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SYNOPSIS 

Many d i f f e r e n t i a l geometric concepts such as ( isometr ic) 

immersion, s t a b i l i t y , e t c . , rea l i zed in Euclidean spaces proved 

to be a lso rea l i zed in manifolds without conjugate points while other 

concepts are found to be s t r i c t l y associated with Euclidean spaces. 

In f a c t , th is thes is may be considered as a t r i a l for finding out to 

what extent geometric phenomena in Euclidean spaces are s t i l l va l id 

in manifolds without conjugate points. 

In the introduct ion, we have quoted the necessary background 

material for the following chapters. S p e c i a l l y , we have concentrated 

on the geometry of submanifolds. 

The in terest ing problem of r i g i d i t y of submanifolds l i e s in 

three d i f fe ren t categories : f i n i t e r i g i d i t y , continuous r i g i d i t y and 

in f in i tes ima l r i g i d i t y . These three types of r i g i d i t y have been 

studied in hyperbolic spaces in chapter I , sect ions 1 and 2. 

K. Nomizu, B. Sniyth (1969) and S . B r a i d i , C .C . Hsuing (1970) 

studied some geometric properties of immersed submanifolds in Euclidean 

sphere e s s e n t i a l l y the behaviour of the second fundamental form and 

the Gauss map. In chapter I I (sect ions 1, 2) we have carr ied out 

s i m i l a r study for immersed submanifolds in hyperbolic spaces which 

shows some deviations from the corresponding one in Euclidean sphere. 

Since B.Y. Chen's paper (1973) which establ ished the geometric 

concept of s t a b i l i t y of submanifolds in Euclidean spaces, other 

geometers t r i ed to extend th is concept to non-Euclidean spaces. In 

chapter I I (sect ion 3) we share th is development through studying 

s t a b i l i t y of surfaces in hyperbolic 3-dimensional space. 

The most in terest ing part of our thes is i s the l a s t chapter 
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which deals with t ight and taut (convex-minimal) immersions in 
manifolds without conjugate points . Some geometric concepts such 
as ( spher ica l ) two-piece property, h-two-piece property, total 
(absolute) c u r v a t u r e , . . . e t c . , have been introduced. Relations 
between the above concepts have been adopted. We expect for th is 
part to receive more attent ion in the future to discover more 
r e s u l t s and to general ize other Euclidean concepts which we did 
not touch. 
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INTRODUCTION 

This chapter reviews b r i e f l y the standard concepts and theorems 

of d i f f e r e n t i a l geometry that w i l l be needed in the main part of th is 

work, our aim here being to es tab l i sh notation and terminology. When 

M i s a C°° manifold we use the following notations : T (M) = M the 
A X 

tangent space of M at x , 5̂ (M) the algebra of (d i f ferent iab le ) C°° 

functions on M and X(M) the L ie algebra of vector f i e l d s on M. T(M) 

w i l l denote the tangent bundle of M while S(M) w i l l denote i t s unit 

sphere bundle. K always denotes the real numbers and I R " denotes the 

vector space of n-tuples of real numbers ( x \ — , x " ) while E" denotes 

the Euclidean n-dimensional space. An n-dimensional manifold wi l l be 

ca l l ed n-manifold. 

Section 1 : Pre l iminar ies 

Our pr incipal references for th is section are [2 ] and [19] . 

Let M and N be manifolds and l e t (|) : M N be a C°° mapping 

from M into N. Let veMp be a tangent vector at peM. I f we set 

((<) '* )pV)f = v(<j)*f) = v(f.4.) 

where fe5'(N),one can see that (<t>*)pV i s a tangent vector in '^^(pj ^nd 

(<})*)p. which i s the d i f f e r e n t i a l of the mapping <|), i s a l inear mapping 

from M into H.,.. 
P * ( P ) 

The mapping i> i s ca l l ed regular at p i f ((})*)p i s i n j e c t i v e . I f 

(|) i s regular a t every point of M, then we c a l l <̂  an immersion and M an 

immersed submanifold of N. When an immersion i s in jec t ive i t i s 

c a l l e d an imbedding of M into N. In th is case M (or ())(M))is an imbedded 

submanifold (or simply a submanifold) of N. I f (<}>*)p i s not i n j e c t i v e , 

then p and (j)(p) are ca l led c r i t i c a l point and c r i t i c a l value of the map 

(j), r e s p e c t i v e l y . mmsifp 
1982 



Related to the l a s t concept we mention the "Sard's theorem" as fol lows: 

Let M and N be two C^ n-manifolds and (}) : M-+ N i s a C^ mapping 

of M into N, then the image <)> (E) of the set E of c r i t i c a l points of 

i s a se t of measure zero of N. 

Let X be a C°°vector f i e l d on a C**manifold M. We associate 

with X a loca l one-parameter group of transformations {(})^} which, for 

every point peM and real number t s u f f i c i e n t l y c lose to zero, assigns 

the point (t)(t,p) = ^ ^ { p ) = T f { t ) , where T( i s the integral curve of X 

s tar t ing at p. I t i s known that for every peM there i s a posi t ive 

number c and a neighbourhood U of p such that <{) i s defined and c" on 

U x ( - c , c ) . For qeU and t , s , t + s e ( - c , c ) we have (t)^^^(q) = ({> ^(({)^(q)). 

Conversely, i f we are given a C°°map having domain of the same type as 

<p and s a t i s f y i n g the above addit ive property, then we again c a l l i n g i t 

({) get a vector f i e l d X having <̂  as i t s local one-parameter group. In 

f a c t X i s re la ted to ^ as fol lows: 

X(q)f = l im {f{<i>Aq))-f{q)} n 
t-»-o 

for f e 7 ( M ) . The one-parameter group of transformations of M can be 

defined s i m i l a r l y . 

Let M be a C^'n-manifold and l e t meM. Since M̂^ i s an n-dimens-

ional vector space, the theory of l inear algebra can be applied to 

define tensors and forms. A p-covariant tensor at m (p>o) or a p- co 

tensor at m i s a real valued p- l inear function on M̂ x ^ ^ i P cop ies ) . 

In a s i m i l a r way, one can define a V-valued p- co tensor at m, where 

V i s any vector space over IR. 

The se t of real valued 1- co tensors at m i s ca l led the dual 

space of M|̂  and i s denoted by M̂ *̂. Natural ly , Mĵ * i s a vector space 

over IRand dim M *̂ = n. S i m i l a r l y , the set of p-co tensors at m, 

denoted by T° 'P(M^) , i s a vector space over IR. A p-contravariant 
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or p-contra tensor a t m (p > o) i s a real valued p- l inear function on 

M* X xM|̂  (p copies) and the natural vector space formed by p-contra 

tensors at m i s denoted by T P ' ° ( M | ^ ) . F i n a l l y , a p-co and q-contra 

tensor at m i s a (p+q)- l inear real valued function on (M^)P x (MJ)^ 

and the vector space of these tensors i s denoted by T'^'P(MJ^) = Tp̂  (M^ )̂. 

In p a r t i c u l a r , a vector at m i s a 1-contra tensor at m. A 1-co tensor 

at m i s ca l l ed a 1-form at m. Ap-form at m (p > o) i s a skew-symmetric 

p-co tensor at m and the set of p-forms at m w i l l be denoted by F^(M|^). 

A p-co tensor f i e l d on a setUcM i s a mapping that assigns 

to each meU a p-co tensor at m. A p-co tensor f i e l d a on U i s C°° i f 

and only i f U i s open and for a l l sets of c"" vector f i e l d s X ^ , . . . , X p 

on U, the function [a ( X ^ , X p ) ] (m) ='^^(X^ (m), . . . ,Xp(m)) i s c " on 

U. A c " p-form on an open s e t U C M i s ca l led a d i f f e ren t ia l p-form 

on U. 

I f aeT°'P(M^) and eeT° '^(M^), then the tensor product .a«3 of a 

and 3 i s an element in T°'P"'"'^(M|^) defined by 

( «®e) ( X ^ V q ^ ^ ' ' ^ ^ ^ P ^ ^ ( V i " - " V q ^ 

where X j" - ->Xp^q are vectors in M .̂ The tensor product i s b i l inear 

and a s s o c i a t i v e but not commutative. 

I f a and B are forms of degree p and q, respect ive ly , then the i r 

ex te r io r product a<,B which i s a (p+q)-form, i s given by 

where the sum i s taken over a l l permutations IT of the set { 1 , 2 , . . . ,p+q}. 

The ex te r io r product has the properties a^sg = (-l)'^'^ , (aA3) '^Y = 

aA(3AY) and a^(& + 3 ) = a ^3 +ol^3 where 3 and 3 are forms of 
1 2 1 2 1 2 

the same degree. In the local coordinate system ( x ^ . . . , x " ) on M, . 

a d i f f e r e n t i a l p-form to can be expressed uniquely as 
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0) = Z f dx^i . . . ^ d x ^ 
i <i < . . . < i „ i . . .ib 

1 2 P 1 

where a l l f . . are in ^/(M). 
I I • • • ip 

CO 00 ' 

A C symmetric 2-Co tensor f i e l d g on a C manifold M i s ca l led 

a pseudo-Riemannian metric i f g^ (""Sl^m) ""̂  ^ non-degenerate b i l i n e a r 

form on M̂^ at each point meM while g i s ca l led a Riemannian metric 

i f g^ i s pos i t ive def in i te for a l l m. C l e a r l y , a Riemannian metric g 

on a C°° manifold M induces an inner product on each M .̂ A pa i r (M,g) 

consis t ing of a C" manifold M and a (pseudo) Riemannian metric g i s 

ca l l ed a (pseudo) Riemannian manifold. In local coordinates we write 

g = E g,. • dx^ ® dx'̂  

where g. . = g (a/3x^ , 3/(3x^). We sometimes write g = <,> . 

For any two points p^, p^e M in a CT Riemannian n-manifold 

(M,g) we define the distance d(p^ , p^) between them to be the 

greatest lower bound ofthe lengths of a l l piecewise d i f ferent iable 

(C^) curves jo in ing p̂  and p̂  . The manifold M together with the metric 

d turns out to be a metric space. The volume element dv of the 

Riemannian manifold (M,g) i s defined in local coordinates (x^ x") 

to be 

dv = / d e t ( g . . ) d x j l . . . / v d x " . 

I J 

Let M be a C°° manifold and l e t A c M be an open s e t . For p^ o 

we define the exter ior d i f fe ren t ia t ion map d:F'^(A)-^ FP"*"* (A) through 

the fol lowing properties which i t has : 

( i ) dFP(A) c FP"̂ ^ (A) for each p 5> o. 

( i i ) I f fe F°(A) then df(X) = Xf for XeX(M) . 

( i i i ) d^ = 0 
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( i v ) d(a)^Aa)^) =dwACo^ +(-1)"" cj^a d where tû e F'"(A) 
( V ) For we F P ( A ) , 

da,(X^,. . . ,Xp^^) = P ( - l ) ^ + \ . a . ( X ^ , . . . , X . , . . . . X p ^ ^ ) + 

+ E (-l)^^'^a) ( [ X . , X . ] ,X i X . , . . . , X . , . . . , X i ) 
•j<j ' J I J 

A 
where X X„^ e X ( A ) and X. indicates that X. i s omitted as an 

1 p+1 1 1 
argument. 

Let K be a C " tensor f i e l d and X be a C°° vector f i e l d on M. We 

define a tensor f i e l d ( L j ^ K ) and c a l l i t the "L ie der ivat ive of K " with 

respect to X as fol lows: 

where denotes the induced mapping from the loca l one-parameter 

group of transformations {(f)^ } around peM generated by X. The operator 

ly^ : K lyK has the following properties : 

( i ) LyiK + K ) = L J ^ K + L J ^ K ' , iy{K ® K ' ) = (i^K) ® ( L ^ ^ K ' ) for 

tensor f i e l d s K and K • 

( i i ) L^f = Xf , Lĵ Y = [X,Y] where X,YeX(M) andfe:7(M) . 

^ ' ' ' ^ ' - [x,Y] ^ 4 4 - 4 4 

( i v ) K i s invar iant under i f and only i f L^^K = o 

(v) L„w, where ue F P ( M ) , i s in FP(M) and for X , . . . , X ^ eX(M) 

we have 

P 
(LxW)(X^ Xp) = X( a ) (X^ , . . . ,Xp) ) - I ( , (X j [ x , x . ] . . . . , X p ) . 
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Let (P,G,M) be a d" pr inc ipal bundle over the C" manifold M 
where P i s the bundle space and G i s the s t ructura l group [ 2 ] . Let 
IT : P -> M denote the C°° pro ject ion . I t i s known that G acts t r a n s i t 
i ve ly without f ixed point on each f i b r e . For aeG and xeP we write 

R,(x) = xa where R̂  : P ^ P denotes the r ight action of G on P. The 
a a 

""^P^ '^a* • ^x^' '^^ "^xa^^^ \ • ^x^^^ " '^Tr(x)^'^^ induced 

ones from R and TT. The kernel of (IT^) , denoted by V„(P) , i s said to 
a . X X 

be v e r t i c a l and every element in V (P) i s tangent to the f ibre through x, 

A 

We say that a connection r i s given in P i f for each xeP a 

subspace H of T (P) i s given such that the following three conditions 
A A 

are s a t i s f i e d : 

( i ) T^(P) = V^(P) e H^(P) 

(i^-) ^ a * ("x) = "xa 

( i i i ) The map x H i s C . 
A 

A vector in H i s said to be hor izonta l . Condition ( i i i ) means that 
A 

i f X i s in X(P) then both horizontal and ver t i ca l components of X are 

C°° vector f i e l d s on P. 

Suppose that a connexion r i s given on P. I f c i s a piece-wise 

d i f fe ren t iab le (C^) curve in the base space M, we can define a mapping 

(p that maps the f ibre over the i n i t i a l point p of c onto the f ibre 

over the end point q as fol lows: 

Take an a rb i t ra ry point x on the f ibre T T " ' ( P ) , then we have a unique 

curve c * in P s ta r t ing at x such that I T ( C * ) = c and the veloci ty vector 
X 

f i e l d of c* i s in H^* and we set y = ({)(x) where y i s the end point of 
X 

c * . We c a l l (j) the p a r a l l e l displacement along the curve c , 
X 

Let (L(M), Gl(n, lR) ,M) be the pr incipal f ibre bundle of tangent 

n-frames where M i s a C°° n-manifold and Gl (n , IR ) i s the general l inear 



- 7 -

group acting on I R " . A connexion r in th is bundle i s ca l led an af f ine 
connexion. An a f f ine connexion r which gives a para l le l displacement 
in L(M), induces in a natural way a p a r a l l e l displacement in the 
associated bundle T(M). [see appendix ( i ) ] . 

Let X and Y be C" vector f i e l d s on a C" manifold M with an af f ine 

connexion r . We define the covariant der ivat ive V Y of the vector 

f i e l d Y in the d i rec t ion of the vector f i e l d X as fol lows: 

Let PQ be a point in M and l e t c = c ( t ) ( - e ^ t ^ - e ) be an integral 

curve of X through p^. Let {<j)̂ } be the para l le l displacement along c . 

We se t 

Hence Vĵ Y i s a lso a 0°° vector f i e l d on M. The mapping (X,Y)-> Vĵ Y has 

the fol lowing properties : 

( i ) Vĵ Y i s l i n e a r with respect to X and Y. 

( i i ) V^f = Xf. 

( i i i ) VfxT = fVxY , Vx(fY) = f(VxY) + (Xf)Y. 

where X,Y e X(M) and f e7(M) . 

Conversely, i f the mapping conditions ( i ) - ( i i i ) are given, 

then there e x i s t s a unique a f f ine connexion r on M whose covariant 

der iva t ive operator coincides with the given mapping. 

For a (pseudo) Riemannian metric g on a c"" manifold M, there 

e x i s t s a unique a f f ine connexion r , c a l l e d the Riemannian connexion, 

such that 

( i ) vg = 0 ( i i ) V^Y - VyX = [X,Y] for X,Ye X (M). 

For an af f ine connexion r on a C"" n-manifold M and in local 

coordinate system ( x ^ . . . , x " ) we define the functions . T^. , ca l led 
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the Chr is to f fe l symbols of r, as follows : 

V g / a ^ i (3 /9xJ) = 5 r"̂  i ^ / ^ x ^ ) 
k—1 i j 

In p a r t i c u l a r , for a Riemannian connexion we have 

V k , 3 ! i r . 39l j 
i j ^ r^ ^ 3X1 axj 3xr ' 

where the matrix (g^*^) i s the inverse of ( g . - ) -
1 J 

Let M and N be two C°° n-manifolds and l e t <J) : M ->• N be a 

diffeomorphism. Let V and " b e the covariant d i f fe rent ia t ion operators 

of the a f f ine connexions r and r on M and N, respect ive ly . The mapping 

4> i s c a l l e d a f f ine (or connexion preserving) i f <P (V Y) = V. ^{<p Y) 

for a l l X,Y eX (M) . The a f f ine transformation 4> : M M can be 

defined s i m i l a r l y . 

I f the tangent vector c ' of a curve c = c ( t ) in a C°° manifold M 

with an a f f ine connexion r has the property V _ - c ' = o, then c i s said 

to be a geodesic. In terms of local coordinates, the geodesic c i s 

defi ned by • 

d _ ^ + E r"̂  dx^ dx^ = 0 
(j^2 i j i j 

This geodesic c i s defined uniquely when knowing i t s i n i t i a l point and 

v e l o c i t y . I f every geodesic of an a f f ine connexion can be extended so 

i t i s a geodesic for a l l te R , then the connexion i s sa id to be complete 

For an a f f ine connexion r on M, the exponential map expp : M p M for 

f ixed peM i s defined by exPpV = Y y ( i ) for a l l veMp where i i s in the 

domain of and i s a geodesic such that Y^(o) = p and Y^ (o) = v. 

The exponential map i s a local diffeomorphism in a neighbourhood of the 

or ig in 0 in Mp. An important fact concerning the exponential map 

i s the so ca l led "Gauss' Temma" which may be stated as fol lows: 
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I f p ( t ) = tv , t eIR , i s a ray through the or igin 0 in Mp, 
where M i s a Riemannian manifold, and i f a)e(M ) i s perpendicular 
to p ' ' ( t ) , then (exp*) ^^^^ w i s perpendicular to (exp* ) ^^^^ ( p ' (t)). 

The theorem that follows gives useful c r i t e r i a of a Riemannian 

manifold to be complete : 

Theorem (Hopf-Rinow) 

I f M i s a connected Riemannian manifold, then ( a ) , (b ) , ( c ) , and 

(d ) , stated below, are equivalent statements, and any one of them 

implies ( e ) . 

(a) The exponential map i s everywhere defined on T(M). 

(b) The manifold i s complete with respect to i t s 

Riemannian metr ic . 

( c ) Bounded closed se ts in M are compact. 

(d) The closed b a l l s B (m,r) are compact for one m in M and 

a l l r > 0. 

(e ) Any two points in M can be joined by a geodesic segment 

whose length equals the distance between the two points. 

I t i s a lso known that i f a l l geodesies s tar t ing from a par t icu lar 

point X of a connected c" Riemannian manifold M are i n f i n i t e l y 

extendable, then M i s complete. Every compact Riemannian manifold i s 

complete. 

Let M be a c" n-manifold with an a f f ine connexion r . The 

curvature tensor of th is a f f ine connexion i s a l inear transformation 

valued tensor R that assigns to each pair of vectors X and Y at 
A A 

xe M a l i n e a r transformation R(X^»Yj^) of M̂  into i t s e l f . We define 

R(X,Y)Z by imbedding X^,Y^ and I in C°° f i e lds about x and set t ing 
A A ' A 

' ^ ( ^ 'V^x = W - V X ^ - ^ [ X , Y ] / ) x 
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The torsion tensor of the connexion r on M is a vector valued tensor 
T that assigns to each pair of vector f ields X,YeX(M), with domain 
AcM,a C°° vector f i e ld T(X,Y), with domain A, by 

T{X.Y) = Vĵ Y - VyX - [X,Y| 

I f T E 0 then we say that r is symmetric, or torsion free. 

Let (M,g) be a c" Riemannian manifold with Riemannian connexion 

r. The Riemannian curvature tensor of type (o,4) is the 4-co tensor 

R(X.Y,Z,W) = g(R(X,Y)Z,W) for X,Y.Z,W in M . xeM. The following 

relations are satisf ied with R 

(a) R(X,Y)Z + R(Z,X)Y + R(Y,Z)X = o 

(b) R(X,Y,Z.W) = -R(Y,X,Z,W) = -R(X,Y,W,Z) = R(Z,W.X,Y) 

Relation (a) is called the f i r s t Bianchi identity and i t holds for 

any symmetric connexion. 

Let u,v eM and le t 
A 

A(u,v) = g(u,u) g(v,v) - g(u,v)^ 

For A{u,v) we define the sectional curvature (or the Riemannian 

curvature) for the 2-dimensional subspace P of M spanned by u and 

V by 

K(P) = K(u,v) = K(u.v) = g(R (u,v) u,v)/A(u,v) 

Let <}) : M ^ be a c"" map between C°° Riemannian manifolds. 

I f there is a real valued positive function F on M such that for a l l 

xeM and a l l u.veM . g"((<l>* u, (<1)*)̂  v) = F(x) g(u,v) where g and g" 
A A A 

are the Riemannian metrics of M and M ' , respectively, then (J) is called 

a conformal mapping and F is called the scale function. I f F = 1 then 

(|) is called an isometry. I f (}> is an isometry and a diffeomorphism, 

then we say.that M is isometric to M ' . I f F is constant, then ^ is 

called homothetic. 



-11-
In terms of local coordinates, we have for the C°° Riemannian 

manifold (M,g) , 

where 
k k 

I U 1 \ m i (T^ -T^ ) 
•̂ "''̂  ax"" 9 X J r ri j j r j j i 

I f K(P) = k, k is constant, for a l l plane sections P in M and for a l l 

points xeM, then M is called a space of constant curvature and in this 

case we have 

R(X.Y)Z = k{ g(Z,Y)X - g(Z,X)Y} 

Let M be a C°° Riemannian n-manifold and letU.cMbe a fixed open 

set. Let e^, . . .e^ be a fixed base f ie ld of independent C°° vector f ields 

on U and le t W ^ . . . , ( D " be the dual c" 1-forms on U. Define n̂  connexion 

C°° l inear 1-forms {ul} on U which are associated with the Riemannian 
J 

connexion r on M by 

V, e. - u j (X) e, 

where X is a C°° vector f i e ld on U. The following equations are called 

Cartan structural equations 

i " i i 

j= i 

d(i) 
^ k=i ' ^ jke 

For {e , . . . , e } orthonormal basis, we have in addition u .^ + co.'^ = o 
i n J 1 

and R1, , + R̂  = O. 
J k f . 

From now and for the rest of the thesis, manifolds, mappings, 

vector f i e l d , . . . , etc. are suf f ic ient ly differentiable for a l l com

putations to make sense unless otherwise stated. 
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Section 2 : On submanifolds : 

Our approach to this section is mainly based on chapter VII [19]-

Let M be an n-dimensional manifold immersed into a Riemannian 

manifold N. We denote by V the covariant di f ferent iat ion operator in 

N. Since the following discussion is local , we may assume that M is 

imbedded into N. 

Let X and Y be vector f ields on M. Since (Vj^Y)^ is defined 

for each xeM, we shall denote by (V^^Y)̂  i t s tangential component and 

by « (X,Y) i t s normal component so that 
X 

( V ) / = (V^Y)^ + cx^(X,Y) (2.1) 

where (VvY)^eM„ and a (X.Y)e TJM)^ . In fact V is the covariant 
A X X X A 

di f ferent iat ion for the induced Riemannian connexion on M. The vector 

f i e ld V̂ Y which assigns the vector (Vj^Y)^ to each point xeM is 

dif ferentiable and a(X,Y) is a differentiable f ie ld of normal vectors 

to M. The mapping a : X(M) x X(M) X(M)̂  , where X(M)̂  denotes the 

set of a l l dif ferentiable f ields of normal vectors to M, is symnetric 

and bi l inear over y(M). Consequently, a- (X,Y) depends only on 

J . 
The map ot : x(M) x X(M) ^ X(M)~ is called the second fund

amental form of M (for the given immersion in N). In fact , for each 

XeM, a ; M x M M'/ is called the second fundamental form of 
X X ' X X 

M at X . 

I f M has codimension p, then we may locally choose p f ields of 

unit normal vectors ^ '••• 'Cp that are orthogonal at each point such 

that . 

a(X,Y) = I h^X,Y)5. 

Thus we have p second fundamental forms in the classical sense. 
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LetXeX(M)and CeX(M/" and write 

where -(A^(X))^ and (V^ 5 )^ are the tangential and normal compon

ents of (Vy respectively. The vector f ields x -»• (Aj.(X))^ and 
A X ^ X 

X (V^ C)^ are dif ferentiable on M. Actually, the mapping 

(X,5) eX(M) X XCM)"̂  ^ A^(X) eX{M) is bil inear over and conseq

uently (Aj-(X)) depends only on X and E. The two mappings a 

and A^ are related by 

g(A^(X).Y) = g(a (X,Y),5) 

This shows that A- : 
^x 

transformation of M„ with respect to ĝ  

for a l l X,YeM . This shows that A- : -> is a symmetric linear 
X C,^ A 

On the other hand, the mapping (X,?) eX(M) x X(Mf-> (V^^C) e 

X(M) coincides with the covariant di f ferent iat ion of the cross-
j . 

section ? of the normal bundle T(M) in the direction of X with 

respect to the connexion in T(M)'̂  . 
The two formulas 

V = Y (2.3) 

V^? = -A^ X + (2.4) 

are called Gauss' forrnula and Weingaften's formula^ respectively. In 

case of a hypersurface M, the Weingarten's formula reduces to 

V^E = -A^ (X) 

for the f i e ld ? of unit normal vectors. 

The following is quite useful especially for the last section of 

the thesis. Let M and M be two n-submanifolds in a Riemannian 
1 2 

(n+p)-manifold N. Let T = x ( t ) , o-j: t ^ l , be a differentiable curve in 

M nM . We say that M and M are tangent to each other along T i f 
1 2 1 2 



-14-

^x(t) ^x(t) ^'"'2^ ^^^^ t e [ o , l ] . In this case the parallel 

displacement along T in M̂  coincides with the parallel displacement 

along T in M^. In part icular, i f T is a geodesic in M^, T is a 

geodesic in M̂  as wel l . 

Let M be an n-submanifold of N and le t x = x ( t ) , t e [ o , l ] , be a 

curve in M. Then T is a geodesic in M i f and only i f V x ' ( t ) is 
X [Z) 

normal to M. In part icular, i f T is a geodesic of N contained in M, i t 

is a geodesic in M. (A geodesic in M is not, in general, a geodesic 

in N). 

Let N be a Riemannian (n+k)-manifold (k :̂  1) and let M be a 

connected n-submanifold. Let peM, the submanifold M is said to be a 

geodesic submanifold of N at p i f each geodesic of N which is tangent 

to M at p is a curve in M. The submanifold M is called tota l ly geodesic 

i f i t is geodesic at each of i t s points. In other words, a submanifold 

M of a Riemannian manifold N together with the induced Riemannian 

structure is called to ta l ly geodesic i f every geodesic of M is a geodesic 

of N. Great spheres in the unit n-sphere s" and m-dimensional planes 

in E" are to ta l ly geodesic submanifolds. 

Using expressions (2.3-2.4) we can easily prove the following: 

Theorem; 

M is to ta l ly geodesic submanifold of the Riemannian manifold N i f 

and only i f i t s second fundamental form vanishes identical ly. (a = o) . 

For a Riemannian manifold N with constant curvature, i t is 

convenient to mention the following two facts: 

( i ) Every submanifold which is geodesic at a point is to ta l ly geodesic 

( i i ) Conversely, i f every submanifold which is geodesic at a point is 

to ta l l y geodesic, then N has constant curvature. 
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Let M be an n-dimensional Riemannian manifold isometrically 

immersed in an (n+p)-dimensional Riemannian manifold N. Again since the 

following discussion is local , we can choose p orthonormal f ields of 

normal vectors ^ ,̂ 5p to M. Let ĥ  be the corresponding second 

fundamental forms and let Â  \ ^^^"^ formulas of Gauss and 

Weingarten we have for any vector f ie lds X,Y,ZeX(M), 

V ^ C y ) = Vĵ CVyZ) - ^ ĥ  {Y,Z) A.(X) + 

+ U X.h'' (Y,Z) +h^X,VYZ)} ^. + Ch\Y,Z)V^5. 

A similar expression can be written for Vy (V^Z). We have also 

' [ x .Y ] ' - ' [ x . y ] z { h ^ Y . z ) - h ' ( v , x . z ) l 5 , 

Using these equations, we f ind that the tangential component of 

R(X„Y)z has the following form 

R(X.Y)Z + ^ { h \ x , Z ) A.(Y) - h''(Y,Z) A.(X) } 

where R and R are the curvature tensors of N and M, respectively. 

I f W eX(M), then 

g(R(X,Y)Z,W) = g(R(X,Y)Z, W) + g( a (X,Z) , a(Y,W)) - g (a (Y,Z), a(X,W)) (2.6) 

This equation is called the equation of Gauss. 

For ^ , r orthonormal basis of M and X ,Y orthonormal 
J P . X X X 

pair of vectors in M , Gauss' equation (2.6) gives that 
. A 

^ ( " x - ^ x ' = ^ N ' ^ X ' ^ X ) * ^{^ ' (Xx-Xx) " ' ( V x ) - ( ^ 'Cx - ^x ' ) ' ' <2 - " 

where Kĵ  and Kĵ^ are the sectional curvatures of M and N, respectively. 

I f M is a hypersurface of N, the last equation (2.7) takes the following 

simple form 

As Gauss' equation deals with the tangential component of the 

curvature tensor R of N, Codazzi equation deals with the normal one. 
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The normal component of R(X,Y)Z for X,Y,ZeX(M) is equal to 

S {(Vxh^)(Y,Z) - (Vyh^)(X,Z)} ^. +E{h\Y.Z)VxC . - h *̂(X,Z)VY } ( 2 . 9 ) 

where (V^h^) (Y.Z) = Xh^(Y.Z) - h '̂(V^Y,Z) - h^*(Y,V^Z) ( 2 . 1 0 ) 

I f we use a instead of h^'s, then the normal component of 

R (X,Y)Z w i l l take the simple form 

(Vxa)(Y,Z) - (7Ya)(X,Z) ( 2 . 1 1 ) 

where 

(Vx«)(Y,Z) = Vx (°'(YvZ)). -a(VxY,Z) - a { Y . V^Z) ( 2 . 1 2 ) 

and V is the covariant derivative of the connexion In T(M) + T(M) 
~ X J . 

obtained by combining the connexions Sly^ in T(M) and in T(M) . 

From ( 2 . 1 1 - 2 . 1 2 ) we have 
(9xa)(Y,Z) - (VYa)(X,Z) = E {(Vx^') (Y,Z) - (VYhi)(X,Z)} g. + 

+ i : {h ' (Y ,Z ) ?x - h'(X,Z) VY"" ( 2 . 1 3 ) 
i 

which is called Codazzi equation. 

In the case N is of constant sectional curvature, Codazzi 

equation ( 2 . 1 3 ) takes the simple form 

(Vxa}(Y,Z) = (VY«)(X,Z) ( 2 . 1 4 ) 

Section 3 : Manifolds Without conjugate points 

Al l quoted theorems and notions for sections (3 ) and (4 ) w i l l be 

found in [ 2 ] . 

In what follows we demonstrate br ie f ly the most important prop

erties of the so called "manifolds without conjugate points" as they 

w i l l be very oftenly used in the sequal. Throughout this section N is 

a complete Riemannian manifold of dimension n and with covariant 
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di f ferent iat ion operator V. 

Let M be a submanifold of N and le t T(Mĵ  denote i t s normal 

bundle. The exponential map of N by restr ict ion gives the map 

exp : T(M) N 

which is a diffeomorphism in a neighbourhood of the zero cross-section, 
X X 

For peM le t Tp(M) be the f ibre of T(M) over p. We say that 

t eTp(M) is a focal point of M i f exp^ is singular at t . I f p is the 

ray from 0 to t in Tp(M) , then exp(t) is called a focal point of M 

along expp p, which is of course, a geodesic perpendicular to M. I f 

M is a single point, say m, so T^(M)''' = N̂^ and a focal point is called 

a conjugate point to m. The order(mult ipl ic i ty) of a focal point is 

the dimension of the linear space annihilated by exp^. 

A vector f ie ld on a maximal geodesic Y of N is a Jacobi vector 

f ie ld i f 
H Y + R ( Y ' , Y ) Y ' = 0 

where R is the curvature tensor of N. A Jacobi vector f ie ld Y is 

uniquely determined by the values Y(o) and Y (o). The Jacobi f ields 

along Y form a linear space of dimension 2n. The Jacobi f ields along 

Y which vanish at Y(o) form a linear subspace of dimension n. 

Let McN be a Riemannian r-submanifold of N and Y be a maximal 

unit speed geodesic of N such that Y ' ( O ) is perpendicular to ^ly^oj-

A Jacobi vector f ie ld Y along Y is an M-Jacobi f i e ld i f 

( i ) Y is perpendicular to Y . 

( i i ) Y(o) e M^^^j. 

( i i i ) \'^Q^ Y(o) V^Y |^(Qj is perpendicular to M^^^^. 

The M-Jacobi vector f ields form a linear space of dimension dim N-1. 

Geometrically, a vector f i e ld V is an M-Jacobi vector f ie ld i f and 
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only i f i t is generated by variation of geodesies start ing perpendicular 
to M and parametrized by arc-length. 

An alternative def ini t ion of focal points can be given in terms 

of Jacobi f ie lds as follows: 

I f Y is a geodesic of N which starts perpendicular to M, then Y(b) is a 

focal point of M along Y i f and only i f there is a non-trivial M-Jacobi 

f i e ld along Y which vanishes at Y ( b ) . Analogously, the order of Y(b) 

(mul t ip l ic i ty ) is the dimension of the space of such Jacobi f ie lds. 

