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Markov random fields and Markov chains on trees

Stan Zachary

Abstract

We consider probability measures on a space SA (where S and A are
countable and the 0-field is the natural one) which are Markov random
fields with respect to a given neighbour relation ~ on A. In particular,
we study the set G(II) of Markov random fields corresponding to a given
Markov specification II, i.e. to a consistent family of "Markov"
conditional probability distributions associated with the finite subsets

of A.

First, we review the relation between Il and G(II). We consider also the
representation of Il by a family of Znteraction functions associated with

the simplices of the graph (A,™) , together with some related problems.

The rest of the thesis is concerned with the case where (A,™ 1is a tree.
We define Markov chains on S and consider their relation to the wider
class of Markov random fields. We then derive analytical methods for
the study of the set M(II) of Markov chains in G(II). These results are

applied to homogenecus Markov specifications on regular infinite trees.

Finally, we consider Markov specifications which are either attractive
or repulsive with respect to a total ordering on S. For these we obtain
quite strong results, including an exact condition for G(II) to contain
precisely one element. We thereby generalise results obtained by

Preston and Spitzer for binary S.
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0. INTRODUCTION

This thesis is concerned with probability measures
(p.m.s) on a measurable space (SA,F), where S and A are
countable sets, s? is the corresponding product space,
and F is the natural g-field generated by the finite-
dimensional cylinder sets. (Since A is countable, F
simply consists of all subsets of SA.) The p.m.s of
interest are Markov random fields, defined below, with
respect to a given neighbour relation ~ on the elements
of A. These latter may then be regarded as the vertices
of an (undirected) graph whose edges are defined by ~.
We shall simply refer to A, taken together with ~, as the
graph A. Our chief, though not sole, concern is with
the special case where the graph A is a tree, that is, a
connected graph which becomes disconnected when any one

of its edges is removed.

Intuitively, and perhaps with regard to some physical
applications in statistical mechanics and elsewhere, the
elements of A may be thought of as sites. A state X, S
is associated with each site i € A. Thus the generic
element X, = {xi , 1 € A} of s® denotes the state of the

entire system.

It is convenient to introduce the collection of coordinate
random variables {Xi , i € A} where each random variable
Xi maps X, € s® into its ith coordinate X, . Then a p.m.
P on (SA,F) defines a stochastic process which has P as
its distribution. For each subset B of A we denote by
F(B) the o-field generated by the vector of random
variables X, = {Xi , 1 € B}, We also write Xy for the
projection of X, € s® into SB, i.e. Xy = XB(xA). A p.m.
on (s*,F) is said to be a Markov random field (M.r.f.)
(with respect to the neighbour relation ~), if for all
finite subsets V of A
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(1) P(F/F(A-V)) = P(F/F(3V)) P-a.s., for all F € F(V),
where 3V, the boundary of V, is defined by
3V = {i € A-V : there exists j € V with i ~ j}.

More intuitively, P is a M.r.f. if, for each finite subset
V of A, the conditional distribution of the random variables
Xv assciated with V, given the values of the remaining
random variables XA_V , depends in fact only on the values
of the random variables XaV associated with the set 3V of
neighbours of V. The neighbour relation ~ may be thought

of as defining those pairs of sites between which some

form of 'interaction' occurs.

It is well-known that when a p.m. P on (SA,F) is strictly
positive, i.e. when its finite-dimensional marginal or
cylinder p.m.s have strictly positive densities, then for
P to be a M.r.f. it is sufficient for the condition (1)
to hold for all subsets V of A consisting of a single
element. Thus many authors take this apparently weaker
condition (which we will refer to as the local Markov
property) as defining a M.r.f., but then usually also
require strict positivity. We prefer to take the earlier,
stronger, definition of a M.r.f., as on occasions it
enables results to be carried through in the absence of
the 'strict positivity' (or some similar) condition.

(See, for example, section 2.1.)

The basic problem which we consider is a special case of
one which was first studied by Dobrushin (1968); it was
subsequently taken up by many others, probably the most
general (and most abstract) treatment being given by
Preston (1976). 1In the present context it may be stated
as follows. For each member V of the collection V of all
finite subsets of A, we are given a stochastic kernel

A

Ty S x F(V) ~» R, (where R, is the set of non-negative




real numbers). The kernel Ty essentially defines a
probability distribution on (SA,F(V)), or if we prefer on
(SV,F(V)), conditional on each possible element Xy v of

sh v (so that we may alternatively regard T, as a function
s AV x F(vy - R+). Thus Ty assigns probabilities to the
possible states of the system 'inside' V, conditional on
each possible state of the system 'outside' V. The family
I = {nv , V € V} of such kernels is required to satisfy
the obvious consistency condition; following Folimer (1975a,b)
such a family will be referred to as a specification. Let
G(II) be the set of p.m.s on (SA,F) corresponding to the
specification II, so that a p.m. P belongs to G(I) if and

only if for each Vv € V, F € F(V),

(2) P(F/F(A-V)) = WV(-,F) P-a.s.

(In fact it is convenient to extend the domain of each
kernel Ty + SO that it becomes a function SA x F - R+ and
has the property that, if P € G(II), the relation (2)
holds for all F € F.) We wish to say as much as possible
about the set G(II).

We remark that it is obvious that G(II) is a convex set so
that |G(1)|, the number of elements in G(II), is equal to
O, 1 or ». Let E(Il) be the set of extreme points of
G(II). It is known that these extreme points 'exist', and
indeed that every element of G(II) is a unique convex
combination of them; that is, that G(Il) may be put into a
one~-to-one correspondence with the set of p.m.s on E(I)
(with a suitable o-field); (see Preston (1976) or

Dynkin (1978) for details.) Thus, in a certain sense,

it is sufficient to study E(IN).

Given the neighbour relation ~ on A, we will say that a
specification I is Markov if for each V€ V, F € F(V),
the random variable ﬂv(-,F) is F(3V)-measurable. Thus

the p.m.s corresponding to a Markov specification are




M.r.f.s. In this thesis we consider only Markov
specifications, and indeed (as previously remarked) most
of our work is concerned with the case where the graph
defined by ~ is a tree. This latter problem may be
regarded as a somewhat special case, and one unlikely to
have direct physical applications - except perhaps in

the important instance of the one-dimensional <nteger
lattice, defined by taking A to be the set of integers
and consecutive pairs of these to be neighbours.
Nevertheless the 'tree' problem is of some interest; for
here analysis is very much simpler than for more general
graphs, so that, given II, it is frequently possible

to make quite detailed studies of the structure of G(I)
and its various associated subsets; further we may often
make explicit constructions of many of the elements of
G(II). The methods of construction used are such as to
provide some insight into the relation between a given
Markov specification and the set of associated M.r.f.s,
and there is perhaps a possibility that some of these
methods might be extended to more general graphs. Lastly,
there is some hope,as yet guite unfulfilled, that results
for Markov specifications on trees may provide bounds for
results about related specifications on more complex graphs.
An example is the question of the number of elements of
G(I) . Because of its importance in statistical mechanics,
the d-dimensional integer lattice (A = Zd with the
obvious 'nearest' neighbour relation) is of particular
interest in this respect.

We consider briefly the particular case where the tree A

is the one-dimensional integer lattice defined above.

Here, to show that a p.m. P on (SA,F) is a M.r.£f., it is
sufficient to verify the defining relation (1) for each

subset V of A which consists of a 'string' of consecutive
integers; (see section 2.1). For any such V the 'conditioning'

involved in (1} has a 'two-sided' nature; this is in




contrast to the 'one-sided' conditioning involved in

the usual definition of a Markov chain. It is easy to
see that Markov chains are M.r.f.s, though the converse
is not in general true. (For an example of a M.r.f.
which is not a Markov chain, see Cox (1977}).) Now let

1 be a given strictly positive, translation-invariant,
specification. Many authors, especially Spitzer (1975a),
Kesten (1976) and Cox (1979), have studied the general
problem of characterising G(II). It is known (Sprtzer
(1975a)) that the elements of E(Il) are Markov chains.
Thus a complete description of the set M(Il) of Markov
chains in G(II), were it available, would provide an
essentially complete description of G(II) itself. One
complexity is that, even though I is translation-invariant,
the corresponding Markov chains need not be. Denote by
Go (II) the translation-invariant (i.e. stationary) M.r.f.s
in G(NI). Kesten (1976) showed that G, () is either empty
or else contains just one element which is then a
(stationary) Markov chain. When G, (1) is empty, G(II) may
be empty or may contain infinitely many elements;
(obviously it cannot contain just one). When G, (1)
contains one element, G(II) may be equal to G, () or may
contain infinitely many elements. Spitzer (1975a)

showed that all these possibilities can actually occur.
However, when the state space S is finite the situation
is much simpler: it is known (Dobrushin (1968), Spitzer
(1971)) that G(I) always consists of a single stationary
Markov chain. For countably infinite S a complete

characterisation of G(II) is not in general known.

We now allow the graph A to be a general tree, and consider
a general Markov specification 1. There is now a
considerable increase in the variety of stochastic
phenomena which may be exhibited by the M.r.f.s comprising
G(Il) ; some examples are given below. A natural

generalisation of the concept of a Markov chain exists:



a p.m. P on (SA,F) is a Markov chain (with respect to

the neighbour relation ~ which defines the tree structure)
if, for every finite connected subset V of A, the
associated marginal p.m. P (induced by P on (SV,F(V))) is
a M.r.f. with respect to the restriction of ~ to V. (We
will see in section 2.1 that on the one-dimensional
integer lattice this definition agrees with the usual one
for a Markov chain.) As previously, every Markov chain

is a M.r.£f., though the converse result is false; but for
the given Markov specification II the set E(Il) of extreme
points of G(II) is contained, sometimes strictly, in the
set M(II) of Markov chains in G(M). Hence the problem of
describing G(II) may again be reduced to that of describing
M) .

Much of this thesis is concerned with the development of
analytical methods for studying M(II). It seems, however,
that the usual approach to the study of Markov chains,
which is via their transition matrices (so that the
chains are thought of as 'evolving' sequentially), is not
entirely natural in this situation; for example different
chains in M(I) may have different (sets of) transition
matrices. The approach taken here is based on the well-
known representation of a Markov specification I in terms
of a family ¢ = {¢C , C € C} of interaction functions -
one such function ¢c being associated with each member C
of the set C of cliques or simplices of the graph. 1In
this case, where the graph A is a tree, the cliques are
simply its vertices and edges. Now if P € M(Il), the
marginal p.m. Pv associated with each finite connected
subset V of A corresponds to a family @V = {¢Z , cCE€C, CcCy}
of interaction functions associated with the vertices and
edges of V. The relations between the various families
@v, as V varies, form the basis of our study of M(I), and
thus ultimately of G(I).




Spitzer (1975b)*considered the regular infinite tree A
with 4 + 1 edges meeting at each vertex, the binary state
space S = {0,1}, and a strictly positive Markov specification
I which was homogeneous in the sense of being invariant
under graph isomorphisms of the tree. Here, in spite of
the simple nature of S, we find that even M, (II) - defined
to be the set of Markov chains in M(Il) which are themselves
homogeneous in the above sense - may contain more than one
element; (it must always contain at least one). We further
find that there may exist non-homogeneous Markov chains,
and that a suitable mixture of these may result in an
element of G(II) which is homogeneous but not a Markov
chain. In addition to these and other results, Spitzer
gave a precise and computable condition for G(Il) to

contain exactly one element (necessarily a homogeneous

Markov chain).

In Chapters 3 and 4 of this thesis we also consider the
regular infinite tree A defined above; we take a general
countable state space S, and again seek to characterise M(Il),
and hence G(II), for a given homogeneous Markov specification
. Spitzer's approach for the binary state space, which

was essentially based on consideration of the transition
matrices of the elements of M(Nl), seems difficult to

extend to the general case; (see, however, section 3.3).

We prefer to take the alternative approach outlined above.

We also manage to make some, though not a total, relaxation
of the requirement that I be strictly positive. Many of

the qualitative features of Spitzer's description of G(I)

in the case where S is binary are reproduced in the more

general case.

We summarise briefly the contents of four remaining
chapters of the thesis. 1In Chapter 1 we review some basic
results concerning, on the one hand, the relation between

specifications and their corresponding probability measures

* See the note at the end of this chapter.




(or random fields), and on the other, the relation
between families of interaction functions and  their
corresponding specifications. We discuss the Markov
property, for a fairly general neighbour relation ~ on A,
in relation to all these objects. Finally, we derive
some simple results concerning the representation by
interaction functions of the marginal p.m.s P,V € vV,

of a given M.r.f. P on (SA,F).

Chapter 2 is concerned with the case where the neighbour
relation ~ is such that the graph A is a tree. We consider
Markov chains and explore their properties, together
with their relation to the wider class of Markov random
fields. 1In particular we extend to our general tree
Spitzer's result for the one-dimensional integer lattice,
that every M.r.f. with (almost) trivial tail o-field is a
Markov chain. In the second half of the chapter we
consider a Markov specification I and present the key
theorem which enables us to study the corresponding class
M(I) of Markov chains.

In Chapter 3 we specialise further to the consideration of
a regular infinite tree and a homogeneous Markov
specification JI. First, in section 3.1, we use the
results of Chapter 2 to establish a one~to-one correspondence
between the set M, (lI) of corresponding homogeneous Markov
chains, and the set of fixed points of a transformation on
(roughly speaking) the space of functions S ~ R, . This
correspondence effectively characterises M, (II) and in
particular enables us - at least in principle, and often
in practice - to determine the number of its elements.

We also give a similar result for the wider set M, ()

of Markov chains in M(Il) which have the property of being
invariant under those graph isomorphisms of the tree in
which each of the vertices is translated an even number of

'steps'. 'Complementary' pairs of such Markov chains,




belonging to M; (II) but not M, (), may arise naturally
when, as in Chapter 4, we consider repulsive specifications.

In section 3.2 we take an increasing sequence {Vn} of

finite subsets of A such that A = LJ v, . For each n
n=0

we take a p.m. P(n) on (SA,F) such that the relation (2)

is satisfied for all v C Vn , F € F(V). We consider

briefly conditions for the weak convergence of the

seguence ™} to an element P of Mo (II) . This leads,
rather informally, to the idea of identifying the 'domain
of attraction' of each of the elements of M, (II). Section
3.3 is concerned with some connections between our approach
to the study of M, (lI) and that adopted by Spitzer for the
binary state space. Section 3.4 works out these connections
for the binary state space itself. We thus obtain examples
of all the possible phenomena considered in the preceding
sections of the chapter. 1In section 3.5 we consider a

further example with |S]| = 3.

Chapter 4 is a continuation of Chapter 3 in which we
require the homogeneous Markov specification II to be
either attractive or repulsive with respect to a given
total ordering on the state space S. These concepts are
natural generalisations of the familiar ones for binary S
(where every Markov specification is either attractive or
repulsive). (The concept of an attractive specification
may be generalised further - see Preston (1976).) If 10

is attractive, and additionally S has botkh a minimal and

a maximal element, then we may identify two, not necessarily
distinct, Markov chains in M, (). If they are coincident
then they represent the sole element, not only of M, (),
but of G(II). Some similar results are at least implicit
in the work of Preston (1976), but the results here follow
particularly simply from the ideas developed earlier, and
avoid recourse to what is now known as the Holley-Preston

inequality. If @I is repulsive, and additionally S has




0.10

either a minimal or a maximal element, then we may identify
a 'complementary' pair of Markov chains in M, (II). Again,
if these are coincident they represent the sole element

of G(II).

We shall find it convenient to re-introduce all the above
ideas and definitions at the various points where they
naturally arise. However, most of the notation introduced
above will be taken as standard throughout. If B is any
subset of A, we shall on occasions wish to regard S? as a
space in its own right. Then Xp s defined above as the
projection onto sB of a generic point X, of SA, will
simply denote a generic point of sB. Similarly F(B)

will then denote the natural o-field on S®. We shall
also make other such 'natural' identifications. The
conditional probability of an event F with respect to the
o-field 6 € F will be denoted in the usual way by

P(F/G), except that when we wish to regard P(F/F(B)) as

a function on S® and consider its value at the point Xp oo
we shall write P(F/XB = xB). We shall often simply write

i for the subset {i} of A, e.q. x,_; for Xa (i} *

* Note added 'in proof'. Some of the results for S = {0,1} and A
a regular infinite tree, attributed to Spitszer (1975b), were in
fact first proved by Preston (1974), as Spitzer's paper itself
makes clear.




