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Abstract

The aim of this work is to study the potential for emission at very high energies (& 100 GeV) by

misaligned active galactic nuclei (AGN) and the future prospects for observations of these objects

with the next generation imaging atmospheric Cherenkov telescope, the Cherenkov Telescope Array

(CTA). Initially, data collected by the H.E.S.S. array was used to study fourteen Seyfert galaxies

and two other AGN with Seyfert-like properties and no new detections were reported. For each

object upper limits were calculated, assuming a similar spectral shape to M87.

Further work focused on modelling the GeV spectra of misaligned AGN (AGN with angles

of inclination to the line of sight & 5◦) detected in 2010 with the Fermi Space Telescope. The

modelling was carried out using a multiblob model that had previously been used to model the

very high energy emission of M87 and Centaurus A. This work was used to investigate the capacity

of the model to reproduce the high energy spectra observed for each object, while also allowing

predictions of the potential very high energy fluxes to be produced. In each case the multiblob

model was able to reproduce the observed GeV spectrum.

The spectral energy distributions produced were then compared to predicted sensitivity curves

for a number of possible CTA configurations to determine the likelihood of detection of these

misaligned AGN with the array. It was found that detection of the objects within 50 hours of

observations with CTA using standard Durham analysis is unlikely, but that 3C 111 may be

detectable using the Paris analysis method.
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Chapter 1

γ-ray Emission Mechanisms and

Detection Techniques

1.1 Introduction

In 1912, experiments carried out by Victor Hess using gold-leaf electroscopes carried in balloons to

altitudes of up to 5 km showed that there is a source of ionising radiation that increases in intensity

with altitude. It was posited that the origin of such radiation must be cosmological. This ionising

radiation is known as cosmic rays and consists of high-energy charged particles, the bulk of which

are believed to come from within the Milky Way; however, the spectrum extends out to energies

of over 1020 eV indicating that at least some of the radiation must be of extragalactic origin,

since the Galactic magnetic field is not strong enough to contain such particles within the local

Galaxy. Of the particles in cosmic rays, approximately 86% are protons, 11% alpha particles and

2% electrons, the remaining 1% are nuclei of heavier elements up to uranium (Perkins, 2003). The

charged nature of cosmic rays makes it impossible to track those originating from distant sources

or with lower energies, as their paths are deflected by Galactic and intergalactic magnetic fields.

These sources of cosmic rays are obviously high-energy particle accelerators, and the accelerated

particles emit radiation across the entire electromagnetic spectrum, being the primary source of

very high energy (VHE) γ-rays in the Universe. As these γ-rays are not deflected by magnetic

fields, determining the source of such high-energy radiation should allow the determination of the

origins of cosmic rays.

Definitions of what constitutes a γ-ray vary, but a general definition is that they are photons

with energies from around 100 keV to > 100 EeV (1020 eV) (Weekes, 2003). This is greater

1
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than the energy range of the rest of the electromagnetic spectrum from very long wavelength

radio waves through to hard X-rays. This part of the spectrum is further divided into the region

between 100 keV and ∼ 100 GeV, which can be observed directly with space-based instruments,

and energies above ∼ 100 GeV known as VHE γ-rays, the main subject of this work. At such

high energies direct observations of incoming photons becomes extremely difficult and the ground-

based Cherenkov technique, discussed in Section 1.4, is used. Observations in the γ-ray part of the

electromagnetic spectrum allow a greater understanding of nonthermal processes in the Universe to

be developed, many of which are difficult, if not impossible, to reproduce in a terrestrial laboratory.

Studying photons at these energies relies on the fact that during absorption of the photon by

the atmosphere, which has an optical thickness at these wavelengths similar to that of 1 m of lead

(Weekes, 2003), a number of secondary particles are produced and the products resulting from

further interactions with the atmosphere by these secondary particles can be detected at ground

level. As the techniques to detect these secondary products have advanced, the number of objects

known to emit at high energies has increased dramatically and, since the construction of the current

generation of ground-based γ-ray telescopes, the number of different classifications of objects has

almost equalled the total number of objects detected by previous generations. The aim of this

work is to investigate the expansion of the catalogue into Seyfert galaxies and other misaligned

AGN.

In this chapter, the mechanisms by which such very high energy photons are emitted, the meth-

ods by which they are detected, and the current status of experiments relating to their detection

will be discussed in detail.

1.2 γ-ray Emission Mechanisms

Emission from many objects at up to X-ray energies can be satisfactorily explained through thermal

processes; however, to emit γ-rays at energies & 100 GeV thermally would require extremely high

temperatures, far above those generally observed in the Universe (e.g., for the emission from a

thermal blackbody source to peak at ∼ 100 GeV would require a temperature of ∼ 2.4 × 1014

K). It is therefore clear that other, non-thermal, processes must be behind the emission of VHE

γ-rays. Six processes potentially important for the emission of TeV photons are discussed here:

synchrotron radiation, curvature radiation, inverse-Compton scattering, Bremsstrahlung emission,

pion decay and dark matter annihilation.
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Figure 1.1: Synchrotron emission from a charged particle moving in a magnetic field, showing the
motion of the particle, direction of the magnetic field and opening angle, α, of the cone of emission.

1.2.1 Synchrotron Radiation

Synchrotron emission is emission by relativistic charged particles that have been accelerated in

a magnetic field of strength, B. A complete treatment of synchrotron radiation can be found in

Rybicki & Lightman (1979).

In this work, a brief summary of its important properties will be given. In a constant, uniform

magnetic field the motion of a particle in a magnetic field composes a constant velocity component

along the field and circular motion in a plane perpendicular to it. The motion of the particle is

described by its velocity, |v|, and the pitch angle, α, which is the angle between the magnetic field

and the velocity (see Figure 1.1); v and α are both constants of motion. The power emitted by a

relativistic electron gyrating in a magnetic field is given by Hughes (1991):

PS = 2σT c sin2 αγ2UB (1.1)

where σT is the Thomson cross section, calculated using σT = e4/(6πm2
eε

2
0c

4), where me is the

electron mass, and UB is the magnetic energy density. The relativistic motion of the particle results

in beaming of the emitted radiation into a cone of semi-angle 1/γ radians, where γ is the Lorentz

factor, defined as γ = 1/
√

1− v2

c2 . A consequence of this is that the observer will only detect the

emitted radiation when the angle between the magnetic field and the line of sight is approximately

equal to the pitch-angle of the particle being considered. The sin2 α term in Equation 1.1 results

in the power radiated by a particle increasing as the pitch-angle approaches 90◦ and so suggests

that the maximum emitted power will be observed if the angle between the line of sight and the

magnetic field is also 90◦, which, in turn, implies that for a significant flux of radiation to be
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observed from a source, the source must have a significant component of the magnetic field in

the plane of the sky. If the pitch-angle distribution of electrons in the source is isotropic, then

averaging the power over all pitch-angles results in the sin2 α term in Equation 1.1 becomes 2/3

(Rybicki & Lightman, 1979).

If the electron moves nonrelativistically in a magnetic field, then most of the power is radiated

at a frequency ωB/γ, where ωB is the gyration frequency in a magnetic field, given by ωB = eB/γec,

and γe is the Lorentz factor of the electron. In the case of relativistic motion, this must be modified:

most of the power is radiated near the characteristic frequency, ωc, related to the ωB multiplied by

a factor of γ to account for the small opening angle of the cone of emission, a factor of γ2, arising

from the difference between ‘emission’ and ‘arrival’ times of the pulse, by sinα and a constant

equal to 3c/2. This leads to the conclusion that most of the power emitted by a moving charge is

emitted at an angular frequency close to:

ωc = 3/2γ3ωBc sinα (1.2)

A detailed calculation of the field of a moving charge (Rybicki & Lightman, 1979), shows that

the power actually peaks at ω = 0.29ωc, and that the spectrum shows different behaviour in the

low-frequency and high-frequency regimes:

PS(ω) ∝ (ω/ωc)
1
3 ω � ωc

PS(ω) ∝ (ω/ωc)
1
3 e
−ω
ωc ω � ωc

(1.3)

where PS(ω) is the synchrotron power at angular frequency ω. The characteristic frequency

of emitted radiation is also the median frequency, with half the power being radiated above and

half below this value. Synchrotron emission from a monoenergetic population of many electrons

produces a spectrum as shown in Figure 1.2. The assumption that the electrons follow an isotropic

pitch-angle distribution can be used, as scattering from plasma waves should ensure that this is

the case. As shown in Figure 1.2, the power emitted drops off dramatically at high frequencies.

This means that it is extremely unlikely that emission of γ-rays with energies ∼1 TeV is due

to synchrotron emission, as it would require magnetic fields and γ factors far higher than those

believed to be found in astrophysical sources. However, for a γ-ray of this energy, synchrotron

emission is important as it provides the seed photons for later upscattering through the inverse-

Compton process discussed in Section 1.2.3.

In the case of a compact source, it is important to take into account reabsorption of synchrotron

photons by the medium; this process is known as synchrotron self-absorption and can lead to
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Figure 1.2: A synchrotron spectrum as produced by a monoenergetic population of many electrons.
The turnover where the spectrum goes from absorption-dominated to emission-dominated can
clearly be seen.

observation of a low-frequency turnover in the spectrum. To describe the effect that synchrotron

self-absorption has on the observed spectrum, a self-absorption coefficient, κν , is introduced (a

derivation can be found in Padmanabhan, 2000). This is related to the frequency of the synchrotron

radiation, ν, and the synchrotron emissivity jν by (Hughes, 1991):

κν ∝ jνν−
5
2 (1.4)

Equation 1.4 is true for all frequencies as κν is a property of the medium and is not dependent

on the line-of-sight thickness of the source. Defining ν1 as the frequency at which the optical depth

becomes unity allows the intensity at the surface of the source to be calculated. In the case of a

power-law electron distribution, jν = j0(ν/ν0)−α, Hughes (1991) shows that:

Iν = I0

(
ν1

ν0

)−α(
ν

ν1

) 5
2
{

1− exp

[
−ν1

ν

α+ 5
2

]}
(1.5)

where I0 is the surface-brightness measured at a frequency ν0 where the optical depth is negli-

gible.

1.2.2 Curvature Radiation

Curvature radiation and synchrotron radiation are closely related in that both are emitted by a

charged particle moving in a curved path in a strong magnetic field. In the case of curvature

radiation, however, the emission arises by virtue of the longitudinal motion of the particle along

curved magnetic field lines, so it is related to a change of the longitudinal (along B) energy of
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the particle, as opposed to synchrotron radiation where it results from a change in the particle’s

transverse energy (with respect to B). Curvature radiation is important in rotation-powered

pulsars and is generally seen in regions with strong magnetic fields with high curvature (Mészáros,

1992). The emission gives a spectrum, for electrons, around a characteristic frequency νc:

νc =
3

4

cγ3

πrc
(1.6)

where γ is the Lorentz factor of the electrons emitting the curvature radiation and rc is the

radius of curvature. For typical pulsar values of B ∼ 1012 G, rc ∼ 106 cm and electron energies

1012 − 1013 eV, the characteristic frequencies for curvature radiation correspond to energies in

the GeV range, just below the very high energy band. The magnetic fields in AGN are unlikely

to display the high curvature required for curvature radiation to contribute significantly to the

emission from such objects, however it may be important in other sources of VHE γ-rays.

1.2.3 Inverse-Compton Scattering

Inverse-Compton scattering is the scattering of a photon in an encounter with a highly relativistic

particle, usually an electron, and is believed to be the primary mechanism for VHE γ-ray emission

in the Universe. Inverse-Compton scattering can be viewed as the consequence of two successive

Lorentz transformations, one into the rest frame of the relativistic particle and the other back

into the laboratory frame. In the frame of the relativistic particle, Compton scattering behaves

as Thompson scattering and the photon frequency ν′ is preserved. Because Compton scattering

exhibits forward-backward symmetry, the mean scattering angle is 90◦; at 90◦, the photon of

frequency ν before collision is upscattered by a factor of γ as a consequence of transforming into the

particle’s rest frame, resulting in ν′ = γν. After collision and transferring back into the laboratory

frame, the photon is further upscattered by another factor of ∼ γ resulting in ν′′ ∼ γν′ = γ2ν,

these transformations are illustrated in Figure 1.3. In encounters between relativistic electrons

with Lorentz factors of γ and photons of frequency ν from an isotropic radiation field of energy

density UP , the mean frequency of the upscattered photons is ≈ 4
3γ

2ν. The angle-averaged power,

PC , emitted due to inverse-Compton scattering involving the interaction of relativistic electrons

with an isotropic photon field of energy density UP is given by (Rybicki and Lightman, 1979):

PC =
4

3
β2γ2cσTUP (1.7)

for photon energies� mec
2. In the regime where photon energies approach mec

2, the Thomson

cross section must be replaced with the Klein-Nishina cross section, and the maximum possible
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Figure 1.3: Interaction of a relativistic electron with a photon field, showing the Lorentz transforms
leading to the upscattering of the incident photons.

photon energy is limited by the energy of the incident electrons. The Klein-Nishina cross section

takes the form (see, for example, Padmanabhan, 2000):

σKN =
3

8
σT

1

ε

{[
1− 2(ε+ 1)

ε2

]
ln(2ε+ 1) +

1

2
+

4

ε
− 1

2(2ε+ 1)2

}
(1.8)

where ε = (~ω/mec
2). This reduces to σKN ≈ σT for ε � 1, as expected; when ε � 1,

σKN ≈ (3/8)(σT /ε)(ln 2ε+ 0.5). Comparing the power emitted via inverse-Compton scattering in

equation 1.7 with the averaged form of equation 1.1, which assumes an isotropic distribution of

electron pitch angles, allows the relative luminosity due to the two mechanisms to be found (Shu,

1991). This leads to the result that:

LC
LS

=
UP
UB

(1.9)

where LC and LS are the inverse Compton luminosity and the synchrotron luminosity, re-

spectively, and UP and UB the energy densities in the photon field and in the magnetic field,

respectively. Assuming a uniform model in which UP and UB have constant values throughout

the source (see Shu, 1991), it can be shown that the ratio between the inverse Compton and syn-

chrotron luminosities depends on the brightness temperature of the synchrotron radiation at the

turnover frequency, νm. The brightness temperature at νm is the maximum brightness temperature

of the source, Tb(m). The numerical estimate found in Shu (1991), which is only applicable when
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the source remains static in bulk, is:

LC
LS
∼
[
Tb(m)

1012K

]5 ( νm
108.5Hz

)
(1.10)

In astrophysical sources photons produced via synchrotron emission can then undergo a process

known as synchrotron self-Compton emission. In this process the synchrotron photons are upscat-

tered, via inverse-Compton scattering, by the population of relativistic electrons responsible for the

initial synchrotron emission. Taking into account synchrotron self-Compton emission, Equation

1.10 leads to the conclusion that losses due to Compton scattering in sources with a maximum

brightness temperature of ∼ 1012 K or below are relatively small and sustainable within the source,

but become catastrophically large in a source with a maximum brightness temperature above this

value. In a source with such a high maximum brightness temperature, a large percentage of the

radio photons will be upscattered to higher frequencies (reaching far beyond the optical regime),

and the density of low-energy photons available for scattering will become much lower, reducing

the radio brightness of the source to more modest values. This leads to the conclusion that no

compact radio source should have a brightness temperature & 1012 K; however, it is important to

note that jets in astrophysical sources, which are observed to be undergoing bulk expansion, lead

to sources exhibiting brightness temperatures above this limit (Band and Grindlay, 1986). It is

believed that most sources of VHE γ-rays exhibit relativistic jets, suggesting that in the case of

such objects, the ratio of Compton losses to synchrotron losses would likely be reduced from that

given in equation 1.10.

The spectrum produced through inverse Compton scattering depends strongly on both the

incident photon spectrum and the energy distribution of the electrons responsible for the scattering.

In synchrotron self-Compton emission, this results in the shape of the inverse-Compton peak

strongly resembling the synchrotron spectrum, just shifted to higher energies, and it is this that is

responsible for the distinctive double-humped shape seen in the spectra of blazars (see Figure 1.4).

1.2.4 Bremsstrahlung Emission

Bremsstrahlung (literally, braking radiation) emission is a result of inelastic scattering of charged

particles off atomic nuclei, see Figure 1.5. When a charged particle passes close enough to an atomic

nucleus, it will be deflected by the electric field of the nucleus; during this interaction, radiation

will be emitted with an amplitude proportional to the acceleration that caused the deflection.

Classically, the acceleration produced by an ion of charge Ze on an incident particle of charge

ze and mass M is ∝ Zze2/M , and so the intensity (which is proportional to the product of the
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Figure 1.4: The spectral energy distributions (SEDs) of 6 BL Lacs (discussed in Section 3.3)
observed with the VERITAS VHE γ-ray telescope (discussed in Subsection 1.5.2), showing non-
contemporaneous data across a number of wavelengths displaying the typical “double-hump” shape
seen from such objects. The grey lines show the results of modelling of the spectra of the objects
using the model of Böttcher & Chang (2002). Taken from Aliu et al. (2012).
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Figure 1.5: Interaction of an electron with the electric field of an atomic nucleus, resulting in the
emission of a Bremsstrahlung photon.

amplitude squared and the charge ze) will vary as Z2z4e6/M2 (Evans, 1955). As can be seen, the

intensity of the emitted Bremsstrahlung depends on the inverse square of the mass of the incident

particle, so the intensity of the emission for a proton is a factor of ∼ 3 × 106 smaller than the

intensity of the emission from an electron incident with the same nucleus. Thus Bremsstrahlung

emission from particles other than electrons is generally negligible. The maximum amount of

energy that can be radiated in an interaction between a charged particle and a nucleus is equal to

the the total kinetic energy of the incident particle, and, classically, every interaction should result

in the release of a photon.

The quantum-mechanical approach to Bremsstrahlung emission considers the interaction be-

tween a plane wave (representing the electron) and the Coulomb field of the nucleus. During this

interaction, the electron has a small but finite probability of emitting a photon, and, if a photon

is emitted, the electron will also be acted on by the electromagnetic field of the photon. This

process, involving the coupling of the electron with the electromagnetic field of the photon, has a

cross-section equal to the fine structure constant, α = e2/(2ε0hc) ∼ 1/137, times the cross section

for elastic scattering; therefore, most of the deflections of incident electrons by atomic nuclei are

elastic, and photons are emitted in only a small percentage of these interactions. During a radia-

tive collision, the momentum of the incident electron is shared between the electron, the photon

and the ion, and therefore the photon can have any momentum and corresponding energy, up to

the kinetic energy of the electron, K. In the case of highly relativistic electrons, the momentum

carried away by the photon approaches that carried by the electron, and, after scattering, both

the photon and electron tend to proceed in the same direction as the incident electron, with the

average angle between them being ∼ mec
2/K.

Thermal Bremsstrahlung is emission via the Bremsstrahlung process that takes place in a
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thermal plasma, temperature T , in which the ionised particles follow a Maxwell-Boltzmann distri-

bution. In this case, screening electrons do not have an impact on the cross section, and the power

output from Bremsstrahlung emission, Pb, can be found (Duric, 2004). For hν/kBT � 1:

Pb(ν) ≈ E1(1)e−hν/kBT (1.11)

while for hν/kBT � 1:

Pb(ν) ≈ ln

[
γ

(
meZ

2e4

2~2hν

)(
meZ

2e4

2kBT~2

) 3
2

]
− 3

2
γ (1.12)

where:

γ = −
∫ ∞

0

lnx e−x dx (1.13)

The energies of γ-ray photons emitted by thermal Bremsstrahlung are of the same order as

the energies of the electrons incident on the ions; this means that if the electron population is

characterised by a power law with spectral index Γe, the resulting γ-ray spectrum has an index

Γγ ≈ Γe. Bremsstrahlung emission is generated by the secondary particles produced when a VHE

γ-ray interacts with the atmosphere and so is important in TeV astronomy, where the properties

of the emission from these particles allows information about the incident photon to be inferred,

as discussed in Section 1.4.

1.2.5 Pion Decay

In objects that accelerate protons to very high energies, interactions can occur which result in

the emission of γ-rays through the production and decay of pions can occur. The dominant pγ

interaction is through the ∆-resonance:

p+ γ → ∆+ →


pπ0 fraction 2/3

nπ+ fraction 1/3

(1.14)

and the pions produced in the interactions then decay. It is important to note that pions can

also be produced in interactions between protons, for example:

p+ p→ π+, 0 or − +X (1.15)

where X refers to decay products consistent with the initial state. Charged pions have a mean

lifetime of 2.6 × 10−8 s and primarily decay leptonically into muons and neutrinos through the
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following interactions, mediated by the weak force:

π+ → µ+ + νµ (1.16)

π− → µ− + ν̄µ (1.17)

These muons then decay via:

µ+ → e+ + νe + ν̄µ (1.18)

µ− → e− + ν̄e + νµ (1.19)

A second, far less likely path of decay also exists, in which the charged pions decay into (Vaks

& Ioffe, 1958):

π+ → e+ + νe (1.20)

π− → e− + ν̄e (1.21)

The π0 has a lifetime of 0.83 × 10−16 s and decays, mediated by the electromagnetic force, into

two photons, whose energy depends on the energy of the pion (Griffiths, 1987). This means that

even though the rest energy of a π0 is 135 MeV, which is shared by the emitted photons, more

energetic pions will emit more energetic photons, with energies potentially extending to 100s of

GeV, allowing detection with very high energy instruments (Sahu, Zhang & Fraija, 2012).

1.2.6 Dark Matter Annihilation

Work on the nature of dark matter in the 1990s led to the hypothesis that indirect detection through

the products of annihilation reactions might be possible (Bergström, 1999). It is commonly as-

sumed that cold dark matter (CDM) is made up of currently undiscovered weakly interacting

massive particles (WIMPs), candidates for which are usually particles predicted by models beyond

the standard model of particle physics. The annihilation of these WIMPs may lead to detectable

VHE γ-rays at energies & 100 GeV via continuum emission (from hadronisation of gauge-bosons

and heavy quarks) or γ-ray lines (through loop-induced processes) (Aharonian et al., 2008). The

predicted γ-ray flux and continuum shape depend strongly on the nature of the WIMP being con-
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sidered as a prospective candidate for the CDM and its annihilation interactions. For neutralino

dark matter, predicted by supersymmetric theories, it is expected that loop-induced annihilation

processes will lead to a series of monoenergetic spectral lines. In Kaluza-Klein scenarios, hyper-

charge gauge-boson pairs annihilate preferentially into charged lepton pairs, which radiate γ-rays

with hard spectra; additionally, cascading decays of quark-antiquark final states lead to secondary

γ-rays.

1.3 γ-ray Absorption Mechanisms

Despite the penetrative power of γ-rays, there are two main mechanisms by which they are ab-

sorbed, which obviously impacts on whether or not an object can be detected at very high energies.

The first of these, involves the interaction of γ-rays with matter and is extremely important for

ground-based VHE γ-ray astronomy (discussed in Section 1.4) as it is through this process that

γ-rays are absorbed by the atmosphere. In interactions with matter, the γ-rays produce electron-

positron pairs and are absorbed in the process. Over interstellar and even intergalactic distances,

the typical matter density of the interstellar or intergalactic medium is far too low to have a sig-

nificant effect on the emission observed (Weekes, 2003). In objects where significant accretion is

occurring or where the emission passes through a region of high matter density, absorption by

matter can have a non-negligible effect on the observed spectra.

Another means by which γ-rays can be absorbed is through γ-γ photoabsorption. This occurs

when a high-energy photon, of energy ε1, passes through a region with a high density of lower-

energy photons, with energies ε2 that fulfil:

ε2 &
m2
ec

4

ε1
(1.22)

as derived in Longair (1981). At this energy, a collision between the two photons will lead to

pair production through γ + γ → e+ + e−. The cross section for this process peaks at

ε1ε2(1− cos θ) ∼ 2(mec
2)2 (1.23)

where θ is the collision angle between the two photons (Weekes, 2003). For incident photons

with energies ε1 = 1 TeV, the cross section peaks in the near-infrared at 0.5 eV (λ = 2.5 µm).

Photons of this energy are common in the Universe, leading to significant γ-ray absorption on

intergalactic scales. This infrared photon field is known as the extragalactic background light

(EBL). The consequences for VHE γ-ray astronomy are discussed in Section 3.5.
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1.4 Ground-based very high energy γ-ray Astronomy

VHE γ-rays are generally considered to be those photons with energies & 100 GeV. At such high

energies the total flux observed from even the brightest objects is very low; for the Crab Nebula,

which is considered the brightest constant1 source in the VHE γ-ray sky, the flux detected above

1 TeV is only 2 × 10−11 photons cm−2 s−1 (Aharonian et al., 2006a). For a 2.5 m2 detector (a

reasonable size for a space-based instrument) with 100% efficiency, this implies a detection rate of

only ∼16 photons yr−1, which obviously makes direct detection very difficult. However, when a

VHE γ-ray photon interacts with the Earth’s atmosphere, the products of the interaction generate

Cherenkov emission as discussed in Section 1.4.1. This leads to the use of the atmosphere as a

very large detector through the atmospheric Cherenkov technique discussed in Section 1.4.3 with

the construction of arrays of ground based telescopes to make use of the effect.

1.4.1 Cherenkov Radiation

Cherenkov radiation is the light emitted by a charged particle, such as an electron, moving through

an insulating medium at a velocity greater than the phase velocity of light in the medium. As an

electron moves through an insulating medium, its electric field distorts nearby atoms by displacing

the electrons and polarising the medium around the moving electron (see Figure 1.6). These

distorted atoms behave like elementary electric dipoles with the negative poles pointing away from

the passing electron. If the electron is moving more slowly than the phase velocity of light in the

medium, then the polarisation field around the electron will be symmetric and there will be no

net field at large distances and, therefore, no radiation. In the case where the electron is moving

at a speed comparable to that of light, however, the polarisation field is no longer completely

symmetrical, and as the atoms revert to their original state a pulse of electromagnetic radiation

will be emitted (Jelley, 1958). The threshold velocity, βminc, above which Cherenkov emission

will take place in a medium with refractive index n is given by βmin = 1/n; at this velocity, the

direction of the emission will correspond with that of the particle, while higher velocities will result

in a cone of radiation up to the angle θc, the Cherenkov angle, defined by:

cos θc =
1

βn
(1.24)

where the velocity of the particle is βc, (Jelley, 1958).

The classical theory of Cherenkov radiation was developed by Frank and Tamm in 1937 (Frank

1It is important to note that recently variability has been observed at GeV energies (Tavani et al., 2011) and
that some possible hints of variability at very high energies have also been claimed (Bednarek & Idec, 2011).
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Figure 1.6: The polarisation set up in a dialectric medium by the passage of a charged particle at
(a) a velocity lower than that of light in the medium, (b) a velocity greater than that of light in
the medium. Taken from Jelley (1958).

& Tamm, 1937); the formulae are derived in Jelley (1958). It is found that the output of radiation

per unit length, dW/dl, at a specified frequency, ω, is

dW

dl
=
e2

c2

∫
βn>1

(
1− 1

β2n2

)
ωdω (1.25)

When deriving the spectrum, Jelley (1958) notes that no frequency cut-off is imposed, which

implies that the radiation output is infinite. In reality there are two factors which set an upper

limit to the frequency spectrum and cause the radiation output to remain finite. The first is

that a real medium is always dispersive, which restricts radiation to those frequency bands where

n(ω) > 1/β, whereas, in the treatment by Frank and Tamm, dispersion is ignored to the first

order. No emission can be observed for X-rays, because n(ω) > 1 in the X-ray regime, and in

media which are transparent at optical wavelengths the absorption bands are found at shorter

wavelengths, limiting radiation to the near ultraviolet and longer wavelengths. A further limiting

factor is the classical diameter of the electron, de = e2/2πε0mec
2 = 5.6 × 10−15 m, because to

satisfy coherence conditions the angular wavelengths (angular wavelength = λ/2π) of the emitted

photons must be greater than this. This leads to the constraint that the radiation must have a

wavelength greater than λmin = 2πde = 3.5 × 10−15 m, which falls in the γ-ray region of the

spectrum. The total energy lost by a relativistic particle per unit length via Cherenkov emission

is given by:
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dW

dl
=
e2ω2

0

2c2
(ε− 1) ln

(
ε

ε− 1

)
(1.26)

where ω0 is the frequency of the first resonance of the spectrum and ε is the dielectric constant

of the medium. Using this it can be seen that for a relativistic particle in a typical medium where

ω0 = 6× 1015s−1, dW/dl is of the order of several keV per cm, which is ∼ 0.1% of the energy lost

by ionisation for the particle.

To find the duration of the light flash, Jelley considered dispersion within the medium. In a

nondispersive medium, the wavefront is infinitely thin and the duration of the light pulse must

therefore be infinitely short. In a dispersive medium, however, the Cherenkov angle depends on

the wavelength of the emission, and the duration, ∆t, of the light flash as seen by a given detector

is

∆t =
ρ

βc
(tan θ2 − tan θ1) (1.27)

where θ1 and θ2 are the Cherenkov angles for the frequency limits of the detector, and ρ is

the distance from the path of the particle. This means that for a fast electron moving through

the upper atmosphere (β = 1, n = 1.000292, θc = 1.403◦), observed from 100 m away by a

detector which can detect radiation with wavelengths between 180 nm (where n = 1.000346 and

θc = 1.507◦) and 750nm (where n = 1.000275 and θc = 1.345◦), the Cherenkov emission will have

a pulse length of ∼ 10−6 s.

Thus far, the formulae given above have assumed that the relativistic particle is moving at a

constant speed, but as the particle traverses the medium it will lose energy via Bremsstrahlung and

ionisation, which will also affect its direction of motion (as will non-radiative Coulomb scattering).

To ensure that coherence is preserved despite the change in β (and hence θc), the deceleration

must not be too rapid and must satisfy

T.

(
dv

dt

)
� c

n
(1.28)

where T is one period of the wave emitted and dv/dt is the deceleration of the electron. At

visible wavelengths, this condition is easily satisfied where ionisation is the dominant form of energy

loss. As the energy loss via Cherenkov emission is so small, the energy of the emitted photon must

also be small when compared to the energy of the interacting particle; this means that quantum

effects can generally be ignored and the classical treatment by Frank and Tamm, is generally valid.
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1.4.2 Air Showers

When a photon of energy greater than ∼ 10 MeV or a high-energy charged particle (a cosmic ray)

enters the atmosphere, it will interact with atoms in the atmosphere and result in the production

of an air-shower. In the case of a photon, the dominant interaction is pair production, in which

the γ-ray is annihilated and an electron-positron pair produced. For pair production to occur, the

photon must have an energy greater than that of the particles produced. Additionally, energy and

momentum considerations mean that it cannot occur in free space, but it can occur in the electric

field of a nucleus or an electron. The electron-positron pair is strongly beamed in the direction of

the initial γ-ray, but, as the energy from the γ-ray is not necessarily shared equally between the

two particles, the mean of their emission angles is not always equal to the initial trajectory of the

photon (Weekes, 2003). The cross section for this interaction σpp depends on the energy of the

initial photon; for photon energies in the range 1� ~ω/mec
2 � 1/αfZ

1
3 :

σpp = αfr
2
eZ

2

[
28

9
ln

(
2~ω
mec2

)
− 218

27

]
m2 atom−1 (1.29)

and for photon energies ~ω/mec
2 � 1/αfZ

1
3 :

σpp = αfr
2
eZ

2

[
28

9
ln

(
183

Z
1
3

)
− 2

27

]
m2 atom−1 (1.30)

where ω is the angular frequency of the photon, Z is the atomic number of the nucleus involved,

αf is the fine-structure constant and re is the classical electron radius. In both cases the cross

section for pair production is ∼ αfσT (where σT is the Thomson cross section). Using the cross

sections above, it is then possible to find the mean distance a γ-ray will travel before interacting

with the atmosphere; this distance is given by λpp = 1/Nσpp, where N is the number of target

nuclei per unit volume.

The electron-positron pair produced in pair production will then interact with the atmosphere

further, resulting in an air shower. The positron generally annihilates later with an electron to

produce a pair of photons, and both the electron and positron can interact with the atmosphere

via Bremsstrahlung also resulting in the emission of photons. In both cases, the angle of emission

for the photons will be ∝ me/E radians, where E is the energy of the particle. These photons can

then go through the pair-production process in the same manner as the initial incident photon,

and this process can continue until a critical energy, Ec is reached. Below Ec there is too little

energy remaining in the products of the interaction for this process to take place and further energy

losses then proceed via ionisation rather than pair production or Bremsstrahlung. On average, the

air shower consists of 2
3 electrons and positrons and 1

3 photons, and it reaches maximum lateral
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extension when the average energy of the cascade particles is ∼ Ec. The number of particles and

high-energy photons in the shower, at maximum lateral extension, is ∼ E0/Ec, where E0 is the

initial photon energy.

The high-energy electrons and positrons in the shower emit radiation via Cherenkov emission

as described in Section 1.4.1. In the case of an air shower initiated by a high-energy γ-ray, a

fraction of ∼ 10−6 of the primary energy is observed as Cherenkov emission in the optical part

of the spectrum and this emission is coherent (Weekes, 2003). At energies greater than about

100 GeV, the radiation emitted via Cherenkov emission closely follows the trajectory of the initial

photon, allowing the direction of the source to be calculated.

Air showers initiated by an incident high-energy nucleon or heavier nucleus are known as

hadronic showers; these contain a large number of other particles, including pions, muons and

kaons, in addition to the electrons, positrons and photons seen in showers initiated by γ-rays. The

nucleons and heavier nuclei that initiate hadronic air showers are more penetrating than purely

electromagnetic cascades initiated by photons; their interaction length in air is approximately 2.5

times that of photons. In the case of a nucleon-initiated air-shower, a large fraction (between 25%

and 50%) of the nucleon energy is transferred to secondary mesons during the first interaction.

Around 90% of these secondary particles are pions, with all three types (π+, π− and π0) produced

in approximately equal quantities while the remaining 10% are kaons. Neutral pions produced in

the air shower then decay to produce γ-ray pairs, which in turn initiate electromagnetic showers as

discussed above; the electrons and positrons created in these showers reach a maximum intensity at

an altitude of approximately 15km and are easily absorbed by the atmosphere, although radiation

produced via Cherenkov emission can be detected down to sea level. The leptonic decay of charged

pions produces the highly penetrating muons and neutrinos seen in hadronic showers. The muons

produced then go on to decay into electrons and neutrinos, although most reach sea level before

decaying, and, as few are absorbed, this leads to muons accounting for almost 80% of the secondary

particles observed at sea level.

The profiles of electromagnetic and hadronic air showers are noticeably different in the lateral

direction due to different distribution of momentum during the cascade. In an electromagnetic

shower, the lateral extension of the cascade is determined by the momentum of the secondary elec-

trons and positrons, which are produced via pair production and which undergo multiple scattering

as they travel through the atmosphere. In a hadronic shower, the lateral extension is determined

by the transverse component of momentum at the production of secondary particles in the nuclear

interactions (typically ∼ 0.3 GeV/c). The result of this is that hadronic showers are more laterally

extended than electromagnetic showers and tend to be more irregular in shape, as shown in Figure



1.4. Ground-based very high energy γ-ray Astronomy 19

Figure 1.7: Monte Carlo simulation of the development in the atmosphere of a 300 GeV γ-ray
shower (left) alongside a 900 GeV proton initiated shower. Note the more compact nature of the
γ-ray shower. The horizontal axis has been exaggerated for clarity of illustration. Taken from
Fegan (1997).

1.7. Using this information, it is possible to distinguish between γ-ray primaries and hadronic

primaries, as discussed in Chapter 2.

1.4.3 Detection Techniques

A simple atmospheric Cherenkov telescope requires a single light detector (typically a photomul-

tiplier tube, PMT), placed in the focal plane of a mirror and coupled to low latency electronics.

In 1953 Jelley and Galbraith detected Cherenkov radiation from the atmosphere for the first time,

using a simple detector constructed from a signalling mirror, a dustbin and a PMT (Jelley, 1987).

Using this rather primitive device, Jelley and Galbraith detected light pulses at a rate of between

1 and 2 per minute, distributed randomly in time, showing a broad zenith-angle dependence and

(after control experiments to determine that the source of these pulses was indeed the sky) a

correlation with detections of shower particles detected by an extended air-shower array. The

first imaging atmospheric Cherenkov telescope was constructed by Hill and Porter in 1960 using

an image-intensifier camera system, which had been adapted from a particle-physics experiment,

coupled to a small mirror. The system had a threshold energy for cosmic rays of >500 TeV and

successfully detected the Cherenkov light from an incident cosmic ray, thereby demonstrating the

potential of the technique (Weekes, 2003).
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The simple atmospheric Cherenkov detector described earlier is characterised by the collection

area of the mirror, A, the reflectivity, R, the solid angle, Ω and the integration time, τ . If the

integration time of the photomultiplier counting system, τ , is greater than the duration of the

Cherenkov light flash, then the signal (in photoelectrons) detected by an atmospheric Cherenkov

telescope can be calculated using:

S =

∫ λ1

λ2

C(λ)η(λ)Adλ (1.31)

where η(λ) is the response function of the PMT, λ1 and λ2 are the wavelength sensitivity

bounds of the PMT, and C(λ) is the Cherenkov photon flux as a function of wavelength. The

Cherenkov photon flux can be calculated using:

C(λ) = kE(λ)T (λ) (1.32)

where E(λ) is the shower Cherenkov emission spectrum, which is ∝ 1/λ2, (Tλ) is the transmis-

sion function of the atmosphere, and k is a constant which depends on the number of particles in

the shower, and on the geometry of the emitting particles and detector. To detect the Cherenkov

light from an air shower, it must be possible to detect the pulse above the fluctuations in the night

sky background, B, in the time interval, τ . The signal-to-noise ratio, SNR, is given by:

SNR =
S

B0.5
=

∫ λ1

λ2

C(λ)

[
η(λ)A

ΩB(λ)τ

] 1
2

dλ (1.33)

With current detectors the SNR must be above 5 to allow it to be identified as originating from

something other than extreme background fluctuations.

Unlike other areas of astronomy where the atmosphere tends to make image collection more

difficult, it is a fundamental part of the detector in a very high energy γ-ray telescope, as focusing

of such high energy photons is impossible by any currently known means. Unfortunately, the

atmosphere is variable, and it’s transmissivity depends on a large number of factors including

temperature, humidity and pressure, thereby affecting the quality of the data returned by ground-

based telescopes. Moreover the transmission properties of the atmosphere can change, resulting

in changing extinction rates for the Cherenkov light. Currently, a section of the very high energy

γ-ray astronomy community is engaged in experiments to find the effect the changing atmosphere

has on the sensitivity of the telescopes, with a view to improving the quality of the data collected

(Nolan, Pühlhofer & Rulten, 2010). Despite the lack of a complete understanding of these effects,

the current generation of telescopes has been extremely successful, suggesting that the overall
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impact is a second order effect.

The Cherenkov radiation emitted by an air shower arrives at sea level in a broad but thin disc of

diameter∼120 m, and so the collection area of an imaging atmospheric Cherenkov telescope (IACT)

does not rely on the size of the mirror collection area (which only determines the minimum intensity

of the Cherenkov flash detectable and therefore the minimum detectable γ-ray energy). This means

that an IACT has an effective air shower detection area of ∼5 × 104 m2. The construction and

design of such telescopes will be further discussed in Section 1.5.

The optimum optical waveband for Cherenkov light detection is in the blue and near-ultraviolet,

between 300nm and 450nm; this is a part of the spectrum in which sensitive photomultiplier tubes

are available, and a region where the background light from the night sky is near minimum (in the

300nm - 400nm band the night sky background flux is ∼ 2.5×10−4 erg s−1 cm−2 ster−1). However,

background light nonetheless limits the energy threshold of the telescope, and sites must be chosen

where this is kept to a minimum. Two sources of background light, starlight and airglow, both have

a broadband emission spectrum similar to that seen from Cherenkov light and must be accounted

for. Airglow peaks in the ultraviolet, and its effect is minimised by selecting detectors with a

quantum efficiency that peaks in the blue, which is consistent with atmospheric transmission.

A major limiting factor in very high energy γ-ray observations is the background Cherenkov

light from cosmic ray interactions with the atmosphere, which cause hadronic air showers as dis-

cussed in Section 1.4.2. Cosmic rays are high-energy particles, mostly protons. In the energy range

of interest to very high energy γ-ray astronomers, these protons are 103-104 times more numer-

ous than the photons from the diffuse γ-ray background and ∼ 103 times more numerous than

the photons from the strongest steady discrete source of very high energy γ-rays. The observed

background of cosmic rays is isotropic, as the paths of the charged particles are affected by the

Galactic magnetic field, and so a discrete γ-ray source of sufficient strength (a few percent of the

cosmic ray background) is distinguishable from this background. Unfortunately, this is a very

strong requirement and it limited the field of very high energy γ-ray astronomy for many years.

To get useful data on γ-ray sources requires that the cosmic ray background be distinguished from

the γ-ray signal.

Fortunately, there are a number of differences between hadronic and electromagnetic air show-

ers which make it possible to distinguish between the two to a certain extent. As discussed in

Section 1.4.2, the lateral profiles of hadronic and electromagnetic air showers are very different,

and current methods of separating the cosmic ray background from the signal rely on this for

accurate background rejection. The lateral profile of a hadron-initiated air shower is far larger

than that of an air shower initiated by an incident γ-ray, as the secondary products emitted within



1.5. Imaging Atmospheric Cherenkov Telescopes (IACTs) 22

the core of the hadronic cascade are produced with a wide variation in angle. The result of this

is that the Cherenkov light distribution a proton initiated air shower seen in the focal plane of an

IACT is broader and less well-defined than that from a very high energy γ-ray initiated air shower.

Using this, Hillas (1985) defined image parameters that can be used to reject most of the cosmic

ray background, as discussed in greater detail in Section 2.2.

Additionally, the Cherenkov light from a hadron-initiated air shower is also more spread out

in time than that from a purely electromagnetic shower, as the penetrating particles and their lo-

cal Cherenkov light arrive early. Cosmic electrons also provide background noise, about 100-1000

times smaller than that for hadronic cosmic rays, decreasing with increasing energy. Unfortunately

this background cannot be discriminated via the method set out by Hillas, as electrons also pro-

duce electromagnetic cascades leaving a virtually irreducible background which may constitute the

limiting factor at energies below a few GeV.

1.5 Imaging Atmospheric Cherenkov Telescopes (IACTs)

As described in the previous section, IACTs detect the Cherenkov light emitted by charged particles

produced in air showers initiated by cosmic rays or very high energy γ-rays. In this section, the

construction and design of such telescopes will be described in greater depth, and the current state

of very-high energy γ-ray astronomy around the world will be discussed. As of the middle of 2012,

there are currently three arrays of IACTs operational: H.E.S.S. (the High Energy Stereoscopic

System) in Namibia, MAGIC on the Canary island of La Palma, and VERITAS (Very Energetic

Radiation Imaging Telescope Array System) in Arizona, USA. Further discussion of these telescopes

can be found in Subsections 1.5.1, 1.5.2 and 1.5.3, with greatest emphasis on the H.E.S.S. array.

The optical quality of an IACT can afford to be much lower than of telescopes that operate in

the visible part of the electromagnetic spectrum, as the angular size of the Cherenkov image of an

air shower is 0.5◦-1.0◦ and the structure in the image is of the order of a few arcmin. This allows

large collection areas, required to increase the sensitivity of the telescope to lower-energy γ-rays

(∼ 100 GeV), to be obtained at relatively low cost through the use of large tessellated arrays of

spherical mirrors of the same focal length, mounted on an optical support with the same radius of

curvature as the focal length; this arrangement is known as the Davies-Cotton design (Davies &

Cotton, 1957; Aharonian et al., 2006a). One drawback of this design is that it introduces a spread

in the time of arrival of the light in the focal plane; however, this is outweighed by the increase in

off-axis performance. A camera, made up of an array of photomultiplier tubes, is then mounted in

the focal plane of the telescope to record the optimum optical image. Photomultiplier tubes are
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used due to their fast response times, blue-sensitivity and reasonable cost. The Cherenkov light

is focused onto the photomultiplier tubes using Winston-cone light collectors. A Winston-cone

light collector is an off-axis parabola with reflective inner seurface designed to maximise collection

of incoming rays within a field of view by funnelling all wavelengths passing through the large

entrance aperture through to the smaller exit aperture (Fernow, 1989).

IACTs can be used to find the position of a source of a few hundred detected γ-rays to within a

few arcmin, (Aharonian et al., 2006a). To do this, the image of the Cherenkov light pool is recorded;

in the case of a γ-ray shower, this image is reasonably elliptical in shape and the direction of its

semimajor axis allows the trajectories of the emitting particles to be deduced. The trajectory

of the core of the shower, from which most of the Cherenkov light is emitted, is generally very

close to the trajectory that the primary γ-ray would have followed had it not interacted with the

atmosphere. Using this method, the arrival direction of the shower can be found to within 0.1◦

with a single detector, while an array of two or more detectors can be used to fix the direction to

within ∼ 0.05◦.

The number of secondary particles at shower maximum is proportional to the energy of the

initial γ-ray over a wide range of energies, while the height of shower maximum also depends on

the initial energy, so to find the energy of the primary γ-ray using these facts would require the

particle density to be sampled at various heights. A more practical method relies on the fact that

most of the particles that emit Cherenkov light in the shower are found at the shower maximum

and that this Cherenkov light is only lightly attenuated. Thus, a good estimate of the number of

particles at shower maximum can be found by measuring the intensity of the Cherenkov light pool,

allowing the energy of the initial γ-ray to be calculated. The chief uncertainty in this measurement

comes about due to uncertainty in the measurement of the distance to the centre of the Cherenkov

light pool; however, if the measurement is made within 50 m-130 m from this, then this effect is

small. A single detector can achieve an energy resolution of between 30% and 40%, while an array

of parallel detectors can achieve an energy resolution of 10%-15% (Weekes, 2003).

Current-generation IACTs are generally built as arrays, as this increases the overall perfor-

mance. In an array of telescopes, each shower is observed by all of the telescopes lying within the

Cherenkov light pool, giving multiple images of the same shower. The multiple images taken by

different telescopes can then be used to improve angular resolution, energy resolution, background

discrimination, energy threshold (by increasing the effective area) and shower-axis location. To

achieve this the separation between the IACTs should be large enough to have a low correlation

between images while being small enough that multiple cameras can be triggered by the lateral

extension of local air showers. The optimum separation has been found to be between 50m and
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100m, with closer spacing increasing low-energy sensitivity at the expense of effective collection

area at higher energies (and vice versa) (Weekes, 2003).

1.5.1 H.E.S.S.

The H.E.S.S. (High Energy Stereoscopic System) telescopes are situated in the Khomas Highlands

of Namibia, near the table mountain, the Gamsberg, at an altitude of 1800 m above sea level, and

a position of 23◦16′18′′ S, 16◦30′00′′E. The telescopes were constructed in the Southern hemisphere

to allow for thorough studies of Galactic sources to be carried out as well as studies of extragalactic

objects. At completion, the system had a threshold energy of ≈ 100GeV and a sensitivity of around

1% of the Crab Nebula flux above 1 TeV for a 5σ detection in 25 hours of operation. The angular

resolution of the telescopes is ∼ 5′.

Until recently, the H.E.S.S. array consisted of four 13m IACTs, which are made up of 382 round

quartz-coated mirror facets, each of diameter 60cm, so each telescope has a total reflector area of

107 m2 (Bernlöhr et al., 2003). The mirror facets are mounted using a Davies-Cotton layout in

which the facets are arranged on a sphere of radius 15m, equal to the focal length of the facets,

giving a focal ratio ≈ 1.2. One consequence of the Davies-Cotton layout is that there is a spread

in the photon-arrival times at the camera, which, for the H.E.S.S. telescopes is ≈ 1.4 ns rms, of

the same order as the intrinsic time spread in the shower photons. On construction, the average

reflectivity of the mirrors was 80% - 85% over the relevant wavelength range (300 nm to 600 nm),

and the system was designed so that 80% of the reflected light from a point source is concentrated

in a circle of 0.4 mrad in diameter. The telescopes are focused to an object distance of around 10

km, which is the typical distance to an air shower from the telescope. A diagram of one of the

telescopes is shown in Figure 1.8.

Each camera is made up of 960 photomultiplier tubes, which have a quantum efficiency of

∼ 25%. Each photomultiplier tube and its Winston-cone light collector forms a pixel with a 0.16◦

field of view, leading to a total field of view of 5◦ for each telescope; this allows observations to be

made of extended sources with extensions of a few degrees. These pixels are then arranged into

groups of 16, with the associated read-out and triggering electronics contained within the camera

body. This avoids the signal loss and broadening of the Cherenkov pulses which would occur if

the signals were transmitted over a long distance. The electronics are sampled every 1 ns and

the camera is triggered when 3-5 pixels in overlapping 8 × 8 pixel sectors detect a signal of ∼ 5

photoelectrons within a narrow coincidence window. The setup provides an effective coincidence

window of ∼ 1.5 ns and allows for efficient background rejection of night-sky photons. If two or

more telescopes are triggered simultaneously, then the data are read out, providing stereoscopic
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Figure 1.8: Diagram of a H.E.S.S. telescope, showing the steel space frame of the dish and the
telescope mount. Mirrors are removed in one section of the dish to view the support beams. Taken
from Bernlöhr et al. (2003).
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images of the air-shower.

The dish is supported in an altitude-azimuth mount in a rotating base-frame, giving freedom

to move the full 360◦ in azimuth and from −30◦ (for easy camera maintenance and parking) to

+180◦ in altitude. The telescope can slew in both axes at up to 100◦ per minute with arcsecond

pointing resolution. The cameras are supported by four masts attached to the dish; these cause

some shadowing of the reflective area and reduce the effective area of the mirrors to ∼ 95 m2. The

support structures of the telescopes are painted red: this helps to minimise stray reflected light in

the blue part of the spectrum where the observations are carried out, while limiting heat absorption

(and hence distortion) of the telescopes during the day. The mirrors are mounted on the structure

in such a manner so as to minimise the stress imparted and are attached to motor-driven actuators

to allow position adjustments to be carried out remotely.

At the end of July 2012, a fifth, larger, telescope was brought online as part of H.E.S.S. phase 2.

This telescope has a diameter of 28 m, and the structure is similar in design to the 12 m telescopes.

At its focal plane is a 2048-pixel camera, utilising similar pixels to those in the smaller telescopes.

The telescope is sensitive to photons with energies as low as 10 GeV (Moudden et al., 2011).

Thus far, the H.E.S.S. telescopes have been extremely successful in detecting both Galactic

and extragalactic sources and have helped to change the field of very high energy γ-ray astronomy

dramatically. The H.E.S.S. Galactic plane survey, carried out between 2004 and 2009, uncovered

more than 50 new TeV γ-ray sources, including supernova remnants, pulsar wind nebulae, X-ray

binary systems, a young star cluster, the γ-ray source at the centre of the Milky Way and a number

of dark sources (sources for which counterparts cannot be identified at other wavelengths). Nearly

all of the sources detected by the survey are extended, with rms sizes up to 0.3◦ (Chaves, 2009).

H.E.S.S. has also been successful in the detection of extragalactic objects including blazars, the

radio galaxy M87 (for which variability on timescales of days was observed, Aharonian et al, 2006c),

Centaurus A (Aharonian et al., 2009b) and the starburst galaxy NGC 253 (Acero et al., 2009).

1.5.2 VERITAS

Of the other operational IACTs of the current generation, the closest in design philosophy to

H.E.S.S. is probably the VERITAS (Very Energetic, Radiation Imaging Telescope Array System)

array in Arizona, located at 31◦40′30′′ N, 110◦57′07′′ W and 1280 m above sea level (Beilicke,

2009). It consists of four 12 m diameter IACTs, separated by a typical baseline of ∼100 m, each

of which is made up of 350 individual hexagonal, spherical mirrors giving a total reflector area of

110 m2. The cameras are made up of 499 photomultiplier tubes, each with a field of view of 0.15◦,

and are mounted in the focal plane of the telescope at a distance of 12 m from the mirrors. The
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total field of view of the telescopes is 3.5◦, slightly less than that for the H.E.S.S. array. VERITAS

operates in a similar energy range to H.E.S.S., with a threshold energy of ∼100 GeV (Weinstein,

2011). The angular resolution of the array is < 0.1◦ for small zenith angles, the pointing accuracy

is < 50” and the energy resolution (above 200GeV) is 15%-20%. In the summer of 2009, the first

constructed telescope was moved to improve the array configuration, and the alignment of the

mirrors on the individual telescopes was refined, after which the γ-ray point source sensitivity of

VERITAS corresponds to the detection of a γ-ray source with a flux 1% of that of the Crab Nebula

at 5σ in less than 25 hours. One major advantage of the array is that unlike the H.E.S.S. array it

can collect scientifically useful data under partial moonlight, leading to an increase of around 30%

in the average yearly data yield.

Regular observations with all four of the VERITAS telescopes began in September 2007, and

since then it has made a number of interesting observations. The weakest source detected by

VERITAS thus far is the starburst galaxy M82 (Acciari et al., 2009a), which was observed between

January 2008 and April 2009 and is one if two such sources detected at TeV energies. VERITAS

collected 137 hours of good data, resulting in a detection at a significance of 4.8σ with a flux level

of only 0.9% that of the Crab Nebula. VERITAS has detected four intermediate-frequency BL

Lacs (IBLs). The first of these W Comae, was detected over four nights in March 2008 while the

source was flaring, reaching a maximum flux of 9% that of the Crab Nebula. W Comae appears

to be highly variable, but is also seen as a weak steady source (Majumdar, 2011). VERITAS has

also been successful in detecting high-frequency BL Lacs (HBLs), both those previously discovered

with other instruments and a number of previously unreported objects; the new discoveries include

1ES 0806+524 detected using observations carried out during construction of the telescopes and

incorporating data collected using two, three and four telescopes (Beilicke, 2009). Observations of

possible Galactic sources have also been successful, with the collaboration reporting detections of

a number of supernova remnants, the first of which were Cassiopeia A and IC443 (Beilicke, 2009).

VERITAS has also been used to carry out studies of X-ray/γ-ray binaries, with the detection of

LSI +61 306 confirming a previous detection in 2006 by MAGIC (Acciari et al., 2008).

1.5.3 MAGIC

The MAGIC (Major Atmospheric γ-ray Imaging Cherenkov) telescopes are two 17 m IACTs sep-

arated by 85m, located at the Roque de los Muchachos Observatory on the Canary Island of La

Palma at 2200m above sea level (Cortina, 2011). The telescopes were, until the construction of the

H.E.S.S. phase 2 telescope, the largest IACTs in the world; the first began operation in 2004, while

the second was completed in 2009. Each telescope has a total reflective area of 236 m2: this large
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size enables the array to observe energies as low as 50 GeV, the lowest energy detectable by any

currently operational IACT (Tibolla, 2012; Aleksić et al., 2012a). The reflectors of the telescopes

are parabolic to minimise the time spread of the Cherenkov light flashes in the camera plane, and

each telescope has a focal length of 17 m. The reflector of the first telescope is constructed of

956 0.5m × 0.5m spherical mirrors, each with a radius of curvature tuned to its position on the

paraboloid. These are mounted, as groups of four mirrors, on two motors to allow for the orienta-

tion of the groups of mirrors to be adjusted. The second telescope is made up of 247 square tiles

of 1 m2, which are also mounted in groups on pairs of motors.

Since the summer of 2011, the telescopes have been equipped with cameras made up of 1039

photomultiplier tubes, each with a field of view of 0.1◦ and a response time of ∼0.1 ns. Both

telescopes are designed to be relatively lightweight and are constructed out of carbon fibre. This

enables rapid movement so they can be repositioned up to 180◦ within 20 seconds; this permits

rapid response to gamma ray burst alarms so as to increase the probability of a very high energy

component being detected (Tibolla, 2012). Unfortunately, the light weight of the telescopes means

that they are more prone to mechanical distortion due to gravity, atmospheric conditions and

weather; to counteract this the telescopes employ an elaborate computer control system for the

motors on the mirrors, helping to keep them in the optimal position for photon collection (Aleksić,

2012a). The sensitivity of the array is such that it can detect a source with flux 0.76 ± 0.03% of

the Crab Nebula flux in 50 h at energies > 290 GeV.

The MAGIC telescopes were the first to detect TeV γ-ray emission from the X-ray binary LSI

+61 303 (Albert et al., 2006) and claimed the initial detection of the shell-type supernova remnant

IC 443 alongside the VERITAS array (Albert et al., 2007a). Work on the Crab nebula with the

MAGIC telescopes has been used in an attempt to detect pulsed TeV emission from the Crab

pulsar and potential variability from the nebula itself, the suggestion being that its low energy

threshold may make detection possible. The telescope has conducted ∼132 hours of observations

of the pulsar and has successfully detected pulsed emission from the object at energies between

50 and 400 GeV (Aleksić, 2012b). Observations of the Crab nebula with MAGIC during flares at

other wavelengths have shown no evidence for variability above 400 GeV (Tibolla, 2012). A hint of

a signal from the X-ray binary Cygnus X-1 with a significance of 4.1σ was reported in 2007, during

a flare observed at both hard and soft X-rays with numerous space-based instruments (Albert et

al., 2007b).

Since the beginning of 2005, MAGIC has been following up gamma ray burst alerts but so

far no detections have been made; however, upper limits have been successfully constructed for

a number of events (Cortina, 2011). Other observations have been undertaken of a number of
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different AGN classes, including blazars, Seyfert galaxies and radio galaxies. MAGIC has claimed

the detection of TeV γ-rays from the 3C 66A/B region with a significance of 5.4σ (Aliu et al.,

2009). Interestingly, the MAGIC collaboration found that the distant blazar 3C 66A was unlikely

to be the source of the TeV emission, which appeared to be coincident with the Seyfert 1 galaxy

3C 66B with a probability of 85.4%. This may represent the first possible detection of VHE γ-rays

from a Seyfert galaxy, although the subsequent detection of 3C 66A by VERITAS casts some doubt

on this claim (Acciari, 2009a). The detection of IC 310 was reported in 2010 (Aleksić et al., 2010).

This object was initially classified as a radio galaxy, although there is some evidence to suggest it

may in fact be an HBL (Kadler et al., 2012).

1.6 Space-based Instruments

The atmospheric Cherenkov technique discussed in Section 1.4.3 allows γ-rays of energies & 50 GeV

to be studied in great detail; however, to study γ-rays with energies below this threshold, the effects

of the atmosphere must be eliminated. In the past, this was done using instruments in balloons,

but since 1973 this energy band has been studied using space-based telescopes. Unfortunately,

γ-rays cannot be reflected or focused, which limits the collection area to the size of the detector;

owing to the relatively low fluxes, long exposure times are therefore required. Currently, there are

3 main space-based γ-ray observatories in operation: INTEGRAL, AGILE and the Fermi γ-ray

Space Telescope; these are discussed in the following sections.

1.6.1 INTEGRAL

The INTEGRAL (INternational γ-Ray Astrophysics Laboratory) observatory is operated by the

European Space Agency (ESA) and was launched in October 2002. It had an initial operational

lifetime of 2 years which has since been extended; the satellite is now funded until 31 December

2012, with mission operations extended until 31 December 2014 (Winkler, 2011). The instrument

is designed to gather spectroscopic data primarily in the energy range of 15 keV to 10 MeV, with

monitoring capabilities both at X-ray energies between 3 keV and 35 keV and in the optical band

at 550 nm. It has an angular resolution between 15 keV and 10 MeV of 12 arcmin full width at

half maximum (FWHM).

INTEGRAL has two γ-ray instruments, the first of which, the spectrometer for INTEGRAL

(SPI), is optimised for high-resolution spectroscopy between 20 keV and 8 MeV and has the widest

field of view of any of the instruments on board (16◦ corner to corner). The second instrument,

the imager on-board the INTEGRAL satellite (IBIS), is designed for γ-ray imaging and so has a
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better angular resolution than SPI. IBIS operates over a slightly wider band, between 15 keV and

10 MeV; however, it has a smaller field of view (9◦ × 9◦). In addition to the γ-ray instruments

the satellite also carries two monitors, JEM-X, which operates in the 3 keV to 35 keV X-ray band,

and the optical monitor, OMC.

