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Abstract

The aim of this Thesis is to study the development of pulsar wind nebulae in the TeV

regime and in doing so uncover more sources which have as yet not been observed

at these wavelengths. It is found that the extent of pulsar wind nebula in the TeV

γ-ray increases with its age while no developmental relationship is seen concerning

the luminosity or spectral index of the nebulae when observed in the TeV γ-ray

regime due to uncertainties in the measurements available.

TeV γ-ray upper limits are calculated for several nebulae observed in the X-ray

regime allowing the strength of their magnetic fields to be constrained but only one

new source, which was previously confused with its companion, was discovered, the

Eel Nebula.

Predictions of the fluxes of many of the sources for which upper limits are derived

in this work have been calculated from observations of their emission in X-rays and

some of these sources should be uncovered with the next generation CTA instrument.
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Chapter 1

The Production and Detection of

Very High Energy γ-rays

The emission from pulsar wind nebulae on which this thesis focuses is dominated

by non-thermal particle acceleration processes. In order to study the processes by

which particles are accelerated it is necessary to understand the radiation that they

produce at the extremes of the electromagnetic spectrum. This chapter focuses on

the mechanisms by which highly energetic radiation is produced and the methods

by which it can be detected.

1.1 Observing the Non-Thermal Universe

Historically astronomy has been dominated by the observation of thermal radia-

tion sources. Any object with a temperature greater than absolute zero will emit

radiation due to the movement of its internal particles. If an object is in ther-

mal equilibrium with its surrounding environment (not an unreasonable assumption

when one is dealing with astronomical timescales) it will emit blackbody radiation

in accordance with Wien’s displacement law:

λmax =
2.9× 10−3

T
(1.1)

Where λmax is the wavelength in metres at which the radiation is at its maximum

and T is the temperature of the black body in Kelvin. Thermal radiation has been

2
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observed more readily than other varieties of radiation primarily because nature

has equipped us to view only a very small band of the electromagnetic spectrum

directly. As a result all astronomical observations until the modern age focused on

the narrow range of light with wavelengths between 380 to 750 nm which is visible

to the naked eye. The Earth’s atmosphere is transparent at only a few wavelength

bands (See Figure 1.1), limiting the observations that we can make. However, as

the atmosphere is transparent in the visible waveband it is this band that we have

evolved the ability to observe directly, thus affording us easy access to this portion

of the electromagnetic spectrum.

Figure 1.1: The areas of the spectrum in which the Earth’s atmosphere is transparent;

the most significant portions are the visible (380 to 750nm) and the radio portion between

10mm and 10m [51].

Most visible light is generated in a broad spectrum by thermal processes and

observations of a thermal spectrum in conjunction with Wien’s law can be used

to infer temperature. This is complemented by characteristic emission lines which

show the presence of certain elements (see Section 1.3.4). These details allow a

large amount of information to be inferred about the nature of distant bodies in the

universe. Atomic transition lines can show the chemical makeup of distant objects

and Doppler shifting of these lines means that this can also be used to infer the

speed of motion of astronomical objects relative to the observer along the line of
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sight. However, these are not the only processes at work in distant stars and if we

limit ourselves to only these, then we limit the interesting astronomical phenomena

that we can observe.

Non-thermal radiation allows us to observe and measure many more astrophys-

ical properties such as magnetic fields and particle acceleration. It is emitted in

all parts of the spectrum; however, it is not easily observed in central wavelengths

where it gets overwhelmed by thermal emission. As the atmosphere is opaque at

most wavelengths, the earliest systematic observations of non-thermal radiation were

taken in the radio, which includes the largest range of wavelengths visible through

the Earth’s atmosphere (see Figure 1.1). The first radio observations took place

purely by chance when Karl Jansky, a telephone engineer working for Bell labora-

tories, was investigating interference with transatlantic radio observations. Jansky

noticed a repeating signal with a period of 23 hours and 56 minutes corresponding to

the Earth’s sidereal period and hence implying an extraterrestrial origin and leading

to the development of a whole new astronomical field [123]. From these early obser-

vations radio astronomy has developed into a large field with telescopes and arrays

of telescopes that are able to observe radiation across several orders of magnitude

with great sensitivity.

Radio observations have the advantage of the transparency of the atmosphere

(see Figure 1.1); to observe many other components of the non-thermal spectrum it

is necessary to get above the atmosphere and as a result these were first observed

much later. X-rays, which can be thermal or non-thermal, have been observed since

the 1960s using satellites as well as balloon-based instruments. The first imaging

X-ray satellite, the Einstein observatory [89] was launched in 1978, allowing us to

map the X-ray sky for the first time. Since then great improvements have been

made in the field of X-ray astronomy; the current generation of space based X-ray

telescopes are each best adapted to a specialist area of observation. Swift [46] and

RXTE [122] are able to manoeuvre into position quickly and are as such useful for

observing transient phenomena such as γ-ray bursts and flaring AGN. For long term

planned observations of steady sources XMM-Newton [91] has the greatest spectral

resolution in the X-ray regime while morphology is best observed with the Chandra
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observatory [196] which has the greatest angular resolution at X-ray wavelengths.

However, even at these energies, many interesting astronomical phenomena are

not observable, such as the inverse Compton process which emits most of its ra-

diation in the γ-ray regime. It is necessary to go to high energies (GeV - TeV

energies), to see these phenomena, and this is our main motivation for undertaking

γ-ray astronomy.

1.1.1 The History of γ-ray Observations

In order to consider the difference between X-ray and γ-ray astronomy it is first

necessary to determine the difference between an X-ray and a γ-ray. Historically,

the two types of radiation were discovered separately as the products of two different

types of source. While γ-rays were first observed as the products of certain radioac-

tive decay processes [190], X-rays were discovered coming from the acceleration of

electrons [175].

When astronomical sources are observed, the production mechanism of the ra-

diation is not usually known and so it is more convenient to define the boundary

between X-ray and γ-ray sources by their energy rather than the method by which

they are produced. It would be unwise to define a photon with the same properties

by two differing designations. In some cases the production mechanism or even the

mechanism by which they are detected is used to demarcate the boundary between

X-rays and γ-rays. However, for the purposes of this thesis I will define any photon

with an energy greater than the rest mass of an electron (511 keV) as a γ-ray; in

this way any photon created by electron positron annihilation will fall within this

definition.

At the lower end of the γ-ray spectrum (up to about 50 GeV), observations are

best made by space-based observatories as is the case in X-rays. The current leading

telescope observing in the lower end of the γ-ray regime is the Fermi satellite (see

Section 1.2.1).
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1.1.2 Very High Energy γ-rays

When we get to the highest energy γ-rays (energies above 100 GeV) the flux com-

ing from even the brightest sources is very low indeed. For example, the Crab

Nebula, the brightest constant source in the gamma-ray sky, has a flux of only

2.26× 10−11 photons/cm2/s above 1 TeV [17]. At this rate a camera the the size of

the LAT on the Fermi satellite, which has a detector area of 2.5m2 [153], would

observe only 2× 10−7 photons per year if it were constantly observing this nebula.

The low flux which would result from direct detection of VHE γ-rays is avoided

by utilizing the Cherenkov effect which allows the whole atmosphere to be used

as a detector and hence ground based γ-ray observations can then be made. This

technique, from which most of the data for this thesis comes, is discussed in Section

1.2.2.

In the past ten years the current generation of ground based Cherenkov tele-

scopes has led to a massive expansion in the number of, and indeed the number of

classes of, very high energy (VHE) γ-ray sources. At the turn of the millennium

only six sources which have been confirmed using current instruments were known

to emit in the TeV waveband [110], with the majority being variable sources which

were only observed at the height of their activity. These sources represented only

three classes of object with only one pulsar wind nebula (the Crab Nebula [193]) and

one supernova remnant (RXJ 1713.7-3946 [155]) known. There are, as of August

2010, more than 100 known very high energy (VHE) γ-ray sources [116] with addi-

tional sources being discovered all the time by the current generation of Cherenkov

telescopes. These telescopes, HESS and CANGAROO III in the southern hemi-

sphere and VERITAS and MAGIC in the northern hemisphere, have made VHE

γ-ray astronomy into a viable astronomical field in its own right, uncovering many

new source types in the process.

In addition, there are now more than twice the number of classes of VHE γ-ray

source than were known ten years ago, as well as many sources which have yet to be

identified [28] which may represent unique source classes of their own. Of the sources

that we can positively identify, by far the most numerous sources are pulsar wind

nebulae, which are the subject of this thesis. The majority of these were discovered
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during the HESS Galactic Plane scan which has surveyed the central portion of

the Galaxy between Galactic latitudes of -3◦ and +3◦ and Galactic longitudes of

-100◦ and 60◦ [23]. About ten of the sources discovered in the survey are supernova

remnants which are, like pulsar wind nebulae, a product of supernovae.

In some cases both a supernova remnant and a pulsar wind nebula are seen

together as the products of the same supernova and in this case the system is known

as a plerion. In some cases, such as that of the Crab Nebula, the adjacent PWN and

SNR are visible at other wavelengths but we are yet to distinguish any such objects

in the TeV regime due to the limited angular resolution available with the current

generation of TeV γ-ray telescopes. While we are unable to distinguish between the

emission from different parts of the system based on their position it is possible to

see a pulsed component of emission from the central pulsar which can, as a result,

be distinguished from the constant emission from the other parts of the PWN/SNR

system. This pulsed component has so far only been seen in the Crab nebula.

While these objects are the most numerous, there are a number of other Galactic

source classes visible in the VHE γ-ray regime. These include the centre of our own

Galaxy [9], young stellar clusters such as Westerlund 2 [24] as well as a number of

gamma-ray binaries such as LS 5039 [18].

The new generation of VHE γ-ray telescopes has also led to a large number of new

observations of extragalactic sources. As a result new VHE γ-ray emitting active

galactic nuclei (AGN) have been discovered, which has allowed many interesting

aspects of fundamental physics to be investigated. Most of the observed galaxies are

blazars (such as PKS 2155-304 [53]) with the exception of the radio galaxies M87 [21]

and Centaurus A [30] and the starburst galaxies NGC 253 [8] and M82 [189].

1.1.3 Cosmic Rays

Another motivation for the observation of VHE γ-rays is to research the origin of

galactic cosmic rays. In 1912 Victor Hess, after whom the HESS telescope array is

named, took a balloon ride to investigate the origin of atmospheric ionizing radiation.

At the time this was thought to be the product of nuclear decay processes occurring

in rocks on the Earth’s surface. If this were the case the amount of radiation observed
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would decrease as altitude decreased; in reality, the flux was observed to increase

at high altitudes, and so Hess concluded that this radiation must be coming from a

source of cosmic origin [102]. Magnetic fields usually cause disruption to the path of

charged particles such as cosmic rays and so the origin of these particles is unknown;

however the processes by which cosmic rays are produced also produce VHE γ-rays

and so by studying the origin of VHE γ-rays we can understand where cosmic rays

are produced.

We have been able to measure the cosmic ray spectrum accurately at energies

below about 1018 eV (See Figure 1.2). It can be described as a pure power law

with a spectral index in the range -2.5 to -2.7 up to a few PeV where it steepens

slightly at a feature known as the knee. This part of the spectrum is assumed to be

the product of Fermi shock front acceleration in supernova remnants (see Section

2.4.1) although this has yet to be conclusively proven; if this is indeed the case then

γ-ray emission is expected from these particles in the 100s of TeV range and γ-ray

observations are needed to confirm that such acceleration is taking place.

After the knee, a spectral index of approximately -3.0 is seen until energies in

the region of 1 EeV (1018eV) where the spectrum flattens slightly at a feature known

as the ankle. Unlike their lower energy cousins, the highest energy cosmic rays are

less affected by magnetic fields due to their higher magnetic rigidity. In principle

we should thus be able to find out the origin of these particles. However, their flux

is very low and so determining their origin requires a large area detector; the Auger

experiment [162] aims to detect the directional origin of these particles.

1.2 Current γ-ray Observatories

As has already been discussed the current generation of VHE γ-ray telescopes has led

to at least a tenfold increase in the number of observed sources in this waveband.

Recent advances in instrumentation have also led to better observations of lower

energy γ-ray sources.
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Figure 1.2: The cosmic ray spectrum as presented in [109] showing the features of the

cosmic ray spectrum as measured by a number of experiments. It also shows the relative

intensities of different types of cosmic rays at low energy.
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Figure 1.3: The large area telescope of the Fermi satellite [36], showing a stack of inter-

leaved charged strips and a calorimeter at the bottom; charged particles enter from the

top of the detector. 16 of these stacks form the Fermi LAT.

1.2.1 Space based observations

At the lower end of the γ-ray spectrum (typically below 50 GeV) observations are

made using satellite-based instruments. Currently, the most advanced satellite in

operation in this waveband is the Fermi observatory, named in honour of Italian

physicist Enrico Fermi. Fermi was launched on the 11th of June 2008 by an in-

ternational team with support from the governments of the United States, France,

Italy, Sweden and Japan [183], prior to its launch it was known as the GLAST

observatory.

The main instrument of the Fermi satellite, the large area telescope (LAT),

was built to observe γ-rays with energies between 20 MeV and 300 GeV [183].

However, although there is sensitivity up to 300 GeV, the rarity of events at such

high energies means that events above about 50 GeV are unlikely to be observed

with any frequency and so spectral measurements above this value are not claimed

for most sources [35]. The highest energy photons observed with the Fermi LAT are

more energetic than those observed with previous satellite-based γ-ray observatories;
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this gives us the first opportunity to overlap with existing Cherenkov observatories

allowing us to map a complete γ-ray spectrum from 30 MeV to 10 TeV for the first

time.

The LAT employs a system of silicon strip detectors (see Figure 1.3) [36]. When

a γ-ray passes through the detector it will ionize the silicon layers; the charged

silicon ions and electrons produced will move towards the charged strips at the end

of the silicon, creating a measurable charge. By interleaving these strips it is possible

to track the movement of a particle through the detector and hence determine its

origin. These detectors are complemented by a caesium iodide calorimeter. When a

γ-ray passes into a caesium iodide crystal, it scintillates, creating a flash of light, the

brightness of which depends on the energy of the progenitor photon. As a result,

the position and the energy of the incoming γ-ray can be obtained; Fermi is able to

localize a point source to 0.3-2 arcminutes, with energy resolution varying between

4% at 5 GeV and 2% at 196 GeV [35].

Fermi works in a sky survey mode whereby it takes a full sweep of the sky

every three hours [126]. This means that variable sources can be monitored as

well as allowing us to view every object in the sky. Even in its first 11 months of

monitoring the sky the Fermi collaboration compiled a list of 1451 sources [80].

Some of the most interesting of these discoveries relate to its observations of

pulsars. One such discovery is the pulsar at the centre of the supernova remnant

CTA1 [2]. The Geminga pulsar was thought to be visible only in the γ-ray regime,

but has since been observed at other wavelengths. As a result CTA1 is currently the

only pulsar that is radio-quiet and X-ray quiet but visible in γ-rays. The discovery

of CTA1, along with several other observations of γ-ray pulsars by Fermi [3], has led

to a better understanding of the emission mechanisms of pulsars and to the discovery

that outer magnetosphere models are favoured as the cause of pulsar emission rather

than polar cap models where gamma-rays are generated closer to the pulsar surface

[3].
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Figure 1.4: The movement of a negatively charged particle downwards through a dielectric

medium with subluminal (left) and superluminal (right) velocities.

1.2.2 The Cherenkov Effect

When a charged particle travels through a dielectric medium at a speed greater than

the phase velocity of light in that medium it produces a bright flash of light, known

as Cherenkov radiation. As a charged particle passes through a medium it induces

an electric field in the medium by inducing dipoles in the surrounding particles. At

low particle velocities (see Figure 1.4) the creation of dipoles around the moving

charge will be symmetrical and so not be visible at long distances. However, if

the particle velocity is comparable to the velocity of light in the medium, then the

overall charge of the dipoles will no longer be symmetrical in the line of movement of

the electron (see Figure 1.4). This force slows down the incoming electron, causing

it to produce radiation [124].

As the light produced is moving more slowly than the particle that is producing

it, the wavefronts of the generated waves will interfere constructively (see Figure

1.5) to produce a flash of light. This will be seen at an angle of θ where:

θ = arccos
c

nv
(1.2)

where n is the refractive index of the medium and v is the velocity of the particle.
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Figure 1.5: A Huygens construction showing that the Cherenkov radiation generated by

a particle moving through a dielectric medium will interfere constructively

When a VHE gamma-ray strikes the Earth’s upper atmosphere it will interact

to produce an electron positron pair. These in turn will slow down and produce

photons via bremsstrahlung (see Section 1.3.3) which will in turn create more elec-

tron positron pairs. As a result a large shower of electrons is produced (see Figure

1.6), all of which produce Cherenkov light by the process described above until the

point at which the light produced no longer has sufficient energy to produce elec-

tron positron pairs. In a typical 1 TeV air shower 100s of electron positron pairs

are produced which leads to the creation of a cone of light of half angle θ ≈ 1◦

(see Figure 1.7). This can be observed from the ground as an ellipse with its long

axis pointing towards the source of the photon. The shape and size can be used

to determine the energy of the incoming photon [108]; a typical 1 TeV photon will

produce an ellipse of major axis 150 m. The size of the observed ellipse will increase

with distance from its origin and so a more accurate estimate of the direction of the

air shower can be made by placing the detector at a lower altitude. However, the

ellipse observed will be less bright at lower altitudes and indeed much of its energy

will be absorbed by the atmosphere so in practice most Cherenkov telescopes are

located at altitudes of about 2 km as a compromise between atmospheric absorption

and positional estimation.

A significant source of background noise is caused by incoming cosmic rays which
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Figure 1.6: The air showers produced by the interaction of a γ-ray (left) and a cosmic

ray (right) with the Earth’s atmosphere [39].
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Figure 1.7: An incoming γ-ray interacting with the Earth’s atmosphere, it produces a

cone of Cherenkov light which forms an ellipse on the ground. The axis of each shower

image points towards the origin of the shower [70].
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also produce particle air showers and corresponding flashes of Cherenkov light. How-

ever, the shower produced by the interaction of a cosmic ray has hadronic and muon

components which causes the air shower to have a broader and more irregular shape,

as can be seen in Figure 1.6. The shape of an air shower can thus be used to de-

termine the type of particle that created it, more detail of this process is given in

Chapter 3.

1.2.3 Stereoscopic Observations

Single Cherenkov telescopes suffer from a number of significant problems which

prevent accurate calculations of energy and position from being made. When an

observation of a Cherenkov light shower is used to infer its properties, both the

angle of arrival and the energy of the incoming particle will affect the size of the

shower ellipse as seen from the ground. Due to the error in the orientation of the

image and the position of its centre there is a large intrinsic error in the position of

the source using this method.

Ideally, observations of the shower must be made with several telescopes to get

a much more accurate estimate of position and energy of the source. If multiple

images of the shower are used then it is not necessary to use the shape of the ellipse

to estimate the position of the incoming air shower as the point of intersection of

the images observed can be used instead. As the position derived in this method is

more accurate the energy of the air shower can be estimated using this positional

calculation and so it too can be determined more accurately. Multiple telescopes also

allow background muons present in the local environment of the telescope, which

could pass through the camera of a single telescope and trigger it, to be eliminated

by requiring that more than one telescope responds for an event to be recorded.

More detail on this process is given in Chapter 3.

The use of multiple telescopes has allowed the current generation of Cherenkov

telescopes to greatly expand the number of observed VHE gamma-ray sources. There

are currently four leading Cherenkov observatories; with two located in each hemi-

sphere, the whole sky can be observed. In the northern hemisphere the VERITAS

array, located in Arizona, consists of four telescopes each with a reflecting area of
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Table 1.1: The parameters of the Current Generation of TeV γ-ray observatories. ? CAN-

GAROO III consists of 4 telescopes but not all of these are currently operational.

Observatory Location Energy Threshold Ntels Area Field of View

GeV m2 ◦

CANGAROO III [76] Australia 250 4? 79 4

HESS [17] Namibia 100 4 107 5

MAGIC [140] La Palma 25 2 300 3.5

VERITAS [194] Arizona 100 4 110 3.5

approximately 110 m2 and was completed in 2007 [194]. It is primarily used to

make observations of active galactic nuclei and other extragalactic sources as fewer

galactic sources are visible from its northern hemisphere location.

The other major northern hemisphere observatory is the MAGIC observatory

on the Canary Island of La Palma. It consists of two large telescopes, each with a

reflecting area of about 300 m2 [140]. This increased area allows MAGIC to observe

photons down to an energy of 25 GeV at zenith, much lower than its competitors

which have a typical energy threshold of 100-200 GeV. This allows it to view phe-

nomena such as the pulsed emission from the Crab nebula which is not possible at

the higher energy thresholds of its competitors [34]. Its northern hemisphere loca-

tion does however mean that it is unable to view the region around the Galactic

Centre where most Galactic Sources are located and so, like VERITAS, most of its

sources are AGN.

In the southern hemisphere there are two observatories which were designed with

four telescopes similar to VERITAS. The Australian-based CANGAROO telescope

has discovered fewer sources than any of its main competitors and is now running

only two telescopes due to technical problems [76]. The Namibian-based HESS

telescopes have been used to discover over sixty sources as of the start of 2010 and

are described in more detail below. Details of the current generation of Cherenkov

observatories are given in Table 1.1.
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Figure 1.8: Namibia showing the position of the HESS site.

1.2.4 The HESS Telescopes

The High Energy Stereoscopic System (HESS) telescopes are located in the Khomas

highlands of Namibia (23◦16′18′′ South, 16◦30′00′′ East) near the Gamsberg moun-

tain (see Figure 1.8). The array was constructed by a consortium of European and

African universities and has been in operation as a full array since 2004 [17]. In that

time it has made a large number of discoveries, particularly of supernova remnants

and pulsar wind nebulae (PWNe), which as Galactic objects are more likely to be

observed from the southern hemisphere as they are more numerous in this portion

of the sky.

The observatory consists of four telescopes which are arranged in a square of

side 120 m [17] (Figure 1.9), which allows for maximum sensitivity to photons with

energies of around 100 GeV at zenith; while this was the initial energy threshold

of the telescopes this is slowly increasing as the reflectivity of the mirrors gradually

degrades with a current energy threshold of about 200 GeV. However, this degra-

dation should be reduced by the mirror replacement work currently (August 2010)
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Figure 1.9: An aerial photo showing the position of the HESS telescopes at the corners

of a square of side 120m [163].

underway on the telescopes. Each telescope has a diameter of 13m and consists of

382 round mirrors, each with a diameter of 60 cm, giving a total reflecting area of

107 m2 [17]. The mirrors are placed in a Davis-Cotton arrangement [64]. In this

design a spherical telescope structure is used with its mirror segments, which are

also spherical, each having a focal length twice that of the telescope itself. At the

focal point of the telescope, the camera consists of an array of 960 photomultiplier

tubes which each observe an area of sky 0.16◦ across giving a field of view for the

detector of 5◦ [17].

The Cherenkov light which is used by the HESS telescopes to observe VHE γ-

rays peaks in intensity in the ultraviolet, but due to atmospheric absorption the

light observed peaks in the blue end of the visible spectrum (at a wavelength of

about 300 nm) when it is observed from the ground. It is thus necessary to use

the short duration of the Cherenkov light flashes to distinguish them from the night

sky background. A large amount of this background radiation is removed by HESS

by only recording data when it is triggered by a fast flash of light, which usually

corresponds to a Cherenkov event. The background (this time the product of cosmic
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ray events) is further reduced by performing cuts on these events so that only those

recorded events that are thought to be generated by TeV γ-rays are used in analysis.

The method by which these cuts are applied and the energy of the events is calculated

is described in Chapter 3.

1.3 Mechanisms for the production of non-thermal

radiation

As we have seen, in order to understand the extraterrestrial bodies which gener-

ate VHE γ-rays we must first understand the processes by which these γ-rays are

produced. The understanding of these mechanisms gives an insight into the in-

ner workings of distant astronomical objects and also allows us to form a better

understanding of the fundamental physical systems underlying these processes.

1.3.1 Synchrotron Radiation

One of the main sources of non-thermal radiation is the interaction of charged par-

ticles with magnetic fields. When a moving charged particle enters a magnetic field

it will be deflected by it and, if the magnetic field is strong enough, it will move in

a helical orbit spiralling around the magnetic field lines (see Figure 1.10). In this

case, the movement of the particle in the magnetic field can be expressed in terms of

two components, which correspond to the components of the magnetic field parallel

and perpendicular to the magnetic field. The parallel component of this motion will

not be affected by the magnetic field and this will represent the speed at which the

particle will travel along the magnetic field. The perpendicular component of the

incoming particle will determine the radius of its motion around the magnetic field

and thus determine the frequency of the radiation emitted.

The acceleration of a charged particle in a magnetic field is given by:

a =
v2

r
=

q

γm
v×B (1.3)

Where v is the velocity of the charged particle and B is the strength of the
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Figure 1.10: Synchrotron emission. A particle with an electric charge (e) enters a mag-

netic field at an angle θ to it. The particle begins to orbit around the magnetic field lines

following a helical path and emits radiation in a cone tangential to its path of movement

with a half angle equal to 1/γ.

magnetic field in which it is moving, γ is the Lorentz factor, and r, m and q represent

the radius of curvature, mass and charge of the particle respectively. In order to

calculate the energy of the radiation that is produced in this process we also need

to know the energy loss rate of an accelerated charged particle:

−
(
dE

dt

)
rad

=
q2|a|2

6πε0c3
(1.4)

where ε0 is the permittivity of free space and c is the speed of light in a vacuum.

For an electron this gives:

−
(
dE

dt

)
rad

=
q4v2B2sin2θ

6πε0c3
= σT c

B2

µ0

(v
c

)2

γ2 sin2 θ (1.5)

Where σT is the Thompson cross section, µ0 is the vacuum permeability and θ

is the angle of incidence of the charged particle. This expression can be averaged

over all pitch angles to give:

−
(
dE

dt

)
rad

=
2

3
σT c

B2

µ0

(v
c

)2

γ2 (1.6)

In the case of non-relativistic cyclotron radiation, the characteristic frequency of
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the radiation emitted is given by the gyration frequency. This can be derived by

taking the acceleration equation above and equating the frequency with ν = v
2πr

to

give:

νg =
qB

2πm
(1.7)

In the case of electrons moving at relativistic speeds, synchrotron radiation is

produced. This radiation is concentrated in the forward direction (see Figure 1.10),

lying entirely within a cone of angular width θ = 1/γ and projecting a conical

annulus on the sky. This beaming results in a spreading of the spectrum with most

of the energy peaking at a frequency νc = γ2νg which gives:

νc = γ2 qB

2πm
(1.8)

It also results in polarization of the radiation perpendicular to the magnetic

field. As γ is related to the energy of the electrons, the observed spectrum of the

synchrotron radiation will be directly related to energy spectrum of the electrons

by the factor α = x−1
2

, where α is the spectral index of the radiation and x is the

spectral index of the electron energies. Observation of this radiation can therefore

not only show the presence of relativistic electrons but also of the magnetic field

necessary for their production.

At lower frequencies, when the brightness temperature of the photons released

becomes greater than the kinetic temperature of the radiating electrons, the radia-

tion is absorbed and so a spectral index of ν = 5/2 is observed with a turnover at

the point where the brightness and kinetic temperatures are equal (see figure 1.11).

The brightness temperature is defined as [69]:

Tb =
c2Iν

2ν2kB
(1.9)

where c is the speed of light in a vacuum, kB is Boltzmann’s constant, ν is

the frequency and Iν is the intensity of the radiation at the given frequency. The

radiation produced in this procedure is observed at a range of frequencies from the

radio to the X-ray regime but it is not observed in VHE γ-rays because source
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Figure 1.11: The spectral turnover expected in a synchrotron spectrum. a and b represent

the areas of the spectrum, which are absorption and emission dominated respectively.

electrons of the energies required to generate synchrotron photons have yet to be

observed; energies of the order of 1011 TeV are required to generate TeV γ-ray

synchrotron photons. It is however important in the understanding of VHE γ-ray

sources as it is in some cases the source of lower energy photons which can act as

seed photons for the inverse Compton boosting described in Section 1.3.5.

1.3.2 Curvature Radiation

Curvature radiation is closely related to synchrotron radiation as it is also caused by

the movement of a charged particle in a magnetic field. However, while synchrotron

radiation is derived from the component of movement perpendicular to the magnetic

field, curvature radiation is caused by the component parallel to the field. In this case

the charged particle will follow the magnetic field lines and experience acceleration

due to the curvature of these lines. This will emit radiation with a characteristic

frequency of [139]:

νc =
γ3

rc
(1.10)
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Where rc is the radius of curvature along which a particle is travelling. It is only

observed in environments with strong magnetic fields (> 108 G) with a large amount

of curvature, such as pulsar magnetospheres. For Crab-like young pulsars this results

in a typical frequencies of 1018 Hz (keV energies) and thus emission in the X-ray

regime. Meanwhile millisecond pulsars will typically emit at frequencies of about

1022 Hz (10 MeV energies) and so emit at the lower end of the γ-ray regime [59].

1.3.3 Bremsstrahlung

Bremsstrahlung, named for the German expression for braking radiation, is another

form of non-thermal radiation produced by the acceleration (or more specifically

deceleration) of charged particles, atoms or molecules. In this case, the deceleration

is caused by the proximity of a travelling particle to the electric fields of nuclei

lying in its path. A fast-moving charged particle will slow and be deflected on its

interaction with another charged particle and thus radiation is produced (see Figure

1.12). It is useful in astronomy as it shows areas where relativistic electron winds

are propagating through dense material.

The energy spectrum of the radiation produced in this process will be a power

law of the same form as the electron energy spectrum by which it is produced.

The average energy of the photon produced in this process will be 1
3

of the initial

energy of the incident electron with the maximum energy of the photon matching

the energy of the electron from which it is generated [139]. As a result it is possible

to generate VHE γ-rays by this process if the electrons involved are energetic enough

but it is more commonly observed at lower energies (around 100 MeV) where more

progenitor electrons are available.

1.3.4 Nuclear And Atomic Transition Emission

Bremsstrahlung is produced by the interaction of a passing electron with an ion and

so is also known as free-free emission, a form of atomic transition which emits a

continuous spectrum of radiation. Similar emission is created by electrons that are

atomically bound to the nucleus with which they are interacting; this is known as
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bound-bound emission. When an electron is present in an excited atomic orbital it

will drop down to its most stable state and in doing so emit radiation of a specific

wavelength. Nuclear transition lines are seen at higher energies than atomic tran-

sition lines (in the MeV regime) and allow the nickel and cobalt produced in SNRs

to be observed. A similar process of excitation and decay occurs with the nucleons

in an atomic nucleus.

1.3.5 Comptonisation

As we have seen, many types of non-thermal radiation are created by acceleration

processes related to magnetic fields. Not all non-thermal photons are generated in

this way and indeed perhaps the most relevant production mechanism in terms of

VHE γ-ray astronomy is instead the interaction of existing photons with particles.

In 1923, while investigating the effect of bombarding atoms with X-ray radiation,

Arthur Compton noted that the X-ray radiation, as well as being deflected (as would

be expected from classic electromagnetic theory), was shifted to a higher wavelength

Figure 1.12: The bremsstrahlung emission mechanism.
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Figure 1.13: Compton scattering of a photon by an energetic electron.

because it had lost energy to the electrons present in the bombarded atom (See figure

1.13). He observed the relation:

λ1 − λ =
h

mec
(1− cosθ) (1.11)

where λ and λ1 are the wavelengths of the photons before and after scattering

respectively and θ is the angle by which the radiation is scattered (See Figure 1.13).

This can be expressed in energy terms as:

ε1 =
ε

1 + ε
mc2

cosθ
(1.12)

where ε and ε1 are the energies of the photon before and after scattering respec-

tively. However, if the electron is moving relativistically, the momentum transfer

will not result in a net energy gain for the electron; instead, the photon will gain

energy from the electron. This is easiest to understand if we consider the interaction

in terms of the reference frame of the electron. In this case the energy of the incident

and product photons are shifted by:

ε′ = γε[1 + (v/c)cosθ] (1.13)
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ε1 = γε′1[1 + (v/c)cosθ] (1.14)

where ε′ is the energy of the photon in the frame of reference of the electron and

ε is the energy of the photon in the laboratory frame. It can be shown that the

energy of the product photon is shifted by:

ε1 = γ2ε (1.15)

in the relativistic case. As a result, observation of this radiation can be used to

determine the energy spectrum of relativistic electrons. Consequently, by compar-

ison with synchrotron emission from the same source, it can be used to infer the

strength of the magnetic field in which the electrons are moving. In some cases

the synchrotron electrons which generate the photons are also responsible for shift-

ing them to higher energies via the inverse Compton process; this is known as the

synchrotron self Compton (SSC) mechanism and results in a much larger TeV flux

than when background radiation seed photons, such as the cosmic microwave back-

ground and ambient starlight, are responsible for the Compton scattering. In the

TeV regime the inverse Compton process is the main emission process by which

pulsar wind nebulae emit and as lower energy electrons can produce this emission

than are required for synchrotron emission larger pulsar wind nebulae are seen in

this regime than at lower photon energies, this is discussed in more detail in Section

2.6.

1.3.6 Pion Decay

In the high energy interactions that take place in stars many secondary particles

are produced. By looking at the decay products of these particles we can get an

indication of the nuclear interactions that are taking place. When a proton trav-

elling at a high energy interacts with a nucleus, high energy pions of all types are

produced. By observing the decay products of these energetic pions we can thus

infer the presence of energetic protons, which theoretically could allow us to distin-

guish between leptonic and hadronic particle populations, although this is difficult
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in practice. Charged pions have a typical lifetime of 2.6×10−8 s and decay in the

following fashion:

π+ → µ+ + νum (1.16)

π− → µ− + νum (1.17)

The muons produced will quickly decay further into electrons and additional

neutrinos. As neutrinos have only ever been observed in limited quantities from two

astronomical sources (the Sun [159] and supernova 1987a [40] [112]) and these only

at lower energies than the neutrinos produced in this process, the most productive

method of observing pion decay at present is by looking for the energetic photons

produced by neutral pions.

Neutral pions typically have a shorter lifetime than charged pions (typically

1.8× 10−16 s) and decay as follows:

π0 → 2γ (1.18)

As the rest mass of a neutral pion is 139.6 MeV, the energy of the photons created

will be no less than half of this value (69.2 MeV). However, due to the velocity of

the pion the energy of the photons observed may be much greater, and can also

be used to infer the energy of the protons involved in the original collision. The

presence of pion decay emission will thus imply the presence of energetic protons in

a system. However it is difficult to distinguish these photons from those produced

by the inverse Compton process as they emit at similar energies and with similar

spectra.

1.3.7 Electron-Positron Annihilation

Another particle process that is known to generate non-thermal radiation is the

annihilation of electrons and positrons, the inverse of the process described in Section

1.4.1. However, as the energy of the interacting leptons is usually split evenly
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between the two interacting photons, two 511 keV photons are produced if the

interacting particles are at rest; such emission is not seen at TeV wavelengths.

1.3.8 Dark Matter Annihilation

Dark matter is the material which is present in the universe but is not directly

observed. It is predicted to make up about 20% of the mass of the universe compared

to only 4% made up of observable baryonic matter (the remaining 76% is accounted

for by dark energy) [81]. Many theoretical particle physics predictions point to

the existence of a weakly interacting massive particle or WIMP as the most likely

candidate to account for this unobserved matter. It is a potential source of non-

thermal radiation that has not, as yet, been observed.

Many of the predicted varieties of WIMPs are expected to annihilate with them-

selves as they are supersymmetric and hence are their own antiparticle. Depending

on the mass of the dark matter particle this may produce non thermal radiation at

TeV energies. However, no dark matter candidate source has so far been identified;

in the TeV regime this is not surprising as the current generation of instruments are

not expected to be sensitive enough to observe the fluxes predicted by current mod-

els. The most likely source for observation of this emission is the Galactic Centre;

observation of annihilation flux in this region is difficult because of the strong astro-

physical source present in this region which may hide any annihilation signal [81].

1.4 Absorption Mechanisms of VHE γ-rays

While understanding the mechanisms by which VHE γ-ray radiation is produced

is important, it is also necessary to know the mechanisms by which they can be

absorbed prior to observation in order to fully understand the spectra that are

observed. Mechanisms that absorb thermal radiation will also absorb non-thermal

radiation of similar wavelengths and so there are a large number of mechanisms

such as atomic excitation to consider. However, most of these do not absorb VHE

γ-rays. At these energies only two absorption mechanisms are important. One is

the atmospheric interaction by which Cherenkov light is generated and VHE γ-rays
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are observed (see Section 1.2.2) while the other is the interaction with background

light via pair production.

1.4.1 Pair production and VHE photons

If a photon has a sufficient energy it will interact with background photons to

produce an electron positron pair:

2γ → e− + e+ (1.19)

As energy must be conserved in this interaction it can only occur if the combined

energies of the interacting photons in the centre of momentum frame exceed twice

the rest mass energy:

ε1ε2(1− cosθ) > 2m2
ec

4 (1.20)

where ε1 and ε2 are the energies of the two incident photons and θ is the angle

between them. A major source of such absorption for VHE γ-rays is the extragalactic

background light (EBL). The EBL is the sum of all starlight emitted in the history

of the universe which has not been absorbed. As we can see from Equation 1.20,

TeV photons will interact with infrared, visible and ultraviolet photons; this is not

much of a problem in the observation of Galactic sources as the distance the γ-rays

have to travel is less than 30 kpc and the interaction cross-section is small, typically

1.5 × 10−23 cm 2 for a 1 TeV photon [184]. However, the probability of interaction

is much greater over the 120 Mpc distance to the nearest VHE emitting blazars,

Markarian 421 and Markarian 501 and becomes more important for more distant

objects such as PKS 2155-304, which has a redshift of z= 0.117 [31]. This limits

the maximum distance from which VHE γ-rays can be detected; the most distant

source that has been observed so far in the VHE gamma-ray regime is 3C279 which

has a redshift of z≈0.5 [142].

