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ABSTRACT 

Infrared studies of gases, C2H4 , trans-C 2D2H2 , C2H2 , 

C
2

D
2

, c
3

H6 , NH
3

, CO and H2S, adsorbed onto self supporting 

discs of various transition metal exchanged zeolites are 

reported (4000-1200cm- 1 ). 

C2H4 and trans-C2D2H2 were adsorbed onto fully silver 

exchanged type A (AgA) zeolite. AgA samples were subjected to 

various dehydration treatments prior to adsorption of Cif 4 and 

it has been shown that the adsorption behaviour is a function 

of pretreatment. Under all pretreatment conditions used two 

adsorption sites were observed. However, whilst AgA samples 

pretreated at higher temperature held ethylene equally strongly 

on both sites, those samples pretreated at the lower temperature 

held ethylene less strongly on one site than the other. 

To continue our study on AgA zeolite, we also adsorbed 

C2H2 and C2D2 onto AgA samples which had beendegassed at 

temperatures of 543 and 673K for 2 hours. Acetylene was found to 

be adsorbed on the cations at two different sites, and were 

easily removed on evacuation. In addition nart of the adsorbed 

acetylene lost hydrogen to form silver acetyl ide (HC = CAg). 

The liberated hydrogen formed both hydroxyl and hydronium ions 

within the framework. 

In another study, the adsorption behaviour of C
2

H4 and 

C2H2 on Cu
11 

and Cu
1

Y zeolites was compared. Cu
1

Y zeolite was 

prepared in situ by the reduction of Cu
11

Y zeolite in an 

atmosphere of CO with preadsorbed aml!lonia. It was found that 

the c2H4 adsorbed on Cu
11

Y was not rotating and that the symmetry 

of the adsorbed species was apparently preserved (D 2h)' while, 

the symmetry of the adsorbed species in Cu 1Y zeolite was 

reduced, probab.Jy to c2v . In contrast to the results for C2H4 

adsorption, the adsorption behaviour of C2H2 was found to be 
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similar on both Cu
11 

and Cu
1

Y zeolites. Acetylene was found 

to be adsorbed at two different sites with a 'side-on' 

interaction, and that one site held acetylene more strongly 

than the other. 

For the Cu 1Y sample, following the evacuation of either 

c
2

H4 or c
2

H
2

, CO was introduced. It was suggested that C2H4 
and CO were held with comparable strength by Cu + ions and that 

the gases were adsorbed on equivalent sites. 

the other hand, were adsorbed at two different sites. 

Partially Zn-, Ni- ,· and Cu- exchanged NaA zeolites were 

used to study the isomerization of cyclopropane to propene. 

ZnNaA samples were subjected to various pretreatment conditions 

before the adsorPtion of cyclopropane. Water was found to 

promote the isomerization in this sample and that isomerization 

occurred via a. protonated cycloPropane intermediate. Bands 

due to cyclopropane and propene were observed at the same time 

in samples ZnNaA and NiNaA and it was suggested that the gases 

were adsorbed at two different sites. Propene was adsorbed on 

the cations more strongly than cyclopropane since propene could 

only be removed at 47JK while cyclopropane could be removed 

easily by evacuation. 

For CuNaA, however, no interaction between the cations and 

cyclopropane was observed at room temperature. Upon heating 

the sample with 100 torr of cyclopropane, isomerization occurred 

at 47JK. It was suggested that isomerization occurred on the 

external surface of the zeolite and that propene was not 

adsorbed on the cations within the framework. 

Finally, the adsorption of H2S onto partially Ni-, Cu-, Zn-, 

Mn-, and Co- exchanged NaA zeolites were studied. No adsorption 

of H2S onto the NiNaA and CuNaA samnles was observed. On the . 
other hand, two types of adsorption, dissociative and non-

dissociative were observed in ZnNaA and MnNaA samples. Water was 
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also formed. H2S was found to adsorb weakly and molecularly 

onto CoNaA. 

(' 
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CHAPTER I 

INTRODUCTION 

I. Zeolite molecular sieves 

Interest in zeolite molecular sieves occurs in both the 

scientific and industrial worlds. Zeolites can occur 

naturally or be synthesized in various forms1 • 2. In the 

natural form, zeolites are crystalline, hydrated 

aluminosilicates of group I and II elements. 

Natural or synthetic zeolites consist of Sio4 and Al04 

tetrahedra linked to each other by sharing all of the 

oxygens to form an infinite three-dimensional anionic 

network . The Si:Al ratio in the zeolites determines the 

extent of the negative charge on the framework; the higher 

the aluminium content the greater is the negative charge 

since each Alo4 tetrahedron is associated with unit 

negative charge. This in turn determines the number of 

exchangeable cations which are required to produce 

electrical neutrality. The framework contains channels and 

interconnected voids which are occupied by the cations and 

water molecules. In the hydrated form, the cations are 

free to move and can be exchanged to varying degrees for 

other cations. In many zeolites, the intracrystalline 

water may be removed reversibly while for others, on 

dehydration, irreversible changes of the structure occur. 

It is only to the former, whose structure remain intact 

on complete dehydration, that the term "molecular sieves" 

is applied. 

Some 40 species of natural zeolite minerals have 

been identified and over 150 synthetic types were known 

in 19803. 
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Zeolite molecular sieves are chemically and 

structurally more complex than some other adsorbents. 

However, they do possess the advantage of high internal 

surface area and adsorption sites which are normally well 

defined. Zeolites typically adsorb molecules with a 

permanent dipole moment with a selectivity not found in 

other adsorbents. Their adsorptive and catalytic properties 

can be modified by ion exchange and they can be synthesized 

with various Si:Al ratios. 

A majority of these applications are in petroleum 

processing, such as hydrocracking, hydroisomerization and 

hydrodewaxing, gas and liquid purification processes, 

removing water from various streams including natural gas 

for liquefaction, ethane recovery and other purposes3. 

Zeolites have been applied in solving environmental 

problems, such as weather modification and solar energy5. 

Recently, there is renewed interest in the commercial 

applications of zeolites as cation exchangers where it was 

found that zeolite A in the sodium form is suitable for the 

replacement of triphosphates as a builder in detergents, 

and, also, their ability to remove isotopes from nuclear 

power station waste waters6 . 

Although only a small number of mineral and synthetic 

zeolites are being used in industry their uotentiRl is 

obviously immense3. Zeolites are currently being utilized 

to solve or improve the solution of many technological 

problems. 

The chemistry of transition metal complexes has also 

received considerable attention, because such complexes 

have potential both in fundamental and applied catalysis. 

Studies of zeolites modified by transition metals show that 
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their polyfunctional properties are determined by the 

structural and chemical properties of the zeolites and 

the state of the metals in them. The preparative conditions 

of these zeolites can affect the form of the introduced ions 

and the thermal stability of the zeolitic structure7-9. In 

some cases, owing to the shielding effect caused by the 

zeolite network and the electric fields, the transition 

metal ions may be stabilized in unusual oxidation states. 

Novel chemical species involving ligands such as c
3

H6 and 

N H . d . . l . 10,11 
3 3 

rlngs bonde to transltlon meta lons can also be 

formed and are stable in the zeolite cages. 

II. Spectroscopic studies of zeolites and adsorbed species 

Infrared spectroscopy is used extensively in the areas 

of adsorption and catalysis to identify surface species and 

to determine their bonding to the surface12 •13. In the most 

favourable example, infrared techniques can distinguish 

directly between physical adsorption and chemisorption. 

The latter process results in new chemical species, which in 

general can be distinguished by their vibrational spectra12 . 

Infrared spectra of adsorbed species have also been 

used to study reaction kinetics. The rate of oxidation of 

adsorbed carbon monoxide on platinum14 has been studied by 

monitoring the decrease in the intensity of v(C=O) band with 

the addition of oxygen. In a similar way, the hydrogenation 

and oxidation of ethylene15• 16 over silica supported 

transition meta~have been studied. This work is extremely 

valuable in the determination of structures of intermediates 

in catalysed reactions. 

The crystal structures and chemical compositions of 

zeolites make them ideal systems for the spectral 

investigation of cation movements and their interaction 
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with adsorbed molecules. Zeolites have such large surface 

areas that relatively intense bands due to adsorbed 

species can readily be obtained. Infrared spectroscopy may 

also provide information on the framework Si: Al composition, the 

structur.~ changes during thermal decomposition and cation 

. . . 17-20 movement dur1ng dehydrat1on and dehydroxylat1on . 

The principal disadvantage in using infrared spectroscopy 

in surface studies is that, due to strong absorption by the 

substrate, data can only be confined to limited spectral 

regions. The unsupported zeolite sample,used to avoid 

interference from other chemicals, results in the wide 

regions of complete absorption (below 1200cm-1 ) by the 

sample. It is difficult to observe the absorption bands of 

adsorbed molecules that lie in these regions. Despite 

this limitation, infrared spectroscopy remains one of the 

most powerful techniques available to study adsorbed species. 

An extension of the spectra to the far infrared region 

may provide information additional to that obtained by mid­

infrared techniques, for instance on the location of the cations 

and adsorbed molecules, and the structnre of -the 

zeolites. Unfortunately, there are few published papers on 

the far infrared spectra of zeolites and adsorbed species. 

This is due to the relatively few far infrared spectrometers 

available with the computation facilities required to give 

rapid access to the acquired data in a form comparable with 

that produced by mid-infrared spectrometers21 . Moreover, 

the vibrations of the adsorbed molecules with resuect to the 

sqrface, are si;;rongly masked by the vibrr1tions of the 

22 adsorbent and of t1;t~e :=Jdq_O:t;'bed molecnles 

Likewise, thPre are few studies of molecules adsorbed 
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on zeolites having been made by means of Raman spectroscopy. 

Zeolites give rise to very weak Raman scattering and their 

high fluorescence obscure the relatively weak Raman 

spectra23, 24 . However, by using the ~icosecond vulsed Raman 

technique now availablJ,5 these problems will be remedied. 
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CHAPTER II 

ZEOLITES, THEIR CHEMISTRY AND PROPERTIES 

1. Zeolite Structure 

As mentioned earlier, zeolites are a class of 

aluminosilicat~with a framework consisting of Sio4 and 

A104 tetrahedra. A general unit cell composition is 

given by1 

Mx/n [(A10 2)x (Si0 2)y] wH 2o 

where M is the cation of valence n, w is the number of 

water molecules, and[] represents the framework composition. 

The ratio y/x usually has the values 1-5, depending upon 

structure, and the sum (x+y) is the total number of 

tetrahedra in the unit cell. 

Zeolites are classified into groups according to the common 

features of the aluminosilicate framework structures. The 

members of a given zeolite group fall into two categories: 

(i) those which have the same framework topology, but have 

different chemical compositions (cations or Si~Al ratio); 

(ii) those members of a group which have frameworks 

containing one or more structural elements, linked together 

in different ways, so resulting in different topologies. 

If each zeolite framework is assumed to be formed 

from only one type of building unit, a total of eight such 

building units have been found 2 '3 and these eight building 

units are shown in figure 2.1(a). These units consist 

of various arrangements of the primary building unit (i.e. 

Sio4 or A104 tetrahedra). In some cases, the larger 

polyhedral units which occur in these structures are 

considered. These cagelike units or building 'blocks' 

(Figure 2.1(b)) are designated by Greek letters4 : a (a 
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(a) 

D OB 
S4R S6R S8R D4R D6R 

T to 0 2o 4-4-1 

Figure 2.1(a). Secondary building units in zeolite structures. 

The positions of the Si:Al atoms are shown. Oxygen atoms lie 

near the middle of the connecting lines2 '3. 

(b) 

'Y 

D8R 

@ .- . . 
. 

€ 

D6R 

Figure 2.1(b). Some polyhedra in zeolite frameworks: a(a 

truncated cubooctahedron or 26-hedron); ~(a truncated 

octahedron or 14-hedron); o or double 8-ring; D6R or 

double 6-ring(hexagonal prism); 

11-hedron4 . 

Y or 18-hedron; and E or 
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truncated cuba-octahedron or 26-hedron), ~(a truncated 

octahedron or 14-hedron), Y (an 18-hedron), etc .. The 

polyhedra then link together to form unit cells. The 

secondary building unit present in the unit 

cells may be used to classify a given zeolite into one of 

the seven general groups3. Of particular interest to this 

work are two large pore synthetic zeolites, types A and Y. 

Their structures together with their fundamental building 

block, the sodalite unit, will be described below. 

(a) Sodalite 

The sodalite unit is a three-dimensional array of Sio4 

and Al04 tetrahedra in the form of truncated octahedron 

(Figure 2. 2(a)). The truncated octahedron (or~ -cage) is 

made up of 24 (Si, Al) ions (vertices) interconnected with 

36 oxygen anions and contains eight hexagonal and six square 

faces1 ' 16 . 

The free diameter (the distance between diagonally 

opposite points of the polyhedron which is not impinged 

b th t l . . 16 ) f 14 h d ( upon y e oxygen a om 1n1ngs o a - e ron or ~-

cage) is about 6.6R and access to the 14-hedral voids is 

through 6-ring windows~ free diameter 2.3~ 1 •16 

(b) Zeolite type A 

In zeolite type A, each sodalite unit or ~-cage is 

linked to its neighbour by the four bridging oxygen ions 

across the square faces (Figure 2.2(b)) 1 •16 . This 

configuration results in an approximately spherical internal 

cavit~ calle~a-cage, which has a free diameter of 11.4R . 

The access to the a -cage is through six circular B-rings of 

oxygen with a diameter of 4.2g . The ~-cages interconnect 

with the large cavities by distorted 6-ringsof oxygen 
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Type A 
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(a) Soda.lite 

(c) Zeolite 

Type 13X :· 

Figure 2.2. Pictorial representations of some alumino-

silicate frameworks. 
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atoms 2.2R in diameter. There are three distinct oxygen 

types in zeolite A. The 0(1) oxygen ions are the constituents 

of linkages between sodalite units. Oxygen ions 0(2) and 

0(3) are respectively elements of 6- and 8- membered rings 

found in this framework. All oxygen ions in the A type 

lattices are accessible from the large cages (Figure 2.3(a)). 

In the sodium form, type A zeolite has the pseudo unit 

cell of Na12 [(Al02 ) 12 (Si02 )12J 27H2o with a cubic unit cell 

parameter a= 12.3R . The space group Pm~m results if 

framework aluminium and silicon atoms are not differentiated5. 

Since the Si:Al ratio is 1.0, the electrostatic valence rule 

presented by Lowenstein6 requires a rigorous ordering of the 

Al04 and Sio4 tetrahedra. In order to achieve this, the 

lattice constant of the trne 1mit cell of zeolite A is 24. 6~ and 

contain eight units of the pseudo cell (192 tetrahedra). 

This ordering lowers the maximum possible symmetry of Pmjm to 

- 7-10 Fm3c . 

Recent studies made by Bursill et a111 •12 have shown that 

the space group of zeolite type A is RJ (a= 24.6R ) with a 

3:1 ordering scheme (where each Si4 + is surrounded, via 

oxygen bridges, to three Al3+ and one si4 + and vice versa). 

With the same 3:1 ordering scheme, the space group Pn3n can 

1 b d 
. 12 a so e er1ved . 

(c) Zeolite type Y 

Zeolite types Y and 13X are synthetic forms of an 

aluminosilicate framework which has the same topology as that 

of the natural zeolite, faujasite. The Si:Al content of Y is 

similar to that of faujasite, while 13X is much more 

aluminium rich. The value of Si:Al ratio in the unit cell of 

zeolite 13X vary from 1-1.5 and for Zeolite Y from 1.5-3.01 . 



-13-

Figure 2.J(a). Cation positions and the positions of the 

different types of oxygen atoms in zeolite type A. 

--~square face 

--- • hexag. face 
--- - - +- hexag. prism 

I 
I I 

I I I I I 
I I I 

I 
I I I 
I I I I I I I I I I I + "' 't t tt 

s s s I SJS S 
IV IT II I I ill 

Figure 2.J(b). Cation positions and the positions of the 

different tyues of oxygen atoms in zeolite type Y. 
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The aluminosilicate framework consists of a tetrahedral 

arrangement of the sodalite units (diamond-like). Each 

sodalite unit is connected to four other sodalite units 

across the hexagonal faces by six "bridging" oxygen atoms. 

This results in a series of wide, nearly spherical cavities 

usually called the supercages ( 12K diameter), which are arranged 

b . d. d1 '16 in the same manner as car on atoms ln l::lmon . The supercage 

is connected directly to similar sunercages by windows of 

approximately 8-9R in diameter formed by distorted 12-rings. 

There are four distinct oxygen species in types Y and 

13X zeolites. These four different types of oxygen atoms 

are shown in Figure 2.J(b). The 0(1) oxygen atoms are 

bridges making up the hexagonal prisms. The 6-rings of the 

hexagonal prisms are comprised of alternating 0(2) and O(J) 

oxygen atoms while the 6-ring between the a and/) -cages are 

made up of alternating 0(2) and 0(4) oxygen atoms. The 0(2) 

oxygen atoms are the oxygen atoms that are in both the 

hexagonal prism 6-rings and the supercage 6-rings. 

The typical unit cell composition13 of type Y zeolite is 

Na
5

6 [(Al02)
5

6 (Si02 )136 ]. 236H20 with a cubic symmetry and 

unit cell parameter, a= 25.028~- 14 . If silican and 

aluminium ions occur at random over the zeolite framework, 

th 'd 1 . Fd3 14,15 e l ea space group lS m . 

II. Cation positions 

Charge balancing cations in hydrated zeolites are more 

often present as hydrated complexes in the larger zeolite 

cavities. They interact with the lattice only weakly, and 

are therefore quite mobile. Zeolite framework usually provide 

more than one kind of site for these cations. The number of 

cations present may also be less than the total number of 
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available cation sites of all kinds. Thus when the cations 

distribute themselves among the sites so as to minimize the 

free energy of the systems, there may be partial occupancy 

of some or all of the kinds of sites available. 

Dehydration of the zeolites causesthe ions to 

coordinate directly to framework oxide ions. In A and Y 

zeolites there are many sites available for such coordination 

and the final distribution of ions represents the best 

compromise between lattice charge neutralization and the 

geometric requirements of the cations. Cation resiting due 

to dehydration is accompanied by small shifts in the positions 

of the framework atoms. The positions of these sites in 

relation to the zeolite framework are shown in Figures 2.J(a) 

and 2.J(b) for zeolites of types A and Y respectively. 

Tables 2.1 and 2.2 show the possible cation positions and the 

number of sites available for types A and Y zeolites. In 

t:he following discussions of exchange sites, the nomenclature 

of Barrer16 will be adopted. 

The position and distribution of cations within the 

zeolite lattice is dependent on the following factors: 

(a) the Si:Al ratio 

(b) the ionic radius of the cations 

(c) the charge of the cations 

(d) the concentration of other cations 

competing for the same sites 

(e) the state of hydration/complexation 

of the cation. 

The structure of hydrated zeolite A has been studied by 

both X-ray powder5, 17, 18 and single crystal? analyses. From 

these studies, it was found that of the twelve sodium ions 

in the hydrated zeolite A, eight are located near the centre 
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Table 2.1 Cation Positions in Zeolite Type A 

·-
' 

Position Designation Number 

~ 

In the B-ring S1 

Adjacent to an B-ring ~ 3 per pseudo 

but displaced into an S1 * unit cell 

a-cage ~ 

In the 6-ring S2 

Adjacent to a 6-ring 

but displaced into S2' B per pseudo 

the fJ-cage 
·~ 

unit cell 

Adjacent to a 6-ring 

but displaced into S2* 

the a-cage 

Against the 4-ring SJ 12 per pseudo 

unit cell 

In the centre of the su 1 per pseudo 

sodalite ( /)) cages unit cell 

In the centre of the S4 1 per pseudo 

a-cage unit cell 
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Table 2.2 Cation Positions in Zeolite Type Y 

Position Designation Number 

In the centre of I 16 per unit 

prisms cell 

In the ()-cages, 

adjacent to hexagonal I' 32 per unit 

prisms cell 

In the centre of u 8 per unit 

{)-cages cell 

In the 6-rings ~ 

linking ()-cages and II 

supercages 

Near the 6-rings of 

sites II but inside II' 
~ 32 per unit 

the jJ-cage cell 

Near the 6-rings of 

sites II but in the II* 

supercages .,._ 

Against 4-rings of III 48 per unit 
'ribs' of supercages cell 

In the centre of the IV 8 per unit 

supercages cell 

In the 12-rings of v 16 per unit 

the supercages cell 
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of 6-rings (S2*) on the three-fold axis inside the a-cage. 

Each was tetrahedrally coordinated to three oxygen atoms of 

the 6-rings and one water molecule. Three of the remaining 

sodium ions appear to be located adjacent to the 8-rings (S1*). 

The twelfth sodium ion , probably entirely hydrated, is 

situated near the centre of the large cavity (S4). 

Single crystal X-ray analyses of dehydrated zeolite A 

have been published by Seff et a119 • 20 , and Pluth and Smith21 . 

In figure 2.4 is shown a stereoscopic representation of the 

structure of dehydrated zeolite A20 . In these studies, again 

eight sodium ions were located on three-fold axis near the 

centres of the 6-rings (S2*), but these cations have moved 

significantly closer to its nearest neighbour, O(J). A 

further three sodium ions lie in the plane of the 8-rings but 

off their centres and have moved closer to 0(2). The twelfth 

and final sodium ion was found in the large cavity on a 

twofold axis opposite a 4-ring (SJ). Energetically, site SJ 

is the least favourable and is occupied only if all other 

sites are filled or blocked. 

There has been no structural study of hydrated zeolite Y 

r~ported. However, there are structural studies on hydrated 

13x14 •18 and natural faujasite 22 . Early structural studies 

by X-ray powder diffraction14 have shown that in hydrated 

Na13X containing 80 sodium ions per unit cell, 16 were located 

in the hexagonal prisms (site 1) and 32 were located near the 

6-rings linking the sodalite and supercages (site 11). The 

remainder cannot be located and are believed to be mobile 

hydrated ions. In a more recent X-ray diffraction analysis 

of single crystal hydrated Nax18 , 9 sodium ions were found in 

site 1, 8 in the site 1', and 24 cations in site 11. Little 

evidence was found for the location of the remaining cations, 
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Figure 2.4. Stereoview of dehydrated sodium zeolite type A 

(after Subramanium and Seff20 ). The cation positions Na1, 

Na2 and Na3 correspond to sites S2*, S1 and SJ respectively 

in the text. 
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and they are presumed to be mobile hydrated ions. 

The cation positions in dehydrated zeolite Y were 

determined by X-ray powder diffractioJ3 . 30 

cations were found at type II sites and each cation in 

this position has three nearest oxygen neighbours (0(2)) and 

three further ones (0(4)). There are an average of 19.5 

cations in site 1' position, each coordinated by three 0(3) 

atoms and three 0(2) atoms. Finally, there are 7·5 cations in 

the site 1 position: Each cation at this site is surrounded 

by six oxygen 0(1) atoms forming a slightly distorted 

octahedron. 

III. Ion exchange 

One of the most important properties of zeolites is their 

ability to undergo reversible cation exchange. This property 

of zeolites was the first attribute of these minerals to be 

subjected to scientific investigations. Fundamental studies 

of cation exchange in zeolites have been carried out mainly 

because of the crystalline and well-defined nature of their 

anionic framework. Also, because of their three-dimensional 

framework structure, most zeolites do not-undergo any 

appreciable dimensional change with ion exchange. This 

ability to be able to exchange cations from solutions is not 

limited to alkali and alkaline earth cations but extends to 

all cations of suitable geometry (that is those of small 

enough dimensions to enter the pores of the crystals in 

whatever form the cations are present in solution, generally 

hydrated) and charge. 

Ion exchange in zeolites has been extensively studied 

and many of these systems have been discussed in reviews by 

24 25 1 . Rees , Sherry , and Breck . The maJor part of these 
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studies is with alkali-, alkaline-earth, alkylammonium, and 

rare-earth cations. In contrast, the ion exchange of transition 

metRls has received relatively little attention. However, 

there are some studies on the ion exchange of transition metals 

. d 't 26 f . 't 27• 28 d l't t A29 1n mor enl es , auJaSl es , an zeo 1 e ype. . 

While no definitive theory yet exists to predict the 

equilibrium concentrations of competing cationic species in 

solution and within the zeolite framework, the factors 

affecting the cation exchange behaviours in zeolites include1 : 

(a) the nature of the cation species, the 

cation size (both anhydrous and hydrated) 

and cation charge.; 

(b) the temperature at which the exchange 

procedure is carried out; 

(c) the concentration of the cation species 

in solution; 

(d) the anionic species associated with 

the cation in solution; 

(e) the solvent; 

(f) the structure and characteristics of 

the particular zeolite in question, 

particularly pore diameters and the 

internal charge density. 

Cation selectivities in zeolites do not follow the patterns 

exhibited by other organic or inorganic ion exchange materials. 

Zeolite structures have unique features that lead to unusual 

types of cation selectivity and sieving. Cation exchange in 

zeolites is accompanied by dramatic alteration of stability, 

adsorption behaviour and selectivity and catalytic activity. 
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IV. Adsorption 

While many adsorbents do not possess an ordered crystal 

structure and consequently have a large pore-size distribution, 

zeolites have nares of uniform size which are uniauely determined 

by the structure of the crystal. if\Jith the extremely uniform 

pore diameter noted for any given zeolite, the phenomenon of 

selective adsorption is a well known property of zeolites. 

One example of this ability to separate molecules with 

differing dimensions is -the a.bili tv of a number of 

zeolites1 ' 16 to adsorb straight chain hydrocarbon while 

excluding branching chain hydrocarbon, effecting their 

complete separation. 

The pore sizes of zeolites may vary from 2.6~ in the 

case of the natural zeolite analcime to 1oR in the case of 

zeolite omega. This is a particularly convenient size range 

for molecular separation processes. Table 2.3 shows some zeoliteE 

pore diameters and the largest molecules they can adsorb, 

while figure 2.5 displays the uniformity of zeolite pore 

sizes in comparison with other common adsorbents. 

V. Ca-ta-1-y-t~c act-iv-i-ty 

The growth of interest in zeolite catalysts in recent 

years has triggered a large number of reviews on the subject. 

Much of the earlier work in zeolite catalysis was described 

by Turkevich3°, and Vernuto and Landis31 . Recent developments 

in zeolite catalysts have been reviewedin references 32 to 39. 

Zeolite molecular sieves having variable pore sizes are 

suitable for molecular rearrangements. The intracrystalline 

volume in zeolites is accessible only tothose molecules whose 

size and shape permits sorption through the entry pores, thus 

a highly selective form of catalysts, based on sieving effects 
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Table 2.3 Selected zeolite pore diameters1 ' 16 

Zeolite Largest molecules Pore 
(R) adsorbed diameter 

Analcime NH
3 

2.6 

4A (Na cations) C2H2 3·9 

3A (Ca cations) CF2-C1 2 4.6 

Fau,iasi te (C2F5)3N 8.0 

Omega ( c
4 

F 
9

) 
3

N 10.0 

Figure 2.5. Distribution of pore sizes in micronorous 

adsorbents. 

100 ABC DE 
0/o Of 
pores 

50 F 

5 10- 100 1000 
Diameter (A) 

(A) Analcime 
( B) Zeolite 4A 
(C) Zeolite 3A 
(D) Faujasite 
(E) Zeolite omega 
(F) Silica Gel 
(G) Activated carbon 
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is possible. A review on the molecular shape selective 

W . 40 
catalysis on zeolites is given by e1sz · 

The catalytic properties of zeolites can be modified by 

ion exchange and it has been conclusively shown that 

catalytic activity in ion-exchanged faujasites is influenced 

. (' . . d h )41-47 . by cat1on type 1nclud1ng s1ze an c arge , cat1on 

locatl.on 1'n the latt1'ce44 d th f t an e presence o pro on 

donors48 •49 . 

VI. Application 

The current applications of the synthetic zeolites are 

much more diverse and more economically significant than 

their natural zeolite counterparts. Natural molecular 

sieve zeolites, however, do find some practical applications 

and an excellent review article on the subject has been 

prepared by Mumpton5°, while a detailed review of the 

applications of natural and synthetic zeolites is given by 

Breck51 . 

Some applications of natural and synthetic zeolites will 

be detailed here. The most widespread uses of natural 

zeolites is in fertilizers and soils. The ion exchange 

capacity of zeolites find application as both a soil 

conditioner (by stabilizing the pH of the soil) and as a 

time release mechanism for nitrogen enrichment of the soil 

(releasing ammonium cations in an exchange process). Another 

application of natural zeolites of potentially great 

importance is their use in animal culture. Zeolite minerals 

in Japan, in particular clinoptilolite and mordenite, have 

been added to the diets of pigs, chickens, and ruminants52 . 

Significant increases in gain of body weight per unit of 

feed were achieved. Also, the presence of zeolites in their 
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diet contributed to the well-being of the animals. 

Sickness and mortality rates were considerably reduced. 

The functions of the zeolites in dietary and antibiotic 

behaviour are not ·understood. Zeolite minerals are also 

used to control malodour due to animal wastes (by reducing 

the ammonia and hydrogen sulfide levels). 

A small number of mineral zeolite deposits are of 

sufficient purity to facilitate efficient gas separations. 

Recently, the zeolite minerals, chabazite and clinoptilolite. 

were proposed to be used for providing hot water, space 

heating and cooling (solar energy), and also as flame 

. . h 51 ext1ngu1s ers . 

Synthetic zeolites have been used widely and the 

largest single user is the petroleum industry. Here, zeolites 

have been used for hydrocracking, hydroisomerization, and 

hydrodewaxing. The ion exchange capacity of the zeolites 

account for the wide application of the modified zeolites to 

catalytic reactions and the sieving effects of zeolites 

make selective catalysis possible. Because of the physical 

properties of zeolites they can be used in the separation 

of gas mixtures. The known commerical uses of zeolites are 

summarized in table 2.451 . 

Recently, zeolites have been used as gas storage system, 

carriers of reactive chemicals,laundrydetergents, electrical 

conductors and for isotonic enrichment, weather mgdification and 

beverage carhonation. Most zeolites, by virtue of their 

structure and composition,exhibit a high affinity for water. 

It has been shown that this affinity can be reversed by 

removal of aluminium and, therefore cations,from the 

structure53. Synthetic mordenite was dealuminized by acid 

treatment, and this zeolite is capable of removing trace 
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Table 2.4 Summary of Zeolite Applications51 

(a) Adsorption 

Separations based on 

sieving 

Separations based on 

selectivity 

Purification 

Bulk separations 

Drying 

(b) Ion exchange 

NH+ removal 4 
Metal separations, 

reooval from waste water 

Radioisotope removal 

and storage 

Detergent builder 

(c) Catalysis 

Hydrocarbon conversion 

Alkylation 

Cracking 

Hydro cracking 

Isomerization 

Hydrogenation and 

dehydrogenation 

Hydrodealkylation 

Methanation 

(d) Environmental 

Weather modification 

Refrigerants 

Cryosorption 

New adsorbents for 

sieving 

Hydrophobic adsorbents 

Gas storage systems 

Carriers of chemicals 

Artificial kidney 

dialysate regeneration 

+ Aquaculture-NH4 removal 

Ruminant feeding of non­

protein nitrogen 

Ion exchange fertilisers 

Shape selective reforming 

Dehydration 

Methanol to gasoline 

Organic catalysis 

Inorganic reactions 

H
2
s oxidation 

NH
3 

reduction of NO 

CO oxidation 

Solar energy 
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(e) Consumer applications 

Beverage carbonation 

l_ ____ Laundry detergents 

Flame extinguishers 

Electrical conductors 
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organic compounds from water in the same manner as carbon 

adsorbents, but with the advantage of higher stability to 

regenerative process. 

VII. Infrared analysis of zeolites 

(i) Zeolite frameworks 

The infrared spectra of some zeolites have been widely 

studied and the vibrational bands have been empirically 

interpreted. Most of the infrared spectroscopic studies on 

aluminosilicate minerals, including tectosilicates, clay 

minerals and zeolites deal with the behaviour of the main 

(Si, Al)--0 band which is found at 1000cm-1 54 Infrared 

spectroscopy has also been applied to study zeolites with a 

variety of crystalline structures, comnositions (Si:Al 

ratios), tvpes of exchange cations ;:md degrees of heat 

treatment55, 

A systematic investigation of the framework structures 

of many synthetic zeolites has been carried out in the 1300-

200cm-1 region by Flanigen et al56 . Infrared analysis of 

some natural zeolites have been reported by Burragato et al57, 

Joshi et al5B and Oinuma et al59. 

Each zeolite appearsto exhibit a typical infrared pattern 

and, often, there are general similarities among the spectra 

of zeolites with the same structural type and in the same 

structural group. The region 1300-200cm-1 can be used to 

indicate the structural features of zeolite frameworks 

because this region contains the fundamental vibrations of 

the framework (Si, Al)o4 tetrahedra. The infrared spectra 

of zeolites in the region 1300-200cm-1 appear to consist of 

two classes of vibrations: (i) those due to internal 
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vibrations of the framework To4 tetrahedron, the primary 

building unit of all zeolite framework which are not 

sensitive to other structural variations; and (ii) vibrations 

which may be related to external linkages between tetrahedra 

which are sensitive to the framework structure and to the 

presence of some secondary building unit and building block 

polyhedra, such as double rings and the large pore openings. 

Individual assignments to specific tetrahedra are not 

possible. However, the vibrational frequencies represent the 

average Si, Al composition and bond characteristics of the 

central T cation. Typical infrared assignments are shown in 

table 2·5 and are illustrated with the infrared snectrum of 

zeolite Y in figure 2.6. 

The first class of vibrations common to all zeolites and 

assigned to internal tetrahedron vibrations results in the 

two most intense bands in the infrared spectrum, the 

strongest at 950-1250cm-1 and the other, of medium intensity, 

at 420-500cm- 1 . The strongest vibration in the 950-1250cm-1 

region is assigned to a T-0 stretch, while the next strongest 

band, which occurs in the region 420-500cm- 1 , is assigned to 

a T-0 bending mode. Stretching modes involving mainly the 

tetrahedral atoms are assigned in the region of 650-820cm-1 . 

The external linkage frequencies which are sensitive 

to topology and building units in the zeolite frameworks 

occur principally in two regions of the spectrum, 500-650cm-1 

4 -1 and JOO- 20cm . A medium intensity band in the former is 

related to the presence of double ring polyhedra in the 

framework, while the latter, is related to the pore opening 

motion of the tetrahedra units which form the pore openings 

in the zeolites. This band at J00-420cm- 1 is prominent in 

those structures which have cubic unit cell symmetry, and 
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Table 2.5 Zeolite Infrared Assignments56 

(a) Internal tetrahedra 

Antisymmetric stretch 

Symmetric stretch 

T-0 bend 

(b) External linkages 

Double ring 

Pore opening 

Symmetric stretch 

.Antisymmetric stretch 

1250-950cm 
-1 

720-650cm-1 

4 -1 
20-500cm 

650- 500cm -1 

JOO- 420cm -1 

750- 820cm -1 

1050-1150cm -1 



Figure 2.6. 
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Infrared assignments illustrated with the 

spectrum of zeolite Y (Si:Al = 2.5); 

1- Internal tetrahedra - structure insensitive 

2- External linkages - structure sensitive. 
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Figure 2.7. Infrared spectra of some zeolites. 



-32-

decreases in prominence as the symmetry decreases. 

Other infrared bands showing characteristics related to 

framework topology and assigned to external linkage modes 

occur as a shoulder near 1050-1150cm-1 and in the region, 

8 -1 750- 20cm . Figure 2.7 shows some spectra of zeolites A,X 

and Y (KBr discs). 

(ii) The Si:Al ratio 

The frequency shiftsof the infrared stretching bands, with 

substitution of tetrahedral Al for Si in aluminosilicate 

d th 54-56,60-62 frameworks, have been reporte by many au ors . 

Milkey54 reported a quantitative linear relationship between 

the main antisymmetric stretch (1000-1100cm- 1 ) and the atom 

fraction of Al in the tetrahedral site for a large number of 

tectosilicate minerals. Flanigen et al56 also found that a 

linear relationship was obtained using similar treatment to 

Milkey54 . Figure 2.8 shows the frequency variation with the 

number of aluminium atoms in the framework structure56 . 

