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Abstract 

The dynamic adsorption  mechanisms of a range of polymer/surfactant mixtures have been studied at 

the expanding air/water interface created by an overflowing cylinder. The composition of the 

adsorption layer from mixed systems is obtained using a new approach, co-modelling ellipsometry data 

and NR data recorded on only one isotopic contrast, without deuterated polymer. The precision and 

accuracy of the interfacial compositions using this novel approach match those obtained by NR 

measurements using multiple isotopic contrasts and deuterated polymer, and exceeds those in the 

absence of deuterated polymer.  

For weakly interacting PEO/surfactant mixtures adsorption is competitive, the interfacial composition 

can be rationalised in terms of competitive adsorption. At high surfactant concentrations polymer 

adsorption is inhibited by the increasing surfactant coverage, although in PEO/SDS mixtures positive 

interactions between the two components allow PEO to adsorb until an SDS monolayer is present.  

For oppositely charged mixtures of PSS and CnTAB surfactants, synergistic adsorption occurs at low 

surfactant concentrations, and the formation of polymer/surfactant complexes has a marked effect on 

interfacial adsorption, although polymer adsorption is controlled by free polymer molecules. 

Aggregation occurs around charge neutrality, the material in these aggregates cannot reach the 

interface due to their size, and at higher surfactant concentrations polymer can no longer adsorb.  

Mixtures of PEI/SDS at high pH behave similarly to the PSS/CnTAB systems, with progressive 

aggregation depleting the system of surface active material and limiting adsorption. However at low 

pH the aggregates can reach the interface by convection where they spread material across the surface 

in the form of a thin layer of nanometer thickness by Marangoni flows.  

This work proves that examination of the dynamic adsorption behaviour of polymer/surfactant systems 

is invaluable to understanding their adsorption mechanisms. Furthermore there is a clear and 

incontrovertible link between the dynamic interfacial adsorption and bulk phase behaviour.  
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Chapter 1.  Introduction  

1.1. Introduction to the Project 

The main objective of the research presented in this thesis is to examine the kinetics of adsorption of 

polymer/surfactant mixtures at an expanding air/water interface, and hence to try to determine the 

mechanism of adsorption from such mixtures.  Mixtures of oppositely charged polymers and 

surfactants are widely used in industrial applications as detergents, foam stabilisers, wetting agents, 

emulsifiers, and rheology modifiers. The extent to which polymers and surfactants interact in solution 

can determine both the bulk and interfacial properties of the system. Previous studies on 

polymer/surfactant systems can be divided up into those which examine the bulk properties of such 

systems, and those which examine the interfacial adsorption behaviour, either at the air/liquid or 

solid/liquid interfaces, and a few which have related the two. Many formulations which employ 

polymer/surfactant mixtures are routinely used under conditions far from equilibrium, whilst few 

previous studies have looked at the behaviour of such mixtures under non-equilibrium conditions. This 

research is aimed at examining the kinetics of adsorption of a range of polymer/surfactant mixtures 

under the non-equilibrium conditions, and determining the effect of the presence of polymer in solution 

on the adsorption of surfactant and vice-versa. Understanding of the kinetics of adsorption from these 

systems will allow us to elaborate on the link between their bulk and interfacial behaviour, and hence 

to elucidate the mechanism of adsorption to the air/water interface.  

The sample environment which we use to study adsorption under non-equilibrium conditions is the 

overflowing cylinder (OFC) which creates a large, flat, continuously expanding interface with a surface 

age typically in the range 0.1–1 s.  The flowing nature of the OFC enables it to be used to distinguish 

between the adsorption of different species on the basis of their size, as only small species can diffuse 

to the interface on the timescale of surface expansion in order to adsorb. Hence the OFC allows to 

begin to determine the link between the bulk and interfacial behaviours of solutions.  

The large steady-state surface of the OFC can be studied using a wide range of experimental 

techniques. In this project, a combination of ellipsometry and neutron reflectometry [NR] has been 

employed to study adsorption from polymer/surfactant mixtures at the interface of the OFC. The 

primary experimental objective of the measurements was to determine the composition of the material 

adsorbing at the air/water interface, which is commonly obtained using neutron reflectometry 
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measurements in multiple isotopic contrasts. However, this approach can be limited by the availability 

of both deuterated chemicals and neutron beamtime. Therefore a further key objective of this project 

has been to validate a new quantitative approach to determining the adsorbed composition of an 

adsorbed layer from mixed solutions using a combination of ellipsometry and NR measurements in 

only one isotopic contrast. This project has been based at the Institut Laue Langevin (ILL) in France, 

where I have commissioned an OFC for use on the new neutron reflectometer FIGARO [Fluid 

Interfaces Grazing Angles ReflectOmeter].  

The remainder of this chapter provides an introduction to both the bulk and interfacial behaviours of 

surfactants, polymers and polymer/surfactant mixtures. In section 1.2, I discuss previous studies of the 

behaviour of polymers in aqueous solution, and their adsorption at interfaces. In section 1.3, I examine 

the behaviour of pure surfactants, their bulk phase micellisation and interfacial adsorption. In Section 

1.4, I introduce the question of polymer/surfactant mixtures and discuss the large number of previous 

studies which examine their bulk and interfacial adsorption behaviour.   

Chapters 2 and 3 present a detailed description of the experimental methodologies used in this 

research, the OFC, neutron reflectometry, ellipsometry and LDV, and theories on which they are based. 

Extra detail in Chapter 3 is devoted to the specific considerations necessary for use of the OFC on 

FIGARO. 

Our unique approach to obtaining interfacial compositions using data from ellipsometry and neutron 

reflectometry is explained and validated in Chapter 4. This co-modelling approach is based on the 

solution of simultaneous equations which relate the measured quantities from each experimental 

methodology to the adsorbed amounts of the two components at the interface. Our co-modelling 

approach is then employed to determine the interfacial compositions on the OFC of several different 

polymer/surfactant mixtures. In Chapter 5 adsorption from mixtures of the non-ionic polymer PEO and 

the ionic surfactants SDS and C14TAB is examined. Chapters 6 and 7 discuss adsorption from 

oppositely charged polymer/surfactant systems containing the polymer PSS and the CnTAB 

surfactants. Chapter 8 discusses the link between the bulk and interfacial behaviour of PEI/SDS 

mixtures at both low and high solution pHs. Finally, Chapter 9 presents the conclusions of this project 

and some future perspectives of this work in terms of several polymer/surfactant mixtures on which 

initial studies have been performed. 
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1.2. Polymers 

A polymer is a macromolecule made up of repeating structural units. The number of repeat units, Np, 

can vary from small up to several hundreds of thousands, depending on the polymer. Polymers which 

contain charged groups are commonly known as polyelectrolytes, and they can carry either positive or 

negative charges. In the simplest case, polymers are homopolymers, all of the repeat units are the same, 

however co-polymers can also be made, which have different repeat units. All of the polymers used in 

this thesis are simple homopolymers, and are restricted to poly(ethylene oxide) [PEO], poly(styrene 

sulfonate) [PSS] and poly(ethylene imine) [PEI]. The structures of all three polymers are shown below 

in . The notable features of the three polymers show in  are that PEO is non-ionic, 

PSS is anionic, but contains hydrophobic styrene groups, and the charge density of PEI depends on the 

pH of the solution, varying from around 6% charged at pH 10 to around 67% charged at pH 4.1, 2  

 

Figure 1.1. Molecular structures of the three polymers used in this thesis 

Pure polymer solutions can be defined into three categories: firstly dilute, where excess solvent is 

present and inter-molecule interactions can be neglected, secondly semi-dilute where monomers in 

separate chains are in contact with each other forming a network, and finally concentrated solutions in 

which polymer chains are strongly intertwined. In this study, all of the polymer solutions can be 

thought of as dilute, with no interactions between the polymer molecules in the absence of added 

surfactant. In the bulk solution the size and shape of a polymer molecule can be characterised using 

techniques including small angle neutron scattering (SANS), small angle x-ray scattering (SAXS) and 

static or dynamic light scattering (SLS and DLS)3, to determine whether the polymer has a compact 

sphere, random coil or stiff rod conformation. 






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The adsorption of polymers onto solid surfaces has been widely studied due to its relevance to 

industrial processes such as oil recovery, food processing, coating, and drug manufacture, and the 

recent review of Nylander et al.4 with the references therein gives a good overview of recent work in 

this area. Unlike at solid interfaces, few polymers adsorb at the air/water interface as they are not 

surface active due to the low hydrophobic driving force for their adsorption at the interface and the 

electrostatic repulsion between charged polymer molecules. The only relevant exception to this is PEO, 

which is neutral and surface active alone,5 and for which NR measurements have been used to 

characterise the adsorbed amount and structure of the layer.6, 7 The other two polymers used in this 

thesis do not adsorb at the interface in the absence of surfactant under the conditions we have used.  

 

1.3. Surfactants  

Surfactants (a contraction of surface active agents) are amphiphilic molecules composed of a 

hydrophilic head group and a hydrophobic tail group. Surfactants are generally categorized by the 

nature of their headgroups, which can be cationic, anionic, nonionic or zwitterionic. Surfactant tails 

usually consist of one or more alkyl chains.  Surfactant molecules self assemble in aqueous solutions 

and adsorb to the air/water interface in order to limit the contact of the hydrophobic tail group with 

water.  In the former case aggregates called micelles form, with the surfactant head groups positioned 

on the outside in order to screen the non-polar tails from the surrounding water. At the interface, 

surfactants adsorb with their polar headgroups in the aqueous solution and their tail groups in the air. 

Both adsorption and micellisation are discussed further below.  

The surfactants used in this study are sodium dodecyl sulfate (SDS), and the alkyl trimethylammonium 

bromide surfactants (CnTABs) where n = 12,14, or 16. Structures of these surfactants are shown in 

Figure 1.2 

 

Figure 1.2. Structures of the main surfactants used in this thesis, sodium dodecyl sulphate, SDS (left), and 

alkyltrimethylammonium bromide surfactants, CnTABs, (right).  
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1.3.1. Surfactants in Solution 

In bulk surfactant solutions micellar aggregates form above a critical concentration due to the 

unfavourable entropy of water molecules ‘caging’ the hydrophobic part of the surfactant molecule, the 

hydrocarbon chain. Micelle formation maximises the entropy of the water molecules. A typical micelle 

has the hydrophilic head groups in contact with the solvent, with the hydrocarbon chains inside the 

micelle in a fluid environment due to their constant thermal motion. Micelles are generally spherical, 

cylindrical or ellipsoid in shape, shown by the schematics in Figure 1.3, however they can also form 

into larger vesicles and lamellar sheets. Micelles of SDS, C12TAB and C14TAB used in this study are 

spherical in shape, whereas those of C16TAB are rod-shaped in the presence of added salt.8, 9 Micelles 

consist of several tens, hundreds or thousands of surfactant molecules, although the majority contain 

between 50 and 100 monomers. The average number of surfactants per micelle is known as the 

‘aggregation number’. For the surfactants used in this study the micellar aggregation number increases 

with the length of the hydrocarbon chain.10, 11 

 

Figure 1.3. Schematic diagram showing surfactant molecules aggregated into different kinds of micelle 

The critical bulk concentration above which micelles form in the bulk solution is known as the critical 

micelle concentration (cmc). At bulk surfactant concentrations above the cmc, the concentration of 

surfactant monomers in solution remains constant, and excess surfactant added to the solution forms 

into micelles. The surfactant concentration corresponding to the cmc varies widely between 

surfactants, and is controlled by factors including the chain length and the nature of the head group. 

Longer hydrocarbon chains are more hydrophobic, favouring the formation of micelles, whilst 

increased charge on the headgroup will increase repulsive interactions between the surfactant 

molecules, disfavouring aggregation. Consequently non-ionic surfactants tend to have much lower cmc 

values and higher aggregation numbers than their ionic counterparts with similar hydrocarbon chain 

lengths. For ionic surfactants, addition of electrolyte decreases the cmc and increases micellar size, as 

it decreases the repulsive interactions between the charged headgroups at the micelle surface.  In order 

for micelles to form in a given surfactant solution, the solution temperature must be above the Krafft 

temperature, the minimum temperature for the solubility of the monomer to be high enough for micelle 






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formation at the cmc.12 The cmc of a surfactant can be determined using a range of experimental 

techniques, as it corresponds to characteristic changes in the bulk properties of both the bulk solution 

and the interface. Measurements techniques which can be used to determine the cmc include surface 

tension, molar conductivity, osmotic pressure, and turbidity measurements.  

 

1.3.2. Surfactants at the Air/Water interface 

Surfactants adsorb at the air/water interface for the same reason that they aggregate at high 

concentrations, the entropic gain from the water molecules no longer being oriented around the 

hydrophobic part of the surfactant. The ordering of surfactant molecules at the interface lowers the free 

energy of the surface, but thermal motion makes the ordering imperfect. Surfactant adsorption 

increases with increasing bulk surfactant concentration up to the cmc, where a limiting surface 

coverage is reached which cannot be exceeded by further increases in the bulk surfactant concentration. 

This limiting coverage is less than the theoretical maximum value which cannot usually be reached due 

to constraints of concentration, such as solubility or micellization. The amount of surfactant which can 

adsorb at the interface is known as the surface excess, , with units of moles m-2. Neutron 

reflectometry and surface tension have been used in previous studies to determine the variation in 

surface excess with concentration of the surfactants used in this study; SDS,13 C12TAB,14 C14TAB15, 16 

and C16TAB.17, 18 

The cohesive forces between liquid molecules at the interface are responsible for the phenomenon of 

surface tension. As interfacial molecules do not have molecules on all sides of them, they consequently 

cohere more strongly to those directly associated with them on the surface, resulting in a tendency for 

the surface to contract. The surface tension, , with units of J m-2 or N m-1, is defined as the reversible 

work required to increase the area of a surface by 1 m2.  When surfactant molecules adsorb at the 

interface they reduce the surface tension as they have replaced some of the water molecules at the 

interface.  As the resulting surfactant-water interaction is weaker than the water-water molecule 

interaction, and the force for contraction decreases. At bulk surfactant concentrations below the cmc, 

the surface tension decreases with increasing bulk concentration, as the interfacial surfactant coverage 

increases. At low surfactant concentrations a gradual decrease in surface tension is observed 

corresponding to the increase in the surface excess (). At concentrations close to the cmc,  tends to a 

limiting value, and the surface tension appears almost linear. Once the surface coverage reaches its 

limiting value, increases in the bulk surfactant concentration have no further effect on the surface 
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tension. Figure 1.4 shows a schematic representation of the relationship between surface tension data 

for a surfactant and the surface coverage.  

 

Figure 1.4. Schematic of the relationship between the surface tension, , and surface excess, , of a surfactant, which explains 

how the interfacial adsorption isotherm can be obtained from the surface tension measurement and the Gibbs equation.  

The Gibbs equation is used to quantify the adsorption at the interface using the relationships between 

the surface excess of surfactant and the surface tension, as shown in Figure 1.4. At constant 

temperature and pressure it is given by 

                (1.1)

         

where d is the change in surface tension, i is the surface excess of component i, and dµi is the change 

in the chemical potential of the adsorbed component i. The change in chemical potential of component 

i on mixing it with the other component is given by 

                 (1.2)

           














Where R is the gas constant (8.314 J mol-1K-1), T is the temperature, and ai the activity of component i. 

The surface tension of a system of i components is then given by 

                (1.3)

Which for a solution of only water (1) and a surfactant (2) is  

           )        (1.4)

     

The surface excess is dependent on the location for the plane dividing the liquid and gas phase. If the 

plane such that 1= 0 is chosen19 then 

   
 


 




           (1.5)

       

For ideal, dilute solutions the Gibbs equation can be re-written as: 

   


 
            (1.6)

        

Where activity is replaced by the bulk surfactant concentration, c. nM  is a constant which depends on 

the number of species adsorbing at the surface. For a non-ionic surfactant nM = 1, however for an ionic 

surfactant nM depends on the valency of the counterion, where nM = 2 for a 1:1 electrolyte, whilst in 

excess added electrolyte nM = 1.  

Surface tension measurements examine the reduction in the free energy of the interface with respect to 

the bulk activity, hence although surface tension measurements can be used to determine  using 

Equation 1.5, it is not purely a surface technique, and changes in the bulk solution can affect the 

surface tension.    


 
         A 

more versatile and direct approach to determining  is NR, discussed in Chapter 3. 
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1.3.3. Dynamic Adsorption of Surfactants on the OFC 

Surfactants in both commercial and biological applications are rarely used under equilibrium 

conditions, with their dynamic interfacial properties important in foaming processes, detergency, 

coatings, solubilisation and for lung surfactants.20 As a consequence it is essential to investigate the 

kinetics of surfactant adsorption at the air/water interface in order to be able to relate lab-based 

experiments to real applications of surfactants. Dynamic surfactant adsorption is most commonly 

studied using experimental methodologies which create a fresh air/water interface, as discussed below.  

Creation of a fresh interface for a surfactant solution leads to dynamic adsorption of surfactant to the 

interface. This adsorption of surfactant is driven by a concentration gradient from the bulk solution to 

the clean interface which exists in the near-surface region known as the ‘diffusion layer’. Models of 

adsorption have to include terms accounting for this diffusion of surfactant to the interface, its 

adsorption, and back diffusion of surfactant which does not adsorb at the interface.  This is described 

by the Ward-Tordai equation21 

  
  


    

         (1.7) 

where c is the bulk concentration of surfactant, D is the monomer diffusion coefficient, cs is the sub-

surface concentration, and  is a dummy variable of integration. The first term on the right hand side, 

which is positive accounts for the situation where a monomer reaching the interface by diffusion 

adsorbs at a vacant site. The second term, which is negative, accounts for back diffusion of surfactant 

molecules from the sub-surface to the bulk solution when there is not a free site for surfactant 

adsorption. Back diffusion occurs to a greater extent with increasing subsurface concentration.  

The situation described by the Ward-Tordai Equation assumes that adsorption and desorption to and 

from the interface are fast compared to diffusion of surfactant to the sub-surface layer. Mass transport 

of surfactant to the sub surface layer is the rate-limiting step in adsorption. However in some systems, 

adsorption rather than mass transport may be the rate-limiting step due to barriers to adsorption of 

surfactant at the interface. Such adsorption barriers can arise from electrostatic repulsions between 

adsorbing surfactants, steric considerations for large surfactant molecules, micellar breakdown, or 

rearrangements at the interface.  

In order to study the adsorption kinetics, a system which creates an expanding or contracting air/liquid 

interface is required. The simplest way to examine expanding and contracting air/water interfaces is by 

use of a Langmuir trough, a piece of equipment which allows the compression and expansion of 
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monolayers at an air/water interface by the use of moving barriers.22  A common approach to 

examining expanding and contracting interfaces is the oscillating bubble method, which is based on the 

formation of a spherical bubble at the tip of a needle immersed in a surfactant solution by injecting and 

withdrawing gas causing period surface expansion and contraction.23 The changes in the bubble size 

and shape can be used to monitor the adsorption and desorption of surfactant.  The maximum bubble 

pressure (MBP) method also blows bubbles in a liquid by blowing bubbles of inert gas through a 

defined capillary. The gas pressure is increased until a bubble appears, and is then kept constant with 

the surface age given by the time between consecutive bubbles. This enables determination of the 

dynamic surface tension of the solution, although interpretation can be complicated as expansion rates 

vary during bubble growth.20 The MBP method has been extensively used to study surfactant 

adsorption by several groups, with the references24-26 being a few examples. MBP method is one of the 

principal techniques to examine surfactant adsorption on millisecond timescales along with the 

oscillating jet. The oscillating jet ejects surfactant solution from an elliptical nozzle under pressure. 

The non-uniform nozzle shape makes the jet cross section unstable, and it oscillates sinusoidally 

around its equilibrium cross sectional shape, at a frequency determined by the surface tension and flow. 

Surface tension acts to restore the liquid to the equilibrium cross sectional shape, hence the jet can be 

used to determine the dynamic surface tension of the surfactant solution.  

The overflowing cylinder (OFC), the device used in this project to examine adsorption dynamics at the 

air/water interface, creates a continuously expanding air/water interface on a 0.1-1 s timescale. The 

interface of the OFC is large, flat and stable, making it possible to study it using a variety of 

spectroscopic, reflectometry and scattering based techniques. Bain and co-workers have used the OFC 

extensively in the last two decades to study dynamic adsorption from a range of surfactant solutions 

using a range of non-invasive experimental techniques.27-36  The OFC, and its characteristics and 

operation will be discussed in more detail in Chapter 2. More recently, Bain et al. have developed a 

liquid jet for the study of adsorption dynamics of surfactants using ellipsometry and laser Doppler 

velocimetry.37, 38 The liquid jet is a complementary methodology to the overflowing cylinder, as it 

enables the study of adsorption on a faster timescale (1-100 ms) than on the OFC.  
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1.4. Polymer/Surfactant Mixtures  

Formulations containing mixtures of polymers and surfactants are extensively used in industrial and 

commercial formulations as detergents, foam stabilizers, wetting agents, emulsifiers and rheology 

modifiers. As a consequence, their behavior both in the bulk and at interfaces is widely studied, 

although bulk phase studies are predominant. The bulk and interfacial behaviour of a 

polymer/surfactant system is determined by the strength of the electrostatic and hydrophobic 

interactions between the two components. Electrostatic interactions occur between oppositely charged 

groups on the polymer chain and surfactant headgroups, favouring interactions, as do hydrophobic 

interactions between the surfactant chains, although repulsive interactions between the surfactant 

headgroups can limit interactions. Many factors influence the interactions between the polymer and 

surfactant, including the polymer molecular weight, degree of branching, charge density and backbone 

rigidity, along with the nature of the surfactant headgroup, the chain length of the surfactant, the 

concentrations of both components, and the presence or absence of added electrolyte.  

Interactions between polymers and surfactants lead to the formation of complexes in the bulk solution 

and to changes in the adsorption at interfaces. Bulk polymer/surfactant complexes generally consist of 

a single polymer chain to which surfactant monomers39, 40 or micelles41-43 are bound, although multi-

chain complexes can also occur. The amount of surfactant bound to polymer molecules increases with 

increasing bulk surfactant concentration, until, at close to the charge match point, aggregation and 

precipitation of the complexes occurs in many oppositely charged polymer/surfactant systems.44, 45 

Interactions between polymer and surfactant at an air/water or solid/water interface can significantly 

alter the composition and structure of the adsorbed layer in comparison to that which would adsorb 

from a solution of either component alone. The two main effects are synergistic adsorption, which 

increases the adsorbed amount of both components at the interface, and competitive adsorption, where 

both components adsorb at the interface independently, but they compete for free space. Furthermore, 

it is important to remember that bulk and interfacial behaviours of polymer/surfactant mixtures are not 

always independent, especially when precipitation occurs, depleting the solution of surface active 

species. It is therefore important to consider both the bulk and interfacial behaviour of a given 

polymer/surfactant systems in order to understand what controls its adsorption at an interface. Several 

comprehensive reviews of the bulk43, 46 and interfacial behaviour47-49 of such systems have been 

published in recent years.  

In the following pages I discuss the previous studies made of the bulk and interfacial behaviour of a 

range of polymer/surfactant systems in order to put the work presented in this thesis into the wider 
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context. Many groups have studied polymer/surfactant mixtures, and an exhaustive review of this work 

would be lengthy. As a consequence I restrict myself here to a general introduction to the bulk and 

behaviour of polymer/surfactant systems, whilst reviews of the previous work conducted on the 

polymer/surfactant systems discussed in this thesis are given at the start of the relevant chapters.  

 

1.4.1. Bulk Phase Behaviour of Polymer/Surfactant Mixtures 

Co-operative binding of surfactant to polymer molecules occurs above a critical aggregation 

concentration (cac) which is much lower than the cmc of the pure surfactant solution. At surfactant 

concentrations below the cac, no complexation occurs in the bulk solution. As the surfactant 

concentration is increased above the cac, the amount of surfactant bound to polymer molecules 

increases, whilst the free surfactant concentration stays constant. Eventually a point is reached where 

the polymer molecules are saturated with surfactant, and further increases in the bulk surfactant 

solution increase the concentration of free surfactant molecules until the cmc of the mixture is reached 

and free micelles form.  

 

 

 

 

 

 

Figure 1.5. Schematic representation of the change in surface tension, , with bulk surfactant concentration, csurf, of a mixture 

of a nonionic polymer and surfactant where the polymer concentration is constant (orange line) as compared with that of a 

pure surfactant (blue line).  

The classical picture of of Jones50 and Lange51 is of polymer/surfactant complexes which consist of 

polymer-wrapped surfactant micelles, where several micelles associate with single polymer molecule, 

and the complex looks like ‘beads on a chain’.41, 50-54 This model was derived to explain surface tension 

measurements made on mixtures of neutral polymers with ionic surfactants, with a form similar to the 

schematic shown in Figure 1.5.50, 51 For such weakly interacting polymer/surfactant systems, surface 

tension measurements yield information about both the interfacial and bulk behaviour of the mixture. 
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In the model of Jones, the breakpoints T1, T2 and T3 in the surface tension data correspond to bulk 

complexation, with T1 being the onset of complexation, i.e. the cac, T2 being the point where polymer 

is saturated with micelles, and T3 the onset of micelle formation in the bulk. In the decades since the 

original studies of Jones, this model of the bulk phase behaviour of non-ionic polymer/ionic surfactant 

mixtures has been supported by numerous studies, using a wide range of experimental techniques, of 

which the references 3, 54-61 are only a small selection.   

In the decades since the work of Jones et al., many groups have studied the bulk interactions between 

charged or uncharged polymers and surfactants in order to determine the extent to which hydrophobic 

and electrostatic interactions between polymer and surfactant favour complexation for a given system. 

If a polymer is charged, it can be considered as having a number of charged binding ‘sites’ to which 

individual surfactant molecules are electrostatically attracted and can bind.43, 62 From this electrostatic 

argument alone we might expect individual surfactant molecules to be bound to a polymer molecule.  

Although this may be a viable binding model for some systems,39, 63-67 in this configuration the 

hydrophobic part of the bound surfactant continues to be surrounded by water molecules, which is an 

energetically unfavourable state. Unless the electrostatic interaction between the charged groups can 

considerably outweigh this negative hydrophobic driving force, it is likely that polymer-monomer 

complexes only exist as a pre-cursor to polymer-micelle complexes. The binding of one surfactant to a 

polymer molecule effectively acts as a nucleation point, promoting clustering of surfactant molecules 

and the formation of micelles.62, 68 

The presence of polymer in a solution with surfactant significantly increases the favourability of 

surfactant micelle formation as the polymer can wrap around a surfactant micelle, shielding exposed 

hydrophobic regions from water, and in the case of polyelectrolytes insulating the repulsive 

interactions between the charged surfactant headgroups.69, 70 Furthermore, the interaction of a polymer 

molecule with a micelle is significantly more entropically favourable than the interactions of a large 

number of small counterions with the micelle. These effects stabilize micelles, causing the point at 

which micelles form in the mixture, the cac, to be considerably lower than the cmc of the pure 

surfactant. As a consequence of the stabilization of micelles by polymer molecules, ‘beads on a chain’ 

type complexes form for a large range of polymer/surfactant mixtures. The surfactant micelles which 

form in these complexes usually have a smaller aggregation number than that of the free surfactant 

micelles71 due to the enthalpic cost of aggregation on the polymer and the stabilization of the micelles 

by the polymer due to reduced water-hydrocarbon contact43 and decreased headgroup repulsion.55 The 

smallest possible polymer-micelle complex that can form is a single polymer-wrapped micelle, and for 

this to form the number of polymer monomers needs to equal or exceed the aggregation number of a 

surfactant micelle,56, 72-75 which defines the minimum polymer molecular weight for complexation. 
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The stronger the driving force for complexation of polymer and surfactant, the lower the cac of the 

mixture compared to the cmc of the pure surfactant. Breuer and Robb76 were the first to try to classify 

polymer/surfactant mixtures by their tendency to interact, and many studies since have tried to 

determine the factors controlling complexation in a given polymer/surfactant system. Increasing the 

alkyl chain length of a surfactant increases its hydrophobicity, which increases the driving force for 

both interfacial adsorption and micellisation in a pure surfactant solution, lowering the cmc and 

increasing the micellar aggregation number.69, 77 The greater the charge density of the polymer the 

larger the amount of surfactant that can associate with it before the cmc of the system is reached.78 

Polymer flexibility also significantly affects the binding process,79 as polymer molecules need to be 

able to orient their charged groups for interaction and to wrap around surfactant micelles in order to 

complex. Furthermore, addition of simple electrolyte to a polymer/surfactant mixture decreases the 

electrostatic driving force for interactions, increasing the cac.80 

In a wide range of polymer/surfactant mixtures, bulk complexes aggregate once their net charge is low 

as they have lost their colloidal stability, and phase separation occurs, with the aggregates precipitating 

out of the solution.44, 45, 81-85 In the model of Hansson, phase separation occurs when the repulsive 

interaction between surfactant micelles due to the electric double layer are removed as polymer 

replaces the small counter-ions around the micelle, the attractive interaction between micelles then 

dominates and phase separation occurs.84 The group of Meszaros has studied the bulk phase behaviour 

of a number of precipitating polymer/surfactant systems in recent years, describing them in terms of 

characteristic surfactant concentration ranges.40, 86-88 At low bulk surfactant concentration a kinetically 

stable colloidal dispersion of complexes forms, and the solutions are optically transparent. Above a 

critical surfactant concentration these complexes collapse, and precipitation can occur when their 

charge density is low. These solutions are turbid. The region where complexes aggregate and 

precipitation occurs is commonly defined as the ‘phase separation region’. As the surfactant 

concentration is increased further, excess surfactant attaches to the outside of the aggregates and charge 

reversal occurs, leading to resolubilisation, and the solutions become clear again. Associative phase 

separation is driven by the entropy gained when counterions are released from the polyelectrolyte and 

ionic surfactant.52  

Stronger polymer/surfactant interactions can increase the bulk surfactant concentration range over 

which phase separation occurs. For example, for the PSS/CnTAB systems, phase separation increases 

with surfactant hydrophobicity.80, 89 The addition of simple electrolyte to a polymer/surfactant system 

leads to a reduction in the two-phase region,81 as it decreases the electrostatic interactions between the 

polymer and surfactant.89 However, for some systems, the addition of electrolyte can cause broadening 

of the precipitation concentration range.87, 88 For PSS/CTAB, small to moderate amounts of added 
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electrolyte increase the width of the phase separation region, whilst larger concentrations prevent 

surfactant binding to the polyelectrolyte.90 

Several recent studies have shown that the formation of bulk aggregates in strongly interacting 

polymer/surfactant systems is a non-equilibrium process which is dependent on the mixing procedure. 

Work from the groups of Claesson91, 92 and Meszárós93, 94 has demonstrated that the mixing protocol 

affects the formation of kinetically trapped non-equilibrium aggregates. The effect of mixing can be 

understood in terms of the local rate of coagulation of the polymer/surfactant particles, which is largely 

dependent on concentration gradients present during mixing.94 These studies showed that in order to 

have reproducible bulk phase behaviour for a given strongly interacting polymer/surfactant system for 

which phase separation occurs, strict control of the mixing methodology and sample preparation is 

necessary.  

 

1.4.2. Adsorption from Polymer/Surfactant Mixtures at Interfaces 

Just as polymers and surfactants associate in the bulk solution, they can also associate at interfaces due 

to both the strong associative interactions between them and the high driving force for surfactant to 

adsorb at interfaces rather than being in solution. Many applications of formulations containing 

mixtures of polymers and surfactants are designed for their surface properties. Consequently, studies of 

adsorption from polymer/surfactant mixtures at the air/water and solid/water interfaces have become 

increasingly common in recent decades, with several reviews discussing the behaviour of mixtures at 

both types of interface.4, 46-49, 95, 96  

At the air/water interface, adsorption of both polymer and surfactant can occur below the bulk cac of 

the system. For non-ionic polymers, which may interact weakly with surfactant, this is usually due to 

the inherent surface activity of both components. However for non-surface active polyelectrolytes 

interfacial adsorption below the bulk cac can be attributed to interactions between the two components 

at the interface, which cause synergistic adsorption. For such polyelectrolyte/surfactant mixtures the 

adsorbed material at low bulk surfactant concentrations usually has the form of a surfactant monolayer 

to which polymer is associated. At higher bulk surfactant concentrations, in regions where bulk phase 

separation is seen (as discussed above), thicker adsorbed layers are sometimes observed. Adsorption 

and interaction of polymer and surfactant can be examined using a large range of techniques including 

surface tensiometry, ellipsometry, neutron and X-ray reflectivity, atomic force microscopy, and 

interfacial rheology.  
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Adsorption of polymer/surfactant mixtures at the solid/water interface is also widely studied owing to 

the wide range of applications which utilise such adsorption. Whilst at the air/water interface 

adsorption is determined by interactions between the polymer and surfactant in solution, at the 

solid/water interface interactions between the solid surface and the polymer, surfactant, 

polymer/surfactant complexes, and solution all affect the adsorption behaviour. The interfacial 

behaviour of polymer/surfactant mixtures therefore depends strongly on the nature of the surface, i.e. 

whether the surface exhibits hydrophobicity or hydrophilicity, and whether it is charged or not. 

Adsorption at hydrophobic interfaces is similar to that at the air/water interface except that the system 

is confined; adsorption occurs well below the cac. At a hydrophilic surface adsorption of both 

components does not occur until a polymer/surfactant mixture reaches its cac.  

Studies of adsorption at the solid/water interface from polymer/surfactant mixtures are generally 

conducted in one of two ways, addition of surfactant to pre-adsorbed polymer layers,97or adsorption 

from pre-mixed polymer/surfactant solutions. In both cases the presence of surfactant has a significant 

effect on polymer adsorption. Sequential additions of surfactant to adsorbed polymer cause the 

polymer to adopt a more extended conformation away from the surface as surfactant interacts with the 

polymer.98 The polymer layer can even be desorbed due to interactions with the surfactant unless the 

interaction between the polymer and surface is very strong. Adsorption from pre-mixed 

polymer/surfactant solutions will depend on the bulk phase behaviour, whether there are 

polymer/surfactant complexes and aggregates present in the bulk solution. The presence of surfactant 

only enhances adsorption at surfactant concentrations above the cac but below the bulk phase 

separation region, where the adsorbed amount usually decreases.99 100 Many studies of adsorption at the 

solid-water interface also examine the effect of rinsing the surface, as this is relevant to many 

applications. In different systems this can lead to complete removal or increased deposition of 

material.99 As this thesis is concerned with adsorption at the air/water interface, I will not discuss 

studies at the solid/water interface in the following section. More information on such studies can be 

found in the reviews4, 48, 96. 

In the following section, I present a survey of the main studies of adsorption from polymer/surfactant 

mixtures at the air/water interface; further details of the previous work performed on systems studied as 

part of this thesis are given in the relevant chapters.  
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1.4.2.1. Adsorption from Polymer/Surfactant Mixtures at the Air/Water Interface  

The first systematic investigations of adsorption at the air/water interface from polymer/surfactant 

systems were those of Jones and Lange, who examined mixtures of non-ionic polymers with ionic 

surfactants using surface tensiometry.50, 51 For such weakly interacting polymer/surfactant systems, 

surface tension measurements yield information about both the interfacial and bulk behaviour of the 

mixture, as discussed in section 1.4.1. Thomas and Penfold used neutron reflectometry (NR) to 

determine directly the composition of the material adsorbed at the air/water interface from mixtures of 

non-ionic polymers and surfactants including PEO/SDS and poly(vinyl pyrrolidone) [PVP]/SDS and to 

relate the composition to the surface tension behaviour of these systems.101-103 Their data suggest that 

competitive adsorption occurs in these systems, with both surface-active polymer and surfactant 

adsorbing at low surfactant concentrations, but polymer progressively displaced from the interface with 

increasing surfactant coverage until it is no longer adsorbed at surfactant concentrations above the cac. 

Cooke et al. attributed this displacement of polymer to a combination of the increasing surface pressure 

on surfactant adsorption and bulk complex formation.102 However, more recent studies have shown that 

PEO can continue to adsorb at the interface even at high surfactant coverages,104 attributing this to the 

fact that only a small proportion of the monomers of a non-ionic polymer need to be adsorbed for it to 

remain at the interface.105, 106  

Goddard and co-workers were the first to examine adsorption at the air/water interface from oppositely 

charged polymer/surfactant mixtures. 62, 107 They demonstrated that the strong electrostatic interactions 

between the polymer and surfactant resulted in very different adsorption behaviour to that of uncharged 

polymers, with surface tension data which could not be described by Jones’ models. Goddard et al. 

developed a model for interfacial adsorption from strongly interacting systems which explains the 

observed lowering of the surface tension below the cac of the system in terms of synergistic adsorption 

of polymer and surfactant molecules at the interface. In this model, a monolayer of surfactant ions 

adsorbs at the interface and electrostatically attracts the charged polymer, which acts as counter-ions to 

the head-groups of the adsorbed surfactant, displacing the surfactant counter-ions from the interface. 

Furthermore, bulk aggregation effectively strips polymer from the interface in the phase separation 

region, with only surfactant adsorbing at high bulk concentrations. Interfacial adsorption of complexes 

which have formed in the bulk solution is not allowed for in this model.  

Since the work of Goddard, several groups have examined adsorption from oppositely charged 

polymer/surfactant systems at the air/water interface, including a substantial body of work by the group 

of Thomas and Penfold using neutron reflectometry.1, 108-118 These studies have shown that the 
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adsorption behaviour of such systems can be more varied than the above model suggests, depending on 

the nature of the two components. The work of Taylor et al. led to the classification of 

polymer/surfactant mixtures into two broad types depending on their interfacial adsorption behaviour. 
49, 109, 110, 116, 117 ‘Type 1’ systems such as PSS/C12TAB exhibit adsorption of thick layers consisting of 

more than a surfactant monolayer, even exhibiting multilayers in some cases. In contrast, ‘Type 2’ 

systems such as poly(dimethyldiallylammonium chloride) [PDMDAAC]/SDS adsorb with a compact 

layer at the interface, more characteristic of weakly interacting systems, but also exhibit a characteristic 

‘cliff edge peak’ in the surface tension isotherm, as shown in Figure 1.6.  



Figure 1.6. Surface tension of PDMAAC/SDS mixtures as a function of surfactant concentration reproduced from the work of 

Staples et al.110  

The two different types of surface tension and adsorption behaviour in the work of Taylor et al were 

rationalized by the authors in terms of the competition between the formation of two basic types of 

polymer/surfactant complex, one at the interface, denoted PSs and a polymer/micelle complex in the 

bulk solution, PSM.49, 116, 117 In order to explain multilayer adsorption they also proposed the formation 

of a second sub-surface complex, PSs’, which could bind to the underside of a layer of surface 

complexes, PSs.  The formation of PSs’ rather than bulk complexes, PSM, was suggested to depend on 

the gap in stability between PSs and PSM being large. If the gap in stability is too small, PSM forms at 

lower surfactant concentrations, and PSs’ does not form. This results not only in the formation of no 

interfacial multilayers but also in the depletion of polymer and/or surfactant from the interface into 

solution, which is associated with a peak in the surface tension. This description of adsorption has been 

used by Bell et al. as the basis of their thermodynamic model for adsorption from polymer/surfactant 

systems for a two-phase (air/liquid) system at equilibrium119, 120.   

Other studies performed on the systems classified as ‘Type 1’ and ‘Type 2’ by Taylor et al., have 

suggested alternative explanations for the trends in interfacial adsorbed amount and surface tension, 






linking the interfacial behaviour to changes in the bulk phase behaviour including bulk aggregation, 

which is not included in the model discussed above. In their studies of PSS/CnTAB mixtures, Monteux 

et al.,121-123 and Kristen et al.124 demonstrated that surface gels and foams are only stable in 

concentration regions where bulk precipitation does not occur. Near charge equivalence, aggregates 

form and films at the air/water interface collapse.  Monteux et al. attributed this behaviour to the 

decrease in favourability of interfacial adsorption with increasing phase separation.123 Following from 

this work, the dynamic studies of Noskov et al. on the same systems demonstrated a significant  

decrease in surface elasticity of some polymer/surfactant mixtures near the charge equivalence point of 

the systems, and attributed this to the formation of a heterogeneous film containing microgel 

particles.125-127  

In the examination of other polymer/surfactant mixtures such as that of PEI and SDS, different 

interpretations of the interfacial behaviour are reached if the bulk phase behaviour is also considered. 

The work of Penfold et al. showed using NR measurements that multilayer adsorption can occur in 

PEI/SDS at high pH, but not at low pH.1, 112, 113 The work of Tonigold et al. on the same system (albeit 

using a higher molecular weight polymer) showed that bulk polymer/surfactant aggregates could be 

incorporated into the interfacial layer. 128 At pH 4, where Penfold et al. observed monolayer 

adsorption, these aggregates were only at the interface due to the sample preparation methods and 

could be removed. However at pH 10, where Penfold et al. observed multilayer adsorption, Tonigold et 

al. demonstrated that bulk aggregates could adsorb spontaneously at the interface.128 It is clear from the 

work of such as Monteux and co-workers, Noskov and co-workers, and Tonigold et al., that interfacial 

adsorption from interacting polymer/surfactant mixtures cannot, as previously discussed, be considered 

in isolation from their bulk phase behaviour.  

The recent work of Campbell et al. on PDADMAC/SDS has examined the link between the bulk phase 

behaviour and the production of the ‘cliff edge peak’ in the surface tension129, 130 These studies 

demonstrated that the peak is produced by slow changes in the bulk phase behavior resulting in 

comprehensive precipitation of virtually all of the polymer from the liquid phase after three days.  

Furthermore it was also demonstrated that changes in the sample preparation or handling could result 

in vastly different surface tension and adsorption behaviour. In their most recent study, the authors 

have demonstrated that interfacial multilayers observed for this system originate from the transport of 

structured bulk aggregates under gravity rather than a self-assembly process initiated by the presence 

of the interface itself.131 The non-equilibrium nature of this system has therefore been comprehensively 

and systematically demonstrated. The same authors have recently shown that a surface tension peak 

can form in the PSS/C12TAB system in the region where bulk phase separation occurs, despite the fact 
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that it was classified as ‘Type 1’ by Taylor et al. (compared to the ‘Type 2’ classification of 

PDADMAC/SDS).132 It is clear from these studies that conclusions about the interfacial adsorption 

mechanism cannot be reached for interacting polymer/surfactant mixtures unless the effect of the bulk 

phase behaviour is fully understood and controlled.   

 

1.4.2.2. Adsorption Isotherms  

The adsorption of surface active species at the air/water interface is often described by an adsorption 

isotherm. In order to give some context to the discussions of adsorption mechanisms of 

polymer/surfactant mixtures which follow in this thesis, I will briefly discuss here the basis of 

adsorption isotherms of pure surfactants, binary surfactant mixtures, and the possible extension to 

polymer/surfactant mixtures. The following discussion follows the formalism of Kralchevsky,133 within 

which subscript 1 refers to surfactant ions (eg DS-), subscript 2 to surfactant counter ions (eg Na+), 

subscript 3 to added counterions (eg Cl- from added NaCl) and subscript 4 denotes non-ionic polymer 

or surfactant molecules.  

The simplest example of adsorption is that of a pure non-ionic surfactant, as only one species adsorbs 

at the interface, and its adsorption can be accounted for by the van der Waals isotherm:  

  


  


 


       (1.8) 

where K4 is the adsorption constant, c4 is the concentration of species, 44 is the excluded area per mole 

at the interface, 4 is the surface excess of surfactant, and 44 is the Van der Waals interaction 

parameter between the non-ionic surfactant molecules. Such an isotherm has been shown in previous 

studies to provide a good fit to adsorption data recorded on the OFC for non-ionic surfactants.36  

For an ionic surfactant in the absence of added salt, the binding of the counter-ion to the surfactant at 

the interface also needs to be accounted for in the adsorption isotherm. For this purpose, the van der 

Waals isotherm can be coupled to the Stern isotherm for counter-ion binding to give 

    


  
 


     (1.9) 



 


          (1.10) 
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Where KSt is the Stern constant that describes the strength of binding of the counter-ion to the 

surfactant monolayer, and ci,Z=0 is not the same as cs in the mass transport equations.  

The version of the van der Waals isotherm which accounts for counter-ion binding ( Equation 1.9) can 

then be extended to describe adsorption from a binary mixture of an ionic surfactant with a neutral 

surfactant or surface active polymer (such as C14TAB and PEO in Chapter 5). In this model we need to 

add terms to account for the interactions between the two species at the interface, and the space taken 

up by the combination of the two species.  

    


 
       (1.11) 

where 14 is the interaction parameter between the surfactant ions and the polymer molecules in the 

monolayer. 14 is given by 

  




 

         (1.12) 

and  is the excluded area per mole, given by  

             (1.13) 

Where xi is the mole fraction of component i in the monolayer. This approach ( Equation 1.11) has 

been shown previously to be appropriate for a binary mixture of an ionic and a non-ionic surfactant.36  

In order to use the approach above to account for the adsorption from a mixture of an ionic surfactant 

and a charged polyelectrolyte (such as PSS and C12TAB in Chapter 6) in the presence of added 

electrolyte, we will need to account for the adsorption and interactions between five species which 

would significantly complicate the adsorption isotherm compared to Equation 1.11. Furthermore, the 

model used would depend on the assumptions or evidence for the structure of the adsorbed layer. For 

example, if we assume that the polymer acts only as a sub-layer to an adsorbed surfactant layer, it 

would take up no space at the interface. The main role of the polymer would then be to displace small 

ions from the surfactant layer, whilst the counter-ions would also be displaced from the polymer, and 

this would have to be accounted for in any calculation of the various  and  values. Conversely, if we 

assumed that polymer and surfactant co-adsorbed at the interface they would both take up space, and 

the isotherm would be dominated by firstly  for both the polymer and the surfactant, and secondly the 

relative sizes of the interaction parameters between the polymer and surfactant or between the 

surfactant or polymer molecules. In this situation the composition of the interfacial material would 

have to be used to determine the contribution of the small ions to the adsorption isotherm. Between the 
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two possibilities outlined above there are many other possible structures of the polymer/surfactant 

layer at the interface, which will affect the validity of any proposed adsorption isotherm for the 

mixture. If both the structure and composition of the material at the interface can be determined with 

complete certainty, it may be possible to extend the formalism of Kralchevsky to include interacting 

polymer/surfactant mixtures. However, as it will be seen in this thesis, it is difficult to fully determine 

the structure of the material which adsorbs at the interface of the OFC from interacting 

polymer/surfactant mixtures. As a consequence, the determination of adsorption isotherms for such 

mixtures is beyond the scope of the work presented in this thesis. Therefore, where it is relevant, the 

discussion will principally be based around assessing how the interactions between the two 

components affect the adsorption isotherm of each component alone.  

 

1.4.2.3. Adsorption from Polymer/Surfactant Systems on the OFC   

The research presented in this thesis examines the kinetics of adsorption of several polymer/surfactant 

mixtures using the overflowing cylinder. Although the majority of previous studies using the OFC 

have examined the adsorption dynamics of pure surfactants and surfactant mixtures,28, 30, 32-34, 36, 134 we 

can use a similar approach to examine adsorption from polymer/surfactant mixtures. The main aim for 

each polymer/surfactant system is to determine how the presence of polymer in the system affects the 

adsorption of surfactant and vice-versa. Pure surfactants generally adsorb under diffusion control;33, 134 

there is no barrier to adsorption at the interface and mass transport is the rate limiting step in the 

adsorption process, except at close to saturation coverage where adsorption commonly deviates from 

diffusion control. The presence of polymer in solution with surfactant is likely to affect the kinetics of 

surfactant adsorption in one of two ways, enhancing adsorption due to synergistic effects at the 

interface, or hindering surfactant adsorption due to the formation of large polymer/surfactant 

complexes which diffuse more slowly to the interface than surfactant molecules. The formation of 

large bulk species such as aggregates in polymer/surfactant mixtures will also affect the adsorption 

kinetics of the system, as large species cannot reach the OFC on the timescale of surface expansion and 

hence any species in a bulk aggregate are unlikely to contribute to the interfacial adsorption behaviour 

of the system.  

Noskov’s group has examined dynamic adsorption from polymer/surfactant mixtures using the 

oscillating barrier and oscillating drop methods.126, 127 These studies have shown that the formation of 

bulk aggregates causes an abrupt drop in the dynamic surface elasticity of these systems, implying that 

less material is adsorbed at the expanding interface. Studies using these methods are somewhat limited 
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to states of the interface near its static condition, unlike the OFC, which can examine 

polymer/surfactant adsorption under dynamic conditions closer to those under which formulations are 

used.  

One study of the adsorption of a polymer/surfactant system on the OFC precedes this thesis, that of the 

strongly interacting polymer/surfactant system PDMDAAC/SDS of Campbell et al.135 This study found 

that neither the amount nor the composition of the material at the expanding surface of the OFC bore 

any simple relationship to the composition of the bulk solution or that at the static air/water interface, 

and that no polymer adsorbed at the interface above the charge equivalence point of the system.  

In this thesis, the adsorption kinetics of a range of polymer/surfactant systems are examined using the 

OFC in order to try to determine the mechanism of interfacial adsorption for each mixture. The hope is 

that in developing an understanding of the factors which control dynamic adsorption in several 

different systems, we will be able to begin to predict both the static and dynamic adsorption behaviour 

of other polymer/surfactant mixtures in the future.  
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
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

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
 

 



 


 


 


 

 

 


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 


 


 


 


 


 


 


 

 


 

 



 



 


 



 









 


 

 


 


 



 


 

 


 


 


 


 


 


 



 


 








 


 



 


 
 


 

 



 






Chapter 2 . Experimental Techniques & Theory  

2.1. Overflowing Cylinder 

The overflowing cylinder (OFC) is a sample environment which creates a continuously expanding 

air/liquid interface. In an OFC, liquid flows up an inner cylinder and overflows its rim to be collected 

in an outer cylinder from where it is recycled by a pumping system. The interface expands radially 

from a central stagnation point towards the rim of the inner cylinder. Surface-active material which 

reaches the interface of the OFC can adsorb at the interface, however surface expansion causes 

adsorbed material to be continuously lost and replaced by other material, so that the adsorbed amount 

remains constant. The continuous adsorption and loss of material at the interface means that the OFC 

can be used as a platform for the study of adsorption kinetics of systems containing surface-active 

species. Examination of the adsorbed amount of material at the expanding interface enables us to 

obtain information about the mass transport and species in the bulk solution.  

. 

Figure 2.1.  Photograph of the overflowing cylinder used in this work in situ on the neutron beamline FIGARO.  

The steady-state nature of the interface of the OFC, along with the size of the interface created (80 

mm in diameter) enables adsorption kinetics to be studied on the OFC using a wide range of 

experimental techniques.  These include laser Doppler velocimetry1, ellipsometry2, 3, surface light 

scattering3, external reflection Fourier transform Infra-red spectroscopy, (ER-FTIRS)4, and neutron 

reflectometry5, 6. The OFC has been extensively employed in the Bain group to study the dynamic 

adsorption of many different systems using different combinations of these techniques. The systems 
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examined include the cationic alkyltrimethyl ammonium bromide surfactants (CnTABs),1, 7 

ammonium perfluorononanoate (APFN),6 non-ionic alkyl poly(ethylene glycol) ethers (CnEms),8 

mixtures of surfactants4 and polymer/surfactant mixtures.9 

The original OFC was designed at the Kodak laboratories by Padday10, and by Ferroni and Piccardi11, 

as a method of studying dynamic liquid systems, using a Wilhelmy plate to measure the dynamic 

surface tension. More recently, Manning-Benson et al12 altered the original OFC designs in order to 

use it in the study of adsorption kinetics of surfactants. The OFC used in the experiments presented in 

this thesis is very similar to the one designed by Manning-Benson, with only a few minor 

modifications. This OFC was commissioned for use at the Institut Laue-Langevin (ILL) both in the 

lab and on the NR beamline FIGARO, and is currently offered to users as a sample environment for 

their studies. A photograph of the OFC used in this study in situ on FIGARO is shown in Figure 2.1, 

and a schematic representation of the OFC is given in Figure 2.2.  

 

Figure 2.2. Schematic of the overflowing cylinder showing specific design features. The arrows blue arrows within the 

diagram indicate the direction of liquid flow.  

The OFC consists of two concentric cylinders of stainless steel. Within the inner cylinder, the 

combination of a Teflon flow straightener punched with evenly spaced, 3-mm holes and a small 


























circular resistance plate ensures an even flow profile through the cylinder. The cylinder is carefully 

leveled so that it overflows uniformly in all directions. The OFC is connected by Teflon tubing to a 

magnetic drive pump and two glass reservoirs. Reservoirs facilitate both the decoupling of pump 

vibrations from the cylinder, and control of the flow rate in the system. The flow rate was kept 

constant for all experiments, above the threshold value of around 15 cm3s-1 at which the surface 

properties become independent of the flow rate13, 14   (this decoupling of the surface and bulk flows in 

the presence of surfactants is a remarkable feature of the OFC that remains unexplained).  The 

wetting length on the outside of the inner cylinder,  lh, (as marked in Figure 2.2) was chosen to be 

large enough that the water in the moat around the inner cylinder does not influence the flow at the 

surface of the OFC (lh> 40 mm13).   

