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High resolution modelling of flexible 

submerged vegetation in rivers 

Tim Marjoribanks 

Abstract 

Vegetation is a common feature within natural river channels and exerts a profound 

influence on the functioning of the fluvial system. In particular, the interaction 

between vegetation and flow causes a reduction in conveyance, an alteration to the 

velocity profile and the generation of coherent turbulent structures which differ to 

those found in un-vegetated channels. Recognition of the influence of vegetation 

on open channel flow has led to an increased awareness of the importance of 

accurately representing the effects of vegetation within numerical models, across a 

range of spatial scales. 

This thesis introduces two novel biomechanical models, capable of simulating the 

complex interaction between flow and vegetation at high spatial and temporal 

resolution. The development and validation of these models permits investigation 

of flow-vegetation interactions across a range of plant types and flow conditions. 

These models are applied to a range of scenarios providing new insight into the 

interaction mechanisms between the vegetation and the flow. In particular, this 

thesis focuses on the role of turbulent structures in driving flow-vegetation 

interaction.  

The results presented in this thesis support existing theories for simple canopy 

flows, whilst also proposing additional interactions in the case of more complex 

canopies. In addition, key findings relating to the role of drag in controlling flow-

vegetation interactions are explored. 

Finally, through the development of a third, lower resolution, vegetation model, 

this thesis begins to explore how the process understanding gained from 

application of the high resolution models may be upscaled to the reach scale 

models which are central to river management.  
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Chapter 1: Introduction 

1.1 Rationale 

Vegetation is a ubiquitous feature of riverine environments. Whether located on 

the floodplain, along the banks or in the channel, it can strongly impact upon the 

behaviour of the river system. This thesis focuses on in-channel aquatic 

macrophytes (plants visible to the naked eye), which are a fundamental component 

of many lowland river ecosystems (Clarke, 2002; Franklin et al., 2008). Traditionally, 

in-channel vegetation has been viewed as problematic due to the increase in flow 

resistance it can cause (Kouwen and Unny, 1973), which for a given flow, leads to 

an increase in water level. Flow resistance extracts energy from the flow, via drag, 

which transfers energy from the mean flow to both heat and to stem-scale 

turbulence (Yagci and Kabdasli, 2008; Zong and Nepf, 2010). An increase in flow 

resistance therefore leads to a decrease in mean velocity and thus conveyance 

(Jarvela, 2002; Nepf et al., 2007), which for a constant discharge implies that the 

river must increase its cross-sectional area. For confined channels, this leads to an 

increase in depth (Petryk and Bosmajian, 1975; Nepf, 1999) and consequently poses 

a significant flood risk. Therefore, vegetation has historically been removed from 

channels to accelerate flow and decrease potential flood risk (Luhar et al., 2008; 

Nepf and Ghisalberti, 2008). 

However, over the last few decades, the positive effects of vegetation in terms of 

ecology and flood conveyance have been realised (Nezu and Onitsuka, 2001; Wilson 

et al., 2003). Vegetation canopies provide areas of decreased bed shear stress 

(Sukhodolov and Sukhodolova, 2010), which may increase sedimentation (Sand-

Jensen et al., 1989; López and García, 1998) and can create sediment and nutrient 

sinks that enable the development of stable habitats for terrestrial and aquatic 

wildlife (Lopez and Garcia, 2001; Liu and Shen, 2008; Liu et al., 2008). In addition, by 

creating spatial heterogeneity within the flow, and encouraging the development of 

different habitats, vegetation promotes biodiversity within rivers (Kemp et al., 

2000). Through the uptake of heavy metals and nutrients (Kadlec and Knight, 1996) 
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and the production of oxygen, the biological interaction between flow and 

vegetation can significantly improve water quality (Ghisalberti and Nepf, 2006). 

Consequently, vegetation has become central to many river restoration schemes 

(Wilson et al., 2003).  

Vegetation can also be used to actively manage flood risk. By allowing channels in 

flood-suitable areas to return to their natural vegetated state, the potential for 

overbank flows increases and therefore flood risk in urban areas downstream 

decreases (Evans et al., 2009). Hence, in addition to its ecological impacts, 

vegetation can be used as a catchment-scale flood management tool. Such factors 

thus have environmental, geomorphological and ecological implications which 

create a number of issues and uncertainty as to how best to manage the river 

corridor. 

Aquatic vegetation can be seen to have both beneficial and detrimental effects on 

the river system (Haslam et al., 1975) and exhibits complex relationships with the 

flow and the landscape (Nepf, 2012b; Gurnell, 2013). Due to the lack of a full 

process understanding of flow-vegetation interactions, there is a tension between 

the positive and negative impacts within river management schemes. This tension 

was highlighted most notably in the Pitt Review (2008), written following the 2007 

summer floods in the UK. The 2007 flooding was the UK’s largest peacetime 

emergency since World War II with a cost of 13 lives and over £3 billion. One of the 

key observations of the Pitt review, in relation to the problem of vegetation, was 

that management processes such as dredging and vegetation clearance were no 

longer being performed as frequently in UK rivers because the management focus 

has shifted to flood control as an integrated part of river restoration and ecological 

integrity. One of the contributing factors, cited by the flood victims, to the cause of 

the flooding was the extent and slow recession of the flood waters (Pitt, 2008), 

potentially caused by undredged channels. Therefore, there is still a concern that 

vegetation is a significant driver of flood risk (Evans et al., 2009), and the debate, as 

to the trade-off between flood and ecosystem management, is ongoing. 
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This ecological approach is central to the EU Water Framework Directive (WFD) 

(2000/60/EC) established in 2000, which requires EU member states to adopt river 

management policy which ‘prevents further deterioration and enhances the status 

of aquatic ecosystems’ (WFD, p.6). The abundance and composition of aquatic 

macrophytes are key criteria used within the framework as indicators of the 

ecological status of rivers and therefore vegetation clearance is discouraged 

(O’Hare et al., 2010).  Other EU directives such as the Habitats directive 

(92/43/EEC), and more recently the Biodiversity Framework (2011/2307(INI)) have 

also highlighted the current negative implications of human impact and channel 

modification (ETC/BD, 2008) and advocated the restoration and preservation of 

ecosystem services.  

Recognition of these issues has led to significant research on vegetated flows over 

the last two decades (Luhar and Nepf, 2013). This work, much of it based upon 

work in terrestrial environments (e.g. Raupach et al., 1996; Finnigan et al., 2009), 

has led to an improvement in our understanding of the quantitative effects of 

vegetation canopies on flow in open channels (e.g. Ghisalberti and Nepf, 2002; 

Nepf, 2012a; Nepf, 2012b). However, despite improvements in our understanding 

of the dynamic process interactions between flow and vegetation, this process 

understanding has not been transferred to our reach-scale field-based predictive 

tools or incorporated in our modelling approaches where empirical roughness 

relationships still dominate (Lane and Hardy, 2002; Luhar and Nepf, 2013). 

It is suggested herein that empirical roughness values are limited in accuracy as 

they fail to quantify the spatial and temporal variation in roughness due to plant 

and patch characteristics (Rhee et al., 2008; O’Hare et al., 2010). Therefore, 

empirical roughness-based models are unable to predict local flow structure which 

prevents the prediction of spatially dependent sediment transport dynamics and 

ecohydraulic variables necessary for ecological evaluation in line with the WFD. 

Effective river management requires a detailed knowledge of the effects of 

vegetation and an ability to predict, with accuracy, the local impact of vegetation 

on flow and morphology (Stoesser et al., 2009). However, much of the aquatic 

research to date has involved simple, idealised canopy models, or has been flume- 
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or field-based where accurate, spatially-intensive, concurrent measurements are 

not feasible at the local scale. The trade-off between flood and ecological 

management highlights the need for reliable methods of accurately calculating 

vegetative resistance (Nepf, 2012b) and therefore further work is required to better 

model the effect of macrophytes on channel hydraulics (Kemp et al., 2000). 

Improving our process understanding of energy extraction and turbulence 

production at the stem-scale is key to moving away from empirical resistance 

methods (Naden et al., 2006). In particular, it is important to characterise the time-

dependent interaction between flow and vegetation at the stem-scale and to 

identify the key processes in order to determine an appropriate modelling strategy 

at the canopy-scale and beyond. 

1.2 Research Aim 

The overall aim of this thesis is to further our understanding of the effect of 

vegetation on flow in rivers. More specifically, this thesis aims to study the effects 

of submerged, flexible vegetation within open channel flows as this represents the 

most complex and realistic scenario for aquatic macrophytes. This thesis will focus 

on the stem-scale flow-vegetation interactions as this is the scale at which energy is 

extracted from the flow. This overall aim is further divided into a methodological 

aim (A1) and a research aim (A2). 

A1. To develop a model capable of simulating the interaction between flow and 

vegetation from the individual plant scale through to the canopy scale; 

and to use this new modelling approach in order; 

A2. To investigate the controls on the turbulent processes exhibited in canopy 

flows. 

1.3 Research Questions 

In order to achieve the aims, a number of key questions have been identified which 

are addressed and answered throughout the thesis. These research questions are a 

product of both the methodological and research aims and include; 
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Q1. What turbulent processes are present within canopy flows? 

This question has been formulated as it is central to understanding the interaction 

between flow and vegetation at the stem-scale and characterising how the 

turbulence differs from non-vegetated channels. A full process understanding of 

the turbulence is essential in developing a vegetative resistance model (Naden et 

al., 2006). 

Q2. How do aquatic canopy flows differ from terrestrial canopy flows? 

This question addresses the extent to which our process understanding obtained 

from the terrestrial environment (e.g. Finnigan et al., 2009) is applicable to the 

aquatic case. It is necessary to identify any similarities or differences in the 

processes before being able to generalise terrestrial canopy flow models for the 

aquatic case. 

Q3. How do structural and biomechanical properties of river plants determine 

turbulence dynamics within plant canopies? 

In order to understand the controls on turbulence within vegetated channels, and 

subsequently develop an effective, physically-based vegetative resistance model, it 

is important to identify the key vegetation characteristics which determine the 

vortex dynamics. 

Q4. What feedback mechanisms are present between the flow and vegetation 

characteristics? 

To date, one of the key areas of research into canopy layers has been the feedbacks 

between the flow and vegetation. These feedback mechanisms are important to 

define as they dictate which flow and vegetation characteristics determine the 

turbulent flow field. Furthermore, they also define the processes which need to be 

included in the conceptual model. 

Q5. What key processes need to be represented within high-resolution 

vegetation models? 



                                                                                                            Chapter 1: Introduction 

6 
 

This question is crucial to the methodological aim, in defining the conceptual 

model, as it determines the necessary level of complexity and process 

representation required to fully model flow-vegetation interactions. However, this 

process information is not known a priori and therefore will be addressed 

throughout the process of model development and application. 

Q6. Is it possible to improve the representation of vegetation in management-

scale models, by applying a more process-based approach? 

Current numerical models of flow-vegetation interaction rely on empirical 

roughness relationships rather than process-informed parameters. Throughout this 

thesis it is suggested that these empirical relationships represent flow through 

vegetation poorly. In order to justify this hypothesis it is important to assess the 

discrepancy between these current approaches and more physically-based models. 

1.4 Objectives and Thesis Structure 

The thesis aims and research questions are addressed through a set of 

methodological objectives. In order to be able to answer the research questions it is 

first necessary to critique our current understanding of canopy flows as well as the 

variety of modelling approaches previously applied to vegetated flows across a 

range of spatial scales (O1). This will also include reviewing appropriate methods of 

analysing the numerical data produced by such models in order to assess whether 

the models are correctly representing the natural environment. 

In order to fulfil the methodological aim (A1), two novel vegetation models will be 

developed which are capable of simulating the time-dependent interaction 

between the flow and vegetation at the stem scale (O2). The new models need to 

be fully assessed to quantify their suitability and accuracy. To achieve this, it is 

necessary to validate the models against a set of highly controlled flume data (O3). 

The successful development and validation of these models will allow an 

investigation of the dominant controls on the turbulence structures within 

vegetated channels by applying the model to a range of different scenarios (O4). 
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Finally, in order to evaluate the applicability of the high-resolution results at the 

reach-scale it is necessary to incorporate the key processes within a reduced 

complexity reach-scale model (O5). This will allow a comparison between the new 

model and existing methodologies in order to evaluate any improvement in 

performance. 

These five methodological objectives map onto the structure of the thesis as shown 

in Figure 1.1 and discussed below. 

Objective 1: Critique of our current understanding of canopy layer theory in order to: 

develop a suitable modelling methodology, obtain a valid analysis framework and 

explore potential reach-scale modelling methods. 

This objective is addressed in Chapters 2, 3, and 4 and can be divided into two 

sections; one focussing on the theory of canopy flows and how they have been 

previously modelled, and the other on specific methodological aspects of the thesis 

such as appropriate modelling and analysis frameworks. Chapter 2 deals with the 

theory of canopy flows and discusses how the interactions between flow and 

vegetation have previously been incorporated into models of different complexity. 

In order to do this, the chapter begins by reviewing the underlying theory of flow-

vegetation interaction before summarising the different numerical modelling 

approaches which have previously been used. Finally it examines how vegetation 

has been included within previous models. 

Thus, within Chapter 2, some key numerical methods are discussed, though the 

details regarding specific methodologies are addressed in more depth in Chapter 3. 

In Chapter 3, previous modelling methodologies are critiqued before the 

methodological approach to be used in the thesis is formulated. In Chapter 4, a 

synthesis of techniques used for investigating flow structure is presented which 

enables a useful and appropriate flow and vegetation data analysis approach to be 

devised. 

Objective 2: Development of biomechanical models capable of representing flexible 

vegetation. 
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Objective 2 is addressed in Chapter 3, where two different models, which 

incorporate vegetation within a Computational Fluid Dynamics (CFD) framework, 

are proposed and developed. The first of these models is based upon the Euler 

beam equation and is designed to replicate semi-rigid vegetation. The second 

model uses an N-pendula approach to represent highly flexible vegetation. As well 

as the initial development of these models, Chapter 3 includes the verification and 

stability testing of the two models. Furthermore, attention is given to the various 

CFD solver options and boundary conditions, and the parameters used for the rest 

of the thesis are set out. 

Objective 3: Validation of the biomechanical models against experimental flume 

data. 

Chapter 5 covers the validation of the two numerical models against controlled 

experimental flume data. This is an important step to demonstrate the applicability 

of the two vegetation models developed as part of Objective 2, before the models 

are applied to a wide range of scenarios. In order to fully validate the models, key 

flow parameters including both mean flow and turbulent properties are compared 

against the flume data. 

Objective 4: Investigation of the dominant controls on turbulent structure within 

vegetated channels. 

Objective 4 is addressed in Chapters 6 and 7 where results from the numerical 

models are applied and discussed. Chapter 6 includes results from a range of 

numerical simulations using rigid, semi-rigid and highly flexible vegetation. The 

results are analysed according to the analysis criteria developed in Objective 1. The 

key aim is to elucidate the key controls on canopy flow, to inform Objective 5, and 

compare the results against our current understanding of flow-vegetation 

interaction. 

Objective 5: Incorporation of high resolution process understanding into reduced 

complexity reach-scale models. 
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The final objective involves incorporating the improved process understanding into 

a lower spatial resolution reach-scale model. Accordingly, the dominant features 

and mechanisms within the flow, such as drag and vortex production, are identified 

and represented in a simplistic way within a reach-scale CFD model. The results 

from this new model are compared to results obtained from applying an existing 

methodological approach as well as field data in order to quantify accuracy and 

process representation within the two models. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic overview of how the objectives map onto the thesis chapters. 

By following such a research design it is suggested that a suitable high resolution 

space-time model of flow-vegetation interaction will be developed. This will not 

only improve our process understanding of flow-vegetation interaction but also 

enable an enhanced processes-informed model for future management of the 

riverine environment.    
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Chapter 2: Modelling flow-

vegetation interactions 

2.1 Introduction  

Chapter 1 highlighted the importance of vegetation within river channels and the 

need for accurate vegetation modelling methods to enable effective river 

management. The effects of vegetation within rivers have been studied since the 

1950s (e.g. Cowan, 1956), right from the earliest attempts at quantifying roughness 

in open channels, however the literature is neither as extensive nor as developed as 

the research on non-vegetated gravel and sand bed rivers. There has, however, 

been a large amount of research conducted concerning terrestrial canopy flows. 

Whilst there are important differences between the two, which are discussed in 

Section 2.3.4, there are also important similarities, which have served as a basis for 

the emergence of aquatic canopy flow studies over the last two decades. 

Therefore, this chapter begins with a review of terrestrial canopies before moving 

on to consider the aquatic case. Having established a good understanding of the 

theory behind canopy flows, Section 2.4 reviews different methods of numerically 

representing open-channel flows, with a particular focus on the trade-off between 

process representation and computational cost. The remainder of the chapter then 

reviews the different ways in which vegetation has been incorporated into such 

models, from the simplest management models through to complex three-

dimensional research tools. 

2.2 Flow structure and processes over terrestrial 

canopies 

The theoretical foundations for canopy layer theory within vegetated channels are 

found within the terrestrial canopy literature. Therefore, prior to examining flow 

structure within aquatic flows, this section provides an overview of the vast amount 
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of research conducted in terrestrial environments, out of which some of the key 

ideas have emerged. 

2.2.1 Characteristic mean velocity profile 

One of the most significant challenges in understanding the impact of vegetation 

has been characterising the effect of vegetation on the mean velocity profile. 

Individual vegetation elements represent significant mass blockages and roughness 

elements within the flow. In addition, as a collective entity, plant canopies also act 

as a porous blockage (Shaw and Schumann, 1992; Ghisalberti and Nepf, 2009), 

restricting flow but not preventing it. This porous blockage effect creates two very 

different flow regimes: one above and one within the vegetation canopy. The 

within-canopy zone is characterised by a region of low longitudinal velocity, due to 

energy extraction from the flow by the canopy elements, a mechanism which will 

be explored in more detail in Section 2.2.5. This region is also characterised by a 

very low longitudinal velocity gradient in the vertical direction  
  

  
    (Finnigan, 

1979a).  

Whilst the velocity profile in non-vegetated channels is often approximated to the 

standard boundary layer profile (see Section 2.4.8), this is not an accurate 

approximation in vegetated channels as the porous canopy zone, and consequent 

creation of two distinct flow regimes, has a significant impact on the shape of the 

velocity profile. Instead it has been hypothesised that the canopy layer is more 

analogous to a mixing layer or free shear layer (Raupach et al., 1996).  A mixing 

layer is defined by Raupach et al. (1996) as the region of mixing of two co-flowing 

streams of different velocities.  

The vertical velocity profile for canopy flows was first formally conceptualised by 

Inoue (1963) as shown in Figure 2.1. He hypothesised that there were three 

different velocity regimes: (I) canopy, (II) boundary layer and (III) a small zone at the 

bed where both vegetation and the channel bottom affect the flow. He also noted 

the presence of a fourth layer, the honami layer (added to the original diagram as 

IV), which acted as a smooth transition between (I) and (II). Remarkably, over half a 
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century this conceptual model has changed only slightly. Current models, based on 

the mixing layer analogy, identify two separate velocity regimes: a canopy region of 

slow flow as explained above (I & III) and a region above the canopy top, which is 

more analogous to a boundary layer profile (II). Where these two zones join, an 

inflection point is formed and the profile resembles a hyperbolic tangent curve (IV) 

(Rogers and Moser, 1992).  

 

 

 

 

 

 

 

 

 

Figure 2.1: Mean vertical velocity profile of canopy flow, from Inoue (1963). The profile is 

split into 4 separate regions (region IV has been added to the figure). Here, H is the canopy 

height, d is the zero plane displacement, Z0 is the roughness parameter and UH is the 

velocity at the canopy top. 

The inflection point in the mean velocity profile at the top of the canopy is a key 

feature of the flow regime, as it represents a highly unstable region of high shear, 

which acts as the main driver for canopy shear layer (CSL) turbulence. 

2.2.2 Turbulence structure and characteristics  

The turbulence structure of the CSL can be split into three distinctive length scales, 

defined as fine-scale, active and inactive (Raupach et al., 1996). These three 

different scales can be characterised by their typical length scale (  ) as defined in 

Equation 2.1. 

IV 
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 (2.1)  

Here,    is the longitudinal velocity at the top of the vegetation canopy. Using the 

definitions from Raupach et al. (1996),    is the length scale of the turbulence 

associated with the shear layer at the canopy top and is therefore labelled the 

‘active turbulence’. As the canopy is a component within a planetary boundary 

layer there exists much larger scale turbulence (>>  ), usually scaling with the 

depth of the entire boundary layer. This turbulence will interact with the shear-

scale eddies. However, at the height of interest (   ) it is unlikely to impact 

largely on the turbulence statistics and is therefore termed ‘inactive turbulence’. At 

the other end of the spectrum, wake-scale eddies are formed in the lee of 

individual stems with a length scale much smaller than the shear length scale (<<  ). 

These vortices are usually Karman vortices shed due to flow separation around 

individual stalks. This ‘fine-scale’ turbulence plays a vital role in the development of 

the characteristic mean velocity profile through energy extraction, but is less 

significant within the turbulent energy budget as it is of a significantly small scale 

that it quickly dissipates away into heat.  

Instead, the shear-scale active turbulence dominates the TKE budget within the 

canopy (Raupach et al., 1996). These vortices are generated by the Kelvin-

Helmholtz (K-H) instability mechanism (Ho and Huerre, 1984) as a result of the 

inflected velocity profile of the free shear layer. The initial instability develops into a 

series of waves which grow downstream before rolling up into vortices. The 

frequency at which these vortices are generated depends on the characteristics of 

the free shear layer; namely the momentum thickness (  ) and the mean velocity 

(  ) of the flow and is shown in Equation 2.2 (Ho and Huerre, 1984). 

           
  

  
  (2.2)  

The momentum thickness is a measure of the thickness of the shear layer and the 

mean velocity is assumed to be the arithmetic mean of the two free stream 

velocities. Equation 2.2 is in fact a re-arrangement of the formula for the Strouhal 
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number, which is set equal to 0.032. This assumption follows from a linear stability 

analysis of the free shear layer instability, in which this value of the Strouhal 

number correlates with the most amplified wave, which in turn is associated with 

the natural frequency of the mixing layer (   ) (Ho and Huerre, 1984). 

These Kelvin-Helmholtz instabilities evolve as they progress downstream, becoming 

distinct transverse Stuart roller vortices (Finnigan, 2000). In between these 

spanwise rollers, braid regions develop exhibiting high strain rates. Pairs of counter-

rotating streamwise rib vortices form in these regions (Rogers and Moser, 1992) 

and interact with the roller vortices. Ambient turbulence within the flow then 

causes pairing of the roller vortices and the interaction between the pair’s vorticity 

fields causes them to converge and rotate around one another (Finnigan et al., 

2009). Figure 2.2 shows a schematic of the process, which eventually leads to the 

development of pairs of head-up (H-U) and head-down (H-D) vortices. 

This is a key theory as it links two prominent aspects of turbulence research within 

canopy flows: the development of Kelvin-Helmholtz instabilities and the occurrence 

of coherent sweep and ejection motions within the canopy. Following Lu and 

Willmart (1973), sweeps are defined as events with larger than average 

downstream velocity and smaller than average vertical (upward) velocity, and 

ejections as events with a smaller than average downstream velocity and a larger 

than average vertical velocity. They are explained in detail in Section 4.4. 

Research into the occurrence of such sweep and ejection events within and above 

plant canopies predates the shear layer analogy and consequently the vortex work 

by over a decade. Maitani (1977) was one of the first authors to study the 

coherence of flow events, though not within the framework of sweeps and 

ejections. He studied the vertical kinetic energy flux, which is inherently correlated 

with the longitudinal and vertical velocity components. His results showed that, in 

contrast to results obtained in boundary layer experiments, downward energy 

fluxes were indeed dominant over vegetation canopies.  
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Figure 2.2: Evolution of K-H vortices over vegetation (Finnigan et al., 2009). Figure shows (a) 

initial instability, (b) roll up into Stuart roller vortices, (c) vortex stretching and pairing and 

(d) pairs of H-D and H-U vortices, causing sweep and ejection events within the flow. 

Another study by the same author showed a significant positive and negative skew 

in the horizontal and vertical velocity probability distributions respectively (Maitani, 

1979). This alludes to the presence of sweep motions above the canopy and a 

dominance of instantaneous downward momentum fluxes into the canopy. 
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This theory was confirmed by using conditional sampling to illustrate the 

dominance of sweeps/inrushes compared to ejections within the flow (Maitani, 

1978). It was found that it was this imbalance which leads to a skewed non-

Gaussian velocity distribution. Furthermore it was hypothesised for the first time 

that the inrush-ejection cycle played an important role in momentum and energy 

transfer (Maitani, 1978).  

Finnigan (1979a) developed further the idea that the majority of the momentum 

transport is achieved by flow that is not representative of the mean flow. Instead, it 

is achieved as the result of intermittent, high momentum gusts (sweeps) which 

penetrate the canopy (Finnigan, 1979b). He found that within the canopy itself, the 

gusts (sweeps) and outward interactions were dominant, but that above the canopy, 

bursts (ejections) became more frequent. Moreover, Finnigan (1979b) was the first 

to link these sweep-ejection cycles to the passage of coherent eddies. 

Kanda and Hino (1994) confirmed this link between coherent eddies and turbulent 

quadrant events through a model experiment, which illustrated the presence of 

sweep and ejections linked to the passage of inclined coherent vortices. Thus, in 

contrast to Finnigan et al. (2009) they hypothesised that sweep and ejection events 

are merely manifestations of the vortex within the velocity signal. 

Much of the research above was conducted with vegetation of a simple form with 

little foliage. Within more complex canopies, there exist a number of other scales of 

turbulence relating to the different components of each plant. For example, foliage 

and leaves may generate turbulence of a different length-scale to any of the three 

mentioned above. However, due to its flexibility, foliage is most likely to 

reconfigure significantly, to produce turbulence with a length-scale more similar to 

that of the fine wake-scale turbulence than that of the canopy-scale, and it is 

therefore unlikely that the presence of foliage will contribute significantly to the 

large scale turbulence in terrestrial canopies. 

Nevertheless it acts as a reminder that whilst the theory has been presented as 

uniform for all canopies, velocity profiles and turbulence statistics will naturally 

have a dependence on the plant form and biomechanics. 
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2.2.3 Plant response and interaction with the flow: The 

role of plant biomechanics 

The first study to consider the effect of velocity fluctuations at the top of the 

canopy on its movement was that by Inoue (1955a). It was shown that the 

maximum longitudinal displacement of stalks correlated well with wind velocity and 

minimum surface drag. In a paired paper (Inoue, 1955b) the author also suggested 

a theoretical -7/3 power law for plant vibrations, but did not have the experimental 

data to test the theory.  

However, by far the most influential impact of these two papers was the 

introduction of the concept of ‘Honami’, (from ho=cereal and nami=wave), which 

refers to the coherent wave-like movement of the canopy in response to velocity 

fluctuations. This is a term which has been used extensively in the literature since, 

and has also been adapted to ‘monami’ for the aquatic case (see Section 2.3.2). 

Inoue (1955a) noticed that the waving of the canopy occurred at the natural 

frequency of the vegetation. This idea was reinforced by Maitani (1979), who 

observed a peak in the longitudinal velocity spectra at the natural frequency of the 

vegetation for wheat canopies. This raised an interesting question as to whether or 

not the vegetation canopy acts to modulate the velocity fluctuations, creating a 

feedback between the vegetation and the flow.  He also found experimental 

evidence for the -7/3 spectral slope, as proposed by Inoue (1955b), for canopies of 

rush plants, which appeared to correspond to velocity fluctuations and downward 

momentum fluxes. In fact, this -7/3 trend corresponds to the spectral slope for 

pressure fluctuations in homogeneous turbulent flows (see George et al., 1984 and 

references therein). This suggests that the plant motion is perhaps responding to 

the pressure signal rather than the velocity signal. 

Finnigan (1979a) modelled the vegetation canopy response to the flow as a 

travelling wave equation (Equation 2.3), an approach that has been subsequently 

used by a number of different authors (e.g. Doare et al., 2004; Py et al., 2004). Here, 

       is the displacement of a stalk in the canopy from its rest position and is 

formulated as a function of the vibration amplitude (     ) and the wavelength ( ) 
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and frequency ( ) of the stalk vibration. A useful quantity to define is the phase 

velocity (    ) of the honami wave. These phase velocities are dependent on the 

velocity field and act as ‘frozen histories’ of the gust velocities. 

                     
 

 
      (2.3)  

However, once the plants have begun vibrating, the stalks act to modulate the 

velocity fluctuations through aerodynamic drag (Finnigan, 1979a). Thus the canopy 

signal switches from velocity-driven to plant-driven, governed by the biomechanical 

properties of the vegetation. Therefore, the overall vegetation motion is 

determined by both wind and plant characteristics (Flesch and Grant, 1991). It is no 

surprise therefore that the strongest honami occurs when the wind velocity 

coincides with the natural frequency of the canopy (Raupach et al., 1996). 

As well as altering the velocity through drag, the waving plants are also the prime 

producer of pressure fluctuations at the canopy top whose frequencies correspond 

to the natural frequency of the stems (Finnigan, 1979b; Raupach and Thom, 1981). 

It is these pressure fluctuations, along with momentum transfer, that propagate the 

velocity waves (Finnigan, 1979a). These studies highlight the role of natural 

frequency and thus the biomechanical properties, such as flexural rigidity, in 

determining and characterising the interaction between vegetation and flow. 

There are other, larger scale vegetation properties that can also affect the flow. 

Doare et al., (2004) used a mass-spring model to highlight the importance of 

vegetation collisions within the canopy in controlling the plant response to velocity 

fluctuations. This can be characterised as a canopy property linked to the spacing of 

elements as well as the form of the individual plants. Vegetation spacing also 

determines the extent to which plants further within the canopy are sheltered from 

the flow (Raupach and Thom, 1981). This sheltering significantly reduces the drag 

experienced by the canopy. 
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2.2.4 Transport between the canopy and surface layer  

One of the main motives for studying flow and turbulence over canopies has been 

to gain a better understanding of transport processes between the canopy and the 

open flow (Raupach and Thom, 1981). The transport of momentum, stress and 

energy is key in determining the transfer of scalars such as pollen and nutrients 

which can have a significant ecological impact. 

It has long been known that transport within canopy flows is not, in the most part, 

achieved by the representative mean flow (Finnigan, 1979a), and neither can the 

transport of scalars be predicted using simple gradient-diffusion theory (Raupach, 

1989). Instead, the majority of transport is intermittent (Finnigan, 1979b) and 

occurs as a result of coherent turbulent motions (Bergström and Högström, 1989; 

Gao et al., 1989). Therefore, a good knowledge of turbulence is essential in 

understanding the transport of scalars (Wilson et al., 1982). Thus, the transport of 

flow properties (momentum, stress and energy), and consequently scalars (heat, 

pollen and nutrients), is considered here with reference to the dominant turbulence 

mechanisms described in the preceding sections. 

Shear-scale turbulence in the form of sweeps and ejections is the main driver of 

transport. Maitini (1978; 1979) found that over canopies, downward energy fluxes 

dominate, implying that turbulence is transported from the canopy top into the 

canopy due to the dominance of sweeps over ejections in this region. Similarly the 

main contributors to momentum transfer are sweeps, followed by ejections 

(Finnigan, 2000). In terms of stress, sweep and ejection events are particularly 

important as they both represent a net downward flux of stress (Raupach and Thom, 

1981). Therefore, over canopies, where both sweeps and ejections outnumber the 

inward and outward interactions (which represent upward transport) stress will be 

transported predominantly into the canopy. Thus transport of the flow variables 

greatly outweighs production as a source term within the top part of the canopy 

(Dwyer et al., 1997). 

Within the canopy, momentum and scalar transport is driven by diffusion (Raupach 

and Thom, 1981) and wake-scale vortex dynamics. Here there is very little vertical 
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velocity gradient and consequently transport, and instead longitudinal diffusion 

dominates. 

Two key variables which have not been discussed here are heat flux and the 

transport of water. While these are important in the terrestrial environment, they 

are not discussed as the ultimate focus of this thesis is aquatic canopies. Although 

heat flux can still be important it is not solved within the numerical schemes used in 

this study.  

2.2.5 Energy mechanisms within the flow 

The key process which drives the development of the canopy shear layer and the 

turbulent structure, governs transport processes and is also responsible for 

determining plant motion is the transfer of energy within the flow. There are three 

main energy transfer mechanisms which drive canopy flow: 1) the transfer of 

energy from the flow to the plant and vice versa, 2) the transfer of energy from the 

mean flow to turbulent flow and 3) the transfer of energy from turbulent kinetic 

energy into heat due to viscosity.  

Mechanisms (2) and (3) describe the turbulent energy cascade described by 

Kolmogorov’s (1941) -5/3 law, whereby energy is transferred from the mean flow, 

to large eddies, which then decay into much smaller scale vortices until eventually, 

at the molecular level, viscous effects cause the dissipation of energy into heat. The 

rate of decay with respect to frequency within the energy spectrum of a typical 

turbulent flow follows a -5/3 gradient in log-log space. This process is common to 

any turbulent flow, though the original method of turbulence production, and 

therefore dominant turbulent length scale, will vary. 

Within canopy flows, as discussed in Section 2.2.2, there are three main scales of 

turbulence production: wake, mixing layer and boundary layer. Wake formation 

removes energy from the mean flow via drag, transferring it into small scale 

turbulence. Due to the size of these vortices, they quickly dissipate away into heat 

and therefore do not contribute significantly to the TKE budget, accounting for 
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roughly 10% of the total in-canopy turbulence (Seginer et al., 1976). However, drag 

also acts on the turbulent flow and will therefore impact upon the TKE budget.  

When large-scale, high energy, mixing layer or boundary layer turbulent structures 

interact with plant stems, the wake shedding process represents a transfer of 

energy within the turbulent energy spectrum, from the high wavenumbers to the 

much smaller-scale structures. This is a deviation from the traditional Kolmogorov 

(1941) spectrum, as the middle sections of the spectrum are bypassed. This 

phenomenon has been termed a ‘Spectral shortcut’ (Finnigan, 2000).  

Stem-scale drag also transfers energy from both the mean and the turbulent kinetic 

energy budgets into plant strain energy, depending on the local flexural rigidity of 

the plant. For a rigid stem, no energy will be converted into strain, whereas for a 

flexible plant, a significant portion of the energy will be transferred to the plant, as 

potential energy. Once the vortex passes and the ambient velocity is lower, the 

plant then releases the stored elastic potential energy through rebounding to its 

initial position. In doing so, the plant moves against the flow, causing drag and 

therefore the transfer of energy into wake-scale turbulence. It is this process which 

acts to dampen the plant oscillations. 

Thus, for all canopies, whether rigid or flexible, drag acts as the major driver for 

energy transfer within the flow. Counteracting the drag force is the flexural rigidity 

of the vegetation. These forces control both the magnitude of energy exchange and 

the proportion converted to both plant potential energy and turbulent kinetic 

energy. This force balance is discussed further in Sections 2.3.2 and 2.6. 

2.3 Flow structure and processes in aquatic 

canopies 

The study of flow structure in aquatic canopies evolved out of terrestrial 

observations and in many cases the terminology and ideas are borrowed from the 

literature outlined above. The two environments do, however, present very 

different problems, and therefore must be seen as distinct cases. Here, the 
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characteristics of aquatic canopies are discussed, followed by analysis of the key 

differences between aquatic and terrestrial canopies. 

2.3.1 Velocity and turbulence characteristics  

One of the first studies of flow structure within an aquatic environment was 

undertaken by Ackerman and Okubo (1993). They conducted experiments on 

marine eelgrass canopies and observed low frequency velocity fluctuations 

evidenced by movement of the vegetation canopy. They noted that these velocity 

fluctuations did not correlate with any surface generated waves or with ambient 

turbulence, suggesting the existence of a canopy shear layer, analogous to a mixing 

layer, as the primary driver of the motion. 

Grizzle et al. (1996) also worked on marine sea grasses, and discovered particular 

velocity fluctuations within the flow, whereby regions just above the canopy would 

experience a sudden drop in velocity, accompanied by an increase in velocity 

immediately above and below. This suggested the presence of spatially coherent 

vortices within the flow, though the exact cause for these patterns was not 

hypothesised by the authors. 

Ikeda et al. (1996) were the first to provide quantitative evidence of the inflected 

velocity profile above aquatic canopies. This result is not surprising given results in 

terrestrial canopies, and consequently little attention has been given within the 

aquatic literature to the mean velocity profile itself. However, Nezu and Sanjou 

(2008) did characterise the velocity profile into three regions based on previous 

experimental studies. They define the emergent zone, the mixing zone and the log 

law zone as shown in Figure 2.3. 

The emergent zone is the zone closest to the bed where the flow is pressure driven, 

mechanical turbulence production dominates and therefore the flow profile is 

constant (Nepf and Vivoni, 2000). The mixing zone is characterised by an inflection 

in the velocity profile and is dominated by the large shear-scale vortices which are 

discussed below. The log law zone describes the region above the canopy top, 

where the flow profile is logarithmic (Lopez and Garcia, 2001) as in a boundary layer, 
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however in reality this is unlikely to occur in canopies with a low submergence 

depth. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematized flow model for aquatic canopy flow (Nezu and Sanjou, 2008). Here 

the heights hp and hlog delimit the 3 zones. The cause of sweep and ejection events is also 

hypothesised as relating to the passage of shear-scale eddies. 

Ikeda et al. (1996) were also the first to provide quantitative evidence of coherent 

vortices over aquatic canopies. They observed pairs of counter-rotating elliptical K-

H vortices, centred slightly above the canopy, moving downstream at a speed 

greater than the mean flow. These vortices were inclined downwards towards the 

front and were preceded by a strong upward motion. Evidence of these inclined 

vortices was also found by Ghisalberti and Nepf (2006). 

These K-H vortices generate through the shear instability (Nezu and Onitsuka, 2001). 

As they evolve (see Figure 2.4), the height of the vortex centre increases due to the 

canopy drag, and they also expand with distance and time (Ghisalberti and Nepf, 

2002). However unlike free shear layer vortices, vegetated shear layer vortices only 

grow to a finite thickness (Ghisalberti and Nepf, 2006). Vortex growth stops when 

turbulent energy production equals dissipation (Ghisalberti and Nepf, 2004) and 

this equilibrium can be estimated by balancing shear production and canopy 
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dissipation, under the assumption that the other terms in the budget are negligible 

(see Nepf et al., 2007). 

 

 

 

 

 

Figure 2.4: Development and evolution of vortices within aquatic flows (Ghisalberti, 2009). 

As with the terrestrial case, alongside the discovery of these coherent turbulent 

structures, there has been a considerable amount of research into the presence of 

sweep and ejection events over the canopy top. Ghisalberti and Nepf (2006) 

observed a sweep-ejection cycle consisting of a strong sweep followed by a weak 

ejection. They hypothesised that the reason for the weaker ejection was energy loss 

during the sweep stage due to vegetation drag. They also found that statistically, 

sweeps dominate ejections in the canopy, with the pattern reversed above the 

canopy. These results have been confirmed  by Maltese et al. (2007). 

The shear-scale K-H vortices appear to be responsible for the sweep and ejection 

events observed at the canopy top. Okamoto and Nezu (2009) noted the periodical 

nature of sweeps and ejections at the canopy top, suggesting they corresponded to 

the front and back ends of vortices. Working in lateral canopy shear layers, White 

and Nepf (2007) noted that sweeps are key to vortex production, with ejections 

occupying a smaller yet significant role as a transport mechanism. Finally, Nezu and 

Sanjou (2008) note that inward and outward interactions diminish near the canopy 

top, suggesting an increase in coherence, observed as the passage of K-H vortices. 

Thus it is clear that the two key observable properties of shear-scale turbulence, 

namely turbulent quadrant events (sweeps and ejections) and mixing layer vortices 

are mechanistically linked. However, the nature of this link and interdependence 

within aquatic flows is not yet fully understood. 
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As well as the shear-scale turbulence, there are a number of other length scales of 

turbulence within the canopy. Nikora (2010) identifies six distinct turbulence scales, 

as shown in Figure 2.5. Using the Nikora numbering system, the different scales sit 

within three broad turbulence regimes: boundary layers (1 & 3), mixing layers (2 & 

4) and wakes (5). Plant flapping (6) does not fit naturally into any of these regimes, 

but in reality is most likely to be caused either by a mixing layer instability or by 

wake vortex shedding similar to a flapping flag (e.g. Zhang et al., 2000; Connell and 

Yue, 2007). This mechanism of turbulence production is of great interest as it is 

likely to be closely related to the plant form and will therefore vary across different 

plant types. 

 

 

 

 

 

 

 

Figure 2.5: Six scales of turbulence within vegetated channels, adapted and redrawn from 

Nikora (2010). 

Although all six scales are likely to be present within canopy flows, the most 

dominant scales are likely to be the depth-scale boundary layer, the shear-scale 

mixing layer and the stem-scale turbulence (whether that be wakes or mixing 

layers). It is suggested that it would be unlikely that, in any experimental setup, 

vortices originating from the steam/leaf scale boundary layer would ever be 

identified. 
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2.3.2 Plant response and interaction with the flow 

Ackerman and Okubo (1993) were the first to analyse plant motion within aquatic 

canopies. With a backdrop of the previous work done in terrestrial canopies, 

coherent movement of the canopy was one of the benchmark characteristics they 

used to investigate whether aquatic canopies behaved similarly to terrestrial 

canopies. In fact, in the earliest aquatic studies, where velocity measurements were 

few, coherent moving of the canopy was used as the primary evidence of vortices 

within the flow. 

Due to the observed similarities between the aquatic and terrestrial waving of 

vegetation, Ackerman and Okubo (1993) named the aquatic phenomenon ‘monami’ 

(from honami). Working within a very similar setup, Grizzle et al. (1996) also 

observed synchronous waving of the canopy. They also noted the existence of a 

clear threshold velocity below which coherent waving did not occur. This suggests 

that the coherent flapping is a response of the vegetation to flow of a particular 

magnitude, potentially related to the natural frequency of the vegetation. 

Similar to the terrestrial case, evidence has been found of a feedback effect on the 

velocity field caused by the vegetation. Ikeda et al. (1996) found that flow at the 

top of the canopy appeared to have been modulated by the vegetation motion, as 

the flow exhibited a -7/5 power spectrum, rather than the standard -5/3 

Kolmogorov turbulent spectrum. However, this figure differs substantially from the 

figure of -7/3 associated with plant motion, observed on occasions in both 

terrestrial and aquatic canopies (e.g. Inoue, 1955b; Maitani, 1979; Ikeda et al., 

1995). 

The spectrum of plant motion in response to the flow can be broadly categorised 

into four distinct regimes. These are erect, gently swaying, monami (coherently 

waving) and prone (Kouwen and Unny, 1973; Nepf and Vivoni, 2000). The regime of 

motion observed for a particular canopy will be determined by the vegetation 

biomechanics as well as the flow velocity. While these regimes could also be used 

for the terrestrial case, aquatic plants tend to have greater flexibility leading to a 

greater range of plant motion (Nepf and Vivoni, 2000). 
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In reality, flexible aquatic canopies under normal conditions will experience either 

gently waving or coherently waving canopies. As first noted by Grizzle et al. (1996), 

there is a clear velocity threshold between these two regimes, and this threshold 

value changes with flexural rigidity (Ghisalberti and Nepf, 2006).  

One of the key challenges in conducting experiments with simple artificial 

vegetation is making sure that the findings are applicable to real aquatic vegetation, 

which exhibits a wide range of forms. Wilson et al. (2003) addressed the issue of 

scaling biomechanical properties between real and artificial plants. They noted the 

huge difficulty in comparing the biomechanical properties of very different 

materials. In particular, flexural rigidity can be difficult to measure and scale as the 

artificial stems will most likely have constant rigidity, whereas in real stems, this will 

vary considerably along the stem. Nevertheless, it has been shown that shear 

instability characteristics appear to generalise over a range of flexibilities 

(Ghisalberti and Nepf, 2002; Velasco et al., 2003) and therefore flume experiments 

with artificial vegetation represent valid contributions to theory over natural 

canopies. 

Ghisalberti and Nepf (2002) used prototype vegetation, and found good agreement 

between monami frequencies and predicted mixing layer instabilities. They defined 

monami as the observed downstream progression of plant deflection due to high 

vortex velocities. In a different study, the same authors identified a lag time 

between vortex passage and plant motion (Ghisalberti and Nepf, 2006). This 

suggests that the vegetation has an active role in controlling the monami 

characteristics and therefore the feedback with the flow. 

Okamoto and Nezu (2009) also conducted a series of experiments with artificial 

vegetation. They observed that when monami was present, the oscillating canopy 

absorbed significantly more momentum than the rigid vegetation canopy, thus 

regulating the turbulence at the canopy top. This momentum absorption can also 

be enhanced by the presence of foliage. Foliage can represent a significant increase 

in momentum absorbing area (MAA) and despite increasing the drag force, it also 

inhibits momentum exchange, reducing in-canopy velocities (Wilson et al., 2003). 
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In response to the drag force acting on canopies with foliage, reconfiguration 

commonly occurs. Here, streamlining of the plant foliage is more important in 

terms of drag reduction than stem bending (Jarvela, 2002) and represents a 

significant reduction in form drag. This can occur at a range of scales from the leaf 

scale right through to the patch-scale (Albayrak et al., 2011). Two important 

parameters which govern reconfiguration are the Cauchy number (  ) and 

Buoyancy number ( ) (Nikora, 2010; Luhar and Nepf, 2011) which describe the 

force ratios between the drag and rigidity, and buoyancy and rigidity forces 

respectively. 

    
 

 

      
   

 

  
 (2.4)  

   
         

 

  
 (2.5)  

Here,    is the blade thickness,    is the length of the blade,    is the blade width, 

   is the drag coefficient and    is the flexural rigidity. 

Similar to the terrestrial case, larger scale vegetation properties can also affect the 

overall flow regime. The shear region within canopy flows is caused by a bulk drag 

discontinuity (Nepf et al., 2007). The term CDah is often used to categorise the scale 

of the drag discontinuity, where CD is the drag coefficient, a is the frontal area per 

volume and h is the canopy height. While CD and h represent a dependence on the 

individual plant form (e.g. foliage and length), a represents a dependence on a 

patch-scale property (e.g. stem density).  

Nepf and Ghisalberti (2008) note that the velocity inflection point which governs 

the entire canopy flow only exists for canopies with CDah > 0.1. Furthermore, stem 

density controls the turbulence regime within the canopy. For canopies with CDah > 

0.3, shear-scale turbulence cannot penetrate into the canopy and therefore the 

entire canopy is dominated by stem scale vortex shedding.  

Similarly, hydraulic resistance is directly linked to the term MEI (Wilson et al., 2003), 

where M is the stem density and EI is the flexural rigidity. This represents another 

feedback between the flow and vegetation, as MEI alters with streamlining. 
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Thus plant biomechanics not only modulate the velocity field at the top of the 

canopy, they are also vital in characterising the flow profile throughout the entire 

flow depth, and in determining transport between the canopy and the open flow. 

2.3.3 Transport and energy mechanisms within the flow 

Within canopy flow, momentum transfer characteristics are responsive to both flow 

configuration and vortex organisation (Velasco et al., 2003). The canopy itself can 

be split into two vertical regions, one of rapid exchange and one of slower exchange 

(Nepf and Vivoni, 2000). The height of the boundary between these two zones 

marks the point at which the shear-scale vortices no longer penetrate into the 

canopy. The lower zone is therefore characterised by transversal stresses related to 

stem-scale turbulence, whereas the upper zone is dominated by vertical Reynolds 

stresses caused by the shear-scale turbulence (Nepf and Vivoni, 2000; Nepf et al., 

2007).  

Wake driven transport results from the pressure distribution around each stem, 

described in terms of the pressure coefficient (see Section 3.7.1 for further 

discussion of the pressure coefficient). Upstream of the obstacle, the pressure 

coefficient is equal to 1, and therefore stagnation occurs and downward flow is 

created due to the vertical gradient in longitudinal velocity (Nepf and Koch, 1999). 

In contrast, downstream of the obstacle, the pressure coefficient is negative, 

leading to upwards flow. This flow controls the availability and distribution of 

potentially sediment and nutrient rich water from the bed, and therefore has 

implications for biological function within the canopy (Nepf and Koch, 1999). 

Vortex driven momentum transport is an order of magnitude higher than wake 

driven transport (Ghisalberti and Nepf, 2006), and therefore the upper region 

experiences much faster renewal. Ghisalberti and Nepf (2009) found that within 

this upper zone, coherent vortices generate up to 80% of the momentum transport 

between the canopy and the open flow. They also noted that because of the nature 

of the K-H vortices, this transport process is both highly periodic and spatially non-

uniform. Furthermore, the study found that rates of mass transport were three 

times higher than momentum transport rates. This reinforces the analogy with the 
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mixing layer, where this is also the case (Raupach et al., 1996). This also has 

implications for scalar transport, which will most likely follow the same rates as 

mass transport, although scalar transfer has yet to be investigated. 

The impact of monami on transfer has also recently been investigated. Ghisalberti 

and Nepf (2009) found that monami causes the canopy to behave in a similar 

manner to that of a sparser canopy, increasing vertical transfer and therefore 

causing greater flushing. They found that residence times within the canopy were 

four times greater for non-flexible canopies. However it has also been noted that 

waving vegetation decreases the stress peak at the canopy top and therefore 

reduces momentum transport by up to 40% compared to rigid canopies  

(Ghisalberti and Nepf, 2006). The decrease in stress at the canopy top leads to 

weaker vortices and hence less efficient exchange (Nepf and Ghisalberti, 2008). 

Intuitively, as vortices govern mass and momentum exchange, they are also 

responsible for the transport of suspended sediment (Okamoto and Nezu, 2009). 

Therefore knowledge of vortex driven exchange is central to river management. At 

the heart of understanding vortices are the energy mechanisms within the flow.  

The energy mechanisms within aquatic flows are largely similar to those found 

within terrestrial canopies, however aquatic flows are bounded (depth-limited) and 

this usually prevents the production of large boundary layer vortices. Therefore, 

whereas in terrestrial canopies, an important mechanism is the interaction 

between boundary layer vortices and K-H vortices, in most shallow aquatic flows K-

H vortices dominate the flow (Nepf and Ghisalberti, 2008). 

Thus the three dominant turbulent length scales become stem, shear and water 

depth scale (White and Nepf, 2007). The shear length can be related to the drag 

discontinuity CDa-1 which characterises the inflection point in the velocity profile. 

The stem-scale drag mechanism is largely similar to that of the terrestrial canopy 

case, where energy is extracted from both the mean and turbulent kinetic energy 

and converted to smaller scale turbulent kinetic energy, before dissipating into heat. 

The fraction of energy which is converted by the vegetation into turbulent kinetic 
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energy depends on the ratio of form and viscous drag, which in turn is dependent 

on the plant morphology and biomechanics as well as the flow velocity (Nepf, 1999). 

Similarly, within a canopy, drag values can be affected by the impact of upstream 

separation and wakes (Ghisalberti, 2009). 

Thus the driver of all the canopy scale turbulence (both stem and shear scale) is the 

magnitude of the drag force. Therefore, it is imperative that the drag be calculated 

accurately to ensure a correct understanding of the turbulent flow regime. This 

issue is discussed further in Section 3.7. 

2.3.4 Key differences between terrestrial and aquatic 

canopies 

In comparing terrestrial and aquatic canopies, there are two key differences which 

have emerged in this review. The first is the depth-limited nature of aquatic canopy 

flows. The major impact of this is to alter the turbulent spectrum, increasing the 

dominance of K-H vortices within the turbulence regime (Nepf and Ghisalberti, 

2008). A subsequent impact is that in particular cases, with very small submergence 

depth, there is limited development of a shear layer at the canopy top, and the 

mixing layer is not symmetrical. 

