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Abstract

Collision-free motions of round robots on metric graphs
Marjan Safi Samghabadi

In this thesis, we study the path-connectivity problem of configuration spaces of two robots

that move without collisions on a connected metric graph. The robots are modelled as

metric balls of positive radii. In other words, we wish to find the number of path-connected

components of such a configuration space. Finding a solution to this problem will help us

to understand which configurations can be reached from any chosen configuration.

In order to solve the above problem, we show that any collision-free motion of two

robots can be replaced by a finite sequence of elementary motions. As a corollary, we

reduce the path-connectivity problem for a 2-dimensional configuration space to the same

problem for a simple 1-dimensional subgraph (the configuration skeleton) of the space.
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Notation

χ(G): The Euler characteristic of G.

OC(G,n): The ordered configuration space of n zero-sized robots on the connected graph

G.

UC(G,n): The unordered configuration space of n zero-sized robots on the connected

graph G.

OD(G,n): The ordered discrete configuration space of n zero-sized robots on the con-

nected graph G.

Sn: The symmetric group Sn is the group of all permutations on n symbols.

OC(G,n;r1,r2, . . . ,rn): The ordered configuration space of n robots with the radii

r1, r2 . . . , rn on the connected metric graph G.

SP(a,b): The set of all non-self intersecting shortest paths between the points a, b on the

connected metric graph G.

EC(G,2;r1,r2): The number of all isolated extreme configurations plus the number of con-

nected components of closures of punctured circles in the set of all extreme configurations.

CS(G,2;r1,r2): The configuration skeleton of 2 robots with radii r1, r2 on the connected

metric graph G.
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Chapter 1

Introduction

In this thesis, we are interested in the collision-free motions of two robots on a connected

metric graph. We will define the space of all configurations of two robots on a connected

metric graph when the two robots do not collide. So we do not allow configurations

where the two robots are too close to each other. Therefore, the space of all collision-free

configurations may have several components. The main result of this thesis is an algorithm

that computes the number of components in the space of all collision-free motions of two

robots on a connected metric graph. This algorithm can be used in the control system of

robot motions. At this point, it is interesting to have an overview about the the history of

Artificial Intelligence. In the following section, we will review the initial ideas of Artificial

Intelligence and how it developed to its current place.

1.1 History

The idea of building an intelligent machinery began in ancient days, by investigating the

possibilities of “placing mind into matter,” or “ machinizing formal reasoning” [29]. In

the 12th century, the problem was described as a machine which combines basic truths

by simple logical operations and produces all knowledge [29]. This investigation evolved

in the 1600’s, by exploring the possibilities of formulating all rational thoughts. In the

20th century, it has been proved that it is possible to machinize the formulated knowledge,

though it is not possible to express all thoughts by Mathematical reasoning [29]. Finally,

in 1956, in the Dartmouth Conference, the academic field of Artificial Intelligence was

1



1.2. Background 2

born leading to many significant developments; mainly improved efficiency and precision

in manufacturing, service and healthcare industries [29].

This intelligent machine was called robot after Joseph Capek used the term to describe the

automates in his fiction story Opilec in 1917 [30]. The first industrial robot, Unimate was

used on the assembly line in 1961, and since then robots have been applied in deep sea,

space exploration, military use and for search and rescue missions [17]. In 1992, robots

called Robodoc have been used in hip replacement surgeries. Robots are classified into two

groups of active and passive, where the former is programmable and the latter translates

movements from an operator.

Due to the extension and variety of applications of robots in daily life, the research carried

out in robotics is significantly increasing every year [17]. Among the many different

challenges arising in the field of Artificial Intelligence, there are some questions which can

be solved using mathematical tools.

In this thesis, we are interested in the problems that are classified as computational

topology in the field of Mathematics. Computational topology applies the tools such as

homology, knot theory, dynamical systems, topological robotics and Morse theory etc.,

to solve applied problems like Hierarchical clustering, denoising density functions, shape

description, surface reconstruction, robot arm motion planning, robot motion planning and

algorithmic problems [32]. More precisely, we are interested in applying topological tools

to solve problems that are applied in robotics, for example, it is possible to describe the

configuration spaces of robots which are moving on a magnetic tape on the factory floor,

by using Euler characteristic, homology groups, and homotopy theory e.t.c. The resulting

information about configuration spaces will help us to understand the motion of robots.

In the following section, we will review research that has been performed in the area of

configuration spaces.

1.2 Background

In this section, we have a brief overview of the past research related to topological robotics.

The problem of finding different topological invariants of the topological space, so called
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configuration space is the main motivation of most research carried out in this topic.

Traditionally, robots follow a guide-path of magnetic tapes on the factory floor. This

tradition naturally leads to modelling the problem of studying the motion of robots on

graphs. Many interesting results when the number of robots is limited to 2 have been

achieved in considerably short period of time. The simplified model when robots are

points have been mostly studied by R. Ghrist [13], D. Koditschek [12], J. Swiatkowski [27].

Further progress achieved by K. Barnett and M. Farber in [3], and has been generalised

by M. Farber and E. Hanbury in [9]. A generalised case has been studied by A. Abrams,

D. Gay and V. Hower; in [2]. The generalised problem for the finite number of points

on trees was studied by M. Farber [7]. The configuration spaces of robots on trees have

also been studied by D. Farley and L. Sabalka [10]. Braid groups of configuration spaces

have been studied by V. Kurlin [20]. Research related to braid groups have been done by

P. Prue and T. Scrimshaw [24], M. Doig and F. connolly [5], Neels and S. Privitera [23].

The most recent result on configuration spaces of finite number of robots on graphs has

been provided by Ki Hyoung Ko and Hyo Won Park [19]. The model has been modified to

configuration spaces of 2 metric balls on metric graphs by K. Deeley in [6]. In line with K.

Deeley’s research, this thesis explores solutions to the generalised question of when there

are 2 metric balls of different radii on metric graphs. In the following section, the plan of

this thesis will be described.

1.3 Thesis plan

This thesis investigates the path-connectivity problem for configuration spaces of robots

defined as metric balls on graphs.

In Chapter 1, first we will review a brief summary of how and why we study these

types of problems, then we explain the link between the giant field of Artificial Intelli-

gence and the problems covered by this thesis, by introducing the young research area of

computational topology. Finally, we list a number of studies on the problems related to

this thesis.
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In Chapter 2, we will review basic definitions that we need to know to continue read-

ing the following chapters. In section 2.1, we explain the model when two robots are

zero-sized. We define the space of configurations for two zero-sized robots on a graph.

Then we define the discrete configuration as a subspace of configuration space. In section

2.2, we consider the model when robots are metric balls and review the background of

configuration spaces of two robots on a metric graph.

In Chapter 3, we investigate the possibility of solving the path-connectivity problem

by reducing the configuration space to a small set of extreme configurations. In this

chapter, we will discover that extreme configurations play a vital role in connectivity of

the configuration space.

In Chapter 4, we look at the initial problem “how to find number of path-connected

components of the configuration space of two robots on a metric graph” with fresh eyes, and

construct the configuration skeleton, for which the number of path-connected components

can be computed easily. In this chapter, we begin with the definition of a subgraph for

the configuration space and several examples to explain the definition. We claim such

subgraph contains the same number of path-connected components as the configuration

space. In Theorem 4.13, we will explain the main technique in details. Finally, we state

the main result in Corollary 4.16.



Chapter 2

Configuration spaces of graphs

2.1 Topological configuration spaces

Definition 2.1. A combinatorial graph G consists of a finite set V (G) of vertices and a

finite set E(G) of unoriented edges. Each edge has two vertices at its endpoints. A loop is

an edge whose endpoints coincide. The degree of a vertex v is the number of edges with

the endpoint v, where any loop at v is counted twice. A hanging vertex is a vertex of degree

one. A cycle is a sequence of distinct edges that starts and finishes at the same vertex. A

tree is a connected graph without cycles.

Definition 2.2. We will define the natural topology on a combinatorial graph G with V (G)

vertices. We draw any V (G) points on R2. For any edge {u,v} of the graph G, we draw an

arc between the corresponding points on R2. If needed, we will slightly deform all arcs to

make sure that any two arcs intersect only at double crossings. We resolve each crossing by

pushing one of its arcs in R3. In the resulting subset G⊂ R3, edges meet only at vertices,

so G has the subspace topology of R3.

Definition 2.3. The Euler characteristic χ(G) of a topological graph G with a finite set

V (G) of vertices and a finite set E(G) of edges is defined as χ(G) = V (G)−E(G).