The absorption signature may be used to infer upper limits to the EBL provided

that the distance to the AGN in known. However, the assumptions which must at

present be made regarding absorption intrinsic to the source limit the usefulness of
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this approach.
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Chapter 2

Pulsar Wind Nebulae

A pulsar wind nebula is formed by the interaction of the relativistic electrons which

are streaming out from the magnetic poles of a pulsar into the surrounding medium

of a supernova remnant. The interaction of these electrons with ambient photons

causes VHE γ-ray photons to be produced.

In this Chapter, the processes by which supernovae occur are discussed along

with the mechanisms by which they pro duce supernova remnants and pulsars. This

is followed by more detail as to how the emission of relativistic electrons into the

surrounding medium generated by the supernova forms a pulsar wind nebula.

2.1 The End of a Star

For most of their lives stars generate energy in a fusion reaction in which four

hydrogen nuclei are fused together to form a helium nucleus releasing 26.71 MeV in

the process. This interaction requires a temperature of about 107 K which can be

derived using the quantum mechanical formula:

Tquantum =
4

3

µmZ
2
1Z

2
2e

4

kh2
(2.1)

where Tquantum is the temperature necessary for fusion to occur if we include

quantum mechanical tunnelling effects; if a classical Coulomb barrier approach was

used the necessary temperature would be much larger, and indeed nuclear fusion in

our own Sun would be impossible. Z1 and Z2 are the numbers of protons in each

33
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Figure 2.1: The binding energy per nucleon of known isotopes taken from [62] showing a

number of common isotopes. It also shows the mass numbers at which fusion and fission

reactions are energetically favourable.

nucleus which in the case of hydrogen fusion are both equal to one; µm is the reduced

mass of the colliding particles. As the internal pressure and temperature which a

star can reach are dependent on the mass, this reaction only occurs in stars which

have a mass of at least 10% of the mass of the Sun.

Once this hydrogen fuel has run out, fusion processes begin with other elements,

starting with helium and building up to heavier nuclei. As the temperature required

for nuclear fusion increases with the mass and charge of the particles involved, only

larger stars are capable of fusing many of the heavier elements. In the largest stars

this process produces many shells of progressively more massive nuclei, with fusion

continuing in each layer. This will include layers of carbon, oxygen and silicon

which progressively release less and less energy until iron is produced, which has the

highest binding energy per nucleon of any atom (See Figure 2.1). As a result fusion

processes for nuclei heavier than iron are no longer exothermic.

At this point high temperatures of the order of 109 K are present in the core

of the star and the photons present are sufficiently energetic to initiate a process

known as photodisintegration, where large elements are broken down into smaller
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ones by interaction with photons. A high energy photon will strike nuclei in the iron

core and reduce them to smaller nuclei, which can be summarised by the following:

56Fe26 + γ → 134He2 + 4n (2.2)

4He2 + γ → 2p+ + 2n (2.3)

Due to the much lower binding energy of the products than the progenitors of

these interactions, this process is highly endothermic and so the temperature and

hence the pressure in the core of the star begins to decrease rapidly. The process

occurs at a high rate and so fusion processes, which are much slower, are unable

to balance this process by the creation of heavier nuclei. In these circumstances

the electrons in the star start to combine with the protons present to create more

neutrons:

p+ e− → n+ νe (2.4)

In most circumstances the neutrons generated in such processes would decay

back to a proton and an electron; however, in the central core of a dying star

electrons are degenerate and so an electron cannot be released. Additionally, the

neutrinos generated in this process will be capable of escaping the stars core rapidly

due to their small interaction cross-section and cause an even greater drop in the

temperature and pressure of the core with ≈ 90% of the energy released in the

supernova lost via this neutrino release. Observations of the neutrinos produced in

this interaction were observed from the supernova 1987A [40] [112].

2.2 Supernovae

The rapid decrease in pressure in the core of the star removes the mechanism for

supporting the star and the outer layers will fall towards its centre. This will continue

until the density of the stellar core reaches about three times that of an atomic

nucleus; at this point the Pauli exclusion principle starts to affect the neutrons in

the core. As neutrons are Fermions, they cannot inhabit the same state as one
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another and so at high densities (of the order of 8 × 1017 kg/m3) the neutrons

are subject to degeneracy pressure which stabilizes the star and creates an outward

force of repulsion from its centre. This process is extremely rapid, taking about only

one fiftieth of a second; while the core is collapsing the outer layers remain almost

motionless. The pressure in the core creates an outward pressure wave which causes

the outer layers to be thrown off at high speeds of the order of 104 km/s.

Perhaps 30-50 percent of the mass of the star is thrown off in the above process

at high temperature (≈ 106 K) and pressure. As a result elements heavier than

iron which are not generated in the cores of stars (as their production processes are

endothermic) can be generated in the initial supernova explosion in a process known

as rapid neutron capture. Heavy nuclei can capture neutrons easily but usually the

larger nuclei created in this process decay back to their component elements as they

are unstable. However, when rapid neutron capture exists many additional neutrons

can be captured and thus a stable nucleus of a heavier element is achieved. As the

stars which produce such emission are typically more than eight times the mass of

the Sun, several solar masses of material are blown off in the explosion carrying of

the order of 1051 ergs (1046 Joules) of kinetic energy. This results in an expanding

shock wave travelling at initial speeds of the order of 104 km/s creating a supernova

remnant (SNR).

When the outer layers of the star have been blown away a core remains. If the

mass of the core is below about three times the mass of the Sun (corresponding to

an initial main sequence stellar mass of twenty solar masses) it will stabilize and

form a pulsar; if the mass is greater than this it will collapse to form a black hole.

The mass threshold below which a star forms a neutron star rather than a black

hole is highly debatable and no firm limit has been established [82] although most

current models predict that progenitor stars above about 20 solar masses will form

black holes when they collapse.

This kind of supernova, the product of a massive star at the end of its life is known

as a type II supernova and is identified by the presence of Hydrogen emission lines in

its observed spectrum. If the outer layers of the star have been removed by the time

the supernova occurs no Hydrogen emission is seen and the supernova is known as a
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type Ia (which contains an aditional strong Silicon absorbtion line) or Ib supernova

(which does not contain an additional Silicon absorbtion line). Type Ia supernovae

are the result of the accretion of mass onto a white dwarf from its companion star

in a binary system; when the white dwarf has accreted enough mass to exceed the

Chandrasekhar limit it cannot support its own mass and so will implode in a type Ia

supernova. Type Ib supernovae are also the products of binary systems, in this case

the strong stellar winds of the companion to a large main sequence star strip it of

its outer layers resulting in a heavy element rich star devoid of Hydrogen emission,

the supernova process of a type Ib supernova is otherwise similar to that of a type

II supernova.

2.3 Pulsars

While working on the Cambridge radio telescope making observations of quasars

Jocelyn Bell, a PhD student at the time, noted a recurring signal which was deduced

to be of extraterrestrial origin as the time at which it was observed advanced by

4 minutes every night, consistent with sidereal time. This signal consisted of a

series of regularly spaced pulses with a period of 1.337 s, and was identified as

originating from the first pulsar, PSR B1919+21, a rapidly rotating and compact

neutron star [107]. The existence of such objects was first postulated in 1934, only

a year after the discovery of the neutron. Walter Baade and Fritz Zwicky were

attempting to explain the cause of supernovae and proposed that the energy released

was created by the binding together of material from a progenitor star together to

form a dense core of neutrons [37].

Today over 1800 pulsars are known [143]; they consist of the compact core of

neutrons that is left behind at the centre of a supernova explosion when the outer

layers of the star are blown off. They are rapidly rotating (a typical period of a few

seconds) extremely dense (about 6.65×1017 kg/m3), and measure only about 12 km

across with a strong magnetic field (typically 1014 G).

The strong magnetic fields and the rapid rotation (the average rotation period

is of the order of 1 s but approaches 1 ms in the most rapidly rotating cases) for
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which they are known is a result of the conservation of magnetic field and angular

momentum during this process. In a contracting fluid or gas magnetic field lines will

remain frozen in and so as the supernova progenitor collapses the total magnetic flux

present will be conserved. As this flux is spread over a much smaller area than in the

progenitor star (a pulsar will have a typical diameter of about 12 km compared to a

106 km diameter for a typical star) a much stronger magnetic field will be observed;

typical pulsars have magnetic fields of the order of 1014 G compared to the at most

103 G in a main sequence star. Similarly angular momentum is conserved in the

collapsing star and so angular velocity is greatly increased. Typically the rotation

period of a pulsar is around 1 s compared to 25 days for a main sequence star such

as the Sun.

2.3.1 Pulsar Rotation

The high density, strong magnetic field and rapid rotation of pulsars result in the

rapid, frequent and precise pulses that are seen in pulsars. The magnetic and ro-

tational poles of a pulsar are usually offset from one another (see Figure 2.2), as

the magnetic field of the pulsar rotates and induces an electromagnetic field in the

surrounding interstellar medium. Particles in the outer layers of the pulsar are ac-

celerated to relativistic speeds by the strong electromagnetic field; these follow the

magnetic field lines away from the pulsar. The particles’ acceleration along these

magnetic field lines results in the emission of curvature radiation (see Section 1.3.2)

which is seen when the emitting pole passes a distant observer, creating the pulsed

emission for which these objects are known. Some relativistic electrons which are

accelerated away from the surface of the neutron star escape at the magnetic poles

where the field lines are not closed; these electrons enter the surrounding supernova

remnant and their interaction with this creates a pulsar wind nebula.

One of the most important characteristics of the pulsed emission observed in

pulsars is the stability of duration of each pulse. The pulse has been measured to

one part in 1015 s in some cases and as such pulsars are the most accurate clocks

known in the universe. The precision expected from pulsars along with the strong

gravitational fields present have been used to test the principle of general relativity.
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In 1974 Russell Hulse and Joseph Taylor discovered the binary pulsar system PSR

B1913+16 consisting of a pulsar and its companion star which is also a neutron

star but is not observed as a pulsar [120]; they travel around their common centre of

gravity in elliptical orbits once every 7.75 hours. When the pulsar and its companion

are at their closest point to each other the pulses appear to a distant observer to

take longer to arrive. This is a result of the strong gravitational field present in

the companion star which distorts space time around it and causes time to progress

more slowly in this region of space. The accurate measurement of the pulse allows

the precession of periastron to be measured confirming the predictions of general

relativity. Hulse and Taylor were awarded the Nobel prize in prize for physics for

Figure 2.2: The offset magnetic and rotational axis of a pulsar along with the direction of

emission of the radiation beam. The emission regions proposed by most emission mecha-

nisms are shown the polar cap and the outer gap mechanisms, recent Fermi observations [5]

exclude the possibility of polar cap emission.
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this discovery in 1993.

2.3.2 Pulsar Spindown

As pulsars are emitting energy their rotation will gradually slow down at a typical

rate of up to 10−15 − 10−13 s/s; due to the precision with which a pulsar period can

be measured this slowdown can also be precisely observed. However, occasionally

a pulsar will sharply increase its rotational velocity, creating a “glitch”. This is

the result of movement in the solid neutron crust that forms on the surface of the

pulsar. When a pulsar loses angular momentum it will become less oblate; however

the solid crust will usually preserve its shape until the whole surface is rearranged

in one jolt, rearranging the pulsar’s angular momentum and causing a small, sharp

increase in its angular velocity.

The spindown of a pulsar is important in the study of pulsar wind nebulae as it

will allow us to calculate the rate at which energy is lost by the pulsar. This can

then be used to infer the energy that is input into the surrounding nebula. The rate

at which the pulsar loses energy is given by its spindown luminosity Ė:

Ė = 4π2I
Ṗ

P 3
(2.5)

where I is the moment of inertia of the pulsar, P is its period and Ṗ is the period

derivative which measures the rate of change of the pulsar’s period. P0 is the period

of the pulsar at its birth and n is its breaking index. These values are used to work

out the characteristic age of the pulsar:

τc =
P

(n− 1)(̇P )

(
1−

(
P0

P

)n−1
)
≈ P

2Ṗ
(2.6)

which can be used to determine the age of the pulsar wind nebula produced.

The first term gives a more accurate estimate of the age of the system but requires

the braking index and initial period of the pulsar to be known. The braking index

is the power to which the slowdown in angular velocity occurs, and is defined as:

n =
PP̈

Ṗ
+ 2 (2.7)
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where P , Ṗ and P̈ are the period and its first and second derivatives respectively.

The default assumption is generally n=3, but values as low as n=2 have been ob-

served. The second term is more approximate but can be calculated for any known

pulsar. However, this approximate equation often overestimates the age of young

pulsars as it assumes that the current period of pulsar is much lower that its initial

period and that it has a braking index of n = 3, which is not necessarily the case.

This is well illustrated by the pulsars associated with historically observed su-

pernovae such as the Crab nebula pulsar and the pulsar associated with G21.5-0.9

which are both discussed in Chapter 4. The Crab nebula pulsar has a characteristic

age of almost 300 years more than its historically observed age while the G21.5-0.9

pulsars characteristic age is more than twice its real age if it is indeed associated

with the supernova of 386 AD. This discrepancy is important in the context of pul-

sars which are currently producing pulsar wind nebulae as they are in general young

pulsars (see Section 4.1).

The characteristic age calculation also falls down for older pulsars where an

additional decay in the spindown rate occurs as a result in the decay of the magnetic

dipole moment; this results in the characteristic age overestimating the age of pulsars

which should show ages of the order of 106 − 107 years but are observed as being of

ages of the order of 108 − 109 years. This is less important in the study of pulsar

wind nebulae.

2.4 Supernova Remnant Formation and Develop-

ment

As we have seen, the material thrown off in a pulsar explosion will expand at high ve-

locity into the surrounding interstellar medium forming a supernova remnant (SNR).

This consists of the outer layers of the supernova which are heated to a high tem-

perature by the explosion and ejected at velocities of the order of 104 km/s into the

surrounding medium. In the early stages of its evolution, the development of the

remnant is dominated by the initial conditions of the supernova and so will expand

adiabatically as a ball of hot gas until the matter swept up from the surrounding
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medium forms a significant percentage of the matter present in the remnant. As the

initial velocity is supersonic, a shock wave will form at the front of the expanding

SNR.

When the remnant has swept up more mass than it initially contained it en-

ters what is known as the Sedov-Taylor phase. At this stage the dynamics of the

expanding remnant are dominated by both the total mass of the remnant and the

initial energy released by the supernova explosion which will expand following the

relation [168]:

r ∝
(

ESN

ρ0

)1/5

t2/5 (2.8)

where r is the radius of the expanding remnant, ESN is the energy released into

the remnant in the initial supernova explosion, ρ0 is the initial density of the medium

into which it is expanding and t is time since the supernova. The deceleration of

the expanding sphere occurs firstly in the outer layers of the nebula and so the

inner layers will catch up, thus increasing the density of the outer layers. As the

expanding shock wave continues to decelerate, the flow of gas into the outer layer

becomes supersonic relative to the shell, creating a second inner shock wave which

heats the material in the outer shell. As the material approaching the edge of the

shell builds up, this internal wave will propagate back, heating up the nebula and

converting the kinetic energy of the shock wave into thermal energy. This reverse

shock will travel back to the centre of the nebula where it interacts with the central

pulsar wind nebula which has been created.

2.4.1 Shock Front Acceleration

The particles which are observed in the shells of supernova remnants are accelerated

to relativistic speeds across the shock wave which develops at its edge. This was first

postulated by Enrico Fermi in 1949 and is known as first order Fermi acceleration as

it depends linearly on the velocity of the shock [79]. Additional acceleration occurs

due to the reflection of particles by the shock, it is known as second order Fermi

acceleration as the acceleration is dependent on the square of the velocity of the
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shock, unlike first order Fermi acceleration it is not as important to the acceleration

taking place in SNR shocks and so is not discussed here.

In the vicinity of a shock wave, such as that present at the edge of a supernova,

there are particles of relativistic energies present on both sides of the shock travelling

at a much higher velocity than the shock, which they are able to pass through

without difficulty. The mass of material is conserved through the shock front and

so:

ρ1µ1 = ρ2µ2 (2.9)

where ρ and µ are the density and velocity of the material before (1) and after

(2) the shock (see Figure 2.3). The shock front is assumed to be non-relativistic and

expanding with a velocity U and as the gas is assumed to be fully ionised the density

ratio can be shown to be ρ1
ρ2

= 1
4

[139]. In their own frame of reference the particles

on both sides of the shock move stochastically. These particles will sometimes pass

over the shock front where the particles will interact with a flow of particles travelling

at 3
4

of the velocity of the shock. This results in an increase in velocity of ∼ U/c

when the particle crosses the shock front. Magnetic inhomogeneity in the vicinity

of the shock front can cause the direction of the particle to be reversed causing this

crossing of the schok to occur many times, each resulting in an increase in energy.

As a result the energy of the particle will greatly increase. The particle will thus

gain energy each time it crosses the shock front as it passes in either direction:

∆E

E
=
U

c
cosθ (2.10)

where ∆E is the energy change of the particle as it crosses the shock, E is the

energy of the particle before it crosses the shock and θ is the angle at which particles

approach the shock front. The number of particles which approach the shock front at

each angle is proportional to sinθdθ while the rate at which particles cross the shock

is proportional to the portion of their velocity perpendicular to it, cosθ. As a result,

the probability of a particle crossing the shock is proportional to 2sinθcosθdθ when

averaged over all angles of approach. Thus the average energy gained on crossing

the shock is:
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Figure 2.3: The first order Fermi acceleration mechanism. The top row shows the velocity

of particles in the frame of reference of the shock while the bottom shows the shock front

in the frame of the particle distribution in the shocked material (right) and the interstellar

medium (left) respectively. After moving stochastically on its own side of the shock in its

own frame of reference a particle may cross the shock front in either direction and will

interact with a flow travelling at 3/4 of the shock velocity. This results in an increase of

∼ U/c in either direction when it crosses the shock front [79] [139].
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〈
∆E

E

〉
=
U

c
2cos2θsinθdθ =

2

3

U

c
(2.11)

If the probability of the particles escaping the magnetic field is calculated based

on kinetic theory [139] then a power law with a spectral index of 2 is expected for

the output:

N(E > E0) = constant×
∫ ∞
E0

E−2dE (2.12)

where N(E > E0) is the number of particles which escape with energy greater

than E0. This gives a power-law distribution of high energy particles. However, in

the case of a supernova remnant a steeper power law is observed with a spectral

index closer to -2.6. This is usually explained by the containment of particles within

the SNR [139]. The high energy particles produced diffuse freely within the remnant

but may also escape from it. The higher the energy of the particles, the more likely

they are to escape from the remnant; this is more likely to leave behind lower energy

particles and hence causes the spectrum to steepen [139]. However, this is the topic

of ongoing research.

2.5 Pulsar Wind Nebulae: Production and De-

velopment

As pulsars are generated in supernovae they will initially be surrounded by an ex-

panding supernova remnant. The central pulsar in the nebula will initially be highly

energetic and so will pump accelerated high energy electrons into the surrounding

medium. Concurrently, it will rotate with a period of less than 1 s (see Section 2.3.1)

and as a result will sweep out a strong magnetic field into the surrounding medium.

The interaction of these electrons with the supernova remnant and the magnetic field

swept out by the pulsar will form a highly magnetic environment where the electrons

present will emit radiation via the inverse Compton and synchrotron mechanisms.
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2.5.1 Expansion into unshocked medium

Just after the supernova explosion in which a pulsar is created, the surrounding

supernova remnant is still moving freely out into the interstellar medium at a velocity

of 104 km/s. As the pulsar itself will be moving much more slowly, typically of the

order of 500 km/s, this will be embedded in the expanding SNR (while the PWN is

expanding into unshocked ejecta), close to its centre. The pulsar wind nebula has

a much higher pressure than the surrounding remnant and so will expand rapidly

into it. At this stage the expansion of the pulsar wind nebula is nearly symmetrical

and so will evolve as [56]:

RPWN ∝
Ė

1/5
0 E

3/10
SN t6/5

M
1/2
ejecta

(2.13)

where RPWN is the radius of the pulsar wind nebula, Ė0 is the energy output

of the pulsar while ESN and Mejecta are respectively the energy and mass of the

supernova remnant into which it is expanding. As the power output in the early

stages of a pulsar’s lifetime is basically constant, Ė ≈ Ė0. This creates a rapidly

expanding and nearly symmetric nebula in the centre of the expanding SNR.

2.5.2 Reverse Shock

After about 1000 years, the supernova remnant into which the pulsar wind nebula

is expanding enters the Sedov-Taylor Phase (see Section 2.4). In the outer layers

of the SNR a reverse shock develops which will initially travel outwards with the

expanding SNR, but eventually will start to move inward. The reverse shock would

reach the nebula in less than [168]:

TSedov(years) =
3.25× 1028Mejecta n0

ESN
(2.14)

where n0 is the number density of the ambient gas surrounding the remnant in

cm−3, Mejecta is the mass of the supernova remnant in solar masses and ESN is the

energy ejected in the supernova explosion in ergs. The collision of the incoming shock

front and the expanding pulsar wind nebula will typically occur after a few thousand

years. The reverse shock will then compress the central pulsar wind nebula by a
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large factor, greatly increasing its temperature and pressure, leading to an oscillation

in the size of the nebula lasting for a few thousand years as the relative pressures of

the nebula and the surrounding supernova remnant stabilise.

The original ‘kick’ with which a pulsar exits the supernova in which it was

created (≈ 500 km/s) is usually less that the initial expansion speed of the supernova

remnant (≈ 104 km/s). As a result the pulsar will generally be at the centre of the

nebula for the first thousand years of its life. However, once the nebula has been

subject to a reverse shock, the pulsar will usually move away from the centre of the

nebula towards its edge where the pulsar wind nebula will either starts to expand

again into the crushed medium (as discussed in Section 2.5.3) or in some cases

will escape it entirely; this leads to the creation of a bow shock nebula (discussed

in Section 2.5.4) around the escaped pulsar and leaves behind a relic pulsar wind

nebula of older relativistic electrons.

2.5.3 Expansion into a Crushed Medium

Once the pressure differential between the supernova remnant and the pulsar wind

nebula has stabilised, the pulsar wind nebula will continue to expand into the

shocked material of the SNR. The expansion will not accelerate but occur at a

constant rate, which is dependent on the rate of energy output from the pulsar.

If this rate is approximately constant, as it is in the earlier years of the pulsar’s

lifetime, then the radius of the pulsar wind nebula will evolve as RPWN ∝ t
11
15 [168].

As the rate of pulsar output diminishes this falls to RPWN ∝ t
3
10 after time τ0 [168]:

τ0 =
P0

(n− 1)Ṗ0

(2.15)

where P0 and Ṗ0 are the initial period and period derivative of the pulsar in

question and n is its braking index.

2.5.4 Bow Shock Nebulae

In cases where the pulsar has a high velocity it can escape the original pulsar wind

nebula and form a new bow shock nebula around itself. This will form behind the
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moving pulsar wind nebula with a bridge of emission linking it to the main nebula.

As the central pulsar moves away from the centre of the SNR towards its edge,

its speed relative to the sound speed in the remnant will increase (the sound speed

in the outer layers of the nebula is lower due to its lower density) and so the pulsar

will begin to move supersonically. This results in a small (less than 1 parsec across),

tightly confined PWN with a shape similar to a comet, such as the Mouse [87].

2.6 Emission From Pulsar Wind Nebulae

As we have seen, electrons are accelerated to relativistic energies in the outer layers

of a pulsar and escape into the surrounding medium of the supernova remnant. This

wind interacts with a shock front downstream of the wind to further acelerate the

particles to energies of about 1015eV. Concurrently, the pulsar will sweep out a

magnetic field into the nebula. The relativistic electrons downstream of the shock

will then orbit around the magnetic field lines running through the nebula and

radiate synchrotron emission (see Section 1.3.1). This emission is seen over a broad

range of frequencies from radio to X-ray, with the highest energies of X-ray emission

corresponding to the highest energy electrons injected into the system (see Equation

1.8).

The pressure of this radiation pushes particles away from the area immediately

surrounding the pulsar so that only the relativistic wind is present, terminating in

the shock front at the point where the pressure of the wind balances the internal

pressure of the pulsar wind nebula. This expands as [86]:

R =

√
Ė

4πωcP
(2.16)

Where R is the radius of the wind termination, P is the pressure of the nebula

interior and ω is the equivalent filling factor (the fraction of the wind volume oc-

cupied) for an isotropic wind. Before this shock is passed the particles will travel

parallel to and along the magnetic field and so will not interact with it. After they

pass this barrier, the electrons are further accelerated and scattered by their pas-

sage accross the shock front and are no longer parallel to the magnetic field lines
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Figure 2.4: Emission from a pulsar wind nebula, showing the synchrotron nebula which is

visible in all wavelengths compared to the unshocked wind in which only inverse Compton

emission is observed. In older pulsar wind nebulae only inverse Compton emission is

seen at the furthest portions of the “synchrotron nebula” as the more energetic electrons

required to emit in the synchrotron regime have cooled at these distances. Figure adapted

from Aharonian [32].
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and so synchrotron emission can occur beyond this point. This results in an area

immediately adjacent to the pulsar where no synchrotron emission is observed (see

Figure 2.6).

Characteristically, the synchrotron emission observed from most pulsar wind

nebulae has a flat power law spectrum at radio wavelengths with a spectral index

of about -0.3. This steepens in the X-ray regime to about -2. The cause of this

spectrum is not well understood; if a simple power law was assumed for the input

electron spectrum then the photon spectrum expected would show a broken power

law with a spectral break at frequency [90]:

νb = 1024 t

2 (BPWN)3
(2.17)

where BPWN is the magnetic field strength of the pulsar wind nebula in Gauss

and t the age of the electrons producing the radiation in years. As the frequency at

which the break occurs is inversely proportional to the age of the source photons,

the nebula will be larger at lower energies and so larger synchrotron nebulae will be

seen in radiowaves than in X-rays. The largest nebulae are observed in the VHE

γ-ray regime where lower energy electrons are emitting via the inverse Compton

process.

As has been discussed, pulsar wind nebulae are prominent sources of very high

energy γ-rays. At these wavelengths, emission is caused by inverse Compton acceler-

ation of seed photons by the relativistic electrons present in the nebula (see Section

1.3.5). As the electron energies needed to boost photons to these energies are not as

large as that required for synchrotron emission to occur, inverse Compton emission

is seen at the extremes of the nebula where synchrotron emission can no longer be

observed and as such older pulsar wind nebulae are observed to be much larger in

VHE γ-rays than their X-ray counterparts. In addition to this, inverse Compton

emission is seen in the unshocked wind area of the PWN as the electrons present

are energetic enough to produce inverse Compton radiation even if they are unable

to produce synchroton radiation.

The brightness of the observed inverse Compton nebula is dependent on the

availability of seed photons. The Crab nebula has a large supply of synchrotron-
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generated photons and so these are accelerated to TeV energies by Compton scat-

tering. However, in most cases background light (typically Galactic starlight or light

from the cosmic microwave background) is boosted in this process and so lower rates

of emission are seen.



Chapter 3

The Analysis Of VHE γ-rays

In this Chapter we discuss the analysis procedures undertaken when carrying out

HESS analysis in order to define sources and to calculate upper limits when no

signal is detected. It will begin with details on how observation of an air-shower is

used to calculate the origin and energy of an incoming VHE γ-ray in both a single

telescope and the stereoscopic case before going on to discuss the intricacies of the

HESS analysis process.

3.1 Reconstruction of the Origin of a TeV Event

When an observation of a Cherenkov light shower is used to infer its properties, both

the angle of arrival and the energy of the incoming particle will affect the size of the

shower ellipse as seen from the ground. This is shown in Figure 3.1 in which the

major axis of the observed image approximates the axis of the shower along which

the γ-ray source is located. The size and shape of the image is used to estimate the

distance to the event. There is a large intrinsic error in the position of the source

derived using this method due to difficulty in estimating the core distance to the

shower location from the position of the air shower.

Ideally, observations of a shower must be made simultaneously with several tele-

scopes to accurately measure the shower’s point of origin and its energy. Intersecting

the image axes gives a much more accurate estimation of the position of the source

(see Figure 3.2), and once this is known, a much more accurate estimation of the

52
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Figure 3.1: The image reconstruction of an event from a single Cherenkov telescope

showing the margin of error in the position [114].

energy of the source. Multiple telescopes also allow background muons present in

the local environment of the telescope, which could pass through the camera of a

single telescope and trigger it, to be eliminated by requiring that more than one

telescope responds for an event to be recorded.

3.2 The HESS Trigger System and Event Cuts

As well as allowing background muons to be eliminated the HESS trigger system

reduces the background of cosmic ray events observed. Additionally, as the trigger

only records when a fast flash of light is observed it allows the observed night sky

background to be reduced improving the signal to noise ratio. The trigger system

employed by HESS uses a series of overlapping 64 pixel sectors. The recording

system is triggered when a brief flash of light (a few ns) is seen in a certain number

of pixels within a sector and the resulting signal contains more than a preset number

of photoelectrons. These thresholds are programmable and are typically set to a

few photoelectrons viewed across a minimum of 2 to 4 pixels [83]. Additionally
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Figure 3.2: The image reconstruction of an event for three Cherenkov telescopes showing

the more accurate position obtained [114].

the central recording system of the HESS array will only trigger if more than one

telescope triggers simultaneously.

The size and shape of the events observed is used to distinguish the events from

cosmic ray induced air showers which are typically smaller and more irregularly

shaped than those produced by γ-rays of the same energy (see Figure 1.6). This

is done with a series of data selection cuts. Some of these cuts used are shown in

Figure 3.3. HESS has three default sets of cuts: hard, standard and loose [83]. The

harder cuts will typically exclude some genuine γ-ray events but as a result a much

greater percentage of the unwanted hadronic events is excluded. This increases the

ratio of wanted γ-ray events to unwanted hadronic events and as a result increases

the precision of event pointing. This makes the hard cuts good for analysis of target

morphology. Looser cuts allow more data to be acquired and so are good for the

production of spectra as all possible data are utilized. The standard cuts provide a

compromise between the pointing accuracy needed to produce a good morphology
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Cuts MRSW MRSL PE θ2 (◦) All γ All BG

max max min max % %

Hard 0.7 2.0 0.01 200 13 8e-4

Standard 0.9 2.0 0.0125 80 35 9e-3

Loose 1.2 2.0 0.04 40 68 0.11

Table 3.1: Selection cuts for standard HESS observations. Hard cuts exclude the most

events and are the best for morphological study as they have the best positional accuracy

while loose cuts exclude the least and are useful for investigating spectra as the greatest

number of events are included in the spectrum observed. Standard cuts are a compromise

between these two extremes. Cuts are applied on the number of photoelectrons (PE)

generated, MRSW, MRSL and the distance of the shower position to the source (θ). [17]

and the amount of data needed to estimate an energy spectrum and are used to

establish the presence of a source.

The cuts allow hadronic cosmic ray events to be removed in a number of ways,

which depend on their size, shape and the accuracy with which their position can

be determined. The number of photoelectrons recorded is used as γ-rays are usually

brighter than the hadronically created air showers in the upper atmosphere. An

important cut is the mean-reduced-scale-width (MRSW) of the recorded events [17].

This parameter is defined as the mean of the difference in standard deviation for

each telescope from the width observed in the image from that which is expected

from γ-ray simulations based on image intensity. Its value is given by:

MRSW =
1

Ntel

Ntel∑
i=0

wi− < we >

σi
(3.1)

where Ntel is the number of telescopes used in the observation, wi and < we >

are respectively the observed width of the shower and the shower width expected

from simulations and σi is the standard deviation of the simulated width. MRSW

is based on the mean scaled width (MSW) parameter developed by the HEGRA

collaboration for this purpose [165], and also takes into account the use of multiple

telescopes in the HESS array. The cuts applied remove non-γ-ray events based on

their size, shape and the accuracy with which their position can be determined are
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Figure 3.3: Parameters for the analysis of Cherenkov air showers as defined by [108].

Figure taken from [70].

shown in Table 3.1.

These cuts are applied at various points in the analysis chain process to balance

the needs of the user to customise the analysis with the data storage capacity of

the HESS analysis systems. Initially the individual HESS telescopes capture raw air

shower images and these are recorded by the central HESS control system if more

than one telescope is triggered simultaneously. These raw images are later corrected

for by comparison with calibration data to adjust for systematic biases caused by

factors such as variance in efficiency of the telescope photomultiplier tubes. These

events are then subject to two levels of event selection to distinguish between genuine

γ-ray events and cosmic ray events. Primary event selection takes place centrally
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before the distribution of data to the end users. In this process the image is cleaned

so that only pixels with more than 5 photoelectrons recorded are kept and then only

if they are part of a larger cluster of pixels. The air shower parameters are derived

for the remaining events by the end user who can select the cuts discussed above to

optimise their analysis and calculate the properties of the incoming air shower.

3.3 Significance Calculation

Even after these cuts have been applied a significant amount of background remains

in the dataset. For this reason, it is necessary to calculate the statistical significance

of the source detection. It is based on the method described in Li and Ma [138] and

is given by:

S =
Non − αNoff√
α(Non +Noff )

(3.2)

where S is the statistical significance, Non and Noff are the number of on and

off counts respectively and α is the ratio between the effective exposure time of

on-axis and off-axis counts and so takes into account the difference in the on-axis

and off-axis areas observed. The off-axis counts used are based on a background

derived from a different portion of the telescope’s field of view. In the case of HESS

a reflected (where the background is offset from the centre of the camera by the same

distance as the source [38]) or ring background (where the background is taken from

a ring surrounding the source [38]) is used; these are shown in Figure 3.3. The ring

background assumes that there is a steady decay in the camera acceptance with

distance from its centre, as in this case the average acceptance obtained should be

the same as that seen in the on-region, and the size of the ring can be adjusted to

avoid any contaminating sources. It is used whenever a region map is produced.

The reflected region background takes its off counts from areas the same distance

from the centre of the camera as the on-region, consequently any decay in camera

acceptance with distance from its centre does not matter. It is used whenever a

spectral or significance calculation is made. A third background method exists

where background regions are specified by the user for the analysis of sources in
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Figure 3.4: The regions from which on and off counts are taken in the ring (a - top) and

reflected region (b - bottom) background methods as shown for the binary source LS5039

by Dickinson [70]. The observed target is seen in the centre of the diagram in each case

while other known γ-ray sources seen (which are excluded in the analysis background) are

also surrounded by dashed lines. The background regions, from which the off-axis counts

are taken are shown surrounded by solid lines. The observation positions of the HESS

telescopes are denoted by the white crosses.
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crowded regions of the sky. Its use is not recommended as it does not take into

account changes in acceptance across the camera.

3.4 Flux calculation

Once a source has been detected the flux of the source can then be calculated in

order to compare it to the emission observed at other wavelengths.

In the HESS observations presented in this thesis the flux is estimated from the

number of excess events compared to background [17]. The integral flux is calculated

by assuming the functional form of the γ-ray flux. Usually for a basic analysis a

decreasing power law is assumed and so the integral flux (I) above a given energy

threshold (Et) can be expressed as:

I =

∫ Emax

Et

I0

(
E

E0

)−Γ

dE (3.3)

where Emax is the nominal upper cut-off energy, Γ is the assumed spectral index

and I0 is the flux normalisation value at energy E0. The value of I0 is derived from

the measured γ-ray excess (∆) which can be expressed as:

∆ =

∫ Emax

0

∫ tstop

tstart

I0

(
E

E0

)−Γ

AeffdtdE (3.4)

where tstop and tstart are the stop and start times of the observation respectively

and Aeff is its effective area. The effective area is the area over which an incoming

γ-ray will trigger the telescope and survive event selection. It is dependent on

the particle energy (E), the offset of the target from the pointing direction of the

telescopes and the zenith angle of the observation and is calculated as:

Aeff =
NT

NS

× πr2 (3.5)

where NT is the number of triggered events, NS is the number of simulated events

and πr2 is the area over which Cherenkov light can be detected. The Flux (Fi) of

each energy bin is given by [13]:

Fi =
Oi −Bi

∆Eiti
(3.6)
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where Oi and Bi are the sum of on and off source events calculated from the

effective area, ti is the exposure time and ∆Ei is the energy width for the bin

concerned. The spectrum is calculated iteratively; an initial value of the spectral

index Γ = 2.0 is assumed and this is used to calculated the value of the effective area

for each bin from which the spectral index can be recalculated in turn. When this

deviates from the hypothesis the process is repeated using the new spectral index

until the numbers converge.

3.5 Upper Limit Calculation

In many of the observations presented in this thesis no source was seen and so an

upper limit to the flux is given in the place of a flux measurement. For this purpose

we use a method derived from the Feldman and Cousins approach developed for the

analysis of neutrino signals which like TeV γ-ray signals deal with low signal data

[78]. The Feldman and Cousins approach unifies in its consideration the treatment

of upper limits for a non-detection and the upper confidence limit for the detection

of a source, meaning a choice between the two does not have to be made in the case

of a borderline detection or in the presentation of a limit when the measured flux is

contaminated by a brighter overlapping source.

A Feldman Cousins upper limit is thus calculated similarly to calculating the

error on a flux measurement but with an assumed spectral index taking the place

of that calculated for an observed source. When a measurement is calculated an

estimate of the upper and lower error is made by calculating the probability distri-

bution function given such that the values for the upper (x1) and lower (x2) limits

have the same likelihood and that [78]:

∫ x1

x2

P (x|µ)dx = α (3.7)

where P (x|µ) is the probability function of obtaining x for a given value of µ

where µ is the true value of x and is obtained from a direct measurement of the flux;

α is the confidence level required from the limits. As only non-negative values of x

are allowed in cases where the value of x is low the lower limit (x2) becomes zero
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and hence the upper limit x1 is quoted in place of the measurment with error band.

