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ABSTRACT 

The results of close coupling (CC) and infinite order 

sudden (IOS) approximation calculations of cross sections 

for rovibrational excitation of both para and ortho H2 by 

He are presented. Large discrepancies are found between 

the present CC results and those of Lin and Secrest (1979) 

and Lin (1979). The v = 0 7 1 vibrationally inelastic cross 

sections are found to differ from those of Lin by factors 

attaining four orders of magnitude close to the v = 1 

excitation threshold. Also, structure in the variation of 

both vibrationally elastic and inelastic cross sections with 

energy, reported by Lin and Secrest, and Lin, is absent in 

the present results. 

The present CC results are found to be in good quanti­

tative agreement with the coupled states calculations of 

Alexander and McGuire (1976). Agreement with the lOS cal­

culations is only qualitative but improves with increasing 

collision energy, consistent with the progressive failure 

of the energy sudden component of the IOS approximation as 

the collision energy falls. 

The values of the vibrational relaxation rate coefficient 

calculated from the CC results fall below the experimental 

data of Audibert et al. (1976) at low temperature. This is 

mostprobably due to the relatively poor description of the 

H2 + He system employed, in particular the interaction 

potential of Gordon and Secrest (1970). 

The CC results are employed to investigate the accuracy 

of two energy sudden factorisation schemes. The factorisation 

which includes off-energy-shell effects is shown to be more 



accurate than that which does not. However, neither 

scheme produces cross sections which obey detailed balance. 

The present lOS results are in good agreement with the 

adiabatic distorted wave lOS calculations of Bieniek (1980) 

at low energy. However, as the collision energy increases 

significant discrepancies appear. For H2 + He it appears 

that at energies sufficiently high for the lOS approximation 

to be valid the use of adiabatic distorted wave techniques 

is not valid. 

Exploratory lOS calculations of rovibrational excitation 

+ of H2 by H are reported and discussed. There appears to be 

evidence that the comparison between theoretical and 

experimental values of rovibrational cross sections presented 

by Schinke et al. (1980) and Schinke (1980) is distorted 

by their restricted numerical methods and faults in their 

basis wavefunctions. 
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CHAPTER I 

INTRODUCTION 

l. Molecular Processes in Astrophysics 

Astronomical observations have established that a 

significant amount, and considerable variety, of molecular 

species are contained in the interstellar medium. Although 

some molecules have been discovered by their absorption of 

visible (CH, CH+ and CN) or ultraviolet (H2 and CO) starlight, 

by far the majority have been detected in th(~ radio n:;giun 

of the spectrum, usually in emission. The molecules are 

generally found in comparatively dense, extended regions. 

Also, the most dense molecular clouds are regions of active 

star formation. Molecular processes are not only important 

in the evolution of these clouds, but also offer a means of 

determining their composition and physical conditions 

(tempenature, density, etc.). 

The abundance of a given molecular species represents 

the competition between the chemical processes responsible 

for its formation and destruction. Formation of a molecule 

by collisions between atoms requires that energy must be 

carried away by a third party, in order to form a bound state. 

In the low densities present in the interstellar gas a three-

body collision is extremely improbable. However, in radiative 

association, the energy is carried away by an emitted photon. 

There is also the role played by interstellar dust grains. 

Although these grains are probably chemically inert, molecular 

reactions may occur on these sur faces at ('S senti a J .ly <:~vc ry 

collision between a grain and an atom. The destruction of 

interstellar molecules is due to the absorption of photons. 

., 
' 
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Direct photodissociation can occur when the energy of the 

photon is larger than the binding energy of the molecule. 

However lower energy photons can produce dissociation by 

exciting the molecules to an intermediate state which subsequently 

dissociates (such as in predissociation spontaneous 

radiative dissociation and photoionisation). The various 

processes responsible for the formation and destruction of 

interstellar molecules, and the relative importance of 

each, are discussed in the reviews of Dalgarno (1975) and 

Watson (1974). 

The only available information about these regions is 

their spectra, i.e. the radiation added to or subtracted 

from the radiation field along the line of sight. The 

spectra will be determined by the spontaneous emission and 

absorption of photons by the molecules, caused by their 

interaction with the radiation field (see e.g. Green (1974)). 

However, if the cloud is in equilibrium with a radiation fteld, 

the number of photons emitted will equal the number absorbed. 

Therefore, no spectral lines will be observed, since there is 

no net gain or loss of photons along the line of sight. 

The energy transfer mechanism which disturbs this equilibrium 

by causing transitions is molecular collisions. The actual 

spectra observed will depend on the relative rates of collisional 

and radiative processes occurring in the clouds, which in 

turn depend on the cloud's composition and physical condi Uons. 

Therefore, if we have sufficient knowledge of the processes 

of spectral line formation, this can be used in conjunction 

with the observed spectra to infer the physical conditions 

present in the clouds. 
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The temperature in molecular clouds is generally~ lOOK. 

At such low temperatures, collisional excitation of vibrational 

levels (other than the ground state) is extremely improbable. 

For example, the energy separation between the ground and 

first excited vibrational state of H2 corresponds to a 

temperature of~ 5000K. However, excited vibrational levels 

can be populated by the passage of a shock wave, where the 

density and temperature are high for a short time (Aannestad 

and Field (1973), Hollenbach and Shull (1977)). Another 

mechanism is by absorption of high energy photons (Black and 

Dalgarno (1976)). There is also the possibility that the 

process responsible for the formation of the molecules may 

produce highly excited rovibrational states. However the 

formation process occurs only once during the lifetime of the 

molecule , whereas the other excitation processes would be 

expected to occur more frequently. Such excitation processes 

produce differing energy level populations, and hence the 

relative intensities of the observed spectral lines can be 

employed to infer which process is most likely to have 

caused the vibrational excitation (see e.g. Gautier et al. 

(1976)). If a shock wave is responsible for the excitation, 

the location of the vibrational emission region can help to 

determine the origin of the shock. Also, details of the emission 

spectra can establish the velocity of propagation of the 

shock wave (see e.g. Simon et al. (1979)). 

Interstellar clouds lose energy by the conversion of 

kinetic energy into energy of excitation of the cloud con­

stituents. The excited atoms and molecules subsequently emit 

photons which eventually escape from the cloud. Rotational 

transitions in molecules play an important role in such 
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cooling processes. Also, various atomic and molecular 

processes, involving the absorption of interstellar ultra­

violet radiation, are important sources of heat in the 

clouds, along with other sources such as cosmic rays and the 

dissipation of turbulence. Full accounts of the various 

processes responsible for the cooling and heating of inter­

stellar clouds are presented by Dalgarno and McCray (1972), 

Field (1974) and Flower (1983). 

Cooling and heating processes will develop various thermal 

and pressure gradients which effect the dynamical evolution 

of the cloud and may indeed trigger its collapse to the 

point where star formation occurs. 

Rovibrational excitation cross sections are required not 

only to interpret the observed molecular spectra, but also to 

derive the energy loss from molecular clouds. A good, over a 11 

view of molecular processes in interstellar clouds is 

presented by Dalgarno (1975). 

2. Cross Sections and Rate Coefficients 

The probability that a molecule will change energy 

levels by energy transfer during a collision, and that the 

projectile will be scattered in a given direction, is 

expressed in terms of a differential cross section. This 

will depend on the initial (~) and final (¥') quantum 

numbers of the transition and also on the relative collision 

velocity y. If we take the origin of co-ordinates at the 

target and consider the projectile approaching along the 

z-axis (Figure 1) the differential cross section for a collision 

velocity v is given by 
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(number of particles giving rise to 
I 

trarlsi tior1s Y. -:>a· def lee ted int.o solid 

angle d..fl(G,;6 ), per unit time, per 

unit flux) 

which has the units of area. 

projectile 
0>----------__,.> 

~ target 

j 

I. 2. l 

Figure l 

The experimental determination of differential cross 

sections is not generally performed in the centre of mass 

reference frame (for example, the target may be at rest). 

To compare experiment with theory it is necessary to convert 

what is actually observed in the laboratory frame to what would 

have been observed in the centre of mass frame. Since the 

observation of scattered flux is done with macroscopic 

apparatus this is a purely classical problem. 

The total (or integrated) cross section is the integral 

of the differential cross section over all angles 

(' 

!.2.2 

which also has the units of area. The total cross section 

is the total number of particles deflected into any angle 

I 
per unit flux, per unit time, which cause transit ions ~ """'> ~ 
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Since unit flux is one particle per unit area, per unit time, 

the total cross section represents the effective area 

presented by the target which gives rise to transitions o ~'(. 
Similarly, the differential cross sections ~~ ( t -=>¥

1
; 9,? lv) 

is the effective area of the target which gives rise to trans-

itions X'~'t 1 and deflections into the solid angle d.J1... (&,~¢) 

If we construct a circular region of area 0"( Y~r' 1 v) at the 

target and perpendicular to the projectile - target relative 

velocity, then a transition will occur if and only if the 

projectile passes through this circle (Figure 2). 

projectile 

11-b = (rr(v_,v'\vl/n)
112 

( ,.,.., - \. 0 c " ' 

--------~-------------------------+' 
\ I 
\ I target 
\.._) Figure 2 

The cross section defines an effective interaction 

radius, b , such that a transition o - ~/ 1 

max will occur 

if the projectile approaches closer to the target than b . 
max 

The rate at which transitions 't ~'t' occur is given by 

the flux of particles through the area 0"' ( ~ ~ ¥' I v-) 

I. 2. 3 

where n is the number density of the projectiles. In 

general, there will be a distribution of collision velocities 

f(v), hence 

1.2.4 
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The usual form of f(v) is the Maxwell velocity distribution 

at temperature T 

1.2.5 

where)-'- is the reduced mass of the collision and k is Boltzmann's 

constant. Using E = ~r1.r2, we can obtain the expression in 

terms of an averaging over E, the initial collision energy 

of the system in molecular state ~ Taking n = 1, this 

gives 

I. 2. 6 

3. Experimental Determination of Cross Sections 

The experimental determination of cross sections con-

sists of basically two complementary categories of experiment -

molecular beam and bulk relaxation experiments. Molecular 

beam experiments can measure particular state to state 

rovibrational cross section but are limited by technical 

difficulties. Many of these limitations are not encountered 

in bulk relaxation experiments, however such techniques can 

only measure rate constants. 

In a molecular beam scattering experiment, two beams of 

particles intersect each other. The pressure in the beams 

and apparatus is kept very low ( ~ 10-6 torr) so that the two 

beams do not undergo collisions except in the region of 

intersection. A detector, which can be rotated about this 

scattering region, measures the intensity of the scattered 

particles as a function of the scattering angle. Essentially 

there are two different techniques which can be employed to 
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detect inelastic scattering; state-selection and energy 

In an ideal state-selection experiment the 

molecules are prepared in a definite quantum state before 

scattering and then analysed in their final state by an 

appropriate filter which permits only molecules in the desired 

state to reach the detector. Such experiments use the focussing 

properties of electric fields but, however, are only 

applicable in special cases, such as TFl, which has a large 

dipole moment. Alternatively, various spectroscopic 

techniques can be employed to measure the distribution of 

states before and after the collision. However, in this 

case there are difficulties in the interpretation of the 

data. In contrast, the energy change method is universally 

applicable, although the resolution is not so high. In this 

method the inelastic events are detected indirectly by 

making use of energy conservation. If both beams are 

monoenergetic and well collimated, then the conversion of 

translational to internal energy in an inelastic collision 

will result in a change in the relative velocity. This can 

be observed by a small change in the laboratory velocity of· 

both scattered particles. The intensity of molecules with an 

altered velocity is then a measure of the inelastic cross 

section. 

Beam scattering experiments in their present state of 

development suffer from several disadvantages. State-

selection experiments are only applicable to special cases 

and the lower resolution of energy change methods makes the 

measurement of state to state rovibrational cross sections 

extremely difficult, esepcially for neutral beams. The usc 
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of ions in molecular beam experiments has the significant 

advantages that they are easily accelerated to high energies, 

where vibrational excitation occurs, and are also easily 

energy analysed and detected. Therefore beam experiments can 

resolve individual rovibrational cross sections in systems 

+ . such as H2 + H , due to the large rotat1onal constant of H2 
+ 

and the ease of detection and energy analysis of H . Also 

beam experiments are only sensitive to fairly large transition 

probabilities of the order of 1%, whereas at ordinary 

temperatures, vibrational transitions may· be determined by 

probabilities of the order of 10- 4 . 

The limitatwns of beam experiments are not encountered 

in bulk relaxation experiments. Relaxation experiments have 

the common feature of disturbing a system from its equilibrium 

distribution and measuring the rate of return to equilibrium. 

Examples of such experiments are laser Raman excitation, sound 

absorption, nuclear magnetic resonance spin-lattice relaxation 

and double-resonance spectral techniques. 

In laser Raman excitation, Raman active molecules are 

stimulated by a short laser pulse to the first vibrational 

level in a low temperature gas cell. As the molecules relax 

to the ground state via collisions there is a small 

temperature increase of the order of a few degrees, which 

leads to a density change which can be monitored. This 

method has the advantage that non-polar molecules (e.g. 

N2 and H2 ) can be excited into a defined vibrational state 

in a low temperature bath. 

In sound absorption experiments the attenuation of ultra-

sonicwaves is measured as a function of distance travelled 

in a gas. Part of this attenuation comes from converting 
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translational energy into internal rovibrational molecular 

energy, and hence rate coefficients can be measured. 

In nuclear magnetic spin-lattice relaxation, a non­

thermal distribution of nuclear spin states is created by 

magnetic fields and pulses of resonant radiofrequencies. The 

rate of return to equilibrium is then monitored. The return 

to equilibrium occurs mainly by the coupling of nuclear spin 

and molecular rotation. Therefore collisions which change the 

rotational state will also thermalise the nuclear spin states, 

and one measures the rotational relaxation rates weighted 

by the coupling constants, which are known. 

In double resonance a non-thermal distribution of 

rotational states is established by pumping with strong 

radiation at a resonant frequency which disturbs the populations 

of the resonant levels. This anomalous distribution is then 

transferred to other levels by collisional excitation. The 

resulting variation in the populations of other levels is 

detected by noting the change in intensity in other trans­

itions. These changes in intensity are related to the 

relative rates of collisional transfer between all the levels. 

An account of these and other experimental methods for 

the measurement of rovibrational cross sections and rate 

constants is given in the reviews of Oka (1973) and Toennies 

(1976). 

4. Theoretical Determination of Cross Sections 

The calculation of rovibrational cross sections requires 

the solution of the Schrodinger equation describing the 

coliision. This calculation is simplified by use of the Born­

Oppenheimer approximation which uncouples nuclear and 
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electronic motion. The electrons are much lighter than the 

nuclei and therefore move much more rapidly so that we may 

expect them to adiabatically adjust to the instantaneous 

position of the nuclei. Therefore, the calculation divides 

conveniently into two separate problems - determination of 

the interaction potential due to the electronic motion, and 

calculation of the collision dynamics of the nuclei on this 

potential surface. 

(a) Interaction Potential 

The interaction potential between an atom A and a 

diatomic molecule BC, approximated as a vibrating rotor, 

is given by 

I.3.1 

Where ~ is the position vector of atom A relative to the 

centre of mass of the molecule BC, and r lies along the 

internuclear axis of BC. EA + BC (~, ~) is the total 

electronic energy of the total system for position vectors 

~ and ~,and EBC(r) and EA are the total energies of the 

isolated molecule and atom (i.e. for R = ~ ). 

Interaction potentials manifest themselves in a variety 

of static and dynamic phenomena, such as equilibrium structure 

of solids, sound absorption in gases, etc. Measurement of such 

phenomena can be used to experimentally determine inter-

action potentials. However, such methods rely on comparing 

experimental observations with predictions based on model 

potentials. Such models are necessarily inflexible and 

different experiments tend to sample different parts or 

averages of the potential. It is often found that a potential 



12 

which fits one type of experimental data is inadequate for 

another (see e.g. Shafer and Gordon (1973)). 

The theoretical determination of interaction potentials 

is the quantum mechanical problem of calculating the total 

energy of the collection of nuclei and electrons of A and BC. 

Since the electronic motion is much faster than the nuclear 

motion, this reduces to determining the electronic energy as 

a function of fixed nuclear geometry (Born-Oppenheimer 

approximation). The major contributions to the energy are 

the kinetic energy of the electrons and the Coulomb inter­

actions among the electrons and nuclei. Since the inter­

action energy is the difference between the total energy of 

the combined systems and that of the isolated systems, this 

can lead to large cancellations and subsequent loss of 

accuracy. In discussing the calculation of interaction 

potentials it is convenient to distinguish between long 

rang~, short range and intermediate distances. 

At large distances, A and BC can be described as non­

overlapping charge distributions, and the interaction reduces 

to the electrostatic problem of interacting permanent and 

induced multipole moments. This potential consists of three 

terms - the electrostatic energy due to the interaction of 

permanent multipole moments, the induction energy, due to the 

interaction of permanent moments with those induced in 

the other collision partner, and the dispersion energy. The 

dispersion energy is due to the correlation of electron 

motions and is especially important in neutral systems (i.e. 

no permanent multipole moments) where it is responsible for 
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the Van der Waals minimum. This long range potential will 

depend on the rnultipole moments and polarisabilities of the 

collision partners. Because the interaction is weak, it can 

be accurately represented as a perturbation of the separated 

systems. The interaction energy can then be calculated directly 

by perturbation techniques, avoiding the problem of cal­

cellation. 

At small distances, the A and BC charge distributions 

overlap strongly and the interaction becomes repulsive. In 

this region, the system is best described as a single molecule 

and molecular orbital techniques such as the Hartree-Fock 

method are applicable. In the Hatree-Fock, or self con­

sistent field method, each electron is considered to move in 

the electrostatic field created by the other electrons. 

However to describe the motion of one electron requires 

solutions for all the other electrons which determine the 

electrostatic field. In practise, a reasonable guess is 

made at the solutions and these are used in the Hartree-

Fock equations to produce new solutions which become the next 

initial guess. This p~ocess is repeated until the solutions 

are the same as the input - hence the name self consistent 

field. 

The wavefunctions of the electrons, or orbitals, are 

expanded in some suitable set of basis functions. For 

molecular systems, orbitals centred on the various atoms are 

frequently employed. Hence the frequent notation SCF-LCAO 

for self consistent field-linear combination of atomic 

orbitals. Often, such LCAO are fonred into molecular orbitals -

hence the notation SCF-LCAO-MO. 
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The Hartree-Fock method does not allow for the instantaneous 

correlation of electron motions. The resulting contribution 

to the energy is called correlation energy. However, at short 

distances the correlation energy is much smaller than the 

electrostatic, hence the Hartree-Fock method is reliable. 

At intermediate distances the long range attractive forces 

and the short range repulsive forces compete to form a pot­

ential well, and this is the most difficult region for which 

to obtain accurate interactions. The long range perturba-

tion techniques fail as the charge distributions begin to 

overlap. Molecular orbital methods become unreliable because 

the correlation energy is comparable to the electrostatic 

interaction and varies rapidly with distance as the orbitals 

change from molecular to atomic in nature. Indeed, the 

dispersion energy, responsible for Vander Waals minima in 

neutral systems, is due entirely to correlation effects. 

In Hartree-Fock methods only one set, or configuration, of 

molecular orbitals is employed. However, in configuration 

interaction techniques, the wavefunctions employed are linear 

combinations of possible configurations, hence allowing a 

better description of the wavefunctions as they change from 

molecular to atomic. Such configuration interaction tech­

niques explicitly take into account correlation effects. 

However, configuration interaction calculations require 

roughly an order of magnitude more computer time than a 

Hartree-Fock calculation. The configuration interaction method 

is also accurate at short and long range, although at long 

range ( }10 a.u.) the cancellation between the total energy 
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of the system and that of the isolated collision partners 

causes severe numerical difficulties. 

A full account of the various methods of calculating 

interaction potentials is presented in the book of Schaefer 

( 1972). 

(b) Collision Dynamics 

Once the interaction potential has been determined, the 

equations describing the motion of the nuclei in this 

potential must be solved. This is referred to as scattering 

or collision theory, and quantum, classical and various semi­

classical formulations are available. 

(i) Quantum Methods 

In the quantum mechanical description of inelastic 

collisions of atoms with diatomic molecules, the equation of 

motion of the nuclei is the time-independent Schrodinger equation 

containing the Hamiltonian of the total system. In the 

conventional close-coupling solution, a space fixed co-ordinate 

system is used and (for the case where the molecule is 

approximated as a vibrating rotor) the wavefunction of the 

total system is expanded in terms of basis states which are 

eigenfunctions of the total angular momentum ~ and the 

vibrational Hamiltonian. Since J is compounded from the 

rotational angular momentum J,and the orbital angular momentum 

1, each bas~s state is indexed by the rotational angular 

momentum, orbital angular momentum, and vibrational quantum 

numbers of j, P- and v. The Schrodinger equation is then reducd 

to a set of coupled second order differential equations where 

the potential interaction couples together all the basis states 

such that j + P = J. Since ~ is conserved, the coupling 
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matrix is diagonal in the total angular momentum quantum 

number J, and is independent of its z-component, J , since the z 

orientation of the total system in space is irrelevant. 

However, for large j, the number of coupled equations becomes 

extremely large due to the (2j + 1) possible values ofi, and 

consequently their numerical solution becomes extremely time 

consuming. The computer time required to solve a system of 

N coupled, second order differential equations, such as the 

0( 
close coupling equations, varies as N where~ is between 

2 and 3. Therefore, for all but the simplest systems,some 

approximation must be employed which offers decoupling of 

the close-coupled equations. 

Various angular momentum decoupling approximations are 

now in common use, such as the coupled-states, energy sudden, 

infinite order sudden and effective potential approximationso 

Essentially, in each of these approximations an additional 

symmetry is introduced into the system which results in the 

conservation of some angular momentum quantum number, hence 

uncoupling the equations. These approximations are derived 

by some simplified treatment of one or more terms of the total 

Hamiltonian, and therefore their validity will be determined 

by the relative importance of these terms in the collision. 

A derivation of the full close-coupled equations and 

brief descriptions of the various approximation schemes and 

their regions of validity are contained in Chapter II. 

(ii) Classical and Semi-classical Methods 

Due to numerical difficulties, quantum treatments are 

usually restricted to low energies and light molecules for 

which relatively few quantum states are excited. At the 
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other extreme of high energies and almost continuous energy 

levels, a classical description of the collision is valid. 

Many systems fall between these two extremes, and therefore 

a semiclassical theory seems most appropriate. 

In time-dependent close-coupling, or classical path 

approximations, the relative motion of the collision partners 

is treated classically and the internal motion of the molecule 

by quantum mechanics. One assumes that the relative motion 

can be described by a classical trajectory which is 

independent of the internal motion of the molecule. This 

trajectory is usually calculated by either ignoring the 

potential completely (straight line paths), or including only 

the spherically syrr~etric component. Once the trajectory 

has been determined it can be used to construct a time 

dependent interaction potential. The problem then consists 

of calculating the probability of rovibrational transitions 

due to this time dependent interaction exerted by the 

passing atom. The principal source of error in this approxi­

mation is that the back coupling from the target to the trajectory 

is necessarily neglected. Therefore, the use of classical 

trajectories is only valid if the inelastic transitions which 

occur do not significantly affect the relati~e motion. As 

in the quantum treatment of the collision, various simplified 

treatments of the internal motion can be employed, resulting 

in such methods as the time-dependent sudden, and time­

dependent coupled states approximations. The tjme-depend~·nt 

close-coupling method and the various approximations: durived 

from it are reviewed in the articles of Balint-Kurti (1975) 

and Dickinson (1979). 
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A major drawback of a purely classical description of the 

collision is the neglect of quantum mechanical interference 

effects. However, these are accounted for in the classiGal 

S-matrix method of Miller (1974) and Marcus (1972), which is 

a generalisation of the semiclassical treatment of elastic 

scattering due to Ford and Wheeler (1959). In this approach, 

all possible trajectories leading from a given initial 

state to a given final state are identified. The corresponding 

S-matrix element can then be constructed by the quantum 

mechanical superposition of contributions, one from each 

trajectory, with the correct phase factor provided by the 

classical action of the trajectory. However, for a system 

with several degrees of freedom, the numerical effort 

involved in the search for all trajectories satisfying a 

given set of double-ended boundary conditions becomes pro-

hibitively large. This pr·oblern can be reduced if only cross 

sections averaged over some quantum numbers are required 

(M i ll e r ( l 9 71 ) ) . 

The semiclassical strong-coupling correspondence 

principle method of Percival and Richards (1970) approximates 

the solution of the time-dependent close coupling equations 

using a classical description of the internal motion of the 

molecule, incorporating the use of classical perturbation 

theory to determine the change in classical action of the 

molecule during the collision. Although, physically, it is 

expected to be most successful for large quantum numbers, 

comparison with quantum calculations have shown satisfactory 

results for cross sections between low lying rovibrational 

states (see e.g. Clark (1977)). The computing time for such 
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calculations is largely independent of the quantum numbers 

involved and arbitrarily large quantum numbers can be easily 

handled, in contrast to quantum calculations. The strong-

coupling correspondence principle has been fully discussed 

by Clark et al. (1977). 

For vibrational excitation a frequently used semiclassical 

approximation is based on the correspondence between the 

classical and quantum forced harmonic oscillators. Exact 

classical trajectories are employed to obtain the classical 

energy transfer as a function of angle. Using the Poisson 

distribution predicted by the forced oscillator model, vib-

rational excitation probabilities can be calculated (Giese 

and Gentry (1974)). 

For systems in which quantum mechanical interference and 

tunneling phenomena do not play a significant role, purely 

classical methods are applicable. The advantage of classical 

methods is that all the couplings are treated essentially 

exactly, without having to include large numbers of basis 

states as in a quantum mechanical treatment. Therefore, in 

contrast to quantum methods, the computer time required by a 

classical method is approximately independent of the energy. 

A major problem in obtaining results from a purely classical 

calculation, which can be compared to quantum results, is the 

procedure employed to quantise thecontinuous classical variables, 

such as angular momentum. For example, in rotational excitation, 

a widely used technique is to define a final classical angular 

momentum, j ~, through the energy c 
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where B is the rotational constant of the molecule, and then 

associate a final rotattonal quantum number jQ with jc ;Jy 

where o<. = 1 for heteronuclear molecules, and o< = 2 for 

homonuclear molecules to allow for the ~j = 2 selection rule. 

Techniques for performing classical calculations have been 

reviewed by Bunker (1971). 
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CHAPTER II 

QUANTUM THEORY OF MOLECULAR COLLISIONS 

1. Introduction 

This chapter is concerned with the quantum mechanical 

description of inelastic collisions of atoms with diatomic 

molecules. Once the interaction potential has been deter-

mined, the equations describing the dynamics of the nuclei 

in this potential must be solved. This can be achieved by 

the solution of the time-independent Schrodinger equation 

containing the full Hamiltonian, which can be reduced to the 

solution of a set of coupled, second order differential 

equations. This approach is generally referred to as the 

close coupling (CC) method, and is discussed in Section 2. 

However, for all but the simplest atom-molecule systems, the 

numerical effort involved in the solution of the CC equations 

is prohibitively large, even with modern fast computers. The 

complexity of the CC equations arises from the coupling 

between the rotational and orbital angular momenta. In 

recent years a number of approximations have been developed 

in which the angular momenta are partially or completely 

uncoupled. In Section 3.(a)-(c) we discuss the three main 

angular momentum decoupling approximations (the energy 

sudden, the coupled states and the infinite order sudden 

approximations), and their ranges of validity. A brief 

account of alternative quantum mechanical approximations(the 

L-dominant, decoupled L-dominant, effective potential and 

acUabatic di::-;torted-wave , t nf in i tc order sudd<~n approxi maL j ons) 

is contaitwc! in Section :l(d). 



22 

2. Close-Coupling Theory 

Considered below is the quantum-mechanical description 

ot the collision between a structureless atom and a diatomic 

molecule approximated by a vibrating rotor. 

A space-fixed co-ordinate system is used (figure 1) 

with r (r,9,~) lying along the internuclear axis of the 

molecule BC and~= (R,@,i) is the position vector of the 

atom A relative to the centre of mass of the molecule. The 

angle between R and r is denoted byt. 

B ~---;c---- 0 1\ 

c 

figure 1. 

In this co-ordinate system the Schrodinger equation can 

be written 

11.2.1 

where # is the reduced mass of the atom-molecule system 

= II.2.1a 

HGC (r) is the Hamiltonian of the unperturbed molecule, E is 

the total energy and VCB,!) is the interaction potential. 