Also Y(b) is conjugate to Y(a) along Y i f and only i f there is a non-

t r i v i a l Jacobi f i e ld along Y which vanishes at Y(a) and Y(b ) . 

A geodesic Y» f^om a point peN does not minimize distance from 

p beyond the f i r s t conjugate point. I t is also true that Y does not 

minimize distance to M beyond the f i r s t focal point. 

Definitions 

(3-1) I f m is a point of N such that there exists no point of N that 

is conjugate to m, then m is called a pole. 

(3-2) I f every point of N is a pole, then N is called a manifold 

without conjugate points. 
/ 

(3-3) The manifold N is said to have no focal points i f no maximal 

geodesic M =crhas focal points along any geodesic perpendicular to a . 

The "no focal point" property is equivalent to the following : 

Let Y be a unit speed geodesic in N, and let y be not necessarily 

perpendicular Jacobi vector f ie ld on y such that Y(o) = o and 

(V^' Y)(°) ^ °- '^^^^ t > 0 , ({Yii^)' ( t ) > o . The "no focal point " 

property is stronger than the "no conjugate point" one, i .e. a manifold 

N has no conjugate points i f i t has no focal points. I f N has sectional 

curvature K ^ o, then N has no focal points. 
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Moreover, we have the following important theorems: 
Theorem (3.1) 

I f p is a pole in N, then exfj^ : Np"̂  N is a covering map. Thus 

the simply connected covering of N is diffeomorphic to E" , and i f N is 

simply connected, then N is diffeomorphic to E" . (dim N = n). 

Theorem (3.2) 

I f p is a pole in N and N is simply connected, then for any point 

qeN there is a unique geodesic through p. I f N has no conjugate 

points, then there is a unique geodesic joining any two of i ts points. 

As an application of Sard's theorem, we conclude that the set of 

focal points C^, of an immersion f : M N of the manifold M into N, has 

measure zero, hence N \ is dense in N. 

Two unit speed geodesic rays a ,3 in a Riemannian manifold N are 

said to be asymptotic i f there exists a number c e IR, o < c < °°, such 

that d (a ( t ) , 6 ( t ) )^ c for a l l t ^ o. Related to this concept, Midori S. 

Goto [16] proved the following: 

Theorem (3.3) 

00 

Let N be a C complete simply connected Riemannian manifold 

without focal points. Then any two dist inct geodesic rays starting 

from any point peN cannot be asymptotic to each other. 

Section 4 : The Morse index theorem 

In this section N and P w i l l be submanifolds of a Riemannian 

manifold M with curvature tensor R and sectional curvature K. I f 

Q : [a,b] x [c , r ] M (a,b,c, re]R) is a piecewise smooth rectangle 

in M we may define the smooth function d^ : [c , r ] -> IR, whose value 

at a point t e [ c , r ] i s given by the length of the longitudinal path of Q. 
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Theorem (4.1) 

Let T : [o,b] M be a piecewise smooth path joining N to P. 
/ X , J. 

Then r is a geodesic in M with T (O) eT (N) and T(b) eT (P) i f 

and only i f dg (o) = o for a l l piecewise smooth rectangles in M with 

base curve T , i n i t i a l transversal in N f inal transversal in P and 

a l l transversals normal to T. 

Not le t T : [o,b] ->• M be a geodesic in M such that T (o)eT (N) 

and T ' ( b ) e T (P)"*" . Let i^(N,P) be the space of piecewise smooth 

vector f ields along T which are orthogonal to x and have their i n i t i a l 

and f inal vectors tangent to N and P, respectively. Then i f Ce / (N ,P) , 

we can f ind a piecewise smooth rectangle Q in M which represents C and 

has i n i t i a l and f inal transversals in N and P, respectively. From 

theorem (4.1) we see that dg (o) = o. Further, 

dĝ  ( 0 ) = / {llV^'^ r (u) - K{e,x' )ilCllMu) } du + h^'^'(°)(C.?) - h^p^^^C,?) 

where hjj and h j '̂̂ ^ are the second fundamental forms of N and P in 

the directions x ' (o) and x ' ( b ) , respectively. The above expression 

for dg'''' (o) is independent of the choice of piecewise smooth rectangle 

representing 5, and hence we have a quadratic form defined on ^ ( N , P ) . 

The index form Ij^ p is the symmetric bi l inear form on /(N,P) associated 

with this quadratic form and hence is defined as follows : Let 

C ,ne / (N,P) , then 

^N,P ^^'"^^ " o^^^^^x ^ .v^'n>(u) - <R(T',C)x',n > (u)} du + 

+ . h / ( ° ) (?,n) - h p ^ » (c.n). 

Theorem (4.2) 

With notations as above, i f there exists CeX(N,P) such that 

p < 0 then every neighbourhood of x in M contains shorter 

piecewise smooth paths from a neighbourhood of T(O) in N to a neighbourhood 

of xib) in P. 
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Theorem (4.3) 

With notations as above, i f there exists a focal point of N 

along x, then every neighbourhood of T in M contains shorter piecewise 

smooth paths from a neighbourhood of T(O) in N to T(b). 

From theorems (4.2-3)we see that i f N has a focal point along T, 

then I|y|\(t,j is not positive definite on £(N,T(b)). Theorem (4.4), 

the Morse index theorem, is a refinement of this statement. 

Theorem (4.4) 

Under the same notations as before, the augmented index of 

^N'T(b) f i n i t e and is equal to the sum of the orders (mul t ip l ic i t ies) 

of the focal points of N along x. Further, the index of ^^^^ is 

also f i n i t e and is equal to the sum of orders of the focal points of 

N along x] [o,b). 

Section 5 : Busemann functions and horospheres 

Horospheres have always been a central point of interest in 

hyperbolic geometry. In modern language, horospheres are defined as 

enveloping hypersurfaces of a l l Riemannian spheres having a common 

normal vector in the hyperbolic space- In fact , using this def in i t ion, 

horospheres can be defined for a l l simply connected Riemannian manifolds 

without conjugate points. 

Let M be a C" complete, simply connected Riemannian manifold 

without conjuage points. For every p,qeM call d(p,q) = |p,q| the 

distance function between p and q. For each veSM and each s :̂  o 

define the function 

(q) = s - |Yv(s),q| 

where y^{s) is a unit speed geodesic with the property Y ' ^ (O) = v. 
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Further define the ball B^̂  = b~̂  ( (o ,s ] ) . The functions b^^ are a l l 
smooth (C^) except at Yy(s), increasing with s and absolutely bounded 
by IYW(O)» q I • Hence the function b = lim b is; defined everywhere 

V V 2 00 VS 

on M. Call = b^̂  (o) the horosphere and = b^^^ ( (o,~) ) 

the horodisc of v. The function b^ is called the Busemann function of v. 

J.H. Escheburg [ 1 4 ] proved the following: 

00 

Let M be a C complete, simply connection Riemannian manifold 

without conjugate points. Then b^ is C°° -differentiable with gradient 

Vb = lim Vb (pointwise convergence) for each unit vector veSM. 

When dealing with t ight and taut immersions into manifolds without 

conjugate points ( last chapter) some extra conditions on Busemann 

functions b^, such as being -di f ferent iable, are needed. For this 

reason we define the so called manifolds with bounded asymptote. 

Definit ion : 

A manifold M is called with bounded asymptote i f i t is c", 

complete, connected without conjugate points, and i f there exists a 

uniform bound 1 for the stable Jacobi tensor D [14 ] such that 

|Dy ( t ) | « p for a l l veSM , t » o. 

For example a l l manifolds without focal points are of bounded 

asymptote. For more examples and details see [ 1 4 ] . 

The condition that M has sectional curvatures bounded from 

below together v/ith the bounded asymptote property is enough to ensure 

that the following conditions are sat isf ied: 

(a) Each Busemann function is and has gradient vector f ie ld of 

unit length. 

(b) The level hypersurfaces (horospheres) of each Busemann function 

form an equidistant family whose orthogonal trajectories are 

geodesies. 
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(c) I f u is a unit vector at peM, then u = grad b^(p). Moreover, 
i f V = grad b^(q) for qeM then b^ and b^ d i f fe r only by a 
constant. Hence the horospheres determined by b̂^ are the 
same as those determined by b^. 

00 

In a C , complete, simply connected, Riemannian manifold 

without conjugate points, each veSM determines a family of horospheres 

orthogonal to the unit vector f i e l d grad b^. I f u = grad b^(q), qeM, 

we say that u is asymptotic to v. I f in addition M is of bounded 

asymptote and sectional curvatures bounded from below, condition (c) 

above shows that grad b^ = grad b^, and asymptotic is an equivalence 

relation on SM, The equivalence classes form a regular continuous 

fo l ia t ion whose leaves are C* vector f ields on M of the form 

grad b^. (see [ 3 ] ) . 

I t should be known that horospheres in E" are nothing but hyper-

planes while Busemann function b^, V E S E " , is the usual height 

function in the direction of v. 

The following proposition gives some characterization of the 

horospheres in manifolds without conjugate points. We use S(p,r) 

to denote the geodesic sphere of center peM and radius r. 

Proposition : 

Let M be a complete, simply connected, Riemannian (n+1)-manifold 

without conjugate points. Then horospheres are complete non-compact 

hypersurfaces. 

Proof 

Suppose that H is a compact horosphere of the manifold M, 

veSM. The Horosphere Ĥ  can be contained inside some geodesic sphere 

with f i n i t e radius. Shrink this geodesic sphere radial ly to the 

geodesic sphere S = S(x^, r ) which touches H .̂ LetpeSnH^. Draw 
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the unit speed geodesic ray Yy(t) such that Yy(o) = P> Y ^ (o) = v. The geo

desic ray w i l l pass through the center x^ of S, i .e . x^ = Yy(r). 

Consider the map g : Ĥ  S which is defined to be the 

projection of Ĥ  onto S through geodesic rays from x = -^^[r + £) for 

suf f ic ient ly small positive real number e. 

Let L be the distance function from x. The point p is a 
A 

c r i t i ca l point of both L |H and L |S. Using the above mapping g, i t 
A V A 

is easy to see that 

Lx(q) ^ L̂ o g (q) 

for any q e H^. 

I t is now clear that L o g has index n, so is L |H . Using the 
A A V 

Morse index theorem, we conclude that Ĥ  has focal points on the 

geodesic segment Yy((o,r + e ] ) . This contradicts the fact that the 

horosphere Ĥ  has focal points at i n f i n i t y . Hence Ĥ  is non-compact. 

As being a level surface of b^, the horosphere Ĥ  is closed and therefore 

iplete. Since veSM is arbi trary, hence the result. com 

Corollary : 

Let M be as in the above proposition, then horodisc and i ts 

complement M\B^, for any v e S M , are both unbounded bodies. 

Section 6 : Hyperbolic spaces 

A complete, simply connected c" Riemannian manifold of constant 

sectional curvatures is called a space form. A space form is said 

to be e l l i p t i c , hyperbolic or Euclidean according as the sectional 

curvature is posit ive, negative or zero, respectively. 
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For hyperbolic space we have disc model, half-space model and 

projective model. The geometry of these models can be found in [29]. 

An important model which we call H-model w i l l be given in the sequel. 

Consider the real vector space rR""*"̂  equipped with a non-degenerate 

quadratic form <,> (Lorentz inner product) of signature ( n , l ) . The 

H-model is either of the two connected components of the hypersurface 

of ( IR " "'•̂  , < , > ) , { X eIR " ^ ; <x,x > = -1} on which < , > restr icts 

to a Riemannian metric of constant sectional curvature - 1 . For geod

esies, horospheres etc, of this model, see [29]. In the following 

we cal l (IR""*"^, < , > ) the Minkowski space. 

Geodesies of the H-model can be taken as x = P(c +dt) where c 

is the position vector of the i n i t i a l point, deH. , t is the parameter 

and p = -( j l d p t ^ - 1 ) ' * is the normalization factor. Using this 

parametrization we can prove that for any pair of points p, qeH 

d(p.q) =|cosh"^(- <p,q >) | (6.1) 

Taking into account equation (6.1), geodesic sphere S(p,r) of 

center peH and radius r in the H-model is defined as 

S ( p , r ) = { x e H ; r =|cosh"'(-<x,p > )|} (6.2) 

I t is clear from this def in i t ion that S(p,r) = LnH where L" is a 

hyperplane in ( IR" ' ' " \ ^ , ^ ) with p as i t s normal. As horosphere 

is a l im i t of geodesic sphere sequence we can show that a horosphere 

of the H-model is just L " n H where L" is a hyperplane in (IR""*" ' , , < , > ) 

which is parallel to a generator of the cone < x,x > = o 

Let p be an arbitrary point of H. Then 

Ep" = { qe IR <.q.p> = ol 

is an n-dimensional subspace of IR" on which <, > restricts to a 

Euclidean metric. Let Dp" be the unit disc centered at the origin 
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in Ep" . The diffeomorphism P : H Dp" given by 

1 - <x,p > 

i s c a l l e d the stereographic project ion with respect to the pole -p . 

We observe that P i s a conformal mapping with sca le function 

( l - < x , p > ) ^ . The map P has the property : an r-dimensional sub-

manifold in H i s umbilical i f and only i f i t s image under P i s umbil

i c a l in E " . 

P 

I f D denotes the Riemannian connection on ( I R " ''̂  \ < , >) and V 

denotes the induced Riemannian connexion on H, we have 

Dy = V +<X,y > X (6.3) 
X ^ 

where x e H and X. Y e X (H) . The formula (6.3) can be used success

f u l l y in showing that the H-model has constant sectional curvature K = -1 

The following proposition gives some character izat ion of geodesic 

spheres in hyperbolic space. 

Proposit ion (6 .1) 

Let M be a C°° hypersurface in H, then M i s compact umbilical i f 

and only i f i t i s a geodesic sphere. 

Proof : 

F i r s t , assume that M i s the geodesic sphere S (p , r ) with center 

p e H and f i n i t e radius r. C lear ly M i s compact. Let x eM, then from 

equation (6.1) we have 

< x,p > = - cosh r 

Let X,Y e X(M), then 

X < x , p > = <Dx.p> = <X.p> = 0 (6.4) 
X 
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Using equation (6.3) we obtain 

V " ^X^ - <X.Y > X (6.5) 

where V i s the induced covariant d i f fe rent ia t ion operator on M and 5 

i s the f i e l d of unit normal vectors to M as a hypersurface of H. 

From equations (6.4 and (6.5) we have 

h(X.Y) = - <X.Y> (6.6) 

Since h(X,Y) = <-A^X, .Y> we have 

= c o s h j : J 7j 

where I i s the ident i ty map. D i f ferent ia t ing (6.1) with respect to 

we get 

< 5,p > = - s inh r (6.8) 

From equations (6.7) - (6.8) we obtain 

= - coth r. I (6.9) 

which shows that M i s umbi l i ca l . 

Conversely, l e t M be a compact umbilical hypersurface of H, 

then A = AI where X i s a d i f fe rent iab le function on M. Using 

Codazzi equation (2 .14) , d i r e c t computations show that A is constant. 

Under the above notations we have 

Dx (x X + 5) = 0 

p + 1 • . 
Hence Xx + E, i s a constant vector in (IR , < « > ) » i-^-

(6.10) 

XX + ? = a (6.11) 

for some constant vector a . Now, equation (6.11) shows that 

< x ,a > = (1 + X^- f a f ) /2x = constant 

which represents a geodesic sphere in H. 
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Corol lary (6 .1) 

Applying Gauss equation and using equation (6.7) we get that 

S ( p , r ) has pos i t ive sect ional curvature l / s i n h ^ r . 

Coro l la ry (6 .2 ) 

In hyperbolic space, horospheres are complete f l a t umbilical 

hypersurfaces. Consequently, such horosphenes are free of conjugate 

po ints . 

I t has been proved that in symmetric spaces of rank 1 and 

negative curvature , horospheres have curvatures of both signs and even 

conjugate points (see [17] ) . 

We c lose o f f t h i s sect ion by the following [ 2 ] : 

Theorem (6 .1 ) 

Let M and N be C°° complete Riemannian n-manifolds and have the 

same constant sect ional curvature k. Then 

(1) M and N are l o c a l l y isometr ic . 

(2) I f M and N are connected and simply connected with k ^ o 

then they are isometr ic . 

(3) I f k = a^ > 0 , then the geodesic sphere of radius ir/a in 

M^, meM, i s mapped to a point by exp|^, and exp^̂  i s 

regular within that sphere. I f M i s simply connected, 

i t i s isometric to an n.sphere of radius 1/a. 

Section 7 : On bundles : . 

In t h i s sect ion we show that the tangent bundle T(M) of a 

complete, Riemannian manifold (M,g) and the normal bundle T(M) 

of a submanifold M of (M,g) are Riemannian manifolds. 

I t i s known ( § 1) that the tangent bundle T(M) decomposes 

natura l ly under the Riemannian connexion r of (M,g) into the 
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d i r e c t sum H © V of a horizontal subbundle H and a ve r t i ca l subbundle 
V. The horizontal subbundle H i s the kernel of the so ca l led 
connexion map K : T(TM) -> T{M) which i s defined as follows : I f 
we T ( T M ) i s the i n i t i a l tanigent vector to a curve X(t )eT(M) and 
TT̂o) 0 , then K(w) = V^/^^j X(o) where y { t ) = 7r(X(t ) ) . 

In view of the mappings TT̂  and K we can ident i fy the horizontal 

and v e r t i c a l subspaces H and V, respec t ive ly , with T , ,(M). In th is 

way, the Riemannian metric g on M gives r i s e , v ia IT and K , to a 

Riemannian metric « » » on T(M) known as Sasaki metric and i s 

given by 

« v,a) » = g ( v , T i ^ a ) ) + g (K(v ) , K(a))) 

for v,a)eT ( T M ) . In a s i m i l a r way, the unit sphere bundle SM can 
A 

be shown to be a Riemannian manifold. 
X 00 

For the submanifold M, the normal bundle T(M) i s a C 

submanifold of T(M). This shows that the Sasaki metric induces, in a 
i . X 

natural way, a Riemannian metric on T(M) and hence T(M) i s a 

Riemannian manifold. Same thing i s true for the unit normal 

bundle S(M)'^ of M. 



CHAPTER I 

THE RIGIDITY PROBLEM 
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Section 1 ; F i n i t e Rig id i ty 

( I . 1 . 0 ) - Introduction 

For t h i s sect ion a l l manifolds are assumed to be connected. Al l 

manifolds and mappings are assumed s u f f i c i e n t l y d i f ferent iab le for a l l 

computations to make sense. 

When a Riemannian manifold M occurs as a submanifold of another 

Riemannian manifold M, r i g i d i t y question natural ly a r i s e s . The term 

" f in i t e r i g i d i t y " i s general ly used to re fer to the following concept: 

M i s f i n i t e l y r i g i d (or simply r ig id ) as an immersed submanifold of 

M i f whenever r^.r^ : M -»• M are isometric immersions, there e x i s t s 

an isometry (f) of M such that r̂  = <\>or^. Generally speaking, a 

r i g i d i t y theory enumerates the d i f ferent ways in which M can be 

isomet r ica l ly immersed,in M. 

In a paper by M.P. DoCarmo and F.W. Warner [ 1 3 ] , u t i l i z i n g the 

r i g i d i t y studies in Euclidean space carr ied out by R. Sacksteder 

[26, 2 7 ] , the following has been proved; 

Theorem ( I . l .1) 

Let X : M ->• S^*^ be'an isometric immersion of a compact, 

connected or ien tab le , C" Riemannian n-manifold M into the (n + 1 ) - s p h e r e 

s " ^ ^ o f constant sect ional curvature 1 and assume that a l l sectional 

curvatures K of M s a t i s f y K ^ 1 . 

(a) Then x is an imbedding, M i s diffeomorphic with s " , and 

x(M) i s e i ther t o t a l l y geodesic or contained in an open 

hemisphere, in the l a t t e r case x(M) i s the boundary of 

a convex bodyV/ in S . 

(*) A se t B in a Riemannian manifold (R,g) i s ca l led convex body i f for 
every pa i r of points p, q e B , t h e r e e x i s t s a unique minimal geodesic 
segment from p to q and th is segment i s in B. A hypersurface M of 
(M,g) i s ca l led convex i f i t l i e s on one side of each tangent 
geodesic hypersurface (see § 1 . chapter I I I ) . 
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(b) i f y : M s " * i s another isometric immersion, then 
there i s an isometry <|) of s " "''̂  such that <}>ox = y . 

The main aim of th is sect ion i s to prove a s im i l a r theorem in 

hyperbolic space. In f a c t some conditions on the sect ional curvatures 

of M are needed by the following theorem [1] : 

Theorem (1 .1 .2 ) 

Let M be a compact Riemannian manifold of dimension n. I f the 

sect ional curvatures of M are non-posit ive (not necessar i ly constant) 

then M can not be isometr ica l ly immersed in a hyperbolic space of 

dimension (n + 1 ) . [ For the proof see appendix ( i i ) . ] . 

Now, we s ta te our theorem. 

Theorem (1 .1 .3 ) 

Let x : M H be an isometric immersion of a compact, connected, 

or ientable n-dimensional C°° Riemannian manifold M into the (n + 1) -

dimensional hyperbolic space H of constant sect ional c u r v a t u r e - 1 , 

and assume that a l l sect ional curvatures K of M s a t i s f y K :̂  - 1 

(a) Then X i s an imbedding, M i s diffeomorphic to s " , and x (M) 

i s the boundary of a convex body in H. 

(b) I f y : M -> H i s another isometric immersion, then there i s 

an isometry (}> of H such that (|)0X = y . 

Remarks : 

( i ) I f the sect ional curvatures of M are s t r i c t l y greater than - 1 , 

then the case (b) for n > 2 follows t r i v i a l l y from the c l a s s i c a l r i g i d i t y 

theorem [ 2 ,p .211] . 

( i i ) Assuming the truth of (a) in the above theorem, assert ion (b) for 

n = 2 follows depending on a theorem which has been proved by 



-32-

Cohn-Vossen [29] and stated as follows : 

Theorem (1 .1 .4 ) 

I f M c i s a compact convex sur face , then M i s r i g i d . 

(1 .1 .1 ) The Beltrami maps : 

The proof of theorem (1 .1 .3 ) w i l l require extensive use of the 

Beltrami maps in transforming problems on the hyperbolic space H to 

problems in a Euclidean space. We devote th is part to defining these 

maps and der iv ing the i r relevant propert ies. 

The Beltrami map (or central project ion) B : H E " """^is 

defined to be the map which takes x e H to the intersect ion of E " ^ = 

{ ( 1 , a \ . . . , a " ' ' ' * ) C : ( I R " ,̂ < » > ) } , where H here i s considered to be 

the model described in §6 - chapter 0, with the s t ra ight l ine through 

X and the or ig in 0 of ( I R " < . > ) . In th is c a s e , B (H) i s the 

open (n + l ) - b a l l B ( l ) of radiu;!^ 1 in the above E " ^ and centered at 

( 1 , 0 , . . . , o ) . 

In the usual coordinates ( x ° , . . . , x " in ( K " * \ < , > ) , the 

map 3 can.be expressed as follows : 

B(x) = - x / < x . e Q > = x /x° = ( 1 , x ^ x ° . . . . , x " * V x ° ) 

where e^ = ( l , o , . . . , o ) . The map B i s a geodesic map and we shal l use i t 

to t ransfer hypersurfaces of H with sect ional curvatures K ^ - 1 into 

hypers urf aces of E " "*'^with sect ional curvatures K > o, and vice versa . 

To see that B indeed does have th is e f fec t we f i r s t give two lemmas 

(lemmas ( I . 1 . 1 ) & (1 .1 .2 ) below)for which we need the following [ 2 ] : 

Theorem (1 .1 .5 ) 

Let (\> : M M be an irranersion of a manifold M into a Riemannian 

manifold M. For the point peM, l e t V be the normal coordinate 

neighbourhood of M around the point q = (j)(p). Let u = Sa.u^ , 
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where = v % $ are the normal coordinates pulled back to M. Assume 
that z = z a . V . (q)eT(M)"^ where V.(q) = : 0 ( 3 v^")(q) are an 
orthonormal bas is of T(M) ^ . Then u has a c r i t i c a l point at p 
and i t s hessian form i s the negative of the second fundamental form h^. 

Lemma (1 .1 .1 ) 

Let m be a point on an oriented hypersurface in the Euclidean 

space E " I and suppose that in a neighbourhood of m on the hyper

surface the eigenvalues of the second fundamental forms do not have 

d i f fe rent s i g n s . Then there i s a neighbourhood of m on the hyper

surface which l i e s on one side of the tangent hyperplane at m. 

The proof of t h i s lemma which can be found in [13] makes use of 

theorem (1 .1 .5 ) by taking u to be the height function of the hyper

surface above i t s tangential hyperplane in E " ^ \ 

Lemma (1 .1 .2 ) 

Let m be an a rb i t ra ry point on an oriented hypersurface in hyper

bo l ic space and suppose that in a neighbourhood of m on the hypersurface 

the eigenvalues of the second fundamental forms do not have di f ferent 

s i g n s . Then there i s a neighbourhood of m on the hypersurface which 

l i e s on one s ide of the tangent t o t a l l y geodesic hypersurface at ro. 

Proof : 

The proof i s car r ied out through contradict ion. Assume that the 

hypersurface cuts i t s tangent t o t a l l y geodesic hypersurface ii at m. 

Consider U to be a neighbourhood of m on the hypersurface on which the 

second fundamental forms are everywhere, say , negative semi-def in i te . 

This choice i s possible through considering a convenient orientation 

i f necessary. By theorem ( 1 . 1 . 5 ) , the hessian forms of the height 

functions are a l l posi t ive semi -de f in i te . 
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Without loss of genera l i ty , we can consider the H-model to be 
the ambient hyperbolic space as i t i s more sui table than any other 
model. Now use the central projection 6 to t ransfer the hypersurface 
together with i t s or ientat ion into the open unit bal l B ( l ) in the 
Euclidean space E " ^ ^ = H . C l e a r l y , 3 ( l i ) w i l l be a hyperplane 

J 0 

in E . Since the hypersurface B(U) cuts i t s tangent hyperplane 

B ( II) at 3(m), according to the preceding lemma there must be a 

point B(p) e3(U) at which the hessian of the height function has a 

negative eigenvalue, and therefore in the d i rect ion of the correspond

ing eigenvector the hypersurface 3(U) l o c a l l y l i e s on the side of i t s 

tangent hyperplane at 3 ( p ) opposite from the oriented normal d i rec t ion . 

Accordingly, the hypersurface 3(U) and i t s tangent hyperplane at 

3 (p) have contact of order exact ly 1 in the corresponding eigen-

d i r e c t i o n . As contact order i s alw,ays preserved under diffeomorphism, 

U and i t s tangent t o t a l l y geodesic hypersurface at p have contact of 

order exact ly 1 in the corresponding d i rec t ion . Therefore in th is d i r 

ect ion the height function at p must have a non-zero second der iva t ive , 

which i s necessar i l y negative s ince in th is d i rect ion U l i e s for a while 

on the s ide of i t s tangent t o t a l l y geodesic hypersurface at p opposite 

from the oriented normal d i r e c t i o n . Thus the hessian of the height 

function at p i s not posi t ive semi -def in i te , which i s a contradict ion. 

The following proposition describes the e f fec t of the central 

project ion mapping 3 on sect ional curvatures. In the following 

K^(P) w i l l denote the sect ional curvature of the Riemannian manifold 

X with respect to the 2-plane section P. 

Proposit ion ( I . 1 . 1 ) 

Let X be an n-dimensional hypersurface in the hyperbolic space 

(H-model ) and l e t X = 3 ( X ) . Then ^ - 1 everywhere i f and only i f 

> 0 everywhere. Moreover, i f > - 1 , and i f the rank of the 
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second fundamental form of X at p e X i s r , o :̂ r ^ n, then the rank 

of the second fundamental form of X at B(p) i s a lso r. 

Proof: 

Let p e X and l e t Kw ^ - 1 . Let P be a 2-plane in X„. Applying 
A P 

Gauss' equation ( (2 .8 ) chapter 0) we have 

Kx(P) = -1 + hx(u,u) hj^(v,v) - (hj^(u.v))2 

where ĥ ^ denotes the second fundamental form of X and { u , v } i s an 

orthornomal bas is of P. 

Now suppose that not a l l eigenvalues of the second fundamental, 

forms are zero . Since » - 1 , then a l l the non-zero eigenvalues of 

w i l l have the same s i g n , and nearby p a l l the non-zero eigenvalues 

of h^ w i l l have the same f ixed s ign . Using lemma (1 .1 .2) we see that 

X l o c a l l y l i e s on one s ide of the tangent t o t a l l y geodesic hyper

surface at p. Hence B(X) l o c a l l y l i e s on one side of i t s tangent 

hyperplane a t B(p) . Applying Gauss' equation again in Euclidean space 

we get that a l l sect ional curvatures K̂^ at B(p) are ^ o. 

I f a l l eigen-values of ĥ ^ are iden t i ca l l y zero on an ent i re neigh-

bourhood of p, then X i s t o t a l l y geodesic near p, so i s X near B ( p ) . 

I f each neighbourhood of p contains points at which there are non-zero 

eigenvalues of h^, then there i s a sequence of points {p^} in X 

converging to p, for which we already know that a l l ^ o at B(p.j)-

Hence by cont inu i ty , a l l > o at 3 ( p ) . 

A s i m i l a r argument can be stated for the reverse d i rec t ion , 

namely, i f K~ ^ o then Kĵ  > - 1 . 

Now assume that the rank of h^ at p i s r. Equivalent ly , the 

hessian of the height function at p has rank r. I f in addition 

> - 1, then there i s an r-dimensional subspace A of Xp, on which-
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the hessian i s e i ther posi t ive or negative de f in i te . I t follows that 
in each d i rect ion in A the hypersurface X has contact of order exactly 1 
with the tangent t o t a l l y geodesic hypersurface through p. Since contact 
i s preserved by the diffeomorphism 3 , there i s an r-dimensional sub-
space of Xg^pj along which X has contact of order exact ly 1 with the 
tangent hyperplane through 3 ( p ) . Consequently, the rank of the hessian 
of the height function for X at 3(p) must be at l eas t r , so that rank 
h^ ( 3 (p ) )> rank hj^(p). Reversing the argument we obtain that rank 

(^(P) ^ rank hj^(p). Hence rank (3 (p) ) = rank h^{p). 

In p a r t i c u l a r , proposition (1 .1 .1 ) gives that a point p e X has 

a l l Kx > - 1 i f and only i f a l l > o for 3 (p) . 

(1 .1 .2) Proof of theorem ( I . 1 . 3 ) ( a ) : 

I t i s known that for a compact, n-hypersurface M in E " 1 n > 1 , 

there e x i s t s at l e a s t one point peM at which a l l sectional curv

atures Kĵ  > 0 . Using th is fac t together with the l a s t proposit ion, i t 

i s easy to prove the fol lowing: 

Proposit ion (1 .1 .2) 

Let M be a compact, Riemannian n-manifold with sectional curv

ature ^ - ] . Let X : M H be an isometric immersion into the 

(n + 1) - hyperbolic space H. Then there e x i s t s at least one point 

peM at which a l l sect ional curvatures K̂^ > - 1 . (A stronger resu l t 

can be obtained by theorem ( 1 . 1 . 2 ) ) . 

For being important, we mention the following theorem without 

proof and for more d e t a i l s see [25] . 

Theorem ( I . l . i ) 

Let M be a complete, Riemannian n-manifold (n ^ 2) and l e t 

X : M -> E " S 's a c" ^ isometric immersion. Suppose that every 
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sect ional curvature of M i s non-negative, and at l eas t one i s pos i t ive . 
Then the image x(M) i s the boundary of a convex body in E " \ 

Now assume that M - as a Riemannian manifold - has gĵ  as i t s 

own Riemannian st ructure under which x : H i s an isometric 

immersion. The manifold M w i l l have another Riemannian s t ructure , 

say , as an induced one from the mapping x = Box such that 

% = x*g^ = ( B O X ) * g^ 

where g^ i s the usual Euclidean metric on E " \ Accordingly, g|̂  

makes x : M -> E " ^ to be an isometric immersion. As mentioned before 

x(M) has K > 0 , so under g|^, M has o, c a l l (M,g|^) = M. Applying 

theorem (1 .1 .6 ) we get that x(M) i s a boundary of a convex body in 

E " \ Applying B " ^ we immediately obtain the conclusions of part 

(a) of theorem (1 . 1 . 3 ) . 

(1 .1 .3 ) Proof of theorem ( I . 1 . 3 ) ( b ) : 

The following material i s needed to complete the proof of the 

theorem. Let f̂  , f̂  : M -> H be two maps of a Riemannian manifold M 

into the hyperbolic space (H-model). Define f : M ^ E " """̂  by 

and define fg s i m i l a r l y . (This formula of f̂  makes sense as f̂  + f̂  

i s never perpendicular to e^) . 

Proposit ion (1 .1 .3) 

The two maps f j > ̂ 2 • ^ induce the same metric on M i f and 

only i f the two maps f i . f 2 : M -»• E " ^ induce the same metric on M. 

Proof : 

From the formula (1.1) .above, we have 

- < f + f , e „ > 2 f = <f + f , e ^ [f + < f , e ^ e „ ] - <f + f ,e^ > . 

. [ f i + < f i , e^>e^] ( 1 . 2 ) 
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Taking into account that < f i , f i > = < f 2 . f 2 > = - l and 
' ^ ' ' ' i ^ ~ * ^ ^ 2 ^ ' ^ 2 ^ ~ ° ' we have by d i rec t computations that : 

< fi + f z .eQ>2 [ < f 2 * » ^ 2 * > - < ^ * . f i * > ] = < f 2 * » f 2 * > - < »^'i^> (1-3) 

which completes the proof. 

