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ABSTRACT

An introduction *to the dynamical diffraction theory
is given and its results are discussed in relation to double
crystal diffractometry in the various arrangements. A
review of the work using this technique is also given.

The micro-computer controlled diffractometers, the EGG
and the COFFIN together with the interface system are
described. The software written for the automatic control
of the diffractometer is given in detail. The micro-
computer controlled diffractometer has proved a great
advantage in that it reduces tremendously the time of the
experiment and made possible the experiment using y-rays
which otherwise is impossible to carry out due to its low
intensity and high background.

Results are presented of a study of the damage intro-
duced into silicon when cut with a diamond tool on a lathe.
The depth of damage introduced is investigated by measuring
rocking curves full width at half height maximum as the
crystal was etched. The result obtained shows that the
bulk of the surface damage introduced is confined to the
first S5um of the crystal which is completely removed after
a further 100um is removed and is independent of the tool
type. Therefore diamond turning can replace the time
consuming hand lapping process with a reduction in cost and
would therefore be advantageous in the production of mono-
chromators and mirrors of non-standard shapes and sizes.

Previous work using y-ray energy is reviewed. The
double crystal technique using gamma rays is potentially a

powerful tool for the measurement of lattice tilts in thick



perfect single crystals. The narrow rocking curve (less
than 0.5 arc seconds) and the long counting time (up to 6
minutes per point) necessitates the use of:micro—computer.
Results are presented of experiments to establish the
feasibility of the method.

The perfection of the triangular monochromator crystal
used at the Protein Crystallography Station, Daresbury
Laboratory was also investigated from rocking curve measure-
ments. The effects of bending the triangular monochromator
crystal on the FWHM and integrated reflecting power were
studied and the measurement of curvalture was made on Lhe
Lang camera. The 6-fold increase in the integrated intensity
of an unpolished monochromator over a polished one could be
a great advantage for protein crystallography experiments.
This has yet to be tested at the Daresbury station.

Results are presented on the effect of a magnetic
field parallel to the two fold axis on the double crystal
rocking curves of hematite crystal which indicate a complex
behaviour where multiple splitting occurs and is extremely
unstable.

Double crystal topographs of Indium phosphide and
gallium arsenide crystals indicate the usefulness of
synchrotron radiation to crystal growers for a rapid and

routine assessment of crystal perfection.
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CHAPTER 1

DYNAMICAI, DIFFRACTION THEORY

1.1 Introduction

A perfect crystal will produce a strong diffracted beam
if the reflecting plane of lattice parameter d is set to
reflect an incident monochromatic beam of wavelength X at

the Bragg angle GR. That is
2d sin GB = A 1.1

If an imperfection exists in the crystal the lattice parameter
around that region varies and thereforéi%ragg relation is not
satisfied simultaneously in the perfect and imperfect regions,
As a result the intensity of the diffracted beam is non-
uniformand aphotographic film placed to record the intensity
will display a different image contrast.

There are generally two diffraction theories which can
be used to account for the intensity distribution in X-ray
diffraction : the kinematical theory and the dynamical theory.
The more general of the two theories, the dynamical theory
will be discussed in detail in this chapter as in the limit

of small crystals, the results approach that of the kinematical

theory.

In the kinematical diffraction theory the scattering
from each volume element is treated as being independent of
that from other volume elements except for the incoherent
power losses in reaching and leaving the volume. In simple
terms the amplitude of the scattered waves is assumed to be
small compared to that of the incident wave. This assumption
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is justified if the crystal is small (of less than 1 micron

in diameter) and in large highly deformed crystals where the
mosaic structure acts as individual diffracting units. The
kinematical diffraction theory may be found in many text books
on solid state physics.

For large perfect single crystals the amplitude of the
diffracted beam is no longer small compared to that of the
incident beam and thus the dynamical diffraction theory which
takes account of all the interactions within the crystals
must be used. The original theoretical work was done by
Darwin (1914), Ewald (1958, 1916 and 1917) and von Laue (1931).
The theory has also been summarized and extended by Compton
and Allison (1934), Zachariasen (1945), James (1948), von
Laue (1952) and Pinsker (1978). Excellent reviews of the
theory has also been published by Batterman and Cole (1964),
Authier (1970) and Hart (1980). The treatment here follows

that of Tanner (1976).

1.2 Fundamental Equations of the Dynamical Theory in Perfect

Crystals

In obtaining the fundamental equations of dynamical
theory, the solution of Maxwell's equations in a periodic
medium must be matched to the plane wave solutions outside the
medium.

The Laue equation relates the diffracted beam wavevector
K to the incident beam wavevector Eo in reciprocal space

via a reciprocal lattice vector g:

I_<_g = Eo +§ 1'2



The solution of Maxwell's equation for the electric dis-

placement vector Q should be of the form

D=2 D exp(-2miK '59 exp (iwt) 1.3
- g 8 —g
This Bloch wave, as it is called, describes a wavefield con-

sisting of an infinite number of plane waves with wavevector

Eg and reflects the periodicity of the crystal lattice.

If the electrical conductivity and the magnetic permeability
are assumed to be zero and unity respectively then Maxwell's

equation reduces to

-1 + ) 3%

curl curl 9 = 5 5 1.4
c ot

As the electrical susceptibility x is a continuous periodic
function it can be expanded as a Fourier series over all the

reciprocal lattice vectors

X =L x, exp (-2mi h.r) 1.5
h B -
Xh is related to the structure factor Fh by
2
-r \°F
e h
X, = —— 1.6
h TV
C

where re is the classical electron radius and VC is the
volume of the unit cell. The structure factor is related to
the atomic scattering factor fi by

F =3 f.l exp(2mi h . r) 1.7

h unit
cell

where I is the position vector in real space of the ith

atom wilh respect to origin.,



Since x is small in the X-ray region that is of the order
of 107° it can be expanded as a power series. Thus equation

1.4 can be written as
curl curl (1 - x)b = - 1.8

On substitution of equations 1.3 and 1.5 in 1.8, and after

some manipulation, the following relation is obtained:
2
z K . K_ - K .K_)D =.{k"-(K _.K D 1.9
h{Xg_h(___g —h)—g Xg—h(—g _g) —11} { (,__g _g)}_g

k is a vacuum wavevector and is equal to w/c. In X-ray
diffraction usually only two wavevectors have significant
amplitude, that is the refracted vector Eo and the Bragg

reflected vector Eg. Therefore equation 1.9 reduces to

K _.D)K_ - K . D )K_ - K K )D
Xg(Kg DKy = Xg(Ko R IDy + Xo(Kg . DIK, = X (Kg.K)Dy

(k<K _.K_)D 1.10a
2grfg)2g

Xé(gogg)go - Xé(.l_{.()'go)_D_g + XO(EO'P—O)EO - XO(.I_(.()'.ISO)I_).O
_ 2
= (k“-K_.K_)D, 1.10b

Taking the scalar product of equation 1.10a with Eg and
equation 1.10b with Qo’ equation 1.10a and 1.10b reduces to

k2Cx=D  + {k2(1 + x.) - K_.K_ID
g g O -0 —0° O

I
o
—
j—
=t
o)

I
O
ju—}
-
—
o

2 2
k“(1 + o) - K_.K_}D k“Cyx D
{k™( xo0) - K _g} g * XePo

g

C is the polarization factor where

c = 1 for ¢ polarisation

_Qo 'I_)_g

cos 28B for m polarization



For non trivial solution of equations 1.,1la and 1.11b the

determinant must be zero

2
k CXE kK™(1 + XO) - O'I—{-O B
= 0
K2(1 + ) - K 2
1 .,2.2
Therefore o o = = - 1.13
ere e o, g 7 k™C Xng
1 2
where a = — {K_ .K_ - KkK“(1 + x )} 1.14a
(o) —0°'—0 O
2k
_ 1 2
and a_ = =— {K_.K_ - k91 + x )1} 1.14b

Define the amplitude ratio R = Dg/Do' From equations 1.11

and 1.13

Thus R“ = g 1.16

1.2.1 The Dispersion Surface

The dispersion equation 1.13 1links the incident and
diffracted wavevectors in the crystal. Figure 1.1 shows a
section of spheres of radius k and k(1 + XO/2) with centres O
and G where BG is the reciprocal lattice vector g. The Laue
point L is the intersection of the spheres and X-rays will
only be diffracted close to the Laue point that is when the

Laue equation 1.2 is nearly satisfied. Away from the Laue

point Bg = 0 and from equation 1.1la.

ol = k(1 + x /2) 1.17



L

O \
N\

K(1+y /2)

K

0] G

“

Fig. 1.1 Spheres im reciprocal space about the
lattice poinﬁ 0 and G. L is the Lauve
point.

