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ABSTRAMT

Supersymmetric models which are based on ordinarv quantum-
mechanical systems , of the form originally suggested ny Witten ,
are studied . Oround-state energy is chosen as a suitahle measure
of the extent of spontaneous supersymmetry breaking . Insight
inte the mechanism by which such breaking can occur is also
sought . Several existing methonds for estimating ground-state
energies are reviewed and compared with the true value , and
then some new methods are developed . At first , the canonical
Familtonian formulation of the models is used , but later the

path-integral apnroach is also considered . In the latter it is
shown that the use of a larger family of classical solutions of
the equations of motion than customary mav be used to improve
the normal semiclassical calculation . Analogous solutions
exist in CP'\_l model field theories . Classical properties of
these are discussed , and their potentia’ use in semiclassical
calculations similar to the quantum-mechanical ones indicated .
Finally we return to supersymmetric quantum mechanics in order

to generalise the original structure to cases with many degrees

of freedom .
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Chapter 1 - Introduction

Supersymmetric extensions of field thenries were proposed a
number of vears ago [30] , and study of their properties has
mushroomed quite recently . There are several reasons for this .
Firstly , it nrovides a way of incorporating fermionic degrees
of freedom into bosonic theories in such a manner that both
kinds of particle enter on an equal footing . Previously , models
had tended to concentrate on just one kind ( e.q. 4} theory and
the sine-Gordon model are purely bosonic , whereas the Thirring
nodel or those studied in [143 are purely fermionic ) , or else
the two sectors were assumed to be only weakly coupled , with
the fermjions having 1ittle effect on the spectrum of the bosonic
part . The equality of importance of the two sorts of particle
is made particularly manifest in the superspace approach to
supersymmetric theories , in which a "normal" ( i.e. Lorentzian

or Buclidean ) snace-

T

ime is extended hy a set of anti-
commuting { Grassmannian ) coordinates to form superspace .
Models are then constructed so as to be manifestly invariant
with respect to general coordinate transformations in this
superspace . In this picture , supersymmetry mav be understond
as a globhal gauge-type invariance including ordinary Lorentz
invariance as well as other more general transformations .

The structure of supersymmetrv imposes stringent requirements
on the hosonic and fermionic parts of the TLagrangian ( and on
their interaction ) , and hence imposes relaticnships between

the various masses and coupling constants of the theory . This




means that in supersymmetric theories we find cancellations of
divergences which normally appear in field theories as zoon as
perturbative calculations are carried out bheyond tree level -
here infinities arising from bosonic and fermiaonic determinants
cancel exactly , leaving in many cases an essentially finite
theory ( all divergences may be ahsorhed into wave-function
renormalisation ) 321 . Recent work has shown that this sort
of cancellation , which was at first thought to he accidental ,
can in fact be traced to a single root and thus all of the
cancellations found so far may be systematically understood .
This is fortunate in some ways , but we note the following .
First , the construction is carried out order by order in
verturbation theory , so potentially harmful nonperturbative
aspects are neglected . Secondly the arguments apply only to
models with global supersymmetry , i.e. a single global checice
may be used to fix the gauge . Models with local supersymmetric
gauge freedom ( i.e. supergravity models ) are not included in
this systematic scheme and so are now expected ( despite
earlier hopes ) to exhibhit the usual Jdivergences , which can
first appear in 3-loop calculations [417 .

The above vcint is related to the following . A perennial
stumbling-block in the construction of grand unified theories
( i.e. theories seeking to unify gravitation with the other
known interactions ) is the so-called hierarchy problem [421 .

There

3]

re many ways of expressing this pronhlem , one of which

~-

s this . The characteristic energv-scale of qgravity is the
19 . .

Planck scale ~10 GeV and this is presumably a lower bound on

energies at which an unhroken supersymmetric model would be

of direct relevance . The characteristic energv-scales of



theories which seem to be of immediate relevance are very much
I
lower , say ~10 GeV . If the construction of fundamental
supersymmetric theories ig to be of any value at all , there
must bhe essentially no new nhvaics hetween these enerqgv-
scales . This in itself seems to be a major and unrealistic
assumption , but supposing it to be true we still have to
account for the huge ratio between the scales . In traditional
models where renormalisation effects are controlled only bv
explicit cancellation , the ( relativelv } extremely small
energies of "ordinarv" processes requires an extraordinarily
fine tuning of the parameters in an apparentlv ad hoc manner .
In supersymmetric meodels , on the other hand , this tuning
can arise naturally - anv cancellation which is exact at the
1-1loop level remains exact to all orders in perturbation theory
and can at most change because of nonperturbative effects .
These are expected to he exoonentially small , i.e. to he

)2 Q— 2x /,,(m_

suppressed by factors like (2£MX vhere M, is the

X
df-uf
mass-scale of the vector bosons associated with gravity - for
¥->14 L1
M, of order GeV and = his gives a low-energy scale
v rder |0 a d&"ngeeo this gives & gy sca

of the order ]03 GeV [4331 . So this leads naturally to very
large ratios . Thus several recent proposals for grand unified
theories begin with a fundamental supersymmetric theory at
extremely high energies , which is broken by nonperturbative
effects at low energies ( i.e. laboratory scales or at least
not significantly higher ) .

A further reason for requiring the effective low-eneray
theory to be broken , ig that in unbroken supersymmetric
theories the particles come in multiplets in which bosons

and fermions have equal masses . A brief glance at some of



the experimentallv Adetermined masses of particles shows this
not to he the case . Hence the low-energy form of the theory
must somehow brea% the original supersymmetry in order to break
un these supermultiplets and give a more varied spectrum .
However , the breaking must not bhe too severe , or as explained
above the original theory would pe of no value in understanding
lahoratory physics . Hence it has bheen suggested [447] that
explicit breaking should not bhe necessary - the hreakdown of
supersymmetry should occur spontanecusly via dynamical aspects
of the model . This means that althouqgh the Lagrangian for the
model is supersymmetrically invariant , the space of phvsical
states is not . In chapter 2 we shall see this mechanism
operating in a particular case .

As a final motivation we wish to mention that regarded as
purely abstract objects , spaces which are defined in terms of
hoth normal and anticommuting coordinates have an intrinsic
mathematical interest . Questions regarding ( for instance )
the gqlobal existence of a supersymmetric structure over the
entire znace as well as just locally ( thus giving a super-
manifold structure which generalises that of the more familiar
manifold ) seem difficult to answer . AS with the physical
prohlem with which we are concerned here , the constraints
which supersymmetry imposes have major conseauences for the
geometric structure of such spaces .

The above discussion raises many questicons . Supersymmetric
models are inherentlv complicated , particularly if they are
intended as realistic models in four ( or more ) space-time
dimensions . Hence there is a shortage of exact results which

include nonperturbative as well as perturbative effects . Thus



many of the properties claimed for sunersymmetric models are
conijectural , or else the result of a necessarily partial
analvsis nf the praonbhlem . It is hard to have an intnitive
grasn of theories in which masses and couprling constants are
so inter-related , and in which bhosons and fermions have an
equal priority . Therefore exact results concerning anv super-~
symmetric model are of value . For example , how big can we
exnect nonperturbative effects to be ? For proposed solutinns
of the hierarchy problem in grand unified theories to he viable ,
nonperturbative effects must be suppressed to the extent
explained above , hut it i3 clearly impossible as vet to
perform exact calculations in order to check that this really
doces happen .

Spontaneous dynamical pbreakdown of supersvmmetry ( or indeed
any symmetry )} is a little-understood phenomenon . It is
possible in many cases to assert that it happens , but details
of the mechanisms involved remain obscure . It has in the past
heen suggested that finite action solutions of the classical
equations of motion , representing gquantum-mechanical tunnelling
between classically separate and degenerate vacua , may triqgger
this , but as vet this is not clear . Since the mechanism forms
an essentia’ part of current models proposed as fundamental
theories , it would he of value to understand it better by

sturdying solvanhle models in which it happens .

The particular framework within which we choose to work uses
supersymmetric extensions of ordinary quantum-mechanical problems
with a single degree of freedom . Such models were first proposed

in [43] as a potentially fruitful area of study , and subsequently



there have been some investigations of the models [e.q.18,29,387] .
RBeing simple models they allow exact results to be found in many
cases ( by direct integration of equations of motion if necescarvyv

as we are dealing with ordinary rather than partial differential

ecquations ) . Mevertheless , they can bhe viewed as special cases
of field-theoretic models and so insight mav bhe gained into other
more complicated models . Many techniques and approximations used
in field theories become particularly easv to use in quantum-
mechanical models , and thus we expect to gain experience of the
quality of the various methods . By varving suitable parameters
in the models we mav investigate either unbroken or spontaneously
broken cases , and hence hope to see which differences hetween
them are essential . Tn marticular we will pe able to see the
effect of spontaneocus symmetry breakdown on the energv spectrum .
Some of the models considered have instanton { vacuum-tunnelling )
solutions at the classical level and so we can attemnt to learn
the role thev play in the theory . In short , there are few
aspects of field theories which are not reflected in these

models , but in a much simpler and computaticonally tractable

form - numerical comparison of various methods of approximate
calculation forms a major part of this thesis .

One important feature of field theory which has no counterpart
in quantum-mechanical models is renormalisation . This is
unfortunate since the snecial properties of supersymmetric
field theories first manifested themselves here , and the
affect of nonverturhative effects on renormalisation remains
an open auestion . In this respect , supersymmetric gquantum-
mechanica’ models are no more special than ordinary ones , as

none are renormalised . Furthermore , this raises important




questions regarding the nature of the interactions which we
choose to include in our cuantum-mechanical potential . Should
we proceed hv direct Analeogy wikth Field theory , and so use
interaction notentials to imitate the hare notentials , or

should we attemnt to investigate renormalisation effacts hy

b]

(1

imitating effective notentia's such as those Aerived from

calculations at the 1-loon level ® In the former case the
notential is restricted to heing a polyneomial! of fairly Jlow

order , whereas in the latter we chould include other sorts of

exnression such as Togarithmic terms . This guestion is still

D

open : Iin the main part of this thesis we choose the first

{

apnroach , reserving a sheort diccugsion about the second method

until the conciuding chapter . Preliminary investigations

indicate that the second chnice can wroduce features which are

quite Aifferent to bhehavionr anticivnated from the first choice .
The models are studied with the intention of gaining intuition

apout the nature and extent of breakdown of supersymmetry . For

this purpose we must choose some readily calculated measure of

this breakdown . For problems in quantum mechanics a suitable

choice is the value of the ground-state energy - we will explain

in chapter 2 whyv this is suitable for discriminating between

broken and unbroken models . In field theories the analogous

quantity would pe the intrinsic vacuum energy - on a local

scale the absolute scale of energy is usually thought to bhe

unobhservable and irrelevant , with only relative scales bheing

of importance . However , supersymmetry forces us to look at

the theoryv glohally , and on this ( cosmological ) scale we

can discriminate between situations in which the backaround

enerqgy density is positive or zerco . Here again we see the



effects of supersymmetry in mixing both scales and physical
properties usually thought to be separable . By looking at
excited states of the system we can investigate the eneray
spectrum of the theorv and hope to make inferences about

particle spectra in field theories .

There are many ways of estimating ground-state energies in
quantum mechanics and in the next two chapters we use several
of them . First we use methods which are essentially exact
( i.e. known to be accurate to a higher precision than that
necessary for comparison ) , and then a selection of commonly
used approximation techniques . As far as possible we restrict
ourselves to methods which have a known or possible analogy in
field theorv . The methods divide into two main categories ,
the first being based on the Hamiltonian formulation of the
theory , and the second using the Lagrangian path-integral
approach . The "exact" methods are included in the former ,
together with other ways . The second chapter contains several
variations on semiclassical calculations which use solutions
of the classical equations of motion to approximately evaluate
a functional integral . The aquestion of how instanton solutions
are to be used arises here . Of the two chapters , the second
( involving Laarangian ideas ) is the one for which conclusions
may more ohviously be generalised to field theory - Hamiltonian
techniques are seldom used in field theories except in lattice
calculatinns . In hoth of these chapters , various quantum-
mechanical models other than the supersymmetric ones are used
to illustrate certain points which arise , or to see whether

certain conclusions are generally applicable . Much of this



material appears in [2,31 although some is new .

There are several immediats aeneralications of the work in
chapters 2 and 3 , and two such generalisations are then
considered . In chanter 4 we consider the CP'\-| model field
theories , which are models in two space-time dimensions which
share many properties with four-dimensional Yang-Mills theories
The models considered here are not supersymmetric . The purpose
of this chapter is to show that they also share many properties
with the quantum-mechanical models previously discussed .
Various features of classical solutions of the Cﬁ—équations of
motion are reviewed , both at the purely classical level and
also towards their inclusion in semiclassical calculations .

In particular we show that the nature of the various solutions
is directly analogous to solutions in the quantum-mechanicel
models , and that they can plavy the same role in semiclassical
calculations in both sets of models . At this level the degree
of similarityv is remarkable . The classical properties have heen
discussed in [11 , but use of the solutions in a semiclassical
manner has not appeared elsewhere .

In chapter 5 we return to supersymmetric models . This time
we generalise the earlier models , which had onlyv one hosonic
degree of freedom , to cases with manv such Jdegrees of freedom .
Thus if the original problem is thought of as representing
fields at a single site propagating in time , we now think of
fields at a finite collection of sites propagating , where the
sites are coupled together in a specific wav by the requirement
of supersymmetryv for the model . By taking a limit in which the

total number of sites tends to infinity we may seek to study




¢

the approach towards a field theory . In particular we shall

see that the energy spectrum of the model can pbe significantly

Th

o elfects of

-~
+

altered by the incliusinn nf the farmions .
altering the geometry of how the sites are linked together is
briefly Adiscussed . Previouslv , this work has not been written
up .

After chapter 6 , which contains concluding remarks , there
are a number of aprpendices containing technical work which we
do not wish to include in the text , but which aids the

understanding of the material .



Chapter 2 - Ouantum-mechanical Mordels - Hamiltonian Methods

2.1 = Description of models use”

These fall into two cateqgories - firstly models which exhibit
supersynmetry in either its spontaneously broken or unbroken
forms , and secondly a series of supplementary models used purelvy
tn anplify particular points arising from the study of the super-
symmetric cases . The families of supersymmetric models arise in
a natural and systematic manner , as will he explained later .

We are concerned only with the question of dynamical breaking of
supersymmetry and so do not congider models in which hreaking
is put in by hand .

The idea of studving supersymmetry within the context of
quantum mechanics was first proposed in [43Y , using techniques
for integrating over fermionic degrees of freedom developed
some vears earlier [9] . There are many reasons for considering
such models rather than ordinary "realistic" supersymmetric field
theories in 4 or more space-time dimensions , some of which have
peen discussed in the introduction . The reasons for , and the
mechanism of dynamical symmetrv hreakdown are not at all well
understood , althouch several necessary conditions have been
found - for exammle general arguments have produced a variety
of functional methods [15] . These tend , however , not to lend
themselvas readilv to calcmlation , and in addition give very
1ittle information in the case of greatest interest - i.e. the
spontaneously hroken cases . It is clear that any supersymmetric

theorv which is to be useful in practise ( i.e. at low energies

I



relative to any postulaterd grand unification scales ) must be
broken in some manner , so techniques which produce useful.
answers in such cases are essential .

We are seeking , then , a readily-computanhle method of
Aistinguishing between spontaneously broken and unbroken
cases , and for broken cases , assessing the extent to which
the theory is broken . Several calculational schemes are
available for this nurnose , and we review these as well as
developing new methods which to an extent overcome the prohlems
which emerge from using existing methods . This is another
reason for looking at cuantum mecharnics rather than field
theory - all calculations are much easier and quicker , while
still giving indications of how similar calculations might
proceed in more complicated models . Thus we can test various

common heliefs against readily obtained and accurate answers .

There are two principle ways in which the Hamiltonian or
lagqrangian appropriate to supersymmetric cuantum mechanics may
be derived - firstlv v dimensional reduction from a super—
symmetric £ield theorv ( thinking of quantum mechanics as a
0+1 dimensional field theorv , or the field theory of a single
point or site ) , and secondly hv constructing the most general
supersymmetric action in superspace . lere we priefly sketch
this approach - see appendix 2.1 for more details .

The basic objects needed to construct the theory are the so-

called supercharges , operators which generate the sunersymmetry

alachra . In our case there are two of these ;



( fp\ o' ?,Wl)

1,p are hosonic position and momentum operators ,

y T
; p> O
\ I\
>
>
‘.
<22
-=>

L‘/\,’L are fermion anerators catisfving {4\}""@{3 ?: g«yz ’
v(q) is a polynomial in q called the superpotential ,
with prime denoting derivative with respect to q .
Note that except in chanter 3 , for convenience we set K =1 ,
and a'so take our system to be of unit mass . Also there are
differences in the literature as to what is called the

superpotential - here we follow the conventions of (29,387 .

It is convenient to define ladder operators

A 1 - AN A A A

b - @G el) Uy =0 50,071
A | A LA

Qi=@(Q,ttC’21\ (?tw )4)1

in termiﬁ?f which
] A A A ~

~
where H is the Hamiltonian , explicitly given by
A

o W= 2874 Lo'g) + [w),3100,,0]

The corresponding Lagrangian is

2.5 L= 147 Lo e W + 20,410

At this stage we choose a marticular representation for the
hosonic and fermionic coordinates , rather than keep using the
abstract versions above . In fact the choice is easy -~ we use

the canonical irreducihle representations in both cases , viz.