The whole system has been designed to be able to run on around 1.25 l, the minimum amount 

possible whilst still maintaining the same cylinder dimensions. Use of a minimum system volume is 

very important for NR experiments which involve the use of expensive deuterated materials. Smaller 

OFCs have been used previously9, and the interfacial properties have been shown to be independent 

of the cylinder dimensions13, however use of a smaller OFC gives rise to compromises in available 

flat area of the interface for study and this compromises the performance of NR measurements. On 

the OFC used in this study, the interface is flat over the central 30 mm for pure water, the most domed 

solution, as shown by data in Figure 3.12 in Chapter 3. Furthermore, the surface coverage, , is a 

quadratic function of the radial position (r),5, 15 hence the variation in properties with r near the centre 

of the cylinder is small. For the surfactant C16TAB,  has been shown to change by less than 5% of a 

monolayer over the central 40 mm of the cylinder.13 The combination of the flatness of the central 

area of the interface with the minimal variation in surface coverage in the same region makes the 

OFC ideal for study using techniques requiring a large surface area such as NR as well as other 

techniques. In this work, adsorption at the interface of the OFC is studied using a combination of 

ellipsometry, neutron reflectometry and laser Doppler velocimetry (LDV).  

The OFC expands radially from the central stagnation point, with a rate of surface expansion  = d ln 

A /dt, where A is the area of an element of the surface. For 2-D radial flow the surface expansion rate 

can be expressed in terms of the change in radial velocity, vr, with radial position,  

               (2.1)

         

For pure water  depends on the flow rate, but is around 0.6 s-1 for the flow rates used in this study. 

The presence of surfactant in the solution induces surface tension gradients, d/dr, which induce radial 
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flows at the interface due to the Marangoni effect. This causes a tenfold increase in vr with the radial 

position. This causes higher surface expansion rates (), typically 1 – 7 s-1. The radial velocity vr was 

measured as a function of r using laser Doppler velocimetry (LDV) as described in Section 2.2, and 

these values were used in Equation 2.1 to calculate . Further details of the fluid dynamics of the OFC 

are described elsewhere,14, 16 and will not be replicated at length in this thesis. 

The adsorption of material at the interface of the OFC is controlled by convection and mass transport 

to the region near to the interface and by the likelihood of adsorption from the sub-surface region. The 

quantitative model of the convection and mass transport of material to the interface of the OFC of Bain 

et al is similar to that of van Voorst Vader et al.16, 17, and is based on the principle that the adsorbed 

material lost from the interface through surface expansion is balanced by transport of molecules to the 

sub-surface by convection and diffusion. 

Mass transport of material in an OFC obeys the standard convection-diffusion equation, which for a 

non-ionic surfactant below the cmc can be written as  


     ,          (2.2)

     
where c and D are the concentration and diffusion coefficient of the surfactant and v is the fluid 

velocity. For an ionic surfactant this equation would also need to contain terms for the counterions and 

co-ions, and in a polymer/surfactant mixture, a further term for the polymer would also be necessary. 

However here, to explain the principle, I am only considering the most simple situation, adsorption 

from a solution containing only one species: a non-ionic surfactant.  

In the OFC the concentration gradients are much smaller in the radial than in the axial (z) direction, 

hence transport in the radial direction can be neglected. At steady state  ∂c/∂t =0. With use of the 

continuity equation,     , and the boundary condition vz = 0 at z = 0 (where z is the normal to the 

surface) which eliminates the convective term, gives  

      and             .                           (2.3.

Substituting into Equation 2.2 gives 

 
  


  .          (2.4.)

Expansion of the interface causes a decrease in the dynamic surface excess of the surfactant, dyn, 

which is replenished by diffusion to the interface. At steady-state these two fluxes are equal:
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   .          (2.2) 

Solving equation 2.4 subject to the boundary condition 2.516-18 gives 

              (2.3

where cs      All of the quantities in Equation 2.6 can be measured 

experimentally except cs, which is calculated using the experimental values of the other variables and 

used to analyse the adsorption kinetics of the system. 

For an ionic surfactant in the absence of salt, the self-diffusion coefficient in Equation 2.6 is replaced 

by the mutual diffusion coefficient.  With excess salt (as in the experiments here) D reverts to the self-

diffusion coefficient since the electrolyte eliminates the migration fields. For a mixture of non-

interacting monomeric components, Equation 2.6 applies to each of the components in the mixture.19 

For a surfactant solution above the cmc, the adsorption model must also account for the diffusion of 

micelles and monomers and their interconversion.20, 21 Valkovska et al developed a quantitative 

methodology for the calculation of the effective diffusion coefficient of surfactants in a solution in 

which the bulk concentration is above the cmc, assuming fast interconversion of micelles and 

monomers In this work we will develop an adsorption model to account for the adsorption from 

mixtures of polymers and surfactants, which form complexes in solution above the critical aggregation 

concentration as an extension of the approach of Valkovska et al  to the modeling of adsorption from 

micellar surfactant systems. This approach will be discussed at length in Chapter 6. 

Adsorption is described as being under diffusion, kinetic, or mixed kinetic/diffusion control depending 

on whether the overall rate of adsorption is dictated by mass transport, i.e. diffusion, convection, and 

migration in the bulk phase, or by the free energy barrier for adsorption to the interface. Under 

diffusion control, adsorbed surfactant is locally in equilibrium with surfactant in the sub-surface 

region, and the relationship between the dynamic surface excess, dyn, and the sub-surface 

concentration, cs, is equivalent to that between the equilibrium surface excess, dyn, and the bulk 

surfactant concentration, cb, dyn(cs) = eq(cb). For a pure surfactant adsorbing under diffusion control, 

saturation coverage of the interface of the OFC (max,dyn = max,eq) is not reached until the sub-surface 

concentration of surfactant, cs, reaches the cmc, which does not occur until the bulk surfactant 

concentration, cb, is significantly above the cmc on the OFC. We can determine whether adsorption of 

a surfactant on the OFC is under diffusion control by comparing dyn(cs) determined on the OFC using 

Equation 2.6 with an equilibrium isotherm, eq(cb), determined for the same system. This approach is 

used in Chapter 5 of this thesis for simple polymer/surfactant systems. An alternative approach in the 
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absence of an appropriate adsorption isotherm is comparison of the dyn data to the calculated amount 

of material which would adsorb under diffusion control, which can be approximated using Equation 

2.6 and setting cs = 0. This assumption can only be made when the surface is far from equilibrium, and 

there is no barrier to adsorption of material from the diffusion layer, as this results in dyn << eq and 

therefore in Equation 2.6 cs << cb, and hence we can replace cb-cs with cb (i.e. cs = 0).  

Two further possibilities exist for adsorption from a pure surfactant solution, if the barrier to adsorption 

from the subsurface layer to the interface is rate-determining, then cs = cb and diffusion plays no part in 

the adsorption kinetics. If the system is under mixed kinetic/diffusion control, cs is greater than it 

would be for a given  when the system is under diffusion control, but less than cb.  A barrier to 

adsorption may arise from (i) a lack of empty sites at the interface, (ii) re-orientation of the surfactant 

for adsorption, (iii) electrostatic or steric repulsions, or (iv) slow break-up of micelles. 

Although the above discussion is appropriate for the examination of surfactant adsorption, adsorption 

from mixtures of polymers and surfactants is more complicated due to interactions between the two 

components. We can consider the factors which affect adsorption from mixtures by analogy to the 

study of Day et al of adsorption from mixed surfactant systems on the OFC.19 This study showed that 

even in a non-interacting system, the surface composition does not generally reflect the bulk 

composition for a combination of thermodynamic reasons (one component is more surface active than 

the other) and kinetic reasons (one surfactant diffuses faster than the other). In Chapter 5, I will 

examine the kinetics of adsorption of non- and weakly-interacting polymer/surfactant systems. If there 

are interactions between the components in the system, one additionally needs to know the interaction 

parameters at the surface and, if applicable, in micelles (or polymer/surfactant complexes): the 

resulting adsorption kinetics can become very complicated. 22, 23  In Chapters 6 and 7, I will examine 

the kinetics of adsorption of interacting polymer/surfactant mixtures by extension from the principles 

of Day et al19 and Valkovska et al20 as discussed above. 
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2.2. Laser Doppler Velocimetry (LDV) 

Laser Doppler velocimetry (LDV) is used to determine the radial velocity profile and thus the surface 

expansion rate () of a solution on the OFC.16 The surface expansion rate is related to the surface 

velocity, vr, and radial position, r, by 14 

  
  

 

           (2.4

In LDV a laser beam is split into two equal parts which are then re-focussed on the same point at the 

surface of the OFC. An interference pattern is set up where the two beams cross. The spacing of the 

fringes in this pattern is given by 

  
            (2.5)

where φ is the half angle between the laser beams. For the measurements made in this thesis the half 

angle of crossing is 26.6°, and the plane of crossing was tilted 15 degrees from the horizontal. For 

LDV measurements at the interface of the OFC the fringes are set up perpendicular to the radial vector, 

so that material at the expanding interface passes through them. The solution is seeded with 

microscopic particles which pass through the fringes and scatter light with an intensity modulated at a 

frequency (f) determined by the spacing of the fringes and the speed of the particles perpendicular to 

the fringes (vr): 

  
            (

Light scattered from particles passing through the interference pattern is recorded using a 

photomultiplier tube and these signals are Fourier transformed into a plot of intensity against 

frequency. 

In the LDV measurements made as part of this thesis, a HeNe laser was used, and TiO2 particles (2µm, 

99%+ rutile, from Alfa)  were used to seed the solution, as they do not interact with the polymer or 

surfactant, and are not surface active. The measured Fourier transformed signals were averaged over 

100 scans and the frequency corresponding to the highest peak was converted into a surface velocity 

using  Equation 2.9.  

Previous studies have shown that vr changes significantly with the depth of the focus below the 

interface16 To confirm that measurements are made at the interface, the focus is lowered from above 

the surface until the first peaks in the Fourier transformed signal are observed. 
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To obtain  from vr, the frequency (and hence the surface velocity) is recorded as a function of radial 

position over a distance of up to 20 mm either side of the central stagnation point. Figure 2.3 shows the 

interference signal which results from a particle passing through the interference fringes at the interface 

of the OFC. This signal is Fourier transformed to obtain the frequency of the particle, and an average is 

taken over 100 sweeps.  



Figure 2.3. Photograph of the screen of the oscilloscope during LDV measurements, showing the signal which arises from a 
particle passing through the interference fringes along with the Fourier transform of this signal, and the average of these 
Fourier transforms over multiple signals.  

The measured frequency is converted into the surface velocity, vr, using Equation 2.9, and vr is then 

plotted as a function of the radial position, as shown in Figure 2.4.  

The surface expansion rate is obtained from the data in Figure 2.4 from a fit to the vr v r data, using a 

cubic function, vr = a1+a3r3. This can be combined with Equation 2.7 to give a function for  in terms 

of r: 

             

 (2.10) 

From the data in Figure 2.4 we can see that the cubic function can be neglected over the central region, 

as the relationship between vr and r is linear. This is the region over which NR measurements are made 

(as discussed in Chapter 3). At the centre of the cylinder the surface expansion rate is therefore given 

by         = 2a1.  
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Figure 2.4. Radial velocity as a function of radial position as recorded on 0.9 mM C12TAB with 0.1 M NaBr. The vr values 
one one side of the cylinder are plotted as negative (although negative velocities are not measured) in order to allow a line to 
be fitted through all of the data, and to allow for an offset in the position of the cylinder centre from 20 mm.  



. Surface expansion rate () against bulk surfactant concentration of C12TAB in the presence of 0.1 M NaBr. These 

data were measured as part of the work in this thesis, and are used in discussions in Chapters 6 and 7.  

For a given system, the surface expansion rate is usually measured as a function of surfactant 

concentration, and for pure surfactant solutions the shape of  v csurf is typically a ‘volcano plot’,20 as 

shown in Figure 2.5. The shape of the volcano can be qualitatively explained in terms of the ability of 

the surface to sustain surface tension gradients. At low bulk surfactant concentrations the surfactant 
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coverage is too low to cause significant deviations in the surface tension from that of pure water, hence 

no surface tension gradients accelerate the surface. At high surfactant concentrations the surface 

coverage is high and mass transport to the interface becomes fast compared to , hence the surface is 

unable to sustain surface tension gradients due to the rapid transport of surfactant from the bulk to the 

interface. Consequently as the surface reaches saturation (dyn max), the sub-surface concentration cs 

in Equation 2.7 approaches the bulk surfactant concentration. The largest Marangoni effects (resulting 

in the highest expansion rates) occur at bulk compositions where small changes in the coverage lead to 

big changes in the surface tension. Deviations from the classical volcano plot shape for pure surfactants 

or polymer/surfactant mixtures as studied here, may arise from kinetic barriers to adsorption which 

prevent the surface from reaching local equilibrium, or from changes in the adsorption mechanism.  





2.3. Ellipsometry 

2.3.1. Principles of Reflection of Light 

Before discussing the theory behind the technique of ellipsometry I will first discuss the principles of 

the reflection of light from an interface. This explanation serves a dual purpose, as due to wave-particle 

duality, neutron reflectometry can be explained using similar principles, as I will discuss in Chapter 3.  

The propagation of light through a medium is given by the refractive index of the medium, n. 

Fundamentally, n is defined as the factor by which the wavelength, , and velocity, v, of light are 

reduced in a medium with respect to their values in a vacuum. The speed of light in a medium is given 

by v = c/n, where c is the speed of light in a vacuum. This implies that a vacuum has a refractive index 

of one. The refractive index of materials varies with the wavelength of the incident light. In absorbing 

media, the refractive index is a complex number where the real part described refraction and the 

imaginary part accounts for adsorption. However, none of the materials examined as part of this project 

adsorb either visible or neutron wavelengths to a significant extent, and hence only real refractive 

indices (or neutron scattering length densities) will be considered here.  

When light travels between two different media, it changes direction, i.e. it is refracted. The 

relationship between the angle of incidence, i, the angle of refraction j, and the refractive indices of 

the incident and transmitting media (ni and nj respectively) is given by Snell’s law 
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            (2.11)  

When light is incident at an ideal (by which I mean laterally homogeneous, isotropic, planar and with 

zero roughness) interface between two media, not all of it is transmitted into the second medium, some 

of it is reflected, as shown schematically in Figure 2.6. As light is specularly reflected from the 

interface, the incident and reflected angles are equal, i = r. If ni > nj the reflection at the interface is 

termed ‘internal reflection’ and if ni < nj ‘external reflection’ occurs. 

The extent to which light is reflected from the interface or transmitted into the second medium can be 

calculated using Fresnel’s equations. However, the calculations of Fresnel’s coefficients depend on the 

polarisation of light, hence we will first discuss the polarisation of light.  

 

Figure 2.6. Schematic showing the geometry of reflection of light from an interface following Snell’s law,   , 
where i =r and nj > ni 

Unpolarised light has an equal distribution of electric field orientations in all directions. Light can be 

linearly polarised so that its electric vector is confined to one plane, perpendicular to the direction of 

travel. When light strikes a surface at a non-perpendicular angle, the reflection and transmission 

characteristics depend upon the direction of its planar polarisation. In order to discuss this it is simplest 

to define a co-ordinate system by the plane of the interface, and a plane perpendicular to the interface 

which contains the incident and reflected beams, the plane of incidence. Plane polarised light with its 

electric field vector in the plane of incidence is defined as p-polarised light, whilst plane polarised light 

with its electric field vector perpendicular to the plane of incidence (into and out of the page in 

) is defined as s-polarised light. 

The (complex) amplitude of the reflected beam relative to the incident beam (denoted rp and rs for p 

and s polarised light, respectively)  is given by Fresnel’s equation 




 




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 



       and     



     

 (2.12) 

The reflectivity, R, is the square of the amplitude of the Fresnel co-efficient,   .  
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 

The principles of reflection described above apply to a single ideal interface between two media with 

no adsorbed layer. For a single thin film at the air/water interface, such as a surfactant monolayer, 

reflection can be approximated as occurring from two interfaces, above and below the film. A three-

layer model can then be used to describe such a layer, where layer 1 is the air, layer 2 is the monolayer, 

and layer 3 is the solution, the reflectivity R123 is then given by  

    


       (2.13) 

where  is the change in phase of a wave which has travelled twice obliquely through the layer 

            (2.14) 

where h is the layer thickness, and  is the wavelength of the incoming light. For the purposes of these 

discussions we will assume that the layers are optically isotropic, and hence that they have a unique 

refractive index (as in Equations 2.12-2.14). This assumption is appropriate within the thin film limit, 

where the film thickness is much smaller than the wavelength of incident light, and not greater than a 

few tens of nm, as discussed below. If we were not in the thin film limit an optical matrix model24 is 








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commonly used to model stratified media consisting of more than three layers. This approach is 

unnecessary to account for our ellipsometry measurements, although it will be discussed further in the 

context of NR measurements in Chapter 3.  

 

2.3.2. Principles of Ellipsometry 

Ellipsometry can be used to characterise layers and films, both at the air/water interface and on solid 

substrates. Ellipsometry involves the reflection of a beam of light of known polarisation from an 

interface. Interaction of light with the interface causes a change in polarisation on reflection. The 

polarisation of the reflected light is then measured, and the change can be used to deduce the optical 

properties of the layer, the thickness and refractive index, the latter of which can give us an indication 

of the amount of material of known refractive index adsorbed at the interface. For thin films only one 

optical property of the layer can be determined from ellipsometry measurements (as discussed below), 

and this relates to the total surface excess of a single component. An incoming beam which is polarised 

at 45° to the plane of incidence has equal amplitudes of incoming s and p waves, the polarisation of 

each of which is changed to different extents upon reflection, depending on the refractive index and 

thickness of an isotropic layer. Ellipsometry measures the reflectivity ratio, r = rp/rs.  

Ellipsometry measurements commonly record the amplitude () and the phase shift () of r: 25 

  

           (2.15) 

Many studies use ellipsometry to determine the film thickness, d, the refractive index, n, and the 

extinction co-efficient, k, of thick films and adsorbed layers by measurement of r as a function of either 

 or , and fitting d, n, and k to Equation 2.13. From these parameters, an estimation of the surface 

excess, , can be made from the de Feijter’s formula for films adsorbed from the bulk solution (not 

spin coated films etc) from 

  
          (2.16) 

where dn/dc is the refractive index increment as a function of the bulk concentration. 

If an interface is ideal and ni there is an incident angle at which p polarised light is 

totally transmitted and the reflection coefficient for p-polarised light, rp, vanishes.  This angle is known 

as the Brewster angle, B. For a real interface there is no angle where rp vanishes and the Brewster 






angle is defined as the angle where the real part of r  Re(rp/rs) = 0, The imaginary part of rat 

the Brewster angle is known as the co-efficient of ellipticity,  

               (2.17) 

The coefficient of ellipticity can be considered to be a measurement of the deviation from ideality of 

the interface.  

At the air/liquid interface  is very insensitive to the optical properties of the thin film, therefore 

many studies of layers at the air/water interface simply present measurements of  at a given incident 

angle. In this work we perform our measurements at the Brewster angle of water, 53.1° at the 

wavelength of a HeNe laser 632.8 nm, and therefore instead present our data in terms of the co-

efficient of ellipticity, . The measured quantity, , the coefficient of ellipticity, can be related to the 

amount of material at the interface, although the relationship between the two is not necessarily 

simple.26 For a single component system such as a surfactant monolayer, approximate values of  can 

be obtained from  using a simple calibration function, as discussed later.  

Ellipsometry is a very convenient and accurate tool for the examination of material adsorbed at the 

interface of the OFC, as it is quick, local and extremely precise, with precision to < 0.2 % of a 

monolayer for pure surfactant adsorption, and a spatial resolution of < 1 mm.13 For measurements of 

polymer/surfactant mixtures, measurement of  can tell us about the total amount of material adsorbed 

at the air/water interface, however information which can be obtained from this single parameter is 

limited, and we cannot obtain compositional information about mixed layers. NR measurements 

(discussed in chapter 3) do allow us to obtain compositional information about mixed layers, and in the 

work presented in this thesis I have co-modelled data from one isotropic contrast of NR data and 

ellipsometry data in order to obtain compositional information (see Chapter 4).  
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2.3.3. Information obtained from Ellipsometry Measurements  

Ellipsometric measurements of a thin layer adsorbed at the air/water interface can give us an idea of 

the amount of material adsorbed at the interface. For a bare air/water interface, the ellipticity, , can 

be split up into contributions from the thickness and the roughness of the interface. Once a layer of 

surfactant or polymer is adsorbed, the ellipticity can give us information about the thickness and 

nature of the adsorbed layer.  

Drude derived equations for the reflectivity of an optically isotropic layer in terms of the ellipsometric 

thickness, , an integral function of the relative permittivities of the different media across the 

interface,27  

             (2.18) 

where , 1, 2 are the relative permittivities of the surface, the incident media (in this case air) and the 

substrate (in this case water), where 1 = 1 and 2 = 1.78 at the wavelength  of the He-Ne laser. 

Equation 2.18 is only useful in the thin film limit, when the thickness of the layer is much less than the 

wavelength of the incident light.  

If the layer is assumed to be uniform (i.e. the properties of the film are invariant with depth)  with a 

constant density, the relative permittivities can be taken out of the integral in Equation 2.16 and  

becomes a linear function of the thickness of the monolayer, d.   

  
 d         (2.19) 

Furthermore, the layer thickness, d, is proportional to the surface excess of the component, , as 

determined by NR measurements (Chapter 3).  

The ellipsometric thickness, , is related to the coefficient of ellipticity  (the imaginary part of the 

reflectivity at the Brewster angle) by 

  
 



           (2.20) 

As the relative permittivity of an adsorbed layer of a hydrocarbon surfactant () is greater than that of 

air (1) or water (2) Equations 2.18 and 2.19 lead to negative values of , which will be increasingly 

negative as  increases. In other words, as long as we remain in the thin film limit at the air/water 

interface,  becomes increasingly negative as  increases. However, although  is related  to the 
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surface excess of the component at the interface, it is impossible to tell using ellipsometry 

measurements alone whether a change in  for a thin film is associated with a change in thickness or 

density at the interface, as the three properties are interlinked.  

A simple and surprisingly effective model for surfactant monolayers treats the hydrocarbon chain as an 

oil film of constant density and uses an effective medium approximation to model the polar head 

groups in water. If we consider equations 2.19 and 2.20 together it is clear that for ‘oil-like’ behaviour 

of a surfactant layer at the air/water interface, where n is constant and only d changes, the ellipticity  

is proportional to the film thickness, d, and is therefore linearly related to the surface excess of 

surfactant, . If instead we had particle-like behaviour, d is constant and n for the inhomogeneous film 

is calculated from an effective medium approximation in which the particles are immersed in air or 

water or both. Provided the interface remains in the thin film limit, with an adsorbed layer thicknesses 

not greater than a few tens of nm, and n is constant,   is virtually independent of the film thickness at 

constant ; this allows us to model ellipsometry data without reproducing the multi-layer model 

obtained from fitting of NR data (as discussed in Chapter 3).  

Previous studies have shown that for many common hydrocarbon surfactants the relationship between 

 (determined by NR measurements) and is approximately linear, consistent with an oil-like 

adsorbed layer of constant density and changing thickness.7, 28, 29 For the parts of the surfactant 

immersed in water, the linearity between  and  is always good as long as the volume fraction is 

unity. However, for the hydrocarbon chain groups of the surfactant the linear relationship between  

and  breaks down at low coverages of surfactant as the molecules ‘lie down’, with a minimum layer 

thickness given by the chain diameter, and the layer becomes particle-like instead of oil-like. Previous 

studies have alternatively accounted for this behaviour at low coverages by the need to mix the sparse 

hydrocarbon chains with either air or water. 19, 29 Consequently, previous studies used a calibration plot 

of  v  to convert  measurements to values of  for a pure surfactant. This behaviour will not affect 

the relationship between  and  for the polymer, only for the surfactant. Data which demonstrate the 

extent of this effect for the surfactants used in this project are shown and discussed in Chapter 4.   

For a pure surfactant adsorbing at the interface, each of the constituent parts of the surfactant at the 

interface: the hydrocarbon chain, the surfactant headgroup, the surfactant counterion as well as the 

interfacial roughness, contribute to the measured ellipticity signal. These contributions can be 

considered as additive, and can be given by 

               (2.21) 
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I will now discuss how we can model the contributions to  of an adsorbed surfactant layer, in this case 

C14TAB with NaBr, using methodologies which have previously be used elsewhere.29, 30  

To find the contribution of the headgroup to the ellipticity, , we first need to estimate the relative 

permittivity of the headgroups using the Clausius-Mossotti equation:  


 




                                                              (2.22) 

where Rm is the molar refractivity, and Vm is the molar volume, which are given for C14TAB in Table 

2.1.  

Species Vm/A3 Rm/cm3mol-1 

Headgroup: N(CH3)+ 10830, 31 20.0530 

Counter Ion: Br- 3230 12 

Hydrocarbon Chain: C13H26CH3 42529 63.45 
Table 2.1. Literature values of molecular volumes and refractivities for use in the modelling of C14TAB/NaBr. The value of 

Rm for the hydrocarbon chain is calculated from the bond values, and that for Br- is the value for HBr.32 

The headgroups are hydrated in their interfacial layer, and hence we need to include the contribution of 

the water to the relative permittivity of the headgroup layer. The overall relative permittivity of the 

headgroup layer is obtained using the Lorentz-Lorentz effective medium approximation 




 



  
                     (2.23) 

where  is the volume fraction of a species in the layer, which can be calculated from molar volume, 

the area per molecule at the interface using neutron reflectometry measurements (as discussed in 

Chapter 3), and the layer thickness,       . The layer thickness is approximated to 4 Å due to 

the value of the headgroup volume, although the work of Knock et al used 8 Å from the work of Lu et 

al. It makes little difference which we use, as it scales both  and , which cancel each other out. 

The contribution of the headgroups to the ellipsometric thickness can then be found from Equation 

2.17, and that to the ellipticity from Equation 2.18.  

The contribution of the chain layer can be calculated using a similar approach, but varying the 

thickness rather than the volume fraction of the layer, as the hydrocarbon chain behaves similarly to oil 

spread on water. The thickness of the layer is calculated from the ratio of the molecular volume of the 

hydrocarbon chain to the area per molecule of surfactant at the interface (, and the layer 

permittivity from the Clausius-Mossotti equation as in Equation 2.23.  and  can then be 
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calculated from Equation 2.17 and 2.18 as previously. The ‘oil film’ model ceases to be physically 

sensible when the thickness of the film becomes less than the width of a hydrocarbon chain (5 Å). To 

calculate the contribution of the chain layer for low surface excesses, the thickness of the layer is set to 

5 Å and the volume fraction of the hydrocarbon chains is calculated from the surface excess.  The 

remaining volume is occupied either by air or water . For fluorocarbon surfactants, Day et al and 

Tyrode et al showed that the experimental data were best described if the chains were immersed  70% 

in water and 30% in air.19, 33 For surfactants with hydrocarbon rather than fluorocarbon chains, Bell et 

al demonstrated that the volume fraction of a hydrocarbon layer (defined as the density divided by that 

of a liquid hydrocarbon) has a significant effect on the value of , changing sign for volume fractions 

less than 0.8.29 

The contribution of the bromide counter ion can be calculated in two different ways. Firstly, it can be 

calculated using an approach similar to that above, using the Lorentz-Lorentz EMA assuming that there 

is one counterion per headgroup. The ions can then be distributed over a solvent depth equivalent to the 

Debye length. An alternative approach is to treat the counterions as a layer of NaBr of increased 

concentration, and then to use tabulated values of the refractive indices of NaBr (from the CRC 

handbook) in the equation for the ellipticity. The thickness of the layer over which the Br- ions are 

distributed has a negligible effect on  for physically reasonable thicknesses. 

The roughness of the layer can be considered by capillary wave theory, which regards the interface as 

sharp but distorted by capillary waves which scatter the light. Accordingly the contribution of 

roughness to the ellipsometric thickness, r, can be obtained from capillary wave theory, as 

demonstrated by Meunier. 34  

  


           (2.24) 

where kB is the Boltzmann constant, T is the temperature, and  is the surface tension. As 2 >  1, the 

surface roughness results in a positive value, which for pure water can be calculated from Equation 

2.20 as   6 × 10-4, whilst measurements give a slightly lower value of  = 3.8 × 10-4. The roughness 

contribution for an adsorbed layer has an inverse square root dependence on the surface tension, 

which varies with surface coverage. This contribution is a highly non-linear function of the surface 

coverage, but its variation over the range of surface tension is small, 0.15 × 10-3 for the CnTAB 

surfactants.7 For the purpose of this discussion and the following calculation, I will treat it as a 

constant with a value of 5 × 10-4. 

Figure 2.8 shows the calculated contribution of each of the components of C14TAB to its ellipticity 

using the approach outlined above. As we can see, all 4 components have a substantial contribution to 
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the ellipticity of the surfactant, with the contribution from the surfactant headgroups and the 

counterion proportional to the surface excess of surfactant provided that the volume fraction in the 

headgroup region is unity (a reasonable assumption). 

 
Figure 2.8. Calculated contribution to the ellipticitiy of an adsorbed layer of C14TAB from the hydrocarbon chains (purple 

line), surfactant headgroups (blue line), counterions (green line, difficult to distinguish from the blue line), using values of the 

surface excess obtained from NR measurements, and the set value of the roughness  at 5 × 10-4 (pink dashed line). The orange 

line is the sum of these contributions, and is compared to the measured ellipticity of C14TAB in the presence of 0.1 M NaBr 

(red squares).  

In the experiments discussed in this thesis, we are not focusing on the adsorption of pure surfactants at 

the air/water interface of the OFC, rather on the adsorption from mixtures of polymers and surfactants. 

As for a surfactant monolayer, a linear relationship between  and  is also expected for pure polymer 

adsorbed at the interface.8 The contribution of the polymer to  for the mixture can be estimated for the 

adsorption of 1 mol m-2 of polymer using Equations 2.19 and 2.20 with     

, 

where n is calculated from the literature value of dn/dc for the polymer and the mass per ml of 1 mol 

m-2 of polymer. As long as dn/dc is independent of the concentration, the calculated contribution of 

polymer to   for the mixture is independent of the layer thickness, and only weakly dependent on the 

volume fraction of the polymer.  

In order to use the above discussed contributions of surfactant and polymer to  for adsorption from 

mixtures of the two components we need to know that their contributions are linearly additive. The 

previous study of Campbell et al showed that an additive function of the contributions of the polymer 

and surfactant at interface is a good approximation to  for the mixture.9 This will be the case as long 

as the  
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total volume fraction of polymer, surfactant, and water in the layer is unity. Deviations from linear 

additivity will occur when the hydrocarbon chains of the surfactant are mixed with both air and water 

at low surfactant coverages as discussed above. The effect of this on  for the mixture will be 

discussed and evaluated further in Chapter 4.  

 

 

2.3.4. Ellipsometer Set-Up & Ellipsometry Measurements 

2.3.4.1 Ellipsometer Set-UP 

There are many different ellipsometer types and systems. The one used in all of the measurements 

presented in this thesis was the Beaglehole Picometer Light Ellipsometer, in the Partnership for Soft 

Condensed Matter (PSCM) at the ILL, shown in Figure 2.9. Below I will briefly discuss the principles 

of operation of the ellipsometer, however more detailed information can be found in the literature26 or 

the instrument manual.  
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Figure 2.9. Photograph of the Beaglehole Picometer Light Ellipsometer as installed in the PSCM laboratories at the ILL. 

Arrows on the photograph indicate the optical components discussed in the following text. 

A beam of light from a HeNe laser ( =632.8 nm) is polarised by a polariser oriented at 45° to the 

optical axis to provide equal s and p components amplitudes which are in phase.  The polarized light 

then passes through a birefringence modulator, which works on similar principles to a quarter-wave 

plate in that it retards one of the components of light, inducing a phase shift between the two 

components. A quarter wave plate divides linearly polarized light into two components with different 

indices of refraction, in this case the light with the larger index of refraction is retarded by 90° 

compared to the other component, resulting in circularly polarized light. Rather than inducing a single 

phase shift between the components, a birefringence modulator modulates the phase shift, in other 

words it continuously varies the phase shift between the two components between a minimum and a 

maximum shift, over a time period given by the frequency of the phase shift, 50 kHz. This is effected 

by inducing a periodic change in the refractive index of the optical component of the birefringence 

modulator by oscillating the quartz crystal which makes up the birefringence modulator. This 

modulation in the phase shift of the two components of light results in elliptically rather than circularly 

polarized light being incident on the interface.   

 

The light reflected from the interface passes through an analyser to a photomultiplier. The analyser is 

oriented parallel or perpendicular to the polariser, and is rotated between the two positions. Lock-in 

amplifiers measure the modulated signals at 50 kHz and 100 kHz (the first and second harmonics of 

the modulator’s oscillation frequency), resulting in a low level of noise and a high sensitivity. The 

detected ac signals are proportional to the imaginary and real parts of the complex reflectivity ratio, 

respectively, allowing us to determine the ellipticity of the sample. All of the measurements in this 

thesis are made at the Brewster angle of water, which minimizes the real part of the reflectivity.  

 

The set-up of the ellipsometer in the PSCM at the ILL (as shown in Figure 2.9) includes a sample 

mount consisting of an anti-vibration table, a horizontal leveling plate, and manual vertical translation 

stages, all of which were commissioned or installed as part of the experimental work contributing to 

this thesis.  
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2.3.4.2. Ellipsometry Experiments  

All of the ellipsometry data presented in this thesis were recorded using the Beaglehole Picometer 

Light ellipsometer,  and measurements were recorded at the Brewster angle of water (53.1°), in order 

to obtain the coefficient of ellipticity, . The majority of measurements were recorded on the 

overflowing cylinder, and unless stated otherwise measurements were recorded as a function of 

surfactant concentration, performed by consecutive additions of a concentrated surfactant stock 

solution to a base salt or polymer and salt solution. For many polymer/surfactant mixtures, the 

procedure used in mixing the two components has been shown to have an effect on the bulk phase 

behaviour,35-38 which might be reflected in the adsorption behaviour on the OFC. To increase the 

surfactant concentration of a pure surfactant system on the OFC, aquilots of a concentrated stock 

solution are usually added to the flowing system. This creates localized concentration gradients, and 

for a polymer/surfactant system the bulk phase behaviour may be affected. In order to minimize the 

effect of mixing on the bulk phase behaviour, the largest stock volumes possible were added to the 

solution, whilst limiting the necessity of removing solution from the system. In NR measurements 10 

mls of surfactant and 10 mls of compensatory polymer and salt solution were added for each increase 

in concentration. These solutions were added dropwise to the reservoirs in the OFC system over a 

period of several minutes, enough time for the  solution to flow several times around the system.  

Data were recorded principally on mixtures of hydrogenated surfactant, with hydrogenated polymer 

and salt. However measurements made on protonated and deuterated surfactants were also made to 

evaluate the errors incurred, and the results obtained were within experimental error. Unless stated 

otherwise, measurements were made at 5 second time intervals and averaged over a period of at least 

300 s per measurement in order to obtain precise values of . For the majority of measurements, the 

standard deviation in the value of  thus measured is within the symbols shown. 
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Chapter 3. Neutron Reflectometry  

3.1. Introduction 

In the past three decades neutron reflectometry (NR) has become an invaluable tool for the study of a 

variety of surfaces and interfaces. The specular reflection of neutrons at an interface provides 

information about the concentration and composition profiles normal to the interface. Neutrons interact 

with atomic nuclei, and are scattered or adsorbed. The scattering power of a nucleus is given by a 

characteristic known as its scattering length, and that of a material is given by its scattering length 

density. The reflection of neutrons from an interface is related to the neutron refractive index profile 

normal to the interface, which is itself related to the scattering length density of the material normal to 

the interface, and hence the composition of the material at the interface. Furthermore, due to the short 

wavelengths of neutrons (2-30Å on FIGARO), NR can be used to examine structure on the molecular 

length scale with a resolution of a fraction of a nanometer.  

Neutron reflectometry can be described either using classical thin film optics,1, 2 or scattering theory.3 

NR is therefore in many ways analogous to other reflection techniques such as X-Ray reflectometry 

(XRR) and ellipsometry, however it has many advantages over these techniques. The unique ability to 

manipulate the scattering length density of the material using hydrogen/deuterium substitution enables 

the examination of different interfacial components, and helps in obtaining a unique interpretation of 

recorded data. Furthermore, NR is non-destructive to samples in comparison to XRR measurements, 

and is a penetrating probe, enabling the accessing of buried interfaces such as liquid-liquid, solid-liquid 

and solid-solid surfaces.  

Some of the earliest soft-matter applications of NR examined the adsorption of pure surfactant4, 5 and 

polymer6-8 monolayers at the air/water interface, however more recently NR has been used to examine 

more complex systems containing combinations of polymers, surfactants, lipids, proteins, and bio-

membranes. NR can also be used to examine solid films, do in situ-electochemistry and examine 

surface magnetism, however as this thesis only examines NR of simple soft matter systems the 

principles of reflectivity from such systems will not be discussed here. Several good reviews discuss 

the theory9-11 and applications12-15 of NR.   
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In this chapter I will first discuss the theory behind neutron scattering in general and neutron 

reflectometry measurements, as well as the use of isotopic contrast variation. I will then discuss the 

characteristics and components of the horizontal reflectometer FIGARO at the ILL, on which all of the 

measurements presented in this thesis have been performed. Due to the relatively small and domed 

nature of the interface of the OFC, specific instrument settings were required for the experiments 

performed as part of this thesis. The interfacial curvature means that the optimum neutron footprint for 

measurements on the OFC is different to that used for that for standard samples, and exacerbates the 

effect of gravity on the data. The determination of both the optimum footprint and the effect of gravity 

on measurements are discussed in the later part of this chapter, along with further specific details of our 

measurements on FIGARO.  

 

3.2. Theory of Neutron Reflectometry  

3.2.1. Neutrons and Neutron Scattering  

Neutrons are particles with a mass mn and a speed v, which therefore have a momentum, p, given by 

classical mechanics, p = mnv.  However, due to wave particle duality (neutrons are particles but also 

undergo Bragg scattering) they can also be described by a de Broglie wavelength : 

  


            (3.1) 

where h is Planck’s constant, and therefore   
. 

Consequently the kinetic energy of the neutron E is  

  


  


          (3.2) 

In neutron scattering the wave nature of the neutron means that it is commonly referred to in terms of 

the neutron wavenumber   
  or the wavevector k with length k in the same direction as the velocity 

  


           (3.3) 
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where the reduced Planck’s constant   . Neutron wavelengths are given in Å, and 

wavenumbers in Å-1, velocity is in ms-1, and kinetic energy is in eV or meV. From equations 3.2 and 

3.3 the kinetic energy of a neutron can therefore be given in terms of wavenumbers by  

  


           (3.4) 

The scattering of a neutron by a sample is characterised by the resultant change in momentum p and 

energy E. A neutron incident with wavevector ki and angular frequency i is scattered with wavevector 

kf and angular frequency f.  

The momentum transfer can therefore be given by 

                (3.5) 

and therefore the wavevector transfer Q = ki - kf.  

The energy transfer can be similarly described as   , where = i - f.  In the case of elastic 

scattering of neutrons (as in neutron reflectometry) there is no exchange of energy and E = 0,  = 0. 

When there is no energy transfer, only a momentum transfer, the magnitude of the wavevector is 

unchanged by scattering and  

               (3.6) 

A vector diagram for an elastic scattering event is shown in Figure 3.1, where an incoming neutron is 

deflected through an angle of 2. From equation 3.2 the triangle is isosceles with each side having a 

length k = 2/.  

Trigonometry then gets us to an equation for the momentum transfer Q which occurs on scattering 

  
            (3.7) 

 

Figure 3.1. The vector diagram for elastic scattering,     through an angle 2. 
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The strength of the interaction of a neutron with a given nucleus, i, is given by the scattering length, bi.  

bi is a known quantity for most nuclei, and has been determined experimentally because bi varies 

significantly and non-monotonically across the periodic table. Notably, bi also varies significantly 

between different isotopes of the same element. For a given material, the scattering length density, , is 

defined as the scattering length of the material per unit volume. The scattering length density of a 

molecule is calculated from the sum of the scattering lengths of all of the component atoms, divided by 

the molar volume of the molecule Vm 

    


           (3.8) 

where bi is the scattering length as discussed above, and ni is the number of atoms of component i, 

although the contribution of Vm is not always stated as number density, ni(z), can be substituted for 

number.  

As Q is dependent on both the incident angle and wavelength of an incoming neutron, neutron 

scattering measurements can be made as a function of either or both parameters. Monochromatic 

measurements made as a function of incident angle are recorded using a narrow distribution of neutron 

wavelengths, which is a common approach with a reactor source. The wavelength is selected using 

either a monochromator or by velocity selection using a mechanical device. The alternative is to make 

measurements at one or a small number of incident angles using a broad range of incident wavelengths. 

This is known as a time-of-flight (TOF) measurement, and is used at both spallation and reactor 

neutron sources and is the approach used in the NR experiments described in this chapter. TOF 

measurements require a pulsed incoming beam, where the energy (or velocity) of the scattered neutrons 

is measured according to their relative arrival time at the detector.  As the wavelength is inversely 

proportional to the velocity, short wavelength neutrons travel quickly, reaching the detector first, and 

long wavelength neutrons have slower speeds, taking longer to reach both the interface and the 

detector. TOF measurements are best for kinetic experiments due to the broad Q-range that can be 

accessed simultaneously. Several kinetic NR measurements are presented in this thesis.  
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3.2.2. Neutron Reflection 

Due to wave particle duality, the reflection of neutrons from interfaces can be treated by the principles 

of classical optics as presented in Lekner2 and Born & Wolff1, similarly to the discussion of the 

reflection of light as discussed in Chapter 2. This approach is called the dynamical theory of neutron 

reflection, however the interaction of neutrons with matter is more classically described by the 

kinematic or Born approximation, based on the Fourier transform of the scattering length density 

function of a material, as described in a variety of texts.3 For ease of comparison, I will discuss the 

principles of neutron reflectometry below using the dynamical approach. I will start by re-considering 

the reflection of a simple wave from a surface, as we did for light in Chapter 2. Despite the fact that 

neutron reflection is scalar and light reflection is vector, the same approach can be used for both when 

some approximations for one dimensional waves are applied (discussed further below). Figure 3.2 

shows the geometry of the incident, reflected and transmitted waves.  Note that the angles are defined 

relative to the interface rather than relative to the normal as they were in Chapter 2, considerations of 

reflection for NR theory usually use this representation due to the small angles of incidence in NR 

measurements. As a consequence the trigonometric relations in equations 3.8 and 3.9 appear different 

to those given in Chapter 2.  

 

Figure 3.2. Schematic showing the geometry of neutron reflection from a smooth planar interface. i, r, t, are the angles of 

incidence, reflection, and transmission respectively, whilst ki kr and kt are the relevant wavevectors, and n1 and n2 are the 

refractive indices of the media above and below the interface; note that in experiments grazing angles are used and the large 

angles shown here are simply for clarity. 
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I will first consider the reflection of neutrons from a single planer interface (no adsorbed layers) with 

zero roughness between two homogeneous materials. Neutrons incident on a homogeneous interface 

between two media can be reflected from the interface at an angle identical to the angle of incidence i, 

or transmitted through the material with a change in direction at angle t. As discussed in Chapter 2, 

the ratio of the cosines of these angles is given by the refractive index (n12) according to Snell’s law 

  

 


 


          (3.9) 

Neutrons transmitted into the medium below the interface will change direction, they will be refracted, 

and the ratio of the incident and transmitted wavevectors ki and kt is also related by the inverse ratio of 

the cosines of the angles, as shown in Equation 3.8.  

The extent to which the wave is reflected and refracted is given by Fresnel’s Equation: 

    


        (3.10) 

For neutrons, the reflectivity R is determined from the ratio of the number of reflected neutrons to the 

number incident on the sample.  

The neutron refractive index of a medium depends on the wavelength of a given incident neutron, and 

the scattering length profile of the medium normal to the interface. This is given by the scattering 

length density of the material (Equation 3.8) normal to the interface,     (z). Hence the 

neutron refractive index and the reflection of neutrons from an interface depends on the composition of 

the media. In the following section I will derive the relationship between the scattering length density 

of the material and the neutron refractive index.   

As the neutron refractive index depends on only the composition of the medium normal to the 

interface, specular reflection only gives structural information about samples which have layers parallel 

to the interface but not in the plane of the interface. Structure in the plane of the interface in the 

direction of the incident beam results in off-specular scattering, which will be discussed briefly later, 

and structure lateral to the beam can only be resolved using grazing incidence small angle scattering 

measurements which require a different slit geometry to NR measurements. For a surface with no in-

plane structure, a neutron can be assumed to only interact with the structure normal to the interface, 

hence only the scattering length density profile normal to the interface (z) affects the wavevector in 

the medium.  As a consequence, it can be useful to express the neutron wavevectors ki and kt in terms 

of their two components perpendicular and parallel to the interface (kz and kx respectively),  
  , as only kz will be affected by interaction with the medium.  
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The interaction of an incident  neutron with a given kinetic energy, E, with a medium depends on the 

potential of interaction of the neutron with the medium,V. E and V can be related by the Schrödinger 

equation 

 


            (3.11) 

where  is the neutron wavefunction. Despite the fact that E and V can be related by the Schrödinger 

equation, the effect of the potential and neutron kinetic energy can be described by classical mechanics, 

and we will return to the quantum mechanical interpretation of reflectivity later.  

The potential of the medium, V, is that which is experienced by the neutron on interacting with the 

nuclei in the medium, which is dependent on the scattering length density profile of the material 

perpendicular to the interface (z). The potential of the material normal to the interface is given by 

  


           (3.12) 

The potential of the medium changes the kinetic energy of an incident neutron, and it changes direction 

(refracts).  The difference between the kinetic energy of the neutron and the potential determines 

whether or not the neutron is totally reflected from the barrier potential of the material or whether it is 

transmitted. The normal component of the kinetic energy of a neutron as in Equation 3.4 is  

  


          (3.13) 

To return to our discussion of reflection as related to classical optics using Figure 2 and Equation 3.9, 

we can see that as with light, as neutrons pass from a medium of higher refractive index to one of 

lower refractive index (n1 > n2) total reflection may occur. As the neutron refractive indices of most 

materials are only slightly less than that of air (see below), this is total external reflection rather the 

total internal reflection which occurs for light. There is a critical value of the incident angle, c, below 

which only reflection (total external reflection) occurs, and above which both reflection and 

transmission occur. In the situation where the top medium is air and the lower one a liquid or solid, n1 

=1, and the critical angle for total reflection is found from rearranging Equation 3.9 to  
 with t = 0 as there is no transmission. c is given by cosc = n2.  

When a neutron with wavevector ki is incident on an interface at an angle greater than the critical 

angle, c it is reflected from the interface or transmitted into the material, where it is reflected by nuclei 

in the material. The wavevector of a neutron transmitted into the medium, kt, is altered by interactions 
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between the neutron and the nuclei of atoms in the material, which result in a transfer of momentum, 

given by equation 3.7,   
 .   

On FIGARO, NR measurements are made at a fixed incident angle (or often at two consecutive fixed 

angles) with a range of incident wavelengths, i.e. a range of incident neutron energies. Therefore rather 

than there being a critical angle for total reflection there is a critical value of the momentum transfer 

from the neutron to the medium, Qc, below which the neutron cannot penetrate the medium and only 

total reflection occurs. Qc can be determined from the relative magnitudes of the kinetic energy of the 

neutron, E, and the potential of the medium, V, as given in Equations 3.12 and 3.13. If the energy of 

the neutron E is less than the potential V (E<V) total reflection occurs. However if E> V the neutron 

is either reflected or transmitted into the medium. Qc is then given by E= V  

      (as Q = 2sinki)       (3.14)   

For the neutron to penetrate into the medium, E> V, and the incident energy of the neutron E,i is 

modified by the potential to give the transmitted energy of the neutron E,t, from E,t = E,i –V (from 

Equations 3.12 and 3.13), we can determine the change in the wave-vector normal to the interface, kz, 

which occurs when the neutron interacts with the medium 

              (3.15) 

For a homogeneous medium, this allows us to define the neutron refractive index n12, from the ratio of 

the wavevector in the material to that in the vacuum: 

  


 


   


   
 (z)    (3.16) 

This gives the dependence of the refractive index on the wavelength of the neutrons and the 

composition of the material normal to the interface (as given by (z)).  

For most materials the scattering length density is small, hence n is close to 1 and a good 

approximation to n is given by  

    
 (z)          (3.17) 

As discussed earlier, the neutron refractive index of a material depends only on the neutron wavelength 

and the scattering length density of the interface normal to the interface.  
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In order to explain reflectivity further, we need to return to the Schrödinger Equation (Equation 3.10), 

and consider the wavefunction which describes the propagation of a neutron as a one-dimensional 

particle wave in the z x plane incident on a planar interface (where the dimensions x and y define the 

plane of the surface, and z defines the dimension into the material), using an approach identical to that 

used for electromagnetic radiation2 for reasons explained below. As V is only dependent on z in this 

geometry, the incident wave can be considered only perpendicular to the planar interface, with the form 

           (3.18) 

Subsitution of 3.16 into 3.7 gives the wavefunction describing the probability amplitude near the 

surface  


  

                         (3.19) 

Where kz can be expressed as 

  
             (3.20) 

The incident wave can be either transmitted or reflected at the interface, and the probability amplitudes 

for reflection and transmission r12 and t12 are given by the limiting forms of 3.19, when there is some 

transmission, the solution to 3.19 above the surface is  

            (3.21) 

And below the surface is  

            (3.22) 

r12 and t12 can also be defined as the Fresnel coefficients of  and . At this point it becomes 

clear why neutrons can be treated by the same equations as light, as boundary conditions can be 

imposed which mean that at the interface (z = 0) both (z) and d(z)/dz must be continuous. That is to 

say that  

                                           and         

   (3.23) 

 hence  

1+ r12 = t12               and        (3.24) 
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the second relation only holds when E >V, i.e. below the critical angle, where only total reflection 

occurs.  Simultaneous solution of equations 3.21 and 3.22 leads directly to the Fresnel coefficients 

found in optics: 

  


          (3.25) 

and  

  


          (3.26) 

We can therefore relate the measured reflectivity R to Q using the Fresnel Equation as in Equation 3.5, 

along with the Equations 3.14, 3.15 and 3.25 

    




        (3.27) 

When Q>>Qc,      and this reduces to,  

  
           (3.28) 

In the kinematic or Born approximation (rather than using the dynamical approach as above) the 

reflectivity is related to the Fourier transform of (z) or its gradient such that 

   
         (3.29) 

As mentioned earlier, the discussion up to this point aimed to describe the reflectivity of neutrons from 

a smooth interface between two media, with no adsorbed layers. NR measurements of such an interface 

yield R as a function of Q, which is known as the specular reflectivity profile. In equation 3.29, R is 

proportional to 1/Q4, hence the reflectivity will decay rapidly with increasing Q. An example 

reflectivity profile R(Q), recorded at the air water interface of D2O, is shown in Figure 3.3. At Q < Qc, 

total reflection occurs, and R = 1. The point where Q increases above Qc is known as the critical edge, 

and at higher values of Q the reflectivity decays with 1/Q4.  
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Figure 3.3. Example of a reflectivity profile obtained on pure D2O. The critical value of the momentum transfer, Qc, below 

which total reflection occurs, is marked with an arrow.  

We can now extend this explanation in order to consider the situation where neutrons are reflected 

from a single homogeneous thin film at the smooth interface between two homogeneous media. For a 

single film, reflection can be considered as occurring from two interfaces, above and below the film. 

Constructive and destructive interference between the neutrons reflected from the two different 

interfaces of the film causes an oscillatory pattern of fringes to be superimposed on the Q4 decay. The 

period of these oscillations, Q is related to the thickness of the film, d, by   . The amplitude 

of the fringes is indicative of the sharpness of the interfaces, with large fringes indicative of sharp 

interfaces and small fringes indicative of diffuse interfaces. In soft matter systems a small number of 

small interference fringes are usually seen.  Fringes are only seen if the film is above a threshold 

thickness, due to the limited Q range before measurements reach the background.  