Fig. 1.2 The magnified view of the region about L

which is the dispersion surface construction.



that is the wavevector inside the crytal is equal to the

wavevector in vacuum corrected for refractive index and

is represented by a sphere of radius k(1 + XO/Z) (Figure 1.1).

Since X, is small |K | = k. The loci of the tails of wave-

vectors during Bragg reflection does not lie on the sphere

in the region of the Laue point and this loci given by the

dispersion equation 1.13 is known as a dispersion surface,.
Figure 1.2 is the expanded view of the region close to

the Laue point L. AB and A'B' are the traces of the segments

of spheres of radius k, CD and C'D' are those of radius

k(1 + XO/Z) with centres at O and G respectively. For a

point P on the dispersion surface o and ag are the respective

perpendicular distances from point P to CD and C'D'. As

the radius of the sphere is large compared to the Laue region,

the segments of the spheres are approximated to planes and

thus the dispersion surface is the equation of a hyperboloid

of revolution about axis OG with CD and C'D' as asymptotes.

There are four branches of the dispersion surfacc. The

upper branch is denoted as branch 1 and the lower is branch

2. Each branch has two polarization state o and 7w,

1.2.2. Boundary Conditions.

A plane wave incident outside a crystal has to satisfy
certain boundary conditions on the field vector and wavevector
in order to propagate across the crystal. The condition which
relates to the amplitude matching requires the tangential
component of E and H to be continuous across the boundary.

As the refractive index of the crystal in the X-ray region



is close to unity the reflection amplitude or the refraction
effect is negligible provided that the glancing angle of
incidence is not close to the critical angle of total external
reflection., Therefore to a good approximation the field vector
is continuous across the crystal surface and the electric
displacement vectors are equal on either side of the boundary.
For an electric displacement amplitude 21 outside the

crystal
= D + D 1.18a

O = D + D 1.18Db
€1 €2

Also at the crystal surface the waves inside and outside
the crystal must have the same phase velocity parallel to
the crystal surface implying that only the vector normal to
the crystal surface contributes to the difference in wave-
vector inside and outside the crystal, that is

Ko, = Xe Ko -~ ke

1 1

~

where n is a unit vector normal to the surface and i = 1
or 2 depending on the branch of the dispersion surface as
shown in Figures 1.3a and 1.3b for the transmission and
reflection geometry., The tie points excited inside the
crystal by an external wav;tz+ the intersection of the
vector normal to the crystal surface drawn from the tip of
the wavevoector h“ and the dispersion surface. TFor the
transmission geometry (Laue case) the tie points are on
opposite branches of the dispersion surface but for the

reflection geometry (Bragg case) the tie points lie on the



(a)

(b

Fig. 1.3 Geometrical representation of the boundary
conditione.
(@) Laue, transmission geometry.

(b> Bragg, reflection geometry.



same branch.

1.2.3 Energy Flow

The direction of energy flow in the crystal is described
in terms of the Poynting vector P for the total wavefield and
represents the energy flowing across a unit area in a unit

time.

—P— =

e}

x H 1.19

The average value over the unit cell and time is given by

~ A

E = I s + I

S 1.20
o o g g

A A

where S, and sg are unit vectors parallel to the incident

and reflected direction and IO and Ig are the refracted and
diffracted beam respectively (Figure 1.4)1 The propagation
of any wavefield in the direction perpendicular and parallel

to the reflecting plane are given by

>
>
>
>

g.u P sin A =1 s .G + I

(Ig-Io)s1n GB 1.21

>
>
<>

it
-
< >
+
—t
0>
il

P.v P cos A (Ig+Io)cos eB 1.22

u and v are unit vectors perpendicular and parallel to the
reflecting plane and A is the angle bhetween the prepagation
direction of the wavefield and the Bragg planes. From

equations 1.21 and 1.22

(1,/1-1) (R%-1)
tan A = tan GB —2—— = tan GB —5—— 1.23
(I, /T +1) (R“+1)

The equation of the dispersion surface in the coordinate

system Ox, Oz (Figure 1.5) is



Fig. 1.4 The Bormann fan showing the direction of

eher‘gy 'F 1 OW.
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22 =11 2 4 x%tan?e 1.24
4 fo) B

AO is the diameter of the dispersion surface. If 0 is the
angle between Oz and the normal to the dispersion surface

then 9

Qg xtan eB

tan (O = dx = ” 1.25

The deviation parameter n determines the deviation of the tie

points from the exact Bragg position and is defined as

2xtaneB
n = -— 1.26
A
o
The angular deviation from the exact Bragg angle A6 is
xseceB
A = ——— 1.27
k

AQ is negative when the angle of incidence is less than the
Bragg angle. From equations 1.26 and 1.27
ZsineBkAe
A
o)
Substituting equation 1.26 in 1,24
2,%
Ao(14n%)
2

The perpendicular distance from the tie point to the sphere

about G is

agseceB = 7z - xtanGB 1.30

From equation 1.24, 1,26 and 1.30

2 1, 2 _
(agseceB) + AonagseceB - ZAo =0 1.31
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Solving the quadratic equation 1,31
o secB, = —-3A { + (1 + 2)%} 1.32
g e B it RLPN -n = n .

The amplitude ratio in terms of the deviation parameter is
given by
R=n+ (1+n2) 1.33

The positive sign corresponds to branch 1 and the lower sign

to branch 2. At the centre of the dispersion surface

a, = ag and therefore the diameter of the dispersion surface
is
AO = 2aoseceB = 2agseceB 1.34
2 _ 2 2.2
Therefore AO = sec GBk C XgXE 1.35

From equations 1.25, 1.26, 1.29 and 1.33

2
tan @ = tan GB (Eg—:—l) 1.36
(R™ + 1)
Comparing equations 1.36 and 1.23
A =0 1.37

The result of equation 1.37 implies that the Poynting vector
has the same direction as the normal to the dispersion
surface, If the tie point P is near C the direction of
energy flow is normal to the sphere CD in the direction of

~ ]
So and if P is near D the energy flow is in the direction of

>

s . At the Brillouln zone boundary or the exact Bragg
g
condition the cencrgy f(low is along the Bragg planes in the

dircection (s + s ).
o g
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1.3 Results of the Dynamical Theory

There have been many cxperiments carried out to demonstrate
the validity of dynamical theory. The following section is

a discussion of a few of the important results,

1,3.1 The Bormann Effect

The Bormann effect was first observed by Bormann in
calcite single crystals (Bormann 1941, 1950) but most of the
quantitative investigation was carried out using germanium
crystals as it can be obtained in a highly perfect state.
These investigations can be found in articles by Bormann and
Hilderbrandt (1959 ), Hunter (1959), Battermann (1962), Okkerse
(1962 )and Penning (1966 ).

The Bormann effect experiment can be schematically
represented by Figures 1.6 and 1.7. A perfect crystal cut
in the form of a parallel-sided slab with the diffracting
pPlane perpendicular to the slab surface was rotated about an
axis parallel to the diffracting plane, As absorption is
mainly due to photoelectric processes at X-ray wavelengths,
the transmitted intensity at 6 # GB is given by I, exp (-uot).
If the thickness of the crystal slab t is small such that the
product of the absorption coefficient “o and t is uot << 1
the transmitted intensity profile is as shown in the upper
curve of Figure 1.6c, where a dip in the profile was obtained
as expected. For uot >> 1 a peak was observed in the profile

at the angular position GB when the Bragg relation is

satisfied. This phenomenon is known as anomalous transmission

or the Bormann effect. As shown in Figure 1.7b three spots



Fig. 1.6
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Bormann effect.

Laue diffraction in thin crystal,
t<<l.

Lave diffraction in thick crystal,
t>10.

Transmitted intensity for thin

crystal (Upper curve) and thick

cryatal(lower curve).