Data collected using the INTEGRAL satellite have led to a number of important discoveries

about the Universe in soft γ-rays. Prior to the launch of INTEGRAL, the origin of ∼ 50% of the

emission between 50 keV and 500 keV had been attributed to diffuse emission, as earlier missions

had difficulty in resolving point sources. Since INTEGRAL began observations, the greater imaging

accuracy and good sensitivity have led to the detection of a large number (> 90) of point sources;

the energy output of these accounts for ∼ 90% of the unexplained diffuse soft γ-ray emission in the

inner Galaxy (Winkler, 2007). The telescope has been used to observe the 1809 keV line emission

from 26Al, which is a key tracer for nucleosynthesis from massive stars, allowing the star-formation

rate in the Galaxy to be estimated at ∼ 4 M� yr−1. Using data from INTEGRAL, it has been

possible to localise the 511 keV electron-positron annihilation line (which is the brightest γ-ray

line in the galaxy), towards the Galactic centre (Knödlseder et al., 2005). Although the source

of positrons for this annihilation is currently unknown, the data collected have allowed greater

constraints to be placed on any potential sources of this emission.

Observations of the centre of the Galaxy with the satellite led to the first detection of a persistent

hard X-ray source within the central 10 arcmin of the Milky Way (Bélanger et al., 2006). This

source is coincident with Sgr A∗, believed to be the counterpart of the supermassive black hole at

the centre of the Galaxy, but has a flux eight orders of magnitude lower than that expected for

a maximally accreting black hole of the currently accepted mass. By using INTEGRAL to study

the scattering of past hard X-rays from the molecular cloud Sgr B2, 350 light years away from Sgr

A∗, it has been possible to determine that the centre of the Galaxy was about 10 000 times more

luminous at energies above 20 keV 350 years ago than is seen today. Additionally, INTEGRAL

has detected a large number of both Galactic and extragalactic sources of soft γ-rays, leading to

the construction of the IBIS soft γ-ray catalogue (Winkler, 2007).

1.6.2 AGILE

AGILE (Astro-rivelatore γ a Immagini LEggero) is an Italian mission supported by the Italian

Space Agency (ASI), and was launched in April 2007 (Tavani et al., 2009a). The scientific payload

of the satellite is made up of three detectors combined into a single instrument: a γ-ray imaging

detector (GRID), a hard X-ray imager (super-AGILE ) and a mini-calorimeter which is part of the

GRID. AGILE was the first γ-ray telescope to use solid-state silicon detector technology similar to
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that used on the Fermi satellite discussed in Subsection 1.6.3. The GRID instrument is sensitive

to photons between ∼ 30 MeV and 50 GeV and consists of a silicon-tungsten tracker, a caesium

iodide calorimeter and an anticoincidence system for efficient background rejection. It has a field

of view of ∼ 3 sr and an angular resolution of 0.1◦ - 0.2◦ (Pittori, 2012). Super-AGILE is a hard

X-ray detector sensitive in the 18 keV-60 keV band, with an angular resolution of 1-2 arcmin. The

mini-calorimeter is capable of independently detecting transient sources in the range 350 keV - 100

MeV with excellent timing capabilities.

Since its launch, AGILE has successfully spent time studying a wide variety of objects. In

December 2009, the satellite detected the strongest γ-ray flare for energy greater than 100 MeV

observed to date from the flat-spectrum radio quasar (FSRQ) 3C 454.3. Analysis of the data from

the flare showed a rapid increase of ∼ 80% in the flux > 100 MeV over a 24-hour period, (Striani et

al., 2010a). The flaring of another FSRQ, 4C 21.35, in June 2010 was also detected by the satellite;

this flare was detected by the Fermi satellite and at energies > 100 GeV by the MAGIC telescopes,

while also displaying an increase in near-infrared flux (Pittori, 2012). The detection of the flare

by AGILE led to six Swift (a satellite with instruments covering energy ranges from optical to γ-

rays, primarily designed for observations of gamma-ray bursts) target of opportunity observations,

as well as optical observations both during and after the flare providing good multiwavelength

coverage of the source.

Observations with AGILE have confirmed detection of the six pulsars previously detected with

EGRET (energetic γ-ray experiment telescope) as well as two further pulsars, and timing analysis

has led to the detection of a further seven (Pellizzoni et al., 2009). Additionally, the detection of

the Vela pulsar wind nebula is the first experimental confirmation of such a source at energies in

the range 100 MeV < E < 50 GeV (Pellizzoni et al., 2010). Studies of binary systems with the

telescope have led to interesting discoveries of episodes of transient γ-ray emission from both a

colliding-wind massive binary system in the eta-Carinae region (Tavani et al., 2009b) and from two

microquasars, Cygnus X-1 (Pittori, 2012) and Cygnus X-3; AGILE also detected weak persistent

emission from Cygnus X-3 for the first time (Tavani et al., 2009c). AGILE was the first instrument

to report detection of γ-ray flares from the Crab Nebula, long believed to be constant across all

energies (Tavani et al., 2011). Super-AGILE detects GRBs at a rate of about one per month

(Del Monte et al., 2008), while the mini-calorimeter detects them in its energy range at a rate of

about one per week (Marisaldi et al., 2008). GRBs have also been detected at the higher energies

observed with GRID, displaying a high energy component E > 50 MeV (Giuliani et al., 2008).
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Figure 1.9: Schematic diagram of the LAT aboard the Fermi satellite showing the Anticoincidence
Detector (ACD), the tracker and the calorimeter. Taken from Moiseev (2011).

1.6.3 The Fermi γ-ray Space Telescope

The Fermi γ-ray Space Telescope was launched on the 11th June 2008 to observe the universe at

energies from 8 keV to 300 GeV. The telescope contains two instruments, the Large Area Telescope

(LAT), an imaging high-energy γ-ray telescope which covers the energy range from 20 MeV to 300

GeV, and the GLAST Burst Monitor (GBM), which is sensitive to X-rays of energy 8 keV through

to γ-rays of energy 40 MeV and is used to study transient sources such as γ-ray bursts. The LAT

has a field of view that covers 20% of the sky (> 2 steradians), and a complete scan of the sky is

completed every 3 hours (Moiseev, 2011).

The LAT is a pair-conversion telescope. This means that it detects γ-rays through the electrons

and positrons generated when the γ-ray interacts with the medium through which it passes. Until

the launch of AGILE in April 2007, pair-production telescopes used a spark chamber to detect

γ-rays. In both AGILE and Fermi -LAT, this has been replaced with a solid-state detector with

which the incoming γ-ray interacts. A major benefit of solid-state detectors over spark chambers is

that the gas in a spark chamber gradually becomes contaminated and needs replenishing, whereas

the silicon in a solid-state detector remains functional for a a far longer period of time. The part

of the telescope in which this occurs is known as the tracker, which in the Fermi -LAT telescope is

made up of a four-by-four array of tower modules, each consisting of layers of silicon strip particle

tracking detectors interleaved with thin tungsten converter foils. The direction of the incoming γ-

ray is measured by studying the tracks of pair-produced electrons and positrons, while the energy is

determined using a calorimeter, which is mounted at the bottom of the tower module and absorbs
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all of the particles produced during the γ-ray’s passage through the silicon. Surrounding the

assembly is an anticoincidence detector which provides charged particle background rejection. The

LAT has an effective area for γ-ray detection of 9500 cm2, an energy resolution between 6% and

18% depending on the angle of incidence and the energy of the incident γ-ray, and a point-source

sensitivity for photons with energy > 100 MeV of 3 × 10−9 ph cm−2 s−1 (Atwood et al., 2009).

The structure of the LAT can be seen in Figure 1.9.

The GBM is mounted so as not to block the field of view of the LAT or interfere with the

solar cells. It comprises 12 sodium iodide (NaI) scintillation detectors each directly coupled to

a photomultiplier tube, to cover the energy range 8 keV to 1 MeV, and two bismuth germanate

scintillation detectors, each coupled to two photomultiplier tubes, to cover energies from 150 keV

to 40 MeV. The GBM has a field of view of 9.5 steradians, an energy resolution of 12% at 511 keV,

a detection area of 12 cm2 for both the high-energy and low-energy energy detectors and a trigger

sensitivity of 0.74 photons cm2 s−1 between 50 keV and 300 keV (Meegan et al., 2009).

The first discovery made using the Fermi -LAT was the detection of a pulsar in the CTA 1

supernova remnant (Abdo et al., 2008). The pulsar at the centre of the supernova remnant is

the first discovered to emit pulses only at at γ-ray wavelengths. This pulsar has a pulsation

period of 316.86 ms. Further work on pulsars has led to the detection of 24 radio-quiet neutron

stars pulsating in γ-rays, γ-ray emission from rapidly spinning pulsars with periods ∼ 0.01, s and

pulsed γ-ray emission from ∼ 30 other pulsars (Caraveo, 2012). In 2010, a transient source was

detected coincident with Nova V407 Cyg, suggesting the first detection of γ-rays from a nova

(Sitarek & Bednarek, 2012). Both instruments on board the Fermi γ-ray Space Telescope detected

the γ-ray burst GRB 080916C in the constellation Carina, the first time such a phenomenon

has been observed at such high energies (Abdo et al, 2009a). Since detection of GRB 080916C,

a large number of other γ-ray bursts have been detected, allowing the high-energy spectra of

these phenomena to be studied in detail (Bissaldi, 2011). Additionally, the Fermi satellite has

detected emission from a number of other Galactic sources, pulsar wind nebulae, binary systems,

globular clusters and potentially even two massive stars; these results are included in the 2nd Fermi

catalogue (Nolan et al., 2012).

Fermi -LAT studies of extragalactic sources have also revealed interesting results. In July 2009,

the Fermi Collaboration reported the detection of PMN J0948+0022, a radio-loud narrow-line

Seyfert 1 galaxy (NLSy1) at a redshift of z = 0.586 (Abdo et al. 2009b) which is the first detected

at such high-energy; since then, a further three radio-loud NLSy1s have been detected: PKS

1502+036 at z = 0.409, 1H 0323+342 at z = 0.061, and PKS 2004-447 at z = 0.24 (Abdo et al.,

2009c). These sources will be discussed in more detail in Section 4.3. Thus far, the Fermi -LAT
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Figure 1.10: Sky map of the γ-ray energy flux between 100 MeV and 10 GeV as derived from
Fermi -LAT data over 24 months of observations, in units of 10−7 erg cm−2 s−1 sr−1. The map
uses the Aitoff projection in Galactic coordinates. The highest concentration of sources can be
seen across the middle of the map corresponding to the position of the Galactic plane. Taken from
Nolan et al. (2012).

has detected > 900 sources associated with AGN, of which 894 are blazars; in addition to the

Seyfert galaxies discussed above, nine radio galaxies have also been detected as well as nine other

AGN (Nolan et al., 2012). Interestingly, the Fermi -LAT has discovered seven sources associated

with galaxies not hosting an AGN, including both the Large and Small Magellanic Clouds, four

starburst galaxies and the Andromeda Galaxy, M31. An image of the γ-ray sky as seen by the

Fermi -LAT in the energy range 20 MeV - 300 GeV is shown in Figure 1.10.

1.6.4 Lower energy space telescopes

There are a number of telescopes operating in the X-ray and lower energy γ-ray regimes of relevance

to VHE γ-ray astronomy two of them are briefly described here.

The Swift Gamma-Ray Burst Explorer is a NASA mission launched to observe gamma-ray

bursts in the Universe. To do this it has the capability to rapidly slew to point at newly detected

gamma-ray bursts and carries three co-aligned telescopes at wavelengths from the optical and

ultraviolet (170 - 650 nm), X-rays (0.2 - 10 keV) and low energy γ-rays (15 - 150 keV). The low

energy γ-ray telescope has a wide field of view to enable it to survey as much of the sky as possible

for gamma ray bursts so the telescope can quickly slew to any new events (Romano P., 2012).

XMM-Newton is an ESA mission, sensitive at X-ray energies betweem ∼ 1.0 keV - ∼ 10.0 keV.

The telescope has a relatively large field of view enabling it to be used for survey work (Jansen F.

& Parmar A. N., 2001).
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1.7 Current Status of Very High Energy γ-ray Astronomy

As of late 2012, 143 VHE γ-ray sources have been observed (http://tevcat.uchicago.edu/ accessed

on 20/12/2012). Of these, 88 are Galactic sources, some of which were discovered by the H.E.S.S.

Galactic plane scan, which was carried out between 2004 and 2009 and covered −85◦ < l < 60◦,

−2.5◦ < b < 2.5◦, where l is the Galactic longitude and b is the Galactic latitude (Hinton, 2009).

The Galactic sources identified can be separated further into four categories: pulsar wind nebulae,

supernova remnants, star clusters and binary systems.

Pulsar wind nebulae, also known as plerions, are nebulae powered by a pulsar contained within

it. As the pulsar wind expands out from the pulsar into the ambient medium, it creates a standing

shock where particles are accelerated to high energies, allowing for the production of γ-rays. The

data collected thus far on such sources imply that energy may be transferred from the spin-down

of the pulsar into TeV γ-rays with an efficiency of ∼ 1%. In the pulsar wind nebula HESS J1825-

137, the VHE spectrum is observed to soften with increasing distance from the pulsar (known as

an energy dependent morphology) and the γ-ray flux increases with increasing distance from the

pulsar (Aharonian et al., 2006b). An excess map of the sky region around the object in very high

energy γ-rays is shown in Figure 1.11. Recently a pulsar wind nebula has been detected outside of

the Galaxy in the Large Magellanic Cloud at a distance of 48.1 kpc (Abramowski et al., 2012a).

Supernova remnants were long suspected to be sources of very high energy γ-rays. The first

confirmed detections were of RX J1713.73946 (Muraishi et al., 2000), by the CANGAROO Col-

laboration (shown in Figure 1.12), and Cassiopeia A (Aharonian et al., 2001) by the HEGRA

Collaboration. There are currently two basic sets of theories that have been put forward to explain

very high energy emission from such sources (Hinton, 2009). In the first, the TeV γ-ray emission is

due to inverse-Compton scattering from the same relativistic electron population as is responsible

for synchrotron emission from the source (as described in Section 1.2.3). In the second theory,

emission is thought to be due to hadronic interactions between protons and nuclei, which lead to

γ-ray emission via decay of neutral pions (see Section 1.2.5).

Some binary systems have been observed to emit at very high energies. These systems contain a

massive star and a compact object, and may be either microquasars, in which TeV emission occurs

in a relativistic jet, or binary pulsar wind nebulae, where the spin-down of the pulsar provides the

energy for the very high energy γ-ray emission (Hinton, 2009). LS 5039, a γ-ray binary thought

to be made up of a black hole and massive star, shows periodicity at TeV energies with a period

equal to the orbital period of the system, 3.9 days (Aharonian et al., 2006c). The object can be

seen as the southern-most source in Figure 1.11.
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Figure 1.11: A smoothed excess map of the sky region around the pulsar PSR J1826-1334 (the
white triangle), showing the pulsar wind nebula HESS J1825-137 and the γ-ray binary LS 5039,
constructed with data from the H.E.S.S. array. The linear colour scale is in units of integrated
excess counts within the smoothing radius of 2.5’. The best fit position of HESS J1825-137 is
denoted by the black circle, and the dashed contours represent the 5σ, 10 σ and 15 σ significance
levels with the outermost contour corresponding to the 5σ significance level. The inset circle in
the bottom left hand corner shows the point spread function of the dataset. LS 5039 is the bright
source to the south of HESS J1825-137. From Aharonian et al. (2006b).
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Figure 1.12: Contour map of significance at very high energies around RX J1713.7-3946, centred
on the sky region brightest in hard X-rays (R.A. 17h 11m 56.7s Dec -39◦ 31’ 52”) constructed with
data from the CANGAROO VHE γ-ray telescope as presented in Muraishi et al. (2000). The
white contours represent significance and the black contours are X-ray data between 0.5 and 10
keV. The solid circle represents the point-spread function of the telescope.

Finally, a number of TeV γ-ray sources have also been associated with stellar clusters of mas-

sive young stars, where collisions between the strong stellar winds may produce standing shocks

capable of accelerating particles up to the required energies for very high energy γ-ray emission

(Abramowski et al., 2012b). One such object reported recently is Westerland 1, although it is sug-

gested that some of the emission may originate from a spatially adjacent pulsar, PSR J1646-458.

An excess map of the sky region in VHE γ-rays is shown in Figure 1.13.

The remaining 55 very high energy γ-ray sources are all extragalactic in origin, they are all

point sources and they have generally been detected through targeted observation campaigns,

making identification far easier than with Galactic sources. Thus far all bar two of the detected

extragalactic sources are coincident with AGN which will be more fully discussed in Chapter 3.

The remaining two, both reported in 2009, are starburst galaxies, NGC 253 (Aharonian et. al.,

2009a) and M82 (Acciari et al., 2009b). A starburst galaxy is one in which there is a boosted

formation rate of massive stars, and consequently of supernovae, in localised regions which also

exhibit very high densities of gas and radiation fields. These galaxies are considered favourable for

the production of cosmic rays (believed to be produced in shocks such as those seen in supernovae)

which can then produce TeV γ-rays via inelastic collisions with gas particles and subsequent π0
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Figure 1.13: H.E.S.S. excess map of the sky region around Westerlund 1 in units of equivalent
γ-ray events per arcmin2. Significance contours between 4σ and 8σ are overlaid in black. The
green star represents the position of Westerlund 1 and the white cross the best-fit position of the
γ-ray source, while the black dotted line is the Galactic plane. The bright region in the lower right
corner is the pulsar wind nebula HESS J1640-465, detected during the H.E.S.S. Galactic plane
scan. Taken from Abramowski et al. (2012b)

decay. Of the AGN detected, most are of the blazar subclass, with the relativistic jet at a small

angle of inclination to the line of sight; however, three are misaligned, M87 (Aharonian et al.,

2006d), Centaurus A (Aharonian et al., 2009b) and NGC 1275 (Aleksić et al., 2012c). Thus far, all

extragalactic sources detected have been at relatively low redshift (z . 0.5), because of attenuation

of very high energy γ-rays by the extragalactic background light which will be discussed in Section

3.5.

1.8 Conclusions

The study of γ-rays opens up a new window on the Universe, and over the last decade great

strides have been made towards revealing the nature of the objects responsible for such high-

energy emission. To emit photons at energies E & 1 GeV requires nonthermal processes such

as those described in Section 1.2, and the conditions of the source will determine which of these

processes is dominant. Currently, the field is relatively healthy, with three very high energy (E &

100 GeV ground-based arrays of telescopes in operation, all using the atmospheric Cherenkov

technique. This technique detects the Cherenkov light emitted by secondary particles produced

by the interaction of γ-rays in the atmosphere. This light is then used to infer both the trajectory
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and energy of the initial γ-ray. These ground-based installations have been extremely successful

in detecting large numbers of new sources of very high energy γ-rays, with the number of such

objects now significantly above 100. At slightly lower energies, observations must be carried out in

orbit and there are currently three operational satellites studying the Universe in γ-rays. Of these,

the oldest is INTEGRAL, launched in 2002 and is scheduled to remain operational until ∼2014;

AGILE and Fermi, launched in 2007 and 2008 respectively are expected to be collecting data for

some time yet.



Chapter 2

Analysis of Data from IACTs

2.1 Introduction

Unlike many other fields of astronomy where it is possible to directly count the photons incident

upon the detector, very high energy γ-ray astronomy relies on detecting the Cherenkov emission

from particles released in air-showers as discussed in Section 1.4.2. This makes analysing the

data collected by IACTs relatively complex and this is further compounded by the extremely high

background of Cherenkov light emitted by cosmic ray initiated air-showers. Over the decades,

however, methods have been developed to allow almost all of this background to be rejected

through analysis of the properties of the Cherenkov light pools. By studying the properties of

these light pools, it is possible to differentiate between those air-showers initiated by cosmic rays

and those initiated by γ-ray photons, while also determining the properties of the primary. This

enables the source of any detected γ-rays to be determined and its flux and spectrum at very high

energies to be calculated. In the case of observations of an object that does not show significant

TeV γ-ray emission, an upper limit on the flux from it can be calculated.

2.2 Parameters Used for γ-ray/Hadron Separation

As discussed in Section 1.4.3 the overwhelming majority of air showers are initiated by a cosmic

ray incident on the atmosphere rather than a γ-ray photon. Despite this, very high energy γ-

ray astronomy has been able to flourish thanks to work reported in Hillas (1985) which made

it possible to distinguish between the two forms of air shower with a high degree of accuracy

(achieving greater than 98% rejection of proton-initiated air showers). It had been noted that

a number of astrophysical objects appeared to be potential point sources of TeV cosmic rays,

40



2.2. Parameters Used for γ-ray/Hadron Separation 41

presumed to be γ-rays, but that they did not stand out clearly from the isotropic cosmic ray

background; however, it was hoped that if any differences between air showers initiated by TeV

photons and those initiated by protons could be documented, it might be possible to reject the

background cosmic rays. Hillas used a Monte Carlo simulation to model the development of air

showers with both proton and γ-ray primaries, using a program that had been previously used

to model other interactions. The Cherenkov light released in these showers was assumed to be

received by a collector, 10 m in diameter, and the predicted images were recorded. To describe

these images Hillas used a total of six image parameters, which are described mathematically in

Fegan (1997) and reproduced here. The first two parameters are the length, l, and width, w, of

the ellipsoid, defined as:

l =

√
σx2 + σy2 + s

2
w =

√
σx2 + σy2 − s

2
(2.1)

where:

σx2 = 〈x2〉 − 〈x〉2 σy2 = 〈y2〉 − 〈y〉2 (2.2)

and

s =
√

(σy2 − σx2)2 + 4(σxy)2 (2.3)

where

σxy = 〈xy〉 − 〈x〉〈y〉 (2.4)

σx2 , σy2 and σxy are the spreads of the image in different directions defined in terms of the

image moments. These image moments are related to the number of counts in a pixel, ni, and

the position of this pixel, described, to second order, using the Cartesian coordinates xi and yi,

through:
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〈x〉 =
Σnixi
Σni

〈y〉 =
Σniyi
Σni

(2.5)

〈x2〉 =
Σnix

2
i

Σni
〈y2〉 =

Σniy
2
i

Σni
(2.6)

〈xy〉 =
Σnixiyi

Σni
(2.7)

The third parameter is the distance, d, from the centroid of the image to the centre of the field

of view, this is calculated using:

d =
√
〈x〉2 + 〈y〉2 (2.8)

Fourth is the miss, m, the perpendicular distance between the major axis of the image and the

centre of the field of view of the camera, evaluated as:

m =

√(
u〈x〉2 + v〈y〉2)

3

)
−
(

2σxy〈x〉〈y〉
s

)
(2.9)

where

u = 1 +
σy2 − σx2

s
(2.10)

and

v = 2− u (2.11)

Fifth is the azimuthal width, Aw, which is the rms spread of light perpendicular to the line

connecting the centroid of the image to the centre of the field of view, defined mathematically:

Aw =

√
〈x〉2〈y2〉 − 2〈x〉〈y〉〈xy〉+ 〈x2〉〈y〉2

d2
(2.12)

The final parameter is the degree of light concentration determined using the ratio of the two

largest pixel signals to the sum of all signals. The length, width and distance are shown in Figure

2.1.

It was found that the images of hadronic showers tend to be longer and wider (due to the

emission angles of pions, not present in γ-ray showers), fluctuate more in intensity across the

image, and are not systematically aligned with the source. Using the parameters described above,
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Figure 2.1: Diagram illustrating simple Hillas parameters, calculated for a γ-ray image, approx-
imated as an ellipse. An image from a second telescope is superimposed to demonstrate the
geometrical technique for source position reconstruction. The magnitude of the angular offset in
shower direction reconstruction is the parameter, θ. Taken from Aharonian et al. (2006a).

Hillas was able to define a region of parameter space containing showers mostly initiated by a γ-ray

primary and only a small percentage of proton-initiated showers. By requiring that any four out of

the six parameters for a shower lie in this region, Hillas found that it was possible to accept 60%-

70% of γ-ray-initiated air showers while rejecting more than 98% of background proton-initiated

showers.

In practical situations, the image must be “cleaned” before the Hillas parameters can be calcu-

lated. This involves selecting only the pixels which contain Cherenkov light while rejecting those

containing only night-sky background (Aharonian et al., 2006a). For the H.E.S.S. telescopes, a

two-level filter is used: pixels in the image are required to be above 5 photoelectrons with a neigh-

bour above 10 photoelectrons and vice versa. This method successfully selects spatially correlated

features which correspond to air shower light and smooths out shower fluctuations in a simple and

repeatable manner. After this the Hillas parameters can then be calculated.

For arrays of more than one telescope, hadron-like events are primarily separated from γ-ray-

like events using mean-scaled parameters, psc, for both the width and length of the detected air

shower (Aharonian et al., 2006a). A lookup table, calculated using Monte Carlo simulations, is

used to predict the mean value and scatter expected for the parameter being considered in the case

of a γ-ray-initiated air shower, as a function of the amplitude of the shower image on the camera,

the impact parameter (the projected distance of the extrapolated shower track to a telescope) and

the zenith angle. The value of psc is then calculated using:
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psc =
(p− 〈p〉)

σp
(2.13)

where 〈p〉 is the mean value of the parameter from the lookup tables, σp is the scatter taken

from the lookup tables and p is the measured value of the parameter from the air shower. The

smaller the calculated value for psc, the more likely the event is to be a γ-ray initiated air shower.

Using the calculated value for psc the mean reduced scaled width (MRSW) and mean reduced

scaled length (MRSL) are then calculated by averaging over those telescope images which pass the

image-amplitude selection cut for each event.

2.3 Reconstruction of the Origin of a TeV Event

The arrival direction of an air shower can be reconstructed by tracing the direction of the semimajor

axis of the image to the point of origin of the particle. Using a single telescope the point of origin

of the particle must be estimated using the energy of the particle inferred from the shower size

in addition to the asymmetry in the image, which introduces a large amount of inaccuracy in

the calculation. By using multiple telescopes, as in the H.E.S.S. array, it is possible to find the

intersection of the major axes of the shower images in multiple cameras, giving a simple geometric

method of accurately measuring the shower direction, as can be seen in Figure 2.1. Requiring more

than one telescope to be triggered for an event to be recorded therefore allows improved accuracy

in determining the point of origin of the air shower, with the added benefit of rejecting detections

of the Cherenkov light from single muons passing within ∼ 100 m of the camera of one of the

telescopes.

The point-spread function (PSF) of an array of telescopes is defined as the distribution of events

around the location of a point source. In very high energy γ-ray astronomy, the distribution of

reconstructed shower directions is usually plotted as a function of θ2. The PSF defines the accuracy

of the reconstructed arrival directions from a point source and can be approximated as the sum of

two one-dimensional Gaussian functions

PSF = A

(
exp

(
−θ2

2σ2
1

)
+Arel exp

(
−θ2

2σ2
2

))
(2.14)

where A is the absolute amplitude, which is proportional the number of events, Arel is the

relative amplitude of the second Gaussian, and σ1 and σ2 are the standard deviation parameters

(Aharonian et al., 2006a). The values for these parameters at set zenith angles are calculated by

fitting the function to the θ2 distributions for simulated Monte Carlo γ-rays, and have also been
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Cuts MRSL MRSW θ2
cut Image Amp. Distance γ acc. BG acc.

Min/Max Min/Max Max Min Max (Z = 20◦) (Z = 20◦)
(deg2) (photoelectrons) (◦) % %

Standard -2.0/2.0 -2.0/0.9 0.0125 80 2.0 35 9× 10−3

Hard -2.0/2.0 -2.0/0.7 0.01 200 2.0 13 8× 10−4

Loose -2.0/2.0 -2.0/1.2 0.04 40 2.0 68 0.11

Table 2.1: Selection cuts optimised for various sources as described in the text. Cuts are applied
on MRSW, MRSL and the distance, θ, from the reconstructed shower position to the source. A
minimum of two telescopes passing the per-telescope cuts on image amplitude and distance from
the source is also required. The γ-ray acceptance and background rejection for each set of cuts are
also displayed for a zenith angle Z = 20◦. Taken from Aharonian et al. (2006a).

verified by fitting to Crab Nebula data.

2.4 H.E.S.S. Selection Cuts

Selection cuts are the ranges of values of the parameters discussed in Sections 2.2 and 2.3 for which

an event is assumed to be initiated by a γ-ray primary. The selection cuts used by the H.E.S.S.

array are optimised to maximise the detection significance for sources with typical fluxes and

energy spectra, and have been calculated using a mixture of γ-ray simulations and background

data (Aharonian et al., 2006a). The significance achieved for a given source increases with the

square root of the observation time, and the optimised cuts yield the maximum significance for a

source of that type. The optimum cuts to use for a specific source are strongly dependent on the

spectrum of the object being observed and so several different sets of cuts may be used in analysis;

however, multiple sets of cuts are not used in source searches in order to preserve the a priori

nature of the analysis. The cuts used in H.E.S.S. analysis are displayed in Table 2.1.

The standard cuts described in Table 2.1 are optimised to give the maximum significance for

a source with a flux 10% of the Crab Nebula and displaying a similar spectrum. As shown in

the table, these cuts reject all bar 9 × 10−3% of background events, while successfully selecting

35% of photon-initiated air showers. Hard cuts are optimised for fainter sources, with flux ∼1%

of the Crab flux and steeper spectra than the Crab Nebula. These cuts are particularly useful

for analysing data from weak, hard-spectrum sources, returning higher significances than standard

cuts, while also rejecting a higher percentage of background events (8 × 10−4%) at the cost of

retaining only 11% of γ-ray-initiated events. Loose cuts are optimised to give the maximum

significance for sources displaying similar fluxes to the Crab Nebula and softer spectra. The lower

intensity cut when compared to the standard cuts reduces the energy threshold of the analysis, and

more γ-ray-initiated events (68%) pass selection; however, the percentage of background events

selected (0.11%) is also higher. When conducting source searches, the standard cuts are always
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used, unless there is a reason to suspect a very hard or very soft γ-ray spectrum from the object.

In addition for large extended sources, the cut on θ2 is usually set to be larger than the known or

assumed extension of the source, so that all γ-rays from the object should pass this cut.

2.5 Calculating the Significance of a Detection

After cuts have been applied, it is necessary to find the significance of a potential detection when

compared to the residual background. To do this, the method proposed in Li & Ma (1983) is used,

where the statistical significance, S, of a potential detection is shown to be:

S =
Non − αNoff√
α(Non +Noff )

(2.15)

where Non is the number of counts on the source position, Noff is the number of off-axis

counts and α is the normalisation constant between the on and off regions, taking into account

any difference in the size of the effective areas (which depends on zenith angle and photon energy) of

the regions considered and in observation times. The on signal for a given object is determined by

selecting events within a circle with radius θcut around that object. Calculating the value of Noff is

done by measuring the background across a different region of the field of view of the telescope. The

region over which this background is measured depends on the background model used. For the

H.E.S.S. telescopes, this is either the reflected-background model or the ring-background model.

The reflected-background model uses a number of small circular regions, of the same distance

from the centre of the camera as the source being observed. The combined events from these

regions are used to estimate Noff , and α is then the ratio of the solid angles of the on to off

regions. The method cannot be used for sources closer to the centre of the field of view than

the radius of the on region, as the background positions would overlap with the source position.

The ring-background model calculates the background in a ring around the source position with

an internal radius chosen to be significantly larger than the on region. This avoids any potential

signal leakage from the source. The outer radius of the ring is generally chosen such that the ratio

between the area of the on and off regions is close to 7, as this makes a good compromise between

the size of the region being used to calculate the background and distance from the on region.

In this case, α not only takes into account the ratio between the solid angles of the on and off

regions, but, as the regions being considered are different distances from the centre of the camera,

must also take into account the radial background acceptance (which is a radial profile describing

the rate of background events passing the shape cuts) in the camera. A comparison of the two

methods is shown in Figure 2.2. Using the background methods discussed a sky map displaying



2.6. Calculating the γ-ray Flux and Spectra 47

Figure 2.2: Illustration of the background models described in Section 2.5. The centre of the field
of view of the telescopes is marked by a cross while the source position is marked with an X The
total field of view of the camera is 5◦ with the diagram only covering a 2◦ × 2◦ region. The region
used to calculate Noff for the ring-background method is indicated with horizontal lines, while
the regions used in the case of the reflected-background method are indicated with diagonal lines.
The region in which Non is calculated is indicated with a cross-hatch filled circle. Taken from
Aharonian et al. (2006a).

the significance of the events detected at each region across the field of view can be constructed.

To do this each part of the sky map is treated as a test position and the background around it

calculated using either of the methods described leading to a calculation of the significance across

the field of view.

2.6 Calculating the γ-ray Flux and Spectra

The flux of an object at very high energies is of great interest when studying the properties of

the source involved, and calculating it allows a light curve of the γ-ray flux from the object to be

constructed. To generate a light curve the integrated flux above a chosen threshold energy, Eth is

calculated for each time period (tstart to tstop). To do this a spectral form, dN/dE, for the emission

from the object must be assumed or measured; in the case of a power law spectrum this takes the

form (Benbow et al., 2005):
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dN

dE
= I0(E)−Γ (2.16)

where Γ is the photon index and I0 the flux normalisation. The excess number of events seen

from a source, δ, is then given by

δ =

∫ Ec

Eth

∫ tstop

tstart

I0

(
dN

dE

)−Γ

Aeff(E,Z(t))dtdE (2.17)

where Aeff is the effective area as a function of zenith angle, Z and true photon energy, E

(Aharonian et al., 2006a). The effective area is defined as the area over which an incoming γ-

ray will trigger the detector and pass selection cuts. Monte Carlo simulations have been used

to determine the fraction of simulated γ-rays that fulfil both of these conditions over a range of

energies and zenith angles and the calculated values for effective areas for each set of parameters

have been recorded in lookup tables. Equation 2.17 is then solved for the flux normalisation in the

differential spectrum in Equation 2.16 by integrating up to a cutoff energy Ec (the upper bound

of the Monte Carlo simulations) from Eth and over the observation time, using the lookup tables

discussed to provide values for the effective areas. The integral flux above the threshold energy

can then be calculated using:

I =

∫ Ec

Eth

dN

dE
dE =

∫ Ec

Eth

I0(E)−ΓdE (2.18)

The energy of each event is calculated using the mean of the energies estimated for each telescope

(Aharonian et al., 2006a). The energies estimated take into account the image size, the impact

parameter of the event and the zenith angle of the observation, and are taken from lookup tables

based on results from Monte Carlo γ-ray simulations. To determine the energy spectrum the events

that pass selection cuts are then placed in bins, i, of width ∆Ei and the differential flux, dFi/dE,

is calculated by summing over the on source events Non, weighted by the inverse of the effective

area, Aeff, for each event. The normalised sum of the weighted off events Noff is then subtracted

and the difference is weighted by the live-time for the bin, T and the bin width:

dFi
dE

= (T∆Ei)
−1

Non∑
j=0

(Aeff)−1 − α
Noff∑
k=0

(Aeff)−1

 (2.19)

where α is the normalisation constant discussed in Section 2.5. As the estimation of the effective

area depends weakly on the assumed spectral shape, an iterative procedure is then followed starting

with assumed parameter values fitted to the spectrum. The effective area is then adjusted for the

fitted spectrum and the spectrum re-fit. This is repeated until convergence (Aharonian et al.,
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1999).

2.7 Calculating Upper Limits

In a situation where no signal is detected from an object, it is often useful to calculate an upper limit

on its γ-ray flux. To do this, the method proposed in Feldman & Cousins (1998) is used; this method

relies on classical statistical theory (as opposed to the Bayesian approach) and was developed to

analyse data from neutrino-oscillation experiments. The method constructs confidence intervals in

such a manner that it unifies the treatment of upper confidence limits in the case of non-detection

and two-sided confidence intervals (i.e. the error on the result to a given confidence level) for

positive results.

Considering a probability distribution, P (x|µ), which describes the probability of obtaining x

for a given value of µ, where µ is the true value of the quantity being measured and x the result

obtained by direct measurement, it is possible to select an interval such that the probability that µ

is contained within it is αcon. This interval is referred to as the acceptance region and is bounded

by x1 and x2. It is expressed as:

P (x ∈ [x1, x2]|µ) = αcon (2.20)

In order to specify uniquely the acceptance region, auxiliary criteria must be specified. In the

case of upper confidence limits:

P (x < x1|µ) = 1− αcon (2.21)

which satisfies P (µ > µ1) = 1 − αcon, where µ1 is the upper bound on the true value µ given

the acceptance region. To calculate the upper limit:

∫ x1

x2

P (x|µ)dx = αcon (2.22)

must be evaluated; x2 is set to 0 as only non-negative values of x are physically allowed. In

very high energy γ-ray astronomy, it is assumed that P (x|µ) follows a Gaussian distribution:

P (x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
(2.23)

where x = Non and σ = αNoff (α is as described in Section 2.5). The integral in Equation 2.22

is generally evaluated iteratively until αcon = 99%. As the α depends weakly on photon energy,
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an initial spectral shape and the parameters describing it must be assumed.

2.8 Conclusions

The method proposed by Hillas in 1985 to distinguish between cosmic ray initiated air-showers

and γ-ray-initiated air-showers, as described in Section 2.2, has proved invaluable in furthering

the study of objects at very high energies. By measuring the properties of the Cherenkov light

pool on the ground, more than 99% of air showers with cosmic ray primaries can be rejected. The

path of the initial γ-ray photon can be derived from the direction of the semimajor axis of the

Cherenkov light pool, and by combining the data from multiple telescopes this can be found far

more accurately than for a single telescope, allowing the source of the γ-rays to be determined.

The statistical significance of a potential detection depends on the number of events detected in

a region around the object, which pass the cuts on the parameters of the light pool compared

with to the number of events in other regions of the telescope field of view which pass the cuts,

normalised to take into account differences in effective area between the two regions. In the case

of a significant detection (above 5σ), the flux of an object can then be calculated by finding the

energy of each event, which depends on a number of variables found using Monte Carlo simulations,

and determines the number of events within a specified energy range. By taking the effective area

into account, the flux over each energy range can then be calculated. If no significant signal is

detected, upper limits on the flux can be found using the method of Feldman & Cousins (1998).



Chapter 3

Very High Energy γ-rays from

Active Galactic Nuclei (AGN)

3.1 Introduction

The term active galactic nuclei (AGN) refers to energetic phenomena observed in the central

regions of some galaxies with emission that cannot be attributed to stellar activity or gas heated

by stellar processes. It is widely believed that the very high luminosities observed are due to the

energy released as matter is consumed by the central supermassive black hole. The taxonomy

of AGN is complex, and many of the subdivisions are more historical than based on physical

differences between the objects, although as more data on the properties of such sources have

become available and their spectral energy distributions determined over a wide range of energies,

more meaningful classifications have become possible. Many AGN are very luminous across the

entire electromagnetic spectrum (although in some cases they can be outshone by their host galaxy

at optical through to X-ray wavelengths) and display strong radio and potentially γ-ray emission.

To date, AGN are by far the most numerous extragalactic sources of very high energy γ-rays,

and studies at these energies have helped to increase our understanding of the properties of these

highly energetic sources. In this chapter, the current status of these studies will be reviewed with

particular emphasis on the misaligned objects M87 and Centaurus A. The difficulties presented by

γ-ray absorption over the long distances involved will also be discussed.

51
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3.2 Classification of AGN

AGN display luminosities anywhere from ∼1011L� to ∼1013L�, depending on the type of AGN

(Peterson, 2003). Of the 46 extragalactic sources detected in TeV γ-rays to date, 44 are AGN and

the first extragalactic object observed in the very high energy regime was the blazar Mrk 421 in

1992 (Punch et al., 1992). Such objects are most luminous in the optical through to the γ-ray

regime and between 15% and 20% are radio-loud, with ratios of radio flux at 5GHz to optical

flux in the B-band (∼687nm) of ∼ 10 (Kellerman et al. 1989). To produce the high luminosities

observed in AGN, it is believed that the central engine must be a black hole of mass ∼106M� to

∼109M� which is accreting matter at an extremely high rate and emitting close to the Eddington

luminosity, LEd. The Eddington luminosity is the maximum luminosity achievable for an object,

such as a black hole, balancing radiation pressure against gravitational force, it is calculated using

LEd = 4πGMmpc/σT , assuming the matter falling towards the body is pure ionised hydrogen,

where M is the mass of the central object, mp is the proton mass, G is the gravitational constant

and σT is the Thomson cross section. AGN are relatively rare in the universe and are found at all

distances, although they appear more common at higher redshifts, and their luminosity is generally

seen to increase with higher redshift (Weekes, 2003).

The observational study of AGN began in 1908 at the Lick Observatory in California with

work carried out by Edward Fath (Osterbrock & Ferland, 2006). During the study of absorption

lines in the spectra of the nuclei of what were known as “spiral nebulae” and are now known to

be galaxies, Fath noted that these could be understood as resulting from the integrated light of

a large number of unresolved stars. Additionally Fath, also recognised six emission lines in the

spectrum of the nucleus of NGC 1068. Around 30 years later Carl Seyfert published a paper

(Seyfert, 1943) detailing the observed properties of a number of galaxies (including NGC 1068),

which he recognised as displaying many high-ionisation emission lines. He noted that these objects

were highly luminous, that they made up a very small fraction of galaxies, and that their emission

lines were wider than those seen in other galaxies. The characteristics noted by Seyfert are now

used to classify Seyfert galaxies, which are the most common kind of AGN and will be discussed

in detail in Chapter 4. Discussions of the different classes of AGN can be found in the following

Subsections.

3.2.1 Radio Galaxies

The advent of radio astronomy saw the detection of a number of unknown radio sources, and

advances made in the field in the decade after the Second World War led to optical counterparts to
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Figure 3.1: Radio image of Cygnus A at a wavelength of 20 cm. Two narrow radio jets can be seen
emanating from the central core, channelling matter and energy into the large radio lobes. Taken
from Perley et al. (1984).

some of them being identified. One of these sources was Cygnus A (a galaxy at z = 0.057), which

was found to have a similar emission-line spectrum to the Seyfert galaxies previously identified,

but unlike those sources, it was radio-loud (Baade & Minkowski, 1954). Identification of other

similar sources quickly followed, and they were classified as “radio galaxies”.

Radio galaxies are some of the brightest radio sources in the sky and have radio luminosities of

greater than ∼ 108L�, with the most powerful displaying overall luminosities as high as ∼ 1012L�

(Sparke & Gallagher, 2000). Radio galaxies are highly structured. They are seen to have twin

radio-bright, optically-thin, lobes on opposite sides of the galaxy, which are related in size to

the strength of the radio source at the nucleus; the largest lobes are ∼ 3 Mpc across (Sparke &

Gallagher, 2000). To fill out such lobes, a radio galaxy must have been active for at least 10-

50 million years. Within the lobes, there are luminous hot spots with sizes ∼ 1 kpc; these hot

spots are observed to emit polarised visible light via the synchrotron process. The core of a radio

galaxy is a radio source only a few parsecs across, which is optically thick and varies in luminosity

on timescales of years, suggesting an emission region at most a few light years across. The radio

galaxies observed with large radio lobes are generally giant elliptical or cD galaxies (giant ellipticals

that have a large halo of stars) and are in many cases the brightest galaxies in their clusters. Many

radio galaxies have been observed to be blue in colour and show other signs of recent star formation.

Strong radio emission appears to be favoured in radio galaxies with relatively low amounts of cool

gas (Sparke & Gallagher, 2000).
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Emerging from deep within the central core of a radio galaxy are narrow, bright jets. In some

cases, these are observed on only one side of the galaxy, while in others two-sided jets are detected.

The matter in these jets is relativistic and is focused into a beam within the central parsec of the

galaxy. These jets channel energy and matter into the radio lobes of the galaxy. The jets of radio

galaxies emit via synchrotron radiation at all wavelengths from radio to X-rays and they have also

been observed to emit γ-rays.

Radio galaxies can be divided into narrow-line radio galaxies, which make up around two-thirds

of the population, and broad-line radio galaxies, which account for the rest. In narrow-line radio

galaxies, the emission lines seen in the spectrum are relatively narrow (between ∼400 km s−1 and

∼800 km s−1, characterised using velocities as the broadening is due to to the range of Doppler

factors observed for the emitting gas), and a very wide range of ionisation states is observed from

[OI] (neutral oxygen) to [FeX] (the ninth ionised state of iron). The emission lines detected are

very similar to those seen in planetary nebulae and HII regions, suggesting that the elemental

abundances, temperatures and densities near the core of narrow-line radio galaxies are similar to

such objects. Absorption lines are generally similar to those seen in elliptical galaxies not hosting

an AGN, although with stronger HI lines in the ultraviolet, suggesting a larger population of young

stars than would be expected for such objects. Broad-line radio galaxies show broad recombination

lines, such as HI, HeI and HeII, although the forbidden line widths are similar to those seen in

narrow-line galaxies. The narrow-line spectra in broad line radio galaxies are similar in relative

intensity to those seen in narrow line radio galaxies. This suggests that all these objects have

similar physical conditions in the narrow-line emission region, but that, in the case of broad-line

radio galaxies an additional region is observed which contains matter with a much larger range of

velocities.

In addition to being classified on the basis of detected emission lines, the cores of radio galaxies

can also be separated into two categories depending on the properties of the jet, Fanaroff-Riley

class 1 (FRI) and Fanaroff-Riley class 2 (FRII). Radio galaxies hosting FRI cores (henceforth FRI

galaxies) have lobes which are brightest in the centre, with the ends showing “edge-darkening” and

steeper radio spectra. Generally the jets are double sided, continuous and brighter than the radio

lobes. FRI cores appear to be hosted in by the most luminous ellipticals and cD galaxies (giant

ellipticals with a large halo of stars) (Phillips, 2005). The brighter radio galaxies, such as Cygnus

A, show lobes which are “edge-brightened”, with steeper radio spectra near the centre of the lobes,

and are classified as FRII hosting galaxies (henceforth FRII galaxies). Inside the lobes of FRII

galaxies are usually a number of smaller, kpc-sized, radio hotspots. The jets of such objects are

usually one-sided or at least asymmetric and, although brighter than the jets in FRI galaxies, show
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less contrast with the brightness of the radio lobes. FRII cores are hosted at the core of normal

giant elliptical galaxies (Phillips, 2005).

3.2.2 Quasars and QSOs

Some optically identified radio sources were stellar in appearance (point-sources with no obvious

galaxy in their images), but their spectra were continuous in nature with no absorption lines and

with broad emission lines at unidentifiable wavelengths. In 1963, emission lines in 3C 273 were

identified, a radio source with what was at the time an unusually large redshift of z = 0.158

(Schmidt, 1963), and similar lines were soon identified in 3C 48 with a redshift of z = 0.367

(Greenstein, 1963). These redshifts were larger than those for even the faintest galaxies known at

the time, and made it clear that the objects were extremely luminous and definitely not stellar in

nature, despite the lack of an identifiable host galaxy. These sources are now understood to be

AGN and are known as quasi-stellar radio sources (quasars); with the advent of CCDs, many have

had their host galaxies resolved. Soon afterwards, similar radio-quiet sources were observed and

these, along with quasars are termed QSOs or quasi-stellar objects.

The active nuclei in QSOs are so bright that they outshine their host galaxies, and most are

so distant that they appear quasi-stellar in optical images. They are the most luminous known

objects, with typical luminosities ∼ 2.6 ×1012L� (Peterson, 1997). Around 5-10% of these objects

are quasars (radio loud) and appear to be predominantly hosted in elliptical galaxies, while the

remaining QSOs appear to be mostly found in spiral galaxies (Peterson, 1997). The radio power in

a radio-quiet QSO is ∼ 1% that seen in quasars. Thus far, QSOs have been observed at redshifts

up to and exceeding z ≈ 5, suggesting that light emitted by them was emitted when the Universe

was as little as one-sixth of its current age. Evidence from the relative intensities of broad emission

lines suggests that the ratio of metals to hydrogen and helium in these objects is similar to that

in the sun, suggesting that the metal content in the interstellar medium in QSOs has already been

enriched by a first generation of stars (Sparke & Gallagher, 2000).

Low-redshift QSOs have broad HI, HeI and HeII absorption lines and narrow, collisionally

excited lines over a wide range of ionisation from [OI] to [NeV], with [OIII] λ 5007 (which denotes

emission at a wavelength of 5007 Å = 500.7 nm) the strongest. In many of these objects, the MgII

λ 2800 line is shifted to the observable region and has a broad spectrum profile. In higher redshift

QSOs, strong [CIII] λ 1909, CIV λ 1549, NV λ 1240, OVI λ 1034 and Lyα λ 1216 emission lines

are observed (Hazard & Mitton, 1979). The continuous spectra of such sources do not show any

stellar absorption lines and appear to follow a pure power law, with a local emission maximum

near the rest wavelength λ 3650. Most of the quasars detected at high energy have been observed
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to be highly polarised at optical wavelengths and are generally only detected when the flux at high

radio frequencies is increasing (Valtaoja & Teräsranta, 1995).

The maximum energy that can be extracted from a massM falling into a black hole is about 43%

of Mc2, as suggested in Li & Paczyński (2000); however, in practice it is expected that ∼0.1Mc2

will emerge as radiation while the rest is permanently added to the mass of the black hole. In the

case of a QSO with a luminosity of ∼1012L�, approximately 0.1M� must be converted into energy

every year, and to maintain that power the black hole mass must grow by ∼ 0.9M� per year.

Activity in a quasar or QSO is thought to continue for at least 100 million years, suggesting that a

black hole with a mass of at least 108 − 109M� should remain. This is supported by observations

of local galaxies, where central black holes with masses & 1010M� have not been found (Sparke &

Gallagher, 2000).

3.2.3 Unification of AGN

Attempts to unify AGN usually assume that they are similar objects viewed from different angles

on the sky; the proposed structure in the central region of such objects is shown in Figure 3.2.

This is suggested by the fact that radio sources have axial rather than spherical symmetry and

would thus appear different when viewed from different angles. The most widely accepted model

posits that the central core of an AGN is a supermassive black hole, as previously discussed, and

that surrounding this is an accretion disc of hot gas and dust that emits radiation all the way

up to X-ray frequencies. Surrounding this in turn is a dusty, optically-thick torus which absorbs

radiation passing through it and re-emits it at longer wavelengths. In around 10% of AGN, jets

are observed emanating from the central core, roughly perpendicular to the accretion disc.

As previously stated, viewing an AGN from a different angle results in different observable

properties. Assuming a smooth-density torus, the objects are divided in type 1 and type 2 AGN

based on the extent to which the nuclear region is visible; see (a) and (b) Figure 3.3. In the case of

a clumpy torus, the difference between type 1 and type 2 AGN is not merely an issue of orientation

but of the probability of drawing a direct line of sight to the nucleus as shown in (c) in Figure 3.3.

It is believed that orbiting relatively close to the central AGN are a number of clouds of gas

or dust, which produce the broad emission lines, with FWHM ∼ 4000 km s−1, observed in the

UV/optical spectra (Netzer & Laor, 1993), and the strong absorption features seen in the X-ray/UV

spectra of type 1 AGN. This is known as the broad-line region (BLR) and is directly observed in

type 1 AGN; however, it can be indirectly detected in type 2 AGN in polarised light (Anonucci,

1993). To date, very little can be said with certainty about the BLR because even in the case of

the closest AGN it remains spatially unresolved; however, it would appear to be dense by nebular
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Figure 3.2: Diagram of the currently supported model for the unification of AGN. The central
engine, assumed to be a supermassive black hole, is surrounded by an accretion disk of luminous
material; beyond the accretion disc is an obscuring dusty torus. Broad emission lines are produced
by clouds orbiting the disc close to the central black hole while narrow emission lines are produced
in clouds orbiting further from the central supermassive black hole. Radio jets are observed to
emanate from the region near the black hole, initially at relativistic speeds. Taken from Urry
(1995).

Figure 3.3: Classification of AGNs in unified schemes. For simplicity each diagram shows only the
central black hole (the four pronged star), a cross-section of one side of the torus (the structure
to the right of the black hole in each diagram) and the observers, labelled 1 and 2. In a smooth-
density torus, as in (a), any observer located in such a manner that their line of sight to the central
black hole will not pass through the torus, such as observer 1, will see a type 1 source. Those with
a line of sight to the central black hole passing through the torus, such as observer 2, will see a
type 2 source. If the torus covering factor is decreased, such as in (b), this will lead to the object
appearing as a type 1 source to most observers. In the case of (c), a clumpy, soft-edge torus, the
probability of a direct view of the AGN decreases away from the horizontal axis, but is always
finite. After Elitzur (2011).
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standards, ne > 109 cm−3, and at temperatures of T ≈ 104 K (Peterson, 2006). The dynamics of

the BLR are currently debated, but it is likely that the gravitational acceleration from the central

object is dominant to such a degree that it is possible to use the size and the velocity dispersion

of the region to provide an estimate of the central black hole mass to within a factor of ∼ 3. The

size of the BLR scales simply with relation to luminosity, both on an object-to-object basis and

within a single AGN as its luminosity varies with time (Peterson, 2006).

Further from the centre of the AGN, at distances of ∼ 50 − 100 pc are further clouds of gas

or dust (Peterson, 2006). These are believed to be the origin of the narrow emission lines, with

FWHM ∼ 500 km s−1, observed in the spectra of both type 1 and type 2 AGN (Netzer & Laor,

1993); this region is known as the narrow line region (NLR). The gas or dust in the NLR is at a

similar temperature to that found in the BLR (T ≈ 104) but at much lower density (102 − 106

cm−3), and the dimensions of the region scale with the square root of the luminosity of the source

(Netzer & Laor, 1993).

Based on evidence collected from galaxy counts and the host galaxies of AGN it is widely

believed that over time quasars evolve into radio galaxies and from there into normal elliptical

galaxies, while radio-quiet QSOs evolve into Seyfert galaxies and then into normal spiral galaxies.

Current evidence suggests that the rate of evolution of AGN is dependent on their luminosity. Early

optical surveys demonstrated that QSOs undergo significant evolution from z ∼ 0 up to z ∼ 2 and

that beyond z ∼ 2 the space density of QSOs starts to decline (e.g., Schmidt & Green, 1983). More

recent surveys using X-rays, which can more robustly select fainter AGN such as Seyfert nuclei,

have found that faint AGN evolve at a more modest rate with respect to redshift than QSOs; in

contrast, bright AGN appear to evolve at a similar rate to QSOs. Current observations in soft

X-rays provide evidence that the comoving spatial density of bright AGN peaks at higher redshifts

(z ∼ 2) than fainter AGN (z < 1) (Fanidakis et al., 2012). This differential evolution of AGN

depending on luminosity has been described as ”downsizing” (Barger et al., 2005; Hasinger, Miyaji

& Schmidt, 2005), and leads to the conclusion that AGN activity in the low-z Universe is dominated

by either high-mass black holes accreting at low rates or smaller-mass black holes accreting rapidly.

Hopkins et al. (2005) have proposed that the faint end of the luminosity function is composed of

high-mass black holes experiencing quiescent accretion, while the bright end corresponds to black

holes accreting close to the Eddington luminosity. Approximate space densities of the different

classes of AGN can be seen in Table 3.1.

Support for hierarchical models of AGN evolution is provided both by surveys, as previously

stated, and through semianalytic modelling, such as that in Fandiakis et al. (2012). It was found

that at high redshift (z ∼ 6) most of the active black holes have masses of 106 − 107 M� and
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Object Type Number Mpc−3

Field Galaxies 10−1

Luminous Galaxies 10−2

Seyfert Galaxies 10−4

Radio Galaxies 10−6

QSOs 10−7

Quasars 10−9

Table 3.1: Approximate space densities of different AGN in the Universe. From Osterbrock and
Ferland (2006).

accrete at a rate of ṁ ≈ 0.3, where ṁ is the rate of mass accretion onto the object in units of the

Eddington accretion limit (the rate of mass falling onto the black hole that would lead to emission

at the Eddington luminosity). At lower redshifts, the accretion activity peaks for 107-108 M�

black holes accreting at a rate of ṁ ≈ 0.05. Using the results found for accretion rates and black-

hole masses, and assuming that accretion takes place in two distinct regimes, a thin disc which

is radiatively efficient, and an advection-dominated accretion flow which is not, Fandiakis et al.

(2012), predict that the brightest AGN (L & 1046 erg s−1) should be found in dark matter haloes

with masses ∼ 1012 − 1013 M� in the low-redshift Universe (z . 2). These intermediate-mass

haloes provide gas for intense black-hole growth as they are typical environments for instabilities

in gas-rich galaxies and for galaxy mergers. In the case of more massive dark matter haloes,

there is generally less gas available as they are usually in quasistatic equilibrium and subject to

feedback from the AGN, leading to lower accretion rates. The assumption of two distinct accretion

channels leads naturally to the downsizing observed in surveys, which is further accentuated when

obscuration is taken into account.

3.3 Blazars

Blazars, the most luminous objects in the Universe, are AGN with a jet at a small angle of

inclination to the line of sight. This means that the radiation detected is highly beamed and

relativistically boosted, to the extent that the jets in some blazars show apparent superluminal

motion. Blazars are further separated into three categories: BL Lacertae objects, optically violent

variables (OVVs) and flat spectrum radio quasars (FSRQs) (Weekes, 2003). BL Lacertae objects

are named after the prototype for this galaxy, BL Lacertae, and are characterised by rapid and

large flux variability, significant optical polarisation and a spectrum dominated by a featureless non-

thermal continuum, with no strong emission or absorption lines. Where emission and absorption

lines are detectable in BL Lacertae objects, they are invariably weak relative to the continuum

and typically show relatively small redshifts of z . 0.1 (Peterson, 1997). OVVs show very short
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timescale variations (< 1 day) at visible wavelengths, faster than those seen in other blazars,

and have high polarisation (& 3%-4% as opposed to ∼1% in other AGN) which varies both in

magnitude and in position angle. In OVVs, the spectrum observed tends to show broad emission

lines except when the continuum is at its brightest, where the emission-line equivalent widths

become small as the line flux changes very little while the continuum flux increases dramatically.

The redshifts of OVVs are generally larger than those of BL Lacs, with z & 0.5 (Peterson, 1997).

FSRQs show strong and broad optical emission lines and have higher total bolometric luminosities

than BL Lacs, exhibiting signs of thermal activity in their optical through to ultraviolet spectra

(Sambruna, 1997). All known blazars are radio-loud and have highly variable radio emission, while

the overall emission of the object is dominated by the core.

The spectral energy distributions (SEDs) of blazars show two peaks, one at lower energy, at-

tributed to synchrotron emission, and the other at higher energy, likely due to Comptonisation

of the synchrotron photons. Additionally, most blazar SEDs show an absence of characteristic

features seen in thermal emission from other AGN, such as a local minimum around 1 µm which

is thought to represent the minimum between a hot thermal spectrum and a cool thermal spec-

trum due to emission by warm (T . 2000 K) dust grains, which precludes a thermal origin for

the continuum. Further evidence that the emission is nonthermal comes from the magnitude of

continuum variations and polarisation of emission from the blazar (Peterson, 1997).

BL Lac objects can be further classified into three subtypes based on their SED: low-frequency

peaked, intermediate-frequency peaked and high-frequency peaked BL Lacs (LBL, IBL and HBL

respectively). In all three subtypes, the shape of the SEDs are approximately the same, but the

position of the peaks changes, as shown in Figure 3.4. For LBLs, the lower-frequency peak is

observed in the infrared or the optical, and in HBLs it is observed in the ultraviolet through to

the hard X-ray band; IBLs are those sources that have their lower-frequency peak in the crossover

region between HBLs and LBLs (Tang et al., 2010). The lower-frequency peaks in FSRQs are

generally observed at radio frequencies (Tang et al., 2010).

As you move from FSRQs through to HBLs, the ratio of the γ-ray flux to the low-frequency flux

increases. The variability of some HBLs in X-rays displays spectral hysteresis in hardness-intensity

diagrams, such as those shown in Zhang (2002), which can be interpreted as the synchrotron

signature of gradual injection or acceleration of ultrarelativistic electrons in the emitting region,

with subsequent radiative cooling (Böttcher and Chiang, 2002). Spectral hysteresis has been clearly

observed only in HBLs (Böttcher, 2007), although it should occur in the soft X-ray part of the

spectrum of LBLs if their synchrotron component extends into the soft X-ray regime.