For a single thin film at the interface an exact expression for the reflectivity can be expressed in terms 

of thin film optics, as it was in Chapter 2, where 1 is the air, 2 is the layer and 3 is the medium beneath 

the layer: 

   





         (3.30) 

where =(2/)n2dsin2 (optical path length in the film or phase factor) and the Fresnel co-efficient rij 

is given by equation 3.10. Commonly for the purpose of this discussion, Equation 3.10 is simplified to 

 



          (3.31) 
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where pj = nj sinj  and pi = ni sini  In real systems, the boundaries are not entirely smooth, and local 

roughness will modify the specular reflectivity. The Fresnel coefficient can be modified to include an 

error function as described by Nevot and Croce16 to become  

 



   
  (3.32) 

where ij is the roughness at the interface between the layers i and j.  The roughness causes R to fall off 

faster with increasing Q than the R = 1/Q4 relationship described above for a smooth interface.  

This approach can be extended to three or four successive layers. However analysis of a more complex 

structure at an interface, either for a number of discrete multilayers or for a material with a refractive 

index gradient which can be approximated to a series of layers, R can be found from an extension of 

thin film optics known as the optical matrix method of Born & Wolff.1 A more convenient method is 

that of Abeles.1 In this method a characteristic matrix per layer is defined from the relationship 

between the vectors in consecutive layers. Between successive layers i j,  

   
 

          (3.33) 

From this, transmission and reflection from one layer to another is described as a matrix multiplication 

product for each layer. The resultant reflectivity for n layers is then obtained from the product of the 

characteristic matrices MR=[M1] [M2].... [Mn].  

The usual way to analyse reflectivity data is to compare measured reflectivity profiles to those 

calculated using the optical matrix method. In this thesis, this was achieved using the program 

MOTOFIT17, which enables model profiles to be generated by variation of different properties of a 

given layer including scattering length density, thickness, solvent penetration and roughness. It is 

important to ensure that the model is physically representative of the system being studied, as phase 

information is lost in a reflectivity experiment due to the measurement of the square of the amplitude, 

and hence multiple different models can be used to fit a given reflectivity curve. Measurement of 

multiple isotopic contrasts is a common way to reduce this problem, as it is unlikely that the wrong 

structural model will provide good fits to all of the contrasts measured.  
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3.2.3 Information Obtained from NR Experiments 

The objective of an NR experiment is to measure the reflectivity as a function of Q, hence the output of 

an experiment is a specular reflectivity profile R(Q), such as that shown in Figure 3.3. This shows the 

reflected intensity relative to the incident neutron intensity as a function of the scattering vector. For a 

pure surfactant monolayer, this can be fitted to obtain values of the scattering length density () in Å-2 

and monolayer thickness () in Å. These can be used to calculate the surface excess of surfactant from 

  


          (3.34) 

where bi is the scattering length of atom in Å molecule-1 and ni is the number of times that atom i 

appears in the molecular formula for the surfactant. In order for  to be in moles per m2 rather than 

molecules per Å2, the value calculated from equation 3.34 needs to be scaled by both Avogadro’s 

constant NA and by 1 x 1020.  

The area per molecule, A, is then given by  

  
            (3.35) 

where NA is Avogadro’s constant, and is used to convert from area per mole to area per molecule. In 

order to obtain reliable values of  and A, isotopic contrast variation is usually used in order to ensure 

that a reasonable structural model is used in fitting the data, as discussed below.  

This study has not simply been of the adsorption of surfactant layers at the air/water interface, rather 

the adsorption from polymer/surfactant systems has been examined. As both polymer and surfactant 

are adsorbed at the interface, equation 3.34 cannot be used to simply obtain the surface excess of either 

component. Usually, contrast variation is used to determine the adsorbed amounts of different 

components by selective deuteration of the surfactant and/or the solvent, as few polymers are available 

in deuterated forms.  

However, one of the aims of this project has been to obtain compositional information using NR data 

measured on only one isotopic contrast, and ellipsometry data. NR data recorded on the isotopic 

contrast of hydrogenated polymer and deuterated surfactant in null reflecting water (a mixture of H2O 

and D2O which has the same scattering length density as air and therefore does not significantly 

contribute to the meausurements), can be fitted to yield the scattering length density, , and thickness, 

, of the adsorbed layer. As deuterated surfactant is used, with a scattering length density much greater 

than the hydrogenated polymer, this NR measurement is primarily sensitive to surf. The quantity 
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obtained from ellipsometry measurements, , however has similar sensitivities to poly and surf due to 

the comparable refractive indices. As a consequence of the different sensitivities of the two 

approaches, the measured quantities  ×  and  can be co-modelled to obtain values of poly and surf. 

This co-modelling approach, which will applicable to a wide range of systems, is discussed in much 

greater detail in Chapter 4.  

None of the data measured for polymer/surfactant mixtures on the OFC as part of this project exhibited 

significant structure normal to the interface (see Chapter 4), which is in part due to the dynamic nature 

of the interface on the OFC. However, for NR measurements on other soft matter systems, including 

polymer/surfactant mixtures at the static air/water interface, the interfacial structure can be more 

complicated, with multilayers present at the interface (where the references18-21 are only a few 

examples relevant to the systems studied in this thesis). One or more Bragg diffraction peaks in the 

specular reflectivity profile indicate the presence of repeating structure such as multilayers 

perpendicular to the plane of the interface, and the position of the Bragg peak gives us information 

about the repeat d-spacing of this structure. As no Bragg peaks or other indicators of significant 

structure of the adsorbed material perpendicular to the interface were observed for any of the 

measurements in this study I will not discuss the examination of Bragg peaks further in this thesis.  

All of the above discussion assumes that the interface under examination is homogeneous in the plane 

of the interface, i.e. there is only structure that can be resolved by NR in the direction normal to the 

interface. However, interfaces may have significant repeating structure in the plane of the interface, 

which leads to off-specular scattering of neutrons.22 On a 2D TOF detector such as that on FIGARO 

(see later) off-specular scattering leads to a diagonal line on the detector image. In this study no 

significant off specular scattering is observed, due to the simple layers adsorbed at the interface and the 

flowing nature of the OFC, hence I will not discuss this any further.  
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 3.2.4 Isotopic Contrast Variation  

As discussed above, it is possible to calculate a neutron reflectivity profile using an optical matrix 

method, however it is possible that more than one structural model will result in the same reflectivity 

profile. The most common solution to this problem for soft matter systems is to measured NR data on 

multiple isotopic contrasts, as it is unlikely that an incorrect model will fit data obtained on multiple 

contrasts.  

Contrast variation exploits the fact that neutrons are scattered very differently by hydrogen and 

deuterium, which have scattering lengths of -3.7406 x10-5Å and 6.671 x10-5Å, respectively. For species 

containing multiple hydrogen atoms such as the polymers and surfactants used in this study, 

replacement of the hydrogens by deuterium will significantly change the scattering length density of 

the component. Selectively deuterating different species in a system or varying the solution phase from 

D2O (with SLD 6.35 x 10-6Å-2) to H2O (with SLD -0.56 x 10-6Å-2) enables us to obtain information 

about the thickness and composition of the adsorbed layer of a chemically identical system. A mixture 

of 91.1% H2O with 8.9% D2O by weight yields a liquid subphase with the same scattering length 

density as air, known as null reflecting water (NRW). As a consequence, if NRW is used as the liquid 

for an air/liquid experiment, there is no contribution to the specular reflectivity signal from the solvent 

and the reflectometry profiles obtained are only due to the adsorbed material at the interface, although 

H2O does contribute to the incoherent background.  

The primary isotopic contrast used in the measurements presented in this thesis is that of deuterated 

surfactant with hydrogenated polymer and NRW (d-surfactant/h-polymer/NRW), in which the majority 

of the specular reflectivity signal is from the deuterated surfactant. For polymer/surfactant systems an 

equivalent measurement using deuterated polymer and hydrogenated surfactant, h-surfactant/d-

polymer/NRW, can be used to examine the amount and structure of the adsorbed polymer, however 

this is typically limited by the availability of deuterated polymer, especially for measurements on the 

OFC which require large solution volumes. The obvious alternative contrasts are h-surfactant/h-

polymer/D2O which gives us information about the change in the solvent distribution at the interface 

due to the penetration of polymer and surfactant, and d-surfactant/h-polymer/D2O which gives us 

information about the displacement of D2O by polymer or surfactant headgroups, as the surfactant 

chains have a similar SLD to D2O  However, as we will show in Chapter 4, measurements on these two 

contrasts along with d-surfactant/h-polymer/NRW do not always give an accurate measurement of the 

composition of the adsorbed layer from a mixture. As an alternative to multi-contrast measurements, 

one of the primary aims of the work in this thesis was to develop an approach to determining the 
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composition of an adsorbed interface using only one contrast, d-surfactant/h-polymer/NRW, with 

ellipsometry measurements acting as a second contrast for the determination of the interfacial 

composition. Use of only one isotopic contrast enables us to obtain the same information whilst 

making significant savings in the amount of beamtime and deuterated material necessary. Furthermore, 

poly values obtained from NR measurements in the absence of deuterated polymer are limited in their 

accuracy, use of our co-modelling approach enables poly to be obtained with greater accuracy.  

For information, the scattering length densities () of the species used in this study are given in Table 1 

as calculated from their calculated scattering lengths and molar volumes  

 

 

 

 

 

 

 

Table 3.1. Scattering length densities of species used in this study 

  

Species  /106 Å-2 

NRW 0 

D2O 6.35 

dSDS 6.88 with Cl, 6.86 without 

dC12TAB 4.93 with Br, 5.12 without 

dC14TAB 5.11 with Br, 5.29 without 

dC16TAB 5.26 with Br, 5.43 without 

PEO 0.935 

PSS 1.85 
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3.3. Instrumentation:

Fluid Interfaces Grazing Angles ReflectOmeter (FIGARO) is the new horizontal reflectometer at the 

Institut Laue-Langevin (ILL). FIGARO is a reflectometer for horizontal samples, and can therefore be 

used in the study of liquids at 

reflectometer at the ILL due to its vertical sample plane, although both can be used to look at 

liquid-liquid and solid

configurations, with neutrons directed at an interface from above or below

the required application.
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studies to be performed and 

experiment. FIGARO is equipped with a range of sam

adsorption troughs, a Langmuir trough, 

This section will give an over

given in the recent paper of Campbell 

Figure 3.4 shows a schematic representation of FIGARO,

right to left, the main components are two frame overlap mirrors and a four disk chopper assembly 

used to select the wavelength and resolution, two deflector mirrors and a collimation guide, which 

reflect the beam up or down and focus it on the sample, a sample stage with motorized goniometers, 

and a 2D detector. More details of the set

in the following section. 

Instrumentation: FIGARO 

Fluid Interfaces Grazing Angles ReflectOmeter (FIGARO) is the new horizontal reflectometer at the 

Langevin (ILL). FIGARO is a reflectometer for horizontal samples, and can therefore be 

used in the study of liquids at the free air-liquid interface which is not possible with D17, the other 

reflectometer at the ILL due to its vertical sample plane, although both can be used to look at 

liquid and solid-liquid interfaces. FIGARO can be used in reflection 

, with neutrons directed at an interface from above or below

the required application. FIGARO is suitable for a wide range of applications due to t

balance the flux with respect to the wavelength resolution and Q range

studies to be performed and optimises the data acquisition efficiency according to the needs of a given 

. FIGARO is equipped with a range of sample environments including free liquid 

ion troughs, a Langmuir trough, a range of solid/liquid sample cells

This section will give an over-view of the components and workings of FIGARO, more details are 

given in the recent paper of Campbell et al.23  

shows a schematic representation of FIGARO, highlighting its main components. From 

right to left, the main components are two frame overlap mirrors and a four disk chopper assembly 

used to select the wavelength and resolution, two deflector mirrors and a collimation guide, which 

or down and focus it on the sample, a sample stage with motorized goniometers, 

and a 2D detector. More details of the set-up and purposes of each of these components will be given 

in the following section.  
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Fluid Interfaces Grazing Angles ReflectOmeter (FIGARO) is the new horizontal reflectometer at the 

Langevin (ILL). FIGARO is a reflectometer for horizontal samples, and can therefore be 

interface which is not possible with D17, the other 

reflectometer at the ILL due to its vertical sample plane, although both can be used to look at buried 

FIGARO can be used in reflection down or reflection up 

, with neutrons directed at an interface from above or below the horizontal, depending on 

FIGARO is suitable for a wide range of applications due to the ability to 

and Q range, which enables fast kinetic 

according to the needs of a given 

e environments including free liquid 

a range of solid/liquid sample cells, and of course the OFC. 

and workings of FIGARO, more details are 

highlighting its main components. From 

right to left, the main components are two frame overlap mirrors and a four disk chopper assembly 

used to select the wavelength and resolution, two deflector mirrors and a collimation guide, which 

or down and focus it on the sample, a sample stage with motorized goniometers, 

up and purposes of each of these components will be given 
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Figure 3.4.  Schematic of the layout of FIGARO, highlighting each of its components 

3.3.1 Choppers and Frame Overlap Mirrors 

Thermal neutrons produced by a reactor such as the one at the ILL are moderated to a wavelength band 

suitable for measurements by a cold source, and arrive at the instrument with a Maxwellian range of 

wavelengths. For a time-of-flight instrument, distinct pulses of neutrons with a defined range of 

wavelengths are required,24 and at a facility such as the ILL where neutrons come from a continuous 

source reactor, these are created by the choppers.  Choppers are rotating disks which block the passage 

of neutrons for the majority of the time, but let them through a small window. The greater the distance 

between a pair of choppers the more neutrons in the selected wavelength band, i.e. the higher the flux 

but the lower the wavelength resolution (d/). The wavelength resolution controls the Q resolution of 

a NR measurement dQ/Q 

 

  


  


                                                                                                                 (3.36) 

On a time of flight instrument such as FIGARO, d/ is replaced by dt/t where dt is given by the pulse 

width defined by the choppers and t is the time of flight of a neutron. On FIGARO, a four chopper 

disks assembly is employed, however only two of these choppers define the neutron pulse at any one 

time. The purpose of having four choppers is that different chopper pairs can be chosen to control the 

pulse shape, enabling selection of different distances between the choppers, and hence the use of 

different fluxes or wavelength resolutions. A close pair of choppers (minimum = 10 cm) favours a high 

resolution, whilst a pair with a greater separation (maximum = 80 cm) favours increased flux at the 

expense of fine detail in Q. As most FIGARO users look at liquid interfaces, they choose one of the 

high flux options.  

 

Figure 3.5. Photographs of (a) the frame overlap mirror and (b) the choppers in the FIGARO instrument 
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Each pulse of neutrons consists of neutrons of a wide range of energies and speeds. Frame overlap 

mirrors separate two consecutive neutron pulses by removing neutrons above a certain wavelength 

before they reach the choppers. If the pulses are not separated in time it is impossible to determine 

which neutrons are the slow neutrons of pulse A and which are the fast neutrons from pulse B.  

 

3.3.2 Deflector Mirrors and Collimation Guide 

Once defined neutron pulses are made by the choppers, supermirror guides transport the neutrons to the 

sample. Supermirrors are widely used in neutron guides as they enable the transport of neutrons over 

large distances with small losses and result in high flux at the sample. A supermirror has a complex 

coating of many individual layers, in this case of nickel and titanium, which is designed to enlarge the 

critical angle of reflection of neutrons to high values, meaning that all neutrons hitting the surface with 

an angle shallower than the critical angle are transported to the sample, resulting in a significant 

increase in flux compared to not using supermirrors.  

As discussed above, an additional feature of FIGARO is that neutrons can be aimed at the sample from 

either above or below for ‘reflection  up’ or ‘reflection down’ configurations, implemented by the use 

of the deflector mirrors. ‘Reflection up’ is defined as the standard configuration used for free liquid 

interfaces where the neutrons approach the studied interface from above, and ‘reflection down’ is when 

the neutrons approach the studied interface from below. The supermirrors used allow a deflection of up 

to 1.7° without a significant loss in intensity, hence for the horizontal samples the maximum angle of 

incidence for ‘reflection up’ is 3.8° and for ‘reflection down’ is -2.7°, whilst for buried interfaces the 

sample can typically be tilted to further extend the Q-range if necessary. 

#  

Figure 3.6. Photographs of (a) the deflector mirrors and (b) the collimation guide used on FIGARO  
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After the reflection direction is selected by the deflector mirrors, the beam is focussed to a defined 

footprint (from 60 to 40 mm) using a collimation guide. The neutron footprint on the sample is defined 

by use of very precise collimation slits before and after the collimation guide. The collimation guide is 

situated downstream of the deflector mirrors so that the collimation slits reduce the background created 

by off-specular scattering from the supermirrors. The two sets of beam defining collimation slits have 

four boron carbide blades to define the four sides of the neutron footprint. The size of the collimation 

slits controls the flux on the sample, with respect to the length of the footprint, opening the slits results 

in a gain in intensity but at a cost to the resolution (Equation 3.36). The width of the footprint is set to 

illuminate the optimum sample area for a given experiment.  

 

3.3.3. Sample Area 

The sample area of FIGARO is based on a steel frame embedded in concrete in a 2m deep hole to 

damp the low-frequency vibrations.  On top of this frame are two flexible crossed goniometers, two 

vertical translation stages, a horizontal translation stage, and an active anti-vibration control unit. 

Damping using a anti-vibration unit is necessary for free liquid measurements, as external vibrations 

can increase the surface capillary waves, significantly reducing the reflectivity. Furthermore, the whole 

area is additionally enclosed by a frame of acoustic foam shielding to further reduce the ambient noise.  

 

Figure 3.7. The Sample Environment on FIGARO 
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3.3.4. Area Detector 

The general theory of neutron detection is based on the fact that neutrons can only be detected when 

they undergo a nuclear reaction with a gas such as 3He or BF3. The most commonly used reaction is : 

 

The particles produced from this reaction then ionize the 3He, CF4 or BF3, (8 bar 3He and 2 bar CF4 in 

FIGARO’s detector) gas producing an electron. The production of each electron leads to further 

ionization of gas, and therefore further electron production in a cascade effect. Freed electrons are 

detected using a low voltage biased wire. In FIGARO’s detector the wires are located in hollow 

channels drilled into a single block of aluminium, each of which is contained within a separate gas 

containing tube, which limits the charge saturation to individual wires. The collected electrons 

constitute a current in the wire, which is proportional to the rate at which neutrons strike the detector, 

and can be measured by an external amplifier. When electrons hit the wire, the charge travels either 

way along the wire, to the anode and cathode. The proportion of the charge reaching either end enables 

event position determination. Only events which are correlated in time are selected by the software. 

The result is a 2D image of the neutrons which strike the detector. It does not matter if a given neutron 

hits the left or right of the sample as we do not measure horizontal displacement, instead the two 

dimensions recorded are 2 and  (or time).  

Use of a 2D detector such as that on FIGARO enables the examination of a wide range of 2, including 

background and offspecular information. Instruments with a single detector require separate 

measurements of the background in an off-specular position, and are insensitive to off-specular 

scattering from samples, an increasingly common feature of experiments on FIGARO. 

In order to maximize detection efficiency, it is necessary to minimize the interaction of the scattered 

neutrons with air. For this reason an evacuated flight tube connects the sample and the detector.  

 

n He H H M eV+ → + +3 3 1 0 76.
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Figure 3.8. (a) Detector and (b) Evacuated flight tube used on FIGARO 

At very high neutron intensities the detector efficiency becomes diminished and the maxima in the 

time of flight spectra become distorted, as neutrons arrive at the detector at a rate faster than the rate of 

dissipation of the ionized gas molecules. Therefore, for high intensity measurements such as direct 

beam measurements for which the collimation slits have to be opened at high incident angles to 

produce the same neutron footprint on the sample as at lower angles, an oscillating beam attenuator is 

used to limit the intensity.  This device consists of a narrow vertical opening which oscillates over the 

full width of the incident beam at constant speed, and reduces the intensity by a constant attenuation 

factor.  

 

3.3.5 Instrument Control  

FIGARO is run using the ILL instrument control software NOMAD, which allows measurements to be 

controlled using a graphical user interface. Data obtained from NR measurements on FIGARO are 

reduced using the data reduction software COSMOS, part of the LAMP suite at the ILL. COSMOS 

allows us to select only the pixels around the specular reflection in the detector image (such as that in 

Figure 3.10) and to subtract the pixels a certain distance away from this peak so that the background is 

subtracted live for every sample measured. Furthermore, COSMOS enables us to group the measured 

data points to obtain a fittable specular reflectivity profile, which is normalized to the data below the 

critical edge of D2O, and furthermore the factor which causes data obtained on the two angles to 

overlap is calculated in COSMOS. Once a correct neutron reflectivity profile is obtained from 

COSMOS it can be imported into a fitting package for comparison to a model of the material at the 

interface. In the work presented in this thesis, that data was then imported into IGOR in order to obtain 

fits to the specular reflectivity profiles using the MOTOFIT17 package. For further information on the 






set-up and data reduction procedures used for measurements on standard sample environments, see the 

instrument paper.23 

 

3.4. NR Measurements on the OFC  

NR measurements on FIGARO on sample environments other than the OFC have standard instrument 

set-ups, however as the OFC was first used on FIGARO as part of this project, experiments and 

calculations to determine the optimum experimental set up and data reduction procedures are an 

important part of this thesis. The key differences between the OFC and other sample environments are 

that the OFC has a small area, its diameter is only 80 mm, and the flowing nature of the system means 

that the interface is slightly curved. If neutrons are incident on a curved area of the interface, errors in 

the measured reflectivity profile will result if data are not corrected for the effect of this curvature. 

Consequently, the first experiment performed on FIGARO was devoted to the determination of the size 

of the optimum footprint size which could be used in neutron experiments whilst minimizing the 

resultant errors. The first part of this section (3.4.1) will discuss the procedure used to determine the 

optimum footprint.  

Even once the optimum footprint is determined, the curvature of the interface will still have an effect 

on the measured data, as it exacerbates the effects of gravity on the neutron trajectory. For 

measurements made on planar surfaces in other sample environments, the effects of gravity are 

accounted for in the data reduction software COSMOS, but the extra contribution to the gravity effect 

on the OFC is not accounted for, which will incur further errors in the data. Therefore the second part 

of this section (3.4.2 and 3.4.3) will discuss the effect of gravity on OFC measurements, starting with 

the standard effect of gravity on the neutron trajectory and then combining it with the effect of 

interfacial curvature. The final part of this section (3.4.4) will discuss further details of the 

experimental set-up of the OFC on FIGARO, and the experimental procedures used.  

  






3.4.1. Determination of the Optimum Footprint for OFC Measurements on FIGARO 

Due to the small sample area (80 mm diameter) and interfacial curvature of the OFC, different 

instrument settings are necessary for these measurements than for other free liquid experiments on 

FIGARO. Samples of different bulk composition will have different interfacial curvatures due to the 

changing marangoni flows at the interface (discussed in Chapter 2 section 2.2). The effect of bulk 

composition on curvature is much greater than that of the flow rate of the system, which has a minimal 

effect on interfacial curvature. Neutrons reflected from a curved part of the interface will have a spread 

of directions, which will incur uncertainty in the incident angle, a loss of Q-resolution, and a possible 

shift in Q which will cause systematic errors in . It is therefore necessary to use a footprint or 

illuminated area of incident neutrons which minimizes the errors introduced into the reflectivity 

profiles by the curvature of the interface. Due to the diameter and curvature of the OFC, this footprint 

will be much smaller than used for other free liquid experiments, for which footprints of up to 150 mm 

in length are used to maximize neutron flux and minimize acquisition times. A balance was sought 

between limiting the effect of surface curvature and the reduction in the flux and consequent increase 

in measurement time which results from decreasing the footprint size. Although the optimum neutron 

footprint for use in NR measurements on the OFC has previously been determined, this was done on 

the reflectometer SURF (ISIS, United Kingdom)25, FIGARO has quite different instrument 

characteristics to SURF, including a 2D detector.23 Hence the optimum set-up needed to be re-

characterised for FIGARO.  

Previous studies on the OFC have shown that due to the quadratic variation of the surface excess, , 

with radial position,  changes by less than 5% of a monolayer over the central 40 mm of the 

cylinder.25, 26 Furthermore, the data shown later in Figure 3.14 show that even for the most curved 

interfaces, the central 30 mm of the interface is reasonably flat. We would therefore expect that a 

footprint of around 30 to 40 mm would be the optimum for use on the OFC, with larger footprints 

introducing errors in the measurements.  

The size of the footprint on the surface of the OFC is determined by the height and width settings of 

the collimation slits used, and also by the effect of gravity on the neutrons, which will cause them to 

travel a different horizontal distance before the sample to that defined by the collimation slits, 

lengthening the footprint. This effect of gravity will be discussed further in sections 3.4.2 and 3.4.3. 

Note that the footprints used had lengths shorter than their widths in order to allow a tolerance on the 

micronscale for vertical misalignment. The size of the footprints resulting from the collimation slit 

settings and the effect of gravity was simulated using Gitwit, a plugin to the ILL data suite LAMP.  
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Figure 3.9. Specular reflectivity profiles recorded on 4 mM APFN solutions in NRW on the OFC in order to evaluate the 

optimal incident neutron footprint to use in experiments. The footprints shown are 30 x 41 mm (blue), 40 x 52 mm 

(turquoise), 60 x 30 mm (orange) and 80 x 30 mm (red). All footprints are defined in terms of length x width.  

To determine the maximum footprint for which the effects of curvature of the free liquid surface on the 

OFC could be neglected, reflectivity profiles of D2O and 4 mM ammonium perfluorononanoate 

(APFN) solution in null reflecting water (NRW) were measured for a range of footprint sizes. These 

two solutions will result in the most curved and flattest surfaces respectively that are likely to be 

measured on the OFC, water will result in a domed surface (as discussed above), and 4 mM is above 

the cmc of APFN27, resulting in low surface tension gradients across the interface, which is therefore 

almost flat. APFN is a fluorinated surfactant and was chosen for its high scattering length density 

(SLD) and its relatively low cost compared with deuterated surfactants.  

To test the effect of the footprint size, different openings of collimation slits S2H, S3H, S2W and S3W 

were chosen which, with umbra and penumbra of divergence taken into account, resulted in the 

following footprints: 25 x 30, 30 x 41, 40 x 52, 60 x 30 and 80 x 30 mm (length x width). The lengths 

of the footprints given include calculations of the effect of gravity on the neutron trajectory, which will 

be explained further in section 3.4.2.  Footprints of up to and including 40 x 52 mm yielded 

satisfactory reflectivity profiles for the APFN solutions, with the parts of the specular reflectivity 

profiles from the two different incident angles overlapping to within 5% in R in the mid-Q region. 

However, as we can see in Figure 3.9, larger footprints (60 x 30 and 80 x 30) led to greater deviations 

from the other reflectivity profiles and were therefore rejected.  
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Although the data in Figure 3.9 suggest that a 40 x 52 mm footprint is optimal for use on the OFC, the 

detector images from measurements using this footprint on D2O (Figure 3.10) show significant off-

specular scattering attributable to surface curvature which is not present in the data recorded using the 

30 x 41 mm footprint. Consequently, we used 30 x 41 mm as the footprint for all subsequent 

measurements, despite the cost in flux. The slit settings for this footprint are given in Table 3.2.  

 
Figure 3.10. Detector images for neutron reflectivity measurements at the air/D2O interface using incident neutron footprints 
of 40 x 52 mm (length x width; A) and 30 x 41 mm (B); angle of incidence is 0.624°. The small number of counts at around 
pixel 45/ 7 Å in B can simply be attributed to the edge of the refracted beam, whereas the much larger signal away from the 
specular ridge in A cannot.  

Slits Openings for Angle 

1 -  0.624° / mm 

Openings for Angle 

2 -  3.78° / mm 

S2H 0.44 3.00 

S3H 0.22 1.50 

S2W 35 35 

S3W 35 35 

 

Table 3.2. Slit openings for the 30 x 41 (length x width) neutron footprint used in our measurements on the OFC on FIGARO, 

where S2H and S3H are the vertical openings of the first and second collimation slits, respectively, and S2W and S3W are 

their corresponding horizontal openings.  The S2–S3 separation is 2165 mm and S3–sample centre separation, noting that the 

OFC was positioned closer to slit 3 than in typical experiments, is 195 mm. 
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3.4.2 Corrections for the Effect of Gravity 

Even once the optimum neutron footprint to limit scattering from the most curved parts of the surface 

has been determined and used, the measured region of the interface will have some curvature, 

especially at low surfactant concentrations. This curvature will have an effect on the measured 

reflectivity profiles, as it will exacerbate the effect that gravity has on neutrons trajectories. For flat 

samples measured on FIGARO, the effect of gravity has been incorporated into the data reduction 

program COSMOS. For curved surfaces such as that of the OFC, the effect of gravity is more 

significant, as reflection of neutrons from the curved parts of the cylinder will affect the resultant data. 

In addition to the loss of Q-resolution from an increased spread of incident angles, if the effect of 

gravity on the neutron trajectory is not accounted for, a systematic error in the calculation of Q would 

result. As a consequence we need to evaluate the combined effects on gravity and curvature on OFC 

measurements to determine the magnitude of the error incurred in the data.  

The effect of gravity relates to the fact that cold (long wavelength) neutrons travel more slowly and 

therefore fall a greater distance vertically (by several millimeters) during their time-of-flight than the 

fast neutrons. Due to this effect of gravity, all the neutrons follow a parabolic trajectory to the sample, 

which results in a significant horizontal shift of the slow neutrons at the sample position compared to 

the position which would result from a straight line path of travel. The neutrons also strike the sample 

with a higher incident angle, which means the true value of Q is altered, and they have an earlier or 

later start time through the choppers depending on whether the choppers are spinning up or down. 

However, this latter effect is accounted for routinely in the chopper settings.  

The neutrons follow a parabolic path through the two collimation slits which results in their arrival at 

the sample at a position horizontally shifted compared to that which would be calculated for a straight 

line trajectory, by the distance x, as shown in Figure 3.11.  
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Figure 3.11 . Schematic showing the straight line path through the slits to the samples of neutrons with an angle  to the 

horizontal (dotted line) as compared to the path of a neutron affected by gravity (dashed line). The straight line path hits the 

centre of the sample.  

The horizontal shift of the neutrons at the sample due to gravity, x, is defined in terms of the parabolic 

trajectory of the neutrons after the final collimation slit, S3, with parabola height, h, and horizontal 

distance x0. The equation for the height to the top of a parabola is 

               (3.37) 

Where k is the characteristic length, k =g/2v2, g = 9.81, and the neutron speed v = 3956/.  y1 is the 

vertical sample to S3 distance, and x1 is the horizontal sample to S3 distance. 

The equation for the horizontal component of the parabola is: 

  
  


         (3.38) 

where x2 is the horizontal sample to S2 (first collimation slit) distance and y2 is the vertical sample to 

S2 distance.  

It is important to note that the vertical distances are not simply the heights to the centre of the slits, as 

the footprint on the sample is defined by the positive and negative halves of the slits, and hence will 

depend on the vertical slit openings. Hence y1 and y2 are given by: 

       and              (3.39) 

where dy is half the vertical slit openings [in mm].  Hence the side of the footprint furthest from the 

collimation slits is principally defined by negative dy1 and positive dy2 (i.e. by the upper half of the 

first collimation slit and the lower half of the second collimation slit). 












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
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The shift in x position on the sample due to the effect of gravity, x, can be calculated from x0 and h 

using trigonometry. 

              (3.40) 

As x is calculated relative to the centre of the cylinder, the exact position of a neutron of given 

wavelength to the right hand side of the centre is given by x + ½ the OFC diameter (40 mm). 

 

Figure 3.12. The difference in horizontal position at the sample (x) of neutrons following a parabolic trajectory and those 

following a theoretical straight line path unaffected by gravity, calculated as a function of the neutron wavelength. The solid 

red line gives the calculated x values for measurements made at the first angle, and the blue dashed line for measurements at 

the second angle. N.B. The slit settings for use in Equation 3.39. are those standardly used in OFC measurements as given in 

Table 3.2.  

 Figure 3.12 shows that only the longer wavelength neutrons are significantly shifted at the sample due 

to gravity, hence the position of the side of the footprint closest to the collimation slits will be almost 

identical to that calculated for a linear trajectory. From the calculated data it can be seen that for 

measurements at the first angle the shift in the position of the side of the footprint furthest from the 

collimation slits is around 10 mm, whilst at A2 it is only around 3 mm as tan () is smaller. If a shift of 

10 mm at the sample position and the consequent increase in footprint size is not acceptable, the high 

wavelength neutrons should be excluded from the data reduction. In our experiments on the OFC, data 

were only reduced to 22 Å in order to limit the shift in position due to gravity, although they were 

recorded for wavelengths up to 30 Å to ensure good overlap between the data recorded at the two 

incident angles in the mid-Q region.  If the data in Figure 3.12 are fitted using a quadratic function, an 
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equation for x in terms of  is obtained, which will be used later to calculate the combined effects of 

gravity and interafacial curvature on measurements on the OFC.  

In a time-of-flight neutron reflectometry experiment, each pulse incident on the interface contains 

neutrons of a range of wavelengths. However, the number of long wavelength neutrons in the pulse is 

considerable smaller the number of short wavelength neutrons, with the median wavelength being 5.3 

Å. From Figure 3.12 we can see that 5.3 Å neutrons are only shifted by 0.33 mm. Therefore, although 

x is large for long wavelength neutrons, only a small proportion of the incident neutrons will be 

shifted to a significant extent, and the shortest wavelength neutrons will be unaffected by gravity. This 

is demonstrated in Figure 3.13 which shows the calculated effect of the shift due to gravity on the 

incident TOF spectrum of neutrons at the interface. The red line is the calculated TOF spectrum which 

would result from the slit settings chosen in section 3.4.1, and the green line that which results from the 

effect of gravity.  

 
Figure 3.13. Calculated incident position of neutrons at the interface against their intensity as calculated from a recorded time 

of flight spectrum (counts v ) and the x v  values in Figure 3.12.  The red line shows the calculated positions for neutrons 

following a straight line trajectory, and the green line the positions of neutrons which have followed a parabolic trajectory due 

to the effect of gravity.  

The calculations above give the effect of gravity the neutron trajectory for any sample on FIGARO, 

and explain the calculation of the footprint dimensions discussed in section 3.4.1. In order to minimize 

the effect of gravity on OFC measurements, the OFC was moved closer to the final collimation slits, to 

decrease the distance the neutrons travelled under gravity. In order to determine whether the neutron 

trajectory under gravity incurs further errors in OFC measurements, I will now combine these 

calculations with data on the interfacial curvature.  
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3.4.3. Combined effect of Gravity and Curvature 

In order to evaluate the error incurred in our NR measurements due to the curved surface of the OFC, 

we mapped the height as a function of radial distance across the interface for pure water and two 

polymer/surfactant systems, PEO/SDS/H2O and PEO/C14TAB/H2O using an optical height sensor 

(Keyence, LKG-152, Japan) which is installed on FIGARO. Figure 3.14 shows the height of the 

interface as a function of radial distance for pure water and several PEO/C14TAB mixtures of different 

compositions. The curvature of the interface of water is much greater than that of a solution containing 

a large amount of surface active species such as 1.25 mM C14TAB/100 ppm PEO, because surface 

active species at the interface lower the surface tension and radially accelerate the solution, resulting in 

a flat interface. The radial force that accelerates H2O arises only from a hydrostatic pressure gradient 

resulting in a slight doming of the interface. Figure 3.14 shows that even for the most curved surface 

(pure water) the central 30 mm is flat to within 0.2mm.  

 

Figure 3.14. Height of the air/solution interface of the OFC as a function of radial position (x) for several different solutions 

including water (blue squares), 0.027 mM C14TAB/100 ppm PEO (red circles), 0.18 mM C14TAB/100 ppm PEO (green 

triangles) and 1.25 mM C14TAB/100 ppm PEO (yellow diamonds). The blue and yellow lines are added as guides to the eye 

only. The height is set to zero at the centre of the interface for water, all other measurements are offsets from this value.  

Curvature of the interface on the OFC effectively results in a change of the angle of the interface as 

seen by incident neutrons as a function of radial distance, and hence a change in the incident angle of 

the neutrons. As the quantity measured in NR experiments (Q) is dependent on the incident angle, 

 
  , the extent of the curvature of the interface will affect the measured values of Q. We can use 

a fit to the data in Figure 3.14 along with the functions which account for the shift the horizontal 

position of the neutrons due to gravity obtained from Figure 3.12 to determine the necessary correction 
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to Q for the combined effects of gravity and curvature. The following calculations use the interfacial 

curvature data for the 0.027 mM C14TAB/PEO system (as shown in Figure 3.14), this solution was 

chosen as it has a high curvature due to the low concentration of surfactant, and will hence give an 

approximation of the maximum error.  

For a given solution in Figure 3.14, a function for the change in height with radial position, dh/dx, can 

be fitted to the data. The angle of the interface from the horizontal at a given radial position () can 

then be approximated by trigonometry from tan-1(dh/dx). The gradient of these  v x data gives the 

change in the angle of the interface with radial position, d/dx.   

The combined effects of gravity and curvature on the values of the momentum transfer, Q, measured in 

NR experiments on the OFC experiments can be approximated by combining the equations for the shift 

in x as a function of , x, as obtained from Figure 3.12 with that for the change in interfacial angle as a 

function of x, d/dx. Combining these two equations gives us a function for d with respect to , which 

is plotted in Figure 3.15. As   
 , we can use our equation for d with respect to  to calculate 

the change in Q as a function of  which results from the combination of gravity and interfacial 

curvature,   
 . 

 
Figure 3.15. (a) Calculated combined effects of gravity and interfacial curvature as shown by the change in interfacial angle, 

d, with neutron wavelength, , calculated by combining d/dx and x as a function of  from Figure 3.12 and (b) Calculated 
change in momentum transfer, Q, with neutron wavelength, , as calculated from the function in Figure 3.15(a) using the 

equation Q =4Sin()/.  

dQ as function of Q can be plotted at both incident angles used in this project (0.624° and 3.78°) , and 

can be used to work out the alterations which could be made to the measured specular reflectivity 
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profiles for data at both angles (reflectivity as a function of Q). As Q is inversely proportional to , the 

largest dQ will be at low Q for each angle. 

 
Figure 3.16. Calculated change in the reflectivity, dQ, which would result from the combined effects of gravity and curvature 

for a system with a curved interface measured using NR on the OFC.  The solid red line gives the calculated values for 

measurements at the first angle, and the dashed blue line for measurements at the second angle (as in Figure 3.12).  

If the recorded Q values at both angles are altered by the dQ values given in Figure 3.16, we would 

expect that the overlap between the data from the two angles would be slightly altered due to the high 

dQ at low Q for the second angle measurement, and the critical edge may be slightly shifted due to the 

high dQ at low Q for the first angle.  

 
Figure 3.17. Specular reflectivity profile recorded for 0.1 mM h-SDS/100 ppm PEO/D2O (red line, underneath the other 

lines), with data corrected by dQ from Figure 3.16 at the first angle (turquoise line) and the second angle (dark blue line).  






In order to minimize the effect of gravity and curvature on Q, the data were only reduced up to 22 Å, 

even though they were measured up to 30 Å. This will significantly decrease the effects of curvature 

and gravity on the reflectivity profile, as 22 Å are only shifted by around 5 mm compared to the 

position defined by the collimation slits, whereas 30 Å neutrons are shifted around 10 mm. Figure 3.17 

shows the effect of dQ on data recorded at both angles for 0.1 mM h-SDS/100 ppm PEO in D2O, and 

reduced up to 22 Å.  

An alternative approach to examining the effect of surface curvature on the data reduction is to 

consider how the factor used in COSMOS to cause the data from the two incident angles to overlap 

varies with the composition of the sample and therefore the surface curvature. This factor must be used 

in the data reduction due to the use of the attenuator for direct beam measurements, we do not precisely 

know the attenuation used hence a function COSMOS is required to stitch the data together. However 

calculation of the factor relies on the calculation of Q, hence a challenge with this work was to define 

conditions under which the factor could be derived. For the h-SDS/h-PEO/D2O measurements 

discussed above, the factor calculated by COSMOS to cause the data to overlap decreases from 0.4 on 

the D2O sample, which has the most curved surface, to 0.34 on the sample with the highest SDS 

concentration. Figure 3.18 shows the slight error in overlap which is caused if the factor derived from 

the D2O sample  (most curved) is used in reducing the highest concentration h-SDS/h-PEO/D2O (least 

curved) data, compared with the factor calculated for this sample. During all of the experiments in this 

thesis, the factor used for data reduction has been derived for the flattest sample, one with a high 

surfactant concentration in order to limit errors from curvature in the sample reduction. 
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Figure 3.18. Specular reflectivity curves for 1.25 mM hSDS/100ppm 25k PEO/D2O, obtained by data reduction using the 
factor obtained for pure D2O (red crosses) and using the factor obtained for the sample itself (blue crosses). After the overlap 

region the former data set is slightly higher than the latter due to the use of these different factors.  

 

The overall effect of the error in Q due to the combined effects of gravity and curvature results in a 

shift in momentum transfer (Q) of around just 2%, and resulting in a propagated error in the scattering 

length density and thickness of just 3%. As a result of the small magnitude of this effect, this dQ 

correction has not been undertaken for every data set recorded in this project, and this error has instead 

simply been included in our error analysis.  

 

 

3.5. Details of NR experiments using the OFC on FIGARO 

In Section 3.4 I have discussed the fact that different instrument settings are required for measurements 

using the OFC compared with measurements involving other free liquid samples on FIGARO due to 

the combined effects of gravity and curvature and the small size of the interface. The three main 

resulting differences for measurements on the OFC as compared to standard FIGARO measurements 

are the limited neutron footprint of 30 x 41 mm (settings in Table 3.2), the shifted position of the OFC 

195 mm closer to the final collimation slits, and the limiting of the maximum wavelength of the 

reduced data to 22 Å. The shift in position is used because the beam emerges from the slits at different 

heights for the different incident angles, hence the sample has to move by around 20 cm vertically 
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between angles. In this section I will further discuss the set-up of OFC experiments on FIGARO and 

the instrument parameters used, many of which are standard to other measurements on FIGARO. 23 

The set-up of the OFC on FIGARO is slightly more complicated than the set-up of other sample 

environments, due to the attached flow system which needs to be attached to the sample table in a way 

which allows the OFC to be able to move vertically with the sample table for measurements at the two 

incident angles. Furthermore, due to the use of a pump, the flow system causes vibrations which need 

to be minimised for NR measurements. The main components of the flow system are the two liquid 

reservoirs and the pump, which are mounted on the steel frame of the sample table, which helps to 

damp the vibrations which result from them. Vibrations are further reduced by the use of small clamps 

to anchor parts of the tubing which connects the system together either to the steel frame or the anti-

vibration table, and by ensuring that the tubing which supplies liquid to each reservoir is insulated from 

the reservoirs themselves. This vibration limiting set-up was refined in early experiments, to limit early 

anomalies in the data caused by vibrations. As the main components of the flow system are attached to 

the frame around the sample table, the issues surrounding moving the table up and down for two angle 

measurements are limited. However the glass coil used to regulate the temperature of the solution is 

placed is in water bath within the sample area, and in order to allow for movement of rest of the system 

the coil is connected by tubes with sufficient excess length to enable travel between the two angles. 

Failures of the OFC flow system sometimes occur, especially during the study of polymer/surfactant 

systems which phase separate forming aggregates which can block constrictions in the system. In order 

to limit the impact of such floods on FIGARO, and to try to prevent the loss of deuterated samples, two 

new refinements to the classic OFC set-up (as described in Chapter 2) were made.  Firstly, a Teflon 

overflow catching dish was fitted to the outside of the outer cylinder. In the event the OFC overflowed, 

any liquid would be caught in this dish and fed by a tube to a bottle. Secondly, a relay circuit connected 

to two electrodes was attached to the pump power supply. These electrodes are positioned in the 

aforementioned overflow bottle within the sample area, which is also fed by an overflow tube from the 

lower reservoir, which itself is fed by an overflow tube from the upper reservoir. If liquid overflows 

from either reservoir or the OFC into the bottle, the solution conducts electricity between the two 

electrodes and the circuit which powers the pump is cut off, significantly limiting the possibility of 

floods in the experimental zone and the overheating of the pump which should not run dry. 

The OFC is positioned on the FIGARO sample table centrally with respect to the direction of the 

incident neutrons, but close to the final collimation slits (as mentioned above) and secured with double 

sided sticky tape. The sample table is leveled in both horizontal directions using a spirit level. In order 

to ensure that the incident neutrons fall at the centre of the interface of the OFC, it needs to be 
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vertically and horizontally aligned. A horizontal alignment scan is performed by moving the horizontal 

translation motor, STR, over a range of around 100 mm with a width of around 10 mm to obtain a 

triangular peak shape of plotted reflected intensities, which can be fitted with a centre of mass to 

determine the position of the centre of the cylinder. For some experiments later is this project the 

horizontal alignment scan was skipped as the precise positioning required had been noted from a 

previous experiment. The height of the interface of the cylinder is determined from two scans of SHT1 

(vertical translation), a coarse scan over around 40 mm in 10 steps, and a fine scan 4 mm and 25 steps. 

It is clear from the data which positions are above and which are below the interface. Once the 

alignment procedure is complete, a measurement on D2O is recorded at both angles, both for a 

reference and to ensure that the alignment procedure has been successful.  

Once the height of the interface has been determined using the vertical alignment scan, it is kept 

constant in experiments despite the changes in interfacial height with solution composition using an 

optical sensor (LKG-152, Keyence, Japan) which detects the height of the interface using laser 

reflection, and a feedback loop to the sample height positioning motor SHT2. At the height of the 

interface of D2O the height on the Keyence system is set to zero, and all other heights are relative to 

this. The Keyence has to be specifically positioned for OFC experiments due to the unusual position of 

the OFC (closer to the collimation slits) compared to other sample environments. This position is set 

manually to ensure that the laser beam is incident at the centre of the interface during the set up of the 

OFC.  

All of the reflectivity measurements presented in this thesis were recorded at either one (0.624°) or two 

angles (0.624° and 3.78°). For the majority of NR experiments on free liquid surfaces, data are 

standardly recorded at both angles, as measurements at both angles are necessary to check the 

structural model applied to the data fitting, however compositional information can be obtained from 

first angle measurements alone. For all of the systems studied on the OFC as part of this thesis, the 

adsorbed layers were only thin films, and the amount of structural information which can be obtained 

from second angle or measurement in multiple isotopic contrasts was limited. As a consequence, the 

primary objective of this work has been to obtain compositional information about adsorbed material at 

the interface using NR measurements at only the first angle and only in null reflecting water (NRW) 

combined with ellipsometry measurements. Even in the absence of significant structural information, 

high Q data (at angle 2) can give an indication of the layer thickness to use in fitting the specular 

reflectivity profile. However in Chapter 4 we show that the structural model used in fitting the data has 

a minimal effect on the composition obtained from our co-modelling approach, hence NR 

measurements at only the first angle are sufficient to obtain the information we require. Furthermore, 

measurements at the first angle are much faster than those at angle two, hence neglecting angle two 
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measurements results in the ability to measure a much greater number of samples per experiment, 

enabling us to obtain much more information for a given system. Nevertheless, for the majority of the 

systems studied several samples were recorded at both angles in order to examine the structural 

information available and hence to use an optimal structural model in fitting the NR data, whilst 

optimizing our use of deuterated materials. 

Although the majority of the data recorded in this project were measured only at the first angle and 

only in NRW as compositional information can be obtained using our co-modelling approach, some 

measurements employing the technique of contrast variation (as discussed in Section 3.2.4.) were 

performed with the purpose of validating this approach. Data on three polymer/surfactant systems were 

recorded in multiple isotropic contrasts, d-surfactant/h-polymer/NRW, d-surfactant/h-polymer/D2O, 

and h-surfactant/d-polymer/D2O, at both angles, in order to determine whether the compositions 

obtained using our co-modelling approach were consistent with the structural information obtained 

from multiple contrasts. These data and the conclusions reached are discussed in Chapter 4.  

Reflectivity measurements were recorded in the range  = 2–30 Å in order to ensure good overlap 

between data measured at the two incident angles (0.624° and 3.78°, Q = 0.005–0.4 Å–1), but were 

reduced between 2.8 and 22 Å in order to limit the effect of gravity on the data, as discussed above.  

Measurements were recorded with a chopper pair giving constant d/ = 5.6%.  Although a high flux 

setting was also available on FIGARO, using a 20 Å frame overlap mirror and chopper settings 

producing a constant 9.8% d/, this setting was not used in initial experiments in order to give a good 

overlap between the data at the first and second angles. However, as we found that only thin films 

adsorbed at the interface of the OFC for the systems measured, the higher flux settings would be 

appropriate for use in future measurements, and in fact were used in an experiment on the OFC with an 

external user late in this project.  

The NR data in this project were recorded for acquisition times of between 15 min–3 hr in NRW and 

15 min–1 hr 30 min in D2O depending on the sample measured. These are longer than the standard 

acquisition times for measurements on static adsorption troughs due to the smaller neutron footprint 

required for the OFC. For several of the polymer/surfactant systems kinetic measurements were also 

taken, using short time slices of between 30 seconds and 5 minutes in order to determine whether 

changes in adsorbed layer composition were occurring with time. These short measurements can either 

all be fitted or binned into larger time periods during data reduction in order to reduce errors in the 

data. Kinetic data measured on the OFC on FIGARO are shown in Chapters 6,7, and 8.  
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Data were reduced using COSMOS, part of the LAMP suite at the ILL, between 2.8 and 22 Å as 

mentioned above. Normalization factors were derived from the reflectivity of a surfactant solution 

above its critical micelle concentration rather than from D2O measurements as is standard, as this use 

of D2O incurs errors in the other measurements due to surface curvature.  The factor for the lower 

incident angle was derived by scaling the data below Qc (in the range 0.10-0.15 Å-1) to unity, and the 

factor for the higher incident angle was derived by fitting the reflectivity in the intermediate region of q 

where there is overlap. The normalized reflectivity data were binned in intervals of 0.8 × the resolution 

in q (dq). The reduced data were fitted to a structural model to obtain compositional information in the 

form of the product of the scattering length density, , and thickness, , of the layer ( × ) for use in 

our comodelling methodology using the MOTOFIT program17 in IGOR. Information about the fitting 

methodology used for data from each system is given in the relevant chapters of this thesis.  

The primary sources of error in NR measurements are from the positioning of the collimation slits (< 

1% of the maximum value of  × ), fluctuations in the reactor power and chopper phasing (< 2% of 

the maximum value of  ×  for the acquisition times used), and systematic errors from the scaling of 

the data from an air/D2O reflectivity measurement below its critical angle and the curved interface of 

the OFC combined with the effect of gravity (< 3% of the maximum value of  ×  in total). Other 

errors in  ×  arising from counting statistics and the choice of model, do not exceed 4% of the 

maximum value of  ×. 

With regards to samples, experiments on FIGARO were performed as similarly to ellipsometry 

experiments as possible. Initially a solution of polymer and salt (or salt for pure surfactant 

measusrements) was added to the OFC, and measurements were performed as a function of increasing 

surfactant concentration, with a volume of concentration surfactant stock added for each consecutive 

measurement. The total volume of surfactant stock added each time was kept constant at 10 ml, which 

was possible due to the smaller number of samples measured by NR than by ellipsometry. For every 

addition of surfactant, polymer and salt were also added to the system to keep their concentrations 

constant.  
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4. Co-modelling of NR and Ellipsometry Data 

4.1 Introduction  

Adsorption from polymer/surfactant mixtures at the air/water interface can be characterised by a wide 

range of experimental techniques, with a combination of surface tensiometry and neutron reflectometry 

(NR) being one of the most common, and with the references1-7 being by no means exhaustive.  

However, there are drawbacks to the use of both methods. Quantitative interpretation of tensiometry 

data in terms of surface composition is complicated by interactions in the bulk solution which make it 

difficult to determine the chemical potentials of the two components. NR measurements alone are one 

of the most effective methods for obtaining compositional information about the interface of mixed 

systems,8, 9 as measurements in different isotopic contrasts allows the polymer, surfactant, and solution 

to be distinguished. Furthermore NR provides information on structure, which is inaccessible by many 

other methods including tensiometry. The weakness of NR is the need for deuterated components in 

order to record multiple isotopic contrasts, as isotopically substituted polymers are expensive and not 

widely available.  Although hydrogenated polymers can be used for NR measurements, their low 

scattering length densities (SLDs) limits the sensitivity in the surface excess, for example to 2  µmol 

m–2 of EO units in PEO,10 a coverage equivalent to half a monolayer of surfactant.   