Lemma 2.4. A connected topological graph G with V (G) vertices and E(G) edges is

homotopy equivalent to a wedge of 1−χ(G) = 1+E(G)−V (G) circles.

Proof. We can contract edges (not loops) of G one by one until we get a wedge of

l(G) circles with a single vertex. Since the Euler characteristic χ(G) = V (G)−E(G) is
5
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presented under these elementary homotopy equivalence, then

V (G)−E(G) = χ(G) = 1− l(G).

Definition 2.5. A zero-sized robot is a point on the connected graph G.

In the following Definition we define the space of all collision-free motions of zero-

sized robots on the connected graph G called the configuration space.

Definition 2.6. The ordered topological configuration space of n zero-sized robots on a

connected graph G is

OC(G,n) = {(x1, . . . ,xn) ∈ Gn | xi 6= x j if i 6= j}.

The symmetric group Sn acts on OC(G,n) by permuting n robots. The quotient space

UC(G,n) = OC(G,n)/Sn is called the unordered configuration space of n zero-sized

robots on G.

OC(G,n) is an n−dimensional complicated space. Our aim is to understand the

topology type of the space OC(G,n), or at least the homotopy type of OC(G,n). We are

mainly interested in path-connectedness of OC(G,n), because any two configurations in a

path-connected component of OC(G,n) are connected by a collision-free motion.

Definition 2.7. [22] Given points x and y of a topological space X , a path in X from x to y

is a continuous map f : [0,1]→ X such that f (0) = x and f (1) = y. A space X is said to

be path-connected if every pair of points of X can be joined by a path in X .

Example 2.8. Consider two zero-sized robots on the segment [0,1] as shown in Fig. 2.1.

The configuration space OC([0,1],2) is the set of all pairs (x,y) where 0≤ x≤ 1, 0≤ y≤ 1,

x 6= y. The line x = y in the square is dashed, because the robots can not be at the same

point in [0,1]. The configuration space OC([0,1],2) is a union of two triangles and has the

homotopy type of two single configurations (0,1), (1,0). Similarly, OC([0,1],n) has the

homotopy type of n! disjoint points.
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00 1

1

1
[0,1] OC([0,1],2)

(1,0)

(0,1)

x y

Figure 2.1: OC([0,1],2) is a union of two triangles. See Example 2.8.

Example 2.9. Consider two zero-sized robots on a circle S1 as shown in Fig. 2.2. Then

OC(S1,2) = {(x,y) ∈ S1× S1 such that x 6= y}. This is a torus without the circle x = y.

As shown in Fig. 2.2, we represent the torus as the quotient of a square and remove the

circle x = y. After a cut-and-paste surgery in Fig. 2.2 we have an annulus without its

boundary. The configuration space OC(S1,2) is homeomorphic to an open annulus which

deformation retracts to a circle. Therefore, OC(S1,2) is path-connected.

a a

a

b b

S1 OC(S1,2)

''
x

y

Figure 2.2: OC(S1,2) is homeomorphic to an annulus. See Example 2.9.

Example 2.10. If we have three zero-sized robots, we move them to the points a = 0, b =
2π

3 , c = 4π

3 on the circle. The robots can move continuously from the configuration (a,b,c)

to (c,a,b). But it is not possible for the robots to move continuously from (a,b,c) to (a,c,b)

as shown in Fig. 2.3. Therefore, OC(S1,3) consists of two path-connected components.

Similarly, for n zero-sized robots on a circle, the configuration space OC(S1,n) has (n−1)!

path-connected components.

In the following example, we explain how to swap n robots on a graph with at least

one vertex of degree greater than 2.

Example 2.11. Consider three zero-sized robots on a tripod. By moving two robots to an

edge and moving the third robot to the edge without robots, the robots can swap after few

such steps as shown in Fig. 2.4.
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a a

b c c b

Figure 2.3: (a,b,c), (a,c,b) are not in the same path-connected component of OC(S1,3).
See Example 2.10.

Figure 2.4: Robots can swap without collision on the tripod. See Example 2.11.

Lemma 2.12. For a connected graph G not homeomorphic to S1, the space OC(G,n) is

path-connected if and only if G contains a vertex of degree at least 3.

If the graph G does not contain any vertex of degree at least 3, the graph G is either a

circle or a segment. As we have seen in Example 2.8, the configuration space OC(G,2) is

not path-connected. In the exceptional case when G is homeomorphic to a circle, OC(S1,n)

for n > 2 robots is not path-connected as shown in Example 2.10.

Example 2.13. Consider two zero-sized robots on the tripod as shown in Fig. 2.5. In this

example we have two cases. (1) When both zero-sized robots are on the same edge. This is

the same as Example 2.8. (2) When two zero-sized robots are on different edges. Then we

can construct OC(T3,2) by identifying sides of six triangles and six rectangles produced in

cases (1), (2), respectively. The configuration space OC(T3,2) is shown in Fig. 2.5. For

more details about this example see [15, Section 3].

Proposition 2.14. [13] If a connected graph G has m vertices of degree greater than 2,

and n > m then the n−dimensional configuration space OC(G,n) deformation retracts to

an m−dimensional cell complex.

When the connected graph has one vertex, i.e. m = 1 in Proposition 2.14, we will have

the following Corollary.
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T3 OC(T3,2)

Figure 2.5: OC(T3,2). See Example 2.13.

k

Figure 2.6: The graph Tk.

Corollary 2.15. [15] For k≥ 2 graph Tk in Fig. 2.6, the space OC(Tk,n) has the homotopy

type of a wedge of Q circles, where

Q = 1+
(n+ k−2)!

(k−1)!
(k(n−1)−2n+1).

By substituting k = 3, n = 2, we get Q = 1. This computation agrees with Example 2.5

when the configuration space OC(T,2) deformation retracts to a circle.

Corollary 2.16. For the wedge Tk,l of k ≥ 2 segments and l circles in Fig. 2.7, the space

OC(Tk,l,n) has the homotopy type of a wedge of Q circles, where

Q = 1+
(k + l +n−2)!

(k + l−1)!
(k(n−1)+ l(2n−1)−2n+1).

Proof. The configuration space OC(Tk,l,n) has the homotopy type of a graph by Proposi-

tion 2.14 and deformation retracts to a wedge of 1−χ(OC(Tk,l,n)) circles by Lemma 2.4.
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l

k

Figure 2.7: The graph Tk,l.

In [8, Section 2.1] all Euler characteristic χ(OC(G,n)) are combined in the power series

euG(t) =
∞

∑
n=0

χ(OC(G,n))
tn

n!
.

The power series euG(t) is presented explicitly in [8, Theorem 2.6]. For the graph Tk,l we

compute euTk,l(t) as follows.

euTk,l(t) = (1− t)−(k+l) · (1+(1− k−2l)t)

=
[

1+ · · ·+
(

k + l +n−2
n−1

)
tn−1 +

(
k + l +n−1

n

)
tn + . . .

]
· (1+(1− k−2l)t).

expanding the brackets, the only two terms with tn are

(
k + l +n−1

n

)
+
(

k + l +n−2
n−1

)
(1− k−2l) =

χ(OC(Tk,l,n))
n!

.

The 2-dimensional configuration space of two robots on T1,1 is homotopically equiva-

lent to a wedge of three circles, since k = 1, l = 1, then Q = 3.

Example 2.17. Consider the graph K5. The configuration space OC(K5,2) deformation

retracts to a 2-dimensional surface of genus 6. See the details in [1, Example 5.1]. In

[1, Example 5.2], the graph G is K3,3. The configuration space OC(K3,3,2) deformation

retracts to a 2-dimensional surface of genus 4.

Example 2.18. Consider two robots on the graph T1,1. By Corollary 2.16, we expect the

configuration space OC(T1,1,2) deformation retracts to a wedge of three circles. The cell

structure shown in Fig. 2.8 illustrates the configuration space OC(T1,1,2).

Example 2.19. Consider two robots on the graph T0,2. By Corollary 2.16, we expect the

configuration space OC(T0,2,2) deformation retracts to a wedge of seven circles. The cell

structure shown in Fig. 2.9 illustrates the configuration space OC(T0,2,2).



2.1. Topological configuration spaces 11

a

b

a

a b

aa

a

b

a

a

a

b

a

T1,1 OC(T1,1,2)

a

b

b

a

b

a

b

OC(T1,1,2)

b

a

a a

a

a

aa

a

Figure 2.8: OC(T1,1,2). See Example 2.18.
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a

a

aa

a

a

a

a a

a

a a

a

a

a

a a a

a

a

a

a

a a

a

a

a

a

OC(T0,2,2)

OC(T0,2,2)

T0,2

Figure 2.9: OC(T0,2,2). See Example 2.19.
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(v1,v4) (v4,v1)

(v3,v2)

(v2,v1)

OD(T3,2)

T3

v4

e3

v3

e1

v1

(v2,v3)

(v1,v2) (v4,v2)
(v4,v3)

(v2,v4) (v3,v1)

v2

e2

(v1,v3)

(v3,v4)

Figure 2.10: Discrete configuration space OD(T3,2).

