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Abstract 

In the last three decades many sophisticated tools have been developed that can 
accurately predict the dynamics of flooding. However, due to the paucity of adequate  
infrastructure, this technological advancement did not benefit  ungauged flood-prone 
regions in the developing countries in a major way. The overall research theme of this 
dissertation is to explore the improvement in methodology that is essential for utilising 
recently developed flood prediction and management tools in the developing world, 
where ideal model inputs and validation datasets do not exist. 

This research addresses important issues related to undertaking inundation modelling at 
different scales, particularly in data-sparse environments. The results indicate that in 
order to predict dynamics of high magnitude stream flow in data-sparse regions, special 
attention is required on the choice of the model in relation to the available data and 
hydraulic characteristics of the event. Adaptations are necessary to create inputs for the 
models that have been primarily designed for areas with better availability of data. 
Freely available geospatial information of moderate resolution can often meet the 
minimum data requirements of hydrological and hydrodynamic models if they are 
supplemented carefully with limited surveyed/measured information. This thesis also 
explores the issue of flood mitigation through rainfall-runoff modelling. The purpose of 
this investigation is to assess the impact of land-use changes at the sub-catchment scale 
on the overall downstream flood risk.  

A key component of this study is also quantifying predictive uncertainty in 
hydrodynamic models based on the Generalised Likelihood Uncertainty Estimation 
(GLUE) framework. Detailed uncertainty assessment of the model outputs indicates 
that, in spite of using sparse inputs, the model outputs perform at reasonably low levels 
of uncertainty both spatially and temporally. These findings have the potential to 
encourage the flood managers and hydrologists in the developing world to use similar 
data sets for flood management. 
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Chapter 1 

 

Introduction 
 
 



 

1 
 

1.1 Background 
1.1.1  Flood as a global natural hazard 

 

Floods account for approximately one third of global natural hazards and more people 

are adversely affected by flooding than any other geophysical phenomenon (Smith and 

Ward, 1998). On  average, 20,000 people lose their lives due to flooding each year and 

it affects 75 million people globally, most of whom become homeless (Smith, 2001). 

These global figures mask much regional variation in the occurrence of floods, the 

causes and the consequences on the populations. Recently, Adhikari et al. (2010) 

compiled a digitised global flood inventory for the period of 1998 to 2008 that reveals 

some important facts about different causes of flooding, the spatial variation and 

frequency of occurrences. According to this database, heavy rain, monsoon rain and 

tropical cyclones were reported as the causative factors for 64 %, 11 % and 6 % floods 

respectively. These types of meteorological phenomena occur only in the tropical and 

sub-tropical regions where most of the developing countries are located. This database 

further reported that seven of the top ten countries with most flooding events reported 

between 1998 and 2008 were outside the industrialised world and that Asia and Africa 

have the highest percentage of reported flood events each year. Jonkman (2005) pointed 

out that the floods caused by  Asian rivers claim the most lives and affect more people 

than any other region in the world. Flood-affected population in the developed world 

have the means to combat the extreme natural events through  better infrastructure, 

health care and functional flood warning systems (Allenby and Fink, 2005) while in the 

developing countries vulnerable populations lack the capital resource to develop 

sustainable protection mechanisms or rebuilt their damaged infrastructure after a major 

flood event.  

 

`All the above information demonstrates that the developing countries in the low 

latitudes are more prone to flood hazards and the population is more vulnerable, 

particularly in Asia due to the high population density near the flood-prone rivers and 

low spending capacity for creating an early warning system and flood protections. Thus, 

the developing countries urgently need to develop a flood-prediction capability at an 

affordable cost for creating an early warning system and adopting structural (such as 



 

2 
 

building embankments) and non-structural (such as floodplain zoning) measures for 

flood management. 

 

1.1.2. The issue of limited data in flood-prone regions 

 

Hydraulic models are the standard tools for predicting fluvial inundation.  Streamflow 

data and topography of channels and floodplains are the two most significant model 

inputs that influence the flow hydraulics and modelled flood extents. Bates (2012) 

commented that the science of inundation modelling has transformed rapidly in the past 

few years from a ‘data-poor’ to a ‘data-rich’ discipline. He was referring to the 

increasing availability and constant improvement of very high resolution terrain data 

form of LiDAR survey and all-weather capable Synthetic Aperture Radar (SAR) 

images for calibrating and validating distributed performances of flood-inundation 

models.  

 

The study by Bates et al. (2006) in a 16 km reach of the River Severn in the UK is a 

typical example of the data intensive inundation modelling approach. This study  used 

LiDAR-generated DEMs in combination with a series of airborne synthetic aperture 

radar (ASAR) images captured opportunistically during the peak and recession limb of 

the flood hydrograph in order to calibrate and validate flood models.  The LiDAR DEM 

used was of <1 m horizontal resolution with a vertical root mean square error (RMSE) 

of 0.079 m. Elevation is measured by differential GPS points of approximately 0.01 m 

vertical accuracy was used as reference spot heights for obtaining the RMSE value of 

the DEM while the ASAR images were of 1.2 m resolution. This dataset was further 

supplemented with space-borne RADARSAT images, upstream and downstream 

gauging records at 15 minute intervals and extensive field data collected during the 

actual flood event.  

 

The quality of LiDAR data has improved further in recent years. Inundation modelling 

has been performed successfully at 10 cm grid size for a small piece of urban land by 

using very high resolution LiDAR data captured with vehicle mounted terrestrial laser 

scanner (Fewtrell et al., 2011; Sampson et al., 2012). High resolution SAR data are 

typically available at ~25 m ground resolution but recently Mason et al. (2010a) utilized 

TerraSAR-X images with 3 m resolution for detecting flood water in the urban 
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environment. The availability of fine resolution inputs, particularly the fine resolution 

validation data from SAR imageries help reduce the equifinality arising from the 

difficulty in differentiating between different model physics and parameters and 

provided a more controlled environment for comparing the effect of including 

individual hydraulic process in the code (Bates, 2012). Thus, it is clear that a steady 

trend of advancement in the quality and coverage of the required data has led to marked 

improvement in the science of inundation modelling. Nevertheless, the major flood-

prone areas in the world are not able to benefit much from this development of  state-of-

the-art inundation models given that LiDAR derived terrain data and SAR images are 

almost always unavailable in the developing countries due to the prohibitive cost of 

acquiring them (Sanyal et al., 2004). This scenario leaves us with the option of using 

freely available DEMs such as the Shuttle Radar Topography Mission (SRTM) DEM or 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM) for defining the model geometry and the 

cloud-free optical imagery of flood water as the primary source of distributed observed 

data for model calibration and validation.  

 

Although Sanders (2007) demonstrated the potential of employing the SRTM DEM in 

inundation modelling and Manfreda et al. (2011) highlighted the reliability of this data 

to identify flood-prone regions with a modified topographic index, it is well known that 

these terrain data contains considerable noise (Bhang et al., 2007). A global 

performance assessment study of the SRTM data by Rodriguez et al. (2006) revealed an 

absolute height error of 6.2 m, 5.6 m and 6.2 m for Eurasia, Africa and South America 

respectively. Since, the X and C band radars used in the SRTM instrument do not 

penetrate the canopy the SRTM DEM captured the tree top elevation rather than the 

surface at any place with dense foliage. The ASTER GDEM, in spite of having a higher 

spatial resolution of 30 m is reported to have significant anomalies and much higher 

RMSE than the SRTM DEM when compared with LiDAR derived elevation data 

derived from ICESat (Reuter et al., 2009). While evaluating the recently available 2nd 

version of the ASTER GDEM Slater et al. (2011) commented that the data have an 

effective resolution which is lower than 30 m and contain systematic bias in comparison 

to the other reference DEMs and ground control points. Hence, both the SRTM and 

GDEM products are not quite suitable for inundation modelling, at least in the forms 
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which are available for download. Bates (2012) did in fact note that the purpose of 

creating these global data sets most probably did not include inundation modelling. 

 

Due to the high cost of acquiring radar imagery there are very few requests for data 

acquisition over the developing nations to capture flooding on the ground. 

Consequently, for any flood-prone river basin outside the industrialised countries there 

is very limited chance of finding a flood scene in the archive of radar data providers. In 

the absence of radar imagery optical imagery has been successfully used in many 

occasions for delineating the flood extent (Wang et al., 2002; Sanyal and Lu, 2005; Jain 

et al., 2005; Ip et al., 2006). The Landsat archive, which is accessible at no cost, 

contains numerous cloud-free scenes of inundated surface which can be quite valuable 

for inundation modelling in the developing world. 

 

In spite of all the constraints mentioned above there is an increasing trend of utilising 

freely available terrain data for hydraulic modelling of streamflow. Due to the coarse 

nature of the available terrain data (e.g. SRTM DEM), the majority of these studies has 

been undertaken at continental scale. For example, Yamazaki et al. (2012a) applied a 

global river model: CaMa-Flood (Yamazaki et al., 2011) to model the seasonal cycles 

of water level elevations in the Amazon River using the SRTM DEM as the terrain 

input and the simulated water surface elevations were compared with Envisat altimetry. 

Development and application of flow routing and inundation models in the data sparse 

regions of the world is mostly confined in the very large continental river basins such as 

the Amazon (da Paz et al., 2011), Congo (Jung et al., 2010), Niger (Neal et al., 2012a) 

and Ob (Biancamaria et al., 2009). The abovementioned studies are primarily engaged 

in simulating seasonal or annual cycle of river discharge and water level or even water 

budget and flooding pattern of large wetlands of the Niger River (Zahera et al., 2011) 

and the Nile Basin (Petersen and Fohrer, 2010). A number of novel attempts have been 

reported to deal with the low resolution of the freely available DEMs that were used in 

these investigations. Paiva et al. (2011) developed a GIS-based algorithm that includes 

extraction of river cross-sections, delineation of river networks and catchments from the 

SRTM DEM and used geomorphic principles to estimate the river width and depth. 

Yamazaki et al. (2012b) proposed a pit removal strategy to reduce the anomalies in the 

SRTM data arising from vegetation canopy and sub-pixel structure and reported an 

improvement in the simulated water surface elevation with the adjusted DEM in terms 
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of agreement with the observed records. Neal et al. (2012a) demonstrated how a sub-

grid scale representation of a channelized portion of the flow can help to simulate 

streamflow in narrow channels that cannot be captured in the low resolution global 

DEMs. However, this model still needs measurements about channel depth and width to 

derive the empirical relationship for estimating channel-bed elevation from bank 

elevation and channel width.  

 

1.1.3 Inundation modelling at different scales with limited data 

 

In general, there is a lack of focus on flooding as a natural hazard when it comes to 

hydraulic modelling in data sparse regions. When we develop a tool for a flood 

prediction and warning system it is conventionally focussed on modelling extreme flow 

events with an accuracy that is acceptable in flood management and planning practices. 

There are very few case studies at regional scales outside the industrialised countries for 

river basins that are fairly large (length > 500 km) but not of continental scale such as 

the Amazon and of cases that regularly inundate densely populated floodplains. Use of 

the global DEMs for routing high magnitude floods at a regional scale is likely to 

require some additional reference data in order to correct the systematic bias and noise 

present in them and increase the details of topographic representations where it is 

absolutely necessary.  Few attempts were made to simulate river flows in regional 

scales with the SRTM DEM using 1D models such as MIKE11 in sparsely gauged parts 

of the Mahanadi (Patro et al., 2009) and the Brahmani Rivers (Pramanik et al., 2009) in 

India. In the absence of a measured river cross section, the SRTM DEM has been used 

in both studies to extract river cross sections. The cross-section heights were modified 

using available spot heights from topographic maps.  

 

Apart from the SRTM DEM, recently there has been some interest in utilising relatively 

recent ASTER GDEM data in hydraulic modelling, probably due to their higher spatial 

resolution. One such study undertaken by Wang et al. (2012) to model the possible 

outcome of a glacial lake outburst flood in southeast Tibet has shown that the simulated 

extent of inundation and the depth of water resulting from the use of ASTER GDEM is 

only 2.2 % larger than the predictions derived from a much more accurate DEM 

provided by the National Geomatics Centre of China at 1:50,000 scale. However, this 

study reported a depth of the simulated flood water which was 2.3 m deeper than what 
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was achieved using the reference DEM. An overestimation of 2.3 m in the flood depth 

may be reasonable in mountainous regions like Tibet and results in a small 

overestimation in the areal extent of flooding but such error in the modelled depth can 

make a huge difference in the predicted flood extent in the lower course of river basins 

which are typically most flood-prone and associated with very low relief. The 2nd 

generation of ASTER GDEM, known as GDEM2 which was released in the public 

domain in October, 2011 has also been tested for inundation-area analysis by means of 

delineating the impoundment area that is likely to be under water for a proposed dam in 

Indonesia and an improvement in the maximum contour level has been noted as 

compared to the GDEM2 (Suwandana et al., 2012). However, the vertical accuracy of 

the ASTER GDEM was found to deteriorate in the recent version and recorded to be 

5.68 m as compared to 4.04 m in the GDEM1 for the area investigated by Suwandana et 

al. (2012). 

 

Casas et al. (2006) evaluated the effect of quality of input terrain data on the accuracy 

of predicted water surfaces using HEC-RAS model. Although this study reported poor 

performance of contour maps with 5 m intervals in comparison with high resolution 

LiDAR DEMs, it is interesting that the observed error in predicted water surface 

reduced quite dramatically as the flow crosses the bank limit and lack of river channel 

bathymetry becomes less significant. Adding GPS control points to the less accurate 

contour-derived TIN model improved the predicted water-surface elevation by 4.5 m. 

This finding is particularly encouraging with a view to employing relatively low 

resolution DEMs for large flood prediction which can be supplemented with GPS 

surveyed control data to improve accuracy. Although both studies on the Mahanadi and 

the Brahammani River in India achieved good agreement with the observed 

downstream hydrograph the models were focussed on modelling the river regime 

during the period of Indian monsoon rather than extreme floods. 

 

The majority of the inundation modelling that is focussed on analyzing flood risk is 

conducted at the reach scale (< 20km). Generally, a major flood is considered for which 

detailed topographic data for the flood-prone reach is available. There is an acute lack 

of literature that deals with this kind of study outside the industrialised countries 

because the globally available DEMs are normally too noisy to accurately simulate 

floodplain flow at this scale. Detailed configuration of the channel bed is also an 
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essential prerequisite to perform reasonably accurate inundation modelling at the reach 

scale. One such attempt has been made by Masood and Takeuchi (2012) for creating a 

flood risk map for part of Dhaka City in Bangladesh where the SRTM data was 

resampled into 30 m resolution. The area which experienced significant land filling 

since the time of the SRTM mission were identified and the corresponding grid cells 

were raised to match the current topography. A more rigorous validation of the results 

in the reach scale derived from freely available DEMs is necessary. It is evident that the 

SRTM or ASTER DEMs in their available form are not suitable for modelling 

widespread floodplain flow  at reach scale. Even for applications in regional scale such 

as Patro et al. (2009) or Pramanik et al. (2009) the SRTM DEM was modified with 

reference ground control points before employing in 1D hydraulic models. For 

undertaking hydraulic modelling at the reach scale without access to very high 

resolution terrain data some researchers have tried to combine elevation information 

from a variety of sources to increase the detail of channel and floodplain representation. 

For example, Tate et al. (2002) exported the ground surveyed XYZ data from HEC-

RAS model into real world coordinates and merged them with a relatively low 

resolution DEM to get more detailed representation of the channel and embankments. 

The assumption of straight-line cross-sections are one of the limitations of this approach 

as the cross-sections are generally doglegged in shape.  Shapiro and Nelson (2004) 

edited and merged terrain data from various sources and created a TIN with higher 

density of elevation points at or near the channel and less resolution further away.  

 

The most significant determinant of the performance of a hydraulic model is the 

accuracy in the representation of channel geometry (French and Clifford 2000; 

Pappenberger et al., 2005). Creating a continuous and detailed terrain data for the 

channel is a requirement for 2D hydrodynamic models. Even for the 1D models a 

continuous DEM including the channel is often required to derive the extent of 

inundation where the terrain height is subtracted from the simulated water level at each 

cross-section to identify the wet cells. While undertaking inundation modelling at the 

reach scale in data sparse regions creating a reasonably accurate river terrain model can 

be quite challenging because of the narrow width of the channel in comparison with the 

coarse resolution of the freely available DEMs. Particularly, for the SRTM DEM the 

problem is aggravated by voids in the wet part of the channel arising from specular 

reflection of radar backscatter from calm water. In the ‘finished’ versions of the SRTM 
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DEM, that has less void and noise any river with more than 183 m of width was 

monotonically stepped down at the direction of flow (Slater et al., 2006). This 

processing led to step like appearance in channels along their longitudinal profiles and 

made them difficult to use, at least in the reach scale.  

Merwade et al. (2008a) pointed out that linear interpolation of the available surveyed 

cross-sections for creating a continuous river terrain model is not straight forward due 

to various facts including bends in the river, imperfect location of the cross-sections. In 

addition, the existence of channel islands not captured by enough number of cross-

sections and failure to capture the river thalweg by the bathymetric surveys also makes 

the interpolation a challenging task. Merwade et al. (2006) reported that in a flow-

oriented coordinate system the performance of anisotropic spatial interpolation 

techniques resulted in significant reduction in RMSE as compared to the conventional 

interpolation techniques such as nearest neighbour or kriging. This study proposed 

elliptical inverse distance weighting, a modified version of conventional inverse 

distance weighting (IDW), to take advantage of the flow oriented coordinate system as 

the channel bed morphology is essentially anisotropic due to greater variability of bed 

elevation perpendicular to the flow direction than along it. However, the investigation 

used spatially irregular bathymetry data collected by boat-mounted acoustic depth 

sounders rather than linear channel cross-sections. Even the isotropic techniques of 

interpolation were reported to perform well if the surveyed bathymetry data are de-

trended and transformed into a flow oriented coordinate system (Merwade, 2009). 

However, after experimenting with various interpolation techniques in a flow-oriented 

coordinate system, Legleiter and Kyriakidis (2008) commented that the density of 

surveyed points exerts primary control over the accuracy of interpolated surface and the 

RMSE of the interpolated surface has a strong relation with the spacing of the cross-

sections.  

 

All the abovementioned interpolation techniques are  likely to create accurate 

interpolated surfaces of the channel if there is adequate data in the form of irregular 

elevation points or linear surveyed cross-sections. In the case of anabranching and 

anastomosing rivers with a number of flow bifurcations and  large river islands the 

above mentioned methods may not perform well (Merwade et al., 2008a). For a 

successful implementation of the aforesaid interpolation techniques to capture the flow 

diversion near the river bifurcations very high density of surveyed points will be 
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required and therefore these methods may not be suitable for use in a complex fluvial 

system, especially in the developing countries where acquisition of expensive surveyed 

data at a very high density is not possible due to resource constraints.  

 

Recently, there have been few attempts to generate terrain data from relatively 

affordable stereo satellite imagery sources for reach scale inundation modelling in the 

developing world where generally the SRTM DEM is the best available option. For 

example, Tarekegn et al. (2010) generated a DEM of 15 m resolution from ASTER 

imagery using ERDAS LPS digital photogrammetry software for 2D hydrodynamic 

simulation of flooding in the Ribb River in Ethiopia but reported only 30.5 % match 

between the simulated flooded extent and observed flood extent derived from a MODIS 

image. Considering the previous studies regarding the accuracy of the ASTER DEM 

data this result is not surprising.  

 

High resolution (2.5 m)  IRS Cartosat-1 stereo images were found to produce more 

accurate DEMs than the SRTM or ASTER data when compared against surveyed GCPS 

(Rawat et al., 2012). Sarhadi et al. (2012) used Cartosat-1 images to create high 

resolution DEM of 2.5 m grid spacing in order to perform inundation modelling in the 

mountainous region of Iran and reported a high accuracy in the modelled flood extent. 

Nevertheless, the nature of the reach scale studies performed with no access to LiDAR 

DEMs or other comparable sources in the developing countries such as Bangladesh 

(Masood and Takeuchi, 2012), Iran (Sarhadi et al., 2012) or Thailand (Keokhumcheng 

et al., 2012) were probabilistic in nature. The flood events considered were only 

designed events with a high return period, not the actual ones and the modelled flood 

extents were compared with the observed flood extent of a typically larger event rather 

than the actual satellite overpass. It is worth noting that in the mountain areas small 

vertical error in the DEM is not likely to have a huge impact on the extent of flooded 

area as illustrated by the study by Wang et al. (2012) in Tibet. Both Tarekegn et al., 

(2010) and Sarhadi et al. (2012) produced a DEM with identical resolution of its source 

stereo images which is difficult to achieve using digital photogrammetric techniques. A 

moving window is used to calculate some form of statistics for the ‘fore’ and ‘aft’ 

images to find the location of the same feature on both images. If a very small window 

size is chosen it is unlikely to find enough matching points on the fore and aft images to 

create a uniform distribution of elevation points. A slightly larger window size (e.g. 3 × 
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3), which is often used, means that the elevation for each point is derived from a much 

larger area of the source image than its individual pixel size. Therefore, a DEM grid 

size of at least double the size of the spatial resolution of the source stereo imageries is 

recommended. Otherwise, the effective resolution of a DEM becomes less than its 

nominal resolution.  

 

1.1.4  Choice of the model and the required level of complexity 

 

1D hydrodynamic models are computationally efficient and can produce accurate water 

surface elevations without very high resolution terrain data. However, high resolution 

terrain data are required for modelling extensive floodplain inundation as mentioned in 

the previous section of this chapter. Although 1D models were found to perform equally 

well as the 2D models in certain cases (Horritt and Bates., 2002; Alho and Aaltonen 

2008), generally 1D models are less efficient in simulating the lateral diffusion of flood 

waves in the floodplain because of the discrete representation of the topography in the 

form of cross-sections (Hunter et al., 2008). It is also not technically sound for 

modelling backflow in floodplains (Merwade et al., 2008b). In addition, the roughness 

coefficients, which are required to account for the energy loss from a variety of sources 

depends on the dimensionality of coding and level of process representation (Lane and 

Hardy, 2002). The roughness parameters estimated from field data are more likely to 

work well in physically consistent 2D models such TELEMAC2D (Hervouet and Van 

Haren, 1996) than simpler models (Hunter et al., 2007).  

 

Physically based more complex finite element codes were also found to be less 

sensitive to the resolution of the terrain model and therefore are effective in containing 

the uncertainty in the model outcomes (Cook and Merwade, 2009). There is an element 

of non-stationarity of the friction parameter arising from the variation in the magnitude 

of the flood under consideration and physically-based fully 2D models can keep the 

effect of this factor low (Horritt et al., 2007). Hunter et al. (2008) compared the 

performance of a number of diffusive and shallow water codes in an urban setting in 

Glasgow and noticed variations in the modelled depth and flooded extent depending on 

the hydraulic process representations and types of numeric solvers in use. Process 

representation was not always found to influence the model outcome decisively. Neal et 

al. (2012b) observed that often the subtle modelling decision such as methods of 
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downgrading the resolution of a DEM from 10m to 50m can have more effect on model 

outputs than selecting models with different degree of complexity. A number of 

benchmarking studies depending on the 1D versus 2D code (Horritt and Bates, 2001b), 

scale of the model domain (Fewtrell et al., 2008), the nature of the numerical solution of 

2D hydrodynamic models (Horritt et al., 2007), and ways of setting up the parallel 

computing environment (Neal et al., 2010) have been carried out in the past but there is 

no literature that focusses on comparing the performance of 2D hydrodynamic models 

with varying degree of complexity with very limited data in an anabranching river with 

a number of smaller distributaries. 

 

1.1.5 Treatment of uncertainties 

 

A systematic estimation of the predictive uncertainty in a hydrodynamic modelling 

experiment is an essential component of any flood prediction mechanism. Uncertainty 

analysis in inundation modelling and flood risk analysis is important because it 

improves the evaluation of risk by identifying the sources of variation in model 

predictions, and even can influence decision-making on flood mitigation (Merz  et al., 

2008). It can also result in serious error in hazard assessment (Di Baldassarre et al., 

2010). Merz, et al. (2008) further pointed out that if the uncertainty component of a 

particular prediction is found to be too large for a reasonable decision-making process it 

may highlight the necessity of further research to understand the physical process of 

inundation in that study area. Uncertainty assessment is more essential in the context of 

data-sparse situations in order to know the level of confidence we can attach to a 

particular prediction that was derived from model inputs of coarse quality and 

approximate measurements. The  proportion of area in a model domain affected by the 

uncertain flood prediction increases with increasing uncertainties in the model inputs 

and choice of techniques and vice versa (Merwade et al., 2008b). An uncertainty 

assessment is important in order to know the extent to which the modelled flood extents 

are affected by 1) each of the uncertain inputs and modelling considerations; 2) the 

spatial dimension of the effect of changes in each of the uncertain variables; and 3) the 

nature of propagation of each uncertain variable in the inundation process and its effect 

over the combined state of uncertainty of a prediction (Jung and Merwade, 2012). 
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The uncertainties in the upstream and downstream boundary conditions mostly arise 

from the uncertainty in deriving river discharge from measured stages and rating curves 

and is well documented in literature (Di Baldassarre and Claps, 2011; Di Baldassarre 

and Montanari, 2009a). Channel cross-sections are sometimes difficult to measure in 

some locations (Sefe, 1996), sometimes they are not stationary (Callede et al., 2000), 

and particularly prone to modification after major floods. Uncertainty in the inflow of 

water in the model domain is considered as the most potent source of uncertainty in 

inundation modelling (Pappenberger et al., 2006). The effect of uncertain 

parameterization such as Manning’s roughness coefficients (Pappenberger et al., 2005) 

and varying levels of confidence in the boundary-condition information (Pappenberger 

et al., 2006) on flood prediction were analysed in detail using Generalised Uncertainty 

Likelihood Estimation (GLUE) (Beven and Binley, 1992). The impact of possible land-

use change in urban areas, modelled by means of changing roughness values, on the 

distributed uncertainty estimation was attempted by Weichel et al., (2007) but met with 

limited success. Uncertainty in the topographic data, especially if a continuous surface 

interpolated from spot heights and contours, can have significant impact over hydraulic 

variables such as velocity and depth of inundation in small scale (Wilson and Atkinson, 

2005a; Wilson and Atkinson, 2005b). 

 

The GLUE methodology has been widely used in inundation modelling in the past 

decade by using time series of river stages from gauging sites (Hunter et al., 2005) as 

well as distributed observed inundation patterns derived from satellite images (Horritt 

and Bates, 2001) and aerial photographs (Romanowicz and Beven, 2003). The choice of 

a performance measure of an inundation model is an important consideration in GLUE 

technique and can significantly influence the computed predicted uncertainty scenario. 

However, Jung and Merwade (2012) reported that the using different performance 

measures resulted in only 2% change in the uncertainty quantification. 

 

Uncertainty in the measurements of observed data such as time series of stage/discharge 

records or flood-extent maps derived from airborne or spaceborne platforms may affect 

the computation of predictive uncertainty. Such error may also add a significant amount 

of uncertainty in estimating design flood events (Di Baldassarre et al., 2012). As the 

reference vertical datum for the river gauges are often based on local datum and not 

related to a global geoid model it is difficult to make a direct comparison between 

http://www.sciencedirect.com/science/article/pii/S0169555X07001304#bib190�
http://www.sciencedirect.com/science/article/pii/S0169555X07001304#bib190�
http://www.sciencedirect.com/science/article/pii/S0169555X07001304#bib191�
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simulated river stages and an observed one (Hall et al., 2011; Hall et al., 2012). For  

data-sparse regions we commonly use freely available global DEMs such SRTM or 

ASTER GDEM that are generated from global geoid models such as EGM96. Survey 

authorities in developing countries generally do not follow a geoid model for preparing 

large scale topographic maps and geodetic control networks. For example, in India no 

geoid model is used for determining the vertical datum and there is no straightforward 

way of converting the local mean sea-level information into an established geoid 

(Agrawal, 2005). This factor introduces uncertainty in the observed river-stage 

information when global DEMs and surveyed data collected through differential GPS is 

used in models to predict water-surface elevations. 

 

Previously, distributed predictive uncertainty was quantified by using deterministic 

binary pattern flood extent maps that were generated from remotely sensed data (Horritt 

and Bates, 2001; Pappenberger et al., 2007). Although the scientific community 

acknowledged the inherent uncertainty in the satellite derived flood extent maps, Di 

Baldassarre et al. (2009) first illustrated a methodology of quantifying the uncertainty in 

satellite derived flood extent maps and incorporating this factor in the uncertainty 

analysis of the modelled flood extent. Stephens et al. (2012) used the distributed water- 

surface elevation derived from ERS-2 SAR as the observed data for conditioning the 

computation of distributed predictive uncertainty of an inundation model. They pointed 

out the impact of noisiness and strong spatial autocorrelation in the error of water 

surface elevation on the computed values of the predictive uncertainty. In addition, this 

paper also highlighted that using observed data corresponding to different parts of the 

model domain have varying degree of influence on the consequent computation of the 

distributed uncertainty pattern.  

 

Although the literature is replete with studies regarding distributed and point-based 

uncertainties in simulated outputs of inundation models there is a general lack of 

attention in the scenarios where the study was undertaken in 1) developing countries 

with no access to high resolution topographic data / surveyed cross-sections, rating 

curves and radar images of flooding; 2) with complex and computationally demanding 

finite element models (e.g. TELEMAC2D) with a robust mechanism to account for 

hydraulic processes; and  (3) in study sites with anabranching fluvial system associated 
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with a number of river bifurcations, large river islands and distributaries rather than a 

single channel.   

 

 

1.1.6 Recent trends in inundation modelling 

 

Recent advances have been made in improving the computational efficiency of raster- 

based 2D models using an inertial formulation (Bates et al., 2010) or graphic processing 

unit-based methodologies (Kalyanapu et al., 2012) to use Monte Carlo techniques for 

producing probabilistic flood hazard maps at a very fine resolution. In terms of 

distributed observed data, now we have high spatial resolution SAR images from 

sensors like TerraSAR-X (3 m) for successfully demarcating the flooded area in heavily 

built up environments (Mason et al., 2010). Stephens et al. (2012) delineated flood 

extents from SAR data using the method developed by Mason et al. (2009) and derived 

the distributed water-surface elevation by intersecting the shoreline with LiDAR DEM 

in order to assess the distributed uncertainty of modelled flood depth. For applications 

at continental scale involving large wide rivers such as the Amazon the modelled water 

surface was validated using the RA-2 altimeter on board Envisat (Yamazaki et al., 

2012a). However, the majority of the new developments is geared towards making 

better use of ever increasing quality of distributed data that are available for only a very 

small portion of the flood-prone regions of the world.    

 

1.1.7 Causal link between land use/cover and downstream flood risk    

 

With changes in the climate, the frequency and magnitude of extreme hydrological 

events are increasing around the world (Huntington, 2006). Although it is quite evident 

that the impact of land use/land cover (LULC) change at plot or small catchment scale 

has a clear-cut effect on the flood peak (Wan and Yang, 2007) the causal relationship 

between the two becomes less clear as the size of the catchment and the number of 

LULC, increases (Andréassian, 2004). Exploring the nature of the relationship between 

the local LULC changes at the sub-catchment level and its impact on the hydrograph at 

the basin outlet is important because most of the watershed management planning is 

perceived and implemented at the sub-catchment level. Without a clear understanding 

of the scale-dependent processes responsible for propagating the effect of local LULC 
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changes into the basin hydrograph it is difficult to implement remedial land 

management measures to reduce flood peak (Pattison et al., 2008).  

