 x 17 < o, then the matrix does not satisfy the
embeddability condition. Now if we use equations (38) and

(41), with t.. = 70 days, we obtain B = 0.0049 (s.e.= 0.0009)

22
and ﬁ = 73.14 days (s.e = 0.56).

However, the restriction that the intervals between
successive surveys should not exceed k may not always be
satisfieh.' For example, if intervention includes mass drug
administration of the de facto population, then it is possible
that k may lie outside the restricted parameter space. This
is because mass drug administration would bring about quick

clearance of parasitamia and that means short recovery periods.

It is not possible to discriminate among these four
models (A,B,C and D). Essentially, the first three may be
considered as versions of the same model, with r = 1,2 and 3,
respectively. Ideally; we would like to estimate r simul-
taneousiy with o and B. However, this would introduce the
problem of non-identifiability of r and a(Silvey, 1975, page
50). Moreover, we cannot use the usual goodness of fit
test since all the models fit the data equally; the log

likelihood value for any 2 x 2 array is the same for any r.

Alternatively, for each age group, we could simultaneously
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estimate r, a and B across several 2 x 2 arrays. However,
because of expected heterogeneity among these arrays with

respect to season, it may not be appropriate to do so.

In view of the above difficulty, we hay only specul-
ate that the intermediate models (B and C) would provide
reasonably good descriptions of the process. ~Model D may be
useful to give simple and rough descriptions of non-embeddable

transition counts..

6.3.4 The Results of Model Applications

As already stated, the corresponding estimates of both
the (apparent) incidence and (apparent) recbvery rates
obtainedvfrom models A, B, C and D, exhibit similar qualit-
ative patterns. These patterns are associatéd both with
season and age. Figures 12 and 13 give visual summaries of
the rates as computed by the four models. We briefly describe

below the variations in these rates.

(a) Incidence Rates

From Figure 12 we see that incidence rates are gen-
erally low during the dry season ((i), (iv), (v)) and high
during the wet season ((ii), (iii)). With regard to age,
during the dry season the rates rise steadily to their
highest level at the 5-8 years age group. They then decline,
steeply at first, then gradually, to level off from age 28.
During the wet season, infants show the highest incidence
rates which decline gradually at first, and then more rapidly
from 5-8 years age group to 9-18 years age group. After
that they level off, staying above the dry season level all

the time. There is also a slight dip for the 1-4 years

age group.
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These age variations are usually interpreted in terms
of immunity, and those by season are attributed to the var-
iation of vector man-biting rates. Figure 14 reproduced
from Molineaux et al. (1980, page 57), is a graph of man-
biting rates of'the ano. pheline (A.) species A.gambiaes S.e.
and A. funestus, from one of the villages included in the
baseline data. A cursory comparison of this figure with
Figure 12 indicates high incidence rates correspond to
high vector man-biting rates. During the dry season when

the man-biting rates are low, incidence rates should therefore

result mainly from relapses.

Generally, individuals aged 1 - 18'yeérs have high
incidence rates and low recovery rafes. This is because of the
erosion by time of natural immunity and the fact that acquired
immunity is not yet well established. This point is well
illustrated in Figure 15. Here, immunoglobulin G (IgG) and
immunoglobulin M (IgM) titres of'individuals; expressed as
- percentages of maximum concentrations (for IgG, 100% = 520
IU/ML, and for IgM, 100% = 915 IU/ML (Molineaux et al., 1980)),
are plotted against age. As mentioned earlier (Section 1.5 and
Section 4.2), these antigens are long established as means to

gauge immunity responses in individuals.

The serological data used to produce the graph cover
only some of the people surveyed in survey 5 (wet season),
and results are meant to be exploratory. The data have large
variation, and to smooth them we used a robust locally
weighted fegression procedure (Cleveland, 1979). The proc-
edure, which we outline in the Appendix, consists of local
iterative fitting of polynomials to data using weighted

least squares. The aim is to guard against deviant points
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that might distort the smoothing.