Although blazars are believed to be relatively rare in the Universe, at energies > 100 MeV and
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Figure 3.4: The average overall SEDs of blazars studied in Fossati et al. (1998), that have been
separated according to radio luminosity. Empty bow ties represent uncertainties in the spectral
shapes in the X-ray and γ-ray bands. The dashed curves are analytic approximations that assume
that luminosity of the second peak is proportional to the radio luminosity and that the ratio of
the two peak frequencies is constant. As they are separated by radio luminosity the different
curves represent different points in the blazar sequence, with the black curve represents LBLs and
the fuschia curve represents HBLs, with those in between showing transitional objects. The low
frequency peak in the SEDs is due to synchrotron radiation and is anticorrelated with the source
luminosity, moving from the ultraviolet or X-ray regime (∼ 1016-1017 Hz) for less luminous sources
to the infrared (∼ 1013-1014 Hz) for the most luminous ones. The higher frequency peak, possibly
Compton emission, of the SEDs is similarly anticorrelated with luminosity and is found at ∼ 1024-
∼ 1025 Hz for less luminous sources and ∼ 1021-∼ 1022 Hz for the most luminous ones. Adapted
from Fossati et al. (1998) by Ghisellini et al. (2004).
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in VHE γ-rays they are the most numerous of extragalactic sources. In most cases, the high-energy

luminosity of a blazar tends to dominate the power output of the source. At energies > 100 MeV,

most of the detected extragalactic sources are FSRQs, while at VHE, BL Lac objects are more

numerous. One interpretation of the different classes of blazars is known as the blazar sequence,

in which it is postulated that there is an evolutionary process from FSRQs to LBLs to IBLs and

finally to HBLs (Beckmann et al., 2003). If the blazar sequence, as postulated, is a real effect then

it can be readily explained by the models discussed below; however, it is not predicted by them.

To date ∼ 50 blazars have been detected in VHE γ-rays; of these 39 are HBLs, 7 are IBLs, 1 is

an LBL and 3 are FSRQs, (see Table 3.2). As at all other wavelengths, the TeV emission from such

sources is highly variable, often on timescales of days or less. Until the middle of the last decade,

the only blazars detected at energies >100 GeV were those with fairly hard spectra and in a high

state; however, observations with the current generation of IACTs have made it possible to detect

many more blazars, allowing a more wide-ranging study of blazars as a category of TeV-emitting

object, with much smaller selection bias to be carried out by Wagner (2008). This synoptic study

of 17 TeV blazars was carried out in an attempt to find common properties shared by the blazars

that had been detected at very high energies. It was found that there was no correlation between

the inferred black hole masses of the TeV blazars and their redshifts, and that none of them had

inferred black hole masses of . 108 M�, whereas AGN in general have been found with black hole

masses as low as ∼ 106 M�. This raises the question of whether there is a physical reason for the

lack of TeV blazars with relatively small black hole masses. Some studies have shown a similar

connection between radio loudness and black hole mass, suggesting that radio loudness occurs only

above some threshold mass (Laor, 2000; Metcalf & Magliocchetti, 2006).

Emission models for blazars can be separated into those that suggest that the observed emission

is due to leptonic interactions and those that assume that the emission has a hadronic origin. In

some hadronic models, such as that of Tang, Dai & Zheng (2010), protons are assumed to accumu-

late in the source and then produce electron-positron pairs through interactions with the ambient

photon field and with each other. The pairs produced then emit high-energy photons through

synchrotron emission (as discussed in Section 1.2.1), and inverse-Compton scattering (Section

1.2.3). Some of these high-energy photons escape the source, while others interact to produce

more electron-positron pairs, which, generate more high-energy photons. This process is referred

to as a proton-initiated cascade. Another hadronic model, that of Böttcher (2007), considers the

situation where the kinetic power of the jet is large enough to accelerate protons to the threshold

required for proton-photon pion production. In this case, synchrotron-supported pair cascades will

form as the pions decay. Further hadronic models consider the possibility of synchrotron emission
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Object RA (J2000) Dec (J2000) Type Redshift
PKS 1510-089 15h 12m 50.5s -09◦ 06’ 00” FSRQ z = 0.36
4C +21.35 12h 24m 54.4s +21◦ 22’ 46” FSRQ z = 0.432
3C279 12h 56m 11.1s -05◦ 47’ 22” FSRQ z = 0.5362
BL Lacertae 22h 02m 43.3s +42◦ 16’ 40” IBL z = 0.069
W Comae 12h 21m 31.7s +28◦ 13’ 59” IBL z = 0.102
S5 0716+714 07h 21m 53.4s +71◦ 20’ 36” IBL z = 0.31
3C66A 02h 22m 41.6s +43◦ 02’ 35.5” IBL z = 0.444
PKS 1424+240 14h 27m 00s +23◦ 47’ 40” IBL
MAGIC J2001+435 20h 01m 13.5s +43◦ 53’ 02.8” IBL
1ES 1440+122 14h 42m 48.3s +12◦ 00’ 40” IBL
VER J0521+211 05h 21m 55s +21◦ 11’ 24” IBL
AP Lib 15h 17m 41.8s -24◦ 22’ 19” LBL z = 0.049
IC 310 03h 16m 43.0s +41◦ 19’ 29” HBL z = 0.0189
Mrk 421 11h 04m 19s +38◦ 11’ 41” HBL z = 0.031
Mrk 501 16h 53m 52.2s +39◦ 45’ 37” HBL z = 0.034
1ES 2344+514 23h 47m 04.9s +51◦ 42’ 17” HBL z = 0.044
Mrk 180 11h 36m 26.4s +70◦ 09’ 27” HBL z = 0.045
1ES 1959+650 19h 59m 59.8s +65◦ 08’ 55” HBL z = 0.048
1ES 1727+502 17h 28m 18.6s +50◦ 13’ 10” HBL z = 0.055
PKS 0548-322 05h 50m 38.4s -32◦ 16’ 12.9” HBL z = 0.069
PKS 2005-489 20h 09m 27.0s -48◦ 49’ 52” HBL z = 0.071
RGB J0152+017 01h 52m 33.5s +01◦ 46’ 40.3” HBL z = 0.08
1ES 1741+196 17h 43m 57.8s +19◦ 35’ 09” HBL z = 0.083
SHBL J001355.9-185406 00h 13m 56.0s -18◦ 54’ 07” HBL z = 0.095
1ES 1312-423 13h 15m 03.4s -42◦ 36’ 50” HBL z = 0.105
PKS 2155-304 21h 58m 52.7s -30◦ 13’ 18” HBL z = 0.116
B3 2247+381 22h 50m 06.6s +38◦ 25’ 58” HBL z = 0.1187
RGB J0710+591 07h 10m 26.4s 59◦ 09’ 00” HBL z = 0.125
H 1426+428 14h 28m 32.6s +42◦ 40’ 21” HBL z = 0.129
1ES 1215+303 12h 17m 52.1s +30◦ 07’ 01” HBL z = 0.13
1ES 0806+524 08h 09m 59s +52◦ 19’ 00” HBL z = 0.138
1ES 0229+200 02h 32m 53.2s +20◦ 16’ 21” HBL z = 0.14
1RXS J101015.9-311909 10h 10m 15.03s -31◦ 18’ 18.4” HBL z = 0.142639
H 2356-309 23h 59m 09.42s -30◦ 37’ 22.7” HBL z = 0.165
RX J0648.7+1516 06h 48m 45.6s +15◦ 16’ 12” HBL z = 0.179
1ES 1218+304 12h 21m 26.3s +30◦ 11’ 29” HBL z = 0.182
1ES 1101-232 11h 03m 36.5s -23◦ 29’ 45” HBL z = 0.186
1ES 0347-121 03h 49m 23.0s -11◦ 58’ 38” HBL z = 0.188
RBS 0413 03h 19m 47s +18◦ 45’ 42” HBL z = 0.19
PKS 0447-439 04h 49m 29.9s -43◦ 50’ 09” HBL z = 0.2
1ES 1011+496 10h 15m 04.1s +49◦ 26’ 01” HBL z = 0.212
1ES 0414+009 04h 16m 52.96s +01◦ 05’ 20.4” HBL z = 0.287
1ES 0502+675 05h 07m 56.2s +67◦ 37’ 24” HBL z = 0.341
1ES 0647+250 06h 50m 46.5s +25◦ 03’ 00” HBL z = 0.45
PG 1553+113 15h 55m 44.7s +11◦ 11’ 41” HBL z = 0.5
1ES 1440+122 14h 42m 48.3s +12◦ 00’ 40” HBL
RGB J0136+391 01h 36m 32.5s +39◦ 06’ 00” HBL
PKS 0301-243 03h 03m 26.5s -24◦ 07’ 11” HBL
KUV 00311-1938 00h 33m 34.2s -19◦ 21’ 33” HBL
HESS J1943+213 19h 43m 55s +21◦ 18’ 08” HBL
1ES 0033+595 00h 35m 52.63s +59◦ 50’ 04.56” HBL

Table 3.2: Table of currently detected TeV blazars taken from tevcat.uchicago.edu accessed on
20/12/2012, organised first by type and then by redshift.
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from extremely high energy protons and from secondary muons and mesons. Both of these models

require extremely strong magnetic fields of at least several tens of gauss.

If protons are not accelerated to sufficiently high energy to generate high-energy emission, then

the source of the high-energy radiation will be dominated by ultrarelativistic electrons and electron-

positron pairs. High-energy emission in this case is produced via inverse-Compton scattering of

ambient photons off the ultrarelativistic electrons and electron-positron pairs (Böttcher, 2007).

Potential photon fields could be provided by the synchrotron photons emitted by the ultrarela-

tivistic electrons and electron-positron pairs in which case the process is referred to as synchrotron

self-Compton (SSC), or by external photons, where the process is referred to as external Compton-

isation (EC). In EC, the seed photons can originate in the accretion disc and enter the jet either

directly or after being reprocessed by circumnuclear material, in which case they could be jet syn-

chrotron emission reflected off clouds in the circumnuclear material or infrared photons emitted

by the dust torus around the central engine. In leptonic models, it is important to consider parti-

cle injection and acceleration, in addition to subsequent radiative and adiabatic cooling, particle

escape from the jet, and potential deceleration of the jet. Such models require large numbers of

parameters to be estimated or calculated from observations of the source; many of the parameters

used in modelling blazars can be constrained by the broadband spectrum. In most cases, how-

ever, it is not possible to constrain all of the parameters, and so over the past few years progress

has been directed into using both spectral and variability data to model the emission of blazars

more successfully (e.g., Böttcher & Reimer, 2004). Leptonic models have been used successfully

to model SEDs of several blazars for which contemporaneous data across many wavebands were

available and the results appear to suggest that FSRQs have a high EC contribution to the γ-ray

spectrum, but that this lower for LBLs and lowest for HBLs (Böttcher, 2007). Most FSRQs can be

successfully modelled by pure EC models (models in which the photons scattered to high-energies

only originate from outside the jet) while HBLs are usually easier to model using pure SSC models.

It has been found that modelling the observed spectra of HBLs requires higher average electron

energies and lower magnetic fields than LBLs or FSRQs to provide the synchrotron photons to

seed the inverse-Compton scattering in the jet (Böttcher, 2007).

In reality, it is unlikely that either of the two extremes, purely leptonic or purely hadronic origin

for emission from blazars, is entirely correct, as a blazar jet is likely to contain large numbers of

both hadrons and leptons at extremely high energy. What is more likely is that both types

of process play a substantial part in emission of radiation from the jets of blazars (Böttcher,

2007). Observations of TeV flares without simultaneous X-ray flares (known as “orphan flares”) in

1ES 1959+650 (Krawczynski et al., 2004) and in Mrk 421 (B lażejowski et al., 2005) may provide
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support for the importance of hadronic processes in sources that are otherwise well reproduced by

leptonic SSC models. Leptonic SSC models predict a close temporal flux correlation between the

synchrotron and inverse-Compton components of the spectrum, so a lower-energy flare would be

expected to occur close in time to a high-energy flare.

The synoptic study carried out by Wagner (2008), discussed earlier, also attempted to identify

links between TeV emission and emission in the radio, optical and X-ray wavebands. In the case

of objects such as Mrk 421 a clear link between TeV emission and X-ray emission was observed by

a number of authors (e.g. Krawczynski et al., 2001); however, Albert et al. (2007c) found only a

weak link in the case of Mrk 501, and for orphan flares such as that observed from 1ES 1959+650

no link was observed (Daniel et al., 2005) . In the synoptic study, it is argued that there is some

correlation between the X-ray luminosities of the sources at 1 keV and their TeV luminosities. In

the optical waveband a very weak correlation is noted between optical flux at 550 nm and TeV

flux, but no correlation is observed at radio frequencies (5 GHz). This strongly suggests that flares

in blazars can be caused by both leptonic and hadronic interactions.

In SSC models, the very high energy peak is identified with the inverse-Compton peak and

resembles the form of the synchrotron peak, but displaced in frequency by ∼ γ2, where γ is the

Lorentz factor of the electrons responsible for the emission. Wagner (2008) found a correlation

between the position of the peak in the synchrotron spectrum and the photon index of the γ-ray

spectrum, but no correlation was found between the former and the γ-ray luminosity of the source.

It is generally believed that very high energy emission takes place at shock fronts inside the AGN

jets, very close to the central black hole; if this is the case, the properties of the black hole should

have an effect on the TeV γ-ray emission from the source. However, no correlation has been

found between the mass of the central black hole and either the photon index or the luminosity

of very high energy emission, but it is important to note that the measurements of the black hole

masses have large uncertainties. The limited data currently available mean that it is impossible

to determine whether there is a link between black hole spin, accretion rate or properties of the

acceleration region and the very high energy properties of the TeV blazars. Additionally, it appears

that there is no correlation between black hole mass and the LBL-HBL transition for the very high

energy blazars studied (Wagner, 2008).

3.3.1 PKS 2155-304: The Archetypal TeV Blazar

PKS 2155-304 is one of the most highly-studied active galactic nucleus at very high energies and

is an HBL at a redshift of z = 0.117 that can only be observed from the southern hemisphere; it

is positioned at R.A. 21h 58m 52.7s, Dec. -30◦ 13’ 18” (J2000). It was initially detected in X-rays
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Figure 3.5: Initial detection of PKS 2155-304 in TeV γ-rays from Chadwick et al. (1999a). The
grey scale is such that black corresponds to a detection significance of > 6σ. Contours are at 0.7σ
intervals and the position of PKS 2155-304 is marked with a white cross.

by Griffiths et al. (1979) using the HEAO-1 X-Ray satellite and is one of the brightest objects in

the sky at X-ray wavelengths. It is associated with a compact flat-spectrum radio source and its

spectrum is essentially featureless from radio through to X-ray frequencies. Detection of γ-rays

from PKS 2155-304 was first reported using the EGRET satellite (Vestrand et al., 1995). The

broadband variability of the source is well documented and has been observed at all energies. The

maximum power emitted by the source is between the ultraviolet and soft X-ray range, and it is

the brightest BL Lac detected in the ultraviolet regime (Wandel & Urry, 1991).

The data collected by EGRET showed that in the energy range 30 MeV to 10 GeV PKS

2155-304 has a hard energy spectrum that follows a power law with photon index 1.71 ± 0.24

(Vestrand, Stacy & Sreekumar, 1995), which pointed to a high probability of it being a TeV γ-ray

source and made it a prime target for IACTs. The first reported detection of PKS 2155-304 at

very high energies (above 300 GeV) was made with the University of Durham Mark 6 Telescope

in 1996 and 1997 (Chadwick et al., 1999a) (see Figure 3.5); attempts to detect it with the same

telescope in 1998 failed, possibly due to the object being in a lower TeV γ-ray state, supported

by evidence that it was in a lower X-ray state (Chadwick et al., 1999b). Observations with the

CANGAROO telescopes were carried out in 1997, 1999, 2000 and 2001, but again no detection

was made (Roberts et al., 1999; Nishijima et al., 2001; Nakase et al., 2003). The upper limits

reported by CANGAROO in 1997 are consistent with the flux detected by the Durham Mark 6 in

1996-1997, and the lack of detection in subsequent years is consistent with the fact that emission

from blazars is known to be highly variable.
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H.E.S.S. observations of PKS 2155-304 began while the array was under construction in 2002,

and so the observations of the object were taken with varying numbers of telescopes. The first

observations in 2002 were taken with a single telescope, most of those taken in 2003 consist of

observations made in a 2-telescope configuration, while from September 2003 to December 2003 a

3-telescope configuration was used. The final H.E.S.S. telescope was brought online in December

2003 after the end of the observation season for PKS 2155-304. Over the course of these early

H.E.S.S. observations, PKS 2155-304 was strongly detected in all dark periods during which it was

observed, except in November 2002 when the total exposure time was less than one hour; the total

significance of the detection was 44.9σ (Aharonian et al., 2005a). PKS 2155-304 is the brightest

blazar detected by the H.E.S.S. telescopes at TeV energies and has a very high energy flux which

is typically ∼ 15% that of the Crab Nebula flux above 200 GeV.

During July 2006, the average very high energy γ-ray flux detected from PKS 2155-304 was more

than 10 times its typical value. In particular , a very bright flare was observed in the early hours

(starting around midnight UTC) of July 28th 2006. During the flare, the TeV flux was observed to

vary on timescales ∼3 minutes (Aharonian et al., 2007). This has important implications for the

size of the emission region within PKS 2155-304. Causality arguments imply that γ-ray variabilty

of a source, on a timescale tvar, is related to the radius of the emission region, R, and the Doppler

factor, δ, by R ≤ ctvarδ/(1 + z). The observed variability of the source therefore limits the size

of the emission region to Rδ−1 ≤ 4.65× 1012 cm ≤ 0.31 AU. The variability at very high energies

observed during the flare in July 2006 is the fastest ever observed from a blazar, ∼5 times as fast as

that previously measured from Mrk 421 (Gaidos et al., 1996) and ∼6-12 times more constraining

for the light crossing time than the results from Mrk 421. Unfortunately, this flare occurred before

already triggered but not yet started X-ray observations which began the night after, leaving this

flare without multiwavelength coverage (Aharonian et al., 2009c).

Two days after the first major γ-ray flare from PKS2155-304 observed by H.E.S.S., a second

large flare was detected on the night of July 29th-30th 2006 (Aharonian et al., 2009c). This

occurred in coincidence with the planned Chandra-H.E.S.S. target-of-opportunity program, with

further coverage in the optical band by the Bronberg Observatory in South Africa and some data

provided by snapshot observations of around a few ks taken with RXTE and the Swift satellite.

As can be seen in Figure 3.6, this outburst reached fluxes of ∼ 11 times that seen from the Crab

Nebula, and as a result it was possible to carry out an extremely sensitive X-ray/TeV comparison

during one of the brightest states ever observed from an HBL. During the flare very high energy flux

variations of more than an order of magnitude were accompanied by smaller changes in the flux in

X-rays, which varied by a factor ∼2, and optical flux variations of less than 15%. On subhour and
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Figure 3.6: Integral flux above 200 GeV observed from PKS 2155-304 on the night of 29th-30th
July, 2006 against time with data binned in 1-minute intervals, clearly showing rapid variability of
the object. The dotted horizontal line represents the flux above 200 GeV from the Crab Nebula.
From Aharonian et al. (2007).

longer timescales, the X-ray and γ-ray variations correlate strongly, although there is no evidence

of a time lag between the two; on very short timescales of a few minutes or less the behaviour

appears more complex. The optical flux began increasing simultaneously with the γ-ray flare but

varied on a much longer timescale, showing no correlation with the flare at other wavelengths

and reaching a plateau ∼2 hours later than the very high energy peak flux. During the flare, the

spectral evolution of the VHE γ-ray spectrum and the X-ray spectrum are correlated although, as

with the changes in flux, the amplitude of the variations in photon index was far greater at very

high energies. Despite the changes in luminosity, the positions of the peaks in the SED do not

change significantly, but the ratio between the Compton luminosity and the synchrotron luminosity

increases dramatically from the usual values of . 1 to & 8.

The correlation between X-ray flux and VHE γ-ray flux would appear to lend support to a simple

SSC model. However, the TeV flux decreases as the cube of the X-ray flux, a relation which holds

both during the overall decaying phase and when considering shorter intervals separately, which

cannot be easily accounted for with a simple, one-zone SSC model. This indicates that a single

particle population cannot be responsible for both peaks in the SED during the flare. Aharonian

et al. (2009c) interpret the data as the emergence of a new Compton-dominated component in

the SED, with a synchrotron luminosity that is too small to be detected against the “persistent”

synchrotron emission from PKS 2155-304. If a pure SSC model is used then the data suggest that

the emitting region of this new component must be extremely compact (of the order of a few times

rs, the Schwarzschild radius1 of the central black hole) otherwise it must be EC dominated, as

1The radius around a body, mass M , such that the escape velocity is equal to the speed of light, calculated using
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would be expected in models with a strong interplay between different parts of the jet. The data

collected across all wavebands have helped to provide an important testbed for modelling PKS

2155-304 and other blazars. As similar emission mechanisms are likely to dominate in misaligned

blazars as well, in-depth study of objects such as PKS 2155-304 can be used to help further the

development of models to explain the emission from radio galaxies such as M87.

3.4 Radio Galaxies at TeV Energies

Of the extragalactic TeV γ-ray sources detected, all except five are blazars, as discussed in Section

3.3. Of the five non-blazar sources detected, two are starburst galaxies, NGC 253 and M82, and

are not relevant to this work; however, the other three are radio galaxies: M87 (Aharonian et al.,

2006d), Centaurus A (Aharonian et al., 2009b) and the recently detected NGC 1275 (Aleksić et al.,

2012c). These will be discussed in further detail in the following sections with greatest emphasis

placed upon M87 and Centaurus A, as only limited work has so far been carried out on NGC

1275 at very high energies. In the case of blazars, the TeV emission from the object is strongly

Doppler-boosted to higher energies as the line of sight points down the jet; however, due to the

greater angle to the line of sight seen in radio galaxies any Doppler boosting must be relatively

minimal. Assuming that the unified model of AGN is valid, the detection of VHE emission from

misaligned objects such as M87 and Cen A raises a number of important questions about the

mechanism behind such emission in all AGN (Aharonian, 2006d). It is impossible to detect the

site of TeV emission in radio galaxies directly even though the base of the jet is visible, as the

spatial resolution of Cherenkov telescopes is relatively limited; however, a number of variability

studies have enabled limits to be placed on the size of the emission region in M87 by studying

the variability timescales during flares in 2008 (Tavecchio & Ghisellini, 2009) and more recently in

2010 (Abramowski et al, 2011). As more data become available for TeV radio galaxies, it should

be possible to impose stronger constraints on the emission mechanisms involved.

3.4.1 M87

M87 is a giant elliptical galaxy located at the centre of the Virgo cluster, at a distance of 16.7

Mpc away. Spectroscopy carried out with the Hubble Space Telescope gives strong evidence for a

rapidly rotating, ionised gas disc orbiting a massive black hole at the centre (Ford et al., 1994;

Harms et al., 1994). The black hole at the centre is estimated to have a mass of 3.2(±0.9) × 109

M� (Macchetto et al., 1997). Emanating from the core is a one-sided relativistic jet at an angle of

rs = 2GM/c2.
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between 20◦ and 40◦ to the line of sight. This was the first extragalactic jet ever discovered and

was initially reported by Curtis (1918). An optical image taken with the Hubble Space Telescope

showing the jet can be seen in Figure 3.7. The power of the relativistic jet is estimated to be as

high as 1044 ergs s−1 (Owen et al., 2000). M87 has been observed at all wavelengths ranging from

radio through to very high energy γ-rays, and the jet has been observed from radio through to

X-rays. The proximity and jet angle of M87 mean that the jet can be resolved at radio, optical and

X-ray wavelengths and a similar morphology is displayed at each wavelength, suggesting a common

origin for the emission. The non-thermal emission from the jet is almost certainly synchrotron in

nature, as radio and optical emission are polarised and the X-ray spectrum is steeper than the radio

spectrum (Le Bohec et al., 2004). Within the context of blazar unification models, it is believed

that M87 can be considered a BL Lac type object viewed at a higher inclination angle, although

the specific BL Lac classification (LBL, IBL or HBL) is currently unknown (Le Bohec et al., 2004).

The detection of the source at γ-ray energies does, however, lend support to the argument that it

is a misaligned HBL.

Observations made with the Hubble Space Telescope between 1994 and 1998 studied the motions

of 12 features within the first 500 pc from the core of the jet of M87 (Biretta et al., 1999). This

study detected apparent superluminal motion in ten of the observed features, eight of which have

apparent velocities ranging from 4c to 6c; the two observed to have subluminal velocities were those

closest to the base of the jet. These findings would appear to be challenged by data reported by

Ly et al. (2007), collected using the Very Long Baseline Array (VLBA); these data suggested that

jet components detected by the array were moving at velocities between 0.25c and 0.4c, although

it is noted within the paper that this could be due to misidentification of the components and

that such values should be treated as lower limits for the velocity. The same observations also

confirmed the existence of a radio counterjet which appears to move away from the core (Ly et al.,

2004). As radio observations in the late 1980s failed to detect the counterjet (Biretta et al., 1989;

Reid et al., 1989), it is suggested that the counterjet is variable, partly due to its outward motion.

In optical studies carried out by Sparks et al. (1992) and Stiavelli et al. (1992), a bright hotspot

was observed 24” away from the core. Sparks et al. (1992) detected optical emission coming from

a site almost exactly opposite the jet, at an angle of 182◦± 1◦. This emission had a polarisation

of 30% and was theorised to be synchrotron radiation from continuously accelerating electrons at

the site of the emission. The authors argue that this is likely due to an optical counterjet in M87

and that the asymmetry between the jet and counterjet is probably due to interaction between

the counterjet and the interstellar medium. The arguments put forward are supported by the data

from Stiavelli et al (1992).
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Figure 3.7: Image of M87 taken with the Hubble Space Telescope. The jet originates from the
centre of a disc-like structure with a semimajor axis of ∼1”. Taken from Ford et al. (1994)

On parsec scales, the jet is quite narrow and has an opening angle with full-width-quarter-

maximum of φ ≈ 9◦, comparable with that measured on kiloparsec scales where the full-width-

quarter-maximum is φ ≈ 6◦ (Biretta & Junor, 1995). The brightness of the jet at 18 cm radio

wavelengths decreases smoothly with distance from the core, although there are a number of

prominent features, or knots, that stand out above this smooth emission. Within the jet, narrow

elongated structures, or filaments, that can be traced along much of the parsec-scale jet were

also observed. From parsec scales out to kiloparsec scales, the jet is highly collimated and shows

limb-brightening along one or both edges of the jet. The brightness centroid of the jet appears

to fluctuate from side to side depending on the position within the jet. It is suggested that this

and the narrow elongated structures could be interpreted as helical filaments within the jet or

wrapped around its surface. The collimation of the jet appears likely to occur on scales of > 0.1 pc

which corresponds to ≈ 300rs from the central black hole, suggesting that the initial collimation

is provided by electromagnetic processes associated with the black hole and accretion disc. At

scales of < 0.1 pc, the opening angle observed is ∼ 60◦ (Junor et al., 1999) and is seen to get

progressively larger closer to the core of M87. Results from Walker et al. (2008), with a resolution

∼ 0.02 pc, suggest that the inner part of the jet of M87 is a fast-moving and rapidly evolving

structure. Components observed within the subparsec-scale jet have been detected with apparent

velocities near 2c, which contrasts with the value of 0.07c within the first 1.6 pc of the jet (Kovalev
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et al., 2007); however, this is probably because the observations used in the earlier work were not

sensitive enough to the faster motions due to undersampling. The disparity in measured velocities

between these studies could also be due to some components being density enhancements or other

structures moving with the jet, while others are shocks or instabilities through which the jet travels,

that have their own intrinsic, lower velocity. Interestingly, the value of 2c found by Walker et al.

(2008) is far lower than the velocities of up to 6c reported for the jet on larger scales as discussed

earlier (Biretta et al., 1999).

It has been proposed that the observed large opening angle of the jet may be due to the core of

M87 not being associated with the brightest part of the jet and that the core may be offset from

this region by up to ∼2 mas (Ly, Walker & Junor, 2007). If this were the case, the actual opening

angle of the jet would be ≈ 15◦, and the counterjet would then be part of the inner jet of the

galaxy; however, the observed motion would appear to indicate that it is travelling in the wrong

direction. This hypothesis has been supported by results published by Batcheldor et al. (2010)

using data collected by the Hubble Space Telescope. It is reported that the supermassive black hole

in M87 is displaced by a projected distance of 6.8 ± 0.8 pc in the direction of the counterjet. It

is concluded that the most likely causes of this displacement may be a moderate (a few hundred

km s−1) kick that occurred ∼ 1 Myr ago (which would explain the alignment of the jet axis and

the disturbed nature of the nuclear gas disc) or supermassive black hole oscillations following a

kick that occurred . 1 Gyr ago. A less likely possibility is that the displacement is caused by jet

acceleration, but this requires that the jet age be � 1 Myr and that the restoring force of the

galaxy be small.

Biretta et al. (1999) also reported detecting a region, appearing as a linear chain of compact

components, extending along the jet of M87 at a distance of ∼ 80 pc from the nucleus. As these

results were based on data from the Hubble Space Telescope, they designated the feature HST-

1. HST-1 was observed to have both slow-and fast-moving features, some moving with apparent

superluminal motion of velocities up to 6c. It also showed the birth of new components and the

fading of older ones. Since then, further study has shown HST-1 to be active in radio, optical

and X-ray regimes (Chang et al., 2010), and it is now identified as a knot in the jet of M87. An

X-ray view of M87 showing HST-1 taken the Chandra X-ray Observatory can be seen in Figure

3.8. Observations of HST-1 with the Chandra X-ray Observatory (Harris et al., 2006) show X-ray

variability on timescales of approximately one month. During the observations, the feature was

observed to undergo an X-ray outburst in which the X-ray luminosity increased by a factor of 50.

During this flare variability was also detected in the ultraviolet and radio, suggesting that the input

spectrum of reativistic particles did not change its shape, only its amplitude. Using radio data
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Figure 3.8: Image of M87 taken in the 0.2-6 keV band with the Chandra X-ray Observatory, using
data taken in July 2000 and during 2002, showing the many knots in the jet and HST-1 close to
the nucleus. The contours increase by a factor of two in brightness with darker regions signifying
higher brightness; the lightest areas display a flux of 1× 10−16 ergs cm−2 s−1 pixel−1. Taken from
Harris et al. (2003).

from the VLBA collected in 2005 and 2006, Cheung et al. (2007) confirmed apparent velocities

of 4.3c inside HST-1 and used this to constrain the angle of the jet at this location to 26◦ ± 4◦.

Using these data, the authors were able to determine that HST-1 must be & 120 pc from the core

of M87 rather than the 80pc as initially determined by Biretta et al. (1999), much farther than

had previously been thought for the formation of such knots in a relativistic jet source.

The nature of HST-1 is currently unknown; however, it has been suggested by Stawarz et al.

(2006a) that it could be a reconfinement shock within the jet of M87. They suggest that, although

the inner part of the jet within an AGN may be dominated by the electromagnetic jet flux in

the case that the initial collimation is due to a dynamic magnetic field (Gracia et al., 2005), at

greater distances this must be converted to a dominant particle flux as large-scale jets appear

to be primarily particle-dominated (Sikora et al., 2005). Stawarz et al. (2006a) speculate that at

sufficiently large distances from the nucleus, the radio jet of M87 is already particle-dominated and

starts to expand freely. As the jet expands, this causes a rapid decrease in the thermal pressure

with distance, r, from the core. In cold (nonrelativistic) jet matter with a ratio of specific heats

(ratio of the heat capacity of the jet matter at constant pressure to its heat capacity at constant

volume) of 5/3 (as in classical hydrodynamics) the pressure varies as r−10/3 (Sanders, 1983). The

ambient gas pressure, however, decreases at a much slower rate with respect to distance from the

nucleus, varying as r−0.6 for r < 235 pc. This, combined with the results found in Komissarov &

Falle (1997), implies that the initially free jet of M87 will become reconfined at a point upstream
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where it is suggested that the jet will develop a reconfinement shock at its boundary. This will

lead to limb-brightening of the reconfining outflow. The distance from the core at which the whole

jet will reach equilibrium with the surrounding medium is designated rcr and occurs at the point

where the converging reconfinement shock reaches the jet axis. If it is assumed that the jet in

M87 is ultrarelativistic at the reconfinement shock then HST-1 is found to be coincident with

the position calculated for rcr (see Appendix A of Stawarz et al., 2006a). Using this model and

assuming an ultrarelativistic jet, Stawarz et al. (2006a) find that the kinetic power of the jet, Lj ,

is related to the viewing angle, θ, the ambient gas pressure, pG(r), and the break radius, rB (the

radius at which the brightness profile of the galaxy ceases to obey a power law). For M87, rB ≈ 0.3

arcsec and the authors assume that the ambient gas pressure profile follows pG(r) ∝ r−0.6 with

p0 = 1.5× 10−10 pa. This relation is given in Appendix A of Stawarz et al. (2006a) and is:

Lj ∼ 3cπp0r
0.6
B r1.4

cr ∼ 0.4× 1044(sin θ)−1.4 erg s−1 (3.1)

Using equation 3.1 and an assumed inclination angle of θ = 20◦, the implied luminosity is

Lj ≈ 1044 erg s−1, which is consistent with the jet power (of ∼ a few × 1044) estimated in Owen

et al. (2000) and greater than the ∼ 1042erg s−1 required to power the radio lobes (Bicknell

& Begelman, 1996). The total luminosity, from radio to X-ray wavelengths, of the jet in M87 is

calculated to be ∼ 3.7×1042 erg s−1, giving an efficiency of approximately 1% for the source (Owen

et al., 2000). This is consistent with the currently held view that radio galaxies are low-efficiency

radiators. In the case of a cold jet, the total kinetic power of the jet is calculated to be an order of

magnitude lower. Previous studies of reconfinement shocks propose that they are found at much

greater distances from the central engine, coincident with the brightest knots ∼ 1 kpc from the

active nucleus (Laing & Bridle, 2002). For M87, this would place a reconfinement shock at knot

A (Wilson & Falle, 1985), which is entirely feasible if the jet breaks free again after the HST-1

complex and reconfines at a later point; however, in Bicknell & Begelman (1996), the knots beyond

HST-1 are adequately described as oblique shocks formed by helical modes of Kelvin-Helmholtz

instabilities, characterised by a growing amplitude along the jet and finally disrupting the outflow

at knot C.

The first indication of very high energy γ-ray emission from M87 was reported by the HEGRA

Collaboration using 83.4 hours of data collected during 1998 and 1999 (Aharonian et al., 2003).

The detection was marginal, with a significance of only 4.1 σ above the background, and as only

a limited number of excess events were detected, the origin of the detected TeV γ-rays could not

be determined with any confidence. Later attempts by the Whipple Collaboration between 2000
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and 2003 failed to detect any γ-ray excess in 39 hours of observations (Le Bohec et al., 2004).

Confirmation that M87 does emit at very high energies was eventually found by the H.E.S.S.

Collaboration (Aharonian et al., 2006d). The study used data collected by the H.E.S.S. telescopes

between 2003 and 2006, yielding a total of 89 hours of data and a significance of 13σ above the

background. The detection of M87 at TeV energies was the first confirmation of very high energy

γ-ray emission from an AGN other than a blazar. Aharonian et al. (2006d) found the luminosity of

M87 in VHE γ-rays to be relatively modest, at Lγ ≈ 3×1040 erg s−1. The position of the detected

excess is nominally coincident with the nucleus of M87 and it is consistent with a point-like object;

however, the angular resolution of the H.E.S.S. telescopes makes it impossible to positively identify

the nucleus as the source of the emission, and the upper limit for a Gaussian surface brightness

profile of 3’ (99.9% confidence level) corresponds to a radial distance of 14 kpc at M87 (Beilicke et

al., 2008), about two orders of magnitude larger than the core-HST1 separation. The upper limit

on the angular size of the TeV γ-ray emission region does, however, exclude the core of the Virgo

cluster of galaxies and the outer radio regions of the jet as possible sources. The energy spectra of

M87 measured in both 2004 and 2005 are well fitted by power-law functions, with photon indices

of Γ = 2.62± 0.35 and Γ = 2.22± 0.15, respectively (Aharonian et al., 2006d).

The data collected by the H.E.S.S. telescopes showed variability from M87 on timescales of

∼ 1 day with a significance of 4 σ, faster than the variability seen in the source at any other

wavelength. This rapid variability allows the size of the emission region to be constrained to

R ≤ c∆tδ ≈ 5δRs ≈ 0.022δ pc, where δ is the relativistic Doppler factor of the source of the γ-ray

emission and Rs is the Schwarzshchild radius of the supermassive black hole in M87 (Rs ≈ 1015

cm). More recent observations with VERITAS during a flare period of M87 in 2010 showed

doubling times for the VHE flux of τ rise
d = 1.69 ± 0.30 days while the flux was increasing and

τdecay
d = 0.611 ± 0.080 days while it was decaying. This is the first detection of a significantly

asymmetric VHE flare profile from M87 and the most rapid variability observed from it to date,

with the decay timescale leading to an upper bound on the size of the emission region of ≈ 0.0005

pc (Abramowski et al., 2012c). For reasonable values for the Doppler factor (1 < δ < 50), a number

of possible areas and mechanisms for TeV emission can be excluded. The regions excluded include

the most likely candidate for efficient particle acceleration, the entire extended kiloparsec-scale jet.

Although knot A, (the brightest knot in the jet) is compatible with the position of the very high

energy γ-ray source, the size of the knot, ∼ 80 pc (Perlman & Wilson, 2005), would appear to

exclude it as the source of the TeV emission. The possibility that the emission is due to cosmic ray

interaction with matter in M87 or to dark matter annihilation can be excluded. This leaves two

sites as possible sources for the very high energy emission from M87: the core or the knot HST-1.
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Current theories posit that the most likely source of very high energy emission within M87 is

close to the core of the galaxy, where the restrictions on the size of the emission region placed

by the observed rapid variability can easily be met. In TeV blazars, the very high energy γ-ray

emission is believed to be Doppler-boosted to higher energies as the material within the jet is

moving at relativistic velocities almost directly towards the observer; in M87, however, the jet is

at an angle of ∼ 30◦ to the line of sight, so any Doppler boosting will be modest at best. This

poses some problems for understanding the nature of emission at TeV energies close to the core,

although, due to the proximity of the source, both leptonic and hadronic models predict detectable

TeV emission at these energies (Georganopoulos et al., 2005; Reimer et al., 2004). These models do

not fully account for the observed emission as they generally predict a soft energy spectrum, which

contradicts the hard spectrum measured by H.E.S.S. and Veritas, but both leptonic and hadronic

models can be adapted in ways that successfully model the behaviour of M87. It is therefore

difficult to determine the most likely emission method, even if the assumption is made that the

VHE γ-ray flux emanates from close to the black hole. In leptonic models, the jet is assumed to

have additional structure. One such model argues that it may be sensible to consider that in the

jet-formation zone the jet is dominated by a number of relativistic blobs of plasma, with different

Doppler factors and moving in different directions with respect to the line of sight (Lenain et al.,

2008). If this assumption is made, it is possible to produce a spectrum for M87 that agrees with

observations, although this requires a large number of variables that are difficult to constrain with

current data. Two possible mechanisms for emission via hadronic interactions are synchrotron

emission by ultrahigh-energy protons, which requires that the jet be able to accelerate protons

up to energies as high as 1020 eV, and curvature radiation from similarly energetic protons in the

immediate vicinity of the supermassive black hole. In the case of curvature radiation, assuming that

the black hole in the centre of M87 is rapidly rotating, protons could be accelerated up to energies of

1020 eV by the electric field generated by rotation of the black hole in the magnetic field supported

by the accretion disc (Levinson, 2000; Boldt & Loewenstein, 2000). The main weakness with the

curvature radiation model is that it requires the horizon threading magnetic field to be ∼ 104 G,

which is orders of magnitude larger than the field expected from the accretion process given the low

accretion rate predicted from the bolometric luminosity of the core. A further possiblilty for the

origin of TeV γ-ray emission from M87 is disc-dominated external inverse-Compton (EIC) radiation

(Cui et al., 2012); the model presented suggests that the soft radiation, which is upscattered to TeV

energies, originates in the accretion disc rather than within the jet as with SSC models, leading to

lower γγ absorption. In this case, the low γγ absorption leads to the EIC spectra inheriting the

original power-law index of the very high energy electrons in the jet. In such an EIC model, no
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correlation is expected with infrared-ultraviolet emission during a TeV flare, but unfortunately no

data are currently available to allow this prediction to be tested. Currently available data cannot

discount this model, but neither do they provide additional support over other models (Cui et al.,

2012).

Initially, it was thought unlikely that the TeV emission from M87 originated in the HST-1 knot,

as the size of the region has been estimated at between 0.1 pc and 1 pc (Stawarz et al., 2006a;

Harris et al., 2006), which is too large for any reasonable Doppler factor. However, data collected

by the VLBA show compact knots within HST-1 that are essentially unresolved and therefore

have semiminor axes of < 0.15 pc, implying that they can approach the size limits imposed by

the observed variability of the TeV emission region (Cheung et al., 2007). The maximum flux

for TeV emission coincides with the peak of the radio-X-ray activity observed in HST-1 and the

luminosities are comparable, suggesting a possible link between the two flares. Additional support

is lent by similarities in the spectra of very high energy emission, which is described by a power law

of index Γγ = 1.2± 0.15, and optical emission, described by a power law of index Γo = 0.99± 0.03.

More recent joint observations; however, carried out by the H.E.S.S., VERITAS and MAGIC

Collaborations during which M87 was also observed by the Very Long Baseline Interferometer

(VLBI) and the Chandra X-ray observatory, detected a very high energy γ-ray flare from M87

which coincided with low X-ray flux from HST-1, but increased X-ray activity in the core unlike

the previous flare observed in 2005 (Wagner et al., 2009). The information gathered from these two

flares presents different conclusions as to the likely source of origin for the VHE emission leaving

the actual location of the emission region open to debate.

The most recent flare from M87 observed in VHE γ-rays in 2010 initially by Veritas (Aliu et al.,

2012b) triggered further VHE observations with both MAGIC and H.E.S.S., X-ray observations

with the Chandra X-ray Observatory and radio observations by the VLBA (Abramowski, 2012c).

This flare shared a similar peak flux and VHE spectrum with the previously observed flares but

had an asymmetric flare profile and more rapid variability as previously discussed; while the large

amount of data gathered allowed unprecedented sampling of the light curve. During the flare

no increased radio flux from the innermost core regions was detected; however, the X-ray flux

was observed to increase dramatically ∼ 3 days after the VHE maximum. During this flare, no

increased multiwavelength emission was observed from HST-1 suggesting, as with the 2008 flare,

that it is unlikely to be associated with the increased activity. Despite this extra data, the precise

location of VHE emission from M87 is still unknown; however, it is possible that the core provides

the dominant emission as implied by the 2008 and 2010 flare events and that HST-1 only has a

minimal effect on the VHE flux, unless it too is also undergoing a flare event as in 2005.
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3.4.2 Centaurus A

At a distance of ≈ 3.8 Mpc, Centaurus A is the closest giant elliptical galaxy exhibiting activity

in its nucleus (Israel, 1998). It is undergoing a late-stage merger with a small spiral galaxy. Radio

observations of the galaxy show a complex morphology, consistent with that of a FRI galaxy and

displaying extended diffuse emission. The core of Centaurus A is extremely bright and emerging

from it are a subparsec-scale jet and a fainter counterjet, a one-sided kiloparsec jet and two radio

lobes extending out to a distance of 250 kpc (Tingay et al., 1998; Tingay & Murphy, 2001; Horiuchi

et al., 2006). The bright central source is not the nucleus itself, because at radio wavelengths the

emission is absorbed via synchrotron self-absorption processes in a disc or torus of ionised gas

(Jones et al., 1996; Tingay and Murphy, 2001). At a distance of around 5 kpc from the nucleus,

the jets expand into plumes and the position angle of the radio features relative to the line of

sight changes dramatically (Israel, 1998). Observations of the subparsec-scale jet indicate that

Centaurus A is a non-blazar source with a jet inclination angle θ & 50◦ (Tingay et al., 1998),

although Hardcastle et al. (2003) argue that the inclination angle could be as low as ∼ 15◦. At

the centre of the galaxy is a supermassive black hole with a mass inferred to be in the range

MBH ≈ (0.5− 1.2)× 108M� corresponding to a Schwarzschild radius of rs ≈ (1.5− 3.6)× 1013 cm

(Marconi et al., 2006; Häring-Neumayer et al., 2006). A prominent feature of the galaxy are the

dust lanes along its minor axis, composed of a large amount of gas and dust within a warped

disc-like structure which is seen almost edge on. Between about 1 kpc and 7 kpc from the centre

of the galaxy, there is an HI mass of (10± 3)× 108M� (van Gorkom et al., 1990; Schiminovich et

al., 1994; Israel, 1998). Orbiting the black hole is a compact accretion disc, not aligned with the

principal axis of the galaxy but perpendicular to the parsec-scale jets (Israel, 1998). Variability at

radio frequencies has been observed both from the nucleus of Centaurus A and within the inner jet

structures; however, these variations do not appear connected as they do not occur in tandem. At

1.4 GHz, considerable variability is observed near the nucleus on timescales of ∼100 days or longer

(Romero, Benaglia & Combi, 1997). As the centre of the galaxy is strongly self-absorbed, such

large variability cannot originate from activity in the nucleus itself; this probably indicates instead

the presence of shocks interacting with inhomogeneities in the subparsec-scale jet (Israel, 1998).

Variability has also been observed at X-ray energies on timescales of ∼ a few days first in soft

X-rays by Winkler & White (1975) and more recently in hard X-rays (Jourdain et al., 1993). The

X-ray variability is most pronounced at ∼ 8 MeV. At X-ray energies below 100 keV the spectral

shape is independent of luminosity; however, at higher energies this is not the case (Steinle et al.,

1998).

The SED of the nucleus of Centaurus A consists of two peaks, one at ∼ 1013 Hz and the other
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at 0.1 MeV (Chiaberge, Capetti & Celotti, 2001; Meisenheimer et al., 2007). To date Centaurus

A is the only non-blazar type AGN detected at both MeV (Steinle et al., 1998) and GeV energies

(Sreekumar et al., 1999). The SED of Centaurus A below 1 GeV has been successfully modelled

using a simple jet SSC framework (Chiaberge, Capetti & Celotti, 2001), assuming that the object

is a misaligned blazar. At X-ray energies observations between 2 keV and 7 keV made with the

Chandra X-ray Observatory and XMM-Newton suggest that the X-ray continuum spectrum from

the nucleus may be composed of both a disc component and a jet component, consistent with a

hybrid disc configuration where the inner accretion disc is advection-dominated and becomes a

standard geometrically thin, but optically thick, disc moving in Keplerian motion at some distance

rl from the black hole (Evans et al., 2004). This model is supported by the absence of the large

ultraviolet bump expected in a more basic accretion disc model such as that proposed by Marconi

et al. (2001). To date, the accretion rate of Centaurus A remains uncertain, with estimates varying

by about an order of magnitude, from ∼ 10−4 ṁEdd to ∼ 10−3 ṁEdd (Rieger & Aharonian, 2009).

Taking the measured nuclear X-ray luminosity as an upper limit to the contribution made by the

advection-dominated part of the disc allows an upper limit of ṁ . 0.004 ṁEdd to be derived for

the accretion rate (Rieger & Aharonian, 2009).

A number of models proposed since the detection of M87 at TeV energies have predicted VHE

emission from Centaurus A; these include models favouring jet-based emission mechanisms, such

as that proposed by Lenain et al. (2008), and more exotic emission mechanisms that focus on the

magnetosphere of the central supermassive black hole as proposed by Neronov & Aharonian (2007).

The first hint of very high γ-ray emission from Centaurus A was reported by Grindlay et al. (1975)

at a significance level of 4.5σ above background using data collected with the optical intensity

interferometer operated by Sydney University between 1972 and 1974. During the observation

period, Centaurus A was observed to be in a state of high X-ray flux; however, data collected in the

late 1990s and early to mid 2000s by the CANGAROO telescopes and the H.E.S.S. Collaboration

produced only upper limits, as discussed in Rowell et al. (1999), Kabuki et al. (2007) and

Aharonian et al. (2005b). The first solid detection of Centaurus A was made by the H.E.S.S.

Collaboration, using 120 hours of data collected between April 2004 and July 2008 (Aharonian et

al., 2009b). The smoothed excess sky map in Figure 3.9 shows a clear excess at the position of

Centaurus A, and the overall significance of the detection is 5σ.

Aharonian et al. (2009b) fitted the data with the point-spread function of the H.E.S.S. tele-

scopes (as derived from Monte Carlo simulations) and found a best-fit position compatible with

the radio core and inner kpc-scale jet region. The extension of the emitting region is found to

have an upper limit of 0.2◦ at the 95% confidence level. The spectrum at E > 250 GeV is well
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Figure 3.9: Smoothed excess sky map centered on the position of Centaurus A (marked with a
cross). The contours correspond to significances of 3σ, 4σ and 5σ. The point-spread function of the
H.E.S.S. telescopes is displayed in the bottom left-hand corner, the integration radius is 0.1225◦

and the data is smoothed using a radius of 0.02◦ to reduce the effect of statistical variations. Taken
from Aharonian et al. (2009b).
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fitted by a simple power law with a photon index of Γ = 2.73 ± 0.65, although the relatively low

statistics result in a large uncertainty. The apparent luminosity of the source at E > 250 GeV

is L ≈ 2.6 × 1039 erg s−1, assuming a distance of 3.8 Mpc to the source; this is ∼ 0.8% that of

the Crab nebula at these energies. No variability has been detected, but, due to the low flux of

the source, variability above a factor of ∼ 15 − 20 on daily timescales would be required before

any hints of this could be observed. The flux detected by the H.E.S.S. telescopes agrees with all

previously published upper limits, and extrapolating the spectrum measured with the EGRET

satellite in the GeV regime to TeV energies roughly matches the spectrum observed (although the

softer end of the error range on the EGRET spectral index is preferred). It has been suggested by

Stawarz et al. (2006b) that, due to the relative closeness of Centaurus A, a phenomenon known

as a pair halo might be observable leading to slightly extended VHE emission. It is theorised

that VHE γ-rays emitted in the vicinity of the central black hole could be partly absorbed by

the starlight radiation from the host galaxy, creating e+e− pairs. In this scenario, the e+e− pairs

would be quickly become isotropic and would radiate very high energy γ-rays by inverse-Compton

scattering of the starlight, generating a pair halo. If such a model is true, then the isotropic pair

halo would have an angular size of ∼ 4 arcmin, which is fully consistent with a point-like source

for H.E.S.S. but could potentially be resolved by a future IACT instrument.

As the significance of the detection is relatively low, determining the origin of the TeV γ-ray

emission is extremely difficult, although a number of possible sources are currently being considered.

The simplest possibilities are that emission originates at the base of the jet or very close to the

black hole; however, as in the case of M87, there are other possibilities that cannot currently be

ruled out. The detection of nonthermal X-ray synchrotron emission from a shock in the southwest

inner radio lobe ∼ 5’ from the nucleus, showing edge-brightened X-ray emission (Croston et al.,

2009), suggests that this site could be a possible source; although this location is 3σ away from the

best-fit position of the very high energy excess, it is still within the upper limit of the extension.

It is suggested that very high energy γ-ray emission could occur via inverse-Compton scattering

of starlight and cosmic microwave background off the high-energy particles within this lobe. This

scenario predicts TeV emission compatible with the H.E.S.S. results; if correct, this would suggest

that Centaurus A is analogous to a very large supernova remnant. One further suggestion was

that the very high energy γ-ray emission from Centaurus A could originate from sources within

the host galaxy. Kraft et al. (2001) detected more than 200 X-ray point sources in Centaurus

A and the detection of large numbers of TeV sources in our Galaxy, many associated with X-ray

sources, could lend support to this suggestion. However, Aharonian et al. (2009b) note that the

sum of such contributions would require an unrealistically large number of galactic sources with
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Centaurus A (assuming a typical luminosity of ∼ 1035−35 erg s −1). It is argued by Aharonian

et al. (2009b) that with a sensitivity increase of about an order of magnitude, better astrometric

accuracy (∼ 5”) and better angular resolution (∼ 1’) it would become possible to determine the

emission site within Centaurus A which could potentially lead to a much greater understanding of

both radio galaxies and blazars as a source of TeV emission.

Out of 27 ultrahigh-energy cosmic ray (UHECR) protons above 57 EeV detected with the

Pierre Auger cosmic ray observatory, four may be associated with the location of Centaurus A

(Abraham et al., 2008). As sites of cosmic ray acceleration are also expected to be sources of TeV

γ-ray emission, an understanding of the origin of such high-energy protons could allow for a better

understanding of the nature of very high energy emission within Centaurus A. Unfortunately, it is

extremely difficult to account for UHECR protons at energies beyond 1019 eV using conventional

acceleration concepts. Rieger & Aharonian (2009) argue that protons could not be accelerated to

the energies observed, either in the vicinity of the black hole, or in the accretion disc. It is also

argued that, if radio observations are a reliable tracer of fluid velocities within the jet of Centaurus

A, then internal shocks cannot account for cosmic ray emission beyond 50 EeV, either on subparsec

or on hundred-parsec scales, as the jet seems at most mildly relativistic (not exceeding 0.5c by

much) thereby severely limiting shock speeds (Tingay et al., 2001; Hardcastle et al., 2003), severely

limiting shock speeds. The most likely explanation (Rieger & Aharonian, 2009) is shear acceleration

of the protons along the large-scale jet, in which high-energy seed particles are accelerated by a

factor of an order of magnitude or more in energy as they pass from a stratification within the jet

(Rieger & Duffy, 2004). One further possibility, put forward by Hardcastle et al. (2009), is that

the particle acceleration could occur within the giant radio lobes of Centaurus A on scales of R ∼

100 kpc. It is unknown whether the conditions required for such high energy acceleration to take

place in these areas exist within Centaurus A; however, the northern lobe does show continuous

acceleration of electrons implying that magnetic turbulence is present which could theoretically

accelerate the different species of cosmic rays although a relatively optimistic scenario must be

assumed for these particles to reach ultrahigh energies.

3.4.3 NGC 1275

NGC 1275 is the dominant galaxy in the Perseus cluster and is situated at a redshift of z = 0.0179

(Aleksić et al., 2012c). It displays a number of properties reminiscent of Seyfert galaxies and has

been classified as a Seyfert 1.5 (Veron-Cetty & Veron, 1998); it has also been classified as a FRI due

to the morphology of the extended radio jet (Buttiglione et al., 2010). The nucleus of the object

is very bright at radio wavelengths and highly variable in the optical regime, where the emission
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is highly polarised, suggesting a significant contribution from the jet. The angle of inclination

changes from 10◦ − 20◦ on milliarcsecond scales up to 40◦ − 60◦ at arcsecond scales (Krichbaum

et al., 1992).

Prior to the detection of the object with the MAGIC telescopes, it was reported as a γ-ray

emitter in the 100 MeV - 100 GeV range by Abdo et al. (2009b), using data collected with the

Fermi -LAT during its first four months of operation. Since the initial detection of NGC 1275 with

the Fermi -LAT the collection of more data has led to very strong evidence for variability of the

source on timescales of days at energies > 800 MeV (Brown & Adams, 2011). The detection of

NGC 1275 at TeV energies with the MAGIC telescopes was reported in Aleksić et al. (2012c) with

a significance of 6.6σ, based on observations performed between August 2010 and February 2011.

The spectrum of the source at very high energies can be fitted between 70 GeV and 500 GeV by a

simple power law with a spectral index of Γ = −4.1±0.7stat±0.3sys. No flux or spectral variability

at these energies is detected. When compared to the Fermi -LAT spectrum above 100 MeV, which

displays a much lower spectral index of Γ = −2.1, a break or cut-off at an energy of a few tens of

GeV is implied.

3.5 The Extragalactic Background Light (EBL)

The EBL is the faint diffuse background radiation permeating across the Universe and consists

of the sum of the radiation emitted by galaxies throughout the history of the Universe, including

an important contribution from the very first stars to form. It is dominated from the optical

through to ultraviolet by direct emission from stars and at infrared wavelengths by absorption and

re-radiation by gas and dust. The spectrum of the EBL takes the form of a hump at infrared

energies and a second hump at ultraviolet energies. The properties of this radiation field are of

great interest to astronomers, as it can be used to study the star-formation history of the Universe.

Direct measurements of the EBL are complicated as it is strongly dominated (by a factor of

∼ 100) by local emission both from within the solar system and the Galaxy at large. At infrared

and ultraviolet wavelengths a major contribution to the background light that must be estimated

and subtracted comes from sunlight scattered and reprocessed by the zodiacal dust (dust in the

solar system). Correcting for Galactic sources is relatively simple for resolved objects, but the

reprocessed emission from interstellar dust is difficult to measure leading to uncertainties on EBL

measurements. Despite these difficulties direct detection of the EBL has been claimed at infrared

(e.g. Gorijan, Wright & Chary (2000), with the Diffuse Infrared Background Experiment (DIRBE)

on board the Cosmic Background Explorer (COBE) satellite) and at optical and soft ultraviolet
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(e.g. Bernstein, Freedman & Madore (2002) with the Hubble Space Telescope). In addition to

direct measurements of the EBL it is possible to place a lower limit on it’s spectrum by summing

the contribution of galaxies in galaxy surveys (e.g. Fazio et al. (2002)).

The spectrum of the EBL can also be estimated using empirical models of the evolutionary

histories of galaxies and these models can be separated into a number of classes. One class of

models use infrared data from local galaxies and extrapolate the evolution of these galaxies to

higher redshifts and shorter wavelengths (e.g. Stecker et al. (2006)). Another approach uses

semianalytic models of galaxy formation and evolution to determine the star formation history of

the Universe and use this to calculate the contribution to the EBL (e.g. Gilmore et al. (2009)). A

further approach focuses primarily on the stars themselves, using star formation rates and stellar

properties to estimate the EBL spectrum (e.g. Finke, Razzaque & Dermer (2010)).

When a very high energy γ-ray photon comes into contact with a photon from the EBL, there

is a chance that it will interact via the pair-production process γ + γ → e+ + e−, as discussed in

Section 1.3, resulting in the γ-ray being absorbed. This process has a cross-section, σEBL, as given

in Vassiliev (2000):
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In Equation 3.2, σT = 6.67 × 10−25 cm2 is the Thomson scattering cross section, E and ε are

the energies of the interacting photons, and θ is the collision angle. The function, f(q) in equation

3.3 reaches its maximum at q = 0.508, which indicates that, for a head-on collision, the peak of the

interaction cross section for a γ-ray photon of energy E ∼ 1 TeV corresponds to pair production

with a photon of energy ε ∼ 0.5 eV (λ ∼ 2.5 µm) in the infrared regime, as found in Section 1.3.

However a head-on collision is unlikely, and for the case of an isotropic radiation field, attenuation

of 1 TeV γ-rays actually peaks for interactions with infrared photons of energy ∼ ε0.9 eV (Vassiliev,

2000). The impact on the observed flux, Fobs(E), is such that:

Fobs(E) = Fint(E) exp[−τγγ(E)] (3.5)

where Fint is the unabsorbed source flux as a function of observed energy E and τγγ is the EBL
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absorption optical depth (Finke, Razzaque & Dermer, 2010). If Fint is known for a specific object,

then observations of that object would enable the EBL absorption optical depth to be determined

from Equation 3.5. Unfortunately the intrinsic TeV spectra of AGN observed at these energies

are not known. However, by using models or extrapolation from lower energies to estimate the

unattenuated spectrum then upper limits can be found to the absorption, providing another means

to constrain the spectrum of the EBL. Plots of a range of direct measurements, upper limits from

VHE observations, lower limits from galaxy counts and empirical models from the last 15 years

can be seen in Figure 3.10. An in depth discussion of current upper and lower limits and direct

measurements of the EBL can be found in Dwek & Krennrich (2012).

A major issue in using TeV blazars to constrain the EBL is that, although they are persistent

sources, they are generally variable and their intrinsic spectra are difficult to model accurately. In

spite of this, theoretical models can be used to determine the maximum possible intrinsic spectrum

of a very high energy blazar, by assuming that γ-rays are produced by Compton scattering off

electrons so that the hardest possible photon index is Γmax = 1.5. For very high energy γ-ray

astronomers, the EBL has a large impact on the distance out to which extragalactic sources can

be observed before enough of their TeV emission is absorbed for detection to be impossible. To

date the most distant extragalactic source detected at TeV energies is at a redshift of z = 0.5.