Definition 2.20. The discrete configuration space OD(G,n) is a closed subspace of

OC(G,n) such that any two robots are at least one edge away from each other on the

graph G.

Example 2.21. Consider two robots on the graph T3 as shown in Fig. 2.10. In order to

find the discrete configuration OD(T3,2), we fix first robot at vertex v1 and move the next

robot along closed edges e2, e3. If first robot moves along e1, then second robot should

stay either at v3 or v4. The space of such motions is shown as OD(T3,2) in Fig. 2.10.
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2.2 Configuration spaces of robots on metric graphs

Definition 2.22. To introduce a metric graph, we start from a combinatorial graph G and

fix a length l(e) ∈ R+ for any edge e ∈ E(G). So we assume that each edge e is isometric

to the segment [0, l(e)] in the Euclidean line. Then the distance d(x,y) between any two

points x, y ∈ G is the length of a shortest path between x, y. The distance function d(x,y)

makes G a metric graph.

Definition 2.23. We define a robot x in a metric graph G as a metric ball with a radius

r ∈ R+ and a centre at a point x ∈ G. The distance between two robots is the distance

between their centres. In other words, robot x is the set of points y∈G such that d(x,y)≤ r.

Example 2.24. If the centre of a robot is a hanging vertex x of G, then the metric ball

centred at x is the closed arc of length r, not 2r. Two robots x, y with a radius r > 0 are

geometrically shown by thick lines on the connected graph H in Fig 2.11. Let all edges

have the same length. Therefore, there are two shortest paths of the same length from x to

y, via e2 or e3.

H

e1

e2

e3

e4

yx

Figure 2.11: There are two shortest paths via e2 or e3 between x, y.

Example 2.25. Consider graph G with 5 edges as shown in Fig. 2.12. The length of the

edges are π, 2π and 2. The robot x with radius π is shown with the thick lines.

Example 2.26. The robot x with radius 3 is shown with thick lines on the connected

metric graph G in Fig. 2.13. The robot x consists of all the points y on the graph G when

d(x,y)≤ 3.

Definition 2.27. The configuration space OC(G,n;r1,r2, . . . ,rn) of n robots with radii

ri > 0 for i = 1, . . . , n, on a connected metric graph G, consists of all configurations of

robots (x1, . . . ,xn) ∈ Gn such that d(xi,x j)≥ ri + r j for i, j ∈ {1, . . . ,n}, i 6= j.
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2

2

π

π

x

2π

Figure 2.12: See Example 2.25.

x

11

1 1

G

2
3

Figure 2.13: See Example 2.26.

Following the definition above, the configuration space OC(G,n;r1,r2, . . . ,rn) is com-

pact, since we allow robots to touch each other when d(xi,x j) = ri + r j. So we exclude

the limit case when all ri = 0 because the inequalities d(xi,x j) ≥ 0 allow collisions of

zero-sized robots.

Example 2.28. As we considered in Section 2.1, the configuration space OC(G,n) is not

path-connected if G not homeomorphic to a circle, does not contain any vertices of degree

greater than 2. Moreover, for n = 2 the connected graph G, if l(e) > 3r for every edge,

then two robots can swap without touching each other. Precisely, two robots can sit on

any edge and all edges have at least the capacity of one and a half robots. Putting this

together with having a vertex of degree greater than 2, the graph G has at least three edges

which can hold two robots and it is easy to see two robots can permute on G, as shown in

Fig. 2.14.

Proposition 2.29. [6] If a connected metric graph G contains at least one vertex of degree
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Figure 2.14: from left to right, swapping black robot with the gray robot.

greater than 2 and r(2n−1) < l(e) for all e ∈ E(G), then OC(G,n;r) is path-connected.

Proof. In this case, OC(G,n;r) is homotopically equivalent to OC(G,n), the ordered

configuration space of n zero-sized robots on G. Since G contains a vertex of degree

greater than 2, it is possible to rearrange robots very similar to the case shown in Fig. 2.14.

Therefore, OC(G,n;r) is path-connected.

Lemma 2.30. Every path-connected component of OC(G,n;r1,r2, . . . ,rn) is compact.

Proof. The graph G ⊂ R3 and the space OC(G,n;r1,r2, . . . ,rn) is a closed and bounded

subspace of R3n. Therefore, OC(G,n;r1,r2, . . . ,rn) is compact.

Example 2.31. Consider two robots of radii r1, r2 on the graph G = [0,1]. When

r1 = r2 = 1
2 , the configuration space OC([0,1],2; 1

2 , 1
2) consists of two isolated configura-

tions (0,1), (1,0). When r1, r2 ≤ 1
2 , the configuration space OC(G,2;r1,r2) consists of

two symmetric triangles as shown in Fig. 2.15 (right). When r1 + r2 > 1, the configuration

space OC(G,2;r1,r2) is empty. All configurations (x,y) are in OC(G,2;r1,r2) satisfy the

condition of Definition 2.27 as |x− y| ≥ r1 + r2.

0 10

1 1

1

deformation retracts to

Figure 2.15: OC([0,1],2;r1,r2). See Example 2.31.

Lemma 2.32. Let l be the length of the shortest edge of a connected metric graph G. If

0 < r1 < r2 < 1
2 l, then OC(G,2)' OC(G,2;r1,r2).
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Proof. In [6], has been shown that OC(G,2)' OC(G,2;r1,r2), where robots have equal

radii. In this argument robots have different but sufficiently small radii, so

that

r1 < r2 ≤ r < 1
2 l.

2.3 Problems

Definition 2.33. The Euler characteristic χ(G) of a topological graph G with a finite set

V (G) of vertices and a finite set E(G) of edges is defined as χ(G) = V (G)−E(G).

Any connected graph G is homotopy equivalent to a wedge of n = 1− χ(G) circles

and has the free fundamental group of rank n.

Definition 2.34. [22]Let the point x belong to the space X . The set of path homotopy

classes of loops based at x equipped with the operation ∗ defined by

f ∗g(s) =

 f (2s), 0≤ s≤ 1
2

g(2s−1), 1
2 ≤ s≤ 1

is called the fundamental group of X relative to the base point x and is denoted by

π1(X ,x).

Definition 2.35. [18, Section 1.1]The braid group Bn is the group generated by n−1

generators σ1, σ2, . . . , σn−1 and the braid relation

σiσ j = σ jσi

for all i, j = 1, 2, . . . , n−1 with |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1

for i = 1, 2, . . . , n−2. The kernel of the natural projection f : Bn→ Sn is called the pure

braid group Pn.
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Lemma 2.36. [1, Section 3.2] If G is a tree, then the fundamental group of OC(G,2) is

free.

The fundamental group of the ordered configuration space OC(G,n) is also called

the pure braid group Pn(G) of n strands on the graph G. The fundamental group of the

unordered configuration space UC(G,n) is called braid group and is denoted by Bn(G).

Example 2.37. If all edges of K5 have length 1 and r1 < r2 < 1
2 , then the fundamental

group of OC(K5,2;r1,r2) is not free.

Indeed, by Lemma 2.32, we have OC(K5,2;r1,r2)' OC(K5,2). By Example 5.1 in

[1, Section 5.1], OC(K5,2) deformation retracts to the closed orientable surface of genus

6. Therefore, fundamental group π1(OC(K5,2)) = π1(OC(K5,2;r1,r2)) is not free.

We conclude that, for a connected metric graph G, the configuration space

OC(G,2;r1,r2) might not be homotopy equivalent to a graph.

For instance, OC(K5,2;r1,r2) is not homotopy equivalent to a graph, so we can not

construct a graph that has the same homotopy type as OC(K5,2;r1,r2). Similarly, for a

connected metric graph, the configuration spaces OC(G,n;r1,r2, . . . ,rn) led to the new

wide class of “braid” groups π1(OC(G,n;r1,r2, . . . ,rn)).



Chapter 3

Extreme configurations of robots

In this chapter, we consider two robots moving on a connected metric graph G. Then we

define an special type of configurations called extreme configurations. At an extreme

configuration, any slight perturbation of two robots reduces the distance between them. We

shall show that there are finitely many isolated extreme configurations. In the following

section we formally define an extreme configuration, and prove that any configuration can

be moved to an extreme configuration.