Let Y be an arc- length parametrized curve in H. Then the 

Frenet equations for H give [29 ] 

Y ' ( S ) = k (s ) n (s ) + Y ( s ) (1.4) 

where n(s) i s the pr incipal unit normal vector and k(s) i s the 

curvature of Y • Hence 

Y(s + h) = (1 + h 2 ) Y (s ) + h t (s ) + kh^ n(s) + 0(h M (1-5) 
2 2 

where t ( s ) = Y ( s ) and h i s a small real number. 

In the following we say that a hypersurface M in H i s 

star-shaped with respect to some point peH i f each geodesic ray 

s t a r t i n g from p in tersects M exact ly once. 

Proposition (1 .1 .4) 

Let M be an oriented n-manifold, and l e t f i » f 2 • M ->- H be 

two imbeddings such that f i (M) and f2(M) are convex and star-shaped 

with respect to e^e H, and such that f j and induce the same metric 

on M and the natural or ientat ions on f j (M) and f̂  (M). Suppose 

moreover that the second fundamental forms of f j (M) and f2(M) are 

pos i t ive semi -def in i te . Then the same i s true for the second fund

amental forms of f i (M) and f2(M) in E " 

Proof : 

Let c be a curve parametrized by arc- length s in M (with the 

metric induced by f j and f 2 ) . Applying formula (1.4) to the a r c -

length parametrized curve Y^ = f,J O C we have 



39-

f . ( c ( s + h) ) = (1 + h^) X. + ht . + h ' k. n. + O(h') 

where x.̂  = f ^ ( c ( s ) ) and t^., k^, n̂ j are j u s t t , k, n associated with 

the curve Y ^ , i = 1,2. We also have 

-<f^ (c (s + h)) - f , ( c ( s ) ) , ^ > = 2 < , ^ ' ; , ' ^ , e ^ , < . - < " , > e , > f , ( c ( s ) ) . 

+ n ^ . n >- '^2^' <n^,e><f ( c ( s ) ) , n>+ O(h^) (1.7) 
2 < x , + X 2 , e > 

where n^ i s the unit normal of fj(M) at f j ( c ( s ) ) . Using the def

i n i t i o n of the second der ivat ive a 'o f a function a given by 

a'ix) = l im a ( x + h) + a ( x - h) - 2a(x) 
h -»• 0 h 2 

we get 

<(f 0 c )"" ( s ) , n > = -h ': < -<n ,e >f ( c ( s ) ) + n ,n > + 

+ ^ <n , e ^ x f ( c ( s ) ) , n > (1.8) 

The term on the l e f t hand i s the second fundamental form of f i(M) 

applied to ( ( f j O c ) " ( s ) , ( f i 0 c ) ' ( s ) ) . So i t su f f i ces to show that 

i t i s always > o. Since 

""^1 >J 0 and ^2 ^ 0 
<x^+ X2,eQ> <Xi+ X2,eQ> 

i t s u f f i c e s to prove that 

<-<n^,e^> f i { c ( s ) ) + nj , n j » o and - <n^:, e ^ x f j ( c ( s . ) ) , n » o " 

The fol lowing lemma completes the proof 

Lemma (1 .1 .3 ) 

Let P and Q be the tangent hyperplanes of f^ (M) and f2(M) at 

the point a ^ = f j ( p ) and b^ = f 2 ( p ) , and l e t c^ = f j ( p ) . Let a^ 
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and be the unit normals to P and Q at a^ and b^ and l e t c^ ^ ^ 

be the uni t normal to the tangent hyperplane of f j {M) a t c ^ . Then 

A = < - < a , e „ > c „ + a„ ^ , c„ ^ >>o and B = -<b„ ^ >e>< c„,c„ . » o 0 0 0 n +1 n +1 n +i o o n +i 

Proof: 

Choose pos i t ive ly oriented orthonormal vectors a ^ , . . . , a ^ at the 

point a^ in P, l e t b »--->ti^ be the corresponding vectors at b^ in Q, 

and l e t c ^ , . . . , c ^ be the corresponding vectors at c^ in the tangent 

hyperplane of f^(M) at c ^ . Then for some c > o 

^n +1 = V----'^ % • ̂  +1 = ^ x . . . . x b ^ , c^ = c e ^ x c ^ x . . . . x c ^ 

Applying formula (1.2) to the tangent vectors X̂  in Mp such that 

1",̂  (X. ) = a . , we have 

:. = :^ ( - X , a . a^) = ( . . . ) 

^0 

i = 1, 2 , . . . , n 

where 

Notice a lso that 

< a . + b. , eQ> , XQ>o,i = o, 1 , . . . , n 

Hence 

(1.9-b) 
( 1 . 9 - a ) . < Co,V,> = -x-n+i^^* 

Since f^ and f^ induce the natural or ientat ion on f^ (M) and f^(M), 

the determinants in equations (.19) are both pos i t i ve , hence 
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Similar computations on B show that 

0 L 

2 e. 
{det 0 

b 
} + {det 0 

a ;0 .n 

.^n 

and the proof now is complete. 

Now, we return back to complete the proof of theorem ( I .1.3)(b) . 

We assume that M is a compact, connected, orientable, C°° Riemannian 

n-manifold with Kĵ  ^ - 1 , and that f ^ and f^ are two isometric immersions 

of M into the (n+1) - dimensional model H. From theorem {I.1.3)(a) 

we have that both f^ and f^ are imbeddings and both f^{H) and f2(M) are 

boundaries of convex bodies. Without loss of generality we can assume 

that both fi(M) and f^i^) are star-shaped with respect to the point 

e^e H. From the last proposition i t is clear that f j (M) and f^(M) 

are local ly convex hypersurfaces in E""*"^ with sectional curvatures 

greater than or equal to zero. Since f j(M) is a compact hypersurface 

of E " ' ' ' \ then there exists a point of f^(M) at which a l l sectional 

curvatures are s t r i c t l y positive. M.P.DoCarmo and E . Lima jo in t l y 

proved the following [12]. 

Theorem (1.2.7) 

Assume that a l l second quadratic forms of the immersion 

x : M / ^ E " ' ' " ' ^ of a compact, connected, orientable, n-dimensional 
n+N N > 1, to be 

X 
Riemannian manifold M into the Euclidean space E 

semi-definite, and def ini te at one point (p.v^{p)) e S(M) { t h i s 

condition is relevant by the last paragraph} . Then x(M) belongs 

to a linear subvariety of E^'^^ and x : M E""^^ imbeds M as the 

boundary of a convex body, in particular M is homeomorphic to a 

sphere. 
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Applying this theorem to our case we conclude that (M) and 

f (M) bound convex bodies in E""*"* . in addition, R. Sacksteder [ 27 ] 
2 

proved the following : 

Theorem (1.1.8)^*^ 

Let M be a complete, Riemannian n-manifold and le t 

X , y : M E""*"* be two isometric imbeddings such that x(M) and 

y(M) bound convex bodies. Then i f r > 3 is the maximum rank of the 

second fundamental forms, x(M) and y(M) are congruent, ( i . e . there 

is an Euclidean motion (isometry) T such that T(x(M)) = y(M).). 

From a l l the above arguments, the maximum rank of the second 

fundamental forms is n and this happens at the points of f^(M) and 
^ (M) of positive sectional curvatures. Hence we conclude that there 

"* n+1 ~ ~ ~ 
exists an isometry a of E Such that a o f ^ = f^ . 

We define the mappings p^, : E""* "^ -* H by 

P, (P) 
2p + eo (-1+ <a(p), a(p) > - < P.P > ) . 

I numerator || 

and 
p , 2p + eo (-1 +<a"^(p),a"^{p)> - < P.P> ) 

2 
numerator 

Direct computations show that and are C^mappings, moreover, 

P , ( f j . (P)) = (P) and p^(f^ (p)) = f^(p) for a l l peM. 

Proposition (1.1.5) 

The mappings p • and p̂  are both injective. 

Proof : 
-n+i 

Suppose that p, q .are two points in E " such that p M but 

(if) Theorem (1.1.8) .applies to the case when dim M > 2 but i f 
dim M = 2 we use theorem (1.1.4). 
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P (P) = P (q)- From the nature of P and p we have that p and q 
must be parallel vectors in E " ^ \ SO there exists a unit vector 
V C E " ^ ^ such that p = X v a n d q = y v . Substituting these two 
expressions in the equality P^(p) = Pj(q) we have 

[ - l + < a ( p ) , a ( p ) > - A 2 ] / X = [-1 +<a(q) , a(q) > - y 2 i / y 

From the nature of the group of isometries of E"'''^we can assume that 

a is a rotation a* followed by a translation by the vector c. Hence 

the last equation becomes 

+ 2<a*(v) ,c> = + 2 < a V ) , c> 

which shows that X = M and hence p=q which is a contradiction 

leading to the fact that p̂  is an injective map and so is p^. 

rv 

I t follows from the iyariance of domain theorem that p 

and p̂  are both open maps. Hence a= p̂ o a op^" ^ defines an injection 

on some connected open neighbourhood of f^ (M) in H and a(f^ (p)) = 

f (p). I t remains now to show that a extends to an isometry of H 
2 

and for this i t is suff ic ient to show that a preserves the Lorentz 

inner product <, > . In terms of P̂  and P2 we show that 
< P (P)- P ( q ) . P ( P ) - P (q)> = <P {a(P))-P (a(q)).P (a(pj-p (a(q))> (1.10) 

1 1 1 1 2 2 2 2 

From relat ion ((6.1) chapter 0) i t can be proved that the 

Lorentz distance <p-q, p-q> between any pair of points p,q in H 

uniquely determines their H-distance (the length of the geodesic 

segment joining p and q in H) which wi l l complete the proof. 

Instead of proving relation (1.10) we show that 

< Pj(P). p^(q) >= < p,i^iP))> Pa 
(1.11) 

Let 

a (p) = 2p + e^ (-1 + <a(p) , a(p)> -< p,P> ) 

b (p) = 2a(p) + e^ (-1 +< P,P> - < a ( p ) , a (p)> ) 
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Then 

P^(p) = a ( p ) / / <a(p), a(p) > & p j p ) = b(p)/ /<b(p),b(p) > 

Again to show that (1.11) holds, i t suffices to prove that 

<a(p). a(q) > = <b(p), b(q) > (1.12) 

Now 

<a(p),a(q)> = 4<p,q> -(- l+<a (p), S (p) > -<p,p>)• 

•(-l+<a (q), a (q) > - < q,q > ) (1.13-a) 

<b(p),b(q)> = 4<a(p), a (q ) >- (-l+<p,p> - < a ( p ) , a (p) > )• 

.(-1+ <q,q>-<a(q),a(q) > ) (1.13-b) 

Writinga = a * + c as before we get 

< a ( p ) , a ( p ) > = <p,p >+ 2<a*(p),c> + 

< a ( q ) , a ( q ) > = <q,q > + 2<a^q),c> + c ^ (1.14) 

< a(q),oE(q) > =<p,q>+<c, a*(p) + a * (q )> + c ' 

Equations (1.14) together with (1.13) give the required result. 

This completes the proof of theorem (1.1.3) 
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Section 2 : Infinitesimal and Continuous Rigidity 
(1.2.0) Introduction 

We have seen in the previous section that a Riemannian manifold 

M is r ig id as a submanifold of another Riemannian manifold M i f whenever 

r and r are isometric immersions of M into M, there exists an isometry 
I 2 

(}> of M such that r̂  = (j> o r̂  . A second theory which is the subject of 

this section is called "infinitesimal r i g id i t y " . 

As a prototype we have the classical Lî bmann problem which can 

be stated as follows [29 ] : 

A closed convex surface in Euclidean three-space is.given. I t is to 

be shown that the only small deformations of i t which preserves the 

l ine element within terms of second order in the deformation parameter 

are small r ig id motions. 

In this section we t ry to extend the concept of infinitesimal 

r i g id i t y to submanifolds of hyperbolic spaces using the original ideas 

formulated in E l l i p t i c and Euclidean spaces by A.V. Pogorelov [25] 

and la t te r ly by R.A. Goldstein and P.J. Ryan [15 ] . The contrast between 

( f i n i te ) r i g i d i t y and infinitesimal r ig id i t y w i l l be c lar i f ied through 

the present work. We conclude this section with mentioning some notes 

about the theory of continuous r i g id i t y as a third theory of r ig id i t y . 

One of the aims of this section is to establish a one-to-one 

mutual correspondence between submanifolds in the Euclidean and hyper

bolic spaces and their respective infinitesimal deformations. In this 

way, the questions regarding infinitesimal r i g id i t y of submanifolds in 

hyperbolic spaces w i l l reduce to those regarding infinitesimal r ig id i t y 

of submanifolds in Euclidean spaces. 

In this section, a l l manifolds and maps are assumed suff ic ient ly 

di f ferent iable for a l l computations to make sense. All manifolds 



-46-

are assumed connected. 

The following notations w i l l be used throughout. A submanifold 

S = (M,r) of a Riemannian manifold (M,g) consists of a manifold M and 

an immersion r of M into M. The group of isometries of a manifold M 

is denoted by I(M). Some fami l iar i ty with [15] is required for 

reading this section. 

(1.2.1) Deformations of submanifolds 

Let S = (M,r) be a submanifold of a Riemannian manifold (^,q).. 

Let I =[ -6,6] for some 6 > o. A map 

Y : I X M M 

is said to be a deformation of S i f Y g = ^ and is an immersion 

for each t e l . (We have w r i t t e n Y ^ ( X ) forY( t ,x) ) . Each immersion 

Y^ induces a Riemannian metric g^ on M. Each closed curve on M 

has a length L(t ) measured by the metric g^. 

Definit ion 

Let Y be a deformation of S. We say that y is an isometric 

deformation (ID) of S i f g. = g^ for each t e l . We say that y is an 

infinitesimal isometric deformation (IID) of S i f g'(o) = o. 

Notice that when we write g ' (o) , we regard g^ as a curve in 

the f i n i t e dimensional vector space of tensors of type (o,2) at a 

point of M. I t is easy to show thatY is an ID i f and only i f 

L( t ) is independent of t for each closed curve in M. Furthermore, 

Y is an IID i f and only i f L (o) = o for each such curve. Actually, 

the def in i t ion of the IID given above can be written in a clearer 

way as follows : 

A deformation Y : I x M -> M is said to be an IID i f and only i f 

the relat ion 



-47-

g^(u,v) = gQ(u,v) + O(t^) 

is true for each peM and each pair u,veMp. 

In [15 ] , R.A. Goldstein and P.J. Ryan gave an example of 

infinitesimal isometric deformation in Euclidean space E .̂ In what 

follows we give an example for the same kind of deformation in hyper

bolic space. 

Example (1.2.1) 

Consider, for this example, the 3-dimensional hyperbolic space 

represented by the half-space model 

IR^"^={xeIR3 : x = (x ^ x̂  ,x^ ) , x3>o, g = ( E dx^ ® dxV^x^ j ^ } 
T 

Let M be the hypersurface of IR "̂*" given by 

M = { X elR^'*' : x = (o, x ^ x ' ) where x3> o, - ^xx ^<«> j 

and r : M->- IR "̂*" to be the inclusion map in IR "̂*". Consider the 

following deformation of S = (M,r) defined for te [-1,1 ] 

Y( t ,x ) =Yt(x) = ( t T ( x ) , x S x M 

where'i'(x) is a smooth function with compact support on M. For 

simplicity we writeY^(M) = M .̂ 

I t is clear that under the above deformation Y> the basis of 

the tangent space (M^)^ are 

3/3X* = (t3 i '/3xS 1 , o) and a/ax' = (t^'^'/^x^o,l) 

I t is easy to see that for t = o, S/ax^ = (o, l ,o) and 3/9x' = (o ,o , l ) . 

Consider U = (Up and V = (V j , VJ to .be two tangent vectors 

to at X . Then direct computations show that 

9 (Yt* (U). Y t * (V)) = g(u,v)+(t /x ' )^ {u^vj^+u^v^^^+ 

where = 9^/9x^. Clearly, the last expression of g^ shows that the 

deformation y is an IID. 
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The above example can be generalized for the (n+1) - dimensional 
half-space model IR^""*"^)"*" and M to be the hyperplane defined by 
x^ = 0, say. Moreover, g^ w i l l have the following form : 

g(Yt* (U), Yt*(V)} = g(U,V) + (t/x"-*-') ' (U'F)(W) 

( 1 . 2 . 2 ) Vector f ields associated with a deformation: 

Let S = ( M , r ) be a submanifold of the Riemannian manifold 

( M , g ) , and le t Y : IxM ^ M be a deformation of S. For each xe M , le t 

Z be the tangent vector to the curve t-»- Y(t ,x) at t = o. Thus Z 
A 

is a vector f i e l d along the immersion r (or simply a longY^(M)) whose 

value at x is the i n i t i a l velocity of the motion of x under the 

deformation Y. We call Z the deformation f ie ld of y- I t i s , in fact , 

Z which determines the infinitesimal properties of y . 

The main theorem of this section, which is given below, has been 

proved in t l S ] through adapting the theorem of Nash [19] which deals 

with the imbedding problem of Riemannian manifolds. We give here 

another proof which does not need such a background material. Our 

proof is also much easier in computations. 

Theorem ( 1 . 2 . 1 ) 

A deformation y is an IID i f and only i f for X,Ye X(M) 

g i V x ^ . Y ) + g(x,VYZ) = o ( 2 . 2 . 1 ) 

where Z is the deformation vector f ie ld of Y and V is the covariant 

d i f ferent iat ion operator of the Riemannian manifold ( M , g ) . 

Proof: 

Under the same notations and wr i t ing, for simplici ty, Y^ (X) = X^ 

for X e X(M) we have 

Ztg(Xt '^t) " 9^^^ t ' ^ t l ' ^ t ) " ^Pv^h'\^^ = ̂ ^\h'V + ^^h\hy 
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where is the velocity f i e ld of the curve t ->Y(t,x). 

In terms of the Lie derivative, the last relation may be 

written as 

g)(Xt'Yt) = 9 ( \ Z t ' V ^ 9(Xt,VY^Z^) (2.2.2) 

Since Z is an IID vector f i e l d , then the original definit ion of the 

Lie derivative gives 

C-Zt^^^^t'^^ I t=o = 1 h(X^,Y^) - q i ^ . ' f ^ ' = ̂ m^Qip_ = 0 

(2.2.3) 

Accordingly, equation (2.2.2) when computed at t = 0 using equation 

(2.2.3) we get 

g(VxZ,Y) + g(X,VYZ) = 0 

The converse can be proved i f we assume that 

is of order 0 ( t ) . The integration gives that g^ is i t se l f of order 

0(t^ and this completes the proof of the theorem. 

In fac t , the above theorem is a successful tool for dealing with 

the problems of infinitesimal isometric deformations as i t wi l l be 

clear through the following work. 

Proposition (1.2.1-a) 

Let M be a hypersurface of the Riemannian manifold (M,g) and 

le t Z be any IID vector f i e ld along M which is everywhere normal to M. 

Then at every point pe M where f 0, the second fundamental form 

h(p) of M at p vanishes. 

Proof: 

Let Z be as in the proposition, hence i t satisfies equation 

(2.2.1) 
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< V ^Z, Y> + < X , V Y Z > = 0 

where X,Y eX(M). Let peM be a point of M at which o . Using the 

Weingarten's formula (§ 2-chapter 0) we have 

V ̂ Z = - AX + Z 

and substituting in the above equation we obtain 

< AX, Y >p = h(p) (X,Y) = 0 

Since X and Y are arbitrary vector f ields in X(M) we get the result 

that h(p) = 0. 

Corollary : 

I f Zp 0 for a l l p i n an open set UCiM , then U lies in a to ta l ly 

geodesic hypersurface of (M,g).I fZ does not vanish globally along M then 

M w i l l be a to ta l ly geodesic hypersurface of (M,g). 

Moreover, we can prove the following : 

Proposition (1.2.1-b) 

Every normal deformation of a to ta l ly geodesic hypersurface 

is an IID. 

Proof : 

Let M be a to ta l ly geodesic hypersurface of the Riemannian 

manifold (M, <,> ) and le t y be a normal deformation of M. Let Z be 

theassociated vector f ie ld ofy . For arbitrary X,Y eX(M) we have 

h(X,Y) = 0 

or equivalently 

< AX,Y > + < X,AY > = 0 

Using Weingarten's formula together with this equation we get 

< V x^»^^ + < X VyZ > = 0 
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which shows, by virtue of theorem (1.2.1), that Y is an infinitesimal 
isometric deformation of M as a submanifold of (M, < , > ) . 

Concerning the infinitesimal isometric deformations of to ta l ly 

geodesic hypersurfaces we have the following 

Proposition (1.2.2) 

Let M be a to ta l ly geodesic hypersurface of the Riemannian manifold 

(M,g). Then a vector f ie ld Z along M is an IID vector field~bf M i f 

and only i f i t s tangential component is an IID vector f ie ld of M as wel l . 

Proof: 

Let M be a to ta l ly geodesic hypersurface of (M, <, >) with unit 

normal f ie ld v . Consider a vector f ie ld Z along M, then we can write 

Z = T + (jjv 

where T denotes the tangential component of Z and (j) the length of i ts 

normal component. For XeMp we have 

V^Z = V^T + h(p) (X,T)v + X(()))v -<\>{p) Vj^v (2.2.9) 

Now suppose that Z is ah IID vector f i e l d , then for X, YeMp we 

have 

< Vj^Z, Y > +< X,VyZ > = 0 (2.2.10) 

Substituting (2.2.9) in (2.2.10) we have 

<V^T,Y>+< X, VyT > = 2<f)(p) h(p) (X,Y) (2.2.11) 

Since M is a to ta l ly geodesic hypersurface then h (p)(X,Y) = o for 

every point peM. Hence (2.2.11) becomes 

< Vĵ T,Y > + < X, V Y T > = 0 

which means that the tangential component T of Z is also an IID f ie ld 

of M in (M,< , > ) . The converse is direct. 
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A.V. Pogorelov [25] proved that for two close isometric surfaces 

F^ , F^ , in 3-dimensional e l l i p t i c space, which are defined by 
x = X j (u,v) and x = x^ (u ,v) , respectively, the surface F defined by 
X =p (x^+ x^) has the vector f ie ld 5 = p(x^- x^) as an IID f ie ld 
(p is defined below). For hyperbolic space and more generally we 
have: 

Proposition (1.2.3) 

Let M be a Riemannian m-manifold and le t y , y : M H be two 
1 2 

isometric immersions of M into the n-dimensional hyperbolic space 

model H. Let y and y have the property that y = p(y + y ) : M H 
1 2 1 2 

is an immersion. Then for the submanifold S = (M, p(y^+ y^)), the 

vector f i e ld Z = p(y^- y^) is an infinitesimal isometric deformation 

f i e ld of S in H. 

{ p = is a normalization factor making oiy + y ) : H to be 

an immersion into H, i .e .p^ (-2 + 2 < y , ' y > ) = -1 } 
1 2 

Proof : 

At f i r s t , we show that Z is a vector f ie ld along S and is tangent 

to H. This can be carried out by showing that < y,Z > = 0 everywhere 

along S. In fact 

< y,z > = P^<y^ + y^. y^- y> =.p^{<y^, y>-<y^, y> } (2.2.12) 

Since M - (M,yj and M = (M,y ) are submanifolds of H, then 
1 1 2 2 . 

<y^ . y> =<y , . y > = - 1 ( 2 . 2 . 1 3 ) 

Equation (2.2.12) together with (2.2.13) show that<y,Z> = 0 

everywhere along S. 

To complete the proof consider two arbitrary vector f ields 

X,YeX(S). Let X.e X(M.), i = 1,2, be the natural projection of X 

on the appropriate submanifold M .̂. Since X is tangental to S, then 
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we can write , 

X = Dy = X(p)(y + y ) +p(D y + D y) 
X ' ^ V 

= X(p)(y + y ) + p(X + X ) (2.2.14) 
1 2 1 2 

A similar expression can be written for the vector f ie ld Y . Notice 

that D denotes the covariant differentation in the Minkowski space 

(IR <, > ). We also have 

DxZ = X(p) (y^- y j + p ( X ^ - X J (2.2.15) 

Using equations (2.2.14 and 2.2.15) we obtain 

< D Y Z , Y > + < X.DyZ > = 2{< X , Y > - < X , Y > } 
A I 1 1 2 2 

Taking into account that y is isometric to y , we get 
1 2 

< D^Z, Y > + < X , D Y Z > = 0 (2.2.16) 

Since X and Z are tangential to H, then by formula ((6.3) - chapter 0) 
we have 

D ^ Z = V , Z . < X . Z > X , 

< X,x> =< Y,x> = 0 ] 

From (2.2.16) and 2.2.17) we have that 

< V j^Z,Y> + < X , V Y Z > = 0 

which shows that Z is an IID vector f ie ld of S in H. 

I f <}) is a curve in I(l i) with 4)(o) = i , then the deformation 

Y : IxM -̂  M defined by . 

Y(t.x) = 9 ( t ) r(x) 

where r = Y Q J gives an isometric deformation of the submanifold 

S = (M,r) in Fl since 

(Yt^X = (<D(t))^ (r^X) 

for each Xe X(M). 
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Definit ion : 

An IID y : I x M -> M, whose deformation vector f ie ld Z coincides 

with that of a deformation induced by a curve ^ ( t ) in I(M), is said 

to be t r i v i a l , (and the vector f ie ld Z is called t r i v i a l as wel l ) . 

Before being involved in any other detai ls, we give the f o l l 

owing notes concerning the t r i v i a l deformations of submanifolds in the 

Minkowski space (IR""*"^ , < » > ) . 

Definit ion : 

An nx n matrix B is called S-skew-symmetric i f (SB)* = - (SB) 

where S = (o ? )• 
n-i 

I t is known that for a submanifold M in a Euclidean space E " ^ ^ , 

the deformation vector f i e ld Z, associated with some deformation of M, 

is t r i v i a l i f and only i f Z can be expressed in the form 

Z^ = a r(x) + b 

for a l l xeM where " a " is a skew-symmetric matrix and b is 

a constant vector in E""*"^ . In the following proposition, a similar 

result has been proved. 

Proposition (1.2.4) 

An IID y : I x M ̂  (IR"•^^ < , > ) is t r i v i a l i f and only i f , 

for some S-skew-symmetric matrix a and some constant vector b , 

the deformation vector f ie ld Z can be written as 

Z^ = a r(x) + b 

for a l l xe M. 

Proof : 

I t is known that each curve ({)(t) in the group of isometrics 

I(IR ,< , >) of the Minkowski space has the following form 
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<1) ( t ) r(x) = a ( t ) r(x) + 3 ( t ) 

where a ( t ) is an element of the Lorentz group 0̂  (n+2) [29] and 3 ( t ) 

is a vector, and a( t ) acts on r(x) by matrix mult ipl ication. We 

also have that a(o) = 1 and 3(o) = o. 

The deformation vector f ie ld of the above deformation can be 

written in the following form 

Z^ = a^(o) r(x) + 3'(o) 

The proof of the necessity part of the proposition wi l l be complete 

when showing that a (o) is an S-skew-symmetric matrix. 

Since a ( t ) e 0 ^ (n+2), then i t satisfies the equation 

a*(t) .S = S .a"^ ( t ) 

Differentiat ing this relation with respect to t we have 

a* ' ( t ) . S = -S. a" ' ( t ) . a ' ' ( t ) . a " ' ( t ) 

Computing at t = o and taking into account that a(o) = 1 , we obtain 

a*'(o).S = (S.a^(o) ) * = - S.ct'(o) 

Hence a"(o) is an S-skew-symmetric matrix. 

Conversely, i f a,b are given, put 

Y ( t ,x ) = exp(ta). r(x) + t b 

I t is easy to check that exp(ta) is in 0*(n+l), hence Y is an isometric 

deformation with deformation f i e ld 

Z^ = ar(x) + b 

and the proof now is complete. 

Proposition (1.2.5) 

Let Z be an IID vector f i e ld of an immersion f : H where M 

is an r-dimensional manifold. Define the deformation Y : I x M H by 
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Y ( t , x ) = Y^(x) = p(f(x)+tZ^) 

Then in a neighbourhood of any point xeM, the mapY^ is an immersion 

for suf f ic ient ly small t , and the induced metric g^ - Y^*< , > on M 

is related to the metric f *< , > = g^ 

g.(X,Y) = g (X,Y) + t^ { < X,Y> Z 2 + < DZ.DZ> } + 0(t'* ) 
t o X Y 

In part icular, the metric y , > andy*^< , > on M are 

the same. 

Proof: 

I f X is a tangent vector on M, with X = c'(o) for some curve c 

in M, then 

' t * = d 4 l 3 _ / t ( ^ ( ^ ) ) = d 4 l 3 _ _ , P ^ ^ ( ^ ) ^ ^ ^ C ( S ) > = 

p {X + tDZ} + X(p) { f (x ) + tZ } 
X 

In a similar way we can write the expression of Y^^(Y) for another 

tangent vector Y to M at x as follows 

y^^ (Y) =p{Y + tD^Z}+ Y(p) { f (x ) + tZ^ } 

For the map y^ to be an immersion for small values of t is clear 

from the last formulas for y^^. 

The aim now is to compute g.̂ . =Y^<> > which can be done as 

follows: 

gt(X.Y) = (Yt *< .>) (X,Y) =p2g^(X,Y) + p t { < X , D Y Z > + < DxZ,Y> } + 

+p ' t '< D^Z, D Y Z > + X ( P ) Y ( P ) < f(X) + tZ^ , f (x) + tZx> + 

+ pY(p)<X + tD^Z, f (x ) + tZ^> +pX(p)< Y + tDYZ,f(x)+tZ^> (2.2.18) 
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Taking into account that Z is an IID vector f ie ld of M in H, we have 

< X .DyZ > + < D^Z. Y > = 0 (2.2.19) 

Since 

p = 1 - t ' IIZ J r .< x,Z,> = 0 
A 

we have 

P ' ' X ( P ) = t2<Z,Dj^Z> (2.2.20J 

Substituting (2.2.19) and (2.2.20) into (2.2.18) and expressing p as a 

power series in t we obtain the required result. 

Actually, the term 0(t'*) is an in f in i te series of the even 

powers of t and hence (Y^* < , > )(X,Y) is an even function of t , hence 

( V < '> ) (^'Y) = {y_* < » )(X.Y) 

and the proof is now complete. 
4 

I t turns out that the map P (f(x) + tZ^)->• P (f (x) - tZ ), which 
X A 

is an isometry by the last proposition, is some sort of reflection 

which can not be realized, in general, by a t r i v i a l motion. Equiv-

alently, the map P(f(x) + tZ^) P(f(x) - tZ ) is not a restr ict ion 
A A 

of any Lorentzian motion. 

Proposition (1.2.6) 
The deformation given in example (1.2.1) is a non-trivial IID. 

Proof: 

The deformation f ie ld which is an IID f i e ld in example (1.3.1) 

may be written as 

2 = {m , o,...,o) 

We remark that I ^ o on the support 0 of ^ and hence Z E O on an open 

set in M. 
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Suppose that the deformation y (in the example) is trivial 
contrary to the claim in the proposition, then there exists an 
isometric deformation = <t5{t), where(t)(t) is a continuous curve 
in I(IR^"'''̂ '̂'' ) , for which the deformation field Z associated 
with coincides with Z at t = o. However, any trivial Z (affine 
map) which is zero on an open set is identically zero. We now conclude 
that Z is non-trivial unles 1* = o. 

In fact the last proposition can be restated in a more general 

form as follows: 

Proposition (1.2.7) 

Any hypersurface in hyperbolic space, some open subset of which 

lies in a totally geodesic hypersurface admits a non-trivial infinit

esimal isometric deformation. 

In [15 ] , R.A. Goldstein and P.J.Ryan proved that the standard 

sphere of radius R in E""*" ^ is infinitesimally rigid. They also proved 

that small spheres on S""*"̂  (R) are infinitesimally rigid. In the 

next part, similar results have been proved in Minkowski space and in 

hyperbolic spaces. 

(1.2.3) Rigidity of the H-model 

We start by defining the concept of infinitesimal rigidity. 

Let E denote the restriction of the tangent bundle T(M) to M where 

M is an immersed submanifold (r : M -»• M) of the (pseudo) Riemannian 

manifold M. 

Definition: 

A submanifold S = (M,r) of M is infinitesimally rigid (IR) if 

the only sections of E which satisfy (2.2.1) are tr iv ial . 
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Theorem (1.2.2) : 

The H-model of (n+1)-dimensional hyperbolic space in the 

Minkowski space (IR"'''^ <, >) is inf initesimally r i g id . 

Proof: 

Suppose that Z is an IID vector f ie ld of H in (IR""*" \ < » > ) . 

then Z can be written as 

Z^ = + 7 (DX (2.3.1) 

for xeH, T is the tangential component to H and (j) is a smooth function 

on H. Now, we have by using formula ((6.3) - chapter 0) 

Dyl = V ^ T + < X , T > X + HX <})) X + H .X (2.3.2) 

for X eX(H) and v the induced Riemannian connexion on H. Using theorem 

(1.2.1) together with equation (2.3.2) we have 

< V ^ T , Y> + < X,V Y T>+(|)<X,Y> = 0 

for X,YeX(H). This last relation is equivalent to 

(L^< , > ) (X,Y) +<!,.< X,Y>= 0 

or simply 

L^< ,> = -(}><,> (2.3.3) 

To complete the proof of the theorem we need the following 

materials. For more details see [ 30 ] . 

Definit ion 

A vector f ie ld X on a Riemannian manifold (M,g) is conformal 

i f i t generates a one-parameter group {(^^ } , t e IR, of conformal 

transformations on (M,g). 

The following proposition has been proved in [301. 
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Proposition (1.2.8) 

Let X be a complete vector f i e ld on a Riemannian manifold (M,g). 