-1 o Be-ig

Q+:(§c')) ) @-:(? CC)))



L

—~ the von Neumann uniquensss theorem and its fermionic analogue
132,127 ensure that these choices are essentially unique . The
fermionic choice has several consequences - the sunercharges
and Pamiltonian hecome 2x2 matrices , acting or 2-comoonent
vector wave-functions ( each component heing a hosonic function
A A . . . . .
acted on by q anc p as above )} and this immediate'v vields an
occupation number interpretation for the fermions . If we take
the fermion numher—oonrator to he
2,1.7) = (O O)

-Y4 = l
then we may interpret the upper ( lower ) comoonent as having
fermion number zero ( one ) . With just one site there is a
certain amount of arbitrariness in this choice , but it will
become more relevant in chapter 4 when we conzider more degrees

. » . a . . ~
of freedom . At this point it is sufficient to note that f

> A * . i3

commutes with I and so is a constant of motion , and that in

this representation'ﬁ is diagonal -
y 1
b (e ,49
2.1.8) 0 o FIV ()
where ‘71:((!) S (1)1 7 0" (q)
We also define Vb(q) = Lr'a -~ this is known as the bosonic part
of the potential and gives bosonic mass and self-interaction
terms , with the other terms in Vi giving the boson-fermion
interaction .
So it would seem that we have two decoupled problems to solve
- however the supersymmetric structure permits a further
simplification . Hote from (2.1.2) and (2.1.3) that
Al A2

- l -
o= Y Q Q1 and thereforoe

1) all eigenstates of T have non-negative eigenvalues , and




?) a state has energv zero if and only if it is annihilated
~ A . A
bv hoth @ and @}, (equivalently Qt) .
N\
Also we see from (2,1.3) that if.iLis an eigenstate of H with
N . . N
enerqgy T >0 , then Qtiy_ are eigenstates with the same eneray ,
unless they vanish . There are two possibilities -
1) all eigenvalues of I are strictly positive and come in
degenerate pairs , linked hv supersymmetry transformations
2) I has a single non-degenerate zero eigenvalue for its
ground-state ,with all the excited states in pairs as
ahove .
Thus , as menticned in the introduction , we may use the value

of the ground-state energy , E, , as a measure of the extent of

o
supersymmetry breaking . As will be seen later , this choice is
not without prohlems , hut it Adoes have the advantage of heing
readily computable in a numher of different ways . In field
theory , in case (1) the degeneracy is attripbuted to the presence
of a zero-mass fermion , the Goldstone fermion . In this case we
may choose the eigenstates to be of the form ~ w

0] u

2.1.9) (tg“) or (‘Vi) = Q. ( o)

In case (2) the excited states are of this form , and there is
also a single state of zero enerqgy , annihilated by boﬁﬂéi+and
Ei_ . To find the form of this state we solve the simultaneous
equations

2.1.10) at (qlf:) =0

where from {(2.1.2) we %Fe that
N -1 wr' n @)
2.1.10a) Q+=(O ‘&“U(t)) y A= 4 ., 0
0 0O ~‘Ji_‘oét) 4]

This agives the pair of equations

2.1.11) <%,+U’)% = 0 = (iﬂu' ‘{’A

whose snlution is



q
-? u"(‘L' )d@' —U'(q,))

- et 2 e

U( )“V( o)
B ) &7

2.1.11a)

For this wavefunction to be admissible we recuire it to be
normalisable , and this depends on the asymptotic hehaviour of
the superpotential . In order that we are solving a hound-state
probhlem as opnosed to a scattering problem , we require that
‘v(q)\.:,,,o as lql.a,,A and without loss of generality we also
require vid) = +0d as q—>+od ( the opposite choice sinply
reverses the roles of the upper and lower components of Sli) .
There are then two possivilities -

D vig)=s4ed as g —9 . In this case \Puof (2.1..11a) is
normalisable and so (2.1.10) has a solution .
Supersymetry is unbroken .

2) vidls> - as g -0 . In this case \{/Kof (2.1.11a) is
not normalisable and (2.1.10) has no allowed =solution .
There is no state of gero energyv and sunersymmetry is
spontaneously broken .

We now notice two things - firstly it is the leading asymptotic
hbehaviour of the sunerpotential which is solely responsible for
the breaking or otherwise of sumersymmetry , and secondly the
potential Vy contains all the information necessary for a
complete determination of eigenstates and energy levels ,
irrespective of any possible hreaking . So , despite initial
appearances , we have only a single eigenvalue equation to
investigate -

2.1.12) (-}L g} 3\ Q))M‘L) - E ‘“‘L)

corresvonding to the umper comporent of (2.1.8) . See also [338]




in which it is shovm that -quantisation schemes using 2-component
vectors or Grassmann-—-tvne variahles are emquivalent , although

the reduction to a s2ingle probnlem as anove is not vse” h

o

e may oroceed v oo gintlar way fron (2.1.5) to obkain a 2x2

Aiagonal matrix Tagrangian , which again reduces to a single

comonent. —

R 1

)|

Tt is clear that there are two generic forms of the simer-
potential in which the Jeading nower is odd or even , which
correspond to spontaneously broken and unbroken models
regpectively ( with our convention of notation } . This simple
choice can he expressed in a number of different languages ,
e.g. in [33] it corresponds to whether or not the Micolai mep
. . " . e ] 2
is single-valued . The simplest non-trivial case has v = 1‘0ﬂ,
which corresponds to 2 sunersymmetric harmonic cscillator .
This proplem is exactly soluble and displays the expected energu-
1 2

level structure for an unbroken model . Tn fact VL =W Q_ ’

12 T .
\74_ = w(L -W and vV_ = L«)(L +w . Thus the eiqgenstates for the

problems are just the harmonic oscillator eigenstates and we

have the following structure :

V; prohlem V_ problem
\Pn El\ LP" r"n
-1t
Gla 531)8“ wint) -1 O winth) + 3w

IR
1
0 - nw Clfag)e = Win+l)
VMote that the lowest level of the ‘l prohlem is at zero , and
1+\" ' } } 1 AY
that the (1) level here is equal to the n ‘evel of the V.

- hroblem . Al

A (%) =0

o
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and a0 as ¢claimed earlier the sunersymmetry transformations

!

tranafnrn paire of eigenstates of the two nroblams into one

another - solving the singles V. nroblem allows us to £find both

‘V;
the eigenvalues and the eigenstates »f hoth proniems .
Another point , fisst observed in [43] , is illustrated v

2
this mpdel . e have said earlier that the v! part of V+ may

. i . .
ne termed the bosonic mart and the v mpart fermionic . Tt ig

ofte

3
n
-+
jod ]
ct
]
o)
T
oy
o))
ot

in inbroken sunersmetrin theories the
mosonic 2nd fermionic determipants cancel - here the bosonic
"Aeterminant" is given hy %JE;E.ngd and tre fermionic by %Uﬁz %AJ
and <learly tho tvm are emal . For thig pronlem there are no
higher-order corrections to this and so this cancellation at
tree-level remairs exact to all orxders .

We Jdo not consiler this nroplem further , nut turn instead Lo
models which have higher nowers in the supernoteptial and nence
are not ervactiy soluble . The next two cases are the simplest
non-trivial examples of the generic cases , an? wost of the
rest of this chanter is dnvoted ko their stuly , ey are

2.1.14a) v o= 1-Lq3 + Mg o~ broken

2.1.14n) v o= i = =M 2 _ unhroken

i
b O
n hoth of which 7,70 with ™1 arbitrory
Yo glen hriefly consicer v o= lfqu 4+ T, for reasons
rmlained Tatar |
The corresponding poteptiale are

2 2
2,1.15a) vb = (Lt ), end Y= (e vy - 20



21150 v = (T — vl , an? V= (If —lq) - (3T + M)

Both families of superpctentials have in common the fact that
they have two arhitrary varamcters { one of which may be scaled
out of the c’asaical theory ) , an’ the interplay »etveen these
gives rise to a numher of interesting effects . For various

ranges of the narameters one or both of Vg or \Q have Adegenerate

[t}

minima , giving rise to finite action { instanton ) solutions of

the Fuler-Tagrane claseical equations of motion , as showm later .

As mentioned earlier , we also use other quantum-mechanical
models from time to time in order to elucidate certain features
of the methode used in this thesis . By analogy with (2.1.12) ,

these all have Hamiltonians of the genera’ form

Be -5 E e avlh)

2 .
4 "
2,1.153a) vhere 1) V(q) = (q?- £59)7 ~ the octic oscillator
( fz>0) ; OF
2.1.16b) 2) V@) = (- %ﬂzfz— the quartic oscillator

2

(g

Reasons for the use of these models are given at the avppropriate

arbitrarv) .

point in the text .

Note that there is a { not egsential ) difference between
the supersymmetric models and the suoplementary ones . The
latter are purely bosonic models from the outset , whereas the
former are vroperly models containing both posonic an? fermionic
Adeqrees of freedom . Towever , hv use of the suoersymmetric
structure and a particular { but canonical ) choice of
repregentation vw may reduce these to effective hosonic

theories in order tn compare rezn’ts . No information is lost



in 5o doing , as the full spectrum of the Hamiltonian is
implicit in the single ecquation (2.1.12) and we can readily

pass from one formalism to the other . 8o , although we seem

~

to have discarded the fermionic degrees of freedom , it is our
melief that in doing this the structure and consequences of

sunersymmetry are more clearly revealed

The remainder of this chapter is in three parts , in which
we consider a numher of various approaches , all of which work
directly with the Hamiltonian or Schrodinger”s equation in one
form or another , and so may be considered as full cuantum—
mechanical anproaches . In the next chapter we work fram the
alternative , Lagrangian point of view , using solutions to
classical equations of motion to build up a semiclassical
picture via instanton calculations and generalisations of
these . It will be seen that although the Hamiltonian apnroaches
can he expected to reflect the physice! structure more closely
( or at least more intuitively } , it is less easy to see how
they may be applied to field-theoretic calculations in which
semiclassical calculations nsing functional integrals presently
hold sway .

As explained anove , we will concentrate alwavs on estimating

the value of Eg s the ground-state enerqy , as our measure of

supersymmatry breakdown .

2.7 - Some existing methods of estimating Eo

le consider three families of models in this section - the

20



two superaymmetric cases given in (2.1,14) and also the quartic
oscillator of (2.1.18) . Pirst we display the various generic
types of the motentials involved |

a) Broken supersvmmetric case .

Pecall that the superpotential is

) /3

2.7.0) U J—qu} + MCL = E(vae‘_)] + /AA(L
TR+ pl

l/z
where we have Adefiinad Iu z M/L'/Z 3 & = L ?,

g )

it

n

So classically we may scale L out of the problem and are

left with a single free parameter }&-

There are two generic forms of the hosonic potential
2.2.2a) V- v’ o (@f),/uf | */2

according as M is nogsitive or negative -~ see fig. 2.1la .

Customarily it is said that for }A7O the theorv is broken

nerturbatively ( since the minimum of the of the potential

~

is strictly pogsitive ) , while for F“:O it is broken by
non-perturhative effects such as instantons - in another
language it might be said that the tunneling between the
deqenerate minima breaks the sumersymmetry . In [38] the
F‘O case is extensivelv treated , and an estimate for T,
is Aerived using instanton technigques which we review in
section 3.1 .

If we look at the full motential
2.2.2p) V, - AT ((&lirju\z— 2&) L

leading to the Schrodinger equation

vod? I ) 4, E

0 7 - - R ——
2.2.2¢) ( 2 jqr o3 v, (Q) i
then we see that it too has two generic forms - see fiq.

!
/3
?2.1p - however they are separated at /,lc= -,3; e ; l.e. the
A

parameter—smace is partitioned differentlv . No special

2]
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hbehaviour is abserved near }A=C) . The Adouble-well structure
of VL is remempered for /u<}tc hut not verv exactly - in
fact as F-a-qﬂ the wlls do not hecome degenerate nut diverge
to t o0 . Mote that I, merely provides an overall aca’a - in
fart it gets the cquantum—mechanical scale - and in the
following we fix T, = 0.3 for convenience ( the small value
of T, makes the perturbative calenlations which follow easier
and quicker to converge ) .
p) Tinbroken supersymmetric case .,
| Y% \#
Here U= ‘L’L(i’“—zMiz= L'T(L['(L)_-i‘-/u(in
t 2
2.2.3) - ;@_4 _ z\“/“Q |
where now M= M/L'/z S & - L/"qf
Sn
2 |
2.2.42) V, = (@-pd) L*
which again has two generic forms according aSIA is vositive
or negatiVe (fig. 2.2a) . Since the bottom of the potential
is alwavs at zero , it would normally he said that the model
is not hroken perturhatively - however for /47(3 there are
Adegenerate minima , hence instantons , and one is led to
wonder why they do not break supersymmetry here . This will
be considered more fullv later .
Mote also
2.2.4n) V, = ((&zv,uﬁ)z— (3611-/«)) L

giving

o) (~ii‘%+ i\b(a))t}): '572

Yy has three generic forms (fig 2.2n , with the divisions

/2

N2

W

1 . . e
hetween them at }L: t\h - adgain a different vartitioning of
the parameter-space . Again T, just sets the scele and this

time we fix T, = 1 for convenience .



c) Ouartic anharmonic oscillator .
Here

2.2.5a) V= (Q_,z— 5'/“2)2

ana so

2.2.50) (—9{ ,i%z + ‘%V(U) ¢ = ELP

The twe generic shapes of V are as in fig. 2.la .

Refore continuing we wish to point out that very little of
the rest of this thegis would exist in its opresent form without
he work and help of the operating staff of the NIMAT comuting
network ., Specific references are not made in the text , as

thev would be too numerous [34] .

We now establish to a reasonable degree of accuracy the true
value of Ebin order to assess the quality of the various
estimation schemes - for cquantum-mechanical models this is
relatively easy , though not , of course , in field theories .
Tt is particularly easy for case (b) - since the supersymmetry
remains unhroken we know Eoz:C) for all values of the marameters .
For case (¢) we refer to [11] in which the value of T, as a
function of P& is given to rather more accuracv than we need .
A plot of these results may he seen in fig. 2.3b .

Case (a) remains . Upper and lower bounds on E, were found by
a comhination of two methads - standard Rayleigh-Ritz methods
for upper and an adaptation of this descripbed in 7] for lower
hounds . The notentia’ v, is gplit into two varts , a quadratic
term and a positive semidefinite remainder . The truncated
Hamiltonian ( of standar”? harmonic oscillator form and hence

soluble ) clearly has eigenvalues less than those of the full
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one , and the method of [7]1 refines values unwards from these
lower values towards the true cnes , much as the Nayleigh-Ritz
method refines values dovmwards . The trial hasis states were
chogsen to pe the cigenstates of the oscillator probhlem , and by
taking sufficiently many of these the bounds mav he made
arbitrarily tight - we found that taking the first 14 states

gave sufficient accuracy ( the lower bound accuracy improves

A

more slowlv ) . Results are showm in fig. 2.3a . Tt will he

seen that T

o increases smoothly and steadily with y.anﬂ at no

point is there a sudden transition hetween different regimes .

For comparison , we have estimated E, for case (a) via
perturbation theory , by taking the unperturbed Hami'tonian
to consist of the kinetic term plus the cuadratic part of *7,
and the nerturhation to he the rest of V+ . Thig gives the

proplem
| 41 1 ] )3 4 !
2.2.6) i(—dj{z*‘f. 4’*1(% t g lP = E°4)
{ d,E: are rescaled versions of q,Rj )

set \1

' N yip Rai 1 -q"
‘“‘H = %:"B;j(m)i\}ug 2 ‘..J%g?jhi A/uJe 172

Eo = 5% ﬂ;j QDMJ

Following 8] we obtain recurrence relations hetween the Bﬂjk
an? the A.. , and use these to calculate any desire? number of
terms in the series for Ej - we used up to i = j =15,

k =105 . As noted in [R] the series for % is asymptotic rather
than converaent , ao the Padé metho? of resumming was used to
extract physicallv useful answers . The results are not shown

qraphically as thev are not distinquishable from the exact bounds

2+
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shown in fig. 2.3a . This came as a surprise as this method was
only exnected to give reasonable answers in the F.)C) region .
However it proved to give hiqhly accurate results for all
values of M inc'nding reqgiong where nerturhative methods are
generally thoudght to he of little value . This is no doubt due
to the larae number of terms of the original series availanle
for resurmirg - these higher order terms can nrobe the long-
Aistance structure of the notential sufficient’vy well to allow

for the secondarv minimum .

Another major wav of estimating qround-state energies is by
some form of quadratic approvimation o the potentia’l around
its minimum q g ~ i.e. the traditional zero-ooint energy
infuced by quantim Fluctuations . The usur? way of doing this
in to evaluate the curvature of the notential at itks minimum
ATk

+ %o

and then estimate F_ by 1 . Thus higher-order terms in

o " a
the rotential are simlv discarded . Pesults for the three
caces are shovm in fig, 2.4 compared «with the true values of
B, . Pote the cusps in figs. 2.4b and o where the nature of the
glonal minimum changes as shovm in figs. 2.%b an? la .

a) The estimate is good for large nositive M, but its

accuracy ecreases as }1 decreases and nhecomes negative .

Thus the expectation that CHSQS)[)O are hroken perturhatively

loes indeed hold true for large F_— however there is a range
of small positive values of }A for which some other
mechanism must be operating . Tn chapter 3 we find a

similar result , where the nonperturbative effects which
are supposed to hreak sumersymmetrv for }A(() onlv really

work for large negative }A ;, with a region near zero where
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they fail . Taken together , these results suqggest that the
usually sharply-draym distinction between perturhative and
nonoerturpative effects is toco simple — the true breaking
mechanism must be a Mlend of hoth , with one or the other
perhaps dominating in certain asymtotic regions .

M and ) In both of these cases the estimate is goo?d for
both large positive and negative values of the relevant
parameter , but moor in the central reaion around zero .

In noth cases it is particularly had at the transitiong
between the various generic shapes of V. at which the
curvature Vf vanishes and we are left with just the
classical contributjcw1ﬁlnm . At such points we are making
no allowance for ouantum-mechanical effects , which are
contained in the discarded part of the potential .

We have tried to get round this problem in the following way -
the procedure is analogous hut not identical to that described
in I36] . Tor simplicitv we only discuss model (¢) . Using the
above method is equivalent to approximating the true wave-

[aN]
function \V by a Ganssian q) , Whose spread is fixed solely hy
the curvature at q, . Now we retain the Gaussian shape ,
k3
2.2.8) r\F ~ e‘“q’%") /2
but allow higher-order terms in the potential to affect our
choice of A . The energy functional is given hy
N~
- ~
2.2.9) E(J] = <{P3Hl{»7 /<¢)¢,7
and is evidently a function of A ( as well as Pl) . Evaluation
of the integrals ir ({2.2.%) is easy as they arve of the form

(power.Gaussian) , and gives the answer

2.2.100  E(3) - %+ zl;'l 4 %z

- it will pe seen that F(2) > 0 385 A=20 and oo, In fact

31
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oy
E( 2) has a single minimum at 9 sav , which we choose in our

trial Ej . Results are shown in fig. 2.5a .

This procedure replaces the original A given bv just the

~

muadratic or mass term ) bv an effective value ] incorporating
some of the higher-order terms in the potential . The usual
problem with zero-point energy estimates is that they nrohe
only the short-range structure round the minimum an? so neglect
all long-range effects , and this procedure is an attempt to
racress this . Mowever , it takes into account only even-order
terms in the potential as the odd nowers vanish when integrated .

We may take these odd powers into account in the following way -

instead of (2.2.8) we f£it the following tria’ wave-function -

2.2.11) ~ exp [— A (g-9.)° /2] R
exp [—Ql(%.iﬁl/Q] ...... 4< Qo

- and now minimise the two energy functionals in the two half-

ranges over the parameters nu2° Results are showm in fig. 2.5b .

We have now taken notice of the fact { clearly visinle in

fig. 2.1a ) that the potential is less steep to one side of

the minimum than the other . Re=ults are surprisingly good -

recall that we have not explicitly taken into account the fact

that there are two deqgenerate wells for }f}O. Figs. 2.5%a and b

are identical for /M7'<O as the notential is symmetric here .

It is our nelief that allowing for this asymmetry is one of the

most immortant modifications to the ordinary Gaussian approach -

perhape more important than allowing for higher-order terms .

Tn sectinn 2.2 we shall encounter similar considerations .