The second is the significant difference in plant form and biomechanics. One of the 

major drivers of difference in plant form and biomechanics is density. Whereas 

terrestrial vegetation is universally denser than the fluid it resides in, many aquatic 

species have a lower density than the surrounding fluid and thus are positively 

buoyant (Luhar and Nepf, 2011), creating a very different force balance. While 

terrestrial vegetation relies upon high flexural rigidity to counteract gravitational 

forces (in order to grow and reach sunlight in a competitive environment), this is 

much less of an issue in aquatic canopies where buoyancy can, to a certain degree, 

control the plant position. Rigidity can still be important and there are examples of 

aquatic plants which have relatively high rigidity (e.g. reeds, grasses) however these 

tend to be emergent plants. The majority of submerged macrophytes exhibit a low 

flexural rigidity. Therefore aquatic plants can be split into two main types: those 
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which are highly flexible and are controlled predominantly by tensile forces, and 

those which are more rigid and are controlled by bending forces (Nikora, 2010).  

In the former category, in particular, buoyancy will act as a major control on plant 

position, acting against drag. Thus, the force balance is notably different to the 

terrestrial case where gravity acts predominantly in the same direction as drag. This 

has important implications for modelling aquatic canopies as distinct from 

terrestrial canopies. 

Another result of lower flexural rigidity is an increased ability to reconfigure. As 

mentioned above, reconfiguration is a key element in reducing drag. Aquatic 

vegetation must find a balance between drag reduction and photosynthetic 

capacity (Albayrak et al., 2011; Bal et al., 2011). Aquatic vegetation commonly has 

substantial foliage with a large surface area to enable light capture. However, plant 

survival within a high drag environment is dependent on morphological adaptations 

and streamlining to prevent uprooting or physical damage (Sand-Jensen, 2003). 

Aquatic plants can experience a drag force 25 times larger than terrestrial plants, 

for a given velocity (Denny and Gaylord, 2002), so a plant’s ability to reconfigure is 

crucial as it enables it to become more streamlined, reducing the form drag exerted 

on it.  

Finally, terrestrial research has predominantly been undertaken over forest/tree 

canopies and simple crop canopies. Aquatic macrophytes generally present a more 

complex form and also encompass a range of forms within themselves. It is likely 

that the flow regimes, and in particular turbulence characteristics, will reflect that. 

One notable difference in form is that many aquatic plants adopt a horizontal 

position within the flow, which is a departure from the idealised canopy structure 

used within terrestrial canopies and many aquatic experiments. This is likely to 

affect the dominant mechanisms of turbulent production. Here, plant-flapping-

scale turbulence may become significant (see Section 2.7.2) 
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2.4 Numerical representation of open channel 

flow 

Fluid and continuum mechanics describes an extensive field of research, one that 

has developed over many centuries and with an extensive literature. This section 

presents an overview of key ideas with respect to a subset of this literature and 

concerning open channel flow. Section 2.5 then introduces the concept of 

incorporating vegetation into models of fluid flow. This section begins with the 

three dimensional physics of flow, and then progresses through to the more 

simplified models used within river management models. 

Water can be described as an incompressible, Newtonian fluid. This implies that 

viscosity and density can both be considered constant, within the temperature 

limits observed in natural channels, providing the water does not change state. 

Models of fluid flow also rely upon the assumption that fluid can be considered as a 

continuum (Tritton, 1988) and thus Newton’s laws are considered in an Eulerian 

form (Lane, 1998; Pope, 2000). Finally, natural flows are viscous and typically 

turbulent. Turbulence is hard to define, but is observed as the presence of multi-

scale unsteady fluctuations within the flow, which behave in an apparently chaotic 

manner (Tennekes and Lumley, 1972; Davidson, 2004; Lesieur, 2008). Here, the 

term ‘chaotic’ is used in the deterministic, mathematical sense, indicating an 

apparently random process with underlying organisation (Devaney, 2003). 

In order to characterise the turbulent nature of a flow, the Reynolds number 

(Equation 2.6) is used. The Reynolds number is non-dimensional, and is the ratio of 

inertial to viscous forces. Flows with        are classified as laminar, and flows 

with         are considered fully turbulent while flows in between are 

considered transitional flows (Graf, 1998). The Reynolds number is important to 

quantify as key forces such as drag exhibit a    dependence (Panton, 1984).  

    
   
 

 (2.6)  
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Another useful quantity when analysing flow is the Froude number (Equation 2.7), 

which is defined as the ratio of the inertial to gravitational forces and determines 

the behaviour of the flow in response to the relative dominance of the internal 

forces. The Froude number can be used to define subcritical (    ) and 

supercritical flows (    ). This is a key distinction to make as it will impact on 

model suitability and free surface approximations (Section 3.2.4). 

    
 

     
 (2.7)  

Fluvial open channel flows are predominantly shallow (Jirka and Uijttewaal, 2004) 

and therefore the effects of topography (and by extension, vegetation) extend 

throughout the flow depth (Lane et al., 2005). The effects of the topography are 

two-fold. First, the topography represents a no-slip channel boundary, exerting 

friction on the flow. A no-slip condition states that for a viscous flow, the fluid will 

have zero velocity relative to the boundary at the interface with the boundary 

(Anderson, 1984). Secondly, the topography represents a physical blockage 

protruding into the flow. This will cause flow separation, generation of turbulent 

structures within the flow and consequently momentum loss. Therefore, accurate 

representations of topography and vegetation are vital elements of any model used 

to predict channel flow. 

However, models are limited by spatial resolution and therefore require discrete 

sampling of the continuous bed surface and vegetation interface. Thus, some of the 

topography and vegetation will always be ‘sub-grid’ or ‘sub-scale’ and must be 

represented through roughness parameters rather than explicit representation. 

Here, the merit of this parameterisation is considered at a range of scales and 

dimensions. 

2.4.1 The Navier-Stokes Equations 

The Navier-Stokes equations (Equations 2.8 and 2.9) are a set of mass and 

momentum conservation equations for, in the simplest case, incompressible and 
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Newtonian fluids (Hinze, 1975; Ingham and Ma, 2005). They can be written in a 

number of different formulations; here the Einstein summation convention is used. 

   
   
  

   
   
   

   
  

   
   

    
      

     (2.8)  

 
   
   

   (2.9)  

where   is the fluid density,   is the dynamic viscosity,   is the pressure,    is the 

velocity component in the    direction and    represents additional forces on the 

flow. Equation 2.8 ensures momentum conservation and Equation 2.9 represents 

mass continuity. The existence and smoothness of these equations has yet to be 

solved analytically even for the simplest flows (Moin and Mahesh, 1998). However, 

they are still extremely useful as the basis for modelling three dimensional 

turbulent flows, and they can be solved numerically in a variety of ways.  

2.4.2 Direct numerical simulation (DNS) 

The most accurate method for solving the Navier-Stokes equations is to solve them 

fully, resolving all turbulent scales down to the smallest scales at which energy is 

dissipated into heat by molecular forces (Sotiropoulos, 2005). Here, blockages 

which are greater than the grid size are explicitly represented in the model as no-

slip boundary conditions. Due to the nature of the simulation, this grid size is 

typically very small and therefore captures all the elements that would constitute 

roughness in a river. This is a promising method which has been used for a variety 

of fundamental flow problems such as boundary layer flow (Spalart, 1988; Na and 

Moin, 1998), plane channel flow (Kim et al., 1987), flow over a step (Le et al., 1997) 

and flow over simple dunes (Shimizu et al., 2001). However, at present it is still 

impractical for most environmental purposes due to the computational cost, 

particularly for simulations which exhibit a large range of turbulent scales (Moin 

and Mahesh, 1998; Ingham and Ma, 2005). 

Instead, the equations must be partially solved, with the help of a modelled 

component. There are two main methods for doing this, which are now discussed. 
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2.4.3 The Reynolds averaged Navier-Stokes equations 

The Reynolds-averaged Navier-Stokes (RANS) equations are formulated by 

decomposing the velocity signal into two components: a time-mean component, 

averaged over a certain time period, and an instantaneous fluctuating component 

(Reynolds, 1895). 

          
  (2.10)  

This decomposition can then be substituted back into the Navier-Stokes equations. 

After applying ensemble averaging the equations become 

 
    
  

    
    
   

  
 

 

   

   
 
 

 

 

   
  

    
   

                 (2.11)  

 
    
   

   (2.12)  

In Equation 2.11 all the terms are now expressed as average quantities, except for 

the final term, which is called the Reynolds stress, and involves terms originating 

from the product of the different fluctuating velocity components. There is no 

direct way of calculating these terms (Lane, 1998), and therefore in order to solve 

the equation for the mean flow, an approximation for the Reynolds stress is 

required. This is provided by turbulence closure models, which are discussed in 

detail in Section 3.2.2.  

Nevertheless, using closure models, these equations provide a method of 

calculating mean velocities and turbulence quantities in three dimensions at a high 

spatial resolution. Within the RANS models, roughness and resistance are 

incorporated in two different ways. Firstly, large roughness elements and blockages 

are explicitly represented within the numerical grid and are therefore accounted for 

through no-slip boundary conditions, provided at the interface between the fluid 

and the solid boundary, similar to the DNS case. However, in order to avoid the high 

computational cost of solving the flow near this boundary condition explicitly, a 

wall function is often used instead. These functions are based an approximation of 

the flow close to the boundary, which is usually based on the assumption of the 
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logarithmic law of the wall, described in Section 2.4.8. Smaller, sub-grid blockages 

are accounted for within the roughness height specified in the law of the wall 

framework. Here the roughness must account for the viscous drag at the surface as 

well as the form drag induced by sub-grid topography (Hardy et al., 2005). 

RANS models have been applied to a range of problems within fluvial 

geomorphology including channel confluences (Weerakoon and Tamai, 1989; 

Bradbrook et al., 1998), channel bifurcations (Hardy et al., 2011), meander bends 

(Hodskinson and Ferguson, 1998; Ferguson et al., 2003), pools and riffles (Booker et 

al., 2001) and flow through vegetation (see Section 2.6). 

2.4.4 Large eddy simulation 

While RANS modelling can predict the mean velocity and turbulence characteristics, 

it is unable to provide the time-dependent results, that are necessary for fully 

analysing the dynamics of turbulence. Unsteady versions of the RANS equations 

have been developed (URANS) which can resolve variations greater than the 

integral timescale (i.e. variations in the mean flow but not the turbulent flow), 

however they still fail to resolve turbulence over a range of scales smaller than the 

integral timescale (Keylock et al., 2005). This is a severe limitation in applications 

where the turbulent flow field is of most interest. 

Large eddy simulation (LES) provides an alternative method to the RANS equations, 

whereby the signal is filtered into a resolved scale and an unresolved scale, based 

on a spatial filter. This allows a far greater range of turbulent length scales to be 

resolved, and only the small scales, which are less likely to be affected by boundary 

conditions are modelled (Rodi, 1997). These scales of motion are modelled using a 

sub-grid model. Section 3.2.2 describes the most common sub-grid scale models in 

detail. 

Similar to RANS models, sub-grid scale blockages and roughness at the solid 

boundaries must still also be modelled using an approximation. Due to the 

additional turbulence resolution within LES, a finer grid may be used at boundaries 

in order to resolve the majority of scales of turbulence, thus restricting the use of 
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the wall functions to a much smaller scale. However, this is not always a realistic 

option when modelling large distances downstream, and therefore, where the 

boundary flow is not of particular interest, wall functions are used (Ingham and Ma, 

2005). 

LES has also been used extensively within fluvial geomorphology to investigate 

problems such as channel confluences (Bradbrook et al., 2000; Constantinescu et al., 

2011), flow over gravel beds (Hardy et al., 2007), flow in pool and riffle sequences 

(Stoesser et al., 2010) and flow through rigid vegetation (see Section 2.6). 

2.4.5 Dimensionality and process representation 

Model choice always involves a trade-off between process representation and 

simplicity and must be informed by the requirements of the study in combination 

with the computational limitations at the scale of interest (Lane et al., 1999). Whilst 

LES may be more accurate, it is sometimes considered to be too computationally 

expensive, particularly in modelling the boundary layer (Spalart, 2008). A number of 

hybrid models have been developed which seek to combine the resolution of LES 

and the computational efficiency of RANS models. One example is detached eddy 

simulation (DES) which uses LES in key areas of detached turbulence, but the 

simplified RANS model throughout the rest of the domain and particularly near 

boundaries (Spalart, 2008). 

However, for many engineering and management applications any three-

dimensional model, even RANS modelling, will be too computationally expensive 

and may not be necessary. In this case, models of lower dimensionality must be 

used. These inherently involve averaging in one or more dimensions, thus losing 

significant process representation, however enable modelling on a much larger 

scale. 

2.4.6 The Saint-Venant equations 

The St. Venant (or shallow water) equations, derived from the Navier-Stokes 

equations by averaging in one or more dimensions, provide a depth-averaged 

simplification particularly pertinent to environmental flows (Wright, 2005). In 



 Chapter 2: Modelling flow-vegetation interactions 

 

39 
 

addition to the depth-averaged two-dimensional formulation (Equations 2.13-2.15), 

they may be simplified further by averaging in the cross-stream dimension to 

provide a one-dimensional model. 
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       (2.15)  

These equations are obtained by integrating the Navier-Stokes equations 

throughout the flow depth (  ) to give the new mass and momentum equations. 

The formulation shown here is the inertial form whereby convective acceleration is 

ignored (Bates et al., 2010). Here   is the friction slope which represents the rate at 

which energy is lost due to friction. 

These equations, in both one- and two-dimensional form have been used 

extensively within reach-scale management models (e.g. ISIS, MIKE11, LISFLOOD, 

HEC-RAS) and enable accurate prediction of flow across large domains. However, 

while this is still a sophisticated and physically accurate flow model, all of the flow 

resistance terms are now grouped into a bulk resistance term (  ). This term must 

account for the effects of both bed and vegetative friction and is typically calculated 

using a bulk flow model approximation which is often empirically based and lacks 

local accuracy (Lane and Hardy, 2002). 

2.4.7 Bulk flow model 

As discussed in the previous section, the simplification of the Navier-stokes 

equations into the St. Venant equations requires a parameterisation of the effects 

of friction on the flow. There have been numerous suggestions of different 

methods for predicting this roughness term (or friction slope), the most prominent 

being those of Manning, Chezy and Darcy-Weisbach. All of these equations follow 

the same general form (Equation 2.16) whereby the friction slope is given as a 
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function of velocity ( ), hydraulic radius ( ), which is calculated as the ratio 

between the channel cross-sectional area and the wetted perimeter, and a 

roughness coefficient ( ). The exponents within the equation (        ) vary 

between the three formulae. Discussion here will therefore be limited to those 3 

models, though it is noted that a wide variety of similar equations exist. 

     
    

  
  
 

  

 (2.16)  

As well as providing friction approximations for use within other models such as the 

shallow water equations, bulk models themselves can be re-arranged to solve for 

velocity, given prior knowledge of the roughness coefficient. These represent highly 

simplified flow models which assume steady, uniform flow; in other words, flow 

with no spatial or temporal acceleration. The flow is considered to be one 

dimensional and laminar, with a single representative velocity (as shown in Figure 

2.6). Resistance (or roughness) is therefore modelled as a retardation of the bulk 

flow. 

 

 

 

 

Figure 2.6: Example of simple channel flow model, where A is the cross-sectional area, PW is 

the wetted perimeter and U is the downstream velocity. 

The most commonly used resistance formula is Manning’s equation (Equation 2.17). 

Under the assumption of steady, constant-depth flow, the friction slope can be 

equated to the water surface slope, which in term can be equated to, S, the bed 

slope (De Doncker et al., 2009). 

   
 

 
  

 
  

 
  (2.17)  
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This equation was formulated as a correction to the Chezy formula (Equation 2.18) 

as experience showed that C (the Chezy roughness coefficient) exhibited a 

dependence on flow depth (Ferguson, 2010). 

         
 
  (2.18)  

Thus, in Manning’s formulation, the roughness coefficient is invariant with stage, 

enabling a reach-scale value to be used across a range of different flow conditions 

(Ferguson, 2010). However, both the Manning and Chezy equations produce 

roughness coefficients with unintuitive physical dimension. An alternative to the 

Manning equation is the Darcy-Weisbach equation (Equation 2.19). This equation is 

preferable as it produces a dimensionless coefficient      , however in practical 

river management, Manning’s   is still dominant (Jarvela, 2002), providing the 

default roughness measure within more hydrodynamic models (e.g. HEC-RAS, ISIS, 

LISFLOOD). 

    
     

   
 (2.19)  

One of the key problems with all three friction parameters (         ) is the 

reliance upon empirical relations rather than process representation. There have 

been attempts to link Manning’s   to physical channel characteristics such as bed 

grain size as well as vegetation (discussed in Section 2.5). The most widespread 

method for grain size is that of Strickler shown below (Ferguson, 2010). 

           
   

         
   

 (2.20)  

While this aims to provide a physical basis for the choice of  , it is still dependent 

on empirical constants which will vary locally. In reality, in many models Manning’s 

n represents a calibration parameter (Lane, 2005) which is altered, not for physical 

accuracy in process representation, but rather to calibrate model data to real data. 

Thus, instead of accounting for roughness, it is a term which accounts for all 

processes not included within the model.  
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2.4.8 Boundary layer flow 

The main alternative to bulk roughness coefficients is the use of roughness heights. 

This is based upon a boundary layer flow model. Both the RANS and LES models can 

use the log law of the wall to approximate the velocity distribution in the vicinity of 

boundaries. This model describes how the velocity of the flow over a surface or 

boundary varies with distance away from the surface     due to the effects of 

friction or resistance at the boundary.  

 

 

 

 

 

 

 

 

 

Figure 2.7: Logarithmic flow profile for boundary layers. z0 is the roughness height 

The basic model is shown in Figure 2.7 and follows a logarithmic velocity profile. 

The corresponding equation for the boundary layer flow profile is 

Here,    is the shear velocity and   is the Karman constant (≈0.41). A key 

parameter in this model is the roughness height,   , which is conceptualised as the 

height at which the average velocity is zero. This roughness height varies greatly 

between surfaces, depending on the topography. It is worth noting here that as this 

 
 

  
 
 

 
   

 

  
  (2.21)  
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in an empirical relation, there exist a number of different forms of Equation 2.21. 

However, the principle is the same throughout. 

While the RANS and LES models described above use this model as merely 

treatment for boundary conditions, similar to the bulk flow models, the log law of 

the wall is in its own right a popular model for representing flow within terrestrial 

and aquatic environments, where it is used to estimate the velocity throughout the 

flow depth rather than merely at the boundaries. Within this model, the effects of 

any roughness or blockage within the channel must be incorporated within the 

roughness height. Therefore a number of different relationships have been derived 

linking the roughness height to the physical characteristics of the channel. Two 

common examples which link the roughness height to the grain size distribution, 

based on field investigations, are           and                (Nicholas, 

2001). However, such a relation is hard to define for complex beds with large scale 

roughness and blockages. 

2.5 Vegetation as flow resistance 

The earliest models to include some treatment of vegetation involved altering a 

channel roughness coefficient to account for the additional resistance created by 

vegetation (e.g. Chow, 1959). Here, two main approaches are covered; a posteriori 

methods which find empirical values for vegetative resistance from previous 

experiments, and a priori methods which seek to predict the resistance based upon 

other channel characteristics. The latter is obviously preferable as it aims to link the 

concept of roughness to a good process understanding. However, river engineers 

have traditionally relied more heavily on empirical a posteriori estimates, based 

upon pictures and tables found in reference publications, which are unreliable and 

lack local accuracy (Lane, 2005; Green, 2005b).  

2.5.1 A posteriori estimates of vegetative resistance 

Traditionally, as empirical estimates of roughness were used by engineers, little 

distinction was made between channels with vegetation and those without. Instead, 

vegetation was one of many different factors which were used as a descriptor when 
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choosing roughness values. Typically, roughness values are selected from tables, 

according to a description of the channel, which takes into account features such as 

channel shape, bed material, irregularity and vegetation (e.g. Chow, 1959). 

One of the earliest treatments of vegetative resistance as an entity of its own was 

introduced by Cowan (1956). This conceptualised channel roughness as the sum of 

its component parts as shown in Equation 2.22. 

                     (2.22)  

Here    is the roughness of a straight, uniform and smooth channel. The next four 

   terms correspond to the additional resistance effects due to surface irregularities, 

cross section characteristics, in-channel obstructions and vegetation respectively. 

The multiplying term ( ) corresponds to the sinuosity of the channel. This 

conceptual model of additive roughness is promising as it has the potential for each 

component to be calculated individually and preferably related to the key physical 

characteristics governing each term. The Conveyance Estimation System, a model 

developed by the Environment Agency (E.A., 2004), uses a similar scheme whereby 

roughness is split into a number of components, one of which is due to the effects 

of vegetation. 

A number of authors have sought to improve this approach through linking the 

vegetation component of the roughness to plant characteristics. Although this may 

seem more appropriate to the next section, the studies described below are classed 

as a posteriori methods due to the heavy reliance they exhibit on measurements to 

inform empirical relations and coefficients rather than physical reasoning to inform 

understanding. 

A common relationship which has been exploited is the n-UR relationship, whereby 

Manning’s coefficient is found to correlate well with the product of the mean flow 

velocity and the channel hydraulic radius. This is in effect an n-Re relationship (Rhee 

et al., 2008) as the Reynolds number (Equation 2.6) depends only on the velocity, 

hydraulic radius and viscosity (which is assumed constant). The idea is that for every 
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type of vegetation, there is a unique, linear relationship between the two variables. 

However, there is no scientific justification for the approach (Wilson et al., 2005). 

Kouwen and Unny (1973) found that while the n-UR relationship agreed well for 

prone vegetative roughness, for rigid or waving canopies Manning’s n appeared to 

be primarily a function of relative roughness. Other studies have shown that the n-

UR relationship does not hold for emergent canopies, short, stiff vegetation or 

shallow slopes (Ree, 1958; Kouwen, 1980). Therefore its usefulness is severely 

limited. Furthermore, it has been argued that as both sides depend on velocity and 

channel dimensions, there is a degree of circularity about the relationship (Lane and 

Hardy, 2002) 

Fisher (1992) developed a method for calculating Manning’s   based on the 

blockage characteristics of the vegetation within the channel. Blockage can either 

be defined as the proportion of the plan surface area containing vegetation,      , 

the proportion of the volume containing vegetation     , or the proportion of each 

cross-section containing vegetation     . Fisher suggested that     should be used 

as it is the easiest to quantify. Using this measure, she came up with  

Here, the first term is the assumed value of n for a river clear of vegetation. 

Although     may be the easiest to measure, it is not the most intuitive choice as it 

does not take into account changes with water depth or variation in blockage 

throughout the depth (Green, 2005a).  

Green (2005a) tested all three blockage metrics at a range of field sites. The best 

equation for calculating the vegetative roughness was shown to be 

                    (2.24)  

This equation is based on regression analysis from field data, and so has some 

limitations, particularly with regards to applicability to other reaches with different 

vegetation types. Furthermore, in the absence of any vegetation, the model 

predicts a negative vegetative resistance which is counter-intuitive. 

                 
   

   
  (2.23)  
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Green (2006) developed this theory further, by introducing a new vegetation 

parameter which affects the resistance 

   
  
  

 (2.25)  

Here    is the wetted perimeter and    is the effective wetted perimeter, 

measured as the wetted perimeter plus the non-coincidental vegetation boundary 

length i.e. the total solid boundary encountered by the fluid. Through performing 

multiple regression on a dataset from 35 different field sites, all of which were 

dominated by the Ranunculus species, a new equation was produced (Green, 2006) 

                    
 
                 (2.26)  

This equation uses the 16th and 69th percentiles repectively of   and   , chosen 

due to their maximal R2 values. He tested this equation using three different field 

sites, and achieved relatively low error estimates (<20%) suggesting the model may 

be valid for other vegetation types. However, despite the complexity of the 

equation, it still gives a significant negative value of vegetative resistance for 

channels with no vegetation. Additionally, it is questionable whether the crude 

nature of the output justifies the effort required to obtain the data necessary to 

calculate the estimate. 

2.5.2 A priori estimates of vegetative resistance 

There have been a number of studies which have aimed to improve the a priori 

calculation of vegetation-induced roughness. These models attempt to relate the 

concept of vegetative roughness to the physical characteristics of the vegetation 

within the channel, in a similar manner to some of the methods developed which 

link bed roughness to bed characteristics such as grain size. The earliest relationship 

was developed by Petryk and Bosmajian (1975). They used a momentum balance 

approach  

              (2.27)  
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where   is the cross sectional area of the flow,   is the bed slope,   is the 

vegetative drag force and      is the product of the bed shear stress and the 

wetted perimeter. This equation can be used in conjunction with both Equations 

2.17 and 2.22 to derive a formula for    and consequently the total resistance,  . 

      
  

 
 
 

   
         (2.28)  

There have been a number of other studies which have linked the Manning’s   

coefficient to the vegetative drag force (e.g. Hoffmann, 2004; James et al., 2004) 

and developed similar equations. For a comparison of the performance of these 

models, a review is provided by Shucksmith et al. (2011). 

Stone and Shen (2002) developed a momentum balance model for predicting  

channel velocity based on the Darcy-Weisbach resistance equation, with an 

additional drag term to account for vegetative roughness. The model was designed 

so that in the absence of vegetation, it simplifies to the standard Darcy-Weisbach 

method. The model is also suitable for both emergent and submergent vegetation. 

However, it only deals with rigid vegetation. 

 

 

 

 

 

 

Figure 2.8: The two zone model (from Huthoff (2007)). The vegetated zone of height k has 

the characteristic velocity Ur, whereas the surface layer has velocity Us 

Huthoff et al. (2007) used a similar approach to develop a depth-averaged flow 

velocity model, again with an additional drag term to deal with the resistance due 

to the vegetation. Both these models use a two zone approach (see Figure 2.8), 

splitting the flow into two distinct zones: a roughness/resistance layer and a surface 
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layer. The surface layer is treated as a logarithmic flow profile while the roughness 

layer is treated using a momentum balance which takes into account the vegetative 

drag. 

Konings et al. (2012) developed a more complex model, which calculates the 

velocity based on knowledge of the dominant momentum transferring vortex size. 

The model performs well, but still fails to fully account for the flexibility of the 

vegetation resulting in a lower performance with flexible vegetation. 

2.5.3 Vegetation as a roughness height 

Vegetation can alternatively be conceptualised within the boundary layer model as 

a roughness height. A number of different adaptations to the standard boundary 

layer model have been devised. A substantial review of these can be found in 

Stephan and Gutknecht (2002). Most of these methods replace the logarithmic 

term in Equation 2.21 with    . Here   is the vegetation height. In other words, the 

roughness height is considered to directly correspond with the canopy height. It 

should be noted that this in itself is incorrect as this implies a zero net velocity 

throughout the canopy. Whether the rigid or deflected vegetation height is used in 

this approximation make little difference, as in either way it represents a rigid 

treatment of the vegetation (Green, 2005b).  

Kouwen et al. (1969) used the ratio of the total cross-sectional area of the channel 

to the area blocked by vegetation       instead of the standard     model. In the 

presence of dense vegetation, this reduces to the     model, but it will differ 

significantly for sparser canopies. However the applicability of this method to 

natural channels with non-uniform boundaries is unclear (Green, 2005b).  

Stephan and Gutknecht (2002) devise their own formulation of the boundary layer 

equation based on experiments with live vegetation.  

 
 

  
 
 

 
   

       

       
    (2.29)  
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Here, they claim a typical mean vegetation canopy height (       ) can be used to 

represent the roughness height and that the wavy motion of the vegetation does 

not appear to affect the resistance (Stephan and Gutknecht, 2002).  

However, as research into canopy flow has progressed, it has become clear that the 

boundary layer approximation itself is not appropriate for representing flow 

structure over vegetation canopies. Therefore, this approach is inappropriate 

except on large scales of enquiry, where canopy scale turbulence is on a scale much 

smaller than that of interest and consequently the canopy simply represents a 

roughness layer (         ).  

2.5.4 The problem with representing vegetation using a 

roughness approach 

The problems associated with using a roughness approach within river channel 

models in general have been highlighted in Section 2.4.7. However, there are a few 

further issues raised by the addition of vegetation to the channel. Vegetation 

represents a significant mass blockage within the channel, causing both volume 

displacement and friction effects throughout the flow depth (Green, 2005b). 

Roughness approaches assume friction only acts at the interface between the water 

and the bed, and therefore do not account for the effects of these larger scale 

elements (García Díaz, 2005). Therefore, flow resistance caused by vegetation 

represents a three dimensional effect on the velocity field, and a departure from 

the depth-averaged velocity assumption used within many management models 

(Naden et al., 2006). These effects will also be linked inextricably to spatially and 

temporally dynamic factors such as plant position (governed by biomechanics), 

patch location and seasonality. 

From the outset it seems highly improbable that a single coefficient could ever fully 

represent the effects of the complex interaction between flow and vegetation 

(Green, 2005b). Even models which seek to improve the estimation of roughness 

within vegetated channels still fail to capture fully the high spatial and temporal 

heterogeneity in macrophyte distribution and hence resistance (Green, 2005b). 

Therefore, there is the need to develop more accurate models of vegetative 
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resistance. One of the most straightforward ways to accurately represent the 

effects of vegetation within channels is to attempt to physically model the 

interaction between the flow and vegetation. 

2.6 Physical representation of vegetation 

elements within numerical models 

Based upon the development of canopy layer theory, a significant number of 

researchers have sought to represent vegetation canopies physically within models, 

rather than as a roughness element. Here, ‘physical’ refers to any treatment of 

vegetation which directly resolves the processes operating within canopies. This has 

been undertaken both at a canopy scale and at a single stem scale. Here, discussion 

is focussed on two main ideas: introduction of bulk drag terms as reach (field) and 

plant scale treatments, and explicit stem scale modelling. It is important to note 

that there are some models that combine these two approaches. 

2.6.1 Reach-scale modelling of vegetation 

Within this section, the terms field-scale and reach-scale are used interchangeably 

for similar scale models within the terrestrial and aquatic literature respectively. 

These models are designed to resolve the large scale shear eddies whereas the 

smaller wake-scale eddies are modelled. In other words, the entire canopy 

structure is assumed to be of a sub-grid scale. As such, bulk source and sink terms 

must be added into the equations to represent the vegetation. For example, 

Fischer-Antze et al. (2001) introduced a drag term into a steady RANS model with a 

standard  -  turbulence closure model. The drag force term was based on a plant 

density term, and the assumption of rigid, cylindrical vegetation. Their results agree 

well with experimental work, but they only report on the mean velocity, not the 

turbulent quantities. 

Lopez and Garcia (2001) used both a  -  model and a  -  turbulence closure model 

with a double-averaging scheme (Raupach and Shaw, 1982) to model regular rigid 

vegetation. Both models reproduced mean and turbulent quantities well. However, 

Defina and Bixio (2005) also used the same  -  model alongside an analytical model 
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for comparison. They found that while both models reproduced mean flow 

quantities well, neither managed to effectively predict quantitative turbulence. 

Prediction of turbulence within vegetation canopies is essential as it drives many of 

the canopy processes as discussed in Section 2.3. 

Regardless of whether the RANS models are capable of reproducing the bulk 

turbulent quantities or not, they are unable to capture the unsteady flow, and 

vortex dynamics within the flow. In particular, they struggle to account for both the 

shear and wake turbulence scales (Defina and Bixio, 2005). LES models are 

therefore more appropriate for modelling turbulence across a range of scales 

(Keylock et al., 2005). 

One of the earliest LES models was by Shaw and Schumann (1992) who modelled 

airflow above and within a forest (see Figure 2.9). They treated the canopy as a 

porous body with a constant depth-dependent drag coefficient, using a profile 

based on data from a deciduous forest. Their model replicated the inflected velocity 

profile and shear profile from experimental studies well. A number of authors have 

used a similar approach, treating drag as a constant force throughout the canopy 

(e.g. Dwyer et al., 1997; Watanabe, 2004) 

 

 

 

 

 

 

 

Figure 2.9: Schematic of an LES canopy model (Shaw and Schumann, 1992). Here, h is the 

vegetation canopy height. 

Kanda and Hino (1994) used a similar but more sophisticated model, introducing a 

drag term into the Navier-Stokes equations, based on leaf area density. A similar 
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approach was used by Dupont and Brunet (2008b) to study the effect of foliage 

density on canopy flow.  

Py et al. (2006) extended the classical field-scale model by introducing the effects of 

plant motion. Here, the canopy is treated as a poroelastic medium which is coupled 

to the wind velocity profile by the drag term. The canopy can be viewed discretely 

as a system of connected oscillators representing the stems. They used a piece-wise 

velocity profile to represent the mixing layer. The stability of the fundamental 

vibrating frequency of the canopy is examined by solving the perturbation mass and 

momentum equations. Their results show a lock-in mechanism between the 

vegetation and the flow, highlighting the importance of fully coupled and 

interacting vegetation and flow models. 

This model has been developed and expanded by other authors. Doare et al. (2004) 

added an option for elastic collisions mechanisms to be incorporated into the 

model to deal with plant interaction within the canopy. Gosselin and de Langre 

(2009) also adapted the model by adding a free surface treatment so that the 

model was applicable to aquatic cases too. Their results show that the aquatic 

version of the model agrees well with experimental data from aquatic canopies, 

recreating monami. 

Dupont et al. (2010) also developed a similar plant motion model within the LES 

model used in previous studies by the same author (e.g. Dupont and Brunet, 2008a; 

Dupont et al., 2008). The advantage of this model is that the fluid motion is solved 

using large eddy simulation which allows turbulence to be resolved to a much 

greater extent than the simpler hydrodynamic models used in the previous studies 

that account for plant motion. 

2.6.2 Plant-scale models 

Plant-scale models don’t fully resolve each stem, but make some distinction 

between canopy characteristics at the plant scale. Classed as a hybrid between the 

field and stem scale approaches, this method is less common but has nevertheless 

been used to good effect. Yue et al. (2007) developed an LES model which 
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distinguishes between stem and leaf drag. Stem drag was modelled as basic 

cylinder drag, whereas leaf drag was modelled using an estimated leaf area index. 

They compared the model performance with a field-scale approach which uses a 

standard leaf drag treatment throughout (see Figure 2.10). They found that both 

models predicted the same spectral slope, but that the field scale model under-

predicted the RMS velocity values, effectively damping the instability. Furthermore, 

the plant-scale approach showed good agreement with PIV data (Yue et al., 2007). 

Thus, plant-scale LES has been shown to be a reliable tool for investigating 

turbulence and momentum transport over canopies.  

2.6.3 Stem-scale models 

To investigate the effect of turbulence production at the wake and leaf scales on 

turbulence structure and momentum transport, vegetation elements must be 

modelled at a scale at which they are not sub-grid, i.e. the vegetation diameter 

significantly exceeds the cell width of the model. This constraint on model 

resolution has meant that to date, most stem-scale models have focussed on 

smaller-scale canopy properties and have not considered large or highly submerged 

canopies. 

 

 

 

 

 

 

Figure 2.10: Comparison of field-scale and plant-scale representations (Yue et al., 2007). 

Here, grid points are assigned either a stem (O) or leaf (X) drag treatment. 

Stoesser et al. (2006) performed numerical LES experiments on an array of 

submerged cylinders using a very fine grid. Their results agreed well with previous 

experimental results, as well as replicating the classical vortex regimes known to be 
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present (e.g. horseshoe, von Karman, rib and roller vortices as well as trailing 

vortices from the vegetation tops). A key feature of this representation of the 

vegetation is that pressure and friction drag are directly accounted for (Stoesser et 

al., 2009), removing the need for empirical drag coefficients. 

Subsequent papers have developed this analysis further, and begun use larger 

domains, enabling patch-scale analysis at stem-scale resolution. Stoesser et al., 

(2010) conducted LES experiments on a patch of emergent vegetation using a 

combination of high resolution Cartesian and curvilinear grids. They used a range of 

different vegetation densities and were able to investigate the structural changes to 

wake turbulence patterns caused by changes in vegetation density (see Figure 2.11). 

They achieved this via identification and visualisation of turbulent structures as well 

as through calculating the drag terms acting on the vegetation directly. 

The latter point is of particular interest. Through high resolution modelling, it is 

possible to directly calculate the form and skin drag forces acting the vegetation 

purely from the velocity and pressure signals, thus enabling comparison with 

empirical drag values. However, the high computational demands of LES mean this 

is not useful as a management tool. To address this, Kim and Stoesser (2011) 

developed a low resolution LES method. Here, instead of using body fitted grids, an 

immersed boundary method was used within a Cartesian grid which was 20 times 

coarser than the higher resolution LES model used by Stoesser et al. (2010). 

Around the circumference of each stalk, a cut-cell treatment was used to represent 

numerical cells partially filled with vegetation (see Section 3.3). The vegetation 

radius was approximately four times the grid resolution, and therefore, crucially, 

wake turbulence was produced by the model, thus removing the need for an 

empirical drag treatment. This model reproduced the results from the validated 

high resolution model with reasonable accuracy, including the streamwise and 

spanwise velocity gradients, wake structure and secondary currents (Kim and 

Stoesser, 2011). The computational demands of the model are such that it could be 

used as a management tool at a canopy scale. 
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Figure 2.11: Isosurfaces of pressure fluctuations for three different vegetation densities 

(Stoesser et al., 2010). 

While these stem scale models are capable of capturing the fine turbulence 

structure with great accuracy, it is worth noting that they do not include any 

treatment of flexible vegetation. They are therefore unable to capture the complex 

feedbacks between flow and vegetation, which may influence canopy processes 

(Nepf and Ghisalberti, 2008; Okamoto and Nezu, 2009). 

2.7 Vegetation: A dynamic blockage? 

From the preceding sections of this chapter there are two main factors that emerge 

as crucial in predicting flow through canopies: drag and biomechanics. 
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1. Drag acts as the driver for canopy flow, dissipating energy through wake 

production and determining the shear instability (Nepf et al., 2007). 

Therefore it is vital to predict the drag force accurately. To avoid the use of 

empirical and often inaccurate drag coefficients, wake production must be 

explicitly represented within the model (e.g. Stoesser et al., 2010; Kim and 

Stoesser, 2011). In other words, the vegetation must represent a physical 

mass and momentum blockage. 

2. Plant biomechanics also determine the flow characteristics. Most notably, 

flexible plants vibrate in response to the flow, modulating the velocity signal 

(Finnigan, 1979a). Therefore in order to accurately represent real vegetation 

canopies, the vegetation must be treated as dynamic. 

Thus, it is argued here that vegetation represents a dynamic blockage within the 

flow, and should be modelled as such. A number of authors have sought to include 

vegetation as a dynamic blockage, to varying levels of complexity. Here, the merits 

and drawbacks of each method are discussed. The methods fall largely into two 

categories, flexible and highly flexible, which is similar to Nikora’s (2010) 

classification of macrophytes as being controlled either by tensile forces or bending 

forces. In practical terms, there is a structural difference between these two model 

types, in terms of how stiffness is incorporated into the model and this is explained 

below. 

2.7.1 Flexible stem models  

The first study to include flexible stems was conducted by Ikeda et al. (2001). They 

developed a biomechanical plant model within a two dimensional LES framework. 

The model was based upon the dynamic Euler-Bernoulli cantilever beam equation 

(see Section 3.5 for details). This partial differential equation calculates the 

displacement from the flexural rigidity and the dynamic loading of the wind. They 

used two independent grids in their model, one LES and one plant grid. Properties 

such as drag and velocity were exchanged between the two grids. Therefore 

although there was no strict blockage treatment, local grid values of leaf drag were 

read in from the plant grid, representing spatially heterogeneous drag values and 
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effectively producing a porous blockage effect. However, this model still relied 

upon an empirical drag coefficient. 

Another issue with the model is that the standard Euler-Bernoulli beam equation is 

only suitable for relatively small deflections due to flexure of the entire stem. Such 

assumptions may not be accurate enough when considering vegetation with very 

high flexibility (Li and Xie, 2011). However, the Euler-Bernoulli equations can be 

altered to account for larger deflections. Li and Xie (2011) used an extension of the 

beam equation to model submerged and highly flexible vegetation. However, they 

modelled at a relatively coarse scale, using very large eddy simulation (VLES) with a 

fixed width filter. Due to the resolution, individual stalks were sub-grid and the 

vegetation was represented by a bulk drag force throughout the canopy. The height 

of the canopy was determined using an empirical relationship calculated using the 

large deflection analysis. Therefore, despite the complexity of the model equations 

used, the results were reduced to the plant scale. 

2.7.2 Representing highly flexible stems and foliage 

In contrast to those flexible vegetation models described above which have a 

heavily reliance on flexural rigidity, very flexible vegetation models tend to assume 

that the effect of rigidity is minimal. 

One of the simplest examples of this is the model by Backhaus and Verduin (2008). 

They created a simple model for seagrass motion in which plant geometry and 

morphology was conceptualised using a cone of permitted movement. This cone 

effectively introduced a permitted circle of movement at each vertical slab, the 

radius of which increased which height. The plant was conceptualised as a stack of 

vertical sections, each of which moved entirely independently of the rest of the 

plant. While the plant was within the permitted cone, the plant moved freely with 

the flow in a ‘flapping mode’. Once the vegetation moved beyond the permitted 

zone, a drag force was applied to the flow, representing the position of maximum 

stretching of the plant, named the plant ‘trapping mode’. Thus the permitted cone 

of movement is the main representation of the plant biomechanical data including 

the rigidity. The model is very simplistic, and given that each vertical section of the 
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plant is entirely independent there is huge scope for error, although the authors 

noted that in their study this was not the case due to the prevalence of the trapping 

mode (Backhaus and Verduin, 2008). 

Abdelrhman (2007) developed a more sophisticated model based on a very simple 

multiple pendula (N-pendula) basis. Here the vegetation is conceptualised as a 

series of elements connected by hinge-like joints. Each element is subject to a 

moment, depending on both the force induced by the flow and the tension force 

from other elements. The hinges are allowed to move freely, thus representing 

vegetation with zero rigidity. The assumption therefore is that this vegetation is 

predominantly driven by the balance between drag and buoyancy forces, which 

was backed up by laboratory results (Abdelrhman, 2007). The model was 

implemented within a very simple hydrodynamic model, which calculated the 

velocity at different heights based upon known velocity profiles. Energy loss from 

the flow was represented by introducing a simple force balance into the flow 

equation, similar to that used in the plant model. The model was able to replicate 

the familiar mean velocity profile, but due to its simplicity could not predict 

turbulent properties of the flow with any accuracy. 

Dijkstra and Uittenbogaard (2010) developed a more complex model which used a 

very similar basis. The main development was the introduction of rigidity in the 

plant equations, allowing the model to be used more widely for plants exhibiting a 

range of flexibilities. It is important to note however, that this approach represents 

a much more local flexibility model than the Euler-Bernoulli beam equation which 

treats the flexibility as a global, smooth and continuous variable. The model was 

also used in conjunction with a RANS model, representing an improvement in 

accuracy on Abdelrhman’s model. The results showed that this vegetation model 

offered a significant improvement over rigid vegetation approximations and 

roughness coefficients. However, the model also appeared to be very sensitive to 

rigidity, which is difficult to measure accurately. Furthermore, the model was only 

RANS-based and therefore was unable to fully predict turbulence characteristics. 
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A very similar model was used by Farnell et al. (2004) within a very different context 

to model a filament in a soap film. The model is again based on an n-pendula 

system, with a local treatment of rigidity. The equations are solved using an energy 

approach within a simple 2D finite-element model. The model reproduces vortex 

shedding off the end of the filament. However, the equations do contain an 

empirical damping term. Furthermore, the model is used within a much simpler 

environment than a canopy flow. There are a number of similar models which have 

been used to simulate flapping flags/filaments (e.g. Alben and Shelley, 2008; 

Michelin et al., 2008). While they have not been applied within a canopy 

environment, they are valuable contributions to methodology. 

Moreover, they also introduce another important vortex regime, mentioned earlier 

in Section 2.3 with regard to plant-flapping-scale turbulence, which is a 

combination of mixing layer and wake production vortex shedding in the lee of a 

flexible filament. This vortex production mechanism is usually neglected within 

canopy flow studies, which for the most part deal with moderately flexible plants 

(Dijkstra and Uittenbogaard, 2010) but may prove to be more important in highly 

flexible canopies. 

2.7.3 High-resolution dynamic blockage modelling 

While these studies have greatly advanced modelling techniques, there is still an 

absence of high resolution LES models which can incorporate flexible vegetation. 

Such a model would permit a much fuller understanding of vortex dynamics over 

flexible vegetation, and shed new light on the exact nature of the interaction 

between vegetation canopies and the turbulent flow field. 

2.8 Chapter summary and conclusions 

This chapter has demonstrated the complexity associated with vegetated channels. 

Previous research has illustrated that vegetation has a profound effect on flow in 

open channels, altering the mean flow, turbulence characteristics and thus 

impacting on key processes such as particle transport, erosion and deposition. It is 
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therefore important to accurately include the effect of vegetation in management 

models.  

Current representation of vegetation within management-scale models relies 

heavily on the use of inaccurate and inappropriate empirical constants. In particular, 

current models fail to represent vegetation as a blockage which is both dynamic 

and porous. In order to better incorporate these characteristics within reach-scale 

management models, there is therefore a need to further our understanding of 

how these two properties affect the larger-scale flow characteristics. 

The final section of this chapter argued that it is necessary to develop a dynamic 

blockage model within a high-resolution LES framework in order to conduct a 

thorough investigation regarding the complex interactions between flow and 

vegetation. The focus of Chapter 3 is to develop such a model. 
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Chapter 3: Model development 

3.1 Introduction 

Chapters 1 and 2 have highlighted the importance of understanding the complex 

relationships between flow and vegetation. It was argued that there is a need to 

develop new high-resolution modelling techniques in order to further our process 

understanding. Therefore, the focus of this chapter is the development of two 

novel biomechanical vegetation models, capable of simulating the time-dependent 

interaction between flow and flexible vegetation at a millimetre and Hertz scale. 

These biomechanical models are incorporated within a pre-existing industry-

standard CFD model, PHOENICS (CHAM, 2005). PHOENICS has previously been used 

to successfully simulate a number of geomorphological applications such as 

confluences (e.g. Bradbrook et al., 1998), meander bends (Hodskinson and 

Ferguson, 1998) and flow over gravel (Hardy et al., 2007) and therefore provides a 

sound basis upon which to develop the models. The first half of the chapter focuses 

on describing and justifying the generic aspects of the Computational Fluid 

Dynamics (CFD) model, such as boundary conditions and model specification. The 

second half of the chapter focuses on the development of the new biomechanical 

models. 

3.2 Numerical representation of the flow 

The main concepts and methods involved with numerically representing flow such 

as the Reynolds Averaged Navier-Stokes (RANS) equations and Large Eddy 

Simulation (LES) modelling were introduced in Chapter 2. Whilst the general 

equations were provided, the details as to how the equations were solved were not 

covered. Details such as the computational scheme, the choice of turbulence 

closure scheme and boundary conditions are important as they can all substantially 

affect the numerical result. Here, those methods are expanded upon, and the 

choice of methods used for this study is justified.  
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3.2.1 Flow solver mechanics 

PHOENICS solves the Navier-Stokes mass and momentum equations in a semi-

coupled manner via the SIMPLEST algorithm (CHAM, 2005). This is a variant of the 

SIMPLE (semi-implicit method for pressure linked equations) algorithm (Patankar 

and Spalding, 1972) which solves the velocity field based on an estimated initial 

pressure field, before applying a pressure correction. Thus the velocities are solved 

using the momentum equation and the pressure correction formula is used to 

ensure that calculated velocity field is divergence free and consequently the 

continuity equation is satisfied (Anderson, 1984). The velocity field can then be 

recalculated using the new pressure values, and the process repeated iteratively 

until the error is significantly diminished.  

There have been two significant improvements to this algorithm. Firstly SIMPLER 

(SIMPLE–revised) uses an initial estimated velocity field rather than a pressure field 

to begin the iteration procedure (Pantakar, 1980). An initial pressure field is then 

estimated from this velocity field. This improvement results in faster convergence. 

The method does involve solving a pressure equation rather than just applying a 

pressure correction formula, which is more computationally intensive, but the 

improvements in convergence rate more than compensate for the additional 

computational time (Pantakar, 1980). Finally, SIMPLEST (SIMPLE-ShorTened) is a 

further improvement of the SIMPLER algorithm, whereby convective and diffusion 

terms are treated separately within the finite volume equation (Spalding, 1980). 

This method produces convergence more smoothly than the SIMPLE algorithm 

(CHAM, 2008). 

The difference equations used to solve the finite volume system are formulated in 

an implicit manner in order to ensure universal stability of the scheme. The finite 

volume scheme involves calculation of the convected variables at the faces of the 

control volume. The most straightforward way of calculating this is to use a second 

order accurate central difference scheme to estimate the value between the two 

known cell centres. However, this scheme is unbounded and can cause unphysical 

oscillations in regions of strong convection (CHAM, 2005). An alternative is to use 
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an upwind scheme, whereby the convected variable value at the cell face is 

assumed to be equal to its value at the upwind cell centre. This scheme is stable 

and unconditionally bounded, but only first order accurate (Pantakar, 1980). The 

compromise is to use a hybrid scheme whereby the central difference scheme is 

used in regions of low convection and the upwind scheme is used in areas of high 

convection. This threshold is defined using the Peclet number (  ) which is the 

ratio of convective and diffusive terms acting across a particular face (Lane et al., 

2005). The threshold above which the upwind scheme is used is then set to     . 

Due to the improvement in accuracy of the hybrid scheme, it was used in all of the 

simulations carried out in this study. 

3.2.2 Turbulence closure modelling 

As discussed in Section 2.4, both the RANS and LES formulations of the Navier-

Stokes equations require the use of a turbulence closure model to represent the 

unresolved component of the turbulence. Within RANS modelling, the majority of 

these models link the resulting unknown Reynolds stresses to time-averaged flow 

properties (Keylock et al., 2005) using the Boussinesq (1877) approximation. This 

states that there is a linear relationship between the Reynolds stresses and the 

mean flow strain field. This general relationship is shown below. 

    
   

           
    

   
 

    

   
  

 

 
     (3.1)  

Here    is the eddy viscosity,    is the turbulent kinetic energy and     is the 

Kronecker delta function. The     and   
  velocity terms are the mean and fluctuating 

parts of the velocity signal, calculated using Reynolds decomposition. The first term 

on the right hand side represents the mean strain rate multiplied by a factor (  ) 

and the second term accounts for the turbulent kinetic energy contribution. The 

different methods for calculating    define the different turbulent closure methods. 

The overarching concept is that the eddy viscosity can be expressed as a product of 

a turbulent length scale (  ) and a turbulent velocity scale (  ). There are four main 

types of method for calculating the eddy viscosity. 
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The most basic methods, the zero-equation algebraic models, specify both the 

length and velocity turbulent scales in terms of a single algebraic expression 

(Sotiropoulos, 2005). One of the most commonly used zero-equation models is the 

Prandtl (1925) mixing length model (Equation 3.2). 

      
  

   

   
  (3.2)  

This follows from the assumption that the velocity scale is proportional to the 

length scale multiplied by the velocity gradient        
   

   
   which should 

intuitively hold for ideal, isotropic turbulent eddies. 

The Prandtl model is only valid for two dimensional boundary layers, but it can be 

generalised in three dimensions as 

       
         (3.3)  

where     is the strain tensor. The length scale is then chosen empirically to obtain 

the eddy viscosity (e.g.          for a mixing layer, where   is the half-width of the 

shear layer). While this method is quick and easy, it assumes that the turbulent 

length scale is constant, which limits its applicability. 