] SPECIFICATIONS, INTERACTIONS, AND THE MARKQV PROPERTY

1.1 Specifications

Recall that V is the set of finite subsets of A. We now
give a slightly more formal definition of a specification
(Follmer (1975b),Preston (1976)) associated with the
space (SA,F), as a family I = {nv, V € V} of functions
nV:SAx F— R+, such that for each vV € V,

[ (i) m_ is a stochastic kernel, i.e. for each

A
e . i
xA s, nv(xA, ) is a p.m.

(ii) WV(',F) is F(A-V)-measurable for all F € F
(1) {
(iii) wv(-,F) = Xp for all F € F(A-V)

(iv) Ty = T for all v, W € V such that v C W.

Here ¥, is the function s® - R _defined by xF(xA) =1 if
X, € F, and XF(XA) = O otherwise; Ty is the stochastic
kernel defined by: for each Xy € SA, F&EF

’

nwnv(xA,F) =[ ﬂw(xA,dyA)ﬂv(yA,F),

SA

i.e. w_m (xA,F) is the expectation of the random variable

W Vv
ﬂv(',F) with respect to the p.m. ﬂw(xA,-),

It is only really necessary to define the p.m.

ﬂv(xA,-) on (SA,F(V)), but it is natural to extend it,
by including the condition (iii) in (1) above, to a
A

p.m. on (S ,F); this brings w_ into line with the general

v
notion of conditional probability and makes more natural

the expression of other relations, such as the consistency

condition (iv). Further, by condition (ii) we may also




regard each kernel T, as a function §* VxF - R+ (or

indeed s® VxF(v) - R ), so that we will frequently write
TTV(XA-V
uniquely determined by its corresponding conditional

density function ﬁV:SZ*VXSV > R, given by

,F) for nv(xA,F). Thus it is seen that Ty is

(2) T (% ,XV) = ﬂv(x

v ' %a-v 1 Xy = X))

A-V v \'

We shall sometimes find it convenient to regard #_ simply

\4
as a function s® - R_. The specification II will be
called strictly positive if, for each V € V, the conditional

density function ﬁv takes only stfictly positive values.

In terms of the conditional density functions the

consistency condition (1) (iv) becomes:

(3) for all v, W € V such that v C w,
T (x X ) =h (x )T (x X)) x* e g?
W AW W Ww,v “a-v’ v'Ta-v'7v’'’
for some function h : sV R
W,V ° +°

The function hw y may be determined, in terms of ﬁw’ by

. ! A-V E: ~
S = 1.
noting that for each Xy S ' %vesvﬂv(beV,yv) 1;
thus h o, (x,y) = Z,’v SV Ta Facy  ¥yoy Yy) - When |
hvvaxA-v) > O (as is the case when I is strictly positive),
the density ﬁv(xA_v,-) is uniquely determined by ﬁw. ‘

A p.m. P on (SA,F) is said to be a random field (or
stochastic field or Gibbs state) corresponding to the
specification " if

(4) P(F/F(A-V)) = ﬂv(',F) P-a.s., FEF, VvEV




(Thus condition (1) (iv) simply corresponds to the relation

P(F/F(A-W)) = E{P(F/F(A-V))/F(A-W)} P-a.s.,
F EF

valid for all Vv, W € V such that v C W.)

It is not in general known whether every p.m. P on (SA,F)
corresponds to some specification. Certainly since (SA,F)
is a Borel space, P has a regular conditional distribution
which is almost a specification - only 'almost' because
condition (1) (iv) is only guaranteed to be satisfied
P-almost surely. This dependence on P however is a
serious weakness. Goldstein (1978) showed that when S

is finite, every p.m. on (SA,F) does correspond to some
specification. In this thesis we take a specification

as given, and study the set of corresponding p.m.s.

When the set A is finite, to each specification II there
corresponds precisely one p.m. P on (SA,F), which may be
identified with the kernel Te If in addition I is
strictly positive, then it follows from our earlier remarks
that II is uniquely recoverable from P. Further every
strictly positive p.m. on (SA,F) corresponds to (precisely
one) specification. Thus for finite A we may effectively
identify strictly positive specifications and strictly

positive p.m.s on (SA,F).

Returning to the general case of countable A, let G(I)
denote the set of p.m.s on (SA,F) corresponding to a
given specification 1. As remarked in the Introduction,
G(I) is obviously a convex set; thus |G(II)|, the number
of elements in G(II) is equal to 0,1 or », It is well-
known that all of these possibilities can occur. It is

further known (see e.g. Preston (1976), Theorem 2.1) that
the set E () of extreme elements of G(II) is precisely the




set of p.m.s in G(II) with respect to which the tail

o-field F =) F(A-V) is trivial, and that distinct
vey

elements of E(II) are mutually singular. Indeed since
(SA,F) is a Borel space we have the following integral
representation (Preston (1976), Theorem 2.2), which will

give us various results we shall need.

Theorem 1.1.1 (Preston)

Suppose G(II) # @. Then there exists a stochastic kernel

T SA x F - R+ such that

(1) =n(-,F) 1is ?-measurable, for all F € F

(ii) the p.m. v(xA,') € E(I), for all X, e s?

(iii) P(F/F) = m(-,F) P-a.s., for allF € F, P € G(I)
. a A
€ = . ) =
(iv) for each X, s®, if A(xA) {yA € 57 w(yA, ) W(X
then ﬂ(XA,A(XA)) = 1

(v) any p.m. P on (SA,F) belongs to G(II) if and only
if P = Pr (where Pn(-,F) is the expectation of
m(-,F) with respect to P).

The deduction which we require at present from this
theorem is simply that (from (v)) the p.m.s comprising
G(II) are the mixtures of those of the form n(xA,-),

X, € SA, these latter being extreme points of G(II).
Indeed, letting X denote the the space of equivalence
classes of S® defined by calling X, and Ya equivalent
if w(xA,-) = ﬂ(yA,-), Preston (1976 , Proposition 2.4)
also showed how to make the more formal deduction that
G(I) is in one-to-one correspondence with the set of

all p.m.s on (X, F), where F is the o-field in X which

corresponds naturally to the tail o-field F in s®. Here

E(Il) corresponds to the point masses on (ﬁ,?).

)1,




Thus, for the specifications I to be considered later,

we seek to describe the p.m.s in E(@I), these being

most usefully identified by the alternative characterisation
given above - as the set of p.m.s in G(II) with trivial

tail o-field. A complete description of E(I), at least

when this set is countable, is in an obvious sense
equivalent to a complete description of G(II). In

particular we always have that |G(ll)| is equal to 0,1,

or » according as ]E(H)[ is equal to 0,1, or is greater

than 1.




1.2 Interactions

We define an interaction on (S,A) to be a family

® = {¢V, V € V} of interaction functions o, ¢ sV - R

such that

+

[ (i) for each i € A, there are only finitely many

W € V such that i € W and P is not identically
equal to one,

(1)«

ii S c
(ii) for each Vv v, XA—V S

A

0 < E O (Xyy 1 Xy) < @
€ s

X
v

A-V

where ev IS x sV - R+ is defined by

— A
(2) 8, (%, X)) = [ ] o (X)), x, €8
W E V
WNVF+FgG

A~V o sV with S®. Note that

since V is finite, it follows from (1) (i) that the

Here we are identifying S

above product is taken over only a finite number of
functions ¢W not identically equal to one, and so ev
is well-defined.

It is easy to verify that the interaction ¢ determines

a corresponding specification HQ, each kernel « '

o ,v
V € V, being given by its equivalent conditional density

function

(3) To v XacyrXy) = Kolx o0, (x, ooxy)y %, €8

where the normalising function k. : s BV

so that

e R+ is chosen




~ A~V
€
(4) i To v (X ay Xy Lo %y &5

The interaction is not, of course, uniquely recoverable
from the specification, unless additional conditions

are imposed on the interaction functions. With suitable
such conditions an interaction is just the exponential
version of an interaction potential (see e.g. Preston
(1976)). The former is more convenient here as we

shall not always require that the interaction functions
be strictly positive.

If P € G(HQ) we shall say simply that P corresponds
to the interaction ¢. 1In particular if A is finite, P

is uniquely determined by

(5) P(XA = xA) =k | ] ¢W(xw) '
WEV

where k is the appropriate normalising constant; further
to show that P corresponds to ¢ it is sufficient to

verify this relation.




1.3 The Markov Property

Henceforth we shall assume that the set A is endowed with
a symmetric binary relation ~ on its elements. Elements
i and j of A will be called neighbours if i ~ j. We
shall also write i 7 j if i and j are not neighbours.
We shall further require that the set of neighbours of
each element i of A is finite and does not contain i
itself. The set A, taken together with ~ , may thus be
regarded as a graph - we simply refer to it as the graph
A. It will be convenient to define, for each subset B

of A, all the following associated sets:
the boundary 3B = {j € A-B : 4 i € B with i ~ j}
the enviromment EB = B U 3B
the internal boundary 3B = 3(A-B)
the <Zntertor nB = B - 3B

Note that all of these sets are finite when B is finite,
that £(nB) C B for all B, and that B' C nB if and only
if €B' C B. We will in general write 3i, &£i for 3{i},
£{i} for any i € A.

A subset of C of A will be called a clique (or simplex)
if |Cc] =1, or if |C| = 2 and every pair of elements i
and j of C are neighbours. We denote by C the set of all
cliques, and by C(V) the set of all cliques which are
subsets of the given set V in V. Obviously we have

c C V.

A specification I = {ﬁv,v € V} will be called Markov if
for each v € V,

(1) ﬂv(°,F) is F(93V)-measurable for all F € F(V).



As usual this relation then holds automatically for all
F € F(gV). The kernels Ty will be referred to as Markov
kernels. It will frequently be convenient to regard
their corresponding conditional density functions as

functions ﬁv : Sav x g7 - R+ (or ng - R+).

The specification II will be called locally Markov if

we only require (1) to hold for V such that |V| = 1.

It is known (see Theorem 1.3.1 below) that a specification
which is both strictly positive and locally Markov is

in fact Markov. Hence many authors take the former

two properties as defining a Markov specification.

A p.m. P on (SA,F) will be called a Markov random field
(M.r.f.) if for each v € V,

(2) P(F/F(a-V)) = P(F/F(3V)) P-a.s., for all F € F(V)

In particular p.m.s which correspond to Markov specifications
are M.r.f.s. Conversely, every strictly positive M.r.f.
P corresponds to the Markov specification II whose
conditional density functions are given by
T = = = E
Ty XayrXy) = Py = x,/Xq = %500 vev
- for here it is easy to check that the consistency

condition (1) (iv) of section 1.1 is satisfied.

To verify that a p.m. P on (SA,F) corresponds to a

given Markov specification I it is (necessary and)

sufficient to show:

(3) for some increasing sequence {Vn} in V such that v 7 A,

P(F/F(Vn-V)) = ﬂv(‘,F) P-a.s.,

for all v € V, F € F(V) and n such that £v C Vn‘




For then, using (for instance) the martingale convergence
theorem, we have for each V € l/, F € F(V),

P(F/F(A-V)) = wv(-,F) P-a.s.
If P is known to be a M.r.£f., then obviously it is
sufficient to show that for each v &€ V, F € F(V)

(4) P(F/F(3V)) = nv(',F) P-a.s.

An interaction ¢ = {¢V,V € UV} on (S,A) will be called
Markov (sometimes referred to as nearest neighbour)

if each interaction function ¢v is identically equal

to one whenever V does not belong to C. It will thus
be convenient to denote a Markov interaction by

d = {¢C,C € C}. Note that the Markov requirement makes
condition (1) (1) of section 1.2 redundant.

Various versions of the following theorem, usually
phrased in terms of interaction potentials, are well-

known. {({Part (i) of the theorem is triwvial.)

Theorem 1.3.1

(i) If ¢ is a Markov interaction on (S,A), HQ is a
Markov specification - the corresponding conditional

density functions being given by

(5) ﬁ@,v(xav'xv) = kv(xav) 1;1 ¢C(XC), vey

CIW+g

where as usual each kv : Sav - R+ is the appropriate

normalising function.




(ii) If I is a strictly positive, locally Markov
specification, then there exists a Markov interaction
® on (S,A) such that Il = H®.

A corollary is that a strictly positive, locally

Markov specification is Markov.

The importance of part (ii) of the theorem lies in the
result that at least all those Markov specifications
which are strictly positive may be represented - and
thus they and their corresponding M.r.f.s studied - in

terms of Markov interactions.

Versions of part (ii) of the theorem have been proved
for finite A by various authors (Brook (1964), Grimmett
(1973), and others), and in this case it has also been
shown that, given some arbitrary basepoint element

S, € SA, the interaction functions ¢c, C € C may be
chosen so that for each clique C, ¢C(xc) = 1 whenever
X, =8, for some i € C; and further that under this
condition the interaction functions are determined
unigquely. When this condition is satisfied we shall

say that both the interaction and the corresponding

interaction functions are adapted with respect to the
basepoint S, These additional results are well-known

and may be found, for example, in Grimmett (1973).

For the more general case of countable A, the theorem
has been proved by Spitzer (1971) for the binary state
space S = {0,1}, and by Preston (1976) for general
countable S but under the assumption (in part (ii))
that the specification II is Markov, rather than simply
locally Markov. We show here how to prove part (ii) of
the theorem as stated, assuming its truth, along with
the additional results stated above, for finite A.

The argument is related to one used by Spitzer (1973),

again for the binary state space,.



Let Sy € s® be a basepoint. Fix C € C, i € C. For
any V € / such that £i C V (and hence C C V), and for
ay €85V, mo(x, ) is a p.m. on (8V,F(V)) which
is easily seen to be strictly positive and locally
Markov with respect to the restriction of the neighbour
relation ~ to V. Hence, since V is finite, wv(xA_v,-)
is Markov on V with a unigue representation of the form

any x

(6) (%, %) = K ] oo, (x.) ., x €58Y
C'E€C (V)
where the functions @y (which, along with ﬁ, may
depend on V and xA_V) are adapted with respect to the
basepoint Sat Now let X, ,x& € sV be such that
- ' = '=
}(V—c sv_c P Xy Xgy 1%y S - Then from (6) we
have
T (% , %)
(7) [ o0 (xg,) = 2% T
o 1]
c'cc Mo (X o rXy)
s.t. i €cC v
_ 7TJ.(XA—J.'X)
Ty (Xpoyr8y)

Since II is locally Markov, this last expression depends
only on xgi , and so the left side of (7) is independent
of all V such that £i C v, and all XAy € sV, The

same argument may be applied to all C' C C with i € C',

and thus we deduce that $c itself is independent of all

V such that £i C V and all X, o € s*V., Further by

considering those V such that £C € V (so that for all
i € C we have £i C V), we see that @C is independent of

A-V
S
all v, Xy S ,

£i € V. Thus for each C € C, we define ¢c = $c where
$

such that for some 1 € C we have

c is as constructed above.




It remains to show that the Markov interaction
o = {¢V,C € (C}, thus defined, determines the specification
I. Given W € V, take V = £W, and for each Xy € SA

consider the representation of 7_( *) given by (6).

X ’
V' A-V
It follows that for the appropriate normalising function

k' : SA—w

=
w
]

]
oxe
"
o>
]

A-W cec c'c
CrW+g

(since c € C, CNWF@ and V = EW together imply that
there exists some i € C with £i € V). Thus e = Tow
as required, and the locally Markov specification I is

seen to be Markov.

We now define a Markov interaction % to be hereditary
with respect to a given basepoint S, € SA, if each
interaction function ¢C, C € C, satisfies ¢C(xc) >0
whenever X, =8, for some i € C. We will also call a
(necessarily Markov) specification I hereditary if
there exists a hereditary Markov interaction ¢ such

that 1T = H®. If this is the case, then we have

(8) # (x,,,8.) >0 for all i €A and x,, € s,
i1 ai
and this condition in turn implies that any Markov

interaction to which Il corresponds is hereditary.

We shall chiefly be concerned with hereditary Markov

specifications, analysed in terms of the corresponding

interactions. Theorem 1.3.1 ensures that at least

every strictly positive, (locally) Markov specification



is hereditary (the interaction functions here being
strictly positive). The hereditary condition may
therefore be seen as a slight - though on occasions
desirable - relaxation of the strict positivity

condition.