A shift in frequency with Si:Al content for several 

other classes of infrared bands was also found for the 

synthetic zeolites X and Y. Plots of frequency versus 

fraction of Al in the framework are shown in figure 2.9. A 

linear decrease in frequency with increase in fraction of Al 

in the framework was observed for the main antisymrnetric 

stretching band (970-1020cm~ 1 ), a symmetric stretching band 

(670-725cm-1 ), the double 6-ring b~nd (565-580cm-1 ), and the 

12-ring pore opening band (J60-J85cm-1 ). Kiselev et al55 

and Wright et al63 also showed that similar infrared spectral 

shifts occur with varying Si:Al ratios for a series of X and 

Y zeolites. 
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Figure 2.8. Frequency of the main antisymmetric stretch 

versus the atom fraction of Al in the framework for all 

synthetic zeolites studied by Flanigen et al5
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Figure 2.9. Frequency versus atom fraction of Al in the 

framework for zeolites X and Y for several infrared bands5
6. 
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(iii) Cation types and cation sites 

The effect of the compensating cation on the spectrum 

of the crystalline framework was studied by Zhadanov et al55, 

They found that for the various cationic forms of zeolites 

studied (Na-, Ca-, Sr-Faujasites), the vibrational spectrum 

of the crystalline skeleton is sensitive to the charge and 

radius of the exchanged cation. Figure 2.10 shows the 

spect+a of Na-, Sr- and Ca-faujasites after vacuum treatment 

at 673 K for four hours. It can be seen that the difference 

between spectra of the zeolite containing a univalent cation ~a¢ 

and divalent cations (SrX,CaX) is greater than btej;ween spectra. 

with different divalent exchange cations (SrX and CaX). The 

band at 76Jcm-1 is found to be sensitive to the type of 

exchange cation which implies that this band belongs to the 

vibrations of the Al-0 bond. 

For the zeolites A,X,Y,L,and !2 containing alkali metal 

cations, Flanigen et al56 found that the framework distortion 

is mimimal on dehydration. The multivalent cation forms, of 

many zeolite frameworks, however, cause significant changes 

in the distortion of the framework element:s upon (,iehydration 

as is indicated by the infrared spectra of a calcium exchanged 

zeolite Y (Figure 2. 11). Dehydration causes migration of the 

divalent calcium ions from positions inside the sodalite ({)) 

cage into positions near the centre of the double 6-rings 

(site I) . A change in symmetry of the double 6-ring unit 

results, as evidenced by a shift in the double 6-ring band 

(570cm- 1 ) and the band indicative of the pore opening (390cm- 1 ). 

Changes in the character of the broad symmetric stretching 

band structure near 710 to 750cm-1 are also observed. These 

changes are reversable on rehydration56 . 
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Figure 2.10. Infrared vibrational spectra for the crystalline 

skeletons of synthetic faujasites with different exC'hangea.ble 

cations after vacuum treatment at 673K for 4 hours: 

( 1) NaX ( 2) 

Figure 2.11. 
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Infrared spectra for calcium exchanged zeolite 

Y (Si:Al = 2.5) after dehydration, dehydroxyla.tion and 

rehydration56 . 
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(iv) Structural hydroxyl groups 

The infrared spectra of zeolites have been extensively 

studied in the OH stretching region64 - 80 because of their 

importance in adsorption and catalysis. Some of these bands 

have been attributed to OH groups associated with the metal 
65-67 

ion Others have been assigned to OH groups connected 

to the aluminosilicate portion of the zeolite64 ,65,67-7°. 

Some of this work has been reviewed in references 81 to 83. 

In general, in all of these studies, at least three types 

of hydroxyl groups were detected. One, at a frequency of about 
-1 3750cm has been found by most workers and is attributable 

to SiOH groups either on the surface69 or on silica impurities7°. 

Two others at 3650cm-1 and 3550cm- 1 are attributed to protons 

bonded to framework oxygen atoms 0(1) and 0(3) respectively74 . 

These absorption bands are at frequencies similar to those 

observed in hydrogen Y zeolite. 

Other bands found in the spectra of the divalent cation 

zeolites are not found in the spectra of the alkali cation and 

hydrogen zeolites and must be specific to the presence of 

divalent cations. A band observed near 3690cm-1 is assigned 

either to AlOH groups7° or to physically adsorbed water78 • 84 . 

Another band occurring between 3600 and 3570cm-1 is attributed 

to MOH+ groups78 •84 . This band varies in frequency with the 

cation, increasing with decreasing cation size. It is very 

sensitive to the level of hydration, and it disappears on mild 

+ + dehydration, possibly with the formation of MO or M -0-M 

groups84,85. 

(v) Surface acidity of zeolites 

Basic molecules such as ammonia, pyridine and piperidine 

were used as probes in most acidity studies. These molecules 

have the property that their interaction with Bronsted acid 
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sites, Lewis acid sites, and cations and their hydrogen-

bonding interactions give rise to different species detectable 

by infrared spectroscopy. Absorption bands at 1475, 1545, and 

1610cm - 1 , due to ammonium, pyr id,iniw.m and piperidinium ions, 

respectively, is indicative of Bronsted acidity. If the bases 

are coordinated to trigonal aluminium (Lewis site) or to 

cations, then the bands are observed near 1630, 1450, and 

1456cm-1 83 

Numerous studies of the surface acidity of cation in zeoliteE 

have been made17, 63• 86-9°. The groups 1A zeolites are found 

to be nonacidic??,79, 86while the studies of the alkaline 

earth zeolites have shown that there are Bronsted and/or Lewis 

acid sites on the surface depending on calcination 

conditions?7,?9, 86 , 87. Studies of pyridine adsorbed on NaY by 

88 Watanabe and Habgood have shown that there are Bronsted acid 

sites. After calcination at 77JK of the alkaline earth 

zeolites Ward?? found no Lewis acid site but a band appeared 

near 1440-50cm-1, whose frequency depended on the cations and 

hence was attributed to the cations. On calcination at 

higher temperatures (923K), the concentration of Bronsted acid 

sites is less but Lewis sites are detected. Rehydration 

removes the Lewis acid sites and increases the concentration 

of Bronsted acid sites. Eberly79 has also shown that the 

addition of trace amounts of water increased the concentration 

of Bronsted acidity and decreased the concentration of Lewis 

acidity. Christner et a186 in their studies of pyr.idine 

adsorbed on Mg-, Ba- and Zn Y zeolites have observed the 

Bronsted acidity sites in these studies. 

Hattori and Shiba87 studied the acidity of Mg, Mn, and 

ZnX zeolites and reported that a small amount of Bronsted 

acidity and Lewis acidity, which is too weak to be converted 

into Bronsted acidity, in all 11A zeolites and also on those 

containing the 
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transition metal ions IVIn, Co, Zn, Ag, Cd, but not on CuX 

zeolites. In all cases, the concentration of Bronsted acidity 

was increased by hydration. Similar results were obtained in 

the studies of the same series of transition metal ion Y 

zeolites. There appear to be no relationship between the 

concentration of acid sites and the physical properties of 

the zeolites. The factors involved in the formation of 

Bronsted acid sites are far more complicated than for alkaline 

earth zeolites77 . It was observed that some of the partially 

transition metal exchanged Y zeolites have more acid sites 

than the fully exchanged transition metal Y zeolites. 

(vi) Zeolites and adsorbed molecules 

There are numerous published naners and 

reviews available on this subject and another review in this 

chapter is inappropriate. However, the molecules of relevant 

interest to this thesis will be discussed briefly. A detailed 

discussion of the relevant work is given _in each chapter. 

(a) Water 

Infrared studies of water adsorbed on zeolites have been 

studied by a number of workers66 •70,79,B4 ,91 . Bertsch and 

Habgood66 studied the adsorption of small amounts of water on 

alkali metals exchanged zeolite X. They observed a sharp band 

between 3720 and 3648cm-1, d~pending on the cation, together 

with broad bands near 3400 and 3200cm- 1 • These bands were 

considered to represent water directly bonded to the cation 

via the oxygen and to the oxygen ions of the surface by a 

hydrogen atom. Ward7B and Uytterhoeven et a1 84 reached 

similar conclusions. 

Zhadanov et al55 investigated the infrared spectra of water 

molecules adsorbed by zeolites of various compositions. The 
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Si:Al ratios in the extreme samples of the zeolite series 

under consideration differed by more than a factor of two. For 

zeolites with the lowest Si:Al ratio a sharp band at 3690cm-
1 

and two broad 
-1 I bands at 3390 and 3235cm were observed. n 

contrast, ~he zeolite with the highest Si:Al ratio showed onlv 

a very broad band at 3500cm- 1 . The deformation band of the 

hydroxyl group also changed. For the former an intense band 

~ -1 8 -1 at 1iJ58cm and a weak one at 15 Scm were observed, while 

for the latt~r, two overlapping bands of low intensity at 

1660 qnd 1600cm-1 were seen. 

Readsorption of water on rare-earth zeolite did not give 

rise to a band at 3690cm-1 but to bands at 3610 and near 3560-

35S0cm-1. 

(b) Hydrocarbons 

Yates et al92 studied the adsorption of C2H4 on a series 

of type 13X zeolites. In all their spectra, they observed the 

~(C=C stretch) and v
3

(cH2 symmetric deformation) bands which 

are infrared inactive in the gas phase. This clearly indicates 

that the symmetry of C2H4 reduces with adsorption (probably to 

c
2
v). For Ag13X zeolite, there were two distinct CH 2 deformation 

bands in the adsorbed phase, which suggested two discrete sites 

for the adsorbed C2H4 . In all of the exchanged forms, excent 

cadmium and silver, C2H4 was found to be weakly held since it 

could be removed by evacuation at room temneratnre. For Cd13X, 

however, evacuation at temperature above 473K was reauired to 

remove the C2H4 and more severe conditions were needed in the 

case of Ag13X zeolite. 

Infrared snectra of C2H2 adsorbed onto various transition 

and alkali metal exchanged types A and 13X zeolites have "been 

reported by Tsitsishvili et al93. They found that, regardless 

of the nature of the cation and the type of zeolite, they did 
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not observe a band du2 to v(C::::C). This, together with the 

observation of the C-H stretching band, cau~ed them to postulate 

that "end-on" interaction of the C2H2 with the framework 

occurred in their samples. Some of the measurements made bv 

Tsitsishvili et al have been repeated by Tam et al94 ,95, who 

in their data observed a band due to v ( c:::c) for C2H2 adsorbed 

on all of the zeolites studied. They deduced that the mode of 

interaction of the adsorbed C2H2 is that of a "side-on" since 

the v(C:::C) band occurred at a wavenumber value below that of 

C 2+ 2+ the gas phase. 2H2 was weakly held by Ca and Mg s1nce it 

could be removed easily by evacuation at room temperature. For th 

NaA sample, evacuation for 1 hour at room temperature was needed 

to remove the C2H2 and for the KA sample, C
2

H
2 

was onlv removed 

after evacuation at 473K for several hours. 

C2H2 adsorbed onto Cu and Ni exchanged Y zeolites have 

also been reported96 ,97, In the CuY + c
2

H
2 

system studied, Pichat 

found bands at 3250, 3190(sh), 3170, 1820(sh) and 1810cm-1 . 

Unlike other zeolites, the v(c=c) band for C H adsorbed onto 
2 2 

CuY was shifted down in wavenumber by a large amount (164cm-1 ) 

relative to the gas phase. The formation of n-acetylenic 

complexes was suggested; the Cu+ ion-acetylene resulting mainly 

from donation from the unsaturated hydrocarbon to the metal ion. 

In the NiY + C2H2 system, Pichat et a1 97 observed the 

cyclotrimerization of C2H2 . It was found that the activitv of 

the various samples depended on the number of the dehydrated 

or the partially dehydrated Ni 2 + ions inside the supercages. 

They have also established from the bands they observed that 

the benzene obtained did not complex with the Ni 2 + ions and is 

weakly adsorbed in the framework. 

Angell and Schaffer98 , in their work on benzene adsorbed 

onto Ni and MgY zeolites found that benzene hydrogen bonded to 

the J650cm- 1 OH groups. Similar spectra were found when 
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benzene and benzene-d6 were adsorbed on Mg, Ni, Zn, Ag, La, Ce, 

and CoY zeolites. The CH frequencies were the same as those 

for liquid benzene. The frequencies due to vibrRtions in the 

plane of the ring were unchanged while those due to out-of-

nlane vibrations were shifted to higher freouencies. The snectra 

were interureted in terms of interaction between the surface 

and the n orbitals of benzene, assuming the molecule adsorbed 

narallel to the surface. 

(c) Sulfur-containing molecules 

H2s adsorution on NaA and Ca.Na.A zeolites has been reported 

by Forster and Schuldt99. In the case of NaA, they found that 

-1 
the new band observed at 2500cm shifted to higher wavenumber 

with increasing coverage while for CaNaA, uuon adsorntion of 

H2S, a band anpeared at 2540cm-1 which remained constant over 

a wide range of coverage. They deduced that in the zeolite NaA 

H2 S was adsorbed at two different sites while in the zeolite 

CaNaA, all the H2S occunied equivalent sites and that no 

significant adsorbate-adsorbate interaction occurred. In both 

cases, however, the adsorbed H2S could be removed easily bv 

evacuation at room temperature. Water formation observed in 

the suectra of the samnles studied, was explained by the authors 

as due to the reaction of the adsorbed H
2

S with molecular oxygen 

from the gas nhase. 

K R 100 . 
arge and asko stud1ed the adsorntion of H

2
S on faujasite 

type zeolites with systematically varied Si:Al ratios (1.0)-3.24). 

The authors fo11nd that with increasing the nressure of H2S, the 

2560cm-
1 

band for NaX became asymmetric, broadened, and shifted 

to lower frequency, while the same band for NaY remained 

symmetric and occurred at an almost constant frequency. It was 

suggested that in NaX samnle both chemisorption and nhysisorntion 

of H
2

S had occurred. In the case of NaY, however, only the 
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non-dissociative adsorution took ulace. Both adsorption 

processes were reversible since the OH, SH and H
2

S bands 

could be removed by evacuating the samnles. 

The adsorption of H2 S and so 2 on Na and HY zeolites was 

carried out bv Deo et a1101 . H2 S was uhvsicallv adsorbed on 

NaY zeolite. Water was formed possibly by the oxidation of 

Their results on HY zeolite showed 

that no oxidation of H2 S has occurred, and a broad band at 

3200cm-1 was observed. This band was due to H
2

S hvdrogen 

bonded to surface hydroxyl. Adsorption of so
2 

on NaY uroduced 

a single band at 1330cm-l owing to physically adsorbed S0
2

. 

When H2S was added, a rapid reaction occurred producing water. 

Adsorution of so2 on HY resulted in hydrogen bonding to the 

J650cm-l OH groups. No chemisorbed species were detected. 
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CHAPTER III 

E?\?ERIMENTAL 

I. Instrumentation 

(i) Infrared spectrophotometer 

The Perkin Elmer 580B instrument used is a double beam, 

ratio recording infrared spectrophotometer1 . The source of 

radiant energy is a ceramic tube heated by an internal 

element to about 147JK which produc_es a continuous spectrum 

of electromagnetic radiation in the infrared region. 

The following description refers to figures ).1, the 

block diagram, and ).2, the optics diagram of the 

spectrophotometer1 . 

Radiation from the source is focussed on a baffle by 

the toroid mirror M(T)1, the baffle ensures that radiation 

from only a limited surface area of the source is admitted 

to the optical system to minimize sample heating. The 

baffle image is focussed onto the first chopper mirror M(C)5, 

which rotates dividing the source energy into sample and 

reference beams. Each beam passes through a focal point within 

the sample compartment. 

After the sample compartment the alternate pulses of 

radiation from the two beams are combined by the action of a 

second chopper mirror M( C )1 0. During the first and second 

quadrants, the second chopper receives energy from the sample 

and reference beams respectively. During the third and 

fourth quadrants, the first chopper cuts off the source 

energy so that any energy appearing at the second chopper is 

due to reradiation effects from the sample compartment. 

The recombined beam passes through a pupil image between 

M(T)11and M(T)12. A second baffle between M(T)12 and M{T)1J 
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acts as the limiting pupil aperture in the system, and 

rejects unwanted radiation from the pre-optics. 

M(F)14 and M(F)15 are plane mirrors that direct the 

beam onto the monochromator entrance slit S1. The beam 

diverges from S1 until the paraboloid mirror M(P)16 reflects 

it as a collimated beam into the grating in use. As the 

grating is rotated, the diffracted radiation is focussed in 

the plane of the exit slit by M(P)16. This slit restricts 

the radiation passing through it to a narrow wavenumber 

band, the mean of which corresponds to ~he wavenumber at which 

the measurement is being made. Decreasing the slit width, 

therefore, decreases the bandwidth and the intensity of the 

emerging radiation. Finite slit widths are necessary to 

enable sufficient energy to reach the detector for the 

efficient operation of the signal processing system. Since 

the slit width is programmed to maintain approximately 

constant energy at the detector over most of the wavenumber 

range the effective bandwidth varies with the wavenumber 

setting of the instrument. 

After leaving the exit slit the radiation passes through 

one of a set of optical filters; the correct filter is 

automatically selected for the spectral region being scanned. 

The transmitted radiation is then focussed onto a 

detector. The detector consists of a thermocouple within an 

evacuated housing at the focus of an on-axis ellipsoid 

mirror M(E)18. The radiant energy leaving the slit is 

focussed by the ellipsoid mirror and the image reduction is 

eight to one. A caesium iodide lens on the thermocouple 

assembly further reduces the divergence of the slit image 

falling on the sample. 

The alternating signal from the detector is amplified 
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and before being demodulated by the signal processing 

electronics to give separate sample and reference beam signals, 

which are compensated for the effects of thermal reradiation 

from the sample compartment. The ratiometer produces the 

ratio of the two signals which corresponds to the 

transmittance value of the sample. The signal is then 

filtered to reduce the noise level and subsequently the 

baseline adjustment, offsetting and scaling operations are 

performed in the ordinate functions unit. After further 

amplification this signal is supplied to the recorder. 

(ii) Infrared data station 

The data station is provided in three modules, namely, 

the visual display unit, the keyboard and the data processing 

module. 

The visual display unit shows the system condition via 

the alphanumeric display and graphics facilities are also 

provided for the display of spectra. The data processing module 

houses the system electronics and two microfloppy disc 

drives, one of which is used for the programme disc, while 

the other is used for data storage. 

Figure J.J shows a block diagram of the data station. 

The system contains two kinds of program software: (a) the 

operating system and (b) the task group. The Perkin-Elmer 

Terminal Operating System (PETOS) is the general instruction 

group. PETOS controls all keyboard operations and data 

organization. The task group includes the PE580 applications 

program, which is supplied with the system. The program 

permits acquisition of spectra from the spectrophotometer, 

enhancement of this data, display of the spectra on the visual 

display unit and their subsequent storage on a disc. 
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For the work described in this thesis, the most 

important and frequently used data manipulation software 

is the ABEX command2. This command (or function) is 

equivalent to running a second spectrum with a sample of 

increased or decreased concentration depending upon the 

magnitude of the factor used. The expansion (or reduction) 

results in a spectrum in which the relative intensities of 

the infrared bands are unchanged. Figure J.4 shows an 

example of the spectra of AgA zeolite before and after 

expansion. The spectrum of AgA before expansion (Figure J.4(a)) 

is very poor, with a transmission of less than 10%. With spectra 

of this quality, it is very difficult to follow the decrease in 

intensities of the water band (1640cm- 1 ) as the zeolite sample 

is heated. However, after expansion (Figure J.4(b)) a much 

clearer spectrum is obtained. With the expanded spectrum, it 

is easier to follow the decrease in intensity of the water 

band during dehydration of the sample. 

Likewise, during adsorption experiment, those bands due 

to adsorbed species which occur in the region 2000-1200cm-1 

can be relatively easily observed if the ABEX command is 

used to expand the spectra. From the example given, it can 

be seen that it is only possible to study the spectra of 

adsorbed species on this type of spectrometer if the data 

station or its equivalent are available. 

(iii) Infrared cell 

For adsorption studies, any surface impurities on the 

sample must be removed. This is most commonly done by heating 

the sample under high vacuum. As part of this study, 

continuous attention has been paid to the improvement of 

the cell, especially designed for spectroscopic studies 
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of adsorbed species. A wide variety of cells has been 

. 3-6 . . . deslgned for use wlth pressed dlscs. Many deslgns 

provide for the sample to be moved, either mechanically or 

by a windlass arrangement, so that heat treatment can be 

conducted without danger to the infrared cell. In the static 

designs?,B the window joints are often cooled when the 

sample is heated in order to avoid thermal stresses on the 

windows. 

The infrared cell usedfor our spectroscopic 

studies is described below. Plan views of the 

cell are shown in figures 3·5 and 3.6 and the cell is made 

entirely of stainless steel. Full details of the dimensions 

of the cell are shown in figures 3·5 and 3.6. All spectra 

of the sample during heating, numping And adsorntion 

exneriments were obtained without removing the cell 

from the sample compartment. 

The cell is heated electrically by means of the 

molybdenum wire (0.5mm diameter) at (A) which is insulated 

using a sleeving (refrasiJJ insulator. Extension leads from 

the electrical feed-through at (B) are connected to a 

transformer and variac to control the temperature of the 

sample, which can be heated in situ to temperatures up to 

?40K. The temperature of the sample is measured with a 

chromel-alumel thermocouple (C), where the hot junction is 

imbedded in the sample holder (D). 

The optical windows (E) used are made from KRS5 

(TlBr-Tli)i 5mm thick and 20mm diameter and are placed 

against packing 0-rings of lmm thickness which are seated 

at (F). The windows are tightened in position by the knurled 

rings (G). To keep these windows at an acceptable 

temperature, a water cooling jacket (H) is used. 



a= 42mm 
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The sample (1) is placed between two stainless steel 

rings and is held intact by another screw-in stainless steel 

ring. A piece of stainless steel at (J) is used to hold the 

sample holder in position in the spectrometer. 

The cell lS connected to the vacuum system at (K). 

(iv) Vacuum system 

Figure 3·7 shows a block diagram of the vacuum and gas 

handling system. Apart from the gas handling part, which 

is made of glass, the whole vacuum line is made from 

stainless steel. 

The cell (A) is connected to the vacuum system by 

means of the flexible bellows (B). Gases from the glass 

bulb (C) are admitted into the cell via the valve (D). The 

pressure of the gas is read from the digital readout of the 

baratron gauge (E). 

A pirani gauge (F) and a hot cathode ionization gauge C) 

are used to obtain the pressure in the vacuum system before 

admitting any gas. The quadrupole mass spectrometer (type 

QX200 made by Vacuum Generators) at(H) is invaluable in 

detecting very small leaks and impurities in the system. 

The backing pump (1), which is a rotary vane type, is 

used to pump out the system to a vacuum of 10-1 torr or better 

before the t urbomolecular pump ( J) is switched on. With 
-6 

the turbomole cular pump, a vacuum of 10 torr or better is 

routinely obtained. When necessary, the whole vacuum system 

is baked out to remove impurities, mainly water vapou~ in the 

system. 

(v) Thermogravimetric analysis 

The measured variable in thermogravimetric analysis is 
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the change in weight of the sample as it is heated or 

cooled. The thermogravimetric apparatus used to obtain the 

thermograms of zeolites is a Stanton Redcroft TG-750 

thermobalance. This apparatus is designed to give a direct 

plot of weight versus temperature for any sample over the 

range of 300 to 127JK. 

These thermograms provide valuable information on the 

following physical and chemical phenomena: vaporization, 

sublimation, absorption, adsorption-desorption, decomposition, 

dehydration, solid-solid reactions involving loss of 

weight, oxidation, and reduction. The most important 

aspects, however, in the thermograms of zeolites as far as our 

IDrk is. congerned are dehydration and decomposition. 

Plateaus observed i~ the thermograms of zeolites imply 

a constant weight representing stable phases over the 

particular temperature interval. A change in level may imply 

the formation of an intermediate compound or the removal of 

water. From the thermograms of the zeolites, the values of 

percentage water lost at different temperatures can be 

calculated. We have assumed that at 1273K all the water 

molecules are removed from the sample. A graph of percentage 

water loss versus temperature can show to what extent the 

water molecules are removed from the sample by heating to a 

particular temperature. 

(vi) X-ray powder photograph 

X-ray powder photographs have been used to distinguish 

zeolite structures and to detect any decomposition. The 

zeolite sample is in powder form and placed in a silica tube 

before positioning it in the camera. 

mdiation used was CuKa· 

The source of 
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II. Sample preparation 

Approximately 15mg of the zeolite sample was pressed 

into a 1.6cm diameter die using a pressure of 2)00g/cm2. 

The zeolite disc was then mounted in the infrared cell and 

evacuated to 10-6 torr (1 torr=1JJ.J2Pa) using the 

turbomolecular pump. The zeolite sample was heated 

to the maximum temperature required, infrared spectra being 

recorded at various temperatures during heating. It was 

then left at the maximum bake-out temperature for a speci·fied 

time and spectra measured at regular intervals during this 

period before allowing the sample to cool to room temperature, 

and its spectrum re-recorded. Gases were then admitted 

into the infrared cell to the required pressur~s). Snectra of 

the sample and the adsorbate were obtained -under the 

required conditions. 

In order to study the low vibrational frequencies of 

( -1) . the sample below 1200cm , a KBr d1sc of the sample was 

p~epared and the spectrum recorded. 

For comparison the spectra of the pure gases at 

various pressures were obtained by using an infrared cell 

containing no zeolite disc. 

III. Sample analysis 

Elemental analys~s of the zeolites were performed 

by using a Perkin Elmer 403 atomic ::tbsorntion 

SPectrometer. 

In the case of zeolite type A, known quantity of the 

sample was dissolved in dilute nitric acid and measured 

against the appropriate aqueous standard. For zeolites 

types 1JX and Y, the sample was first digested with hydrogen 

fluoride and perchloric acid before dissolving in dilute 
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nitric acid, and measured against the appropriate aqueous 

standard. 

From the percentage of the elements obtained, the 

amount of the corresponding elements can be calculated. 

Analysis of Si, Al and the substituted ions were made for 

all of our samples. 
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CHAPTER IV 

INFRARED SPECTROSCOPIC STUDIES OF ETHYLENE ADSORBED 

ON SILV~R A ZEOLITE 

I. In trod'.lct ion 

The motivation for the work reported here was the 

discrepancy between the X-ray work of Kim and Seff, 1 in which 

only one adsorption site for C2H4 was located within fully 

dehydrated Ag12 -A zeolite, and recent inelastic ne11tron 

scattering (INS) studies, which located two distinct adsorption 

sites2 . Although infrared and INS are both vibrational 

spectroscopic techniques, they differ in selection rules. 

FurthermorE? in this particular case, they are complementary 

in the frequency ranges studied: the INS work was confined to 

the region below 700cm- 1 (a region in which it is extremely 

difficult to obtain infrared spectra of unsupported zeolite~ 

whilst this infrared study is concerned with the region above 

-1 1200cm . 

The structure of Ag12 -A and in particular the structural 

changes which occur on dehydration are the subject of some 

controversy. Because of its importance to this work the 

structural info~mation available will be reviewed here. 

Almost total replacement of sodium ions, in Linde type 

4 A (Na12 -A) zeolite, by silver ions may be accomplished3. 

X-ray single crystal determinations of fully hydrated silver 

type A zeolite (Ag12 -A) 4 •5 (unit cell= 12.288 ~)have shown 

the cations to be distributed over three positions within the 

framework (Table 4.1). Eight silver ions were located on 

three-fold axes near 6-rings; of these, five were recessed 

into the large ( a) cavity ( S2 *), each coordinated to at least 

one water molecule, and the three remaining were displaced into 



Table 4.1 Possible cation positions in tyue A zeolites compared with the site occupancies 

found for fully hydrated and partially dehydrated zeolite Ag12A 

Position Designation 

In an R-ring 

Ad.iacent to an 8-ring but 
disPlaced into an a-cage 

In a 6-ring 

Adjacent to a 6-ring but 
displaced into an a-cage 

Adjacent to a 6-ring but 
disPlaced into a ~-cage 

Against a 4-ring 

In the centre of a ~-cage 

In the centre of an a-cage 

#Position defined in the text. 

Sl 

* S1 

S2 

* S2 

S2' 

S2"# 

SJ 

su 

S4 

Number of sites 
(per pseudo 
unit cell) 

} J 

~ 8 

12 

1 

1 

Site occupancy 
in hydrated 
Ag

12
A zeoliteS 

J 

5 

J 

1 

Site occupancy 
in Partially 
dehydrated S 
Ag12A zeolite-

1 

2 

J 

2 

J 

1 

I 
~ 
~ 
I 
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the sodalite (~)cage (S2') with three water molecules 

bridging them. A further three silver ions were associated 

with B-rings, but off-center (making closest approach to only 

three oxygen atoms) and displaced into the a cage ( S1 *) · The 

final cation was found within the large (a) cavity opposite a 

4-ring (SJ). As a result of the low overall symmetry of the 

environment in the acavity many diff~rent coordination sites 

for water exist. These have low occupancies, and hence no 

definite positions or occupancies could be determined. 

Dehydration under vac'lum causes Ag12 -A zeolite to change 

colour from pale grey to deep orange. This is a reversible 

process: Ag
12

-A becomes bright yellow if allowed to cool in 

air, and ultimately returns to its initial pale grey state. 

Matsumoto et al6 have concluded that Ag12-A is structurally 

less stable with respect to temperature than Na12 -A zeolite. 

A single cystal X-ray study has been reported5 of an 

Ag
12

-A zeolite, partially dehydrated by heating at 47JK in a 

stream of oxygen for 12h, and then by evacuating at 623( and 

10-5 torr for 4Bh. Eight silver ions were found to be 

distributed over three-fold axes associated with 6-rings. Of 

these, three were located in the a cage ( S2*), two were situated 

within the sodalite unit (~cage) 0.44 R from the ring plane 

(S2'), and three were within the sodalite unit 1.19 R from the 

ring plane (S2"). Three additional silverions were found 

adjacent to B-rings, but displaced off-center (as in the case 

of hydrated Ag12-A zeolite); two of these occupied positions 

where the cation was recessed into the acage (S1*), the third 

lay within the B-ring plane (S1). The twelfth silver ion was 

statistically divided among 12 equivalent positions correspondin@ 

to a two-fold axis opposite a 4-ring (SJ). It was found that 

even dehydration under vacuum at 62)K was insufficient to 

remove water molecules present within the a cavity, and that 
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the partially hydrated Ag
12

-A zeolite studied corresponded to 

Ag12-A trihydrate. 

Additional studies7,B have been carried out on more 

severely dehydrated Ag12-A single crystals from which it appears 

that the eight 6-ring silver ions (S2* and S2' positions of 

the fully hydrated zeolite) occupy a relatively stable 

environment, the effect of heattreatment being only to bring 

these ions closer to the center of the 6-rings. In contrast, 

the less energetically favoured B-ring (S1*) and 4-ring (SJ) 

siver ions are progressively reduced. A maximum of four silver 

ions may therefore be reduced, and these were found to migrate 

into the sodali te ({J) cavities to form a proposed octahedral 

Ag
6 

molecule?,B at position SU. + A complex of formula (Ag ) 8 

(Ag
6

) was suggested with the Ag6 molecule enclosed by a 'cube', 

the corners of which corresponded to the stable silver ions 

within the center of 6-rings (S2*) (Fi~lre 4.1). 

Interaction is assumed to occur between the atoms of the 

Ag6 clusters and four equivalent framework oxide ions, the 

silver atoms behaving as weak Lewis acids with respect to the 

framework, accepting electron density and delocalizing it through 

coordination interaction onto the silver ions at the 6-rings. 

The following scheme has been suggested for silver ion 

reduction8 involving initially the residual water molecules 

found in the sodalite ({J) cages of Ag
12

-A partially dehydrated 

at - 623K5: 

(Ag+)12[Si12Al12048]12-.JH20 ~ 
o +) ( + [ . 112- .l.. H 0 

(Ag )2(Ag 10 H )2 8112A112°4tr + 20 2 + 2 2 

After depletion of the supply of water molecules, 

additional silver ions must be reduced by framework oxide ions. 

Thus, it has been found that evacuation to 10-5 torr at 698K 

for about 10 days leads to all four silver atoms in 
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Figure 4.1. The octahedral Ag6 molecule (SU) stabilized by 

coordination to eight silver ions at S2* positions8 . 
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unfavourable sites being reduced: 

0 + ( +) . 12-
(Ag )2(Ag )10 H 2 [S 1 12A112°48] -----7-

( Ago) 4 ( Ag +) R ( H +) 2 [Si12Al1 2 047] 1 0- + -3-0 - 2 

The formation of Ag6 molecules stabilized by eight silver ions 

r·equ.ires more silver atoms than are present in the unit cell. 

There is thus an occupancy of _g_ of the sodalite units by Ag6 
3 

molecules, with the remaining cavities empty of all reduced 

silver ions. Even more severe conditions (heating above 72JK) 

give rise to the appearance of crystallites of silver which 

result from the reduction process proceeding to include 6-

ring silver ions, thereby causing the destablilization of 

+ the (Ag ) 8 (Ag6 ) system in some sodalite units. 

The almost total reversibility of this dehydration 

scheme has been demonstrated by X-ray studies carried out on 

an Ag12 -A single crystal9. A combination of dehydration and 

hydrogenation treatments caused complete loss of the zeolite 

crystalline diffraction pattern and the appearance of lines 

indicative of silver metal. Oxygen treatment restored the 

zeolite lattice diffraction pattern, and the silver atoms 

were re-oxidized to a limit of eleven silver ions per unit 

cell. The final structure determined showed eight equivalent 

silver ions on three-fold axes near the centers of 6-rings 

* (S2 ), and three equivalent cations in the B-ring planes, but 

not at 1heir centers ( S1). 0.56 silver atoms were located at 

the neutral silver atom position (SU) where Ag6 clusters would 

be expected to have formed (i.e. 9% of the sodalite units held 

Ag6 clusters), whilst the remaining 0.44 silver atoms were 

found to have left the interior of the crvstal, nresumablv 

as the oxide. Confirmation of the relative stabilities of 

the cation nositions may therefore be seen with the ~-ring 

aYld R-ring sites refilling seauentially, hnt with the most 

unfavo11rable nosition, the 4-ring, rem8ining vacant. 
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10 Gellens et al , disagree with the findings of Kim 

and Seff?-9 re~arding the formation of Ag6 clusters in the 

sodalite (~) cages of Ag12 -A zeolite upon heat treatment. 

1rfuilst admitting that severe dehydration treatments might 

lead to the formation of the proposed Ag6 clusters, these 

were not found in studies carried out, by X-ray diffraction 

and U.V. reflectance spectroscopy, on variously exchanged 

and variously pre-treated (Ag,Na) 12~A zeolites. Instead, at 

. . A + -378K Gellens et al suggested the format1on of a l1near g -

Ag0 -Ag+ molecule, in which the two Ag+ ions were present at 

S2' sites and the Ag0 atom located in the sodalite unit 

opposite a framework four-ring. Increased severity of treatment 

(vacuum dehydration at 648K), was found to cause the formation 

of two such clusters. It was suggested that a probable 

maximum of four Ag+-Ag0 -Ag+ molecules were likely per sodalite 

(~) cage, with all the Ag0 atoms coplanar. Interaction 

between clusters was thought possible because the distance 

between Ag0 atoms of different clusters was similar to that 

of silver metal. Further X-ray powder studies of partially 

silver-exchanged type A (Ag,Na) 12-A zeolites have been reported 

by Gellens et a111 . Again, these have been interpreted in 

terms of the formation of linear Ag+-Ag0 -Ag+ ions. It is 

thus clear that the structural changes which occur on 

dehydration are unusually complex and imperfectly understood. 