The rapid loss of natural immunity is clearly dis-
cernible from the figure (15). Both levels of IgG and
IgM drop steeply to age one before they rise steadily to
level off around the age of 15 years for IgM.and, for IgG,

three years later (18 years point).

The very high incidence rates in infants, during the
wet season could imply, among other things that while natural
immunity'may enhance recovery (see next paragraph), it offers
little or no protection against infection. The low incidence
rates in the older age groups may be indicative of acquired

immunity faring better in this respect.

We may note in passiﬁg that the incidence rates for all
age groups are consistently higher earlier in the wet season
than later. This is probably because the disease usually
takes its toll at the beginning of the high transmission
season, resulting in a drop in the pool of susceptibles for

the rest of the wet season.

(b) Recovery Rates

Recovery rates exhibit patterns of variation opposite
to those of incidence rates, both by season and age. Broadly,
these rates are low (as opposed to high incidence rates)
during the wet season (Figure 13, (ii) and (iii)), and high

during the dry season (Figure 13, (i), (iv) and (v)).

In infants, recovery rate is lowest at the onset of

the dry Season (survey pair (6,7)) while children aged 1-4

have the lowest rate about the middle of the dry season
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(survey pair (7,8)). Maximum rates are attained at the
beginning of the wet season (survey pairs (4,5)). Indiv-
iduals over the age of 8 years have the lowest recovery

rate about the same time, and the maximum rate, early in the
dry season (survey pair (6,7)). These variations again
reflect the intensity of vector man-biting rates and relapses,

especially among the older age groups.

We now briefly consider variations with age. Except
for infanfs, recovery rates rise rapidly from 1-4 age group
to 19-28 age group, and then stabilizes thereafter. Figures
13 and 15, taken together, illustrate that increase in
recovery rates correspond with the rise of acquired immunity.
The decline observed in the recovery rates from infants to
1-4 age group is indicative of the loss of‘ngtural immunity.
It could also be partly due to the effect of superinfection,
which may have had sufficient time to set in by then. However,
during the dry season this factor is unlikely to be of sig-

nificance.

6.3.5 Pooling rates by season

In view of the very low vector manQbiting rates during
the dry season (Figure 14), it may be reasonable to expect
that the incidence rates estimated for that period of the
year are 1arge1§ due to relapse of previous. infections. We also note
that, except for children aged under ) yeafs, incidence
(and also'recovery) rates, when grouped by season (dry and
wet),‘are'of similar magnitude for the different age groups.
This suggests we may use simple exploratory techniques to

obfain, for each age group, the mean rates by season.
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Columns 1 and 2 of Table 8 give the weighted means of the

incidence rates for the dry and wet seasons respectively,
(model A). Similarly, columns 4 and 5 are the corresponding
weighted means of the recovery rates. The ratios of the

rates appear in columns 3 (incidence rateé) and 6 (recovery
rates). The weights used here are the inverses of the corr-
esponding asymptotic variances of the estimafed rates. For
instance, columns 1 and 4 are the results of the rates obtained

from the survey pairs (3,4), (6,7) and (7,8)A(dry season) .

A visual display of Table 8 is provided by Figure 16.
Again we note the high incidence rates in the wet season in
infants, which drop steadily to 19-28 age group to stabilize
the%%fter. The very low incidence rate for infants in the
dry season re-inforces the argument that the dry season
infections are largely relapses of old infections. The
incidence rate for infants are mainly due to new infections.
The weighted recovery rates exhibit roughly the same patterns

of variation as before (cf. Figure 13).

Columns 3 and 6 of Table 8 show a wide variation in
incidence rates among younger age groups (0-4) and only
small variations in recovery rates for all age groups. Except
for 1-4 age group, recovery rafes in the dry season are con-
sistently higher than those in the wet season. The differences
are more pronounced in the older age groups fhan in the'
younger ones. This could be interpreted to mean that either
superinfection occurs more among adults than the young, or
that relapses are cleared more easily thén fresh infections.