In the analysis presented here a Gaussian probability distribution is used along with

a 99% confidence limit.
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Chapter 4

A Survey of Known VHE γ-ray

Pulsar Wind Nebulae

As of August 2010 there were ten known sources of very high energy (VHE) γ-rays

that have been confirmed as pulsar wind nebulae as well as approximately fifteen

others which are suspected to be pulsar wind nebulae (PWN). In addition, the HESS

dark sources may represent relic pulsar wind nebulae which have reached the end of

their life and emit in the very high energy γ-ray regime but have yet to be observed

at other wavelengths. The observed nebulae represent a broad range of ages and

show a range of characteristics. This Chapter focuses on the different properties of

the known pulsar wind nebulae as well as aiming to discuss why very high energy

γ-ray emission is seen from some pulsar wind nebulae and not others.

This Chapter begins with a discussion of the properties of young pulsar wind

nebulae (Section 4.1), which are defined as those have not yet been the subject of

a reverse shock crush detailed in Section 2.5.2, before moving on to discuss middle

aged nebulae (Section 4.2) and finally old and relic nebulae where no new output

from a central pulsar is still present (Section 4.3). It is concluded with a population

study analysing the development of the observable properties of known pulsar wind

nebulae (Section 4.4).

63
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4.1 Young Pulsar Wind Nebulae

As we have seen in Section 2.5 at the beginning of their lives pulsar wind nebula

are expanding rapidly into a surrounding supernova remnant. This results in the

small highly energetic nebulae that we observe in the VHE γ-ray regime. In this

Section the properties of all confirmed young pulsar wind nebulae are discussed

with most attention given to the TeV γ-ray emission from these nebulae and the

emission from their associated X-ray nebulae. The X-ray and γ-ray properties of

each nebula discussed along with additional suspected young pulsar wind nebulae

are summarised in Table 4.1 along with details of the progenitor associated with

each listed in Table 4.2.

4.1.1 The Crab Nebula

The Crab Nebula was the first steady source of VHE γ-rays to be discovered and so

was considered the archetype of young γ-ray pulsar wind nebulae. However, after

Figure 4.1: A Hubble image showing the shell part of the Crab Nebula [105].
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the observation of other young pulsar wind nebulae in this regime, it could now

be considered something of a unique source. It is brighter that all other constant

sources in the TeV regime and generates γ-rays in non-typical way.

In 1054 Chinese and Japanese astronomers made an observation of a bright

temporary star, visible in the daylight for 23 days gradually diminishing over time.

It disappeared after being visible to the naked eye for almost two years [185], it

wasn’t observed again until the eighteenth century.

Observations of this extended nebula have been made in every available wave-

band and reveal a shell type supernova remnant with filamentary outer layers ex-

panding into the surrounding interstellar medium at a velocity of 700 - 1800 km/s

[57]; this can be used to infer a distance to the nebula of 2 kpc. The supernova

remnant surrounds a central pulsar wind nebula powered by the progenitor pulsar

PSR B0531+21.

The most detailed optical images are from the Hubble space telescope (see Fig-

ures 4.1 and 4.2). These show the filamentary structure of the outer supernova

remnant (Figure 4.1) and the structure of the central pulsar wind nebula (Figure

4.2). This shows much brighter supernova shell than the central pulsar wind nebula

in the optical regime.

X-ray observations of the source have also been made using the latest X-ray

satellites such as Chandra [178]. In this case there is no evidence for emission in

the outer SNR shell. The difference in relative brightness of the SNR shell and

central nebula between the optical and X-ray regimes is explained by the nature of

emission in these two components of the source. Synchrotron emission is produced

by the central pulsar wind nebula at wavelengths from radio to γ-ray regimes and

by inverse Compton emission in the TeV γ-ray regime; however, this is not the case

in the SNR shell where much of the emission is thermal, or the result of emission

line transitions in the filaments of the shell. This makes X-rays a useful tool for

observing the shape of the central pulsar wind nebula because at these wavelengths

it can be easily distinguished from its shell.

Both optical and X-ray images of the central pulsar wind nebula provide us

with information about the morphology of this source. It is seen as an ellipsoid
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Figure 4.2: A Hubble image showing the central pulsar wind nebula of the Crab Nebula

[106].

with major axis 4.4 pc and minor axis 2.9 pc filling a volume of ≈ 30 pc3 [104].

The area immediately adjacent to the pulsar can be seen to emit less radiation

than the nebula around it; this is because in this area the wind is not shocked and

hence does not emit synchrotron radiation. The total synchrotron luminosity of the

nebula integrated across all wavelengths (synchrotron emission is visible from the

radio regime to energies of about 1 GeV) is about 1.3×1038 ergs/s corresponding to

about a quarter of the spindown energy being lost by the pulsar into its surroundings.

Another important feature of the Crab is the central progenitor pulsar powering

the emission of its central nebula. This is also seen energy bands from the radio

up to 27 GeV [34]. The pulsar has a period of ≈ 33 ms and a period derivative of

Ṗ ≈ 4.21 × 10−13s/s. From this a spindown luminosity of Lspin ≈ 5 × 1038 ergs/s

can be calculated.

The Crab Nebula has been the subject of observations by almost all the ob-
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servatories operating in the VHE γ-ray waveband. The earliest detections of this

nebula in this waveband were made by the 10m telescope at the Whipple obser-

vatory on Mount Hopkins in Arizona while the imaging atmospheric Cherenkov

technique was being developed [77]. This eventually gave a confirmed detection

with a statistical significance of 9.0 σ in 1988 with an observed integral flux of

1.8× 10−11 photons /cm2/s above 0.7 TeV. Later observations such as those by the

HEGRA experiment [193] allowed the spectrum of the Crab to be determined. As

this is the brightest known constant source of VHE γ-rays in the sky, it is used

as a “standard candle” for γ-ray measurements with many published results being

Figure 4.3: The spectral energy distribution of the Crab Nebula across the γ-ray regime

taken from [5] with data from VERITAS [52], MAGIC [34], HESS [17], Fermi [5], CAN-

GAROO [186], CGRO [134] (A satellite observing lower energy γ-rays), HEGRA [10],

Whipple [193] and CELESTE [181] (earlier ground-based Cherenkov observatories) and

show consistency between these different observations. An inverse Compton peak is ob-

served in γ-rays as well as the decline in the synchrotron emission observed at MeV

energies. IC spectra are plotted with an assumed magnetic field of 100 µG (solid red line),

200 µG (dashed green line) and 300 µG (dotted blue line).
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expressed in terms of a percentage of the Crab flux.

The current generation of TeV Cherenkov telescopes have allowed the spectrum

of the central pulsar wind nebula in the Crab to be more accurately assessed, first by

HESS [17] and more recently by the VERITAS [52] and MAGIC [34] observatories.

As HESS is a southern hemisphere observatory and the Crab is a northern hemi-

sphere object (at a declination of 22.01◦) HESS has the highest energy threshold

for its observation while MAGIC, with its larger detector and northern hemisphere

location, has the lowest. However, as can be seen in Figure 4.3, the spectra in each

case are comparable and show a decaying power law with a spectral index of -2.31

± 0.2 and a turnover at 90 GeV. This is consistent with the spectrum observed

with the Fermi LAT in which the spectral turnover for this source at ≈ 80 GeV is

observed [5] (see Figure 4.3). A luminosity above 1 TeV is (3.23 ± 0.42) × 1034

erg/s was observed for this source by HESS.

Due to the brightness of the source only 23 hours of data were needed to produce

the published HESS spectrum [17]. As of April 2010 an additional 38 hours of

observations of the Crab nebula have been made. Analysis of these data was used

to give the spectrum and skymap for the source seen in Figure 4.4 and Figure 4.5, a

description of how HESS analysis is carried out is found in Chapter 3. The results

obtained agree with those obtained in the published HESS paper when a smaller

dataset was used.

This spectrum is a result of synchrotron self Compton emission in the pulsar wind

nebula whereby the relativistic electrons present in the nebula generate synchrotron

photons (see Section 1.3.1) and then accelerate them to TeV γ-ray energies though

the inverse Compton mechanism (see Section 1.3.5). Emission of this kind is not

observed in most known pulsar wind nebulae making the Crab Nebula a very inter-

esting object and explaining why it is much brighter than other pulsar wind nebulae

in the TeV regime, where the inverse Compton seed photons are taken from other

sources such as galactic background light and microwave background radiation.

Comparison of the spectrum seen in X-rays and that seen in the gamma-ray

regime allows the energy of the electron spectrum and magnetic field of the nebula

to be calculated. The magnetic field is inferred to be 100-300 µG [5] which is
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Figure 4.4: A new analysis showing the spectrum of the Crab Nebula with HESS using all

61 hours of available data (points) compared to the exponential cut-off power law derived

in published HESS observations using a smaller dataset [17] (line) which has the form

dN/dE=3.76×102.39e−E/14.3.
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Figure 4.5: A new analysis showing emission from the Crab nebula with HESS using all

61 hours of available data, the source is seen in a characteristic fashion for a point source

observed with HESS and a significance of 195σ is seen. The extension shown corresponds

to that expected for a point source seen through the HESS point spread function (PSF).

higher than most nebulae of this type. This has the effect of confining the electrons

present for longer than usual and thus allows the synchrotron self Compton emission

described above to occur. However, the reason for this unusually strong magnetic

field has yet to be explained but may be due to a higher than average density of the

nebula.

Recent γ-ray observations by the MAGIC collaboration [34] and using the Fermi

satellite [5] have observed the pulsations from the central pulsar powering the nebula.

Pulsations are seen at energies up to 27 GeV. At γ-ray energies the period of these

pulsations is the same 33 ms that is seen at other wavelengths [34]. While the

Fermi results [5], in common with optical and radio observations, show a very large

on-pulse and a much smaller interpulse, in the MAGIC observations the two pulses

(corresponding to emission from the two poles of the pulsar) show roughly similar

intensities (see Figure 4.6). A difference is also seen in the width of the observed

pulses at different wavelengths with much broader pulses seen in the X-ray and

lowest energy γ-ray regimes.
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Figure 4.6: Pulsation diagram for the Crab Nebula in radio (a) [158], optical (b) [158]

X-ray (c) [176] (d) [151],and a number of γ-ray wavebands (e) [134] (g) [5] (h) [34] taken

from [5].
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These latest high-energy observations of the Crab pulsar pulsations have allowed

the site of emission to be constrained. Prior to these observations two main types

of model were proposed; polar cap models where the emission takes place near

the magnetic pole of the neutron star (such as [63]) and the outer gap models

where emission takes place further from the pulsar’s surface [55]. Predictions of the

emission from outer gap models predict that a simple exponential cut-off should

be seen in the pulsed emission while polar cap models predict that the highest

energy γ-rays produced will interact with virtual photons of the strong magnetic

field immediately adjacent to the pulsar by a process of pair production and so a

steeper cut-off will be seen. If the strength of the pulsars magnetic field is known

then the observed cut-off energy of the pulsed emission can be used to estimate

the minimum height above the pulsar surface at which emission can occur without

the γ-rays produced interacting with the surrounding magnetic field. For the crab

nebula emissions observed by Fermi a radius of more than 3.7 times that of the

pulsar is calculated for the emission height in the Crab Nebula and hence polar cap

models which emit close to the surface are excluded by this result [5].

4.1.2 Kes 75

As the first observations of inverse Compton emission from a pulsar wind nebula were

of the Crab Nebula, this was assumed to represent the emission mechanism of all

young pulsar wind nebulae. If this were the case, similar emission would be expected

from other young pulsar wind nebulae such as Kes 75. Kes 75 is a bright X-ray and

radio PWN observed around the energetic pulsar PSR J1846-0258 [100] [135]. The

most recent analysis of Chandra X-ray observatory data from this source showed

a shell type remnant with a high-powered pulsar wind nebula in the centre [156].

This detail will not be visible in the γ-ray regime as the point spread function of

the HESS telescopes does not have the necessary resolution to distinguish between

the two objects.

PSR J1846-0258 at the centre of this nebula is one of the youngest and most

energetic pulsars in the Galaxy with a spindown luminosity of Ė = 8.3× 1036erg/s

and a characteristic age of τc = 723 years [100] [135]. However, as with many young



4.1. Young Pulsar Wind Nebulae 73

Figure 4.7: An X-ray image of the Kes 75 complex taken using the Chandra X-ray

telescope [88]. Low energy X-rays are coloured red and high energy X-rays are coloured

blue. In the centre of the nebula high energy X-rays dominate while only lower energy

X-rays are seen in the SNR shell.

pulsars, this may not represent the actual age of the system in question due to

changes in the value of Ṗ which are expected in young pulsars. Indeed the Kes 75

system has never been identified with a known historical supernova contrary to the

normal expectation for such a young nebula. It has one of the largest magnetic fields

of all young pulsars, B = 4.9× 1013 G [135].

The most recent distance measurements estimate the distance to this nebula to

be between 5.1 - 7.5 kpc [137] giving the supernova remnant shell a diameter of 2.80

pc. Unlike the SNR shell associated with the Crab nebula, which is of a similar age

to Kes 75, this remnant can be seen in many wavebands. X-ray observations clearly

show the shell of the nebula which implies the presence of shocked material typical

of a SNR entering its Sedov phase [187].

The central pulsar wind nebula of this remnant is also well observed in the X-
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Figure 4.8: Kes 75 as viewed in the VHE γ-ray regime taken from [187]. It is seen as a

point like source within the PSF of the HESS telescope array, and so the central nebula

and shell elements of emission cannot be distinguished from each other.

ray regime. It measures 0.6 pc across [156] and the morphology of the nebula is

well studied. The X-ray nebula is shown in Figure 4.7 and shows a symmetrical

form similar in morphology to the Crab. It is extended symmetrically along the

northeast-southwest axis; deep observations also show a jet along this axis. It has

a power law spectrum with an index of -1.93 ± 0.03, although this is steeper in the

central jet where an index of -1.7 ± 0.2 is seen [156]. Its total luminosity between

0.5 and 10 keV is LX = 1.4 × 1035erg/s which accounts for ∼ 2% of its spindown

luminosity [156].

Kes 75 was first seen in the VHE γ-ray regime in the HESS Galactic Plane

survey [23]. It is a good example of a young pulsar wind nebula which, like the

Crab, is point-like when compared to the point spread function of the HESS array.

As a result, it is not possible to distinguish between VHE γ-rays from the central

pulsar wind nebula and the surrounding supernova remnant (See Figure 4.8). The

most comprehensive published results for this source in the TeV γ-ray regime [187]

show a power law with spectral index of -2.26 ± 0.15 and a luminosity above 1 TeV
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Figure 4.9: The spectrum of the nebula Kes 75 in the VHE γ-ray regime taken from [96]

using the HESS telescopes.

of (7.4 ± 1.4) × 1033 erg/s, this spectrum is shown in Figure 4.9.

Most of the emission from this nebula is expected to come from the central pulsar

wind nebula; however, a contribution of up to 13% from the shell cannot be ruled

out [187]. Even so, comparison of the X-ray and γ-ray fluxes of the central pulsar

wind nebula can be used to calculate the magnetic field strength of the nebula to

be about 15 µG [187] which is much lower than the similarly aged Crab Nebula

and indeed lower than the value expected if the nebula was in equipartition. As a

consequence of the lower magnetic field strength, the flux expected is lower than

that observed in the Crab Nebula. This is because a stronger magnetic field, such

as that of the Crab Nebula, allows synchrotron photons generated in the nebula

to be maintained and boosted via the synchrotron self Compton mechanism. If

the magnetic field is weaker then these photons do not interact with the electrons

present in the nebula and will escape; thus only ambient photons are available for

inverse Compton boosting, resulting in a lower observed VHE γ-ray flux.
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Figure 4.10: A Chandra image of the nebula G21.5-0.9 taken from [43], showing a strong

source corresponding to the pulsar wind nebula in its centre with diffuse emission corre-

sponding to the surrounding supernova remnant material. Shell type emission is only seen

in a small portion of the source, the “North Spur”.

4.1.3 G21.5-0.9

Another important example of a young pulsar wind nebula which has been described

as similar to the Crab nebula is G21.5-0.9, which has been more extensively studied

than Kes 75 at radio [166] and X-ray wavelengths [43]. The most comprehensive

recent observations of this source were made using the Chandra and XMM-Newton

satellites [43].

The nebula is located around the recently discovered pulsar PSR J1833-1034 [50].

It has a measured period and period derivative of 61.86 ms and 2.0 × 10−13 s/s

respectively implying a spindown luminosity of 3.3× 1037 erg/s and a characteristic

age of 4900 years. However, as with many young pulsars, the characteristic age is

thought to overestimate the age of the system as the period of the pulsar at its birth

is probably not too dissimilar to its current period. Study of the nebula itself leads

to an estimated age of the system of approximately 1000 years, giving the nebula a
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similar age to the Crab and Kes 75 nebulae; it may be associated with the recorded

historical supernova of 386 AD [95].

Chandra observations show a bright central pulsar wind nebula surrounded by

a halo of diffuse emission [43]. This halo contains two bright features which may

correspond to shockfront heating in the supernova remnant. The halo itself is caused

by the scattering of dust originating from the central pulsar wind nebula. The

central nebula shows a power law spectrum of index -1.89 ± 0.02 and a luminosity

of 2.29× 1035 ergs/s between 0.5 and 8 keV. This may be compared to emission in

the VHE γ-ray regime where a power law spectrum of -2.08 ± 0.22 is observed and

a luminosity above 1 TeV of (4.3±0.1)×1033 ergs/s. From these results, a magnetic

field strength of the nebula of 15 µG is derived.

The VHE γ-ray emission and the magnetic field observed for this source are

similar to those observed in the case of Kes 75 and indeed are the product of the same

emission mechanism in which background photons are inverse Compton boosted

by relativistic electrons in the energetic nebula. The spectrum and morphology

obtained in HESS observations of this object are shown in Figure 4.11 and Figure

Figure 4.11: G21.5-0.9 as viewed in the VHE γ-ray regime taken from [96]. It is seen as

a point like source within the PSF of the HESS telescope array.



4.1. Young Pulsar Wind Nebulae 78

Figure 4.12: The spectrum of the nebula G21.5-0.9 in the VHE γ-ray regime taken

from [96] observed using the HESS telescopes.

4.12 respectively.

4.1.4 G0.9+0.1

The Galactic Centre object G0.9+0.1 is another young pulsar wind nebula which

emits in the TeV γ-ray regime. Like G21.5-0.9 the progenitor pulsar was discovered

after the observation of this source with HESS. Radio observations of its progenitor

pulsar, PSR J1747-2809 [49] give a period of 52 ms and a period derivative of

1.56 × 1037 s/s implying a spindown luminosity of Ė = 4.3 × 1037 erg/s and a

characteristic age of 5,300 years [49]. However, as with many young pulsars, this

is thought to be an overestimate compared to the age derived from analysis of the

nebula. Observations of the surrounding nebula have allowed its true age to be

estimated as no more than 2 - 3 kyr [180] making the nebula somewhat similar to

G21.5-0.9.
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Figure 4.13: The spectrum observed by HESS of the galactic centre nebula G0.9+0.1

[180], open circles denote datapoints obtained using hard cuts while standard cuts are

denoted by filled circles.

As G0.9+0.1 is located very close to the Galactic Centre region it is difficult to

observe in most wavelengths due to source confusion and galactic absorption in this

area. This meant that the central PWN was not detected conclusively in X-rays until

BeppoSAX [180] made observations of the region. The most recent observations in

X-rays by the XMM-Newton observatory show a power-law with index -1.99 ± 0.19

and a luminosity of 5× 1034 erg/s between 2 - 10 keV.

Due to the low angular resolution of the current generation of Cherenkov γ-ray

instruments it was also difficult to make observations in this regime of objects in

the Galactic Centre. It was detected by HESS and has a spectrum with spectral

index of -2.40 ± 0.29 and a luminosity above 1 TeV of 1.1 ± 0.1 × 1032 erg/s [15],

this spectrum is shown in Figure 4.13. Its Galactic Centre location results in its

brightness as a TeV γ-ray emitting source as more ambient starlight is available
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Figure 4.14: The galactic centre region as viewed in the TeV γ-ray regime. G0.9+0.1 is

marked by a white triangle while the neighbouring Sagittarius A* is marked with a black

star [180].

in the Galactic Centre for inverse Compton boosting than would be in the further

reaches of the Galaxy, an image of this region is shown in Figure 4.14.

4.1.5 MSH 15-52

MSH 15-52 is perhaps the most interesting of the young pulsar wind nebulae that

have been observed in the VHE γ-ray regime because unlike other young PWN

that have been observed at these wavelengths it is observed as an extended nebula.

The nebula is at a distance of 5.2 ± 1.4 kpc [84] similar to many other known

young PWNe which implies that its large angular size has a physical explanation

(see Figure 4.15). This physical explanation may be either due to the age of the

nebula or the lower than average density of the surrounding ISM or a combination

of both.
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Figure 4.15: VHE γ-ray emission from the pulsar wind nebula MSH15-52 [12], with

X-ray emission overlaid (white contours); it shows extension towards the northwest and

southeast directions in both γ-ray and X-ray wavelengths. The point spread function of

the HESS array is shown in the box in the bottom right hand corner.

Its supernova remnant was also only the third to be associated with a progenitor

pulsar, in this case PSR B 1509-58. The pulsar has a period of 155 ms and a period

derivative of 1.8×10−12 s/s which are used to calculate its spindown luminosity of

Ė = 1.8 × 1037 erg/s and characteristic age of 1,700 years [132] [179]. Unlike many

of the other young pulsars discussed in this Chapter this may be close to the actual

age of the pulsar and hence the nebula which surrounds, which goes some way to

explain its large size relative to the other young pulsar wind nebulae discussed.

X-ray observation of this nebula shows an extension in the northern and eastern

directions (see Figure 4.15) [75]. Like most of the young PWNe it again shows a

power law, in this case with a spectral index of -1.65 ± 0.05. Its luminosity between

0.5 and 10 keV is 3.98 × 1034erg/s [75]. The unusual size of the nebula is due to a
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Figure 4.16: The spectrum of MSH15-52 as observed by HESS in the TeV regime [12].

The observed spectrum is compared to an inverse Compton model of emission expected

from background starlight and the cosmic microwave background as discussed in [12]. As

can be seen here, the inverse Compton emission observed cannot be explained by either

starlight alone and so some infra red emission from dust reflection must be present in the

vicinity of the nebula.

lower than average ISM density in the vicinity of this pulsar.

MSH15-52 was the first extended pulsar wind nebula to be observed in the VHE

γ-ray regime [12]. The HESS observations confirm the observation of an extended

nebula seen in the X-ray regime (see Figure 4.15), and the PWN shows a power law

spectrum with index -2.27 and a luminosity above 1 TeV of 7.24×1034 erg/s (15%
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Crab); the spectrum for this object is shown in Figure 4.16. From these values the

magnetic field strength of this nebula can be inferred to be 17 µG.

4.1.6 Properties of Young PWNe

As we have seen, for many years the central nebula of the Crab was considered as

the archetype of a young pulsar wind nebula, although we can now see that this is

not strictly the case. While the Crab is compact and visible as a point source in the

TeV γ-ray regime and has a similar spectrum to other young pulsar wind nebulae, it

is much brighter than otherwise expected and its spectral index of -2.63 ± 0.2 is the

highest known for a young pulsar wind nebula in the VHE γ-ray regime (compared

to a mean value of -2.2 ± 0.1).

The observed properties of young pulsars in the TeV γ-ray regime can vary quite

considerably from case to case and this is attributable to many factors even within

this small group of targets at a similar evolutionary point.

Perhaps the greatest influence is the material into which the pulsar wind nebula

and its surrounding supernova remnant is expanding. Some of the nebulae discussed

in this section are surrounded by a visible non-thermal shell-type supernova remnant

(such as G21.5-0.9 and G0.9+0.1) while others are not (such as the Crab) and this is

a result of the interaction of the expanding supernova remnant with dense material

in the surrounding medium, creating a shock front. The density of this material

also determines the expansion speed of the PWN into the material surrounding it

and so it is possible to expand faster into the surrounding material if it is of a low

density, as is seen in the most extended young pulsar wind nebula MSH15-52.

Position is also relevant for the flux of source photons for inverse Compton boost-

ing, as has been seen in G0.9+0.1, which is brighter than the otherwise comparable

object G21.5-0.9. G0.9+0.1 is in the direction of the Galactic Centre and so much

more ambient starlight is available for inverse Compton boosting.

Another critical factor in determining the difference in TeV γ-ray flux from ob-

served pulsar wind nebulae is the strength of the magnetic field present in the nebula

as this is responsible for the synchrotron self Compton boosting of the ambient pho-

tons. This is dependent on the strength of the magnetic field of the progenitor
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pulsar from which it is derived as well as the properties of the material with which

it interacts such as the density of the surrounding material.

4.2 Middle aged Pulsar Wind Nebulae

After it has swept up an appreciable fraction of its original mass from material in

the surrounding interstellar medium, a supernova remnant will produce an inverse

shock front moving inwards towards the pulsar wind nebula at its centre. The

incoming shockwave interacts with the central pulsar wind nebula after about 10,000

years; nebulae soon after this interaction are referred to as middle-aged pulsar wind

nebulae. Like the discussion of young pulsar wind nebulae, this discussion focuses

on the comparison between the pulsar wind nebulae seen in VHE γ-rays and their

X-ray companions. Discussion focuses on the most well-established sources while

detail of all known middle aged pulsar wind nebulae are given in Table 4.3, and

details of their progenitor pulsars are given in Table 4.4.

4.2.1 Vela X

Vela X, one of the most famous pulsar wind nebulae after the Crab, is visible through

the entire spectrum from radio to TeV γ-rays, where it is one of the few extended

sources of this type visible. It is an important source in the study of pulsar wind

nebulae as it was the first middle-aged pulsar wind nebula to be observed [195];

this allowed the concept of pulsar wind nebula evolution to develop. It was also

the first PWN to be observed to have its progenitor pulsar significantly offset from

its centre [148], thus leading to the study of PWN expansion in an inhomogeneous

medium. It is at a distance of only 290 pc [74] allowing its extended morphology to

be studied in great detail.

The progenitor pulsar for this nebula has been identified as PSR B0833-45 which,

as expected for an extended pulsar wind nebula, is much older than the pulsars

discussed so far. It has a period of 89 ms and a period derivative of 1.25×10−13s/s

which implies a spin down luminosity of Ė = 6.9 × 1036ergs/s and a characteristic

age of 11,000 years [136]. However it is still young when compared to the general
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Figure 4.17: The Vela complex as seen in the H-alpha optical band showing its filamentary

structure [160].

pulsar population as many pulsars have ages of the order of 106 or 107 years [182].

Unlike the characteristic ages calculated for the progenitors of young PWNe the

characteristic age of this object is closer to the true age of the nebula.

Early observations of this source in the radio regime identified three components

of non-thermal emission which were designated Vela X, Y and Z respectively [195].

The Y and Z components correspond to elements of the supernova remnant shell

while the central pulsar wind nebula, the brightest element of the system, corre-

sponds to Vela X.

The supernova remnant shell is also visible in the optical regime (see Figure 4.17)

where it shows a fine filamentary structure similar to that seen in younger SNR such

as the one associated with the Crab nebula.

In the X-ray regime, Vela X shows a strong central source around the pulsar
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Figure 4.18: The Vela X nebula as seen in the TeV γ-ray regime [22]. The pulsar position

is marked I while the centre of the γ-ray nebula is marked II.

position [148] with morphology similar to that seen in young pulsar wind nebulae

such as the Crab. However, the X-ray nebula observed is much smaller than the

Crab’s, measuring only 0.1 pc [146] across compared to the 1.0 - 1.3 pc diameter

of the Crab PWN. This is due to the reduced energy output of the older pulsar

powering it with a spindown luminosity two orders of magnitude smaller than the

younger nebula. The central nebula shows a broken power law spectrum in the X-

ray regime showing a spectrum of -1.66 ± 0.1 below 12.5 keV and -2.01 ± 0.1 above

this value [146]. The central nebula has a luminosity of 5.5× 1033erg/s between 0.1

and 200 keV. Additionally, weaker emission in the X-ray is seen extending to the

south of the nebula [148].

The nebula has also been well observed in the VHE γ-ray regime [22] and shows
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Figure 4.19: The energy spectrum of γ-ray emission from the Vela X nebula [22].

greatly extended emission to the south of the pulsar position corresponding to the

extended emission seen in [148]. These observations show that much of the emission

from the nebula is offset from the central pulsar position with a measured centre of

gravity of the observed VHE γ-ray excess centred on a right ascension of 129◦ and

a declination of -45.6◦ (J2000) [22], compared to a pulsar position of right ascension

128.84◦ and declination -45.17◦ (J2000); the difference between these positions is

shown in Figure 4.18.

An offset of pulsar wind nebula emission such as this is not seen in younger

pulsar wind nebulae (with the exception of MSH15-52 where a small offset is seen)

or indeed in X-rays where emission is centred around the progenitor pulsar. The

offset observed is the result of expansion into an inhomogeneous medium [42] which

allows the nebula to expand faster in some directions than in others (in this case

the density of the surrounding material is lower to the south of the pulsar). This is

compounded by the effects of the inverse shock which will arrive earlier on the side
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Figure 4.20: A 20cm radio image of the Kookaburra complex taken using ATCA [171]

showing the shape of the complex from which it derives its name.

of the nebula where more material is present causing the pulsar itself to be close to

the edge of the observed γ-ray nebula observed here.

The HESS observations of this nebula show a broken power law emission like

that observed in the X-ray regime, this shows the highest point at which electrons

are present in the nebula and producing inverse Compton photons. It has a spectral

index of -1.45 ± 0.22 below 13.4 TeV and an index of -3.4 above this value. The

luminosity above 1 TeV is observed to be (1.38± 0.55× 1036 erg/s.
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Figure 4.21: VHE γ-ray observation of the Kookaburra complex showing two nebulae

corresponding to the K3 (Kookaburra) and Rabbit Nebulae which are seen on the “wings”

of the radio source (white contours from ATCA 20cm data) [19].

4.2.2 Kookaburra and Rabbit

The Kookaburra complex was discovered to be a VHE γ-ray emitting source in the

HESS Galactic Plane survey [23] and corresponds to a region well observed at all

wavelengths from radio to VHE γ-ray. Its name is derived from the emission observed

in the radio regime, where a strong central source is observed with two “wings” at

its extremes (see Figure 4.20). These wings correspond to the two nebulae observed

in the TeV γ-ray regime, which are both pulsar wind nebulae. The progenitor pulsar

of the north-easterly wing was known before TeV γ-ray emission was observed and

the nebula created by this pulsar has been designated as the Kookaburra Nebula,

by which nomenclature we shall refer to it in this section.
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Figure 4.22: The spectra of the Kookaburra (HESSJ1420-607) and Rabbit (HESSJ1418-

609) nebulae as seen in the TeV γ-ray regime [19].

At the southern edge of the Kookaburra nebula lies the pulsar PSR J1420-6048

which has been positively identified as the progenitor of the system. It has a period

of 68 ms and a spindown rate of 8.28 × 10−14 s/s [61], which is used to calculate

the characteristic age of 13,000 years and the spindown luminosity of Ė = 1.0 ×

1037 erg/s, typical of a middle-aged pulsar wind nebula such as this. It is at a

distance of 5.6 kpc [61].

Surrounding this pulsar is a small X-ray pulsar wind nebula [188] showing a

luminosity of 1.6×1035 erg/s between 2 and 10 keV and a spectral index of -2.03

and showing a faint northerly extension consistent with the γ-ray emission region

observed. The corresponding γ-ray region, shown in Figure 4.21, has a luminosity

above 1 TeV of 5.9×1033 ergs/s and a spectral index of -2.17 ± 0.12 [19]; this

spectrum is shown in Figure 4.22.

The other wing of the Kookaburra complex, generally referred to as the Rabbit

nebula, lies on the eastern edge of the complex. It is brighter and has a greater

angular extent than its companion in the X-ray regime with a luminosity of 3.5×1033

ergs/s between 0.5 and 8 keV, and a power law spectral index of -1.7 ± 0.1. It is

however less bright in the TeV γ-ray regime when compared to its neighbour with

a luminosity of 8.1×1033 ergs/s above 1 TeV and a spectral index of -2.22 ± 0.12,
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Figure 4.23: An XMM-Newton image of the HESS J1825-137 nebula showing an extended

trail of emission towards the south of the pulsar (white cross) [85].

this spectrum is shown in Figure 4.22.

Its progenitor pulsar J1418-6058 was only recently discovered by the Fermi col-

laboration [3] allowing its properties to be investigated. J1418-6058 has a period of

111ms and a period derivative of 1.70×10−13 s/s giving a spindown luminosity of

Ė = 5.0×1036 erg/s and a characteristic age of 10,300 years making it younger than

its companion. Distance estimates based on Possenti et al [164] give the distance to

this nebula of approximately 5 kpc [19], similar to its companion.

4.2.3 HESS J1825-137

HESS J1825-137 is the oldest known TeV γ-ray emitting pulsar wind nebula and,

like the other known middle-aged pulsar wind nebulae, is offset from the progenitor

pulsar B1823-13 which produced it. It is also one of the most interesting known TeV
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γ-ray emitting pulsar wind nebulae as it has been used to show the cooling of the

electron spectrum in a pulsar wind nebula with distance from the central nebula. It

is at a distance of 4.12 kpc [58]

The progenitor pulsar B1823-13 has a period of 101ms and a period derivative

of 7.5 × 10−14 s/s which gives a spindown luminosity of Ė = 2.8 × 1036erg/s and a

characteristic age of 21,400 years. Surrounding this pulsar is a small X-ray pulsar

wind nebula with a luminosity of 3.16×1032 ergs/s and a spectral index of -1.3. It is

much smaller (measuring only 0.2 pc across) than the X-ray nebula observed in other

middle aged pulsar wind nebulae due to the less energetic pulsar at its centre. A

trail of emission in the nebula is seen to its south (see Figure 4.23) heading towards

the direction of γ-ray emission seen in this source [85].

In the TeV γ-ray regime the source is highly extended to the south of its pro-

genitor pulsar [20] (see Figure 4.24). It shows extension over 1.5◦ from the pulsar

which, given the distance of 4 kpc to this source, gives it a physical extent of 100

pc making it the largest known pulsar wind nebula in the TeV regime.

When the spectrum of the entire emission of this nebula is observed it is well

described by a number of models including that of a broken power law, under which

circumstance it shows a spectral index below 2.7 TeV of -2.26 ± 0.2 and an index

of -2.63 ± 0.2 above 2.7 TeV, with an luminosity of 1.12 ± 0.23× 1035 erg/s above

1 TeV [20]. What is more notable about the TeV γ-ray observation of this source

is that the source shows a softening of its spectrum with distance from the pulsar,

which demonstrates the cooling of the electron population responsible for inverse

Compton emission as they move away from their source (see Figure 4.25).

It also shows that the size of the nebula observed is dependent on the energy at

which we observe it; at higher energies the nebula will be smaller as it corresponds to

only the highest energies of electrons. Typically, inverse Compton photons produced

by the boosting of microwave background radiation will have energies of approxi-

mately 50 TeV from an interaction with a 100 TeV electron or 5 TeV if they are

the product of an interaction with a 1 TeV electron. This corresponds to the much

smaller nebula seen in X-rays which is caused by emission from the newly ejected

electrons near the pulsar. The electrons needed to generate X-ray synchrotron emis-
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Figure 4.24: HESS observation of the HESS J1825-137 nebula showing it’s extension to

the south of the pulsar (white triangle). The binary source LS 5039 is also indicated. The

square to the bottom left indicates the PSF of the HESS system [20].

sion are much more energetic with 10 TeV electrons required to produce ≈ 1 keV

photons, this explains the smaller pulsar wind nebula compared with that seen in

the TeV γ-ray regime.

4.2.4 Properties of Middle Aged Pulsar Wind Nebulae

As we have seen, middle aged pulsar wind nebulae are much larger than their younger

companions when observed in the VHE γ-ray regime, while middle aged pulsar wind

nebulae are smaller than young PWN in X-rays. As these pulsar wind nebulae have

been the subject of the reverse shock crushing as discussed in Section 2.5.2, the

pulsar becomes offset from the centre of the VHE γ-ray nebula. The progenitor
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Figure 4.25: The softening of the spectrum of HESS J1825-137 with distance from the

pulsar. The spectra shown correspond to those taken in 1.0◦ intervals centred on the

suspected progenitor PSR B1823-13. They are each compared to the spectral slope of the

inner circle (dotted line) to show the softening of the spectrum [20] and show a statistically

significant increase in the spectral index of the nebula out to 0.6◦.
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pulsars of all known middle aged TeV γ-ray pulsar wind nebulae are located towards

their edge. As the X-ray nebulae are the product of the youngest, most energetic

electrons they are not offset in the same way as their VHE γ-ray counterparts and

form symmetrical nebulae around their progenitor pulsars. Some of the older nebulae

do however show faint tails of X-ray emission in the direction of the γ-ray emission;

this is seen in both the Vela X and HESS J1825-137 nebulae.

The spectra of such nebulae appear somewhat evolved from that seen in the

younger pulsar wind nebulae as a cut off begins to be observed as in the case of the

Vela X (see section 4.2.1) and HESS J1825-137, nebulae which exhibit cutoffs in their

spectra at 13.4 TeV and 2.7 TeV, respectively. The spectra seen in these sources

are also less steep than their younger counterparts, with spectral indices ranging

from -1.7 to -2.26 before the observed cut-offs in spectrum. It is however difficult

to discuss the spectra of such objects because, as has been observed in the case of

HESS J1825-137, the observed spectrum changes throughout the nebula. This is

due to changes in the underlying electron and photon populations throughout the

nebula which are responsible for the inverse Compton emission.