One of the primary aims of this project was to validate a new quantitative approach to the 

characterisation of an adsorbed layer at the air/water interface from a two-component mixture using a 

combination of ellipsometry involving entirely protonated species and one isotopic contrast of NR 

measurements involving deuteration of the surfactant but not the polymer. Ellipsometry can be used 

alone to obtain useful semi-quantitative information about the amount of material adsorbed at the 

air/water interface of polymer surfactant mixtures, however it cannot be used independently to obtain 

the interfacial composition. Consequently, ellipsometry is often used in conjunction with other 

experimental techniques such as surface tensiometry11-15, shear viscosity measurements14, and external 

reflection Fourier transform infrared spectroscopy (ER-FTIRS)16, to characterize adsorbed interfacial 

layers. Ellipsometry and NR are often used as complementary techniques due to their very different 

sensitivities to the two components in a mixture, with the references 17-22 being only a few examples. 

However, to the best of our knowledge no study has previously co-modelled data from the two 

techniques in order to obtain quantitative compositional information about the interfacial layers.  
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The complementary sensitivities of ellipsometry and NR to the different components in the mixture is 

the basis of our co-modelling approach to obtaining interfacial compositions for polymer/surfactant 

mixtures. Whilst NR is primarily sensitive to deuterated components, in our case deuterated surfactants 

and not hydrogenated polymer, ellipsometry is similarly sensitive to both surfactant and polymer at the 

interface. The measured quantities for each technique,    (the sum of the product of the scattering 

length and thickness over i layers) obtained from fitting specular reflectivity profiles from NR 

measurements, and the ellipticity, , will both be assumed to be made up of additive contributions from 

the surface excesses of the two components, although this assumption will be tested later.  

We can therefore approximate the relationships between the measured quantities from each technique 

and the surface excesses of both components using equations containing coefficients to account for the 

sensitivity of the technique to each component. From two techniques we obtain two equations in terms 

of surface excess which can be solved simultaneously to obtain the surface excesses of the two 

components.  

The motivations for developing a new co-modelling approach to determining the interfacial 

compositions of layers adsorbed from mixed solutions are threefold. Firstly, using NR and ellipsometry 

we can obtain adsorbed amounts of both polymer and surfactant for systems for which only one 

deuterated component is available. Numerous NR studies of polymer/surfactant mixtures in the 

literature (refs) have obtained interfacial compositions for systems for which deuterated polymer was 

unavailiable, and this resulted in poor precision of the polymer surface excess. Our co-modelling 

approach increases the precision of the polymer surface excess determined using the same chemicals, 

and without the custom synthesis of deuterated polymers. Secondly, NR beamtime is a valuable 

commodity. Use of our approach can cut the requirement for beamtime by at least a factor of 3, as 

measurements on only one isotopic contrast are required. For measurements on the OFC, the cost of 

deuterated materials is also a concern, as the OFC uses a minimum sample volume of 1.25 litres and 

therefore the amount of deuterated materials required for multiple contrast measurements is large. 

Thirdly, this methodology should be equally applicable to mixtures containing species which cannot be 

deuterated.  

 

This chapter discusses the methodology of, and assumptions behind, our co-modelling approach and its 

application to the determinination of the composition of interfacial layers adsorbed from 

polymer/surfactant mixtures. Section 4.2 discusses the methodology used; how the coefficients which 

represent the sensitivity of the two techniques to each component are calculated. For NR the measured 

quantity    is approximately linearly related to  for both components. For ellipsometry, however, 
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the relationship between  and  for a pure surfactant is best approximated by either a linear or a cubic 

function, depending on the surfactant. The choice of function used to approximate the contribution to  
for a polymer/surfactant mixtures can affect the calculated composition. Section 4.3 discusses the 

effect of the function chosen on the calculated interfacial compositions of the systems examined in this 

thesis, and the systematic errors thus incurred. Finally, in Section 4.4, I will present multiple isotopic 

contrast NR data for some of the systems studied, and show that these data are consistent with the 

compositions obtained using our co-modelling methodology in order to validate the approach.  

 

4.2. Co-Modelling Methodology 

The first step in co-modelling data from ellipsometry and NR measurements in order to obtain surface 

compositions is to establish the relationships between the two measured quantities, the product of the 

scattering length density and thickness of the layer,   , and the ellipticity, , and the surface 

excesses of the two components. For NR, there is a simple linear relationship between   and the 

surface excesses of polymer (Γpoly) and surfactant (Γsurf) as in Equation 4.1. 

               (4.1) 

where ba is the scattering length of component a, a is the surface excess of component a, and NA is 

Avogadro’s constant. For clarity, we will simplify Equation 4.1. by writing A = bsurf × NA and B = bpoly 

× NA, with a conversion from Å2 to m2 implicit in the calculation of the coefficients (corresponding to a 

division of A and B by 1 x 1020). The values of bsurf and bpoly for the surfactants and polymers in this 

study are given in Tables 4.1 and 4.2. Equation 4.1 is therefore simplified to:  

                (4.2) 

In order to obtain values for surf and poly from Eq. 4.2 we also need an equivalent equation for the 

relationship between  and , however the formulation of this equation is more complicated.  

Previous work has shown that there is an approximately linear relationship between  and  for pure 

surfactants,17, 23-25 and that for polymer/surfactant mixtures  can be assumed to a first approximation 

to be an additive combination of the contributions of the two components.16 It should therefore be 

possible to write an analogous linear relationship to Equation. 4.2 between  and the surface excesses 

of both components as an extension of Equation. 2.18 in Chapter 2.  The rationale for a linear 

relationship between  and  is that the adsorbed polymer and the surfactant head groups can be 
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treated by an effective medium approximation (which is quite accurately linear when the relative 

permittivity of the water and the organic material are not too dissimilar) and the hydrophobic chains 

form an oil film of constant refractive index and varying thickness.  

The effective medium approximation used here is the Lorentz-Lorentz effective medium 

approximation,  




 



  
,        (4.3) 

where   is the volume fraction and  is the relative permittivity of a species in the layer. This equation 

was previously given in Chapter 2, but is repeated here for clarity. For a layer of given surface excess 

at the interface, we can use the Equation 4.3. to demonstrate that variations in the volume fraction of 

polymer in the layer have no effect on . If we use a layer of adsorbed PEO as an example, we can 

calculate from     

 where n is calculated from dn/dc = 0.13426 multiplied by 

the mass per unit volume of 1 µmol m-2 of polymer. Equations 4.4 and 4.5 (previously given in Chapter 

2 but repeated here for clarity) are then used to calculate .  

  


         (4.4) 

and 

  




          (4.5) 

where H2O and air are the permittivities of the solution and the air respectively,  is the wavelength of 

the HeNe laser, and the ellipsometric thickness, , is found from the Drude equation assuming uniform 

density. 

For 6 µmol m-2 of PEO at the interface, the calculated values of   using Equations 4.3 - 4.5 vary by 

only 2 × 10-7 (0.5% of the value of  ) as the volume fraction of PEO in the layer is varied from 0.01 to 

0.6. The measured value of  is independent of the volume fraction of the species in the layer at 

constant surface excess.  

The linear relationship between  and  for a pure surfactant system breaks down at low coverages 

where the hydrocarbon tails of the surfactant are too sparse to fully cover the interface and must 

therefore be mixed either with water or air. 27, 28  In the former case, an effective medium 

approximation still gives a linear relationship between  and ; in the latter case the relationship is 
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strongly nonlinear and changes sign when the volume fraction of air in the mixed layer is >0.2.27 In 

previous work on adsorbed layers of APFN,29 the chains needed to be immersed 75 % in water and 25 

% in air in order to model the  data, which is consistent with a slight maximum in the  v  data. This 

deviation from linearity for the   v  data at low coverages means that it may sometimes be more 

appropriate to use a non linear fit (or other function) to the  v  data for pure surfactants in order to 

minimise the errors in this region16.  

Figure 4.1 and Figure 4.2 show the pure surfactant  v  data for all of the surfactants used in the 

experiments presented in this thesis, along with several lines which denote a cubic fit to the data (solid 

line), a linear fit to the data (dashed line), a linear fit to the data where   > 1 µmol m-2 (dash-dot line) 

and a line between the max and  = 0 values (dotted line). I will first discuss the two fits to the pure 

surfactant data (solid and dashed lines), whilst the purposes of all four will be discussed below in the 

context of polymer/surfactant mixtures. 

It is clear from the data in Figure 4.1 and Figure 4.2 that the deviation from linearity of the  v  data is 

much more pronounced for some surfactants than others, with the C12TAB and C14TAB data well fitted 

by either the linear or cubic functions (dashed and solid lines respectively), whilst for SDS and 

C16TAB data the cubic fit is clearly a better approximation to the recorded data. The gentle maximum 

observed in the cubic fits for the latter two systems is not just an artifact of the fitting procedure: 

addition of very small amounts of surfactant to water yields a detectable increase in  before it starts to 

decline at higher concentrations. For the SDS data, the deviation of the ellipticity from linearity is in 

absolute terms very similar to that for the C12TAB and C14TAB systems, but the difference is more 

notable for SDS as the values of  are smaller than for C14TAB.  In a previous study the cubic fit was 

used to approximate the contribution of SDS to, as the linear approximation was calculated to lead to 

errors of up to 6% in a monolayer of SDS.16 For the C16TAB data the deviation from linearity is greater 

than that of the other surfactants. It is not clear whether this can be attributed to a trend with increasing 

chain length, as Bell et al. concluded that increasing the chain length of the CnTAB surfactants does not 

perturb the structure and conformation of the chains at the interface, although increasing the surfactant 

chain length increased the sensitivity of  to the volume fraction of the chain length at low coverage.27 

It is probable that the poor linearity may be due to a systematic error in the original experiments, 

however in order to determine whether this is the case we would need to repeat the NR measurements. 
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Figure 4.1. Relationship between dynamic ellipticity, , and dynamic surface excess, surf as recorded using NR, of (a) SDS 
in the presence of 0.1 M NaCl and (b) C12TAB in the presence of 0.1 M NaBr. Four different functions relating  and  are 
given on each graph, the solid line is a cubic fit to the data, the wide-dashed line is a linear fit, the dash-dot line is a linear fit 
through the data where  > 1 µmolm-2, the dotted line joins the maximum and minimum values, and the close-dashed line has 
the gradient of the data at   > 1 µmolm-2 but passes through the pure water value. For both data sets the point plotted at   = 0 
is the value of  for pure water, 0.00038.  

 

Figure 4.2.  Relationship between dynamic ellipticity, , and dynamic surface excess, surf as recorded using NR, of (a) 
C14TAB and (b) C16TAB solutions on the OFC. All measurements were made in the presence of 0.1M NaBr.  Four different 
functions relating  and  are given on each graph, the solid line is a cubic fit to the data, the wide-dashed line is a linear fit, 
the dash-dot line is a linear fit through the data where  > 1 µmolm-2, the dotted line joins the maximum and minimum values, 
and the close-dashed line has the gradient of the data at   > 1 µmolm-2 but passes through the pure water value. For both data 
sets the point plotted at   = 0 is the value of  for pure water, 0.00038.  
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Although it is clear from Figure 4.1 and Figure 4.2 that a cubic function gives the best approximation 

to the relationship between  and  for a pure surfactant at low coverages, this will not necessarily be 

the case for polymer/surfactant mixtures. Adsorption of polymer at the interface at low surfactant 

coverages may result in mixing of the polymer and surfactant chains, which would result in a higher 

volume fraction in the chain region for the mixture than the monolayer, which may eliminate the need 

for a cubic function to account for the low surfactant volume fraction, and a linear function can be 

used. However, the most appropriate linear function to relate  and  for the surfactant in the mixture 

may not be that obtained from a fit through the pure surfactant data. For all of the polymer/surfactant 

mixtures in this study, the optimum function to use to relate  and  for the surfactant in the mixture 

will need to be examined to determine the effect of the adsorption of polymer on this relationship, as 

the function used will affect the calculated surface excesses of both components.  

In the presence of polymer at the interface, the most appropriate linear relationship between  and  
for the surfactant may not be the linear fit to the pure surfactant data, depending on the effect of 

polymer on the relationship. For all of the surfactants in Figures 4.1 and 4.2, the linear fit to the pure 

surfactant data (dashed line) does not go through the pure water value, instead crossing the y axis at 

higher values of , which will inevitably incur errors in the calculated compositions at very low 

surfactant coverages. A possible alternative linear function to relate  and   for the surfactant in the 

mixture would connect the  and  values for the pure surfactant at monolayer and zero coverages 

(pure water), shown as a dotted line in Figures 4.1 and 4.2. This function will probably give reasonable 

interfacial compositions at high and low surfactant coverages, but incur errors at intermediate 

coverages. One issue with this approach is that it overweights a single data point at high coverages and 

disregards the others. In order to examine the effect of the use of this single data point, a line through 

the pure surfactant  v  data for  > 1 µmol m-2 is shown in Figures 4.1 and 4.2  as a dash-dot line. 

The values of  and  at high coverages which would be determined using this line are very close to 

the measured values, hence we will use the measured  and  values at high coverage in this additional 

function.  

One further linear function which may be appropriate in the presence of significant amounts of 

polymer at the surface is a line with the gradient of the fit through the pure surfactant  v  data for  > 

1 µmol m-2, but applied over the whole range of coverages, i.e. with a y-axis intercept corresponding to 

the pure water value (shown as a close-dashed line in Figures 4.1 and 4.2). This function may be 

correct for mixtures at low coverages, but will clearly result in errors at intermediate and high 

coverages, as it results in ellipticities which are more negative than the experimental data.  






In Section 4.3 I will discuss the effect of using the four functions relating  and  for the surfactant 

discussed here on the interfacial compositions calculated for each of the polymer/surfactant systems 

examined in this thesis. Before doing so, however I will outline how an equation relating  and  for 

the mixtures for use in co-modelling, similar to Equation 4.2 for the NR data, can be formulated.  

As it is not clear at this point what will be the most appropriate function to use to relate  and  for the 

surfactant in the polymer/surfactant mixture, the equation to relate the two quantities for the mixture 

(Equation 4.6) contains a function f(surf) which can be linear or cubic.  

                 (4.6) 

where D is the sensitivity of ellipsometry measurements to , the calculation of which will be 

discussed later, and E accounts for the contribution to  from the capillary wave roughness of the 

surface. The roughness is theoretically expected to scale as the inverse root of the surface tension, -0.5, 

and yields a positive contribution to  of 4–6 x 10-4.30 As we have not independently measured the 

dynamic surface tension for the solutions studied in this work we will use the y intercept of the plot of 

 v  for the pure surfactant (including the datum for pure water) to approximate E.  

In the case where f(surf) is linear, it may be represented by Csurf, where C is obtained from a linear fit 

to the pure surfactant  data. When a cubic relationship between  and  is more appropriate, 

f(surf) is represented by the co-efficients of the cubic fit to the data, and Eq. 4.6. becomes Eq. 4.7. 

                   (4.7) 

where x, y, z and E are the co-efficients of the cubic fit to the data.  

The composition of an adsorbed layer from a polymer/surfactant mixture is therefore determined from 

the measured quantity by solution of the pairs of simultaneous equations Eq. 4.2. and Eq.4.6. or Eq. 

4.2. and Eq. 4.7, depending on whether a linear or cubic function is deemed to give the best 

approximation to the adsorption behaviour of the surfactant at low coverages.  

For each surfactant, the co-efficients of the cubic fit, linear fit and line between the minimum and 

maximum values of  and   in Figure 4.1 and Figure 4.2 are given in Table 4.1.  
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Function Coefficient SDS C12TAB C14TAB C16TAB 

 

Cubic Fit to Data 

x 2.19 x 10-5 3.30 x 10-6 3.35 x 10-5 1.20 x 10-4 

y -1.75 x 10-4 -8.70 x 10-5 -2.4 x 10-4 -6.99 x 10-4 

z 8.97 x 10-5 -2.58 x 10-4 -1.21 x 10-4 2.60 x 10-4 

E  3.77 x 10-4 3.52 x 10-4 3.85 x 10-4 3.82 x 10-4 

Linear Fit to Data C -2.79 x 10-4 -4.95 x 10-4 -5.71 x 10-4 -8.13 x 10-4 

E 5.10 × 10-4 4.32 x 10-4 5.22 x 10-4 6.54 x 10-4 

Line between max 
and 0 

C  -2.60 x 10-4 -5.02 x 10-4 -5.52 x 10-4 -7.66 x 10-4 

E  3.80 x 10-4 3.80 x 10-4 3.80 x 10-4 3.80 x 10-4 

Line with high 

coverage gradient 

C -3.33 x 10-4 -6.11 x 10-4 -6.45 x 10-4 -10.2 x 10-4 

E 3.80 x 10-4 3.80 x 10-4 3.80 x 10-4 3.80 x 10-4 

 bsurf / Å 2.79 × 10-3 2.49 x 10-3 2.89 × 10-3 3.56 x 10-3 

 

Table 4.1. Constants for the contribution of the surfactant to the ellipticity obtained from or used to plot each of the functions 

relating the surfactant  v  data shown in Figure 4.1 and Figure 4.2. C is the co-efficient of the linear fit, and x, y, z, are the 

co-efficients of the cubic fit, and E is the roughness contribution which comes from the y intercept of either the linear or cubic 

fit. These numerical values are consistent with  in mol m-2, poly in terms of monomers, and  in Å-1. The scattering 

length of the surfactant bsurf is also given for use in Eq. 4.2.  

The co-efficient which accounts for the contribution of the polymer to  for the mixture, D in Eqns. 

4.6. and 4.7., can be calculated also assuming an effective medium approximation, where the 

contribution of the polymer to  is linearly proportional to  and only weakly dependent on the degree 

of hydration (i.e., the volume fraction of polymer) in the adsorbed film.31 As we do not have NR data 

for deuterated polymers under similar conditions to those used in the experiments presented in this 

thesis, a calibration plot approach to determining the contribution of polymer to  is not possible. D is 

obtained by calculation of value of  which would result from a poly of 1 mol m-2, using Equations 

4.4 and 4.5 and the method of calculating  from dn/dc given above.  

Values of the co-efficients representing the contribution of the polymer to   (the co-efficient B, 

here given as the scattering length bpoly without any conversion factors) and to the ellipticity (D) used 

for co-modelling the data are given in Table 4.2. 
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 PEO PSS PEI 

bpoly / Å 4.13 × 10-5 5.08 x 10-4 3.76 x 10-5 at pH 10 

1.41 x 10-5 at pH 4 

D -7.45 x 10-5 -4.61 x 10-4 -1.34 x 10-4 

dn/dc /cm3g-1 0.13426 0.19832 0.25 
 

Table 4.2. Constants to account for the contribution of the polymer to    and  for the mixture, where bpoly is the 

calculated neutron scattering length of the polymer monomer, calculated from the sum of the scattering lengths of the 

constituent atoms for use in Eq. 4.2, and D is the contribution to the ellipticity, and is calculated as detailed above from the 

literature dn/dc value. D is in units consistent with  in mol m-2.  

 

 

4.3. Effect of Co-Modelling Methodology on the Interfacial Composition 

In section 4.2 I introduced the idea that there are several possible functions which can be used in the 

co-modelling methodology to relate  and  for the surfactant in the mixture, depending on the effect 

of polymer adsorption. The function chosen can have a significant effect on the calculated interfacial 

composition. The choice is not arbitrary, since the chosen function has to give physically reasonable 

results; for example, the polymer surface excess has to be positive (for the dilute solutions studied 

here) and cannot exceed the maximum diffusion-controlled limit..  In this section I will discuss the 

variation in the interfacial compositions obtained for each of the polymer/surfactant systems examined 

in this thesis due to the choice of function used to relate  and  for the surfactant. The four functions 

evaluated  are a cubic fit to the pure surfactant data, a linear fit to the pure surfactant data, a line joining 

the data points for zero and maximum coverage, and a line with the gradient of the higher coverage 

data but passing through the pure water value. It will become clear from the data below that one or 

more of these functions is inappropriate, as physically impossible values of the polymer surface excess 

will result from the calculations. For each of the systems studied in this thesis a comparison of the 

interfacial coverages calculated using each approach is presented, and a justified choice of one function 

to calculate the data for interpretation in the remainder of this thesis is given.  

The first systems for which I will examine the effects of the function used to represent the pure 

surfactant  v  data on the calculated interfacial composition of the mixture are the PEO/surfactant 

mixtures, PEO/SDS and PEO/C14TAB. Figure 4.3 shows the polymer and surfactant surface excesses 

(empty and filled symbols respectively) calculated for both systems using the coefficients for a cubic 
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function (green triangles) a linear function obtained from a fit to the pure surfactant (orange squares), a 

line between the maximum and minimum values of  and  (blue diamonds), and a line with the 

gradient of the high coverage data, passing through the pure water value (turquoise inverted triangles). 

The choice of function has a limited effect on the surfactant surface excess, since it is derived almost 

exclusively from the NR data, whilst the polymer surface excess varies dramatically with the function 

used.  

 

Figure 4.3 - Surface excesses of surfactant (filled symbols) and PEO (empty symbols) adsorbing at the interface of the OFC 

from a mixed solution containing 100 ppm 25k PEO and (a) C14TAB or (b) SDS. The green triangles are the data calculated 

using the coefficients of a cubic function in Table 4.1, the orange squares using a linear function, and the blue diamonds using 

the coefficients of a linear function between maximum and minimum coverage, and the turquoise inverted triangles from a 

line with the gradient of the high coverage  v  surfactant data but passing through the pure water values (all shown in 

Figures 4.1 and 4.2). The black solid line is an approximation to the diffusion controlled maximum polymer surface excess 

poly,max, the calculation of which is discussed in Chapter 5, whilst the black dashed line denotes the zero value of the y-axis.  

In order to determine which of the functions used to calculate the surface composition in Figure 4.3 

gives the most physically reasonable values of the poly, we can start by asking two questions of the 

coverages shown in Figure 4.3 for each function;  first, how does the maximum calculated value of 

poly compare to poly,max under diffusion control (solid black line), and do we obtain negative poly 

values in any region? Any approximation which exceeds the diffusion-controlled limit or which gives 

negative surface excesses must be physically wrong, at least over part of the csurf range. 

Using the two criteria given above we can quickly dismiss the use of two of the functions. Firstly, for 

the PEO/C14TAB system in Figure 4.3 (a) it is clear that the function obtained from a fit through the 

high coverage surfactant data (inverted turquoise triangles) results in a large error in the calculation of 
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poly at high csurf values, with large negative values calculated, as we may have predicted from Figures 

4.1 and 4.2. This function will therefore not be used. If we then turn to the PEO/SDS data in Figure 4.3 

(b) we can see that the poly values calculated using the cubic function (green triangles) significantly 

exceed the diffusion controlled limit as marked by the solid black line, which is not physically 

possible. This function is then also dismissed. As the adsorption of polymer at low surfactant 

coverages has the greatest effect on the appropriate function used we might expect that the same 

function would be appropriate for both PEO/surfactant systems, however as their behaviour is different 

at high surfactant concentrations this may not be the case.  

For both systems we are left with three systems to discuss; for PEO/C14TAB the linear function fitted 

to the pure surfactant data (orange squares) and the line between the maximum and minimum 

coverages (blue diamonds), and the cubic function (green triangles), and for PEO/SDS the first two 

functions (orange squares and blue diamonds) remain along with the function from the high coverage 

data (turquoise triangles). The first notable difference between the remaining data sets for both systems 

is that poly is lower for the max-min line and for function from the high coverage data than it is for the 

remaining data. At low bulk surfactant concentrations, where the amount of surfactant at the interface 

is small compared to the amount of surface active polymer, we would expect that adsorption of 

polymer would be under diffusion control, as marked by the black line. We will therefore dismiss the 

max-min function for the PEO/C14TAB system and both the max-min and the high coverage functions 

for the PEO/SDS system as they result in poly values lower than the diffusion controlled estimate.  

For the PEO/SDS system we are therefore left with only the data calculated from the linear function 

through the pure surfactant data (orange squares), however for the PEO/C14TAB system we are left 

with both the data from both the linear and cubic functions. Both of these remaining functions give 

physically reasonable values of poly at all surfactant concentrations, although with some differences, 

and either could be used in our analysis of the data in Chapter 5. For consistency with the PEO/SDS 

system I will choose to use the data arising from the linear function, however I will acknowledge in 

Chapter 5 that the choice of function used in the co-modelling of this system leads to errors in the 

values of and trends in the poly data.  

It should be noted that in this approach we are ignoring any change occurring in the roughness 

contribution from the co-adsorption of polymer and surfactant at the interface. Increased roughness on 

the adsorption of a mixed layer would increase the ellipticity. If we neglect the change in roughness, 

the polymer surface excess we calculate will be less than the true surface excess, more especially at 

low surfactant concentrations. This error could perhaps be minimized by measurements of the surface 

tension of each polymer/surfactant system at the static interface, however such measurements were not 
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within the remit of the work in this thesis. To some extent the effect of the roughness is already 

compensated for by use of linear functions, which result in lower poly values at low surfactant 

concentration than we may expect in this region. 

I will now move on to an examination of the effects of the function used on the interfacial composition 

calculated for mixtures of PSS/CnTAB (discussed later in Chapters 6 and 7). As Figure 4.3 has shown, 

the surfactant surface excess is minimally affected by the function chosen to calculate the interfacial 

composition, hence in Figure 4.4 and Figure 4.5 only the polymer surface excesses are shown for 

clarity. In Figure 4.3 it was clear that using the function based on the gradient of the high coverage 

surfactant data and the y-intercept of pure water incurred significant errors in the polymer surface 

excess calculated. As a consequence this function will not be considered in the following discussion. 

Although the cubic function also incurred errors in the calculated poly values in Figure 4.3. it will still 

be examined for the other systems, as if poly is low at low surfactant coverages, a cubic function 

relating  and  for the surfactant may still be appropriate. As a consequence, Figures 4.4 and 4.5 show 

the effects of using functions obtained from a cubic or linear fit to the pure surfactant data or from a 

line joining the maximum and minimum coverage values, with the symbols consistent with those in 

Figure 4.3.  

From Figures 4.4 and 4.5 we can see that the calculated values of poly are greatest when the cubic 

function is used, intermediate when the linear fit to the data is used and lowest for the max-min for all 

of the PSS/CnTAB systems as they were for the PEO/surfactant mixtures. However, the difference in 

poly between the three calculation approaches is much smaller than it was for the PEO mixtures. As 

poly is low at low surfactant coverages, we cannot discount the values calculated using the cubic 

function, as it may still give the best physical approximation of the data at low coverages. Furthermore, 

the three methods of calculation cannot be distinguished by comparison of poly to the maximum value 

under diffusion control, 2 µmol m-2, as all of the poly values in Figure 4.4 and Figure 4.5 are below this 

theoretical value.  
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Figure 4.4.  Surface excesses of PSS at the interface of the OFC from a mixed solution containing 100 ppm 17k PSS and 

increasing concentrations of C12TAB, where the symbols are consistent with Figure 4.3, the green triangles are calculated 

using coefficients from a cubic fit to the pure surfactant  v  data, the orange squares from a linear fit, and the blue diamonds 

from a line between the values for the maximum and minimum coverages. Co-efficients are given in Table 4.1.  

 

Figure 4.5. Surface excesses of PSS at the interface of the OFC from a mixed solution containg 100 ppm 17k PSS with (a) 

C14TAB and (b) C16TAB. The symbols are consistent with Figure 4.3 and Figure 4.4, the green triangles are calculated using 

coefficients from a cubic fit to the pure surfactant  v  data, the orange squares from a linear fit, and the blue diamonds from 

a line between the values for the maximum and minimum coverages. Co-efficients are given in Table 4.1. 

From the PSS/C12TAB and PSS/C14TAB data, it is impossible to determine which calculation approach 

gives the most physically reasonable values of poly, however the PSS/C16TAB data in Figure 4.5 (b) do 

allow the approaches to be distinguished. At the highest csurf values measured, physically impossible 






negative poly values are calculated using both the linear and min-max functions. On this basis, I will 

use the cubic function to obtain compositional data for all of the PSS/CnTAB systems in Chapters 6 

and 7. However, as the trends in poly are similar for all three systems using any of the three functions, 

it seems possible that any of the three functions could be the best to use in the co-modelling approach. 

As a consequence I will acknowledge the possible error in poly for these systems in all subsequent 

discussions.  

The final system to examine is PEI/SDS at pH 10, which will be discussed in Chapter 8. For this 

system, the poly values calculated using all three approaches are given in Figure 4.6. The first thing we 

note from these data is that poly is very high at low surfactant coverages, which eliminates the need for 

a cubic function to account for the adsorption of surfactant at a bare interface. Either a linear fit or a 

cubic fit to the pure surfactant data results in an over-estimation of poly at the lowest surfactant 

concentrations measured, as the calculated poly values exceed the maximum value which would result 

from diffusion-controlled adsorption of the polymer (marked by the black arrow). As a consequence, I 

will use the max-min linear function for calculation of the interfacial composition for this system. 

Nevertheless, it should be noted that the function used to obtain the interfacial composition does not 

change the trend in poly with csurf for this system, it only introduces a maximum difference in the 

calculated values of 1.5 µmol m-2, and it has no effect on the qualitative interpretation of the trends in 

adsorption behaviour in Chapter 8. 

 

Figure 4.6. Surface excesses of PEI at the interface of the OFC from a mixed solution containg 100 ppm 750 k PEI and SDS 

at pH 10. The symbols are consistent with Figures 4.3, 4.4, and 4.5 the green triangles are calculated using coefficients from a 

cubic fit to the pure surfactant  v  data, the orange squares from a linear fit, and the blue diamonds from a line between the 

values for the maximum and minimum coverages. Co-efficient values are given in Table 4.1. The arrow marks the maximum 

poly value which can be reached under diffusion control.  
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In this section I have demonstrated that the choice of function used to calculate the interfacial 

composition has a significant effect on the calculated polymer surface excess for all of the 

polymer/surfactant systems studied in this thesis. The choice of function for a mixture cannot simply 

be predicted from that which is most appropriate for the pure surfactant, as changes in the optical 

properties of the surfactant layer at low coverage may not occur if a significant amount of polymer is 

co-adsorbed. For all of the polymer/surfactant systems in this thesis, the choice of function to 

approximate the relationship between  and  for the surfactant does not change the qualitative trends 

in the polymer coverage, it only affects the calculated values. For each system, the function which 

incurs the least physically impossible data points is chosen for use in the chapters which follow this 

one. Nevertheless, it should be noted that there may be some uncertainty in the values of poly from that 

presented in the following discussions. For a given polymer/surfactant system for which the full  v  

calibration curve is not known, the only option is use of the function between surf = 0 and surf,max. 

Although this function has not be chosen for use in the co-modelling of the systems above due to the 

presence of a full calibration curve, the errors are not sufficiently significant to make the method an 

unsatisfactory approach to the calculation of the interfacial composition of mixed systems. 

Furthermore, a reasonable first approach might be to use a cubic function in the situation where the 

polymer is not surface active and a linear function if the polymer is surface active, as this would work 

for all of the systems discussed above, and eliminates the need to measure NR data on the pure 

surfactant for every new system this approach is applied to.  

 

4.4. Validation and Limitations of our Co-Modelling Approach 

In order to apply our co-modelling methodology to determining the interfacial compositions of 

adsorbed layers we first need to be sure that the compositions we obtain from one isotopic contrast NR 

data and ellipsometry data are consistent with a data obtained on multiple isotopic NR contrasts when a 

plausible structural model is applied. Although measuring multiple isotopic contrasts as an approach to 

obtaining interfacial compositions of multiple systems is undesirable on the OFC due to the quantity of 

deuterated material required, we have recorded data on additional contrasts for several of the systems 

in this study in order to validate our approach. Data for PEO/SDS, PEO/C14TAB, and PSS (100ppm 

17k) /C12TAB were recorded in two further isotopic contrasts, h-polymer/d-surfactant/D2O and h-

polymer/h-surfactant/D2O. If our co-modelling methodology gives reasonable interfacial compositions, 

then we should be able to use these compositions to simulate fits to data obtained on multiple isotopic 

contrasts.   
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Figure 4.7.  Neutron reflectivity profiles recorded in three isotopic contrasts, for the system PEO/SDS where cPEO = 100 ppm 
and cSDS = 0.5 mM. The red triangles are for h-polymer/d-surfactant/NRW, the blue circles for h-polymer/h-surfactant/D2O, 
and the green diamonds for h-polymer/d-surfactant/D2O. Simulated fits to these data using the surface compositions obtained 
from our co-modelling approach and a single 11 Å layer structure containing surfactant, polymer and solvent are shown as 
lines of corresponding colours. 

 

Figure 4.8. Neutron reflectivity profiles recorded in three isotopic contrasts, for the system PEO/SDS where cPEO = 100 ppm 
and cSDS = 0.5 mM. The symbols are identical to those in Figure 4.7. Simulated fits to these data using the surface 
compositions obtained from our co-modelling approach are shown as lines of colours corresponding to those of the data. For 
these simulations a 2-layer structure is used, where the top layer contains only surfactant chains and air and the bottom layer 
contains surfactant headgroups, polymers and solvent. (a) The chain layer density is varied with composition in the 
simulation, whilst its thickness is kept constant. (b) The chain layer thickness is varied with composition. 
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If we examine the data for the PEO/SDS system first, Figure 4.7 and Figure 4.8 show simultated fits to 

the NR data recorded on three isotopic contrasts using the surface compositions obtained from our co-

modelling approach. In Figure 4.7, the simulated fits are for a single 11 Å mixed layer of polymer, 

surfactant and solvent, and in Figure 4.8 for a 2-layer arrangement where the top layer contains only 

surfactant chains and air and the bottom layer contains surfactant headgroups, polymer and solvent. 

These simple simulations assume that the compositions of a mixed layer containing polymer, surfactant 

and solvent can be calculated using an effective medium approximation.   

From Figure 4.7 it is clear that the simulated fits to the data using the compositions obtained from our 

co-modelling approach and a single 11 Å mixed polymer/surfactant layer structure do not correspond 

well to the recorded data for all contrasts, with the simulation for the h-polymer/h-surfactant/D2O 

contrast (dashed blue line) significantly outside the error bars of the corresponding data. Division of 

the surface structure into two layers improves the correspondance of the simulated fits to the data 

(Figure 4.8). The exact nature of the two-layer model used further affects the simulation; in Figure 4.8 

(a) the hydrocarbon chain layer density was varied with surf, whilst in (b) the hydrocarbon layer 

thickness was varied.  From Figure 4.8 (b) it is clear that when a varying chain layer thickness is 

employed, the simulations closely fit the recorded data for all three contrasts.  I have therefore 

demonstrated that the compositions obtained using our co-modelling approach give a reasonable fit to 

NR data obtained on multiple isotopic contrasts for the PEO/SDS.  

NR data recorded on multiple isotopic contrasts for the system PEO/C14TAB are also consistent with 

the compositions obtained from our co-modelling approach when a reasonable structural model is 

employed. As previously, a single-layer model was found to be insufficient to fit the data. However, if 

the same structural model is used for this system as for PEO/SDS, with division of the adsorbed layer 

into a surfactant chain layer and a surfactant headgroup, polymer, and solvent layer, reasonable 

simulated fits to the data are obtained, as shown in Figure 4.9.  
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Figure 4.9 - Neutron reflectivity profiles recorded in three isotopic contrasts for the system PEO/C14TAB where cPEO = 100 
ppm csurf = 0.22 mM and cNaBr = 0.1M. The turquoise squares are the h-polymer/d-surfactant/NRW data, the purple circles are 
the h-polymer/h-surfactant/D2O data, and the orange inverted triangles h-polymer/d-surfactant/D2O. Simulated fits to these 
data using the compositions obtained from our co-modelling approach and a two layer structure where the top layer consists 
of surfactant chains (of which the density is varied) and the sub layer consists of surfactant headgroups, polymer and solvent 
are shown in corresponding colours.  

The third system for which NR data was obtained on multiple isotopic contrasts as part of the 

experimental work in this thesis is PSS/C12TAB. Data was recorded on this system as well as the 

PEO/surfactant mixtures above in order to determine whether strong interactions between oppositely 

charged polymers and surfactants at the interface had any effect on the validity of our approach. 

Simulated fits to data obtained on all three contrasts are shown in Figure 4.10; (a) shows simulations 

using the same structure as that used for the PEO/surfactant mixtures, a two layer structure where the 

top layer consists of surfactant chains and the bottom a mix of headgroups, polymer and solvent, and 

(b) shows a single layer model containing a mixture of polymer and surfactant. From panel (a) we can 

see that that the two layer model does not give perfect fits to the data obtained on all three contrasts, 

although the simulated fits are close to the data. Panel (b) shows that a single layer model gives better 

simulated fits to the data in all three isotopic contrasts, suggesting that the polymer and surfactant are 

significantly intertwined at the interface. Although the model is different for this system, it is clear that 

satisfactory fits to NR data on multiple isotopic contrasts can be simulated using the compositions from 

our co-modelling approach, further validating our methodology.  
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Figure 4.10.  Neutron reflectivity profiles recorded in three isotopic contrasts, for the system PSS/C12TAB where cPSS = 100 

ppm, csurf =0.35 mM and cNaBr =0.1M. The purple squares are the h-polymer/h-surfactant/ D2O data, the pale blue triangles are 

the h-polymer/d-surfactant/D2O data, and the pink circles h-polymer/d-surfactant/NRW. Panel (a) shows simulated fits using 

the compositions from our co-modelling approach and a two layer model where the top layer consists of only surfactant 

chains, and the thickness of which is varied, and the sub-layer consists of a mixture of surfactant headgroups, polymer chains, 

and solvent. Panel (b) shows simulated fits using the same compositions but a single layer model of 7 Å.  

A further validation of our approach would be to use the NR data recorded on three isotopic contrasts 

to independently obtain consistent interfacial compositions, albeit using large quantities of deuterated 

materials. However, the similarity of all of the data recorded with a D2O subphase to those for pure 

D2O leads to large random errors for multiple neutron contrasts in the absence of any measurements 

containing deuterated PEO. For a thin adsorbed layer at the interface it is not surprising that the data 

recorded in a D2O subphase are very similar to D2O. Data on the h-polymer/h-surfactant/D2O contrast 

show the change in solvent distribution at the interface by the adsorption of polymer and surfactant. If 

both components have minimal penetration into D2O, the data will look very similar to that for pure 

D2O, because the SLD of the adsorbed layer will only differ from D2O when adsorbed polymer or 

surfactant headgroups displace D2O at the interface resulting in a different SLD profile at the interface. 

Hence these data should give an indication of the adsorbed amount and spatial distribution of the 

polymer, although there is also a contribution from the deuterated surfactant chains and air layer which 

has an intermediate SLD.  

In order to demonstrate the difficulty in independently determining the polymer surface excess from 

multiple isotropic contrast data, the simulated fits in Figure 4.8 (b) were refined with regards to 

polymer content using Motofit33 by varying the solvent content in the second layer – equivalent to 

varying the polymer content. The polymer surface excesses obtained using this approach are shown in 
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Figure 4.11. The poly values obtained from refining the D2O contrast fitting are extremely large, to the 

extent of being highly physically un-realistic. We have already shown that max,PEO which can adsorb at 

the interface of the OFC by diffusion control is around 7 µmol m-2, whilst the values in Figure 3 are 

around 20 times this value. Furthermore, these poly values are inconsistent with the data obtained for 

the h-polymer/d-surfactant/NRW contrast, and with the ellipsometry data. The derived polymer surface 

excesses are physically unrealistic due to the low sensitivity of NR to the quantity of a hydrogenated 

polymer with such a low scattering length density.  In order to obtain accurate compositional 

information for this system from multiple isotopic contrast NR measurements we would need to use 

deuterated polymer. 

The fact that poly cannot be accurately determined from our NR measurements on multiple isotopic 

contrasts demonstrates the strength of our co-modelling approach; even with NR data recorded on 

multiple isotopic contrasts we would not be able to determine reliably the interfacial composition 

unless we had deuterated polymer. Our co-modelling approach has a significantly enhanced sensitivity 

to the surface excesses of hydrogenated materials such as PEO, and may therefore be superior to NR 

measurements alone performed on multi-component systems for which not all components can be 

deuterated.  

 

Figure 4.11. Surface excess of PEO in PEO/SDS as calculated using our co-modelling approach (pink squares), and as 

obtained from minimisations of the fits in Figure 2(b) for the h-polymer/d-surfactant/D2O data (green diamonds) and the h-

polymer/d-surfactant/D2O data (blue circles).  

In Figure 4.8, Figure 4.9 and   I have shown that compositions obtained from our co-

modelling approach are consistent with NR data when reasonable physical layer structures were used, 
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however in the case of systems where multiple contrast data are not available we do not know a priori 

the optimum structural model for the material at the interface. In order to apply our approach to a range 

of polymer/surfactant systems it will therefore be important to evaluate the effect of the structural 

model used in fitting the specular reflectivity profiles recorded on the h-polymer/d-surfactant/NRW 

contrast on the compositional data obtained. I will evaluate the effect of the layer model used on the 

value of    obtained for input into the co-modelling approach.  

Figure 4.12 shows the effect of the fitting model used for the h-polymer/d-surfactant/NRW contrast 

data at low Q on the values of    obtained for the PEO/SDS system. It is clear from these data that 

the effect of the fitting model used on    is minimal, with the largest variation between data points 

at a given concentration being only around 5% of the value. As the values for a single 11 Å layer fit are 

within 5 % of those obtained from the two layer model, we will use the value of  ×  obtained from 

the single layer in the co-modelling even if the model would give a poor fit to data recorded on 

multiple isotopic contrasts, as it simplifies our approach.  

 

Figure 4.12. Product of the scattering length density and thickness,   × , of the adsorbed layer of layers, obtained by fitting 

the NRW contrast using different structural models for the material at the interface for the PEO/SDS system. The structures 

used in fitting are one layer of 11 Å (inverted turquoise triangles), one layer of 20 Å (green triangles), a 2-layer model (red 

squares) and a 2 layer model with a diffuse sublayer (blue circles). Where the symbols are not distinguishable they are under 

the blue circles.  






If we use the  ×  values in Figure 4.12 to calculate the interfacial composition of the PEO/SDS 

system using our co-modelling approach (with the linear fit to the surfactant data used as the 

calibration plot), the data in Figure 4.13 are obtained. 

 

Figure 4.13. Surface excesses of PEO (empty symbols) and SDS (filled symbols) obtained using our co-modelling approach 

but with different structural models used in fitting the NR data, resulting in the    values in Figure 4.12. The symbols are 

consistent with the data in Figure 4.12.  

From Figure 4.13 we can see that neither surf nor poly is measurably affected by the structural model 

used, with the biggest poly between the different structures  around 0.5 µmol m-2 and the biggest 

surf = 0.15 µmol m-2, and the trends in the data are not affected. Although only one structural model 

resulted in reasonable simulated fits to the NR data recorded in all three isotopic contrasts, use of any 

of the above structures gives values of the interfacial composition which vary by less than 5 % of the 

maximum value. As the simplest structural model is preferable, the single 11 Å layer approach will be 

used to fit data for this system for interpretation.  

If we can use a single layer model to fit the specular reflectivity profiles at only low Q for all data 

recorded in the h-polymer/d-surfactant/NRW contrast without incurring significant errors in the 

calculated interfacial compositions, our simple co-modelling approach will be easily applicable to a 

range of polymer/surfactant systems. In order to evaluate whether this is the case I will now examine 

the effect of the fitting model used to obtain    on several other systems.  

For the PSS/C12TAB system, the simulated fits using compositions from our co-modelling approach 

which were closest to the data recorded on three isotopic contrasts were obtained using a single thin 

layer model as discussed above. Figure 4.14 shows the effect of the fitting model used on the fitted 
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values of  ×  or    for the data recorded on h-polymer/d-surfactant/NRW. It is clear from these 

data that despite there being an optimum structural model to fit the data from three isotopic contrasts, 

the error in    incurred by the fitting model used is never more than 5%.  

 

Figure 4.14. Sum of the products of the scattering length density, , and thickness, τ, (  ) as fitted from NR data on the 

h-polymer/d-surfactant/NRW contrast using different structural models. Several models were used, a single 7 Å layer (red 

squares), a single 11 Å layer (yellow diamonds), a single 20 Å layer (green diamonds), two layers of 11 and 20 Å (blue 

circles) and two layers of 11 and 100 Å (pink triangles).  

 
Figure 4.15. Product of the scattering length density, , and thickness  (or sum of the values over more than one layer, 
  ) obtained from fitting specular reflectivity profiles for (a) PSS/C14TAB and (b) PSS/C16TAB. The structural models 
used in fitting were a single layer of 11 Å (purple circles) of 14 Å (red squares) of 20 Å (green triangles) of 50 Å (turquoise 
inverted triangles) and a two layer structure with a top layer of 14 Å and a sub-layer of 20 Å (blue diamonds). The time-
dependent data points (see below) are not shown in this figure. 






For the PSS/C14TAB and PSS/C16TAB systems, the effect of the fitting model used to obtain    

from the on h-polymer/d-surfactant/NRW contrast NR data is shown in Figure 4.15. For this system we 

do not have multiple isotopic contrast NR data, and the optimum layer model for determining    is 

assumed to be a single thin layer model as for the PSS/C12TAB system. As C14TAB and C16TAB have 

longer hydrocarbon chains than C12TAB, we would expect layers containing them to be thicker than 

those containing C12TAB. For this reason I have also included a single 14 Å layer structure in the fitted 

structures, which gives a slightly better fit to the data at low Q. Figure 4.15 shows that the model used 

does not have a significant effect on the product of the scattering length density and thickness ( x ) 

obtained for either system, until thick layer models (50 Å, turquoise inverted triangles) are used. As a 

consequence, I will use the single 14 Å layer structure in fitting the data for the PSS/C14TAB and 

PSS/C16TAB systems.  

As the layer structure used in fitting the h-polymer/d-surfactant/NRW contrast NR data has been 

demonstrated to have a minimal effect on both the values of    obtained and the interfacial 

compositions from co-modelling, I will use a single thin layer structure of fixed thickness to fit the NR 

data recorded for all polymer/surfactant systems in this thesis. However, it is important to note that the 

evaluatation of the effect of the fitting model on the data may be different for each polymer/surfactant 

system, especially if adsorption is at the static rather than the dynamic air/water interface if multilayer 

structures form or if particle like adsorption occurs. The brief evaluation of the effects of the fitting 

model on both    and the interfacial composition should therefore be undertaken for each system 

for which our co-modelling methodology is used in order to determine the errors in the calculated data.  
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4.5. Conclusions 

We have developed and validated a new methodology for obtaining the interfacial composition of 

polymer/surfactant mixtures at the air/water interface. Our approach involves the co-modelling neutron 

reflectivity data recorded on only one NR contrast – hydrogenated (h-) polymer with deuterated (d-) 

surfactant in NRW – with optical data from ellipsometry measured using only hydrogenated materials. 

This approach is based on the different sensitivities of each technique to the amounts of polymer and 

surfactant in the adsorbed layer. The measured quantities for the two techniques,    and , can be 

approximated by equations relating them to the surface excesses of the two components. These 

equations can then be solved to obtain the surface excesses of the two components. The equation 

relating  and  for the surfactant is derived from a calibration plot. The choice of function used can 

lead to significant variation in the calculated interfacial composition if the selection is not made 

carefully, and must therefore be evaluated for every polymer/surfactant system. The choice of this 

function is one of the primary sources of uncertainty in the approach. The coefficients which relate 

   and  are obtained from the scattering lengths of both components. 

In this chapter I have shown that the compositions calculated using our co-modelling approach can be 

used to simulate NR data obtained on multiple isotropic contrasts as long as an appropriate physical 

model is used. Furthermore, in the absence of deuterated polymer our co-modelling approach is more 

sensitive to the adsorbed amount of polymer than NR measurements on multiple isotropic contrasts, 

which cannot be used independently to obtain reasonable values of the polymer surface excess. I have 

also presented an evaluation of the effect of the structural model in fitting NR data obtained on the h-

polymer/d-surfactant/NRW contrast contrast, and have shown for several systems that the error 

incurred from using the simplest physical model is only up to 5% of the maximum calculated value of 

poly.   

Our new co-modelling approach has been shown to give reasonable values of the interfacial 

compositions of several different polymer/surfactant mixtures, to a greater degree of sensitivity for the 

polymer than is possible for multiple isotopic contrast NR measurements in the absence of deuterated 

polymer. We suggest that this methodology will be applicable to the adsorption of a wide range of 

polymer/surfactant mixtures at the air/water interface. Use of this approach, rather than multiple 

isotopic contrast neutron measurements will lead to significant savings in the use of deuterated 

materials and neutron beamtime, both valuable commodities. All of the interfacial compositions 

presented in this thesis are obtained using the methodology discussed in this chapter, and we hope that 

future studies will also take advantage of this approach.  
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Chapter 5. Poly(ethylene oxide) / Surfactant Systems 

5.1 Introduction 

Polymer/surfactant systems in which the two components interact either weakly or not at all are a good 

starting point for our survey of the effects of interactions in polymer/surfactant mixtures on adsorption 

kinetics. Comparison of the behavior of more complex polymer/surfactant mixtures to these weakly 

interacting systems will help us to elucidate the reasons for the behavior of the former systems. 

Mixtures of the non-ionic polymer poly(ethylene oxide) (PEO) with sodium dodecyl sulfate (SDS) or 

tetradecyltrimethylammonium bromide (C14TAB) are the model systems upon which our current 

understanding of equilibrium properties of polymer/surfactant systems in the bulk and at interfaces was 

first built, 1, 2 and hence an examination of these systems seems a pertinent place to start.  

PEO is a non-ionic polymer, and as a consequence can only interact weakly with charged surfactants 

either in the bulk or at the interface. PEO has been shown to be surface-active alone due to the 

hydrophobicity of the CH2-CH2 groups of the monomer segments, with a monolayer of polymer 

segments forming even at low bulk concentrations.3-6 Due to the surface activity of both components, 

and the weak interactions between them, adsorption from a PEO/surfactant mixture is expected to 

primarily be competitive. On the OFC the species which dominate in a competitive adsorption situation 

is expected to be that which diffuses most quickly, in this case the surfactant. However, the rate of 

mass transport from the bulk solution is expected to control adsorption until free space limitations are 

reached.   

PEO / C14TAB is a good approximation to a non-interacting polymer/surfactant pair in the bulk 

solution, owing to the weakness of the hydrophobic interaction between PEO and hydrocarbon chains 

and the absence of any electrostatic attraction between the two species.7 8 At the static air/water 

interface, mixtures  of PEO with C12TAB show none of the deviations in the surface tension isotherms 

that are usually attributed to polymer/surfactant interactions in the bulk solution. Furthermore, 

measurements of the interfacial composition show that PEO is displaced from the interface by 

surfactant when csurf is below the cac,9 even though we would expect there to be no interaction between 

the two species in this region. Therefore on the OFC we would expect to see data indicative of a 

competitive adsorption mechanism for this system on the basis of excluded volume considerations.  
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Mixtures of PEO and SDS interact weakly in the bulk solution. Their interaction was traditionally 

attributed to hydrophobic bonding,1 induced ion-dipole interactions, or interactions between the CH2 

groups of the polymer and the surfactant chains.2  However, several more recent studies have suggested 

that the polymer/surfactant interaction is ionic in nature, mediated by metal cations complexed to the 

PEO chains.8, 10, 11 The interaction between PEO and SDS leads to the formation of bulk complexes 

consisting of SDS micelles attached to individual polymer chains above the critical aggregation 

concentration (cac).1, 2, 12-16   

Studies of the adsorption of PEO/SDS at the static air/water interface have shown that although 

polymer adsorbs at low bulk surfactant concentrations due to its inherent surface activity, it is 

displaced from the surface with increasing bulk surfactant concentration.7 The adsorption of the two 

species is therefore commonly described as competitive.9, 17, 18 However, the interaction between the 

two components means that there is also thought to be a co-operative component,7 with a decrease in 

the free energy of the interface due to the mixing of the two components.19 Inhibition of PEO 

adsorption by SDS has been attributed to increasing surface pressure on SDS adsorption, once the 

surface pressure exceeds that of a PEO monolayer, the adsorbed PEO layer thickens and collapses.20 

Alternatively, the formation of bulk polymer/surfactant complexes could decrease polymer 

adsorption,21 however this seems unlikely as polymer has been suggested to be displaced from the 

air/water interface significantly below the cac.7, 17 The recent simulations of Darvas et al.,18 suggest 

that PEO and SDS adsorb competitively up until high surface coverages, with polymer segments 

displaced stepwise from the interface by the adsorption of surfactant molecules. In this model, polymer 

is not fully displaced from the interface until a monolayer of surfactant forms. We therefore expect to 

see that the adsorption behavior on the OFC is dominated by competitive adsorption, but this may not 

be as simple a mechanism as we expect for the PEO/C14TAB mixture. 

In this chapter I will explore the adsorption kinetics of both PEO/surfactant systems at the expanding 

interface of the OFC using a combination of ellipsometry, NR, co-modelling and LDV data, in order to 

examine the hypothesis that adsorption from both systems is controlled by a competitive adsorption 

mechanism. I will present our investigation into whether PEO adsorption is inhibited on the OFC at 

low surfactant concentrations where no bulk complexes form, or whether previous studies were limited 

by their sensitivity to polymer. Furthermore, I will determine whether the weak interaction between 

PEO and SDS results in qualitatively different behavior from the PEO/C14TAB mixtures, and whether 

adsorption of either or both components in either or both systems is under diffusion or kinetic control. 