V (R r \ 
- J- l 0 II.2.1b 

The standard approach to the solution of this equation 

is that clue to Arthurs and Dalgarno ( 1960 ). Use is made of the 

conservation of the total angular momentum of the system in 

the collision. 

n n t 
j+lL "j'"t:. II.2.2 
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Where 1 is the rotational angular momentum of the molecule and 

r] ,_:.c.: ;-he T'f•-1:: __ 1 __ -i\_.rr_.-_. n ___ ,_,~r __ .it_::>_-._1_ "ng11l<:l,.... n1nm{Jp+·nn· l1rin1pc: rlpnnTina J/. -- ----- -- -' - - '-'---~-'-'-'''" "'- "'- I •·'""; :'• _, ," '- ·"'"--~"b 

values after the collision. The boundary conditions of 

equation 11.2.1 are 

II. 2. 3a 

+ R: 'L~ f.,.,~ vj'•/ ~) J( j• ( ') S·-,· ( n e.k,,, R I I . 2. 3b 
v'j' "'~ 

11.2.3a is required as R~o since V(B:,_!:_)-~oO. The first 

term in 11.2.3b corresponds to the incident plane wave 

describing the atom approaching along the positive z-direction 

and 'X. .(r)Y. (r) are the rovibrational eigenstates of the 
Vl Jm. -" . ---J 

molecule satisfying 

I I. 2. 4 

f . is the eigenenergy of the molecule in vibrational 
VJ 

state v and rotational state j. The second term describes 

the scattered wave. Wavevector, k . , is defined hy 
VJ 

I I. 2. 5 

The functions f . 1 • 1 (R) are the scattering amplitudes 
v Jmj ~ v J mj' -

from which the differential state-to-state cross sections can 

be obtained. 

k v'j I I t II ( ~ ) ~- 1_ 

k Vj '''J---+ 'I 1 "'-J' 
"j 

= I I. 2. 6 

Since the total angular momentum J and its component 

along the space-fixed z-axis, M, are conserved, the most 

suitable expansion of the total wavefunction is in terms of 
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eigenstates of J,M given by 

!i:rMr2: ~\ ::\- /AQtv,,Ma\.)Jt-'\'\1_, U)/r,_.(~) n_...,_ ... ~.: 
~Jj e \ ..:: - : L -..... J J ·', _J / J''J ·' "'x --

" M~Mt 

where <j lrnm£ i j ~Jivi\ is a Clebsh Gordon coefficient. We 
J / JM 

expand the total wave function ,J;. o ( R, r), corresponding to 
IJX.V - -

total angular m01112ntum quantum numbers J and M and appropriate to the 

initial state specified by quantum numbers, j,l,v as 

..,.. r-- a J"M 
. ~M 1\ .rj"" u "'\)'\j \ 
fjt" (~, t) = IZ- L uj'A'v' (R) Jj'f (~.~ ""vj' (t} 

j'f'v' 

Substituting this into II.2.1 and using II.2.4 and 
JM 

orthonorrr,al properties of U .r. (R,~) and X .(r) 
jJt -- VJ 

~ ~ ~ 

I j L(: (~,~) ~ :r,:. (~,!) 1~ J~ = ~~~,j'i' 
J '-' j"' j 

11.2.8 

the 

II.2.9a 

II .2.9b 

W(: oht.a.in the following coupled differential equations satisfied 

11.2.10 

li II ~fl 
v J {. 

The coupling matrix elements are given by 

II.2.10a 

Since the orientation of the whole system in space is 

irrelPvant, the coupling terms VJ are independent of M, 

and hence also are the radial functions UJ. Almost invariably 

a single centre expansion of the potential is usedo 

:: L \Y A ( R' r-) PA ( £. s ) 
>-. 

IL2.11 
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Giving 

-T 2;---- ~ 
' I ( J :f._\, -+~>-, ( j' o' ;,"1" • . ,.:}J v

1 
• (t \ ,;;...('•,1 ~)V ,, (•) dr 

V" ','I'',- I~·" I,, rz = ,~ -' /v l , rV -
" J V _I { ~ 1..1 1 ... } ' v'1' . I I \( 'I 

- j IT r 12 ~-- 1.~. a 

t\rd' 1''f·r\ =-Jr u-.r"" (2 n R(~.'R\U:rM (~ ~\Jp,d~ rr.2.12b 
A 'I ) .. ' ) I J ·~· -I-' !\ -) J "?" -I ) - ~ J ,] J . 

The angular integral f>.(j' ~',j"f";J) is a Percival Seaton 

coefficient (Percival and Seaton (1957)) which can be expressed 

in terms of 3-j and 6-j coupling terms. 

As R ~ c<; , VJ ~ 0 and the so 1 uti on s of I I . 2 . 1 0 with VJ == 0 

are, for k~'j') 0 (Abramowitz and Stegun (1965)). 

II.2.13a 

where jn• (k,, R) and n, (k, ,R) arc Spherical B(~sscl func:tions 
't Vj' i, Vj 

of the first and second kind. Altcrn:ltivcly the Spherical 

Hanke 1 functions (sometimes known as Spherical !)esse l fun c Lions 

of the third kind) of the first and second kind can be used. 

II .2.13b 

The boundary condition as R~~ for UJ can be written as a 

l · b · t · f · d ( 11
1
( 1 ) and h S 2 ) ) or some 1near com 1na 10n o Ji an ~ or £ 

mixture. A frequently used condition is 

Also 

Tj Pv u . 
J'i'v' 

l) v 

uj1 11
v 1 

---)> 0 
1{.--)o 00 

:rj .1 v u .o' I -~-~-0)' 0 

j ,A v 

II.2.14 
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Functionsfor which k 2
1 . 1 ~ 0 are termed closed channels, 

v J 
') 

and those tor which k~ •.• ) 0 1 open channels. Equatjon IL2. 14 
VJ 

defines the S-matrix which is diagonal in total angular 

momentum J (since J is conserved). By using the asymptotic 

forms of the Spherical Hankel functions it can be re-written. 

II.2.14b 

. k '/2.. :r . [ l J 
·- ( ~J ) s ( j j V ; J It V 

1 
) ~ A ( k V J I ({_ - -i) 

kv'j 1 

This shows more clearly why such a condition is used, 

since it demonstrates the decomposition of UJ into an 

outgoing incident wave and outgoing scattered waveso We 
JM 

now require a linear combination o:t f j£v which satisfies 

the boundary conditions II.2.3a,b. By using the expansion of 

a plane wave into Spherical Bessel functions (Abramowitz and 

S tegun) Q 

·k z e A "'j ~ [ (11+ ,) , 1 Ji ( ~<.1 Rl (2~~ lh ~, m 
t 

I L 2. 15 

and the expression for a product of two spherical harmonics, 

we obtain 

11,2,16 
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In order for the first term in the total wavefunction to go 

over to this asymptotically, the expansion used is 

Substitution of II.2.14, II.2.8 and II.2.7 in II.2.17 gives 

the asymptotic form 

Where use has been made of the asymptotic form 

Comparison of II.2.18 with II.2.3b gives the following 

expression for the scattering amplitude 
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Where TJ is the transition T-matrix, related to the S-matrix 

by 

Other asymptotic boundary conditions for open channels can 

be imposed using the Spherical Bessel and Hankel functions. 

Other forms used are:-

II.2.20a 

II, 2. 20b 

II.2.20a obtains tfue T-matrix directly, however II.2.20b has 

the computational advantage that all the functions appearing 

are real (apart from the -2i factor) and it ts therefor<; 

the usual practise to obtain K'J(jiv,j'l'v'), the reactance 

matrix, and calculate SJ and TJ from it, The K,S and T-

matrices are related by (in matrix notation) 

-I 

S" ( "f+~~)(~-A~) -=- I-T - ~ 11,2,21 

where I denotes the unit matrix. 
~ 

The symmetry of the coupling 

matrix VJ ensures the symmetry of the S,K and T-matrices and 

reflects the invarience of the dynamics under time reversal. 

The S-mat.rix is also unitary as required l;;Jy the conservation 

of total flux. 
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The most commonly used cross-section is the degeneracy 

averaged total cross-section for a transition vj->v'j'. 

This is obtained by using equation IL2,6, averaging over 

initial m., summing over final m.', and integrating over angle 
J J 

" dR (see, e"g. Arthurs and Dalgarno (1960)). 

r--· r 
' I I 2 

k vj' \ j I r ;) . I I " - ) r ., (K)j CJK 
k , vy•,1 -"vjMj' -I -·· 

"j L __ _ 

~ ~-­

" -~ ) (H;-1") ;· I 
kv (2j + 1 l L_ '--

J T - ~J.' 

T :r(~~v, j 1l'v•) [ 

1Io2,22 

2. 

The symmetry of the T-matrix ensures that the cross-

sections satisfy the detailed balance condition, 

·)._ 

_ k"Jr(2j'+I)Y(vj'~v~) 

The solution of the coupled differential equations (11,2, 10) 

to obtain aT-matrix and hence cross-sections, is generally 

referred to as the close-coupling (CC) method. 

The summation over J." nn v" is in theory infinite for 'r. ' ' . ' 

each value of J. However, in practice the summation must be 

truncated. If one is interested in transitions up to a given 

state vj, successive basis states (with theirivalues) are 

added until the results of interest are converged, 

Frequently, at low energies, energetically inaccessible 

states (closed channels) are included. Thesf: are n~qu:i.red in 

order to accurately describe the target molc:cul<? when perLur·bcd 

by the atom during the collision. The difficulty with the CC 

method is the (2j+l) degeneracy of the rotor levels. There-

fore the number of channels increases extremely rapidly with 
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increasing j. This problem is slightly alleviated by the 

conservation of parity (-l)j+l which uncoupl~s solucions of 
' 

even and odd parity, which can then be solved separately. 

Also, if the molecule is homonuclear, only Legendre polynomials 

of even order~ are present in II.2.11, which uncouples 

solutions with even and odd j. However, except for H
2 

and the hydrides, CC calc:ulationsof rovibrational cross-sections 

are impracticable even on modern fast computers, since, at 

energies sufficiently high for vibrational excitation, a 

large numb~r of rotational levels are energetically accessible. 

For example,in N
2 

there are more than thirty rotational 

levels below the first excited vibrational level. If only 

even j is considered, since N
2 

is hanonuclear, there are 265 

coupled channels for one parity and 240 for the other. This 

is only considering rotational levels in the ground vibrational 

state. Rotational levels in excited vibrational levels 

would also be required. On modern computers only around 70 

channels are practicable. In the case of H
2

, how<:vc;r, Llw 

rotational levels are relatively widely spaced since it is 

such a light molecule. There are only up to j 8 levels 

below the first excited vibrational level. This gives 

sets of 25 and 20 coupled equations for even j transitions. 

If a similar number of rotational levels are retained in 

the first excited vibrational state the numbers increase to 

50 and 40; the solution of which is comfortably wjthin the 

limitations of modern computers. 
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~- Approximate Methods 

~he computer time required to solve a system of N coupled, 

second order differential equations, such as II.2.10,varies 

approximately as N
2 to N3 , depending on the numerical algorithm 

employed. Therefore, for all but the simplest systems, to 

treat rovibrational excitation quantum mechanically, an 

approximation must be introduced to obtain some decoupling 

of these equations. All the approximations discussed in this 

section are based on a simplified treatment of one or mc>re 

terms in the full CC equations and, therefore, their validity 

will be determined by the relative importance of these terms 

in the collision. For example, in the coupled states 

approximation, the centrifugal term is approximated and 

therefore it is expected to be accurate for collisions where 

the effect of the centrifugal potential is relatively minur. 

In practice, however, the range of validity of a given 

approximation is frequently determined by numerical comparisons 

with CC calculations. 

(a) The Energy Sudden Approximation 

The energy sudden approximation is valid for collisions 

where the transition time for rotation of the target molecule 

is much larger than the collision time, i.e. the molecule 

rotates only slightly during the time the atom spends in 

the interaction region. This is the case for relatively 

high energy collisions involving heavy molecules. It is the: 

comparison of times, not energies, which is impor·Lan L. /\I Lhough 

very few atom-molecule calculations have been performed using 

this approximation alone (Khare (1978), Chu and Dalgarno 
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(1975a)), it is frequently used in conjunction with further 

approximations, most notably the infinite order sudden 

discussedin(c). It has also been widely used in electron-

molecule collisions, where it is known as the adiabatic 

nuclei approximation (for example Collins and Norcross (1978)), 

since the small mass of the electron is ideally suited. 

The target molecule is assumed to be at rest during 

the collision. The scattering problem can thus be solved for 

all stationary rotor states, and then state to state amplitudes 

can be obtained from this. The latter problem is the 

simpler. Use is made of the relationship II.3.1, derived 

by Chase ( 1956). 

* ~'Mj' ( n t'J~v' (~, ~) ~Mj ( n ctl I I . 3. 1 

where the scattering amplitude using a fixed 

rotor orientation r. This requires that f •( r, H) must be 
V4y - -

calculated at sufficient orientations to enable the integral 

to be solved. However, since the scattering problem is 

independent of the orientation of the whole system in space, 

this can be considered as allowing the atom to approach from 
;.. 

all directions instead. We are free to chose r as our polar 

z-axis. In this new co-ordinate system the interaction 

potential,V,is axially symmetric, 

although 1 is not (figure 2). 

r rz' 
t 

/ 
j / 

J,: 
X 

c 

and hence £ is conserved 
z 

o A 

Figure 2. 
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~his is why this approximation is sometimes referred to 

as the '' £
2 

conserving approximation". lt1 this new co-ordinate 

system B is replaced by B:' = ( R,@', <£. ') where @' = 't in 

the original space fixed co-ordinates (figure 1). 

Since we are considering the target at rest the rotor 

states are degenerate, all taken to be j=O. Hence E . , 
VJ 

and thus k . are independent of j, so the index j is dropped 
VJ 

in the following equations;kv = kvo· Analogously to II.2.8, 

the total wavefunction is expanded as 

II. 3. 2 

(Where the swnmation over ml was previously incorporated in 

and the summations over j' and m.' 
J 

collapse) o 

Substitution into the Schrodinger equation II.2.1 with 

k . = k we obtain the coupled equations for the radial 
VJ V 

functions 

Where 

II.3.4a 

TTsing the usual single centre expansion II.2.11,this reduces to 

I I . 3. 4b 
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Since 1
2 

is conserved, the equations are diagonal in ml 

Therefore, instead of coupled equations indexed by j, 1 

and v,we now have sets of equations coupled by 1 and v only, 

which have to be solved for all allowed values of ml. The 

boundary conditions satisfied by II.3.3 are 

An approximate space-fixed S-matrix can now be obtained 

from the sudden S-matrix defined by II.3.5. 

M~' 

This comes basically from equation 11.3.1; the integral 

being performed analytically by rotation to a new co-ordinate 

system and using the properties of the rotation matrices 

involved (Khare (1978), Secrest (1975)). The coupled 

equations still have to be solved for all values of mJ which 

is highly impractical for large 1. However, from physical 

arguments, Khare (1978) has shown that only the first few 

terms contribute significantly; roughly m1 ' (jmax + 1) 

values, where j is the largest j accessible from the j= 0 max 
_JD I m I 

state. Also since v t = V- £ only mJ ""> 0 need be consjdered. 

Once this approximate space-fixed S-matrix is obtained 

it can be used in the full CC equations, 11.2.19 and 11.2.22, 

to obtain all the necessary scattering information. 
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An important simplification can be obtained by using the 

Clebsh-Gordon series for spherical harmonics (Rose 1957) in 

II .3.1 giving 

j'' 

X C~)j ~~J )(: lo n +.oo ~ vJ'••, ; 6.,,. ~,·-M/ I. 3. 'la 

which in turn leads to:-

II.3.7b 

Hence we only need calculate (Y (vo-7v'j") and all other 

cross-sections can be trivially derived from them. This 

property is present whenever the energy sudden approximation 

is used,and is of great use in the infinite o~der sudden UOS) 

approximation. 

This approximation has been applied by Khare (~978) to 

the purely rotational excitation of N2 and T~F by Ar. 

Generally reasonable agreement with the CX: results of Tsien et 

al. (1973) is obtained for Ar - N2 , and good ~greement for 

Ar - TPF, consistent with using a heavier molecule. However, 

at small total angular momentum J, equation II.3.6 gives a 

scoRv,j'i'v') which is very sensitive to smi c.fv,i'v') 

and the results become unreliable. At low J, the electrostatic 

potential is dominant and therefore an approximation can be 

made on the centrifugal term also, ie the lOS can be used 

successfully. This is demonstrated by Khare (1978), where 

the ros is satisfactory for low J, but not for high J where 

the coupled-states component of the ros fails. 

(b) The Coupled States Approximation 

This approximation was independently and simultaneously developed 

by McGuire and Kouri ( 1974) and by Pack ( 1974). It is also 
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known by the more informative names of "1z conserving" and 

"centrifugal sudden" approximation. The derivation can be 

obtained in several ways (Khare (1917), Secx·est (1975), 

Kouri (1979) and others). In order to emphasise the similarities 

with the energy sudden approximation,the brief derivation 

presented here uses a body-fixed reference frame, which 

" rotates such that the z-axis always lies along~. i.e. it 

always points towards the atom (figure 3). In this frame 

the potential is axially symmetric giving conservation of 

R 

e' 
B figure 3 

r' 
c 

A 

In this new body-fixed, rotating frame r 1 r fJ 1 
"'

1 
\ and \ ' 'f' / 

the Schrodinger equation is 

WheretCB,~ 1 ) is the wavefunction within this frame. 

The approximation consists of ignoring the off-diagonal 
A 2 

elements of the orbital angular momentum operator 1 , 
which are the Coriolis terms associated with the non- inertial 

frame, and setting the diagonal elements to L(L + l)t 2 

where L is now simply a parameter. This can be thought of 

as approximating the centrifugal potential by an effective 

orbital angular momentum eigenvalue. Physically, it is 

assuming that the collision is such that the precise value 

of the centrifugal potential is relatively unimportant. The 

wavefunction is expanded as 

II.3.9 
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where the subscripts j,v specify the initial state. Sub-

stitution in II.3.8 gives the coupled equations 

II.3.10 

The additional superscript L has been added to specify 

the orbi taJ angu1 ar momentum paramt:!ter, and 

rr 
~ (>rrj Jr •'j' H YJ·.,· ( •:0) v (R, e; 'I 

'i Y~, (o:o) x:,,j" (~) A(~e'') Jr 
j "":l' < 

\ . ' A "'). I >. 2?) c-~\·''l'(z '+i..;' .. cz " .. 1'\·~o.. (j J ( 3 . 
~ '- ) 1 ' .) 0 0 0 \- "1 . 0 

j II) 
M' J . 

~ (I 

A , J X,j• (•) u-,(•.•1 x:.,. C•J A• II.3.11 

In the CS approximation we have used a rotating, body-

f'i X('U !'ram(~ to conserve j
7

. and in trocluced th(• approximation 

of ignoring the Corioljs terms in order to uncoupl(-e the 

equations in£. In the energy sudden approximation a co-

ordinate system is used so as to conserve f and the approxi­
z 

mation of degenerate rotor states introduced in order to 

uncouple the equations in j. 

The similarity in approach is reflected in the similarity 

of the equations developed. 

Equation II.3.10 is ~ubject to the boundary conditions:-

' '-AV 

u' J' 
j v '""j' 

II.3.12 

t 
k ., ) 0 

V.f 
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An approximate space-fixed S-matrix can be obtained from 

tile Eixed 

by ( Khare 1977)). 

m' 
Q j 

·-'L dcfjncd 11,2 .. 12 

. j + f.'- 2 L "\ 1 /z. ( 2 0 I . \ '12. 
C:/(.~Rv.j't'v•J-=1.. (2£+1J 1-"

1
} 

11.3.13 

') e, ~ :,)( :: ~ -~,} s:' (J~' j'~·) 
"'1 

Cross-sections, etc. can then be obtained as in CC cal-
m .• -m ' 

culations. Since V J = V j only m.• ~ 0 need be considered. 
J 

We therefore now have equations coupled in j,v which have to 

be solved for available mj 'min (j,j '). The only point 

remaining is the choice of the parameter L. It has to be 

representative of an orbital angular momentum and only for 

L = lor f' can any real simplification be made in the 

equations. The choice of L has been fully discussed by McGuirP 

and Kouri (1974) , Kouri (1979) and others. Hunter (1975) 

notes that neither choice give a fully symmetric S-matrix. 

In fact, the scattering amplitude for the choices i and ( 

are related by a unitary transformation (Khare (1977)). 

11.3.14 

Where the D functions are those of Rose (1957). However the 

degeneracy averaged cross-sections are identical,due to the 

properties of the rotation matrices. The main difference 

is that for L it followsllm. = 0, i.e. no magnetic 
J 

transitions are allowed, yet 6-m. I= 0 transitions are allowed 
J 

with L = £ . 
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The rs approximation has been widely and successfully 

employed hoth for atom-rigid-rotnr and atom-vihrating rotor 

collisions. Th0 CS is a kind of sudden approximation jn 

that it assumes that the relative kinetic energy is sufficiently 

large that the precise value of the centrifugal potential 

is not important. Whether this assumption is justified 

depends on how tbe different classical turning paints vary 

witb i If tbe electrostatic interaction potential is 

purely repulsive,tben tbe rate of change of turning points 

with 1 is not large and the CS is expected to be valid. If 

attractive wells are present, however, there may be three 

turning points, all rapidly changing with 1, and tbe 

assumption of an effective orbital angular momentum eigen-

value will not be valid. The accuracy of the CS approximation 

in given physical situations has been mainly deduced by the 

comparison of CC and CS calculations. Kouri et al. (1976) 

found that the impact parameter should be smaller than tbe 

classical turning point,and that the energy should be well 

above threshold for the transition being considered in 

order for CS results to be reliable. The former condition 

restricts the CS to short-range potentials. This is 

demonstrated in the results of Kouri and McGuire (1974) 

for Li + - H
2 

where the CS was found to be unreliable due to 

the long range interaction. By retaining some of the Coriolis 

terms, however, Kinnersley (1979) has obtained satisfactory 

results for the same system. Alexander and McGuire (1976) 

employ the CS approximation in the vibrational excitation 

of H2 by He where the interaction potential used is short 

ranged and purely repulsive. These results are in excellent 
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agreement with the CC calculations presented in Chapter IV. 

tests, the CS approximation is expected to give reliable results 

for electrostatic potentials with no long range anisotropies 

and at reasonably high energies. The latter condition is to 

eliminate the situation of three turning points when an 

attractive well is present in the interaction potential. 

Therefore "reasonably high" should be interpreted in this 

context, i.e. the kinetic energy should be at least com-

parable to the well depth. 

(c) ~he Infinite Order Sudden Approximation 

This is a combination of the two approximations previously 

discussed, i.e. the 1 -conserving,energy sudden and the j -z z 

conserving coupled states. It was first introduced by Tsien 

and Pack (1970) and later generalised independently by 

Secrest (1975) and Hunter (1975). There are several deriva-

tions in the literature using both a space-fixed reference 

frame (Secrest (1975), Tsien and Pack (1970» and a body-

fixed formalism (Pack (1974), Bowman and Leasure (1977)). 

The brief derivation presented here uses a body-fixed frame, 

as in section (b). The rotor states are assumed degenerate 

with kvj = kvo = kv, and the orbital angular momentum 

operator is replaced by a representative L(L + 1) term, 

corresponding to the neglect of the Coriolis terms. The 

resulting coupled equations are therefore only coupled in 

the vibration a 1 qua n turn number ( c f . I I . 3 . 3 and I I . 3 . 8 ) . 

\ d'­
l df\2. 

v" 

II. 3. 15 
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II.3.16 

Y is the angle between the rotor axis and the line 

joining the atom to the centre of mass of the molecule and 

is now simply a parameter. These equations are subject to 

the boundary conditions 

Lv . 

U I ( f'- ~-) ---4 0 
v · r--7o 

ll.3.17 

Dsing the Chase result (II.3.1) we can obtain a body-

fixed S-matrix corresponding to that defined by II. 3.12 

(see e.g. Secrest (1975) , Schinke and McGuire (1978)a). 

·rr 

s:j ( jv, j'v') ' ( 21f) r ~,·"J (¥,c) S~v, (¥) Yj"J ( Y, o) •~ l( J '( II.3.18 
Jo 

which can in turn be used in II.3.13 to obtain an approximate 

space-fixed S-matrix SJ(jlv, j'i'v') from which final cross-

sections can be calculated. Since the energy sudden 

approximation has been employed, only cross-sections out of 

the ground rotational states need be calculated and II.3.7b 

can be used to trivially c~Qculate the others. Setting j = 0 

in JI.3.18. 
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(1\1 

S (oV-\
1
v') 

L J J II.3.19 

Hence the sumation in II.3.13 over m. collapses. 
J 

If we take 

the orbital angular momentum parameter L equal to the initial 

value L = J = J (since j = 0), II.3.13 reduces to 

5r ( o Tv, j'i'v') = ,ti- :r (- 1) 
7 (2f+ 1)'/1. ( ~ '~ :, .) 

' J;; I:j'' (Y,o) s:,, (l<) ,_, 'K J¥ 

0 I I . 3. 20 

Th(; coupled equations II. 3.15 must he solved at sufficient 

valw~s of ;(in order' to solve the integral in 11.3.20. The 

values of t can be chosen to he the points a Gauss-Legendre 

quadrature. Another method is to expand 

1... \ lvv I 

s...,", I )( \ -· n p (r~ YJ \.v ) f __ "'11 "() II.3.21 

(\ 

This allows analytic evaluation of the integral. The number 

of terms in the series is determined by the number Gf values 

of ~considered. This approach has two advantages over a 

quadrature scheme. Successive values of t can be calculated 

until the series converges, whereas in a quadrature,if the 

number of points is increased the SL •( ir) calculated for a 
vv 

lower number of points are useless. Quadrature points are 

set, but by using II.8.21 the values of~ chosen can be 

concentrated in the region where the integrand is varying most 

rapidly. 

The cross-sections obtained using the S-matrix of 

II.3.20 obey 

•z. 

:: l 
v';;:, I I . 3. 22. 
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However, these are not reciprocal processes and this detailed 

balance type condition is imposed hy the lOS. Only by 

virtue of 11.3.21 do cross-section calculated from II.3.7b 

exhibit true detailed balance 

11.3.23 

Although there is a large reduction in the number of coupled 

channels by using the IOS approximation, the equations must 

be solved at each orientation. If the S-matrix is strongly 

dependent on ;y calculations at many orientations may be 

required. A numerical technique designed to reduce the 

number of values of 2( required has been discussed by 

Secrest (1979). The approach is to interpolate the amplitude 

and phase of the S-matrix, which vary more slowly with¥ 

than the real and imaginary parts. 

The IOS seems well suited to rovibrational calculations. 

The approximation will be reliable when both the energy 

sudden and the CS approximations are valid. Vibrational 

excitation requires high collision energies relative to the 

energies of the rotational states, which is required by the 

energy sudden approximation. Also, vibrational transitions 

are generally dominated by the short range region of the 

potential,which is ideally suited to a CS approach. In a 

collision where the molecule has a small rotational 

constant and there are many rotational levels a CC cal-

culation becomes intractible. However, the more closely 

packed the rotational levels become,the greater the validity 

of the IOS (and the energy sudden). 
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Another advantage of the IOS is that the single 

centre expansion of the potential (11.2.11) has no advantage. 

In CC or the other approximate methods where the interaction 

potential is integrated over spherical harmonics, the 

expansion into Legendre polynomials allows the angular 

integrals to be performed analytically. Hawever, in the IOS, 

no such integrals are required. 

Green (1978) has tested the lOS for pure rotational 

transitions in HCi + Ar, HCl + He, CO + He and HCN + He 

against CC or CS results. Except for HCf + Ar, the sudden 

condition 
-1 is valid for a relative kinetic energy of 100 em 

The failure of HC2 + Ar is consistent with Ar being heavier 

than He and, therefore, i·or a given kinetic energy, having a 

lower velocity. + For the much lighter system, H
2 

+ H , 

Schinke and McGuire (197R)a have compared IOS and CC results 

for rotational excitation. At a total energy of 3.7eV 

the results are in generally good agreement, except for 

6j = 2 trahsitions. This exception is due to the long range 

charge quadrupole interaction. Although the CS approximation 

is not suited to long range anisotropies, the CS results 

are in good agreement with the CC results ofo-'(0~2) of 

McGuire ( 1976). The lOS fails for 6j = 2 transitions lwcause 

+ tbe H spends a relatively long time in the rf)gion or Lhc 

interaction potential involved (since jt is long range). 

The increasing failure of the lOS with increasing total angular 

momentum is consistent with this. The results improve with 

increasing energy, as expected. Shinke and McGuire (1978)b 

have also performed lOS calculations of rovibrational excitation 

in H2 + H+, where the vibration is treated in a CC framework. 
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Their comparison with the experimental results of Hermann 

et al. (19J8) is rather poor. This discrepancy is attributed 

to inaccuracies in the potential surface employed, however 

their basis functions have been shown to be incorrect (see 

Chapter V). 

(d) Other Quantum Mechanical Approximations 

In this section we discuss briefly some alternative 

quantum mechanical approximations in general use,which 

appear to have a more restricted range of validity than those 

discussed in (a) -(c). 

(i) The Effective Potential Methods 

The approximations discussed in (a) - (c) are essentially 

based on a simplified treatment of the orbital angular 

momentum operator or the wavenumbers. The main coupling 

is therefore transferred to the matrix elements of the 

electrostatic potential which are treated correctly. Other 

quantum mechanical approaches which reduce the dimensions of 

the CC equations are based on averaging the interaction 

potential over orientation, to obtain an effective potential, 

prior to performing the dynamical calculations. 