IO e Film

~ . 71 (1)
B (T~ ) 20g
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Fig. 1.7 (a) Rey diagram corresponding te the spots
obtain on the film.
(hy  Spots obtain on a Film. Spoi 1
correspond to the diffracted beam.
Spot 2 is at am angular position 2
from spot I. Spot 3 is in line with
the incident bean.
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were obtained on a photographic film placed parallel to the
crystal surface to intercept the beam emerging from the
crystal. Spot 1 was due to the diffracted beam, spot 2 is
at a distance corresponding to an angular position 26B from
spot 1 and of about the same darkness as spot 1. Spot 3
is in line with the incident beam. The separation of spots
2 and 3 is proportional to the crystal thickness., From
Figure 1.7a the beam for spots 1 and 2 must be from a point
opposite to the point when the incident beam hits the crystal
surface which implies that the radiation travels along the
atomic planes. This property of anomalous transmission is a
diffraction phenomenon, a feature of a perfectly periodic
lattice and imperfections tend to reduce or eliminate the
effect. Anomalous transmission has been used to image
dislocations directly (Bormann, Hartwig, Irmler 1958) and
a statistical theory relating the transmission to the small
size defect concentration have been developed by Dederichs
(1970) and applied to silicon (Patel 1973) and aluminium
(Nost, Larson and Young 1972).

The total field in the crystal in terms of intensity is

given by

2 2
I, = p? = D {1 + R® + 2RC cos(2mg.r)} 1.38

A maximum intensity occurs when g.r = n and a minimum intensity

when g.r = (2n + 1)/2 where n is an integer, Therefore the
nodes of the standing wave coincide with the atomic planes
where photoelectric absorption is significant. The sign of

R determines whether the maximum or minimum occurs at the

atomic planes. When R is negative (branch 1) the wave has a
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minimum at the atomic planes and vice versa when R is
positive. For example in the 200 reflection in NaC{ as

the structure factor is positive Xg is negative and thus R
is negative, Therefore it is expected that the wavefield
has a minimum at the atomic plane on branch 2 and a maximum
at the atomic plane of branch 1 but experimentally it is not
the case as shown in Figure 1.8, Similarly the peak in the
bottom curve of Figure 1.6c is due to the elimination of the
normal photoelectric absorption and the dip in the top curve
occurs as the crystal is thin and little absorption was

taking place.

1.3.2 Pendellosung Fringes

The phenomenon where interference effect occurs between
two Bloch waves is termed Pendellosung. This effect is due
to the difference in wavevector of the tie points associated
with the Bloch waves. The intensity distribution of the
diffracted and transmitted beam shows a periodic variation
with crystal thickness. For a symmetric Laue case the

boundary conditions given by equation 1.18 must be satisfied,
1 = D + D 1.39a
O = D + D 1.39b

From equation 1.33 the amplitude ratio is given by

2.%
n £ (1+n7) 1.4 0

]
]
[
et
Il

Defining R as

n = CcOoSsfR 1.41



BRANCH 1

BRANCH 2

1.8 Ihteneity of two wavefields at the exact
Bragg condition in the 200 reflection of

NaCl.

Fis°
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From equations 1.39 and 1.40

D, = cos’g/2 D sin2g /2
1 2 1.42

D_= -sinB/2 cosB/2 D

sinB /2 cosB/2
g4 g9

The amplitudes of the transmitted and diffracted beams

emerging from the opposite surface at depth t are

e

DO = DO (t) + Do (t) 1.43a
1 2
D t) =D t) + D t 1.43b
gi( ) g1( ) gz( )
where
Do.(t) = Do.exp(—2nit50'.n) 1.44a
i i i
D (t) = D_ exp(-27itK_  .n 1.44b
gi( ) g; xp( Ke, )

The intensity of the diffracted beam Ig is given by

I =0 p® =02 +D? 42D D cos2mt(K_ -K_ ).n
g g & g g, g, &, g, gy
= } sinB{1-cos2rt®_ -K_ ).n} 1.45
€y B4

From Figures 1.3 and 1.5

(Ky =~ Kg )oh=22= A1+ 1) 1.46
1
stn®[nh_t(14n?)*]
I = 5 1.47
g -

- Similarly the intensity of the transmitted beam IO is

sinz[(ont(1+n2)%]
5

© 1 +n
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Equations 1.47 and 1.48 demonstrate the periodic behaviour
of the diffracted and transmitted beam as a function of crystal
thickness and their intensity are complementary with period ‘
{Ao(l + nz)%}_l. At the exact Bragg condition n = o and
the period has its maximum value of Ao_1 which is calledv
the extinction distance &g and is equal to the reciprocal of
the dispersion surface diameter

-1 ﬂVCcoseB

E_=A = — 1,49

g © r AC(F F—)?
e g g

Away from the Bragg condition the effective extinction distance
is

£, = Eg / (1 + n?)t 1.50

which decreases to zero as n » « implying that interference
does not occur as only one wave is excited in the crystal.
Malgrange and Authier (1965) observed Pendellosung
fringes from wedge-shaped crystal with complementary contrast
in the diffracted and transmitted beam using a double
crystal arrangement (Figure 1.9), Using a slit a pseudo
plane wave was selected from the Borrmann fan which then
excited just two tie points in the second crystal.
Pendellosung fringes have also been observed in Bragg
geometry by Batterman and Hilderbrandt (1968) where theyused
an asymmetrically cut first crystal to increase the effective
width of the incident beam and therefore approach the plane
wave condition. Similar fringes have also been observed by
Nakayama, Hashizume and Kohra (1970). Measurements of
structure amplitudes have also been made using Pendellosung

fringes (Kato and Lang 1959, Hattori et al, 1965, Kato and
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“\\» \\\\
Source T \\\3;,

S~ — %/ H

[____ _ I \\\ \\‘ /

| =

Crystal
Fig. 1.9 Schematic diagram of the double crya£a1

dﬁﬁahgement used by Authier and co—workers
to obtain a paeudo-plane wave in the

second crystal.
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Tanemura 1967, Hart and Milne 1969 and Tanemura and Kato

1972).

1.3.3 Reflection Profiles

In the non-dispersive double crystal arrangement it
was shown (Compton and Allison 1934, James 1948) that the
variation of the doubly diffracted intensity I(R) as the
second crystal is rotated is given by the convolution of the

reflection profiles Rl(e) and Rz(e) of the two crystals.

I(B) [ R, (0)R,(6-B)dB 1.51

The reflection profile obtained characterizes the crystal in
terms of rocking curve width and the integrated reflectivity.
The single crystal reflection profile must be considered
first before the convolution can be done. The detailed
derivation from the equation of the dispersion surface with
boundary conditions for the Laue and Bragg geometry was
done by Zachariasen (1945) and Pinsker (1978).

Using the method used by Zachariasen the dispersion
equation can be written, for the normal polarization state,
as

2 _
(26, = Xo)(§F 8 = Xg + ®) = XgXg 1.52

and in terms ol the amplitude ratio x as



X X
x2 + x |(1-b) £ b_ al - b -8 = 0 1.53
Xé Xé Xé
2 2
where K0 = kO (1 + 2 60)
b:b
Yg

o = 2(6B—6) Sin 26B

Yo and yg are the direction cosines of the incident and

diffracted beams respectively.

The solutions of the qguadratic equations 1.52 and 1.53

are
6, =~ [xg - 2z Va + 2°] 1.54
2
x = 2t Vg + 22
Xg
where z = 1zb Xo * b,
2 2
and =Db —
q ngg

As there are two possible values of 60 and x, there are two
internal incident waves and two diffracted waves. The

- general form of the incident beam inside the crystal is

exp(iwt - 12n§e.£)[D01exp(—1w1t) + Dozexp(—1w2t)] 1.56

and the diffracted beam is
exptlwt—lZH(Ee + gg).zj [xlDolexp(—lwlt) + xzDozexp(—lwzt)]

1.57



2tk §
where vy T °°
Yo
2ﬂk060
by =
Yo
t =n.r

1.3.3.a The Laue Case

Figure 1.10a shows the direction of the incident and
diffracted waves. The amplitudes of the incident wave at

the surface n.r = O are given by equations

D + D = D, 1.58a

x.D + xzD = 0 1.58b

If IT and Ig are the intensities of the transmitted and

diffracted beam and t = to is the thickness of the crystal

then using equations 1.56, 1.57 and 1.60



It ¢

Fig. 1. 10 Incident, tranemitted and diffrracted beam
directione in
(a) Laue case.

(b Bragg case.