33



2.7 - T™he mixed wave~-function methosd

The motivation For this metho” arose in the following way -
we wish ko develan a method of estimating B which in some way
Mends hoth perturbative and nonnerturhative effects , i.e. hoth
the short and lona Aistance structure of the motential . e
also want the method to be usable for all values of the various
parameters in the superpotential . A property of the Schrodinger
notential v, which is independent of specific parameter values
ig the number of stationary points it has in the complex plane -
for the broken models of (2.1.14a) there are three , while for
the broken models of (2.1.14n) there are five . The locations
and character of these saddlesg change as the parameters change ,
hut the total number is fized solely by the asymototic growth of
the sumerpotential , i.e. its leading power . 5o the method will
use information from all these stationarv points , hoth those on
the real axis and those in the comlex nlane .

Since we are presentlv using a HVamiltonian framework we must
now use this information to construct wave-functions in a
systematic manner . We do this by first noting that around
each saddle there exists a characteristic direction along
which the Messian matrix ( matrix of second derivatives ) is
most positive , i.e. the potential is most a minimum . The only
exception to this comes when the saddle iz degenerate , so the
second derivatives vanish - such cases lead to special prohlems
which will te dealt with later ( thev are analogous to the
cnEps seen in Figs. 2.4b and ¢ ) . Wave-functions around each
saddle are then constructed by solving in some aporoximate way

the assnciated S~hrodinger equation along this characteristic
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direction . Tn then get a real wave-function we then if
necegsary nroject onto the real axis .

For definitenass we simmarise the procedure for case (a) -
see Tig. 2.%a “or the pehaviour of the stationarv moints as fA
varies , and fiq, 2.6h and alsn appendix 2.7 to estahlish

notation .

1) Iocate all stationary noints in the complexz plane ( here

) Bstanblish the characteristic direction at each stationary
point .,

3) Construct wave—Functionsl% ’@t at their respective
locations by some means ( see later ) .

4) q$ is already real - nroject wt onto the real axis to get

are complex

a single representative w { note that Ty

conjuagates so their effects mavy be combined in this way ) .

The wave-functions *5, *t may be obhtained pbv a variety of
methods . Perhaps the simplest is to choose them to he Gaussian
humpe , whose spread ig fixed by the curvature at the stationary
point ( which matches cuadratic terms in the approximate
Schrodinger equation , as in ordinary zero-npoint calculations } .
Other methods tried include refining this bv multiplying the
Gaussian hv a polynomial , vhere the coefficients are found by
matching higher-order terms in the equation , or else allowing
the varions parameters to vary in an optimisation scheme .
Further details may be found in aopendix 2.2 .

We now construct a family of tria! wave-functions bv taking

linear comhinationg

Uy Am o+ rq\)) r

w
—=>
I

where 0 £ ol ¢ . As usual the energy functional is

T
2
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Y/

) - minimisation may

<
b
.3.2) E[fp\] =
and we minimise this over the family
Do jusk over the mixing angle &, or we can allow some or all
of the wave-function pararmeters to varv as well
The procecdure blends perturhative and nonperturbative effects

in this way . 3y expanding trial wave-functions about just the
alopal minimum o ( vhich corregponds to fixing ol= iﬁ. in
2.1 Y we are nerforming a pertiurhative expansion . On the
otrer hand , since we include contrivutions from the other
stationarvy points as well , the procedure uses information
abcut the long distance behaviour of the potential from an
early stage - as we saw in the last section , resummed

perturbation theory can do this hut only when high-order terms

an be calowlated . The method described here needs only a few

Q

terms in order tn get accurate answers .
Results are shown in figs. 2.7a,b . (a) shows the difference
hetween £ixing o(-'—TLz and allowing o to vary , when wave-functions 2
—As(‘f,"[,s)/Q
around stationary point ¢ are chosen of the form LPS‘\’(H as(ms))e
1y . 3 . ~N .
(p) shows the Adifference hetween fixing Q,=0 =0 anl using
values given in apperndix 2.2 . "e have also investigated the
improvement if higher powers are included in the exnansions
of 4%’Wi' » but little Aifference can he seen . In bhoth cases Ao
~ - . .
and 9 are calculated as in appendiv 2.2,
Several points mav he noted . Firstly , as hoped , there is
a general improvement in the estimate by inciuding contributions
from the comleov sadlea and this improvement is best in the
midAle range of values of jA when neither the zero-pnint
estimate nor { as we shall! see later ) the instantorn methods

of [238] give goo? answers . Seconcdly , as we might have expected
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from fins. 2.4p an® ¢, there is a problem at the critical valne
of p at which the two saddles in the complex »lane merge and
then separate a’ona the real axis - at such values the saddles
are degenerate in the sense evnlained ahove , Tnenection of the
mixing angle L shows that it is equal to ®/; here , so there

is no contribution from the complex sadlle an? the method reduces
to an ordinary expansion aroun? . . Clearly what is needed is
a method analogous to that used last section for replacing
calculated values of a”s and A”s by effective values which
take account of higher powers in the potentia® . One way of
doing this would be to repeat the calculations explained at
the end of section (2.2) , hut in fact we simplv allowed the
parameters to vary in the minimisation of (2.2.2) just as

varies — so we are now optimising in a multi-dimensional
\
parameter space .

Results are shown in figs., 2.8a,p . (a) shows the difference
hetween calculated and optimised values with trial wave-functions
chosen as for fig. 2.7a . (b) is the equivalent of fig. 2.7h
it again with parameters optimised . It will he seen that
there is an improvement over the entire length of the curve
compared to figs. 2.7 , particularly in the positivelA region .
The problem encountered at the degenerate stationary points has
heen overcome , as expected from section (2.7) . We have
investigate” the effect of inc'nding higher order terms in the
perturhative expansions , but again this makes 1ittl~ difference .
Ag may he seen from Fig. 2.8h , in the negatfvo)k region “t is
the inclusion of linear corrections which is important - these
allow for asymmetry of the potential around its stationary

ideration

N

¢

points , which alse turred out o he a crucial cons
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in the Gaussian calculations of last section . Tor a comparison

of calculated and optimiser” narameter values , see appendix 2.2

" have repeated the equivalent calaulations in varions
unhroken cases as well , using superpotentials with leading
nower quartic . In such cases there are five skationary points ,
and considerations of symmetry mean that we now have either
/N
two or three wavefunctions making up the linear comhination ¢
The procedure differs only in detail from the ahove , =0 we
simply oresent the results here in figs. 2.%a,b and 2.10a,b .
Fig. 2.9 shows results for the sumermotential of (2,2.3) .
{a) contains cases where the parameters are calculated ,
comparing the inclusion or otherwise of linear corrections to
the wave-functions . (b) is the same , but the parameters are
optimised . For comparison , the curvature cuadratic estimate
F_is also shovm .

‘t. _ . 3

Fig. 2.10 shows the same plots for sumerpotentials UEEQ_+IML,
atain with TtlcL for comparison . This case was considered because
the linear term in v means that neither VL nov V; have any
symmetry properties permitting the use of instanton techniques -
thus the only existing method of calculation other than
resurmed perturhation theory would be the quadratic estimates .

As in the broken case , considerabhle improvement in the
estimation of T, is achieved by using the mixed wave-function
method - in some cases up to three orders of magnitude better
than E% . Tn 211 cases it seems that the majority of the
improvement comes at the step from using just Gaussian humps
to the modification of these to allow for asvmmetry in the

potential — this not onlv confirms what was found last section

°

iy
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with quadratic estimates using only the global minimum , hut is
also particularly converient in terms of computer-time . e do
not have to perform large nerturbative expansiong aronnd each
atationarv ooint , ™Mt reed only innlude a few terms in order
to extract the hasic shape . The nictures show clearly that

the gain in accuracy obtained by using the information about
the long-range bhehaviour of the opotential given bv stationary

points other than the glonal minimum is substantial .

Finallyv we have applied the method to the octic problem of
(2.1.14a) . This was chosen because neither the ordinary

cuadratic nor instanton estimates are of any ugse here . The
potential has peen chosen to have vanishing curvature roun?
each minimum , so the ordinarv mquadratic correction vanishes .
Purther , as explained in [35] , the ordinary semiclassical
expansion around instanton solutions faile . Flence this nrobhlem
has been used as a testing-ground for various alternative
aporoaches 31 . Our results are as follows , compared with
the exact results . In all cases parameters have heen optimised
rather than calculated . In this nroblem their are only two

(real) stationarv points and the svmmetry of the praobhlem also

constrains some of the parareters .

Exact Termg in perturbative evnansion

result Tonstant Consttlinear Consttlintquadratic
£ =2 1,37 2.36 1.02 1,03
2

7 =4 3.2F 3.54 3.35 2.3
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Again results are good , and they also show another point of
interest , The rate of convergence vould be hetter if we input
one more physical fact - the asymptotic rate of graorth of the
notential , or equivalently the “ecay-rate of the wave--function .
With our ansatz , the wave-function can fall off no more quickly
than as exp(-k.x!) , whereas a cuick estimate shows here that it
should £all off as exn(—k.lx\s) for large \x\ . Perhaps using
this knowledge woul? be advantageous . e have also repeated
the methods outlined at the end of last section for effective

quadratic methods , and results are as follows

f =2 Tven vowers) 2,34 yen and odd} 1,95

€2 = ¢ only .54 noyers 3.24

The corregpondence between these results and the first two

columns of the mixed wave—-function method results is striking .

2.4 - Comparison and ariticism

We wish first to repeat that it is not yet ohvious how any
scheme hased on Tamiltonian techniques wil? he applicable in
field theories , vhere Tagrangian functional methols are
customarily used ., Some vork has heen done on the use of such an
approach , particularly when considering Tattice approximations
to continuum models [ e.g. (371 ) , but so far as we know results
are not vet conclusive . Since , however , their use in quantum
mechanics is intuitively clearer , we have investigated various

approaches
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For the spontaneously hroken cases considered , we have seen
that the usual assumption that there is a neat division hetween
nerturbative’y and nonnerturbatively broken models is not
supporte” by plots of the actnal value of FJ - such assertions
hold only in asymptotic regions , and there is a sizeable
central region in which a mixture of both effects must operate .,

It has also hecome apparent that ground-state energy is not
a particularly good cquantity to look at if one is unsure whether
a given model is unbroken or slightly broken . Of necessity
numerical methods give approximate answers , and so can never
yvield the exact answer zero . However , most methods which have
been developed until now give almost no information for cases
which are broken , and numerical estimates of E, can reveal the
exfent to which a given model is dynamicallv hroken .

A variety of Gaussian-tvpe methods were investigated . There
are strong indications that great improvements over the usual
method of matching curvature may be gaine® simp'y by allowing
for asymmetry of«ﬁe potential about its minimum . Such asymmetry
is cavsed by cubic or higher ol nowers , and are therefore
usually neqlected . Taking higher even powers into account ( a
simpler nrocedure ) can also give good improvements .The under-
lying theme in a'l these variations is the replacement of the
simple curvature estimate by an effective value incorporating
lonaer-distance effects , -just as in mean-field techniques .

The mixed wave-function method “escribed last section is an
alternative vay of inc’uding higher-order effects , involving
use of all stationary voints of the potential in the complex

T
3

plane , not ‘just the global minimum along the real axis . Ue

D

suspect that there is a connection hetween this method and the



use of complex solutions of the equations of motion [6] ( i.e.
stationary points of the action density in complex space ) ,
ot we have not been able to find any cxpiicit correspondence .
Direct comparison is Aifficnlt hecouse of the inherent
differences between Hamiltonian real-time and Lagranaian
imaginary-time methads . The results for the octic notential
indicate that thefg is also a strong connection hetween this
methed and the improved Gaussian methods described ahove , at
least when the mixed-wavefunction method has only two hasis
functions and a high degree of symmetry .

We have also investigated the effect of shifting the location

~N

of the secondary wave-function (p to see whether the position
of the comlex saddles does indeed give 2 sensihle quide to
this . Direct comparison of results is of course difficult ,
pecause the size of shift of location hecomes another parameter
to pe varied in the optimisation process , so we cannot end up
with a2 worse answer . However , it is of interest to see how
far the original location is from the one which gives the
smallest answer , and the extent of variation in the answers .

For hasis wave~functions chosen as simple Gaussians ;igs.
2.1%a and b show the results for two values of Mmoo In neither
case does the original cheice give the smallest answer ,
although for PJ=O the two values are close . In both cases
the secondary minimum should be closer to the primary one . If
we use hasis wave-functions which include a Tinear correction
then a slightiv Adifferent picture emerges ., These results are
not shown because they are not instructive - all the values
are very cloge to the exact hounds , increasing only very

slowly towards the 2symototic values . Once again the location
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qiving the minimum value is shifted towards the primary

location , but this time the original choice is in both cases
close to the hest choizce . e alse notice that the Jowest value
obtained by using iust Caussians and shifting the secontary
location is virtually the zame as the lowest value when linear
corrections are included . This is an echo of fig. 2.8h - a big
imrovement is gained by including linear corrections , with
very little henefit from adding higher-power corrections . Ik
seems that allowina the Tocation of the secondary minimum to
vary in this way is equivalent to including the next-higher power
corrections to the wave-functions { and is much cheaper in terms
of computer-time ) . In hoth rcases the nrincipal wave-function
is given the opportunity of heing asymmetric in order to match

asymmetry in the potential .

In the next chanter we turn to the other main approach to

estimating quantities in quantum theories - Lagrangian methods

D

using functional inteqrals to quantise the theory . Thes
methods are more easily translated into field-theoretic

terminology , and we shall nartially do this in chapter 4 .



LA

Chanter 3 - Nuantum-mechanical Models - Tagrangian “Methods

3.1 - Bemiclagsical method using instantons

NQuantising a theorv by the path-integral annroach was
originally suggested »y Feynman [25] and has since become the
standard field-theoretic apprnach , desvite amniguities of
nrover definition . Tt has strong connections with the use of

the partition function in

n

ratistical mechanics , and rather
weaker links with the ( respectanly defined ) theory of
Wiener and other stochastic processes .
The basic object is the ﬁ@npratwnq funhtwon

15,0 /t fL O /k
Ly f,= e [di]e
where the inteqral is over all paths Ilk) satisfying the

prescribhed boundary conditions . Subscript M indicates the

oy

use of Minkowski snace . Note that in order to define the
normalisation of the measure correctly , either some form of
lTimiting procedure must pe used 4] or else an entirelv
different conceptual framework [22] .

%2 1is the generating functional for all the n-point functions

of the theorv . For purpo

b)

ses of calculation we analytically

continue to RBuclidean

1.2) z _ [AL]Q fLEfx]d.t/t;

E
Tor convenience we will not henceforth distingnish between

Tuctidean and inkowski apace quantitiecg , bhut will work
exclusively in the former .
It is now assumed that we mav apply the infinite-dimensional

equivalent of the stationary-phase approximation -~ then the
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stationary moints of the integrand are assumed to dominate the
integral so we need only calculate fluctuations in the
immediate vicinitv of these . Tt g repdily =seen that these
stationary functions are nrecisely those functions 1(&) which
are solutions of the classical ( Ruler-Lagrange ) equations

of motion , where as bhefore we also imnose suitable houndarv
ertain all such

conditions . Thus an essential step is to as

9]

T

solutions .

is of the standard form

4 \/(@)

If our TTamiltonia
/\ ' 7\
1.3) H= 5P

- note that now we retain all dimensional parameters for

n
2

nurposes explained later - then the Fuclidean-space equations

of motion are

m [dg\2 _ _
1.4) 2 (A—i-) = V(ql) Comstant

where the constant is chosen to fix the boundary conditions
and is usuallv given by the minimum of the potential . We must
now choose what our notential is to pe - normally this is
straightforward , but for suversymmetric quantum mechanics we
have two choices - VL or \; . The authors of [38] use VE as

they believe this to he the more fundamental , and in

conseaquence their instanton sclutions represent a tunnelina

T
e

hetween two degenerate wells together with a change of fermion

number - their procedure is monre complicated than ours ., %W

D

believe that the Full potential Yy retains all of the super-
symmetric character of the »nroblem , Adespnite the reduction to

an effective begonic theory , and also makes the calculations

more transparent .

For the thraolen case with sunernotential (2.1.143) there i3 in
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fact on'v one choice . ™or f“fO (fig. 2.%la) an instanton

o

calculation can be performed using Vb ( this calculation is

Y]

aiven in Aetail in [38] ) , whereas no vealue of parmits any

such cealculeotion using Ve ¢+ AS there is never any degeneracy of
minima . We have only one criticism of the calculations of [38]

- it is claimed th

D

re that the instanton contribution to ®g
-k
is damped hy a factor nf orﬂerxand hence is clearly
exnonentially small and nonnerturbative in origin . Towever ,
a careful dimensional analysis shows this not teo be the case
372
) o APl
- the damping factor is in fact of order @ and all
dimensinnal parameters such as 13 cancel ., This will be
demonstrated more clearly for the unbroken case shortly .,
The results of [38] are shown in fig. 3.1 , compared with the
exact bounds on E, . As exnlained in chapter 2 , they are
extremely good for large negative M { the asymptotic non-

perturbhative region ) but become poor near }A:() . Clearly this

calculation is imnossinle for}L>O but presumably the authors

s

would continnue their estimate in this region with some form of

perturbative calculation using Vb .

e now turn to the unbroken cases . We have not fried to

repeat the abhove method in this

Q

ase - for }L>O ( fig. 2.2a )
there are two sorts of instantons tunneling between the central

minimum and one or other of the outer ones . The action of any

2.1,5) S[?ﬂ = /uzt /i

- we vill comment on thisg later .

d of V

vt

If we use ¥V, instes here are instanton solutions for

1 s

8]

b
}A>—-J—31 , found bhv solving
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iy - B K (V1) -Via)  awbject o q(T)=-q(-T)=q,
| where V _ = (&6__2"&‘4-} ,3)@( +/43 3 .‘.,‘ \f+(q',\

The solution of this is

o . fank wlt-t,) /\[—17—'(3.11&&2 olt-t.)
ol L7

we 3T (RIT a)

ﬁ:

- corresponding exnressions for general /A may he found in

"

3.7.6v  a (&)

where for ﬂ

1
O

aprendix 3.7 , Fig. 3.2 shows nplots of the solutions and their
time derivatives for two values of M - note the change of

— _ _ . .
shape for fr>J3 . To easily visualise the behaviour of
Tuclidean-time solutions of a potential V , one may imagine

the particle moving in normal time in a potential -V ,

i.e. moving in the inverted potential ( see [17]1 for a
discussion of this ) . The arhitrariness of choice of origin
of time gives vrise to a zero-mode in a determinant about to be
calculated , so henceforth we fix Q 0 and use the Faddeev-
Popov methnd to cope with this mode .
The action of these solutions is
T
$3] = { Ligldt
-7
1
3,1.7) ~~ deizrg,u h[‘\lﬂﬂlu/;‘]z ZEMT
(¥ (M
for large T
Z
— 3k Q, o ik\rL‘

7 8«1( ) = at )

2 . . . . .
Note that Rmﬁ:=tﬁkm . The fact that S contains a piece rising
linearly with T reflects the fact that the hottom of the
potential i3 not at zero - it is the classical walue of the
ground energv ., The semiclassical estimate of ground-state
energy contains three terms

3.1.8) E = ° — L e L -_ C

which are respectively the c¢lassical value , zero-point enerqy

from quantum fluctuations , and the =nergy splitting Jue to

S




=y

tunneling . Full details of the devivation of these terms can
he found in apnendix 3,H and here we simplv remark

1.0) AE = KK Qﬂgcﬂ /% (S oxcludes ?iece [inear T\
where ¥ is a factor containing firstly a numerical factor
representing the amount of overlap between two wave-functions
centred in each well ( i.e. the extent to which the wells are

separated ) and secondly the quantum-mechanical fluctuations

aboitt one-instanton configurations . Only single ingtantons are

used hecause , as explained in appendix 3.1 , we have made use
nf the so-called Ailute gas anproximation . This essentially
assumes that multi-instanton guasi-solutions ( i.e. multiple
traversals from one well to the other )} can be taken into
account py superposing apvropriate single instantons and anti-
instantons - in other words the locations of the crossings are
well~gseparated in time as compared to the time taken to cross
There are other calculational schemes which do not make this
assumption , but they tend to he considerablv harder to use .
The fluctuation part of AE may be expressed essentially as a
ratio of determinants , which can be calculated in a numher of
ways - so for example (171 ana 1273 give two superficially
different ways . As explained in [3] both methods in fact give
the same answer , Further explanation mav he found in appendix

3.1 , together with some of the steps of calenlation involved

he result i -S(31 /%
1.10) NE = ?aw(lﬁé)\@_{:‘ e i

e mav now substitute explicit values into (3.71.8) for fh=0

o ’ S P i L N
giving Ebt = ’V\_'_:[C (“) + k—M-L 3 — ﬁ_w%er’ﬂ;};' up[%&(uﬂ)]

= KW gy oo 3 \O/x?[—ét«(%ﬁ\]z
) M 2x83
A WG gy 133
> i + 133 751?
= — o3¢ KW
M

|~

!