 

Lane et al. (2007) pointed out four potential ways by which land-management practices 

in a rural catchment might affect a storm hydrograph as 1) the influence in determining 

the share of rainfall following the rapid surface route and the slower subsurface one; 2) 

the efficacy of the process of transferring the rainwater from the hillslope to the 

channel; 3) the ease of passage of the flow within the riparian zone; and 4) the effect on 

existing catchment storage during heavy rainfall events. Pattison and Lane (2012) 

envisaged that the effect of LULC might have a different impact of different scale 

because a particular land-management practice may have an impact over more than one 

of the processes mentioned above. The effect of the intensity and duration of the 

precipitation and the type of soil is also very important in controlling the way in which 

changes in LULC can lead to alteration in the downstream flood hydrograph. The 

processes that lead to runoff generation are sensitive to the type of precipitation, 

therefore the effect of LULC change and land management has to be event specific 

(Bronstert et al., 2002). The reduction of surface runoff due to alteration in the soil 

infiltration capacity is restricted only in the initial phase of the rainfall event so that for 

events of longer duration the soil infiltration capacity is not at all found sensitive to 

existing LULC (Quast et al., 2012). Pattison and Lane (2012) came to the conclusion 

that due to the difficulty in upscaling the straightforward relationship between LULC 

changes and storm runoff, the linkage between LULC and the rate of flow to the 

downstream outlet of a large basin is rather unique and should not be generalised. 

Nevertheless, there have been efforts to explore the causal relationship between LULC 

changes and the downstream flood hydrograph through modelling. Ewen et al. (2012) 

focussed on the sensitivity of the peak flow rate on the factors that control runoff 

generation and analysed different scenarios based on ‘impact mosaic maps’ created by 

an algorithmic differentiation method. Quast et al. (2012) combined the use of 

infiltration and erosion models in a schematised approach for achieving a similar goal 

and concluded that the flood-causing amount of rainfall varies with reference to the 

combination of soil types and land use.  

  

In data-sparse conditions, where detailed soil maps and other measurements of soil 

parameters such as hydraulic conductivity is not available, the NRCS Curve Number 
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(Natural Resources Conservation Service, 1986) approach can be a good proxy for 

capturing the combined effect of LULC and soil on the downstream flood hydrograph. 

Widely used hydrologic models like HEC-HMS (US Army Corps of Engineers, 2012) 

has been used with limited data to identify the sub-catchments that have high runoff 

generating potential and relative contribution to the storm hydrograph at the basin outlet 

(Saghafian and Khosroshahi 2005; Roughani et al., 2007; Saghafian et al. 2008). 

However, these investigations stopped short of evaluating the effect of changing LULC 

at the sub-catchment level on the downstream flow rates. Further research in this 

direction that make use of a modelling suite available in the public domain and inputs 

that can be derived from freely available satellite images and soil maps would be 

particularly beneficial for a wider community.    

 

1.1.8 Summary 

 

The scale of the fluvial system under investigation, the model output of interest (river 

stage vs extent of flooding) and the nature of extreme streamflow events (within 

bankfull level or floodplain flow) are significant considerations in the context of 

modelling flood without any access to the high quality model inputs and observed data 

for calibration and validation. Numerous studies have been successful in accurately 

predicting floods in a single channel fluvial environment where the extent of flooding 

takes place in more or less contiguous manner and the spatial extent of uncertainty is 

confined to a narrow strip of land at a distance from the channel. However, in an 

anabranching channel associated with multiple river islands and distributaries the 

occurrence of flooding does not take place in a spatially contiguous manner as it results 

from the overtopping of the levees at various points along the main channel as well as 

the smaller branches. The fluvial morphology of low lying areas in the tropics and sub-

tropics frequently consists of multiple channel bifurcations due to frequent avulsion and 

they suffer major flooding such the Kosi flood in India in 2008 (Kaur and Das, 2011; 

Sinha, 2011). This kind of drainage pattern is also frequently observed in the flat deltaic 

landscape of large rivers which are inherently flood-prone. Hence, there is a need to 

understand to what extent inundation models of different complexities can simulate 

flooding in this kind of common flood-prone environment with coarse quality inputs 

found in the developing countries. With the development of methodologies for 

predicting inundation with limited data it is also required to investigate how we can 
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precisely prioritise our land use planning effort to mitigate the intensity of flood waves. 

The success of any land management strategy depends on our understanding of the 

causal linkages between local LULC changes and its impact on the flood hydrograph 

downstream.  

 

An assessment of the uncertainty of the model outputs is crucial in the context of data 

sparse modelling environment. Incorporating the element of uncertainty in flood 

inundation modelling will help the transition from deterministic to probabilistic 

modelling. A deterministic prediction of river stage or flood extents that are based on 

optimum choice of parameters may mask the uncertainties in the modelling process and 

provide spuriously precise results (Bates et al., 2004; Beven, 2006). A probabilistic 

approach prevents incorrect planning decisions about future development in the areas 

adjacent to the rivers by having an understanding of the confidence level in the 

modelled outcomes (Di Baldassarre et al., 2010).  

 

1.2 The thesis outline  
 

It is evident from the background given earlier that we need varying kinds of flood 

prediction capabilities depending on the nature of flooding along with the morphology 

of the river basin. The required process for creating the inputs or for modifying the 

freely available data into an acceptable form, particularly the terrain data, will be 

different depending on the scale of the problem as well as the morphology of the river 

basin. Chapter 2 provides a general description of the study sites that have been selected 

for the four empirical experiments. The main content of this thesis is presented in the 

form of four articles in Chapter 3 to 6. Chapter 3 has been already published. Chapter 4 

is in the final stages of preparation before submission. Chapters 5 and 6 are under 

review in reputed international journals. Each manuscript addresses a combination of 

the major issues highlighted in the background section. Due to the article format of the 

thesis, there is some element of overlap between the chapters, especially in the 

description of study sites and field methods. My intention is to demonstrate the 

challenges of modelling streamflow in data sparse situations and the effect of scale and 

channel morphology on the success of the modelling process.  
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The main focus of Chapter 3 is to develop a flood routing system in a regional scale 

using a 110 km reach in the middle course of the Damodar River as the study area. As 

the length of the river reach is too big for undertaking any computationally demanding 

and complex fully 2D hydraulic model, a simple and computationally efficient model is 

more suitable. Due to the large scale of this study only modifying the existing terrain 

data will be considered rather than creating a new one. In addition, this investigation 

will demonstrate how very limited ground survey can provide complementary terrain 

information for accurate routing of extremely high magnitude flood waves. The impact 

of uncertainty arising from inputs such as terrain, boundary conditions, channel 

configurations as well as modelling parameters like the selection of roughness 

coefficients will also be evaluated as part of this section of this thesis.  

 

The issue of modelling inundation at the reach scale with limited data is addressed in 

Chapter 4. As mentioned earlier that a lot of flood-prone areas around the world are 

located in deltaic lowlands that are associated with numerous river bifurcations and 

channel islands. Chapter 4 tackles the challenge of simulating widespread floodplain 

inundation in anabranching channels without the access to a high resolution input 

terrain and SAR images for calibration and validation. The lower Damodar Basin has 

been chosen as the study area which is frequently flooded and associated with river 

bifurcations and river islands. Since the scale of this study is relatively small but with a 

complex morphology and high  severity of  hazards it demands more detailed treatment 

of both inputs as well as the physical process representation. Hence, I demonstrate a 

novel approach for creating an improved terrain data by combining elevation 

information extracted from low-cost stereo satellite imageries, modified SRTM DEM 

and limited surveyed cross-sections. The emphasis is on generating a hybrid terrain data 

that represent topographic features with greater influence on the inundation process 

such as channels, embankments and roads in finer details than the homogeneous 

farmlands. The other focus-point of this chapter will be evaluating how inundation 

models with varying levels of hydraulic process representation such as simple 1D-2D 

coupled LISFLOOD-FP or complex TELEMAC2D perform with the improved terrain 

data for simulating flood extents in an anabranching river system. The spatial 

distribution of inundated area in an anabranching river is often patchy and sometimes 

can be observed at considerable distance from the main channel. This is caused by the 

overtopping of the levees at the main channel as well as various smaller distributaries. 
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This chapter argues that the performance of any hydrodynamic code in this kind of 

fluvial system primarily depends on its ability to divert high velocity flows in the 

smaller distributaries from the main channel. The level of process representation and 

the suitability of the code for a terrain data of varying details are likely to affect this 

ability.  

 

Chapter 5 examines the issue of uncertainty arising in the study conducted in Chapter 4. 

Uncertainty estimation is carried out under the GLUE framework. The salient features 

of this chapter are 1) distributed uncertainty assessment of a complex and 

computationally demanding finite element inundation model such as TELEMAC2D at 

high resolution for a model domain of ~ 300 km2, 2) special emphasis on the spatial 

nature of uncertainty arising at the different stages of the considered flood event from 

the use of a terrain data with limited resolution and accuracy in a complex channel 

network, and 3) assessing the impact of incorporating the element of error in the 

observed flood extent map on the computation of uncertainty vis-a-vis the use of 

deterministic flood maps. In general, this chapter explores whether the element of 

uncertainty in the distributed observed records can make a significant impact in the 

overall uncertainty scenario when the inputs like inflow hydrograph and terrain have a 

high degree of uncertainty and the parameter space of the model has a higher 

dimension. 

 

Chapter 6 investigates whether degrading land use/cover in steep hillslopes is 

intensifying the downstream flood risk. The event-scale rainfall-runoff modelling setup 

in this chapter is created primarily from a mitigation perspective. Mitigation measures 

such as remedial land use planning for reducing runoff coefficient of high runoff 

producing areas can be implemented only on local scale which generally corresponds 

with a sub-catchment of a river system. This chapter illustrates a systematic approach of 

investigating the causal relationship of sub-catchment-wise land-use change on the 

flood hydrograph at the basin outlet.  

 

Chapter 7 is a general discussion chapter for the whole thesis. This chapter summarises 

the key findings of Chapter 3 to 6 and indicates where they fit into the broader 

perspective of predicting flooding at different scale and over varying physiography of 

land surface with limited data, typically available in the developing countries. Chapter 8 
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provides the conclusion and the scope and potential of further research under the broad 

theme of this thesis. 

 

The overall purpose of this thesis is to demonstrate how the existing datasets available 

in developing countries can be adapted and modified to model flooding with number of 

freely available hydrological and hydrodynamic models. This study addresses the 

challenge of predicting flooding and its causes with the sparse datasets at different 

scale. The aim of this research work is to illustrate a holistic approach that deals with 

the necessary prediction capability of flooding for providing early warning system, 

developing flood defences, creating flood risk maps, as well as planning remedial 

measures to mitigate its effect in a controlled river basin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
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The basin of the Damodar River, one of the important tributaries of the River Ganga 

(Ganges) in India has been selected as the study site for this thesis. India is a classic 

example of a vast flood-prone country in the global south with very limited availability 

of the type data that are ideally required in inundation modelling. In terms of their 

magnitude of flood and mean annual discharge the South Asian rivers are among the 

most important in the world (Kale, 2002). Profuse rainfall as a result of the combined 

effect of low-pressure systems and active monsoon conditions is the most frequent 

cause of large and extensive floods in the Indian sub-continent (Panchawagh and 

Vaidya 2011). Extreme floods in South Asia in the last two centuries have had a 

statistically significant link with excess monsoon epochs (Kale, 2012). The frequency 

of high magnitude floods in the large South Asian Rivers such as the Ganga, the 

Brahmaputra and the Indus is generally very high and is a common occurrence in 

almost every year (Kale, 2003). The annual average area affected by floods in India is 

7.563 million ha with a minimum of 1.46 million ha in 1965 to a maximum of 17.5 

million ha in 1978.  On average, these floods affect 33 million people every year 

(Mohapatra and Singh, 2003). 

 
Figure 2.1 Description of the study area. 
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The Damodar River has 24,235 km2 of basin area spreading over the Indian states of 

Jharkhand and West Bengal (Figure 2.1). The river originates in the Palamau Hills of 

Chotanagpur Plateau and flows in an east and southeasterly direction for 540 km before 

joining the Hoogly River which a major branch of the Ganga. A distinguishing feature 

of the Damodar Basin is that approximately 80 % of its area falls in the hilly and 

forested upper catchment while the remaining 20 % constitutes the flat and fertile 

floodplain where all the discharge from the upper catchment concentrates. This 

particular basin shape  is mainly responsible for frequent inundation in the lower 

Damodar Basin (Choudhury, 2011).  

 

This basin is  heavily regulated with four major dams in the upper catchment, namely, 

the Maithon, Panchet, Tilaya and the Konar.  Furthermore, Durgapur dams, is situated 

in the middle course of the river. The dams were built as part of India’s first 

multipurpose river valley project called the Damodar Valley Corporation (DVC) in the 

early 1950s. Prior to dam construction, flooding had been a common natural process in 

the Damodar River Basin and historical records indicate occurrence major floods 19 

times between 1770 and 1943. In the post-dam era from 1950 onwards, the lower 

valley experienced major floods 14 times between 1958 and 2000 (Chandra, 2003) and 

this trend still continues and probably the construction of the dams have made floods 

more frequent. During heavy monsoon storms when lot of discharge from the upper 

catchment converges to the reservoirs upstream , the DVC managers are left with little 

alternative but to release the water downstream at a very high rate to avert catastrophic 

dam breaks. All this water travels downstream to Durgapur Barrage which does not 

have a big enough reservoir to moderate this flood wave and the water flows almost 

unhindered downstream. While flowing downstream the flood water mostly remains 

within its bankfull level from Durgapur Barrage to Begua where the river bifurcates 

into two branches and the main flow diverts towards a branch known as Mundeswari 

River (Figure 2.1). The stretch from the border of West Bengal State to Begua will be 

referred as the middle course of the river henceforth in this thesis. Here the width of the 

river ranges from 2.5 km to 800 m with an approximately average depth of 10 m from 

the bankfull level.  
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Figure 2.2 Wide channel in the middle course of the Damodar River 

 

From Begua further downstream (this stretch will be henceforth described as the lower 

reach of the Damodar River) both the Mundeswari and the minor branch of the 

Damodar River (also known as Damodar) experience frequent and widespread 

overbank flow, breaching and overtopping of levees that lead to major inundation of 

the adjacent floodplain. Inadequate capacity of the channels in the lower course due to 

heavy siltation is primarily responsible for frequent flooding (Basu, 1996). In the post-

dam era numerous distributaries in the lower valley got cutoff from the main channel as 

the natural discharge reduced dramatically for filling up the reservoirs in the post-

monsoon period. These smaller branches of the main river turned into moribund 

condition and no longer act as an effective conduit of water during a flood situation 

(Ghosh, 2011).  
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Figure 2.3 Relatively narrow channel of the Mundeswari River, the major branch of the main 
channel of the Damodar River in its lower course 

 

The upper catchment has been subject to indiscriminate deforestation since the colonial 

period due to mining and agricultural activities (Saha, 1979). It is characterised by hilly 

terrain with high relative relief (Gupta, 2004) and therefore the deforestation is likely to 

have quickened the flood peak at the reservoir entry points and filled the reservoirs 

with an increased supply of sediment load from accelerated rate of erosion on the bare 

soil.  These factors might have a combined effect on reducing the effectiveness of the 

dams to moderate the flood wave that rush down the steep slope during heavy monsoon 

rainfall events. The catchment of Konar River, one of the important tributaries of the 

Damodar River in its upper course is selected as a typical example for understanding 

the interaction of land use change and flood peak in the river headwaters. The existence 

of the Konar Reservoir at the outlet of the Konar Basin provides the ideal setting for 

examining whether land degradation in the past few decades has had an impact over the 

flood peak at the basin outlet that flows directly into the reservoir. 
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The Damodar basin is a perfect example of a river basin where  flooding can be studied 

at different scales and over different type of channel patterns. In addition, the nature of 

high magnitude streamflow also varies from one course of this river to another. In the 

middle course the flood water is mostly confined within its bankfull level with 

occasional overtopping of its low right hand embankments. Predicting the timing and 

magnitude of flow from the Durgapur Barrage to the flood-prone lower course is of 

interest here. However, the widespread inundation across the anabranching channels in 

the relatively smaller lower valley makes it an ideal reach-scale study site for 

comparing the performance of 2D flood inundation models with varying levels of 

complexity. The distinct topographic and associated fluvial features of the upper, 

middle and lower course of the Damodar Basin help to identify the typical challenges 

of flood management in data sparse regions. These issues include developing design 

flood events in terms of river stages, vulnerability assessment of the flood-prone 

communities, and effectiveness of non-structural mitigation strategies. The middle and 

lower basins of the Damodar River provide us the experimental natural setting for the 

first and second issues while the Konar Basin in the upper catchment is used to test the 

third proposition.   

 



 

 

 

 

 

 

 

 

 

Chapter 3 

 

Hydraulic routing of extreme floods in a large ungauged 

river and the estimation of associated uncertainties: a 

case study of the Damodar River, India. 
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Abstract 

 

Many developing countries are very vulnerable to flood risk since they are located in 

climatic zones characterized by extreme precipitation events, such as cyclones and 

heavy monsoon rainfall. Adequate flood mitigation requires a routing mechanism that 

can predict the dynamics of flood waves as they travel from source to flood-prone 

areas, and thus allow for early warning and adequate flood defenses. A number of 

cutting edge hydrodynamic models have been developed in industrialized countries 

that can predict the advance of flood waves efficiently. These models are not readily 

applicable to flood prediction in developing countries in Asia, Africa and Latin 

America, however, due to lack of data, particularly terrain and hydrological data. This 

paper explores the adaptations and adjustments that are essential to employ 

hydrodynamic models like LISFLOOD-FP to route very high magnitude floods by 

utilizing freely available Shuttle Radar Topographic Mission (SRTM) digital elevation 

model (DEM), available topographic maps and sparse network of river gauging 

stations. A 110 km reach of the lower Damodar River in eastern India was taken as the 

study area since it suffers from chronic floods caused by water release from upstream 

dams during intense monsoon storm events. The uncertainty in model outputs, which is 

likely to increase with coarse data inputs, were quantified in a generalised likelihood 

uncertainty estimation (GLUE) framework to demonstrate the level of confidence that 

one can have on such flood routing approaches. Validation results with an extreme 

flood event of 2009 reveal an encouraging index of agreement of 0.77 with observed 

records while most of the observed time series records of a 2007 major flood were 

found to be within 95% upper and lower uncertainty bounds of the modeled outcomes.  

 

 

 

 

Keywords: Hydrodynamic Model, Developing Country, LISFLOOD-FP, SRTM DEM, 

GLUE, India 
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3.1 Introduction 

 

The developing world, particularly Asia and Latin America, shares the highest 

concentration of flood occurrences due to high-magnitude storm events such as tropical 

cyclones and intense monsoon downpours. According to the EM-DAT database 

maintained by the Office of US Foreign Disaster Assistance and the Centre for Research 

on the Epidemiology of Disasters (OFDA/CRED), between 1900 and 2012, 3151 out of 

3927 (more than 80 percent) of major floods occurred in Asia, Africa and Latin America. 

The impact of these disasters is more pronounced in developing economies as the cost of a 

partial or full recovery in relation to GDP may be very high (Alcantara-Ayala 2002).  The 

technological capability to predict the dynamics of flood waves from upper catchments to 

low lying flood-prone areas downstream is essential for developing flood warning and 

flood management strategies, and thus mitigating the effects of these disasters. The last 

three decades have seen the development of many advanced tools for flood modelling and 

prediction. However, these technologies are typically not applied in developing countries 

due to lack of appropriate data. The aim of this study is thus to explore a methodology for 

utilising advanced flood routing tools in data-sparse settings in the developing world. 

 

Hydrodynamic models have been widely used to route floods with remarkable accuracy. 

However, they require very high resolution terrain data as well as hydrological inputs from 

numerous gauging stations. The terrain data that are used for this purpose are typically 

derived from LiDAR survey, IFSAR  such as NEXTMap in the UK at a horizontal 

resolution of 5 m and vertical accuracy of 0.5 to 1 m (Sanders et al., 2005; Mason et al. 

2010b) or densely spaced surveyed cross-sections (Pappenberger et al., 2006). Gauging 

stations are commonly available at the inlet and outlet of the reach being modelled and 

these stations frequently record water discharge at high temporal resolution (e.g. 15 minute 

intervals). As an example, Bates et al. (2006) used LiDAR-generated DEMs, in 

combination with a series of airborne synthetic aperture radar (ASAR) images captured 

opportunistically during the peak and recession limbs of a flood hydrograph, in order to 

calibrate and validate a simple raster-based hydrodynamic model (LISFLOOD-FP).  The 

LiDAR DEM used had <1 m horizontal resolution with a vertical root mean square error of 
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0.079 m. However, it is well documented that the lack of these data sets for the vast 

majority of developing countries is a major obstacle for employing hydrodynamic models 

there (Sanyal and Lu, 2004). In addition, the near-absence of an established network of 

permanent GPS base stations in many areas means that undertaking ground surveys with 

differential GPS in order to supplement the paucity of terrain data is also challenging. 

Hydrologic modelling techniques such as the Muskingum method could be an alternative 

as they are less dependent on accurate terrain as a model input. Nevertheless, the efficiency 

of these approaches are not very high due to their inability to account for the 

hydrodynamic processes associated with extreme floods, particularly backwater and the 

floodplain storage effects (Garbrecht and Brunner, 1991). The rarity of gauging stations at 

the downstream end of a flood-prone reach of interest, however, makes even these 

relatively simple flood routing techniques often unsuitable in large parts of Asia, Africa 

and Latin America.  

 

India is a good example of this general issue, because it suffers frequently from large scale 

to localised flooding during the monsoon season and is characterised by a dearth of 

available data for flood routing that is typical in developing countries in general. During 

heavy monsoon storms, large dams in India are sometimes forced to release large amounts 

of water in a short time in order to prevent catastrophic dam breaks, and this release can 

lead to devastating floods downstream. This situation urgently demands the development 

of flood routing systems. As limited availability of suitable terrain data is the most 

significant obstacle for developing a flood routing model in developing nations in general 

and India in particular, we need to consider the available options carefully. Apart from the 

freely available Shuttle Radar Topography Mission (SRTM) digital elevation model 

(DEM) of 3 arc second (approximately 90 m) resolution, the other possible source of 

terrain data in India are Survey of India (SOI) topographic maps at 1:50,000 scale and 20 

m contour interval, and the ASTER Global Digital Elevation Model (GDEM) of 30 m 

resolution. The large contour intervals and hence the low horizontal resolution and vertical 

accuracy of the SOI maps make them unsuitable for hydrodynamic models in flat areas 

that are coincidentally also the most flood-prone. The ASTER GDEM, although of 

moderately high horizontal resolution of 30 m, is reported to have a vertical RMSE of 18 
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to 29 m (Reuter et al. 2009) and  is not considered as a suitable terrain input for 

hydrodynamic modelling. In contrast, Sanders (2007) compared the performance of the 

SRTM DEM with a very accurate LiDAR DEM for hydrodynamic modelling, and pointed 

out the value of the SRTM DEM as a global source of terrain data. Paiva et al. (2011) 

employed some generic rules of fluvial geomorphology in a GIS-based algorithm to derive 

simplified channel geometries from the SRTM DEM for 1D hydrodynamic modelling of a 

major tributary of the Amazon River. Modified SRTM DEMs have also been employed 

with the MIKE21 2D hydrodynamic model for simulating the seasonal dynamics of the 

Nile swamps of in southern Sudan (Petersen and Fohrer  2010). However, undertaking a 

fully 2D hydrodynamic modelling for a reach length of more than 100 km is likely to be 

associated with quite high computational cost. 

 

Other studies have used river cross-sections derived from the SRTM DEM in order to 

route river flow in the Mahanadi River delta (Patro et al. 2009a; Patro et al. 2009b) and the 

Brahmani River basin (Pramanik et al. 2010) in India with the MIKE11 1D hydrodynamic 

model. Although these studies have showed that the SRTM DEM or its modified forms can 

be used to extract cross-sections for large-scale 1D flow routing, such an approach may not 

perform equally well where the accuracy of the DEM, especially over the river channel, is 

not consistent. The accuracy of flood routing can be very sensitive to DEM accuracies in 

the channel when dealing with extreme events (Casas et al., 2006). Some of the afore-

mentioned studies such as Patro et al. (2009) had access to significant secondary 

information, like surveyed embankment heights, which may not be available in all flood-

prone reaches.  More broadly, employing sparse data inherently increases the uncertainties 

of the model predictions, but studies in the literature have rarely reported formal 

uncertainty analysis of model outputs that are derived from coarse terrain and hydrological 

inputs. A notable exception to this was the study reported by Pappenberger et al. (2006) 

that dealt with the influence of uncertain boundary conditions on HEC-RAS model output. 

To address this gap, the main objectives of this paper are 1) to find a suitable technique to 

route high magnitude and low frequency floods with the SRTM DEM, making use of 

limited cross-section surveys and no gauging record at the outlet and 2) to assess the 

uncertainty in model outputs that are induced by poor quality hydrologic and terrain inputs. 
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3.2 Study Area 

 

The Damodar River Basin, with an area of 24,235 km
2
, spreads across the Indian states of 

Jharkhand and West Bengal. The source of the river lies in the dissected Chotanagpur 

Plateau at a height of approximately 610 m above mean sea level. The river flows for 540 

km, initially eastwards before turning southwards to join the Hoogly River (one of the 

main distributaries of the Ganges). As the river is heavily silted, the lower valley does not 

have the capacity to cope with a peak discharge of more than 2300 m
3
/s  (Central 

Technical Power Board India 1948).  The lower Damodar Basin suffers from chronic 

flooding. There were 16 major floods recorded between 1823 to 1943, with a peak 

discharge of 18,500 m
3
/s  recorded at Durgapur in 1913 and 1935 (Saha 1979). The 

devastating flood of 1943 led to the establishment of the Damodar Valley Corporation, a 

multipurpose river valley project that built a network of dams to moderate flood waves and 

provide irrigation during the dry post-monsoon season. Although building the dams 

arguably achieved its objective of moderating flood waves, the lower Damodar Basin was 

still subject to flooding 14 times in the post-dam era of 1958 to 2000 (Chandra 2003). 

More recently, this area witnessed major floods in the years 2006, 2007, 2009 and 2011. 

The study area for the present investigation extends from the Durgapur Barrage to the 

point where the main channel bifurcates into two distributaries (Figure 3.1). The length of 

the study reach is approximately 110 km with an average width of 1.5 km. The flow of 

water during high magnitude floods in our study reach is primarily confined within the 

bankfull level, with occasional overtopping of the levees on the right bank. The floodplain 

flow,  
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Figure 3.1 Overview of the Damodar Basin. The study reach is shown by heavy lines, and the 

surveyed cross-sections are indicated by numbers. 

whenever it takes place, is intermittent in nature. There are some reasons for selecting this 

reach for the present study. First, predicting the travel time of flood waves from Durgapur 

Barrage to the downstream end of this reach and forecasting the river stage at this point  is 

of primary interest because the areas situated further downstream of our study reach in 

West Bengal experience widespread floodplain flow. Secondly, Durgapur Barrage is the 

most downstream dam on the Damodar River and the flooding in the lower Damodar Basin 

is the direct result of the water release from this dam. Thirdly, there is no major structure 

downstream of the Durgapur Barrage that may affect the natural flow of water. Lastly, 

regular availability of discharge records at 1 to 3 hour intervals from the barrage and 

records of river stages at the Jamalpur gauging station at an intermediate location in the 

study reach (Figure 3.1) made it possible to procure the necessary hydrological input, 

calibration and validation data. 
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3.3 Data Used 

 

Version 4 of the SRTM DEM (90 m horizontal resolution) was downloaded from 

http://srtm.csi.cgiar.org/. This version of the SRTM DEM is the most reliable and has been 

supplemented with auxiliary DEMs to fill the data voids. The vertical accuracy of this 

dataset was reported to be 7.58 m for Phuket Island of Thailand and 4.7 m in the Catskills 

Mountains in the USA (Gorokhovich and Voustianiouk  2006), while global validation 

studies of the SRTM DEM have reported an absolute vertical error of 6.2 m for Eurasia 

(Farr et al, 2007).  Hofton et al. (2006) observed that the presence of large plots of dense 

canopy exaggerates the SRTM DEM elevation. As the floodplain and the river banks of 

our study reach have frequent clusters of trees and rural hamlets, a positive error in the 

SRTM DEM can be expected, and the methodology section addresses this issue by 

correcting the obvious inaccuracies in our terrain data. Apart from the DEMs, spot heights 

from the Survey of India (SOI) topographic maps were also collected as a source of 

elevation data in order to estimate errors of the SRTM DEMs in our study area. The maps 

were mostly at 1:50,000 scale with a few at 1:25,000 scale. A spheroid transformation was 

done in order to project the SOI maps from the Modified Everest to WGS84 spheroids so 

that the maps and SRTM DEM remain in the same coordinate system. There is also a 

potential degree of nonconformity between the SRTM DEM and the SOI spot heights due 

to the difference in the vertical datum used by these two datasets. SOI spot heights are 

elevation from local mean sea levels while SRTM DEM uses the EGM96 geoid model 

(Lemoine et al, 1996) as the vertical datum (Jarvis et al. 2008). A number of ad-hoc 

measurements were taken across our study area at known SOI spot height measurement 

sites with a differential GPS, and the difference was never found to be more than 50 cm. 

Since the SRTM DEM has a precision of 1 m we decided that SOI spot height and SRTM 

DEM pixel values are comparable. 

 

The discharge records from the Durgapur Barrage were used at the inlet of the modelled 

river reach. Specifically, discharge records at 3 hour intervals for a flood event on 25-30 

September 2007 and at 1 hour intervals for an event on 7-13 September 2009 were used as 

model inputs (Figure 3.2).  

http://srtm.csi.cgiar.org/
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Figure 3.2 Hydrographs at Durgapur Barrage of the 2007 (a) and 2009 (b) flood events. Data were 

obtained at 3 hour and 1 hour intervals for the 2007 and 2009 events respectively. 

 

In addition, a time series of annual maximum discharge from 1978 to 2010 was also 

obtained to compute the return periods/exceedance probability of the 2007 and 2009 

events, assuming a log Pearson Type III distribution (Figure 3.3).  
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Figure 3.3 Flood frequency analysis of the annual peak discharge from the Durgapur Barrage. The 

2007 and 2009 events, which are highlighted with circles, were used for calibration and validation 

respectively. 

 

The hydrographs of the 2007 event, with an exceedance probability of 0.11, and the 2009 

event, with an exceedance probability of 0.05, were used as the calibration and validation 

data. Here, a flood with an exceedance probability of 0.05 means that at any given year 

there is 5 percent chance of experiencing a flood of 2009 magnitude or more. These floods, 

with peak discharge values having a return period of approximately 10 years or more, were 

selected for this study because we are not aware of any previous attempts at estimating 

hydraulic routing of such damaging events with the SRTM DEM as the only available 

terrain input. The 2007 and 2009 events were also preferred for this study against other 

high magnitude events, such as 1978 and 1995, as they occurred quite recently in relation 

to the time of our field survey which was conducted in 2010. Water levels measured at 1 

hour intervals at the Jamalpur gauging station (located approximately 100 km downstream 

of Durgapur Barrage) were used for the purpose of calibration, validation and uncertainty 

estimation of the modelled stages for both the 2007 and 2009 flood events.  These stage 
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data were only available for high flow period during the floods, and the model 

performance was measured only against those data. There was no gauging station at the 

downstream end of the study reach, which is located 20 km downstream of Jamalpur 

station. All hydrological records were obtained from the Irrigation and Waterways 

Department of West Bengal, India. 