We consider the latter the more likely explanation.
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It should be emphasized that these weighted estimates
of the rates are at best exploratory. Nonetheless, as noted
earlier, they do illustrate much more clearly, the difference
between the effects of natural and acquired immunity on
incidence and recovery rates. As indicated by the very high
incidence rate of infants in the wet season, natural immunity
seems to have virtually no effect on preventing infection
occurring. Acquired immunity, on the other hand, appears first
to enhance recovery then to reduce the occurrénce of infection,
The upward trend of recovery rate commences early, from l;4

years age group, the downward trend of incidence rate, one

age group later (. 5-8).

6.4 Inhomogeneous Markov Chain models

A natural extension to model A, in the last section, is
to suppose that the parameters a and B are not constant between
guccessive surveys. So let us assume in phis section that the
data may be described by a class of inhomogeneous continuous
time Markov models. As mentioned earlier (subsection 2.2),
the idea is to use suitably chosen forms for the elements of
the intensity matrix A.(°+) or hazard functions o *) ahd B(*),
based on some specific features of the disease, provided
these functions satisfy, say, the boundedness conditions
given by (5). A

6.4.1 Seasonally Dependent Infection and Recovery Rates

One of the main factors influencing the prevalence of
the disease, which we can try to incorporate isSeasonality,

More specifically, if we assume homogeneity within each age
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group (as in the previous models), seasonality may be explic-
itly included by supposing, for example, that the hazard
functions vary sinusoidally with the time of the year as was
suggested in Chapter 4 (for infection rate only). Thus

suppose, for each age group,

(i) a(t) = a1(1+a2 sinwt+a coswt)
. 3

(46)
(ii) B(t) = b1(1+bzsin wt+bacoswt)
where w = 21y, s, bi’ i =1,2,3, are constantswith the
constraints
o <a,b < 1

11

and
-1 <a,b < 1 i=2,3
i i

As before, (subsection 6.2.2) y is the period of the intensity
matrix of the length of an epidemiological year, defined as
the periéd between two successive minima of disease prevalence.
This period could also be made one of the parameters to be
estimated, but here, it is assumed to equal one calendar year.
The parameters a, and b1 are, respectively, the average rates
of recovery and infection, while the I bi’ i = 2,3 determine
both the phases and relative amplitudes of fhe sinusoidal
modulations.

By substituting (46) into (7) we obtain expressions
for the transition probabilities pij(s,t),'i,j = 1,2, in

terms of a_, b, m=1,2,3.
m m
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First, we note that

t t
S (a(u)+B(u)) du Rt (a,+b ) + (a,a,+b b) sinwu
S : S

+ (a,a,+ b b, ) cos wu } du

(al+b1)(t-s)-(%iaz+b1bz) (coswt-cosws)

W

+ (a1a3+b1b3) (sinmt—sinws) (47)

W

After appropriate substitution of (46) and (47) into

equation (7 (i)), we have

t
plz(s,t) =b (l+bzsinmv+b coswv) exp { —(a1+b1)(t-v)
1 s 3

+ (B122%0,0,) (oogut—coswy)
— .

- (*133%0,03) (Gingt-sinev) } dv
w

t -
= blh(t) S (1+b2sinwv+bacoswv) g(v)dv, (48)
s ‘

where

+ .
a,8, ble) coswt

+

(i) h(t) = exp { —(a1+b1)t (

W

a a +b bA' .
(7173 7173) sinwt ;

w

+ .
a a, blb

(

(ii) g(v) = exp { (a,+b )V 2) coswv

w
+b b, _.
2,2, b1 3) sinyv.