3.6 Conclusions

AGN are some of the most luminous phenomena in the Universe and display emission across

the entire electromagnetic spectrum. It is currently believed that the various types of AGN are

similar objects viewed at different angles, leading to the different properties observed. At very

high energies, the vast majority of extragalactic sources are AGN and, of these, all except three

are blazars, i.e., AGN with jets closely aligned to the line of sight. The small angle of inclination

of the jets in blazars leads to strong Doppler boosting of emission in the jet, resulting in detection

of higher energy emission than would otherwise be expected.

The detection at very high energies of three radio galaxies, M87, Centaurus A and NGC 1275,

has raised interesting questions about potential emission mechanisms in such objects, as the jets

in these sources are not aligned with the line of sight, resulting in very limited, if any, Doppler

boosting of the emission.

When studying extragalactic objects at very high energies, it is important to take into account

the extragalactic background light, which is a faint, diffuse radiation field consisting of contributions

from the radiation emitted from all galaxies throughout the age of the Universe. This radiation field
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Figure 3.10: EBL models, measurements and constraints from a number of sources. The model of
Finke, Razzaque & Dermer (2010)(solid black curve), the best-fit model of Kneiske et al. (2004)
(red dotted curve), the fiducial model of Gilmore et al. (2009) (long dashed blue curve) and
the fast evolution and baseline model from Stecker et al. (2006) (upper and lower dot-dashed
violet curves, respectively). The double dot-dashed and the dot double-dashed black curves are
the single power-law Model B and Model C from Razzaque et al. (2009). Measurements from
Bernstein et al. (2002)(cyan points), Gorjian et al. (2000) (empty red circle), Dwek & Arendt
(1998) (green asterisk), Cambrésy et al. (2001) (empty cyan square), Wright & Reese (2000)
(black cross), Levenson et al. (2007)(maroon diamonds), Hauser et al. (1998) (green filled circles),
Fixsen et al. (1998) (brown filled diamonds) and Marsden et al. (2009) violet filled squares).
Lower limits are from Fazio et al. (2004)(red empty triangles), Madau & Pozzetti (2000) (brown
filled triangles), Levenson & Wright (2008) (blue filled triangle), Dole et al. (2006)(magenta filled
triangles), Metcalfe et al. (2003)(black empty triangle), and Papovich et al. (2004, green empty
triangle). Upper limits are from Hauser et al. (1998)(brown filled inverted triangles), Dwek &
Arendt (1998)(blue empty inverted triangles), Mazin & Raue (2007)(upper and lower black curves
Γminint = 0.67 and Γminint = 1.5 upper limits, respectively), and red empty and black filled inverted
triangles are the Γminint = 1.0 and Γminint = 1.5 upper limits, respectively, from Finke & Razzaque
(2009). The black curve at long wavelengths is the cosmic microwave background. Taken from
Finke, Razzaque & Dermer (2010).
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peaks at infrared energies, leading to γγ photoabsorption of very high energy γ-rays, as discussed

in Section 1.3, and limiting the distance from which such high energy emission can be detected.



Chapter 4

Searching for Very High Energy

γ-rays from Seyfert Galaxies

4.1 Introduction

The detection of M87 and Centaurus A at very high energies has helped change current understand-

ing of such emission from extragalactic sources. The detection of these sources shows that even in

cases where the jet is misaligned to the line of sight, it is possible for very high energy emission

to be detected, dramatically increasing the potential number of extragalactic objects available for

study at such energies. Further to this, the recent detection of NGC 253 and M82 open up a whole

new class of galaxies for study, those without obvious nonthermal emission from the nucleus but

with very high star-formation rates. Seyfert galaxies have seen little interest at high energies until

recent results from the Fermi -LAT confirmed the detection of a number of such objects in the GeV

γ-ray regime as discussed later in Section 4.3; however, they are interesting objects that, in many

cases, show evidence of nonthermal emission, possible jet structures and starburst regions, making

them prime candidates for further study with ground-based very high energy γ-ray telescopes.

In this chapter archival H.E.S.S. data are used to determine whether there is evidence for

emission from a number of γ-ray-and X-ray-selected Seyfert galaxies observable with the H.E.S.S.

telescopes. In the event that emission is not detected, upper limits on the flux are calculated using

the procedure described in Section 2.7.

88



4.2. Seyfert Galaxies 89

4.2 Seyfert Galaxies

Seyfert galaxies are the most luminous type of active galaxy observed in the local Universe (z .

0.1), displaying bolometric luminosities of ∼ 1043 - 1045 erg s−1 (Deo et al., 2006). As with

all AGN, they are characterised by nonthermal continuum emission across the entirety of the

electromagnetic spectrum, from radio right through to γ-ray energies, and the overall SED can be

described as a power law of the form Fν ∝ ν−α interspersed with bumps and dips. The spectra of

the nuclei of such sources display prominent emission lines in the optical and ultraviolet. Seyfert

galaxies are distinguishable from quasars by their lower luminosity which is of the order of 102

lower. Early work that separated Seyfert galaxies into classes based on the observed spectra of

their nuclei was carried out by Khachikian and Weedman (1974), who divided them into two

distinct classes based on the relative widths of their forbidden and Balmer lines, type 1 Seyfert

galaxies (displaying broader Balmer lines than forbidden lines and referred to as Sy1s henceforth)

and type 2 Seyfert galaxies (displaying Balmer lines and forbidden lines of approximately equal

width and referred to as Sy2s henceforth). Sy1 nuclei show broad permitted emission lines with

FWHM > 1000 km s−1, superposed with narrow emission lines from permitted and forbidden

transitions, displaying FWHM . 500 km s−1, whereas Sy2 nuclei display only narrow emission

lines. Further classifications were introduced by Osterbrock (1977, 1981), who classified Sy1s

from 1.2-1.9 according to the ratio of the strength of the broad-line components to that of the

narrow-line components, with numerically larger types displaying smaller broad-line to narrow-

line ratios. By the end of the 1970s (Osterbrock, 1978), it had been suggested that the different

properties observed in Sy1s and Sy2s might be due to an orientation effect, in which, for Sy2s,

the broad-line region was obscured. Early evidence that the central continuum source is similar

in all Seyfert galaxies, supporting Osterbrock’s idea, was reported by Miller and Antonucci (1983)

with detection of polarised emission from (what would be) the broad-line region of the Sy2 NGC

1068 (the brightest Seyfert galaxy). This was interpreted as probable synchrotron emission from

the nucleus as seen in other AGN, as scattering by surrounding gas and dust would require a

very unlikely distribution of clouds with appropriate behaviour of optical depth to explain the

approximately flat continuum with the constant polarisation of ∼ 16% observed.

The discovery that the source of emission within the two types of Seyfert galaxies was likely to

be the same helped to further the unified model of AGN discussed in Chapter 3. This led to the

conclusion that Sy2s are merely Sy1s viewed edge on, with the line of sight to the broad-line region

(which is closer to the central black hole than the narrow-line region) obscured by an optically

thick torus made up of gas and dust. In this model, the polarised light detected is attributable
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to emission from the broad-line region reflected off ionised material above the torus but within its

opening angle. At X-ray energies, the spectra of both Sy1s and Sy2s follow power laws with typical

spectral indices of Γ ∼ 1.5−3.0, and often show a break at ∼ 100 keV (Zdziarski, 1999). This break

would seem to support the conclusion that the high-energy emission from Seyfert galaxies originates

from thermal Compton emission rather than having a nonthermal origin; however, similar features

have been detected in Centaurus A, which is now known to be a source of TeV γ-rays (Section

3.4.2). Additionally, the detection of polarised optical emission from both Sy1s and Sy2s supports

the conclusion that there is nonthermal synchrotron emission near the core of these galaxies.

At radio wavelengths, observations with arcsecond resolution (Ulvestad and Wilson, 1984a;

Morganti et al., 1999; Thean et al., 2000) show resolved structures in a large fraction of Seyfert

galaxies, with hints of jets and, in some cases, extended emission which is usually associated with

star-forming regions. Several such objects, for example, NGC 1052 (Wrobel, 1984), NGC 1068

(Ulvestad et al., 1987), NGC 7674 (Momjian et al., 2003) and Mrk3 (Kukula et al., 1999), have

radio morphologies similar to those seen in radio galaxies, with a core, collimated jets and hotspots;

however, these are usually on smaller scales than in strong radio sources (∼ a few kiloparsecs,

compared with hundreds of kiloparsecs or even megaparsecs). Using arcsecond-scale observations,

the parsec-scale structure of Seyfert nuclei can be resolved into a number of components, including

structures resembling parts of a jet (NGC 4151, Ulvestad et al., 1998; Nagar et al., 2001) and, in

some cases, extended emission. In many cases, comparisons between parsec-scale and kiloparsec-

scale jets within Seyfert galaxies show misalignment between the jets on different scales, suggesting

either a change in jet ejection axis, or bending of the jet by pressure gradients in the ambient

medium (Middelberg et al., 2004). A large number of Seyfert nuclei display much fainter radio

emission from the parsec-scale structures than is derived from observations at lower resolutions,

even if the nucleus itself is unresolved, suggesting that in Seyfert galaxies the emission is not

concentrated in the central source but is in fact dominated by emission on scales of tens or hundreds

of parsecs (Sadler et al., 1995). This is not universal, however: some Seyfert nuclei such as Mrk

530 do not display “missing” flux on parsec scales, indicating that the radio emission is dominated

by emission from the central compact source (Lal et al., 2004).

Using archival data from the Very Large Array (VLA) and the VLBA, Orienti and Prieto

(2010) studied radio features of the nuclei of seven of the nearest Seyfert galaxies in the Southern

hemisphere. For five of the Seyfert galaxies, data from the VLA were not of sufficient resolution

to allow the nucleus to be resolved, but the remaining two, MGC-5-23-16 and NGC 7469, show

a core-jet structure; at VLBA resolutions, the nucleus of Mrk 1239 is resolved into two separate

components. In those Seyfert galaxies without known star-forming regions, no circumnuclear radio
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emission was detected, except in the case of NGC 5506, which showed a radio halo surrounding the

nucleus; however, for Seyfert galaxies with star-forming regions (detected at infrared wavelengths),

radio emission from those regions was detected in ∼10% of cases. A suggestion that only star-

forming regions with a high supernova rate may be detected at radio wavelengths is supported by

the steep radio spectra observed in these regions. In six of the Seyfert galaxies studied, comparison

between arcsecond and milliarcsecond resolutions revealed that a large percentage (∼ 80% for Mrk

1239 and NGC 3783) of the radio flux detected at VLA resolution was not observed at parsec-scale

resolutions. This discontinuity in radio flux between parsec-scale and larger-scale observations is

not found in elliptical radio galaxies, but appears to be common in Seyfert nuclei, which are mostly

hosted in spiral galaxies. Orienti and Prieto (2010) suggest that this undetected flux component

is probably due to AGN-related synchrotron emission and that if this is the case it may be split

off from the jet, which could be distorted and/or disrupted by the dense interstellar medium at

the nucleus of the host galaxy. It is concluded that in Seyfert galaxies with steep radio spectra, a

significant portion of the radio emission arises from extended low-surface-brightness features. An

important note is that in Seyfert galaxies displaying flat radio spectra, almost all of the flux density

is contained within parsec scales, indicating that radio emission is most likely concentrated in the

compact core, without evidence for a jet-like structure even on milliarcsecond scales.

The physical processes that produce the emission from Seyfert galaxies are open to interpre-

tation. Gondek et al. (1996) report a study carried out on the average spectrum between 1 keV

and 500 keV for seven radio-quiet Sy1s detected by both the Extra-Solar X-ray Observatory (EX-

OSAT) and the Oriented Scintillation Spectrometer Experiment (OSSE) on board the Compton

γ-ray Observatory, and they present both thermal and nonthermal models of emission from such

sources. The average Seyfert 1 spectrum found by Gondek et al. (1996) is fitted using a power

law with exponential cut-off, with photon index Γ = 0.90+0.09
−0.07 and cut-off energy Ec = 510+4300

−250

keV. This average spectrum is consistent with thermal Comptonisation in optically thin, mildly

relativistic plasmas as discussed in Zdziarski et al. (1994), where such a model is applied to the Sy1

galaxy IC4329A (ESO 445-50). The large value found for Ec by Gondek et al. (1996) discounts

the possibility, proposed in the 1980s, that Sy1s could be modelled by Comptonisation in optically

thick plasmas as suggested by Miyoshi et al. (1988), for example. One proposal is that the hot

plasma in Seyfert nuclei forms mostly into a corona above the surface of the accretion disc and that

most of the energy dissipation occurs in the corona (Haardt & Maraschi, 1993). Using this model,

the plasma temperature can be calculated from the disc-corona energy balance, and this model

can successfully account for the Compton-reflection spectral components observed in radio-quiet

Sy1s. In this model, the hard corona emission reprocessed by the disc provides the soft ultraviolet
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seed photons for Compton upscattering into the hard spectrum.

A flaw in the model proposed in Haardt & Maraschi (1993), pointed out by Haardt et al. (1994)

would appear to rule out most of the dissipation occurring in the corona. In the model proposed

by Haardt and Maraschi (1993), the ultraviolet emission is attributed to reprocessing of the X-ray

and γ-ray emission directed towards the cold disc, which would result in the energy-scaled (EFE)

fluxes being of similar magnitude in both wavebands; however, this would appear not to be the

case. Data from Gondek et al. (1996) show that the ratio of the fluxes, (EFE(9 eV)/EFE(2 keV)),

in these two wavebands can vary widely between different Sy1s, and in four of the seven radio-

quiet Sy1s studied this ratio is > 10. To explain the large ratios observed, it is suggested that

the corona is patchy rather than being homogeneous and that coronal dissipation dominates the

disc dissipation only in the vicinity of an active region (Haardt et al., 1994). Another assumption

made in Haardt and Maraschi (1993) is that a pure e± pair corona could form a thin “slab”-type

geometry above the surface of the accretion disc; however, hydrostatic equilibrium would appear

to render this unfeasible. Further support for the idea of patchy coronae in Sy1s is provided by

X-ray light curves measured with EXOSAT, in which some Sy1s show behaviour consistent with

stochastic rather than deterministic chaos (Czerny and Lehto, 1997). These results imply that

X-ray emission is due to multiple active regions rather than originating from a single extended

source.

Further work on thermal Comptonisation models for both Sy1s and Sy2s was carried out by

Zdziarski et al. (2000), using data from OSSE. As in the study by Gondek et al. (1996), these

authors looked at the average spectra of the sources, 17 Sy1s and 10 Sy2s, at energies between 50

keV and 500 keV. In modelling the spectra of the Seyert galaxies, a spherical geometry was assumed,

due to a lack of data on the overall geometry of the sources, resulting in thermal Compton spectra

that are independent of the viewing angle. The corona was also assumed to be homogeneous. The

results supported thermal Comptonisation and reflection as a valid model for the emission from

the Seyfert galaxies observed, although a patchy corona as discussed previously cannot be ruled

out. The average spectra of Sy1s appear to be softer than Sy2 spectra at 50 keV to 500 keV

with photon indexes of ∼ 2.50 − 2.56 and ∼ 2.05 − 2.21 respectively. This difference in spectra

between the two classes of objects cannot be due to changes in the strength of Compton reflection

at different viewing angles for anything other than Sy2s with inclination i < 72.5◦, and it cannot

be accounted for in a slab geometry due to extra scattering of photons at large viewing angles. It

is also unlikely to be due to absorption by a dusty torus at the wavelengths studied, as only one of

the Sy2s included has a Thompson-thick absorber. This makes it impossible to rule out an intrinsic

difference between Sy1s and Sy2s a conclusion supported when data from Sy1.5s (considered to be
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systems viewed at angles between those of Sy1s and Sy2s) are included: these display spectra with

photon indexes lying between those seen in the other Seyfert galaxies. One suggestion is that a

complex structure in the torus around some Sy2s may lead to underestimation of the values of the

photon indices found. The results found for the Seyfert galaxies studied do not rule out patchy

coronae in the case of Seyfert galaxies with relatively soft spectra Γ ∼ 1.9, but to produce the

harder spectra observed requires the emitting region to be separated from the disc as suggested

by Svensson (1996). In the case of objects with harder spectra, thermal Comptonisation models

require that the emission is due to mildly relativistic blobs of plasma moving away from the disc

in order to allow agreement with observed values for Compton reflection.

In addition to the thermal Comptonisation models discussed, attempts have been made to

describe the X-ray and γ-ray emission from Seyfert galaxies using nonthermal models. In the

study by Gondek et al. (1996) discussed earlier, the average spectrum from the Sy1s studied can

be fitted using a number of different nonthermal models. The simplest model used consists of a

seed population of electrons following a power law of index ≈ 2.8 that singly scatter some soft

(ultraviolet) photons up to X-ray and γ-ray energies in the Thomson regime via inverse-Compton

interactions. This model gives a spectral index for the high-energy emission of Γ ≈ 1.8, but it does

not predict the cut-off seen in the data at ∼ 511 keV and so reproduces the spectra of the Seyfert

nuclei studied with less accuracy than the thermal models discussed earlier. A more complicated

model proposed by Zdziarski et al. (1990), attributes the X-ray spectral index between 1-30 keV

of α ≈ 0.7 to reprocessing of the high-energy radiation produced by nonthermal pair cascades (of

alpha ≈ 1.0) by cold material in the central parts of Seyfert nuclei.

Although radio data have been important in the study of Seyfert galaxies, as noted above,

Seyfert galaxies are generally radio-quiet. However, recent data suggest that the class of narrow-

line Seyfert 1s (NLSy1) are more likely to be radio-loud than the other Seyfert classes. NLSy1s

are Sy1 galaxies that display Balmer lines narrower than those seen in other Sy1s, with FWHM

< 2000 kms−1 (Osterbrock and Pogge, 1985), and they also display other extreme observational

properties such as relatively weak forbidden-line emission (Goodrich, 1989), strong permitted op-

tical and ultraviolet FeII lines (Boroson and Green, 1992), steep soft-X-ray spectra (Wang et al.,

1996), and rapid X-ray variability (Leighly, 1999). These galaxies are thought to be relatively young

AGN hosting less-massive black holes with high accretion rates, with bolometric-to-Eddington lu-

minosity ratios, Lbol/LEdd ∼ 1 (Boroson, 2002). The detection of radio-loud NLSy1s has changed

the previously held views of such sources, and now it is believed that rather than being radio-quiet,

such sources have a relatively low probability (∼ 7%) of being radio-loud (Komossa et al., 2006),

rather than 10%-15% for other broad-line AGN (Ivezić et al., 2002), and only a ∼2.5% chance of
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being “very” radio loud (with a radio loudness, defined as the radio-to-optical flux density ratio, of

R > 100). These radio-loud NLSy1s are generally compact sources and show steep radio spectra

(Komossa et al., 2006); however, the loudest such radio sources display characteristics normally

observed in blazars, and they harbour relativistic jets (Doi et al., 2007, Zhou et al., 2007, Yuan

et al., 2008). A comprehensive study of 23 radio-loud NLSy1s (with radio loudness > 100), docu-

mented in Yuan et al. (2008), found that in all cases the region of radio emission was very compact

and was unresolved on scales as small as several arcseconds. Some of the objects studied showed

unusual radio to X-ray properties (reminiscent of blazars) that had previously only been seen in

the most extreme radio-loud NLSy1s, and in six objects there is evidence for relativistic beaming.

Those objects with evidence for relativistic beaming displayed flat radio spectra, large-amplitude

flux and spectral variability, highly compact sources of radio emission, very high brightness temper-

atures, enhanced optical continuum emission, flat X-ray spectra, and blazar-like SEDs. In spite of

the ever-increasing numbers of successful detections of NLSy1s, the mechanisms driving the radio

properties are currently not clear; further work needs to be done to constrain the accretion rates,

black hole spins, host-galaxy properties and merger histories of such sources in order to more fully

understand their spectral properties (Zhou et al., 2006).

4.3 Detection of GeV γ-rays from Seyfert Galaxies

The blazar-like radio emission detected from Seyfert galaxies discussed previously and reported

in articles such as Brunthaler et al. (2005) and Lister et al. (2009), along with inferences from

multiwavelength data that there are some parallels between properties of Seyfert galaxies and

blazars (see Section 4.2), has made these objects high-priority targets for observation with the

Fermi -LAT. The first detection of GeV γ-rays from a Seyfert galaxy was the detection reported

in Abdo et al. (2009b), of PMN J0948+0022, a Seyfert 1 galaxy at a redshift of z = 0.585 which

displays narrow permitted lines at optical wavelengths. Previously, there was some evidence from

radio observations for the presence of a relativistic jet (Doi et al., 2006). The detection of a bright

γ-ray source associated with the Seyfert galaxy confirmed the existence of this jet and allowed

a complete SED of the source to be constructed (shown in Figure 4.3). The data showed that

PMN J0948+0022 displays characteristics normally associated with FSRQs, but with lower power

than the FSRQs detected by the Fermi -LAT to date, relatively small mass (1.5 × 108M�), and

high accretion rates (≈ 0.4LEdd). The detection of PMN J0948+0022, along with the previous

evidence of nonthermal radio emission in Seyfert galaxies led to Abdo et al. (2009c) conducting

a survey with the Fermi -LAT instrument of 29 radio-loud Seyfert 1 galaxies that display narrow
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Figure 4.1: SED of PMN J0948+0022, taken from Abdo et al. (2009b). Red symbols represent
data from Fermi -LAT (five months of data), Swift XRT and UVOT (2008 December 5), Effelsberg
(2009 January 24) and OVRO (average in the five months of LAT data, indicated with a red
diamond. Archival data are marked with green symbols. Radio data (1.4 to 15 GHz) is from
Bennett et al. (1986), Becker, White & Edwards (1991), Gregory & Condon (1991), White &
Becker (1992), Griffith et al. (1995), and Doi et al. (2006). Optical/IR data is from Monet et
al. (2003) for USNO B1, B, R, I filters and Cutri et al. (2003) for 2MASS J, H, K filters. The
modelling carried out by Abdo et al. (2009b) is shown on the figure with the contributions due
to each component shown as a series of curves; the dotted line indicates the contributions from
the infrared torus, the accretion disc, and the X-ray corona, the synchrotron emission, accounting
for self absorption, is shown with a small dashed line and labelled Syn while the SSC and EC
components are displayed with dashed and dot-dashed lines, labelled SSC and EC respectively.
The continuous line indicates the sum of all the contributions.

permitted lines. This survey detected GeV γ-rays from three objects, PKS 1502+036 (z = 0.409),

1H 0323+342 (z = 0.061) and PKS 2004447 (z = 0.24). The detection of four such sources at

GeV energies suggests that Seyfert 1 galaxies with narrow permitted lines form a new class of

γ-ray-emitting AGN.

The spectrum of PMN J0948+0022 shown in Figure 4.3 strongly resembles those of high-power

blazars, displaying two nonthermal emission peaks, one in the far infrared and the other at 40-

400MeV. A peak in the ultraviolet can be attributed to emission from the disc and is well defined

using data from the Ultraviolet and Optical Telescope (UVOT ) aboard Swift. A lower limit of

∼ 108 M� was found for the mass of the black hole (Abdo et al., 2009b). The jet power is estimated

by Abdo et al. (2009b) by modelling the source using the model of Ghisellini and Tavecchio (2009).

The jet is assumed to have conical geometry and most of the seed photons for inverse-Compton
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scattering originate from the broad-line region. In this case, the bulk kinetic power carried by

electrons in the jet is found to be Le = 5.0× 1044 erg s−1 and the Poynting flux LB = 1.8× 1044

erg s−1, significantly lower than the radiative power of Lrad = 2.0× 1045 erg s−1 seen in powerful

blazars (Celotti & Ghisellini, 2008). This implies that the jet also contains protons, as the power

available from the magnetic field and the electrons in the jet is too low to account for the radiative

luminosity. Assuming one proton per electron results in a calculated jet power due to protons

of Lp = 4.8 × 1046; however, if it is assumed that electron-positron pairs are present in the jet

then the assumed number of protons would be reduced and hence the calculated power due to

protons would also be reduced. Importantly, the systematic errors in the Fermi -LAT data do not

have a significant effect on the values calculated for the luminosity. The jet power found for PMN

J0948+0022 is relatively high and is comparable with that seen typically in powerful blazars (See

Figure 4.3) (Celotti & Ghisellini, 2008). The parameters used to find the SED of PMN J0948+0022

are not fully constrained and so the authors suggest that detection of a typical variability timescale

would allow discrimination between possible solutions.

The SEDs constructed by Abdo et al. (2009b) using the data available for the other three

Sy1s show clear similarities with those of blazars as in the case of PMN J0948+0022. The SED

of PKS 1502+036 suggests that the jet in the source carries comparable power to the jet in PMN

J0948+0022 and is therefore also in the range typical of high-power blazars. The remaining two

sources, PKS 2004-447 and 1H 0323+342, display significantly lower jet power than the other two

objects, around two orders of magnitude for power from protons within the jets, which places

them in the range typical of moderate power BL Lac objects. It is important to note, however,

that unlike PMN J0948+0022, the data available at all wavebands is relatively limited and non-

simultaneous. This leads to less tightly constrained parameters for PKS 1502+036, PKS 2004-447

and 1H 0323+342, and further multiwavelength studies will be required before this can be rectified.

The masses of the central black holes in these sources are typical of those in Seyfert galaxies at

∼ 107 M�, 1-2 orders of magnitude lower than those typical of blazars (Ghisellini et al., 2010). This

means that to display the luminosities observed they must have high accretion rates; in the cases

of PKS 1502+036 and 1H 0323+342, the accretion rates are up to 80% and 90% of the Eddington

luminosity, respectively. These values are the most extreme observed for any γ-ray-emitting AGN,

but are within usual bounds for such Sy1s.

In three of the Fermi -detected Sy1s, the host galaxy is definitely spiral; however, in the case

of 1H 0323+342 there are two possibilities. Observations of 1H 0323+342 with the Hubble Space

Telescope, discussed in Zhou et al. (2007), show the existence of spiral arms, but Antón et al.

(2008) using data collected with the ground-based Nordic Optical Telescope (NOT) suggest that
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Figure 4.2: Comparison of the SED of PMN J0948+0022 (orange squares) with the blazar sequence
from Figure 3.4; the black curve represents the SED of LBLs, the fuschia curve represents the SED
of HBLs and the other curves represent transitional objects between them. Additionally the SEDs
of three of the most powerful radiogalaxies, Cen A, M 87 and NGC 6251, are also marked as
labelled on the figure. Taken from Foschini et al. (2010).
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these structures are left over from a merger event that occurred sometime in the past 108 years.

The detection of γ-rays from AGN hosted in spiral galaxies supports the hypothesis that relativistic

jets can form independent of the nature of the host galaxy.

4.3.1 Seyfert 2 Galaxies Detected with the Fermi Space Telescope

The first reported detection of a Sy2 at Fermi -LAT energies was NGC 4945 which was noted

in the 11-month Fermi -LAT catalogue (Abdo et al., 2010a). This object is at a redshift of z =

0.001908, exhibits strong starburst activity, was previously detected at soft γ-ray energies by the

International Gamma-Ray Physics Laboratory (INTEGRAL) satellite (Petry et al., 2009), and

is one of the brightest hard X-ray AGN (Itoh et al., 2008). Based on observations with the

INTEGRAL (Beckmann et al., 2009) and Ginga (Iwasawa et al., 1993) satellites it is known to be

a Compton-thick AGN. NGC 4945 is detected by the Fermi -LAT at a significance of 9.2σ above

background; its high-energy spectrum is best described by a power law of index Γ = 2.31± 0.10.

Also in the 11-month Fermi -LAT catalogue, a source, 1FGL J0242.7+0007, was detected in

the region of NGC 1068 with no obvious counterpart in radio or lower energy γ-rays. Lenain et

al. (2010) analysed 1.6 years of data from the Fermi -LAT to investigate the origin of this emission

and concluded that 1FGL J0242+0007 is indeed associated with NGC 1068, with a significance of

8.4 σ. The γ-ray spectrum detected is consistent with a power law of index Γ = 2.31 ± 0.13. NGC

1068 is the archetypal Sy2 galaxy: located at z = 0.003786, it is one of the closest Sy2s, and it

is also one of the brightest. It exhibits both AGN and starburst activity in its central region; at

infrared wavelengths, a circumnuclear starburst region at ∼ 1 kpc dominates the SED. High-energy

observations of the core of NGC 1068 by Chandra have shown that the X-ray emission from the

source originates in the narrow-line emitting region from a primarily photoionised plasma (Ogle et

al., 2003).

As NGC 4945 and NGC 1068 both display starburst activity, it is important to determine

whether the γ-ray emission originates from this activity or from the hosted AGN. No conclusion

was reached as to the source of γ-ray emission in NGC 4945 in Abdo et al. (2010a). To determine

the origin of the γ-ray emission from both NGC 4945 and NGC 1068, Lenain et al. (2010) attempted

to use the available data to look for significant variability in the γ-ray emission, as such variability

would not be expected if the emission was due to starburst activity. No variability could be

detected, but this result was not statistically significant. The γ-ray luminosities of NGC 4945 and

NGC 1068 are 2.0× 1040 erg s−1 and 1.7 ×1041 erg s−1 respectively, which are comparable to the

luminosities at these energies of ≈ 1040 erg s−1 for the starburst galaxies NGC 253 and M82 (Abdo

et al., 2010b), suggesting that starburst activity could account for the luminosities observed. To
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investigate this possibility, the supernova rates (RSN) and total gas masses (Mgas) of NGC 1068 and

NGC 4945 were compared with those of NGC 253, M82, the Large Magellanic Cloud (LMC) and

the Milky Way, along with their infrared and radio luminosities. Models that attribute the emission

of γ-rays at these energies to starburst behaviour, and hence to cosmic ray processes, depend on

the product RSNMgas. The γ-ray luminosity and supernova rate of NGC 4945 are comparable to

those of NGC 253 and M82, so even though the object is a composite starburst/Sy2 galaxy its

high-energy emission could be explained by starburst activity alone. In the case of NGC 1068,

however, a more complex situation arises. The supernova rate in NGC 1068 (0.20 ± 0.08 yr−1)

is the same as in M82 (0.2 ± 0.1 yr−1) and NGC 253 (0.2 ± 0.1 yr−1), but its radio and γ-ray

luminosities are higher by a factor of ∼ 10. This would appear to support the hypothesis that the

γ-ray emission in NGC 1068 probably originates from AGN activity rather than from starburst

processes. Interestingly, when the product RSNMgas is plotted against γ-ray luminosity, Lγ , for the

previously mentioned galaxies, excluding NGC 1068, the relationship coefficient for a linear fit is as

high as 0.95, rejecting the null hypothesis that there is no relationship between star formation and

γ-ray luminosity in these objects with a probability of ∼ 99%. However, if NGC 1068 is included

the probability that the null hypothesis is invalid drops to ∼ 62%, supporting the argument that

γ-ray emission from this source is unlikely to originate from starburst activity (the plot is shown

in Figure 4.3.1). Radio maps of NGC 1068 further support the conclusion of nonthermal emission

within the object, as a structured jet can be detected on parsec and kiloparsec scales (Gallimore,

Baum & O’Dea, 2004). In contrast, NGC 4945 shows extended emission consistent with the optical

morphology of the edge-on galaxy, indicating likely starburst emission.

It is suggested by Lenain et al. (2010) that the high-energy emission from NGC 1068 could be

due to a large, mildly relativistic zone of the wind-like outflow, at a few tens of parsecs from the

core, which could emit GeV γ-rays by the external inverse-Compton process (EIC) discussed in

Begelman & Sikora (1987). In this scenario, the infrared photons from the disc and from stellar

emission are upscattered by high-energy electrons in the mildly relativistic zone of the outflow,

resulting in the high-energy emission observed. At the distance from the core proposed for the

relativistic zone, the infrared photon density is high enough to ensure significant emission while

not being so high as to present high optical opacity from pair production. The model presented in

Lenain et al. (2010) posits that the radio emission detected is due to synchrotron processes, while

the γ-rays detected by the Fermi -LAT are interpreted as EIC emission with seed photons provided

by thermal infrared emission from the accretion disc. The contribution from SSC processes is

shown to be negligible in the SED of NGC 1068. The model as described has some trouble

reproducing the hard X-ray spectrum observed with INTEGRAL, and it is proposed that this
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Figure 4.3: Plot of SN rate multiplied by total gas mass against -ray luminosity for NGC 1068,
NGC 4945, NGC 253, M 82, the LMC and the Milky Way. Taken from Lenain et al. (2010).

originates from EIC processes on another population of leptons within the hot plasma located in

the vicinity of the accretion disc. NGC 1068 is believed to have an accretion disc, because the

soft X-ray spectrum, as measured by instruments such as XMM-Newton is dominated by thermal

reflection emission (Kinkhabwala et al., 2002). Modelling the synchrotron and SSC emission from

this component leads to the conclusion that the emission is negligible compared with that produced

in the component responsible for the high-energy γ-ray emission. An alternative model (Lenain

et al. 2010) posits that the hard X-ray emission observed with INTEGRAL and the high-energy

γ-ray emission detected with Fermi originate from the same spacial component. This requires

that the overall high-energy part of the SED be due to EIC processes from the same population of

leptons and this would be tightly constrained by the available data; however, the particle energy

distribution that results is unable to account for the SED in the radio domain.

The detection of both Sy1s and Sy2s at such high energies is of great interest to astronomers

working in the TeV regime. The SEDs produced by Foschini et al. (2009) for the Fermi -detected

Sy1s imply that two of the objects, PKS 1502+036 and 1H 0323+342, may emit at TeV energies,

although the expected flux is relatively low. PKS 1502+036 is not a particularly promising prospect

as it is situated at a redshift of z = 0.49, so any TeV emission is very likely to be strongly attenuated

by the EBL. 1H 0323+342, however, is situated at a much lower redshift of z = 0.061 and so there

is a much better chance of any very high energy emission being detectable.



4.4. Studying Seyfert Galaxies with the H.E.S.S. Telescopes 101

4.4 Studying Seyfert Galaxies with the H.E.S.S. Telescopes

The detection of M87 in very high energy γ-rays, as discussed in Section 3.4.1, has led to the

development of many different models to explain emission from such misaligned sources, but due

to a lack of available dat, it has proved difficult to constrain many of the variables required by such

complicated models (see Chapter 5). Due to the large angle of incidence between the line of sight

and the jet in M87, these models must have a mechanism other than pure Doppler boosting to

explain how radiation is emitted at energies in the TeV range, leading to the possibility that other

misaligned AGN could also be sources of very high energy γ-rays. Detection of further misaligned

AGN could be used to constrain some of the parameters in the proposed models and would open

up a new avenue of investigation for IACTs. The recent detection of both Sy1s and a Sy2 at

Fermi -LAT energies, discussed in Section 4.3, and the resulting predictions for TeV emission,

would appear support this conclusion.

The study of Seyfert galaxies using the H.E.S.S. array, described in this chapter was ini-

tially carried out between 2008 and 2009, before the launch of the Fermi satellite, with fur-

ther work carried out in October 2010. This means that no data from the Fermi satellite

were used in the selection process. To find a list of Seyfert galaxies that might emit VHE

γ-rays, a catalogue of sources detected at lower γ-ray energies with the INTEGRAL satellite

was used (http://hea.iki.rssi.ru/rsdc/catalog/index.php?type=IGR&status=current accessed dur-

ing August 2008). This catalogue contained data for 138 AGN which were then sorted by their

location to determine those observable with the H.E.S.S. telescopes, which can observe objects

with declinations between ∼ +20◦ and ∼ −65◦. This left a total of 92 potential sources to be

studied. The identifiers of the remaining AGN were then used to determine the type and redshift

of each using the SIMBAD astronomical database (http://simbad.u-strasbg.fr/simbad/ accessed

throughout the study), and any with redshifts above 0.3 were excluded as any VHE emission is

likely to be heavily attenuated by the EBL (see Section 3.5). The R.A. and Dec. of these objects

were then used to determine those that had appeared in the field of view of the H.E.S.S. telescopes

during previous observations (within ∼ 2◦ of the centre of the telescopes), and any Seyfert galaxies

for which data were unavailable were disregarded. Finally, the data were checked to determine

whether the available telescope runs had been affected by adverse weather conditions or hardware

faults, and runs failing these checks were omitted. This left a total of 10 Seyfert galaxies (6 Sy1,

1 Sy1.5 and 2 Sy2s), 1 Unclassified AGN (believed to be of type 2) and a quasar with Seyfert-like

properties.

To increase the size of the sample the XMM-Newton X-ray catalogue was consulted using
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Object R.A. (J2000.0) Dec. (J2000.0) Class Catalogue Livetime (h)
Mrk 50 12h 23m 24.1s +02◦ 40’ 44.4” Sy1 INTEGRAL 16.6
3C273 12h 29m 06.4s +02◦ 03’ 08.6” Quasar INTEGRAL 17.1
4U 1344-60 13h 47m 36.0s -60◦ 37’ 03.8” Sy1.5 INTEGRAL 11.5
Circinus Galaxy 14h 13m 09.9s -65◦ 20’ 20.47” Sy2 INTEGRAL 3.2
GRS 1734-292 17h 37m 24.3s -29◦ 10’ 48.0” Sy1 INTEGRAL 149.3
IGR J14471-6319 14h 47m 14.9s -63◦ 17’ 19.2” Sy2 INTEGRAL 41.7
IGR J17204-3554 17h 20m 21.8s -35◦ 52’ 48.2” Uncl. AGN INTEGRAL 30.8
IGR J17488-2353 17h 48m 55.1s -32◦ 54’ 52.1” Sy1 INTEGRAL 7.2
IGR J22367-1231 22h 36m 46.5s -12◦ 32’ 42.63” Sy1 INTEGRAL 3.6
NGC 1068 02h 42m 40.7s -00◦ 00’ 47.8” Sy2 INTEGRAL 14.8
NGC 1365 03h 33m 36.3s -36◦ 08’ 27.8” Sy1 INTEGRAL 14.5
NGC 7469 23h 03m 15.7s +08◦ 52’ 25.3” Sy1 INTEGRAL 6.9
Mrk 1014 01h 59m 50.3s +00◦ 23’ 41.0” Sy1 XMM-Newton 7.4
Mrk 1501 00h 10m 31.0s +10◦ 58’ 29.5” Sy1 XMM-Newton 9.4
Mrk 573 01h 43m 57.8s +02◦ 20’ 59.7” Sy2 XMM-Newton 21.1
3C 120 04h 33m 11.1s +05◦ 21’ 15.6” Sy1 XMM-Newton 4.8

Table 4.1: List of AGN selected for study, including position (taken from the SIMBAD Astronomi-
cal Database), classification of the object, the catalogue from which the object was initially found,
and the amount of H.E.S.S. data available.

the online facility Xcat (http://xcatdb.unistra.fr/2xmmidr3/catentries accessed during November

2008). This produced a list of ∼ 200 possible sources; however a large percentage of these were

in close proximity to one another. The positions of the X-ray sources from the XMM-Newton

catalogue were then cross correlated with the positions of known Seyfert galaxies using the SIMBAD

astronomical database. It was found that many of the X-ray sources were associated with the same

Seyfert galaxy and that, in some cases, the X-ray sources from the catalogue were further from the

nearest Seyfert galaxy than the satellite’s point-spread function of ∼ 4◦. Excluding these cases left

34 possible sources for four of which H.E.S.S. data were available (three Sy1s and one Sy2). The

full set of AGN studied is listed in Table 4.1. For most of the objects studied this was the first

time they had been investigated using VHE data.

The analysis of the objects was carried out using both the ring-background and reflected-

background methods discussed in Section 2.5. Upper limits at the 99% confidence level were then

calculated for each object above the threshold for the observations using the method described

in Section 2.7, assuming a spectral shape similar to that of M87 with a spectral index Γ ≈ 2.2

(Aharonian et al., 2006d). The runs analysed for each object are listed in Appendix A.
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4.5 Discussion of Individual Sources

4.5.1 3C273

3C273 is one of only two objects in this study not classified as a Seyfert galaxy; however, it does

display a number of Seyfert-like properties, including broad emission lines and the blue bump

typical of Seyfert galaxies, making it an interesting object to study. The object, located in the

constellation Virgo, is a flat-spectrum radio quasar, and is the nearest such object, with a redshift

of z = 0.158. Its SED shows the twin humps typical of blazars (Pacciani et al., 2009). The

object was first detected in γ-rays at energies > 100 MeV by the COS-B satellite in July 1976

(Swanenburg et al., 1978), and again in June 1978 (Bignami et al., 1981). During the operation

of EGRET, the source was observed on many occasions, although it was not always detected; this

suggested variability at high energies, later confirmed by the detection of a flux variation from

(22 ± 5) × 10−8 photons cm−2 s−1 to (56 ± 12) × 10−8 photons cm−2 s−1, for E > 100 MeV,

during the campaign of October-November 1993 (von Montigny et al., 1997). Further observations

of variability have shown correlation between flux variation at X-ray energies (using data from

RXTE/PCA) and in the near infrared (with data taken by the UKIRT telescope), with X-ray lag

< 1 day (Lawson et al., 1999).

Data collected with the H.E.S.S. telescopes between April 13th 2004 and May 10th 2007, made

up of 44 runs with a total livetime of approximately 17 hours, were analysed. No significant

detection was found using either the ring-background model, which returned a significance of only

0.98 σ above background variations, or the reflected-background, which returned a significance of

0.99 σ above background. Both methods of analysing the background are in agreement on the

low significance observed in the vicinity of the object. The significance skymap (Figure 4.4) shows

an area close to 3C273 with a significance of ≈ 3σ; however, this is most likely an artifact of the

analysis of the background as there are a number of other areas in the plot of similar significance.

Since the area of higher significance is extended, even if it does represent a very marginal detection

it is unlikely to be associated with 3C273 which would be expected to resemble a point source due

to the extragalactic nature of the object. An upper limit for 3C273 of 4.5×10−12 photons cm−2 s−1

was calculated at a confidence limit of 99% with a threshold energy of 0.26 TeV. Additionally,

the number of pixels of each significance (with a bin size of 0.05) is shown in Figure 4.5, plotted

against significance and normalised such that the maximum number of pixels in a single bin is 1.

This shows a good fit to a Gaussian function with a mean of 0, suggesting that the background

is randomly distributed as would be expected, explaining the negative significances seen in Figure

4.4.
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Figure 4.4: A γ-ray sky significance map of the area around 3C273. The right hand bar corresponds
to measured significance above background in standard deviation units. The central white circle
indicates the position of the object and the size of the PSF of the H.E.S.S. array, while the 2 outer
circles indicate the area used during analysis of the background by the ring background method.

Figure 4.5: The number of pixels of each significance (with a bin size of 0.05) plotted against
significance, the black line, showing a mean significance of 0.12, normalised such that the maximum
number of pixels in a single bin is 1. The red shaded region represents a Gaussian function with a
mean of 0.
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4.5.2 Mrk 50

Mrk 50 is a Sy1 nucleus with a redshift z = 0.023196 (Paturel et al., 2002) located outside the

Galactic plane. It is hosted in an elliptical galaxy with an extended halo (Adams, 1977). Despite

being detected by the INTEGRAL satellite (Krivonos et al., 2007) there are no high energy studies

of the object in the literature.

The H.E.S.S. data available for Mrk 50 were collected between 13th April 2004 and 10th May

2007, with just over 16 hours of usable livetime. The object was not detected using either the

ring-background model or the reflected-background model; these analyses returned significances

above background of 0.345 σ and -0.121 σ, respectively. The object observed to the northeast of

Mrk 50 (See Figure 4.6) is a H.E.S.S. unidentified source; judging by the observed extension, it is

probably Galactic. It is unlikely that this object will have had any effect on the calculation of the

background via the ring background method as it is outside the ring used. An upper limit for Mrk

50 of 4.1× 10−12 photons cm−2 s−1 was calculated, at a confidence limit of 99%.

4.5.3 4U 1344-60

4U1344-60, believed to be a Seyfert 1.5 galaxy, is situated at a redshift of z = 0.012 ± 0.001

(Piconcelli et al., 2006). The object was first detected with the Uhuru X-ray Observatory while

scanning the Galactic plane (Forman et al., 1978). The first accurate position of the object was

reported by Warwick et al. (1988) using EXOSAT data. It was first detected above 10 keV in the

2nd IBIS survey (Bird et al., 2006). Owing to the object’s position deep in the Galactic plane, it is

relatively difficult to observe across a number of wavelengths (especially from the optical through

to soft X-rays), but it was eventually optically identified as a type 1 Seyfert Galaxy by Masetti et

al. (2006a). The X-ray spectral properties of the object were first studied in detail using data from

XMM-Newton, and the source is included in the first INTEGRAL AGN catalogue (Beckmann et

al., 2005). Piconcelli et al. (2006) found that 4U1344 displays a heavily absorbed X-ray spectrum

even after correcting for the large Galactic extinction.

The H.E.S.S. data analysed for 4U 1334-60 were collected between 11th April 2005 and 18th

May 2010, and totalled just over 11 hours of good quality livetime. Despite the object’s position

behind the Galactic plane, no H.E.S.S. sources are visible on the significance map (see Figure

4.7). Both background methods produced comparable significances, the ring-background model

returning a significance of -0.11 σ above background and the reflected-background model returning

-0.01 σ above background. The negative significance seen is likely due to fluctuations in the

background. The spatial variation in the detected background can be seen in the significance map
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Figure 4.6: A γ-ray sky significance map of the area around MRK 50. The right hand bar corre-
sponds to measured significance above background in standard deviation units. The central white
circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while the
2 outer circles indicate the area used during analysis of the background by the ring background
method.
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Figure 4.7: A γ-ray sky significance map of the area around 4U 1334-60. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.

by the relatively large number of areas with significance & 2σ. An upper limit for 4U 1334-60 of

2.6× 10−12 photons cm−2 s−1 was calculated at a confidence level of 99% with a threshold energy

of 0.51 TeV.

4.5.4 The Circinus Galaxy

The Circinus Galaxy is a large, nearby spiral galaxy with a redshift of z = 0.001421 (Paturel et

al., 2002), situated behind the Galactic Centre where the high stellar density and dust extinction

make it difficult to study at optical wavelengths. The object is at an inclination of i = 64◦

(de Vaucouleurs et al., 1991). At its centre, it harbours a Seyfert 2 nucleus surrounded by a

circumnuclear starburst region. X-ray spectra of the nucleus show a hard spectrum and high

equivalent width Fe Kα emission, characteristic of Compton reflection from cold gas illuminated

by a power-law continuum (Yang et al., 2009). This, combined with the detection of a Compton

shoulder in Chandra observations (Bianchi et al., 2002) confirmed by XMM-Newton (Molendi et

al., 2003), leads to the conclusion that Compton-thick matter is present at the centre of the object.
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Compton-thick AGN provide a significant component of the hard cosmic X-ray background, due

to their hard spectra which peak at 30-40 keV and drop off at higher energies (Setti & Woltjer,

1989; Madau et al. 1994). The Circinus Galaxy is the third-brightest Compton-thick AGN that

can be studied in detail.

There are very little usable H.E.S.S. data available for the Circinus Galaxy, with only just

over 3 hours of livetime available for the object, other observations taken of the region had to be

discounted due to adverse weather conditions or hardware problems with the telescope. The data

were collected between 15th May 2006 and 29th March 2007. Both background models report a

lack of detection, as would be expected considering the very short livetime and the likely weak

nature of any VHE γ-ray emission from the object, with the ring-background model reporting

a significance of 0.08 σ above background (see Figure 4.8) and the reflected-background model

reporting 0.50 σ above background. The slight discrepancy between the two methods may be

due to a higher γ-ray background within the ring used by the ring background method than is

present with the reflected background approach. To the northwest of the Circinus Galaxy is a

region of relatively high significance (≈ 4σ) which is not associated with any known VHE γ-ray

source; however there are large background fluctuations across the entire region, probably due to

the position of the Circinus Galaxy close to the Galactic plane and this high significance region

is likely an artifact of these background fluctuations. An upper limit for the Circinus Galaxy of

2.1× 10−11 photons cm−2 s−1 was calculated at a confidence level of 99% with a threshold energy

of 0.68 TeV.

4.5.5 GRS 1734-292

GRS 1734-292 is a Sy1 nucleus at a redshift of z = 0.0214 and is located 1.8◦ from the Galactic

centre (Sazonov et al., 2004). It was first detected in 1990 with the Russian GRANAT X-Ray/γ-

ray satellite (Pavlinsky et al., 1992). It was initially believed to be a Galactic X-ray binary, and

an inferred X-ray luminosity of ∼ 1036 erg s−1 was calculated under this assumption. Subsequent

optical observations (Mart́ı et al., 1998) showed very strong broad emission lines, identifying the

object as the nucleus of a Sy1 galaxy. Thus far, the host galaxy has not been directly detected

at optical wavelengths owing to the high (≈ 6 magnitude) visual absorption along the line of

sight through the Galactic plane. Since the discovery of the nature of GRS 1734-292, the X-ray

luminosity has been calculated to be ∼ 1044 erg s−1 (Sazonov et al., 2004), so it is one of the five

or so most X-ray luminous AGN within 100 Mpc (Sazonov et al., 2004). Evidence of high energy

emission from the object was provided by the detection of a potentially associated source with

EGRET (Hartman et al., 1999). Owing to the high density of bright sources in the vicinity of the
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Figure 4.8: A γ-ray sky significance map of the area around the Circinus Galaxy. The right
hand bar corresponds to measured significance above background in standard deviation units. The
central white circle indicates the position of the object and the size of the PSF of the H.E.S.S.
array, while the 2 outer circles indicate the area used during analysis of the background by the
ring background method.
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object, spectroscopy of GRS 1734-292 could not be carried out until the successful detection with

the hard X-ray imager IBIS aboard the INTEGRAL satellite, when Sazonov et al. (2004) found

that the spectrum is similar to that of other Seyfert galaxies.

There is a positional coincidence of GRS 1734-292 with the EGRET γ-ray source 3EG J17362908,

a BL Lac object; however it is unlikely that it is connected with this object. There is a high prob-

ability (∼ 50%) of finding an INTEGRAL source within the large error box of 3EG J1736-2908

(Sazonov et al., 2004), and the optical emission from GRS 1734-292 is strongly dominated by the

broad lines typical of a Sy1 nucleus, which contrasts strongly with what is usually seen in a typical

BL Lac where it is very difficult to discern any emission lines against the strong continuum. In

addition, the radio flux observed from GRS 1734-292 is three orders of magnitude lower than what

would be expected from the BL Lac object 3EG J1736-2908.

A large amount of H.E.S.S. data is currently available for GRS 1734-292, comprising over 149

hours between 29th March 2004 and 23rd April 2005. At the eastern edge of the significance

map (see Figure 4.9) HESS J1745-303 can be seen with a significance of ∼ 7σ above background,

while there is no evidence of a detection at the position of GRS 1734-292. The background

models both return negative significances; the ring-background model returns a significance of

−0.39 σ above background and the reflected-background model returns a significance of −0.96 σ

above background. The negative significance and the discrepancy seen between the significances

produced using the two models can be attributed to GRS 1734-292’s proximity to the Galactic

centre, resulting in a noisy background that is difficult to estimate. An upper limit for GRS 1734-

292 of 1.4× 10−12 photons cm−2 s−1 was calculated at a confidence level of 99% with a threshold

energy of 0.22 TeV.

4.5.6 IGR J14471-6319

IGR J14471-6319 is a Seyfert 2 nucleus located behind the Galactic plane at a redshift of z = 0.038

(Malizia et al., 2007). Owing to its position in the Galactic plane, the object has not been studied

in great detail. The INTEGRAL source is coincident with multiple soft X-ray sources detected

by the ROSAT satellite; however, optical spectroscopy shows these to be ordinary Galactic stars

and so unrelated to the INTEGRAL source (Masetti et al., 2006b). The object displays a photon

index of Γ = 1.7+1.04
−1.03 between 2 keV and 10 keV (Malizia et al., 2007).

Data available for IGR J14471-6319 have been collected throughout the life of the H.E.S.S.

telescopes (between 25th April 2004 and 16th June 2010), with just over 41 hours of good quality

data collected in total. The analysis fails to reveal a detection of the object, with a significance

of −0.19 σ above background being returned via the ring-background method and −1.11 σ above
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Figure 4.9: A γ-ray sky significance map of the area around GRS 1734-292. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.
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Figure 4.10: A γ-ray sky significance map of the area around IGR J14471-6319. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.

background calculated using the reflected-background method. Slightly to the northwest of IGR

J14471-6319 is the shell-type supernova remnant RCW 86, at a position of RA 14h 42m 42.96s Dec

-62◦ 26’ 41.6” (See Figure 4.10), which was detected in very high energy γ-rays using data collected

by the H.E.S.S. telescopes and reported in Aharonian et al. (2009d). The presence of RCW 86 in

the field of view probably accounts for the discrepancy between the significances calculated by the

two methods. An upper limit for IGR J14471-6319 of 3.2×10−12 photons cm−2 s−1 was calculated

at a confidence level of 99% with a threshold energy of 0.46 TeV.

4.5.7 IGR J17204-3554

The INTEGRAL source IGR J17204-3554 is an unclassified type 2 AGN (Bassani et al., 2005)

believed to be situated at a redshift of only z ∼ 0.000021. The object is situated behind the

Galactic emission nebula NGC 6334, which has a complicated structure with a number of separated

and localised star-formation sites established by radio and infrared observations (Bykov et al.,

2006). The first hint of an obscured AGN behind NGC 6334 was the detection of the radio source,
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Figure 4.11: A γ-ray sky significance map of the area around IGR J17204-3554. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.

NGC 6334B which is coincident with the INTEGRAL source. It was suggested by Moran et al.

(1990) that NGC 6334B could be a background extragalactic source. The broadband spectral

characteristics of NGC 6334B are consistent with those observed in obscured accreting sources

associated with AGN, and it shows a nonthermal spectrum up to at least 100 keV (Bykov et al.,

2006).

Observations of IGR J17204-3554 with the H.E.S.S. array were conducted between 22nd May

2004 and 20th August 2005 during which ∼30 hours of usable data was collected. Analysis of

the data showed no evidence for detection of the object; the significance returned using the ring-

background method is 0.49 σ above background, while that returned using the reflected-background

method is 0.73 σ above background. The ≈ 5σ region southeast of IGR J17204-3554 in Figure

4.11 is HESS J1741-302, a H.E.S.S. unidentified source that may be associated with PSR B1737-30

(Tibolla et al., 2009). An upper limit for IGR J17204-3554 of 5.5× 10−13 photons cm−2 s−1 was

calculated at a confidence level of 99% with a threshold energy of 0.24 TeV.
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4.5.8 IGR J17488-3253

The first detection of IGR J17488-3253 was made with ROSAT during the ROSAT all-sky sur-

vey performed in the period July 1990 to February 1991 (Voges, 1992), however the positional

uncertainty on the source made it difficult to pinpoint a possible counterpart. The object was

also observed with the HRI instrument aboard ROSAT, which was able to localise the object with

an uncertainty of a few arcseconds; within this error box, however, no optical, radio or infrared

counterpart was found (Stephen et al., 2005). Later observations of the region with INTEGRAL

detected a high energy X-ray source associated with the ROSAT source (Stephen et al., 2005).

The identification of the source was reported by Masetti et al. (2006b), who observed the source

spectroscopically with the CTIO optical telescope of Cerro Tololo in Chile. The object was found

to be a Sy 1, although a more accurate identification was impossible due to the low quality of the

available spectrum. At energies between 17 keV and 60 keV, the flux detected with INTEGRAL

is 1.06 ± 0.05 mCrab (Krivonos et al., 2007).

The H.E.S.S. data for the area around IGR J17488-3253 were collected between 14th June 2004

and 29th May 2009, and a total of ∼7.5 hours of usable livetime was available. The analysis found

no evidence of a detection using either the ring-background model, which returned a significance

of −0.43 σ above background (see Figure 4.12), or the reflected-background model, which returned

a significance of −1.2 σ above background. The negative significances returned are likely due to

background fluctuations. An upper limit for IGR J17488-3253 of 9.1 × 10−12 photons cm−2 s−1

was calculated at a confidence level of 99% with a threshold energy of 0.24 TeV.

4.5.9 IGR J22367-1231

IGR J22367-1231 is an INTEGRAL source associated with the Seyfert 1 galaxy Mrk 915, which

is situated behind the Galactic plane at a redshift of z = 0.024043 situated behind the Galactic

plane. Mrk 915 has a high inclination with respect to the line of sight, i ∼ 80◦ and has a companion

galaxy 126” to the southeast (Keel, 1996). Exact classification of the object has been difficult. It

has been suggested that it should be classified as a Seyfert 1.5 by Bennert et al. (2006), as during

optical observations carried out in 2004 they detected easily recognised broad and superimposed

narrow components of the Hα and Hβ spectral lines; however, CTIO spectra taken in June 2008

and reported by Trippe et al. (2010) show it to be a type 1.9 Seyfert galaxy. This is further

complicated by a report by Goodrich (1995) who detected type variability between 1984 and 1993

during which period the object went from Seyfert 1.5 to Seyfert 1.9.

H.E.S.S. data on IGR J22367-1231 were collected between 21st July 2004 and 2nd July 2006,



4.5. Discussion of Individual Sources 115

Figure 4.12: A γ-ray sky significance map of the area around IGR J17488-3253. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.
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Figure 4.13: A γ-ray sky significance map of the area around IGR J22637-1231. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.

although much of the available data were unusable due to poor weather conditions or technical

problems with the telescopes, leaving only 3.5 hours of livetime. There is no evidence of a detection

from the object, with the ring-background model returning a significance of −0.41 σ above back-

ground and the reflected-background model returning a significance of −0.70 σ above background

(See Figure 4.13). The negative significances returned are probably due to the low statistics. An

upper limit for IGR J22367-1231 of 5.8× 10−12 photons cm−2 s−1 was calculated at a confidence

level of 99% with a threshold energy of 0.24 TeV.

4.5.10 NGC 1068

NGC 1068 is the brightest known Seyfert 2 galaxy and is one of the oft-quoted “archetypes” of

the class. It is located at a distance of z = 0.003786, making it also the closest Seyfert 2. As

with all Seyfert 2 galaxies, it harbours an obscured Seyfert 1 core, as reported by Antonucci &

Miller (1985) who used the data collected via spectropolarimetry to argue for the unification of

AGN. Due to the object’s relative proximity, the extension of the host galaxy is highly visible at
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optical wavelengths. The centre of the object displays activity related to both starburst and AGN

phenomena (eg. Lester et al., 1987; Jaffe et al., 2004), while the central nucleus is surrounded by

a dusty torus that dominates the soft X-ray emission by reflection of radiation from the central

nucleus. The starburst region is located at a distance of ∼ 1 kpc from the core and dominates

the infrared emission (Thronson et al., 1989). Caproni et al. (2006) studied the morphology of

the inner warped disc, coming to the conclusion that the 43 GHz central radio component is most

likely dominated by thermal emission from the hot inner region of the obscuring torus; however,

an earlier study by Gallimore et al. (2004), found evidence that the northeast radio component

could be dominated by synchrotron emission, a view supported by more recent results from Hönig,

Prieto & Beckert (2008), who suggested that the radio emission from the core could be dominated

by synchrotron or free-free emission. At X-ray energies, data on NGC 1068 collected with the

Chandra satellite show the existence of a hard power-law X-ray source, usually associated with

Seyfert 1 galaxies (Young & Wilson, 2001), furthering the case for unification of the two types.

High resolution X-ray studies of the object with Chandra have shown a large number of high energy

emitting structures. At the centre of NGC 1068 is a very bright X-ray source coincident with the

brightest radio and optical emission and about 550 pc northeast of this is an extended source of

X-rays. This extended source of X-rays shows a large-scale structure reaching at least 6.6 kpc to

the northeast and southeast including X-ray emission from the spiral arms and numerous point

sources (Young et al., 2001); see Figure 4.14. It was discovered that the emission to the northeast

of the nucleus is absorbed only by the Galactic column and thus is on the near side of the disc,

while the southwestern emission region is more heavily obscured, suggesting that its origin is either

inside or behind the disc.

Recently, a Fermi -LAT source, 1FGLJ0242+0007, was detected in the region of NGC 1068.

Until Lenain et al. (2010) the Fermi -LAT source had no proposed counterpart in radio nor γ-rays.

Lenain et al. (2010) concluded that this source is associated with NGC 1068 with a significance of

8.4σ (see Section 4.3.1). As has been mentioned, NGC 1068 harbours a starburst region, and such

regions have also been detected in other objects at Fermi energies (Abdo et al, 2010b); however, the

GeV luminosity of the object reported in Lenain et al. (2010) is far higher than that seen in M82

and NGC 253, in which the high-energy emission is dominated by starburst activity, suggesting a

different explanation for the origin of such emission in NGC 1068.