The effective potential (EP) approximation of Rabitz (1972) 

was the first of the decoupling schemes for rotational 

excitation. This method has been reviewed by Rabitz (1976). 

In this approximation, the coupling potential matrix elements 

(II.2.12a) are preaveraged over the degenerate m. states to 
J 

obtain an EP of the form 



where II. 3. 25 

l) - 'lo ( \ \ - ~ I \1 + ~ '!- A, I '1 
{, - ' .. "' . ~ ·' 

The resulting equations are coupled onl)' in j and v, and 

the number of channels is reduced to the number of t·ovibrational 

basis states. Consequently the EP approximation requires 

less calculation than the CS approximation, where the 

equations must be solved for each value of mj. The angular 

part of the interaction potential does not act during the 

collision but simply gives rise to the weighting coefficients 

in II.3.24, before the dynamical calculations are performed. 

Because of this preaveraging,no m. dependent cross sections 
J 

can be calculated and the EP cross sections satisfy 

II.3.26 

instead ot thecorrect detailed balance cond:iUon (II.3.23) 

which has to be enforced bv a correction factor of (2j' + 1)/ 

(2j + 1) on the right hand side of II.3.26. This :is because 

each rotational state, which :is 2j + 1 degenerate, :is 

represented by a single effective rotational state (Zarur and 

Rabitz (1974)). 

Comparison with CC calculations of rotational excitation 

in a model N2 +He system (Chu and Dalgarno (1975b)) 

suggests that the EP approximation fails for systems with 

large anisotrop:ies and at energies close to threshold. Green 

(1975) reaches a similar conclusion in studies of CO+ He. 

The interpretation of bulk data, obtained by experiment, 

frequently requires detailed knowledge of only degeneracy-

averaged, rotationally summed cross sections for transitions 

between different vibrational levels. Therefore, there 

exists the possibility of not only preaveraging the potential 
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over the degenerate m. states, but also over the rotational 
J 

::.;Lo_:_c:::~, lc~J~\.ling LI-_tt_' t_'Cl~tc\Li<)rl:~ C.()UlJle;J only J.n \'ib~caLic)n. 

a scheme has been presented by Gianturco and Lamanna 

Q,,,,,, I_, Lt(~ .!_.!_ 

(1977). An effective potential is defined which depends 

on the collision energy and which contains a statistical 

average of the anisotropic potential terms of 

II.3.24). This weighted average of the full potential 

modifies the strength of the potential according to the 

magnitude of the contributions, and to the collision 

energy. 

(ii) The L-Dominant and Decoupled L-Dominant Approximations 

In the case of short-range interactions the corresponding 

cross sections are dominated by collisions which occur at 

small impact parameters, i.e. at low values of orbital 

angular momentum. The corresponding centrifugal barriers 

are therefore small and relatively unimportant relative 

to the electrostatic interaction potential terms. Hence 

the approximations discussed in (a) - (c) are expected to be 

most valid. The opposite situation can arise where the 

interaction is dominated by the centrifugal terms, where long 

range electrostatic interactions still act at large values 

of the orbital angular momentum, although the latter are 

controlling the dynamics. Schemes, designed to take advantage 

of such a situation, are the L-dominant (LD) and the decoupled 

L-dominant (DLD) approximations of Depristo and Alexander 

(1975 and 1976 respectively). 

The LD approximation is based on the observation that in 

pure rotational problems at large J, the largest elements 

of' the standard CC S-matrix, SJ(jl,j•i•) are those Jor which 
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Q' 1· < J. Eq ui valent ly indexing the channels by j and A= 

£ + i - J ( hen(·e 0 {.\( ?._i) _ the most inmort8nt channels are 

those with '\ ~ j. Accordingly in the LD approximation 

one solves the CC equations retaining only channels with 

X' j. This requires a calculation intermediate in size 

between CC and coupled states (CS). In the DLD approximation 

the coupling between channels jA and j\' is also ignored, 

since the Percival Seaton coefficients in the potential 

matrix elements (II.2.12b) for large J and small~ are 

domina ted by terms with lJ A 0. This is equi valent to the 

value of ( j + 1 ) being conserved. 

As expected, the DLD approximation gives good results 

for systems with long range interactions, such as Li+ + H
2 

(Depristo and Alexander (1976)) but fails for systems with 

short range potentials, such as He- HD (Green (1976)). 

However, vibrational excitation gen~rally occurs through 

hard short-range collisions, and therefore the LD and DLD 

approximations would be expected to fail for vibrationally 

inelastic. cross sections. 

(iii) The Adiabatic Distorted Wave lOS Approximation 

As discussed in (c), the IOS approximation is well 

suited to rovibrational excitation, since vibrational transi­

tions require high collision energies, relative to the rotational 

energy level spacing, and are dominated by the short range 

region of the potential. Although there is a large reduction 

in the IJUtnber oJ coupled channels, the equations must be 

solved at sufficient orientations in order tu solve the 

integral in 11.3.20. If the S-matrix is strongly dependent 
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on orientation, the equations may have to be solved many 

times, resulting in considerable expense in computing time. 

However, c-rrJ~::;.s sections for vibrationally inelastic transitions 

are, in general, very small. Usually several orders of 

magnitude smaller than for purely rotationally inelastic 

transitions. Such small transition probabilities are ideally 

suited to the use of perturbation techniques, such as the 

distorted wave approximation (see e.g. Balint-Kurti (1975)). 

The adiabatic distorted wave CADW) IOS approximation of 

Eno and Balint-Kurti (1979) treats the rotational motion 

within the IOS approximation, and treats the vibrational 

excitation by ADW techniques. The use of adiabatic wave-

functions is based on the observation that a CC treatment 

of the vibration, in H2 + He calculations, requires fou1· 

diabatic vibrational basis states to achieve convcrgcncr! 

for v = 0 to v = 1 transitions (Bowman and Leasure (1977), 

Eno and Balint-Kurti (1979)). This suggests that a distorted 

wave approximation based on diabatic wavefunctions would 

give poor results. The advantages of adiabatic over 

diabatic wavefunctions has been discussed by Eno and 

Balint-Kurti (1981). 

To make the ADWIOS approximation computationally 

efficient, Eno and Balint-Kurti (1979) have employed 

approximate analytic methods for evaluating the distort~d 

wave integrals (Eno, Balint-Kurti and Saktreger (1978)). 

Also, by a suitable choice of basis functions, the adiabatic 

coupling terms can be expressed as analytic functions of the 

potential. Hencl:~ the eva] uation of 1 he :1ngl c-fi xed S-

matrices is reduced to analytic formulae and completely 

avoids the solution of differential equations. 
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Eno and Balint-Kurti (1979) and Bieniek (1980) have 

compared ADWIOS results wish the CC results of Lin and 

Secrest (l97H) for H 0 +He. However, both these comparisons 
~ 

are rendered invalid due to errors in the CC calculations 

(Lin (1981)). A comparison of the values of cross sections 

for the rovibrational excitation of H
2 

by He from CC, 

ADWIOS and lOS (with a CC treatment of the vibration) 

calculations is presented in Chapter IV.4. 
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CHAPTER I I I 

NUMERICAL SOLUTION OF THE COUPLED EQUATIONS 

1. Introduction 

The coupled equations which have to be solved are of a 

form frequently encountered in atomic and molecular physics 

and can be written in the general form: 
N 

G-, (•) ~ [ WM, (<) G-,. (•) III.l.l 

t~' = I 

Where the coupling matrix W 1 contains no differential nn 

operators. There exists many numerical methods of solution, 

however, no one can be considered best. The efficiency of 

a given method will depend on the particular problem, the 

degree of accuracy required, etc. Some algorithms may give 

a reasonable answer with little effort but require much more 

effort to produce greater accuracy. If the solution is 

required at many energies some methods will take a lot of 

time to obtain the first solution, but be able to generate 

solutions at subsequent energies with much less effort. 

Basically, there are two methods of approach. The more 

traditional is to use the exact coupling matrix W 1 and nn 

to obtain an approximate numerical solution to the equations; 

referred to as the approximate solution (AS) approach (cf. 

Secrest (1979)). The other is to substitute an approximate 

form of the coupling matrix, which allows analytic 

solution of the equations, referred to as the approximate 

potential (AP) approach. 

These two approaches can be further categorised by the 

manner in which the solution is obtained. The solution can be 

initialised well into the classically forbidden region, 
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where its form is known, since the potential is very large, 

and step by step integrated out into the asymptotic region, 

where it can be matched to the appropriate boundary conditions 

to obtain all the relevant scattering information. This is 

referred to as the solution-following (SF) method, used in 

many of the more traditional algorithms. The methods of de 

Vogelaere (1955) (see e.g. Lester (1976)) and that of Sams and 

Kouri (1969) use the SF method in the AS approach. The SF 

method in the AP approach is employed by the algorithms of 

Grodon (1969), Light (1971) and Wilson (1969). 

The second category is referred to as invariant 

imbedding (I I) . In II the scattering problem is solved for 

a section of the potential, to obtain an R-matrix. Using 

connection formulae, this R-matrix is combined with other 

sector R-matrices to obtain a solution for larger sections 

of the potential until the problem is solved for the entire 

potential. Using the AS approach, the only II technique 

still in general use is the log-derivative method of Johnston 

(1973). Although the amplitude-density method (Johnston and 

Secrest (1966)) was the first to employ an ASjii technique, 

it is only used in exceptional circumstances. However the 

connection formulae derived are still of great value. The 

only method to date employing an APjii approach is the R­

matrix propagator method of Light and Walker (1976). It 

was originally introduced in the context of reactive scattering 

and later adapted to inelastic problems (Stechel, Walker and 

Light (1978)). Although it stands alone in its category il is 

bt~coming one of' the most wide1y used in inelastic scattering. 



53 

2. Relative Merits of Approaches 

The AS methods follow the solution explicitly and 

therefore the step size used in the integration algorithm 

is dependent on the energy of the collision. In order to 

accurately trace out the solution, its value must be known 

at a reasonable number of points per wavelength. Hence as 

the energy increases, the wavelength of the solution 

decreases and more steps must be taken over the integration 

range. However, the step size in the AP method is almost 

independent of the collision energy, since such algorithms 

are based on the potential. For the same reason, AP methods 

can take l~rger steps than AS methods. The AP met hods 

require much more numerical effort per step than AS, however 

much of this effort is independent of the energy. Therefore 

by employing an AP method much of the information calculated 

at the first energy can be saved and used to generate 

solutions at subsequent energies very cheaply. Sometimes 

this attractive feature of an AP approach cannot be 

implemented for practical reasons. In large calculations 

involving many channels and steps, the storage requirements 

can become excessively large. 

In order to be able to describe the target accurately 

during the collision, usually several energetically inaccessible 

(clO-sed) channels have to be included in the basj s. Such 

channels cause problems in the SF approach since computers, 

obviously,use finite arithmetic. Closed channels grow 

extremely rapidly, much more so than the others, leading to 

loss of linear independence of the solutions and hence 
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instabilities. In order to overcome this, numerous 

stabilisations must be performed as the solution is 

integrated out. This is performed by using unitary trans­

formations to transform the solution vectors to new linear 

canbinations to suppress such fast growing channels. The II 

methods do not suffer from this handicap. They are inherently 

stable due to the manner in which the scattering information 

is propagated across the integration range. 

If few solutions of high accuracy are required,it is 

more efficient to use an AS approach. Although AP methods 

can produce highly accurate results, in general this requires 

small integration steps and therefore the advantage of AP 

methods is lost if only a few solutions are required. The 

numerical effort required to improve accuracy grows much 

faster in the AP approach than in the AS 

3. Choice of Algorithm for IOS calculations 

The coupling matrix corresponding to the IOS equations 

coupled in vibration at a given rotor orientation ~ is given 

by (c. f. Chapter II eq, II .3.15). 

W~.,, (r\) ~ V"", (~) -\- 6
1111

, ( \..(~: •'I - \z:) I I I. 3.1 

There are two important properties of III.3.1. concerning 

the choice of an appropriate algorithm. Firstly the equations 

are coupled in vibration only, and secondly that the orbital 

angular moment urn term has the same value in each channel and 

is only present in the diagonal elements. 
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In general the vibrational energy level spacing is 

relatively large and therefore for reasonably small collision 

energies only a few vibrational channels need be retained in 

the basis set. The dimension of the matrix W , is therefore nn 

reasonably small. With such a small number of channels the 

numerical effort per step required by an AP method will not 

be largely in excess of that required by an AS method. 

However, the advantage of an AP approach is the use of much 

larger step lengths. Since few channels are involved an AP 

method will therefore be the most suitable. 

The second property of 111.3.1 noted is concerned with 

the solution of the equations at many values of L. The 

orbital angular momentum parameter term comes into the 

equations in a similar manner to the total energy - i.e. the 

equations are diagonal in L and it has the same value in each 

channel. The properties of AP methods, which allow the 

generation of solutions atdifferent energies, can also be used 

to generate results for different values of L. To obtain an 

integral cross section the lOS equations must be solved at many 

values of L. By use of an AP method, information calculated 

in the solution for an initial value of L can be stored and 

used to generate the solutions for subsequent values of L 

with much less effort. However, there is one important 

difference in the manner in which L and the total energ~ E, 

enter into the equations. The energy term,E, is independent 

of the integration co-ordinate R, but the L term is not. 

Therefore, in theory, the step size will be dependent on L. 

Fot· tlw systems studied however, i L turns out LhaL the sU~p 

size is not very strongly dependent on L, therefore the 
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generation of solutions for large numbers of values of L with 

little numerical effort is possible. There may be siTuaTions 

where the R dependence of the L te~m is important in the choice 

of step sizes. In such cases,the approximate potential used 

can be modified to deal with this dependence analytically. 

The step size will then be virtually independent of L, and 

the generation of large numbers of solutions for different 

values of L possible, whatever the system. Details of such 

a procedure and explicit expressions are derived in 

Section 4(c). 

We note that the orbital angular momentum term is 

similarly treated in the coupled equations of the coupled 

states approximation and the effective potential method of 

Rabitz (1972), and hence similar savings in computer time 

are possible. Alexander (1974) has made use of this property 

in calculations employing Gordon's algorithm to solve the 

equations of the effective potential method. However, he 

makes no mention of the dependence of the step length on L. 

The lOS approximation is exactly that -an approximation. 

Therefore, extremely high accuracy in the solution of the 

coupled equations involved is not warrented. The solution 

of the equations to three or four figures is sufficient, and 

this is easily within range of an AP method without requiring 

excessively small step sizes. 

All the properties of the lOS coupled equations (the 

accuracy required, their mathematical form and the number 

of solutions required) suggest the use of an AP method. Of 

the AP methods, the R-matrix propagator method of Stechel, 
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Walker and Light (1978) was chosen. In contrast to, for 

example, Gordonis Algorithm it is relatively simple to program 

and, being an II method, inherently stable. 

4. The R-Matrix Propagation Method 

(a) General Theory 

Although originally presented as a method for solving the 

coupled second order differential equations for reactive 

scattering (Light and Walker (1976)), the description below 

is for equations appropriate to inelastic scattering, following 

Stechel, Walker and Light (1978) (hereafter referred to as 

SWL). In this context, the R-matrix referred to is the 

matrix relating functions to their derivatives at a given 

value of the integration co-ordinate. 

The main advantage of this algorithm is its stability. 

It is an invarient imbedding method and hence completely 

insensitive to the numerical problems associated with closed 

channels. It has additional attractive features, other than 

those usually associated with an approximate potential method. 

rt is based on basic matrix operations (diagonalisation, 

inversion, etc.) and by use of standard routines the code is 

simple to write and easily understandable. It is also reported 

to be fast and accurate. 

The method is derived from the Magnus exponentiation 

method (see e.g. Light (1971)), but, basically, there is a 

re-arrangement in the manner in which the scattering 

information is propagated. 

The general form of the coupled equations (111.1.1) can 

be written in matrix notation 
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III.4.l 

This set of N coupled second order differential equations 

can be re-written as 2N coupled first order equations 

III.4.2 

where I and 0 are the unit and zero matrix respectively and 

A is the 2N x 2N matrix as defined. 

In the Magnus method, a 2N x 2N propagator Q is formed 

to relate Q(R) and 2'(R) to 2CR + AR) and ~'(R + 6R) across 

the interval b.R by 

l0(R.-t.R) l 
l~'(R~ nK.')J 

III.4.3 

where U is given by the Magnus exponentiation 

Ql+-----wj } III.4.4 

where W is the matrix of derivatives of~· Usually ~R is 

taken sufficiently small that by diagonal ising V! at the centre 

of the sector, ! is negligible across the sector, i.e. W 

is approximated as a constant reference potential. Higher 

terms are ignored and only the first term in the exponentiation 

is used. In theory these propagators can be multiplied 

together to get a matrix to propagate G and G across the 

entire integration range. However, the problem of stability 
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arises, and frequent time consuming stabilisation trans-

formations are required. 

In contrast to this, the R-matrix in general satisfies:-

r I 

~AA!3AB ItAc 
;G 

A ~ 

I 

!_tBA ~BB G B III.4.5 -
I 

Be A G c -. 
L. _j J 

Where A, B, C etc. are surfaces in configuration space 

on which the relationship between the translational wave-

functions G and their derivatives G is required in order 

to solve the equations. In 3 dimensional reactive scattering 

of an atom and a diatomic molecule there are 3 asymptotic 

arrangement channels, hence the R-matrix is blocked 3 x 3. 

However, for inelastic scattering, there is sufficient 

information on one surface located in asymptotic configuration 

space to enable an S-matrix, and hence cross-sections etc. 

to be calculated. By convention the direction of the 

derivatives is outwardly normal to the surface. In order to 

propagate the solution it is necessary to carry information 

from one surface at R to another at R + AR. Since two 

surfaces are involved the ' 1 sector" R-ma trices, which are 

solutions of the scattering problem within the sector, are 

blocked 2 x 2, i.e. they are 2N x 2N matrices. 

The general procedure is to divide the integration range 

into sectors. At an integration co-ordinate R we have a 

''global" R-matrix relating G(R) and G (R) which is N x N. 

Within the sector AR we have a sector R-matrix relating 
I I 

G(R + ~R), G (R + ~R), G(R) and G (R) which is 2N x 2N. We 

then construct a new global R-matrix at R + t~R, from the old 
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global R-matrix at R and the sector R-matrix across AR. 

Consider two adjacent sector ( A - 1 ) and ( i ) with mid-

points R- and R- as in Figure 1. 
).·l. .(. 

R(.i-t") and R('-) are global R-matrices on the surfaces 

shown, rri.) is the sector R-matrix relating the two surfaces 

and h· is the width of sector ( i ) . 
.L 

At the centre of the iR sector, R.,diagonalise the 
l 

coupling matrix !· This is equivalent to transforming from 

the original target basis functions ~~ to new basis functions 

~~ , say, which are linear combinations of the old, i.e. 

rl~ =) T~,~~) )(~ III.4.6 
-·-
"I 

such that III.4.7 

Note that due to the symmetry of~. ! is orthogonal i.e . 
. -1 

,.,... ( J.) 
1 We therefo~e have new equations in trans-

lational wavefunctions F given by 

III.4.8 

(II 

If we assume that this diagonilisation is exact across 

the entire sector, the equations are now completely decoupled 

within the sector, i.e. 

III.4.9 

Adopting the notation:-

III.4.10 



sector 
(i-11 
\' .; 

R(i-1) 
-I 

r:0-1) 
-R-

R· 1 1-

sector 
1'\ d, 

R· I R 

Figure 1 Schematic diagram showing the sectorisation 

of configuration space and the asse~bly of 

sector R-matrices to form the global R-matrix. 
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In this locally diagonal representation, the sector 

R-matrix r{,l) is given by 

iF._ (~fi <41 (;\ 
-~~-.::. I= I ( l ) l 

D !z I 1-~ i = 
_ .. 

III.4.11 
IF (.t) I ,. (t) ,. ,,, 

_I t=' (.;_) I 
L- /l.. -' 

3 _'+ R I 
~' 

where the negative sign on the right hand side is due to the 

convention of taking outwardly normal derivatives. The 

similarity with Magnus propagations (III.4.3) is now evident, 

but the information has been re-arranged. The precise form 

of the elements of r(i) depends on the form of 
\ {i\ 
/\

11 
( R) , and 

is discussed later in Section ~). 

In order to cross into the next sector, one must transform 

. t\.. 
from the representation in the c~-1) sector to that in the 

( ' )ih • sector, to maintain continuity of the total wave-

function and its derivative. Although !R(i-1) and _!'L(t) 

refer to the :same integration co-ordinate they are expressed 

in different representations. To do this, a return is made 

from the~ (~-1) representation back into the original G 

and then into fU). 

III.4.12 

i.e. F U -1) ::. Q(:-1>) F._ (i) 
----~ 

F' (.l-1) Q_(J.-i>J 
I 

- F (i) 
~ ~ ,.._L. 

where = [ T('-.1.~].,. Tli.) 
,..... ,._ 
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We now want to construct the new global R-matrix such that 

III.4.13 

By using III.4.12 and the definition of the R-matrix III.4.13 

T (A-1.) F'(·\ 
= QC.t-1,A) fZ Q(A-l,A-) ~... "-J 

""""" - ,_ ,..,_ 
III. 4.14 

The definition of the sector R-matrix III.4.11 gives 

III.4.15 
~R. (A.) ~ - _::f' ~/ (A.) + ~'+t~) 5' (;.) 

Substituting of III.4.14 into III.4.15,eliminating ~L(t) 

and _! L ( i. ) , gives 

III.4.16 

This gives the new global R-matrix assembled from the old 

gobal R-matrix and the sector R-matrix. It is a subset of the 

equations first given by Zvijac and Light (1976). 

= 
r ,. , _ ,.:_' 

... f~ III.4.17 

are orthogonal. Also, if R (.i.-il 
"'--

and r(~\ 

are symmetric, this recursion relation preserves the symmetry 

of the global R-matrix, which in turn ensures a unitary S-matrix. 

The equations II.4.17 are the basis of the propagation. 

C 1 1 t
. (~) 

a cu a 1ng r and T (i..) in each sector, they are -
repeatedly used to propagate the R-matrix from near the 
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origin out to the asymptotic region, where boundary 

conditions are imposed. 

(b) Specifying Boundary Conditions 

Near the, origin, R = 0, in the first sector, A. = 1, the 

R-matrix has to be initialised such that the regular 

solutions satisfy 

III.4.18 

For regular boundary conditions with a large 

repulsive potential near the origin the solutions are 

exponentials. We therefore have 

III.4.19 

This is the starting point. Using the recursion 

described in Section 4{a), the R-matrix is propagated outwards 

from the origin across the integration range until its value 

is known on a surface in the asymptotic region, at sector M, 

say. The global R-matrix R(M) is expressed in the locally ........ 
tk 

diagonal representation appropriate to theM sector. In order 

to match the solution to asymptotic boundary conditions, a 

final transformation is required to return to the original 

basis representation %~ , to obtain a solution for the original 

radial wavefunctions G (rather than the !RCM)) using:-

Hence 

~ Lol = I (M) ~M) [ 1 (M)J T 

G- (M') ~ R.f;_,.j G- 1 (M J 
-~ il.. - - R 

III.4.20 

III.4.21 
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R
t,J 

is the asymptotic R-matrix expressed in the original 
·U. 

primitive basis on the right hand side of the M sector. The 

symptotic form of G can be written as ...... 

G- = ~ - ~s" 
~ - - ·- III.4.22 
G-' :: A'- B' s" ..... - ~ -

Where A is a diagonal matrix of incoming open cha~1ne 1 

asymptotic wavefuncticns and B a diagonal matrix of outgoing 
"-' 

asymptotic wavefunctions. S
o 

is basically the S-matrix. 

From III.4.22 and III.4.21 we obtain directly 

,o ( ~.Ao.l 1 J-l( ·h"al 1 ) 
~= R B-b RA-P. 
_....._ -..... -- - .-. - -

III.4.23 

In the case of the IOS equations coupled in vibration 

at a given rotor orientation¥ (cf. II.3.17). 

( G-(R')') ' = 
-- vv 

III.4.24 

hence III.4.25a 

III.4.25b 

III.4.25c 

Computationally, it is simpler to work in terms of the 

K-matrix since all the functions appearing are real. -The 

appropriate definitions are then (cf. II.2.20b) 

( ~ J ~v· = ~vv' (kv' \Z j._ (kv 1 Rl) III.4.26a 

( ~) vv' :: L", (kv' R (\._ (\.._,, R)J III.4.26b 

c~o)"v' ( l v )'h KL \ III.4.26c 
"' ~ I ('tj 

k "" v' 
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We can therefore obtain an S-matrix from III.4.23 by using 

the definitions of 111.4.25 or III.4.26 and hence all the 

scattering information. 

(c) Form of Propagators 

Within the sector the equations are completely uncoupled. 

Therefore, the elements of the sector R-matrix, E·' r1' 

r~ and r~, must be diagonal to prevent mixing of the ,._.- ~ 

solutions. Dropping the sector index A from III.4.9, each 

solution satisfies 

III.4.27 

We therefore have a one-channel problem for each solution 

within the sector. Considering only those elements of the 

sector R-matrix concerned with Fn we also have (cf. III.4.11) 

III.4.28 

where a is the value of R at the left hand side of the sector 

and b is the value at the right hand side ( ie. a.-= R,-'hh,, b = R,:+'t.,_h,_) 

Equation III.4.27 is an ordinary second order differential 

equation and let its solutions be A(R) and B(R). The general 

solution and its derivative are therefore 

r"' (~<\ = o< P..(11.) * ~ B(R) 

~I ( (Z) :: "" P. I ( P..) + /> ~ I ( R) 

whereo<and,.S are arbitrary constants. 

and B(R) is a constant, denoted by W 

III.4.29 

The Wronskian of A(R) 

III.4.30 
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Equation III.4.28 must hold for any solution of III.4.27 

and therefore the sector R-matrix must be independent ofO( and ,cl. 

We can therefore chose any two solutions, F~ and ~ say, 

with convenient o< and fo to determine the R-matrix. The 

solutions are taken to be such that they satisfy the boundary 

conditions. 

111.4.31 

Substitution of 111.4.31 in 111.4.28 gives the elements 

of the sector R-matrix in terms of F~ and ~ . 

F. ( ~-> > 

F,' (b) 

111.4.32 

The solutions F1 and F2 satisfying the boundary con-

ditions 111.4.31 are given by 

F, (R) = w-· [ ~'(.:..) ACR\ -A'(.,.~ fl(R')j 

\="
2 

(R.)" w·• ( B.'(~>')t\(R)- A'(b~ I:>(R)} 

1I1.4.33a 

1II.4.33b 

which can be easily verified. Substitution of 11I.4.33a, b 

into 111.4.32 gives the explicit form of the sector R-matrix 

in terms of solutions A(R) and B(R). 

I '\ '( \ . ' o (blP-t(~) ·-A \:.J~( ... J 

A' (b)~'("\- ~'(1:.) A'(~) 

{ t-._) "(\ - w [ B '( ... > A' ( 1:.) - ~' ("' ) e/ ( b ) ] 
-I 

(13)M z w [ A'(b')e:/(o..\- e/(~>">A'( .. )J 

~~(~IA(b)- A'(~)~(b) 

e,' ("-) ~'(b)- ~'(a..) e/ (\.) 

-I 

II1.4.34 

I 
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Note that ( r.l \, = ( r 1 )""' , hence the sector R-ma trix is 

s~,trru-netl~ic, ensuring that the recurrence relation III.4.17 

maintains the symmetry of the global R~matrix and hence the 

unitarity of the S-matrix. 

The simplest form of the sector R-matrix is obtained by 

approximating\n(R) as constant within the sector, An say. 

The solutions of III,4.27 are therefore given by 

III.4.35 

Substitution into III.4.34 using b = o..-th~ gives 

I _, 
>-.z. 

( r,) , u· .. >.,". b I\)-.~\ w-ti, \h~\"\ > 0 
= " 

. f\1\ nA\ _1 , 
>...'>. i -\\"\ w\ \~>,:\n\ " 

:{o I I I . 4. 36 
L 

~ J ~''1\~-~ G~l \h, ~1\~ ~-~ ? G 

Ul\v1' u-.... !. , = 
"" M 1- \>--~\-1 ~ \ 'h• AI'\\ 

\ '1.. 
~ 0 1\. .. 

~ 

Any form of ,\,(~Z) can be used which gives known solutions, 

A(R) and B(R), to III.4.27. The diagonalising transformation 

must be constant within the sector to maintain decoupling 

of the equations. However, there may be situations where 

this transformation is slowly varying but the potential, and 

hence An(R), is rapidly varying with R. Employing a sector 

R-matrix appropriate to the varying An(R) would permit 

larger step lengths. Such a situation can arise in the 

coupled equations o£ the lOS approximation. The coupling 

matrix in the IOS can be written (cf. III.3.1) 

III.4.37a 
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where 

I I I . 4. 3 7b 

In matrix notation we have 

W (R) III.4.37c 

The transformation which diagonalises ! 1
CR) will also 

diagonalise !CR), i.e. it is independent of L. 