B

w
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Now, since

t ' t

fg(v)dv = glt)-g(s) , _uw__ J (¢ sinyv-g coswv)g(v)dv, (49)
a_+b a +b 1 2
S 1 1 1 1 S .
where
aa+tbh b
(l) c = )| 2 1 2
! W
a a, +Q'g
(ii) ¢ = ’
2 w

equation (46) becomes

b (1-h(t)g(s)) alblh(t) -t ‘
plz(S,t) = 1 = b + b { (bz—az) [ sinwvg(v)dv
11 11 ' S
t
+ (b,-a,) [ coswpvg(v)dv } (50)
s
Similarly. we have
al(l-h(t)g(s)) a b h(t) ot
p,,(s,t) = 5 + ; ib {(aé-bz) / sinwvg(v)dv
1 11 S
t .
+ (aa—ba) J coswpvg(v)dv } (51)
5

We note that the integrals in (50) and (51), which are
essentially sine and cosine transforms of g(v), are not
amenable to analytic integration. Some bounds can be obtained
fqy the pij(s,t), but these depend too much on the signs and

relative magnitudes of the ay and bi’ i=1,2,3, to be of use.
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6.4.2 Fitting Model E to data

We shall apply this model, to be cailed model E, to
two separate sets of data. The first set is that in Table
q. The other set which appears in Table 9 is that of indiv-
iduals who have been present in all six baseline surveys.
The parameters are estimated for each data set by age group
over the six surveys which stretch roughly over one epidemiological
year. Again we use maximum likelihood estimétion. Unlike for

models A, B, C and D, the log likelihood functions are summed

over all the six surveys.

Let 0o =t <t < *°rr< ts denote th§ points in time at
which the surveys were conducted. The time of the first
survey ié taken as the initial time zero. Further, let
nijg,i’j = 1,2, denote the transition counts_Of individuals
in state j at survey £ given they were in state i at survey

2-1, 2 =3,2...,8. The log likelihood function

8 2

L = 12 Z n,. log p

L (t
g=3 i,j=1 4 "€

,t )+ a constant term (52)
=12

was maxiﬁized for each age group, using subroutine EO4JBF

from the NAG routine library (NAG,1977). Another subroutine,
DOIANF, also from the NAG library, was used to compute
approximations for the integral expressions in (50) and (51).
The asymptotic covariance matrix was obtained again by

inverting the Fisher informafion matrix of (52). The results

of the computation for both data sets are given in Table (10).
Because some of thé 2 x 2 arrays for infants, in the second data

'set, had zero elements, we have combined the o<1 -age group data

with thoSe of 1-4 year age group.
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We have also included, in the table, the relative
amplitudes of the rates about their respective means, given
by (ai + a§ )% and (b: +tf)% for the recovery and infection
rates, respectively. But before we proceed to discuss the
results in Table 10, we shall try to assess how well the

model fits the data.

6.4.3 Goodness of fit of model E -

We use the familiar Pearson's goodness of fit stat-
istic, denoted by G %, which in our case is

2
_ 2
I (g mBygp) /My, o

>

ijg are the expected values of nijz’ estimated by

model E. G2 approximates a chi-squared distribution for

where, n

large observations. Table 11 gives the G2 values for each
agP group together with the separate contributions of the

survey pairs in the group. There are 4 degrees of freedom.

The table (11) shows that, for the data from Table 3,
the model fifs rather poorly for three of-thé seven groups,
namely 1-4 years and 29+ years age groups. The main dis—
crepancies come from the end survey pairs (3,4) and (7,8).

The intermediate age groups data fit quite well. With regard
to data from Table 9, at 99% quantile point only one of the
seven age groups, (29-43), has a poor fit. .An inspection

of the separate components of G? by survey'pair again reveals
the end survey pairs as the major éource of the discrepancies,
and the intermediate groups as fitting best. These rather

large discrepancies from the end survey pairs are possibly
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TABLE 11
Age Survey pairs
groups Data
(years) Set (3,4) (4,5) (5,6) (6,7) (7,8) G?
0«1 I 2.795 3.921 0.535 3.339 0.595 11.186
II - - - - - -
1-4 I 4,508 3.215 1.812 0.476 3.440 13.450%