Data available for analysis for NGC 1068 were collected by the H.E.S.S. array between the

11th October 2004 and the 6th September 2008, during which period ∼ 15 hours of usable data

were collected. The significances returned by both background models are consistent with a lack

of detection. The ring-background model returned a significance of 1.3 σ above background and
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Figure 4.14: Superposition of the circumnuclear distribution of X-rays (gray scale) on a VLA 6 cm
radio map (contours) for NGC 1068 with resolution 0.38” × 0.38”. The cross marks the position
of radio source S1, which is believed to coincide with the nucleus . Contours are plotted at 0.0005,
0.001, 0.002, 0.004, 0.008, 0.032, 0.128, and 0.256 Jy beam−1. The gray scale is proportional to
the logarithm of the X-ray intensity and ranges between log(counts pixel−1) = 0 (black) and 3.0
(white). Taken from Young & Wilson (2001).
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Figure 4.15: A γ-ray sky significance map of the area around NGC 1068. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.

the reflected-background model returned a significance of 0.84 σ above background, consistent

with one another. Southwest of the position of NGC1068, an area of relatively high background is

observed (∼ 3σ), although this is consistent with background fluctuations (Figure 4.15). An upper

limit for NGC 1068 of 5.1 × 10−12 photons cm−2 s−1 was calculated at a confidence level of 99%

with a threshold energy of 0.26 TeV.

4.5.11 NGC 1365

NGC 1365 is a relatively nearby barred spiral galaxy at a redshift of z = 0.0055 (Risaliti et al.,

2009) that harbours a Seyfert 1 nucleus at its core. Attempts to classify the Seyfert type have

not been conclusive. Early results suggested that it could be a Seyfert 2 (Turner et al., 1993),

but since then it has been suggested that it is more likely either a Seyfert 1.5 (Hjelm & Lindblad,

1996) or a Seyfert 1.8 (Risaliti et al., 2009). This difficulty in classification is due to the relatively

complex multiwavelength properties of the object, many of which are unusual. NGC 1365 is at an

inclination of 40◦ (Wang et al., 2009) and has a nuclear radio jet extending 5” southeast along the



4.5. Discussion of Individual Sources 120

galaxy’s minor axis (Sandqvist et al., 1995). Around the nucleus of the galaxy is a star-forming

ring with a diameter of ∼ 1.3 kpc (Kristen et al., 1997).

At optical wavelengths, the degree of excitation of narrow emission lines is lower in the core

region than in the extranuclear regions (Veileux et al., 2003); this observation cannot easily be

explained as strong core absorption due to the presence of a broad component detectable in the

Balmer lines (Schulz et al., 1999), usually indicative of a Seyfert 1.5 galaxy. X-ray observations

with ROSAT, reported in Komossa & Schulz (1998), found a relatively low X-ray luminosity from

the source, far lower than that expected from the infrared emission; this suggests either that

the X-ray emission is almost completely obscured or that the infrared must originate elsewhere,

possibly from the star-formation regions near the core, although in the latter case, the Hα line

from the starburst region must be largely obscured. X-ray observations of the nucleus of NGC

1365 have revealed highly variable emission, with the object showing several spectral changes from

Compton-thin to reflection-dominated states.

X-ray observations of the object have detected a compact central source that displays high

absorption variability, with the optical depth varying from NH ∼ 1023 cm−2 to NH > 1024 (Risaliti

et al., 2007). This variability is suggested to be due to motion of a Compton-thick cloud crossing

in front of the central source, at a distance comparable with that of the broad-line region (≤ 1016

cm). X-ray emission has been detected using data from Chandra coincident with the position of

the radio jet. This emission has been suggested as a candidate X-ray counterpart for the radio jet

by Wang et al. (2009), although they remark that the X-ray spectrum observed is unusually soft

for a radio jet and is best fitted by a model involving absorbed power-law emission with Γ ∼ 3.9.

Wang et al. (2009) theorise that the X-ray emission and radio jet are connected and likely represent

synchrotron radiation from the same population of electrons. If this is the case, then the steep

X-ray spectrum can be explained as the tail of the spectral distribution of the synchrotron emission.

The H.E.S.S. data analysed for NGC1365 were collected between 12th August 2005 and 12th

October 2007. Over this period, ∼ 14.5 hours of usable data were collected. No evidence of a

detection was found, with the ring-background model returning a significance of −1.1 σ above

background and the reflected-background method returning a significance of −0.78 σ above back-

ground. The negative significances are consistent with background fluctuations, as is the relatively

high significance (∼ 3 σ) to the northwest of the position of NGC1365 (see Figure 4.16). An upper

limit for NGC1365 of 2.8 × 10−12 photons cm−2 s−1 was calculated at a confidence level of 99%

with a threshold energy of 0.29 TeV.
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Figure 4.16: A γ-ray sky significance map of the area around NGC 1365. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.
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4.5.12 NGC 7469

NGC 7469 is a bright Seyfert 1 galaxy, with an angle of inclination θ = 18.2◦ (Nandra et al., 2000),

situated relatively nearby at a redshift of z = 0.0164 (Artamonov et al., 2010). The host galaxy is

a barred spiral of classification Sba. In most cases of ultraviolet and X-ray emission from Seyfert

galaxies, a strong correlation is observed; however, for NGC 7469 this is not the case. During a

∼ 1 month simultaneous IUE and RXTE monitoring campaign on the object performed in 1996,

the correlation between ultraviolet and 1-10 keV X-ray fluxes was poor (Nandra et al., 1998).

Strong, short-timescale variations were also detected at X-ray frequencies but not in ultraviolet.

Correlation was detected, however, between the X-ray spectral index and the ultraviolet flux, with

zero lag time. This was interpreted by the authors as strong support for the X-rays being produced

by Compton upscattering of the ultraviolet photons. In the framework proposed, it is assumed

that the observed variability of the ultraviolet flux is expected to directly modify the cooling rate

of the corona, thus producing the observed X-ray spectral changes.

The H.E.S.S. data analysed for NGC 7469 were collected between 16th July 2004 and 23rd

October 2006. Of the data available for NGC 7469, only 7 hours were of acceptable quality for

analysis. No detection was found using either the ring-background method, which returned a

significance of −2.5 σ above background, or the reflected-background method, which returned a

significance of −2.4 σ above background. As can be seen in the significance sky map (Figure

4.17), the background is extremely variable across the sky, leading to the negative significances

returned by the analysis. This apparent spatial variation in the background is most likely due

to the low count statistics caused by the paucity of available data. An upper limit of 1.8 ×

10−12 photons cm−2 s−1 was calculated at a confidence level of 99% with a threshold energy of

0.32 TeV.

4.5.13 Mrk 1014

Mrk 1014 is a Seyfert 1 galaxy, situated at a redshift of z = 0.163 (Boller et al., 2002). It is

extremely bright in the far-infrared (Yun et al., 2001). It was first discovered as an ultraviolet-

excess object in the Byurakan objective-prism survey (Markarian et al., 1977). It is radio-quiet,

with a radio-loudness parameter of 2.1 (Kellermann et al., 1989), and the associated radio source

was later resolved using data from the VLA as a triple source, composed of two radio knots within

3.1 kpc on either side of a central component corresponding to the nucleus of the object (Leipski

& Bennert, 2006). There is evidence of strong jet-cloud interactions within the extent of the radio

components (Fu & Stockton, 2009). XMM-Newton observations were analysed by Boller et al.
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Figure 4.17: A γ-ray sky significance map of the area around NGC 7469. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.
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(2002) to determine whether the dominant process behind 0.3-8 keV emission from the object is

driven by the central AGN or by starburst activity. The observations from XMM-Newton revealed

a power-law-dominated spectrum which may be up to 30 times more luminous than the soft X-ray

excess. After modelling the data, the authors concluded that the central emission was most likely

dominated by the AGN, as the existence of an X-ray starburst seems highly unlikely due to the

low temperature and high luminosity found in the models used; while further support for this

conclusion was drawn from the variability in the light curve.

The H.E.S.S. data available for Mrk 1014 were collected between 2nd November 2007 and 1st

November 2008. Only about 7 hours of the data collected were of sufficiently high quality to

be analysed. The significances calculated using both the ring-background method and reflected-

background method are consistent with no detection, returning −1.4 σ above background and

−1.2 σ above background, respectively. The object is relatively close to the edge of the field of

view of the telescopes, as can be seen in Figure 4.18. Additionally there is a region of relatively

high significance towards the south of the significance map, however this does not appear to be

associated with any H.E.S.S. sources and there are no obvious potential counterparts in the region,

suggesting that the high apparent significance is likely an artifact of the analysis, caused by the

closeness to the edge of the telescope. An upper limit for Mrk 1014 of 4.8×10−12 photons cm−2 s−1

was calculated at a confidence level of 99% with a threshold energy of 0.26 TeV.

4.5.14 Mrk 1501

Mrk 1501 is an AGN presenting the classic broad-line emission associated with Seyfert 1 galaxies

(Arp, 1968) and is believed to be at a redshift of z = 0.0898 (Véron-Cetty & Veron, 2000). The

object is the brightest at optical wavelengths in a triple group of galaxies. It is a bright X-ray source;

Schnopper et al. (1978) reported a flux between 0.2 keV and 10 keV of F ≈ 4×10−11 erg cm−2 s−1.

The luminosity between 0.2 keV and 10 keV was later calculated by Piccinotti et al. (1982) to

be L ≈ 1045 erg s−1, making it the most luminous Sy1 in their sample. In the early part of this

century, superluminal motion of a radio-emitting plasma was detected by Brunthaler et al. (2000),

the first detection of its kind in a spiral galaxy, indicating that at least some of the emission

from the object must be nonthermal. At radio (Schnopper et al., 1978) and optical wavelengths

(Lloyd, 1984), Mrk 1501 has been known to show large-amplitude flux variations, and smaller-

amplitude variations (of less than 50%) have been detected in the infrared (Lebofsky & Rieke,

1980) and ultraviolet (Chapman et al., 1985). More recently, a study by Salvi et al. (2002) found

large-amplitude (10-fold) variability in the X-ray flux over timescales of years, but no short-term

variability on timescales of ∼ 1000 s. Salvi et al. (2002) propose that the high X-ray luminosity
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Figure 4.18: A γ-ray sky significance map of the area around Mrk 1014. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method. The smooth pale green region in the bottom left hand corner of the map is a region
outside the field of view of the telescope.
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Figure 4.19: A γ-ray sky significance map of the area around Mrk 1501. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method.

and lack of short-term X-ray variability hint at the existence of a large central black hole of ∼ 109

M�. They argue that this view is supported by the lack of a thermal component at low X-ray

energies, as a larger black hole would necessitate that the accretion disc form further away from

the nucleus; this would lead to the temperature of the accretion disc being relatively low. The

authors find a correlation between X-ray and optical flux variations, which they suggest could be

explained if the X-ray emission is a result of inverse-Compton upscattering of synchrotron radio

and optical photons.

The region around Mrk 1501 was observed with the H.E.S.S. telescopes on a number of occasions

between 28th July 2006 and 21st August 2007. The data analysed totalled just over 9 hours of

observations free of adverse weather conditions and technical issues with the telescopes. There is

no evidence for VHE γ-ray emission from the object, with the ring-background method returning

a significance of −0.05 σ above background (Figure 4.19) and the reflected-background method

returning 0.22 σ above background. An upper limit for Mrk 1501 of 4.8×10−12 photons cm−2 s−1

was calculated at a confidence level of 99% with a threshold energy of 0.26 TeV.
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4.5.15 Mrk 573

Mrk 573 is an opically bright Seyfert 2 galaxy at a redshift of z = 0.0172 (Bianchi et al., 2010). A

triple radio source is associated with the galaxy, composing a central core and two spots, probably

associated with nonthermal emission from a jet and counterjet (Ulvestad & Wilson, 1984b). Bianchi

et al. (2010) note that the high-energy spectrum of Mrk 573 is typical of those observed in

Compton-thick Sy2s, while the soft X-ray emission appears to originate through photoionisation

of gas near the nucleus of the galaxy. The luminosity of the two jets is mainly due to nonthermal

synchrotron emission, although the steep power-law radio spectrum makes any contribution to the

X-ray emission from the Seyfert nucleus negligible (Falcke, Wilson & Simpsom, 1998). Bianchi et

al. (2010) found that the radio emission was far more compact than the X-ray emission, but they

were unable to determine the exact nature of the connection between the two spectra.

The H.E.S.S. data analysed for Mrk 573 were collected between 2nd November 2007 and 22nd

October 2008 ∼20 hours were available with all four telescopes operational and no adverse weather

conditions. There is no evidence of VHE γ-ray emission; the ring-background maker returns a

significance of 1.3 σ above background and the reflected-background method returns a significance

of −0.10 σ above background. The discrepancy in the significances calculated between the two

background estimates is probably due to the substantial variation in the background across the

field of view of the telescopes, as seen in Figure 4.20. An upper limit for Mrk 573 of 6.4 ×

10−12 photons cm−2 s−1 was calculated at a confidence level of 99% with a threshold energy of

0.26 TeV.

4.5.16 3C 120

3C 120 is a nearby (z = 0.033) Sy1 galaxy that shows variability across a wide range of frequencies;

however, despite displaying properties mostly associated with Seyfert galaxies it is also a strong

and variable radio source (Doroshenko et al., 2009). Extending 100kpc from the central nucleus in

the radio band is an inhomogeneous one-sided jet which appears to contain knots with apparent

superluminal velocities (Ballantyne et al., 2004). It was noted by Marscher et al. (2002), and

confirmed by Ogle et al. (2005), that new features appear in the jet after significant dips in the

X-ray emission. It has been noted that, as with radio-quiet Seyfert galaxies, the X-ray spectrum

becomes softer during periods of high X-ray flux, and analysis of the X-ray spectrum has led to

the conclusion that only ∼ 5% of the 2-10 keV X-ray emission is contributed by the emission from

the jet (Ogle et al., 2005). Most of the X-ray emission is believed to be thermal in nature, emitted

from a corona around the central black hole and reprocessed by the accretion disc (Doroshenko et
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Figure 4.20: A γ-ray sky significance map of the area around Mrk 573. The right hand bar
corresponds to measured significance above background in standard deviation units. The central
white circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while
the 2 outer circles indicate the area used during analysis of the background by the ring background
method. The smooth pale green region to the right hand side of the map is a region outside the
field of view of the telescope.
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Figure 4.21: A γ-ray sky significance map of the area around 3C 120. The right hand bar corre-
sponds to measured significance above background in standard deviation units. The central white
circle indicates the position of the object and the size of the PSF of the H.E.S.S. array, while the
2 outer circles indicate the area used during analysis of the background by the ring background
method.

al., 2009). Despite the likelihood that most of the X-ray emission is thermal in nature, recent ob-

servations by the Fermi -LAT have detected 3C 120 in GeV γ-rays, bringing into question previous

understanding of the nature of the emission from the object (Abdo et al., 2010c).

H.E.S.S. data covering the region around 3C 120 were only collected between 6th November

2004 and 15th December 15th so it is unsurprising that there were less than 5 hours of observations

of sufficient quality available for analysis. There is no evidence for VHE γ-ray emission from the

object (see Figure 4.21) using either the ring-background method, which returned a significance of

−0.77 σ above background, or the reflected-background method, which returned a significance of

−1.56 σ above background. An upper limit of 4.7 × 10−12 photons cm−2 s−1 was calculated for

3C 120 at confidence level of 99% with a threshold energy of 0.29 TeV.

4.6 Conclusions

A study was carried out using archival H.E.S.S. data to determine whether there is any evidence for

very high energy γ-ray emission from γ-ray-or X-ray-selected Seyfert galaxies. The results of the
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Object Mean ZA (◦) Significance Upper Limit Threshold
Ring Bkgrd Reflected Bkgrd (ph cm−2 s−1) (TeV)

Mrk 50 30.6 0.35 σ -0.12 σ 4.1× 10−12 0.29
3C273 30.2 0.98 σ 0.99 σ 4.5× 10−12 0.26
4U 1344-60 39.8 -0.11 σ -0.01 σ 2.6× 10−12 0.51
Circinus Galaxy 44.4 0.08 σ 0.49 σ 2.1× 10−11 0.68
GRS 1734-292 21.0 -0.39 σ -0.96 σ 1.42× 10−12 0.22
IGR J14471-6319 41.5 -0.19 σ -1.1 σ 3.2× 10−12 0.46
IGR J17204-3554 18.6 0.49 σ 0.73 σ 5.5× 10−13 0.24
IGR J17488-2353 17.3 -0.43 σ -1.2 σ 9.1× 10−12 0.24
IGR J22367-1231 15.3 -0.41 σ -0.69 σ 5.8× 10−12 0.24
NGC 1068 26 1.2 σ 0.84 σ 5.1× 10−12 0.26
NGC 1365 19.5 -1.1 σ -0.78 σ 2.8× 10−12 0.29
NGC 7469 33.5 -2.5 σ -2.4 σ 1.8× 10−12 0.32
Mrk 1014 26.2 -1.4 σ -1.2 σ 4.8× 10−12 0.26
Mrk 1501 26.2 -0.05 σ 0.2 σ 4.8× 10−12 0.26
Mrk 573 28.0 1.3 σ -0.10 σ 6.4× 10−12 0.26
3C 120 31.9 -0.77 σ -1.6 σ 4.7× 10−12 0.29

Table 4.2: List of significance above background returned by both analysis methods for all of the
AGN studied, the mean zenith angle (ZA) of the observations and the upper limits calculated with
the associated threshold energies.

study are reported in this chapter. Data were available for 14 Seyfert galaxies (9 Sy1s, 1 Sy1.5 and

4 Sy2s), 1 unclassified type 2 AGN, and a quasar which displays many of the properties of Seyfert

galaxies, totalling ≈ 360 hours of usable data. No evidence was found for very high energy emission

from any of the objects, although in a number of cases the amount of useful data available was

relatively small (for example, the available livetime for the Circinus Galaxy was only 3.2 hours).

Using the data available, flux upper limits were calculated for the objects and are displayed in

Table 4.2.

Of the upper limits calculated the least constraining is that found for the Circinus galaxy

of 2.1 × 10−11 ph cm−2 s−1 despite the relatively large amount of data available on the object

However, this is due to the very high threshold energy of 0.68 TeV at the zenith angles for which

the object could be observed. Despite a relatively high zenith angle, moderately constraining

upper limits were found for 4U 1344-60 of 2.6× 10−12 ph cm−2 s−1 above 0.51 TeV, possibly due

to relatively low background in the region around the object. The most constraining upper limit

is calculated for IGR J17204-354, which is probably because of the low zenith angles at which the

object is observed.



Chapter 5

Modelling Very High Energy γ-ray

Emission from Misaligned AGN

5.1 Introduction

Modelling the emission from AGN is important in furthering the understanding of the processes

that take place in the extreme environments from which very high energy γ-rays originate. The

rapid variability detected in blazars and in M87 helps to constrain the size of the region from

which the TeV emission can originate, and this can be used to determine likely areas within the

object where the required particle acceleration can occur. Due to the small inferred area of the

emission region, most of the models proposed to describe very high energy emission from AGN

focus on the area at the base of the jet or close to the central black hole. The detection of M87

at very high energies led to the development of a number of new models, as the characteristics

of the emission were impossible to explain with then current models without invoking physically

improbable bulk Lorentz factors and magnetic fields. These new models are interesting, because

for AGN unification they must be able to model successfully both misaligned AGN and blazars.

As further data are collected it should become possible to distinguish more easily between the new

models. These models can lead to greater knowledge of the processes going on deep down at the

base of the jets, in regions that, in blazars are masked by events further up the jet.

5.2 Modelling Blazar Emission

Blazars have high inferred bolometric luminosities and display rapid variability, while the jets

show apparent superluminal motion; these factors provide strong evidence that the nonthermal

131
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continuum emission detected must be produced within an emission region . 1 light day across.

This emission region must be propagating relativistically with a velocity, βΓ, along a jet directed at

a small angle θobs to the line of sight (Schlickeiser, 1996). Radiation originating from the emission

region will be boosted to higher energies via Doppler boosting, determined by the Doppler factor,

D, which is related to the bulk Lorentz factor (the Lorentz factor of the outflow), Γ = (1−β2
Γ)−

1
2 ,

by D = (Γ[1 − βΓ cos θobs])
−1. The observed frequency νobs is therefore related to the emitted

frequency, ν′, through νobs = Dν′/(1 + z), where z is the redshift of the source. The observed flux,

Fobs, is related to the intrinsic flux, Fin, via Fobs = δ3+αFin, where α is the spectral index.

While the origin of low-energy emission from blazars is well established to be synchrotron

radiation from a high-energy population of electrons, the origin of the high-energy emission is

still widely debated. As discussed in Section 3.3 there are two main categories of blazar model,

leptonic models and hadronic models. In leptonic models, high-energy emission originates from

the upscattering of soft photons off the population of ultrarelativistic electrons producing the

synchrotron emission. Hadronic models require that a significant fraction of the jet power is

converted into the acceleration of relativistic protons in a very strong magnetic field. If protons are

accelerated to the threshold for pγ pion production, then high-energy emission will be dominated

by pγ pair and pion production, as well as synchrotron emission from protons, π± and µ±.

5.2.1 Leptonic Models

Leptonic models assume that the high-energy emission is produced via the interaction of soft

photons with the population of ultrarelativistic electrons through Compton upscattering. The

source of the target photons for Compton upscattering can be synchrotron photons produced within

the jet, a process referred to as synchrotron self-Compton (SSC) emission (Bloom & Marscher,

1996), or from external photons, in which case the process is termed external-Compton (EC)

emission. In the case of EC emission, the target photons can originate from a number of possible

sources, including accretion-disc radiation (Dermer & Schlickeiser, 1993), reprocessed optical -

ultraviolet radiation from circumnuclear material (Dermer, Sturner & Schlickeiser, 1997) or the

dusty torus (B lażejowski et al., 2000), and synchrotron emission from populations of electrons

within other parts of the jet (Ghisellini & Tavecchio, 2008).

In leptonic models, it is required that the object has a relatively low matter density in the

emission region so that the γγ absorption opacity of this region is low over most of the high-energy

spectrum, as a high opacity would lead to a large percentage of the high-energy emission being

reprocessed to lower frequencies. The requirement of low opacity in the emission region can be

fulfilled if there is strong Doppler boosting as a less dense population of electrons can produce
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the observed fluxes (Böttcher, 2010); however, at the highest photon energies, the absorption

opacity of the jet will still be high enough to result in a non-negligible contribution to the shape

of the spectrum (Aharonian, Khangulyan & Costamante, 2008). Interactions between the jet

and the surrounding medium result in deceleration of the jet, which can have a significant effect

on the observable properties of blazar emission. This occurs due to radiative interaction between

emission regions with different bulk velocities (Ghisellini, Tavecchio & Chiaberge, 2005) or through

variations in the Doppler factor (Böttcher & Principe, 2009). Changes in the observed Doppler

factor can also be the result of a slight change in jet orientation without the requirement for a

change in speed, as observed in a helical-jet configuration (Villata & Raiteri, 1999). In the case

of such ordered magnetic field structures, synchrotron polarisation signatures should be observed,

such as the polarisation-angle swing detected during an optical and Fermi -LAT γ-ray flare in

3C279 (Abdo et al., 2010d).

It is possible to model blazar SEDs successfully by modelling the underlying lepton distribution

as a simple, single or broken power law with low-and high-energy cut-offs, as in Ghisellini et al.

(1998) for example. However, this approach lacks a self-consistent basis for the shape of the

electron distribution More realistic models rely on using the self-consistent steady-state solution of

the Fokker-Planck equation (Böttcher, 2010); this is then modified to include a physical mechanism

for particle acceleration and all relevant radiative and adiabatic cooling mechanisms, such as in

the model put forward by Acciari et al. (2009c) and used by Böttcher (2010) Further to producing

broadband SEDs, it is also useful for a model to be able to reproduce successfully the observed

variability. To do this requires that the time-dependent electron-dynamics and radiation-transfer

problem is solved self-consistently. Such models have been developed by a number of authors,

including Katoka et al. (2000) and Böttcher & Chiang (2002).

To date, leptonic models have proven very successful when used to model the SEDs and spectral

variability of blazars. The radiative cooling timescales of synchrotron electrons in a typical B ∼ 1 G

magnetic field are of the order of several hours to ∼ 1 day at optical frequencies and . 1 hr in

X-rays, which is consistent with the observed intraday variability. However, the recent detection

of very rapid variability from objects such as PKS 2155-304 (discussed in 3.3.1) on timescales of a

few minutes poses problems for simple one-zone models even if large bulk Lorentz factors of ∼ 50

are assumed, as causality requires that the emitting region must be smaller than the Schwarzschild

radius of the central black hole of the AGN (Begelman, Fabian & Rees, 2008). A possible solution

to this, presented by Tavecchio & Ghisellini (2008), suggests that the γ-ray emission region may

be only a small spine of ultrarelativistic plasma within a larger, slower-moving jet. Such small

spines could be powered by magnetic reconnection in a Poynting-flux-dominated jet, as proposed



5.2. Modelling Blazar Emission 134

by Giannios, Uzdensky & Begelman (2009).

5.2.2 Hadronic Models

Hadronic models require that a significant fraction of the jet power is available for the acceleration

of ultrarelativistic protons to energies of Emax
p & 1019 eV, reaching the threshold for pγ pion

production in a strongly magnetized environment and resulting in the production of synchrotron-

supported pair cascades (Mannheim, 1993). Despite the fact that the inverse-Compton scattering

of protons is identical to that of electrons, the energy loss rate of protons is suppressed by a

factor of (me/mp)
4 ≈ 10−13 (where me is the electron mass and mp is the proton mass); at

energies above the threshold for pair production, this process is 4 orders of magnitude lower than

for pair production (Kelner & Aharonian, 2008). To accelerate protons to these high energies

requires extremely high magnetic fields (several tens of gauss) to constrain the Larmor radius to

be smaller than the radius of the emission region inferred from the rapid observed variability of

blazars, typically R . 1016 cm. In the presence of such high magnetic fields, synchrotron emission

from the primary protons (Aharonian, 2000) and from secondary muons and mesons (Mücke &

Protheroe, 2000; Mücke et al., 2003) will provide a non-negligible contribution to the observed

spectrum. Electromagnetic cascades within the object can originate due to a number of processes:

π0 cascades initiated by photons from π0 decay; π± cascades caused by electrons from π± decay

(π± → µ± → e±); proton-synchrotron photons; and synchrotron photons from µ±, π± and K

particles, known as the µ±-synchrotron cascade (Böttcher, 2010). In the case of hadronic models,

the largest contribution to the observed spectra of blazars at high energy are proton-synchrotron

cascades and µ± cascades, both of which produce two-component γ-ray spectra, while low-energy

emission is dominated by synchrotron emission from primary e− with some contribution from

secondary e−. The emission from π0 and π± cascades from ultrahigh-energy protons generates

featureless γ-ray spectra (Mücke & Protheroe, 2001; Mücke et al., 2000) and so is unlikely to be

responsible for the bulk of the emission.

An issue of using hadronic models to model blazars is the difficulty such models have in re-

producing the rapid variability observed in such objects. This is because it is very difficult to

reconcile the very rapid high-energy variability with the radiative cooling timescales of protons

(which is ∼ several days for magnetic fields of ∼ 10 G and typical Doppler factors) (Böttcher,

2010). One potential solution is to assume that the observed variability is caused by geometrical

effects and, hence does not require rapid changes in proton energy. Modelling hadronic models in a

time-dependent manner usually requires that extremely time-consuming Monte Carlo simulations

are carried out. However, it is possible to utilise a simplified model as in Kelner & Aharonian



5.2. Modelling Blazar Emission 135

(2008). In this approach, analytic fit functions to results from the publicly available Monte Carlo

code SOPHIA were produced. These described the spectra of the final decay products, but the

model requires prior knowledge of the target photon field and the initial proton spectrum. Once the

first generation products are taken into account, cascades must be considered as the synchrotron

emission from most of the electrons and positrons produced and the γ-rays from π0 decay are at

energies � 1 TeV. A semi-analytical treatment of the cascades, taken from Böttcher (2010), is

discussed below.

Böttcher (2010) begins by considering the injection rates of first-generation high-energy γ-

rays, Ṅ0
ε , with Lorentz factor γ and pairs, Qe(γ). Ṅ0

ε and Qe(γ) are taken from the analytical

fit functions of Kelner & Aharonian (2008). Assuming that the cascades can be well-described

linearly allows the optical depth for γγ absorption, τγγ(ε), to be precalculated from the low-energy

radiation field. Under the conditions described, the spectrum of escaping photons, Ṅ esc
ε , can be

calculated as follows:

Ṅ esc
ε = Ṅ em

ε

(
1− e−τγγ [ε]

τγγ [ε]

)
(5.1)

Where contributions to Ṅ em
ε come from the initial high-energy photon spectrum and syn-

chrotron emission from secondaries, Ṅ em
ε = Ṅ0

ε + Ṅ syn
ε . The synchrotron spectrum can be eval-

uated with an acceptable level of accuracy assuming a single-electron emissivity, jν , of the form

jν ∝ ν1/3e−ε/ε0 , where ε0 = bγ2, b = B/Bcrit and Bcrit = 4.4 × 1013 G, B is the magnetic field

in the emission region. The electron distribution, Ne(γ) (where γ is essentially being used to ex-

press energy through E = γm0c
2), will be the solution to the isotropic Fokker-Planck equation in

equilibrium:

∂

∂γ
(γ̇Ne[γ]) = Qe(γ) + Ṅγγ

e (γ) + Ṅe(γ)esc (5.2)

where Ṅγγ
e (γ) is the rate of particle injection due to γγ absorption, which must be evaluated

self-consistently with the radiation field. For the high magnetic fields (B & 10 G) at which hadron-

ically produced γ-ray emission is expected to be dominant, electron cooling will be dominated by

synchrotron losses. For the particles involved in γ-ray production (those emitting synchrotron

radiation at X-ray or higher energies), the synchrotron cooling time will be much shorter than the

escape timescale, allowing the escape term in Equation 5.2 to be neglected. To find an expres-

sion for Ṅγγ
e (γ), the relation between the energies of the electron-positron pair produced must be

found, also noting that Equation 5.1 implies that every photon that does not escape will produce

an electron-positron pair. In the γγ absorption of a high energy photon of energy, ε, one of the
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particles produced will receive the major fraction, fγ , of the photon energy, γ1 = fγε, while the

other will receive γ2 = (1− fγ)ε. This leads to the pair-production rate shown below:

Ṅγγ
e (γ) = fabs(ε1)(Ṅ0

ε1 + Ṅ syn
ε1 ) + fabs(ε2)(Ṅ0

ε2 + Ṅ syn
ε2 ) (5.3)

where ε1 = γ/fγ , ε2 = γ/(1 − fγ) and fabs(ε) = 1 − (1 − e−τγγ [ε])/τγγ [ε]. This leads to an

implicit solution to Equation 5.2:

Ne(γ) =
1

ν0γ2

∫ ∞
γ

dγ̃{Qe(γ̃) + Ṅγγ
e (γ̃)} (5.4)

In Equation 5.4, γ̃ is the Lorentz factor at which Ṅγγ
e is currently being evaluated within the

integral. The solution is implicit because the particle spectrum, Ne(γ), occurs on both sides of

Equation 5.4, as Ṅγγ
e depends on synchrotron emissivity, which requires knowlege of Ne(γ̃). The

majority of radiative output relevant to pair production at an energy γ for Ne(γ̃) is provided by

electron-positron pairs at energies of γ̃1 =
√
γ/(fγb) and γ̃2 =

√
γ/(1− fγ)b; however, for practical

purposes, it is generally assumed that γ is much smaller than γ̃1 and γ̃2, which is fulfilled if there

is no pion-induced pair injection at energies above γcrit = 4.4 × 1013([1 − fγ ]BG)−1 or Ee,crit =

2.3× 1019([1− fγ ]BG)−1 eV. In most synchrotron proton models for blazars, no substantial pion-

induced pair injection is expected above Ee,crit, allowing Equation 5.4 to be evaluated progressively,

starting at the highest pair energies for which Q0(γ) 6= 0 or Ṅ0
ε1,2 6= 0, and then solving for Ne(γ)

for progressively lower γs. Once the equilibrium pair distribution, Ne(γ), is known, it can be

used to evaluate the synchrotron emissivity and hence, using Equation 5.1, the photon spectrum

expected.

5.3 A Simple SSC Model

Modelling of high-energy emission from AGN has primarily concentrated on leptonic models, in

which the low-energy emission is interpreted as synchrotron emission from energetic leptons and

the high-energy component is interpreted as radiation from target photons Compton-upscattered

by relativistic jet leptons. These target photons can come from the synchrotron radiation or from

external sources, such as the broad-line region, a dusty torus or the accretion disc. In standard,

simple, time-dependent AGN models, such as the one put forward by Ghisellini & Madau (1996),

the low-and high-energy components are fitted simultaneously by injecting nonthermal electrons

and positrons into the jet and allowing the electrons to evolve through radiative and adiabatic

cooling. Another modelling technique, proposed by Finke, Dermer & Böttcher (2008), fits the
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optical/X-ray νFν spectrum and uses this to deduce the electron distribution in the jet, assuming

that this emission is dominated by nonthermal lepton synchrotron radiation. The high-energy

SSC component is then calculated using this inferred electron distribution and a small set of

well-constrained observables.

The model proposed in Finke, Dermer & Böttcher (2008) considers a one-zone spherical blob

of relativistic plasma moving with a Lorentz factor Γ = (1 − β2)−1/2 within a relativistic jet. In

the notation used, quantities are primed in the frame comoving with the jet while those in the

observer’s frame are unprimed, so the comoving volume of the emitting blob is V ′b = 4πR′3b /3,

where R′b is the comoving radius of the blob. The Doppler factor is given by δD = [Γ(1− βµ)]−1,

where µ is the cosine of the angle of inclination with respect to the line of sight θ: µ = cos θ. In

many blazars, rapid variability is observed; this implies that the emitting region in such sources is

confined to a small volume with a comoving variability timescale, t′v, limited by light travel time.

For the observer, the variability timescale satisfies:

tv & tv,min =
(1 + z)R′b
δDc

(5.5)

where tv,min is the minimum observed variability time across all wavelengths for nonthermal

emission.

5.3.1 Synchrotron Modelling in Finke, Dermer & Böttcher (2008)

A derivation of the expression for the comoving synchrotron emissivity, J ′syn, from isotropic elec-

trons in a randomly oriented magnetic field can be found in Crusius & Schlickeiser (1986) with

further details in Ghisellini, Guilbert & Svensson (1988). This gives:

ε′J ′syn(ε′) =

√
3ε′e3B

h

∫ ∞
1

N ′e(γ
′)R(x)dγ′ (5.6)

where B is the magnetic field in the emission region, N ′e(γ
′) is the emitting electron distribution,

ε′ = (1+z)ε/δD (the incident photon’s dimensionless energy in the blob frame), γ′ is the relativistic

γ factor as seen comoving with the jet blob, and R(x) is the function:

R(x) =
x

2

∫ π

0

sin θdθ

∫ ∞
x/ sin θ

K5/3(t)dt (5.7)

where x is given by:

x =
4πε′m2

ec
3

3eBhγ′2
(5.8)
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and K5/3(t) is the modified Bessel function of the second kind of order 5/3. Following from

this, the synchrotron flux is given by:

f syn
ε =

δ4
Dε
′J ′syn(ε′)

4πd2
L

=

√
3δ4
Dε
′

4πhd2
L

∫ ∞
1

dγ′N ′e(γ
′)R(x) (5.9)

where dL is the luminosity distance to the object.

5.3.2 SSC Emission Modelling in Finke, Dermer & Böttcher (2008)

The comoving SSC emissivity J ′SSC, integrated over volume, for isotropic and homogeneous photon

and electron distributions, is given by

ε′sJ
′
SSC(ε′s) =

3

4
cσT ε

′2
s

∫ ∞
0

u′(ε′)

ε′2
dε′
∫ γ′max

γ′min

N ′e(γ
′)

γ′2
FC(q,Γe)dγ

′ (5.10)

where ε′s = (1 + z)εs/δD (the scattered photon’s dimensionless energy in the blob frame), and

FC(q,Γe) is the Compton scattering kernel for isotropic photon and electron distributions, given

by (Jones, 1968; Blumenthal & Gould, 1970):

FC(q,Γe) =

[
2q ln q + (1 + 2q)(1− q) +

(Γeq)
2

2(1 + Γeq)
(1− q)

]
H

(
q;

1

4γ′2
, 1

)
(5.11)

In the above, H
(
q; 1

4γ′2 , 1
)

is a Heaviside step function that is equal to 1
4γ′2 for negative q and

1 for positive q , Γe = 4ε′γ′ and

q =
ε′s/γ

′

Γe(1− ε′s)
(5.12)

In Equation 5.10 u′(ε′) is the electron radiation energy density, calculated by Finke, Dermer

& Böttcher (2008) using the δ-approximation (in which it is assumed that an electron of Lorentz

factor γ radiates at a frequency ν = γ2νg where νg is the nonrelativistic electron gyrofrequency)

for the synchrotron flux (e.g., Dermer & Schlickeiser, 2002):

u′(ε′) =
3d2
Lf

syn
ε

cR′2b δ
4
Dε
′ (5.13)

Combining the electron radiation energy density, Equation 5.13, and the SSC emissivity, Equa-

tion 5.10, with the synchrotron flux, Equation 5.9, leads to:

ε′sJ
′
SSC(ε′s) =

9σT d
2
Lε
′2
s

4δ4
DR
′2
b

∫ ∞
0

f syn
ε

ε′3
dε′
∫ γ′max

γ′min

N ′e(γ
′)

γ′2
FC(q,Γ)dγ′ (5.14)

The νFν SSC spectrum is given by:
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fSSC
εs =

δ4
Dε
′
sJ
′
SSC(ε′s)

4πd2
L

(5.15)

so the observed SSC flux can be expressed as:

fSSC
εs =

9(1 + z)2σT ε
′2
s

16πδ2
Dc

2t2v,min

∫ ∞
0

f syn
ε

ε′3
dε′
∫ γ′max

γ′min

N ′e(γ
′)

γ′2
FC(q,Γ)dγ′ (5.16)

5.3.3 Internal γγ Photoabsorption in the Finke, Dermer & Böttcher

(2008) Model

Interaction of the Compton-scattered photons with the internal synchrotron radiation field re-

sults in γγ photoabsorption, which can be described by the photoabsorption optical depth τγγ .

Absorption modifies the high-energy SSC spectrum by the factor kSSC :

kSSC =
1− e−τγγ

τγγ
(5.17)

The approach taken in Finke, Dermer & Böttcher (2008) uses the form given in Gould &

Schréder (1967) for τγγ , where the photoabsorption optical depth for a γ-ray photon with energy

ε1 in a radiation field with spectral photon density n(ε′, µ′; r′), where µ′ = cos θ′ and r′) is the

position in the comoving frame, is:

τγγ(ε′1) =

∫ r′2

r′1

dr′
∫ 1

−1

(1− µ′)dµ′
∫ ∞

2/ε′1(1−µ′)
σγγ [ε′ε′1(1− µ′)]n′(ε′, µ′; r′)dε′ (5.18)

As in this treatment the radiation field is assumed to be uniform and isotropic, in the comoving

frame, nrad(ε′, µ′; r′) ≈ nrad/2. This leads to:

τγγ(ε′1) ∼= R′b

∫ ∞
1
ε′1

σγγ(ε′, ε′1)n′rad(ε′)dε′ (5.19)

Inserting the absorption cross section gives:

τγγ(ε′1) =
R′bπr

2
e

ε′21

∫ ∞
1/ε′1

dε′n′rad(ε′)φ̄(s0)ε′2 (5.20)

where s0 = ε′ε′1; ε′, ε are related by ε′ = (1 + z)ε/δD. φ̄ describes how the absorption cross

section varies with energy and is given by:

φ̄(s0) =
1 + β2

0

1− β2
0

lnw0 − β2
0 lnw0 −

4β0

1− β2
0

+ 2β0 + 4 lnw0 ln(1 + w0)− 4L(w0) (5.21)
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In Equation 5.21, β2
0 = 1− 1/s0, w0 = (1 + β0)/(1− β0), and

L(w0) =

∫ w0

1

1

w
ln(1 + w)dw (5.22)

Substituting for n′rad(ε′), the synchrotron photon number density n′syn given by:

n′syn
∼=
R′syn

c
ṅ′syn(ε′) ∼=

3d2
Lf

syn
ε

mec3R′2b δ
4
Dε

2
Bγ
′4
s

(5.23)

leads to:

τγγ(ε′1) =
9d2
LσT (1 + z)

8mec4tv,minδ5
Dε
′2
1

∫ ∞
1/ε′1

dε′

ε′4
f syn
ε φ̄(s0) (5.24)

5.4 The Difficulty of Modelling Misaligned AGN

Since the detection of M87 at very high energies, it has become apparent that single-zone SSC

models, such as the one described in Section 5.3, have difficulty modelling the spectra of such

objects. This is the case due to the relatively high viewing angle for radio galaxies (∼ 20◦ for

M87) compared with blazars, as discussed earlier. For SSC models to describe accurately the very

high energy emission and variability observed in blazars, they must take into account the very

high Doppler factors of the jet, which, due to the relativistic motion of the material in the jet

moving almost straight towards the observer, cause the observed photon energies to be higher than

in the rest frame of the jet (Doppler boosting) (Buckley, 1998). In the case of radio galaxies and

other misaligned AGN, however, assuming that the jets of such objects are comparable to those in

blazars, the Doppler factor with respect to the observer is expected to be much more moderate.

With more moderate Doppler factors, it is almost impossible to reproduce accurately the spectra

of misaligned AGN at high energies using a single-zone SSC model (Tavecchio & Ghisellini, 2008).

For the specific case of M87, the synchrotron component of the spectrum peaks at ∼ 1014 Hz

and extends into the X-ray band, while the TeV emission belongs to a second, inverse-Compton

component. There is no evidence of an external source of soft photons in M87 to provide the

photon field for external-Compton emission (Tavecchio & Ghisellini, 2008), suggesting that the

high-energy emission is probably dominated by SSC emission. For a one-zone model, successfully

reproducing the spectra requires assuming both a rather low magnetic field and a large Doppler

factor; the latter is unlikely considering the angle to the line of sight for the jet (Tavecchio &

Ghisellini, 2008). An example of the result of using a single-zone blob-in-jet model to attempt

to reproduce the VHE γ-ray emission from M87 is shown in Figure 5.1. One potential solution
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Figure 5.1: Single-zone modelling of the SED of M87, with δb = 3.07, represented by the dashed
green curve, assuming an inclination to the line of sight θ = 19◦. The data points that provide solid
constraints on the models are shown in black while those providing looser constraints are shown
in grey. The black curve at optical wavelengths is emission from the host galaxy computed using
the PEGASE code (Fioc & Rocca-Volmerange, 1997). The empty grey circles correspond to radio
data obtained from the NASA extragalactic database, with fluxes ∼ 10−12 erg cm−2 textrms−1;
this emission originates from the extended kpc jet and the radio lobes. The black curve at radio
to ultraviolet/X-ray energies represents results from the single-zone model of Katarzyński, Sol &
Kus (2001, 2003) for the inner jet, with corresponding radio data, at fluxes ∼ 10−13 erg cm−2 s−1

shown in black. The first bump peaks at ∼ 1015 Hz and is synchrotron emission, while the second
bump is inverse Compton emission, peaking at ∼ 1023 Hz. The synchrotron emission and inverse-
Compton emission both originate from the same zone as the VHE emission. The solid blue curve
is the SED produced by a blob moving close to the direction of the line of sight at an angle of
1◦ with δb = 8, which comes closest to successfully reproducing the VHE γ-ray data. Taken from
Lenain et al. (2008).

might be that the jet is initially at a small angle to the line of sight (only deviating further out

from the core) and that the high-energy emission originates there. If this is the case, then high

Doppler factors would be considerably more likely; however, this leads to the prediction of steep

energy spectra, contrary to the hard VHE γ-ray spectrum observed from the object (Neronov &

Aharonian, 2007). It is more likely, then, that the VHE emission is due to the interplay between

two (or more) regions in the jet, or that it is produced in the vicinity of the supermassive black

hole of M87 independently of jet processes.
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5.5 Inhomogeneous Jet Models

Inhomogeneous jet models were initially developed to model the complicated and often incon-

sistent variability observed in blazars; however, the detection of M87 in TeV γ-rays has led to

greater interest in such models and to the development of more complicated multizone models,

such as the spine-sheath model of Tavecchio & Ghisellini (2008) and the decelerating-jet model of

Georganopoulos & Kazanas (2003). In such models differential relativistic motion between various

emission zones leads to Doppler boosting of the emission from one zone in the rest frame of another

zone. These models reduce the requirements that single-zone leptonic models have for extremely

high bulk Lorentz and Doppler factors, and such models have been used successfully to model the

SEDs of rapidly varying VHE γ-ray blazars such as Mrk 501 and PKS 2155-304 (Böttcher, 2010).

5.5.1 Shock-in-Jet Models

Shock-in-jet models are discussed here as one of the earlier classes of inhomogeneous jet models.

They were initially developed to explain the radio spectra of blazars, as in Marscher & Gear

(1985). Spada et al. (2001) proposed applying such models to high-energy emission from such

objects. These models have had success in explaining SEDs and time-lag features in some blazars

(Böttcher, 2010); however, to date there have been few, if any, attempts to use such models to

describe emission from misaligned AGN. The models assume that the central engine intermittently

ejects shells of relativistic plasma at varying speeds, which subsequently collide (Mimica et al.,

2004). To apply an internal-shock model to radiation transfer within a blazar jet requires time-

dependent evaluation of all parts of the shocked regions of the jet that are producing the radiation

fields, resulting in a highly non-linear model. The non-linear nature of the models produced,

means that they generally cannot be solved analytically, and so they must generally be solved

numerically, as in Sokolov, Marscher & McHardy (2004), Mimica et al. (2004) and Graff et al.

(2008). Currently, the use of detailed internal-shock models to evaluate the SED of an object are

very time-consuming as the models require either full expressions or accurate approximations to

the emissivities of both synchrotron and Compton emission. This makes it difficult to use such

models to explore a large parameter space, and thus far they have generally been successful in

modelling objects using very specific (but observationally poorly constrained) parameters.

Böttcher & Dermer (2010) propose a solution to the time-consuming aspects of many internal-

shock models by developing a semi-analytical model. In this model, the temporally and spatially

dependent electron spectra are calculated analytically, taking into account the effects of forward-

and reverse-shock acceleration on the electron population and subsequent radiative cooling; the
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observed synchrotron and external-Compton spectra are similarly calculated, taking into account

light travel-time effects and using δ-function approximations for the emissivities. Using their model,

Böttcher & Dermer (2010) were able to scan successfully a substantial region of parameter space to

observe the dependence of the produced SEDs on the parameters used and investigate the effects

of different parameters on crossband correlations and time lags. Interestingly, the authors found

that only slight changes in the physical parameters can lead to substantial changes in the interband

time lags, in some cases even resulting in a reversal in the sign of the lag. This approach therefore

helps to explain some of the temporal inconsistency between different wavebands in flare events

seen for many sources.

5.5.2 The Spine-Layer Model

Tavecchio & Ghisellini (2008) argue that the inner subparsec-scale jet of M87 is the most likely

site of very high energy γ-ray emission and they note the problems a single-zone SSC model has

reproducing the observed spectrum as discussed in Section 5.4. To overcome the problems inherent

in a single-zone SSC model, Tavecchio & Ghisellini (2008) propose a multizone model in which the

jet is made up of two components, an inner, fast-moving “spine” and an outer, slower “layer”, as

shown in Figure 5.2. In the model, the layer is approximated as a hollow cylinder with internal

radius R, outer radius R2, height Hl (as measured in the frame of the sheath), moving with a bulk

Lorentz factor Γl. The central spine is modelled as a cylinder with height Hs (as measured in the

frame of the spine) and radius R, moving with a bulk Lorentz factor Γs. The spine and layer are

characterised by tangled magnetic fields of intensity Bs and Bl respectively. Each region contains

relativistic electrons assumed to follow a smoothed broken power-law distribution extending from

γmin to γcut, with indices n1 and n2 below and above the break at γb, respectively.

N(γ) = Kγ−n1

[
1 +

(
γ
γb

)n1−n2
]
e
−γ
γcut γ > γmin

N(γ) = 0 γ ≤ γmin

(5.25)

The normalisation constant, K, in Equation 5.25, is found by requiring that N(γ) produce

a given intrinsic synchrotron luminosity Lsyn and is one of the input parameters required for the

model. Both the spine and the layer emit through synchrotron and inverse-Compton processes; the

radiation emitted by the spine is seen boosted by the layer, and vice versa, by a factor of ∼ (Γ′)2,

with Γ′ given by:

Γ′ = ΓsΓl(1− βsβl) (5.26)
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Figure 5.2: Schematic of the spine-layer model: the central cylinder represents the spine, of height
Hs and radius R, moving with a Lorentz factor of Γs, and the volume between the spine and outer
cylinder represents the layer, of height Hl and outer radius Rs, moving with a Lorentz factor Γl.
Photons emitted by the spine are Doppler boosted as seen by the sheath, and vice versa. After
Ghisellini, Tavecchio & Chiaberge (2005).

where cβs and cβl are the velocities of the spine and layer, respectively. It is assumed that

Hl > Hs. The seed photons for inverse-Compton scattering originate not only locally in the

region being considered (spine or layer) but are also produced in the other component (referred to

henceforth as external-Compton), leading to strong feedback between the two. A consequence of the

structure proposed is that the emission observed from the jet will depend strongly on the angle of

the jet to the line of sight. At small angles, as in blazars, the emission is dominated by boosted spine

emission, while at large viewing angles (θ > 45◦), as in many radio galaxies, emission from the spine

is suppressed. In the case of large viewing angles, it becomes probable that the layer, characterised

by a broader beaming cone, will contribute significantly to the overall emission, possibly dominating

in some cases. At intermediate angles, both components can contribute significantly to the output,

as illustrated in Figure 5.3.

In the comoving frame of one component, the photons produced in the other are not isotropic

and are observed to be aberrated, requiring the different beaming patterns associated with the

two regions to be taken into account. Most of the external-Compton photons come from a single

direction (opposite to the relative velocity vector). It is important to note that this anisotropy

only applies to the external-Compton radiation, while the synchrotron and SSC emission within

the region are isotropic in the comoving frame. For the spine, the external-Compton radiation is

more concentrated along the jet axis with respect to its synchrotron and SSC emission, while for

the layer it is more concentrated in the direction of the black hole. To simplify the transformations,

the authors assumed, as in Dermer (1995), that, due to the strong aberration in the rest frame of

one component, all the photons from the other component come from a single direction opposite
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Figure 5.3: Amplification factors for the emission from the spine (solid lines) and layer (dashed
lines) as a function of viewing angle, for Γs = 12, Γl = 4 and a spectral index, α = 1, the values
used when modelling M87 in Ghisellini & Tavecchio (2008). The black lines show the synchrotron
to SSC factors and the red lines the external-Compton factors. Taken from Ghisellini & Tavecchio
(2008).

to the jet axis. The net result of the transformations is that in the observer frame the external-

Compton emission from the layer is less boosted than that from the spine (Ghisellini & Tavecchio,

2008).

By applying this model to M87, Ghisellini & Tavecchio (2008), were able to reproduce the

spectrum of the object, and, using the parameters obtained, a theoretical spectrum for the case of

a hypothetical M87-like object at a small angle to the line of sight was constructed. This blazar-

like spectrum of M87 closely resembles that of LBLs, and the spine is characterised by physical

parameters close to those usually inferred for such sources. In this model, the optical and X-ray

emission are produced mainly in the spine, while TeV γ-rays would primarily originate in the

layer, so a strict correlation between these bands is not directly required. Additionally, MeV-GeV

emission from M87 would be produced primarily in the spine and so would not exactly follow the

TeV component.

A major problem with this model is that it requires a large number of parameters to be

determined, almost double the number for a single-zone model because two sets are required, one

for the spine and another for the layer. This leads to a total of 18 free parameters that must be

defined. Furthermore, the model has difficulty in reproducing the hard spectrum observed during

the flaring of M87 in 2005, because the slope of the TeV spectrum found by the model is mainly

dictated by the absorption of TeV photons in the dense optical radiation field rather than by the
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intrinsic TeV spectrum, resulting in a predicted spectrum softer than that observed (Tavecchio &

Ghisellini, 2008).

5.5.3 The Decelerating-Jet Model

Noting the weaknesses apparent in single-zone SSC models, Georganopoulos & Kazanas (2003)

proposed that the high-energy emitting region of TeV BL Lacs is relativistic and decelerating,

and in later work the model was applied to M87 (Georganpoulos, Perlman & Kazanas, 2005).

The model proposes that a power-law electron distribution is injected at the base of a relativistic

jet which decelerates as the distance from the initial injection site increases, while the electron

distribution cools radiatively. A consequence of this is that the highest synchrotron frequencies

originate at the base of the jet where the electrons are more energetic, while further along the jet

the emitted synchrotron spectrum shifts to lower energies and the beaming pattern becomes wider.

This means that the observed synchrotron spectrum is expected to vary depending on the angle at

which the jet is observed. At small angles of inclination, the synchrotron spectrum is dominated

by emission from the base of the jet, while at larger angles, as seen in M87, this emission from the

inner, faster, part of the jet is beamed away from the observer and the major contribution to the

spectrum is instead from the slower parts, leading to softer observed spectra.

As in simpler one-zone models, the synchrotron photons interact with the high-energy electrons

in the jet resulting in inverse-Compton emission; however, in the case of a decelerating jet, the

interactions are more complicated. Electrons will upscatter not only the synchrotron photons

produced locally, but also those produced downstream in the jet. The synchrotron photons from the

slower, downstream, region, with bulk Lorentz factor Γs, appear Doppler-boosted in the fast part

of the jet, where the bulk Lorentz factor is Γf , by a factor ∼ Γ2
rel, where Γrel ∼ (Γf/Γs + Γs/Γf )/2

is the relative Lorentz factor between the two regions (Ioka, 2003). As the maximum energy of

the synchrotron photons further along the jet is lower, and their energy density is amplified by

the effect of Doppler-boosting, they contribute more to the inverse-Compton emission at higher

energies than would be expected in a uniform-velocity jet without needing such large Doppler

factors. This is known as upstream Compton emission.

The model constructed by Georganpoulos & Kazanas assumes that a power-law electron distri-

bution n(γ) ∝ γ−2 is injected at the base of a relativistic jet. The jet is assumed to have a velocity

profile Γ(z) = Γ0(z/z0)−2, and the electrons cool radiatively as they propagate downstream. The

model shows stronger angular dependence for emission from the base of the flow than further along

the jet, and the base can account for the highest frequencies in each spectral component; capable

of accounting for high-energy emission with only modest Lorentz factors. As seen in Figure 5.4
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Figure 5.4: SEDs for a range of angles of a flow that decelerates from Γ1 = 15 to Γ2 = 4 within
a length of 2 × 1016 cm. The radius of the cylindrical flow is set to 2 × 1016 cm and a power-law
electron distribution, n(γ) ∝ γ−2, γ ≤ 2× 105, is injected at the base of the jet, in the presence of
a magnetic field B = 0.1 G. Taken from Georganopoulos & Kazanas (2003).

the model is able to reproduce VHE emission for objects with a wide range of angles to the line of

sight, and the spectra produced are consistent with those seen in both BL Lac and FR1 objects,

as required for AGN unification.

The later work by Georganpoulos, Perlman & Kazanas (2005) applies the model to M87. The

authors assume that the inner jet decelerates from a bulk Lorentz factor of Γ0 = 20 to Γ = 5 over

a distance of 3×1017 cm, and that it is at θ = 13◦ to the line of sight. The results of the modelling

for two different jet luminosities, Ljet = 2.2× 1044 ergs s−1 and Ljet = 1.6× 1044 ergs s−1, can be

seen in Figure 5.5. The model predicts that most of the jet power at lower energies originates in

the slower, downstream, part of the flow (dotted lines in the figure), while the TeV flux is upstream

Compton emission from the faster flow (dashed lines), close to the core of the object. In agreement

with observations, a decrease in jet power leads to a steeper X-ray SED. The bulk Lorentz factors

used to model M87 were also applied to a hypothetical object at an angle to the line of sight of

θ = 1/Γ0 = 2.9◦, resulting in a qualitatively similar spectrum to those seen from TeV BL Lacs and

lending support to the validity of the model.
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Figure 5.5: Decelerating-flow modelling for M87 at two different jet powers. The top SED is
for a jet power of Ljet = 2.2 × 1044 ergs s−1 and the bottom SED is for Ljet = 1.6 × 1044 ergs
s−1. The injected electron distribution is a power law with slope p = 2, and the magnetic field
is B = 0.015G. The solid lines represent the synchrotron, Compton and total luminosity, dashed
lines the synchrotron and Compton luminosity of the fastest one-fifth of the flow, and the dotted
lines that of the remaining four-fifths. Taken from Georganopoulos, Perlman & Kazanas (2005).
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When the model of M87 was published, no other misaligned AGN had been detected at TeV

energies, and it was suggested that the tighter beaming for very high energy emission implied by

the model could explain this. This observation is called into question by the more recent detections

of Centaurus A and NGC 1275 at TeV energies, discussed in Section 3.4. Although Abdo et al.

(2010e) successfully reproduced the high-energy spectrum of Centaurus A detected with the Fermi -

LAT using the model, it appears to have some difficulty explaining the TeV emission from this

object, (see the blue line in Figure 5.6). It is important to note, however, that the very high energy

data are not contemporaneous with the data collected with the Fermi -LAT, and it is possible that

TeV emission is only observed when the object is in a different state. Another difficulty that

the model faces is that, due to the length scales involved, it is difficult to formulate a scenario

where variability on the scale of days could be easily reproduced (Rieger & Aharonian, 2008a).

Furthermore, results at radio wavelengths suggest that the flow in M87 accelerates with increasing

distance from the central black hole. Radio observations of the inner jet, out to 1.6 pc, show

typical speeds of only a few percent of the speed of light, with no evidence of motions faster than

0.07c (Kovalev et al., 2007), and although a study carried out by Ly, Walker & Junor (2007) using

the VLBI reported higher velocities (0.3c-0.5c) in this region, this is still far below the highest

velocities (up to 2.5c) of jet components detected at 15 GHz on larger (kpc) by Biretta, Zhou &

Owen (1995).

5.5.4 The Multiblob Model

The model proposed by Lenain et al. (2008) is built on a blob-in-jet model similar to that presented

in Section 5.3. It uses the basic scenario presented in Katarzyński, Sol & Kus (2001, 2003), which

has been used to model successfully the high-energy emission of the blazars Mrk 421 and Mrk 501.

The goal of the model presented by Lenain et al. (2008) is to reconcile beamed and unbeamed

sources within the same framework of models, as it is likely that the physics behind generation

of very high energy γ-rays in both categories of object is the same. The model presented by

Katarzyński, Sol & Kus (2001, 2003) is similar to that presented by Finke, Dermer & Böttcher

(2008); however, while it describes the high-energy emission as originating in the blob, it considers

that the observed emission at radio through to ultraviolet wavelengths is contributed by radiation

emitted directly from an inhomogeneous, conical, extended jet. In the Katarzyński, Sol & Kus,

model the effect of the EBL is modelled using the estimations described by Stecker, Malkan &

Scully (2006); however, the Lenain model initially disregards EBL modelling, as it is primarily

used to describe nearby AGN where the effects of EBL absorption are minimal.