S2
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This should be compared with the exact value ( zero ) and with
other estimates - in particular notice that the instanton

correction has not imnroved the curvature estimate

1.12) E‘L’ Em;w‘E; ~ 0-13 @;‘{D

in magnitude . In fact all three terms are comparable in
magnitude , with the instanton contribution not supnressed

. . 1 . .
either hy powers of k or exponentials of-/k , Just as in

the brolen case .

Fig. 3.3 shows the full Jdependence of E_ and Eh*on ﬁ(— we

1

have removesd the overall factor &Km/& which we now see as

heing pnresent only for Aimensional reasons . Note that nothing
special hapnpens at }L:C) and that the results depend on fA in
a relatively arbitrary way . There is a value of f& for which

Eh& =0 , but Ebtvaries rapidly around this point and there

seems nothing special! about the value . Wote that asymptotically
for large positive
)

E &

y R
S[i]N %ﬂ2
AE & enp[- 1pt]
> E{.&_ MEW o~ '//u
rompare (3.1.5) with the corresponding bhehaviour in (3.1.13) .

This is a further reason why we have not attempted tn duplicate
the calculations of [38] - there are no indications that the

results will he any better overall than the results found here .

The poor quality of the results derived from the semiclassical
method came as something of a surprise , so we have ohtained the
equivalent results for the quartic anharmonic oscillator with
potential as in (2.5a) . These results are shown in fig. 3.4a

( as given in [27] ) compared with the true value (from [117])
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and the corresponding EQ,’ To allow hetter comparison with

fig. 3.3 , fig. 3.4ph shows the same plots nhut with the true
value subtracted out { this is equivalent to arranginag that
the true value ig alwavs =zero ) . Tt should ne noted that in

this case , just as in the unbhroken supersymmetric case , all

dimensional parameters scale out of the nropblem and the instanton

(

correction iz of the same order as the other estimates - anpendix
3.2 contains a pbrief discussion of the dimensional hehaviour .

We can clearly see from figs. 3.3,4 that the qualitative
hehaviour of the semiclassica! answer Ea:is exactly the sanme

in hoth the unbroken sumersymmetric and quartic oscillator

cases . This again came as a surprise , particularly as the

estimates are not very good .

Some comments concerning these results are in order . The
whole instanton calculation and in narticular the dilute gas
approximation are only expected to give reliable answers in
the so-called weak-counling regime , which for the cuartic case
corresponds to large positive f& . qu the supersymmetric case
it is less clear , bhecausne of the way the coefficients in the
potential are related . For the time being we assume that once
again , weak coupling means large values of F’ . Thus ,
continuation of the results down to /A=O is equivalent to

Joing from a weak to a strong coupling regime , and it could he

v

arqgued that applying these techniques in such a situation is
vrong .

f

tata

cant for the

[

However , we feel that the results are sign
following reasons . For a general thenry it is not normallv

nossinle to predict in advance where strong and weak coupling
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r

D

Jions may he crxnected to lie as this depends on the detailed

-
3

terplav bhetween marameters in the theory - the precise nature
of phoundary conditinns chosen can also acorfuse this . In such a
situation one wou'ld in practise nse a calculational scheme such
as this in the hope that the answers obtained would ne
indicative of the correct value . Tt is therefore of interest
to assess how accurate instanton calculations arve over the

entire range of variation of parameters . Secondly , there is

a great int

D

rest at present in theories attempting to describe
particles which classically have zero mass and acquire a small
mass throuah quantum fluctuations - the analogy in bhoth cases
here is for the dimensionless parameter to have a value in a
region where the instanton answer is at its least accurate .
The third point is closely related . In ordinary models we are
accustomed to pbeing able to tune masses and coupling constants
independently and so , for example , consider theories which
are arranged to display weakly-coupled massive particles . In
supersymmetric models this is no longer possible , as we saw
above - hecausne af the highly constrained structure of the
Lagrangian , masses and coupling constants become inextricably
hound together , and independent tuning hecomes difficult or
impossible . Ilence we may be forced to work in a region of
parameter~space where we cannot he sure that our approximations
are valid , Ue therefore seek some refinement of the normal
nrocedure which produces more reliabhle answers over the whole
range of fA - in short , one that 1is more robust .

PDefore commenting further on these results , we wish to mention

one point . The part of the factor K 2.10.9) ( and its

P
3

equivalant in the quartic case )

P

epresenting fluctuations
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about instantons turns out to have quite a simple physical
interpretation - it is precisely the curvature of the potential
ahout its minimum , or esauivalently the sauare of the asvmptotic
{ exponential )} apnvoach rate of the instanton to its limiting

value . We will return to this point in the next section .

We helieve the following to be the reason why the above semi-
classical methods are not good . Semiclassical techniques attempt
to give a halfway stage between the classical answer E ;. and
the full guantum-mechanical answer given in terms of a path-
integral) which cannot in general be computed . To this end ,
solutions of the equations of motion are taken and Gaussian
fluctuations around these calculated . Thus quantum-mechanical
effects enter only through these small fluctuations ( and of
counrse in having a path-integral representation in the first
nlace ) , and the choice of rath and boundarv conditions are
entirely classical in origin . Take for example the boundary
conditions - these reauire the particle to be asymptotically
at one or other of the degenerate minima of the potential , and
simultaneously ( if we are to use the instanton solution ) to
have zero momentum . We helieve that this requivrement of exact
localisabhility should he relaxed to a condition more appropriate
to the quantum-mechanical aspects of the propblem . The precise
nature of this relaxation mav be seen in a numher of wavs .
Computationally the easiest is to allow for a spreard of values
in nosition ( momentum ) around the bottom of the well ( zero )
this could he done to a first approximation by using the
curvature-Caussian wave-function and its Fourier transform . A

refined approximation would use the effective value of this
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"mass" parameter obtained from (2.2.10) or similar methods .
Conceptually we can view the procedure in the following way -
we are fiving the value of the ( Ruclidean Y enerqgy of the
trajectory at fimes + T hv recuiring the particle to have zero
momentum at the top of the hump . Quantum-mechanically there
will pe an uncertainty in the time at which we measure , and
correspondingly , a spread in the value of the conjugate
parameter , enerqgv . 0Of these , the spread in the value of T
pecomes unimportant for large T since the particle spencds most
of its time near one or other well as opposed to tunnellinag ,
but the spread in energv has a greater effect , as we shall see
later . An alternative conceptual aid is that as the wells get
closer and thus more strongly coupled , the ( usual ) expansion
of the path-integral in terms of a basis of position eigenstates
hpecomes unreliable computationally ( while still heing exact in
an ahstract sense ) since in this region there is almost a
Aegeneracy of manv neighbouring position eigenstates . Thus we
7o netter in this region to choose a Adifferent bhasis , more
suited to numerical calculations - such a basis may be provided
by the harmonic-oscillator-type basis states mentioned ahove .

However we choose to regard this procedure , the practical
effect is the same . This relaxation of the boundary conditions
means that solutions of (3.1.4) other than the instanton become
important . There are two fFamilies , depending on whether the
constant in (3.1.4) is greater or less than the minimum of the
notential . This constant , £ say , 1s the Tuclidean-snace
equivalent of the energy - as usual we consider the motion of
the particle in the inverted potential and fig. 3.5a shows

the various possibilities allowed .




Exnlicit formulae for these non-instanton solutions are :

2
2 { 2
Nuartic oscillator , V = (1 - 5}‘3
i) onscillatorv solutions , “iﬂqi £<0O ,
- 2 %'/
3.1.144a) clelt)zo(.m\ wt o(z=£/uz—\f.?)w2= zl/‘lq‘f\]'f)kz /0

ii) Airect solutions , OX<E

ii Uf) = ol m ‘A)t-dﬂ k\t r) °{“=L\)4= i“f&“"—i ) lfz-f 2
cn Wt 22
- the instanton solution is the borderline case with ¢=0 ,

given by q;lt) = \/E.+MLJ—}?{:

sn , ¢n , dn are elliptic functions with parameter k - see
[5] for properties .
IInbrok i \7"‘7—("22
Inbroken supersymmetric case , =V, = q_— Q
- we consider only the /A:O case as the general case
is similar but more complicated .

i ) oscillatory solutjons , 0 €£<2
= o t.en b
‘t'e (1) = oL mut.th W o ﬂ"m )’Yz gnﬂi(l_gmzx)
J y dn’ o -t ot
Ao $(6+2¢) | ¢°- -z-izlﬁ?* S AEY BT 0)

R 1= P bt + et X | R = 22/ (e 2 ol )
i) Airect solutions ,

- . . dK wt - \I—_-‘ ZR z
q’i(t) ol. A (A)'t . o= -S Y= / H_g-r/z
\fa’m"wb - mtwt.ddat i y ( : )
Szky \Tedimpg § A= (eedeti)” | Ay= (£ e st 3‘/3
2,

3.1.14n)

)

2

=1+ 2 ? + ‘ST'E’ , b ()4 24 7752) / aR

~ again the instanton is the borderline case , here
with €= 2 .
Figure 3.5b shows the gqualitative nature of the two families
of solutions . As mentioned earlier , specification of the
energy parameter € mav he used to unicguely determine a

solution in these families , provided that we reauire that the
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particle generally moves from left to right . There are other
snlutions corresponding to motion , sav , from the left-hand
humn of f towards negative infinity , but we Jo not cansider
these . The instarton is given hv a specific value of ¢
and allowing for a spread in ¢ means that we must include
other members of the family . The use of these golutions in an

axtended semiclassical calculation will now be developed .
3.2 - Phase-sgsnace semiclassical method

In this section we work entirelv with the gquartic oscillator
so as to get a feel for the method . In addition the calculations
take substantially longer with the supersymmetric problem
({ since the functional form of the solutions is much more
complicated ) and we have not had time to thoroughly investigate
this case .

The constituent parts of the anproach are firstly that the
boundary conditions should he relaxed from the strict classical
ones to allow for uncertainty , and secondly that classical
solutions other than the instanton may then be used . Although
we have seen that there are several ways of visualising the
method , the easiest from the noint of view of calculation seems
to he to work with Gaussian spreards in position and momentum .
In accordance with the usuval calculation , we work inside a
finite nox ( i.e. a finite time-interval [-7,T1 ) in order to

£~

cope with the zevo-mode . We nropose to use the following familwv

—’}*’/2 ______ — T <t «TI<CO

7 el - qel®) . Ti<t <T2

of solutions -
3.2.1)

2 !
+J"/z e 0 T2<ELT
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wvhere qg(t) is any of the non-instanton solutions of (3.1.143) .,
Thus the normal calculation uses the single member of this family
with-T-T2:T and ¢=0 . Fiqg. 3.4 shnws the form of this cheoice

of @ . ¥Mote that @ is alwavs a solution of the equations of
motion and so an extreme point of the equations of motion .
There are two "jJumns" in the solution at 71,72 in accordance
with the relaxed boundary conditions - these are present purely
to give a definite functional form for § to ingsert into the
functional inteqgral , and reflect the mixture of classical and
quantum ideas here . The essential content of the solution is
that the middle section does not start and finish at the minima

of V , but only near them , where nearness is measured hy the

uncertainty in position and momentum . The particle should be
imagined during the first and last time-intervals not as residing
at these minima , but around them , and with this picture the
solution has no discontinuities . In a full quantum approach
only the complete amplitude is important , and our selection of
a particular path or family of paths is only a tool to aid
calculation of this amplitude .
We mav isolate the specific classical and guantum elements in
the scheme as follows . Classical ideas enter in that
1) we choose representative paths which are piecewise solutions
of the classical equations of motion , and
2) we assume that for a varticular math we mav work with
definite values of nosition and momentum in order to
calculate the associated amplitude .
The significance of the second point is unclear , as we will
integrate the various contributions over the whole of phase-

space anvway , an? so conceptually need only think of taking
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representative values of g and p from a small but finite region
of phase-space in accordance with the uncertainty principle .
2lan the assumption is imnlicitlv made in the standard semi-
classicel approach anyway .

Quantum-mechanical ideas enter in that

1) we calculate CGaussian fluctuations around the classical

paths as bhefore , and

2) the familv of allowed paths is extended because of the

spread of values in the energy parameter , given by
uncertainty .
Thus quantum-mechanical aspects of the problem are incorporated
here to a greater extent than with the usual method .

To integrate over this family of paths we must first define a
measure , which we take to he given by the spread of the wave-
function in phase-space .If we temporarily regard the wells as
separate and construct trial Gaussian wave-functions in each
well according to the usual curvature method , then we may
reinterpret the jumps in (3.2.1) as bheing probabilities of the
particle peing at that particular point of phase-space , given
these trial wave-functions in position and momentum space .
Thus we have two inteqgrals over phase-space , corresnonding to
the jumps at Tl and T2 . Tl and T2 are given implicitly by the
values of the jumps together with the requirement that at t = 0 ,
g =0 . This would seem to give a 4-dimensional integral to
perform , but there is a constraint that the value of § should

pe constant in [T1,T21 - from the eguation of motion we see that

2

2 z\2 2 2 =>2
2.2) P - (f*i-q',) = ¢ = ?z‘(’uz'ﬁﬂ
where S {;phz ) are the jumpns in position ( momentum ) ah

T1,T2 . We use this to fix the value of p, .
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If we call! the value of the correction due ﬁo the solution
f3.2.1) R(7L,m2:¢) , then the full calculation we wish to do is
vay — Jdg o (. fdo, KETT2se) Pl ) Plga ) SRpE- (- 2))

fdg, - [dp, B P, . ()

The region of a,- p, phase-space over which the integrals are

to be performed is ghown in fig. 3.7 - for g, and p, the shape
is analogous . Calculation of X for a given solution proceeds

in fact exactly the same as for the ordinarv calculation -
Cetails are given in aprendix 3.3 - except that usually now the
integrals cannot be done analytically and we must resort to
numerical methods . Note that for this calculation we retain

use of the dilute gas approximation , rather than discarding
it‘anﬁ attempting to use a different scheme , as we feel that
allowing solutions other than the instanton is a more important
phyvsical effect to include , Furthermore it is shown in [6] that
the inclusion of quasi-solutions of the equations of motion is
equivalent to the complex saddle-point method , which gives

good results in situations in which the dilute gas approximation
1s known to fail . Although the solutions we use are not what

is meant by quasi-solutions in these references , we helieve

t

it mossinle that the =ame effect is beinag nrohed - the answers
chtained will provide some justification for this viewpoint .

The weighting factors are given nv

sy Pleap)-erp [ 25Tl B - ot /o ]
Do p) - erp |2k . R o]

Tho comniete Aancwar e given as hefore hy three termg

2.5) A - E. +E — AE
fll = wn 2
where here B .= 0 and %_ dis the usnal quadratic kterm ( as in

™Min
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accurate than the or?dinarv calculation , thouagh gtill hv no

mesrng ner Tact 0 7 anrmian Fhatr oing

—\":;\-1 "7;\'79"‘;11?'1("1-1.(\‘;‘5‘- ‘Fﬂ)‘
(2,2,17) which aotter reflect the “ryn ghavnes woan'd immrove

resultas further , bHut have not had time to check Ehiz ., Totice

2

Resnlte are =howmn in fig. 2.fa and are seen to pe mare relisanly
|

het the reaaon for the failure of hoth the ordinary instanton

[y

calculation and thie extended methed to qgive good ansvers nsar
FﬂOis the noor qualitvy of the quadratic term RE here ., Tig,., 3.8b
shows results if instead of Ez we use the refined version
calculated in section 2.2 and displaved in fig. 2.5a . This has
most effect near ﬂzO and the results are very encouraging -
hoth the usual answer and the new one are improved , but the
full phase-space calculations to a much greater extent . Tt is
plausible that the remaining discrepancies are due to the

neglected higher-order terms in the evaluation of X , P, , and

D
&

—

, » rather than showing the need for another new calculationa

method .

We have performed the same calculation for the unbroken super-
symmetric case with F:C) - as explained above there has not been
time to repeat it in the general case . CTlearly the working is
no different in essence from the ahove situation , although
there are many differences in detail . Recall that the usual
calculation gave ( neglecting overall scales )

3.2.6) AE = .S\ —>» Etd:= 1+ 15l & —0-38
mhe full phase-space integral answer is
3.°.7) A ~ 068 —> Em ~ 0.05

- evidently a substantial improvement .
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e wigh to make the following voint clear . It has been thought
that only the instanton solution need he used hecause 1) it is
pAasv o calanlake , 2) the action of the instanton is the least
value of action of al’ naths gaticsfving the noundarv conditions ,

and 3) it is continuous evervwhere , Another reason will he

N

discussed next chapter . The first noint is indunitable , though
one relic of the simplicity of the instanton calculation Aoes
persist in the full phase-snace calculation - we will turn to
this next section . The second point is partially true in that
ME consists of two narts - the action ( for which the claim is
true ) and the ratio of determinants ( for which it is not ) .
Thus the instanton need not give the dominant piece in AET '
and bv the time we have averaged over phase-sgspace it is far
from clear where we expect the major contribution to originate .
The final point is not , we believe , an important one . This

is partly because the idea of a single continuous path followed
by the particle is a classical one , and may be inappropriate
here , and vmartly also hecause of the feollowing . When defining
the path-integral hv discretising the time-interval , paths
which are only piecewise smooth are considered ( e.g. piecewise
linear in position and constant in momentum , or some similar
nrescription ) and only in some limit Adoes one arrive at
comnletelv smooth paths . Here we have split the interval into

three subh-intervals and taken paths which are piecewise solutions

of the equations of moti

D

n . Presumably the erquivalent of the
apove process would he to take more and more suhdivisions of
the main interval , with a "jumpn" ( and thus a constrained

phase-space integral )} at each divigsion . This would entail

progressively higher-dimensional integrals and would rapidly
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hecome impractical computationally . TFortunately the results

seem to indjecate that we do not need to do this .