Use of several techniques including ellipsometry, NR and LDV to examine the interfacial adsorption 

will allow us to obtain a clear picture of the adsorption of PEO at the air/water interface, as each 

technique is sensitive to a different component or property of the system.  
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Materials and Methods  

All of the measurements discussed in this chapter were recorded on solutions prepared in ultrapure 

water (Milli-Q; resistivity = 18 M cm) for ellipsometry and LDV, or in D2O (Euriso-top, C. E. 

Saclay, France) or null reflecting water (NRW) for NR measurements. The OFC and associated 

glassware were cleaned with a 2% solution of a strong alkaline detergent (Decon 90 or Gigapur) and 

rinsed thoroughly. SDS (Sigma, 99%) was purified by re-crystallisation three times from ethanol. 

C14TAB (99%, Sigma) was purified by re-crystallisation three times from a mixture of ethanol and 

acetone. PEO (25k molecular weight, Sigma) was used as supplied. This polymer molecular weight 

was chosen in order to relate our data most easily to those of other studies which have used similar 

molecular weights1, 7, 9, 14, 22 and in order to be above the threshold MW at which polymer behavior is 

no longer molecular weight dependent. 23, 24 Chain deuterated d-SDS and d-C14TAB were kindly 

supplied by Dr R. K. Thomas from the Oxford Deuteration Facility. 25 All measurements involving 

C14TAB were made in the presence of 0.1 M NaBr (Sigma Aldrich), and the measurements involving 

the involving SDS were made in the presence of 0.1 M NaCl (Sigma Aldrich).  

For all polymer/surfactant measurements the polymer concentration was 100 ppm, and the surfactant 

concentration was varied. The first measurement for each system was made on a polymer and salt 

solution, or a salt solution in the case of surfactant measurements. To this solution, consecutive 

additions of stock surfactant solution were made in order to increase the bulk surfactant concentration 

stepwise from highly dilute to above the cmc of the mixture. Surfactant additions were made over a 

time period of several minutes, equivalent to several circulations of the system by the solution, and 

care was taken to ensure that the speed of addition and stock solution concentration had no effect on 

the measurements. For every addition of surfactant stock, salt and polymer were added to keep the bulk 

concentration of these components constant as the overall volume was increased.  
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5.2 PEO/C14TAB 

5.2.1. Results  



Ellipsometry data recorded for the PEO/C14TAB mixture and for pure C14TAB are shown in Figure 5.1.  

Data were recorded at constant polymer and salt concentrations (100 ppm and 0.1 M, respectively) and 

are plotted with respect to the bulk surfactant concentration (csurf). A dotted line indicates the value = 

0.38 x 10–3 for pure water, and a dash-dot line indicates  for the polymer and salt solution in the 

absence of surfactant. Recall that for a pure surfactant a more negative ellipticity indicates a greater 

adsorbed amount, and that for a mixture the total ellipticity can be approximated by a linear 

combination of the ellipticities of the two components. PEO is surface-active alone: 3, 4, 24 100 ppm of 

25k PEO in 0.1 M inert electrolyte adsorbs at the surface of the OFC with a small negative ellipticity 

which corresponds to a poly of 6.4 µmol m-2, less than half the value for the static air–water interface 

poly = 14.6 µmol m-2 (both values are calculated from  and dn/dc for PEO similarly to the calculation 

of  and dn/dc and  for polymer as discussed in Chapter 4). 26   

 
Figure 5.1. Coefficient of ellipticity () at the surface of an OFC containing pure C14TAB (blue circles) and C14TAB in the 

presence of 100 ppm, 25k PEO (yellow triangles). Both measurements were made in the presence of 0.1 M NaBr. The upper 

dotted line is the ellipticity of the salt solution, and the lower dash-dot line is the ellipticity of the pure PEO and NaBr 

solution. 
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At low csurf,  for the mixture is close to that of the polymer, whilst  for the surfactant solution is close 

to that of water. With increasing csurf, becomes more negative for both PEO/C14TAB and C14TAB, 

whilst the difference between  for the mixture and that of the pure surfactant decreases, until the data 

sets converge. At csurf ~ 1 mM,  in the presence of the polymer is the same as that of the pure 

surfactant. These two data sets were measured consecutively with the same instrument calibration, 

hence the overlap at high csurf is real. It is tempting to draw conclusions about the composition of the 

interface from Figure 5.1, however we note that the surface expansion rates () are not necessarily the 

same in the presence and absence of polymer, and that we cannot simply ascribe the difference 

between the two curves to polymer alone, since the surface excess of surfactant may be different. In 

order to draw conclusions about the composition of the interface we need NR data, and in order to 

hypothesise about the adsorption mechanism in action in this system we also need LDV data.  

 



Measurements of the surface expansion rate () using LDV can enable us to model quantitatively the 

kinetics of adsorption. For pure monomeric surfactants under diffusion control, the shape of  v csurf is 

typically a volcano plot, 27 as seen for C14TAB in Figure 5.2. The presence of surfactant in solution 

induces surface tension gradients (Marangoni effects). The largest gradients - and hence the largest 

values of  - occurring at csurf values where small changes in  lead to big surface tension changes, and 

small gradients occurring at either low or very high surfactant coverages. Further details on the 

principles of LDV can be found in Chapter 2. For a pure surfactant solution, deviations from a volcano 

plot may arise from kinetic barriers to adsorption, which prevent the surface from reaching local 

equilibrium. For a polymer/surfactant mixture, interactions between the two components at the 

interface will alter  compared to a pure surfactant system. 

The expansion rate of PEO/C14TAB in Figure 5.2 does not have the standard volcano plot form; instead 

a minimum in  occurs at intermediate csurf. The occurrence of two peaks in  suggests that there may 

be two different mechanisms at work in different csurf ranges. From considerations of mass balance at 

the surface, we would expect that for a given bulk concentration, a lower value of  would correspond 

to a higher value of . If we inspect the ellipsometry data in Figure 5.1 (an indicator of the total surface 

excess), we see a slight discontinuity occurs in  at csurf = 0.5 mM, corresponding to the local minimum 

in the  v csurf plot in Figure 5.2. This dip may correspond to a higher total surface excess of the system 

in the region of the minimum in , however NR measurements are necessary to confirm this. The 

possible explanations of this local minimum will be discussed in greater length below. At high csurf (>1 
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mM),  is very similar for the surfactant and polymer/surfactant mixtures. In the same csurf region in 

Figure 5.1, the values of   also co-incide for the systems.  

 

Figure 5.2. Surface expansion rate as a function of C14TAB concentration for pure C14TAB (blue circles) taken from 

reference 27 and C14TAB in the presence of 100 ppm, 25k PEO (yellow triangles).  Both measurements were in the presence 

of 0.1 M NaBr. The dashed line indicates  for the pure polymer solution and the solid line for the pure salt solution. 
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In Chapter 4 we showed that a two-layer model consisting of a top layer of surfactant chains of 

variable thickness and a sub-layer of surfactant headgroups, polymer chains, and solvent was necessary 

to fit the NR data recorded for this system with three isotopic contrasts. However, we also 

demonstrated that a simple single-layer model could be used in fitting data recorded on the h-

polymer/d-surfactant/NRW contrast in order to obtain robust model independent values of    for 

use in our co-modelling approach. Figure 5.3 shows the  ×  values obtained from these fits using a 

single layer of 11 Å for the PEO/C14TAB system.  

Figure 5.3 plots   for PEO/C14TAB (yellow triangles) and pure C14TAB (blue circles) against 

csurf. At low csurf  ×  for the mixture is lower than that for the pure surfactant, as would be expected 

from the higher surface expansion rates in Figure 5.2. As csurf increases,  ×  for PEO/C14TAB quickly 

rises to the pure surfactant value. What appears to be a small overshoot at csurf = 0.4 mM corresponds to 

the dip in the surface expansion rate of the mixture (a lower expansion rate leading to a larger surface 

excess), but the difference is close to the random error in the data. The values of  ×  in Figure 5.3 are 
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determined from NR data measured on the h-polymer/d-surfactant/NRW contrast, in which the 

deuterated surfactant has a much greater neutron scattering length than the polymer. Therefore, to a 

very good approximation these data tell us about the amount of adsorbed surfactant.  Co-modelling of 

ellipsometry and NR measurements then allows us to determine the amount of adsorbed polymer. 

 

Figure 5.3. Product of the scattering length density, , and thickness, τ,  ×  as fitted from NR data.  The  blue circles are the 

C14TAB data,  and the yellow triangles the PEO/C14TAB data. The data were fitted using a single 11 Å layer. All 

measurements were made in the presence of 0.1M NaBr.  

The NR data in Figure 5.3 are co-modelled with the ellipsometry data in Figure 5.1 using the approach 

discussed in Chapter 4, and the resulting interfacial composition is shown in Figure 5.4. 

  
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5.2.2. Adsorption Kinetics 

The interfacial composition of the PEO/C14TAB mixture at a range of bulk compositions is compared 

with that for C14TAB in the presence of 0.1 M NaBr in Figure 5.4; green squares are the amount of 

polymer at the interface in terms of moles of monomer, the turquoise diamonds are C14TAB in the 

mixture and the blue circles the pure C14TAB data. The solid green line gives the upper limit to the 

polymer coverage which can be reached by diffusion controlled adsorption, poly,max. This value is 

calculated from Equation 2.5      using the surface expansion rate data in Figure 

5.2, with cs = 0 and Dpoly = 4.3 × 10–11 m2s–1.14 Thus, this curve represents the diffusion-controlled limit 

for polymer adsorption in the absence of adsorbed surfactant molecules, at the experimental expansion 

rates. This calculated diffusion controlled value of poly,max is less than 50% of the equilibrium surface 

excess (as shown later in Figure 5.10 or by Gilányi et al.24). If polymer adsorbs under diffusion control, 

the bulk polymer concentration limits poly, and a larger bulk polymer concentration would give poly 

closer to the equilibrium value for a static interface.  

 

Figure 5.4. Surface excesses of PEO (green squares) and C14TAB (turquoise diamonds) adsorbing from a mixture of C14TAB 

and 100 ppm, 25k PEO as determined by co-modelling of ellipsometry and NR data, using a linear function to account for the 

contribution of surfactant to  as discussed in Chapter 4. Also shown for comparison are the data for pure C14TAB (blue 

circles) from NR. All measurements were in the presence of 0.1 M NaBr. The solid green line is the diffusion-controlled limit 

for polymer adsorption with cs = 0. The surface expansion rate is taken from Figure 5.2 and the monomer and micelle 

diffusion coefficients are 4.3 x 10-10 m2 s-1  and 1 x 10-10 m2 s-1, respectively.27 
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 In Figure 5.4 we can see that at the lowest bulk surfactant concentrations measured the polymer 

surface coverage is within error of poly,max. Polymer is adsorbing under diffusion control, as we would 

expect considering its strong driving force for adsorption.24 As the surfactant concentration is 

increased, at csurf < 0.3 mM, poly in Figure 5.4 starts to deviate more significantly from the maximum 

diffusion controlled value. Note that if poly were calculated using the cubic function, which was not 

dismissed as a reasonable approach in Chapter 4 (Figure 4.3 a), poly would be close to the diffusion 

controlled limit until csurf  0.3 mM. In the same region, surf is low, less than the pure surfactant value. 

It is most likely that competitive adsorption is occurring in this region, with surfactant adsorption 

limiting the amount of polymer which can adsorb due to free space considerations. This is a reasonable 

expectation in a region where both poly and surf are at around 50% of their maximum values. This 

would therefore suggest that the values of poly in Figure 5.4, as calculated using the linear function in 

Chapter 4, are the most physically appropriate.  

An alternative explanation for the adsorption of both components at less than their diffusion controlled 

surface excesses at low surfactant concentrations is the higher surface expansion rate of the mixture in 

this region compared to that of either component alone, which would decrease . In order to determine 

whether competitive adsorption or increased surface expansion limits adsorption we need to determine 

the subsurface concentration, cs, of surfactant and compare it with the expected value if the interface 

were at local equilibrium. 

The sub-surface concentration of pure surfactant can be calculated from Equation 2.5 (as reproduced 

above) using the  and  data in Figure 5.4 and Figure 5.2 respectively. The diffusion coefficient used 

for monomeric surfactant is Dsurf = 4.3 x 10-10 m2 s-1,27 and at concentrations above the cmc of the 

system, D is obtained according to the method described by Valkovska et al.27 The values thus 

calculated are shown in Figure 5.5. Valkovska et al. showed that both the dynamic and equilibrium 

adsorption of C14TAB in the presence of 0.1 M NaBr obeys the Volmer isotherm27 as given in 

Equation. 5.1. The Volmer isotherm is a simplified version of the Van der Waals isotherm which 

neglects the interaction between the molecules (in fact fitting the Van der Waals isotherm gave an 

interaction parameter of zero).  

  
  


         (5.1.) 

where as is the activity of the molecule, and can be approximated to cs (the subsurface concentration or 

simply the bulk concentration at a static interface), K is the standard free energy of adsorption of the 

surfactant ions, and  is the excluded area per molecule at the interface. When surfactant adsorption is 

under diffusion-control the surface is in local equilibrium, and dyn(cs) should follow the Volmer 
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isotherm, where the constants in Equation 5.1 are obtained from eq(cb). The previous study showed 

excellent agreement between the calculated isotherm and the dynamic data on the OFC; C14TAB in the 

presence of 0.1 M NaBr is diffusion controlled. The pure surfactant data recorded as part of this thesis 

and shown in Figure 5.5 (purple triangle) also show good agreement with the same theoretical Volmer 

isotherm (purple line).  

  

Figure 5.5. dyn v cs data for pure C14TAB (purple triangles) and C14TAB in the presence of 100 ppm, 25k PEO (pink 

diamonds). Both measurements were made in the presence of 0.1 M NaBr. The purple line marks dyn(cs) calculated from the 

Volmer adsorption isotherm for the pure surfactant.  Note that cs is on a logarithmic scale so the differences in cs between the 

experimental data and the theoretical curve at low Γ are small on an absolute scale and arise from errors in D, θ and cb; any 

kinetic barriers would cause the experimental data to lie to the right of the theoretical line, not the left. 

We cannot determine whether C14TAB in a mixture with PEO adsorbs under diffusion control using 

the same method as for pure C14TAB as we do not have the static data required for the isotherm 

calculations. As a simple alternative we can calculate cs for C14TAB in the mixture from Equation 2.5 

as for the pure surfactant on the assumption that there are no polymer/surfactant interactions in the bulk 

solution which would influence the mass transport of the surfactant. 8 These calculated cs values are 

then compared to the Volmer isotherm for the pure surfactant in Figure 5.5, in order to determine 

whether the adsorption of polymer has an effect on surfactant adsorption. If adsorption of C14TAB 

from the mixture were totally unaffected by the presence of polymer at the surface, then dyn(cs) would 

fall on the purple line in Figure 5.5, as adsorption would be identical to that for the pure surfactant. 

Favourable interactions between the two components, as previously seen for the non-ionic/anionic 

surfactant mixture octaethyleneglycol n-decyl ether (C10E8) with APFN, 28 would cause the data to fall 
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above the purple line. Excluded volume effects or unfavorable interactions would cause the data to fall 

below the purple line.  

From Figure 5.5, it is clear that for Γsurf ≤ 2 µmol m–2, i.e. csurf < 0.3 mM, cs is systematically higher at 

a given surf for the surfactant in the mixture than in the pure surfactant solution, and the data fall below 

the purple line. The simplest explanation is a competitive adsorption mechanism due to excluded 

volume effects, which may have an additional contribution from any repulsive interactions between the 

components. If only excluded volume effects limited surfactant adsorption, we would expect that at 

low coverages (in the Henry law limit) surf at a given cs would be proportional to the free surface area, 

i.e. the fraction not covered with polymer. Above, we mentioned that the maximum value of poly on 

the OFC is less than half of the maximum value at equilibrium, therefore if only excluded volume 

effects limited surfactant adsorption we would expect cs for surfactant in the mixture to be not more 

than twice that of cs for the pure surfactant at a given surf value. However, in Figure 5.5 it is clear that 

the difference in cs at low coverages is a factor of 5-10, which suggests that the adsorption of polymer 

may also cause a kinetic barrier to the adsorption of surfactant in the low csurf region.  

At intermediate csurf ( 0.4 mM) the polymer surface excess in Figure 5.4 drops sharply to zero over a 

narrow concentration range. In the same csurf region, a minimum is observed in the surface expansion 

rate in Figure 5.2. These two features are not simply co-incident as the minimum in  occurs due to the 

decrease in surface tension gradient generated by polymer adsorption. Note that at this point surf for 

the mixture is higher than for the pure surfactant, but this difference can be ascribed to the lower 

surface expansion rate. At higher csurf values polymer no longer adsorbs. However poly  0 in this 

region in Figure 5.4, which is most probably due to errors in the co-modelling methodology as 

discussed in Chapter 4, as use of the cubic function in the co-modelling approach results in much 

smaller residual values of poly. As polymer no longer adsorbs surfactant adsorption is no longer 

inhibited. As a consequence  increases again due to the adsorption of free surfactant molecules. surf 

also increases up to the pure surfactant value by csurf = 0.6 mM, whilst  reaches the pure surfactant 

data at around csurf = 1 mM. The ellipsometric data, which is the most fine-grained and most precise of 

the three techniques, shows the pure surfactant and polymer/surfactant curves converging between csurf 

= 0.4 and 0.8 mM and then tracking each other at higher concentrations.  We can therefore confidently 

conclude from all these measurements that at surfactant concentrations above 0.8 mM, there is no PEO 

remaining at the surface. 

We are therefore left with the following intriguing question; why is the polymer adsorption switched 

off over such a narrow range of bulk surfactant concentrations: from diffusion-controlled adsorption at 

0.3 mM to no adsorption at all at 0.8 mM? Over the same csurf range, surf only increases from 2 to 3 
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molm-2. The sharpness of the transition is in part a consequence of the mass transport in the OFC: the 

equilibrium surface excess of polymer would in fact decrease for values of surf below 2 molm-2, but 

we do not observe this on the OFC because the polymer adsorption is mass-transport limited.  

The sharpness of the fall-off in poly is not a feature that we have been able to capture with a simple 

competitive Volmer isotherm for any reasonable values of the isotherm parameters, and the decrease in 

polymer adsorption at low surfactant coverages is unexpected. A possible  (qualitative) explanation is 

that as the surface coverage of surfactant increases, fewer segments per polymer molecule are able to 

adsorb to the surface and therefore the adsorption energy of the polymer molecules (and the hence the 

equilibrium constant, K, that appears in competitive adsorption isotherms) decreases. This decrease in 

K with increasing surf has a similar effect to a repulsive interaction between the surfactant and the 

polymer, which disfavours mixed monolayers and leads to a sharpening of the transition between 

adsorbed polymer and adsorbed surfactant. 

 

 

5.3 PEO/SDS 

5.3.1. Results & Co-Modelling 



The ellipsometry data recorded on the PEO/SDS mixture (shown in Figure 5.6) share many of the 

features of the ellipsometry data for PEO/C14TAB in Figure 5.1.   for the mixture starts close to the 

pure polymer value at low csurf, and becomes increasingly negative as csurf is increased. The difference 

between the ellipticities of the mixture and the pure surfactant persists to higher surfactant 

concentrations for PEO/SDS than it did for PEO/C14TAB, which suggests that behavior at the interface 

may be different in this system. For the PEO/C14TAB system  for the mixture converges with that for 

the pure surfactant at high csurf values. From Figure 5.6 it is not clear whether this also happens for 

PEO/SDS due to the small ‘hump’ in  for the mixture at high csurf. An independent measurement of  
at high csurf, performed by adding polymer to 4 mM SDS found that the PEO/SDS solution had a more 

negative ellipticity than the pure SDS (but only by about 5 × 10–5 at 100 mM).  Thus we conclude that 

the cross-over in Figure 5.6 is an artefact due to the use of different instrument calibrations for the SDS 

and PEO/SDS measurements. 
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Figure 5.6. Coefficient of ellipticity at the surface of an OFC containing pure SDS (circles) and SDS in the presence of 

100ppm, 25k PEO  (triangles).  Both measurements were in the presence of 0.1 M NaCl. The upper dotted line is the 

ellipticity of the salt solution, and the lower dash-dot line is the ellipticity of the pure PEO and NaCl solution. 

As previously, we note here that although it is tempting to draw conclusions from the data in Figure 

5.6, especially from comparisons to the PEO/C14TAB data in Figure 5.1, we need LDV and NR data in 

order to resolve the interfacial composition and adsorption mechanism of this system. 
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Although LDV data for the PEO/C14TAB system (Figure 5.2) did not have a classic volcano plot 

shape, data for the PEO/SDS system (Figure 5.7) do, with only a single peak in the data, similar to that 

for a pure surfactant. The main difference between the data for PEO/SDS and that for pure SDS is that 

 is significantly higher at low to intermediate csurf values for the mixture due to the surface activity of 

the pure polymer. The data for the mixture and the pure surfactant cross at csurf = 0.8 mM, a 

concentration where the ellipticity is still much more negative (indicative of a higher surface excess) in 

the presence of PEO.  Since it is implausible that complexation of SDS with PEO could accelerate 

diffusion of SDS to the surface, this observation provides strong evidence that PEO remains at the 

surface at least at concentrations up to ~ 1 mM SDS. However, use of ellipsometry and LDV cannot 

give us the full picture of the adsorption behavior of these systems, for this we need the interfacial 

composition information which can be obtained from our co-modelling approach.  
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Figure 5.7. Surface expansion rate as a function of SDS concentration for pure SDS (purple circles) and SDS in the presence 

of 100 ppm, 25k PEO  (green triangles).  Both measurements were in the presence of 0.1 M NaCl. The dashed line indicates  

for the pure polymer solution and the solid line for the pure salt solution. 





The same single 11 Å layer model was used to fit the NR data obtained on the h-polymer/d-

surfactant/NRW contrast to obtain  ×  as for the PEO/C14TAB mixture above. Figure 5.8 plots the 

values of ×  obtained from these fits for PEO/SDS (green triangles) against those for pure SDS 

(purple circles):  ×  for the mixture is below that of the pure surfactant data over the whole range of 

csurf values measured. As only the surfactant is deuterated in the h-polymer/d-surfactant/NRW contrast 

and the SLD of PEO is low, surfactant dominates  ×  for the mixture, hence to a first approximation 

he amount of adsorbed surfactant in the mixture is less than for the pure surfactant over the whole csurf 

range measured. This is unlike the data for the PEO/C14TAB system, for which data for the mixture 

and the pure surfactant (Figure 5.3) coincided at intermediate csurf values when polymer adsorption was 

inhibited. This suggests that perhaps the polymer adsorption behavior is different in this system. Co-

modelling of the ellipsometry data with the data in Figure 5.8 will allow us to determine the adsorption 

behavior of the polymer over the same csurf range.   
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Figure 5.8.  Product of the scattering length density, , and thickness, τ, as fitted from NR data using an single 11 Å layer 

model.  The purple circles are the SDS data, and the green triangles the PEO/SDS data. All measurements were made in the 

presence of 0.1M NaCl. 

The NR data in Figure 5.8 are co-modelled with the ellipsometry data in Figure 5.6 using the approach 

discussed in Chapter 4. The interfacial composition thus obtained for the PEO/SDS mixture on the 

OFC is shown in Figure 5.11. 

 



In order to facilitate modelling of the adsorption kinetics of PEO/SDS in the following sections, data 

were also recorded on this system at the static air/water interface using both ellipsometry and neutron 

reflectometry. The ellipsometry data in Figure. 5.9 (a) are remarkably insensitive to changes in csurf 

over the whole range studied, whilst the NR data in Figure. 5.9 (b) show a clear increase in    with 

csurf. The surface composition data obtained by co-modelling the data in Figure. 5.9 (a) and (b) are 

shown in Figure 5.10. surf increases and poly decreases with increasing csurf; it appears that adsorption 

is classically competitive, although we might not expect poly to decrease to zero.  

 






 

Figure. 5.9. (a) Coefficient of ellipticity at the surface of PEO/SDS/NaCl/H2O solutions at the static air/water interface.  The 

horizontal line marks the ellipticity of pure salt solution. (b)    for the adsorbed layer for PEO/SDS at the static air/water 

interface, as fitted from NR data using a single 11 Å layer model. 

 

 

Figure 5.10. Surface excesses of PEO (green squares) and SDS (red diamonds) adsorbing from a mixture of SDS and 25k 100 

ppm PEO  at the static air/water interface as determined by co-modelling of ellipsometry and NR data. All measurements 

were made in the presence of 0.1 M NaCl.  


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5.3.2. Adsorption Kinetics 

The interfacial composition of the PEO/SDS mixture, calculated from co-modelling the ellipsometry 

and NR data is compared with that for pure SDS in the presence of 0.1 M NaCl in Figure 5.11. As for 

the PEO/C14TAB system above, the solid green line gives the upper limit to the polymer coverage 

which can be reached by diffusion controlled adsorption, poly,max, as calculated from  

   using the surface expansion rate data in Figure 5.7, with cs = 0 and Dpoly = 4.3 × 10–11 

m2s–1.14 Polymer adsorbs at close to the diffusion controlled limit up until the region of the cac of the 

system at  0.7 mM SDS. 12  It therefore appears that polymer adsorbs under diffusion control despite 

the presence of surfactant until around the bulk compositions where polymer/surfactant complexes 

form, which will have a larger size and surface charge than the PEO molecules. However, even at 

surfactant concentrations below the cac surf is lower than that of the pure surfactant. This may be due 

to either competitive adsorption (which appears not to be affecting poly) or the higher surface 

expansion rate of the mixture, or a combination of the two factors. Whether or not surfactant is 

adsorbing under diffusion control will be assessed later by comparison of the data to those predicted 

using an adsorption isotherm.  

 

Figure 5.11. Surface excesses of PEO (green squares) and SDS (red diamonds) adsorbing from a mixture of SDS and 25k 100 

ppm PEO as determined by co-modelling of ellipsometry and NR data, using a linear function to account for the contribution 

of surfactant to . Also shown for comparison are the data for pure SDS (purple circles) as measured using NR. All 

measurements were made in the presence of 0.1 M NaCl. The solid green line is an approximation to the diffusion controlled 

maximum polymer surface excess poly,max as calculated from Equation 2.5 and the  data in Figure 4 with cs = 0.  
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The surface excess of PEO only starts to decrease in the region of the cac, at around csurf = 0.7 mM, and 

once the surfactant excess has reached at least 50% of its maximum value. The decreasing values of 

poly with increased surfactant concentration beyond this point could therefore be attributed to either 

the slower mass transport of polymer/surfactant complexes above the cac, or to competitive adsorption 

at the interface. The rate of decline in poly in this region is much more gradual than in the presence of 

C14TAB, and polymer continues to adsorb at all bulk compositions measured. In the same region, the 

surface expansion rate in Figure 5.7 reaches a maximum and then declines monotonically with 

increasing csurf. This also indicates a more gradual change in the adsorption behavior of PEO/SDS 

compared to the sharp change in the PEO/C14TAB system which caused the local minimum in .  

At the bulk cmc (2.6 mM),  poly is still 4 µmol m-2 and surf remains 10% below its saturation value. In 

order to check that the fact that polymer remains at the surface is not an artifact of the co-modelling 

methodology, independent ellipsometry measurements were made in this region (as discussed above), 

and proved that polymer does continue to adsorb at the interface. This behaviour is very different to 

that of the PEO/C14TAB mixture, where PEO adsorption was inhibited from csurf > 0.4 mM (Figure 5.4) 

and surf in the mixture = surf of the pure surfactant at intermediate to high surfactant concentrations.  

It is conceivable that the decrease in poly at high csurf could be due to a decreasing Dpoly as bulk 

complexes form, however for this to be the case, Dpoly would have to decrease to around 1/5th of its 

original value, which is not indicated by any bulk studies.22, 29, 30 Therefore, diffusion-controlled 

adsorption of polymer/surfactant complexes is unlikely to explain the observed decrease in poly at high 

csurf. Furthermore, although the point at which PEO begins to decrease coincides with the bulk cac of 

the PEO/SDS system (0.7 mM), this is probably coincidental as the subsurface concentration of 

surfactant (cs) is still well below the cac in this region: the subsurface concentration does not reach the 

cac until csurf ~ 1 mM as shown later in Figure 5.14. Therefore the formation of bulk complexes in the 

PEO/SDS system cannot fully explain the adsorption behavior of the system on the OFC. It therefore 

we can conclude that synergistic interactions between polymer and surfactant at the interface determine 

the adsorption behavior at high csurf.  

The more gradual inhibition of PEO adsorption in the presence of SDS compared with C14TAB must 

be due to the different interactions between the polymer and the two oppositely charged surfactants. 

Previous studies have suggested that there is a favorable interaction between PEO and SDS, either due 

to  electrostatic attraction between the charged groups of SDS and the charge distribution of the 

moderately polar PEO monomer units2 or to ionic interactions mediated by metal cations.8, 10, 11 This 

positive interaction gives rise to a co-operative element to the adsorption,7 favouring a mixed layer, and 

to bulk complexation of PEO and SDS, the effect of which is discussed above. A favourable interaction 
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between the two components at the interface would increase the coverage of one or both of them, 

increase the overall coverage compared to the non-interacting case, and the composition would move 

towards a more mixed monolayer. However, a favourable interaction between competitively adsorbing 

components may still lead to a decrease in surface excess compared to the two components alone.  

In order to determine whether a synergistic interaction gives rise to the continued presence of polymer 

at the interface at high surfactant coverages in the OFC, we need to compare the experimental data to 

those calculated from an adsorption isotherm. For PEO/SDS we have static  v csurf data for the 

mixture (as previously shown in Figure 5.10), hence a full analysis of the mixture by comparison to 

isotherms is possible. As a simple approximation for the mixture we use a Volmer isotherm to 

approximate the composition of the interface, which is equivalent to the van der Waals isotherm for a 

two component system as derived by Kralchevsky,31 but neglecting the interaction between the two 

components and neglecting the effect of the counterions, as discussed for pure C14TAB. The equation 

for a mixture is thus:  

  


 
       (5.2.) 

where the subscript 1 denotes the surfactant, and subscript 4 denotes the polymer; a is the activity of 

the molecule, and can be approximated to cs (the subsurface concentration or simply the bulk 

concentration at a static interface), K is the standard free energy of adsorption of the surfactant ions, 

and  is the excluded area per molecule at the interface, and average excluded volume,  

 

. 

SDS has not been examined in a previous OFC study, and hence we do not know if its adsorption is 

diffusion controlled, and we do not have any theoretical isotherm parameters to use in Equation.5.2 

Therefore in order to use the isotherm in Equation. 5.2 on the mixture we first need to determine the 

values of K and  for SDS by fitting data for SDS in the presence of 0.1 M NaCl recorded at the static 

interface by Penfold et al.32 as shown in Figure. 5.12 As previously for C14TAB we did this using a 

Volmer isotherm for a one component system, which is a simplification of Equation 5.1. The Volmer 

isotherm gives a good fit to the data in Figure. 5.12 without inclusion of an interaction parameter. 

The least squares fit in Figure. 5.12 gives values of the constants for the surfactant K1 = 1.15 x 104 and 

11 = 1.5 x 105. As  1/max, for polymer 44 = 1/(1.5 x 10-5) = 6.67 x 104 or 3 x 107  in terms of 

polymer molecules. If these constants for the pure polymer and surfactant are used in the equation for 

the Volmer isotherm of the mixture to calculate cs for the surfactant in the mixture at the static 

interface, and the values are plotted against surf and poly, the turquoise lines in Figure 5.13 are 
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obtained.  From Figure. 5.12 and Figure 5.13 it is clear that at the static interface both the pure SDS 

and PEO/SDS data can be adequately fitted by a Volmer adsorption isotherm. With these isotherms in 

hand, we can now analyze the adsorption kinetics of both pure SDS and PEO/SDS on the OFC (Figure 

5.14).   

 

Figure. 5.12. Surface excess of pure SDS solutions at the static air/water interface in the presence of 0.1 M NaCl. Data are 

taken from Penfold et al., reference 32.  

 

Figure 5.13.  Surface excesses of (a) SDS and (b) PEO at the static air/water interface adsorbed from a mixture of SDS and 

100 ppm, 25 k PEO and 0.1 M NaCl, calculated using our co-modelling approach, as shown previously in Figure 5.10, but 

separated here for clarity. The dashed line in (a) is the surface excess of pure surfactant at the same bulk surfactant 

concentration as extracted from Penfold et al.,33 previously shown as data points in Figure. 5.12. The solid turquoise line in 

both (a) and (b) is the theoretical prediction of (csurf) from the Volmer isotherm for the mixture.  
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Adsorption of pure SDS on the OFC will be confirmed to be under diffusion control if the 

experimental data are a good fit to those calculated using the isotherm parameters obtained from the 

static data in Figure. 5.12. For pure SDS, experimental values of the subsurface concentration (cs) are 

calculated from Equation 2.5 using DSDS = 4.3 x 10-10 m s-1 14, surface expansion rates from Figure 5.7, 

and surface excesses from Figure 5.11. These cs values are plotted against surf in Figure 5.14 as purple 

circles, and the values calculated using the isotherm parameters determined from Figure. 5.12 are 

shown as a green dashed line. The excellent agreement between the experimental data and the values 

calculated using the Volmer isotherm shows that pure SDS adsorption is diffusion controlled.  

 

Figure 5.14.  dyn v cs data for SDS in the presence (red diamonds) and absence (purple circles) of 100 ppm, 25 k PEO. Both 

measurements were made in the presence of 0.1 M NaCl. The dashed green line marks dyn(cs) calculated from the Volmer 

adsorption isotherm for the pure surfactant and the solid turquoise line is dyn(cs) calculated from the Volmer isotherm for the 

mixture.  

In order to determine whether adsorption of SDS in the mixture is diffusion controlled we firstly have 

to take into account the fact that the diffusion co-efficient of both species changes above the cac due to 

bulk complexation. In order to account for this we can use the methodology employed by Valkovska et 

al. 27for surfactant solutions above the cmc in order to estimate how the overall diffusion co-efficients 

of the species change.  Values of cs for SDS in the mixture can then be determined, and these are 

plotted as red diamonds in Figure 5.14. Calculation of cs from Equation 5.2. using the isotherm 

parameters for the mixture (exactly as in Figure 5.13 for the static data) results in the solid turquoise 

line in Figure 5.14. Comparison of the theoretical isotherm values with those obtained experimentally 

shows us that for a given value of , the subsurface concentration, cs for the surfactant in the mixture is 

greater than both that of the pure surfactant and that predicted by the Volmer isotherm for the mixture. 
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As for PEO/C14TAB the presence of PEO causes a barrier to the adsorption of surfactant. It is 

important to note here that these conclusions are not reached due to the choice of a simplified isotherm 

model; if we included a parameter to account for favourable interactions between PEO and SDS the 

difference between the experimental and calculated values would in fact be increased. The data 

therefore suggest that a favorable interaction between PEO and SDS does not lead to enhanced 

adsorption at the interface. 

Although favourable interactions between PEO and SDS at the interface do not enhance the adsorption 

of surfactant, they still have a large effect on the adsorption behaviour. In the PEO/SDS mixture a very 

high surfactant coverage is necessary to inhibit adsorption of PEO, much greater than that required in 

the PEO/C14TAB mixture. Even once the surfactant coverage is very high and the vast majority of 

polymer segments are prevented from adsorbing at the interface, polymer can still adsorb, most 

probably due to a favorable interaction with the surfactant headgroups at the interface. Darvas et al.18 

suggested that the synergistic effect of SDS on PEO was due to a combination of the electrostatic 

attraction between the components and an increase in the conformational entropy of PEO in the 

presence of SDS. Furthermore, they suggested that PEO was only inhibited from adsorbing at the 

interface when the last monomer unit was prevented from adsorbing by surfactant, i.e. when a 

complete surfactant monolayer had adsorbed. Our results at the dynamic air/water interface are fully 

consistent with the conclusions of these simulations. 
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 5.4 Conclusions  

The adsorption behavior of mixtures of the non-ionic polymer PEO with cationic C14TAB or anionic 

SDS has been evaluated in order to understand the factors which affect adsorption from 

polymer/surfactant mixtures at the interface of the OFC. These systems were chosen as model systems 

to which adsorption from more complex mixtures can be compared due to their weak 

polymer/surfactant interactions, a result of the non-ionic nature of the polymer.  

For both systems at low csurf values, polymer adsorption is under diffusion control, and is independent 

of the nature or concentration of the surfactant. poly,max is significantly below the equilibrium value on 

the OFC, as it is limited by diffusion. In the same csurf region, the surface excess of surfactant in both 

mixtures is reduced compared to that in the absence of polymer. In part the reduction in surfactant 

adsorption in this region is due to mass transport effects, as the surface expansion rate is higher in the 

presence of polymer, but there is also evidence that the adsorbed PEO causes a kinetic barrier to 

surfactant adsorption.  

At intermediate csurf values, when the surfactant surface excess reaches a threshold value of around 2 

µmol m-2, adsorption of polymer begins to be inhibited in both systems. Whilst this inhibition can be 

explained largely in terms of competition between the polymer and surfactant for space at the interface, 

there are significant differences in the behavior of the two surfactants. In the mixture with C14TAB, 

PEO adsorption becomes fully inhibited over a narrow surfactant concentration range (in terms of both 

the bulk and interfacial compositions). However in the mixture with SDS, inhibition of PEO adsorption 

occurs over a much wider bulk surfactant concentration range. Furthermore, for PEO/SDS there is 

evidence from ellipsometry that a small amount of polymer is still adsorbed at saturation coverage of 

the surfactant (when the subsurface concentration exceeds the cmc).  

The sharp displacement of PEO by C14TAB is explained in terms of the cooperative nature of polymer 

adsorption (a small adsorption energy from each of a large number of adsorbed segments): once the 

polymer has to compete for space with the surfactant, the number of adsorbed segments decreases and 

hence so does the adsorption energy per molecule.  This change in adsorption energy has the same 

effect as an unfavorable interaction parameter between the polymer and surfactant, sharpening the 

adsorption isotherm and disfavoring mixed layers.  In contrast, there is known to be a favorable 

interaction between PEO and SDS which is ascribed either to a charge-dipole interaction or to a 

Coulombic interaction mediated by binding of metal cations to PEO. Although adsorption at the 

interface is not synergistic for PEO/SDS to the extent of enhancing the adsorption of surfactant, the 

continued adsorption of PEO at high SDS coverages suggests the influence of a favourable interaction 
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between the two components at the interface. Our data in this region are consistent with the simulations 

of Darvas et al.,18 who suggest that due to electrostatic interactions and an increase in the 

conformational entropy of PEO in the presence of SDS, PEO adsorption is only completely inhibited 

when a full surfactant monolayer has adsorbed.   
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Chapter 6.  Adsorption Kinetics of Mixtures of PSS and C12TAB 

6.1 Introduction 

In the previous two chapters I introduced our new co-modelling approach to obtaining the surface 

composition and  applied it to some ‘base-line’ systems, PEO/surfactant mixtures. In this chapter I will 

apply our approach to the adsorption kinetics of an oppositely charged polymer/surfactant system, 

poly(styrene sulfonate) [PSS] with dodecyltrimethylammonium bromide (C12TAB). Taylor et al. 

classified PSS/C12TAB as a ‘Type 1’ polymer/surfactant system,1, 2 exhibiting multilayer formation at 

the static air/water interface at intermediate surfactant concentrations, and no ‘cliff edge peak’ in the 

surface tension. Investigation of this system is complementary to the study of PDMDAAC/SDS on the 

OFC which precedes this thesis,3 as PDMDAAC/SDS was classified as ‘Type 2’ by Taylor et al,4 with 

only monolayer adsorption and a peak in the surface tension.5, 6   

In the bulk solution PSS forms stable complexes with C12TAB from very low surfactant 

concentrations7 (cac  0.015 mM),8 orders of magnitude below the cmc of C12TAB (cmc  4 mM in the 

presence of 0.1 M NaBr), 2, 8 due to a combination of electrostatic interactions between the charged 

moieties on the two species and the hydrophobicity of the polymer. Stable complexes are formed due 

to the penetration of the phenyl groups of the polymer into the surface of the complexed surfactant 

micelle,8-10 causing the micelles to be more densely packed than in pure surfactant solution. In many 

polymer/surfactant mixtures, complexes aggregate and precipitate close to charge equivalence. Several 

studies of PSS/C12TAB mixtures have shown that minimal phase separation occurs compared to other 

oppositely charged polymer/surfactant mixtures,9, 11 although others have demonstrated that the system 

becomes turbid at around molar equivalence.10 It is quite possible that the mixing methodology used in 

sample preparation has an effect on the bulk phase behaviour of PSS/C12TAB mixtures, as it has been 

to shown to in several other polymer/surfactant systems including PSS/C16TAB12 in which 

precipitation may only occur when gentle mixing methodologies are employed.  

At the static air/water interface, adsorption in PSS/C12TAB mixtures has been shown to exhibit a sharp 

increase with increasing surfactant concentration.1, 2, 7, 13 In the presence of salt (as in the experiments 

presented in this chapter), this transition occurred in the region of 1.6 – 2 mM C12TAB.2, 7 Taylor et al.1, 

2 attributed the high adsorbed amount to multilayer formation, whereas Monteux et al. demonstrated 

that the adsorbed layer was a heterogeneous microgel containing polymer/surfactant aggregates.7 

Monteux et al. attributed the presence of aggregates at the interface to the onset of aggregation of 
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polymer/surfactant complexes, first at the interface and then in the bulk. Bulk aggregation caused the 

adsorbed amount to fall at 4 mM C12TAB.7, 13 In dynamic elasticity studies, Noskov et al. recorded 

dense regions of polymer and surfactant of low net charge at the interface, which they described as 2-

dimensional complexes containing entangled PSS molecules, whilst the surrounding film had a 

significantly lower elasticity.14-16  

In this chapter I will use measurements on the OFC to try to determine how the adsorption of each 

species (polymer or surfactant) is affected by the presence of the other. Adsorption of the two species 

may be competitive due to free space considerations (as in Chapter 5), synergistic due to the attractive 

interactions between the species at the interface, or the adsorption of one species may inhibit the 

adsorption of the other. As PSS is not surface-active alone, it can only adsorb at the interface by 

interacting with C12TAB, so synergistic adsorption must occur. We expect that adsorbed surfactant 

electrostatically attracts polyelectrolyte which consequently acts as a sublayer. This is in contrast to the 

PEO/surfactant mixtures in Chapter 5 in which PEO was surface active alone, and the weak interations 

between the neutral polymer and the surfactant molecules did not lead to significant synergy.  The 

OFC can also be used to determine whether bulk phase separation (if it occurs in this system) has an 

effect on interfacial adsorption. If aggregates form in the bulk solution at high surfactant 

concentrations, we would expect to see a decrease in the adsorbed amount due to their slower diffusion 

on the OFC timescale.  

The dynamic adsorption of PSS/C12TAB is examined here as a function of both polymer concentration, 

molecular weight, and surfactant concentration. From simple mass transport considerations, we might 

expect that an increased polymer molecular weight will lead to a decreased polymer surface excess due 

to slower diffusion of polymer molecules and polymer/surfactant complexes, and may also decrease 

the adsorption of surfactant from complexes. Increasing the concentration of a polymer of a given size 

should increase the amount of polymer which can reach the interface, up to a threshold amount dictated 

by the surfactant concentration and steric constraints at the air/water interface.  

Data recorded on several PSS/C12TAB systems using NR, ellipsometry and LDV are presented in this 

chapter, along with an examination of the adsorption kinetics of this system using a basic model of the 

adsorption from a complex-forming polymer/surfactant system.  
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Materials 

Solutions were made in ultrapure water (Milli-Q; resistivity = 18 m.cm) for ellipsometry, or in D2O 

(Euriso-top, C. E. Saclay, France) or NRW for NR measurements. The OFC and associated glassware 

were cleaned with a 2% solution of a strong alkaline detergent (Decon 90 or Gigapur) and rinsed 

thoroughly. C12TAB (99%, Sigma) was purified by re-crystallisation three times from a mixture of 

ethanol and acetone. PSS (17k, 150k and 2.6M molecular weight, Sigma) was used as supplied. 

dC12TAB was kindly supplied by Dr R. K. Thomas from the Oxford Deuteration Facility. 17 0.1 M 

NaBr (Sigma Aldrich) was used for all experiments.   

 

 

6.2 Results 

6.2.1. Ellipsometry 

Figure 6.1 and Figure 6.2 show the coefficient of ellipticity, , as a function of C12TAB concentration 

(csurf) for pure C12TAB and two series of PSS/C12TAB mixtures, all in the presence of 0.1 M NaBr. 

Figure 6.1 shows measurements made at a range of bulk polymer concentrations from 0 to 400 ppm of 

17k PSS, and Figure 6.2 shows measurements on systems containing different polymer molecular 

weights from 17k to 2.6M PSS, at all 100 ppm. The dashed line shows the ellipticity of pure water 

which is indistinguishable from the ellipticity of polymer and salt solutions in the absence of 

surfactant, since PSS is not surface-active.1 The ellipsometry data are the most fine-grained of the data 

I recorded and consequently give us the most subtle information about the adsorption behaviour. 

At low surfactant concentrations,  is more negative, corresponding to a larger total surface excess, for 

the mixtures than for the pure surfactant. In interacting polymer/surfactant systems, enhanced 

adsorption at low surfactant concentrations has been seen in several previous studies, and attributed to 

synergistic adsorption of polymer and surfactant at the interface.1, 18, 19 At the lowest values of csurf 

(<0.02 mM), the ellipsometry data for all of the systems in Figure 6.1 and Figure 6.2 are very similar, 

despite the different polymer concentrations and molecular weights, suggesting that in this region 

adsorption at the interface is determined by the surfactant rather than the polymer.  
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Figure 6.1.  Coefficient of ellipticity at the surface of an OFC containing C12TAB and different concentrations of PSS (at a 

constant molecular weight of 17k), where the red squares at 0 ppm PSS, the yellow diamonds are 20 ppm, the purple crosses 

50 ppm, the blue circles 100 ppm, and the green triangles 400 ppm. All measurements were made in the presence of 0.1 M 

NaBr. The upper dotted line is the ellipticity of the salt solution, and of the polymer and salt solution. The symbols in the top 

right corner represent UV-vis measurements on various PSS/C12TAB samples, where symbols are empty until the O.D. at 450 

nm > 0.1. The upward pointing arrows below the data represent the point at which we predict the formation of single 

polymer/micelle complexes will be complete.  

 

Figure 6.2. Coefficient of ellipticity at the surface of an OFC containing C12TAB and different PSS molecular weights (at a 

constant concentration of 100 ppm). The red squares at 0 ppm PSS, the blue circles are 17k (as in Figure 5), the turquoise 

triangles are 150k, and the pink diamonds are 2.6M. All measurements were made in the presence of 0.1 M NaBr. The upper 

dotted line is the ellipticity of the salt solution, and of the polymer and salt solutions. The symbols in the top right corner 

represent UV-vis measurements on various PSS/C12TAB samples, where symbols are empty until the O.D. at 450 nm > 0.1. 
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As the surfactant concentration is increased further,  is similar for all systems containing 17k PSS 

(Figure 6.1), until each system successively reaches a turning point which precedes a plateau in . The 

surfactant concentrations corresponding to both the start and end of the plateau increase with 

increasing bulk polymer concentration, suggesting that these changes in adsorption behaviour may be 

attributable to key polymer:surfactant ratios being reached, either in the bulk or at the interface. 

Although the plateau in  may be suggestive of a constant surface composition, I will show below that 

the surface excess of one component increases whilst simultaneously the surface excess of the other 

component decreases. It is therefore important not to over-interpret such ellipsometry data alone; we 

have to examine the interfacial composition obtained from co-modelling the ellipsometry and NR data 

before we can reach conclusions about the origin of the turning points and plateaus in the ellipsometry 

data.  

For the systems containing the same polymer concentration but different molecular weights (Figure 

6.2) the three data sets are very similar at low surfactant concentrations (to within errors caused by 

cleanliness issues with these systems) but deviate from each other at csurf  0.02 mM. As csurf is 

increased beyond this point,  varies with molecular weight, with lower molecular weight polymer 

resulting in more negative  values (indicative of higher surface excesses). As the ellipticity is related 

to the total surface excess, it is not surprising that the recorded values of  suggest lower total surface 

excesses for systems containing slower diffusing polymer molecules. In Figure 6.2, unlike Figure 6.1, 

only the 2.6 M PSS system displays a defined plateau in  at intermediate csurf values. This may help us 

to examine the reasons behind the plateau.  

At the end of the plateau, the gradient in  increases again, and in the majority of the systems the 

gradient, or even the value, of  tracks that of the pure surfactant. The value of csurf corresponding to 

this turning point depends on the bulk polymer concentration but not on its molecular weight (Figure 

6.1 and Figure 6.2).  

At the highest csurf values measured in Figure 6.1,  for the mixtures is close to the pure surfactant 

values. However for the 100 and 400 ppm systems, before this point is reached, time-dependent 

changes in  were recorded. These changes are displayed as multiple values of  for a given value of 

csurf. Over time the values of  become less negative. Since the sensitivity of ellipsometry to the 

adsorption of the two components is similar, these changes in are large enough that they must 

correspond to a decrease in the amount of one of the components adsorbing at the interface and cannot 

be due just to a change in composition. Due to the flowing nature of the OFC, a significant change in 

the total surface excess at a constant bulk composition must indicate a change in the mass transport of 

this species to the interface, which we attribute to aggregation of polymer/surfactant complexes. Large 
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aggregates cannot reach the interface on the timescale of surface expansion, hence material in them 

cannot contribute to adsorption. Aggregation causes increased turbidity of the solution, hence our 

hypothesis that aggregation explains the time dependent data is supported by the O.D. data in Figure 

6.1 which show that the same is initially turbid in this region. Although the data did not observably 

change with time for the other systems in Figure 6.1 and Figure 6.2, all of the systems containing 

polymer concentrations of 100 ppm or more exhibit turbid solutions in this region, hence we conclude 

that bulk phase aggregation also occurs in these systems, but it may not occur in the systems containing 

low polymer concentrations.  

 

6.2.2. NR 

The specular reflectivity profiles recorded on the h-polymer/d-surfactant/NRW contrast were fitted 

using a single 11 Å layer model in order to obtain the values of  ×  shown in Figure 6.3. This was 

determined to be the optimum fitting model for the data in Chapter 4, where it was demonstrated that 

use of a more complicated model or a thicker single layer resulted in a worse fit to NR data recorded 

on three isotopic contrasts.  Figure 6.3 shows that the amount of material at the interface, as indicated 

by  × , is relatively independent of the polymer concentration and polymer molecular weight, except 

for the highest MW (2.6M) at low csurf, despite the markedly different  data in Figure 6.2. 

 

Figure 6.3. Product of the scattering length density and thickness fitted to an 11 Å single layer model for a range of 

PSS/C12TAB systems, which vary by (a) polymer concentration and (b) polymer molecular weight, with symbols 

corresponding to those in Figure 6.1 and Figure 6.2. 
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The  ×  values in Figure 6.3 (a) vary remarkably little with polymer concentration considering the 

significant differences between the ellipsometry data of these systems in Figure 6.1 and the very 

different amounts of polymer in the bulk solution. As these data are obtained from NR measurements 

on the isotopic contrast h-polymer/d-surfactant/NRW, the primary contribution usually comes from the 

deuterated surfactant. However, PSS has a relatively high neutron scattering length density per 

segment for a hydrogenated polymer, 1.85 × 10-6 v 5.12 × 10-6 Å-2 for dC12TAB, hence the data in 

Figure 6.3 cannot simply be attributed to the surfactant surface excess as it was in Chapter 5. We 

therefore cannot assume that the similarity of  ×  for the different systems in Figure 6.3 (a) is 

indicative of similar surf values for all of the systems, as it may be due to changing proportions of the 

two components at the interface.  

As  ×  cannot be assumed to be linearly related to surf for this system as it can for other 

polymer/surfactant systems (see Chapter 4), further interpretations of the adsorption behaviour cannot 

be reached from the NR data alone. Co-modelling of these data with the ellipsometry data in Figure 6.1 

and Figure 6.2 will allow us to determine the interfacial compositions of the mixtures.  

 

 

6.2.3. Interfacial Compositions from Co-modelling 

The function used to account for the contribution of surfactant to  for the mixture in our co-modelling 

approach was shown in Chapter 4 to have a minimal effect on both the trends in the data and the 

surfactant surface excess, but to cause variations in the calculated polymer surface excess. A cubic 

function was chosen for consistency with the other PSS/CnTAB systems, as discussed in Chapter 7.  