Then X is a conformal vector f i e ld on (M,g) i f and only i f there exists 

a real-valued function X on M, called the characteristic function of X, 

such that 

(49) (X.Y) = 2X(m) g(X,Y) 

for each meM and for each pair X,Y eX(M). 

The following proposition gives some characterizations of the 

conformal vector f ie lds . 

Proposition (1.2.9) 

Each conformal non-Killing vector f ie ld on H can be obtained from 

a non-tr iv ial constant vector f ie ld c on (IR"'''^» < >> ) by an orthogonal 

projection. The converse is also true. 

Proof: 

As c is a constant vector f ie ld on (IR""*" \< , >), then DyC = 0 

for any Y£ X ( I R " ' ^ ^ < , > ) . For X,Ye X(H) we have already 

DyX = Y & DyX = V yX +< X,Y > X 

for each xeH. Let c = c +<c,x>x denote the orthogonal projection on 

H, hence ceX(H) and for Ye X(H) we have by direct computations that 

V yC = <c.x > Y 

Using this relat ion we f ind that the Lie derivative of the induced 

metric on H satisf ies 

(L- g) = 2< c,x> g (2.3.4) 

which means (by proposition (1.2.8)) that c is a conformal vector f i e ld 

on H with characteristic function 2 <c ,x> . The converse is direct. 
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Now, as the Lie derivative Lĵ  is linear in X, any conformal 

vector f i e l d T on H can be written as a linear combination of a 
Ki l l ing vector f i e ld V and a non-Killing one,c say, i .e. 

T = V + c + < c,x > X (2.3.5) 

rH'2 

where c is a constant vector f i e ld on (IR , < , > ) . 

We return back to complete the proof of the theorem. I f we 

write the tangential component T of Z in the form (2.3.5) and taking 

V = ax where a is an (n+2) x (n+2) S-skew-symmetric matrix, we have 

T = ax + c +<c,x > X (2.3.6) 

Comparing (2.3.3) and (2.3.4) we get that <f = -2< c,x > , hence 

from equation (2.3.1) and (2.3.5) we have 

Z = ax + c 
X 

which means that Z is a t r i v i a l vector f i e l d , and so the model H is 

inf ini tesimal ly r ig id as a hypersurface in the pseudo-Riemannian 

manifold (IR""^% < , > ) . 

(1.2.4) Rigidity of geodesic spheres in hyperbolic space 

The main result of this part is to prove that : 

Theorem (1.2.3) : 

Geodesic spheres in hyperbolic space are inf initesimally r ig id . 

Proof : 

The next two lemmas are helpful in carrying out the proof. We 

wi l l not mention their proofs as they depend on direct and easy 

computations. 

Lemma (1.2.1) 

Let S(c,r) be a geodesic sphere in the model H with centre c. 
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and radius r. The unit normal vector f i e ld 5 of S(c,r) as a hypersurface 
of H is 

^ = ( - C + x. cosh r) /s inh r , x eS(c,r) 
A 

Lemma ( 1 . 2 . 2 ) 

The unit normal vector f i e ld N of S(c,r) as a hypersurface of 

the hyperplane <x,c > = - cosh r is 

N = (x - c cosh r)/sinh r , xeS(c,r ) 

I t is known ( § 6 - chapter 0 ) that the second fundamental 

tensor A of S(c,r) as a submanifold of H is given by 

A = coth r. I 

Now, consider Z to be an IID vector f i e ld of S(c,r) in H. This vector 

f i e l d Z can be written as 

I = + ( 2 . 4 . 1 ) 

where T is tangent to S(c,r) and 4) is a smooth function on S(c,r) . 

I t is known from theorem ( 1 . 2 . 1 ) that 

< V . y> + < X, VYZ > = 0 ( 2 . 4 . 2 ) 

for X,Y e X(S(c,r)) . Substituting ( 2 . 4 . 1 ) in ( 2 . 4 . 2 ) we get 

< 7j^T ,Y > + < X,7YJ> + <Ji. coth r .< X,Y > = 0 ( 2 . 4 . 3 ) 

where V i s the induced covariant di f ferent iat ion operator on S(c,r) 

and X,Y e X (S(c,r)). Using the same notations as before, we have 

(L̂ < , >) = (* .coth r. < , > ( 2 . 4 . 4 ) 

which showsthat teX (S(c,rD is a conformal vector f ie ld on S(c,r) . 

Taking into account that S(c,r) is a Euclidean hypersphere in the 

hyperplane <x,c> = - cosh r , we can write 

T = V + b -< b,N> N ( 2 . 4 . 5 ) 
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where V is a Ki l l ing vector f ie ld on S(c,r) and b is a constant vector 

in (IR""*" ^ < , >) which satisf ies < b,c > = o. 

Similar computations to that of t30 ] (p.85)show that 

= S i ^ r < b.N>. < , > (2.4.6) 

From (2.4.3) and (2.4.6) we have 

and from (2.4.1) we obtain 

Z = V + b + < b,N> tanh r.c (2.4.7) 

But since < b,N> = < x,b> / sinh r, we have 

Z = V + b + ^ ^ i i ^ c (2.4.8) X X cosh r ^ ' 

In a similar way to [30].we can show that there exist two S-skew-

symmetric matrices and such that 

Z^ = + ^ ) X . (2.4.9) 

Choosing = a x and writ ing x as a linear combination of 
X 0 

c,b and some other vector v, we have 

a^v = 0 , a^c. = -b/cosh r and â  b = ( jb i ^ /cosh r ) c 

Since linear combination of two IID vector f ields is again an IID one, 

this together with (2.4.9) complete the proof. 

Although horosphere in hyperbolic space is a l im i t of sequence 

of geodesic spheres which are inf ini tesimally r i g i d , horosphere i tse l f 

is not inf in i tesimal ly r i g id . The following example indicates this 

fact. 

Example (1.2.2) 

Consider IR̂ "*" to be the 3-dimensional half-space model of 

hyperbolic 3-spaces and le t H be the horosphere given by x^ = a 
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where a is a positive real number. Consider the deformation Y of 
H^3 in IR ^+ which is defined by 

Yt(x) = (x ' . x ^ a + t^i j ;) , t e [-6 , 6 

where is a smooth function with compact support 0 on H 3 - The 

basis { S / 9 x \ 8 / a x M of the tangent space^(H^a)^ are given 

3/9 x^ = (1 ,0 , t^ and 3 /3 x^ = ( o , l , t ' l ' J 

where = a f / a x̂  , i =1,2 
1 

Let U = (Uj'U^) and V = (V^.V^) be two tangent vectors 

to Yo{H^^) at X , then 

U = y (U) = U 3 / 3 x ' + U 3 / 3 x 2 

V. = Ŷ . (V) = V 3 / 3 x ^ + V 3 / 3 x ' t t * 1 2 

Now, direct computations show that 

< U ,̂V^> - . u ^ ) l ^ - j j : ^ j , + Û V̂  (a+t2 ^ ^ ^ 2 * (a+t^ w)^ 

Expanding (a+t^ ' l ' ) '^ in a power series of t and substituting, we obtain 

<U^,V^> = <U,V> + 0 ( t 2 ) 

which shows that the deformation Y given above is an IID of H 3 in 

IR "̂̂  . In a similar way to that of proposition (1.2.6) we can show 

that Y is a non-tr iv ial IID and the proof is now complete. 

(1.2.5) Transformation of submanifolds and their infinitesimal 
isometric deformations : 

In this part we establish a mutual correspondence between 

submanifolds and their infinitesimal isometric deformations in the 

hyperbolic and the Euclidean spaces. For the rest of this part 

l e t H denote - as before - the (n+1) - hyperbolic space model 
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in (IR""^^ , < , > ) . Let, in addition, that D and V denote the 
covarient di f ferent iat ion operators on (IR""*"^ , < , > ) and H, 
respectively. 

Before giving the proof of the following two theorems, we state 

without proof the following proposition which is just a restr ict ion 

of proposition (1.2.4) to the model H. 

Proposition (1.2.10) : 

A deformation of a submanifold S = (M,r) in H is t r i v i a l i f and 

only i f for some S-skew-symmetric matrix " a " , the associated 

deformation vector f ie ld Z is expressed as 

ly, = ar(x) 

for a l l x EM. 

Now, we are in a stage to prove the following : 

Theorem (1.2.4) 

I f 5 is an IID vector f i e l d of the submanifold S = (M,r) in H, 

then the vector f ie ld defined by 

5x + < 5x, ^ 0 >Jo 
1 

is the f i e ld of an IID of the submanifold 

(j) : y = 

•y < G Q . r (x j > 

r(x) + < r ( x ) , eo> C Q 

< r ( x ) , eo > 

in E " " ^ ^ . The f ie ld Z is t r i v i a l i f and only i f the f ie ld C is t r i v i a l . 

Proof : 

Consider a curve in M with velocity f ie ld X. Let the corresponding 

curve in(j) have Y as i t s velocity f i e l d . From the relations given 

in the proposition, we have 
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¥ ^ ̂  ¥• V ^0 
< r-(x), e^ > \- <r(x). e^ >̂  

C + < C ,e^> <e^,X.> 

Y = 
X + < X, e^ > e^ r(x) + < r ( x ) , e^e^ 

<r(x) , e^ > ^ <r(x) , e^ >' 
<e ,X> 

For Ŷ  , Ŷ  e X ( <j>) and using the last two expressions we 

get, by direct computations taking into account that ? i s an IID 

f i e l d , that 

< Dv Z, Y > + < D„ Z,Y > = 0 
' 1 2 ''2 1 

where D in this equation denotes the induced Riemannian connexion on 

E""^^ and hence Z is an IID f i e ld of (j) in E " ' ^ \ 

For the second part of the theorem, let C be t r i v i a l , i .e . C 

has the form 

5^ = ar(x) 

for some S-skew-symmetric matrix a. Substituting this expression 

of 5 in the Z expression, we have 

Z = a.y(r(x)) + 3 

where 6 is some vector in E""*" ^ and a is a skew-symmetric matrix, 

hence Z is t r i v i a l . The converse can be proved in a similar way. 

The previous theorem is quite useful for transferring IID 

problems from the hyperbolic space to the Euclidean one. The reverse 

way is given by the following theorem which has a similar proof to 

that of the previous one 

Theorem (1.2.5) 

Let Z be the f i e ld of IID of the submanifold S = (M,y) in 

E"+ ' , then 
5 = ^y ^ ^ ' ^0 

^ " / I - <y.y> 

is the f i e ld of IID of the submanifold S = (M,x) defined by 
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x = y " ^0 

n - < y . y > 

in H. The f i e ld ? is t r i v i a l i f and only i f the f ie ld Z is t r i v i a l . 

(1.2.6) Conclusions 

We conclude this section by giving, f i r s t l y , some notes on the 

IID of submanifolds of a Riemannian manifold (M,g) which are, in 

part icular, true in hyperbolic spaces. 

Definit ion 

A vector f i e ld ZeX (M) is called an IID of M i f the one-parameter 

group ^ ' l '^ } generated by Z is an infinitesimal isometric transformation 

group. 

Actually, the following proposition shows an important fact 

concerning this kind of f ields just defined. 

Proposition ( 1 . 2 . 1 1 ) : 

Let (M,g) be a Riemannian manifold and let Ze X(M) be an IID vector 

f i e ld on (M,g), then Z is an isometric deformation vector f ie ld 

(K i l l ing vector f i e l d ) . 

Proof : 

Let {(f)^ } be the one-parameter group of transformations generated 

by Z, then by def ini t ion of IID, we have 

Using the def ini t ion of the Lie derivative we get 

49 = ^l^Mgt - 9o)/t = 0 ( 2 . 6 . 1 ) 

The following proposition has been proved in ( [ 1 9 ] Vol.1 p.237) 

Proposition ( 1 . 2 . 1 1 ) . 

For a vector f i e ld Z on a Riemannian manifold (M,g), the 
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following two conditions are mutually equivalent : 

(1) Z is a K i l l ing vector f i e l d (ID). 

(2) L^ g = 0 . 

Using equation (2.6.1) together with proposition (1.2.11) we 

conclude that Z is a K i l l ing vector f ie ld (ID f i e l d ) . Hence i <t>^ } 

is a one-parameter group of isometries of (M,g). 

Corollaries 

Let M be a submanifold of (M,g) and let Z be an IID of M 

in (M,g) 

1. I f Z can be extended to an IID f ie ld Z on (M,g) then 

Z w i l l be an ID f ie ld of (M,g). (The ID f ie ld is 

defined below). 

2. I f Z is in X(M), then Z is a Ki l l ing vector f ie ld on M. 

Now to explain how to transfer the infinitesimal r ig id i ty problems 

from the hyperbolic space (represented by the H-model) to the corres

ponding problem in the Euclidean space E""^^ , we mention only two 

examples and refer the reader to [25 ] . 

We start by mentioning some geometric properties of the maps 

y : H E""^^ and x : E""^^ -> H defined by 

y = - (x + < x.e^ > e^)/ < x, e^ > , x = (y + e ^ ) / / I - < y , y > 

which have been mentioned in theorems (1.2.4) and (1.2.5), respectively. 

Clearly, the f i r s t map y can be written as 

y = - ( X / <x,eo> ) - eo 

We notice that the f i r s t term in the r ight hand side is the central 

projection (Beltrami map) of H into E""^^ while the second term represents 

the parallel translation of H. up to the origin 0 of (IR""*"^ , < , > ) • 
^0 
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The second map x can be written similarly. Since the central 

projection is a geodesic mapping, then y takes convex bodies in H 

to convex bodies in E ^while x takes convex bodies in E^"^^ to convex 
0 0 

bodies in H (see § 1 . chapter I I I ) . Under this understanding of 

the geometries of x and y, theorems (1.2.4) and (1.2.5) are good 

machines to carry over many a result related to IID of submanifolds 

in E""^ ^ to those in H. 

Example (1.2.3) 

Closed convex surface not containing any totally geodesic piece 

in the 3-dimensional hyperbolic space H is infinitesimally rigid. 

Proof : 

The proof of this fact depends on a similar one proved in [29 ] 

for Euclidean space E^ which can be stated as followe : Let Mc E ^ 

be any closed convex surface which does not contain a portion of a 

plane. Then M is infinitesimally rigid. 

Now let MciH be as in example (1.2.3), then its image 

M : y = -(x + <x, e Q > e^)/< x, eQ> , x eM is also a closed convex 

surface not containing any planar piece in E \ Let C be an IID 

field of M in H and let Z = - ( ? + < ^ . e^ > e^ )/ < x,e^ > be 

IID field of y in E^ . By the previous paragraph Z should be trivial 

and consequently by theorem (1.2.4) ? is also trivial and the proof 

now is complete. 

Any surface F d E ^ whose convex part lies wholly on its convex 

hull will be called a surface of type T. A similar definition can 

be stated for surfaces of type T in hyperbolic spaces. Under the 

above mentioned mappings x and y i t is easy to prove that T-

surfaces in hyperbolic space go to T-surfaces in Euclidean space and 

vice versa. It has been proved by Alexandrov [ 25 ] that analytic 
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surfaces of type T in E^ are inf ini tesimal ly r i g id . Hence similar 
to example (1.2.3) above we can prove that ; 

Example (1.2.4) 

Analytic surfaces of type T in hyperbolic space are in f in i tes

imally r i g i d . 

We now move to give some notes on the theory of continuous 

r i g i d i t y as a th i rd theory of r i g id i t y . First we recall the definit ion 

of isometric deformation (bending). In fact we distinguish between 

two kinds of isometric deformations as follows : 

Consider a C°° imbedding r : M -̂ M of a manifold M into a 

Riemannian manifold (S , < , > ). The isometric deformation of this 

imbedding is the C map Y : [ o , i ] x M such that : 

(a) each Y ^ : M M is an imbedding. 

(b) Yo = 

(c) Y^* <, > = Yo*< ,> , for a l l te [ 0 , 1 ] . 

The isometric deformation (ID) through immersion can be defined 

similar ly. I f the isometric deformation Y : [ o,i,] x M - ^ M is not 

purely imbedding or immersion we say that Y is an isometric 

deformation. 

I t is clear from the above def ini t ion that each isometric 

deformation is inf ini tesimal ly isometric at each te [ o , i ] and the 

converse is also true ( i . e . a deformation which is IID at each 

t e [ 0 , 1 ] is an ID). From this argument we see that the crucial 

difference between dealing with ID and IID is that for ID we should 

study the behaviour of the deformation for each value of t in i t s 

domain of def in i t ion while in IID case we study the behaviour of the 

deformation only at t = o. 
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To c la r i f y this point, consider the following : 

We have proved in proposition (1.2.1) that for each tota l ly 

geodesic hypersurface M in a Riemannian manifold M, any (non-vanishing) 

normal deformation is an IID one. This fact is no longer true for 

the isometric deformations according to the following example : Consider 

the Riemannian manifold M to be the unit n-sphere s " in E""*"^ . Let M 

be the greatest sphere s " " ^ , say. (see the following f igure). 

t t 

I f we push s " " ^ normally upstairs such that each point xes " " ^moves 

along the normal geodesic joining x to the north pole with constant 

velocity. In this way we get a deformation Y : f o , l ] x S '—»• S 

which is IID but not ID. 

For some value u of t , u e I =[ o , l ] , l e t Z^(x) denote the 

tangent to the curve t - » ' Y ( t ,x) for xeM at t = u. In this way we can 

define at each t e l a vector f ie ld Z^ which is tangential to M along' 

Y ^ (M) = and we call i t the deformation vector f ie ld associated 

with the deformation Y : I X M ^ M at t e l . Following a similar 

method of proof to that of theorem (1.2.1) i t is easy to prove that : 

Theorem (1.2.6) 

The deformation Y : I x M M is an ID i f and only i f for each 

t e l 

< V Z^, Y , > + < X ^ , V Y Zt > - 0 

t 
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for X^ = Y ^ * (X), Y^ = Y^^ {Y) , X,Ye X (M) and V denotes - as 
before - the covariant di f ferent iat ion in (M, < , > ) . 

Actually, with this understanding of the ID we can give the 

following definit ions : 

1 . An isometric deformation Y : I x M ^ M is called t r i v i a l i f 

each Y ^ can be written as <t> ( t ) o r for some continuous curve 

({)(t) c I (M) such that 4)(o) = 1 . I t is called non-trivial 

i f at least one Y ^ is not of this form. 

2. The submanifold (M,r) is called continuously r ig id in M i f 

every ID of (M,r)is t r i v i a l . 

I t can be shown that the isometric deformation Y : I x M H 

of the imbedding (immersion) r : M ^ H is t r i v i a l i f and only i f the 

variation vector f ie ld Z^, at time t of Y is t r i v i a l at each te I 

(The method of proof is similar to that of [ 29 ] in E""*" ^ ) 

In what follows we give an example of continuously r ig id 

submanifolds of hyperbolic space. For the next discussion le t H 

denote the three-dimensional hyperbolic space model in the 4-dimen-

sional Minkowski space (IR** , < , > ). 

We proved before that any closed convex surface in H not 

containing any to ta l ly geodesic piece is inf ini tesimally r ig id . 

Using this result we can prove : 

Example (1.2.4) : 

Any closed convex surface in H not containing any to ta l ly 

geodesic piece (K > - 1 ) is continuously r ig id (unbendable). 

Proof : 

Let M be a surface in H satisfying a l l the hypothesis in the 

example. Let Y : I x M H be an isometric deformation through 
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imbedding of M in H. Then for each t e l , Y^(M) = is a closed 
convex surface of H with K> -1 and hence is inf initesimally r ig id . 
This shows that the I D vector f ie ld (which is an IID f ie ld) is 
t r i v i a l for each t e l which means that y is t r i v i a l at each t e l and 
hence the resul t . 

This example, in a natural way, gives rise to the question : 

Is every inf in i tesimal ly r ig id submanifold continuously rigid? The 

answer is "yes" on condition that any isometric deformation through 

imbedding of this submanifold preserves a l l i t s geometric properties 

such as curvature, second fundamental forms, . . . , etc, To c la r i f y this 

idea consider the following : 

Let Y : I x S H be an isometric deformation through imbedding 

of the geodesic sphere S = S{p,r) of center peH and radius re IR 

in the hyperbolic (n+l)-space H. ClearlyY^(S) = is a geodesic 

sphere for each te I and since geodesic spheres in H are inf initesimally 

r ig id (by theorem (1.2.3)) then similar argument to that of example 

(1.2.4) shows that : 

Theorem (1.2.7) 

Geodesic spheres in hyperbolic spaces are continuously r i g id . 

Using theorem (1.2.2) we also can show that : 

Theorem (1.2.8) : 

The H-model in the Minkowski space (IR""^ ! < ,> ) is contin

uously r i g i d . 

Depending on the results of R.A. Goldstein and P.J. Ryan [ 1 5 ] 

we have the following results : 

(a) Euclidean sphere s""^^ in E""^^ is continuously r ig id . 

(b) Small geodesic spheres in s""*"̂  are continuously r i g id . 
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We f in ish o f f this section with mentioning the following 

two facts : 

(1) The set of a l l IID f ields of a submanifold M in (M, < , > ) 

forms a vector space over IR. This is clear since equation 

(2.2.1) is linear in Z. 

(2) For future work, the t r i v i a l i t y problem of an infinitesimal 

isometric deformation can be discussed through the dimen

sional analysis on the vector spaces of IID f ields and 

t r i v i a l f ie lds . 



CHAPTER I I 

SUBMANIFOLDS OF HYPERBOLIC SPACES 
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Section 1 : Isometric immersion with conditional 
' second fundamental form 

( I I .1 .0) - Introduction 

J. Simons [28] made an important contribution to the study 

of minimal submanifolds immersed in a Reimannian manifold by using 

the derivation of the linear e l l i p t i c second order di f ferent ia l 

equation satisf ied by the second fundamental form of each minimal 

submanifold. An application of this study has been carried out by 

S.S. Chern, M.P. DoCarmo and S. Kobayashi jo in t l y [9 ] , in the unit 

(n+p) - sphere 5""*"̂  when the length of the second fundamental form 

of the immersed n-dimensional minimal submanifold M is { n/(2- •^)} ^. 

S. Braidi and C.C. Hsiung [4 ] jo in t l y extended the results 

obtained by S.S. Chern, M.P. DoCarmo and S. Kobayashi to compact 

oriented n-dimensional immersed submanifold M of s"''"'̂  whose second 

fundamental form satisf ies certain condition. This assumed condition 

reduces to the condition above concerning the length of the second 

fundamental form in case M is minimally immersed. One of the 

theorems proved in [4 ] can be stated as follows : 

Theorem ( I I . l . 1 ) 

Let M be a compact oriented immersed hypersurface satisfying 

/ tW, - (Tr H )A(Tr H ) ] dv = o 
M 

in an (n+1) - dimensional space N of constant sectional curvature 1. 

Then M is either an n-sphere or locally a Riemannian direct product 

MZ)U = Vj X V2 of spaces and V2 of constant sectional curvature, 

dim Vj = m » 1 and dim V2 = n-m > . l . In the la t ter case, with 

respect to an adapted frame f i e l d , the connextion form ( w g ) 
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of N, restricted to M, is given by 

1 m 
fti 0 -Xu)̂  

J m -Xo) 

0 '"m+i n 
m+i 

-yu) 
1 

• n -yo) 0 n n 

m+i 
-yu) 

1 

• n -yo) 

m+i n i 

where ^ is the Laplacion operator, H^^^ denotes the symmetric matrix 

of the second fundamental forms and is given by 

= (S-n)S + (Tr H^^, f - (Tr H^^^)(Tr H^̂  J , S = ?.(h. .)' ' 

Although studying some cases of submanifolds in hyperbolic 

spaces shows consistency with similar cases in e l l i p t i c spaces, some 

others prove great deviations. In what follows we find the modified 

form of theorem ( I I .1 .1) for hyperbolic spaces. F i rs t ly , we demonstrate 

the necessary relations. For more details see [ 4 ] . 

( I I .1 .2) - Basic relations : 

In this a r t i c le we find the expression of the Laplacian for the 

second fundamental form of a submanifold immersed in a locally 

symmetric space. 

Let M be an n-dimensional Riemannian manifold immersed in an 

(n+p)-dimensional Riemannian manifold N. Choose a local f ie ld of 

orthonormal frames e^ e^^p in N such that, restricted to M, the 

vectors e^ e^ are tangent to M. We shall make the following 

convention on the ranges of indices : 

1 ^ A,B. . . n+p , 1 < i , j , k . . . ^ n and (n+l)^a5 3 . • • •^(n+p) 

For the following computations we use the Einstein summation convention. 

Let ^ be the coframe f i e ld dual to e , . . . , e ^ j ^ „ 

chosen above. Let h^°'(e.,e.) = h^. = h^. . Applying in the structural 
I J ' J . J ' 
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equations with restr ic t ion to M, we have 

a 
w = 0 " (1.1) 

= h ° j . J (1.2) 

Gauss' equation ((2.7) - chapter 0) can also be written in 

the following forms 

where R ,and R represent the curvature tensors of N and M, respect

ively. Actually ^ 2 ĥ ' e , which is independent of the 
" i i i a 

choice of coordinates [19] , is called the mean curvature vector 

and an immersion is called minimal i f i t s mean curvature vector 

vanishes ident ical ly, i .e . ^ h?. = o for a l l a . 
i 

Exterior dif ferentation of equation (1.2) and taking 

. N j k - ^ N j - ^ i i ' ^ j • ^ j '"i ^ N j ' ^ e (^-^^ 

give that 

2 

' ' i j k " ' ' ' ikj ' '^ikj ' ' " i j k 

Similarly, by exterior di f ferent iat ing (1.5) and defining 

^ i j k / = < , k - : . - k - ; k " - - " k - i . - k " 3 c-B) 

we get 
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In fact h^.. is the covariant derivative of h*̂ . while h^..,, 
is the covariant derivative of h .̂̂ î . Looking at R^̂ ĵ  as a section 
of the bundle T(M)'̂  ® T*(M) © T*(M) ® T*(M) , i ts covariant 
derivative R^̂ .ĵ ^ is defined by 

R ^ . , / = dR^ , -- R^.^o)^ - R \ ' ^ ^ - R ^ ' ^ i " + R -̂.'̂ B (1-11) i jk i l ijkJi mjk 1 imk j ijm k i j k 3 ^ ' 

This covariant derivative of R^^^ must be distinguished 

from the covariant derivative of Rg^^ as a curvature tensor of 

N, which w i l l be denoted by RJ^„ ^ . Restricted to M, R?.|,.o is 
B C D ; E i j i v , x , 

given by 

^• jk;£ = '^ijk£ - %-kNi l " îak ^-il - ^-jB ^ i l • ' ' ^ i jk V (^-^2) 

Assuming that N is local ly symmetric [19] , we have 

The Laplacian A h . , of the second fundamental form h.. is 

defined by 

Ah^-j = Z h^ . , , (1.14) 

Covariant di f ferent iat ing (1.7) and substituting in (1.14) we get 

that 

< - , ^ ^ u j k - \ % . . - - f^-'^' 

Using (1.10) together with (1.3), (1.4), (1.12) and (1.15) we 

obtain the f ina l expression of A h^. which may be written as 

, a V , a ~a B - a B. ~a B ~ a B 
^ ^ j = k ^ ^ k i j ' RijB \ k ^ ^Rg^i ^-k - R k B k ^ j • ^ 2 R 3 k j \ i + , . 

^ D "1 + R + 2R h^ ) + ^ (h*^. h^. ĥ K + 
^ '^kik ^mj ^ \ j k ^ i ^ ^ ^ j k V ^ e,n,,k ^ "'J '̂ '̂  
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Moreover, we have 

a 

~a ,a ,3 . o n ' " + PR*" hC ^ -

^ z z K ^ k - i k ^ k ) - ( - i . i - l ^ " ' ^ 
a ,3 > 1 »J>K» 

+ > i j \ £ - \ i \ z \ (1.17) 

Assuming that N has constant sectional curvature c, and choosing 
y ct 3 

e ^ , . . . , e^^p such that the symmetric matrix (S ) = (, h.^ ) 

is diagonalised, we have a simpler form for equation (1.17) 

as follows : 

^ ~ ^ h . ° ^ . Ahf . = > h". hn •• .+ ncS - ^ Ŝ , + Tr(H H - H H) ^ -

- c ^ ( T r H ) ' + ^ (TrH )(Tr(H H H. )) (1.18) 
a ^ a ' a,3 3 a 3 a 

where S = E S and S = S . 
ot aa a aa 

S. Braidi and C.C. Hsiung [4 ] proved that 

- h°f. A ĥ f̂  <s - ^ - r r ^^ii ^ k k i i 
. . i j i j p a» i>J>k i J KKi j a ,1 , J 

where 

= [ (2 - 1 )S - nc 1 S . c ^ (TrH„, f'l, m^W^W) 

The following inequalities have been also proved in [ 4 ] : 
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1. I f M is a compact oriented n-manifold immersed in an (n•̂ p) -

dimensional Riemannian manifold N, then 

^ h^i A h?' dv = - / ^fP^ (h " dv.< 0 (1.20) 

2. I f in addition N has constant sectional curvature c, 

then 

/ [ W - i:(TrH ) A(TrH ) ] dv ^ / Z I (h^.-J^ dv >^o (1.21) 

and consequently i f 

W„ - Z (Tr H ) A (Tr H ) ^ 0 
p a ^ a' ^ a' 

everywhere on M, then 

W„ - ^ (Tr H ) A (Tr H ) = o 

everywhere on M. 

( I I . l .3) - Main theorem : 

Throughout the present work we assume that M is a compact 

orientable n-manifold immersed in an (n-Hl )-dimensional hyperbolic 

space of.sectional curvature - 1 . We also assume that M has the 

property that 

f [ \ - (TrH^^^) A(TrH^^^) ] dv = o (1.22) 

The case of M being a to ta l ly geodesic hypersurface is possible 

in spherical spaces but is impossible in hyperbolic spaces. The 

reason is that in hyperbolic spaces to ta l ly geodesic submanifolds are 

non-compact. This may show the f i r s t deviation from theorem ( I I . 1 .1 ) . 

Equations (1.21) and (1.22) give that 

h?"!:? = 0 f o r a l T i , j , k (1-23) 
i j k • . 
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Using (1.14) together with (1.23) we have 

Ah"?^' = 0 (1.24) 

For simplicity let 

hJJ ' = h.j . h,, = h , (1.25) 

and choose the frame f ie ld e „ . . . , e such that 
1 n+1 

h.j = 0 for i j 

Lemma (11.1.1) : 

After a suitable renumbering of the basis, e^, . . . ,e^ we have 

either 

( i ) h = h = . . . . = h = constant, h. >1 for a l l i . 
^ ' : 2 n 1 

or 
( i i ) h , = h = = h = X = constant 1 < m < n 
^ , 1 2 m 

h r...= h = y = constant ,Xy = 1, u] = o for 1 < i ^ m, 
m+i n J 

m + 1 < j < n. 

Proof : 

Putting i = j and a= n+1 in equation (1.5) and using (1.25) 

and (1.26).we get 

dh.. = 0 (1.27) 

which shows that h.ĵ . = ĥ . = constant. 

For i ^ 3 , equation (1.5) becomes 

(h. - h.) 0 ) ] = 0 (1.28) 

from which i t follows that uy. = o whenever h. ^ h.. Thus i f 

h. ^ h. , the equations of structure give that 
I J 

0 = dw] = - 0)^*^0)J - 0 ) ^ ^ - 0 ) ^ ^ ' - J A (1.29) 
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From (1.2) and (1.29) we obtain 

(1 - h..h..) w V w J = 0 (1.30) 
t I J J 

which shows that i f h. f h., then h.h. = 1 . Set h = X then we 
J * J * " 

have as a f i r s t possibi l i ty that h j = = h^ = X which proves part 

( i ) of lemma (11.1.1) par t ia l ly . 

I f / . then h^ = 1/X = y . I f h^ ^ 3 , then h^ = A. 

Repeating similar discussion with a l l h / s we have under suitable 

renumbering of e j , . . . , e ^ that h^ = h^ =.. . = ĥ^ = X and 

h^^^ = . . . = h^ = y where m >2. In this case and from (1.28) we have 

(JL)1 = 0 for 1 < i ^ m and m+1 ^ j n. This completes the proof of the 
J 

lemma except for part ( i ) which can be completed as follows: 

In case ( i ) the sectional curvature of M may be written as 

K(e. e.) = -1 + X̂  = constant 
J 

Applying Amaral's theorem (1.1.2) we conclude that M should have a 

point with K(e. ^ e.) >o for a l l i , j , hence |x| > 1. 
1 J 

In case ( i ) also, M is to ta l ly umbilical and. hence M is a 

geodesic sphere (proposition (6.1) chapter 0). 

In case ( i i ) we have for 1 i m , m + 1 j ^ n that 

K(e. , e j ) = -1 . h.hj = 0 

which contradicts Amalaral's theorem (1.1.2). 

From the above argument we can state the main theorem of this 

section as follows: 

Theorem ( I I .1 .2 ) 

Let M be a compact, oriented immersed hypersurface in an 

(n+1)-dimensional hyperbolic space with curvature K .= - 1 . Let M 
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have the property that 

/ [W^ - (Tr H^^^)A(Tr H^̂  ̂  ) ] dv = o 
M 

then M is an n-geodesic sphere 
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Section 2 : On the Gauss mapping for hypersurface of 
constant mean curvature 

( I I .2 .0 ) - Introduction 

The aim of this section is to prove the following two theorems 

Theorem ( I I .2 .1 ) 

Let M be a complete, orientable, Riemannian manifold of dimen

sion n :̂  2 isometrically immersed in the H-model of the (n+l)-hyper-

bolic spaces and le t $ : M -»- H* be the associated Gauss mapping into 

the conjugate hypersurface H* of H (see definit ion below) 

i ) I f '̂(M) is contained in a compact hypersphere of H*, 

i .e. $(M)C:L"''' H H * where L""*" ^ is a hyperplane in the 

Minkowski space (IR""*" ^ , < , >) , then M is imbedded as a 

geodesic sphere. 

i i ) I f *(M) is contained in a hypersphere of H* whose plane is 

asymptotic to H, then M is imbedded as a horosphere of H. 

i i i ) The image 4'(M) is a single point of H* i f and only i f M is 

imbedded as a to ta l l y geodesic hypersurface of H. 