The X-ray structure of ethylene adsorbed onto partially 

decomposed Ag12 -A zeolite has been reported 1 . A single 

crystal was dehydrated at 6?JK and 5 X 10-6 torr for 4 days 

and then exposed to 120 torr of c
2

H
4 

gas at 296K. The 

dehydration produced approximately 2.76 silver atoms per u.nit 

cell, which were believed, by analogy with previous studies?-9, 

to res1J.l t from 1 the reduction of the 4-ring silver ion 

and 1.76 of the three B-ring cations. On the assumption 

that these had formed neutral Ag6 molecules, it was' calc'J.lated 
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that 46% of the unit cells in the crystal conta.ined Ag6 

molecules in sodalite (~) cavities (at site SU). 

Sorption of ethylene had little effect on the Ag6 

clusters, their numbers remaining constant and their coordinates 

scarcely changing. There was, however, a change in the 

number of coordinated 6-ring (S2*) silver ions, from the 

anticipated value of eight (for the complex (Ag+) 8 (Ag6 ) 

with the formation of the new complex (Ag+) 6 (Ag6 ) (Figure 4.2). 

The removal of two silver ions from coordination with Ag6 
caused the Ag-Ag bond length (the edge of the Ag6 octahedron) 

to decrease, consistent with diminished ability to withdraw 

electron density from the Ag6 cluster, and the Ag-Ag+ distance 

to shorten indicating stronger interaction. The two remaining 

silver ions located within this unit cell were associated 

with B-rings (S1); these were found not to complex with ethylene. 

In the remaining 54% of unit cells whose sodalite (~) 

cavities did not contain Ag6 molecules, one out of eight 

6-ring silver ions was observed, upon ethylene adsorption, 

to recede -1~ into the sodalite unit, thereby taking up an 

S2' position. No ethylene molecule could be located in 

coordination with this ion, although this was possibly the 

result of inadequate experimental resolution. Conversely, 

each of the remaining seven 6-ring cations, now protruding 

1.2 R into the acage (S2*), was found to form an-complex 

with one ethylene molecules, thus adopting a nseudo tetrahedral 

configuration. 

The carbon atoms of the complexed ethylene molecule were 

equivalent, each 2.54 ~ from a silver ion and, whilst not 

accurately determined, the C=C bond length did not appear to 

be significantly different from that of ethylene gas (1.JJ4~12). 

No significant approach was made by ethylene to the zeolite 

framework: at the smallest C-0 distance (J.76 ~) the hydrogen 
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Figure 4.2. The octahedral Ag6 molecule (SU) stabilized by 

coordination to six silver ions at S2* positions1 . 
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atoms were considered too far from the nearest oxygen atoms 

to interact with them. 

lnthe 46% of unit cells whose sodalite cavities 

contained Ag6 molecules, two silver ions were located per 

unit cell positioned within B-rings (S1). Again, these 

appeared not to coordinate to ethylene. 

Although no previous infrared or Raman spectroscopic 

studies have been made of type A zeolitetabsorbed ethylene 

systems, some insight into these systems may be obtained from 

earlier investigations of ethylene adsorbed onto type 13X 

zeolites13- 1 5, and in particular the silver exchanged form. 

14 Carter et al have reported infrared spectra in 

-1 L. + N + 1300-JJOOcm for ethylene adsorbed on 1 , a , 

Ca2 +, Ba2 + and Cd 2 + exchanged type 13X zeolites. 

the reg1on 

K+, A + . g ' 

In all 

spectra, the formally infrared inactive (in the isolated c2H4 
molecule) vibrations v

2 
(C=C stretch) and v

3 
(CH2 symmetric 

deformation) featured quite strongly, showing that olefin 

16 interaction with the surface had taken place , and that 

dissociation had not occurred. Bonding was shown to be 

weak by the complete removal of adsorbed gas, upon evacuation 

at room temperature, from all but the silver and cadmium 

exchanged forms. For the latter two zeolites stronger 

interaction was indicated, with evacuation at temperatures 

in excess of 473K necessary to displace ethylene from Cd-13X 

zeolite, and still more stringent conditions required 1n 

the case of Ag-13X zeolite. 

14 15 A scheme ' was proposed for cation-ethylene interaction 

in which a bond is formed by overlap of the olefin orbitals 

with either a 5s or a 5sp orbital of the cation. Additionally 

in the case of silver, back donation was suggested to occur 

from filled silver 4d orbitals into the vacant n* orbitals of 

ethylene according to the Chatt-Dewar-Duncanson model1 7• 18 . 
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As the interaction of the silver ion with the framework is 

partly covalent, a necessary consequence is that its d 

orbitals are fixed in space and thus olefin rotation about 

the z axis ( Fi~J.re 4 . .3) resql ts in bond-breaking. 

A;g
12

-A zeolite was prepared
3 

from Na12 -A (BDH Chemicals 

Ltd.) by ion-exchange employing a o. 2M sol'J.tion of AgN0 3 
(containing the exact equivalence of the sodium ions to be 

exchanged) and a temperature of 298K . The sample was 

washed thoroughly and the degree of exchange was determined 

by chemical analysis. 

C
2

H4 gas was obtained from British Industrial Gases Ltd. 

and its purity checked by mass spectroscopy. Trans-C 2D2H2 
(98 a.tom %D) was obtained from Merck Sharp and Dohme Ltd. 

A self-supporting zeolite disc (-10 mg cm- 2 ) was mounted 

in an all-metal infrared cell with KRS5 windows (4cm apart). 

The cell was then evacuated to 10-6 torr (1 torr= 1JJ.J2 Pa) 

11sing a t11rbomolec11lar p11mp, and the zeolite sample heated 

slowly to the maximum temperature required (54.3 or 67JK), 

infrared spectra being recorded at various temperatures 

during heating using a Perkin Elmer 580B spectrophotometer. 

The sample was left at the maximtlm bake-out temperature for a 

specified time (2, 15 or 70 hours) and spectra measured at 

regular intervals during this period. The sample was then 

allowed to cool to room temperature and its spectrum re-recorded. 

Ethylene was then admitted into the infrared cell to a 

pressure of 100 torr and the spectrum measured. Gaseous 

ethylene was removed from the cell by evacuation for 5 minutes 

and the spectrum of the sample re-measured. Following 

eovac11 tat ion for a further: 25 m-inutes the spectrum was 

recorded once more. Ih some cases (see later) the sample 
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was then re-heated and its spectrum obtained at the elevated 

temperature. All sample pre-treatment and gas adsorntion/ 

desorption was carried out without removing the sample from 

the infrared beam. 

A summary of the pre-treatment conditions used on the 

zeolite sample and the sample reference m1mbers is given in 

table 4.2. We will use the renresentations S(a,b,c) or 

S(b,c) to describe the different sample pre-treatment conditions 

employed, where a is the evacuation time (5 or 30 minutes), 

b is the time (2,15 or 70 hours) the sample was left at the 

maximum bake-out temperature, c, (543 or 67JK). 

All spectra measured were stored on microfloppy discs 

and replotted with expansion (using the ABEX function 

available on the PE Model 3500 Data Station1 9) from the 

original recordings. The ABEX function lS equivalent to 

running a second spectrum with a samnle of increased or 

decreased concentration. The expansion results in a snectrum 

in which the relative intensities of the infrared bands are 

unchanged. Repetitive scanning was used to reduce noise. All 

of the spectra reproduced in this chapter are tracings of 

original data. 

III. Results and discussion 

Throughout this chanter, we will restrict our attention to 

the region 1000-2000cm-1 , because between 300 and 1000cm-1 the 

sample is totally absorbing, and above 2000cm- 1 the only feature 

observed is a broad band (ca. 3600cm- 1 ) due to adsorbed water 

and hydroxyl groups. 

(a) Dehydration of Ag12 -A zeolite 

Fi~1re 4.4 shows spectra (1100-1900cm- 1 ) of Ag
12

-A 

obtained at several temperatures during dehydration. The band 



-78-

Table 4.2 Summary of the Sample Pretreatment Conditions 

Sample number Temperatures Duration 

( K) (hours) 

1 54.3 2 

2 54.3 15 

.3 54.3 70 

4 67.3 2 

5 67.3 15 

6 67.3 70 
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1800 1600 1400 1200 

Wavenumber ( cm-1) 

Figilre 4. 4. Spectra of AgA zeolite obtained at several 

temneratures d1:~ring. del-I:vdra tion: (a) 29RK, 

(b) 4_53K, (c) 543K, (d) 593K and (e) t;73K. 
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-1 

at 1640cm , corresponding to the deformation mode of 

adsorbed water, gradually decreases in intensity as the 

temperature is raised and has completely disappeared at 67JK. 

It is important to note, however, that at ca. 543K (one of the 

bake-out temperatures used in this work) not all of the 

adsorbed water is removed. As will be seen later, very 

little water was re-adsorbed on allowing the sample subjected 

to the maximum bake-out temperature of 673K to cool to room 

temperature. 

(b) !g
12

-A + ethylene 

One possible explanation for the discrepancy between 

the INS and X-ray1 data for ethylene adsorbedon Ag12 -A (Ag12A + 

C2H4 ) is differences in sample pre-treatment conditions. As 

Kim and Seff5-B and Gellens et a110 have shown, the position 

and oxidation state of the cations depend upon the severity 

of the dehydration conditions. To test this hypothesis, we 

have studied the Ag12 -A + c2H4 system using six very 

different sets of pre-treatment conditions which are intended 

to span the range used by various authors for their physical 

measurements. The scheme chosen was to heat differert samples 

either to 543 or~JK and to maintain them atthese maximum 

bake-out temperatures for 2, 15 and 70 hours before allowing 

them to cool to room temperature and adsorbing ethylene. 

Data on theoosix differently prepared samples enables us to 

observe the effects on ethylene adsorption of both the magnitude 

of the maximum bake-out temperature, and the duration of 

heating 

In fi~Jre 4.5a is ffiown the spectrum of a sample which 

had been heated to a maximum bake-out temperature of 543K for 

15hours, after being allowed to cool to room temperature. 

Figure 4.5b shows the spectrum of the same sample after 
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admitting C
2

H4 to an overpressure of 100 torr at room 

temperature. Subsequently, the sample was evacuated ( < 1 o- 5 

torr) at room temperature for 5 minutes, 8(5,15,543), (Figure 

2c) and then for a further 25 minutes, S(J0,15,54J), (Figure 

4.5d). The apparent variation in the intensity of the band 

at 1640cm- 1 , due to adsorbed water, is a consequence of the 

different expansion (ABEX) factors used in generating these 

plots. 

At high overpressure (100 torr), the spectrum (Figure 4.5b) 

is dominated, as one would expect, by that of~seous c
2

H4 . 

On evacuation for five minutes (pressure <10-5 torr), however, 

two relatively intense bands are clearly visible at 1465 and 

1430cm-1 due to the absorbed species (Figure 4.5c). We assign 

these bands to the antisymmetric CH 2 deformation (v12 , 

following the notation of Herzberg20 ) of c2H4 molecules 

adsorbed on two distinct sites. In the gas phase, v 12 occurs 

as an intense band at 144Jcm-1 (ref. 20) and is the only 

observed infrared band in the region 1800 to1100cm- 1 . In 

view of this we would certainly expect to observe this band 

in the spectra of the adsorbed species. In our spectrum 

(Figure 4.5c) transitions were observed at 1590 and 1320cm-1 

which are also due to the adsorbed species. These values 

compare with those of 1623 and 1342cm-1 found for the C=C 

stretch (v
2

) and CH 2symmetric deformation (v
3

) respectively 

in Raman studies 20 of gaseous C
2

H4 . In organometallic 

complexes containing n-bonded c
2

H4 , and to a lesser extent in 

C2H4 itself, v 2 and v
3 

are mixed 21 . This is also very likely 

to be the case for adsorbed C
2

H4 and so the assignment of 

observed bands to either v3 or v
2 

alone is simplistic. Our 

results are very similar to thosefor Ag(C 2H4 )BF4 in which the 

C2H4 is relatively weakly bound 21 and where transitions were 
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-1 
observed at 1579 and 1320cm . In this case the higher 

wavenumber band has been shown to have more C=C ( v2 ) than 

8CH2 (v
3

) character while the converse is true for the lower 

wavenumber band. It seems reasonable to propose that the 

same situation obtains with the bands observed at 1590 and 

1320cm-1 in our spectra, i.e. they both contain contributions 

. -1 . 
from v

2 
and v

3 
but ln the 1590cm band v

2 
predomlnates while 

in the 1320cm- 1 band the contribution from v
3 

is greatest. 

-1 
For simplicity therefore we will refer to the 1590 and 1320cm 

bands simply as v
2 

and v
3 

respectively. 

v
2 

and v
3 

are infrared inactive in gas-phase C2H4 (D 2h) 

but the reduction in symmetry which accompanies adsorption (r. ) 
2v 

results in these modes becoming infrared active. Comparable 

observations have been reported for C2H4 adsorbed on Ag-13X 

l ·t b C t et a114 . zeo l e y ar er 

Only a single band due to v
3 

is observed in our work. 

This may arise either because the values for v
3 

on the two 

distinct sites are similar and the bands unresolved or, 

more likely, because the lower wavenumber component is obscured 

by the framework absorption. On evacuation for a further 25 

minutes (Figure 4.5d) the 1465cm-1 band decreases ln intensity 

while the 1590 and 1320cm-1 bands remain very weak. 

We have also obtained spectra of trans-C 2D2H2 adsorbed 

on Ag12-A discs subjected to pre-treatments analogous to 

those used for the Ag12 -A + C2H4 system. Adsorption of trans­

c2D2H2 (50 torr) at room temperature on Ag12 -A, pretreated at 

maximum bake-out temperatures of 543 and 673K for 2 hours 

followed by evacuation for 5 minutes 8(5,2,543) and 8(5,2,673) , 

-1 results in the appearance of a weak band at 1295cm due to 

the adsorbed species. We assign this band to v12 of trans­

C2D2H2. v12occurs as an intense band at 1299cm-1 in the infrared 
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spectrum of gas-phase trans-C 2D2H2 and is in fact the only 

8 -1 band observed in the region 1 00 to 1100cm . We do not 

observe another band due to v12 which might occur at a lower 

-1 wavenumber than the 1295cm band, probably because it is 

obscured by the framework absorption. Bands due to v
2 

and v
3 

which occur at 1571 and 1286cm-1 respectively in gas-phase trans-

C2D2H2 (ref. 22) are not observed in the Ag12-A + trans-C 2D2H2 

system. These modes are infrared inactive in the gas phase 

and even if they become active on adsorption, they may not be 

observed either because they are very weak, or because they 

occur at a region where the bands are difficult to observe due 

to framework absorption. 

The measured isotopic ratio of the 1465 (Ag12 -A + C2H4 ) ~ 

1295 (Ag12 -A + trans-C 2D2H2 )cm- 1 band is 0.89. This compares 

well with the measured isotopic ratio of v12 in the gas-phase, 

0.90· 

For the Ag12-A + C
2

H4 sytem it is interesting to note, 

figure 4.5, that: 

( 1 ) 20 Bands due to v 2 (C=Cstretch ) and v 3 (symmetric CH2 

deformation 20 ) are observed· in . the infrared S'Pec'trnm 

although these bands are infrared inactive in the gas-

phase. 

(2) Bands are present which may assigned to v12 of C2H4 

adsorbed at two different sites. For one of these 

species v12 occurs at a wavenumber value above that 

found in the gas-phase, for the other it is below. This 

is again in agreement with data obtained by Carter et a114 

for c2H4 adsorbed on variously exchanged type 13X zeolites. 

(3) The species asociated with the higher wavenumber band 

(1465cm- 1 ) is more easily desorbed than the species 

associated with the lower wavenumber band (1430cm-1 ). At 
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temperatures below 37JK, the less strongly bound c2H4 

may be removed; in contrast heating to in excess of 

57JK is needed to remove the more strongly bound C
2

H4 . 

(4) Our results are in agreement with the conclusions reached 
? 

in the INS study~ that there are two distinct adsorption 

sites for ethylene adsorbed on Ag12 -A zeolite. They are 

consequently at variance with the findings of the X-ray 

diffraction work of Kim and Seff1 . 

Rather than consider the remaining spectra individually, 

we will concentrate on a comparison of the spectra of four 

of the samples. Spectra of samples subjected to heating at 

the maximum bake-out temperature for 70 hours will not be 

discussed. For these samples it was found that their 

transmission was extremely low ( < 2%), and the spectral 

quality so poor that no definite conclusions could be drawn. 

On examining the discs they were found to have turned black 

and it would appear that the silver had migrated from the 

cages to form crystallites on the surface. 

In figure 4.6 are shown four sets of spectra representing 

Ag12 -A samples prepared under various pre-treatment 

conditions S(b,c) = S(2,54J), S(15,54J), S(2,67J), and S(15,67J) 

which have had C2H4 adsorbed on them and which have then 

been subjected to various evac~ation procedures. Each series 

of spectra isffiown together with its relevant background. 

Table 4.J displays the frequencies of v
2

, v
3

,and v
12

measured 

for each of the four Ag12 -A + c2H4 samples after both 5 and JO 

minutes evacuation. From these data we note the following: 

(1) In the cases of all four Ag12-A ~ C2H4 samples, after 5 

and after 30 minutes evacuation, two bands may be 

observed which can be assigned to v12 of C2H4 adsorbed on 

two different sites. 
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(c) AgA + C
2
H4 after 30 min'ltes evacuation. 
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Table 4.3 

Samples 

8(5,2,543) 

8(30,2,543) 

8(5,15,543) 

8(30,15,543) 

8(5,2,673) 

8(30,2,673) 

8(5,15,673) 
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Wavenumbers of v
2

, v
3 

and v 12 adsorbed 

onto AgA zeolite samples subjected to 

various pretreatments 

AgA + C H (a) 
2 4 

I II 

v2 v3 v12 v12 

1580 1319 1465 1430 

1580 1319 1465 1430 

1590 1320 1465 1430 

1590 1320 1465 1430 

1575 1315 1460 1420 

1575 1315 1460 1420 

1580 1315 1465 1420 

8(30,15. 673) 1580 1315 1465 1420 

(a) 
II 

and '\ 2 are the values of v12 for C2H4 on 

two different sites. 
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(2) With the exception of sample 8(5,2,543), the two bands 

assigned to v12 are of approximately equal intensity 

after 5 minutes evacuation. In sample 8(5,2,543) the 

band at 1430cm-1 is 2.5 times the intensity of that at 

4 
/ . -1 

1 b5cm -. Making the assumption that the transition 

dipole does not change in magnitude, it is clear that 

the site occupancies differ in sample 8(5,2,543) from the 

other samples. This is most probably the result of 

+ 0 + +) ) depletion of one cation site as Ag -Ag -Ag or (Ag 8 (Ag6 

clusters are formed. 

(3) After 30 minutes evacuation the band at 1465cm-1 is 

markedly reduced in relative intensity in the case of 
2, 

samples 8(30,1543) and 8(30,15,543), but is essentially 

unchanged in relative intensity in the cases of samples 

8(30,2,673) and 8(30,15,673). These four samples were 

again heated after the evacuation lasting 30 minutes. 

It was found that in those samples pretreated at the 

lower maximum bake-out temperature (543K), one band 

disappeared after heating to temperatures below 373K, 

whilst the· other band disappeared only after heating to 

temperatures in excess of 473K. In contrast, the samples 

pretreated at the higher maximum bake-out temperature 

(673K) required heating to temperatures in excess of 

473K whereupon both bands disappeared together. 

It is clear from the above that the strength of the 

bond between the C
2

H4 and the Ag12-A zeolite is a. function of 

the pre-treatment conditions to which the zeolite is subjected, 

and that the detailed behaviour is complex. After relatively 

mild pre-treatment (543K), the strength of bonding at one 

site is greater than that at the other, whereas after more 

severe pre-treatment (673K) both species are held almost 

equally strongly. 
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Ideally, we would wish to correlate the two adsorbed 

ethylene species with specific sites within the Ag12-A 

framework. However, further discussion of this point awaits 

more detailed information on the cation locations present 

after the various pre-treatments. Clearly, however, our 

infrared data are inconsistent with the X-ray diffraction 

work of Kim and Seff1 , since under all pre-treatment conditions 

employed we find two adsorption sites. 
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CHAPTER V 

INFRARED SPECTROSCOPIC INVESTIGATION OF C2[ 2 AND C2D2 
ADSORBED ON AgA AND Ag13X ZEOLITES 

I. Introduction 

This study of acetylene adsorbai onto fully silver 

exchanged type A zeolite (AgA) follows naturally from our 

previous study of ethylene adsorbed onto the same zeolite 

(Chapter IV ) . In view of the complexity of AgA zeolite, some 

differences in adsorption behaviour of C2H2 when compared 

with C2H4 were expected because of the more acidic nature of 

the protons in the former. For comparison , acetylene is also 

adsorbed onto silver exchanged type 1JX zeolite (Ag1JX) which 

is known to be more thermally stable than AgA. The 

structural changes which occur on dehydrating fully silver 

exchanged type A zeolite have been studied by both x-ray 

diffraction1-3 and u. v. reflectance spectroscopy4. While it 

is clear that some of the Ag+ cations are reduced on 

dehydration, there is disagreement over the nature of the metal 

ciusters formed in the sodalite (~) cages. This has been 

reviewed in detail in Chapter LV. While no structural data 

are available for the AgA + C2H2 system, single crystal x-ray 

determinations have been published for acetylene adsorbed onto 

sodium5•6, partially exchanged manganese?,S and cobalt8 type 

A zeolites. This will be discussed further in section III. 

On adsorption of C2H2 , four main types of interaction 

with the zeolite can be envisaged: 

(i) fEnd-on' interaction; hydrogen bonding between the acidic 

protons of the acetylene molecule and framework oxygen 

atoms. For this type of interaction, v (C:: C) occurs at a 
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frequency higher than the gas phase value (1974cm-1 ). Yates 

and Lucchesi9, in their study of acetylene adsorbed onto silica 

found v ( C =C) at 2005cm - 1 and deduced that the interaction 

was of the 'end-on' type. 

(ii) 'Side-on' interaction; overlap of the n system of acetylene 

with orbitals of the cation to form a n -complex analcgou.s to 

those well known in the organometallic complexes of olefines 

(e.g. K(PtC 2H4Cl3)). Acetylene has two mutually perpendicular 

sets of n orbitals and is therefore capable of being bonded 

to one or two metal atoms10 . For the 'side-on' interaction, 

v(C ::c) occurs at a frequency lower than in the gas phase. 

Table 5. 1 shows reported values of v ( C =C) for C2H2 adsorbed 

onto various ion-exchanged forms of types A and 1JX 

zeolites15,JO. 

(iii) The acetylene looses one or both of its hydrogen atoms to form 

acetylides, RC = CM (R=H) or carbides, MC = CM respectively. 

The resultant hydrogen atom (s) could combine with a lattice 

oxygen(s) to fo~n an OH group or, alternatively, with water 

to form hydronium ions. v ( C =C) for this type of complex 

(RC:=CM) falls within the range 1850- 1961cm-1 10 •11 . 

(iv) The acetylene looses its identity in the complex, as in for 

example, the cyclotrimerization of acetylene to form benzene 

which has been observed , for example, in NiY zeolites12 . 

This, obviously, results in the disappearance of the v( C = C) 

band. 

As we shall see later, the adsorption of C2H2 onto AgA 

zeolite involves the formation of more than one type of adsorbed 

species. This contrasts with the available data on the more 

thermally stable alkaline earth or alkali metal exchanged forms 

of zeolite A. 
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The frequencies (cm- 1 ) of v(c=c) assigned in 

the Raman spectra of c2H2 adsorbed on some 

types A and 13X zeolite15,JO 

Cation form Zeolite type A Zeolite type 13X 

Li+ 1957 1958 

Na+ 1953 1954 

K+ 1951 1952 

Cs+ - 1951 

Mg2+ 1956 1956 

Ca2 + 1957 1958 

Ba2 + - 1956 
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II. Previous spectroscopic studies of zeolite - acetylene system 

While there has been no previously published infrared and 

Raman work of the AgA + c2H2 and Ag1JX + c2H2 systems, there 

are incoherent inelastic neutron scattering (INS) data 

available for both of them13• 14 . From the INS study of the 

Ag1JX + C
2
H

2 
systems, it was shown that acetylene formed an­

bonded complex with the cation1J. For acetylene adsorbed on 

AgA zeolite, the authors14 found that there is only a single 

type of adsorption site for acetylene in the zeolite framework. 

In this respect, their observation differs from that of the 

single crystal x-ray study carried out on NaA + C2H2 . by Amaro 

and Seff5' 6 , and infrared and Raman spectroscopic studies on 

several alkali and alkaline earth metal exchanged type A 

zeolites by Tam et al15 who found at least two different 

adsorption sites within the zeolite framework. This 
14 contradiction was explained by the authors as an indication 

of the ~eater structural complexity of silver exchanged type 

A zeolite when compared with the more thermally stable alkali 

and alkaline earth metal exchanged forms. We have also shown 

(Chapter IV) that for AgA + c2H4 , the strength of the 

interaction of the adsorbed C
2

H4 with the zeolite is a 

function of the pretreatment conditions (e.g. temperature and 

time) used. 

Earlier infrared16 and electronic17• 18 spectra of C
2

H
2 

adsorbed onto various transition metal exchanged types A and 

1JX zeolites had been obtained by Tsitsishvili et a116 and 

Klier et al17• 18 . For comparison with their other data, 

Tsitsishvili et al also obtained infrared spectra of c2H2 

adsorbed onto some alkali metal exchanged zeolites. They 
16 found that regardless of the nature of the cation and the 

type of zeolite, they did not observe a band due to v( C =C) 
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(which occurs at 1974cm-1 'in the gas phase). This finding, 

together with the observation of the C-H stretching 

band, caused them to postulate that 'end-on' interaction of 

the C2H2 with the framework occurred in their samples. However 

Klier et al in their study of the electronic spectra of C2H2 

adsorbed onto Ni- and Co- exchanged type A zeolites found 

that the acetylene was n bonded to the transition metal ions 

('side-on' interaction~. 

Some of the measurements made by Tsitsishvili et al have 

been rep~ated ·. recently by Tam et al15. In contrast with 

earlier authors, Tam et al in their infrared and Raman data, 

I 

observed a band due to v(C:::C) for C2H2 adsorbed on all of the 

zeolites studied. On zeolites NaA and CaA, all five fundamental 

(2l:g+ +l:u+ + ITg + I1u) vibrations of acetylene were 

observed in both the Raman and infrared spectra while on 

other forms, only the v(C:::C) band was observed. Acetylene 

was weakly held by Ca2+ and Mg2+ since it was easily 

removed by 5 minutes evacuation at room temperature. Longer 

time, that is 1 hour evacuation at room temperature, was 

needed to completely desorb acetylene from NaA. Strongly 

adsorbed acetylene on KA was only removed after evacuation at 

47JK for several hours. For NaA + C2H2
15, the v(C:::C) band, 

-1 . observed at 195Jcm , was d1stinctly asymmetric and could be 

resolved by curve fitting into two bands centred at 1949 and 

4 -1 . 195 em , the former being the less 1ntense. The authors 

suggested that the less intense band, at 1949cm-1 would 

result from the interaction of the acetylene molecules with 

the energetically more favourable cations at site SI (refer 

to Chapter II), whilst the higher frequency band is due to the 

interaction of the acetylene molecule with the cations at site 

* S2 . This finding agrees with the x-ray data of Amaro and 

Seff5,6. 
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0ther infrared work on adsorbed acetylene has been 

carried out on Cu and Ni exchanged type Y zeolites12 ' 19. 

In the CuY + c2H2 system studied, Pichat19 found bands at 

3250, 3190(sh), 3170, 1820(sh) and 1810cm-1 . Unlike other 

zeolites, the v ( C ::C) band for acetylene adsorbed onto CuY 

zeolite was shifted downwards by a large amount (164cm- 1 ) 

relative to the gas phase. The possibility of the formation 

of copper acetylides, (HC = CCu) was discussed. However, 

because the frequency shifts found for the v ( C-H) and v ( C ::C) 

vibrations were larger than those noted for HC =eM acetylides 

and because no OH bands were observed as one would expect, 

doubt was cast on the possible formation of HC = CCu. The 

author19 favoured the formation of n-acetylenic complexes; 

the Cu2+ ion - acetylene band resulting mainly from donation 

from the unsaturated hydrocarbon to the metal ion. 

The infrared study of the cyclotrimerization of acetylene 

on NiY zeolites was carried out by Pichat et a112 . It was 

found that the activity of the various samples depended on 

the number of the dehydrated or partially dehydrated Ni2+ ions 

inside the supercages. They have also established from the 

bands they observed that the benzene obtained does not form 

a weak complex with the Ni2+ ions and is weakly adsorbed in 

the framework. 

III. Other zeolite + c2H2 system studied 

Single crystal x-ray structure determinations have been 

carried out for acetylene adsorbed onto sodium5' 6 , partially 

manganese 7' 8 and cobalt 8 exchanged type A zeolites. The 

structure of dehydrated sodium type A zeolite has been 

discussed in Chapter II. However, in summary the cation 

positions are as follows: eight sodium ions occupy the 6-

* rings posi~tions (S2 ), three sodium ions were located in the 
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B-ring positions (SI) and the final sodium ion is normal to 

the 4-ring position (SJ). 

Six acetylene molecules were found to interact with the 

cations at two or more sorption sites in the sodium type ~ 

zeolite structure. Figure 5.1 shows the stereoview of the 

unit cell of zeolite NaA . 6C 2H 25,~ In each of the acetylene­

cation interactions, the cation approaches the acetylene 

equatorially, indicating that the interaction is between the 

cationic charge and the lateral n electron system of 

acetylene. No evidence for interaction between the acetylenic 

hydrogen and framework oxygen atoms was found. Of the six 

adsorbed acetylene molecules per unit cell, three were found 

to coordinate laterally and symmetrically with three of the 

* 6-ring sodium ions (S2 ), such that, each carbon atom (CI), 

of each molecule is 2.8~ from the cation (see figure 5.2). 

The positions of the remaining three adsorbed acetylene 

molecules could not be determined with certainty, accordingly, 

two models were put forward. In the first model, the three 

acetylene molecules were asymmetrically associated with 

sodium ions in the 8-rings (SI) at distances of J.oR for C(2) 

and 2,6g for C(J). The second model, considered the more 

reasonable by the authors proposed that one or two acetylene 

molecules associated with the 8-rings position (SI) might also 

be associated with the 4-ring sodium ions (SJ) with distances 
0 

of 2.6A from C(2) and C(J), whilst the remaining acetylene 

molecules bonded symmetrically to other 8-ring sodium cations. 

Other single crystal studies of zeolite + C2H2 system 

have been carried out on partially manganese (Mn4 ,
5

Na
3

A) and 

cobalt (Co4Na4A) exchanged type A zeolites7• 8 . The structure 

of dehydrated manganese and cobalt type A zeolites will be 

discussed in Chapter VIII. Both the manganese and cobalt ions 
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Figure 5.1. A stereoview of the unit cell of zeolite 4A.6C2H25, 6 . 

Figure 5.2. Zeolite 4A.6C2H2 (Na(1), Na(2) and Na(J) are 

equivalent to S2*, Si and SJ respectively in the text) .. 
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occupy 6-ring positions, where they achieve near trigonal-

planar coordination with three framework oxygens. Upon 

ad:ii tion of aqetylene, both the m?,nganese and cobalt ions 

* moved further into the a-cage (S2 ). Figures 5·3 and 5.4 

show the stereoview of unit cell of zeolite Mn4 .
5

Na
3

A . 4.5C 2H2 

and co4Na4A . 4C 2H2 , respectively. In response to the movement 

of the transition metal ions, the sodium ions have moved a ', 

substantially greater distance into the sodalite cavities (S2'). 

It was found that acetylene was bonded only to the transition 

metal ions. In each sorption complex, the interaction was ~, 

symmetrical to both carbon atoms of an acetylene molecule (s~e 

2+ 2+ figure 5.5), whereby the Mn - C and Co - C distances are 

2~63R and 2.54~, respectively. 

IV. Experimental 

AgA zeolite was prepared as described in Chapter IV whif'e ·~; ;;:.:;~ 
,'\~,.-

Ag13X zeolite was prepared as given in reference 14. 

obtained from British Industrial Gases Ltd. and the acetone· wa~' "'· :~~ ·~ 
removed by passing the gas ..;'slowly through a concentrated sulfuric .-. 

~). -~,.~.,;;..·· ~j . 

acid trap before use. The purity of the gas was checked by;,_,...,. 

infrared spectroscopy. C2D2 ( 99 atom % D) was o?tain~§.' fro~ lVIer.ck~. 
c 

' .. ;$. 
Sharp and Dohme Ltd. and .was used without further purification. 

The sample preparation techniques are described in Chapter 

IV. Two different sample pretreatment conditions were used. 

The first was to leave the sample for 2 hours at a maximum 

bake-out temperature of 543K while the second was to leave a 

different sample for 2 hours at a maximum bake-out temperature 

of 6?JK. Once again, the notations S(a,b,c) or S(b,c) will 

be used to describe the different sample pretreatment conditions 

employed, where a is the evacuation time (5 or 30 minutes), .b 

is the time sample was left at the maximum bake-out 

temperature {2~hours) and c is the maximum bake-out 
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___ .,.: __ 

Figure 5.4. A stereoview of the Co4A.4C2H2 
unit ce118 . 
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SI c 
I c SI 

Figure 5·5· The coordination environments of the Mn(II) and 

Co(II) ions in each structure8 . 
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temperature (543 or 67JK). In order to avoid confusion 

between experiments in which C2H2 and C2D2 were used, the 

notation will be extended to S(a,b,c)H or S(b,c)H and 

S(a,b,c)D' and S(b,c)D' respectively. 

v. Results 

Of the five fundamental vibrations of acetylene 

(point group D
00

h), only two are infrared active in the gas 

phase; the C-H stretching ( v
3

) and deformation (v
5

) modes. 

The fundamental frequencies of gaseous c2H2 and c2D2 are 

given in table 5.225 and the infrared spectra of purified 

C2H2 obtained at different pressures using our infrared cell 

(windows 4cm apart) are given in figure 5.6. The only strong 
. . -1 bands observed 1n the reg1on above 1200cm , the region of 

interest in our work on adsorbed species, occur at 3320, 

3270 (C-H stretching), and 1355 and 1310cm~ 1 (combination 

bands). The C-D stretching bands in C2D2 occur at 2460 and 

2420cm-1 while the combination bands are shifted to below 

1200cm-1 . 

In figure 5·7 is shown some possible models for the 

coordinated acetylene molecule, and the symmetry species and 

spectroscopic activity· expected for each is given in table 5· 331 . 

The dehydration of AgA zeolite has been discussed 

already in Chapter IV. It should be noted that at 543K, one 

of the maximum bake-out temperature used, there are some 

water molecules present in the zeolite cavities (Figures 5.12a 

and 5·13a). For the samples that were heated to 673K, little 

water was readsorbed on allowing these samples to cool to 

room temperature (Figures 5.14a and 5·15a). We will discuss 

our infrared data for the AgA + c2H2 and AgA + c2n2 systems 

in two spectral regions; (i) 3700 - 2200cm-1 and (ii) 2000 -

1250cm-1 . The region 1250 - 350cm-1 will not be discussed 



Table 5.2 

I 
Ref. 25 

3374 

1974 

* 3287 

612 

729 

The frequencies of the fundamental vibrations of gaseous c2H2 and C2D2 given by 

reference 25, and compared with our data 

. ' .. C2H2 C2D2 Vibrational· Activity Assignment .. ' 
·' 

Our data Ref. 25 Our data Species 

- 2700 - l:g+ R v1 

- 1762 - l:g+ R li2 

* + 
3320 2427 2460 l:u IR V3 

3270 2420 

- 505 - flg R v4 

730 539 540 flu IR v5 

* The average of branches P and R is given. 

I 

I 
I-" 
0 
{:­
I 
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Figure 5·7· Some possible models for the coordinated acetylene 

molecules31 . 

Table 5.3 Correlation of svmmetry with infrared and Raman 

activity for the above models of coordinRted 

acetylene 

Svmmetrv Vibrational Number Activitv species of modes 

Ig + R 2 

Lu + IR D 1 
mh fig 2 R 

IIu 2 IR 

A1 3 IR,R 

0
2v 

A2 1 R 

B1 0 IR,R 

B2 2 IR,R 

A 3 R 
g 

0
2h 

A 0 IR 
u 

B 1 R g 
B 2 IR 

u 

c2 
A 4 IR,R 

B 2 IR,R 
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since the sample is totally absorbing in this region and 

4 -1 -1 the regions 000 - 3700cm and 2200 - 2000cm are not 

discussed because there are no bands observed in these regions. 