Finally we remark that it would be of interest to
investigate the extent to which the condition (8)

might be sufficient, or almost sufficient, to ensure
that a Markov specification 11 is hereditary. Consider
the case where A is finite, and let I satisfy (8).

Then the corresponding M.r.f. P on (SA,F) satisfies

the condition that if X, € s® is such that P(XA = xA) >.O,
and if XA is such that for allvi € A, xi is equal to
either X, or s, then P(XA = xA) > 0. (This is what

is usually referred to as the 'hereditary' condition.)
It is well-known that this condition is sufficient to
ensure that the M.r.f. P corresponds to some hereditary
Markov interaction ¢. (See, for example, the proof of
our Theorem 1.3.1 in Grimmett (1973).) Then at least

the specification II which is for all practical purposes

@l
equivalent to I, is hereditary.




1.4 Marginal distributions

IfveEeV, and P is a p.m. on (SA,F) we shall denote by
PV the marginal (or cylinder) p.m. induced by P on

(sV,F(v)).

Lemma 1.4.1

Let the p.m. P correspond to the Markov interaction

é = {¢C,C € ¢} on (S,A) - so that P is a M.r.f.. Then
PV corresponds to an interaction oV = {¢x,w C vV} on
(S,V) which satisfies ¢x = ¢w for all W such that

W N nvV # @, (where if W & C(V), ¢w is taken to be
identically equal to one).

Proof
We have
P(X, = xy) = PUXy, = x5,)P(X o = x /X5, = x57)
\/
= ¢~ X~ (x.), x, €
.av( av) Je o ¢ (X, v
CNnv#g
. v 3V .
for some function ¢5V HE -> R+. The second equation

follows since P corresponds to the Markov interaction ¢,
and 3(nV) C 3V. The required result is now immediate
from the remark following (5) of section 1.2.

Under the conditions of the lemma, it follows in particular
that for each Vv € V, PV is a M.r.f. with respect to the
modified neighbour relation on V given by additionally
defining as neighbours all pairs of distinct elements

in V. (PV is not in general a M.r.f. with respect to

the restriction of the original relation ~ to V.)




This result may also be proved directly for any M.r.f.

P on (SA,F), as follows. Define two subsets of any
graph to be separate if they are disjoint and if no
element of one is a neighbour of any element of the other.
It follows easily, from the defining relations for a
M.r.f., that if P is a M.r.f. on (SA,F), then for any
separate U,W € V, F(U) and F(W) are conditionally
independent (under P) with respect to F(A-(U U W)).

For finite A we also have the converse result that if
this condition holds for all separate subsets U,W of A,
then P is a M.r.f. on (SA,F). (Obviously, corresponding
remarks also hold for Markov specifications.) Now,

for general countable A with neighbour relation ~ ,

and given V € V, it is easy to see that if any two
subsets of V are separate with respect to the graph Vv
given by modifying ~ as described above, then they

are separate with respect to the original graph A.

Thus, by the above remarks, if P is a M.r.f. on (SA,F)
(with respect to ~), then PV is a M.r.f. on (SV,F(V))
with respect to the modified neighbour relation.




2 TREES

2.0 Introduction

Throughout this and subsequent chapters we assume that
the graph defined by the neighbour relation ~ on A is

a tree.

In section 2.1 we consider the special class of those
M.r.f.s on (SA,F) which may be called Markov chains

(first introduced for trees by Preston (1974) ). We
develop the relation of Markov chains to more general
M.r.f.s, and in particular we generalise a result of
Spitzer (1975a) to show that if I is a Markov specification,
then the elements of the set E(Il) of extreme points of

G(II) are Markov chains.

In section 2.2 we consider the Markov chains which
correspond to a given hereditary Markov specification
I (and thus also to a hereditary Markov interaction

® such that I = HQ). We present a basic theorem which
provides the key to their analysis.

The class C of cliques in the tree A simply consists

of those subsets of A which contain either a single
element or else a pair of neighbouring elements. We
will denote by N the subset of (C consisting of the
(unordered) pairs of neighbouring elements, and by

N(V) the set N N C(V) - those elements of N which are
subsets of any given V € V. We will write a Markov
interaction on (S,A) as ¢ = {pi P i€a, {j,k} €N},
where for each i € A we have p, + 8~ R, and for each
{j,k} € N we have SO S x § >R _. We will also write
) .

either qjk(xj . xk) or qkj(xk , X,) for qjk(x

3 {3,k}

We define two interactions to be equivalent if they

generate the same specification. Any Markov interaction



on (S,A) is equivalent to another which has the property
that the single-site interaction functions P; i €a,
are identically equal to one. Therefore we could,
without loss of generality, restrict consideration to
Markov interactions consisting entirely of paztrwise
interaction functions qjk , {j,k} € N. However the
advantages of retaining both types of interaction
function (for example in the statement. and proof of
Theorem 2.2.1) outweigh the slightly more cumbersome

expressions involved.

We also introduce the following additional notation.
Because A is a tree, there is a unique pats in A
connecting any two distinct elements k, %, i.e. a unique
sequence of elements k = kg , k1 , k2 , ... , kn = 2
of A such that kr ~ kr_1
distinct elements, i,j of A, let aj(i) denote the

y, 1< r <n. Now given

unique element k of 9i which belongs to the path
connecting i to j - in particular if j € 3i we have
aj(i) = j. Further let A; 4 = {k €na: 9, (1) = aj(i)}.
Note that for gach i € A, the sets A&’j »r J €3i, taken
together with {i} form a partition of A. Finally let

V* be the subset of V consisting of the finite connected
subsets of A. 1In those arguments which depend on
considepgtion of the marginal p.m.s Py of a given p.m.

P on (SA,F), it will be sufficient - and much easier -
to consider those V belonging to V* rather than to V.



2.1 Markov random fields and Markov chains

We define a p.m. P on (SA,F) to be a Markov chatn, if
for each V € V* the marginal p.m. PV is a M.r.f. on
(SV,F(V)) with respect to (the tree obtained by) the
restriction of the neighbour relation ~ to V. Note
that any Markov chain P is itself a M.r.f. on (SA,F):
it is sufficient to observe that if {Vh} is an
increasing sequence in V* such that Vh 7 A, then for

each v € V, F € F(V), we have
P(F/F(Vn—V)) = P(F/F(3V)) P-a.s.
for all n such that gv C Vn' Letting n > «» we have
P(F/F(A-V)) = P(F/F(3V)) P-a.s.
Let M denote the class of all Markov chains on (SA,F).
We require some properties of these and some alternative
characterisations of M. We start with the following

easy result for finite A.

Lemma 2.1.1. Suppose A is finite.

(i) If P is a M.r.f. on (SA,F), then for each vV € V*,

i € V we have

(1) P(X,_, =x) = P(X, = x,) i l P(X. = x./X, ,., = X )
v v i i 5 ev 3 j Bi(J) Bi(j)
jo#F i
(ii) Conversely, if for any p.m. P on (SA,F), (1)

holds with V = A and for some i € A, then P is a
M.r.f. on (s®,F).



Proof, We prove (i) by induction on |V|. Given V € V*,
i € Vv, choose j € V such that j # i and also 3] NV = {k}
for some k. Then V' =V - {j} belongs to V* and
contains i. Now Ak,j is finite, and so by the Markov
property, P(F/F(V')) = P(F/F(k)) P-a.s. for all F € F(Ak’,).
In particular we may take F = {Xj = xj}. Thus, since
k = 3,(3), we have

P(XV = xv) = P(Xv' = xv,)P(Xj = xj/Xafj) = Xai(ﬂ)

and so if (1) holds for V', it also holds for V. Now
it obviously holds for V such that |[Vv| = 1, and so the
general result follows. The converse result (ii) is

trivial.

When A is finite, and P is a M.r.f. on (SA,F), the
representation (1) of P(XA = xA) effectively supplies

a Markov interaction to which P corresponds. Note that
(in contrast to the more general Theorem 1.3.1.), neither
strict positivity nor the hereditary condition is required
to obtain this result, but that in the absence of such a
condition we do in general require P to be Markov, rather
than simply locally Markov. The following example,
adapted'from one given by Dobrushin (1968) illustrates
this : let s = {0,1}, A = {1,2,3,4,5} and define ~ on

A by i ~3j if and only if |j-i| = 1; let P(X, = x.)

equal % if either X, = (0,0,0,0,0) or x, = (1,1,0,1,1),
and equal O otherwise. It is easy to check that P is a
locally Markov, though not a Markov, random field - the
defining relation (2) of section 1.3 for a M.r.f. fails
to hold for the subsets {1,2} and {4,5} of A. Thus by
part (i) of Theorem 1.3.1, P cannot correspond to any
Markov interaction on (S,A).

Lemma 2.1.1 has the following immediate corollary.




Corollary. If A is finite, the classes of M.r.f.s and

Markov chains on (SA,F) coincide.

(This follows because, if P is a M.r.f. on (SA,F), then
for every finite connected subset V of A, the marginal
p.m. PV has a representation of the form (1) and is thus
also a M.r.f.)

We now return to the general case where A is countable.
Then neither the result (i) of Lemma 2.1.1, nor the above
corollary, is in general true - as will be seen. We do
have the following lemma.

Lemma 2.1.2. Let P be a p.m. on (SA

,F) Then the
representation (1) of PV holds for each Vv € V*, i € v

if and only if P € M.

Proof. If P € M, then for each V € V* the marginal p.m.
PV is a M.r.f. on (SV,F(V)), (with respect to the
restriction of ~ to V). Hence by Lemma 2.1.1(i) we
obtain (1) for any i € V. Conversely if (1) holds for
each V € V*, i € Vv, then by Lemma 2.1.1(ii) each marginal

p.m. PV, VeV is a M.r.f. and so P € M.

Remark. The result which we really need is that a p.m.

P on (5*,F) belongs to M if and only if, for each V € U*,
the marginal p.m. PV corresponds to a Markov interaction
on (S,V). When P is strictly positive then this result
may be deduced directly from the general Theorem 1.3.1
(arguing as in the proof of Lemma 2.1.2) - for when A is
finite we may replace Markov specifications by M.r.f.s

in the statement of that theorem.

The following corollary to Lemma 2.1.2 is of some interest,

though it is not required at any later stage.




Corollary. If P € M, then there is a Markov interaction
o = {pi gy i€n, {j,k} €N} on (S,A) (and hence a
Markov specification) to which P corresponds.

Proof. Choose any i € A. Given P € M define 1 by
p.(x.) = P(X, =x.,), x, €8 ; for each j € A-{i}, let

1 1 1 h R 1
k = ai(J), define qjk by qjk(xj ’ xk) = P(Xj = xj/Xk = X
and also define pj to be identically equal to one. This

)+

gives a complete Markov interaction ¢ = {ph 'qjk ;hen , {3j,k}eN}
on (S,A). To show that P corresponds to ¢ is straightforward:
given W € V, choose V € V* such that both &W C V and

also i € V; then since P € M we have by Lemma 2.1.2

T-T Py (%) T\T

P(X_ = x_) = q., (x, , x)
v v h €V hYory k) € N(vy R k
and so for all X e s"
P(XW = xw/F(aW)) = Trq),w(xBw , xw) P-a.s.
(recalling that ﬁ® . is the conditional density function
14
associated with W by ¢ - see section 1.2). Hence P

corresponds to ¢ as required.

Prompted by this result we conjecture that when A is a
tree, every Markov specification, whether hereditary or
not, corresponds to a Markov interaction. (The example
following Lemma 2.1.1 can be modified to show that this
result is not in general true for non-hereditary

specifications which are simply locally Markov.)

We now providea more conventional characterisation of
the Markov chains on (SA,F).




Lemma 2.1.3. If P is a p.m. On (S®,F), then the following

statements are equivalent.
(1) P € M.

(ii) FPor each i € A, the o-fields F(Ai j), j € 98i, are
conditionally independent (under P) relative to
F(i).

(iii) For each j € A, i € 3j, F € F(3),

P(F/F(A )) = P(F/F (1)) P-a.s.

j.i
Proof. We show (i) = (ii) = (iii) = (i).

(1) = (ii) : Given i € A, for each j € 3i let Vj be
any finite subset of Ai,j ;i let V € V* be such that

i € Vv and Vj CV for all j € 3i. Then if P € M it 1is
immediate from the representation (1) of P(XV = xv)
that the o-fields F(Vj) are conditionally independent

under P relative to F(i). Since each Vj is an arbitrary
subset of the corresponding Ai,j’ the result (ii) follows

in the usual manner.

(ii) = (iii) : Given j € A, i € 53, if P is such that

(ii) holds then it is immediate that F(3j) and

F(Aj,i-{i}) are conditionally independent under P

relative to F(i), and this is equivalent to the result

(iii).

(iii) = (i) : Consider any V€ V*, Let i , i , 12 , ... , in
be any ordering of the elements of V such that for each r

(1 £ r <n) , the set v, = (i, i, , i2 , .., ir}

also belongs to V*. It is easy to see that we then

have 3,(1i ) CV CA, , for each r. Now if P is such
1 r r— 1 1

rl

1

that (iii) holds we have,
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Thus by Lemma 2.1.2, P € M.

When A is equal to the set of integers, and consecutive
pairs of these are defined to be neighbours - the one-
dimensional integer lattice, the characterisation (iii)
in the above Lemma is just the defining relation for a
Markov chain in the usual sense; (ii) is just the well-
known 'time-symmetric' alternative characterisation.
Thus the concept of a Markov chain introduced here is
simply a natural extension of the familiar one to more

general trees.

Spitzer (1975b)* introduced Markov chains on a tree, with
the binary state space S = {0,1}. His motivation also

was the study of the more general class of M.r.f.s on

the tree. In a sense it was the characterisation (iii)

of a Markov chain which was central to Spitzer's approach -
thus any Markov chain whose distribution was strictly
positive, and homogeneous in the sense of being invariant
under graph isomorphisms of the tree, could be represented
by its transition matrix. (See also section 3.3 of this
work) . In contrast the approach here is mostly based on
our initial definition of a Markov chain. This will be

developed in the next section.
Now let E be the class of all M.r.f.s on (S®,F) with

respect to which the tail o-field F is (almost) trivial.
Then we have the following result.

* and Preston (1974).




Theorem 2.1.4. E C M.

Proof. (The argument is broadly analogous to one given
by Spitszer (1975a, Theorem 6) for the one-dimensional
integer lattice.) Given P € E, we must show that for
each veEeEVr, wWCV, FE F(W,

(2) P(F/F(V-W)) = P(F/F(V 0O 3W)) P-a.s.

Let {Vh} be any increasing sequence in V such that

v C Vh for all n, and Vh 7 A. Because P is a M.r.f.,
for each Vh in the given sequence, there is a version
of P(-/F(A-Vh)) which at each point X, € SA is a p.m.
whose marginal distribution on (SW‘,F(Vn)) is a M.r.f.
with respect to the restriction of ~ to VA. Now V is a
connected subset of Vn and thus, by the corollary to
Lemma 2.1.1, the marginal distribution on (SV,F(V)) of
each of the above p.m.s is also a M.r.f. (with respect
to the corresponding restriction of ~ to V). Since

F € F(W) we obtain

(3) P(F/F(V-W) v F(A—Vh)) = P(F/F(V N 3W) v F(A—Vn)) P-a.s.

As n > «», we have F(V-W) v F(A—Vh) \ F(V-W) v F and
F(V.N 3W) v F(A—Vh) Y F(V N 3W) v F. (These results
follow easily since F(V-W) and F(V N 3W) are countable.)
Thus by the (reversed) martingale convergence theorem we
obtain (3) with F(A-Vh) replaced by f. Since P € E,

(2) follows immediately.

Now if T is a Markov specification on (SA,F), we denote

by M(Il) the class of corresponding Markov chains, i.e.

M) = M N G(I). We have already defined E() to be the

set of extreme elements of G(M), and noted that it is
equivalent to the set of M.r.f.s in G(Il) with respect to

which the tail o-field F is trivial, i.e. that E(I) = E N G(I).
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By the above theorem E(II) C M(N). Thus G(II), which we
noted in section 1.1 to be (roughly speaking) the set

of convex combinations of elements of E(II), is also the

set of convex combinations of elements of M(Il), so that its
study reduces, in a sense, to that of M(Il) - at least

when the latter set turns out to be countable. The

next section is devoted to the study of M(II) for hereditary
Markov specifications II.