One-equation models involve solving one additional equation to obtain the eddy 

viscosity. Therefore, they represent a more complex solution, but one which is 

more accurate and applicable to a wider range of flows. The most common one- 

equation model is the Spalart-Allmaras model (Spalart and Allmaras, 1994). This 

model solves a single partial differential equation for a viscosity-like variable,   . 

          (3.4)  

The term     is itself a function of    as well as other flow properties and a range of 

empirical coefficients (Deck et al., 2002). This method was used as the standard 

model within the development of detached eddy simulation (DES) and has 

consequently gained in popularity. 
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By far the most common turbulence closure models used to date are the two-

equation     and     models. These models both involve solving two 

additional transport equations: one for the kinetic energy ( ) and one for either the 

dissipation ( ) or the specific dissipation rate (     ). 

For the     model, the equation for the eddy viscosity becomes 

    
  

 
 (3.5)  

Here the velocity scale becomes       and the length scale becomes          . 

Yakhot and Orszag (1986) developed an alternative     model using Re-

Normalization Group (RNG) methods which has been widely used in 

geomorphological applications (e.g. Bradbrook et al., 1998). This model did not 

start with the     model as a premise, but rather developed through the 

application of RNG methods to the Navier-Stokes equations. The solution showed 

that the resulting transport equation for   was identical to that used for the     

model except for one coefficient, while the transport equations for   were identical. 

The difference between the two methods arises because the RNG     method 

calculates diffusion across the spectrum of scales whereas the standard     

model only accounts for diffusion at a single scale (Yakhot and Orszag, 1986).  

The performance of the RNG model is broadly similar to the standard     model 

though it has been shown to offer improved performance in specific cases such as 

flow over a backward facing step and, more generally, areas of high strain (e.g. Lien 

and Leschziner, 1994; Bradbrook et al., 1998). However, one disadvantage of the 

    models is that they require a separate near-wall treatment, to account for the 

effects of eddy distortion, turbulent production and damping associated with the 

wall (Sotiropoulos, 2005). The     model is very similar in form to the      

model but removes this problem, as in this formulation   naturally approaches zero 

at the boundaries meaning an additional model is not required for near-wall regions.  
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The eddy viscosity for the     is written as: 

    
 

 
 (3.6)  

Here, the velocity scale is again       and the length scale is        .  

The most complex RANS turbulence closure model is Reynolds Stress modelling. In 

this scheme, instead of approximating the Reynolds stress tensor by estimating the 

eddy viscosity, the transport equations for the Reynolds stress terms themselves 

are solved (Rotta, 1951; Launder et al., 1975). Equation 3.7 shows qualitatively the 

different terms in the equation which must be solved (Hanjalic and Launder, 1972). 

                                                            (3.7)  

Some of the terms in this equation are still unknown and unsolvable and therefore 

simplifications are still required before this equation can be used. In particular, 

some of the terms involve triple correlations between the fluctuating velocity 

components which must be expressed alternatively as second order terms (Speziale, 

1991). Whilst this method is the most accurate, it is still statistically based and 

therefore fails to capture the large eddy structures, which dominate processes such 

as vortex shedding, that are present in unsteady flows (Rodi, 1997). Here, large 

eddy simulation provides a conceptually better approach. 

The assumptions and equations used for Large Eddy Simulation (LES) are broadly 

similar in appearance to those used for RANS models. Instead of separating 

variables into mean and fluctuating parts as in RANS, LES involves splitting the 

variables into resolved and unresolved parts 

          (3.8)  

The resolved part of the signal is calculated using a low pass filter, with a particular 

filter width (  ). This convolution of the flow field at every point can be achieved by 

applying a range of different filters but the box (top-hat) filter is the most 

commonly used (Keylock et al., 2005). The filter width should be chosen such that 

the filter retains the anisotropic turbulence and averages out the isotropic 
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component. Within a computational context it is convenient to consider only the 

discrete centre points of each cell rather than the continuous flow field. In this case, 

the size of the spatial discretisation is the natural choice of filter width, and thus the 

box filter becomes the average over the cell volume. As such, fluctuations smaller 

than the grid cell size are necessarily considered sub-grid scale whilst fluctuations 

larger than the grid size are resolved explicitly (Deardorff, 1970).  

Applying the decomposition in Equation 3.8 to the Navier-Stokes equations leads to 

a set of equations very similar to the RANS equations, but with two key differences. 

Firstly, a time derivative term is preserved and secondly, the sub-grid stress (SGS) 

term in the LES equations is more complex than the Reynolds stress term (Keylock 

et al., 2005). Similar to the RANS equations, a model must be introduced to account 

for the effects of the SGS term. 

The original and most commonly used SGS closure model is the Smagorinsky (1963) 

model. This model relies upon the mixing length hypothesis (Equation 3.2) and 

defines the mixing length as the cubic root of the grid volume. This simplifies to the 

filter width (  ) for a grid with equal grid spacing in each direction. The 

Smagorinsky model can be written using the Boussinesq (1877) approximation in 

Equation 3.1 in terms of the SGS stress tensor (   ) as 

        
    

   
 

    

   
  

 

 
       (3.9)  

with          
 
          . Here,    is the Smagorinsky constant which depends 

on the flow characteristics. In reality,    varies both in space and time (Rogallo and 

Moin, 1984). However, for the standard model it is assumed constant (       

   ). Dynamic models have been developed which alter    based upon filtering at 

two different scales. Here, the coefficient is chosen locally as part of the numerical 

procedure rather than being given a priori (Germano et al., 1991). There are a 

number of different dynamic models which have been suggested, based upon 

Germano’s (1991) model, which aim to deal with the key limitations of the original 

model such as the inclusion of the backscatter of energy up the energy cascade. At 

present, PHOENICS does not contain a built-in dynamic Smagorinsky turbulence 
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model, and it was considered beyond the scope of this study to develop one. 

Instead, comparison of different closure models is noted as a potential avenue for 

further research. 

Given the requirement of high-resolution, time-dependent modelling, and the focus 

of this study on coherent turbulent structures, LES is the most suitable choice of 

model, given that it is the most accurate method for capturing dynamic turbulent 

structures over a range of spatial scales (Keylock et al., 2005). Therefore, all 

simulations were run using LES with the standard Smagorinsky model, but to aid 

convergence they were ‘hot-started’ from a converged steady state solution solved 

using the RANS equations with a RNG     turbulence closure scheme. 

3.2.3 Mass flux scaling algorithm 

One of the challenges in high resolution modelling is the appropriate 

representation of boundary conditions. In the case of natural river channels, this 

most commonly refers to the discretisation of complex topography which can 

strongly affect the generation of turbulent structures (Lane et al., 2004; Hardy et al., 

2007) and thus influence the flow dynamics. There are two main approaches which 

can be used here. The first involves adapting the numerical mesh to fit the 

topography (e.g. Figure 3.1a). These boundary fitted coordinate (BFC) grids alter 

grid size and shape in order to fit the grid to the topography. This distortion of grid 

shape can lead to artificial diffusion and numerical instability (Hardy et al., 2005). 

Furthermore, the variation in grid size can cause problems in testing the grid 

independence of numerical solutions as well as choosing the filter width for LES 

(Hardy et al., 2005). Grid independence testing is covered further in Section 3.2.8. 

 

 

 

 

 

Figure 3.1: Examples of different topographic representation: (a) boundary fitting and (b) a 

mass flux scaling approach. Figure from Hardy et al. (2005). 
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An alternative approach to BFC grids is to represent the topography using a mass 

flux scaling algorithm (MFSA) as shown in Figure 3.1b. Here, a hexahedral Cartesian 

grid is used, and complex boundaries are incorporated by setting cell porosity 

values. This porosity approach was first suggested by Olsen and Stokseth (1995) and 

was developed further by Lane et al. (2002; 2004). Hardy et al. (2005) added an 

additional drag treatment within the momentum equations to deal with the 

changes in porosity between cells. The approach has successfully been used to 

model flow over complex granular surfaces (Hardy et al., 2007) . 

In the vegetation model simulations, only a simple flat boundary was used, in order 

to fully investigate the contribution of vegetation to the turbulent structure and 

minimise any significant bed-generated turbulence. However, the model contains 

the capability to include more complex surfaces. While the MFSA was not 

implemented at the bed in this thesis, it was developed further to represent the 

vegetation and is fully explained in Section 3.3.  

3.2.4 Free surface treatment 

The free surface represents another important boundary condition within natural 

channel flows, and will be most important in situations with a high surface slope or 

where the effects of turbulent motions at the scale of interest extend to the free 

surface. There are three main approaches to modelling the free surface. 

The first and most straightforward, scheme is a rigid lid approach. Here the 

computational grid is set up with a planar solid boundary at the top of the domain. 

As such, variations in water surface elevation are not directly accounted for, but are 

represented as deviations from zero pressure in the top cell. Thus, the effects of the 

water surface are accounted for in the pressure gradient term within the 

momentum equation, but it does not affect the mass continuity equation. This can 

lead to over-prediction of velocity in areas of superelevation (Weerakoon and 

Tamai, 1989).  

Bradbrook et al. (1998) implemented a more sophisticated treatment of the free 

surface using the mass flux scaling algorithm. Here, the free surface layer of cells is 



   Chapter 3: Model development 

 

70 
 

treated as a porous domain. Thus areas of depression are assigned values of less 

than 1 and areas with superelevation are assigned porosities greater than 1 

(Spalding, 1985).  This method represents a mass treatment of the flow, as the 

porosity allows the correct discharge to pass through, and the free surface effects 

to be fully represented. This approach has been successfully applied to 

geomorphological flows through confluences and over gravel surfaces (Bradbrook 

et al., 2000; Hardy et al., 2007). 

The third method is through multiphase modelling where the air-water surface is 

modelled directly. However, this method is very computationally expensive and is 

only advisable strictly when the surface perturbations are the main feature of 

interest. 

Throughout model application, the water surface slope was considered to be 

negligible and therefore the basic rigid-lid approximation was used in order to 

simplify the simulations. It is worth noting that in many natural channels, due to the 

low submergence depth, surface expressions of vegetation-induced turbulence are 

significant (as seen in Figure 3.2) and so there may be merit in using a more 

sophisticated surface treatment. However, these schemes are far more complex 

and potentially unstable, and are therefore beyond the scope of this study. 

 

 

 

 

 

 

 

Figure 3.2: Photo showing the surface expressions of submerged vegetation canopies. Flow 

is from bottom to top. The river is approximately 5m wide and 0.3m deep. The water 

surface deviations from the mean are estimated as less than 10% of the flow depth. 
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3.2.5 Inlet and Outlet conditions 

Inlet and outlet conditions are key boundary conditions which must be specified in 

any CFD model. All simulations in this thesis were performed on a high-specification 

desktop computer rather than a supercomputer, and therefore were subject to 

significant memory constraints. This meant that domain size and spatial resolution 

were both constrained. In order to capture the evolution of the flow through 

vegetation over an extended domain length, cyclic inlet and outlet boundary 

conditions were used. With this method, the end of the domain is mapped onto the 

beginning of the flume to effectively create a recirculating flume. 

Typically, using cyclic boundary conditions involves solving the difference equations 

between the outlet and inlet cells to derive flow across the boundary. Though 

PHOENICS has an in-built cyclic boundary conditions setting, it was found that it 

was not sufficient, due to the fact that the inlet dampened the turbulence levels 

from the outlet, and there was no sign of larger-scale turbulent structures being 

recirculated. 

 

 

 

 

 

Figure 3.3: Schematic of the recirculating domain setup. 

Therefore a new recirculation scheme was developed, as shown in Figure 3.3, 

whereby a larger section of the domain (roughly 0.05-0.2x/l), rather than simply 

one cross-stream slice, was mapped onto the beginning of the domain. These 

values were mapped at every sweep, to ensure that there was no dampening. The 

pressure and velocity values were mapped for all of the recirculating except for the 

cross-sections corresponding to the inlet and outlet. Here the outlet pressure was 

discarded and the new value for the dynamic pressure was calculated from the 
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mapped velocities. This ensured that the correct pressure gradient was maintained 

within the channel. 

The introduction of recirculation creates the potential for the appearance of 

channel-length scale turbulent motions within the results. Therefore, care must be 

taken when analysing the results to ensure that such motions are detected and 

characterised correctly. 

3.2.6  Good practice in modelling 

The preceding sections have outlined the necessary methods employed in applying 

the CFD model. The methods have been justified, and have been shown to be 

robust. However, sound modelling still requires good practice to ensure that the 

results are valid. This involves verifying and validating the model thoroughly to 

ensure that the application of the model is suitable and appropriate. The methods 

of verification and validation of the CFD model used in this thesis are outlined 

below. 

3.2.7  CFD model verification 

Model verification is the process of checking whether the model is solving the 

equations correctly as opposed to model validation which involves checking 

whether the model solves the correct equations (Roache, 1994). The word ‘verify’ 

means an assertion or establishment of truth and therefore in modelling terms, a 

verified model is one whose truth has been demonstrated, which implies its 

suitability as a basis for decision making (Oreskes et al., 1994). 

As mentioned in Section 3.2.1, the CFD model PHOENICS solves the Navier-Stokes 

equations over a discrete number of points using a finite volume method. It is well 

recognised that these equations are an accurate simulation of fluid flow and 

therefore the issue of verifying such schemes centres on the discretisation of the 

continuum mechanics problem into a finite volume scheme rather than the 

equations themselves (Hardy et al., 2003). The idea behind such finite-volume 

schemes is that for an appropriate grid with spacing h between neighbouring points, 

the discrete solution should tend to the exact solution as h tends to zero.  However 
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there is a hidden intricacy within turbulent flow solvers. As discussed in Section 2.4, 

the majority of such methods solve directly down to a particular spatial scale below 

which turbulence models are used to save computational time and memory. 

Therefore if the discretised solution converged perfectly to the exact solution then 

the turbulence models would introduce ‘double-counting’ (Roache, 1997). 

In most applications this is not an issue because complete convergence is not 

attained. Instead the solution is deemed to be close enough to the exact solution to 

be considered sufficiently accurate to use as a basis for decision making. This 

requires the definition of a threshold for convergence of the solution beyond which 

the model is assumed suitably accurate. Thus the focus of verification within 

modelling tends to be error calculation and minimisation rather than elimination. 

The American Society of Mechanical Engineers (ASME) have a particular policy 

regarding verification of open channel models used within its journals. Lane et al. 

(2005) provide a useful critique of these criteria with particular consideration for 

the use of numerical models within fluvial geomorphology. They conclude that the 

guidelines whilst being necessary, may not be sufficient in natural fluvial systems. 

Here, the main distinct criteria for model verification are described, with reference 

to both the original ASME guidelines (1993) and the critique by Lane et al. (2005). 

Where appropriate, reference is made specifically to the case of vegetated channels. 

In particular, a test domain filled with a canopy of rigid vegetation was used to 

elucidate the issues faced with general canopy flows. 

a) Solution accuracy in space 

As mentioned in Section 3.2.1 it is important that the order of accuracy of any 

system of equations used is known and reported alongside the results. The normal 

requirement for numerical models is that they are at least second order accurate in 

space. However, as is also explained in Section 3.2.1, within CFD solvers a 

compromise is often used.  This means that strictly this cannot be classed as a 

second order method, and instead the order must be calculated experimentally 

using the grid convergence index method, as explained in Section 3.2.8. 
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b) Grid independence testing 

The second criterion is that the solution should be shown to be independent of the 

grid or mesh size used. In other words the grid should not be subject to large 

discretisation error. This is a key issue, particularly when using Large Eddy 

Simulation, as grid resolution can have a critical impact upon the solution. Arguably 

the most common, straightforward and reliable methods are grid convergence 

studies (Roache, 1998). Therefore, grid convergence is further discussed in detail in 

Section 3.2.8.  

c) Determination of solution convergence 

A solution is said to have converged for a particular variable when the sum of the 

absolute values of the residuals for that variable falls below a pre-specified 

tolerance (Lane et al., 2005). In PHOENICS, this tolerance is set to 0.1% of the 

original error (CHAM, 2007). However this level of convergence is very rarely 

obtained for high resolution fluvial problems, especially when complex topography 

is present (Lane et al., 2005). An alternative approach is to analyse the spot values 

visually for each variable of interest at particular locations throughout the flow field 

after each sweep (iteration over the entire domain) and to define the solution as 

converged when all variables have ‘flat-lined’, as shown in Figure 3.4. 

The idea of a fully converged solution is a myth as there can always be constructed 

a variable that has not converged fully (Roache, 1997). Instead, the variables being 

investigated should be checked for convergence as well as any others that drive key 

processes being investigated, and as discussed earlier, analysis should not extend 

beyond the variables that have been shown to be converged (Roache, 1997). The 

order in which different variables converge is clear in Figure 3.4. 

Steps can be taken to improve the rate of convergence of the solution. Firstly, the 

inlet velocity profile can be used to initialise the entire flow field, thereby providing 

a more accurate starting value. Alternatively, a converged whole-field solution from 

a previous run can be used to provide starting values for the entire field. This can be 

particularly useful for starting high resolution models from converged lower 
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resolution models, or to start more complex turbulence models from simpler ones. 

As mentioned in Section 3.2.2 this technique was used to hot-start the LES 

simulations in this study. 

 

 

 

 

 

 

 

 

Figure 3.4: Normalised spot values of different variables (φ) plotted against sweeps, 

showing clear flat-lining. Rough ‘convergence’ points for each variable are labelled. 

In vegetated channels, the success of this technique, particularly starting from 

lower resolution models, may be highly dependent on the grid resolutions used. As 

long as the grid size is smaller than half the diameter of the vegetation elements, 

this technique is likely to be useful. However, as the resolution decreases the 

solution changes sufficiently such that it no longer provides a useful starting value 

for a higher resolution model run. Computational experiments carried out at the 

same resolution as the plant diameter showed substantial error and no 

convergence even over 2 500 iterations. 

d) Solution accuracy in time 

The final consideration that relates to the numerical solution is its temporal 

accuracy. All of the methods so far have in effect considered a steady state solution. 

However, the analysis in this thesis requires unsteady temporal data, and this 

introduces another source of potential error. Choice of an inappropriate time-step 

w v 
u   
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can cause unphysical oscillations in the solution and therefore it is essential that the 

time-step is chosen correctly. The standard equation used is the Courant number 

    
  

  
 (3.10)  

This is the product of the downstream velocity and the ratio of the temporal (  ) 

and spatial resolution (  ). Essentially, this calculates the proportion of a single 

computational cell that the fluid travels through in a single timestep. For an explicit 

first order method, the time-step must be small enough such that a change in one 

variable does not propagate across a distance greater than one cell before re-

evaluation (Lane, 1998). This imposes severe restrictions on time-step, for a 

simulation with high spatial resolution and moderate velocities. This condition is 

not as strict in implicit models, and PHOENICS can handle time-steps which exceed 

the Courant limit by many orders of magnitude (CHAM, 2007) and therefore 

Courant numbers are not reported for each case. However, care has still been taken 

in this thesis to ensure that the lowest possible Courant number is used without 

imposing prohibitive constraints on the temporal resolution and thus 

computational time. 

e) Specification of boundary conditions 

Boundary conditions can affect the overall accuracy of a simulation and therefore 

the choice and justification of boundary conditions should be specified. This 

includes spatial boundary conditions such as the free surface approximation, 

topographic representation, inlets and outlets as well as temporal boundary (initial) 

conditions. Each of these has been explained in some detail earlier in this chapter. 

f) Reporting of code: 

Finally, when using commercial CFD codes it is important to report any changes or 

alterations made to commercial code that could compromise its performance. In 

other words, any additional code, such as the mass flux scaling algorithm, or 

alteration to the momentum equations should be adequately reported, to allow 

scrutiny of the adapted scheme. 



   Chapter 3: Model development 

 

77 
 

3.2.8 Grid Convergence Index 

As discussed in Section 3.2.7, the Grid Convergence Index (GCI) is one of the most 

reliable methods for assessing grid independence. The GCI is a method, developed 

by Roache (1993), based on Richardson extrapolation which can be applied either 

to a single point, a group of points or the entire domain and is formulated as 

follows. 

Assuming the solutions, f1 and f2, to the same equation are calculated on two grids 

with even spacing    and    then they can be represented as series expansions, 

                
      

        (3.11)  

                
      

        (3.12)  

where gi are functions defined on the continuum which do not depend on any 

discretisation and f* is the exact solution to the equations. Here,       represents 

the higher order terms. In second order methods g1 is, by definition, zero and the 

exact solution can be written as 

       
      

        
    

        . (3.13)  

Defining the grid refinement ratio as          this can be rewritten as a 

correction to the finer grid (  ) solution 

                 
             (3.14)  

Dropping higher order terms and generalising for order of convergence   , the 

estimated fractional error for the fine grid can be expressed as 

                    (3.15)  

                   (3.16)  

Defining the actual fractional error as 

               (3.17)  
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and using the previous results and a binomial expansion, the actual error can be 

expressed in terms  of the estimated error: 

                 
   (3.18)  

Here     generally, or 2 if centered differences have been used (Roache, 1994). 

Equation 3.17 shows that the estimated fractional error is a good estimate for the 

actual fractional error, if     . This is extremely useful as it provides an error 

estimate for the discrete solution that does not require prior knowledge of the 

exact solution, which in the majority of CFD problems is not known. 

The GCI is then defined as the estimated error multiplied by a safety factor. 

                         (3.19)  

It is equally likely that the actual error will lie above the estimated error as below it 

and so the estimated error does not represent an error bound. By including a safety 

factor, the GCI then becomes a conservative upper bound for the error, equivalent 

to a 99.9% confidence interval (Hardy et al., 2003). 

In order to be able to quantify the global GCI,    and    norms can be used to 

calculate characteristic statistics for entire domains. These norms are calculated as 

follows 

There is some debate as to whether either of these norms is a representative or 

reliable measure for representing the entire domain (Westerlink and Roache, 1997). 

The    norm is very sensitive to occasional outlying errors that are not 

representative of the error across the entire domain. This is particularly significant 

in domains that contain areas in which the local error may be especially high, for 

example areas of high shear, or near to walls or other boundaries. However the    

              

 

   

 (3.20)  

                 (3.21)  



   Chapter 3: Model development 

 

79 
 

norm may be useful if one requires an absolute bound on the estimated error 

within a relatively well-behaved domain. 

Conversely the    norm can average out regions of very low error and regions of 

very high error into a single statistic portraying a domain with medium error 

throughout. This can be avoided by choosing an appropriate domain over which to 

average although this may not be instinctively obvious prior to the calculation. 

Instead it can be more helpful to plot how the GCI changes across a particular 2D 

slice of the domain. Such analysis can help identify spatial patterns of convergence 

and can also inform the decision as to which domain to calculate the   norm over. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: GCI cross-sections for (a) downstream, (b) cross-stream and (c) vertical velocity 

at two different resolutions. 

Figure 3.5 shows a series of GCI cross-sections from a test simulation. The test 

domain was 0.64m long, 0.32m wide and 0.32m high. A canopy of stems, each 

0.01m in diameter were placed in a staggered arrangement, with a separation of 

0.01m between each stalk. Each stalk was 0.16m high i.e. half the total depth. Four 

                      

a) 

b) 

c) 
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different resolution grids were used: 0.02m (coarse), 0.01m (medium), 0.005m (fine) 

and 0.0025m (very fine). For the medium grid size, the grid spacing was equal to the 

vegetation diameter. The results at this resolution were numerically inaccurate and 

the solution failed to converge at all. Therefore the medium grid results were 

discarded. The inlet velocity for all the runs was set at 0.3m/s. 

The GCI plots in Figure 3.5 show that in all three velocity signals, there is a clear 

spatial pattern to the error magnitude which appears to relate to flow separation 

regions at the canopy top. In general, the very fine grid shows a decrease in error 

compared to the fine grid, and one would expect the coarse grid to perform 

considerably worse than the fine grid. It is also clear that of the three, lateral 

velocity seems most susceptible to high error values even at the very fine resolution. 

While these cross-sections are useful, they do not allow analysis of the variability of 

the GCI across the entire domain. 

Cumulative area fraction error (CAFE) curves are a helpful way of investigating 

global GCI (Luettich and Westerlink, 1994). These curves plot the percentage of the 

total domain that exceeds a particular error level (y axis), against the error level 

itself, ε (x axis). These graphs highlight any extreme anomalies whilst also indicating 

the median error. 

Figure 3.6 shows the CAFE curves calculated for a patch just above a rigid 

vegetation canopy for the same two resolution comparisons as Figure 3.5. The 

figure indicates that in order to achieve the best results, the very fine grid size is 

required, at which, 90% of the domain has a GCI of under 0.1 compared to the fine 

grid which drops off more slowly. However, Figure 3.6 also shows that the three 

velocity components display very different trends, with the lateral and vertical 

velocities showing worse convergence. This highlights the need to consider all 

variables of interest. 

Hardy et al. (2003) applied the GCI approach to two typical fluvial modelling 

applications, namely a meander bend and a zero degree confluence.  They 

calculated global convergence indices and looked at the distribution of GCI at 

particular cross-sections.  The results showed good convergence for the 
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downstream velocity. However, GCI values for other variables were not as good. In 

particular, the locally dominant processes seem to affect the convergence of 

variables. For example, in the meander bend, lateral velocity showed poor 

convergence due to the secondary circulation. Similarly in the confluence there was 

poor convergence of the vertical velocity component. This reiterates the 

importance of considering the variable of interest when seeking to verify a 

numerical scheme. Otherwise a numerical scheme may be verified for a variable 

lower down the convergence order and used to study higher order processes 

governed by variables that have not yet converged.   

 

 

 

 

 

 

 

Figure 3.6: CAFE curves, plotting the GCI error level against the cumulative percentage of 

domain volume with GCI greater than or equal to that GCI value. 

In addition, Hardy et al. (2003) also showed that a grid independent steady RNG 

turbulence model solution can lose its grid independence when used to hot-start a 

LES simulation. Therefore, a low GCI for a steady simulation is not sufficient enough 

to be able to conclude that the LES simulation will be converged. However it is 

impractical to test the LES solution for convergence at every time step. Instead one 

could analyse the GCI of the time averaged LES solution. 

For LES simulations in particular, an apparently grid-independent solution can be 

misleading as it may still neglect important processes operating at a sub-grid scale. 

Therefore in addition to choosing a grid with a low GCI it is important to choose a 

grid which accounts for the scale of the processes being investigated (Hardy et al., 
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2003). Finally, the idea of selecting a grid with ‘a low GCI value’ is still a vague term. 

There are no formal definitions of thresholds between acceptable and unacceptable 

levels of error and indeed this threshold may depend on the domain being solved.  

Vegetated channels present a difficult challenge when calculating GCI values as 

vegetation elements can be sub-grid, meaning a change in resolution can 

dramatically alter the flow patterns observed. Therefore there is high grid 

dependence where the resolution is similar to the size of the vegetation elements. 

The implication of this is that where small vegetation diameters are being used, a 

very high resolution grid must be used to obtain grid independence. With a given 

computational power this limits the spatial extent of any investigation. This is 

significant as many of the process operating at the top of vegetation canopies do so 

over relatively long downstream distances (Ghisalberti and Nepf, 2002).  

Vegetated channels are also likely to exhibit a higher GCI as a much larger 

proportion of the domain is in the proximity of a boundary. For this reason spatial 

analysis of the GCI is vital in determining whether or not the solution is suitably 

converged in the area of interest. There are further potential problems when the 

GCI is extended to unsteady LES simulations involving flexible vegetation, as the 

vegetation blockage will vary between time steps making grid comparison very 

difficult. This may be partly solved by using a time-averaged solution derived from 

the LES simulation for comparison between grid resolutions. 

The above calculations of the GCI all require a prior knowledge of the order of 

convergence p. However similar methods can be used to calculate p using solutions 

from three different resolution grids. If the grid refinement factor is the same 

between the 3 grids (i.e. h1/h2= h2/h3) then this is simply calculated by: 

If the grid refinement factor is different p can still be calculated iteratively using the 

relation: 

                        (3.22)  

                                  (3.23)  
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where 

A value of ω = 0.5 tends to work well for well-behaved cases (Roache, 1997). This 

calculation was carried out for the 3 grid resolutions mentioned above at a single 

point, in the middle of the domain above the canopy. The results are shown in 

Figure 3.7. These show that the actual convergence is significantly lower than 2, 

particularly for the lateral and vertical velocity components. However, in order to 

achieve an accurate result, p should be calculated throughout the domain and then 

averaged. This still does not guarantee valid results however, as there can be 

significant discrepancy across the domain, as shown by Flynn and Eisner (2004) who 

obtained only a small percentage of values within the theoretical order of accuracy 

(1 <    < 2) for simulations of flow around a cylinder. This is complicated for 

vegetated flows by the presence of additional solid blockages in the domain which 

do not necessarily translate naturally between the different resolutions. 

 

 

 

 

 

 

 

Figure 3.7: Iterative calculations of p for the 3 flow velocities at a point. 

In summary, grid convergence is a key aspect of model verification, particularly in 

LES simulations where there can be a strong dependence on grid resolution. This 

section has outlined various methods for assessing the accuracy of simulations 

through idealised vegetation canopies. Applying GCI methods to vegetation 

simulations, it has been shown that to maximise convergence a very fine grid 

   
   

      

   

      
       . (3.24)  
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should be used. In this instance, the vegetation diameter was four times the grid 

resolution, and this was shown to increase convergence dramatically compared to 

the other grid resolutions. Consequently, this ratio of vegetation diameter to grid 

resolution will be considered the minimum acceptable throughout this thesis. It is 

hard to assess convergence within the canopy, as the changes in vegetation 

discretisation between grid resolutions affect the results. Furthermore, flexible 

canopies represent a more complex situation. Nevertheless, these results are used 

to inform the vegetation modelling, to ensure the best possible numerical 

convergence. 

3.2.9 CFD model validation 

Validation of numerical models is equally as important as verification. However, it 

can prove challenging. One of the key drivers for the use of numerical modelling is 

the ability to capture processes at a resolution which cannot be measured in the 

field, or over a wider parameter space than is measurable in the field. Therefore, it 

can be difficult to collect sufficiently accurate validation data. For the numerical 

experiments carried out in this thesis, analogous flume experiments were 

conducted as validation data and these results are reported in Chapter 5. However, 

even with high resolution models, there will be some processes and levels of 

complexity not represented within the model. Therefore, some disagreement 

between the datasets is inevitable, meaning the broad patterns and values, rather 

than individual results, must be compared. 

An alternative method of validation is the use of benchmark solutions. In some 

cases this is appropriate as in Section 3.7 when the benchmark solution for a 

cylinder is used as a reference. However, this is not a useful method for complex 

situations such as entire canopy flows, for which no benchmark solutions exist. 

3.2.10 Summary 

The first half of this chapter has outlined the considerations required in formulating 

and applying a CFD model. The choice of appropriate solution techniques, 

turbulence models and boundary and initial conditions has been justified with 
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reference to the relevant literature. Issues of good practice within modelling have 

been discussed and key criteria drawn out, with reference to the discussion by Lane 

et al. (2005). With respect to each of the criteria, the model specification used 

within this thesis has been addressed and thus the CFD aspect of the simulations 

has been justified. The remainder of this chapter focuses on the other coupled 

aspect of the modelling undertaken in this thesis: the inclusion of vegetation within 

the CFD framework. 

3.3 Vegetation Conceptualisation 

The term ‘vegetation’ covers a whole range of different species with very different 

structures and characteristics. Therefore, prior to model design it is necessary to 

define which types of vegetation will be the focus of this thesis. For the purpose of 

this research, two main types of vegetation are considered. These fit broadly into 

the categories of a) relatively high rigidity reed and grass-like stems (e.g. 

Phragmites australis) and b) low rigidity submerged macrophytes (e.g. Ranunculus 

penicillatus, Callitriche platycarpa).  As discussed in Chapter 2, these can be classed 

broadly as those that are controlled by bending and tensile forces respectively 

(Nikora, 2010). Therefore, two different models are developed which represent 

different physical force balances. The Euler-Bernoulli Beam model was developed 

to model semi-rigid vegetation whilst the N-pendula model was developed to 

simulate highly flexible vegetation. These models are each described in detail in 

Sections 3.5 and 3.6. However, the conceptualisation of the vegetation itself is very 

similar between the models. 

The process of conceptualisation necessarily involves a number of simplifications. 

Firstly the models only deal with single-stemmed plants. Foliage and more complex 

plant form is something which could be developed at a later stage, although this 

would require significant extensions to the equations used here. While this may 

seem a significant limitation, the model does allow for a large number of individual 

stems to be modelled simultaneously, allowing the representation of realistic 

vegetation patches.  
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Secondly, the plant is assumed to be made up of discrete components (see Figure 

3.8). The exact nature of this varies between the two models used. However, in 

both cases, the stem is conceptualised as a set of discrete connected masses. This 

means that at a very fine scale the vegetation does not retain its shape, although 

plant mass is preserved (Ikeda et al., 2001).  

In both models, each discrete component of the stem is treated as a fixed shape. 

The centre of mass of the shape is treated as the stem centre, which then moves 

according to the equations set out later in this chapter. As the cente of mass moves 

at each time-step, so the original shape of each plant section is remapped 

separately. 

 

 

 

 

 

 

Figure 3.8: Tandem plant and LES grid systems (Ikeda et al., 2001). Here a stalk is 

conceptualised as a vertical array which then moves and maps onto the LES grid. 

 

 

 

Figure 3.9: Porosity cut-cell treatment of vegetation. Here darker cells represent lower 

porosity values. 

The vegetation is treated as an immersed boundary, using a dual grid system similar 

to Ikeda et al. (2001) whereby the vegetation grid and the LES grid interact at each 

timestep in a sequentially staggered manner (Felippa et al., 2001). Velocity data 

passes to the plant grid, and is used to calculate plant motion before the new plant 
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mass data passes back to the LES grid for the next flow calculation. Plant mass is 

represented as porosity (Lane and Hardy, 2002) within the LES grid, as an extension 

of the MFSA approach described in Section 3.2.3. This acts as a partial, or full mass 

blockage, which is represented as a porosity value between 0 and 1  (where 0 is 

fully blocked and 1 is no blockage) and is a simpler form of the cut-cell method used 

by Kim and Stoesser (2011). The key difference between the model developed 

below and that of Ikeda (2001) is that here the grid resolution is smaller than the 

vegetation stalk diameter, and therefore the porosity is not used to represent stem 

density (as in Figure 3.8) but rather to represent volume blockage due to a single 

stem (Figure 3.9). 

3.4 Force calculation from the CFD model 

In the same way that mass information is transferred to the LES grid, flow data is 

passed to the plant grid in order to calculate the dynamic force balance. The 

external forces acting on the vegetation can be described as drag (both form and 

skin), buoyancy, and lift, or more generally, pressure driven movement. 

The buoyancy force is calculated as the difference in density between the 

vegetation (  ) and fluid ( ), multiplied by the gravitational acceleration and the 

volume, which is assumed to be a cylinder of radius    and height  . 

              
   (3.25)  

The drag force was initially calculated using the drag equation with a drag 

coefficient (  ) set equal to the value for a rigid cylinder. Here    is the local fluid 

velocity averaged over the neighbouring cells and    is the plant velocity. The 

modulus of the velocity difference is used here instead of simply        
 
 in 

order to maintain the directionality of the drag force. This drag approximation is a 

crude and potentially inaccurate representation of the drag force but is the 

standard method for incorporating drag and served as the basis for model 

development. Section 3.7 discusses an improved alternative approach to calculating 

the drag force which was also implemented within the model at a later stage. 
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                     (3.26)  

These two forces, drag and buoyancy, are generally the highest magnitude forces, 

and the N-pendula model was run using simply these forces. However, following 

Ikeda et al. (2001) an additional force term was incorporated into the Euler-

Bernoulli beam equation model to account for unsteady pressure fluctuations.  

    
   

  
            (3.27)  

Here    is the coefficient of added mass, which is taken as equal to 1. The forces 

described above were assumed to act in either the downstream (x) or vertical 

direction (z). In some cases, such as with the drag force, a component was 

calculated for both directions. The forces were then resolved into the correct plant 

directions using trigonometry and appear in the following model descriptions as 

external force terms (  for the beam model and     for the N-pendula model). 

It was also necessary to take into account the effect of shading, as when the plant 

bent, the full frontal surface of the top cells was not exposed to the fluid forces (see 

Figure 3.8). Therefore, the forces were scaled linearly, dependent on their vertical 

position relative to the neighbouring cells in the vertical direction. 

3.5 Euler-Bernoulli beam equation model 

The dynamic Euler-Bernoulli beam equation solves the deflection of a thin beam 

under external loading. It represents a simplification of linear elasticity theory and 

balances the external force with the rigidity of the beam. Thus, it is appropriate for 

modelling vegetation with low flexibility which is controlled by bending forces. Due 

to its simplicity it has a number of limitations. Firstly, it does not account for shear 

deformation. Secondly, it is only applicable for small deflections, although it can be 

extended for larger perturbations (Li and Xie, 2011). It was chosen as it has been 

used in previous studies, both to model explicit vegetation elements (Ikeda et al., 

2001) as well as to drive canopy scale models (Finnigan and Mulhearn, 1978; 

Erduran and Kutija, 2003). 
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3.5.1 Numerical Basis 

The dynamic version of the Euler-Bernoulli beam equation is shown in Equation 

3.28. It can be split into 3 terms: a bending stiffness term, an inertial term and an 

external force term, labelled 1, 2 and 3 respectively. It is these three forces which 

must be balanced to ascertain the plant movement and position. 

 
  

   
   

        

   
 

             
 

    

        

            
 

          
 

 (3.28)  

The equation assumes that the beam is initially straight and under no load. Given a 

load,     , along the beam, the perpendicular displacement,     , from this initial 

straight position at a point   along the beam can then be solved. The flexural 

rigidity (  ), defined as the product of the elastic modulus ( ) and the second 

moment of inertia ( ), and the mass per unit length (  ) both feature within the 

equation. For simplicity, these have been assumed constant although this is not 

necessarily the case. Many plants will exhibit variations in flexural rigidity along the 

stem and it is likely that most vegetation stalks will also differ in diameter along the 

stalk (Miler et al., 2012). This would lead to a  -dependence in both flexural rigidity 

and mass per unit length. For the mass term this is straightforward and could be 

implemented at a later stage. However, the flexural rigidity term lies within a 

differential operator, and therefore adding an  -dependence will alter the 

numerical scheme considerably. Therefore, the model described below is only valid 

for stems of constant rigidity. 

This is justifiable for two reasons. Firstly, the method used to calculate the flexural 

rigidity of the prototype and real vegetation (discussed in Section 5.2.1) relies upon 

the assumption of a constant flexural rigidity along the stem. Even if the model did 

exhibit variations in rigidity, it could not be calibrated experimentally. Secondly, the 

prototype vegetation used was of a constant diameter, and so it is unlikely that 

there is much variation in the rigidity. Therefore, this is only a problem for the real 

vegetation. 
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The equation can be solved using a number of different formulations. During model 

development, these different formulations were investigated, ranging from the 

simplest explicit formulation through to complex change-of-variables methods. 

Here, is presented an overview of the development process. 

3.5.2 Explicit formulation 

For the explicit formulation, the equation is discretised using a scheme that is 

backward in space and central in time as shown in Eq. 3.29. 

 
  

     
  

   
  

  

     
  

   
    

  (3.29)  

Here,   
   and   

   are the     order backward and central difference schemes 

respectively with respect to the variable  . Whilst this scheme is a lower-order-

accurate method than a fully central scheme (Wilmott, 1995), it relies on boundary 

conditions only at the attached, bottom end of the stem where movement is likely 

to be minimal, rather than at both ends. This leads to a more accurate prediction at 

the free end of the plant stem, where movement is likely to be greatest. This is 

highlighted in Figure 3.10 which shows the stencil for the two schemes. The stencil 

is an illustration of the discrete space/time values used in the equation. 

 

 

 

 

Figure 3.10: Comparison of stencils for the backward and central difference schemes. 

Equation 3.30 describes the fully expanded version of Equation 3.29. Once re-

arranged to solve for the correct node, this equation becomes 

  
 

   
 

  
 

 
  

    
  

 

  
 

  
   

 

 
   

   

 
   

   

 
   

   

 
  

   

 
    

 

 
  

 

   
 (3.30)  

 

Backward in space, central in time 

 

  

  

Known values 
Values to be solved 

 

Central in space, central in time 
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where   is the spatial discretisation and   is the temporal discretisation, and n and j 

are node locations in time and space respectively. This equation contains only one 

unknown on the left hand side and so can be solved given sufficient initial and 

boundary conditions. The necessary initial and boundary conditions for this scheme 

are: 

  
      

         
    

    
    

           

As far as the author is aware, there is no pre-existing model within the literature 

which can be used to calculate these boundary conditions. Thus, a simple linear 

model has been used, whereby it is assumed that for the first 4 nodes of each stem, 

the displacement ( ) increases linearly according to the displacement of the 5th 

node at the previous time step. In other words, for          

   
  

   
   

 
 (3.31)  

In effect, this assumes that the bottom of the stalk is a rigid element, pivoting about 

the base. This assumption should not have a significant influence on the model, as 

movement within the bottom few nodes is likely to be minimal and the linear 

approximation does not introduce a fourth order derivative. 

The explicit formulation is the easiest to solve, however the limitation of this is that 

the scheme is prone to becoming numerically unstable. This can be seen by 

examining the Fourier/von Neumann stability for the scheme. By assuming that the 

round-off error ( ) satisfies the discretised equation (Equation 3.30), and neglecting 

the external force term, the error can be written as: 

   
          

       
       

       
      

      
    

    (3.32)  

where,    
  

 

  
 

  
 . The error is now expressed as a Fourier series, and for the rest of 

the analysis, only a single arbitrary mode of the series is considered.  

   
              (3.33)  
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Here    is the amplification factor (i.e. the growth of error between time steps), and 

the choice of   is arbitrary. Substituting (3.33) into (3.32) and simplifying gives 

                                              (3.34)  

Converting this into trigonometric identities and multiplying by  , gives 

 
                                                               

 
 (3.35)  

This is a quadratic equation of the form               . A simple relation for 

the roots of quadratic equations can be used to characterise the roots,      and     . 

           
 

 
 (3.36)  

This shows that the product of the two roots is 1. For stability it is required that the 

modulus of all roots (amplification factors) be less than or equal to 1 (i.e.        ). 

Given (3.36), this is only possible for a non-positive discriminant (        ). In 

other words, Equation 3.36 implies that there are not two real roots, as one would 

have to be the reciprocal of the other, and thus both could not be less than or equal 

to one. The only remaining possibilities are that both roots are either equal 

(        ), or that both roots are complex numbers (        ). Therefore 

the stability condition becomes 

       (3.37)  

A new variable,  , is now introduced such that 

                        (3.38)  

         (3.39)  

It is now straightforward to work out the maximum and minimum values of  , 

         (3.40)  
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Rewriting the stability condition (3.39), two separate conditions emerge 

       (3.41)  

        (3.42)  

Using (3.40), the first condition (3.41) holds unconditionally for   . The second 

condition (3.42) holds for    
 

 
. Hence this is the necessary condition for a stable 

solution. 

To illustrate the significance of this, consider a typical simulation setup, with 

           and a plant with stem radius of            and density 

           . This density was chosen to be within the range used by other 

authors (e.g. Luhar and Nepf, 2011). The mass per unit length is therefore  

             . Given that  

    
  

  

  
 

  
   (3.43)  

the condition on the spatial and temporal discretisation becomes 

 
  

 

  
         (3.44)  

Given the plant radius, and assuming that for simplicity of calculation the plant grid 

resolution is the same as the LES grid and that          , according to the grid 

resolution restriction set out in Section 3.2.8 the largest appropriate value of    

might be taken as 0.0025m. The restriction in Equation 3.44 would in this case 

require a time step smaller than 0.0000052s to guarantee a stable solution. Figure 

3.11 shows the dramatic effects the unstable scheme has on the solution through 

time, when a larger time step (0.001s) is used. It is clear that this scheme is not 

practical, as to run the fluid dynamics solver at a high enough resolution would be 

too computationally expensive. Therefore, an alternative method is required. 
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Figure 3.11: Exponential solution instability in an explicit beam model run with k=0.001. 

3.5.3 Subcycling explicit formulation 

Given the attractive simplicity of the explicit method, an appealing modification to 

the explicit model is to create a subcycling model (Felippa et al., 2001), whereby the 

fluid mechanics solver and the plant motion solver run at different temporal 

resolutions. Whereas the fluid solver requires a number of minutes for a typical 

domain, the plant solver requires considerably less than a second, enabling it to run 

at the sufficient resolution within a short period of time. 

Therefore, the numerics are identical to the explicit scheme described above, 

except that the plant solver is run 10 000 times (subcycles) per fluid time step. With 

a fluid time step of 0.01s, this provides a plant model temporal resolution of 

0.000001s, which given the above spatial discretisation, should be sufficient for 

model stability according to Equation 3.44. 

There is one other important change to the model, however. As the fluid solver is 

not being run every subcycle, it is not possible to calculate the forces directly at this 

resolution. Instead, the forces must be estimated from the most recent fluid time 

step. This creates a problem, because the plant velocity will increase between fluid 

time steps, but the corresponding drag force will not. Therefore, there will be 

excessive plant motion in these periods. To counter this, a drag correction must be 

introduced at each subcycle. This correction,   
  is calculated as an addition to the 

existing drag force and represents the drag of the new relative velocity. 
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               (3.45)  

In this equation,   
  is the plant velocity at the subcycle, and    and    are the plant 

and water velocities at the most recent time-step. The sign of the last term depends 

on the sign of plant velocity. 

While this should in theory curtail excessive plant motion, it was found that the 

inertial term within the equation was too dominant, and that the bending-stiffness 

term and external force term were having little, if any, effect. In other words, it was 

very difficult for the external or internal forces to override the plant velocity signal. 

It would seem that despite the drag correction, the lack of fluid force information at 

the subcycle is critical. Therefore this method was abandoned in favour of the 

original sequentially staggered model. 

3.5.4 Implicit second-order formulation 

As the explicit formulation suffered from a lack of stability, the next step was to 

switch to an implicit formulation, as they are commonly more stable. The harsh 

stability criterion in the explicit model comes in part from the 4th order differencing, 

and therefore, to further improve the chances of stability, a second order approach 

was investigated. The implicit formulation of the model is different from the explicit 

version in that it does not solve a single unknown based upon a series of known 

values. Instead it solves for all dependent variables simultaneously via matrix 

algebra. This leads to a more complex solver, but one which is more stable. In order 

to simplify the equations into a 2nd order scheme, this method involves a switch in 

variables. First, two new variables are defined as, 

   
  

  
   

   

   
 (3.46)  

These are then substituted into (3.28) to give 

   
   

   
   

  

  
         (3.47)  

This can be solved for each of these variables using 
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 (3.48)  

   

  
 

  

   
 (3.49)  

These equations can be written using a backward in time and backward in space 

scheme. Similarly to the explicit case, the central scheme would be give higher 

order accuracy but would require boundary conditions at the free end of the stem. 

   
      

 

  
 

 

  
  

    
  

  

  
         

        
    

  
  (3.50)  

   
      

 

  
 

  
         

        
    

  
  (3.51)  

This can be written in matrix form, combining the two equations into one 

                    (3.52)  

where, 

  
 

  

 
 
 
 
 
 
  
    

  
  

  
  

  
    

  

   

  
  
     

 
 
 
 
 

          
  

 
  

     

 
 
 
 
 
 
  

    

  
   

  
   

  
   

  
 
 
 
 
 

                    
 

  

 
 
 
 
 
  

   

 
  

   

 
  

 
 
 
 

                       

 
 
 
 
 
 
 
  

    

  
   

  
   

  
   

 
  

 
 
 
 
 
 

 

Despite the complexity, this system is of the generic form      and can be solved 

very quickly and easily, using matrix algebra. The boundary conditions are given 

within  , and the initial conditions are contained within   . Once   has been solved, 

it is then straightforward to solve for the displacement,  . 

               (3.53)  

The problem with this formulation arises in specifying the boundary and initial 

conditions. The variables now being dealt with are the vegetation speed ( ) and the 
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second derivative of the displacement with respect to distance along the stem ( ). 

Vegetation speed is a familiar variable as it has already been calculated in previous 

models to work out the drag force, and so it is relatively easy to estimate its value 

for the bottom few nodes of the stem. However,   is far less intuitive and it is 

difficult to estimate what this value should be. Therefore this model was discarded 

in favour of the fourth order implicit version. 

3.5.5 Implicit fourth-order formulation 

The fourth-order version of the implicit method is less convoluted than the second 

order change of variables. Due to the higher derivatives, there is the possibility of a 

harsher stability restriction, however as this is an implicit scheme it is not the case. 

With this formulation (Equation 3.54), two backwards difference schemes are used. 

The stencil is shown in Figure 3.12. 

 

 

 

 

 

Figure 3.12: Stencil for the 4th order implicit scheme 

  
 

   
   

 

 
  

 

   
 

  
 

  
  

    
    

 

  

 
 

   
   

   

   
   

   

   
   

   

   
  

   

   
 

  
  (3.55)  

Expanding the difference equation (Equation 3.55) and writing it in matrix form 

gives 

 
  

  

  

  
       

 

  
                  (3.56)  

where, 

 
  

  
   

   
  

  

  
   

   
    

  (3.54)  

Known values 
Values to be solved 

 

Backward in space, backward in time 
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As with the second order method, this has the form      and so can be solved 

simply using matrix techniques such as LU decomposition. 

The Fourier/von Neumann stability can be calculated in a similar manner to the 

method used for the explicit method. The discretised equation for the error 

becomes 

   
       

    
     

    
 

  

    
         

       
         

        
    

  
  (3.57)  

Expanding this as a Fourier series, selecting a single node and simplifying produces 

                                           (3.58)  

This forms a quadratic equation of the form 

                                                                  
 

          (3.59)  

Here the value of   is subtly different to the value in the explicit case. The quadratic 

formula can now be solved as 
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 (3.60)  

This simplifies to  

    
      

 
 (3.61)  

Using similar notation to Section 3.5.2 it is possible to define        . Here   

has the same value as it did in the explicit case, and therefore the same maximum 

and minimum values (Equations 3.41 and 3.42) apply. Substituting in the value for 

  this simplifies further to 

    
      

     
 (3.62)  

The denominator here is the difference of two squares so can be expressed as 

    
      

                
 (3.63)  

Therefore, dividing through, the stability criteria can be written as 

       
 

      
    (3.64)  

The limits on   dictate that the term     is non-positive for all values of   . Therefore 

the denominator is a complex number. It is therefore possible to rewrite (3.64) as 

  
 

        
    (3.65)  

Here the term within the square root is now non-negative. For a complex number 

      , the modulus is calculated as           . Rearranging (3.65) gives 

the stability condition 
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            (3.66)  

As has been established, the term      is non-negative for all values of    and 

therefore it follows that the condition in Equation 3.66 holds for all values of   . 

Therefore, this numerical scheme is unconditionally stable, with no restriction on 

spatial and temporal discretisation. 

The stability analysis above ignored the external force term. Therefore, there is the 

possibility that this term could affect the stability detrimentally. However, the force 

term is calculated from the output of a commercial CFD model, which itself has its 

own stability tests. It is therefore concluded that providing both the CFD model and 

the plant model are independently stable, there should be no instability introduced 

by coupling the two together. 

In summary, four different formulations of the beam equation were investigated. 

Initially an explicit formulation was used due to the relative simplicity. However, 

this method placed harsh restrictions on the timestep in order to guarantee 

stability and therefore the use of this model was not practical. The subcycling 

explicit model aimed to deal with the stability problems while retaining the simpler 

explicit formulation. However, this proved unhelpful as the subcycle force 

interactions could not be modelled and this led to unrealistic plant motion. 