3.1 Moving a configuration to an extreme one

At any time, two robots can be anywhere on a connected metric graph G as far as they

do not collide with each other. Considering they move away from each other, we explore

those situations when the distance between two robots can not be increased.

Definition 3.1. For a connected metric graph G, a configuration (a,b) ∈ OC(G,2;r1,r2)

is called an extreme configuration if d(a,b)≥ d(x,y), for all (x,y) ∈Ua×Ub, where Ua,

Ub are sufficiently small open neighbourhoods of a, b, respectively. Such a configuration

is called an isolated extreme configuration if d(a,b) > d(x,y), where (x,y) 6= (a,b), for

any (x,y) ∈Va×Vb, for sufficiently small open neighbourhoods Va, Vb.

Example 3.2. If 0 < r1 + r2 ≤ 1, the pairs (0,1), (1,0) ∈ OC([0,1],2;r1,r2) are isolated

extreme configurations since the robots are at the furthest distance from each other as

shown in Fig. 3.1. If 0 < r1 + r2 ≤ 1, any diametrically opposite pair on the circle is a

non-isolated extreme configuration in OC(S1,2;r1,r2) as shown in Fig. 3.2.
19
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0 11− r2r1

Figure 3.1: The isolated extreme configuration (0,1). See Example 3.2.

a

b1

1

Figure 3.2: The non-isolated extreme configuration (a,b). See Example 3.2.

So two robots can move from any configuration of a path-connected component of

OC(G,2;r1,r2) to an extreme configuration in the same path-connected component. By

the following result, the path-connectivity problem for OC(G,2;r1,r2) is reduced to the

smaller subset of all extreme configurations. The diameter of a graph G denoted by

diam(G) is the length of the longest non-self-intersecting path in G.

Proposition 3.3. There is at least one extreme configuration in any path-connected com-

ponent of OC(G,2;r1,r2) for 0 < r1 + r2 ≤ diam(G).

Proof. If (x,y) ∈ OC(G,2;r1,r2) is not extreme, by Definition 3.1 there exist a ∈Ux and

b ∈Uy such that d(a,b) > d(x,y). We can push two robots away from each other until

they reach an extreme configuration. Indeed, since the distance between two robots x, y is

d(x,y)≥ r1 + r2, the configuration space OC(G,2;r1,r2) is compact.

The following definition will be used in Definition 3.6 to define a type of extreme

configurations in OC(G,2,r1,r2).

Definition 3.4. For any points a, b ∈ G, let SP(a,b) be the set of all shortest non-self-

intersecting paths between a, b.

Example 3.5. In Fig. 3.2, the set SP(a,b) consists of two symmetric semi-circles with the

endpoints a, b. In Fig. 3.1, there is a unique path between two robots.

We have seen in Definition 3.1 that at extreme configurations, the robots are locally at

the furthest distance. Now, we will define a new type of configuration.
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Definition 3.6. Points a, b ∈ G are called antipodal if both the following conditions hold:

1) the set SP(a,b) contains at least two different paths;

2) all edges at a, b belong to the paths from SP(a,b).

Example 3.7. For the graph shown in Fig. 3.3, we have the set SP(a,c)= {abc,adbc,adc}.

Since each edge at a and c belongs to a path in SP(a,c), we can say a, c are antipodal. In

Fig. 3.4, there are three paths from a to b. One path has length three, while two paths have

length two. So the path with length three does not belong to SP(a,b). Therefore, a, b are

not antipodal.

2

a

b

c

1

1

2
1

d

Figure 3.3: SP(a,c) = {abc,adbc,adc}, so a, c are antipodal points. See Example 3.7.

2 2 3

a

b

Figure 3.4: a, b are not antipodal.

Remind that a topological circle is a subgraph homeomorphic to S1 and a hanging

vertex is a vertex of degree one. All possible cases of antipodal points are described in the

following lemma.

Lemma 3.8. If a, b are antipodal points then exactly one of the following cases is true.

(1) The points a, b are hanging vertices; see Fig. 3.5(1).

(2) The point a is a hanging vertex and b is on a topological circle (or vice versa); see

Fig. 3.5(2).

(3) The points a, b are non-hanging vertices not on the same topological circle; see
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Fig. 3.5(3).

(4) The points a, b are diametrically opposite points on the same circle; see Fig. 3.5(4).

Proof. If a is not on any topological circle, then all shortest paths from a to b should start

with the same edge at a, otherwise, the union of two paths starting with different edges at

a contains a topological circle. Then by Definition 3.6, the point a has only one edge, and

we arrive at one of the cases (1) or (2). If a, b are not hanging, by Definition 3.6, then we

can either have case (3) or case (4). If a, b are antipodal points on the same circle, then a,

b are diametrically opposite.

b

a

(1)

1

1

1

1

b

a a

1 1

b

b 1

1

a

(2) (3) (4)

Figure 3.5: All four cases of antipodal points, see Lemma 3.8.

3.2 A characterisation of extreme configurations

We investigate for which two points a, b of a graph, (a,b) is an extreme configuration.

When we consider a configuration (a,b) from the space OC(G,2;r1,r2), we always assume

that d(a,b)≥ r1 + r2 without stating explicitly further.

Lemma 3.9. If a, b are hanging vertices of a metric graph G and d(a,b)≥ r1 + r2, then

(a,b) is an isolated extreme configuration in OC(G,2;r1,r2).

Proof. Since deg a = 1, then any shortest path from a to another vertex can become only

shorter if a is slightly perturbed. (Similarly for b).

Lemma 3.10. If a, b are non-hanging antipodal points of a connected metric graph G and

d(a,b)≥ r1 + r2, then (a,b) is an extreme configuration in the space OC(G,2;r1,r2).
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Proof. We shall prove that (a,b) satisfies Definition 3.1. Namely, if x, y are sufficiently

close to a, b, then d(a,b) ≥ d(x,y). Since a, b are antipodal, then by Definition 3.6, all

edges at a, b belong to the shortest paths between a, b, and there are at least two such

paths.

• Case 1. If x, y are on the same shortest path between a, b, then d(x,y) < d(a,b) as

shown in Fig. 3.6.

• Case 2. If x, y are on different paths, then for ∆ = d(b,y)− d(a,x), we have

d(x,y)≤ min {d(a,b)+∆, d(a,b)−∆} ≤ d(a,b).

In particular, if x, y are diametrically opposite points, then d(x,y) = d(a,b). Therefore, by

Definition 3.1 the configuration (a,b) is extreme.

x

a

y

b...

Figure 3.6: Points from small neighbourhoods of antipodal points a, b can be on the same
path such as x, y.

x

a b...
y

Figure 3.7: Points from small neighbourhoods of antipodal points a, b can be on different
paths such as x, y.

Lemma 3.11. If a configuration (a,b) ∈ OC(G,2;r1,r2) is extreme, then a, b are vertices

of degree one or a, b are antipodal points.

Proof. By Definition 3.1 the configuration (a,b) is extreme if d(a,b) ≥ d(x,y) for all

x ∈Ua and y ∈Ub where Ua, Ub are small neighbourhoods of a, b, respectively. For the
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case when deg a = deg b = 1, we acheive the desired conclusion that a, b are hanging

vertices.

We will prove that (a,b) are antipodal by contradiction. Let us assume that at a there is an

edge that does not belong to any path in SP(a,b). It is possible to choose a point x ∈Ua on

this edge close enough to x such that the shortest path between x, b includes one of the

paths in SP(a,b). So

d(x,b) = d(x,a)+d(a,b) > d(a,b)

which contradicts the assumption d(x,y)≤ d(a,b) for all (x,y) ∈Ua×Ub.

Therefore, there is no edge at a or b which does not belong to the paths in the set SP(a,b).

Since in this case deg a > 1 and all edges at a belong to the paths in SP(a,b), then SP(a,b)

has at least two elements. Therefore, a, b are antipodal points.

Proposition 3.12. A pair (a,b) ∈ OC(G,2;r1,r2) is an extreme configuration if and only

if a, b are hanging vertices or a, b are antipodal points.

Proof. If (a,b)∈OC(G,2;r1,r2) is an extreme configuration by Lemma 3.11, then a, b are

vertices of degree one or a, b are antipodal points. The reverse follows from Lemma 3.9,

Definition 3.6(2) and Lemma 3.10.

3.3 Isolated extreme configurations

Lemma 3.13. If a, b are antipodal points including exactly one hanging vertex, then

(a,b) ∈ OC(G,2;r1,r2) is an isolated extreme configuration.