Theorem ( I I .2 .2 ) 

Let M be a compact, connected, orientable n-manifold immersed 

in the (n+l)-model H. Let M have constant mean curvature. I f the 

Gauss image $(M) l ies in a closed hemisphere of H*, then M imbeds 

as an n-geodesic sphere in H. 

In fact , K. Nomizu and B. Smith [24] proved the corresponding 

two theorems in the Euclidean sphere s""*"̂  in E""*" ^. In chapter I I I 

we define other types of Gauss mappings dif ferent from that given in 

this section. 
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( I I .2 .1) - The Gauss mapping 

The conjugate hypersurface H* of H in the Minkowski space 

( IR""^^ , < , >) is defined by 

H* = { X e R""^^ ; < x,x > = 1 ) 

I t is to be noted that H* is a Lorentz manifold whose induced metric has 

index 1. I t can be shown, similar to H, that H* has constant sectional 

curvature K = 1. As we mentioned above that a hypersphere in H* means 

L^ ' ^ 'nH* where L""^* is a hyperplane in (IR""^" , < , > )• I f L""*" ' 

passes through the origin 0 of (R""*"̂  , < , > ) we call L""*" M H * great 

hypersphere. 

As in chapter 0, le t D denote the covariant di f ferent iat ion 

operator of the Riemannian connexion on (K , < , > ) . Let M be 

a hypersurface of (IR , < , > ) with induced covariant di f ferent

iation operator V and le t M be an immersed hypersurface of M. I f C 

is the f i e ld of unit normal vectors of M as a hypersurface of M, we 

have 

\ ^ = -A^ X (2.1) 

where A^ is the second fundamental tensor of the immersion of M into 

MandXeX(M). We have also that 

D^? = ^ ^ ^ )n . (2.2) 

where n is the unit normal vector f ie ld of M and h is the second 
*w n+2 

fundamental form of M as a submanifold of (IR , < » > ) . I f we 

project D„? orthogonally on M for some xe M we obtain by using (2.1) 
A X 

an orthogonal projection on M in the same time. Hence i f P denotes 
A 

the orthogonal projection mapping, then we have 

P(Dĵ  5) = V = -A^ X (2.3) 
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Consider 0 to be the origin of (IR""*^^ . < , > ) andy to be 
the straight l ine segment joining 0 and xeM. Now parallel translate 
C along Y to 0, we obtain a unit vector at 0 and we call i t $ { E , ) . 
I f we ident i fy each xeM with C , we obtain the desired Gauss 
mapping $ : M H* or C : M -^H*. Direct computations show that the 
di f ferent ia l C*(or ) of this Gauss mapping is given by 

= 5, (X) (2.4) 

for X eX(M). From (2.3) and (2.4) we have 

P o = -A (2.5) 

where we put A^ = A for simplicity. 

Notice that i f M is a hypersurface of (IR""''^ > < »> ) i t se l f , 

then equation (2.5) becomes simply 

n = -A 

Lemma ( I I .2 .1 ) : 

Under the above notations i f 4 is a constant vector f i e l d , i .e. 

D̂  C = 0 for each X £X(M), the M is a to ta l ly geodesic hypersurface 

of M. 

Proof : 

Since D ?̂ = o, then P{D^K ) = o for each Xe X(M). From (2.5) 

we have that A = o and hence M is a to ta l ly geodesic hypersurface 

of M. 

This lemma says that i f $(M) is a single point of H* then M 

is a to ta l l y geodesic hypersurface of M. 
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Now we specialize to the case when M is the H-model. Equation 
(2.2) together with equation ((2.4) - chapter 0) give 

as h(X, C) = <X,5> = 0 and Xex(M), hence 

(2.6) 

(2.7) 

Lemma (11.2.2) 

Let M be a hypersurface of H. Then M is a to ta l ly geodesic 

hypersurface i f and only i f $(M) is a single point of H* 

Proof : 

The necessity part is clear by lemma ( I I .2 .1) when taking 

M = H. Conversely, i f $(M) is a single point of M*, then 

$ ^ = 0 and by (2.7) we have A = o. Hence M is to ta l ly geodesic, 

and the proof is complete. 
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( I I . 2 . 2 ) Proof o f theorem ( I I . 2 . 1 ) 

I t i s c l e a r t h a t i f 4)(M) l i e s i n a hypersphere L""'"^nK* then 

the re e x i s t s a vec to r a e ( IR " "^^ , < , > ) such t h a t < C. a > = 

cons tan t . I f the hypersphere i s a g rea t one then < a > = o 

and i f i t i s a small one which passes through some po in t c then 

< ?,a > = < c ,a > . 

D i f f e r e n t i a t i n g the r e l a t i o n <? ,a > = cons tan t , we have t h a t 

< D C , a > = 0 f o r X e X(M) 
X 

Using ( 2 . 7 ) we have 

< AX, a > = 0 

Since X i s an a r b i t r a r y vec to r f i e l d on M and A maps X(M) to X(M) then 

M' i t s e l f should l i e i n L"''"^nH where L""*" ^ i s a hyperplane in 

( I R " " ^ ' . < , > ) w i t h "a " as i t s normal , i . e . L "^ ' and L""^' are 

p a r a l l e l hyperp lanes. 

Now suppose t h a t the hypersurface L" ' ' "^nH* i s a compact hyper

sphere, then L"'*'^ r iH should be a lso compact and by § 6 - chapter 0 , 

M i s imbedded as a geodesic sphere o f H which proves pa r t ( i ) . 

As L""^' i s always p a r a l l e l t o L""^ ' and i n pa r t ( i i ) L""^' 

i s assumed to be asymptot ic to H, hence from the geometry of horos-

pheres of the H-model ( § 6-chapter 0) we have t h a t M i s imbedded as 

a horosphere o f H. Not ice t h a t M i n t h i s case should be non-compact. 

Par t ( i i i ) o f the theorem i s proved by lemma ( 1 1 . 2 . 2 ) . 

( I I . 2 . 3 ) - Proof o f theorem ( I I . 2 . 2 ) : 

For the proof o f theorem (11 .2 .2 ) we need to f i n d the Laplacian 

Af o f some d i f f e r e n t i a b l e f u n c t i o n f . 

Let M be a Riemannian k -man i fo ld . For any d i f f e r e n t i a b l e 
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f u n c t i o n f e J{H) i t i s known t h a t A f can be w r i t t e n as [ 19 ] : 

( A f ) ( p ) = ^ ( v ^ f ) ( e . , e . ) (2 .8 ) 
• i = l ^ ^ 

f o r e , ,e . orthonormaI bas is o f , p eM, where 
1 K . P 

V^f = X{Yf ) - (V X Y) f (2 .9 ) 

and V denotes the c o v a r i a n t d i f f e r e n t i a t i o n i n M. 

Let M be a k-dimensional submanifold of the (n+1) - dimen

s iona l model H i n the Minkowski space ( I R " " * " ^ , < , > ) . In a d d i t i o n 

to the normal x to H, choose n - k + 1 vec to r f i e l d s {^^ } which are 

normal to M and tangent to H such t h a t 5^ , E, ̂ .^^^ are othonormal , 

a t every p o i n t o f M. As be fo re , we denote by D, v and v the Riemannian 

connexions 

f i e l d s X and Y tangent to M we w r i t e 

o f ( IR""^" , < , > ) , H and M . r e s p e c t i v e l y . For vec tor 

D ĵ Y = V^Y + < X,Y > X (2 .10) 

n-k+1 . 
and VyY = VyY + 2 l h^(X,Y) ? • (2 .11) 

^ ^ j = l 

so t h a t 
n-k+1 . 

D Y = VyY + < X , Y > X + ^ h>^(X,Y)5 . (2 .12) 
X ^ j = l 

where h^ .h"""^"^^ are the second fundamental forms o f M as a • 

submanifo ld o f H. 

For a cons tan t vec to r " a " i n ( I R " ' ^ ^ < , > ) , consider 

f ( x ) = < x , a > , x e M , as a f u n c t i o n on M. For X, YeX(M) we have 

n-k+1 . 
X(Y < x , a > ) = < V Y Y + h-̂  (X,Y) ^ . , a> + < X,Y> < x .a > (2.13) 

^ j = i J 

We have a lso t h a t 

( v ^ Y ) < x . a > = < v ^ Y . a > (2.14) 
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From equat ions ( 2 . 8 ) , (2 .13) and (2 .14) we have 

( A f ) ( x ) = < ^ 211 (X ,X)c . + k x , a > (2 .15) 
i = i j = i 1 1 J 

where X X, are orthonormal basis of the tangent space M . 

Fo l low ing the same no ta t i ons o f § 1 we can w r i t e 

k n-k+i 
kC = ^ X I (2 .16) 

i = i j = i ^ 

where C denotes the mean cu rva tu re vec to r o f M as a submanifold 

o f H. From (2.15 and (2 .16) we have 

A < x ,a > = k < x ,a > + k < C ,a > , (2 .17) 

I f M i s a hypersur face o f H, then equat ion (2 .17) takes the form 

A < x ,a > = (TrA) < C»a > + n < x ,a > (2 .18) 

Where A i s the second fundamental tensor o f M and C i s the f i e l d o f 

u n i t normal vec to rs o f M as a hypersur face of H. In t h i s case and 

f o r f = <^,a > , s i m i l a r computations show t h a t 

n 
A < C,a > = - 2 ^ <grad (TrA) , a > - (TrA^ ) < C .a > -

i = 
- (TrA) < x ,a > (2 .19) 

We are now i n a p o s i t i o n t o prove theorem ( I I . 2 . 2 ) . Since we 

are concerned w i t h hypersurfaces o f constant mean curvature ( i . e . 

TrA = cons tan t on M), we w r i t e equat ion (2 .19) as 

A < ^ , a > = -TrA^ < ^ , a > - (TrA) < x,a > (2.20) 

Combining (2 .18) and (2 .20) toge the r we ob ta in 

A < n5 + (TrA) x ,a > = - { n (TrA2) - (TrA)^ }< ? , a > , 
(2 .21) 

= - 2 1 ( A . - X . ) ^ < C.a > 
i < j ^ 

where A A „ denote the c h a r a c t e r i s t i c roots o f A. 
i n 



- 9 1 -

The assumption on the Gauss image 0(M) of M i s equ iva len t to 

the ex is tence o f a constant u n i t vec to r " a " i n (IR""*"^ , < , > ) f o r 

which < 5,a > > o on M. By v i r t u e o f ( 2 . 2 1 ) , we have 

A < n C + (Tr A)x ,a > 4 o (2 .22) 

Using (2 .22) i n Hopf 's lemma [19] we have t h a t 

<n C + (Tr A ) x , a > i s cons tan t on M. I f M i s minimal <E, ,a > i s 

cons tan t on M and i n t h i s case M i s a geodesic sphere i n H. by v i r t u e 

o f theorem ( I I . 2 . 1 ) . 

We now assume t h a t Tr A ^ o. By equat ion (2.21) and l e t t i n g 

f : M H denotes the i somet r i c immersion under c o n s i d e r a t i o n , every 

p o i n t o f 

W = { p e M ; < C f ^ p j ,a > > 0 } 

i s an umb i l i c as i n t h i s case A • = A • f o r a l l i , j . However, 

< n ? + (Tr A)x ,a > being constant on M, i t i s c l ea r t h a t < x,a > i s 

cons tan t on M \ W . Therefore M\W immerses i n t o a hypersphere o f H 

so t h a t M\W i s t o t a l l y u m b i l i c . Thus M immerses t o t a l l y u m b i l i c a l l y 

i n ri and by v i r t u e o f p r o p o s i t i o n (6 .1 ) - chapter 0 M i s an imbedded 

geodesic sphere i n H. Thus the proof o f theorem ( I I . 2 . 2 ) i s now 

complete. 
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Sect ion 3 : S t a b i l i t y of minimal surfaces 

( 1 1 . 3 . 0 ) - I n t r o d u c t i o n : 

Since the paper o f B.Y. Chen[ 8 ] , the s t a b i l i t y problem o f 

submanifolds has become an i n t e r e s t i n g area of research . T . J . 

Wi l lmore and C.S. Jhaver i [ 3 2 ] genera l i zed the concept o f s t a b i l i t y 

adopted by B.Y. Chen i n Eucl idean spaces t o a general Riemannian 

m a n i f o l d . The s t a b i l i t y problem has been developed by H.Mori [ 2 3 ] 

when he s tud ied the s t a b i l i t y o f minimal sur faces i n the 3-dimensional 

Eucl idean sphere S^ o f u n i t rad ius i n E"* . In f a c t , H. Mori proved 

the f o l l o w i n g : 

Theorem ( 1 1 . 3 . 1 ) 

Let S^ be the 3-dimensional u n i t sphere i n E"* w i t h the canonical 

Riemannian m e t r i c and l e t f : M-> S^ be a minimal immersion o f a 

compact o r i e n t a b l e sur face M w i t h piecewise smooth boundary a M. 

Suppose t h a t the re i s a constant a ( > 4) such t h a t the Gaussian curv 

a tu re K o f M s a t i s f i e s K4 ( a - 4 ) / ( a - 2 ) . Then i f / ( l - K ) d V ^ - i — 
M 27TTa 

(M, f ) i s s t a b l e . 

In t h i s sec t i on we prove a s i m i l a r theorem concerning s t a b i l i t y 

o f m in ima l l y immersed sur faces i n 3-dimensional hyperbo l ic space. 

The model which we use i s the H-model i n the 4-dimensional Minkowski 

space (IR** , < , > ) . 

( 11 .3 .1 ) - Basic Re la t ions : 

Le t ( M , f ) be an immersed n-submanifold i n the Riemannian 

(n+p) -man i fo ld (M,g) . Let - as before - T(M)'^ represent the normal 

bundle o f M as a submanifold o f M. Let V , V and V denote the 

Riemannian connexions on M, M and i n T(M)'^ , r e s p e c t i v e l y . Let r (M) 

denote the space o f c ross -sec t i ons o f T(M)^ . Suppose t ha t v i s 
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a s e c t i o n o f r (M) , then the Lap lac ian Av o f v can be w r i t t e n as 
f o l l o w s [ 2 8 ] : 

( A v ) ( p ) = ( \ , ) ( p ) (3 .1 ) 

e^' 

f o r pEM where e ^ , . . . , e ^ are an orthonormal basis o f Mp. I f M i s 

compact and c losed or i f M i s compact w i t h boundary 3M, and t , 

are two c ross -sec t i ons i n r (M) which vanish on 3M, we have [ 19 ] : 

/ g ( A T , 4))dv = ; g ( W , Act))dv = - / g(A'l' ,A<t)dv (3 .2 ) 
M M M • 

X 
where g i s the induced Riemannian me t r i c on T(M) . 

D. Hoffman and J . Spruck [ 18 ] considered the i somet r i c immersion 

f : M M o f Riemannian mani fo lds M and M. Using the f o l l o w i n g 

no ta t i ons : 

K = sec t iona l curva ture o f M. 

5 = mean cu rva tu re vec to r f i e l d o f immersion 

r (M) = the i n j e c t i v i t y rad ius o f M r e s t r i c t e d to M 

w ^ = the volume o f the u n i t b a l l i n E'" 
m 

b = a p o s i t i v e rea l number or pure imaginary one 

they proved the f o l l o w i n g two theorems: 

Theorem ( 1 1 . 3 . 2 ) 

Assume K ^ b and l e t h be a non-negat ive f u n c t i o n on M 

van ish ing on 9M. Then 

{ / h '^ /^ '^-^Jdv } ( ' ' - ^ ) / " ' <̂ c(m) / ( fg rad h jj + h ^ )dv 

( * ) The i n j e c t i v i t y rad ius r (M) o f a Riemannian mani fo ld M i s the 
l a r g e s t r such t h a t f o r a l l pe M, expp i s an imbedding of the 
open b a l l B(0,m) o f center 0 and radiUs r i n M . 
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prov ided 

•2/m 2/m b ' ( I - a ) (0)^ vo l (supp h) ) ' • ^ 1 

and 

2 p o ^ r (M) 

where 

Vm b" ' s i n " * b ( l - a ) • " " (0)^" Vol (supp h ) ) ' / ' ^ . f o r b rea l 

(1 - a ) • ' / ' " ^ ) ' ' Vol (supp h ) ) 
Vm , f o r b imaginery 

Here 0 < a < 1 i s a f r e e parameter, dim M = m and 

•Vm m w 
m-1 m c(m) = c(m,a) = - ^ T T 2" 

f o r b imagery, we may omi t the f a c t o r i n t he d e f i n i t i o n o f c. 

Theorem ( I I . 3 . 3 ) 

Let M be compact w i t h boundary 8M and assume b^ then 

(Vol M)^""" ^ 4 c(m) (Vol 3M + f B11 dv) 
M-

provided 

(1 - a ) ( 0 3 ^ vo l M ) ^ / ^ < 1 

and 

2 p o r(M) 

where 

b-' sin-' b ( l - a ) ' ^ / " ' ( 0 ^ - ^ 0 1 M ) ^ / " ^ , f o r b rea l 

(1 - a ) " ( w " ' Vol M) 
m . 

i/m , f o r b . imaginery 
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( I I . 3 . 2 ) - V a r i a t i o n s and S t a b i l i t y ; 

Let { f ^ } be a 1-parameter f a m i l y of immersions o f the 

p -man i fo ld M i n t o the Riemannian n-mani fo ld (M,g) w i t h the p roper ty 

t h a t ^0 ~ ^ ' where f : M -»-M i s a C °° immersion, and the map 

F : [ 0 , 1 ] X M ^ M, de f ined by F ( t ,m) = f ^ (m) i s C~ . Then { f ^ } 

i s c a l l e d a v a r i a t i o n o f f . 

The v a r i a t i o n { f ^ } o f f : M->- M induces a vec tor f i e l d i n R 

de f ined along the image f (M) o f M. We denote t h i s f i e l d by E and i t 

i s cons t ruc ted as f o l l o w s : l e t d_ be the standard vector f i e l d 

i n [ 0 , 1 ] X M. We set E(m) = F* ( ^ ( o , m ) ) . The f i e l d E 
oo ^ M ~ T X 

g ives r i s e t o C c ross -sec t i ons E and E in T(M) and T(M), 

r e s p e c t i v e l y , by o r t hogona l l y p r o j e c t i n g E i n t o the appropr ia te 

space. 

Since E^ i s a vec to r f i e l d on M, E^ corresponds t o a d i f f e r 

e n t i a l ( p - l ) - f o r m e^T on M def ined by 

9 E T ( X i X p _ J = g(E^A XjA . . . . A Xp_^, e^A e^* . . .Aep ) 

where e ^ , i s any p o s i t i v e l y o r i en ted frame on M^. 

The f o l l o w i n g impor tant theorems have been proved by 

J . Simons [ 28 ] . 

Theorem ( I I . 3 . 4 ) 

Suppose t h a t M i s compact. Let Q( t ) = p-dimensional area o f 

f ^ ( M ) . Then Q( t ) i s a c " f u n c t i o n on f^ (M) and 

Q ^ o ) = - / g ( E ^ ^ ; ) + 7 e-r • 
M 9M E • 

where ^ i s the mean cu rva tu re vec to r o f M as a submanifold o f 

(M ,g ) . 
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Theorem ( I I . 3 . 5 ) 

Let f : M M be a minimal immersion i n (M,g) . Let { f ^ } 

be a v a r i a t i o n o f f . Sugpose t h a t f o r a l l t e [ O , T ] , f^ ( 9 M) = 

f ( 9 M). Then i f M i s compact Q" (o) = o. 

Theorem ( 1 1 . 3 . 5 ) 

Let { f ^ } be a v a r i a t i o n o f f such t h a t f ^ ( 9 M) = f ( 9 M). 

Suppose t h a t M i s compact. Set V = E " ^ . I f f ^ i s a minimal immersion 

Q ( 0 ) = / g ( - A V + R(V) - A ( V ) , V ) (3.3) 
M 

where 

R (V) = 2 (R ( e . . V ) e.)"^ , 
i = i 1 ' 

R i s the cu rva tu re tensor o f M and A = A * o A , A i s the second 

fundamental tensor o f the immersion f . 

00 

Let M be a. p -d imens iona l , compact, o r i e n t a b l e , C mani fo ld 

w i t h boundary 9M and l e t f : M M be a minimal immersion of M i n t o 

the Riemannian man i fo ld (M,g) . I t i s known (by theorem ( 1 1 . 3 , 5 ) ) 

t h a t M i s s t a t i o n a r y w i t h respect to the n-dimensional volume Q ( t ) . 

We say t h a t M i s s tab le i f Q"̂  ( O ) > o , i . e . the volume of f (M) i s 

a s t r i c t minimum o f a l l v a r i a t i o n s { f^ ) corresponding to Q ( t ) . 

Now, we s p e c i a l i z e to the f o l l o w i n g case : l e t f : M ^ H 

be a minimal immersion o f a compact o r i e n t a b l e sur face M w i t h 

p iecewise smooth boundary 3M i n t o the 3-dimensional hyperbo l ic 

space model H. By assumption on M we have a unique ( g l o b a l ) u n i t 

normal v e c t o r f i e l d v (up t o a s i gn ) on M, and t h i s f i e l d v i s 

p a r a l l e l w i t h respect t o the induced connexion on T(M) 
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( I I . 3 . 3 ) - Main Theorem 

The aim o f t h i s sec t i on i s t o prove the f o l l o w i n g : 

Theorem ( 1 1 . 3 . 7 ) 

Let H be the 3-dimensional hyperbo l i c space o f sec t iona l 

cu rva tu re K = -1 i n the Minkowski space (IR"* , < , > ) . Let 

f : M H be a minimal immersion o f a compact, o r i e n t a b l e , sur face 

M w i t h p iecewise smooth boundary 9M. Suppose t h a t there i s a 

cons tan t a e IR (a e I R \ ( 2 , 4 ) ) such t h a t the Gaussian curvature K 

o f M s a t i s f i e s K < ( 4 - a ) / ( a - 2 ) . Then i f 

/ (1+K) dV > -1 / (27 TTa), 
M 

( M , f ) i s s t a b l e . 

For the proof o f t h i s theorem we need the f o l l o w i n g lemmas. 

Lemma ( 1 1 . 3 . 1 ) 

Let f : M ^ H be as i n the above mentioned theorem. Then f o r 

a normal v a r i a t i o n w i t h compact support and w i t h v a r i a t i o n vector 

f i e l d u v , the second v a r i a t i o n of the 2-dimensional area Q( t ) i s 

g iven by 

Q" (0) = - / { u A u +(. IIBII^ - 2 ) u^ } dV 
M 

/ { l lgrad u 1^ - ( II B i r - 2 ) u 2 } dV 
M 

where j lBl l denotes the l eng th o f the second fundamental form o f 

( M , f ) , u e ^^(M) andv i s the f i e l d o f u n i t normals o f ( M , f ) . 

Proof : 

I f we cons ider V, = uv where . | v ' | | = | u | , u j ^ ^ ^ = o , 

r e l a t i o n ( 3 . 3 ) takes the form 
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( 0 ) = - / { < A U v . uv> + u^ ( ZR. + llBil.^ ) } dV 
M i.ot 

( 3 .4 ) 

(3 .5 ) 

= - / { u A u + u ^< V , Av > + u ^ ( Z R. . + (IBii2 ) } dV 
M i . a i ^ i * ^ 

where R i s the cu rva tu re tensor o f H. 

From r e l a t i o n ( 3 . 1 ) , we have by d i r e c t computations t h a t 

< v , A v > = - E I V " ^ V ( | ^ 

where , are orthonormal basis f o r the tangent space of M at 

a p o i n t . From equat ions (3 .4 ) and (3 .5 ) we ob ta i n 

Q ' ( 0 ) = - / ( u A u - u ^ Z l lVg , vj|2 -h u2( E R. I IB f l ' ) } dV (3 .6 ) 
M j = i j i . a 

Using S tokes ' theorem, we have 

^ u A u = jj l l g rad u } ' (3 .7 ) 

which toge the r w i t h the f a c t t h a t V ' ' ' v = o g ive 

Q" ( 0 ) = / { i l g r a d u i l ^ - u^ ( R , - „ i + I IB lM ) dV (3 .8 ) 
M i , a 

Taking i n t o account t h a t a = 3 and i takes the values 1 and 2 we 

have Z R. . = -2 and now (3 .8 ) becomes 

Q* ( 0 ) = / { llgrad u l l ^ - u M l i B i ' - 2 ) } dV 
M 

which completes the proof o f the lemma. 

Lemma ( I I . 3 . 2 ) 

The Gauss mapping $ : M -> H* (de f ined i n sec t i on 2 ) . f o r the 

two-dimensional minimal submani fo ld M o f H i s conformal . 

Proof : 

We have seen be fo re ( i n § 2) t h a t f o r a hypersurface M i n H, the 
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Gauss mapping $ : M H* has the p roper ty 

* * = -A 

where A i s the second fundamental tensor o f M as a submanifold o f 

H. Suppose t h a t and are the two eigenvalues of A. Since 

M i s a m i n i m a l l y immersed sur face i n H then 

A + X = o o r A = - A (3 .9 ) 
1 2 1 2 

Suppose t h a t e^ and e^ are the corresponding or thonormal e igenvectors 

o f A a t the p o i n t p e M . For any p a i r o f vec tors w ,v ^ Mp, we have 

< $ ^ u) , >= < A 0) ,A V > 

Expressing ,v as l i n e a r combinat ions o f .e^ , and using ( 3 . 9 ) , 

we get 

< $ 0), $^v> = Af ( a i b i + a 2 b 2 ) = A ' < w , v > (3 .10) 

where [a ^ , b j ) , (ag .bg ) are the components o f w and v , r e s p e c t i v e l y . 

From (3 .10) i t i s c l e a r t h a t 0 i s conformal w i t h scale f unc t i on 

A^ or A^ . 
1 2 

C o r o l l a r y ( I I . 3 . 1 ) 

There i s no compact minimal sur face (w i thou t boundary) i n the 

3-d imensional hype rbo l i c spaces. 

The reason i s t h a t i f we app ly Gauss equat ion ( ( 2 . 8 ) - chapter 0) 

we get t h a t f o r a hypersur face M i n the 3-dimensional hyperbo l ic 

space the Gaussian cu rva tu re i s 

K = -1 + A A = -1 - A^< 0 

1 2 1 

I f we assume t h a t M i s compact w i t hou t boundary we get a c o n t r a d i c t i o n 

t o Amara l 's theorem ( 1 . 1 . 2 ) . S i m i l a r argument shows t h a t the above 

c o r o l l a r y i s v a l i d a l so f o r compact hypersurfaces (w i thou t boundary) i n 

the n-dimensional hyperbo l i c space. 
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Lemma (11 .3 .3 ) 

Using the same no ta t i ons and under the induced m e t r i c , the volume 

V( $ (M)) o f the Gauss image $ (M) o f M i s 

/ dS = V( $ (M)) = / (w^ -1 ) dV 
M M 

where K = -oo^ and dS denotes the volume element o f the image (M). 

Proof : 

The volume V( $ (M)) "can be w r i t t e n as 

V( $ (M) = / / d e t (< ^ ^ ( e . ) , $ * ( e . ) > ) dV (3 .12) 
M ^ . 

From (3 .10) and (3 .12) we have 

V( $ (M)) = ; A^dV 

From (3 .11) we ob ta in 

V( $ (M)) = - / (1+K) dV = / (0,2 -1 ) dV 
M M 

and the p roo f i s complete. 

Proof o f theorem (11 .3 .7 ) 

To show t h a t M i s s tab le under the hypothesis in the theorem, 

i t i s to show t h a t Q" ( O ) > o which i s e q u i v a l e n t , by (lemma ( I I . 3 . 1 ) ) , 

t o show t h a t 

/ ( i | B F - 2 ) u ' dV < / jjgrad u | | ' dV (3 .13) 
M M 

Using equat ions (3 .9 ) and ( 3 . 1 1 ) , we get 

2 = X^ + .X^ = 2 A^ 
1 2 1 

Hence 

l i B P - 2 = 2(0)2 - 2) . 
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From equat ion (3 .14 ) i n e q u a l i t y (3 .13 ) takes the form 

/ 2 u ' ( '^^ - 2 ) dV < / II grad ujl^ dV (3 .15) 
M M 

App ly ing theorems ( I I . 3 . 2 - 3) f o r K = -1 and m = 2 we have 

{ / u2 dS } 4 c f grad u i dS (3 .16) 
' M ^ 1 M 

where 

c^ = 2 T r i ' ^a "^ (1 - ct) o < a < 1 (3.17) 

As c J i s p o s i t i v e , (3 .16) can be w r i t t e n as 

/ dS ^ c^ ( / (jgrad u f d V ) ' (3 .18) 

Using Schwartz i n e q u a l i t y , (3 .18) g ives 

/ dS ^ c^ / l lgrad u II ^ dV . Vol ( 0 (M)) (3.19) . 
. M V M 

From lemma ( I I . 3 . 3 ) , i n e q u a l i t y (3 .19) becomes 

/ u ' ( - 1 ) dV ^ c^ / (0)2 - 1 ) dV. / 11 grad u f dV (3 .20) 
M ^ M M 

Since 2( w^ -g ) < ( a ) 2 . i ) a , then i n e q u a l i t y (3 .20) takes the form 

f { oy^-]) d\l 4 ac"- / ( w 2 - i ) d V . / || grad u I I ' dV (3 .21) 
M ^ M M 

For i n e q u a l i t y (3 .15) to be s a t i s f i e d , ac W ( w ^ - l ) dV should be less 

than 1 . The idea now i s t o f i n d the value o f a which makes 1/ac^ 

maxima. Computations on (3 .17) show t h a t the requ i red value i s a =2/3 

hence c_= 27 T T . This argument shows t h a t the s t a b i l i t y c o n d i t i o n i s 

- / (1+K) dV < ( 1 / 2 7 TT a) 

( - 5 AUG 1982 

which completes the proof o f the main theorem. \ . « C / £ N C E L I B R K M 

Problem 

What i s the corresponding theorem f o r hypersurfaces ( o r , even worse, 

f o r submani fo lds) i n the (n+1)-d imensional hyperbo l i c space, n ^ 3 ? 



CHAPTER I I I 

CONDITIONAL IMMERSIONS INTO MANIFOLDS 

WITHOUT CONJUGATE POINTS 
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Sect ion 1 : Convexity 

Re la t i on between the second fundamental form and the Gaussian 

cu rva tu re o f hypersur faces i n Eucl idean spaces on one hand and the 

convex i t y on the o the r hand has been proved to be a f r u i t f u l area o f 

research . Throughout t h i s sec t i on we genera l i ze the concept o f con

v e x i t y t o general Riemannian man i fo lds . When r e s t r i c t i n g to manifolds 

w i t h o u t con jugate po in t s more r e s u l t s are ob ta ined . For t h i s sec t ion 

a l l man i fo lds are complete, connected, C°° Riemannian. 

We s t a r t by r e c a l l i n g some d e f i n i t i o n s : 

1 . A se t B i n a man i fo ld M i s c a l l e d convex i f f o r each pa i r o f 

po in t s p, q e B , there i s a unique minimal geodesic segment 

f rom p t o q and t h i s segment i s i n B. An open (c losed) 

convex se t which i s a submanifold o f M o f maximal dimension 

i s c a l l e d open (c losed) convex body. For the r es t o f t h i s 

s e c t i o n convex bodies are assumed to have smooth boundar ies. 

2 . A hypersur face M o f M i s sa id to be convex a t a po in t xeM 

i f the geodesic hypersur face o f M tangent t o M a t x does not 

separate a neighbourhood o f x i n M i n t o two (o r more) p a r t s . 

Moreover, i f x i s the on ly p o i n t o f a neighbourhood of M which 

l i e s on the geodesic hypersur face tangent to M a t x then M 

i s sa id t o be s t r i c t l y convex a t x. I f these p roper t i es are 

s a t i s f i e d f o r each x e M , then M i s c a l l e d l o c a l l y convex, 

s t r i c t l y l o c a l l y convex, r e s p e c t i v e l y . 

3 . I f f o r every x e M the tangent geodesic hypersur face o f M to M 

a t X does not separate M i n t o two (or more) p a r t s , then M i s 

sa id to be convex. Moreover, i f f o r every X E M , X i s the 

on ly p o i n t o f M which l i e s on the tangent geodesic hypersurface 

a t X , then M i s sa id t o be s t r i c t l y convex. 
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A s t r i c t l y convex hypersurface M in Euclidean space is always 
or ientable and i t s o r ien ta t ion can be given in the fo l lowing way : 
Choose at each point xeM the un i t normal vector point ing to the 
opposite side of M with respect to i t s tangent geodesic hypersurface 
(hyperplane) at x. We obtain a continuous f i e l d of un i t normal 
vectors (o r i en ta t i on ) . 

I t i s worth mentioning that the above mentioned way of giv ing 

an or ien ta t ion to s t r i c t l y convex hypersurfaces in Euclidean spaces 

f a i l s in the case of convex hypersurfaces. Our ind icat ive example 

of th is s i t ua t i on is the 2-disc in E ^ , 

I t can be shown, s im i la r to Euclidean spaces, that a hyper

surface M in M is s t r i c t l y convex at a point x^M i f i t s second fund

amental form is de f i n i t e at x. I t is also easy to see that each 

convex hypersurface is loca l l y convex but the converse,in general, is 

not t r ue . In the fo l low ing , I n t (A) f o r any subset A ^ M w i l l 

denote the i n t e r i o r of A and A w i l l denote the closure of A. 

I t should be noted also that i f A is a closed convex body in 

a manifold M, then In t (A) is also convex. Unfortunately, the converse 

of t h i s fac t i s not t rue , i . e . i f B is an open convex body in M, then 

B = BU9B is not necessarily convex. An obvious example for th is case 

is the open hemisphere in the Euclidean sphere S ' ^CZE" ' ' " ^ . 