II 2.951 2.514 0.743 2.777 3.637 12.621%

5-8 I 3.441 1.549 0.352 0.143  2.248 7.733

II 0.865 1.227 1.038 0.614 0.294 4.037

9-18 I 2.439 1.509 0.909 0.167 1.044 6.068

IT 0.513 0.398 0.480 0.249 0.341 1.981

19-28 I 1.263 0.123 1.016 2.858 3.341 8.600

IT 0.850 0.350 2.289 4.016 5.306 12.812

29-43 I 5.919 1.313 0.526 1.935 6.1054 15.797%

IT 2.878 0.408 2.304 3.270 5.197 14.057%

44+ I 6.904 3.574 0.282 1.423 4.350 16.533%

II 14,250 1.609 0.437 0.813 3.218 10.327

‘Goodness of fit of model E for transition frequencies
of Table 3 (I) and Table 9 (II). d.f. = 4.

Rows with high values of G? are marked 't'

*The row is for the combined age groups O - 4 years
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due to the symmetric forms of the rates. We have tried
various non-symmetric forms for o(-) and B(-) but none of

them has improved on the results of Table -11.

6.5 Summary of results

Despite the poor fits in some of the age groups, the
results of applying model E to both sets of data exhibit
the effects of age, and hence immunity, in the estimated values

of a, and bl; the mean recovery and infection rates respectively.

A

The mean infection rate, b1 , rose from 0.0111
(s.e. = 0.0014) among infants (o < 1 year) to a maximum of
0.0197 (s.e. = 0.0016) among children aged 5-8 years, and
then droppéd to stabilize around 0.0070 in individuals aged
19+ years. For the second data set, except for infants
(now combined with 1-4 years age group), and 29-43 years age
group, the estimates of b are not significantly different

1
from those of the first data set (Table 10).

The estimates of.the mean recovery réte, a;, from the
first data set fell at first from 0.0036 (s.e. = 0.0006) in
infants to 0.0017 (s.e. = 0.0002) in children aged 1-4 years,
then rose steadily to 0.0193 (s.e. = 0.0012)'in the 44+ age
group. For the second data set, it .rose from 0.0024
(s.e. = 0.0003), gradually at first} up to age group 9-18,
then rapidly to 0.0212 (s.e. = 0.0016) in age group 44+.

Again the corresponding estimates of a, in the two data sets are

not significantly different.

The columns denoted as b' and a' in Table 10 give the

estimates of the amplitudes of the seasonal variations of the
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rates about their respective means. For both data sets, the
variations for the infection rates were muchlhigher than those
for recovery rates, except for age groups 5-8 (first data set)
and 9-18 (second data set). This suggests that infection
rates variation by season are more pronouﬁced than those of
recovery rates. The younger age groups (0-4) exhibited

the largest variation, and the middle age groups the least‘
variation. Except for age groups 0-4 and 9-18, the seasonal
variations of the recovery rates were generally low. These
results conform with those discussed in subsection 3.5

(cf. Figure 16 and Table 8).

Overall, the results obtained here are comparable
qualifatively with those obtained from models A-D. Perhaps
one advantage model E has over models A-D, is that, for a
given age group we could estimate infection and recovery
rates between two consecutive surveys. The phases of these

rates could also be estimated as the angles whose tangents

are b, /b, and a,/a, respectively.
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CHAPTER SEVEN

CONCLUSION

We started by giving a critical reQiew of the basic
model of Ross and its extensions, in which we showed that
.the various models proposed for superinfeétion are in fact
special cases of a gueueing process in equilibrium. We then
proposed another model which allows for diminishing chance of
re-infection as the number of broods increases in an infected
person. This model lies somewhere between those of Dietz

and Ross, and in this respect is similar to a class of models

proposed by Aron et al.