-1 . 3700 - 2200cm reg1on 

Figure 5.8a shows the spectrum of AgA, at room 

temperature, after heating for 2 hours at 543K ( S(2,543)H ). 

The spectrum obtained on admitting C2H2 (100 torr) to this 

sample is shown in figure 5.8b. The corresponding data for 

the sample used for c2n2 adsorption is shown in figures 5·9a 

and b. 

Considering figure 5.8b, three new bands at 3592, 3302 

and 3262cm- 1 , which were not observed in the spectra of the 

pure zeolite (Figure 5.8a), are observed after admitting 

100 torr c2H2 . After 5 minutes evacuation at room temperature 

(Figure 5.8c), the band at 3592cm-1 and some unresolved and 

very weak bands in the region 3400 - 3100cm- 1 remain. A new 

band in the region -2500cm-1 is also observed after evacuation. 

The presence of three new bands on admitting c2H2 and the 

observation that only two of them become less intense on 

evacuation at room temperature indicates that these bands 

are due to at least two different types of adsorbed species. 

The band at 3592cm-1 is most probably due to v(OH) indicating 

that a proportion of the acetylene has lost one or both of 

its hydrogen atoms per molecule to form an OH group (s) with 

the framework oxygen. The infrared bands found on adsorption 

of c2n2 (Figure 5·9b) corroborate this assignment of the C2H2 
(refer table 5.6). There is a band at 2643cm-1 which may be 

assigned to v(OD). Comparing figures 5.8c ( S(5,2,543)H) 

and 5·9c ( S(5,2,543)D ), only one strong band at 3592 and 

2643cm- 1 respectively is observed in each. It is reasonable 

therefore to assume that these bands are due to the same 
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Figure 5. 9. AgA zeolite after heating at c;Lt JK for 2 h01._1rs: 

(a) at ambient temnerat1Jre 

(b) samnle (a) after admitting 1on torr C
2

D
2 

(c) samnle (b) after evacuation for S minFtes 
(d) samnle (c) after evacuation for a further 

2 S minutes. 
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vibration. In zeolites, vibrations of the framework hydroxyl 

groups occur in the region 3550 - 3650cm- 1 and this has been 

discussed in detail in Chapter II. From our data v(OD) / v(OH) 

= 0.74, which agrees exactly with the isotopic ratio found 

with hydroxyl groups in zeolites (0.74)3 2 . 

In sample S(5, 2, 543)H' some broad bands are observed between 

3400 and 3100cm-1 (Figure 5.8c) which disappear on further 

evacuation for 25 minutes at room temperature (Figure 5.8d). 

We assign these bands to weakly adsorbed acetylene. Here 

again, the result for c2n2 corroborate this assignment•; A 

broad band at 2500cm- 1 is observed in S(5,2,543)D (Figure 5·9c) 

which disappear in S(30,2,543)D (Figure 5·9d). It can be 

assumed from the above evidence that the bands at 3302 and 

3262cm-1 in figure 5.8b and the bands at 2500 and 2450cm-1 in 

figure 5·9b are due to both the gas phase (refer figure 5.6) 

and the adsorbed species. For sample S(5,2,543)D (Figure 5·9c), 

bands are also observed at 3600 and 2376cm-1 which we 

assigned to v(OH) and v(OD) of DH 0+ (Table 5.6), 
2 

respectively. 

In figures 5.10a and 5.11a are shown the spectra of 

samples AgA zeolites at room temperature after heating for 2 

hours at 673K. Figures 5.10b and 5.11b show the spectra of 

the samples after admitting c2H2 and c2n2 , respectively, to 

an overpressure of 100 torr. Although the v(OH) band is not 

observed in the spectrum of the sample S(2,673)H after 

admitting 100 torr C2H2 (Figure 5·10b), a band at 2643cm- 1 

which may be assigned to v(OD) is observed after admitting 100 

torr c2n2 (Figure 5.11b). The OH band is not observed in the 

spectrum of S(2,673)H because at this temperature, the 

spectrum of the background is so high tnat the relatively weak 

v (OH) is not observed but only the bands due to the gas phase 

at 3320 and 3270cm-1 are observed (Figure 5·10b). For the 
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AgA zeolite after heating at 6'7JK for 2 hours: 

(a) at ambient temnerature 

(b) samnle (a) after admitting 100 torr C2D2 

(c) samnle (b) after evacuatio'l. for c:; min1 1tes 

(d) samnle (c) after evacuation for a further 

2 S minutes. 
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AgA + c2D2 system, after 5 minutes evacuation at room 

temperature (Figure 5.11c), the band due to OD still remains. 

A band at 2500cm- 1 observed in sample 8(5,2,673) 0 (Figure 

5.11c) which disappear on further evacuation ( 8(30,2,673) 0 ; 

figure 5·11d), as in samples 8(5,2,543) 0 and S(J0,2,543) 0 , is 

also assigned to weakly adsorbed acetylene. 

-1 . 2000 - 1250cm reg1on 

In the infrared spectrum of gas phase C2H2, there are only 

two bands observed in this region, at 1355 and 1310cm-1 , (due 

to combination modes25) as shown in figure 5.6, while in 

this region of the infrared spectrum of the gas phase c2n2 , 

no bands are observed. 

In our data for AgA and Ag1JX, regardless of the 

pretreatment conditions used, bands which can be assigned to 

the v ( C =C) mode of adsorbed acetylene are observed in all of 

the spectra of the samples after admitting 100 torr of C2H2 
(Figures 5·12b, 5.14b for AgA and figures 5.16b, 5·17b for 

Ag1JX) and C2D2 (Figures 5·13b and 5·15b). The v(C::: C) 

values for all the samples are given in table 5.4. It is 

believed that there are two v ( C = C) values, since the isotopic 

ratio for the v(C =C) values in AgA + C2H2 (1912 and 1955cm-1 ) 

and AgA + c2o2 (1710 and 1740cm- 1 ) of 0.89 agrees exactly 

with the isotopic ratio in the gas phase (0.89). 

The bands at 1355 and 1JOOcm-1 observed in both the 

spectra of S(2,54J)H and S(2,67J)H after admitting 100 torr 

C2H2 (Figures 5.12b and 5·14b) are due to the gas phase bands 

and disappear after 5 minutes evacuation at room temperature 

(Figures 5.12c and 5.14c). The disappearance of these bands 

results in the appearance of a relatively strong band at 

1J80cm-1 in S(5,2,67J)H (Figure 5·12c). This difference 
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Figure s.12. AgA zeolite after heating at S43K for 2 hours: 

(a) at ambient temperature 

(b) sample (a) after admitting 100 torr C2H
2 

(c) samnle (b) after evacuatio~ for 5 minutes 

(d) sample (c) after evacuation for a further 

2c:; mi~utes. 
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Figure S.1J. AgA zeolite ~fter heatin~ Rt 54JK for 2 hours: 

(a), (b), (c) and (d) as for Figure _5.1_1. 
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2000 1900 1800 1700 1600 1500 1400 1300 

Wavenumber (cm-1) 
Figure S.14. AgA zeolite ~fter heating at 6~JK for 2 hours: 

(a), (b), (c) and (d) as for Figure £).12. 
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Wavenumber (cm-1) 
Figure 5.1s. AgA zeolite after heating at S7JK for 2 hours: 

(a), (b), (c) and (d) R.s for Figure '1.11. 
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Figure 5.16. Ag1JX zeolite after heating at 54JK for 2 hours: 

(a), (b), (c) and (d) as for Fignre S.12. 



-~ 0 -
c 
0 ·-(/) 
(/) ·-
E 
(/) 

c 
a 
L... 

1--

-119-

2000 1900 1800 1700 1600 1500 
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Figure 5.17. Ag1JX zeolite after heating at 62JK for 2 hours: 

(a) at ambient temnerat1J.re 

(b) sample (a) after admitting 100 torr C
2

H
2 

(c) samnle (b) after evacuation for 5 minutes 

(d) sa.mnle (c) after evacnation for a further 
25 minutes. 
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Values of v(c=c) observed in the infrared 

spectra of adsorbed C2H2 and C2D2 

Sample AgA v
2
/cm -1 

S(2,54J)H 1912 

1955 

S(2,54J)D 1710 

1740 

S(2,67J)H 1912 

1955 

S(2,67J)D 1710 

1740 

Sample Ag1JX v 2/cm -1 

S(2,54J)H 1915 

1950 

S(2,62J)H 1915 

1950 
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could be explained as a consequence of the different 

pretreatment conditions in each case. As is explained in 

Chapter IV, the structure and the adsorption behaviour of 

silver exchanged type A zeolites are a function of pretreatment 

conditions. 

The band observed at 1380cm-1 in S(5,2,673)H is not 

observed in S(5,2,673)D (Figures 5.14c and 5·15c) which 

indicates that this band is not due to cation movements, but 

is due to an adsorbed species. It is not observed in 

S(5,2,673)D because this band could be shifted to a frequency 
-1 . below 1250cm and hence 1s masked by the strong absorption 

8 -1 of the zeolite framework. The appearance of the 13 Ocm band 

in S(2,673)H which does not disappear even after evacuation 

for 30 minutes at room temperature (Figure 5.14d), could be 

due to C2H2 complexation with the Ag cation, such that, Ag is 

bonded to both the carbon atoms. As we shall see later, no 

other bands observed in the spectra of samples S(2,673)H' 

S(5,2,673)H and S(30,2,673)H (Figures 5·14b - d) can be 

assigned to this complex. 

Comparing S(5,2,543)H (Figure 5.12c) and S(5,2,543)D 

(Figure 5·13c), a new band is observed at 1460cm-1 which is 

not found in the spectrum of the background. This could be 

due to cation movements during the adsorption of the gases 

since this band is independent of isotopic substitution. 

( ) 8 -1 Apart from the bands due to v C = C , a band at 1 20cm 

is also observed in all of the spectra of the samples studied 

after admitting the gases (Figures 5.12b- 5·17b). Unlike 

the v(C =C), this band remains after 5 minutes (Figures 5.12c 

- 5·17c) or even 30 minutes (Figures 5.12d - 5·17d) evacuation 

8 -1 . at room temperature. The 1 20cm band appears to be sl1ghtly 

more intense in the spectra of AgA relative to the spectra of 

Ag13X zeolites. In AgA 3eolite, this band mav be due to the 
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v(C~C) of acetylide (refer to later section). 

As we have shown, at least part of the C2H2 (C2D2 ) loses; 

hydrogen(deuterium) to form OH(OD) groups .. Another 

possibility for the liberated hydrogen exists; this hydrogen 

(or deuterimn) could combine with residual water molecules 

in the zeolite cavities to form H
3

o+(BH2o+) ions. For the 

acetylene adsorbed onto AgA samples, bands are observed at 

-2500 and 1686cm-1 for S(2,543)H (Figures 5.8 and 5.12) and 

at 3600, 2376, 1920 and 1694cm-1 for S(2,543) 0 (Figures 5·9 

and 5·13) which may be dU:e to H
3

o+ or DH2o+ ions. For the 

acetylene adsorbed onto Ag13X .. samples, the band due to the 

deformation mode (v2 ) of water is shifted to a lower frequency 

(1640cm-1 ) compared with the spectrum of the background 

(1655cm-1 ). The acetylene could be hydrogen bonded to the 

water molecules since it has been shown in reference 33 that 

the deformation mode of water is shifted to lower frequency 

when it is hydrogen bonded to other molecules. Acetylene was 

found to weakly hydrogen bonded to the water molecules 

. 64 - 1 6 - 1 because th1s band at 1 Ocm goes back to 1 55cm after 

evacuation for 5 minutes at room temperature (Figures 5.16c 

and 5.1 ?c). 

VI. Discussion of results 

~ydroxyl and hydronium ions 

As we have already shown, the appearance of the OH band 

at 2592cm- 1 and OD band at 2643cm- 1 shows that at least part 

of the adsorbed C2H2 or c2n2 loses its hydrogen or deuterium 

atoms to form OH or OD groups with the framework oxygen. 

Another possibility is that the hydrogen or deuterium combines 

with zeoli tic water to form H
3

o+ or DH
2

o=r ions. 

There is some controversy as to the structure of the 
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hydronium ion and the bands that occur in its infrared 

spectrum20- 24 . There are two basic structures proposed for 

hydronium ions. One is pyramidal (CJv symmetry) and its 

normal modes are shown in figure 5.18. All four modes (2A1 + 

2E) of the hydronium ions are predicted to be infrared active. 

The second proposed structure is planar (c 3hsymmetry) would 

possess only three infrared active fundamentals. Figure 5.18 

+ shows the normal modes of H3o adopting a c3v symmetry. 

In table 5·5 is given the summary of the results of 

infrared studies of hydronium ions assigned by different 

authors. From table 5.5, it is obvious that one cannot ascribe 

fixed stretching frequencies 

according to Basile et a120 , they are a function of donor­

acceptor distancffi in the hydrogen bonds formed. Basile et 

al also suggested that is impossible to "fingerprint" H 0+ 
3 

except for the appearance of the v 4 (E) and v 2 (A1 ) bands at 

- 1700 and -1 . - 1100cm , respectlvely. 

it is not easy to observe the band at 

the formation of H3o+ is most strongly 

presence of the band at - 1 ?OOcm - 1 . 

In the case of zeolites, 

-1 - 1100cm and hence 

implied by the 

From the spectra of AgA + C2H2 (C 2D2), the bands for 

the hydronium ions can be assigned as given in table 5.6. 

At this stage it is clear that at least part of the adsorbed 

acetylene loses its hydrogen (or deuterium) atoms to form 

OH (or OD) groups with framework oxygen, and hydronium ions 

with residual water molecules. 

Formation of acetylides, HC = CAg 

If acetylene loses one or two of its hydrogen or 

deuterium atoms then either HC - CAg or AgC = CAg could be 

formed . The formation of AgC - CAg is unlikely because this 

mrnplex is explosive in a dry medium27 and the discussion 





Table 5. 5 Summary of the frequencies of the normal modes of H
3

o+ ion on various substrates 

(cm- 1 , infrared data). 

Substrate v 1 ( A1 ) v
3 

(E) v4 (E) v2 ( A1 ) Ref. 

(H
3

o) 2PtCl6 33BD- 3150 2650-2468 1705-1670 1150-1050 26 

H
3

o+Cl- 3020 3800-3400 1600 - 24 

+ - * H
3

o CH
3
c6H4so

3 2500 - 3500 1665 1120 20 

~- - ~-

*General range of v1 (A1 ) and v
3

(E). 

I 

I 

-

I 
p 

N 
\.)'\ 

I 
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Table 5.6 Assignment of bands due to H
3

o+(DH20+) ions in 

the infrared spectra of AgA + C2H2 (C 2D2 ) (cm-1 ) 

Assignment + ( -1) H
3

o em + ( -1 ) DH2o em 

OH stretch (DH
2

0 +) - J600(vw) (?) 

OD stretch (DH
2

0+) - 23?6(vw) 

v1 (A1 ) or v
3 

(E) 2500(wb) 1920(wb) 

u4 (E) 1686(s) -

2 v
2 

( 2A1 ) or v4 (E) - 1694 ( s) 
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that follows will give more reasons as to why the complex 

formed is actually HC = CAg. 

If HC =: CAg were formed, then vibrations are expected for 

v( C-H), v( C =C) and v ( C-Ag) in the infrared spectrum of the 

sample. In table 5· 7 is shown the assignments of v( C- H! 

v(C =C), tJ (C-H) and v(C-M) of some alkali metals11 and 

silver27 acetylides. 

The v(C-Ag) would not be observed in our data because 
I -1 it would occur below 1250cm and hence be masked by the 

strong absorption band of the zeolite. A band due to v(C:: 

C) of acetylides cannot be assigned with certainty in our 

spectra. In the spectra of all the AgA + C2H2 samples, two 

bands due v(C=C) are observed at 1955(1740) and 1912(1710)cm-1 . 

Both these bands are assigned to the v( C ::C) of the n bonded 

acetylene complexes. This will be discussed further in the 

following section. In all bf our spectra of AgA + C2H2 (D 2 ),there 

8 -1 . is a band at 1 20cm which is not removed on evacuat1on for 30 

minutes. We assign this band to v ( C ::c) of acetyl ide. 

As can be seen in table 5.7, the v(C ::C) bands of alkali 

metal acetylides is indeed very weak in the infrared spectra 

except for K(Ag(C 2H2 ) 2 ). The latter complex has a strong 

v(C ::C) band because it has two acetylenes per molecule. It 

has been found that with different number of acetylene molecules 

in a complex, the v ( C =C) values differ38 . The v ( C-H) of 

acetylides are also not observed in the spectra of our samples. 

Once again, the reason being this band is generally very 

weak. 

The AgA zeolite samples were heated after evacuating for 

30 minutes at room temperature. It was found that at elevated 

temperature, a new band appears at 1585cm-1 which could be 

~signed to the formation of coke. Infrared studies of 

activated carbon and soot samples by Unger and Gallei28 show 
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Table 5.7 Reported infrared frequencies of some 

l . 11,27 acety 1des 

Types of vibrations(cm-1 ) 
Cor.rpounds 

lJ(C-H) v(C-H(D)) V(C C) v(C-M) 

CH::::CLi? 32?0(vw) 1980(w) ? ?OO(m) 4?5(vs) 

3220(m) 1895(w) 

CH::::CLi6 32?0(m) 1980(w) 69 5 ( m) 495(vs) 

3225(m) 1890(w) 

CH::::CNa 3215(m) 1865(w) 64o(s) -

CH::::CK 3295(vw) 1850 (m) 625(s) -

3225(m) 

CD:=CLi? 2450(w) 19?5(s) '? - 4?5(vs) 

K(Ag(C2H) 2 ) 3205(m) 1934(s) - -

' 
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that a band at 1585cm-1 is due to the C::::·C stretching 

vibration of microcrystalline graphatic carbon structures, 

which are present in polycyclic aromatic compounds. The 

band at 1585cm-1 relating to coke formation is also found by 

Eisenbach and Gallei 29 in their studies of hexene - 1 and 

n - hexane adsorbed at elevated temperatures onto calcium 

and ammonium exchanged type Y zeolites. 

Formation of n-bonded acetylene complexes 

In all of the spectra of AgA + c 2H2 (C 2D2 ) and Ag13X + 

C
2

H
2 

systems (Figures 5·12b-5.17b), two bands which are due 

to v(C =c) are observed and these data are shown in table 5,4, 

The measured isotopic ratios of the v ( C = C) in AgA + C2H2 

(1912,1955) ___, AgA + c 2D
2 

(1710,1740) cm- 1 is o.89t which agrees 

well with the isotopic ratio of the v ( C :: C) in the gas phase 

(0.89). The appearance of v(C=C) in the spectra of the 

adsorbed species indicates a lowering in symmetry of the 

molecule s1nce v(C =c) is forbidden in the infrared spectrum of 

the gas phase. All the v ( C =C) values in our measurement 

decrease on adsorption compared to the gas.phase (1974cm- 1 ). 

This clearly favours a 'side-on' interaction, that is, the 

acetylene is ~-bonded to the cation. Our conclusion is in 

agreement with the data of x~ray structure determination of 

Seff et al5-B and the infrared studies of Tam et al1 5,30, 

Since we observe two v(C=C) bands in our AgA + C2H2 and 

Ag13X ·r C
2

H2 spectra, we assign the v ( C:::C) bands to acetylene 

adsorbed at two different sites. Yates et al34 in their studies 

of ethylene adsorbed onto Ag13X zeolites also found two different 

sites for the adsorbed ethylene. In our previous work of ethylene 

adsorbed onto AgA zeolites (Chapter IV), we also observ,ed that 

ethylene was ad9orbed at two different sites 

The v(C-H) of this n-bonded acetylene complex can be 
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observed in samples S(5,2,543)H and S(5,2,543)D (Figures 5· Be 

and 5· 9c ). In sample S(5,2,543)H' t'hese bands which occur 

in the region 3400-3100cm-1 are very weak and cannot be 

resolved whilst in sample S(5,2,543)D' there is a band at 

4 -1 ( ) 25 Ocm which can be assigned to v C-D of the n-bonded 

acetylene complex. These bands can be removed after evacuating 

for 30 minutes at room temperature, S(30,2,543)H and 8(30, 

2,543)D in figures 5.12d and 5·13d ), indicating that 

acetylene is weakly held. 

No bands due to v(C-H) are observed in samples S(5,2,673)H 

and Ag13X because the samples are highly absorbing in this 

region. For Ag13X + c2H2, acetylene is believed to be weakly 

hydrogen bonded to the residual water since the deformation 

mode of water at 1655cm-1 is shifted to a lower frequency, 

1640cm-1 on admitting acetylene (Figure 5.16b and 5·17b). 

On evacuating these samples for 5 minutes, however, the 

deformation mode of water returns to its original position 

at 1655cm-1 (Figures 5.16c and 5·17c). 

In table 5.8 is given a summary of the result 

together with the assignment for C2H2 and c
2
D2 adsorbed on 

AgA zeolite. 

VII Conclusion 

Unlike other zeolite + C2H2 systemspreviously studied, 

two types of acetylene complexes were found in the present 

studies of AgA + C2H2 . The two complexes formed were the 

acetylides, HC = CAg and the cation- acetylene n bonded complex. 

The former finding is corroborated with the finding of OH 

and H
3

o+ groups which did not disappear on evacuation at 

room temperature. 

On heating the sample after evacuation, coke was formed 



Table 5.8 

3592 

3400-3100 

1955 

1912 

1820 

1686 

1460 
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Summary of the vibrational bands (cm- 1 ) and 

their assignments for acetylene adsorbed on 

AgA zeolite 

2643 

2500 

3600 

2376 

1740 

1710 

1820 

1460 

v ( 0-H) 

v(O-D) 

Assignment 

v ( C-H )} of n-bonded 

v(C-D) acetylene species 

} 

stretching modes of 

DH 0+ 
2 

} 

v ( C:::C) of n-bonded 

acetylene on two different 

sites 

v(c:::c) of acetylide 

2v
2 

or v4 of DH
2
o+ 

+ v4 of H2o 

framework vibration 

associated with the cation 
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indicating that the acetylides had decomposed. The finding 

of the cation-acetylene n bonded complex is in agreement with 

those of other authors on a range of zeolites5-B, 13, 15. In 

Ag13X + C2H2 , the acetylene was found to be weakly hydrogen 

bonded to the residual water. 

We also observed that, like ethylene, acetylene was 

adsorbed at two different sites in both the Ag1JX and AgA 

zeolites. This finding is in agreement with the conclusion 

reached by Yates et al34 in their infrared studies of ethylene 

adsorbed onto Ag1JX zeolite, and the conclusion reached by us 

in the infrared studies of ethylene adsorbed onto AgA zeolite 

(Chapter IV). Our conclusion, however, is not in agreement 

with the conclusions reached by inelastic neutron data of 

acetylene adsorbed onto AgA zeolite13. These authors found 

only one site for the acetylene adsorbed onto AgA zeolite. 
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CHAPTER VI 

ADSORPTION OF SMALL MOLECULES ONTO Cu 11 AND Cu 1Y ZEOLITES 

I. Introduction 

N . h b . d C II umerous studles ave een carrle out on u 

exchanged zeolite type Y (Cu
11

Y) over the past few years and 

it has already been shown that Cu11Y exhibits catalytic 

. . . "d t" 1 -5 k" 6 d . . t" actlvlty ln oxl a lOn , crac lng an lsomerlza lon 

reactions 7. This interest in reactions catalysed by Cu
11

Y 

zeolite has provided the motivation for our work. Since few 

infrared studies on Cu 1Y zeolite, in the absence and presence 

of adsorbates, have been reported, we considered it natural to 

extend our work to this zeolite. 

We have prepared samples of Cu11
Y with different degrees 

of exchange to observe the following: (a) the difference in 

infrared spectra (KBr disc) of Cu 11
Y zeolite wit~ increasing 

C II l . u oadlngs, (as will be discussed in Section V(i)), and (b) 

the effect of increasing Cu 11 content on the adsorption 

behaviour of ethylene. 

Cu 1Y zeolite was prepared as described by Huang8 . This 

process involves the reduction of Cu 11Y zeolite in a carbon 

monoxide (CO) atmosphere with pre-adsorbed ammonia. The 

preparation of Cu
1

Y zeolite will be discussed in detail ln the 

experimental section and the infrared spectra discussed in 

section V (iii). 

We have adsorbed hvdrocarbons onto Cu
11 

and Cu
1

Y zeolites 

8 nd compared their adsorntion behaviour. As a consequence of 

the study of the reduction process (Cu 11Y ~ Cu 1Y), ammonia 

and CO were also adsorbed onto Cu 11Y zeolite individually. 

Previous studies of adsorbed c2H4 and C2H2 will not be 

discussed here since full discussions have been given in chapters 

IV and V. 
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II. Structure of Cu
11

Y zeolite 

(a) Hydrated Cu 11NaY zeolite 

An x-ray diffraction study of hydrated Cu 11NaY zeolite 

has been carried out by Marti et a1 9 . Three samples of the 

II following compositions were used; (sample 1} Cu
7 

Na
29

H
13

Y, 

II II (sample 2) Cu12Na21 H11 Y and ~ample 3) Cu
15

Na16H10Y. Table 6.1 

summarizes the locations of the cations and water molecules in 

the three samples. From this table, it can be seen that all 

+ c 2 + . l t d . l 1 b t the Na and u catlons were oca e ln samp e u some 

cations, mainly copper, were not located in the supercage for 

sam-ples 2 and 3· It was suggested that this was due to their 

higher tendency towards hydration and greater mobility. 

While there is no published single crystal x-ray analysis 

on hydrated Cu
11

NaY, there is an x-ray study of the Cu11 

f . . t 10 exchanged auJaSl e 

close to 100% exchanged. 

In this study, the sample used was 

Copper cations were found to be 

rather mobile and mainly bound to water molecules. Only 6.3 

Cu 2 + cations per unit cell could be located(at site I~ and 

they were found to be weakly bonded to the zeolite framework. 

Other work on hydrated Cu 11NaY zeolite has been carried 

out by Soria et a111 •12 using electron spin resonance (ESR). 

A number of samples rane:ing from a minimnm of n. 01 

Cu
2 + per unit cell (0.2% exchanged) to a maximum of 19.5Cu2 + 

per unit cell (70% exchanged) were used. Two different types 

of copper cations were observed in their samples; one, a 

2+ distorted octahedral complex of (Cu(H
2

o)
6

) ,was moving 

freely in the large cavity while the other, Cu 2 + cations,were 

localized on the walls of the cavity. 
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Table 6.1 
+ 2+ Summary of the locations of Na 1 Cu 1 and H2o 

molecules in hydrated CuNaY zeolite9 

~ 
1 2 3 

II II II 
Cu7 Na29H13y Cu12Na21H11y Cu15Na16H10y s 

I 4.5 Na+ 3·6 Na+ o.8 Na+ 

I' 14.9 Na+ 13·5 Na + 
15·5 Na + 

II 1.9 Cu 2 + 1.5 Cu 2 + 3·0 Cu 2 + 

II' 15·5 H
2

0 15.6 H2 0 14.9 H0 0 
L 

9·7 Na+ 2.4 Na+ -
III 

5·4 Cu2 + 8.7 Cu2 + 6.5 Cu2 + 
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(b) Dehydrated Cu
11

NaY zeolite 

Gallezot et al1 3, 14 have carried out x-ray diffraction 

studies of dehydrated Cu 11NaY zeolite. II Two samples, Cu16Na
24

Y 

d C I I~.T H " t - . an u12~a5 _ 
27

r were s ud1ed by them. II 
Sample Cu16Na 24Y was 

first heated in oxygen at 773K and then evacuated at the same 

temperature under vacuum (10-§ torr) for 12 hours while the 

sample cuf~Na5H27 Y was also heated in oxygen and treated under 

vacuum for 12 hours at 57JK. Maxwell and De Boer10 ' 1 5, on the 

other hand, have reported the results of a single crystal 

x-ray analysis of the dehydrated Cu
11 

exchanged faujasite, 

Cu~§(Al0 2 ) 56 (Si0 2 ) 136 . The sample was heated to 423K for 20 

hours. The cation distributions in all the three samples 

studied are summarize in table 6.2. 

In sample cut~Na24Y, the Cu 2 +ions at site I were 

coordinated to six framework oxygen atoms with a Cu 11-o 

distance of 2.535~. The site I' Cu 2 + ions were coordinated to 

three framework oxygens (Cu11-o = 1.991~) and one non­

framework oxygen (Cu
11-o = 2.55~). Cation distribution and 

cation coordination are quite similar in the two dehydrated 

samples Cut~Na24Y and cut~Na5H27 Y, with the cupric ions 

exhibiting a greater affinity for site I' ; in this nasi tion 

they can be bonded to three framework oxygens. 

In sample Cu~§(Al0 2 ) 56 (Si0 2 ) 136 , however, most of the 

cations at site I' were strongly bound to the framework 

oxygen and a smaller number of cations were less firmly 

bound, presumably interacting with residual water 

(Figure 6.1). The cation-framework coordination geometries at 

sites of type II and II' are similar to those of sites I and I'. 

Copper ions at site II' and IIA are strongly bound to the 

zeolite framework and a smaller number of cations at site liB 

are less firmly bound. 
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Table 6.2 S . f N + Cu2 + . ummary of the locat1ons o a and 1n 

dehydrated zeolite samples10 , 13-1 5 

Samples 1 2 3 
II II II 

Sites 
Cu16Na24Y Cu12Na5H27y Cu28(Al02)56' 

(Si02)136 

I J.2 Cu 2 + 1·7 Cu 2 + 1.5 Cu 2 + 

I' 11.1 Cu 2 + 9·9 Cu 2 + 14.2 Cu 2 + 

II 20.5 Na+ 8.0 Na+ 5·3 Cu 2 + 

II' - - o.s Cu 2 + 

III - - J.J Cu 2 + 
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Figure 6.1. Perspective view showing the coordination of 

Cu 11 (I), Cu11 (I'A) and Cu11 (I•B) cations to the hexagonal 

prism in dehydrated copper(II) exchanged faujasite 10 . 

cu o:n 

::::-. --. --

Figure 6.2. Perspective view showing the coordination of 

Cu11(II' ), Cu11 (IIA) and Cu11 (IIB) cations to the single 

6-membered ring in dehydrated copper(II) exchanged faujasite10 . 
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Electron paramagnetic resonance (EPR) studies on copper 

exchanged type Y zeolite have been carried out by several 

16-18 18 II 
workers . Morke et al used two samples, cu4 . 5Na44 . 5Y 

II and Cu18 . 5Na16 . 5Y, in their studies 9oth of which were 

dehydrated at 87JK. The copper cations were distributed 

among three different locations, sites I', II and a cluster 

in the supercage. 

copper cations per unit cell were found in sites I', II and the 

cluster, respectively. 

and 5·5 copper cations per unit cell were located at the three 

different locations, sites I', II and cluster, respectively. 

Schoonheydt and Velghe19 have calculated the distribution 

f C II . f o u 1ons rom studies of electrical conductivity and 

they found that for samples, 
II II 

cu
3

. 4Y and Cu11 . 6Y, all the 

coppercations were located in the small cages. However, for 

II sample Cu20Y, they found that approximately 11-14 copper cations 

were located in the small cages and approximately 7-10 copper 

cations per unit cell were found to be in the supercages. 

Soria et al11 , 12 studied the dehydration of copper 

exchanged Y zeolites with several copper contents using the 

ESR technique. The samples were evacuated and heated at 

various temperatures up to 87JK and their ESR spectra recorded 

at different temperatures during dehydration. In general, 

they found that the copper cations had distorted octahedral 

(site II), square-pyramidal (site II') and possibly distorted 

trigonal (site I') environments. 

In the samples evacuated at low temperatures only one 

Cuii species, in a moderately distorted octahedral environment, 

was located. These cations at site II were coordinated to three 

water molecules and three framework oxygens. On further heating 

the samples, the cations at site II lose water gradually, and 

so~eof them enter the sodalite cage. It was suggested that 
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these cations could occupy sites II' or I' with square-

pyramidal coordination. In the final dehydrated state the 

copper remained mainly near sites I and II, and some water was 

still retained rigidly inside the sodalite units. On 

increasing the copper concentration, coupling of the copper 

ions was observed between one cation in the supercage and 

another in site I', with H
2
o, OH or o2 - as the bridging 

ligand. The authors12 suggested that if the coupling was 

between two copper ions at sites I' in the same sodalite unit, 

linked by an o2 - bridge, then the environment of the cations 

must be of distorted trigonal symmetry. 

III. Previous studies of ammonia and carbon monoxide 

adsorbed onto zeolites 

(a) Ammonia 

Single crystal x-ray analyses of ammonia adsorbed onto 

NaA and AgA have been carried out by Seff et al 20 - 22 . The 

structures of NaA and AgA have been discussed in chapters II 

and IV, respectively. The NaA sample was dehydrated at 62JK 

and 10-5 torr for 24 hours and allowed to sorb 32 molecules 

per unit cell of dry ammonia at 604 torr. 

In figures 6.J and 6.4 are shown stereoviews of the 

structure of NaA + NH
3 

and i;he NH
3 

is located iD hoth the 

sodalite unit and the large cavitv. Of the thirtv-two 

ammonia molecules per unit cell, twelve were found in the 

soda.lite unit and twenty in the large cavitv. Eight of the 

twelve ammonia -:nolecules ln the sodali te 1mi t were loc8ted 

at N(l) (Fig~re 6.J) and hence coordinate with the cations 

at S2' (N(1) - Na(S2') ,:, 2. S1X). Four more ammonia molecules 

(at N(2)) hydrogen bond to these eight ammonia molecules and 

to framework oxygens (N(i)- N(2) == 1.8JL N(2) _ O(J) == J.ill). 
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Figure 6.J. A stereodrawing of the sodalite unit in zeolite 

A t . . t l. . l l 20 con a1n1ng we ve ammon1a mo ecu es . Na(1) refers to site 

S2' in the text. 

Figure 6.4. A stereodrawing of the large cavity in zeolite A 

containing twenty ammonia molecules20 . Na(1) and Na.(2) refer 

to sites S2* and Si in the text respectively. 
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Of the twenty ammonia molecules in the large cavity, 

eight ammonia molecules (at N ( 3 )} were found to coordinate with 

the eight sodium ions at S2* ( N(3) - Na(S2*) = 2.2~; N(3) -

N(4) = 2.5~; N(3) - 0(3) = 3.6~). The remaining twelve ammonia 

molecules hydrogen-bond to these eight ammonia and to other 

framework oxygens and may loosely coordinate to the cations 

at sites SI (N(A)- Na(SI) = 2.9R) (Figure 6.4). 

Seff et a1 21 carried out another structure determination 

with fewer adsorbed ammonia molecules per unit cell by exposing 

the dehydrated NaA zeolite to only 12 torr of ammonia, as opposed 

to the 604 torr used in the earlier experiment. It was found 

that even at a loading of as few as eight ammonia molecules 

per unit cell, the sorbed molecules were not predominantly 

found at a single type of sorption site. The authors suggested 

that this is perhaps because all three kinds of Na+ compete 

favourably at room temperature for ammonia association, all 

at sites where further hydrogen bonding could occur to 

framework oxygens. 

A single crystal x-ray study of ammonia adsorbed onto 

+ vacuum-dehydrated partially decomposed fully Ag -exchanged 

zeolite A
22 

demonstrated the formation of the inorganic comulexes 

+ triazane and cyclotriazane with the Ag cations in the cavities 

(Figures 6.5 and 6.6). The AgA crystal was first dehydrated 

for 60 hours at 673K before being treated with a continuous 

flow of dry ammonia at 765 torr and 296K for 36 hours. 