TTW1.T -=02. III438 v • • a 

III.4.38b 

The sector must be sufficiently small that the trans-

formation is constant across it. The off-diagonal elements 

of W are all contained in ! 1
, therefore it is reasonable to 

approximate (as constant within the sector. The form of the -
eigenvalues of W can be approximated by 

( \ \\ .. = .,_ L(~-t-•) 
""(RJ) Q" + 

" Rt. 
III.4.39 

where~~ is a constant. The solutions of III.4.27 with {/.....(R))'" 

as defined by III.4.39 are expressedin terms of Spherical 

Bessel functions for or Modified Spherical Bessel 

functions for ~: ~ o of the 1st and 2nd kind (Abramowitz and 

S t e gun 1 96 5 ) . 

III.4.40 
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r-
j 1'\"\R nl (1,.\rz) "-

9~ .( () 
'I 

\ 
I 

/---:n=- -, 
, Ia IR t __ 

L I v;" '.) 2\q,niR 

III.4.40 
I (.\'~ .\;:o\ ~- \..- \/?.,.. 't •• I ' . ) 

Substitution of these solutions into III.4.34 yields the 

appropriate sector R-matrix. Such propagators are much more 

cumbersome than those derived by use of a constant \~ . 

However, their evaluation can be made extremely efficient 

by using the recursion relations which exist between Bessel 

functions. 2. Consider the case q < o . 
n 

Let 

Then it can be easily shown (Abramowitz and Stegun) 

CL~I ( \ii\\P-');: (_~~) CL (\tn\r-')- _i c~ (\~(\\f(_) 
\'l,n\R 1'\.n\ 

I ( \ I \ I I . ( \ (L-1· I'> . ( \ l 
C L•\ '- '",R I = \'[,.-\ l CL \.\'1,-.\R,- lt:\R. CL~I ~~n\J<.ij 

III.4.41 

Similar expressions can be derived for the case q z ~ 0 . 
n 

Therefore the solutions required for the propagaturs,A(a), 

A'(a), B(a) etc. can easily be generated from the corresponding 

values used in the previous partial wave. This approach 

requires a considerable amount of storage, since at each 

sector boundary the values of A(R), A'(R), B(R) and B'(R) 

must be known for each eigenvalue qn. We also require the 

value of R at the sector boundary and the values of q , at 
n 

the mid-point of the sector, for the recursion relations. 

In total, for an N-channel calculation each step requires 

the storage of 5N + l numbers in addition to the trans-

formation matrix of dimension N2 . For the small number of 

channels normally required, this storage presents no problem. 
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Indeed, the reduction in the total number of steps required 

will offset this storage. 

The use of sector R-matrices assembled from the functions 

defined by III.4.40 has two very important advantages. It 

will not only allow larger step lengths, but also make such 

step lengths virtually independent of L. As the diagonal 

terms of the matrix W increase, the relative importance of 

the off-diagonal terms is reduced. Because of this, the 

step lengths are dependent on L (and similarly the total 

energy E), but this dependence will be weak. The computer 

program can therefore generate results for large numbers 

of partial waves, using the same step lengths for each, 

extremely efficiently. 

(d) The Step Length Algorithm 

Whichever form of sector R-matrix is employed, the 

diagonalising transformation must be constant, to within a 

given tolerance, across the sector. Use of propagators 

defined by III.4.36 demands the additional condition that 

W I (R) is constant also, whereas use of propagators defined nn 

by III.4.40 demands only that W 1 

1 (R) is constant. 
nn In the 

discussion below it is convenient to denote An= q in the 
n 

latter case. The derivative of the coupling matrix is 

related to that of the interaction potential, and the sector 

width controlling this advised by SWL is given by 

III.4.42 

I 

where BETA is a tolerance and V (R) is a measure of the rate 

of change of the potential, given as the rate of change of 

the average eigenvalue. 
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.N 

)..,~(.<.)- >-: (~-il \ 

) 
III.4.43 

The problem with this approach is that local minima or 

maxima, where V (R) ~ 0, can cause gross overestimation. This 

can be overcome by not allowing too large an increment, 

relative to the last sector. 

III.4.44 

A method of directly estimating the rate of change of 

the diagonalising transformatdon, T(.i..) is to examine Q_(.i.-t,_i_ ). 

If T (A.) T(.C:.-t) then 

III.4.45 

The deviation of Q from a unit matrix can be used to control 

the step length via, 
. '1'1.. 

CSitP= ~~Ti = Ci..JPM~X" ( N-
1 

\ 

2 >< CuP1..P, ) 

It- (I_-~) 

N ( R..: - R,.._i.J'l.. 

Final control over the step length can be implemented by 

specifying a minimum and maximum step length, STMIN and STMAX. 

The final predicted step length being 

BETA, CUPMAX, FACT, STMIN and STMAX are all input tolerances 

which must be specified to obtain the best results for the 

problem considered. 
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Use of the two propagators discussed earlier will only 

differ in the value of VSTEP. Employing propagators 

appropriate to a constant eigenvalue within the sector 

(111.4.36) PRl say, restricts VSTEP more severely than use of 

those defined by III .4.40, PR2. The eigenvalues of PRl contain 

2 the term L(L + 1)/R whereas those of PR2 do not. 

rR i. ~'~ = 1 ~ ~ L (\- T, ·) 1 R ,_ 

Pn I \1\1. "-
r-..- 1\ = ~~~ 

The approximation of q 
2 constant within the sector will be 

n 

closely related toT being constant also,since both are based 

on the rate of change of the interaction potential. There-

fore PR2 comprises basically ooly one condition on the stHp 

length, that it is sufficiently small that diagonalisation is 

accurate over the entire sector. PRl has the additional cond­

ition that L(L + l)jR2 must also be approximately constant. 

The step length algorithm presented is completely independent of 

the total energy E both for PRl and PR2, however PR2 has the 

additional, extremely powerful, advantage that it is also 

independent of L. Storage of the transformation matrices and 

th . 1 2 h f b d . · e e1genva ues q can t ere ore e use to generate solutions 
n 

for a large range of L values. The same procedure can be 

followed in PRl, however care must be taken that the step 

sizes used for the initial L value are sufficiently small to 

obtain accurate results for subsequent values. This may 

necessitate calculating solutions for only a small range of L 

values using given step sizes, then changing the step sizes 

to facilitate the calculation of another range of values, etc. 

Although the step length algorithm is completely in­

depe~dent of E (and also L for PR2), in theory the step sizes 
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are not. If the diagonal elements of the coupling matrix 

jmportance of the off-diagonal elements js reduced and Jarger 

step lengths are possible. However this dependence is weak, 

and the failure of the step length algorjthm to take account 

of it is not important. 

(e) Propagating Variable Numbers of Channels 

In order to obtain convergence of the scattering in-

formation it is frequently necessary to carry a large number 

of locally closed (negative kinetic energy) channels. These 

are required in the expansion of the total wavefunction in 

order to ruccurately describe the target when it is perturbed. 

The corresponding translational functions frequently carry no 

useful scattering information since they gain no appreciable 

amplitude. The possibility therefore exists of carrying just 

a sufficient number of channels depending on the degree of 

perturbation in the sector. The procedure is to drop channels 

when they are no longer required to accurately describe the 

target and pick them up when they are. 

The contraction of the basis set is simply performed by 

truncation of the global R-matrix - the row and column 

corresponding to the dropped channel is cut out. The R-matrix 

remains symmetric and hence preserves the unitarity of the S-

matrix. The addition of channels in sector i, say, is performed 

(; ' by taking the global R-matrix on the outer surface R · and 

bringing it up to the larger dimension by adding elements 

appropriate to the initial conditions 111.4.19. 

SWL suggest two criteria for the inclusion or exclusion 

of closed channels. The first is the obvious procedure of 
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specifying a tolerance parameter based upon the extent to 

which a channel is closed. If the negative kinetic energy 

of a channel is larger than the tolerance then the channel is 

dropped from the calculation. However, such a channel may be 

strongly coupled to those retained, and therefore important, 

and should not be omitted. The off-diagonal elements of 9 

determine how strong the coupling between channels is. The 

quantity recommended to estimate the extent to which channel 

j is coupled to l, 2 (j-1) is given by 

j. - ' - '/'1.. 

~ i I L ( Q ~~ + Q ~k ) 1 
(2~-'<-)(f<.~.-~ .. -1.) l I<:-: J j 

In propagating across a given sector we retain all locally 

open channels, a minimum number of locally closed, and, in 

addition, any closed channels which cannot be dropped by the 

criteria above. 

5. The Algorithm of de Vogelaere 

The method of de Vogelaere (1955) is a solution following 

algorithm in the approximate solution approach. The algorithm 

is based on the following matrix equations, which construct 

' the solution matrix, Q, and its derivative G at the 

integration co-ordinate (R + h) from their previous values 

(see e.g. Lester (1976)). 

::: f ( R) 1- "' { ( R ~ - ~ ( ~ ( R. ) H P.) + 2 ~ ( ~ T 'I ... " l ~ ( R + '/.,_ \.,)) 

: {(P-J _ ~ (~~J~(g\ ~-~~(P-•'t..\-.)~(1'-+'IJ.h) 

+ w (17-.+h} c;. (tZ\-h )) 
·-v -

III.5.1 

III.5.2 

III.5.3 
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The terms neglected in III.5.1, 2 and 3 are of order 

The algorithm is initialised at 

some point, sufficiently deep within the classically forbidden 

region, and, by repeated use of III.5.1, 2, 3, the solution 

matrix and its derivative can be propagated into the 

asymptotic region. It is not possible to know, in advance, 

which initial conditions will lead to the correct asymptotic 

boundary conditions (III.4.22). Therefore, it is necessary 

to find a complete set of solutions and, at the end of the 

calculation, take the appropriate linear combinations which 

satisfy the desired boundary conditions. Since we do not 

know how to pick the initial wavefunction, we chose an 

arbitrary linear combination of all solutions such that 

G 0. 

I 

The algorithm is initialised at R , say, by 
0 

G- ( R- o - ~ 2. 'n.) ' - ~2. 'v.._ ~ ,. ( R o l 
~ . III.5.4 

where G (R ) is an arbitrary non-singular matrix (frequently 
"- 0 

chosen to be the unit matrix, l). When the solution is 

propagated into the asymptotic region it will not satisfy 

the correct boundary condition, but will be of the form 

G • AX-BY III.5.5 

III.5.6 
v- ""' - --

Where A and B are as defined in Section 4b and X and y 

are constant. A and B are diagonal matrices and satisfy a 

Wronskian relation 

III.5.7 
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(For A and B defined in order to calculate the S matrix 

(III.4.25a,b) M = -2ii. For the definitions used to calculate 

the K-matrix (III.4.26a, b)~= 1>· 

Using III.5.5, 6 and 7 it is easily shown that 

III.5.8 

y " M -I (~~f. - ~~I') 
...... III.5.9 

The linear combinations which satisfy the correct 

as~otic boundary conditions are given by 

A 

f (R) = 
-I 

G-X III.5.10 
~ -

Comparing III.5.10 with III.4.22 gives 

0 -1 
S :: YY, III.5.ll 

and hence all the scattering information can be obtained. 

The problem of stability, caused by the growth of the 

closed channel solutions, is common to all solution following 

algorithms. During the solution of the equations some of 

the weakly growing solutions may be many orders of magnitude 

smaller than the fast growing, closed channel solutions and, 

since we are carrying only a finite number of digits, 

significance is lost and the solutions lose their linear 

independence. This results in the solution matrix becoming 

singular. To overcome this, stabilisation must be performed 

periodically, by taking linear combinations of the solutions. 

These new linear combination are chosen such that they are, 

numerically, more linearly independent than the original 

solutions. This can be achieved by multiplying III.5.1, 2 

and 3 by the inverse of the solution matrix (Wagner and 
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McKoy (1973)). This transformation, therefore, replaces 

,-,. ,-.-1 
by li'lJ It IS not necessary to perform this 

stabilisation at every step in the integration and the 

frequency of stabilisation will depend on the particular 

calculation. 
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CHAPTER IV 

ROVIBRATIONAL EXCITATION OF H2 BY He 

1. Introduction 

For several reasons, an important test case for the 

study of rovibrational excitation of diatomic molecules by 

atoms is the H2 + He system. First, there exist several 

ab initio potential surfaces for this sytem. Secondly, 

experimental results are available and, thirdly, th(~ H2 +He 

system is the simplest closed-shell neutral-atom-molPcul(~ 

pair suitable for such purposes. 

Krauss and Mies (1965) studied the H2 +He system employing 

a self consistent field (SCF), molecular orbital method, for 

a limited range of orientations. These calculations were 

extended by Gordon and Secrest (1970). The Krauss-Mies and 

Gordan-Secrest potentials are analytic fits to limited-

basis set, SCF calculations which do not contain the correlation 

effects responsible for the long range behaviour of the 

surface. In contrast, the series of configuration interaction 

points computed by Tsapline and Kutzelnigg (197~) do in­

corporate some correlation effects. These points have been 

extended and fitted to an analytic form by Raczkowski and 

Lester (1977). The incorporation of correlation effects 

gives the Tsapline-Kutzelnigg potential a shallow Van der 

Waal 's minimum, whereas the Krauss-Mies and Gordan-Secrest 

potentials are purely repulsive. 

The experimental results are in the form of vibrational 

relaxation rate coefficients for H
2 

dilute in He. i\udjJH:rt 

et al. (1973, 1974, 1976) have used a stimulated Raman 
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technique to obtain values of these rates for the temp­

erature range 50-450K, and, by varying the relative con­

centrations of ortho and para H2 ,have obtained values for 

each of these species individually. Values for the temp­

erature range 1350-3000K have been obtained by Dove and 

Teitelbaum (1974) by employing a shock tube method. 

Of all atom-molecule systems, H2 +He is the most 

manageable computationally. Not only because it is the 

simplest neutral-atom diatom system, but also because the 

rotational levels of H2 are widely separated and there are 

relatively few rotational levels between the vibrational 

levels. This feature makes feasible a rigorous close-

coupling (CC) calculation for this system. Heavier diatomic 

molecules have a large number of rotational levels which must 

be considered in scattering calculations, and, because of 

the 2j + 1 rotational degeneracy, the number of coupled 

equations becomes excessively large. This relatively large 

rotational energy level spacing in the H
2 

molecule also 

provides a stringent test of approximate treatments of th<~ 

rotational moUon of the molecule, particularly the energy 

sudden and the infinite order sudden approximations (see 

Chapter II.3a and 3c respectively). 

Due to the computational difficulties, the early CC 

calculations carried out by Eastes and Secrest ( 1972) and 

McGuire and Micha (1972) were largely exploratory in nature, 

involving small channel bases. Eastes and Secrest employed 

the Gordon-Secrest potential in calculations for para H
2 

+ He 

and were interested principally in the energy range below 
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the first vibrational threshold. These calculations were 

extended to higher collision energies by Lin and Secrest (1979). 

Lin (1979, 1980) has also performed detailed calculations at 

energies close to the first and second vibrational 

thresholds. Raczkowski et al. (1978) have performed CC cal-

culations for para H
2 

+ He employing both the Gordan-Secrest 

and the Tsapline-Kutzelnigg potentials. Their aim was to 

produce a set of benchmark calculations and to investigate 

the effect of the different potential surfaces on the 

rovibrational cross sections and vibrational relaxation 

rates. More recent CC calculations by Orlikowski (1981), 

also employing the Tsapline-Kutzelnigg potential, extend to 

energies much closer to the first vibrational threshold to obtain a 

more accurate determination of the vibrational relaxation 

rates. 

McGuire and Toennies (1975) employed several potential 

surfaces in their coupled states (CS) calculations. However, 

these results were later shown to be unreliable (Alexander 

and McGuire (1976)) due to the neglect of closed channels, 

i.e. from the insufficiency of the basis set. Alexandt~r and 

McGuire (1976) performed CS calculations for para H2 +He 

employing a total of five different potential surfaces. These 

surfaces are all based on the Gordan-Secrest potential, but 

with various modifications designed to investigate the 

sensitivity of rovibrational cross sections and the 

vibrational relaxation rate to the presence of long range 

interactions and potential minima. Alexander (1976) has 

performed similar CS calculations f'ur· or·tho H
2 

+II(:, t:mploying 

on~ of these modified Gordon-Secrest potential surfaces. 
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Bowman and Leasure (1977) have performed IOS calculations 

of rovibrational ex~itation of H2 by He, treating the vibrational 

coupling by CC techniques. Similar studies have been under-

taken by Eno and Balint-Kurti (1979) and Bieniek (1980) 

within the framework of the adiabatic distorted wave (ADW) 

IOS approximation, where the vibrational coupling is treated 

by ADW techniques. Eno and Balint-Kurti (1981) have also 

explicitly investigated the efficiency of employing ADW 

techniques, compared to a CC treatment, for the calculation 

of fixed-angle S-matrices for the H2 + He system. Rabitz and 

Zarur (1974) and Alexander (1974) applied the effective 

potential approximation of Rabitz (1972) in studies of 

rovibrational excitation of H
2 

by He. The semiclassical 

strong-coupling correspondence principle of Percival and 

Richards (1970) has been applied by Clark (1977). 

2. Description of the S¥stem 

The model system employed is that used by Eastes and 

Secrest (1972) and subsequently by Lin and Secrest (1979) 

and Lin (1R79, 1980). The He-H2 interaction potential is 

that of Gondon and Secrest (1970) which takes the form 

IV.2.1 

where ~r = r - r
0

, with r
0

, the equilibrium separation of 

the H2 molecule. The basis functions of the H2 molecule are 

approximated by rotating harmonic oscillator wavefunctions, 

which satisfy 

r· J'<-
j(:\t-1) ~t-l_ 

£vj J X. Vj ( !-J 0 IV.2.2 l - + + ~ 

clt· 2 
----

{ 1-l) 
. Yj 
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where <t) is the expectation value of r 2 in the vj state 
Vj 

given by 

:: ~~ ;X. (t) r-l. )j (r) J t 
vj vj 

J_ X> 

IV.2.3 

The units assumed in IV.2.2 in order to write the Schrodinger 

equation in this form are:-

Unit of energy £ the zero point energy of H2 0.26881eV 

i; 0 

TJni t of R, = 0.076153 A 
JzmS 

h 0 

Unit of r, -- 0.124206 A 
)zMs 

IV.2.4 

-23 where m is the reduced mass of He with H2 = 0.22261 x 10 g., 

-24 and M is the reduced mass of the H2 molecule = 0.83684 x 10 g. 

Expressed in these units, the constants in IV.2.1 are given 

by 

c 1127.9 t -0.07417 
0 

o< 0.2792 IS 0.2298 
0 .2 

o( 0.008445 r 6.0514 1 0 

j3 = 0.251 IV.2.5 

The solutions of IV.2.2 are given by 

IV.2.6 

with eigenvalues 

2v-;. \ + ---- IV.2.7 

where H (6r) is a Hermite polynomiaJ. The evaluaUon ol v 

the coupling matrix elements both for close-coupled and IOS 

calculations requires (cf. II.2.12a and II.3.16) 
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o() 

V,. ( R,¥) ~ r X:,J (t') v ( ~' ') tv;Y\ At II.2.8 
) 

G 

which can be expressed as a series of integrals of the form 

,cO 

=I (D.t-'/ I., IV.2.9 

Jo 

Since the magnitude of the basis wavefunction is extremely 

small for r .( 0 when v ~ 10 the range of integration can safely 

be extended to - .?Oto o0 • This allows analytic evaluation of 

IV.2.9 (Gradshteyn and Ryzhik (1980)) 

<>() 

J 
' «Rl'.'t-l'.t-l. 

I" = (!J. rY e ' J r 
·- ""' 

where q = (~) 
2 

IV.2,10 

The analytic evaluation of the matrix elements h(;cumu-; 

cumbersome for large v, since each matrix element is ux-

pressed as a series of In, which is itself a polynomial. 

~he extension of the integration ranges makes I ideally 
n 

suited to evaluation by Gauss-Hermite quadrature which 
. 2 

1 th · h f · -~r emp oys e welg t unctlon e It turns out that the 

numerical approach is much simpler than the analytic (see 

Section 3a). 

3. Numerical Details 

(a) Matrix Elements 

Consider the analytic evaluation of the matrix element 

with v = v' = 2. The required expression is 

where 

02 
" 

IV.3.1 



( o< R \ and q = -'- ) 
2. I 

as b<?fore. 
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Each v~(R) is a fil"th order 

polynomial, the coefficients of which have to be worked out 

tJy 11 and, from the required coefficients o1 l and thuse of the 
n 

powers of q within I 
n 

Such a task is not difficult, 

although care must be taken to ensure no simple algebraic 

error is made. For larger v, the expressions become 

more cumbersome. For example, v = v' = 3 contains I 
n 

for 

n = 0 to n = 7, and each I is an nth order polynomial resulting 
n 

in vx(R) being a seventh order polynomial. As v increases, 

the possibility of an algebraic or programming error 

increases, is does the computer time required to evaluate 

the expression. 

In comparison, the numerical evaluation of the integrals 

IV.2.8 can be achieved simply and efficiently by Gauss-

Hermite quadrature. The integrand can be written (cf. 

IV.2.1 and IV.2.6). 

"/;
11
/r) V(~,r:.-)X,"j' (r-) = ~(r-) -~·-.+(D(t)R)[Ao(r}+fA 1 (t') P?_(~.t)je.-~'" 

l. 

where IV.3.2 

A A (r-) = ( I + -~\. M ) 

b (t) -;;: (- 0( 0 \- o<,flt) 

. -C!r2 
The weight funct1on e need not be calculated. The 

quantities B(r), D(r) and Ax(r) are independent of Rand 

can be calculated at all the required quadrature points on 

initialisation of the potential routine and used repeatedly 

for all values ot R. The only expensive task, computationally, 

is the exponentiation. This can be avoided by employing a 

fixed step length, 4R, in the integration algorithm by noting 

that 

IV.3.3 
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With ~R constant, exp (D(r)~R) can also be set in the 

init-ialisation. The exponential factor can chen be 

calculated at each step by multiplication of the previous 

factor by exp (D(r)6R). 

It is much simpler to evaluate the matrix elements 

numerically. Only if analytic evaluation offered a significant 

reduction in the computer time required for the complete 

calculation of cross sections, would such a course be pursued. 

However, to test the efficiency and accuracy of numerical 

evaluation, matrix elements for v( v 1
) { 2 were calculated 

analytically. Table l contains a comparison between V 1 (R,r) vv 

evaluated analytically for v(v 1 )~2 and the corresponding 

values calculated using a 16 and 8 point Gauss Hermite 

qu~drature for v(v 1 )~ 3. The values calculated using a 16 

point quadrature agree with the analytic resuJts for v ( 2 to 

11 significant figures at all values of R. The discrepancies 

between values obtained using 8 and 16 points only appear at 

large values of R (where the potential is extremely small) 

for v?2. As can be seen, these discrepancies are extremely 

< -4q) small ( 0.3 x 10 ,o. Also, we are interested in the 

calculation of cross sections at total energies between the 

v = 1 and v = 2 vibrational states, i.e. v = 2 and v = 3 are 

closed channels in our calculation. This tiny loss or accuracy 

introduced by using an 8 point rather than a 16 point 

quadrature will therefore have no significant cJf'cct on the~ 

final cross sections. If the numerical routine takes 

advantage of a fixed step length in the integration algorithm, 

as discussed previously, it takes much less time to produce 

virtually identical results, than one which does not. Compared 



TABLE 1 Comparison of potential matrix elements evaluated 
analytically (a), numerically by 16-point Gauss­
Hermite quadrature (b) and by 8 point quadrature 
(c) • 

v I (R,Y) 
vv 

(a.u.) at cos¥=1 

R(au) V02 v12 v22 

a) 3.3138393277-9 1.7103630963-8 3.6094608412-8 

10.4 b) 3.3138393277-9 1.7103630963-8 3.6094608412-8 

c) 3.3138393276-9 1.7103630961-8 3.6094608379-8 

V03 v13 v23 v33 

6.4 b) 3.9897144664-7 4.7860434216-6 2.7599752602-5 7.0185445383-5 

c) 3.9897144664-7 4.7860434215-6 2.7599752597-5 7.0185445261-5 

10.4 b) 8.0694613692-10 6.0798988442-9 2. 2760710711-8 4.1638936158-8 

c) 8.0694613604-10 6.0798988168-9 2.2760710152-8 4.1638927602-8 

TABlE 2 Comparison of approximate computer time required to 
evaluate V ,(R,~) for v(v')~ 2 at 500 values of R 
on the IBMv~70/168 at NUMAC 

Numerical 

Analytic a) 
16 point 8 point 8 point quadrature 

quadrature quadrature and fixed step. 

Time(s 0.09 3.50 1. 7 5 0. 1 

a) With routine adapted to take advantage of fixed step 
lengths. 
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in Table 2 are the approximate computer times required for 

th~ evalua~-cion of V ' ( R,if) at 500 valu~s oi' R lor· v( v') ~ 2 vv 

(i.e. 6 elements allowing for the symmetry \v'(R,~) = 

Vv'v(R,t)) on the IBM 370/168 at NUMAC. As can be seen. 

analytic evaluation is most efficient. However as v 

increases the computational effort involved in calculating 

V ,(R,t) will increase rapidly. This is not true for vv 

numerical evaluation, where the time taken for the evaluation 

of each element is independent of v, if the same number of 

quadrature points is sufficient for larger v. 

(b) Close-Coupling calculations - MOLSCAT 

To perform CC calculations we obtained a version of S. 

Green's MOLSCAT heavy particle scattering program from 

Daresbury Laboratory and installed it on the IBM 370/168 of 

the local system, NUMAC, at Newcastle University. To verify 

that the prgram was working correctly, attempts were made 

to reproduce the results of Eastes and ~een~sL ( 1972) -

hereafter referred to as ES. ES repo~t individualS-matrix 

elements for rovibrationally inelastic transitions using an 

exactly defined basis set and model system, described in 

Section 2. These results provide a stringent test of the 

algorithm, tolerances, etc. of MOLSCAT and of the accuracy 

of the potential routines. 

MOLSCAT has the capability of solving the coupled 

equations by the method of either de Vogelaere or Gordon (see 

Chapter III). Since we wanted to solve the equations for 

several energies the obvious choice is Gordons method, which 

is an approximate potential algorithm. However, there were 
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' two severe problems in using Gordons method. In order to 

amount of information, calculated in the solution at the 

initial energy, must be stored. With the large number of 

channels involved, and a sufficiently large number of steps 

to maintain accuracy, the storage required exceeded that 

available. This storage requirement could have been 

eliminated, but the advantage of employing Gordon's method, 

i.e. the efficient generation of solutions at many energies, 

would also be lost. The second problem was the presence of 

a small bug in the code relevant to Grodon' s method. If 

closed channels are included in the calculation at the initial 

energy, the algorithm "chokes on itself" (S. Green-private 

correspondence). In some regions of the integration range 

the step length predictor fails and predicts smaller and 

smaller step lengths. To overcome this, S . r; r < ~ < ~ n ad v i s t: d 

choosing an initial energy sufJieiently largr~ that all th<: 

channels are open and then subsequently lowering the <::nergy 

to the desired value. However, the choice of step length is 

energy dependent (although weakly) as discussed in Chapter 

III.4(c~ There is therefore the possibility that the step 

length employed at the high initial energy may not be sufficiently 

small to maintain accuracy at the lower energies. The 

initial energy would have to be much larger than the sub-

sequent energies and the discrepancy in the step lengths 

required possibly significant, with no way of checking. 

In comparison to Gordon's algorithm, that of de Vogelaere 

always ran smoothly, producing extremely consistent results 

with changing step lengths and tolerances, etc. All the 



88 

CC calculations were therefore performed by MOLSCAT employing 

Li1e de Vugelaere algorithm to ~olve the coupled equacions. 

The matrix elements were calculated numerically as described 

in Section 3a. 

Table 3 contains a comparison between values of 

[sJ(jiv,000)! 2 calculated using MOLSCAT and the corresponding 

results of ES at a total energy E = 3E, relative to the ground 

state v = j = 0, for partial waves J = 0 and J = 10. The 

table also contains results obtained by MOLSCAT using 

different step lengths and integration ranges. These 

results are obtained using the version of MOSCAT on NUMAC 

employing 16 and 32 steps per smallest de Broglie wavelength 

in the de Vogelaere algorithm (N16 and N32 respectively) and 

a version made available on the CRAY-1 computer at Daresbury 

Laboratory employing 16 steps per wavelength (C16). An 

integration range of 5.2 to 75.2 units was used for N16, 

N32 and C16. To demonstrate that this is sufficient the 

table also includes a N32 run using an extended range of 

5.2 to 100.0 units (EXN32). The results clearly demonstrate 

that 16 steps per wavelength and the shorter integration range 

are sufficient and also the accuracy and stability of both 

the versions of MOLSCAT employed. The agreement with the 

results of ES is excellent, even when ISJ(jiv,OOO)I 2 is 

-7 as small as 10 . The level of agreement is all the more 

striking if it is noted that ES used a completely different 

numerical method, adapted from that of Sams and Kouri (1969) 

a,b. The small discrepancy in the comparison between the 

smallest results is certainly not attributable to round-off 

error in MOLSCAT. However, such quantities are extremely 



TABLE j comparison of the results of Eastes and Secrest (1972) 
with calculations using MOLSCAT for total angular 
momentw11 J = 0 and J = 10 and a total energy E = 3,. 
The H2 states are specified by the values of (v,j~ • 
ES, results of Eastes and Secrest; Nl6, results Wlth 
version of MOLSCAT on NUMAC using 16 steps per wave­
length in de Vogelaere; N32, NUMAC version with 32 
steps per wavelength; Cl6, results using version of 
MOLSCAT on the CRAY-1 with 16 steps per wavelength; 
EXN32, as N32 but using an extended integration range. 