The effect of polymer concentration and molecular weight on the interfacial composition of 

PSS/C12TAB mixtures is shown in Figure 6.4 and Figure 6.5, respectively, with surf in panel (a) and 

poly in panel (b). surf is remarkably insensitive to changes in either the polymer concentration or 

molecular weight, with only the highest molecular weight polymer causing a large deviation from the 

surf data for the other systems, although there is also a small plateau in the 400 ppm surf data at high 

csurf. At low csurf, the surfactant surface excess in the mixture is greater than that of the pure surfactant, 

which is, in general terms, consistent with synergistic adsorption of polymer and surfactant in this 

region. At higher csurf, surf,mix drops slightly below the pure surfactant value, which may be due to a 

change in the adsorption mechanism, as discussed later.   
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Figure 6.4. Surface excesses of (a) C12TAB and (b) PSS adsorbing from mixtures of the two components, as calculated using 

our co-modelling methodology. The different data sets are different polymer concentrations (constant molecular weight of 

17k), with symbols consistent with the other figures in this chapter, where the red squares are 0 ppm PSS, the yellow 

diamonds are 20 ppm, the purple crosses 50 ppm, the blue circles 100 ppm, and the green triangles 400 ppm. All 

measurements were made in the presence of 0.1 M NaBr. The red line is only added as a guide to the eye.  

 

Figure 6.5. Surface excesses of (a) C12TAB and (b) PSS adsorbing from mixtures of the two components, as calculated using 

our co-modelling methodology. The different data sets are different polymer molecular weights (constant polymer 

concentration of 100 ppm) , where the red squares at 0 ppm PSS, the blue circles are 17k (as in Figure 5), the turquoise 

triangles are 150k, and the pink diamonds are 2.6M. All measurements were made in the presence of 0.1 M NaBr. The red 

line is only added as a guide to the eye. 

poly varies significantly with both polymer concentration and polymer molecular weight, as seen in 

Figure 6.4 (b) and Figure 6.5 (b). Largely, poly increases with increasing bulk polymer concentration, 
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and decreases with polymer molecular weight. However poly is not simply related to either the 

polymer concentration or molecular weight, suggesting that other factors also influence interfacial 

adsorption.  

There are several noteworthy features in the poly data in Figure 6.4 (b) and Figure 6.5 (b). Firstly, poly 

is very similar for the 100 and 400 ppm systems until csurf  0.2 mM, suggesting that poly is 

independent of the polymer concentration in this range at low csurf. Furthermore, the maximum value of 

poly for the 400 ppm system is not 4 × that of the 100 ppm system, polymer adsorption is limited by 

something other than polymer concentration in this system. Secondly, poly is within experimental 

precision of zero for both the 20 ppm system in Figure 6.4 (b) and for the 2.6 M system in Figure 6.5 

(b Thirdly, the poly data for the 150 k PSS/C12TAB system in Figure 6.5 (b) do not fall within the 

predicted trend of decreasing poly with increasing molecular weight.  This is unexpected, and may be 

due to experimental errors. I will discuss this point further later.  

 

6.2.4. LDV  

The surface expansion rates, , obtained from LDV measurements allow us to analyse the adsorption 

kinetics of the PSS/C12TAB systems in a quantitative way. As discussed in Chapter 2, plots of  v csurf 

for pure surfactants have a volcano 20 shape, as seen for pure C12TAB (red squares) in Figure 6.6. For 

polymer/surfactant mixtures however the data may deviate from this shape if the adsorption 

mechanism changes, as seen for PEO/C14TAB in Chapter 5. Furthermore, the co-adsorption of polymer 

and surfactant at the interface at low surfactant concentrations can cause  to remain close to the pure 

water value, as observed in the study of the adsorption of PDMDAAC/SDS on the OFC.3 In order for  

to be at the pure water value despite the non-zero value of surf, material must adsorb in a way which 

does not support surface tension gradients at the interface, perhaps due to interactions between polymer 

and surfactant molecules at the interface or to the direct adsorption of polymer/surfactant complexes at 

the interface. Both the data in Chapter 5 and the previous study of PDMDAAC/SDS have shown us 

that surface expansion rate data can give us valuable clues about adsorption behaviour. To see if this is 

also the case for PSS/C12TAB mixtures, data recorded at different polymer concentrations and polymer 

molecular weights are shown in Figure 6.6 (a) and (b) respectively.  
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Figure 6.6. Surface expansion rate as a function of C12TAB concentration for samples with (a) a varying polymer 

concentration, with the symbols corresponding to those in Figure 6.4, and (b) a varying polymer molecular weight, with the 

symbols corresponding to those in Figure 6.5.  

The surface expansion rate data for all of the PSS/C12TAB data in Figure 6.6 (apart from that for the 

system containing 400 ppm PSS) are of the standard volcano shape.. If we disregard the 400 ppm data 

for the moment, we can see that there is a shift in the volcano plot to higher csurf compared to the pure 

surfactant. The shift is greater for the 100 ppm than the 20 ppm system (Figure 6.6 (a)), but almost 

independent of the polymer molecular weight (Figure 6.6 (b)). This latter observation is remarkable if 

we consider that we would expect such differently sized species to exhibit quite different adsorption 

behaviour.  

The shift in  to higher csurf is most marked at low csurf values. For a pure surfactant system, a decrease 

in  at a given csurf may be indicative of an increased surfactant surface excess. For all of the 

PSS/C12TAB systems we can see from Figure 6.4 and Figure 6.5 that surf,mix > surf, hence the 

decreased value of  must be due to interactions between the polymer and surfactant at the interface or 

the adsorption of polymer/surfactant complexes, as discussed above.  The shift in  to higher csurf 

values is not as marked as it was in the previous study of PDMDAAC/SDS.3.  

The 400 ppm system exhibits quite different  v csurf data than the other systems, with a local minimum 

in  at intermediate csurf values. A minimum in  was previously observed in the PEO/C14TAB system, 

and attributed to Marangoni effects caused by polymer adsorption at low csurf and surfactant adsorption 

at high csurf. However Figure 6.4 shows that there is no significant decrease in the surface excess of 

either component in this region, although there is a very slight plateau in poly, so the same explanation 

cannot account for the minimum in  for this system. If we examine the  data in Figure 6.1 we can see 
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that the plateau in  and the local minimum in  occur at very similar surfactant concentrations. It 

therefore seems likely that both features have the same explanation, a switch over in the species 

dominating adsorption.  

 

6.2.5. Static Data 

In order to make comparisons between adsorption at the static and dynamic interfaces, and ultimately 

to enable us to use adsorption isotherms in our calculations of the adsorption kinetics of these systems, 

data for several PSS/C12TAB systems (20 ppm, 100 ppm and 400 ppm 17k PSS) were also recorded at 

the static air/water interface using FIGARO’s adsorption troughs and a petri dish for ellipsometry 

measurements. Data were recorded only at csurf  < 1.25 mM in order to minimize the production of 

kinetically-trapped aggregates which occurs when mixing the components for solutions of higher csurf, 

as discussed in the following section.  The ellipsometry and NR data are shown in Figure 6.7. Both  
and  ×  are relatively constant with increasing csurf, although  ×  increases slightly for the 400 ppm 

system and decreases slightly for the 20 ppm system. 

 

Figure 6.7. (a) Ellipticity and (b) product of the fitted scattering length and thickness of adsorbed layers from several 

PSS/C12TAB systems at the static air/water interface: 20 ppm (yellow diamonds), 100 ppm (blue circles), 400 ppm (green 

triangles). All measurements were made with 17k PSS in the presence of 0.1 M NaBr. 

The results of co-modelling the data in Figure 6.7 are shown in Figure 6.8. As expected from the 

ellipsometry and NR data, the interfacial excess of neither polymer nor surfactant varies in a clear way 
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with the bulk concentration of either polymer or surfactant.  Furthermore, the maximum surf and poly 

values in Figure 6.8 are close to the maximum values measured on the OFC in Figure 6.4.  

 

Figure 6.8. Surface excesses of (a) C12TAB and (b) PSS adsorbing from mixtures of the two components at the static 

air/water interface, as calculated using our co-modelling methodology and the data in Figure 6.7. The symbols correspond to 

those in Figure 6.7. 
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6.2.6. Time-dependence at high csurf 

Figure 6.1 shows that around csurf = 2 mM  time-dependent is for both the 100 and 400 ppm systems. 

For the 100 ppm system  becomes less negative from −2 × 10-3 to −1.4 × 10-3 (indicative of a 

decreasing total surface excess) over a period of 2 hours. NR data were recorded as a function of time 

at the same bulk solution composition, and the resultant   ×  values are shown in Figure 6.9 (a). 

Co-modelling these data (Figure 6.9 b) shows that poly decreases significantly with time whilst surf 

stays relatively constant. For the dynamic surface excess of any species to decrease at constant bulk 

composition, the simplest explanation is that its mass transport becomes slower. In polymer/surfactant 

systems, such a situation is consistent with the formation of bulk aggregates which diffuse slowly on 

the timescale of the OFC due to their size. Hence it seems likely that the time dependence in Figure 6.9 

can be attributed to the progressive formation of bulk polymer/surfactant aggregates.  

  

Figure 6.9. (a) The product of the fitted scattering length density and thickness,  × , as determined by NR measurements on 
100 ppm 17k PSS and 2 mM C12TAB (in the presence of 0.1 M NaBr). (b) The calculated surface excesses of C12TAB (filled 
blue circles) and PSS (empty blue circles) adsorbing at the interface of the OFC from the same solution, as obtained using our 

co-modelling approach.  
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6.3 Discussion 

6.3.1. Bulk Characteristics 

It is clear from the ellipsometry, NR, and LDV data presented above, as well as the calculated 

interfacial compositions, that the adsorption kinetics of PSS/C12TAB are complicated, with changes in 

the behaviour occurring with increasing csurf. Before attempting to interpret these interfacial data it is 

first pertinent to discuss the bulk species present in PSS/C12TAB mixtures, as their formation will have 

an influence on adsorption at the air/water interface.  

At a critical aggregation concentration (cac) significantly below the cmc for the pure surfactant ( 4 

mM in the presence of 0.1 M NaBr2, 8) polymer/surfactant complexes form in the bulk solution. Few 

studies have reported values of the cac for PSS/C12TAB in the presence of NaBr. Taylor et al. stated a 

value of 0.037 mM for 140 ppm 17k PSS/C12TAB,2 however this value was determined from surface 

tension measurements, which are highly challenging for strongly interacting polymer/surfactant 

mixtures, leading to great uncertainty in the value. Kogej et al. stated a lower value of 0.015 mM from 

fluorescence spectroscopy measurements on 70k PSS/C12TAB.8 Although the polymer used in the 

latter study is longer than the shortest polymer used in the experiments in this thesis, which may lower 

the cac due to increased conformation flexibility, the cac value of Kogej et al is used in the discussions 

and calculations which follow as it was determined from bulk rather than surface measurements. It is 

important to bear in mind however that we can only approximate the cac to be in the region of 0.015 

mM C12TAB. For the purposes of these discussions we will assume the conventional model in which 

the surfactant and polymer are unassociated in dilute solutions below the cac, while the polymer 

stabilises micelles of the surfactant above the cac. 

In dilute solutions of the pure surfactant C12TAB forms approximately spherical micelles with a 

reported aggregation number, N = 49, for 40 mM C12TAB in 20 mM NaBr.21 The higher salt 

concentration and lower surfactant concentration in our experiments will tend to increase and decrease 

the aggregation number, respectively, so in the absence of a direct measurement we will assume N = 

49 in our experiments also. 

Polymer/surfactant complexes in mixtures of 17k PSS and C12TAB are likely to consist of a single 

polymer molecule bound to a single surfactant micelle, as 17k PSS is a short polymer with around 80 

styrene sulfonate monomers. PSS is also a relatively stiff polymer, due to steric interactions and 

electrostatic repulsions between the side chains.  The characteristic ratio of PSS will depend on the 

electrolyte concentration, but even for pure polystyrene the characteristic ratio is 10 suggesting that 
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PSS consists only of 8 or so equivalent segments.  The polymer therefore lacks the conformational 

flexibility to bind effectively to more than one micelle per polymer chain, in addition to having 

insufficient charge on a single chain to balance the charge on two micelles. Literature values of the 

aggregation number of C12TAB in a complex with PSS vary between 40 and 63.9, 22 As these values 

were not recorded under the conditions used in the experiments in this thesis we will assume in the 

absence of direct measurements that the aggregation number is the same as that of the pure surfactant, 

49. When higher MW PSS is used more than one micelle can condense on each chain, and the chain 

may be flexible enough to wrap around them. There will be a statistical distribution in the number of 

micelles bound to each polymer.   

Since our best estimate of the cac of PSS/C12TAB is nearly two orders of magnitude lower than the 

cmc, the stabilisation afforded by the polymer is substantial (NkBTln(cac/cmc) ~ –200 kBT). The 

primary source of this stabilisation is the entropy of the bromide counterions released when polymer 

associates with the micelle.  For example, assuming that, say, 80% of the counterions are bound to a 

free micelle and that the local concentration of bound counterions is ~5 M, the entropic stabilisation 

from replacing the bound Br- counterions by the polymer chain is ~ –170 kBT.  For PSS/C12TAB 

complexes there is also likely to be a hydrophobic component to the stabilization of the complexes due 

to the penetration of aromatic groups of the polymer into the surface of the surfactant micelle.9 A study 

of monolayers of C16TA+ p-tosylate– at the air/water interface showed that 80% of the counterions were 

associated with the monolayer,23, 24 hence it is likely that a large proportion of the aromatic groups in 

the polymer insert into the micelle surface.  

As the surfactant concentration is increased above the cac the concentration of polymer/surfactant 

complexes increases, whilst the free surfactant concentration (and hence the chemical potential of the 

surfactant) remains approximately constant, and the concentration of free polymer (and hence the 

chemical potential of the polymer) decreases.  Theoretically, once there is one surfactant micelle 

associated with every polymer molecule, complexation can be regarded as ‘complete’. For ease, I will 

call this point ccomp. For each system, the surfactant concentration calculated to correspond to ccomp is 

indicated by an arrow in Figure 1. It should be noted that these values are only calculated from the bulk 

surfactant concentration necessary for each polymer molecule to be associated with 49 surfactant 

molecules, they are not obtained from bulk measurements. This estimation of ccomp may incur 

significant errors in our model, however we are using it as a starting point in the absence of the 

appropriate bulk measurements. In this model we expect that above ccomp increases in csurf have no 

effect on the polymer/surfactant complexes, and their concentration remains constant, only the 

concentration of free surfactant increases. In this simple model, we assume that the size of the micelles 

in the polymer/surfactant complexes remains constant, though in reality an increase in the chemical 
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potential of the free surfactant will lead to an increase in the size of the bound micelles and a decrease 

in the chemical potential of the polymer (due to better charge neutralisation).  

 

6.3.2 Accounting for Polymer/Surfactant Complexes in a Model of Adsorption Kinetics 

In order to model quantitatively the effects of polymer/surfactant complexes on adsorption kinetics in 

the OFC, we need to account for their mass transport and adsorption. The presence of complexes 

affects the adsorption kinetics in two primary ways; firstly, the rate of mass transport of complexes 

may be slower than that of molecular species if their size is greater, and, secondly, complexes must 

break down on the timescale of surface expansion in order to deliver material to the interface. 

Valkovska et al. developed a model of adsorption from micellar surfactant systems which handled the 

diffusion of monomers and micelles separately under the assumption of fast micellar breakdown.20 As 

a first approach, I will use an adaptation of that model to account for the diffusion of polymer and 

surfactant molecules and complexes. As we have defined individual complexes of 17k PSS to contain 

only a single surfactant micelle and a single surfactant molecule, we can treat these systems very 

similarly to the way that Valkovska treated surfactant systems above the cmc. Although a more 

involved model will eventually be necessary, as this model cannot account for the adsorption 

behaviour above ccomp, such a model has not been developed to date, hence the simple model presented 

here is used as a first approximation.  

Several assumptions are implicit in our adsorption model. As for micelles and monomers of short chain 

surfactants such as C12TAB, we will assume that equilibration between polymer, surfactant, and 

polymer/surfactant complexes in solution is fast. This means that the chemical potential of the polymer 

and surfactant in the PS complexes will always be equal to the chemical potential of the free polymer 

and free surfactant at the same distance from the surface. We will also assume that complex breakdown 

is fast on the timescale of the OFC, and that therefore the presence of complexes does not cause a 

kinetic barrier to the adsorption of either species. Furthermore, we will assume that adsorption kinetics 

are fast, so that the material at the surface is in local equilibrium with the polymer, surfactant, and 

polymer/surfactant complexes in the sub-surface.  The question of whether adsorption proceeds 

through free polymer and surfactant or through polymer/surfactant complexes is then immaterial, since 

the only factor that determines the surface composition is the chemical potentials of the polymer and 

surfactant in the subsurface (which may be lower or higher than those in the bulk). Further assumptions 

to simplify the model include treating the cac as a sharply defined point below which no complexes 
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exist in solution and above which the surfactant monomer concentration is constant, and treating the 

adsorbing material as neutral in order to avoid the complication of electric double layers.  

Below the cac, there are no complexes in solution and only molecular species will affect adsorption. 

Free polymer and free surfactant diffuse to the surface with transport rates that obey the convective-

diffusion equation, and the resultant surface excess is given by equation 2.5, reproduced here as 

Equation 6.1 

  
                                                                                                                 (6.1) 

where D is the diffusion coefficient, cb the bulk concentration and cs the subsurface concentration. For 

the free surfactant, Dmon = 4.6 × 10−10 m2s−1.20 Wang measured Dpoly = 6.5 × 10−11 m2s−1 for 24k PSS 

and also showed that the radius of gyration of the polymer follows the Flory-Huggins scaling law for a 

good solvent, Rg ∝ M0.6, where M is the molecular weight.25 Consequently, for 17k PSS, we will use a 

value of Dpoly = 8.0 × 10−11 m2s−1.  

Below the cac, the concentration profiles of both polymer and surfactant as a function of the distance 

from the surface into the bulk, z, are obtained from20 

         
        (6.2) 

where cs is obtained from Equation 6.1. Figure 6.10 shows a schematic concentration profiles of 

polymer (blue line) and surfactant (red line) at csurf < ccac.  

Above the cac, the diffusion of polymer/surfactant complexes also has to be accounted for in our 

model. The formation of complexes decreases the concentration of free polymer molecules in the 

solution, and the concentration of free surfactant molecules will stay constant at csurf,free = cac. The 

amount of surfactant in complexes is given by csurf,complex = cb,surf – ccac, and the amount of polymer in 

complexes is given by cpoly,complex = 82/49 x csurf,complex.  

Although the bulk surfactant concentration is above the cac, mass transport considerations mean that 

the sub-surface concentration is below the cac. This means that although PS complexes in the bulk 

solution affect the transport of material to the interface, the subsurface contains only free polymer and 

surfactant. The region below the surface is a ‘complex-free zone’, similar to the micelle-free zone of 

Valkovska et al.20 The complex-free zone ends at a distance h from the surface at which the surfactant 

concentration reaches the cac (Figure 6.12). At z < h surfactant transport is only in the form of 
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molecular species, at z > h surfactant transport is only in the form of polymer/surfactant complexes 

(green line in Figure. 6.12).  

 

Figure 6.10. Schematic diagram of the concentration profiles of the molecular species in the diffusion layer of an expanding 

surface at csurf < ccac. The horizontal dashed line denotes the cac of the system. 

 

Figure 6.11. Schematic diagram of the concentration profiles of the species at csurf < ccac, with the distance h which denotes 
the edge of the complex-free zone marked as a vertical dotted line, and the cac marked by a horizontal dashed line.  h marks 

the region in which polymer/surfactant complexes are breaking down into free polymer and monomeric surfactant.   

 

We do not know the value of the diffusion coefficient of the complexes, DPS, a priori. On the one hand, 

binding of the polymer to the micelle is likely to lead to a more compact conformation of the polymer 
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and hence a larger diffusion coefficient; on other hand, DPS must be less than that of a C12TAB micelle 

(~1.0 × 10−10 m2s−1 from the Stokes-Einstein formula).  Hence we will assume that for 17k PSS, DPS = 

Dpoly= 8 x 10-11, although this assumption will be tested later. For z < h, the polymer diffuses with the 

free polymer diffusion coefficient, Dpoly.  For z > h, the polymer diffusion coefficient is in general a 

weighted mean of the diffusion coefficients of the free polymer and the polymer/surfactant complex, 

DPS. Since we are assuming DPS = Dpoly for 17k PSS, the polymer mass transport obeys Equation 6.1. 

If we assume infinitely fast complex breakdown, the diffusion equations for surfactant monomers and 

complexes in the centre of the OFC take the form 

 


            (6.3.a) 




   
        (6.3.b) 

From the work of Valkvoska, the value of h for a given system composition can be calculated from the 

experimental data for the surface expansion rate, , and the surface composition using 




 

 




 




 







      (6.4) 

And the flux of monomers to the interface at z =0 ( to obtain cs,mon) is: 

       


   





     (6.5) 

The concentration profile of surfactant monomers at z < h as a function of z (red line) is then obtained 

by solving the diffusion equation, Equation 3.a, using the following boundary conditions: at z =0  csurf = 

cs,surf, and at z = h, csurf,free = ccac, resulting in 

      
 



 


       (6.6) 

The concentration profile of surfactant in complexes (green line) is obtained from the solution of 

equation 6.3.b with the boundary conditions: at z  = h csurf,complex = 0 and at z = , csurf,complex = 

csurf,complex, = csurf . This gives the equation  

    
 




 



      (6.7) 
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The total polymer concentration is still obtained from Equation 6.2, and the concentration of free 

polymer molecules due to complexation (purple line) cpoly,free = cpoly – 49/82 × csurf,complex.  

There will only be a complex-free zone below the interface until a threshold bulk surfactant 

concentration. For a pure surfactant, h = 0 once csurf is a certain amount above the cmc. 26 For 

complexes, there is not a direct relationship between the cac and the point where h = 0, and the 

appropriate csurf can be calculated from Equation 6.5. Above this point, the sub-surface surfactant 

concentration, cs > cac. 

For polymer/surfactant mixtures this approach will describe the mass transport of the bulk species until 

csurf  = ccomp, as at that point the formation of complexes will be complete, and the concentration of free 

surfactant molecules in bulk solution will increase whilst the concentration of complexes stays 

constant. There will now be two distances in the mass transport model: h1 defining the edge of the 

complex-free zone, h2, beyond which surfactant monomers again contribute to mass transport, and all 

the polymer is in the form of complexes. However, a model which can account for this behaviour is yet 

to be fully developed, hence we only model mass transport for csurf < ccomp..  

Now that I have discussed a basic theoretical model of the mass transport in complexing 

polymer/surfactant systems, I will move on to discuss the data obtained for the PSS/C12TAB systems 

(in the results section above) in the context of this model.  
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6.3.3. PSS/C12TAB Systems Containing Different Concentrations of Polymer 

At very low surfactant concentrations (csurf  < 20 µM) the ellipsometric data are independent of both the 

concentration of the 17k PSS (Figure 6.1) and the molecular weight of the polymer chain (Figure 6.2).  

This observation implies that the total adsorbed amount is independent of the mass transport or 

adsorption kinetics of the polymer, as we would expect when the polymer is in excess. We would 

therefore expect that adsorption is limited by surfactant diffusion at low csurf. From data at the static 

air/water interface (Figure 6.8) the polymer and surfactant are strongly adsorbed at the interface, and 

the equilibrium value of the bulk concentration, cb, at the values of  measured on the OFC will be 

very small, hence from the condition for diffusion control, dyn(cs) = eq(cb), cs will be very small in our 

measurements, much smaller than cb. We would therefore expect that cs,surf = 0 if surfactant adsorption 

is diffusion controlled, and we can test whether our data are consistent with this hypothesis. 

Unfortunately, we do not have surface composition or expansion rate data at csurf < cac for any of the 

systems studied, and we can only estimate the values by extrapolation. For the 100 ppm system, at 0.01 

mM,    5 x 10-5,   0.7 s-1 and surf  0.2 µmolm-2 (by extrapolation). If we calculate the maximum 

value of surf under diffusion control using Equation 6.1 with cs = 0, we obtain a value of surf,max = 0.2 

µmolm-2. It therefore appears that surfactant adsorption is under diffusion control. By extrapolation of 

the data in Figure 6.4 (b) poly  0.8 µmolm-2. Using equation 6.1 to determine the maximum possible 

value under diffusion control yields poly,max = 4.7 µmolm-2. Therefore we conclude that polymer 

adsorption is not diffusion controlled in this region, which is what we would expect when polymer is in 

excess in solution and its adsorption depends on interactions with adsorbed surfactant.    

As csurf is increased further we would expect adsorption to become polymer mass transport limited. If 

this is the case and the polymer adsorbs under diffusion control, the subsurface polymer concentration, 

cs,poly, would drop to a value close to zero. We can calculate cs,poly from Equation 6.1. and the 

experimental data in Figure 6.4 and Figure 6.6. As we are assuming DPS = Dpoly, polymer diffusion is 

not affected by complex formation. As a reminder however, the estimated values of ccomp for the three 

systems are 0.08 mM, 0.3 mM and 1.3 mM respectively. The calculated values of cs,poly for all three 

systems are shown in Figure 6.12. Note that at all of the surfactant concentrations in Figure 6.12 

polymer/surfactant complexes form as the surfactant concentration is always above the cac.  

From Figure 6.12 we can see that cs,poly > 0 for all three systems, polymer adsorption is not diffusion 

controlled over a wide range of csurf values. Although cs,poly does tend to zero for the 20 and 100 ppm 

systems at high csurf (for the 20 ppm system cs,poly  0 from csurf = 0.4 mM), implying polymer 

adsorption is diffusion controlled at high csurf, it remains non zero until well above ccomp for both 
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systems (0.08 mM and 0.3 mM for the 20 and 100 ppm systems respectively). Polymer can get to the 

sub-surface by diffusion of individual molecules or polymer/surfactant complexes, but this does not 

result in a large amount of polymer at the interface (see Figure 6.4). This implies the presence of a 

barrier to the adsorption of polymer in all three systems. We would expect there to be a barrier to 

polymer adsorption (and therefore a high value of cs,poly) at very low csurf, as although polymer 

molecules can reach the sub-surface by diffusion, polymer only adsorbs at the interface due to 

interactions with adsorbed surfactant, and surf is low. However, as csurf and hence surf is increased we 

would expect poly to increase accordingly (and cs,poly to decrease), which does not happen. The 

continuing high values of cs,poly could be attributable to steric barriers to the adsorption of polymer. 

However, it is unlikely that steric barriers have a significant effect in this region due to the low 

polymer coverage. It is only for the 400 ppm system that steric barriers have an effect on the polymer 

adsorption, for this system the maximum value of poly reached on the OFC (Figure 6.4 (b)) is close to 

the value at the static air/water interface (Figure 6.6 (b)). Alternatively, slow complex breakdown may 

limit adsorption of polymer. However, we would expect slow complex breakdown to limit surf as well, 

which is not seen in the data.  It is therefore not clear what controls polymer adsorption in these 

systems.  

 

Figure 6.12. Calculated values of the subsurface concentration of polymer (cs,poly) as a function of bulk surfactant 

concentration. The yellow line is cs,poly for the 20 ppm system, the blue line for the 100 ppm system, and the green line for the 

400 ppm system. The dashed lines denote the bulk polymer concentration for each system.  

At high bulk surfactant concentrations, where there is no longer a complex free zone and complexes 

can be in the sub-surface layer, polymer adsorption approaches diffusion control for the 20 and 100 

ppm systems. As polymer is primarily in complexes in this region (the estimated values of ccomp for the 
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20 ppm and 100 ppm systems are 0.08 mM and 0.3 mM) perhaps it is not that the complex dissociation 

rate limits polymer adsorption. Polymer adsorption appears to be diffusion controlled in this region yet 

does not reach the surface excesses observed at the static interface, as we might expect. We expect that 

future development of the adsorption model will help to explain these data.  

There is a minimum rate at which complexes would have to dissociate for the assumptions of our 

diffusion model with complex-free zone (Figure 6.11) to hold. This rate can be estimated from the 

maximum flux of surfactant in complexes at z > h, (green line in Figure 6.11), as calculated from 

Equation 6.6.  h is the region below the complex-free zone below where complexes are breaking 

down. By analogy with the way one calculates the thickness of diffusion layers in electrochemistry, we 

define the thickness of the region, h, by the ratio of the concentration of surfactant in complexes, 

csurf,comp, to the diffusive flux of surfactant in complexes at z  = h, that is the maximum gradient of the 

green line. The breakdown time is then obtained from h/h, where hθ is the value of vz at z = h. At 

low csurf the breakdown must be fast, with breakdown times of around 0.7 s for the 20 and 100 ppm 

systems at csurf = 0.06 mM, and 0.4 s for the 400 ppm system. At higher csurf¸ the lifetime can be up to 2 

s and the fast breakdown model will still hold.  

Calculated values of the sub-surface concentration of surfactant are shown in Figure 6.13 scaled to the 

bulk surfactant concentration, which shows that cs  0 for all three systems over the majority of the 

concentration range, except at the lowest surfactant concentrations measured. As  is lower for the 

mixtures than the pure surfactant there is more time for the surfactant to adsorb, and as surf for the 

mixtures is similar to the pure surfactant values it is unsurprising that the calculated subsurface 

concentrations of surfactant are low. Adsorption of surfactant at the interface is not limited by the 

formation of complexes despite the fact that the majority of surfactant in the solution is in the form of 

bulk complexes (cac is at lower csurf than shown on the graph for all three systems). It is therefore 

unlikely that slow complex dissociation limits polymer adsorption, as if it did surfactant adsorption 

would also be limited. Hence there must be another barrier to the adsorption of the polymer. 

Alternatively, it is possible that complexes can shed sufficient surfactant monomers to maintain 

surfactant adsorption, but they cannot fully dissociate to allow polymer to adsorb.  



174 
 

 

                 

 

If we now return to our examination of the ellipsometry data in Figure 6.1, we can see that with 

increasing csurf the ellipsometry data for all four polymer concentrations follow almost the same curve 

until, successively, they show a kink in the ellipticity and peel off from the main curve. We suspected 

that this kink in the ellipsometry data might be due to the switch over from adsorption limited by 

surfactant mass transport to that limited by polymer mass transport, however it is clear from Figure 

6.12 and Figure 6.13 that this is not the case and that there must be another explanation of these turning 

points. In order to determine the origin of these and other features in the ellipsometry data in Figure 6.1 

I will now examine each of the systems containing different polymer concentrations in turn, starting 

with the 20 ppm system.   

For the 20 ppm system, the first kink in  is in the region of the cac of the system, 0.015 mM. It 

therefore seems possible that the gradient of  changes because the mass transport regime has changed 

and surfactant adsorption is slowed down by the formation of PS complexes.  Above the cac, there is a 

plateau in . One might think that a plateau in the ellipticity would correspond to a constant surface 

composition. In the previous study of PDMDAAC/SDS, plateaus in the ellipticity were ascribed to the 

diffusion-controlled adsorption of polymer/surfactant complexes,3 which gave rise to a constant 

interfacial composition. However, if there is a complex-free zone for the PSS/C12TAB mixtures (h1 > 0 

until csurf > 0.5 mM), then there are no complexes at the interface to adsorb. Furthermore, in principle 

the presence of a complex-free zone would mean that complexes have no effect on , unlike in the 

PDMDAAC/SDS study, where the presence of complexes at the interface caused a significant decrease 

in  relative to the pure surfactant value.  



175 
 

Figure 6.4 shows that the surface composition is not constant in the plateau for 20 ppm PSS; in the 

region up to the end of the plateau (csurf   0.1 mM) surf increases and poly decreases (although poly is 

close to the limit of resolution of our approach in this region) with increasing bulk surfactant 

concentration. At first this result appears paradoxical as we would expect an increase in Γsurf to enhance 

the interfacial binding of an oppositely charged polymer, not diminish it. However, if we consider that 

at cac (0.015 mM) < csurf < ccomp (0.081 mM) the concentration of polymer/surfactant complexes is 

increasing and therefore the concentration of free polymer is decreasing, the behaviour can be 

explained by free polymer molecules controlling polymer adsorption in this region. If polymer 

molecules can adsorb quickly to the interface from the sub-surface they will control adsorption until 

their concentration is limited due to slow breakdown of polymer/surfactant complexes. This hypothesis 

is supported by the fact that as the concentration of free polymer decreases, so does poly. surf continues 

to go up in this region, which must be because some of the polymer/surfactant complexes can supply 

surfactant (but not polymer) to the interface either by completely breaking down or by the release of a 

small number of surfactant molecules. 

In our proposed model, the formation of bulk complexes is complete in the 20 ppm system at ccomp  

0.08 mM, as marked by the leftmost arrow in Figure 6.1. As csurf is increased beyond ccomp, the 

concentration of free surfactant molecules in solution increases. In the same region, a gentle change in 

the  gradient of   occurs, with values becoming more negative. It is unclear why an increase in the free 

surfactant concentration in the bulk solution should mark the end of the plateau if there is still a 

complex-free zone near the interface, however it is clear that the two do coincide. One possibility is 

that the calculated value of ccomp is far from the actual value at which bulk complexation is complete, as 

we have not used bulk measurements to determine ccomp. Future measurements of the bulk properties of 

this system or refinements to the adsorption model may be able to explain this inconsistency.  

As csurf is increased further the ellipsometry data track the pure surfactant as the free surfactant 

concentration increases. The slight difference in  values between the data for the 20 ppm system and 

the pure surfactant are due to the continued adsorption of PSS at the interface. The continued 

difference between the values at high csurf, where a surfactant monolayer is adsorbed for the pure 

surfactant solution, suggests that PSS can continue to adsorb at the interface even at high surfactant 

coverages. This is not unexpected, as polymer is not surface active alone, and adsorbs by association 

with the surfactant at the interface. For the 20 ppm system, the complex-free zone vanishes at csurf = 0.5 

mM, however this has no apparent effect on adsorption at the interface. One possible inference is that 

the presence of a complex-free zone has no effect on adsorption, because diffusion of molecular 

species to the interface is not the rate-determining step in the adsorption process.  
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Now that I have discussed the adsorption of the 20 ppm system, I will turn to the mixtures containing 

higher polymer concentrations. Although the kink in the ellipsometry data at low bulk surfactant 

concentrations coincides with the point where csurf = cac for the 20 ppm system, this cannot be the 

explanation for the systems containing higher polymer concentrations, for which the kink occurs at 

progressively higher csurf values. For the 50 ppm system the kink occurs at csurf = 0.1 mM, nearly an 

order of magnitude higher concentration than for the 20 ppm system, and well above the cac. For the 

100 ppm system the kink occurs at csurf = 0.2 mM, exactly double the 50 ppm value. For both the 50 

and 100 ppm systems this kink is in the region cac < csurf < ccomp (ccomp is calculated to be 0.16 and 0.3 

mM for the 50 and 100 ppm systems, respectively). It is unclear why there would be a change in the 

adsorption behaviour in the middle of the region where the concentration of complexes increases and 

that of free polymer decreases. For both the 50 and 100 ppm systems poly stops increasing and reaches 

a constant value at the kink (Figure 6.4), suggesting that the kink can primarily be attributed to a 

change in the polymer adsorption, although it is not clear what causes this change.  

As csurf is increased past the first kink in , there is a plateau in the  data for the 50 ppm system but 

not the 100 ppm system. The end of the plateau for the 50 ppm system occurs at csurf  0.2 mM, which 

is only slightly above ccomp = 0.16 mM. Therefore the end of the plateau appears to correspond to the 

region in which we estimate that bulk complexation is complete, as it did for the 20 ppm system. In the 

100 ppm system there is no clear plateau, but there is a region of lower gradient in  between csurf = 0.2 

and 0.33 mM, with the latter value again close to ccomp = 0.3 mM, after which the gradient of  v csurf 

increases. Up until ccomp the concentration of slowly dissociating complexes is increasing and that of 

free polymer is decreasing, and the polymer adsorption rate falls. From this model we would expect 

poly to reach a constant value at ccomp, which it does for the 50 and 100 ppm systems (Figure 6.4), 

which may suggest that our estimated ccomp values are close to the true values. The change in the 

polymer adsorption may contribute to the kink in  in this region.  If there were no complex free zone, 

the kink would be best explained by the increased adsorption of fast diffusing free surfactant molecules 

at csurf > ccomp, however in our adsorption model the subsurface surfactant concentration cannot exceed 

the cac as h2  0, and free surfactant cannot significantly affect adsorption at the interface. 

Nevertheless, in the region of ccomp the gradient of surf increases for both systems. It is clear that our 

adsorption model needs to be further developed in the future to explain the adsorption behaviour in this 

region.  

The ellipsometry data for the 400 ppm system also exhibit a plateau in  at intermediate csurf, however 

in this case it occurs between csurf = 0.6 and 0.9 mM, well below ccomp for the system (1.2 mM). The 
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completion of complexation is therefore not related to the plateau for this system.  Instead, the first 

kink in the ellipticity co-incides with the csurf value at which h tends to zero, 0.6 mM, above which 

there is no longer a complex-free zone below the interface. Once there is no longer a complex-free 

zone, the sub-surface concentration of surfactant cs,surf > cac, and the chemical potential does not 

increase any further until all the polymer in the subsurface is in the form of complexes, hence a plateau 

occurs in , as well as in both poly and surf.  

The disappearance of the complex-free zone affects the adsorption behaviour of the 400 ppm system, 

despite not having had an effect on the systems containing lower polymer concentrations, because csurf 

< ccomp in this region, the concentration of complexes has not yet reached its maximum value. In all of 

the other systems, the complex-free zone disappears, and h2 = 0, at csurf = 0.6 mM, but this value is 

sufficiently above ccomp to ensure that the free surfactant concentration is high, and hence no significant 

effect on the adsorption behaviour is observed. Working on the theory that the first kink in the 

ellipticity at 0.6 mM is where the sub-surface concentration of surfactant reaches the cac, we can 

calculate a value of DPS from equation 1 from surf = 2.15 and  = 3.5 with cs= cac, which gives 8 x 10-

11 m2s-1, identical to the polymer diffusion coefficient we assumed earlier.  

The unusual shape of the  data for the 400 ppm system in Figure 6.6 can be attributed to the overlap in 

csurf of the complex-free zone vanishing and the concentration of complexes continuing to increase. For 

all of the systems containing different polymer concentrations, a maximum in  is reached in the same 

region, as the interface becomes saturated at high surf. This may or may not be related to the 

disappearance of the complex-free zone in this region. This maximum in  is reached for the 400 ppm 

system as the complex-free zone vanishes, at the point corresponding to the beginning of the plateau in 

. The subsequent decrease in  can be attributed to the same explanation as the plateau in , the 

chemical potential of the surfactant cannot increase any further in this region.  increases again at a csurf 

value corresponding to the end of the plateau in the ellipticity as the concentration of complexes 

increases, and the surface excesses of polymer and surfactant reach the maximum values as limited by 

the rates of complex dissociation and kinetic barriers to adsorption. poly is limited in this system, at 

close to the maximum value at the static interface in Figure 6.8. A second maximum in  is reached at 

csurf = ccomp, as now the sub-surface region is saturated with complexes. The double maximum in  can 

be therefore rationalised, similarly to in Chapter 5, to overlapping volcano plots for two different 

species which dominate interfacial adsorption in different csurf ranges.  

For both the 100 and 400 ppm systems time dependent changes in the adsorption behaviour occur at 

high surfactant concentrations, csurf = 2 mM, as indicated by the ellipsometry data in Figure 6.1. The 

100 ppm system has been studied as a function of time in this region using both ellipsometry and NR. 
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Over a period of more than two hours,  becomes less negative, and poly decreases significantly whilst 

surf stays constant (Figure 6.4). If the total concentration of both components in the system remains 

constant, the surface excess of material at a steady state expanding air/water interface can only 

decrease if the material can diffuse to the sub-surface on the timescale of the OFC reduce in 

concentration. Such a situation is consistent with the formation of bulk aggregates that diffuse more 

slowly on the timescale of the OFC. This explanation is supported by the turbidity data in Figure 6.1, 

only the 100 and 400 ppm solutions become turbid, and only in the region of the time dependent 

change in the interfacial composition.  

It is notable that aggregation occurs in these systems only at high csurf, and at the same csurf despite the 

fact that ccomp is estimated to be 0.3 mM and 1.3 mM for the 100 and 400 ppm systems respectively. As 

we have compositional data for the 100 ppm system we will discuss this first. Due to the low 

aggregation number of the micelle in a PSS/C12TAB aggregate, the complexes are far from neutral at 

ccomp and will not therefore lose their colloidal stability and aggregate. As csurf is increased above our 

estimated value of ccomp we would expect that increases in the free energy of the surfactant would 

increase the micelle size, neutralising the complex and causing aggregation. However, as aggregation 

does not occur until much higher surfactant concentrations this cannot be occurring to a sufficient 

extent to neutralise the aggregates. It is not clear from our model why aggregation does not occur until 

around 2 mM on the OFC and charge neutrality is not reached until 4.8 mM.27 It is possible that the 

high charge of the complexes prevents them from aggregating until high surfactant concentrations. It is 

also possible that our model in which ccomp occurs at a defined point is incorrect, and that bulk 

complexation continues to occur with increasing bulk concentration and is only nearly completion in 

the region of csurf = 2 mM. In order to determine whether this latter hypothesis is the case, 

complementary bulk phase measurements of species size and mobility would be necessary.  

Despite bulk aggregation of polymer/surfactant complexes in the time dependent region, surf stays 

constant (Figure 6.4). We suggest that this is because the free surfactant concentration is high, either 

because ccomp is at a low significantly lower surfactant concentration, or because the bulk free 

surfactant concentration increased with the bulk complex concentration up until 2 mM. Whichever is 

the case it is clear that csurf is sufficiently high to give rise to close to monolayer adsorption alone in the 

region of time dependence. Indeed the slight increase in the surface excess of surfactant with time is 

consistent with the loss of polymer which was electrostatically bound polymer to the surfactant 

headgroups, taking up space in the headgroup layer and slightly limiting the surface excess of 

surfactant due to steric hindrance, i.e., slightly higher surfactant coverage is possible when the amount 

of adsorbed polymer decreases, as is discussed in a recent study of PDADMAC/SDS layers at the static 

air/water interface.28 



179 
 

A reduction in the polymer surface excess at the static surface (Figure 6.9) as a consequence of the 

formation of aggregates in the bulk solution would be consistent with the effect of aggregation on 

adsorption from polymer/surfactant mixtures at the static water interface demonstrated by Campbell et 

al. for PDADMAC/SDS.28, 29 However, we note that the study of Taylor et al recorded the presence of 

interfacial multilayers at the interface, rather than a depleted adsorbed amount, at similar bulk 

surfactant concentrations.2 The most recent work of Campbell et al. 30 on the effect of gravity on the 

formation of multilayers, leads us to tentatively postulate an explanation for this apparently 

contradictory behaviour; the aggregates which form in a PSS/C12TAB solution have a low density, 

enabling them to reach the static interface under gravity. Such an eventuality would resolve any 

inconsistency in the experimental data of Taylor et al and that presented in this chapter, although it 

must be emphasised that the mechanism of interfacial multilayer formation at the static air/water 

interface is related to a different mechanism to that at due to self assembly at the static interface. 

nvestigations of Campbell et al on the effect of aggregation on the adsorption behaviour of 

PSS/C12TAB systems are ongoing, however initial results have shown that the formation of both thick 

gel like interfacial layers and a surface tension peak can be found for the same system, and rationalised 

by dynamic changes in the bulk phase behaviour as they were for PDADMAC/SDS.31  
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6.3.4. PSS/C12TAB Systems Containing Different Polymer Molecular Weights 

If we increase the molecular weight (MW) of the polymer at constant solution composition, a change 

in the dynamic adsorption is expected as large polymers diffuse more slowly. Extrapolating from the 

measurements of Wang et al25 we estimate values of the polymer diffusion coefficient, Dpoly = 8.0, 2.1 

and 0.39 × 10−11 m2s−1 for 17k, 150k and 2.6M PSS, respectively. Again, in the absence of any 

experimental measurement of DPS, I will assume that DPS = Dpoly, for all three surfactant chain lengths.  

From first principles, we would predict that the difference between the adsorption behaviour of these 

three systems will be dominated by the slower diffusion of polymer and polymer/surfactant complexes 

with increasing molecular weight.  

If we examine the turning points in the ellipsometry data for the three systems containing different 

molecular weight polymers (Figure 6.2), we can see that  is similar for all three for csurf < 0.02 mM. 

The proximity of this kink in the data to the cac previously calculated for the 17k system suggests that 

the cac is minimally affected by the polymer chain length. At this concentration the 2.6M system 

shows a pronounced kink, leading to a plateau in  at higher bulk surfactant concentrations. At csurf > 

0.02 mM the 17k and 150k data curve gently downwards, however   is less negative (corresponding 

to a lower surface excess) with increasing polymer chain length.  

A second turning point in  occurs for all three systems at around csurf = 0.3 mM, which corresponds to 

the estimated value of ccomp, the surfactant concentration where complexation is complete, for the 17k 

system. It is remarkable that a turning point occurs at the same bulk surfactant concentration for all 

three systems, as this suggests that complexation is ‘complete’ in the same region despite the formation 

of multi-micellar complexes for the long chain PSS molecules, in which we might expect complexation 

to continue until the complex is neutralised. This is not unexpected in light of previous studies of the 

PSS/CnTAB systems which have shown that complexation occurs up to a surfactant:polymer ratio of 

around 0.65, regardless of the polymer molecular weight,9, 22 but is nevertheless difficult to explain. As 

in the section above, we note that our assumptions about the bulk behaviour of the system, particularly 

ccomp have a significant impact on our interpretations of the adsorption model, and this should be born 

in mind throughout the following discussion. 

Although surf is lower at low csurf for the 2.6M system than for the systems containing lower MW 

polymers, surf is still slightly larger than the pure surfactant value. Therefore we suggest that the low 

value of poly limits synergistic adsorption in this system, resulting in a lower value of surf. If complex 

formation and dissociation had a significant effect on surf, the value would lie below that of the pure 

surfactant.   
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 In order to determine whether there is a barrier to polymer adsorption for the systems containing 

different molecular weight polymers, we can again calculate the sub-surface concentration of polymer, 

cs,poly from Equation 6.1, the experimental data and the diffusion coefficients above (similarly to in 

Figure 6.12), as shown in Figure 6.14.  

 

Figure 6.14. Calculated values of the subsurface concentration of polymer, cs,poly, in terms of monomers, as a function of bulk 
surfactant concentration. The blue line is cs,poly for the 17k  system, the turquoise line for the 150k system, and the purple line 
for the 2.6M system. The dashed line denotes the bulk polymer concentration.   

From Figure 6.14 we can see that that polymer adsorption is not under diffusion control (as indicated 

by cs,poly  0) at any csurf value measured for the 150k and 2.6M systems, and that it only approaches 

diffusion control at high csurf for the 17k system. It is therefore clear that the limited values of poly in 

Figure 6.5 (b) cannot simply be attributed to the slower diffusion of larger polymer molecules and 

polymer/surfactant complexes as we might have expected from the conclusions reached above for the 

17 k system. The amount of polymer that can go to the sub-surface (or to the edge of the complex-free 

zone) by diffusion is high in all three systems as shown by Figure 6.14, but this polymer cannot adsorb 

at the interface. There must therefore be a barrier to polymer adsorption in all three systems, similar to 

that demonstrated for the systems containing different polymer concentrations in Figure 6.12.  

In order to determine whether the complex dissociation rate may limit the adsorption of polymer and 

surfactant, we can again work out how fast breakdown kinetics would have to be for our adsorption 

model in Figure 6.11 to hold. For the 2.6 M system, the necessary breakdown time at csurf = 0.15 mM is 
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0.12 s, for the 150 k system it is 0.37, and 2.4 s for the 17 k system. The formation of multi-micellar 

complexes for long chain polymers may slow down the kinetics of dissociation to some extent, but this 

may not be significant if micelles dissociate independently of each other. It is however important to 

remember that a system which forms multi-micellar complexes will behave differently to a system 

which forms complexes consisting of single polymers and micelles. We expect that at low bulk 

surfactant concentrations all of the polymer molecules are complexed to a small number of micelles, 

with the number of micelles increasing up until ccomp rather than the concentration of complexes.  

At csurf > ccomp the ellipsometry data track those for the pure surfactant, as they did for the PSS/C12TAB 

systems at different polymer concentrations, and adsorption can be attributed to the increasing free 

surfactant concentration in solution. At around 2 mM, small steps in  are observed in Figure 6.2 for 

both the 150 k and 2.6 M systems, and the systems become turbid; aggregation occurs. The fact that 

the surfactant concentration at which aggregation occurs is the same for all polymer molecular weights 

supports either or both of the hypothesis given earlier; firstly that the high net charge of the complexes 

at ccomp cannot be neutralised until significantly higher concentrations, and secondly that bulk 

complexation continues until the aggregation region despite our prediction that ccomp occurs at around 

0.3 mM surfactant.  

Although the decrease in  is smaller than that for the 17 k system, this difference in magnitude may 

simply be due to the smaller decrease in  when poly is low before aggregation occurs. However, 

without further time dependent NR studies in this region we cannot examine how the interfacial 

composition changes in this region, and further data would have a minimal effect on the conclusions 

reached here. 

The surface expansion rate data in Figure 6.6 (b) vary minimally with polymer molecular weight, 

despite the differences in interfacial composition and  for the three systems. The data for all three 

systems are shifted to higher csurf values than the pure surfactant data, but maintain the same volcano 

plot shape. As discussed above, the presence of a complex-free zone means that the shift to higher csurf 

values of the volcano plot cannot be due to delivery of material to the interface by complexes, but 

rather to the co-adsorption of polymer and surfactant at the interface or the reduced amount of free 

surfactant in the bulk solution. The fact that  varies so little with polymer molecular weight, despite 

the differences in poly, suggests that in these systems surfactant adsorption controls . In turn, the 

greater variation of  for the systems containing different polymer concentrations in Figure 6.6 (a) 

suggests that polymer concentration has a greater effect on  than polymer molecular weight. The 

domination of  by surf is further re-inforced by both the co-incidence of the maxima in , despite the 
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fact that the complex-free zone vanishes at increasing csurf as polymer molecular weight is increased, 

and by the similarity of the  data to that of the pure surfactant at high csurf for all three systems.  

 

 

6.4. Conclusions  

From the results and discussion presented in this chapter it is clear that the adsorption kinetics of 

mixtures of PSS and C12TAB are much more complex than those of the weakly interacting systems 

discussed in Chapter 5. Although we have postulated a simple model of the adsorption kinetics of 

interacting polymer/surfactant systems in this chapter, the model does have limitations as it does not 

allow us to fully explain the data, and a more complex model will be required in the future. However, I 

have used key points of this initial model along with features of the data to try to determine the 

adsorption mechanism in action in these systems.  

At surfactant concentrations below the cac, synergistic adsorption of polymer and surfactant occurs at 

the surface in all of the systems studied. At concentrations above the cac (0.015 mM), the formation of 

polymer/surfactant complexes has a significant effect on the adsorption behaviour, with a variety of 

features observed in the fine-grained ellipsometry data. For mixtures of 17k PSS and C12TAB, 

complexes consisting of a single polymer molecule and single surfactant micelle form, due to the small 

number of polymer segments per molecule. From the number of polymer segments and the micellar 

aggregation number we can estimate the bulk surfactant concentration at which each polymer molecule 

will be associated with a micelle.  

The formation of complexes as the surfactant concentration is increased above the cac causes the 

concentration of free polymer in the solution to decrease, and this causes a change in the adsorption 

behaviour of the majority of the PSS/C12TAB mixtures studied. Polymer cannot reach the interface 

from complexes in this region, instead we propose a mechanism whereby the diffusion of free polymer 

to the interface controls polymer adsorption in the region between the cac and the point at which bulk 

complexation is complete.  

A kink in the ellipsometry data is observed at the surfactant concentration at which we predict that 

complex formation is complete, ccomp. Once complex formation is complete, we expect that increases in 

the bulk surfactant concentration will increase the concentration of free surfactant or the micelle size in 

the complexes, and the free polymer concentration is zero. However, our initially postulated adsorption 

model does not allow for the flux and therefore subsurface concentration of free surfactant molecules 
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to increase until there is no complex free zone, at csurf = 0.6 mM. The model therefore appears to be 

inconsistent with the data recorded, as increases in the surfactant concentration beyond ccomp cause 

increases in the ellipsometry and surfactant surface excess data, which  follow the trends of the free 

surfactant; it is clear the model needs some development. It is possible that both this inconsistency, and 

the significantly difference between the estimated value of ccomp and the observed bulk aggregation, can 

be accounted for by errors in the estimation of ccomp, which is not a measured value. Other studies have 

shown that bulk polymer surfactant complexation does not always occur as predicted theoretically, and 

without complementary bulk measurements we cannot tell whether our the values of ccomp used in our 

model are correct. 