We remark that in general the converse to Theorem 2.1.4
is false. Spitzer (1975a) gave a counter-example with §
countably-infinite and A the one-dimensional integer
lattice. Essentially this consists of two distinct (non-
stationary) Markov chains P, , P, , say, which have the
same stationary transition matrix, and so correspond to
the same Markov specification II. Then, for example,

(P, + P») belongs to M(Il) but not to E(Il), and hence
not to E.




2.2 Interactions for Markowv chains

In this section we present a basic theorem concerning the
Markov chains which correspond to a given Markov
specification I, hereditary with respect to some basepoint
S, e s®, By definition II = H¢
Markov interaction ¢, i.e. for a Markov interaction
¢ = {pi ’ qjk ; 1 €A, {j,k} € N} such that

pi(si) > O for each i € A, and qjk(xj ’ sk) > 0,

a, (s, , xk) > O for each {j,k} € N. (Recall that

k3
Theorem 1.3.1 ensures that every strictly positive (locally)

for some hereditary

Markov specification is hereditary with respect to any
basepoint.) Without loss of generality we may take
pi(si) = 1 for all i. It is easiest to state the theorem

in terms of a given interaction, rather than a specification.

Theorem 2.2.1. Let ¢ = {pi P9y ; ie€a, {j,k} €N}
be a Markov interaction on (S,A), hereditary with respect

to the basepoint Sa € s® and (for definiteness) satisfying
pi(si) =1 for all i € A.

(a) Let P € M(HQ). Then for each V € V*, we have the
following representation of the marginal p.m. PV on
(sV,F(V)) :

(1) P(XV = x_) = a I ] pY(x.) l l q.. (x. , x.)

where
v .
(2) pi(si) =1 for all i € v.

The functions pz , 1 € V are uniquely determined by
(1) and (2), and the normalising constant a, is then

determined by the requirement:

(3) y Z; oV P(XV =x,) =1
v




(4)

(5)

(8)

(b)

{1,3}
i
i€v, j €3i. The collection of all the functions

For simplicity we will write pi for p for each

{pz , VE€ V¥ , i €V} then satisfy
N Ej .
pZ(X) = pZ Blix) = kz P, (x) | ] (Q..pY)(x), x € s,

j € 3i-v I

(recalling that £i = {i} U 3i), where the function
i . .
(Qijpj) : S R+ is defined by

(Q .p%)(x) = X:r q.. (x,y)pi(y), x €5,

1373 yE€g 13

and where kz is a (strictly positive) constant
determined by the requirement that (2) be satisfied.

As special cases of (4) we have

v . .
= [ *
1 P, if giCcv, Vv v
and (writing ki for k?”j%
pdx) =xkdp x0T ] Q. po)(x), 1€AR, j€EM, x€Ss,
i iti k € 9i-j ik *k

Note also that for each i € A, the following condition

is satisfied:

) potx) T T @.ph(x) <=

x €s * j €31 HJ

Conversely, given a collection of functions

(pd : s - R, , 1 €A, j € 3i} such that

1




(i) for each i € A, j € 3i, p'(s.) = 1,
1 1

(ii) for each i € A, 7 € 3%i, the relation (7) is
(9){ satisfied for some (necessarily strictly

positive) constant ki '

L(iii) for each i € A, the condition (8) is satisfied,

then we may define a p.m. P € M(HQ), to which the

functions pi correspond as in part (a) of the theorem.

The theorem thus establishes a one-to-one correspondence
between M(H¢) and the set of those collections of
functions {p% , L €A, j € 3i} which satisfy (9).

Remark In part (a) of the theorem it is important to note
that when the parameter space A is finite, then the
functions pz are (under (2)) completely determined by
the relations (4) and (5): for each i € A such that

3i = {j} for some j € A (i.e. for each end-vertex of

the tree A), we have by (6) that pz

therefore use (7) recursively to determine all the functions

p, - We may

p; » {k,2} € N, in each case simply by deleting end-
vertices from the tree A until the set {k,%} is obtained.
We may then use (4) to determine the more general functions
pz. (The real application of this remark is to the
consideration of Markov chains on (SV,F(V)), where V € U*
for some countably-infinite A - an example occurs in

the proof of part (b) of the theorem.)

Proof of Theorem 2.2.1. (a) We first establish, for

each V € V*, the existence and uniqueness (under (2))
of the representation (1) of the marginal p.m. P,-

Since V € V*, no two elements of 3V can be neighbours
of each other and we also have 5(£V) = 3V. Thus from

Lemma 1.4.1,



(10) P(X

= oy 0 T T pxy  TT  a x , x)

=% ) )
gV RV i€v YgLxyencgyy I

for some function ¢av s Sav - R+.

Now P(Xv = sv) > 0, and we have

) 1~—T q.. (x., , s.)

11 P(X = X X =8
(11) ( oV BV/ \Y av i € gy i3 i j

V) = c¢av(x
where for each i € 3V, j is the unique element of

3i N Vv, and where c is some strictly positive constant.
Since P is a Markov chain and £V € V*, PEV is a M.r.f.

on (S‘;’-V

,F(EV)), and so the random variables Xi , 1 € a3v,
are conditionally independent (under P) relative to F(V).

Thus

(12) P(Xy, =X3¢/X, = s,) = ile LV P(X, = x,/X, = s.)

It follows from (ll) and (12) that we may write

= “ | gv v . .
Pay (Xgy) = qry p; (%), %, € §°7. Substituting
i € 3v
this into (10) we have the representation (1) for ng
rather than Pv’ By summing over oy € Sav, we obtain

(1) for Pv itself. Note that the functions pz , 1 €V,
may be chosen so as to satisfy (2), and that the special
case of (4) given by the condition (6) is satisfied.

To see that the functions pz are uniquely determined
by (1) and (2), we observe that for each i € v, (1)
and (2) together give

1 1 V-i V-i _ v q.‘(x‘ , S)
(13) P(X]’_:si/xv_i =s . ) = pi (Xi) I i ij i 3

for each X, € s.



We now establish the relation (4) (already established

as (6) for Vv, i such that £i C V) in the general case.

Given V € V*, the representation (1) implies that Pv

corresponds to the Markov interaction

oV = {pz , qjk ; 1 €ev, {j,k} € N(V)} . For each

i € V, we may therefore obtain the representation (1)

for Pv nei by regardingvtgegiatter as the marginal
JF(V D EL)) : using the

results obtained so far with V instead of A, V N £i

p.m. induced by PV on (S

instead of V, we obtain immediately (from (6)) the
first equation in (4). Now consider the representation
(1) for PEi'

write this as

By (6) and the first part of (4) we may

= - l l i
(14) P(XEi = X&i) aEipi(Xi) e s qij(xi,xj)pj(xj)

9 i~-v

Summing over all x € S , we obtain an explicit

9i-v
expression of the form (1) for P

N Ei

voOEL! from which it

follows immediately that pz is as given by the

second equation in (4).

Lastly the relation (8) follows from the results so far
obtained by noting that for each i € A,

— _ {1} | ] i
P(X, = x) = ak; p, (x) i (Qijpj)(x) , X €8

(b) Now suppose we are given a collection of functions
{pi : §>R,_, 1€1, jE€ 39i} satisfying the three
conditions contained in (9). We seek to define a p.m.
P € M(H¢) - to which the above collection of functions
corresponds - via its marginal p.m.s Pv' We consider
sets V € V* which satisfy the condition that, if

i € 3v, then |3i NV| = 1. Let V be the set of all
such (connected) sets V. (Note that it contains all
sets of the form &V, Vv € U*,)




For each V € U define the measure M, on (SV,F(V)) by

(Xv=xv) = T—J pril(xi) T_T pi(x.) ﬁ q., (x.

(15) u )
iE3V i€V og,krenqy) kD

v

where for each i € 3V in the first product above, h is
the unique neighbour of i in V. We have to check (i)
that each measure uv , V € v, may be normalised to a

p.m. P on (sV,F(V)), (ii) that the family (2, , VED
of such p.m.s is consistent, so that they may be regarded
as the marginals of a p.m. P on (SA,F), and (iii) that P
thus defined belongs to M(HQ).

Given any V € U, then for any connected subset W of V,

the marginal measure yu induced by M, on (SW,F(W)) may

be calculated using thglgirst part of the theorem - for
this, with V instead of A, is obviously applicable to any
positive measure on (SV,F(V)) whose density is given by a
product of hereditary functions on the vertices and edges
of V. (It is only necessary to allow that the functions
p? , WE V¥, W CV, may turn out to take infinite values.)
Arguing exactly as in the remark which follows the

statement of the theorem we have,

. T;L o x) LT aix,ox),
1

(16) (X =x.) = VD oaoenan e X

C
v,

where each function p? (taking perhaps infinite values)
is given by (4) with W instead of V and omitting the
constant k? , and where cquis a strictly positive

(finite) constant, which may be computed from the constants
ki of (7).

In particular for any i € V we have,

X = = i S
uv( i X ) cvlipi(X) le Iai (Qi jpj)(x). X S

¢ X



Thus by condition (iii) of (9), Z:j uo(X = x) < o,
v "vTv v
x €8
\
and so Hy may be normalised to a p.m. PV = agH, - (It

now follows that the functions p? in (l1l6) are finite.)

Now suppose that V, W € V and that W C V. Then from
(16) we have that

px,=x ) =ar 1 Tphx) T1 px) 11 a (x ,x)

iedw Y jenw Tl (5,krenwy kI k

for some constant a& , Where for each i € 5W, h is the

unique element of 3i N W. Comparing this with (15)

(with W instead of V) we see that PY(Xw = xw) = PW(Xw = xw).

Thus the family of p.m.s (PV ;, V€ V) is consistent and

so defines a p.m. P on (SA,F).

To show P € M(HQ), we first note that, by construction,

Pv is a M.r.f. for each V € U (and hence for each V € V*);

this implies that P is a Markov chain. Now if W € /{,

let V € V be such that éW C V. We then have, using (15)
P(Xw = Xw/xaw = X

Bw) = Pv(xw = xw/xaw = Xaw)

= kw(xaw) T_T.pi(x.) TaT (x.

q.
i€w o {3d.k)eN W
{7, kINw#g

= T ,u(Xyy o X

(where kw : Saw > R, is the appropriate normalising

function). Hence P € M(HQ).

.xk)



Further remarks on Theorem 2.2.1

1. In establishing the second part of the theorem it
is sufficient that the condition (9) (iii) should
hold for some i € A. For then if V € V is such
that i € Vv, the measure By of the proof is normalisable
to a p.m., and so the above condition holds for all
other j € V; obviously every j € A belongs to some
such set V.

2. When S is finite the condition 9(iii) (i.e. the
normalisability condition (8)) is obviously unnecessary.
When S is infinite we have the question of whether
it might still be unnecessary, in the sense of being
implied by 9(i) and 9(ii). An example will suffice
to show that this is not the case. Let the graph A
be the one-dimensional integer lattice (again), and
consider the translation-invariant Markov interaction
given by letting the single-site interaction functions
P.

L i € A, be identically equal to one, and the
pairwise interaction functions 9y 441 ! i €A,
be equal to a hereditary function g : S x § = R+

satisfying

z q(x,y) = Z qly,x) =1
y €58

y €5

for all x € S. It is obvious that this does
define an interaction on (S,a), i.e. that the
condition (1) of section 1.2 is satisfied. For
each 1 € A, j € 3i, define pi to be identically
equal to one. Then the collection of all such
functions pi satisfies the first two conditions of
(9), but not the third for infinite S.




3. We postpone until section 3.4 a demonstration of
the (perhaps surprising) necessity of the hereditary
condition 1in the theorem. There we show by an
example that in the absence of some such condition
the conclusions of the theorem are false.

4. Spitzer(1975a) has proved a result similar to part
(a) of the theorem for the special case where the
graph A is the one-dimensional integer lattice,
and the interaction ¢ is strictly positive and

translation invariant.

In the next chapter we show how the results of this one -
in particular the above theorem - may be used to study in
detail the classes of Markov chains corresponding to

homogeneous hereditary Markov interactions on regular
infinite trees.




3.

3 HOMOGENEOQUS MARKOV SPECTIFICATIONS ON REGULAR TREES

3.0 Introduction

Throughout this and the subsequent chapter the graph A is
the regular infinite tree with 4 + 1 edges meeting at each
vertex. In particular when 4@ = 1 we have the one-

dimensional integer lattice.

A Markov specification, Markov interaction, or p.m. will
be said to be homogeneous if it is invariant under graph
isomorphisms of the tree onto itself. By the term
hereditary we will mean hereditary with respect to a
fixed basepoint S, € SA, where for all i € A, s, = s for
some fixed s € S. Our aim is to study various classes

of M.r.f.s, in particular Markov chains, corresponding to

homogeneous hereditary Markov (h.h.M.) specifications.

Any h.h.M.interaction on (S,A) may be represented by a
pair of functions - p : S — R+ associated with the
vertices of the tree A, and q : S x § > R+ associated
with its edges, i.e. with the elements of the set N
introduced in the previous chapter. The function g is
symmetric in its arguments, and the hereditary condition
gives us that p(s) > O, g(s,x) > O for all x € S. We
will additionally assume, without loss of generality,
that p is strictly positive. (If this condition is not
satisfied then the state space S may be reduced until

it is.) We will write &(p,q) for such an interaction.

If ¢(p,q) is a h.h.M. interaction the corresponding

specification I - we will write this simply as

¢(p,q)
I(p,q) - is also h.h.M.. For any V € / the conditional
density function associated with the kernel T is given

by

) T-ET p(x.) T-T qglx, , x

i €v 1 {i,k} € N J k
{j,k} Nv Fg

X.) = kv(x

v v ! vy 3V




where as usual kv : Sav > R, is the appropriate normalising

function. Conversely, for any h.h.M. specification @I we
can find a h.h.M. interaction ¢(p,q) such that T = II(p,q).
To see this, note that any hereditary Markov specification
corresponds to a Markov interaction which is adapted (see
section 1.3) with respect to the basepoint S, ¢ let

d = {pi oy i€an, {j,k} € N} be any (necessarily
hereditary) Markov interaction to which the specification

corresponds; replace each function g, by g' where
ik jk

qjk(s,s)qj]éx,y)
qjk(x,s)qjk(s,y)

qjk(x,y) =

and make appropriate adjustments to the functions P, to
obtain an equivalent adapted interaction. Now it is

easy to see that the adapted (Markov) interaction is

unique, and thus if the specification is additionally
homogeneous, so too is this interaction. Our additional
constraint on an h.h.M. interaction %(p,q), that the
function p be strictly positive, is ensured by the
corresponding additional constraint on II = N(p,q), that

the p.m. ni(sA_i ,+) be strictly positive for each i € A.

We note also that it may be convenient for some applications
to represent an h.h.M. specification by a hereditary Markov
interaction which is not in general homogeneous. In

section 3.3 we follow Spitzer and consider the representation
of such a specification by an interaction ¢(l,q) where 1

is the function S - R, which is identically one, and

q: S x 8§~ R+ is a 'reversible', though not in general
symmetric, stochastic matrix associated with a given
'direction' in the tree.

Given an h.h.M. specification I, G(II), E(II) and M(Il) will
denote as usual the corresponding classes of, respectively,
all M.r.f.s, extreme M.r.f.s (those with respect to which

the tail o-field F is (almost) trivial), and Markov chains.




We have E(I) C M(II) € G(II). We will denote by G, (N),

Eo (1) and Mo (1) the respective subclasses of G(II),

E(I) and M(Il) whose elements have the additional property
of being themselves homogeneous. In section 3.1 we will
define a futher class M, (ll) lying between My (II) and M(I).
Note that E, () is a (perhaps proper) subset of the set
of extreme elements of G, () - see the corollary to the

corollary to Theorem 3.1.3.

Recall from Chapter 2 that V* is the set of finite
connected subsets of A, and that V is defined by

V={VEV*x : for all 1 € 3v , |31 Nv| = 1}

Most of this chapter is concerned with various applications
of Theorem 2.2.1. The functions pz , VE VU , i €V,
introduced in that theorem were forced to be unique by the
condition that they took the value one on the corresponding
component of the basespoint. If we drop this condition -
which it will now be convenient to do - then these functions
remain uniquely determined up to an arbitrary, strictly
positive, multiplicative constant. We therefore introduce
the space ¥ of equivalence classes of functions S - R+ -
omitting the function which is identically zero - where

two such functions p; , p; are said to be equivalent if
p1(x) = Ap:(x) for all x € S and some strictly positive
constant A. We will denote a given element of ¥ by any
function in the corresponding equivalence class, and where
in consequence an equation involves an indeterminacy we
will use the proportionality symbol « (rather than =) to
denote equality up to a strictly positive multiplicative
constant. The reason for this change is that Y is the
natural space in which the functions pz are defined, and

on occasions it will be convenient to represent a member

p, say, of ¥ other than by the convention p(s) = 1.