H2 states included 
J = 0, [s0 (jjv;OOO) 1 2 for various ( v' j) 

in basis set 

( y, j) = (0,0) (0,2) (0, 4) ( 1,0) (1,2) 

(0,0) to (0,6)' ES 2.7775-1 5.9864-1 1.2145-1 1.6279-6 7.6856-7 
( 1,0) to (1,6), 

(2 ,0) ' (2,2) 1 N16 2.7826-1 5.9851-1 1.2109-1 1.6205-6 7.7318-7 

( 3, 0) ' (3,2). N32 2. 7827-1 5.9850-1 1.2109-1 1.6209-6 7. 7338-7 

J = 10, [slo (j,1o-j,v;ooo)l 2 

( v, j) = (0,0) (0,2) (0, 4) ( 1,0) (1,2) 

(0,0) to ( 0' 6 ), ES 3.1CXD-1 2.1471-1 3. 2178-2 8.5295-7 8.9507-8 
(1 ,0) to (l1,4), 

(2 ,0). Cl6 3.1048-1 2.1472-1 3.2121-2 8.5481-7 9.1340-8 

Nl6 3.1048-1 2.1472-1 3.2121-2 8.5488-7 9.1345-8 

N32 3.1046-1 2.1474-1 3.2125-2 8.5502-7 9.1373-8 

EXN32 3.1046-1 2.1474-1 3.2125-2 8.5504-7 9.1350-8 

(0,0) to (0, 6), ES 3.0994-1 2.1474-1 3.2164-2 7. 7137-7 1. 4014-7 
(1,0) to (1,4), 

(2.0), (2,2). Nl6 3.1042-1 2.1476-1 3.2107-2 7.7349-7 1.4232-7 

N32 3.1040-1 2.1477-1 3.2111-2 7. 7363-7 1.4236-7 

EXN32 3.1040-l 2.1477-1 3. 2112-2 7.7364-7 1.4233-7 



89 

sensitive to the precise description of the system (matrix 

c!. cmcn t:~, :r·(~duced mas::;, r.:; Lc. ) . 

mass in atomic mass units and energy in inverse centimetres, 

yet the model system is defined in terms of other units. The 

small discrepancies ( ~2%) could easily be attributed to the 

conversion factors employed. Overall the results show MOLSCAT 

to be stable and accurate,and the excellence of the agreement 

with the results of ES would appear to prove conclusively 

that the model system has been accurately described also. 

The paper of ES concentrated mainly on vibrationally 

elastic transitions, with only one of the eight energies 

investigated being above the first vibrational threshold. 

Lin and Secrest (1979) (hereafter referred to as LS) 

extended these calculations to higher energies, up to 5£ 

above the ground state of the H2 molecule,£ . In this paper. 

LS pub l ish part i a l cross sect ions o-J ( v j ~ v 1 j 1 
) for J == 3 at 

the same energy used by ES for the results in Table 3, E == 3~, 

for various H2 basis sets. Comparison of these vibrationally 

inelastic cross-sections with those calculated using 

MOLSCAT is shown in Table 4. The basis set used is {s,sJ 

in the notation of LS i.e. j == 0, 2, 4, 6 for each of v == 0,1. 

As can be seen,the discrepancies are large, attaining a factor 

of twenty for the smaller partial cross sections. As a 

final check the cross sections in Table 4 were calculated 

manually from the appropriate S-matrix elements and 

MOLSCAT found to be accurate. In view of the agreement with 

ES and the numerical checks detailed in Table 3, it appears 

that the results of LS are seriously in error. In private 



Tl~BLE 4 ... ~~ cc,rnparisc)n C)f inelastic partial ·wctve c~r\.)SS 

sections, ~ 7 , for J = 3 and E = 3£; column 
(a) contain the results obtained using MOLSCAT, 
colwnn (b) the results of LS for basis set {_6,6} . 
3.919-8 denotes 3.919 x lo-8 

I ()"3 (V j ~ V I j I ) 

( V f j ) ---->' ( V 1 
I j I ) (a) (b) 

(0,0)-> (1,0) 3.919-8 5.915-8 

---?(1,2) l. 464-8 2.621-8 

~(1,4) 2.108-10 3.710-9 

(0,2)--? ( 1, 0) 1.091-8 6.936-9 

~ ( 1 '2) 2.734-8 4~567-8 

~ ( 1 '4) 5.266-10 1.056-8 

( 01 4) ~ ( 1,0) 1.911-8 2.188-8 

-i'(l,2) 8.652-8 7.168-8 

~ (1,4) 3.046-9 4.236-8 
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correspondence with Lin, he admitted to an error in his 

potential routine which had been used in the calculation of 

the partial cross sections in Table 4. However, he maintained 

that the fault had been rectified before the calculation of 

the total cross sections, converged with respect to total 

angular momentum J, had been performed and therefore that 

these main results were correct. 

The paper of LS also contains graphs which display the 

variation with energy of the total cross section for various 

transitions. The lower energy points are taken from ES and 

the higher energy points are their own calculations. At the 

point where these two sets of results meet, a pronounced 

structure is present. This is attributed by LS to the 

opening of the first vibrational threshold. Therefore, it is 

not only the magnitude of the cross sections which may be 

in error, but also their physical interpretation. Since sueh 

structure is an obvious characteristic for calculations w-;ing 

approximate methcx:ls to at tempt to reproduce, it is r; r g n: at 

importance that its presence or absence be determined. 

In order to obtain sufficient computer time to calculate 

total cross sections, the version of MOLSCAT made available 

on the CRAY-1 computer at Daresbury Laboratory was used. A 

comparison between the results obtained using this version 

and the version on the IBM 370/168 at NUMAC has already been 

presented in Table 3. The CRAY-1 version maintained accuracy 

and stability, with changes in step length and intl:gratiun 

range, to the same degree as that on NUMAC. 

Calculations were performed for para H
2 

at five energies, 

ranging from just above the first vibrational threshold (E = 2E) 
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to midway between the first and second thresholds (E = 3£). 

An additional calculation at 1.5eV above the first threshold 

was performed in order to compare with the results of Raczkowski 

et al. (1978). For all the para-· H2 calculations, the basis 

set employed was that used by LS;{6,6,6,4~ i.e. j = 0, 

2,4,6 for v = 0,1,2 and j = 0,2,4 for v = 3. The integration 

range used by LS was found to be sufficient for all the lower 

energy calculations, as demonstrated in Table 3. However 

for the high energy, E = 2£ + 1.5eV, an integration range of 

2.0 - 70.0 was required. For high values of J both the lower 

and upper limits of the integration range should be increased. 

The upper limit is automatically extended by MOLSCAT until 

the S-matrix has converged to within a given tolerance, set 

at 0.1%. The lower limit required will only increase slightly 

as J increases (e.g. 5.2 at J = 0 can be increased to 6.5 

at J = 60). Therefore, no significant gain is obtained by 

raising the lower limit ~ J increases, and the same lower 

limit was used at all J. 

Fully converged calculations were performed for three 

energies. For the other three only one parity block, (-l)J, 

was calculated i.e. only cross-sections for transitions 

involving states with j = 0 are complete. Also, for two of 

these energies sufficient partial waves were calculated to 

converge only the vibrationally inelastic cross sections. 

The various details ofthe number of partial waves, time per 

partial wave, etc. for the different total energies are 

contained in Table 5. The integration range specified will 

be increased by MOLSCAT as required. For example, at 



TABLE 5 Details of CC calculations performed using MOLSCAT on the CRAY-1 Computer. 

( ~' 4 4 + 9 6 = 140 is Time for first parity + 'J' ime for second parity = Total time) • 

Energy In t•2 
R 
2gration 
Range 

2. 02 £ 5. 2 - 75.2 

2.1£ 5.2 - 75.2 

2.15t 5.2 - 75.2 

2.5t,. 5.2 - 75.2 

3.0£ 5.2 - 75.2 

2f+l.5eV 2.0 - 70.0 
- - ---

Energy Int•2gration 
Range r---------------

3. 0 t- 5.2 - BS.O 

Para n2 + He calculations 

Time/partial wave(s) Max J Basis set 
value size 

86 12 {6,6,6,41 (-lf Parity only, only vibrationally 
inelastic tJ.vl=o cross sections converged 
with respect to J. 

87 60 [6,6,6,41 ( -1 yi Parity only, all cross sections 
converged. 

89 20 {6,6,6,4} ( -1 yi Parity only, only /J.v :f 0 converged 

*44 + 96 = 140 60 [6,6,6,4} Full calculation ' i.e. Both parities, 
and all cross-sections converged 

49 + 105 = 154 80 [6,6,6,4} Full calculation 

77 + 163 = 240 90 {6,6,6,4} Full calculation 
- - - -·- -· ----------- ---

Ortho H~ + He calculations 
L.--~-----------------

Time/partial wave(s) 

58 + 106 = 164 

Alax: J 
value 

80 

Basis set 
size 

[7,7,5,1~ Full calculation 
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E = 2£ + 1.5eV for J = 90,the integration range employed 

was 2.0 - 90.0 and the calculation required 108 + 234 = 342 s 

(Time for one parity block + Time for other block = total 

time) . Also the times specified are for partial waves J > 6. 

For J < 6 the number of channels is reduced and consequently so is 

the time required. 

Calculations were performed for ortho H
2 

at only one 

energy, E = 3S. Table 6 shows the convergence of results 

with basis set size for J = 10. As can be seen,a basis set 

o f { 7 , 7 , 5 , 1 } ( i . e . j 1 , 3 , 5 , 7 f o r v = 0 , 1 , j = 1 , ~~ , 5 for 

v = 2 and j = 1, v 3) is sufficient for most trans i U ons. 

As expected, convergence deteriorates as the limit of the 

basis set is approached, but remains within a few per cent 

even for the v = 0, j = 7 to v = 1, j = 5 transition. As 

the larger basis {7,7,7,5} required more than twice the 

computer time, the basis {7,7,5,1} was used in the full 

calculation. Theintegra tion range used was 5. 2 to 85.0. These 

details are summarised in Table 5. 

In all calculations for para and ortho H
2

, 16 stops per 

smallest de Broglie wavelength was employed in the de 

Vogelaere algorithm. 

(c) lOS Calculations 

(i) Solution of the coupled equations for fixed 

orientation 

The calculation of cross sections using the lOS approxi­

mation consists of two operations. The equations, coupled in 

vibration at given rotor orientations, are solved to obtain 

appropriate S-matric(-;s, which are then used in tiH~ ca h:ula Lion 

of tile cross sccLjonso Th(~ computer· Lime required for LIH~s(; 



Basl.S set 

(i) -+ (f) {7,5,3,1} {7,5,5,1} {7,7,3,1} {7,7,5,1} {7,7,7,5} 

1"\ , 
........ ·"' "'! l. 726-l 1.726-1 l. 726-l l. 726-1 1"726=1 V:;.L v¥;. 

0,3 4.869-2 4.869-2 4.870-2 4.870-2 4.870-2 
0,5 3.916-3 3.916-3 3.916-3 3.916-3 3.916-3 
o, 7 2.182-5 2.182-5 2.232-5 2.231-5 2.231-5 

0,3 -+ 0,3 2.228-1 2.228-1 2.228-1 2.228-1 2.228-1 
0,5 1.899-2 1. 899-2 1. 898-2 1. 898-2 1.898-2 
0,7 1. 919-4 1. 919-4 1.979-4 1. 978-4 1. 978-4 

0,5 -+ 0,5 3.334-1 3.334-1 3.333-1 3.333-1 3.333-1 
o, 7 3.282-3 3.282-3 3.385-3 3.384-3 3.384-3 

0,7 + 0,7 5.489-1 5.489.1 5.488-1 5.488-1 5.488-1 

1,1 + 1,1 6.601-1 6.601-1 6.601-1 6.601-1 6.601-1 
1,3 3.145-2 3.147-2 3.146-2 3.147-2 3.147-2 
1,5 1.182-5 1.173-5 1.207-5 1.198-5 1.199-5 

1,3 + 1,3 1.238+0 1. 238+0 1.238+0 1. 238+0 1. 238+0 
1,5 3.572-4 3.538-4 3.652-4 3.617-4 3.620-4 

1,5 + 1,5 4.246+0 4.246+0 4.246+0 4.246+0 4.246+0 

0,1 + 1,1 1.045-7 1.046-7 1.046-7 1.048-7 1.048--7 
1,3 1.076-8 1.083-8 1.052-8 1.059-8 1.059-8 
1,5 5.354-12 5.798-12 4.731-12 5.218-12 5.233-12 

0,3 + 1,1 1. 393-7 1.390-7 1.405-7 1.402-:-7 1.402-7 
1,3 3.061-8 3.095-8 2.912-8 2.945-8 2.945-8 
1,5 2.595-11 2.903-11 1. 792-11 2.123-11 2.135-11 

0,5 + 1,1 4.514-8 4.717-8 4.220-8 4.415-8 4.415-8 
1,3 1. 730-7 1. 767-7 1.627-7 1. 663-7 1. 663-8 
1,5 3.554-10 4.029-10 1.443-10 1.841-10 1.866-10 

o, 7 + 1,1 1. 815-8 1. 786-8 2.066-9 1.862-9 1.903-9 
1,3 2.214-7 2.160-7 3.465-8 3.156-8 3.217-8 
1,5 2.355-8 2.570-8 5.234-9 6.284-9 6.463-9 

Table 6 Convergence of cross-sections o'(i-f) (in units of 
02 
A ) with basis set size for total angular mocentum 

J = 10, and total energy;-::= 3t.(f.= 0.26881 eV). 

The H2 states are specified by the values (n,j). 
-1 1.726-1 denotes 1.726 x 10 . 



93 

two steps is very different, with the integration of the 

coupled equations accounting for by far the majority of the total 

running time. In the calculations considered here,retaining 

4 vibrational channels and using 8 orientations,the inte-

gration takes up over 95% of the total time. The efficiency 

of the complete computer code is therefore almost entirely 

dependent on the efficiency of the integration algorithm and 

hence most effort was aimed at improving this part of this 

code. 

Computer programmes were written in FORTRAN IV and 

developed on the IBM 370/168 at NUMAC to calculate IOS 

cross sections using the R-matrix propagator method to solve 

the coupled equations involved. The integration routine 

incorporated the step length algorithm and a capability to 

propagate variable numbers of channels as discussed in 

Chapter III.4. The program was also equipped for the efficient 

generation of results for many energies and partial waves. 

The form of the sector R-matrices was chosen to be that 

appropriate to a constant potential within the sector (i.e. 

I I I . 4. 36). 

To check the integration algorithm, it was used to 

reproduce the results of SWL obtained for the model atom-

forced harmonic oscillator system described by Secrest and 

,Tohnston ( 1966). In the units of Secrest and Johnston, the 

Schrodinger equation is 

\'l. 
1 o + .!.. r 'l.. 
2. ~r-'l.. l IV.:l.3 

with 
V(~<--r-) = A~[-o<(R-~-')] 
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where R is the integration co-ordinate and r is the oscillator 

coordi nat(". As can hf~ sef~n; the basis functions are harmonic 

r 
I 
L 

\ 'l. l 
' Cl + ,!._ t- l.j' ·t'v ( -t-''! -= r t; / \ 
2 - ... ~... ·,· l f" J ,jt L 2. • 

r"' i lr.\ c - /z_ Hv (r-) v l. ,. ·- ve 

£,, = v + 1/z. 

IV.3.4 

IV.3.5 

whereCv is a normalisation coefficient and B) r) is a Hermite 

polynomial. The scattering problem is completely specified 

by M, E , o<. and A. The values of these parameters are 

M O.G667 A 41000 o<= 0.30 E 8.0 

Initially the integration algorithm was used with a fixed step 

length. Table 7 contains a comparison of the results obtaind 

using several step lengths with the highly accurate results 

of SWL. All calculations retained 6 basis states. As 

can be seen the agreement is excellent, as would be expected. 

Indeed, identical agreement with SWL is obtained if the 

number of steps is increased to 2000. The table also demon-

strates that the results converge monotonically to the correct 

answt-;r as the number of sectors is increased. This 

monotonic convergence is an extremely useful feature, however 

if a variable step length is used, the results tend to 

oscillate. As noted previously (Chapter III.2) approximate 
' 

potential algorithms require a lot of numerical effort to 

obtain highly accurate results, although they can obtain 

reasonable accuracy with much less effort. This is reflected 

in the results of Table 7 where the use of 70 steps gives 

good results. 



TABLE 7 Comparison of js{v,v') 1
2 obtained using different 

numbers of steps over the integration range with the 
results of Stechel et al. (1978). 

a) 70 steps, b) 100 steps, c) 150 steps, d) 200 steps, 
e) Result of Stechel et al. 

~ v' 
v~~----------------------------------------------------------~ 0 1 2 3 

a) 0.8918486+0 

b) 0.8913110+0 

0 c) 0.8911631+0 

1 

2 

3 

d) 0.8911379+0 

e) 0.8911111+0 

0.1069453+0 

0.1074700+0 

0.1076144+0 

0.1076390+0 

0.1076651+0 

0.1205915-2 

0.1218835-2 

0.1222325-2 

0.1222920-2 

0.122359 -2 

0.1828761-6 

0.1859456-6 

0.1867725-6 

0.1869138-6 

0.18707 -6 

0.8515397+0 

0.8507947+0 

0.8505921+0 

0.8505576+0 

0.8505194+0 

0.4150071-1 

0. 4172081-·1 

0.4177891-1 

0.4178882-1 

0.418008 -1 

0.1435146-4 

o. 1451468-4 

0.1455806-4 

0.1456549-4 

0.14576 -4 

0.9559706+0 

0.9557300+0 

0.9556663+0 

0.9556555+0 

0.9556422+0 

0.1322752-2 

0.1330399-2 

0.1332432-2 

0.1332781-2 

o. 133335 -2 

0.9986627+0 

0.9986549+0 

0.9986528+0 

0.9986525+0 

0.9986519+0 
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The results of SWL were obtained using a variable step 

length as discussed in Chapter lll.4d. To test the numerical 

method thoroughly, the integration range used was R = 0 to 

100 units and a total of 5300 sectors employed. However, 

4500 of these sectors are in the rangeR= 0- 20, although 

there are no locally open channels until near R = 30. SWL 

also report that a 125 variable-step calculation employing 

an integration range R = 20 - 60 gives results within 5% of 

those of the highly accurate calculation. The results in Table 7-

using a fixed step length and 100 sectors gives results 

which agree with SWL to within '0.2%. This suggests that 

the step lengths used are not appropriate. However, this 

may be peculiar to the model system, and the efficiency of 

the step length algorithm must be studied with reference 

to the lOS H2 +He calculation. 

The solution of the coupled equations at a fixed rotor 

orientation in the lOS is equivalent to a full CC calculation 

where only j = 0 states are retained, employing an isotropic 

potential equal to the full potential calculated at the 

appropriate angle. Therefore, MOLSCAT can be used to verify 

the R-matrix integration algorithm for the H2 +He lOS 

calculation. A comparison between IT(v ,v')i 2 obtained by 

MOLSCAT and from the R-matrix algorithm at a fixed orientation 

cos l = 0 tor L = 4 and total energy E = 3£ is contained in 

Table 8. The calculation using MOLSCAT employed 16 stl-~ps pr:-~r-

smallest de Broglie wavelength in the d~ Vogelaere algorithm 

and that using the R-matrix algorithm a total of 1000 sectors. 

The excellence of agreement reflects the stability and 

accuracy of both the computer codes. 



Table 8 

1 

(v,v ) 

Squares of angle fixed T-matrix elements, 

ITL(v,v') 1
2 for cost= O, L = 4 and E = 3t 

(£= 0.26881 eV). Upper entries, MOLSCAT 

lower entries, R-Matrix propagator method. 

( 0 '0) ( 0' 1) ( 1 ' 1 ) 

3.99823 + 0 1. 01533 - 9 3.94277 + 0 

3.99829 + 0 1. 01507 - 9 3.94278 + 0 
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The results of table 8 were used as benchwork results 

with which to test the step length algorithm. After con-

siderable experimentation with the tolerances, it became 

clear that the step length algorithm described in Chapter 

III.4d is excessively dependent on the rate of change of 

the potential. Although the algorithm allows large step 

sizes near the asymptotic region it also forces the step 

size in the classically forbidden region to be far smaller 

than required. If the tolerances are relaxed, allowing larger 

steps near R = 0, the larger step sizes further out become 

too great to maintain accuracy. This behaviour is reflected 

in the distribution of sectors in the calculation of SWL 

where 85% of the sectors are well within the classically 

forbiddden region. The results of Table 7 suggest that this 

concentration of effort is unnecessary and wasteful. Att~mpts 

were made to remedy this by explicitly relaxing the dependence 

of the step size on the rate of change of the potential, 

rather than allowing STMIN and STMAX to come into operation. 

None of these attempts were particularly successful. With 

this system, where the potential is a smoothly decaying 

exponential, the step length algorithm does not present a 

large reduction in computer time. Maintaining accuracy to 

4 figures, a variable step length gave approximately a 20% 

reduction in computer time over a fixed step calculation. 

However, with a variable step length there is always the 

possibility of failure, in that the algorithm may waste time 

by employing an excessively small step length at some points, 

or lose accuracy by employing an excessively large step at 

others. For solution of the coupled equations at one 
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orientation, retaining 4 vibrational channel and using 

approximately 300 steps of fixed length, the computer time 

required is,{..2s. This is assuming that a numerical routine 

which takes advantage of the fixed step length is employed 

to calculate the matrix elements. Therefore for an lOS 

calculation involving 8 orientations the total time per 

partial wave is~ 16s. This is only for the first partial 

wave. The calculation of results for subsequent values of· L 

will only require 6 6s. The lOS calculations, therefore, do 

not require a large amount of computer time and the modest 

saving of 20% by employing a variable step length is not 

warrented, considering the possible dangers involved. 

In these preliminary calculations the sector R-matrices 

used were appropriate to approximating the elements of the 

locally diagonal matrix as constant (111.4.36). As discussed 

in rhapter 1II.4.c and d there are advantages in using more 

cumbersome sector R-matrices which are appropriate to 

approximating the elements of the locally diagonal matrix as 

2 [constant+ L(L + 1)/R ]. Both these schemes, however, 

require that the step length must be sufficiently small that 

the diagonalisation, performed at the centre of the sector, 

is accurate over the entire sector. For the purely 

repulsive interaction potential employed here, the step size 

required to maintain diagonalisation was sufficiently small 

that the coupling matrix (including the L(L + l)jR
2 

term) 

could be accurately approximated as constant within the 

sector. Therefore for this system the step size is limited 

by the off-diagonal terms and hence almost independent of L. 

This is demonstrated by the fact that the number of sectors 
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required to maintain accuracy did not vary significantly with 

L. The rate of change of the term L(L + l)jR2 increases 

with L and therefore a stPp length which is Sllfficiently 

small to accurately calculate results for the highest L 

value will also be sufficient for the lower values. 

SWL investigated the efficiency of propagating variable 

numbers of channels (as described in Chapter III.4.e) with 

reference to the model system of Johnston and Secrest (1966). 

They concluded that in such a weak coupling system propagating 

variable numbers of channels gave no substantial increase in 

the efficiency of the algorithm. This was due to the rapid 

convergence of the results with basis set size and therefore 

few closed channels are required. As would be expected, 

this also proved to be true for the H2 + He system. A typical 

calculation at a given orientation involves retaining 4 

vibrational channels(two of which are closed) and employing 

300 steps. In such a calculation, only in the last 20 

sectors could channelsbe dropped while still maintaining 

accuracy ofthe results to 3 figures. Indeed the extra time 

required to check how many channels to propagate exceeded 

the time saved by propagating fewer. 

Once the equations have been integrated out to the upper 

limit of the integration range, the code continues outwards 

until the largest relative change in the S-matrix elements 

is less than a given tolerance. This ensures that the 

integration range employed is sufficient. 

(ii) Quadrature over orientation 

Once the S-matrices at given orientations have been 

calculated they must be integrated over orientation to 

obtain a body-fixed S-matrix (11.3.18). The values of the 
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angle of orientation were chosen to be the points of a Gauss-

Tn examing the efficienry of the quadrature 

and the number of points required,we need only discuss 

integrals appropriate to 0' ( vo ~ v 1 j") since a 11 other cross-

sections can be derived trivially from II.3.7b, i.e. 

(2/+ 1 )(~"0 \'l.\
1
. (j' j J

11 

)2. () (vo - 7 vj'') 

\ k v~ ! : __ . 0 C 0 

j" 

IV.3.6 

Therefore, if all cross-sections involving states up to jmax 

are required we need allO"(vO-v 1 j") up to j" = 2jmax' due 

to the properties of the 3-j coefficients, for a complete 

summation. In considering the number of quadrature points, 

the acco.r8cy of resu 1 ts up to d( vO -7 v 1 2jmax) must be con-

sidered. The evaluation of Cl(VO,-:> v'j' 1
) involves solution 

of the integral 

~~j~" !¥. o) s;~' ( y l '"' ( J l' 
Ll 

0 

~/o 

2 r ;;:~0 (~ o) s.~v' (¥) ~ r J 't 
,j 0 

= 0 j ,, o.JJ. IV.3.7 

since we are dealing with a homonuclear species and therefore 

the S-matrix is symmetric about ~/2. The number of quadrature 

points required to maintain accuracy will increase with j" 
.'\( 

as the oscillatory behaviour of Yj"0(3',0) increases. 

Gauss-Legendre is the obvious quadrature scheme to use, 

however there are two methods of implementation. The standard 

limits of a Gauss-Legendre quadrature integral are cos~= -1 

to 1 i.e. 't = 0 to 1T. If an N-point quadrature is required 

over the range 0 torrj2, one can either choose points from a 

standard 2N-point quadrature and only use half of them,or 

alLt'rnativ(~ly adjust the points and weights of' a standard 
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N-p<>inL qtiaclratut·<· in ord<~r t.o hall LlH~ int.t•gt'a\.ion r·angl' 

according- to (/\brmrowiLL'\ ancl Stcgun 1965). 

~~-

j 1 
\ r, .- ' 

= ) !.._)~ -;-lx;) 
I 

/_ ___ _ 

),_ 

then r' t .J'(•) h 

-,--
\ 

IV.3.8 

MOLSCAT can not only perform close-coupling calculations for 

a variety of systems (atom-rigid rotor, atom-vibrating rotor, 

etc.) hut can also perform calculations within the framework 

of various approximate methods. One of the available 

approximations is the IOS. A comparison between a'( vo~v· j I) 

calculated with our own IOS code and MOLSCAT, both using 

adjusted points and weights is presented in Table 9. The 

calculation retained 4 vibrational channels and employed an 

8-point quadrature at an energy of E = 3£ with L = 4. As 

can be seen the agreement is excellent and demonstrates the 

accuracy of both codes. For the cross-sect ions cr ( v j ~ v• j '), 

2 HOLSC/\T doc~s not include the factor (k lk .) in IV.3.G, 
vCY VJ 

however this is unimportant. 

Our own IOS code was used to compare the efficiency of 

the two quadrature schemes. The results are shown in Table 10 

for L = :) and E = 3 £ . As can be seen it is much more 

erficicnt to use half the points of a 2N quadrature. The 

values employed in each scheme are shown in Figure l. It 

seems surprising that the adjusted points do not give the 

better· results. They are concentrated more at high values 

or Y. and, clue to the sin5' weighting, this is the region 

where the major contribution to the integral comes from. 

The S-matrix elements themselves are smoothly varying 



Table 9 Comparison of lOS cross sections Q--L(vO~v'j) (in 

units of ~ 2 ) for L = 4 and E = 3t . Upper 

Pntries, R-matrix propagator code: lower entries, 

MOLSCAT. 

(v,v') ( 0 '0) ( 0 ' 1 ) ( 1 ' 1 ) 

j 0 7.5095-2 2.0050-8 4.1528-1 
7.5110-2 2.0050-8 4.1538-1 

j 2 3.0783-2 3.4265-8 7.5117-2 
3.0783-2 3.4268-8 7.5117-2 

j 4 1.4220-2 2.0298-8 1.0921-2 
1.4220-2 2.0298-8 1.0921-2 

j 6 2.3774-3 4.6195-9 6.7559-4 
2.3774-3 4.619~1-9 6.7560-4 

J 8 2.1183-4 5.0882-10 2.4665-5 
2.1182-4 5.0879-10 2.4665-5 

; 10 1.2021-5 3.3811-11 6.1697-7 J 

1.2021-5 3.3812-11 6.1699-7 

j = 12 1.1543-6 3.1965-12 4.1731-S 
1.1543-6 3.1964-12 4.1732-S 



TABLE 10 Comparison of IOS cross sections calculated using 
different Gauss Legendre quadrature points: (a) 16 
points adjusted for 0 ~ t ~ ~/2; (b) 8 points taken 
directly from 16 point formula; (c) 8 points adjusted 
for 0 ~ 't ~ 1'1'"/2. 