Therefore the explicit formulation was abandoned in favour of an implicit form. 

Initially, a second order method was used to further improve the likelihood of 

stability. This method showed promise, but the change of variables meant that it 

was difficult to accurately prescribe boundary conditions with confidence. Instead, 

a 4th order implicit method was used. This model was shown to be unconditionally 

stable and solvable using matrix decomposition. For this reason, this model was the 

optimal choice, and was the version used throughout this thesis.  

3.5.6 Verification of the model 

The issue of verification of numerical schemes has been discussed in Section 3.2.7. 

Here, the emphasis is purely on verifying the numerical vegetation model itself. 

Therefore, there are three main elements to verification: grid convergence, 
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accuracy and code error. The scheme derived above is first order accurate. This is 

not ideal, as second-order accuracy is preferred. However, as explained in Section 

3.5.2, use of the second order accurate central differencing would result in 

boundary conditions needing to be specified at the top of the stem, which in itself 

introduces inaccuracy.  

Grid convergence tests were run on a steady state solution of the beam equation 

model. The model was set up so that the beam was subject to a constant, equally 

distributed force ( ). The local force at each node was therefore     where   is the 

number of nodes on the stem. The model was run with the linear boundary 

conditions as described above and was tested for the range          . 

Figure 3.13 shows the change in calculated displacement of the top node of the 

stalk with increasing node number. The change has been expressed as a percentage 

of the total displacement. This shows that grid refinement has a decreasing impact 

as the resolution increases. For      the error is less than 2%, and the error 

drops away to less than 1% for node numbers greater than 89. With these 

considerations, the resolution for the numerical simulations was chosen to ensure 

minimal discretisation error, without imposing overly harsh computational time 

restrictions. 

 

 

 

 

 

 

Figure 3.13: Graph showing the change in end-node displacement with increasing node 

number. The change is shown as a percentage of the total displacement. 
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3.6 N-pendula model  

The N-pendula model is the second vegetation model developed within this thesis. 

As discussed in Section 3.3, the N-pendula model is conceptually very different to 

the Euler-Bernoulli beam model in terms of mechanics. Whereas the beam model 

considers the global behaviour of the plant through a partial differential equation, 

the N-pendula model considers the local behaviour of the plant, and then solves for 

the globally most efficient combination of local behaviours (Farnell et al., 2004). 

This treatment of plant movement and flexibility lends itself to systems which are 

highly flexible with low rigidity values (e.g. macrophytes). In fact, similar models are 

used extensively within different disciplines to model flapping of flag-like structures 

(e.g.Farnell et al., 2004; Michelin et al., 2008). Therefore, instead of offering an 

alternative to the beam equation, this model provides a method for modelling 

vegetation of a different structural nature to that modelled by the beam equation. 

3.6.1 Numerical basis 

The model is conceptualised as a series of connected pendula of length  . Each 

pendulum is subject to a moment, about its pivot, which is a combination of the 

external fluid forces and the internal resistive forces.  

 

 

 

 

 

 

Figure 3.14: A schematic showing the basis for the N-pendula model. 

A number of different global models were considered. The first to be used was 

similar to the method used by Farnell et al. (2004). This method solves for the 

minimal energy solution for the entire system using the Lagrangian to ensure that 

all the individual motions correspond to the most efficient global solution. However, 

this method was developed for simpler flow conditions and failed to produce 
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realistic results, most likely due to the relatively complex flow field, in comparison 

to other applications of the model. Therefore, this relatively complex model was 

not used but is noted as a further extension of this work. 

Instead, a simpler model was developed, whereby the behaviour of the system is 

still treated in a global sense but in a simpler formulation similar to that used by 

Abdelrhman (2007). The torsion and tension forces at each hinge are linked such 

that: 

   
                        

                     
   (3.67)  

   
                        

                (3.68)  

In these equations,    and    are the external fluid forces in the horizontal and 

vertical directions respectively.   
  is the second order difference scheme in line 

with previous notation and    is the angle between the horizontal and the 

pendulum as marked on Figure 3.14. The process diagram of the model is shown in 

Figure 3.15.  

 

 

 

 

 

 

 

 

Figure 3.15: A process diagram of the N-pendula model code. 

The model calculates the change in angle at each joint up the stem in turn, by 

resolving the forces at each joint further up the stalk into radial and transversal 

forces. After each angle change has been calculated, the resulting movement of the 
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sections higher up the stem caused by the angle change lower down is taken into 

account by an additional drag force    which is added to the force calculations for 

subsequent nodes. The angle at each node,   
 , was calculated using finite difference 

methods. First, the angular acceleration (   
 ) was calculated based on the known mass and 

force.  

    
       (3.69)  

From this, the angle and then velocity (   
 ) were calculated, using second order 

and first order backwards scheme respectively. 

   
      

     
    

       
    (3.70)  

    
  

  
    

   

  
 (3.71)  

The stability check was then applied, before the change in angle was either 

confirmed or re-calculated. 

3.6.2 The zero rigidity approach 

Initially the model was run with zero rigidity. The justification for this was twofold. 

First, the model is designed to replicate vegetation with very low rigidity, and 

therefore rigidity should not play a major role in determining plant shape. Second, 

moving to a hinge model such as the N-pendula model creates difficulties in 

determining accurate rigidity parameters. It is no longer possible to use global 

measures such as the one used in the Euler-Bernoulli beam model. Instead, a local 

treatment must be devised and this is less intuitive to relate to the physical 

characteristics of the vegetation. 

However, experiments with zero rigidity highlighted problems with the stability of 

the model in this setup. With no damping or smoothing of forces over nearby joints, 

individual joints throughout the plant experienced large instantaneous forces. This 

then initiated a chaotic N-pendula regime whereby joints freely rotated through 

more than 360o. This is unrealistic and therefore, to maintain model stability, a 

rigidity term had to be introduced. 
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3.6.3 Introducing flexural rigidity 

The introduction of rigidity into the equations outlined above can be achieved by 

two different means. Firstly, the vegetation rigidity can be treated as a local force, 

acting at each hinge. This is the simplest model, and fits in well with the existing 

model framework. As it is based purely on a single local hinge, this force cannot 

depend on the shape of the stem at neighbouring nodes and therefore effectively 

represents a damping force, or numerical restraint on motion. This can either be set 

as a maximum change in angle per time-step or as a resistive force, that is 

proportional to the velocity. In order to minimise the restriction on the model, and 

limit parameterisation strictly to the cases where it is required for stability, the 

rigidity term was set as a maximum change in angle per time step. 

In practical terms, this represents a limit on      . The limit was set to the angular 

velocity at which, assuming constant angular velocity along the stalk, the tip of the 

stalk would be moving at twice the fluid inlet velocity. Therefore, the restriction 

should only apply to extreme cases, such as when the plant is initially configuring 

into a stable position. 

The second method for introducing rigidity involves the introduction of a term 

which is calculated based on the neighbouring hinges. Dijkstra and Uittenbogaard 

(2010) use such a term in their model, including an internal moment dependent on 

      where   is the distance up-stalk. A similar term was implemented into the 

model based on a central difference scheme about each node. However, as the 

flexural rigidity was low, this force term had little effect on the vegetation, except 

for when instability occurred, when the term introduced strong oscillating forces 

into the equation. 

Therefore, in the model application, both representations of rigidity were 

implemented, one as a physical rigidity which in practice had little impact on the 

mechanics, and one as a stability parameter which only acts to prevent highly 

unrealistic motion during initial reconfiguration. This model still has the benefit of 

not being driven by rigidity, but offered a more stable solution to the model with no 

rigidity. 
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3.6.4 Verification of the model 

This method presents a very different problem to the differential equation based 

Euler-Bernoulli beam model, and therefore cannot be evaluated in the same way. 

While elements of the model are governed by finite difference approximations of 

differential equations, the overall motion is not, instead being calculated on a pivot 

by pivot basis. The method therefore contains inherent resolution dependence. The 

question which must instead be addressed is whether the model has a high enough 

spatial resolution (small enough length,  ) to capture the plant and flow dynamics 

that are being investigated. In other words, the length should be small enough that 

the model is able to adequately replicate plant shape.  

The pendula were represented within the model as cubes, with the pendula fixed to 

the centre of mass. Cubes were used instead of cylinders, as under significant 

reconfiguration, cylinders became a poor approximation of plant shape. The 

resolution of the model was set so that the cube size, and consequently pendula 

lengths   , were equal to three times the spatial resolution of the fluid model. This 

ensured that the blockage in the flow was significant enough to resolve some wake-

scale turbulence whilst keeping the pendula lengths small enough to accurately 

reproduce the plant motion at small scales. 

Because of the use of first-order accurate schemes in the time-integration used in 

the n-pendula model, it can only be considered as first-order accurate. This is a 

limitation of the model, which could be improved through further development. 

3.7 Drag back-calculation 

As discussed in Sections 2.2.5 and 3.4, one of the main driving forces in moving the 

vegetation is the drag force. Traditionally drag is calculated using the drag 

coefficient of a cylinder. The drag coefficient for a cylinder has been tested 

experimentally and is hence well known for a range of Reynolds numbers (see 

Figure 3.16). However, this is a good approximation only for rigid cylindrical 

vegetation. Flexible vegetation reconfigures in order to minimise form drag (Sand-

Jensen, 2003) and therefore the frontal area and drag coefficient alter too. The 
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frontal area change is not in itself enough to describe the change in drag force, as 

this simply represents the presence of a shorter cylinder, whereas in reality the 

vegetation has reconfigured into a more streamlined shape. 

It is hypothesised in this thesis that drag is a force which is spatially and temporally 

dynamic. Vegetation form often differs from the cylindrical form assumed by use of 

CD=1 and vegetation form also changes through time. Therefore, it is suggested that 

the use of a constant drag coefficient is inappropriate and inaccurate. Thus a new 

method for calculating the drag force from the flow was developed. 

Drag consists of two components: a skin drag (friction) component and a form drag 

component. Within the CFD model, the skin drag is caused by friction and is 

calculated and accounted for along the edges of the vegetation, on the plant/fluid 

boundaries by a no slip condition and roughness height. This force is included 

within the generic drag term in the vegetation model, though its relative 

contribution is small for cylindrical objects. The form drag (or pressure drag) is a 

result of the mass blockage and subsequent flow routing and is the dominant 

component for bluff objects. Initially this was estimated within the model using the 

drag equation (as described in Section 3.4). However, as discussed, this equation 

offers a very rough estimate of the drag which is often inaccurate (Kim and Stoesser, 

2011), and so is unsuitable for such a high resolution model. 

 

 

 

 

 

 

Figure 3.16: Cylinder drag coefficient dependence on Reynolds number. Adapted from 

experimental data of Panton (1984). 

Within CFD models, all the velocity and pressure data are readily accessible, and so 

it is possible to back-calculate the form drag force directly using that data (Stoesser 
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et al., 2009; 2010). This removes the need for an empirical coefficient, potentially 

increasing accuracy. Two methods of calculating the drag have been investigated in 

this study. 

3.7.1 Pressure coefficient approach 

This is a standard method within aerodynamics for calculating drag from pressure 

fields (Anderson, 1984). However, as far as the author is aware, it has not yet been 

incorporated into a flexible vegetation model. As shown in Equation 3.72, the 

pressure (p) surrounding the vegetation element is resolved in the downstream 

direction and integrated over the vegetation surface area, thus calculating the net 

downstream force exerted on the vegetation stalk. Here   is taken as the angle of 

the pressure component relative to the upstream direction, measured clockwise 

from above the vegetation as shown in Figure 3.17. 

 

 

 

 

 

 

 

 
Figure 3.17: Schematic diagram of the pressure integration around the cylinder. 

The pressure component acts normal to the surface of the vegetation at all 

locations therefore the force can be expressed as   

           

 

    (3.72)  

This can be split into two integrals, one over an angle and another over the height. 

            

  

 

 

 

        (3.73)  

Here,    is the vegetation radius and   is the vegetation height. This equation can 

be discretised (Equation 3.74) using a simple trapezium rule, numerical integration 

between known pressure values in cells around the edge of the vegetation.  
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 (3.74)  

Here   ii ppP cos  is the resolved relative pressure at a distance of      

around the circumference of the vegetation stalk. This equation can be re-arranged 

to solve for the drag coefficient, in terms of the pressure coefficient     
    

      
    

as 

     
 

  
                                  

 

   

 (3.75)  

In this formulation, a cylindrical plant form has been assumed. It is possible to 

generalise this for plants of any shape and form by considering the area of each 

discrete section of the plant surface separately and using the vertices of each 

section to calculate the angle in order to resolve the pressure into the downstream 

direction. These individual sections can then be summed in a similar manner to 

Equation 3.75. This is slightly more computationally expensive to solve, so initially 

the focus will be on cylindrical forms, but it is noted that the scheme could be 

extended to more complex plant forms in future. 

This method was tested on a benchmark case, as well as with the two 

biomechanical models mentioned above. The benchmark case consisted of a simple 

cuboidal domain, with a single rigid cylinder as shown in Figure 3.18. The inlet flow 

velocity was set at 0.3m/s to ensure the Reynolds number was in the range where 

the drag coefficient can be approximated as 1. The model was run for long enough 

to ensure convergence of the key flow variables. 

Figure 3.19 shows the distribution of the pressure coefficient around the cylinder in 

comparison to the idealised profiles. The shape of the profile shows good 

agreement with the overall pattern of the characteristic turbulent profile. The 

variation from the exact profile is expected as the exact values are likely to vary 

with Reynolds number. The average drag coefficient for the entire cylinder is 0.9614, 

with a standard deviation of 0.0113. This value is in good agreement with the 
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expected value as shown in Figure 3.16 and demonstrates the accuracy of the 

method throughout the flow depth. 

 

 

 

 

 

 

Figure 3.18: Setup for the benchmark case 

 

 

 

 

 

 

 

Figure 3.19: Distribution of pressure coefficient around a cylinder for different flow 

conditions. Characteristic profiles taken from Anderson (1984). 

Figure 3.20 shows the distribution of the drag coefficient up a series of stalks taken 

from the Euler-Bernoulli beam model. The profile can be split into three clear 

sections. In the first (A), the stems act as rigid stems, with drag coefficients similar 

to those observed for rigid cylinders. At the bed there are higher drag coefficients, 

corresponding to the contribution of bed drag. In the second region (B) the stalks 

experience slight bending, which has two effects on the drag coefficient. Firstly, the 

pattern becomes much less smooth. This is due to the fact that vegetation is 

represented by porous blocks rather than smooth boundaries.  

Flow 
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Figure 3.20: Vertical drag coefficient profile taken from the Euler-Bernoulli beam model. 

Three clear sections are identified: a) cylindrical drag behaviour, b) slight stalk bending and 

c) severe stalk bending. 

Secondly, there is a reduction in drag due to the bending. This is expected as the 

vegetation is dynamic in this region and therefore reconfigures to minimise drag. 

Furthermore, because the vegetation position is not static, there is less likelihood 

that a stable pressure distribution will form immediately around the vegetation 

from which the drag is calculated. The third region (C) occurs at the top of the stem, 

where there is major plant bending. This region is characterised by higher drag 

coefficients, but with high variability. The higher values are expected as these 

horizontal slabs of the domain contain a higher mass of vegetation due to bending.  

At several points up the stalk, negative drag coefficients seem to exist. This is clearly 

unphysical but from the drag equation (Equation 3.26), it can be seen that in this 

context it merely corresponds to a force in the opposite direction. In other words, 

regions with a negative drag coefficient are experiencing a net upstream force. The 

region that experiences the most negative drag coefficient and thus force is the 
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stalk at the rear of the canopy, which is most likely to experience high pressure 

from patch wake scale recirculation, combined with lower pressure at the front of 

the stems. Similarly, the tops of some stems experience negative drag and this 

could be due to streamlining reducing the pressure at the front of the stem, 

combined with high pressure behind due to recirculation. 

Figure 3.20 highlights two key issues with the modelling of drag coefficients. Firstly, 

there is clear spatial variability in drag both on a stem and patch scale. Therefore it 

is not appropriate simply to assume a drag coefficient of 1. The second issue relates 

to this, in that the spatial distribution of drag corresponds directly to plant bending. 

Such reconfiguration is a dynamic process and thus it can be inferred that the drag 

coefficient will also exhibit significant temporal variation. Thus, the case is made for 

the inclusion of a dynamic drag coefficient within the biomechanical model, 

calculated directly from the flow data. Due to time constraints, it was not possible 

to apply this drag model to all the simulations carried out in Chapters 5 and 6. 

However, it was used on a prototype run, the results of which are presented in 

Section 6.7. 

3.7.2 Control volume approach 

In addition to the pressure coefficient method, a control volume method can also 

be used. Kim and Stoesser (2011) devised a patch-scale control volume method, 

based on the pressure loss across the volume containing the vegetation patch. This 

is based upon the theory discussed by Tanino and Nepf (2008), which links the bulk 

drag coefficient to the downstream pressure gradient. This method, shown in 

Equation 3.76, calculates a drag coefficient for both the vegetation and the bed, 

though in most cases the bed drag is considered negligible in comparison to the 

vegetative drag. 

    
  

  
  

       

        
 (3.76)  

In this equation,       is the downstream pressure gradient,   is the flow volume, 

  is the vegetation volume fraction,   is the bulk velocity,   is the number of stalks 
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per area,    is the water depth and    is the plant radius. This is a useful method 

for reach-scale models, but cannot be used to drive plant motion in a high 

resolution model where each stalk is resolved. 

3.8 Chapter summary and conclusions 

This chapter has explained and justified in detail the methods used throughout the 

numerical experiments presented in Chapters 5 and 6. This includes the 

development of two novel biomechanical models which have shown to be robustly 

and rigorously derived. Several different formulations were tested for both, and the 

best methods selected based on stability and physical representation. Their 

reliability as a research tool has been verified, and will be validated against flume 

data in Chapter 5. 

This chapter has also discussed the key general modelling considerations including 

turbulence modelling, solution methods and boundary conditions that must be 

considered when applying CFD models in a geomorphological context. Thus the 

biomechanical vegetation models can now be implemented within the CFD 

framework with confidence. 
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Chapter 4: Analytical methods for 

flow characterisation 

4.1 Chapter Introduction  

Chapter 2 highlighted the importance of understanding turbulent characteristics of 

the flow within vegetated canopies. It was demonstrated that, due to the presence 

of the vegetative drag within the canopy, a shear layer forms at the canopy top as a 

result of the drag discontinuity. This shear layer generates large-scale coherent 

structures which dominate mass and momentum exchange, and are therefore a 

crucial part of canopy flows. These vortices develop via the Kelvin-Helmholtz 

instability at the canopy top, evolving into roller vortices which then stretch and 

fold to become pairs of hairpin vortices. 

One of the aims of this project, and specifically research question 3, focuses on the 

effect of vegetation characteristics and configuration on the vortex dynamics. In 

order to investigate this it is necessary to be able to quantify the presence and 

physical characteristics, such as size and shape, of the vortices. This requires the 

use of a range of different analysis methods which are capable of detecting and 

visualising vortices within the flow. Vortices are complex and dynamic, and hence 

there is no single analysis method which is proven to detect them with 100% 

accuracy. 

A suite of different methods have therefore been developed and employed to 

extract the turbulence characteristics and vortex signatures from the data produced 

from the numerical and flume experiments. In this chapter, the various techniques 

used to analyse the data in Chapters 5 and 6 are explained and justified. Where 

appropriate, the same methods have been used for both the flume and numerical 

data sets to ensure comparability. 
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4.2 Mean flow profiling  

A key element in canopy layer theory is the alteration of the characteristic mean 

velocity profile and the effect this has on turbulence generation (Raupach et al., 

1996). Therefore, the initial method of analysis is vertical profiling of the mean flow. 

This is useful as it illustrates the difference in velocity between the canopy zone and 

the flow above. Furthermore, it shows the mean velocity gradient which can be 

used to calculate the shear stress. As the experiments were carried out over a range 

of different depths and Reynolds numbers, it is necessary to normalise the results 

to enable effective inter-comparisons. The normalisation, whereby the velocity and 

height variables are normalised using three characteristic mixing layer variables 

defined below; the mean velocity     , the velocity difference      and the 

momentum thickness     , follows the method used by Ghisalberti and Nepf (2002; 

2006), which was in turn based on the method used by Rogers and Moser (1994). 

 

 

 

 

 

 

 

Figure 4.1: Schematic of the mixing layer velocity profile. The flow is conceptualised as two 

layers of different velocity (U1 and U2), one through the vegetation canopy and one above. 

At the interface between the two zones, a shear instability develops. 

This method therefore works on the assumption that the flow profile resembles the 

hyperbolic tangent curve of a classical mixing layer as discussed in Chapter 2 

(Rogers and Moser, 1992). Consequently, the mean velocity is defined as the 

arithmetic mean of the two co-flowing velocities as illustrated in Figure 4.1 and the 

velocity difference as the difference between the two co-flowing velocities. 
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   (4.1)  

          (4.2)  

Hence the normalised velocity,     , is calculated as: 

    
    

  
 (4.3)  

The momentum thickness is calculated from the mean velocity profile as 

      
 

 
  

    

  
 

 

 
 

  

   (4.4)  

This is effectively a measure of the momentum deficit within the flow, due to the 

presence of the mixing layer (Anderson, 1984). This can be calculated numerically 

using the trapezium rule. If we define the heights    and    such that 

           (4.5)  

            (4.6)  

then the integral (4.4) can be evaluated using the fact that the limit of the integral is 

zero for      and     . The numerical formula then becomes 

    
 

 
  

 

 
       

        
    

 

   

  (4.7)  

where             and   is the spatial resolution in  . Once   has been 

calculated, the normalised height      can be calculated in a similar way to the 

velocity as   

    
    

  
 (4.8)  

Here    is the height at which the mean velocity      occurs. This is calculated 

directly from the data as the lowest point in the velocity profile where the velocity 

is equal to, or exceeds, the mean velocity. In addition to the velocity, the shear 

stress can also be normalised in a similar way. Rogers and Moser (1994) give the 

equation for normalised Reynolds stress as 
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 (4.9)  

Conversion of the original data into these new variables,   ,             and   , creates 

normalised mixing layer velocity profiles which allow direct comparison between 

the data from different experiments, collected in different conditions. 

This technique is valuable as the characteristics of the mixing layer velocity profile 

in turn determine the characteristics of the turbulence. Notably, as mentioned in 

Chapter 2, the Kelvin-Helmholtz instabilities that are generated at the mixing layer 

and lead to the development of roller vortices at the canopy top, can be 

characterised by their frequency (Ho and Huerre, 1984; Ghisalberti and Nepf, 2002): 

          
  

  
 (4.10)  

Thus, the expected dominant turbulent length scale can be calculated from the 

mean shear velocity profile characteristics described above. However, to fully 

answer the research questions, more detail regarding the nature of the vortices is 

required and therefore more sophisticated techniques are employed. 

4.3 Reynolds decomposition  

The principle behind Reynolds decomposition has been outlined in Section 2.4.3. 

Decomposition of the signal into mean and fluctuating (turbulent) components 

permits analysis of the turbulent signal. There are a number of useful quantities 

which can be defined using the turbulent signal. 

The instantaneous turbulent kinetic energy (TKE) is defined as 

    
 

 
               (4.11)  

Here,             are the fluctuating parts of the three orthogonal velocity 

components and   is the fluid density. The mean TKE for a time series can also be 

calculated as 
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                            (4.12)  

Here the overbar denotes the time-averaged value. It is therefore possible to 

estimate the average amount of energy contained within the turbulent signal. This 

is an important variable to quantify as it has been shown that TKE can be used as a 

good indicator for investigating important processes such as erosion and deposition 

within canopies (Nepf et al., in press). It can also be useful to look at the individual 

component contributions to the turbulent kinetic energy as this indicates whether 

the turbulence is isotropic or anisotropic. Isotropic turbulence is spatially 

homogeneous with no preference for direction (Hinze, 1975). Anisotropy within the 

turbulent kinetic energy therefore alludes to coherent, directional structure within 

the turbulence which may be the signature of large scale vortices. 

It is possible to calculate the production rate of turbulent kinetic energy by 

comparing the budgets for the mean and turbulent components of the kinetic 

energy (see (Hinze, 1975)). The turbulent production term is so named because it 

appears in both the mean and turbulent budgets with opposite signs. Therefore, it 

can be viewed as the rate of transfer of energy between the mean and kinetic 

budget. It is given by: 

                  

  
 (4.13)  

Plotting the turbulent production rate highlights regions within the flow where 

turbulence is being generated and can thus indicate sources of turbulence within 

the flow. The turbulence production rate is the product of the mean velocity 

gradient and the mean product of the instantaneous velocities. This second term is 

very similar to the time-averaged Reynolds stress which is defined as: 

                  (4.14)  

and represents the stress which arises from the momentum transfer by the 

fluctuating velocity field (Pope, 2000). The Reynolds stress is itself a useful flow 

quantity which can be used to estimate momentum absorption by the plant canopy, 

and the potential plant deformation response to the flow (Velasco et al., 2003).  
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4.4 Quadrant analysis  

A useful by-product of the Reynolds decomposition is the development of quadrant 

analysis; a method for analysing turbulence within a flow time series using 

conditional sampling (Lu and Willmart, 1973) which has been used extensively to 

describe vegetated flows (see Chapter 2). If just the fluctuating components of the 

Reynolds-decomposed velocity signal are considered, then different, orthogonal 

components of the instantaneous velocity can be plotted on a quadrant graph as 

seen in Figure 4.2. Here the vertical and downstream velocities are used, as is most 

common practice within canopy flows. However, it is worth noting that the lateral 

component may be more insightful in certain situations (e.g. White and Nepf, 2007) 

when the area of interest is the lateral shear layer. 

 

 

 

 

 

 

 

 

Figure 4.2: Quadrant analysis of Reynolds decomposition in the x-z plane redrawn from 

Bennett and Best (1995). The dotted line defines a hole or threshold value often used to 

discount outliers, based upon the hole size, H. 

In Figure 4.2 the origin represents the mean flow, and deviations from the mean 

represent turbulent events. The turbulent events can be categorised by quadrants 

1-4 as outward interactions, ejections, inward interactions and sweeps (or inrushes) 

respectively (Bennett and Best, 1995). This technique has been used extensively in 

order to detect coherence within a range of vegetated flow time series, as 

discussed in Sections 2.2.2 and 2.3.1. 
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It is often preferable to ignore small scale fluctuations as it is usually the larger scale 

fluctuations which relate to coherent turbulent structures. One way to do this is to 

impose a ‘hole size’ as a further condition. Here, values lying within the hole, 

corresponding to small scale fluctuations about the mean, are disregarded while 

larger magnitude turbulent events are retained (Lu and Willmart, 1973). The hole 

size is set as: 

   
    

        
 (4.15)  

Therefore, increasing the hole size increases the amount of data discarded. In most 

anisotropic turbulent data sets, the larger the hole size, the greater the bias 

between quadrants and thus the more evident any coherence becomes. This is 

based on the assumption that the statistical component of the turbulence will 

resemble a Gaussian white noise distribution, evenly spread between the quadrants. 

Therefore, as the hole size is increased, the contribution to the remaining data from 

the Gaussian noise distribution diminishes rapidly. Furthermore, as mentioned in 

the previous section, the product of these velocity components is the Reynolds 

stress. Therefore, the hole size also sets a minimum Reynolds stress value, below 

which turbulent events are considered insignificant. 

Some studies have also looked at the time sequencing of quadrant events (e.g. 

Buffin-Bélanger et al., 2000; Marquis and Roy, 2011).  This can reveal both the 

ordering of different turbulent quadrant events, as well as the frequency and 

duration. 

4.5 Spectral analysis  

Another method for extracting coherent data from a turbulent time series is to use 

spectral analysis. This method uses a Fourier transform to analyse the energy 

present within the signal and permits investigation of the periodicities at different 

time-scales present within the data. Fourier (1878) theory states that any smooth 

continuous signal,      , can be written as a function of sine and cosine waves 

(Equation 4.16). 
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             (4.16)  

Here,    and    are coefficients. For a discrete, finite-length time series, the 

number of waves is not infinite but is instead limited by resolution, and therefore 

the equation for a time series              can be rewritten as 

                     

   

   

               (4.17)  

This can be simplified into the complex exponential form 

        
       

   

      

 (4.18)  

This is, in fact, a generalisation of (4.16) into complex space. Parseval’s theorem 

(1799) states that the energy contained within the Fourier transform, calculated as 

the sum of the different wave energies is equal to the energy contained within the 

original velocity time series. Therefore, whereas calculating the turbulent kinetic 

energy of the signal gives an idea of the total energy, through using the Fourier 

transform it is possible to analyse the energy contained within different frequencies 

in the signal. Hence it is possible to identify frequencies with high energy which may 

correspond to large scale coherent turbulence. 

As mentioned in Section 2.2.5, Kolmogorov (1941) discovered that the decay of 

homogeneous, isotropic turbulence followed the -5/3 spectrum, as energy was 

transferred from large, low frequency eddies to much smaller, high frequency 

eddies. By analysing the energy contained within individual frequencies, it is 

possible to detect deviation from this spectrum, through the presence of peaks and 

troughs, as well as changes in spectral slope or spectral shortcuts, which may 

indicate the presence of additional turbulence-generating mechanisms within the 

flow (Naden et al., 2006). 

In assuming that the signal comprises of sinusoidal waves, Fourier analysis 

inherently assumes that the signal is periodic and infinite. The signal therefore has 
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infinite energy. Consequently, instead of directly measuring the energy within the 

spectra, it is more appropriate to measure the average power of the signal. Given 

that a wave’s power is proportional to the square of the amplitude, the power 

within the Fourier spectrum can be calculated directly from the amplitudes,   . In 

order to calculate the amplitude of each wave, Equation 4.17 can be re-arranged as: 

       

   

       

          (4.19)  

The power spectral density of the signal can be estimated using the periodogram 

method (Schuster, 1898) as: 

      
 

   
     

          

 

   

 

 

 (4.20)  

This formulation has been scaled to the physical frequency     rather than the 

wavenumber using the sampling frequency     . Combining Equations 4.19 and 

4.20 it is clear that, as expected, the periodogram estimation of power spectral 

density at a frequency    can be equated to the square of the Fourier transform 

coefficient    
, scaled appropriately. 

       
 

   
    

 
 
 (4.21)  

Spectral plots created using the periodogram method can be very noisy and 

therefore it is not always easy to distinguish trends. Therefore in some cases the 

Welch method (1967) has been used to average the periodograms. In this method 

the time series is split into a number of smaller, overlapping intervals over which 

the periodogram is calculated. The non-overlapping version of the Welch method is 

called the Bartlett method (1948). These periodograms can then be averaged, thus 

in theory, removing the random noise element and picking out elements of the 

signal which are consistent throughout. An important consideration when using 

these methods is that the averaging process limits the resolution as wavelengths 

longer than interval size are not considered (Stoica and Moses, 1997). Therefore, 
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these methods are only appropriate for time series where the resolution of enquiry 

is significantly smaller than the length of the time series. 

4.6 Wavelet analysis 

Wavelet analysis provides another method for analysing periodicities within data. It 

is a similar in approach to spectral analysis, but provides a more powerful tool as it 

is applied locally rather than globally and is therefore capable of analysing time 

series which contain intermittency or non-stationary periodicities (Daubechies, 

1990; Farge, 1992). As with spectral analysis, wavelet analysis involves the fitting of 

a known function to a signal, though in this case the functions fitted are wavelets 

rather than trigonometric functions. There are two main characteristics to wavelet 

functions (Percival and Walden, 2000). Firstly, for a given wavelet function     , 

the integral must be zero (Equation 4.22). This ensures that the wavelet is in fact a 

wave function. 

        
 

  

   (4.22)  

The second condition is that the square of the wavelet must integrate to a constant 

(Equation 4.23). This ensures that the wavelet is finite and non-zero. This constant 

is often arbitrarily taken as one. 

         
 

  

   (4.23)  

Figure 4.3 shows some common examples of wavelet functions. One of the major 

advantages of wavelet analysis over spectral analysis is the variety of different 

wavelet shapes available. Whereas trigonometric functions contain the restriction 

that every positive peak in the data must exist alongside an equal and opposite 

negative peak, wavelets provide a variety of different options, which can be chosen 

to fit the characteristic shape of structures within the signal. Within turbulence data, 

it has been suggested that the Morlet wavelet is the most appropriate due to its 

similarity with the decomposition of turbulent energy from a characteristic eddy 
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(Hardy et al., 2009). In order to study periodicities of different frequencies, the 

Morlet wavelet may be scaled linearly. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Commonly used wavelets: (a) Haar, (b) Gaussian (order 1), (c) Daubechies (order 

4) and (d) Morlet wavelets. Figure taken from Baker (2007). 

The wavelet power spectrum is calculated by fitting the characteristic wavelet to 

the time series, centered at each point in turn, over a range of different scales. Thus 

for a series of length N, at each different time scale, N different wavelets may be 

fitted (Kaiser, 1994), under the assumption that the time series is periodic. This 

convolution can be performed simply using the discrete Fourier transform 

(Torrence and Compo, 1998). If the time series is not periodic, the values at either 

end of the spectrum will be affected by edge effects and therefore must be 

discarded from the final dataset. The size of this region, called the cone of influence, 

will vary with scale. 

Similar to spectral analysis, each time a wavelet is fitted, the resulting wavelet 

magnitude (power) is calculated. The distribution of energy across different time 

scales (inversely related to frequency), throughout the time series can then be 

assessed by identifying peaks in the wavelet power spectrum. 

Analysis of turbulent spectra, via spectral or wavelet analysis, enables identification 

of dominant frequencies within the flow. Within canopy flows, there are typically 
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three key vortex frequencies which can be identified. The first is the Kelvin-

Helmholtz frequency (   ) which relates to shear-scale vortex shedding (Equation 

4.10). The other two are the wake-shedding frequency (  ), which corresponds to 

the rate at which vortices are shed from individual stem wakes, and the natural 

frequency (  ) which is a material property of the vegetation. The equations for the 

wake and natural frequencies are given in Equations 4.24 and 4.25 respectively. 

    
    

   
 (4.24)  

    
    

    
  

  

   
 (4.25)  

In the above equations,   is the fluid velocity,    is the stem radius,    is the stem 

length,    is the flexural rigidity of the stem and    is the cross-section of the beam. 

These frequencies can be used to identify key controls on the fluid and plant 

spectra. 

4.7 Eulerian vortex methods 

While the methods described above can help identify vortices within a single-point 

velocity signal, vortices are spatial by nature and therefore more easily detected 

within a spatial dataset such as those provided by Particle Image Velocimetry (PIV) 

and CFD (see Chapters 5 and 6). There are a number of techniques which have been 

developed to extract vortex signals from a two-dimensional velocity field. The 

Eulerian vortex methods described here detect vortices within an instantaneous 2D 

or 3D snapshot of the flow, by analysing spatial patterns in the velocity gradient 

field and its invariants (Green et al., 2007). 

The rotation tensor for a 3 dimensional velocity field      is defined as 

   
 

 
           (4.26)  

Another useful, and similar, definition is that of the rate-of-strain tensor 

   
 

 
           (4.27)  
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Together, these are the symmetric and anti-symmetric components of the 

divergence of the velocity field      (Chakraborty et al., 2005). From Equation 4.26 

the individual components of the vorticity can be derived as  

    
 

 
                 (4.28)  

Here Einstein notation has been used for simplicity. This vorticity can, in the fluvial 

context, be considered as streamwise     , spanwise     , and vertical vorticity 

    . These three definitions will be used in the analysis in Chapters 5 and 6. While 

this definition of vorticity as the curl of the velocity field is useful, it does not 

necessarily highlight the presence of vortices within the flow. For example, regions 

of high lateral shear result in rotational flow and high values of vorticity, which 

cannot be distinguished from actual swirling motions using just vorticity (Cucitore et 

al., 1999). Therefore, other more sophisticated identification methods are often 

required. 

4.7.1 The Q criterion 

The earliest vortex identification method proposed was the Q criterion (Hunt et al., 

1988). Here Q is the second invariant of    and a vortex centre is associated with 

values of     , where    is some threshold, although most subsequent studies 

have simply taken     .  

   
 

 
             (4.29)  

Here     is the matrix norm, which can either be calculated as the Frobenius norm 

                (e.g. Jeong and Hussain, 1995; Chakraborty et al., 2005) or the 

Euclidean norm                   (e.g. Haller, 2005). Whilst these two norms 

are often very similar it is worth noting that the Frobenius norm is based upon all 

the eigenvalues whereas the Euclidean norm is based purely upon the largest 

eigenvalue. Therefore, where the relative magnitudes of the eigenvalues differ 

between the strain and vorticity tensor, choice of norm may have an impact on the 
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results. In this study the broader Frobenius norm is used in line with Chakraborty et 

al. (2005) and the majority of other studies.  

The Q criterion carries a second condition, that the local pressure be lower than the 

ambient pressure.     does not guarantee the existence of such a minimum, 

however, in most cases it is sufficient (Jeong and Hussain, 1995), and therefore, in 

this study only the primary condition is used (Chakraborty et al., 2005). 

The physical interpretation of the Q criterion is that it assumes that a vortex is 

present if the magnitude of the vorticity tensor is greater than that of the rate of 

strain tensor and there exists a localised pressure minimum. 

4.7.2 The    criterion 

The    criterion (Jeong and Hussain, 1995) extends the idea that vortex centres 

correspond to the occurrence of localised pressure minima. By considering the 

symmetric component of the divergence of the Navier-Stokes equations and 

discarding the unsteady irrotational straining and viscous effects, it can be shown 

that  

                
 

 
    (4.30)  

Here     is the Hessian (second derivative matrix) of the pressure and   and   are 

the vorticity and strain tensors respectively, as defined earlier. In order that a local 

planar minimum of pressure exists, two eigenvalues of     must be positive. By 

Equation 4.30, this condition must also hold on      . 

Equation 4.30 is symmetric and therefore has only real eigenvalues. Therefore, if 

the eigenvalues are ordered arbitrarily so that           , this condition holds 

as long as     ; hence why it is called the    criterion. These eigenvalues can be 

linked to the Q criterion by the following equation. 

    
 

 
           

 

 
           (4.31)  
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Thus, the    condition can be seen as a localisation of the Q criterion onto a single 

plane (Jeong and Hussain, 1995). Physically speaking, the    criterion assumes that 

a vortex corresponds to a pressure minimum within a plane, when the 

contributions of irrotational straining and viscous terms in the Navier-Stokes 

equations are discarded (Jeong and Hussain, 1995). If included, these two terms can 

both create false pressure minima and eliminate existing minima caused by vortices. 

4.7.3 The   criterion 

The   criterion (Chong et al., 1990) defines a vortex as the region where the 

divergence of the velocity field,    , has complex eigenvalues. This is the least 

physically intuitive, but the criterion essentially assumes that flow is rotational in 

one plane. The identity           can be used to calculate the characteristic 

equation for the eigenvalues     and as the matrix is of rank 3, the equation 

becomes 

               (4.32)  

It is possible to calculate the characteristic equation and show that 

                 (4.33)  

   
 

 
                        (4.34)  

            (4.35)  

Using the formula for a cubic discriminant    , and applying the formula to purely 

incompressible cases (   ), gives the requirement for complex eigenvalues of 

    
 

 
 
 

  
 

 
 
 

   (4.36)  

Note that this requirement can still hold for a negative value of   and therefore, 

the Q criterion is a subset of the   criterion. 

Figure 4.4 shows schematically how the different vortex methods are linked. The 

key point this illustrates is that the three vortex methods described above are 
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similar in nature and all have a similar theoretical basis, however each will give 

slightly different results. 

 

 

 

 

 

 

 

 

 

Figure 4.4:  A schematic diagram showing the relationships and regions of overlap between 

the   ,   and Q criteria. 

4.7.4 Swirling strength criterion 

Zhou et al. (1999) proposed the swirling strength criterion as an extension of the   

criterion, whereby the complex conjugate eigenvalues of    are used to identify 

vortices. Providing the   condition holds, then the eigenvalues of the flow can be 

written as a real eigenvalue,       and a complex conjugate pair,           

    . The real eigenvalue represents a stretching or compressing of the flow 

whereas the complex pair define the swirling motion.  

Therefore,     can be referred to as the swirling strength of the vortex (Zhou et al., 

1999) and iso-surfaces of constant     may be used to visualise the vortices.  

       (4.37)  

Chakraborty et al. (2005) extended this idea by adding a further constraint 

    
   

   
     (4.38)  

Q > 0 

Δ > 0 

λ2 < 0 
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Here,   and   are both positive thresholds. The vortex core is therefore visualised 

as the intersection of these two sets. In addition to the threshold of swirl strength, 

which excludes slowly swirling motions ( ), this method also excludes regions with 

low orbital compactness. Orbital compactness can be measured as the degree to 

which the distance between initially close particles varies with time. If orbital 

compactness is only required in the vortex plane, only the right hand side of 

Equation 4.38 is required. If three-dimensional compactness is required, then a 

lower limit must be set, to ensure that high compactness within the vortex plane is 

not causing very low compactness in the direction of the real eigenvalue. 

This method can be directly linked back to all three of the methods described above, 

and Chakraborty et al. (2005) define formal equivalence thresholds between the 

schemes, though they also note that these are general guidelines and the different 

methods will not necessarily reproduce each other precisely. The swirling strength 

criterion requires specification of at least one positive threshold related to a critical 

orbital compactness. The results are therefore not directly comparable to the other 

methods, unless a threshold of     is applied. In this case, the results are the 

same as the   criterion (Chakraborty et al., 2005). For these reasons, the swirl 

strength was not utilised as a vortex detection method in this thesis. 

4.8 Lagrangian vortex methods  

Where both spatial and temporal data are available, as is the case for LES and PIV, 

they can be used in conjunction to help define vortex cores. In particular, a series of 

spatial snapshots can be used to identify the temporal convergence (or divergence) 

of flow into vortices. This method uses a similar idea to the orbital compactness 

described above, but analyses how the separation and compaction of phase space 

changes through time. 

The approach uses a Lagrangian formulation whereby individual particles within the 

fluid are tracked through time, and their progressive separation is calculated. The 

change in relative distance between neighbouring trajectories through time can be 

quantified using Lyapunov exponents.  
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Lyapunov exponents are a tool used to investigate the chaotic nature of dynamical 

systems and are one of the primary indicators used to infer the presence of chaos 

within a dynamical system (e.g. Sprott, 2003). Specifically, Lyapunov exponents 

measure the degree to which the phase space is stretched and folded through time 

and hence reveal any sensitivity to initial conditions.  

The concept is demonstrated most simply for a generic one-dimensional map of the 

form           . Classic examples of such maps include the logistic map and the 

tent map. If we consider two points    and        for some small and arbitrary 

   , then we can calculate the separation between the two points after one 

iteration as: 

                         
      (4.39)  

As shown, the separation can be equated to the derivative,         , using the 

standard definition of a derivative, in the limit of      . The implication of the 

above is that    is equal to the ratio of the separation between successive time 

steps          . 

The local Lyapunov exponent ( ) is defined as the rate of exponential divergence of 

trajectories such that 

                          (4.40)  

Thus, trajectories that experience divergence exhibit    , systems with 

contraction exhibit     and systems which retain constant separation exhibit 

   . 

This stretching or contracting of phase space can occur in each dimension of phase 

space and therefore the number of Lyapunov exponents for a given dynamical 

system is equal to the physical dimension of the phase space. Together, these 

exponents form the Lyapunov spectrum          . The spectrum is ordered such 

that   is the most positive Lyapunov exponent and   is the most negative. 

Thus, the exponents that are usually of most interest are the maximal (  ) and 

minimal (  ) exponents as these represent bounds on the deformation of the 
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phase space. With regards to chaotic analysis, the presence of at least one positive 

Lyapunov exponent within a system indicates chaotic mixing, and therefore the 

standard condition for chaos within a system is        

In many respects Lyapunov exponents are an extension of eigenvalues (Sprott, 2003) 

in that they describe the magnitude of distortion with respect to principal 

directions, analogous to eigenvectors. However, whereas eigenvalues are local, 

Lyapunov exponents are usually considered in a global sense, in that they are 

usually averaged to obtain the infinite-time behaviour of the entire system. In the 

case of the one dimensional map this becomes 

However, there is merit in studying the local Lyapunov exponents. These are more 

commonly called the finite-time Lyapunov exponents (FTLE) and refer to the local 

deformation of phase space over a determined period of time.  

Another very similar technique to the FTLE is the finite-size Lyapunov exponent 

(FSLE). Here, instead of investigating the separation between neighbouring points 

over a finite time period, the time taken for the flow to achieve a certain separation 

is calculated. In other words, the FTLE method holds the time period constant in 

order to analyse difference in spatial separation, whereas the FSLE method 

investigates the variation in time taken for phase space to achieve a particular level 

of separation. Given the similarity between the two methods, only the FTLE is 

discussed in depth here, but a detailed discussion of the FSLE method can be found 

in Aurell et al. (1997). 

The FTLE can be calculated by analysing trajectories calculated from velocity data. 

The particle trajectories can be evolved using a series of velocity maps and a finite 

difference approximation of the flow velocity. The simplest method is a 

rearrangement of a forward difference scheme (Pierrehumbert and Yang, 1993). 

      
   

 

 
           

   

   

  (4.41)  
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                   (4.42)  

Although the accuracy of this calculation could be increased via use of schemes 

such as Runge-Kutta-Fehlberg algorithms (Shadden et al., 2005), the simplicity of 

this scheme dramatically reduces the computational time required for the analysis, 

and therefore this scheme was used throughout the analysis presented herein. 

Once the particle trajectories have been calculated for the appropriate time period 

(  ), the maximum FTLE can be calculated by defining the coefficient of maximum 

expansion    
   as the square of the largest singular value of the ‘deformation 

gradient’ (Green et al., 2007).  

   
                

               

   
 

 

 
               

   
   (4.43)  

The deformation gradient represents the rate of deformation in each Euclidean 

dimension with respect to perturbations in each dimension and is therefore a 

square matrix, with a size equal to the phase space dimension. There is no 

guarantee that the maximum deformation will occur along one of the Euclidean 

axes and therefore, calculating the maximum singular value ensures that the 

maximum separation is calculated in an appropriate direction. For the purposes of 

this analysis, the actual direction of maximum separation is of little importance; 

however, the direction can be obtained from the eigenvectors of the deformation 

gradient tensor. 

The formula for the FTLE can be derived by noting that, under the assumption of a 

constant Lyapunov exponent along trajectories through time, the separation at 

time T can be calculated as: 

              (4.44)  

Hence, this can be re-arranged (Pierrehumbert and Yang, 1993; Shadden et al., 

2005; Green et al., 2007) to give the maximal FTLE over a certain time period T as 
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    (4.45)  

Here the coefficient of maximum expansion    
    is used to represent the largest 

value of the ratio         .  

While Lyapunov exponents are traditionally employed to identify chaotic mixing 

within flows, FTLEs have also been shown to be a useful tool for identifying vortices 

(or coherent structures) within flows (Haller, 2000; Haller and Yuan, 2000; Haller, 

2005). If particle trajectories are projected backward in time, the FLTE can be used 

to highlight regions of the flow which act as attractors within the flow (Haller and 

Yuan, 2000). Similarly, if projected forward in time, the FTLE can be used to identify 

repelling regions in the flow (Green et al., 2007). This leads to the idea that regions 

of high FTLE identify vortices otherwise known as Lagrangian coherent structures 

(LCS) within the flow (Haller, 2000; Haller and Yuan, 2000).  

In particular, ridges within the FTLE field correspond to local LCSs (Shadden et al., 

2005), and therefore in order to identify vortices within the flow, it is necessary to 

study the derivative of the FTLE field to identify local maxima, rather than simply 

find the globally extreme values. Shadden et al., (2005) define a ridge intuitively 

using two criteria: 1) it should be locally at the highest point in the field transverse 

to the ridge and 2) the topography should drop off steepest in the transverse 

direction. A number of ridge tracking techniques and algorithms exist, most of 

which use the Hessian of the FTLE field to infer the presence of ridges (e.g. Shadden 

et al., 2005; Lipinski and Mohseni, 2010). 

Figure 4.5 shows a comparison between three different ridge-tracking algorithms. 

The simplest one looks merely for the existence of a local peak in the data, 

represented by a change in sign of local slope such that the point is a peak rather 

than a trough. This peak is analysed with respect to the central reference cell, and 

as long as a peak occurs in one of the four primary directions shown in Figure 4.6a 

then the cell is counted as a ridge.  
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Figure 4.5: Comparison of different ridge-tracking algorithms. The plots show a) the original 

FLTE plot, b) a simple peak method, c) shape function method d) shape function method 

using a smoothed gradient, e) the principal curvature method and f) the principal curvature 

method using a smoothed gradient. 

 

 

 

 

 

Figure 4.6: Comparison of ridge tracking methods: a) search for peak condition in 4 primary 

directions, b) calculate the differentials in x and y in order to calculate the Hessian c) 

calculate the differentials in x and y, as an average over 3 cells, smoothing the data. 

(b) 

(c) (d) 

(f) (e) 

(a) 

(a) (b) (c) 
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A more thorough condition is to check the determinant of the Hessian (    ) for 

the same local grid around the reference cell.  

Here   is the FTLE, and is assumed to be a smooth continuous surface. The Hessian 

permits calculation of the Gaussian curvature ( ), the determinant of     , which 

is effectively a shape function in that its value determines the local shape of the 

surface as shown in Figure 4.7. A ridge is thus defined as a region with     in 

addition with a local value threshold which ensures it is a peak rather than a trough. 

 

 

 

 

 

 

Figure 4.7: Gaussian curvature of different surfaces. The arrows indicate the directions of 

principal curvature for each case: (a) an elliptic surface, which is not necessarily a local 

maximum, (b) a parabolic surface with one principal curvature equal to zero and (c) a 

hyperbolic surface with one positive and one negative curvature component. 

The final algorithm extends the previous method further by considering the two 

principal curvatures, the product of which is equal to the Gaussian curvature. 

         (4.47)  

These can be calculated as the eigenvalues of  . This allows distinction of ridges as 

regions only where the lateral gradient is larger than the along-ridge gradient. 

Assuming that    is the most positive curvature, the condition for a ridge then 

becomes: 

      

 

 
 

   

   

   

    

   

    

   

   
 

 
 

 (4.46)  

K >0 K =0 K <0 

(a) (b) (c) 
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                    (4.48)  

The latter two methods both involved the calculation of the first order and then 

second order derivatives in the x and y directions. This was achieved by a simple 

difference method about the reference cell (Figure 4.6b). However this method 

could potentially be very sensitive to noise in the data, so a smoothed version was 

also calculated, whereby the derivatives were averaged over three adjacent cells 

(Figure 4.6c). The results in Figure 4.5 show that the more complex methods fail to 

improve the accuracy noticeably and therefore the simplest method is used 

throughout this study. 

A ridge in an FTLE field is alone not sufficient to conclude that a vortex is present. 

Regions of high shear also produce regions of high FTLE (Green et al., 2007) and 

therefore it is strictly necessary to confirm that they do correspond to LCS’s by 

calculating the strain rate normal to the ridge. However, this can often be inferred 

through interpretation of the flow dynamics.  

It is important to note that this method is being applied to two-dimensional 

snapshots of three dimensional datasets. The assumption made in doing so is that 

the lateral velocity, which is not considered, is equal to zero, and that the flow is 

planar. This is evidently not the case, and is a source of error within the FTLE 

calculations, however, the main characteristics of flow above canopies, as 

introduced in Chapter 2, are based on a broadly planar model and therefore it is 

hypothesised that the error is relatively small. 