In practice, the phases of the progress of malaria
infection in an individual are subject to random effects.
Motivated»by'this idea, we tried to repreéenf the course of
the disease by a hybrid semi-Markov model. We defined four
mutually exclusive statuses to which any person may belong
susceptible, latent, infectious and non—infectious (but
infected). Each status was further sub-divided into discrete
immunity levels. This framework allows for the inCorporation
of the host-parasite relation as random whilé some aspects of

the host-vector relationshipvare included as deterministic.

The model does not yield usable results by analytic
methods. But when we use simulation it gives results that
are generally in agreement with reality. For instance, the
results show that while it is good public heélth practice
'to reduce infection rate, it may rob the population of its

resistance to future attacks, explaining the causes of
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'

resurgence of the disease in areas where it has been previously

eradicated. The use of vaccine is shown to be the more

effective control.

Because of lack of data to validate the model as des-
cribed in Chapter 4, we reduced it to a 2-state stochastic
model. Individuals were grouped into either the 'apparent'
susceptible status (state 1) or 'apparent' infected status
(state 2). For practical purposes state 1 was defined as
that state in which the parasites of malaria could not be
microscopically detected. The model was then used to obtain
maximum likelihood estimates of the 'apparent' infection and
recovery rates from malaria survey data from .the WHO Garki
project.

Several versions of the model,one homogeneous and
Markovian (model A) and the others, non-Markovian (models B,
C and D), were used. All the corresponding estimates of the
rates from models A - D exhibited qualititively similar
patterns, reflecting some of the more important host-vector
and host-parasite relationships. We could not, however,
discriminate among these models because they fitted the data

equally well.

As illustrated by figures 12 and 13, tne estimates show
that infection rates are high in the wet season and low in
the dry season, corresponding to the high and low vector
densities during the wet and dry seasons, respectively. The
effect of superinfection, a consequence of high vector density,

is exhibited by the generally low 'recovery' rates during the

wet season and high rates during the dry season.
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As regards the host-parasite interaction, this is clearly
illustrated by the difference in rates by age. The very high
infection rates among infants during the wet season suggest
that natural immunity offers little or no protection against
infections. However, it appears to accelerate the clearance
of parasitamia once infection has occurred, hence the high
recovery rates relative to the 1 - 8 year age groups. Apart
from the infants, both the decrease in infection rates and
increase in recovery rates, with increasing age, are due to
thé cumulative effects of acquired immune responses from

attacks by malaria over the years.

Results similar to those just described were obtained
when we used a 2-state inhomogeneous Markov model with the
transition intensities expressed as some periodic functions
of time. The rate parameters were estimated by the maximum
likelihood method, with the longitudinal panel data summed
across the surveys. Two sets of data were used, that of
Table 3, in which some individuals missed at least one survey,
and that of Table 'Y, where only persons who appeared in all

six surveys were included.

The results of'apﬁlying the above model (Table 10)
show much more clearly that seasonal fluctuations are in
general more pronounced in infection rates than in recovery
rates. Except for the 1 - 18 year age group, the amplitudes
of the rates of infection are consistently higher than their
corresponding valués of the recovery rates. In addition, thé
differences between correspondiﬁg estimates of the parameters

for the two data sets, are relatively minor, With the estimates

of Table 8 showing the higher mean rates.
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The model did not, however, fit the data as well as
models A - D. The discrepancies, confined mainly to the end
survey pairs, indicate that non-symmetric periodic functions

for the rates may be more appropriate.

For a proper validation of the model described in
Chapter 4, it is necessary to have accurate estimates of the
parameters we have used. This requires a bétter guantitative
understanding of the phases of the disease through experiments

of specific aspects of the disease.

In estimating the 'apparent' infection.and recovefy
rates we have not taken account of the effects of mixed
infections, that is, simultaneous presence.iﬁ-the human body
of two or more different species of the parasite. The analysis
of mixed infections from the Garki project has been reported
by Molineaux et al. (1980). We could use the -data of mixed
infections to distinguish among the models of superinfection
discussed in Chapter 2. This may be done by‘assuming-that
mixed infections approximate cases of superinfection. The

differences in the species should, however, be noted.