) 2
I X Xg(cy = ¢y
£ = 1.61
IO Xg - x1
X 2
I, X9C1 = %12
_T _ > 1.62
Is X9 = %4
where cy = exp(—lwlto)
02 = exp(—lwzto)
EQuation 1.61 can be written as
I sin?(av) + sinh%(aw)
B _ p2 |y |2 eHot 1.63
I g 2
o g + 27|
. 2
where v + 1w = /q + 2z
_ TTkoto
a -—
Yo
and t = l( l- + l—) to
2 Yo Vg
The symmetric Laue case with zero absorption will be
discussed in detail in section 6.4, The reflection curve
is given by
Tt
31n2{ E—g 1 + y2}
g
R = 1.64
1+y2

(c.f. with equation 1.47)
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From the equation it can be seen that the oscillation that
occurs is a function of the crystal thickness and the
extinction distance gg, Figures 1.11a and 1.11b are examples
of the reflection profiles for to/gg equal to 5.16 and 5.66,
As the Pendellosung distance is normally in the range of

1 to 100 um, small variations in crystal thickness result in
the average reflection curve as shown by the smooth curve

in Figure 1.11 and is given by

1
R = —p— 1.65
2(1 + y7)

When absorption is taking place the susceptibility is

complex that is
X = x' + iyx" 1.66

X' and x'" are real and can be expanded as a Fourier series,

Therefore the refractive index is
n=1+14% Xo' + 1éx0” 1.67

The imaginary part of equation 1,67 is related to the linear

absorption coefficient Ho

In the symmetric Laue case when |[x|<<1 equation 1.63 can

be written as

KA
Ig N THo/Yg sinz[AVI + y2] sinh? |/ + y2 1.69
B e + .
I 1 + y2 1+ g2

o
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1-b
_ 2 Xo' * 3¢
where y = -
K| xg |V Ib]
1-b
_ZXOH
g = 1 /Ib,
K
| Xg |
IR
A=r17k K | x, |
© & Vv v |

1.3.3.b The Bragg Case

As the diffracted beam emerges through the boundary
n.r = O in the Bragg geometry (Figure 1.10b) b is negative,

Therefore the boundary conditions are

D + D = D, 1.70a

D =0 1.70b

c.X
D = 2" 2 D, 1.71
O1 CaXAH - CLX 1
272 171
c.X
D, = - 1 Di 1.72
2 02x2 - clx1



From equations 1.57, 1.71 and 1.72

2
Te _ *1%2(¢17%) 1.73
IO c2x2 - clx1

2
I c,Co(Xn~X,)
T _ 17272 71 1.74
IO szz - C1X1

In the simplified case of zero absorption and symmetrical

reflection of thick crystals the reflection curve is

R = [1-/1-vy2] |y]>1 1.75

and the diffraction pattern is shown in Figure 1.12. The

range of total reflection is given by

Absorption cause the curve to become asymmetric as shown in
Figure 1.13. The corresponding reflection curve for an

absorbing thick crystal is

R = L - //Lz - (1 + 4K2) 1.77

where L = I/(;1+y2—82)2 + 4(8Y—K)2! + Y2 + 82



Fig.1.12 Perfeot crystal reflection curve with

zero absorpﬁion in the Bragg case,

Fig. 1.13 Reflection curve of a thick absorbing
chysﬁal in the Brogg case.
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CHAPTER 2

DOUBLE CRYSTAL DIFFRACTOMETRY

2.1 X-ray Diffraction Topography

X-ray diffraction topography 1s used primarily to study
the distribution of individual dislocations in crystals.

This method is non-destructive in nature and particularly
useful for relatively perfect crystals. The imperfections

may be regarded as a perturbationsof the perfect crystal
lattice which gives rise to local changes in diffracted X-ray
intensities. The integrated intensity diffracted by a crystal
orientated near the Bragg angle and the angular width of the
Bragg peak in a rocking curve are strongly dependent on
crystal perfection,

X-ray diffraction topography includes a variety of
different techniques with varying geometry and resolution,
Three commonly used techniques are the Berg-Barrett technique,
the Lang technique and the double crystal technique. It is
the transmission technique initiated by Lang (1958) which
is most extensively used and which stimulated the growth of
topography.

The schematic diagram of the technique is shown in
Figure 2,1a. This technique is sensitive to both orientation
and exlinc¢lion conlrast, with orientation sensitivity approxi-
mately equal to 5 x 10_4 radian. Here the beam from the X-ray
tube 1is collimated by the slit system 81 and passes through
the crystal C which is orientated to satisfy the Bragg con-

dition 2d sin eB = n). The diffracted beam emerges at the
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rear of the specimen, passes through the slit 82 and 1is
recorded on the photographic film F. The slit 82 is used
to remove the direct beam and the collimation is adjusted

such that only diffraction from the Ko, line is possible at

1
one crystal setting. Kal is chosen due to its greater
intensity, about twice the intensity of the Kaz line, If
the incident beam is narrow compared with the base of the
Bormann fan (Figure 2.1b), that is a < 2tsineB where t is
the thickness of the crystal, a is the width of slit S1

which defines the incident beam and 6_, is the Bragg angle,

B
a section topograph is obtained which corresponds to the
stationary situation, A projection topograph (Lang 1959)
is obtained by translating the crystal and film together
across the diffracted beam, Therefore the projection topo-
graph is equivalent to the superposition of many section
topographs. The maximum imperfection density at which
individual imperfections are resolved is much lower in
projection topographs but the projection topograph gives a
picture of the overall distribution of imperfections in the
crystal.

The Berg-Barrett method was first developed by Berg
(1931) and later improved by Barrett (1945); The essential
features of the reflection and transmission geometry are shown
schematically in Figures 2.2a and 2.,2b respectively. Using
an extended source the single crystal is set to diffract
the characteristic radiation from a chosen set of lattice
planes. The position of the crystal is not critical due to
the extended source used. Bragg reflections can still be

detected within an angular range of 1o and a wide rocking
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Fig. 2.2 () Berg-Barrett reflection geometry.
b Berg—Barrett tranemiesion geometry.
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curve 1is obtained. Conventionally the photographic plate is
placed very close, (a few mm), to the specimen crystal to
obtain high resolution as well as eliminating the double
images due to the closely spaced Kal and Kaz doublet.

The next technique which is becoming increasingly im-
portant is the double crystal method. X-ray double crystal
topography was first performed independently by Bond and
Andrus (1952) in a study of the surface of natural quartz,
and Bonse and Kappler (1958) in detecting the strain fields
of individual dislocations in germanium crystals. Although
single crystal topography appears to be sensitlive to slow variations
of strain of the order of 1 part in 105, in actual situations
it is insensitive to slow variations of lattice parameter,
This is due to the large angular divergence of the incident
beam as a result of which the diffracted intensity is equal
to the integrated intensity. Double crystal topography has

become increasingly important due to the availability of good

nearly perfect single crystals.

2.2 Principle of Double Crystal Diffractometry

As the name implies double crystal topography and
diffractometry utilizes two successive Bragg reflections.
The schematic diagram of the arrangement is shown in Figure
2.3a for the symmetric (+,-) parallel setting. X-rays from
target T are reflected at the Bragg angle by the reference
crystal A to the specimen crystal B which is also orientated
at the Bragg angle. The diffracted beam from the specimen

is detected by a counter or recorded on the photographic
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Fig 2.3 (@ (+,-) parallel setting for the
double orystal technique.
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emulsion. Alternatively a rocking curve can be recorded

using an X-Y recorder by connecting the output of the

detector to the Y-terminal and a signal proportional to the
angular rotation of one of the crystals to the X-terminal.

The term rocking curve refers to the variation in intensity

as one crystal is rotated about an axis parallel to the
goniometer axis (Figure 2.3b). The following is a quantitative
analysis of the intensity reflected from crystal B as it is
rotated through its reflecting range for the general case
(Compton and Allison 1934, James 1948).