Three triazane (N
3

H
5

) molecules per sodali te cage and 

four cyclotriazane (N
3

H
3

) molecules per supercage were found 

to complex with Ag+cations. The three triazane molecules 

complexed with two Ag+ cations in the sodalite unit (S2') as 

, shown in figure 6.5 and were stabilized further in the sodalite 
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Figure 6. 5· 'The Ag2 (N3H5 )~+ cation in the sodalite unit 22 . 

Selected bond lengths are: Ag(2)-0(3) = 2.39(3), Ag(2)-N(2) 

= 2.45(2), and N(2)-N(3) = 1.6(1)JL Some bond angles are: 

0(3)-Ag(2)-0(J) = 107(1), N(2)-Ag(2)-N(2) = 65(1), Ag(2)­

N(2)-N(3) = 1.34(5), and N(2)-N(3)-N(2) = 107(8) 0
• Ag(2) 

refers to site S2' in the text . 

... 

+ Figure 6.6. One of the four Ag(N
3

H
3

) complexes in the 

large cavity22 Selected bond lengths are: Ag(1)-0(3) = 

2.46(2), Ag(1)-N(1) = 2.59(5), N(1 )-N(1) = 1.49(8), N(1)­

N(4) = 2.53(12), and N(4)-0(1) = 2.86(5)1i. Ag(1) refers 

to site S2* in the text. 
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unit by the hydrogen bonding of all five hydrogen atoms to 

framework oxygens. 

One of the four equivalent cyclotriazane moleculesthat 

complex with the Ag+ cations in the large cavity (S2*) is 

shown in figure 6.6. Further stabilization of the cyclotriazane 

molecule was achieved by hydrogen bonding to an ammonia 

molecule at N(4), which in turn hydrogen bonds to the zeolite 

framework. 

The formation of these two novel species was further 

confirmed by mass spectroscopic analysis of the vapour phase 

above the zeolite from 298 to 36JK. 

The EPR spectra of cupric-ammonia complexes in zeolites 

X and Y have been obtained by Varncnt et al 23' 24 while the 

adsorption-desorption isotherms of ammonia in copper (II) Y 
;n; 

zeolite has been measured by Huang and Vansant-· . 

II 
In the EPR measurements, two samples, Cu

3
.

5
Na48 (Al0 2 )

55 

(Si0
2

)
39 

and Cu~ 1 Na
77

(Al02 )
85

(Si0 2 )
107 

were used. Each of 

these was dehydrated to 67JK at 10-5 torr before admitting 

ammonia. The authors 23• 24 concluded from their EPR spectra, 

C 2+ . . bl . . that all the u lons were avalla e for complexatlon. Thls 

indicates that a migration of all Cu 2 + ions into the large 

cavities has occurred. In contrast with zeolite Y, it was 

found that upon adsorption of ammonia onto zeolite X, some of 

the original Cu2 + ions remained in the small cavities (probably 

at sites I) and were inaccessible to ammonia. 

Comparing the spectra of the dehydrated and the ammoniated 

X andY zeolites, the authors 23• 24 concluded that the symmetry 

of the Cuii_ammonia complex was square-planar. Both the 

ammoniated samples were evacuated at various temperatures. 

Upon partial desorption at 373K, it was found that the 

symmetry of the complex changed to a distorted tetrahedron. 

This complex was formed by Cu 2 + ion coordinated to three lattice 



-148-

oxygens and one ammonia molecule. Increasing the desorption 

2+ 
temperature to 523-573K caused most of the Cu ions to be 

+ reduced to Cu ions. 

Huang and Vansant 25 used 13, 48 and 7 5% exchanged 

copper (II) Y zeolites in their gravimetric measurements. 

The samples were heated to 673K before being exposed to 70 

torr ammonia at room temperature. Their findings agree with 

the conclusion reached from EPR measurements that the ammonia 

complexes were mainly (Cu(NH
3

)4 )2 + and that migration of the 

Cu 2 + ions from the sodalite cages to the supercages did take 

place on adsorption of ammonia. 

(b) Carbon monoxide 

Infrared studies of CO adsorbed on X and Y type zeolites 

have been reported by Angell and Schaffer26 and Huang27. Angell 

and Schaffer measured the infrared spectra of CO adsorbed onto 

various univalent (Na+ and Li+) and bivalent (Mg2 +, Ca2 +, S 2+ 
r ' 

B 2+ Mn2+ F 2+ C 2+ N.2+ z 2+ a, , e, o, 1, n, C 2+) . and d cat1on 

exchanged zeolites X and Y, while Huang made his measurements 

using AgX and AgY zeolites. Their data is summarised in table 

6. 3· 

All of the samples used by Angell and Schaffer were 

"flash activated" that is they were evacuated briefly at-10-3 

torr, heated to 773K in less than 10 minutes, left at this 

temperature for 3 hours at a pressure of -5 x 10-6 torr, and 

then allowed to cool to room temperature under vacuum. Each 

of the samples was then exposed to 200 torr CO at room 

temperature. Huang, on the other hand, heated his samples to 

a temperature of 623K for AgX and 673K for AgY zeolites, before 

admitting 50 torr CO at room temperature. 

Angell and Schaffer showed that the high wavenumber 

-1 
band at -2200cm was found only in zeolites containing 



Table 6.3 

Cation 

Na+ 

Li+ 

Mg2+ 

Ca2 + 

Sr 2 + 

Ba2 + 

Mn2+ 

Fe 2 + 

Co 2 + 

Ni 2 + 

Zn 2 + 

Cd 2 + 

Ag+ 
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Infrared adsorption frequencies of carbon 

monoxide adsorbed on zeolites 26 • 27 

Frequencies on Y Frequencies on X 

zeolites I em -1 . I -1 zeol1tes em 

2172 2122 2164 2121 

2172 

2213 2170 2205 2173 

2197 2172 2192 2104 

2186 2098 

2178 2105 2172 2112 

2208 2173 2119 2203 

2198 2172 

2208 2172 2119 2204 2170 

2217 2172 2120 2211 

2214 2170 2118 

2209 2170 2120 

2195 2195 
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divalent cations and that the actual frequency depended on the 

nature of the cation and could be correlated with the strength 

of the electric field near it. Bands at -2170 and 

-1 . 
-2120cm found 1n all zeolites were due to CO adsorbed at two 

different adsorption sites. All of these bands disappeared on 

pumping at room temperature indicating that they resulted from 

relatively weakly adsorbed CO. In contrast, Puang27 found 

that CO adsorbed very strongly on AgX and AgY zeolites. 

H 8' 28 . . f CO C Iy uang also stud1ed the adsorpt1on o on u 

zeolite spectroscopically and gravimetrically. Table 6.4 

summarises the C=O stretching frequencies in Cu1Y zeolite and 

. d' t' d 29-32 var1ous coor 1na 1on compoun s . From the adsorption 

measurements 8 , it was shown that CO was adsorbed on specific 

sites on Cu 1Y zeolite, the uptake being approximately one CO 

per Cu+ ion below J7JK and at 100 torr. The infrared study28 

confirmed the adsorption measurements concerning the formation 

of Cu+- CO complexes in zeolites. From table 6.), it can be 

I 
seen that the carbonyl complexes in Cu Y zeolite resemble those 

observed in solution and in coordination compounds. The 

28 author suggested that the a complex due to the carbon lone-

pair electrons could be responsible for the high v(C=O) 

stretching frequency 1n the Cu 1Y zeolite. 

Calorimetric measurements of CO on Cu 11Y (14.), 50.3 and 

80.7% exchanged) zeolites have been carried out by Miwa 

et alJJ-36 . They observed that the cupric ions were found to 

migrate from the inaccessible sites for CO to accessible ones. 

The migration probably takes place from sites II' to II, and 

is dependent on the quarrtllies of Cu 2 + ions 1n the zeolites and 

of CO adsorbed as well as the pretreatment conditions. 

As the degree of copper exchange increases, the rate of 

desorption of CO was observed to decrease while the rate of 

adsorption increased. 
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Table 6.4 Infrared frequencies of v(C=O) in copper(I) 

carbonyls 

Compound or medium v(C=O) Ref. -1 em 

Copper( I) trifluoroacetate 2155 29 

carbonyl-trifluoroacetic acid 

Cu(CO)Cl in water 2112 30 

Cu(CO)Cl in pyridine 2069 30 

Cu(CO)Cl in methanol 2090 31 

( Cu (en) (CO)) Cl 2080 31 

((en)Cu(Co) 2Cu(en))Cl 2 1905 31 

(Cu(CO)Cl(Me 2N=CH 2 ))Br 2080 32 

Cu(I)Y (?5%) zeolite 2160 28 
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With the assumption that the number of CO molecules 

adsorbed on specific sites could be considered as a measure 

of accessible cupric ions, it was determined that, irresnective 

of the degree of exchange, approximately 17-19% of the 

exchanged cupric ions occupy the accessible sites. From the 

heats of adsorption curves, the authors suggested that the 

cupric ions prefer sites I' and/or sites II'. 

IV. Experimental 

Cuiiy zeolites were prepared by ion exchanging 5g of 

NaY zeolite (Union Carbide Corporation) with portions of the 

copper (II) chloride solutions (Fisons Scientific) at 

different concentrations for the stated number of davs 

(1,2,3 or 21) For some of the samples, the temperature used 

was varied (293 or 333K). Table 6.5 summarises the experimental 

conditions used for the preparation of our samples. After 

the exchange, the samples were thoroughly washed with distilled 

water and dried in an oven (333K) before being analysed by 

t · b t' t The number of Cu2 + and Na+ a om1c a sorp lon spec roscopy. 

ion per unit cell were calculated and the results are also 

shown in table 6.5. 

X-ray powder photographs of six of the samples were 

obtained to ensure that no breakdown of structure had taken 

Place. A thermogram of one of the samples was also obtained 

to observe the removal of water from the zeolite cavities. 

For the reduction and adsorption experiments, sample 5 

(73.2% exchanged) was used except in the studv of C2H4 adsorbed 

onto Cuiiy zeolite, wherein two samples, 3 and 10 (?0.4 and 

92.9% exchanged) were used. The flow chart in figure 6.7 

. h d . . . d C II summar1ses t e a sorPtlon exper1ments carr1e out on v and 
I 

Cu Y samples. 

The copper (II) Y sample was pressed into a self supporting 



Table 6. 5 

Samples 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

- - -

Conditions of the ion exchange and the number of Cu2+ and Na+ ions per unit cell. 

Concentration Volume of Time taken Temperature No. of Na + No. of Cu2 + Percentage 
of CuC1 2 .2H20 CuC1 2.2H20 for the K per unit per unit exchanged 

used exchange cell cell 

0.1N 162.2ml 1 day 293 20.9_±0.2 17·5.±0·2 62.5% 

0.1N Excess 1 day 293 16. 2+0. 2 19·9_±0.1 70.4% 

0.1N Excess 2 days 333 16.7±0·2 19.7±().1 70.4% 

o.4N 40.55ml 2 days 293 21. 8_±0. 3 17.1_±0.2 61.1% 

o.4N Excess 1 day 293 15.1.±0.2 20.5_±0.3 73.2% 
o.4N Excess 2 days 333 15.2_±0.2 20.4_±0.2 73.2% 
2.0N Excess 3 days 293 9· 4+0. 4 23.3_±0.3 83.2% 

2.0N Excess 3 days 333 8.4_!6.3 23.8_±0.2 85.0% 
4.0N Excess 21 days 293 4. 6_±0.4 25·7_!0.3 91.8% 
6.6N Excess 3 days 293 4. 0_±0. 2 26. 0_!0. 2 92.9% 
6.6N Excess 3 days 333 4. 6+0. 2 25.7_±0.2 91.8% 
6.0N Excess 21 days 293 96.4% 2. O+O. 2 27.0_±0.1 
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disc and placed in the infrared cell. Dehydration was carried 

out by evacuating the samnle to a pressure of 1 x 10-6 torr 

(or better) and then heating the sample to a temperat11re of 

67JK. Spectra of the sample at room temperature and at various 

temneratures during dehydration were obtained. The sample 

was allowed to cool to room temperature and the snectrum 

recorded before admitting 50 torr of ammonia (BOC snecial 

gases: 99.98% purity). After obtaining the spectrum of the 

samnle with 50 torr ammonia, the gas nhase was t~en removed 

from the cell by evacuating for 5 minutes, and a further 25 

minutes at room temperature. Each spectrum of the sample 

during both processes was recorded. 

The sample was then evacuated and heated to elevated 

temperatures; spectra of the sample at different temperatures 

were again obtained. The samnle was again allowed to cool to 

room temperature and the spectrum recorded. This same sample 

was used to adsorb CO. CO (99.5% purity) obtained from Air 

Products Limited was nassed slowly through a cold tran (77K) 

before being used. The procedure described for the 

adsorntion of ammonia was repeated for CO adsorntion. 

In order to observe the adsorption behaviour of Cu11Y 

zeolite, ethylene (British Industrial Gases Limited) was 

adsorbed onto two different samples (70.4 and 92.9% exchanged1 

each prepared at two maximum bake-out temperatures (453 and 

67JK). Acetylene, obtained from British Industrial Gases 

Limited and purified before use (by nassing through concentrated 

sulnhuric acid to remove the acetone), was also adsorbed 

onto pretreated dehydrated Cu11Y . The adsorption 

nrocedure for both the ethylene and acetylene gases was 

similar to tha.t used for ammonia. 

C Iv l't 8 • . u ~ zeo l e was prepared ln Sltu in the infrared cell 

before the adsorption measurements by the reduction of Cully 
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zeolite using CO with preadsorbed ammonia. Approxiamately 14 

torr of ammonia was first adsorbed onto a dehydrated Cu11Y 

zeolite. CO at a pressure of 

the sample. The whole system 

155 torr was then introduced to 

II 
(Cu Y + NHJ + CO) was heated 

to 5BJK. The reduced sample was then evacuated overnight at 

60JK before being cooled to room temperature. Spectra of the 

sample during each of the above processes were recorded. 

50 torr of acetylene was admitted into the cell C'Jniaining the 

freshly prepared Cu 1Y zeolite and the spectrum measured. 

Gaseous acetylene was removed from the cell by evacuation for 

5 minutes at room temperature and the spectrum of the sample 

re-measured. Following evacuation for a further 25 and 55 

minutes, the spectra of the sample were recorded each time. 

After the removal of gaseous acetylene by evacuating for 

60 minutes at room temperature, CO at a pressure of 40 torr 

was then admitted into the cell and the spectrum of the 

sample recorded. The sample was evacuated for 5 and a further 

25 minutes at room temperature, to remove the gaseous CO, before 

the sample was evacuated and heated to elevated temperatures. 

Spectra of the sample after each evacuation processes and at 

various temperatures during heating were obtained. 

Another freshly prepared Cu 1Y zeolite was used for the 

adsorption of ethylene and the procedure described for the 

adsorption of acetylene was repeated. In summary, the 

ethylene gas was first adsorbed and then removed before the 

adsorption of CO. After removing the CO gas by evacuating the 

cell at room temperature, ethylene was re-admitted into the cell. 

Following this, the sample was evacuated and heated to 

elevated temperature. 
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V. Results and discussion 

(i) Ion exchange 

It was not the major purpose of our work to study the 

2+ detailed ion exchange behaviour of Cu . The project was 

first undertaken to prepare different degrees of exchange of 

cu2 + in zeolite y to be used later for adsorntion 

experiments. 

From the data for Cu2 + ions exchanged with NaY, obtained 

by varying the experimental conditions (concentration, volume, 

time and temperature) as shown in table 6.5, it can be concluded 

h t th . h c 2 + . . y 1' t b h t a e 1on exc ange of u 1ons 1n zeo 1 e e aves 

as one normallv exnects (ChAnter II). 

X-ray powder photographs of six of the samples were 

taken and compared with literature data to ensure that there 

was no breakdown in structure. Thermogravimetric analysis of 

one of the samnles was carried out using a 5°/min rate of 

heating. From the thermogram obtained, a graph of W (where 

W=100 x Weight lost at temperature T/Total weight lost at 

127JK) against temperature was drawn (Figure 6.8). The graph 

in figure 6.8 shows that there is a substantial weight loss on 

heating the samnle from 273 to 57JK. This is most possibly 

due to the removal of water from the zeolite cavities. On 

heating the sample further to 127JK, the weight lost is very 

slight and could indicate structural decomposition. 

Infrared spectra of the KBr discs of some of the 

hydrated samples were obtained. It should be noted that all 

the samples were prepared in the same way (refer to Section IV 

and Table 6.5). The region of interest in this case is the 

hydroxyl region only, and this will be discussed here. The 

spectra of samples 2,5,7 and 12 with 19.9 (70.4% exchanged), 
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20.4 (73.2% exchanged), 23·3 (8}.2% exchanged) and 27.0 (96.4% 

exchanged) Cu 2+ per unit cell are shown in figure 6. 9 (4000-

-1) 2700cm . 

In the infrared spectrum of the ::;ample with 19. 9 Cu 2 + 

per unit cell (Figure 6.9a), a broad band at approximately 

3550cm- 1 is observed, which could be due to the stretching 

mode of water. The deformation mode of water is observed at 

1 2+ 1630cm- . As the amount of Cu per unit cell increases, three 

sharp bands at 34 50, 3360 and 3320cm-1 appear (Figures 6. 9c and 

d). In these spectra, the band at 3550cm-~ which was a 

broad intense band in the spectrum of sample 2, is observed 

as a shoulder. The decrease in intensity of the 3550cm- 1 band 

is also accompanied by the decrease in intensity of the 1630 

cm- 1 band, which is the deformation mode of water. This could 

indicate that the number of water molecules in the zeolite 

't' d . h . . c 2 + t t cav1 1es ecreases w1t 1ncreas1ng u con en . 

The decrease in the amount of water molecules in the zeolite 

cavities could only be due to the formation of copper 

hydroxides or/and bridging hydroxyl copper complexes. This 

is clearly indicated by the increase in intensities of the 

3450, 3360 and 3320cm-1 bands in the spectra of Cu11Y zeolite 

with increasing Cu 2 + content (Figure 6.9), which we will 

discuss presently. 

The band at 3450cm- 1 is assigned to the v(O-H) of the 

bridging hydroxyl copper complexes, while the bands at 3360 

and 3320cm- 1 could be due to v(O-H) of copper hydroxide. 

Table 6.6 summarizes the v(O-H) of a series of bridging 

copper complexes studied by Ferraro and Walker39, If we 

examine table 6.6 carefully, we can see that all except two 

(when X= Phen; Yn = Br
2

, (Clp4) 2 ), of the v(O-H) of the 

bridging copper complexes studied by Ferraro and Walker occur 

at a frequency below 3400cm-1 . Note that the complex 
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Table 6.6 The infrared absorption frequencies of v(O-H) 
OH\ 39 

in copper complexes, (XCu( /CuX)Yn.ZH2o 
OH 

X Yn v(O-H) 
-1 em 

Bipy so4 3400 

Bipy I2 3430 

Bipy Br2 3440 

Bipy (Cl04 )2 3440 

Bipy PtC14 3550 

Bipy Cl 2 3430 

Bipy (SCN) 2 3515 

Bipy ( PF 6) 2 3601 

Ph en so4 
3400 

Ph en I2 3480 

Ph en Br2 3350 

Ph en (Cl04 )2 
3400,3340 

Ph en Cl 2 
3400 

Ph en (SCN) 2 3525 
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( (Phen)Cu(OH)Cl04 )
2 

is the only anhydrous complex studied, 

hence, the bridge OH stretching vibration is a doublet at 

3400 and 3340cm-1 (Table 6.6). Our assignment of the v(O-H) 

of bridging hydroxyl copper complexes is thus in accord with 

the assignment given by Ferraro and WalkerJ9. Support for 

the assignment of r(O-H) in copper hydroxide is given by 

Tarte40 , who found v(O-H) for Cuso4 .3Ct;(OH) 2 at 3390 and 

-1 )270cm . 

Further evidence for our assignments is provided by 

the observation of three bands at 925, 865 and 830cm-
1 

in 

the spectra of samples 7 and 12, which could be due to 

8(0-H) of bridging hydroxyl copper complex or copper hydroxide. 

Ferraro and Walker39 found that the 8(0-H) of the complex 

((Bipy)Cu(OH)) 2so4 .5H2o occurs at 955cm- 1 . In addition, the 

8(0-H) in basic copper compounds are reported by Tarte40 to 

6 -1 be in the region 1000- 77cm . 

(ii) Dehydration of Cuiiy zeolite 

Spectra of Cuiiy zeolite (73.2% exchanged) obtained at 

various temperatures during dehydration are shown in figure 

6.10. In the spectrum of the sample at room temperature 

(Figure 6.10a), we observe two sharp bands at 3450 and 3360cm- 1 

which we may assign to the v(O-H) of bridging hydroxyl and 

copper hydroxide. The evidence for these assignments has 

already been given in part (i). An intense band observed at 

6 -1 . 
1 50cm 1s due to the deformation mode of water. Another 

band observed at 1465cm-1 is correlated with cation movements, 

as we shall show later. 

As the sample was heated to 493K (Figure 6.10b), the 

3450 and 3360cm-1 bands become slightly more intense compared 

with the spectrum of the sample at 293K and three new sharp 

bands appear in the hydroxyl region, at 3740, 3640 and3550cm- 1 . 
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These three new sharp bands are more prominent in the 

spectrum of the sample at 55JK (Figure 6.10c). A detailed 

discussion of the infrared spectra of zeolites ln the hydroxyl 

region is given in chapter II. The J740cm- 1 band may be due 

to Si-OH while the 3640 and 3550cm-1 bands are due to surface 

hydroxyl groups. The band which is due to the deformation 

mode of water reduces markedly in intensity on increasing the 

temperature showing that some of the water has been removed 

from the cavities. Two very weak bands armear at 2200 ~md 

2100cm-1 whi9h must be due to framework vibrations. 

As the sample was heated further to 6JJK (Figure 6.10d) 

bands, which are due to v(O-H) of bridging hydroxyl and copper 

hydroxide, disappear and most of the water has been removed 

from the cavities as shown by the low intensity of the 1650cm-1 

8 -1 band. A band observed at 15 Ocm could be due to a framework 

vibration. It was not observed in the spectra of the sample 

at room temperature and 49JK, perhaps, because it was masked 

by the broad band of water. When the sample was heated to 

67JK (Figure 6.10e), most of the bands in the hydroxyl region 

are removed except the J740cm- 1 band which has been assigned 

to Si-OH. 

(iii) Study of the reduction of Cuii to CuiY zeolite 

Cuiiy zeolite (?J.2% exchanged) was reduced by CO with 

preadsorbed ammonia. Figures 6.13 and 6.14 show the spectra 

of dehydrated Cuiiy zeolite, in the presence of both the gases, 

at different temperatures during the reduction process. In 

trying to understand these complicated spectra we performed 

experiments on dehydrated Cuiiy zeolite in which ammonia was 

adsorbed and then remo~ed before the adsorption of CO i.e. 

the interaction between each of the gases and the zeolite was 

studied separately. 
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In figure 6.11a is shown the spectrum of Cuiiy zeolite 

at room temperature after heating to 673K for 2 hours while 

in figure 6.11b is shown the spectrum of the same sample after 

admitting _50 torr ammonia at room temperature. Upon 

adsorption of ammonia, we observed new bands at 3600 (sh), 

3250 (very broad and intense), 1625, 14 50 and some very weak 

-1 6 -1 bands around 2100cm . The band at 3 OOcm could be due to 

v(O-H) of ammonia hydrogen bonded to the framework oxygens. 

As explained in section III, in the single crystal study of 

ammonia adsorbed onto NaA20 • 21 , ammonia was found to be 

hydrogen bonded to another a~monia and also the framework 

oxygens. 

6 -1 The strong bands at 3250 and 1 25cm are due to the 

stretching and deformation modes of NH
3

. -1 However, the 3250cm 

band is very broad, indicating either that hydrogen bonding 

has occurred or that there might be some unresolved bands 

present. We found that this band was better resolved in the 

spectra of the sample (Figures 6.11e and f) after the gaseous 

ammonia was removed by evacuating and the sample heated to 

elevated temperatures. We observed four bands at 3350, 3280, 

3220 and 3180cm-1 in the spectra of the sample at 373 and 483K 

(Figures 6.11e and f). On further heating the sample to _583K 

( 6 ) 8 -1 Figure .11g , two bands at 32 0 and 3220cm disappeared. 

In this spectrum, we also observed that the 1620 and 1450cm-1 

bands disappear at the same time. 

Since the bands at 3280 and 3180cm-1 disappeared together 

. 6 -1 Wlth the band at 1 20cm , we correlate them as due to the same 

adsorbed molecule, which is ammonia. Schmidt and 
41 

Muller , in infrared spectrum of Cv(NH
3

)
4

so
4

. 

H2o found bands at 3330*(s) and 3260*(sh)cm-1 due to v (NH), 
as 

3178(m)om-
1 

due to vs(NH), 1640*(m) and 1670*(vw)cm-1 due to 

~8 (HNH) (Lattice water vibrations are also expected in the 
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region marked by *). We can thus assign our data for 

adsorbed ammonia 
-1 as follows: 3280cm to v (NH), 3220 

as 
-1 em to ( ) 6 -1 v NH and 1 20cm s 

to 

By analogy with the spectra of 

8 ( HNH). 
as 

Cuiiy obtained at various 

temperatures during dehydration (Figure 6.10), the band 

4 -1 . . 
observed at 1 50cm could be due to a framework Vlbratlon 

associated with cation movements. It was exPlained in section 

II that the copper ions are very mobile. On dehydrating the 

sample, the Cu 2 + ions tend to move to the small cavities. 

. . h c 2 + . d t f th Upon adsorPtlon of ammonla, t e u lons move ou o e 

small cavities to form copper-ammine complexes 23• 24 . This 

explains why we observe the 1450cm-1 band in the hydrated and 

ammoniated samples and why this band disappeared when either 

water or ammonia was removed. 

The bands at 3350 and 3220cm - 1, which remain after the 

sample was heated to 583K (Figure 6.11g) may be due to v(O-H) 

of Cu(OH) 2 and Cu(OH), respectively. We assigned the 3280cm-1 

band as due to v(O-H) of Cu(OH) because we do not observe this 

band 
II in the spectra of dehydrated Cu Y and also because from 

EPR studies of ammonia adsorbed onto Cuiiy zeolite, it was 

concluded that some of the Cu2 + ions had been reduced to Cu+ 

ions. Further proof of this reduction was obtained when CO 

was adsorbed onto the sample used for the adsorption of ammonia. 

After the removal of ammonia at 673K, the sample was 

allowed to cool to room temperature. CO at a pressure of 40 

torr was admitted to the cell. The spectrum of the sample 

upon adsorption of CO is shown in figure 6.12b. A very stroDg 

band at 2140cm- 1 is observed which is due to a Cu+-CO complex, 

. . h 8 28 ln agreement Wl t several authors ' . This confirms the 

f r< + . h presence o vU ln t e sample. 

Upon adsorption of 40 torr CO another very strong band 

is observed at 2180cm- 1 . Judging by this spectrum alone, we 
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would be inclined to assign this band as due to CO bonded to 

cu 2 +. However, this band is also observed in the spectrum of 

CO adsorbed onto a fully reduced copper zeolite sample as shown 

in figure 6.20a. 
-1 

We prefer to assign the 2180cm band to CO 

adsorbed at a second site. This is in agreement with the 

26 finding of Angell and Schaffer in their studies of CO 

adsorbed onto various cations (Table 6.2), who found that the 

CO was adsorbed at two different sites for all of the cations 

studied. The CO adsorbed onto the site related to the 2180cm- 1 

band is weakly adsorbed since it can be pumped off easily 

(after 5 minutes evacuation; Figure 6.12c). 

The bands at JJ60 and J280cm- 1 may be assignedto v(O-H) 

C 2 + C + h . d . B b of u and u ydrox1 es, respect1vely. ands o served at 

3500 and 16JOcm-1 are due to water while bands at 2960, 2860 

(hydrocarbons) and 2580cm- 1 (Co 2 ) may be due to impurities in 

the CO gas. The impurities expected from the CO purchased 

(99·5% purity) are nitrogen (O.J2 v/v), oxygen (800 ppm), 

C0 2 (500 ppm) hydrocarbons (50 ppm) and water (5 ppm). 

Another band observed at 1460cm-1 , like the ammonia 

adsorption, may be due to a framework vibration associated with 

cation movements. CO adsorbed onto the site related to the 

14 -1 . 2 Ocm band lS strongly adsorbed since it cannot be removed 

until the sample is heated to a temperature of 67JK (Figure 

6.12f). 

Figure 6.1Ja shows the spectrum of the Cu11Y sample 

(73.2% exchanged) at room temperature after heating to 67JK 

for 2 hours. In figures 6.1Jb and c are shown the spectra of 

the same sample after admitting 14 torr of ammonia followed by 

155 torr of CO, respectively. Ammonia and CO adsorbed 

individually onto Cu 11Y zeolite have already been discussed. 

The Cu 11Y sample in the presence of both the ammonia and CO 

was heated to 58JK and the spectra of the sample at various 
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temperatures are shown in figures 6.1Jd, 6.14a and b. As can 

be seen, the spectra are rather complicated, however, with 

II reference to the spectra of the gases adsorbed onto Cu Y 

sample individually, we will try to assign some of the bands 

observed. It should be noted that the region of importance is 

-1 + 2100-2200cm , whence proof of the presence of Cu will be 

obtained. 

In the spectrum of the sample plus both the gases at 

room temperature (Figure 6.1Jc), we observed a broad band at 

-1 . 6 -1 . around 3250cm and another lntense band at 1 25cm whlch we 

may assign to the stretching and deformation modes of ammonia. 

We have already discussed this in detail earlier. We are not 

able to explain 
-1 

the presence of the bands at ca. 1J50-1550cm . 

The bands in the . -1 
reglon 2000-2200cm are due to gas nhase 

co. 

The sample in the presence of both ammonia and CO was 

heated to J8JK and the spectrum is shown in figure 6.1Jd. 

-1 Two strong bands are observed at 2150 and 2190cm which may 

be due to CO adsorbed onto Cu+ ions. Additional bands are 

observed ln the region 1350-1550cm-1 which we could not explain. 

However, as the sample was heated further to 50JK (Figure 

6.14a), most of the bands in this region disappear and we 

4 -1 observed a strong broad band at 1 JOcm . This could be 

attributed to ammonium ions, indicating that Bronsted acid 

sites are being formed. Eischens and Pliskin46 , observed a 

4 -1 band at 1 50cm on rehydrated silica-alumina which was assigYJ.ed 

to the formation of ammonium ions. 

The sample was heated further to 58JK (Figure 6.14b) 

and we can 6 -1 see that the band at 21 Ocm becomes more 

intense. This band, which is due to a Cu+-co complex, confirms 

the reduction of Cu 2 + to Cu+ ions. Complete reduction of Cu2+ 

to Cu+ was achieved after the sample was left standing for 1 
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6 -1 
hour at 583K in the presence of the gases, since the 21 Ocm 

band did not increase f' h . . . H 27 .11rt er ln lntensltv. 1.1.ang , in his studv 

. c 2 + c + . d of the reductlon of u to u uslng the same proce ure as 

described above found that most of the Cu 2 + ions could be 

reduced in a few hours at temperature as low as J7JK. 

After complete reduction of Cu 2 + to Cu+ was obtained, 

the cell was evacuated overnight at 603K. The sample was then 

cooled to room temperature before the adsorption experiments 

were begun. 

(iv) Adsorption of hydrocarbons onto Cu
11 

and Cu 1Y zeolites 

(a) Ethylene 

II Ethylene was adsorbed onto two Cu Y samples, the 70.4 

and 92.9% exchanged. Samnles of each of these were subjected to 

two different pretreatment conditions (453 and 673K) before 

the adsorption of ethylene. In figure 6.15a is shown the 

II spectrum of Cu Y sample (70.4% exchanged) at room temperature 

after heating to 673K for 15 hours, while in figures 6.15b and 

c are shown the spectra of the same sample upon adsorption of 

50 torr C2H4 and evacuation for 5 minutes and 2 hours at room 

temperature, respectively. 

After removal of the gaseous C
2

H4 by evacuation for 5 

minutes at room temperature, we observe only one strong and 

sharp band, at 1428cm-
1

, which is due to the adsorbed species. 

This is true for all of the samples used and at different 

pretreatment conditions. We assign this band to the anti­

symmetric CH2 deformation (v12 , following the notation of 

Herzberg
42

) of adsorbed C2H4 . In the infrared spectrum of the 

gas phase, v 12 occurs at 1443cm-1 42 
The sharpness of the 

P 12 band could indicate that the C
2

H
4 

molecule is 

This is in agreement with Yates et al43, in their 

not rotating. 

infrared 
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2000 1900 1800 1700 1600 1500 1400 1300 

Wavenumber ( cm-1} 

Fignre S.1s. Cu
11

NaY zeolite after heati'1.g at S7JK for 2 hours: 

(a) at ambient temnerature 

(h) samnle (8) 8fter admitting ~G torr C
2

Hh 

and evacuAted for S minutes 

(c) samnle (b) after evacuation for 2 hours. 
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studies of c
2

H
4 

adsorbed onto Ag1JX zeolite, who also found 

that the v 12band was sharp and concluded that the adsorbed C2 H4 

is not rotating in their sample. 

Unlike the c
2

H
4 

adsorbed onto AgA zeolite (Chapter IV), 

we do not observe any bands which we can assign to the C=C 

stretch ( v
2

) or CH
2 

symmetric deformation ( v
3

) which occur at 

1623 and 1342cm-1 , respectively, 1n the Raman spectrum of the 

gas phase42 . The non-appearance of the P2 and v3 bands in the 

spectrum of c
2

H
4 

adsorbed onto Cuiiy zeolite indicates that 

the symmetry of the c
2

H4 is preserved in the adsorbed species 

(D
2
h). This is only possible if two Cu2 + ions are coordinated 

44 to one c
2

H
4 

molecule. Huang et al studied the adsorption of 

c
2

H
4 

onto Cuii and CuiY zeolites spectroscopically and 

gravimetrically. However, they did not assign the bands due 

to the adsorbed species or analyse their spectra in deta.il but 

simply stated that the spectra were different. In their 

gravimetric measurements of the adsorption of C
2

H4 in both 

zeolites, they found that more c2H
4 

was adsorbed onto CuiY 

zeolite (approximately twice as much at 100 tocr) than Cu IIy zeolite. 

This could arise because two Cu2 + ions are coordinated to one 

C2H4 molecule. In our experiments, we found that c
2

H
4 

was 

t l d b d t C IIy l' t . . s rong y a sor e on o u zeo l e Slnce 1t could not be 

removed until after the sample was heated to 47JK. This is 

in contrast to the conclusion reached by Huang et a144 , who 

found that the C
2

H
4 

could be pumped off easily (room temperature). 

In figure 6.16a is shown the spectrum of CuiY at room 

temperature while in figure 6.16b is shown the spectrum of the 

same sample upon admitting 30 torr C
2

H
4

. Subsequently, the 

sample was evacuated for 5 minutes (Figure 6.16c) and a further 

55 minutes (Figure 6.16d) at room temperature. 

After 5 minutes evacuation of the samnle at room 

temperature, unlike the C2H4 adsorbed onto Cuiiy zeolite, we 
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observed three bands at 1920, 1535 and 14 28cm-
1

· We assign 

the 1920cm-1 band to a combination band (v
7 

+ v8 ), 1535cm-
1 

band to the C=C stretch (v2 ) and the 1428cm-1 to the CH 2 anti-

symmetric deformation (v12 ). In the spectrum of the gas 

phase42 , (v
7 

+ v8 ), v
2 

and v 12 occur at 1889, 1623 and 1443 

cm- 1 , respectively. 

In the spectrum of the adsorbed species, we could not 

observe the band due to v
3 

which occurs at 1342cm-1 in the 

42 Raman spectrum of the gas phase . This could be because v
3 

is rather weak and is masked by the strong framework vibration. 

Clearly here, since v
2 

is observed, which is infrared inactive 

in the gas phase, this indicates that the adsorption of C
2

H
4 

causes a reduction in symmetry (probably to c
2
v). 

The combination band ( v7 + 1)8 ) was not observed in our i·. r. 

study of C2H4 adsorbed onto AgA zeolite (Chapter IV) or by 

Yates et al4 3 in their infrared studies of C2H4 adsorbed onto 

various cation exchanged 13X zeolites. As explained by Yates et a 

the observation or otherwise of combination bands is difficult to 

predict in the gas phase, let alone in the adsorbed phase. 