Indeed we now define for each x € S, the particular

element dx of ¥ given by: 6x(x) > 0, 6X(y) = O for all




other y € S. Where these functions are used, our
former convention could only be accommodated by an

otherwise unnecessary modification of the basepoint.

In section 3.1 we consider the class My (1) of homogeneous
Markov chains corresponding to a given h.h.M. specification
I, as well as the (sometimes strictly) wider class

My () € M(II) to be introduced there. In section 3.2

we look (briefly) at the characterisation of any given
Markov chain P in My (II), as the limit of a sequence

of p.m.s associated with a sequence {Vn} in V* such

that Vn 7 A. 1In section 3.3 we consider the representation
of h.h.M. specifications by 'reversible' stochastic
matrices in the manner mentioned briefly above, and

prove some analogues to the results of the first two
sections. In particular this enables us to relate, in
section 3.4, our results to those derived by Spitzer
(1975b) for the binary state space S = {0,1}. Finally

we consider in section 3.5, as a further example, the

state space S = {0,1,2} and those h.h.M. specifications
which are invariant under interchange of any two of the
states in S. Even under such restricted circumstances

an interesting variety of behaviour may be observed.




3.5

3.1 The classes M, (II) and M; ()

Throughout this section II is a given h.h.M. specification.

We consider first the problem of identifying the elements
of My(ll). For d = 1, so that our regular tree becomes
the one-dimensional integer lattice, and under the weaker
(and in this case more natural) condition that I is
simply translation invariant, the problem has been well-
studied; some of the known results are summarised in the
introductory chapter, but see also Preston (1976, Chapter 5).
In particular when d = 1 and s is finite, My (II) always
containsprecisely one element, which is also the sole
element of G(M). For d > 1, only the case where

|s| = 2 has been studied in any detail - see section 3.4

for a discussion.

For general d = 1 and finite state space S, we have the
result, essentially due to Dobrushin (1968), that M, (II)
contains at least one element. Dobrushin actually
considered the more important case of the d-dimensional
integer lattice: he first used a simple compactness
argument to construct a random field corresponding to

any given specification satisfying certain conditions -
automatically satisfied by any Markov specification;

he then showed how, if the specification were homogeneous,
the corresponding random field could be used to construct
another which had the property of being itself homogeneous.
All this is fairly readily adapted to specifications on
trees, but we may also use the theory developed so far
(explicitly for trees) to give a quick, essentially
topological, proof of the result. This we do in the

corollary to Theorem 3.1l.1 below.




Now let ¢(p,q) be a fixed h.h.M. interaction to which I
corresponds. We wish to consider various applications

of Theorem 2.2.1, and in order to simplify the expression
of the relations involved in that theorem, we make the

following definitions:

for any function p* : S —> R+ define Qp* : S —> R+ (where

it exists) by

(1) (Qp*) (x) = Q_  alx,y)p*(y) , x €8 ;
y € s

for any integer t o 1, ...., d + 1, and for any
P1 s «eevr Py € V¥ , define Tt(Px P ey pt) € ¥ (where

it exists) by

(2) [Tt(91 yoeeeny POT(R) = p(x) l l (op ) (x)
t 1 <r <t
(With To = p)
and for any integer t as above, and any p* € ¥, define
T;(p*) € ¥ (where it exists) by

(3) Té(p*) = Tt(p* ; eeees P*)

Note that when S is finite there are no problems of
existence in these definitions. It also turns out that
for countably-infinite S we have existence wherever it
might reasonably be hoped for. Note also that whenever
Tt(p1 ;e e ey pr) and Té(p*) exist, they are strictly
positive at s € S.

Theorem 2.2.1 establishes a one-to-one correspondence
between M(Il) and the set of those collections of functions
{pi , 1 €A, 3 € 3i} in ¥ which satisfy the conditions
(9) of section 2.2, It is immediate from the theorem

that a Markov chain belongs to M, () if and only if the
corresponding functions pi are the same for all i € A

and j € %i. We thus have the following result.




Theorem 3.1.1. There is a one-to-one correspondence

between M, (II) and the set of functions p € ¥ which
satisfy

X €8S

(i) Z Z. P(x)q(x,y)p(y) <
y €8

Given p € V¥ satisfying (i) and (ii), the corresponding
homogeneous Markov chain P is given through its marginal

densities associated with the sets V € V* by

Xv) « TT pY(x) TT glx, ., xk)

iev * {i,k} € N(V) J

el
>
Il

where pz = Tigi_v,(ﬁ). In particular if V € V

v o_ {p , 1 € 5V

P p ., i€&€nv

(The marginal densities associated with the sets V € v

are sufficient of course to determine P.) Note that

given the condition (i) above, the condition (ii) corresponds
to (8) of section 2.2. It is redundant when S is finite.
Note also that functions p € ¥ satisfying (i) are

necessarily strictly positive.

A particular consequence of the theorem is that it enables
us in principle, and in practice when |S| is small, to
determine |[M, (1) |. (This is as yet far from completely
determining |M(II) | and hence |G(Il)|.) For some examples
of the application of the theorem see sections 3.4 and
3.5.




Corollary. When S is finite, |[Mo(N)]| = 1.

Proof. ’'Normalise' Y by the requirement that for all
p* € Vv, 2:: p*(x) = 1, and then regard it as a subset
x €8
of the Banach space of all real-valued functions on S |
(effectively R]Sl) with, say, the norm (| £l = sup [£(x)]
X €8
(fE : S > R). The subset ¥ is then convex and compact.

The mapping Té : ¥ > V¥ is given by

ad
(4) [Té(p*)](x) - 2l Op*) (x)] a ! p* €Y , x €5 ;
S ()l (Qp*) (x)]
y €5

for all p* € ¥, the denominator of the right-hand side of
(4) is strictly positive (consider y = s), and so the
mapping Té is seen to be continuous. Thus by, for example,
the Leray-Schauder-Tychonoff theorem (Reed and Simon (1972),
p 151) Té has a fixed point.

We have already established that E (lI) C My(I). It would

be of interest to know whether these two sets in fact
coincide, i.e. whether the tail o-field F is trivial

with respect to every homogeneous Markov chain corresponding
to I. We conjecture, though cannot prove, that this is in
general the case. For d = 1, the conjecture is of course
true: for then any P € My () is a stationary (and reversible)
Markov chain in the usual one-dimensional sense, and since
all states of S 'intercommunicate' with the state s, P

is additionally irreducible, so that the result follows.

For d > 1, Spitzer (1975b) claims to prove the result

when |s| = 2. His proof, however, seems unclear - if
correct it ought to be equally applicable to any countable

state space S. What we can say is that the elements of

Mo (II) are mutually singular (so that none is a mixture
of any of the others): for let B be any subgraph of A

which is isomorphic (as a graph) to the one-dimensional




integer lattiée; the marginal p.m.s on (SB,F(B)) of

the Markov chains comprising My (II) form a set of
stationary ergodic Markov chains in the one-dimensional
sense, so that these and hence the original Markov

chains of My (M) are mutually singular. It follows from
this result that if [My(II)| > 1 (as is sometimes the case -
see sections 3.4 and 3.5 for examples), then G, () contains
M.r.f.s which are not Markov chains, e.g. all those
strictly convex combinations of any two distinct elements
of Mg (). The corollary to Theorem 3.1.3, taken with the
examples of section 3.4 , shows that this can also happen
when |Mo ()| < 1.

We now turn our attention to a (sometimes) wider class of
Markov chains corresponding to the specification 1.

Label the vertices of our regular tree A alternately'even'
and'oddz denoting by E and O the respective sets of even
and odd vertices - so that every pair of neighbours
contains one member of each set. Define M, (Il) to be the
set of those Markov chains in M(Il) which are invariant
under those graph isomorphisms of the tree mapping E onto
E (and hence O onto O0). We have My () C M, () C M(M).
Markov chains belonging to M; (I} but not My (M) arise
naturally when we consider the repulsive specifications
(Spitzer (1975b)) discussed in section 3.4, and defined
more generally in Chapter 4. TIf P € M, (), define the
complement of P to be its image under those graph
isomorphisms of the tree mapping E onto O. Oviously this
complement also belongs to M, (), so that we may think of
the Markov chains in M, (I) as coming in symmetrically
related pairs; the two chains of such a pair are identical
if and only if either belongs to My (). Now recalling
our h.h.M. interaction ¢(p,q) such that 1T = N(p,q), we

have the following obvious analogue to Theorem 3.1.1.




Theorem 3.1.2. There is a one-to-one correspondence

between M, (II) and the set of ordered pairs of functions

(p®,p°) in ¥ which satisfy

, o _ ' e . e _ . o
(i) p~ = Td(p ) ;5 p = Td(p )
(11) o S pS(x)q(x,y)p°(y) <
x €S y €S

Given (pe,po) satisfying (i) and (ii), the corresponding
Markov chain P in M, (II) is given through its marginal

densities associated with the sets V € V* by

P(XV = xv) o l l pZ(xi) ] ] g(x, , x )

i €v {3,k} € N(V) ] k
where
Q .

1 e :

~

In particular, if v € V we have

if i € 3VNE

P
v o \ . 2
P, = {P if 1 €3vnNo
P if i € nv
Notes. (i) The complement of P above is given by

interchanging pe and po, and these two chains coincide
if and only if pe = p°.

(ii) When S is finite, condition (ii) in the above
theorem is redundant.

(iii) The functions p°, po above are necessarily strictly
positive.




(iv) We may of course re-express the above theorem by
saying simply that there is a one-to-one correspondence
between M, (II) and functions p© € V satisfying

p° = Té(Té(pe)) together with the amended 'normalisability'
condition (ii), though this destroys the 'even-odd'

symmetry of the statement of the result.

We also have the following result (the proof of which

will follow its corollaries).

Theorem 3.1.3. Suppose P; , P, € M;(Il) and P, * Pa.
Then if O < A < 1, the p.m. Py, = AP; + (1l-X)P, belongs to
G(II) but not to M(I).

In the next section we refer to some results of Spitzer
sometimes

which show that there do/exist complementary pairs of

distinct Markov chains in M, (lI), so that the following

corollary is of some interest.

Corollary. If P , P' form a complementary pair of

distinct Markov chains in M, (Il), then %(P+P') belongs to
Gy (II) but not M, (I).

A corollary to the corollary is that if the above Markov
chains P , P' belong to E(Il), then E () is a proper

subset of the set of extreme points of G, (N).

Proof of the Theorem 3.1.3. It is sufficient to prove

that Py is not a Markov chain. Suppose the contrary
reuslt that Py, 7s a Markov chain. Then P, necessarily
belongs to M, (). Thus, for 2 =0, 1, 2, we have from
Theorem 3.1.2 that there is a function P, ® S > R, with
(for definiteness) pz(s) = 1, and a strictly positive
constant a, such that for all i € 0O,

Pp(Xy; = X




We thus obtain

a { I po(xj) = aj;A [ ( Px(Xj)*‘az(l")\) [ i Pz(Xj)

° 3 € 3i j € 3i j € 5i
valid for all Xoy € Sai. This can only be the case if
Po = p1 = P2 , implying, by Theorem 3.1.2, that P, = P, = P,

in contradiction to our hypothesis.




3.2 Convergence to Markov chains

In this section we continue consideration of our h.h.M.
specification I, and consider briefly a topic capable

of much more extensive investigation.

Let {V } be ‘an increasing sequence in V such that V 7 A,
For each n let P() be a p.m. on (ngn F(EV ) with den51ty

of the form

(n)
(1) P (Xav
n

Il
o

that is, the distribution of the random variables Xv
n

conditional on the (o~field generated by) the random

variables Xav is in accordance with the specification II.

We will say that the sequence of p.m.s {P“ﬂ} converges
to a p.m. P on (SA,F), and will write P(n)=‘P, if for
each Vv € UV , the associated sequence of marginal p.m.s
gy” on (SV,F(V)) (defined for all sufficiently large n)
converges to the marginal p.m. Pv in the sense of
pointwise convergence of the corresponding densities.
(If we are prepared to extend each p.m. P“n, in any way
we like, to a p.m. on (SA,F), then this convergence is
simply weak convergence in the usual sense.) It is easy
to see that if P'™ = p, then P € G(I). Of particular
interest are those sequences ('™} where each member P

av ,
Y € S . It is a

n

(n)

assigns probability one to a given x

straightforward exercise to check that the limits of such

sequences (where they exist) belong to M(I).
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Trivially, if P € G(II) then P is the limit of at least
one sequence {P™} with densities of the form

(1), namely that given by P(n) = P for all n; of more

&V,
interest would be the problem of identifying all such
sequences which converge to P. Note that if S is finite
and P is the sole element of G(II) (so that necessarily
P € Mo(Il)), then the usual form of argument based on
compactness and the selection of subsequences shows

that every such sequence {P(n)} converges to P.

We consider in detail only a special case: we take the
state space S to be finite and consider the convergence
of sequences of a particular kind to homogeneous Markov

chains.

Let i, be a given element of A, and define the sequence
{Vn} by

(2) vy, = {i,} , Vv = gV

n n-1 ! n=1

As in section 3.1, let ¢(p,q) be a fixed h.h.M. interaction
such that II = II(p,q). Fix elements of Y by the convention

(3) z:: p*(x) =1 , p* € vV .
X €S

For any p* € ¥ and for any n = O, define the (unnormalised)
Vn+1

density fp*ﬂlon S by
Eaoplxy, )= } ] p*(x.) | i p(x,) | ] alx, » x.)
P ntl 1 € 9V i€v. Y {jk}E Nev )

Define the p.m. plP* /R o (sVn+l r(v )) by

n+1

(p*,n)
P (X = x ) = a £, (x )
Vh+1 Vi+1 p*.n p*,n VL




where ap* n is the appropriate normalising constant.

The sequence of p.m.s {P(p*ﬂn} is of the form introduced

at the beginning of this section. 1In particular if
x € Ssand 6 € ¥ is as defined in section 3.0, then
(%“n)ls just the restriction to (SVW”,F(zﬁl)) of the

p.m. m](x ,*), where X, = X for all 1 € 8Vn

v
n n

Now suppose pg € Y. Define the sequence {pn} in ¥ by

(4) p, = Té(p ) , n=1.

n~1

(po ,m+1) (On SVm+2) .

By summing over xavm+1€ SSVm+1’ and recalling the

For any m = O consider the density of P

definition of Té we obtain the identity

(po,m+1) _ (p1,m
By R

valid for any v C Vm+1(where as usual the suffix Vv
denotes the marginal p.m. associated with the set V).
Iterate this relation to obtain

(5) pPosotn) _ p(py,m)

v - , nm=20 , VvVCyV

m+1

For any p € ¥, define the subset D q(ﬁ) of ¥ to be the
set of those p, € ¥ such that the sequence {p,} defined

by (4) converges pointwise to p (under our convention (3)).
DE)q(ﬁ) may be regarded as a kind of 'domain of attraction'

in ¥ of p with respect to the interaction ¢(p,g). The
following theorem is now almost obvious.




Theorem 3.2.1. Given p,py € ¥, the following two

statements are equivalent.

. €D ~
(1) po p'q(P)
(ii) There exists P € My (M) corresponding to P in the
sense of Theorem 3.1.1, and p(Posn) o p

Proof. Suppose first that p, € Dp,q(p)' Under our
convention (3) the mapping Té : ¥ > ¥ is as given by
(4) of section 3.1. Recall that the denominator of the
right-hand side of this equation is strictly positive.
It follows easily that because p, converges to p,
Té(pn) converges to Té(ﬁ); hence p = Té(ﬁ) and there
exists P € M, () corresponding to p. For any V € V,

choose m such that v C Vm As n » o, f o converges

!

n

+1 °

pointwise to f. on sVm+l Summing over x € s'm+l
! m+1

we obtain also that a - a§ o and so deduce that

Im ’

n

Eéavm)converges to P, (as n » =). Using (3), Qf°””

converges to PV , and since V is arbitrary it follows that
P(PO rn) = p

Now suppose that P(p°”ﬂ = P where P € M, () corresponds to

Pp. In particular Pép°”” converges to PV , and so by (5)
1 1
EJ?H’O) converges to Pv . It follows that for any
1
avyg
(S
xavo S ’

T-T p,(x,) T*aT ﬁ(xi)

i € 9Vy

~

and so €D .
Po p,q(p)




Remarks. 1. The above theorem may be regarded as
identifying those sequences of the form {p'Por ™} which
converge to a given P € My (). If we regard I as
fundamental, then the statement of the theorem suffers
from the same weakness as that of Theorem 3.1.1, that
of being dependent on the choice of interaction %(p,q)
such that T = I(p,q).