Proof. By Lemma 3.10 the pair (a,b) is extreme. Considering a as a hanging vertex,

then G has the subgraph H shown in Fig. 3.8 containing at least two different paths α,

β starting with different edges at b and finishing with the same hanging edge at a. For

any (x,y) ∈Ua×Ub where x 6= a, y 6= b, we have d(x,y) < d(a,b). Therefore, the extreme

configuration (a,b) is isolated by Definition 3.1.

Lemma 3.14. If antipodal points a, b are not hanging vertices and are not on the same

topological circle, then (a,b) is an isolated extreme configuration.
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a

UbUa

b

β

α

H :

Figure 3.8: Subgraph H presents at least two different paths from a to b.

Proof. By Lemma 3.10 the pair (a,b) is extreme. For the antipodal points a, b, the graph

G has the subgraph F shown in Fig. 3.9 containing at least two different paths α, β

starting with different edges at a and finishing with two different edges at b. For any

(x,y) ∈ Ua×Ub, we have d(a,b) > d(x,y), for (x,y) 6= (a,b), so (x,y) is not extreme.

Therefore, the extreme configuration (a,b) is isolated by Definition 3.1.

F :

Ua

a
b

Ub

Figure 3.9: Subgraph F contains more than one path from a to b. See Lemma 3.10.

Example 3.15. In Fig. 3.10, the antipodal pair (a,b) is isolated. But in Fig. 3.11, the

antipodal pair (c,d) is not isolated since c, d are on the same topological circle going

through the vertices.

Example 3.16. In Fig. 3.12, consider the point a and its diametrically opposite point d.

The configuration (a,d) is not extreme since it is possible to push a away from d within

the edge e1. Also, the configuration (b,c) is not extreme if the edge e between b, c does

not belong to SP(b,c). All pairs of diametrically opposite points on the circle excluding

(a,d), (b,c) are extreme. All of these extreme configurations are non-isolated such as

(x,y) since there are many extreme configurations in Ux×Uy.



3.4. An upper bound for path-connected components 26
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1
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Figure 3.10: (a,b) is an isolated extreme configuration.
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Figure 3.11: (c,d) is a non-isolated extreme configuration.

Proposition 3.17. A configuration (a,b) is an isolated extreme configuration if and only if

(1) a, b are hanging vertices,

(2) a, b are antipodal points not on the same circle.

Proof. If a, b are hanging vertices or if (a,b) are antipodal points not on the same circle,

by Lemmas 3.9, 3.13 and 3.14, the configuration (a,b) is an isolated extreme configuration.

The converse follows from Proposition 3.12, indeed, we exclude only antipodal points on

the same circle. These are not isolated.

3.4 An upper bound for path-connected components

Lemma 3.18. If points a, b are diametrically opposite points of degree two on the same

topological circle C of G, then (a,b) is a non-isolated extreme configuration.

Proof. By Lemma 3.10 the configuration (a,b) is extreme. Consider any diametrically

opposite points x, y that are sufficiently close to a, b, respectively, in the given circle
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a e1

b

c

d
e

Ux

Uy

x

y

Figure 3.12: The edge e is longer than the semi circle. The configurations (a,d), (b,c) are
not extreme. See Example 3.16.

C. Then x, y also have degree 2 and form an extreme configuration. Therefore, by

Definition 3.1, the configuration (a,b) is not isolated.

In the following example we will see that the reverse of the Lemma 3.18 is not always

true.

Example 3.19. Consider the graph shown in Fig. 3.13. The extreme configuration (a,b)

is non-isolated but a, b have degree 3, not 2.

1

1

1

a b

Figure 3.13: (a,b) is a non-isolated extreme configuration. See Example 3.19.

Lemma 3.20. If (a,b) is a non-isolated extreme configuration then a, b are diametrically

opposite points on the same topological circle.

Proof. By Proposition 3.12, the points a, b are either hanging vertices or antipodal points.

In Lemma 3.8, we discuss all different cases when a, b are antipodal. Proposition 3.17

excludes all cases except when the points a, b are diametrically opposite on the same

topological circle of G.
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Example 3.21. Consider the graph G shown in Fig. 3.14. The configuration (x,y) of

diametrically opposite points x, y is not extreme, since we can push the robots away along

hanging edges. Similarly, the configurations (u,v), (w,z) are not extreme. But all other

diametrically opposite points on the circle form non-isolated extreme configurations in

OC(G,2;r1,r2).

x

y

u v

w

z

Figure 3.14: (x,y), (u,v), (w,z) are not extreme configurations. See Example 3.21.

Proposition 3.22. All extreme configurations are either isolated extreme configurations or

form punctured circles (with finitely many pairs of diametrically opposite points removed).

Proof. By Lemma 3.18, diametrically opposite points of degree two on the same topologi-

cal circle form a non-isolated extreme configuration. By Lemma 3.20, any non-isolated

extreme configuration (a,b), consists of diametrically opposite points a, b on the same

topological circle.

Example 3.23. Consider the connected metric graph G shown in Fig. 3.15. Two robots

with radii r1 = r2 = 1 are at the non-isolated extreme configuration (a,b). The configuration

(c,d) is disjoint with the rest of the configuration space. So we can not continuously move

the extreme configuration (a,b) to the isolated extreme configuration (c,d).

Definition 3.24. Denote by EC(G,2;r1,r2) the number of all isolated extreme configura-

tions plus the number of connected components of closures of punctured circles in the set

of all extreme configurations.

Corollary 3.25. The number of path-connected components of OC(G,2;r1,r2) is not

greater than EC(G,2;r1,r2).
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1

1

2 2

4

4

a

c

d

b

G

Figure 3.15: No continuous collision-free motion from (a,b) to (c,d). See Example 3.23.

Proof. By Proposition 3.16, each path-connected component of OC(G,2;r1,r2) contains

at least one extreme configuration.

We label all vertices of a connected metric graph G by v1, v2, . . .vn. We represent G by

its distance matrix D(G) where each entry ei j of D(G) is the the length of the edge joining

two adjacent vertices vi, v j. If there are multiple edges between vertices vi, v j in G, then

we include the list of lengths of all edges for the entry ei j of D(G). The entry ei j = 0 if the

vertices vi, v j are not connected.

Example 3.26. The following distance matrix D(G) illustrates the graph G in Fig. 3.16.

v1 v2 v3 v4

v1 0 0 2 5

v2 0 0 2 0

v3 2 2 0 4

v4 5 0 4 2

(3.27)

The distance matrix D(G) has only one row with one nonzero entry, so G has one hanging

vertex. Moreover, the number of nonzero entries in each row shows the degree of the

associated vertex. For any vertex, a nonzero entry at the diagonal of the matrix shows a

loop at that vertex which will contribute two to the degree of the vertex.
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v1

2
5

v3 v2

4
v4

2

2

Figure 3.16: The graph G from Example 3.26.

We can find the number EC(G,2;r1,r2) of any graph G algorithmically. The input of

the algorithm is the distance matrix D(G) and the output is EC(G,2;r1,r2). This result

reduces the path-connectivity problem for the configuration space OC(G,2;r1,r2) to a

finite set of extreme configurations EC(G,2;r1,r2) (all isolated extreme configurations

plus one configuration from each punctured circle). But we could not find a way to

decide whether two extreme configurations are in the same path-connected component of

OC(G,2;r1,r2). To find the number of path-connected components of the configuration

space OC(G,2;r1,r2), we shall follow a different approach in Chapter 4.



Chapter 4

Configuration skeletons of graphs

4.1 The configuration skeleton of a graph

In this chapter we consider two robots with radii r1, r2 > 0 on a connected metric

graph G. We define the configuration skeleton CS(G,2;r1,r2) as an special subgraph

in OC(G,2;r1,r2). We shall show later in Theorem 4.13 that CS(G,2;r1,r2) has the same

number of path-connected components as OC(G,2;r1,r2).

Definition 4.1. Let G be a connected metric graph. We assume that any vertex on a

topological circle C ⊂ G has a diametrically opposite vertex, otherwise, we add the

diametrically opposite vertex of degree two to the circle C. The configuration skeleton of

OC(G,2;r1,r2), denoted as CS(G,2;r1,r2), is the following combinatorial graph whose

vertices are all pairs (u,v), where u, v are vertices of G and the distance d(u,v)≥ r1 + r2.

(1) We connect vertices (v,u), (w,u) by an edge in CS(G,2;r1,r2) if v, w are connected by

an edge in G. (Similarly, we connect the vertices (u,v), (u,w).)