The electron distribution in the Lenain et al. (2008) model is described as a broken power-law:
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Figure 5.6: SED of the core of Cen A with models fitted by Abdo et al. (2010d) overlaid. Coloured
symbols are contemporaneous observations with a number of instruments at the epoch of the LAT
observations. From low to high frequency: TANAMI VLBI (red squares), Swift-XRT (red crosses),
Swift-BAT (red circles) and Fermi -LAT (red diamonds). The black symbols are archival data
(Marconi et al. 2000), including H.E.S.S. observations (Aharonian et al. 2009). The curves are
multiple models fitted to the nuclear region of Cen A. The green curve is a synchrotron/SSC fit to
the entire data set, the dashed green curve shows that model without γγ attenuation, the violet
curve is a similar fit but designed to fit under the X-ray data, and the brown curve is a fit to the
H.E.S.S. data, designed not to overproduce the rest of the observations. The blue curve is the
decelerating-jet model fitted to the data; as can be seen, it appears to underproduce the TeV γ-ray
emission. Taken from Abdo et al. (2010d).
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Ne(γ) =

 K1γ
−n1 γmin ≤ γ ≤ γbr

K2γ
−n2 γbr ≤ γ ≤ γc

cm−3 (5.27)

where K2 = K1γ
n2−n1

br , γ = E/mec
2, γbr is the Lorentz factor at which the break in the

spectrum occurs, γc is the maximum Lorentz factor, and E is the electron energy. These electrons

emit through synchrotron processes at energies up to the X-ray range, at which point they reinteract

with the photons produced via the inverse-Compton process described earlier. The synchrotron

emission is assumed to originate from a different population of electrons to the one producing the

lower-energy emission in the extended jet.

The initial model has eight significant parameters on which limits must be placed. Three of

these are related to the macrophysics of the object: the magnetic field B, the radius of the emitting

blob rb, and the Doppler factor δb = [Γb(1− βb cos θ)]−1, where βb is the speed of the moving blob

in units of c, Γb = (1−β2
b )−

1
2 is the blob Lorentz factor and θ is the viewing angle. The remaining

five parameters are related to the description of the population of emitting particles and are taken

from the initial electron distribution described in Equation 5.27: these are K1, γbr, γc, n1 and n2.

The value for γmin is not crucial for interpreting the SED, and for objects with well-sampled spectra

all of these parameters can be well constrained. Owing to limitations in the spectral coverage of

M87, Lenain et al. (2008) used the observed very high energy variability to argue that the source

of the emission is likely close to the central black hole, probably close to the broadening zone at

the base of the jet as described in magnetohydrodynamic jet models such as that proposed by

McKinney (2006), who found the Alfvén surface to be at ∼ 50rs. To allow for shocks and Fermi

acceleration (acceleration of charged particles by a magnetic field) to occur, it is assumed that the

emission zone is located slightly above this surface, at ∼ 100rs.

The model diverges from the standard blob-in-jet scenarios by proposing that it is statistically

unlikely that there is only a single relativistic blob in a jet moving directly towards the observer

and that the structure of the jet is likely to be more complicated. To model this, it is suggested

that there are a large number of blobs of plasma moving within the jet, harbouring relativistic

electrons and propagating in the widened jet-formation zone. The emission zone is modelled as a

spherical cap centered on the supermassive black hole and at a distance of Rcap from it, filled with

several similar homogeneous blobs. The value of Rcap is a new free parameter in the model, but

it is constrained by magnetohydrodynamic jet models and is assumed to correspond to a position

slightly above the Alfvén surface.

For simplicity, the Lenain et al. (2008) model considers a hexagonal pattern of seven blobs

of equal radius rb as shown in Figure 5.7, located at a distance of 100rs from the black hole.
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Figure 5.7: Forward view of the geometry of the multiple blobs just above the Alfvén surface as
proposed by Lenain et al. The blobs are numbered from i = 0 to i = 6, as are the associated
velocity vectors.

The macroscopic parameters are derived from McKinney (2006), while the choice of seven blobs is

justified as the resulting diameter of the cap is of the same order of magnitude as the size of the

emitting zone inferred from previous studies. The smaller the radius of each blob, the more the

predictions of the model are in line with those of continuous-zone models. A direct consequence of

the geometry is that there are two extreme situations depending on the position of the blobs with

respect to the line of sight. In the first, the line of sight passes exactly through the gap between

three blobs, termed the “inter-blob” case by the authors, while in the second, the line of sight

is exactly aligned with the velocity vector of the central blob, termed the “on-blob” case. The

emission detected from a single blob (blob i) is dependent on the Doppler factor for that blob, δib,

given by:

δib =
1

Γb(1− βb cos(αi))
(5.28)

where αi is the angle between the velocity vector of blob i and the line of sight. For the

inter-blob case, the three blobs closest to the line of sight will all contribute equal amounts to the

total flux and will have the same Doppler factor, while the contribution of the remaining blobs

decreases with increasing blob radius rb. In the on-blob case, the central blob, i = 0, displays the

highest Doppler factor, δ0
b ; however, the contribution to the total flux of the six other blobs is non-

negligible, and they all have the same Doppler factor, which is lower than that observed from the

central blob. If rb << rs, then the contributions from the surrounding blobs are more significant.

Any transverse gradient in the velocity of the jet is ignored as it is usually small compared to the

radial velocity profile, and so it is assumed that all of the blobs have the same Lorentz factor but



5.5. Inhomogeneous Jet Models 153

Figure 5.8: Geometric side view of the jet-formation zone in which line of sight passes directly
through the central blob. The blobs are numbered 0-6, as shown in Figure 5.7, and their velocities
are v0−6, θ is the viewing angle with respect to the jet axis, φ(r) is the opening angle, rb is the
radius of an individual blob, Rcap is the distance of the blobs from the central black hole, vj is the
velocity of the jet and δb is the Doppler factor of the blob. In this sketch, blobs 2 and 3 lie outside
the jet and their contributions would be ignored. Taken from Lenain et al. (2008).

are ejected at slightly different angles. The geometry of the on-blob case is shown in Figure 5.8,

where the central blob is moving directly towards the observer and the velocity vector of each of

the surrounding blobs is at an angle dα to the line of sight given by dα = 2 arcsin(rb/Rcap).

To calculate the output SED, the radiative transfer of each blob in its own source frame and

the flux emitted are calculated, after which the contributions of each blob are summed up. The

seed photons for the inverse-Compton emission from a blob are those generated within it by

synchrotron emission. Any blob with a Doppler factor δib < 1 is neglected; this will occur for

αi > arccos[(Γb − 1)/(Γbβb)]. Figure 5.9 shows the contribution to the SED of the central blob as

compared to the other blobs for the on-blob case, the total SED for that case, and the total SED

for the inter-blob case.

Application of the model to M87 by Lenain et al. (2008) results in SEDs which are consistent

with currently available data on the object. Assuming a magnetic field of 0.5 G results in relatively

small blob radii, smaller than rs; this raises a potential issue, as very small blobs could disappear

on timescales as short as ∼10 minutes due to adiabatic expansion and might not be large enough

for particle acceleration to develop. It is argued, however, that this is not necessarily an argument

against the model, as long, stable emission would still be possible if the emitting zone is located at
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Figure 5.9: An example of the SEDs output by various components of the multiblob model and the
total SEDs for both on-blob and inter-blob cases. The thin solid curve shows the contribution of
the central blob, which is the most strongly beamed and accounts for most of the emission, while
the curve with short dashes shows the total contribution of the six other blobs. The bold solid
curve shows the sum of all contributions for the on-blob case, and the curve with longer dashes
shows this for the inter-blob case. The closest blob to the line of sight strongly dominates the total
emission for high values of rb. Taken from Lenain et al. (2008).
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a stable stationary shock front just above the Alfvén surface. In this scenario, the shock initiates

the acceleration of particles in a large number of small blobs continuously crossing the shock; these

particles radiate and then produce a quiescent background of VHE emission. The flares seen at TeV

energies can then be explained as density fluctuations in the injection of material. If it is assumed

that rb & rs, then the SED of M87 can be successfully modelled assuming a lower magnetic field

strength, which is at odds with the magnetic fields predicted by magnetohydrodynamc models,

although if the emitting zone expands then a local decrease in the magnetic field can be achieved.

The model can also reproduce the hard spectra seen by H.E.S.S. during the 2005 flare of M87. The

model also predicts a radical change in the X-ray regime at that time but unfortunately there are

no contemporaneous X-ray data with which to place constraints.

In addition to modelling M87, Lenain et al. (2008) also applied the model to Centaurus A

and predicted detection of TeV γ-rays with the H.E.S.S. telescopes after ∼ 50 h of observation,

assuming that the soft γ-ray peak detected is of synchrotron origin. If it was assumed to be of

inverse-Compton origin, however, no detection was expected. Following the detection of Centaurus

A at TeV energies, Lenain et al. (2009) modelled the emission detected by both H.E.S.S. and the

Fermi -LAT. In that paper, the authors argue that the currently available data favour the suggestion

in the previous paper that the soft γ-ray emission is most likely synchrotron in origin and that

the model describes well the observed SED. A discrepancy in the flux normalisation between the

H.E.S.S. and Fermi -LAT data is noted, but as the two data sets are not contemporaneous, this

discrepancy could be due to flux variations within the object. The only major difference in the

parameters required to reproduce the spectrum of the source when compared with the SSC results

for blazars is a relatively high value for the magnetic field, B = 10G.

5.6 The Core-Emission Model

In addition to jet models, another potential region for TeV γ-ray emission in radio galaxies and

other misaligned AGN is in the vicinity of the central black hole. Rieger & Aharonian (2008b)

argue that the most likely site for very high energy γ-ray production in M87 is close to the event

horizon of the central black hole at a radius r ∼ rs. If this is the case then modelling the emission

in this manner can be used to show a link between accretion-disc physics and jet-formation theory,

as the mechanism for particle acceleration described could provide the energetic seed particles

required for efficient Fermi acceleration on larger scales.

Rieger and Aharonian’s model relies on a rigidly rotating, dipolar magnetosphere in the vicinity

of the black hole to accelerate particles to high energies. This magnetosphere is generated in a
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magnetohydrodynamic jet-disc framework as magnetic flux is dragged inwards and amplified by

dynamo action in the inner accretion disc. Efficient particle acceleration occurs close to the light

surface, rL = c/Ω ∼ (5 − 10)rs (where Ω = angular velocity, assumed to be constant), on radial

scales that are small compared to the curvature of the magnetic field so that the magnetic field can

be modelled as a simple monopole-like structure without too great a loss of accuracy. The AGN-

black hole environment is plasma-rich and any electric field component parallel to the magnetic

field is expected to be screened off at r < rL, so efficient gap-type particle acceleration, as seen in

pulsars, is unlikely and inertial effects become the main driving mechanism.

Using Hamiltonian mechanics, and assuming that the charged particle corotates with the field

as in bead-on-wire motion, Rieger and Aharonian (2008b) find that as the radius of rotation of the

particle approaches rL, its Lorentz factor, γ, must increase dramatically. As the Lorentz factor of

the particle increases, radiative energy losses also increase, the bead-on-wire approximation breaks

down, and the field lines bend with increasing inertia so a maximum obtainable Lorentz factor

will be reached. The maximum achievable Lorentz factor can be constrained by the validity of the

bead-on-wire approximation, requiring that the characteristic acceleration timescale derived from

the Hamiltonian must be greater than the relativistic gyrofrequency, leading to:

γBB
max ≤

1

m̃
1
6

(
qBrL
2m0c2

) 2
3

(5.29)

where m̃ = 1/(γ2
0 [1− r2

0/r
2
L]2) and hence is determined by the initial conditions of the particle.

This is equivalent to the requirement that the Coriolis force must not exceed the Lorentz force.

Using parameters consistent with observations of M87, B(rL) ∼ 10 G, rL ∼ 5×1015 cm, Rieger and

Aharonian (2008b) found that γBB
max ∼ 5× 108 for electrons, and because γBB

max ∝ m
−2/3
0 (Equation

5.29), centrifugal acceleration is not an efficient mechanism for protons, indicating that interactions

of accelerated proton with the ambient photon field are negligible. Radiative energy losses due to

inverse-Compton interactions with the ambient photon field close to rL (in relatively low luminosity

sources) are not expected to play a large enough role to provide any stronger constraints and hence

γBB
max is likely to be a sensible estimate of the electron Lorentz factors present.

The TeV emission from a misaligned AGN in this model is thus assumed to arise via inverse-

Compton scattering of photons from an advection-dominated accretion disc by the centrifugally

accelerated electrons. At energies << 5 TeV, assuming a power-law electron distribution, the

interaction between the highly energetic electrons from the acceleration process and a comptonised

photon field originating from the accretion disc results in a power-law evolution for the inverse-

Compton spectrum, independent of the incident photon spectrum. At TeV energies, however, the
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inverse-Compton spectrum becomes sensitive to the seed-photon distribution from the accretion

disc, where the comptonisation of soft cyclosynchrotron photons adds to the spectrum a power-law

tail with spectral index αc ∼ 1.2. This leads to the very high energy spectrum following a power

law with spectral index α ≈ αc.

The model presented shows good agreement with the spectrum observed in M87 and is able to

reproduce rapid variability as detected from the object. Rieger & Aharonian (2008b) argue that

if the particle acceleration and TeV emission do indeed originate close to the central black hole in

misaligned AGN, these effects would be difficult to discern in more luminous objects that are more

closely aligned to the line of sight, as the emission would be swamped by relativistically beamed

emission from the jet. A particularly interesting consequence of the model is that detection at TeV

energies could be expected, even for very highly misaligned AGN, something that is extremely

unlikely in the case of any of the jet models. Without the detection of such objects, however, it

is difficult to distinguish between jet models and the core-emission model. Attempts to model the

multiwavelength spectrum of M87 using a core-emission model have had difficulties reproducing

flared emission from the object (Hilburn & Liang, 2012). Another potential issue is that the region

closest to the black hole is expected to have a high photon density, effectively rendering it opaque

to any TeV emission in the region as a result of photon-photon annihilation (Cheung, Harris &

Stawarz, 2007); however this view is contested by Rieger and Aharonian (2008b), who argue that

this region in M87 is transparent to 10 TeV photons on scales of 5rs - 13rs, consistent with the

scenario they present.

5.7 Conclusions

To explain the SED of blazars, relatively simple single-zone models, such as that discussed in

Section 5.3, can be used; however, such models have great difficulty reproducing the very high

energy spectra of AGN observed at greater angles. To explain the emission from such objects,

more complicated scenarios such as those presented in this chapter must be envisaged. Three of

these are inhomogeneous-jet SSC models and rely on either a structured jet or multiple smaller

structures within the jet to reproduce the detected SED; the remaining model posits that TeV

emission originates close to the central black hole and is an EC model in which the seed photons

for the inverse-Compton emission originate in the accretion disc. Unfortunately, currently available

data do not allow for unambiguous rejection of any of the models. Moreover, in all cases, there are

issues that need to be resolved.

Of the jet models, possibly the simplest and most successful at reproducing all the observed
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characteristics is the multiblob model proposed by Lenain et al. (2008). As it is merely an extension

of previously presented blob-in-jet models, it requires few extra assumptions when compared to

them. It posits that nonthermal emission from AGN originates in a number of relativistic blobs

of plasma close to the Alfvén surface, moving at slightly different angles to the line of sight. The

model has shown success in explaining the spectrum of M87 at very high energies, including data

both from the low state of the object and from the flare detected in 2005.

The decelerating-jet model of Georganopoulos & Kazanas (2003) has been used to successfully

explain the TeV emission from M87 during its low state; however, owing to the requirement of

relatively large length scales, this model has great difficulty explaining the rapid variability observed

during the flaring from the object in 2005. Additionally, the model appears to have difficulty

reproducing the TeV spectrum observed from Centaurus A, leading to potential problems with

AGN unification.

The spine-layer model presented in Tavecchio & Ghisellini (2008) proposes that the jets of

AGN consist of a central fast-moving spine, surrounded by a slower-moving layer. Unfortunately,

the model requires 18 free parameters to successfully describe the jet, making it difficult to derive

meaningful constraints. Additionally, this model has great difficulty explaining the hard TeV

spectrum observed during the flare of M87 in 2005.

The final model presented here is the core-emission model proposed by Rieger & Aharonian

(2008b), in which the nonthermal emission from misaligned AGN originates close to the central

black hole. In this model, the seed photons for inverse-Compton scattering are provided by the

accretion disc, and the electrons are centrifugally accelerated in the vicinity of the black hole. A

potential problem for the model is explaining how the TeV photons escape the intense photon field

expected in the proposed emission region, although the authors claim that this would not be a

problem for photons of energy 10 TeV. Additionally the authors themselves acknowledge that the

model is relatively simplistic and that further work would be required to develop it fully.



Chapter 6

Modelling the Emission from

Fermi -LAT Selected Misaligned

AGN

6.1 Introduction

The detection of three misaligned AGN by current-generation IACTs has opened up a new class of

TeV γ-ray source for study and over the coming years the construction of the Cherenkov Telescope

Array (CTA), discussed in Section 6.4, will hopefully lead to the detection of more such objects. To

identify likely targets, it is useful to model the SEDs of misaligned AGN detected at high energies,

using currently available data to place constraints on the physical parameters. By considering

projected CTA response curves and the SEDs generated, it should be possible to make reasonable

predictions relating to the detection or non-detection of the objects modelled.

As discussed in the previous chapter, modelling the observed TeV emission of the currently

detected misaligned AGN has required a shift away from relatively simple single-zone models

towards more complicated multizone models. Of the models discussed, the most successful thus

far has been the multiblob model of Lenain et al. (2008), which has been able to reproduce the

TeV emission from both M87 (Lenain et al., 2008) and Centaurus A (Lenain et al., 2009). This

model will be used in this chapter to produce the SEDs of Fermi -LAT-selected misaligned AGN.

159



6.2. Fermi-LAT observations of Misaligned AGN 160

Object R.A. Dec. Redshift Class Catalogue
(J2000.0) (J2000.0) z Radio Optical

3C 78/NGC 1218 03h 08m 26.2s +04◦ 06’ 39” 0.029 FRI G 3CR
3C 84/NGC 1275 03h 19m 48.1s +41◦ 30’ 42” 0.018 FRI G 3CR
3C 111 04h 18m 21.3s +38◦ 01’ 36” 0.049 FRII BLRG 3CRR
3C 120 04h 33m 11.1s +05◦ 21’ 16” 0.033 FRI BLRG 3CR
PKS 0625-354 06h 27m 06.7s -35◦ 29’ 15” 0.055 FRIa G MS4
3C 207 08h 40m 47.6s +13◦ 12’ 24” 0.681 FRII SSRQ 3CRR
PKS 0943-76 09h 43m 23.9s -76◦ 20’ 11” 0.27 FRII G MS4
M87/3C 274 12h 30m 49.4s +12◦ 23’ 28” 0.004 FRI G 3CRR
Cen A 13h 25m 27.6s -43◦ 01’ 09” 0.0009b FRI G MS4
NGC 6251 16h 32m 32.0s +82◦ 32’ 16” 0.024 FRI G 3CRR
3C 380 18h 29m 31.8s +48◦ 44’ 46” 0.692 FRII/CSS SSRQ 3CRR

Table 6.1: Fermi -detected misaligned AGN. Notes a PKS 0625-354 shows some BL Lac object
characteristics in the optical band (Wills et al., 2004); b Distance to Cen A is assumed to be
3.8 Mpc (Harris et al. 2010). Taken from Abdo et al. (2010c).

6.2 Fermi-LAT observations of Misaligned AGN

The launch of the Fermi satellite has opened up many new sources to investigation at γ-ray

energies. Of the 709 AGN detected in the first 11 months of Fermi operation, 11 have been found

with jets misaligned to the line of sight (Abdo et al., 2010f). These 11 sources were found through

association of LAT detections with three main low-frequency surveys, the 3CR catalogue (Bennett,

1962; Spinrad et al., 1985), its revised version the 3CRR catalogue (Laing, Riley & Longair,

1983) and the Molonglo Southern 4 Jy Sample (MS4) (Burgess & Hunstead, 2006a, 2006b). The

11 sources included (Table 6.1) M87, Cen A and NGC 1275, all very high energy γ-ray AGN

discussed in Chapter 3, 4 additional FRI galaxies, 2 FRII galaxies, and 2 steep-spectrum radio

quasars (SSRQs) - objects showing steep radio spectra dominated by core and jet emission. More

recently, another potential radio galaxy was detected, IC 310 (Neronov, Semikoz & Vovk, 2010);

however, the observed high-energy photons could not originate in a jet but are likely produced at

the bow shock formed by the motion of the jet through a dense intercluster medium, a scenario

which cannot be modelled using the Lenain et al. (2008) model.

Of the sample of AGN, only three (Cen A, NGC 6251 and 3C 111) were EGRET candidate

sources; the other eight objects represent new discoveries made with Fermi -LAT. The FRIIs de-

tected show significantly lower γ-ray luminosities than, and comparable spectral indices to, their

parent population of FSRQs, while the FRI radio galaxies are also less luminous at γ-ray wave-

lengths than their parent population of BL Lac objects, as expected from AGN unification. In-

terestingly, the two SSRQs appear very similar to γ-ray emitting FSRQs, suggesting that more

powerful Doppler boosting is occurring within the jets than is seen in the other AGN. The average

flux for the all of the misaligned AGN discussed here above 100 MeV is F ∼ 6×10−8 photons cm−2
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Figure 6.1: Histogram showing the luminosity of Fermi -LAT-detected misaligned AGN (upper
panel, FRIs - red, FRIIs - green hatched) and blazars (lower panel, BL Lac objects - blue, FSRQs -
black hatched). The FRI galaxies show significantly lower luminosities than their parent population
of BL Lac objects, while 3C 111 is the only FRII outside the luminosity range of FSRQs. Taken
from Abdo et al. (2010c).

s−1, which is not particularly high, but all of the sources were detected with significance & 5σ.

The spectra of all of the objects can be described using simple power laws, except for NGC 1275,

the brightest at Fermi -LAT energies in the sample, whose spectrum softens above ≈ 3 GeV. Addi-

tionally, NGC 1275 is the only object in the sample for which variability on timescales of months

is observed, although comparison between Fermi and EGRET fluxes does indicate variability on

timescales of years for two other objects, NGC 6251 and 3C 111. Despite the small number of

FRIIs with Fermi -LAT associations, this does not necessarily suggest that they are less likely to

emit at γ-ray wavelengths, as there are fewer nearby FRIIs than FRIs, and the statistics are low.

The results of the Fermi analysis taken from Abdo et al. (2010c) are summarised in Table 6.2.

6.3 Modelling the Objects

The aim of this work is to investigate the likelihood of future detection at VHE of the Fermi

misaligned AGN using the planned CTA, and to determine whether the multiblob model can

successfully account for the detected γ-ray emission using sensible parameter values (of the order

of the values used in the modelling in Lenain et al. (2008)). With this in mind, the spectra of

the three misaligned AGN already detected at very high energies, M87, Cen A and NGC 1275 will

not be modelled, leaving a total of eight objects to be considered. Starting from parameter values

for each of the eight objects being considered inferred from the literature, and those for similar
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Object Γ Flux (ph cm−2 s−1) logLum (erg s−1)
(>100 MeV) (0.1− 10 GeV)

3C 78/NGC 1218 1.95 ± 0.14 4.7 ± 1.8 42.85
3C 84/NGC 1275 2.13 ± 0.02 222 ± 8 44.00
3C 111 2.54 ± 0.19 40 ± 8a 44.00
3C 120 2.71 ± 0.35 29 ± 17 43.43
PKS 0625-354b 2.06 ± 0.16 4.8 ± 1.1 43.43
3C 207 2.42 ± 0.10 24 ± 4 46.44
PKS 0943-76 2.83 ± 0.16 55 ± 12 45.71
M87/3C 274 2.21 ± 0.14 24 ± 6 41.67
Cen A 2.75 ± 0.04 214 ± 12 41.13
NGC 6251 2.52 ± 0.12 36 ± 8 43.30
3C 380 2.51 ± 0.30 31 ± 18 46.57

Table 6.2: Results of the Fermi -LAT analysis. Notes a Flux estimated keeping the spectral shape;
b Likelihood analysis limited to the 300 MeV-100 GeV range, flux(> 300 MeV) and luminosity
extrapolated down to 100 MeV. Taken from Abdo et al. (2010c).

objects from their parent population of blazars, it is possible to generate a number of SEDs for each

AGN consistent with the data from the Fermi -LAT. For each object, parameter values are found

that produce a spectrum for the on-blob case consistent with the Fermi -LAT spectrum. Using

these SEDs, the situations in which a γ-ray detection would be expected with the next-generation

IACT array, the Cherenkov telescope array (CTA) discussed in Section 6.4, can be determined.

Future multiwavelength studies will hopefully help to narrow down the likely SEDs, enabling a

more accurate determination of potential targets to be made.

6.3.1 Correcting for the EBL in Distant Objects

After publication of Lenain et al. (2008) the multiblob model was adapted to allow for modification

of the SEDs produced to take account of absorption by the EBL using the corrections proposed

in Kneiske, Mannheim & Hartmann (2002) and Kneiske et al. (2004). This addition to the model

allows it to be used to model the two relatively distant AGN detected by the Fermi -LAT, 3C 207

at z = 0.681 and 3C 380 at z = 0.692.

The model for the EBL put forward in Kneiske, Mannheim & Hartmann (2002) uses the

star-formation rates of the galaxies considered and the ultraviolet escape fraction (a description

of the amount of ultraviolet radiation absorbed and re-emitted by the interstellar medium) as

the dominant parameters. In the 2002 paper, using data from deep optical galaxy surveys as

the primary observational input, the authors construct the model through semi-empirical means;

however, this leads to a deficit in the predicted EBL at infrared wavelengths. To resolve this

problem, data from luminous infrared galaxies (LIGs), which represent a population of galaxies

with infrared luminosities LIR > 1011 L� and high star-formation rates are included. These LIGs

are not particularly numerous today, but a significant fraction of the infrared light could originate



6.3. Modelling the Objects 163

Figure 6.2: The evolving spectrum of the EBL as modelled by Kneiske et al. (2004) for the six
different sets of parameters described in the paper. The “best-fit” model is represented by the thick
solid line, “warm-dust model” by the thin dashed line, “low-infrared” model by the dot-dashed line,
“low star-formation rate model” by the thin solid line, “stellar-ultraviolet” model by the dashed
line and “high stellar-ultraviolet” model by the dotted line. The data at z = 2, 3 and 4 are taken
from Scott et al. (2000). The sources for the datapoints at z = 0 are shown in Kneiske, Mannheim
& Hartmann (2002).

from them. The resulting model constructed by the authors using the data is shown in Figure 6.2

for a series of different values for the initial parameters.

In the second paper (Kneiske et al., 2004), the effects of using different values for the initial

parameters on the EBL model and on the absorption of γ-rays is investigated. By comparing

the results from six different EBL models the authors determined that the optical depth from

0.2 < z < 1 is relatively insensitive to the initial parameters selected, but that at lower redshifts

the effects are significant. It is noted that there are a number of weaknesses to using faint-galaxy

counts for constructing an accurate model of the EBL, in that these counts tend to be limited

to relatively narrow wavelength ranges, thereby introducing strong selection effects. Additionally,

galaxy counts are not sensitive to any truly diffuse component of the EBL.

6.3.2 3C 111

3C 111 is an FRII-type radio source, at a distance of z = 0.0485, that displays several small-scale

features characteristic of a highly active nucleus (Sguera et al., 2005). The central core of the

object is bright, and variable on timescales of a few months. The host galaxy is classified as a
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Seyfert 1; however, the optical properties of the host galaxy are difficult to study as it is obscured

by a region associated with the Galactic dark cloud complex Taurus B (Ungerer et al., 1985). It

appears to be a small, elliptical-like galaxy strongly dominated by the bright nucleus. On kpc

scales, the object displays a radio double lobe and a single jet that leads into one of the radio

lobes. On parsec scales, the jet displays a number of interesting features, including superluminal

behaviour (Preuss, Alef & Kellermann, 1988). Additionally, recollimation shocks and regions of

interaction between the jet and the surrounding medium are also present. The jet is oriented at

an angle of θ = 18.1◦ ± 5.0◦ to the line of sight (Jorstad et al., 2005).

At X-ray energies, 3C 111 has been observed by every major instrument and shows long-term

variations of at least a factor of 5 in the 2−10 keV range (Reynolds et al., 1998), but no statistically

significant variations on timescales less than an hour have been observed (Eracleous, Sambruna &

Mushotzky, 2000). It has been suggested (Hartman et al. 1999) that 3C 111 is associated with

the EGRET source, 3EG J0416+3650, although initially this association was relatively tentative

as the optical position of the object is outside the 99% contour. However more recent work using

multiwavelength data has strengthened the likelihood of this association (Sguera et al., 2005), and

in 2008 it was shown that 3EG J0416 is most likely composed of three variable sources, one of

which is positionally coincident with 3C 111 (Hartman, Kadler & Tueller, 2008). The EGRET

source closest to 3C 111 was detected by EGRET only at energies above 100 MeV, and it is likely

that the object has a low duty cycle for γ-ray emission as it was only occasionally detectable by

EGRET (Hartman, Kadler & Tueller, 2008). Similarly, 3C 111 was not detected by the Fermi -

LAT in every time interval and reached the minimum significance required for detection on only

one occasion, with a bin-integration time of 3 months (Abdo et al., 2010c). The γ-ray flux from 3C

111 observed by the Fermi -LAT is ∼ 20 times smaller than the maximum recorded by EGRET,

suggesting significant variability in the decade between EGRET and Fermi -LAT observations;

however, low statistics make it impossible to calculate the significance of such variability (Kataoka

et al., 2011). Interestingly, a bright flare at 230 GHz was observed by the University of Michigan

Radio Astronomy Observatory towards the end of 2008 (during the initial 6 months of Fermi -LAT

observations), with a subsequent decline in flux over the next year and a half (Chatterjee, Marscher

& Jorstad, 2011).

On consulting the literature, it became apparent that the physical parameters of 3C 111 have

not been firmly constrained, and since 2000 a number of values have been proposed both for the

mass of the central black hole and for the inclination angle of the jet. Marchesini, Celotti &

Ferrarese (2004) estimated the central black hole mass to be 36×108 M�, using a relation between

MBH and the magnitude of the bulge of the host galaxy derived from observations of nearby galactic
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NH n1 n2 γmin γc γbr

(cm−3)
A 1.0× 106 1.5 3.5 1.0× 102 1.3× 105 0.9× 103

B 1.0× 106 1.5 3.5 1.0× 102 1.3× 105 0.9× 103

C 1.0× 106 1.5 3.5 1.0× 102 1.3× 105 0.9× 103

D 1.0× 106 1.5 3.5 1.0× 102 1.3× 105 0.9× 103

E 1.0× 106 1.5 3.5 1.0× 102 1.3× 105 0.9× 103

F 1.0× 106 1.5 3.5 1.0× 102 1.3× 105 0.9× 103

Table 6.3: The electron distributions used in the multiblob modelling of 3C 111.

Γb z θ MBH Rcap rb B
(M�) (rg) (cm) (G)

A 3.3 0.0491 19◦

2.0× 108
100 2.8× 1014 1.9

B 3.2 0.0491 10◦ 100 2.8× 1014 1.7
C 4.2 0.0491 24◦ 100 2.8× 1014 2.1
D 2.7 0.0491 19◦

36× 108
100 2.8× 1014 1.5

E 2.6 0.0491 10◦ 100 2.8× 1014 1.5
F 2.9 0.0491 24◦ 50 2.8× 1014 1.5

Table 6.4: The object parameter values used in the multiblob modelling of 3C 111. The initial
black hole mass is within the range proposed in Chatterjee et al. (2011) and the 2nd, larger, black-
hole mass is from Marchesini, Celotti, & Ferrarese (2004). The value of 19◦ for the inclination
angle of the jet is calculated using radio observations in Kadler et al. (2008), while the other values
used represent the extremes of the range inferred by Lewis et al. (2005), within the scope of the
multiblob model.

bulges and dynamical modelling of the stars and gas within them. It is noted that the relation

between MBH and the magnitude of the bulge of the host galaxy displays considerable scatter,

corresponding to an uncertainty in the measurement of MBH of 42%. More recently, MBH was

estimated using the observed properties of the Hα line (taken from Eracleous & Halpern, 2003)

in the object and a relation used in Decarli, Dotti & Treves (2011) to determine the mass of the

central black holes in a sample of blazars, returning a value of MBH = 2.4+0.6
−0.5×108 M� (Chatterjee

et al., 2011). The same authors then attempted to estimate MBH using the relationship between

it and the FWHM line width of the Hβ broad emission line presented in Vestergaard & Peterson

(2006); however, no accurate measurement for the FWHM of the Hβ line for 3C 111 had been

published, and so it was assumed that FWHM(Hβ) ≈ FWHM(Hα) = 4800 km s−1, leading to

MBH = 1.5+0.4
−0.3 × 108 M�. Further to this, the authors used the correlation between the widths

of the Hα and Hβ lines from Greene & Ho (2005), to estimate that FWHM(Hβ) = 5400 ± 400

km s−1 and used this estimate to calculate that MBH = 1.8+0.5
−0.4 × 108 M�. It is suggested that

the discrepancy between the values found for MBH by Chatterjee et al. (2011) and by Marchesini,

Celotti & Ferrarese (2004) is due to a different extinction correction adopted by the later work,

≈ 3 magnitudes lower than in the earlier paper. If the same extinction correction is applied in

both cases, similar values for the black hole mass are found. Without stronger evidence for or

against either conclusion, it was decided, for completeness, that 3C 111 should be modelled for
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both estimates of the black hole mass. In the case of the estimates taken from Chatterjee et al.

(2011) a value of 2.0 × 108 M� was selected as it is relatively central compared to the extremes of

the values calculated.

Using data from a 1996 radio outburst from 3C 111, during which a bright component was

ejected in the jet, Kadler et al. (2008) calculated a value of 19◦ for the angle of inclination by

assuming that a similarly bright component was also ejected into the counterjet; a jet speed of

β = 0.956 was also derived. One weakness with the estimate of the inclination is that it assumes

symmetry between the jet and counterjet, which need not be the case if the counterjet is covered

by an obscuring torus, as implied by X-ray spectral observations (Lewis et al., 2005) indicating

substantial amounts of obscuring material. Constraints on the inclination angle were also calculated

in Lewis et al. (2005) by using the observed superluminal motion in the radio jet and the projected

linear size of the radio lobes. It is found that the apparent velocity implies that either θ < 13◦ or

10◦ < θ < 26◦. However, assuming that the radio lobes of 3C 111 are of a size comparable with

the majority of powerful radio sources (defined as those with log10 P1215MHz > 25.0), the authors

argue that is likely that θ > 21.7◦ and that even if 3C 111 is a giant radio galaxy (with far larger

radio lobes), θ > 10.6◦. This makes it unlikely that the upper limit of 13◦ is correct and supports

the conclusion that 10◦ < θ < 26◦. It was decided to model the object for the inclination angle

found in Kadler et al. (2008) and the extremes of the range suggested in Lewis et al. (2005), as the

conclusions drawn in both appear sound. Due to limitations in the model, attempts to model 3C

111 for angles > 24◦ proved impossible because at such high angles of inclination all of the blobs

are outside the jet, even assuming that the γ-ray emission region is relatively close to the central

black hole (r = 50rg). Therefore the maximum inclination angle used was θ = 24◦.

Modeling of 3C 111 using the multiblob model was successful for each of the six combinations of

black hole masses and inclination angles, resulting in physically sensible values for the parameters

describing the γ-ray emission region and reproducing the γ-ray spectrum detected by the Fermi -

LAT; see Table ?? for the parameter values, Table ?? for the electron distributions, and Figures

6.3, 6.4 and 6.5 for the resulting SEDs. For each set of initial parameter values, a similar electron

distribution was assumed, while the size of the blobs was kept constant throughout at rb ≈ 10rg

for MBH = 2.0× 108 M� and rb ≈ 0.5rg for MBH = 2.0× 108. For MBH = 36× 108, the blobs are

relatively small but not unreasonably so, as rb ∼ rg, and this allows easier comparisons to be drawn

between the models for both sizes of black hole. As would be expected, smaller angles require lower

values of both Γb and B for both black hole masses; interestingly, however, the differences between

the parameters for 19◦ and for 10◦ are relatively small, while the parameters required to model the

Fermi -LAT data for 24◦ are more extreme though still physically plausible. Differences between
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the parameters required to model the Fermi -LAT spectrum with a more massive black hole are

smaller than those required with a less massive black hole, but in each case Γb and B can be

significantly lower for a black hole ∼ 10 times larger, no matter the angle of inclination. In the

case of model E, the combination of a large black hole and an extreme angle of inclination requires

that the formation region be closer to the black hole in terms of the gravitational radius, otherwise

the Doppler factors of the blobs are too low to produce high-energy emission. Additionally, this

relatively small distance from the black hole to the γ-ray emission region, combined with the

relatively small size of the blobs results in the difference between the on-blob and inter-blob cases

being very small, as can be seen in Figure 6.4. The Fermi -LAT spectrum for 3C 111, shown in

Figure 6.5, is similar at lower γ-ray energies of ∼ 103 MeV to that of M87 (Abdo et al., 2010c);

however, it does appear to drop off slightly more rapidly at higher energy. Comparing the spectra

produced by the multiblob model for 3C 111 with those produced for M87 in Lenain et al. (2008)

the very high energy spectrum would appear far steeper; however, the spectra produced for 3C

111 do not rule out very high energy emission although it is likely to be significantly fainter than

that seen from M87. Further discussion of potential future prospects for 3C 111 can be found in

Section 6.5.

6.3.3 3C 120

3C 120 was one of the objects for which data were collected both intentionally and serendipitously

while observing other objects by the H.E.S.S. telescopes. These data were analysed in Chapter 4

and it is discussed in detail in Section 4.5.16. There are two estimates for the black hole mass of this

object in recent literature, 3.5 ×107 M� (León-Tavares et al., 2010) and 5.5 ×107 M� (Vestergaard

& Peterson, 2006). The former estimate was calculated using the relation between black hole mass

and stellar velocity dispersion within the galactic bulge of an object, proposed in Greene & Ho

(2006) for AGN following on from work that showed a tight correlation between these parameters

in inactive systems. The larger estimate of the black hole mass comes from work on determining

the relationship between it and the luminosity and emission line-widths of the AGN (Vestergaard

& Peterson, 2006); these authors calibrated the relationship using results for 32 AGN, leading to a

relationship with relatively low scatter which enabled them to present fairly precise estimates for

the black hole masses of these AGN, including 3C 120.

The inclination angle of 3C 120 was calculated using data collected with the VLBA at a

wavelength of 7 mm between 1998 and 2001 (Jorstad et al., 2005). Using the radio data, seven

components were identified by Jorstad et al. (2005) and the apparent velocity of each was measured

over the period of observation. By measuring the variability timecale for each of the components,
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Figure 6.3: SEDs for 3C 111 produced with the parameter values shown in Table 6.4 and the
electron distributions described in Table 6.3 using multiblob models A, B and C (MBH = 2.0×108

M�). The solid curves represent the on-blob case and the dashed curves the inter-blob case.
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Figure 6.4: SEDs for 3C 111 produced with the parameter values shown in Table 6.4 and the
electron distributions described in Table 6.3 using multiblob models D, E and F (MBH = 36× 108

M�). The solid curves represent the on-blob case and the dashed curves the inter-blob case. In
model E, the curves for the on-blob and inter-blob cases are indistinguishable due to the small
relative distance of the γ-ray emission region from the black hole and the relative size of the blobs
compared to the black hole’s gravitational radius.
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Figure 6.5: Close-up of the SEDs calculated for 3C 111 shown in Figures 6.3 and 6.4 in the energy
regime observed by the Fermi -LAT, displayed together with the Fermi -LAT spectrum (the points)
for the object (Abdo et al., 2010c). The SEDs on the left are for MBH = 2.0 × 108 M�, while
those on the right are for MBH = 36 × 108 M�. The solid curves represent the on-blob case and
the dashed curves the inter-blob case. In model E, the curves for the on-blob and inter-blob cases
are indistinguishable due to the small relative distance of the γ-ray emission region from the black
hole and the relative size of the blobs when compared to the black hole’s gravitational radius.
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NH n1 n2 γmin γc γbr

(cm−3)
A 7.0× 107 1.5 3.6 1.0× 102 2.0× 104 2.3× 102

Table 6.5: The electron distribution used in the multiblob modelling of 3C 120.

Γb z θ MBH Rcap rb B
(M�) (rg) (cm) (G)

A 6.2 0.033 20.5◦ 5.5× 107 50 0.7× 1014 5.5

Table 6.6: The object parameter values used in the multiblob modelling of 3C 120. The black hole
mass used in the modelling is estimated using optical and ultraviolet single-epoch spectroscopy in
Vestergaard & Peterson (2006). A second, smaller, estimate of the black hole mass, 3.5× 107 M�,
is found in León-Tavares et al. (2010) using the black hole mass - stellar velocity dispersion of
the galactic bulge relation proposed in Greene & Ho (2006); however, (as explained in the text) it
proved impossible to replicate the Fermi -LAT data using this estimate. The angle of inclination
for the jet is that estimated in Jorstad et al. (2005).

an estimate of the Doppler factor in each of the knots was calculated; this could then be used, along

with the apparent velocity, to make an estimate of the inclination angle of the component being

studied. To estimate the viewing angle of the jet, Jorstad et al. (2005) found a weighted average

of the values for the viewing angles of each of the components with weights inversely proportional

to the uncertainties in the apparent speed, obtaining a value for θ ≈ 20.5◦.

The spectrum of 3C 120 constructed from the Fermi -LAT data is relatively steep and proved

difficult to reproduce for MBH = 5.5×107 M�. In the case of a smaller black hole mass, no solutions

were found without resorting to physically improbable values for the parameters. The spectrum

constructed successfully for the larger black hole mass uses the parameter values in Table 6.6 with

the electron distribution described in Table 6.5, and is shown in Figure 6.6. Despite modelling the

Fermi -LAT data with some success (Figure 6.7), the model has difficulty reproducing the steepness

of the spectrum between 100 MeV and 1 GeV without resorting to physically improbable values for

Γb and B. To approach the steepness, a relatively early break in the initial electron distribution

must be assumed, γbr ≤ 2.3×102, which leads to the requirement that Γb and B must be relatively

high to account for the Fermi -LAT observations; the earlier the assumed break in the spectrum,

the higher these values must be. For γbr = 2.3 × 102 the values of B and Γb needed to predict

emission at Fermi energies are comparable to the values seen in other, similar objects and the

spectrum can be reproduced relatively accurately. The blob size used in the model is ∼ 10rg,

which is the cause of the relatively large discrepancy between the on-blob and inter-blob cases.

As discussed, the spectrum of the object at Fermi -LAT energies is very steep, and the modelling

suggests that there is likely to be very little, if any, emission at very high energies: this can clearly

be seen in Figure 6.6.
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Figure 6.6: SED for 3C 120 produced with the parameter values shown in Table ?? and the electron
distribution described in Table 6.5. The solid curve represents the on-blob case and the dashed
curve the inter-blob case. The relatively high angle of inclination, high ratio between blob size and
black hole gravitational radius, and relative closeness of the γ-ray emission region to the black hole
lead to a large discrepancy between the on-blob and off-blob cases. The cut-off seen at the lowest
inverse-Compton energies is an artifact of the model.

Figure 6.7: Close-up of the SED for 3C 120 shown in Figure 6.6 in the energy regime observed by
the Fermi -LAT (right), displayed along with the Fermi -LAT spectrum for the object (the points)
(Abdo et al., 2010c). The large difference between the on-blob and inter-blob cases means that
the inter-blob case is not visible in the figure.
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NH n1 n2 γmin γc γbr

(cm−3)
A 1.3× 106 1.5 3.6 1.0× 102 1.1× 105 2.0× 103

B 4.5× 106 1.5 3.5 1.0× 102 1.1× 105 2.0× 103

C 1.3× 106 1.5 3.5 1.0× 102 1.1× 105 2.0× 103

Table 6.7: The electron distributions used in the multi-blob modelling of 3C 207.

6.3.4 3C 207

3C 207 is a powerful radio source associated with an SSRQ at a redshift of z = 0.681, hosted in

an FRII galaxy (Abdo et al., 2010c). Radio imaging of the object shows extended radio emission

with an extension of around 10 arcsec (Brunetti et al., 2002), as well as the presence of a relatively

small, fairly symmetric triple source (Bogers et al., 1994) with a one-sided radio jet. At low radio

frequencies, a symmetrical double-lobed structure can be observed. Reanalysis of available radio

data by Brunetti et al. (2002), resolved the radio jet into three main components, an innermost

knot ∼ 2′′ from the nucleus, a second knot ∼ 4′′ from the nucleus and a hotspot at the end of

the jet. The angle of the jet with respect to the line of sight is unknown, but it displays strong

curvature (Hough, Vermeulen & Readhead, 1998).

Observations of 3C 207 with Chandra in 2000 revealed a bright point-like source coincident

with the radio nucleus, enhanced diffuse emission in the direction of the counter-lobe, and extended

emission along the radio jet concentrated in two X-ray knots (Brunetti et al., 2002). These X-ray

knots are coincident with the most distant radio knot in the jet and the radio hotspot at the

end of the jet. The Chandra X-ray spectrum obtained for the nucleus is well fitted by a single

absorbed power law, showing significant absorption above the Galactic value in the direction of

3C 207, and it is thought to be dominated by a nonthermal, beamed component (Brunetti et al.,

2002). Additionally, evidence of highly ionised gas in the vicinity of the nucleus was detected. The

non-nuclear X-ray components follow a relatively flat power law and do not show the absorption

seen from the nucleus, suggesting that the knots are not affected by the dusty torus. The evidence

suggests that the X-ray knots are sites of electron acceleration and SSC emission. Modelling the X-

ray emission from the knots, it is argued that the angle of the jet to the line of sight at the position

of the knots is ∼ θbulk ≤ 10◦, compatible with the angle for the innermost region of the radio jet.

3C 207 is associated with the Fermi -LAT source, 1FGL J0940.8+1310, with a probability of 99%;

however two other AGN with lower association probabilities of 51% and 71% are also found within

the LAT 95% error radius (Abdo et al., 2010c).

To date there are no estimates of the mass of the central black hole in 3C 207, so it was decided

to model the object both for a fairly average black hole mass MBH ∼ 108 M� and for a larger

black hole mass MBH ∼ 109 M�, similar in mass to the one hosted in M87. The viewing angle
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Γb z θ MBH Rcap rb B
(M�) (rg) (cm) (G)

A 7.0 0.681 15.0◦
1.0× 108 100 2.0× 1014 4.8

B 3.8 0.681 15.0◦ 100 2.0× 1014 2.6
C 4.2 0.681 15.0◦ 1.0× 109 100 2.0× 1014 2.2

Table 6.8: The object parameter values used in the multiblob modelling of 3C 207. As there is little
data on the mass of the black hole in 3C 207, the object was modelled for both s more massive,
1.0×109 M� black hole and a less massive, 1.0×108 M� black hole. The angle of θ = 15◦ is implied
by observations of knots in the jet of 3C 207 described in Brunetti et al. (2002). Attempts were
made to model the object with similar electron distributions for both black hole masses; however,
the shape of the spectrum proved difficult to reproduce, leading to model B. Due to the large
redshift of 3C 207 the results were corrected for the EBL, using the model of Kneiske, Mannheim
& Hartmann (2002) and Kneiske et al. (2004).

of the jet is not strongly constrained. However, Brunetti et al. (2002) studied a number of X-ray

features detected by the Chandra satellite within the lobes and jet of the object at both X-ray

and radio wavelengths and used external inverse-Compton modelling to estimate the viewing angle

of the knot detected in the jet, finding θ ≤ 10◦. They argue that this is lower than would be

expected for the initial inclination angle of an object such as 3C 207, but that, as the radio jet

is relatively distorted, it is possible that the knot moves in a direction a few degrees closer to

the line of sight than the innermost parts of the jet. If this line of reasoning is correct, then the

jet may be at an inclination angle of θ ∼ 15◦. Initially, the object was modelled for angles of

θ ∼ 15◦ and θ ∼ 10◦; however, the differences between the parameter values required to reproduce

the Fermi -LAT spectrum for the two angles were minimal and only the results for θ = 15◦ are

presented here. The redshift of 3C 207 is relatively large (z = 0.681) so the EBL correction of

Kneiske, Mannheim & Hartmann (2002) and Kneiske et al. (2004) was included in the modelling.

As shown in Figure 6.8, the object was modelled twice with black hole mass MBH = 108 M�

and once with MBH = 109 M�. This was an attempt to see if the Fermi -LAT spectrum could be

reproduced using similar initial electron densities for both black hole masses, and the approach

was successful (Figure 6.9). The parameter values used to successfully model the object are shown

in Table 6.8 and the electron distributions are given in Table 6.7. For the models of the object

using MBH = 108 M�, the blobs have rb ≈ 13.5rg, similar in relative size to those used to model

Centaurus A in Lenain et al. (2008); however, the relatively large size leads to discrepancies

between the on-blob and inter-blob SEDs, so much so that the inter-blob SEDs are not visible in

Figure 6.9. The blobs used to model 3C 207 for MBH = 109 M� are the same size as those used

for the lower-mass black hole with rb ≈ 1.35rg. Although rb > rg, rb is still close enough to rg to

mean that the difference in SED output between the on-blob and inter-blob cases is minimal.

If a similar electron density is assumed for both values of black hole mass there is a very large

difference in the Γb and B values required to reproduce the Fermi -LAT spectrum, as would be
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expected. In fact, if it is assumed that MBH = 108 M� and NH = 1.3 × 106 cm−3, then the

values for Γb and B required to reproduce the Fermi -LAT spectrum are fairly large, Γb = 7.6 and

B = 4.8 G, compared to the more modest Γb = 4.5 and B = 2.2 G for MBH = 1.0 × 109 M�. If

the initial electron density is increased by a factor of ∼ 3.5 to NH = 4.5×106 cm−3 for MBH = 108

M�, still well within physically sensible limits, the values of Γb and B required to model the

spectrum at Fermi -LAT energies (Γb = 4.2 and B = 2.6 G) approach those found for the larger

assumed black hole mass. In all cases, the values for Γb and B used to reproduce the Fermi -LAT

spectrum are larger than those required to model the spectra from the other objects investigated,

but they are still physically reasonable. The synchrotron spectra generated for models B and C

are significantly lower relative to the inverse-Compton spectrum when compared to model A due

to the smaller values for Γb and B. Another consequence of the smaller Γb and B in models A

and C is that the slope of the SEDs at high energy is slightly lower, although, the difference is not

highly significant. In all cases, the VHE spectrum predicted for 3C 207 is very steep, far steeper

than has been detected from M87 but similar to that predicted for PKS 0521-36, and it has been

argued that PKS 0521-36 may be detectable with future instruments (Lenain et al., 2008).

6.3.5 NGC 6251

NGC 6251 is an FRI galaxy at a redshift of z = 0.0244 (Evans et al., 2005). It is classified as

an FRI radio galaxy based on the morphology of the jet and its luminosity at 178 MHz; however,

the overall structure observed at these wavelengths resembles that seen in FRIIs or intermediate

FRI/FRII sources (Takeuchi et al., 2012). Close to the nucleus, the object hosts a radio jet 130

kpc in length (Evans et al. 2005) and believed to be at an angle of inclination θ . 40◦ that appears

to be relativistic up to large distances from the core (Takeuchi et al., 2012). Fitting of the jet with

SSC models has led to a more constraining upper limit of θi . 18◦ (Chiaberge et al., 2003), and

an inclination angle of θi . 12◦ has been suggested in Evans et al. (2005). The angle of the jet

with respect to the line of sight is observed to change with distance from the core, from 33◦ at 50

arcsec from the core to 45◦ at 200 arcsec (Migliori et al., 2011). It has been argued that there is

a counterjet (Sudou et al., 2000), although this has been disputed (Jones & Wehrle, 2002). NGC

6251 displays radio lobes with a linear extension of ≈ 2.1 Mpc, larger than those of Centaurus A

(Takeuchi et al. 2012).

The central core of the NGC 6251 displays both thermal and nonthermal emission. At infrared

(≈ 15 to 30 µm) wavelengths, the SED appears to be dominated by thermal dust emission, with

nonthermal synchrotron emission only contributing ∼ 30% of the flux (Leipski et al., 2009). It

is likely that synchrotron emission accounts for most of the optical to ultraviolet flux from the
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Figure 6.8: SEDs for 3C 207 produced using the multiblob model with the parameter values shown
in Table 6.8 and the electron distributions in Table 6.7. The solid curves represents the on-blob
case and the dashed curves the inter-blob case. In model C, the on-blob and inter-blob cases are
indistinguishable due to the relatively small size of the blobs when compared with the assumed
black hole mass.
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Figure 6.9: Close-up in the energy regime observed by the Fermi -LAT of the SEDs shown for 3C
207 in Figure 6.8, displayed together with the Fermi -LAT spectrum (the points) for the object
(Abdo et al., 2010c). The solid curves represents the on-blob case and the dashed curves the inter-
blob case. A number of factors lead to a minimal difference between the on-blob and inter-blob
cases in model C. In models A and B, the difference between the on-blob and inter-blob cases is
so large that the inter-blob SED is not visible in the figure.
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NH n1 n2 γmin γc γbr

(cm−3)
A 4.0× 106 1.5 3.6 1.0× 102 0.9× 105 0.7× 103

B 4.0× 106 1.5 3.6 1.0× 102 0.9× 105 0.7× 103

Table 6.9: The electron distributions used in the multiblob modelling of NGC 6251.

Γb z θ MBH Rcap rb B
(M�) (rg) (cm) (G)

A 4.2 0.0244 18.0◦
6.0× 108 100 5.0× 1013 3.2

B 4.3 0.0244 12.0◦ 100 1.4× 1014 3.1

Table 6.10: The object parameters used in the multiblob modelling of NGC 6251. The value of
MBH = 6.0× 108 M� is consistent with the range reported in Ferrarese & Ford (1999) calculated
using data collected with the Hubble Space Telescope. The smaller value for the angle of inclination,
θ = 12◦ is taken from Evans et al. (2005) calculated by modelling X-ray data, while θ = 18◦ is
taken from the upper limit reported in Chiaberge et al. (2003), calculated using data from radio
through to EGRET wavelengths.

core of the object (Chiaberge et al., 2003). Surrounding the nucleus is a warped dusty disc that

unevenly reflects ultraviolet emission from the core (Ferrarese & Ford, 1999). The dominant source

of X-ray emission from NGC 6251 is the unresolved nucleus; however, observations with Chandra

have revealed three distinct regions of the jet that are also X-ray emitters. A thermal X-ray halo

extends out to ∼ 100 kpc around the object, and there is a drop in the surface brightness in

positional agreement with one of the radio lobes, suggesting that the lobe has evacuated a cavity

in the surrounding gas (Migliori et al., 2011). The object has been detected at higher energies with

INTEGRAL (Foschini et al., 2005) and Beppo-SAX (Guainazzi et al., 2003), and it has also been

proposed as the counterpart to the EGRET source 3EG J1621+8203 (Mukherjee et al., 2002).

The nuclear SED of the object displays the typical structure seen in blazars, and it has been

suggested that the observed nuclear emission is likely dominated by emission from a relativistic

jet (Migliori et a., 2011). The initial Fermi -LAT detection of NGC 6251 suggested an association

between the Fermi -LAT source and the nucleus of the object, but later observations have led to

the suggestion that an association with the northwest radio lobe may be more likely. This possible

association with the northwest radio lobe led to observations of the region with Suzaku, which

revealed nonthermal diffuse X-ray emission associated with the lobe (Takeuchi et al., 2012).

The mass of the central black hole in NGC 6251 is currently estimated to be in the range

MBH = (4 − 8) × 108 M� (Ferrarese & Ford, 1999). The authors used Hubble Space Telescope

observations of the gas orbiting the centre of NGC 6251 to determine the radial velocity of this gas.

Further to this, they constructed two different analytical representations of the stellar brightness

profile to estimate the effect of the stellar potential on the motion of the gas. This led them to

conclude that the gas is in motion around a central body of mass MBH = (4 − 8) × 108 M�. For
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the present study, it was decided to model NGC 6251 for MBH = 6.0 × 108M�, in the centre of

the estimated range. The inclination angle of the jet used in model A is the upper limit, θ . 18◦,

proposed in Chiaberge et al. (2003). This estimate was determined through SSC modelling of the

emission observed from radio through to EGRET energies. Despite the simplicity of the model

used, the upper limit reported appears relatively conservative considering the data, and so it was

used for this work. It is noted by the authors that the inclination angle reported is lower than

that those found for the orientation of the external dusty disc (θ ∼ 76◦) and the inner gas disc

(θ ∼ 36◦) from Ferrarese & Ford (1999), but that the structure is warped and tilted, with the axis

of the inner disc significantly twisted with respect to the outer dusty disc. Previous attempts to

constrain the inclination angle using VLBI observations of the jet-counterjet ratio found θ < 47◦

(Jones & Wehrle, 2002), compatible with the value reported by Chiaberge et al. (2003). Another

possible value for the inclination angle, θ = 12◦, was put forward in Evans et al. (2005), based on

an inverse-Compton model that could reproduce the X-ray emission seen from the object further

down the jet. Despite the different assumptions made by the authors in finding the inclination

angle, it was decided to investigate NGC 6251 with θ = 12◦, as it is within the range previously

suggested by Chiaberge et al. (2003). Additionally, Evans et al. (2005) modelled NGC 6251 with

θ = 40◦, which was able to reproduce the sidedness observed in the jet and counterjet of the object;

however, this angle is far beyond that suggested by Chiaberge et al. (2003) and beyond the scope

of the multiblob model.

Attempts were made to use parameters for the initial electron distribution similar to those

suggested in Evans et al. (2005); however, it proved impossible to replicate the γ-ray spectrum

using these parameters with the multiblob model, as even with high values of Γb ∼ 10 and B ∼ 10 G

the SED produced at Fermi -LAT energies is more than an order of magnitude below that observed.

By assuming an initial electron distribution with similar parameter values to those used for the

other objects in this study, it proved possible to reproduce the general Fermi -LAT spectrum for

NGC 6257 with the multiblob model for both inclination angles, although in both cases the error

bars on the second point from the left lie above the predicted spectrum. The parameter values

used are shown in Table 6.10, with the electron distributions shown in Table 6.9, and the SEDs

produced are shown in Figure 6.10. As can be seen in Figure 6.11 the fifth point from the left in

the Fermi -LAT spectrum is far above the predicted SED, but the extremely large errors on the

value mean that both models are still valid. To successfully model the spectrum for θ = 18◦, the

radius of the blob had to be slightly smaller in order for the blobs to remain in the jet; the result

of this is that the blobs are relatively small compared to the gravitational radius of the black hole,

with rb = 0.56rg, but not unreasonably so. For θ = 12◦, the blobs can be larger than those for
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θ = 18◦, and in this case rb = 1.57rg. In both cases, the blobs are small enough that the differences

between the on-blob and inter-blob cases are minimal, as seen in Figures 6.10 and 6.11. At very

high energies, the predicted spectra are less steep than seen in some of the other objects studied

but are about an order of magnitude below the spectrum predicted for 3C 273 in Lenain et al.

(2008). Since it was argued that 3C 273 would at best be a marginal detection with H.E.S.S., NGC

6251 is not a promising target for current-generation telescopes. However, detection with CTA in

the future cannot be ruled out and prospects for this will be discussed in Section 6.5.

6.3.6 3C 380

3C 380 is one of the brightest and most luminous extragalactic radio sources, displaying a luminosity

at 178 MHz of ∼ 1028 W Hz−1 sr−1. It is at a redshift of z = 0.692 (Wilkinson et al., 1991). At

radio wavelengths, the object displays a complex structure on arcsecond and subarcsecond scales,

which has led to some difficulty in classifying it. Unlike most FRII sources, which have a relatively

weak core, the emission from the core of 3C 380 is quite strong, dominating the emission above

∼ 20 GHz. The core is surrounded by a halo with a far less clear structure than the lobes present

in most such objects (Wilkinson et al. 1984), leading to it being initially categorized as a compact

steep-spectrum source. A one-sided radio jet is also detected. Work carried out by Wilkinson

et al. (1991) detected the presence of superluminal motion in the jet out to ∼ 100 pc from the

core, with βapp = 10.7± 2.7. Detection of the radio halo was reported, and it is suggested that it

could be a pair of overlapping radio lobes, while knots similar to those seen in FRII lobes are also

observed. The detection of these features suggests that 3C 380 may be a FRII galaxy viewed from

a relatively small angle to the line of sight (θ ∼ 10◦); however, the core is neither as strong nor

as variable at optical and radio wavelengths as would be expected if this were the case (Wilkinson

et al., 1991). Later work has supported this conclusion, with evidence suggesting that the relative

weakness of the core’s radio emission and its apparent lack of variability are due to dilution by

the emission from the halo at these wavelengths, while observations at wavelengths of 6 cm have

shown the nuclear jet to be highly variable (Polatidis & Wilkinson, 1998).