I t can be shown easi ly that 

Proposit ion ( I I I . 1.1) 

In a Riemannian manifold M, the intersect ion of two convex bodies 

is a convex body. 

Before proving the next proposi t ion, we define the geodesic cone 

as fol lows : 
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Def im' t ion : 

A (truncated) geodesic cone in a manifold M with vertex pe M is a 

so l i d body in M which is the image under expp : Mp -> M of a (truncated) 

cone in Mp wi th vertex at 0. 

Proposit ion ( I I I . l . 2 - a ) 

The boundary 3B of an open convex body B in a complete Reimannian 

manifold M i s a l oca l l y convex hypersurface of M. 

Proof : 

For the proof of th is proposit ion we need the fo l lowing theorem 

( [19] , Vol . I , p.166) : Let (x^, x " ) be a normal coordinate 

system at x of a Riemannian manifold M. There exists a posi t ive number 

"a"̂  such t h a t , i f o < p < a then any two points of U(x(jP) = 

= {peM; d ( X j p ) < p } can be joined by a unique minimizing geodesic, and 

i t i s the unique geodesic j o in ing the two points and ly ing in U(x;p). 

Now suppose that B is an open convex body i n M and assume that 

the boundary 3B of B is not l oca l l y convex. Then there exists a point 

x e 3B such tha t the tangent geodesic hypersurface at x to 3B divides 

every neighbourhood of x in 9B in to (at least) two par ts . Consequently, 

there exists at least one tangential geodesic, y • ( o , l ) -> M, to 8B 

from X which goes inside B, that is Y ( o ) = x and Y ( t ) is an anter ior 

point of B fo r a l l t e ( o , l ) . Now U(x;p) f lB is open in M. Consider 

the point yit^), t^e ( o , l ) , such that y (t^) e U(xjp) f l B . Clearly 

there exists an open neighbourhood VcU(x;p) D B around Y ( t Q ) . (See 

the fo l lowing f i g u r e ) . 

5> .38 
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Draw the truncated geodesic cone C i n M with vertex x, and 

axis Y such tha t i t s base A is completely inside V. From the above 

f i gu re , there ex is ts a geodesic yeC going outside B and in te r 

secting 9B at X t ransversa l ly . Consequently, there ex is t two points 

m̂ ,m̂ e Y such that m^, m^eU(x;p)nB. By the above mentioned theorem 

Y is minimal from m̂  to m^ • Since B is convex then there exists a 

unique minimal geodesic, Y say, jo in ing m̂  and m'j and ycrB. Clearly 

Y Y and hence we obtain a contradict ion showtng that 9B should 

be l oca l l y convex. 

The fo l lowing proposit ion shows that the boundary ^B of a 

convex body B is convex provided that some extra conditions are 

assumed fo r the ambient manifold. 

Proposit ion ( I I I . 1 . 2 - b ) 

The boundary 3B of the open convex body B in a complete, simply 

connected, Riemannian manifold W without conjugate points is convex. 

Proof : 

Let B and 3BJ be as in the proposi t ion. Let the boundary 9B 

of B is not a convex hypersurface in W, hence there exists a point 

qe 9B where the tangent geodesic hypersurface of 9B at q separates 

9 B in to (at least ) two pieces. Consequently, there exists a geodesic 

Y tangential to 9B at q which goes inside B. Let m be a point on 

the geodesic Y such that m e B. Since B is open, then there 

ex is ts an open neighbourhood U of m such that UcB. (The f igures 

below give some possible cases). 
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Draw the geodesic cone C with vertex q and axis Y such that 
i t s base around m i s included in U. Similar to proposit ion ( I I . 2 . 1 - a ) , 
there ex is t two points mj^,m^B wi th jo in ing geodesic Y which does not 
l i e completely inside B. 

Since W i s complete, simply connected without.conjugate points 

then there i s only one geodesic segment Y jo in ing and and by 

convexity of B, Y should be included in B. Now, we have two d i f f e ren t 

geodesic segments Y and Y j o in ing mj and m^^ which i s a contradict ion. 

Hence 3B i s convex. 

Proposit ion ( I I I . 1 . 2 - c ) 

Let B be a convex body in a complete Riemannian manifold M. 

Let X be an i n t e r i o r point of B, x e I n t (B). Then any geodesic ray 

Y from X which intersects 3B w i l l do so transversal ly (not 

t angen t i a l l y ) . 

Proof : 

Under the same notations of the proposi t ion, l e t Y be a geodesic 

ray from x which intersects 9B. Suppose that Y intersects 3B tangent-

i a l l y . I f yf\db = { p ) i s a single po in t , we can show that 9B 

is not l o c a l l y convex at p which contradicts proposit ion ( I I I . 1 . 2 - a ) . 

I f A = Tn3B is a continuous subset of Y . l e t qe 9A be the 

nearest point to x. Consequently, a l l points of Y between x and q 

are i n t e r i o r points of B. Let U(q ; P ) be the convex neighbourhood 

of q in M as mentioned before in the proof of proposition ( I I I . 1 . 2 - a ) . 

Let m e U(q ;p) flY such that me B. Let V be a neighbourhood of m 

such that VCU(q ;p) f l B . Adapting the idea of geodesic cones as 

before we draw the geodesic cone C with vertex at q and axis Y such 

that i t s base i s included in V. 
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I t i s c lear that there ex is t two points mj,m^eU(q ;p )nB which are 

connected by a geodesic segment Y not included in B. By the theorem 

mentioned before in the proof of proposit ion ( I I I . 1 . 2 - a ) , the 

geodesic Y i s minimal. Since B i s convex, then there exists a unique 

minimal geodesic segment Y jo in ing mi and m2 and Y C : B . This 

contradic t ion shows that Y should in tersect 9B transversal ly and 

the proof i s complete. 

The fo l lowing fac t w i l l be helpful i n concluding some nice 

resu l ts : Let B be a bounded convex body wi th smooth boundary 9B 

in a Riemannian manifold M and l e t Y be a geodesic ray in M which 

intersects 9B t ransversa l ly , then Y in te r sec t s 9B at least twice. 

The exponential map can be used successfully in proving th is fac t . 

The study of convexity in complete, simply connected, 

Riemannian manifolds without conjugate points i s more f r u i t f u l than 

general Riemannian manifolds. The reason is that any pair of points 

in a complete, simply connected, Riemannian manifold without con

jugate points has a unique connecting geodesic segment. 

Proposit ion ( I I I . 1 . 3 ) 

Let W be a complete, simply connected, Riemannian manifold 

without conjugate points and l e t BCW be an open convex body. Then 

the closure B = BU9B of B i s also a convex body. 

Proof : 

Suppose that the closure B is not a convex body in W, then 

there ex i s t two points p, qe9B whose jo in ing geodesic, y say, does 
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not l i e completely inside B . Suppose that Y meets 9B ( i ) t rans-
versa l ly at p and q ( i i ) tangent ia l ly at p and q ( i i i ) tangent
i a l l y at p and t ransversal ly at q. We study each case separately. 

( i ) S l i gh t l y extend Y beyond p and q. Now there ex is t two points 

p^, q's B with connecting (unique) geodesic Y not included 

inside B which contradicts the hypothesis that B is a 

convex body. 

( i i ) Since Y i s not included completely inside B , then there exists 

a point pe Y such that p e W \ B . As W \ B i s open, there exists 

a neighbourhood Vcz W \ B of p. Draw the geodesic cone C with 

vertex q , axis Y and such that C goes through V. Now C O B 

w i l l be more than one component. Without loss of general i ty 

l e t C D B have two components and as indicated in the 

fo l lowing f i gu re . Let m^e Dj 

and m,e D Now we have three poss i b i l i t i e s 

(a) I f there is a geodesic Y ^ Cfrom m^ to m^ we get a 
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contradic t ion wi th the hypothesis that B i s convex, 
(b) I f there is no geodesic in C from mj to any point of D2 , 

we have ei ther : 

( b . l ) I f the geodesic in C from m^ to q meets 9 B at q 

t ransversa l ly , we get case ( i ) . 

(b.2) I f the geodesic in C from m̂  to q meets .9B at q 

tangen t ia l l y , we get case ( i i i ) below, 

( i i i ) S l i gh t l y extend Y beyond p and l e t p"e Y be an in te r io r point 

of B. The point p ' has, therefore, a neighbourhood UcB. 

Simi lar to ( i i ) we can draw a geodesic cone C with base in U 

as shown in the fo l lowing f i gu re . Now i t i s clear that there 

ex i s t two points m̂  , m ^ e B wi th connecting geodesic Y not 

included in B. This i s again a contradict ion to the hypoth

esis that B is convex. 

Proposit ion ( I I I . 1 . 4 ) 

In complete, simply connected, Riemannian manifold W without 

conjugate po in ts , t o t a l l y geodesic hypersurface (when ex is ts) divides 

W in to two convex bodies. 

Proof 

Let H be a t o t a l l y geodesic hypersurface in W and l e t H div ide 

W in to two parts and D2 . Suppose that i s not a convex body 
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in W, hence there ex is t two points p, qeOi , p q. whose jo in ing 

geodesic segment Y does not l i e completely inside . 

Suppose that Y intersects H in p" ,q" . As we know H is a 

geodesic submanifold at any of i t s points. Draw a l l geodesies from 

p" spanning H. Clearly one of these geodesies, Y say, w i l l pass thr 

ough q ' . This argument shows that there ex is t two d i f f e ren t points 

p ' , q^eW which are jo ined together with two d i f f e ren t geodesies 

Y and Y . This w i l l contradict the hypothesis on W and so D̂  i s 

a convex body in W. Similar argument shows that D̂  is also a 

convex body in W and the proof is complete. 

Proposit ion ( I I I . 1 . 5 ) 

Let W be a complete, simply connected, Riemannian manifold 

without focal points. Then geodesic bal ls are convex bodies in W. 

Proof : 

Consider the geodesic ba l l 

B^(r) = B(m,r) = { xe (3 ; d(m,x) < r } 

where m e W and r > o is a real number. Suppose that B(m,r) is not 

a convex body in W then there ex is t p, qe B(m,r) ., p ^ q, such that 

the geodesic segment Y j o in ing p and q is not included in B(m,r). 

Suppose that Y intersects 9B(m,r) = S(m,r) at p" and q ' . Expand 

S(m,r) r a d i a l l y to the geodesic sphere S(m,r) which contains Y and 
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such thatYnS(m,r) M • I t i s clear that Y n S ( m , r ) w i l l be a set 

of isolated points otherwise iJ w i l l have focal points. I t is also 

easy to see that a l l points in Y n s ( m , r ) are c r i t i c a l points of the 

distance funct ion L̂ ^ {y{t)) = d(m,Y(t)) wi th index 1. This 

argument shows that Y has focal points on each geodesic from m 

to the points of YnS(m,r). This w i l l give that W has focal points 

which is a cont rad ic t ion . Hence B(m,r) is a convex body in W. 

As proposit ion ( I I I . 1 . 5 ) i s true fo r a l l geodesic bal ls in 

W which has no focal points and as horodisc is a l i m i t of a sequence 

of geodesic b a l l s , we have 

Corol lary ( I I I . 1 . 1 ) 

In complete, simply connected, Riemannian manifolds without 

focal po in ts , horodiscs are convex bodies. 

Using proposit ion ( I I I . 1 . 2 ) together wi th the las t coro l la ry , 

we have 

Corol lary ( I I I . 1 . 2 ) 

In complete, simply connected, Riemannian manifolds without 

focal po in ts , horospheres are convex hypersurfaces. 

Remark (1) : 

In complete, simply connected, Riemannian manifold without 

focal po in ts , the complement of a horodisc is not necessarily convex, 

The fo l lowing counter example demonstrates th is f a c t . Consider the 

half-space model IR""*" of hyperbolic spaces. Let v be a vector in 

IRp"*" para l le l to the x" - ax is . The horosphere at p is the 

Euclidean hyperplane x" = x" (p) and the upper region bounded by 

is the corresponding horodisc B^. (Look at the fo l lowing f i g u r e ) . 

Clear ly , the (unique) geodesic segment y jo in ing q^, q ^ e I R " ' ' ' \ B^ 
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is not included inside I R " ' ' ' \ B 

Proposit ion ( I I I . 1 . 6 - a ) : 

Let M be a complete Riemannian (n+1)-manifold. Let B be a 

bounded convex body in M with smooth boundary 9B. l f B = B U 9 B i s 

a convex body in M, then 9B i s diffeomorphic to the un i t n-sphere s " . 

Proof : 

For the proof of t h i s proposit ion we use the fac t that 

exP|̂  : M -̂>- M i s a diffeomorphism onto a neighbourhood of m for each 

meM. Consequently, a geodesic sphere S(m,r) in M wi th s u f f i c i e n t l y 

small radius r such that S(m,r) i s contained inside the normal co

ordinate neighbourhood of m is diffeomorphic to an Euclidean n-sphere 

of radius r. 

Now l e t B and 9B be as in the proposi t ion. Using the las t par

agraph and considering m to be an a rb i t ra ry i n t e r i o r point of 6, 

m e l n t ( B ) , then there ex is ts a small geodesic sphere S(m,r)czB 

around m in M which is diffeoraorphic to an Euclidean n-sphere of 

radius r. By Gauss lemma and since BU9B is convex, then each minimal 

geodesic segment in BU9B from m to any point of 9B w i l l intersect 

S(m,r) orthogonal ly and only once. This geodesic ray w i l l in tersect 

^B t ransversa l ly (by proposi t ion ( I I I . 1 . 2 ) ) . 
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Consider the mapping p^ : 98 ^S(m,r ) which i s (geometrically) 

the central pro ject ion through minimal geodesic rays from m. The 

convexity and boundedness of B guarantee that P̂ , i s a homeomorphism. 

In fac t p^ is so fo r any a rb i t r a r y i n t e r i o r point m. 

I t can be shown that the c r i t i c a l points of the map p^ are 

the points of 9B which are conjugate to m. To show that p^' ^ is a 

diffeomorphism, i t is s u f f i c i e n t to show that 9B has no conjugate 

points of m. Now l e t ne3B be a conjugate point of m. S l igh t l y 

extend the minimal geodesic segment Y » jo in ing m and n, beyond m to 

m e i n t ( B ) . Draw the small geodesic sphere S(m,r) which has the same 

propert ies as S(m,r) above. Taking in to account the two facts that 

Y does not minimize distance between n and m and uniqueness of geodesies, 

we conclude that p-~ \ i s not i n j ec t i ve . This contradict ion shows that 

9 B has no conjugate points to any i n t e r i o r point of B and hence by 

using the inverse funct ion theorem p^ is a diffeomorphism. 

Now l i f t S(m,r) in to M„ by using exp ' : M -> M . Under the ^ • m "̂m m 

propert ies of the exponential map mentioned above, S(m,r) w i l l be 

diffeomorphic to the Euclidean n-sphere S(o,r ) = exp"^ S(m,r) of 

radius r and center 0 = exp^^ m. Central project § (o , r ) onto 

S (o , l ) = s " in and ca l l t h i s map p^ : S(o,r) - ^ S ( o , l ) . I t is 

clear that p^ is a diffeomorphism as w e l l . Composing a l l the above 
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mentioned maps together, we have 

As each map in the composition is a diffeormorphism,. th is completes 

the proof. 

Remark (2) 

1. The converse of the proposit ion ( I I I . 1 . 6 - a ) is not true in 

general since the geodesic c i r c l e of radius > £ T T / 2 , on a 

2-dimensional cyl inder of radius S, in E' , which is d i f f e o -

morphic to S ^ does not bound a convex body. 

2. The previous proposit ion w i l l be easier in proof in case of 

complete, simply connected, Riemannian manifold without 

conjugate points W and in th i s case we have : 

Proposit ion ( I I I . 1 . 6 - b ) 

Let B be a bounded convex body in W. Then 9B i s diffeomorphic 

to S". 

Proposit ion ( I I I . 1 . 7 ) 

Let W be a complete, simply connected, Riemannian manifold 

without conjugate points and l e t be a geodesic hypersurface at 

meW. Then fo r each m eW l i es between i t s tangential horospheres 

at m i f and only i f W has no focal points. 

Proof 

F i r s t l e t W have no conjugate points and such that for each 
A 

m e W , l i e s between i t s tangential horospheres and where 

veW^ i s a un i t vector perpendicular to H^. 
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Let Yy( t ) be a un i t speed geodesic wi th Y^(0) = m and 

Yv"(0) = V- Consider the fo l lowing map C^ : defined as 

fol lows : draw the unique geodesic from y^(t) to the point pe 

and extend i t to in tersect Ĥ ^ a t C^(p). This map C^ i s defined 

at least on small neighbourhoods of m on H^. I f we consider the 

distance funct ion L / a . x ( x ) = d(Y ( t ) , x ) f o r xeW, then by r e s t r i c t i o n 
Y y ( t J V 

to m i s a c r i t i c a l point of L^ j H^. In fac t m is a minimum 

point . From the nature of the mapping C^, we have 

. « I H has a c r i t i c a l 

v ^ ' ' v 

which means that the distance funct ion L. 

point a t m which i s also a minimum point . This argument shows that 

has no focal points on the geodesic segment y^{s), se [ o , t J 

(see lemma ( I I I . 2 . 7 ) . Let t ing t °° we obtain that has no focal 

points on Y i ^ ( t ) , t ^ o . As the above discussion is true at each 

point in W, hence W has no focal points. 

Conversely, l e t W have no focal points.and l e t B̂  and B_̂  

denote the horodiscs corresponding to veSW which are convex bodies 

in W by coro l la ry ( I I I . 1 . 1 ) . As = aB^ and H y .= 9B_y are both 

convex hypersurfaces in W then i f peH^nH_^, any geodesic ray from 

p and tangent to both and l i e s g lobal ly outside B̂  and B_^. 

As t h i s is true fo r every geodesic of th is kind we have that the 

tangent geodesic hypersurface at any point in H^nH_^ l i es between 
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and H_^. Because th is i s true fo r each veSW the proof is complete. 
Corol lary ( I I I . 1 . 3 ) 

Let W be a complete, simply connected, Riemannian manifold 

without conjugate points. Then W has no focal points i f and only 

i f each horodisc is a convex body. 

Proposit ion ( I I I . l . 8 ) 

Let W be as in proposit ion ( I I I . 1 . 5 ) . Then the i n te r i o r and 

ex te r io r of each horodisc are convex bodies i f and only i f W i s the 

Euclidean space. 

Proof : 

Let and denote, as before, the horospheres corresponding 

to V , -V eSW, respect ively. As the horodisc B̂  is a convex body then 

i s a convex hypersurface. Let p, qeH^ be two a rb i t ra ry points. 

By the convexity of B^and W\B^ (proposit ion ( I I I . 1 . 3 ) , p and q should 

be joined by two minimal geodesic segments YJ and such that 

Y j C I B^ and Y j d WXB^. By condit ions on W these two geodesies 

coincide and both of them l i e in H^. Repeating the same argument 

with a l l points of we obtain that is a t o t a l l y geodesic hyper

surface in W. S im i la r l y , is a t o t a l l y geodesic hypersurface in 

i i . Taking in to account that a geodesic is defined uniquely by i t s 

i n i t i a l point and ve loc i ty we get that = H_^. 

Since the above argument is true at each point of W and by 

(sect ion 2 - chapter 0) W is a space form. Now W could not be a 

hyperbolic space by remark 1 . Also, W is not isometric to a sphere 

since the l a t t e r has conjugate points. The only poss ib i l i t y i s 

that R is the Euclidean space. 

The converse i s easy from the propert ies of the Euclidean space. 
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De f in i t i on 

In a complete Riemannian manifold M two un i t speed geodesies 

a , 3 are ca l led bi-asymptotic i f there ex is ts a real number c, 

0 < c < % such that d( a ( t ) , B ( t ) ) $ c fo r a l l t eIR. 

In Euclidean spaces any two asymptotic geodesies are b i -

asymptotie while th i s i s no longer true fo r hyperbolic spaces. In 

the next few proposit ions we prove some resul ts concerned with the 

concept j u s t def ined. The next proposit ion which has been proved by 

J.H. Eschenburg [14] is he lp fu l . 

Proposit ion ( I I I . 1 . 9 ) 

Let W be a complete, simply connected Riemannian manifold 

without conjugate points. Assume that the stable Jacobi tensor of W 

is continuous. Then for each veSW 

( i ) " v ' ^ ^ - v " ^ ^ ^ - v ^ ^ " - v is a connected set. 

( i i i ) Exactly the geodesies intersect ing perpendicularly at 

points of H^nH_^ are bi -asymptotic to Y^. 

Corol lary ( I I I . 1 . 4 ) 

Let W be as in (proposit ion ( I I I . 1 . 9 ) . Let W i n addit ion have 

the property tha t no two asymptotic geodesies are bi-asymptotic. Then 

H^nH_^ f o r any veSW is a s ingle point . 

Proposit ion ( I I I . 1 . 1 0 ) 

Let W be as in coro l la ry ( I I I . 1 . 4 ) . Then b^[ has no maximum 

or minimum points except the point H^riH_^, ve SW, 

Proof : 

I t i s clear that under the hypothesis of coro l lary ( I I I . 1 . 4 ) , 

by I H_y ^ 0 and the point HynH_y is a maximum point . Suppose that 
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b^ I H_y has qeH_^ as another maximum po in t . Then there exists a 
geodesic segment y from q to which intersects both and 
orthogonal ly. This means that the geodesic ray y is bi-asymptotic to 
Yy which is a contradict ion to the hypothesis on W. The same argument 
can be carr ied out i f q is a minimum point which completes the proof. 

Lemma ( I I I . V . l ) 

In hyperbolic spaces b^ | i s s t r i c t l y decreasing along any 

geodesic of from the point H^nH_^. Moreover, b^| runs from 

0 to - °° . 

Proof : 

The half-space model IR" " * " i s the most convenient one to carry 

out the proof of t h i s lemma. Without loss of general i ty consider the 

un i t vector velRp"^, pe lR""^ , such that v is para l le l to x"-axis 

in the pos i t i ve d i rec t i on . Since horosphere in hyperbolic space is 

a complete, f l a t manifo ld, i t is isometric to E " ' V . This shows that 

geodesies of are s t ra igh t l ines in the plane x" = x " (p ) . I t can 

be shown that the geodesies of from p are great c i r c l es . Consider 

y ( s ) to be one of these geodesies which is parametrized by are-length s 

such that Y ( O ) = p. Let q ^ = Y (s^) and q ^ = Y ( S where s^ > s^ . 

I t is c lear from the f igure below that o> b^ (q^ ) > b^ (q^) and 

b^(p) = 0 which completes the proof. 

a." 

in 

p 

/ 

1»-
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Proposit ion ( I I I . 1 . 1 1 ) 

In hyperbolic spaces, the horosphere = ^ (o) in tersects 

a l l the horospheres b^' (k) for k^: o. 

Proof : 

Under the same notations given in the proposition l e t r ^ o be 

a finite real number. Following the same argument as in lemma ( I I I . 1 . 1 ) 

we can show that b^ (bl^V)) i s s t r i c t l y decreasing along geodesies 

of ( r ) from the point Y^(r) where y^{s) i s an arc- length para

metrized geodesic such that Y^(o) e a n d Y ^ ' ( o ) = v. Moreover, 

b^(b"J ( r ) ) runs from - r to - «> . By the continuity of b^ | we 

conclude that b"Ĵ  ( r ) has points with b^(b^^^{r)) = o which are them

selves points of b~̂  (o) = H^. Since r i s an arb i t rary non-positive 

real number the proof i s now complete. 

We f i n i s h off t h i s sect ion by mentioning the e f fec t of geodesic 

mappings on convex bodies. In f a c t geodesic mapping may be defined 

as fo l lows: 

Def in i t ion 

A homeomorphism $ : M ->• N from the manifold M into the manifold 

N i s ca l l ed a geodesic mapping i f for every geodesic y of ^ the compos

i t ion $ " Y i s a reparametrization of a geodesic of N. 

Notice that a geodesic mapping $ : M ->-N takes to ta l ly geodesic 

submanifolds of M to t o t a l l y geodesic submanifolds of N. When M and N 

are of the same dimensions $ turns out to be a diffeomorphism. I t can 

be shown that the inverse of a geodesic mapping between manifolds of 

the same dimensions i s a lso a geodesic mapping. For more de ta i ls 

about t h i s sor t of mappings see [ 29 ] . 
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Proposit ion ( I I I . 1 . 1 2 ) 

Let and be two complete, simply connected, Riemannian 

n-manifolds without conjugate points and l e t $ : Wj-»• W2 be a geodesic 

mapping. Then $ takes convex bodies in to convex bodies in . 

Proof: 

Let B be a convex body in W ,̂ then every two d i f ferent points 

p, q e B have the i r unique connecting geodesic segment s to be con

tained completely inside B. Let B = * ( B ) . Using the map $ i t i s 

c l e a r that Y = ^'»Y i s a geodesic in which i s contained inside 

B and jo in ing $(p) and $(q). Since there i s no other geodesic segment 

of jo in ing $(p) and $(q) we conclude that B i s a convex body 

in 

Using proposition (111.1.3) together with the l a s t proposit ion, 

we have 

Corol lary ( I I I . 1 . 4 ) 

Let , W^and $ be as in proposition ( I I I . 1 .12) , then s t a k e s 

convex hypersurfaces of W ^ to convex hypersurfaces of W 2 . 



-121-

Section 2 : Tight and taut immersions 

( I I I . 2 . 0 ) Introduction 

In th is sect ion we try to general ize and study the concepts of 

taut and t ight immersions in complete, simply connected, Riemannian 

manifolds without conjugate points. Actua l ly , t ight and taut 

immersions have been introduced for the f i r s t time by S . S . Chern and 

R.K. Lashof [10,11 ] and studied by N. Kuiper [20 ,21] and many others 

[3 ,5 ,6 ,32 ] . For instance, T . E . Ceci l and P.J.Ryan [ 6 ] generalized 

the above mentioned concepts for hyperbolic spaces and they proved 

many re la ted r e s u l t s . A successful t r i a l has been carr ied out by 

J . Bolton [ 3 ] when he generalized the concept of t ight immersion for 

complete, simply connected, Riemannian manifolds without conjugate 

points and he proved two theorems corresponding to those which have 

been already proved in [10] in Euclidean spaces. 

The concepts of (spher ical ) - two-piece property have been gen

e ra l i zed as w e l l . The re la t ions between these concepts and t ight and 

taut immersions have been found. 

For the present sect ion we need oftenly the Morse inequal i t ies 

which can be stated as follows [ 3 2 ] : 

Let f be a C ^function on a compact C n-mahifold M with no 

degenerate c r i t i c a l points. Let be the number of c r i t i c a l points 

of f on M with index x and l e t B, be the A-dimensional Betti number 
A 

of M. Then we have the following inequa l i t i es : 

% ^0 

^ - % • ^ - ^0 . 

- l^i.i + + ( - 1 ) ^ 0 >. 3. - + { - l ) \ , i ^ i v< n-1 

u - u + + ( - l ) "u ^ 3 3 + +(-l)"6 
^n ^n-i ^ ' "̂0 " ^n-i ^ ^ o 

In p a r t i c u l a r we have piĵ  ^ for a l l k. 
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( I I I . 2 . 1 ) Notations and def in i t ions : 

Let M be a connected m-manifold without boundary. 

Def in i t ion (1 .1 ) 

We say that the function cj) : M -> IR i s a T-function i f 

( i ) (}) i s non-degenerate. 

( i i ) M̂ ( 4)) = { peM; <|)(p) r } i s compact for a l l r e IR. 

( i i i ) There e x i s t s a f i e l d F such that for a l l r e IR and integers k 

the number of c r i t i c a l points of cj) with index k which l i e in 

M̂ ( ((,) i s equal to dim H,̂ (M (̂ (J)) ; F) where H,̂ (M (̂ (|)) ; F) 

denotes the k— homology group of M^(* ) with respect 

to the f i e l d F. 

Let us now consider an immersion f : M W where W i s a 

complete, simply connected, Riemannian n-manifold without conjugate 

points and from now on l e t W always have these propert ies. In addi t ion, 

l e t a l l maps be C , k > 2, unless otherwise stated. 

Def in i t ion (1 .2) 

An immersion f : M -> W i s taut i f , for every x eW the distance 

function L^ : M IR defined by L^(p) = d {x , f (p ) ) i s e i ther degenerate 
A A 

or a T- funct ion. 

Def in i t ion (1.3) 

An immersion f : M ->• W i s ca l l ed proper i f the inverse image 

under f of every compact subset i s compact. 

The de f in i t ion (1.2) of tautness has been reformulated in terms 

of homology homomorphisms by N. Kuiper [20] as fol lows: 

Lemma ( I I I . 2 . 1 ) 

Let 0 : M IR be a rea l -va lued function such that (J> i s non-

degenerate and M^{<t> ) i s compact for a l l r eIR . Then (p i s a T-function 
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i f and only i f there e x i s t s a f i e l d F such that the map H (̂M (̂ ^ ) ; F) 

H*(M ; F) induced by the inc lus ion M^((}))cM i s in jec t i ve for 

a l l r e I R . 

Let B = B(m,r) and S = S(m,r) = 3B(m,r) denote the open geodesic 

ba l l and geodesic sphere centered a t m and have radius r e I R , r e s 

pect ive ly . Now lemma ( 2 . 8 ) [ 5 ] can be modified in the following way : 

Lemma ( I I I . 2 . 2 ) : 

Let f : M ->• W be a proper immersion. Then f i s taut i f and 

only i f there e x i s t s a f i e l d F such that for every closed geodesic 

bal l Bcrw for which f i s t ransversal to the round geodesic sphere 3B 

the map H*(f"^(B) ; F) H (̂M ; F) induced by inclusion i s i n j e c t i v e . 

Proof ; 

Before, being involved in the proof we notice that for the closed 

geodesic ba l l B = B ( x , r ) we have 

f " ' ( B ) = M^(L^) = { peM ; L^of(p) ^ r } 

Also f i s t ransversal to 9B i f and only i f r i s not a c r i t i c a l 

value of L^. We shal l wri te for s imp l ic i ty M(x,r) = M„(L^) = f"^(B) 

and J ( x , r ) : Hjt(M(x,r) ; F) -> H^{M;F) the homology map induced by the 

inc lus ion M(x,r)c:M. 

(a) F i r s t l y , l e t f be a taut immersion, then every L , xe W, i s 

e i ther degenerate or T- funct ion. Suppose that L , for some xe W, i s 

a T-funct ion ( i . e . x ^ C ^ ) then by lemma ( I I I . 1 . 1 ) J ( x , r ) i s an 

i n j e c t i v e map. 

For the second p o s s i b i l i t y where L , for some x̂ ê W, i s a 
XQ . U 

degenerate function ( i . e . x eC^) we make use of the exponential map 

of W as i t i s a global diffeomorphism. I f we consider expp^ : W ->• Wp, 

for p eW, i t i s easy to see that the point q of Wp i s a c r i t i c a l 
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point of Lp = L^o expp i f and only i f exppq i s a c r i t i c a l point of Lp, 

The contact order i s a lso preserved by the exponential map. Moreover, 

the signature of L„ and L are the same. 
^ p p 

Taking a l l these properties into account we can transfer the 

s i tua t ion from W to E"''*''^ (m+k = dimW) and so we can benefit from the 

proof of the corresponding lerrena in [5 ] . 

(b) For the converse, suppose that J ( x , r ) i s i n j e c t i v e whenever r 

i s not a c r i t i c a l value of L for any x^W. By lemma ( I I I . 1 . 1 ) we 
A 

have to show that J ( x , r ) i s s t i l l i n j ec t i ve even i f r i s a c r i t i c a l 

value of L but L i s non-degenerate. I t i s known [ 2 2 ] that i f L 
A X • A 

i s non-degenerate, i t s c r i t i c a l points are isolated and hence there i s 

only a f i n i t e number in M(x , r ) . Consequently, given a c r i t i c a l value 

r of L , there i s r > r^ so that r i s not a c r i t i c a l value of L and 

M(x , rQ)cM(x , r ) i s a strong deformation r e t r a c t . Since J ( x , r ) i s 

i n j e c t i v e then J (x , rQ) i s a lso in jec t i ve which completes the proof. 

The f a c t that horospheres can be regarded as "geodesic spheres 

of i n f i n i t e radius" makes the following general izat ion of t ightness 

u s u a l . 
Def in i t ion (1 .4) : 

Let f : M ->• W be an immersion where W i s a complete, simply 

connected, Riemannian manifold without conjugate points , with bounded 

asymptote and with sect ional curvature bounded from below. Then f i s 

c a l l e d h- t ight i f , for every veT(M)"^ the function b^«f i s e i ther 

degenerate or a T- funct ion. 

From now on W w i l l denote a complete, simply connected, 

Riemannian manifold without conjugate points, with bounded asymptote 

and with sect ional curvature bounded from below. In a natural way, 

lemma (2 .9 ) in [ 5 ] can be restated for W as follows : 
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Lem^a ( I I I . 2 . 3 ) : 

Let f : M W be an immersion of a compact manifold M. Then f 

i s h- t ight i f and only i f there e x i s t s a f i e l d F such that for every 

horosphere H^, veSW, to which f i s t r a n s v e r s a l , the map 

H*(f'^(W\B^); F ) -y H^(M; F ) induced by the inc lusion i s i n j e c t i v e , 

where B^ i s - as before - the open horodisc associated with v. 

The proof of the above lemma depends o r ig ina l l y on the following 

r e s u l t which has been proved in [ 3 ] through applying Sard's theorem 

to the general ized Gauss map (see §3) : the set { v eSpW : b^ i s 

non-degenerate } i s dense in W. 

( I I I . 2 . 2 ) - General theorems on taut immersions 

We s t a r t by proving the following theorem 

Theorem ( I I I . 2 . 1 ) 

Any taut immersion f : M W i s an imbedding. 