The horizontal divergence a of an incident beam is the
angle made with its projection in a vertical plane containing
the incident beam and the vertical divergence ¢ is the angle
made with its projection on a horizontal plane containing
the incident beam, Thus an incident beam may be character-
ized by three quantities (X,a,¢) where X is the wavelength,

Referring to Figures 2.4a, 2.4b and 2.5, the central beam
X0 1in a horizontal plane is incident on the reference crystal
A at a glancing angle © (Ao, nA) where a = ¢ = O and xo
is a characteristic wavelength in the incident beam
corresponding to the centre of the spectrum or an absorption
edge. This is referred to as the central ray, that is a
ray passing through the centre of the slit system. If MO
is the ray which defines a horizontal divergence a, the
glancing angle of ray MO with the reference crystal is

B (A + a, o is given a positive value if the glancing

o nA) +
angle of ray MO
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orystal technique.
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is greater than that of the central ray. In Figure 2.,4a,
2.4b and 2.5 o is positive. If NO defines the vertical
divergence ¢ and is small the glancing angle of the central
ray is reduced by 3 ¢2 tan e(xo, nA). Therefore the glancing

angle of any ray (X,a,¢) on crystal A can be written as

2
B(AO, n,) +oa - 3 ¢ tané (A, nA) 2.1
_ 3
But e(x,nA) = e(xo, nA) + (J\—Ao) --——“o _B(Ao,nAv) 2.9

where 6(X, nA) is the reference angle corresponding to X
in the nAth order with a = ¢ = 0. Thus the deviation of the
glancing angle as given by equation 2.1 from the reference

angle as given by equation 2.2 is

3

) = 2.3
o) SAO

2
a - %¢ tane(xo, nA) - (Xx=2A 8 (X

o’ nA)

The reflected intensity of ray (i,a,¢) from crystal A will
be very small if crystal A has a diffraction pattern
approaching that of a perfect crystal with a deviation
given by equation 2.3 of a few seconds of arc,

The intensity profile obtained when the specimen crystal
B is rotated about the Bragg angle is a function of the angle
of rotation B, The glancing angle made by ray (i,a,¢) on
crystal B after reflection from cyrstal A depends on the
type of arrangement the diffractometer is operating. The
two types of arrangement are shown in Figures 2.4a and 2.4b.
Let the crystal B be placed at an angular deviation B from
the position in which the glancing angle of the central ray
is e(AO, nB). In the (+,+) setting the glancing angle made

by the central ray is therefore e(xo, nB) + B. Using a



similar argument the glancing angle made by the ray (Xx,oa,¢)

is therefore
8(A n )+B—a—é¢2tan6(x n.) 2.4
o’ B o’ B ‘

and its deviation from the angle e(ko,n ) is

3

2
B-a-%¢“tané (A _, ng) - (A-2) 51; 0(A,, ng) 2.5

O,

In the (+,-) mode the glancing angle made by the central

ray is G(AO, n,)-8. The glancing angle of ray (i,a,¢) is

B
then

2
nB)-B + a—%wztane(xo nB) 2.6

?

8 (%,

and the deviation from 6(A, nB) is

0

2
-g+a-3¢“tans (A, ng) - (A-2,) o 8(A_, ng) 2.7

o)

In general the deviation of the glancing angle of the

ray (i,a,¢) on B from the ray 6(AX, nB) is

t8¥a~é¢2tan9(k

3
- (A—AO)ETSS(AO, nB)

,n
o B
when the angular deviation of crystal B from the central ray

0(Ax nB) is B. The upper sign is for the (+,+) setting and

o’
the lower sign is for the (+,-) setting,

To obtain the reflecting power from cyrstal B the power
incidentzand reflected from cyrstal A has to be considered
first. An element of the incident beam on A has a wavelength
range between A and A + d)X with a horizontal divergence between
a and o + do and a vertical divergence in the range ¢ and

¢ + d¢. The power from this element of the incident beam

can be written as



G(a,¢)J(A—)\O)dad¢>d7\

where J is the energy distribution of the incident spectrum
and the function G is a term which takes care of the geometry
of the instrument; that is the shape of the slits aperture,
the distribution of intensity in the source etc.

The power reflected from crystal A when this element is
incident on it is dependent on the deviation of the glancing
angle on A given by equation 2,3 from the angle 6(2, nA).
This is given by the single crystal diffraction function C
and is a function of the deviation given by equation 2, 3.

Therefore the power in the elementary beam after reflection

from crystal A is given by
2, 2
G(u,¢)J(A—AO)CA[a—§¢ tand (i _,n,)-(- ﬁ) ax ——8 (A nA)] dadrd¢

2.9
Similarly the power reflected from crystal B is dependent on
the deviation of the glancing angle on B from angle 6(2, nB)

given by equation 2.8

G(a,9)I(A=2 )CA[a—é¢2tan6(k ny) =00y )50 gy

X Cgltpva-%¢ tane(Ao, ng)-(A-2 )ax 8 (A O,nB)]dadAd¢ 2.10

The total intensity reflected from crystal B is obtained by
integrating equation 2,10

¢ A o
m max m

pr(ey = /[ [ G(x,4)d(A=2)

2 d
CA[a—é¢ tane(AO,nA)-(A—Ao)gjzf(xo,nA)]

- 2 3
CB[tB+a-%¢ tane(Ao,nB)—(A—Ao)FTBS(Ao,nAﬂdadAd¢ 2.11
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2.3 Dispersion for the Double Crystal Arrangement

The dispersion of the double crystal arrangement can be
deduced from equation 2,11 by considering the limiting case
in which the diffraction pattern of the two crystals are so
narrow that no appreciable contribution to the function P'(B)

occurs except when the argument of both the C functions are

zero, that is
a—%¢2tan8(x n,)-(x-=x )—ﬁ—e(x n,) =0 2.12
o’ A o BAO o’ A )
£BFa-362tan8 (A _,n.)=(A-} )=o-8(A_.n.) = O 2.13
- o’ B o) axo o’ B :
Eliminating a from equations 2.12 and 2.13 gives

B-%¢2[tan(ko,nA) + tane(xo,nB)]

30 (A _,n,) 36(X ,np)
- () [—2 A s B0 = o 2.14
9 A 3
o o
36(A_,n,) 36(x _,n,)
Define p= —20O0 A7 , 0 B7 2.15
3 A A
o o

where the upper sign is for (+,+) setting and the lower sign

is for the (+,-) setting.

Differentiating Bragg's Law, 2dsin® = na 2.16
gives 2dcos6d6 = ndAi, 2.17
or

e _ _n 2.18

dA 2dcosb
From equations 2,16 and 2.17

tand A
de dx



or de tanb
dx A

Substituting equations 2.18 and 2.19 in equation 2.15

n n
D = A . B
2dlcos8(xo,nA) 2dzcose(xo,nB)
1
or D = ;— [tane(xo,nA) t tane(Ao,nB)]

(e)

Substituting equations 2,20 and 2.21 in 2,14 yields
B - #6°DA_ - (A=A )D = O
o) o
or B = 3DA ¢2 + D(A=2)
o) o)

The dispersion of the double crystal arrangement when

gives

crystal B is rotated is defined as %% and therefore from

equation 2.22 is

Dispersion = g - D
dA

It is clearly seen from equation 2.23 that for the (+,

parallel arrangement where the specimen and reference

crystals are of the same substance and the same Bragg

=)

reflection are used, the dispersion will be equal to zero.
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2.4 The (+,-) Parallel Setting

As derived in Section 2.3, the dispersion for the (+,-)
parallel setting is zero, As the lattice constant and the
diffracting planes are identical for both crystals, it is
reasonable to assume that CA = CB = C and e(xo,nA) = 8,

Then equation 2.11 simplifies to

¢ A o
Pr(g) = [ ™[ ™% [ ™ G(a,0)I(r-2 )Cla-to tans -(A-2_)(36 /31 )]

- AL -o
m min m

C[a—s—%¢2tane_(A_AO)(ae/aAO)]dadxd¢

2.24

For a perfect crystal, C is negligible except in the region
where the argument of C is nearly zero and is of the order of
a few seconds of arc. The function G(a,¢) which is a
property of the geometry of the instrument can be considered

as a product of two functions, that is
G(a,9) = Gy(a) Gy(9) 2.25

where G1 and G2 are finite in the range of the maximum
horizontal and vertical divergence of the incident beam
respectively which is several minutes of arc wide. The term
é¢2tan6 is very small in most cases compared to the diffraction
pattern width. Therefore from equation 2.24 o is approximately
equal to (ae/axo)(x-xo) for the first C function to be

appreciable. Considering the argument of the second C

function that is

a-g-3¢tane - (A=25)(236/32g)
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If B is large, the value of a-(ae/ax)(x-xo) must be
sufficiently large to have the argument small enough for the
second C function to be appreciable., However, the first C
function is then small if a-(ae/ax)(x_xo) is large and
therefore the whole integral of equation 2.24 is negligible.
Thus 8 must be small in order that both C functions are
appreciable. This implies that in the (+,-) parallel
arrangement the rocking curve width is very narrow and is
of the order of the single crystal diffraction pattern.
Since o is close to the value (ae/axo)(A-Ao) the

function Gl(a) can be written as
G (a) = G[(A-Ao)(ae/axo)] 2.26

Therefore the 1imit of the integral of equation 2.24 with
respect to o can be extended to + « as 2am is of the order
of minutes of arc and the integral is only appreciable for
o of the order of a few arc seconds; that is if a approaches
oo, G1 will approach zero and the contribution to P'(f)
is insignificant.