At optical wavelengths, 3C 380 displays low polarisation, which is not consistent with data

from other FRIIs at low angles to the line of sight. A possible explanation is that the region of the

jet responsible for optical synchrotron emission, the ∼ 1 pc closest to the core, is at a greater angle

to the line of sight than the rest of the jet. It has been argued that a substantial contribution to

the infrared emission from 3C 380 is likely nonthermal in origin (Shi et al., 2005). Work carried

out using data from the Hubble Space Telescope discovered a close correspondence between optical

and radio hotspots in the jet (O’Dea et al., 1999). Despite the relatively intense radio and optical
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Figure 6.10: SEDs for NGC 6251, produced with the parameter values shown in Table 6.10 and
the electron distributions shown in Table 6.9. The solid curve represents the on-blob case and the
dashed line the inter-blob case. Due to the relatively small size of the gravitational radius of the
black hole compared to the size of the blobs the difference between the on-blob and inter-blob cases
is too small to be seen on the plots.
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Figure 6.11: Close-up (in the energy regime observed by the Fermi -LAT) of the SEDs for NGC
6251 shown in Figure 6.10, displayed together with the Fermi -LAT spectrum (the points)(Abdo
et al., 2010c). The solid curve represents the “on-blob” case and the dashed curve the inter-blob
case. Due to the relatively small size of the gravitational radius of the black hole compared to the
size of the blobs the difference between the on-blob and inter-blob cases is too small to be seen on
the plots.

NH n1 n2 γmin γc γbr

(cm−3)
A 2.1× 107 1.4 3.6 1.0× 102 1.1× 105 0.9× 103

B 2.1× 107 1.4 3.6 1.0× 102 1.1× 105 0.9× 103

C 1.2× 107 1.4 3.5 1.0× 102 1.1× 105 0.9× 103

D 2.1× 107 1.4 3.5 1.0× 102 1.3× 105 0.9× 103

Table 6.11: The electron distributions used in the multiblob modelling of 3C 380.

campaigns carried out on 3C 380, very little had been written about the object at X-ray energies

or above until its detection by the Fermi -LAT.

As with 3C 207, the other more distant object studied (Section 6.3.4), the mass of the central

black hole in 3C 380 is currently not constrained. It was decided to model the object for both

an average mass black hole MBH = 108 M� and a higher mass black hole MBH = 109 M�. The

value of θ = 10.3◦ for the inclination angle comes from an upper limit calculated in Kameno et

al. (2000), based on VLBI Space Observatory Programme (VSOP) observations of a number of

components within the jet of the object. The authors used observations of superluminal motion in

two components in the parsec-scale jet to estimate the viewing angle of these structures. Comparing

the position vectors of the two components, the authors suggest that it is likely that they have

been ejected ballistically, and that if this is the case then the angle of the jet to the line of sight

must be less than the the viewing angle of the closest component to the core, hence θ ≤ 10.3◦. A

somewhat more controversial value for the inclination angle, θ = 0.7◦, is calculated in Polatidis &

Wilkinson (1998) using VLBI observations with the VLBA and VLA . Assuming that the jet bends

either away from or towards an angle of θ = 9.5◦ and has a constant minimum Lorentz factor of

γmin = 6.1, the authors find that with the measured apparent velocity near the core, either θ = 0.7◦
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Γb z θ MBH Rcap rb B
(M�) (rg) (cm) (G)

A 3.5 0.692 10.3◦
1.0× 108 100 1.2× 1014 3.2

B 3.1 0.692 0.7◦ 100 1.4× 1014 3.0
C 2.7 0.692 10.3◦

1.0× 109 100 1.4× 1014 2.6
D 2.8 0.692 0.7◦ 100 1.4× 1014 2.0

Table 6.12: The object parameters used in the multiblob modelling of 3C 380. As there is little
data on the size of the black hole in 3C 380, the object was modelled for both a high mass black
hole, 1.0 × 109 M� and lower mass black hole, 1.0 × 108 M�. The inclination angle of 10.3◦ is
implied by the motion of knots moving ballistically in the parsec-scale jet, as discussed in Kameno
et al. (2000), while the much smaller angle of 0.7◦ comes from observations at radio wavelengths
implying acceleration within the jet (Polatidis & Wilkinson, 1998). Due to the large redshift of
the object, the results were corrected for EBL absorption using the model of Kneiske, Mannheim
& Hartmann (2002) and Kneiske et al. (2004).

or θ > 72◦. It is argued that, because of the broad correlation between the brightness of the radio

jet and the implied change in the size of θ required in the alternative geometry, that it is unlikely

that the jet starts out at a large viewing angle and then bends to point close to the line of sight.

The value θ = 0.7◦ is preferable. The value of θ = 0.7◦ is controversial, as it is difficult to explain

the lack of blazar-like activity from the object if the jet begins so close to the line of sight.

The redshift of 3C 380 is relatively high, z = 0.692, requiring that the EBL correction of

Kneiske et al. (2004), as applied in the case of 3C 207, be applied also to the models generated for

3C 380. The electron distributions and object parameter values used to successfully reproduce the

Fermi -LAT spectrum for 3C 380 are shown in Tables 6.11 and 6.12, respectively, and the SEDs

generated are displayed in Figures 6.12 and 6.13. It should be noted that in the case of θ = 0.7◦,

the multiblob model performs similarly to a simple single-zone model. As shown in Figure 6.14, the

multiblob model can successfully reproduce the Fermi -LAT spectrum for the values of MBH and θ,

used with physically sensible values for Γb and B in the modelling. In all cases the model spectrum

drops off quite sharply at energies > 104 MeV. The blobs used in model A have radius rb = 8.08rg

and those in model B have rb = 9.42rg, which leads to a relatively small discrepancy between the

on-blob and inter-blob cases as can be seen in the figures. For the larger black hole mass, the blobs

have rb = 0.94rg, the same size as those used in model B and similar to those used in model A,

but due to the larger black hole mass the difference between the on-blob and inter-blob cases is

minimal. As would be expected, the values for Γb and B required to reproduce the Fermi -LAT

spectrum are lower in the case of greater MBH and smaller θ; however, the difference in the values

for these parameters between θ = 10.3◦ and θ = 0.7◦ is relatively small. All of the models show

very steep spectra at high energies, which would suggest that 3C 380 is unlikely to be detected as

a source of very high energy emission.
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Figure 6.12: SEDs for 3C 380 produced using multiblob models A and B (MBH = 1.0× 108 M�)
with the parameter values shown in Table 6.12 and the electron distributions shown in 6.11. The
solid curves represents the on-blob case and the dashed curves the inter-blob case.
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Figure 6.13: SEDs for 3C 380 produced using multiblob models C and D (MBH = 1.0 × 109

M�) with the parameter values shown in Table 6.12 and the electron distributions shown in 6.11.
The solid curves represent the on-blob case and the dashed line the inter-blob case. Due to a
combination of factors the difference between the on-blob and inter-blob cases is too small to be
seen in the plots.
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Figure 6.14: Close-up (in the energy regime observed by the Fermi -LAT) of the SEDs for 3C 380
shown in Figures 6.12 and 6.13 displayed together with the Fermi -LAT spectrum (the points)(Abdo
et al., 2010c). The solid curves represent the on-blob case and the dashed curves the inter-blob
case. In models C and D, the difference between the on-blob and inter-blob cases is too small to
be visible, due to a number of factors discussed in the text.
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6.3.7 Objects withoutFermi -LAT Spectra

Three of the misaligned AGN detected with the Fermi -LAT were too faint for high-energy spectra

to be calculated (Abdo et al. 2010c). These objects were not modelled, but are discussed here for

completeness.

3C 78/NGC 1218

The radio source 3C 78 was initially identified with the S0a galaxy NGC 1218 by Mills (1960),

before being confirmed by the work of Maltby, Matthews & Moffet (1963). The object is at a

redshift of z = 0.0289 (Schmidt, 1965). Work carried out early in the 1970s hinted at the presence

of extended radio emission associated with the nucleus (Fomalont, 1971), and data collected with

the Multi-Element Radio Linked Interferometer Network (MERLIN) later confirmed the existence

of a one-sided radio jet with an extent of ∼ 1 kpc (Unger, Booler & Pedlar, 1984). Using the Hubble

Space Telescope, an optical synchrotron jet, almost coincident with the radio jet, was discovered

emanating from the nucleus of the object, similar to those in AGN such as M87, but with shorter

apparent length (Sparks et al., 1995).

X-ray observations carried out with the BeppoSAX satellite in 1997 revealed an X-ray source

with an extension of ≈ 4′ (Trussoni et al., 1999a). The data collected were not consistent with

pure thermal or nonthermal emission, suggesting the presence of both a hot corona with T ∼ 1 keV

and a nonthermal, basically unabsorbed source with a soft spectrum. The lack of absorption of the

X-ray source is consistent with the previous detection of the optical jet, if the optical synchrotron

emission is interpreted as due to limited Doppler boosting at an angle of 30◦ − 40◦ to the line of

sight, as no interaction with a dusty torus than would be expected. The overall X-ray spectrum

observed is similar to that seen in other FRI radio galaxies. The successful detection of γ-rays

with the Fermi -LAT further strengthens the evidence for high-energy nonthermal emission from

the object. 3C 78 is one of the weakest sources in the sample detected with the Fermi -LAT and is

not detected at energies . 100 MeV.

PKS 0625-354

The AGN PKS 0625-354 is hosted in a cD elliptical galaxy, which is a member of the poor cluster

(a galaxy cluster containing ¡ 1000 galaxies, most of which are spirals) A 3392 (Trussoni et al.,

1999b), at a redshift of z = 0.0525 (Willis et al., 2004). The object is classified as an FRI, and there

is evidence for the presence of an optical point source at the nucleus (Govoni ei al., 2000). At radio

wavelengths, the emission is dominated by the core, with a one-sided radio jet at an inclination

angle implied by the limited X-ray absorption to be < 60◦ to the line of sight (Trussoni et al.,
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1999a) and optical (Chiaberge, Capetti & Celotti, 1999) wavelengths. A low-brightness, extended

radio halo, with a total extent of ∼ 340 kpc, has been observed (Ekers et al., 1989). Initial X-ray

observations showed apparently extended X-ray emission (Siebert et al., 1996); however, later work

suggested the presence of a central component with a luminosity of ∼ 1043 erg s−1 (Trussoni et

al., 1999a). It has been shown that the X-ray emission from the object is most likely composed of

both a thermal and nonthermal component, the latter following a power-law spectrum. There is

some suggestion, based on a study of the object’s spectra, that PKS 0625-354 might be a BL Lac

type object (Wills et al., 2004) and it does appear to be close to the transition between FRI radio

galaxies and LBLs (Trussoni et al., 1999a). PKS 0625-354 was not detected by the Fermi -LAT

at energies . 300 MeV (Abdo et al., 2010c) and the flux in the range 300 MeV - 100 GeV was

relatively low. PKS 0625-354 was not detected by the Fermi -LAT at energies . 300 MeV and the

spectrum was relatively noisy (Abdo et al., 2010c). Due to the relatively weak flux of the object,

its spectral parameters could only be constrained using data from 300 MeV to 100 GeV and the

low quality of the data meant that no Fermi -LAT spectrum could be be produced.

PKS 0943-76

Unfortunately no in-depth studies of PKS 0943-76, z = 0.27, have been carried out and so infor-

mation on this object is relatively limited. The AGN is hosted in what appears to be a cD giant

elliptical galaxy (Burgess & Hunstead, 2006) and is classified as an FRII (Abdo et al., 2010c).

Initial optical observations did detect a faint envelope extending 15-20 arcseconds leading to sus-

picion of a spiral structure (Hunstead, 1971). At radio wavelengths (5 GHz), the object appears

to display a double structure (Gaensler & Hunstead, 2000) and the AGN has been detected in

X-rays with the ROSAT satellite (Brinkmann, Siebert & Boller, 1994). PKS 0943-76 is within the

95% error radius of the Fermi -LAT source 1FGLJ09040.2-7605, leading to a less secure association

between the two objects than is seen for the other Fermi -LAT detected misaligned AGN that are

with the 99% error radius of the Fermi-LAT ; however, it is still a plausible candidate for the γ-ray

emission (Abdo et al., 2010c). As the object is relatively faint, an SED could not be constructed

using the Fermi -LAT data, and so modelling was not attempted.

6.4 The Cherenkov Telescope Array (CTA)

CTA is the proposed successor to the three currently operational arrays of IACTs discussed in

Section 1.5. CTA will consist of two arrays, each consisting of many Cherenkov telescopes of various

sizes with one array situated in the Northern hemisphere and one in the Southern hemisphere to
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ensure full sky coverage at TeV energies (Actis et al., 2011). CTA will have a sensitivity an order

of magnitude higher at TeV energies than current arrays and an increased energy range, extending

from ∼ 10 GeV to beyond 100 TeV. The increased collection area planned for the array should

significantly increase the detection rates of transient phenomena, and the large number of IACTs

will allow for enhanced sky-survey capabilities. For studying extended sources, CTA will have

an angular resolution of ∼ 0.2 arcmin, a factor of 5 better than that achievable with current

instruments.

Designs for the IACTs that will be used in the construction of the array are based on under-

standing that has been collected during the construction and operation of the current generation

of telescopes. Structurally, the CTA IACTs will resemble those currently in operation and the

cameras used will probably consist of conventional photomultiplier tubes, although advanced pho-

ton detectors currently under development are also being considered. The overall structure of the

array is currently being investigated, and a number of potential layouts are discussed in Section

6.5, as this will affect the capabilities of CTA in different energy ranges and hence the likelihood of

VHE detection of the Fermi -LAT detected misaligned AGN. The array will contain three different

sizes of telescopes to maximise the capability of the array across the desired energy range. At lower

energies, . 100 GeV, it is envisaged that a small number of large telescopes with dish diameter

∼ 23 m will provide the greatest coverage, as they will be able to collect enough photons to trigger

from the fainter air-showers. Between 100 GeV and 1 TeV, shower detection and reconstruction is

currently well understood, and it is assumed that this energy region will be well served by a grid

of medium-sized telescopes of diameter ∼ 12 m, spaced ∼ 100 m apart. The increased number

of medium-sized telescopes compared to current arrays will result in better shower reconstruction

than is currently possible as more telescopes will image the Cherenkov light pool, while the in-

creased area will give improved sensitivity. At very high energies, > 10 TeV, the main limitation

is the extremely low flux and so a large effective area is required, while the high energy of the

photon primary ensures that the shower can be detected well beyond the 150 m radius typical of

Cherenkov light pools. The high Cherenkov light yield of these photons means that they can be

detected by relatively small individual IACTs, with diameter ∼ 6 m, and a spacing between the

telescopes of 100 m − 200 m should ensure that the parameters of the Cherenkov light pools can

be accurately determined.
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Subarray LSTs MSTs SSTs
E 4 23 32
I 3 18 56
J 3 46 0
K 5 0 71
B 5 37 0

Table 6.13: The various configurations currently being considered for CTA. LSTs are large IACTs
(∼ 23 m in diameter), MSTs are smaller (∼ 12 textrmm in diameter) and SSTs are the smallest
(diameter ∼ 6m). Information taken from Rulten (2012).

6.5 Future Prospects for CTA

To determine the likelihood of any of the objects in the present study being detected with CTA,

an assumed sensitivity curve must be compared with the emission predicted by the model. Recent

work by Rulten (2012) studied the sensitivity for a number of potential arrangements for CTA,

using Monte Carlo simulations to model air showers and potential CTA response. Initially 14

potential arrangements for CTA were considered, although only four of these (subarrays labelled

E, I, J and K) have the potential to meet the sensitivity goals of the system. Each array is made

up of a number of telescopes of various sizes: large-sized telescopes (LSTs) ∼23 m in diameter,

medium-sized telescopes (MSTs) ∼12 m in diameter, and small-sized telescopes (SSTs) ∼6 m in

diameter. Currently, the four subarray arrangements E, I, J and K are expected to be able to fulfil

all of the design goals for CTA within a reasonable budget. The composition of these subarrays

is shown in Table 6.13, and their potential layouts can be seen in Rulten (2012). An additional

design, subarray-B, has also been proposed; although unable to achieve the sensitivity goals across

the full CTA sensitivity range compared to the other four this subarray is expected to perform

extremely well in energy range below 100 GeV. Judging from the SEDs generated for each of

the objects investigated in Section 6.3, this arrangement would probably have a greater chance of

successfully detecting such sources.

The sensitivity of CTA is defined as the γ-ray flux which can be detected significantly above

background in a given observation time. In VHE γ-ray astronomy, a detection is considered sig-

nificant if the signal is at least 5σ above the background, and sensitivity curves are typically

constructed in the context of reaching this significance level in 50 hours of observations. The sensi-

tivity curves constructed by Rulten (2012) for the five potential subarray arrangements, assuming

data analysis is performed with the method used at Durham, described in Chapter 2, and the

parameter space for background cuts are determined using a multi-layer perception (MLP) neural

network (software simulating biological architecture, which can be “trained”, described in detail

in Rulten, 2012), are shown in Figure 6.15.

Using the SEDs produced in Section 6.3 with the senistivity curves in Figure 6.15 it is possible
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Figure 6.15: Predicted sensitivity curves for each of the subarrays currently being considered for
the design of CTA. The bump at approximately 250GeV in the sensitivity curve for subarray-K
occurs as the design has no medium sized telescopes leading to a discontinuity in performance in
this energy regime. The dot-dashed line represents 0.1% of the HEGRA Crab Nebula spectrum,
the dotted line represents 1% of the HEGRA Crab Nebula spectrum, the dashed line represents
10% of the Crab Nebula spectrum and the solid straight line represents 100% of the Crab Nebula
spectrum. Taken from Rulten (2012).
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to predict whether the objects investigated could be detected with CTA. If the SED lies above the

sensitivity curve, then the probability of a detection after 50 hours of observations is relatively high.

Using the Durham method, it would appear unlikely that any of the objects will be detectable with

the proposed subarrays, although three of the models for 3C 111 (A, C (Figure 6.3) and D (Figure

6.4)) predict fluxes around 60 GeV close to the level necessary for detection by configurations K

and B (see Figure 6.16).

However, as can be seen from Figure 6.17, the sensitivity that can be achieved by CTA is

strongly dependent on the analysis method used. In the figure, all except for the Paris method of

the analysis methods shown use standard Hillas-style reconstruction similar to the seen described in

Section 2.2 and the difference in sensitivity is due to different methods used for background rejection

and determination of the parameter space for background cuts. In addition to the MLP method,

Rulten (2012) also modelled the sensitivity of CTA for two analysis methods using the boosted

decision tree (BDT) method for determining the parameter space for background cuts (described

in Ohm, van Eldik & Egberts, 2009), which combines the information carried in several parameters

into a single classification parameter which is then used to carry out the background cuts. The

method used by the MAGIC telescopes, shown in the figure as the red curve, uses the ”Random

Forest” approach to background rejection described in Albert et al. (2008), where acceptance or

rejection of an event is determined using multiple binary decision trees constructed using Monte

Carlo simulations and data from hadronic showers. The Paris analysis (described in Lemoine-

Goumard, Degrange & Tluczykon, 2006 and shown on the figure as a fuchsia curve) calculates

third order moments for detected Cherenkov light pools (such as the average lateral spread of

Cherenkov photon origins) as opposed to the second order moments used by the standard analysis

described in Section 2.2 and then combines these moments into a single dimensionless parameter

which uses the BDT method to determine if the event passes the selection cuts. This requires

an increase in the amount of available processing time but leads to a significant improvement in

sensitivity at energies <∼ 2.5 TeV for CTA. Using the Paris analysis method, it appears that it

should be possible for CTA to achieve flux sensitivity right down to the milliCrab level.

Comparing the SEDs generated from the modelling with the sensitivity predicted for subarray-

E using the Paris analysis method suggests that 3C 111 is likely very close to the threshold required

for a detection at energies of ∼ 40 GeV; this is the case for all of the models, although models A

and D appear the most promising (with θ = 19◦). Additionally, NGC 6251 shows some potential,

as the predictions for model A are relatively close to the flux sensitivity expected for subarray-E

at ∼ 40 GeV. It should be noted that the likelihood of detection of 3C 111 or NGC 6251 is greater

in the case of subarray-K using the Paris analysis, as this configuration shows greater sensitivity
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Figure 6.16: The predicted SEDs for models A, C and D of 3C 111 compared with the predicted
sensitivity of CTA configurations K and B. The solid lines are the “on-blob” case, the dashed lines
the “inter-blob” case, the dotted lines represent the sensitivity curve for configuration B and the
dot-dashed line is the sensitivity curve for configuration K. The dot-dashed line represents 0.1%
of the HEGRA Crab Nebula spectrum, the dotted line represents 1% of the HEGRA Crab Nebula
spectrum, the dashed line represents 10% of the Crab Nebula spectrum and the solid straight line
represents 100% of the Crab Nebula spectrum. Taken from Rulten (2012).
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Figure 6.17: Predicted sensitivity of subarray-E using various analysis methods. Taken from Rulten
(2012).

than subarray-E in the region around ∼ 40 GeV. The raw data used in the construction of Figure

6.17 were not available at the time of writing, precluding display of the sensitivity curve alongside

the constructed SEDs for the objects in question. During a high-energy flare, the SEDs of any of

the objects may change significantly in the VHE γ-ray region, making them interesting as targets

of opportunity in the case that such an event is detected by an instrument monitoring them at

lower energies.

6.6 Conclusions

Using the multiblob model of Lenain (2008), the γ-ray spectra of five misaligned AGN detected

with the Fermi -LAT and reported in Abdo et al (2010c) were successfully modelled using sensible

values for the initial electron distribution and other physical parameters, although some difficulty

was found in reproducing the Fermi -LAT spectrum from NGC 6251. The inclination angles and

black hole masses assumed for the objects studied were taken from the literature; however, in two

cases, 3C 207 and 3C 380, no estimates of the central black hole mass were available. It was decided

that for these two objects central black hole masses of MBH = 1×108 M� and MBH = 1×109 M�

would be used in the modelling, as black holes with similar masses are observed in many AGN.

Additionally, these two objects are at redshifts z > 0.6, meaning that to accurately model their

spectra the effects of the EBL must be taken into account. The effect of the EBL on the spectra of

these two objects was accounted for by using the EBL corrections proposed in Kneiske, Mannheim

& Hartmann (2002) and Kneiske et al. (2004). For most of the objects studied, the black hole

masses and inclination angles from the literature led to predictions consistent with the spectra
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observed with the Fermi -LAT. However, it proved impossible to reproduce the γ-ray spectrum of

3C 120 using the black hole mass of 3.5×107 M� proposed by León-Tavares et al. (2010) without

resorting to extreme values of Γb and B.

The SEDs generated for 3C 111, 3C 120, 3C 207, 3C 380 and NGC 6251 were then compared to

the predicted sensitivity curves for the next-generation IACT system, CTA, from Rulten (2012),

to determine the likelihood of detection of these misaligned AGN. These sensitivity curves have

been constructed for five potential arrangements, and it was found that the subarrays with the

highest sensitivities at energies ∼ 30 GeV show the most potential for detecting the objects studied;

nevertheless with the standard analysis methods used in Durham, none of the objects are likely

to be detected within 50 hours of observations. Further to the work with the Durham analysis

methods, Rulten (2012) also simulated the sensitivity of one of the subarrays, subarray-E, using a

number of other approaches to the analysis. One of these approaches, the analysis method used

in Paris, leads to a significant increase in sensitivity, particularly at lower energies, where the

misaligned AGN are closest to the sensitivity curves. The most likely object to be detected with

CTA is 3C 111, whose SED approaches close to the sensitivity curve for subarray-E using the Paris

analysis methods. Detection of the other objects investigated here appears unlikely. Nonetheless,

it should be noted that AGN are intrinsically variable, and a flare event from one of the objects

studied may enable its detection with CTA. In particular, in the case that a high energy flare

from 3C 120 or NGC 6251 (both at redshifts z < 0.1) is detected by another instrument, it would

potentially be worth observing with CTA, as the fluxes predicted by the multiblob model at CTA

energies are not too far from the predicted sensitivity of the array. The two more-distant objects,

3C 207 and 3C 380, are unlikely to be detected by CTA even in the case of a flare; however, they

would still be worth observing should they flare at high-energies because such observations could

be used to help to improve the limits placed on the energy density of the EBL.



Chapter 7

Conclusions and Future Prospects

7.1 Introduction

The detection of M87 at very high energies by Aharonian et al. (2006d) showed that the relativistic

jets in AGN need not be aligned directly with the line of sight for VHE emission to be observed from

such objects. This detection, coupled with the later detections of Centaurus A (Aharonian et al.,

2009b) and NGC 1275 (Aleksić et al., 2012c) at very high energies, provided the primary stimulus

behind the investigation discussed in this work. Initially, the potential for emission from Seyfert

galaxies at very high energies was studied using data collected with the H.E.S.S. array; the results

of this study are discussed in detail in Chapter 4. An important question raised by the detection of

GeV-TeV emission from misaligned AGN is how to successfully reproduce it in models, as simple

single-zone models have great difficulty in predicting such high energy emission from sources with

relatively high inclination angles without resorting to physically improbable scenarios. To answer

this, a number of more complicated models have been proposed and some of the more successful

approaches are discussed in Chapter 5. Using one of these models, the multiblob model proposed

in Lenain et al. (2008), the GeV emission from a number of misaligned AGN detected with the

Fermi -LAT (Abdo et al., 2010c) was modelled, both to determine whether the emission could be

accounted for using this approach and whether any TeV emission might be expected from these

objects. Chapter 6 contains a full discussion of the results of this study. The early chapters of this

work, Chapters 1-3, focus on providing the background necessary to understand both the context

of these studies and the underlying theory.

A summary of this work is provided in this chapter, as well as discussion of the potential for

further investigation into the areas studied.

196
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7.2 Current Status of TeV AGN Observations

As previously stated in Chapter 3 AGN are extremely luminous objects hosted at the centre of

some galaxies. These objects are believed to harbour supermassive black holes consuming gas and

dust from their local environment. Despite the broad range of properties observed, it is currently

argued that they are likely all manifestations of the same phenomenon viewed from different angles,

and that the differing properties are a result of the anisotropic nature of these sources. AGN have

been detected over a broad range of energies, from radio waves all the way through to VHE γ-

rays, and since the construction of the current generation of IACTs the number known to emit at

TeV energies has grown dramatically, as has our understanding of their properties in this extreme

energy band.

To date, more than 40 AGN have been detected at TeV energies; the vast majority of these

are blazars, AGN oriented such that the jet points at a small angle to the line of sight. In blazars,

the radiation emitted by particles within the jet is likely to be due to synchrotron self-Compton

emission shifted to higher energies by relativistic Doppler boosting to give the VHE emission

detected. The emission from AGN has been observed to be highly variable across all wavelengths;

such variability has been detected even at TeV energies, with PKS 2155-304 displaying variability

on timescales of ∼ 3 minutes, the fastest known at any wavelength. In addition to the blazars

detected, three AGN with higher inclination angles have also been observed at TeV energies, M87,

Centaurus A and NGC 1275. All of the AGN detected so far are at relatively small redshifts, with

the furthest at a redshift of ∼ 0.5. This is at least in part because TeV photons undergo pair

production with photons from the background infrared radiation field known as the EBL.

7.3 Seyfert Galaxies

Seyfert nuclei are the most numerous AGN and the brightest observed in the local Universe. Despite

this, they are significantly less luminous than quasars and, unlike quasars and radio galaxies, they

appear to be hosted primarily in spiral galaxies. Prominent emission lines in the optical and

ultraviolet parts of the spectrum are seen in all Seyfert nuclei, and like other AGN they emit

nonthermally across the entire electromagnetic spectrum, although they tend to be weaker at

radio wavelengths. They are classified as either Seyfert 1 (Sy1) or Seyfert 2 (Sy 2), depending on

the observed spectrum. Sy1s show broad permitted emission lines with FWHM > 1000 km s−1,

believed to originate from rapidly moving gas near the central black hole, and narrow emission

lines from permitted and forbidden transitions with FWHM . 500 km s−1, believed to originate

from slower-moving gas further away from the black hole. Sy2s on the other hand only display
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the narrow emission lines, implying that they are objects viewed at a higher angle to the line

of sight so that the broad-line region is obscured. Sy1s are further categorised from 1.2 to 1.9

depending on the ratio of the luminosity of the broad-line to narrow-line components, with lower

ratios corresponding to numerically higher categorisations.

7.3.1 Seyfert Galaxies in the GeV Regime

The first detection of a Seyfert galaxy with the Fermi -LAT was that of PMN J0948+0022, reported

in Abdo et al. (2009b), although prior to this hints of blazar-like activity had been observed from

a number of such objects. PMN J0948+0022 is a relatively distant Sy1 galaxy at z = 0.585;

owing to absorption by the EBL, this makes it unlikely to be a source of TeV γ-rays. However,

since its detection, three other such objects have also been reported as GeV γ-ray emitters. All

four Sy1s detected at these energies display narrow permitted lines, spectra similar to blazars and

luminosities typical of or higher than those of many BL Lac objects. Two of the Sy1s detected by

the Fermi -LAT are at much lower redshifts than PMN J0948+0022, z = 0.061 and z = 0.24, and

are potentially of more interest for VHE γ-ray astronomy.

Further to the detection of these Sy1s at GeV energies, detection of the Sy2 galaxy NGC 4945

was reported in the 11-month Fermi -LAT catalogue (Abdo et al., 2010a). Additionally another

Fermi -LAT source was found in the region of NGC 1068 (another Sy2) and theFermi -LAT source

has since been associated with this object. Both of these Sy2s display both AGN and starburst

activity in their central regions, either of which could be responsible for the observed GeV emission.

Further work analysing the γ-ray emission from these objects by Lenain et al. (2010) suggests that

the emission from NGC 1068 likely originates from the central AGN, while the emission from NGC

4945 is probably connected with starburst activity. It is argued that unlike the GeV emission from

the Sy1s, which is likely due to similar processes to those seen in blazars, the emission from the

AGN in NGC 1068 is more likely to be external inverse-Compton emission.

7.3.2 The Search for TeV Emission from Seyfert Galaxies

The detection of M87 at very high energies showed that the jets of AGN need not be aligned with

the line of sight for TeV emission to be observed. Taken together with the blazar-like properties

observed from some Seyfert galaxies, this suggested that there may be potential for TeV emission

from such objects, and it was decided to analyse data collected serendipitously with the H.E.S.S.

array in regions near high-energy Seyferts. The study was carried out initially between 2008 and

2009, before the launch of the Fermi satellite, so the INTEGRAL-IBIS catalogue of lower-energy

γ-ray sources was used to select the objects for study. The resulting list was then expanded to
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include a number of X-ray-emitting Seyfert nuclei detected by XMM-Newton.

The list constructed from the catalogues was then sorted so that only those objects within the

field of view of the H.E.S.S. array were selected; any Seyfert galaxies at redshifts z > 0.3 were

removed, as any very high energy emission would likely be heavily attenuated by the EBL. The

positions of the remaining objects were then compared to the list of H.E.S.S. observing runs to

determine those for which data unaffected by hardware faults or adverse weather conditions had

been previously collected. After selection, 16 objects were determined to be of interest: 9 Sy1s, 1

Sy 1.5, 3 Sy2s, a quasar and a type 2 AGN displaying Seyfert-like properties. The amount of data

available for each object varied considerably.

The data from each of the objects were analysed using the standard H.E.S.S. analysis as dis-

cussed in Chapter 2; two different background models were used (reflected-region and ring back-

ground). No evidence for very high energy emission was found for any of the objects studied,

although in some cases the very limited amount of data makes it impossible to draw any strong

conclusions. Flux upper limits for each of the objects were calculated assuming similar spectral

shapes to M87; in most cases these limits are not very constraining.

7.4 Misaligned AGN at High energies

Currently,all the misaligned AGN detected at TeV energies have been FRI radio galaxies, although

NGC 1275 is also classified as a Seyfert 1.5 and Centaurus A displays an extremely complex

morphology. Due to the relatively large point-spread functions of current IACTs, it is not possible

to directly resolve the source of the emission in these objects; however, variability studies allow an

upper limit to be placed on the size of the emission region, thereby constraining likely sites of the

VHE γ-ray production. Thus far, all of the misaligned TeV AGN have also been detected at GeV

energies by the Fermi satellite.

M87 was the first of the misaligned AGN to be detected at TeV energies and was initially re-

ported by the H.E.S.S. Collaboration. It is a giant elliptical galaxy with a redshift of z = 0.004233,

hosting a very high mass (> 109 M�) supermassive black hole at its nucleus and displaying a

radio jet, with superluminal features, at an angle of ≈ 20◦ to the line of sight. At TeV energies,

the M87 displays variability on timescales of ∼ 1 day, faster than has been detected at other

wavelengths and providing strong constraints on the size of the emission region. These constraints

imply that the TeV photons probably originate close to the central black hole, although there is

still a possibility that HST-1 (a knot in the jet) may be the source of the very high energy activity.

Centaurus A was eventually detected after a very large number of hours of observation with
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the H.E.S.S. telescopes. The object displays a complex morphology, a radio jet with an angle

of inclination ∼ 50◦, and two radio lobes. The nucleus hosts a supermassive black hole with a

mass ∼ 108 M�. Unfortunately, Centaurus A is relatively weak at TeV energies; this has made

it impossible to carry out any variability analysis and so the source of the emission is currently

unknown. Interestingly, there is some evidence that Centaurus A may be the source of four of the

UHECR protons detected above 57 EeV, although the statistics are clearly very low.

NGC 1275 is the misaligned AGN most recently detected at very high energies; it was initially

detected at GeV energies with the Fermi -LAT prior to its detection with the MAGIC telescopes.

The object is a very bright radio source, with an extended jet at an angle of inclination that

increases from 10◦−20◦ on milliarcsecond scales up to 40◦−60◦ on arcsecond scales. It is situated

relatively nearby at a redshift z = 0.0179. Comparing the spectrum of the source at TeV energies

to the spectrum at Fermi -LAT energies suggests a break or cut-off at energies of some tens of GeV.

In 2010, the detection of 11 misaligned AGN, using data collected with the Fermi -LAT, was

reported. These detections offer potentially interesting objects for study at very high energies,

particularly for the planned Cherenkov Telescope Array (CTA). Fermi -LAT detection of NGC 1275

has already led to the detection of this object with the MAGIC telescopes as previously discussed.

It was decided that it would be interesting to estimate the potential for very high energy emission

from these objects and use these estimates to determine the likelihood of detecting them at TeV

energies. To do this, four of the models that have been proposed to account for the TeV emission

of the currently detected misaligned AGN were investigated. These models are discussed below.

7.4.1 Modelling Emission from TeV Misaligned AGN

The detection of misaligned AGN at TeV energies has raised a number of interesting questions

about the mechanisms responsible for high-energy emission in such objects, as they cannot be

adequately modelled using the simple one-zone SSC models that are generally used to reproduce

the spectra of blazars. This is because the simple models used rely on Doppler boosting to increase

the energies of the photons emitted by particles in the jets of blazars. This requires that the jet is

at a small angle to the line of sight, which is clearly not the case in misaligned AGN. To explain

the emission from misaligned AGN, a number of different models have been put forward; for this

work, three inhomogeneous jet approaches and one approach focusing on emission from the core

were considered and are discussed in detail in Sections 5.5 and 5.6. A brief description of each of

these models is included below.

It has been proposed by Tavecchio & Ghisellini (2008) that the high-energy emission from M87

can be explained if the jet is structured in such a manner as to have a fast-moving inner spine,
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surrounded by a slower moving sheath. The TeV emission then originates from inverse-Compton

scattering in one region of photons produced in the other, which are seen in the local frame as

boosted in energy due to relativistic effects. One issue with the model is that by introducing two

physically distinct regions, there are 18 free parameters to be constrained. Additionally, the model

has difficulty reproducing the hard very high energy spectrum observed from M87 during the flare

in 2005, because the slope of the TeV spectrum in the model depends primarily on absorption of

the TeV photons by the dense optical radiation field rather than the intrinsic spectrum.

The decelerating-jet model proposed by Georganopoulos & Kazanas (2003) similarly relies

on synchrotron photons being upscattered through inverse-Compton processes by electrons in a

region of the jet with different physical parameters to the initial emission region. In this model,

it is assumed that a power-law electron distribution is injected at the base of the jet, which then

decelerates as the distance from the initial injection site increases, and the electrons cool radiatively.

The increase in detected energies comes about as synchrotron photons from downstream in the

jet appear strongly boosted in the upstream part of the jet so that they contribute to the inverse-

Compton emission at higher energies than would otherwise be expected. Although the model

can successfully reproduce the TeV spectrum of M87, it is difficult to formulate a scenario where

the observed short-term variability could be generated. The model also has difficulty reproducing

the very high energy spectrum of Centaurus A, although it can successfully model the object at

Fermi -LAT energies.

The final jet model considered was that proposed by Lenain et al. (2008) which expands on

the simple blob-in-jet models used previously. Instead of modelling the emission as originating

from a single, homogeneous blob of plasma, seven such blobs are modelled, moving along the jet

and situated on (or near) the Alfvén surface, ∼ 50 − 100rs from the central black hole. This is

likely a more accurate description of the plasma in the jet than single-blob models, although it is

still a simplification of the actual scenario. Due to the proximity to the central black hole, the

blobs are still within the collimation region, and it is assumed that they are situated on a spherical

“cap”; this means that the angle to the line of sight for a given blob depends on its position in the

jet. In this scenario, each of the blobs contributes to the emission detected from an object by an

amount dependent on its Doppler factor. The geometry of the model leads to two extremes, the

“on-blob” case, in which the line of sight passes directly through a blob, leading to the maximum

predicted emission for given parameter values, and the “inter-blob” case, where the line of sight

passes between three blobs, resulting in a minimum. The model has proven relatively robust and

has been used successfully to model both the TeV emission from M87, including the emission

observed during the 2005 flare, and that from Centaurus A.
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In addition to jet models, the core emission model of Rieger & Aharonian (2008b) was also

considered, in which it is suggested that the emission originates primarily from a region very close

to the event horizon of the central black hole. In this model, electrons are accelerated to high

energies by a rigidly rotating dipolar magnetosphere, generated as magnetic flux is dragged inward

and amplified by dynamo action in the inner accretion disc. The TeV emission in such a model is

assumed to arise via inverse-Compton scattering of photons from an advection-dominated accretion

disc by this population of accelerated electrons. The model shows good agreement with the TeV

spectrum observed from M87 and can reproduce the observed variability; however, the region close

to the central black hole is expected to have a high photon density which may render the region

effectively opaque to TeV γ-rays.

7.4.2 Multiblob Modelling of GeV Selected Misaligned AGN

Of the models investigated, it was decided to use the multiblob model of Lenain et al. (2008),

as it makes relatively few assumptions compared to the other models and has been successfully

used to account for the very high energy emission of both M87 and Centaurus A. After selecting

the multiblob model, it was decided that, in addition to determining whether the misaligned

AGN detected with the Fermi -LAT could be potential targets for CTA, it would also be useful to

determine the capacity of the model to successfully reproduce the high-energy emission from these

objects using physically sensible parameters. The model has been adapted to take account of the

absorption of VHE γ-rays by the EBL, using the prescription described in Kneiske, Manheim &

Hartmann (2002) and Kneiske et al. (2004). This proved important when considering the spectra

of the two most distant misaligned AGN detected by Fermi -LAT, 3C 207 at z = 0.681 and 3C 380

at z = 0.692.

M87, Centaurus A and NGC 1275 were all excluded from the modelling, as previous work has

already been done in this area and the objects have already been detected with current instruments.

This left eight sources of high-energy emission detected with the Fermi -LAT to be studied; however,

due to paucity of data, the Fermi -LAT spectra for three of these objects have not currently been

determined and so only the remaining five were modelled. Before modelling each object, the

literature was consulted to determine, where available, the currently accepted values for the mass

of the central black hole and the angle of inclination with respect to the line of sight. The modelling

of the AGN was done such that parameters were found that produced spectra for the on-blob case

which were consistent with the spectra derived from the Fermi -LAT data.

The multiblob model proved successful in reproducing the spectra for the misaligned AGN

considered using physically sensible values for the parameters in each case, although some difficulty
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was noted in reproducing the Fermi -LAT spectrum of NGC 6251. The predicted spectra for each

of the objects at very high energies are very steep, and in most cases very low fluxes are predicted,

although the predicted spectrum for 3C 111 at TeV energies is brighter than those of the other

objects. Interestingly, the model had great difficulty reproducing the spectrum of 3C 120 using

the black hole mass of 3.5× 107 M� put forward by León-Tavares et al. (2010) without resorting

to physically improbably values of Γb and B, so a value of 5.5× 107 M� (Vestergaard & Peterson,

2006) is preferred. By comparing the spectra produced using the multiblob model for each of these

objects with the projected sensitivity curves for CTA from Rulten (2012), it was found that none of

the objects are likely to be detected by any of the proposed array configurations within 50 hours of

observations using the standard analysis methods used in Durham. However, if the more-sensitive

Paris analysis is used, then the sensitivity of the array should be close to that required to detect 3C

111, assuming it is in a similar state to that during the Fermi -LAT observations. It is important

to note that the fluxes generated using the multiblob model for each object are not necessarily

very far from the predicted sensitivity of the potential CTA arrays, and that during flares at GeV

energies the possibility of TeV detection will probably be significantly higher.

7.5 Future Prospects for the Study of Misaligned AGN at

TeV Energies

Despite the lack of detection of Seyfert galaxies using data collected by the H.E.S.S. array, the

relatively few objects for which significant data were available limits the ability to draw any strong

conclusions about these objects, and in most cases the upper limits calculated are not particularly

constraining. The detection of a number of Sy1s and a Sy2 at high energies with the Fermi -LAT

suggests some potential for TeV emission from these types of object, but the spectra predicted

suggest that detection with current IACTs is perhaps unlikely. Further to the work described here,

it would potentially be of great interest to model the spectra of the GeV Seyfert galaxies at TeV

energies and compare the spectra generated to projected sensitivity curves for CTA to determine

the likelihood of detection with the planned array. Modelling these objects is likely to be more

complicated than modelling the misaligned AGN discussed in Chapter 6, as it is probable that

there is a significant contribution to the seed photon field for inverse-Compton scattering from

external sources such as the accretion disc. To help constrain the parameters required for such

models, it is important to obtain well-sampled, contemporaneous SEDs of the objects through

multiwavelength campaigns. Additionally, the radio galaxy NGC 1275 detected by the MAGIC

telescopes displays similar spectral properties to Sy 1.5 galaxies, suggesting that detailed study of
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this object may help to constrain potential sources of TeV emission in true Seyfert galaxies.

The modelling of the five misaligned AGN detected with the Fermi -LAT for which high-energy

spectra are available using the multiblob model proved successful, allowing potential SEDs to

be generated in each case. In spite of this, the SEDs produced are not heavily constrained,

with multiple alternative solutions existing in each case. To further constrain the parameters

used in these models, multiwavelength studies for each of the objects, covering the peaks of the

synchrotron and inverse-Compton emission as well as the spectrum at Fermi -LAT energies, would

be extremely useful. If such data were available that for those objects for which multiple potential

values for the angle of inclination and black hole mass exist, then it might be possible to provide

some support for more specific values for these parameters using the multiblob model. Further

Fermi -LAT observations of all of the misaligned AGN would be of great interest to determine

the high-energy spectra for those objects for which a spectrum is currently unavailable, while also

allowing variability studies of the objects to be carried out. Any variability at high energies is of

particular interest when considered alongside the results of the modelling. The modelling suggests

that it is unlikely that CTA will be able to detect most of the modelled objects within 50 hours

of observations; however, the predicted TeV spectra are bright enough that it is probable that

detection will be possible during a flare, particularly for the less distant AGN.

The construction of CTA will hopefully lead to the detection at TeV energies of a number of

misaligned AGN, including 3C 111 modelled here. However, even without new detections, CTA

observations will allow the physical processes behind emission from M87, Centaurus A and NGC

1275 to be studied in greater detail. In spite of the current work going into modelling the very

high energy emission of these objects, the mechanisms and regions responsible for this emission

remain relatively unconstrained. It is to be expected that the increased resolution and energy

range of CTA will help provide evidence supporting or refuting these models and significantly

increasing our understanding of emission from misaligned AGN. Observations of the more distant

misaligned AGN 3C 207 and 3C 380, particularly during GeV flares, could be of great importance

in placing limits on the EBL, as the expected spectra are steeper than those seen from blazars.

The construction of water-based Cherenkov telescopes such as the High Altitude Water Cherenkov

Observatory (HAWC) is unlikely to contribute greatly to our understanding of misaligned AGN as

such telescopes have high threshold energies (∼ 1− ∼ 100 TeV) beyond the energy range at which

significant emission from misaligned AGN is expected.
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Mészáros P. 1992, High Energy Radiation from Magnetized Neutron Stars, The University

of Chicago Press.

Monet, D. G., et al. 2003, AJ, 125, 984, The USNO-B Catalog
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Appendix A

Analysis Dataset Details

Tables containing the details of the data used in the analysis of the Seyfert galaxies discussed in

Chapter 4 are found in this appendix. For each observation, the run number, its target, the position,

offset from the analysis position, the date of observation and the duration of the observation are

given. In this thesis only data where all four H.E.S.S. telescopes were operational and without

technical problems and during periods of good weather were used. The target of each observation

is the object for which the runs were initially taken to study.

A.1 MRK50

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

20250 3C 273 187.28 2.55 1.4 2004-04-13 1682

20251 3C 273 187.28 1.55 1.8 2004-04-13 1683

20252 3C 273 187.28 2.55 1.4 2004-04-13 1683

20274 3C 273 187.28 1.55 1.8 2004-04-14 1682

20275 3C 273 187.28 2.55 1.4 2004-04-14 1683

20912 3C 273 187.28 1.55 1.8 2004-05-22 1682

20915 3C 273 186.78 2.05 1.1 2004-05-22 1680

20916 3C 273 187.78 2.05 2.0 2004-05-22 1683

20937 3C 273 187.28 1.55 1.8 2004-05-23 1684

24101 3C 273 187.28 2.55 1.4 2005-02-10 1687

234
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Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

24102 3C 273 187.28 1.55 1.8 2005-02-10 1687

24103 3C 273 187.78 2.05 2.0 2005-02-10 1687

25324 3C 273 186.78 2.05 1.1 2005-05-03 1678

25345 3C 273 187.28 2.55 1.4 2005-05-04 1678

25346 3C 273 187.28 1.55 1.8 2005-05-04 1677

25391 3C 273 187.78 2.05 2.0 2005-05-06 1681

25392 3C 273 186.78 2.05 1.1 2005-05-06 1679

25443 3C 273 187.28 2.55 1.4 2005-05-08 1677

25444 3C 273 187.28 1.55 1.8 2005-05-08 1677

25510 3C 273 186.78 2.05 1.1 2005-05-11 1677

25511 3C 273 187.78 2.05 2.0 2005-05-11 1677

25542 3C 273 187.28 1.55 1.8 2005-05-14 1678

25544 3C 273 187.28 2.55 1.4 2005-05-14 1678

37192 3C 273 187.28 1.55 1.8 2007-02-15 1688

37193 3C 273 187.78 2.05 2.0 2007-02-15 1688

37194 3C 273 186.78 2.05 1.1 2007-02-15 1689

37218 3C 273 187.28 2.55 1.4 2007-02-16 1688

37221 3C 273 187.28 1.55 1.8 2007-02-16 1688

37222 3C 273 187.78 2.05 2.0 2007-02-16 1691

37223 3C 273 186.78 2.05 1.1 2007-02-16 1689

37249 3C 273 187.28 2.55 1.4 2007-02-17 1688

37250 3C 273 187.28 1.55 1.8 2007-02-17 1688

37251 3C 273 187.78 2.05 2.0 2007-02-17 1688

37252 3C 273 186.78 2.05 1.1 2007-02-17 1688

37283 3C 273 187.28 2.55 1.4 2007-02-18 1688

37284 3C 273 187.28 1.55 1.8 2007-02-18 1688

37285 3C 273 187.78 2.05 2.0 2007-02-18 1689

37354 3C 273 187.28 2.55 1.4 2007-02-22 1688

38650 3C 273 187.28 1.55 1.8 2007-05-07 1688

38651 3C 273 187.28 2.05 1.5 2007-05-07 1688
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Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

38677 3C 273 187.28 2.55 1.4 2007-05-08 1687

38678 3C 273 186.78 2.05 1.1 2007-05-08 1688

38702 3C 273 187.78 2.05 2.0 2007-05-09 1687

38703 3C 273 187.28 1.55 1.8 2007-05-09 1688

38739 3C 273 187.28 2.55 1.4 2007-05-10 1688

38740 3C 273 186.78 2.05 1.1 2007-05-10 1689

A.2 3C 273

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

20250 3C 273 187.28 2.55 0.7 2004-04-13 1682

20251 3C 273 187.28 1.55 0.7 2004-04-13 1683

20252 3C 273 187.28 2.55 0.7 2004-04-13 1683

20274 3C 273 187.28 1.55 0.7 2004-04-14 1682

20275 3C 273 187.28 2.55 0.7 2004-04-14 1683

20912 3C 273 187.28 1.55 0.7 2004-05-22 1682

20915 3C 273 186.78 2.05 1.0 2004-05-22 1680

20916 3C 273 187.78 2.05 0.0 2004-05-22 1683

20937 3C 273 187.28 1.55 0.7 2004-05-23 1684

24101 3C 273 187.28 2.55 0.7 2005-02-10 1687

24102 3C 273 187.28 1.55 0.7 2005-02-10 1687

24103 3C 273 187.78 2.05 0.0 2005-02-10 1687

25324 3C 273 186.78 2.05 1.0 2005-05-03 1678

25345 3C 273 187.28 2.55 0.7 2005-05-04 1678

25346 3C 273 187.28 1.55 0.7 2005-05-04 1677

25391 3C 273 187.78 2.05 0.0 2005-05-06 1681

25392 3C 273 186.78 2.05 1.0 2005-05-06 1679
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Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

25443 3C 273 187.28 2.55 0.7 2005-05-08 1677

25444 3C 273 187.28 1.55 0.7 2005-05-08 1677

25510 3C 273 186.78 2.05 1.0 2005-05-11 1677

25511 3C 273 187.78 2.05 0.0 2005-05-11 1677

25542 3C 273 187.28 1.55 0.7 2005-05-14 1678

25544 3C 273 187.28 2.55 0.7 2005-05-14 1678

37192 3C 273 187.28 1.55 0.7 2007-02-15 1688

37193 3C 273 187.78 2.05 0.0 2007-02-15 1688

37194 3C 273 186.78 2.05 1.0 2007-02-15 1689

37218 3C 273 187.28 2.55 0.7 2007-02-16 1688

37221 3C 273 187.28 1.55 0.7 2007-02-16 1688

37222 3C 273 187.78 2.05 0.0 2007-02-16 1691

37223 3C 273 186.78 2.05 1.0 2007-02-16 1689

37249 3C 273 187.28 2.55 0.7 2007-02-17 1688

37250 3C 273 187.28 1.55 0.7 2007-02-17 1688

37251 3C 273 187.78 2.05 0.0 2007-02-17 1688

37252 3C 273 186.78 2.05 1.0 2007-02-17 1688

37283 3C 273 187.28 2.55 0.7 2007-02-18 1688

37284 3C 273 187.28 1.55 0.7 2007-02-18 1688

37285 3C 273 187.78 2.05 0.0 2007-02-18 1689

37354 3C 273 187.28 2.55 0.7 2007-02-22 1688

38650 3C 273 187.28 1.55 0.7 2007-05-07 1688

38651 3C 273 187.28 2.05 0.5 2007-05-07 1688

38677 3C 273 187.28 2.55 0.7 2007-05-08 1687

38678 3C 273 186.78 2.05 1.0 2007-05-08 1688

38702 3C 273 187.78 2.05 0.0 2007-05-09 1687

38703 3C 273 187.28 1.55 0.7 2007-05-09 1688

38739 3C 273 187.28 2.55 0.7 2007-05-10 1688

38740 3C 273 186.78 2.05 1.0 2007-05-10 1689
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A.3 4U 1344-60

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

25007 G307.6+0.7 202.78 -61.81 2.4 2005-04-11 1677

25009 G308.2+0.7 204.03 -61.71 1.8 2005-04-11 1678

25011 G308.8+0.7 205.27 -61.60 1.3 2005-04-11 1677

25013 G309.1-0.7 206.51 -62.92 2.3 2005-04-12 1677

25027 G309.4+0.7 206.51 -61.48 0.9 2005-04-12 1138

25030 G309.7-0.7 207.79 -62.78 2.2 2005-04-12 1678

25031 G310.0+0.7 207.73 -61.35 0.9 2005-04-12 1677

25032 G310.3-0.7 209.06 -62.64 2.3 2005-04-12 1677

25046 G310.6+0.7 208.94 -61.21 1.2 2005-04-13 1680

25069 G311.2+0.7 210.14 -61.06 1.7 2005-04-15 1678

25370 G311.8+0.7 211.33 -60.89 2.2 2005-05-05 1677

25842 G309.4+0.7 206.51 -61.48 0.9 2005-05-30 1691

25933 G310.6+0.7 208.94 -61.21 1.2 2005-06-01 1691

26023 G311.2+0.7 210.14 -61.06 1.7 2005-06-03 1693

26074 G311.8+0.7 211.33 -60.89 2.2 2005-06-04 1692

26840 G311.2+0.7 210.14 -61.06 1.7 2005-06-30 1694

51408 G308.5+00.0 204.93 -62.35 2.0 2009-05-19 1688

51453 G311.0+01.0 209.59 -60.82 1.3 2009-05-21 1689

56495 G308.5+00.0 204.93 -62.35 2.0 2010-03-15 1688

56564 G308.0+01.0 203.51 -61.45 1.9 2010-03-17 1689

56565 G310.0+01.0 207.59 -61.06 0.6 2010-03-17 1688

56786 G311.0+01.0 209.59 -60.82 1.3 2010-03-23 1473

56803 G309.5+00.0 207.03 -62.15 1.5 2010-03-24 1698

56804 G309.0+01.0 205.56 -61.27 0.9 2010-03-24 1695

56805 G310.5+00.0 209.10 -61.91 1.7 2010-03-24 1697

57620 G308.0+01.0 203.51 -61.45 1.9 2010-05-09 1688

57800 G310.0+01.0 207.59 -61.06 0.6 2010-05-18 1688
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A.4 The Circinus Galaxy

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

32077 PSR J1357-6429 210.89 -64.49 1.3 2006-05-15 1363

32374 PSR J1357-6429 209.26 -65.19 1.7 2006-05-25 1689

32431 PSR J1357-6429 210.89 -64.49 1.3 2006-05-27 1688

32434 PSR J1357-6429 209.26 -65.19 1.7 2006-05-27 1689

32435 PSR J1357-6429 209.26 -63.79 2.3 2006-05-27 1689

32436 PSR J1357-6429 210.89 -64.49 1.3 2006-05-27 1688

32457 PSR J1357-6429 209.26 -63.79 2.3 2006-05-28 1690

32545 PSR J1357-6429 209.26 -65.19 1.7 2006-05-31 1688

32546 PSR J1357-6429 210.89 -64.49 1.3 2006-05-31 1688

37751 HESS J1356-645 209.02 -63.84 2.3 2007-03-23 1688

37798 HESS J1356-645 210.64 -64.54 1.4 2007-03-24 1687

37890 HESS J1356-645 209.02 -63.84 2.3 2007-03-28 1688

A.5 GRS 1734-292

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

20191 Sgr A 266.30 -28.30 1.9 2004-03-29 1682

20192 Sgr A 266.30 -29.30 1.7 2004-03-29 1683

20193 Sgr A 266.30 -28.30 1.9 2004-03-30 1682

20194 Sgr A 266.30 -29.30 1.7 2004-03-30 1682

20195 Sgr A 266.30 -28.30 1.9 2004-03-30 1682

20198 Sgr A 266.30 -29.30 1.7 2004-03-30 1682

20199 Sgr A 266.30 -28.30 1.9 2004-03-30 1433

20549 Sgr A* 266.42 -28.51 1.9 2004-04-26 1683

20550 Sgr A* 266.42 -29.51 1.8 2004-04-26 1683
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Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

20551 Sgr A* 266.42 -28.51 1.9 2004-04-26 1683

20552 Sgr A* 266.42 -29.51 1.8 2004-04-26 1683

20553 Sgr A* 266.42 -28.51 1.9 2004-04-26 1682

20554 Sgr A* 266.42 -29.51 1.8 2004-04-26 1682

20567 Sgr A* 266.42 -28.51 1.9 2004-04-27 1683

20568 Sgr A* 266.42 -29.51 1.8 2004-04-27 1683

20572 Sgr A* 266.42 -28.51 1.9 2004-04-27 1683

20573 Sgr A* 266.42 -29.51 1.8 2004-04-27 1682

20580 Sgr A* 266.42 -28.31 2.0 2004-04-27 1679

20581 Sgr A* 266.42 -29.71 1.9 2004-04-27 1682

20582 Sgr A* 265.62 -29.01 1.1 2004-04-28 1683

20583 Sgr A* 267.22 -29.01 2.5 2004-04-28 1682

20584 Sgr A* 266.42 -28.31 2.0 2004-04-28 1683

20596 Sgr A* 266.42 -29.71 1.9 2004-04-29 1682

20597 Sgr A* 267.22 -29.01 2.5 2004-04-29 1682

20598 Sgr A* 265.62 -29.01 1.1 2004-04-29 1682

20608 Sgr A* 266.42 -28.31 2.0 2004-04-30 1683

20609 Sgr A* 266.42 -29.71 1.9 2004-04-30 1682

20765 G357.3+0.0 264.76 -31.23 2.1 2004-05-15 1683

20922 Sgr A* 266.42 -29.71 1.9 2004-05-22 1683

20923 Sgr A* 266.42 -28.31 2.0 2004-05-23 1682

20924 Sgr A* 265.62 -29.01 1.1 2004-05-23 1682

20925 Sgr A* 267.22 -29.01 2.5 2004-05-23 1683

20929 Sgr A* 265.62 -29.01 1.1 2004-05-23 1125

20930 Sgr A* 267.22 -29.01 2.5 2004-05-23 1126

20968 Sgr A* 266.42 -28.31 2.0 2004-05-25 1683

20978 G358.0+0.0 265.19 -30.64 1.7 2004-05-25 1682

20979 G000.8+0.0 266.88 -28.25 2.4 2004-05-26 1683

20989 G358.7+0.0 265.62 -30.04 1.4 2004-05-26 1682

20990 G359.4+0.0 266.05 -29.45 1.5 2004-05-26 1683
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Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

20991 G000.1+0.0 266.46 -28.85 1.9 2004-05-26 1682

20998 Sgr A* 265.62 -29.01 1.1 2004-05-27 1682

20999 Sgr A* 267.22 -29.01 2.5 2004-05-27 1683

21006 Sgr A* 266.42 -28.31 2.0 2004-05-28 1683

21007 Sgr A* 266.42 -29.71 1.9 2004-05-28 1683

21016 Sgr A* 265.62 -29.01 1.1 2004-05-29 1683

21017 Sgr A* 267.22 -29.01 2.5 2004-05-29 1683

21027 Sgr A* 266.42 -28.31 2.0 2004-05-30 1684

21028 Sgr A* 266.42 -29.71 1.9 2004-05-30 1683

21146 Sgr A* 266.42 -28.31 2.0 2004-06-12 1682

21147 Sgr A* 266.42 -29.71 1.9 2004-06-12 1682

21148 Sgr A* 267.22 -29.01 2.5 2004-06-12 1683

21149 Sgr A* 265.62 -29.01 1.1 2004-06-13 1683

21152 G359.4-1.0 267.03 -29.97 2.5 2004-06-13 902

21165 Sgr A* 265.62 -29.01 1.1 2004-06-13 1683

21166 Sgr A* 267.22 -29.01 2.5 2004-06-13 1682

21167 Sgr A* 266.42 -29.71 1.9 2004-06-13 1682

21168 Sgr A* 266.42 -28.31 2.0 2004-06-14 1682

21169 G358.7-1.0 266.61 -30.57 2.4 2004-06-14 1683

21238 G000.1+1.0 265.49 -28.33 1.3 2004-06-16 1684

21245 Sgr A* 267.22 -29.01 2.5 2004-06-17 1683

21270 G359.4+1.0 265.07 -28.92 0.7 2004-06-17 1683

21272 G358.7+1.0 264.65 -29.51 0.4 2004-06-17 1682

21274 G358.0+1.0 264.21 -30.10 1.0 2004-06-18 1683

21275 Sgr A* 266.42 -29.71 1.9 2004-06-18 1682

21276 Sgr A* 266.42 -28.31 2.0 2004-06-18 1683

21298 G357.3+1.0 263.78 -30.69 1.6 2004-06-18 1682

21300 G356.6+1.0 263.33 -31.28 2.3 2004-06-19 1294

21323 G000.8+1.0 265.91 -27.73 1.9 2004-06-19 1683

21347 Sgr A* 267.22 -29.01 2.5 2004-06-20 1683
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21348 Sgr A* 265.62 -29.01 1.1 2004-06-21 1682