2. It is not difficult to extend the theorem to the

more general case of countable S. Given py € ¥, it is
necessary to re-express the definition of the convergence
to p of the sequence {pn} in ¥ given by (4), by saying
that it occurs if

p, (%) P (x)

Pn(S) p(s)
it is also necessary to consider only those p, such that

the sequence {pn}'actually exists, and satisfies the

condition that for all n and all x € S,

pn(x)

for some function p : § - R+ such that

ZZ p(x)g(x,y)oly) < =
X y

The theorem then goes through much as before, though there
are tedious details concerned with verifying the existence
of various quantities.




3.3 Markov specifications represented by stochastic matrices

In this section we consider the representation of an
h.h.M. specification by a stochastic matrix associated
with a given 'direction' in our regular tree A. This is
natural when we start with a homogeneous Markov chain with
known 'transition matrix', and wish to consider the
associated specification. The results obtained will also
enable us to tie up more easily the theory developed so
far with that of Spitzer*for the binary state space.

Let < be a partial ordering on the elements of A such
that

(i) for each i,j € A with i ~ j, either i < j or
j < i but not both,
(L)
(ii) for each i € A, there is precisely one neighbour
j of i such that j < i - denote this neighbour by a, -

If o is thought of as the 'predecessor' of each i, then
the tree A may be thought of as 'evolving' sequentially,
with d 'branches' at each step. For each i € A, define

also A; to be the set of those elements j of A such that
o, belongs to the path in the tree connecting j to i,

i.e. AI = Ai a in the notation introduced in section 2.0.
i

The following lemma is little more than a restatement of

part of Lemma 2.1.3.

Lemma 3.3.1. A p.m. P on (SA,F) is a Markov chain if and

only if

(2) for each i € A, F € F(1), P(F/F(A;)) = P(F/F(ai)).

* and Preston




Proof. If P is a Markov chain, then (2) is immediate

from Lemma 2.1.3. Conversely, if P satisfies (2) then

we proceed essentially as in the proof of the implication
(iii) = (i) of that lemma: for any V € V*, let i,il,iz,...,in
be any ordering of the elements of V such that for each r,

1 <r <n, o, belongs to the set {i,il,...,ir_ﬁ. The
r

element i is obviously uniquely determined; for each

remaining j € v, uj = Bi(j) (where ai(j) is as defined in

section 2.0). Using (2) we deduce that

P(Xv=xv) =P(Xi=xi) ] ' P(X, =x./X0L =xa).
jev-1 77 3

It follows from Lemma 2.1.2 that P is a Markov chain.

A Markov chain on (S®,F) will be called stationary (with
respect to <) if it is invariant under those graph
isomorphisms of the tree (onto itself) which preserve the
partial ordering <. Homogeneous Markov chains are

stationary, though the converse is not generally true.

Now let g : 8 x § » R+ be a stochastiec matrix, i.e.

satisfy the condition that for all x € §, z:: qglx,y) = 1.
y €s

A Markov chain P will be said to have g as its transition
matrix (with respect to the partial ordering <) if for
all i €a, x €8,

P(Xi = x/F(ai)) = q(XOLi , X) P-a.s.

It follows, in an obvious generalisation of familiar
one-dimensional Markov chain theory, that a Markov chain
P with transition matrix g is stationary if and only if
there exists p' : S ~»> R, (with XZ; < p'(x) = 1) such that

for all 1 € A, x € §, P(Xi = x) = p'(x); that p' then
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satisfies p'(x) = 2:: p'(y)g(y,x), x € s; and if g
y €58

is additionally irreducible, that such a stationary
Markov chain P exists if and only if g is positive-

recurrent, P then being unique.

Let ¢(l1,q) denote the Markov interaction on (S,A) whose
single-site interaction functions are identically one,
and whose pairwise interaction functions are given by

9, ; =4 for each 1 € A. Let II(l1,q) denote the
i !

corresponding Markov specification. If a Markov chain
has transition matrix g, then it is easy to see that

P € M(II(1,q)), though the converse need not be the case.
(See the examples of sections 3.4 and 3.5.)

Henceforth we suppose that the stochastic matrix g
additionally satisfies:

(1) g(x,s) > 0, g(s,x) > O for all x € S (where
s € S defines the basepoint); this implies that g

(3) 9

sense that the corresponding one-dimensional

stationary Markov chain is reversible.

The stationary Markov chain P on (SA,F) with transition
matrix q is then necessarily homogeneous. (Indeed a
homogeneous Markov chain associated with the tree A is
simply the natural generalisation of a one-dimensional
reversible Markov chain.) We may show directly that the
corresponding hereditary Markov specification II(1l,g) is
also homogeneous: since g is reversible there exists a
symmetric function g* : S x § ~» R+, and a function p : S
such that

(4) qg(x,y) = g*(x,y)ply) , X,y € S.

(ii) g is positive-recurrent and reversible, in the

>

is irreducible, and that ¢(l1,g), T(l,q) are hereditary;

R




(The functions p and g* are each uniquely determined
up to a strictly positive multiplicative constant, so
that p is unique when regarded as an element of VY.)
The Markov interaction ¢(l,q) is therefore equivalent
to the h.h.M. interaction ¢(p,g*), and thus M(1l,q) is
h.h.M..

The homogeneocus Markov chains corresponding to II(1l,q)

may be determined - at least in principle - via Theorem
3.1.1., though we must first find a h.h.M. interaction

(e.g. ¢(p,q*)) equivalent to ¢(l,q). It is useful in
applications, and perhaps provides some additional insight,
to have an analogous statement directly in terms of ¢(1l,q),
i.e. in terms of our reversible stochastic matrix qg.

We give this below, first introducing some additional
notation. Given any function p* : S - R, define (as in
section 3.1) the function Qp* : S - R, (where it exists)

by

(Qp*) (x) = Z g(x,y)p*(y),
y €s

and the function p*Q : S ~ R, (where it exists) by

(p*Q) (x) = Z p*(y)g(y,x)
y €8

Theorem 3.3.2. Suppose the stochastic matrix g satisfies

the conditions (3). Let p € ¥ be as unigquely determined
by the decomposition (4) of g. Then there is a one-to-one
correspondence between My (I(1,gq)) and the set of functions
P € ¥ satisfying

(1) P(x) = [ (QP) (x)]°

(5) . Y,
(ii) Z p(x)p(x) " < w
X €8
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Given ﬁ satisfying (5), the corresponding homogeneous
Markov chain P is (uniquely) determined by its transition
matrix & (with respect to the partial ordering <, or,
since P is homogeneous, with respect to any other partial

ordering satisfying the conditions (1)) given by

q(x,y)p(y)

Z a(x,z)p(z)
z €8

(6) q(x,y)

and the corresponding 'stationary' distribution is given
by

(7) PX, =x) «p)px Y, i ea.

Proof. The correspondence asserted in the first part

of the theorem may be deduced by a careful translation

of the statement of Theorem 3.1.1 - simply note that the
interaction ¢(1,q) is equivalent to the interaction
$(p,g*) where p and g* are as given by (4). The function
p of this theorem corresponds to the function p of
Theorem 3.1.1 via the relation

(8) p(x) « p(x)p(x) .

However, it is of some interest to deduce the correspondence
directly, though in two distinct stages, from our basic
Theorem 2.2.1.

l. Suppose first that P € M((l,q)) is stationary.
Consider the representation of the marginal p.m.s

PV , V € V*, given by Thgorem 2.2.1 with the interaction
®(l,gq). The functions pi defined there satisfy

. ~’i<'
- f e
P , J <1




for some functions p,p € ¥, and we have
(1) B(x) = [ (Qp)(x) ]°
9y (11) Blx) = (3Q)(x) [ (@) 1%

(iii) Z P(x) (QP)(xX) < o
X €8

AN

Conversely, given P,p € ¥ satisfying these conditions,
there exists a unique stationary Markov chain P € M(II(1l,q))
to which P,p correspond.

2. Now let g(x,y) = g*(x,y)p(y) as in (4). By considering
the sets V € D, we see that a stationary Markov chain P

in M(II(1,q)) is homogeneous if and only if the corresponding
functions P,p satisfy (8), Therefore if P <s homogeneous,
(8) and (9) together give the result that p satisfies (5).
Conversely if p satisfies (5), define P € ¥ via (8); again
using the decomposition (4) of g, we see that p,p together
satisfy (9), and so there is a unique P € M, (II(1l,q)) to

which ﬁ corresponds.

3. We complete the proof by considering P € My (II(1,g))
and ﬁ,ﬁ corresponding to P as above. Let i,j € A be such
that i = oy Then by Theorem 2.2.1,

P(xi = x, Xj =y) « ﬁ(X)q(x,y)fJ(y)

Thus the transition matrix of P is as given by (6), and

we also have




Remarks.* 1. It may be seen from the proof of the above
theorem that M(I(l,qg)) contains a stationary, non-homogeneous
Markov chain if and only if there exist P,p € ¥ satisfying
(9) but not (8). It is not immediately obvious whether

this can ever happen. If it can then M(I(1l,g)) must

contain uncountably-infinitely many such Markov chains -

one (or more) for each partial ordering < satisfying the

conditions (1).

2. It is now clear that for any h.h.M. specification I,

Mo (II) is in a one~to-one correspondence with the stochastic
matrices q satisfying (3) and I = II(1l,q). In principle,
this should lead to alternative derivations of Theorems
3.1.1 and 3.1.2, and indeed this Zs the basis of Spitzer's

corresponding results for the binary case.

3. There is an obvious analogue of Theorem 3.2.2 for

My (II(l,q)); this may be similarly derived from Theorem
2.2.1, or by a translation exercise on the statement of
Theorem 3.1.2. We do not state the result here, though

we do use it in the next section.

Now suppose S is finite. Given our stochastic matrix

q satisfying (3) and any p € V¥, define'ﬁlﬂéﬁ) to be the
set of py € ¥ such that the sequence {pn} given by
p,(x) « [(Qpn~1)(X)]d,
introduced in the previous section. Then Theorem 3.2.1

n =2 1, converges to ﬁ in the sense

may be translated into the result that p, € 51(§§)if and
only if there exists P € Mo (lI(l,q)) corresponding to ﬁ

in the sense of Theorem 3.3.2 and a suitably defined

Po,n

sequence of p.m.s {P( )} converges to P.

* We should additionally remark that the function p € ¥ determined by

(4) is just the 'stationary' distribution corresponding to the reversible
stochastic matrix q. One solution of (5) is given by p(x) = 1 for all

X, yielding the stationary (homogeneous) Markov chain with transition
matrix q.



3.4 The binary state space

We take the state space S = {0,1l}, and consider h.h.M.
specifications, where the basepoint S, € s? is given

by si = 0 for all i € A, The state space S is finite,
and so we may take the approach of the preceding section
and represent any such specification I by the transition
matrix

o l-0
1-1 T

(1) q =4gq(o,1) = [

of any one of its corresponding homogeneous Markov chains.
(By the corollary to Theorem 3.1.1 there is at least one
such Markov chain.) The hereditary condition gives

(2) 0 <o <1 , oS T <1

Conversely, any such hereditary stochastic matrix g is
necessarily reversible and so defines an h.h.M. specification
I{l,q). (Note that we may also consider those stochastic
matrices q(o,t) defined by 0 = 0, 0 < 1 < 1 - these are
hereditary with respect to the basepocint S, defined by

s; = l for all i € A.) The stationary Markov chain P
corresponding to g is homogeneous. Therefore, for a

given h.h.M. specification I we may characterise

Mo (1) simply by identifying all hereditary stochastic
matrices q such that T = II(1,q).

Now for any such q = g(o,1) we have II = II(l,q) if and
only if, for all i € A

my Xy 1) 1 (1-7) 3T

(3) —_— = '
TTi(xai ,0) (l_o)r—l Od+1-—r
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where r, O < r < d+1, is the number of neighbours j of i
such that xj = 1. (If II = I(l,q) then (3) follows as an
easy calculation, and the converse result is true because
any hereditary Markov specification II'is uniquely
determined by the kernels ﬂ; , 1 € A.) Therefore the
Markov chains in M, (II) are identified by those pairs
(0,7) satisfying (2) and (3). This is the approach of
Spitzer (1975b)%. Our intention here is simply to show
that Spitzer's results follow as an easy application of
the theorems presented in the preceding sections of this
chapter, and provide examples of all the various possible
phenomena discussed there.

The right-hand side of (3) is an increasing function of r
if o+ 121 - 1in which case the specification I is
attractive, and a decreasing function of r if ¢ + T <1 -

in which case II is repulsive.

We now regard the hereditary transition matrix g = g(o,T)

as fixed, and look at the Markov chains corresponding to

I(l,q). Fix any element p of ¥ by our original convention
p(0) = 1, and then write simply p for p(l). (We allow
p = » to cover the case p(0) = 0, p(l) > O0.) Define the
function g : [0,»] » (O,») by
l-1+1p d T 4
(4) g(p) = | — with g(«) = "]__:Of
o+ (l-0)p!

By Theorem 3.3.2 the elements of My (N(l,g)) are in a
one-to-one correspondence with the (necessarily strictly

positive) solutions § of

(5) B = g(p)

* and Preston (1974) : see the note at the end of Chapter O.




(This is Spitzer's result.) For each such ﬁ, the
transition matrix of the corresponding homogeneous

Markov chain P is given by gq(3,T) where

o} P

Q>
]

-

—
]

O+(l—0)§ l-t+1p
and for all i € A,

1)

P(X,.
z -0 14174
— P

P (X,
i

0) l-7

One solution of (5) is of course p = 1, giving the Markov

chain with transition matrix g.

From the obvious analogue of Theorem 3.3.2 for M, (II(1,q)),
(or by Theorem 3.1.2 plus a little work), the elements of
this set are in a one-to-one correspondence with the

ordered pairs epe,po) of solutions of
(6) p° =g , p° =g

For each such pair (pe,po), the corresponding Markov
chain P has a transition matrix from o, to any i € E
(recalling that E is the set of 'éven' vertices in A, and
that @, is the 'predeccesor' of i), given by q(c®,1%)
where

o P

o+ (1-0)p° 1-1+71p
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Corresponding results for any site i € O are given
e e o o]

by replacing pe, o, T by po, 0, T . When pO = pe
we have a homogeneous Markov chain. The solutions of

(6) with po * pe come in complementary pairs.

We may make the following deductions from these results.
(See Spitzer's paper for details.)

(1) When the specification II(l,q) is attractive (o + T = 1),
the equation (5) has 1, 2, or 3 solutions, and so there

are 1, 2 or 3 corresponding homogeneous Markov chains.

For d 2 2, all of these possibilities may occur. Further
since g is increasing, the only solutions of (6) satisfy

o (=]

p =p , and so M; (I(1l,q)) = Mo (II(1l,q)).

(ii) When the specification II(1l,q) is repulsive (¢ + 1 < 1),
g is decreasing and so (5) has exactly one solution,

implying that there is precisely one corresponding
homogeneous Markov chain. For any d 2 2, and suitable

g, t, the equation (6) has at least one unordered solution
pair (pe,po) with p° # p®, so that M, (II(1,q)) is strictly
larger than My (II(1,q)).

Spitzer (1375b) gives a complete classification of results
for the case d = 2 and all values of 0 and T , 0O < 0 < 1 ,
O < 1t < 1l. He also shows that for general d and in both
the attractive and repulsive cases, |G(I(l,q))| = 1 if

and only if |M;(II(l,q))| = 1, i.e. if and only if the
equation g{g(p)} = p has exactly one solution. His work
relies on some results of Preston (1974) for attractive
specifications with S = {0,1} and a general neighbour
relation on A. (The repulsive case is dealt with by the
interchange of the labels O and 1 in S at the vertices

in the subset O of A; this gives a transformed specification
which is attractive, though not homogeneous.) In Chapter 4
we give a relatively quick derivation of these results,
applicable to more general state spaces, but relying on

our tree structure.