(2) We connect vertices (u,v), (w,z) by an edge in CS(G,2;r1,r2) if

• u, w, are adjacent vertices on a topological circle C ⊂ G, and

• v, z, are adjacent vertices on the same topological circle C ⊂ G, and

• d(u,z) < r1 + r2, d(v,w) < r1 + r2, see Fig. 4.2.

Example 4.2. Let the metric graph G be a circle with two diametrically opposite vertices

u, v as shown in Fig. 4.1. If 0 < r1 + r2 ≤ 1, the configuration skeleton CS(G,2;r1,r2) has
31
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two vertices (u,v), (v,u) that are connected by two edges as defined in Definition 4.1(2).

This is a particular case when w = v, z = u. Robot 1 moves clockwise from u to v and

simultaneously, robot 2 moves clockwise from v to u. Similarly, robot 1 moves

counterclockwisely from u to v and simultaneously, robot 2 moves counterclockwisely from

v to u. If 1 < r1 +r2, the configuration space OC(G,2;r1,r2) is empty, so is CS(G,2;r1,r2).

1

0 < r1 + r2 ≤ 1
CS(G,2;r1,r2)G

1

u

v

(u,v)

(v,u)

Figure 4.1: The configuration skeleton is a circle. See Example 4.2.

Example 4.3. Consider the circle G with four vertices as shown in Fig. 4.2. If

2 < r1 + r2 ≤ 3, the configuration skeleton CS(G,2;r1,r2) has four vertices. By Defini-

tion 4.1(2), the vertices (u,w), (v,z) are connected with an edge. Similarly, the vertices

(u,w), (z,v) are connected with an edge. symmetrically, the vertices (w,u), (v,z) are con-

nected with an edge. Also the vertices (w,u), (z,v) are connected with an edge. Therefore

the configuration skeleton CS(G,2;r1,r2) is a circle as shown in Fig. 4.2.

2

2

G

11

CS(G,2;r1,r2)
2 < r1 + r2 ≤ 3

u v

wz

(u,w) (v,z)

(z,v) (w,u)

Figure 4.2: If 2 < r1 + r2 ≤ 3, the configuration skeleton is a circle. See Example 4.3.

If 0 < r1 + r2 ≤ 1, the configuration skeleton has twelve vertices, as shown in Fig. 4.3.

In this case, since the distance between any two vertices of G is greater or equal to r1 + r2,
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the vertices in CS(G,2;r1,r2) are connected by an edge if Definition 4.1(1) is satisfied. For

example, the vertices (u,v), (u, ,w) are connected with an edge since v, w are adjacent in G.

If 1 < r1 +r2 ≤ 2, the configuration skeleton does not have the vertices (u,z), (w,v), (v,w),

(z,u). So either the vertices (u,w), (u,v) are connected by an edge by Definition 4.1(1),

or the vertices (u,w), (v,z) are connected by an edge by Definition 4.1(2). The resulting

configuration skeleton is shown in Fig. 4.3.

CS(G,2;r1,r2)
0 < r1 + r2 ≤ 1

(v,z)
(z,v)

(w,z)

(z,w)

(v,w)

(w,v)

(u,w)

(z,u)

(w,u)

(u,z)

(v,u)

(u,v)

Figure 4.3: Configuration skeleton for 0 < r1 + r2 ≤ 1. See Example 4.3.

Example 4.4. Consider the metric graph G with three edges and three vertices as shown

in Fig. 4.5. The distance d(vi,v j) ≥ 1 for i = 1,2,3 and j = 1,2,3. If 0 < r1 + r2 ≤ 1,

the configuration skeleton CS(G,2;r1,r2) has six vertices. Since the vertices v1, v2 are

on the same topological circle, by Definition 4.1(2), the vertices (v1,v2), (v2,v1) are

connected by an edge in CS(G,2;r1,r2). Also if a robot is fixed at v1, we can move the

second robot from v2 to v3. So the vertices (v1,v2), (v1,v3) are connected by an edge
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CS(G,2;r1,r2)
1 < r1 + r2 ≤ 2

(v,u)

(u,v) (v,z)

(z,v)

(w,u)

(z,w)

(w,z) (u,w)

Figure 4.4: Configuration skeleton for 1 < r1 + r2 ≤ 2. See Example 4.3.

in CS(G,2;r1,r2). Finally, we fix second robot at v3 and move the first robot from v1

to v2, by Definition 4.1(1). So the vertices (v1,v3), (v2,v3) are connected by an edge in

CS(G,2;r1,r2). Symmetrically, the remaining two vertices are connected by an edge to

this graph as shown in Fig. 4.5 (middle). If 1 < r1 + r2 ≤ 2, a robot can not stand at v2, so

CS(G,2;r1,r2) has two isolated vertices as shown in Fig. 4.5 (right). The vertex (v1,v3),

(v3,v1) are not connected since v1, v3 are not adjacent and are not on a topological circle.

v3

1

1 1

(v2,v1)

(v3,v1)

(v3,v2)

(v2,v3)

CS(G,2;r1,r2)
0 < r1 + r2 ≤ 1

CS(G,2;r1,r2)

v2

(v1,v2)

(v1,v3)

(v3,v1)

(v1,v3)

v1

1 < r1 + r2 ≤ 2G

Figure 4.5: The configuration skeletons of graph G. See Example 4.4.

Example 4.5. Consider the wedge G of two circles as shown in Fig. 4.6. If 0 < r1 +r2≤ 1,

similar to the Example 4.4, the configuration skeleton CS(G,2;r1,r2) consists of six

vertices. By Definition 4.1(2), the vertices (v2,v3), (v3,v2) are connected by an edge,

since v2, v3 are on the same circle as shown in Fig. 4.6 (middle). If 1 < r1 + r2 ≤ 2, the

configuration skeleton CS(G,2;r1,r2) has two isolated vertices as shown in Fig. 4.6 (right).

Example 4.6. Consider the metric graph G with 4 vertices and three edges with length 1

as shown in Fig. 4.7. If 0 < r1 + r2 ≤ 1, the configuration skeleton CS(G,2;r1,r2) consists
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1

(v2,v1)

(v3,v1)

(v3,v2)

CS(G,2;r1,r2)

(v3,v1)

(v1,v3)

1
v2

11

(v1,v2)

(v1,v3)

CS(G,2;r1,r2)v3
G

v1

0 < r1 + r2 ≤ 1 1 < r1 + r2 ≤ 2

(v2,v3)

Figure 4.6: The configuration skeletons of graph G. See Example 4.5.

of 12 vertices as shown in Fig. 4.7 (middle). By Definition 4.1(1), a robot is fixed at vertex

v1, and the other robot is moved along one edge from v2 to v3. Similarly, we continue by

fixing one robot at a vertex and move the second robot along an edge. For 1 < r1 + r2 ≤ 2,

the configuration skeleton CS(G,2;r1,r2) has six isolated vertices since there is not any

pair of adjacent vertices in G, as shown in Fig. 4.7 (right).

v1

v3
1

(v1,v2)
(v1,v3)

(v1,v4)

(v3,v4)

(v2,v4)

(v2,v3)
(v2,v1)

(v3,v1)

(v4,v1)

(v4,v3)

(v4,v2)

(v3,v2)

(v1,v4)

(v2,v4)

(v2,v1)

CS(G,2;r1,r2) CS(G,2;r1,r2)

(v1,v2)

(v4,v1)

v4

v2

1

1 (v4,v2)

G 0 < r1 + r2 ≤ 1 1 < r1 + r2 ≤ 2

Figure 4.7: The configuration skeletons of graph G. See Example 4.6.