- -~--- ------- -----

o-(OO~Oj) o-(00~1j) 0"(10---t>1j) I 
a) 0.75951944-1 0.23152382-7 o . 18 7 53 2 3 2 +0 1 

j = 0 b) " " " I 

c) 0.75951942-1 0.23152380-7 " 
I 

0.37715011-1 0.39084723-7 0.90754042-1 

j = 2 " " " 
0.37715022-1 0.39084739-7 0.90754043-1 

0.17178331-1 0.22922790-7 0.12891963-1 

j = 4 " " ,. 

0.17178256-1 0.22922680-7 0.12891960-1 

0.28387590-2 0.51453693-8 0.78099093-3 

j = 6 " 0.51453698-8 " I 
0.28389475-2 0 . 5 1 4 5 7 8 1 0 -8 0.78099807-3 I 

! 

0.25047771-3 0.55968857-9 0.27967832-4l 

j = 8 0.25047769-3 0.55968789-9 0.279ti7H29-4 I 
0.25030157~3 0.55910337-9 0.27966670-4 

0.14185059-4 0.36746041-10 0.70270571-6 

j = 10 0.14184689-4 0.36745529-10 0.70270657-6 

0.14059642-4 0.36655230-10 0.68707793-6 

0.57539114-6 0.16759516-11 0.13764095-7 

j = 12 0.57588699-6 0.16782697-11 0.13769307-7 

0.13477287-5 0.35617808-11 0.46012139-7 I 



(a) 

(b) 

0 

Figure 1 

20 40 60 80 't 

Distribution of values of ~ employed in 

8 - point Gauss Legendre quadrature over the range 

0 < ¥ < n/2. (a) 8 points taken directly from 

16 point formula : (b) 8 points adjusted for 

o < r < n 12 
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functions of Y as shown in Figure 2. 

Although CY(VQ---?V'j") must be calculated for large \'alues 

of j" to complete the summation in IV.3.6, the magnitude of 

such cross section decreases rapidly with increasing j". 

Also the :.i-j coefficients decrease as (j-j") and (j'-j") 

increase. Therefore, to maintain accuracy in the results 

of interest, it is not necessary to calculate cross-sections 

with large j" to the same degree of precision. Hence, it 

may be possible to reduce the number of quadrature points 

and allow the accuracy of the high j" cross sections to waver. 

However, if we employ the more efficient quadrature scheme 

with, for example, N = 6, we are dealing with the points oF 

a standard 12-point Gauss Legendre quadrature. By definition 

such points are zeros of Y
12 0 c~,O), thereforeY(v0-'Jov'.i"=12) 

' 
= 0 completely cancelling out any advantage. 

In all of the IOS calculations, an 8-point Gauss Legendre 

quadrature was employed with the points and weights taken 

directly from a 16 point quadrature. 

4. Results and Discussion 

All the results of the close-coupling calculations, 

detailed in Table 5, and IOS calculations for H
2 

+ He are 

tabulated in the Appendix at the end of the thesis. At 

some energies not all the cross sections are.converged with 

respect to total angular momentum and only one parity block 

was calculated. These results are also included in the 

appendix, since they may be of value in the future. 

Table 11 contains a comparison between the present CC 

ct(OO·...,.Oj) and the results of ES for j = 0,2,4 at an energy of 

E = 2.1£. The basis set used by ES was { 4, 2}, which is 
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Figure 2 Fixed angle S-matrix S~ 1 C '(), as a function of 

'( at E = 2.5f ( £ = 0.26881eV). neal part-

broken line : Imaginary part- full line. 



Table 11 Vibrationally elastic integral cross sections 

Cr'(OO-i> Oj) (~ 2 ) forE= 2.1£ (£ = 0.26881eV). 

Upper entries, present CC calculations : 

lower entries, CC results of Eastes and 

Secrest (1972). 

j = 0 

4.161 + 1 

4.161 + 1 

2 

3.551 + 0 

3.563 + 0 

4 

1.578- 1 

1.496 - 1 
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claimed to yield an accuracy of at least 0.5% in o'(OO~Oj) 

for j = 0,2 and at least 5% for j = 4. This is entirely 

consistent with the present CC results which employ a 

much larger basis set. 

Table 12 contains a complete comparison of the converged 

integral cross sections of LS with the corresponding results 

of the present close coupling and IOS calculations at E = 3£. 

Significant discrepancies are present in the inelastic 

cross sections attaining a factor of more than 20. In view 

of the consistency checks and the excellent agreement with 

the calculations of ES, the calculations of LS appear to be 

seriously in error. Lin (1981) concedes that a programming 

error led to incorrect results being presented in the 

papers of Lin and Secrest (1977, 1979) and Lin (1979, 1980a,b). 

This error affects not only the magnitude of the numerical 

results but also their physical interpretation. Figure 3a 

shows the variation with energy of the cross section for the 

j = 0~2 transition within the vibrational ground state 

v = 0. The lower energy points are taken from ES and the 

higher energy points from LS; also plotted are the present 

results at E = 2.5~ and E = 3.0£. The structure in the cross 

s~ction apparent in the results of LS was attributed by them 

to the opening of the first excited vibrational level at 

E = 2£. Figure 3a demonstrates that the present calculations 

indicate that such a structure is not present. A similar 

con elusion holds for the j = 0 ~ 4 transition, whose cross 

section is plotted as a function of energy in Figure 3b. 

Lin (1979, 1980a) also reports threshold structures in 

the vibrationally inelastic cross sections. In Figure 4 



Table 12 Integral cross sections ~(i-?f) (~ 2 ) forE= 3£ 

( £ = 0.26881eV). A, present CC calculations; B, 

results of Lin and Secrest (1979); C, present 

lOS calculations. The H2 states are specified by 

Cv,j). 

~f (0,0) (0,2) (0,4) (0,6) (1 '0) (1' 2) (1 ,4) 

A)3.914+1 4.163+0 3.763-1 5.276-3 1.399-6 5.321-7 6.741-9 
(0,0) B)3.827+1 4.768+0 5.990-1 1.153-2 2.423-6 8.904-7 1. 263-7 

C)3.766+1 4.953+0 9.411-1 1.006-1 3.973-7 6.031-7 3.171-7 

8.800-1 4.195+1 1.395+0 2.875-2 6.375-7 9.931-7 1.555-8 
(0,2) 1.008+0 4.115+1 1. 711 +0 4.772-2 9.682-7 2.177-6 3.500-7 

1.047+0 4.159+1 2.984+0 4.815-1 1. 275-7 6.978-7 4.361--7 

5.097-2 8.936-1 4.334+1 3.368-1 4.317-7 2.599-6 7.508-8 
(0,4) 8.112-2 1.096+0 4.298+1 4.281-1 7.174-7 3.468-6 9.731-7 

1.275-1 1.912+0 4.769+1 2.996+0 4.295-8 2.794-7 7.502-7 

6.516-4 1.679-2 3.072-1 4.561+1 2.836-8 5.443-7 1.019-6 
(0,6) 1.423-3 2.788-2 3.904-1 4.544+1 7.294-8 9.425-7 1.377-6 

1.242-2 2.813-1 2.732+0 6.275+1 7.871-9 1.003-7 3.R76-7 

4.196-6 9.047-6 9.563-6 6.889-7 4.690+1 2.223+0 1.158-2 
(1 ,0) 7.270-6 1.374-5 1.589-5 1.772-6 4.638+1 2.771+0 1.883-2 

1.192-6 1.809-6 9.513-7 1.912-7 4.501+1 3.840+0 3.004-1 

3.789-7 3.345-6 1.366-5 3.138-6 5.277-1 4.935+1 1.124-1 
(1 '2) 6.340-7 7.332-6 1.823-5 5.434-6 6.577-1 4.924+1 1.448-1 

4.294-7 2.351-6 1.469-6 5.784-7 9.115-1 5.482+1 2.441+0 

4.727-9 5.160-8 3.887-7 5.784-6 2.705-3 1.107-1 5.270+1 
(1,4) 8.858-8 1.161-6 5.039-6 7.817-6 4.402-3 1.426-1 5.266+1 

2.224-7 1.447-6 3.884-6 2.201-6 7.023-2 2.404+0 9.689+1 
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is a comparison between the present CC results and those of 

Lin (1979). As the v = 1 threshold (E = 2£) is approached 

the discrepancies with Lin's results increase, attaining 

four orders of magnitude at the lowest energies considered. 

The structures in the energy variation of the cross sections, 

apparent in the results of Lin, are absent in the results of 

the present calculations. Lin (1979) notes that the coupled 

states results of McGuire and Toennies (1975) for the H2 +He 

system also exhibit such structures in the vibrationally 

inelastic cross sections near threshold. However this was 

later shown by Alexander and McGuire (1976) to be due to an 

insufficient basis set. The former calculation retained no 

closed channels, and as channels became open, as the collision 

energy increased, they were added to the basis set. This 

caused sharp dislocations in the energy variation of thu 

cross sections as channels became open. The similar study 

by Alexander and McGuire (1976) retained closed channels 

at all energies, resulting in a smooth variation of the cross 

sections. 

A comparison between the coupled states results of 

Alexander and McGuire (1976) and the present CC calculations 

of vibrational de-excitation cross sections is presented in 

Figure 5. Alexander and McGuire use exact H2 rovibrational 

eigenvalues (Schaefer and Lester (1973)) as compared with the 

rotating harmonic oscillator energies employed in the pres en L calculations. 

Therefore the comparison is made at energies above the 

respective v = 1, j = 0 energy and not total energy. Apart 

from the difference in basis state energy levels both 

calculations employ identical descriptions of the system 
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(Section 2). The agreement is extremely good over the energy 

range considered. Good agreement would be expected, since 

the Gordan-Secrest interaction potential is purely repulsive 

and short ranged, which is ideally suited to the coupled 

states approximation. 

Values of the vibrational excitation cross sections are 

plotted over a wider energy range in Figure 6. Figure 6 

contains results from the present CC and IOS calculations, 

the CS results of Alexander and McGuire and the CC results 

of Raczkowski et al. (1978). The calculations of Raczkowski 

et al. employ the Gordan-Secrest interaction potential with 

exact numerical H2 basis wavefunctions. The present CC 

results are seen to go ewer to those of Raczkowski ct al. at 

higher energies. The apparent discrepancy for the v = 1, 

j = O~v· = 0, j' = 6 transition probably arises from the 

exclusion of the v = 0, j = 8 state from our basis set, 

whereas it was included in that of Raczkowski et al. 

Although the energy variation of the CC results is 

satisfactorily reproduced by the IOS calculations, there are 

substantial discrepancies at lower energies. The agreement 

between IOS and CC results is seen to improve with increasing 

energy, as would be expected. Given the good agreement 

between the CS and CC results,it is clearly the energy sudden 

component of the IOS approximation which is failing at low 

energy. 

The experimental data available (Audibert et al. (1974, 

1976)) is in the form of vibrational relaxation rate 

coefficients. For a gas in translational equilibrium, the 

rate coefficients for individual processes vj-v'j' are 



Figure 6 A comparison of the present CC and lOS results with 
the CC calculations of Raczkowski et al.(1978); the 
CS results of Alexander and McGuire (1976) arP 
also plotled for reference. Cross-sections in 
units of ~ 2 and energies in eV relative to the 
(1,0) state. 
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are related to the corresponding cross sections by averaging 

over a Maxwellian velocity distribution (see Chapter I). 

roO 
= J V 0" (v~ --?V 1~ 1 i"'"J t (-v-,TJ dv- IV·. 4. l 

o 

where IV.4.2 

)L is the reduced mass of the sys tern , v-- the initial 

relative velocity of the atom and molecule, k Boltzmann's 

constant and Tis the temperature. Using E' = ~;uv2 we 

can obtain the expression in terms of an averaging over E', 

the initial collision energy of the system in molecular 

state (v,j). 

vo 

Pure rotational relaxation (6v = 0) is extremely rapid 

(Alexander (1975)) and consequently the relaxation process 

observed experimentally is the overall relaxation of the 

rotational states of the v = 1 manifold to the v = 0 

manifold. The rate coefficient for this vibrational relaxation 

is obtained by averaging over the rotational states. 

k,_,. (T I 0 z-; (2j+ I) 14 L- ( t-,, - £.,)/kTJ 1<,, ~'J,tr) 
jj' 

IV.4.4 

where Z is the rotational partition function and a Boltzmann 

distribution among the rotational states in the v = 1 level 

has been assumed (Alexander (1975)). 

The v = l,j = 2 state lies approximately 500K above 
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v = 1' j 0 and is therefore much more sparsely populated 

at the low temperatures considered. For T ~ 300K the con tri-

bution from states v = 0, j~ 2 will be negligible, therefore 

only transitions from the v = l,j = 0 state were included 

in the calculation, i.e. IV.4.4 becomes 

k ("r) =\-k (TJ 
1~0 L __ lo-~Cjt IV.4.5 

j' 

The variation of log<Y(l,0-':1-0,4) with logE' is shown in 

Figure 7. As can be seen, this variation is extremely 

smooth. Therefore, the interpolation of the available results, 

required to evaluate the integral in IV.4.3, was performed 

over logcYas a function of logE'. A spline interpolation 

procedure was employed to obtain values of the cross section 

to evaluate the integral by a Gauss-Laguerre quadrature. 

The values of the vibrational relaxation rate for para-

H2 dilute in He evaluated from the present CC calculation 

are presented in Figure 8. Also plotted are the experimental 

paints of Audi bert et al. , the CC results of Raczkowski (: t 

al. and the CS results of Alexander and McGuire. The presr,~n t 

results are seen to agree well with those of Alexander and 

McGuire, as would be expected in view of the good agreement 

between the corresponding cross sections (Figure 5). The 

dominant contributions to k 1~ 0 (T) come from k 10~ 00 (T) and 

k 10 -+ 02 (T), and the present CC cross sections are slightly 

smaller than the CS for these transitions. This is reflected 

in the corresponding values of the vibrational relaxation 

rates. 
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To evaluate the integral in IV. 4. 3, Raczkowski et al. 

assume a power law dependence of the cross qection on 

collision energy 

IV.4.6 

where A and pare constants for a given transition. This 

allows analytic evaluation of the integral giving a relaxation 

P + ~ rate which varies as T However Figure 7 demonstrates 

that this dependence is not accurately respected, particularly 

near threshold, i.e. at low temperature. Figure 7 also 

shows that the assumption of a power law dependence will 

overestimate k 10~ 04 (T), resulting in the overestimation of 

k 140(T) as displayed in Figure 8. Raczkowski et al. are 

aware of the possible inaccuracy of this assumption and 

consider their calculated values of the vibrational 

relaxation rates to be "dubious indeed" below 200K. 

As can be seen in Figure 8, large discrepancies exist 

between the experimental and theoretical values of the 

vibrational relaxation rate. This is almost certainly due 

to deficiencies in the description of the system, in 

particular, the interaction potential. In addition to 

performing calculations employing the present Gordon-

Secrest (GS) potential, Alexander and McGuire (1976) studied 

various other interaction potentials and H2 basis wavefunctions. 

They report that the use of Morse (see e.g. Mies (1964)) rather 

than harmonic oscillator vibrational wavefunctions produces 

large changes in the individual inelastic rovibrational cross 

sections. However, the total de-excitation cross sections 

(de fined as [ 0"'( 10.-:, Oj)), and hence vibrational relaxation 

j 
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rates, differ by only ~ 20%. Modification of the GS potential 

by the addition of a long range, attractive, isotropic term 

(which varies as R- 6 ) increases the relaxation rates. 

However, these rates still lie considerably below the experi­

mental values. The best quantative agreement with experiment 

is obtained by replacing the GS diagonal potential matrix 

elements by the semi-empirical potential of Shafer and Gordon 

(1973). This is attributed to the fact that the classical 

turning point of the Shafer-Gordon potential is considerably 

closer to R = 0 than that of the GS potential for all the 

energies considered. The Shafer-Gordon potential, therefore, 

allows closer approach of the collision partners and hence 

stronger coupling. The cross sections are also reported to 

be insensitive to the presence of a long range anisotropic 

term. 

It is worth repeating that the GS potential is 

ideally suited to the CS approximation. Where the potential 

has been modified to include long range terms, the CS 

approximation would be expected to be less accurate. 

Raczkowski et al. also perform CC calculations using 

the potential of Tsapline and Kutzelnigg (1973). However, 

they again assume a power law dependence of the cross sections 

on collision energy (IV.4.6), and hence their comparison 

with experiment will be misleading at low temperatures. More 

recent CC calculations by Orlikowski (1981), employing the 

Tsapline-Kutzelnigg potential and extending much closer to 

threshold, show better agreement with experiment than is 

found by Raczkowski et aJ. Furthermore, the results of 

Orlikowski lie above those of the present calculations. Th<J 

results of Alexander and McGuire suggest that this is due to 
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the Tsapline-Kutzelnigg potential allowing closer approach 

of the collision partners and the presence of a shallow Van 

der Waal's minimum, as compared with the purely repulsi~e 

GS potential. 

Bieniek (1980) has performed calculations for the H
2 

+ 

He system within the framework of the adiabatic distorted 

wave IOS approximation (ADWIOS) of Eno and Balint-Kurti 

(1979). The description of the system is identical to that 

used in the present calculation. Table 13 contains a com­

parison between the ADWIOS O"(OO~vj) results of Bieniek and 

the present CC and IOS calculations. The present IOS and 

ADWIOS results are in poor agreement with the CC calculations 

due to the failure of the IOS approximation. However the 

comparison between lOS and ADWIOS is a direct test of the 

efficiency of distorted wave techniques with adiabatic 

wavefunctions.relative to employing diabatic wav~-~runcLi<Jn.S 

with a close coupled treatment of the vibrational degree 

of freedom. The ~V= 2 results are in extremely poor agree­

ment. As discussed by Bieniek this is most probably due to 

the failure of the distorted wave approximation. A study 

by Thiele and Weare (1968) indicates that, in a distorted 

wave calculation, one must go to the vth order in the 

expansion to obtain reasonably accurate cross sections for a 

v quantum transition. They found that a first order treat­

ment gives fairly accurate results for ~v = 1 transitions huL 

was in ('rr·or by S(~w~ral orders o I' ma~~ni tude f'or· t:.v=/, 

transitioils. The results of Table 13 are consistent with 

this, since the ADWIOS is a first order distorted wave 

technique. 



TABLE 13 A comparison of vibrationally inelastic cross sectionso'(OO-+vj)(~2 ). (a) ADWIOS 
results of Bieniek (1980); (b) present lOS results; (c) present CC results . 

...-----

( \" ' j ) 

E ('E.) (1 '0) ( 1 ' 2) (1 '4) ( 1 '6) ( 2' 0) ( 2 ' 2 ) ( 2 '4 ) 
----

a) 1 0 3 02-8 1.618-8 

2 0 !;. b) 1.433-8 1.708-8 

c) 5o584-8 5.615-9 
1-----· 

3o678-7 4.806-7 2.923-7 

3. c 3o973-7 6.031-7 3.171-7 

1.399-6 5.321-7 6.741-9 

5 0 :~ 
8.950-5 1.050-4 6o342-5 4o954-5 2.299-13 1.600-13 9.333-14 

5.335-5 1.570-4 1.246-4 4.448-5 4.288-11 8.597-11 4.518-11 
- - - - - - -

'----·· 
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The lOS and ADWIOS results for IY ( 00 ---?lj) are pres en ted 

graphically in Figure 9. Although there are few data points, 

it appears that the ADWIOS is incorrectly predicting the 

degree of curvature of log a' as a function of E. The ADWI OS 

curvature underestimates that of the lOS results for j = 0, 

and increases with j, with overestimation for j = 2 and 4. 

As previously discussed, the present lOS results approach the 

CC values as the energy increases. Figure 9 suggests that 

this will not be true for the ADWIOS cross sections. Figure 

6 demonstrates that for 0'( 10~00) and rr( 10 -'>-02) the lOS 

results are reaching satisfactory agreement with CC 

calculations at energies ~leV above the first vibrational 

threshold, whereas the agreement between lOS and ADWIOS is 

deteriorating atE::::: 5.0£.. which corresponds to ~o.sev above 

threshold. This disagreement at high energy is possibly due 

to the use of adiabatic wavefunctions in the ADWIOS. It 

appears that at energies sufficiently higt fo1· tbt: ICIS 

approximation to be valid the use of adiabatic distorted 

wave (ADW) techniques is not. Eno and Balint-Kurti (1981' 

have performed calculations of fixed-angle S-matrices 

employing both CC and ADW techniques over a wide range of 

total angular momenta and energies, up to 4.2eV. The report 

that the CC and ADW values of the modulus of the v = 0 to 

v = 1 S-matrix element agree everywhere to within 15%. As 

noted by Eno and Balint-Kurti, the lOS cross sections also 

depend on the phase of the S-matrix. For the partial wave 

and energy reported (J = 11 and E = 1.2eV), the CC and ADW 

values of the phase are in perfect agr~ement. However, if 

this ClJ:;l'<'<'mcnt between t.hP valueS Of thP pha:-;<• j:-; n()l. qui l.<• 
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as exact for other partial waves and energies, it may be 

possible that the relatively small discrepancies between CC 

and 1\DV'l valur_:::::; uf the rn()d.ttlu:-~ ancl }JhaE=:c: rnay c:otnhine to prc;ducr-; 

much larger discrepancies in the final lOS cross-sectjons. 

Although Eno and Balint-Kurti employed the Gordan-Secrest 

potential they used the H2 energy levels quoted by Lester 

and Schaefer (1973), compared with the harmonic oscillator 

energy levels used in the present calculations and in the 

work of Bieniek (1980). As discussed by Bieniek, this 

difference in energy levels has an extremely large effect on 

the rovibrational cross-sections~ Although the energy 

separation between the v = 0 and v = l vibrational states 

used by Eno and Balint-Kurti (1979) differs by only 4% from 

that of Bieniek, the cross sectionsfor E = 2.5E are reduced 

by 75%. However, the use of different energy levels is 

unlikely to effect the overall comparison between ADW and 

CC techniques. Bieniek also calculates cross-sections 

using the energy levels of Lester and Sch aei'er and finds 

discrepancies of up to 40% between his results and those of 

Eno and Balint-Kurti. He attributes this to the different 

methods of evaluating the distorted wave integrals. Eno and 

Balint-Kurti employed piecewise fits of the potential to 

evaluate the integrals analytically while Bieniek used 

"brute-force numerical methods''. Although the results of 

Eno and Balint-Kurti (1981) suggest that the ADWIOS should 

be in much better agreement with CC/IOS calculations, any 

of the points discussed above, or a combination of them, 

could account for the apparent discrepancies between the 

present lOS calculations and the ADWIOS results of Bieniek. 
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Even if these discrepancies are due to the failure of 

ADW techniques, this may not be the case for systems other 

than the H
2 

+He currently under inve~tigaLiun. Adiabaticity 

and the validity of the IOS approximation are both determined 

by the relative times of processes, rather than energy 

considerations. However, in the ADWIOS, the IOS component 

is approximating the rotational degree of freedom and the ADW, 

the vibrational. For heavier molecules than H2 , the rotational 

states are much more densely packed within the vibrational 

manifolds. It may well be true that, for such systems, the 

relative velocity of the collision can be sufficiently 

large for the IOS to be valid, yet also suitable for the 

use of ADW techniques for the vibrational coupling. 

An attractive feature of all energy sudden (ES) 

approximation is the prediction of factorisation and scaling 

relations between cross sect ions ( for example IV. 3. 6). Thf? 

possibility exists of calculating only a few cross sections 

explicitly and obtaining the remaining results via such 

relations derived in an ES framework. There have been 

several studies in recent years exploring such possibilities 

(Goldflam et al. 1977a,b) and improved versions of ES 

factorisations have been proposed (Depristo et al. 1979, 

Hoffman et al. 1979). ES factorisations which include off­

energy-shell effects have also been investigated by Gerber 

et al. (1981), Beard et al. (1982) and Beard and Kouri 

( 1982). All such factorisations not only int(~t·link para-II
2

+ 

He results, but also facilitate the calculation or ortho­

H2+He cross sections from para H2 + He results. In the work 

of Gerber et al. (1981), dealing with a combined distorted 

wave - ES treatment of rovibrational transitions in molecule-
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surface scattering, they derive an ES scaling expression 

which includes, approximately, off-shell effects. This 

scaling r01~tion is appropriate to vibrational de-excitation 

for an interaction potential of the form 

IV.4.7 

Beard and Kouri (1982) argue that this scaling relation 

can also be used for cross sections calculated using the 

GS potential by identifyinge><of IV.4.7 within ?<
0 

of IV.2.1 

and obtain 

where 

Table 14a,b contains a comparison between the present CC 

results and the predictions of two factorisation schemes 

(SCl and SC2) for para-H2 and ortho-H
2 

for E = 3£ The 

SCl results were obtained by using CC a'( VQ-7V' j ') in 

IV.3.6 and SC2 are the results of Beard and Kouri from IV.4.8. 

Both SCl and SC2 use the present CC para-H2 + He results and 

the same rovibrational eigenvalues (IV.2.7). 

As can be seen, the factorisations do not obey detailed 

balance for D. v f 0. For any factorisation of this form to 

exhibit exact detailed balance requires a rigorous relation 

between O'(vO~v'j") and r::r(v'O~v j"), since a(vj-+v'j') is 

constructed from the former and~(v'j'~ vj) from the latter. 

In the IOS approximation it is easily shown (11.3.22). 



Table 14a Integral cross sections a(i-7f) (in units of 

~ 2 ) forE= 36. (a) Present CC results; (b) 

results of Beard and Kouri (1982) (SC2); (c) 

SC1. (*All (a), (b), and (c) agree since 

detailed balance from input ~(vO~vj), v=0,1). 

~f (0,0) 

(0,2) *-

(0,4) 

(0,6) 

3.780-7 
(1,2) 1.609-7 

2.147-6 

4.727-9 

(0,2) (0,4) 

a)4.195+1 1.395+0 
b)4.081+1 1.540+0 
c)4.274+1 2.368+0 

(0,6) 

2.875-2 
2.022-2 
1.822-1 

(1 ,0) 

6.375-7 
1. 502-6 
1.125-7 

(1 ,2) 

9.931-7 
1. 703-6 
1.641-6 

(1 ,4) 

1.555-8 
1.058-8 
2.911-7 

8.936-1 4.334+1 3.368-1 4.317-7 2.599-6 7.508-8 
9.866-1 4.060+1 4.757-1 1.306-5 7.391-6 1.263-7 
1.517+0 4.910+1 2.400+0 9.130-10 1.865-7 1.875-6 

1.679-2 3.072-1 4.561+1 2.836-8 5.443-7 1.019-6 
1.181-2 4.338-1 4.055+1 0.0 1.979-4 4.133-6 
1.064-1 2.189+0 6.463+1 0.0 1.892-9 2.704-7 

3.345-6 1.366-5 3.138-6 
2.908-6 9.742-6 3.775-5 
1.129-5 8.727-6 5.367-6 

5.160-8 3.887-7 5.784-6 

4.935+1 1.124-1 
4.791+1 2.077-1 
5.642+1 1.360+0 

(1,4) 1.562-10 8.802-9 3.939-7 6.170-6 
1.107-1 5. 270+1 
2.046-1 4.779+1 
1. 340+0 9. 989+ 1 2.235-6 8.594-6 1.723-5 1.293-5 



i""'-
1,'~1 (0, 1) 

I 
(0' 3) I (0,5) 

I 
(0, 7) I (1' 1) I (1' 3) (1 '5) 

I I 

4.137+1 a) 2.315+0 1.113-1 5.237-4 1. 469-6 1. 453-7 6.424-11 
(0, 1) 4.102+1 b) 2.435+0 9.826-2 I 2.033-6 1,449-7 3, 761-11 

4.155+1 c) 2. 714+0 2.154-1 1.641-6 3.281-7 3.813-9 
4.037+1 d) 3.452+0 5.797-1 6.502-7 5.120-7 2.093-7 

1.092+0 4.237+1 7.800-1 5.485-3 1.962-6 3.995-7 2.703-10 
(0, 3) 1.149+0 4.069+1 9,109-1 6.467-6 6. OOb-7 1. 924-1o 

1. 280+ 0 14.519+1 2.316+0 1.548-7 1. 728-6 2.856-7 
1.628+ 0 4. 391+1 2. 897+0 2.415-7 7.068-7 4.146-7 

4.081-2 6.062-1 4.441+1 1.117-1 6.089-7 2.178-6 2.508-9 
(0,5) 3. 602-2 7. 079-1 4.o5&t1 s. 822-5 j'.041-6 5. 992-9 

7. 895-2 1.800+0 5.511+1 1.398-9 2.220-7 2.103-6 
2.125-1 2. 252+0 5.351+1 7.674-8 3.222-7 8.338-7 

2.069-4 4.594-3 1. 204-1 4.685+1 2.556-8 4.234-7 9.222-8 
(0, 7) 

4.568-6 1. 293-5 5.164-6 2.012-7 4.880+1 6.102-1 

I 
1. 433-4 

(1,1) 4. 672-6 9.093-6 L 635-5 4.818+1 7. 762-1 1.431-4 

I 8.248-6 1.021-5 5.943-6 5.044+1 1. 413+o I 6.790-3 
2.022-6 1. 592-6 6.509-7 I 4.912+1 2.573+0 1.826-1 

2.677-7 1.561-6 1. 095-5 1. 97 5-6 3.617-1 5.064+1 4.498-3 
(1 '3) 5.696-8 1. 370-6 9.179-6 4.600-1 4. 782+1 1 . .7 33-2 

6.054-6 1.242-5 9.535-6 8.375-1 6.932+1 1. 549+0 
9.4311-7 ,2.761-6 1. 620-6 1. .J25+0 6.726+1 2.769+0 

2.423-10 2.580-8 8.805-7 1. 739-4 9.207-3 5.680+1 2.162-9 
(1' 5) 4.?9!1-12 3. 989-10 3, 762-8 1.-736-4 3. '548-2 4. 7 77+1 

7. 210-6 1. 952-5 3.789-5 8.237-3 3 .170+0 2.229+2 
7.897-7 3.316-6 8.580-6 2.216-1 5.668+0 2.161+2 

' I I 

Table 14b Integral cross-sections CJ'( i.~ f) (in un:ils ur 
02 
f'- ) forE= 3£ (t- == 0.16881 eV). (a), pl~Cs(:n~ CC 

calculations; (b) results of Jeard and Kouri 

(1982) (SC2); (c) results predicted by equation 

IV.3.6 of text (SCl); (d) present IOS results. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

i 
I 

I 
I 
i 
I 

J 
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'l. 

k ( I '. 
. v 'o () , v o -----7 ".J") 

These are not reeiprocal processes and this detailed 

balance type condition is imposed by the IOS approximation. 