Q

As the closing »nart of this chapter we wish to remort a rather
curious fact which emerged from the calculations . In terms
both of computing and analvtic work , it is much hetter not to
have to calculate the part of DE which comes from the ratio
of determinants ( see comments after (3.1.92) ) . This would he
even more the case in field theory where there is a long-
standing controversy concerning this calculation (101 . For
the usual instanton calculation it was found that there was a
physical internretation for this ratio , and numerically it
suppliea a factor of 2#2 . FPor a given member of the family
of solutions in (3.2.1) this is no longer true . However having

integrated over all such solutiong this »nattern is recovered :

Ratio of determinants

)AZ included omitted col.?,/%ﬁ
0.5 0.29 0.32 0.29

1.0 0.50 0.33 0.25

2.0 n.57 0.17 0.14

2.0 0.34 0.077 0,057
4.0 0.16 0.022 0.020
5.0 0.050 0.0051 N.0N50

Similarly the unbroken supergymmetric case with /(:O gives

{included) {omitted) (inc) / 6

0.A8 g.010 0.011
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e feel that there must be some underlying physical reason
for this result and *f this were properlyv understood , similar
calculations in field thecrv would ne made muah easier . TIn
terms of the construction of annendix 2.3 , the omission of
this ratio seems to corresnond to using a solution which at t=0

jumps Airectlv from one well to the other rather than smoothly

making this transition .

We have seen that this extended semiclassical calculation ,
in which more of the guantum-mechanical nature of the svstem
is taken into account , provides answers which are considerably
more reliabhle than the original version . The results are even
petter 1f the original quadratic estimate of the zero-noint

enerqy 1s replaced by

A

n effective value as derived in section

)]

2.2 . If we regard the original semiclassical method as a weak-
counling appraoximation {( larae ) , then this extended method ,
when used with an effective quadratic estimate for negative /ﬁ '
may be seen as an attemnt to find a strong-coupling approximation
while stil]l retaining the dilute gas approximation , which is
easy to use . From this noint of view , the results shown in
fig. 2.8b are very promising . There are Arawbacks to the
method . Pirstly one needs a much greater knowledge of the
solutions of the equations of motion , although in the next

n-1
section in which we turn to 1P model Ffield thenries , we
shall see that this knowledge is already availanhle , at least
in certain cases . Secondly it requires the use of a computer ,
as very few of the intermediate integrals can be nerformed
analvtically ., Tn view of the greater phvsical and numerical

accuracv of the calculations , we feel that these are not

Serious ?roblen S
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n-1 . .
Chapter 4 - CP Model Field Theories

4,1 - Mlasesical nrovertiea of aesneral S solutinng

The work in this chanter is based on [12 , althouqgh at the
time of writing thakt the possible significance of the solutions
was not known . The models considered here are not super-
symmetric { although supersymmetric versions of the CP'”‘l
models do exist [20] ) , since we wish only to illustrate that
a semi-classical calculation incorporating general ( non-
instanton ) solutions is possibhle here in direct analogy with
that of the nrevious chapter .

n-l . . - . .
Cp field theories [19] are models in two space-time

dimensions , “fefined by a Tagrangian density
1 F +
oy L Z(D,,?_\.I;Mz , Da-da-Ra sz 20,2

; . . +
where z is ar n-component complex vector satisfying =2

.Z o= 1
The model has local 1, and global SU, gauge invariances ,
represented by multiplication of z by a phase and pre-
multiplication by an SU, nxn matrix . Subscript/A runs over

Lorentz indices 1,2 . As in chapter 3 we shall work in

Fuclidean space , and to this end Adefine auxiliary variables
Xy = 1t
¥ = L (% F10)

One can also define a Ltopological charge density

N
te3) 4 = ;il;l g/“’ (223 N

where as usual the total charge 0 =E($A4df takes integer

1.2)

values and thus partitions field configurations into disjoint
classes . These models have heen extensively studied bhecause

they displav verv similar properties to Vang-Mills models in
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four dimensions , while being much simpler .
As explained in [1] , a variety of solutions of the classical
aquations of mation hawve heen found , among which are instanten

1
solutions . One of the conclusions of 1] was that for CP one

0

could find a familv of neiqghnouring solutions joining smoothly
to an arbitrary instanton in any charage sector .

For general charge in general (‘,P'\~| such families have not vet
peen found , so that some instanton solutions appear isolated
at present - we conjecture that they are not in fact isolated ,
and that the reaquired families have simply not vet been found .
For this reason we concentrate here on CP‘ , although in the
charge one sector this is not necessary .

! . .
For CP one may parametrise the charge g ( > 0 ) instanton

solutions by [24]

1.4) J

2= N [ 2% > 4R s a real sule,
R N norwaliges

- for negative charge ( anti-instantons ) replace X

7%(‘1““—3) 8  are CoMp(ax tonStants,

. hy X .

For an instanton of charge a the action is 1£Jq‘ , and it can
be shown that all continuous field confiqurations of charge g

have action strictly greater than this . Both action and charge
‘ y
with spread of order i\a}-aj(— these are referred to as the

density are strongly localised around the points

)

i
2

(a;'+a

(s
3
4]
(as
o]
3
t
Q
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location and scale-size of the
To determine instanton solutions it is only necessary to
congider the self- Aduality ( or anti-self-duality ) equations
Dz =20 , which are first order in Aderivatives , and it
is readily seen that these equations have no other solutions
( up to reparametrisation ) . In order to find other solutions

such as those Aiscussed in charnter 3 we must turn to the full



equations of motion derived from the Tagrangian (4.1.1)

4.1.5) Drbrz " [@,&3 2]2 -

which are seconsd order and hence much harder to solve

!

. The
issue i3 further complicated by the gauge invariances of the
theory as some solutions which at first sight seem to be new ,
prove on closer inspection to he gauge-equivalent to earlie
ones , Historically the first non-instanton solution to bhe

found was the meron [287] -

0 4, -
_L(¢ 0 e T(2)
z'\ﬁ' | ) ﬁj(

This demends on the single function G(IJ . In order to find

4.17.6a)

solutions which join smoothly hetween the instanton and meron
solutions we must include some dependence on a seccnd function

(1+) such that

Yo-0000-96 -0 5 %elo- 9696

Such a function is given by

p- | T (%]

and the reaquired famlltes of solutions are

L[5 emg e
4.1.6h) 2= 7 m

and

30
| J]7+ AR‘Eﬁ e

4.1.6c) z = -

—
dz J1-— An]/k

where sn is an ellintic function with parameter k , 0¢ k€1

. 5]
Tt mav be shown that as k—1 , both families of solutions merge
smoothly onto the instanton solution of (4.1.4) . Also , as k=0

noth families tend to the meron solution ahove . AVl of these


http://non-.instant.on
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solutions have charage q , as exnlained Tater . Bv changing ay
to x_ we may obhtain solutions of neaative charge .

In muclidean sbace , all of these solutions excent the
instanton have infinite action - this is due to the vorteu-1ike
nehaviour around the noints 03 and not hecause the solutions
are anv less localised than the instarton . VWowever , for this
reason they have often heen thought not to nlavy a role in the
theory .

The later part of this chapter will use these solutions to
Jdevelop the first stages of an extended semiclassical calculation
for the CP1 model , as was done for quantum-mechanical problems
last chanter . Refore Adoing that , however , we wish to describhe
various features of the above golutions , viewed at the purely
classical level . Turther rdetails of this work may he found

in [1]

Tirstly we can ask whether these solutions exhaust the
possihle solutions of the equations of motion . At first sight
this seems not to be the case - if we parametrise field
configurations by .

re'®
1.73) 2—': N ( l )

then the equations of motion are

2
1.70) (Lﬁ.”):o -)?r(_()ﬁfl)s lr‘l”)@?@
PN Oy It (142
The first is satisfied by choosing r = r(({) where ?q) )(9 ?,. 2,9:
eCOo

yi 2
Then if also}%ﬂ;ll¢)anﬁ ve set r = tan s , the second becomes

n . , . . .
s = lein 4s , which clearly hes elliptic snlutions . At
firet sight our solutions appear not to depend on enough

arbitrary constants of integration { the only manifest one

being k Y .
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However , some of the arbhitrarinessg corresvonds only to choice

of origin - we could have written sn (q%q%) with q% arbitrary -

and some is ansorbecd by the 7, gaudge - we could have written

. oo\

(6-68) . ,

e with G% arbitrarv . Fowever , there {s one parameter
which we have fixed to be zero - it seems to be linked with the

choice of ( global ) S0, gauge and is therefore unimportant .

Certainly for the meron case it may be explicitly shown that

the parameter is not a genuine deqgree of freedom . In addition

the general arguments of 126] , based on the properties of

harmonic maps , indicate that these solutions are exhaustive ,

at least in the charge one sector . We therefore feel justified

in assuming that the family of solutions in (4.1.6) is complete .
Next we turn to the question of charge distribution . As

explained earlier the single instanton solution exhibits a

cloud of charge density with a well- defined orientation in

parameter-space , symmetric in position-space , and vanishing

rapidly away from its centre . Multi-instantons are similar ,

but with several centres and hence A more complicated structure .

As we reduce the value of k from one , two point sources of

t

charge each of intensity appear at locationg a - the diffuse

I
2
cloud of charge i=s also present , hut because of the periodicity
of the elliptic functions it carries zero total charge - thus
the total charge of the configuration is conserved . Once again
the picture for higher charges is qualitatively the same .
As k=0 the cloud vanishes and for the meron we are left with
“just the two point sources . The relationship between meron
( 2 function of x, with charge +1 ) and anti-meron ( a function

of x_ with charge -1 ) is unclear . The two solutions are

formallv 1 gaunge-equivalent , hut the necessary transformation
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is mingular at the noints at , and this causes the apparent
ambhiguity in the sign of the charge . We regard the two solutions
as bheing essentially different since ellintic ( k % c)
solutions arnhitrarily close on either side cannot be mapped into
one annther hy this method . Ancother artifact of an invariance ,
this time the conformal invariance , has given rise to the idea
that merons ( and by extension , the elliptic solutions ) can
exist as individual point source$ as oprosed to alwavs bheing
linked in pairs . This uses a conformal transformation to send
one of the location parameters at to the origin and the other
to infinity - this gives
Q= "‘rﬁ Ly @:L'Ll

which gives the solutions an axial symmetry . Because of the
concurrent loss of infermation at infinity , determination of
the properties of these solutions requires care and this has
led to apparent ambiguities ( such as the claim that the charge
of the elliptic solutions was not localised ) . However , this
choice of solution is convenient for the investigation of
conformally invariant guantities , because of its simplicity .

The existence of a smooth one-parameter family of solutions
linking the instanton ( a single extended object ) with a meron
( two noint sources of charge ) has heen used as a conjectural
model of the process of confinement [13] : the analogous
situation would he that a nucleon { extended ) bhehaves under

suitahle conditiong like a collection of quarks ( point charges } .

3

here has heen speculation as to whether the numher of
"constituents" ( used in the above rather restricted sense )
-

of instantons in CP models is constant or increases with n -

in the former case merons would be sufficient , while in the
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latter , ohjects called instanton-quarks have been suqggested [247 .
We have studied the bhehaviour of the action density of

. . ! 2 R .
2-instantan solutions of P and P models in order to see ifl

J I LI, — ——e - V2 Sl 2 oa a: -
Lot O A5 Ty ovdudad

itative 7iflTcrence visiiie at the ciassical

Dl

level hetween them . If merons are sufficient the two pictures

al]

should not 2iffer , wherecas if instanton-quarks are required

2 . . .
the CP case should show more intricate structure . A typical
plot of action density ( or equivalently charge density , as

the two ar

D

pronortional for instanton solutions ) is shown in

th

ig. 4.1 . Tt will be seen that there is no qualitative
difference - at the classical level , merons seem sufficient

to account for the structure of instantons .

For the model of confinement proposed in [13] , the

19}
o)

interaction between merons was investigated in [45] . Becau
. . ., b o .

of oscillatory singularities at a~ , we must regqularise the

solutions in some way , and in that paper this was done by

{
the insertion of instanton cores around at » each of charge 3

in order to mimic the point source of charge % . Thus such a
"smeared” meron would be
J . .
”.(Q) P Mhmmfmhmeﬂnmlﬂkﬁ
1.8) i ‘\.ara L
Z - U? (e" 5 FETSTa WM R r\( lJz|< rl
i/ . .
\  Ne () s iwtantm scaliomze R, rz<|ﬂ‘
where Ay~ A
SLe 2= ad releh
For continuity of 7z we require RL =vyr, , 1L =1,2 . To similarly
3

investigate the interaction of elliptic solntions we do the same ,

except that the central portion is now
2 1 (\] i+ lean(ln IJI\)‘ Q"“’S‘Q
R AN T P A PTRY

and the continuity conditions hecome
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L1.9)

Since

which

general case we may

Q?.

e on L v - -,+Q2 ) 1= 12

-1 & snx <& +1 , this implies

-k
I4i¢

for k =

to smooth the

is shown in fi

£

-

0

o kk
Rt 1-k

recovers the oriainal condition

B4

So in the

use a wider collection of part-instantons

solution . A schematic nicture of such a solution

a.

A.2a , and the action densities for smeared

and unsmeared solutions for a variety of values of k arﬁ#hown

in fig. 4.2p .

The total action of the configuration is S‘H’ f;‘“ + g;u

.10a

) where

Q. kak cRr

wmst + r‘l/gg ‘+ r'l/sz

Y
S = I <v Mo — T () b o

2

Since the action of a qlng1e 'instanton is & '

(id'I
___,,—o
T

1.1.0h)

for which we have

where

alqu)dﬁ ”’M‘ L

look at

|

\+ I+

—,'-LE Lr,)h)+F(Lr,,k)?
(t ) = (g dly-

ed the con+1nu1ty condition

(HYt —lemt = Dut- % A

(4.1.9) and

the requirement rl<fl< r, . It may bhe shown that

T(t,k)
méron
) S’M

Thus we recover the logarithmic

.10c

5o Ve,

merons derived

shown

in fiq.

kz 0

2

= (e 5h )

. Note also that F(t,0)= %t; which qives

interaction between ( smeared )

in [45] . Feor general k the behaviour of F is

4.

3 . Thus the interaction between

smeared

elliptic solutions is weaker than that between merons . The

interaction vanishes for k = 1 , so that instantons do not

inter

act ( this

S

is bhecause thev have least action in their

charge sector and so have no tendency to evolve

confi

with

gurations

distance

)

r

.Since the potential for k = 1

these solutions can bhe expected

into other
Adoes increase

to confine each



other in the way that merons do , as exnlained in f45] .
The total charage of the smeared configuration is

Qug = Qg + Qa bt

171 f\i/gll l

- le d
A1) = = e + T ¥ > f ('il({) Aq)(AMP)
-1 '

where again we have used the continuity condition . Thus as

stated earlier , the total charge is conserved hy the smearinag
process hv dividing it between the instanton cores and the
diffuse cloud . For smeared merons the cloud vanishes and we

are left with just the instanton cores which mimic the point
SourceS.

4,2 - Semiclassical use of the scolutions
We now turn to the development of the extended semiclassical
calculation . For this purpose we will only use solutions in

the charge one sector of the theory , on the assumption that

the dilute gas approximation is applicable as in the auantum-
mechanical cases last chapter . There are indications that for
the usual calculation this is not the case [46] , but we saw
last chapter that inclusion of the additional solutions seemed
to overcome such prohlems . Once again we refer to [6] for
supporting evidence for retaining the dilute gas approximation
here . For convenience we repeat eguations (4.1.6) restricted

to the case g = 1 .

s

(- @) /(JL+ _at)

ITnetanton : 2 = N ( |

4.2.1) Elliptic families : . "
7. 4 (\)Hh/m eIO) and Lm0
T g 2\ it
(?: L (x-l"a- \ , 9: arj (q,} 'a— )

1 -a % -a*

g5
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Asvmptotically { large 'x4l) all these solutions tend to the

. . L ')
same vacuum ceonfiguration U? (l

Mote that all instantons nf charge one in anv PP"J model have
corresponding elliptic families ( and thus the work which
follows mavy be repeated ) as it is onlv in the higher charqge
sectors that problems arise .,

In [1] it was thought that the two families (4.1.6b,c) were
not essentially different - with the benefit of the experience
of chapter 3 we realise that this was wrong . The elliptic
function sn is periodic , and we will examine its hehaviour over
a single period . Ceonsider first (4.1.6b) . Since k<1l and’qulsl
neitheirgg$ponent of z ever vanishes ; instead they oscillate
betweeniﬁgr.(4.l.6c) , however , at alternate half-periods the
solution takes the form (?) and (é) . If we plot the logarithm
of the ratio of the two components ,

) ) 5 - &“{Hbmc?‘ and. LJ‘“"‘M

hknnq - P
we see the two fiqgures 4.4a,b . Using this we identify the
family (4.1.6b) with the oscillatory solutions of chapter 3 ,
and (4.1.6¢c) with the direct solutions . The vacuum
confiqgurations which they interpolate are C?) and ( ;)
- in CPM‘ models any constant vector ( up to U, gauge freedom )
is an acceptable vacuum as these are all equivalent under
choice of qglobal Su, gauge . Since the elliptic solutions of
(4.1.5) Are eassentially the only solutions of CPl , we have
all the necessary ingredients for an extended semiclassical
calculation here , as was performed for anantum mechanics in

chapter 3 . As explained ahove , there probably are other

. . ) n-{ .
solutions in higher CP mndels , though perhaps not in the
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charage one sector . "e have not explicitly pverformed this

calculation , but present here some of the intermediary steps .

Notice that by a2 conforma! transformation we may map any
golution in (4.2.1) into any other with the same value of k
- the Lagrangian (4.1.1) is invariant under the action of the
conformal groun in two Jdimensions . This gives rise to zero-
modes of the fluctuation determinant , just as hefore the
arbitrariness of the origin of time did . Tn order to make use
nf the TFaddeev~Popov technique we must choose a particular
representative of the family to work with by making an
arbitrary choice of &? . This explicitly breaks the conformal
invariance ; the arbitrariness and hence the zero-modes are
then absorbed into harmless wvolume factors . For simplicity we
make the choice dt=t% with ﬂ an arbitrary ( put definitely
chosen } scale-~length .

In the quantum-mechanrical calculation we divided the complete
time-interval into three sections , in each of which a solution
of the equations of motion was used . The three solutions were
separated bv jumps in phase-space , and the whole patched
together bv inteqgrations over phase-space . The analogue of thisg
procedure in CP' is as follows . The purpose of truncatinag the
elliptic parts was firstly to establish the correct houndary
conditions and secondly to avoid the infinite action which
arises from the periodicity of elliptic functions .