4.3 Old and Relic Pulsar Wind Nebulae

As we have seen, all the pulsar wind nebulae that are known to emit VHE γ-ray

photons are associated with young, highly energetic progenitor pulsars and are also

observed as pulsar wind nebulae in the X-ray regime. As pulsars age, the particle

population that is injected into the surrounding nebula becomes less energetic. In

addition, the particles injected earlier in the life of the pulsar have cooled because of

the synchrotron emission which results in the production of the X-ray nebula. These

more energetic electrons are responsible for the synchrotron emission observed in the

X-ray regime and so are visible only close to the progenitor pulsar. In contrast, such

energetic electrons are not needed for inverse Compton emission to occur in the TeV

γ-ray regime and so the cooled electrons which are seen over a much greater area

can create a larger nebula, as we have seen in the case of middle-aged pulsar wind

nebulae.
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In much older nebulae the young energetic electrons are no longer being replen-

ished by a central progenitor pulsar and indeed, as the nebula may be offset during

the process of inverse shock crushing discussed in Section 2.5.2, may not be present

in the centre of the nebula. As a result of this, only the older electron population

will be present and the oldest pulsar wind nebulae will only be visible through the

inverse Compton emission in the TeV regime and so will not be seen in X-rays.

As a result these older or “relic” pulsar wind nebulae will be visible in the TeV

γ-ray regime and many may be associated with unidentified “dark” sources from the

HESS galactic plane survey [23]. Many of the sources discovered in this survey are

as yet unidentified but have similar spectra (with a spectral index of between 2.1

and 2.5) and extension to known VHE γ-ray pulsar wind nebulae. However, they

are not currently associated with known pulsar wind nebulae at other wavelengths

and so it is possible that they represent “relic” pulsar wind nebulae consisting of an

older electron population which is not being replenished by its progenitor pulsar.

One possible candidate “relic” pulsar wind nebula is the HESS dark source HESS

J1614-518 [23] which is extended and has a power law spectral index of -2.46 which

may be expected for a pulsar wind nebula which is no longer being replenished by

its progenitor pulsar.

4.4 The Development of Known Pulsar Wind Neb-

ulae

As we have seen, the emission seen in the VHE γ-ray regime from pulsar wind neb-

ulae is characterised by a decaying power law and corresponds to inverse Compton

emission of the relativistic electrons produced in the outer layers of the pulsar when

they interact with ambient photons. As we now have knowledge of 23 confirmed

and suspected pulsar wind nebulae, these nebulae can be studied in terms of the

development of their spectra, size and luminosity.

It is also interesting to study the corresponding Synchrotron emission from these

sources which, like the inverse Compton emission, is dependent on the underlying

electron population of the nebula under investigation. In this Section the inverse
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Compton emission generated in the TeV γ-ray regime has been compared to the 0.5

- 8 keV X-ray emission in each case. The drawback to this approach is that the

X-ray emission is not produced by the same electron population as the VHE γ-ray

emission as X-ray Synchrotron photons of ≈ keV energies are produced by electrons

with typical energies of 10 TeV whereas 1 TeV photons generated by the inverse

Compton process have typical progenitor electrons with energies closer to 5 TeV.

In ideal circumstances a somewhat lower portion of the X-ray spectrum would thus

be monitored (corresponding to electron energies of ≈100MeV); however, the 0.5 -

8 keV band is observed by both the Chandra and XMM-Newton satellites and so is

the best synchrotron comparison available to the inverse Compton TeV γ-ray data.

4.4.1 Spectral Index

By studying the development of the spectral indices of these nebulae in the X-ray

and VHE γ-ray regimes we can investigate the development of the underlying spec-

trum of the progenitor electron population. Theory suggests that the spectrum of

the synchrotron emission observed in the X-ray will be related to the underlying

spectrum of the electron population by the factor α = x−1
2

, where α is the spec-

tral index of the radiation and x is the spectral index of the electron energies (see

Equation 1.8). This is because the energy of the photon produced is proportional to

the square of the electron energy. The spectrum of the inverse Compton emission

observed is also proportional to the square of the electron energy and so should be

similarly dependent on the spectral index of the electron population. As a result,

the energy spectrum observed in the TeV γ-ray regime should correlate with that

seen in X-rays. A comparison of the spectral indices seen in X-rays and TeV γ-rays

can be seen in Figure 4.26.

As we can see in Figure 4.26, no relationship is seen between the spectral indices

seen in X-rays and TeV γ-rays, however due to the size of the error bars in the

majority of the sources a link cannot be ruled out. The figure also shows that the

spectral indices of TeV γ-ray observations do not vary much from a mean value of

2.2 ± 0.1. A direct relation of ΓX = Γγ which may be expected due to both inverse

Compton and synchrotron radiation being dependent on a factor of γ2 is not observed
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Figure 4.26: A comparison of the spectral indices of known pulsar wind nebulae that

have been observed in the TeV γ-ray regime with the spectral indices of their X-ray

counterparts. An expected direct correlation is overlaid on this plot but no such relation

is seen.

with a reduced chi-squared for this relation of 13.8/18, which implies a good fit but

the uncertainties observed in the spectral indices are too large to exclude other fits

to the data. This is due to two factors dependent on the way in which each spectrum

is measured. Firstly, the spectra calculated in the TeV γ-ray regime are taken over

a much greater area than their X-ray counterparts due to the extension of many of

the older pulsar wind nebulae in the TeV γ-ray regime. However, as most of the

observed flux still comes from the central portion of the nebula, this will dominate

the spectrum which obviates the effect. As a result, the other factor is much more

important; the difference in energies of the underlying electron population, this

means that the spectrum of the electron population observed in the TeV γ-ray

regime is of lower energy than that observed in the X-ray regime. However, in all

cases the the spectral index observed in γ-rays is greater than that observed in X-
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Figure 4.27: The development of spectral indices of known TeV pulsar wind nebulae

(blue) and their X-ray counterparts (red) when compared to the characteristic age of their

progenitor pulsars

rays. This implies a spectral break in the electron energy spectrum between the

X-ray and TeV γ-ray populations.

It is also interesting to understand how these indices change with time. At the

centre of the nebula adjacent to its progenitor pulsar the electron population of

a PWN is being constantly replenished, as a result the observed spectrum in the

central portion of the nebula is not expected to change. This should be seen in the

X-ray regime as the only part of the pulsar wind nebula observed is in the central

portion near the pulsar; the spectral index observed in this regime should not change

significantly with time.

In the VHE γ-ray regime however the picture is more complex; when we observe

in this regime we are looking at a lower energy electron population (typically of the
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order of TeV rather than 10s of TeV), these electrons lose their energy more slowly

than their higher energy counterparts they can be seen at a larger distance from the

progenitor pulsar and so as we have seen a much larger pulsar wind nebula is seen

in VHE γ-rays than is seen in X-rays. The aging electron population also results

in a steepening in the power law observed in these nebulae as we move away from

the progenitor pulsar as is seen in HESS J1825-137 [20] (see Section 4.2.3). Figure

4.27 shows the development of the spectral indices of known pulsar wind nebulae in

order to assess the development of spectral index with time.

As we see in Figure 4.27, there is no dependence of spectral index with age in

either regime with a reduced chi-squared around the mean of 4.45/20 and 2.46/22

in the X-ray and TeV γ-ray respectively; this is expected in X-rays for the reasons

discussed earlier; the constant spectrum in the VHE γ-ray is probably due to the

dominance of the luminosity of the more energetic younger portion of the nebula at

its centre when compared to the older cooled electron population in its outskirts.

This effect overwhelms any steepening of emission in the outer reaches of the nebula,

this cannot be seen in most cases due to a lack of statistics, with the exception of

HESS J1825-137 which is discussed in Section 4.2.3.

4.4.2 Size

As the pulsar wind nebulae observed in X-rays and VHE γ-rays are the products

of different components of the electron population, it is reasonable to assume that

the evolution of their size will not necessarily follow the same path. We expect the

most energetic electrons to cool more quickly than their lower energy counterparts

and so it can be reasonably expected that at ages greater than this cooling time the

VHE γ-ray nebula will become larger than its X-ray counterpart.

As the lower energy electrons are less likely to be affected by cooling, the VHE

γ-ray emission will continue to expand away from their progenitors into the sur-

rounding medium. Analysis of the size of pulsar wind nebulae when compared to

the characteristic age of its progenitor in this regime should reveal a positive corre-

lation of expansion with age, at least for the timescales of known VHE γ-ray pulsar

wind nebulae (which have ages of up to 50,000 years). A break in this increasing
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Figure 4.28: The development of the size of pulsar wind nebulae in the X-ray (red) and

VHE γ-ray regimes (blue) when compared to their characteristic age. A best fit line of the

form AxB is given in each case and shows the expansion of the nebula in the γ-ray regime

and a shrinking in the X-ray regime. Points denoted by triangles are upper limits to the

extent of younger PWN observed in the TeV γ-ray regime where the nebulae appear as

point sources to current instruments. The contraction observed in the X-ray follows the

relation LX = 22.4 x −0.32±0.1 while in the VHE γ-ray regime a trend of Lγ = 6.3 x 0.36±0.1

is obtained.

trend is however expected to occur after a few thousand years when the reverse

shock of the supernova remnant interacts with and crushes the central nebula (see

Section 2.5.2). Once this has occurred expansion is expected to resume.

In contrast, the higher energy electrons which create the X-ray nebula will cool

more rapidly and a smaller nebula is thus expected. If the level of energy injected

into the nebula by the pulsar remained constant the nebula would soon expand to
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Figure 4.29: The development of the luminosity of pulsar wind nebulae in X-ray (red,

left) and TeV γ-rays (blue, right) when compared to the characteristic ages of known

pulsar wind nebulae observed in the TeV γ-ray regime. A power law fit is shown for the

X-ray observations; no clear relationship is seen in the TeV γ-ray regime.

a equilibrium size. However, as a pulsar slows down the amount of energy that it

injects into the surrounding nebula will also be reduced and this in turn will cause

a reduction in the size of the pulsar wind nebula produced. The development of the

pulsar wind nebulae in both X-rays and VHE γ-rays is seen in Figure 4.28.

As can be seen in Figure 4.28 the size of a pulsar wind nebula does indeed

increase with age in the VHE γ-ray regime while decreasing in X-rays as expected.

Both have been fit with a power law of the form L = A x B where A and B are

variable constants, L is the luminosity of the source and x is the extent of the source,

taken as the distance across its major axis. The contraction observed in the X-ray

follows the relation LX = 22.4 x −0.32±0.1 and shows a good fit with χ2 = 28.3/21.

In the VHE γ-ray regime a trend of Lγ = 6.3 x 0.36±0.1 is obtained which also shows

a good fit with χ2 = 18.7/21.
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4.4.3 Luminosity

Perhaps one of the most interesting factors to consider when investigating the evo-

lutionary properties of a pulsar wind nebula is its luminosity. As was discussed in

the previous section, the amount of energy input into the pulsar wind nebula by its

progenitor pulsar decreases with age; this results in the contraction in size of the

X-ray pulsar wind nebula but should also show a decrease in total luminosity as the

amount of relativistic electrons producing synchrotron emission decreases. In the

TeV γ-ray regime we expect the electrons which produce inverse Compton radiation

to be more long lasting and so the reduction of power from the pulsar is compen-

sated for by the accumulation of electrons over the life of the pulsar. A comparison

of the characteristic age of the pulsar with the luminosities of known pulsar wind

nebulae in X-rays and TeV γ-rays is given in Figure 4.29.

As can be seen in Figure 4.29 there is no clear relationship between the luminosity

and characteristic age in the TeV γ-ray regime. In the X-ray regime however a power

law relationship of the form L = 7×1040t−1.8
c is observed indicating a link between

the age and the observed luminosity of X-ray pulsar wind nebulae with a correlation

coefficient of 0.47. These results show the expected relationship also seen by similar

observations by Mattana [150] which found an relationship between the luminosity of

these PWN in the X-ray and their characteristic age while observing no relationship

between the γ-ray luminosity and this parameter.

4.4.4 The Development of Pulsar Wind Nebulae in TeV γ-

rays and X-rays

In this section I have attempted to study the development of pulsar wind nebulae

which are observed in the TeV γ-ray regime by analysis of their observable properties,

specifically their luminosity, size and spectral indices. Analysis of these properties in

the TeV γ-ray regime shows that only the size of the observed nebula varies with time

as the nebulae will continue to expand into their surrounding medium throughout

their lifetime; the luminosity and spectral indices of the observed sources do not

vary with time due to the dominance of the bright central portion of these nebulae
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in determining these observed characteristics of the source.

In the X-ray regime an inverse dependence is seen between the characteristic age

of the progenitor pulsar and both the luminosity and size of the nebula. This is

because only young energetic electrons which have just been emitted by the progen-

itor pulsar are seen in this regime and so the loss of power with age of the pulsar is

reflected in the observed properties of the pulsar wind nebula at these wavelengths.
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Chapter 5

γ-ray Upper Limits of X-ray

Selected Pulsar Wind Nebulae

As has been seen, all known pulsar wind nebulae that emit in the TeV γ-ray regime

are also seen as X-ray sources. Many other pulsar wind nebulae have been observed

in X-rays and it is expected that all pulsar wind nebulae that are observed in the

X-ray regime will be associated with inverse Compton emission of some kind and so

are expected to be seen as VHE γ-ray sources. In this Chapter I used archival HESS

data to study X-ray observed pulsar wind nebulae to investigate if it was possible

to detect any new sources in the VHE γ-ray regime. The sources were not detected

as distinct objects and so limits on their parameters using the data obtained.

5.1 X-ray selection of targets

As has been discussed previously after a few thousand years of expansion, pulsar

wind nebulae consist mostly of older, less energetic electrons with younger electron

populations only being present near the source pulsar where they are replenished.

The young electrons create a small synchrotron nebula around the pulsar which is

visible in X-rays. In contrast, a much larger nebula is revealed in the TeV regime.

This nebula is thought to be generated by inverse Compton boosting of the cosmic

microwave background [19] as there is no longer a source of synchrotron electrons

to allow synchrotron self Compton photons to be created, such as occurs in some of

109



5.1. X-ray selection of targets 110

the younger nebulae such as the Crab [17].

As X-ray pulsar wind nebulae are in general quite small it is necessary to use an

X-ray instrument of good angular resolution to resolve them and properly distinguish

them from point sources which may appear to be extended as a result of the PSF of

an instrument. Of the current generation of X-ray satellites the Chandra observatory

has the best angular resolution and so I have chosen this instrument to identify pulsar

wind nebulae for which upper limits will be calculated. Kargaltsev and Pavlov [128]

provides a catalogue of known PWNe that have been detected by Chandra which

are shown in Tables 5.1 and 5.2; however, some additional nebulae (The Eel [169]

and G7.4-2.0 [45]) have been observed using Chandra but were not included in

Kargaltsev and Pavlov [128] and so have been added to the target list and marked

where appropriate.

The combination of Kargaltsev and Pavlov [128] and the additional targets into

Tables 5.1 and 5.2 provides a catalogue of 56 nebulae that have been observed

by Chandra, of which all but 17 have identified progenitor pulsars associated with

them. Of these, ten (see Tables 5.1 and 5.2) have been confirmed as pulsar wind

nebulae in the TeV waveband and are the subject of previous publications, while a

further 13 (see Tables 5.1 and 5.2) of the sources have been associated with known

TeV gamma-ray objects, although this emission has not been conclusively proven

as being associated with the pulsar wind nebulae, these 23 sources were used to

investigate the development of pulsar wind nebulae in Section 4.4. Ten of the targets

currently have no usable HESS observations; the majority of the unobserved sources

are located in the northern hemisphere and are too far north for observation with

HESS. Some of the sources, such as IC443 [7] have not been observed as pulsar wind

nebulae but as supernova remnants whose emission would be indistingushable in the

TeV γ-ray regime and so have not been included in this analysis.

This Chapter provides analyses for the remaining seventeen PWNe in the cata-

logue for which archival HESS data are available, with a total observation time of

over 450 hours. As the size of PWN varies depending on their age, in this work

upper limits have been calculated for a point like source (θ = 0.1) coincident with

the X-ray position of the pulsar as well as an extended source (θ = 0.22) to allow for
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Table 5.1: Known X-ray PWNe as observed by Chandra taken from [128] with the ex-

ception of the objects marked ?. Where an object has been the subject of previous TeV

observations the reference for these observations is given, otherwise the table indicates if

these objects have had upper limits calculated for them in this paper or if they are the

subject of another HESS campaign. Some of the sources are too far north to be observed,

declinations of above about 20◦ are difficult to see from the position of the HESS site. D?

is the distance to the nebula under investigation in kPc. Part 1 - PWN with 0 < RA <

250, continued in table 5.2.

Name Pulsar RA ◦ Dec ◦ D? status

CTA1 1.76 73.05 1.4 Too Far North

3C58 J0205+6449 31.41 64.83 Too Far North

Mushroom B0355+54 59.72 54.22 1.04 Too Far North

Crab B0531+21 83.63 22.01 2 Confirmed PWN [17]

N157B J0537-6910 84.45 -69.17 50 Suspected PWN

N158A B0540-69 85.05 -69.33 50 -

G180.0-1.7 J0538+2817 84.6 28.29 1.47 Upper Limit

IC443 94.52 22.46 1.5 Observed as SNR [33]

Geminga J0633+1746 98.48 17.77 0.25 Upper Limit

G230.39-1.42 J0729-1448 112.32 -14.81 4 -

Vela X B0833-45 128.84 -45.18 0.29 Confirmed PWN [22]

G287.4+0.6 B1046-58 162.05 -58.53 3 Upper Limit

MSH11-62 167.95 -60.66 1 Upper Limit

G284.3-1.8 J1016-585 154.09 -58.95 3 -

G292.2-0.5 J1119-6127 169.81 -61.46 8.4 Candidate PWN [177]

MSH11-54 J1124-5916 171.16 -59.27 6 Upper Limit

G293.8+0.6 173.75 -60.9 2 Upper Limit

G304.6+0.1 J1303-6305 195.44 -63.09 7 Candidate PWN [14]

G309.92-2.51 J1357-6429 209.26 -64.49 2.5 Candidate PWN [167]

Rabbit 214.68 -60.97 5 Confirmed PWN [19]

Kookaburra J1420-6048 215.03 -60.8 5.6 Confirmed PWN [19]

G319.97-0.62 J1509-5850 227.36 -58.85 4 Observed as FVW

MSH15-52 B1509-58 228.48 -59.14 5 Confirmed PWN [12]

MSH15-56 238.25 -56.2 4 Upper Limit

G327.1-1.1 238.6 -55 09 7 Upper Limit

G332.5-0.3 J1617-5055 244.37 -50.92 6.5 Candidate PWN [11]
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Table 5.2: A continuation of Table 5.1. Part 2 - PWNN with 250 < RA < 360.

Name Pulsar RA ◦ Dec ◦ D? status

G344.7-0.1 J1702-4128 255.72 -41.48 5 Candidate PWN [28] [23]

G343.1-2.3 B1706-44 257.43 -44.49 2 Candidate PWN [115]

G349.0-0.4 J1718-385 259.56 -38.42 4 Candidate PWN [25]

G34.01+20.27 J1740+1000 265.11 10 Upper Limit

Mouse J1747-2958 266.82 -29.97 5 -

G0.9+0.1 266.85 -28.15 10 Confirmed PWN [15]

Duck B1757-24 270 -24.86 5 Upper Limit

G8.40+0.15 B1800-21 270.96 -21.62 4 Candidate PWN [23]

G11.1-1.0 J1809-1917 272.43 -19.29 3.5 Candidate PWN [25]

G7.4-2.0 ? 272.45 -32.2 1.7 Upper Limit

G11.2-0.3 J1811-1925 272.87 -19.42 5 Upper Limit

G12.8-0.0 273.37 -17.84 4.5 Candidate PWN [11]

G16.7+0.1 275.24 -14.34 10 Upper Limit

Eel ? 276.54 -12.95 Upper Limit

HESSJ1825-137 B1823-13 276.55 -13.58 4 Confirmed PWN [20]

G21.5-0.9 J1833-1034 278.39 -10.57 4.7 Confirmed PWN [65]

G25.24-0.19 279.5 -6.93 10 Candidate PWN [11]

Kes75 J1846-0258 281.6 -2.98 19 Confirmed PWN [187]

G34.7-0.4 B1853+01 284.04 1.23 3 -

G39.2-0.3 286.02 5.45 Upper Limit

G54.1+0.3 J1930+1852 292.63 18.87 5 Candidate PWN [6]

G47.38-3.88 B1929+10 293.06 10.99 0.36 Upper Limit

DA495 298.08 29.43 1.5 To Far North

CTB80 B1951+32 298.24 32.88 2.5 Upper Limit

G59.20-4.70 B1957+20 299.9 20.8 2.5 -

CTB87 304.01 37.2 6 To Far North

G75.23+0.12 J2021+3651 305.27 36.86 4 Candidate PWN [1]

G10.93-45.44 J2124-3358 321.18 -33.98 0.25 Upper Limit

Guitar B2224+65 336.47 65.59 1 To Far North

G106.3+2.7 J2229+6114 337.27 61.24 3 Candidate PWN [121]
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the investigation of both old and young PWN as both source types appear as com-

pact nebulae surrounding the central progenitor pulsar in X-rays (although their age

could be estimated from observations of the pulsar where these exist). Where obser-

vations in each individual case indicate that an older or younger pulsar wind nebula

should be expected this is discussed along with analysis of that target. Although

an offset is expected for older extended pulsar wind nebulae this is not accounted

for in this analysis, as the direction in which this offset will occur is unknown. In

addition, a point-like cut will allow a direct comparison between the smaller X-ray

source and the γ-ray emission generated by the same particle population.

5.2 HESS significances and Upper Limits

The standard HESS analysis (as discussed in Chapter 3) [17] was used to calculate

the significance and flux upper limits for the PWN listed (see Tables 5.1 and 5.2)

which had not been the subject of previous HESS publications and for which archival

data were available. The statistical significances are calculated using the method

detailed in Li and Ma [138] while the upper limits use the Feldman-Cousins method

[78] (these methods are covered in more detail in Chapter 3). These values are

presented in Table 5.3 for a point source analysis and in Table 5.4 for an extended

region analysis. To obtain upper limits an assumed spectrum of E−2.2 was used,

which is the mean spectrum for the confirmed TeV emitting pulsar wind nebulae of

all ages listed in Tables 5.1 and 5.2.

Most of the observed nebulae show no significant VHE γ-ray signal. The highest

statistical significances are from sources which can be shown as being contaminated

by adjacent sources which are discussed in more detail below; the distribution of

significances of the remaining targets is shown in Figure 5.1 for a point-like region

analysis and for an extended region analysis. This shows a distribution of significance

around zero for the sources for which upper limits have been calculated with an

average of 0.6 σ for a point-like analysis. A broader distribution is seen in the

case of extended analysis with a average of -0.2 σ. If we use the on and off axis

counts to calculate the significance for all runs, taking into account for the longer
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Table 5.3: Upper limits and the statistical significances for unpublished PWNe in the

catalogue for which HESS data is available derived assuming a point source around the

central target (θ2=0.01). Upper limits are given above a 1 TeV threshold for each source

with the exception of G180.0-1.7 (marked †) which was observed at a high zenith angle,

giving an energy threshold of 1.26 TeV. All calculations assume an E−2.2 spectrum. The

targets marked ? overlap other extended γ-ray sources and as such any emission present

cannot be distinguished from those sources.

Name time Non Noff alpha Upper Limit σ

hours (10−13/cm2/s)

G180.0-1.7 † 3.6 44 813 0.053 5.16 0.10

Geminga 9.3 83 1944 0.043 3.03 -0.11

G287.4+0.6 24.5 140 3093 0.041 3.35 1.13

MSH11-62 25.5 195 5989 0.032 2.84 0.19

MSH11-54 23.3 174 4962 0.030 5.18 1.80

G293.8+0.6 12.9 95 4549 0.023 2.56 -1.11

MSH15-56 15.4 53 2115 0.024 4.75 0.27

G327.1-1.1 7.3 56 1035 4.08 0.25

G34.01+20.27 4.5 45 825 0.053 4.94 0.16

Duck 53.41 194 7879 0.027 1.09 -1.46

G7.4-2.0 2.19 8 310 0.014 38.20 1.49

G11.2-0.3 ? 50.9 257 5177 0.039 3.55 3.49

G16.7+0.1 ? 62.0 295 6236 0.042 2.12 1.93

G18.5-0.4 ? 94.0 424 14169 0.021 5.88 6.55

G39.2-0.32 51.9 355 9038 0.034 2.96 2.74

G47.38-3.88 1.77 14 304 0.043 7.89 0.21

G10.93-45.44 4.40 28 476 0.053 5.68 0.50
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Table 5.4: Upper limits and the statistical significances for unpublished PWNe in the

catalogue for which HESS data is available derived assuming an extended analysis region

around the central X-ray target (θ2=0.0484) . Upper limits are given above a 1 TeV

threshold for each source with the exception of G180.0-1.7 (marked †) which was observed

at a high zenith angle, giving an energy threshold of 1.26 TeV. All calculations assume an

E−2.2 spectrum. The targets marked ? overlap other extended γ-ray sources and as such

any emission present cannot be distinguished from those sources.

Name time Non Noff alpha Upper Limit σ

hours (10−13/cm2/s)

G180.0-1.7 † 3.6 226 1456 0.144 16.47 1.07

Geminga 9.3 399 3927 0.103 6.27 -0.34

G287.4+0.6 22.8 666 5592 0.114 7.65 1.14

MSH11-62 24.6 906 12014 0.077 4.95 -0.52

MSH11-54 23.3 756 9747 0.081 5.18 1.80

G293.8+0.6 12.9 477 9186 0.062 2.39 -3.73

MSH15-56 11.5 236 4418 0.061 3.93 -1.97

G327.1-1.1 7.3 271 2155 0.112 10.94 0.77

G34.01+20.27 4.5 221 1490 0.144 12.61 0.44

Duck 50.8 938 15601 0.068 1.13 -3.94

G7.4-2.0 2.19 31 705 0.031 66.28 1.77

G11.2-0.3 ? 48.32 1142 10368 0.091 11.37 6.04

G16.7+0.1 ? 61.6 1397 11975 0.106 6.45 3.48

G18.5-0.4 ? 93.1 1869 28836 0.057 11.39 5.38

G39.2-0.32 51.9 1611 17985 0.083 6.90 3.03

G47.38-3.88 1.77 65 659 0.098 16.70 0.08

G10.93-45.44 4.40 123 837 0.144 11.41 0.23
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Figure 5.1: The significance distribution for the PWNe for which Upper Limits have

been obtained for a pointlike (blue) and extended (red) analysis. Most of the targets have

significances clustered around 0, a broader distribution is seen for the extended analysis.

observation times of some of the sources, we obtain significances of 2.2 σ and 2.3 σ

for an extended and point-like analysis respectively. This shows no conclusive proof

for a positive bias in the significance of this group of sources.

No significant outlier is observed in this dataset and due to its discrete nature it

is entirely consistent with a distribution centred around 0. The highest significance

comes from the analysis of G39.2-0.3 which has a statistical significance of ≈ 3 σ in

both a pointlike and extended analysis. Each of the objects analysed is discussed

in Section 5.5 below and where appropriate compared to predictions made later in

this Chapter.

5.3 Relation of X-ray flux to γ-ray flux

X-ray observations of the target pulsar wind nebulae have been used in conjunc-

tion with the method presented by de Jager [67] to obtain predictions of γ-ray flux.
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Where a magnetic field strength estimate is provided in the relevant X-ray obser-

vation paper, this value is used; otherwise the equipartition method of [67] is used

to estimate the value of the magnetic field strength. The γ-ray flux predictions are

then compared to the derived upper limit for a point source calculated above 1 TeV

(the point source limit is used in this case so that it can be compared directly to the

area of the sky viewed in the X-ray regime). This approach was taken as it allows

the flux in the γ-ray to be predicted from X-ray observations rather than from the

parameters of the assumed progenitor pulsar wind nebula. As a result, the PWN

which have not been associated with a progenitor can be included in the analysis

and thus a consistent analysis can be applied across all of the sources observed.

These predictions are shown in Table 5.5. The derived fluxes are given above an

energy threshold of 1 TeV. As many of the most well established X-ray pulsar wind

nebula have now been observed in the TeV γ-ray regime many of the sources under

investigation in this Chapter are less well observed and as such less likely to be

associated with a known progenitor.

The de Jager model [67] uses the X-ray spectrum to predict the electron energy

spectrum from which the γ-ray spectrum can be obtained. However, the X-ray

synchrotron emission is also dependent on the strength of the magnetic field in the

nebula while the inverse Compton emission is dependent on the level of background

photons present. As a result, if the strength of the magnetic field and the X-ray flux

are known we can calculate the minimum γ-ray flux if the X-ray flux is known by

using the following equation [67]:

F1TeV =
6.6× 10−17(1.4× 10−5)axe2.2ax−0.126a2xF1keV

Bax+1
(5.1)

Where F1TeV and F1keV are the monochromatic fluxes in photons/cm2/s at 1

TeV and 1 keV respectively, B is the magnetic field strength in the nebula and ax is

the spectral index of the X-ray nebula. This value is a minimum because it assumes

that the only source of photons for inverse Compton boosting is the microwave

background radiation. In reality the γ-ray flux may be much larger than this as

there may be twice as many background photons present in the synchrotron nebula,

even without requiring synchrotron self Compton effects such as those seen in the
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Crab Nebula. This is due to the presence of other sources of background radiation

such as ambient starlight.

By inverting the synchrotron spectrum and using it to predict the inverse Comp-

ton spectrum observed de Jager [67] shows that the observed TeV γ-ray flux (Sγ)

scales as Sγ ∝ B−Γ where Γ is the spectral index of the observed X-ray emission

and B is the magnetic field strength of the nebula. As we can see, the magnetic field

strength is very important to the calculation of the γ-ray flux from the observed

X-ray flux.

However, in many cases the magnetic field strength is not known and so it has to

be assumed that the nebula is in equipartition close to the progenitor pulsar. This

assumes that the energy in the system is split equally between its magnetic field and

the thermal energy in its particle population, which in this case can be calculated

from the observed X-ray flux using the relation:

Beq = 1.8× 10−4

(
0.038axF1keV k

θdα(2ax − 1)

) 2
7

(5.2)

Where Beq is the strength of the magnetic field assuming equipartition, θ is half

the diameter of the pulsar wind nebula seen in X-rays in arcminutes and d is the

distance to the nebula. The factor k = E
1−2ax

2
min − E

1−2ax
2

max where Emin and Emax are

the minimum and maximum energies for which the X-ray energy spectrum is valid.

The factor

α = 2ax−1ax + 5/3

ax + 1
Γ

(
3ax + 1

6

)
Γ

(
3ax + 2

6

)
(5.3)

is based on the kinetic energy spectrum and is used to describe the underlying

electron population. In assuming that the nebula is in equipartition in the area

immediately surrounding the pulsar which corresponds to the X-ray nebula we make

the assumption that energy can be transferred between the magnetic field and the

particle population and that enough time has elapsed for these values to equalize.

This is not unreasonable for the older nebulae under investigation; in these cases the

area immediately surrounding the nebula has had time to form a stable equilibrium.

Predicted fluxes for the nebulae based on both published estimates for the magnetic
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field strength and the equipartition calculated values are given in Table 5.5 and are

compared to the upper limits derived in each case.

As we can see, for most of the sources observed the predicted values of integrated

flux above 1 TeV are of the order of 10−15 or 10−16 ergs/cm2/s which is well below

the 10−13 ergs/cm2/s typical of observed pulsar wind nebulae in the TeV regime

and below the upper limits calculated from available HESS data. As a result it is

unlikely that the majority of these nebulae will be seen with the current generation

of TeV Cherenkov telescopes without a significant investment of time. However,

these sources may be detectable with the next generation Cherenkov instrument

which is currently in the planning stages, CTA.

A number of the sources are however predicted to have integrated fluxes of the

order of 10−13 ergs/cm2/s and so may be viable targets for observation with the

current generation of TeV Cherenkov instruments; these are discussed in more detail

in Section 5.5. The largest predicted flux was calculated for the nebula G7.4-2.0.

Two of the other sources with large predicted fluxes based on the above equations

are the nebulae G16.7+0.1 and G11.2-0.3 which have predicted fluxes of 1.46×10−13

ergs/cm2/s and 2.95×10−14 ergs/cm2/s respectively. However as has been discussed

previously both of these nebulae are difficult to detect due to contamination by

brighter neighbouring sources. They are discussed in more detail in Chapter 6.

5.3.1 Application to known TeV Pulsar Wind Nebulae

To assess the value of this model, it is necessary to apply it to nebulae which have

already been observed in the TeV γ-ray regime to see if the predictions made will

tally with the observations of this nebula. Here we calculate the parameters expected

for two well-observed sources discussed in Chapter 4, G21.5-0.9 and the Kookaburra,

as examples of young and middle aged pulsar wind nebulae respectively. Additional

targets were not used in this analysis due to a lack of data available from which

to calculate a prediction. The predicted and observed TeV γ-ray fluxes for these

nebulae are shown in Table 5.6.

Also shown in Table 5.6 are predictions of the TeV γ-ray flux, calculated for both

an observationally-derived and a equipartition-calculated magnetic field, which is



5.3. Relation of X-ray flux to γ-ray flux 120

Table 5.5: Predicted γ-ray flux above 1 TeV from the known X-ray flux for targets for

which this is available and comparison with the derived upper limits for these targets.

Where they are available the magnetic fields quoted in the X-ray observations are given

and used to calculate predicted flux values, in each case these are given second in the

table.
d X-ray flux a θ’ B Pred. γ-ray flux γ-ray flux UL

at 1 keV above 1 TeV above 1 TeV

kPc /cm2/s arcmin µG /cm2/s /cm2/s

×10−5 ×10−15 ×10−15

Geminga [161] 0.25 0.746 1.84 0.83 21.2 5.60 303

G287.4+0.6 [92] 2.7 4.37 1.7 0.18 70.0 0.150 335

23.8 2.76

MSH11-62 [98] 6 194 2 2.5 70.0 7.42 284

36.0 54.5

MSH11-54 [117] 4.8 14.4 1.72 0.018 55.8 0.924 518

MSH15-56 [118] 17 37.5 2.9 1.0 220.0 0.0200 475

51.9 5.60

G327.1-1.1 [127] 3.6 1.12 1.4 0.66 7.4 7.43 408

Duck [131] 5 33.7 1.6 0.16 33.0 7.85 109

G7.4-2.0 [45] 1.8 225 2.09 0.5 20.0 425 38.2

92.0 3.81

G11.2-0.3 [173] - 277 1.73 0.66 46.5 29.5 355

G16.7+0.1 [99] 10 119 1.17 0.5 12 146 212

17.6 63.4

G39.2-0.32 [157] 8 101 1.5 0.3 28.6 29.9 296

G47.38-3.88 [152] 0.36 2.87 1.35 0.08 33.0 0.494 789

G10.93-45.44 [119] 0.25 0.746 2.2 0.5 30 0.459 568

35.3 0.273
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Table 5.6: Predicted γ-ray fluxes of two pulsar wind nebulae using the de Jager method for

both an equipartition derived magnetic field (given second in each case) and the magnetic

field strength derived from other methods quoted in published material.

d X-ray flux a θ’ B Pred. γ-ray flux γ-ray flux

at 1keV above 1TeV above 1TeV

kPc /cm2/s arcmin µG /cm2/s /cm2/s

×10−5 ×10−15 ×10−15

G21.5-0.9 [65] [43] 4.30 6870 1.89 0.80 25 4970 1300

135 38.0

Kookaburra [188] [19] 7.69 81.1 2.03 0.18 8.0 3180 2640

65.8 4.00

compared to the observational flux. As can be seen by these results in both cases,

the observed value is close to the prediction calculated using the de Jager model

[67] when an observationally-derived magnetic field but not when an equipartition-

derived value is used. This shows that the model works well in its calculation of

flux from a known magnetic field strength. However, the calculation of magnetic

field strength in this model does not work particularly well as is seen here by the

discrepancy of equipartition predicted magnetic field strengths with observed values.

This is acknowledged by the authors of the model who state “the purpose of this

paper us not to give accurate estimates of B” [67]. As a result the predicted fluxes

in this Chapter will be accurate only when the magnetic field strength is known.

The fluxes calculated for observationally derived magnetic field strength are how-

ever lower than the observed γ-ray flux. This is due to the de Jager model [67] only

taking into account CMB photons as seed photons for the inverse Compton process.

In reality many other sources of radiation will be available as seed photons and so

the true γ-ray flux will be somewhat higher as seen in Table 5.6 (≈ 3 - 4 times in

the case of G21.5-0.9 and ≈ 1.5 times in the case of the Kookaburra).

5.4 Magnetic Field Lower Limits

As we have shown that the method of flux calculation from a known magnetic field

from the de Jager model [67] provides accurate predictions it is possible to invert this
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Table 5.7: Magnetic field lower limits for the nebulae for which X-ray data are

available.

Nebula B Field Lower Limit B(Eq) B(pub)

(µG) (µG) (µG)

Geminga 2.62 21.2 -

G287.4+0.6 4.03 23.8 70.0

MSH11-62 20.8 36.0 70.0

MSH11-54 5.45 55.8 -

MSH15-56 16.6 51.9 220.0

G327.1-1.1 1.39 7.4 -

Duck 12.00 33.0 -

G7.4-2.0 9.83 20.0 92.0

G11.2-0.3 18.68 46.5 -

G16.7+0.1 10.10 17.6 12

G39.2-0.32 11.43 28.6 -

G47.38-3.88 1.43 33.0 -

G10.93-45.44 3.24 35.3 30
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calculation and use the upper limit and the X-ray flux measurement to calculate a

lower limit to the magnetic field present in the nebula, using the following equation:

BLL =

(
1.5× 1016F1TeV e

(0.16a2x−2.2ax)

F1keV (1.4× 10−5)ax

) 1
ax+1

(5.4)

Where BLL is the lower limit of the magnetic field, F1TeV and F1keV are the

differential fluxes or flux upper limits of the nebula at 1 TeV and 1 keV respectively

and ax is the spectral index of the nebula in the X-ray regime. This has been done

for the nebulae for which usable published X-ray observations exist and these are

shown in Table 5.7.