We now consider briefly, and without any formal proofs,

the sets Blﬂéﬁ) (see section 3.3) in ¥ associated with
those p € ¥ which correspond to the elements of M, (I(1l,q)).
Recall that under our current convention Y is simply the
space [0,]; hence, given p, Blﬂéﬁ) is simply the set of

po € [0,»] such that the sequence {pn}, given by p_ = g(p__,),
n > 1, converges to p. We again consider separately the

attractive and repulsive cases.

(i) When the specification II(l,q) is attractive and the
equation (5) has exactly one solution p, then it is not
difficult to show that Bl'q(ﬁ) = [0,»]. Thus all the
sequences of p.m.s of the general form considered in

Theorem 3.2.1 converge to the homogeneous Markov chain P

corresponding to ﬁ. (From Spitzer's results, P is the
sole element of G(II(l,qg)).) In an obvious sense the
Markov chain P may be described as 'stable'. When the

equation (5) has three solutions, p; < ps < §3, it is

again easy to show that

Bl'q(fn) =[0,p2) ., Bl,q(i;z) = [p2] Bllq(lga) = (p2,°].

We thus have one 'unstable' and two 'stable' Markov chains.
The case where (5) has two solutions corresponds to the
coincidence of either p; and ﬁz or ﬁz and p; in the three-

solution case.

(ii) When the specification II(l,q) is repulsive, so that
(5) always has exactly one solution p, then Blgfﬁ) = [0,=]
if and only if the equation (6) has no additional 'solution
pairs'. Then again the corresponding Markov chain is
'stable'. For the case d = 2 we may check that when such
an additional, unordered, solution pair (pe,po) exists

(p° # p%), then for any p, other than p the sequence {pn}
defined above converges to the cycle pe,po,pe,po,....

Thus the homogeneous Markov chain is ‘'unstable', and the
remaining pair of chains in M;(l(l,g)) are in a sense
jointly stable.




We conclude this section by considering the 'extremely
repulsive' homogeneous non-hereditary specification

I = I(l,q) defined by the non-hereditary transition matrix

This is not strictly a 'specification', as for each v € V

the corresponding p.m. nv(x r*) 1is not defined for all

Xay € Sav. The correspondig; class of p.m.s G(M) 1is,
however, well-defined, and consists of all convex
combinations of the two elements Pe,Po, say, of E(I),
where p° assigns probability one to the single element

X, € s® gdefined by

and where p° is the complement of P®. All elements of

G () are Markov chains, so that G(II) = M;(lI). We attempt
to apply the preceding results to IlI. Note that the
equation (5) correctly identifies the single element of

Mo (I) . However, if 4 2 2, equation (6) only identifies this and
the extreme pair of chains P%,P°. Its failure to identify
the remaining elements of M, (lI) seems to stem, not so much
from the technical difficulties in defining an interaction
or specification in this case, as from the failure of the
key Theorem 2.2.1 in the absence of the hereditary
condition.
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3.5 An example with |S| = 3

We consider as a further example the state space s = {0,1,2},
and the h.h.M. interaction ¢(1l,q) defined by the single-
site interaction function which is identically one, and

the pairwise interaction function q : S x § ~+ R+, where
a , X =y
q(XIY) = B , % #Y ,

with o + 28 = 1 and O < o < 1. We write II for the
corresponding h.h.M. specification II(l,q). Since g is
also a stochastic matrix, we may use any of the results
of sections 3.1, 3.2, and 3.3 to study the Markov chains
corresponding to II. (We will also contrive to use some
of the results of section 3.4.)

Theorem 3.1.2 implies that M; () is in a one-to-one
correspondence with the set of ordered pairs of (equivalence
classes of) functions (pe,po) in Y satisfying

o _ ' e e _ ' o]
(1) o) —Td(P) ’ p —Td(p)

where Té : ¥ > ¥, is the mapping introduced in section
3.1. For each such pair the corresponding Markov chain
is as constructed in that theorem. The solutions of (1)

with p° = p® = B, say, i.e. the solutions of
. N = '(
(2) P Td(p)

correspond to the homogeneous Markov chains in M,; (II)
i.e. to the elements of My (). For each such p the
corresponding Markov chain may be constructed either as
in Theorem 3.1.1 or Theorem 3.3.2.




We will represent any element p of ¥ by (pe,P:1:P2).,

where for x = 0,1,2, P, = p(x). Here we are as usual
identifying p with any member of the equivalence class

of functions it represents, so that (po,pPi1,P2) = (APo,AP1.,AP2)
for any strictly positive constant A. Since g is stochastic,
one solution of (2) is always given by p = (1,1,1). The
corresponding homogeneous Markov chain, which we denote

by P, is that with transition matrix qg.

For each x € S define Mf(H) to be the set of Markov chains
in M, (II) which are invariant under interchange of the
remaining two elements of S. Similarly define

MG () = MY(I) N Mo (M.

The elements of Mg(H) correspond to the solutions of (1)

with pe = (l,p?,p?) and p° = (l,p?,p?). These are given
by the solutions of

(3) P} = 9> , p; =90k

where the function g : [0,«x] > (0,») is defined by

$(l-a)+ 3 (L+a)p |¢

(4) g(p)
a+(l-a)p

and, of course, the elements of Mg(n) correspond to the
functions p = (1,p:,pP:1) in ¥ where

(5) P1 = g(p1)

Now note that (4) is just the equation (4) of the
preceding section with o = a, T = %(l+a). We may
therefore use Spitzer's results for the binary state

space to make the following deductions.



(1) When a < 4 (corresponding to o + T < 1), MJ(I)
has P as its sole element. However MJ () may or may
not contain additional elements, depending on d and the
precise value of a. (For example, if d = 3 and o = 0.1
then numerical investigation shows that M?(H) consists
of P, together with the non-homogeneous Markov chain
2.4871, pl = 0.4698, and the complement

of this chain - given by interchanging p? and p?.) Note

R

defined by p?

that when o = % the specification II is trivial, G(I)
consisting solely of P, which in this case is such that
the random variables Xi , 1 € A, are independent with

P(X, = x) % for all 1 € A, x € s,

(11) When a = 3 , M) () is equal to M?(I) and may
contain 1, 2 or 3 elements according to d and the precise
value of a.

Note also that to each element of M?(H) other than P,
there correspond two further distinct elements of M; (II) -
one in M](I) and the other in M2(I). Thus if |[MI()| = 2
(respectively 3), then |[M,(Il)| = 4 (respectively 7).

We now consider in more detail the case where d = 2.

Here we may compare (3), (4) and (5) with Spitzer's
detailed results for 4 = 2 and binary state space, to
obtain the following results for the present example. For
all values of o the only solutions of (3) are given by

P, = p; = Pi; thus MI(I) = M{(I). An analysis of (5)
shows that when o < 4/2 - 5 (= 0.6569) this equation has
only one solution p; = 1; thus P is the sole element of
My (1) ; (for M, (I) we can only say that [M¢(T)| > 1).

When 4/2 - 5 < o < 1 and a # % the equation (5)




has 3 solutions, p, = 1, p} and p} ; thus [MJ(ID)| = 3
and |[My ()| 2 7. When a = 4/2 - 5 the two solutions

p; , p| above are coincident at the value % , and when

a = % we have p; = % ' pq = 1: hence in both these cases
|MO(TM) | = 2 and [M, (M) | > 4.

Figure 1 shows for d = 2 and o = 0.50, 0.66 and 0.70, the
computer-produced 'trajectories' in Y of the sequences
{pn} defined by p" = Té(pmd) and various starting values
p?. For symmetry between the 3 states of S we have chosen

the 'normalisation’
(6) Po + P *+P.=1 , peEVY .

Thus ¥ is naturally represented by the equilateral

triangle which forms the surface in Ri defined by (6).

We indicate by crosses the fixed points of the mapping

Té, defining the elements of My (ll). For each of these
values of o we may therefore identify (approximately for

a = 0.66) the subsets Dllq(ﬁ) of ¥ which form the 'domains
of attraction' of the fixed points p of Té. ( It seems,

in particular, that for o = 0.50, D1A§§)==w for the
single-fixed point p = (é ’ % ’ %).) There are considerable
qualitative differences between the 3 cases, in particular
as regards the 'stability' of the homogeneous Markov chains.
Note also that for both a = 0.66 and o = 0.70, it appears
that |My(II) | is precisely 7. We suppose that for all
values of o our earlier inequalities for [M,(I)| (with

d = 2) are in fact equalities.



1 2anbtg




4 ATTRACTIVE AND REPULSTVE SPECIFICATIONS

4.0 Introduction

In this chapter we continue consideration of the situation
where A is the regular infinite tree with 4 + 1 edges
meeting at each vertex. The definitions, notation, and

conventions given in section 3.0 continue to apply.

In section 4.1 we consider a given h.h.M. specification I
which has the property of being either attractive or
repulsive with respect to a given total ordering < on the
state space S. We show that if (S,<) satisfies the
additional conditions mentioned in the introductory
chapter, then it is frequently possible to draw much
stronger conclusions - in particular about the sets M(I)
and G(II) - than those of Chapter 3; and further that in
the important special case @ = 1, provided II is strictly
positive the set G(I) contains precisely one element,

necessarily a homogeneous Markov chain.

In section 4.2 we give an example in which the state space
S is the set of non-negative integers. The h.h.M.
specification considered is such that the conditional
distribution at each single site (or vertex) of A is
Poisson; the specification is repulsive with respect to the
natural ordering on S. We consider briefly the application

of the results of section 4.1.



4.1 Definitions and Theorems

We will say that an h.h.M. interaction ¢(p,q) on (S,A) is
attractive (with respect to the given total ordering < on

S), if for all x,,X2,¥1,¥2 € S with x;, < x; , ¥1 < ¥y2

(1) g(x:,y1)g9(x2,y2) 2 q(x;,yY2)9(x2,v1)

We will say that ¢(p,q) is repulsive if we have 'S<' instead
of '2' in (1) above.

Let 11 be a given h.h.M. specification. We define I to be
attractive [repulsive] (with respect to <) if there exists
an attractive [respectively repulsive] h.h.M. interaction
d(p,q) such that II = II(p,q).

Remarks. 1. For any x,y € S define 7*(x,y) to be the
common value of ﬁi(xai , Y) where Xy =X for all j € 3i.
Then I is attractive [repulsive] if and only if for all
X, €SX; , 91 Sy

T*(xX,,y1)T*(x2,Y2) T*(X1,Y2) 7*(x2,Y1)

>
=]

Thus if I is attractive [repulsive] every h.h.M. interaction

¢(p,q) such that I = II(p,q) is attractive [ repulsive].

2., Further, if gq' is a reversible stochastic matrix such
that T = II(l1,q') in the sense of section 3.3, by using

the decomposition of g' given by (4) of that section, we
see that II is attractive or repulsive if and only if the
appropriate version of (1) holds (with g' replacing q).

We have at once that when the state space S is binary, the
definitions of attractiveness and repulsiveness given here
coincide with the well-known ones given (in terms of ¢

and 1) in section 3.4,



the definitions then being independent of the two possible
orderings of the elements of S. In this case every h.h.M.
specification is either attractive or repulsive, but for
general S this is not true; (the h.h.M. specification of
section 3.5 - where |S| = 3 - is neither attractive nor
repulsive with respect to any ordering of the elements of

S, except in the uninteresting case where o = B).

3. In a considerably more general setting Preston (1976,
Chapter 9) gives a somewhat different definition of an
attractive specification; in the present situation
specifications which are attractive in our sense also
satisfy his definition: see his Theorem 9.5, which is
essentially a generalisation of Holley's inequality
(Preston (1974)). Of our two main theorems below, the
first (for attractive specifications) is more or less
implicit in the work of Preston (1976); we give a shorter
and considerably more direct proof, which is dependent,
however, on the existence of our tree structure. The
second theorem below (for repulsive specifications) then

has a similar proof to the first.

If S has a minimal element X~ , say, (one such that x~ < x
for all x € 8), for each V € ! we define nv(-,-) to be

the p.m. ;*) where X, = x for all i € 3v; if S

TTv(xav N
has a maximal element x , say, we similarly define the

p.m. ﬂv(+,-).

Now let i, be a fixed reference element of A, and define

the sequence {Vn} in V* as in section 3.2, i.e. by

Vo = {10} ’ Vn = Evn-'l ’
Observe that Vn 7 A. We now state both the principal
theorems of this chapter, before embarking on their

(considerably overlapping) proofs.




Theorem 4.1.1. Suppose that S has both a minimal element

x  and a maximal element x+, and that the given h.h.M.
specification II is attractive. Then there exist Markov
chains P~,P’ (not necessarily distinct) in M, (II) such

that, as n » =,

- +
TTV (-r ) =P [ TTV (+I ) =P
n n
(where = denotes weak convergence). If P~ = P' then
|G(M) | = 1, (and conversely). A sufficient condition for

this to happen is that P; = P; for some (and hence all)
i G A.

Remarks. 1. The p.m.s P—,P+ are obviously independent of

the reference element i, of A.

2, The results of section 3.4 (for the binary state space)

show that both P~ = P’ and P~ # P* can occur.

3. A consequence of the theorem is that, under its
hypotheses, My (II) always contains at least one element.

In the most important special case of the theorem, that
where S is finite, we know this already (from the corollary
to Theorem 3.1.1).

Theorem 4.1.2. Suppose that S has a minimal element x

(or equivalently a maximal element x+), and that the given
h.h.M. specification I is repulsive. Then there exists a
complementary pair of Markov chains P,P' (not necessarily

distinct) in M, () such that, as n » o,

m (—I.) = P r TTV (—l') = p!
2n 2n+1

I

If P = P' then |G(I) | 1. A sufficient condition for this

to happen is that Pi = Pi for some (and hence all) i € A.




Remarks. 1. The p.m.s P,P' change places if the reference
element i, is translated an odd number of steps in the

tree, but are otherwise independent of i,.

2. The results of section 3.4 show that both P = P' and

P # P' can occur.

3. Again, a consequence of the theorem is that, under its
hypotheses, M, (Il) always contains at least one element;
when P = P' this one element belongs to My (Il), i.e. is a
homogeneous Markov chain. It is of interest to speculate
whether, when P # P', My () still contains at least one
(perhaps 'unstable') element; (we know, of course, that

Mo (II) is non-empty when S is finite).

We now set up the apparatus common to the proofs of both
theorems, before considering each separately. The most
important item is a partial ordering < on the space Y¥:
given P,,P, € ¥ we will say that p; € P, (or equivalently
P, » p;) if, for all x,,x, € S with x, < x,,

(2) P1(x1)P2(x2) 2 Pa(x,)P;(x,) ’

noting that this relation is independent of the particular
member of the equivalence class of functions S -~ R+ chosen
to represent each of p,;,P,. The relation < is trivially
reflexive. It is necessary to verify its transitivity:
suppose 2?,,P,;,P; € ¥ satisfy P; < P; and P, < P,; for
any Xi,¥X; € S such that x; < x;

P1(x1)P2(x2) 2 P2(x:)P1(X2) ' P (x1) P3(xy) =2 P3(x;)P2(x3)

it is straightforward that this implies

P1(x1)P3(x,) 2 p3(x,)P;(x,) except where we have

(3) P2 (x1) = p2(x2) =0 ’ P3(x;) ¥0 , pi(x2) #0

.
!



but (3) implies that p:(x) = O for all x =2 x; (since

D, < pj3), and that p,;(x) = 0 for all x < x, (since p, < p2), so
p, 1is identically zero in contradiction to the hypothesis

p: € ¥; thus the condition (3) cannot occur and

transitivity is established. Finally, we note that if

p1 < p; and p; < p; then p; = p:.

Now let ¢(p,q) be a fixed h.h.M. interaction such that

I = 1I(p,q). Define Q, Td , Té as in section 3.1. We

will require the following lemma which says (roughly
speaking) that when Il is attractive [ repulsive] the partial
ordering =< is preserved [ reversed] by T, (and thus in

particular by Té).

Lemma 4.1.3. Suppose that for each t, 1 < t < 4, Py v pé ey

are such that th ’ Qpé exist and that P, < pé. Then if
I (and hence ¢(p,q)) is attractive,

(4) Td(pl ,....,pd) < Td(p; ,---.,p(’i) ’
and if I is repulsive, (4) holds with » replacing <« .