50 here too we adopt a truncation procedure , but instead of
jumping at two moints we jump on two closed curves ( these are
still of measure zern comnared with the whnle space ) . Once

again this is done to avoid infinite action from oscillatory
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hehaviour . In the previous section we desgscribed a
regqularisation method in which the Jdivergent centres of the
elliptic or meron solutions were renlaced by part-instanton
colutions , a pDrocess known as smearing : this was used to
define the interaction hetween such sclutions . This time we
smear not with instanton cores but with constant { vacuum )
solutions . For example , a solution continuous in z ( but not

its ferivative ) might be

(0) @ —kKl]

Ve \ 1T 8% |
U) e kel <

where the neriod of gn is 4.K(k) ( K is the complete elliptic

2 | (m e") ~ lekll) << beka)

ntegral of the first kind ) [5] . This solution is shown

schematically in fig. 4.5a , while fig. 4.5b shows the

4
2

variation of lzJ along t 0 . Around points % are

circular vacuum regions , with the elliptic solution filling

the rest of space - as mentioned hefore , asymototically in

to one of the direct solutions of chapter 3 . The action of

. . | .
all directions we reach the vacuum J@ ( ) . This corresponds

this confiqguration is

2om S X (2600 - (FE)K0))

where F(k) is the complete elliptic integral of the second
kind [5] . S is evidently finite , and it is also positive .
ote that in the Yimit k=1 , the smearing circles shrink to
zero rading and we are left with a single instantonrn solution
filling all) of space . As expected the action tends to S =7 .

The generalised direct solutions including jumps 2re
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Similarly the generalised oscillatorv solutions including

(?) e @<har <0
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jumps are

Two things remain to he done ; calculation of the fluctuation
determinant around such solutions and choosing a measure on
the appropriate phase-space . It is at this point that the
calculation in this thesis stops . As mentioned above there
is a long-standing and unresolved dehate about evaluation of
the determinant , concerning the choice of boundary conditions
at infinitv . The classical conformal invariance implies that
choice of conditions at infinitv is important ( there is no
intrinsic length-scale hy which to define large distances ) ,

and it is unclear which choice is more appropriate physicallv .
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The scale invariance is expected to be broken at the full
guantum level , when quantum fluctuationg estanlish a
fundamental scale , but unfortunately at the semiclassical

leyel it still causes nroblems . The Airect analogy From chapter

3 would be to calculate initiallv in a finite box ( larqge

n

compared to 3 ) , and then nass to the infinite volume limit .

This seems attractive as the procedure is well-defined and
regnectes the order in which limits are taken , however this
would explicitly break the Lorentz invariance of the thenrv and

one wnuld have to demonstrate that this was unimportant in the

lTimit . TFor this reason , calculations in cenformally invariant

~h

ficulties .

—te

models are heset with A
Two more hopeful noints are the following . Firstly there is
the possihility raised in chanter 3 , that exnlicit calculation

of the fluctuation determinant mav not he necessary . If one

could understand

3

hvsically whv this ratio seems always to bhe
a simple factor related to nronerties of the notential , then
this knowledge could bhe used in field theories where the
determinants are both elusive and ambiguous . This is another
reason for postponing the calculation started here - there may
be very much easier ways of getting to the same answer .
Secondly there is the point that the elliptic solutions seem
to exhaust the range of solutions necessary to perform the
extended semiclassical inteqgrals , as onlv the charge one
sector is used . Thus the apove apprcach is applicable to all
CP“-lmodels , desnite the lack of full knowledge of solutions
in the higher charge sectors . In addition the corresponrding

family of elliptic solutions has heen found in the charge one

sector of four-dimensional Yang-Mills theories [16] . Once
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again the situation in higher charge sectors is less clear

and it is probabhle that more solutions here do exist - but

for the purroses of this calculation this is not important .
Thus e selieove that 271 the Infovmallon nedessary Lo perlor

the analogous calculation in Yang-Mills is already available
and it is simply a matter of piecing it Aall together - and

lTearning how to take account of guantum fluctuations easily
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Chanter 5 - Multi-site Sunersymmetric Quantum-mechanics

The sunersymmetric cuantum-mechanical! models used ir chapters
2 an® 3 uged a single pair of each of hosonic and fermicnic
variables , or in other words considered the field theorv of
fields at a single site pronagating in time . In chapter 4 we
considered a family of field theories of vectors propagating in
one space and one time dimension , in order to demonstrate the
general utility of the extended semiclassical calculatinns
developed in chapter 3 . In this chapter we seek to f£ill in some
of the gap between these cases , by considering supersymmetric
quantum mechanics with several pairs of bposonic and fermionic

egrees of freedom - the theory of fields at a finite number of
sites prnopagating in time . This approach could be pursued to
study the approach towards field theory by progressively
increasing the number of sites , which as we shall see need not
hbe strajightforward . We retain the supersymmetric nature of the
problem in order to study the bhehaviour of the lowest enerqy
state of the extended system . Work with similar intent appears
in {217 , but that investigation is from a rather different
viewpoint .

The starting point here is the observation that the content
of (2.1.2) and (2.1.10a) may be expressed as
b Qt = B @ F = (IDOSon{(_ o?@fafar) ® (-ﬁmioﬂic oferator>

. A /\ A A A
wuﬂ« ’3 rp+w(q/) >y Fi= ¢z

where the fermionic operators have the form of ladder operators
in that thev change fermion number hv one . Since previously

A N
our model was defined at a single site Bi and Ft were ardinary
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operators then .
To generalise to variables defined at n sites , we retain the
A A A A A
: = i shich F F is stil] Yeth B! 3 le Se
form Qt Biﬂ Fi- in which F( F_ ) is 111 required to decrease
, A A

{ increase ) fermion number by one , And R, ( F,_) still act
solely on phosonic (fermiconic YV degreecs of freedom . However ,

A
R, are now nxn matrices of operators , due to the fact that for

+

each original boson variable we now have n . We shall make as
. . Kl A
few assumptions as possible about the detailed form of By o
simply assuming that they have eigenstates and energy levels
which could pe found if desired . Ve shall concentrate on the
effect that the existence of the fermions has on such levels .
. c » A’
We have now to establish specific forms for Fy - these are

A~ A A
constrained by the requirements that {Qi, Q+? = 0 , and that F,

should alter total fermion number bv one . We also retain

5.2) /ﬁ = % {i3+) au.?

There are two distinct ways of generalising fermions to n
sites , which will be shown to coincide for n = 1 . The wavs
correspond to whether we want the mode! to describe just
fermions , or a mixture of fermions and anti-fermions - do we

. A . . .

want the fermion number-operator £ to have only positive eigen-
values , or will we allow negative eigenvalues as well ? One
way to see that the distinction is unimportant for n = 1 is
that here there is nothing to compare the original site with ,

. » A .
and so addition of a constant to f passes from one formulation
to the other without effect . With many sites , and the
opportunity to compare one gite with another , this freedom

A

in £ is largely removed . Other consequences of the difference

D

will he noted as thev arise .




The first alternative ( using fermions only ) is the more
obhvious generalisation of the original problem , and is also
easier to study ( and by the same token less interesting ! ) .
We therefore consider this first , discussing the n = 2 case
in detail and larger n cases more bpbriefly .

With two sites there are two and only two ways in which wve
may reduce fermion number , by taking away a fermion from one

site or the other . If we label the sites a,h , this gives
A

a b q L
s.3a) b, o= j?(t{)iﬁ +1.Lf)t)
where in order to get the correct anticommutation properties ,
N a b _ 44 b
5.3p) q/i = \Pt é 12 3 LP-t = 0}@4)1: 5 1 =1=19_312
—_—
acki achi _ . (O 0
at ;5 :tcﬂ B’* B (gb ) 4’" (: o)]

Fxplicitly this gives

A AT
3c) F+ = F_ = ( l
[+
It will be recalled t for the n = 1 case , the wave-

[¥2]
o000
00 —
090 ~
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r
o
o))

functions were 2-component objects , with the upper ( lower )
component corresponding to f = 0 (1 ) . Here , wave-functions
are 4-component objects , with each component bheing itself a
2-component vector . The four components refer to the four
possihle distributions of fermion number ( (0,0),(0,1),(1,0),
(1,1) or equivalently , 101,19+,¢01,¢&¢ ) , with the two
components being the associated bhosonic wave-functions for
each site . As explained earlier , we are primarily concerned
with the effect of the fermions and so will not study the form
nf these bhoscnic wave-functions . For a hasis of the fermion
states we choose those combinations which are eigenstates of
the Mamiltonian - these are

lel | \,Jza(la({;rlpal) , ped

It may readily be seen that

tyobep - Hllep - bel)

VAN

Foglegryer) < o




and so these pairs of states are degenerate in enerqy , unless

D

A
the hosonic part of Q+ anninilates the states on the right-hand

sides ([ pecause of the supersymmetric structure , if one of the
pair is annihilated , they hoth will he ) . Furthermore , by

A FaS 132 A
examining the Hamiltonian derived from O+ , N =3 Q+ ; C)_?,
it becomes evident that the following pairs of states are also
degenerate : W’“? & (18} +pe1) (Laed -{eny, fef)
2 el B '\E‘ J ’ \E ~1y .
This degeneracy is only loosely related to the supersymmetry

A

and ig not affected hy the specific forms of a, .

Suppose then that solving of the nosonic part of the problem
gives a hosonic wave-function b with energy E - as with the
n = 1 case we have B 2 0 . Then we have the following two
possihilities :

1) Eb = 0 . The presence of the fermions induces a 2-fold
degeneracy , with full wave-functions be(lel) ,
tvgl(1&+ +*& 1) . The other fermionic states are

7
annihilated .

2) B, 7 0 . The presence of the fermions induces a 4-fold
Adegeneracy , with all four possiple fermion states
allowed .

In neither case is the hosonic svectrum altered - the only

contribution made bv the fermions is to increase degeneracy

of the levels as given above ,

For n gites the situation is directly analogous . We have

ay ;f (‘PQ 1b '1 + Cﬁc(}n ?QFMS.)
‘Ptj - 38 - 8038 q/t éle..- g | (% M j‘d‘ ?lace)

There are 2" fermion states , and choosing as basis those which

96



are eigenstates of the Wamiltonian we find that supersymmetry
transformations relate these in pairs . As hefore , there are
only two superficially different Schrodinger equations , and
once adgain we are led to the same conclusions - a hosonic
eigenstate of energy Eb gives rise to one or other of
n-1 i ) .
1) 2 2 -fold degeneracy induced nv the fermions if By, = 0,
n . . .
2) a 2 -fold degeneracy induced by the fermions if Ey, >0 .

In bhoth cases the bosonic spectrum is unchanged except for

degeneracy .

Clearly this is not an interesting generalisation of the

n = 1 case as the fermions play essentially no part in the
model . The apparent ewtra deqgrees of freedom are not genuine
ones as no new physical effects are thereby introduced . The
picture is , however , different if we allow anti-fermions in
the theorv . This is done in the following way . Instead of
just allowing the fermionic variabhles (1,¢) at a given site ,
we allow the four alternatives (@,1,?*,*) with fermion number
(«1,0,0,1) resvectively . So we now associate a 4-component
vector with the fermionic co?tent of each site

a

e ] «—— !

a : -
s0 that for example (g)represents l+¢# . This extends the

1

range of fermion interactions by allowing up to four fermion

operators in a given term in the Lagrangian - it is such terms

. n-|\ C e
which render the supersymmetric CP models Aifficult [23] .

As hefore we consider the case n = 2 in detail . TFirst we
’\ »
must construct the operator Fo . This has two parts - an

"active" part which reduces the fermion number at a site by

one , and a "passive" part which leaves it unaltered ., The
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active part operates either by destroving a w or creating a

* . The various annihilation and creation operators are

chosen to be

pe - led)elie) 5 s (mes)e (18 )

L e e U L Tr ren)elbes)

a4+s at a  oacks at (o _
where for example ?+ annihilates a fermion at a , @f creates

LY
e U

an antifermion at b , etc. . { Recall that we now have a 4-
component fermion representation at each site and hence 4x4
matrix operators , where bpefore they were 2x2 ) . It is easily
checked that these operators have the correct anticommutation
rules . So the active ( normalised ) part of'll\"‘+ is just
j?(v+-+QL ) at a particular sgsite . The passive part is slightly
more complicated as there are various bhilinear terms in the
fermions which could he used - in general we could have
Ce bl pR B vl + S0
with d{&wxg arbitrary . This arpitrariness is reduced first
by invoking the requirement that g%;,%;?= 0 . If we also
impose the physical requirement that "nonlocal" interactions
are to be excluded ( in other words we exclude the possibility
that fermion number may bhe conserved by the simultaneous

creation of a ¢ and a ¢ at different sites ) then we find

that only one non-trivial possibility remains ,

R AT PQ’; ¢+¢+ + 44
< 6010

Th 1 4/

o Bt lberet e g - [+ o)

T = ;ggg T 1oo -l
- 1 = T 0,6 - o200

o ) e e (3

As usual , % = fT-, S0 we may now construct 6 = @ V anc

o
™ A
hence H . The fermion number operator is £ Z.@J+ mik
&res

which should be compared with the above form of I . As hefore
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it commutes with‘% and is therefore a constant of motion .

There are 16 fermion states , with fermion number ranging
from -2 to 2 , and with some determination we mav find the

A

hasis of these which are eigenstates of B . Appendix 5.1 gives
exnlicit details of this bhasis and the promerties of the
various states . As hefore we find that the supersymmetry
transformations relate these in pairs . However , by examining
the detailed structure of the action of the Hamiltonian on
the hasis states we find the following behaviour . As usual
we take a hosonic eigenstate of enerqy EL .

1) E, = 0 . The presence of the fermions induces an 8-fold

degeneracy , and the other 8 fermion states are

A
annihilated by O, .

= b
2) E. > 0 . This level becomes split in the following way ;
- a 4-fold Adegenerate level até@%ﬂlﬁ,f EL/h 5
2 nf these states have even fermion number
and two odd ,
- an 8-fold degenerate level at E |
4 each even and odd fermion numbher states ,
- a 4-fold degenerate level at @|)2£L: EL-ag
2 each of even and odd fermion number .

Thus the existence of the fermions has a non-trivial effect

Q

n the spectrum of the theory - the original single level

iJ

ecomes sSplit into three , of different degeneracies . Further
explanation of the nature of the fermionic content of the
remaining degeneracy is given in appendix 5.1 and also in the
following chapter . In spite of the gplitting , the entire
spectrum may be recovered from knowing just the bosonic value

B, , as splitting is given in terms of ratios rather than
b 2] g g
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differences . It is of interest to note that the state with
lowest fermion numher ,.wﬁq; , 1s one of those which remain at

is state we finAd

th
(8. 3.7+ 13.8.7) L] (Feb) = § Lalsd)
e we had ¢§§+)§-’}‘"7“_D+£UIZ5 4[1)2 _ _’_ l

20 here we find preciselv the same as in the original case ,

Eb ; in full for
- be(fel) - i

For the n = 1 cas
that even though when solving for h we are treating only an
effective hnsonic theory , we must still incorporate the
"fermionic part” of the potential , and not djust use the
"nosonic part" . Ve feel that this is supnorting evidence for
the use in chanters 2 and 3 of the full notential Vi and not
just VY, -

Notice the following - for just one state the matrix I of

A

(5.6) does not appear and we reduce to F, _'_(¢t ¢¥> There
are Jjust four fermion states , and the degeneracy of a given
hosonic level Dy is as follows .

1) E, = 0 . States *, l(l+¢+) are annihilated .

e
States'¥,j?(l-¢ﬁ\ are deqgenerate at zero .
2) BE > 0 . ALY four states are degenerate and leave EL
unchanged .

Tt will bhe seen that the energy-‘evel structure ( in terms of
values , not Aeaeneracy ) is nreciselv the same as for the
n =1 case with just fermions . As stated earlier , for n = 1
the two generalisations are identical , and the apparent
introduction of additional fermionic degrees of freedom is
fictitious . Only for n 2 2 do the differences between the two

sorts of generalisation manifest themselves .



We may generalise this structure to the n-site case without

difficulty . We now have
i~ |

| Fy - 2 {(‘Pt +¢¢y‘ Ila-'-- T+ (.Jc[}c ?{“‘S'T

5.8) 0 6010 T
A TP (£ RO e A
0 o-lo
. (3™ 5l
' = (let)e - & I?m')@ .. al&l)

. n . . .
with 4 fermionic states . These affect a hosonic level Eb
as follows

n
L E, = 0 . Such a state becomes é-.4 ~-fold degenerate .

2) Eb'> D . This becomes split into the following levels -

101

Eh EL n-2 - n-|
ar > 573 T Eb > EL'Q ) tL'q
. CH O
. . - |4
with degeneracies such that levels ﬂqu 2 and f%;,
n-\
hoth have Adegeneracy 4 2 C
!
E.g. for n = 4 we have
~ 2 3
level & €y Ev EL 2 ES_Q &3
A] AI Z’
degen. 4 w4 Lo §o 60 yIt b
The fermion number operator in this general case is
N
f-’- (\P + Y’(1L“1"l+ cuclic perms
et 1 Jehe penas.

The state of lowest fermion numher ,W&¢®n~@¢ , 18 alwavs
one of those which leave Eb nnchanged , and the Schrodinger
equation for such a state is always the direct analogy of
(5.7Y . As a general rule , the stategs with very high or low
levels are those which are "rougher" in terms of distripbution
of the fermion content - in other words , states in which the

fermion number is the same from site to site ( such as %@““@J )




Ao not alter the hosonic value much if at all , whereas the
states with rapid alternations of *'s and @‘s from site to
site tend to aive the extremes .

This 1is important hecause of the following . Tt will be
noted that as we Increase the numher of sites , the value of
the lowest energy level ( which we suppose to be strictly
positive , i.e. we are considering a spontaneously bhroken
model ) tends to decrease as :ﬁ“ . Because of the greater
number of degrees of freedom , one also expects the lowest
level to increase with n linearly ( cf. harmonic oscillator
with n degrees of freedom for which Ep = dﬁ (w +£ Yy ) , but
this increase is clearly not sufficient to outweigh the power-
Taw decrease . Thus in the nse limit the lowest energy-level ,
even in a spontaneously broken model , tends down to zero .
We have not had time to explore the consequences of this for
field theory , but we expect that this is related to the
observation that the lowest-lying states are those with rapid
fluctuation of fermion content . Tt is possible that we are
seeing in this phenomenon the analogy in guantum mechanics of
the species-doubling which causes difficulties with lattice
calculations in field theories with fermionic degrees of
freedom [40] . If this is the case , then we expect to find
some mechanism operating in field theories such as entropy

which would suppress such violently oscillating states .