All the limits calculated are lower than the equipartition values calculated and

the published values from their respective papers and so do not rule out any of these

previously derived values. In a few cases the calculated lower limits are close to the

derived and published values, however, not surprisingly these are generally in cases

where the predicted fluxes also lie close to the calculated flux upper limits, such as

in the case of G16.7+0.1 which is subject to source confusion and is discussed in

more detail in Chapter 6.

5.5 Discussion of Individual Sources

In this Chapter, we have calculated the upper limits on the fluxes of 17 sources

and then used X-ray data where it was available to calculate predicted fluxes for

these. This Section gives details about the individual observations and compares

them to the predictions made using the de Jager model [67]. All of the nebulae

observed are discussed, but those which are adjacent to a larger source are discussed

in more detail in Chapter 6. TeV γ-ray flux predictions of individual sources are

only discussed when independent magnetic field strengths are available due to the

uncertainty in predicting these using an equipartition assumption; in these cases the

predictions will be compared to the point-source upper limits so that they can be

directly compared to the X-ray flux as discussed in Section 5.3.
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5.5.1 Nebulae Adjacent to a Larger γ-ray Source

In the X-ray regime pulsar wind nebulae are small and located close to the central

pulsar, unlike the VHE γ-ray regime where older nebulae are in general extended.

As a result, many nebulae which are distinct in the X-ray regime are part of the

same extended complex of emission in the TeV γ-ray regime. Consequently, analysis

of the region around the nebula incorporates emission from the extended complex,

and upper limits are unlikely to correspond solely to emission from the source under

investigation. This is observed in three cases listed in Table 5.3 which are discussed

in more detail in Chapter 6. Two of the nebulae under consideration in this case

are in the vicinity of the most extended known pulsar wind nebula in the TeV γ-ray

regime, HESS J1825-137 which is discussed in Section 4.2.3. They are G18.5-0.4,

also known as the Eel, which is located in the north of the nebula and G16.7+0.1

which is located in its west.

As we can see in Table 5.3 the region corresponding to the nebula G18.5-0.4

(the Eel Nebula) in the northern extension of HESS J1825-137 has a high statistical

significance of 6.55 σ for a point source and 5.38 σ for an extended source. If it were

not located close to the extended nebula this would be considered adequate evidence

for TeV emission from this source, and indeed this emission has been proposed as

coming from the separate northern source [170] as the movement of the progenitor

pulsar PSR B1823-13 away from the emission of the HESS J1825-137 implies that

emission should be concentrated towards the south and west of this source. However,

while the brightest emission from HESS J1825-137 is seen in this southwesterly

direction, substantial emission is seen to its north, corresponding to the location of

the Eel nebula G18.5-0.4. No break in emission between the main nebula and this

northern extension has been observed and an attempt to distinguish this nebula

from its brighter neighbour is made in Section 6.2.

In contrast to the emission from the G18.5-0.4, the other source overlapping with

HESS J1825-137 is located southwest of the progenitor pulsar in the outer reaches

in its emission, beyond the area analysed in [20] (see 4.2.3) as part of the softening

of the spectra of this source. Less emission is seen in this area than to the north

and the point source analysis results in a chance significance of 1.93 σ, which does
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Figure 5.2: The Duck Nebula as seen by Chandra in X-rays shown in greyscale. It is

overlayed with 4.9GHz radio data and both show emission to the east of the central pulsar

(marked with crosshairs [131].

not constitute evidence for a detection. G18.6-0.4 corresponds to the X-ray source

observed in [99].

G11.2-0.3 is the third source surrounding the young pulsar PSR J1811-1925;

point source analysis centred on its X-ray position shows a large significance due

to its location in the outer reaches of another extended nebula. In this case it is

located in the outer edge of the HESS source HESS J1809-193 corresponding to

the PWN G11.1-1.0 observed in both the X-ray and γ-ray regimes [127] [25]. It is

further discussed in Section 6.1 where we attempt to disentangle it from its larger

neighbour.

5.5.2 The Duck

Another source which is located close to another known HESS source is the Duck

Nebula, also known as G5.4-1.2, which is located ≈ 1◦ from the complex HESS

J1800-240 [27]. In this case, a point source analysis centred on the X-ray position

does not show any evidence for a signal , and so contamination of this region by

HESS J1800-240 is not apparent and nor is there any evidence of emission from the
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Figure 5.3: A γ-ray skymap using a ring background for a pointlike emission region

surrounding the Duck nebula. No emission corresponding to the Duck is seen.

Duck Nebula.

The Duck nebula received its name after its appearance in some radio wave-

lengths were a large extended supernova remnant with a small protruding pulsar

wind nebula at its edge is seen [41]; this is thought to resemble the head of a Duck

with the protruding pulsar wind nebula under investigation here corresponding to

its beak. In the X-ray regime, only the beak, corresponding to the pulsar wind neb-

ula created by the pulsar PSR B1757-24, is seen as a point source with a faint tail

extending 20” towards the East in the direction fo the supernova remnant [131], this

is shown in Figure 5.2. The progenitor pulsar of this nebula has a characteristic age

of 16,000 years and a spindown luminosity of Ė = 2.6× 1036ergs/s making it much

older than most known TeV γ-ray emitting pulsar wind nebulae. This is consistent

with the small, faint nebula. The protrusion of the pulsar wind nebula from the

central SNR means that this source may be regarded as a bow-shock pulsar wind

nebula as discussed in Section 2.5.4.
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Figure 5.4: A X-ray image of G39.2-0.3 taken using Chandra in the 3.0 - 8.0 keV frequency

band taken from [157] showing extended emission to the east and southwest of the centre

of the nebula.

With a statistical significance of 1.09 σ when analysed as a point source and 1.13

σ when analysed as an extended source this source was not detected above a level

consistent with background noise, as shown in the skymap of the region seen in the

TeV γ-ray regime which is shown in Figure 5.3. If this nebula were to be observed

in the γ-ray regime it would probably be seen as an extended nebula due to the age

of the source or indeed a relic γ-ray pulsar wind nebula at some distance from the

X-ray nebula due to the escape of the progenitor pulsar from the nebula.

5.5.3 G39.2-0.3

G39.2-0.3 also appears in a crowded region of sky with the nearby source HESS

J1908+063 [29] clearly visible in the γ-ray skymap (see Figure 5.5) of this source.



5.5. Discussion of Individual Sources 128

The X-ray nebula is one of the most distant under investigation in this Section at a

distance of ≈ 8 kpc it is seen as a faint nebula which as yet has not been associated

with a progenitor pulsar [157], this is shown in Figure 5.4.

This nebula shows the highest statistical significance of any of the sources ob-

served in this section which are not the subject of overlap with an adjacent nebula.

However, as the significances seen are 2.74 σ and 3.03 σ for a pointlike and extended

analyses respectively these do not represent detections and indeed may just be the

result of fluctuations in background in a crowded region as is seen in Figure 5.5.

The ≈ 3 σ significance detected for this source was initially detected after just 30

hours of observations and so an additional 20 hours of observations were taken as

a result of an observation proposal by the author of this thesis in order to confirm

detection of this source, however, the significance did not increase as can be seen in

Figure 5.6.

5.5.4 G7.4-2.0

The source with the highest predicted TeV γ-ray flux is G7.4-2.0 if we assume the

CO line observation derived value for its magnetic field of 20 µG given in the dis-

covery paper [45] which results in a predicted significance of 4.25×10−13 ergs/cm2/s.

However, the source is not very well observed and has the least constraining value

for an upper limit of all of the sources presented due to a short observation time

of only 2.19 hours with runs taken at the edge of the camera field of view (2.37◦

off axis); these observations are shown in Figure 5.7. As the source is located in

the southern hemisphere sky it is in a position easily observable by HESS and so

could be observed with another 20-30 hours of observations if it does indeed have

a magnetic field of 20 µG as calculated by Braje [45]. However, its location is in a

crowded RA band and so it will not be a high priority for further observations.

5.5.5 G287.4+0.6

G287.4+0.6 is another source for which an accurate magnetic field strength (70 µG)

is known and as such the γ-ray flux can be predicted from the X-ray observations. In
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Figure 5.5: A γ-ray skymap using a ring background for a pointlike emission region

surrounding the nebula G39.2-0.3. The position of the nebula corresponds to an area of

above average significance but at 3 σ this is not enough to claim the detection of this

source.
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Figure 5.6: The buildup of significance with time of the nebula G39.2-0.3.

Figure 5.7: A γ-ray skymap using a ring background for a pointlike emission region

surrounding the nebula G7.4-2.0. As the source was at the edge of the camera in the

observations the area in the northeast of the skymap is completely smooth as it was not

covered in the observation.

the X-ray regime this nebula is small and extended to the southeast of its progenitor

pulsar PSR B1046-58 [92], it can be seen in Figure 5.8. The progenitor pulsar has

a characteristic age of 20,400 years making this another middle-aged nebula and so

an extended nebula should be seen in the TeV γ-ray regime with a flux of 1.5×10−16
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Figure 5.8: The nebula G287.4+0.6 as seen in the 0.5-10 keV X-ray spectrum. The

progenitor pulsar is marked with a black circle [92].

photons/s/cm2 expected. This small predicted flux would not be detectable in the

24.5 hours of observations made of this region by the HESS telescopes and indeed

no detection is made. The region surrounding the source is shown in Figure 5.9

5.5.6 G10.93-45.44

In common with the majority of other sources for which the complete array of X-

ray parameters including the magnetic field strength are known G10.93-45.44 is a

middle aged pulsar wind nebula surrounding a central progenitor pulsar PSR J2124-

3358 [119]. This pulsar has a characteristic age of 5,860,000 years much older than

any observed γ-ray pulsar wind nebula (see Figure 5.10). As a result we might

expect to see an extended nebula in the γ-ray regime to the north of the observed

nebula and perhaps a bow-shocked nebula close to it. However, predictions for this

nebula based on the de Jager model [67] indicate a predicted flux of 4.59×10−16
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Figure 5.9: A γ-ray skymap using a ring background for a pointlike emission region

surrounding the nebula G287.4+0.6. The nebula was not observed.

photons/s/cm2 above 1 TeV and so detection of this nebula is not expected if the

model is correct and indeed the nebula is not seen in the γ-ray observations seen in

Figure 5.11.

5.5.7 MSH11-62

Unlike many of the other sources for which X-ray data was available to make predic-

tions of X-ray flux, MSH11-62 is a younger source surrounded by a SNR shell [98].

While the characteristic age of its pulsar is estimated at 20,000 years, observation

of the SNR suggests a younger age of closer to 6,500 years placing this nebula some-

where around the time that inverse shock crushing is expected to occur and so may

be visible as a point source if seen in the TeV γ-ray regime. Flux predictions indicate

a nebula flux of 7.42×10−15 photons/s/cm2 above 1 TeV adjacent to the progenitor

pulsar and so it is unlikely to be seen with the current generation of VHE γ-ray

telescopes and indeed is not detected in the 25 hours of observations available (see
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Figure 5.10: An X-ray image of the nebula G10.93-45.44 as seen in [119] produced using

the XMM-Newton satellite. It shows extension towards the north of the progenitor pulsar.

Figure 5.12).

5.5.8 MSH15-56

The final source for which X-ray data and magnetic field strength are available is

also the most distant of the observed X-ray sources under investigation at a distance

of at least 17 kPc [118]. As a result it is faint and predictions based on the de Jager

model [67] indicate that no emission is expected when its measured magnetic field

of 220 µG [118] is included in the calculation and indeed it is not observed in the

15 hours of observations made in this analysis seen in Figure 5.13. However due to

the strength of the magnetic field measured for this nebula SSC effects may make

the nebula brighter, but in these circumstances emission is still unlikely to be seen.

5.5.9 Other Sources

The remaining nebulae for which upper limits have been calculated have not been

observed sufficiently well in the X-ray regime for γ-ray fluxes for these nebulae to be
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Figure 5.11: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula G10.93-45.44. The nebula was not detected.

predicted. None of these nebulae are seen in the TeV γ-ray regime but the regions

observed are shown. MSH 11-54 is shown in Figure 5.14, Geminga in Figure 5.15,

G293.8+0.6 in Figure 5.16, G327.1-1.1 in Figure 5.17, G34.01+20.27 in Figure 5.18,

G47.38-3.88 in Figure 5.19 and G180.7-1.7 in Figure 5.20.

5.6 γ-ray Upper Limits of Pulsar Wind Nebulae

This Chapter focused on the search for counterpart γ-ray sources to X-ray selected

pulsar wind nebulae using archival HESS data. No new sources were found but some

of the sources did have upper limits close to predicted flux estimates and so longer

observation times for these sources may result in their detection in the future. In

addition to calculating upper limits for these sources in the TeV γ-ray regime, the

data obtained were used to investigate the magnetic field of the pulsar wind nebulae

studied. Where γ-ray upper limits and X-ray fluxes were available magnetic field

strength lower limits were calculated and compared to published magnetic field
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Figure 5.12: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula MSH11-62. The nebula was not observed. The HESS source HESS

J1119-614 [71] is also seen in the field of view of this source.

strengths. No previously published magnetic field strengths were precluded by this

method.
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Figure 5.13: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula MSH15-56. The nebula was not detected.



5.6. γ-ray Upper Limits of Pulsar Wind Nebulae 137

Figure 5.14: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula MSH11-54. The nebula was not detected.
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Figure 5.15: A γ-ray skymap using a ring background for a point-like emission region

surrounding the Geminga Nebula. The nebula was not detected.
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Figure 5.16: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula G293.8+0.6. The nebula was not detected.
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Figure 5.17: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula G327.1-1.1. The nebula was not detected.
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Figure 5.18: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula G34.01-20.27. The nebula was not detected.
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Figure 5.19: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula G47.38-3.88. The nebula was not detected.
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Figure 5.20: A γ-ray skymap using a ring background for a point-like emission region

surrounding the nebula G180.0-1.7. The nebula was not detected.



Chapter 6

Disambiguation of Pulsar Wind

Nebulae

As has been discussed in Chapter 5 many of the pulsar wind nebulae that are

observed in the X-ray regime are difficult to detect in the TeV γ-ray regime as they

are confused with other extended nebulae located adjacent to them. This confusion

is largely due to the relative sizes of X-ray and TeV γ-ray pulsar wind nebulae as

discussed in Section 4.4.2. This confusion is due to both the physical extension of

the adjacent nebulae and the poor angular resolution of TeV γ-ray observatories.

This investigation will focus on analysis of the spectra and morphology at high

energies of three nebulae which are located at the edges of two larger and brighter

γ-ray pulsar wind nebulae. G11.2-0.3 surrounds the young pulsar PSR J1811-1925

and shows a statistical significance (when treated as a point source) of 3.49 σ due to

its position in the outer reaches of the extended nebula corresponding to the pulsar

wind nebula G11.1-1.0.

The other two sources under investigation are both located in the outer regions

of the largest known TeV γ-ray pulsar wind nebula known, HESS J1825-137, which

is discussed in Section 4.2.3. G16.7+0.1 is located southwest of the progenitor pulsar

in the outer reaches in its emission, beyond the area analysed in [20]. In contrast

G18.5-0.4, otherwise known as the Eel Nebula, is located to the north of HESS

J1825-137 closer to its progenitor pulsar but not in the direction in which most of

the emission from this source is thought to occur.

144
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In most cases when an attempt is made to separate the observed emission from

two sources, it is based on the fitting of expected functions derived from the obser-

vational uncertainties of the instrument used to collect the data, as was done in the

investigation of CTB 37A [26]. However, in this case the extension of the sources

under investigation is not the result of the PSF of the HESS instruments but mainly

due to the extension of the sources themselves which appear to overlap in the TeV

γ-ray regime. In order to disentangle these sources we must thus use the physical

properties of the sources themselves and so I have chosen to apply an energy thresh-

old to the targets under investigation. By looking at photons with energies greater

than 1 TeV it is possible to view only the central portions of the pulsar wind nebula

under investigation, the portion of the nebula where young energetic electrons are

present. This threshold was chosen as a compromise between the desire to view only

the highest energy electrons which are coincident with X-ray emission and the need

for adequate data for a morphological analysis.

A 1 TeV threshold was chosen after analysis of the targets considered in this

Chapter at four different thresholds, the initial threshold of the observation, 700

GeV, 1 TeV and 5 TeV. A 1 TeV threshold was chosen as it offered the greatest

distinction between adjacent nebulae in the observation of the Eel nebula. As can

be seen in Section 6.2.2 no distinction is seen between the nebulae at the observation

threshold of the HESS telescopes and indeed no distinction is seen at a 700 GeV

energy threshold. At a 5 TeV threshold very few events are available to calculate

significances and fluxes and as a result the Eel nebula is not seen. Another ad-

vantage of using a 1 TeV energy threshold for this analysis is that this threshold

is used in lots of published literature and so fluxes quoted about a 1 TeV flux are

directly comparable to these values. As a number of thresholds were attempted an

adjustment had to be made to the final significance to take these trials into account.

When nebulae were observed adjacent to one another linear cross sections across

lines of right ascension or declination were applied to determine the distinction

between the nebulae. A cross section analysis was chosen to allow nebulae to be

simply modelled in contrast to a more complex analysis model which would be

required for a 2D skymap. The cross sections were taken along lines of right ascension
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Figure 6.1: Chandra X-ray image of the nebula G11.2-0.3 which consists of a central

pulsar wind nebula surrounded by an expanding supernova remnant shell [173].

and declination as this facility was built into the analysis software and did not

require additional programming and testing which could not be carried out due to

time constraints. The cross section was taken with a width of 0.2◦ corresponding to

the diameter of the HESS point spread function.

6.1 G11.2-0.3

Of the sources under investigation, G11.2-0.3 is the closest to another TeV source,

HESS J1809-193 (G11.1-1.0), with only 0.4◦ between the two objects’ progenitor

pulsars. In other wavelengths, the source under investigation, G11.2-0.3, is the better

studied of the two sources as it has been the subject of several X-ray observations,

most recently with the Chandra [173] and INTEGRAL [68] satellites.

The most comprehensive imaging observations of the source in the X-ray regime
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were made using the Chandra observatory and show a classic plerionic nebula with a

central pulsar wind nebula surrounded by supernova shell [173], as shown in Figure

6.1. The shell has a 5’ diameter corresponding to a physical size of 7 pc for the

nebula given the measured distance to the pulsar of 5 kpc, which implies an age

for the nebula of ≈ 2000 years. Additionally, this is consistent with an association

for this nebula with the historically observed supernova of 386AD, which has been

proposed as the progenitor event for this nebula [173].

The central pulsar wind nebula of G11.2-0.3 is clearly detected in the Chandra

observations, as can be seen in the centre of Figure 6.1. An elongated structure

along the east-west axis is seen. As discussed in Chapter 5 the pulsar wind nebula

has a flux of 2.77 × 10−3 photons/cm2/s at 1 keV with an X-ray spectral index of

-1.73 [127] [25]. This allowed a prediction for the flux above 1 TeV to be made at

2.95×10−14 photons/cm2/s, within an order of magnitude of the observed upper limit

of 3.55 ×10−13 photons/cm2/s above 1TeV. However, this prediction assumes that

the magnetic field of the nebula is in equipartition and so is likely to be inaccurate.

The source also shows a high statistical significance when observed in the TeV

regime of 3.6 σ when a point like analysis is used and an even higher 11.4 σ when

an extended analysis is used, as discussed in Chapter 5. However, this is the result

of emission not from G11.2-0.3 itself but from the adjacent source HESS J1809-193

which has also been subject to X-ray observations [127]. HESS J1809-193 is a known

middle-aged γ-ray pulsar wind nebula, shown in Figure 6.2.

Observations of the area surrounding these nebulae in the TeV regime seen in

Figure 6.2 show that the observed HESS source is coincident with both X-ray nebulae

discussed. The γ-ray nebula cannot be exclusively associated with the nebula G11.2-

0.3 as the area of observed γ-ray emission is not contained within the observed extent

of the surrounding supernova remnant seen in X-rays. Most of the observed emission

must be associated with G11.1-1.0 as published. However, a contribution from the

G11.2-0.3 nebula cannot be ruled out and so this section will attempt to separate

out the two nebulae in order to see if emission is seen from the nebula G11.2-0.3 in

the TeV regime.

To determine if G11.2-0.3 can be distinguished from its larger neighbour, HESS
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Figure 6.2: A VHE γ-ray observation of the area of the nebula HESS J1809-193 and

G11.2-0.3. The progenitor pulsar of each nebula is marked with a triangle PSR J1809-

1917 corresponds to the larger neighbouring nebula, HESS J1809-193 (G11.1-1.0) and

PSR J1811-1925 corresponds to the nebula G11.2-0.3 under investigation. The black

circle around PSR J1811-1925 indicates the extent of the X-ray SNR G11.2-0.3
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Figure 6.3: Showing the event excess for E < 0.44 TeV along declination of -19.42◦

through the centre of the nebula G11.2-0.3 showing the position of this source and its

larger brighter neighbour HESS J1809-193

J1809-193 in the VHE γ-ray regime a cross-section was placed along a declination

of -19.42◦, coincident with the progenitor pulsar of G11.2-0.3, to see if a distinction

could be made between the two sources. This is shown in Figure 6.3. A small excess

is observed at the point of right ascension corresponding to PSR J1811-1925. The

area of the cross-section corresponding to the fall-off in emission from the central

G11.1+1.0 nebula was fit by both a second and forth order polynomial in order to

determine the presence of emission from the smaller source G11.2-0.3. These were

made using a least squares fit with statistical errors on binned points, the analysis

is in Figure 6.4. The χ2 of these polynomial fits were calculated and show due to

the poor statistics available neither hypothesis can be excluded. At E > 0.44 TeV,

χ2 = 2.26/20 under the assumption of a single source and χ2 = 1.15/18 for a double

source. A threshold was also applied to the data excluding all events below 1 TeV

and the fitting process was repeated, in this case χ2 = 1.03/20 was calculated for a
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Figure 6.4: Showing the cross-section of the G11.2-0.3 nebula through a declination of

-19.42 from a right ascension of 18h10m to 18h12m with a lower energy threshold of 0.44

TeV (above) and 1 TeV (below). A fit for a single (blue) and double (red) source is shown

in each case.
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Figure 6.5: XMM-Newton X-ray image of the nebula G16.7+0.1 [99].

single source and χ2 = 0.44/18 for a double source, this is also seen in Figure 6.4.

6.2 HESS J1825-137

The other two nebulae under investigation in this chapter are close to a much larger,

better known extended nebula, HESS J1825-137. Discussed in Section 4.2.3, this is

the largest and oldest known pulsar wind nebula in the γ-ray regime and so the two

nebulae under investigation are more distant from the centre of the main source and

from the progenitor pulsar, PSR B1823-13 than is the case for G11.2-0.3. G16.7+0.1

is located southwest of PSR B1823-13 in the outer reaches in its emission, beyond the

area analysed to demonstrate falloff in emission with distance from the progenitor

pulsar as shown in Section 4.2.3 [20].

In contrast G18.5-0.4, otherwise known as the Eel nebula, is located to the north

of HESS J1825-137, closer to its progenitor pulsar. The direction of emission in

the nebula HESS J1825-137 mostly occurs towards the southwest of its progenitor
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Figure 6.6: Radio image of G16.7+0.1 showing the surrounding SNR, 89 GHz data is

shown in contours and 8.6 GHz shown in greyscale, taken from [44].

and so this emission region, although apparently part of the larger nebula, is not

explained by the expected morphology of this source and as such represents the

most promising candidate of the three to be observed as an independent pulsar

wind nebula.

6.2.1 G16.7+0.1

The X-ray source G16.7+0.1 was most recently observed by Helfand et al [99] using

the XMM-Newton satellite (see Figure 6.5). It is one of the faintest synchrotron

nebulae yet detected due to its location at a distance of 10 kpc. As a result of this

the nebula has a small angular extent of only 0.07◦ and it is more distant than the

larger HESS J1825-137 nebula which is at 4.12 kpc.

The progenitor associated with G16.7+0.1 is yet to be observed, but a SNR shell

is seen in the radio regime confirming the identification of the central nebula as a

pulsar wind nebula [44] (see Figure 6.6). The central nebula has a luminosity of 1.1

×1034 ergs/s and spectral index of 1.17 ± 0.29 [99] between 0.1 and 8 keV leading
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Figure 6.7: Showing the significance plot for the area surrounding the nebula

G16.7+0.1 in the TeV γ-ray regime. The important other sources in the field of

view are labelled appropriately and the extent of the on position for this source

is marked with a while circle. It shows position of G16.7+0.1 at the edge of the

emission region from HESS J1825-137.

to a predicted flux of 1.46× 10−13 ergs/s/cm2 above 1 TeV if the magnetic field of

this nebula is assumed to be in equipartition. This is close to the value obtained for

the upper limit for this source of 2.12× 10−13 ergs/s/cm2, but this could be an least

in part due to the presence of emission from the outer reaches of HESS J1825-137.

To look for the nebula G16.7+0.1, archival HESS data for the region surrounding

this nebula was analysed as both a point-like and an extended source, and upper

limits obtained from both of these analyses can be seen in Section 5.3. In order

to see the effect of being at the edge of the nebula, the point-like analysis for this

object is shown in Figure 6.7, a significance of ≈ 3.5 σ is obtained, however, as we

can see most of this looks likely to be the result of emission from the large HESS
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J1825-137 nebula.

By raising the threshold of events included in the analysis, the larger HESS

J1825-137 nebula was shrunk, allowing any higher energy emission resulting from

the smaller, more distant nebula G16.7+0.1 to be seen independent of the larger

source. An analysis of the region surrounding G16.7+0.1 was undertaken with an

energy cut of 1 TeV applied (rising from a threshold of 0.35 TeV in the original

analysis) and is shown in Figure 6.8. No emission is seen from the area of the

G16.7+0.1 nebula at such a threshold, indicating that the observed emission in this

region forms part of the emission from the larger extended source HESS J1825-

137. This is also shown in the cross-section of this nebula through the pulsar at a

declination of -14.34◦ which is seen in Figure 6.9

The predicted flux of an order of magnitude lower than the derived upper limit

for this nebula along with the large background surrounding this source makes it

unlikely to be observed with the current generation of TeV Cherenkov observatories.

However, this prediction was made by assuming the nebula is in equipartition which

as we have seen may not be the case.

6.2.2 The Eel Nebula

The Eel Nebula, also known as G18.5-0.4, is the least well-observed at X-ray wave-

lengths of the three nebulae discussed in this Chapter, the only observations avail-

able being from ASCA [172] and Chandra [169]. In the X-ray regime it is separate

from the nebula produced by PSR B1825-13 which corresponds to the nebula HESS

J1825-137. However, as in the TeV regime this nebula is exceptionally extended, the

X-ray emission in this area of the sky has been associated with the larger complex.

In Chapter 5 no prediction for the flux expected from this source was made as

no spectral measurements from have been made with the current generation of X-

ray telescopes (XMM-Newton and Chandra). However, older ASCA observations

do give a power law spectrum of Γ = 2.17 ± 0.25 with a integrated flux between 2

and 10 keV of (8.27 ± 0.24) ×10−12 ergs/s/cm2; the X-ray image is seen in Figure

6.10 [172]. These values can be used to predict a flux in the TeV γ-ray regime using

the de Jager model [67] of (2.5± 0.5)×10−13ergs/s/cm2 which given the number of
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Figure 6.8: The significance plot for the area surrounding the nebula G16.7+0.1 in the

TeV γ-ray regime when a 1 TeV energy cut is applied. The important other sources in

the field of view are labelled and the extent of the ‘ON’ position for this source is marked

with a white circle. It shows no evidence for emission corresponding to the position of

known X-ray nebula G16.7+0.1.
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Figure 6.9: A cross-section through the G16.7+0.1 nebula at a Galactic longitude of

16.7◦ with a 1 TeV minimum energy cut applied. No emission is seen corresponding

to the G16.7+0.1 nebula, located at 0.1◦ Galactic latitude.

observations available in this region implies that emission from this region is likely

to be observed. The large error present in the prediction is due to an uncertainty in

the distance to this source which is presently unknown, as the progenitor pulsar for

this source has not been determined.

By increasing the energy threshold above which events are included in the anal-

ysis we hope to shrink the size of the nebula as we have done for the other sources

under investigation in this Chapter. In this case we increase the energy threshold to

1 TeV and compare this to the nebula seen when no cut is applied corresponding to

a lower energy threshold of 0.37 TeV. As we can see, when the analysis is done using

all available VHE γ-ray data no gap is seen between HESS J1825-137 and the Eel

Nebula (see Figure 6.11) while when a raised threshold of 1 TeV (see Figure 6.12)

is applied a distinct gap between the nebulae is seen. Thus we show an indepen-

dent nebula in the TeV γ-ray regime corresponding to the X-ray Eel nebula. This

distinction is best shown in the cross-section through a right ascension of 256.54◦ as



6.2. HESS J1825-137 157

Figure 6.10: An ASCA X-ray image showing the area surrounding the Eel nebula. It

shows the Eel (marked ‘Nebula’) and the nebula surrounding PSR B1823-23 as distinct

X-ray nebulae. Black lines show the confidence intervals for the corresponding GeV source

GeV1825-1310 [172].

seen in Figure 6.13, this shows a distinct gap, more than half the size of the adjacent

Eel nebula between it and the larger HESS J1825-137.

In order to determine if the cross-section obtained from the Eel nebula could

be best described as a single or double source the Eel Nebula was fit by both a

second and fourth order polynomial. These were made using a least squares fit with

statistical errors on binned points, the analysis is shown in Figure 6.14. The χ2 of

these polynomial fits were calculated and a χ2 = 38/14 was obtained for a single

source while χ2 = 17/12 was calculated for a double source, hence the source is

much better described as two sources when seen at energies greater than 1 TeV.

The source has a peak significance of 6.3 σ for its emission above 1TeV. However,
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Figure 6.11: A skymap centred on the Eel Nebula with no lower energy cut applied.
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as many analysis thresholds were applied to this source and the distinction between

it and the larger adjacent nebula could only be seen when a 1 TeV energy threshold

was applied a trials factor must be taken into account. This was calculated by using

the 4 trials (one where no additional cut was applied and trails with cuts of 700 GeV,

1 TeV and 5 TeV) that were used to investigate the seperation of these nebulae. A

seperation between the Eel and the adjacent nebulae was only seen when a 1 TeV

energy cut was applied. An adjustment of the significance observed was made based

on one successful trial out of a total of four, no other factors were taken into account

in the calculation of this trials factor. After this adjustment a 5.9 σ significance is

seen, comfortably confirming its presence as an independent source in TeV γ-rays.

It has a flux above 1 TeV of (3.9 ± 0.5) photons/cm2/s.

A spectrum was then obtained from the observed nebula and shows a power law

typical of a pulsar wind nebula with a spectral index of -2.33±0.2. This is somewhat

higher than is seen in most pulsar wind nebula, close to the spectral index seen in the

Crab nebula of -2.4. The spectrum is shown in Figure 6.15 and includes only data

above 1 TeV as below this value the nebula from which these photons are derived

cannot be determined due to the extension of HESS J1825-137 at low energies. Using

the de Jager model detailed in Chapter 5 and the flux at 1 TeV of this source along

with known X-ray data [172] it is possible to calculated the magnetic field strength

of 20-30 µG for this source, typical of nebulae of this type. The uncertainty in this

measurement is due to an uncertainty in the spectral index of this nebula in X-rays

which is not determined in the ASCA observation used [172].

6.3 Untangling Adjacent Pulsar Wind Nebulae

In this Chapter we have attempted to disentangle pulsar wind nebulae from their

larger more prominent neighbours and demonstrate that in some cases emission

is coming from more than one source. This was attempted for three nebulae but

of these, only one (the Eel nebula) was found to show distinct emission from its

neighbouring source (HESS J1825-137). The Eel has a significance of 5.9 σ and a

flux above 1 TeV of (3.9 ± 0.5) ×10−13 photons/cm2/s.
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This source was established as a source independent of the nebula adjacent to it

by increasing the analysis threshold. This technique could be used on other extended

nebulae to determine if they can be split into separate components and indeed will

be recommended to the HESS collaboration for this purpose.
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Figure 6.12: A skymap centered on the Eel Nebula with a 1 TeV lower energy cut applied.
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Figure 6.13: A cross-section applied through the Eel Nebula at a right ascension of 256.54◦

when a 1 TeV cut is applied to the data. In addition to the labelled peaks corresponding

the Eel, HESS J1825-137 and LS 5039 there are peaks which show a similar number of

counts to the Eel peak at approximately -12◦ and -11◦ which do not correspond to any

known source. Although a similar count is seen at these points they correspond to an

areas of observation with much less data than the area around the Eel peak, as a result

there is a much higher error at these points and their significances are consistent with 0.
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Figure 6.14: The cross-section applied through the Eel Nebula at a right ascension of

256.54◦ from a declination of -14 ◦ to -12.5 ◦ when a 1 TeV lower energy threshold is

applied to the data. A fit for a single (blue) and double (red) source is shown.
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Figure 6.15: Showing the spectrum of the Eel nebula.



Chapter 7

Conclusions and Prospects for the

Future

In this thesis I have discussed the pulsar wind nebulae of which TeV γ-ray observa-

tions have been made in order to attempt to find some new sources in this regime.

This has been complemented by discussion of the theoretical background necessary

to understand these observations. I have also tried to draw together all that is

known about detected PWN and compare it to theoretical predictions concerning

their development. In this Chapter I will summarise the theoretical and observa-

tional material presented throughout the thesis and comment on the conclusions

that can be drawn from this. Additionally, we investigate the prospects for observ-

ing pulsar wind nebulae with the next generation Cherenkov instrument, CTA (The

Cherenkov telescope array).

7.1 Pulsar Wind Nebulae in the TeV regime

As discussed in Chapter 2, pulsar wind nebulae are formed by the interaction of the

relativistic electrons which are streaming out from the magnetic poles of a pulsar

with the surrounding medium of a supernova remnant. The nebulae emit in all en-

ergy regimes from the radio to VHE γ-rays, but are largest in the VHE γ-ray regime;

this is due to the nature of the emission observed in this regime. In most wavelengths

the emission seen in pulsar wind nebulae is caused by synchrotron emission, while

165
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in the VHE γ-ray regime the emission is the product of the inverse Compton pro-

cess. These processes, along with the other methods by which non-thermal radiation

can be produced were discussed in Section 1.3. Chapter 2 discussed the theoretical

background of the expansion of pulsar wind nebulae into the ambient supernova

remnant medium along with discussion of the nature of the development of pulsar

wind nebula emission. This led on to Chapter 4 where a discussion of all known

γ-ray pulsar wind nebulae was presented.

7.1.1 The Development of TeV Pulsar Wind Nebulae

The discussion of all known pulsar wind nebulae presented in Chapter 4 allowed

a population study of the development of pulsar wind nebulae which have been

observed at VHE γ-ray energies to be undertaken. This was however, somewhat

limited by the number of sources that have been observed; only 23 are known and

thus used in this study. These observations do however allow us to show the basic

development of many properties of γ-ray pulsar wind nebulae.

The study of the development of the properties of focused on three observational

properties of TeV pulsar wind nebula. The first to be investigated was the spectra

of these objects. As inverse Compton emission and synchrotron emission are both

dependent on the underlying electron spectrum, a relationship between the spectra

seen from both of these processes is expected. To test this, I investigated the rela-

tionship between the X-ray spectrum between 0.5 and 8 keV and the γ-ray spectrum

above 1 TeV. However, due to the errors associated with the measurement of these

spectra in the published observations no relationship between the spectra observed

in X-ray and the γ-ray could be observed or refuted. A study of the development of

spectra in comparison with the characteristic age of the progenitor pulsar was also

undertaken and it was found that the spectra of these objects does not vary with

time in either the X-ray or the TeV γ-ray regime. This is interesting as it tells us

that most of the emission observed in a TeV pulsar wind nebula is probably emitted

from the central portion of the nebula adjacent to its progenitor pulsar, where the

spectrum of the nebula is expected to remain constant.

Another important property of the VHE γ-ray pulsar wind nebulae that was
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investigated in Chapter 4 was the development of the size of these nebulae. While the

expansion of pulsar wind nebulae into their surrounding medium is fairly complex

due to density variations in the medium into which the expansion occurs, it is

interesting to note the general development of the nebulae by studying the change

in their size when compared to the characteristic age of these sources. This was done

using both the X-ray and γ-ray extent of the sources and it was shown that the size

of the nebulae in X-rays became smaller with age while in γ-rays they increase

with age. This is due to the nature of the underlying electron population which

produces the emission in each waveband. The emission seen in the X-ray regime is

the product of the highest energy electrons present in the nebula which produces

the highest energy synchrotron photons. These electrons cool rapidly and so are not

seen at large distances from the progenitor pulsar, which results in smaller nebulae

as the pulsar output diminishes with age. In contrast older, cooled electrons are

responsible for the emission observed in the VHE γ-ray regime and so these are seen

much further from the progenitor pulsar. In older nebulae they have had more time

to travel from the pulsar and so a larger nebula is observed.

The nature of the underlying electron population visible is also a factor in the

final property of pulsar wind nebulae that was investigated in this study, the lu-

minosity of the sources observed. In this case no link was seen between the age of

the pulsar wind nebulae (again defined by their progenitors’ characteristic age) and

the luminosity of pulsar wind nebulae in the TeV γ-ray regime due to a large large

number of factors which affect the emission as discussed in Section 4.4.3. In contrast

a decay is seen in the luminosity of these nebulae in the X-ray regime due to the

diminishing output of the progenitor pulsar. This agrees with the decline in pulsar

output expected.