Then using the theorem where a function F is finite and

continuous and a is a constant

[o0]
0

/ F(a)do = [ F(a-a)da 2.27
2
Let 26 L o - ¢ tané - 36 (A—AO)
sin2e6, 2 A

B

where ¢ is a variable, § is the refractive index of the medium

and OB is Lhe Bragg angle., The argument of C is measured in



angular units of 26/sin26B radians. Therefore equation 2,24

can be written as

236 A+( 3x_/36) ¢ 30 _
Pr(g) = — — © %m f ™ Gl[ﬂ-——-(A Ao)]c;z(qa)dq;dx
SIn28p 5 _(ax_jae) ¢ Mo
O O Qa m
m
[ Cc(r)(2-8)de 2.28
or P'(B) =K [ C(2)C(e-8)deL 2.29

—C0

where the constant K is proportional to the power of the beam
incident on crystal A. The normalised rocking curve P(f)

where

P'(B)
P(B) = 2.30

K[ I'(2)ds

is the ratio of the power reflected from crystal B to that
incident on crystal B. The power incident on crystal B is
obtained by integration of equation 2.9. For an unpolarized
radiation P(B) is written as a sum of two components, the o
polarization state and the w polarization state

o0

J I, ()T (%-B)ds + {m I, (I (L-8)d2

oo o]

f I, (a)de + f I (2)ds

—00 —_ 00

where C(2) = I(&) is the function for a perfect crystal. I Ojs the
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component where the electric vector is perpendicular to the
plane of incidence (the vertical plane) and Iﬂ is the
component where it lies in a plane parallel to the plane of
incidence (the horizontal plane). The function I is the
Darwin curve if absorption is negligible and if absorption
is significant the Prinz curve is used.

The double crystal integrated reflecting power or the
coefficient of reflection R is the area under the curve P(B)

if B is in radians.

R = [ P(B)aB
) [ ] I, (I, (-Bydeds+ [ [ I ()1, (%-B)deds
" sin2eg _ ]
I 1, (ar + [ 1, ()ar 2.32

where % and B are measured in units of 26/sin268.

Let vy = 2-8, dy = -dB. Then
{m fw I (#)I_ (2-B)dedB = [m [m I, ()T (y)de(-dy)
=] 1, a1, (ndray
® 2
= [ I (2)dr
C fm I 2 B 2
26 o (0del® + [ f 1 (2)de]
R = sin26 ® _w 2.33
B {w I, (R)de + { I (2)de

[=e] oo}
For the Darwin approximation [ IWD(R)dR = cos26,f IOD(Q)dz

[s.0] —00
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2,5,
26 1 + cos 2OB -

T $1in20 1 + cos 20

B B —o0

2(1 + 0082288)

(1 + cos 2g5)° R, 2.34

where RC is the single crystal coefficient of reflection.
The percent reflection P(0O) is the ratio of the maximum value

of P(B) to that incident on B,

2.5 Du Mond Diagram

In the double crystal arrangement the X-rays diffracted
successively by the two crystals can be easily understood by
reference to the Du Mond diagram (Du Mond 1937). The following
is a discussion of the three different geometries for the
symmetric case that is the non-dispersive (+,-) parallel
setting, the (+,-) non-parallel setting and the (+,+)

setting.

2.5.1 The (+,-) parallel setting

In the (+,-) parallel setting a diffracted beam can
only be detected if the diffracting planes of both crystals
are exactly parallel. Essentially this requires that the
two crystals are of the same material in which the same
order of reflection is used.

The Du Mond diagram in Figure 2.6a is a graphical

representation of Bragg's law where the curves B, and B

1 2
represent the respective diffraction conditions for the
reference and specimen crystals. The width w of each curve

is the angular spread of the beam diffracted from each crystal,
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Fig. 2.6 (a) Du Mond diagram for two perfect
cryetals in the (+,-) parallel
eetting.

(b> Du Mond diagram corresponding to
local rotation of the lattice in
the esecond crystal.

(e) Du Mond diagram corresponding to

local dilation in the second crystal.



As the diffracting planes are parallel and equispaced the two
curve bands overlap for all values of (A,8) satisfying the
Bragg condition unless limited by a slit system. This over-
lapping region as shown by the expanded view in Figure 2.6a
also represents the X-ray diffracted simultaneously from the
two crystals which corresponds to the perfect crystal reflecting
range convoluted with that of the second crystal and is very
narrow, maybe as low as 0.1 arc second.

As explained by the Du Mond diagrams in Figures 2.6b
and ¢ the (+,~) parallel setting is very sensitive to 1local
misorientation and distortion of the order of a few arc
seconds. The curve bands are misplaced and no overlapping
occurs for any wavelength resulting in no diffracted intensity

recorded.

2.5.2 The (+,-) non-parallel setting

In the (+,-) non-parallel arrangement (Figure 2.7a) the
lattice constant and or the diffracting planes of both crystals
are different and when Bragg condition is satisfied by both
crystals their planes are not parallel. The intersection of

the curves B1 and B2 as shown by the Du Mond diagram in

Figure 2.7b represent the exact Bragg condition 2dsin8B = A
where X-rays are diffracted simultaneously from both crystals.
This is indicated by the shaded region in the expanded view

of the intersection of B, and 82 (Figure 2.7c). The shaded

1

region will move along the curve B, if there is local distortion

2

1

that is change in orientation and spacing of the diffracting

planes. The intensity from the distorted region is still
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(e)

Fige 2.7 (@) (+,-) non—parallel arrangement.
(b) Correeponding Du Mond diagram.
(o) Exploded view of the intereeotion
of the curve Bl and Bz.
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strong if it is within the natural line width AAal of the
characteristic line. Thus the angular range at which
diffraction can take place is of the order of a few minutes
of arc.

The wavelength spread A\ is approximately given by

(Kohra et al. 1970).

AMw, + w,)

A) = 1 2
| tan 6, -tan 6 |
By By

and the angular spread is given by

w taneB1 + wgy tan eBz

1
AB =

|tan 6, - tan 6, |
By B2

-Where the subscripts 1 and 2 refer to the reference and sample
crystal respectively, w 1is the angular spread of the beam
diffracted from the crystal and 6 is the Bragg angle.

Although this setting is non-dispersive in wavelength it is
angular dispersive and the images formed by different wave-
lengths are formed at different positions on the photographic
plate. Lattice parameter variation of 1 part in 105 can

still be detected if a highly perfect reference crystal is

used whose d is nearly equal to that of the sample crystal.

2.5.3 The (+,+) setting

The main difference between the arrangements of the (+,+)
setting and the dispersive and non-dispersive (+,-) settings
is that tLhe incident beam on the reference crystal and the

diffracted beam from the sample crystal in the (+,+)



setting (Figure 2.8a) are on the same side of the beam
passing between the two crystals, while they lie on opposite
sides in the other two settings. Therefore the lattice
constant for the reference and sample crystals can either be
different or identical. The corresponding Du Moﬁd diagram is
shown in Figures 2,8b and ¢, Similar to the (+,-) non-parallel
setting it is angular dispersive, thus a range of
wavelengths diffract at any setting and large misorientation
can be tolerated without loss in intensity if the range of
wavelength diffracted is within the natural line width of the
characteristic radiation. Using the same notation as in the
(+,-) non-parallel setting, the wavelength spread AA and

the angular spread A6 are given by

Mo, + w,)
Ay = —L1 2
tan 6 + tan 6
By By
w, tan 6 + w, tan O
B
and A® 1 B1 2 2

tan 6 + tan ©
By B,

This setting has been studied and developed by Kohra and co-
workers (Kohra, Hashizume and Yoshimura, 1970; Nakayama,

Hashizume, Miyoshi, Kikuta and Kohra, 1973).