For the flume data, three dimensional data were not collected, but for the 

numerical experiments three dimensional data were available and therefore an 

analogous three dimensional FTLE calculation was carried out to ascertain an 

estimate of the error in the planar assumption. Figure 4.8 shows a comparison 

between the two methods for an identical snapshot. It is clear that the overall 

vortex structure is broadly similar with the same ridges being identified and having 

a similar magnitude. Figure 4.9 supports this idea, showing that whilst there is clear 

three dimensional structure to the flow, the largest structures are relatively 

consistent throughout the width. 
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Figure 4.8: Comparison of the (a) two-dimensional and (b) three-dimensional FTLE 

snapshots. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Iso-surfaces of FTLE ridges taken from the 3D FTLE field, showing major 

structures have significant lateral extent. The iso-surface is coloured by cross-stream 

distance for clarity. Flow is from bottom right to top left. 

a) 

 

b) 
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There are a few notable differences however, which are illustrated in Figure 4.8. 

Within the canopy, where the lateral velocity has the potential to be largest, there 

is some difference, as the three dimensional image identifies regions of 

convergence linked to wake reattachment, which will not be shown in the two 

dimensional case. Similarly, above the canopy there are regions of lateral 

convergence. However, the areas of highest convergence are found in both images. 

While the three dimensional method appears to offer a small improvement, it also 

increases the computational cost considerably. Due to memory constraints on the 

desktop computer used, the three dimensional method required a calculation time 

roughly 180x the time required for the two dimensional method. Therefore, given 

the effectiveness of the two dimensional method, analysis is restricted to this 

method throughout, except for a select few, most interesting cases, where the 

three dimensional case is investigated. 

4.9 Vortex signatures in vegetated flows 

In summary, it has been shown in this chapter that there are a number of different, 

complementary methods which can be used to analyse coherent flow structures. 

Having explained the methods in detail, it is possible to propose a number of 

criteria to which the numerical and experimental results can be compared (see 

Table 4.1). This is neither a definitive nor an objective list, but instead highlights 

some of the characteristics of vortices which one would expect to find within 

canopy flows. These characteristics are based upon the previous research in canopy 

flows discussed in Chapter 2. 

 Criteria Methods 

1. The Kelvin-Helmholtz frequency (   ) should 

correspond to a peak in the velocity power spectra 

and wavelet spectra. 

Mean flow profiling 

Spectral analysis 

Wavelet analysis 

2. The flow at the canopy top should show a 

dominance of Q4 (sweep) and Q2 (ejection) events 

Quadrant analysis 

3. The Eulerian and Lagrangian vortex methods should 

produce results similar to those shown in Figure 4.10 

            

FTLE 

Table 4.1: Criteria for vortex detection in canopy flows 
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Figure 4.10: Schematic of expected vorticity measure and FTLE results, for hairpin vortices in 

canopy flows, based on results from Finnigan et al. (2009) and Green et al. (2007). An 

arbitrary threshold for the vorticity isosurface has been used. 

The first characteristic demonstrates that the flow is governed by a mixing layer 

instability, which produces shear-scale vortices. The second implies the presence of 

coherent turbulent events at the canopy top. Furthermore, based on existing 

theory (see Chapter 2) the dominance of sweep and ejection events implies the 

presence of roller vortices along the canopy top. The third criterion indicates the 

existence of hairpin vortices above the canopy (see Figure 4.10).  

All three of these measures are likely to be disrupted in reality by noise. In 

particular, the third criterion assumes the development of an idealistic hairpin 

vortex, which is highly unlikely to be easily detected even within numerical 

simulations. It is more likely that only the roller vortex part of the signature would 

be detected and not the trailing legs of the structure. Nevertheless, these criteria 

serve as an initial benchmark for the analysis of results presented in Chapters 5 and 

6. 
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Chapter 5: Flume experiments and 

validation work 

5.1 Introduction 

Chapters 1 and 2 showed that there is the need for high resolution data that 

capture the interaction between flow and vegetation, in order to advance our 

understanding of the role and influence of vegetation on reach-scale processes. In 

Chapter 3, a rigorous numerical methodology was outlined for modelling such 

interactions. Chapter 4 then proceeded to develop an analytical method by which 

to analyse and to interpret relevant data. Thus, having established the reliability 

and physical basis of the model and having developed appropriate methods and 

criteria by which to analyse flow data, the numerical simulation data collected can 

now be validated. As discussed in Chapter 3, validation of the models is key to 

establishing and justifying their use as research tools. 

In this chapter, all the models applied in Chapter 6 are validated against flume data. 

First, results are presented from a simulation using rigid vegetation. Similar models 

have been validated, and applied in the past (e.g. Stoesser et al., 2009; 2010), and 

therefore there is less need to validate the methodology for this model. However, 

to ensure comparability, and test the similarity between flume and numerical 

model for a benchmark case, the numerical results are validated against flume data. 

The Euler-Bernoulli beam model developed in Chapter 3 is novel and previously 

untested within a three-dimensional CFD framework, and therefore is implemented 

over a range of different flow conditions, corresponding to a series of analogous, 

high resolution, flume experiments. Results are also presented from experiments 

using real vegetation (Ranunculus penicillatus) for comparison with the N-pendula 

model results. The N-pendula model was developed after the flume experiments, in 

response to the results from the real vegetation experiments and therefore there 

were no analogous experiments conducted by which to validate the N-pendula 

model. Instead, key features of the flow in the real vegetation experiments were 
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used as comparison for the N-pendula data presented in Chapter 6. Finally, 

although it was not possible to validate the instantaneous turbulent flow quantities, 

wavelet results from the flume experiments are compared to similar numerical 

simulations presented in Chapter 6, as qualitative validation. 

A key aspect of validating and implementing the models was ensuring that the 

representation of the flexural rigidity parameter was correct. Therefore before 

validating the vegetation models, the first section discusses flexural rigidity, and 

how the rigidity was measured and implemented within the validation models. 

Furthermore, this section justifies the choice of the flexural rigidity parameter 

within the models in Chapter 6. 

5.2 Parameterisation of flexural rigidity 

The term flexural rigidity refers to the material properties that dictate the relation 

between stress and strain within an object (Kouwen et al., 1981; Niklas, 1992). It is 

therefore a key parameter within elastic structure models. In particular, it is 

popular within the vegetation literature because it features in equations such as the 

Euler-Bernoulli beam equation which are often used to approximate plant motion 

(e.g. Finnigan and Mulhearn, 1978; Kutija and Hong, 1996; Ikeda et al., 2001). The 

flexural rigidity (J) is calculated as the product of the elastic (or Youngs) modulus (E), 

and the second moment of the area (I), as shown in Equation 5.1. 

      (5.1)  

In terms of vegetation, E can be considered an anatomical property, whereas I 

reflects the plant morphology (Niklas, 1992). The value of the flexural rigidity for a 

material can be calculated experimentally by performing bending tests under the 

assumption that at least over a selected region, the material behaves according to 

the Euler-Bernoulli Beam equation (e.g. Miler et al., 2012). As discussed in Chapter 

2, there exists a vast range of literature regarding flow over vegetation and many of 

these studies make some effort to quantify the flexural rigidity term (See references 

in Figure 5.1). Figure 5.1 shows a range of values for the flexural rigidity drawn from 

various previous studies looking at terrestrial, aquatic and marine vegetation. The  
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values and ranges used vary over several orders of magnitude. In some cases, this 

variation can be attributed to obvious differences in plant form. Figure 5.1 classifies 

three such distinctions, however there is a noticeable variation in values within 

plants of the same broad morphology and species. This suggests that the accurate 

parameterisation of the flexural rigidity within models is potentially problematic.  

5.2.1 Flume work rigidity parameterisation 

In order to be able to validate the model against the flume data correctly, it was 

necessary to conduct experiments on the different vegetation types used, to 

calculate a value for the flexural rigidity. The flexural rigidity was calculated using 

Equation 5.2 (Niklas, 1992) 

    
   

  
 (5.2)  

Here,   is a point load, applied to the end of a beam of length  , causing a 

displacement of   at the end of the beam. In order to improve the accuracy of the 

results, this calculation was performed for a number of different set displacements 

(0.05-0.07m) and lengths (0.08-0.14m). The force was then the measured variable. 

 

 

 

 

 

 

 

 

 

Figure 5.2: Vegetation rigidity experiments for the (a) artificial and (b) real vegetation. 

a) 

b) 
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The experimental setup is shown in Figure 5.2. The force was measured using a 

Sauter FK10 Force Gauge with a resolution of 0.005N. The vegetation was clamped 

manually at one end, and the force gauge applied perpendicular to the original 

vegetation position, until the desired displacement was achieved. In order to 

ensure that the force was always applied perpendicular, and avoid the force gauge 

slipping, a paperclip was used to attach the gauge to the artificial vegetation. Figure 

5.3 shows the numerator of Equation 5.2 plotted against the denominator. The 

flexural rigidity can therefore be estimated as the slope of a line of best fit applied 

to the data. This line was fitted using linear least squares regression. This gave a 

value of             for the artificial vegetation. This compares well with the 

mean value of all the individual measurements (             ). 

 

 

 

 

 

 

 

 

 

Figure 5.3: Graphs showing the numerator of Equation 5.2 plotted against the denominator, 

for a series of different measurements. The black line is a line of best fit and its gradient is 

equal to the flexural rigidity. 

The same method was applied to the real vegetation. However, the vegetation was 

too flexible (Figure 5.2b) and the resolution of the force gauge too low to get any 

results from the bending tests. This is not too problematic as direct validation 

experiments were not conducted for the real vegetation, but nevertheless this must 
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be considered when comparing the numerical and experimental data with the real 

vegetation. 

5.2.2 Numerical simulation rigidity parameterisation 

The flexural rigidity is one of the key parameters in the Euler-Bernoulli Beam model 

and therefore it was vital that a realistic value was used throughout all the 

simulations. All the values used in Chapter 6 were either chosen in line with the 

literature or with the flume values. There were three different flexural rigidity 

values used (See Table 5.1), which correspond to three different setups used in 

Chapter 6. 

Table 5.1: Flexural Rigidity choice for the different simulations in Chapter 6 

The original simulation with a small patch of reed-like stems was chosen to be in-

line with the studies which also used the Euler-Bernoulli Beam equation, and lies 

within the semi-rigid region in Figure 5.1. The full canopy simulation was designed 

to be as similar to the flume experiments as possible, though not analogous due to 

domain constraints. Therefore, the rigidity was chosen to equal that of the artificial 

flume vegetation, even though this represented a relatively low rigidity. The N-

pendula model run was designed to be highly flexible and therefore a rigidity value 

was chosen to fall within the macrophyte and marine range. However, the stem 

area was significantly larger than many of those used in the literature and therefore 

a value towards the top of the range (0.001) was used. Although this value is 

actually larger than the validation run, due to the fact that the model is not driven 

by the Euler-Bernoulli Beam model, it represents a more flexible stem as the model 

is primarily tension driven rather than rigidity driven as discussed in Section 3.6. 

Numerical simulation Model J=EI (Nm2) Basis for choice 

Small patch of tall, reed-

like stems (Section 6.3) 

Euler-Bernoulli 
Beam 

0.02 Literature  
(Figure 5.1) 

Canopy of shorter stems, 

more analogous to the 

flume setup (Section 6.4) 

Euler-Bernoulli 
Beam 

0.0003 Analogy with 

artificial flume 

vegetation 

Highly flexible 

macrophytes (Sections 6.5 

& 6.6) 

N-pendula 0.001 Literature 

(Figure 5.1) 
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5.3 Experimental flume setup 

The flume experiments were carried out at the Sorby Environmental Fluid Dynamics 

Laboratory (SEFDL) at the University of Leeds. The recirculating flume was 10m long 

and 1m wide. The slope was set at a constant value of 0.01. Two different depths 

were used (0.2m and 0.4m) as well as range of velocities. These velocities were 

categorised into slow (   0.18-0.26m/s), medium (   0.36-0.52m/s) and fast 

(   0.59m/s) flows, where the actual velocities depended upon the flow depth 

(see Table 5.2). For all the experiments, the flow was fully turbulent and also 

subcritical, with Froude numbers within the range 0.01-0.22. The flexible, 0.2m, fast 

experiment is not reported here as the results contained a high proportion of error 

due to free-surface interference with the data. 

The suite of experiments were designed to produce a range of depths and flow 

conditions representative of those found within small, lowland river systems similar 

to the River Browney (see Chapter 8).  The slow flow condition corresponds to 

mean base-flow conditions, as observed during the fieldwork (    0.21m/s) in 

similar depth flows, whereas the fast flow is representative of the fastest local inlet 

velocity recorded (  0.56m/s). The artificial vegetation dimensions were designed 

to be similar to previous studies (e.g. Ghisalberti and Nepf, 2006), whilst providing 

realistic canopy characteristics as well as optimal conditions in which to evaluate 

model performance. The real vegetation was sourced from the River Browney.  

Run (type,depth,speed) Velocity (m/s) Reynolds number 

Rigid, 0.2m, medium 0.44 62,900 

Rigid, 0.4m, medium 0.38 84,400 

Flexible, 0.2m, slow 0.26 37,100 

Flexible, 0.2m, medium 0.52 74,300 

Flexible, 0.2m, fast -- -- 

Flexible, 0.4m, slow 0.18 40,000 

Flexible, 0.4m, medium 0.36 80,000 

Flexible, 0.4m, fast 0.59 131,100 

Table 5.2: Inlet velocities for the validation runs. Absent figures imply unreliable results. 
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The velocity data were collected using a DANTEC two-dimensional digital particle 

image velocimetry system (2-D DPIV) which is a nonintrusive, whole flow field 

technique for velocity measurement (Hardy et al., 2005). A major advantage of this 

technique is that it allows quantitative flow visualisation of the entire flow field 

through time (Hardy et al., 2009). Measurement was based upon seeding of the 

flow with neutrally buoyant tracer particles (hollow reflective glass spheres with a 

mean diameter of 10µm) and illuminating the flow field with a single pulsed Litron 

Nano laser light sheet. A charge-coupled device (CCD) camera was positioned 

perpendicular to the light sheet to capture the illuminated flow field at a resolution 

of 50Hz. 

The downstream and vertical velocity maps were derived by draping a digital mesh 

of 8 x 8 pixel interrogation regions over the image, where the dimension of each 

pixel was approximately 0.6mm. In each interrogation region, a fast Fourier 

transform (FFT)-based spatial cross-correlation technique was applied to 

consecutive images to determine both velocity components (Westerweel, 1997). In 

order to maximise the signal-to-noise ration of the particle cross-correlations in the 

PIV analysis, six quality checks were applied to the data (Hardy et al., 2005) 

including a 25% overlap between interrogation regions. In addition, an adaptive 

correlation method was used whereby initially, interrogation regions of size 32 x 32 

pixels and subsequently 16 x 16 pixels were used to increase the accuracy of the 

eventual 8 x 8 pixel cross-correlation. With this methodology, the mean bias error 

(accuracy) and RMS error (precision) of the derived velocities is in the order of 0.1 

pixels (Huang et al., 1997) and the uncertainty in the velocity measurements was 

therefore in the order of 0.003m/s. The resulting velocity map had a spatial 

resolution of 0.0038m at 50Hz over a time length of 1 minute to provide a 

stationary time series. 

The rigid vegetation (Figure 5.4) was represented using solid plastic cylinders which, 

within the flow ranges used, exhibited no bending. The flexible artificial vegetation 

consisted of Versilic® Peroxide-cured silicone tubing. Hollow tubing was selected to 

allow for the possibility of experiments using Laser induced Fluorescence (LIF). The 

stems were 0.1m in length with a diameter of 0.005m. Both the rigid and flexible 



 Chapter 5: Flume experiments and validation work 

 

149 
 

stems were set out in a staggered layout, with 0.05m separation between stems in 

the lateral direction and 0.1m between stems in the downstream direction. 

 

 

 

 

 

 

 

 

 

Figure 5.4: Flume setup for the rigid vegetation experiments, with a 0.3m ruler for scale. 

 

 

 

 

 

 

 

 

 

Figure 5.5: Vegetation collection from the River Browney. Inset map shows location of site. 

Field assistant included for scale. 
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For the real vegetation experiments, samples of Ranunculus penicillatus were 

collected from a local field site on the River Browney, West of Durham (Figure 5.5) 

in early September. The vegetation was transported in wet sacks to the laboratory, 

and used in the flume on the same day to limit the effect of changes in plant 

biomechanics due to the vegetation having been removed from its natural 

environment, and consequent lack of light and nutrients. The vegetation was fixed 

to the bed of the flume using cable ties in order to try and replicate the patch 

configuration found in natural rivers.  

5.4 Numerical domain setup 

The numerical domain was set up to represent a section of the flume experiment. 

Due to the vegetation size, and subsequent limits on grid resolution, it was not 

possible to represent the full width and length of the domain numerically. Instead a 

section 0.5m long and 0.2m wide was used. Therefore, applying the vegetation 

configuration, the domain contained 35 individual stems. The flume experiments 

only allowed two dimensional flow data to be collected and therefore the width of 

the numerical domain was considered more than sufficient to reproduce the two 

dimensional flow dynamics. The grid resolution was set as 0.002m in the 

downstream and vertical direction and 0.001m in the lateral direction 

(nx=250,ny=200,nz=100/200). The grid was twice as fine in the lateral direction in 

order to adequately capture the stem-scale wake separation at the lowest possible 

computational cost. As mentioned in the previous section, the flexural rigidity was 

set at 0.003Nm2 for all the numerical simulations. The model boundary conditions 

were setup as discussed in Chapter 3. 

The inlet conditions of the numerical domain were set to match the mean flow 

conditions (Table 5.2) from the flume experiments. This mean value was used 

across the inlet rather than using a vertical profile. This potentially increases 

inaccuracy within the results, but ensures that all the flow structure created is due 

to the canopy rather than the boundary conditions.  
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5.5 Model validation methods 

As stated in Chapter 4, the numerical data is to be interrogated against a set of 

criteria, using a range of analysis techniques. It is therefore important that the 

validation of the numerical models extends to that level of analysis. With this in 

mind, each of the three models was validated using a three criteria approach. First, 

downstream ( ) and vertical ( ) components of the velocity measurements from 

an (  -  ) long-section taken down the middle of the domain (   =0.5) were 

compared. Samples were compared for the whole long-section with specific focus 

on the shear layer. The locations at which the measurements were taken is shown 

in Figure 5.6.  

The points are split into three different regions; canopy (black), shear layer (grey) 

and boundary layer flow (white). These do not correspond to exact physical regions, 

but rather allow distinctions to be made in the analysis between the performance 

of the model in different flow regions, influenced by different flow processes. It is 

worth noting that in the 0.2m flow, there were no boundary layer points. 

 

 

 

 

 

 

 

Figure 5.6: Map of locations in the domain used for the validation. The image behind shows 

an example mean velocity profile. The different coloured points refer to canopy (black), 

shear layer (grey) and boundary layer (white) locations. 

Second, the normalised canopy shear layer profiles were examined. It is 

hypothesised that these profiles determine key turbulence length scales (Ho and 

Huerre, 1984; Ghisalberti and Nepf, 2002) and so it is important to investigate how 
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the predictions of the shape of the shear layer agree. Finally, as much of the 

analysis in Chapter 6 focuses on vortices, the mean (x-z) vorticity plots were 

compared. Due to the non-turbulent inlet conditions used in the validation 

simulations, the turbulence was not sufficiently developed to allow comparison 

with flume spectral data. Furthermore, due to the errors within the flume data, the 

instantaneous velocity signal contains a high level of noise. Therefore the validation 

is restricted to mean vorticity; however the flume wavelet plots are qualitatively 

compared to similar numerically obtained wavelet plots in Section 5.9. These three 

methods were designed to investigate the representation of canopy flow processes 

as well as the actual values obtained. All the analysis in Chapter 6 is restricted to 

velocity signals and therefore it is sufficient to only validate these variables. 

5.6 Rigid vegetation 

Due to the simple nature of the rigid model, and the wealth of literature regarding 

simulating rigid vegetation, this model was validated against only one flow 

condition at each depth. This was chosen as a medium flow condition, with an 

average downstream velocity of approximately 0.38m/s in the 0.4m flow and 

0.44m/s in the 0.2m flow. As explained in Section 5.4 it was not possible to match 

the flume conditions exactly and the consequence of this was that the two 

Reynolds numbers of the flows were different. The decision was taken to replicate 

the velocity rather than the Reynolds number as the drag force which drives plant 

motion, and therefore canopy flow dynamics, exhibits a direct dependence on 

velocity, rather than Reynolds number.  

Figure 5.7 shows the comparison between the measured and modelled velocities 

for both the 0.2m and 0.4m flows. There is a clear difference in the quality of 

prediction between the canopy region (blue) and the rest of the domain. Within the 

downstream velocity signal, the PIV canopy data is less variable than the 

corresponding CFD data, with a smaller range. There is also a large amount of 

scatter evident within the data. 
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Figure 5.7: Comparisons of modelled and measured downstream (a,c) and vertical (b,d) 

velocities for the 0.4m (top) and 0.2m (bottom) rigid canopies. The data are split into 

canopy (blue), shear layer (green) and boundary layer (red) points. The black line represents 

a 1:1 relationship. 

The suggested reason for this disparity and apparently poor prediction by the 

model of the canopy velocities is most likely due to error within the PIV data rather 

than model deficiency. Although every attempt was made to reduce the error 

within the PIV data, there were still significant sources of error related to the 

vegetation: 

1) Much of the camera view of the canopy is obscured by stems, and therefore 

it is difficult to obtain accurate velocity readings from within the canopy. 

2)  Furthermore, it is likely that less light from the laser penetrated through the 

canopy and therefore the PIV image will be darker and less clear.  

a) b) 

c) d) 
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3) There is also the chance of reflection of light off the stems, obscuring the 

picture further. 

Thus, it is assumed that the PIV data within the canopy contains significant errors. 

This assumption is supported by the fact that numerical simulations appear to 

represent flow structure within the canopy well, when compared to benchmark 

solutions and previous work on similar canopies (Stoesser et al., 2006; Stoesser et 

al., 2009). 

Elsewhere in the domain, there is good qualitative agreement. The shear layer 

downstream (u-) velocities show a clear trend in both depths, though there is 

clearly some systematic error present causing both a translational shift and altering 

the gradient slightly. The regression figures shown in Table 5.3 give very low 

agreement with the expected slope of 1. However, the R2 values indicate a good fit 

with the regression line, suggesting that although the regression line may differ 

substantially from     , the data do fit the given regression line well. One reason 

for this may be systematic error shifting the regression line. Figure 5.7 suggests that 

this single global figure is not representative of the different flow regions. Therefore 

a regional regression was conducted, as shown in Tables 5.4 and 5.5. This shows 

that for the 0.2m flow, the above-canopy flow fits the regression line well (R2=0.877) 

whereas the canopy flow does not, suggesting more random error within the 

canopy. 

Table 5.3: Linear regression data for the entire datasets 

Run 
(type, depth, speed) 

U W 

Intercept Gradient R2 Intercept Gradient R2 

Rigid, 0.2m, med. 0.188 0.489 0.745 0.005 -0.059 0.004 

Rigid, 0.4m, med. 0.166 0.581 0.774 0.005 -0.057 0.037 

Flexible, 0.2m, slow  0.138 0.467 0.810 0.002 -0.043 0.047 

Flexible, 0.2m, med. 0.213 0.526 0.743 -0.001 0.604 0.191 

Flexible, 0.4m, slow  0.060 0.376 0.550 0.002 -0.051 0.019 

Flexible, 0.4m, med. 0.209 0.436 0.542 0.004 0.115 0.063 

Flexible, 0.4m, fast 0.278 0.546 0.741 0.002 0.319 0.050 
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In the 0.4m flow however, there is negligible improvement. However, the above-

canopy data can be broken down further still into several smaller datasets, which 

follow a clear linear trend, shown approximately by the dashed line in Figure 5.7. 

This suggests that the model is representing the velocity gradient well, but that 

there is an error which varies throughout the domain, which is causing the values to 

be offset. From figure 5.8, which is a close up of the data in Figure 5.7, and using 

the locations in Figure 5.6 it is clear that there are three bands of shear layer data 

and two bands of boundary layer data each of which do follow a sensible trend, and 

therefore this error appears to relate to distance above the canopy. 

 

 

 

 

 

 

 

Figure 5.8: Close-up of the above-canopy data for the 0.4m downstream velocity 

comparison in Figure 5.7a showing two different slopes present. 

The vertical velocity shows good agreement above the canopy, particularly in the 

0.4m run, where the shear layer shows a regression gradient of 1.05 with an 

intercept of -0.001. Furthermore, the data fit the regression line well (R2=0.783). 

This is encouraging as much of the data analysis within Chapter 6 focuses on the 

shear layer. The boundary layer data agrees well too, though has a gradient of 

0.651. For the 0.2m flow conditions, the shear layer vertical velocities again show 

reasonable agreement with a gradient of 0.627. 

The numerical shear layer velocity profiles for the two rigid cases show geometric 

agreement compared to the flume profiles though there is disparity in velocity 

magnitudes in the 0.4m case, and gradient in the 0.2m case (Figure 5.9 a & c).In 

z 
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both cases the numerical model gives higher in-canopy velocities. As explained 

above, this is expected due to the inability of the PIV data to pick up the canopy 

flow structure well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Shear layer velocity (left) and Reynolds stress (right) profiles for the 0.4m (top) 

and 0.2m (bottom) rigid canopies. 

The Reynolds stress profiles (Figure 5.9 b &d) show less agreement. Both numerical 

plots show a single peak, which in theory should correspond well to the canopy top 

inflection point. This is the case for the 0.4m flow. However, the peak is significantly 

lower in the 0.2m case. It is suggested that this could be due to an in-canopy peak 

in Reynolds stress due to stem-induced turbulence. The PIV data is far noisier with 

multiple peaks, some perhaps relating to erroneous canopy data caused by 

over/under illumination. However, there is a clear peak around the canopy top in 

a) b) 

c) d) 
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both cases. For the 0.4m case, this peak occurs slightly higher in the flow than the 

peak predicted by the model. 

Finally, the vorticity plots (Figure 5.10) for the 0.2m case show good visual 

agreement. Both highlight a region of strong clockwise vorticity at the canopy top 

of magnitude 20-30Hz. In the model this region is mainly confined to the top 

section of the canopy, whereas in the PIV data, this extends slightly into the flow 

above the canopy. The model picks up a significant amount of canopy turbulence, 

which is not picked up by the flume PIV for the reasons described above.  

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Mean vorticity plots for the (a) flume and (b) numerical 0.2m rigid canopies. 

The plot shows both clockwise (blue) and anticlockwise (red) vorticity. 

The 0.4m flow (Figure 5.11) shows a very similar pattern of vorticity, occurring at 

the tops of the stems, related to the development of the canopy shear layer. Again 

the magnitudes are similar. Interestingly, the CFD model predicts far less in-canopy 

turbulence for this deeper flow. 

a) 

b) 
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Figure 5.11: Mean vorticity plots for the (a) flume and (b) numerical 0.4m rigid canopies. 

The plot shows both clockwise (blue) and anticlockwise (red) vorticity. 

Overall, it is suggested that the rigid stem model predicts the mean flow well, 

although in some places it fails to reproduce the large vertical velocity variations of 

the turbulent flow. Furthermore the vortex characteristics of the flow are also well 

reproduced with additional detail in the canopy which cannot be picked up using 

PIV, thus demonstrating the difficulty in using PIV for canopy flows. 

 

a) 

b) 
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5.7 Flexible vegetation 

Due to the novel nature of the Euler-Bernoulli Beam model, described in Section 3.5, 

it has been validated across three different flow conditions to ensure that it 

performs well for each condition. Plant data were not collected simultaneously with 

flow data in the flume and therefore plant movement cannot be validated. 

Furthermore, the model assumes an initial vertical position for the vegetation. 

However, this was not the case as the artificial vegetation already had initial 

curvature. Nevertheless, the turbulent flow field should represent in some way the 

plant motion, and therefore it is assumed that by validating the flow field, it is 

possible to make assertions about the accuracy of the vegetation motion. 

5.7.1 Slow flow conditions (         = 0.18-0.26m/s) 

Figure 5.12 shows the velocity comparisons for the flexible canopy experiments 

under the slow flow conditions. For the 0.4m flow, the downstream velocity (U) 

pattern (Figure 5.12a) looks very similar to the rigid case, with poor agreement in 

the canopy, and a clear pattern above the canopy. Again, the shear and boundary 

layer velocities group together in lines according to height, and each line shows 

qualitatively good agreement between measured and modelled values. The vertical 

velocities also show a similar pattern to the rigid case with relatively good 

agreement outside of the canopy though in general the data appears to fit less well 

with lower R2 values. 

For the shallower flow, again the patterns for both velocity components are similar 

to the rigid case, suggesting that flexibility does not alter the model performance 

significantly. Interestingly, for the 0.2m depth, the shear layer regression equation 

is nearly identical to that of the rigid canopy, with a very good fit (R2=0.952). The 

gradient of the regression for all of the velocities in Figure 5.12 shows slightly 

weaker agreement with the expected 1:1 relationship than the rigid case, though 

this could be due to flow speed rather than simply flexibility. 
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Figure 5.12: Comparisons of modelled and measured downstream (left) and vertical (right) 

velocities for the 0.4m (top) and 0.2m (bottom) flexible canopies in slow flow. The data are 

split into canopy (blue), shear layer (green) and boundary layer (red) points. The black line 

represents a 1:1 relationship. 

The canopy shear layer profiles for the slow flow flexible experiments appear to 

highlight significant differences between the numerical prediction of the velocity in 

the 0.4m and 0.2m experiments (Figure 5.13 a & c). In the 0.4m flow, the PIV shear 

interface appears to be sharper, with a much more gradual shear layer in the CFD 

case. This is the opposite to the results for the rigid case above and could either be 

due to the increased wake effects of the top of individual stems in the slower flow 

or could simply be due to the approximation of the shear layer region. This 

approximation was done automatically to avoid bias. However, it could have led to 

an inappropriate choice of shear layer width, or at least a different estimated shear 

layer width between experiments. 
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Figure 5.13: Shear layer velocity (a,c) and Reynolds stress (b,d) profiles for the 0.4m (top) 

and 0.2m (bottom) flexible canopies in slow flow. 

The Reynolds stress profiles (Figure 5.13b&d) show that the Reynolds stress values 

are much higher in the flume than in the model as with the rigid case. In the 0.2m 

case, the flume experiments show a large peak in Reynolds stress, situated above 

the canopy, suggesting there may be erroneous values or the stress may not relate 

to the canopy shear layer. In contrast, for the 0.2m flow, the numerical model does 

show evidence of a peak at the canopy top. For the 0.4m flow, the experiment 

shows a clear Reynolds stress peak at the canopy top whereas the numerical model 

fails to predict any significant Reynolds stress at the canopy top.  

The vorticity plots (Figure 5.14) show that for the 0.2m flow, the model predicts the 

vorticity magnitude at the top of the canopy well, peaking at approximately 30Hz. 

a) b) 

c) d) 
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There is some evidence of clockwise and anti-clockwise vorticity in the canopy 

region in the flume experiments, which the model resolves as stem-induced wake 

vorticity. The flume data shows the downstream expansion of the vorticity region 

into the flow above the canopy (as shown by the dotted line), probably due to 

growth of the shear layer from the canopy front. The numerical data also has 

evidence of this growth process; however the rate of increase is considerably lower. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.14: Mean vorticity plots for the (a) flume and (b) numerical 0.2m flexible canopies 

in slow flow. The plot shows both clockwise (blue) and anticlockwise (red) vorticity. The 

dotted line represents the rate of growth of the shear layer in the flume case. 

The flume results from the 0.4m flow (Figure 5.15) show a lower magnitude of 

vorticity at the canopy top and this is reproduced in the numerical results. There is 

less evidence of shear layer growth in the experimental evidence, potentially 

obscured by the presence of smaller-scale random turbulence. However, the 

numerical results show that this process is still operating. Although the flume 

results pick up some anti-clockwise vorticity within the canopy, in this instance, the 

a) 

b) 
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numerical data does not pick up any wake-scale turbulence presumably because of 

its low magnitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Mean vorticity plots for the (a) flume and (b) numerical 0.4m flexible canopies 

in slow flow. The plot shows both clockwise (blue) and anticlockwise (red) vorticity. 

In summary, the results from the low flow conditions show that the flexible model 

exhibits a similar level of performance to the rigid model. Both the velocity and 

vorticity signals are similar. This is encouraging given that the rigid results agree 

well with the literature. 

a) 

b) 
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5.7.2 Medium flow conditions (         = 0.36-0.52m/s) 

The patterns are visually similar to the previous case for both velocity signals; 

however the regression gradients and corresponding R2 values (See Tables 5.3-5.4) 

for the downstream velocity outside of the canopy are generally lower. This 

suggests either that on the whole the model performs a little worse, or the flume 

data contains greater errors. This increase in discrepancy is less obvious in the 

vertical velocity; however predictive performance is still poor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Comparisons of modelled and measured downstream (a,c) and vertical (b,d) 

velocities for the 0.4m (top) and 0.2m (bottom) flexible canopies in medium flow. The data 

are split into canopy (blue), shear layer (green) and boundary layer (red) points. The black 

line represents a 1:1 relationship 
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The shear layer velocity profiles (Figure 5.17a&c) show geometric agreement, 

particularly for the shallow 0.2m case, where the shape is very similar although the 

velocity magnitudes differ, which may be due to the normalisation process. Both 

depths show a higher velocity just above the canopy in the numerical simulations, 

consistent with lower vertical velocities and less mixing at the canopy top, than in 

the flume experiments. The flume experiments also fail to fully pick up the in-

canopy flow as explained above, and for this reason, the numerical results contain a 

velocity peak in the canopy which is not present in the flume experiments. If the 

shear layer were assumed to start above this peak, the two profiles would look 

more similar. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Shear layer velocity (a,c) and Reynolds stress (b,d) profiles for the 0.4m (top) 

and 0.2m (bottom) flexible canopies in medium flow. 

 

a) b) 

c) d) 
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The numerical Reynolds stress profiles (Figure 5.17b&d) both show a peak at the 

top of the canopy, though the magnitude is reduced. The flume experiments show a 

larger but more displaced peak. In particular, the 0.2m profile appears to contain a 

significant amount of noise above the canopy. 

The vorticity plots (Figures 5.18 and 5.19) are consistent with the previous cases, in 

that both the flume and numerical results identify a clear shear layer vortex signal 

at the canopy top, and again the magnitudes are comparable (approximately 30Hz). 

The 0.2m flume results seem to show a region of strong anti-clockwise vorticity at 

the top of the domain, however, it is suggested that this is a non-physical signal, 

potentially relating to water-surface effects. 

 

 

 

 

 

 

 

 

 

 

 Figure 5.18: Mean vorticity plots for the (a) flume and (b) numerical 0.2m flexible canopies 

in medium flow. The plot shows both clockwise (blue) and anticlockwise (red) vorticity. 

Neither of the flume experiments here detects significant shear layer growth along 

the canopy, whereas the numerical simulations both predict modest growth. 

However, this growth may be lost in the background turbulence signal in the flume 

experiments. 

a) 

b) 
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Figure 5.19: Mean vorticity plots for the (a) flume and (b) numerical 0.4m flexible canopies 

in slow flow. The plot shows both clockwise (blue) and anticlockwise (red) vorticity. 

Overall, the medium flow conditions simulations again show good agreement 

between the overall pattern of velocities and vorticity, despite the discrepancy in 

spot-values. In particular, the normalised shear layer velocity and Reynolds stress 

profiles show good agreement in terms of shape and inflection point height, though 

there is still a difference in magnitude of Reynolds stress. Contrastingly, the 

numerical model appears to reproduce shear layer growth well, which is not visible 

in the experimental data. 

a) 

b) 
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5.7.3 Fast flow conditions (         =0.59m/s) 

For this faster flow case, only 0.4m flume experiments are reported due to errors in 

the 0.2m data caused by the free surface. The downstream velocity for the 0.4m 

flow shows visually poor agreement between the numerical and flume data, 

particularly in the boundary layer region (Figure 5.20). Here, the flume 

measurements occupy a range of approximately 0.3m/s whereas the numerical 

results have a range closer to 0.02m/s, highlighting the magnitude of the error. 

Figure 5.21 shows the time-averaged downstream velocity long-section for this case 

and shows a significant region of lower velocity at the top of the flume. This is non-

physical and most probably corresponds to a lack of laser light at the top of the 

domain during this run. 

 

 

 

 

 

Figure 5.20: Comparisons of modelled and measured (a) downstream and (b) vertical 

velocities for the 0.4m flexible canopies in fast flow. The data are split into canopy (blue), 

shear layer (green) and boundary layer (red) points. The black line represents a 1:1 

relationship. 

Elsewhere in the domain, the performance is similar to the previous cases. The 

numerical canopy vertical velocity shows significantly improved agreement (Table 

5.5) with the flume results. However, this may be due to the fact that the 

vegetation reconfiguration means that there is now minimal flow in the canopy.  

Figure 5.22 shows that the central region of the shear layer is similar in both the 

numerical and flume results. However, there are significant differences in the 

canopy due to wake-scale turbulence, and at the top of the domain. The Reynolds 
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stress profiles (Figure 5.22b) both peak at or just above the canopy top. As before, 

there is a discrepancy between the magnitude of Reynolds stress due to the smaller 

vertical velocities in the numerical simulation. However, the difference in 

magnitude is less than any of the other cases. The flume Reynolds stress profile also 

does not drop off above the canopy, suggesting that other processes contribute to 

the stress, whereas the numerical data only picks up the shear layer processes. 

 

 

 

 

 

 

 

Figure 5.21: Mean velocity long-section for the 0.4m fast flow case.  

 

 

 

 

 

 

Figure 5.22: Shear layer velocity (a) and Reynolds stress (b) profiles for the 0.4m flexible 

canopies in fast flow. 

a) b) 



 Chapter 5: Flume experiments and validation work 

 

171 
 

As with all the other cases, the vorticity plots (Figure 5.23) show good agreement at 

the canopy top, in terms of spatial pattern and magnitude. In this particular case, 

the numerical simulation reproduces the downstream growth of the canopy shear 

layer better than the experimental data, as well as the in-canopy turbulence which 

is less evident in the flume data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Mean vorticity plots for the (a) flume and (b) numerical 0.4m flexible canopies 

in slow flow. The plot shows both clockwise (blue) and anticlockwise (red) vorticity. 

In summary, the fast flow cases show poorer agreement with the spot values, 

particularly for downstream velocity, though this is shown to be a result of 

a) 

b) 
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experimental error. Accounting for additional representation of wake turbulence in 

the numerical model, the shear layer approximations are geometrically similar, with 

a smaller discrepancy in Reynolds stress than the previous cases. Again, the growth 

of the shear layer is shown in the numerical vorticity data but is not as clear in the 

experimental data. 

5.8 Real vegetation 

Real vegetation presents a far more complex setup than the artificial vegetation. 

The plants used (Ranunculus penicillatus) were complex and varied in form, with 

multiple plants used, each with multiple stems. While the N-pendula model was 

developed to represent this type of vegetation, it was not developed to the same 

level of complexity as this vegetation and therefore direct comparison or validation 

of particular velocity values or plant motion would be unsuitable. However, it is still 

possible to assess the general characteristics of the flow, such as the canopy shear 

layer and the vorticity in order to inform how good a predictor the N-pendula 

model is for these type of flows. Therefore, in this section the flume and numerical 

results from the real vegetation experiments are compared. 

Table 5.6 shows the time-averaged bulk velocities for the vegetation experiments 

and the N-pendula simulation. This shows that the hydraulic conditions should be 

similar, particularly between the medium and fast flows and the N-pendula model. 

Run (type, depth, speed) Velocity (m/s) Reynolds number 

Real, 0.4m, slow 0.13 28,889 

Real, 0.4m, medium 0.24 53,333 

Real, 0.4m, fast 0.30 66,667 

N-pendula CFD,0.3m 0.28 12,000 

Table 5.6: Averaged velocities for the real vegetation runs 

Figure 5.24 shows the shear layer profiles for the flume experiments and the N-

pendula simulation. The velocity profile shows good geometrical agreement 

between the different cases, with the clear development of a canopy shear layer in 

each case. The N-pendula profile is similar to the flume experiments though the 
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shear interface appears to be wider and shallower in slope. This may be due to the 

positioning of the vegetation and more effective streamlining of the canopy in the 

real vegetation than in the numerical canopy. 

 

 

 

 

 

 

 

Figure 5.24: (a) Shear layer velocity and (b) Reynolds stress profiles for the real vegetation 

experiments 

The Reynolds stress profiles show multiple peaks, with all profiles exhibiting a peak 

in or around the canopy top. The N-pendula model profile corresponds particularly 

well in terms of geometry and magnitude with the fast flow profile, though within 

the canopy its magnitude lies between the medium and fast flow scenarios as 

expected from Table 5.6. It is particularly noticeable that all of the PIV flow profiles 

exhibit at least one secondary peak. In particular, the fast, medium and N-pendula 

profiles all exhibit a secondary peak at roughly the same normalised depth into the 

canopy, suggesting the presence of either a moving shear layer, or secondary 

processes operating besides the shear layer. This will be discussed further in 

Chapter 6. 

Figure 5.25 shows the mean vorticity plots from the real vegetation experiments. In 

each case there is clear evidence of shear layer vortices occurring at the canopy top. 

As the flow speed increases, the angle of the shear layer appears to decrease too 

which is consistent with the plant reconfiguring more as the flow and consequent 

drag force increases. The N-pendula vorticity plot in Figure 5.26 shows similar 

a) b) 
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evidence of shear layer vortices at the canopy top. Here, the shear layer appears 

flat, similar to the fast flume case. 

It is possible that the numerical shear layer is flatter than the real vegetation cases 

because of the shorter stem length preventing the stems from protruding too far 

into the flow. Nevertheless, the shear layer alignment lies within the range of the 

flume data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25: Mean vorticity plots for the slow (top), medium (middle) and fast (bottom) 

0.4m real canopies. The plot shows both clockwise (blue) and anticlockwise (red) vorticity. 

Dotted lines represent approximate shear layer angles. 

θ = 13.9o 

θ = 7.6o 

θ = 0.7o 
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Overall, the results from the real vegetation experiments show good process 

agreement with the N-pendula model, both in terms of shear layer development 

and vortex regime. Whilst this validation is not as thorough as the beam model it is 

sufficient to be able to suggest that the N-pendula model may be useful in 

modelling simplified canopy dynamics in highly flexible canopies. 

 

 

 

 

 

Figure 5.26: Mean vorticity plot for N-pendula canopy model. The plot shows both clockwise 

(blue) and anticlockwise (red) vorticity. 

5.9 Wavelet Analysis 

As discussed earlier in this chapter, it was not possible to compare the 

instantaneous turbulent signal from the model and flume results due to the lack of 

developed turbulence within the validation models and the error within the flume 

data. The errors in the flume data can be overcome by analysing the larger scale 

trends via wavelet analysis. Although the data is still noisy, larger scale trends are 

identifiable. The models used in the application in Chapter 6 use cyclic boundary 

conditions and therefore contain a more developed turbulent flow signal. Therefore, 

it is possible to qualitatively compare the wavelet signal from the flume, with those 

obtained from the numerical models in Chapter 6.  

The models in Chapter 6 were not designed as exact analogues of the flume 

experiments and therefore quantitative analysis is not possible, however it is 

possible to compare general trends. Furthermore, some of the numerical 

experiments were conducted in similar canopy conditions. In particular, the rigid 

model (Section 6.2), the canopy beam model (Section 6.4) and the n-pendula 

θ = 1.5 
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canopy (Section 6.6) closely resemble the flume experiments in vegetation 

configuration and flow conditions.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 5.27: Wavelet spectra from a) a flexible flume canopy, b) a flexible canopy simulation, 

c) a real flume canopy and d) a highly flexible canopy simulation. The black dotted lines 

highlight dominant turbulent scales. 

Figure 5.27 shows a series of wavelet spectra obtained from numerical (b and d) 

and flume experiments (a and c). The numerical spectra will be investigated in 

detail in Chapter 6, and therefore discussion here is limited to comparison between 

the spectra. The noise within the flume datasets is identifiable particularly at the 

higher time-scales, where there is a wide range in magnitude and fewer smooth 

patterns. For the flexible artificial canopy (a and b), there is evidence of turbulence 

a) 

b) 

c) 

d) 
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at a similar scale in both the flume and numerical data, suggesting that both are 

highlighting the same turbulent process, possibly related to the vegetated shear 

layer. 

The flume data identifies a higher time-scale process too, which appears to merge 

with the lower time-scale signal. It is unclear what this signal relates to, but it is 

possible that it corresponds to flume-induced secondary circulation (Hardy et al., 

2009). Overall, the flume identifies turbulence at a wider range of scales than the 

numerical model and this is expected given that the model cannot fully represent 

all the turbulent processes operating. 

For the highly flexible (or real vegetation) case, both the flume and numerical data 

identify two scales of turbulence, at different time-scales: one longer timescale, 

shown by the dotted black line, and one with much shorter timescale 

(approximately one second) which appears to oscillate through time. There is 

qualitatively good agreement between these two scales. Both spectra also pick up 

other turbulent scales, though in this case the numerical spectrum appears to 

identify a wider range of turbulent scales. This may be due to interference from the 

vegetation in the flume case, blocking flow through the interrogation region and 

dampening turbulence. 

It is also noticeable that the magnitude of the peaks differs considerably between 

the flume and numerical data, with much larger magnitude peaks in the numerical 

data. This may be due to either the dampening of turbulence by interaction with a 

wider range of turbulence scales in the flume, or it may be due to the effect of the 

noise on the data. 

Overall, the visual agreement between the wavelet spectra is encouraging. It 

appears that the numerical model does reproduce some of the key features 

observed in the flume spectra, though it must be noted that this does not represent 

a direct validation of the model. 
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5.10  Summary of validation 

The validation of numerical models applied to natural systems is not 

straightforward and there are many nuances associated with the process. While the 

numerical data may appear at times to poorly represent the spot data obtained in 

the flume, there are complexities with the flume data that must be considered. 

The flume data were collected using high resolution state of the art techniques, 

which allowed analysis of the holistic flow field. This offered mm/Hz scale 

measurement of the instantaneous two dimensional velocity field across the 

domain, over a given time period, and represents a much more accurate data 

source than single point measures such as acoustic Doppler velocimetry (ADV) or 

one dimensional methods such as Ultrasonic velocity profiling (UVP). Yet, even 

though the most appropriate methods were used there were still significant 

concerns about data quality 

There were three significant sources of error within the flume data that have been 

identified and discussed in Section 5.6. First, the presence of the free surface in the 

images introduced error. This was not applicable for the deeper flow, but for the 

shallower flows, the presence of the free-surface within the images led to false 

‘particles’ within the PIV image that were subsequently used to calculate the 

velocity field. This led to erroneous velocity vectors. 

Second, the laser did not fully illuminate the whole domain, and there were regions 

of the domain where particles were not identified as a result. This lack of 

illumination led to lower velocities in regions where un-illuminated particles were 

not tracked.  

Thirdly, the presence of the artificial vegetation canopy within the flow introduced 

error. Despite the artificial vegetation being transparent, there was evidence of 

reflection of light off the canopy, leading to erroneous velocity vectors. 

Furthermore, the canopy created regions of low light, where particles could not be 

identified, resulting in lower velocities. Finally, the visual effect of the perspective 

of the canopy meant that for much of the image, the stems occupied the entirety of 
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the canopy region, thereby acting as false, non-moving particles and creating false 

low velocity regions throughout the canopy region. 

Steps were taken to minimise all three sources of error however it is not possible to 

eradicate them entirely as outlined above. Consequently, it may be considered that 

the flume data is at least equally as likely to contain error as the model itself (Lane, 

1998). 

The model uses a solution method and boundary condition technique (MFSA) which 

have been proven over a wide range of scales, from high resolution mm scale 

analyses (Lane et al., 2002; Hardy et al., 2007), to investigation over a 

geomorphological unit such as a meander (Ferguson et al., 2003) or a confluence 

(Bradbrook et al., 2000), through to investigation of flow in large rivers at the km 

scale (Sandbach et al., 2012). 

However, it is inevitable that the model fails to fully represent the entirety of 

canopy processes operating within the flume environment. This is another 

important consideration when validating numerical data against flume or field data. 

The experimental data contain the influences of processes which are intentionally 

not resolved by the model. The simplest example of this is upstream boundary 

conditions which affect background turbulence levels, which were not accounted 

for by the model inlet conditions. There are also other processes which are not fully 

modelled, such as those not captured due to the assumptions inherent within the 

turbulence model (Hardy et al., 2003), as outlined in Chapter 3.  

Resolution is another key aspect to consider. Differences in resolution and 

geolocation between the model and experimental data can introduce error. In this 

case the difference in resolution is relatively small (0.002m for the model and 

0.0038m for the flume) but nevertheless it may introduce some error. Therefore, 

given these limitations in validation, it is important to evaluate model performance 

more broadly, for example using visualisation as a means of evaluating the model’s 

ability to reproduce temporally evolving, spatially distributed processes (Lane et al., 

2005).  
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Notwithstanding the model’s limitations, the flow structure within the numerical 

results agrees qualitatively with results obtained from previous studies, both 

experimental and numerical, into canopy flows (e.g. Ghisalberti and Nepf, 2006; 

Stoesser et al., 2006; Stoesser et al., 2010). Therefore it is reasonable to assume 

that a significant portion of the disparity between the numerical and flume data is a 

result of the experimental errors detailed above. Taking into consideration these 

issues, the validation experiments presented above have highlighted several key 

points with regard to the applicability of the numerical models to canopy flows. 

1. There are some significant differences between the flume data and the 

numerical model. In particular, the model appears to under-predict vertical 

velocity fluctuations and consequently Reynolds stress magnitude.  

2. However, it is clear that the rigid and beam models reproduce the key 

processes acting within canopy flows. Namely, it has been shown that wake-

scale turbulence, canopy shear layer characteristics and shear layer vortex 

production are all captured by the numerical models and the results are in 

line with the experimental data and previous numerical work. 

3. Furthermore, qualitative comparison between wavelet spectra obtained 

from flume and numerical data suggests that the numerical model 

represents the same turbulent processes as are seen in the flume data. 

4. Flow speed and depth do lead to changes in the quality of model prediction, 

however this varied over the range of measures and no conditions led to a 

consistent decrease in prediction capabilities. 

5. The N-pendula model shows good agreement with the real vegetation 

experiments, and whilst there was no direct analogy to compare the 

numerical data against, it has been shown that in terms of process 

representation, the N-pendula model is accurate. 

Having assessed their accuracy, both models can now be applied to a range of 

different scenarios. Within this model application, the performance of the models 

can be assessed further by comparing the numerical results with previous work 

discussed in Chapter 2. 
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Chapter 6: Model application and 

analysis 

6.1 Introduction  

In Chapter 5, the two vegetation models introduced and developed in Chapter 3 

were compared with flume data, to show the extent to which they can represent 

canopy flows. Both mean and turbulent flow quantities were shown to be 

reproduced well, over a range of different flow and vegetation conditions. Having 

validated the two biomechanical models, it is now possible to use the model 

predictions in more detail to explore the micro-scale processes, feedbacks and 

interactions operating within the canopy between the flow and vegetation in order 

to answer the research questions in Chapter 1. In this chapter, several scenarios are 

considered over a range of different canopy and flow conditions, as summarised in 

Table 6.1. 

The aim of this chapter is not to provide analogy with the flume data, but to use the 

validated model to investigate the turbulent structure over the canopy top and to 

characterise the interaction between the turbulence and plant motion at higher 

spatial and temporal resolutions than possible in either the field or the flume. This 

will enable an improved insight into plant-flow interactions that to date has not 

been achieved. 