In the CuiY + C2H4 experiment, after 60 minutes evacuation 

at room temperature (Figure 6.16d) and with some C
2

H
4 

still 

adsorbed, CO (40 torr) was introduced to the sample. Upon 

adsorption of CO (Figure 6.17a), we observed a very strong 

band at 2130cm-
1 

and a shoulder at 2180cm- 1 , and those bands 

which were due to adsorbed C2H4 are removed. As explained in 

part (iii), the 2130cm-
1 

band,which shifted to 2140cm-1 on 

evacuation (Figure 6.1 7b), is due to a Cu +-CO comPlex while the 

shoulder at 2180cm -
1
, which was removed after 5 minutes 

evacuation at room temperature (Figure 6.17b), is due to CO 

weakly adsorbed to Cu+ ions at a different site. 

-When 30 torr of C2H4 was readmitted to the evacuated 

I 
sample, the Cu -G 2H4 complex with characteristic bands at 
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1920, 1535, and 1428cm-1 (Figures 6.17c and d) is formed again 

and the adsorbed CO removed. The observation that C2H4 was 

removed upon adsorption of CO and vice versa, indicates that 

both of the adsorbed species are held with comparable strength 

C +. 
by u 1ons. It also indicates that both C

2
H4 and CO are 

adsorbed at the same site, Depending on the concentration of 

either of the gases, as revealed by the spectra of the adsorbed 

species, one or the other will be observed. 

The CuiY zeolite sample, after the readsorption of C
2

H4 , 

was evacuated and heated (Figures 6.18b, c and d). It was 

found that C~H4 was removed after heating the sample to 423K 

(Figure 6.18b). 

(b) Acetylene 

Acetylene was adsorbed onto Cuii and CuiY zeolites and 

their adsorption behaviour compared. Figures 6.19b and 6.20b 

show the spectra of Cuii and CuiY zeolites, respectively, up0n 

adsorption of 50 torr C2H2 . Gaseous C2H2 was removed from the 

samples by evacuating for 5 minutes (Figures 6.19c and 6.20c) 

and a further 25 minutes (Figures 6.19d and 6.20d) at room 

temperature. 

In both the samples, upon adsorption of C
2

H
2

, we observe 

some bands at ca. 3200cm-1 (Figures 6.1qb and 6.20b) 

which are due to the adsorbed species and the gas phase. We 

also observe bands at 1960, 1830(sh) and 1810cm-1 which are 

due to the adsorbed species. In the spectra of the samples 

after 5 minutes evacuation at room temperature (Figures 6.19c 

and 6.20c), the band at 1960cm-1 disappears while the bands at 

3250, 3200(sh), 3170, 1820(sh) and 1810cm-1 remain. Subsequently, 

little change was observed after 30 and 60 minutes evacuation 

(Figures 6.19d, 6.20d ru1d e). 

We assign the 1960cm-1 band to v(c=c), which occurs at 
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1974cm-1 in the Raman spectrum of the gas phase4 2 . The 

appearance of this band,which is inactive in the infrared 

spectrum of the gas phase, indicates a lowering in symmetry of 

the adsorbed C
2

H2 . Since v(c=c) for the adsorbed species 

at a value lower than the gas phase then the mode of 

interaction of this adsorbed c2H2 must be 'side-on' 

(Chapter V). Acetylene adsorption at this site must be 

6 -1 5 . weak since the 19 Ocm band disappears after m1nutes 

evacuation at room temperature. 

occurs 

The bands observe at 3250, 3200(sh), 3170, 1830(sh) and 

1810cm-1 must be due to c2H2 adsorbed at a different site. In 

Cu 11Y, these bands can only be removed on heating the sample 

to 503K indicating that the C2H2 is very strongly adsorbed. 

We assign the 3250, 3200(sh) and 3170cm-1 bands to v(C-H) 

while the 1830(sh) and 1810cm-1 are assign to v(C=C). 

After the Cu 1Y zeolite had been evacuated at room 

temperature for 60 minutes (Figure 6.20e), CO at a pressure of 

40 torr was introduced to the sample. Upon adsorption of the 

CO, the bands which are due to C2H
2 

adsorption still remain 

although they are reduced in intensity and new bands due to 

the adsorbed CO are observed at 2180 and 2140cm- 1 (Figure 6.21a). 

These bands as have already been explained (Part (iii)) are 

due to CO adsorbed at two sites, one weakly and the other 

strongly, The weaklv adsorfied CO was removed after 

5 minutes evacuation at room temperature (Figure 6.21b). 

The observation of the bands due to adsorbed C
2

H
2 

and 

CO at the same time indicates that the gases were adsorbed at 

different sites. Both gases are strongly adsorbed since they 

could only be removed after the sample was heated to 483K 

(Figure 6.21e). 
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VI. Conclusion 

Infrared spectra of Cu 11Y zeolites with different degrees 

of exchange reveal that increasing the copper content gives 

-1 . rise to three sharp bands above 3000cm whlch are due to 

v(O-H) of bridging hydroxyls and copper hydroxides. 

Adsorption of ammonia onto dehydrated Cu 11Y zeolite(7J.2% 
+ 

exchanged) shows that most of the Cu 2 + ions are reduced to Cu 

cations. Proof of this was obtained when CO was adsorbed after 

ammonia. A band at 2140cm- 1 , which is due to a Cu+-CO complex, 

. c + . conflrms the presence of u catlons. It was found that CO 

was adsorbed at two different sites, one was weakly adsorbed 

and the other more strongly adsorbed. 

In another experiment, the complete reduction of Cu 2 + 
+ II 

to Cu cations was carried out on a Cu Y sample in the presence 

ofaCO atmosphere with pre-adsorbed ammonia. Ammonia was used 

h C 2 + . f h . . to remove t e u catlons rom t e small cavltles so that they 

can be reduced by co27. 

Hydrocarbons (C 2H4 and C2H2 ) were adsorbed onto the 

freshly prepared Cu
1

Y zeolite and their adsorption behaviour 

compared with Cu
11

Y zeolite. Regardless of the copper contents 

in the Cu
11

Y samples and the pretreatment conditions used, 

after 5 minutes evacuation of the gaseous c2
H4 , only one 

sharp band at 1428cm-1 was observed. This band was assigned 

to the CH2 antisymmetric deformation (v12 ) of the adsorbed 

species. No other bands observed could be assigned as due to 

the adsorbed species indicating that the svmmetry 

of the adsorbed species is the same as the gas phase (D
2
h), 

which can only be achieved if two Cu 2 + cations coordinate to 

one C 2 H 4 molecule. 

Unlike the c
2

H
4 

adsorbed onto Cu11Y zeolite, C2H4 adsorbed 

onto Cu 1Y zeolite gives rise to three bands, at 1920, 1535, and 
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1428cm - 1. which are assigned to the combination bands ( v7 + v8), 

C=C stretch (v
2

) and CH
2 

antisymmetric deformation (~ 2 ), 

respectively. The appearance of the v 2 .which is infrared 

inactive in the gas phase, indicates that there is a reduction 

in symmetry (C 2v) wit~ adsorntion. 

Following the evacuation of c2H4 for 60 minutes at room 

temperature, 40 torr of CO was introduced to the sample. 

After 5 minutes evacuation at room t~mperature , c 2~4 was 

reintroduced to the samnle. It was suggested from the 

above process that C2H4 and CO are held with comparable 

strength by Cu + ions and that the gases are adsorbed at 

the same site. It was also suggested that it was the relative 

concentration of the gases that determine which gas was to be 

predominently adsorbed. 

The adsorption behaviour of C
2

H2 OYJ. Cuii and Cu1 Y zeolites 

were found to be similar. From the bands observed, it can be 

is adsorbed at two different sites and 

that the mode of interaction is 'side-on' since v(C~C) for 

the adsorbed species occured at a wavenumber lower than that 

of the gas phase (1974cm- 1 ). C2H2 was weakly bonded to the 

cation at one site and strongly at the other. The weakly 

bonded C2H2 could be removed by 5 minutes evacuation at room 

temperature while the strongly bonded c2H2 could only be 

removed after the sample was heated to 50JK. 

For sample CuiY zeolite, following 60 minutes evacuation 

of C2H2 at room temperature, CO (40 torr) was introduced to 

the sample. Bands due to C2H2 adsorption were observed to 

decrease in intensity even upon adsorption of CO. It was 

deduced that CO and C2H2 were adsorbed at two different sites. 
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CHAPTER VII 

INFRARED STUDIES OF THE ISOMERIZATION OF CYCLOPROPANE 

OVER ZINC, NICKEL AND COPPER EXCHANGED TYPE A ZEOLITES 

I. Introduction 

The skeletal isomerization of cyclopropane to propene is 

a widely used test reaction in studying the catalytic activity 

. 1-7 . 8-14 M of ox1des and zeol1tes . ost authors have reported 

that the isomerization of cyclopropane proceeds via a 

nonclassical protonated cyclic carbonium ion intermediate. 

Hall et al2 '7 and Larson et al6, however, in their studies of 

the isomerization over silica-alumina catalysts have raised 

some questions as to whether the carbonium ion intermediate 

was formed by addition of a proton from a Bronsted site or by 

an abstraction of a hy&cide ion at a Lewis site. Flockhart 

et a111 have shown that in addition to the Bronsted acid 

mechanism, a second mechanism, possibly involving a Lewis 

acid site, may be operative depending on the activation of the 

zeolite. George and Habgood10 in their studies of the 

isomerization of cyclopropane over zeolite Y using a 

chromatographic pulse technique suggested the following 

mechanism: 

H2 

H2C.L.CH
2 

+ 

+ 

~2 
v 

HC~CH 
2 ' / 2 

', I 
' I {+ 
H 

In these experiments slugs of cyclopropane were passed over 

NaY zeolite catalyst that was maintained in deuterated form 

by a low constant partial pressure of D2o. 
12 Tam et al , on the other hand, in their infrared studies 
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of chemisorption and reactions of cvclopronane in HY zeolite 

found that isobutane was the major prodvct and suggested 

the following mechanism (Mechanism I): 

( 1 ) 

(1) cyclonronane 

chemisorption 

on acid centres 

(CH+Z-) 
3 
+ ( 3 ) 

.:> 

c-C
3

H6 

H2 c 

HC~CH 
2 ',_ // 2 

'- ... , 
H+ 
z-

edge-protonated 

cyclopropane 

H2 c 

H2C~CH2 
CH+z-

3 

( 2 ) + 

(CH
3
z-) 

(2) snlitting 

(cracking) 

reaction 

(4) H3C)CH-CH3 

H
3

C 

(J) reaction of the chemisorbed methyl (4) Formation of 

isoh11tane with 

regeneration of 

the acid centre 

methyl cation cyclopronane 

with cyclopropane cation 

According to Tam et a112 , edge-nrotonated cyclopronane could 

be produced from propene by the following reaction seauence 

(Mechanism II) : 

(1) nronylene classical 

chemisorption nronyl cation 

( 2) ) 

( 2 ) Formation of 

edge-protonated 

cyclonronane 

and following this the protonated cyclonropane reacts as 

indicated in Mechanism I. 

On the basis of the above mechanism it was expected 

that the v(C-H) of ethylene should have been observed but 

the authors
12 

explained that the ethylene formed may well 
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~ave been removed during the evacuation of the excess 

cyclopropane in the gas phase. 

Kiricsi et al1 3 have carried out exneriments on the 

skeletal isomerization of cyclopronane in a static reactor 

over NaY, CaNaY and HNaY. Thev disagree with the findings 

of Tam et a112 that the production of isobutane from 

cyclopronane over acidic zeolite catalvst, follows mechanism 

I. Kiricsi et al agree that isobutane is only one, though 

major, representative of a more complex reaction mixtnre 

formed from nronene as an intermediate of cvclonronane 

isomerization, and suggested that the isomerization occurs by 

the oligomerization-isomerization-cracking process. 

Recentlv, Forster and Seebode1
r:; annlied infrared 

spectroscopy to a study of the sorption and isomerization 

of cyclopropane in type A zeolites. Thev deduced that the 

cvcloproPane was sorbed 'face-on': that is the cation is 

bonded to the centre of the cyclonrona'1e ring. The absence 

of reaction by-products and of Bronsted sites in tvne A 

zeolites led them to propose the following: the cations act 

as Lewis acids nolarizing the electron densitv of cvclonronane 

thus activating the sorbed molecules for isomerization. This 

t . ll d b . . d h L. i6 • 1 7 
concep lS ca. e car onlogenesls an t e lnde gronn has 

Proposed it to be one of the factors for catalvtic activitv 

where the cation themselves are carboniogenic centres. 

R 
The isomerization of cvclopropane to nropene is also a 

water promoted reaction. Bassett and Habgood 8 have demonstrated 

that water promotes the isomerization of cyclopropane over 

NaX zeolite. Other water promoting reactions have 

been observed by Gourisetti et a118 •19 in the 
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dehydration of tert-butanol over CaX zeolite. Maximum 

activity was observed when the number of water molecules 

equaled the number of zeolitic calcium cations. A 

promoting role for water has been observed in numerous 

. "l" l . 20 react1ons over Sl 1ca-a um1na . 

Although water is a promoter, it can effectively screen 

cation fields (i.e. by solvation), and thus modify the 

magnitude of the fields accessible to reactants. In an 

extreme case, a catalytically inactive, fully hydrated 

zeolite would result18 • 1 9. 

In the nresent work we report studies of the 

isomerization of cyclonronane over nartially exchanged 

zinc, nickel and copner tyne A zeolites. The nurnose of 

this work was to observe the effect of the degree of 

hydration and the nresence of different cations on the rate 

of isomerization. It was also hoped that insight to the 

mechanism of isomerization would be obtained and that the 

controversy as to the mechanism of cyclonronane isomerization 

in zeolites would be resolved. 
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II. Structure of zinc, nickel and copper exchanged type 

A zeolites 

(a) Hydrated zinc exchanged type A zeolite. 

Single crystal x-ray diffraction measurements of 

hydrated partially (Zn
5

Na2A) and fully (zn6A) zinc exchanged 

type A zeolites have been made by Seff et a1 21 •22 . In the 

structure of hydrated zn
5

Na2A, the five zinc(II) ions were 

located at three distinct crystallographic sites (see figures 

7.1 and 7.2). One zinc(II) ion was located at the centre of 

the sodalite unit (SU) and was octahedrally coordinated by 

six water molecules, at distances 2.11~. Three zinc(II) ions 

lie on three fold axes just inside the large cavity (S2*) and 

are distributed among the eight equivalent positions in this 

equipoint. Each of these ions was tetrahedrally coordinated 

to three framework oxygens (Zn- 0 = 2.25(1)~) and one 

hydroxide ion (probably not a water molecule; Zn- 0 = 2.19(6)~). 

The fifth zinc(II) ion liy deep within the large cavity (S4) 

and was octahedrally coordinated by six water molecules. 

Finally, each of the two sodium ions were associated with 

B-ring oxide ions (S1) and with two water molecules. 

The zinc(II) ions in the structure of hydrated zn6A, 

like Zn
5

Na 2A,were also found at three different crystallographic 

sites (Figure 7·3). One zinc( II) ion was found in the centre 

of the sodalite unit but unlike zn
5

Na2A, the zinc(II) 

ion here was tetrahedrally coordinated at 1.95(5)R to four 

nonframework oxygens (water molecules, some of which might 

have dissociated; Figure 7.4). The difference in the 

coordination of the zinc(II) ions at position SU for the 

partially (zn
5

Na2A) and fully (Zn6A) exchanged A zeolite was 

explained as being dne to the tendencv 
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Figure 7.1. A stereoview of hydrated Zn5Na.2A after Seff 

et a1 21 . Ellipsoids of 20% probability are shown. 

Figure 7.2. A stereoview of the octahedral coordination 

about the ion Zn(2) in the soda.lite cavity. Ellipsoids of 

20% probability are shown21 . Zn(1), Zn(2) and Zn(J) refer 

to sites S2*, SU and S4 resnectively in the text. 
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RL 

Cl 

Figure 7.3. Stereoview of the large cavity of hydrated Zn6A 

after Seff et a122 . Ellipsoids of 20% probability are shown. 

Figure ?.4. Stereoview of the sodalite unit of hydrated Zn
6

A. 

Ellipsoids of 20% probability are used 22 . Zn(1), Zn(2) and 

Zn(3) refer to sites SU, S2* and S3 respectively in the text. 
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of zinc(II) ions to hydrolyse coordinated water molecules, 

+ H+ . to produce ZnOH and 1ons . This tendeDcy being enhanced in 

the fully exchanged zinc(II) A zeolite. The combination of an 

unfavourable environment in the sodalite unit for a hexaquo 

zinc ion and the increasedlikelihood that hydrolysis will 

occur (perhaps to form a neutral Zn(OH) 2 (H2o) 2 species in 

the sodalite unit) may cause the coordination number of the 

zinc(II) 1on at position SU to decrease as the number of 

zinc(II) ions increased. 

Four more zinc(II) ions were located on three-fold axes 

and entend into the large cavity (82*), where each is 

coordinated to three oxygens of a 6-ring and to one non­

framework oxygen deeper in the large cavity in a tetrahedral 

manner. The sixth and final zinc(II) ion was located also 

in the large cavity but opposite a 4-ring of the zeolite 

framework (SJ) and was a long distance (J.BR) from the 

nearest framework oxygens. If the distant framework oxygens 

were considered to be a single weak ligand, this cation (at 

site SJ) has approximate trigonal bipyramidal geometry. 

The axial oxygen ligands were probably OH- of hydrolyzed 

water molecules bridging between this cation (at site S}) 

and the 6-ring zinc(II) ions (S2*) and the two equatorial 

ligands were water molecules which hydrogen bond to the non-

framework oxygens. Here again, the coordination of the 

cation was different from the partially exchanged zinc 

(Zn5Na2A) type A zeolite which was octahedrally coordinated. 

The authors22 suggested that the two nonframework oxygens 

bridging between the two 6-ring zinc(II) ions (S2*) and this 

two-fold axis zinc(II) ion (SJ) were hydroxyls of dissociated 

water molecules and that a zinc(II) ion would prefer a site 

where it could coordinated to two bridging hydroxyls over 
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one where it could coordinated to water molecules only. 

(b) Dehydrated zinc exchanged type A zeolite. 

The partially and fully exchanged zinc(II) ions in type 

A zeolites were dehydrated, under vacuum, for 48 hours at 

6 21 8 22 . I z N A 23K and 7JK , respectlvely. n the dehydrated n
5 

a 2 
zeolite, zinc(II) ions were found at two sites on three-fold 

axes, one on each side of the 6-rings. Three zinc(II) ions 

were located inside the large cavity (S2*) and were 

tetrahedrally coordinated by three framework oxide ions and 

one water molecule. The remaining two zinc(II) ions were 

bridged by a single water molecule within the sodalite unit 

( S2'). 

An additional x-ray study has been carried out on 

zn
5

K2A, dehydrated for 44 hours at 67JK23. Here the five 

zinc(II) ions occupy three kinds of sites, all on the unit 

cell three-fold axes, near the centres of 6-rings. Of these 

ions, one lies in the sodalite unit (S2') and the zn2+ is 

coordinated to an oxygen atom of a water molecule or an OH 

ion (Zn- 0 = 2.2(1)R). This cation assumed an approximately 

tetrahedral coordination sphere as shown in figures 7·5 and 

7.6. 1.5 zinc(II) ions lie very close to the 6-ring planes 

(S2) and achieved a near trigonal-planar coordination (Figure 

7.5). The remaining 2.5 zinc(II) ions were located near the 

6-rings but recessed into the large cavity (S2*). Each of 

these zinc(II) ions was associated with an oxygen atom of a 

water molecule or an hydroxyl ion, which was located farther 

into the large cavity and assumed an approximately tetrahedral 

coordination . (see figures 7. 5 and 7. 6). 

Zinc(II) ions exchanged in zeolite A tend to hold 

coordinated water oxygen atoms (presumably as H2o or OH-) 

more tenaciously than do manganese(II) 24 • 25 or cobalt(II) 26 . 
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Figure 7·5· The sitings of the three non-equivalent zinc(II) 

ions, each in its respective 6-ring, are shown23. Ellinsoids 

of 50% probability are used. Zn(1), Zn(2) and Zn(J) refer to 

sites S2', S2 and S2* respectively in the text. 

K2 !ll K2 e 

Figure 7.6. A. stereoview of the unit cell is shown. Ellipsoids 

of 20% nrobability are used 23. Ki and K2 refer to sites Si and 

Si* resnectively in the text. 
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Zeolite A partially exchanged with manganese(II) or cobalt(II) 

ions has been found by the same authors to be fully 

dehydrated after evacuation at 623K (Chapter VIII). 

This difference in behaviour was explained by the authors 21 • 23 

as being due to the ability of the cation to 

dissociate H2o to give OH- ions coordinated to Zn2+, 

and H+ ionscoordinated to the zeolite framework. 

In the dehydration of fully exchanged zinc(II) A zeolite 22 , 

all of the cations were located on three-fold axes and were 

distributed over two sites. A stereoview of the sodalite unit 

of zn6A is shown in figure 7·7· Two zinc(II) ions were 

located in the sodalite cage (S2'), each associated with three 

framework oxygens and one nonframework oxygen deeper in the 

sodalite cage in a distorted tetrahedral arrangement. The 

remaining four zinc(II) ions were almost in the planes of the 

6-rings (S2) where each was coordinated in a trigonal-planar 

manner to three framework oxygens. 

There were no major differences in the dehydrated 

zn
5

Na2A and zn6A structures. In both cases, the zinc(II) ions 

were located on three-fold axes and have either trigonal 

planar or tetrahedral geometries. zn
5

Na2A contained 3·5 

water molecules per unit cell while zn6A, only 2 after 

dehydration. 

(c) Hydrated nickel exchanged type A zeolite. 

A single crystal x-ray analysis of the structure of 

hydrated partially exchanged nickel(II) A zeolite (Ni
3

Na6A) 

has been carried out by Seff et a1 27 . The u.v. reflectance 

spectrum of hydrated Ni1 . 7Na8 . 6A was obtained by Klier et a1 28 

and the magnetic properties of hydrated Ni
3

,
7

Na4. 6A studied 

by Egerton and Vickerman29. 
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Figure 7.7. A stereoview of the sodalite unit of Zn6A 

evacuated at 873K and 1o-6 torr22 . Ellipsoids of 20% 

probability are shown. Zn(1) and Zn(2) refer to sites 

82' ~nd 82 respectively in the text. 



-202-

From the single 

hydrated Ni
3

Na6A 27, 

crystal analysis of the structure of 

the three nickel(II) ions were located 

* in threefold axes deep within the large cavity (S2 ). Each 

of these nickel(II) ions was six coordinate; having three 

water molecules, at 2.29(7)g which extended further into the 

large cavity, and three oxide ions (probably OH- groups) which 

bridged between nickel(II) and (Si,Al). As a result, the 

equivalent number of (Si,Al) ions, probably AlJ+, have 

increased their coordination number to five. 

Only four of the six sodium ions were located, and they 

were along threefold axes near the planes of 6-rings (S2). 

Each Na+ has coordinated to it one water molecule deep in the 

large cavity and one in the sodalite unit. The water in the 

sodalite unit also hydrogen bondsto framework oxygens. 

The u.v. reflectance spectrum of hydrated Ni1 .
7

Na8 . 6A 

taken by Klier and Ralek28 matched the spectrum of Ni(H2o) 6 
complex indicating that nickel(II) ions was octahedrally 

coordinated by zeolitic water. Egerton and Vickerman's 

findings from their magnetic susceptibility measurements of 

hydrated Ni
3

.
7

Na4 . 6A 29 , also agrees with the findings of Seff 

et a1 27 and Klier and Ralek28 . 

(d) Dehydrated nickel exchanged type A zeolite 

It was found that, depending upon the number of the 

nickel(II) ions in the zeolite, dehydrating nickel exchanged 

type A zeolite leads to breakdown of the structure 29-32 . 

Gal et a131 has reported that dehydration of partially nickel(II) 

exchanged type A zeolite of composition Ni4 .
9

Na2. 2A resulted in 

the destruction of the zeolite structure at temperaturesjust 

above J4JK, as evidenced by x-ray diffraction and differential 

thermal analysis. A similar instability was observed by 
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Egerton and Vickermaf19 for Ni
3

.
7

Na4 . 6A during an investigation 

of the magnetic properties of nickel(II) exchanged A, Y, and X 

zeolites. For Ni1 . 3Na 9 . 4A3 2 , Ni1 . 7Na8 .~A 28 and 

Ni
2

Na8A 30, dehydration for 10 hours at 703, 603 and 623K 

resulted in no loss in crystallinity. lt will he shown 

later (in section V!I(a)) that the structure of the Ni2 . 2Na7 .6A 

used in our work is not destroyed even after dehydration for 

40 hours at 72JK. 

Klier and Ralek28 , from their studies of the u.v. 

reflectance spectrum of Ni1 .
7

Na8 . 6A showed that after partial 

dehydration and with only one water molecule per nickel(II') 

ion, a stable complex was formed in which the 

nickel(II) ion was partially coordinated to the aluminosilicate 

skeleton. The colour of the zeolite at this stage was pink 

(The colour of hydrated nickel exchanged A zeolite was light 

green). On further dehydration, this complex was destroyed 

and the zeolite turned yellow. Since the water content of 

this yellow zeolite was zero, the spectrum was attributed to 

fully dehydrated Ni1 .
7

Na8 . 4A zeolite in whfuch the nickel(II) 

ions were fully coordinated to the aluminosilicate skeleton. 

Further, these nickel( II) ions were easily accessi-ble to 

adsorbing molecules,which suggested that they were located in 

the planar coordinated hexagonal sites. Their actual geometry 

DJh (or D6h) is shown in figure 7.8. 

(e) Hydrated copper exchanged type A zeolite 

There are no single crystal x-ray data on the structure 

of hydrated copper exchanged type A zeolite. Ichikawa and 

Kevan33 in their electron spin modulation study of hydrated 

CuNaA (less than 0.28% exchanged) zeolite located the copper~!) ia 

at site S2 where it was coordinated to two water molecules, 

one located in the a -cage and the other l. n P. the ~-cage (Figure 



.. 
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Geometry of nickel at the hexagonal site (S2) 28 . 
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7·9 (a)). In this position the copper(!!) ion interacted 

with three oxygen atoms in the 6-ring. 

In another electron spin echo modulation study of 

copper(!!) ions in Cs
7

Na
5

A, Narayana and Kevan34 found that 

two caesium ions at SI left on entry of each copper(!!) ion, 

which then displaced a sodium ion from S2 to one of the two 

newly emptied sites. Figure 7.9(c) shows the possible location of 

the copper( II) ion relative to a hexagonal window. The copper 

(II) ion was located on a threefold axis (S2') presumably, 

coordinated to a water molecule inside the ~-cage. 

(f) Dehydrated copper exchanged type A zeolite 

On dehydrating CuNaA at 673K, Ichikawa and Kevan33 found 

that the copper(!!) ion at S2 in the hydrated samule migrated 

along the axis of a hexagonal face in the ~-cage (S2') as 

shown in figure 7·9(b). At this position the cupric ion 

interacted more weakly with the aluminium atoms in the 6-ring. 

In contrast to this result, Narayana and Kevan34 found on 

dehydration at 323 or 373K, that the water molecule inside the 

-cage was removed and the copper(!!) ion moved along the 

* threefold axis into t:t"l.-e a-eage ( S2 ) as shown in figure 7. 9 (d),, 

Lee and Seff35 have investigated the structures of four 

desolvated fully copper exchanged type A zeolite crystals by 

using x-ray diffraction. The crystals were each evacvated at 

-6 6 5 X 10 torr and desolvated as follows: drystal 1, 23K for 

48 hours; crystal 2, 623K for 48 hours and then exposed to 300 

torr of 02 at 623K for 2 hours, followed by evacuation at 623K 

for 2 hours; crystal;3 723K for 48 hours; and crystal 4, 77JK 

for 120 hours. 

In tl1 fl'veCu 2 +l.OnS, C+. C+- + crys a , one u 1on, and a u -OH -Cu 

group were located in a unit cell of approximate composition 
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(a) (b) 

HYDRATED DEHYDRATED 

/$-CAGE 

H 

(c) ( d ) 

Figure 7·9· (a) Hydrated copper(II) ion in CuNaA33; 

(b) Dehydrated copper(II) ion in CuNaA33; 

(c) The location of copper(II) ions with respect to the 

hexagonal window between the a- and ~-cages of type 

A zeolite in hydrated Cs
7

Na
5

A34 and, 

34 (d) in dehydrated Cs7Na5A . 
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2+ + ( ) (Cu )

5 
(Cu )

3 
OH- Si12 Al12 o48 .XH2o refer Figure 7.10 . 

The five Cu 2 + ions were located in the threefold axes in the 

planes of the 6-rings (S2) where each of these Cu 2 + ions was 

coordinated to three framework oxygens (Cu 2+-0=2.11(1)R). 

Four of these Cu 2+ ions have trigonal coordination while the 

remaining one appeared to have trigonal pyramidal or even 

trigonal binyramidal coordination. Another ligand (unlocated) 

occurs on the threefold axis in the large cavity. 

One Cu+ ion was located on the threefold axis but recessed 

* 1.27R into the large cavity (S2 ). This ion was coordinated 

to three framework oxygens and to an OH in a near tetrahedral 

manner. 

Two Cu+ ions were located in the large cavity of the 

zeolite, on twofold axes and opposite 4-rings (SJ). These 

C +. b. c+- + two u lons were rldged by an OH oxygen to form u -OH -Cu 

+ 2- + ( ) or Cu -0 -Cu group with its angle Cu-0-Cu calculated to 

be 89(8) 0
• 

+ It was not clear how Cu came to be in crystal 1. The 

authors35 suggested that the Cu+ ions may arise from the 

reduction of Cu 2 + in solution by excess ammonia at J?JK, 

or may have resulted from the reduction of over-exchanged· 

Cu 2 + ions by residual solvent molecules upon evacuation. 

Dramatic changes were observed in the positions of 

copper ions in crystal 2 compared with crystal 1. 

Here again eight conper ions were located a'ld all 

Of th Cu 2 + l·ons · d. t" th h h C + em were ln lca lng at t e t ree u 

. l 1 h b . d. c 2 + . ln crysta ave een oxl lZed to u ln crystal 2. Of 

th f . c 2 + . f ese, lve u lons were ound to occupy nearly the same 

position as in crystal 1 (S2). Each of these Cu 2 + ions was 

coordinated toihree framework oxygens (Cu 2 +-0=2.146(5)R) and 

two of them coordinated further at 2.6(1)R to OH in the 
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AL 

02 

51 

01 

2+ + -Figure 7.10. Stereoview of the large cavity of (Cu )
5

(Cu )
3

oH A 

desolvated at 623K35. Ellipsoids of 20% probability are shown. 

Cu(1), Cu(2) and Cu(J) refer to sites S2, S3 and S2* respectively 

in the text. 

02 

51 

01 

Figure 7-11. Stereoview of the large cavity of (Cu2 +)
8

(oH-)
4

A 

desolvated a.t 723K and then exposed to o235. Ellipsoids of 

20% probability are shown. Cu ( 1 ) , Cu ( 2) and Cu (4) refer to sites 

S2, S3 and S1 respectively in the text. 
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sodalite unit. 

2+ . One Cu 1on was located on a twofold axis opposite a 

4-ring (S3) with Cu 2 +-0 distance of 4.0~. This Cu 2 +ion would 

be the bridged species Cu 2+ -OH-Cu 2+ c 2+ o2-c 2+ and since or u - - u ' 

there was only one Cu 2+ ion located at this position per unit 

cell, this pair of Cu 2+ ions exist only in alternate unit can 

cells. 

Two other Cu 2 + ions were located in the planes of the 8-

rings but off their centres (S1). Figure 7.11 shows the 

stereovEw of the large cavity of crystal 235, 

On desolvating at higher temperatures (723 and 773K), the 

copper species rearrange further (Crystals 3 and 4). 

Approximately eight copper ions per unit cell were located in 

crystal 3 while only six were found in crystal 4. 

The copper ions occupied five crystallographic sites in 

crystal 3, and of these five positions, three were identical 

to crystal 1(S2, S2* and S3). Five Cu 2 + ions were located on 

a threefold axis (S2) and coordinated to three framework 

oxygens (Cu 2 +-0=2.15(1)~). One of these five Cu 2 + ions was 

found to coordinate to a residual solvent anion, OH- at 

2.3(1)R. + * + One Cu ion was located at site S2 and two Cu 

ions at sites S3. These Cu+ ions at sites S3 could either 

+ - + c + 2- c + . be Cu -OH -Cu or u -0 - u as 1n crystal 1. 

It was found that there were fewer of the Cu+ ions in 

crystal 3 than in crystal 1. The depopulation of the copper 

ions at sites S3 and the appearance of two copper ions at 

sites SU (in the sodalite unit) indicate that small reduced 

copper clusters were produced by desolvation at elevated 

temperature (see Figure 7.12). The distance between these 

copper ions was found to be 2.49(11)R, a distance similar to 

the Cu 0 -Cu 0 distance of 2.56~ in copper metal. It was suggested 
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Figure 7.12. 8tereoview of the sodalite unit of 

(Cu2+)
5

Ccu-+) 2 .
5

Ccu 0
) 0 .

5
CoH-) 0 .

5
A desolvated at 723K35. 

Ellipsoids of 20% probability are shown. Cu(1), Cu(J), Cu(S) 

and Cu(6) refer to sites 82, 82* and 8U in the text. 

AL 

02 

51 

(l! 

Figure 7·13· 8tereoview of the large cavity of Cu6A desolvated 

at 773K35. Ellinsoids of 20% probability are shown. Cu(1) 

refers to site 82 in the text. 
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that triatomic copper clusters have formed in a fraction 

(one out of four) of the sodalite units. By comparison with 

+ H
3 

, the cluster was thought to be bent with an acute angle. 

The six Cu2
f ions found in crystal 4 were located on 

threefold axes very near 6-ring planes (S2) and each of these 

ions was coordinated to three framework oxygens as shown in 

figure 7.13 (Cu 2f-0=2.14(4)RJ. Approximately two copper ions 

per unit cell had migrated to the surface of the crystal. 

k ll t . d b th . c 2+ . The framewor was unusua y s ra1ne ecause e s1x u 1ons 

were strongly bonded to framework oxygens. 

III. Single crystal x-ray determinations of cyclopropane 

adsorbed onto partially Co(II) and Mn(II) exchanged 

A zeolites 

The single crystal x-ray structures of cyclopropane 

sorption complexes of partially Co(II) (co4Na4A) and Mn(II) 

(Mn4Na4A) exchanged zeolite A have been determined by Seff et 

al36 . The positions of the Co(II) and Mn(II) ions in zeolite 

A will be discussed in Chapter_VIII. 

Upon addition of cyclopropane to Co4Na4A zeolite, the 

Co(II) ions change their positions comnared with their 

positions in the dehydrated zeolite.The Co(II) ions move 

deeper into the large cavity with a Co(II)-0 distance of 

2.174R (In the dehydrated state, Co(II)-0=2.o8R). Also, the 

0-Co(II)-0 bond angle changes from a near trigonal planar 

value of 117.5(1) 0 in the dehydrated Co4Na4A,to 112.5(4) 0 in 

the cyclopropane complex, a value closer to tetrahedral. 

For packing reasons, the author36 explained that the four 

cyclopropane molecules in a unit cell must be arranged 

tetrahedrally, close to alternate 6-ring oxygens. Since it was 

found that each Co (II) ion was associated with a cyclopropane 
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molecule, these four Co(II) ions must also be arranged 

tetrahedrally as shown in figure 7·14. The Co(II) to 

cyclopropane distance was 2.74~ indicating that the 

interaction was not very strong The coordination 

environment of the Co(II) ion is shown in figure 7.15. 

Recent work involving the calculation of non-bonded atom-atom 

potentials, however, indicate that the minimum separation 

between adsorbed cycloprq:ane molecules in the same cage is 

such that the reportedmetal-C distances are too large40 . 