We have constructed in this chapter two essentially different
generalisations of the single site supersymmetric quantum
mechanics treated in chapters 2 and 3 ., Ve have shown above

that they coincide for n = 1 put differ markedly for cases
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with larger n . The first , which is the more obvious , leads
to a structure which is the same in essence as the original
case in that the mu'tinlicity of fermion varianles with sites
vroduces no new features . The second , which incornorates
anti-fermions as well as fermions , nproduces a nontrivial
change to the nhosonic spectrum - the fermionic interactions
split any bosonic level into a sequence of levels with regular
ratios spacing them . Thies second model has many interesting
features , particularly as regards the behaviour for a large
number of sites and thus the approach to field theory .
Finally we wish to point out that there are other ways of
generalising (5.6) which coincide up to and including n = 3
hbut can differ for higher cases (5.8) is the simplest such
generalisation , in which the matrix I is used in %+ for all
sites other than the one at which the active part of the
operator is located . Tt could be argued that this choice
induces fermionic transitions which have a certain non-local
character which may be unacceptable . Specifically , creation
or annihilation of fermions induces ( through the form of the
I-matrix chosen ) transitions of the form le4>¢¢ at sites
which in the physical arrangement of the sites may bhe well
separated . To aveid this we could adopt instead the following

generalisation :

o Fe 0 (AT R T ) (N )

cstlic
where 1 is the normal unit matrix to the appropriate tensor

power , and labhels are taken to pe given modulo n . This new
generalisation is easily seen to induce transitions ]A—>+¢
only at sites adjoining the active site and thus acts in a

more local manner . We have not investigated the properties
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of such a model in detail yvet ( mainly bhecause differences
only start to appear for nx4 ) but it is propable that the
efFfect will be that the spectrurm will he less changed by the
inclusion of the fermions than in the case (5.8) - perhaps a
hosonic level QL will only ever bhe split into three , at EL.Q '
%b' and Eb( before , the highest power of ) appearing was Q“4
and there were (n-1) I-matrices in the products ) .

An advantage of this more varied generalisation is that it
allows us to consider various geometric arrangements of the
sites . The formvof (5.9) implicitly assumes that the sites
are arvanged round a circle so that each site has exactly two
neighhours . Alternativelvy we may arrange the sites along a
Tine by not identifying the two ends ., Clearly by varying the
locations of where 1°s and I”s are inserted we are allowing
Aifferent nearest-neighbour structures . In general different
such structures will displavy different patterns of energy-
splitting for a given bhosonic level . 30 , for example , the
original proposal (5.8) assumes that every site is adjacent
to every other ( in the sense of being neighbours for the
fermionic interaction - recall we have not assumed specific

A
forms for the bosonic operators B_ . A more complicated

example is the following . Arrange n sites in an nxn array

numbered as { for n = 4 )
1 2 3 4
5 6 7 8
a 10 11 12
13 14 15 15
and let
5.10) A

F+ = NZ (11_“” Ii-41i-31i_11i-| wﬁwp)(li+l1i+zli+3IM””“1n
3d&




where gite-labels are taken modulo n , so that for example
19 2

= I° , Then if we let n tend to infinity while retaining

-

this structure we can end up with a field theorvy bhased on a
torus instead of a circle - or , by not identifyving opposite
sides we may work on a plane instea? of a torus . Evidently ,

a large number of possihilities may bhe extractecd from a scheme

such as this .

105
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Thapter 6 - Conclusions

It remains row to make some concluding remarks ., These will
be of a general nature , as specific comments concerning the

various methods have heen made at the appropriate points of

o
o

the tex
We set out initially to attempt to understand the nature and
extent of the spontaneous breakdown of supersymmetry , and

towards this end have considered a number of gquantum-mechanical

models , both hroken and unbhroken . In super-symmetric quantum-
mechanical models , the criterion for deciding whether or not
the symmetrv is broken is particularly simple ( although in
field theories it is not , so we seek some alternative ()
characterisation ) - one looks at the trial wave-function #n)é%ri
(where v(g) is the superpotential ) and sees if such a state
is normaligsable . If it is , then it is a state of zero enerqgy
and supersvmmetry is unbroken ; otherwise it is broken .
Normally ( and always in the text ahove ) this corresponds to
checking only the asymptotic hehaviour of vi{qg) for large Iq( '
but see helow For other possibilities . So with our cases the
parity of the highest power of g in v discriminates - even
unbroken and odd broken . Although this is very convenient for
ease of decision , it leads to the following problem .
Mormally to begin to study a bhroken symmetry we firgt consider
ithe unbroken case and then switch on a hreaking term which may
be taken arpitrarily small in order to study the effect . Here
we cannot do this , as the difference between broken and

unbroken models is contained in the dominant behaviour of v(qg) .



Thus it makes no sense , for example , to start with the

2 . .
( unbroken ) model v =-W g and then switch on a hreaking term

i
2
‘7=:%€q3 - however small ¢ is , the new potential , the bosonic
potential , and the full notential used in the text are all
completely altered . Thus , onr cheoice of whether or not
supersymmetry is to be broken is a Ffundamental one to be made
at the start of the calculation , not an optional one which
can bhe left open at first .

The investigations of this thesis have not shed much light on
the mechanism bv which supersymmetry is broken dynamically .
By now a variety of models of suversymmetric quantum mechanics
have been studied by numerous veople , and in some ways the
question hecomes more open as more is discovered about the
mcdels - see [29] for a summary of some of the cases .
The work of chapter 2 indicates that the mechanism must
somehow blend merturhative and nonperturbative effects rather
than being linked to just one , although clearly in certain
asymptotic regions one or the other may dominate . The work in
chapter 3 shows that , at least in strong-coupling regions ,
the relative sizes of effects termed "perturbative" and
"nonperturbative" may bhe very similar , and so to neglect
either is hazardous . The mixed wave-function method developed

and explained in chapter 2 provides answers which are numerically

[

good ( presumably because it blends perturbative and non-
perturnhative ideas ) , hut it does not provide a great deal of
physical insight into the breaking mechanism . In the past it
has been sugagested that the existence of instanton solutions
could act as a trigger to break the symmetry , but this now

seems unlikelv - we have seen that instantons are present in
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some unbroken theories , hoth in the formalism using the hosonic
potential VB and the one we use , with the full potential vV, .
Similarly there are broken models with no perturbative breaking
and without instantons - an example is the suberpotential

v =§£Lq3 . We can see from the earlier comments in this chapter
why ingtantons are insufficient - supersymmetry breakdown is
governed by the leading behaviour of the superpotentia’ , while
the existence of instantons is decided by the specific form of

the non-leading terms . So for example the two superpotentials

b T

-%qf , Vv = -q' - g hoth lead to unbroken theories ,

4

but the former has instantons ( in both Vb and v, ) whereas

\
7 _.,q
q.

the latter does not . In [29] it is suggested that the necessary
condition is slightly more complicated : instantons in the Vb
problem will signal supersymmetry breaking unless the phase
transition when the fermionic part of V+‘is turned on is of
first order ( so that the expectation value of the coordinate
changes discontinucusly ) . This criterion ( which is derived
empirically rather than nhysically or theoretically ) is
satisfactory for the models so far considered , but as yet it
is too early to assess its general value . At first sight it
seems once again to be probing non-leading terms , but this
in fact is not clear as the leading power of the fermionic
pmart of the interaction has the same parity as that of the
superpotential , so the criterion may be adequate . We feel
that the question is still very much open .

One noint which arises from chapter 2 concerning single-site
problems is the following . In the introduction it was stressed
that for a supersymmetric model to be physically plausible ,

it would have to be broken in some way in order to spiit up the



varticle supermultiplets containing posons and fermions of equal
mass . However , the broken models discussed here do not do that
the sole qualitative effect of the hreaking is to 1ift the
lowest enerqgv-level from zero and render it deqgenerate . All
excited states of an unbroken model come in degenerate vairs

( one bhosonic , one fermionic ) with a nondegenerate ( bosonic )
vacuum ; all states without exception of a broken model come in
degenerate pairs ! This is rather disappointing , and questions
the use of the word pbroken .The situation in the models
constructed in chapter 5 is a little more encouraging - using
the more elahorate models splits up a single bosonic level into
several levels of different energies . However , each of the new
levels is gtill Adegenerate and contains an equal number of
states with odd and even total fermion number , so the proplem
is not yet fully resolved here . However , it is known that for
sunersymmetric Yang-Mills models , certain types of explicit
breaking can he introduced ( without spoiling the finiteness of
the models ) which give each particle a different mass , subject
to an overall sum-rule [41d . We therefore suggest that the
rather rigid nature of energv-levels in the broken cases here is
an artifact of the small number of degrees of freedom , and need
not persist in field theory .

As our measure of the extent of supersymmetry breaking we have
used the value of ground-state energy . As explained before ,
this has the advantage of being readily calculanle in many
( anproximate ) wavs , using both Hamiltonian and Lagrangian
techniques . It is particularly suitable for cases in which
we know in advance that the theory is broken and wish only to

assess the extent of this . It is not suited to situations in



which we wish to test whether a given model ig unbroken or
softly broken , since numerical estimates have intrinsic
inaccuracies , and to decide whether a small answer is "really"
zero or else positive , with no additional evidence , is clearlv
impossible . The nroblem here is that very few techniques
provide answers which are guaranteed to he lower bounds - either
the answer is known to he an upper bound ( e.g. most variational
methods ) or else it is ambiguous {( e.g. zero-point estimates or
instanton calculations ) . Procedures which do guarantee lower
pounds , such as the method of [7] , tend to converge more
slowly than standard upper-bound methods ; for problems of the
tvpe considered here , we already have a lower bound - zZero

- and so may need to expend considerable energy to improve this
in a softlyv-hroken case . It would therefore be advantageous to
have a general tocl for estahlishing whether or not hreaking
occurs , before attempting to assess its extent . In quantum
mechanics this is straightforward ¢ in general , some functional
methods have been established [15] based on an original idea in

431 , put they are extremely difficult to apply in most cases .

As a final general point concerning these models , we return
to a question raised in the introduction ~ what happens if we
allow the suverpotential to contain non-polynomial terms in an
attempt to duplicate the effects generated py renormalisation 7
As a specific model to analyse we take a family of super-
potentials

U= %wq’2+ibl« qf
parametrised by b . This gives bhosonic and full notentials
V (w+b)2
b 9 7

v, w"cf +o(2b-1)w o+ W(b+)
12
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This family of models is currently under investigation by
W.J.Zakrzewski and myself , and few definite results are vet
available . However , preliminary results indicate that the
hehaviour of the models is in many ways verv odd . Figs. f.la,b
show the various generic forms of VL and Vy and we shall begin
by analysing the expected pehaviour of the models according to
conventional wisdom . Consider fig. 6.1la . For b> (0 the models
appear to he broken by perturhative effects , since the
classical minimum is above zero . For h< 0 the classical
minimum is at zero , so the models are not broken
perturbatively , hut because of the degeneracy we can expect to
find tunnelling solutions which could break the symmetry
nonperturbatively - the discussion in [38] follows nrecisely
these lines . Now look directly at the superpotential . Since
for large \Q\ ' vn)qz the usual argument would conclude that
the models are always unbroken , regardless of the value of h .
However , careful application of this argument requires that

we look more closely at the normalisability of the trial

-

wave-function 4)N e . This requires
g 24 -2 S( l%& fk%}
Vrag - eA:L: gl e d¢<oo
L L
& —od <L $l+
- the critical behaviour of w is now at {ed& the origin ,
since we have fixer the long-range bhehaviour appropriately .
!
Thus for b & % the models are not broken , and for b7>¢
they are broken . This discontinuous change in the behaviour
following the continuous change of the parameter b provides
another surprise , and contradicts several prior expectations

( see e.g. [15] , [43] , or remarks earlier in this chapter ) .

Notice that the arguments hased on the use of VL gave the wrong
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conclusions for some ranges of b . For 04 b¢< i , the wave-
function is peaked at the origin , so we are most likely to
find the particle in the middle of the potential barrier .
Tor =-1<¢<hn« 0 , the wave-~ function vanishes at the origin ,
so we are least likely to find the particle in the potential
well , Only for b -1 does the shape of the wave-function
accord with prior expectations . One other surprise comes in

the region Z<¢bhgi.Here the classical minimum of the Schrodinger

8

L
5
potential for the

problem is ahove zero , vet the energy of the
true ground-state is exactly zero - somehow the quantum
fluctuations manage to reduce the ground level to a lower value
than the classical one .

This investigation is far from complete , but the above
results show that the inclusion of non-standard terms in the
superpotential! mav 'ead to some very strange effects ..Since
this is done in order to imitate terms arising in the effective
potential from renormalisation in field theories , we believe

that further study is amply justified .

We turn now to the extended semiclassical calculations of
chapters 3 and 4 . These use solutions of the classical
equations of motion other than the usual ( instanton ) ones ,
patched onto constant solutions at either end , the idea
hbeing to allow for a spread in the value of the energy of the
system from its classical wvalue . The fact that there are such
general solutions in many ( an? presumably all ) models has
been known for some time , put the practical use of such
solutions has been uncertain and their phvsical relevance

questioned many times on several grounds , one of which is



that they are oscillatorvy and thus have infinite action if
allowed to f£ill the whole of space . Therefore it is satisfying
te have found a nossible use , as otherwise their existence in
so many theories would he rather mysterious . The specific
prohlem of infinite action is avoided in the method here by
simply not using the entire solution , but only a part of one
period in a localised region of space ( the dilute gas
approximation is assumed to cover multiple oscillations ) .

In order to have a specific functional form to insert into the
functional integral , we are then required to use paths which
are only piecewise solutions of the equations of motion and
which have jumps on curves of measure zero relative to the whole
space . These jumps are used only for calculational purposes ,
and the particle should be imagined as slowly meandering to the
starting-point of the general solution under the influence of
quantum-mechanical fluctuations . A helpful picture suggested
by A.D.Burns in the course of a discussion is the following .
Classically we think of a particle moving from point A to point

B along a definite path ;

In the usual semiclassical calculations we then allow for

Gaussian fluctuations orthogonal to this path ;

With the scheme proposed here we also allow for fluctuations
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around the initial and final points , presumably governed by

some gort of diffusion process

Clearly now different classical paths are allowed , since they
need link onlv the vicinities of A and B rather than the
points A and B .,

The effect of this seems to be to increase the domain of
validity of the semiclassical calculation in terms of accuracy
of answers . The normal ( i.e. instanton + dilute gas )
calculation is only reliable in the weak~-coupling limit - this
does not include the CP“- case because of the effects of the
conformal invariance . The references of {6] show that
including complex-valued solutions of the equations of motion
({ i.e. complex saddles of the action ) gives the same answer
as the dilute gas method in weak-coupling cases , and is more
reliabhle in strong-coupling regions . The solutions used in
these methods involve elliptic functions , coming from direct
integration of the equations of motion . It seems possible that
our method , using general ( real ) elliptic solutions with
relaxed boundary conditions , phase-space integrals and the
dilute gas metheod , is in fact picking up the same effects as
the complex complex saddle-point method . If so , the conceptual
advantages of the method described here are that it is more
easy to visualise the behaviour of the classical solutions and
it avoids the use of complexified variables .

In this thesis we have onlv used this method in cases where
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there is a double- well structure , and thus a classical
degeneracy in the problem . However , because of the jumps

{ or dAiffusion regions ) one can envisage performing a similar
calculation in situations where there is only a single global
minimum , perhaps with a subhsidiary local minimum elsewhere as
in calculations concerning the decay of a metastable vacuum
state . Examples of such a potential may be found in chapter 2
as cases of spontaneouslyv broken supersvmmetry . In such a
situation one can imagine using a solution which jumps out
from the minimum , moves on a classical path for a time , and

then jumps hack again

The secondary ( false ) minimum will act to reduce the ground-
state energyv from that calculated using just the true minimum ,
and we can hope to evaluate this reduction through an extended
semiclassical calculation using solutions such as the above .
With the normal approach there is no solution other than the
trivial one which has the correct boundary conditions , and
with the usual approach we cannot determine this splitting .
With our approach there is no essential difference between this

calculation and the one treated in the text .

In chapter 5 we have proposed and started to investigate a
generalisation of the one-site models of chapters 2 and 3 to
an arbitrary finite number of sites which may if desired be
arranged in different geometrical cenfigurations . This is

another area which has great potential for further study ,



narticularly as regards the limiting case of n—s o , 1.e. the
approach to field theory . The effect on bosonic eigenstates

is to split up the degeneracy of a single level in a well-
Aefined manner ; however with aome of‘the cases considered the
value of the lowest enerqgy level for a spontaneously hroken
model e~ n/ﬂ“ as n-aw«.The consequences of this for field
theorvy are unclear . It is possible that these very low-lying
states , which also exhibit rapid alternations in their fermion
content , are sunpressed in field theories by some sort of
entropy factor , and thus the levels which seek to vanish in

the n o0 1limit are in fact ahsent . Alternatively the problem
mav be related to our choice of the nearest-neighbour structure ,
and so choosing a more realistic one might solve it . Whichever
the case , the properties of these models have an intrinsic

interest , and further study would be worthwhile .
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Appendix 2.1 - Constructing the supersvmmetric quantum-

mechanical Lagrangian

We hriefly -»eview the nrocedure for constructing the most
general such theorv in superspace . This treatment may bhe found
in [18] and we include it purely for convenience .

. . * .