2.6 Effect of Lattice Tilt on Rocking Curve Full Width at

Half Height Maximum,

The rocking curve FWHM is a minimum if the diffracting
planes of the reference and sample crystal are exactly

parallel in the case of the (+,-) parallel setting or the angle

the diffracting planes made with the vertical is zero for the
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Fig. 2.8 (@) (+;,#) setting.
(b> Correeponding Du Mond diagram,
() Exploded view of the intereection
of ourve 81 and Bzc.



(+,+) setting.

It is easiest to obtain the relationship between
broadening of rocking curve with lattice tilt by using vector
equations (Schwarzchild 1928). Referring to Figure 2.9, AB
and CD are the reflecting planes of the first and second
crystal respectively. The z-axis which is perpendicular to
both the x and y-axes 1is perpendicular to the plane of
Figure 2.9 and coming out of the paper. The unit vectors
r and R are in the direction of the incident beam and the
first reflected beam respectively. The vectors n, and n,
are unit vectors perpendicular to the reflecting surfaces.
The Bragg angle for the first reflection is 81 and is the
angle between AB and the x-axis. The corresponding Bragg
angle for the reflection from the second crystal is equal to
62 and is the angle between EF and CD. w is the angle
between the horizontal projection of r and the x-axis and ¢
is the angle between the horizontal projection of R and EF.
The angles Yy, 6. and §, are the angles between r, n. and

1 2 1

22 and its horizontal projection respectively.

The following equations 2.35, 2,36 and 2.37 satisfy the
Bragg cdndition for reflection from the first and second
crystal where p1 and p2 are the order for the first and
second reflection respectively, X is the wavelength and d is

the lattice constant.,

r.ny = rn, cos (90 + 6,) = -sin O

1
pqA 2.35
.n, = - 8sin 81 =
2d

1

I~



Fig- 2.9

Traces on the xy plane of two Bragg
reflectors at an angle B. n_  and n_ are
unit vectors perpendicular to the
reflecting surfaces. r and R are unit
vectors in the direction of incidence

and fFirst reflection Pespeotively,
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3.g1 = Rnl cos (90 - 61) = sin 61
r.n, = -R.n, 2.36
rxmn, = rn, sin (90 + 61) = cos 61
Rxn = Rn, sin (90 - 61) = cos 81
r x 21 = R x ny 2.37
5.22 = Rn2 cos (90 + 02) = -sin 62
-P,A p
R, = -sing, = —2 - 2 rop 2.38
. 2d Py

Taking the cross product of n, with equation 2.37 and

substituting equation 2,36 gives

R = r - 2£ . El 21 2.39

Taking the dot product of n, with equation 2,39 and substituting

equation 2,38 gives

pyr . np -2p; r . n,n, . N, =p,r . n
2.40
Equatiom 2.35 and 2.40 are the vector equations for the

condition of double reflection. Rewriting equations 2,35 and
2.40 in terms of the direction coordinates and neglecting the

second order powers of 61 and 6g, yields

rX = - CcOS Yy COS w
r = - cOS sin
y ( Y w
r,o= - sin Y 2.41
n,, = cos 61 cos (90 - 61) = s8in 81
n1y = cos §, sin (90 - 61) = cos 61

ny, = sin §4 2.42
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No, = cos&z sin (180 - 81 - B) = sin (61 + B)

Doy = -cosé, cos (180 - gy - B) = cos (64 + B) 2.43
= si = §

Moz Sl“‘sz 2

Substituting equations 2,41, 2,42 and 2.43 in equation 2.40

results in

pyr.n, = pl[— cos | coS W sin(e1 + B8) - cos ¥ sin w cos(0,+8)

-~ §4sin y]

= = pl{cos Y[cos w sin(6,+8) + sinw cos(61+8)]+5zsin )

= = p1[cos Y sin (w + 8, + B) + 6, sin v

2pyr.nn,.n, = 2p1(—sinef[sin61sin(el+s)+coselcos(61+e)+§152]

—2plsin61cos(8+6162)

However,

p2£- —p2s1n6

=]
fu
H

1

:.—pl[coswsin(w+61+B)+62sinw]+2p1sin61008(B+6162) = Dysind,

or,
p1CQSWS1n(w+e1+B)+p16281nw-2p1s1nelcos(8+6162) = p2s1ne1

Z2.44

Substituting equations 2.41 and 2.42 in equation 2,35 gives

'—coswCoswsine1—coswsinwcose —6lsinw = -sin®

1 1

cosysin(w + 61) = sine1 - Glsinw 2.45

"fl,On squaring equation 2.45 we obtain
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cosy sin? (w + 6,) = (sind - 6lsinw)2
coszw[l-cosz(w+61)] = sin261 - 2élsinelsinw + dlzsinzw
coszw cosz(m + 61) = coszw + Zdlsinelsinw - sinze'1
cosycos(w + 61) = (coszw + 26181n61sinw - sinzel)%

Substituting equations 2,45 and 2,46 in equation 2.44

and noting the identity sin(w+el+6) = sinBcos(w+e1)+cosBsin(w+e1)
yields,
3

. 2 . . . 2 . .
p131n8(cos w+25151n81s1nw—81n 61) +p1cos8(s1n61-61s1nw)

+ pldzsinw - 2p1sinalcose = p2sin61

From equations 2.38 and 2.35 we have

Py
sin62 = — sine1
51

" sinB(cos2w+261sin61sinw—sin26)é-cosB(sin61+6isinw)
= sin62 - 5zsinw 2.47
Introducing angles vy and 1 such that
sinBcosy - cosfsimy = sinn 2.48

and comparing equations 2.47 and 2.48 leads to

cOSs Yy (coszw + Zdlsine siny - sinze)é 2,49

1

sin vy sine1 + élsinw 2.50

sin n sin62 - 62sinw 2,51



C
Consider the right angled triangle ABC
and using equations 2.49 and 2.50. \\
ac? = a2 + BC? 2
u DL AN
B A
_ 2 . . . 2 . . 2
1 = cos w+261s1n61s1nW—31n 81+(31n81+61s1nw)
1 = coszw+261sin81simp-sinze1+sin281+251simj;sine’1 2.52a
+ 512 sinZy

Neglecting third order powers of Yy and second order power of

§ simplifies these expressions to

coszw + 458

sy
I

- . 2 .. 2
1 51n61 siny + 64" sin 1]

1= (1 -2 + 46, ysine )

w(461 51n61 - YP) =0
Y = 461 sine1 2.52p

Using equation 2.52, equations 2,50 and 2.57 can be rewritten

as
siny = sinb,+§,siny - 2sin26 §,¥+3sinbd w2
1 -1 171 1

y = sin~1(sinb_ +§.y - 2sin2e S+ sind. y?) 2.53
' ' 1 -1 11" 1 )

. - s . . . el 2
sin n 31n82—6281nw - 2s1n6181n62§1¢+251n62w

s =1, . . . . 2
n = sin (Sln62—62 /. 281n6181n8251w+531n82w ) 2.54

Equations 2.53 and 2.54 can be expanded by Taylor's theorem

about sinle1 and sin 6, respectively.

Taylor's theorem states that

f(z) = f(a) + (Z_a)f'(a) , (2z2) fr(a) +.....
1!

Write equation 2.53 as
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where z = sinb_, + élw - 2sin26161w + ésinelwz

1
and a = sine1
. I | . _
. f(a) = sin (s1n61) 61
Similarly, f'(z) = 1
(1 -2}
(1 - sin 61) cose1

. . 2 . 2 .
sinb +61w-251n 6161w+581n61w -sinb

1 1
£(z) = e1 M cos 0
1
84V 1 2
= 61 + tane1 txse - 281n91tan6161w +t 5 tanalw - tane1
1
Defining vy as
S ¥ 1 2
Y = 6, + - 2sinb_tanb_ S .y + = tanb_ y 2.55
1 1 11 2 1
cosB
1
and n gs
8
vV 1 2
=0 - —<—— - 2sinb_tanb, .y + = tanb. Y 2.56
1 271 2 2
coso
2
From equation 2.48 reduce to
sin (B-y) = sin n 2.57
Equation 2.57 yields two solutions
B -n-vy =0 2.58
and B - m+n -y =20 2.59

Substituting equations 2.55 and 2.56 in equations 2.58 and

2.59 we obtain

My~ + Ry = A 2.60
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where A = B - [61 + % £ (8, - %)] represents the angular
deviation of the position of the second crystal from the
position for reflection of a horizontal ray entering along

the x-axis,

o]
]

61/00861 + 62/00862 - 231n61(tan81 + tanez)d1 or

R % 512 + 822

inclination of the crystals to the vertical and M = %(tanelttune

is the sum or difference of tLhe angles of
2)'
The upper signs are for the (+,+) setting and the
lower signs are for the (+,-) setting.
Taking the special case for the (+,-) parallel setting
where 6, = ©

1 2
A

B - m
M=0
Therefore equation 2.60 becomes
Ry = A 2.61
The angle y is limited by the vertical divergence ¢V of the
source.
Therefore from equation 2,61 the fractional change in

the angle of diffraction AGB/G is given by

B

!
[\
(e}
[\W)

where ABB = A

and ¢C = R is the angle of misalignment.