A barrier to the adsorption of polymer appears to exist for all of the polymer/surfactant systems. As 

surfactant adsorption is unaffected it is unlikely that this barrier is due to slow complex dissociation, 

unless complexes can shed surfactant monomers without fully dissociating to release polymer 

molecules. Furthermore, the barrier cannot be steric, as there are barriers to adsorption even at low 

surface coverage. Steric barriers do limit the maximum polymer excess reached by the 400 ppm system 

however, as the coverage cannot be higher than that at the static air/water interface. It is possible that 

kinetic barriers control polymer adsorption, however it is not yet clear what these comprise.  

Measurements using higher molecular weight polymers follow similar patterns to those of the 17 k 

polymer; the formation of multi-micellar complexes rather than single-micelle complexes has little 

effect on the adsorption behaviour. Despite the fact that we might expect complexation to continue 

until the polymer is neutralised by micelles, behaviour indicative of complexation being complete at 

the same concentrations as for the 17 k polymer is observed. The polymer surface excess is the only 

thing notably affected by the polymer molecular weight. As polymer adsorption is not under diffusion 

control this is not just due to the slower mass transport of larger polymer molecules and complexes, 

there must be another factor limiting polymer adsorption, which further work is required to resolve.  

At high surfactant concentrations (2 mM), significant aggregation of the polymer/surfactant complexes 

occurs for the systems containing high polymer concentrations. The formation of aggregates removes 

surface active molecules and complexes from the bulk solution, preventing them from affecting the 

interfacial adsorption behaviour as aggregates cannot reach the interface on the timescale of the OFC 

due to their large size. However surfactant adsorption is not depleted by the formation of bulk 

aggregates, as aggregation does not occur until surfactant concentrations significantly above the point 

where we predict that complex formation is complete (we estimate ccomp = 0.3 mM for the 100 ppm 

system), and hence the free surfactant concentration is high. Furthermore, as the polymer surface 

excess decreases in this region the surfactant surface excess increases due to removal of the bulky 



185 
 

polymer groups from the interface. Aggregation occurs at surfactant concentrations far above ccomp, 

which is not entirely unexpected, as the low micellar aggregation number in the complexes means that 

the complexes are far from neutralised at ccomp. The complexes cannot become neutralised and hence 

do not aggregate until much higher surfactant concentrations. However, an alternative explanation is 

that bulk complexation continues as the surfactant concentration is increased above our estimated value 

of ccomp, and in this region the complexes become gradually more neutralised, whilst the free surfactant 

concentration also increases due to the low favourability of the surfactant adding to the complexes. 

Without bulk measusrements we cannot determine which of these possibilities is the case.  

Whilst at the dynamic interface we observe a reduction in the surface excess of both components due to 

aggregation, Taylor et al recorded the presence of multilayers, rather than a decreased adsorbed amount 

at the static interface in the same region. This inconsistency between the two studies can be resolved if 

we hypothesise that the aggregates which form in PSS/C12TAB mixtures have a low density, enabling 

them to reach the static air/water interface under gravity, whilst they cannot diffuse to the dynamic 

air/water interface of the OFC on the timescale of surface expansion.  
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


 


 



 


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

 


 



 


 


 



 



 


 

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Chapter 7. Adsorption Kinetics of Mixtures of PSS and 
CnTABs 

7.1. Introduction 

In Chapter 6 I discussed the dynamic adsorption behaviour of PSS/C12TAB, and in this chapter I will 

go on to examine the effect of the length of the alkyl chain of the surfactant on adsorption at the 

expanding interface of the OFC. Increasing the alkyl chain length of a surfactant increases its 

hydrophobicity, which increases the driving force for both interfacial adsorption and micellisation in a 

pure surfactant solution, lowering the cmc and increasing the micelle aggregation number.1, 2 PSS 

forms stable complexes with all of the CnTABs due to the electrostatic interactions between the charge 

moieties, and due to the hydrophobicity of the polymer, the sidegroups of which penetrate into the 

surface of the surfactant micelle on complexation.2-4 Furthermore, this causes the polymer molecule to 

wrap around the micelle, shielding the hydrophobic parts of the polymer and surfactant and releasing 

counterions, which further favours aggregation.2 Increasing the hydrophobicity of the surfactant will 

increase the co-operative interaction between the surfactant and the hydrophobic moieties of the (PSS) 

chain, which will decrease the critical aggregation concentration of the system.3, 5 Several studies of the 

bulk phase behaviour of PSS/CnTAB systems have shown that precipitation occurs in these systems as 

the ratio of polymer charges to surfactant in the bulk solution approaches unity.4, 6-9 As increasing the 

surfactant hydrophobicity leads to stronger interactions between the polymers and micelles, it also 

increases the size of the two-phase region, and precipitation becomes more likely for longer chain 

surfactants.  

The variation in adsorption behaviour of PSS/CnTAB systems at the static air/water interface with  

surfactant chain length has been investigated by Taylor et al.10 and Monteux et al.11 Both studies show 

that adsorption is most favoured for PSS/CnTAB systems containing short chain surfactants, despite the 

fact that in the absence of polymer the driving force for adsorption is much greater for surfactants with 

long alkyl chains. Taylor et al. showed that CnTABs with n = 10, 12, 14 undergo mono to multilayer 

transitions at the air/water interface, whilst when n =16, only monolayer adsorption occurs.10 Within 

their adsorption model12, 13 they attributed this difference in behaviour to the greater favourability of 

formation of bulk species than of sub-layer species. However, Taylor et al. found that they were unable 
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to categorise PSS/C14TAB using their adsorption model as it exhibited both multilayer adsorption and a 

peak in the surface tension, properties of their ‘Type 1’ and ‘Type 2’ systems respectively.  

In a simpler explanation of the decreased adsorbed amount for systems containing longer chain 

surfactants, Monteux et al. attributed it directly to bulk precipitation of polymer and surfactant.11 

Furthermore, in another study Kristen et al. demonstrated that although the addition of PSS to a 

C12TAB foam film increased stability, addition of C14TAB completely destabilized the film at the 

isoelectric point,14 which is consistent with bulk phase precipitation occurring in this region.  

Bulk aggregation is expected to be more favoured for mixtures of PSS with longer chain surfactants, 

due to the stronger cooperative interaction between the two components. As discussed previously, on 

the OFC aggregation is generally expected to decrease the adsorbed amount at the interface due to the 

slow diffusion of aggregates. We would therefore expect that the effects of precipitation on adsorption 

at the dynamic interface of the OFC would become more pronounced with increasing chain length. In 

this chapter I aim to use measurements on the OFC to determine the link between the bulk phase 

behaviour of PSS/CnTAB mixtures and their adsorption at a dynamic air/liquid interface.  

As in the two previous chapters, I will first present and discuss measurements made on the PSS/CnTAB 

systems using ellipsometry, NR, and LDV, as well as the compositional information obtained by co-

modelling ellipsometry and NR data. I will then move on to a more in depth discussion of the data, and 

I will try to elucidate whether it is possible to model the adsorption kinetics of the mixtures containing 

longer chain surfactants in the same way as it was possible to do so for the PSS/C12TAB system in 

Chapter 6.  

 

Materials  

Solutions were made in ultrapure water (Milli-Q; resistivity = 18 m.cm) for ellipsometry, or in NRW 

for NR measurements. The OFC and associated glassware were cleaned with a 2% solution of a strong 

alkaline detergent (Decon 90 or Gigapur) and rinsed thoroughly. C12TAB, C14TAB and C16TAB (99%, 

Sigma) was purified by re-crystallisation three times from a mixture of ethanol and acetone. PSS (17k, 

molecular weight, Sigma) was used as supplied. Deuterated surfactants were kindly supplied by Dr R. 

K. Thomas from the Oxford Deuteration Facility. 15 0.1 M NaBr (Sigma Aldrich) was used for all 

experiments.   
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7.2 Results 

7.2.1 Ellipsometry 

Figure 7.1 shows ellipsometry data as a function of bulk surfactant concentration for pure C14TAB and 

C16TAB, and for the PSS/C14TAB and PSS/C16TAB mixtures, whilst Figure 7.2 compares the 

ellipsometry data for all three PSS/CnTAB mixtures. Data were recorded at constant polymer and salt 

concentrations (100 ppm and 0.1 M, respectively) and are plotted with respect to the bulk surfactant 

concentration (csurf). A dashed line indicates the value  = 0.38 x 10–3 for pure water, which is 

indistinguishable from the value recorded for solutions of PSS and NaBr in the absence of surfactant, 

as PSS is not surface active alone, as mentioned in Chapter 6.  

At low bulk surfactant concentrations,  is more negative (corresponding to a higher total surface 

excess) for all of the polymer/surfactant mixtures than for the corresponding pure surfactants; more or 

different material adsorbs at the interface when polymer is added to the solution. In Chapter 6 we saw 

that for PSS/C12TAB, synergistic adsorption of polymer and surfactant occurred in the low surfactant 

concentration regime, with the adsorption of both components enhanced compared to their adsorption 

alone.  

As the surfactant concentration is increased,  for PSS/C14TAB tracks that of PSS/C12TAB, whereas  

for PSS/C16TAB is less negative ( indicative of a lower total surface excess) and closer to the pure 

surfactant values. At csurf = 0.15 mM the ellipsometry data for PSS/C16TAB changes slope, and  tends 

back towards that of the other two mixtures. If we bear in mind the explanations for the kink in the  

data for the PSS/C12TAB systems which were discussed in Chapter 6, it is probable that a change in the 

adsorption behaviour of the PSS/C16TAB mixture occurs in this region.  
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Figure 7.1. Coefficient of ellipticity at the surface of an OFC containing (a) C14TAB (pink squares) and a mixture of PSS and 

C14TAB (turquoise diamonds), and (b) C16TAB (lime green squares) and a mixture of PSS and C16TAB (orange triangles). All 

measurements were made in the presence of 0.1 M NaBr. The arrows indicates the direction of change of the time-dependent 

change in the ellipticity at intermediate csurf. The dotted line is the ellipticity of the salt solution, and of the polymer and salt 

solution.  

 

Figure 7.2. Coefficient of ellipticity at the surface of an OFC containing PSS with C12TAB (blue circles), C14TAB (turquoise 

diamonds) and C16TAB (inverted orange triangles). Some of these data are re-produced from Figure 7.1 and from Chapter 6, 

but are shown here to facilitate comparison of the effects of surfactant chain lengths. All measurements were made in the 

presence of 0.1 M NaBr. The dotted line is the ellipticity of the salt solution, and of the polymer and salt solution. The 

downward pointing arrows mark the cacs of the three systems (given later), with the colours corresponding to those of the 

data sets.  
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At csurf  0.4 mM, both the PSS/C14TAB and PSS/C16TAB systems exhibit marked changes in the value 

of  as a function of time, shown as multiple data points at a given value of csurf in this region, with the 

direction of the change denoted by arrows in Figure 7.1. Over a period of several hours,  for both 

systems increased by at least 1 × 10-3, and in the case of the PSS/C16TAB system the final value of  in 

this region is close to the pure water value. These changes in  correspond to a reduction in the total 

surface excess with time, and at the expanding interface of the OFC this must be due to changes 

occurring in the bulk solution.  These changes are similar to, but much more pronounced than, the time 

dependence in  observed for the PSS/C12TAB system at csurf = 2 mM. In Chapter 6, this time-

dependent behaviour for PSS/C12TAB was attributed to the aggregation of polymer/surfactant 

complexes in the bulk solution which led to decreased adsorption of both components at the interface. 

By analogy, it follows that the time dependent behaviour observed for the PSS/C14TAB and 

PSS/C16TAB systems can also be attributed to aggregation of polymer/surfactant complexes in the bulk 

solution, although aggregation occurs at much lower csurf for these two systems than for PSS/C12TAB. 

At high csurf  becomes more negative (indicative of a higher total surface excess) again for all three 

systems eventually tending to the pure surfactant values at the highest concentrations measured. Once 

bulk aggregation is complete, further addition of surfactant increases the free surfactant concentration 

and adsorption, but NR data is necessary to confirm the composition of the interface in this region.  

 

7.2.2 NR 

The specular reflectivity profiles obtained from NR measurements on the h-polymer/d-surfactant/NRW 

contrast were fitted using a single 14 Å layer model as discussed in Chapter 4. The product of  and  

is shown in Figure 7.3 as a function of bulk surfactant concentration for both PSS/C14TAB (turquoise 

diamonds) and PSS/C16TAB (orange triangles), compared with pure C14TAB (turquoise solid line) and 

pure C16TAB (orange dashed line). The calculated surface excesses for the two polymer/surfactant 

mixtures are very similar at low bulk surfactant concentrations, and are close to the pure surfactant 

values for both systems. Although these measurements are made using deuterated surfactant and 

hydrogenated polymer, we cannot assume that  x  is determined predominantly by adsorbed 

surfactant as we did in Chapter 5, as the neutron scattering length density of PSS is 1.85 x 10-6 Å-1 (see 

Chapter 6).  
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Figure 7.3.  Product of the scattering length density, ,  and thickness, , of the adsorbed layer, as obtained from fits to the 

specular reflectivity profiles using a single 14 Å layer, for PSS/C14TAB (turquoise diamonds) and PSS/C16TAB (orange 

triangles). The solid turquoise line indicates the pure C14TAB data and the dashed orange line the C16TAB data. The arrows 

represent the decrease in  ×  with time which occurs in the intermediate surfactant concentration region. These data are 

shown separately as function of time at several different csurf in Figure 7.4.  

When 0.4 mM < csurf < 0.6 mM  ×  decreases with time for both PSS/C14TAB and PSS/C16TAB, 

which indicates a decreased adsorbed amount at the interface. For both systems this decrease in  ×  

occurs in a similar region to the decrease in  seen in Figure 7.1 and Figure 7.2. These data are not 

displayed in Figure 7.3 for clarity, with the region affected denoted instead by an arrow, however 

Figure 7.4 (a) and (b) show the decrease in  ×  which occurs with time for both systems at several 

successive surfactant concentrations. The total decrease in  ×  is both smaller in magnitude and 

occurs over a larger range of csurf for PSS/C14TAB than PSS/C16TAB, 1.5 × 10-5 Å-1 over 0.26 mM for 

the former compared to 3 × 10-5 Å-1 over 0.16 mM for the latter. In order to determine the compositions 

of these systems and further discuss the adsorption behaviour, we need to co-model these NR data with 

the ellipsometry data in Figure 7.1 and Figure 7.2.  
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Figure 7.4. Product of the scattering length density, , and thickness, , of the adsorbed layer as function of time for (a) the 

intermediate csurf values of the PSS/C14TAB system, csurf = 0.4 mM (green bows) , 0.5 mM (blue diamonds) and 0.66 mM 

(turquoise triangles) and (b) the PSS/C16TAB system where csurf = 0.4 mM (orange diamonds), 0.5 mM (red crosses) and 0.56 

mM (yellow bows).  

 

7.2.3. Calculated Interfacial Compositions  

The calculated interfacial compositions obtained from our co-modelling approach for both 

PSS/C14TAB and PSS/C16TAB are shown in Figure 7.5, and the data sets are compared in Figure 7.6 to 

enable the effects of surfactant chain length on the interfacial composition to be easily distinguished. A 

cubic function was used to relate  and  for the reasons discussed in Chapter 4.  

From Figure 7.5 we can see that the trends in adsorption behaviour with increasing surfactant 

concentration are very similar for PSS/C14TAB and PSS/C16TAB. At csurf < 0.4 mM surf is close to, but 

below, the pure surfactant value. surf increases with csurf whilst poly is relatively constant. For the 

PSS/C12TAB system surf for the mixture exceeded that of the pure surfactant, suggesting synergistic 

adsorption of both components, however for C14TAB and C16TAB  surfactant adsorption is not 

enhanced.   

When 0.4 mM < csurf < 0.6 mM where both the ellipsometry and NR data (Figure 7.2 and Figure 7.4) 

are time-dependent , poly drops to within experimental error of zero for both systems, whilst surf also 

decreases. It is very difficult to co-model the time-dependent data, the systems would need to be 

identical time dependent states of bulk aggregation during separate measurements using the two 
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methodologies, and this is not realistic due to the time dependence of the data. Small mis-matches in 

the aggregation states of the two systems with time can result in very different calculated surface 

compositions. Although co-modelling of the data in the time dependent region was attempted for the 

PSS/C12TAB system in Chapter 6, much more pronounced aggregation is evident for the PSS/C14TAB 

and PSS/C16TAB systems, so co-modelled compositions are not shown for these systems. If further 

controlled measurements were recorded on these systems it may be possible to co-model the data to 

obtain interfacial composition, however I think that this will be unlikely unless ellipsometry and NR 

measurements can be performed simultaneously. Although interfacial compositions at long times could 

equally be given, recent studies (on other systems) have shown that even the end states of the system 

may not be identical unless many factors are strictly controlled.16, 17 As a consequence I have simply 

denoted the changes in interfacial composition in the time dependent region by arrows in Figure 7.5. 

At csurf > 0.6 mM the experimental data are no longer time dependent, and poly is calculated to be zero 

(Figure 7.5); polymer does not adsorb in this region. This supports the hypothesis that the time 

dependent behaviour is attributable to aggregation of polymer/surfactant complexes in the bulk 

solution which cannot then diffuse to the interface on the timescale of adsorption. Furthermore it 

implies that there is no further re-dissolution of the particles with further surfactant addition, which is 

often suggested to occur in polymer/surfactant mixtures.8 In this region surf increases as the bulk 

surfactant concentration is increased, whilst poly remains at zero.  

 

Figure 7.5. Surface excesses on the OFC of  (a) C14TAB from a pure C14TAB solution (pink squares), and of C14TAB and 
PSS from a mixture of the two components (filled and empty turquoise diamonds respectively), and (b) of C16TAB from a 
pure C16TAB solution (green squares), and of C16TAB and PSS (100 ppm and 17 k ) from a mixture of the two components 
(filled and empty orange inverted triangles respectively). All measurements were made in the presence of 0.1 M NaBr. The 
time compositional changes in the time dependent region are denoted by arrows, solid for surf and dashed for poly.  
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If we examine Figure 7.6, which compares surf and poly for the systems with different surfactant chain 

lengths, we can see that for csurf < 0.4 mM, poly is almost identical for all three systems, whilst surf is 

not. The similarity of the poly values may suggest that polymer adsorption is controlled by the same 

mechanism in all three systems, however in order to evaluate whether or not this is the case we need to 

examine the surface expansion rate data obtained from LDV measurements. Furthermore, as surf varies 

between the mixtures in this region it appears that polymer adsorption does not depend on the 

surfactant surface excess despite the fact that PSS is not surface active alone.   

 

Figure 7.6.  Summary of the surface excesses of (a) CnTAB and (b) PSS adsorbing from mixtures of the two components, as 

calculated using our co-modelling methodology. The different data sets are different surfactant chain lengths (constant 

polymer concentration of 100 ppm and MW of 17 k) , where the blue circles are the mixture containing C12TAB, the turquoise 

diamonds C14 TAB, and the orange inverted triangles are C16TAB. These data are reproduced from Figure 6.5 and Figure 7.5 

for comparison purposes. The time dependent region (for the PSS/C14TAB and PSS/C16TAB systems is denoted  by a black 

arrow in both figures.  

In the region where poly is very similar for all three systems, surf decreases with increasing surfactant 

chain length. If the mass transport of complexes dominates adsorption of both components we would 

expect that surf would be very similar for all three systems if poly is. However, if the adsorption of 

polymer at the interface is not under diffusion control, as in Chapter 6, it is possible that the same 

barrier to polymer adsorption could affect surfactant adsorption, and that the effect may increase with 

surfactant chain length. These possibilities will be discussed further below.  
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7.2.4. LDV 

As in the previous chapters, surface expansion rate data enables us to begin to quantitatively consider 

the adsorption kinetics of the PSS/CnTAB systems. For pure monomeric surfactants under diffusion 

control (such as C14TAB and C16TAB in Figure 7.7) the plot of  v csurf is a typically a volcano plot. 

For the PSS/C12TAB system, the  data shown in Figure 6.7, also have a volcano shape, although the 

volcano plot is shifted to slightly higher csurf for the mixtures. The surface expansion rate data for the 

PSS/C14TAB and PSS/C16TAB data in Figure 7.7 do not exhibit a simple volcano shape over the whole 

range of surfactant concentrations. At low surfactant concentrations, there is a marked shift of the data 

to higher csurf values for the PSS/C14TAB system and not the PSS/C16TAB system. This is unexpected, 

as if the same adsorption mechanism is happening in all three systems, at least at low surfactant 

concentrations we would expect to see similar  behaviour. However, this difference in  in 

comparison to the pure surfactant values may be partially explained by the low surf of the PSS/C14TAB 

mixture as compared to the pure surfactant in Figure 7.5.  

 

Figure 7.7. Surface expansion rate on the OFC as a function of (a) C14TAB concentration for bulk solutions containing pure 

C14TAB [from reference 18] (pink squares) or PSS/C14TAB (turquoise diamonds) and (b) C16TAB concentration for bulk 

solutions containing pure C16TAB [from reference 18] (green squares) or PSS/ C16TAB (orange inverted triangles). Arrows 

denote the direction of change for bulk compositions at which a time dependence of the surface expansion rate was observed, 

in these regions data were recorded every 30 minutes. Both measurements were performed in the presence of 0.1 M NaBr.  

If instead of comparing the  data for the mixtures to the relevant pure surfactant data, we compare the 

data from all three mixtures with each other as in Figure 7.8 a much more striking result is seen; for 

csurf < 0.4 mM), the  v csurf data are almost identical for all three systems. In this region, the same 
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mechanism may therefore control the surface expansion rate in all three systems, leading to the very 

similar interfacial compositions seen in Figure 7.6, although there may equally be different physical 

explanations of the values of  in the three systems.  

 

Figure 7.8. Surface expansion rate of PSS/C12TAB (blue circles), PSS/C14TAB (turquoise diamonds) and PSS/C16TAB 

(orange triangles) as a function of bulk surfactant concentration. All measurements were made in the presence of 0.1 M NaBr 

and the polymer concentration was 100 ppm. These data are reproduced from Figure 7.7 and Figure 6.7 for the purposes of 

comparison. 

At intermediate bulk surfactant concentrations, close to where time-dependent changes were observed 

in both the ellipsometry and NR data,  also decreases with time for both the PSS/C14TAB and 

PSS/C16TAB systems at several consecutive values of csurf. The bulk process which causes a decrease 

in the adsorbed amount of both components unsurprisingly causes a decrease in the Marangoni flows. 

The decrease in  causes a local minimum in  v csurf for both the PSS/C14TAB and PSS/C16TAB 

systems. Local minima in  have been seen previously in this study for the PEO/C14TAB systems and 

400 ppm PSS/C12TAB systems in Chapters 5 and 6, and were attributed to changes in the species 

which dominated the adsorption behaviour. For the PSS/CnTAB systems the local minima can be 

attributed to aggregation of polymer/surfactant complexes.  

As the surfactant concentration is increased past the time dependent region,  increases. If only free 

surfactant is adsorbing at the interface after aggregation removes the polymer, we would expect the 

data to follow the pure surfactant curve, but translated along the csurf axis to allow for the surfactant 

removed as polymer/surfactant aggregates. The higher maximum values of  reached suggest that other 

species are present at the interface, although it is possible that they were recorded due to errors 

incurred by the presence of aggregates in solution.  
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7.3. Discussion 

7.3.1. Bulk Species and Interactions 

As in Chapter 6, before discussion of the adsorption mechanism for the PSS/CnTAB systems, I will 

first consider what we know about the species present in the bulk solution and how they vary with 

surfactant concentration.   

The critical micelle concentration (cmc) of the CnTAB surfactants in the absence of polymer decreases 

with increasing chain length due to the increased hydrophobicity of the surfactant. In the presence of 

PSS, micellisation will occur in all three systems at a critical aggregation concentration (cac) well 

below the free cmc due to the stabilization of the surfactant micelle by interaction with the polymer. 

Furthermore,  the difference between the cac and the cmc decreases with increasing chain length.19 The 

cac values given by Kogej et al. for the mixtures with increasing surfactant chain length are 0.015 mM, 

0.0057 mM and 0.0025 mM. Although the cmc of the pure surfactant is lowered by the presence of 

salt, the cac is expected to increase as the electrostatic interactions between the polymer and surfactant 

are shielded. However, the cac increases only slightly with salt for the PSS/CnTAB systems.3, 4 The 

cmc of surfactant in a mixture with polymer will be slightly higher than the pure surfactant values as 

micelles can only form in solution once all of the polymer is saturated with surfactant. Kogej et al. give 

values of the cmc for the pure surfactants as 3.66 mM for C12TAB to 0.33 mM for C14TAB and 0.034 

mM for C16TAB in the presence of 0.1 M NaBr.3 In polymer/surfactant mixtures the cmc will be 

slightly higher than in the pure surfactant system due to the formation of polymer/surfactant 

complexes, and it will increase with increasing amounts of surfactant bound to the polymer in 

complexes.   

For the pure CnTAB surfactants in 0.1 M KBr, the shape of the micelles which form in solution also 

changes with alkyl chain length, C12TAB and C14TAB form spherical micelles in solution, whilst 

C16TAB can form rodlike micelles.6, 20  In polymer/surfactant complexes, interaction of the surfactant 

with the polymer inhibits the formation of threadlike micelles, and favours that of spherical micelles,4 

however the work of Nause et al. observed a transition of the shape of the micelles in complexes from 

spherical to rodlike with increasing surfactant concentration.21  

The aggregation number (Nagg) of the surfactant in a micelle is determined by the length of its 

hydrocarbon chain. For the pure surfactants, Roelants et al. give Nagg as 65 for pure C12TAB, 97 for 

pure C14TAB, and 104 for pure C16TAB in the absence of salt,22 whilst Imae et al. give the values as 
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53, 71, and 91 in the presence of salt.20 However, the micellar aggregation number of surfactants is 

usually smaller in polymer/surfactant complexes.23 In complexes with PSS, the insertion of the 

polymer phenyl groups into the micelle surface2 will hinder micellar growth compared to that in the 

free surfactant solution, and previous studies have shown that the aggregation number can be reduced 

by up to half compared to the free micelle values.2, 6 Using long chain PSS and in the absence of salt, 

Almgren et al showed that Nagg for PSS/C16TAB varies between 79 and 60 with increasing bulk 

surfactant concentration, with the micellar size decreasing rather than increasing with surfactant 

concentration.2 The higher salt concentration and lower surfactant concentration in our experiments 

will tend to increase and decrease the aggregation number, respectively, so in the absence of a direct 

measurement we will assume N = 79 in our experiments also. This is significantly larger than the value 

for PSS/C12TAB, given as 49 in Chapter 6. No measurements of the micellar aggregation number for 

PSS/C14TAB surfactants under the conditions used here exist in the literature. For the purposes of our 

calculations we estimate that Nagg for PSS/C14TAB is intermediate between that of the other two 

surfactants, as suggested by the Nagg values of the pure surfactant, and the fact that the difference in 

Nagg still exists for complexes.2, 23  I will therefore use a value of Nagg = 65 although this approximate 

value may incur errors in the following analysis.  

The polymer/surfactant complexes which form in mixtures of 17 k PSS (which contains only 82 

monomer units) and CnTAB surfactants above the cac, consist of single polymer molecules complexed 

to a single surfactant micelle, as discussed in Chapter 6. If the micellar aggregation number is smaller 

than the number of monomer units in the polymer, the polymer charge will not be entirely 

compensated by the micelle and the complex will not be neutral.  We estimate that the formation of 

these complexes will be complete at csurf = ccomp, where ccomp is the concentration at which each 

polymer molecule in solution is associated with a surfactant micelle. Further increases in the bulk 

surfactant concentration above this point are assumed not to change the complexes, but instead to 

increase the free surfactant concentration.  

If neutral polymer/surfactant complexes have formed by ccomp we would theoretically expect bulk 

aggregation of complexes to occur, as the lack of charge means that the complexes lose their colloidal 

stability. However, aggregation is unlikely to occur if the complexes are still charged, and will not 

occur until bulk solution compositions around the charge neutrality point of the complex.  

The surfactant concentration at which polymer/surfactant complex formation will be complete, ccomp  

can be estimated from the ratio of the micellar aggregation number in the complex to the number of 

monomers in a polymer molecule (82 for 17 k PSS). For PSS/C12TAB in Chapter 6 we estimated that 

there is one micelle per polymer molecule at ccomp = 49/82 × cpoly+ cac, which resulted in ccomp = 0.3 
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mM. For PSS/C14TAB and PSS/C16TAB, ccomp will be higher, at 0.39 and 0.47 mM respectively. The 

uncertainty in Nagg for each system (as mentioned above) leads to an uncertainty in ccomp, however we 

do have a good indication of the surfactant concentration region in which ccomp is reached. Furthermore, 

as discussed in Chapter 6, without bulk measurements we cannot be sure that complexation will be 

complete in the region in which we theoretically expect it to be, hence we will try not to over-interpret 

the data in the region of our estimated ccomp values.  

In order to model the adsorption kinetics of these systems quantitatively we need values of the 

diffusion coefficient of the polymer/surfactant complexes, DPS. For the PSS/C12TAB system we 

estimated that DPS was the same as Dpoly = 8 x 10-11 ms-1, as the free surfactant micelle had a diffusion 

coefficient of around 1.1 x 10-10 ms-1,24 which is consistent with a micellar radius of 22 Å25 if we 

calculate D using the Stokes Einstein relationship,    (where kB is Boltzmann’s 

constant,  is the solution viscositiy and Rg is the radius of gyration). In order to calculate DPS assuming 

the diffusion coefficient of the complexes is the same as that of the surfactant micelles, Dmic, for the 

PSS/C14TAB and PSS/C16TAB mixtures we need to estimate how Nagg varies with the micellar 

aggregation number. If C12TAB forms micelles of Nagg = 5320 and rH = 22 Å25, and C14TAB forms 

micelles of Nagg = 7120 and the hydrodynamic radius, rH = 27 Å25, we can estimate that for C14TAB 

micelles of Nagg = 65 and C16TAB micelles of Nagg = 79, rH = 26 and 30 Å respectively. As a check, 

these radii are consistent with the approach of Roelants et al who estimate the radius of a micelle from 

the number of carbons in the tail group.22 The complex diffusion coefficients DPS calculated from these 

radii and the Stokes-Einstein equation are 1 x 10-10, 0.93 x 10-10 and 0.83 x 10-10 ms-1 for PSS/C12TAB, 

PSS/C14TAB, and PSS/C16TAB complexes respectively. The micellar aggregation number has a 

minimal effect on the size of the complex or its diffusion rate in solution.  

In Chapter 6 a simple model of the adsorption kinetics in complex forming systems was suggested as 

an extension of that proposed by Valkovska et al. for micellar surfactant systems.18 This basic model is 

based on the idea that a complex-free zone forms in the sub-surface region, and that transport from the 

edge of the complex-free zone to the interface is only in the form of molecular species. It is likely that 

a complex-free zone will also form in the PSS/C14TAB and PSS/C16TAB systems. In the following 

section we will explore whether the measured data is consistent with the formation of a complex free 

zone, and whether or not polymer and surfactant in the bulk solution can adsorb under diffusion control 

in the concentration region before bulk aggregation occurs.  
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7.3.2. Kinetic Adsorption Behaviour 

I will now discuss and interpret the experimental data presented in the results section in light of what 

we know about the PSS/CnTAB systems. First I will focus on the ellipsometry data as it is the most 

fine-grained of the experimental methodologies employed, and data have furthermore been recorded 

over the largest range of surfactant concentrations. However I will also discuss what the NR, 

compositional and LDV data can tell us.  

At csurf < 0.02 mM, the ellipsometry data in Figure 7.1 and Figure 7.2 are relatively independent of the 

surfactant chain length, with  very similar for all three data sets at the lowest concentrations 

measured. For all three systems, at the lowest csurf values  is higher (corresponding to a lower total 

surface excess) for the mixture than for the pure surfactant, which exhibits negligible adsorption in this 

region. This, along with the fact that polymer is not surface active alone, leads us to conclude that 

synergistic adsorption enhances the surface excess of one or both components in this region.  

In the surfactant concentration range between the cac and the estimated ccomp  the concentration of 

complexes in the bulk solution increases, as does their effect on the interfacial adsorption behaviour. 

Over this surfactant concentration range poly is identical for all three systems, the surfactant chain 

length has no observable effect on polymer adsorption. Polymer adsorption may therefore be controlled 

by the same mechanism in all three systems, the mass transport of free polymer molecules to the 

interfacial region. However, in Chapter 6 it was clear that polymer adsorption was not under diffusion 

control for any PSS/C12TAB mixtures, polymer reached the sub-surface by mass transport but then 

could not adsorb at the interface. If we calculate the sub-surface polymer concentration for all three 

PSS/CnTAB systems using      , the experimental poly data in Figure 7.6 and  data in 

Figure 7.8 and the very similar DPS values calculated above, very similar subsurface polymer 

concentrations, cs,poly, values will be obtained for all three systems, as shown in Figure 7.9. Although 

cs,poly > 0 at all bulk surfactant concentrations measured before aggregation occurs (csurf < 0.4 mM), this 

does not necessarily mean that adsorption is not under diffusion control, as this can only be determined 

from comparison of cs to ceq for the same surface composition (data we do not have). However, the 

high values of cs,poly suggest that there may be a barrier to adsorption of polymer from the sub-surface 

to the interface.  
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Figure 7.9. Calculated trends in the sub-surface concentration of polymer, cs,poly, as a function of bulk surfactant 

concentration for PSS/C12TAB (blue line), PSS/C14TAB (turquoise line), and PSS/C16TAB (orange line). The horizontal 

dashed line denotes the bulk polymer concentration.  

What is most remarkable about the polymer surface excess in these systems is that it is essentially 

independent of the surfactant surface excess despite the fact that PSS is not surface active alone.  surf 

varies with surfactant chain length but poly is almost identical for all three systems (Figure 7.6).  At 

low bulk surfactant concentrations polymer is in excess in the bulk, and we would expect that although 

polymer can get to the sub-surface by diffusion it would not be able to adsorb as it is limited by 

interaction with adsorbed surfactant, and surf is low. This results in a high cs,poly at low csurf (as seen in 

Figure 7.9). However, as csurf and hence surf is increased we would expect poly to increase 

proportionally, and we do not observe this. Furthermore, if poly
 is controlled by surf we would expect 

there to be a difference in poly between the three systems even at low bulk surfactant concentrations, 

which we do not see.  

To explain the adsorption behaviour of these systems at csurf < 0.4 mM we first need to consider why 

surf for the mixtures on the OFC decreases with increasing surfactant chain length. In PSS/CnTAB 

mixtures, the cac is low, so the majority of surfactant is in the form of polymer/surfactant complexes 

which consist of a single surfactant micelle and polymer molecule. The concentration of complexes at 

a given csurf will decrease with increasing chain length due to the larger micellar aggregation number, 

but this would not affect surf if the complexes can get to the interface by diffusion as the amount of 

surfactant per complex is higher. The size and therefore the diffusion rate of these complexes varies 
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minimally with surfactant chain length, and it is therefore unexpected that surf is not more similar at a 

given csurf for all three systems, as we assume that surfactant adsorption controlled by the mass 

transport of complexes. This could suggest that surfactant adsorption is not under complex mass 

transport control, perhaps due to the slow dissociation of complexes in the sub-surface region. Slow 

complex dissociation does not however explain the similar values of poly for the three systems. 

At csurf < ccomp (0.4 mM) polymer is in excess in solution, and can reach the sub-surface in the form of 

molecules or complexes. At csurf > 0.1 mM, the surface expansion rate increases sharply for all three 

systems, and poly increases a little, hence poly is increasing sharply as well. The combination of these 

factors suggests that polymer adsorption is controlled by the mass transport of free polymer in this 

region, and hence that it is not affected by the rate of complex breakdown, unlike surfactant adsorption.   

Once csurf  ccomp (0.4 mM), we assume in our model that all of the polymer molecules are complexed 

to a single surfactant micelle, and there are no more free polymer molecules in the solution. In this 

region surf and poly are strikingly similar for all three systems (Figure 7.6). In this model polymer 

adsorption can no longer be controlled by the mass transport of free polymer, and both components 

must reach the interface in polymer/surfactant complexes. It is not clear if this supports the hypothesis 

of adsorption limited by the rate of complex breakdown, as in this case polymer adsorption is not more 

limited than it was when under polymer molecule diffusion control. However, the similarity of the data 

for the three systems suggests that once complex formation is complete the value of surf determines the 

polymer adsorption.  

One final thing to note in the csurf < 0.4 mM region is that poly does not reach either the maximum 

value predicted from diffusion control, or the lower maximum value measured at the static air water 

interface  3 µmol m-2 (as discussed in Chapter 6) for any of these systems, despite the fact that surf is 

close to the value at the static surface (2.5 µmol m-2). Polymer adsorption cannot be sterically limited 

in this region, as the coverage of both components is significantly below the maximum possible value, 

and the high value of surf shows that poly cannot be limited by surfactant adsorption. Although 

repulsion between charged species at the interface and in the sub-layer could limit adsorption, this 

effect will be screened by the presence of electrolyte in these solutions. It is therefore not possible to 

conclude from the data what controls polymer adsorption in these systems at csurf < 0.4 mM. 

At 0.4 mM < csurf < 0.6 mM time-dependent changes in the ellipsometry, NR, and LDV data indicative 

of decreases in the adsorbed amounts of both components, were recorded for PSS/C14TAB and 

PSS/C16TAB.  In Chapter 6, similar time-dependent changes in the measured data were observed for 

the PSS/C12TAB system at concentrations well above the estimated value of ccomp, and were attributed 
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to the aggregation of polymer/surfactant complexes in the bulk solution. For a polymer/surfactant 

solution at constant bulk composition the only way in which the adsorption of polymer and surfactant 

can decrease is if their mass transport rates are decreased due to the formation of large bulk species: 

aggregates. We therefore also attribute the time dependent changes in the data for the PSS/C14TAB and 

PSS/C16TAB systems to bulk aggregation processes.  Aggregation occurs at bulk compositions around 

the charge neutrality point of the complexes.  

For the PSS/C14TAB and PSS/C16TAB systems time dependent changes in the adsorption behaviour 

indicative of bulk phase aggregation occur at in the region csurf = 0.4 - 0.6 mM, and in this region the 

solutions are turbid. Aggregation occurs very close to our estimated values of ccomp, the point at which 

we predict that every polymer molecule is associated with a surfactant micelle (0.39 mM and 0.47 mM 

for PSS/C14TAB and PSS/C16TAB respectively). From our calculated values of the aggregation 

numbers for C14TAB and C16TAB micelles in the presence of PSS, the complexes are not entirely 

neutral at our estimated ccomp values. However, when the surfactant concentration is increased above 

ccomp the surfactant chemical potential increases, increasing the size of the micelles in the 

polymer/surfactant complexes and neutralising the complex, leading to aggregation. As the cac for 

these systems is so low, only a small amount of surfactant has to be added above ccomp to have a big 

effect on the surfactant chemical potential, and hence aggregation will occur at surfactant 

concentrations close to ccomp. Small sequential additions of surfactant above ccomp will cause an 

increasing proportion of the complexes to become neutralised, hence the continued aggregation at 

several successive surfactant concentrations.  

One problem arises with our interpretation however, as aggregation occurs in the PSS/C16TAB system 

at csurf  0.4 mM, below the estimated ccomp value of 0.47 mM. A reasonable explanation for this is the 

uncertainty in our estimation of ccomp, arising from use of approximate Nagg values, and ccomp may 

instead occur at a surfactant concentration close to the start of aggregation. This is possible considering 

that literature values of the micellar aggreagation number of C16TAB with PSS vary as low as 60 

(rather than the highest value of 79 which was used), which would give a ccomp value of 0.35 mM.  

Furthermore, as mentioned above, the values of ccomp are only estimated from theoretical values rather 

than obtained from bulk measurements, which will inherently incur errors in the interpretation of a 

model based on these values.  

Charged polymer/surfactant complexes may also be neutralised if the formation of small aggregates in 

solution, dimers and trimers etc is favoured and these species are stable. The concentration of these 

oligomeric complexes is in equilibrium with the monomeric polymer/surfactant complexes and is 

therefore very sensitive to the concentration of complexes in solution. Once there are enough of the 
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oligomeric complexes in solution, the growth of aggregates proceeds quickly. Without bulk studies to 

correspond with the conditions of our experiments we cannot dismiss this possibility, however it seems 

probable that in the PSS/C14TAB and PSS/C16TAB systems aggregation occurs due to the 

neutralisation of single polymer molecule/surfactant micelle complexes by the addition of further free 

surfactant.  

In the PSS/C12TAB system bulk phase separation does not occur in the region of ccomp (0.3 mM) as it 

does for PSS/C14TAB and PSS/C16TAB, it occurs at much higher bulk surfactant concentrations, 

around csurf = 2 mM. This behaviour was discussed in Chapter 6, however I will discuss it again here 

for clear comparison with the other systems. If we consider the small value of the micellar aggregation 

number in the complex, which may in fact be considerably lower than our estimated value of 49 (as 

low as 30-40),2 it is clear that at csurf  ccomp the PSS/C12TAB complex is far from neutral. Recent bulk 

studies have shown that not only does aggregation not occur until around 2 mM (as in our 

measurements) the charge neutrality point is not reached in this system until very high surfactant 

concentrations, around 5 mM.26 As discussed in Chapter 6, for aggregation not to occur until surfactant 

concentrations so far above ccomp the increase in the surfactant chemical potential above ccomp must not 

lead to neutralisation of the complexes until much higher surfactant concentrations, or alternatively 

bulk complexation must continue well past the estimated ccomp value, with aggregation occurring once 

the complexes become close to neutral.  

Bulk aggregation is a dynamic process, occurring over a period of several hours, and at successive 

surfactant concentrations. Once aggregation is complete in all three systems there are no 

polymer/surfactant complexes or free polymer molecules remaining in the solution, they are all 

sequestered in aggregates which cannot diffuse to the interface on the timescale of the OFC due to their 

large size. Polymer therefore no longer adsorbs at the interface of the OFC (Figure 7.6). surf is also 

decreased by aggregation for the PSS/C14TAB and PSS/C16TAB systems as a significant proportion of 

the surfactant molecules in solution are also sequestered in aggregates, but not for the PSS/C12TAB 

system as aggregation only occurs when the free surfactant concentration is high. For PSS/C14TAB and 

PSS/C16TAB, increasing csurf past the point at which aggregation occurs only increases the free 

surfactant concentration and therefore surf.  The difference in free surfactant concentrations in the 

aggregation region explains why aggregation has a minimal effect on  of the PSS/C12TAB system, but 

a significant effect on the other two systems in Figure 7.8, as aggregation removes a large proportion 

of the material which can supports Marangoni flows from the solution. If the LDV data were more 

extensive in the high surfactant concentration region it is possible that we would be able to estimate the 
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free surfactant concentration and hence the composition of the aggregates, however this is not possible 

with the current data.  

As the formation of aggregates causes a decrease in the adsorbed amount of polymer and surfactant 

available for adsorption on the OFC, we would expect that it would have a similar effect on 

measurements performed at the static air/water interface unless the aggregates can reach the interface.  

The work of Monteux et al.11 and Kristen et al.14 did suggest that reduced adsorbed amounts in these 

systems at the static air water interface resulted from bulk aggregation. However, the work of Taylor et 

al. showed that multilayer adsorption occurs in the phase separation region for PSS/C12TAB and 

PSS/C14TAB but not for PSS/C16TAB.10 With reference to the recent work of Campbell et al. we 

suggest that the difference in their data could be attributed either to different transport of aggregates 

under gravity in the two systems,17 or to an inconsistency in the way in which the samples are prepared 

for measurements on the three systems.8, 16, 27 The controlled measurements at the static interface which 

would be necessary to test this hypothesis were not within the scope of this thesis, however we hope 

that they will be performed in the near future.  

 

 

7.4. Conclusions 

In mixtures of PSS and CnTAB surfactants on the OFC, synergistic adsorption occurs at low to 

intermediate surfactant concentrations, where csurf < ccomp, the point at which each polymer molecule is 

associated with a surfactant micelle. Polymer adsorbs at the air/water interface despite not being 

surface active alone due to interactions with surfactant at the interface. Despite this, the amount of 

polymer which adsorbs at the interface is independent of the surfactant surface surface excess. This is 

demonstrated by the independence of the polymer surface excess on the surfactant chain length despite 

the fact that the surfactant surface excess varies. Furthermore the maximum value of poly reached for 

the PSS/C14TAB and PSS/C16TAB systems is lower than both the diffusion controlled maximum value 

and that at the static interface. We therefore suggest that at surfactant concentrations below ccomp 

adsorption of polymer is controlled by that of free polymer molecules in the solution, whilst adsorption 

of surfactant, which is all in complexes, is limited by slow complex breakdown.  

In all three PSS/CnTAB systems aggregation of polymer/surfactant complexes occurs, and this leads to 

a depletion in the adsorbed amount of both components as a function of time. In the PSS/C14TAB and 
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PSS/C16TAB systems aggregation occurs close to the estimated value of ccomp, as large surfactant 

micelles are associated with each polymer molecule and the complex is almost neutral when ccomp is 

reached. Small increases in surfactant concentration above ccomp increase the surfactant chemical 

potential enough for the micelles to increase in size and the complexes to become neutralised, and 

hence aggregate. Alternatively, it may be that our estimated ccomp value is simply close to the 

neutralisation point for this system, at which complexation would naturally be complete and 

aggregation occur. Future complementary bulk measurements would enable us to determine the true 

bulk phase behaviour in this region. For the PSS/C12TAB system charge neutrality is much further 

from ccomp, and bulk phase separation does not occur until surfactant concentrations nearly an order of 

magnitude above the estimated value of ccomp. We attribute this to the smaller micelle aggregation 

number in the PSS/C12TAB complexes, which theoretically leaves the complexes far from neutral at 

our estimated value of ccomp, and aggregation would only be able to occur once the complexes could be 

neutralised. It may be that for this system complexation continues with increasing surfactant 

concentration well beyond the predicted ccomp value, and aggregation only occurs once the complexes 

are close to neutralised. For all three systems, at surfactant concentrations above the aggregation 

region, polymer no longer adsorbs as it is sequestered in aggregates, and increases in the surfactant 

concentration only increase the concentration of free surfactant molecules in solution, and therefore the 

surfactant surface excess.  

The data presented in this chapter have shown that an understanding of the bulk phase behaviour is 

critical to understanding the adsorption from strongly interacting polymer/surfactant mixtures at a 

dynamic interface. This has wide ranging implications for mixtures of surfactants and polyelectrolytes 

which are used under dynamic conditions and for which bulk phase behaviour occurs.  
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

 

 

 
 
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Chapter 8: Mixtures of Poly(ethylene imine) and SDS at High and Low pH 

8.1 Introduction 

Poly(ethylene imine) [PEI] is a widely studied polymer due to its use in a range of industrial 

applications including the cosmetics, paper, mining, and pharmaceutical industries.1 PEI is an 

interesting polymer in that its charge density can be controlled by varying the solution pH; at low pH 

PEI has a high charge density, whilst at high pH it has a low charge density.2, 3 This ability to vary the 

polymer charge density means that mixtures of poly(ethylene imine) [PEI] and sodium dodecyl sulfate 

(SDS) have been widely studied, as they can be used to examine the effects of both electrostatic and 

hydrophobic interactions between the polymer and surfactant on the behaviour of the system. Mixtures 

containing PEI are also interesting for several other reasons; first the polymer architecture can be easily 

varied,2, 3 second the polymer molecular weight affects the physical properties,4 and a large range of 

molecular weights are commercially available, and third, ionic strength is known to affect the 

behaviour of the mixture.4  

PEI forms complexes with SDS at both low and high solution pHs, despite the fact that it has a low 

charge density at high pH. The mechanism of binding in PEI/SDS complexes has been the subject of 

numerous recent studies, primarily using indirect methods.  SDS has been shown to have a large 

binding affinity for PEI regardless of the solution pH.5 Furthermore, the process of PEI/SDS 

complexation itself causes a change in the solution pH due to the release of OH- ions6, 7 Winnick et al. 

proposed a thermodynamic model to describe the variation of pH with SDS concentration at a fixed 

PEI concentration, which takes into account the positive feedback of binding on the protonation 

equilibrium of the amine groups,8 and also rationalizes the high binding capacity of PEI at high pH, 

which is similar to the value at lower pH.7   

Li et al. proposed a two-step mechanism for PEI/SDS binding in the bulk solution with changing bulk 

surfactant concentration, consisting of monomer binding at low surfactant concentrations followed by 

cooperative binding of micelle-like surfactant aggregates with increasing bulk surfactant 

concentration.5 Mészáros et al. proposed a more involved two-step mechanism based on a 

thermodynamic model, which occurs for PEI/SDS regardless of the solution pH,8, 9 At low surfactant 

concentrations, SDS monomers bind to PEI forming PEI/SDS complexes, and the system is a 

thermodynamically stable solution of the polymer/surfactant complexes. Once a threshold amount of 

surfactant has bound, these complexes collapse and a kinetically unstable dispersion of complexes is 
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formed. These complexes can coagulaulate as the electric potential of the particles is too small to 

stabilize the dispersion in this concentration region. At a given polymer concentration the critical 

surfactant concentration for coagulation increases with decreasing solution pH, due to the greater 

charge density of PEI at low pH. As the surfactant concentration is further increased adsorption of SDS 

onto the outside of the collapsed PEI/SDS particles leads to charge reversal. This phase can be 

considered as a stable colloidal dispersion of collapsed PEI/SDS particles.10  

Mészáros et al. have demonstrated that the formation of polymer/surfactant aggregates is not an 

equilibrium process, and that the mixing methodology employed can determine the bulk phase 

behaviour at low pH but not at high pH.11 At surfactant concentrations well below the two-phase 

region, Meszaros et al. demonstrated that kinetically trapped aggregates can be formed according to the 

mixing methodology used, but only to a significant extent in PEI/SDS mixtures at low pH.10-12 This 

aggregation of complexes before the two-phase region (i.e. at low surfactant concentrations) was 

shown to be most likely when the protonation degree of the PEI molecules is high (low pH) and when 

the net charge of the primary complexes is low due to strong electrostatic interactions with the 

surfactant.  The effects of mixing can be understood in terms of the local rate of coagulation of the 

polymer/surfactant particles, which is related to concentration gradients present during mixing.10,13 

Furthermore, the surfactant concentration range over which the two-phase region occurs depends on 

the concentration of added electrolyte, which decreases the stability of charge-stabilized complexes and 

enhances coagulation.10  

Characterisation of the size and form of the PEI/SDS complexes has shown that their hydrodynamic 

radius is largely independent of the solution pH, but it can be controlled by the mixing methodology to 

a significant extent at low solution pH.11 Despite this, binding isotherm measurements have shown that 

more surfactant is bound to each polymer molecule at low pH, as we would expect for polymer 

molecules with a higher charge density.9 Bastardo et al. examined the size and shape of the PEI/SDS 

complexes at both high and low pHs using a combination of SAXS and SANS.14, 15 They found that 

PEI molecules adopt elongated flat ellipsoid structures in solution, to which SDS binds without 

changing the molecular conformation of the PEI . With increasing surfactant concentration these 

complexes stack on top of each other to form aggregates. At low pH the internal structure of the 

aggregates is ordered, whereas at high pH it is not.  

Penfold et al. have studied the adsorption from PEI/SDS mixtures at the air/water interface using NR 

meausurements. They showed that adsorption is most pronounced at high pH, with Bragg diffraction 

peaks indicating interfacial multilayers observed, especially in the region of charge neutralisation, 

whilst at low pH only monolayer adsorption was observed.2, 4 Multilayers at high pH were initially 
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attributed to hydrophobic interactions between the two species at the interface, but were subsequently 

attributed to the combined effect of a dipole-dipole interaction between the surfactant headgroup and 

the charged nitrogens and a co-operative interaction between the chains of the attached surfactants.16 

Surface tension measurements in the same studies revealed a ‘cliff edge peak’ in the data at low 

solution pH, whilst at high pH the data resembled that of a weakly interacting polymer/surfactant 

mixture. The same studies showed that adsorption from PEI/SDS mixtures was strongly dependent on 

polymer architecture,2 polymer molecular weight,2, 4 and the ionic strength of the bulk solution.4 

Interfacial multilayers were favored by use of the hyperbranched polymer of low molecular weight in 

solutions with added inert electrolyte. 