This is true only for v = v' or j" = 0. Such a relationship 

is not unreasonable in the IOS, where the rotor states are 

considered degenerate. Only by virtue of IV.4.9 do the cross 

sections calculated from IV.3.6 exhibit detailed balance. 

IV.4.10 

If O"(v0-w'j") is not calculated using the IOS approximation, 

but by CC calculations, the resultant'Y(vj--,.v'j') obtained 

from IV.3.6 will not, in general, satisfy detailed balance 

forD,.vf-o. 

The failure of SC1 to obey detailed balance is mainly 

due to the failure of IV.4.9 for CC cross sections. It 

is also partially due to different summations of j" in IV.3.6 

since v = 0, j = 6 is open yet v 1, j = 6 is closed. The 

SC2 scheme also has this problem of different summations 

over j". This is emphasised by a- (06~10), where only the 

j" = 6 term is included, due to the properties of the 3-j 

coefficients. However, since v = 1, j = 6 is closed, 

0""(00~16) 0, and hence both factorisaU_ons predict 

CY ( 06 __, 10) 0. As noted by Goldflam et al. (1977a) (and 

by Secrest (1975)), the IOS approximation analytically sums 

over all, open and closed, rotor states. This is possible 

since the rotational energy levels are assumed degenerate. 

The effect is that there is incorrect coupling to closed 

channels, giving the result that the IOS will be inaccurate 
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for transitions in which closed channels play an important 

role. 

The derivation of IV.4.8 (Gerber et al.) requires the 

ES condLtion that Dl.o/k and oc;k , , << 
v~ Vj 

l 
~ . For v 1' j = 0 

the wavevector k
10 

= 1, in the units of Section 2. hence 

~o/k 10 = 0.2792. The failure of this ES condition will 

result in SC2 being inaccurate for this system at E = 3S; 

just as the ES component of the lOS fails. As the total 

energy increases SC1 and SC2 would be expected to give 

better agreement with CC results. Also, the problem 

concerning the summation over o-(vo~v'j") would be alleviated, 

since many more rotor states would be available. 

The SC2 scheme, as emphasised by Beard and Kouri (1982), 

compensates for the progressive overestimation of the elastic 

cross sections by SCl caused by the increase of the (k /k .) 2 
vo .VJ 

factor in IV.3.6 ask . decreases towards threshold. 
VJ 

Overall, SC2 is in much better agreement with the CC results, 

and does not violate detailed balance for 6v 1 o as severely 

as SCl. Both SCl and SC2 are in better agreement with CC 

results than the lOS calculations. 

Several ES factorisations, including SC2, are derived 

for de-excitation transitions only (see e.g. De Pristo et 

al. (1979), Gerber et a.l. (1981))i.e.£ .~t ,.,. It 
VJ V J 

therefore appears reasonable to use the ES scheme only for 

such de-excitation cross sections. The remaining excitation 

results can then be obtained by assuming detailed balance. 

If this procedure is employed, using SC2 to predict the de-

excitation cross section, the overall agreement between SC2 

and CC results would be improved. Consider vibrationally 

inelastic transitions between the states v = 0, j = 2,4,6 and 
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v' = 1, j' = 2,4. The de-excitation cross-sections, 

ere vI j ·~ Vj)' are in better agreement with the cc results' 

than the corresponding excitation results, <J(\·j.,.v'j') in 5 

out of 6 cases. Similarly for vibrationally inelastic 

transitions between v = 0, j = 1,3,5 and v = 1, j = 1,3,5, the 

de-excitation results agree better than the excitation cross 

sections with CC values, in 6 out of 9 cases. The vibrationally 

elastic results would be unchanged since they obey detailed 

balance. 

Alexander (1976) has performed CS calculations for ortho­

H2 + He using the GS potential with the diagonal matrix 

elements replaced by the semi-empirical potential of Shafer 

and Gordon (1973). As discussed previously, this modification 

of the GS potential produces large changes in the cross 

sections and vibrational relaxation rate coefficients for 

para-H2 +He. The discrepancies between the present ortho-

H2+He results and those of Alexander are of the same order 

and sign as the changes produced in para-H2 + He cross 

sections by this modification of the GS potential. In 

view of the good agreement between the CS results of 

Alexander and McGuire (1976) and the present CC results for 

para-H2 + He, it is almost certain that these discrepancies 

are almost entirely due to the form of interaction potential 

employed. Alexander notes that, at a given collision energy, 

0"(10~0j) is always smaller thana-(11~0,j+ 1), resulting 

in a greater relaxation rate for ortho-H
2 

+ He than for 

para-H 2 +He, as observed experimentally (Audibert et al. 

(1976)). The present CC ortho and para-H
2 

+He results, 

calculated at the same total energy, E = 3£, also display 
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this behaviour. This total energy E = 3S correpsonds to a 

collision energyofE' =C.. for::r(lO-:-Oj) andE' =t-f11 

for 0"(1170,j + 1). As can be seen from ¥igure 5, 

r:T(lO-o>Oj) increases monotonically with energy. Therefore 

if the CC ortho and para-H 2 + He results had been calculated 

at the same collision energy, E' = E-£
11 

they would still 

maintain <Y(10--'»0j) smaller than 7(11~0,j + 1), in agreement 

with Alexander and experiment. This would be expected from 

simple energy consideratmns which predict the larger cross 

sections for 'Y (11-?0,j + 1) since such transitions are 

characterised by smaller energy defects. For example 

1 -1 2698 em- , whereas ( E_
10 

- e-
04

) = 3168 em . 

5. Summary 

We have performed CC and lOS calculations of cross 

sections for rovibrational excitation of H2 by He, using the 

potential of Gordon and Secrest (1970) with the H2 basis 

states approximated by rotating harmonic oscillators, as 

described by Eastes and Secrest (1972). 

We find large discrepancies between our own CC results 

and those of Lin and Secrest (1979) and Lin (1979). These 

discrepancies are present in both vibrationally elastic and 

inelastic cross sections and increase towards the v = 1 

vibrational excitation threshold. We attribute this to an 

error in the computer program used by Lin (1981). This 

error not only effects the numerical values of the cross 

sect ions, but also their physical interpretation, si nee the 

structures in the energy variation of the cross sections, 

apparent in the results of Lin;and Lin and Secrest, are 

absent in the present calculations. 
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The present CC results are found to be in good quantitative 

agreement with the CS calculations of Alexander and McGuire 

(1976). The agreement with the lOS calculations is only 

qualitative but improves with increasing collision energy; 

this is cons is tent with the progressive failure of the ··energy 

sudden" component of the lOS approximation as the collision 

energy falls. 

Our CC calculations extend to lower energies than those 

of Raczkowski et al. (1978) and consequently yield more 

accurate values of the vibrational relaxation rate coefficients 

at low temperatures. We find that the computed values of the 

rate coefficient fall below the experimental points of 

Audibert et al. (1976). This can be attributed to deficiencies 

in the Gordan-Secrest interaction potential. The CC 

calculations of Orlikowski (1981), based upon the potential 

of Tsapline and Kutzelnigg (1973), and the CS results of· 

Alexander and McGuire (1976), based upon a modified Gordan­

Secrest potential 1 are in better agreement with experiment. 

The results of Alexander and McGuire suggest that the improved 

agreement may be due to these potentials allowing closer 

approach of the collision partners and the presence of 

minima, as compared with the purely repulsive Gordan-Secrest 

potential. 

The present lOS calculations are in good agreement with 

those calculated by Bieniek (1980), using the adiabatic 

distorted-wave lOS approximation, at low energies. However 

as the collision energy increases, significant discrepancies 

appear. For the H2 +He system under discussion, it appears 
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that at enengies sufficiently high for the lOS approximation 

to be valid, the use of adiabatic wavefunctions with distorted 

wave techniques is not. 

We have also investigated the accuracy of two energy 

sudden factorisation relationships (SC1 and SC2). The SC1 

results were obtained by using CC a- ( vO--;J- v 1 j 1 
) in the familiar 

lOS factorisation (IV.3.6). This factorisation includes 

contributions only from on-energy-shell T-matrices. SC2 

are the results of Beard and Kouri (1982), employing a factori­

sation which includes off-shell effects (Gerber et al. (1981)). 

Neither SC1 nor SC2 produce cross sections which exhibit 

detailed balance for vibrationally inelastic transitions. 

Overall, SC2 is in better agreement with the CC results and 

does not violate detailed balance for 6. v-f= 0 as severely as 

SCl. However the derivation . of SC2 (Gerber et al. ( 1981)) 

assumes de-excitation cross sections. If SC2 is used to 

predict only de-excitation cross sections, and the excitation 

results are obtained by assuming detailed balance , the agree­

ment with CC calculations improves. 

A comparison between the present CC ortho and para-

H2 +He results reveals that rr' (11--?0, j + l) is larger than 

0'"' (lO~Oj) for the same collision energy. This is in 

agreement with the CS calculations of Alexander (1976) and 

with the experimental values of the vibrational relaxation 

rate coefficient (Audibert et al. (1976)). 
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CHAPTER V 

ROVIBRATIONAL EXCITATION OF H
2 

BY H+ 

1. Introduction 

As demonstrated in Chapter IV in calculations of 

rovibrational excitation of H
2 

by He, the relatively large 

energy spacing of the H2 rotational states provides a 

stringent test of the IOS approximation. The same will be 

+ true for the H
2 

+ H system. However, in contrast to H2 + He, 

+ . 
the interaction potential for H2 + H conta1ns long range 

isotropic and anisotropic terms due to the charge on the 

proton. The presence of such terms tends to reduce the 

accuracy of the coupled-states component of the lOS approxi-

mation. The accuracy of the energy sudden component will also 

be reduced, since the proton will spend a comparatively 

longer time in the interaction region. Both of these 

points have been discussed in Chapter II.3(a) and (b). One 

+ aspect of the H2 + H system which makes it more suitable 

than H2 + He for the application of the lOS approximation 

is that H+ is lighter than He. Hence, for a given collision 

energy, the validity of the energy sudden component will be 

+ greater for H than He. The presence of long range inter-

+ action terms also makes the H2 + H system a more difficult 

calculation, computationally, since large integration ranges 

will be required, This will require a large number of sLups 

in the integration algorithm, which in turn may necessitate 

small step sizes. The small step sizes may be required to 

reduce the error in each step and hence prevent the 

accumulation of round-off error reducing the accuracy of 
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the final result. 

Giese and Gentry (1974) have compared and discussed 

+ three ab initio calculations of the H2 + H interaction potential 

by Csizmadia et al. ( 1970), Bauschlicher et al. ( 1973) and Carney 

and Porter (1974). The SCF-MO-configuration interaction 

calculations of Csizmadia et al. are by far the most extensive 

and cover a comprehensive range of nuclear geometries. Giese 

and Gentry conclude that an analytic fit to a restricted 

set of these points, suitably adjusted, is the best rep-

. f + f resentat1on o the H~ + H potential sur ace for the purposes 

of collision calculations. 

Giese and Gentry (1974) have performed semiclassical 

+ . calculations of vibrational excitation of H
2 

by H , employ1ng 

their DECENT model (Distribution (among quantum states) of 

Exact glassical Energy ~ransfer). In this model, exact classical 

trajectories are used to obtain the classical energy transfer 

as a function of angle. Vibrational excitation probabilities 

can then be calculated by employing the correspondence between 

a classical and quantum forced harmonic oscillator. They 

report good arreement with the experimental results of 

Udseth et al. (1973). To obtain a better determination of 

quantum features such as rainbow structures, Schinke (1977) 

has performed time dependent close coupling calculations 

which employ an energy sudden treatment of the rotation. The 

overall agreement with the results of Giese and Gentry is 

satisfactory and, in addition, the results of Schinke 

contain additional rainbow structures. However, Schinke 

estimates that the use of a straight line trajectories 

restricts the time dependent close coupling method to 
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collision energies ~ 15 eV. 

McGuire (1976) has performed CC and CS calculations 

treating the H2 molecule as a rigid rotor by employing the 

Giese-Gentry potential with the internuclear separation set 

at its equilibrium value. Schinke and McGuire (1978a) have 

performed similar IOS calculations and, by comparison with CS 

results, conclude that the IOS approximation is valid for 

+ H2 + H at collision energies ~ 3.7 eV. Schinke and McGuire 

(1978b) have extended these IOS calculations to include the 

vibrational degree of freedom, which is treated by close 

coupling techniques. 

+ . 
As discussed in Chapter I.3, the H2 + H system lS 

ideally suited to molecular beam experiments and experimental 

values of rovibrational cross sections have been reported by 

several authors (Udseth et al. (1973), Schmidt et al. (1976) 

Schinke et al. (1977), Hermann et al. (1978) and others). 

Schinke and McGuire (1978b) compare rovibrational state to 

state differential cross sections from their IOS calculations 

with the experimental values of Hermann et al. (1978) and 

find ''not completely satisfactory' agreement. The dis-

crepancies between theoretical and experimental cross sections 

are attributed to deficiencies in the interaction potenLial. 

In view of these discrepancies, Schinke et al. (1980) 

performed configuration interaction calculations of the 

potential energy surface of H2 + H+ over an extensive range 

of nuclear geometries. In total, the potential surface was 

calculated at 650 points. Schinke et al. also report an 

+ analytic expression of the H2 + H interaction, derived 

from their ab initio points and the long range multipole 
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interaction of the system calculated by perturbation 

Lheory (Kolos and Wolniewicz (1965, 1967)). IOS calculations 

of rovibrational cross sections employing this new potential 

(Schinke et al. (1980), Schinke (1980)\ are in much better 

agreement with the experimental values than the cross sections 

calculated using the Giese and Gentry (1974) potential. 

However, the bound state vibrational wavefunctions used in 

these studies (and also in the calculations of Schinke 

(1977) and Schinke and McGuire (1978b)) are incorrect for 

highly excited states, although Schinke claims that this 

error does not significantly effect the results of interest 

(private communication). This error is discussed in detail 

in Section 3. In view of the availability of highly refined 

experimental data it appears worthwhile to investigate the 

extent to which this error in the vibrational wavefunctions 

effects the rovibrational cross sections. 

2. Interaction Potential 

. + The analyt1c H
2 

+ H potential of Giese and Gentry 

(1974) (GG) is a fit to 138 ab initio configuration inter-

action energies of Csizmadia et al. (1970). In contrast, 

the configuration interaction calculations of Schinke et 

al. (1980) (hereafter referred to as SDL) used a larger 

atomic basis set and configuration basis, and covered 650 

nuclear geometries, specifically chosen to obtain an accurate 

potential for use in calculations of rovibrational cross 

sections. Therefore, the potential of SDL is certainly the 

+ 
more reliable description of the H

2 
+ II interaction. However, 

the GG potential is the total potential of the H2 + H 
+ 
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system, whereas SDL report only the interaction potential. 

Therefore, exact viGrational wav~fur;cllun~ of the isolated 

H2 molecule can be calculated only from the former, but not 

from the latter. In all the lOS calculations employing both 

the GG potential (Schinke and McGuire (1978b))and the SDL 

potential (Schinke et al. (1980), Schinke (1980)), the 

vibrational wavefunctions used were calculated from the GG 

potential. However, the method used by Schinke (1977) to 

determine these wavefunctions destroys their orthonormal 

properties, essential to the derivation of the fixed angle 

coupled equations, and produces unphysical behaviour for 

highly excited states (see Section 3). 

We are primarily interested in the extent to which the 

errors in these wavefunctions effect the rovibrational cross 

sections. The inconsistent use of such basis functions, 

obtained from the GG potential, in calculations employing 

the interaction potential of SDL (as in Schinke et al. (1980) 

and Schinke (1980)) would obscure this goal. This point is 

discussed further in Section 5. Therefore, although the SDL 

interaction potential is certainly the more accurate, the 

GG potential was employed in the present calculations. 

The GG potential is a fit of the ab initio points of 

Csizmadia et al. (1970) to the following ten parameter 

analytic function. All ten parameters (underlined) were 

optimised by an iterative least-squares fit of the function 

to the ab initio points. The coordinate system used is 

displayed in Figure 1. 



Figure 1. 

R
2 

= r, the internuclear distance of the H
2 

molecule. The 

potential is expressed in terms of Rk (k = 1,2,3) and is 

given by (in a.u.) 

with 

"3 

v c B: , !_ ) = • L H c nk ) 
k=l 

+ PF
1 

+ QF
2 

+ 0.073225F 3 + 0.17449 

v. 2. 1 

v. 2. 2 

E -z R 1.40083 + 0.27923F4 e e 

z B(Rk/Re - 1 ) A 0.17449 (0.0146G5 + 
------

B 1. 442 6 - 0.12871F4 
0.022721Rk)F

4 

and P is the charge-induced dipole contribution 

V.2.3 

A
0 

and A
2 

are determined from cubic fits to the spherical and 

angle-dependent polarisabilities versus R2 as calculated by 

Kolos and Wolniewicz (1967) and have numerical values 

A
0 

2.6091 + [2.246 + (0.3181 - 0.1194g)~J~ 

A2 0.60735 + [1.3586 + (0.5573 - 0.3170~)~]~ 

where g = R
2 

- 1.40083. The charge quadrupole contribution Q 

is given by 

V.2.4 

where Q
2 

is determined from a cubic fit to the quadrupole 

moment versus R
2 

(Truhlar (1972), Kolos and Wolniewicz (1965)) 
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Q2 = 0 . 4 58 8 6 + [ 0 . 53 2 2 3 + ( 0 . 0 3 2 3 4 - 0 . 0 9 14 7 4 ~) s] S' 

given by 

F1 

F 2 

F3 

F = 
4 

F. 
'± 

are roll-off and roll-on functions 

R5 !C133.6729 + R5) V.2.5a 

R4 /C29.6088 + R4) V.2.5b 

11 { 1 + exp[2.1135 c n - 2.4421)1} V.2.5c 

11 ( 1 + 0.000164189R6 ) V.2.5d 

The use of the summation over the diatomic potential functions 

H(Rk) allows the width, depth and position of the potential 

minima to vary smoothly as the proton approaches. This 

gives a good representation of the true potential, but also 

causes numerical difficulties, since it is impossible to 

separate the variables R and r to any large degree since 

R R I jR2 ( 2 + 1 ' 1.3 = • + r;~ - Rr cos 't I v. 2. 6 

Therefore large scale initialisation of the matrix 

elements, as performed in the H
2 

+ He calculation, is not 

possible. Some initialisation can be performed, such as 

the integrals over P and Q. However, the computationally 

expensive tasks such as exponentiation, are contained in 

H(Rk). At each point in the integration range these matrix 

elements must be evaluated numerically. However, this 

evaluation is required only in the calculation for the 

initial partial wave. The generation of results for sub-

sequent values of J does not require any explicit reference 

to the potential. 

The awkward form of the potential is a more serious 

problem in CC and CS calculations, since it is not in the 

form of a single centre expansion. Therefore, the angular 

integrals over spherical harmonics contained in the CC and 
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CS matrix elements cannot be expressed analytically as 

Percival Seaton coefficients. In the CC and CS calculaLlun~ 

of McGuire (1976) the interaction potential was fitted to a 

single centre expansion to overcome this difficulty. 

The GG potential (V.2.1) is the total potential of the 

system, including that of the isolated H
2 

molecule. The 

potential of the isolated molecule is given by V.2.1 with 

R = DO • 

I I I 2 I 3 I 2 I 

V
8 

(r) =A [-2E + (E ) -0.1145(Z ) (E ) (1-Z )] 
2 

I 

A = 0.17449, E -Z e 

+ 0.17449 v. 2. 7 

Z = 1.4426 (r/1.40083-1) 

Therefore, the interaction potential is given by 

3. Choice ofBasis Functions 

Since the potential of Giese and Genty (1974) contains 

the potential of the isolated n
2 

molecule (V.2.7), the 

calculation of exact basis wavefunctions is possible. To 
Ex 

determine the exact H
2 

bound states flv and eigenvalues f.~x 

one must solve (in a.u.) 

v. 3. 1 

EX 
The approach adopted by Schinke (1977) was to expand lv 

as a series of normalised harmonic oscillator basis 
~0 

functions JP;_ 

Ex Ev "'o d) : (. tO. 
I v 4 T L V.3.2 

Where the harmonic basis functions are the solutions of 
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,_ 
I 

I 
~0 Ha ) ~0 

-+ v (t) - s : cf. 
L i , 1.-

0 
-' 

with 
He v (t) 

given by 

V.3.4 

'fJ. where Q = (~k) ~r, N. is a normalisation coefficient and H. 
l l 

is a Hermite polynomial. Substitution of V.3.2. into V.3.1, 
HO 

using V.3.3. and the orthonomal properties of ¢. gives a set 
I ~ 

of homogeneous linear equations for the coefficients c. 
l 

(in matrix notation) 

(V + ~) c ~ o 
V.3.5 

where v .. 
''J 

1-<0 , 
1
. HO ·\ J >-~o 

,{); I , I r:1 
T ~ \. v 1-11. - v ) T j 

<.x 
The desired eigenvalues £. are the solutions of the 

i. 

secular equation 

j'{ -~f:i = 0 V.3.6 

and the coefficients c.v, are the corresponding eigenvectors. 
l 

Schinke chose harmonic oscillator (HO) basis functions 

because of their simple form and, therefore, the increased 

possible use of his expansion in further applications. 

However, the use of HO wavefunctions has a severe dis-

advantage. A large number of basis functions is required 

in the expansion since the exact H2 wavefunctions are sub-
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stantially different from the HO functions for reasonably 

high vibrational quantum numbers. In itself, this is of no 

consequence as regards the computer time required to evaluate 

the exact wavefunctions. If we consider 

then 

EX 
rJ) 
I V 

~ V HO 
\ /" . .f) 

=; '-·'r· 
J__ .{..I~ 

v. 3. 7 

The inner summation over i need be performed only once and 

subsequently the effort involved in calculating the exact 

wavefunction is identical to that required to evaluate the 

highest order HO basis function. The main problem is that 

for i ) 10, the HO functions encroach into r < 0 (figure 2) 

corresponding, physically, to the nuclei of t.he II
2 

mol<~<:ulc 

passing through one another. Therefore the in Lf~grat. ion 

range in the V .. elements must be increased to preserv(~ th<~ 
lJ 

orthonormality of the HO basis functions. Although VH is 
2 

not infinite for r < 0, it is extremely large and vastly 

different from vH0 . Therefore for large i,j, ·v .. is also 
lJ 

extremely large. However, we are principally interested 

in the potential well, and by extending the integration range 

emphasis is transferred to the repulsive wall at r < o. 

Schinke does not extend the integration range (private 

communication) and maintains the lower limit at. r = o, hence 

destroying the orthonormal properties of the HO wavefunctions 

which are employed to derive the secular equation V.3.5. This 

produces the result shown in figure 3. The "exact" wave-

function shows unphysical behaviours for large vibrational 
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Figure 2 Harmonic oscillator wavefunction with vibrational 

frequency w 0.019 a.u. and equilibriu~ 

separation ~ = 1.40083 a.u. for vibrational 

quantum numbers 4,9,14 and 19. Employed as 

expansion functions by Schinke (1977). 
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Figure 3 Comparison of vibrational wavefunctions reported by 

Schinke (1977) (full line) with the present !1!orse 

oscillaLor wavefunctions (broken line). 
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quantum numbers. 

Twenty HO basis functions were used in Schinke's 

expansion. However, for v = 6 (figure 3), the highest order 

6 coefficient c
19

, has a value of 0.230 which suggests that 

either the expansion is too small or that the difficulties 

discussed above are causing severe distortion. Schinke 

reports his expansion coefficients to only three figures. 

However, the orthonormality of the exact wavefunctions 

demands 

:: b v·..-; 
V.3.8 

Hence orthonormality can only be maintained to 

to round-off error. This is comparable to, and sometimes 

larger than the coupling matrix elements 

I 
EX ) EX · 

:1/ v V;,..t ( ~ 1!: fj}v' Jr- v. 3. 9 

Although reported to only three figures, in his 

calculations (and in subsequent work) the ex pans ion 

coefficients were specified to five figures (private com-

munication) and are given in Table 1. 

The HO wavefunctions have an equilibrium separation 

r 
e = 1.40083 a.u. and harmonic frequeney w (=(~ )~) 

WH2 
0.019 a.u. 

In the present IOS calculations, Morse oscillator 

wavefunctions were chosen to represent the H
2 

vibrational 

states. Although the Morse potential is not infinite for 

r~O, it tends to a finite value as r ~~ , therefore only a 

certain number of bound states can be supported. The Morse 

potential and corresponding normalised eigenfunctions and 



Table 1 Bxpansion coefficients C~ of the vibrational basis 
l 

states employed by Schinke (1977). 

i v = 0 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 

0 0.98924 -0.13199 0.02928 -0.03512 0.03022 -0.02126 0.01426 

1 0.14160 0.91099 -0.34437 0.11093 -0.07474 0.06783 -0.05556 

2 -0.00421 0.37450 0.67933 -0.51369 0.24862 -0.14282 0.11137 

3 0.03460 0.06605 0.57768 0.26929 -0.50248 0.37348 -0.23332 

4 0.01112 0.07537 0.21227 0.60622 -0.20469 -0.23465 0.34202 

5 -0.00047 0.04585 0.14929 0.36869 0.36577 -0.49440 0.17604 

6 0.00266 0. 01193 0.11484 0.25262 0.39956 -0.05132 -0.38364 

7 0.00130 0.00918 0.05492 0.21649 0.32015 0.21168 -0.34572 

8 -0.00006 0.00666 0.03190 0.14259 0.30800 0.24808 -0.09666 

9 0.00027 0.00217 0.02320 0.08986 0.25168 0.29905 0.03075 

10 0. OOOEI 0.00137 0.01262 0.06508 0.18779 0.31351 0.11111 

11 -0.00001 0.00111 0. 00713 0.04374 0.14519 0.28292 0.24079 

12 0.00003 0.00042 0.00500 0.02754 0.10864 0.23235 0.22695 

13 0.00003 0.00024 0.00297 0.01920 0.08017 0. 21120 0.31950 

14 0.0 0.00020 0.00165 0. 01253 0.05454 0.14742 0.18046 

15 0.0 0.00009 0.00118 0.00858 0.04404 0.14298 0.32688 

16 0.00001 0.00004 0.00068 0.00504 0.02542 0.07681 0.09873 

17 o.o 0.00004 0.00043 0.00403 0.02301 0.09175 0.28077 

18 0.0 0.00002 0.00022 0. 00173 0.00935 0.02699 0.00861 

19 0.0 0.00001 0.00018 0.00168 0. 01132 0.05487 0.23006 
'· 
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eigenvalues are given by (Mies 1964) 

i·"1G 

b [ 
-- ;i (r ~t-c"; -~ '2. 

v (t) - e - I J V.3.10a 

V.3.10b 

£ Mo 
'V 

::: V.3.10c 

D, ¢ and r are parameters of the potential chosen to e 
. VMO V approx1mate as H 

2 
and 

-cj;(r-te) 
~::: L.e 2::_- l - Zv 

v\ \'("'i.-v) 

and Wr.h.,'i..;'--'/2.-v (y) is a Whittaker function (Abramowitz 

and Stegun (1965)), the existence of which requires that 

2v < L - 1, which determines the number of bound states. 

D and r were chosen to agree with the well depth and e 

equilibrium separation of vH
2

; D = 0.17449, r = 1.40083 e 

(in a.u.). The remaining parameter,¢ , was chosen by 

fitting the Morse eigenvalues to Schinke's energy levels. 