21349 Sgr A* 266.42 -28.31 2.0 2004-06-21 1682

21350 Sgr A* 266.42 -29.71 1.9 2004-06-21 1683

21372 Sgr A* 265.62 -29.01 1.1 2004-06-21 1682

21373 Sgr A* 267.22 -29.01 2.5 2004-06-21 1683

21376 Sgr A* 266.42 -29.71 1.9 2004-06-22 1683

21377 Sgr A* 266.42 -28.31 2.0 2004-06-22 1683

21389 Sgr A* 267.22 -29.01 2.5 2004-06-22 1683

21390 Sgr A* 265.62 -29.01 1.1 2004-06-22 1682

21420 G356.6+1.0 263.33 -31.28 2.3 2004-06-24 1682

21452 Sgr A* 266.42 -28.31 2.0 2004-06-27 1683

21453 Sgr A* 266.42 -29.71 1.9 2004-06-27 1682

21463 Sgr A* 265.62 -29.01 1.1 2004-06-28 1682

21464 Sgr A* 267.22 -29.01 2.5 2004-06-28 1682

21486 Sgr A* 267.22 -29.01 2.5 2004-07-04 1496

21491 Sgr A* 266.42 -28.51 1.9 2004-07-05 1684

21492 Sgr A* 266.42 -29.51 1.8 2004-07-05 1683

21493 Sgr A* 265.62 -29.01 1.1 2004-07-05 1687

21494 Sgr A* 265.62 -29.01 1.1 2004-07-05 926

21496 Sgr A* 266.42 -28.51 1.9 2004-07-06 1683

21497 Sgr A* 266.42 -29.51 1.8 2004-07-06 1133

21508 Sgr A* 267.22 -29.01 2.5 2004-07-08 1682

21894 Sgr A* 266.42 -28.31 2.0 2004-08-06 1683

21895 Sgr A* 266.42 -29.71 1.9 2004-08-06 1682

21896 Sgr A* 267.22 -29.01 2.5 2004-08-06 1323

21897 Sgr A* 265.62 -29.01 1.1 2004-08-06 1323

21909 Sgr A* 266.42 -28.31 2.0 2004-08-07 1683

21910 Sgr A* 266.42 -29.71 1.9 2004-08-07 1683

22258 Sgr A* 266.42 -28.51 1.9 2004-08-31 804

22270 G0.87+0.07 266.37 -27.90 2.1 2004-09-02 1681
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22272 G0.87+0.07 266.37 -27.90 2.1 2004-09-02 1682

22278 G0.87+0.07 266.37 -27.90 2.1 2004-09-03 1683

22280 G0.87+0.07 266.37 -27.90 2.1 2004-09-03 1682

22290 G0.87+0.07 266.37 -27.90 2.1 2004-09-04 1682

22292 G0.87+0.07 266.37 -27.90 2.1 2004-09-04 1683

22293 G0.87+0.07 266.37 -27.90 2.1 2004-09-04 1682

22322 G0.87+0.07 266.37 -27.90 2.1 2004-09-06 1682

22384 G0.87+0.07 266.37 -27.90 2.1 2004-09-10 1682

25330 Sgr A* 265.62 -29.01 1.1 2005-05-04 1523

25331 Sgr A* 267.22 -29.01 2.5 2005-05-04 658

25349 Sgr A* 266.42 -28.31 2.0 2005-05-05 1678

25353 Sgr A* 265.62 -29.01 1.1 2005-05-05 1533

25379 Sgr A* 265.62 -29.01 1.1 2005-05-06 1678

25380 Sgr A* 267.22 -29.01 2.5 2005-05-06 1678

25402 Sgr A* 266.42 -28.31 2.0 2005-05-07 1689

25403 Sgr A* 266.42 -28.31 2.0 2005-05-07 1677

25404 Sgr A* 266.42 -29.71 1.9 2005-05-07 1679

25405 Sgr A* 267.22 -29.01 2.5 2005-05-07 1559

25709 Sgr A* 265.62 -29.01 1.1 2005-05-20 1263

26078 Sgr A* 266.42 -28.31 2.0 2005-06-04 1691

26079 Sgr A* 266.42 -29.71 1.9 2005-06-04 1691

26080 Sgr A* 267.22 -29.01 2.5 2005-06-04 1701

26081 Sgr A* 265.62 -29.01 1.1 2005-06-04 1700

26082 Sgr A* 266.42 -28.31 2.0 2005-06-04 1701

26083 Sgr A* 266.42 -29.71 1.9 2005-06-04 1701

26084 Sgr A* 267.22 -29.01 2.5 2005-06-04 1702

26085 Sgr A* 265.62 -29.01 1.1 2005-06-04 1701

26086 Sgr A* 266.42 -28.31 2.0 2005-06-05 1700

26087 Sgr A* 266.42 -29.71 1.9 2005-06-05 1700

26088 Sgr A* 267.22 -29.01 2.5 2005-06-05 1700
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26089 Sgr A* 265.62 -29.01 1.1 2005-06-05 1369

26090 Sgr A* 266.42 -28.31 2.0 2005-06-05 2420

26091 Sgr A* 266.42 -29.71 1.9 2005-06-05 2421

26092 Sgr A* 265.62 -29.01 1.1 2005-06-05 1469

26104 Sgr A* 267.22 -29.01 2.5 2005-06-05 1701

26105 Sgr A* 265.62 -29.01 1.1 2005-06-05 1700

26106 Sgr A* 266.42 -28.31 2.0 2005-06-05 1700

26107 Sgr A* 266.42 -29.71 1.9 2005-06-05 1700

26108 Sgr A* 267.22 -29.01 2.5 2005-06-05 1700

26109 Sgr A* 265.62 -29.01 1.1 2005-06-05 1700

26110 Sgr A* 266.42 -28.31 2.0 2005-06-05 1700

26111 Sgr A* 266.42 -29.71 1.9 2005-06-06 1703

26112 Sgr A* 267.22 -29.01 2.5 2005-06-06 1700

26113 Sgr A* 265.62 -29.01 1.1 2005-06-06 1414

26114 Sgr A* 266.42 -28.31 2.0 2005-06-06 1703

26115 Sgr A* 266.42 -29.71 1.9 2005-06-06 1700

26116 Sgr A* 267.22 -29.01 2.5 2005-06-06 1700

26128 HESS J1745-303 265.45 -30.37 1.5 2005-06-06 1691

26154 HESS J1745-303 265.45 -30.37 1.5 2005-06-07 1694

26177 HESS J1745-303 265.45 -30.37 1.5 2005-06-08 1691

26201 HESS J1745-303 265.45 -30.37 1.5 2005-06-09 1690

26233 HESS J1745-303 265.45 -30.37 1.5 2005-06-10 1691

26789 Sgr A* 266.42 -28.31 2.0 2005-06-27 1691

26790 Sgr A* 267.22 -29.01 2.5 2005-06-27 1690

26810 Sgr A* 265.62 -29.01 1.1 2005-06-28 1690

26811 Sgr A* 267.22 -29.01 2.5 2005-06-28 1690

26812 Sgr A* 266.42 -29.71 1.9 2005-06-28 1693

26813 Sgr A* 266.42 -28.31 2.0 2005-06-28 1690

26844 HESS J1745-303 265.45 -30.37 1.5 2005-06-30 1690

26875 HESS J1745-303 265.45 -30.37 1.5 2005-07-01 1691
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26931 HESS J1745-303 265.45 -30.37 1.5 2005-07-03 1691

27376 Sgr A* 266.42 -28.31 2.0 2005-07-24 1690

27377 Sgr A* 265.62 -29.01 1.1 2005-07-24 932

27378 Sgr A* 267.22 -29.01 2.5 2005-07-24 769

27498 Sgr A* 267.22 -29.01 2.5 2005-07-27 1690

27499 Sgr A* 265.62 -29.01 1.1 2005-07-27 1691

27500 Sgr A* 266.42 -28.31 2.0 2005-07-27 1693

27501 Sgr A* 266.42 -29.71 1.9 2005-07-27 1691

27502 Sgr A* 267.22 -29.01 2.5 2005-07-27 1691

27503 Sgr A* 265.62 -29.01 1.1 2005-07-27 1693

27504 Sgr A* 266.42 -28.31 2.0 2005-07-27 1692

27505 Sgr A* 266.42 -29.71 1.9 2005-07-27 1695

27506 Sgr A* 267.22 -29.01 2.5 2005-07-27 1694

27507 Sgr A* 265.62 -29.01 1.1 2005-07-27 1690

27535 Sgr A* 266.42 -29.71 1.9 2005-07-28 1691

27536 Sgr A* 266.42 -28.31 2.0 2005-07-28 1691

27537 Sgr A* 265.62 -29.01 1.1 2005-07-28 1690

27539 Sgr A* 266.42 -29.71 1.9 2005-07-28 1691

27540 Sgr A* 266.42 -28.31 2.0 2005-07-28 1694

27541 Sgr A* 265.62 -29.01 1.1 2005-07-28 1694

27542 Sgr A* 267.22 -29.01 2.5 2005-07-28 1691

27543 Sgr A* 266.42 -29.71 1.9 2005-07-28 1694

27544 Sgr A* 266.42 -28.31 2.0 2005-07-28 1691

27545 Sgr A* 265.62 -29.01 1.1 2005-07-28 1690

27546 Sgr A* 267.22 -29.01 2.5 2005-07-28 1690

27566 Sgr A* 266.42 -28.31 2.0 2005-07-29 1690

27567 Sgr A* 266.42 -29.71 1.9 2005-07-29 1690

27568 Sgr A* 267.22 -29.01 2.5 2005-07-29 1690

27569 Sgr A* 265.62 -29.01 1.1 2005-07-29 1693

27570 Sgr A* 266.42 -28.31 2.0 2005-07-29 1689
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27571 Sgr A* 266.42 -29.71 1.9 2005-07-29 1694

27572 Sgr A* 267.22 -29.01 2.5 2005-07-29 1691

27573 Sgr A* 265.62 -29.01 1.1 2005-07-29 1693

27574 Sgr A* 266.42 -28.31 2.0 2005-07-29 1690

27575 Sgr A* 266.42 -29.71 1.9 2005-07-29 1694

27576 Sgr A* 267.22 -29.01 2.5 2005-07-29 1690

27577 Sgr A* 266.42 -28.31 2.0 2005-07-29 1522

27592 Sgr A* 265.62 -29.01 1.1 2005-07-30 1693

27593 Sgr A* 267.22 -29.01 2.5 2005-07-30 1690

27594 Sgr A* 266.42 -29.71 1.9 2005-07-30 1691

27595 Sgr A* 266.42 -28.31 2.0 2005-07-30 1693

27599 Sgr A* 265.62 -29.01 1.1 2005-07-30 864

27600 Sgr A* 267.22 -29.01 2.5 2005-07-30 1691

27601 Sgr A* 266.42 -29.71 1.9 2005-07-30 1693

27602 Sgr A* 266.42 -28.31 2.0 2005-07-30 1690

27603 Sgr A* 265.62 -29.01 1.1 2005-07-30 1690

27604 Sgr A* 267.22 -29.01 2.5 2005-07-30 1691

27605 Sgr A* 266.42 -29.71 1.9 2005-07-30 805

27606 Sgr A* 266.42 -29.71 1.9 2005-07-31 1691

27625 Sgr A* 267.22 -29.01 2.5 2005-07-31 1695

27626 Sgr A* 265.62 -29.01 1.1 2005-07-31 1691

27627 Sgr A* 266.42 -28.31 2.0 2005-07-31 1701

27628 Sgr A* 266.42 -29.71 1.9 2005-07-31 1694

27629 Sgr A* 267.22 -29.01 2.5 2005-07-31 1703

27630 Sgr A* 265.62 -29.01 1.1 2005-07-31 1689

27631 Sgr A* 266.42 -28.31 2.0 2005-07-31 1690

27632 Sgr A* 266.42 -29.71 1.9 2005-07-31 1694

27633 Sgr A* 267.22 -29.01 2.5 2005-07-31 1691

27634 Sgr A* 265.62 -29.01 1.1 2005-07-31 1690

27635 Sgr A* 266.42 -28.31 2.0 2005-07-31 1690
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27636 Sgr A* 266.42 -29.71 1.9 2005-07-31 1690

27637 Sgr A* 267.22 -29.01 2.5 2005-08-01 1690

27662 Sgr A* 266.42 -29.71 1.9 2005-08-01 1690

27663 Sgr A* 266.42 -28.31 2.0 2005-08-01 1690

27664 Sgr A* 265.62 -29.01 1.1 2005-08-01 1691

27665 Sgr A* 267.22 -29.01 2.5 2005-08-01 1690

27666 Sgr A* 266.42 -29.71 1.9 2005-08-01 1690

27667 Sgr A* 266.42 -28.31 2.0 2005-08-01 1689

27668 Sgr A* 265.62 -29.01 1.1 2005-08-01 1694

27669 Sgr A* 267.22 -29.01 2.5 2005-08-01 1691

27670 Sgr A* 266.42 -29.71 1.9 2005-08-01 1699

27671 Sgr A* 266.42 -28.31 2.0 2005-08-01 1690

28127 Sgr A* 266.42 -28.31 2.0 2005-08-22 1691

28128 Sgr A* 266.42 -29.71 1.9 2005-08-22 1692

28129 Sgr A* 267.22 -29.01 2.5 2005-08-22 1695

28130 Sgr A* 265.62 -29.01 1.1 2005-08-22 900

28167 Sgr A* 266.42 -28.31 2.0 2005-08-23 1694

28168 Sgr A* 265.62 -29.01 1.1 2005-08-23 1694

28169 Sgr A* 267.22 -29.01 2.5 2005-08-23 1691

31579 G1.0+0.7 266.32 -27.72 2.2 2006-04-30 1689

31594 G0.6+0.7 266.08 -28.06 1.8 2006-05-01 1688

33159 Sgr A* 266.42 -28.31 2.0 2006-06-27 1690

33160 Sgr A* 266.42 -29.71 1.9 2006-06-27 1689

33161 Sgr A* 267.22 -29.01 2.5 2006-06-27 1693

33162 Sgr A* 265.62 -29.01 1.1 2006-06-27 1688

33207 Sgr A* 267.22 -29.01 2.5 2006-06-29 1688

33208 Sgr A* 265.62 -29.01 1.1 2006-06-29 1688

33458 Sgr A* 267.22 -29.01 2.5 2006-07-14 696

33467 Sgr A* 266.42 -29.71 1.9 2006-07-15 1688

33468 Sgr A* 266.42 -28.31 2.0 2006-07-15 1689
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33469 Sgr A* 265.62 -29.01 1.1 2006-07-15 1088

33482 Sgr A* 267.22 -29.01 2.5 2006-07-16 1688

33483 Sgr A* 266.42 -29.71 1.9 2006-07-16 1688

33484 Sgr A* 265.62 -29.01 1.1 2006-07-16 1689

33485 Sgr A* 267.22 -29.01 2.5 2006-07-16 1689

33499 Sgr A* 266.42 -28.31 2.0 2006-07-17 1689

33500 Sgr A* 266.42 -29.71 1.9 2006-07-17 1689

33501 Sgr A* 265.62 -29.01 1.1 2006-07-17 1689

33502 Sgr A* 267.22 -29.01 2.5 2006-07-17 1689

34148 Sgr A* 266.00 -29.60 1.5 2006-08-18 1689

34187 Sgr A* 266.83 -28.41 2.3 2006-08-19 1689

34188 Sgr A* 266.00 -29.60 1.5 2006-08-19 1690

34209 Sgr A* 267.10 -29.37 2.4 2006-08-20 1689

34310 Sgr A* 266.83 -28.41 2.3 2006-08-23 1689

34313 Sgr A* 266.00 -29.60 1.5 2006-08-23 1689

34314 Sgr A* 265.74 -28.64 1.3 2006-08-23 1689

34949 Sgr A* 266.42 -28.51 1.9 2006-09-22 1688

34950 Sgr A* 266.42 -29.51 1.8 2006-09-22 1688

34951 Sgr A* 266.99 -29.01 2.3 2006-09-22 1689

34952 Sgr A* 265.84 -29.01 1.3 2006-09-22 1689

34953 Sgr A* 266.42 -28.51 1.9 2006-09-22 1689

34976 Sgr A* 266.42 -29.51 1.8 2006-09-23 1692

34977 Sgr A* 266.99 -29.01 2.3 2006-09-23 1689

34978 Sgr A* 265.84 -29.01 1.3 2006-09-23 1689

34979 Sgr A* 266.42 -28.51 1.9 2006-09-23 1689

35001 Sgr A* 266.42 -29.51 1.8 2006-09-24 1689

38832 Sgr A* 265.62 -29.01 1.1 2007-05-13 1687

38833 Sgr A* 267.22 -29.01 2.5 2007-05-14 1688

38834 Sgr A* 266.42 -29.71 1.9 2007-05-14 1688

38835 Sgr A* 266.42 -28.31 2.0 2007-05-14 1688
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38862 Sgr A* 266.42 -29.71 1.9 2007-05-14 1688

38863 Sgr A* 267.22 -29.01 2.5 2007-05-15 1688

38865 Sgr A* 265.62 -29.01 1.1 2007-05-15 1682

38895 Sgr A* 266.42 -29.71 1.9 2007-05-15 1688

38896 Sgr A* 266.42 -28.31 2.0 2007-05-16 1688

38897 Sgr A* 265.62 -29.01 1.1 2007-05-16 1689

38898 Sgr A* 266.42 -29.71 1.9 2007-05-16 1688

38930 Sgr A* 266.42 -28.31 2.0 2007-05-16 1687

38931 Sgr A* 267.22 -29.01 2.5 2007-05-17 1688

38932 Sgr A* 265.62 -29.01 1.1 2007-05-17 1689

38959 Sgr A* 266.42 -29.71 1.9 2007-05-17 1688

38960 Sgr A* 266.42 -28.31 2.0 2007-05-17 1687

38961 Sgr A* 267.22 -29.01 2.5 2007-05-18 1687

38962 Sgr A* 265.62 -29.01 1.1 2007-05-18 1689

40801 G357.6+0.7 264.26 -30.60 1.5 2007-08-06 1689

40826 G357.2+0.8 263.91 -30.89 1.8 2007-08-07 1060

40827 G357.2+0.8 263.91 -30.89 1.8 2007-08-07 1689

40851 G357.6+0.7 264.26 -30.60 1.5 2007-08-08 1688

40852 G356.8+0.8 263.66 -31.22 2.2 2007-08-08 1689

40881 G357.6+0.7 264.26 -30.60 1.5 2007-08-09 1689

40940 G358.0+0.7 264.51 -30.27 1.1 2007-08-11 1688

40942 G357.4-0.6 265.42 -31.46 2.5 2007-08-11 1687

40972 G357.2+0.8 263.91 -30.89 1.8 2007-08-12 1689

41036 G358.2-0.7 266.01 -30.84 2.2 2007-08-14 1688

45378 Sgr A* 265.62 -29.01 1.1 2008-05-07 1689

45445 Sgr A* 266.42 -29.71 1.9 2008-05-11 1689

45446 Sgr A* 267.22 -29.01 2.5 2008-05-11 1689

45447 Sgr A* 265.62 -29.01 1.1 2008-05-11 1689

45448 Sgr A* 266.42 -28.31 2.0 2008-05-11 1689

45449 Sgr A* 266.42 -29.71 1.9 2008-05-11 1689
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45466 Sgr A* 267.22 -29.01 2.5 2008-05-11 1688

45467 Sgr A* 265.62 -29.01 1.1 2008-05-12 1689

45468 Sgr A* 266.42 -28.31 2.0 2008-05-12 1689

45469 Sgr A* 266.42 -29.71 1.9 2008-05-12 1689

45470 Sgr A* 267.22 -29.01 2.5 2008-05-12 1689

45471 Sgr A* 265.62 -29.01 1.1 2008-05-12 1687

45472 Sgr A* 266.42 -28.31 2.0 2008-05-12 1688

45487 Sgr A* 266.42 -29.71 1.9 2008-05-12 1688

45488 Sgr A* 267.22 -29.01 2.5 2008-05-13 1687

45489 Sgr A* 265.62 -29.01 1.1 2008-05-13 1687

45490 Sgr A* 266.42 -28.31 2.0 2008-05-13 1687

45491 Sgr A* 266.42 -29.71 1.9 2008-05-13 1689

45492 Sgr A* 267.22 -29.01 2.5 2008-05-13 1689

45493 Sgr A* 265.62 -29.01 1.1 2008-05-13 1687

47027 Sgr A* 265.62 -29.01 1.1 2008-07-26 1688

47028 Sgr A* 267.22 -29.01 2.5 2008-07-26 1687

47029 Sgr A* 266.42 -29.71 1.9 2008-07-26 1688

47030 Sgr A* 266.42 -28.31 2.0 2008-07-26 1688

47031 Sgr A* 265.62 -29.01 1.1 2008-07-26 1687

47032 Sgr A* 267.22 -29.01 2.5 2008-07-26 1688

47033 Sgr A* 266.42 -29.71 1.9 2008-07-26 1689

47034 Sgr A* 266.42 -28.31 2.0 2008-07-26 1688

47064 Sgr A* 265.62 -29.01 1.1 2008-07-27 1689

47065 Sgr A* 267.22 -29.01 2.5 2008-07-27 1687

47066 Sgr A* 266.42 -29.71 1.9 2008-07-27 1688

47067 Sgr A* 266.42 -28.31 2.0 2008-07-27 916

50653 Sgr A* 266.91 -29.27 2.2 2009-04-03 1688

50654 Sgr A* 265.93 -28.75 1.4 2009-04-03 1688

50679 Sgr A* 266.12 -29.43 1.6 2009-04-05 1687

50680 Sgr A* 266.71 -28.58 2.1 2009-04-05 1688
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50681 Sgr A* 266.91 -29.27 2.2 2009-04-05 1688

50682 Sgr A* 265.93 -28.75 1.4 2009-04-05 1688

50683 Sgr A* 266.12 -29.43 1.6 2009-04-05 1301

50930 G358.6+03.5 262.19 -28.24 2.1 2009-04-23 1688

58911 Sgr A* 267.22 -29.01 2.5 2010-07-13 1688

58912 Sgr A* 265.62 -29.01 1.1 2010-07-13 1689

58913 Sgr A* 266.42 -28.31 2.0 2010-07-13 1688

58933 Sgr A* 267.22 -29.01 2.5 2010-07-14 1689

58934 Sgr A* 265.62 -29.01 1.1 2010-07-14 1687

58935 Sgr A* 266.42 -28.31 2.0 2010-07-14 1689

58936 Sgr A* 266.42 -29.71 1.9 2010-07-14 1689

63713 Sgr A* 265.64 -28.59 1.2 2011-05-06 1687

63745 Sgr A* 265.64 -28.59 1.2 2011-05-07 1027

63755 Sgr A* 265.64 -28.59 1.2 2011-05-08 1676

63780 Sgr A* 267.20 -29.42 2.5 2011-05-08 1687

63781 Sgr A* 265.64 -28.59 1.2 2011-05-08 1687

63805 Sgr A* 265.64 -28.59 1.2 2011-05-09 1695

66784 Sgr A* 265.64 -28.59 1.2 2011-08-31 1689

66785 Sgr A* 265.64 -28.59 1.2 2011-08-31 1687

66786 Sgr A* 267.20 -29.42 2.5 2011-08-31 1687

66803 Sgr A* 267.20 -29.42 2.5 2011-09-01 1669

67094 Sgr A* 265.64 -28.59 1.2 2011-09-18 1669

67095 Sgr A* 267.20 -29.42 2.5 2011-09-18 1687

67113 Sgr A* 267.20 -29.42 2.5 2011-09-19 1687

67114 Sgr A* 265.64 -28.59 1.2 2011-09-19 1687

67161 Sgr A* 267.20 -29.42 2.5 2011-09-21 1687

67162 Sgr A* 265.64 -28.59 1.2 2011-09-21 1687

67189 Sgr A* 265.64 -28.59 1.2 2011-09-22 1687

67190 Sgr A* 267.20 -29.42 2.5 2011-09-22 1687

67215 Sgr A* 267.20 -29.42 2.5 2011-09-23 1687



A.7. IGR J17204-3554 252

A.6 IGR J14471-6319

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

21169 G358.7-1.0 266.61 -30.57 2.4 2004-06-14 1683

21170 G358.0-1.0 266.18 -31.16 2.0 2004-06-14 1682

21215 G357.3-1.0 265.75 -31.76 1.7 2004-06-15 1682

21216 G356.6-1.0 265.32 -32.35 1.7 2004-06-15 1683

21217 G355.9-1.0 264.88 -32.95 2.0 2004-06-16 1683

21218 G355.2-1.0 264.43 -33.54 2.4 2004-06-16 1682

34216 V4134 Sgr 268.82 -33.81 1.6 2006-08-20 1689

34244 V4134 Sgr 269.67 -33.11 2.1 2006-08-21 1688

34287 V4134 Sgr 268.82 -33.81 1.6 2006-08-22 1689

34366 V4134 Sgr 269.67 -33.11 2.1 2006-08-25 1688

40802 G356.2-0.5 264.57 -32.43 2.3 2007-08-06 1689

40803 G356.2-0.5 264.57 -32.43 2.3 2007-08-06 1689

40825 G357.0-0.6 265.17 -31.80 2.0 2007-08-07 1688

40850 G356.6-0.6 264.92 -32.14 2.1 2007-08-08 1687

40880 G357.0-0.6 265.17 -31.80 2.0 2007-08-09 1688

40942 G357.4-0.6 265.42 -31.46 2.1 2007-08-11 1687

41036 G358.2-0.7 266.01 -30.84 2.3 2007-08-14 1688

51617 G355.1-03.5 266.94 -34.94 2.0 2009-05-29 1687

65169 G356.7-01.0 265.38 -32.27 1.7 2011-06-30 1688

A.7 IGR J17204-3554

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

20920 G349.6+0.0 259.58 -37.64 1.8 2004-05-22 1687

20921 G350.3+0.0 260.09 -37.07 1.2 2004-05-22 1683



A.7. IGR J17204-3554 253

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

20940 G351.0+0.0 260.59 -36.49 0.7 2004-05-23 1683

20941 G351.7+0.0 261.08 -35.92 0.8 2004-05-23 1683

20957 G352.4+0.0 261.56 -35.34 1.3 2004-05-24 1683

20960 G353.1+0.0 262.04 -34.76 1.9 2004-05-24 1682

21241 G353.1-1.0 263.05 -35.31 2.5 2004-06-17 1683

21243 G352.4-1.0 262.58 -35.89 2.0 2004-06-17 1682

21269 G351.0-1.0 261.62 -37.06 1.7 2004-06-17 1682

21271 G351.7-1.0 262.10 -36.47 1.7 2004-06-17 1683

21273 G350.3-1.0 261.12 -37.64 1.9 2004-06-18 1683

21393 G353.1+1.0 261.03 -34.20 1.9 2004-06-22 1682

21406 G352.4+1.0 260.55 -34.77 1.2 2004-06-23 1683

21409 G351.7+1.0 260.06 -35.35 0.6 2004-06-23 1682

21410 G351.0+1.0 259.57 -35.92 0.4 2004-06-23 1682

21437 G349.6+1.0 258.56 -37.06 1.7 2004-06-25 1682

21438 G348.9+1.0 258.04 -37.63 2.4 2004-06-25 1682

25090 J1731-348 261.99 -34.84 1.9 2005-04-17 1122

25099 J1731-348 262.84 -35.54 2.3 2005-04-18 1677

25108 J1731-348 261.99 -34.84 1.9 2005-04-19 1678

25215 J1731-348 262.84 -35.54 2.3 2005-04-20 1677

25217 J1731-348 261.99 -34.84 1.9 2005-04-20 1078

25584 J1731-348 262.84 -35.54 2.3 2005-05-17 745

25992 J1731-348 262.84 -35.54 2.3 2005-06-03 1118

33108 HESS J1731-348 263.06 -35.46 2.4 2006-06-25 1689

33112 HESS J1731-348 262.21 -34.76 2.1 2006-06-26 1688

33158 HESS J1731-348 262.21 -34.76 2.1 2006-06-27 1690

33164 HESS J1731-348 263.06 -35.46 2.4 2006-06-27 1688

33166 HESS J1731-348 262.21 -34.76 2.1 2006-06-28 1688

33228 HESS J1731-348 263.06 -35.46 2.4 2006-06-30 1689

40078 J1731-348 P1 262.54 -35.38 2.1 2007-07-05 1688

40079 J1731-348 P1 262.54 -35.38 2.1 2007-07-05 1688



A.7. IGR J17204-3554 254

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

40094 J1731-348 P1 262.54 -35.38 2.1 2007-07-06 1689

40095 J1731-348 P1 262.54 -35.38 2.1 2007-07-06 1688

40136 J1731-348 P1 262.54 -35.38 2.1 2007-07-08 1689

40180 J1731-348 P1 262.54 -35.38 2.1 2007-07-10 1689

40181 J1731-348 P1 262.54 -35.38 2.1 2007-07-10 1688

40257 J1731-348 P1 262.54 -35.38 2.1 2007-07-12 1688

40258 J1731-348 P1 262.54 -35.38 2.1 2007-07-12 1689

40261 J1731-348 P1 262.54 -35.38 2.1 2007-07-12 1688

40320 J1731-348 P3 261.73 -34.62 1.8 2007-07-14 1687

40321 J1731-348 P3 261.73 -34.62 1.8 2007-07-14 1689

40354 J1731-348 P3 261.73 -34.62 1.8 2007-07-15 1690

40355 J1731-348 P3 261.73 -34.62 1.8 2007-07-15 1688

40379 J1731-348 P3 261.73 -34.62 1.8 2007-07-16 1689

40440 J1731-348 P3 261.73 -34.62 1.8 2007-07-18 1689

40441 J1731-348 P1 262.54 -35.38 2.1 2007-07-18 1688

45751 G349.4+0.9 258.51 -37.28 1.9 2008-05-30 1688

45776 G349.4+0.9 258.51 -37.28 1.9 2008-05-31 1689

45835 G349.7-0.7 260.38 -37.96 2.1 2008-06-02 1688

45836 G349.7-0.7 260.38 -37.96 2.1 2008-06-02 1688

45839 G350.7+1.0 259.35 -36.17 0.7 2008-06-03 1690

45862 G349.4+0.9 258.51 -37.28 1.9 2008-06-03 1688

45864 G349.7-0.7 260.38 -37.96 2.1 2008-06-03 1688

45893 G349.7-0.7 260.38 -37.96 2.1 2008-06-04 1689

45894 G349.7-0.7 260.38 -37.96 2.1 2008-06-04 1688

45949 G350.5+0.2 260.03 -36.79 0.9 2008-06-06 1688

45950 G350.5+0.2 260.03 -36.79 0.9 2008-06-06 1688

45971 G349.4+0.9 258.51 -37.28 1.9 2008-06-07 1688

45972 G349.4+0.9 258.51 -37.28 1.9 2008-06-07 988

45973 G350.7+1.0 259.35 -36.17 0.7 2008-06-07 1688

45974 G350.5+0.2 260.03 -36.79 0.9 2008-06-07 1687



A.7. IGR J17204-3554 255

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

45992 G349.4+0.9 258.51 -37.28 1.9 2008-06-08 1689

45993 G350.2+0.8 259.20 -36.69 1.1 2008-06-08 1020

45994 G350.5+0.2 260.03 -36.79 0.9 2008-06-08 1688

45995 G350.5+0.2 260.03 -36.79 0.9 2008-06-08 1687

46013 G350.2+0.8 259.20 -36.69 1.1 2008-06-09 791

52030 HESS J1731-347 262.98 -35.41 2.4 2009-06-22 1688

52150 HESS J1731-347 262.13 -34.71 2.0 2009-06-27 1689

52152 HESS J1731-347 262.98 -35.41 2.4 2009-06-27 1689

52373 HESS J1731-347 262.98 -35.41 2.4 2009-07-13 1689

52375 HESS J1731-347 262.13 -34.71 2.0 2009-07-13 1693

52390 HESS J1731-347 262.98 -35.41 2.4 2009-07-14 1693

52410 HESS J1731-347 262.13 -34.71 2.0 2009-07-15 1688

52469 HESS J1731-347 262.98 -35.41 2.4 2009-07-17 1689

52523 HESS J1731-347 262.98 -35.41 2.4 2009-07-19 1689

52547 HESS J1731-347 262.98 -35.41 2.4 2009-07-20 1688

52549 HESS J1731-347 262.13 -34.71 2.0 2009-07-20 1688

52596 HESS J1731-347 262.13 -34.71 2.0 2009-07-22 1689

52624 HESS J1731-347 262.13 -34.71 2.0 2009-07-23 1688

52649 HESS J1731-347 262.98 -35.41 2.4 2009-07-24 1688

53006 HESS J1731-347 262.13 -34.71 2.0 2009-08-13 1689

53024 HESS J1731-347 262.13 -34.71 2.0 2009-08-14 1689

53143 HESS J1731-347 262.13 -34.71 2.0 2009-08-19 1689

53173 HESS J1731-347 262.13 -34.71 2.0 2009-08-20 1688

59714 G349.7+00.2 259.50 -36.73 1.0 2010-08-26 994

59728 G349.7+00.2 260.13 -37.43 1.5 2010-08-27 1689

59796 G349.7+00.2 258.87 -37.43 1.8 2010-08-29 1689

59797 G349.7+00.2 259.50 -36.93 1.1 2010-08-29 1689

59812 G349.7+00.2 260.13 -37.43 1.5 2010-08-30 1689

59813 G349.7+00.2 258.87 -37.43 1.8 2010-08-30 1637

59871 G349.7+00.2 259.50 -36.93 1.1 2010-09-02 1688



A.8. IGR J17488-3253 256

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

59872 G349.7+00.2 259.50 -37.93 2.1 2010-09-02 1688

59928 G349.7+00.2 259.50 -37.93 2.1 2010-09-04 1688

59963 G349.7+00.2 260.13 -37.43 1.5 2010-09-05 1688

59964 G349.7+00.2 258.87 -37.43 1.8 2010-09-05 1688

60204 G349.7+00.2 260.13 -37.43 1.5 2010-09-09 1688

A.8 IGR J17488-3253

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

21169 G358.7-1.0 266.61 -30.57 2.4 2004-06-14 1683

21170 G358.0-1.0 266.18 -31.16 2.0 2004-06-14 1682

21215 G357.3-1.0 265.75 -31.76 1.7 2004-06-15 1682

21216 G356.6-1.0 265.32 -32.35 1.7 2004-06-15 1683

21217 G355.9-1.0 264.88 -32.95 2.0 2004-06-16 1683

21218 G355.2-1.0 264.43 -33.54 2.4 2004-06-16 1682

34216 V4134 Sgr 268.82 -33.81 1.6 2006-08-20 1689

34244 V4134 Sgr 269.67 -33.11 2.1 2006-08-21 1688

34287 V4134 Sgr 268.82 -33.81 1.6 2006-08-22 1689

34366 V4134 Sgr 269.67 -33.11 2.1 2006-08-25 1688

40802 G356.2-0.5 264.57 -32.43 2.3 2007-08-06 1689

40803 G356.2-0.5 264.57 -32.43 2.3 2007-08-06 1689

40825 G357.0-0.6 265.17 -31.80 2.0 2007-08-07 1688

40850 G356.6-0.6 264.92 -32.14 2.1 2007-08-08 1687

40880 G357.0-0.6 265.17 -31.80 2.0 2007-08-09 1688

40942 G357.4-0.6 265.42 -31.46 2.1 2007-08-11 1687

41036 G358.2-0.7 266.01 -30.84 2.3 2007-08-14 1688

51617 G355.1-03.5 266.94 -34.94 2.0 2009-05-29 1687



A.9. IGR J22367-1231 257

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

65169 G356.7-01.0 265.38 -32.27 1.7 2011-06-30 1688

A.9 IGR J22367-1231

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

21750 RBS 1888 340.93 -12.02 1.8 2004-07-21 1682

21751 RBS 1888 340.93 -13.02 1.8 2004-07-21 1685

21771 RBS 1888 340.93 -13.02 1.8 2004-07-22 1683

21772 RBS 1888 340.93 -12.02 1.8 2004-07-22 1682

21805 RBS 1888 340.93 -13.02 1.8 2004-07-23 1682

21806 RBS 1888 340.93 -12.02 1.8 2004-07-24 1683

33170 RBS 1888 340.41 -12.52 1.2 2006-06-28 1688

33171 RBS 1888 341.44 -12.52 2.2 2006-06-28 1688

33172 RBS 1888 340.93 -13.02 1.8 2006-06-28 777

33220 RBS 1888 340.93 -13.02 1.8 2006-06-30 1078

33239 RBS 1888 340.93 -12.02 1.8 2006-07-01 1688

33240 RBS 1888 341.44 -12.52 2.2 2006-07-01 727

33265 RBS 1888 341.44 -12.52 2.2 2006-07-02 1688

33266 RBS 1888 340.93 -13.02 1.8 2006-07-02 988



A.10. NGC 1068 258

A.10 NGC 1068

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

22958 NGC 1068 40.67 0.49 0.5 2004-10-09 1684

22959 NGC 1068 40.67 0.49 0.5 2004-10-09 1684

22960 NGC 1068 40.67 -0.51 0.5 2004-10-10 1684

22997 NGC 1068 40.17 -0.01 0.5 2004-10-11 1687

22998 NGC 1068 41.17 -0.01 0.5 2004-10-12 1686

23035 NGC 1068 41.17 -0.01 0.5 2004-10-13 1567

23036 NGC 1068 40.17 -0.01 0.5 2004-10-13 1567

23060 NGC 1068 40.67 0.49 0.5 2004-10-14 1687

23061 NGC 1068 40.67 -0.51 0.5 2004-10-14 1687

23077 NGC 1068 40.17 -0.01 0.5 2004-10-15 1686

23078 NGC 1068 41.17 -0.01 0.5 2004-10-15 1686

23123 NGC 1068 40.67 -0.51 0.5 2004-10-17 1686

23124 NGC 1068 40.67 0.49 0.5 2004-10-17 1686

35398 NGC 1068 40.17 -0.01 0.5 2006-10-13 1688

35434 NGC 1068 40.67 -0.51 0.5 2006-10-15 1689

35549 NGC 1068 40.67 0.49 0.5 2006-10-23 1690

35550 NGC 1068 40.17 -0.01 0.5 2006-10-23 1689

47815 NGC 1068 40.17 -0.01 0.5 2008-08-28 1687

47816 NGC 1068 41.17 -0.01 0.5 2008-08-28 1208

47840 NGC 1068 40.67 -0.51 0.5 2008-08-29 1688

47841 NGC 1068 40.67 0.49 0.5 2008-08-29 1688

47842 NGC 1068 41.17 -0.01 0.5 2008-08-29 848

47869 NGC 1068 40.17 -0.01 0.5 2008-08-30 1688

47870 NGC 1068 40.67 0.49 0.5 2008-08-30 1688

47871 NGC 1068 41.17 -0.01 0.5 2008-08-30 1124

47898 NGC 1068 41.17 -0.01 0.5 2008-08-31 1688

47899 NGC 1068 40.67 -0.51 0.5 2008-08-31 1688

47900 NGC 1068 40.67 0.49 0.5 2008-08-31 1687



A.10. NGC 1068 259

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

47922 NGC 1068 40.17 -0.01 0.5 2008-09-01 1689

47923 NGC 1068 41.17 -0.01 0.5 2008-09-01 1688

47924 NGC 1068 40.67 -0.51 0.5 2008-09-01 1688

47956 NGC 1068 40.67 0.49 0.5 2008-09-02 1688

47982 NGC 1068 40.17 -0.01 0.5 2008-09-03 1688

47983 NGC 1068 41.17 -0.01 0.5 2008-09-03 1687

47984 NGC 1068 40.67 -0.51 0.5 2008-09-03 1687

48035 NGC 1068 40.67 -0.51 0.5 2008-09-05 1688

48036 NGC 1068 40.67 0.49 0.5 2008-09-05 1687

48037 NGC 1068 40.17 -0.01 0.5 2008-09-05 1688

48038 NGC 1068 41.17 -0.01 0.5 2008-09-05 1688

48060 NGC 1068 40.67 -0.51 0.5 2008-09-06 1688

66682 NGC 1068 40.67 -0.71 0.7 2011-08-27 1669

66683 NGC 1068 40.67 0.69 0.7 2011-08-27 1177

66684 NGC 1068 39.97 -0.01 0.7 2011-08-27 1111

66706 NGC 1068 41.37 -0.01 0.7 2011-08-28 854

66730 NGC 1068 41.37 -0.01 0.7 2011-08-29 1687

66731 NGC 1068 39.97 -0.01 0.7 2011-08-29 1687

66755 NGC 1068 40.67 -0.71 0.7 2011-08-30 727

66799 NGC 1068 39.97 -0.01 0.7 2011-09-01 1687

66813 NGC 1068 40.67 -0.71 0.7 2011-09-02 1659

66814 NGC 1068 40.67 0.69 0.7 2011-09-02 1687

66815 NGC 1068 41.37 -0.01 0.7 2011-09-02 1687

66835 NGC 1068 39.97 -0.01 0.7 2011-09-03 1687

66854 NGC 1068 40.67 -0.71 0.7 2011-09-04 1669

66855 NGC 1068 40.67 0.69 0.7 2011-09-04 1687

66856 NGC 1068 41.37 -0.01 0.7 2011-09-04 1687

66889 NGC 1068 39.97 -0.01 0.7 2011-09-05 1669

66891 NGC 1068 40.67 -0.71 0.7 2011-09-05 1687

66892 NGC 1068 40.67 0.69 0.7 2011-09-05 1684



A.10. NGC 1068 260

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

66907 NGC 1068 41.37 -0.01 0.7 2011-09-06 1669

66908 NGC 1068 39.97 -0.01 0.7 2011-09-06 1687

66909 NGC 1068 40.67 -0.71 0.7 2011-09-06 1687

66910 NGC 1068 40.67 0.69 0.7 2011-09-06 1687

66925 NGC 1068 41.37 -0.01 0.7 2011-09-07 1687

66928 NGC 1068 39.97 -0.01 0.7 2011-09-07 1687

66929 NGC 1068 40.67 -0.71 0.7 2011-09-07 1056

66938 NGC 1068 40.67 -0.71 0.7 2011-09-08 1687

66939 NGC 1068 41.37 -0.01 0.7 2011-09-08 1687

66940 NGC 1068 39.97 -0.01 0.7 2011-09-08 1687

66950 NGC 1068 40.67 0.69 0.7 2011-09-09 1687

66951 NGC 1068 40.67 -0.71 0.7 2011-09-09 1235

67203 NGC 1068 41.37 -0.01 0.7 2011-09-23 1659

67204 NGC 1068 40.67 -0.71 0.7 2011-09-23 1258

67228 NGC 1068 40.67 0.69 0.7 2011-09-24 1669

67229 NGC 1068 39.97 -0.01 0.7 2011-09-24 1207

67317 NGC 1068 39.97 -0.01 0.7 2011-09-30 1587

67410 NGC 1068 40.67 -0.71 0.7 2011-10-02 1547

67411 NGC 1068 40.67 0.69 0.7 2011-10-02 1687

67412 NGC 1068 41.37 -0.01 0.7 2011-10-02 1687

67428 NGC 1068 39.97 -0.01 0.7 2011-10-02 1565

67429 NGC 1068 40.67 -0.71 0.7 2011-10-03 1687

67430 NGC 1068 40.67 0.69 0.7 2011-10-03 1687

67451 NGC 1068 41.37 -0.01 0.7 2011-10-03 1581

67452 NGC 1068 39.97 -0.01 0.7 2011-10-04 1687

67453 NGC 1068 40.67 -0.71 0.7 2011-10-04 1687

67490 NGC 1068 41.37 -0.01 0.7 2011-10-06 1687

68797 NGC 1068 41.37 -0.01 0.7 2011-12-15 1661

68811 NGC 1068 39.97 -0.01 0.7 2011-12-16 1661



A.11. NGC 1365 261

A.11 NGC 1365

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

27943 NGC 1399 55.48 -35.45 1.8 2005-08-12 1693

27987 NGC 1399 54.63 -34.75 1.7 2005-08-13 1690

28095 NGC 1399 54.63 -36.15 1.0 2005-08-15 1695

28096 NGC 1399 53.77 -35.45 0.8 2005-08-15 964

28111 NGC 1399 53.77 -35.45 0.8 2005-08-16 1631

28583 NGC 1399 54.63 -36.15 1.0 2005-09-12 1693

28584 NGC 1399 55.48 -35.45 1.8 2005-09-12 1692

28585 NGC 1399 53.77 -35.45 0.8 2005-09-12 1690

28586 NGC 1399 54.63 -34.75 1.7 2005-09-12 1690

28587 NGC 1399 54.63 -36.15 1.0 2005-09-12 1629

28630 NGC 1399 55.48 -35.45 1.8 2005-09-13 1573

28631 NGC 1399 53.77 -35.45 0.8 2005-09-13 1694

28663 NGC 1399 54.63 -36.15 1.0 2005-09-14 1691

28830 NGC 1399 55.48 -35.45 1.8 2005-09-25 1693

28831 NGC 1399 54.63 -36.15 1.0 2005-09-25 1694

28870 NGC 1399 54.63 -34.75 1.7 2005-09-26 1689

28873 NGC 1399 54.63 -36.15 1.0 2005-09-27 925

28895 NGC 1399 54.63 -36.15 1.0 2005-09-28 1689

28896 NGC 1399 54.63 -34.75 1.7 2005-09-28 1693

28897 NGC 1399 55.48 -35.45 1.8 2005-09-28 1221

28918 NGC 1399 53.77 -35.45 0.8 2005-09-28 1691

28919 NGC 1399 54.63 -36.15 1.0 2005-09-29 1690

28920 NGC 1399 54.63 -34.75 1.7 2005-09-29 1690

28921 NGC 1399 55.48 -35.45 1.8 2005-09-29 1690

28922 NGC 1399 53.77 -35.45 0.8 2005-09-29 1695

28923 NGC 1399 54.63 -36.15 1.0 2005-09-29 1139

28978 NGC 1399 54.63 -36.15 1.0 2005-09-30 1694

28979 NGC 1399 54.63 -34.75 1.7 2005-10-01 1690



A.12. NGC 7469 262

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

42135 1RXS J033311.8-361942 53.92 -36.33 0.4 2007-10-06 1687

42159 1RXS J033311.8-361942 53.30 -36.83 0.7 2007-10-07 1689

42222 1RXS J033311.8-361942 52.68 -36.33 0.6 2007-10-09 1688

42249 1RXS J033311.8-361942 53.92 -36.33 0.4 2007-10-10 1687

42283 1RXS J033311.8-361942 53.30 -36.83 0.7 2007-10-11 1688

42284 1RXS J033311.8-361942 53.30 -35.83 0.4 2007-10-11 1688

42312 1RXS J033311.8-361942 52.68 -36.33 0.6 2007-10-12 1688

42313 1RXS J033311.8-361942 53.92 -36.33 0.4 2007-10-12 1687

A.12 NGC 7469

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

21633 NGC 7469 345.82 8.37 0.5 2004-07-16 1682

21725 NGC 7469 345.82 8.37 0.5 2004-07-20 1682

21726 NGC 7469 345.82 9.37 0.5 2004-07-20 1683

21820 NGC 7469 345.82 9.37 0.5 2004-07-25 1682

21822 NGC 7469 345.82 9.37 0.5 2004-07-25 1682

21823 NGC 7469 345.82 8.37 0.5 2004-07-25 1683

21831 NGC 7469 345.82 8.37 0.5 2004-07-26 1682

21832 NGC 7469 345.82 9.37 0.5 2004-07-26 1682

21833 NGC 7469 345.82 8.37 0.5 2004-07-26 1682

21834 NGC 7469 345.82 9.37 0.5 2004-07-26 1683

35379 NGC 7469 345.82 8.37 0.5 2006-10-11 1689

35383 NGC 7469 345.82 9.37 0.5 2006-10-12 1688

35384 NGC 7469 345.31 8.87 0.5 2006-10-12 1119

35408 NGC 7469 345.82 8.37 0.5 2006-10-14 1689

35429 NGC 7469 346.32 8.87 0.5 2006-10-15 1689



A.13. Mrk 1014 263

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

35430 NGC 7469 345.82 9.37 0.5 2006-10-15 1689

35431 NGC 7469 346.32 8.87 0.5 2006-10-15 1689

35546 NGC 7469 346.32 8.87 0.5 2006-10-23 1688

A.13 Mrk 1014

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

42693 RGB J0152+017 28.17 1.29 2.5 2007-11-02 1689

42744 RGB J0152+017 28.17 1.29 2.5 2007-11-04 1689

42808 RGB J0152+017 28.17 1.29 2.5 2007-11-07 1688

42840 RGB J0152+017 28.17 1.29 2.5 2007-11-08 1689

42864 RGB J0152+017 28.17 1.29 2.5 2007-11-09 1687

42908 RGB J0152+017 28.17 1.29 2.5 2007-11-11 1689

42955 RGB J0152+017 28.17 1.29 2.5 2007-11-13 1408

43263 RGB J0152+017 28.17 1.29 2.5 2007-11-30 1688

43322 RGB J0152+017 28.17 1.29 2.5 2007-12-03 1689

43417 RGB J0152+017 28.17 1.29 2.5 2007-12-07 1687

43439 RGB J0152+017 28.17 1.29 2.5 2007-12-08 1688

43464 RGB J0152+017 28.17 1.29 2.5 2007-12-09 1688

43545 RGB J0152+017 28.17 1.29 2.5 2007-12-13 1687

47550 RGB J0152+017 28.17 1.29 2.5 2008-08-10 1690

47575 RGB J0152+017 28.17 1.29 2.5 2008-08-12 1687

47582 RGB J0152+017 28.17 1.29 2.5 2008-08-13 1688

48897 RGB J0152+017 28.17 1.29 2.5 2008-10-22 1688

49025 RGB J0152+017 28.17 1.29 2.5 2008-11-01 1687



A.14. Mrk 1501 264

A.14 Mrk 1501

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

33749 III Zw 2 2.63 11.47 0.5 2006-07-28 1689

33750 III Zw 2 2.63 10.47 0.5 2006-07-28 1689

33751 III Zw 2 3.14 10.97 0.5 2006-07-28 1689

34006 III Zw 2 2.63 10.47 0.5 2006-08-06 1287

39727 III Zw 2 3.14 10.97 0.5 2007-06-16 1086

39812 III Zw 2 2.12 10.97 0.5 2007-06-19 818

39856 III Zw 2 2.12 10.97 0.5 2007-06-21 1688

39889 III Zw 2 2.63 11.47 0.5 2007-06-23 1689

39890 III Zw 2 2.63 10.47 0.5 2007-06-23 1283

39915 III Zw 2 3.14 10.97 0.5 2007-06-24 1689

39916 III Zw 2 2.12 10.97 0.5 2007-06-24 1492

39957 III Zw 2 2.63 10.47 0.5 2007-06-25 828

39984 III Zw 2 2.63 11.47 0.5 2007-06-28 1172

40835 III Zw 2 2.63 10.47 0.5 2007-08-08 1688

40836 III Zw 2 2.63 11.47 0.5 2007-08-08 1688

40917 III Zw 2 2.63 10.47 0.5 2007-08-11 1688

40918 III Zw 2 2.63 11.47 0.5 2007-08-11 1689

40950 III Zw 2 2.12 10.97 0.5 2007-08-12 1688

40951 III Zw 2 3.14 10.97 0.5 2007-08-12 1688

40981 III Zw 2 2.63 10.47 0.5 2007-08-13 1687

41017 III Zw 2 2.63 11.47 0.5 2007-08-14 1689

41018 III Zw 2 2.12 10.97 0.5 2007-08-14 1688

41167 III Zw 2 2.12 10.97 0.5 2007-08-20 1688

41190 III Zw 2 3.14 10.97 0.5 2007-08-20 1688



A.15. Mrk 573 265

A.15 Mrk 573

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

42673 RGB J0152+017 27.67 1.79 1.8 2007-11-01 1688

42693 RGB J0152+017 28.17 1.29 2.4 2007-11-02 1689

42744 RGB J0152+017 28.17 1.29 2.4 2007-11-04 1689

42745 RGB J0152+017 28.17 2.29 2.2 2007-11-04 1688

42808 RGB J0152+017 28.17 1.29 2.4 2007-11-07 1688

42809 RGB J0152+017 28.17 2.29 2.2 2007-11-07 1687

42838 RGB J0152+017 27.67 1.79 1.8 2007-11-08 1689

42840 RGB J0152+017 28.17 1.29 2.4 2007-11-08 1689

42861 RGB J0152+017 28.17 2.29 2.2 2007-11-09 1688

42862 RGB J0152+017 27.67 1.79 1.8 2007-11-09 1689

42864 RGB J0152+017 28.17 1.29 2.4 2007-11-09 1687

42883 RGB J0152+017 28.17 2.29 2.2 2007-11-10 1687

42884 RGB J0152+017 27.67 1.79 1.8 2007-11-10 1687

42908 RGB J0152+017 28.17 1.29 2.4 2007-11-11 1689

42910 RGB J0152+017 28.17 2.29 2.2 2007-11-11 1689

42912 RGB J0152+017 27.67 1.79 1.8 2007-11-11 1689

42931 RGB J0152+017 28.17 2.29 2.2 2007-11-12 1689

42932 RGB J0152+017 27.67 1.79 1.8 2007-11-12 638

42933 RGB J0152+017 27.67 1.79 1.8 2007-11-12 1689

42955 RGB J0152+017 28.17 1.29 2.4 2007-11-13 1408

43211 RGB J0152+017 27.67 1.79 1.8 2007-11-27 1693

43263 RGB J0152+017 28.17 1.29 2.4 2007-11-30 1688

43307 RGB J0152+017 28.17 2.29 2.2 2007-12-02 1687

43309 RGB J0152+017 27.67 1.79 1.8 2007-12-02 1688

43322 RGB J0152+017 28.17 1.29 2.4 2007-12-03 1689

43323 RGB J0152+017 28.17 2.29 2.2 2007-12-03 1687

43415 RGB J0152+017 27.67 1.79 1.8 2007-12-07 1688

43417 RGB J0152+017 28.17 1.29 2.4 2007-12-07 1687



A.15. Mrk 573 266

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

43418 RGB J0152+017 28.17 2.29 2.2 2007-12-07 1688

43437 RGB J0152+017 27.67 1.79 1.8 2007-12-08 1688

43439 RGB J0152+017 28.17 1.29 2.4 2007-12-08 1688

43440 RGB J0152+017 28.17 2.29 2.2 2007-12-08 1687

43462 RGB J0152+017 27.67 1.79 1.8 2007-12-09 1688

43464 RGB J0152+017 28.17 1.29 2.4 2007-12-09 1688

43481 RGB J0152+017 28.17 2.29 2.2 2007-12-10 1688

43482 RGB J0152+017 27.67 1.79 1.8 2007-12-10 1688

43483 RGB J0152+017 28.17 2.29 2.2 2007-12-10 1688

43545 RGB J0152+017 28.17 1.29 2.4 2007-12-13 1687

47550 RGB J0152+017 28.17 1.29 2.4 2008-08-10 1690

47563 RGB J0152+017 28.17 2.29 2.2 2008-08-11 1689

47564 RGB J0152+017 27.67 1.79 1.8 2008-08-11 1688

47575 RGB J0152+017 28.17 1.29 2.4 2008-08-12 1687

47577 RGB J0152+017 27.67 1.79 1.8 2008-08-12 1309

47581 RGB J0152+017 28.17 2.29 2.2 2008-08-13 1688

47582 RGB J0152+017 28.17 1.29 2.4 2008-08-13 1688

48877 RGB J0152+017 28.17 2.29 2.2 2008-10-21 1688

48897 RGB J0152+017 28.17 1.29 2.4 2008-10-22 1688

48899 RGB J0152+017 27.67 1.79 1.8 2008-10-22 1688

49004 RGB J0152+017 28.17 2.29 2.2 2008-10-31 1688

49025 RGB J0152+017 28.17 1.29 2.4 2008-11-01 1687

53656 RGB J0152+017 27.67 1.79 1.8 2009-09-17 1689

53657 RGB J0152+017 28.17 2.29 2.2 2009-09-17 1688

54180 RGB J0152+017 27.67 1.79 1.8 2009-10-17 1689

54493 RGB J0152+017 27.67 1.79 1.8 2009-11-07 1693



A.16. 3C 120 267

A.16 3C 120

Run Number Target Pointing Direction Offset Date Duration

J2000.0

R.A. Dec.

(deg) (deg) (deg) yyyy-mm-dd (s)

23233 3C 120 68.30 4.85 0.5 2004-11-06 1686

23243 3C 120 68.30 5.85 0.5 2004-11-07 1687

23246 3C 120 67.79 5.35 0.5 2004-11-07 1686

23264 3C 120 68.80 5.35 0.5 2004-11-08 1687

23279 3C 120 67.79 5.35 0.5 2004-11-09 1686

23635 3C 120 68.30 5.85 0.5 2004-12-13 1686

23636 3C 120 68.30 4.85 0.5 2004-12-13 1686

23647 3C 120 67.79 5.35 0.5 2004-12-14 1687

23648 3C 120 68.80 5.35 0.5 2004-12-14 1686

23651 3C 120 68.30 4.85 0.5 2004-12-14 1689

23660 3C 120 68.80 5.35 0.5 2004-12-15 1686

23661 3C 120 67.79 5.35 0.5 2004-12-15 1686

67325 3C 120 67.79 5.35 0.5 2011-09-30 1689

67326 3C 120 68.30 5.85 0.5 2011-09-30 946

67415 3C 120 68.80 5.35 0.5 2011-10-02 1629

67433 3C 120 67.79 5.35 0.5 2011-10-03 1629

67434 3C 120 68.30 5.85 0.5 2011-10-03 877

67456 3C 120 68.30 4.85 0.5 2011-10-04 1637

67474 3C 120 68.80 5.35 0.5 2011-10-05 1645

67493 3C 120 68.30 5.85 0.5 2011-10-06 1651

67494 3C 120 68.30 4.85 0.5 2011-10-06 1247

67506 3C 120 68.80 5.35 0.5 2011-10-07 1645

67507 3C 120 67.79 5.35 0.5 2011-10-07 1687



Appendix B

List of Abbreviations

A list of abbreviations used in this thesis is found below.

Abbreviation Meaning

ACD Anticoincidence detector

AGN Active galactic nucleus

ASI Italian space agency

BDT Boosted decision tree

BLR Broad-line region

CDM Cold dark matter

Dec Declination

EBL Extragalactic background light

EC External Comptonisation

EIC External inverse-Compton

ESA European Space Agency

FRI Fanaroff-Riley class 1

FRII Fanaroff-Riley class 2

FSRQ Flat-spectrum radio quasar

FWHM Full width at half maximum

HBL High-frequency BL Lacs

IACT Imaging atmospheric Cherenkov telescope

IBL Intermediate-frequency BL Lacs

LBL Low-frequency BL Lacs

LIG Luminous infrared galaxy
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Abbreviation Meaning

LMC Large Magellanic Cloud

LST Large-sized telescope

MLP Multi-layered perception

MRSL Mean reduced scaled length

MRSW Mean reduced scaled width

MST Medium-sized telescope

NLR Narrow-line region

NLSy1 Narrow-line Seyfert galaxy

OVV Optically violent variable

PSF Point spread function

QSO Quasi-stellar object

RA Right Ascension

SED Spectral energy distribution

SSC Synchrotron self Compton

SSRQ Steep-spectrum radio quasar

SST Small-sized telescope

Sy1 Seyfert 1

Sy2 Seyfert 2

UHECR Ultrahigh-energy cosmic ray

VHE Very high energy

ZA Zenith angle