 

3.4 Methods 

 

3.4.1 Cross-section Surveys 

 

Due to limited resources, we were able to survey only 9 cross-sections, shown with 

numbers in Figure 3.1, along the 110 km study reach. Cross-sections were surveyed at the 

inlet and outlet of the reach and at the Jamalpur gauging station. The rest of the 6 cross-

sections were surveyed at places that represent the typical channel conditions regarding the 

width, depth, and bed material in that part of the study reach. Easy road access to the river 

bank was also an important factor that influenced the selection of survey sites. The 

Damodar River is fed by rainwater and during the dry post-monsoon season only about 10 

percent of the channel width is generally occupied by the flowing water. Here we define 

channel width by the bankfull width normally filled with water during the peak of the 

monsoon season. The left bank of the study reach has a continuous artificial embankment 

which is more than 5 m higher than the river bank and very rarely breached during floods. 

Occasionally there are natural levees and short local artificial embankments on the right 

bank of the river.  

 

The fieldwork was conducted during November-December, 2010, using a combination of 

differential GPS (dGPS) to survey the dry river bed and the water surface elevations, and a 

hand-held portable depth sounder to measure depths below the water surface. Special care 

was taken to measure the elevation of the water surface at the time of surveying (Figure 

3.4).  The measured depths were then subtracted from the water surface elevation to obtain 

the bottom elevation of the wet part of the channel. As the water level is expected to be at 
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approximately same elevation at the two banks of the wet channel it gave us a very useful 

indirect measure of the relative accuracy of the DGPS survey. 

 

Figure 3.4 Schematic diagram illustrating the cross-section survey geometry along the Damodar 

River with differential GPS and depth sounder. NRCan PPP is the abbreviated form of Natural 

Resources Canada Precise Point Positioning. 

 

The presence of a GPS base station within 20 km of the rover location is an essential 

prerequisite for conducting any dGPS survey with relatively inexpensive single frequency 

(L1) GPS receivers. No real-time observations of permanent GPS stations are available in 

the public domain in India, and the nearest International GNSS Service (IGS) base station 

was more than 2000 km from our study area. A base station with known coordinates in the 

International Terrestrial Reference Frame (ITRF)/WGS84 was essential for this survey in 

order to make the observations consistent with the global datasets such as the SRTM DEM. 

Many web-based free services can, however, correct a sufficiently long observation (more 

than 4 hours) of a dual frequency (L1 and L2) GPS receiver from decimetre to centimetre 

accuracy. A comprehensive review of these services can be found in Tsakiri (2008). We 

used the Natural Resources Canada's  Precise Point Positioning (PPP) service, also known 

as CSRS-PPP, which uses very precise GPS orbit or clock estimates from IGS to correct 

user-supplied observations. CSRS-PPP has reported that only 2 hours of continuous 
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observation in dual frequency receivers are capable of achieving a vertical accuracy of 

approximately 4 cm and with  more than 2 days of continuous observation it can achieve a 

vertical error of 11.8 mm (Ebner and Featherstone 2008). Other services that use the 

nearest available IGS base station data to apply a differential correction to the user-

supplied observation were not used, because differential corrections that are based on 

distant (e.g. more than 300 km) IGS stations are likely to be of lower positioning accuracy 

(El-Mowafy 2011).  

  

At each survey site, a ~4 hour dual frequency GPS observation provided the base station 

observation, as this duration was sufficient to achieve 5-8 cm errors for the base station 

position. After the survey, the GPS data were converted into Receiver Independent 

EXchange (RINEX) format and uploaded to the CSRS-PPP service. A single frequency 

PROMARK3 GPS was used as the rover for collecting points over the channel. We took 

static observations at two points by occupying the points for more than 20 minutes. These 

two points are depicted as point A and B in Figure 3.4. The actual survey was done in a 

rapid-static mode. The rover was initialised by occupying point A for 30 seconds and 

thereafter each surveyed point was occupied for 30 seconds. Special care was taken not to 

lose the satellite lock once the rover was initialised over a known point (here point A). 

After the survey was completed an additional observation was taken at point B without 

losing the satellite lock which was used as the measure of accuracy for the rapid-static 

survey. It was assumed that static points are likely to have higher accuracy than the rapid-

static points and therefore can be used as the reference for measuring the accuracy of the 

rapid-static measurements. The rover data were post-processed in the Thales GNSS 

Solution software as described below: 

i)  The CSRS-PPP output was used as the known coordinates for the base station. The 

Z coordinate, supplied in ITRF/WGS84 ellipsoid height, was converted into orthometric 

height using the EGM96 geoid model available freely for download from 

http://cddis.nasa.gov/926/egm96/new_improved.html#geoidgrid. The orthometric height 

(OH) was calculated as OH = WGS84 Ellipsoid Height - EGM96 Height          

   

http://cddis.nasa.gov/926/egm96/new_improved.html#geoidgrid
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ii) The L1 observations of the static points, A and B were differentially corrected with 

reference to the base station established in step i. 

iii) The corrected coordinates of point A were used as a known point and the rapid-

static observations were corrected with the base station observation to get the final cross-

section data with the planimetric coordinates in latitudes and longitudes and elevation as 

orthometric heights.  

 

3.4.2 Error analysis and modification of the SRTM DEM 

 

A total of 218 spot heights were obtained from SOI topographical maps and were 

compared with the corresponding pixel values of the SRTM DEM. Figure 3.5a depicts the 

location of SOI spot heights and shows a bias in their concentration towards the upstream 

portion of our study area. This was primarily because of the availability of more detailed 

topographic maps at 1:25,000 scale in that area. There is no systematic correlation between 

elevation values from the SRTM and SOI maps (Figure 3.5b, 2.5c), indicating that there is 

no relationship between error and increasing elevation, in contrast to the results of 

Pramanik et al. (2010) in an area approximately 350 km southwest of our study area.  A 

histogram of differences between the spot heights and the SRTM DEM (Figure 3.5d) 

shows that 28.4 percent of errors lie within a value of ±2 m (that is, the SRTM DEM is 2 m 

higher than the observed SOI spot heights). 
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Figure 3.5 Distribution of error in the SRTM DEM. a, location of the Survey of India spot heights 

for computing the SRTM DEM errors. b, scatter plot of the SRTM DEM and Survey of India spot 

heights. c, occurrence of error, calculated as the difference between the SRTM DEM and the spot 

heights, in  different elevation ranges (negative values signify that SRTM DEM is higher than SOI 

spot heights). d, Histogram of the errors in showing their distribution; 28.4 % of the points are 

within 2 m of error. 

Because of the lack of trends in the distribution of error, the SOI median error value (2 m) 

was subtracted from the entire SRTM DEM dataset of our study area. Also, in order to 

reduce local spikes in elevation caused by the presence of trees or settlements, we 

manually digitised all such features in the floodplain from GoogleEarth. Those polygons 

were imported in the ERDAS Imagine software and the SRTM DEM was modified by 

replacing the pixels under the polygons with a smooth surface created by fitting a spline 

interpolated plane with the pixel values located at the edge of the polygons. To evaluate 

the effect of these modifications, we compared the modified SRTM DEM with the 

independent GPS data collected from the channel. The modifications produced a 

substantial increase in accuracy for the SRTM DEM when compared with the GPS data 

(see Table 3.1). 
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Table 3.1 Computed central tendency figures of the SRTM DEM error before and after the 

modification. All figures are in metres. –ve figures signify that the SRTM DEM cell values 

are higher than the known elevation values of the same location. GPS surveyed points for 

the channel recorded a decline in error from -3.17 to -1.2 m after the median error derived 

with respect to the SOI spot heights was subtracted from the SRTM DEM. 

 

Finally, we noted that the left river embankment was not clearly visible in its correct 

alignment in the original SRTM data, probably because its width is less than the pixel 

dimension (< 90 m) of the DEM. Therefore we created an artificial 15 m high embankment 

on the modified SRTM DEM, following the actual alignment of the left embankment, in 

order to prevent the modelled flood water from extending beyond the left embankment. 

 

3.4.3 Hydrodynamic modelling 

 

 Encouraged by the success of previous studies such as Patro et al. (2009a) and Pramanik 

et al. (2010) in routing flows with SRTM DEM-based cross-sections, we set up a similar 

1D hydrodynamic simulation using the HEC-RAS model. However, preliminary 

experiments gave unstable results at peak flow and it was therefore decided that a simpler 

modelling framework would be used. 2D hydrodynamic models are more robust in their 

treatment of flood waves, particularly for the floodplain component of the flow. As a full 

2D model for a 110 km river reach involves a high computational cost, we used the simple 

LISFLOOD-FP model (Bates and De Roo 2000). LISFLOOD-FP combines the virtues of 

both 1D and 2D approaches, where an implicit Newton-Raphson scheme is used for 

No. of Observation Mean Median Mode 

218 (SOI) -2.13 -2 -2 

210 (GPS) -3.26 -3.17 -3.86 

After modification of the raw SRTM DEM 

210 (GPS) -1.47 -1.2 -0.5 

RMSE  calculated with 260 SOI spot heights =  2.05 
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kinematic approximation to the full 1D St Venant’s equation for channel flow and a raster-

based storage cell approach is used in order to give an approximation to a 2D diffusive 

wave for floodplain flow. The current version also includes a diffusive wave formulation 

of 1D channel flow. Although LISFLOOD-FP has been successfully used in various small 

to medium size rivers, mainly in Europe where the required terrain input is available at 

very high spatial resolution and hydrologic input at very high temporal resolution (Horritt 

and Bates, 2002; Bates et al., 2010; Neal et al., 2011), its application to wide rivers such as 

the Damodar has been limited. One such study was conducted by Wilson et al. (2007), who 

aggregated the SRTM DEM to 270 m resolution to reduce the overall error and increase 

the precision of the data and fed these data into LISFLOOD-FP in order to analyse the 

seasonal flooding pattern of the Amazon River. Although this study did not focus on 

routing discrete high magnitude flood events, they reported a 0.99 m RMSE in river stages 

at high water. 

 

The primary preference for selecting LISFLOOD-FP came from its simple requirements of 

terrain input, particularly for the channel. In LISFLOOD-FP the channel is represented by 

a series of points, each having one value for the bed elevation and another for the channel 

width. The channel is assumed to be rectangular for computational efficiency.  Since we 

need a single value for the bed elevation at each point of the 1D channel vector instead of a 

series of points captured by the cross-sections the water surface elevation was used to 

obtain it. Figure 3.6 and 3.7 show that, at very low flow when the survey was conducted, 

the elevation of the water level is a very good approximation of the channel bottom of a 

roughly rectangular channel. The water surface elevation at the cross-sections, when 

connected along the longitudinal profile of the river, also provides a good approximation 

of the energy gradient of the river which is important information for any hydrodynamic 

model. 
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Figure 3.6 Surveyed cross-sections (1-5). See Fig. 3.1 for locations. Surveyed points that are 

marked with circles show the water level during the survey. 
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Figure 3.7 Surveyed cross-sections (6-9). Surveyed points that are marked with circles show the 

water level during the survey. A smaller horizontal scale was used for cross-sections 7 and 8 to 

properly depict the configuration of the channel in these two locations, where the channel is narrow 

and deep. 

 

The bankfull channel width was estimated from high resolution images in GoogleEarth and 

the bed elevation was derived at each point by linearly interpolating between the surveyed 

elevations of the water surface along the longitudinal profile of the river (Figure 3.8a). As 

the channel component in the LISFLOOD-FP model is unable to handle a flow split or 

channel bifurcation in the 1D framework, routing the flood became less efficient near the 

river islands that are occasionally present in our study reach. Only the primary channel as 

identified from GoogleEarth was represented in 1D, and the secondary channels around 

islands were simply considered as part of the floodplain and handled by the 2D storage cell 

framework (Figure 3.9). The study reach was represented with 129 points which were 

carefully chosen to represent the varying width of the channel. There was no gauging 

station available at the downstream boundary of the study reach, and hence there were no 

data for imposing a water level at the model outlet. In order to minimise the effect of an 

uncertain downstream boundary condition, we artificially extended the channel vector for 

few hundred metres with an artificially steep slope. Our intention was to create an artificial 
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torrent at the downstream boundary and to use a fixed water surface elevation 

corresponding to very low flow as the downstream boundary condition for the model. The 

Manning's roughness coefficient (n) of the channel was taken as the calibration parameter. 

As the entire study reach is characterised by a relatively uniform sand based channel bed, a 

global n value for the channel was used for the calibration runs. Initial estimates for the 

channel n values were taken from Chow (1959). It is well known that LISFLOOD-FP is 

less sensitive to the floodplain roughness coefficient and this was kept at 0.035 which is 

the normal value for farmlands given by Chow (1959).  
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Figure 3.8 Long profile of the study reach. a, comparison between the profiles derived from the 

original SRTM DEM, modified DEM and field survey. The slopes of the surveyed profile at the 

extreme upstream and downstream of the study reach are distinctly different from those derived 

from the SRTM DEM or its modified form . b, example of the extensive flat surface in the channel 

portion of the original SRTM DEM. Unique elevation values are represented in unique colours to 

show homogeneous values over the channel, depicting spurious flat surfaces. 
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Figure 3.9 Representation of an island in the Damodar River within LISFLOOD-FP. Red arrows 

show the 1D configuration of the main channel. The shallower secondary channel and the 

floodplain, depicted with shading, are handled by the 2D component of the model. 

 

A high magnitude flood event of September, 2007 was used to calibrate the model and 

validation was performed with the extreme event of September, 2009. The diffusive wave 

formulation for the 1D channel component was used, as Trigg et al (2009) reported that 

this method is suitable for subcritical flow for channels with shallow bed slope and is able 

to capture downstream propagation of flood waves along with the response of flow to free 

surface slope. The model performance was measured using hourly river stage data at the 

Jamalpur gauging station. Various efficiency criteria have been used in hydrology to 

quantify how accurately observed records are reproduced by numerical simulations. These 

measures include but are not limited to the Nash-Sutcliffe efficiency (E), the coefficient of 

determination (r
2
), and the index of agreement (d). In this study, the index of agreement (d) 

proposed by Wilmot (1984) was used for judging the efficiency of the LISFLOOD-FP 

model. Here, d is defined as  
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d = 1 -  
∑ (     )

  
 

∑ (      ̅        ̅ )
 
 

         (1) 

where Oi and Pi are observed and modelled data respectively,  ̅ is the mean of the observed 

series, n is the number of observations in the time series and i is the number of data points. 

Legates and McCabe (1999) argued that d is a better performance measure than E and r
2 

because it is more sensitive to the differences in the modelled and observed means and 

variances. 

 

3.4.4 Quantifying uncertainty 

 

Use of sparse data inputs inevitably increases the degree of uncertainties in the model 

output. When we are dealing with a disaster warning model, a quantitative estimate of the 

uncertainty is an essential prerequisite for this kind of system before they qualify for the 

forecasting of a severe natural hazard. In this paper, the uncertainty of our model 

predictions was quantified in generalised likelihood uncertainty estimation (GLUE) 

framework as proposed by Beven and Binley (1992). Uncertainty estimation of 

LISFLOOD-FP within a GLUE framework has been previously carried out by using 

synthetic aperture radar images of the extent of flooding as the observed data (Aronica et 

al. 2002; Hall et al. 2005; Stephens et al.  2012). However, utilising observed stage records 

for analysing uncertainty of LISFLOOD-FP output is relatively rare (see Hunter et al. 2005 

for an exception).  

 

In the GLUE framework, a set of behavioural models, that is, a set of inputs and model 

parameters that reasonably replicate an observed phenomenon, are weighted according to a 

likelihood measure. The likelihood measure is commonly an objective function that 

reflects the performance of each set of models during calibration (Beven 2010). Beven 

(2001) pointed out that a number of decisions, some of which are subjective, have to be 

made for implementing the GLUE methodology in order to obtain an uncertainty 

estimation for a hydrological model. These decisions include the range of uncertain 

parameters, a sampling method for drawing the parameters from the chosen range, an 
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appropriate likelihood measure, and classification of a model as non-behavioural based on 

the chosen measure. We identified four types of uncertain inputs in our study: 1) the 

Manning's roughness coefficient (n) for the channel, 2) the fixed water level at the 

downstream boundary of the model, 3) the channel width and 4) error in the modified 

SRTM DEM. In the absence of any information to the contrary, we assumed that the 

uncertainty is uniformly distributed for all four input types. The values of n were decided 

from preliminary calibration of the 2007 flood event with observed river stages at Jamalpur 

gauging station, and were set to be from 0.020 to 0.030. The range of the somewhat 

arbitrary fixed water level at the downstream boundary was chosen to be between 12.25 to 

14 m. The low end of this range was set to be just greater than the bed elevation of the last 

point of the river vector, 12.20 m, to ensure that at the initial state the entire study reach 

remained wet. This measure provided some degree of stability to the model in the initial 

spin-up period. The high end estimate of 14 m was chosen because this is the water surface 

elevation during very low flow conditions, as were sampled in our survey. Any higher 

value of fixed water surface elevation at the outlet would function as a wall and artificially 

impede efficient drainage of water from the model domain. Channel width was derived 

from high resolution Geoeye-1 imagery (1 m spatial resolution) available in GoogleEarth. 

At the majority of points along the channel vector, the river bank was clearly 

distinguishable from the channel by the permanent vegetation line and it was decided that 

the maximum possible error in measuring the channel width would not be more than ± 20 

m. However, we identified 8 points in the channel vector where clear demarcation of the 

river banks  were difficult due to the absence of a clear vegetation line, evidence of 

channel shifting, or agricultural practice on the channel bed. After careful consideration the 

channel width at each of these points was allowed to vary in a random fashion. The amount 

of this variation depended on the degree of uncertainty present in the measurement of 

bankfull width from GoogleEarth at each of the 8 identified locations and ranges from ± 80 

m to ±150 m.   

 

Finally, the range of error for the modified SRTM DEM was determined from a 

semivariogram model of error distribution (Figure 3.10). The error was computed by 
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subtracting the SOI spot heights from the modified SRTM DEM. Some of the SOI spot 

heights that were located at the periphery of the model domain or over very high ground, 

not likely to be inundated in any flood event, were omitted from the semivariance 

calculation. A lag of 1000 m, which was very close to the average nearest neighbour 

distance, and a total of 30 lags were used. The range of the semivariogram of error (Figure 

3.10) revealed that the error is spatially autocorrelated for a distance of ~ 3000 m. An 

unconditional Gaussian Sequential Simulation (GSS) was performed with the derived 

semivariogram of error using the Geostatistical Analyst extension of ArcGIS 10.0 to 

produce 3000 realisations of error surfaces for the entire model domain. These error 

surfaces were added with the modified SRTM DEM to produce the input for the 

uncertainty analysis. Comparison between semivariograms for the DEM before (Figure 

3.11a) and after the addition of error surface (Figure 3.11b) did not reveal any significant 

change in the spatial autocorrelation pattern of the elevation values. However, for similar 

lag values the DEM with added error component showed a slight increase in the 

semivariance values compared to the modified SRTM DEM. 

 

 

Figure 3.10 Semivariogram model derived from the error of the modified SRTM DEM measured 

at the location of available spot heights from Survey of India topographic maps. 
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Figure 3.11 Semivariograms of the input DEMs for LISFLOOD-FP model. a, semivariogram of 

the modified SRTM DEM. b, semivariogram of a DEM where the error surface derived from 

Gaussian Sequential Simulation was added with the modified SRTM data. 

 

The index of agreement (d) was selected as the objective function for computing the 

likelihood weights. The values of d range from 0 to 1 and increases monotonically with 

better model performance, and hence is appropriate for use as a likelihood measure in the 

GLUE environment. 

The GLUE methodology was implemented in the following steps: 
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1) The LISFLOOD-FP model was run 3000 times with randomly chosen values for n, river 

stage at the model outlet and variation in the terrain as described above, following a Monte 

Carlo approach. 

2) The values of d were computed for all model runs by comparing the modelled stage 

output at the Jamalpur gauging station with the observed record. After consulting the 

model sensitivity graph (Figure 3.12) a d value of 0.75 was used as the cut-off to 

distinguish between behavioural and non-behavioural models. According to this criterion 

1918 out of 3000 runs qualified as behavioural models. 

3) The d values were rescaled using the following formula so that the models with higher 

performance are assigned very high likelihood weight: 

   Li =   di – Min(d) / Max(d) - Min(d)    (3) 

      

where Li is the likelihood measure of realization i, di is the d value for realization i and 

Max (d) and Min (d) are the maximum and minimum value of the computed index of 

agreement for the 1918 behavioural model runs. 

4) Each of these Li values was divided by the sum of all 1918 computed L values so that 

the series adds up to 1. The resulting series constituted the final likelihood weights. 

5) For each time step, the modelled stage values at the Jamalpur gauging station were put 

together with their final likelihood weights and sorted in ascending order according to the 

simulated stage values. Then, the cumulative sum of the likelihood weights was computed 

and upper and lower 95 % uncertainty bounds were obtained by deriving the stages that 

corresponds to the 5
th

 and 95
th

 percentiles of the cumulative likelihoods. This process was 

repeated for each 1-hour time step for which the observed data was available. The entire 

process was automated using MATLAB. We used the readstage.m code (Wilson, 2012) in 

order to read the stage outputs of the LISFLOOD-FP model.  
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Figure 3.12 Performance of LISFLOOD-FP with different channel roughness coefficients during 

calibration with the 2007 flood event. The performance of the model peaked at a channel 

Manning’s n of 0.022 but declined with further reduction in roughness. 

 

3.5     Results  

3.5.1  Flood routing 

 

We took the channel Manning's n as the calibration parameter. Figure 3.12 shows how the 

model performance steadily declined with increasing values of n. The model performed 

best at a relatively low n value of 0.022. The best calibrated result for the 2007 flood event, 

with a channel n value of 0.022 and an index of agreement (d) of 0.79, is shown in Figure 

3.13. The September 2009 flood event was then simulated in a similar model setup using 

the calibrated channel n value of 0.022,  yielding a d value of 0.77 (Figure 3.14) . 

 

Variability of the discharge at the model downstream boundary for the 3000 MonteCarlo 

simulations is shown against the figures from the best calibrated output for the 2007 event 
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in Figure 3.15. There is some attenuation in the flood hydrograph over the 110 km study 

reach (see Figure 3.2a). We did not have any measured discharge data at the model 

downstream boundary.  

 

 

Figure 3.13 Best calibrated output of modelled stages from LISFLOOD-FP at Jamalpur gauging 

station for a global channel Manning's n of 0.022. 

 

Assuming a similar pattern of difference between the modelled and observed records as 

found in the case of river stage at Jamalpur gauge (Figure 3.13), situated ~20 km upstream 

of the model downstream boundary, we realise that the best calibrated simulation of the 

outflow discharge at the model downstream boundary is likely to underestimate the actual 

discharge consistently. Level of this underestimation is expected to be more pronounced 

during the rising limb of the flood while during the descending limb the simulated figures 

possibly lie just below the actual ones. The 3
rd

 quartile of all simulated flow at each time 
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step was found to be very close to the rising limb of the best calibrated hydrograph. It 

indicates that during the rising limb of the hydrograph majority of the simulation runs 

could not produce a pattern of outflow discharge that is even close to the best calibrated 

level which is likely to be quite lower than the actual.  However, we find that the 

descending limb of the best calibrated outflow discharge curve lies slightly below the 

median of the simulated figures at each time step. It illustrates that a substantial portion of 

the MonteCarlo simulations performed comparatively well after the flood peak was 

attained. 

 

 

Figure 3.14 Validation of the LISFLOOD-FP model using the modelled and observed stage data at 

Jamalpur gauging station for the 2009 extreme flood event. The calibrated value of n as 0.022 was 

used for the channel. 
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Figure 3.15 Variability of the predicted discharge hydrograph at the model downstream boundary 

for 3000 MonteCarlo simulation.  Variability of the modelled figures at each time step is shown by 

1st quartile, median and 3rd quartile figures of 3000 results. The modelled output from the best 

calibrated case is presented as a benchmark of accuracy. 

 

3.5.2 Uncertainty estimates 

 

The dotty plots in Figure 3.16 are scatter diagrams of each of the uncertain model inputs 

against their corresponding d values. For each individual parameter dimension the dotty 

plot represents a projection of sample points onto the goodness of fit response surface 

(Beven, 2001). Each dot represents an output of one of the Monte Carlo model runs.  

Figure 3.16a shows that the model was very sensitive to the channel roughness coefficient, 

but the variation in fixed water level at the downstream boundary has very little effect on 

the model performance (Figure 3.16b). Similarly, variations in channel width had no 

significant influence on model performance, even for sites at which the exact channel 

width was quite uncertain (Figure 3.16c). Similar plots constructed at various other points 
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where the channel width was allowed to vary for > 80 m showed comparable results and 

are not included here. We would also like to point out that the indices of agreement of the 

highest performing models are higher than what was achieved during the calibration stage. 

The uncertainty plot of the modelled river stages at the Jamalpur gauging station (Figure 

3.17) reveals that a substantial portion of the observed flood stages are within 95% lower 

and upper uncertainty bounds for the 2007 event. However, Figure. 17 also illustrates the 

inability of LISFLOOD-FP to accurately predict the rising limb of the flood hydrograph, 

and there is consistent underestimation of the water level.  
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Figure 3.16 Dotty plots showing the sensitivity of the model to variations in (a) the channel 

roughness coefficient, (b) the imposed arbitrary water level at the downstream boundary for the 

2007 flood event and (c) channel width at a particular point in the channel vector. 
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Figure 3.17 Uncertainty plot of the LISFLOOD-FP model of the 2007 flood event showing 

95 percent upper and lower uncertainty bounds. Uncertainty in the observed river stages is 

shown by a ± 20 cm vertical error bar. 
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3.6 Discussion 

3.6.1 The terrain data 

 

The SRTM DEM for the channel in our study area is characterised by extensive stretches 

of flat terrain and steps along the longitudinal profile of the river (Figure. 3.8). In order to 

find out the cause of this problem, the Version 4 SRTM DEM, used in our study, was 

compared with the 'Unfilled Finished A' version of the data (downloaded from Global 

Land Cover Facility Website: http://glcf.umiacs.umd.edu), especially for the channel of the 

Damodar River. It was found that the two datasets are almost identical except for the 

existence of a very few isolated bad data pixels in the 'Unfilled Finished A' product which 

were probably replaced by interpolation from neighbouring pixels in Version 4. This 

finding confirmed that no supplementary DEM such as ASTER GDEM was used for the 

channel portion in the Version 4 of the SRTM DEM, because no such data were used in 

the creation of 'Unfilled Finished A' product. However, when the Version 4 product was 

compared with the 'Unfinished A' product we found that the unfinished product did not 

have the same flat surfaces over the channel, but instead the channel was characterised by 

an unrealistic noisy surface. The unfinished product thus provides a worse representation 

of the channel long and cross-profiles as compared to Version 4 of the data. The flat 

surfaces in the 'Unfilled Finished A' and subsequently in the Version 4 products were 

probably created during the generation of the 'Unfilled Finished A' product as Slater et al. 

(2006) pointed out that one of the finishing requirements for this product was to 

monotonically step down the elevation of rivers with more than 183 m width. 

 

After lowering the SRTM DEM by 2 m to reduce the error we found that there was 

considerable mismatch between the bed slopes of the longitudinal profile derived from the 

SRTM DEM and those obtained by the ground survey (Figure. 8a). These factors likely 

contributed to the failure of our preliminary attempt with HEC-RAS that was based on 

cross-sections derived from the SRTM DEM. Unlike Patro et al. (2009a) we did not have 

access to surveyed embankment heights, because no such comprehensive record exists for 
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the lower Damodar Basin. The availability of accurate bank or embankment heights can be 

a decisive factor for maintaining model stability at extreme flow conditions in 1D 

hydrodynamic models, as this information is crucial for containing the water within the 

channel. A ground survey along the longitudinal profile of the study reach was also 

essential for employing LISFLOOD-FP because the channel bed elevation derived from 

the SRTM DEM would have yielded an inaccurate energy gradient for the river. In 

particular, the presence of high frequency noise in the channel portion of the SRTM DEM 

(Figure 8a) would interrupt the monotonic slope of the LISFLOOD-FP channel vector. The 

simple formulation and data requirement of the LISFLOOD-FP model enabled us to take 

full advantage of limited ground surveys to overcome the shortcomings of the SRTM 

DEM. 

 

3.6.2 Flood routing model 

 

The high performance of LISFLOOD-FP with very low values of Manning’s n is 

consistent with the wide, deep channel in the study area. The average channel width of the 

study reach is ~1 km and average bankfull depth is more than 12 m, meaning that channel 

roughness has very limited influence over the flow pattern as only a small fraction of the 

flowing water is subjected to frictional drag of the channel bed and banks. The model 

consistently underestimated the rising limb of the observed stage hydrograph and shows 

some degree of error, particularly in the validation case, in simulating the receding level of 

flood water. Underestimation of the modelled stage hydrograph is not a serious concern 

because the 20 to 21 m river stage is well below the bankfull level at Jamalpur (cross-

section 7 in Figure. 3.6). The error in river stage (0.5 to 1 m at the peak) is not more than 5 

percent of the bankfull channel depth of approximately 24 m at Jamalpur. Slight 

underestimation of the rising limb may be explained by the fact that we have not 

considered the amount of rainfall received directly by the reach and its immediate 

surrounding that is directly fed into the channel of the Damodar River. Overestimation of 

the falling limb of a flood hydrograph is also expected as the terrain data are not 
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sufficiently accurate to represent smaller conduits and depressions through which the 

floodwater escapes after the peak flow. Slight underestimation of the supply of water in the 

channel also explains the slight delay in the simulated flood peak, because additional water 

would have increased the flood wave velocity by reducing the influence of frictional drag. 

Finally, we were able to obtain reasonable results despite not incorporating the inline 

structure and two bridges that occur in the study reach. These structures thus appear to 

have had a very limited influence in altering the flow pattern, probably due to the extreme 

nature of the modelled flow regimes. In this respect, the finding of this paper is 

encouraging for developing countries, as limited but reasonably accurate data appear to be 

sufficient for routing extreme floods using freely available and computationally less 

demanding models. However, such coarse inputs and simple models may not be 

appropriate for routing the normal or low flows of a river.  

 

3.6.3 Uncertainty analysis 

 

Although the overall trend in the performance of the model for the MonteCarlo runs 

(Figure 16a) broadly followed the sensitivity graph of the channel n values (Figure 12), the 

wide range of variation in the performance measure for each channel n value is probably 

due to the influence of DEM uncertainty, especially in terms of bank heights that 

determine the exchange of water between the 1D channel component and the 2D 

floodplain component. The variation in model performance for different stages at the 

downstream boundary and channel width values was probably a result of variations in 

other factors, particularly the channel friction and input DEMs.  

 

Unlike Hunter et al. (2005) we have not used multiple channel roughness coefficients for 

different sub-reaches, as we did not have observed stage records at any intermediate points 

to evaluate the sensitivity of n for a specific sub-reach. The narrow range of the uncertainty 

lines in Figure. 3.17 is also encouraging for our confidence in the modelled output. As 

mentioned in Section 3 the difference in the vertical datum of the SOI and the EGM96 
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geoid based measurements leads to a certain degree of mismatch in elevation values which 

varies from place to place. The Jamalpur gauging station uses the SOI elevation while our 

model used the WGS84 and EGM96 to derive the orthometric heights which were used as 

an equivalent of the elevation from the mean sea level (MSL). This uncertainty in the 

measurements of river stages is represented by the ± 20 cm error bars in Figure. 3.17. The 

approximate error limit was derived by comparing the GPS-EGM96 heights at 2 points 

with known SOI elevations near Jamalpur. The SOI vertical datum is derived from a 

network of tidal gauges and there is no satisfactory geoid model available for India to 

accurately derive the orthometric heights from GPS (Agrawal 2005). In contrast, most 

freely available geospatial data such as the SRTM DEM use a global datum. Mismatch of 

local and global datum is quite common and the absence of robust local geoid models in 

many developing countries poses a challenge for using global data in applications like 

flood modelling where sub-metre accuracy is essential.   