The Mn(II) ions, like the Co(II) ions,also move to new 

positions upon complexation with cyclopropane molecules. In 

the dehydrated structure, the Mn(II) ions were located in the 

6-rings but displaced into the sodalite cage (S2') and on 

complexat:ion these Mn( II) ions move * to positions S2 

(Chapter II). Also, the bond angle 0-Mn(II)-0 changed 

from a near trigonal planar value of 119.6(1) 0 to a more 

tetrahedral value of 115.7(6) 0
• Consequently, the cyclopropane 

molecules, each associated with a Mn(II) ion, were therefore 

arranged tetrahedrally in the unit cell. A stereoview of the 

Mn4Na4A . 4C
3
H6 is shown in figure 7.1636. 

Each Mn(II) ion retained a strong interaction with the 

6-ring oxygens since there was no significant change in the 

Mn(II) to 0 distance between the complex and the dehydrated 

structure. As in Co4Na
4

A, each carbon atom of a cyclopropane 

molecule approached a Mn(II) ion equivalently (see Figure 7.17). 

The observed Mn(II)-C distance of 3·09(6)~ indicated that the 

cyclopropane interaction must be weaker than Co(II). 

In neither complex was any interaction between Na+ ions 

and cyclopropane molecules observed. 
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02 

SI 

01 

AL 

Figure 7 .14. A stereoview of the Co4Na4 A. 4C
3

H6 unit cell. 

Heavy bonds indicate the approximate tetrahedral coordination 

about Co(II)36 . Ellipsoids of 20% probability are shown. 

SI 

Figure 7.15. The coordination environment of the Co(II) 

ion36, Ellipsoids of to% probability are shown. 
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02 

SI 

01 

RL 

Figure 7.16. A stereoview of the Mn4Na4 A.4C
3

H6 unit cell. 

Heavy bonds indicate the approximate tetrahedral coordination 

about Mn(II)36 . Ellipsoids of 20% probability are shown . 

... 

SI 

Figure 7-17. The coordination environment of the Mn(II) 

ion36 . Ellipsoids of 10% probability are shown. 
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VI. Experimental 

All the zeolites used were prepared by ion-exchanging 

Linde 4A (BDH) in 0.1M of MC1 2 solution (M = Zn, Ni or Cu) at 

room temperature for three days. After washing thoroughly 

with distilled water and drying in the oven (333K) overnight, 

the zeolites were analysed. The compositions of the zeolites 

were determined to be: 

Zn4.8 Na2.4 Al12 Si12 048 . xH20 

Ni2.2 Na7.6 Al12 Si12 048 . yH20 

Cu4.6 Na2.8 Al12 Si12 048 . zH20 

In the discussion that follow the above zeolites will be 

designated, ZnNaA, NiNaA and CuNaA respectively. 

Cyclopropane (99.8%) was obtained from Matheson Limited, 

u.s.A., and was purified by freeze-pump-thaw technique before 

use. The purity was checked by infrared spectroscopy. 

Sample preparation techniques were the same as described 

in Chapter IV. Table 7.1 summarizes the maximum bake-out 

temperature used, the time the samples were left at these 

maximum bake-out temperatures and the overpressur~of 

cyclopropane used. 

V. Results and discussion 

. -1 Throughout th1s chapter, the region 1300-JOOcm will not 

be considered since the samples are totally absorbing in this 

range. 

(i) Dehydration of the samples 

Figures 7.18, 7.19 and 7.20 show the spectra (1900-1300cm- 1 ) 

of ZnNaA, NiNaA and CuNaA zeolites, respectively, obtained at 

different temperatures during dehydration. The band due to 

the deformation mode of water ( v2 ), which occurs at 1655cm-1 
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Table 7.1 Summary of the sample pretreatment conditions 

and the pressure of cyclopropane used 

Samples Temperature Duration Pressure of 
K Hours c-C

3
H6/torr 

I" 

523 18 5 

653 2 10,30 

ZnNaA ~ 623 16 5 

623 36 5' 1 0' so' 1 00 

1, 723 38 5,10 

{ 673 2 10,30 
NiNaA 

723 40 5,10 

CuNaA 673 2 100 
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1900 1800 1700 1600 1500 1400 1300 

Wavenumber (cm-1) 

Figure 7 .18. 3pectra of ZnNaA oz.eoli te obtR.ined at 

various temperatures during dehvdration: 

(a) 298K, (b) 32JK, (c) 47JK, (d) 52JK 

and (e) 72JK. 
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1900 1800 1700 1600 1500 1400 1300 
Wavenumber (cm-1) 

Figure 7.19. Spectra of NiNaA zeolite at: (a) 298KI 
( b ) 4 2 3 K 1 ( c ) 52 3 K 1 ( d ) 6 2 3 K and ( e ) 7 2 3K. 
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1900 1800 1700 1600 1500 1400 1300 

Wavenumber (cm-1) 

Figure 7.20. Spectra of CuNa.A zeolite obtained at 

various temneratures during dehvdration: 

(a) 298K, (b) 473K, (c) S73K and (d) ')?JK. 
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for ZnNaA, 1665cm-1 for NiNaA and 1645cm-1 for CuNaA 

decreases in intensity as the temperature is raised. In 

all cases, the water band reappears on allowing the sample 

to cool to room temperature. This band is very weak in 

ZnNa.A and CuNaA (Figures ?.22a-7.25a and 7.J6a) 

and very strong in NiNaA (Figures ?.JJa and 7·3Sa). 

The appearance of the v
2 

band on cooling indicates either: (a) 

that the water has been readsorbed froo the surrounding of the 

cell (since zeolites are sensitive to water, butthis does not 

normally occur in our work, indicating that water was 

readsorbed because of the nature of the zeolite itself) or (b) 

that the water has been dissociated at high temperature and 

on cooling the sample to room temperature, water is formed 

again. The latter reasoning is the more probable since it 

is not unknown that the transition metal exchanged zeolites 

have a very high tendency for dissociating water molecules 

to OH and H+ at high temperatures (Section II), 
I 

forming metal hydroxides and Bronsted acids. 

6 -1 A band is observed at 1 20cm in the spectra of 

ZnNaA (Figure ?.18b and c) which could be due to the 

deformation mode of water coordinated to zinc37,38 . The 

existence of two v2 of water indicates that water is present 

at two different sites. As was explained in section II(a), 

from the x-ray diffraction studies of hydrated zinc exchanged 

type A zeolite, aquozinc-complexes were located at two different 

sites, S4 and SU. We could not observe a band at 1620cm-1 

in the spectrum of fully hydrated ZnNaA (Figure 7.18a.) 

6 -1 because the broad band of water at 1 SScm wonld 

mask it. However, at temperatures of 323 and 473K (Figures 

7. 18b and c), when some of the water molecules have been 
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removed from the zeolite cavities, the band due to another 

aquozinc-complexes (1620cm- 1 ) could be observed. As the 

6 -1 sample was heated further, this band at 1 20cm disappears 

(Figures 7.18d and e) indicating that most of the water from 

the zeolite cavities has been removed. 

4 -1 . The band observed at 17 Scm , whlch becomes clearer at 

high temperatures (Figures 7.18d and e) after most of the 

water molecules in the zeolite cavities have been removed, is 

d~e either to the movement of the Zn2+ as the sample was heated, 

or, at_lower temperatures ,(Figures 7.18a and b),··this band is 

6 -1 obscured by the broad water band at 1 55cm . 

For NiNaA, it is observed that at high temperatures 

(Figures 7·19d and e) , there are two broad bands at 1700 and 

1550cm -1 which may be due to a framework vibration Associated 

T -1 with the cations. he band at 1550cm , however, could be nresen· 

in the snectra of the samnle at lower temneratures (FigFres ?.19a, 

b and c) b11t is obscure by the broad water band at 166t)cm-1 . 

In the spectra shown for CuNaA (Figure 7.20), the water 

band at 1645cm-1 (Figure 7.20a) observed at room temperature 

is split into two bands, at 16SO and 16J5cm-1 , at 473 and S7JK 

(Figures 7.20b and c), and reverts back to a single band 

(1645cm- 1 ) at 67JK (Figure 7.20d). Here again, like the ZnNaA, 

the presence of two v
2 

bands indicates that at temneratures 

473 and 57JK, water was located at two different sites. On 

further heating the sample to a temperature of 67JK (Figure 

7.20d), the water at one of the sites was removed and hence 

only one v
2 

is observed. 

(ii) Isomerization of cycolopropane 

In this section, the three different zeolites, ZnNaA, 

NiNaA and CuNaA will be discussed separately. The following 
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notations will be used in the discussion; M(a,b,c) or M(b,c) 

where M--= Zn, Ni or Cu; a = the evacuation time ( 5 or 30 

minutes); b =the time at which the sample was left at the 

maximum bake-out temperature (hours) and c = the maximum bake-

out temperature (K). 

In tables7.2 and 7·3 are given literature infrared data, 

Raman data and assignments for cyclopropane and propene, 

respectively39, while in figure 7.21 (1900-1300cm-1 ) are 

shown the iYlfrared suectra of cyclopronane (gas nhase) takeYl 

at various uressures in our infrared cell (4cm uath length). 

Two different modes of interaction of cyclopropane with 

surfaces have been discussed (Table 7.4), which involve (I) 

'face-on' interaction, and (II) 'edge-on' interaction of the 

cyclopropane with the surface. The symmetry of the free 

cyclopropane molecule is n
3

h while that of the 'face-on' 

sorption complex in zeolites would be c
3

v and that of the 

'edge-on' complex, c 2v. Table 7·4 shows the correlation of 

the symmetries of the normal modes of gaseous cyclopropane 

with those of the adsorption complexes of different symmetries. 

From the infrared spectra of the adsorbed species, the mode 

of interaction of cyclopropane can be determined, since the 

E' mode of the free molecule (Table 7. 4) will also 

be anE mode in the complex with c3v symmetry and split to A1 

and B2 modes in the complex with c2v symmetry. The modes are 

all formally infrared and Raman active. Two E' modes which 

are strong in the infrared spectrum of the gas phase are the 

(c ) (c ) . 4 4 - 1 v8 H and v
9 

H2 bands wh1ch occur at 302 and 1 32cm . 

Both of these bands can be observed in the infrared spectra 

of cyclopropane adsorbed onto zeolites. 

Propene has Cs symmetry in both the gas and adsorbed 

phases, and hence all the normal modes are infrared active. 



-223-

Table 7.2 Raman and infrared spectra of cyclopropane 

in the range 4000-1100 

Assignment 

v1 + v11 (E' ); v8 + v11 (E') 

v2 + v5 + v10(E') 

v CH(A") 
6 2 

v CH(E") 
12 

v CH( A I ) 

1 1 
v CH(E') 
8 

2 v
2 

( A1_) 

4v14 (A1_ + 2E 1
) 

2 v
9 

( Ai +E I ) 

v
3 

+ v
9

(E') 

v
5 

+ v
9

(E 1
); v

2 
+ v10 (E') 

V +V (E') 
2 11 

v + P (A") 
9 14 2 

v5 + v10(EI) 

v1 o + v11 ( Ai + E' ) 

v7 + v14(EI) 

v4 + v14 ( E, ) 

vCH2 (A') 
2 1 

2v14 (A1_ + E') 

V CH2 (EI ) 
9 

VC3 (A') 
3 1 

Raman _1 Liquid (em ) 

3080(m) 

3029(s) 

3011(s) 

2952(w) 

2854(w) 

1873(vw) 

1504(w) 

1454(m) 

1435(m) 

1189(vs) 

Infrare~ 
Gas (em- ) 

3845(w) 

3580(w) 

3103(vs) 

3024(vs) 

2631 ( w) 

2493(w) 

2330(w) 

21?8(w) 

2084(s) 

1888(s) 

1779(w) 

1739(m) 

1432(s) 



Table?.} 

Assignment 

v1 (A') 

v6 + VB(A') 
v (A I ) 

2 
VJ (A I ) 

v (A") 15 
2v16 (A') 
v (A I ) 

4 
2 v

7 
(A' ) 

z\(A') 
2zJB(A') 
2 V (~I ) 

9 
v? + v1 o (A' ) 
VB+ v10(A') 
2l' (A') 10 
2v17 (A') 
v
7

+v
20

(A') 

Raman and infrared spectra of propene in the range 4000-1100 

Raman_ 1 Liquid(cm ) 
Infrare~ 

Gas (em- ) 'Assignment Raman _1 Liquid (em ) 

JOB?(w) JOB2(m) 2v1B(A') 
306?(w) 2v13 (A') 

3010(sb) 3012 (m) V17+V20(A') 
2990(w) 29?9(s) v6 (A') 164B(vs) 
2956(vw) 2960(m) 

1 2942(s) v19 + v20(A') 

2924(vs) 2916(s) 
2B90(m) 2BB4(m) v (A") 16 
2B5?(w) 2B52(m) 1)7 (A I ) 144B(w) 
2B2J(w) VB (A I ) 1415(m) 
2795(vw) v9 (A' ) 
276J(vw) v10(A') 129?(vs) { 27J2(w) 

25?4(w) v11(A') { 2320(w) 
20J5(w) v (A") 

17 

~-- --

T Infra.re? 
Gas (em- ) 

19?6(vw) 
1BJO(m) 
171B(w) 
164?(s) 
1520(vw) 
150B(vw) 
14B9(vw) 
14?2(m) 
144B(s) 
1416(w) 

1399(w) 
12B?(w) 
131?(w) 
1244(w) 
1224(m) 
1166(w) 

-- --

I 

I 

I 
N 
N 
+--
1 
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Figure ? . 21. Snectra of cyclonronane at different nress1ores: 

(a) Storr, (h) 10 torr, (c) JO torr, 

(d) 50 torr, (e) 100 torr and (f) 200 torr. 
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Table ?.4 Activities of the adsorbed cyclopropane compared 

with the free molecule 

H2 c 

H2C6H
2 

'Face-on' interaction Free molecule 'Edge-on' interaction 

DJh c2v 

A' 1 
( R) A1 (IR,R) 

( IR, R) A1 --- A" 2 ( R) A1 (IR,R) 

(Inactive) A2------- A' 2 (Inactive) B2 (IR,R) 

(Inactive' A2------ A" 1 (Inactive) A2 ( R) 

A1 (IR,R) 

(IR,R) E --- E' (IR,R) 

B2 (IR,R) 

<A2 ( R) 

(IR,R) E ·E" (IR,R) 

~B 
1 (IR,R) 

rVI8 (C3vJ = 6 A1 + 2A2 + 8E 

} ' 4E' " 2A2_' + " 
rVI8 (D3h) - 3A1 + A2 + + A1 + 3E -

rVI8 (C2v) - 9A 1 + 2A2 + 881 + 582 -
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It will be shown later that the bands which we observe due 

to propene adsorbed onto the cations are shifted to lower 

frequencies compared with the gas phase. 

(a) ~nNaA 

The experiments using ZnNaA were conducted with samples 

subjected to different .pretreatment conditions, exposed to 

the same pressure of cyclopropane (5 torr), and left in contact 

with the samples for 1 hour. For sample Zn(16,62J), a range 

of different pressures (10,50 and 100 torr) of cyclopropane 

were used (see table 7.1). 

Figures 7·22a, 7·23a, 7.24a and 7·25a show the spectra 

of the samples Zn(18,52J), Zn(16,62J), Zn(J6,623) and Zn(J8,723) 

at room temperature respectively. Spectra of the same samples 

were obtained immedi~tely on exposure to 5 torr cyclopropane 

(Figures 7·22b-7.25b) and were left in contact with this 

pressure of cyclopropane for 1 hour (Figures 7·22c-7.25c). 

In all of the samples except Zn(J8,723), the isomerization 

of cyclopropane occurred spontaneou:uly as can be se'en by the 

appearance of the v(C=C) band of propene at 1616cm-1. For 

Zn(J8,72J),however, the isomerization of cyclopropane occurred 

more slowly although after 1 hour exposure the v(C:!iC) band 

can be seen clearly (Figure 7·25c). Upon admitting 5 torr of 

cyclopropane to sample Zn(J8,72J), three new bands in the 

region 1900-1300cm-1 were observed, at 1880, ·1462 and 1432crn-1 , 

which are due to adsorbmcyclopropane. By analogy with the 

spectra of the gas 

1880cm-1 to v10 + 

and 1432cm-1 to v
9 

phase, we assign these bands as follows; 

v11 (A1 ' +-E' ), 1462cm-1 to 

(E')(Table?.5). The v
2 

( A I) 
v2 1 

band is inactive ln the infrared spectrum of the gas phase 

and the appearance of this band indicated the lowering of 
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Figure 7.22. ZnNaA zeolite after heating at 52JK for 18 hours: 

(a) at ambient temperature 

(b) sample (a) after admitting 5 torr cyclonronane 

(c) sample (b) after 1 hour. 
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Figure 7.2J. ZnNaA zeolite after heating at 62JK for 16 honrs: 

(a) at ambient temnerature 

(b) samnle (a) after admitting 5 torr cvclonronane 

(c) sample (b) after 1 hour. 
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Figure 7.24. ZnNaA zeolite after heating at 623K for 36 hours: 

(a) at ambient temperature 

(b) sample (a) after admitting 5 torr cvclopronane 

(c) sam-ole (b) after 1 hour. 
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1900 1800 1700 1600 1500 1400 1300 

Wavenumber (cm-1) 

Figure 7.25. ZnNaA zeolite after heating at 723K for 38 hours: 

(a) at ambient temperature 

(b) sample (a) after admitting 5 torr cvclonronane 

(c) sample (b) after 1 hour. 
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symmetry of the cyclopropane molecule in the adsorbed state 

compared with the free molecule. The assignment of the 

infrared spectrum of adsorbed cyclopropane is given in table 7·5· 

From table 7·5 it can be seen that the v8 (E') and the 

v
9

(E') bands at 3020 (Figure ?-26c) and 14.32cm-1 (Figure 7-25b) 

respectively, are nrnt split and because of this it is most 

probable that the mode of interaction of the sorbed cyclopropane 

must be that of a 'face-on' interaction with the cation 

(refer table 7.4). This finding is in agreement with the 

conclusion reached by Klier et a128 from their u.v. reflectance 

spectra of cyclopropane adsorbed onto partially Ni(II) 

exchanged type A zeolites and Seff et al36 in their single 

crystal x-ray work of cyclopropane adsorbed onto partially 

Co(II) and Mn(II) exchanged type A zeolites. 

In samples Zn(18,523), Zn(16,623) and Zn(36,623), however, 

upon admitting 5 torr cyclopropane (Figures 7-22b, 7-23b and 

7-24b), apart from the v(C=C) band at 1616cm-1 due to 

adsorbed propene, other bands due to adsorbed propene are 

4 6 4 4 6 8 -1 also observed at 1 5 , 1 32, 1 1 and 13 Ocm . These bands 

are assigned by analogy with the assignments for the free 

molecule as shown in table 7.6. As we shall show ;later, the 

band au 1u32cm-1 is due to both the adsorbed cyclopropane and 

propene. 

In order to characterize the catalytic activity of the 

samples, the appearance and intensity of the v(C=C) band of 

propene together with the number of bands due to adsorbed 

propene observed in the region 1900-1300cm-1 were considered. 

This consideration is justified in view of the data obtained 

immediatelv after cyclopropane adsorption at different 

nressures on Zn ( 16,623) (Figure 7. 27). Note that each scan took 

10 minutes, so that the final scan of the samnle with 100 torr of 
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Table 7. '2 Assignments of the infrared spectra of 

cyclopropane adsorbed onto ZnNaA (Zn(J8,?23)) 

and NiNaA (Ni(40,723)) in the range 4000-1300cm-1 

ZnNaA ZnNaA.G
3
H6 NiNaA NiNaA.C

3
H6 Assignment* 

- 3100(vw) - - v (A") 6 2 
- 3020(w) - - v

8 
( E 1 

) 

- 2100(vw) - - v + V (E 1
) 

5 10 

- 1888(w) - - v10 + :v (A I 

11 . 1 
+ m~) 

1745(mb) 1745(mb) - - zeolite fram.Pwork 

1700(wsh) 1700(wsh) - - zeolite framework 

1655(m) 1655(m) 1665(vs) 1665(vs) v
2 

(H
2

o) 

1620(s) 1620(sh) - - zeolite framework 

- 1462(s) - 146o(m) v2 (A I ) 

1 
- 1432(vs) - 1432(m) v (E 1 

) 

9 

* According to free molecule. 



Table ?.6 Bands observed which are due to propene in the region 1900-1300cm-1 for ZnNaA after 

various pretreatment conditions (cm-1 ) 

~ * 
Gas phase Zn(18, 523) Zn ( 16,623) Zn(36,623) Zn(38,?23) 

v6 (A') C=C stretch 164?(s) 1616(vs) 1616(s) 1616(m) 1616(m) 

v16 (A") CH
3 

antisymmetric deformation 14?2(m) 1456(s) 14 56 (m) 1458(sh) 1458(sh) 

v
7

(A') CH
3 

antisymmetric deformation 1448(s) 1432(vs) 1432(vs) 1432(vs) 1432(vs) 
I 

v
8 

(A') CH2 deformation 1416(w) 1416(w) - - -

v
9

(A') CH
3 

symmetric deformation 1399(w) 1380(w) 13Bo(w) - -

c__________ ___ ~ -- ----'------- - - --

* According to free molecule. 

I 
N 
VJ 
+:­
I 
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3000 

Wavenumber ( cm-1) 

2500 2300 

Fi.gure '7. 26. (a) Gas nhase cvclonronane ( c; torr) 

(b) sam-ole Zn(J8,'72J) at ambient temnerature 

(c) samnle (a) after Rdmitti~~ S torr 

cvclonronane 

(d) samnle (c) after 1 hour. 
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Figure 7.27. Sample Zn(16,62J) after admitting: (a) 10 torr, 

(b) 50 torr and (c) 100 torr cyclonronane, 

(d) sample (c) after 5 minutes evacuation. 
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cyclopropane would mean that the sample was in contact 

with cyclopropane for approximately 1 hour (plus the time 

taken when admitting the gas into the system). More bands 

due to propene were observed as the pressure of cyclopropane 

increased. Increasing the pressure of cyclopropane to 100 torr 

(Figure 7·27c) cause the band at 1456cm-1 due to v16 (A") of 

propene, which is a shoulder at first (Figure 7·27a) to 

become more intense and finally obscure the band at 1462cm-1 

which is due to adsorbed cyclopropane. 

On increasing the pressure of cyclopropane, the 

relative intensity of the 1462cm-1 band, which is due to 

adsorbed cyclopropane, remains c·onstant while, all 
-1 

other bands at, at 1S16, 1456, 1432, 1416 And 13AOcm 

which are due to adsorbed nronene, increase in relative 

intensity (Figures 7.27a, band c). Cyclopropane, therefore, 

must be adsorbed at a different site from propene. Propene 

is probably adsorbed onto the cations since the bands 

v 6 (C=C stretch), v16 (CH
3 

antisymmetric deformation), and 

v
7 

(CH
3 

antisymmetric deformation), are shifted to lower 

fequencies compare with the gas phase (Table 7.6). It is 

not impossible for cyclopropane and propene to be adsorbed at 

two different sites since more than one zinc(II) ions are 

* found at two different locations (S2 and S2') after dehydration 

(Section II). 

On evacuating the cell for 5 minutes at room temperature 

(Figures 7·27d, 7.28b and 7·29d) for samples Zn(5,16,62J), 

Zn(5,J8,723) and Zn(5,2,65J), the band at 1462cm-1, due to 

adsorbed cyclopropane, disappears while the band at 1432cm-1 , 

which is due to both adsorbed cyclopropane and propene, is 

much less intense. The bands observed:inthffie samples, Zn(5,16,62J), 
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Zn(5,J8,723) and Zn(5,2,65J) are due to propene only 

(Figures 7·27d 7.28b and 7·29d), suggesting that adsorbed 

cyclopropane can easily be removed hy 5 minutes evacllation 

at room temperature. It was found that the bands due to 

propene could not be removed even in samples Zn(J0,2,653) and 

Zn(JO,J8,723) as shown in figures 7·29e and 7.28c respectively. 

After JO minutes evacuation at room temperature, the 

sample Zn(2,65J) was heated and the bands due to propene 

disappear on heating the sample to 47JK. This shows that 

propene is more strongly adsorbed to the cations than 

cyclopropane. Liengme and Hall1 ~ in their infrared studies 

of propene adsorbed onto decationated X and Y zeolites, also 

found that the adsorbed propene could only be removed when 

the sample was heated in their case,to a temperature of 52JK. 

The catalytic activity of the samples may be assessed 

bv the aPpearance of the v(C=C) ba'!d of propene together with 

the number of bands due to adsorbed nropene observed in the 
. -1 

reg1on 1900-1)00cm . Based on the ahove assumntions, the 

spectra of the samples Zn(18,52J), Zn(16,62J), Zn(36,623) and 

Zn(J8,723) upon addition of Storr cyclopronane (Figures 7.22b­

?.2Sb) and after allowing the samnle to remain in contact 

with this nressure of cvclopronane for 1 hour (Figures 7.22c-

7·2Sc) can be comnared. It was f'ocmd that the catalytic 

activities of the samnles are in the order: Zn(1R,)21) > 

Zn(16,62J) > Zn(J6,62J) > Zn(JR, 17 2J). (Those bands due to 

pronene formation for all four samples are given in Table 

?.6). This work clearly shows that the rate of isomerization 

of cvclonropane to pronene on ZnNaA is a function of 

pretreatment conditions and most nrobably that water 

plays an important role. 
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1900 1800 1700 1600 1500 1400 1300 

Wavenumber ( cm-1) 

Figure 7.28. ZnNaA zeolite after heating at 723K for 38 hours: 

(a) after admitting 10 torr cyclopronane 

(b) sample (a) after evacuation for 5 minntes 

(c) sample (b) after evacuation for a further 

25 minutes. 
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Figure 7· 29. (a) sample Zn(2,653j at ambient temper~.ture 
(b) sample (a) after admitting 10 torr and, (c) 30 torr C H

6 (d) sample (c) after evacuation for 5 mins., and (e) 30 mins. 
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The above indicates that the isomerization of 

cyclopropane must proceed via a non-classical carbonium ion. 

The mechanism given by George and Habgood10 is compatible with 

the present finding, that is: 

+ 

CH =CH-CH + 
2 3 

H-1" [+CH
2

-CH
2

-CH
3 
J 

Based on the above equation, bands are expeeted which are due 

to c C3H7 
+ and the primary propyl ion. -

The C3H7 
+ 

ion has c2v symmetry. As we have c - a 

explained earlier cyclopropane with c 2v symmetry causes the 

v 8 (E') and v
9

(E') bands in the gas phase 

(3024 and 1432cm-~ to split to two modes (A1 and B
2

). In 

figures 7-30a, 7.31a, 7.32a and 7.26b are shown the spectra 

of samples Zn(18,523), Zn(16,623), Zn(36,623) and Zn(38,72J) 

. -1 . 
at room temperature in the reg1on J500-2J00cm , wh1le in 

figures ?.JOb-7.J2b and 7.26c are shown the spectra of the 

same samples upon admitting 5 torr cyclopropane. The spectra after 

allowing the samples to remain in contact with 5 torr 

cyclopropane for 1 hour are shown in figures '7,30c-7.32c and 

7· 2 6d. The spectra of the samples in this region are rather 

Poor since the signal-to-n_oise ratio is small. However, 

desuite this, it is notable that in all of the data collected 

after leaving the samples to remain in contact with 5 torr 

cyclopropane for 1 hour (Figures 7.JO-?.J2c and 7.26d), the 

band at 3020cm-1 (v3 ,E') seems to be split to two bands of 

approximately equal intensity at J020and J010cm-1 . This is 

not found in the spectrum of the sample Zn(38,72J) immediately 
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Figvre 7.JO. Z~NaA zeolite after heAting Rt S2JK for 

18 hours: 

(a) at ambient temnerature 

(b) samnle (a) after admitting S torr 

cvclonrona"le 

(c) samnle (b) after 1 hour. 
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Fi,qure '7. 31. ZnN:=tA zeolite after heating ~t 623K for 

16 hours: 

(:::J) at Ambient temneratnre 

(1:l) samnle (::J) after admitting Storr 

cvclonron8Yle 

(c) sRmnle (b) after l honr. 
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Figure 7.32. ZnNaA zeolite after heating at 623K for 36 hours: 

(a) at ambient temnera·tl'Te 

(b) sample (a) after admitting S torr 

cvclonronane 

(c) sample (b) after 1 hour. 
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upon admitting 5 torr cyclopropane (Figure 7.26c) which 

suggested that the cyclopropane is adsorbed to the cations 

with a 'face-on' interaction. This band, however, is split 

(Figure 7.26d) after allowing the sample to remain in contact 

with cyclopropane (5 torr) for 1 hour. We, in view of the above 

data, suggest that the splitting of the J020cm-
1 

band could 

+ be due to the formation of c - c
3

H
7 

. This means that the 

-1 C H+ J020cm is due to both cyclonropane and c-
3 7

. 

The fact that we observe another band at J010cm- 1 suggest 

+ that the formation of c - c
3

H
7 

is a slow process. From the 

41 42 infrared spectra of a number of boron compounds ' , the 

stretching freq~eneies of the bridging hydrogen atoms are 

6 -1 expected to be in the range 2220-1 OOcm . We could not, 

however, observe any band in this region which we could assign 

as due to the stretching frequencies of the bridging hydrogen 

atom. This could be because the hydrogen is just weakly 

bonded to the two carbon atoms. 

+ The ring opening of this c - c
3

H
7 

accompanies the 

formation of the primary propyl ion. No band due to the 

primary propyl ion wasobserved perhaps because the formation 

of propene from the primary propyl ion is a fast reaction. 

No bands due to by-products are observed. 

(b) NiNa.A 

Two differently prepared samples Ni(2,67J) and Ni(40,72J) 

were used. Water cannot be removed totally from these samples 

as shown in figurre ~JJa and 7·35a. Thus, the interaction of 

cyclopropane with anhydrous NiNaA cannot be studied. 

In figure ~JJa is shown the spectrum of Ni(40,723) 

upon addition of 5 torr of cyclopropane while in figtlres 7. J5b 

and 7·35c are shown the spectra of Ni(2,67J) after admitting 
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Wavenumber (cm-1) 

Figure 7.JJ. NiNaA zeolite after heating at 72JK for 40 hours: 

(a) at ambient temnerature 

(b) samule (a) after admitting 5 torr cvcloprouane 

(c) samule (b) after 1 hour. 
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a 

b 

c 

1800 1700 1600 1500 1400 1300 
Wavenumber (cm-1) 

NiNaA zeolite after heating at 72JK for 40 hours: 
(a) after admitting 10 torr cvclourouane 
(b) sample (a) after evacuation for S minutes 
(c) sample (b ) after evacuation for a fuTther 

25 minutes. 
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1800 1700 1600 1500 

Wavenumber (cm-1) 

11.00 1300 

NiNaA zeolite after heating at 673K for 2 hours: 
(a) at ambient temperature 
(b) sample (a) after admittin,g 10 torr cyclonromme 
(c) sample (a) after admitting 30 torr cyclonropan~ 
(d) sample (c) after evacuation for S minutes 
(e) sample (d) after evacuation for -a further 

25 minutes. 
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10 and 30 torr of cyclopropane respectively. 

As with the ZnNaA samples the data is best internreted 

using a model ln which cyclopropane is adsorbed onto Ni (II) 

cations via a 'face-on' interaction. The assignment of the 

bands due to adsorbed cyclopropane ( c3v symrnetry) is given in 

table 7·5· 

For sample Ni ( 2, 673), isomerization of cyclopropane 

occurred spontrmeoilsly whiLe for Ni(40, 723), isomerization 

Q"Q~lJ±'+@Q more -slowly but bands due to adsorbed propene are 

observed after 1 hour contact (Fi~Ire 7·33c). On evacuating 

the cell for 5 minutes at room temperature, for samples 

Ni(5,2,673) and Ni(5,40,723) (Figures 7·34b and 7·35d), it 

was observed that the cyclopropane was desorbed. The 

desorption of cyclopropane was accompanied by the decrease 

46 4 -1 in the intensity of the bands at 1 0 and 1 32cm due to 

adsorbed cyclopropane, and only bands due to propene were then 

observed. The bands due to propene are not removed even in 

samples Ni(30,2,673) and Ni(30,46;723) (Figures 7·35e and 7·33c). 

As in ZnNaA, pronene is adsorbed more strongly on Ni(TI) 

ionR than the cyclonropane since propene could not be removed 

even after evacnating the cell for 1 hour at room temperature. 

Table 7.7 gives the assignment of propene adsorbed onto 

NiNaA. 

(c) CuNaA 

Cyclonropane is not adc:;orhed onto CuNaA even at pressure 

of 100 torr. The only bands observed in this spectrum are 

those of the gas phase (Figure 7.36b) and all of these 

bands dis~mnear on evacuating the samnle for 1 minute at 

room temperature. 



Table 7.7 

Ni(2,6?3) 

1608(m) 

1456(s) 

1432(vs) 

1418 ( vw) 

1380(w) 

Assignment of the bands which are due to propene in samples Ni(2,6?J), Ni(40,723) and 

Cu(2,6?3) (cm-1 ) 

Ni(40,?23) Cu(2,6?3) Propene(gas) Assignment* 

1608(m) 166S(s) 164?(s) v6 (A') C=C stretch 

1460(s) 14?2(m) 14?2(m) V16 (A") CH
3 

antisymmetric deformation 

1432(vs) 1444(s) 1448(s) v
7

(A') CH
3 

antisymmetric deformation 

1420(sh) 1425(vw) 1416(w) V8 (A') CH2 deformation 

1380(w) 1400(w) 1399(w) t9 (A' ) CH
3 

symmetric deformation 

* According to free molecule. 

I 

I 

I 

I 
N 
''-" 
0 
I 
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1800 1700 1600 1500 1400 1300 

Wavenumber (cm-1) 
CuNaA zeolite after heating at 67JK for 2 hours: 

(a) at ambient temnerature 
(b) samnle (a) after admitting 100 torr cyclonronane 
( c ) sample (b) at 47JK 
(d) sample (b) at 57JK. 
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No bands due to adsorbed cycloProPane were observed vpon 

adsorption of 5 torr of cyclopropane onto the Cu(2,67J) 

sample. The pressure of cyclopropane was then increased 

and, at 100 torr, the sample was heated. Isomerization of 

cycloproPane occurred only after heating the sample to 47JK 

(Figure 7. )15c) and the bands in this spectrum which are due 

to proPene are given in table ?.7. Three bands are observed 

1 6 -1 in the region 1700-1600cm- at 1665, 1655 and 1 35cm -. The 

band at 1665cm-1 is assigned to the v(C=C) of propene while 

6 6 -1 the 1 55 and 1 35cm bands are assigned to the deformation 

modes of water at two different sites. These bands at 1655 

and 1635cm-1 are assigned as above because thev are 

comparable to the bands observed on dehydrating CuNaA (refer 

to part (a) of this section). On further heating the sample 

CuNaA with 100 torr of cycloprouane to S?JK (Figure ?.J6d), 

the 1635cm- 1 band disappears. Again, this compares with 

the spectra observed on dehydrating CuNaA. 

The bands due to Propene (Table 7.7) occur either at 

the same or higher frequencies than the eauivalent gas Phase 

bands. This may indicate that the isomerization of 

cycloproPane over CuNaA occurs on the surface. Another 

Proof was obtained recently4 3, when in the studv of the 

adsorption of propene onto CuNaA, it was found that propene 

was not adsorbed on the cations. 

The observation that the cyclopropane is not adsorbed 

onto CuNaA and isomerization to pronene only occurs at 473K 

on the surface of the zeolite can be explained either by: 
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(i) Cu ions in zeolite cavities are less reactive 

than either ions even though Cu is in 

between Ni and Zn in the 1st row transition 

metals in the periodic table. This is so 

+ perhaps, because of the presence of Cu 

in the CuNaA which have reduced polarizing 

. c 2+ . power compared w1th u 1ons. In terms 

of polarizing power (charge/ionic radius), 

Ni 2+ is expected to be more 

. z 2 + d c + b t b react1ve than n an u u ecause, 

in our NiNaA samples, there is still so 

much water in the samples as was observed 

in the spectrum of Ni(40,723) (Fi~lre 7·33a) 

h t . 't f N' 2 + at room temperature, t e reac lVl y o 1 

was reduced. Hence, the observed reactivity 

8rder was ZnNaA / NiNaA > CuNaA. 