As stated by Singer et al., the theory of the analysis
of longitudinal panel data, of the type from the Garki project,
is not well developed. Data from the intervention and post-
intervention periods of the project may require simple des-
criptions by non-Markovian models. Moreover, there is evidence
to suggest that even the transition frequencies from the base-
line data may not be Markovian. The use of model D is restricted
by its constrained parameter space. There is clearly a need

for better and preferably simple non-Markovian modelé to analyse

such data.
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The estimations of rates have been carried out by age
groups. The data from Garki also contain classifications of
individuals by titre of IgG, IgM and other measures of immune
responses. It may be useful to estimate the infection and
recovery rates according to the levels of these antigens and

compare the results with those obtained here by age groups.

Finally, it has been argued that for_models of biological
phenomenon, such as infectious diseases, to be of value, they
should be constructed in conjunction with some on-going field
studies. We give a qualified support for fhis view. Because
of the high expenses usually required, the long time spans
involved and the efforts that often go into assembling inter-
disciplinary teams, such field experiments are very rare.

For instance, in the case of malaria, the WHO Garki project

is probably the only comprehensive study of malaria ever
.carried out. On the other hand some progress may be made by
using results from small experiments about specific facets

‘of the disease. This is by no means ideal,!but it may provide

the only avenue to build an integrated malaria model in future.
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APPENDIX

Smoothing Scatterplots

The method used to smooth the serological data in
Chapter 6 is the so-called robust locally weighted regression
method (Cléyeland, 1979, and the references therein). It
combines the usual weighted regression method with a robust

fitting procedure which we now describe.

Suppose that (Xi’ yi), i=1,2,...,n, are the points
of a scatterplot. Let o < f < 1landr = quJ , the
truncated integral part of fn. For each‘xi, let Wk(xi)
define the weights for all Xy k =1,2,...,n. The following

is the sequence of operation.

1. For each i, compute the estimates Bj(xi), j= o,
1,....,d of parameters in a local polynoMial regression of
degree d of Vi on X, fitted by weighted least squares with
weights Wk(xi) for (styk)‘ The smoothed point at X5 is

Fa

~(Xi’ yi),»where

A

Bj(xi)xg . (1)

2. Definé?B, a bisquare weight function by

(1-x2)* |x| < 1

B(x) = (2)

o , . x] > 1,

and let e; = Vy - §i’ the residuals from the current fitted
values. If we denote by s the median of the |ei|, then

robustness weights are defined by

8 = B(ek/cs) ) ' 4 . (3)
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where ¢ is some positive constant integer (recommended value

of ¢ = 6).

N

3. Compute new vi for each i by fitting a d-th degree
polynomial as in step 1 but with new weights kak(xi) for
(Xk’ yk), k=1,2,...,n.

4. Repeat steps 2 and 3, for a pre-set number of times t,
to obtain the final robust locally weighted regression fitted

values, ?i, i=1,2,...,n.

The weight function W(x) for generating wk(xi) is a
'"tricube';
(r - Ix[*?* ,  Ix| <1

W(x) = : (4)
o , x| > 1

in which Wk(xi) decreased as the distance of Xy from X5
increases. For each i, let hi be the distance from X4 to the

r-th nearest neighbour of X - Then, for k =1,2,...,N

we(x3) = Wl(xp - x;,)/hy) (5)

The choice of f determines the amount of smoothing
required. Suggested values range from 0.2 ('rough' smoothed
plot) to 0.8 ('smooth' smoothed plot) with 0.5 as a good
compromise. The choices of values for d and t are largely of
computational interest, and setting d = 1 and t = 2 are usually
quite adequate for most situations. The tricube form for W(x)
is recommended because it is supposed to provide chi-squared
distribution approximation of error variancé.(ibid). The form
for B(x) is said to perform well for robust estimation and
regression (Gross, 1976, 1977). Suggested refinements include

the handling of multiple y values of the Xy -
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