 

3.7 Conclusion 

 

The intention of this study is to explore a low-cost methodology for predicting the 

dynamics of hazardous flood events.  We found that a simple model (LISFLOOD-FP) 

combined with relatively coarse terrain and hydrologic inputs can perform this task with 

reasonable accuracy, with an index of agreement d of 0.77 with observed river stage time 

series. We have demonstrated that limited but well-designed field surveys can supplement 

freely-available moderate resolution DEMs for the purpose of hydraulic routing of extreme 

floods. We have also pointed out typical obstacles that are encountered in the developing 

world for hydrodynamic modelling such as the dearth of accurate terrain data, shortage of 

river gauging stations, absence of permanent GPS base station data in the public domain, 

and the lack of well-defined local geoid models, and suggested some techniques to 

overcome them. The limitations arising from the use of coarse hydrologic and terrain 

inputs may not be very significant when we are interested in routing bankfull discharge but 

can be quite critical for modelling normal to low flow. Our study also provides an 

alternative to purely cross-section based 1D hydraulic routing of floods, particularly for 
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river reaches where the quality of the SRTM DEM is not good enough to extract accurate 

cross-sections. The assessment of uncertainty that arose due to the use of sparse inputs 

illustrated that a significant portion of the observed records were within a narrow range of 

uncertainty bounds and boosts our confidence that the current setup can be employed in 

flood management practice in developing countries.  



 

 

 

 

 

 

 

 

Chapter 4 

 

 

Low-cost open access flood inundation modelling at 

reach scale with sparse data in the lower Damodar 

river basin, India. 
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Abstract 

The the data unavailability is the main reason for limited applications of hydrodynamic 

models for predicting inundation in the developing world. Generation of these data sets 

is often cost-prohibitive in the context of the developing countries. This paper aims to 

generate moderately high resolution hybrid terrain data by merging height information 

from various sources, such as low-cost Indian Remote Sensing Satellite (IRS) Cartosat-

1 stereo satellite images, freely available SRTM DEM data and limited surveyed 

channel cross sections for inundation modelling in a reach scale. The study reach is 

characterised with anabranching channels that is associated with a number of channel 

bifurcation, loops and river islands. We compared the performance of a simple 1D-2D 

coupled LISFLOOD-FP model and a complex fully 2D finite element TELEMAC2D 

with the hybrid terrain data. This experiment tests how a reduced complexity approach-

based model like LISFLOOD-FP fares with a more physically realistic TELEMAC2D 

when simulating inundation in a complex fluvial environment without access to very 

high resolution DEMs. Results show that TELEMAC2D produced significantly 

improved simulated inundation with the hybrid terrain data as compared to the SRTM 

DEM. LISFLOOD-FP was found unsuitable to work with the hybrid DEM in a channel 

system with multiple flow split as it failed to efficiently divert water in the branches 

from the main channel. 

 

 

 

 

 

 

 

Keywords: Inundation model, Limited Data, Developing Countries, TELEMAC2D, 
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4.1 Introduction 

 

The EM-DAT database maintained by the Office of US Foreign Disaster Assistance 

and the Centre for Research on the Epidemiology of Disasters (OFDA/CRED) reveals 

that more than 80 percent (3151 out of 3927) of major reported floods between 1900 

and 2012 occurred in Asia, Africa and Latin America. Heavy rain, monsoon rain and 

tropical cyclones were reported as the causative factors for 64 %, 11 % and 6 % floods 

respectively between 1998 and 2008 (Adhikari et al., 2010). High incidence of these 

types of extreme meteorological events in the low latitudes is responsible for the higher 

rate of flooding incidences in the global south. In developing economies the cost of a 

post-flood partial or full economic recovery in relation to GDP is very high thus 

making the impact of these disasters more pronounced (Alcantara-Ayala, 2002). Hence, 

these large flood-prone regions urgently require an affordable mechanism for 

predicting inundation in order to devise early warning systems and design flood 

defences. However, the applicability of modern hydrodynamic or flood inundation 

models is often limited outside the industrialised nations due to lack of available data 

(Sanyal and Lu, 2004). Hydrodynamic models commonly in use for flood management 

typically require three types of data: 1) high resolution topographic data and surveyed 

elevations for defining the model geometry; 2) water discharge or stage data at the inlet 

and outlet of the reach of interest as model boundary conditions; (3) radar images for 

calibration and validation of model results. Digital elevation models derived from 

LiDAR survey are typically used as the source of terrain data (Bates et al., 2003) while 

differential GPS is used for accurate river cross-section survey (Wilson and Atkinson, 

2005). Water discharge and stage data are generally required in high temporal 

resolution of 1 hour or less to feed into the models (Hunter et al., 2005). Spaceborne 

radar imaging platforms such as ENVISAT (Shumann et al., 2007) as well as airborne 

synthetic aperture radar (ASAR) (Bates et al., 2006) are commonly utilised as sources 

for obtaining observed flood extents. 

 

All the data mentioned above are either scarce or non-existent in many developing 

countries and can only be obtained over broad areas at a high cost in resources and 

infrastructure. The topography of the river channel and floodplain is the most important 

input in any hydraulic model (Nicholas and Walling, 1997). In particular, the details 
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and accuracy of the representation of the channel geometry is a very significant 

determinant of model performance (French and Clifford 2000; Pappenberger et al, 

2005).  Horritt and Bates (2001a) pointed out that when predicted water surface is re-

projected onto a DEM to delineate the actual wet area or the detailed shoreline, the 

accuracy increases steadily with the spatial resolution and vertical accuracy of the 

DEM. The drying process or draining of water from the floodplain with subsiding river 

stage is more efficient with fine resolution model although maximum inundated area is 

less sensitive to model grid size (Neal et al., 2011). Hence, accurate and high resolution 

terrain data is of utmost importance in inundation modelling. 2D hydrodynamic models 

require a continuous representation of the channel bed. In the majority of situations, a 

portion of the main channel remains under water and thus it is difficult to create a 

terrain model for the channel from LiDAR survey or photogrammery. Linear 

interpolation of the available surveyed cross-sections is not straightforward due to 

various facts including bends in the river, existence of channel islands not captured by a 

sufficient number of cross-sections and failure to capture the river thalweg (Merwade et 

al., 2008a). Conversion of the river coordinate system into a flow oriented coordinate 

system from the Cartesian one was found to increase the ability of anisotropic 

interpolation techniques (Merwade et al 2006). The density of the surveyed points 

holds the key for generating an accurate interpolation of the channel topography 

(Legleiter and Kyriakidis 2008). The time and cost of surveying closely packed cross-

sections are considerable. Cross-section surveys become more difficult in areas with 

strong seasonal pattern of rainfall because the prevalence of very low flow during most 

of the year prevents the use of relatively inexpensive method of employing boat 

mounted sonar equipment for capturing the topography of the river bottom. 

 

The SRTM DEM with a horizontal resolution of ~ 90 m is the best freely available 

terrain data covering the tropics where most of the developing countries are located. 

The SRTM DEM has been used with some success in recent years with 1D 

hydrodynamic codes like MIKE 11 to model flow in the Mahanadi River delta (Patro et 

al. 2009a; Patro et al. 2009b) and the Brahmani River basin (Pramanik et al. 2010) in 

India where the original DEM was modified using the spot height information derived 

from Survey of India topographic maps.  As the X and C band radar pulses used for 

generating the SRTM DEM was not able to penetrate the dense canopy, the DEM 

contains patches of spuriously exaggerated elevation over a cluster of trees that actually 
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do not offer too much obstruction to flow. However, due to the coarse resolution of the 

SRTM DEM these features impede flow of water to a great extent in the modelling 

environment (Lehner et al., 2008). In order to overcome these problems, GIS-based 

processing of the SRTM DEM has been attempted to improve its performance in 

hydrodynamic modelling at regional scales. Wilson et al. (2007) degraded the SRTM 

DEM to 270 m resolution for an area in the Amazon Basin in order to minimize the 

effect of vegetation induced noise and reported a water surface RMSE of 0.99 m at 

high flow. Paiva et al. (2011) employed some generic rules of fluvial geomorphology in 

a GIS-based algorithm to derive simplified channel geometries from the SRTM DEM 

for 1D hydrodynamic modelling of a major tributary of the Amazon River. Yamazaki 

et al. (2012b) created an adjusted version of the SRTM DEM for a region of the 

Amazon basin by adding flow connectivity from external sources such as existing 

drainage maps while keeping the original elevation values almost unaltered and 

reported a 20 % improvement in the accuracy of predicted water extent vis-à-vis the 

original SRTM data. Nevertheless, the SRTM DEM has been primarily used for 

hydraulic modelling  in the case of  very large rivers such as the Amazon (da Paz et al., 

2011), the Congo (Jung et al., 2010), the Niger (Neal et al., 2012a) and the Ob 

(Biancamaria et al., 2009).  Consequently, the inaccuracies in modelled inundation 

extents arising from the use of a coarse DEM appear to be reasonable as a proportion of 

the total flooded area. Casas et al. (2006) pointed out that when using a coarse terrain 

input the inaccuracy in the model output decreases with increased discharge and the 

model becomes less sensitive to the quality of the terrain data when simulating extreme 

events.   

 

The majority of the floods occurs in rivers that are much smaller in carrying capacity 

and peak discharge than the Amazon or its major tributaries but still affect the lives and 

properties of the communities seriously. Degrading the resolution of the SRTM DEM 

may reduce the noise, but such a coarse resolution DEM does not have much value in 

modelling inundation in medium size river basins with a width of < 500 m. The 90 m 

grid size of the SRTM DEM is not able to capture the variation in a river bed in such 

rivers. Narrow topographically discontinuous structures such as levees and roads that 

are normally not evident in the SRTM DEM (Sanders, 2007) may not make a 

significant impact on the accuracy of the modelled flood extent maps due to the 

massive scale of inundation in big rivers like the Amazon. However, for simulating 
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inundation in smaller rivers at the reach scale these finer topographic configurations 

may become important.  

 

Recently, a few attempts have been made to model inundation at the reach scale 

without access to very high resolution topographic data. For example, Tarekegn et al., 

(2010) generated a DEM of 15 m resolution from ASTER images in the Ribb River in 

Ethiopia but recorded only a 30.5 % match between the simulated and observed flood 

extent. IRS Cartosat-1 stereo images were used by Sahardi et al (2012) to model flood 

extent in a mountainous region where the modelled flood extent was not very sensitive 

to the DEM inaccuracies. Studies that were conducted in the developing countries such 

as Iran (Sarhadi et al., 2012), Bangladesh (Masood and Takeuchi, 2012) or Thailand 

(Keokhumcheng et al., 2012) considered a designed flood event rather than an actual 

one and the simulation results were compared with the observed inundation maps of 

extreme events based on availability. This fact makes the evaluation of the performance 

of these models less rigorous. In addition, almost always the previous studies attempted 

to predict a flooding event having a continuous spatial pattern of inundation adjacent to 

the single channel under investigation. In these scenarios the debate is centred upon 

how accurately a model and the input DEM can simulate the fringe area or uncertainty 

zone of inundation (Merwade et al., 2008b) at a distance from the channel with 

certainty. However, in an anabranching channel with numerous distributaries the flood 

breakout zones can be in a different part of the main channel where smaller branches 

give rise to discrete pockets of waterlogged areas in the floodplain.   

 

Considering the resource constraints of developing high resolution DEMs (typically 

available from LiDAR survey) for an entire basin, elevation data from different sources 

can be blended and merged for inundation modelling. Example of such endeavours 

were reported by Tate et al. (2002) and Shapiro and Nelson (2004) who created terrain 

data sets with higher density of elevation points at or near the channel and less 

resolution further away. Such attempts may enable us to concentrate limited resource of 

capturing topographic data in a manner that is suitable for hydraulic modelling. 

 

 A fully two dimensional (2D) inundation model like TELEMAC2D (Hervouet and 

Van Harn, 1996) is a robust tool for simulating extensive floodplain flow. Although the 

depth averaging mechanism of the 2D model results in lumping of some hydraulic 
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processes their ability to account for the variation in the hydraulic conditions within the 

channel and over the floodplain make them ideal in terms of the representation of 

hydraulic processes (Horrit, 2000). Cook and Merwade (2009) found that physically 

based more complex finite element codes were less sensitive to the resolution of terrain 

models and therefore is effective in containing the uncertainty in the model outcomes 

arising from the error in the terrain input. The factor of non-stationarity in the 

parameterisation of roughness coefficients arising from varying resistance and energy 

loss at different magnitudes of flow can be kept under control  in fully 2D models 

(Horritt et al., 2007).  

 

The issues of process representation and input data are also important with regards to 

the choice of the inundation model. Horritt and Bates (2001b) argued that if we lack the 

detailed data to parameterise a complex process representation with sufficient accuracy 

then it does not make sense to select a complex process which are inherently 

computationally demanding. Their study showed that a simple 1D-2D coupled storage 

cell model like the LISFLOOD-FP (Bates and DeRoo, 2000) can achieve similar high 

accuracy as the complex finite element fully 2D TELEMAC2D model in terms of the 

predicted flood extent and the authors concluded that with the increasing availability of 

very high resolution LiDAR DEMs the detailed representation of topography can 

supplement the weakness in process representation. However, the aforementioned study 

by Horritt and Bates (2001b) was conducted on a single reach. The low-lying alluvial 

plains and deltas around the world are particularly flood-prone and they are generally 

characterised by river bifurcation and anabranching channel pattern.  It will be 

interesting to test whether 1D models like LISFLOOD-FP that has the advantage of the 

reduced complexity approach can perform equally well as the complex, fully 2D 

TELEMAC2D model in an intricate deltaic drainage system where no LiDAR-based 

high resolution terrain data is available. 

 

In this paper we aim to address the challenges that arise due to general lack of 

necessary data for inundation modelling in the data-sparse developing world and 

present a methodology to deal with this situation in order to perform a reasonably 

accurate inundation modelling in a complex fluvial setting. The objectives of this paper 

are 1) to report a novel method for generating a hybrid terrain data from multi-source 

low-cost/free remotely sensed data and assess the improvement it can make over the 
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raw SRTM DEM in terms of the simulated inundation extent through fully 2D 

inundation modelling,  2) to test the ability of flood-inundation models with varying 

complexity: LISFLOOD-FP vs. TELEMAC2D to exploit the improved hybrid terrain 

data for increasing the accuracy of the simulated flood extent.  

 

4.2  Study Area 

 

A study area in India was selected for this paper as India is a good example of the 

general issue of widespread flooding (Mohapatra and Singh, 2003) and lack of data for 

developing prediction tools. The particular study site is located in the basin of the 

Mundeswari River which is one of the major distributaries of the Damodar River 

(Figure 4.1). 

 

Figure 4.1 The study area; the arrows in the right panel shows the direction of flow for 

different channels; location of surveyed cross-sections are depicted with lines across the 

Mundeswari river. 

 

The Damodar River with basin area of 24,235 km
2
 is an important tributary of the 

Hoogly River which is one of the two branches of the Ganges. The main flow of the 

Damodar River started flowing through the Mundeswari River following an avulsion in 

the river channel during a major flood in 1914. The study area which is part of the 

lower Damodar Basin suffers from chronic flooding and was described by Basu (1996) 
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as a 'flood endemic zone' where the release of a large quantity of water from upstream 

reservoirs rather than heavy rainfall over the basin or its vicinity is the main cause of 

flooding. There were 16 major floods recorded between 1823 to 1943 (Saha, 1979) 

before the establishment of the Damodar Valley Corporation in 1946 that built a 

network of four dams and reservoirs in the upper Damodar Basin with the goal of 

moderating floods and provide irrigation during dry season. However, the situation has 

not changed much and the area was still inundated 14 times in the post-dam era 

between 1958 and 2000 (Chandra, 2003). More recently, this area was subjected to 

inundation in 2006, 2007, 2009 and 2011. The main cause of the flooding is heavy 

siltation of the channel, so that it cannot cope with a peak discharge of more than 2300 

m
3
/s (Central Technical Power Board, India, 1948).  

The study area is composed of the approximate floodplain of the Mundeswari 

River.The channel system is anabranching and is characterised by number of smaller 

distributaries emanating from the main branch of the Mundeswari River and a river 

island. The channel bed material is mostly composed of sand and clay. Both banks of 

the Mundeswari River in the study area are protected by earth embankments that are 1 

to 1.5 m higher than the natural river banks. The land use of the area is dominated by 

agriculture, mostly paddy fields, dotted with small rural hamlets. Although the study 

area is mostly drained by the Mundeswari River and its branches, during major floods 

some portion of the eastern and western boundary of this area experience influx of 

moderate amount of flood water from the adjacent river basins that are quite often 

simultaneously flooded during extreme monsoon events at the upstream area in the 

northwest.  

 

4.3 Data used 

 

The topographic data for defining the model geometry was derived from 1) Indian 

Remote Sensing Satellite (IRS) Cartosat-1 panchromatic stereo images with 2.5 m 

spatial resolution; 2) the SRTM DEM; and 3) river cross-sections that were surveyed 

with a combination of dGPS (for dry river bed) and portable depth sounder (wet parts 

of channels).  Ahmed et al. (2007) extracted DEMs from Cartosat-1 stereo images and 

reported elevation RMSE of 4.38 m and 3.96 m for the Himalayan foothills at 

Dehradun and mountainous Shimla region of India respectively. Cartosat-1 stereo 
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images are suitable to produce DEMs of 0.3 s (approximately 8 to 9 m in lower 

latitude) grid size with a height accuracy of 3 to 4 in the plateau region (Srivastatava et 

al, 2008) while the vertical accuracy is likely to increase in flat rural areas without 

major forest cover. The DEMs generated from Cartosat-1 images have been found to be 

better in terms of both horizontal and vertical accuracy than the freely available SRTM 

DEM or ASTER GDEM (Rawat et al., 2012). The inflow of water at the model inlet 

was derived from stage data that were available at 1 hour interval at the Horinkhola 

gauging station (Figure 4.1) from the Irrigation and Waterways Department, 

Government of West Bengal, India. Due to the unavailability of discharge data or rating 

curve we converted the stage value into discharge using Manning’s equation assuming 

uniform flow (Herschey, 1998) as below 

 

Q = 
 

 
 R

a
 S

0.5
        (1) 

 

where R is the hydraulic radius (m), a is an exponent of the hydraulic radius, n is the 

Manning roughness coefficient and S is the bed slope (mm
-1

). 

The simple MS Excel-based Cross-Section Hydraulic Analyser tool (Natural Resources 

Conservation Service, 2012) was used for this purpose where the bed slope, hydraulic 

radius and cross-sectional area of the gauging site were derived from the surveyed 

cross-section. No stage or discharge data were available at the model outlet for 

specifying the downstream boundary condition. 

 

Satellite images provided the observed extent of flood water at a particular time that 

was used to calibrate and validate the hydrodynamic models. The various optical 

satellite images used and their purpose is presented in Table 4.1. The acquisition time 

of two images for the 2009 flood event in relation to the inflow stage records is shown 

in Figure 4.2. Only freely available (MODIS and Landsat) or low-cost (IRS 

Resourcesat – 1 LISS-III) optical satellite images were utilised. No radar images were 

used because of the high cost associated with their procurement and the general 

unavailability of radar scenes in the archive of the major radar data providers.  
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Table 4.1 List of satellite images and their date of acquisition that were used for calibration and 

validation of the flood inundation models. 

 

 

 

 

 

 

Figure 4.2 River stage (1-hour interval) at Harinkhola gauging station (Shown on Fig 1) and 

the timing of the two satellite overpasses that were used for validating the flood inundation 

models. 

 

 

 Satellite Sensor 

 

Bands Used 

(Resolution) 

Date of 

Acquisition 

Purpose 

1 MODIS  

Aqua 

MODIS Band 1 & band 

2 

(250 m) 

 

26
th

 

September, 

2006 

Calibration 

2 IRS P6 

(Resourcesat-1) 

LISS III All bands 

(24 m) 

12
th

 

September, 

2009 

Validation 

3 Landsat 5 TM Band 1 to 5 and 

7 

(30 m) 

15
th

 

September, 

2009 

Validation 
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4.4 Methods 

4.4.1 Generating the terrain data 

 

 Field survey 

 

A field survey was conducted during November-December, 2010 at very low flow to 

collect necessary ground control points (GCPs) for generating the DEM from Cartosat-

1 stereo images and to measure 40 channel cross-sections over the Mundeswari River 

in our study area. Differential GPS was used for surveying the dry river bed. Special 

care was taken to measure the elevation of the water surface at the time of surveying 

and used as an approximate representative value of channel bottom elevations for each 

cross-section (See Figure 4.3).  A depth sounder was used from a boat to measure the 

depth of water while the x,y coordinates of the location of measured depths were 

captured with the dGPS. The sounder equipment reported depths to a precision of 10 

cm.  These depths are then subtracted from the water-surface elevation to obtain the 

bottom elevation of the wet part of the channel.  

 

 

Figure 4.3 Schematic diagram of the river cross-section survey that was done with a 

combination of differential GPS and portable depth sounder. 

 

The presence of a GPS base station within 20 km of the rover location is an essential 

prerequisite for conducting any dGPS survey with relatively inexpensive single 

frequency (L1) GPS receivers. No real-time observations from permanent GPS stations 
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are available in the public domain in India except for two IGS stations, the nearest of 

which is located more than 2000 km from our study area. A base station with known 

coordinates in the International Terrestrial Reference Frame (ITRF) / WGS84 was 

essential for this survey in order to make the observations consistent with the global 

datasets such as the SRTM DEM and Cartosat-1-generated points. Many web-based 

free services can correct a sufficiently long observation (more than 4 hours) of a dual 

frequency (L1 and L2) GPS receiver from decimetre to centimetre accuracy (Tsakiri 

2008). We used the Natural Resources Canada's Precise Point Positioning (PPP) also 

known as CSRS-PPP which uses very precise GPS orbit or clock estimates from IGS to 

correct user-supplied observations. CSRS-PPP has reported that only 2 hours of 

continuous observation in dual frequency receivers are capable of achieving a vertical 

accuracy of approximately 40 mm while Ebner and Featherstone (2008) observed that 

more than 2 days of continuous observation reduces the vertical error down to 11.8 

mm.  

 

For setting up a base station a Leica 300 dual frequency GPS receiver took continuous 

observation for approximately 12 hours at a location which is within 15 km from any 

place in our study area (Figure 4.1).  These observations were uploaded to the CSRS-

PPP service and the corrected coordinates in WGS84 datum was used as the known 

coordinates for the base station. A single frequency PROMARK 3 GPS was used as the 

rover for collecting points over the channel. For surveying each cross-section we took 

static observations at two points by occupying the points for more than 20 minutes 

(Point A and B in Figure 4.3). The actual survey was done in a rapid-static mode, 

initialising the rover by occupying point A. After the survey was completed an 

additional observation was taken at point B without losing the satellite lock which was 

used as the measure of accuracy for the rapid-static survey. It was assumed that static 

points are likely to have higher accuracy than the rapid-static points and therefore can 

be used as the reference for measuring the accuracy of the rapid-static measurements. 

The rover data were post-processed in Thales GNSS software.  

 

Seventeen well distributed GCPs were collected for the entire area covered by the 

overlapping portion of the Cartosat-1stereo images. These points were collected with 

the rover in static mode and post-processed using the base station coordinates in 

WGS84 obtained from the CSRS-PPP service. Employing the CSRS-PPP corrected 
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coordinates as the known coordinates of the base station ensured that the cross-section 

survey and the block model for creating the DEM from Cartosat-1 imagery remain in 

the same reference frame as the SRTM DEM. 

 

Extraction of 3D points from Cartosat-1 stereo imagery by digital photogrammetry 

 

Leica Photogrammetry Suite (LPS) was used to extract the terrain from the Cartosat-1 

stereo pair. Fourteen GCPs were used to refine the block adjustment model which was 

initially set up using the vendor supplied rational polynomial coefficients. A total of 54 

tie points were retained as satisfactory after manually checking all the tie points that 

were generated with the automated tie point generation tool in LPS. The triangulation 

process reported the control point residuals in the form of RMSE in X, Y and Z 

direction as 0.52 m, 0.55 m and 0.02 m respectively. The difference of intersected and 

measured control points were reported as 0.59 m, 0.64 m and 0.24 m as RMSE in X, Y 

and Z direction respectively. 

 

Overall the triangulation process was deemed satisfactory given the pixel size of 2.5 m 

of the Cartosat-1 imagery. After finishing the block adjustment and areal triangulation 

LPS eATE module was used for extracting the terrain model in the form of a x,y,z 

point cloud. After giving due consideration to the pixel size and radiometric 

characteristics of our scenes and with several trial and error attempts we extracted the 

best possible set of mass points (i.e. an XYZ point cloud).  

 

A 3D visualisation environment was created with the triangulated LPS block file and 

the eATE-extracted point cloud was superimposed over it and visualised in 3D using 

stereo goggles in order to facilitate terrain editing. It revealed that the overall result was 

not satisfactory. The automated terrain extraction particularly failed over farmlands 

with little contrast and the wet part of the channel. The presence of tree clusters also 

contributed to spurious relief in the otherwise extremely flat landscape. The main 

reason for partial failure of the automated terrain extraction process is the poor 

radiometric quality of the scenes. Cartosat-1 imagery has a 16 bit image depth and a 

digital number (DN) range of 2
10

 = 1024. The histogram of the ‘aft’ image (Figure 4.4) 

shows that the scene has a very poor contrast where 99 % of the pixel values are 

confined within a narrow range of 1 to 160. Paddy fields which are the most ubiquitous 
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land use in our study area, in general appear dark in grayscale images. An image which 

is highly skewed towards lower values, the pixels composed of paddy fields as well as 

water body had very limited range of digital numbers. This factor made it difficult for 

the pattern recognition algorithm to find a correct match between both images of the 

stereo pair. 

 

 

Figure 4.4 Histogram of one of the images of the Cartosat-1 stereo pair used in the present 

study for extracting DEM. It shows the poor radiometric quality of this particular scene with a 

histogram highly skewed to the lower digital numbers (DNs) 

 

Utilising the SRTM DEM as a supplementary source of elevation 

 

As the Cartosat-1 stereo images failed to produce an accurate terrain over the farmland 

we used the SRTM DEM to fill the gaps. When compared with 17 dGPS-surveyed 

points the original SRTM DEM showed a positive bias (systematic offset) (SRTM 

higher than the GPS) of 0.8 m for our study area. The surveyed points did not have any 

significant presence of trees in their vicinity. Hence, we assumed that the magnitude of 

SRTM bias is typical for more or less bare surface or paddy fields. Taking note of this 

bias the SRTM DEM was lowered by 0.8 m and the pixel elevations were converted 

into an x,y,z point cloud and imported in the same LPS block file where the Cartosat-1 

generated point clouds were imported previously. The points which were found to lie at 

or very close to the surface were considered correct and the points floating above or 

below the surface were either eliminated or adjusted for vertical bias so that they rest 

on the surface of the 3D model. Contours were created using the point cloud in the LPS 
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TerrainEditor and visualised in 3D over the stereo pair to further appreciate the terrain 

generated by the automated terrain extraction mechanism.  LPS performed well over 

roads, dry canals, small rural settlements and dry sandy river beds which are 

characteristically bright and have high contrast with the surrounding vegetation covered 

dark surface. The images being highly skewed towards the low values performed 

comparatively well for land covers with a lighter tone. For the landscape features with 

smaller dimensions the Cartosat-1 derived mass points were retained. The points were 

adjusted for vertical elevation bias and smoothed wherever necessary by using the 

underlying stereo block as the reference. The bias-adjusted SRTM DEM derived x,y,z 

coordinates were further treated for tree induced localised bias and merged with the 

Cartosat-1-derived points to create a seamless terrain data for the floodplain. These 

terrain data are characterised by low density of points over the farmlands and high 

density in the location of narrow features. 

 

Creating a detailed channel 

 

Creating a detailed channel was considered important for this study particularly due the 

existence of a number of river bifurcations and river islands in our study area. The 

channel of the Mundeswari River was created in high resolution by combining the 

surveyed channel cross-section information and the point cloud extracted from 

Cartosat-1 images. The surveyed points and Cartosat-1 derived mass points were 

imported into LPS Terrain Editor and edited within 3D visualization environment. The 

surveyed points were considered as the reference while the mass points were used to 

augment the details in channel geometry. The surveyed points were the only source of 

information in the wet portion of the channel where the automated terrain extraction 

procedure completely failed due to very poor contrast in the stereo images. The narrow 

embankments which are frequently covered with trees were difficult to derive 

accurately from photogrammetric output. Here, the surveyed points significantly 

contributed to generate this hydraulically significant feature. Figure 4.5 demonstrates 

how the channel would be captured if only the surveyed cross-sections were linearly 

interpolated (The purple lines bounded by the red lines) and how incorporating the 

photogrammetric outputs helped in capturing the actual configuration of the river.  
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Figure 4.5 Schematic diagram showing how the channel topography was created in greater 

detail by supplementing the surveyed cross-sections with elevation mass points generated from 

digital photogrammetric outputs from Cartosat-1 stereo imagery. 

 

Finally all edited elevation data were merged into one file and saved as xyz point as 

well as rasterised into 8 m grid cells to create a hybrid bare earth terrain data. A 

resolution of 8 m was chosen because the density of points in the channel and the linear 

discontinuous structures over the flood plain was approximately 8 m. Over the 

farmlands the raster was merely resampled into 8 m grid as the original point density 

was 90 m (derived from SRTM DEM). 

 

4.4.2  Flood-inundation modelling 

 

Two open source hydrodynamic models were selected for testing the performance of 

the improved hybrid terrain data. TELEMAC2D (Hervouet and Van Harn, 1996), a 

finite element fully 2D model with high computational cost and capability of complex 

hydraulic process representation was the first candidate model. The 2
nd

 model selected 

was LISFLOOD-FP which is a simple raster-based 1D-2D coupled model. The virtue 

of this model is its simplicity and very low computational cost as compared to 

TELEMAC2D. 
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Setting up the TELEMAC2D model 

 

TELEMAC2D model derives depth averaged free surface flow by solving the full 

three-dimensional Navier Stokes equations by getting the solution for the 2nd order 

partial differential equations in the following manner: 

  

  
  (   )    (     )   

(    )

  
  (    )   

 

 
 = 0 (2) 

  

  
   (  )                           (3) 

where v is a 2D depth average velocity vector, g is the acceleration due to gravity, h is 

the depth of flow, µ is the molecular dynamic viscosity, ρ is the density of water, ɛ is 

the dynamic turbulent viscosity, Z0 is the bed elevation and F is related to the bed 

friction. A detailed mathematical description of TELEMAC2D model can be found in 

Hervouet and Van Harn (1996). 