Three key processes are investigated in this chapter: vortex generation and 

evolution, plant-flow interactions, and drag production. As discussed in Chapter 2, it 

has been hypothesised that drag production is one of the key linking processes 

which drives the interaction between flow and vegetation and therefore it is 

important to study the role of drag and in particular, the influence of drag 

calculation method on the numerical results. 

These three processes are investigated over a range of vegetation types. First, 

vortex mechanics are considered over a rigid canopy. Second, the vortex mechanics  
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and plant-flow interactions of a flexible patch and canopy are considered, using the 

Euler-Bernoulli beam model. Next, a similar analysis is carried out for a highly 

flexible patch and canopy using the N-pendula model. Finally, an investigation of 

the drag-calculation method is performed on a single stem simulation to eliminate 

plant-plant interactions which may complicate the drag signal. 

In order to prevent bias in interpreting the results, a systematic analysis approach is 

followed throughout, in line with the methodology set out in Chapter 4. A full 

description of all the methods employed as well as references to previous 

application of these methods is also given in Chapter 4.  

6.2 Vortex mechanics over rigid vegetation 

In order to determine the role of flexibility in driving vortex mechanics, initially 

analysis was conducted on a simulation with a rigid vegetation canopy. A similar 

setup formed the basis of much of the experimental work into aquatic canopies (e.g. 

Nepf, 1999; Liu et al., 2008) and therefore this provides a benchmark solution 

against which to compare the results. 

6.2.1 Experimental setup 

 

 

 

 

 

 

Figure 6.1: Graphical view of the rigid vegetation domain. The pink region represents the 

inlet, and the blue region represents the outlet. Physical dimensions shown in Figure 6.2. 

For the rigid vegetation simulation the domain was set up as shown in Figures 6.1 

and 6.2. The domain was 0.578m in length, including a recirculation region of 

0.082m at the front of the domain. The width of the domain was 0.256m and the 
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wall conditions were set as smooth boundaries to prevent wall effects dominating 

the flow. The stalks were arranged in a staggered manner, with a cross-stream and 

downstream separation of 0.05m between adjacent (albeit staggered) stalks. The 

stalks were 0.1m high; approximately 0.4 of the overall flow depth which was 

0.256m. Each stalk was represented by a cylinder of radius 0.005m with a no-slip 

boundary condition. The domain was 578 cells long, 256 cells wide and 256 cells 

high (nx=578, ny=256, nz=256) and therefore the resolution was set as 0.001m in 

each direction. This grid resolution was chosen, based on initial results in Chapter 3, 

to ensure grid independence and that the ratio of the stem diameter to grid 

resolution was such that key turbulent features at both stem and patch scale were 

resolved. The inlet flow velocity was set to 0.3m/s and consequently the Reynolds 

number was approximately 25,600. The Froude number was 0.19 and therefore the 

flow was subcritical. 

 

 

 

 

 
 

Figure 6.2: Schematic of the rigid vegetation domain, not drawn to scale. The dotted line 

shows the boundary of the recirculation region. 

The simulation, which was run for 30 seconds at 50Hz temporal resolution, took 

1,400hrs CPU time to complete on a high performance desktop PC. Unfortunately, 

during the simulation, a computational error within the code led to failure of the 

model to save the output data after the first 10 seconds of the simulation. 

Therefore the data collected are analysed here, but with the recognition that the 

time length is a significant limitation. All analysis was undertaken in the x-z plane at 
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6.2.2 Mean flow profiles and turbulence characteristics 

 

 

 

 

 

 

 

Figure 6.3: Normalised downstream velocity (a) and Reynolds stress (b) vertical profiles for 

the rigid vegetation simulation. The black line represents the profile for an idealised shear 

mixing layer (Ghisalberti and Nepf, 2002). 

The mean vertical velocity and Reynolds stress profiles are shown in Figure 6.3. The 

signature shape of the mixing layer profile (Ghisalberti and Nepf, 2002) is present 

although the velocity profile exhibits a much sharper interface between the canopy 

zone and the flow above, compared to the typical mixing layer profiles discussed in 

Chapter 2. This suggests there is comparatively little mixing between the two flows. 

The average long-section of the downstream (u) velocity (Figure 6.4) confirms that 

there are two well-defined velocity regimes with little evidence of mixing. Due to 

the recirculating nature of the domain, there is no clear flow separation at the front 

of the canopy.  

 

 

 

 

 

 

 

Figure 6.4: Time-averaged long-section of downstream (u) velocity. 

a) b) 
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The Reynolds stress profile (Figure 6.3b) also shows a sharp interface, illustrated by 

a sharper peak than the ideal mixing layer profile. This could be due to the 

vegetation spacing. The separation between stems in the downstream direction 

appears to be at a length scale similar to the wake length off the top of the stems. 

Therefore, it may be that skimming flow develops in the region just above the 

stems, thus, inhibiting penetration of faster flow into the canopy (Neumeier and 

Amos, 2006; Folkard, 2011). 

The maximum Reynolds stress is also lower than expected for the peak of the shear 

layer, which may again relate to the correlation between vegetation spacing and 

wake length of the top of the stems. However, this could also be due to the 

relatively low vegetation density as it is well documented that density, via drag 

helps determine the velocity profile (see Section 2.3.2). Figure 6.5 shows regions of 

relatively high Reynolds stress, concentrated along the top of the canopy. These 

appear to correspond to individual stalks rather than a larger shear layer and 

therefore this is perhaps why the values are lower than expected with a sharper 

peak.  

 

 

 

 

 

 

 

Figure 6.5: Time-averaged long-section of Reynolds stress 

The distribution of turbulent kinetic energy in Figure 6.6 shows a similar pattern to 

the Reynolds stress, with energy concentrated at the canopy top and in the lee of 

individual stems. Similar to the Reynolds stress, there is little evidence of larger 

scale turbulent energy at the canopy top which might be associated with canopy 

scale turbulence. Both the TKE and Reynolds stress plots agree well with those of 
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Stoesser who used a similar numerical setup for modelling rigid vegetation canopies 

(Stoesser et al., 2006; Stoesser et al., 2009). 

 

 

 

 

 

 

 

Figure 6.6: Time-averaged long-section of turbulent kinetic energy 

The turbulence production plot in Figure 6.7 appears to be dominated by frequent, 

small in extent but large magnitude production regions. The graphs therefore fail to 

indicate spatial regions of significant turbulence of a more moderate magnitude. 

This was the same for a number of different analyses and therefore this measure is 

not used in any of the subsequent analyses. 

 

 

 

 

 

 

 

Figure 6.7: Time-averaged long-section of turbulence production. 

Overall, the mean flow quantities suggest the presence of a weak canopy mixing 

layer, with a dominance of wake-scale turbulent events. However, in order to fully 

understand the turbulent dynamics, analysis of the fluctuating, time-dependent 

quantities is required. 
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6.2.3 Quadrant analysis 

Figure 6.8a shows the vertical profile of the relative dominance of the different 

turbulent quadrant events over the length of the simulation, assuming a threshold 

of H=0 (i.e. all flow events are considered). The profile has been taken at y/w=0.5 

and averaged along the downstream direction as well as temporally. There is a clear 

dominance of both quadrant 2 and 4 events at the canopy top height (denoted by 

the dotted line). Here, sweeps (  ) dominate the flow, accounting for half of the 

flow events. The combined contribution of quadrant 1 and 3 events is less than 15%. 

Away from the canopy top, the distribution between the quadrants is more even. 

Quadrant 3 events are most prominent within the canopy, and there is an overall 

dominance of negative u’ events (   &   ) within the canopy. Thus, the canopy 

exhibits a minority of stronger positive velocity pulses, amongst a majority of 

weaker negative events. 

 

 

 

 

 

 
 

Figure 6.8: Vertical profiles of quadrant occurrence as a percentage of the total time series, 

with a hole size of (a) H=0 and (b) H=2. The dotted line shows the canopy top. 

In order to extract the most energetic structures, the same analysis has been 

carried out using a hole size of H=2. The profile in Figure 6.8b shows the results 

from this analysis. These results show a similar dominance of    events at the 

canopy top as was demonstrated in Figure 6.8a. However, there are also far fewer 

   events. In fact, the percentage of time spent in sweep mode decreases to nearly 

zero at the canopy height. Instead,    events dominate a section just above the 

canopy top. Figure 6.9 shows the dominant quadrant regime throughout he 

a) b) 
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simulation for a long-section of the domain, using the H=2 threshold. There are two 

clear layers in which    and    events dominate, at the canopy top. Into the 

canopy, there is little discernable pattern, with all quadrants present. Interestingly, 

above the canopy, there are also large sections where    events dominate. 

 

 

 

 

 

 

Figure 6.9: Quadrant dominance across the domain using a hole size of H=2. 

Figure 6.10 highlights the clear spatial pattern of quadrant occurrence. In particular, 

it is evident that a large proportion of the quadrant 4 events relate to turbulent 

structures, formed in the lee of individual stems. In this region,    events account 

for up to 50% of the flow. These are generally small in magnitude and therefore, 

this explains why    occurrence drops significantly when the hole size increases. 

This stem-scale spatial structure is clearly visible in all four plots of Figure 6.10. 

However, it is also clear that there are larger scale forcings present. In particular, 

there is a clear layer at the top of the canopy where    dominates and this signal 

appears to be present in addition to the wake-induced structure. From Figure 6.9, 

the layering of the dominant quadrant regimes at the canopy top appears broadly 

similar throughout the long-section, suggesting that there may also be mixing layer 

turbulence present. This is investigated further in Sections 6.2.4 and 6.2.5. 
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 Figure 6.10: Quadrant occurrence as a percentage of total time series, using hole size H=0. 

6.2.4 Vortex detection 

Figure 6.11 shows the vorticity plot for the two dimensional long-section. A single 

time step snapshot has been selected, which it is suggested is representative of the 

dataset in terms of turbulence structure. There is a considerable amount of vorticity 

evident in the flow, particularly within the canopy. Here, clockwise (blue) and anti-
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clockwise (red) stem-scale vortices are both prevalent within the canopy, which 

agrees well with the wide variety and pattern of quadrant events found to be 

present. In addition to the stem-generated vorticity, the oval in Figure 6.11 

highlights a canopy-scale structure which moves along the canopy through time. 

There is very little evidence of vortices in the flow further above the canopy. This is 

probably due to the flow not being fully developed within the time-series. 

 

 

 

 

 

 

Figure 6.11: Vorticity plot showing a downstream snapshot of clockwise (blue) and 

anticlockwise (red) spanwise vorticity. The oval highlights the shear-scale vortex. 

The three Eulerian vortex detection methods described in Chapter 4 are applied in 

Figure 6.12 and show a very similar pattern to the vorticity plot. There are minor 

differences between them, but overall they indicate a complex vortex structure 

within the canopy. The Q criterion is the only one to pick out strongly the canopy 

scale turbulence. For the Q and λ2 criterion, the vortex threshold was taken as the 

standard value of 0. For the Δ criterion, a similar threshold resulted in the entire 

flow field being highlighted as a vortex. Thus, for the Δ criterion, a more restrictive 

positive threshold was chosen, such that the results show only the strongest 

vortices within the flow, without being too restrictive. The consequence of this 

alteration is that while the Δ criterion results are useful in their own right, they are 

not comparable to the other two Eulerian methods. Notably, the conditions 

highlighted in Figure 4.4 do not hold. 
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Figure 6.12: Eulerian vortex methods, showing regions of vorticity in black. 

The FTLE plot in Figure 6.13 shows a similar pattern to all the other vortex detection 

methods, with evidence of vorticity behind the stems within the canopy as well as 

along the top of the canopy. Although the canopy top turbulence is picked up by 

the Q criterion as well as the vorticity plot and the FTLE, it is noticeable that the 

different methods appear to highlight different elements of the vortex. The vorticity 

picks up the core of the vortex, where vorticity is highest. The Q criterion highlights 

a section of the vortex which stretches further downstream and also appears 

connected to the stem tops. The FTLE ridges seem to highlight the edges of the 

vortex, particularly the back (upstream) end of the vortex.  

Q 

λ2 

Δ 
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Figure 6.13: FTLE plot showing areas of flow attraction. Areas in white represent regions 

where the trajectories could not be tracked sufficiently to give a reliable estimate. 

This pattern is similar to the expected results for the different methods outlined in 

Figure 4.10, though it is clear that the vortex, starting at approximately x=0.4, is not 

fully developed and most probably represents a roller vortex rather than a hairpin 

vortex. The vortex also appears to be significantly stretched in the downstream 

direction, potentially due to the sharp shear interface.  

In order to attempt to investigate the evolution of the vortex through time, in 

Figure 6.14, the output of the ridge detection algorithm applied to the FLTE 

calculations, has been averaged over the vertical region of interest at the canopy 

top. Thus, the figure highlights the streamwise region of the domain length 

occupied by the canopy scale vortex, and how this changes through time. It shows 

that the vortex develops, or at least rises above the canopy, after roughly 4.6 

seconds. The vortex is then advected downstream, and as it does so, the vortex size 

grows. Furthermore, this plot elucidates two vortex characteristics. First, it enables 

calculation of the propagation speed of the vortex. This can be calculated as 

approximately 0.26m/s. The inflection point velocity of the shear layer, calculated 

as the arithmetic mean between the canopy and free-stream velocity, is 

approximately 0.19m/s. Thus, as found by Nepf and Ghisalberti (2008), the vortex 

propagates downstream faster than the inflection point velocity. However, given 

the sharp velocity interface, this does not necessarily represent a significant upward 

shift of the vortex centre. 
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Figure 6.14: Vortex evolution through time. The x-axis is the downstream coordinate and 

the y-axis is time. The black region represents the vortex, and the portion of the domain it 

covers at different time-steps. 

Second, it allows the growth rate of the vortex through time to be calculated. 

Figure 6.15 shows the vortex width plotted against distance downstream. It displays 

a distinctly non-linear growth rate. Here, vortex width is plotted against distance 

downstream rather than time, to permit comparison with the predicted growth 

rate (     ) associated with a mixing layer, which is calculated as 

   

  
   

  

  
 (6.1)  

Here,    and    are the arithmetic mean and velocity difference of the mixing layer 

respectively, as discussed in Section 4.2. The term   is a constant, with values 

between 0.06-0.12 depending on initial conditions (Pope, 2000). The time variable 

was transformed into the distance downstream by multiplying through by the 

propagation speed of the vortex as calculated in this section. Both the horizontal 

(downstream) and vertical vortex widths have been plotted. If the vortex is 

symmetrical then these should be equal. However, as was shown by the earlier 

vortex detection methods, the vortex is significantly stretched in the downstream 

direction. This indicates that in this simulation, the canopy-top turbulence is 

anisotropic. Nevertheless, despite the difference in width, the growth rate seems to 

follow a similar pattern in both directions, suggesting that the shape is maintained. 
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Figure 6.15: Vortex growth through time, measured using vertical (red) and horizontal (blue) 

width. The black line shows the predicted vortex growth rate. 

Despite the overall non-linear appearance, after an initial rapid growth period, the 

rate of vortex growth does appear to follow an approximately linear trend in both 

the horizontal and vertical direction. The linear growth rate is similar to the 

predicted rate for the mixing layer, assuming        (Sukhodolova and 

Sukhodolov, 2012). 

This suggests that this vortex has been produced by the mixing layer, and 

furthermore, its growth is controlled by that mixing layer. Within the time-frame, 

there is no evidence of the depth-limitation of the flow having an effect on the 

vortex evolution, and this is expected as the vertical size of the vortex is already 

significantly limited. This severe vortex stretching may be due to the sharp velocity 

gradient across the canopy. Ikeda and Kanawanza (1996) found in their experiments 

over plant canopies that the vortices appeared elliptical in the downstream 

direction, though they also identified inclination of the vortices which is not evident 

here.  

6.2.5 Velocity spectra 

In order to determine the time-scales of the vortices a velocity time series was 

extracted from the data for analysis. Figure 6.16 shows a plot of the velocity spectra, 

taken from a location just above the canopy-top. It shows a clear spectral peak 
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between 1-2Hz (labelled A). In comparison, as seen in Table 6.2, the predicted 

Kelvin-Helmholtz vortex frequency for the mixing layer is 0.62Hz which corresponds 

to a very weak peak in the spectra (labelled B). However, the stem vortex shedding 

frequency is estimated as 1.43Hz, which corresponds well with the observed 

maximum peak in the velocity spectra. This confirms the idea that, as is suggested 

in the vorticity plots (Figures 6.11-13), the dominant scale of turbulence at this 

stage of the simulation is wake-scale, though there is some evidence of canopy-

scale turbulence. 

 

 

 

 

 

 

 

Figure 6.16: Velocity power spectra from a single point above the canopy. The Kolmogorov 

decay rate is also shown in black for reference. 

 

 

 

Table 6.2: Key frequencies active within the flow:    is the wake shedding frequency and 

    is the Kelvin-Helmholtz vortex frequency as discussed in Chapter 4. 

The spectrum also exhibits a clear -5/3 slope, as is predicted for turbulence 

(Kolmogorov, 1941). Due to the computational error, the time-series is shorter than 

preferable, and this is clear from the smoothness of the profile. This also limits the 

scales of motion that can be identified and decreases the coherence of frequencies 

that are identified as the results are more sensitive to anomalies in the data. 

Mechanism Frequency 

    0.62Hz 

   1.43Hz 

A 

B 



 Chapter 6: Model application and analysis 

 

197 
 

The wavelet spectrum in Figure 6.17 shows the gradual development and 

strengthening of a periodicity at ≈1.5s timescale (as indicated by the dotted line). 

This agrees very well with the predicted K-H vortex frequency of 0.62Hz (  

       ). This would suggest that the system is developing into a canopy-scale 

dominated turbulence regime, which is not fully developed within the time-frame. 

The stem-scale turbulence does not show up significantly within the wavelet 

spectrum and this suggests that when the canopy-scale turbulence had developed, 

it would dominate the turbulent energy spectrum. 

 

 

 

 

Figure 6.17: Wavelet spectra of the same time series as the power spectra. Here the colour 

scale indicates magnitude (power). The dotted line indicates the shear layer scale. 

6.2.6 Summary 

The results presented here from the simulation using rigid vegetation show 

evidence of all 3 of the criteria set out in Table 4.1. Namely, there is clear evidence 

of a developing canopy mixing layer, shown through the mean profiling and spectral 

analysis. Furthermore, the vortex growth rate has been shown to be linked directly 

to the mixing layer. In addition, there is a clear dominance of sweep and ejection 

events at the canopy top, linked to the passage of canopy-scale vortices, though 

there are also a number of quadrant events present that are linked to wake-scale 

processes. Similarly, the vortex methods highlight a large number of wake-scale 

vortices, but the FTLE and Q criterion also detect developing canopy-scale vortices.  

Thus this simulation highlights the transition of a canopy system from the 

dominance of wake-scale eddies to a canopy-layer system, dominated by larger 

scale, higher energy roller vortices. Central to this transition is the extraction of 

2 
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energy via canopy drag and wake scale turbulence which then creates and sustains 

the mixing layer. 

6.3 Plant and flow dynamics above a small patch 

This simulation was designed to allow investigation of both the flow and plant 

dynamics over a small patch (20 stems) of flexible grass or reed-like vegetation 

within a submergent environment. This case could, for example, represent flow 

over floodplain grasses/crops or bank-full flow over riparian reed patches (e.g. 

Phragmites australis). In this example, the Euler-Bernoulli beam model was applied. 

6.3.1 Experimental setup 

 

 

 

 

 

 

Figure 6.18: Side view of the domain with the stalks in red, captured during the simulation. 

Flow is from left to right. 

For this case, the domain was 0.768m long, 0.068m wide and 0.64m high. The plant 

height was 0.4m, which is equivalent to 0.63 of the flow depth (h/z). The vegetation 

stalks had a radius of 0.005m, and were arranged in a dense staggered formation as 

shown in Figure 6.18 to ensure a sufficient drag discontinuity. The vegetation 

spacing was chosen such that the vegetation canopy frontal width was equal to the 

whole width of the patch, and therefore the flow could not simply streamline 

between vegetations stalks.  The recirculation region occupied 0.128m at the front 

of the domain as shown in Figure 6.19. The domain was 384 cells long, 34 cells wide 

and 320 cells high (nx=384, ny=34, nz=320). The grid resolution was therefore 

0.002m in each direction, which was determined as the coarsest resolution which 

Flow 
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was still capable of reproducing the wake-scale turbulent characteristics. As this 

simulation was designed to reproduce high velocity flows, the inlet velocity was set 

at 0.7m/s, and consequently the Reynolds number of the flow was approximately 

22,600. The Froude number was 0.28 and therefore the flow was subcritical. The 

flexural rigidity of the vegetation was 0.02Nm2, as discussed in Section 5.2.2. The 

simulation was run for 30 seconds at a temporal resolution of 50Hz and took 400hrs 

CPU time to complete. All analysis was undertaken in the x-z plane at        . 

 

 

 

 

Figure 6.19: Schematic of the numerical domain for the patch model. The dotted line 

indicated the recirculation region. This diagram is not to scale. 

6.3.2 Mean flow profiles and turbulence characteristics 

Figure 6.20 shows the vertical profile for both the downstream velocity and 

Reynolds stress, calculated from the x-z long section and averaged both in time and 

in the downstream direction. The velocity profile, calculated as explained in Section 

4.2 shows generally good agreement with the idealised shear layer, but similar to 

the rigid case above, the shear layer appears to be thinner and sharper. This is 

particularly noticeable in the bottom of the half of the profile, as the flow profile 

interacts with the canopy. Here it would appear that there is little penetration of 

the faster velocities into the canopy. However, the velocity does increase slightly in 

the canopy, suggesting the additional stem density at the top due to bending 

causes lower velocities than around the more rigid section of the stems. 

There is also a peak in the velocity profile at the bed. This phenomenon was 

observed by Stoesser et al. (2006) and is thought to originate from the 

necklace/horseshoe vortex that forms around each stem, along the bed. It is clear 

that the entire velocity profile does not fit a shear layer profile. In fact it would be 

expected that the shear layer profile is limited to the region in which canopy shear 
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is dominant. However, the whole profile, selected as the region between which the 

flow obtains its minimum and maximum values, was used in the normalisation 

rather than individually selecting the profile, to prevent bias in choice of boundaries.  

 

 

 

 

 

 

 

Figure 6.20: Normalised vertical profiles of horizontally and temporally averaged 

downstream velocity(a) and Reynolds stress (b). The idealised shear layer profiles are shown 

in black. 

The Reynolds stress values at the canopy top match up well with the expected 

values, though the sharper interface is again reflected through a steep decline in 

Reynolds stress away from the canopy top. This implies a lower total stress than 

expected. This may be due to the relatively small size of the patch. 

 

 

 

 

 

 

 

Figure 6.21: Long-section of time-averaged downstream velocity. An approximate 

vegetation mask is included.  

a) b) 
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The long-section time-averaged plot in Figure 6.21 shows little variation in mean 

flow structure downstream. Despite the small canopy size and the vegetation 

movement, there is still a very well defined separation into a slow canopy layer with 

faster flow above. The recirculation ensures that the wake effects behave as though 

the vegetation is in the middle of a patch, rather than at the front end. 

 

 

 

 

 

 

 
Figure 6.22: Long-section of time-averaged Reynolds stress. An approximate vegetation 

mask is included. 

 

 

 

 

 

 

 

Figure 6.23: Long-section of time-averaged turbulent kinetic energy. An approximate 

vegetation mask is included. 

Figures 6.22 and 6.23 show clear peaks in the Reynolds stress and turbulent kinetic 

energy at the top of the canopy, specifically just behind the main cluster of stems. 

There is some evidence of stem-scale turbulent energy and stress, however this is 
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clearly an order of magnitude smaller than the canopy top. It is noticeable that 

neither the stress nor the energy penetrate significantly into the canopy. This 

suggests that the bending of the stems limits transfer into the canopy 

6.3.3 Quadrant analysis 

The vertical profile of quadrant occurrence in Figure 6.24 shows a clear spatial 

pattern. As in the rigid case,    and    events (sweeps and ejections) dominate the 

region at the canopy top. With a hole size of H=0, ejections (  ) dominate, and the 

peak in their occurrence is just below the peak in sweeps (  ). When only the larger 

events are considered by applying a hole size of H=2, this pattern switches.    

sweep events become most prevalent, and their peak occurs below the peak in    

ejection events.  

 

 

 

 

 

Figure 6.24: Quadrant dominance over the entire simulation with a) H=0 and b) H=2. 

As discussed in the rigid case analysis, one potential explanation of this switch is the 

presence of two separate turbulent processes operating at different scales. The 

larger scale pattern revealed using the larger hole size is consistent with Finnigan et 

al.’s (2009) model for terrestrial canopies, whereby sweeps occur below ejections 

due to the position of the hairpin vortices. Ghisalberti and Nepf (2006) and 

Okamoto and Nezu (2009) also found the same pattern for vertical quadrant 

profiles over flexible vegetation canopies. It is also consistent with the findings of 

Nezu and Sanjou (2008), that sweeps dominate the mixing layer. The pattern of 

turbulent structure found using H=0 could relate to smaller-scale wake-shedding 

turbulent processes off the top of the vegetation, though there is no direct 

evidence for this. 

a) b) 
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The other significant impact thresholding has is to diminish the relative contribution 

of quadrant 1 and 3 events. This suggests that they are not an integral part of the 

large-scale turbulent structure. The only region where there seem to be significant 

numbers of Quadrant 1 and 3 events is in the bed region. 

Figure 6.25 shows the spatial pattern of quadrant dominance across the long-

section of the domain for a hole size of H=2. This emphasises the dominance of    

events, but also highlights the distinct spatial regions of quadrant dominance. The 

pattern is relatively homogenous along the domain, with the exception of two areas 

where quadrants 1 and 3 dominate, just behind the tops of the stems, which is 

caused by the presence of the stems.  

 

 

 

 

 

 

 

 

 
Figure 6.25: Dominant quadrants across the domain using H=2. 

Figure 6.26 unpacks the spatial picture further by showing the individual occurrence 

across the long-section. This highlights the relative dominance of sweep events over 

any of the other three quadrants. Ejections also have a significant occurrence along 

the canopy top, but high-energy (H=2) sweeps alone account for up to 10% of the 

time series. The region of    and    events at the bed is still present. However, its 

significance is shown to be far less considerable than the canopy top turbulence. 
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Interestingly, there is a clear region of    dominance towards the bottom of the 

stalks which is unexplained. 

 

 

 

 

 

 
 

 

 

 

 
Figure 6.26: Occurrence of different quadrant events as a percentage of the total simulation 

time, using a threshold hole size of H=2. Approximate canopy positions are shown in green. 

6.3.4 Vortex detection 

The simulation was fully turbulent for the duration of the experiment and therefore 

there were a vast number of vortices which could have been analysed here. Some 

previous studies that have conducted similar vortex analysis over terrestrial 

canopies have used ensemble averaging to analyse the vortex characteristics over 

the entire simulation (e.g. Finnigan et al., 2009). However, this was unfeasible due 

to computational power constraints. Instead, vortex detection and analysis was 

done based on an initial visual search for patterns within the FTLE and vorticity 

fields. From this, key examples of the vortex structure were drawn out for analysis.  
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Figure 6.27: FTLE (left) and vorticity (right) long-sections at a series of time-steps. The 

positions of identified vortices are shown using the dotted ovals. The white regions in the 

FTLE plot correspond to regions where the trajectories could not be fully tracked. In the 

vorticity plots, blue corresponds to clockwise vorticity and red to anti-clockwise vorticity. 

Figure 6.27 shows a series of FTLE snapshots which capture the motion of a 

turbulent eddy above the canopy as it propagates downstream. Here, the time 

t=23.8s 

t=24.2s 

t=24.6s 

t=25.0s 
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spacing has been chosen to highlight snapshots of vortex progression over the 

canopy. Each image shows the vortex as it passes through the domain once more. 

The vortex is visualised as an inclined FTLE ridge which curls over at the top. This is 

significantly different from the full hairpin signature shown in Figure 4.10. However, 

the presence of the strong FTLE ridge indicates the presence of a vortex, and in 

some of the snapshots, a potential lower limb of the vortex can be identified. 

Therefore further analysis was conducted on this vortex.  

The shape of the vortex can be better seen in the vorticity plots also shown on the 

right in Figure 6.27. Here there are clearly identifiable regions of high clockwise 

vorticity present at the canopy top. Similar to the rigid case, the vortex appears to 

be significantly stretched in the downstream direction, implying anisotropy within 

the turbulence. Its inclination appears to alter significantly throughout the 

simulation. Within both the FTLE and vorticity plots there is evidence of smaller 

scale turbulence, generated by both the stems and bed, however this appears to 

occur at a much smaller magnitude. The vortex signal within both the FLTE and 

particularly the vorticity plot seems to weaken significantly through time, 

suggesting that the vortex does not persist or retain a well-defined form for long.  

Figure 6.28 shows the results from the three Eulerian vortex detection methods (Q, 

λ2 and Δ), for a series of snapshots from the flow, from 23.8 seconds through to 

25.2 seconds into the simulation. As with the rigid case, a non-zero threshold was 

used for the Δ criterion and so these results are not strictly comparable with the 

other two, but provide additional stand-alone evidence of vortex passage. These 

images were extracted at double the temporal resolution of the FTLE and vorticity 

plots in order to aid vortex tracking. This time-period was ideal as it is towards the 

end of the simulation time (30s) and therefore the vortices are most likely to 

resemble those of a fully-developed canopy flow. 

The three methods all detect a vortex, circled in Figure 6.28, at the canopy top 

which moves along the canopy, recirculating through the domain twice within the 

time period. The vortex is not very clearly defined and is irregular in shape in all 

three methods, most probably due to interference and potentially coalescence with 
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other turbulence when recirculating. Because the domain length is short, there is 

little time for the vortex to develop before it reaches the front of the canopy again, 

where it most likely is affected by the newly generated turbulence at the canopy 

front. 

Nevertheless the vortex does persist and is still identifiable in the last snapshot, 

though here it begins to break down as it is split (Labelled A in Figure 6.28). This 

splitting appears to occur predominantly in the horizontal plane. Due to the 

irregular shape of the vortex it is difficult to analyse changes to size and position of 

the vortex relative to the canopy. However, it would appear that the size generally 

does increase and there may be a slight increase in vortex centre though this effect 

is minimal. 

The positions of the vortex do broadly coincide with the areas enclosed by FTLE 

ridges as proposed in Figure 4.10. However, the FTLE appears to have a much 

weaker signal than the vorticity or Eulerian vortex methods. This may be due in part 

to the restriction on trajectory tracking imposed by the short domain in the FTLE 

method. There is also clear evidence for the existence of other vortices in the flow, 

shown by the multiple FTLE ridges and regions of high positive (and negative) 

vorticity. A number of these vortices appear to persist for a time but are broken up 

during recirculation. 
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6.3.5 Velocity and plant spectra 

The power spectra for the downstream velocity as well as the canopy height are 

shown in Figure 6.29. The plant spectrum was obtained by calculating the height of 

the canopy through time at a location in the middle of the canopy laterally and in 

the downstream direction. Therefore, this measure does not refer to the 

movement of an individual stem, but rather the canopy as a whole. The velocity 

spectrum was taken from the same downstream and lateral location, at a height 

just above the canopy. 

The vegetation canopy height spectrum appears to decay linearly at a rate of -5/3, 

which is the rate predicted by Kolmogorov (1941) for turbulent decay. On top of 

this general trend there are two peaks in the spectrum. First, there is a slight peak 

at roughly 0.1-0.2Hz, labelled A. The second, more obvious peak appears like a 

wave-packet at roughly 2Hz, labelled B in Figure 6.29. A similar pattern is found in 

the flow velocity time series. Here, there is a large peak in the spectra at 2.05Hz, 

labelled C, and a smaller peak at roughly 0.1Hz, labelled D. There is also a third peak 

further up the spectrum at 4Hz. 

 

 

 

 

 

 

 

 

 

Figure 6.29: Downstream velocity (red) and plant canopy height (blue) power spectra. The 

Kolmogorov -5/3 decay rate is also plotted in black for reference. 

A 

B 

C 
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Using Equation 4.10, the Kelvin-Helmholtz frequency can be calculated as 0.32Hz. 

This corresponds with the low frequency spectral peaks, though there is some 

discrepancy in values. This is most likely due to error in the predicted K-H frequency, 

caused by poor estimations of the shear layer properties. As mentioned in Section 

6.3.2, these properties were calculated automatically using an approximation of the 

shear layer region, which in some cases was hard to define.  

 

  

  

Table 6.3: Key frequencies active within the flow:    is the wake shedding frequency,     is 

the natural frequency of the vegetation and     is the Kelvin-Helmholtz vortex frequency as 

discussed in Chapter 4. 

The higher frequency (≈2Hz) peak in the velocity spectra (B) appears to coincide 

with the natural frequency of the vegetation, which was calculated as 2.12Hz (see 

Table 6.3). This peak also appears in the canopy height spectra, reinforcing the idea 

that the peak is linked to plant characteristics. It is most likely that the third spectral 

peak in the velocity spectrum is also linked mechanistically to the natural frequency, 

occurring as it does at double the natural frequency. However, an explanation of 

that phenomenon is not given here and remains to be fully investigated. This peak 

does not appear in the canopy height spectra, and so would most likely be a 

response in the flow to the natural frequency, rather than a response of the canopy 

itself. The other possible frequency influence is the wake shedding frequency which 

was calculated as 6Hz. There is another small peak in the velocity spectrum around 

this frequency but it appears less significant than the others. 

Thus, the spectral results highlight two key influences on plant-flow interactions: 

shear layer turbulence and subsequent decay and the natural frequency of the 

vegetation. The spectral results appear at first to have paradoxical implications. The 

canopy spectra seems to indicate that the plant has a largely passive role, moving in 

response to the turbulent flow and thus exhibiting the slope associated with 

turbulent flow, as well as a spectral peak corresponding to the canopy shear layer 

Mechanism Frequency 

    0.323Hz 

   2.12Hz 

   6Hz 
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vortex frequency. This suggests that following the formation of the shear layer, the 

vegetation is a largely passive reflection of the flow structure. 

However, the flow velocity spectrum shows a clear forcing from the vegetation. 

Here, the spectral slope is significantly altered, and a significant peak appears in the 

spectrum, which related directly to the vegetation characteristics, through the 

natural frequency. Hence, the velocity spectrum indicates that the vegetation 

canopy is actively responding to the flow, modulating the velocity field through its 

vibrational response (Maitani, 1979; Ghisalberti and Nepf, 2006). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.30: Wavelet power spectra for the velocity (a) and canopy height (b) series and (c) 

cross spectra between the two time series. 

The wavelet analysis presented in Figure 6.30 shows a similar trend to the spectral 

analysis. Both the flow (a) and canopy height (b) wavelet spectra show the presence 

of a high frequency (low time scale) signal as well as a low frequency (high time 

scale) signal. The high frequency signal appears at a time scale of roughly 0.5-0.8s, 

whereas the low frequency signal appears at a time scale of roughly 5-10s. Both 

a) 

b) 

c) 
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these scales correspond well to the inverse frequencies shown in the power spectra 

(1-2Hz and 0.1-0.2Hz respectively).  

However, in the canopy height spectra, the low frequency signal appears to occur at 

a lower frequency initially. The frequency then appears to change through time, 

increasing to something more similar to that in the velocity spectrum. This change 

is highlighted by the dotted line (Fig 6.30 b). 

Thus it would appear that the oscillation of the canopy is being modulated by the 

velocity field, and in particular the canopy shear layer vortices, whilst there is also 

evidence of plant-generated turbulence linked to the natural frequency at much 

shorter timescales. The wavelet cross-spectrum (Fig 6.30 c) shows the high level of 

agreement between the low frequency peaks in the signals from the flow and 

canopy time series’, and this signal too shows an increase in time-scale of the peaks 

through time. The cross-wavelet spectrum also confirms the coherence between 

the two signals in the high frequency low time scale region, where there appears to 

be a regular, periodic motion. 

The absence of structure in the wavelet spectrum between 1-3 s implies that the 

two scales of turbulence, canopy shear layer and plant-generated, do not seem to 

interact or coalesce, but rather mutually coexist. This can also be seen in the time 

series’ of the velocity and canopy height data shown in Figure 6.31 where there is 

clear superposition of the high frequency signal onto the lower frequency signal.  

 

 

 

 

 

Figure 6.31: Plot of the (a) velocity and (b) canopy height time series used in the spectral 

analysis. 

a) 

b) 
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Therefore, in this particular simulation, neither the flow nor the vegetation 

characteristics act dominantly as a control on the system, due to the large 

difference in frequency.  

6.3.6 Summary 

This small-patch semi-rigid case shows the development of a canopy shear layer 

and the associated generation of roller vortices at the canopy top. Both the velocity 

and Reynolds stress profiles provide evidence of the formation of the inflected 

velocity profile, while the various vortex methods all identify canopy-scale vortices. 

This is supported by the distribution of sweep and ejection events at the canopy top. 

The spectral analysis reveals the dominance of particular frequencies within the 

flow that can be linked to the development of the canopy shear layer and the 

vibrational response of the vegetation. 

The issue of frequency ‘lock-in’ between the vegetation and flow has received a 

considerable amount of attention in the terrestrial literature in recent years (Py et 

al., 2006; Dupont et al., 2010; Finnigan, 2010) and has been discussed in Chapter 2. 

Within the aquatic literature, there has been less investigation of the issue. To the 

author’s knowledge, these results represent the first comprehensive numerical 

study into the dynamic interaction between flow and vegetation in aquatic flows. 

In the case studied, it is clear that the lack of interaction and lock-in between the 

plant motion and canopy layer turbulence is due to the difference in frequency 

between the two. The canopy does move in response to the flow, and its initial 

bending response is modulated by the shear length scale however this is not 

affected by the natural frequency response of the vegetation. Further study, in 

conditions whereby the natural frequency of the vegetation matches the K-H vortex 

frequency more closely, is required to determine the interaction between the two 

mechanisms. 
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6.4 Plant and flow dynamics above a canopy 

In this simulation, an entire vegetation canopy of 300 stems was used to investigate 

the processes explained above, over a larger spatial domain. Every stem was 

independently driven by the Euler-Bernoulli beam equation, designed to replicate 

semi-rigid vegetation. The larger canopy and domain reduces the effect of 

recirculation and should therefore provide better insight into vortex structure in 

particular over an extended canopy.  

6.4.1 Experimental setup 

The 300 stem patch model was also set up to be more analogous to the flume 

experiments. Here the domain had a length of 1m, a width of 0.16m and was 0.32m 

high as shown in Figure 6.32. While it would have been ideal to set the flow depth 

to 0.4m in line with the flume experiments, this was not possible due to 

computational memory limitations. The domain was 500 cells long, 80 cells wide 

and 160 cells high (nx=500, ny=80, nz=160) and therefore the spatial resolution was 

0.002m. Each stem had a radius of 0.005m, and was 0.15m tall, 0.47 of the flow 

depth. The inlet flow velocity was set at 0.3m/s, representing a slightly faster flow 

than the flume experiments and consequently the Reynolds number of the flow 

was 19200. The Froude number of the flow was 0.17 and therefore the flow was 

subcritical. The flexural rigidity of the vegetation was set at 0.0003Nm2 as explained 

in Section 5.2.2. The simulation was run for 30 seconds, at a temporal resolution of 

50Hz and took 790hrs CPU. All analysis was undertaken in the x-z plane at 

       . 

 

 

 

 

Figure 6.32: Schematic of the numerical domain for the canopy simulation. The dotted line 

indicated the extent of the recirculation region. This diagram is not to scale. 
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6.4.2 Mean flow profiles and turbulence characteristics 

The vertical profile of the downstream velocity and Reynolds stress are shown in 

Figure 6.33. The modelled velocity profile closely resembles that expected of a free 

shear layer, although the interface at the canopy top appears to be sharper than 

expected. This suggests, as was the case in the previous simulations, that the 

development of the shear layer into the canopy is inhibited. However, above the 

canopy, the slope of the velocity profile is much closer to that of the classical mixing 

layer. 

 

 

 

 

 

 

 

Figure 6.33: Normalised vertical profiles of the horizontally and temporally averaged 

downstream velocity (a) and Reynolds stress (b). The idealised shear layer profiles are 

shown in black for comparison. 

This sharp interface at the canopy top is evident in the Reynolds stress profile too, 

which appears asymmetrical, with a much steeper curve into the canopy. In 

contrast to the small canopy run and the rigid experiment, the shear layer in the 

canopy experiment is much closer to the thickness in a free shear layer. This 

highlights the role of canopy density and length in forming the shear layer. As well 

as the steepened slope, the Reynolds stress peak is also shifted above the centre of 

the shear layer, as defined using the velocity profile. This suggests that the shear 

layer is actually pushed above the canopy layer. This finding is in contrast with 

Ghisalberti and Nepf (2006) who found that the peak actually moved down into the 

canopy. However, this may be due to differences in canopy density. 

a) b) 
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Figure 6.34 shows the mean velocity long-section which demonstrates the 

regularity of the velocity profile downstream through the canopy as well as the 

asymmetrical velocity gradient about the inflection point which causes the 

asymmetry in the Reynolds stress profile 

 

 

 

 
Figure 6.34: Long-section of the time-averaged downstream (u) velocity. Due to the 

dynamic nature of the vegetation, it has not been blocked out. 

Figure 6.35 shows the time-averaged Reynolds stress. There is a clear peak along 

the top of the canopy as expected, though there also appears to be a peak at the 

top of the domain. This may be due to the rigid-lid approximation used for the top 

boundary condition. Despite the length of the canopy, there is still variation along 

the canopy, particularly at the front and back. This means the canopy cannot be 

analysed as one continuous canopy when recirculating the flow as the flow will still 

respond slightly differently at the ends of the domain. The overall pattern however, 

is far more homogeneous along the long-section than for the small patch, where 

the Reynolds stress corresponded to particular stalks instead of a continuous 

canopy. Therefore, these results are more useful in analysing longer time evolution 

of vortices in the flow. 

 

 

 

 

Figure 6.35: Long-section of the time-averaged Reynolds stress. 
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The turbulent kinetic energy plot in Figure 6.36 shows that this signal still shows 

specific peaks at the front and back ends of the canopy, though similar to the 

Reynolds stress, there is a small peak at the canopy top that extends along the 

entire canopy, suggesting canopy conditions have been obtained. 

 

 

 

 

Figure 6.36: Long-section of the time-averaged turbulent kinetic energy. 

6.4.3 Quadrant analysis 

The vertical profiles of quadrant occurrence in Figure 6.37a show a similar pattern 

to the previous simulations, with    and   , ejections and sweeps, dominating the 

flow at the canopy top. With an H=0 threshold, the distribution of sweeps and 

ejections is very similar throughout the bottom two thirds of the domain. As the 

threshold size increases to H=2, ejections dominate at the canopy top, with sweeps 

dominating in the region above. This contrasts with the previous case in Section 6.3 

as well as previous published work (e.g. Okamoto and Nezu, 2009), where the 

pattern is reversed. One possible explanation is that, similar to the rigid case in 

Section 6.2, a different process is dominating the large-scale turbulent structure 

however this seems unlikely. This will be discussed further in Section 6.4.5. 

 

 

 

 

 

Figure 6.37: Quadrant dominance over the entire simulation with a) H=0 and b) H=2. 

a) b) 



 Chapter 6: Model application and analysis 

 

219 
 

The long-section in Figure 6.38 shows the spatial pattern of quadrant dominance. 

This highlights the distinct layering of the flow, and the homogeneity along the 

canopy. The canopy is clearly divided into sections and there is little evidence of 

flow penetration into the canopy. This is clearly seen as    events dominate the 

canopy. This separation and lack of mixing might explain why    events dominate 

at the top of the canopy. If there is little penetration, the flow may resemble a 

stable boundary layer in which case ejections would be expected to dominate 

(Maitani, 1977). The vertical velocity profile in Figure 6.33 suggests that while there 

is evidently some mixing, this may be the case, as the profile above the canopy does 

resemble a logarithmic profile, with a much-reduced mixing layer. 

 

 

 

 

Figure 6.38: Quadrant dominance using a threshold hole size of H=2. 

The individual quadrant plots in Figure 6.39 highlight the lack of penetration of any 

large scale sweeps or ejections. Sweep occurrence drops off sharply at the front of 

the canopy, with no sweeps penetrating more than half way into the canopy. Along 

the top of the canopy there is even less penetration, with a clear divide between 

the canopy zone and the flow above. The only significant quadrant events within 

the canopy are    outward interactions. Finnigan (1979b) also found a high 

occurrence of    events within the canopy, alongside    events. 
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Figure 6.39: Quadrant occurrence expressed as a percentage using a hole size H=2. 

6.4.4 Vortex detection 

Similarly to the small patch simulation, the entire simulation was fully turbulent and 

therefore there were a large number of vortices which could have been analysed. 

Instead, examples are drawn from the simulation via visual analysis of the FTLE 

fields. Figures 6.40-43 show the progression over time of a vortex over the canopy, 

captured by each vortex detection method. The time-step in the figures has been 

chosen to highlight the progression of a single vortex. 

1 

2 

3 

4 
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Figure 6.40: FTLE vortex tracking. Areas in white represent regions where the trajectories 

could not be tracked sufficiently to give a reliable estimate. Ridges represent areas of 

greatest flow attraction. 
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Figure 6.41: Q criterion vortex detection results through time. Black areas represent vortices 
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Figure 6.42: Δ criterion vortex detection results. Black areas represent vortices 
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Figure 6.43:     criterion vortex detection results. Black areas represent vortices 
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The clearest one is arguably the FTLE plot, where the characteristic signature of a 

roller vortex (Figure 4.10), and perhaps a hairpin vortex, is clearly visible. This 

develops as the vortex progresses downstream. 

The three Eulerian methods each pick up the vortex, and the Q and Δ criterion in 

particular highlight the growth and distortion of the vortex through time. The    

criterion appears to pick up more of the structure besides the head of the roller 

vortex, whereas the other two approaches do not detect those structures. Similarly, 

the vorticity plot in Figure 6.44, only taken for one instant, also picks up the head of 

the vortex as well as a strong vorticity signal in the trailing part of the vortex.  

 

 

 

 

Figure 6.44: Vorticity snapshot taken at t=24.4s, showing clockwise (blue) and anti-

clockwise (red) vorticity. 

Figure 6.45 maps the results of the different vortex methods, FTLE and Eulerian, 

onto one another. There is clear agreement between them, and together they pick 

up the different components of the vortex well. It is also clear from this Figure that 

the    criterion is in this case a subset of the Q criterion. This would not necessarily 

be the case if these vortex quantities were calculated in three dimensions. 

 

 

 

 

 

Figure 6.45: Comparison between different vortex methods for t=24.4s. Q criterion vortices 

are shown in blue,    criterion vortices in green, Δ criterion vortices in red and FTLE ridges in 

black. 
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As with the rigid case, the vortex detection results allow analysis of vortex evolution 

downstream. In contrast to the rigid case, rather than using the FTLE results to 

calculate the vortex size, the Eulerian methods were used. There are a number of 

reasons for this alteration to the method. Firstly, there is a much stronger 

background signal in the FTLE in this dataset, making it harder to identify and single 

out individual vortices. Secondly, the Eulerian methods produce much better results 

for this data than for the rigid simulation and therefore provide a more accurate 

method. 

The radius of the vortex was calculated by first calculating the area of the vortex. To 

do this, a rectangular section of the domain was selected manually, such that it 

included the entire vortex of interest, and as few other vortices as possible. The 

area (A) of the vortex was then calculated by summing the areas of the binary maps 

shown in Figures 6.41-43. The radius was then calculated as  

          (6.2)  

This assumes inherently that the vortex is circular, which is a reasonable first order 

approximation given the results above. However, this assumption of isotropy would 

not have held in the previous cases. This procedure was carried out for each time-

step and then the results were converted into downstream distance, using the 

convective velocity of the vortex which was calculated from the data to be 

0.282m/s.  

Figure 6.46 shows the changes in vortex thickness as the vortex travels downstream. 

It is clear that the results from the Δ criterion are unreliable. This is expected given 

the problems described with this method in Section 6.2.4. As with the rigid case, 

the assumption is that vortex growth should scale with mixing layer growth. 

Therefore, the results have been compared to the predicted mixing layer growth 

rate using Equation 6.1. There is good agreement between the predicted and 

modelled rates, suggesting that this simulation does represent a canopy mixing 

layer flow. 
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Figure 6.46: Change in vortex thickness through time, using the Q (blue),    (green) and Δ 

(red) vortex criteria. The predicted growth rate is shown in black 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.47: Evolution and breakup of the vortex as detected by the Q criterion. The frames 

are taken at 0.2s intervals, between 24.8s (top) and 25.4s (bottom). 
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Within the time period shown, the vortex does not reach a size great enough to be 

constrained by the flow depth. It is not possible to track the vortex further as it 

recirculates, making the calculations inaccurate. However, visual inspection in 

Figure 6.47 shows the vortex coalescing with another vortex and undergoing 

significant distortion within the next second. Therefore it is unlikely that even 

without the calculation problems associated with recirculation, the results may not 

be reliable. 

In order to study the three dimensional structure of this vortex further, 3D-FTLE 

analysis was applied at the time-step where the vortex appears most well-defined 

(t=24.4s). Figure 6.48 shows the results from applying a ridge detection algorithm 

to these results. The structure of the roller vortex is clear, and exists consistently 

across the width of the domain. Both the upper and lower limb of the vortex are 

well defined. There are two structures upstream of the roller vortex which could 

potentially be the detached legs of a previous hairpin vortex (see annotation) 

however there is little further evidence to support this. The roller vortex appears to 

be smallest in the centre, with a widening of the vortex visible at either end.  
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Figure 6.48: Images of the 3D FTLE ridges viewed from (a) side-on to the domain with flow 

from left to right and (b) from the outlet, looking upstream. The surfaces are coloured 

according to their y-coordinate for visualisation purposes. The annotations in red highlight 

potential vortex structure. 

 

 

 

a) 

b) 
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6.4.5 Velocity and plant spectra 

Figure 6.49 shows the velocity and canopy height spectra taken at the same plan-

view location. There is a high level of similarity between the plant and flow spectra. 

Both exhibit a dip at first, then a clear peak at approximately 0.5Hz (shown by the 

dotted line in Figure 6.49), followed by steady decay. The plant spectrum appears 

to follow the Kolmogorov spectrum well whereas, similar to the other LES 

simulations, the flow spectrum experiences a sharper drop-off possibly due to 

choice of SGS model, as discussed in Section 3.2.2. 

 

 

 

 

 

 

 

 

Figure 6.49: Velocity (red) and canopy height (blue) spectra. The black line shows the 

Kolmogorov rate of decay. The dotted line is located at 0.5Hz. 

 

 

  

Table 6.4: Key frequencies active within the flow:    is the wake shedding frequency,     is 

the natural frequency of the vegetation and     is the Kelvin-Helmholtz vortex frequency as 

discussed in Chapter 4. 

The low frequency peak in the spectra does not seem to match up very well with 

the predicted mixing layer K-H vortex frequency (Table 6.4). This may be due to 

inaccuracy in calculating the mixing layer properties, or it may be because the flow 

Mechanism Frequency 

    0.28Hz 

   5.81Hz 

   6.3Hz 
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does not represent a mixing layer. There is not any evidence of other powerful 

frequencies within the velocity spectrum. The plant spectrum potentially shows a 

peak at the natural frequency though this is not as clear as for the small patch. 