Proof: 

Since the immersion f : M W i s proper we show that f i s i n j e c t i v e , 

Suppose that f i s not i n j e c t i v e hence there e x i s t two points p .qsM, 

p ^ q , such that f (p ) = f ( q ) . Then there i s a closed geodesic bal l 

3 ( f ( p ) . r ) with s u f f i c i e n t l y small radius r such that f in tersects 

3B t r a n s v e r s a l l y and p, q l i e in d i f ferent components of f " ' ( B ) . 

Since M i s connected HQ(M;F) has dimension 1 while H ^ ( f " \ B ) ; F ) has 

dimension, at l e a s t , 2. So the map HQ(f"^(B) ;F) H^ (M;F ) induced 

by the inc lus ion cannot be i n j e c t i v e and hence by lemma ( I I I . 2 . 2 ) f i s 

not taut which i s a contrad ic t ion . This completes the proof of the 

theorem. 
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Def in i t ions (2 .1) 

(a) An immersion f : M W i s sa id to have the spherical two-piece 

property (STPP) i f for any geodesic sphere S or horosphere H^, veSW, 

the se t f " ^ ( W \ S ) or f ' * (W\ H )̂ has at most two connected components. 

(b) An immersion f : M W has the h-two-piece property (hTPP) i f 

for any horosphere H^, veSW, the set f '^(W\H^) has at most two 

connected components. 

Notice that i f W=W:E the above two def in i t ions reduce to the 

STPP and TPP which have been introduced by T . E . Banchoff [31] . 

Adopting de f in i t ions (2 .1 - a,b) we prove the following : 

Proposit ion ( I I I . 2 . 1 ) 

Any taut imbedding f : M ^ W of a compact manifold M has the STPP. 

Proof: 

Since M i s compact, then L , for any xeW when res t r i c ted to M , 
A 

at ta ins i t s maximum and minimum. By lemma ( I I I . 2 . 2 ) , which is true for 

the complement W \ B of a round open geodesic bal l B, together with the 

fac t that H^( f"^(B) ; F) HQ(M ; F) i s in jec t i ve then f " ' ( B ) . i s 

connected and so i s f"^ ( W \ B ) , hence the r e s u l t . 

In a s i m i l a r way of proof of the l a s t proposition and using 

lemma ( I I I . 2 . 3 ) we can prove the fol lowing: 

Proposit ion ( I I I . 2 . 2 ) 

Any h-t ight immersion f : M -> W of a compact manifold M has hTPP. 

For the fol lowing propositions we need the next lemma 

Lemma ( I I I . 2 . 4 ) 

Let W (as before) be a complete, simply connected, Riemannian 

manifold without conjugate points . Let S^ = S(p , r^) , S^ = S(q , r^) be 
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two d i f fe rent geodesic spheres. Then i f S j i s tangent to S^ at a l l 
points of i n t e r s e c t i o n , S^f lS^ i s a s ingle point. 

Proof: 

F i r s t of a l l we notice tha t , under the hypotheses mentioned in 

the lemma, the open geodesic b a l l s B^ = B(p,r^) and B^ = B(q , r2 ) have 

the property that B^flB^ =$ i f p ^ B^ , B^OB^ = B^ i f peB^ and 

f i n a l l y BjOBg = B2 i f q eB^ . 

Now suppose that B^HB^ = 0 and S^ n S 2 i s a set which contains 

more than one point . In th is case W should have, at l e a s t , two 

d i f fe rent geodesies Y i , Y 2 from p to q in tersect ing twice which con

t rad ic ts the hypotheses on W. 

Secondly, suppose that B i n B 2 = B^ and l e t S^O S2 - as before - be 

a se t containing more than one point. In th is case the uniqueness 

of geodesies w i l l be no longer true as indicated in the following 

f igure . I f B j n B 2 = B^ we have a s imi la r s i t u a t i o n . 

The l a s t lemma becomes f a l s e i f W i s a general Riemannian manifold. 

The reason i s that in S^ geodesic spheres S^ = S(N, T I / 2 ) , S ^ = S ( S , TT/2) 

where N, S denote the north and south po les , respect ive ly , in tersect 

in the equator Sj or S j . 

In the following W denotes a complete, simply connected. 
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Riemannian manifold without focal points. 
Proposit ion ( I I I . 2 . 3 ) 

In W geodesic spheres have the STPP. 

Proof : 

Assume that there e x i s t s a geodesic sphere Sj = S ( p j , r j ) , peW, 

which does not have the STPP. Consequently, there e x i s t s another 

geodesic sphere S^ = S ( p 2 , r 2 ) , P2 e W, or a horosphere H^, veSW, 

which d iv ides into more than two connected components. Without 

loss of genera l i ty the number of components of S j contained inside 

B2 (or By) may be assumed two. 

F i r s t l y , we consider the case of geodesic sphere S^ . Now 

contract S^ r a d i a l l y keeping p̂  f i xed . Two p o s s i b i l i t i e s might happen 

( i ) S^ contracts to a geodesic sphere = S l p ^ . r ) tangent to S^ 

In more than one point which i s impossible by the l a s t lemma. 

( i i ) contracts to a geodesic sphere S ^ = S { p ^ , r ) as fol lows: 

Since the component C of S^ inside S^ i s compact, there e x i s t s a 

sequence of geodesic spheres tangent to S^ at p whose l im i t i s a 

geodesic sphere S tangent to S^ in more than one point. This i s 

again a contradict ion to lertnia ( I I I . 2 . 4 ) 

Following s imi la r argument with instead of ,S2 we reach to 

the following s i t u a t i o n . 
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In th is case there e x i s t two d i f ferent geodesic rays Y^ and Y^ 

from p^ which are asymptotic to each other. This i s a contradiction 

to theorem (3.3) - chapter 0. 

To complete the proof we should consider the case when the 

connected components of S ^ outside | (or B ^ ) are two. 

Now, suppose that W X B ^ contains two connected components of S ^ 

as in the following f igure . C l e a r l y , the centers p^ and p^ of S ^ and 

S ^ , r e s p e c t i v e l y , are d i f fe rent points. Keep p^ f ixed and l e t S ^ 

expand r a d i a l l y t i l l i t has a point of tangency with S ^ , q say. In 

th is case we have two d i f ferent geodesic segments Y^ and Y^ from q to 

P j and p^ , r espec t ive ly , with the same i n i t i a l ve loc i ty w . This is 

now a contradict ion to the uniqueness fac t of geodesies. 
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When considering the case of instead of S2 » for some 
veSW, and using a s i m i l a r technique we ar r ive to such a s i tuat ion 
given in the following f igure . 

C l e a r l y , the uniqueness of geodesies i s broken at p or q e S ^ f l H ^ 

for some w eSW. This i s again a contradict ion which completes the 

proof of the proposit ion. 

In the manifold W, which has no focal points , horospheres do not 

have the STPP in general . Putting some r e s t r i c t i o n on W such a s , in W 

there are no two bi-asymptotic geodesies, we can show that H^, for each 

V eSW, has the STPP. 

Theorem ( I I I . 2 . 2 ) : 

Any taut immersion f : M -> W i s h- t ight . ( M is compact ) 

Proof: 

In view of lemma ( I I I . 2 . 3 ) i t i s s u f f i c i e n t to consider a 

horodise B^, veSW, bounded by the horosphere = aB^ such that f i s 

t ransversa l to and show that i f f i s taut then there i s some closed 

geodesic ba l l B = B ( x , r ) such that f i s t ransversal to 3B and 

f~^ ( B y ) c : f " ^ (B) i s a strong deformation r e t r a c t . This can be carr ied 

out s i m i l a r to theorem (2.3) [ 5 ] taking into account that W\C^ i s 

dense in W. 

Lemma ( I I I . 2 . 5 ) 

Let f : M; -»- W be an immersion and l e t UcM be open. For xe W 

l e t L have prec ise ly one c r i t i c a l point pe U and l e t p be non-degenerate 
A 
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with index l . Then there e x i s t s a neighbourhood E of x in W such 
that i f y e E then L^ has a c r i t i c a l point q in U and q i s non-degenerate 
with index I . 

Proof : 

Since L has prec ise ly one c r i t i c a l point p e U which i s non-
A 

X 

degenerate, then x = exp^^pjn for some neT(M) and x is not a focal 

point. As the focal se t C^ i s closed then there e x i s t s an open neigh

bourhood E of X which contains no focal points. We denote the pre-

image of E in T(M) by V, hence exp^^p^lv i s a diffeomorphism. 

I f y e E , then y = exp^^^^u for some u e V whose base point i s q. 

I f we jo in u to n in V, we see that the connecting arc w i l l pass 

through no c r i t i c a l normals which ensures that the index of q as a 

c r i t i c a l point of L^ i s a lso 5, (see [22]p.85 and lemma ( I I I . 2 . 7 ) below). 

Lemma ( I I I . 2 . 6 ) 

Let f : M -> W be a taut immersion and suppose that for 

(p,n) e T ( M ) there i s no focal point of the form exp^^p^ tn , o < t < l . 

Let x = exp^^p^n. Then L^(q) ̂ L^ (p ) for a l l qeM. Further i f (p,n) 

i s not a c r i t i c a l normal, equal i ty holds only when p = q. 

Proof : 

Suppose that (p ,n)eT(M) i s not a c r i t i c a l normal 

( i . e . X = exp^^pj n t- C^). This means that f (p ) i s a non-degenerate 

c r i t i c a l point of the function L with 0 index. This argument shows 

that f (p) i s an iso la ted point in M||̂ || ( L ^ ) . Since the immersion i s 

tau t , M||̂ || (L^) must be connected and hence Mji^j. (L^) consists of f (p) 

alone and so L (q) > L (p) for a l l qeM and q p. 

A A 

Suppose that (p,n) i s a c r i t i c a l normal ( i . e . x = exp^^p^neC^). 

We repeat the above argument but with M n̂̂ u (L^^) where x^ = ^xp^^p^ 

tn, 
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o < t < l and so we get that f(M) l i e s outside the open geodesic ba l l 
B(x^ , t i n ! ) . Hence f(M) l i e s outside the union of such open ba l l s 
which implies that f(M) l i e s outside the open geodesic bal l B(x, | | n | ) 
i . e . l-x(q) > y p ) '̂oî  a l l qeM-

I f we consider the complement case when the index i s maximal, 

we have the following : 

Lemma ( I I 1 . 2 . 7 ) 

Let f : M W be a taut immersion of a compact m.manifold M and 

suppose that (p.n) eT(M) i s such that the m u l t i p l i c i t i e s of the focal 

points of the form s^Pf^pj o < t < 1, i s m, then L^(q) 4 L^(p) for 

a l l q-eM, where x = exp^^p^n. Further i f (p,h) i s not a c r i t i c a l 

normal, equal i ty holds only when p = q. 

Proof : 

The proof of th is lemma depends on the fact that any normal 

geodesic to f(M) from f (P) could not have more than m focal points 

(taken with t h e i r m u l t i p l i c i t i e s ) . Actual ly the proof of th is resu l t 

i s not so, easy and therefore we give i t in the fol lowing. The proof 

depends deeply on the assumption that W has no conjugate points. 

Let t be a normal geodesic to f(M) at f (p) = T ( O ) . Let £ 

be the vector space of a l l C* broken vector f i e l d s along T vanishing 

at T ( b ) , b ^ 0 , and perpendicular to T . Let £"be a subspace of >C 

with maximal dimension on which the index form I i s negative 

semi -de f in i te . 

The vector space X*has an important property which has been 

given in the following lemma. 

Lemma ( a ) 

Let V and V be two d i f fe rent vector f i e l d s in T . Then 
1 2 

v , ( o ) f y , { Q ) . 
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Proof: 

Assume that Vj(o) = V2(o) . Then the vector f i e l d V3 = - V2 

which i s in / has.the property that y ^ i h ) = 0 and ^/^(o) = 0 . Since 

T has no conjugate po ints , then by the Morse index theorem we have 

^ ( ^ 3 * ^ 3 ) ^ ° which i s a contradict ion showing that V 3 ( t ) = 0 for all 

t e [ o , b ] , i . e . = . This contradict ion again gives that V j (o) 

should be d i f f e ren t from 7 ^ ( 0 ) . 

Consider the map g : jC -»- Mp which assigns to each element 

V e i t s i n i t i a l value V(o) . In the l igh t of the above lemma we can 

e a s i l y see that : 

Corol lary : 

The map g :X Mp , defined above, i s i n j e c t i v e . 

This l a s t coro l la ry shows that dim / ^ m. The following lemma which has 

been proved in [ 2 ] i s needed for the proof. 

Lemma ( g ) 

Suppose that there i s no conjugate points of T ( O ) o n T ( ( o , b ] ) . 

For V e / there i s a unique Jacobi f i e l d Y such that Y(o) = V(o) and 

Y(b) = 0 . Moreover, I (V,V) > I (Y ,Y ) and equal i ty occurs i f and 

only i f V = Y. 

Consider J to be the vector space of a l l Jacobi vector f i e l d s 

along x vanishing at T (b) and have the i r i n i t i a l values in Mp. 

Since T ( ( o , b ] ) contains no conjugate points, we can show e a s i l y 

that 

g | i : ^ Mp 

i s a l i n e a r isomorphism onto Mp. 

Using lemma ( 3 ) we can define the map h : X -»• by h(V) = Y 

where Y(o) = V(o) . I t i s c l e a r that the map h is i n j e c t i v e . 
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I f we l e t y denote the subspace of •!! on which I i s negative 
semi -de f in i te , we conclude from lemna ( 3 ) and taking into account 
that i c / that h ( / ) = / ( i . e . d i m / = d i m / ) . Consequently, 

index of 11 X x / = index of I | i x / ^ m. 

Now the index of I by d e f i n i t i o n , the index of the hessian 

matrix of the length function when r e s t r i c t e d to the space of a l l 

geodesic paths from T (b ) to f(M). Using the fact that any point of 

f(M) has a unique connecting geodesic segment with T ( b ) , we can 

ident i fy each geodesic segment from T(b) with i t s point of intersect ion 

with f(M). Ident i fy ing each Ye / with i t s i n i t i a l value in Mp i t 

becomes c l e a r that index of I | i x i i s exactly the index of the 

hessian of the distance function L^^j^^ : M IR a t ' T ( o ) as a c r i t i c a l 

point, ( i . e . the index of the point T ( O ) as a c r i t i c a l ' p o i n t of 

^T(b) ^^^^^^ number of focal points of f(M) on T ( (o ,b ] ) which i s 

at most m=dim M). Since T ( b ) ^ i s an arb i t rary point on T the proof 

i s complete. :.. 

Now, we return back to the proof of lemma ( I I I . 2 . 7 ) 

Suppose that (p,n) eT(M)^ i s not a c r i t i c a l normal 

( i . e . X = exp^^pj n i C ^ ) , hence f (p) i s a non-degenerate c r i t i c a l point 

of the function L with maximal index m ( i . e . p i s a maximum point of 
X 

L ) . Since M i s compact then the distance function L , for any 
X y 

y eW, a t ta ins i t s maximum L(y) and minimum S,(y), i . e . 2 . (y)^Ly(q) 

L(y ) for each qeM. C l e a r l y , the function / = L(x) - L has p as 
X A 

a non-degenerate c r i t i c a l point with index 0 ( i . e . p i s a minimum 

point of / ^ ) . 

Since f i s taut then p i s an isolated point in \ ( x ) - jlnll^'^x^ 

' " ^ '^M(x)- limi ^'iy) connected. Consequently, f^^^^. ( 

cons is ts of f (p ) alone and so / ( q ) > / , ( p ) for a l l qeM. 
X X * 
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Equivalently, L (q)< L ( p ) for each qe M. 
A A 

I f X i s a focal point then there is no other focal point of M 

along the geodesic Y ( t ) = exp^^p^tn, t > o for t> 1. Consider 

X = e x P f ( l " ' ' ^ ) " ^or suff iciently small positive real number e . I t 

i s clear that f(p) is a c r i t i ca l point of L- with index m. Similar 

argument shows that L- (q) < L- (p) for a l l qeM. Taking the limit as 
X A 

e->o, we obtain that L (q) ^ L (p) for a l l qe M which completes 
X X 

the proof. 

Corollary ( I I I . 2 .1 ) 

Let f : M -̂ W be a taut imbedding and let peM have a normal 

ray Y ( t ) = exp^^p^tn, t > o, neTCM)"^, on which there are no focal 

points of f(M). Then f(M) l i es in the closed region W\B^ bounded by 

the horosphere through f(p) with inward pointing normal n. 

Proof : 

The proof is a direct conclusion of lemma (111.2.6). Consider 

the point Y ( t ) = exp^^p^ tn , t ^ o . I t is clear that f(M) does not 

have any focal point on the geodesic segment from Y ( O ) to Y ( t ) and 

consequently f (M) does not intersect the open geodesic ball 

B ( Y ( t ) , t (Ing ) . Since this is true for each t ^ o and as the union 

of a l l the open geodesic balls B(Y(t) , t HnB ) i s the open horodisc 

we obtain the required result . 

In a natural way we can generalize the concept of substantial 

immersion (imbedding) in Euclidean spaces to manifolds without 

conjugate points as follows : ' 

Definition (2.2) 

An immersion (imbedding)f : M -̂ W is called h-substantial i f 

f(M) i s not included in any horosphere of W. 
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I t has been proved in [ 5 ] p.709 that i f f : M ->• E " i s a 
substantial taut imbedding then there i s a cr i t ica l normal on every 
normal l ine. This result i s no longer true, generally, in manifolds 
without conjugate points according to the following example : 

Consider the h-substantial taut imbedding f : -> IR^* in 

the half-space model of hyperbolic 3-spaces as indicated in the 

following figure. 

I t i s clear that the normal geodesic at f(p) which coincides with 

x^-axis has no focal points of f(IR^ ) . 

Definition (2.3) 

(a) An immersion f : M ^ W is called spherical i f f(M) l ies on a 

geodesic sphere of W. 

(b) An umbilic of f(M) i s defined to be a focal point of f(M) 

with multiplicity = dim M. 

Corollary ( I I I . 2 .2 ) : 

Let f : M -> W be a taut imbedding with an umbilic. Then f i s 

spherical. 

Proof 

Consi ider the point xeW such that x = exp^^p^n, for pe M and 

n eT(M)'", to be the umbilic point of .f{M). This means that x is a 

focal point of f(M) with multiplicity equal to dim M. Applying 
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lemmas ( I I I .2 .6 -7) we have that 

L^(q) >. ^ ( P ) 

and L^(q) < L^(P) 

for a l l qeM. This implies that L (p) = L (q) for a l l qeM and hence 
X X 

f(M) l i e s on the geodesic sphere S = S(x, |)n)| ) , i .e . f i s spherical. 

Corollary ( I I I . 2 .3 ) 

Let f : M ij be a taut imbedding of a compact manifold M as a 

hvpersurface of W. I f f (M) has an umbilic , then f(M) is diffeom-

orphic to s"', where dim M = m. 

Proof : 

From corollary ( I I1 .2 .2 ) , f(M) will be imbedded as a geodesic 

sphere in W. Using propositions ( I I I .1 .5-6) we obtain the required 

result . 

Proposition ( I I I .2 .4 ) 

Let f : M ->W be a taut imbedding such that there i s at most 

one focal point on each normal geodesic ray. Then f(M)nc^ = $ and 

W\C^ is arcwise connected. 

Proof : I 

Suppose that Y i s a normal geodesic ray to f(M) starting at 

f(p) for some peM. Then for points of y very close to f(p) we can 

pick xeW such t h a t ! | f(M) has f(p) as a non-degenerate cr i t ica l 

point with index o ( i . e . there are no focal points of f(M) on Y 

between x and f (p ) ) . Applying lemma ( I I I .2 .6 ) we have that 

Lx(P) < L^(q) for a l l qeM. 

Suppose that x i s a focal point of f(M), then x can be written 

as X = exp^^q ^tn for some q e M , t e IR and neT(M) . By hypotheses 
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in the proposition x is the only focal point on the geodesic ray 
Y(t) = exp^^q j tn. Using lemma ( I I I . 2 .7 ) we have that 
L^(q^ ) ^ L^(q) for a l l q eM. In particular L (̂q^ ) ^ L^(p) which is 
a contradiction showing that x ^ C^. 

Push X along Y nearer to f(M) and eventually we obtain that 

f(M) contains no focal points of i t s e l f . Hence f(M) OG^ = 4> which 

proves the f i r s t claim in the proposition. 

For proving the second part suppose that x ,yeW\C^ . As f is 

a taut imbedding and M is connected then , have unique cr i t ica l 

points p,q, respectively, of index o. Consider the path consisting of 

the geodesic segment Yp joining x to f (p) , any path T in f(M) 

joining f(p) to f(q) and f ina l ly the geodesic segment Y ^ joining 

f(q) to y. For any point x^^Yp, p is a non-degenerate cr i t ica l 

point of L 'and hence x ' C^ ; thus Y flC^ = $ . Similar ly, 
A T p T . 

YqflC^ = We have already shown that f(M) HC^ = $ so T nc^ = $ . 

In this way the path described above which joins x and y i s contained 

in W\C^. As this argument i s true for any arbitrary pair of points 

X , yeW\C^- we obtain the result . 
Proposition ( I I I .2 .5 ) 

Let f : M-> W be a taut immersion of a compact manifold M as 

a hypersurface of W. Then every normal geodesic has focal points 

of f(M). 

Proof : 

Since f(M) is compact and f is an imbedding then any inward 

normal geodesic ray Y( t ) , t ^ o , from f(p) = Y ( O ) , peM, intersects 

f(M) at least once ( let Y(a). a > o be the f i r s t intersection). 

Suppose that the geodesic Yy(t) , Yy(o) e f(M) and veT(M) is free 

from focal points of f(M), then by corollary ( I I I .2 .1 ) f(M) l ies 
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completely in W\B^ since Y^(t) for t ^ o has no focal points of f(M). 

Similarly, since the geodesic ray Yy(t ) , t 4 o has no focal points 

of f(M), f(M)CW\B_^. The result now is that Y ^(a) e f (M) flY ^( t ) , 

a ^ Of coincides with Yy(o) which contradicts the hypothesis that 

f i s an imbedding, hence the result . 

Theorem ( I I1 .2.3) 

Let f : M -> W be a taut imbedding of an (m-1)-connected compact 

2m-manifold M with 

\ (M;Z) = Z ® Z © © Z (m terms). 

Let dim W = 2m+l. Then k = o or 2. 

Proof ; 

Let V be an outward normal of M at p. Since the geodesic ray 

Y.y( t ) = expp(-tv) , t > 0 , goes to the inside of f(M) i t must meet 

f(M) again and by the last proposition there is a focal point of f(M) 

on Y_y(t ) , t :̂  0 . Let q = expp(-v) be the f i r s t focal point on Y_y 

with multiplicity y >o. From the index properties ( [22] p.85) 

the point q" = expp(-tv) for t > 1 and sufficiently near 1, is not 

a focal point of f(M) and hence p i s a non-degenerate cr i t ica l point 

of Lq ĵM with the same index jX. 

Considering any T-function on M and taking into account that M 

is compact, the negative of a T-function is also T-function and from 

the hypothesis on the homology groups of M we have : A T-function on 

M has one minimum, one maximum and k c r i t i ca l points each of index m. 

Consequently, i f a distance function L , xe W, has a non-degenerate 

c r i t i ca l point then i t s index must be o, m or 2m. This argument 

shows that u = m or y = 2m. 

Now i f y = 2m for any point pef(M), then M i s tautly imbedded 
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with an umbilic and by corollary ( I I I .2 .2 ) f(M) is spherical. Using 
the codimension 1 property, f(M) wil l be an imbedded geodesic sphere 
in W. Since the exponential mapping is a global diffeomorphism on W, 
then exp-'^ o f : M ^ f r ) , where p and r are the center and the 
radius of f(M), respectively, is a diffeomorphism of M onto the 
2m-sphere S^'"(r) C: E^"^' of radius r. I f : S^"'(r) S^"" (1) 
denotes the central projection in then-j) o exp-"^ o f : 
M S (1) is a diffeomorphism and so k = o. 

In the case k o, i . e . y = m we find that i f there is another 

focal point on Y_y(t ) . This must have multiplicity m. Let 

d = sup { ||n|| ; neT(M) , exppn is the f i r s t focal point 

on the inward-pointing geodesic ray from p, p e M } . 

e = Inf { ||n|| ; neT(M)^, exPpn is the second focal point 

on the inward-pointing geodesic ray from p, p e M } . 

Following similar argument as in [ 5 ] we can prove that e is well 

defined and that d < e. 

I f we choose d < c < e , for every peM define 9(p) to be the 

inward-pointing normal at p with length c. Then 6 : M T(M) is 

a smooth imbedding. I t is clear now that e(M) contains no cr i t ica l 

normals which means that exp^j 6(M) has no cr i t ica l points. Hence 

g = exp^ 0 e : M ->• W 

is an immersion. 

Now consider the map 9 : T(g(M)) T(f(M)) which is defined by 

e (n) = (1 t _NL) 0(p) . c = , | |8 (p) | 

where p is the base point of 0(n) and the + and - signs denote the 

case when n is the in i t ia l velocity of an inward or outward-pointing 

geodesic ray. The map 6 is a fibre-preserving diffeomorphism. 
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From the nature of the mapping 8 , i t is clear that 

ex[^^pjoe(n) = expg^p^n, hence exp^ = exp^o e . Accordingly, cr i t ica l 
points of expg are mapped onto the cr i t ica l points of exp^ with 
multiplicity preserving. Also the focal sets C^ and C^ coincide. 

I f we consider the point xeW\C^ (=W\Cg) and choose L^(p) = 

•^(XjfCp)) and l" (p) = d(x,g(p)), then as C^ = C the non-degeneracy of 
A 9 ' 

L implies the non-degeneracy of L' . Moreover, the nature of g 
A X 

gives r ise to the following fact : peM is a c r i t ica l point of L' 

i f and only i f p is a c r i t ica l point of L . Since f is taut, then 

L is a T-function and hence L has precisely k + 2 cr i t ica l points, 
A X 

one with index 0,p^ say, one with index 2m, p̂  say, and k with index m, 

q^,... ,q|^ . I t can be shown graphically that g(PQ) is a cr i t ica l 

point of with index m , g(p ) is a cr i t ica l point of L' with 
X . X " 

index m and g(q.) , i = 1 , . . . ,k is a cr i t ica l point of LJ" with index 
I X 

0 or 2m, Applying Morse inequalities as i t has been done in [5] we 

get that k = 2 which completes the proof of the theorem. 
( I I I . 2 .3 ) - More about taut and tight immersions: 

In the case of the immersion f : M W of a compact manifold M 

into a complete, simply connected, Riemannian manifold W without 

conjugate points, we can give the following definition of taut imm

ersion similar to that one given in the Euclidean space [ 31 ] . 

Definition (3.1) 

The immersion f : M is called taut i f every non-degenerate 

distance function L , xeW, has the minimal number of c r i t i ca l points 
X, 

required by the Morse inequalit ies. 

In [3 ] , J . Bolton defined the h^tight immersion f : M W 

of a compact manifold M into the complete, simply connected, Riemannian 
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manifold W without conjugate points, with bounded asymptote and with 
sectional curvature bounded from below as follows: 

Definition (3.2) 

An immersion f : M W is called h-tight i f every non-degenerate 

b o f , V eSW, has the minimal number of c r i t i ca l points required by 

the Morse inequalit ies. 

I t seems quite interesting to find the relations between the 

definitions of tautness and h-tightness mentioned in ( I I I .2 .1 ) and the 

above ones. To make the following discussion clear , we mention the 

basic ideas about the so called convex mappings. These ideas are 

originally due to N. Kuiper[20] . 

Let M be a compact manifold without boundary (closed) and let 

4) : M IR be a non-degenerate C^ real-valued function on M . Let 

y | ^ ( M , <t>) be the number of c r i t i ca l points of <<> of index k and let also 

y ( M , (j)) = ^ j ^ ( M , (f)) represents the total number of c r i t i ca l points 

of <p . Let further | j ( M ) = Inf^ M ( M , (p) be the minimal number of 

c r i t i ca l points a non-degenerate function on M can have. (Infimum 

is taken over a l l non-degenerate functions (]) )• 

Definition (3.3) 

A smooth map (j) : M - ÎR will be called convex i f i t is non-

degenerate and i f moreover the minimal number of cr i t ica l points is 

attained, i . e . y ( M , ({>) = y ( M ) . 

I t is clear now from definitions (3.1 - 3.3) that in case of 

taut immersion of a compact manifold M into W, any non-degenerate 

distance function L , xe W, is a convex map on M . -Similarly, 
A 

byof, VeSW, is convex in the case of h-tightness of M into W. 
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In terms of T-functions, lemma on page 153 [20] can be re

written as follows: 

Lemma ( I I I . 2 .8 ) 

Let (|) : M IR be a non-degenerate function on a closed manifold 

M which fulfi l ls tfie following condition: 

There exists a f ie ld F such that y(M) = ^ (̂M ; F) (and consequently, 

for any function (J) for which y(M) = y(M, ( j ; ) , y,̂ (M) =y ,̂ (M,({)) = B|^(M;F)). 

Then is convex i f and only i f (j) is a T-function. 

In terms of this lemma we conclude that : 

Corollary ( I I I . 2 .4 ) 

(a) Let f : M W be an immersion of a closed manifold M and let M 

have the property that y(M) = | |{M;F) for some f ield F. Then the 

two concepts of taut immersions (Definitions (1.2)and (3.1)) are 

coincident, 

(b) Let f : M W be an immersion of a closed manifold M where M has 

the same property as in (a ) . Then the two definitions (1.4) and (3.2) 

coincide. 

Other kinds of taut (h-tight) immersions may be given as follows: 

A non-degenerate function (() : M IR on a manifold M is said to be 

k-convex i f y^(M, (j)) = y^(M) for i = o, 1 , . . . ,k . The function (}> 

is called convex i f y(M,(}) ) = y(M) as mentioned before. Evidently, 

i f (j) is k-convex for a l l k, then ^ is convex. I t has been proved by 

M.Morse that i f ^ is convex, then i t is 0-convex. However, whether (p 

convex implies k-convex for a l l k seems unlikely. For more details 

see [31 ] . 

Definition (3.4) 

(a) Let f : M ->W be an immersion of a closed manifold M in a complete, 

simply connected, Riemannian manifold W without conjugate points. The 
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mapping f is called k-taut (taut) i f every non-degenerate distance 

function L , xeW, is k-convex (convex). 
A 

(b) Let f : M W be an immersion of a closed manifold M into a 

complete, simply connected, Riemannian manifold W without conjugate 

points, with bounded asymptote and with sectional curvature bounded 

from below. The mapping f is called k-h-tight (h-tight) i f every 

non-degenerate function b ^ o f , veSl i , is k-convex (convex). 

From the above argument we see that i f M, beside being closed, 

has the property that y(M) = ^ |̂ (M;F) for some field F, then any 

taut immersion f : M"̂  W (or h-tight immersion f : M"*" W) is k-taut 

(or k-h-tight) for every k, where W and W are as mentioned in defin

itions (3.3-a) and (3.3-b), respectively. 

For the rest of this part let W, W and M denote manifolds as 

mentioned above. From the above mentioned result of M. Morse we 

conclude that, any taut immersion f : M (h-tight immersion 

f : M ̂  W) is o-taut (o-h-tight). This means that any non-degenerate 

function L ^ ( b ^ o f ) , xeW, veSW, is o-convex, i .e . y^(M,L^) = yp(M) 

[y^(M,b^of) = yQ(M) ] . But from Morse inequalities we have 

yg (M,L^) 5^3Q(M;F) and y Q ( M , b y O f ) , > B Q ( M ; F ) (1) 

I f M is connected then 3 Q ( M ; F ) = 1 and hence 

y^(M,L^) ^1 and y ^ C M . b ^ o f ) ^ 1 (2) 

Again i f M has the property y(M) = | |(M;F) then 

yo(M,L^) = 1 and yo(M,b^<'f) = 1 (3) 

Proposition ( I I I . 2 .6 ) 

Let f : M -> W be a o-taut immersion of a compact (closed without 

boundary) manifold M. Suppose that every non-degenerate distance function 
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L^(x i C^) has only one local minimum, then M has the STPP. 
Proof : 

As the non-degenerate distance function L (x ^ C^) has only one 
A I 

local minimum and since f is o-taut then the number of cr i t ica l points 

of L„ over the whole of M is exactly one, i .e . y(M,L ) = 1 . Also 
X o X 

this local minimum of L coincides with the global one. 
X 

Consider now the submanifold 

MJL^) = { peM ; L^(p) ^ c , a^c<b } 

where "a" and "b" are the (global) minimum and maximum values of L , 

respectively. The number of c r i t i ca l points of L^ with index o on 

M (L ) i s exactly one which is the global minimum. Applying Morse 
C X 

inequalit ies, we obtain 

which shows that 3„(M (L ) : F ) = 1 and so M (L ) is connected for 
O C X C X • 

each a $ c ^ b. 

Considering (-L ) instead of L and repeating similar argument, 
X X 

we have that 6 Q ( M J ( - L ^ ) , F ) = 1 and hence Mj(-L^) is connected for 

each -b ^ d < -a . Hence the STPP is now proved. 

A similar proposition can be stated for h-tightness in the 

following way. 

Proposition ( I I I . 2 .7 ) 

Let f : M W be a o-h-tight immersion of a compact (closed 

without boundary) manifold M. Suppose that every non-degenerate 

function b ^ o f , v eSW, has only one local minimum, then M has the hTPP. 
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Remark (3) 

1 - Using the compactness of M, the word "local minimum" in the last 

two propositions can be replaced by "local maximum". 