Although Schinke's expansion is incorrect, the lower ei~en-

values would be expected to be close to their true values. 

A lin ear least squares fit of £~~ I ( v+D versus ( v + ~) was 

employed to obtain a gradient of -4D/~2 and intercept 4D/~ 
•• 

Only the lower eigenvalues of Schinke were used (iv, 

v=0,1,2,3) since not only are the higher values suspect, but 

also because the lower wavefunctions are the ones of main 

interest. This gives a value of~ of 36.16 (dimensionless). 
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. E.,._ 
Employing a fit oft , v=0,1,2 and v=0,1,2,3,4 gave the values 

v 

of>-= 35.44 and 37.62 respectively. However,~ can vary 
t-'IC 

substantially without significantly effecting the form of ~v 

since it is a relatively small anharmonicity correction. 

The value of the reduced mass used by Schinke was uH 
2 

918.07576 a.u. (private communication). Combining this 

with I = 36.16 gives a value of ¢ = 0.9900134 a.u. It 

may seem unnecessary to specify ¢ to so many figures since 

the value of ' is only specified to four. However this /_ 

1'10 

is required to ensure that the parameters used in fv are 

self consistent and maintain the orthonormality of the 

wavefunctions. This is extremely important since the cal-

culation of Morse wavefunctions involves very large and very 

small numbers. For example r (:[) rv 10 38 and there is also a 

double exponentiation, exp C-iie-¢Cr-re)~ 

In summary, the vibrational basis functions employed 

in the present calculation were Morse oscillator wavefunctions 

defined by V.3.10b with (in atomic units) D = 0.17449, 

r = 1.40083, e ~ = 0.9900134, uH = 918.07576 and 
2 

r = 36.16. A comparison between these Morse wavefunctions 

and Schinke's wavefunctions is shown in figure 3. As can 

be seen, the Morse wavefunctions are very close to Schinke's 

"exact" wavefunctions but without the unphysical behaviour 

at high vibrational quantum numbers. 
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4. Numerical Details 

Both the calculations nf Schinke and M~Guire (1078h) 

(hereafter referred to as SM) employing the GG potential, 

and those of SDL, employing the SDL potential, are 

compared with the experimental data of Hermann et al. (1978) 

for transitions from the ground vibrational state v 0 

to v = 0,1,2,3 forE = 10 eV. Therefore, we chose to 

investigate the accuracy of the results of SM only for these 

transitions. SM report values of fixed angle S-matrix 

L elements, s
0
v,( r ), as a function of angle for v' = 0,1 

and L = 25,50,75 and 100 at E = 10 eV. Our preli~inary 

calculations involved reproducing these results to verify 

that we had described the system accurately. 

SM retained seven vibrational states in the fixed angle 

coupled equations, which were solved by the de Vogelaere 

method. The potential matrix elements were evaluated by a 

28-point Gauss Legendre quadrature over the range 0.2 < r 

< 3.0 a.u. As can be seen from figure 3, this restriction 

of r > 0.2 a.u. will help reduce the effect of the error 

in the vibrational wavefunctions. The values of SL ( ¥ ) 
Ov' 

obtained by SM are reproduced in figure 4. 

In the present calculations the coupled equations were 

solved by the R-matrix propagator method employing prop-

agators corresponding to a constant reference potential 

(see Chapter III). In keeping with SM, seven vibrational 

states were retained, Schinke's harmonic oscillator expansion 

(HOEX) wavefunctions and eigenvalues were used, and the 

potential matrix elements were evaluated in an identical 

manner. The reduced mass of the system was taken to be 
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culated employing vibrational basis wavefunction of 

Schinke (1977). Real part of S-matrix, full line 

Imaginary part of S-matrix, broken line. 
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~ = 1224.101013 a.u. as employed by SM (Schinke-private 

communication). After some experimentation, it was 

established that an integration range of 0.15 < R < 30.0 a.u., 

involving~ 3000 steps of fixed length, was required to 

maintain the accuracy of the S-matrix elements to < 1%. In 

-3 the case of very small (< 10 ) elements, the relative error 

sometimes reached 10% at most. However, such small S-matrix 

elements represent only a small contribution to the final 

cross section and are therefore relatively unimportant. 

Using this integration range and step size, the calculation 

of fixed angle S-matrices required "'100 s per orientation on 

the NUMAC IBM 370/168. 

At this point it is convenient to introduce the notation 

HXS~v'(¥) for S-matrix element calculated using HOEX 

wavefunctions, and MOS~v'(~) for elements calculated using 

Morse oscillator (MO) wavefunctions with parameters as 

detailed in Section 3. Values of HXstv,(t) as a function of 

¥ for v' = 0,1 and L = 25,50,75 and 100 obtained by the 

present calculations are presented in figure 5. As can be 

seen, the agreement with the results of SM is very good, 

except at two values of >r for L = 25. It appears that both 

HXS25 " the real and imaginary parts of ('t = 56.84) and 
00 

HXS25 ( o 0 

= 42.63) have opposite signs from Lhe results of 01 

SM. This type of discrepancy does not appear for L = 50, 

75 or 100, where the angle dependence of the S-matrix elements 

is not as strong. The real part of the S-matrix element is 

much smaller than the imaginary part at t~ese two points 

and therefore the phase is close to an odd multiple of 

~/2. However, this is not unusual, and if the phase of our 

S-matrix disagreed with that of SM only in sign, this would 
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change the sign of only the imaginary part. Since such 

discrepancies exist at only two, apparently arbitrary, 

points it is possible that they are merely Lypographical 

errors in the paper of SM. 

Tl h 1~ . h d . . b HXSL (v ) 1ere are ot er s 1g t 1screpanc1es etween , o 

and the results of SM. The most obvious is for Re{HX~~~(~)} 
at high values of 'If, where the results of the present 

calculations are slightly lower than those of SM. In view 

of this, further numerical checks were performed for L = 50 

at high values of t and the present results found to be 

accurate. However, we are principally concerned with the 

effect of the errors in the HOEX wavefunctions. For this 

purpose, the small discrepancies between the prP::~a~n1. 

HX L v· s 0v,Co) results and those of SM will be unimportant. The 

good overall agreement with the results of SM suggests 

that our description of the system and our numerical methods 

are accurate. (The accuracy and reliability of our R-

matrix propagator program has been discussed in Chapter 

IV). 

The amplitude of the MO wavefunctions is significant 

over a slightly different range of r (the internuclear 

coordinate of the H
2 

molecule) than the HOEX wavefunctions 

for high vibrational states (figure 3). Therefore, potential 

matrix elements involving MO wavefunctions were evaluated 

numerically over the range 0.6 < r < 3.4 a.u., compared 

to 0.2 < r < 3.0 a.u. used with HOEX wavefunctions. Again, 

a 28-point Gauss Legendre quadrature was used, so as not to 

obscure the comparison between HXstv,(¥) and MOstv,(¥) 

by altering the accuracy of the matrix elements, which is 



136 

discussed later. Also, the integration ranges are both 

equal (= 2.8 a.u.) to maintain a similar density of 

quadrature points. 

The vibrational energy levels enter into the coupled 

equations only in the wavevectors k . v 
Since the total 

energy is so high, the small discrepancies between the HOEX 

and MO eigenvalues will have a relatively small effect. 

However, to obtain the best possible comparison between 

HXSL 
1
(¥) and MOSL 

1
(t), the HOEX eigenvalues were employed 

Ov Ov 
. MO L in the calculat1on of s 0v 1 (t) rather than the MO eigenvalues. 

MO L Values of s 0v 1 (t) (i.e. calculated using MO wave-

functions) as a function of angle for V 1 = 0,1 and L = 

25,50,75 and 100 are presented in figure 6. The overall 

MO L ( '() d HXSL ( t ) · · t d agreement between s 0v 1 an Ov 1 1s qu1 e goo 

although there are some significant discrepancies, for 

example for L = 50, V 1 = 0 and L = 75, v' = 0 at high 

values oft, and L = 25, V 1 = 0 and L = 75 v 1 = 1 at low 

values of t. The discrepancies between the present 

50 ° 25 results and those of SM for s00 C ¥ = 56.84) and s01 ct 
0 

42.63) remain, adding weight to the argument that this is 

due to typographical errors in the paper of SM. 

Table 2 contains a comparison of potential matrix 

elements v
0

v 1 (R,¥) using HOEX wavefunctions, fort = 11/2 

v 1 = 0 to 6 and R = 3,12 and 21 a.u. calculated by 28, 32, 

40 and 64-point Gauss Legendre quadratures over the range 

0.2 < r < 3.0 a.u. A 28-point quadrature, as employed by 

SM, is sufficient for the matrix elements of most interest 

(v' ~ 3). The one major exception is v03 cn = 3, ~/2), 

which is relatively small although the interaction potential 
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Table 2 Values of VOv' CR, 't = "'ff/2) using IIOEX wavefunctions, calculated by N-poj_nt 

Gauss Legendre quadrature. (a) N = 28, (b) N = 32, (c) N = 40, (d) N = 64. 

v' = 0 1 2 3 4 5 6 

RCa. u.) 

(a)-0.66356271-1 -0.81544933-2 0.10297962-2 0. 90110097-5 -0.14544774-3 0.12458966-3 -0.14296324-3 

3 
(b)-0.66356273-1 -0.81544896-2 0.10298287-2 0. ~}3180129-5 -0.14343215-3 0.13437048-3 -0.10351576-3 
(c) II -0.81544897-2 0.10298284-2 0.93217099-5 -0.14339751-3 0.13458769-3 -0.10229989-3 
(d) II " " 0. ~}3217069-5 -0.14339753-3 0.13458761-3 -0.10230013-3 

-0.17877312-3 -0.63644550-4 0.99360236-5 -0.19550004-5 0.41300750-6 -0.59945810-7 -0.12138375-6 
II -0.63644536-4 0.99361136-5 -0.19541612-5 0.41794752-6 -0.39470971-7 -0.65210111-7 

12 II ,, 0.99361172-5 -0.19541359-5 0.41814683-6 -0.38417857-7 -0.60221551-7 
II II II " 0.41814679-6 -0.38417974-7 -0.60221577-7 

-0.35323621-4 -0.69829369-5 0.96291168-6 -0.17082223-6 0.37054339-7 -0.11865622-7 -0.14672449-7 
-0.35323622-4 -0.69829350-5 0.96292682-6 -0.17068480-6 0.37924655-7 -0.79082398-8 -0.6 283815 7-9 

21 " II 0.96292725-6 -0.17068201-6 0.37947698-7 -0.77786991-8 0.26030855-10 
" II " II 0.37947690-7 -0.77787266-8 0.25974401-10 
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is large at such small values of R. Therefore, there must 

be cancellation occurring in the integral and a 28-point 

quadrature is unable to maintain accuracy. SM report that 

seven vibrational states must be included to obtain reliable 

cross sections for ~v ~ 3 transitions and therefore the 

accuracy of high v matrix elements must also be considered. 

As can be seen in Table 2, a 28-point quadrature can fail 

badly for small matrix elements with a highly oscillatory 

integrand, such as v06 (R = 21, ~/2). 

The calculation of the potential matrix elements accounts 

for a large percentage of the total calculation ( N50% for 

a 28-point quadrature) due to the awkward form of the potential 

as discussed in Section 2. Therefore, increasing the number 

of quadrature points will considerably increase the total 

computer time required. However, if an approximate potential 

algorithm is employed which can efficiently generate results 

for many partial waves, the evaluation of the matrix 

elements is required only in the calculation for the initial 

partial wave. The generation of results for subsequent values 

of L does not require any explicit reference to the potential 

matrix elements. Therefore the matrix elements can be cal­

culated using a large number of quadrature points without 

significantly increasing the total time required. SM use 

de Vogelaere's method to solve the coupled equations, and 

therefore they must calculate the matrix elements for each 

partial wave. 

We are primarily interested in the comparison beLWf!cn 

fixed angle S-matrix elements obtained using HOEX and MO 

wavefunctions. The slight discrepancies between our own 
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calculations using HOEX wavefunctions, and those of SM, and 

nlsothe possible inaccuracy of using a 28-point quadrature, 

will not significantly effect this comparison. Therefore, 

in keeping with SM, all the results in the following Section 

5 were obtained using a 28-point Gauss Legendre quadrature 

to evaluate the matrix elements. 

5. Results and Discussion 

As noted in Section 4, the results of interest are the 

cross sections for transitions from the ground vibrational 

state v = 0 to v' = 0,1,2,3. A comparison between HXSL (f) 
Ov' 

and MOstv,(X) as functions of~, for L = 25 and v' 

0,1,2,3 is presented in figure 7. The discrepancies are 

seen to increase with v'' and for vr ~ 2 they are sufficiently 

large that the cross sections calculated from these fixed 

angle S-matrix elements will differ significantly. This is 

as expected, since the discrepancies between th~ HOEX and 

MO wavefunctions increase with the vibrational quantum 

number. A similar comparison for L = 50 is presented in 

figure 8. HX L . MO L The agreement between S ,(t) and s
0 

,(t) 
Ov v 

is seen to be good for all value~ of v' for L = 50. This 

improved agreement with larger L would be expected, since 

+ as L increases the H does not approach as close to the H2 

molecule and the precise form of the vibrational wavefunctions 

will be relatively less important. Also, for large values 

of L the highly excited vibrational states will n11t play 

such a significant role. As noted by SM, the rapld 

<>~cillaLions in the S-matrix elements at L = 25 are a 

+ 
result of the large anisotropy of the H2 + H interaction 

potential at small values of R, and only for L ) 50 do the 
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curves begin to take on a regular oscillatory structure. 

For L > GO, only the P
0 

and P 2 terms of a Legendre expansion 

of the potential surface (McGuire (1976)) remain and the S-

matrix elements become a smoother function of the orientation. 

SM report plots of jsL ,(t)j 2 versus LatE= 10 eV 
Ov 

fort= 0°, 51.43° and goo, and v• = 1,2. These results are 

reproduced in figure 9. To obtain cross sections, the fixed 

angle S-matrix elements are multiplied by spherical harmonics 

and integrated over t(Chapter II.3(c)). Due to the sint 

weighting in this integral, the most important contributions 

to the cross sections are from high values of~. Consider 

ls~ 2 <t>1 2 . Fort= goo the major contribution toO'(v = 0-;) 

v• = 2) will come from L < 50. Similarly for¥= 51.43°, a 

L ·2 
large contribution comes from L < 50. Although js02 Ct)l is 

large for L > 50 at~= 0°, the sint weighting in the integral 

will make this a small contribution to the cross section. 

(Indeed for(= 0°, the contribution will be zero, but at 

t ~ 0° the S-matrix elements would be expected to have a 

similar distribution amongst L). Therefore the major 

contribution to d(v = O~v· = 2) comes from partial waves 

with L < 50. However, as demonstrated by figure 7, there 

. .f. d' . b HXSL02(v) and MOSL02(v) are s1gn1 1cant 1screpanc1es etween a o 

for L = 25. Therefore cross sections between v = 0 and 

v• = 2 calculated using HOEX wavefunctions would be expected 

to differ significantly from the corresponding results 

calculated employing MO wavefunctions. 

Although ls~ 3 (~)/
2 

is not shown, it would be expected 

that it is largest for smaller values of L than jst 2 (~), 2 , 

since + 
the H must approach closer to H

2 
to excite the higher 

v = 3 vibrational state. Also the discrepancies between 
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HXS~v'(t) and MOS~v'(() increase with v'. Therefore the 

values of cross sections for transitions between v = 0 and 

v' = 3 will differ considerably depending on whether MO or 

HOEX wavefunctions are employed. 

Comparisons between HXS~v'(6) and MOS~v'(Y) for v' = 

0,1,2,3 for L = 75 and 100 are presented in figures 10 and 

11 respectively. For L = 75 there are significant discrep-

ancies for all v', including the elastic v' = 0. Also, for 

v' = 0,1 there are large discrepancies at high values of If, 

i.e. the region which represents the dominant contribution 

to the corresponding cross sections. There are also significant 

. . HX 100 ~ MO 100 d1screpanc1es between s
0 

,(o) and S , ((). 
v Ov 

However they 

are relatively small for v' = 0, and for v' = 1,2,3 they 

are present mainly at low values ofo. This poor agreement 

is contrary to the previous agrument that the importance of 

the exact form of the vib~ational wavefunctions, and thH 

effect of the highly excited states are reduced aL hi~~h 

values of L. It is generally found that the inclusion of 

highly excited states in calculations for high partial waves 

is not necessary. Indeed, SM include only five, rather than 

seven vibrational states at higher partial waves (although 

"higher" is not defined) and at even higher values of L 

consider the vibrational coupling to be negligible and employ 

WKB phase shifts to determine the vibrationally elastic 

S-matrix elements. Also, tor low values of the vibrational 

quantum number the HOEX and MO wavefunctions ar<~ very similar. 

The good agreement between the present values of HXSL Ci) Ov' 

(figure 5) and the results of SM (figure 4) would tend to 

rule out the deterioration of our numerical accuracy with 
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increasing L. If such numerical problems were developing 

we would a.lso expect the comparison between HXSL (¥) Ov• 

and MOSL ,(t) to be significantly poorer at L = 100 than 
Ov 

at L = 75, which is not the case. It therefore appears that 

the fixed angle S-matrices for L = 75 and 100 are genuinely 

sensitive to the exact form of the vibrational wavefunctions. 

Schinke (1980) has shown that partial cross sections 

with L ~ 75 are extremely sensitive to the form of the 

interaction potential. For example a plot of the vibrationally 

elastic partial cross section ~(01-~07) against L at 

E = 4.67 eV has a large maximum at L ~ 75 when the GG 

potential is employed. However, when the SDL potential is 

employed this maximum is reduced by a factor of ~ 10. This 

is due to the fact that partial waves with L - 75 sample a 

broad shallow well in the P
2 

anisotropy of the interaction 

potential and produce a rainbow maximum in the total 

differential cross section. Partial waves with L~ 100 will 

also sample this critical region of the potential. Since 

the same vibrational energy levels have been used, the form 

of the wavefunctions and potential enter into the calculation 

only in the matrix elements. Therefore the use of in-

accurate basis functions and an accurate potential will have 

a similar effect as employing accurate basis functions and 

an inaccurate potential. Schinke (1980) has demonstrated 

that a poor description of the interaction potential has a 

large effect for partial waves with L ~ 7 5. It is therefore 

not surprising that there are significant discrepancies 

HX L MO L 
between s 0 v,(~) and s 0v,(t) for L =75, 100. As can be 

seen from figure 9 the total cross sections for transitions 
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between v = 0 and v' 1 contain a large contribution from 

partial waves with L > 50. The vibrationally elastic cross 

sections with v = v' 0 would be expected to have a similar, 

or perhaps larger, contribution from high partial waves. 

Therefore we would expect significant differences between 

such rovibrational cross sections calculated employing HOEX 

wavefunctions, and the corresponding values calculated using 

MO functions. 

The present conclusions have been drawn from the results 

elf calculations employing the GG potential. Although the 

potential of SDL is certainly more accurate, it is qualitatively 

similar to the GG potential and it is therefore probable 

that the same conclusions would have been reached if the SDL 

potential had been employed. The present results suggest 

that all the rovibrational cross sections will be sensitive 

to the precise form of the vibrational wavcfunctions. 

However, it is not clear whether the HOEX or MO wavefunctions 

provide the better description. Although the HOEX wave-

functions have faults, they may still be the more accurate 

d<-:scription of thf: isolated H2 molecule. 

SM compare their calculations with the experimental 

data of Hermann et al. (1978) in terms of the angle dep-

endent probabilities for vibrational transitions v = 0 ~ 

v' = 1,2,3, defined as 

r
l-

~ ) -

- j' ][~~ 
v J 

- -1 

Jo-- ( 0>) ~VIIj"J I 
dll. . ' J 

v. 50 1 
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Employing the GG potential, the theoretical values of 

this quantity are smaller than the experimental results for 

all v' = 1,2,3. When the more accurate potential is 

employed by SDL, the theoretical values are found to be in 

"excellent" agreement with experiment for v' = 1,2. (The 

comparison for v' = 3 is not considered significant due to 

the small size of the transition probabilities and the 

associated experimental difficulties). This would appear 

to suggest that the HOEX wavefunctions, despite their faults, 

are a sufficiently accurate description of the H2 molecule. 

However, in coupled states calculations of rovibrational 

excitation of H2 by He, Alexander and McGuire (1976) note 

that the use of MO, rather than harmonic oscillator wave-

functions produces large changes in individual rovibrational 

cross sections, yet produces relatively small changes in 

rotationally summed cross sections (Chapter IV.4). This 

+ may also be true for H
2 

+ H , and the angle dependent tran-

sition probabilities for vibrational excitation (V.5.1) may 

be insensitive to the form of the vibrational wavefunctions. 

This argument is strengthened by the lOS results of 

Schinke (1980), using HOEX wavefunctions and the SDL 

potential, for E = 4.67 eV. It is reported that the 

individual transition probabilities, defined by 

v. 5. 2 

are "significantly below" the experimental values over the 

entire range of scattering angles considered for v' = 0, 

j = 1 and j' = 3,5,7. Note that this is a vibrationally 
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elastic transition. Unfortunately there are no similar 

comparisons with experiment for vibrationally inelastic 

transitions. 

+ 
H

2 
+ H is a very simple, two electron system and the 

configuration interaction calculations of SDL employ a 

large atomic basis set and configuration basis, and cover 

an extensive range of nuclear geometries, specifically 

chosen to produce an accurate potential for use in cal-

culations of rovibrational excitation. With such an accurate 

potential, it is perhaps disappointing that the lOS cal-

culations of Schinke (1980) are not in better agreement with 

experiment. As emphasised by Schinke, the lOS approximation 

should be accurate for E = 4.67 eV and he postulates that 

the disagreement between theory and experiment may be due to 

deficiencies in the experimental data. One of the main 

advantages of the SDL potential is that it is, by design, 

much more accurate than the GG potential for small values of 

r, the internuclear H2 co-ordinate. There are large differences 

between the GG and SDL potentials in this region. (This is 

discussed in detail by SDL). This suggests that the HOEX 

wavefunctions calculated from the GG potential may be un-

suitable for use with the SDL interaction potential. 

Therefore, although the SDL potential is certainly accurate 

and the lOS approximation valid, the comparison between 

theory and experiment presented by Schinke (1980) may be 

degraded by employing HOEX wavefunctions, not only because 

of the errors present in them, but also because they have 

been calculated from the less accurate GG potential. 
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There are two main possible sources of numerical error 

in the lOS calculations uf SDL and Schinke (1980), which 

both employ the SDL potential. The present calculations 

using different wavefunctions differ only in the values of 

the potential matrix elements, since identical vibrational 

energy levels are used. The HOEX and MO wavefunctions are 

very similar, yet still produce significant discrepancies 

HX L MO L . 
between SOv'(t) and SOv'(t). Therefore, it is possible 

that the relatively low accuracy of the matrix elements 

evaluated by a 28-point Gauss Legendre quadrature, could 

produce significant numerical errors in the angle fixed S-

matrices. Also, SDL and Schinke (1980) calculate fixed angle 

S-matrices at twelve equally spaced orientations. This was 

not considered completely satisfactory, but was the maximum 

practicable due to the large amount of computer time required. 

However, for partial waves with L < 50, the fixed angle S-

matrices are highly oscillatory functions of the orientation 

angle,~. This is demonstrated in figure 7 for the GG 

potential and will certainly also be true when the SDL 

potential is employed. It is probable that twelve orientations 

will be insufficient to give an accurate integration of these 

S-matrix elements over 't, especially for lOS transitions 

involving high rotor states, j, where the elements are 

multiplied by a highly oscillatory YjO(~,O) in the integrand. 

The results and discussion presented in this Chapter 

arc preliminary and inconclusive. For cxamplt!, iL j:c; not 

obvious what <!ffecL diff(~r'<:!nc<~s in fixPd angle S-matric<~s 

will have on cross sections. Perhaps the integration over 
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orientation will produce cross sections which are leSs 

sensitive than the fixed .-.• -•. -.-1 .-. 
C-"l!l£:,....!....c;:.' tl1e 

vibrational wavefunctions. Despite such uncertainties and 

speculations, we believe that there is sufficient evidence 

to consider that the comparison between theoretical and 

experimental values of rovibrational cross sections presented 

by SDL and Schinke (1980) may be misleading, due to the use 

of HOEX wavefunctions and the restrictions imposed on their 

numerical techniques by the large amount of computer time 

required for the calculation. 

In view of the highly refined experimental data (Hermann 

et al. (1978)) and accurate interaction potential (SDL) 

available, we consider it worthwhile to pursue this problem 

further. Additional calculations required to resolve the 

apparent discrepancies between theoretical and expe r i m(~n tal 

+ 
values of rovibrational cross sections for lhe II 2 + II 

system are discussed in Chapter VI. 
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CHAPTER VI 

FUTURE WORK 

The main results contained in this thesis are the 

close coupling (CC) and infinite order sudden (lOS) 

approximation calculations of rovibrational excitation of 

H2 by !Ie (Chapter IV). Due to the relatively poor 

description of the system employed (principally the in-

accuracy of the interaction potential of Gordon and Secrest 

(1970)), the agreement between the values of the vibrational 

relaxation rate computed from the present CC cross sections, 

and the experimental values of Audibert et al. (1976) is 

poor. However, the main value of the CC calculations is as 

"benchmark" results with which to compare approximation 

schemes and energy sudden factorisations. In this context, 

the set of CC results is essentially complete, although 

rovibrational cross sections for ortho H2 + He at another 

energy may be of value. Such results would further test 

proposed energy sudden factorisation schemes and also their 

energy range of validity. 

In contrast to the calculations for n2 + He, the cal­

culations for H
2 

+ H+ are preliminary and incomplete 

(Chapter V). However, the results suggest that the comparison 

between theory and experiment reported by Schinke (1980) 

may be false. There are two courses of action which can be 

pursued to attempt to resolve the apparent discrepancies 

between theoretical and experimental values of rovibrational 

cross sections. The first is to continue with the philo-

sophy of Chapter V by determining to what extent the 
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restricted numerical methods and inaccurate wavefunctions 

employed by Schinke et al. (1980) and Schinke (1980) effect 

the accuracy of their calculated cross sections. By 

precisely establishing the errors produced in the cross 

sections it would be possible to determine whether the 

inaccurate wavefunctions or numerical techniques are 

responsible for the discrepancies with experiment. The 

second course of action is to perform full IOS calculations 

+ for H2 + H employing accurate numerical techniques, 

interaction potential and vibrational basis states, and 

compare directly with the experimental data. This would be 

an extremely expensive task computationally, but would be 

required anyway if the former approach revealed significant 

errors in the cross sections. This would entail performing 

lOS calculations with highly accurate matrix elements and 

a large number of orientations. The optimum choice of 

interaction potential is certainly that of Schinke et al. 

(1980). The choice of vibrational basis states is not so 

clear cut, however the bound state wavefunctions cal-

culated by Lester and Schaefer (1973) from the isolated H
2 

potential of Kolos and Wolniewicz (1965) are probably a 

good choice. 

The n2 + He interaction potential of Gordon and 

Secrest (1970) is purely repulsive and short ranged. With 

this potential, the use of propagators appropriate to a 

constant reference potential in the R-matrix propagator 

method is sufficient, and there is little advantage to be 

gained by employing the more cumbersome Bessel function 

propagators (see Chapter III.4(c)). In contrast, the 
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+ H2 + H interaction is long ranged and has a deep well, and 

at the energies of interest large numbers of partial waves 

are required (up to 200 forE= 10 eV). Also the evaluation 

of the potential matrix elements is an expensive task, and 

it is therefore imperative that results can be generated 

efficiently and reliably for partial waves over a large 

range of L values. - + Therefore, the H 2 + H system is 

ideally suited as a test case with which to investigate the 

efficiency of Bessel function propagators, and their use may 

provide substantial savings in computer time in IOS cal-

culations. It is important that the efficiency of Bessel 

function propagators be established quantitatively and we 

have at our disposal an ideal test case with which to 

achieve this goal. 
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APPENDIX 

This appendix contains all the results of the close 

, • r>. • • 

ana lDilnlLe order sudden approximation calculation~ 

of cross sections for rovibrational excitation of H2 by He 

detailed in Chapter IV. 

Notes 

1. Cross sections in units of ~ 2 , energy in units of 

t. = 0.26881eV. Cross sections accumulated from total 

angular momentum J = 0 to JMAX. 0.20620D + 01 denotes 

0.20620 X 10 1 • 

2. Close coupling results are presented as cf( i-+ f) and 

the H2 states are specified as (vj). Not all close 

coupling calculations are complete. See Chapter IV, Table 5 

for details. 

3. For the lOS calculations only O""(vO-v'j') are reported. 

All other cross sections can be trivially calculated from 

equatrioniV.3.6 (page 99). 

4. lOS results forE = 1.5eV + 2t are reported only for 

transitions between v = 0,1. Although higher vibrational 

states are open, the cross sections between levels with 

v > 1 were not saved due to lack of computer storage required 

to hold the partial cross sections. 

5. Close coupling results at E = 3~ for para H2 + He and 

ortho H2 +He are presented in Chapter IV, Tables 11 and 

14b respectively. 
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