Example 4.7. Consider the metric graph G with four vertices and three edges with dif-

ferent lengths as shown in Fig. 4.8 (left). If 0 < r1 + r2 ≤ 1, the configuration skeleton

CS(G,2;r1,r2) has 12 vertices. Similarly to Example 4.6, if 1 < r1 + r2 ≤ 2, by fixing a

robot at vertex v1, the other robot can not stand on v3. So CS(G,2;r1,r2) has 10 vertices

and 8 edges as shown in Fig. 4.8 (top-right). If 2 < r1 + r2 ≤ 3, fixing a robot at v3, the

other robot can only stand on v4. So CS(G,2;r1,r2) has 8 vertices and four edges. By

Definition 4.1, the vertices (v1,v4), (v3,v4) are connected by an edge in CS(G,2;r1,r2),

Similarly, the vertices (v3,v4), (v2,v4) are connected by an edge as shown in Fig.4.8

(bottom-left). For 3 < r1 + r2 ≤ 4, the configuration skeleton CS(G,2;r1,r2) has four

isolated vertices since, robots can not stand on v3. Finally, for 4 < r1 + r2 ≤ 5, the con-

figuration skeleton CS(G,2;r1,r2) has two isolated vertices (v2,v4), (v4,v2) as shown in
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Fig. 4.8 (bottom-right).

v1

v3
1

(v1,v2)
(v1,v3)

(v1,v4)

(v3,v4)

(v2,v4)

(v2,v3)
(v2,v1)

(v3,v1)

(v4,v1)

(v4,v3)

(v4,v2)

(v3,v2)

(v1,v4)

(v2,v4)

(v2,v1)

(v4,v2)

(v1,v2)

(v4,v1)

v2
2

3

(v3,v2)

(v4,v3)

(v2,v3)

(v3,v4)

CS(G,2;r1,r2)
2 < r1 + r2 ≤ 3

(v1,v4)

(v2,v1)

(v4,v1)

(v4,v2)

(v3,v4)

(v2,v4)

(v1,v2)

(v4,v2)

(v4,v1)

(v1,v4)

(v2,v4)

(v4,v2)

(v2,v4)
(v4,v3)

CS(G,2;r1,r2)
3 < r1 + r2 ≤ 4

CS(G,2;r1,r2)
4 < r1 + r2 ≤ 5

v4

G
CS(G,2;r1,r2)

0 < r1 + r2 ≤ 1
CS(G,2;r1,r2)

1 < r1 + r2 ≤ 2

Figure 4.8: The configuration skeletons of graph G. See Example 4.7.

4.2 Elementary motions

Lemma 4.8. There is a path from any configuration (x,y) ∈ OC(G,2;r1,r2) to a vertex

(u,v) ∈CS(G,2;r1,r2).

Proof. The nontrivial case is when (robot 1 at) x or (robot 2 is at) y is not at a vertex of G.

Consider x is at a vertex, then push y away from x until y reaches a vertex. Assuming x, y

are diametrically opposite on the same topological circle, then keeping x fixed and pushing

y away will only decrease d(x,y). But by our assumption, we have added a diametrically

opposite vertex to each vertex on any topological circle of G.

Definition 4.9. An elementary motion in OC(G,2;r1,r2) is defined as follows.

(1) Let u, v, w ∈ G be vertices. For instance, see Fig. 4.9(1). If

• v, w are connected with an edge in G, and

• d(v,w)≥ r1 + r2,
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then the motion from (u,v) to (u,w) is called elementary. This means the first robot is

fixed at vertex u and the second robot moves from v to the adjacent vertex w. (Similarly,

we define an elementary motion from (v,u) to (w,u)).

(2) Let the vertices u, v, w, z be on a topological circle C ∈ G, see Fig. 4.9(2). If

• d(u,v)≥ r1 + r2, d(w,z)≥ r1 + r2, and

• u is adjacent to w and v is adjacent to z,

then we can move the first robot from u to w and simultaneously, the second robot from v

to z in the same direction on the topological circle C ∈ G without collisions. This motion

is also called an elementary motion.

w

u

v

(1)

u
w

v

z

(2)

Figure 4.9: Two types of elementary motion. See Definition 4.9.

Lemma 4.10. The configuration skeleton CS(G,2;r1,r2) can be considered as an embed-

ded topological graph in OC(G,2;r1,r2).

Proof. By Definition 4.1, all vertices of the configuration skeleton CS(G,2;r1,r2) are

configurations in OC(G,2;r1,r2). By Definitions 4.1 and 4.9, every edge in CS(G,2;r1,r2)

between two vertices is an elementary motion between the same configurations in

OC(G,2;r1,r2). Any two edges in CS(G,2;r1,r2) may meet only at vertices as desired.

Lemma 4.11. Let u, v, w, z be vertices of G. Assume that there is a collision-free motion

from (u,v) to (w,z), where u is adjacent to w and v is adjacent to z. If d(u,z) ≥ r1 + r2
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or d(w,v)≥ r1 + r2, then the motion can be replaced by two elementary motions without

collisions.

Proof. Assuming that d(w,v)≥ r1 + r2, we fix robot 2 at v and move robot 1 from u to w,

see Fig. 4.9(2). Then we fix robot 1 at w and move robot 2 from v to z. If d(u,z)≥ r1 + r2,

we fix robot 1 at u and move robot 2 from v to z. Then we fix robot 2 at z and move robot 1

from u to w. So we have the motion from (u,v) to (w,z) either via (w,v) or via (u,z).

The assumptions of Lemma 4.12 below will hold in case (2) of Theorem 4.13. We

recall that any vertex on a topological circle C ⊂ G has a diametrically opposite vertex,

otherwise, we add a diametrically opposite vertex of degree 2 to the circle C.

Lemma 4.12. Let v, w be vertices of G, and z ∈ G not be a vertex. Assume

that d(w,z) ≥ r1 + r2 > d(w,v). Let the vertex q ∈ G be connected to v by the edge that

contains z. Then we have d(w,q)≥ r1 + r2 (see Fig. 4.10).

v
w

p q

z

w
v

q
z

shortest path

(a) (b)

There is no shorter path

Figure 4.10: (a) illustrates case (1), and (b) illustrates case (2) in Lemma 4.12.

Proof. Case (1) : assume v, w, q are not on any topological circle as shown in

Fig. 4.10(a). We denote z by a cross. Connect the vertices v, w by a shortest path, see

Fig. 4.10(a). Then the shortest path from w to q is via the vertex v and the point z. Then

we have d(w,q) = d(w,z)+ d(z,q) > r1 + r2 by the given inequality d(w,z)≥ r1 + r2.

Otherwise, we get a circle containing v, w, q.

Case (2) : assume v, w, q are on a topological circle C ⊂ G. Let p be the diametrically

opposite vertex to w on C as shown in Fig. 4.10(b). Hence the distance between w, p is the

largest distance between any points on C, so d(w, p)≥ d(w,q). Since, the vertex p can not

be inside the edge with the endpoints q, v. It is given that d(w,z)≥ r1 + r2 > d(w,v), then

either q = p or q is the shortest arc of C between p and z. Then d(w,q) > d(w,z)≥ r1 + r2.
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Let us remind that we consider only collision-free motions. This means two robots can

only intersect at one point when the distance between two robots is r1 + r2. It is important

to remember that the robots are metric balls. See Definition 2.23 for more details.

Theorem 4.13. We assume that G is a connected metric graph and any vertex on a

topological circle C ⊂ G has a diametrically opposite vertex, otherwise, we add the

diametrically opposite vertex of degree two to the circle C. Then any collision-free motion

(x(t),y(t)), 0≤ t ≤ 1, where x(0), y(0), x(1), y(1) are vertices of G, can be replaced by a

finite sequence of elementary motions.

Proof. We prove the theorem by induction on the number k of vertices in G that at least

one of the robots visits during the motion (x(t),y(t)), 0≤ t ≤ 1. Vertices are counted with

multiplicities, i.e. when in a motion a robot visits the same vertex m times over 0 < t < 1,

then we count this vertex m times. But the initial and the final vertices x(0), y(0), x(1),

y(1) are not counted.

Induction base: (k = 0) If the robots do not visit any vertices over 0 < t < 1, then

robot 1 moves along one edge and robot 2 moves simultaneously along another edge.

There are the following two cases.

Case (1) : let d(x(0),y(1)) ≥ r1 + r2 or d(x(1),y(0)) ≥ r1 + r2. Then the motion from

(x(0),y(0)) to (x(1),y(1)) can be replaced by two elementary motions by Lemma 4.11,

where u = x(0), v = y(0), w = x(1), z = y(1).

Case (2) : let d(x(0),y(1)) < r1 + r2 and d(x(1),y(0)) < r1 + r2. Then by

Definition 4.9(2), the motion from (x(0),y(0)) to (x(1),y(1)) is elementary. So the

induction base k = 0 is complete.

Inductive assumption: let the theorem hold for all motions when both robots visit at most

k vertices of G, counted with multiplicities.

Inductive step: We prove the theorem for a motion when both robots visit exactly k +1

vertices of G. We consider the time interval from 0 to the first moment t ∈ (0,1), when one

of the robots reaches a vertex, say robot 1. So robot 1 moves from the vertex x(0) to an

adjacent vertex x(t), and robot 2 moves from the vertex y(0) to a point y(t), not a vertex.

There are no vertices between y(0), y(t). We have the following cases.

Case(1) : let d(x(t),y(0))≥ r1 + r2.
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• We fix robot 2 at y(0) and move robot 1 from x(0) to x(t). This elementary motion

from (x(0),y(0)) to (x(t),y(0)) is collision-free since y(0) is far away from both

points x(0) and x(t).