 

TELEMAC2D model solves equations 2 and 3 over an unstructured triangular finite 

element mesh.  Creation of an optimum configuration of the mesh is crucial for the 

performance of any finite element flood inundation model. Spatial resolution of the 

finite element mesh was found to have significant impact on TELEMAC2D output 

particularly in terms of the inundation extent and reported to have greater influence 

than calibration parameters such as friction coefficient in determining results (Hardy et 

al., 1999). We used Blue Kenue software (NRC Canadian Hydraulics Centre, 2012) to 

generate an empty mesh following the recommendations by Cobby et al. (2003) so that 

the mesh has approximately equilateral elements on the floodplain to minimize mass 

balance error, variable element size to concentrate computational resources where it is 

required and gradual transition between smaller and larger element size for maintaining 

model stability. Special sub-meshes were created at a resolution of approximately 8 m 

for the Mundeswari River and its distributaries as well as other hydraulically significant 

discontinuous topographic features like roads, canals, localised depressions for which 

the hybrid terrain data has a point density at approximately 8 m spacing. The 

density/resolution of the mesh over the farmland was kept at 90 m as the elevation data 

for this land use was derived from the SRTM DEM. Finally the mass points of the 

hybrid terrain data were triangulated and the triangulated elevation was mapped to the 

unstructured mesh in Blue Kenue. Varying point density in the terrain data suited the 
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unstructured mesh configuration and the sharp transition in element size in the 

triangulated terrain data from the channel to the floodplain was moderated with 

gradually varying composition of the finite element mesh in order to ensure stability in 

TELEMAC2D model runs (Figure 4.6).  

 

In order to test the performance of TELEMAC2D with the original SRTM DEM, 

elevation values from the original SRTM DEM were imported onto the empty mesh 

except for the channel section. Since the elevation values of the channel were 

supplemented with the surveyed elevation values we imported and merged the channel 

elevations from the hybrid terrain data with the raw SRTM DEM in order to make a 

fair comparison between the performance of the improved hybrid DEM and the original 

SRTM DEM in terms of the accuracy of the modelled flood extent.  

 

 

 

Figure 4.6 Construction of finite element mesh for the TELEMAC2D model; a: The  delaunay 

triangulation of the elevation data derived from the hybrid mass points. b: Configuration of the 

empth finite element mesh characterised by smooth transition between smaller element size of 

the channel and larger element size of the floodplain. 
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Setting up the LISFLOOD-FP model 

 

 LISFLOOD-FP handles the channel flow using either a kinematic or a diffusive wave 

solution and once the water leaves the channel a 2D raster-based storage cell model is 

used to simulate floodplain flow. An approximate solution of the 1D Saint-Venant 

equation is used for the unsteady open channel flow. It is essentially a 1D-2D coupled 

hydrodynamic model and popular for its low computational cost and ease of 

parameterization (Horritt and Bates, 2001b). The input data requirement of the 

LISFLOOD-FP model is quite simple especially for the channel which is represented 

by a series of points, each having one value for the bed elevation and another for the 

channel width. The channel is assumed to be rectangular for computational efficiency.  

Since we need a single value for the bed elevation at each point of the 1D channel 

vector instead of a series of points captured by the cross-sections the water surface 

elevation obtained during the field survey was used for it (See Section 2.1.1).  The 

channel width was obtained from the surveyed cross-sections as well as the Cartosat-1 

image. The LISFLOOD-FP model was reported to be very sensitive to the resolution of 

the DEM (De Roo et al., 2007). This fact has a significant bearing on the model 

outputs. Because in our study area the flow of water from the main channel splits in a 

number of places through branching and some of the branches meet again to the main 

river through the loop (Fig 1). In LISFLOOD-FP any water leaving the main channel 

whether through purely shallow floodplain flow or branch channels is handled by a 

raster-based 2D storage cell mechanism and the efficiency of such routing depends 

significantly on both the resolution and accuracy of the DEM. 

 

Preparing the observed data, calibration and validation 

 

Band 1 and 2 of the MODIS images with a spatial resolution of 250 m for the 2006 

flood event (See Table 3.1) was used for extracting the flooded area. The spectral 

characteristic of the band 2 data (841 - 876 nm) is very helpful in water classification. 

Brakenridge and Anderson (2006) proposed a method where MODIS images were used 

to calculate NDVI images (band 2 - band 1 / band 2 + band 1) for typical and flooded 

conditions and the difference image of the two NDVI images were utilised for detecting 

flooded area. Following the same technique we used a cloud free MODIS scene 
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acquired on 26th September, 2006 during the peak of the flood for deriving the NDVI 

image during the flooded condition and another MODIS image acquired on 2nd June 

2006 for deriving the NDVI values for the typical condition. Finally the flooded area 

was derived by thresholding the difference image of the flooded and typical conditions.  

 

The IRS Resourcesat-1 LISSIII and the Landsat-5 TM images acquired during the 

flood of 2009 were classified using number of methods such as supervised and 

unsupervised classification, NDVI thresholding and the results were compared with the 

false colour composite (FCC) of the original image. Finally the unsupervised 

classification product derived with the K-Means classifier using ENVI image 

processing software was found most accurate and retained as one of the validation 

dataset for 12th September, 2009. During the unsupervised classification process the 

IRS Resourcesat-1  LISS-III image was classified into 20 arbitrary spectral classes 

from which 5 classes were identified as representing flooded area by comparing them 

with the FCC image. These classes were combined to obtain the inundated area.  The 

result of supervised classification was found to be most accurate for the Landsat TM 

image and retained as the validation data for 15th September 2009 (See Table 4.1). 

 

One global Manning's roughness coefficient value for the channel and another for the 

floodplain were taken as the calibration parameter for the flood inundation models. The 

performance of model output in terms of the flooded extent was calculated using the 

formula proposed by Bates and DeRoo (2000) and presented as 

F = (Ow ∩ Mw / Ow ∪ Mw) × 100       (4) 

where Ow is the number of observed wet pixel and Mw is a modelled wet pixel. After 

consulting the published typical Manning's n values from Chow (1959) for sandy 

channels and floodplains with standing crops the calibration was run for 0.024 - 0.038 

for the channel and 0.030 - 0.038 for the floodplain. The TELEMAC2D performed best 

with the n value of 0.037 for the channel and 0.038 for the floodplain with an F value 

of 48.25 % (Figure 4.7). The LISFLOOD-FP model did not show much sensitivity to 

the n values in the context of improving accuracy with reference to the observed flood 

extent. It was decided to use the chosen roughness values for the TELEMAC2D 

calibration runs in the validation stage for both models. 
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Figure 4.7 Best calibrated output of the TELEMAC2D model on 26th September, 2012, 

flooded areas are shown in dark shade. a: The modelled wet area. b: The observed wet area 

classified from the MODIS Image (Spatial resolution 240 m) 

 

4.5  Results 

 

Following the aforementioned methods for creating the hybrid terrain data great 

improvement was observed over the original SRTM DEM. Significant difference was 

made in the detail of the channel of the Mundeswari River, narrow but hydraulically 

significant features like embankments and roads (Figure 4.8), depiction of smaller 

branch channels and reducing noise in the original SRTM DEM (Figure 4.9). The 

RMSE value of the original SRTM DEM was 2.4 m when compared with 23 spot 

heights obtained from Survey of India topographic maps at 1:63360 scale. This figure 

improved to 1.1 m for the hybrid DEM. 

 

In the validation stage, when the TELEMAC2D and LISFLOOD-FP model were run 

for the October, 2009 flood event, for which the actual flood extent was derived from 

the IRS Resourcesat -1 LISS-III images, TELEMAC2D model performed far better 

than the LISFLOOD-FP model in reproducing the actual flood extent (Figure 4.10). It 
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is evident from Figure 4.10a that LISFLOOD-FP in general failed to simulate the 

observed flooding pattern away from the main channel and grossly overestimated the 

inundation area adjacent to the channel. The F index for the TELEMAC2D output was 

computed as 41.45 %. The performance of the TELEMAC2D model at the further 

receding stage on 15th September diminishes to a F value of 28.89 % (Figure 4.11). 

 

 

Figure 4.8 Comparison between the SRTM DEM elevation points (a) and the hybrid terrain 

data (b) with 3D visualization at the bifurcation of the Mundeswari River near the river island. 

The main channel is barely visible in (a) as compared to detail river bed in (b). The roads and 

narrow levee of the channel is also not captured in (a). 
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Figure 4.9 Overall improvement of the hybrid DEM over the SRTM DEM. The transect in red 

shows how the general noise of the SRTM DEM was reduced in the hybrid DEM and smaller 

channels which were not captured by the SRTM DEM is described in the hybrid DEM. 

 

 

Figure 4.10 Comparison in the validation performance of the LISFLOOD-FP (a) and the 

TELEMAC2D (b) models at the particular time step (12th October, 10:00 Indian Standard 

Time) with reference to the observed flood extent (c) derived from the IRS Resourcesat-1 

LISS-III image (24 m spatial resolution). 
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Figure 4.11 Comparison in the validation performance of the TELEMAC2D (a) model at the 

particular time step (15th October, 10:00 Indian Standard Time) with reference to the observed 

flood extent (b) derived from the Landsat-5 TM image (30 m spatial resolution). 
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Figure 4.12 Visualization of the modelled flood extent of the LISFLOOD-FP (figures at the top row) with the TELEMAC2D (figures in the bottom 

row) at four stages (a, b, c and d) of the inflow hydrograph represented by river stage at 1 hour interval. The LISFLOOD-FP output remarkably failed to 

divert the flow in the distributaries and the flooded area remained confined to the channel of the Mundeswari River.
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Although the comparison between the accuracy of the model outputs of TELEMAC2D and 

LISFLOOD-FP can be made at the time step of the two available satellite overpasses we 

realised that the visualization of the simulated flood extent by the two contending models at 

different stages of the flood (Figure 4.12) may help to reveal when (i.e. at which stage of the 

flood) and why LISFLOOD-FP failed to simulate the actual dynamics of flooding. 

 

The contribution of the improved hybrid terrain data in producing a better result as compared 

to the original SRTM DEM becomes evident if we compare the simulated flood extent at the 

IRS Resoursesat-1 LISS III overpass (Figure 4.13) with Figure 4.10. It shows that in spite of 

having the detailed channel configuration of the Mundeswari river (refer to section 2.2.1) 

TELEMAC2D performed poorly when using the SRTM DEM raw elevation for the 

distributaries and floodplain.  

 

 

Figure 4.13 Modelled flood extent of the TELEMAC2D using the SRTM DEM at the time step 

coinciding with the IRS Resourcesat-1 satellite overpass (Figure 4.10 c). 
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4.6 Discussion 

 

Our results show that with the addition of survey grade cross-sections low-cost and freely 

available DEMs can be upgraded into products suitable for flood inundation modelling at 

reach scale in data-sparse environments. The typical obstacles of performing flood inundation 

modelling in the data-sparse developing countries are highlighted in this study and each of 

these challenges were dealt with a low cost yet effective alternative. The SRTM DEM 

supplemented with few reference channel cross-sections were found suitable to accurately 

predict river stage for high magnitude events with LISFLOOD-FP in a situation where the 

flow is mostly confined to the channel and the study reach of interest does not have flow split 

though distributaries (Sanyal et al., 2013). However, this study showed that when floodplain 

flow is widespread and the study area has numerous distributaries a more physically realistic 

model like TELEMAC2D is also incapable of simulating the actual inundation pattern with 

the SRTM DEM and a more accurate higher resolution terrain data is required.  

 

We have reported a novel approach of combining the elevation data from different free / low 

cost sources to create a high resolution topography that can be used in hydrodynamic 

modelling for simulating extensive floodplain inundation in an anabranching channel system. 

The method of editing elevation in a 3D stereo environment is labour intensive and to some 

extent depends on the skill of the photogrammetric analyst. Although the overall accuracy of 

our TELEMAC2D model output may seem low in terms of the calculated F values it is 

important to note that the model was able to simulate the overall actual pattern of flooding 

(Figure 4.7). All major pockets of flood water in the observed data were modelled as wet. 

The modelled performed better (in terms of F index) in the calibration stage (F index 48.25 

%) than the validation (F index 41.45% and 28.89 %) because the cloud free MODIS satellite 

overpass occurred just a few hours after the peak of the flood. The F index which is used for 

measuring the model performance tends to favour underprediction and may not be very 

appropriate for risk assessment where overprediction is preferable (Aronica et al., 2002). A 

more simple performance measure index (D) represented as  

 

D = (A ∪ B ) / C × 100         (5) 
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where A is the number of pixels correctly modelled as wet, B is the number of pixels 

correctly modelled as dry and C is the total number of pixel in the model domain reveals a 

model accuracy of 68.3 % for the validation time step captured by the IRS Resourcesat-1 

LISS III satellite data. Aronica et al (2002) argued that the D index may give over optimistic 

result in situations where there is a large higher ground in the model domain which can be 

very easily modelled as dry. However, in our study area the total elevation range is mostly 

within 2 to 3 m over the floodplain (see the profiles for the hybrid DEM in Figure 4.9) and 

existence of such elevated ground is not widespread. Considering this fact the model 

performance, at least close to the flood peak, (12th September, 2009) appear reasonably 

accurate. The F measure was selected for this study because it was found more sensitive to 

the roughness values and we wanted to test the model through a more stringent performance 

measure. 

 

 The moderate accuracy and resolution of the topography is the main reason for declining F 

value of the model output with receding flood water. Usually during the descending limb of 

the flood hydrograph the flood water escapes through innumerable small ditches and 

depressions which are difficult to capture without very high resolution images or LiDAR- 

generated DEMs. During the overpass of the Landsat 5 (Figure 4.2) the river stage reached 

almost the pre-flood level. Clearly, the drying mechanism of TELEMAC2D model could not 

perform well at this stage due to the limitation imposed by the input topography. However, 

the primary utility of a flood-inundation model is to identify the areas that are exposed to 

flood risk at a flood of certain return period. Hence, identifying the maximum extent of 

flooding is of primary interest and the TELEMAC2D model with its all input constraints 

performed well in our case in achieving this goal.  

 

Figure 4.12 depicts that a major portion of the water flows through the right hand distributary 

of the Mundesweri River which bifurcated at the upstream end of our study area (refer to 

Figure 3.1 for the river network). This water is the main cause of the flooding in the west and 

southwest portion of the model domain. However, LISFLOOD-FP fails to divert the flows 

into the branch channels swiftly. As the 1D river component in LISFLOOD-FP does not have 

a provision for handling flow splits, the distributaries are just considered depressions over the 

floodplain and handled by the simple storage cell model. LISFLOOD-FP, a model with a 

storage cell mechanism for floodplain flow routing, was designed for shallow low velocity 

flows. The storage cell mechanism  could not deal well with deep and fast flowing water in 
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the channels and failed to divert it efficiently from the main river to the distributaries. The 

relatively moderate resolution of the hybrid DEM used in this study probably also played a 

part in it. The limited ability of the raster-based floodplain component of LISFLOOD-FP to 

account for the eddies and turbulence at the channel bifurcation was probably another reason 

for its poor performance. Consequently the floodwater remained confined to the floodplain 

adjacent to the Mundeswari River (Figure 4.12).  

 

Comparison of the relative performance of TELEMAC2D and LISFLOOD-FP revealed that 

the former was better placed to exploit the varying detail of terrain as supplied by the hybrid 

terrain data due to its unstructured finite element mesh. TELEMAC2D was found useful in 

making good use of the data with varying density of elevation information across the model 

domain. The unstructured finite element mesh in TELEMAC2D was found an appropriate 

technique for describing discontinuity in the terrain like the roads, levees in our study area as 

also reported by Di Baldassarre et al. (2009a) and for that reason it was selected as the 

appropriate model for analysing the effect of levee heightening on flood propagation in the 

Po river basin in Italy (Di Baldassarre et al., 2009b). TELEMAC2D is more suitable than 

conceptually simple LISFLOOD-FP model for simulating extensive floodplain inundation in 

data-sparse environment, especially in anabranching channels because it depends on very 

high quality topographic input not typically available outside the industrialised countries. Our 

finding is to the contrary of the observation of Horritt and Bates (2001b) and Alho and 

Aaltonen (2008) which found that the LISFLOOD-FP model performed equally well as the 

TELEMAC2D model. It is worth noting that  the river reaches investigated in these studies 

do not feature any distributary or river islands which probably made the difference in the 

model outputs in our study. 

 

It is not surprising that the original SRTM DEM performed poorly with the TELEMAC2D 

model despite having the same detailed channel configuration as the hybrid DEM (Figure 

4.13). As mentioned earlier the shortcomings of the original SRTM DEM in terms of its 90 m 

grid size, spurious vegetation induced elevation and general noise of more than 2 m 

amplitude makes it unsuitable for flood inundation modelling in its raw form. However, the 

SRTM DEM is the most high quality DEM that is freely available and if modified skilfully, 

can be used to fill the gaps where local high resolution DEMs fail to produce good results. 

Finally we would like to highlight that the model results are subject to a number of 

uncertainties arising from the coarse quality of the inputs. Conversion of river stages to 
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discharge without a rating curve is the most significant source of uncertainty as it affected the 

volume of water flowing in the model domain. The stage to discharge conversion process 

adopted in this study assumes uniform flow which is not the actual case during flooding. 

Apart from this uncertainty, observed flood extents as derived from the satellite overpasses 

may also vary depending on the digital image processing technique applied for extracting 

flooded surface. Chapter 5 will address the issues of uncertainties in detail for this 

experimental setting. As mentioned earlier that the contribution of water from adjacent river 

basins during extreme floods contribute to some of the observed flood water. This factor is 

particularly responsible for consistent underprediction of the models in our study, particularly 

at the western portion of the study area.  

 

4.7 Conclusion 

 

This study proposes a methodology for flood-inundation modelling in data-sparse 

environments that are typically present in the vast flood prone river basins outside the 

developed world. We demonstrated how our conventional techniques can be adapted to create 

low-cost terrain data that is suitable for flood inundation modelling in extremely flat 

floodplains at reach scale. This study also showed how open source hydrodynamic codes can 

be put to use in order to exploit the full potential of the improved terrain data and low cost / 

freely available optical remote sensing products can be utilised as the validation data. Our 

results also pointed out that in a complex fluvial system where river bifurcations, loops and 

river islands are found frequently, the fully two dimensional TELEMAC2D model is a better 

candidate than the 1D-2D coupled LISFLOOD-FP to simulate floods. The success in 

simulating spatially non-adjacent inundation pattern caused by overbank flow at the main 

channel as well as the smaller distributaries at different parts of the model domain shows the 

strength of TELEMAC2D. We also found that the choice of the model should depend on the 

nature of the fluvial system to be modelled and the nature of input terrain data. Finally we 

would like to point out that the methodology described in this study is labour intensive and 

appropriate to adopt for high flood risk zones with complicated river networks and paucity of 

data. 
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Abstract 

Flood inundation modelling in developing countries is severely limited by the lack of 

high resolution terrain data and the poor availability of radar imagery which can image 

flood extents through clouds. This study assesses  predictive uncertainty of  simulated 

flood extent generated from TELEMAC2D model using low-cost, sparse input data of 

the sort that are commonly available in developing countries. The study was undertaken 

in a river reach characterised by anabranching channels and river islands in eastern 

India. We analysed the effect of incorporating the possibility of error in the satellite-

derived flood extent maps on the computation of uncertainty when the input terrain data 

is not very accurate and the fluvial setting is complex. Generalised Likelihood 

Uncertainty Estimation (GLUE)-based published methodologies were adopted to 

generate the uncertainty maps. The results show that the model performance was quite 

sensitive to the uncertainty in inflow hydrograph particularly when it was examined 

close to the flood peak. Comparison between the flood inundation probability map, 

conditioned upon deterministic and probabilistic observed flood extents reveals that the 

effect of using probabilistic observed data is only evident for portions of the model 

domain where the model output is free from consistent bias (over or under prediction) 

created by the imperfect terrain data. 

 

 

 

 

 

 

 

 

Keywords: Uncertainty, finite element inundation model, sparse data, TELEMAC2D, 

GLUE, high performance computing 
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5.1 Introduction 

 

Flooding is one of the most serious natural hazards and it disproportionately affects the 

global south due to frequent occurrence of extreme precipitation events associated with 

tropical cyclones and monsoons burst (Adhikari et al., 2010). Topography is the most 

important element for building the domain of an inundation model while gauged river 

stage and discharge records provide upstream and downstream boundary conditions. In 

addition, gauged water level as well as inundation extents derived from satellite data 

are also used for model calibration and validation. Most of the required data mentioned 

above are either non-existent in many developing countries or they are limited in their 

spatial and temporal resolution (Patro et al., 2009a). Hence, coarse inputs are 

unavoidable for modelling river flooding in data-sparse regions and there is 

considerable uncertainty associated with the deterministic inundation maps produced 

with such inputs. Generally, the main sources of uncertainties in inundation maps are 

(1) estimated discharge at the model inlet from stage-discharge relationship; (2) 

topography; (3) assumed state in the model (e.g. steady versus unsteady); (4) boundary 

roughness parameterization; (5) calibration and validation data; (6) choice of model 

(1D versus 2D) (Jung and Merwade, 2012; Bales and Wagner, 2009). The uncertainty 

arising from model structure (i.e. different combinations of internal parameters and the 

way they are linked) is an issue affecting the developed and developing world alike. 

However, the uncertainties emanating from quality of inputs are much more 

pronounced in data-poor regions due to the coarse quality of available data.  

 

Uncertainties in topographic elevation values affect the modelled water surface 

elevation (Wilson and Atkinson, 2005). Considering the resource constraints on 

developing high resolution DEMs (e.g. from LiDAR surveys) for an entire basin, 

elevation data from different sources can be blended and merged for inundation 

modelling. Chapter 4 illustrates a methodology for creating a composite dataset of this 

type by merging channel cross-sections derived from differential GPS and depth 

sounder equipment, elevation data extracted from stereo satellite imagery, and a 

modified form of the SRTM DEM, applied it to a fully 2D inundation model 

(TELEMAC2D ) and reported considerable improvement in model outputs as 

compared to the SRTM DEM in its original form.  
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The inaccuracy in the inflow hydrograph of a model is the most significant source of 

uncertainty (Pappenberger et al., 2006). In most cases discharge figures are derived 

from water levels with rating curves. Published works on stage-discharge relationships 

either use a power law (Herschey, 1995) or Manning's equation (Herschey, 1998) to 

convert stage data into discharge for deriving the inflow hydrograph at the model inlet. 

The existence of uncertainty in deriving flow discharge from stage data is well reported 

in the literature (Di Baldassarre and Claps, 2011; Di Baldassarre and Montanari, 2009). 

Domeneghetti et al. (2012) pointed out how rating curve uncertainties may sometimes 

lead to unrealistic values of calibrated Manning’s n in hydraulic models. Observed data 

in the form of downstream gauged water level (Pappenberger et al., 2005) or observed 

flood extents derived from remotely sensed data (Horritt, 2000) are commonly used for 

calibration and validation of the inundation models. Recognizing the error in the 

observed flood maps derived from satellite images using variety of image processing 

techniques, Schumann et al. (2009) proposed ‘possibility of inundation’ maps rather 

than commonly used deterministic binary flood maps for calibrating and validating 

inundation models.  

 

The effect of uncertainty in a particular input data such as the inflow hydrograph is 

often neutralised by the uncertainty in other parameters. The overall uncertainty in 

flood risk estimation emanates from superimposition of number of sources of 

uncertainty (Merz et al., 2008). The findings of Jung and Merwade (2012) highlighted 

this fact where the effect of uncertainty in the topographic data was found to be 

responsible for making the model outputs less sensitive to uncertainties in the inflow 

hydrograph. 

 

Generalised Likelihood Uncertainty Estimation (GLUE) by Beven and Binley (1992) is 

the most widely used framework of uncertainty assessment in hydrology and hydraulic 

sciences (Montanari, 2006). The GLUE procedure is a replacement for the traditional 

strategy that searches for optimal parameter sets, searching instead for sets of parameter 

values that would give reasonably accurate model outputs for a range of model inputs. 

This method does not require the modeller to maximize any objective performance 

measure for the model. Instead, it derives the performance of sets of parameters from 
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some index of likelihood or goodness-of-fit that broadly resembles the concept of 

probability. 

 

With a steady increase in the availability of remotely sensed data for capturing the 

extent of inundation during flooding events, binary flood maps have been used to 

quantify distributed uncertainty of the inundation models under the GLUE approach 

(Aronica et al., 2002). Di Baldassarre et al. (2009c) incorporated the element of error in 

the observed flood extent in the form of possibility of inundation map (as proposed by 

Schumann et al., 2009) for calibrating model outputs and proposed a method for 

generating GLUE-based 'flood uncertain inundation maps'. Stephens et al. (2012) found 

that the selection of the uncertain observed data from different areas of the model 

domain can result in considerable differences in the consequent assessment of the 

overall uncertainties in the inundation modelling outcomes.  

 

Although 1D hydrodynamic models such as HEC-RAS and simple and computationally 

efficient 1D-2D coupled models like LISFLOOD-FP have been used in the past in 

order to assess predictive uncertainty, application of fully 2D models for this purpose is 

rare in the scientific literature. The high computational cost of running a fully 2D 

model for a considerable number of iterations using Monte Carlo techniques (Merz et 

al., 2008) and the easy availability of very high resolution LiDAR data that favoured 

the use of simple and computationally efficient models (Bates, 2012) are possible 

causes for selecting LISFLOOD-FP or HEC-RAS for uncertainty assessment 

experiments. When attempts were made to use fully 2D hydrodynamic models the 

experiments were undertaken at a coarse resolution and at very small scale, possibly to 

keep the computation time small. For example, Aronica et al. (1998) reported a similar 

experiment covering only 22 km
2
 with 1690 nodes. Recently, there have been some 

efforts to use emerging technologies, such as the use of  graphic processing unit (GPU)-

based method  to overcome the constraints of computational cost of Monte Carlo 

analysis in 2D finite element models (Kalyanapu et al., 2012). 

 

Fully 2D finite element flood inundation models such as TELEMAC2D are physically 

realistic and have certain advantages. They are suitable for terrain data with varying 

detail in the representation of topography (Di Baldassarre et al., 2010), less sensitive to 
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uncertainties in the terrain data (Cook and Merwade, 2009) and therefore suitable for 

applications in developing countries which lacks access to LiDAR generated DEMs. In 

addition, TELEMAC2D was found to be less sensitive to the roughness 

parameterisation (Horritt, 2000) and shows slower drop off in performance than its 

raster-based counterparts with increasing difference from the calibrated ‘optimum’ 

parameters (Di Baldassarre et al., 2010). The use of a complex model becomes more 

appropriate when the study reach is characterised with anabranching channels, loops 

and number of distributaries. This kind of fluvial environment is quite abundant and 

frequently flood-prone in the lower course of relatively large rivers, particularly in 

monsoon Asia. Chapter 4 reported that a fully 2D hydrodynamic model like 

TELEMAC2D is better placed in simulating widespread floodplain inundation in this 

kind of complex hydraulic situation than its more computationally efficient 1D-2D 

counterparts, particularly when the input data is of coarse quality. However, the 

uncertainty in this type of experimental setup has not been examined. 

 

Therefore, the objectives of this study are 1) to evaluate the uncertainty in the simulated 

flood extent in a computationally demanding fully 2D model (TELEMAC2D) that uses 

coarse quality model inputs in anabranching channels, and 2) to assess the effect of 

incorporating elements of error in the observed flood extent maps on the spatial 

distribution of predicted uncertainty when employing coarse model inputs. 

 

5.2 Study Area 

 

The study area was the lower Damodar River basin in eastern India (Figure 5.1). The 

Damodar River is an important tributary of the Hoogly River which is one of the 

branches of the Ganges that flows through the Indian state of West Bengal to the Bay 

of Bengal. This area is typical of many rivers in the global South, in that it suffers from 

frequent flooding during the monsoon season and has very limited availability of the 

datasets that are normally required for inundation modelling. The Mundeswari River, 

one of the main branches of the lower Damodar River, is the primary channel in this 

area. The fluvial setting is characterised number of anabranching channels associated 

with numerous channel bifurcations, loops, and a major river island. The area is 

extremely flat with a relative relief of only 10 to 12 m. Channel beds are mostly 
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composed of sand and clay while paddy field is the dominant land use in the floodplain. 

This type of fluvial setting is found quite frequently near the lower course or delta of 

large rivers particularly in monsoon Asia. The area is entirely rural with farmlands 

dotted with small hamlets. Although the study area is mostly drained by the 

Mundeswari River and its branches, during major floods some portion of the eastern 

and western boundary of this area experience influx of moderate amounts of flood 

water from adjacent river basins. 

 

Figure 5.1 Study area. Inset in the top panel shows the location of the Damodar Basin in India. 

The complex fluvial setting of the area is evident with many river bifurcations, loops and a 

river island. Locations of the surveyed cross-sections on the main channel are shown. 
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5.3 Data and Methods 

5.3.1 Terrain data 

 

With complete unavailability of LiDAR data and very high resolution areal 

photographs in our study area we used low-cost IRS Cartosat-1 panchromatic stereo 

images (2.5 m spatial resolution) to create the terrain data. A detailed description of 

generating this terrain data can be found in Chapter 4. The ERSAD LPS software was 

used in conjunction with 14 ground control points to extract xyz coordinates or mass 

points from the Cartosat-1 stereo images by means of digital photogrammetric 

techniques. Channel cross-sections surveyed with differential GPS and portable depth 

sounders were used to create a detailed river terrain model including the adjacent levees 

and embankments. The SRTM DEM was compared with the surveyed ground data and 

adjusted for vertical bias. The modified SRTM data were used to fill the gaps over low 

contrast homogeneous paddy fields where the digital photogrammetry failed to produce 

accurate terrain. The elevation data from three sources (Cartosat-1, differential GPS 

and SRTM DEM) were merged and edited under 3D visualisation using the block 

model created with Cartosat-1 stereo images. The final product was characterised by 

higher details for the channels, roads, canals and other narrow but hydraulically 

significant features with progressively low resolution towards the floodplain where 

paddy cultivation is the dominant land use. 

 

5.3.2 Hydrologic inputs 

 

The hydrological data at the upstream boundary of the model were available as river 

stages at one hour intervals but without any rating curve. Following the Manning's 

equation the stage data were converted into discharge (Herschey, 1998) using 

 

Q = 
 

 
 R

a
 S

0.5
 (1) 

 

where R is the hydraulic radius (m), a is an exponent of the hydraulic radius, n is the 

manning roughness coefficient and S is the bed slope (mm
-1

). The hydraulic radius and 

bed slope were derived from a cross-section that we surveyed at the gauging station. 

The uncertainty in the discharge figures derived with this method stems from the 
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tentative nature of the Manning’s n values for the channel and floodplain at the gauging 

site. 

  

5.3.3 Preparing the distributed calibration and validation data 

 

A flood event on 8-15 September, 2009 was selected to perform the uncertainty 

assessment exercise. With no availability of radar images we had to use two cloud free 

optical satellite images from IRS Resourcesat-1 LISS-III (24 m spatial resolution 

multispectral image) and Landsat 5 TM for 12th and 15th September, 2009 

respectively. The satellite overpass times with respect to the inflow hydrograph are 

presented in Figure 5.2. The performance of the flood-inundation model at these two 

specific times will be referred as model state 1 and 2 respectively henceforth in this 

chapter. The near infrared area of the electromagnetic spectrum is particularly useful 

for delineating water bodies. In order to exploit this property of water the Normalized 

Difference Vegetation Index (NDVI) has been commonly used for differentiating 

flooded area from dry surface (Jain et al., 2006). The Normalized Difference Water 

Index (NDWI), developed by McFeeters (1996) in line with the NDVI was applied by 

Jain et al., (2005) using Landsat TM and IRS LISS-III images for flooded area 

demarcation.  

 

We used 1) supervised classification 2) unsupervised classification 3) NDVI and 4) 

NDWI techniques for creating binary wet/dry flood extent maps using ENVI software. 