The forthcoming next generation Cherenkov telescope, CTA should allow many

more pulsar wind nebulae to be discovered and as such will allow a more accurate

population study to be conducted. It will also reduce the influence of selection

effects on the study.
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7.1.2 The Search for New TeV Pulsar Wind Nebulae asso-

ciated with known X-ray Pulsar Wind Nebulae

Chapter 5 focused on an attempt to find the counterpart sources to known X-ray

pulsar wind nebulae. This was conducted using archival HESS data from campaigns

focusing on neighbouring known targets as well as from the HESS Galactic Plane

survey [23]. Point-like and extended analysis was undertaken on all known X-ray

pulsar wind nebulae for which archival HESS data were available and compared to

predicted values calculated using the method presented by de Jager [67]. While

none of the observations indicated a distinct nebula unequivocally associated with

an X-ray source, a number did have upper limits close to predicted fluxes estimated

and so a longer observation time may result in the positive detection of these sources

in the TeV regime. They may also be good targets for observation with the next

generation of Cherenkov telescopes.

In addition to calculating the upper limits for these sources in the TeV regime,

the data obtained were used to investigate the magnetic fields of the pulsar wind

nebulae studied. Where X-ray data and γ-ray upper limits were available, lower

limits to the magnetic field strength could be obtained and compared to the field

strength calculated by other means in the relevant published works. None of the

previously published magnetic field predictions were excluded by this analysis.

A number of the sources were however highly significant; these were associated

with the edges of neighbouring larger nebulae. An attempt to determine if the

emission seen in these areas was associated with the nebula under investigation or

the larger adjacent nebula was made in Chapter 6.

7.1.3 The Disambiguation of Pulsar Wind Nebulae

During the search for γ-ray emission from X-ray selected pulsar wind nebulae three

targets were identified as having significance indicative of a detection due to their

proximity to a larger extended pulsar wind nebula. In order to reduce the size

of the larger companion nebulae to see only the young, highly energetic component

immediately surrounding the progenitor pulsars, the energy threshold of the analysis
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in each case was increased.

No emission was seen from two of the sources under investigation G11.2-0.3 and

G16.7+0.1 independent of the larger sources with which they overlap. The third

source, the Eel nebula, was observed as was a spectrum and morphology for this

source above 1 TeV. It has a significance of 5.9 σ, a flux above 1 TeV of (3.9 ±

0.5) ×10−13 photons/cm2/s and a spectral index of (-2.33 ± 0.2). This allowed the

magnetic field strength for this object to be calculated as 20-30 µG. Further X-

ray observations of this source may allow the magnetic field to be more accurately

measured.

7.2 Future observations of Pulsar Wind Nebulae

in the TeV

The work to build the next generation Cherenkov observatory, the Cherenkov Tele-

scope Array (CTA) is underway. The increased sensitivity (a factor of 10), angular

resolution (≈ 0.1 arcmin) and several orders of magnitude (≈ 10 GeV - 100 TeV)

increase in observable energies compared to current instruments make the forthcom-

ing CTA project an exciting prospect for future observations with detections of ≈

1000 sources expected.

Twenty three pulsar wind nebulae have been observed with the current gener-

ation of Cherenkov telescopes, representing approximately a quarter of the known

sources visible in the TeV γ-ray regime. In addition to this, many as yet unidentified

dark sources may represent relic PWN and several of the binary systems observed

are thought to have a pulsar wind nebula component to their emission, as in the

case of LS 5039 [18]. As a consequence of this pulsar wind nebulae should provide

a number of interesting CTA sources.

In young plerions such as G21.5-0.9 [50] where the SNR and PWN are still co-

located, the angular resolution, which may be up to an order of magnitude better

than HESS, will allow us to resolve these very high energy γ-ray objects for the first

time and hence prove which part of the complex is responsible for the emission.

In older PWN, such as HESS J1825-137 [20], which have been the subject of
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reverse shock crushing, the investigation of older electron populations could prove

even more interesting. CTA observations could detect electron energy dependence

as a function of distance from the progenitor pulsar. This would allow the point

of inverse shock to be determined, giving a deeper insight into this process. No

conclusive observations of these exist with the current generation of Cherenkov in-

struments, but they are thought to be produced when a PWN created by a fast

moving progenitor pulsar is subject to inverse shock crushing [66].

The increased energy range of CTA would also be invaluable in the understanding

of the inverse Compton emission mechanism which is thought to dominate pulsar

wind nebulae. The broad energy range of CTA will allow the turnover point of

many nebulae to be observed. So far this has only been observed in the nebulae

Vela X [22] and the Crab [17]. This will allow the electron spectrum to be probed

accurately while multiwavelength comparison with synchrotron turnover will allow

accurate determination of the magnetic field and the underlying electron energy

spectrum. Comparison between magnetic fields of different ages of nebulae will

allow the evolution of these fields to be accurately studied.

The factor of 10 increase to sensitivity of the new array of telescopes will allow

a much greater number of pulsar wind nebulae to be observed. A typical source of

VHE γ-rays observed with HESS has a flux above 1 TeV in the order of ≈ 10−13

ergs/s/cm2 and so the more sensitive CTA observatory should be able to see pulsar

wind nebulae with fluxes predicted to occur in the ≈ 10−14 ergs/s/cm2 range. Of the

sources under investigation in Chapter 5, 3-5 sources would thus be visible within 30

hours of observation. A sensitivity curve showing the improvement is seen in Figure

7.1.

This includes sources such as G11.2-0.3 and G16.7+0.1 which were discussed in

Chapter 5, the observation of which will also benefit from the increased angular res-

olution of the improved system because it will allow us to determine more accurately

the origin of observed γ-rays in order to identify if they are indeed produced by the

larger obscuring nebula near these sources or by these sources themselves. Addition-

ally, sources such as G39.2-0.3 should be visible as it has the highest significance of

the sources for which upper limits were calculated in Chapter 5 and is predicted to
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Figure 7.1: The projected sensitvity for a possible configuration of telescopes for CTA

after 0.5 hours, 5 hours and 50 hours of observations [60]. For 50 hours of observation two

differing analysis methods are shown (red and blue lines). HESS sensitivity after 50 hours

is roughly equivalent to 0.5 hours of CTA observations.

have a flux of 2.99×10−14ergs/s/cm2 if its magnetic field is in equipartition. Some of

the sources investigated may be visible depending on their magnetic field strength;

an example of this is MSH 11-62 which will be visible if it is in equipartition but

probably will not be observed if the higher magnetic field predicted of 70.0 µG [98] is

present. However, as we have seen in Chapter 5 the equipartition derived estimates

are not particularly reliable and so it is more likely that nebulae such as MSH 11-62

will not be visible. This demonstrates the need to look at more than one wavelength

in order to truly understand the nature of the emission observed in this source.
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7.3 Conclusion

The aim of this Thesis was to study the development of pulsar wind nebulae in

the TeV regime and in so doing to uncover more sources which have as yet not

been observed at these wavelengths. It was found that the extent of a pulsar wind

nebula in the TeV γ-ray increased with its age as expected while no developmental

relationship was seen concerning the luminosity or spectral index of the nebulae when

observed in the TeV γ-ray regime, largely due to uncertainties in the measurments

available.

TeV γ-ray upper limits were calculated for several nebulae previously observed

in the X-ray regime using the Chandra satellite. This allowed the strength of their

magnetic fields to be constrained but only one new source, which was confused with

its companion was made, the Eel nebula.

Predictions of the fluxes of many of these sources were made from observations

of their emission in X-rays and some of these sources should be uncovered with the

next generation Cherenkov instrument, CTA.
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jahr, O. Bolz, T. Coarasa, J. L. Contreras, J. Cortina, S. Denninghoff, M. V.

Fonseca, M. Girma, N. Götting, G. Heinzelmann, G. Hermann, A. Heusler,

W. Hofmann, D. Horns, I. Jung, R. Kankanyan, M. Kestel, A. Kohnle,

A. Konopelko, D. Kranich, H. Lampeitl, M. Lopez, E. Lorenz, F. Lucarelli,

O. Mang, D. Mazin, H. Meyer, R. Mirzoyan, A. Moralejo, E. Oña-Wilhelmi,

M. Panter, A. Plyasheshnikov, G. Pühlhofer, R. de los Reyes, W. Rhode,
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[99] D. J. Helfand, M. A. Agüeros, and E. V. Gotthelf. An X-Ray Image of

the Composite Supernova Remnant SNR G16.7+0.1. Astrophysical Journal,

592:941, August 2003.

[100] D. J. Helfand, B. F. Collins, and E. V. Gotthelf. Chandra X-Ray Imaging

Spectroscopy of the Young Supernova Remnant Kesteven 75. Astrophysical

Journal, 582:783, January 2003.

[101] D. J. Helfand, E. V. Gotthelf, J. P. Halpern, F. Camilo, D. R. Semler, R. H.

Becker, and R. L. White. Discovery of the Putative Pulsar and Wind Nebula

Associated with the TeV Gamma-Ray Source HESS J1813-178. Astrophysical

Journal, 665:1297, August 2007.

[102] V. F. Hess. Beobacktungen der durchdringenden Strahlung bei sieben Freibal-

lonfahrten. Phys. Zeits., 12:998, 1911.

[103] J. W. T. Hessels, M. S. E. Roberts, S. M. Ransom, V. M. Kaspi, R. W.

Romani, C.-Y. Ng, P. C. C. Freire, and B. M. Gaensler. Observations of PSR

J2021+3651 and its X-Ray Pulsar Wind Nebula G75.2+0.1. Astrophysical

Journal, 612:389, September 2004.

[104] J. J. Hester. The Crab Nebula: An Astrophysical Chimera. Annual Reviews

of Astronomy and Astrophysics, 46:127, September 2008.



Bibliography 185

[105] J.J. Hester. apod.nasa.gov/apod/ap080217.html.

[106] J.J. Hester. apod.nasa.gov/apod/ap050326.html.

[107] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins.

Observation of a Rapidly Pulsating Radio Source. Nature, 217:709, February

1968.

[108] A. M. Hillas. Cerenkov light images of EAS produced by primary gamma.

In F. C. Jones, editor, International Cosmic Ray Conference, volume 3 of

International Cosmic Ray Conference, page 445, August 1985.

[109] A. M. Hillas. Cosmic Rays: Recent Progress and some Current Questions.

ArXiv Astrophysics e-prints, July 2006.

[110] J. Hinton. Gamma-ray Astronomy. ArXiv e-prints, December 2007.

[111] J. A. Hinton, S. Funk, S. Carrigan, Y. A. Gallant, O. C. de Jager, K. Kosack,
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[175] W. Röntgen. On A New Kind Of X-Rays. Nature, 53:274, 1896.



Bibliography 193

[176] A. H. Rots, K. Jahoda, and A. G. Lyne. Absolute Timing of the Crab Pul-

sar with the Rossi X-Ray Timing Explorer. Astrophysical Jounal Letters,

605:L129, April 2004.

[177] S. Safi-Harb and H. S. Kumar. Using Chandra to Unveil the High-Energy

Properties of the High Magnetic Field Radio Pulsar J1119-6127. Astrophysical

Journal, 684:532, September 2008.

[178] F. D. Seward, P. Gorenstein, and R. K. Smith. Chandra Observations of the

X-Ray Halo around the Crab Nebula. Astrophysical Journal, 636:873–880,

January 2006.

[179] F. D. Seward and F. R. Harnden, Jr. A new, fast X-ray pulsar in the supernova

remnant MSH 15-52. Astrophysical Jounal Letters, 256:L45, May 1982.

[180] L. Sidoli, S. Mereghetti, G. L. Israel, and F. Bocchino. X-ray emission from

the galactic center region supernova remnant G0.9+0.1. Astronomy and As-

trophysics, 361:719, September 2000.

[181] D. A. Smith, E. Brion, R. Britto, P. Bruel, J. Bussons Gordo, D. Dumora,

E. Durand, P. Eschstruth, P. Espigat, J. Holder, A. Jacholkowska, J. Lavalle,

R. Le Gallou, B. Lott, H. Manseri, F. Münz, E. Nuss, F. Piron, R. C. Rannot,

T. Reposeur, and T. Sako. Mrk 421, Mrk 501, and 1ES 1426+428 at 100

GeV with the CELESTE Cherenkov telescope. Astronomy and Astrophysics,

459:453, November 2006.

[182] F. G. Smith. Pulsars. Moskva. 1979.

[183] G. Spandre and the GLAST Collaboration. The γ-ray large-area space tele-

scope: An astro-particle mission to explore the high-energy γ-ray sky. Nuclear

Instruments and Methods in Physics Research A, 572:500, March 2007.

[184] F. W. Stecker, O. C. de Jager, and M. H. Salamon. TeV gamma rays from

3C 279 - A possible probe of origin and intergalactic infrared radiation fields.

Astrophysical Jounal Letters, 390:L49, May 1992.



Bibliography 194

[185] F. R. Stephenson and D. A. Green. Historical Supernovae. In M. Turatto,

S. Benetti, L. Zampieri, & W. Shea, editor, 1604-2004: Supernovae as Cos-

mological Lighthouses, volume 342 of Astronomical Society of the Pacific Con-

ference Series, page 63, December 2005.

[186] T. Tanimori, K. Sakurazawa, S. A. Dazeley, P. G. Edwards, T. Hara,

Y. Hayami, S. Kamei, T. Kifune, T. Konishi, Y. Matsubara, T. Matsuoka,

Y. Mizumoto, A. Masaike, M. Mori, H. Muraishi, Y. Muraki, T. Naito, S. Oda,

S. Ogio, T. Osaki, J. R. Patterson, M. D. Roberts, G. P. Rowell, A. Suzuki,

R. Suzuki, T. Sako, T. Tamura, G. J. Thornton, R. Susukita, S. Yanagita,

T. Yoshida, and T. Yoshikoshi. Detection of Gamma Rays of up to 50 TeV

from the Crab Nebula. Astrophysical Jounal Letters, 492:L33, January 1998.

[187] R. Terrier, A. Djannati-Atai, S. Hoppe, V. Marandon, M. Renaud, and O. de

Jager. H.E.S.S. Observations of the Young Composite SNR Kes 75. In

F. A. Aharonian, W. Hofmann, & F. Rieger, editor, American Institute of

Physics Conference Series, volume 1085 of American Institute of Physics Con-

ference Series, page 316, December 2008.

[188] A. Van Etten and R. W. Romani. The Extended X-ray Nebula of PSR J1420-

6048. Astrophysical Journal, 711:1168, March 2010.

[189] VERITAS Collaboration. A connection between star formation activity and

cosmic rays in the starburst galaxy M82. Nature, 462:770, December 2009.

[190] P. Villard. Contribution a‘ létude du rayonnement du radium. Séances de la
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Appendix A

Analysis Dataset Details

This appendix contains the details of the data used in the observations in Chapter

4, Chapter 5 and Chapter 6. In each case the run number of the observation is given

along with the time (UTC), date and position of each run is given along with its

idenifying run number. All of the data used in this Thesis was taken using all four

HESS telescopes.

A.1 The Crab Nebula

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

23037 The Crab 83.6 22.0 0.5 13.10.2004 1567

23062 The Crab 83.6 22.0 0.5 14.10.2004 1682

23063 The Crab 83.6 22.0 0.5 14.10.2004 1686

23080 The Crab 83.6 22.0 0.5 15.10.2004 1686

23081 The Crab 83.6 22.0 0.5 15.10.2004 1686

23114 The Crab 83.6 22.0 0.5 16.10.2004 1685

23117 The Crab 83.6 22.0 0.5 16.10.2004 1686

23134 The Crab 83.6 22.0 0.5 17.10.2004 1687

23155 The Crab 83.6 22.0 0.5 21.10.2004 1687

23156 The Crab 83.6 22.0 0.5 21.10.2004 1572

196



A.1. The Crab Nebula 197

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

23304 The Crab 83.6 22.0 0.5 20.11.2004 1613

23309 The Crab 83.6 22.0 0.5 20.11.2004 1686

23310 The Crab 83.6 22.0 0.5 20.11.2004 1686

23526 The Crab 83.6 22.0 0.5 04.12.2004 1687

23544 The Crab 83.6 22.0 0.5 05.12.2004 1686

23545 The Crab 83.6 22.0 0.5 05.12.2004 1687

23546 The Crab 83.6 22.0 0.5 05.12.2004 947

23547 The Crab 83.6 22.0 0.5 05.12.2004 950

23555 The Crab 83.6 22.0 0.0 06.12.2004 1686

23556 The Crab 83.6 22.0 0.5 06.12.2004 1686

23576 The Crab 83.6 22.0 0.0 07.12.2004 1686

23577 The Crab 83.6 22.0 0.5 07.12.2004 1687

23579 The Crab 83.6 22.0 0.5 07.12.2004 972

23580 The Crab 83.6 22.0 0.0 07.12.2004 837

23593 The Crab 83.6 22.0 0.5 08.12.2004 1687

23595 The Crab 83.6 22.0 0.5 08.12.2004 1687

23600 The Crab 83.6 22.0 0.5 09.12.2004 1686

23601 The Crab 83.6 22.0 0.5 09.12.2004 1686

23608 The Crab 83.6 22.0 0.5 10.12.2004 1686

23611 The Crab 83.6 22.0 0.5 10.12.2004 1686

23612 The Crab 83.6 22.0 0.5 10.12.2004 1687

23642 The Crab 83.6 22.0 0.5 13.12.2004 1686

23662 The Crab 83.6 22.0 0.5 15.12.2004 1686

23738 The Crab 83.6 22.0 0.5 03.01.2005 1679

23739 The Crab 83.6 22.0 0.5 03.01.2005 1686

23740 The Crab 83.6 22.0 0.5 03.01.2005 1686

23741 The Crab 83.6 22.0 0.5 03.01.2005 1686

23753 The Crab 83.6 22.0 0.5 04.01.2005 1686



A.1. The Crab Nebula 198

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

23754 The Crab 83.6 22.0 0.5 04.01.2005 1686

23755 The Crab 83.6 22.0 0.5 04.01.2005 1687

23756 The Crab 83.6 22.0 0.5 04.01.2005 1687

23937 The Crab 83.6 22.0 0.5 29.01.2005 1645

23939 The Crab 83.6 22.0 0.5 29.01.2005 1688

23968 The Crab 83.6 22.0 0.5 30.01.2005 1688

23969 The Crab 83.6 22.0 0.5 30.01.2005 1553

23978 The Crab 83.6 22.0 0.0 31.01.2005 611

23981 The Crab 83.6 22.0 0.5 31.01.2005 1691

24116 The Crab 83.6 22.0 0.5 10.02.2005 1688

24138 The Crab 83.6 22.0 0.5 11.02.2005 907

24139 The Crab 83.6 22.0 0.5 11.02.2005 1688

24411 The Crab 83.6 22.0 0.5 04.03.2005 1687

24412 The Crab 83.6 22.0 0.5 04.03.2005 1687

29873 The Crab 83.6 22.0 0.5 07.12.2005 1690

29874 The Crab 83.6 22.0 0.5 07.12.2005 1694

30013 The Crab 83.6 22.0 0.5 28.12.2005 1690

30014 The Crab 83.6 22.0 0.5 28.12.2005 1690

30141 The Crab 83.6 22.0 0.5 23.01.2006 109

35941 The Crab 83.6 22.0 0.7 13.11.2006 1688

35956 The Crab 83.6 22.0 0.7 14.11.2006 1689

35957 The Crab 83.6 22.0 0.7 14.11.2006 1689

35992 The Crab 83.6 22.0 0.7 16.11.2006 1688

36012 The Crab 83.6 22.0 0.7 17.11.2006 1689

36013 The Crab 83.6 22.0 0.7 17.11.2006 1689

36066 The Crab 83.6 22.0 0.7 20.11.2006 1689

36174 The Crab 83.6 22.0 0.7 24.11.2006 1688

36361 The Crab 83.6 22.0 0.7 12.12.2006 1688



A.1. The Crab Nebula 199

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

36380 The Crab 83.6 22.0 0.7 14.12.2006 1688

41647 The Crab 83.6 22.0 0.5 11.09.2007 1289

41648 The Crab 83.6 22.0 0.5 11.09.2007 959

41678 The Crab 83.6 22.0 0.5 12.09.2007 1309

41712 The Crab 83.6 22.0 0.5 13.09.2007 1689

41713 The Crab 83.6 22.0 0.5 13.09.2007 1160

41753 The Crab 83.6 22.0 0.5 14.09.2007 1687

41808 The Crab 83.6 22.0 0.5 15.09.2007 1688

42317 The Crab 83.6 22.0 0.5 11.10.2007 1208

42342 The Crab 83.6 22.0 0.5 12.10.2007 911

42364 The Crab 83.6 22.0 0.5 13.10.2007 1689

42365 The Crab 83.6 22.0 0.5 13.10.2007 1688

42383 The Crab 83.6 22.0 0.5 14.10.2007 1688

42415 The Crab 83.6 22.0 0.5 15.10.2007 1688

42556 The Crab 83.6 22.0 0.5 21.10.2007 1690

42557 The Crab 83.6 22.0 0.5 21.10.2007 733

43038 The Crab 83.6 22.0 0.5 19.11.2007 1688

43039 The Crab 83.6 22.0 0.5 19.11.2007 1688

43424 The Crab 83.6 22.0 0.5 07.12.2007 1689

43447 The Crab 83.6 22.0 0.5 08.12.2007 1687

43471 The Crab 83.6 22.0 0.5 09.12.2007 1687

43472 The Crab 83.6 22.0 0.5 09.12.2007 1688

43489 The Crab 83.6 22.0 0.5 10.12.2007 1689

43490 The Crab 83.6 22.0 0.5 10.12.2007 1688

48399 The Crab 83.6 22.0 0.5 25.09.2008 655

48476 The Crab 83.6 22.0 0.5 28.09.2008 1687

48525 The Crab 83.6 22.0 0.5 30.09.2008 1445

48552 The Crab 83.6 22.0 0.5 01.10.2008 1009



A.1. The Crab Nebula 200

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

48570 The Crab 83.6 22.0 0.5 02.10.2008 1507

48602 The Crab 83.6 22.0 0.5 04.10.2008 1688

48630 The Crab 83.6 22.0 0.5 06.10.2008 1688

48646 The Crab 83.6 22.0 0.5 07.10.2008 1687

48647 The Crab 83.6 22.0 0.5 07.10.2008 1217

48682 The Crab 83.6 22.0 0.5 08.10.2008 1688

48683 The Crab 83.6 22.0 0.5 08.10.2008 1109

48717 The Crab 83.6 22.0 0.5 09.10.2008 1688

48734 The Crab 83.6 22.0 0.5 10.10.2008 1688

48750 The Crab 83.6 22.0 0.5 11.10.2008 1402

54354 The Crab 83.6 22.0 0.5 26.10.2009 1693

54390 The Crab 83.6 22.0 0.5 28.10.2009 1689

54391 The Crab 83.6 22.0 0.5 28.10.2009 1689

54392 The Crab 83.6 22.0 0.5 28.10.2009 1628

54404 The Crab 83.6 22.0 0.5 29.10.2009 1688

54566 The Crab 83.6 22.0 0.5 11.11.2009 1688

54588 The Crab 83.6 22.0 0.5 12.11.2009 1688

54589 The Crab 83.6 22.0 0.5 12.11.2009 1689

54603 The Crab 83.6 22.0 0.5 13.11.2009 1688

54604 The Crab 83.6 22.0 0.5 13.11.2009 1689

54623 The Crab 83.6 22.0 0.5 14.11.2009 1688

54624 The Crab 83.6 22.0 0.5 14.11.2009 1692

54653 The Crab 83.6 22.0 0.5 15.11.2009 1691

54706 The Crab 83.6 22.0 0.5 18.11.2009 1688

54707 The Crab 83.6 22.0 0.5 18.11.2009 1690

54734 The Crab 83.6 22.0 0.5 19.11.2009 1688

54735 The Crab 83.6 22.0 0.5 19.11.2009 1689

54748 The Crab 83.6 22.0 0.5 20.11.2009 1688



A.2. G180.0-1.7 201

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

54749 The Crab 83.6 22.0 0.5 20.11.2009 1688

54771 The Crab 83.6 22.0 0.5 21.11.2009 1691

54772 The Crab 83.6 22.0 0.5 21.11.2009 1688

54789 The Crab 83.6 22.0 0.5 22.11.2009 1689

54809 The Crab 83.6 22.0 0.5 23.11.2009 1689

A.2 G180.0-1.7

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

35518 PSR J0538+2817 83.8 28.3 0.7 22.10.2006 1689

35519 PSR J0538+2817 85.4 28.3 0.7 22.10.2006 1688

35520 PSR J0538+2817 84.6 28.9 0.7 22.10.2006 1189

35521 PSR J0538+2817 83.8 28.3 0.7 22.10.2006 1359

36334 PSR J0538+2817 84.6 27.6 0.7 10.12.2006 1155

36347 PSR J0538+2817 84.6 29.0 0.7 11.12.2006 1368

36363 PSR J0538+2817 85.4 28.3 0.7 12.12.2006 1687

36364 PSR J0538+2817 84.6 27.6 0.7 12.12.2006 1688

36396 PSR J0538+2817 84.6 27.6 0.7 15.12.2006 1688



A.3. Geminga 202

A.3 Geminga

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

36046 Geminga 98.5 17.8 0.7 19.11.2006 1689

36136 Geminga 98.5 17.8 0.7 23.11.2006 1688

36140 Geminga 98.5 17.8 0.7 23.11.2006 1689

36177 Geminga 98.5 17.8 0.7 24.11.2006 1688

36178 Geminga 98.5 17.8 0.7 24.11.2006 622

36181 Geminga 98.5 17.8 0.7 24.11.2006 1689

36182 Geminga 98.5 17.8 0.7 24.11.2006 1600

36190 Geminga 98.5 17.8 0.7 25.11.2006 807

36191 Geminga 98.5 17.8 0.7 25.11.2006 1688

36192 Geminga 98.5 17.8 0.7 25.11.2006 1688

36193 Geminga 98.5 17.8 0.7 25.11.2006 2168

36215 Geminga 98.5 17.8 0.7 28.11.2006 1688

43658 Geminga 98.5 17.8 1.0 02.01.2008 1687

43766 Geminga 98.5 17.8 1.0 06.01.2008 1688

43809 Geminga 98.5 17.8 1.0 07.01.2008 1487

43810 Geminga 98.5 17.8 1.0 07.01.2008 1689

43830 Geminga 98.5 17.8 1.0 09.01.2008 1688

43831 Geminga 98.5 17.8 1.0 09.01.2008 1487

43858 Geminga 98.5 17.8 1.0 10.01.2008 1688

43883 Geminga 98.5 17.8 1.0 11.01.2008 1689

43884 Geminga 98.5 17.8 1.0 11.01.2008 1687

43958 Geminga 98.5 17.8 1.0 13.01.2008 1687

43998 Geminga 98.5 17.8 1.0 14.01.2008 1688



A.4. G287.4+0.6 203

A.4 G287.4+0.6

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20105 Eta Carinae 161.3 -59.7 0.5 24.03.2004 1683

20106 Eta Carinae 161.3 -59.7 0.5 24.03.2004 602

20107 Eta Carinae 161.3 -59.7 1.4 24.03.2004 1683

20108 Eta Carinae 161.3 -59.7 0.5 24.03.2004 1682

30531 WR 20 A 156.0 -57.8 2.7 03.03.2006 1964

30555 WR 20 A 156.0 -57.8 2.7 03.03.2006 1691

31044 G290.4+0.2 167.0 -60.1 2.9 04.04.2006 1689

31660 G284.8+0.2 157.4 -57.6 2.7 02.05.2006 1689

32314 PSR J1048-5832 160.7 -58.5 0.7 23.05.2006 1687

32319 PSR J1048-5832 162.0 -57.8 1.0 23.05.2006 1691

32320 PSR J1048-5832 162.0 -59.2 0.4 23.05.2006 1689

32340 PSR J1048-5832 163.4 -58.5 0.8 24.05.2006 1689

32344 PSR J1048-5832 160.7 -58.5 0.8 24.05.2006 1684

32348 PSR J1048-5832 162.1 -57.8 1.0 24.05.2006 1689

32366 WR 20 A 156.0 -57.8 2.7 25.05.2006 1689

32450 WR 20 A 156.0 -57.8 2.7 28.05.2006 1689

32483 WR 20 A 156.0 -57.8 2.7 29.05.2006 1688

32890 WR 20 A 156.0 -57.8 2.7 16.06.2006 1689

44747 G290.3+0.4 167.0 -59.9 2.8 04.06.2008 1689

45121 G284.7+0.2 157.2 -57.5 2.8 27.04.2008 1464

45122 G284.7+0.2 157.2 -57.5 2.8 27.04.2008 1687

45282 G284.7+0.2 157.2 -57.5 2.8 04.05.2008 1688

45283 G284.7+0.2 157.2 -57.5 2.8 04.05.2008 1687

45713 G290.3+0.4 167.0 -59.9 2.8 28.05.2008 1688

45740 G290.3+0.4 167.0 -59.9 2.8 30.05.2008 1688

45882 G290.3+0.4 167.0 -59.9 2.8 04.06.2008 1688

50164 Eta Carinae 161.3 -59.7 0.6 01.02.2009 1688

50175 Eta Carinae 161.3 -59.7 1.2 04.02.2009 1687



A.4. G287.4+0.6 204

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

50177 Eta Carinae 161.3 -59.7 0.6 04.02.2009 787

50180 Eta Carinae 161.3 -59.7 1.2 04.02.2009 633

50181 Eta Carinae 161.3 -59.7 0.6 04.02.2009 633

50192 Eta Carinae 161.3 -59.7 0.6 06.02.2009 460

55598 Eta Carinae 161.3 -59.7 1.2 19.01.2010 1689

55600 Eta Carinae 161.3 -58.5 0.5 19.01.2010 1513

55885 Eta Carinae 161.3 -59.7 0.6 09.02.2010 1689

55887 Eta Carinae 161.3 -59.7 1.2 09.02.2010 1688

55901 Eta Carinae 161.3 -59.7 0.6 10.02.2010 1688

55917 Eta Carinae 161.3 -59.7 1.2 11.02.2010 140

55918 Eta Carinae 161.3 -59.7 1.2 11.02.2010 1688

55960 Eta Carinae 161.3 -59.7 1.2 14.02.2010 1688

55962 Eta Carinae 161.3 -59.7 1.2 14.02.2010 1688

55985 Eta Carinae 161.3 -59.7 0.6 15.02.2010 1690

55987 Eta Carinae 161.3 -59.7 1.2 15.02.2010 1688

56008 Eta Carinae 161.3 -59.7 1.2 16.02.2010 1689

56010 Eta Carinae 161.3 -59.7 0.6 16.02.2010 1688

56078 Eta Carinae 161.3 -59.7 0.6 19.02.2010 1688

56094 Eta Carinae 161.3 -59.7 0.2 20.02.2010 1689

56095 Eta Carinae 161.3 -59.7 0.6 20.02.2010 1689

56111 Eta Carinae 161.3 -59.7 1.2 21.02.2010 1445

56120 Eta Carinae 161.3 -59.7 1.2 22.02.2010 1688

56122 Eta Carinae 161.3 -59.7 0.6 22.02.2010 1688

56139 Eta Carinae 161.3 -59.7 1.2 23.02.2010 750

56347 Eta Carinae 161.3 -59.7 0.6 09.03.2010 1688

56365 Eta Carinae 161.3 -59.7 1.2 10.03.2010 1688

56460 Eta Carinae 161.3 -59.7 0.6 13.03.2010 1689

56488 Eta Carinae 161.3 -59.7 1.2 14.03.2010 1688



A.5. MSH11-62 205

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

56525 Eta Carinae 161.3 -59.7 0.6 15.03.2010 1688

56556 Eta Carinae 161.3 -59.7 1.2 16.03.2010 1689

56589 Eta Carinae 161.3 -59.7 0.6 17.03.2010 1689

56635 Eta Carinae 161.3 -59.7 1.2 18.03.2010 1695

56637 Eta Carinae 161.3 -59.7 0.6 18.03.2010 1697

56774 Eta Carinae 161.3 -59.7 1.2 22.03.2010 1695

A.5 MSH11-62

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20003 Centaurus X-3 170.3 -60.6 1.3 21.03.2004 1683

20049 Centaurus X-3 170.3 -60.6 1.3 22.03.2004 1683

20050 Centaurus X-3 170.3 -60.6 1.3 22.03.2004 1571

20078 Centaurus X-3 170.3 -60.6 1.3 23.03.2004 1683

20080 Centaurus X-3 170.3 -60.6 1.3 23.03.2004 1682

30600 G293.6+0.2 173.2 -61.2 2.6 05.03.2006 1693

30602 G293.2-0.8 171.7 -62.1 2.3 05.03.2006 1693

30603 G292.8+0.2 171.6 -61.0 1.8 05.03.2006 1693

30924 MSH 11-62 168.0 -60.6 0.7 28.03.2006 1688

30969 G291.6-0.8 168.5 -61.5 0.9 31.03.2006 1689

31025 G292.0-1.8 168.5 -62.6 2.0 03.04.2006 1688



A.5. MSH11-62 206

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

31026 G291.2+0.2 168.5 -60.4 0.4 03.04.2006 1688

31027 G291.2-1.8 167.0 -62.3 1.7 03.04.2006 1688

31044 G290.4+0.2 167.0 -60.1 0.7 04.04.2006 1689

31045 G290.4-1.8 165.4 -62.0 1.8 04.04.2006 1688

36755 PSR J1124-5916 171.2 -58.6 2.6 16.01.2007 1688

36756 PSR J1124-5916 171.2 -60.0 1.7 16.01.2007 1693

36777 PSR J1124-5916 172.5 -59.3 2.6 17.01.2007 1689

36778 PSR J1124-5916 169.8 -59.3 1.7 17.01.2007 1689

36803 PSR J1124-5916 171.2 -58.6 2.6 18.01.2007 1688

36804 PSR J1124-5916 171.2 -60.0 1.7 18.01.2007 1688

38699 Centaurus X-3 170.3 -60.6 0.5 09.05.2007 1688

38700 Centaurus X-3 170.3 -60.6 1.9 09.05.2007 1671

38701 Centaurus X-3 170.3 -60.6 1.3 09.05.2007 1689

38738 Centaurus X-3 170.3 -60.6 1.9 10.05.2007 1688

38917 Centaurus X-3 170.3 -60.6 1.4 16.05.2007 1688

38918 Centaurus X-3 170.3 -60.6 1.3 16.05.2007 1687

38919 Centaurus X-3 170.3 -60.6 1.9 16.05.2007 1688

38921 Centaurus X-3 170.3 -60.6 0.5 16.05.2007 1688

38947 Centaurus X-3 170.3 -60.6 1.4 17.05.2007 1690

38949 Centaurus X-3 170.3 -60.6 1.3 17.05.2007 465

38950 Centaurus X-3 170.3 -60.6 1.9 17.05.2007 1689

43771 IGR J11215-5952 170.5 -60.6 1.2 06.01.2008 1689

43772 IGR J11215-5952 170.5 -59.2 1.9 06.01.2008 1688

43773 IGR J11215-5952 169.0 -59.9 1.0 06.01.2008 1688

43774 IGR J11215-5952 161.8 -59.9 2.1 06.01.2008 1028

44686 G292.9-1.0 171.0 -62.2 2.1 03.04.2008 1688

44747 G290.3+0.4 167.0 -59.9 0.9 06.04.2008 1689

44778 G290.3-1.1 165.8 -61.3 1.2 07.04.2008 1689



A.5. MSH11-62 207

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

44779 G291.2-0.9 167.7 -61.5 0.8 07.04.2008 1688

44780 G291.2+0.0 168.4 -60.6 0.2 07.04.2008 1689

44781 G292.1-1.2 169.2 -62.1 1.5 07.04.2008 1688

44782 G293.5-0.9 172.3 -62.3 2.6 07.04.2008 1688

44807 G292.1+0.3 170.3 -60.7 1.2 08.04.2008 1688

44809 G292.1+0.3 170.3 -60.7 1.2 08.04.2008 1597

45691 G291.2-0.9 167.7 -61.5 0.8 27.05.2008 1688

45692 G291.2-0.9 167.7 -61.5 0.8 27.05.2008 1688

45693 G291.2-0.9 167.7 -61.5 0.8 27.05.2008 1688

45713 G290.3+0.4 167.0 -59.9 0.9 28.05.2008 1688

45740 G290.3+0.4 167.0 -59.9 0.9 30.05.2008 1688

45741 G290.3-1.1 165.8 -61.3 1.2 30.05.2008 1689

45742 G290.3-1.1 165.8 -61.3 1.2 30.05.2008 1687

45766 G291.2+0.0 167.7 -61.5 0.8 31.05.2008 1689

45767 G291.2-0.9 167.7 -61.5 0.8 31.05.2008 1679

45792 G293.5-0.9 172.3 -62.3 2.6 01.06.2008 1688

45825 G292.1+0.3 170.3 -60.7 1.2 02.06.2008 1688

45826 G292.1-1.2 169.2 -62.1 1.5 02.06.2008 1688

45882 G290.3+0.4 167.0 -59.9 0.9 04.06.2008 1688

45883 G290.3-1.1 165.8 -61.3 1.2 04.06.2008 1687

50327 Eta Carinae 161.3 -59.7 2.8 19.03.2009 1687

50395 Eta Carinae 161.3 -59.7 2.8 23.03.2005 1687

50477 PSR J1124-5916 171.2 -59.3 2.6 26.03.2005 1204



A.6. MSH11-54 208

A.6 MSH11-54

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20003 Centaurus X-3 170.3 -60.6 1.0 21.03.2004 1683