• Then we fix robot 1 at x(t) and move robot 2 from y(0) to y(t.) This motion from

(x(t),y(0)) to (x(t),y(t)) is collision-free since x(t) is far away from both points

y(0) and y(t).

x(t)
r1 + r2

x(0)

y(0)

y(t)

Figure 4.11: The figure illustrates case (1), when y(0), x(t) are far away.

After that the robots move from (x(t),y(t)) to (x(1),y(1)) as in the original motion. During

the motion from (x(t),y(0)) to (x(1),y(1)), the robots visit only k vertices because the

vertex x(t) is not counted anymore as the initial position of robot 1, see in Diagram 1. So

the inductive step is finished in case (1), as shown in Diagram(1).

original collision-free motion︷ ︸︸ ︷
(x(0),y(0))−−−−−−−→

elementary
(x(t),y(0))−−−−−−−−−−→

non-elementary
(x(t),y(t)

unchanged︷ ︸︸ ︷
)→ ·· · → (x(1),y(1))︸ ︷︷ ︸

k vertices to visit, shorter collision-free motion

Diagram (1)

We apply Lemma 4.12 for v = y(0), w = x(t), z = y(t). The assumptions of

Lemma 4.12 hold since

• x(0), y(0), x(t) are vertices of G, and

• the point y(t) ∈ G is not a vertex, and

• the vertex x(0) is adjacent to x(t), and
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• there is no vertex between y(0) and y(t), and

• we have d(x(t),y(0)) < r1 + r2.

Let q be the adjacent vertex to y(0) by the edge that contains y(t). The condition

d(w,z) = d(x(t),y(t))≥ r1 + r2

in Lemma 4.12 holds, because the robots at time t do not collide. Lemma 4.12 implies that

d(q,x(t))≥ r1 + r2, for w = x(t), v = y(0), z = y(t).

Case(2) : let d(x(t),y(0)) < r1 + r2 and d(q,x(0))≥ r1 + r2.

• We fix robot 1 at x(0) and push robot 2 from y(0) to q. So the elementary motion

(x(0),y(0)) to (x(0),q) is collision-free since x(0) is far away from both

points y(0), q.

• Then we fix robot 2 at q and push robot 1 from x(0) to x(t). The elementary motion

from (x(0),q) to (x(t),q) is collision-free since q is far away from x(0), x(t).

• We now fix robot 1 at x(t) and push robot 2 back from q to y(t). This motion from

(x(t),q) to (x(t),y(t)) is collision-free since x(t) is far away from both q, y(t).

x(t)x(0)

r1 + r2

q

y(t)

y(0)

Figure 4.12: Case (2), when y(0), x(t) are close, but q, x(0) are far away.

After that we have the original motion from (x(t),y(t)) to (x(1),y(1)). During the motion

from (x(t),q) to (x(1),y(1)), the robots visit only k vertices because the vertex x(t) is not

counted anymore as the initial position of robot 1, see in Diagram 2. So the inductive step

is finished in case (2).
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original collision-free motion︷ ︸︸ ︷
(x(0),y(0))−−−→

elem.
(x(0),q)−−−→

elem.
(x(t),q)−−−−−−→

non-elem.
(x(t),y(t)

unchanged︷ ︸︸ ︷
)→ ··· → (x(1),y(1))︸ ︷︷ ︸

k vertices to visit, shorter collision-free motion

Diagram (2)

Case (3) : Let d(x(t),y(0)) < r1 + r2 and d(q,x(0)) < r1 + r2. Then x(0), y(0), x(t),

y(t) are on a topological circle C ⊂ G, similar to the example 4.3.

• Then we move robot 1 from x(0) to x(t), simultaneously, we move robot 2 from

y(0) to q. By Definition 4.9(2), the elementary motion from (x(0),y(0)) to (x(t),q)

is collision-free since x(t), q are far away.

• Then we fix robot 1 at x(t) and move robot 2 back from q to y(t). The motion from

(x(t),q) to x(t),y(t) is collision-free since x(t), y(t) are far away.

After that we have the original motion from (x(t),y(t)) to (x(1),y(1)). During the

motion from (x(t),q) to (x(1),y(1)), the robots visit only k vertices because the vertex

x(t) is not counted anymore as the initial position of robot 1, see in Diagram(3). So the

inductive step is finished in case (3).

original collision-free motion︷ ︸︸ ︷
(x(0),y(0))−−−−−−−→

elementary
(x(t),q)−−−−−−−−−−→

non-elementary
(x(t),y(t)

unchanged︷ ︸︸ ︷
)→ ··· → (x(1),y(1))︸ ︷︷ ︸

k vertices to visit, shorter collision-free motion

Diagram (3)

We illustrate Theorem 4.13 in a simple case when two robots u, v are far away from

each other, Namely, d(u,v)≥ r1 + r2. In this case, u, v aim to move to w, z, respectively,

where d(w,z)≥ r1 + r2.
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x(0) x(t)

y(0)
q

y(t)

r1 + r2

Figure 4.13: Case (3), when y(0), x(t) are close, and q, x(0) are close too.

Example 4.14. For instance, consider two robots with radii 1
2 , 1

3 on the connected metric

graph G shown in Fig. 4.14. We can fix robot 1 at u and move robot 2 from v to z without

any collisions. Then we fix robot 2 at z and move robot 1 from u to w. This collision-free

motion from (u,v) to (w,z) consists of six elementary motions.

2 2

2
22

u

v

z

w

G

Figure 4.14:

In the following lemma, we will see generalisation of the argument above.

Lemma 4.15. If vertices v, w ∈G are in the same component of the complement

G−B(u,r1 + r2) of the open ball B(u,r1 + r2) with the centre u and radius r1 + r2, then

(u,v), (u,w) are in the same component of CS(G,2;r1,r2).

Proof. Take a path from v to w in G−B(u,r1 + r2). Then adding the fixed robot at u, we

get a sequence of elementary motions from (u,v) to (u,w) by Definition 4.9.

4.3 Conclusion about path-connectivity

The following corollary is the main result of this chapter.
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Corollary 4.16. We assume that G is a connected metric graph and any vertex on a topolog-

ical circle C ⊂ G has a diametrically opposite vertex, otherwise, we add the diametrically

opposite vertex of degree two to the circle C. Then there is a 1−1 correspondence between

all path-connected components of OC(G,2;r1,r2) and all path-connected components of

CS(G,2;r1,r2).

Proof. By Definition 4.1, each vertex (u,v) ∈CS(G,2;r1,r2), is a configuration

in OC(G,2;r1,r2). By Theorem 4.13, if two such configurations are in the same path-

connected component of OC(G,2;r1,r2), they are connected by finitely many elementary

motions, hence they are connected by finitely many edges in CS(G,2;r1,r2). Indeed, by

Lemma 4.10, if there is an edge between two vertices in CS(G,2;r1,r2), the corresponding

configurations are connected in OC(G,2;r1,r2) by an elementary motion.

In the Corollary 4.16, we have seen that CS(G,2;r1,r2), OC(G,2;r1,r2) have the same

number of path-connected components. In the following, we investigate if the fundamental

group of CS(G,2;r1,r2) is isomorphic to the fundamental group of OC(G,2;r1,r2). If the

graph CS(G,2;r1,r2) is connected, then the fundamental group of CS(G,2;r1,r2) is free.

We have seen in Example 2.37 that the fundamental group of OC(K5,2;r1,r2) for small

radii r1, r2 is not free. So we conclude that CS(G,2;r1,r2) has the same π0-group (the

number of path-connected components) as OC(G,2;r1,r2), but may not have the same

fundamental π1-group.

The main aim of this thesis was to compute the number of path-connected components of

the configuration space OC(G,2;r1,r2) of two metric balls on a metric graph G. In sections

2.1, 2.2, we started by reviewing the results of the simpler model of the configuration space

of two zero-sized robots on a graph. In chapter 3, we represented the finite set CEC(G)

of extreme configurations that are connected to all other configurations by some paths

in OC(G,2;r1,r2). In other words, in each path-connected component of OC(G,2;r1,r2),

there is at least one element of CEC(G). Though, we could not find a method to connect

extreme configurations of the same path-connected component.

In order to compute the number of path-connected components of OC(G,2;r1,r2), we

introduced a new technique. In this technique, we consider all configurations (u,v), where

both u, v are vertices in G. Namely, we do not consider the configurations when at least
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one robot is on the edge of G. Then we define a collision-free elementary motion that any

collision-free motion of two robots in OC(G,2;r1,r2) could be replaced by a sequence of

such elementary motions.
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