A false colour composite of the IRS Resourcesat-1 LISS III image (Figure 5.3) shows 

the main sources of uncertainty in demarcating flooded and non-flooded areas. In 

particular, the existence of wet soil, which should be considered as non-flooded for 

modelling purposes, and very shallow standing water make it difficult to produce a 

deterministic flood extent map from multispectral images. 
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Figure 5.2 The hydrograph of river stage at Harinkhola gauging station (September, 2009) at 

the model inlet and the acquisition times of two satellite images that were used to derive the 

actual inundated areas on ground. 

 

In order to include the element of error or uncertainty arising from the choice of image 

processing technique in the flood maps, we followed the general principle of the so 

called possibility of inundation maps as proposed by Schumann et al. (2009). However, 

unlike that study we did not have access to multiple images that were acquired at the 

same time, and so we did not follow the methodology for creating the possibility of 

inundation map. We also note that such data are extremely difficult to obtain over 

developing countries due to rare data acquisition requests for radar satellites and the 

low probability of overpass of two optical satellites in post-flood cloud-free conditions. 

As the differences in digital image processing techniques are the main reason for 

variation in the output binary flood maps, we added all four binary maps produced by 

different methods pixel-by-pixel and divided the summed map by 4 to produce a simple 

possibility of inundation map (Figure 5.4) where the pixels represent discrete 

probabilities (Table 5.1) 
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Figure 5.3 A false colour composite of the IRS Resourcesat-1 LISS-III Image. The sky blue 

colour represents deep flood water while the dark tone represents very shallow water as well as 

areas of wet soil.  

 

 

 

Figure 5.4 Possibility of inundation maps derived from (a) the IRS Resourcesat-1 LISS-III 

image on 12th September, 2009 and (b) the Landsat 5 TM image on 15th September, 2009. 

 

 

a b 
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Table 5.1 The pixel values and their actual meanings in the possibility of inundation maps. 

 

Pixel Value Characteristics 

0 Pixels not classified as flooded by any of the four methods 

0.25 Pixels classified as wet by one of the four methods 

0.50 Pixels classified as wet by two of the four methods 

0.75 Pixels classified as wet by three of the four methods 

1 Pixels classified as wet by all four methods 

 

This pragmatic methodology assumes that all methods have equal ability for extracting 

the wet surface from the dry one. The inundation maps derived by unsupervised 

classification from the IRS Resourcesat-1 LISS III (12th September, 2009) and 

supervised classification from the Landsat 5 TM (15th September, 2009) were used as 

the deterministic binary inundation maps (Figure 5.5). 

 

 

Fig 5.5 Deterministic binary inundation maps derived by (a) unsupervised classification of the 

IRS Resourcesat-1 LISS-III image on 12th September, 2009 and (b) supervised classification of 

the Landsat 5 TM image on 15th September, 2009. 
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5.3.4 Setting up the inundation model 

 

TELEMAC2D (Hervouet and Van Harn, 1996), a fully 2D finite element inundation 

model was selected for this study as it showed good performance in our study area to 

simulate a few high magnitude floods (Sanyal et al., In Prep). This model has been 

applied to simulate inundation for number of rivers (Hervouet and Petitjean, 1999; Di 

Baldassarre et al., 2009b) and the results have been validated with observed hydrograph 

at it external boundaries (Besnard and Goutal, 2011) as well as using inundation maps 

derived from satellite images (Bates et al., 1997). TELEMAC2D solves second-order 

partial differential equations for calculating free surface hydraulics. The equations are 

depth averaged free surface flow equations that are derived from the three-dimensional 

Navier-Stokes equations. A full description of the equations can be found in Hervouet 

and Van Harn (1996). 

 

The unstructured finite element mesh was created using Blue Kenue software (NRC 

Canadian Hydraulics Centre, 2013). We ensured that the mesh had approximately 

equilateral elements on the floodplain to minimize mass balance error, variable element 

size to enable concentration of computational resources as necessary. Smooth transition 

between smaller element sizes over channel and other narrow features to larger element 

sizes over paddy fields in the floodplain was ensured to increase model stability. The 

node spacing in the finite element mesh roughly followed the density of mass points 

(xyz point cloud) in the hybrid terrain data that was created by merging elevation 

information derived from Cartosat-1 stereo images, the SRTM DEM and surveyed 

cross-sections for the main channel.  

 

5.3.5 Setting up the GLUE-based uncertainty assessment experiment 

 

The model was composed of 674901 nodes and 1349048 elements and took 50 hours to 

complete one simulation run for the 186 hour (approximately 8 day) flood event using a 

PC with an Intel i7 8-core processor and 16 GB RAM.  Clearly, standard workstations 

are not capable of performing numerous Monte Carlo type simulations for this kind of 

models. One of the main reasons for selecting TELEMAC2D for this uncertainty 

assessment study is its easy adaptability to parallel computing architecture that is 



 

106 

 

typically used in high performance computing (HPC) hardware. Moulinec et al. (2011) 

reported the performance of TELEMAC2D model with meshes ranging from 2 to 12 

million elements using variety of HPC hardware. Their investigation observed that the 

CPU time for computation reduced steeply from 1 to 1024 cores and adding more cores 

had a diminishing effect on the rate of reducing computing time primarily due to the 

excessive time of pre-processing that is required for domain decomposition in parallel 

computing. 

 

We used the HPC facility housed in the Computing and Information Service (CIS) of 

Durham University for performing our Monte Carlo simulations. This HPC system is a 

HP Linux cluster (known as the Hamilton Cluster) with 1824 cores having a clock-

speed of 2.26 GHz (CIS, 2012). 40 cores were used for running each simulation. Five 

parameters were identified as the primary source of uncertainty: 1)   Manning’s n for 

the channel at the gauging site (InQnch) for converting stage into discharge, 2) 

Manning’s n for the floodplain at the gauging site (InQnfp) for converting stage into 

discharge, 3) a global Manning’s n for the channel during computation (nch), 4) a 

global Manning’s n for the floodplain during computation (nfp), 5) the solver used for 

the system of equations. Parameters 1 and 2 were directly related to the amount of 

water entering the model domain, with higher roughness resulting in lower discharge 

for same stage. Parameter 3 and 4 are very conventional sources of uncertainty and 

have been analysed by number of studies. Parameter 5 which deals with the nature of 

the solver used for finding the solutions of the partial differential equations and has 

impact on both the computational time and the model solution. The effect of solvers on 

the model output was discussed in detail by Bates et al.(1995). We used four out of 

seven available solvers in TELEMAC2D in the Monte Carlo realisations in order to 

keep the total number of possible parameter combinations limited. The four solvers 

used were 1: conjugate gradient method (CG); 2: conjugate residual method (CR); 3: 

normal equation method (NE) and 4: squared conjugate gradient method (SCG). The 

range of the five uncertain parameters is presented in Table 5.2. 
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Table 5.2 Range of variation of the uncertain parameters applied in the Monte Carlo 

simulation. 

 

Sl no. Parameter Range        Increment      No. of possible choice 

1 InQnch  0.026-0.038  0.001  13 

2 InQnfp  0.030, 0.035, 0.038 N/A  3 

3 nch  0.024-0.038  0.001  15 

4 nfp  0.030, 0.035, 0.038 N/A  3 

5 Solver   CG, CR, NE, SCG   4 

 

 

Random samples were drawn assuming uniform distributions for all parameters and a 

total of 1000 simulations were run on the Hamilton Cluster. 514 simulations did not 

converge and the model crashed before the completing the entire simulation. Only 1 

simulation was successful with the 'normal equation' solver (Solver 3) out of 403, 

whereas the failure rate for other solvers is more or less the same. After discounting the 

simulations that were run with the normal equation solver, it was found that percentage 

of model failure (Figure 5.6) was approximately 4 times higher (up to ~ 80 %) for the 

lower channel roughness value of 0.024  compared to the standard values of 0.029 to 

0.035  recommended in Chow (1959) for straight rivers with primarily sandy beds.  

 

 

Figure 5.6 Percentage of cases where the TELEMAC2D model solution failed to converge is 

shown in relation to the used Manning’s roughness coefficients for channels. All simulations 

that used Solver 3 were kept out of this analysis as all but one such cases failed to converge. 
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The computing time for each simulation run depended mostly on the solver used 

(Figure 5.7). The modelled water depth was taken as the output for comparing against 

observed flood extent. A MATLAB routine was developed that works in conjunction 

with the MATLAB program Telemac Tools (Benson, 2012)  to extract the water depth 

from the native TELEMAC2D output files (selafin format) and save them in XYZ 

format where X and Y are the planimetric coordinates of the node in UTM coordinates 

and Z is the simulated water depth. These depths were then interpolated using the 

natural neighbour method in ArcGIS to create output rasters of water depth. The pixels 

having a water depth of more than 20 cm were classified as flooded, as shallower water 

is not likely to be identified as flooded from the satellite imageries. The use of a 

threshold depth for identifying a flooded pixel involves some elements of subjectivity 

and the decision of selecting a threshold depth of 20 was selected on the basis of the 

study conducted by Bates and DeRoo (2000). 

 

 

Figure 5.7 Box plot showing the distribution of computation time of TELEMAC2D Monte 

Carlo simulations with reference to the solvers. The median, upper and lower quartiles  are 

represented by the red line and the upper and lower bounding line of each box respectively.  

 

 We used GLUE-based framework to quantify the predictive uncertainty in 

TELEMAC2D outputs by employing two types of binary pattern observed inundation 

maps for conditioning the likelihood weights. First, satellite-derived deterministic flood 

maps (Figure 5.5) were used following the method proposed by Aronica et al. (2002). 

In the second case, possibility of inundation maps (Figure 5.4) were used for 



 

109 

 

incorporating the uncertainty in satellite observation of flood extents in the uncertainty 

analysis following the methodology suggested by Di Baldassarre et al. (2009c). As both 

approaches lead to generation of probability maps of predicted inundation we intend to 

examine the spatial pattern of their difference from each other. 

First, the performance of TELEMAC2D  model was measured against the with the 

objective function given by Horritt and Bates (2001) as 

 

F = (Ow ∩ Mw / Ow ∪ Mw) × 100     (2) 

 

where Ow is the number of observed wet pixels and Mw is the number of modelled wet 

pixel. Following the principle of GLUE a likelihood weight Li was assigned to each 

successful Monte Carlo simulation i, where  

 

Li = Fi - Min (F) / Max(F) - Min(F)     (3) 

 

In Equation 3, Fi is the performance score of the i th simulation, Max(F) and Min(F) are 

the maximum and minimum figures of performance found through the ensemble. 

The weighted average flood state (Xj) for  the jth computational cell was derived as 

 

Xj = ƩLimij / ƩLi       (4) 

 

where mij is the model output for the jth computational cell which takes a value of 1 for 

wet and 0 for dry. The likelihood values (Li) for the successful runs (the cases where 

the solution converged) were stored in a vector. Each cell of each of the simulated 

inundation outputs (cell values were either 1 or 0) was multiplied with the 

corresponding likelihood value of that simulation run, then the matrices were added and 

each cell of the summed up matrix was divided by ƩLi to produce the probability of 

predicted inundation map. The entire process was automated using MATLAB. 

 

The second approach entails slightly more complex treatment of the raw model outputs.  

As proposed in Di Baldassarre et al. (2009c), we used the principle of a reliability 

diagram (Horritt, 2006), where  for each output i the observed possibility of inundation 

map (Figure 5.4) was classified into regions of similar probability (i.e. 0, 0.25, 0.50 
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etc.) and the number of simulated wet cells falling in each of the probability regions 

was counted. It is assumed that in a fully accurate model the proportion of modelled 

wet cells (model proportion) for each of the probability regions would match the 

possibility of inundation value. For example, in a perfectly accurate model, 25 % pixels 

in the possibility of inundation map with a probability value of 0.25 is simulated as wet. 

Horritt (2006) argued that the reliability diagram of a perfectly accurate model would 

result in a 1:1 line relationship between the probability (in our case the figures in the 

possibility of inundation map) and model proportion and the accuracy of any given 

simulation run can be measured by calculating the RMSE deviation from the 1:1 line. 

For each simulation, the model proportion for the probability regions (pj) of 0, 0.25, 

0.50, 0.75 and 1 were calculated. Then, we derived the RMSE as the deviation from the 

ideal relationship between the possibility of inundation and model proportion. A 

MATLAB routine was developed to perform this task for all the successful Monte 

Carlo simulation runs. The RMSE for each simulation was weighted by the number of 

cells in that class, ignoring the dry area where pj = 0. The purpose of computing the 

RMSE was to bring out the discrepancy between the possibility of inundation and 

model proportion. Figure 5.8 exhibits a schematic diagram of the graphical 

representation of the calculation of the RMSE that signifies the deviation from the ideal 

1:1 relationship between the model proportion and the possibility of inundation.  

 

 

Figure 5.8 Scatter diagram of model proportion and possibility of inundation for each of the 

successful Monte Carlo simulation. Only four points are realised for each simulation as we 

used four image processing techniques to obtain the values of the possibility of inundation map. 

The 1 :1 line representing a perfect model is shown with the dashed line. 
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The likelihood value (Li) for each simulation was derived from the RMSE values as  

 

Li =  Max(RMSE) - RMSEi / Max(RMSE) - Min(RMSE)  (5) 

 

where Max(RMSE) and Min(RMSE) are the maximum and minimum RMSE values for 

all successful Monte Carlo simulation runs. The weighted average flood state for the jth 

computational cell was calculated using the same way as Equation 4 and the raster 

containing the average flood state values was presented as the flood uncertain 

inundation map which illustrates the predictive uncertainty in the modelled inundation 

map incorporating the element of error in deriving an observed flood extent map. 

 

In line with the study published by Di Baldassarre et al. (2009c) we computed a 

quantity Dj for the model state 1 in order to investigate the amount of  difference 

between the possibility of inundation map  and the flood uncertain inundation map. For 

the jth computational cell the quantity Dj was computed as the flood uncertain 

inundation figure minus the possibility of inundation figure. However, unlike Di 

Baldassarre et al. (2009c) we did not consider all cells in the model domain for 

computing Dj as there were many cells that were dry (cell value = 0) in both flood 

uncertain inundation map and possibility of inundation map. Hence, a direct subtraction 

would result in large number of spurious 0 values that would falsely indicate a 

condition of little bias. In order to resolve this problem we ignored all cells that had a 

value of 0 in the possibility of inundation and flood uncertain inundation maps. 

Therefore, the 0 values that appeared in the subsequent computed values of  Dj 

correctly depicted a scenario of perfect non-bias.  A histogram of the Dj values was 

created to analyse the nature of the bias. 

 

5.4 Results 

 

The outputs of the Monte Carlo simulation runs corresponding to model state 1 and 2 

were compared against the respective deterministic inundation maps and the goodness-

of-fit was measured with the F index (Equation 2). Figure 5.9 and Figure 5.10 indicate 
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the performance of the Monte Carlo simulations in relation to the four uncertain 

parameters in dotty plots. Considerable equifinality for all the uncertain parameters was 

noticed, indicating that similar accuracy in the predicted output was achieved using a 

range of values within each parameter. Despite this overall trend, Figure 5.9a  

illustrates that a lower roughness coefficient for the channel (0.026 to 0.030) for 

deriving the discharge from stage (InQnch) generally had less cases with poor model 

performance and none of the cases that used higher roughness coefficients (0.035 - 

0.038) attained a goodness-of-fit of more than 0.36. However, this definite trend is not 

found for InQnch at model state 2, when the river level was down to almost the pre-

flood level (Figure 5.2). Later at this stage the performance of the model was quite poor 

and the highest goodness-of-fit figure attained was a modest 0.28, but the model 

showed less equifinality and the advantage of using a smaller InQnch value is evident 

(Figure 5.10a). 

 

 

Figure 5.9 Dotty plots showing the performance (F index) of the TELEMAC2D model to 

simulate inundation extent at model state 1 in relation to (a) Manning’s n for deriving the 

inflow hydrograph from stage data (InQnch), (b) Manning’s n for the channels (nch), (c) 

Manning’s n for the floodplain (nfp), and (d) the solver used for solving the system of 

equations 
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Figure 5.10 Dotty plots showing the performance (F index) of the TELEMAC2D model to 

simulate inundation extent at model state 2  in relation to (a) Manning’s n for deriving the 

inflow hydrograph from stage data (InQnch), (b) Manning’s n for the channels (nch), (c) 

Manning’s n for the floodplain (nfp), (d) The solver used for solving the system of equations. 

 

The Manning’s roughness coefficient for the channels (nch) shows an overall trend of 

equifinality for just after the flood-peak (model state 1) with similar levels of goodness-

of-fit attained using wide range of nch values. However, a trend of achieving higher 

goodness-of-fit against a deterministic observed inundation maps with higher nch 

values is evident (Figure 5.9b). A clear trend of higher relative accuracy with 

increasing value of nch emerges at the model state 2 (Figure 5.10b) but occasionally the 

model performed equally well with low nch values.The model outputs were found to be 

completely insensitive to Manning’s roughness coefficient for the floodplain and the 

choice of the solver in TELEMAC2D at the two stages of the flood under consideration 

(Figure 5.9c, 5.9d and Figure 5.10c, 5.10d). The effect of the Manning’s n values used 

for the floodplain in order to deriving the inflow hydrograph (InQnfp) also had little 

influence over model performance and hence was not included in the dotty plots. 
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The probability of inundation maps (Figure 5.11) show that both at model state 1 and 2 

the occurrence of the inundated surface is patchy and not necessarily found adjacent to 

the channels. A substantial portion of the total area under flooding has been modelled 

as inundated in majority of the Monte Carlo realisations. These areas have a very high 

likelihood of inundation (0.9 - 1) in Figure 5.11 and are depicted in black. Lower 

probability of inundation (shades of grey) is observed at the periphery of the high 

probability areas.  

 

 

Figure 5.11 Probability of inundation maps derived from the deterministic binary inundation 

maps showing the likelihood of the model predicted inundation area on (a) model state 1 and 

(b) model state 2. 

 

The flood uncertain inundation map (Figure 5.12) created by incorporating the 

uncertainty of satellite derived inundation map into the probability of inundation map 

shows a quite similar pattern as the probability of inundation map (Figure 5.11). 

However, if we consider the pixel values of  Figure 5.11 and Figure 5.12 as a measure 

of likelihood of flooding we notice certain subtle differences in the spatial distribution 

of these figures. In order to examine the nature and causes of these differences the 

probability of inundation map for the model state 1 (Figure 5.11a) was subtracted from 

the flood uncertain inundation map (Figure 5.12a) of the same model state on a pixel-

by-pixel basis to produce Figure 5.13. It shows that the difference is pronounced at 

three type places: 1) at the periphery of the areas that have a very high likelihood of 

being modelled as flooded, 2) the areas where complex hydraulic processes take place 
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such as the river island at the centre, 3) areas in the extreme south near the left bank of 

the Mundeswari River and the northeast corner of the model domain where the 

possibility of inundation map (Figure 5.4) indicates lower level of confidence on the 

observed inundation data.  In general, the areas that fall outside the highly likely 

modelled inundation zones, and are having uncertainty in the observed inundation data 

(Figure 5.4a) are the places where the probability figures in Figure 5.11 and Figure 5.12 

tend to differ.   

 

 

Figure 5.12 Flood uncertainty inundation maps on (a) model state 1 and (b) model state 2. 

 

 

 

a b 
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Figure 5.13 Difference in probabilities derived by subtracting probability of inundation from 

flood uncertain inundation for the model state on 10 AM, 12th September, 2009. The pixels 

with warm colours show the area where flood uncertain inundation is higher than probability of 

inundation. 

 

The histogram of the Dj values (Figure 5.14) was created to test the tendency of bias in 

the model output for the model state 1. It shows a bimodal distribution with one peak 

around 0 and another around -1. The peak around 0 is a sign of little or no bias between 

the modelled and observed probability of inundation. The other peak of -1 is an 

indication that a substantial portion of the observed flooded area was simulated as dry 

by the model (underestimation). Since the quantity Dj was calculated as flood 

uncertainty inundation minus possibility of inundation, the value of -1 indicates the 

cells that were 0 in modelled output but 1 in the possibility of inundation map. Here the 

value 0 signifies that none of the successful Monte Carlo simulation predicted those 

cells as wet and 1 represents the cells that were classified as flooded by all four digital 

image processing methods.  
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Figure 5.14 Histogram of Dj values. The peak around 0 shows a lack of bias in the flood 

uncertain probability map but the peak around -1 illustrates that a substantial portion of the 

observed flooded area is underpredicted by the model. 

 

5.5 Discussion 

 

The parameter InQnch, the Manning’s n values for the channel in order to derive 

discharge data from river level observations at the model inlet, affected the 

performance of TELEMAC2D in a different fashion at two flood states under 

consideration. An increase in the value of InQnch results in less discharge for a given 

river stage and vise versa. The overall accuracy of predictions for the model state 

1decreased steadily with a reduction in the inflow of water in the model domain (Figure 

5.9a). At a later stage of the flood (model state 2), however, the model was found to be 

less sensitive to the variation of inflow discharge and performed with equal accuracy 

for a range of inflow hydrographs resulted from random variation in InQnch values 

during the Monte Carlo runs (Figure 5.10a). There are two possible reasons for this 

model behaviour. First, at a very high river stage on the model state 1, slight 
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differences in the channel roughness coefficient led to considerable increase in the 

computed discharge values. A decrease in the supply of water at the inlet possibly 

amplified the problem of underprediction, particularly in the western section of the 

model domain, resulting in decline in the model performance score. Secondly, during 

the model state 2 when the river level is well below its bankfull depth, the change in 

discharge values had little impact on the modelled flood extent maps. At this stage the 

model efficiency mostly depends on the strength of its wetting and drying algorithm 

which is also very much dependent on the resolution and accuracy of the input terrain 

data. 

 

The areas represented in very dark tones in the probability of inundation maps (Figure 

5.11) or the flood uncertain inundation maps (Figure 5.12) do not imply a very high 

actual probability of inundation, are instead highly likely to be modelled as inundated 

by the existing inundation modelling setup. A comparison of Fig 5.11 with Fig 5.5 

reveals that the drying process of the model could not fully reproduce the actual pattern 

of drying between the two stages (from 12th September to 15th September, 2009) of 

this flooding event. The model showed little sensitivity to the reducing inflow from 

12th to 15th September when simulating inundation at the extreme upper portion of the 

image. This was probably due to the coarse quality of the terrain data, especially over 

the farmlands which was mostly derived from the SRTM DEM. The existence of large 

flat areas with small variations in relief was probably responsible for the poor 

performance of TELEMAC2D in terms of draining shallow water from parts of the 

floodplain. This overestimation of the flooded area is also manifested in Figure 5.13. It 

shows a considerable number of pixels with a Dj value of 1 indicating the pixels that 

were modelled as wet but not classified as inundated using any of the image processing 

techniques. The issue of underestimation of the model as represented by the mode 

around -1 in Figure 5.13 was mainly attributed to the existence of two rivers at the edge 

of our study area which concurrently experienced flooding with the Mundeswari River. 

The flood water in the central west of the study area (Figure 5.4) was partly contributed 

by another river which was not considered for this study. The existence of such 

widespread inundated patches at the western edge of the study area (Figure 5.4) at such 

distance from the main channel is unusual and further supports our general inference 
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that the  underestimation in our model is partly attributed to some external factors that 

were not within the scope of the present experiment.  

 

Running numerous Monte Carlo simulations in TELEMAC2D is a very 

computationally intensive task, and therefore it is beneficial to avoid unstable model 

runs that may use considerable amount of computational resource before the numerical 

instability exceeds the tolerance level. We found that the low channel roughness values 

had a high incidence of instability (Figure 5.6) and that their use did not lead to best 

model performance, at least near the peak of the flood (Figure 5.9b). Likewise, use of 

the squared conjugate gradient method (Solver 4) did not result in general improvement 

of the model performance (Figure 5.9d and Figure 5.10d) but took much more 

computation time than the other solvers (Figure 5.7). We acknowledge that model 

stability depends on the complex interplay between the chosen parameter space, model 

inputs and the physical characteristics of the model domain. Due to these factors every 

inundation modelling experiment will have a unique pattern of model stability. 

However, a small but representative subset of the entire range of parameters may be 

used to perform some pilot runs to understand the incidence of instability with 

reference to the choice of parameter space. 

 

5.6 Conclusion 

 

The present study is an effort to quantify the predictive uncertainty in inundation 

modelling with sparse data in a complex fluvial system. We undertook a GLUE-based 

uncertainty assessment of the simulated flood extent at two stages of the descending 

limb of a flood hydrograph using TELEMAC2D model. The uniqueness of this study 

lies in adapting the existing techniques of uncertainty assessment for data-poor regions. 

Our study highlighted that the spatial distribution of uncertainties in an area with 

anabranching channels depends on 1) the ability of the model to simulate the actual 

hydraulic processes, 2) the state of the flood under consideration in relation to the 

occurrence of the flood peak, and 3) the amount of consistent bias in the model output 

arising from sparse nature of the model inputs (e.g. terrain). We observed that the 

portions of the modelled flood-extent maps were less sensitive to change in important 
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inputs, such as the inflow hydrograph. This type of model behaviour can be attributed 

to the lack of detailed floodplain topography for portions of the model domain. 

 Incorporation of varying confidence levels in the spatially distributed observed data, as 

opposed to the deterministic flood maps, is not likely to make much difference in the 

uncertainty computation unless the model inputs are of high resolution. In this situation 

it is hard to justify the additional computation procedure to incorporate the probabilistic 

observed data in examining the uncertainty. Therefore we recommend the use of 

deterministic flood-extent maps in data-sparse study sites for uncertainty assessment. 

The uncertainty assessment of a fully 2D finite element model has never been 

attempted with sparse inputs in areas of multiple channel bifurcations. Hence, the 

findings of this paper will be helpful in judging the limitations of a similar modelling 

task where ideal model inputs and validation data sets do not exist.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 6 

 

 

Analysing the effect of land-use/cover changes at sub-

catchment levels on the downstream flood peak: a 

semi-distributed modelling approach with sparse data  
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Abstract 

This paper aims to evaluate how varying degrees of land use/cover (LULC) changes 

across sub-catchments affects the flood peak at the catchment outlet. The Konar 

catchment, a part of the upper Damodar Basin in eastern India, was the study site. A 

HEC-HMS model was set up to simulate rainfall-runoff processes for two LULC 

scenarios three decades apart.  Because of sparse data at the study site, we used the 

Natural Resource Conservation Service (NRCS) Curve Number (CN) approach to 

account for the effect of LULC and soil on the hydrologic response. Although a weak (r 

= 0.53) but statistically significant positive linear correlation was found between sub-

catchment wise LULC changes and the magnitude of flood peak at the catchment outlet, 

a number of sub-catchments showed marked deviations from this trend. The varying 

timing of flow convergence at different stream orders due to the localised LULC 

changes makes it difficult to upscale the conventional land use and runoff relationship, 

evident at the plot scale, to a large basin. However, a simple modelling framework is 

provided based on easily accessible input data and a freely available and widely use 

hydrological model (HEC-HMS) to check the possible effect of undertaking remedial 

land use planning at a particular sub-catchment on the hydrograph at the basin outlet. 
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6.1 Introduction 

 

Soil, topography and land cover are the most important factors that control rainfall-

runoff processes at the scale of single flood events for river basins. As alterations in 

soil and topography are insignificant in the short term, changes in land cover are 

considered to be the key element in modifying rainfall-runoff processes (Miller et al., 

2002). Land-use/land-cover (LULC) change and any consequent hydrological response 

have been prominent topics of research in recent years (Chen et al., 2009; Amini et al., 

2011; Fox et al., 2012). With changing climate and the increasing frequency of 

flooding events across the world (Collins 2009; Hurkmans et al. 2009; Xu et al. 2009), 

the effects of LULC changes on extreme runoff events are likely to draw more attention.  

 

Wan and Yang (2007) concluded that anthropogenic land use change is one of the 

major drivers of an increased frequency of flooding incidents.  At small spatial scales 

(< 2 km
2
) deforestation was reported to have strong correlation with increase in 

flooding (Bosch and Hewlett, 1982). However, the picture is less clear for larger 

catchments, where a number of studies have reported no significant change in flooding 

pattern with deforestation (Beschta et al., 2000; Andréassian, 2004) while others have 

observed even a negative trend in flood occurrence with reductions in forest cover 

(Troendle and King, 1985; Hornbeck et al., 1997). Wei et al. (2008) linked 

deforestation with reduction in peak flow. Van Dijk et al. (2009) came to the 

conclusion that the empirical evidence and theoretical arguments for increased flood 

intensity with removal of forest are not very convincing. Shi et al. (2007) reported that 

high antecedent moisture conditions reduce the effect of increased urbanization on 

runoff in a small 56 km
2
 catchment in Shenzhen, China. Sriwongsitanon and 

Taesombat (2011) observed a non-linear relationship between the runoff coefficient 

and flood peaks and further reported a negative correlation between runoff coefficient 

and increase in forest cover for smaller flood events (< 2 year return period).  

 

A number of studies have attempted to analyse the impact of land-use change on storm 

runoff at the event scale (Chen et al., 2009; Ali et al., 2011; O’Donnell et al., 2011). 

LULC scenario-based studies have used past and present LULC states or radical LULC 

change scenarios in event-scale hydrological models to assess the hydrological 
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response of catchments (Camorani et al., 2005; Olang and Furst, 2011). Chen et al. 

(2009) coupled a LULC scenario-generation model with a hydrological model and 

concluded that increasing urban areas led to increase in the total runoff volume and 

peak discharge of storm runoff events. Ali et al. (2011) conducted an event-scale 

experiment in a predominantly urbanised catchment containing the city of Islamabad in 

Pakistan and had similar findings. It is noted that this type of study is generally 

restricted to small urban catchments and it is not surprising that their findings coincide 

with the conventional wisdom that reduction in forest or increase in paved surface leads 

directly to increased runoff. An over-emphasis on the effect of afforestation and 

urbanization and lack of interest in examining the LULC changes in river basins with 

diverse LULC types have been the characteristics of recent research on the effect of 

land-cover change in flooding (Wan and Yang, 2007).  

 

The contribution of streamflow from a specific land use is not uniformly proportional 

to the area of that land use and depends greatly on the location of that land use within 

the basin (Warburton et al., 2012). This study further showed that the streamflow 

response at the basin outlet is influenced by the spatial distribution of various land uses 

present in the entire catchment and the balancing or cancelling effect of those land uses. 

For example, where urbanization takes place in the upper sub-catchments, it leads to a 

disproportionately larger increase in the flood peak downstream (Amini et al. 2011). 

Fox et al. (2012) found that the additional surface runoff generated by expanding urban 

area or reducing forests are counterbalanced in a positive way by augmentation of 

channel capacity resulting from improved channel management, particularly at the 

vicinity of major urban areas.  

 

The primary application of findings from investigations dealing with LULC change and 

its effect on downstream flood peaks is in watershed management. Watershed 

management strategies often aim to identify the source area that generates a significant 

contribution to the downstream flood peak and implement remedial land use practices 

to reduce the runoff coefficient from this flood source area. As with the effects of 

LULC change on catchment hydrology, the effects of land management have been 

convincingly documented by studies involving small catchments (Bloschl et al., 2007; 

O'Connell et al., 2007). Implementation of land-use management practice is only worth 

pursuing if we can identify the sub-catchments that are responsible for exaggerating the 
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downstream flood peak in terms of magnitude and timing of the flow convergence 

(Pattison et al., 2008). Pattison and Lane (2012) reviewed this topic of possible relation 

between land-use change and possible downstream flood risk and pointed out that it is 

not uncommon to find an association between land-use change and streamflow 

behaviour at field and plot scales but it is quite challenging to upscale this effect to 

show similar hydrological responses for large catchments. Analysis and identification 

of the flood source area and its contribution at the cumulative basin outlet has been 

carried out with hydrologic modelling using the HEC-HMS model (Saghafian and 

Khosroshahi 2005; Roughani et al., 2007; Saghafian et al. 2008) and with statistical 

approaches involving rainfall and runoff data at the sub-catchment level (Pattison et al., 

2008). Recently, Ewen et al. (2012) attempted to model the causal link between LULC 

changes at small scale to the flood hydrograph at the basin outlet by using reverse 

algorithmic differentiation and showed the sources of imact at the scale of small tiles 

that were used to decompose the model domain. 