However, the wavelet analysis, for both the flow and canopy, shown in Figure 6.50, 

does pick up two distinct periodicities. Firstly there is a low frequency signal at a 

time-scale of approximately 2s, which increases through time (as shown by the 

dotted line in Figure 6.50), to between 3 and 4s time scale. This correlates with the 

scale of the mixing layer instability. Secondly there is a much higher frequency, 

short time-scale signal which appears as a wave-packet at approximately 1s time-

scale, though this frequency also appears to alter through time at approximately 

the same rate as the other signal. 

These signals are much clearer in the velocity spectrum, and indeed almost die out 

completely in the canopy spectrum halfway into the simulation. The larger scale 

motions die out even earlier, at roughly 10 seconds into the simulation. This 

matches well with the visual evidence that canopy motion dies out fairly early on in 

the simulation as the canopy reaches an equilibrium position. 

The cross-wavelet spectrum (Fig 6.50 c) indicates good agreement between the 

flow and vegetation signals. Furthermore, the magnitude of the peaks indicates 

that the motion is most similar between 5 and 10 seconds into the simulation. It is 

clear from the flow spectrum (Fig 6.50 a) that the largest magnitude peak occurs at 

the beginning of the simulation, after which the signal dies away. In contrast, the 

vegetation signal increases in magnitude after 5 seconds, potentially indicating a lag 

in response of the vegetation to the flow. The cross-spectrum highlights this region 

between 5-10 seconds when the periodicities coincide, either side of which, the 

magnitude dies away considerably. There is some agreement at the lower 

frequencies throughout the simulation; however in general, following the initial 

stages of the simulation, the canopy and flow do not seem to be linked. This may be 

in part due to a general decrease in canopy motion after the initial stages. 
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Figure 6.50: Wavelet spectra for a) the velocity and b) the canopy height and c) cross-

spectra between the two time-series. The dotted line highlights the observed increase in 

scale through time. 

There is obviously a linkage between the spectra, and based on the frequency, this 

is most likely through the mixing layer instability. However, there is no evidence of 

the plant actively responding to, or forcing the flow.  

6.4.6 Summary 

The results from the full canopy simulation show clear evidence of canopy flow 

regimes, with a region of slower flow throughout the canopy. However, in contrast 

to the small patch simulation, there is less evidence of a mixing layer between the 

two flows. The velocity profiles, and turbulent quadrant profiles hint at flow 

resembling more of a boundary layer above the canopy. It is suggested that this 

may be due to the density of the stems and the blocking effect they have between 

the flow above and within the canopy. 

a) 

b) 

c) 
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The vortex detection methods highlight vortices that are characteristic of the 

mixing layer, however it is possible these may be relics of hairpin vortices, which 

can also be produced in stable boundary layers (e.g. Adrian et al., 2000). Therefore, 

it is possible that due to the high vegetation density at the canopy top, the 

momentum blockage is such that the flow above resembles a boundary layer. This 

would explain the dominance of ejection events over sweeps. However, the growth 

rate of the vortex does match well with the rate predicted for the mixing layer. 

The spectral and wavelet analysis shows that in contrast to the small patch 

simulation, there is no long-lasting coupling between the flow and vegetation. 

Instead, the vegetation appears to reach a stable equilibrium condition whereby 

the flow conditions prevent the vegetation from moving. This may partly be due to 

the representation of drag within the model, whereby the drag does not re-adjust 

according to the plant position. This limitation is discussed, and a solution proposed 

in Section 6.7. 

6.5 Flow and plant dynamics around a small 

highly flexible vegetation patch 

Having investigated flow over semi-rigid canopies using the Euler-Bernoulli beam 

model, the next two sections use the N-pendula model to investigate how flow 

structure and plant-flow interactions differ in highly flexible vegetation canopies. 

These simulations are designed to represent submerged macrophytes such as 

Callitriche platycarpa and Ranunculus penicillatus, which was the vegetation used in 

the flume work in Chapter 5. These plants are highly flexible and generally assume a 

much more horizontal configuration within the flow. Similar to the beam model, 

two main investigations were carried out with this model, beginning with a simple, 

small patch of four stems. This configuration therefore represents either four single 

stemmed plants, or perhaps more likely, a single multiple-stemmed plant. 
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6.5.1 Experimental setup 

 

 

 

 

Figure 6.51: Schematic of the numerical domain used for the small patch. The dotted line 

indicates the recirculation region. 

For this simulation, four individual stems were used within a cuboid domain of 

length 0.8m, width 0.1m and height 0.3m, as shown in Figure 6.51. The domain was 

400 cells long, 50 cells wide and 150 cells high (nx=400, ny=50, nz=150) and 

therefore the spatial resolution was 0.002m. The stems were placed in a simple 

square alignment, 0.02m apart in the downstream direction, with a lateral 

separation of 0.018m. The stems were each 0.3m long with a radius of 0.003m. As 

this simulation was designed to represent highly flexible vegetation, the flexural 

rigidity of the stems was set at 0.001Nm2 as discussed in Section 5.2.2. The inlet 

velocity was set to 0.5m/s, representing a Reynolds number of 21,400. The Froude 

number was 0.29 and therefore the flow was subcritical. In order to model fully-

developed flow, a recirculation region of 0.056m was applied to the front of the 

domain. The simulation was run for 30 seconds, at a temporal resolution of 50Hz 

and took 552hrs CPU time. All analysis was undertaken in the x-z plane at 

       . 

6.5.2 Mean flow profiles and turbulence characteristics 

The vertical velocity and Reynolds stress profiles in Figure 6.52 immediately indicate 

that this setup does not resemble a mixing layer. The velocity profile shows very 

poor agreement with the classical pattern observed for canopy flows. This is to be 

expected given the low density and high flexibility of the stems. The Reynolds stress 

profile shows some agreement, with a double peak at the canopy top, however it 

then drops away much faster than expected, above and beneath the canopy top. 
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Figure 6.52: Vertical profiles of a) downstream velocity and b) Reynolds stress. 

The mean downstream velocity profile in Figure 6.53 clearly shows the region of 

influence of the stems. Due to both the low stem density and stem configuration, 

there is no evidence of the formation of a canopy layer. Instead the vegetation has 

a large wake-region, where the flow is considerably below the average. 

Interestingly, this wake is not attached to the bed, but is confined mostly to the top 

half of the plant. 

The fact that this case does not resemble a mixing layer has obvious implications for 

the analytical approach which was setup specifically to identify canopy mixing layer 

processes. Nevertheless, the same procedure is still applied here, in order to try 

and explain the general flow dynamics. 

 

 

 

 

 
Figure 6.53: Time-averaged long-section of the mean downstream (u) velocity field. 

Vegetation cannot be masked as it is dynamic. 

 

a) b) 
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Both the Reynolds stress and TKE profiles (Figures 6.54 and 6.55) show a 

surprisingly local distribution of energy and stress, limited to the region 

immediately surrounding the stalk. This is far more local than the reach of the wake 

region in Figure 6.53. Some of these values may be skewed by the presence of the 

vegetation in the data, potentially creating an excessive peak near to the plant. The 

values of T.K.E. are significantly larger than those obtained for the rigid and Euler-

Bernoulli beam simulations, but even when compared on similar scales there is very 

little evidence of high T.K.E. values beyond the immediate stalk area. Figures 6.54 

and 6.55 both indicate a predominantly local distribution of energy and stress. 

 

 

 

 

 
Figure 6.54: Long-section of time-averaged Reynolds stress. 

 

 

 

 

 

 
Figure 6.55: Long-section of time-averaged TKE. 

6.5.3 Quadrant analysis 

The vertical profiles of quadrant occurrence in Figure 6.56 show that sweeps (  ) 

and ejections (  ) dominate the flow both below and above the vegetation. 

Contrastingly,    and    events dominate in the height at which the wake is 

greatest. Applying a stricter threshold significantly diminishes the influence of    
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sweep events. Instead, ejections dominate the flow by far, except again for the 

wake region. As this isn’t a canopy layer, it is more likely to resemble a classical 

boundary layer and therefore it is unsurprising that ejections dominate.  

 

 

 

 

 

Figure 6.56: Vertical profiles of quadrant occurrence using a) H=0 and b) H=2 threshold. 

The dominance of ejection events throughout the domain is highlighted in Figure 

6.57. It is very clear that the driving factor in the additional quadrant distribution is 

the plant morphology. There are clear wake and stalk controlled regions as well as a 

region of    events up the front of the canopy. This morphology-driven structure is 

clearly shown in the individual quadrant plots in Figure 6.58. 

 

 

 

 

 

Figure 6.57: Quadrant dominance using a threshold hole size of H=2. 

 

 

 

 

a) b) 



 Chapter 6: Model application and analysis 

 

238 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.58: Quadrant occurrence across the long-section as a percentage with H=2 
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6.5.4 Vortex detection 

Figure 6.59 shows an instantaneous vorticity plot taken from the simulation. There 

is clear evidence of small-scale vorticity at the top of the stalks. Here, vortices of 

both clockwise (blue) and anticlockwise (red) appear in a manner more akin to a 

flapping flag (Farnell et al., 2004) than a canopy shear layer. There is some 

indication that this wake-flapping may develop into something larger as it detaches 

from the shear layer, however the other vortex methods fail to identify this within 

the flow. 

 

 

 

 

 

Figure 6.59: Vorticity snapshot showing clockwise vorticity (blue) and anti-clockwise 

vorticity (red). 

The Q and Δ criterion (Figure 6.60) pick up clearly the stem-induced vorticity as well 

as the meandering flapping wake, however there is very little sign of larger-scale 

vortices above the canopy. The Q criterion appears to identify some larger scale 

vortices up the front of the vegetation. However most of these vortices have been 

recirculated and are not generated along the stem. At certain time-steps there is 

some evidence of vortices being advected along the stems; however, these tend to 

be much smaller in scale. The overall vortex regime is not sufficiently coherent to 

be able to analyse the evolution of individual vortices through time in the same 

manner as the previous cases. 
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Figure 6.60: Eulerian vortex detection results. Areas of black represent vortices. 

The FTLE plot in Figure 6.61 shows a convergent region of flow at the canopy top. 

As mentioned in Section 4.8, the FTLE highlights convergence of flow and therefore 

is not a direct proxy for vorticity. The ridges in the FTLE field agree well with the 

vorticity map suggesting that they may well correspond to vortices. However, it is 

also likely that the ridges are highlighting a region of strong shear in the flow.  

Therefore, the different vortex methods hint at some larger scale structure in 

addition to the vortex shedding off the stems, however there is no conclusive 

evidence. 
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Figure 6.61: FTLE vortex tracking. Areas in white represent regions where the trajectories 

could not be tracked sufficiently to give a reliable estimate. Ridges represent areas of 

greatest flow attraction. 

6.5.5 Velocity and plant spectra 

Figure 6.62 shows the velocity and plant height spectra for this simulation. In 

contrast to the previous simulations, the velocity time series was not collected 

vertically above the vegetation, but instead was taken from downstream of the 

vegetation in order to avoid plant interference at a height just above the plant due 

to the large amount of plant movement. The canopy spectrum very closely follows 

the -5/3 Kolmogorov decay rate with little significant deviation from that trend at 

any frequency. This suggests that it is largely passive in response to the flow. This is 

to be expected given the low rigidity of the stems. The velocity spectrum exhibits a 

definite peak at roughly 0.7Hz as well as another potential lower frequency peak at 

roughly 0.1Hz. As has been discussed above, it is not appropriate to fit canopy shear 

layer vortex models to these results. Instead, the frequency should be compared to 

that associated with wake flapping.  

However, this is not straightforward wake flapping behind a flagpole for instance; 

as the vegetation is attached to the bed and therefore the standard Strouhal 

number relationships do not apply. The wavelet analysis in Figure 6.63 again shows 

the dominance of a vortex of scale within the 1-2s band. This pattern is mirrored in 

the latter part of the plant height wavelet spectrum. This suggests that this vorticity 

is the result of a feedback between the flow and vegetation. The flow seems to be 

the driver of the motion, though this is most likely caused by the vegetation 
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configuration. The vegetation response to the flow is slow in initiating and appears 

to be a weaker signal. 

 

 

 

 

 

 

 

Figure 6.62: Velocity (red) and canopy height (blue) spectra. The black line shows the 

Kolmogorov decay rate. 

 

 

 

 

 

 
 

 

 

 

 

Figure 6.63: Wavelet spectra for a) the velocity and b) canopy height time series and (c) 

cross spectra between the two time series. 

a) 

b) 

c) 
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There is also some evidence of larger scale coherence in the both the flow and 

vegetation wavelet spectra, however as the majority of this occurs in the first half 

of the time series it is suggested that signal may correspond to initial 

reconfiguration of the plants. The cross-spectra in Figure 6.63 (c) highlights the 

association between the flow and vegetation signals for the high frequency 1-2s 

periodicity. Again, a large low frequency peak is detected, but it is suggested that 

this purely corresponds to the initial reconfiguration of the canopy. 

6.5.6 Summary 

In contrast to the simulations with the Euler-Bernoulli beam model, the results from 

this simulation with the N-pendula model cannot be characterised as a mixing layer 

profile. Instead, the individual stem position and morphology controls the local 

turbulence structure and vortex generation. The vortex detection methods and the 

spectral analysis both identify vortices within the flow, generated by the flapping 

stems and there are some hints that a larger scale feedback may exist between the 

flow and vegetation, however there is not enough evidence to fully explain this 

scenario.  

In natural rivers, these plants are usually found in extended clumps or canopies, 

and therefore, to fully understand how they interact with the flow structure in 

natural rivers, a larger patch-size must be investigated. 

6.6 Flow and plant dynamics over a large highly 

flexible canopy 

In order to fully investigate the relevance of the canopy shear layer analogy over 

highly flexible vegetation, an entire canopy simulation is tested. In these 

circumstances one would expect the drag of the canopy to form a significant 

enough canopy zone to generate canopy layer vortices. 

6.6.1 Experimental setup 

For this simulation, a canopy of 300 stems was used within the same domain as the 

previous section (nx=400, ny=50, nz=150). The stems were placed in a staggered 
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arrangement, with a lateral and downstream separation of 0.012m. All other flow 

conditions were set as described in Section 6.5. The extra stems in the canopy led 

to a decrease in recirculated mean velocity, to approximately 0.3m/s and a 

Reynolds number of 12000. The simulation was run for 30 seconds, at a temporal 

resolution of 50Hz and took 936hrs CPU time. All analysis was undertaken in the x-z 

plane at        . 

 

 

 

Figure 6.64: Schematic of the domain for the canopy simulation. The dotted line indicates 

the extent of the recirculation region. This diagram is not to scale. 

6.6.2 Mean flow profiles and turbulence characteristics 

In contrast to the small patch in the previous section, the larger canopy does 

appear to develop into a canopy shear layer, as shown by the profiles in Figure 6.65. 

There is very good agreement with the ideal velocity profile, and also significant 

similarities within the Reynolds stress profile. The differences within the Reynolds 

stress profiles suggests that although there is a canopy shear layer, there are other 

processes too which are contributing to the Reynolds stress. 

 

 

 

 

 

 
Figure 6.65:  Normalised vertical velocity profiles of the horizontally and temporally 

averaged (a) downstream velocity and (b) Reynolds stress. The idealised shear layer profiles 

are shown in back for comparison 

0.012m 

0
.0

1
2

m
 

0.8m 

0
.1

m
 

0.056m 

a) b) 



 Chapter 6: Model application and analysis 

 

245 
 

The time-averaged velocity map (Figure 6.66) indicates that the canopy shear layer 

extends along the whole domain, with little change due to plant morphology. This 

suggests that the canopy density is great enough that the dominant flow structure 

relates to the canopy shear layer, as in Section 6.4. 

 

 

 

 

 

Figure 6.66: Long-section of the time-averaged downstream (u) velocity. 

Despite the appearance of a consistent canopy shear layer profile throughout the 

domain, the time-averaged turbulent quantities identify regions of heterogeneity 

within the flow. Within the Reynolds stress signal there is a clear dominance at the 

front and back end of the canopy, presumably relating to wake and flow separation 

effects. It is in fact possible that the peak at the front canopy is caused merely by 

the recirculated wake effects rather than due to flow separation. 

 

 

 

 

 

Figure 6.67: Long section of the time-averaged Reynolds stress. 

The turbulent kinetic energy shows a more homogeneous pattern with high values 

of TKE along the entirety of the canopy top, though there are still obvious peaks at 

the front and back of the canopy. The TKE plot suggests that there is very little 
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penetration of turbulence into the canopy itself, with very low values in the mean 

canopy region 

 

 

 

 
 

Figure 6.68: Long-section of the time-averaged turbulent kinetic energy. 

6.6.3 Quadrant analysis 

The vertical quadrant plots in Figure 6.69 show that when considering all turbulent 

events, there is a dominance of quadrant 4 sweep events at the canopy top and in 

the shear layer. Within the canopy,    events dominate, which is consistent with 

the findings in Section 6.4.3. Quadrant 2 ejection events are also present and 

appear to peak just above the canopy top suggesting that shear layer processes 

may be operating in that region. 

When a hole size of H=2 is applied, the contribution of    and    events diminishes 

dramatically and only    and    events appear to contribute significantly. There is a 

clear peak in    sweep events at the canopy top, with    events dominating in the 

canopy. It is not clear why there is such a dominance of    and    events over    

and    events. 

 

 

 

 

 

Figure 6.69: Quadrant dominance over the entire simulation with a) H=0 and b) H=2 

a) b) 
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Figure 6.70 highlights the spatial dominance of    events within the region of 

interest, except towards the front of the domain, where    events seem to 

dominate, potentially related to flow separation off the front of the canopy 

 

 

 

 

 
Figure 6.70: Quadrant dominance using a threshold hole size of H=2. 

 

 

 

 

 

 

 

 

 

Figure 6.71: Quadrant occurrence across the long-section as a percentage with H=2. The 

figures for Q2 and Q3 contained no signal and therefore have not been included. 

This is confirmed in Figure 6.71 that shows that with the exception of the canopy 

front, the distribution of    sweep events is reasonably uniform. This figure also 

shows that in some areas of the domain, high magnitude    events account for up 

to 15% of the flow which demonstrates a huge dominance of energy within sweep 

motions. 

Q1 

Q4 
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6.6.4 Vortex detection 

A visual analysis of the FTLE fields and the different vortex methods reveals a highly 

complex pattern of vorticity across the domain. There is evidence of the existence 

of large-scale coherent structures as shown for a number of different instances in 

the FTLE snapshots in Figure 6.72. The predominant vortex generation mechanism 

appears to be K-H induced roller vortices, and there is generally good agreement 

with the schematic in Figure 4.10. However, the behaviour of some of these roller-

type vortices is not as expected for a shear layer, with much higher angles in the 

flow and less obvious correspondence with the canopy shear layer (Figure 6.72c). 

Initially, this pattern looks similar to the FLTE trace caused by the wake flapping 

vortices in the small patch case. However, the corresponding vorticity plot (Figure 

6.73c) shows that clockwise vorticity is very dominant in this region, suggesting that 

it more likely relates to a K-H instability. 

There are also clear examples of K-H instabilities in the wake of the vegetation 

patch (Fig 6.72 b&d), which similarly do not follow the shear layer prediction of 

vortex evolution, occurring purely because of the recirculation region at the back of 

the canopy. Figure 6.72e shows the formation of a large wake vortex, caused by the 

sinking of a vortex created at the back end of the canopy and enhanced by the 

recirculation region. Figure 6.72a appears to show canopy shear layer generated 

vortices, though even here, the vortices appear to be displaced further above the 

canopy, perhaps due to the influence of the flow separation at the canopy front. 

These results suggest that there are a number of active vortex generating 

mechanisms within the flow. It is difficult to classify exactly which have been 

generated by the canopy-shear layer mechanism as they have all been produced by 

similar K-H regimes. The first case however none of these are sufficiently well-

defined within the flow to allow tracking of individual vortices. 
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Figure 6.72: Snapshots from the FTLE field at particular time-steps showing different vortex 

generating mechanisms.  

e) T=26.94s 

d) T=25.50s 

c) T=17.64s 

b) T=8.90s 

a) T=6.24s 
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Figure 6.73: Snapshots from the vorticity field at particular time-steps showing clockwise 

(blue) and anticlockwise (red) vorticity. 

e) T=26.94s 

d) T=25.50s 

c) T=17.64s 

b) T=8.90s 

a) T=6.24s 
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The corresponding vorticity plots (Figure 6.73) for the FTLE snapshots in Figure 6.72 

show good agreement with the expected vortex locations. Compared to the Euler-

Bernoulli beam model patch and canopy cases, there is more anti-clockwise 

vorticity present, suggesting the presence of a wake-flapping mechanism. However, 

the clockwise vorticity generally has a larger magnitude above the canopy, implying 

that shear-generated K-H instabilities dominate over individual wake flapping. 

The Eulerian vortex method results are not included here as the turbulence signal 

was too noisy to allow extraction of information regarding the evolution of 

individual vortices. The results do support the FTLE results (Figure 6.72), with 

corresponding regions of vorticity identified in each case, but do not add anything 

to the analysis in this case. 

6.6.5 Velocity and plant spectra 

The velocity spectrum taken for a point just above the canopy (Figure 6.74) shows a 

wide peak with a maximum at approximately 0.6-0.7Hz followed by a steep decay. 

In contrast, the plant spectra follows a slope of -5/3 until approximately 5Hz at 

which point the spectrum flattens considerably. 

 

 

 

 

 

 

 
Figure 6.74: Velocity (red) and canopy height (blue) spectra. The black line shows the 

Kolmogorov rate of decay 

 )
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This figure is substantially different to the predicted shear layer frequency (Table 

6.5) thus confirming that a high proportion of the turbulence does not directly 

relate to canopy shear scale turbulence. The peak between 0.6 and 0.7Hz does 

agree well with the frequency found in Section 6.5 with the small patch, suggesting 

that both have a common turbulent production mechanism. This would seem to 

most likely relate to the plant flapping motion, though there is not a clear indication 

of this scale of motion within the plant canopy spectrum. 

 

 

Table 6.5: Key frequencies active within the flow.     is the Kelvin-Helmholtz frequency. 

Wake-scale turbulence is not included her as the inclination of the stems means that the 

effective radius is substantially different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.75: Wavelet spectra for a) the velocity and b) canopy height time series and (c) 

cross-spectra between the two time series. 

Mechanism Frequency 

    0.44Hz 

a) 

b) 

c) 
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The wavelet spectra confirm the presence of a dominant frequency between 1-2s 

(0.5-1Hz), which similarly to the small patch case seems to oscillate between 

different scales through time. There is also evidence of a lower frequency signal, 

particularly at the beginning of the simulation, which may be related to the 

recirculation of turbulence caused by the initial canopy reconfiguration. The 

complexity of the turbulence in comparison to the other cases is demonstrated by 

the wide range of scales of turbulence within the flow as well as the connections 

between the scales, which contrasts with the beam model cases which displayed 

distinct scales with limited interaction. 

6.6.6 Summary 

Implementing the N-pendula model for an entire patch it has been shown that 

within highly flexible canopies an inflected velocity profile develops, similar to that 

found in semi-rigid canopies, as shown through vertical flow profiling. 

However, the turbulent signal is far more complex than that found over semi-rigid 

canopies. There appears to be a weaker canopy shear scale turbulence signal, and 

interaction between a number of different vortex generation mechanisms, 

including individual plant motion. The dominant frequency within the flow does not 

appear to correspond to the canopy shear scale, but instead is similar to the peak 

found in the small patch case (Section 6.5) and therefore it is hypothesised that this 

relates to plant flapping, though this is inconclusive from the canopy spectra. 

This case has demonstrated the complexity of highly flexible canopies and the 

difference in processes compared to those operating in semi-rigid vegetation. It is 

clear therefore that the treatment of highly flexible canopies should therefore be 

distinct from generic canopy layer theory, as developed for semi-rigid terrestrial 

canopies. 

6.7 Drag as a driver of stem motion 

As previously discussed in Chapters 2 and 3, drag is a key force which drives the 

dynamic interaction between flow and vegetation. The assumption often used in 

models of vegetation is that the drag coefficient, used to calculate the drag force, is 
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constant and is equal to 1 (e.g. Fischer-Antze et al., 2001). In order to investigate 

the validity of that assumption, two test model runs were conducted, each with a 

single vegetation stem, modelled using the Euler-Bernoulli beam equation. 

One model was driven using the assumption of a constant drag coefficient equal to 

1, whilst the other was driven by an in-built drag calculation procedure as outlined 

in Chapter 3. This in-built drag procedure calculates the drag from the pressure 

distribution around the stem. 

6.7.1 Experimental setup 

 

 

 
Figure 6.76:  Schematic of the numerical domain for the single stem simulation. 

For this simulation the domain was setup identically to the small patch case in 

Section 6.3 except that only a single stalk was used (Figure 6.76). This stalk was 

placed in the centre of the domain. The simulation was run for 30 seconds at a 

temporal resolution of 50Hz and took 400hrs CPU time to complete. In order to 

identify the effect variable drag has on plant position, motion and consequently on 

flow, time series from the flow and vegetation will be analysed visually and using 

wavelets. 

6.7.2 Comparison of flow and vegetation data 

The plant height time series for the constant and variable drag simulations are 

shown in Figure 6.77. Two differences are immediately apparent. First, the stem 

with the constant drag coefficient maintains a lower position in the flow throughout 

the simulation. Second, there is much greater variation in canopy height in the 

directly calculated drag model. The first observation can be explained by the fact 

that plant reconfiguration is a drag reduction mechanism of vegetation (Sand-

Jensen, 2003). Therefore, as the plant reconfigures, drag will naturally reduce, 

however this reduction is not accounted for by the constant drag coefficient. 
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Therefore, the drag remains high and the plant is subject to further reconfiguration, 

thus occupying a lower position in the flow.  

 

 

 

 

 

Figure 6.77: Canopy height time series from the constant (red) and variable (blue) drag 

coefficient simulations. 

The second observation is a consequence of the model reaching a stable 

equilibrium for the constant drag coefficient. This does not mean that there is no 

plant movement, as shown in Section 6.3 where there was clear plant response to 

the flow. However it does mean that drag acts as a constant dampening effect on 

the flow, effectively reducing the variability in the drag, which is one of the key 

forces driving the flow. The drag is still dependent on local velocity, but every other 

term is constant. These results confirm the idea that constant drag coefficients are 

inaccurate and inappropriate for modelling flexible vegetation, as they lead to both 

a false average canopy height and variation in canopy height. 

 

 

 

 

 

 

Figure 6.78: Flow and canopy height spectra from the constant (left) and variable (right) 

drag coefficient simulations 
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Figure 6.78 shows the velocity and plant spectra from the two different model runs. 

Both graphs have the same overall shape, though there is a definite upward 

translational shift of the plant spectrum in the drag-calculation case, suggesting 

that there is more energy and therefore more oscillation. There is a sharper peak at 

the natural frequency (≈2Hz) in the constant drag coefficient case. This is expected 

as the vegetation motion is less directly coupled to flow conditions and therefore 

there is less feedback and interference with the signal from the vegetation. 

However, there is no clear evidence of an increased coupling between the 

vegetation and the flow vortex frequency in the variable drag simulation. 

 

 

 

 

 

 

Figure 6.79:  Time series for the (a) flow, (b) canopy height and (c) drag coefficient for the 

variable drag simulation.  

Figure 6.79 shows that again, there is little visual evidence of direct coupling 

between flow structures and canopy height. There a few incidences where lower 

canopy height clearly corresponds to higher velocities, as shown by the dotted lines. 

In these cases there is a very slight lag, with the vegetation reconfiguring after the 

velocity spike. There is also a clear connection between drag coefficient and canopy 

height, with drag decreasing as canopy height decreases and the plant reconfigures. 

The drag profile up the entire stem through time is shown in Figure 6.80. There is a 

clear spatial pattern, with much lower values for the drag coefficient at the top of 

the stem, where reconfiguration is greatest. It is notable that there is an order of 

magnitude difference between the drag coefficient values at the top and bottom of 

the stem. Furthermore, Figure 6.80 highlights the temporal variation in drag. Even 

a) 

b) 

c) 



 Chapter 6: Model application and analysis 

 

257 
 

in the stable, rigid region of the stem near the bed, there is significant variation in 

drag through time. This variation appears oscillatory in nature. 

  

 

 

 

 

 

Figure 6.80: Drag coefficient profile along the stalk and through time. 

  

 

 

 

 

 

 

 

 

 

Figure 6.81: Wavelet spectra for the variable drag simulation. The three graphs correspond 

to the (a) flow, (b) canopy height and (c) cross wavelet spectra. 

In places, the values of the drag coefficient appear higher than expected. There are 

a number of potential reasons for this. The vegetation is represented in the domain 

using a porosity approach. Therefore, although the blockage represents a cylinder, 

a) 

b) 

c) 
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it is represented within a hexahedral grid and this may represent a slightly rougher 

boundary, causing higher drag values 

Figure 6.81 and Figure 6.82 shows the wavelet spectra from both the variable and 

constant drag simulations. The spectra are broadly similar, with evidence of both 

small scale and large scale turbulence visible. There is a noticeable difference in 

magnitude between the canopy spectra, with the variable drag simulation showing 

peaks over twice the magnitude. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.82: Wavelet spectra for the constant drag coefficient simulations. The three graphs 

show the (a) flow, (b) plant and (c) cross wavelet spectra. 

Furthermore, the cross-spectra (Figure 6.82-3, c) show the emergence of regions of 

association between the flow and canopy in the variable drag simulation. These do 

exist within the constant drag simulation but are an order of magnitude smaller. 

6.7.3 Summary 

The introduction of a variable drag coefficient into the beam model significantly 

alters the predicted vegetation movement. In particular, the vegetation assumes a 

a) 

b) 

c) 
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higher position in the flow due to the reduction in drag achieved by reconfiguration 

and the plant is also subject to greater movement throughout the simulation due to 

the explicit dynamic linkage of the drag force to the flow field. 

This variability in drag force is shown to be both temporal and spatial in nature, and 

this impacts upon the plant motion and consequently turbulence structure as 

evidenced in the spectral and wavelet plots. Thus, although no direct evidence has 

been found of a distinct change in the flow-plant interaction for the variable drag 

case, it is hypothesised that over a larger canopy simulation, this difference would 

become apparent. 

These results highlight the ineffectiveness of constant drag coefficients in flexible 

vegetation models, and introduce a new methodology for high resolution drag 

modelling. Furthermore the results also highlight the natural spatial and temporal 

variability of drag along the stem, questioning the applicability of a constant drag 

value of 1 to even rigid stem models. 

Further work is required to implement this approach within a canopy environment 

and to refine the drag calculation mechanism. In addition, work is required to apply 

the implications of these results within lower resolution models. 

6.8 Conclusion 

This chapter has investigated the flow and plant dynamics in a range of different 

types of canopy flows. Both of the models developed in Chapter 3 are shown to be 

useful as research tools for investigating the turbulent flow dynamics around 

vegetation, and the interaction between vegetation and the flow in canopy flows. 

The Euler-Bernoulli beam model has been used to investigate canopy dynamics and 

the evolution of vortices over large and small canopies and the nature of the 

feedbacks and interactions between flow and vegetation in mixing layer 

environments with semi-rigid vegetation. The results have been shown to agree 

well with existing literature as well as giving insight into processes, such as the 

coupling of plant motion and velocity signals, not previously studied. 
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The N-pendula model has been used to investigate the dynamics of highly flexible 

vegetation canopies and single plants. Using this model it was shown that within 

smaller canopies, the turbulence appears to be dominated by vortices shed due to 

the flapping of the stem, rather than any wake-shedding or shear layer vortices. 

With a larger canopy of stems, there is more evidence of the development of a 

canopy shear layer, though the vortex signal is far noisier and still shows a clear 

influence from the plant flapping vortex mechanism. This model therefore provides 

an alternative method for modelling highly flexible vegetation, where the driving 

processes are distinctly different. 

Finally, it has been demonstrated that there is a need for a new, dynamic treatment 

of drag within high resolution vegetation models. A new methodology has been 

proposed and tested for a simple case. The results indicate that this is a promising 

alternative to the constant drag approach, which offers a better process-

representation of the dynamic interactions between plants and the flow. However 

there was little evidence that across the board, these conditions led to a significant 

canopy layer development. 

The results of this chapter support existing theories regarding canopy layer theory 

as well as providing additional insight in certain topics. Therefore it is important to 

incorporate these findings within our current understanding of canopy layers. To 

that end, the results of this chapter are synthesised and discussed, within the 

context of current canopy layer theory in Chapter 7. 
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Chapter 7: Discussion of micro-

scale processes in vegetated 

channels 

7.1 Introduction 

The aim of this chapter is to set the findings of Chapters 5 and 6 within the context 

of our current understanding of aquatic flow-vegetation interaction as presented in 

Chapter 2. Specifically, this chapter focuses on comparing the results with the most 

recent state-of-the-art reviews of vegetated channel hydrodynamics of Nikora 

(2010) and Nepf (2012a; 2012b).  

One of the most significant contributions of these reviews has been the distinction 

between different types of vegetation, each driven by different force balances. This 

classification framework is revisited in Section 7.2. Having established this, the 

results from Chapters 5 and 6 are synthesised within this framework. Finally, the 

implications of these results for future vegetation modelling are discussed. 

7.2 Classification by force balance 

Chapter 2 discussed in detail the current theories relating to terrestrial and open-

channel vegetated flows. Until recently, little effort had been made to categorise 

these vegetation types by biomechanical characteristics and, as a result, 

generalised canopy layer theory was developed without allowance for different 

vegetation types. Given that the origins of canopy layer theory lie in terrestrial 

canopies, much of this theory has been developed under the assumption of rigid or 

semi-rigid vegetation, such as reeds, crops and grasses. Therefore, this generalised 

theory is not necessarily transferable to other, less idealised canopies. 

Generalised canopy layer theory is typically applied to aquatic vegetation, with 

most experiments (Luhar and Nepf, 2013) and numerical models (e.g. Kutija and 

Hong, 1996; Ikeda et al., 2001; Kim and Stoesser, 2011) assuming a similar rigid or 
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semi-rigid vegetation structure. However, a small number of flume and field 

experiments (e.g. O’Hare et al., 2007; Siniscalchi and Nikora, 2012) with real 

vegetation have been conducted. Furthermore, recent numerical model 

developments within the fields of coastal and estuarine flow (e.g. Abdelrhman, 

2007; Backhaus and Verduin, 2008; Dijkstra and Uittenbogaard, 2010) have also 

sought to deal with the case of more flexible vegetation. These studies have 

involved both aquatic macrophytes and marine seagrasses. Thus our current 

understanding has begun to recognise and distinguish between vegetation of 

significantly different biomechanical characteristics and the corresponding, 

variations in canopy processes.  

As discussed in Section 2.3.4, this distinction was initially made by Nikora (2010) 

who used the terms ‘tensile’ and ‘bending’ plants to refer to those plants 

experiencing different physical controls on plant motion. This classification is made 

by analysing the ratios between internal and external forces acting on the 

vegetation. The three most significant forces acting on the vegetation are the drag 

force (  ), the buoyancy force (  ) and the rigidity or bending force (  ) 

(Ghisalberti and Nepf, 2002). Nepf (2012b) identifies two parameters which define 

these force balances: i) the Cauchy number (Ca) which is the ratio of the drag force 

and the rigidity force and; ii) the Buoyancy number (B) which is the ratio of the 

buoyancy and rigidity forces. 

         (7.1)  

          (7.2)  

Nikora (2010) distinguishes between different plant morphologies (tensile and 

bending) based only upon the Cauchy number. A high value of the Cauchy number 

implies a ‘tensile’ plant, whereas a low value indicates a ‘bending’ plant. The 

Cauchy number, described as the elastohydrodynamical number (Schouveiler and 

Boudaoud, 2006), has been used in various studies to try to parameterise drag and 

the reconfiguration of flexible bodies in fluid flows according to plant morphology 

(e.g. Gosselin et al., 2010; Gosselin and de Langre, 2011). 
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Luhar and Nepf (2011) extended this approach by characterising the vegetation 

behaviour using both the Cauchy and the Buoyancy number. They used these two 

parameters and their ratio (     ), which between them represent the three 

different force balances, to predict plant reconfiguration. Thus, this categorisation 

approach has been shown to be a useful framework within which to characterise 

and study the interactions between plants and flow. Therefore, the findings of 

Chapters 5 and 6 will be summarised within this framework. 

For terrestrial canopies, due to the low density of the fluid (approximately 1.7kgm-3), 

no vegetation is positively buoyant and therefore it is a reasonable assumption that 

the vast majority of plants are ‘bending’ plants. For aquatic vegetation, given the 

relatively high density of the fluid (approximately 998.1kgm-3) and the fact that 

many plants contain gas filled lacunae or cavities (Penhale and Wetzel, 1983), it is 

possible for aquatic plants to be positively buoyant (Luhar and Nepf, 2011). 

Therefore, aquatic plants might be classified as either ‘bending’ or ‘tensile’.  

For the purpose of this thesis, only two categories (bending and tensile) have been 

considered. It is important to note that plants may not fall into either category but 

may be transitional, being equally subjected to both tensile and bending forces. 

Similarly, the Cauchy and Buoyancy numbers represent a spectrum of different 

force balances rather than two simple categories. Nevertheless, this categorisation 

provides a useful initial framework and therefore the results of this thesis are 

classified within this framework, defined in terms of both the Cauchy and Buoyancy 

numbers. 
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Figure 7.1: Schematic diagram showing the canopy layer velocity and shear profiles (a & b), 

and turbulent processes within sparse (c & d) and dense (e & f) canopies. The canopies are 

split by Nikora’s (2010) classification into semi-rigid (bending) plants and highly flexible 

(tensile) plants. 
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7.3 Processes in semi-rigid, bending canopies 

The results in Chapter 6 showed that for semi-rigid, bending canopies (e.g. grasses, 

Phragmites australis) the canopy shear layer velocity profile (Figure 7.1a) agrees 

well with that found in previous studies (e.g. Ikeda and Kanazawa, 1996; Ghisalberti 

and Nepf, 2002). Similarly the Reynolds stress profiles showed good agreement 

with previous work (Rogers and Moser, 1994; Ghisalberti and Nepf, 2006), while the 

actual magnitude and thickness of the Reynolds stress peak exhibited a dependence 

on stem density. The predicted canopy shear layer was shown to develop in a linear 

fashion similar to that predicted for an analogous free shear layer (Sukhodolova and 

Sukhodolov, 2012). 

As discussed in Chapter 6, simulations were run for a few stems (small patch) and 

then 300 stems (large patch). Assuming the entire lower portion of the domain is 

considered as the canopy region, these two conditions can be generalised as low 

density, heterogeneous canopies and higher density more homogeneous canopies 

respectively. This is reflected in the results in Chapter 6, where the increased 

number of stems caused a more homogeneous and stronger canopy shear layer, 

consistent with a higher stem density (Nepf and Ghisalberti, 2008). Therefore, this 

generalisation of high and low density canopies is used in analysing the results. 

For the more heterogeneous system, with a lower canopy density (Figure 7.1c), the 

canopy shear layer led to the generation of spanwise roller vortices (Finnigan, 2000). 

Analysing the high magnitude turbulent events revealed a dominance of quadrant 4 

(sweep) events at the canopy top with a dominance of quadrant 2 (ejection) events 

just above, as previously observed by Okamoto and Nezu (2009). This is in 

agreement with the model of Finnigan et al. (2009), previously developed for 

terrestrial canopy flows, which linked the occurrence of sweep and ejection events 

to the passage of hairpin vortex pairs (Figure 7.2). 

As the stem density was increased to form a more homogeneous and higher stem 

density canopy (Figure 7.1e), the effects of canopy blockage and subsequent limit 

of transfer between the canopy and the flow above led to a change in distribution 
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of turbulent quadrant events. The canopy-scale roller vortices were still present, 

however the distribution of quadrant events resembled more closely the model of 

Adrian et al. (2000) for terrestrial boundary layers (Figure 7.3). Thus, it is 

hypothesised that for particularly high canopy densities, the momentum blockage 

at the canopy top increases such that the flow above the canopy behaves like a 

boundary layer. 

 

 

 

 

 

 

Figure 7.2: Model for canopy turbulence structure from Finnigan et al., (2009). 

.  

 

 

 

 

 

 

 

Figure 7.3: Model for boundary layer turbulence structure from Adrian et al., (2000) 

Finally, the results from the biomechanical model identified an active interaction 

between the flow and vegetation. It was demonstrated that the plant motion and 

the fluid turbulence regime both contain signals associated with the fluid (shear 
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layer) turbulence as well as the vegetation (rigidity) characteristics, via the natural 

frequency of the vegetation 

The main driver of this flow-vegetation interaction is the effect of drag on the 

vegetation and consequently the flow. Section 6.7 highlighted that this is a highly 

variable interaction and therefore simulations which used a constant drag 

coefficient may have dampened this interaction. 

7.4 Processes in highly flexible, tensile canopies  

The numerical experiments with highly flexible canopies, which representing tensile 

canopies (e.g. Ranunculus penicillatus, Callitriche platycarpa), reveal that for both 

small and large vegetation patches the mean velocity profile (Figure 7.1b) still 

resembles a canopy shear layer profile in line with previous studies (e.g. 

Abdelrhman, 2007; Dijkstra and Uittenbogaard, 2010). The Reynolds stress profile is 

similar to the semi-rigid vegetation, but contains an additional secondary peak 

below the main shear-layer peak (Figure 7.1b). This peak occurs for low and high 

density patches, and possibly relates to the additional complex plant flapping 

processes which cause velocity fluctuations further within the canopy. This second 

peak was also identified within some of the flume experiments with real vegetation 

in Chapter 5 (Figure 5.24). To the author’s knowledge, no previous studies have 

detected this phenomenon and therefore there is a need to investigate this 

phenomenon further. 

For the low density patch (Figure 7.1d), the flow profile is dominated by vortices 

shedding off the flapping vegetation, via a mechanism which appears qualitatively 

similar to that observed behind flapping flags (e.g. Zhang et al., 2000). However, in 

the case of a flag the vortices are shed from a leading edge which is situated 

midstream, whereas with aquatic vegetation the leading edge is attached to the 

bed (Figure 7.1b). Therefore these structures cannot be characterised using the 

wake vortex shedding frequency given in Equation 4.24. This means it is difficult to 

identify theoretical, dominant frequencies against which to compare the 

observations. In the low density simulation, quadrant 4 sweep events dominate 
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directly behind the canopy, with a region of quadrant 2 ejection events directly 

above. This could correspond to the canopy shear layer model (Finnigan et al., 2009) 

as described for the semi-rigid case, however there was no evidence of canopy-

scale vortices over the small canopy. 

When a canopy with greater overall vegetation density is introduced (Figure 7.1f), 

shear layer vortices are identified along the canopy top as previously suggested 

(although not directly observed) for highly flexible aquatic canopies (Ackerman and 

Okubo, 1993; Grizzle et al., 1996). These exist in conjunction with the smaller 

flapping-induced vortices shed from the vegetation, and consequently there is 

interaction and coalescence which creates a highly complex velocity and vorticity 

field. In this simulation, when considering the largest (H=2) turbulent events, 

quadrant 4 (sweep) events appear to dominate across a much larger portion of the 

domain, with no equivalent region of quadrant 2 (ejection) dominance. 

7.5 Comparison between vegetation types 

The preceding sections have drawn out a number of key features relating to flow 

structure in both bending and tensile canopies. There are several key similarities 

and differences between the two cases. In both cases, the velocity profile 

resembles that of a shear layer which, given a high enough stem density, leads to 

the development of shear-scale vortices. The vegetation also impacts the flow in 

both cases, though the mechanisms differ. In the semi-rigid canopies, plant motion 

is controlled by the flexural rigidity whereas in the highly flexible canopies it is 

controlled by a flapping mechanism that is likely to be indirectly related to the plant 

biomechanical properties. 

These plant-flapping-scale vortices are one of the key differences between the two 

cases. These contribute significantly to the total kinetic energy and also interact 

with the larger vortices, creating a more complex vorticity pattern than in the semi-

rigid case. 

By combining this process understanding, a new conceptual model of flow through 

aquatic vegetation is proposed from Figure 7.1. This is structured on Nikora’s (2010) 
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classification of bending and tensile plants, but also scaled upon stem density. It 

suggests that for semi-rigid (       ) aquatic canopies, roller vortices 

dominate the flow profile in line with the model of Finnigan et al. (2009) up until a 

certain stem density, above which the system transitions into the boundary layer 

model of Adrian et al. (2000). However, when the plant rigidity decreases 

(       ) an additional vortex generation mechanism emerges. This plant 

flapping mechanism occurs in addition to the background shear layer turbulence 

signal, and therefore arguably roller vortices no longer dominate the flow profile. 

7.6 Implications for modelling vegetation 

It is suggested that these findings have a significant impact on how aquatic 

vegetation is modelled. Firstly, it is important to recognise that, at the individual 

stem-scale, the behaviour of vegetation is strongly dependent on the force balance. 

Therefore, the model conceptualisation must be informed by the force balance. In 

theory a single universal model, incorporating both morphologies discussed, should 

be possible. However, there are complexities, particularly surrounding the different 

distances over which processes such as plant bending occur (Luhar and Nepf, 2011). 

Therefore, it would be difficult to include both within a single all-encompassing 

vegetation model. 

Secondly, it has been demonstrated in Chapter 6 that a constant drag coefficient is 

not suitable for modelling vegetation. Therefore, within stem-scale models a 

dynamic drag treatment, which calculates the changes in drag force through time, is 

required in order to fully represent the vegetation-flow interactions. 

These findings also have implications for how vegetation should be represented in 

reach-scale models. Firstly, when modelling highly flexible (tensile) vegetation it is 

necessary to consider the effects of vortex shedding induced by plant flapping, in 

addition to the shear layer vortices typically represented in analytical models (e.g. 

Huthoff et al., 2007; Konings et al., 2012). Secondly, within semi-rigid canopies, 

‘bending’ plants cause a significant feedback on the flow due to their rigidity. 
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Therefore it is essential that models used to represent semi-rigid vegetated flows 

account for the forcing from the vegetation motion. 

7.7 Chapter Summary 

This chapter has reviewed the findings of the numerical models applied in Chapters 

5 and 6, setting them within the context of the current literature. The key results 

are shown in Figure 7.1 and represent schematically the flow structure and 

turbulent processes identified by the different models. In general, these results 

show good agreement with previous findings, though there are aspects which are 

novel and require further investigation; particularly relating to flow structure over 

highly flexible canopies. The results have several implications for vegetation 

modelling across a range of scales, particularly relating to the representation of the 

effects of dynamic drag and vegetation interaction with flow-vegetation models. 

Therefore, in the next chapter, these findings are scaled up and applied to the 

reach-scale.  
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Chapter 8: Applying process 

knowledge to the reach scale 

8.1 Introduction 

Currently, as was discussed in Chapter 2, there is a lack of process representation of 

the effects of vegetation in industry standard models which are used for river 

management. Most one- and two-dimensional models use a reach-averaged 

roughness term (typically Manning’s  ) to account for the additional flow resistance 

(e.g. ISIS, HEC-RAS, LISFLOOD). However, this has been shown to be inappropriate 

due to the effect of vegetation on flow structure (Naden et al., 2006), as 

demonstrated throughout this thesis. Previously, some lower resolution research-

focused models have been developed which treat vegetation using a drag term (e.g. 

Fischer-Antze et al., 2001), as explained in Section 2.6.1. This is a more physically 

realistic approach but depends on either a priori knowledge or basic 

approximations of the drag coefficient. As previously discussed, this is based upon 

the assumption of cylindrical stalks in steady flow and has been shown to be a 

limitation in Section 6.7, as this approach does not account for vegetation 

movement, where drag can vary dynamically. 

In this chapter, a new model is proposed and developed that begins to account for 

the effects of vegetation on the flow, described in this thesis, within a lower 

resolution model. The aim is to demonstrate the potential of using the findings at 

the micro-scale, summarised in Chapter 7, to inform the representation of 

vegetation at the reach-length scale in order to improve predictive ability and 

management. It is intended to illustrate the applicability of the high resolution 

process understanding to lower-resolution reach-scale models. This chapter is not 

intended as a comprehensive study of reach-scale vegetated channels. Instead, it 

provides a particular case-study which highlights the possible direction of further 

research in this field. 
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In order to assess the new model, it is compared against an existing model which 

has been previously used in canopy flows (Fischer-Antze et al., 2001; Lopez and 

Garcia, 2001). This model uses a bulk drag term to represent the vegetation and is 

referred to as the static drag model in this chapter. This model was chosen as a 

benchmark as it has been widely applied to both terrestrial and aquatic canopy 

flows (e.g. Shaw and Schumann, 1992; Fischer-Antze et al., 2001) and has been 

shown to reproduce vertical velocity profiles and patch scale flow structure well in 

compound channels. 

The static drag model, described in Section 8.4.2, uses a constant drag term to 

represent areas of vegetation within either a RANS or LES modelling framework. In 

contrast, the proposed new model uses a dynamic drag term, driven by a plant 

motion equation developed herein. This equation is based upon the key vortex 

frequencies as identified in Chapter 7 and is used to predict the spatial movement 

of the drag region through time. This model is, by definition, unsteady and 

therefore low spatial (0.05-0.2m) and temporal (10Hz) resolution LES is used. The 

performance of the two models over a range of grid resolutions (0.05-0.2m) is 

assessed with comparison to a field dataset collected over a small reach of the River 

Browney in Durham, UK. 

It is not suggested that these models are directly analogous to those currently used 

by river managers as they still use a level of complexity in computation (RANS and 

LES) that is not currently applied at the management scale. However, the purpose 

of the new model is to attempt to bridge the gap between high-resolution research 

models and low resolution industry models. With the predicted increases in 

computational power and capability, it is also possible that models like these may 

be more feasibly applied to entire rivers and subsequently used by river managers 

in the near future. 

This chapter begins with a description of the field site and methods, followed by the 

numerical methodology and specifically the details regarding the new vegetation 

models developed in this chapter. Following this, results from the model application 

are discussed and compared, in order to assess their relative performance. 
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8.2 River Browney Fieldwork 

The fieldwork was carried out on a section of the River Browney in County Durham. 

The selected reach (Figure 8.1) lies to the West of Durham city, just outside the 

village of Bearpark, a few kilometres upstream of the confluence with the River 

Wear. The reach was chosen due to its straight channel shape (Figure 8.2), simple 

channel form, well defined banks, abundance of suitable vegetation and ease of 

access. The river reach flows through agricultural land, with significant riparian 

vegetation along both banks (Figure 8.3) and has a low stream gradient (0.007). The 

vegetation was mainly Ranunculus penicillatus (Figure 8.4) with a few reed patches. 

 

 

 

 

 

 

 

 

 

Figure 8.1: The field site location shown in OS 1:25 000. The river reach is shown in the red 

oval and the coordinates are given with respect to the British National Grid. 

 

 

 

 

 

 

Figure 8.2: Aerial photo of the field site, with the reach indicated by the red line. The river 

flows from North to South. 
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Figure 8.3: Photo of the field site, taken in September, looking downstream. Field assistant 

shown for scale. 

 

 

 

 

 

 

 

 

Figure 8.4: Patch of Ranunculus penicillatus within the river reach. The water depth was 

approximately 0.2m. 

8.3 Field methodology 

In order to produce a digital elevation model (DEM) for the numerical modelling, 

topographic data were collected using a Total Station electronic distance meter 

(EDM). Measurements were taken at a series of cross-sections, approximately 0.2m 

apart in the downstream direction, with a similar separation between points in the 
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lateral direction. The resulting DEM had a point density of over 20 points per square 

metre (Figure 8.5a) for the majority of the domain. Based upon previous work, this 

has been shown to obtain a good representation of gravel bed rivers with less than 

15% loss of information (Lane et al., 1994). However, it is worth noting that both 

the 0.1m and 0.05m simulations had a greater spatial resolution than the DEM. This 

is not necessarily an issue as the primary purpose of the increase in model 

resolution was better representation of the vegetation rather than the bed. The 

DEM (Figure 8.5b) shows a relatively even surface with a slight pool at the end of 

the domain. There are also a few micro-topographic features which might affect the 

flow significantly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Map of the (a) DEM point densities across the numerical domain and (b) 

topography across the domain. The white contours mark every 0.1m change in topography. 