(ii) As found in NaA, the largest molecule that 

can enter the pores of the zeolite is C
2

H
2 

(refer Chapter II) and only by exchanging 

the Na + with divalent cations such as Mn2 +, 

C 2+ 
0 ' Ni 2 + and Zn 2 + can larger molecules 

such as cyclopropane enter the pores of 

the zeolites. Perhaps, the size of the 

pores of CuNaA does not allow the cyclopropane 

molecule to enter the zeolite cavities. 

Here again, this ESJ because of the presence 

of Cu+ in CuNaA. Therefore, the reaction 

took place on the surface of CuNaA. 

VI Conclusion 

Cyclopropane was found to absorb to the cations in 

ZnNaA and NiNaA via a 'face-on' interaction. T~e isomerization 
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of cyclopropane to propene takes place via a protonated 

cyclopropane intermediate (c- c
3

H7 +), which on ring 

opening gives popene probably via a propyl cation. 

Water was found to promote the isomerization of cyclopropane 

in sample ZnNaA. 

The existence of the bands due cyclopropane and propene 

in the spectra of ZnNaA and NiNaA suggests that these two 

gases were adsorbed at two different sites. Since 

cyclopropane can be removed after 5 minutes evacuation at 

room temperature and propene was removed only after heating 

the sample to 47JK, it was concluded that propene adsorbed 

to the cations more strongly than cyclopropane. 

For CuNaA, however, no interaction between the cation 

and cyclopropane was observed at room temperature. Upon 

heating the sample with 100 torr of cyclopropane, isomerization 

occurred at 47JK. It was suggested that isomerization due to c-~He 

occurred at the external surface,and that propene was not 

adsorbed on the cations. 
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CHAPTER VIII 

INFRARED STUDIES OF HYDROGEN SULFIDE ADSORBED ONTO A 

SERIES OF TRANSITION METAL EXCHANGED TYPE A ZEOLITES 

I. Introduction 

Hydrogen sulfide, a commonly occurring industrially 

generated atmospheric pollutant, has a noxious odour and is 

very toxic. various adsorbents, incl'lding zeolites, have 

been used to remove hydrogen sulfide from flue gases, 

ecetera. In view of the importance of the removal of H2 S 

from gas streams a considerable quantitv of research is, and 

has been carried out on the adsorption of H
2
s e.g. zeoiit~s 

4A and SA are being used to remove ~li2S from natural gas. It 

is therefore of interest to study the interaction of R
2
s with 

a series of transition metal exchanged tvpe A zeolites. 

I . t d. 2-6 n prev1ous s u 1es , H2 S was found to adsorb eitber 

molecularly or dissociatively onto a series of zeolites. 

In the latter case, H
2

S was dissociated to SH- and H+ions, 

+ resultinr: in the formation of hvdroxyl groups (SH- and 1{ 

ions being associated with the cations and framework oxygens, 

respectively). In the former case, however, H
2

S was found 

either to be adsorbed on the cations 2 or to hydrogen bond to 

7 framework hydroxyls 

In several infrared spectroscoPic studies of the 

d t' f H S · 2 5 7-9 a sorp 1on o 2 on var1ous adsorbents ' ' , the formation 

of water was observed. There is, however, disagreement 

between the authors as to the reason for its formation. 

Some authors
2 •5• 7 •9 considered it to be the result of 

8 oxidation by oxygen in the gas phase and others proposed 

that the formation of water was due to the oxidation of H
2

S 

by framework oxvgen ions. 
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In this chapter, we report infrared studies of the 

2+ . 2+ 2+ 2+ 2+ adsorption of H
2

S on Cu , N1 , Zn , Mn , and Co exchanged 

type A zeolites. Previous studies of H
2

S adsorution onto 

zeolites will be discussed in section III. The structure of 

hydrated and dehydrated Cu(II), Ni(II) and Zn(II) exchanged 

type A zeolites have already been discussed in chapter VII, 

while that of Mn(II) and Co(II) will be discussed in the 

following section. 

II. Structure of hydrated and dehydrated partially 

exchanged Mn(II) and Co(II) type A zeolites 

(a) Hydrated partially exchanged Mn(II) type A zeolite 

A single crystal analysis of hydrated Mn4 .
5

Na
3

A zeolite 

has been carried out by Seff et al10 , 11 . The 4.5 Mn(II) ions 

were found at three-fold positions, slightly into the large 

cavity (S2*). These Mn(II) ions w~re found to be pentacoordinate 

in a trigonal-bipyramidal manner (Figure 8.4a). The axial 

ligands are two non-equivalent water molecules, H
2
0(1) and 

H20(2) with Mn(II) .... OH2 distances of 2.03(6) and 2.06(7)~, 

respectively. The three equivalent equatorial framework 0 O) 
atoms were 2.28(1)~ from Mn(II), affording the Mn(II) ions 

nearly regular trigonal bipyramidal coordination. 

Stereoviews of the hydrated MnNaA are given in figures 

8.1 and 8.2. The probable positions of 29.5 water molecules 

per unit cell have been determined and the 3 Na+ ions could 

not be located with certainty. 

(b) Dehydrated partially exchanged Mn(II) type A zeolite 

In the dehydrated Mn4 .
5

Na
3

A studied by Seff et al10,11, 

the sample was heated to 623K for 24 hours. A stereoview of 

the dehydrated MnNaA is shown in figure 8.310 ~ 1 ~ 4.5. Mn(II) 

and 3 Na+ ions were located on three-fold axes close to the 
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Figure 8.1. A stereoview of the hydrated MnNaA unit cell 

is shown. The trigonal-bipyramidal coordination about 

Mn(II) is indicated by solid lines. Only the water molecules 

which participate in coordination are included. 

of 20% urobability are used11 . 

Elliusoids 

' 
i· 

Figure 8. 2. Stereoview of hydrated MnNa.A including all 

cations and water molecules. 

are used11 . 

Elliusoids of 5% urobability 
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Figure 8.3. A stereoview of the dehydrated MnNaA unit cell. 

The trigonal apnroa.ches made by Mn (II) and Na.+ to framework 

oxygen atoms are indicated by solid lines. Ellipsoids of 

20% probability are used11 . 

_o_.; 

Figure 8.4. Equivalent Mn(II) occupied 6-ring windows of the 

hydrated MnNaA (a.) and the dehydrated MnNaA (b) are shown. 

Ellinsoids of 20% nrobability are used10 · 11 . 
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plane of the 6-oxygen windows. The Mn(II) ions were recessed 

slightly into the sodalite cage (S2') while the Na+ ions were 

recessed slightly into the large cavity (S2*). Both Mn(II) 

(Figure 8.4b) and Na+ ions were trigonally coordinated to sets 

of three framework oxygens at 2.11(1) and 2.16(5)R, 

respectively. 

(c) Hydrated partially exchanged Co(II) type A zeolite 

The structure of hydrated partially exchanged Co(II) 

type A zeolite (Co4 Na4 A) has been determined by Seff et a112 . 

The four Co(II) ions were located at two distinct 

crystallographic sites. One Co(II) ion was located at the 

centre of the sodalite cage (SU) and the other three Co(II) 

ions were distributed about equivalent sites on unit cell 

threefold axes. The Co(II) ion at site SU was coordinated by a 

regular octahedron of water molecules (Figure 8.5) with a Co 

to H20 distance of 2.11(3)ft. 

The remaining Co (II) ions have un,J.sual zeoli tic cation 

coordination environments andapparently promote an extensive 

hydrolysis of the aluminosilicate framework, and consequently 

produce Bronsted acid sites. Accordingly. the authors12 

suggested that the weakening of the bonds between (Si,Al) 

atoms and the hydrolyzed framework oxygen atoms could be due 

to some ligands from the Co(II) coordination sphere (probably 

OH groups resulting from hydrolysis), approac~ing the 

positively charged (Si,Al) ions sufficiently close to form 

bridged Co - OH- (Si,Al). Three water molecules each 

dissociated to form protons and three Co - OH - (Si,Al) 

bridges to each Co (II) ion. Another water molecule, located 

well into the lRrge cavitv , is coordinated to each Cci(II) 

ion at a fourth position (Fi~J.re 8.6). 
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Figure 8._5. A stereoview of the octahedral coordination about 

the Co(1) ion in the small cage. Ellipsoids of 30% probability 

are used12 . Co(1) refers to site SU in the text . 

... 

Figure 8.6. A stereoview of the unit cell. Heavy bonds 

indicate coordination about the cations. Ellipsoids of 20% 

probability are used12 . Co(2), Na(1), Na(2) and Na(3) refer 

to sites S2*, S2', S2* and S3 in the text. 
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+ Two Na ions were located near the 6-ring windows but 

recessed into the sodalite unit (S2' ). + A third Na ion was 

located also near the 6-ring windows but protruded into the 

large cavity (S2*). The fourth and final Na+ ion was found in 

the large cavity at a fourfol~ svmm P t:rv ~ i t; P 
- " 

(d) Dehydrated partially exchanged Co(IIl type A zeolite 

In this case the Co4 Na4 A zeolite sample was heated at 

623K for 48 hours1 3• 14 . The Co(II) ions, like the Mn(II) 

ions, were found to occupy threefold axis sites, near the 6-

oxygen windows, but recessed by 0.16(4)g into the sodalite 

cage (S2') (Figures 8.7 and 8.8). Each Co(II) ion is 

arranged trigonally in the 6-oxygen ring with a Co-O distance 

of 2.06(1)g 13 

III. Relevant previous studies of H2 S adsorbed onto zeolites 

Forster and Schuldt 2 studied the adsorption of H2 S on 

zeolites NaA and Na4 . 4 ca
3

. 8A using infrared spectroscopy. 

The zeolites were dehydrated at 725K for 15 hours before 

adsorption of H
2

S. In the case of NaA, these authors found 

-1 that the new band observed at 2500cm shifted to higher 

wavenumbers with increasing coverage. For CaNaA, upon 

adsorption of H2S, a band appeared at 2540cm- 1 which remained 

nnshifted over a wide range of coverage. The molecularly 

8dsorbed H
2

S in both samples could be removed easilv bv 

evacuation at room temperature. 

An additional weak band near 2585cm- 1 was observed for 

NaA zeolite which could be removed only after heating to above 

475K. A weak absorption band in the OH region was also observed 

at the same time. The appearance of these bands indicate 

that the2585cm- 1band may be due to a firmly bound SH- species. 
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Figure 8.7. The unit cell of Partially Co(II) exchanged fully 

dehydrated zeolite Type A. Ellipsoids of 20% probability are 

used1 3. The near trigonal planar coordination of the Co(II) 

ions is indicated by dashed lines. Sodium ion coordination 

is indicated by dotted lines. 

Figure 8.8. A stereoYiew of the dehydrated Co4Na4A_zeolite. 

Ellipsoids of 20% probability are used 14. 
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Water formation during H2 S adsorption was also observed. 

From their infrared data, the authors 2 concluded that 

in the zeolite NaA, H2S was adsorbed at two different sites 

while in the zeolite CaNaA, all the H
2

S occupied equivalent 

sorption sites and that no significant adsorbate-adsorbate 

lnteractlon occurred. 'l'hey assigned the observed absorption 

-1 4 -1 band at 2500cm for NaA and 25 Ocm for CaNaA to the v
3 

vibration (antisymmetric stretching of H2S which occur at 

2684cm- 1 in the gas phase1 7). In common with most authors3,7, 

they failed to observe the bending vibration v
2 

of adsorbed 

H
2

S. Water formation was explained by the authors 2 '9 as due 

to the reaction of adsorbed H2S with molecular oxygen from 

the gas phase,a reaction which according to the authors is 

thermodynamically favoured. 

Infrared investigations of H2S adsorption on faujasite­

type zeolites withsysternatically varied Si:Al ratios (1.05-3.24) 

have been carried out by Karge and Rasko3. The zeolite samples 

were degassed for 2 hours at 673K (or923K) before being 

allowed to cool to room temperature. H2 S at pressures 1,5,20,30 

and 50 torr were then admitted to the cell. 

Upon adsorption of H2 S (1 torr), the authors observed a 

band at 3650cm- 1 in the OH region together with a band at 

2560cm- 1 . On zeolites for which the Si:Al ratio is up to 2.5, 

increasing the H2 S pressure caused a decrease in intensity of 

the OH band at 3650cm- 1 , which developed during H
2

S adsorption. 

Simultaneously in these zeolites, a broad absorption band at 

around 3400cm- 1 developed. The 2560cm-1 band for NaX became 

asymmetric, broadened, and shifted to lower frequency, while 

the same band for NaY remained symmetric and occurred at an 

almost constant frequency. 

3 6 -1 The authors suggested that the OH band at 3 50cm , which 

appeared after H2 S adsorption was due to proton attachment to 
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framework oxygens (the proton arising form the dissociation 

of H S) · 
2 

Interaction between this newly formed OH and H2 S 

was inferred from the decrease in intensity of the 3650cm-l 

band and the parallel formation of the broad feature at 3400cm -1 

at higher pressures. The band at 2560cm- 1 , which appeared upon 

adsorption of 1 torr H2S, was caused by a dissociative 

adsorption since OH was formed. Hence, this band was assigned 

to the stretching vibratiQn of SH species. 

The band broadening, frequency shift to lower wavenumber, 

6 -1 . and asymmetric shape of the 25 Ocm band, in NaX, w1th 

increasing pressure was suggested by the authors to be a 

consequence of both chemisorption and physisorpti on of 1-1
2 

S. 

On the other hand, the NaY samples showed broad bands at 

generally constant frequency, indicating that non-dissociative 

adsorption took place. Correspondingly, no OH was observed 

for the NaY samples. Both the dissociative and non-dissociative 

adsorption were reversible since the OH, SH and H2s bands 

could be removed by evacuation, 

NMR data for H2 S adsorption on faujasite-type zeolites 

was reported Lechert and Hennig1 5• 16 . Their assumption that 

H2S may be adsorbed to some extent dissociatively (with 

formation of SH-and OH+), particularly in the case of NaX 

agrees with the conclusion reached by Karge and Rasko3. 

Deo et al 7 , in their infrared studies of H2 S adsorbed 

onto NaY zeolite observed a band at 2575cm- 1 due to the 

adsorbed species. Unlike Forster and Schuldt2 and Karge and 

Rasko 3 , they assigned this bandm the stretching vibrations 

(v1and v
3

) of H2s and the first overtone of the bending 

vibration (2v2 ). These bands occur at frequencies 2611(v1 ), 

2684( v
3

) and 2422(2v
2

)cm- 1 , respectively in the gas phase1 7. 

In agreement with other authors2 •3, Deo et al also did not 
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observe a band which could be assigned to v
2 

of H
2

S ( v 
2 

occurs at 1290cm-1 in the gas phase17 ). Deo et al7 , in their 

infrared studies also observed the formation of water which 

they explained was due to the oxidation of H2S with chemisorbed 

molecular oxygen. 

In another experiment, Deo et al7 absorbed H
2

S onto a HY 

zeolite. Their results differ from those for NaY zeolite in 

that, no oxidation of H2 S took place and a broad band at 

3200cm-1 was observed on the HY sample. This band was assigned 

to H
2

S hydrogen bonded to surface hydroxyl. 

H2S adsorption onto NaA and NixNaA (where o. 3 ~ x ~ 2. 0) 

4 
were measured gravimetrically by Ezzamarty et al . At room 

temperature the authors found that theadsorption capacity 

of the nickel form was slightly higher than for the sodium 

form. The difference in the adsorption capacity between Ni NaA 
X 

and NaA increased with increasing adsorption temperature. 

Data for samples with various values of x, showed thRt, 

for a constant adsorption temperature (298K), the mass of 

residue after desorption (thought to be S or S-) increases 

with nickel loading. It was concluded that since H2 S desorbed 

quantitatively from NaA at 623K, some chemical reaction had 

occurred between H2S and N~Na.A. This indicates that some 

oxygen from the zeolite was extracted as water molecules 

according to the following: 

H
2

S + 0 2- ---------7 H
2

0 + s2-

IV Experimental 

The Z~NaA, NiNaA and CuNaA samples used were from the 

same batches prepared as described in chapter VII. Mn and Co 

exchanged type A zeolites were prepared by ion exchanging NaA 

(Union Carbide Corporation) in 0.1M of MnS04 and Co(No
3

)
2 
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respectively at room temperature for 3 days. Both the Mnso4 

and Co(No
3

) 2 were obtained from BDH (Analar Grade). After 

the ion exchange, the samples were analysed and found to have 

the following compositions: 

Mn
3

. 5Na5. 0Al12si12 o48 and co4DNa4 . 0Al12si12o48 . 

The notations MnNaA and CoNaA will be used in the text to 

describe the above samples. 

Hydrogen sulfide was obtained from BOC Special Gases 

and was purified by the freeze-pump-thaw technique before use. 

The purity of the gas was checked by mass and infrared 

spectroscopy. 

Each of the samples used was dehydrated as follows: ZnNaA, 

67JK for 2 hours; NiNaA, 62JK for 18 hours; CuNaA, 723K for 24 

hours; MnNaA, 72JK for 2 hours and CoNaA, 72JK for 2 hours. 

Spectra of the samples at different temperatures during 

dehydration were measured. The dehydration of ZnNaA, NiNaA 

and CoNaA has already been dicussed in chapter VII. 

In each case, after the dehydration process, the sample 

was allowed to cool to room temperature and the spectrum 

re-measured. H2S at a pressure of 5 torr was admitted to 

the cell and the spectrum of the sample recorded. The pressure 

of H2S was increased to 50 torr and the spectrum of the sample 

recorded once more before evacuating the cell for 5 minutes 

and a further 25 minutes. Following each evacuation, the 

spectrum of the sample was measured. In the case of ZnNaA, 

after evacuation overnight, the sample was heated and the spectra 

obtained at various temperatures. 

V. Res·ll ts and discussion 

(a) Dehydration of MnNaA and CoNaA 

Figures 8. 9 to 8.11 show the spectra of MnNaA, NaA and 

CoNaA at various temperatures during dehydration. In the spectra 
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Figure 8. 9. MnNaA zeolite at: (a) 29JK, 

(b) 50JK, (c) 58JK and (d) 72JK. 
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1900 1800 1700 1600 1500 1400 1300 

Wavenumber (cm-1) 

F i ,g;v r e 8 . 1 o . N a A zeolite at : ( a ) 2 q 3 K, ( b ) 3 7 3 K, 

(c) 473K and (d) S73K. 
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1900 1800 1700 1600 1500 1400 1300 

Wavenumber (cm-1) 
Fi,c;ure 8.11. CoNaA zeolite at: (a) 2GJK, (b) 4SJK, (c) c;<;JK, 

(d) 64JK and (e) 72JK. 
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of the samples at room temperature, we observed a strong 

sharp band at 1655cm-1 with a shoulder at 1625cm-1 (Figure 8.9a) 

A 6 -1 . for MnNa ; a strong broad band at 1 75cm Wlth a weak shoulder 

at 1700cm-1 (Figure 8:toa) for NaA and a very broad bam.d at 

- 1650cm-1 (Figure 8.11a) for CoNaA. All these bands are 

assigned to the deformation mode of water. As the samples were 

heated we observed that the bands,which we have assigned to 

the deformation mode,decrease in intensity and disappear at 

583K for MnNaA (Figure 8.9c), 673K for NaA (Figure 8.10d) and 

723K for CoNaA (Figure 8.11e). This indicates that most of the 

water has been removed from the zeolite cavities. It should 

6 -1 be noted that, in the case of MnNaA part of the band at 1 55cm 

re-appears on allowing the sample to cool to room temperature 

(Figure 8.14a). We have explained in chapter VII (Section Va), 

that the re-appearance of this band could be due either to the 

nature of the zeolite itself, or more likely, from water being 

readsorbed from the surrounding of the cell. 

In the spectrum of MnNaA at room temperature (Figure 8.9a), 

we also observed three bands at 1540(s), 1400(w) and 1355(s)cm-1 . 

The band at 1400cm-1 increases in intensity and also changes 

in shape on heating while the band at 1355cm-1 disappears in 

the spectra of the sample at 583 and 723K (Figures 8.9c and d) 

Comparing these spectra with the spectra of NaA at various 

temperatures (Figure 8.10), it can be seen that the bands in 

the region 1500-1300cm- 1 disappear at 673K in the spectrum of 

NaA (Figure 8.10d). This indicates that the band at 1400cm-1 

in the spectrum of MnNaA at 723K (Figure 8.9d) is a result of 

Mn
2+ . lon movement. In agreement with the single crystal x-ray 

, 1 · 1 0 ' 11 the Mn2 + · t f · t ana ysls , lons appear o move rom one Sl e 

(1355cm- 1 band at room temperature and 503K) to another site 

(1400cm-
1 

band at 583 and 723K). From single crystal x-ray 
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analysis (Section II), the Mn(II) ions were found at sites S2* 

in the hydrated form, and at sites S2' in the dehydrated form 

(623K) · 

Unlike the 1355cm- 1 band, which on dehydration moves to 

1400cm-1 , the band at 1540cm-1 remains at the same position 

and with approximately unchanged intensity. This band could 

be due to a framework vibration related to both Na+ and Mn2 + 

ions. In the spectrum of NaA at 673K (Figure 8.10d), a band 

is observed at 1575cm-1 but is not as intense as the 1540cm-1 

band in the spectra of MnNaA (Figures 8.9a-d). Consequently, 

our assignment that the Mn 2 + ions are located at two sites 

is at variance with the conclusion reached by Seff et al1 0,ii 

ln their x-ray analysis (Section II). 

In the spectrum of CoNaA, a band is oberved at 1460cm-1 

(Figure 8.11a) which disappears on heating (Figures 8.11d and 

e). It will be shown later (Figure 8.15a) that this band 

reappears on allowing the sample to cool to room temperature, 

indicating that it could be due to a framework vibration that 

is sensitive to temperature. At high temperatures (643 and 

723K), a broad band appears at 1570cm-1 (Figures 8.11d and e) 

which was not observed in the spectrum of the sample at room 

temperature. The non-observation of this band at 293, 453 and 

553K could be due to it being obscured by the broad water band 

6 -1 at 1 50cm . By analogy with the spectra of NaA (Figure 8.10\ 

the 1570cm-1 band could be due to a framework vibration related 

to Na + ions. 

(b) Adsorption of H2~ 

H2S at pressures of 5 and 50 torr wRs admitted to 

ZnNaA, NiNaA, CuNaA, MnNaA and CoNaA zeolites. In the infrared 

spectrum of pure H2 S gas obtained at 445 torr, we observed two 

weak bands at 3800 and 1330cm-1 . It should be noted that at 
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5 and 50 torr (the pressures of H2s used in the present 

experiments), no band was observed in the gas phase.spectrum. 

Figure 8.12a shows the spectrum of ZnNaA (293K) after 

heating to 673K for 2 hours, while figures 8.12b and c show 

the spectra of the same sample after admitting 5 and 50 torr 

of H
2

S respectively. 

Upon admitting 5 torr of H2 S, we observe the following 

bands in the infrared spectrum, 3500, 3100, 2560, and 1655cm-1 . 

6 -1 Increasing the pressure of H2 S affects only the 1 55cm band 

6 -1 which increases in intensity. The bands at 3500 and 1 55cm 

may be assigned to the stretching and bending modes of water. 

In agreement with Forster and Schuldt2 •9, the formation of 

water could be due to the oxidation of H2 S with molecular 

oxygen in the gas phase. This is so since the formation of 

water is dependent on the pressure of H
2

S. 

The 2560cm-l band is very broad and asymmetric and 

because of this, we may assign this band to the stretching 

modes of both the SH species and H2 S. In tables 8.1 and 8.2 

are given values of v
3 

(antisymmetric stretch of H
2

S) 

and the v(SH-) in different environments. As can be 

. 6 -1 seen, our asslp!vnent of the 2S Ocm band to both 

adsorbed SH and H2 S, is within the range of v(SH-) 

. b Ch1· d N" 18 d C d 1 9 d l . g1ven y an 1xon an a e , an a so 1n agreement 

with most authors in their assignments of the v
3 

mode of H
2

S. 

Our assignment therefore indicates that there are two types of 

adsorption processes, the dissociative (H
2

S dissociated to H+ 

- + 
and SH ; H forms hydroxyl group with framework oxygen and SH 

is associated with the cations), and the non-dissociative. 

Confirmation of the existence of both adsorption 

processes is obtained by the observation of a broad band at 

3100cm- 1 which is due to H2 S hydrogen bonded to the structural 



'£. 
c 
0 

:~ E ,..---
(/) ---~-
c 
~ r- "'~--------

4000 3500 3000 2500 2000 1800 1600 1400 1250 
Wavenumber (cm-1) 

Fi2;ure f3. 12. ZnNaA zeal i te after heating at 67 JK for 2 hours: (a) at ambient temneratt re, (b) samnle 
(a) after admitting 5 torr H2 S, (c) samnle (a) after admitti11g SO torr H~S, (d) samnle 
(c) after evacuation for 5 minutes and (e) samnle (c) after evacuation fer 30 mi11utes. 

I 
N 

---J 
()'\ 



'* -c 
.o 
(/J 
(/J 

E 
(/J 
c 
0 
~ 

4000 3500 3000 2500 2000 1800 1600 1400 1250 
Wavenumber (cm-1) 

Fig11re R.l). (a) sa.mnle 8.12(e) after evacuation for a further 1 Dight, (h) ;::>.nnle ( 8 ) 

at 383K, (c) samnle (a) at S23K and (d) sAmnle (a) at ti2JK. 

i 
(\) 
·..J 
·'-.] 



-278-

·1:au1.e 
~ 

Ool Inrrareu oanu or 

in different envirpnments 

v
3

,cm -1 Ref. v
3

,cm -1 Ref. 

Gas phase 2684 17 NaY 2575 7 

Solid (66K) 2544 20 NaY 2560 3 

Solid ( 112K) 2562 20 NaA 2480-2520 2 

Kr matrix 2618 21 CaNaA 2540 2 

N2 matrix 2633 22 ZnNaA 2560 
Our 

Alumina 2560 7 MnNaA 2560 >-
work 

2568 8 CoNaA 2550 

Table 8.2 Wavenumbers of SH- anion band in different 

environments 

v ( SH), em -1 

NaSH in nujol 2538 

NaSH in NaBr 2569 

Free SH- 2545-2595 
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hydroxyl. As explained earlier, the hydroxyl groups originate 

from the dissociation of H
2

S and subsequently bonding 

of the H+ to framework oxygen. The assignment of the )100cm-1 

band to hydrogen bonded H2S lS ln agreement with that of Deo 

7 -1 et al , who also observed a broad band at )200cm -- for H
2

S 

adsorbed on HY·zeolite. 

We could not observe the OH stretching vibration 

in the snectra of the samnle unon Admitting c; and SO torr 

H2S because the intensitv of this band is weak and lS 

f11rther reduced bv hydrogen bonding to the H
2

S. 

The sample was evacuated for 5 minutes and a further 

25 minutes at room temperature (Figures 8.12d and e). On 

evacuating the sample for 5 minutes, the 2560cm- 1 band 

6 -1 becomes weaker and the water band at 1 55cm developed a 

6 -1 shoulder at 1 25cm . Their shoulder increa.ses in 

intensity in the spectra of the sample after JO minutes and 

overnight evacuation at room temperature (Figure 8.12e and 

8.1Ja). As explained in chapter VII, during the dehydration 

6 -1 of ZnNaA, the 1 25cm band is due to water at a site which is 

different from that associated with the 16~Scm- 1 band. 

It seems probable, from the spectra of the sample 

evacuated for JO minutes and then overnight, to conclude 

that one of the adsorbed species has been removed, because the 

6 -1 
25 Ocm band is now reduced in intensity and is less broad. 

However, we are not able to tell with cetainty, which of the 

adsorbed species is desorbed. The most likely one would be 

the SH anion since the broad band at around )100cm- 1 , which 

is due to hydrogen bonded H2S,remains. 

The sample was then heated and spectra obtained at the 

elevated temperatures (Figures 8.1Jb-d). The 2560cm- 1 band 

could only be removed on heating the sample 

above 52JK. Our observation that there are two types of 
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adsorption nrocesses is in agreement with the work of Karge 

and Rasko 3 , for H2 S adsorbed on NaX zeolite. 

Since for NiNaA, we observed only a broad band at 4000-

-1 2300cm and for CuNaA, no band was observed whi6h could be 

assigned to the adsorbed species, the spectra of H
2

S adsorbed 

on NiNaA and CuNaA will not be discussed further. 

In figure 8.14a is shown the spectrum of MnNaA at room 

temperature after heating to 723K for 2 hours. Figures 8.14b 

and c show the spectra of the same sam~ after admitting 5 and 

50 torr of H2 S respectively. In the spectrum of the sample 

before adsorption we observe a weak band at 3500cm-1 and a 

medium intensity band at 1655cm-1 which we have assigned to 

the stretching and bending modes of water. Two other bands, 

4 4 -1 observed at 15 0 and 1 OOcm , have already been discussed 

(part (a)) as due to framework vibrations related to cation 

movements. 

Upon adsorption of 5 and 50 torr of H2S (Figures 8.14b 

and c), the bending mode of water at 1655cm-1 increases in 

intensity while the bands which are related to cation 

movements are shifted to 1565 

two new bands at 3100(vb) and 

-1 and 1370cm . We also observe 

2560(mb)cm-1 . Just as for ZnNaA + 

H2S,we assign the broad and asymmetric band at 2560cm- 1 to 

both the stretching vibrations of both SH- and H
2

S. Here 

agafun, this is an indication of the presence of both 

dissociative and non-dissociative adsorption. The existence 

of these two types of adsorption processes is confirmed by the 

observation of a broad band at 3100cm-1 which was assigned to 

hydrogen bonded H2S. Confirma.tion that the SH- is 
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associated with the cations is obtained in this particular 

zeolite (MnNaA), because the bands at 1540 and 1400cm-1 , which 

are associated with cation vibrations, are shifted to 1565 

and 1370cm-1 upon adsorption of H2S (Figures 8.14b and c). 

Both the dissociatively and the non-dissociatively 

adsorbed species are weakly held since they are removed 

by 30 minutes evacuation at room temperature (Figure 8.14e). 

-1 The bands at 1575 and 1370cm returned to their original 

4 4 -1 positions at 15 0 and 1 OOcm after the adsorbed species were 

removed. Clearly, this shows that our assignment of the 1540 

4 -1 and 1 OOcm bands to the framework vibrations related to 

cation movement is correct. 

In contrast with the adsorption of H2S ·On ZnNaA and 

MnNaA, H2 S adsorbed onto CoNaA only gives a weak band at 2550 

-1 8 em Figures .15a, b, and c show the spectra of CoNaA; at 

room temperature after heating to 723K for 2 hours and after 

admitting 5 and 50 torr of H2 S, respectively. 

-1 The 2550cm band, because it is symmetric and in the 

absence of the observation of any band which· .can be assigned 

to hydrogen bonding, is deduced to be the result of non-

dissociative adsorption. Hence, this band is assigned to v
3

, 

the antisymmetric stretching of H2s .. Just as the MnNaA system, 

H2 S was found to adsorb weakly in CoNaA since it can be 

removed by 30 minutes evacuation at room temperature (Figure 

8.15e). 

In accordance with 011r observations for H
2

S adsorbed on ZnNa.A 

and MnNaA, water formation was observed in the spectra of H
2

S 

adsorbed onto CoNaA. This adds strength to our earlier 

conclusion for ZnNaA and MnNaA that the formation of water 

was due to the oxidation of H2S with molecular oxygen present 

as impurities in the gas phase. In agreement with some 
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23,24 ' autr-tors , the oxidation of H2S bv air or oxygen over 

X-tyne and A-tyue zeolites occurs according to the 

following reaction: 

VI Conclusion 

Uuon adsorption of H
2

S onto ZnNaA and MnNa.A, the infrared 

6 -1 b . band observed at 2_£) Ocm was fonnd to be road and as:vmmetrlc. 

It was concluded that this band was due to the prod11cts of 

both dissociative and non-dissociative adsorntion of H2 S. Tr-te 

nresence of both tvnes of adsorbed snecies was confirmed bv 

the annearance of a broad band at 3100cm-1 which was due to 

H2S hvdrogen bonded to the surface hvdroxyl, which was formed 

hv the attachment of the nroton of the dissociatively adsorbed 

H2S to framework oxygen. The non annearance of the OH band in 

the snectra of t!te samnles unon adsorntion of H2 S was exnlained 

as due to it being weak and the intensity was reduced further 

bv hydrogen bonding. 

Of t!te two tynes of adsorntion urocesses on ZnNaA, one 

was found to be weaklv held since it could be removed bv 

evacuation at room temperature. The stronglv adsorbed snecies, 

most nrobablv the hvdrogen bonded H
2

S (the broad band at 

3100cm- 1 still remained), was onlv removed after the samnle 

was heated to above S2JK. In MnNaA, however, both tvnes of 

adsorbed snecies were weakly held and could be removed easilv 

by evacuation. 

Onr col'l.clusion that there were two tvnes of adsorntion 

nrocesses is in agreement with that reached bv Karge and 

Rasko3 for NaX zeolite. 

For H2 S adsorbed onto CoNaA, we observed a weak svmmetric 

band at 2SSOcm-
1

. We assigned this to the v
3

, antisvmmetric 

stretching mode of H2 S. Accordingly, no OH band or band which 

is dne to hvdrogen bonded H2 S was observed. H
2
s was weaklv 
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held in CoNaA sample because it could be removed by evacuation 

at room temperature. 

In all cases (ZnNaA, MnNaA and CoNaA), we observed the 

formation of water. This finding is in agreement with most 

authorsZ,J,?,B, in their study of H
2

S adsorbed onto a range 

of zeolites. 
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SOME SUGGESTIONS FOR FUTURE WORK 

We have shown that CuiY can be prepared from Cuiiy 

inside an infrared cell. This opens up the possibility of 

studying, at a molecular level, the influence of cation 

... .., ., .. . ' " 
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the catalytic properties of zeolites. 

Further experiments on cyclopropane adsorption and 

isomerization, using methyl substituted and deuterated 

cyclopronanes etc. should yield additional insight into the 

isomerization and reaction mechanisms. Co-adsorption of other 

species (e.g. propene) should yield definitive information on 

the adsorption and active sites. 

One of the major motivations behind all of my work was 

the wish ultimately to study reacting species. It is clear 

that high quality infrared data of adsorbates can be obtained 

on self supported zeolite discs but further work on dynamic 

systems would require additional aPparatus. The major new 

items would be: 

(1) A Fourier transform spectrophotometer. For 

species reacting rapidly the relatively long 

scan time of a dispersive instruments seriously 

influences the quality of information that can 

be obtained. 

(2) The provision of flow controllers so that 

quanti ties of gases ( vapours) could be admitted 

at a known and constant rate to the cell. This 

would enable us (if the cell was simultaneously 

evacuated at the appropriate rate) to study 

systems under steady state conditions. 

In addition to some of the systems mentioned above I 

suggest that studies of the following would be appropriate at 
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the present time. 

(A) A number of reports have shown that sulfur 

compounds such as H2 S and so2 promote the 

catalytic activity of zeolites. There are, 

however, few reports on the mechanism of 

the promoting action of these adsorbed 

sulfur compounds or of the interaction 

between the sulfur species and zeolites. 

With the new apparatus mentioned above, 

these experiments could be carried out And 

the mechanism studied in detail. 

(B) In view of the current high level of 

interest on highly siliceous zeolites and 

their obviously fascinating properties, 

detailed infrared studies of SPecies such 

frameworks is highly desirable. This work 

should be done over a range of temperatures 

(up to -67JK) since this is of relevance to 

their potential applications in CO + H
2 

and 

methanol conversion. 

Now that the appropriate experience has been gained, the 

next major phase of the research work should be directed at 

more technologically relevant systems and these should be 

studied as close as Possible to the conditions of industrial 

usage. 