Although both the bulk phase behavior and the interfacial properties of PEI/SDS mixtures have been 

extensively studied, few authors have made systematic connections between the two. The only study 

which has examined the connection between bulk and interfacial behaviour is that of  Tonigold et al.17 

who investigated the effects of bulk aggregates on adsorption layers at the air/water interface with 

respect to the solution pH and the sample history using ellipsometry. They observed both a high 

interfacial excess and significant fluctuations in the optical signal for the system at high pH, both of 

which were attributed to the presence of bulk aggregates in the adsorption layer. These aggregates were 

shown to have originated from the bulk solution, as filtration of the sample caused the fluctuations to 

disappear initially, although they later reappeared. At low pH, no such aggregates were present at the 

interface after the interface was cleaned to remove aggregates trapped at the interface during sample 

preparation and handling, which showed that the aggregates do not adsorb spontaneously at low pH. 

The presence of bulk aggregates at the interface at high pH, but not at low pH for aspirated samples, 

was attributed to the lower surface charge density of the aggregates at high pH, and the consequent 

decreased repulsion between the aggregates and the interface. It should be noted that this bulk study of 

Tonigold et al. was performed using significantly higher polymer molecular weights than in the work 

of Penfold et al.  

If we consider the recent work of Campbell et al. relating the bulk and interfacial behaviour of the 

Pdmdaac/SDS system,18-20 we can begin to hypothesise how the formation of bulk phase aggregates in 

a polymer/surfactant system such as PEI/SDS may affect adsorption. Campbell et al. demonstrated that 

the surface tension18 and surface excess19 of well-equilibrated samples depended on how the samples 

were handled, due to the redispersion of kinetically-trapped aggregates. Furthermore, they went on to 

show that interfacial multilayers at the static air/liquid and solid/liquid interfaces originate not from a 

self-assembly process at the interface itself but from the transport of bulk aggregates to the interface 

under gravity.20 Conversely, if aggregates are transported away from an interface of given orientation 

also under gravity then interfacial multilayers were absent.  
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In this chapter I will examine how the bulk phase behaviour of PEI/SDS mixtures at both high and low 

pHs affects the dynamic surface excess of the PEI/SDS system at the air/water interface, using the 

steady-state expanding interface of the OFC. Once we understand how the bulk aggregates present in 

the phase separation region of these systems affect the dynamic surface excess we can begin to further 

explain the adsorption behaviour previously observed at static air/water interfaces. As in the previous 

chapters a combination of ellipsometry and NR data will be presented in order to discuss the changing 

interfacial compositions of mixtures of PEI and SDS. Measurements have been made at two extreme 

solution pHs, pH 10 where PEI is 5% charged, and pH 4 where around 67% of the polymer monomers 

are charged, in order to determine the effect of polymer charge on the adsorption behaviour at the 

dynamic interface. It will become clear from the discussions in this chapter that the dynamic adsorption 

behaviour of PEI/SDS mixtures is very different at pH 4 and pH 10, and the reasons for this will be 

explored.  

The format of this chapter is slightly different to those which preceed it, as it is divided into two 

sections in which the behaviour of PEI/SDS mixtures are examined at the two different solution pHs, 

with the results and discussion of each system presented in the relevant section. PEI/SDS mixtures at 

both pHs have been examined using both NR and ellipsometry measurements, for measurements made 

at pH 10 interfacial compositions are obtained from these measurements using our comodelling 

approach, whilst at pH 4 unusual ellipsometry data precluded use of our co-modelling methodology. 

As a consequence, the focus for the pH 4 systems is on determining the physical reason for these data.  

 

Materials 

As previously, all of the measurements in this chapter were recorded on solutions prepared in ultrapure 

water (Milli-Q; resistivity = 18 M cm) for ellipsometry, or NRW for NR meausurements, and all 

experimental equipment was cleaned with a 2 % solution of a strong alkaline detergent (Decon 90 or 

Gigapur). Hydrogenated SDS (Sigma, 99%) was purified by re-crystallization three times from 

ethanol.  PEI (750k molecular weight, Sigma) was used as supplied. This polymer molecular weight 

was chosen in order to relate our data most easily to those of other studies which have used similar 

molecular weights.10, 11, 14, 15, 17 Chain deuterated d-SDS was kindly supplied by Dr R. K. Thomas from 

the Oxford Deuteration Facility.21 0.1 M NaCl (Sigma Aldrich) was used in all measurements. 

As a consequence of the documented effects of the mixing methodology on the phase behaviour of the 

system11 and the interfacial properties,17 these systems were not recorded by adding consecutive 

aquilots of surfactant to the polymer solution as in two previous chapters. Instead each solution was 
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freshly prepared using a standard mixing approach.17 Equal quantities (750 ml) of polymer and 

surfactant at double their intended measurement concentration were poured quickly into an empty 

beaker, resulting in a total solution volume of 1.5 l. The solution was then immediately added to the 

empty OFC system and measured. The maximum delay time between mixing the components and 

starting the measurements was around one minute for ellipsometry measurements and 4 minutes for 

NR measurements. Measurements were made over short time periods (not longer than 30 minutes) at 

pH 10, as the alkaline solutions were found to change in pH with time due to the adsorption of carbon 

dioxide from the atmosphere.22  As the pH of the solution decreases, so does the charge density of PEI 

and the strength of the polymer/surfactant interaction, which will affect the interfacial excess measured 

by both NR and ellipsometry. During the 30 minute measurement time, the change in pH is < 0.4. 

All ellipsometry measurements presented in this chapter were recorded on a 1 s timebase rather than 

the 5 s timebase used elsewhere in this thesis due to the interesting nature of the data recorded. The 

optical density (OD) at 450 nm of PEI/SDS/NaCl/H2O solutions was measured using a Jasco V-630 

spectrophotometer in a quartz cell with a 10-mm path length to determine the sample turbidity. As 

neither the polymer nor the surfactant has an adsorption band above 350 nm, the optical density gives a 

measure of the quantity and density of the aggregates suspended in the solution.   

 

 

8.2. PEI/SDS at pH 10 

At high pH, previous studies at static air/water interfaces observed thick adsorbed layers2, 4 or layers 

containing embedded aggregates17 in or close to the phase separation region.  Using the OFC we can 

build on the work of Tonigold et al.17 to further elucidate the effects of aggregate formation in the 

phase separation on dynamic adsorption at the interface, and hence to determine the mechanism by 

which large adsorbed amounts can reach the static interface. Before starting this discussion it is 

important to note that under the conditions used in this experiment PEI is not surface active alone, as 

determined by independent ellipsometry measurements. 

Figure 8.3 (a) plots  ×  as a function of time for five h-PEI/d-SDS/NRW solutions with different bulk 

surfactant concentrations.  ×  is obtained from fits to the recorded specular reflectivity profile using a 

single layer model, as discussed in Chapter 4. As the scattering length of the deuterated surfactant 

(2.76 x 10-3 Å) is much higher than that of a PEI segment (3.76 x 10-5 Å), NR measurements in null-

reflecting water are most  sensitive to the surface excess of the deuterated surfactant. The increase of  

×  with csurf (except at the highest concentration measured) therefore tells us that the surfactant surface 






excess also increases with csurf. However, the values of  ×  for the mixture bare no clear relationship 

to those for of the pure surfactant (marked as coloured dashes next to the y-axis), with  ×  for the 

mixture greater than the pure surfactant at the lowest csurf and lower at the highest csurf. Adsorption is 

not occurring as in a pure surfactant solution.  

 

Figure 8.1. Product of the scattering length density and thickness of the adsorbed layer,  × , obtained from fitting specular 

reflectivity profiles obtained during NR experiments to a single layer model. Data were recorded as a function of time and 

measurements were made at SDS concentrations of 0.05 mM (green circles), 0.1 mM (turquoise squares) , 0.32 mM (yellow  

triangles) , 0.56 mM (red diamonds) and 1 mM (blue inverted triangles) with 100 ppm PEI and 0.1 M NaCl at pH 10 in the 

OFC. The dashed markers down the y-axis denote the value of  ×  for pure SDS and 0.1 M NaCl at the same concentrations.  

The specular reflectivity profiles for these PEI/SDS systems at pH 10 do not exhibit Bragg peaks 

indicative of multilayer adsorption on the OFC or at the static air/water interface of an adsorption 

trough as shown in Figure. 8.2. These data are in keeping with the findings of Penfold et al. who 

showed that multilayer formation is more pronounced with polymers of low molecular weight,2, 4 and 

with the results of Bastardo, who found that PEI/SDS aggregates did not have an ordered structure at 

high pH. These data confirm that the scope of this investigation concerns the effects of bulk aggregates 

on the interfacial properties rather than the reasons for multilayer formation.  
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Figure. 8.2. Specular neutron reflectivity profiles recorded on PEI/SDS at pH 10 at both the dynamic and static air/water 

interfaces. (a) is data recorded on the OFC where the concentration of SDS is 0.56 mM and the isotopic contrast is h-

polymer/d-surfactant/NRW,and (b) is data recorded at the static interface where the concentration of SDS is 0.66 mM and the 

isotopic contrast is h-polymer/h-surfactant/D2O. The data in (b) was kindly donated by R. Campbell and I. Varga.  

Ellipsometry data recorded on five solutions with the same bulk compositions as those measured using 

NR are shown in Figure 8.3. Recall that for a single component solution such as a pure surfactant a 

more negative ellipticity is equivalent to a greater adsorbed amount at the interface. For a mixture such 

as PEI/SDS the sensitivity of ellipsometry to the adsorption of the two components is similar (see 

Chapter 4) and a more negative value of the ellipticity can only be attributed to a change in the total 

adsorbed amount (tot). The ellipsometry data in Figure 8.3 suggests that tot remains relatively 

constant compared to the change in surf indicted by Figure 8.1, until high surfactant concentrations 

where surf no longer increases and becomes less negative. Furthermore,  is significantly more 

negative than the equivalent pure surfactant value or the monolayer value (close to the blue dash) at all 

but the highest concentrations measured, indicating the adsorption of a significant amount of polymer 

or more than a monolayer of surfactant. The latter possibility can be discounted by reference to Figure 

8.1, therefore there must be a significant amount of polymer adsorbed at the interface.  

The ellipsometry data for all of the solutions shown in Figure 8.3 exhibit both spikes and drifts in the  
values. The spikes are likely to originate from large polymer/surfactant aggregates passing through the 

refracted laser beam. Drifts with time, also seen in the  ×  data from NR in Figure 8.1, are probably 

due to small changes in pH of the solution due to CO2 absorption. 

 
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Figure 8.3. Ellipticity, , recorded as a function of time for five PEI/SDS solutions with identical compositions to those 

measured using NR in Figure 8.1. These are SDS concentrations of 0.05 mM (green), 0.1 mM (turquoise) , 0.32 mM (yellow ) 

, 0.56 mM (red) and 1 mM (blue) with 100 ppm PEI and 0.1 M NaCl at pH 10 in the OFC.  The black dashed line indicates 

the ellipticity of pure water or of PEI and NaCl, which has the same ellipticity. The coloured dashes down the right hand side 

of the figure show the ellipticities of pure SDS solutions containing the same concentrations of SDS.  

The interfacial compositions of PEI/SDS solutions on the OFC, calculated by co-modelling the NR and 

ellipsometry data from Figure 8.1 and Figure 8.3 using the approach discussed in Chapter 4, are shown 

in Figure 8.4 (a), along with the data for pure SDS. poly is highest at the lowest csurf despite the lack of 

inherent surface activity of the polymer, which implies that polymer is present at the interface solely 

due to its interaction with adsorbed surfactant. From Figure 8.4 (a), there appear to be two distinct 

regions of behaviour with a transition between 0.32 and 0.5 mM. At low csurf the total surface excess is 

constant and the surfactant excess is increasing, whilst the polymer excess decreases slightly. At higher 

csurf, the surfactant excess is constant and the polymer excess is decreasing.  

The optical density of the samples in Figure 8.4 (b) also undergoes a transition at intermediate 

surfactant concentrations from clear to turbid samples, as marked by the vertical dashed line. Changes 

in the optical density of the solution are indicative of changes in the bulk phase behaviour, and 

increasing optical density is indicative of aggregation in the bulk phase. On the right side of the 

boundary the polymer/surfactant complexes have aggregated either during mixing because of the local 

concentration gradients generated, or they have a lack of colloidal stability due to their low surface 

charge. This vertical line is extended upwards into Figure 8.4 (a) where it appears to mark the 

transition between the two distinct regions of adsorption behaviour mentioned above.  
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Figure 8.4 . (a)  Surface excesses of pure SDS (red squares), SDS in a mixture with PEI at pH 10 (green triangles) and PEI in 
the same mixture (blue squares) and (b) Optical density at 450 nm of several mixtures of PEI/SDS at pH 10. In panel (a) the 
red line serves simply as a guide to the eye, the blue arrow on the right hand side denotes poly,max adsorbed under diffusion 
control, and the vertical dashed line denotes the point at which turbidity increases above 0.01 . 

At the lowest csurf values, polymer adsorbs at close to its estimated diffusion controlled limit, as 
denoted by the blue arrow in Figure 8.4 (a). This estimate of the maximum possible amount of PEI 

which can adsorb under diffusion control is obtained (as previously) from   
    in the 

situation where cs, the subsurface polymer concentration is zero, and at low csurf values  is estimated to 
be close to the pure water value of 0.5 s-1.  The diffusion coefficient is estimated to be D = 1 × 10-11 
m2s-1 from the hydrodynamic radius reported by Mezei et al.10, 11 and the stokes Einstein equation 




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(  where kB is the Boltzmann constant, T is the temperature, and  is the solution 
viscosity).  

As csurf is increased below the vertical dashed line in Figure 8.4, poly decreases below the maximum 

value it can reach under diffusion control. A decrease in polymer adsorption with increasing surfactant 

coverage was observed for the weakly interacting systems PEO/C14TAB and PEO/SDS on the OFC in 

Chapter 5, and was attributed to competitive adsorption of the two components at the air/water 

interface.23 In a competitive adsorption model, inhibition of the adsorption of one component coincides 

with increased adsorption of the other.  However, it is probable that the decrease in poly in this region 

is simply due to increases in the surface expansion rate with increasing surfactant adsorption. The 

progressive formation of polymer/surfactant complexes in the bulk solution in this region (before the 

phase boundary) will decrease the chemical potential of the polymer, reducing the driving force for it 

to adsorb to the surfactant monolayer. This will result in an increased subsurface polymer 

concentration, which from the equation above will decrease the polymer surface excess.  

As csurf is increased further between 0.3 and 1 mM SDS poly drops steeply, from 7.3 to 2.5 µmol m-2. 

This drop in polymer adsorption occurs when csurrf is in the region of the vertical dashed line in Figure 

8.4. If we consider that at pH 10 around 6% of the PEI monomers are charged, this equates to around 

0.14 mM of charged monomers for a 100 ppm solution. At csurf values slightly above 0.14 mM, charge 

equivalence, we would expect that PEI/SDS complex formation will be complete, however the 

measured charge neutralisation point will be at a slightly higher csurf due to co-operative binding in this 

system. Further surfactant added to the bulk solution once complex formation is complete will be in the 

form of free surfactants (as seen for other systems in Chapters 6 and 7). From the work of Meszaros et 

al. we would expect that aggregation of complexes would occur once complexation is complete due to 

the formation of an unstable colloidal dispersion of particles.8, 10-12 We therefore attribute both the 

sharp drop in poly and the simultaneous increase in turbidity of the system at intermediate csurf values to 

the formation of polymer/surfactant aggregates in the bulk solution which cannot diffuse to the 

interface of the OFC on the timescale of surface expansion.  

In the same csurf region as the sharp decrease in poly (between 0.3 and 1 mM SDS), the change in surf 

is small, increasing from 2.0 to 2.4 mol m-2, whilst the surface excess of the pure surfactant almost 

doubles. Bulk aggregation of polymer/surfactant complexes will remove surfactant from the liquid 

phase, hence we would expect surf to decrease in the aggregation region. However, the concentration 

of free surfactant molecules in solution will increase with csurf once complexation is complete, and this 

will increase the amount of surfactant which can adsorb at the interface. From Figure 8.4 it appears that 

these two effects effectively cancel each other out, and the surfactant surface excess stays relatively 
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constant. Furthermore, the surface expansion rate (for which we do not have data) will change in this 

region due to the aggregation of complexes, which will also affect surf. Although the effects of bulk 

phase aggregation dominate the adsorption behaviour in this region, we do not observe a simple 

correlation between aggregate formation and surf. 

Formation of large bulk phase aggregates in mixtures of PEI and SDS at pH 10 limits the amount of 

both polymer and surfactant which can adsorb at the interface of the OFC in the phase separation 

region, although free surfactant adsorption can also occur. Tonigold et al. showed that these bulk phase 

aggregates can reach the static air/water interface,17 which we would not necessarily expect from our 

data on the OFC, as aggregates on the nm scale would not be expected to adsorb to an expanding liquid 

interface on the sub-second timescale of the OFC due to their slow diffusion to the subsurface. If we 

consider the recent work of Campbell et al. however,20 it is possible that the bulk phase aggregates may 

reach the static air/water interface due to transport under gravity, i.e. they are less dense than the 

solution. Examination of the adsorption of PEI and SDS at the static interface is outside the remit of 

the work performed in this thesis, however the hypothesis of aggregates which deplete the system of 

polymer/surfactant complexes but can float to the static air/water interface could explain both our data 

on the OFC and those of Tonigold et al.17 and Penfold et al.2, 4 at the static air/water interface, and this 

is currently under investigation by Campbell and Varga.  

 

 

8.3. PEI/SDS at pH 4 

For PEI/SDS mixtures at low pH, the proportion of protonated amine groups is much greater than at 

high pH (an increase in charge density from 5% to 68% from pH 10 to pH 4),14 resulting in a stronger 

electrostatic interaction between PEI and SDS. A stronger interaction causes more surfactant to bind to 

the polymer, and increases the favourability of aggregate formation even in the pre-precipitation region 

when gentle mixing methodologies are employed.10, 11 At the static air/water interface, lower adsorbed 

amounts were observed at low pH than at high pH.2, 4, 17 If we link together the increased favourability 

of aggregation and the lower adsorbed amounts at the static interface we would expect to see that the 

formation of bulk aggregates limits the adsorbed amount on the OFC to a greater extent at pH 4 than at 

pH 10, unless another adsorption mechanism is in action.  

Turbidity measurements in Figure 8.6 (a) show that at pH 4 the solution becomes turbid at lower csurf 

values than at pH 10 (0.2 mM and 0.5 mM respectively); bulk aggregation occurs at lower surfactant 
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concentrations. Figure 8.6 (b) shows the  ×  values obtained from NR data for several PEI/SDS 

mixtures at pH 4. For all of the solutions measured,  ×  decreases with time despite the fact that CO2 

has no effect on the polyelectrolyte charge density at pH 4 and therefore cannot be responsible for the 

time dependence. This situation is quite different to the almost constant values of  ×  recorded at pH 

10 (Figure 8.4). On the OFC, with a steady state expanding interface of < 1 s, changes in the adsorbed 

amount as a function of time must be attributed to changes in the bulk solution, as we have seen 

previously for the PSS/CnTAB systems in Chapters 6 and 7. As discussed above, the negligible neutron 

scattering length density of PEI compared to d-SDS means that to a first approximation  ×  can be 

assumed to represent the surfactant surface excess. We therefore conclude from Figure 8.6 that surf 

decreases as a function of time for all of the compositions measured. The most logical explanation is 

that surf decreases due to the slow formation of bulk aggregates which cannot adsorb at the interface 

on the OFC timescale.  

 

Figure 8.5. Optical density at 450 nm of PEI/SDS at pH 4 as a function of surfactant concentration recorded immediately 

after mixing. The vertical dashed line denotes the point at which turbidity increases above 0.01.  

If we consider the turbidity and  ×  data together it becomes clear that time dependence in  ×  is 

seen even when the solution is clear, which is outside the equilibrium phase separation region hence in 

an equilibration context we would expect no aggregation to occur. However, previous studies have 

shown that kinetically trapped aggregates can form even outside the phase separation region in 

PEI/SDS mixtures at pH 4 due to the concentration gradients present during mixing.10, 11, 17 

Furthermore, the formation of such kinetically trapped aggregates is favoured when gentle mixing is 

used, as it is here.11 The flow system of the OFC continuously gently stirs the solution, and this may 

lead to the kinetically trapped aggregates formed on mixing acting as nucleation sites for further 
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aggregation under non-equilibrium flow conditions. The resulting loss of small bulk complexes into 

large aggregates may explain the reduction in surf with time due to the slow diffusion of large 

aggregates.    

 

Figure 8.6. NR data (shown as the fitted quantity  x  ) as a function of time for 0.05 mM (green), 0.1 mM (turquoise) , 0.32 

mM (yellow) , 0.56 mM (red) and 1 mM (blue) SDS with 100 ppm PEI and 0.1 M NaCl at pH 4.  

The rate of decrease in  ×  due to time dependent aggregation varies with the bulk surfactant 

concentration as shown in Figure 8.6. As aggregation progresses, the concentration of surface active 

species will decrease, which will in turn affect the aggregation rate. At low bulk surfactant 

concentrations the decrease in surf due to bulk aggregation is observed immediately as the remaining 

concentration of free surfactant in the system is not sufficient to maintain surf at the same value. At 

high surfactant concentrations, there is a time-lag before the start of the reduction in  ×  as the 

interface is initially saturated with surface-active material; the surface excess remains constant until the 

bulk solution becomes sufficiently depleted of monomers and small complexes that adsorption 

becomes diffusion-limited.  

In Chapters 6 and 7 for PSS/CnTAB mixtures bulk aggregation led to decreased adsorbed amounts of 

both components (unless the concentration of free surfactant was high). In order to determine the effect 

of aggregation on interfacial adsorption for PEI/SDS at pH 4 we initially sought to co-model the NR 

and ellipsometry data (Figure 8.6 and Figure 8.7 respectively). However, in contrast to all of the 

ellipsometry data presented in this thesis up to this point, the ellipsometry data recorded on PEI/SDS at 

pH 4 fluctuate wildly and do not approach a steady-state even after several hours, as shown in Figure 

8.7. It is clear from the high standard deviation of these data that it would be quite impractical to 
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proceed with our co-modelling approach to determine the composition of the adsorbed layer. The 

ellipsometry data would need to be averaged in order to do so, and the method used to average the data 

would be arbitrary in the absence of a physical understanding of the processes occurring. Furthermore, 

NR and ellipsometry measurements on these systems are likely to have different sensitivities to the 

material at the interface if bulk aggregates are present in the interfacial layer, due to the fact that their 

diameter is much greater than the thin film limit, and co-modelling the data does not take this into 

account. Consequently, we will not attempt to co-model the data in Figure 8.6 and Figure 8.7, however 

instead we will undertake a thorough investigation of the reasons for the fluctuations in the 

ellipsometry data.  

 

Figure 8.7. Ellipticity, , of PEI/SDS at pH 4 at (a) 0.05 mM (turquoise) and 0.1 mM (green) and (b) 0.32 mM (purple), 0.56 

mM (red) and 1 mM (blue) SDS. All measurements made in the presence of 0.1 M NaCl and shown in two separate panels for 

clarity.  

The first important point to notice about the fluctuations in the ellipsometry data in Figure 8.7 is that 

they occur within well defined upper and lower limits. The lower coverage bound is close but not equal 

to zero, indicative of an almost but not quite bare surface. A low concentration of free molecules could 

account for this value. The upper coverage limit in  of around -2.5 x 10-3 is much higher than that 

corresponding to an SDS monolayer,  ≈ -0.8 x 10-3, suggestive of a large total adsorbed amount 

including polymer at the interface. 

In order to compare this value with the data of Tonigold et al.,17 who’s ellipsometry data were constant 

over a wide range of csurf for this system, we first need to convert the measured values of  from the 

work of Tonigold et al. to values of . As the values of  are not given in the work of Tonigold et al. 

due to the insensitivity of the parameter at the air/water interface we cannot use the equation  
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 to obtain . Instead we can convert  to , the ellipsometric thickness using the following 

relationships,24 

                 (8.1) 

Where  is a function which depends only on the bulk properties (the refractive indices of air, 1, 

and water, 1.33) and the angle of incidence of the ellipsometry measurements  = 53.1° 

  


       (8.2) 

 is then converted into  using Equation 2.19, repeated here for clarity: 

  
 



            (8.3) 

where 1 and 2 are the relative permittivities of air and water, and  is the wavelength of light.  

The minimum value of for PEI/SDS at pH 4 corresponding to the largest surface excess at the static 

air/water interface from the work of Tonigold is then -2.5 x 10-3, which is very close to the lower limit 

of the spikes in   in Figure 8.7. 

For all five solutions measured, the proportion of measured  values corresponding to high coverages 

decreases with time, with more values falling near to the pure water value at long times. This upward 

trend in values mirrors the decrease in  ×  obtained by NR measurements which average over both 

temporal and spatial inhomogeneities in Figure 8.6. Interestingly, for the 0.32 and 0.56 mM SDS 

solutions the initial value of  is relatively stable at around 80% of the minimum in  (maximum 

coverage), although fluctuations quickly develop. With time the upper and lower limits of the 

fluctuations increase for both systems, until the entire  range stated above is covered. For the 1 mM 

system  remains relatively constant at a value below the minimum in (maximum coverage) for the 

other systems, but even for this solution there were some sharp spikes in the ellipticity.  Although the 

data cannot be co-modelled over the whole time range measured due to the fluctuations in , for the 

higher csurf systems the relatively constant initial values of enable us to co-model the data in this 

region with the initial values in Figure 8.6. The resultant surface compositions are surf  = 2.4 – 2.7 

µmolm-2, and poly = 13 µmolm-2 for the 0.32 and 0.56 mM systems decreasing to 11 µmolm-2 at 1 mM 

SDS. These surf values are not dissimilar to those seen for the system at pH 10 in Figure 8.4, however 

the poly values exceed the calculated maximum diffusion controlled values given above, which is not 

possible for polymer transported to the material in the form of polymer molecules. This reminds us that 
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we need to understand the origin of the spikes in the ellipsometry data before we co-model the data for 

this system. 

I will now consider and discuss the plausibility of five possible explanations for the fluctuations in the 

ellipsometric data for the PEI/SDS systems at pH 4. The first possibility is that the fluctuations are 

caused by bubbles in the solution which are stabilized by the polymer and surfactant. The second is 

that bulk aggregates pass through the laser beam at the interface scattering light. The third is that bulk 

aggregates transported to the interface by diffusion and/or convection remain intact at or near the 

interface, and the recorded ellipticity would be an average of the aggregate and monolayer values. The 

fourth is that bulk aggregates adsorb directly to the interface and rearrange to form multilayer 

structures analogous to those found at high pH in the NR experiments of Penfold et al.  The fifth and 

final possibility is that aggregates reach the interface, and that the a combination of the expanding 

interface and the resultant local surface tension causing Marangoni effects causes the aggregates to 

spread laterally across the interface to form patches of monolayer thickness.   

 

Figure 8.8. Ellipticity, , of PEI/SDS at pH 4, (a) The turquoise data is the last 10 minutes from the 0.1 mM PEI/SDS at pH 4 

shown in figure 4. The blue data is the same solution filtered through 25 m filter paper (Whatman grade 4), and the red is 

filtered through 2.5 m filter paper (Whatman grade 5).(b) Colours correspond to the same processes as in (a), but the SDS 

concentration is 1 mM 

First, in order to assess whether the fluctuations in  resulted from aggregates or bubbles, two of the 

solutions from Figure 8.7 were filtered through a 25 µm filter and then a 2.5 µm, and the ellipticity on 

the OFC was re-measured after filtering (Figure 8.8). For the PEI and 0.1 mM SDS system (Figure 8.8 

(a)) removal of micron sized bulk species eliminates the downward spikes in the ellipsometry data. For 

the PEI and 1 mM SDS solution, removal of micron-sized species results in the appearance of many 
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more upward spikes in . Micron sized bubbles are generated in the flow system and cannot be 

removed by filtration, furthermore bubbles are present in other polymer/surfactant mixtures which do 

not exhibit spikes in . We can therefore discount bubbles as the primary cause of the fluctuations in 

the ellipsometry data, instead attributing them to the presence of micron sized aggregates in solution.  

The next possibility is that aggregates in the flow system pass through the laser beam, scattering light 

and resulting in random perturbations of the ellipsometry signal. As ellipsometry measures the change 

in the polarisation of the reflected beam rather than its intensity, we would not expect light scattering 

by particles to have a major effect on the measured ellipticity.  Nevertheless, to conclusively eliminate 

this possibility we recorded ellipsometry measurements on solutions containing 100-nm and 5-m 

diameter silica particles in the OFC.  No spikes were observed with either system and  remained 

within experimental error of the value for pure water. Therefore we can discount this possibility as 

well.  

The third possibility is that aggregates remain intact at the surface or in the near surface region, and 

rather than scattering light they give rise to coherent reflections which are averaged with those of the 

surrounding monolayer leading to temporal fluctuations. In order for these aggregates to result in only 

negative spikes in rather than spikes in both directions they will have to be within a defined size 

range.  

We have simulated the response of  to the presence of a layer of PEI/SDS at the interface using the 

Film Wizard software,25 an optical matrix model of stratified interfaces (Figure 8.9). PEI/SDS 

aggregates have been shown by Bastardo et al. to be lamellar with a d-spacing of 37 Å15. To calculate 

the refractive index of the aggregates we need an estimation of the bilayer thickness in the lamellae. 

For an SDS monolayer NR measurements made as part of this thesis give a layer thickness of 11 Å. 

Although previous studies have used thicker layers of around 18 Å,26 such a layer structure was not 

compatible with our experimental data. The thickness of the SDS bilayers in the lamellae may then be 

taken as 22 Å, resulting in a volume fraction of SDS in the aggregates, SDS, of 0.595. This equates to 

a number of moles of SDS in the layer, from which the number of moles of PEI monomers can be 

calculated, as at pH 4 67% of the PEI monomers will be associated with an SDS molecule. This allows 

us to calculate a volume fraction of PEI in the layer of PEI = 0.159, and the volume fraction of water 

H2O is then 0.246. The refractive index of the aggregates, nagg than then be calculated from  

                   (8.4) 

where nH2O = 1.331, nPEI = 1.52,27, 28 and nSDS is calculated from the refractive index increment dn/dcSDS 

=0.1195,29 and the density of SDS, SDS, calculated from Vm = 403Å3 30, 31  =0.1094 gcm-3 as nSDS = 
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1.46. The refractive index of the aggregates, nagg, can then be used to simulate the effect of the layer 

thickness, d, on the measured ellipticity , resulting in Figure 8.9.  

 
Figure 8.9. Simulation of  at the Brewster angle for light of  = 632.8 nm interacting with an air/water interface with a layer 

n = 1.4415 and a subphase n = 1.331 with respect to the layer thickness d. Details of the simulation are given below.  

The ellipsometric response to layer thickness in Figure 8.9 varies sinusoidally, with a periodicity of 

260 nm.  Note that  not only takes on values much larger than the experimental readings but also has 

positive values for patches between 130 and 260 nm in thickness, and negative values for patches 

between 260 and 390 nm in thickness etc. From the filtration experiments discussed above (Figure 8.8) 

it is clear that the aggregates are polydisperse, and can be more than 25 µm in diameter. If such 

polydisperse aggregates were at the interface, the fluctuations in  would be both positive and negative 

and have larger values than those in Figure 8.7. We can therefore conclude that the delivery of intact 

aggregates by convection, and the coherent averaging of the monolayer and the aggregates by 

ellipsometry is not the correct mechanism to explain the spikes in the data. The fact that the data all fall 

within tight boundaries, points to the presence of intermittent patches of material at the interface with a 

well-defined thickness.  

The fourth possibility is that aggregates which reach the interface rearrange to form patches of a 

lamellar structure. If these patches had a range of sizes and thicknesses similar to the polydispersity of 

the bulk aggregates again fluctuations which are both negative and positive would result as predicted 

by Figure 8.9. In order for patches of multilamellar structures to give rise to the data in Figure 8.9 they 

would need to consistently have a thickness < 130 nm. In order for polydisperse aggregates with 

diameters which may exceed 25 µm to supply such thin patches they would have to rearrange on the 

timescale of the OFC. Such a rearrangement was just possible for single polymer molecule/micelle 
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complexes on the nanometer scale of PSS/C12TAB in Chapter 6, but it will clearly not be possible for a 

multi-polymer multi-micelle aggregate on the scale of many microns in this PEI/SDS solution. We can 

therefore exclude the possibility of aggregates rearranging to contribute multi-lamellar patches at the 

dynamic interface.  

Finally we consider the situation where aggregates reach the surface by convection and are broken up 

and low surface tension material is spread laterally across the surface aided by Marangoni flows, 

resulting in the presence of intermittent patches which have a thickness corresponding to a 

polymer/surfactant layer. At high aggregate concentrations, these patches merge to form a continuous 

layer. Such a mechanism would be consistent with the fact that all the ellipsometry data recorded fall 

between well-defined boundaries corresponding to low coverage and almost full monolayer coverage 

respectively. To test this hypothesis, we recorded data with different data acquisition rates of 1 s (as 

above) and 0.1 s, as shown in Figure 8.10. If the convection/spreading mechanism were responsible for 

the spikes then data sampled at a faster rate would be expected to fall within the same boundaries of 

surface coverage, whereas if the rate of data sampling were limiting the range of values (i.e. 

fluctuations were being averaged as a result of the acquisition time being considerably greater than the 

frequency of the discrete events) then data sampled on a shorter timebase would be expected to have 

more extreme limiting values of . 

 

Figure 8.10. (a)  recorded at a sampling rate of 1 s (as elsewhere in this study; red line) and 0.1 s (blue line) for PEI/SDS 

mixtures at pH 4 where cSDS =0.1 mM. The data in panel (a) are offset vertically from each other for clarity. (b) Histogram of 

the data recorded at a sampling rage of 0.1 s from panel (a) in bins of width 0.0001 in , which shows the frequency of 

occurrence of a given value of  recorded over 1 min (600 data points in total). In both panels the dashed line indicates the 

pure water value, which corresponds to an empty interface, and the dotted line corresponds to the maximum coverage value -

2.5 × 10-3 as calculated above from the work of Tonigold et al.17 

 
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Data acquired using a shorter timebase exhibit fluctuations between the same limiting values as those 

acquired on a lower timebase.  It is therefore clear that the occurrence of limiting values is not an 

artefact of the averaging of many events on the timescale of the measurements. Figure 7 (b) presents a 

histogram of the data recorded in Figure 8.10 (a) with the fast sampling rate. Figure 7 (b) shows that 

the optical excess of measured by ellipsometry is at one of the two limits for around 90% of the time, 

with only a small number of data points falling at intermediate values.  The majority of the data points 

fall close to the values related to low and high interfacial coverages of a thin adsorption layer of 

polymer and surfactant at the interface (as calculated above by comparison to the work of Tonigold et 

al.17). We interpret the intermediate spikes as arising during moments of partial coverage, i.e. from 

domains (or holes). As a plausibility check, a domain the size of the laser spot that has a thickness of 2 

nm contains the same amount of material as a spherical aggregate with a diameter of 10 µm, which 

falls in the size range that we have shown (Fig 5) to be responsible for the spikes in the surface excess.  

Now that the underlying mechanism which supplies material to the interface of the OFC from PEI/SDS 

mixtures at pH 4 has been determined, I will briefly return to the ellipsometry data in Figure 8.7 to 

discuss how this mechanism explains the changes in the ellipsometry observed with increasing csurf. At 

low surfactant concentrations (Figure 8.7 a) such as 0.1 mM SDS, the bulk composition is on the edge 

of the phase separation region and the concentration of aggregates in solution is low. Despite this there 

are initially many negative spikes in the data due to discrete ‘events’, defined as polymer/surfactant 

aggregates delivering a monolayer of material across the interface after they reach the interface by 

convection and re-organise. The number of these ‘events’ decreases with time as aggregation 

progresses and large aggregates form in solution which cannot reach the interface of the OFC. 

Filtration (Figure 8.8 a) also decreases the quantity of aggregates, further reducing the frequency and 

magnitude of the spikes.  

For the sample at 1 mM SDS, the system is well inside the phase separation region (close to the charge 

neutrality point of the system) and the concentration of aggregates in solution is much higher. As a 

consequence the number of ‘events’ is so high that the resultant interfacial coverage is almost constant 

on the timescale of the measurements (Figure 8.7 b). This coverage has been calculated to equal that of 

a PEI/SDS monolayer at the static air/water interface by reference to Tonigold et al.17 Bulk aggregation 

with time and filtration reduce the quantity of aggregates in the bulk solution, but the number of 

aggregates is so large, and they are so polydisperse, that only occasional, intermittent reductions in the 

coverage occur. At 0.32 and 0.56 mM the initial aggregate concentration is lower than at 1 mM, and 

progressive aggregation decreases the concentration of aggregates which can reach the interface to the 

extent that the number of ‘events’ decreases significantly with time and spikes form. 
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Although we have determined the mechanism for interfacial adsorption for PEI/SDS mixtures at pH 4 

which is consistent with all of the data for these systems, one key question remains: why is this 

mechanism predominant at pH 4 but not at pH 10?  Possible answers to this question can be obtained 

from a consideration of the effect of the higher polymer charge density at pH 4 on the bulk and 

interfacial behaviours of the systems. Firstly, at pH 4 the concentration of both equilibrium and 

kinetically trapped aggregates in solution is significantly higher than at pH 10. Secondly, a much larger 

amount of surfactant is bound to each polymer molecule at low pH making the aggregates more 

hydrophobic. Thirdly, the internal structure of the aggregates is more ordered at pH 4 than pH 10 as 

demonstrated by Bastardo et al.14, 15 Any of these factors could be key to the difference in mechanisms 

at different solution pHs, although there may also be other considerations such as film elasticity or the 

dynamics of the complex dissociation. Evidently it will take a systematic assessment of the probability 

of the occurrence of this mechanism in a range of polymer/surfactant systems which have varying 

aggregate concentrations, compositions and structures in order to assess its significance to 

polyelectrolyte/surfactant systems in general 

In Chapters 6 and 7, time dependent decreases in the total surface excesses for the PSS/CnTAB systems 

were attributed to bulk aggregation, whilst for PEI/SDS at pH 4 aggregates can reach the interface by 

convection and intermittently spread patches of a thin layer of nanometer thickness by Marangoni 

flow. The simplest explanation of this difference in behaviour is that bulk aggregates can only 

supplement the coverage by this mechanism if they are present (or form) in a large number in a region 

where the amount of molecular material which adsorbs at the interface is very low. This effect would 

be expected to be greatest in the region of charge neutrality and at long timescales where the majority 

of the material is in bulk aggregates and the concentration of molecular material is small. However, 

measurements at long times in the region of charge neutrality for the PSS/CnTAB systems did not 

exhibit spikes in the ellipsometry data, despite the fact that for mixtures of PSS and C16TAB the 

surface coverage of molecular species after bulk aggregation was low. This suggests that a low 

concentration of molecular species is not crucial to the occurrence or otherwise of this mechanism, 

which in turn suggests that the structure of the aggregates or the material at the interface is decisive.  
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8.4 Conclusions 

The study of the interfacial properties of PEI/SDS mixtures at the dynamic interface of the OFC has 

demonstrated how bulk aggregate formation can have very different effects on the dynamic adsorption 

behaviour when the polymer charge density is altered by pH variation. Bulk aggregation occurs to a 

significant extent in PEI/SDS at both high and low solution pHs, although kinetically trapped 

aggregates can also form on mixing at low surfactant concentrations outside the phase separation 

region at pH 4. Nevertheless, the effects of aggregation on the dynamic adsorption at the air/water 

interface change significantly with solution pH; at pH 10 bulk aggregate formation probably depletes 

the solution of material which can adsorb on the OFC timescale, whereas at pH 4 aggregates 

supplement the interfacial mechanism b a convection and spreading mechanism. 

At pH 10 the formation of bulk aggregates depletes the solution of free surfactant, free polymer, and 

small polymer/surfactant complexes which can otherwise diffuse to the sub-surface and adsorb at the 

interface on the timescale of the OFC. Furthermore, the concentration and hence the effect of 

aggregates increases with bulk surfactant concentration; at high bulk surfactant concentrations the 

polymer surface excess is small. This behaviour is very similar to that observed for the PSS/CnTAB 

systems in Chapters 6 and 7, and follows the predicted effect of bulk aggregation on dynamic 

interfacial adsorption. Nevertheless, this behaviour is contrary to that observed at the static air/water 

interface, where high adsorbed amounts were recorded in or near the phase separation region. The most 

likely explanation of this is that aggregates which cannot reach the interface of the OFC can reach the 

static air/water interface either by surface self-assembly or under gravity and contribute to an observed 

high adsorbed amount.  

At pH 4 the effects of bulk aggregation on the dynamic interfacial behaviour are much more 

complicated. A dynamic aggregation process occurs in the bulk solution over several hours, leading to 

a reduction in the surface excess of surfactant similar to that observed at pH 10 due to the decreasing 

concentration of small species in solution. However, in this system the aggregates can also reach the 

interface by convection where they reorganise and spread material across the surface in the form of 

patches of polymer/surfactant thin film by Marangoni flows. If the number of aggregates arriving at the 

surface on the timescale of surface expansion is relatively low, and if the interfacial coverage from 

adsorption of monomeric species is low, then discrete events are seen as fluctuations in the 

ellipsometry signal. If the concentration of aggregates in the solution is sufficiently high the number of 

events is much larger, and the interface can become saturated with material supplimented by 

aggregates. This mechanism is caused by some or all of the following factors: a high number density of 
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aggregates, a low surface coverage from the adsorption of monomeric species, and the structure or 

order of the aggregates.  

The dynamic adsorption mechanism determined in this chapter for the PEI/SDS system at pH 4 is 

remarkably different to the mechanism which we would previously have predicted to occur in an 

aggregating polymer/surfactant mixture. The discovery of this adsorption mechanism may have wide 

ranging implications for the preparation and use of formulations containing mixtures of polymers and 

surfactants in which phase separation occurs. Furthermore, it suggests that there is a clear need to 

develop the current models of adsorption from polymer/surfactant mixtures under non-equilibrium 

conditions to account for the effects of aggregates such as those in the PEI/SDS system at pH 4, as well 

as to account for the disparity between the dynamic and static adsorption behaviour in the PEI/SDS 

system at pH 10. 
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Chapter 9. Conclusions & Future Work 

The work presented in this thesis had three initial aims; to commission and install an OFC on FIGARO 

at the ILL, to develop a method of determining the interfacial composition of adsorbed 

polymer/surfactant layers composition of an adsorbed layer by co-modelling data from NR and 

ellipsometry, and to examine the adsorption kinetics of several systems on the OFC using this co-

modelling approach.  

Installation of the OFC on FIGARO involved several refinements to the standard system. The main 

two refinements made were moving the cylinder closer to the final collimation slits in order to reduce 

the effects of gravity on the measured data, and the installation of a pump cut-out mechanism in order 

to prevent floods in aggregating systems. The OFC is now a standard sample environment on FIGARO 

which is offered to external users. We have already attracted one external user, and will surely attract 

interest from the wider academic and industrial communities in the coming years.  

In this thesis I have presented work on the development and validation of a new quantitative 

methodology for obtaining the composition of the adsorbed layer at the air/water interface from 

mixtures of polymers and surfactants. The approach involves co-modelling neutron reflectivity data 

recorded on only one isotopic contrast – hydrogenated polymer with deuterated surfactant in NRW – 

with optical data from ellipsometry. The measured quantities from the two techniques can be related to 

the surface excesses of both components by use of a pair of simultaneous equations. For a given 

polymer/surfactant system, the function used in the ellipsometry calculation can have a significant 

effect on the calculated polymer surface excess, nevertheless I have shown that our approach could be 

used on systems for which no calibration function is known. For the systems examined in this thesis 

our co-modelling approach has been shown to be more sensitive to the adsorption of polymer than NR 

measurements on multiple isotopic contrasts in the absence of deuterated polymer, a significant 

advancement both in terms of saving beamtime and in increasing the quality of the science, which will 

be useful for other studies in this field. By examining interfacial composition data obtained using our 

co-modelling approach recorded on the OFC and surface expansion rate data from LDV measurements 

I have determined the adsorption mechanism in action in several polymer/surfactant systems.  

The first polymer/surfactant mixtures to which our co-modelling approach was applied were the model 

systems containing non-ionic polymer PEO with either C14TAB or SDS (in the presence of 0.1 M inert 

electrolyte). In both systems competitive adsorption is the dominant mechanism which determines the 
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dynamic surface excesses. This mechanism limits the surface excess of surfactant at low surfactant 

concentrations, but leads to the increased inhibition of polymer adsorption as the surfactant 

concentration is increased. The primary difference between the two systems is that for PEO/C14TAB 

PEO adsorption becomes prevented at intermediate surfactant surface excesses, whilst for PEO/SDS 

polymer continues to adsorb at the interface when the surface excess of surfactant is high, even 

adsorbing at the cmc of the mixture. We have shown by quantitatively modelling the adsorption 

kinetics of the PEO/SDS system that PEO is only inhibited from adsorbing at the interface when a full 

surfactant monolayer adsorbs.  We attribute the adsorption of PEO at high surfactant coverages in the 

PEO/SDS system to favourable interactions between the polymer and surfactant at the interface, which 

do not occur in PEO/C14TAB.   

The oppositely charged mixture containing PSS and C12TAB displayed quite different behaviour to the 

PEO/surfactant mixtures, with both components adsorbing synergistically at the interface over a wide 

range of bulk surfactant concentrations. In this system, and other strongly interacting 

polymer/surfactant mixtures, polymer/surfactant complexes form in the bulk solution at low bulk 

surfactant concentration and this affects both the mass transport and adsorption in the system. Initial 

attempts at developing a model of the adsorption kinetics of this system have demonstrated that there is 

a barrier to the adsorption of polymer, which are attributable to a combination of slow complex break-

down and steric barriers to adsorption. Nevertheless, the surface excess of polymer increases with 

polymer concentration and decreases with polymer molecular weight as we would expect if adsorption 

were controlled by mass transport of molecular species and complexes. Further work on the adsorption 

kinetics model for this system is required to elucidate the adsorption mechanism.  

At high bulk surfactant concentrations time dependent aggregation of polymer/surfactant complexes 

occurs in some of the PSS/C12TAB mixtures containing high concentrations of polymer. 

Polymer/surfactant aggregates which form in the bulk solution are too large to reach the interface of 

the OFC by diffusion on the timescale of surface expansion. Surface active material is therefore 

sequestered in aggregates and the bulk solution is depleted of surface active monomers and small 

complexes, reducing the dynamic surface excess. For PSS/C12TAB this results in a decrease in the 

polymer surface excess as polymer becomes progressively sequestered in aggregates. However due to 

the high surfactant concentration at which aggregation occurs in the PSS/C12TAB system, the 

concentration of free surfactant molecules is high and hence the surfactant surface excess is minimally 

affected by aggregation.  

In mixtures of PSS and longer chain CnTAB surfactants, C14TAB and C16TAB, aggregation occurs in 

the region where that all of the polymer molecules are calculate to be complexed with a surfactant 
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micelle, as this causes the complexes to lose their colloidal stability. Aggregation did not occur in this 

region for the PSS/C12TAB system as the complexed micelles were too small to neutralise the polymer 

molecules. In the PSS/C14TAB and PSS/C16TAB systems the micelles are larger, and complexation 

almost neutralises the polymer molecule. Addition of small amounts of surfactant increases the micelle 

size, neutralises the complexes, and causes aggregation to occur over a range of surfactant 

concentrations and over a period of time. Aggregation progressively removes all of the 

polymer/surfactant complexes and free polymer molecules from the solution, until they no longer 

influence adsorption at the interface. Once aggregation has reached completion, further increases in the 

bulk surfactant concentration principally increase the concentration of free surfactant molecules and 

hence the surfactant surface excess, whilst the polymer surface excess remains at zero. Our 

examination of the PSS/CnTAB systems demonstrates that the bulk phase behaviour and adsorption 

kinetics of polymer/surfactant mixtures are inextricably interlinked, and that understanding of the bulk 

phase behaviour will be required in order to predict the adsorption kinetics in other polymer/surfactant 

systems.  

Examination of the dynamic adsorption behaviour of mixtures of PEI and SDS at high and low pHs 

(low and high charge densities respectively) demonstrated that the effects of bulk aggregation in terms 

of bulk and interfacial depletion are not always as simple the PSS/CnTAB systems suggest. Although 

aggregation occurs in PEI/SDS mixtures at both high and low pHs, it has very different effects on the 

dynamic adsorption behaviour in the two systems. At high pH aggregation depletes the system of 

surface active material, and polymer adsorption becomes limited, similar to the behaviour of the 

PSS/CnTAB systems. However, at low pH aggregates reach the interface by convection, where they are 

spread across the surface in the form of a thin layer of nanometer thickness by Marangoni flows. 

Discrete patches at the interface supplement the dynamic surface excess from diffusion/adsorption, 

leading to spikes in the ellipsometry data. If the frequency of events is sufficiently high, determined by 

the concentration of aggregates in the bulk solution amongst other factors, the interface becomes 

saturated with material supplied by aggregates, and monolayer adsorption is observed. We suggest that 

this mechanism, whereby aggregation enhances rather than depletes the dynamic surface excess, may 

occur in other polymer/surfactant mixtures, but only if aggregation occurs well below the bulk cmc of 

the mixture.  There are also other factors which may determine whether or not this mechanism occurs 

such as the molecular order of the aggregates and their density, which would also need to be evaluated 

for relevant polymer/surfactant systems. Furthermore, discovery of this unusual mechanism which only 

occurs at high polymer charge density, suggests that there is a clear need to develop the current models 

of adsorption from polymer/surfactant mixtures under non-equilibrium conditions. 






The work in this thesis has shown that determination of the dynamic adsorption behaviour of 

polymer/surfactant mixtures at the interface of the OFC is invaluable for the understanding of their 

dynamic adsorption behaviour. We have proved that there is an incontrovertible link between the bulk 

phase behaviour of a polymer/surfactant mixture and its adsorption kinetics at an air/water interface. 

However, at the same time it is necessary to acknowledge that the work presented in this thesis has not 

yielded a robust cross-applicable model of the dynamic adsorption behaviour of polymer/surfactant 

systems, although this was the initial aim of the work. In part this is due to our approach, as the focus 

of the project was on the examination of the interfacial compositions of polymer/surfactant mixtures on 

the OFC, with bulk phase and static interface data primarily obtained from prior publications on the 

same systems, which were often performed under different conditions and therefore not always 

relevant. However, the study of PEI/SDS presented in this thesis has shown that the development and 

application of a simple quantitative model linking the bulk and interfacial behaviour may be neither 

relevant nor possible for a significant number of polymer/surfactant mixtures which behave in ways 

which would not have been predicted by the previously held understanding of the adsorption behaviour 

of polymer/surfactant systems.  

It may be possible to develop a model of the dynamic adsorption behaviour from more classically 

behaving systems such as PSS/C12TAB if we determine both the bulk phase and dynamic interfacial 

behaviour of the system under as similar conditions as possible.  This would at the very least eliminate 

our reliance on the theoretical point ‘ccomp’, and may enable the development of a relevant quantitative 

model of the link between the bulk and interfacial behaviour. Furthermore, bulk phase measurements, 

performed either by collaborating groups or by ourselves using either DLS or SAXS would allow us to 

understand the unexpected features of the interfacial data collected, for example the apparent continued 

influence of complexation on the PSS/C12TAB system at high bulk surfactant concentrations. It is 

equally possible that such bulk phase measurements will show that the development of a unifying 

model of the dynamic adsorption behaviour of polymer/surfactant systems is an unrealistic goal due to 

the highly varied behaviour of such systems. A wider survey of the behaviour of polymer/surfactant 

systems both in the bulk and at the dynamic and static interfaces, along with collaboration with experts 

in mathematical modelling of interfacial adsorption, should enable us to evaluate whether a 

quantitative model is a viable goal. For the moment, it is most useful to consider each 

polymer/surfactant system studied independently of  yet in the context of those which preceded it.  

We hope that the approach taken in this thesis to the determination of the dynamic interfacial 

behaviour of mixtures will be continued in the future, and interest from user groups and other large 

scale facilities in the use of OFC measurements gives us every confidence that the work will be 

continued and extended. We have already performed some NR and ellipsometry experiments on 
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several polymer/surfactant systems more relevant to industrial applications on the OFC, although they 

are not included in this thesis. We hope that in the future a combination of bulk and interfacial 

characterisation will allow us to fully understand their dynamic adsorption behaviour, whether this 

takes the form of a quantitative model or not.  The first further experiment performed examines the 

dynamic adsorption of widely used industrial hydroxyethylcelluloses with SDS. The second was the 

first external user collaboration on the OFC, an experiment with Karen Edler from Bath University, in 

which we used to the OFC to further the understanding of the mechanism of film formation in mixtures 

of PEI and C16TAB. We hope that once these studies, and the remaining unpublished work presented in 

this thesis, are published that we will have made strides towards convincing the scientific community 

of the importance of dynamic adsorption studies of polymer/surfactant mixtures.  
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