 

The statistical approach by Pattison et al. (2008) and the modelling approach described 

by Ewen et al. (2012) are heavily dependent on a dense network of automatic rain and 

river gauging stations and are not possible to follow in a data scarce environment, 

which is typical in developing countries. Although a variety of hydrological models are 

available it is difficult to use them in data scarce environment such as India due to their 

requirement in terms of soil moisture and channel topography related data. The US 

Natural Resources Conservation Service (NRCS) curve number (CN) approach for 

runoff estimation is particularly suitable for applying in data scarce situations and has 

been widely used to estimate surface runoff in an accurate manner with limited data 

(Bhaduri et al, 2000; Mishra et al, 2003). The CN is an empirically derived 

dimensionless number that accounts for the complex relationship of land cover and soil 

and can be computed with widely available datasets such as satellite-derived LULC 

maps and small scale soil maps. Easy integration of remotely sensed LULC information 

has made the NRCS CN a popular choice among the scientific community for runoff 

estimation from the early days of remote sensing (Jackson et al., 1977; Slack and 

Welch 1980; Stuebe and Johnston 1990). For a typical data-poor, developing country 

such as India there are numerous case studies that used remote sensing for deriving CN 

in order to estimate runoff  at catchment scale (e.g. Tiwari et al., 1991; Sharma and 

Singh, 1992; Amutha and Porchelvan, 2009). However, the strong seasonal pattern of 
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land-use in monsoon climates has not been highlighted when comparing the hydrologic 

response of two land use scenarios observed over a period of few decades. Changing 

canopy cover and the proportion of cultivated land and other land covers may exert 

considerable control over rainfall-runoff processes.  

 

The investigations to date have mostly dealt with the issue of LULC change across the 

catchment as a whole. However, as pointed out by Pattison et al. (2008), remedial land 

management practices are conceived and implemented at the sub-catchment scale.  

Although the modelling-based approach by Saghafian et al., (2008) and Roughani et al. 

(2007) attempted to identify the sub-catchments that have serious impact over the flood 

peak (flood source area) at the main catchment outlet, they did not assess how changes 

in LULC across the sub-catchment may change the location of the flood source area. 

There is a need for a systematic evaluation of sub-catchment wise LULC change and 

resultant changes in priority areas for implementing remedial land-use measures. LULC 

can change significantly in short periods, and the occurrence of LULC change in 

different parts of the catchment is likely to affect the flood peak at the catchment outlet 

in a complex manner.  

 

This study is part of a broad investigation that deals with developing an adequate 

system for routing flood waves in the lower Damodar River in eastern India with freely 

available data and minimum ground survey (Chapter 4) and modelling widespread 

floodplain inundation at a frequently flooded reach further downstream using low-cost 

high resolution terrain data (Chapter 5).  

 

The objective of this study is to investigate (1) the effect of LULC change at sub-

catchment level over the peak discharge at the catchment outlet during storm events, 

and (2) the interplay between sub-catchment position, LULC change and runoff. The 

findings of this paper have a direct bearing on land-use management practices that are 

undertaken to reduce the peak inflow to reservoirs during storm events. The uniqueness 

of this investigation lies in the establishment of a direct link between sub-catchment 

scale LULC changes and their changing contribution to the flood peak at the basin 

outlet through semi-distributed rainfall-runoff modelling. In addition, this study also 

points out the typical challenges of modelling rainfall-runoff processes in data scarce 

environments and the required adaptations in methods to deal with this constraint.  
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6.2 Study Area 

 

The Konar Reservoir is impounded by one of the four major dams in the upper 

catchment of the Damodar River in eastern India (Figure 6.1). The catchment upstream 

of the reservoir is a typical example of physiographic, drainage and LULC conditions 

in the upper Damodar basin. A number of previous authors (e.g. Choudhury, 2011; 

Ghosh, 2011; Bhattacharyya, 1973) have argued that deforestation in the upper hilly 

and forested catchments in the upper Damodar basin has increased both the runoff 

coefficient and flood peak, and has reduced the capacity of the four reservoirs to 

moderate flood waves downstream. The catchment also exemplifies the scarcity of 

required data for hydrological modelling, which is a typical scenario in the developing 

countries. The catchment is drained by the Konar and Siwane Rivers and is 998 km
2
 in 

size. The topography is characterised by a dissected plateau region with occasional hills. 

Elevation ranges from 402 to 934 m asl. The upland areas in the catchment are mostly 

under forest cover while paddy cultivation during the monsoon season is the dominant 

land use in the lower reaches. Rainfall has a strong seasonal pattern which is heavily 

influenced by the southwest Indian monsoon. Torrential rain for a few hours per day 

during the monsoon season (mid June to mid October) often leads to high magnitude 

river discharge in this part of the Damodar Basin.   
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Figure 6.1 The Study area; a: Location of the Damodar Basin In India, b: Location of the 

Konar River catchment in the Upper Damodar River Basin, c: The sub-catchments of the Konar 

River derived from the SRTM DEM  with dark lines showing the streams vectorised from 

topographic maps. Automatically extracted drainage networks (derived from the SRTM DEM 

with a threshold contributing area of 5 km
2
) that approximately correspond with the 2nd order 

streams from the topographic maps were used to delineate the 124 sub-catchments. 

 

6.3  Materials and Methods 

 

6.3.1 Generating curve numbers for two LULC scenarios 

 

The NRCS CN model is appropriate for use in data-sparse situations because the 

primary model inputs are LULC and soil types that are easy to obtain from remote 

sensing and widely available soil maps. The NRCS method of estimating runoff due to 

rainfall (NRCS, 1972) is expressed in the following equations: 

 

Q = 0    P≤0.2 S        (1) 

 

Q = (P - 0.2 S)
2
/(P+0.8S)

 
P≥0.2S         (2) 

 

where Q is the direct runoff, P is the storm rainfall, and S in the potential maximum 

retention.  S is related to a dimensionless curve number, CN by: 

 

S = (254000/CN) - 254                                         (3) 
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In this method soil types are classified into four hydrological soil groups (A, B, C, and 

D) with increasing potential for generating runoff. Hydrological soil groups of any area 

can be identified by analysing soil texture. The method also considers the antecedent 

soil moisture condition by providing modified value for dry (AMCI) and wet (AMCIII) 

condition based on the preceding 5 days’ daily rainfall.  

 

In order to assess the impact of different land-cover scenarios on the peak flood 

discharge at the entry of the Konar Reservoir, two land-cover maps were generated 

from satellite imagery. A Landsat MSS image (79 m spatial resolution) from 27th 

October, 1976 and a Landsat TM image (30 m spatial resolution) from 2nd November, 

2004 were used for generating two LULC maps. These two dates were chosen as this is 

the largest possible timespan that was possible to capture with due considerations to the 

availability of cloud-free images at the final stage of the southwest monsoon season 

when the flood events considered took place.   

 

 Unsupervised classification was used to classify each image into 30 arbitrary spectral 

classes. In the next step, the spectral classes were compared with a high resolution 

panchromatic Corona satellite image from 21st November, 1973 and a topographic map 

(1:50,000 scale) from the Survey of India (Map No. 73 E/5) which was surveyed in 

1978-79. Similar classes were combined appropriately to create a land-cover map for 

1976. High resolution imagery available in GoogleEarth for 15th November, 2004 was 

utilised for the same purpose in order to classify the Landsat TM image of 2004. 

Finally we generated two LULC maps with following classes: 1) water body, 2) rocky 

waste, 3) urban area, 4) paddy field, 5) shrub, 6) open forest, and 7) dense forest. There 

is a potential problem in comparing LULC changes from pixel to pixel between the two 

time periods because of the use of different sensors for acquiring the two images. 

However, Landsat MSS and TM data have been successfully used with unsupervised 

classification for identifying changes of broad land cover categories in Africa (Brink 

and Eva, 2009). The spectral resolution of Landsat MSS and TM for Band 1, 2 3 and 4 

are quite close and we only attempted to identify the broad land cover classes that are 

identifiable in the coarse resolution Landsat MSS images. Post-classification 

comparison of the LULC maps for the two time period is likely to eliminate most of the 

discrepancies arising from the use of different sensors and spatial resolution.   Due to 

the limitation of the spatial and spectral resolution of the available satellite imagery, 
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identifying land-cover classes for which a CN value is available in standard lookup 

tables was not always possible and an adjustment of the CN table was necessary to get 

optimal runoff estimates using the NRCS-CN approach (Kumar et al., 1991). We used 

the CN lookup table compiled by Tripathi et al. (2002) for land-use and soil texture 

classes in the Nagwan sub-catchment, a part of the Konar Reservoir catchment, except 

that the CN value for paddy fields was taken from Shi et al. (2007); the table in Tripathi 

et al. (2002) classified the paddy fields as upland and lowland paddy, but it was not 

possible to distinguish these in our land-cover classification. Hydrologic soil groups of 

the study area were determined by consulting the composition and texture of the soil 

types obtained from the soil maps of National Bureau of Soil Survey and Land Use 

Planning, India (NBSS&LUP). The land-cover maps and hydrologic soil groups map 

were combined using the lookup table in GIS to create CN maps for 1976 and 2004.  

 

6.3.2 Setting up the rainfall-runoff model  

 

The HEC-HMS modelling suite was chosen for simulating the rainfall-runoff process, 

as this model has a host of modelling options for computing the runoff hydrograph for 

each sub-basin and routing it through river reaches at the basin outlet (Beighley and 

Moglen, 2003). HEC-HMS has the option of using the NRCS CN method for 

computing direct runoff volume for a given rainfall event, which is a popular modelling 

choice for application in the data scarce environment (Olang and Furst, 2011; Candela 

et al., 2012; Du et al., 2012; Jia and Wan, 2011; Amini et al., 2011). The model has a 

GIS pre-processor known as HEC-GeoHMS which was used for extracting and 

integrating GIS data such as DEM, LULC and soil maps into the hydrological model.  

 

A total of 124 sub-catchments were delineated from the SRTM DEM in the Konar 

catchment during the pre-processing stage in HEC-GeoHMS.  The streams were 

vectorised from the topographic maps of the study area for use as a reference for 

guiding the automated sub-catchment delineation from the SRTM DEM. Das et al. 

(1992) used Strahler’s stream ordering technique to identify the optimal basin size for 

NRCS-CN-based estimation of runoff volume for part of the upper Damodar River 

basin and this principle was used in our study. After filling the sinks a threshold 

contributing area of 5 km
2
 was found suitable to delineate the streams that in general 

match the 2nd-order streams in the topographic maps. Due to the coarse nature of the 
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SRTM DEM we could not automatically extract the 1st order streams as found in the 

topographic maps.  

 

Sub-daily rainfall is an essential input for simulating storm runoff, particularly in 

tropical region where high intensity rainfall for a few hours often leads to flooding. We 

obtained rainfall figures at 1 hour intervals for a storm event lasting from 11 to 12 

October, 1973 from a autographic rain gauge located in Hazaribagh Town (Figure 6.1). 

The data are supplied by the Indian Meteorological Department (IMD). In order to 

validate the accuracy of the model for the 2004 land cover scenario we used a storm 

rainfall event from 8-10 October, 2003, which was estimated by the 3B42 V6 product 

of the Tropical Rainfall Measuring Mission (Huffman et al., 2007). No gauged sub-

daily rainfall data was available after 1976 as the autographic rainfall station has been 

defunct since then. The October, 2003 event was deemed most appropriate as the CN 

values for 2004 derived from a Landat TM image acquired on 2nd  November reflected 

a land cover that is very similar to the prevailing LULC situation when the storm event 

of 2003 took place. It has been reported that TRMM data frequently do not match with 

in situ observations. For this reason, the area averaged 3-hourly 3B42 V6 TRMM data 

for the Konar catchment were summed into daily totals and compared with the daily 

rainfall product of the Indian Meteorological Department (Rajeevan and Bhate, 2008) 

which is derived from rain gauges and supplied in 0.5 degree gridded format. We found 

that the TRMM records for the 3 days (8-10 October, 2004) was only 3.7% higher than 

the IMD figures. After considering the preceding rainfall of last 5 days for the 1973 and 

2003 events from the daily rainfall products of IMD we decided that the antecedent 

moisture condition was normal (AMCII) (35-53 mm) for the 1973 event but it was dry 

(AMCI) (> 35 mm) for the 2003 event. Hence, the normal CN values for the 2004 land 

cover scenario were converted to AMCI using the formula proposed by Mishra et al. 

(2008): 

 

CNI = CNII/(2.2754 - 0.012754 CNII)       (4) 

 

As four TRMM tiles cut across the Konar catchment, we downloaded and stacked 3-

hourly gridded TRMM data for those four tiles for the storm period and extracted the 

pixel data into a time series. In the next step, four artificial rain gauges were created in 

HEC-HMS for the NW, NE, SW and SE portions of the Konar catchment and the 
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gauges were populated with the extracted pixel values of the corresponding TRMM 

grid. In this way we managed to use quasi-distributed rainfall data into HEC-HMS for 

simulating the 2003 storm event. 

 

The NRSC unit hydrograph lag method was used for computing the basin lag which is 

necessary for transforming the excess rainfall (or direct runoff volume) into runoff into 

the channels. Finally, the Muskinghum-Cunge flow routing model was employed to 

route the flow through the channels to the outlet. Initially the model was run with the 

hourly rainfall of 11-12 October, 1973 and the CN values (AMCII) derived from the 

1976 land cover map and the results were compared with the available daily runoff 

volume at the entry point of the Konar Reservoir (basin outlet). We attempted to 

calibrate this HEC-HMS model with the Manning’s roughness coefficients of the 

reaches. Initially the roughness coefficients for each reach were decided with the 

method described in Arcement and Schneider (1989) by combining information on 

channel properties like bed materials, morphology, presence of obstructions and extents 

of meandering in an approximate manner as apparent from the topographic maps and 

the high resolution images in GoogleEarth.  

 

The model was calibrated against observed total daily runoff volume (in hectare m/day) 

records at the outlet of the Konar basin which was supplied by the Damodar Valley 

Corporation (DVC). No sub-daily measurement in m
3
/s was available. During the 

calibration runs the coefficients were increased and decreased by 10 and 20% of the 

initial estimate. The model showed very little sensitivity to the roughness coefficients 

in terms of the improved performance against the observed daily runoff data. Hence, 

we decided to use the initial estimates for the subsequent runs.  In the next step, the 

model was run with the 3-hourly TRMM rainfall of 8-10 October, 2003 with the CN 

values (AMCI) of 2004 and the hydrograph in terms of daily runoff volume was 

compared with the observed data. Following Knebl et al. (2005) and McColl and Agget 

(2007) it was anticipated that evapotranspiration  losses would be negligible as the  

interest of this study is in high intensity monsoon storms that lead to flooding. Since 

our model only simulated the direct runoff, we derived the base flow component from 

the observed data graphically by joining the point of infections of the rising and falling 

limb of the hydrograph and eliminated this flow component in order to make the 

observed and modelled figures comparable. 
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The relationship between changing LULC patterns in the sub-catchments of the Konar 

catchment and the peak rate of discharge at the reservoir inlet was assessed by 

computing the unit flood response (Saghafian and Khosroshahi, 2005) of each of the 

124 sub-catchments for the LULC scenarios of 1976 and 2004. The unit flood response 

approach can be used to standardise the contributions of sub-catchments to the peak 

flow. With changing land use, the unit flood response of various sub-catchments within 

a catchment is likely to change. The storm event of 11-12 October, 1973 was used as 

the meteorological input in both scenarios. The unit flood response approach ranks each 

sub-catchment on the basis of their contribution to the flood generation at the basin 

outlet and is expressed by  

 

f = ΔQp / A          (2) 

 

where f (m
3
/s/km

2
) is unit area flood index, ΔQp is the amount of decrease in peak 

discharge at the basin outlet due to elimination of a particular sub-catchment (m
3
/s), 

and A is the sub-catchment area (km
2
). A version of the HEC-HMS model containing 

all basin components was saved. In order to compute f for each sub-catchment, the 

HEC-HMS model was placed in a working directory and only that particular sub-

catchment was deleted from the basin component keeping the connectivity intact for 

the entire model. Consequently, the f value was calculated by subtracting the flood 

peak produced by all but the sub-catchment under consideration from the flood peak 

considering all sub-catchments.  
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6.4 Results 

 

The changes in LULC for the entire Konar catchment from 1976 to 2004 (Figure 6.2) 

show considerable increase in rocky waste and decreases in the areas under paddy 

cultivation and open forest (Table 6.1). 

 

Table 6.1 Percentage coverage of different LULC categories for 1976 and 2004 and the 

changes between the two time periods. 

 LULC Classes Percentage Percentage   Difference in Percentage 

Cover 

   Cover 1976 Cover 2004   (2004 - 1976) 

 

1. Water body  5.4  5.9   0.5 

2. Rocky wasteland  9.7  24.2   14.5  

3. Urban   0.1  8.2   8.1 

4. Paddy Field  42.3  20.9               -21.4 

5. Shrub   9.6  23.2   13.6 

6. Open Forest  26.5  14.5               -12 

7. Dense Forest  11.3  8.2               -3.1  
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Figure 6.2 Land cover classification of (a) 1976 and (b) 2004. Maps were derived from 

Landsat MSS (a) and Landsat TM (b) in the early post-monsoon season in late October to early 

November. 
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Between 1976 and 2004 a substantial percentage of the total area in the Konar 

catchment changed in LULC from paddy to rocky waste, paddy to shrub, open forest to 

shrub and paddy to urban (Figure 6.3). The comparison of the simulated rainfall runoff 

event of October 1973 with the LULC situation prevailing in 1976 (Fig 6.4) reveals a 

good match between the observed and simulated daily streamflow volume. The 

association between the modelled and observed daily surface runoff figures for the 

2004 LULC situation using the 2003 TRMM rainfall estimates (Figure 6.5) and the 

calibrated Manning’s roughness values from the previous experiment also shows a 

good match.  

 

 

Figure 6.3 Percentage of land in the Konar basin that had undergone substantial transformation 

from one LULC category to another between 1976 to 2004. These LULC scenarios are valid 

for the early post-monsoon season in late October to early November. 

 

When considering the effect of LULC change in the entire Konar catchment on the 

peak discharge for the 1973 storm event at the reservoir inlet we found that, for the 

1976 LULC scenario the peak discharge was 1023.3 m
3
/s occurring on 12th October at 

20:10, while for the 2004 LULC scenario the peak discharge increased to 1194.7 m
3
/s 

and the time to peak was decreased by 1 hour and 10 minutes. After ranking the sub-

catchments according to the unit flood response computed with the rainfall event of 

1973 and LULC scenarios of 1976 and 2004 (Figure 6.6), we found that in spite of 

significant LULC change between 1976 and 2004 (Figure 6.2) there was little change 

in the ranking.  
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Figure 6.4 Simulated surface runoff with gauged hourly rainfall input of October 1973 and 

land cover of 27th October, 1976. The observed surface runoff (depicted as dotted line) was 

derived from the observed discharge figure by means of base flow separation. 

 

 

 

Figure 6.5 Simulated surface runoff with TRMM 3-hourly rainfall input of October, 2003 and 

land cover of 2nd November, 2004. 



137 
 

 

 

Figure 6.6 Rank of the sub-catchments according to the unit flood response (UFR) values 

derived with the land cover of 1976 (a) and 2004 (b). The gauged hourly storm rainfall event of 

October, 1973 was used as the meteorological input in both models. 
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Figure 6.7 a, percentage change in NRCS Curve Number (CN) values (1976 - 2004); b, 

percentage change in unit flood response (UFR) values (1976 land cover to 2004 land cover). 

In both panels, negative values indicate that the CN or UFR was higher in 1976 than 2004, and 

positive values show the opposite. The sub-catchments shown in white experienced negligible 

change. 
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The spatial patterns of the percentage change in the CN values (Figure 6.7a), a proxy 

for the change in the combined effect of the soil and LULC, and the unit flood response 

between 1976 and 2004 LULC scenario (Figure 6.7b) did show some degree of 

agreement; sub-catchments showing a higher percentage change in CN values (i.e. 

change in LULC) in the predominately forested area in the south and near the main 

stream of the Konar River tend to show a increase in their unit flood response values 

between the 1976 and 2004 LULC scenarios. The location of the LULC change in 

terms of the distance from the outlet may have an negative impact over the intensity of 

the consequent percentage change in unit flood response. In order to test this, an 

attempt was made to assess if the distance from the sub-catchment centroid to the outlet, 

measured along the connecting stream network, had a statistically significant negative 

relationship with percentage change in unit flood response. However, no statistically 

significant relationship could be established. 

 

Finally, a weak positive linear correlation was found (Pearson's correlation coefficient 

(r) of 0.53 (p < 0.01) between the sub-catchment percentage change in unit flood 

response (1976 - 2004) and curve number (CN) values (Figure 6.8a). Three clusters of 

sub-catchments showed marked deviations from the overall positive trend between the 

two variables. Cluster 1 consists of sub-catchments with a large increase in CN values 

from 1976 to 2004 and a disproportionately large increase in the unit flood response. 

Cluster 2 consists of sub-catchments with a moderately high percentage increase in the 

CN values but a negative change in unit flood response values. Cluster 3 includes sub-

catchments with small increases in CN values but large increases in unit flood response. 

In order to reveal any apparent geomorphological reason for these deviations from the 

overall trend we mapped the sub-catchments falling in the three aforementioned 

clusters which did not reveal an overall relationship between the location of LULC 

changes and proximity to higher order streams or the basin outlet (Figure 6.8b).  

 

As we could not establish a relationship between the proximity of LULC change to the 

outlet or a higher order trunk stream and the peak discharge at the catchment outlet due 

to paucity of data, we tested the influence of timing effect of flow convergence at the 

sub-catchment level following the general argument of Pattison et al. (2008). In HEC-

HMS, a single sub-catchment (with identifier W2080) and junction (identifier J425) 

were selected as an example of a disproportionate rise in unit flood response (UFR) 
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caused by moderate increase in CN value (LULC change towards more runoff 

producing LULC). (Figure 6.8a). On the other hand, sub-catchment W2510 and 

Junction J328 were chosen as an example of the general positive linear correlation 

between unit flood response and CN change between 1976 and 2004 LULC conditions 

(Figure 6.8a). The location of these sub-catchments can be found in Figure 6.9. 

 

 

Figure 6.8 a, Scatter diagram of the sub-catchment wise percentage changes in the unit flood 

response (1976 - 2004) and curve number (CN) values. Sub-catchments that did not fit into the 

overall linear positive correlation pattern were separated into 3 clusters. Sub-catchments 

W2080 and W2510 were selected as representative of extreme and typical cases, respectively, 

of UFR change in relation to changing LULC conditions.  b, Location of the sub-catchments 

identified as 3 clusters in panel a. 
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Figure 6.9 Location of the sub-catchments and flow junctions that were selected for testing the 

influence of timing effects of flow convergence on the relationship of local LULC changes and 

downstream flood peak. 

 

W2080 demonstrated a 93 percent change in the unit flood response for only 2.03 

percent change in the CN values from 1976 to 2004. The simulated hydrographs for 

W2080 showed little difference in the direct runoff pattern for the LULC conditions of 

1976 and 2004 alone (Fig. 10). Under the LULC conditions of 2004, Junction J425, the 

confluence of runoff generated from W2080 and the Konar River, experienced a peak 

discharge of 484.3 m
3
/s at 15:35 on 12 October. At that time, the discharge from 

W2080 was 4.40 m
3
/s which was 22.9 % of its peak discharge (19.2 m

3
/s) (Figure 6.10). 

The contribution of W2080 to the combined discharge at 15:35 on 12th October was 

thus 0.90 %. Using the LULC conditions of 1976, when the discharge from W2080   

merged with the Konar River during the peak outflow at J425 on 12 October, 16:35  

(1 hour later than the 2004 LULC scenario) the combined discharge at J425 was    

383.8 m
3
/s and the contribution from W2080 was 2.1 m

3
/s (0.55% of the total) which 

was only 11.5% of its peak discharge of 18.3 m
3
/s (Figure 6.10). This example 

illustrates that with only a 2.3 percent increase in the CN value from 1976 to 2004, the 

contribution of the sub-catchment W2080 to the combined flow of a vast contributing 

area almost doubled (0.55% to 0.90%). 
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Sub-catchment W2510 revealed a different picture at Junction J328, where the runoff 

from the sub-catchment converged with the Konar River. Under the 2004 LULC 

conditions J328 experienced a combined peak discharge of 280.7 m
3
/s at 15:15 on 12th 

October. At that time the discharge from W2510 was 7.8 m
3
/s, which was 2.77% of the 

combined discharge and 65.54 % of the peak discharge of W2510 (11.9 m
3
/s) (Figure 

6.11). For the LULC conditions of 1976, the runoff from W2510 merged with the peak 

discharge at J328 on 15:45 (30 minutes later than 2004 LULC case) at a rate of 6.1 m
3
/s, 

which was 2.42 % of the combined peak flow of 251.7 m
3
/s. The runoff from W2510 at 

that time was 70.11% of its peak discharge (8.7 m
3
/s) (Figure 6.11). This test case 

illustrated that for a moderate 11% increase in the CN value from 1976 to 2004 LULC 

conditions the contribution of W2510 during the peak flow at Junction J328 increased 

from only 2.42% to 2.77%, which is in line with the overall trend in Figure 6.8. 

 

 

Figure 6.10 Hydrographs of sub-catchment W2080 for 1976 and 2004 LULC scenarios. 

Vertical lines show the timing of the combined peak flow at J425 for the 1976 and 2004 LULC. 
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Figure 6.11 Hydrographs of sub-catchment W2510 for 1976 and 2004 LULC scenario, 

Vertical lines show the timing of the combined peak flow at J328 for the 1976 and 2004 LULC. 

 

6.5  Discussion 

 

If we consider the effect of overall LULC changes in the Konar catchment to the flood 

peak at the catchment outlet, it becomes evident that a general increase in the higher 

runoff producing LULC classes resulted in higher peak discharge and shortened the 

time to peak. However, when investigating the sub-catchment-wise local LULC change 

and its influence over the peak discharge at the catchment outlet a complex relationship 

began to emerge. When the location of the sub-catchments showing marked deviation 

from the overall trend was mapped (Figure 6.8) we could not find a convincing reason 

for their unusual hydrologic response, For example, two of the predominantly 

deforested sub-catchments in cluster 1 (see Figure 6.2 and 6.8b) were found to be near 

the trunk stream, which may explain their rapid reaction in terms of increase in 

percentage unit flood response; however, the other two sub-catchments in the same 

cluster that are located at the farthest point from the outlet did not have any apparent 

physical explanation based on the distance from the outlet or proximity to a stream of 

very high stream order. Nothing could be established about the negative reaction of the 

sub-catchments in cluster 2 to their contribution to the peak discharge at the outlet. The 

sub-catchments in cluster 3 were found to be adjacent to each other and located at a 

consistent position near the main stream (Figure 6.8) which may partially explain the 
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spike in their percentage increase in the unit flood response caused by moderate 

positive percentage change in CN values. 

 

Although an overall statistically significant positive relationship was found between the 

changes in LULC at the sub-catchment scale and their impact on the basin flood peak, 

the pattern was altered by other factors. Increments of 2.03% and 11% in the CN values 

of sub-catchment W2080 and W2510 between 1976 and 2004 resulted in expected  

changes in their surface runoff hydrographs (Figures 6.10 and 6.11). However, during 

the peak discharge at the junctions where the runoff from these two sub-catchments 

flows into the Konar River, their contribution to the combined flow differed markedly. 

Pattison and Lane (2012) highlighted the important role played by the timing of 

extreme rainfall events at different parts of the catchment and the consequent 

hydrological response. In addition, they also pointed out that the structure of the basin 

also determines the convergence of hillslope and channel flow which changes with 

distance and influences the magnitude and timing of the flood peak downstream. For 

example, W2080 has little difference in the shape of hydrograph (not surprising 

because of small change in CN) for the two LULC conditions, but its apparent change 

in UFR is very high because the time of the peak at its outlet is very different (big 

spread between the vertical lines in Figure 6.10). On the other hand, W2510 has a very 

different hydrograph, but because the peak at the outlet comes on the falling limb, and 

because there’s a fairly small change in the time of the peak, the change in UFR is 

modest. Thus the effect of time matters more than the effect of changes in CN.  

 

The characteristics of individual sub-catchments such as shape and slope may also play 

a vital role in the causal relationship between sub-catchment wise LULC changes and 

the flood peak at the basin outlet. These factors may partially explain why similar 

amounts of LULC change in different sub-catchments have varying impacts on the 

flood peak at the catchment outlets. It is likely that more than one of these factors are 

simultaneously playing a role in influencing the peak discharge at the catchment outlet.  

Thus, correcting the land use practice in one of the priority flood generating sub-

catchments may not always result in reducing the flood peak.  Hence, it is not 

surprising that this study did not find any pattern similar to one reported by Roughani et 

al. (2007), in which the sub-catchments located at the centroid of the catchment were 
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found to be more likely to exert an influence to the peak discharge at the catchment 

outlet. 

 

 In order to implement remedial land management practices for controlling the flood 

peak at the reservoir inlet and reducing soil erosion, authorities like the DVC generally 

try to identify the sub-catchments that require urgent attention. If only a single LULC 

condition is of interest then the unit flood response approach (Saghafian and 

Khosroshahi, 2005) can be considered as an ideal solution to identify the priority target 

area for land-use planning. However, LULC conditions across sub-catchments change 

with time and the nature of this transformation from one LULC class to other LULC 

classes varies considerably from one sub-catchment to another. This factor tends to 

have a complex influence on the hydrologic response of the entire catchment over the 

years. Hence, the relevance of this study comes from testing whether local changes in 

LULC, at which scale the remedial measures are likely to be implemented, actually 

have a straight forward mitigating effect on the flood peak at the basin outlet. Pattison 

and Lane (2012) recommended that any empirical association found between local 

LULC change and downstream flood peak is valid only for that particular catchment 

and storm event.  We suggest that, after identifying the major flood source areas for an 

average storm event, further simulations should be carried out to evaluate the effect of 

possible remedial land-use planning in those sub-catchments over the flood peak at the 

cumulative basin outlet of interest. Undertaking remedial land-use measures in a few 

sub-catchments, especially in the upper catchment, may alter the tributary flow 

convergence timing in an adverse manner, nullifying the effects of corrective land 

management measures at the local scale. 

 

Our study has emphasised the challenges faced in data scarce areas such as developing 

countries for modelling the impact of LULC changes on basin hydrology. The LULC 

maps were derived from freely available satellite data that varied in spatial and spectral 

resolution. In our study area, we had severe constraints in the availability of high-

frequency (~hourly) rainfall data and historic ground truth data in terms of topographic 

maps, as well as low-cost, high resolution imagery such as Corona or GoogleEarth 

images. The reasonable match between the simulated and observed daily hydrographs 

for varying rainfall events and LULC conditions demonstrated that the HEC-HMS 

model in conjunction with the NRSC CN method is capable of accurately reproducing 
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rainfall-runoff processes with broad LULC classes and moderate resolution topography. 