Green areas show vegetation patches. The water surface edge is shown by the black/blue 

line with different colours used for clarity. 
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Vegetation positions were geo-located by mapping the shape of each patch using 

the Total Station EDM. These outlines were converted into polygon vegetation 

maps for the numerical model. In addition, key characteristics of each patch were 

measured; namely submergence depth and mean stem length within the patch. 

These were intended to be semi-qualitative measurements, as both these 

quantities are spatially and temporally variable. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6: Location of the ADV measurement points (red dots) and associated cross-

sections. The cross-sections are referred to by these numbers throughout. 

Flow measurements were taken using a Sontek Acoustic Doppler Velocimeter (ADV) 

at five cross-sections including the inlet and outlet of the domain to provide both 

boundary conditions and validation data (Figure 8.6). Each time series was collected 

for 1 minute, at 10Hz resolution, to provide a stationary time series (Buffin-

Bélanger and Roy, 2005). Velocity measurements were taken at 0.4 of the depth, in 

order to obtain a depth-averaged velocity estimate at each location. Two additional 

measurements were made at points of particular interest in relation to vegetation 
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configuration. The first of these (labelled 1 in Figure 8.6) was taken directly 

downstream of a large vegetation patch and the second (labelled 2) was taken in 

the canopy shear layer flow just above a vegetation patch. These two time series 

were collected for longer (3-7 minutes), to allow more in-depth analysis of the 

turbulent signal. 

8.4 Numerical methodology  

Previous work in reach-scale vegetation modelling has been reviewed in Section 

2.6.1. The methodology developed and applied in this section builds upon those 

approaches. Here, two different models were developed, a static vegetation density 

model and a dynamic vegetation density model. These two models were applied in 

order to evaluate the benefit of increased process representation in reach-scale 

models. The static vegetation model was run as a test case, comparable with other 

previous work (e.g. Fischer-Antze et al., 2001). The dynamic vegetation model is a 

novel approach based upon the results of Chapter 7. Each of the models is 

explained in detail following a description of the general domain setup. 

8.4.1 Numerical model 

For each simulation, a regular Cartesian grid was used, and the topography was 

represented using the mass flux scaling algorithm as described in Chapter 3 (Lane et 

al., 2002; 2004; Hardy et al., 2005). The domain was 13m long, 7m wide and 0.4m 

high. In order to evaluate the effect of discretisation on the performance of both 

models, each model was applied within 3 different spatial resolutions: 0.05m 

(nx=260, ny=130, nz=8); 0.1m (nx=130, ny=70, nz=4) and; 0.2m (nx=65, ny=35, 

nz=2). This enabled investigation of both the process representation and resolution 

requirements for accurate modelling of the reach. For the remainder of the chapter, 

the 0.05m, 0.1m and 0.2m discretisations are referred to as high, medium and low 

resolution, respectively. For each different resolution, the DEM and vegetation 

information was discretised into a raster array which was then used as an input for 

the model. The free surface was represented using a rigid-lid approximation. Within 

this scale model, it is the simplest to implement, and should not introduce 
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significant error over shallow water slopes in a straight channel. Therefore an 

average water surface was taken, which may cause minor changes to the water 

surface edge in the model but should not have a significant impact due to the 

morphology of the river reach. 

The inlet data was interpolated from the time-averaged ADV readings, and all three 

time-averaged velocity components as well as the kinetic energy were applied at 

the inlet. An average velocity and kinetic energy was used throughout the domain 

to initialise the model and aid convergence. The static model was run with a 

standard RNG     turbulence closure model (Yakhot and Orszag, 1986), whereas 

the dynamic model was run using Large Eddy Simulation with a Smagorinsky (1963) 

sub-grid model, hot-started from a converged RNG     solution. Some previous 

studies have sought to model the additional sub-grid turbulent kinetic energy 

production due to vegetation (e.g. Lopez and Garcia, 2001). However, within this 

application, the stem diameter was sufficiently small that the majority of steam-

generated turbulence will dissipate into heat and therefore this term was not 

included in the turbulence closure equations. 

8.4.2 Static vegetation density model 

In the simplest method developed, the vegetation was represented using a drag 

term that was implemented as a momentum source term in the Navier-Stokes 

equations (e.g. Wilson and Shaw, 1977; Fischer-Antze et al., 2001; Lopez and Garcia, 

2001) . The drag term was calculated using Equation 8.1, which gives the total drag 

loss per unit mass (Nepf, 1999).  

              
  (8.1)  

Here,    is the drag coefficient,   is the stem density (per square metre of the bed), 

   is the stem radius (m) and   is the local velocity (m/s). The drag coefficient was 

taken as 1, in line with previous studies (Kim and Stoesser, 2011). There are 

limitations with the assumption of      as previously discussed in Chapters 3 and 

6, and a more effective drag estimation is potentially one key way of improving 

reach-scale model accuracy (Kim and Stoesser, 2011). However, the philosophy 
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applied in the development of this model means that a high-resolution, 

computationally expensive drag treatment is neither appropriate and nor was 

sufficient field data collected to be able to accurately calculate a more appropriate 

value. 

The stem density was estimated as 10,000 stems/m2 based on field observations 

and similarly the stem diameter was estimated as 0.003m. Figure 8.7 shows the 

difficulty associated with assigning a single value for stem density and stem 

diameter due to the significant variation between different parts of the plant. Given 

such variation in stem diameter and density within a single plant and between 

plants, it was necessary to estimate a mean value for both quantities and this was 

performed using image analysis from the laboratory and field. 

 

 

 

 

Figure 8.7: Vegetation sample collected from the field. 

Vegetation locations were geo-located within the domain using the field data 

collected with the EDM, as well as data collected in the field regarding 

submergence depths of the various patches. It was assumed that each patch of 

vegetation filled the height of the domain up to its measured canopy top height. 

This is another simplification as there is likely to be a region of low vegetation 

density beneath each buoyant patch. The cells above the canopy top were then 

treated as free from vegetation. In the top vegetated cell, where the vegetation did 

not occupy the entire cell, the drag force was then scaled linearly accordingly to the 

percentage of cell that was considered vegetated, similar to the MFSA approach 

described in Chapter 3 (Lane et al., 2004) . 
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8.4.3 Dynamic vegetation density model 

The novel, dynamic model developed herein, is more sophisticated in its treatment 

of turbulence as it aims to resolve the turbulence rather than use a simple 

statistical approximation. It is based upon the previous model and uses a similar 

computational technique to the dynamic mass flux scaling algorithm (Section 3.2.3), 

whereby a spatial drag map is created and moves dynamically within the domain 

(Figure 8.8). Thus, there are drag fluctuations which enable variation in mean and 

turbulent flow quantities. In order to consider the unsteady, dynamic nature of the 

flow-vegetation interactions, an LES model was used, which enables representation 

of the larger (shear and flapping) canopy turbulent scales.  

 

 

 

 

 

 

Figure 8.8: Schematic showing the lateral motion of the drag mask. The solid grid 

represents the domain grid whereas the dotted grid represents the plant grid. Darker values 

correspond to higher drag values. The original plant position (a) is altered as each section 

shifts laterally (b) according to the wave equation (Equation 8.2). 

The final implementation of the drag term within the momentum equations is 

performed in a similar manner to the static model, though in this case the values of 

drag at each location in the domain vary dynamically through time and therefore 

must be remapped at each time step. This encourages the development of dynamic 

canopy-scale turbulence which may not otherwise be resolved by the steady model. 

The approach could also be viewed as a temporally variable drag coefficient. 

The motion of the dynamic drag patch is driven by a representative canopy model. 

This model was designed to be simple, and therefore was approximated as a wave 

a) b) 
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equation, such that the lateral displacement,  , of the canopy from its mean lateral 

position at a   distance downstream of the plant front at a time   is given by; 

Here,     and    are the vortex frequencies associated with the shear-scale Kelvin 

Helmholtz instability and vegetation flapping respectively (calculated as described 

below),   is the propagation speed of the vortex,      is a vortex size function and 

   is a constant which defines the wave amplitude. In this initial application, this 

model only deals with lateral motion of the plant. This is in contrast to the previous 

chapters that focussed on the shear layer at the top of the vegetation. However, 

White and Nepf (2007) showed lateral shear layers to be similar to canopy top 

shear layers in terms of process and observed flow structure. Furthermore, in this 

particular case study, given the low submergence depth across the reach, lateral 

shear layers are more likely to affect the reach-scale spatial flow structure. The 

model could be extended to include a vertical fluctuation at the canopy top via a 

similar mechanism. 

As discussed in Chapter 2, one of the key criteria used in the development of this 

type of predictive model is that they should only depend on terms which do not 

require a priori knowledge of the flow. Therefore, all the terms in Equation 8.2 need 

to be known or solvable at the time of calculation. 

The shear layer term has previously received considerable attention (e.g. 

Ghisalberti and Nepf, 2006; Ghisalberti, 2009) and therefore, is simplest to 

parameterise. As discussed in Chapter 4, the vortex shedding frequency can be 

estimated using Equation 8.3 (Ghisalberti and Nepf, 2002); 

          
   

  
 (8.3)  

where, the terms    and   (as defined in Section 4.2) depend purely on the flow 

characteristics of the shear layer and so can be approximated from the mean flow 

conditions. 

                
      

 
                              (8.2)  
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The vortex size function can similarly be estimated (Equation 8.4) using the 

theoretical vortex growth rate,          (see Section 6.2.4), which relies upon 

shear layer variables    and    as defined in Section 4.2. For simplicity, in this work, 

the initial vortex size,      , was taken as 0, effectively assuming that shear layer 

vortices are shed from the front of the canopy.  

      
 

 
           

  

  
   (8.4)  

The propagation speed of the vortices (   is assumed to be equal to the mean 

velocity at the canopy edge (  ). This does not account for the observed 

displacement of the vortices from the canopy edge (Nepf, 2012a). However, given 

the spatial resolution of the model it is not possible to accurately calculate this shift 

directly, and the difference is likely to be sub-grid anyway. 

  

  

 

 

 

 

 

Figure 8.9: Lateral velocity power spectra for the time series taken behind the vegetation 

patch. The red circles highlight two key frequencies, which it is suggested correspond to the 

(a) shear and (b) flapping scale. 

In summary, Equation 8.2 depends only upon the parameters   ,   ,    ,    and   . 

The first three terms require an approximation of the shear layer within the flow, 

whereas the latter 2 require some knowledge of the flapping mechanism. For these 

experiments, the shear layer was parameterised using the RNG     model results 

from the previous model described in Section 8.4.2 (      ,        ,    

    ). This provided a constant shear layer approximation throughout the 

A 
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simulation, which is beneficial for model convergence, and requires less 

computational run-time than calculating the values at each time-step. 

The flapping frequency and amplitude parameters were calculated using the 

velocity power spectrum of the time series taken in the field in the wake of a 

vegetation patch (Figure 8.9). The spectrum of lateral velocity shows a peak at 

approximately 0.27Hz (A) which agrees well with the predicted K-H scale, (0.24Hz) 

and a secondary peak at approximately 0.6Hz (B) which it is suggested corresponds 

to the plant flapping scale. Therefore this value (0.6) was used for    and 

consequently, the amplitude was worked out as 0.06m            . 

8.5 Results 

The results from the static and dynamic model are presented together, to allow 

comparison between the predictive capabilities of both models and are grouped by 

grid resolution which is the other key variable for assessing predictive capability. In 

order to compare the field and model datasets effectively, both datasets have been 

time and depth averaged. The LES data were tested for stationarity to ensure the 

validity of time-averaging. 

As outlined in the methodology set out above, the static and dynamic models use 

different turbulence closure schemes. It is therefore, important to identify any 

differences in flow structure caused simply by the turbulence closure model rather 

than the dynamic aspect of the model. Therefore, the static model was also 

implemented within an LES framework. The downstream (  ) and lateral (  ) velocity 

results from the two static models and the dynamic model are shown in Figures 

8.10 and 8.11. 

Visual comparison in Figure 8.10 shows that there is some difference in prediction 

of downstream velocity between the static RANS (8.10a) and LES (8.10b) models. 

For instance, behind some patches there is a difference in wake shape (dashed 

circles in Figure 8.10b). However, there is also significant difference between the 

static (8.10b) and dynamic (8.10c) LES models. This is particularly evident in changes  
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Figure 8.10: Comparison between downstream velocities from the a) RNG k-e, b) LES and c) 

dynamic LES models. The dots show the corresponding field-measured values. The thick 

black lines show the measured water surface edge. The dashed circles highlight changes in 

wake shape and the dotted circles highlight changes in wake velocity magnitude. 

 

 

 

 

 

 

 

 

 

Figure 8.11: Comparison between lateral velocities from the a) RNG k-e, b) LES and c) 

dynamic LES models. The dots show the corresponding field-measured values. The thick 

black lines show the measured water surface edge. The dotted circles highlight changes in 

wake velocity magnitude. 
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in velocity magnitude in the wake regions (dotted circles in Figure 8.10c). There is 

less of an identifiable change in wake shape, though the reduction in wake velocity 

magnitude does cause the wakes to become wider and more diffuse with much less 

clear wake boundaries (dashed circle in Figure 8.10c). 

Considering the lateral velocities, Figure 8.11 shows that there is some difference 

between the static RANS (Figure 8.11a) and LES (Figure 8.11b) cases, with generally 

lower magnitude velocity peaks in the LES case (see dotted circles in Figure 8.11b). 

The dynamic model increases this effect further, with significantly lower velocity 

peaks associated with regions of flow separation and reattachment (see dotted 

circles in Figure 8.11c). This would be expected as the introduction of turbulent 

eddies and plant motion increases the movement of the wake and therefore there 

is a less well defined wake area which alters through time and therefore average 

velocities in the wake regions are not as low as the static, RANS case. 

Based on these results, it is reasonable to attribute changes in flow structure in the 

dynamic model at least in part to the plant motion and not purely the turbulence 

closure. Therefore, for the remainder of the discussion, only the RANS static model 

and dynamic LES will be compared, with the acknowledgement that some of the 

differences attributed to the dynamic model may in fact be due to the turbulence 

closure model. 

8.5.1 High resolution results 

The key differences in prediction between the high resolution RANS and LES models 

have already been discussed in the preceding section. Therefore, the focus in this 

section is on the agreement between the models and field data. The downstream 

velocity maps for the high resolution models (shown again in Figure 8.12) both 

show relatively good qualitative agreement with the field data particularly across 

cross-sections 2, 4 and 5. In cross-section 4 for example, both models predict the 

position of the vegetation wake (labelled w in Figure 8.12) well. In this case, the 

RANS model (a) appears to perform better, with the LES producing a slightly shorter 

wake. Cross-section 3 shows greater error in both models, particularly at the true 

left of the channel (circled in Figure 8.12) where both models predict high velocities. 
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This suggests that this error may be due to the discretisation of the problem rather 

than the particular vegetation modelling approach as it appears in both models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.12: Downstream velocity maps for the (a) static and (b) dynamic high resolution 

models. The circles show values measured in the field. 

The lateral velocity plots (Figure 8.13) show a similar trend. As with the 

downstream velocity, cross-section 3 shows particularly poor agreement with the 

field data. Both models predict substantially higher cross-stream velocities in most 

locations than measured in the field. Elsewhere, at the other cross-sections, the 

overall velocity trends are similar but there is still significant error. In particular, the 

models both predict flow towards the true right in two locations in cross-sections 2 

and 4 (circled in Figure 8.13) which appears logical given the location of nearby 

vegetation but is not seen in the field data. The outlet (cross-section 5) appears to 
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show best agreement with regions of positive and negative cross-stream velocity 

both identified correctly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.13: Lateral velocity maps for the (a) static and (b) dynamic high resolution models. 

Flow from true right to true left is considered positive. The circles show values measured in 

the field. 

Though the effect of the dynamic model on wake structure is clear, it is difficult to 

assess visually whether or not it leads to an improved prediction of velocity or not. 

In order to quantify the performance of the model predictions, ordinary least 

squares linear regression was performed on the field data and corresponding model 

values. The plot of measured against modelled velocities (Figure 8.14) shows that 

there is significant discrepancy within the values for both the downstream and 

lateral velocities. Both graphs show close pairing between static and dynamic 

model predictions. This suggests that the overall discrepancy between the model 

and field data is as a result of the general model discretisation rather than the 
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behaviour of the vegetation models. There is no clear, consistent pattern across the 

dataset as to which model reduces the error most.  

 

 

 

 

 

 

Figure 8.14: Scatter plots showing agreement between measured and modelled (a) 

downstream and (b) lateral velocities. The black line represents a perfect fit. 

 

  
 
 
 

  

Table 8.1: RMSE values for the different model simulations 

U Static model Dynamic model 

Resolution Intercept Gradient R2 Intercept Gradient R2 

High 0.058 0.535 0.382 0.077 0.47 0.321 

Medium 0.104 0.556 0.266 0.107 0.538 0.226 

Low 0.112 0.380 0.128 0.150 0.262 0.079 

Table 8.2: Regression coefficients and R2 values for downstream velocity 

V Static model Dynamic model 

Resolution Intercept Gradient R2 Intercept Gradient R2 

High -0.004 0.468 0.147 -0.003 0.546 0.240 

Medium -0.001 0.425 0.141 -0.001 0.471 0.156 

Low -0.001 0.198 0.030 -0.009 0.360 0.172 

Table 8.3: Regression coefficients and R2 values for lateral velocity 

The RMSE values (Table 8.1) show that the dynamic model marginally improves the 

lateral velocity accuracy, but marginally worsens the downstream velocity accuracy. 

Overall though, the RMSE is relatively large with ±0.13m/s error in the downstream 

Run ±U (m/s) ±V (m/s) 

0.05m Static 0.130 0.062 

Dynamic 0.136 0.053 

0.1m Static 0.159 0.060 

Dynamic 0.170 0.061 

0.2m Static 0.180 0.069 

Dynamic 0.179 0.051 

a) b) 
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velocity and no model substantially improves prediction over the other. This error is 

evident from the low R2 values obtained from the regression analysis. As well as 

differing significantly from the expected values (intercept=0, gradient=1), the 

regression (Table 8.2 & 8.3) shows a wide spread of data with poor goodness of fit 

(R2=~0.3-0.4). This poor correlation across both models suggests that the general 

model contains a significant level of error encountered during the conceptualisation 

and discretisation of the model. 

For example, it is noticeable in all the velocity maps that the modelled water 

surface edge is significantly different from the measured water surface edge along 

much of the domain, but particularly on the true right bank. It is suggested that this 

is due to uncertainty in defining the water surface edge in the field. There is a clear 

topographic limit to the water surface edge as the banks rise steeply, but close to 

the water’s edge there is some ambiguity as the edges of the channel are lined with 

dense vegetation.  

As discussed in Section 8.4.1, the model water surface edge is based upon the DEM 

and a prescribed water level and therefore assumes flow right up to the bottom of 

the bank. In the field, this region was very densely vegetated and there was no flow 

evident in this region. On the true right bank, the velocities are generally very low 

and so although the spatial region of error is larger, this may not provide as 

significant a source of continuity error as the true-left bank, where there are higher 

velocities near the bank. Furthermore, the change in water surface consequently 

causes a change in channel shape which may influence the mean velocities, 

particularly for the lateral velocity component. This error in the water surface edge 

is found in all of the results across the three different resolutions. 

Another potential source of error is the choice of model parameters. It is not known 

whether these represent an optimal parameter combination. All the parameters 

were chosen based upon physical characteristics calculated from the flow 

measurements which may contain error. Some parameters (such as    and   ) 

were also reach-averaged which may introduce local error. 
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Overall, the effect of the dynamic vegetation model can clearly be seen from the 

velocity maps. In particular, there is a noticeable difference between the wake-

structure and velocity magnitude alongside and behind the vegetation patches, 

which suggests that at this high resolution, the dynamic model is successfully 

representing processes which the static model fails to. However, this improvement 

does not lead to an increase in accuracy when compared to the field data, where 

the agreement is still poor and in some cases, worse.  

8.5.2 Medium resolution results 

With the decrease in resolution from the previous case, the models still both clearly 

resolve and identify wake regions behind the vegetation patches (Figure 8.15). The 

effect of the dynamic model appears to be similar to the high-resolution case, in 

making the wakes more diffuse (circled in Figure 8.15), however, this effect is much 

reduced. As well as being more diffuse, the vegetation wakes are marginally wider 

in the dynamic model, and this causes a noticeable increase in peak velocity 

towards the end of the domain, where flow is more streamlined (shown by dashed 

line in Figure 8.15b). As with the high resolution case, the model qualitatively 

appears to predict the downstream velocity well through cross-sections 2, 4 and to 

a lesser extent 5, with poorer performance along cross-section 3.  

The lateral velocity results (Figure 8.16) again show a very similar pattern between 

the two models, with only very minor differences to the high resolution case. The 

decrease in resolution appears to improve the prediction at cross-section 2, but 

there is still significant error in cross-section 3, where the models over-predict the 

lateral velocity considerably. 
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Figure 8.15: Downstream velocity maps for the (a) static and (b) dynamic medium 

resolution models. The dots show values measured in the field. The dotted line indicates the 

region of faster streamlined flow and the circle represents a region of diffuse wakes. 

The comparison between modelled and measured values (Figure 8.17) shows 

slightly worse agreement with the field data than the high resolution model, 

particularly relating to errors at cross-section 3 which are identifiable within both 

graphs (circled in Figure 8.17). Figure 8.17(a) shows a slight tendency for the 

dynamic model to over-predict in the higher velocity regions and under-predict in 

the low velocity regions, compared to both the static model and field observations 

however this is not the case universally across the domain. 
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Figure 8.16: Lateral velocity maps for the (a) static and (b) dynamic medium resolution 

models. Flow from true right to true left is considered positive. The circles show values 

measured in the field. 

 

 

 

 

 

 

 

Figure 8.17: Scatter plots showing agreement between measured and modelled (a) 

downstream and (b) lateral velocities. The black line represents a perfect fit. The ovals 

highlight regions of poor fit associated with cross-section 3. 
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Table 8.1 shows that the performance of the two models is very similar, but that as 

with the high resolution case, the static model actually outperforms the dynamic 

model for both velocity components. However, as previously stated, it is difficult to 

comment on the relative performance of the vegetation models given the large 

underlying error between the field and numerical data. The regression for both the 

downstream and vertical velocities (Tables 8.2 & 8.3) again show significantly 

different gradients from the expected 1:1 fit. Furthermore, the downstream 

velocity also shows a significantly non-zero intercept (~0.1) suggesting an offset in 

the model data.  

Overall, the medium resolution provides an increase in similarity between the two 

models and a slight decrease in predictive capability for both models from the high 

resolution models. Thus the merits of the dynamic model are reduced compared to 

the high resolution model, though the simulations are less computationally 

intensive. 

8.5.3 Low resolution results 

Reducing the resolution further, the resulting downstream velocity maps (Figure 

8.18) show a broadly similar spatial velocity pattern between the two models. Both 

models pick out the wake structure behind most of the patches well, though in the 

static model, the wakes are stronger (i.e. larger negative velocities). Consequently, 

the flow in-between the vegetation patches is significantly faster in the static model, 

particularly in the first half of the domain (shown by the dotted line in Figure 8.18). 

Here, the dynamic model velocities appear to agree better with the field results. 

For cross-section 2, both models reproduce the measured velocities well, with the 

dynamic model performing marginally better due to the reduction in peak flow 

velocity. Similarly both models perform well at cross-section 4, where the two 

models predict very similar flow velocities. However, the model performs less well 

at cross-section 3, as with the other cases, where there is a significant over-

prediction of the velocity in the region of faster flow. 
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Figure 8.18: Downstream velocity maps for the (a) static and (b) dynamic low resolution 

models. The dots show values measured in the field. The dashed line highlights the region of 

fast flow. 

The lateral velocity plots (Figure 8.19) again show good qualitative agreement 

between the two models. Compared to the field data, both models appear to 

significantly over-predict the lateral velocities particularly in the middle region of 

the domain, around cross-section 3 as seen with the other cases. As with the higher 

resolution cases, the dynamic model predicts lower peak velocities in several flow 

separation regions (dashed circle in Figure 8.19b). There is one exception to this 

(dotted circle in Figure 8.19b) whereby the dynamic model predicts a significantly 

higher velocity. It is not possible to assess which is the more accurate as there are 

no nearby field measurements.  

 

 

a) b) 

XS 1 

XS 2 

XS 3 

XS 4 

XS 5 

XS 1 

XS 2 

XS 3 

XS 4 

XS 5 



                                          Chapter 8: Applying process knowledge to the reach scale 

295 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.19: Lateral velocity maps for the (a) static and (b) dynamic low resolution models. 

Flow from true right to true left is considered positive. The dots show values measured in 

the field. 

The comparison between measured and modelled values (Figure 8.20), again shows 

a wide spread of values for the downstream velocities. Within the lateral velocity 

plot (Figure 8.20b) there is a high level of error particularly relating to cross section 

3. However, there is reasonable visual correlation for some of the lateral velocities, 

though there appears to be an offset in the data (dotted line in Figure 8.20). Similar 

to the downstream velocities, there is little evidence of an improvement in 

predictive capability of the dynamic model. Table 8.1 confirms that in terms of 

RMSE, the dynamic model does outperform the static model for both the 

downstream and lateral velocities, though only slightly.  
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Figure 8.20: Scatter plots showing agreement between measured and modelled (a) 

downstream and (b) lateral velocities. The dotted circle highlights poor data relating to 

cross-section 3. The black line represents a perfect fit. The dotted line shows the offset, 

The R2 values for the downstream velocities (Table 8.2) show a significantly worse 

fit in the low resolution model. This trend is present but less clear in the lateral 

velocities. Overall, the performance of the low resolution models is worse than the 

higher resolution models for the downstream velocities (Table 8.1). However, the 

dynamic low resolution model shows the greatest level of agreement with lateral 

velocities collected in the field, though the improvement is small (~0.01m/s). At the 

lowest resolution, the dynamic model does outperform the static model slightly for 

both velocities. 

8.6 Impact of resolution within the dynamic 

model 

The influence of resolution on model velocity prediction has been discussed 

throughout the preceding sections, however, for ease of comparison, the results 

from the three dynamic models are compared briefly here. The results (Figure 8.21) 

show that for the dynamic model, resolution has little effect on the spatial pattern 

of flow, with wake regions and high velocity regions agreeing well across all three. 

The resolution does appear to have an effect on velocity magnitude however, with 

the results showing a particularly marked difference in the 0.1m model, with 

significantly higher velocity peaks. In terms of predictive capability, though there is 

a) b) 



                                          Chapter 8: Applying process knowledge to the reach scale 

297 
 

little visually distinguishable difference in performance, Table 8.1 does indicate that 

an increase in resolution does lead to a modest increase in performance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.21: Downstream velocity as predicted by the dynamic model for (a) low, (b) 

medium and (c) high resolution grids. The thick black lines show the measured water 

surface edge. The dots represent the field-measured velocities. 

Similarly, with the lateral velocities (Figure 8.22) there are only minor differences in 

the spatial flow pattern between the different resolutions. The largest difference is 

in one particular upstream location (circled), as discussed in Section 8.5.3. This 

location aside, the increase in resolution seems to add detail and alter velocity 

magnitude slightly, but the effect is small. This is illustrated by Tables 8.1-8.3 which 

show no significant improvement in either correlation or error with increasing 

resolution. 
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Figure 8.22: Lateral velocity as predicted by the dynamic model for (a) low, (b) medium and 

(c) high resolution grids. The thick black lines show the measured water surface edge. The 

dots represent the field-measured velocities 

Figure 8.23 shows how the difference in prediction between the static and dynamic 

models, at the ADV measurement locations, changes with resolution. There is little 

evidence of bias within the model results in either the downstream or lateral 

velocities. Particularly at the high and medium grid resolutions, the models perform 

very similarly. At the low resolution, there is some evidence that the dynamic 

model predicts higher minimum velocities and lower maximum velocities, which is 

in agreement with the visual observations that velocity magnitudes seem to be 

smaller in the dynamic case. 

However, the ADV measurement locations do not necessarily accurately represent 

the entire domain. Therefore, a similar analysis has been carried out for the 

velocities at each point within the domain (Figure 8.24). For the downstream 

velocity, at the low resolution there is a clear trend of the dynamic model over-

predicting the velocity relative to the static model. This trend weakens as the 

a) c) b) 



                                          Chapter 8: Applying process knowledge to the reach scale 

299 
 

resolution increases and the graph becomes more symmetrical. It is noticeable that 

the best agreement between models occurs at the medium resolution with a 

qualitatively much better fit than the other two cases. 

 

 

 

 

 

 

 

Figure 8.23: Dynamic model velocity plotted against static model velocity for (a) 

downstream and (b) lateral velocities at each of the ADV measurement locations. Each 

graph shows the low (green), medium (green) and high (red) resolution results. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 8.24: Dynamic model downstream (top) and lateral (bottom) velocity plotted against 

static model velocity for the whole domain with grid resolutions (a) 0.2m, (b) 0.1m and (c) 

0.05m. 

The patterns are very similar for the lateral velocities, however there appears to be 

greater difference between the velocities in the high resolution case. Here there 
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appears to be a portion of the domain in which the static model predicts values 

with a range of approximately 0.3m/s whereas the dynamic model only has a range 

of 0.1m/s. This region is visualised as parallelogram within Figure 8.24c (bottom). It 

is unclear whether this corresponds to a particular spatial area of the domain, or to 

a particular flow condition, experienced at several locations across the domain. One 

possibility is that it relates to wakes behind vegetation patches, where separation 

and therefore lateral velocity is intensified within the static model compared to the 

dynamic model. 

In summary, resolution has a clear impact upon the performance of the two models, 

and the extent to which the models agree. Both models show an increase in 

performance with increased grid resolution and this is to be expected. It is 

interesting to note that the two models are most similar at the medium resolution, 

as shown in Figure 8.24 and also from the regression in Table 8.2. This suggests that 

for this particular reach, the dynamic model has least effect at this resolution. In 

contrast, Figure 8.23 and 8.24 suggest that the difference between the models is 

greatest at the lowest resolution. 

8.7 Comparison with previous work 

Most of the studies which have applied similar drag methodologies within RANS 

frameworks (e.g. Fischer-Antze et al., 2001; Lopez and Garcia, 2001) have focussed 

on the vertical velocity profiles rather than looking at the spatial distribution of 

depth-averaged velocities. Fischer-Antze et al. (2001) did look at the spatial flow 

patterns though not round complex patch structures. To the author’s knowledge 

there have been no studies conducted that investigate the effect of vegetation on 

flow structure in a similar manner to that presented here. It can be viewed as an 

extension of the work regarding blockage factors in channels (e.g.Green, 2005a; 

Nepf, 2012b), except that in those studies, blockage values are collapsed down to a 

single roughness value.  

This study thus represents a step change in the calculation of depth-averaged flow 

in vegetated channels at a reach-scale. Until recently, such improvements have not 
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been possible due to computational and field data collection limitations. However, 

with improved computational capability and the ability to collect high resolution, 

high precision reach-scale data (Lane, 2005), this type of modelling may soon 

become feasible at the reach-scale for management purposes. 

8.8 Chapter summary 

The aim of this chapter was to demonstrate how information from high resolution 

numerical simulations might be used to improve the representation of vegetation 

within reach-scale models. To this end, a novel dynamic vegetative drag model was 

developed and its performance was compared to that of a static vegetative drag 

model over a range of grid resolutions. The accuracy of the simulations, when 

compared to the field data collected in this study is shown in Table 8.1 by the root 

mean square (RMS) error for each of the runs and the regression analysis (Tables 

8.2 & 8.3). 

These figures do not necessarily represent the accuracy of the models over the 

whole domain, but rather at the locations at which ADV data were collected. 

Therefore it is necessary to judge the models visually in addition to their 

performance at the validation points, as measurement error in the field may skew 

these results. Nevertheless, the RMS error values provide a quantitative overview 

of the performance of the models over the range of variables. 

Table 8.1 suggests that for the downstream velocity, resolution has a significant 

impact on model accuracy. This effect is less consistent for the lateral velocity 

values. The difference between the two model performances also varies. The 

simpler static model actually outperforms the dynamic model for both the medium 

and high resolution cases. This is reversed in the low resolution case where the 

dynamic model outperforms the static model slightly.  

The dynamic model took approximately 24 times the computational time required 

for the static run. Similarly, for each doubling in resolution, the computational time 

increased by a factor of eight. The consequence of this is that the dynamic, 0.05m 

resolution simulation took approximately 1500 times the simulation time required 
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for the static 0.2m model. This dramatic increase in computational time only 

resulted in a modest decrease in RMS error of approximately 0.04m/s for the 

downstream velocity, and 0.007m/s for the lateral velocity. 

This is a surprising result, and despite the fact that it is clear that increasing both 

the resolution and modelling complexity does increase process representation, 

from a management perspective it is obvious that in this case the additional 

complexity is not cost-effective. The inaccuracy of the results across a range of 

resolutions calls into question the accuracy of both the discretisation of the channel 

and the field velocity measurements. The field data is an obvious source of error, 

and as discussed in Chapter 5, model data can often be more accurate than the 

field or flume data. In particular there is likely to be some orientation error within 

the ADV measurements. 

However, the model setup may also contain significant error. The similarity in 

values between the two different vegetation models suggests there may be some 

inherent error within the numerical setup. There are a number of different sources 

of error within the simulations, which may have caused differences in the results. 

1) Free surface boundary conditions 

This source of error includes both the assumption of a rigid-lid as well as the 

subsequent assumption of a constant water surface. Both the numerical treatment 

and the parameterisation of the water surface introduce potential error into the 

simulation. The parameterisation of the water surface created a wider river than 

measured in the field, potentially affecting velocity values throughout the domain. 

Together with the rigid lid assumption, this also had an effect in those shallower 

regions of the flow, such as the middle section of the domain, where free-surface 

effects of the flow are not negligible and have an impact on velocities and 

turbulence. This may be the reason for the increased velocities within the centre of 

the domain. 
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2) Topographic boundary conditions 

As discussed earlier, the resolution of the DEM used within the models may be a 

limitation on accuracy. It is likely that the river featured significant topographic 

variation at a scale smaller than 0.2m which was therefore a sub-grid element of 

the topography. It is possible that this topography may have had a profound effect 

on the local velocity measurements at some of the ADV locations. 

3) Model parameters 

The two main parameterisations within the model were the drag value for the 

canopies and the plant motion variables. Given the overall similarity between the 

two model results, it is unlikely that the model plant motion variables were 

responsible for widespread error across the domain, however they may have 

under-represented the effects of plant motion. The drag parameterisation has a key 

effect on flow structure and velocity magnitudes across the domain and therefore it 

is possible that inaccurate estimation of the drag value skewed the results. This 

illustrates the problem explained in Chapter 7 and demonstrates the need for more 

accurate methods of drag modelling at a range of scales. 

4) Grid resolution and convergence 

Although the models were tested at a range of resolutions, it is still possible that 

the finest resolution was below the resolution required in order to effectively 

model the processes operating in the channel. For example, in chapter 3 it was 

discussed that to begin to resolve wake-scale effects behind a vegetation element, 

a width of at least 4 grid cells was optimal, whereas for many of the patches, even 

in the 0.05m simulations, the patches were only 2 or 3 cells wide. Verification 

analysis with the models could help determine the potential error within the 

different resolution models.  

Finally, there may be errors in geo-location between the field and model data. The 

numerical values represent cell averages over volumes of 125-8000cm3 whereas the 

ADV data represent data collected over a much smaller sampling volume (0.25cm3). 

This is particularly a case for the low resolution model, however even at the highest 
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resolution, there is still an order of magnitude difference in averaging volume which 

may introduce errors. 

Nevertheless, considering the various sources of error, these results have 

demonstrated a new methodology for including the effects of vegetation within 

reach-scale models. Though the agreement is quantitatively poor, the visual results 

show that the model is reproducing the general flow structure observed in 

vegetated channels. It is worth noting that even the simple static drag model 

represents a step change in modelling methodology, from the current reach-

averaged vegetation roughness terms. 

This chapter has begun to investigate how the results from high-resolution 

vegetation modelling might begin to inform reach-scale modelling of vegetation. 

For the preliminary study shown here, the inclusion of a dynamic vegetation model 

did improve the process representation within the model, for example altering the 

wake structures and turbulence production rates within the flow. However this 

increase in process representation did not lead to a significant increase in predictive 

capability, as judged by comparison with field data. 

Further work is required to identify at which resolutions increases in model 

complexity are cost-effective, and to establish the applicability of low resolution 

CFD to reach-scale modelling. Nevertheless, this chapter has begun to explore ways 

in which high resolution modelling can be used to inform lower-complexity models. 
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Chapter 9: Conclusions 

9.1 Introduction 

In this chapter, the overall aims of the thesis and research questions that were 

initially developed in Chapter 1 are revisited. The aim of the thesis (Section 1.2) was 

divided into a methodological (A1) and a research aim (A2). These were: 

A1. To develop a model capable of simulating the interaction between flow and 

vegetation from the individual plant scale through to the canopy scale, 

and 

A2. To investigate the controls on the turbulent processes exhibited in canopy 

flows. 

In order to fulfil these aims, a series of research questions were devised. Each of 

these questions is now addressed in turn. Having considered each of the research 

questions, suggestions are presented regarding potential directions of future 

research to further develop this field as well as possible applications of the research.  

9.2 Research Questions 

The research questions, initially developed in Section 1.3, are considered below.  

Q1. What turbulent processes are present within canopy flows? 

As a benchmark, the conceptual model of Nikora (2010) was applied to analyse the 

results. In Nikora’s model, six different scales of turbulence were identified (see 

Figure 9.1). The flume and numerical data in Chapters 5 and 6 confirmed the 

existence of turbulent processes operating at several different scales. Of the six 

scales Nikora included, three scales were clearly identified within these results. 

These include: i) canopy shear (process 2 in Figure 9.1), ii) stem-wakes (process 5 in 

Figure 9.1) and; iii) a plant flapping related scale which it is suggested here is a 

combination of processes 4 and 6 (Figure 9.1). Evidence for shear and wake scale 

turbulence was found both in the vortex detection (e.g. Figures 6.11, 6.28 & 6.40) 

and spectral analysis results (e.g. Figures 6.17 & 6.29). The evidence for the plant-



Chapter 9: Conclusions 

306 
 

flapping-scale is less well defined but was identified through wavelet analysis (e.g. 

Figures 6.63 & 6.75). 

 

 

 

 

 

 

 

Figure 9.1: The six scales of turbulence within vegetated channels as proposed by Nikora 

(2010). The six scales are; 1) boundary layer; 2) canopy shear layer; 3) leaf boundary layer; 4) 

leaf mixing layer; 5) stem wake and; 6) plant flapping scale. 

This leaves two scales (channel and leaf boundary layer) which were not identified 

in this thesis. It is suggested that the spatial resolution was not fine enough in 

either the numerical simulations (the grid discretisation) or flume measurements 

(PIV interrogation window) to be able to detect evidence of plant boundary layer 

turbulence (process 3 in Figure 9.1). Furthermore, both the numerical simulations 

and flume experiments considered depth-limited aquatic flows and therefore it was 

not possible to identify channel boundary layer turbulence (Figure 9.1 process 1). 

This has implications for research question 2.  

In summary, the results presented in this thesis support the general conceptual 

model of Nikora (2010). However, it was not possible to distinguish between the 

leaf mixing layer (4) and plant flapping (6) scales. As such, it is suggested that this 

conceptual model could be modified as these two scales appear to interact to form 

a single plant morphology-governed scale. 

 

 

1 

2 
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Q2. How do aquatic canopy flows differ from terrestrial canopy flows? 

As noted above, the first key difference between aquatic and terrestrial canopies is 

that aquatic flows, in a fluvial context, are typically depth-limited. This tends to 

inhibit the development of a boundary layer above the canopy layer. The second 

important difference, as discussed in Chapter 7, is the weighting in the force 

balance. Aquatic plants are surrounded by a higher-density fluid. This has two 

implications: i) they experience much greater drag than terrestrial canopies (Denny 

and Gaylord, 2002) and; ii) it implies that it is possible for aquatic plants to be 

positively buoyant (Luhar and Nepf, 2011).   

This different weighting in the force balance leads to a change in plant form, 

whereby aquatic plants must find a balance between drag reduction and 

photosynthetic capacity (Bal et al., 2011). Therefore, many aquatic plants (e.g. 

Ranunculus penicillatus, Callitriche platycarpa) exhibit very low stem rigidities to 

allow reconfiguration and minimisation of drag (Sand-Jensen, 2003). This 

represents a significantly different form of vegetation to the rigidity-driven grass or 

reed stems often used in terrestrial studies. Therefore, vegetation can be classified 

as either tensile or bending (as per Nikora (2010)) based on the force balance (see 

Section 7.2).  

This classification does not strictly distinguish between terrestrial and aquatic 

canopies, although all previous terrestrial work has focussed on bending plants. 

Furthermore, while some aquatic work has assumed a bending plant form (e.g. 

Ikeda et al., 2001), the majority of aquatic macrophytes can be classed as tensile 

plants (Siniscalchi and Nikora, 2012). 

It has been shown that these two vegetation types require very different model 

frameworks to represent the different ways, and scales over which, the internal and 

external forces interact. Accordingly, two vegetation models were developed in 

Chapter 3: the Euler-Bernoulli beam model (Figure 9.2a) to represent bending 

vegetation and the N-pendula (Figure 9.2b) model to represent tensile vegetation. 

The application of these different models (Figure 9.2) revealed that they generate 
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different flow characteristics, mainly through vortex production, due to the 

difference in interaction between flow and vegetation (Figure 9.2c & d). 

 

 

 

 

 

 

 

 

 

Figure 9.2: Schematics of the (a) Euler-Bernoullli beam and (b) N-pendula models above an 

excerpt of Figure 7.1 showing the differences in vortex generation between the two 

vegetation types. 

This thesis has clearly shown that while there may be similar characteristics 

between aquatic and terrestrial canopy flows, aquatic canopies exhibit far more 

complex behaviour in response to their different force balance. In particular, this 

thesis has identified a strong, flapping-controlled vortex generation mechanism.  

Q3. How do structural and biomechanical properties of river plants determine 

turbulence dynamics within plant canopies? 

It has been shown that the vortex dynamics within the canopy depend on the 

nature of the vegetation and resultant force balance as shown in Figure 9.2. Thus, 

key biomechanical and structural features such as flexural rigidity, stem diameter, 

stem length and plant density, which determine the plant resistive and buoyancy 

forces, are fundamental in controlling the turbulence structure generated. In the 

simplest case of rigid vegetation, stem diameter and patch-scale properties such as 

stem density and arrangement characterise the drag discontinuity (Nepf et al., 2007) 

a) b) 

d) c) 
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which in turn determine the inflected velocity profile that generates the shear scale 

turbulence. 

Furthermore, in the case of flexible vegetation, the results in Chapters 6 and 7 show 

that flexural rigidity and buoyancy interact with the flow forces in a complex 

manner, which controls the plant reconfiguration. The results in this thesis 

demonstrate that this temporally dynamic plant reconfiguration drives turbulence 

production at the flapping scale (Figure 9.1, process 6). Thus, it is suggested here 

that the biomechanical properties are crucial in defining turbulence dynamics in 

canopy flows. 

Q4. What feedback mechanisms are present between the flow and vegetation 

characteristics? 

Chapter 6 highlighted a key feedback mechanism between the flow and vegetation 

movement whereby the vegetation motion both responds to and actively affects 

the turbulent spectrum of the flow itself. More specifically, the low frequency 

vegetation oscillation appears to be modulated by the canopy shear scale vortices 

while the turbulent flow spectrum shows a clear peak at the natural frequency of 

the vegetation (Figure 9.3c).  

 

 

 

 

 

 

 

Figure 9.3: Downstream velocity and canopy height spectra showing interaction and 

feedback between the two as shown in Figure 6.29. The circles highlight the potential shear 

layer signals (A and D) and the natural frequency signals (B and C). 
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In the case shown in Section 6.3.5, the frequencies were sufficiently different that 

both scales existed independently within the plant and flow data. The interplay 

between these two processes in cases where the natural and shear layer 

frequencies are similar requires further investigation in order to determine whether 

the plant or flow controls the turbulence in such circumstances. This has 

implications for the representation of vegetation within numerical models as it 

dictates whether the flow or vegetation frequency dominates the vortex regime. 

Q5. What key processes need to be represented within high-resolution vegetation 

models? 

It has been shown that the most dominant turbulent process in canopy flows is the 

formation of the canopy shear layer and associated vortex generation. These 

vortices are responsible for the majority of mass and momentum transport 

(Ghisalberti and Nepf, 2009) and therefore have implications for the movement of 

sediment and nutrients within the flow (Okamoto and Nezu, 2009). Thus, an 

appropriate representation of the shear layer processes is vital in models designed 

to further our understanding of the hydraulic, geomorphic and ecological aspects of 

canopy flows. 

It has been shown throughout this thesis that one of the fundamental processes 

which causes the development of the shear layer is the turbulence generated at the 

stem-scale. Moreover, this removal of energy from the mean flow within the 

canopy controls the inflection in the velocity profile. Therefore, in order to 

accurately model the shear-scale processes it is crucial that stem-scale processes 

are sufficiently represented. This involves using spatial grid resolutions that ensure 

that wake processes can be adequately resolved.  

The most significant process which drives this extraction of mean energy from the 

flow at the wake-scale is drag (Raupach and Thom, 1981). If the wake-scale 

processes are fully captured, then the effect of drag on the flow is accounted for 

directly. However, this drag is also one of the main forces driving plant motion. 

Therefore, it is essential that the process of energy extraction via drag is included, 

in order to drive the plant motion which will in turn affect the large-scale vortex 



Chapter 9: Conclusions 

311 
 

generation processes. As shown in Chapter 6, this requires a dynamic drag 

treatment, whereby the force induced by the drag is back-calculated directly from 

the flow field (Figure 9.4). The inclusion of a drag-calculation method is a novel 

approach which, it is suggested, is a significant development in flow-vegetation 

modelling. 

 

 

 

 

 

 

 

 

 

 

Figure 9.4: Vertical drag coefficient profile taken from the Euler beam model at different 

points downstream through the canopy as shown in Figure 3.20 

Q6. Is it possible to improve the representation of vegetation in management-

scale models, by applying a more process-based approach? 

The response to question 5 highlighted two key processes which could be better 

represented within reach-scale models: drag and large-scale turbulent structure. 

Vegetation motion is a third process which is intrinsically linked to both these 

processes. In Chapter 8, a reach-scale model was developed which included a 

physically-based drag term, and a vegetation motion model based upon the key 

vortex characteristics discussed in Chapter 7. Thus, this model represented all three 

key processes, and avoided the use of empirical roughness terms. The results 

showed that the dynamic model resulted in different flow patterns. However, it was 
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difficult to assess any possible improvement in representation due to disparity 

between the field and model data across all of the models. 

Though this was purely an example case study, some conclusions may be drawn 

from these results. Firstly, the simple static drag model demonstrated the potential 

for the application of a drag-based treatment at the reach-scale, given the 

availability of good quality vegetation data. Secondly, the dynamic model 

demonstrated a method for simulating reach-scale canopy dynamics with relatively 

low computational cost, which is dependent on only a few physically-based 

parameters. Though both of these models use a CFD framework, which represents 

an increase in computational time compared to current methods, it is suggested 

that given the increasing availability of low-cost, high performance computing such 

methods may be appropriate in the near future. 

9.3 Further research 

The major methodological aim of this thesis was the development of a high 

resolution numerical model capable of simulating flow-vegetation interactions. 

While this was achieved, there are a number of aspects of the two models which 

could be extended further. Firstly, the present models do not currently deal with 

plant collisions, which in terrestrial canopies have been shown to have a significant 

effect on canopy behaviour (Doare et al., 2004). This process may act to dampen 

the vegetation response to the flow and therefore should be considered. Secondly, 

the current models are single stemmed with no mechanism for including foliage. 

Foliage can inhibit momentum transfer into the canopy (Wilson et al., 2003) and so 

is an important vegetation characteristic. Finally, all the models within this thesis 

assumed a constant flexural rigidity along the stems. This was due to a lack of 

information regarding variation in flexural rigidity along the vegetation. Such 

information could easily be incorporated within the existing models to investigate 

the role of factors such as vegetation age and spatial variability in rigidity in 

determining flow-vegetation interactions. 
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Though these developments were beyond the scope of this thesis, the model 

framework allows these features to be included later. The extension of the models 

to include these three aspects will further increase the model accuracy and 

applicability to a range of natural vegetation types. 

Furthermore, a new approach for the calculation of drag within vegetation models 

was developed in Section 3.7. The importance of including a dynamic drag 

calculation was demonstrated in a single-stalk simulation in Section 6.7. It was 

shown that a constant drag coefficient both underestimated plant motion and 

resulted in a false canopy height. Therefore, a necessary further development of 

the model will be to implement the dynamic drag treatment within the full canopy 

simulations. 

As well as further model developments, there were a number of scenarios which 

were not able to be fully investigated due to time constraints. Most notably, 

Section 6.3 drew attention to the case of flow-vegetation feedbacks where the 

natural frequency of the plants and the shear-layer frequencies are similar. As 

discussed in Section 9.2, under research question 4, investigation of this scenario 

would allow the dominant control within canopy flows to be determined. 

A common theme between Chapters 5 and 8 was the need for high quality flume 

and field data to validate the vegetation models. It has been demonstrated in this 

thesis that field and flume data measurement techniques still appear to lag behind 

those required for model boundary conditions and for full assessment of the 

processes and the model. Therefore, there is a need to develop methods which 

improve our ability to measure both vegetation and flow in the field at a greater 

spatial and temporal resolution. In particular, there is a need to identify methods 

for collecting flow and vegetation data simultaneously to allow validation of 

numerical vegetation motion and flow data accurately. 

Finally, Chapter 8 showed an example of how high resolution results might be used 

to inform lower resolution reach-scale models. In order to improve the predictive 

capability of flood models applied to vegetated channels and floodplains, it is 
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necessary to develop a novel treatment of vegetative roughness that is more 

physically based than the standard empirical methods. 

9.4 Potential applications 

The results of this thesis, and in particular the two high-resolution biomechanical 

models, provide a tool for river management. As discussed in Chapter 1, 

understanding the interaction between flow and vegetation is key to effective river 

management. Therefore these models should be used to further investigate the 

role of vegetation across a range of scenarios and to inform management decisions. 

With the current balance within river management between EU legislation such as 

the Water Framework Directive (2000/60/EC) and the Biodiversity Framework 

(2011/2307(INI)), and the flood management needs of local communities, these 

models could prove vital in quantifying the effects of vegetation at a local scale. 

Furthermore, these results could be developed as discussed in the previous section, 

to improve prediction of flow and sediment dynamics at the reach and catchment 

scale. 

Finally, the models developed within this thesis, using the dynamic mass flux scaling 

algorithm, are generic fluid-structure interaction models. They could therefore be 

adapted for use in a wide range of generic dynamic flows in different environmental, 

biological and engineering contexts. 

9.5 Concluding remarks 

This thesis has developed a new approach for the modelling of aquatic vegetation. 

It has demonstrated the effect that vegetation has on drag and consequently 

turbulence within river channels. The new model approach enables an examination 

of flow-vegetation interaction in a manner hitherto not possible, which has 

significant potential for river management. 
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