2 - The last two propositions are naturally true for tautness 

(h-tightness) as every taut (h-tight) immersion is o-taut (o-h-tight) 

( I I I . 2 .4 ) - On supporting of submanifolds : 

In what follows we generalize and study some concepts of 

supporting imbedded submanifolds of a complete, simply connected, 

Riemannian manifold W without conjugate points, with bounded asymptote 

and with sectional curvature bounded from below [19] . We have shown 

in (chapter 0) that in such manifold horospheres are complete, non-

compact equidistant hypersurfaces. 

Definition (4.1) 

(a) For a given immersion f : M W, the closed horodisc 

= { pe W ; b^(p) ^ c ) for some v eSW and ce IR is called supporting 

of f(M) i f the boundary 3BJ = H J = { pe W ; by(p) = c ) but not 

Int(By) has points in common with f(M). 

(b) The subset M̂  = f ( B J ) = f"^ (HJ ) ^ $ of M is called the 

top-set in case of M̂  M. 

Clearly i f M̂  = M for some ve SW, then f is not h-substantial. 

I t can be shown easi ly that in a complete, simply connected, Riemannian 

manifold W without focal points, geodesic sphere has single point 

top-set. 

One of the important characterizations of the Euclidean space E " 

is that the two horospheres and H ^ ^ , for some ve S E " , are coincident 

and consequently any substantial immersed submanifold M of E " which is 

supported at one of i ts points, p say, in v-direction, for v e S E " , 

could not be supported at the same point p in (-v)-direction. In W this 
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fact is no longer true (see example part ( I I I .2 .2) ) . I f M is imbedded 

as a compact (closed without boundary) hypersurface of W then M can 

be supported only once at any of i ts points where supporting is available, 

Proposition ( I I I . 2 .8 ) 

Let M be an imbedded hypersurface of W. I f M is supported twice 

at some point pe M in v and (-v)-directions, for some veSW, then M 

has no focal points along the normal geodesic from p with in i t ia l 

velocity v. 

Proof: 

Let M be supported twice at p in v and (-v)-directions. Let 

Yy( t ) be a geodesic in W such thatYy(o) = p and Yy(o) = v. 

F i rs t l y consider the supporting closed horodisc B^. Define the 

map C. : M ^ H as follows : Draw the unit speed geodesic Y^ (s) such 
V 

that \{o) = Y^(to) and (o) = wew^ . This geodesic yjs) 

intersects M at some point, Yjj(s) say, and intersects Ĥ  at 

Y(̂  (r) , s ^ r . P u t Y j r ) = C^^ (Y j^(s ) ) . The map C^^ is defined 

(at least) local ly at p. Considering the distance function » , 

we have L., , ^ L-v /+• \ " C . . Using Morse index theorem and taking 

into account that Ĥ  has no focal points on the geodesic segment from 

p to Y y ( t Q ) we obtain that p is a non-degenerate cr i t ica l point of 

Lv. /+ \ with index o. Hence M has no focal points along Y.,(t), 

0 -s: t ^ tp . For t g large enough we have that M has no focal points 

along Y ^ ( t ) , t o. 

Similar agument can be carried out when considering H_̂  
^ . • • 

and Yy( t ) , t ^ 0 , which completes the proof. 

The main theorem of this part which is a generalization of a 

corresponding one in Euclidean space [21] can be stated as follows: 
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Theorem ( I I I . 2 .4 ) 

Let W be a complete, simply connected, Riemannian manifold without 

conjugate points with bounded asymptote and with sectional curvature 

bounded from below. Let f : M W be an h-tight imbedding of a compact 

manifold M as a hypersurface of W. Let M̂  be the top-set of the 

imbedding f, v^SW. Then the induced map H*(M^;F) -> H (̂M;F) is inject ive, 

and the top-map f ^ = f I M̂  : M̂ -̂  W is h-tight as well . 

Proof 

Since f is an imbedding and f(M) is a compact hypersurface of W, 

then f(M) can be supported only once from any of i ts points. This 

advantage enables us to deal only with one supporting horodisc B^ 

or B_y for some v eSW. 

Suppose that f(M) is supported by B^. The f i r s t statement of 

the theorem is naturally true from the definition of h-tightness. 

Let My be the top-set in the horosphere H .̂ Consider any other 

horosphere H^ passing through p eM^, u e Wp. The idea of the proof 

is to show that the induced homomorphism H^(MynB^ ;F) > H^(My;F) 

is injective for each B^ . A sequence of horodiscs B̂ . = B̂ j , u^e Wp 

can be found (as in the following figure) making M^nBi converge 

to M.HB . Notice that MDB. is a connected component. Choose V w 1 

û . 's such that 

M n B . D M ng.^ p .Q^ B j n M = B ^ n M 
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Depending on the continuity of Ĥ  in W and following similar way 
to that of N. Kuiper [19] , we have 

lim H ^ ( M n B . ; F) = Ĥ (M flB^ ;F) 
j^°° 

We now obtain a commutative diagram of morphisms in homology, 

with injective morphisms denoted b y , from a corresponding 

diagram of inclusions as follows: 

H * ( M ^ n B ^ ) ^ H * ( M n B . ^ ^ ) _ H ^ (MHB.) 

H*(MJ Ĥ  (M) 
^ h-tight 

Then the morphismu is also injective and the proof is complete. 
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Section 3 : Total curvature of immersed submanifolds 
~ of hyperbolic spacer 

( 1 1 1 . 3 . 0 ) Introduction 

The concept of total absolute curvature of immersed manifolds 

in Euclidean spaces has been introduced, for the f i r s t time, by S.S. 

Chern and R.K. Lashof [10 ] . Many t r i a ls have been done since this 

paper has been published in (1957) to extend the concept of total 

curvature to immersions in non-Euclidean spaces. For instance, 

J . L . Weiner [31 ] considered the case in which the ambient space is 

spherical s". Defining a convenient Gauss mapping and adapting the 

conformal mapping (stereographic projection) between spherical and 

Euclidean spaces, J.L.Weiner was able to use the results of S .S. Chern -

R.K. Lashof to obtain similar ones in spherical space. 

In the following part ( I I I .3 .1 ) we share this sort of studies 

and prove similar results in hyperbolic spaces. The scheme used here is 

analogous to that of J . L . Weiner. Since hyperbolic space is a complete, 

simply connected, Riemannian manifold without conjugate points, our 

study is much easier than that of spherical space. 

For the rest of this section let M be a compact, oriented, C°° 

n-manifold immersed in (n+k)-hyperbolic space. The model used in 

( 1 1 1 . 3 . 1 ) is the H-model described before. Let p be the north pole of 

H and S(M)'̂  be the bundle of unit vectors normal to M as a submanifold 

of H. We define the Gauss mapping ep : S(M)'̂ -̂  SpH where SpH is the 

unit sphere in the tangent space Hp of H at p. We shall use < , > 

to denote the induced Riemannian metric on H or any submanifold. 
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( I I I . 3 . 1 ) Total curvature and conventional Gauss map: 
1. Def in i t ions and basic material : 

X 
Let M be an immersed submanifold of H. Define e : S{M) ^ S H 

P P 

as fol lows : Let veSq(M)' ' (Sq(M) i s the f ibre of S(M)^ over q e M ) , 

then ep(v) i s defined to be the para l le l t rans la t ion of v to p along 

the (unique) geodesic segment Y from p to q. This map ep i s now 

wel l -def ined and i t i s easy to prove that i t i s continuous d i f f e r -

ent iable (C ) over the whole S(M) . As M i s compact oriented we may 

global ly define the Gauss mapping ep on M with respect to any base 

point pe H. I f H i s replaced by E""'"'^, e^ turns out to be the usual 

Gauss mapping and in th is case i s independent of the choice of the 

base point p. Let det"'*''̂ "' denote the volume element of SpH 

normalized so that 
/ J n+k-i , 

Def in i t ion (1) : 

Set . 

We c a l l K-.^ifi) the total (a lgebraic) curvature of M with respect to 

p and t^p(M) the total absolute curvature of M with respect to p. 

A c t u a l l y , Kp{M) equals the algebraic normalized volume covered 

by Bp while T^p(M) i s the normalized volume covered by ep. Because 

the volume i s normalized, Tp(M) equals the average number of times 

any vector in SpH i s taken on by e^. Since M i s compact then K:p(M) 

equals the degree of the mapping e^. 

Before being involved in any other d e t a i l s we state the main 

r e s u l t s of S . S , Chern and R.K. Lashof [10, 11 ] . 
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Theorem ( I I I . 3 . 1 ) 

Let X : M-> E"^**^ be an immersion of an n-dimensional closed 

manifold M. Then the total absolute curvature of x s a t i s f i e s the 

following inequal i ty 

T (x ) ^ 3{M) = sum of the B i t t i numbers of M. 

Theorem ( I I I . 3 . 2 ) 

Let x : M-^E""^*^ be as before: 

( i ) I f T (X ) < 3 , then M i s homeomorphic to an n-sphere. 

( i i ) T(x) = 2 i f and only i f x i s an imbedding and x(M) i s a 

convex hypersurface in an (n+1)-dimensional l inear subspace 

of E " + ^ 

(2) Main theorem : 

Let Op : H ^-E""*""^ be the steroegraphic projection as described 

in chapter 0. Now the tangent space Hp of H at p can be ident i f ied 

n+k 

with the Euclidean space E through para l le l t ranslat ion in the 

Minkowski space (IR""^*^"^^ , < , > ) . Let M(p) = ap(M) and le t M(p) 

car ry the metric induced from E""'"'^. Simi lar to [31 ] the following i s 

easy to prove: 

Lemma ( I I I . 3 . 1 ) 

Let M be an immersed submanifold of H. Then the following diagram 

i s commutative 

S(M) " SpH 

(1 - < x , p > ) Op^ i( 

S ( M ( p ) ) ^ - ^ ^ S"^^ -^ 

where xe M and e denotes the usual Gauss mapping in E 
n+k 
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I f M(p) i s given the or ientat ion induced from M by O p , the 

a lgebraic volume covered by e and are equal and consequently 

S imi la r l y 

K(M(P)) = Kp(M) (1) 

T(M(p)) = Tp(M) (2) 

Theorem ( I I 1 . 3 . 3 ) 

Let M be a compact oriented immersed n-submanifold of H. Then 

K^p(M) = x(M) where x(M) i s the Euler c h a r a c t e r i s t i c number of M. 

Proof : 

Since cTp : H ^ E""*"*^ i s a diffeomorphism then in par t icu lar M 

and M(p) are topological ly equivalent . Hence x(M) = x(M(P))- '̂ '̂ om 

Al lendoer fer 's theorem [ 1 9 ] we have <(M(p)) = x (M(p)). So 

Kp(M) = K(M(p)) = x(M(p)) = x(M) which completes the proof. 

In what fol lows we say that a submanifold N of H i s an 

m-sphere i f N = H flL"'"''^ where L*""̂  ^ i s an (m+1 )-dimensional plane 

in the Minkowski space (IR"'"*''^'''^ > < , > ) . In case of co-dimension 1, 

m-sphere turns out to be a geodesic sphere of H when being compact. 

The main theorem of th is part may be stated as follows : 

Theorem ( I I I . 3 . 4 ) 

Let M be a compact, or iented, immersed n-submanifold of the 

(n+k)-hyperbolic space H. Let p be the north pole of H, then 

( i ) Tp(M) >. 3(M) 

( i i ) Tp(M) < 3 implies that M i s homeomorphic to s " . 

( i i i ) Tp(M) = 2 implies that M i s imbedded as a hypersurface of 

an (n+l)-sphere of H. 
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Proof : 

( i ) We know that M and M(p) are topological ly equivalent under o^-

So 

3(M) = 3(M(p)) (3) 

From equations (2) and (3) together with theorem ( I I I . 3 . 1 ) we have 

^p(M) = T(M(p)) >. 6(M(p)) = 3(M) 

Hence 

Tp(M) >. 3(M) 

which proves part ( i ) of the theorem. 

( i i ) For part ( i i ) we have by equation (2) that 

T(M(p)) = T p ( M ) < 3 (4) 

Using t h i s inequal i ty together with theorem ( I I I . 3 . 2 ) we see 

that M(p) i s homeomorphic to s " . Since M and M(p) are homeomorphic 

under then M i s a lso homeomorphic to s " . 

( i i i ) For Tp (M) = 2 we have T ( M ( P ) ) = 2. Hence by theorem ( I I I . 3 . 2 ) 

part ( i i ) we see that M(p) i s an imbedded hypersurface in an 

(n+1 )-dimensional l inear subspace E""*"^ in E""*"*^. Under a"p^ , 

E""*"^ w i l l be mapped onto an (n+T)-sphere in H. I f M passes through 

the north pole p, then M i s imbedded as a hypersurface of a to ta l l y 

geodesic submanifold of dimension (n+1) in H. 

Related to the concept of total curvature, the following i s true: 

Lemma ( I I I . 3 . 2 ) 

Let M be a compact oriented immersed n-submanifold of a Euclidean 

n + k 

space E (k > 1 ) . Suppose that there ex is ts an (n+ £)-plane 

(1 ^ I 4 k ) in E which contains M. Then the total absolute 

curvatures of M as a submanifold of N""*"̂  and E"^*^ -are equal. 
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A corresponding statement can be proved in hyperbolic spaces 
with some r e s t r i c t i o n s as follows : 

Theorem ( I I I . 3 . 5 ) 

Let M be a compact, or iented, immersed n-submanifold of the 

(n+k)-hyperbolic space H. Let M be contained in a t o t a l l y geodesic 

submanifold E of dimension (n+S,) which passes through p e H . Then 

the total absolute curvatures of M as a submanifold of H and E are the 

same. 

Proof : 

The idea i s to steroegraphic project H on E"''"'^ using O p . 

C lear ly ap(M) = M(p) w i l l be contained in E " " ^ ^ in E""^"^. Applying 

the above lemma and using re la t ion (2) we get the r e s u l t . 

( I I I . 3 . 2 ) Total curvature and generalized Gauss map : 

Assume that W - as before - i s a complete, simply connected, 

Riemannian manifold without conjugate points, with bounded asymptote 

and with sect ional curvature bounded from below. Each veSW deter

mines a family of horospheres orthogonal to the unit vector f i e l d 

grad b^. I f u = grad b^(q), qei5 , then we say that u i s asymptotic 

to V and consequently grad b^ = grad b^. I t can be shown that 

"asymptotic" i s an equivalence re la t ion on SW. The equivalence c l a s s e s 

form a regular continuous f o l i a t i o n 7 of SW each lea f of which i s 

a C ^ vector f i e l d on W of the form grad b^ [3 ] . 

The de f in i t ion of the generalized Gauss map G : S(M)^ SpW 

of an immersion x : M ->• W, where SpW i s the sphere of unit vectors 

at some point peW and M i s a c " manifold, i s given as follows [3 ] : 

Let ueS(M)^ , then G(u) w i l l be the element of SpW asymptotic to u, 

i . e . G(u) = grad b^(p). 
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I t has been proved in [ 3 ] that: 

( i ) I f 7 i s a f o l i a t i o n of SW then G : S(M)^-»- SpW i s a lso 

( i i ) Let veSpW. Then b^* x i s non-degenerate i f and only i f v i s 

a regular value of G. 

( i i i ) If ^ is , then the se t { veSpl5 ; b^o x i s non-degenerate} 

i s dense in SpW. 

When s p e c i a l i z i n g to the case when W i s a hyperbolic space and 

adopting the above mentioned mapping G we prove the following theorem 

which i s analogous to theorem ( I I I . 3 . 2 ) part ( i i ) : 

Theorem ( I I 1 . 3 . 6 ) : 

Let X : M ^H be an imbedding of a compact €° n-manifold M as 

a hypersurface of the (n+1)-hyperbolic space H. Let c = / da be 

the area of the unit sphere S in E . Then 

T ( x ) = / , | |G*(da)| | = 2c 
S(M) " 

i f and only i f x(M) l i e s on one side of each tangent horosphere. 

For the proof of th is theorem we need the following lemma: 

Lemma ( I I I . 3 . 3 ) 

Let X : M -^H be as in the theorem and l e t G : M-̂ - S^H be the 

general ized Gauss mapping. Let J (p) be the Jacobian of G at p, and 

l e t U^ = { peM ; rank J (p) = n-m } . Then i f U^ contains an open 

se t V, i t s image under x i s generated by m-dimensional to ta l ly geodesic 

submanifold of the tangential horosphere. Every boundary point of 

U^, which i s a t the same time a l im i t point of an m-dimensional 

generating t o t a l l y geodesic submanifold of the tangential horosphere, 

belongs to U^. 
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Proof : 

Since M i s imbedded as a hypersurface of H, then G turns out 

to be a map G : M ^ S^H of M i t s e l f onto the unit sphere S^H in 

Hq. In [ 3 ] , J . Bolton constructed a b i l inear form as follows : 

For u e S H , l e t H^ be the tensor Ĥ  = V^grad b^, where V i s the 

covariant d i f f e ren t ia t ion on H. I f u i s orthogonal to M at q, l e t 

S^ be the second fundamental tensor of M at q and define the b i l inear 

form on the tangent space T̂ M to M at q by 

(X,Y) = < y - S^^X,Y> (1) 

We notice that the r e s t r i c t i o n of H^ to vectors orthogonal to grade b^ 

gives the second fundamental tensors of the horospheres which are the 

level hypersurfaces of b^. 

Now the kernel of G^ can be defined as fol lows: 

ker G*(u) = ( X e M ^ ; Ĥ X̂ - SjjXeTq(M)^ } 

= { X e M ; Q (X,Y) = 0 for a l l Ye M > 
q u \\ 

and hence i f X e k e r 6*(u) then-

\ ^ - "uX 

As we know ( §6-chapter 0 ) , in hyperbolic space Ĥ  = ident i ty map and 

consequently i f X e k e r G*(u) then by equation (2) we have 

S^X = X (3) 

and so S^ = ident i ty map as w e l l . 

The following lemma i s needed to complete ^he proof : 

Lemma ( I I I . 3 . 4 ) : 

ker G* is an involut ive d is t r ibu t ion . 
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Proof : 

Let X,Y e kerG*,the idea i s to show that [X,Y] i s a lso in ker 6* . 

The Mainardi-Codazzi equation (see chapter 0 ) , may be written as 

< R ( X , Y ) Z , v > = (V^h) (Y.Z) - ( V y h ) . (X,Z) (4) 

for X,Y,Z e X(M), v eS(M)'^ , R i s the curvature tensor of H and 

h(X,Y) = < S^X,Y> = < X,Y > i s the second fundamental form of M. 

Since H has constant sect ional curvature - 1 , then 

R(X,Y)Z = - { < Y,Z > X - < X,Z > Y } (5) 

Since < X, v> = < Y,v > = o, then < R(X,Y)Z,v > = o and so (4) has 

the form 

I t i s a lso known that 

X(h(Y.Z) ) = (V^h) (Y,Z) + h(V xY,Z) + h(Y,V ,1) (7) 

Y(h(X,Z) ) = (Vyh) (X,Z) + h(V yX.Z) + h(X,V yZ) (8) 

where v i s the induced covariant d i f fe rent ia t ion on M. From 

(6) - (8) we have 

h(Vj^Y,Z) - h(VYX,Z) = X(h(Y.Z) ) - Y(h(X,Z)) - h(Y,V^Z) + h(X.VYZ) (9) 

But as X , Y e k e r G * , then by using Gauss formula((2.3) - chapter 0 ) , 

we have 

h(Vj^Y,Z) - h(VYX,Z) = h(V^Y - VyX,Z) = < S(V^Y - V Y X ) . Z > = 

= <S( [ X,Y] ),Z > = <[ X,Y] ,Z > 

and so 

S( [X,Y] ) = [ X , Y ] 

i . e . [ X ,Y] i s in kerG^. This argument shows that ker G^ i s an inv-

o lu t ive d is t r ibu t ion and the proof of lemma ( I I I . 3 . 4 ) i s now complete. 
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At any in te r io r point p e U ^ the assumption on the rank of J(p) 
implies that we may choose coordinates on M in a neighbourhood of p 
say ( t \ . . . , t " ) such that , i f v i s the unit normal vector of M at p 
then 

"^^Ua^ = - ^ ^ ( 9 / ^ t ^ ) = 3 / 3 t ° ' , a = l m (10) 

Let a = m+1 n , we have, by using (10) , that 

{d/dt ^ ) < v , 9/8t°'> = < Vg^g^a ^ . 

= < ^ 3 / 9 t a V - 3 / 9 t ^ . 8/31"' > = 0 

and so ^ 3 / 3 ^ 3 " ^ " 9/3t° ' i s perpendicular to the integral manifold U 

of ker G* at p. We can write 

and as S^ - I i s a symmetric l i near transformation of Mp, then Mp 

may be expressed as 

Mp = ker (S^ - I ) ® V 

where V i s the orthogonal complement of ker (S^ - I ) . I t can be shown 

e a s i l y that (S^ - I ) takes the subspace spanned by { 3 / 3 t ^ } b i j e c t i v e l y 

to V. 

Now any normal vector u to the integral manifold*R, can be 

writ ten as 

^ = ^ u ^ S - I ) (3 /3 t^ ) 
a=m+i 

where { u ^}represent the components of u. The next step i s to show 

that the integra l manifold i s a geodesic submanifold of M at p. This 

can be done through showing that <VyU,Y > = 0 for a l l X . Y e T l l a n d u 
A p 

i s any normal vector to the integral manifold as a submanifold of M. 

Without loss of general i ty we can prove t h i s fac t for X = 3/3t?' . 
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Y = 3/at^ and u = Vg^g^^v- d/H^ . For s imp l i c i t y l e t 

Applying Gauss' formula ( (2 .3 ) - chapter o ) , we have 

^ = <^9/8t^ V a t ^ ' ' - V a t " ' ^/^^^ ' 

and s ince [d/dt^ , 8 /9^^] = o, then 

hence 

A = < R( 3 / 3 t ^ , 9/3t^) V + Vg/g^a V a t " " ' ^ 3 1 ? ' ^ ' ' ^ * ^ ' ^^^^^ 

Using equation ( 5 ) , we get 

^ = " \ / 3 t a ' ^ /^ t^ > -<^3/3t^^/^*^ ' ' 

= <[ 3/3t^ . 3/3t° ' ] , 3/3t^ > = 0 

Hence "R i s a geodesic submanifold of M at p. In the same time U i s 

a geodesic submanifold of the tangent horosphere H^ at p. Repeating 

the same argument with neighbourhoods of t° ' . = o we get that t^ = 

constant are t o t a l l y geodesic submanifolds of both M and tangent 

horospheres which means that along any curve i n T l , the tangent horos

phere of M remains constant. This f in ishes off the f i r s t part of 

lemma ( I I I . 3 . 3 ) . 
For the l a s t part we consider the orthonormal frame e^ e^^j 

such that e^, .e^^ are tangential t o U , e^^^^ e^ are 
tangential to M and e^^^ i s perpendicular to M. Let oi\ ,0)""*"^ be 

the co-frame. From the s t ructura l equations ( § l - c h a p t e r 0) we 

have that 

u).""^' = Z l h - . ^ J or h , , = a ) f ' ( e . ) K < i , j ^ n 
' j = I : ' j " J I J 
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But s ince h 
" j 

6^ , ,1 4 OL 4 my then 

0) 
n+i 
a j = i ^'j 

j a n+i 
a 

n 

b=m+i 
,m+l ^ a,b ^ n (11) 

and consequently the second fundamental form matrix of M res t r i c ted to 

U may be wri t ten as m 

m 

0 h ab 

In a s i m i l a r way, the second fundamental form matrix of a horos-

phere in hyperbolic space i s of the form 

a..) m 

0 I n-m 

Now the proof of the lemma w i l l be complete through studying 

the behaviour of the matrix 

' 0 0 
( P i j ) = ^ ^ j - ^ j ) = 

0 ^ b - V m 

along the m-dimensional generating t o t a l l y geodesic submanifolds. 

We know that D =det(h,- I ] 1̂;̂  0 because i f D = o then ker G* 

w i l l be of dimension >m. From the st ructura l equations, we have 

0) 
n+i 

a f n+i c , n+i 
CO- A w + $ 

c=i ^ OL a 

But 

hence 

, n+i J ot _ 
d 0) - 0 to 

a 

n+i 

B=i 

n+» n+ 1 c n+1 
a 

n+i 

c=i 
a 

n ± i n+i c D 
+ I r i KaCD 

C,D=i 

2_w- A to ^ 
i=i 1 a 

- t 
1 = 1 

i 1 
(0 A (Jj 

a 
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Direct computations show that 

- h 0 ) ^ . 0 ) ' ^ + 0 ) ^ = 1 ^ K " ' % V J (12) 

a,b=m+i ab . «' b=m+i " i , j=i a i j 

We have for hyperbolic spaces K"tj = o and so from equation 

(12) we get 

n 
(h . 6 N a,a , ojb (13) 

a,b=m+i ab ab ^ °' 

Putting h^^ - <̂ g|j = A ĵ̂  in (13) we obtain 

a,b=m+i 

which i s very s im i l a r to the corresponding re la t ion in E""*^^ , [ 1 0 ] . 
Proceeding exact ly as in [ 1 0 ] we have 

n 

a=m+i ^ 

Since det (A^^ )̂ o we get 

a TT c 
. no ) 

hence we may wri te 

n 
to^ = > X wb ^n+i _ oji+i - 0 ) ^ (14) 

°' fen aab ' a - a a 

This choice gives that 

n 5 " + ^ = D n (15) 
a a c 

Exter ior d i f f e ren t i a t ing equation (15) , we have 

b=m+i 

Also 

dw 



-153-

Substi tut ing from (14) into (17) we have 

a \ . ci b ^ b a . 
d(ô  = 2 ^aab w A w + 2 — w A wb 

a>a b=m+1 

Using (18) we get 

dD A n (0^ + D( ^ X . A n o*̂  ) = 0 c ^ aTot a a a t ' 

or 

dD + Diy~ X ^ _ w " ) = 0 mod of ^ — ctaa a , a 

Let peM be a boundary point of such that x(p) i s a l imi t 

point of a generating m-dimensional t o t a l l y geodesic submanifold L 

of the tangent horosphere H^ . Choose a neighbourhood U of p such 

that x ' ^ ( L ) c l U. Let e^(q) ,e^^^ (q) , q eU, be a local c r o s s -

sect ion of U in T(M)^ , such that , for q e x " ^ ( L ) , e j (q ) e^(q) 

span L. I f w \ are the r e s t r i c t i o n s of ( » ) \ c o L respect ive ly , 

to th is c r o s s - s e c t i o n , then are l i n e a r l y independent and we 

w i l l have 

Let Y be a curve in x"^ (L) abutting at p. Along y we have 

dD + D(ZI^aaa ^ = ° a,cx 

and by integrat ion we obtain 

D(q) = D ^ e x p ( - / X Z ^o^, ^ ^ 

a , ot 

for q e Y -p^ , where o i s the value of D at a fixed point of y 

As D(q) i s a continuous function and since X i s bounded then we 
otaa 

have D(p) ^ o which means that peUj^ and the proof of the lemma i s 

now complete. 
We now complete the proof of the theorem. Let E represent 

(18) 
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the space of a l l horospheres in H. A tangent horosphere i s said to 

be of rank m i f i t i s tangent to x(M) a t a point of and at no 

point of x(U ^ ) , i!- <m. A tangent horosphere of rank zero does not 

separate x(M) otherwise the total absolute curvature T (x) w i l l be 

greater than 2c^ contradict ing the hypothesis of the theorem. 

We w i l l show that in every neighbourhood U in E of a tangent 

horosphere n of x(M) there i s a tangent horosphere of rank zero. 

Let x ( p ) , pe U^, be a point of contact of II . E i ther there i s a 

neighbourhood of p in M which belongs completely to or there are 

points of U^ , £<m, in every neighbourhood of p. In both cases there 

e x i s t s a point ^ such that the tangent horosphere 11̂  at x(p^) belongs 

to U and such that p̂  has a neighbourhood in M which belongs 

completely to U ^ , £ $m. The image under x of th is neighbourhood 

of p ^ i s generated by ^-dimensional t o t a l l y geodesic submanifolds 

and the tangent horosphere to x(M) along the ji-dimensional to ta l ly 

geodesic generating submanifold through x(Pj ) i s H j . I f x (p^) , 

p, eM, i s a boundary point of th is Ji-submanifold, p belongs to U 

by the l a s t lemma and i s not an in te r io r point of Û ^ . Hence there 

e x i s t s in every neighbourhood about p^ an open set whose points are in 

k < £ , and which contains a point p^e such that the tangent 

horosphere at x ( p 3 ) i s in U. Continuation of th is process gives that 

U contains a tangent horosphere of rank zero of x(M). 

This argument shows that every neighbourhood of n in E contains 

a tangent horosphere such that x(M) l i e s on one s ide . I t follows that 

the same i s true for n i t s e l f which proves the necessi ty part of the 

theorem. 

Conversely, l e t x(M) l i e s on one side of each tangent horosphere. 

I t can be shown that the degree of the generalized Gauss map i s exactly 1 

which gives that T ( X ) = 2c^. 
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Appendix ( i ) 

Let ( P , G L ( n , I R ) , M) be the pr incipal bundle of basis with an 

a f f ine connection r and l e t (T(M), G L ( n , I R ) , IR M) be the 

associated bundle with typical f ibre I R " . 

The bundle of basis - as a pr incipal bundle - can be looked a t 

as the se t of maps t̂) : I R " -> M̂^ , m eM, defined as follows [ 2 ] : 

I f p = ( m , e j , . . . . , e ^ ) e P and f = ( f i , . . . . , f ^ ) E I R " , then 

W) = (m. t: f.. e ) 
i = i V ^ 

Let 7T and TT" be the natural project ions of P and T(M), respect ive ly . 

Let Y be a broken curve in M, b e ir'" * ( Y ( O ) ) - We define a 

l i f t i n g ? of Y into T(M) which w i l l turn out to be horizontal in the 

sense below. 

Let f e i R " and p e P be such that IT (,p) = Y ( O ) and-pf = b. 

We know that there i s a horizontal l i f t i n g Y o f Y into P with 

Y (o) = p. Now define 7 ( t ) = Y ( t ) o f . I t i s c lear that 

Y (O) = ^ ( o y o f = i D f = b. We define the para l le l t rans la t ion 4)^, 

in the tangent bundle T(M), along Y from i r " ' ^ (Y (O) ) to TT"' (T ( t ) ) 

to be 

where ij)^ denotes the para l l e l t rans la t ion in P, so (f)̂  i s a 

diffeomorphism. 

Take be T(M), pe P such that IT ' (b ) =7r (p ) . We may view Ppas 

a subspace of (P x IR ")^p where f C I R " i s such that = b. Let 

the map X : p x I R " ^ T(M) be defined by X (p , f ) = 1)f and define 

H^ = X * (Hp). This de f in i t ion is independent of p in view of the 

r ight invariance of H, while i t i s c lear that the l i f t defined above 

i s horizontal with respect to H , i f the def in i t ion of the map 
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^ : IR -> ir^ ( Tr(p)) i s r e c a l l e d . This argument shows that there 
i s a d is t r ibu t ion H' on T(M) which at each point complements the 
v e r t i c a l tangent space. 

The bundle viewpoint provides a natural "jumping off" for 

general izat ions to connexions in a l l kinds of bundles and much of the 

research in d i f f e r e n t i a l geometry at th is time uses these concepts. 



( i i i ) 

Appendix ( i i ) 

L. Amaral [1] proved h is theorem (1 .1 .2) through considering the 

H-model of hyperbolic spaces but h is proof seems to be d i f f i c u l t in 

computations. In the following we give an easy proof of th is theorem 

which i s va l id in hyperbolic spaces in general not for a special model. 

Let f : M -> H be an isometric immersion of the compact n-manifold 

M into the (n+1)-hyperbolic space H of sect ional curvature - 1 . Since 

f(M) i s a compact immersed hypersurface of H, then there e x i s t s a 

geodesic sphere S ( p , r ) of f i n i t e radius r and center peH which contains 

f(M) and such that f ( M ) n S ( p , r ) ^ . 

Since H i s a complete, simply connected, Riemannian manifold 

without focal points , then the study in ( §1 - chapter I I I ) shows that 

the geodesic sphere S ( p , r ) i s a convex hypersurface of H and hence 

l i e s on one side of each tangent t o t a l l y geodesic hypersurface T at 

x e f ( M ) n s ( p , r ) . (see f igure 1 below). 

Consider U to be a small, neighbourhood of x in H. By using 

the map exp '^ 
A 

H T^H we get the following picture in T^H, 

TXH) 
- 1 

^ — 

k s I 
Fig. 2 
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I t i s c l e a r from (F ig .2 ) that the height functions L^,L^ of 
both S ( p , r ) and f(M) above exp"^ T have 0 as a c r i t i c a l point 
(maximum or minimum according to the chosen or ienta t ion) . Now choose 
a convenient or ientat ion of f(M) such that the eigenvalues of the 
hessian matrices of and are a l l pos i t i ve . Let A be the 
eigenvalue for S ( p , r ) (The reason i s that S ( p , r ) i s an unb i l ica l 
hypersurface of H - see § 6 - chapter 0) while X j , . . . . , X ^ are the 
eigenvalues for f(M) a t x. 

From (F ig .2 ) we can see e a s i l y that for a l l i , 

1 < i < n. Applying in Gauss equation ( (2 .7) § 2-chapter 0) we 

have 

K^(e. . e^.) = -1 + X . X . ^ -1 + X^ (1) 

where Kĵ  denotes the sect ional curvature of the immersion f at x 

and { e ^ , , e ^ } denote the orthonormal basis of T^(M) which are 

themselves the eigenvectors corresponding to {X^ ,X^ } , 

r e s p e c t i v e l y . As we know (§ 6- chapter 0) S (p , r ) has constant posit ive 

sect ional curvature and 

Kc ( e . . e . ) = -1 + = 1/sinh^ r > o (2) 
«J I J 

I t i s c l e a r from equations (1) and (2) that 

K^(e . .e . ) > 0 

for a l l 1 ^ i . j ^ n and th is completes the proof of the theorem. 
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