The superspace 1s given bv (t,9,9 ) where t is a normal

\ . . X .
( i.e. commuting ) variable and 9,9 are Grassmannian
( anticommuting ) . Thus thev satisfy

- {o.0- 16%,0 -
16,6*7- {0,67- T6*,0*7 - [5.4] - [6*,t] -0

Infinitesimal supersymmetry transformations ( which are Grassmann-

even translations in superspace ) are

L —> t =t - i(6¥% —e%g) ,
O - 0 -8+s , 6% 0% - 0%y ¢t

where §£,¢€%¥ are constant anticommuting parameters . Finite
transformations are generated hy

G= ap il +ae)
where ﬂ,o* are the supersymmetry generators . These transform
all quantities as

A 0 = gag*
which infinitesimally gives

O - i[e*ateae ]

¥
To reproduce the previous transformations of t,@,@ we reaquire

Q= i%-g* 9{ ) Q* = -%Qg& s 99{
o tmer {0,040 - %= 2N [T = fahW]=0

Covariant derivatives for these transformations are given by

B=9-10%, , D= 9,-10)

e now consider a surnerfield which is real and transforms as

a scalar : 4)* (JC)Q,Q“) = Ck(t\e,9¥>
bleo.04) = ¢ 66'6%) - ¢ (50,6%)
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¥
Expanding this in nowers of 9,@ gives the following terms

which we use to define the flelds alt), (a . *&)Jﬁ(t) )

$£6:8%) = 4(t) +B|(t) — (Y 0* 4846 D)
—> b = Sl 1080 (+) - L SgRa) ot 4+ prg SDL)

nut S i ferateae, 4] AT S0
Bl) = A — pwe
Splt) = €% () — ie¥ D) 5 SprE) - €4 l) + ie DY)
e L ) ,( % ¥>
L0 = el + prier - Aleh vy
The action of covariant derivatives on ¢) is
' ' * "ok *0
DA = wW-0D -1 g+ 00y .
The most general action in superspace,invariant under super-
symmetry transformations ig
* 2 )
C- Saedordo T4 )2e01 = £(4)
where f(¢) is some volynomial in + { choosing a polynomial
here is conventional hecause of limitations in field theory
concerning renormalisability , bhut it ie not clear that this
restriction should stil' apply in quantum~-mechanical models )

We now apnly the integration rules for anticommuting variables

boso - (ordo -1 (oo Cuer -

to see that onlv the coefficient of Gﬂ@ in é]]b¢|..f(¢> will

contribute to the action :
D012 = 0% (Q}KD”i(Vﬂ}-V({)) + lower-order ferms

C4) = 86 (-Do'(e)-2L¢* 410 () + -
where  U(g) = Q(Mlg o0

Integrating over 6 ,0% we f1nd

O (20 00 -0)+ 279wl 4[]0 ]

In the guantum formulation of the theorvy we will functionally

rsg ,

integrate over all fields q(t), ¢(t),¢*(t),n(t) . Notice that
D enters only quadratically and without derivatives , so this

functional inteqration may be immediately performed to give an



effective action

{ . |k | 2 % )
S' - felag s (po-40)- 1o L 141
which apnears in the qgenerating functional
N

_ Al
. i <!
2= ) LglCdp1[ae] ¢
Mith the identification of v(a) as the superpotential , we

see that this effective action is the one used as a starting-

point in the text .
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Apnendix 2.2 - Netails for the mixed wave-function method

This should he read in conjunction with fig., 2.6 ., We show
in detail the calculation far the case

fo () = (1a, w) ~é%(1-@o)

net  €=4-§o , then
g = €to = E(14ae) enp(-Lhe?)
= 4 (— %’@PI" +(L7‘1’“ -QLM@I—QLQ+MZ)¢0 )
=3 ('%-3%(1& +AT 80,8 (Lliq'w"‘tz' ZL‘i«J'W)(“M)) ex/’(-zl&fl)

Replacing a hy %°+€ and comparing guadratic and guartic powers

-4

in £ yields Yo = \]él.chz _olM

{/Q{

Around the complex stationary points g = g4 we perform a

similar procedure to aget wave-functions @t savy , and then

o
construct the resentative wave-function lP around Re g hy

)= ¢+(a+)+<p-(a>) A

where Re o, = 0 anﬂr“t lie on the lines L, of fig. 2.6 .

In our case this gives

?PI (&) = (14 & (Q—Qeq,,;)) exp (— iﬁl(@-?e q,ﬂl)
vhere b \J \ GL _,QLp\I / ntX

. ~ . . . . .
These expressions for ), A ra,rd require a little modification
-]

"

[t}

when}gc)ﬂ~c , but this is straightforward .

For versions of the method in which these parameters were
optimised in a minimisation routine , the ahove values were
used as first quesses

Mext we ghow the differenc etween calrculated and optimised

D
2}

values of the parameters for the cacse /A= 0 ( as in the text ,

we fix L = 0.3 for purnoses of illustration ) . Method (a)



fixes a,= E = 0 , while methnd (b)
Parameter
Me thnd A, (§ a,
{(AY calc, n.a87 *.1¢ -
ont. 1.24  1.25 -
(P calc. 0.87 1.16 -0,27
opt. 1.23 0.96 -0.0Ah

Compare the strict hounds which give 0.1245 £ £ < 0,1265 .

allows them to vary .

% A 2

- 1.9 0.2133
- 1.158 0.1347
.11 1.37 0.1303

It will be seen that ncne of the narameters 1is altered

drastically by the optimisation process ( i.e. by orders of
magnitude ) . For the region near F7W , where the pair of
complex saddles becomes degenerate and la—bO , we find that
is changed bv a large amount - this is to be expected as the

optimisation process was intended to circumvent the problems

arising from this .

12+
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Apnendix 3.1 - Instanton contribution for supersymmetric

aquantum mechanics

As mentione? in the text , there are ( at least )} two ways
of performing this calculation , as in [27] or [17) . In [3)
we gave details for the second of these - for variety we here
show working for the method of [27] . The motivation and bhack-
ground for the calculation for the calculation are given in this
reference , so we will only mention that we seek to express an
amplitude ( given hy a functional integral ) in the form

<9, 7(@,,-TY = N e % 2AET /i

and to this level of approximation the lowest enerqgy level is

FTi-uAE . N is a normalisation factor . The superpotential for
this problem is
SR N Y S Y | Lo i \2
giving the Schrodinger potential
/2 V4 Y \} Ve £\
U, = L ((L ‘i,)é—-Q,u(L )"+ (©3) (%) 4’/.()

We are interested in the case ﬁ?-J? , for which there are two

degenerate minima of V, located at
7 \ 2 4 q
9 = o - L-/(r_s_ﬂ__ \’+)

We must solve

tmgt = B (V) - V)
\;M;A = L/‘ (Q/M 27'/;« —_ Q(/M-!'q)\l\_q-‘\)

The solution is

aft) =

ok Faik wt-t,)
- as i1 the teyt we get £t =0
J|+ﬁhﬁuﬁ w&>t) as in e W o

where %gl = Mtl e \]
p o= %Ld‘* / 2(‘1—/4 +/4J)~z+“ )
Now | fq] = 3 Mq, + = UJQ,) = Mg, +§'5;A Veia = Mq, + Eun

and so the action of thp instanteon is
S{7] - M_o_tfp A
i = 2E. T+ 5(2[3!+WM(;+W>7
= Q-Eu‘.,‘- +MT



The functiona1 inpfgrai we wish to perform is
(g1 expf—" & ("4 + qu))] subject fo (7)<t

which bv a change oF variable 5& 1@) 1CH hecomes

0 ~STqlA )[ bigher pouers u)lucL:l

iy] |+ j’dt(-mw('«)(,gu 0 (V1) + S e
suhiject to (iT)-—O

As exnlained in [27] we perform this in two different wavs in
order to calculate the determinants involved . The first way

is via a change of variapble

£ :
2(t) - yl - f %a‘ﬁ(t)dt where here N[t - 7 (t)

giving T- b A ! \)'/:. YTM‘_ Y F
Jizk (N(r WED L U] T Nxk

and the second uses an exnansion in normal modes to give

L X TG

In the limit T 20 ( which we require ) E:—a O : this zero-mode
corresponds to invariance under time-translations . In the
finite-time case E} is non-zero and for large T may be found
hy houndary perturbation theory -

2 3 3 2 T

= b mw o (1) e ™ /J’

{ Tt should be mentioned that all these calculations involve
some degree of approximation , and the validity of some of the
steps is guestionable } . The quasi-zero mode is taken care of
by the use of the Faddeev-Popov method of collective coordinates

which introduces an additional Aeterminant in place of the

divergent eigenvalue . The new value of the path-integral is

—_— —le '/f
I = 4 \DC* #é-z( ) ‘
— "Tﬂ
= AF? ..\..\J%l ._{
where AW’ ﬁk’? Q- , Where @0 is the eigenfunction

™

rorresponﬂﬂng to mo . Por large T ? ol q’ and we find
0

|
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— 2 ) _ 20T
Collecting terms , I = \ﬂw. Wot . %(H73 'e
T

Thus to this depth of apnroximation ,the kernel we wish to
~-sl31/% _
e 2T . T

_ \éo(w’[]+/;)\J;‘T e’i(fu;ﬁtw)l’/t; - i
<k ' ¢

This aives the first term in the ewpansion for sinh , together

evaluate 1is

with the normalisation factor which physically reoresents the
extent to which the twn wells can mix , i.e. the overlap of
two wave-functions located in each well . This Ffactor mav be
found hv the methods of [27] %o he
N = PO
- Tk
One mav also check that the next term in the power-series for

sinh is given by solutions of the form instanton+

«Q

(anti-instanton, instanton pair) , at Teast insofar as the
dilute gas approximation may he trusted for this problem ( this
assumes that all multi-instanton quasi-solutions may be
approximated by simple superpositions of single instanton
eolutions , i.e. that all the instantons concerned are well-

separated ) . So the kernel is given hv

N Q“ZEtT/t ( 2._?5:’ + 3l' (2_.2&_,1)3 +)

and hence we f

E¢= Euh + R

N ’r\z\)?g)l-(y_zz} Q(zq)J_z“>+ Mq’;
vl B G e/ Sl R R VA e 3

M
and  Ab- K ledwl(ué)JDTJ“,;’E -mT /&
27 %k > ¢

3

_ R P (al (G b gy ) R TR
= ;\_L ?(/M ‘?) (%3_&_) _\g: QXP ’4’“__% (%7‘44__4){2’5_‘4\%@%5.

For /M=O these become (M woxt ?0333 \&‘(\I(?J'\J@)?
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Trom the general expressions we see that for all values of /A ;
dimensional parameters produce a harmless overall scale , rakther

than acting to zunnrens the instanton contrihution

Ex;xeﬁu'ms for /\,«;O:

tq{" %\—E {«Hﬁ)

AE- B 3 o

—
M Joc i3

- 3 L+%7)
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Apnendix 3,2 - NMimensional analvesis for instanton calculations

Tn the text we have writbten the Tuclidean Tagrangian for the
anharmonic ( omartic ) oscillator as
-2 | . 2
= _L L _J_Z)
L 2.% + 2.(%,‘1}*
in which *f is used as a vmarameter . The most obvious way to
alter this to inclnde dimensional quantities explicitiv in a
dimensionally correct scheme is to rewrite it as
. 2
L- %t B (g2ame)
- 2 2 Q 2
2l
where M has the dimensions of a length and L of a length cubed .

Then a2 dimensionless quantity is given hvy
N
= M/
) A
and it may reacdily ne checked that F. enters all expreazgions in
the same way as the original /A . The dimensional scale for

. .
energies 18 ML/3 .

e now compare this with the standard approach which comes

Fromf@irect generalisation of the equivalent classical nroblem
W= AP - fwwl {? +(u2£3/2h)ﬁf' + Ccoast.

whare the constant is arranged to give a classical minimum at

°
!

zero .  and Sl are characteristic frequencies , giving

re

14}

rectively the rates of oscillation at the bottom of one of

the wells and hetween the two wells - i.e. the short and long

range oscillations ., The dimen

]

ionleass parameter characterising

i0 he

ot
f"'
\'D

the prohlem i3 the ra

K =w/q

vhere for a weak-coupling nrorhlem ve expect 9( to he large

n these two frequencies ,

{ slow rate of oscillation hetween wells as opnosed to with

)

a well rriting tho apove Lananq1ah '

ey
240+ (1— - )?
Zu SV
tify our orlqmnal naramekters ag

Y fﬁ - zfﬁ
2 \us2 ’L(.uz

) -
L =

we mav ifen
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wo_ M
N A S

Thus /A is indeed the appropriate dimensionless parameter to
choose ., In this second formulation the Aimensional scale of
energy is given by 1152 { nr equnivaltentlvy tﬁb ;, but we arc
particularlyv interested in strong-counling cases near (=0

with Sl Finite )} |

For the sunersymmetric problem we have

L- q,+t(4,——2m1+(MSL)ql+M)

and rewrltlng this in terms of charaﬁferiﬁtic frequencies gives

3
L = *isz-M'Q +Mﬂ ¥ Comst.
T 4 - "4 T 4¢

Then dimensionless ratios are

()(b = \J/‘?"S/(zj‘)'/:
1, - =

where here M is the Aimensionlesg warameter used in the text ,

ok Pie

M . , . ,
}g: 3; . &0 , as exnlained in the text , the location of weak
and strong counling regimes is more ohscure in this case , but

ceems to he qualitatively similar to the quartic nroblem .
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Appendix 3.3 - Calculating amplitudes for non-instanton

solutions

Thera arve aurnrisingly few A7 fferences here from calculation
of the instanton amplitude , but most nof the intermediate steps
can only he expressed in the form of integrals to he nerformer

numerically , rather than exactly calculation Theref

°

O

’

this appendix should pe read in corjunction with appendix 3.1

The Lagrangian for the guartic nroblem ( Aropping dimensional
)y is

| o2 1(2_L1>2
L‘ a.q,"'z qu

We take as the classical solution about which to expand

—\[Fl/z .. =T<t<TH

5(,(%) Qeld) ... Ti¢ k< T2

\)75//41 cess . T2<b<T

where a,(t) is anv memher of the family of solutions (2.1.14) -

factors

it satisfies

2 2
e = (15— L) v e
and the instanton has ¢=0

The classical action is
~ — T _ Tlh 2d o
S - i’-[q,“t = £|1,£ b — z(T2—7‘1>

Fxpanding anhout the classical solution in the functional

f eap [ (44 (6 + g pres |
where J(t ‘L) @(t)

As before this ia done in two ways , first hy a change of

eqr

ves

O]

ﬁ varianle to
2 ()

RNefors we had M(t) = ﬁ(t) , but here we cannot do this as M(t)

n

[~
o

—

l
S
Zl '
o~
2
A
s

s

H

S

-\

must be continuous . ™o Aetermine W(t) we must return to its
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aeinivion 7 by N[ = (6376)-R2)NE)

an® solve this in the three regions aenarately ., Thus

f é" QJ,P [\J-ZIM_Z‘ U;'T”] cem = TCECTY
M(_f> = @(Jc) e TI<E T2
{2 6‘1)[ Vo (i~ TZﬂ e T2< k< T

where d,l = TL,m2) - M is now char1y continunus . Then
I - ( n NDNET) ) ; Jg_zz 1
TN 2 J

n‘:‘ﬂ ?u_ a

-
-F (27 (r2-1 ) { Z\E; 1) 1 ZJ;‘?(T‘TZ) | T /2
1
%1 ™ { z*) f,l
Alternativelv we may expand in normal modes to get the same

answer as hefore ,

l -
— =

()"

n

1 .
where fhp alq@nfunctumw'@w corresponding to I is normalised

)
bv § ’1) (t (it =/ /ul
In Dartlcular we have @ Ct o )3&)
. . 2 . .
stimating B, by boundary perturbation theorv gives

£r . QWJ&: Q‘W (7—7’(1'2-71)5
S:r\s’(t)dt

Te cope with the quasi-zero~-mode of time kranslations we

introduce a Faddeev-Popov determinant , which to our degree of

approximation is

Do = [ VNG

and normalising qQ correctly gives this as

Dep J § wde

The full nommerturnhative path~integral incorporating this is¢
—— ———
_L’Z -
T = A %{L ~ 7 [E} .2
- F {2, K= g T = s

We mav now nearly reconstruct the full amplitude , but first

it
\:;—

(D




must fix the normalisation factor which patches multiple

contributions together . Physically this represents the extent

of overlan hetween the htwo wells |, as exnlained in zopendix

3.7 , and go has 2 valun indevnendent »f th> value of €
Calculating it for the instanton , we find it to be

[

On reconstruction we find

E, = [

zD

- i.e. the quadratic energyv is independent of ¢ -~ this is

because it ig Fixed hv the proper

l‘T

ies of the potential around

0

its minima and does not depend on how we travel from one
minimum to the other .

Krz-n
AE~\IZ/‘_ mﬁJ ' )e

- this Ao epend on ¢ %hrouqh é,, d,, S and J .

In fact for numerical computation we do not directly use £ -
instead for each phase-snace integral we pick the values of the
jumps in g and p as the indevendent varianles and hence derive
the apnropriate value of ¢ from ¢= P + 7f‘> . This also
provicdes a delta-function in the integral cince the value of

stays fixe@® along the path qg(t) .
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Appendix 5.7 - Propagating fermion states for two sites

inclufing anti-fermions

There are A in“ependert states , with ap original hasis ot
cach site chosen Lo he (? ,l-(ltq¢ Y V) . States which
2!
propagate under the Hamiltonian (5. ) are
Fermion State

numher

2) [l iy)ey - e (- ]

\
1) 2 4/&41 '
1

3) i[u ved - U(aHW]

H | 73?[@%)@4 +48 I-W)] J"?"' [(Hw ef + 6 (+5¢) ]

> Er [( g + e (-G ] 4+ 5 [W)eﬁt{fe(uw)j

©) (307 T () - (-)e 470 ]

" ey [2Ha 204 ORI+ ()l - () -
» A0 T 26T s 2o (0704 (-t ) e () ]

" [2W+2W (+70)8(-5) + (154 )e ()]

1.0) e [ZM uped + (+ge)e (1) + (i) (hy)- \}r+1)(l+ﬁ)e(lﬁﬁ)]
W ) +(-804) +(82) (Wg)e (g)]

12) Llg)ed — ?P@U*W

13) L{U'W )&% - fe (-§4)]
w7 it « o )] - i [T + e (9]

- (5 e o )T » [ (908 o]
145) -9 —\P@?

11)

Sunersvmmetry transformations communicate within the following
. /\ ,\ [}
pairs { recall that O+ ( 0 )Y reduces ( increases ) charge hv

one ) -

L2 3,6 4,7 5 05,8 5 9,17 5 10,14 ; 11,15 ¢ 12,16 .
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The additional degeneracy hecause the Schrodinger equations are

ifdentical relates the following qgrouns -

A:s 1,3,9,12 2 4,10 ; §,17

If a hosonic level has enerqy Eb , then

S|
il

N A
D . AVl states in B are annihilated by hoth 0+ and o_ ,
and all states in A have Zero energy . Thus the

around-state in this case 1is 8-fold Adegenerate .

0]

The fermionic content of such a state isg

(L (f=1) + 3x(f=0) + 3x(f=-1) + Ix{f=-2)) ,

so that the cuantity A defined in [43] is

5 Tx(=-1Y + 3x (1) + 3x(-1) + Ix(1) = 0 - as expected ,
for an unbroken model A= 0 . This quantity JAN may
he used in some cases to tell if a particular model
is broken or unbroken - in reference [15] it is
redefine? in terms of a functional integral .

2) B, 77 0 . The first groups in both A and 2 are all degenerate
with energs By » the second groups all deqgenerate
with enerqgy gEb , the third groups all degenerate

H
with energyiﬁ/g , where Qs@%#)kt%é . Thus the

h
)
o]
=]
9]

ns split the original single level as follows

a6, (3.0,0)

E,———— —> E, (1)2.3.6,4,|z,)3\l£)
By (580,5)

Here the fermion content of the three states is

1% (£=1) + 2% (F=0) + 1x(f=-1)
T (F=2) 4 2x(f=1) 4 2x(f=0) + 2% (f=-1) + lx(f=-2)
Tw (£=1) + 2x(f=0) + lx(f=-1)

and so the ouantity A=Ix(=1) + 2x (1Y + Ix(-1) = 0 .
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Thus even though a state such as the first of these
could represent the ground-state of a spontaneously
hroken theorv , we still1 have A= o0 - thie ig the
A
amhinqneus sitnatinn in «which knowledqge ofKﬂoes not

help us to discriminate hetween hroken and unhroken

cases .

Thus { unless there is an additional deaeneracy from
the hosonic sector ) in an unnproken theorv the
grounc-state has zern enerqy and is 8-fold
degenerate ; in a spontaneously broken theory it

has strictly positive energy and is 4-folad

deaenerate .