20049 Centaurus X-3 170.3 -60.6 1.0 22.03.2004 1683

20050 Centaurus X-3 170.3 -60.6 1.9 22.03.2004 1571

20078 Centaurus X-3 170.3 -60.6 1.0 23.03.2004 1683

20080 Centaurus X-3 170.3 -60.6 1.0 23.03.2004 1682

30600 G293.6+0.2 173.2 -61.2 2.2 05.03.2006 1693

30602 G293.2-0.8 171.7 -62.1 2.8 05.03.2006 1693

30603 G292.8+0.2 171.6 -61.0 1.7 05.03.2006 1693

30924 MSH 11-62 168.0 -60.6 2.6 28.03.2006 1688

30969 G291.6-0.8 168.5 -61.5 2.6 31.03.2006 1689

31026 G291.2+0.2 168.5 -60.4 1.8 03.04.2006 1688

31044 G290.4+0.2 167.0 -60.1 2.3 04.04.2006 1689

36755 PSR J1124-5916 171.2 -58.6 0.7 16.01.2007 1688

36756 PSR J1124-5916 171.2 -60.0 0.7 16.01.2007 1693

36777 PSR J1124-5916 172.5 -59.3 0.7 17.01.2007 1689

36778 PSR J1124-5916 169.8 -59.3 0.7 17.01.2007 1689

36803 PSR J1124-5916 171.2 -58.6 0.7 18.01.2007 1688

36804 PSR J1124-5916 171.2 -60.0 0.7 18.01.2007 1688

38699 Centaurus X-3 170.3 -60.6 1.8 09.05.2007 1688

38700 Centaurus X-3 170.3 -60.6 1.4 09.05.2007 1671

38701 Centaurus X-3 170.3 -60.6 2.1 09.05.2007 1689

38738 Centaurus X-3 170.3 -60.6 1.4 10.05.2007 1688

38917 Centaurus X-3 170.3 -60.6 0.8 16.05.2007 1688

38918 Centaurus X-3 170.3 -60.6 2.1 16.05.2007 1687

38919 Centaurus X-3 170.3 -60.6 1.4 16.05.2007 1688

38921 Centaurus X-3 170.3 -60.6 1.8 16.05.2007 1688

38947 Centaurus X-3 170.3 -60.6 0.8 17.05.2007 1690

38949 Centaurus X-3 170.3 -60.6 1.4 17.05.2007 465



A.6. MSH11-54 209

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

38950 Centaurus X-3 170.3 -60.6 1.8 17.05.2007 1689

43771 IGR J11215-5952 170.5 -60.6 1.3 06.01.2008 1689

43772 IGR J11215-5952 170.5 -59.2 0.4 06.01.2008 1688

43773 IGR J11215-5952 169.0 -59.9 1.2 06.01.2008 1688

43774 IGR J11215-5952 161.8 -59.9 0.7 06.01.2008 1028

44686 G292.9-1.0 171.0 -62.2 2.9 03.04.2008 1688

44747 G290.3+0.4 167.0 -59.9 2.2 06.04.2008 1689

44779 G291.2-0.9 167.7 -61.5 2.8 07.04.2008 1688

44780 G291.2+0.0 168.4 -60.6 2.0 07.04.2008 1689

44781 G292.1-1.2 169.2 -62.1 3.0 07.04.2008 1688

44807 G292.1+0.3 170.3 -60.7 1.5 08.04.2008 1688

44809 G292.1+0.3 170.3 -60.7 1.5 08.04.2008 1597

45691 G291.2-0.9 167.7 -61.5 2.8 27.05.2008 1688

45692 G291.2-0.9 167.7 -61.5 2.8 27.05.2008 1688

45693 G291.2-0.9 167.7 -61.5 2.8 27.05.2008 1688

45713 G290.3+0.4 167.0 -59.9 2.2 28.05.2008 1688

45740 G290.3+0.4 167.0 -59.9 2.2 30.05.2008 1688

45766 G291.2+0.0 167.7 -61.5 2.0 31.05.2008 1689

45767 G291.2-0.9 167.7 -61.5 2.8 31.05.2008 1679

45825 G292.1+0.3 170.3 -60.7 1.5 02.06.2008 1688

45826 G292.1-1.2 169.2 -62.1 3.0 02.06.2008 1688

45882 G290.3+0.4 167.0 -59.9 2.2 04.06.2008 1688

50454 PSR J1124-5916 171.2 -59.3 0.7 25.03.2009 1689

50479 PSR J1124-5916 171.2 -59.3 0.7 26.03.2009 1688

50557 PSR J1124-5916 171.2 -59.3 0.7 29.03.2009 1688

50558 PSR J1124-5916 171.2 -59.3 0.7 29.03.2009 1688

50577 PSR J1124-5916 171.2 -59.3 0.7 30.03.2009 1689

50616 PSR J1124-5916 171.2 -59.3 0.7 01.04.2009 1689



A.7. G293.8+0.6 210

A.7 G293.8+0.6

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20003 Centaurus X-3 170.3 -60.6 1.8 21.03.2004 1683

20049 Centaurus X-3 170.3 -60.6 1.8 22.03.2004 1683

20050 Centaurus X-3 170.3 -60.6 1.7 22.03.2004 1571

20051 Centaurus X-3 170.3 -60.6 1.8 22.03.2004 1682

20078 Centaurus X-3 170.3 -60.6 1.8 23.03.2004 1683

20079 Centaurus X-3 170.3 -60.6 1.7 23.03.2004 1682

20080 Centaurus X-3 170.3 -60.6 1.0 23.03.2004 1682

30598 G294.4-1.8 173.5 -63.4 2.5 05.03.2006 1694

30599 G294.0-0.8 173.3 -62.3 1.4 05.03.2006 1690

30600 G293.6+0.2 173.2 -61.2 0.4 05.03.2006 1693

30602 G293.2-0.8 171.7 -62.1 1.5 05.03.2006 1693

30603 G292.8+0.2 171.6 -61.0 1.1 05.03.2006 1693

36756 PSR J1124-5916 171.2 -60.0 1.6 16.01.2007 1693

36777 PSR J1124-5916 172.5 -59.3 1.7 17.01.2007 1689

36804 PSR J1124-5916 171.2 -60.0 1.6 18.01.2007 1688

38699 Centaurus X-3 170.3 -60.6 2.4 09.05.2007 1688

38700 Centaurus X-3 170.3 -60.6 1.0 09.05.2007 1671

38701 Centaurus X-3 170.3 -60.6 1.7 09.05.2007 1689

38736 Centaurus X-3 170.3 -60.6 1.9 10.05.2007 1688

38738 Centaurus X-3 170.3 -60.6 1.0 10.05.2007 1688

38917 Centaurus X-3 170.3 -60.6 1.9 16.05.2007 1688

38918 Centaurus X-3 170.3 -60.6 1.7 16.05.2007 1687

38919 Centaurus X-3 170.3 -60.6 1.0 16.05.2007 1688

38947 Centaurus X-3 170.3 -60.6 1.9 17.05.2007 1690

38949 Centaurus X-3 170.3 -60.6 1.0 17.05.2007 465

43771 IGR J11215-5952 170.5 -60.6 1.6 06.01.2008 1689

43774 IGR J11215-5952 161.8 -59.9 1.4 06.01.2008 1028

44686 G292.9-1.0 171.0 -62.2 1.8 03.04.2008 1688

44782 G293.5-0.9 172.3 -62.3 1.5 07.04.2008 1688



A.7. G293.8+0.6 211

Run No. Target RA Dec Offset Date duration

◦ ◦ ◦ dd.mm.yyyy s

44807 G292.1+0.3 170.3 -60.7 1.7 08.04.2008 1688

44809 G292.1+0.3 170.3 -60.7 1.7 08.04.2008 1597

45792 G293.5-0.9 172.3 -62.3 2.5 01.06.2008 1688

45825 G292.1+0.3 170.3 -60.7 1.7 02.06.2008 1688



A.8. MSH15-56 212

A.8 MSH15-56

Run No. Target RA Dec Offset Date duration

◦ ◦ ◦ dd.mm.yyyy s

25378 G328.3-0.7 239.7 -54.1 2.3 05.05.2005 1670

25400 G327.1-0.7 238.2 -54.8 1.4 06.05.2005 1539

25594 G328.9-0.7 240.5 -53.7 2.8 17.05.2005 1678

25979 G324.1-0.7 234.0 -56.7 2.5 02.06.2005 1684

25980 G324.7-0.7 234.8 -56.3 1.9 02.06.2005 1684

25981 G325.0+0.7 233.8 -55.0 2.8 02.06.2005 1683

25982 G325.3-0.7 235.7 -55.9 1.5 02.06.2005 1683

25984 G325.9-0.7 236.5 -55.6 1.1 02.06.2005 1684

25985 G326.5-0.7 237.3 -55.2 1.1 02.06.2005 1684

25986 G326.2+0.7 235.4 -54.3 2.5 02.06.2005 1684

25987 G326.8+0.7 236.3 -53.9 2.5 02.06.2005 1683

25988 G327.7-0.7 239.0 -54.4 1.8 02.06.2005 1688

25989 G327.4+0.7 237.1 -53.6 2.7 02.06.2005 1683

26175 G327.1-0.7 238.2 -54.8 1.4 08.06.2005 1683

27179 G328.9-0.7 240.5 -53.7 2.8 12.07.2005 1682

27180 G327.4+0.7 237.1 -53.6 2.7 12.07.2005 1683

27198 G324.1-0.7 233.9 -56.7 2.4 13.07.2005 1686

27199 G325.6+0.7 234.6 -54.6 2.5 13.07.2005 1682

46798 G327.5+0.7 237.2 -53.5 2.8 20.07.2008 1688

46823 G328.5+0.0 239.2 -53.4 2.9 21.07.2008 1688

46869 G328.5+0.0 239.2 -53.4 2.9 22.07.2008 1687

46893 G327.5+0.7 237.2 -53.5 2.8 23.07.2008 1688



A.8. MSH15-56 213

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

46894 G328.5+0.0 239.2 -53.4 2.9 23.07.2008 1688

46895 G328.5+0.0 239.2 -53.4 2.9 23.07.2008 1693

46919 G328.5+0.0 239.2 -53.4 2.9 24.07.2008 1688

47025 G327.5+0.7 237.2 -53.5 2.8 26.07.2008 1688

47026 G328.5+0.0 239.2 -53.4 2.9 26.07.2008 1688

51587 G326.7-1.1 237.8 -55.5 0.7 26.05.2009 1687

51588 G326.7-1.1 237.8 -55.5 0.7 26.05.2009 1689

51589 G327.2-1.8 239.5 -55.6 0.9 26.05.2009 1688

51614 G326.7-0.6 327.5 -55.1 1.3 28.05.2009 1533

51637 G326.7-0.6 327.5 -55.1 1.3 29.05.2009 1689

51638 G326.7-0.6 327.5 -55.1 1.3 29.05.2009 1688

51658 G326.5-1.1 327.8 -55.5 0.7 30.05.2009 1688

51659 G326.7-0.6 237.5 -55.0 1.3 30.05.2009 272

52356 G326.4-1.0 237.5 -55.5 0.8 12.07.2009 1689

52372 G325.6-1.0 236.4 -56.0 1.0 13.07.2009 1690



A.9. G327.1-1.1 214

A.9 G327.1-1.1

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

25378 G328.3-0.7 239.7 -54.1 1.3 05.05.2005 1670

25400 G327.1-0.7 238.2 -54.8 0.4 06.05.2005 1539

25984 G325.9-0.7 236.5 -55.6 1.8 02.06.2005 1684

25985 G326.5-0.7 237.3 -55.2 0.7 02.06.2005 1684

25988 G327.7-0.7 239.0 -54.4 0.7 02.06.2005 1688

25989 G327.4+0.7 237.1 -53.6 1.8 02.06.2005 1683

26175 G327.1-0.7 238.2 -54.8 0.4 08.06.2005 1683

51454 G327.9-1.1 239.7 -54.6 0.8 21.05.2009 1085

51456 G327.9-1.1 239.7 -54.6 0.8 21.05.2009 1688

51587 G326.7-1.1 237.8 -55.5 0.7 26.05.2009 1687

51588 G326.7-1.1 237.8 -55.5 0.7 26.05.2009 1689

51589 G327.2-1.8 239.5 -55.6 0.9 26.05.2009 1688

51614 G326.7-0.6 327.5 -55.1 1.3 28.05.2009 1533

51638 G326.7-0.6 327.5 -55.1 1.3 29.05.2009 1688

51658 G326.5-1.1 327.8 -55.5 0.7 30.05.2009 1688

51661 G327.9-1.1 239.7 -54.6 0.8 30.05.2009 1688

52356 G326.4-1.0 237.5 -55.5 0.8 12.07.2009 1689



A.10. G34.01+20.27 215

A.10 G34.01+20.27

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

34241 PSR J1740+1000 265.1 10.7 0.7 21.08.2006 1690

34283 PSR J1740+1000 265.1 9.3 0.7 22.08.2006 1679

34288 PSR J1740+1000 265.8 10.0 0.7 22.08.2006 1689

34315 PSR J1740+1000 264.4 10.0 0.7 23.08.2006 1688

34367 PSR J1740+1000 265.1 9.3 0.7 25.08.2006 1689

34368 PSR J1740+1000 265.8 10.0 0.7 25.08.2006 1689

34369 PSR J1740+1000 264.4 10.0 0.7 25.08.2006 1688

34393 PSR J1740+1000 265.1 10.7 0.7 26.08.2006 1688

34398 PSR J1740+1000 265.1 9.3 0.7 26.08.2006 1688

34441 PSR J1740+1000 265.8 10.0 0.7 27.08.2006 1689



A.11. The Duck Nebula 216

A.11 The Duck Nebula

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20902 G7.8+0.0 270.8 -22.2 2.7 21.05.2004 1682

20963 G5.0+0.0 269.3 -24.6 0.7 24.05.2004 1682

20993 G4.3+0.0 268.9 -25.2 1.1 26.05.2004 1683

20994 G3.6+0.0 268.5 -25.8 1.7 26.05.2004 1683

20995 G2.9+0.0 268.1 -26.4 2.4 26.05.2004 1683

21122 G5.7+0.0 269.7 -24.0 0.9 11.06.2004 1683

21124 G6.4+0.0 270.0 -23.4 1.4 11.06.2004 1683

21125 G7.1+0.0 270.4 -22.8 2.1 11.06.2004 1682

21183 W28 270.3 -23.2 1.8 14.06.2004 1683

21184 W28 270.3 -23.2 1.6 14.06.2004 1682

21185 W28 270.3 -23.2 2.2 14.06.2004 604

21189 W28 270.3 -23.2 1.2 14.06.2004 1683

21219 G2.2-1.0 268.7 -27.6 3.0 15.06.2004 1682

21234 W28 270.3 -23.2 1.8 16.06.2004 1683

21244 G2.9-1.0 269.1 -27.0 2.3 16.06.2004 1683

21267 W28 270.3 -23.2 1.8 17.06.2004 1682

21293 W28 270.3 -23.2 1.8 18.06.2004 1683

21294 W28 270.3 -23.2 1.8 18.06.2004 1683

21297 W28 270.3 -23.2 1.8 18.06.2004 1683

21317 W28 270.3 -23.2 1.8 19.06.2004 1683

21320 W28 270.3 -23.2 1.8 19.06.2004 1502

21345 G3.6-1.0 269.5 -26.4 1.6 20.06.2004 1682

21395 G4.3-1.0 269.8 -25.7 0.9 22.06.2004 1683

21407 G2.9+0.1 267.1 -25.9 2.8 23.06.2004 1683

21439 G3.6+0.1 267.5 -25.4 2.3 25.06.2004 1683

21440 G5.7-1.0 270.6 -24.5 0.6 25.06.2004 1683

21451 G4.3+1.0 267.9 -24.7 1.9 26.06.2004 1682

21546 G8.4+0.0 270.8 -22.1 2.8 11.07.2004 1687



A.11. The Duck Nebula 217

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

21562 G8.4+0.0 270.8 -22.1 2.8 12.07.2004 1683

21583 G3.6+0.0 268.5 -25.8 1.7 13.07.2004 1682

21584 G4.3+0.0 268.9 -25.2 1.1 13.07.2004 1682

21585 G5.0+0.0 269.3 -24.6 0.7 13.07.2004 1683

21586 G7.8+0.0 270.8 -22.2 2.7 13.07.2004 1681

21600 G5.7+0.0 269.7 -24.0 0.9 14.07.2004 1683

24917 W28 270.3 -23.2 2.4 06.04.2005 1678

24918 W28 270.3 -23.2 1.0 06.04.2005 1677

24919 W28 270.3 -23.2 1.9 06.04.2005 1678

24920 W28 270.3 -23.2 1.7 06.04.2005 1683

24921 W28 270.3 -23.2 2.4 06.04.2005 1678

24936 W28 270.3 -23.2 1.7 07.04.2005 1678

24937 W28 270.3 -23.2 1.9 07.04.2005 1677

24938 W28 270.3 -23.2 1.0 07.04.2005 1679

24939 W28 270.3 -23.2 1.0 07.04.2005 1674

24940 W28 270.3 -23.2 1.7 07.04.2005 1678

24960 W28 270.3 -23.2 1.9 08.04.2005 1678

24961 W28 270.3 -23.2 1.7 08.04.2005 1677

24962 W28 270.3 -23.2 2.4 08.04.2005 1678

24963 W28 270.3 -23.2 1.7 08.04.2005 1678

24990 W28 270.3 -23.2 1.7 09.04.2005 1677

24991 W28 270.3 -23.2 1.9 09.04.2005 1677

24992 W28 270.3 -23.2 1.0 09.04.2005 1674

24993 W28 270.3 -23.2 1.0 09.04.2005 860

31030 G3.0+0.7 267.5 -26.0 2.6 03.04.2006 1689

31105 G3.4+0.7 267.7 -25.7 2.2 05.04.2006 1688

31107 G3.8+0.7 267.9 -25.3 2.0 05.04.2006 1688

31467 G3.2-0.7 268.9 -26.5 2.0 26.04.2006 1688



A.11. The Duck Nebula 218

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

31508 G2.6+0.7 267.2 -26.3 2.9 27.04.2006 1688

31509 G3.8+0.7 267.9 -25.3 1.9 27.04.2006 1688

31510 G3.4+0.7 267.7 -25.7 2.2 27.04.2006 1688

31511 G3.0+0.7 267.5 -26.0 2.6 27.04.2006 1173

31623 W28 270.3 -23.7 1.5 01.05.2006 1689

31624 W28 270.3 -23.7 1.2 01.05.2006 1688

31625 W28 270.3 -23.7 1.5 01.05.2006 1688

31671 W28 270.3 -23.7 1.5 02.05.2006 1689

31672 W28 270.3 -23.7 1.2 02.05.2006 1688

31673 W28 270.3 -23.7 1.5 02.05.2006 1021

31701 W28 270.3 -23.7 1.2 03.05.2006 1688

31702 W28 270.3 -23.7 1.5 03.05.2006 1689

31703 W28 270.3 -23.7 1.2 03.05.2006 1689

31704 W28 270.3 -23.7 1.5 03.05.2006 1688

31705 W28 270.3 -23.7 1.2 03.05.2006 827

31727 W28 270.3 -23.7 1.2 04.05.2006 1689

31728 W28 270.3 -23.7 1.5 04.05.2006 1689

31729 W28 270.3 -23.7 1.2 04.05.2006 1687

31730 W28 270.3 -23.7 1.5 04.05.2006 1688

31731 W28 270.3 -23.7 1.2 04.05.2006 1386

31757 W28 270.3 -23.7 1.5 05.05.2006 1688

31786 W28 270.3 -23.7 1.2 05.05.2006 1689

31787 W28 270.3 -23.7 1.5 05.05.2006 1689

31788 W28 270.3 -23.7 1.2 05.05.2006 1689

31789 W28 270.3 -23.7 1.5 05.05.2006 1688

31790 W28 270.3 -23.7 1.2 05.05.2006 1688

31801 W28 270.3 -23.7 1.2 05.05.2006 1688

31802 W28 270.3 -23.7 1.5 05.05.2006 1689



A.11. The Duck Nebula 219

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

31803 W28 270.3 -23.7 1.2 05.05.2006 1689

31804 W28 270.3 -23.7 1.5 05.05.2006 966

31839 W28 270.3 -23.7 1.5 08.05.2006 1689

31840 W28 270.3 -23.7 1.2 08.05.2006 1688

31841 W28 270.3 -23.7 1.5 08.05.2006 1688

31842 W28 270.3 -23.7 1.2 08.05.2006 1688

31897 W28 270.3 -23.7 1.8 09.05.2006 1688

32321 W28 270.3 -23.7 1.2 23.05.2006 1689

32323 W28 270.3 -23.7 1.2 23.05.2006 1689

32324 W28 270.3 -23.7 1.5 23.05.2006 1688

32325 W28 270.3 -23.7 1.5 23.05.2006 1689

32330 W28 270.3 -23.7 1.2 23.05.2006 1688

32331 W28 270.3 -23.7 1.5 23.05.2006 1689

32384 W28 270.3 -23.7 1.2 25.05.2006 1689

32385 G3.0+0.7 267.5 -26.0 2.6 25.05.2006 1689

32413 G4.0-0.7 269.4 -25.9 1.2 26.05.2006 1689

32414 G3.6-0.7 269.2 -26.2 1.6 26.05.2006 1689

32416 G3.6-0.7 269.2 -26.2 1.6 26.05.2006 1690

32443 G3.0+0.7 268.9 -26.5 2.0 27.05.2006 1689

32444 G4.0-0.7 269.4 -26.9 2.4 27.05.2006 1688

32462 G2.8-0.7 268.7 -26.9 2.4 28.05.2006 1688

32469 G2.4-0.7 268.5 -27.2 2.8 28.05.2006 1688

32497 G2.8-0.7 268.7 -26.9 2.4 29.05.2006 1688

32585 G2.6+0.7 267.2 -26.3 2.9 01.06.2006 1688

32659 G3.4+0.7 267.7 -25.6 2.2 02.06.2006 1690

32660 G3.4+0.7 267.7 -25.6 2.2 02.06.2006 1690

32661 G3.8+0.7 267.9 -25.3 1.9 02.06.2006 1689

32662 G3.8+0.7 267.9 -25.3 1.9 02.06.2006 1689

32663 G3.2-0.7 268.9 -26.5 2.0 02.06.2006 1689



A.11. The Duck Nebula 220

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

32664 G3.2-0.7 268.9 -26.5 2.0 02.06.2006 1689

32665 G2.4-0.7 268.4 -27.2 2.8 02.06.2006 856

32680 G2.4-0.7 268.5 -27.2 2.8 03.06.2006 1690

32681 G2.4-0.7 268.5 -27.2 2.8 03.06.2006 1689

44820 Terzan 5 267.0 -24.8 2.8 08.04.2008 1688

44849 Terzan 5 267.0 -24.8 2.8 10.04.2008 1690

45257 Terzan 5 267.0 -24.8 2.8 03.05.2008 1689

45258 Terzan 5 267.0 -24.8 2.0 03.05.2008 1688

46282 Terzan 5 267.0 -24.8 2.0 26.06.2008 1689

46285 Terzan 5 267.0 -24.8 2.1 26.06.2008 1254

46325 Terzan 5 267.0 -24.8 2.4 28.06.2008 1688

46326 Terzan 5 267.0 -24.8 2.1 28.06.2008 1688

46345 Terzan 5 267.0 -24.8 2.4 29.06.2008 1688

46347 Terzan 5 267.0 -24.8 2.4 29.06.2008 1687

46373 Terzan 5 267.0 -24.8 2.1 30.06.2008 1687

46376 Terzan 5 267.0 -24.8 2.1 30.06.2008 1688



A.12. G7.4-2.0 221

A.12 G7.4-2.0

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

34190 V4234 Sgr 270.5 -33.8 2.3 19.08.2006 1690

34244 V4234 Sgr 269.7 -33.1 2.5 21.08.2006 1688

34286 V4234 Sgr 270.5 -33.8 2.3 22.08.2006 1688

34366 V4234 Sgr 269.7 -33.1 2.5 25.08.2006 1688

34440 V4234 Sgr 270.5 -33.8 2.3 27.08.2006 1689



A.13. G11.2-0.3 222

A.13 G11.2-0.3

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20877 G9.9+0.0 271.9 -20.4 1.3 20.05.2004 1682

20949 G14.1+0.0 274.1 -16.7 2.9 23.05.2004 1682

20964 G13.4+0.0 273.7 -17.3 2.2 24.05.2004 1682

20965 G12.7+0.0 273.3 -17.9 1.6 24.05.2004 1683

20966 G12.0+0.0 273.0 -18.5 0.9 24.05.2004 1682

20969 G11.3+0.0 272.6 -19.2 0.4 24.05.2004 1682

20982 G9.2+0.0 271.5 -20.9 2.0 25.05.2004 1682

20983 G8.5+0.0 271.2 -21.5 2.7 25.05.2004 1682

21171 G11.3-1.0 273.6 -19.6 0.7 13.06.2004 1688

21528 G12.8-0.0 273.7 -17.4 2.2 10.07.2004 1682

21544 G8.4+0.0 271.4 -21.3 2.4 11.07.2004 1682

21545 G12.8-0.0 273.2 -18.3 1.2 11.07.2004 1682

21547 G8.4+0.0 271.4 -21.3 2.4 11.07.2004 1681

21548 G12.8-0.0 273.2 -18.3 1.2 11.07.2004 1682

21550 G9.2-1.0 272.5 -21.5 2.1 11.07.2004 1682

21563 G12.8-0.0 273.2 -18.3 1.2 12.07.2004 1682

21564 G12.8-0.0 273.7 -17.4 2.2 12.07.2004 1682

21565 G8.4+0.0 271.4 -21.3 2.3 12.07.2004 1682

21570 G9.9-1.0 272.8 -20.9 1.4 12.07.2004 1682

21571 G13.4-1.0 274.6 -17.8 2.3 12.07.2004 1682

21587 G8.5+0.0 271.2 -21.6 2.7 13.07.2004 1681

21588 G9.2+0.0 271.5 -21.0 2.0 13.07.2004 1682

21590 G12.8-0.0 273.9 -18.1 1.6 13.07.2004 1684

21601 G9.9+0.0 271.9 -20.4 1.3 13.07.2004 1680

21602 G8.4+0.0 270.6 -21.4 2.9 13.07.2004 1682

21603 G8.4+0.0 271.6 -21.93 2.8 13.07.2004 1682

21604 G12.8-0.0 273.0 -17.6 1.8 13.07.2004 1682

21605 G12.8-0.0 273.0 -17.6 1.8 13.07.2004 1682



A.13. G11.2-0.3 223

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

21606 G8.4+0.0 271.6 -21.9 2.8 13.07.2004 1682

21607 G8.4+0.0 270.6 -21.4 2.9 13.07.2004 1682

21609 G9.9+0.0 271.9 -20.4 2.3 13.07.2004 1682

21624 G12.8-0.0 273.9 -18.1 1.6 15.07.2004 1682

21626 G9.2+1.0 270.6 -20.5 2.4 15.07.2004 1682

21627 G10.6-1.0 273.2 -20.2 0.9 15.07.2004 1682

21628 G9.9+1.0 271.0 -19.9 1.9 15.07.2004 1685

21697 G12.7-1.0 274.2 -18.4 1.7 18.07.2004 1682

21717 G12.0+1.0 272.0 -18.1 1.6 19.07.2004 1031

21718 G12.7+1.0 272.4 -17.4 2.0 19.07.2004 1332

21720 G14.1-1.0 274.9 -17.2 3.0 19.07.2004 1682

21743 G13.4+1.0 272.8 -16.8 2.6 20.07.2004 1682

22352 G12.8-0.0 273.4 -17.8 1.8 08.09.2004 1682

22353 G12.8-0.0 273.4 -17.8 1.6 08.09.2004 1681

22354 G8.4+0.0 271.1 -21.7 2.9 08.09.2004 1681

22355 G8.4+0.0 271.1 -21.7 2.7 08.09.2004 1682

22370 G12.8-0.0 273.4 -17.8 1.2 09.09.2004 1681

22371 G12.8-0.0 273.4 -17.8 2.2 09.09.2004 1682

22373 G8.4+0.0 271.1 -21.7 2.3 09.09.2004 1432

22387 G8.4+0.0 271.1 -21.7 2.3 10.09.2004 1542

26155 J1809-193 272.5 -19.4 0.8 07.06.2005 1690

26156 J1809-193 272.5 -19.4 0.7 07.06.2005 1690

26202 J1809-193 272.5 -19.4 0.3 09.06.2005 1691

26235 J1809-193 272.5 -19.4 0.7 10.06.2005 1690

26236 J1809-193 272.5 -19.4 0.8 10.06.2005 1690

26420 J1809-193 272.5 -19.4 0.7 14.06.2005 1690

26932 J1809-193 272.5 -19.4 0.3 03.07.2005 1695

26933 J1809-193 272.5 -19.4 1.1 03.07.2005 1690



A.13. G11.2-0.3 224

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

26961 J1809-193 272.5 -19.4 0.7 04.07.2005 1691

26962 J1809-193 272.5 -19.4 0.8 04.07.2005 1691

33520 J18100-1920 272.5 -19.3 0.7 18.07.2006 1689

33560 J18100-1920 272.5 -19.3 1.0 20.07.2006 1678

33561 J18100-1920 272.5 -19.3 0.4 20.07.2006 1689

33562 J18100-1920 272.5 -19.3 0.7 20.07.2006 1689

33563 J18100-1920 272.5 -19.3 0.9 20.07.2006 1688

33564 J18100-1920 272.5 -19.3 1.0 20.07.2006 1689

33580 J18100-1920 272.5 -19.3 0.9 21.07.2006 1689

33581 J18100-1920 272.5 -19.3 0.7 21.07.2006 1689

33582 J18100-1920 272.5 -19.3 0.4 21.07.2006 1689

33583 J18100-1920 272.5 -19.3 1.0 21.07.2006 1688

33584 J18100-1920 272.5 -19.3 0.9 21.07.2006 1688

33605 J18100-1920 272.5 -19.3 0.7 22.07.2006 1689

33606 J18100-1920 272.5 -19.3 0.9 22.07.2006 1689

33607 J18100-1920 272.5 -19.3 1.0 22.07.2006 1689

33629 J18100-1920 272.5 -19.3 0.4 23.07.2006 1689

33630 J18100-1920 272.5 -19.3 1.0 23.07.2006 783

33631 J18100-1920 272.5 -19.3 0.4 23.07.2006 1688

33632 J18100-1920 272.5 -19.3 1.0 23.07.2006 1689

33633 J18100-1920 272.5 -19.3 0.9 23.07.2006 1689

33656 J18100-1920 272.5 -19.3 1.0 24.07.2006 1688

33657 J18100-1920 272.5 -19.3 0.4 24.07.2006 1689

33659 J18100-1920 272.5 -19.3 1.0 24.07.2006 1688

33660 J18100-1920 272.5 -19.3 0.4 24.07.2006 1689

33685 J18100-1920 272.5 -19.3 0.9 25.07.2006 1689

33686 J18100-1920 272.5 -19.3 0.9 25.07.2006 1688

33687 J18100-1920 272.5 -19.3 0.7 25.07.2006 1689



A.13. G11.2-0.3 225

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

33688 J18100-1920 272.5 -19.3 1.0 25.07.2006 1689

33689 J18100-1920 272.5 -19.3 0.9 25.07.2006 1688

33690 J18100-1920 272.5 -19.3 0.7 25.07.2006 1688

41347 HESS J1809-193 272.3 -19.45 1.2 31.08.2007 1689

41348 HESS J1809-193 272.3 -19.45 0.8 31.08.2007 1689

41935 HESS J1809-193 272.3 -19.45 0.9 29.09.2007 1691

41955 HESS J1809-193 272.3 -19.45 1.2 30.09.2007 1689

41975 HESS J1809-193 272.3 -19.45 0.2 01.10.2007 1687

41976 HESS J1809-193 272.3 -19.45 0.8 01.10.2007 1688

41992 HESS J1809-193 272.3 -19.45 0.9 02.10.2007 1688

41993 HESS J1809-193 272.3 -19.45 0.2 02.10.2007 1689

42076 HESS J1809-193 272.3 -19.45 1.2 04.10.2007 1688

42077 HESS J1809-193 272.3 -19.45 0.8 04.10.2007 1688

42117 HESS J1809-193 272.3 -19.45 0.9 05.10.2007 1688

42147 HESS J1809-193 272.3 -19.45 0.2 06.10.2007 1689

42170 HESS J1809-193 272.3 -19.45 1.2 07.10.2007 1688

42210 HESS J1809-193 272.3 -19.45 0.8 08.10.2007 1689

42237 HESS J1809-193 272.3 -19.45 0.9 09.10.2007 1688

52498 Sgr 1806-20 272.2 -20.4 1.0 18.07.2009 1687

52552 Sgr 1806-20 272.2 -20.4 0.7 20.07.2009 1687

52578 Sgr 1806-20 272.2 -20.4 0.9 21.07.2009 1689

52580 Sgr 1806-20 272.2 -20.4 0.7 21.07.2009 1689

52604 Sgr 1806-20 272.2 -20.4 1.0 22.07.2009 1688

52628 Sgr 1806-20 272.2 -20.4 1.7 23.07.2009 1688

52655 Sgr 1806-20 272.2 -20.4 1.0 24.07.2009 1688

52675 Sgr 1806-20 272.2 -20.4 0.7 25.07.2009 1688

52698 Sgr 1806-20 272.2 -20.4 1.0 26.07.2009 1688

52716 Sgr 1806-20 272.2 -20.4 1.0 27.07.2009 1691



A.13. G11.2-0.3 226

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

52954 Sgr 1806-20 272.2 -20.4 1.0 11.08.2009 1693

52956 Sgr 1806-20 272.2 -20.4 0.7 11.08.2009 1688

52969 Sgr 1806-20 272.2 -20.4 1.0 12.08.2009 1687

53008 Sgr 1806-20 272.2 -20.4 0.7 13.08.2009 1689

53010 Sgr 1806-20 272.2 -20.4 1.0 13.08.2009 1689

53027 Sgr 1806-20 272.2 -20.4 0.7 14.08.2009 1688

53048 Sgr 1806-20 272.2 -20.4 1.0 15.08.2009 1689

53074 Sgr 1806-20 272.2 -20.4 1.0 16.08.2009 1687

53076 Sgr 1806-20 272.2 -20.4 0.7 16.08.2009 1688

53125 Sgr 1806-20 272.2 -20.4 1.0 18.08.2009 1688

53146 Sgr 1806-20 272.2 -20.4 0.7 18.08.2009 1688

53206 Sgr 1806-20 272.2 -20.4 1.0 21.08.2009 1688



A.14. G16.7+0.1 227

A.14 G16.7+0.1

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20858 G18.3+0.0 276.1 -13.0 1.6 18.05.2004 1683

20927 G16.9+0.0 275.4 -14.2 0.2 22.05.2004 1683

20947 G15.5+0.0 274.7 -15.5 1.2 23.05.2004 1683

21195 G16.9-0.0 274.0 -16.7 1.1 14.06.2004 1683

21220 G17.6-1.0 276.6 -14.1 1.4 15.06.2004 1682

21301 G16.2-1.0 276.0 -15.3 1.2 18.06.2004 1683

22325 G17.4-1.1 276.1 -14.3 0.9 06.09.2004 1683

22336 G17.4-1.1 276.1 -14.3 0.9 07.09.2004 1682

22338 G17.4-1.1 276.1 -14.3 0.9 07.09.2004 1682

22340 G17.4-1.1 276.1 -14.3 0.9 07.09.2004 1682

22359 G17.4-1.1 276.1 -14.3 0.9 08.09.2004 1682

25016 LS 5039 276.6 -14.8 1.3 11.04.2005 1670

25020 LS 5039 276.6 -14.8 1.3 11.04.2005 1459

25036 LS 5039 276.6 -14.8 1.3 12.04.2005 1670

25038 LS 5039 276.6 -14.8 0.8 12.04.2005 1670

25050 LS 5039 276.6 -14.8 0.8 13.04.2005 1670

25053 LS 5039 276.6 -14.8 1.3 13.04.2005 1671

25096 LS 5039 276.6 -14.8 1.3 17.04.2005 1669

25104 LS 5039 276.6 -14.8 0.8 18.04.2005 1669

25354 LS 5039 276.6 -14.8 1.3 04.05.2005 1286

25381 LS 5039 276.6 -14.8 0.8 05.05.2005 1670

25427 LS 5039 276.6 -14.8 1.3 07.05.2005 1670

25428 LS 5039 276.6 -14.8 0.8 07.05.2005 1674

25432 LS 5039 276.6 -14.8 1.3 07.05.2005 1057

25455 LS 5039 276.6 -14.8 0.8 08.05.2005 1670

25456 LS 5039 276.6 -14.8 1.3 08.05.2005 1669

25477 LS 5039 276.6 -14.8 0.8 09.05.2005 897

25480 LS 5039 276.6 -14.8 1.3 09.05.2005 1198
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Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

25481 LS 5039 276.6 -14.8 0.8 09.05.2005 1669

25499 LS 5039 276.6 -14.8 1.3 10.05.2005 1671

25547 LS 5039 276.6 -14.8 1.3 14.05.2005 1674

25578 LS 5039 276.6 -14.8 1.3 16.05.2005 1670

25592 LS 5039 276.6 -14.8 1.3 16.05.2005 1678

25598 LS 5039 276.6 -14.8 1.3 17.05.2005 576

25679 LS 5039 276.6 -14.8 1.3 18.05.2005 1671

26130 HESS J1825-137 276.5 -14.5 1.2 06.06.2005 1671

26179 HESS J1825-137 276.5 -14.5 1.2 08.06.2005 1687

26182 LS 5039 276.6 -14.8 0.9 08.06.2005 1683

26184 LS 5039 276.6 -14.8 0.9 08.06.2005 1687

26209 LS 5039 276.6 -14.8 0.9 09.06.2005 1682

26237 HESS J1825-137 276.5 -14.5 1.2 10.06.2005 1682

26239 HESS J1825-137 276.5 -14.5 1.2 10.06.2005 1682

26883 LS 5039 276.6 -14.8 0.9 01.07.2005 1686

26885 LS 5039 276.6 -14.8 0.9 01.07.2005 1682

26916 LS 5039 276.6 -14.8 0.9 02.07.2005 1690

26918 LS 5039 276.6 -14.8 0.9 02.07.2005 1692

26920 LS 5039 276.6 -14.8 0.9 02.07.2005 1680

26922 LS 5039 276.6 -14.8 0.9 02.07.2005 1690

26937 LS 5039 276.6 -14.8 0.9 03.07.2005 1686

26939 LS 5039 276.6 -14.8 0.9 03.07.2005 1682

26941 LS 5039 276.6 -14.8 0.9 03.07.2005 1686

26943 LS 5039 276.6 -14.8 0.9 03.07.2005 1682

26965 LS 5039 276.6 -14.8 0.9 04.07.2005 1687

26967 LS 5039 276.6 -14.8 0.9 04.07.2005 1683

26969 LS 5039 276.6 -14.8 0.9 04.07.2005 1686

26971 LS 5039 276.6 -14.8 0.9 04.07.2005 1655

26985 HESS J1825-137 276.5 -14.5 1.2 05.07.2005 1682

26987 LS 5039 276.6 -14.8 0.9 05.07.2005 1682
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Run No. Target RA Dec Offset Date duration