Proof. It is sufficient to show that if p; , p; € ¥ are

such that Qp; , Qp] exist and p; < P, , then when ¢(p,q)

is attractive Qp; < Qp; , and when ¢(p,q) is repulsive

Qp: > Qp;. The results then follow easily from consideration
of the definition of < . Thus if p, , p, are as above and

X1 S x5,




(Qp1) (x1) (Qp1) (x2) - (Qp}) (x)(Qp1) (x2)

= Z:. {[a(x1,y1)q(X2,¥2)-q(X1,y2)q(x2,y 1) I p1(y1)p}(y2)}
Yi1/¥Y2 € SxS

= EE: {lg(x,,y)a(xz,y2)-q(x1,y2)q(x2,y1)]
Yi:Y2 € Sx§

Y1 < Y2

O , if ¢(p,q) is attractive

—t—
VA Y

0O , if %(p,q) is repulsive.

It follows from the lemma that a similar, but simpler,
result holds for Té.

It is now convenient to define, for any Vv € V, the function

u SEv > R, by

u (xgv) = ﬁ p(x,) TT g(x., , x.)

iEev 1 ty,k} €N J k
{j,k} NV #g

v

When S has a minimal element x , define the sequence {6;}

in Y by
§y = Gx_ (i.e. 83(x™) > 0 ; 8o(x) =0 if x # x7)
§ = T' (& ) , n=1

We may argue as in section 3.2 (or apply Theorem 2.2.1

with A = Vﬁ+ ) to deduce that for any m,n 2 O

n+1

[p1(y1)p)(y2)-pl(y1)pi(y2)]}



(5) T (-,X =x, ) =u (X ) | l § (x.)

m+n m+1 m+1 m m+1 i€ BVm noot

When S has a maximal element x+, define similarly the

sequence {6;} in ¥. Again, for any m,n = O

(6) T, (BX, =x, ) =g (%, ) i] §T(x.).

m+n m+1 m+1 m Vrn+1 i € E)Vm

Note that (5) and (6) include the assertions that the functions
6; , 6; , n = 0, exist; note also that these functions are

strictly positive for at least all n =2 2. We must now

consider separately the proofs of Theorems 4.1.1 and 4.1.2.

Proof of Theorem 4.1.1. We break the proof into three sections.

1. We first show how to construct P ,P'. For all p € ¥
we have

8o < po < &, ;

since [l is attractive, iterative application of Lemma 4.1.3

(with Té instead of Td) to this result gives: for all n =2 O

§ < 8§
n+1
+ +
Gn > 6n+1
6; £ p, < 6; , for all p, € v,

where the sequence {pn} in ¥ is defined by P, = Té(pn_H ,n = 1.

Further the transitivity of < implies that for all m,n =2 0O

Thus under the convention

(7) p'(x) =1 for all p' € ¥ such that p'(x ) > O

14



for each x € S the sequence {6;(x)} is increasing in n
and is bounded above by Sg(x), say. Hence there exists
a strictly positive §° € VY such that, under (7),

6;(x) + 8§ (x), as n » »., Further, under (7),

p(x)[ (Q67) (x)1°
6n+1 (x) = _ _ _ 4
p(x )[(Q8 (x)]
and so by dominated convergence 6;+ﬁx) > [Té(6-)](x) as n - «,
We deduce that § = Té(é_). Further, under (7),
2 sTmaxysTw < L. 2 stax,y iy
x €S y €S x €S y €S
< o

(consider the density of ﬂv(+,-) where V = £(&{4i,3}) for
any {i,j} € N). Thus, by Theorem 3.1.1, there exists a
Markov chain P~ € M, (II) corresponding to & as in that
theorem.

Now, still under the convention (7), let a;r], a; n be the

normalising constants required in (5) and (6). We also

have: for any fixed m = O,

it follows from our results above that

(8) w, (x ) l i § (x.) = b, (%, ) I I § (x,)

m m+tl 1 € 3V noot m vm+1 i € 3v
m m

the left-hand side of (8) is dominated by

+
Hy (xv ) éz(xi), whose sum over all X, € gVm+1
m m+tl 1 € BVm m+1

-1

is (a ; thus, again by dominated convergence,

8 +

)

' 2
o a;. Putting these results together, and recalling
s

that m is arbitrary, we deduce that as n - =,



TTV(-I.) = P .

Similarly there exists a strictly positive st € v such

that the sequence {6;} converges pointwise to §" (under
the convention (7) with , or without , + replacing -);

that &% define§, via Theorem 3.1.1, a Markov chain

pt € Mg (II); and that as n » «, e (+,°) = P'. Note also
m

that if p' € ¥ satisfies p' > 6; for all n, then p' > § ;
similarly if p' < 6: for all n, then p' < §¥. We use
this result in 2 below; (an immediate consequence is that
57 < §87).

+

2. We now show that if P = P, then |G(II)| = 1. Since
E() € M(I), it is sufficient to show that if P~ = p¥,
then |M(I)| = 1. Therefore consider P € M(I); let

{pi , 1 €A, j € 3i} be the (unique) collection of functions
in Y defined by Theorem 2.2.1 (relative to the interaction
(p,q)). For all n =2 O we have the result:

- j + R . .
(9) 6n < P < 6n . for all i € A, § € 3i.

(This follows by induction, noting first that it is
trivially true for n = O: by Theorem 2.2.1, pi = Td(p;:k € 3i~-j)
and so if (9) is true for a given n, by Lemma 4.1.3 it

is also true for n + 1.) Thus,
§7 < pz<6+ , for all i €A, § € 31 .

Therefore, if P~ = P* then 6 = 6§ and so pg = § for all
i €A, j €9i, implying (again by Theorem 2.2.1) that

P =P



3. Finally, we show that if PI = PI for some i € A, then

P = P+. From Theorem 3.1.1,

p"(xi = x) = [T (&7)] (%)

d+1

5 (x)1+1/d

p (X)ll’d

with a similar result for P'. Thus P; PI implies that

§" =6%, and so P” = p".
Remark. In the above proof that if P~ = P’ then |G(I)| = 1,
we actually show IE(H)I = 1; that this implies the required

result comes from (the quite deep) Theorem 1l.1.1 (Preston
(1976)), which, although conveniently available, is more
than we really need here. We may, if we wish, proceed
instead as follows. Fix m =2 0; arquing as in the above

proof, for any fixed Ya € SA, and for all n =2 O,

™ (yA r X = X, ) < U (xV ) i I pn(xi),
m+n m+1 m+1 m m+1 i€ BVE

where, for each n, pn € ¥ depends on Ya and satisfies

6—<pn<6; )

n

Now if P~ = P, so that 6~ = &', and if P € G(II), we have

from (4) of section 1.1 and the (reversed) martingale

convergence theorem,
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{recalling that F is the tail o-field). Taking expectations
with respect to P, and noting as usual that m is arbitrary,

we obtain P = P .

Proof of Theorem 4.1.2. This is a variation on the proof

of Theorem 4.1.1; we therefore concentrate on the differences.
For any po € ¥, 8o < po. Since I is repulsive iterative
application of Lemma 4.l1.3 now gives that for all n = O,

$ < $ ’ $ > 6

2n 2n+2 2n+1 2n+3

62n < pZn+1‘< 62n+1 ! 8

o+l > Popsa > O

one2 ! for all po € VY,

where the sequence {pn} in ¥ is defined by p, = T'(p ), n =2 1.

- d n-1
om+1® Thus, the

sequences {égn} and {6;n+ﬁ play essentially the same roles

Further for all m,n 2 O, we have SEH < §

as the sequences {§_} and {5;} in the proof of Theorem
4.1.1. Arguing as in that proof, we deduce that there
exist functions §%,6° € ¥ (with 6° < §°) such that (under
the convention (7)) the sequences {6;n}, {6;H4} converge

pointwise to Ge, §° respectively; that
80 = T!(8°) ;8% = TL(8%)

and that _ 2. §%(x)q(x,y)8°(y) < ». Now let E be
X €85 y €S8

the set of 'even', and O the set of 'odd' vertices (or

sites) of the tree A, taking O to include the reference
element i,. Define P € M, (II) via Theorem 3.1.2 by associating
§°,6° with the vertices of E,O respectively (i.e. by letting
the associated functions pi € ¥ be equal to §€ or §°

according as i belongs to E or Q). Define P' € M; () to

be the complementary Markov chain, given by interchanging

the roles of §° and §°. Thus, continuing to argue as in

the proof of Theorem 4.1.1, we obtain that as n - «,

m (-r.) =P ’ m (-r.) = p'



Now suppose P = P' (which is equivalent to §° = 60).

For any Markov chain P* in M(I) let {pi , 1 €A, j € 3i}
be the corresponding collection of functions in Y defined
by Theorem 2.2.1; we may show by induction that for all

n =2 0,

- 3 3 - ; : i
§ < p- ’ pi-<<52n+1 ' for all i € A, j € 3i ;
thus pi = 8% for all i € A r J € 31 , and so P* = P. We
deduce that |M(I)| = 1 and so |G(II)| = 1. (We may
alternatively show this by mimicking the argument given in
the remark which follows the proof of Theorem 4.1.1.)
Finally, if for any i € A, Pi = Pi , a variation of the
argument for the corresponding result in Theorem 4.1.1

shows that P = P'.

Under the conditions of Theorem 4.1.1 wé deduce that

|G(M)| = 1 if (and only if) |Mo(M)| = 1; similarly under
the conditions of either Theorem 4.1.1 or Theorem 4.1.2,
|G()| = 1 if and only if |M,; ()| = 1. Consider again

the case where the state space S is binary; we have already
remarked that here every h.h.M. specification is either
attractive or repulsive (independently of the two possible
orderings of S); we thus obtain Spitzer's result, mentioned
in section 3.4, that |M,;(I)| = 1 is always a sufficient
condition for |G(I)| = 1.

The following corollary to the above theorems is of some

interest.

Corollary. For d = 1 (the one-dimensional integer lattice),

under the conditions of either Theorem 4.1.1 or Theorem
4.1.2 and provided that 1 is strictly positive, G(II)
consists of a single element, necessarily a homogenenous
Markov chain.



Proof. Kesten (1976) shows that for d = 1 and a given
strictly positive translation-invariant Markov specification
M, Gy () consists of at most one element, necesgarily a
stationary Markov chain. Suppose I satisfies the conditions
of Theorem 4.1.1; we must then have equality of the Markov
chains P_,P+ defined there (since they belong to G, (I)),

and so the result follows by that theorem. Suppose instead
I satisfies the conditions of Theorem 4.1.2; if P,P' are as
defined there, the p.m. %(P + P') belongs to Gg () and
hence, by Kesten's result, to M, (Il); thus, by the corollary
to Theorem 3.1.3, P = P' and again the result follows.

Remark. The strict positivity condition of Kesten's
result can presumably be relaxed to the hereditary condition
used in this work; if this is so, then the proviso in the

above corollary is redundant.

Now suppose again that the conditions of Theorem 4.1.1 are
satisfied. Considering the method of construction of the
p.m.s P—,P+ defined in that theorem, we would most certainly
expect them to belong to the set E(Il) of extreme points of
G(II). This result would follow trivially if our conjecture
of section 3.1 (that My (II) = E4(II)) were true. We offer
instead the proof below, based on the integral representation
of Theorem 1.1.1. It does at least have the virtue that
it requires only slight and obvious modifications to
establish the corresponding result for repulsive specifications.
Theorem 4.1.4. (i) Under the conditions of Theorem 4.1.1,

P,PT € E(I) .

(ii) Under the conditions of Theorem 4.1.2,
P,P' € E(I).




Proof of (i). Consider the stochastic kernel 7 defined

by Theorem 1.1.1. For each Ya € SA, Tr(yA ,+) belongs to
E (1) and hence (Theorem 2.1.4) to M(Il); for each i € a4,
j € 9i, let pz(yA ;) € Y be the corresponding function
defined by Theorem 2.2.1; as in part 2 of the proof of
Theorem 4.1.1 we have

J . o,
(10) s < pi(yA rt) < 8 ;

and for each such pair of neighbours i,j in A,

. = = @ J i
(11) Tr(yA R ,Xj xj) pi(yA ,xi)q(xi ,xj)pj(yA ,xj)
Consider P : for each i,j as above,
(12) P (Xi =X, Xj = xj) x § (xi)q(xi ' xj)d (xj) ;
it follows from (10),(11), (12) and the result P = P 7w of

Theorem 1.1.1 that
-, 3 Y = &7y = .
P (pi(yA ') S ) 1 H

(this is easiest to see if we make use of the convention
(7) to fix elements of Y¥). Thus,

P_(Pj(YA ;) =& for all i €A, j € 3i) =1 ,

which (as in the proof of Theorem 4.1.1) 1is equivalent to

P_('rr(yA,') =P ) =1 .

We may now complete the proof in various ways, of which

the simplest is to observe that this last result implies
that P~ = Tr(yA ,+) for some Ya € s®, so that, by Theorem
1.1.1, P~ € E(I). Similarly, PT € E(I).




Examples of attractive and repulsive h.h.M. specifications
are afforded by various of the auto-models of Besag (1974).
(Investigation of some of these was the starting point for
the current work.) The specifications considered by

Spitzer for |S| = 2 (and discussed further in section 3.4)
are in fact examples of what Besag calls the auto-logistic
model; on the d-dimensional integer lattice this corresponds
to the Ising model of classical statistical mechanics. 1In
the next section we consider as a further example the auto-

Poisson model.

We conclude this section by remarking, tentatively, that
both its results (with Markov chains replaced by M.r.f.s
of a more general nature) and the methods used to obtain
them, should not be too difficult to modify to cover the
study of attractive and repulsive h.h.M. specifications
(similarly defined) on the d-dimensional integer lattice
Zd; (for attractive specifications the results would be
similar to those of Preston (1976, Chapter 9)). For each
member Vn of a suitable increasing sequence of subsets of A
it would be necessary to consider simultaneously all the
sites comprising its boundary avn ; thus we would have to
replace the space Y by spaces of positive real-valued
functions (modulo a multiplicative constant) on finite
products of the state space S, and either correspondingly
modify the definition of the partial ordering < , or else
replace it by a suitable metric on these spaces or on the
space of p.m.s on (SA,F). We have not attempted to check
the details of all this.



4.2 The auto-Poisson specification

We consider a further example of a repulsive specification.
Let the state space S be the set of non-negative integers,
with the usual total ordering; take the minimal element O
of S to define the basepoint in the usual way, and consider
the h.h.M. interaction ¢(p,q) on (S,A) (where A remains our

regular infinite tree) defined by

X

0O < © <

(o}
p(x) —
X!

alx,y) = ™Y , o<g<1 .

The condition O < 8 < 1 is necessary in order that ¢(p,q)
should be an interaction, i.e. in order that the
'normalisability' condition (1) (ii) of section 1.2 should
be satisfied; (see Besag (1974), section 4.2.4); the

interaction ¢(p,q) is then easily seen to be repulsive.

Let I = NI(p,q) be the corresponding (repulsive) specification.
For each i € A, x € Sgl

Ei
~ ti (aBti)Xi
(1) T Xy, »x,) = exp(-aB™?) 3
i°
where t, = 2:' X, ; the specification provides an
j € o1

éxample of an auto-model and, in view of (1), is called the
auto-Poisson specification (Besag (1974)). (Naturally it
may be similarly defined with respect to any other neighbour
relation ~ on A.)

We may apply Theorem 4.1.2 to infer the existence of a
complementary pair of (not necessarily distinct) Markov
chains in M; (II); if they are coincident they form a

single homogeneous Markov chain and IG(HH = 1. Thus in



particular M(I), and hence G(II), are non-empty.

By Theorem 3.1.2 the elements of M, (Il) correspond to the

ordered pairs of functions pe,po in ¥ satisfying

X
[0}
(1) p°(x) « — [ > Bxype(w]d ,
Y

x! €S

x! €S

X
(2) A pe(x) « % { Z B"yp°(y)}d ,
y

(1i) Z Z: p°(x)8¥pS(y) < =

| x €S5S y €S

Full solutions of the equations (2) seems analytically
guite intractable; although we conjecture that it might
not be too difficult to obtain bounds on the set of (a,B)
such that (2) had exactly one solution. However, for the
important case d = 1, the corollary to the theorems of
the previous section enables us to deduce directly that
G(II) itself contains precisely one element, this being a
homogeneous Markov chain.
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