Figures 6.4 and 6.5 illustrated that the HEC-HMS model setup in our study can 

accurately reproduce rainfall-runoff processes under two LULC conditions resulting 

from two different storm events. It established that the model can perform well 

independently of the nature of the storm event and LULC scenarios, and this provided 

an element of confidence when we applied the same storm event of 1973 for the LULC 

situations of 1976 and 2004 to address the core purpose of this research. Lower-

frequency discharge data at the inlet of the Konar Reservoir might have hidden some 

mismatch between the observed and simulated surface runoff patterns. Availability of a 

more disaggregated observed streamflow record would have revealed some element of 

inaccuracies in the simulated hydrograph, possibly arising from the low resolution of 

Landat MSS image (in terms of LULC and CN) or the SRTM DEM (in terms of 

delineation of channels, sub-catchments and channel configuration parameters for 

routing). However, we argue that availability of more data would not make much 

difference in the findings related to the influence of LULC on the hydrological 

response, as Wang and Kalin (2011) reported that the selection of model parameters 

(derived from coarse quality inputs) had little influence on modelling the impact of 

changing LULC scenario on surface runoff with the NRSC CN method.   

 

6.6 Conclusion 

 

We have illustrated a systematic approach of analysing the effect of LULC changes in 

the sub-catchment level and their varying impact on the flood peak at the catchment 

outlet. An overall positive linear relationship was found between the two factors. 

However, our findings indicated that varying timing of flow convergence between 

hillslope and streams at the sub-catchments caused by localised LULC changes is the 

key factor behind the frequent deviation from this overall trend. While unit flood 

response (Saghafian and Khosroshahi, 2005) is an innovative means of identifying the 

sub-catchments that need urgent attention in terms of land management to reduce flood 

peak, we argue that the complex interaction between changing LULC in sub-

catchments, especially in large basins with heterogeneous LULC, is likely to be 

dependent on other factors which are not within the scope of this study.  These factors 

may include soil types and nature and duration of the precipitation event. This study 
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also demonstrated ways of utilising free or low-cost spatial and meteorological data, 

typically available in developing countries, to set up a widely used hydrological model 

that is capable of reproducing event scale rainfall-runoff processes with reasonable 

accuracy. The described methodology and the key findings will be beneficial for 

mitigating flooding through non-structural measures, particularly in the developing 

world. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

 

Overall Discussions 
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The goal of this chapter is to highlight the important findings of this thesis and discuss 

their significance with respect to flood management. This chapter also re-examines the 

key scientific questions addressed in this thesis by tackling different aspects of flood 

predictions and management with severe constraints of available data. Different parts 

of the Damodar River Basin in Eastern India has been used as the study sites for 

addressing the overall picture of the challenges in flood predictions at varied scales.  

 

7.1 Considerations for sources of terrain data in developing countries 

 

This thesis reveals a few important facts regarding the creation of suitable terrain data 

for hydraulic modelling in data-sparse regions. For large scale applications in a single, 

wide, reach, where the intended model output is the stage hydrograph at a downstream 

point, freely available DEMs such as the SRTM DEM can be effectively used to 

simulate high magnitude streamflow. However, the DEM needs to be modified with 

reference to the existing map-based height information to minimise the vertical bias. 

There is apparently no relation between the general elevation of the terrain and the 

vertical inaccuracies in the SRTM data, at least where the overall terrain is gently 

sloping plain land. The local noise in elevations caused by the ineffectiveness of the C-

band radar to penetrate the dense foliage can only be removed manually with reference 

to the land-use information. This kind of modified SRTM DEM is suitable for flow 

routing only when the stream flow is predominantly confined within its bankfull level. 

The channel-bed information is difficult to obtain from the SRTM directly and some 

surveyed cross-sections are absolutely necessary to establish a smooth longitudinal 

profile of the reach in order to capture an accurate stream energy gradient. When the 

landform is gently sloping without any abrupt change of slope, measured cross-sections 

can be located at a considerable distance from each other. When the details of the 

channel bed morphology and the slope of the banks are likely to exert more influence 

on the flow pattern, it is acknowledged that this kind of input geometry for the channel 

may not be effective for simulating low flows. On the other hand, in reach-scale 

application (< 20 km) where extensive floodplain inundation is common, globally 

available DEMs are of limited use in flood inundation modelling. Low-cost stereo 

satellite images such as IRS Cartosat-1 are not capable of producing a high resolution 

terrain data of uniform quality across all types of land-uses and terrain. Due to its 

imperfect radiometric quality and relatively coarse resolution of 2.5 m, a few 
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supplementary sources of elevation are necessary to produce a terrain data of 

acceptable standard. The use of Cartosat-1 images made it possible to create the narrow 

branch channels, embankments and roads, which were not present in the coarse 

resolution SRTM data. This factor led to an impressive improvement in the model 

performance. 

 

7.2 Choice of hydrodynamic models with reference to scale and channel 

morphology and available input data 

 

The findings of this thesis indicate that the suitability of a particular hydrodynamic 

model depends on the scale of the study, the nature of the model output of interest (e.g. 

stage, flood extent) and the physical characteristics of the study reach (e.g. single reach 

versus rivers with distributaries). The simple input requirements and computational 

efficiency of LISFLOOD-FP was found to work well for a single river reach with no 

significant flow bifurcation. However, when LISFLOOD-FP was used for modelling 

floodplain inundation in anabranching channels it failed to produce a simulated flood- 

extent map that matched well with the observed flood extents derived from the satellite 

overpasses. The complex nature of the channel networks and widespread overtopping 

of levees, sometimes in the branch channels at a distance from the main flow, called for 

a more robust model with regards to its ability to account for the hydraulic processes. 

The raster-based floodplain flow routing component of LISFLOOD-FP was unable to 

cope with the flow split at different parts of the main channel due to the high velocity 

of the water at the channel with a considerable depth. Simple conceptualisation of the 

flow hydraulics in LISFLOOD-FP is compensated with the use of a high resolution 

DEM. The resolution and accuracy of the hybrid terrain data created for the lower 

course are not comparable with the LiDAR derived ones (typically 1 m grid size with a 

vertical accuracy of 25 cm). This factor might have been responsible for not being able 

to exploit the full potential of LISFLOOD-FP in modelling the floodplain inundation in 

the lower course.  

 

TELEMAC2D, a fully two dimensional hydrodynamic model, was found suitable for 

simulating inundation events with a low-cost adapted terrain data in a complex fluvial 

setting. As the model domain is decomposed into an unstructured finite element mesh 

in TELEMAC2D, it is able to concentrate the computational resources where it is 
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needed most. The hybrid terrain data for the lower course has varying point density and 

was created with a similar intention of representing the hydraulically significant part of 

the model domain in greater detail than the other parts where high density elevation 

information was not available. Thus, TELEMAC2D was well equipped to take 

advantage of the hybrid terrain data.  The ability of TELEMAC2D to model the 

turbulence at the channel bifurcations was also a key factor for its better performance 

vis-a-vis LISFLOOD-FP in the lower course. This finding is one of the key results of 

this thesis as the previous comparative studies between fully a 2D finite element model 

(such as TELEMAC2D), 1D models (such as HEC-RAS) and 1D-2D coupled system 

(such as LISFLOOD-FP) did not report a marked disparity between the accuracies of 

the predicted inundation extents. The role of the drainage pattern in conjunction with 

the suitability of a type of code for a type of terrain input is highlighted in this thesis. 

Notwithstanding the issue of higher computing cost and complex model setup, fully 2D 

finite element models were found to be still relevant in inundation modelling. Where 

the channels and topographically discontinuous features can be represented in finer 

details this kind of model can produce quality results. Although TELEMAC2D 

performed well in the small scale application, it is computationally demanding and 

requires a detailed configuration of the channel bed in order to produce accurate water 

surface elevation and inundation extent. Hence, employing this type of model for 

simulating flood waves for a reach length of more than 50 km was unrealistic from the 

point of view of computational cost and accuracy of the available DEM.  

 

The experimental design for the middle course of the Damodar River provides certain 

new outlooks regarding flood routing at large scale with very limited availability of 

data. In a gently sloping river, a characteristic fairly common for large rivers, the 

unavailability of the downstream boundary condition information is not a major 

concern. The uncertainty analysis clearly indicates that (Figure 3.16b) the performance 

of LISFLOOD-FP is not sensitive to this information. Similarly, for a wide river with 

more than 1 km of average width, the small inaccuracies in measuring channel width 

was not found to influence the model performance in a significant manner. Channel 

widths measured from freely available high resolution images available in 

GoogleEarth
TM

 were found to be of sufficient accuracy for this purpose. Where the 

flow is mostly confined within the bankfull level, uncertainty in the terrain data for the 

floodplain may still affect the model performance to a specific extent. This is primarily 
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caused by the uncertainty in computing the bankfull depth from inaccurate bank 

elevations. However, it is beyond doubt that the roughness parameterisation of the 

channel is the key factor governing the accuracy of the modelled water-surface 

elevation. Where the channel portion of the freely available DEMs are either noisy or 

stepped down monotonically, the river cross-sections derived from these products are 

not likely to be within the acceptable limit of error. Unknown embankment heights are 

also a major obstacle to maintain stability while simulating an extreme event with  an 

1D hydrodynamic code. The 1-2D hybrid nature of LISFLOOD-FP makes it less 

sensitive to the bank/embankment heights. Its simple rectangular conceptualisation of 

the channel geometry also reduces the dependency on very accurate channel cross-

section data at each cross-section. These features make LISFLOOD-FP an ideal 

candidate for flow routing in large rivers where accurate topographic data are scarce.    

 

7.3 Uncertainty 

 

In terms of estimating the widespread floodplain inundation and the associated 

uncertainties, particularly in the rivers with multiple bifurcations, this thesis illustrates a 

challenging scenario on flood inundation modelling. Unlike majority of published case 

studies in this topic the present investigation does not deal with a continuous nature of 

flooding where the depth of the flood water progressively diminishes away from the 

main channel. In the common scenario, the main debate about the model uncertainty is 

confined to a narrow zone at the fringe of the inundated area. The efficiency of a 

particular model setup is measured by means of its effectiveness in correctly predicting 

the shoreline of flood water in this so called zone of uncertainty (Figure 7.1)   
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Figure 7.1 Flood inundation map with uncertainty zone (After Merwade et al., 2008b) 

 

Due to the complex nature of flooding in the lower course of the Damodar River 

floodwater accumulates or at least persists in patches, sometimes at considerable 

distance from the main channel. The visualization of uncertainties in the predicted 

inundation-extent maps (Figure 5.11) did not conform to the common picture of 

concentration of uncertain zones at the boundary of the spatial clusters of the predicted 

flooded area. Instead, a complex pattern emerged where the zone of uncertainty could 

be found right at the middle of a predicted patch (e.g. in the SE corner in Figure 5.11). 

This kind of pattern is a result of the complex interplay between the limited resolution 

of the terrain data over the farmlands, uncertain inflow discharge at the model inlet and 

the inefficiency of the model itself to reproduce parts of the actual hydraulic processes. 

It is acknowledged that some of the observed pattern is spurious and a fall out of the 

error in the terrain data and discussed in detail below. 

 

The most important source of uncertainty in the model output comes from the 

uncertainty in the inflow hydrograph as evident from the reach scale study presented in 

Chapter 5. As the outflow discharge figures are available from Durgapur Barrage this 

factor has not been taken into the uncertainty analysis in Chapter 3. The fully 2D finite 

element models are not very sensitive to the roughness parameterisation. Unlike 

Chapter 3, the model performance was not clearly controlled by the channel roughness 

factor in the case of the lower Damodar River. The combined effect of less sensitivity 

to the roughness parameterisation and the uncertainty in the inflow figures resulted in a 
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trend of equifinality in the relationship between channel roughness and model 

performance. This trend became more evident towards the receding stage of the flood 

hydrograph (Figure 5.10b) than near the flood peak (Figure 5.9b). 

 

This research has pointed out the issue of input induced biases in the modelled outputs 

at different scales. Although Chapter 3 and Chapter 4 deal with water-surface 

elevations and modelled flood extents respectively both studies showed consistent 

under or over estimations in the modelled output. The systematic bias is readily 

identified in the Monte Carlo-based visualization of uncertainties (Figure 3.17 and 

Figure 5.11).  It is interesting to note that the systematic biases are evident in both 

temporal and spatial dimensions. Part of the rising limb of the observed hydrograph at 

Jamalpur gauging station was not within the upper and lower uncertainty bound of the 

Monte Carlo simulations. The model consistently underestimated the rising limb and 

shows a slight delay attaining the peak when compared with the gauged river stage 

data. Many factors, including inaccuracy in the DEM, bed elevation for the channel and 

no consideration of minor influx of water in the main channel from the adjacent areas 

might have caused it. Similarly, the spatial dimension of the consistent model bias was 

illustrated by a comparison between the distributed predictive uncertainties (Figure 

5.11) with the deterministic flood extent maps (Figure 5.5). The overprediction was due 

to the low density of elevation data over agricultural fields that created flat surfaces in 

some portions of the hybrid terrain data.  Limited influx of flood water from adjoining 

river basins that were not considered in the model was mainly responsible for the 

underestimation of modelled inundation extent at the western portion of the model 

domain.  

 

Chapter 5 further illustrates that incorporating the level of confidence in the observed 

records in an uncertainty analysis as opposed to considering the observed information 

in a deterministic way makes a difference in the assessment of uncertainty. This 

difference has been found to be more pronounced in portions of the model domain that 

are not affected by the input induced model bias. Considering the amount of effort 

required for taking into account the uncertainty in observed data in the computation of 

predictive uncertainty it is hard to justify in places where the available model inputs are 

not of ideal standard. It is evident that the use of the 'possibility of inundation maps' as 
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oppose to deterministic flood extent maps is not likely to make much difference in the 

uncertainty assessment in such a scenario.   

 

7.4 The issue of roughness paramiterisation 

 

Straatsma (2009) identified roughness of the terrain as the most important parameter 

after topography in influencing the flow in natural channels and overland inundation. 

Manning's roughness coefficient (n) is the most common form of roughness parameter 

used in modelling hydrological/hydraulic studies. This parameter is part of the 

empirically derived formula put forward by Manning (1889) to calculate uniform flow 

rates in open channels as  functions of flow velocity, flow area and channel slope. With 

the assumption of uniform flow it has also been assumed that 1) the cross-sectional area 

in the channel does not vary within a reach, and 2) the bottom slope of a channel is 

equivalent to the energy gradient of the water-surface. Although n is primarily used to 

account for the energy loss due to friction at the boundary of the flowing water and 

terrain surfaces, it is often used to compensate for the physical processes that are not 

considered by the governing equations of a hydraulic model (Morvan et al., 2008). 

By rearranging Manning's equation n can be represented as   

n = R
2/3

 S 
1/2

 / V         (1) 

where, S is the slope of the plane surface (mm
-1

), R is the hydraulic radius (m) and V is 

the velocity of water (ms
-1

).  

Different values of Manning’s n in the published literature were mostly derived from 

runoff plot data collected from different natural and agricultural surfaces applying 

constant rainfall rates produced by rainfall simulators (Arcement and Schneider, 1989). 

Engman (1985) pointed out that the roughness values computed in this manner are 

essentially ‘effective’ roughness and also include the effect of raindrop impacts, 

agricultural practice (e.g. nature of tillage), obstructions to flows and also the energy 

loss due to the erosion and transportation of sediments. The retardation of velocity of 

water due to interaction with the surface also depends on the particle size of the 

materials on the streambed, bank irregularities, channel bed configurations and 

sediment load (Limerinos, 1970). Efforts have also been made to measure channel 

roughness on the basis of the amount of biomass present (De Doncker et al., 2009) and 

as a function of microtopography (Strelkoff et al., 2000). 

Various modified forms of Manning's equation for estimating n have also been reported 

in the literature including special forms for steep channels with stable bed and banks 

(Jarrett, 1984), alluvial channels (Limerinos, 1970) as well as floodplains (Acrement 

and Schneider, 1989). Wohl (1998) performed a sensitivity analysis of simulated flow 

rates using these formulae  as well as different channel conditions and reported that 1) 

the change in the discharge due to variation in n is  inversely proportional to the stream 
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gradient and width/depth ratio, and 2) the variation in discharge due to the use of 

computed n values using different formulae is modest, especially in channels with a 

low gradient and smooth surface. 

Various studies have also used measured flow velocity, depth and cross-sectional area 

to determine bottom friction with numerical modelling (Stephen and Gutknecht, 2002; 

Mailapalli et al., 2008; Arico et al., 2009). In most of these studies terrains were used as 

inputs, measured flow data as boundary conditions and values of n are calibrated to 

achieve  best-fits to measured water-surface data.  

The extent to which a hydrodynamic model is sensitive to roughness and geometry 

uncertainties partially depends on the dimensionality of the model structure, as this 

factor represents the geometry in different manners (Lane et al., 1999). However, Lane 

(2005) argued that roughness is strictly a component of topography and better 

parameterizations of topography would ultimately reduce the sensitivity of 

hydrodynamic models to n values. This view has been further supported by Medeiros et 

al. (2012) who concluded that parameterising floodplain roughness on the basis of 

detailed terrain configurations and the presence of obstructions would be more effective 

than relying on remotely sensed LULC information for inundation modelling.  We 

often change the description of roughness with changes in scales to compensate for the 

effect of topography on the processes influencing interaction between the surface and 

the terrain, hence implicitly recognising that roughness is scale dependant (Lane, 

2005). As the published sources for recommended values of n were commonly derived 

from plot scale experimental set-ups or small controlled experimental catchments, use 

of these values sometimes become unreliable for numerical modelling involving large 

rivers. 

In order to reduce the uncertainty involved in using recommended n values from 

published sources for diverse flow and terrain conditions, the effect of topography 

needs to be addressed in a more explicit manner. The numerical porosity approach, 

proposed by Lane et al. (2004) is one of the most promising ways of retaining the 

original effect of the terrain on the flow process. In this approach a landscape has a 

porosity of zero when fully blocked and a porosity of unity when water is flowing 

freely. For all the intermediate flow conditions, which are often the case in the nature, 

the porosity remains between zero and one. For similar grid sizes, use of this method 

resulted in a significant improvement in the efficiency of a model to predict inundation 

extents over the use of calibrated n values (Yu and Lane, 2006a, 2006b ).  

Nevertheless, these recent developments in reducing the reliance on uncertain and 

calibrated roughness coefficients, sometimes without an appropriate physical meaning, 

essentially depends on very detailed terrain inputs in the model, which have limited 

global availability. For this reason, the practice of using a recommended range of n 

values from published tables as a calibration parameter is likely to continue in the field 

of inundation modelling for data-sparse regions in near future.  
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7.5 Non-structural mitigation strategy for the flood source areas 

 

The current research highlights that even for large basins with heterogeneous 

topography and land cover types, the changing land-use/cover has an overall significant 

effect towards the flood peak at the basin outlet. When the matter was investigated at 

the implementation scale of remedial land management (i.e. sub-catchments) a weak 

but statistically significant correlation was noted. The systematic evaluation of the 

causal link between sub-catchment-wise LULC changes and the flood hydrograph at 

the basin outlet provided us some important insights. It is found that in some instances 

the location of a sub-catchment with relation to the topology of the drainage network 

act as an important factor in exerting disproportionate influence over the downstream 

flood peak. However, no general, significant, relationship between the location of the 

land-use change in relation to the proximity to a higher order stream or the basin outlet 

and its high sensitivity of the flood hydrograph was found.  It is the specific nature of 

the rainfall event and an existing state of LULC across all the sub-catchments that are 

responsible for making the flood hydrograph hypersensitive to the LULC changes in 

certain locations. This finding implies that remedial land-use management practices in 

the prioritised sub-catchments may not have a mitigating effect on the flood peak at the 

basin outlet. I agree with the view of Pattison and Lane (2012) that any relation 

between the local LULC change and downstream flood risk is difficult to generalise 

and transfer from one basin or flood event to another.  

 

7.6 Impact on flood management in the developing world 

 

This study demonstrated simple but effective ways of utilising freely available DEMs 

for large scale river routing problems in data sparse countries and pointed out the 

minimum required supplementary information. This methodology will enable the flood 

managers in the developing counties to develop flow routing system in order to provide 

early warning for the downstream flood-prone areas. This kind of capability will be 

particularly beneficial for communities that live downstream of large dams in 

monsoon-dominated Asia. In addition, the ability to predict water surface elevation at a 

distant downstream point from major dams will also help in computing design floods of 

specific return periods for planning mitigation strategies. 
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Successful implementation of a flood-inundation model in an anabranching river in a 

developing country is a unique achievement of the current research. The novel method 

of creating appropriate terrain data from variety of low-cost/free sources will make it 

possible to assess detail flood risk at an individual settlement/community level in the 

developing world. The utilisation of freely available satellite images like MODIS, and 

Landsat 5 as a source of distributed calibration and validation data were keys for 

rigorous performance testing of the model outputs. This factor, along with the 

comprehensive uncertainty assessment of the modelled flood extents paints a detailed 

picture of merits and limitations of the proposed methodology. 

 

Flood managers in the data-sparse regions will be able to take advantage of the 

experimental design and findings presented in Chapter 6 for carrying out planning non-

structural flood mitigation strategies. Use of widely available model inputs and 

validation datasets as well as user friendly freely available modelling tools will be 

attractive to the scientists and other practitioners in the relevant discipline, particularly 

in the developing countries. It will not only enable them to prioritise the sub-

catchments for implementing remedial land-use management measures but also make it 

possible to judge the effect of such measures at individual sub-catchments on the 

downstream flood risk in advance.  It is acknowledged that the simulation results are 

difficult to generalise for other rivers basins. Nevertheless, design rainfall events of 

specific return periods can be used as inputs to view the entire prediction process from 

a probabilistic point of view. 

 

7.7 Limitations 

 

Having highlighted all the merits of the methods adopted in the thesis I would like to 

acknowledge the limitations of my findings. The majority of the limitations mainly 

stem from unavailability of data for model inputs and validation. For example, having a 

few more gauging stations between Durgapur Barrage and Jamalpur would put the 

performance of LISFLOOD-FP to a more stringent test in the middle course of the 

Damodar River. A river gauging station in the lower course would enable us to evaluate 

the performance of TELEMAC2D for the entire duration of the events under 

investigation rather than for two discrete time steps. As mentioned in Chapter 6, the 

availability of few more rain gauges in the Konar Basin and streamflow records at a 
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more disaggregated form at the basin outlet would enable us to judge the performance 

of HEC-HMS model in more detail. Similarly, a moderate resolution MODIS image 

(240 m cell size) was the only source for delineating a flood extent map for the 

calibration event in 2006 (Chapter 4). The model outputs, although available at a much 

finer scale had to be resampled into 240 m resolution for the calibration. A more 

detailed observed flood extent map might reveal more sensitivity of the simulated flood 

extent with relation to the roughness coefficient that was used as the calibration 

parameter in Chapter 4. The consistent bias in the model predictions arising from lack 

of details in the hybrid terrain data over part of the floodplain also made it difficult to 

understand the effect of uncertainty in inflow hydrographs and roughness coefficients 

on the simulated flood extent in part of the model domain considered in Chapter 5. 

Better radiometric quality of the satellite stereo pairs used for terrain extraction in 

Chapter 4 may have made it possible to represent more part of the floodplain in finer 

detail. This would help in reducing the area affected by terrain induced consistent bias 

in the uncertainty assessment experiment in the lower course of the Damodar Basin. 

 

7.8 Summary 

 

By addressing the aspect of flood mitigation through rainfall-runoff modelling this 

thesis has presented a holistic perspective to flood management in all major 

physiographic sub-divisions of a large flood-prone river basin with sparse data. The 

overall message from this thesis is that when our general goal is to predict dynamics of 

high magnitude stream flow in data sparse regions, we should pay particular attention 

to the choice of the model in relation to the available data and hydraulic characteristics 

of the event. Adaptations are necessary to create inputs for the models that have been 

primarily designed for areas with better availability of data. Freely available geospatial 

information of moderate resolution can often meet the minimum data requirements of 

hydrological and hydrodynamic models if they are supplemented carefully with limited 

surveyed/measured information. The amount of uncertainty in these types of prediction 

setups for extreme streamflow events was not found so great that it would discourage 

scientific community from using them under severe data constraint.  
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This thesis has highlighted the typical challenges in modelling flood inundation and the 

rainfall-runoff process in the developing countries arising from lack of data. I have  

modelled the passage of extreme streamflow events through different courses of a river. 

The nature and manifestation of high magnitude flows in different part of a river tend to 

vary. Consequently, the type of flood hazard and the necessary prediction capability 

change from upper course of the river basin to its middle and lower course. It is 

important to understand the dynamics of flow at all physiographic sections of the river 

valley. However, due to severe constraints of available data, both in model inputs and 

for the validation of model performance, it is essential to set priorities within the 

hydrological variables that are significant for flood management at different portion of 

the river valley. In the Damodar River Basin the rainfall-runoff process in relation to 

the changing land cover is important in the upper catchment as it can increase the 

magnitude and reduce the lag time of high magnitude flows entering the reservoirs, 

making them less effective in controlling floods downstream. The travel time and 

discharge/water level of the flow through the middle course towards the flood-prone 

lower basin is of primary significance. Finally, the extent of inundation caused by 

different magnitude of flood water coming from the middle course is of major interest 

for natural hazard mitigation planning. Widespred flooding in complicated channel 

networks is fairly common, particularly in monsoon-dominated Asia where seasonal 

high magnitude rainfall patterns are prevalent.  

 

During the course of this study it has been demonstrated that models of different levels 

of complexities in terms of physical process representations are appropriate for accurate 

prediction of important hydraulic variables at different parts of a river basin. The 

necessary level of processing of the existing freely available terrain data also varies 

depending on the modelled hydraulic variable of importance and the physical 

characteristics of the channels. The bare minimum requirement of surveyed information 

also varies depending on the scale of the study. When only predicting water surface 

elevations at a particular distant downstream point of a single channel is of concern, the 

SRTM DEM and few surveyed channel cross-sections are sufficient to perform well 

without much uncertainties with a simple model like LISFLOOD-FP. However, for 

simulating extensive floodplain inundation in anabranching channels at reach scale, 

much more effort in terms of the improving the quality of the input terrain is required. 
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The benefit of hybrid terrain data can only be exploited fully if a physically more 

realistic 2D finite element model such as TELEMAC2D is employed. 

 

Chapter 5 discussed various aspects of uncertainties in model outcomes pertaining to 

the TELEMAC2D-based  modelling experiment presented in Chapter 4. However, it is 

also necessary to point out that the comparison between the performances of 

LISFLOOD-FP and TELEMAC2D, as presented in Chapter 4, is also subject to 

modelling uncertainties. The output of the  LISFLOOD-FP model is particularly 

susceptible to uncertainties in the n values used for the channel section. This property 

of LISFLOOD-FP was noted in Section 3.5.2. In addition, the effect of uncertainty in 

the topographic data on the model outcome has not been taken into account in Chapter 

4. As LISFLOOD-FP is known to be very sensitive to the accuracy and resolution of 

the input topography, this factor is also a potential source of uncertainty for the results 

presented in Chapter 4. The inability of the LISFLOOD-FP to divert fast flowing water 

into the smaller branches has been considered as the most important factor responsible 

for the poor performance of LISFLOOD-FP in anabranching channels. The influence of 

other factors in influencing the model outcome has been considered negligible. 

Nevertheless, when evaluating the comparative performance of LISFLOOD-FP and 

TELEMAC2D in a complicated channel system, the effects of these unmeasured 

uncertainties are required to be kept under consideration.    

  

Outcomes of the rainfall-runoff modelling experiments described in Chapter 6 have a 

number of limitations, which stem mainly from limited availability of model inputs and 

observed records for validation. The most important source of uncertainty comes from 

the use of only one rain gauge for a basin of approximately 1000 km2. The use of 

TRMM rainfall estimates of 3 hour interval for the 2004 LULC scenario also 

contributed to more uncertainty in the model results. However, these data sources were 

the only source of sub-daily rainfall information found in the Konar River Basin, which 

is likely to be a typical scenario in other river basins in developing countries.  
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Lack of sub-daily observations of measured discharge at the main basin outlet also 

masked inter-day variation in the discharge. Had this type of data been available, it 

would have been possible to validate the simulated discharge at a finer temporal scale, 

adding confidence to the model outcomes. Due to the absence of river gauges at sub-

catchment levels in the Konar Basin, it was not possible to validate the simulation 

results pertaining to the effect of tributary sequencing and flow convergence times on 

the flood hydrograph at the main basin outlet. This factor added to considerable 

uncertainty in the model results and the derived conclusion in Chapter 6.  

 

Additional sources of uncertainties also arise from the use of small scale soil maps, 

relatively coarse resolution satellite images for generating LULC maps and averaging 

out CN values from published tables to derive CN values for more broad LULC classes 

that could be identified from the moderate resolution satellite products. The errors in all 

inputs are likely to propagate through different components of the modelling process in 

a complex manner which are difficult to isolate and quantify. 

 

Incorporating the uncertainties in the observed flood extent map involves complex 

processing of the model outputs and it can be only justified if the input, particularly the 

terrain, induced biases in the model output is restricted in a small portion of the 

modelled flood inundation. It is acknowledged in this thesis that due to the use of 

coarse quality terrain as well as validation data it is rather difficult to isolate the sources 

of uncertainties in the model prediction. This drawback is perhaps more pronounced at 

the reach scale. Nevertheless, the probabilistic approach towards distributed flood 

inundation prediction is of vital importance when working with sparse inputs and 

validation data. Uncertainty assessment is the key to probabilistic flood hazard 

assessment and it helps to assess the level of confidence one can have when employing 

model inputs that are not of ideal resolution and accuracy.  

 

Land-use planning in the flood source areas at the steep hillslopes of upper catchments 

of a river basin is an important non-structural strategy to dampen the energy in the fast 

flowing flood water. This thesis has addressed the issue of flood mitigation in the 
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Damodar Basin by systematically evaluating the effect of land use changes at the sub-

catchment level on the flood hydrograph at the basin outlet. The outcome of this 

analysis indicates that with the current constraints of rain and river gauging stations in 

the developing countries there is no conclusive way of establishing a clear relationship 

between local land use changes and the global hydrological response in a basin. 

However, this study recommends that before undertaking remedial land use planning at 

a particular sub-catchment it is helpful to simulate its effect on the hydrograph at the 

basin outlet. This study provided a simple modelling framework based on easily 

accessible input data and a freely available, widely used, hydrological model to 

perform this kind of simulation. 

 

Due to the easily accessible data sources and open source models used in this study it 

will be of interest to a wide community of researchers and flood managers, particularly 

in the data-sparse regions for modelling flood inundation. Key methodological 

innovations of this study are the 1) channel cross-section survey without access to 

permanent GPS base stations, 2) merging digital photogrammetic outputs with other 

sources of elevation data, 3) modelling widespread inundation in anabranching 

channels without high resolution terrain data, 4) uncertainty assessment of a 

computationally demanding finite element inundation model for a relatively large 

flood-prone area in high resolution and 5) the use of easily available data and 

modelling tools to evaluate the impact of local land-use change on the downstream 

flood risk.   

 

In this thesis, I have presented a holistic approach to developing essential flood 

prediction capabilities in data sparse situations and in different reaches of a river basin. 

River flooding was viewed from the point of view of natural hazards which requires 

more accuracy in model performance than studies dealing with understanding seasonal 

water cycles in the continental rivers. The conclusion of this thesis is that depending on 

the scale of the phenomenon and physical characteristics of the channels different type 

of inputs and hydrodynamic codes can provide optimal solutions. The existing data 

available in the public domain or that can be obtained at low-cost in the developing 
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countries can be put to use for flood prediction and mitigation planning with careful 

adjustments. 
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