◦ ◦ ◦ dd.mm.yyyy s

26989 LS 5039 276.6 -14.8 0.9 05.07.2005 1687

26991 LS 5039 276.6 -14.8 0.9 05.07.2005 1683

26993 LS 5039 276.6 -14.8 0.9 05.07.2005 1686

27156 HESS J1825-137 276.5 -14.5 1.2 11.07.2005 1680

27158 HESS J1825-137 276.5 -14.5 1.2 11.07.2005 1681

28385 LS 5039 276.6 -14.8 0.8 02.09.2005 1680

28386 LS 5039 276.6 -14.8 1.3 02.09.2005 1682

28389 LS 5039 276.6 -14.8 0.8 02.09.2005 1682

28417 LS 5039 276.6 -14.8 1.3 04.09.2005 1686

28420 LS 5039 276.6 -14.8 0.8 04.09.2005 1682

28421 LS 5039 276.6 -14.8 1.3 04.09.2005 1682

28441 LS 5039 276.6 -14.8 0.8 05.09.2005 1687

28442 LS 5039 276.6 -14.8 1.3 05.09.2005 1682

28468 LS 5039 276.6 -14.8 0.8 06.09.2005 1694

29362 LS 5039 276.6 -14.8 1.3 20.10.2005 1690

29372 LS 5039 276.6 -14.8 1.3 21.10.2005 1690

29383 LS 5039 276.6 -14.8 0.8 22.10.2005 1690

29425 LS 5039 276.6 -14.8 1.3 24.10.2005 1690

34647 LS 5039 276.6 -14.8 0.9 10.09.2006 1689

34648 LS 5039 276.6 -14.8 1.3 10.09.2006 1689

34822 LS 5039 276.6 -14.8 1.3 17.09.2006 1688

34823 LS 5039 276.6 -14.8 0.9 17.09.2006 1688

34923 LS 5039 276.6 -14.8 1.3 21.09.2006 1689

34924 LS 5039 276.6 -14.8 0.9 21.09.2006 1689

35490 LS 5039 276.6 -14.8 1.3 19.10.2006 1688

39577 LS 5039 276.6 -14.8 0.9 11.06.2007 1689

39578 LS 5039 276.6 -14.8 1.3 11.06.2007 1689
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Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

39684 LS 5039 276.6 -14.8 0.9 14.06.2007 1690

39687 LS 5039 276.6 -14.8 1.3 14.06.2007 1688

39688 LS 5039 276.6 -14.8 0.9 14.06.2007 1688

39802 LS 5039 276.6 -14.8 0.9 18.06.2007 1689

39805 LS 5039 276.6 -14.8 1.3 18.06.2007 1688

39806 LS 5039 276.6 -14.8 0.9 18.06.2007 1689

39881 LS 5039 276.6 -14.8 0.9 22.06.2007 1689

39884 LS 5039 276.6 -14.8 1.3 22.06.2007 1688

39885 LS 5039 276.6 -14.8 0.9 22.06.2007 1688

41350 LS 5039 276.6 -14.8 1.3 31.08.2007 1688

41371 LS 5039 276.6 -14.8 0.8 01.09.2007 1689

41406 LS 5039 276.6 -14.8 1.3 02.09.2007 1688

41422 LS 5039 276.6 -14.8 0.8 03.09.2007 1688

41445 LS 5039 276.6 -14.8 1.3 04.09.2007 1688

41465 LS 5039 276.6 -14.8 0.8 05.09.2007 1688

41490 LS 5039 276.6 -14.8 1.3 06.09.2007 1688

41514 LS 5039 276.6 -14.8 0.8 07.09.2007 1688

41542 LS 5039 276.6 -14.8 1.3 08.09.2007 1688

41566 LS 5039 276.6 -14.8 1.3 09.09.2007 1688

41569 LS 5039 276.6 -14.8 0.8 09.09.2007 1688

41570 LS 5039 276.6 -14.8 1.3 09.09.2007 1689

41573 LS 5039 276.6 -14.8 0.8 09.09.2007 1688

41598 LS 5039 276.6 -14.8 1.3 10.09.2007 1688

41601 LS 5039 276.6 -14.8 0.8 10.09.2007 1689

41602 LS 5039 276.6 -14.8 1.3 10.09.2007 1689

41628 LS 5039 276.6 -14.8 0.8 11.09.2007 1688

41629 LS 5039 276.6 -14.8 1.3 11.09.2007 1688

41635 LS 5039 276.6 -14.8 0.8 11.09.2007 1688
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Run No. Target RA Dec Offset Date Duration
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41636 LS 5039 276.6 -14.8 1.3 11.09.2007 1688

41696 LS 5039 276.6 -14.8 1.3 13.09.2007 1688

41699 LS 5039 276.6 -14.8 0.8 13.09.2007 1689

41700 LS 5039 276.6 -14.8 1.3 13.09.2007 1688

41740 LS 5039 276.6 -14.8 0.8 14.09.2007 1689

41741 LS 5039 276.6 -14.8 1.3 14.09.2007 1689

45325 LS 5039 276.6 -14.8 0.8 05.05.2008 1689

45327 LS 5039 276.6 -14.8 1.3 05.05.2008 1688

45426 LS 5039 276.6 -14.8 1.3 09.05.2008 1690

45427 LS 5039 276.6 -14.8 0.8 09.05.2008 1688

45429 LS 5039 276.6 -14.8 1.3 09.05.2008 1689

45719 LS 5039 276.6 -14.8 0.8 28.05.2008 1688

45720 LS 5039 276.6 -14.8 1.3 28.05.2008 1687

45798 LS 5039 276.6 -14.8 2.0 01.06.2008 1689

45799 LS 5039 276.6 -14.8 0.8 01.06.2008 1689

45800 LS 5039 276.6 -14.8 1.3 01.06.2008 1047

45801 LS 5039 276.6 -14.8 1.3 01.06.2008 1687

46261 LS 5039 276.6 -14.8 0.8 25.06.2008 1688

46262 LS 5039 276.6 -14.8 1.3 25.06.2008 1688

46301 LS 5039 276.6 -14.8 1.3 27.06.2008 1688

46304 LS 5039 276.6 -14.8 0.8 27.06.2008 1011

46396 LS 5039 276.6 -14.8 1.3 01.07.2008 1688

46399 LS 5039 276.6 -14.8 0.8 01.07.2008 1687

46512 LS 5039 276.6 -14.8 1.3 05.07.2008 1690

47763 LS 5039 276.6 -14.8 1.3 26.08.2008 1689

48385 LS 5039 276.6 -14.8 0.8 25.09.2008 1689
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A.15 G18.5-0.4

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

20905 G21.1+0.0 276.1 -13.0 0.5 21.05.2004 1682

20907 G19.7+0.0 276.7 -11.8 1.2 21.05.2004 1683

20926 G19.0+0.0 276.4 -12.4 0.6 22.05.2004 1682

20927 G16.9+0.0 275.4 -14.2 1.7 22.05.2004 1683

21195 G16.9-0.0 274.0 -16.7 1.8 14.06.2004 1683

21220 G17.6-1.0 276.6 -14.1 1.1 15.06.2004 1682

21301 G16.2-1.0 276.0 -15.3 2.4 18.06.2004 1683

21425 G21.1-1.0 278.3 -11.0 2.6 24.06.2004 1683

21700 G19.7-1.0 277.6 -12.2 1.3 18.07.2004 1675

21747 G19.0-1.0 277.3 -12.8 0.8 20.07.2004 1683

21768 G18.3-1.0 277.0 -13.5 0.7 21.07.2004 1683

22168 G17.8-0.7 276.1 -14.4 1.5 20.08.2004 1622

22169 G17.8-0.7 276.7 -13.2 0.3 20.08.2004 1626

22170 G17.8-0.7 277.1 -14.1 1.3 20.08.2004 985

22182 G17.8-0.7 276.7 -12.2 0.3 21.08.2004 1503

22324 G17.4-1.1 277.2 -14.3 1.5 06.09.2004 1683

22325 G17.4-1.1 276.1 -14.3 1.4 06.09.2004 1683

22336 G17.4-1.1 276.1 -14.3 1.4 07.09.2004 1682

22337 G17.4-1.1 277.2 -14.3 1.5 07.09.2004 1682

22338 G17.4-1.1 276.1 -14.3 1.4 07.09.2004 1682

22339 G17.4-1.1 277.2 -14.3 1.5 07.09.2004 1683

22340 G17.4-1.1 276.1 -14.3 1.4 07.09.2004 1682

22341 G17.4-1.1 277.2 -14.3 1.5 07.09.2004 1685

22358 G17.4-1.1 277.2 -14.3 1.5 08.09.2004 1684

22359 G17.4-1.1 276.1 -14.3 1.4 08.09.2004 1682

25015 LS 5039 276.6 -14.8 2.6 11.04.2005 1670

25016 LS 5039 276.6 -14.8 1.2 11.04.2005 1670

25019 LS 5039 276.6 -14.8 2.6 11.04.2005 1670
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Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

25020 LS 5039 276.6 -14.8 1.2 11.04.2005 1459

25035 LS 5039 276.6 -14.8 2.0 12.04.2005 1670

25036 LS 5039 276.6 -14.8 2.0 12.04.2005 1670

25037 LS 5039 276.6 -14.8 2.0 12.04.2005 1669

25038 LS 5039 276.6 -14.8 2.0 12.04.2005 1670

25039 LS 5039 276.6 -14.8 1.2 12.04.2005 1798

25040 LS 5039 276.6 -14.8 2.6 12.04.2005 1764

25050 LS 5039 276.6 -14.8 2.0 13.04.2005 1670

25051 LS 5039 276.6 -14.8 2.0 13.04.2005 1669

25052 LS 5039 276.6 -14.8 2.6 13.04.2005 1670

25053 LS 5039 276.6 -14.8 1.2 13.04.2005 1671

25095 LS 5039 276.6 -14.8 2.6 17.04.2005 1674

25096 LS 5039 276.6 -14.8 1.2 17.04.2005 1669

25103 LS 5039 276.6 -14.8 2.0 18.04.2005 1669

25104 LS 5039 276.6 -14.8 2.0 18.04.2005 1669

25426 LS 5039 276.6 -14.8 2.6 07.05.2005 1678

25427 LS 5039 276.6 -14.8 1.2 07.05.2005 1670

25428 LS 5039 276.6 -14.8 2.0 07.05.2005 1674

25429 LS 5039 276.6 -14.8 2.0 07.05.2005 1670

26130 LS 5039 276.6 -14.8 1.5 06.06.2005 1676

26131 LS 5039 276.6 -14.8 0.1 06.06.2005 1682

25432 LS 5039 276.6 -14.8 1.2 06.06.2005 1057

25454 LS 5039 276.6 -14.8 2.0 08.05.2005 1670

25455 LS 5039 276.6 -14.8 2.0 08.05.2005 1670

25456 LS 5039 276.6 -14.8 1.2 08.05.2005 1669

25477 LS 5039 276.6 -14.8 2.0 09.05.2005 897

25478 LS 5039 276.6 -14.8 2.0 09.05.2005 1199

25479 LS 5039 276.6 -14.8 2.6 09.05.2005 1198
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Run No. Target RA Dec Offset Date Duration
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25480 LS 5039 276.6 -14.8 1.2 09.05.2005 1198

25481 LS 5039 276.6 -14.8 2.0 09.05.2005 1669

25483 LS 5039 276.6 -14.8 2.0 09.05.2005 1475

25499 LS 5039 276.6 -14.8 1.4 10.05.2005 1671

25500 LS 5039 276.6 -14.8 2.4 10.05.2005 1670

25547 LS 5039 276.6 -14.8 1.4 14.05.2005 1674

25548 LS 5039 276.6 -14.8 2.4 14.05.2005 1674

25577 LS 5039 276.6 -14.8 2.4 16.05.2005 1669

25578 LS 5039 276.6 -14.8 1.4 16.05.2005 1670

25592 LS 5039 276.6 -14.8 1.4 16.05.2005 1678

25593 LS 5039 276.6 -14.8 2.4 16.05.2005 1677

25679 LS 5039 276.6 -14.8 1.2 18.05.2005 1671

25680 LS 5039 276.6 -14.8 2.6 18.05.2005 1671

26161 LS 5039 276.6 -14.8 2.0 07.06.2005 1683

26179 HESS J1825-137 276.5 -14.5 1.5 08.06.2005 1687

26180 HESS J1825-137 276.5 -14.5 0.1 08.06.2005 1680

26182 LS 5039 276.6 -14.8 2.0 08.06.2005 1070

26183 LS 5039 276.6 -14.8 2.0 08.06.2005 1061

26184 LS 5039 276.6 -14.8 2.0 08.06.2005 1072

26185 LS 5039 276.6 -14.8 2.0 08.06.2005 1682

26206 LS 5039 276.6 -14.8 2.0 09.06.2005 1677

26208 LS 5039 276.6 -14.8 2.0 09.06.2005 1683

26209 LS 5039 276.6 -14.8 2.0 09.06.2005 1682

26237 HESS J1825-137 276.5 -14.5 1.5 10.06.2005 1682

26238 HESS J1825-137 276.5 -14.5 0.1 10.06.2005 1682

26239 HESS J1825-137 276.5 -14.5 1.5 10.06.2005 1682

26240 HESS J1825-137 276.5 -14.5 0.1 10.06.2005 1686

26882 LS 5039 276.6 -14.8 2.0 01.07.2005 1686

26883 LS 5039 276.6 -14.8 2.0 01.07.2005 1686
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Run No. Target RA Dec Offset Date Duration
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26885 LS 5039 276.6 -14.8 2.0 01.07.2005 1682

26916 LS 5039 276.6 -14.8 2.0 02.07.2005 1690

26917 LS 5039 276.6 -14.8 2.0 02.07.2005 1690

26918 LS 5039 276.6 -14.8 2.0 02.07.2005 1692

26919 LS 5039 276.6 -14.8 2.0 02.07.2005 1681

26920 LS 5039 276.6 -14.8 2.0 02.07.2005 1680

26921 LS 5039 276.6 -14.8 2.0 02.07.2005 1691

26922 LS 5039 276.6 -14.8 2.0 02.07.2005 1690

26923 LS 5039 276.6 -14.8 2.0 02.07.2005 1680

26936 LS 5039 276.6 -14.8 2.0 03.07.2005 1683

26937 LS 5039 276.6 -14.8 2.0 03.07.2005 1680

26938 LS 5039 276.6 -14.8 2.0 03.07.2005 1683

26939 LS 5039 276.6 -14.8 2.0 03.07.2005 1682

26940 LS 5039 276.6 -14.8 2.0 03.07.2005 1686

26941 LS 5039 276.6 -14.8 2.0 03.07.2005 1687

26942 LS 5039 276.6 -14.8 2.0 03.07.2005 1686

26943 LS 5039 276.6 -14.8 2.0 03.07.2005 1682

26965 LS 5039 276.6 -14.8 2.0 04.07.2005 1687

26966 LS 5039 276.6 -14.8 2.0 04.07.2005 1682

26967 LS 5039 276.6 -14.8 2.0 04.07.2005 1680

26968 LS 5039 276.6 -14.8 2.0 04.07.2005 1683

26969 LS 5039 276.6 -14.8 2.0 04.07.2005 1686

26970 LS 5039 276.6 -14.8 2.0 04.07.2005 1686

26971 LS 5039 276.6 -14.8 2.0 04.07.2005 1682

26984 HESS J1825-137 276.5 -14.5 0.1 05.07.2005 1683

26985 HESS J1825-137 276.5 -14.5 1.5 05.07.2005 1682

26986 LS 5039 276.6 -14.8 2.0 05.07.2005 1686

26987 LS 5039 276.6 -14.8 2.0 05.07.2005 1682

26988 LS 5039 276.6 -14.8 2.0 05.07.2005 1683
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Run No. Target RA Dec Offset Date Duration
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26989 LS 5039 276.6 -14.8 2.0 05.07.2005 1687

26990 LS 5039 276.6 -14.8 2.0 05.07.2005 1682

26991 LS 5039 276.6 -14.8 2.0 05.07.2005 1683

26992 LS 5039 276.6 -14.8 2.0 05.07.2005 1682

26993 LS 5039 276.6 -14.8 2.0 05.07.2005 1686

27155 HESS J1825-137 276.5 -14.5 0.1 11.07.2005 1691

27156 HESS J1825-137 276.5 -14.5 1.5 11.07.2005 1680

27157 HESS J1825-137 276.5 -14.5 0.1 11.07.2005 1691

27158 HESS J1825-137 276.5 -14.5 1.5 11.07.2005 1681

28417 LS 5039 276.6 -14.8 1.2 04.09.2005 1686

28418 LS 5039 276.6 -14.8 2.6 04.09.2005 1682

28419 LS 5039 276.6 -14.8 2.0 04.09.2005 1684

28420 LS 5039 276.6 -14.8 2.0 04.09.2005 1682

28421 LS 5039 276.6 -14.8 1.2 04.09.2005 1588

28439 LS 5039 276.6 -14.8 2.6 05.09.2005 1682

28440 LS 5039 276.6 -14.8 2.0 05.09.2005 1685

28441 LS 5039 276.6 -14.8 2.0 05.09.2005 1687

28442 LS 5039 276.6 -14.8 1.2 05.09.2005 1682

28443 LS 5039 276.6 -14.8 2.6 05.09.2005 1686

29361 LS 5039 276.6 -14.8 2.6 20.10.2005 1690

29362 LS 5039 276.6 -14.8 1.2 20.10.2005 1690

29370 LS 5039 276.6 -14.8 2.0 21.10.2005 1690

29371 LS 5039 276.6 -14.8 2.6 21.10.2005 1690

29383 LS 5039 276.6 -14.8 2.0 22.10.2005 1690

29425 LS 5039 276.6 -14.8 1.2 24.10.2005 1690

29440 LS 5039 276.6 -14.8 2.0 25.10.2005 1690

29441 LS 5039 276.6 -14.8 2.6 25.10.2005 1690

34821 LS 5039 276.6 -14.8 2.4 17.09.2006 1689
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Run No. Target RA Dec Offset Date Duration
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34822 LS 5039 276.6 -14.8 1.4 17.09.2006 1688

34824 LS 5039 276.6 -14.8 1.0 17.09.2006 1363

34922 LS 5039 276.6 -14.8 2.4 21.09.2006 1689

34923 LS 5039 276.6 -14.8 1.4 21.09.2006 1689

34924 LS 5039 276.6 -14.8 2.0 21.09.2006 1689

34925 LS 5039 276.6 -14.8 2.0 21.09.2006 1689

34926 LS 5039 276.6 -14.8 2.4 21.09.2006 1689

35362 LS 5039 276.6 -14.8 2.4 11.10.2006 1686

38228 SNR 21.5-0.9 277.8 -10.3 2.9 17.04.2007 1688

38229 SNR 21.5-0.9 278.1 -11.2 2.3 17.04.2007 1688

38260 SNR 21.5-0.9 277.8 -10.3 2.9 18.04.2007 1688

38264 SNR 21.5-0.9 277.8 -10.3 2.9 18.04.2007 1688

38265 SNR 21.5-0.9 277.8 -10.3 2.9 18.04.2007 1274

38280 SNR 21.5-0.9 278.1 -11.2 2.3 19.04.2007 637

38446 SNR 21.5-0.9 277.8 -10.3 2.9 26.04.2007 1687

39576 LS 5039 276.6 -14.8 2.0 11.06.2007 1689

39577 LS 5039 276.6 -14.8 2.0 11.06.2007 1689

39578 LS 5039 276.6 -14.8 1.4 11.06.2007 1689

39579 LS 5039 276.6 -14.8 2.4 11.06.2007 1688

39684 LS 5039 276.6 -14.8 2.0 14.06.2007 1690

39685 LS 5039 276.6 -14.8 2.0 14.06.2007 1688

39686 LS 5039 276.6 -14.8 2.4 14.06.2007 1688

39687 LS 5039 276.6 -14.8 1.4 14.06.2007 1688

39688 LS 5039 276.6 -14.8 2.0 14.06.2007 1688

39689 LS 5039 276.6 -14.8 2.0 14.06.2007 1689

39802 LS 5039 276.6 -14.8 2.0 18.06.2007 1689

39803 LS 5039 276.6 -14.8 2.0 18.06.2007 1689

39804 LS 5039 276.6 -14.8 2.4 18.06.2007 1687
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39805 LS 5039 276.6 -14.8 1.4 18.06.2007 1688

39806 LS 5039 276.6 -14.8 2.0 18.06.2007 1689

39807 LS 5039 276.6 -14.8 2.0 18.06.2007 1688

39881 LS 5039 276.6 -14.8 2.0 22.06.2007 1689

39882 LS 5039 276.6 -14.8 2.0 22.06.2007 1689

39883 LS 5039 276.6 -14.8 2.4 22.06.2007 1688

39884 LS 5039 276.6 -14.8 1.4 22.06.2007 1688

39885 LS 5039 276.6 -14.8 2.0 22.06.2007 1688

40141 G21.5-0.9 278.1 -11.2 2.3 08.07.2007 1689

40227 G21.5-0.9 278.1 -11.2 2.9 11.07.2007 1689

40262 G21.5-0.9 278.1 -11.2 2.3 12.07.2007 1689

40294 G21.5-0.9 278.1 -11.2 2.3 13.07.2007 1688

40295 G21.5-0.9 278.1 -11.2 2.9 13.07.2007 1689

40324 G21.5-0.9 278.1 -11.2 2.9 14.07.2007 1689

40325 G21.5-0.9 278.1 -11.2 2.3 14.07.2007 1021

40357 G21.5-0.9 278.1 -11.2 2.9 15.07.2007 1689

40382 G21.5-0.9 278.1 -11.2 2.3 16.07.2007 1688

40385 G21.5-0.9 278.1 -11.2 2.9 16.07.2007 1689

40412 G21.5-0.9 278.1 -11.2 2.3 17.07.2007 1689

40413 G21.5-0.9 278.1 -11.2 2.9 17.07.2007 1689

41349 LS 5039 276.6 -14.8 2.6 31.08.2007 1688

41350 LS 5039 276.6 -14.8 1.2 31.08.2007 1688

45324 LS 5039 276.6 -14.8 2.6 05.05.2008 952

45325 LS 5039 276.6 -14.8 2.0 05.05.2008 1689

45326 LS 5039 276.6 -14.8 2.0 05.05.2008 1689

45327 LS 5039 276.6 -14.8 1.2 05.05.2008 1688

45328 LS 5039 276.6 -14.8 2.6 05.05.2008 1089

45425 LS 5039 276.6 -14.8 2.6 09.05.2008 1688



A.15. G18.5-0.4 239

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

45426 LS 5039 276.6 -14.8 1.2 09.05.2008 1690

45427 LS 5039 276.6 -14.8 2.0 09.05.2008 1688

45429 LS 5039 276.6 -14.8 1.2 09.05.2008 1689

45430 LS 5039 276.6 -14.8 2.6 09.05.2008 1689

45718 LS 5039 276.6 -14.8 2.0 28.05.2008 1688

45719 LS 5039 276.6 -14.8 2.0 28.05.2008 1688

45720 LS 5039 276.6 -14.8 1.2 28.05.2008 1687

45798 LS 5039 276.6 -14.8 2.0 01.06.2008 1689

45799 LS 5039 276.6 -14.8 2.0 01.06.2008 1689

46260 LS 5039 276.6 -14.8 2.0 25.06.2008 1688

46261 LS 5039 276.6 -14.8 2.0 25.06.2008 1688

46262 LS 5039 276.6 -14.8 1.2 25.06.2008 1688

46263 LS 5039 276.6 -14.8 2.6 25.06.2008 1688

46264 LS 5039 276.6 -14.8 2.0 25.06.2008 1263

46301 LS 5039 276.6 -14.8 1.2 27.06.2008 1688

46302 LS 5039 276.6 -14.8 2.6 27.06.2008 1688

46303 LS 5039 276.6 -14.8 2.0 27.06.2008 1688

46304 LS 5039 276.6 -14.8 2.0 27.06.2008 1011

46396 LS 5039 276.6 -14.8 1.2 01.07.2008 1688

46397 LS 5039 276.6 -14.8 2.6 01.07.2008 1687

46398 LS 5039 276.6 -14.8 2.0 01.07.2008 1688

46399 LS 5039 276.6 -14.8 2.0 01.07.2008 1687

46512 LS 5039 276.6 -14.8 1.2 05.07.2008 1690

47763 LS 5039 276.6 -14.8 1.2 26.08.2008 1689

48202 G20.5+1.0 276.2 -10.6 2.4 18.09.2008 1688

48203 G18.9+1.0 275.5 -12.0 1.4 18.09.2008 1494

48256 G18.5+2.0 274.4 -11.9 2.4 19.09.2008 1688



A.15. G18.5-0.4 240

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

48257 G16.9+2.0 273.6 -13.3 2.9 19.09.2008 1687

48289 G20.1+2.0 275.1 -10.5 2.8 21.09.2008 1688

48310 G18.1+1.0 275.1 -12.7 1.5 22.09.2008 1688

48311 G18.1+1.0 275.1 -12.7 1.5 22.09.2008 1687

48384 LS 5039 276.6 -14.8 2.0 25.09.2008 1688

48385 LS 5039 276.6 -14.8 2.0 25.09.2008 1689



A.16. G39.2-0.3 241

A.16 G39.2-0.3

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

26033 G36.6-0.9 285.3 2.9 2.7 03.06.2005 1691

26038 G36.6-0.9 285.3 2.9 2.7 03.06.2005 1692

26158 G36.6-0.2 284.7 3.2 2.7 07.06.2005 1690

28203 G36.6-0.9 285.3 2.9 2.7 24.08.2005 1691

32521 G40.0-1.0 288.1 5.8 1.0 30.05.2006 1689

32522 G39.7-2.4 288.1 4.9 2.1 30.05.2006 887

32523 G40.3-2.4 288.4 5.4 2.3 30.05.2006 1688

32524 G40.3+0.4 285.9 6.7 1.3 30.05.2006 1689

32525 G39.4-0.9 286.6 5.3 0.6 30.05.2006 1688

32526 G40.6-1.0 287.2 6.4 1.5 30.05.2006 1688

32553 G36.7+0.6 284.0 3.6 2.7 31.05.2006 1689

32554 G37.3+0.6 284.3 4.2 2.1 31.05.2006 1689

32593 G40.9+0.4 286.2 7.3 1.8 01.06.2006 1689

32685 G41.8-1.0 287.8 7.4 2.7 03.06.2006 1689

32686 G41.2-1.0 287.5 6.9 2.1 03.06.2006 1689

32698 G38.8-0.9 286.3 4.8 0.7 04.06.2006 1689

32700 G38.2-0.8 286.0 4.3 1.1 04.06.2006 1689

32767 G41.5+0.4 286.4 7.8 2.4 05.06.2006 1689

32768 G37.6-0.8 285.7 3.8 1.7 05.06.2006 1688

32769 G37.0-0.8 285.4 3.3 2.3 05.06.2006 1689

32779 G39.1+0.5 285.2 5.7 0.8 06.06.2006 1688

32780 G38.5+0.5 285.0 5.2 1.0 06.06.2006 1689

32781 G37.9+0.6 284.6 4.7 1.6 06.06.2006 1688

33358 G40.3-2.4 288.4 5.4 2.3 05.07.2006 1688

34073 SS 433 288.0 5.0 1.0 15.08.2006 1689

34074 SS 433 288.0 5.0 3.0 15.08.2006 1689

34107 SS 433 288.0 5.0 1.0 16.08.2006 1689

34108 SS 433 288.0 5.0 3.0 16.08.2006 1689



A.16. G39.2-0.3 242

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

34128 SS 433 288.0 5.0 1.0 17.08.2006 1688

34129 SS 433 288.0 5.0 3.0 17.08.2006 1688

34130 SS 433 288.0 5.0 1.0 17.08.2006 1688

34927 G41.3-0.6 287.2 7.2 2.1 21.09.2006 1688

38994 HESS J1908+062 287.1 6.3 2.0 18.05.2007 1688

38995 HESS J1908+062 287.1 6.3 0.8 18.05.2007 1688

39026 HESS J1908+062 287.1 6.3 1.8 19.05.2007 1687

39027 HESS J1908+062 287.1 6.3 1.2 19.05.2007 1687

39085 HESS J1908+062 287.1 6.3 0.8 21.05.2007 1689

39086 HESS J1908+062 287.1 6.3 0.8 21.05.2007 1688

39112 HESS J1908+062 287.1 6.3 2.0 22.05.2007 1684

39113 HESS J1908+062 287.1 6.3 0.8 22.05.2007 1688

39137 HESS J1908+062 287.1 6.3 1.7 23.05.2007 1688

39138 HESS J1908+062 287.1 6.3 1.2 23.05.2007 1688

39161 HESS J1908+062 287.1 6.3 1.2 24.05.2007 1688

39163 HESS J1908+062 287.1 6.3 1.7 24.05.2007 1689

39216 HESS J1908+062 287.1 6.3 2.0 26.05.2007 1688

39502 HESS J1908+062 287.1 6.3 1.2 09.06.2007 941

39503 HESS J1908+062 287.1 6.3 1.7 09.06.2007 733

39616 HESS J1908+062 287.1 6.3 1.7 12.06.2007 1688

39617 HESS J1908+062 287.1 6.3 1.2 12.06.2007 1687

39618 HESS J1908+062 287.1 6.3 0.8 12.06.2007 1689

39662 HESS J1908+062 287.1 6.3 1.2 13.06.2007 1688

39663 HESS J1908+062 287.1 6.3 1.7 13.06.2007 1688

39664 HESS J1908+062 287.1 6.3 1.2 13.06.2007 1689

39849 HESS J1908+062 287.1 6.3 1.7 20.06.2007 1688

39850 HESS J1908+062 287.1 6.3 1.2 20.06.2007 1689

41936 HESS J1908+062 287.1 6.3 1.8 29.09.2007 1688



A.16. G39.2-0.3 243

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

41937 HESS J1908+062 287.1 6.3 0.9 29.09.2007 1181

41956 HESS J1908+062 287.1 6.3 1.9 30.09.2007 1688

41957 HESS J1908+062 287.1 6.3 1.0 30.09.2007 1689

41977 HESS J1908+062 287.1 6.3 1.8 01.10.2007 1689

41994 HESS J1908+062 287.1 6.3 0.9 02.10.2007 1689

42078 HESS J1908+062 287.1 6.3 1.9 04.10.2007 1372

42118 HESS J1908+062 287.1 6.3 1.1 05.10.2007 1689

42119 HESS J1908+062 287.1 6.3 1.8 05.10.2007 1689

42148 HESS J1908+062 287.1 6.3 0.9 06.10.2007 1688

42149 HESS J1908+062 287.1 6.3 1.9 06.10.2007 1689

42171 HESS J1908+062 287.1 6.3 1.1 07.10.2007 1687

42211 HESS J1908+062 287.1 6.3 1.8 08.10.2007 1688

42238 HESS J1908+062 287.1 6.3 0.9 09.10.2007 1688

42272 HESS J1908+062 287.1 6.3 1.9 10.10.2007 1688

42300 HESS J1908+062 287.1 6.3 1.1 11.10.2007 1688

42325 HESS J1908+062 287.1 6.3 1.1 12.10.2007 1688

42326 HESS J1908+062 287.1 6.3 1.8 12.10.2007 1689

53032 G39.2-0.3 286.0 5.5 0.7 14.08.2009 1503

53033 G39.2-0.3 286.0 5.5 0.7 14.08.2009 1688

53081 G39.2-0.3 286.0 5.5 0.7 16.08.2009 1688

53104 G39.2-0.3 286.0 5.5 0.7 17.08.2009 1687

53130 G39.2-0.3 286.0 5.5 0.7 18.08.2009 1691

53152 G39.2-0.3 286.0 5.5 0.7 19.08.2009 1688

53153 G39.2-0.3 286.0 5.5 0.7 19.08.2009 1688

53179 G39.2-0.3 286.0 5.5 0.7 20.08.2009 1688

53180 G39.2-0.3 286.0 5.5 0.7 20.08.2009 1688

53181 G39.2-0.3 286.0 5.5 0.7 20.08.2009 1688

53182 G39.2-0.3 286.0 5.5 0.7 20.08.2009 1688



A.16. G39.2-0.3 244

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

53210 G39.2-0.3 286.0 5.5 0.7 21.08.2009 1689

53211 G39.2-0.3 286.0 5.5 0.7 21.08.2009 1687

53213 G39.2-0.3 286.0 5.5 0.7 21.08.2009 1688

53233 G39.2-0.3 286.0 5.5 0.7 22.08.2009 1688

53234 G39.2-0.3 286.0 5.5 0.7 22.08.2009 1689

53235 G39.2-0.3 286.0 5.5 0.7 22.08.2009 1688

53236 G39.2-0.3 286.0 5.5 0.7 22.08.2009 1688

53258 G39.2-0.3 286.0 5.5 0.7 23.08.2009 1688

53259 G39.2-0.3 286.0 5.5 0.7 23.08.2009 1688

53260 G39.2-0.3 286.0 5.5 0.7 23.08.2009 1689

53279 G39.2-0.3 286.0 5.5 0.7 24.08.2009 1689

53299 G39.2-0.3 286.0 5.5 0.7 25.08.2009 1688

53300 G39.2-0.3 286.0 5.5 0.7 25.08.2009 1688

53548 G39.2-0.3 286.0 5.5 0.7 10.09.2009 1688

53560 G39.2-0.3 286.0 5.5 0.7 11.09.2009 1689

53561 G39.2-0.3 286.0 5.5 0.7 11.09.2009 1689

53605 G39.2-0.3 286.0 5.5 0.7 14.09.2009 1690

53628 G39.2-0.3 286.0 5.5 0.7 15.09.2009 1689

53629 G39.2-0.3 286.0 5.5 0.7 15.09.2009 1688

53648 G39.2-0.3 286.0 5.5 0.7 16.09.2009 1688

53673 G39.2-0.3 286.0 5.5 0.7 17.09.2009 1689

53674 G39.2-0.3 286.0 5.5 0.7 17.09.2009 1689

53701 G39.2-0.3 286.0 5.5 0.7 18.09.2009 1688

53702 G39.2-0.3 286.0 5.5 0.7 18.09.2009 1688

53725 G39.2-0.3 286.0 5.5 0.7 19.09.2009 1689

53726 G39.2-0.3 286.0 5.5 0.7 19.09.2009 1688

53727 G39.2-0.3 286.0 5.5 0.7 19.09.2009 1688

53728 G39.2-0.3 286.0 5.5 0.7 19.09.2009 1689



A.16. G39.2-0.3 245

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

53759 G39.2-0.3 286.0 5.5 0.7 20.09.2009 1689

53762 G39.2-0.3 286.0 5.5 0.7 20.09.2009 1689

53798 G39.2-0.3 286.0 5.5 0.7 21.09.2009 1688

53937 G39.2-0.3 286.0 5.5 0.7 06.10.2009 1688

53938 G39.2-0.3 286.0 5.5 0.7 06.10.2009 1689

53988 G39.2-0.3 286.0 5.5 0.7 07.10.2009 1688

53989 G39.2-0.3 286.0 5.5 0.7 07.10.2009 1688

53990 G39.2-0.3 286.0 5.5 0.7 07.10.2009 1689

54033 G39.2-0.3 286.0 5.5 0.7 11.10.2009 1688

54051 G39.2-0.3 286.0 5.5 0.7 12.10.2009 1689

54052 G39.2-0.3 286.0 5.5 0.7 12.10.2009 1689

54077 G39.2-0.3 286.0 5.5 0.7 13.10.2009 1690



A.17. G47.38-3.88 246

A.17 G47.38-3.88

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

51622 G46.1-3.5 292.1 10.1 1.3 25.05.2009 1688

51751 G47.1-3.5 292.6 10.9 0.5 02.06.2009 1689

51785 G46.1-3.5 292.1 10.1 1.3 04.06.2009 1689

52475 G47.1-3.5 292.6 10.9 0.5 17.07.2009 1688



A.18. G10.93-45.44 247

A.18 G10.93-45.44

Run No. Target RA Dec Offset Date Duration

◦ ◦ ◦ dd.mm.yyyy s

33117 PSR J2124-3358 322.0 -34.0 0.7 25.06.2006 1688

33147 PSR J2124-3358 321.2 -33.0 0.7 26.06.2006 1689

33296 PSR J2124-3358 321.2 -34.7 0.7 02.07.2006 1688

33315 PSR J2124-3358 322.0 -34.0 0.7 03.07.2006 1688

33316 PSR J2124-3358 320.3 -34.0 0.7 03.07.2006 1689

33360 PSR J2124-3358 321.2 -34.0 0.7 05.07.2006 1689

33377 PSR J2124-3358 321.8 -34.7 0.7 06.07.2006 1689

33378 PSR J2124-3358 322.0 -34.0 0.7 06.07.2006 1689

33379 PSR J2124-3358 320.3 -34.0 0.7 06.07.2006 1688

33390 PSR J2124-3358 321.2 -33.3 0.7 07.07.2006 1689