2.7 Strain Theory of Contrast at a Dislocation in Double

Crystal Topographs

Bonse (1962) derived a simple geometrical relation for
diffraction contrast observed at dislocation for the double
crystal technique. The strained region around a dislocation
is treated as a macroscopic region in which Bragg's law
2dsin6B = nA is the only necessary diffraction equation.
Changes in lattice spacing 3d or orientation aGB due to the
strain field of the dislocation will shift the Bragg angle

eB for the strained region by an amount AGB where

o)

9

AB, =236 B 4

B + tan 6

B

The first term is the contribution of the component of local
lattice rotation with respect to the goniometer axis and the
second term is the contribution of local changes in interplanar
spacing of the diffracting planes. Diffraction contrast
can arise when local distortion produces a sufficient Bragg
angle change AGB to change the diffracted intensity.

As the flank of the rocking curve in the (+,-) parallel
setting is very steep, it can be approximated to be linear
as shown in Figure 2.3b. Therefore the slope of the flank
of the rocking curve can be related to the change in

intensity AI caused by distortion AGB by the relation below

ad
= a —-r—
AL = K(365 + tanfp =)

where K is the slope of the flank of the rocking curve.
This simple geometrical theory seems to be in quite reasonable

agreement with experiment in the (+,-) parallel setting.
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More complex dynamical diffraction effects have been observed
in the dispersive (+,-) non-parallel setting (Jones et al,

1981).

2.8 Asymmetric Reflection

Asymmetric reflection is another important feature of
double crystal diffractometry. It has the property of
increasing or decreasing the spatial width of the X-rays
diffracted by the first crystal depending on the asymmetry
factor b which is defined as

sineo Sin (BB - )

b = = 2.63

51n6h sin (eB + Q)

60 is the angle between the incident beam and the crystal
surface. eh is the angle made by the

diffracted beam with the crystal surface. SB is the Bragg
angle and o is the inclination of the diffracting plane to
the crystal surface. o is defined as positive when 60 < eB
and negative if 60 > GB. Therefore in the later | case b > 1

(Figure 2.102) and b < 1 in the former case (Figure 2.10b),

According to dynamical theory (Laue 1960, Kohra 1962)

o

theangular width of the incident and diffracted beam Wy and
wp for a selective reflection in the asymmetric case is given

by




(a)

(b

Fig. 2.10 Geometry and angular width of the
imcident and diffracted beam for an
asymmetric reflection when

(a) b>1
(b) b<l



sin®
o)

and w, =

sinE)h

ms is the angular range in the symmetric case.

From equations 2.64 and 2.65

Asymmetric reflections have been used by many workers to
produce a beam of extremely narrow width (b>1) for
precise measurement of diffractioncurves in the (+,-)
parallel arrangement. (Kohra 1962, Kohra et al. 1968,

Kikuta et al. 1970, Kikuta 1971 and Matsushita et al. 1971).
The intensity of the beam diffracted from the spcecimen

crystal is greater as the angular spread of the incident

beam on the specimen is stronger by a factor/b. The asymmetric
reflection where b<l enables large areas of the samples to

be photographed (Kohra et al. 1970, Jones et al. 1981).

2.9 Review of Previous Work on Double Crystal Diffractometry

The usual method to determine the lattice parameter is
to measure the angle at Bragg reflection and using the known
value of X-ray wavelength, the interplanar spacing of the Bragg
plane is calculated using the Bragg equation 2dsinf = )
corrected for refraction effect. Due to the precision in
which the X-rays wavelength is known this method only gives
an accuracy of 1 part 1in 105. A higher accuracy can be

achieved if a relative measurement is made (Bearden et al.

1964, Bond 1960 and Baker et al. 1966, 1967). By



- 50 -

differentiating Bragg equation we obtain

= . - cot 0 98

The precision of this method is limited by the width of the
dispersed single reflection profile. Typical value of dA/A

-4 and as the reflection profile is rarely symmetrical

is 3 x 10

this method provides relative values of lattice parameter

with error less than a few parts in 107 even if cotf8 is small,
Hart (1969) achieved a higher accuracy of 1 part in

10°

by using the non-dispersive double crystal arrangement
and the dispersion of the source. Absolute values of wave-
length are avoided. Referring to Figure 2.11 for the experi-
mental set-up, the reference crystal A was set at the Bragg
reflection and rocking curve was recorded as the sample
crystal B is rotated. The rocking curves from the (hh)
reflection (path from source 2 to detector 2) and the (hh)
reflection (path from source 1 to detector 1) are recorded
simultaneously. The detectors record the peak intensity
simultaneously at the sample setting 8 = O where the Bragg
planes of both crystals are parallel if both crystals have
the same lattice parameter, When the two erystals have
different lattice parameters dA and dB the peak intensity
occurs at different angular setting of 8. For an angular

separation AR

6B = 2(8, - 8p) = 248

Differentiating Bragg law gives,




Source 1 Source 2

Shutter
[ | <>

C X C 3 S1lit

/\ /\ | Reference crystal A

e -.- Sample crystal B

b

Detector Detector 2

Fig. 2.11 Hart’s experimental set up for the
measurement of lattice parameter using

muliiple Brcgg reflection,



If Ad is small, AB = 2 Ad tanb

d
As the FWHM of the rocking curve is narrow, typically 10_6
radians the equality of Bragg angle can be detected to
within 10_9 radian if the peak centroid can be measured
within 0.1% on a symmetric curve. This implies that the
equality of the lattice parameter can be detected with
uncertainties of one part in 109. The same method was used

to compare the lattice parameter of the 800 reflection of
germanium and the 355 reflection of silicon, (Baker and
Hart 1975).

Larson (1974) modified Hart's technique and measured
the lattice parameter changes in neutron irradiated copper.
He used the reflection geometry and one X-ray source instead
of transmission geometry and two sources as used by Hart
(Figure 2.12). A monolithic U-shape monochromator with two
upright diffracting wafers was fixed on a rigidbase at the first
diffractometer axis to Bragg reflect the two beamsfrom the
single source. The doubly and triply reflected rocking
curve was recorded simultaneously and AR measured. Baker et al.
(1976) used Larson's method to measure lattice parameter
variation of dislocation free gallium arsenide and alsoc doped
samples where 1-20 ppm variation in composition is present.
This method is particularly useful for the study of semi-
conductor materials such as silicon (Baker et al. 1968,

Yeh et al. 1969, North et al. 1974) and gallium arsenide
(Baker et al. 1976).



1 Source )

Monolithic double
monochromator

| Detector 1 A
%S — T j— I‘"§
| | B
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ll Switch o)
” g Recorder

Detector 2

Fig. 2.12 Larson’s experimental set up for the
measurement of lattice parameter
chonges in naeutrorn irradiated copper.



Another commonly used method to measure variations in
lattice parameter and orientation is to record rocking curves
for two azimuthal angles for each position of the crystal
where in the second position the sample is rotated by 180°
around the surface normal(Kikuta and Kohra 1966, Yoshimura

et al. 1979, Bonse and Hartmann 1981). They obtain

= O 180
Aeik = (AR ikt ARik )/2

— 0 180
Aaik = (AR ik " ARik )/2

where AR;, is the difference for the angular position of the

k
peak intensity for region i and k of the crystal and oy
is the angle made by the horizontal component of the normal

of the diffracting plane to the surface normal for region

i. Therefore from the above equation and Ad;,/d; =-00t 0,40, ,

the local variations in orientation Aai and spacing Adi

k k

can be obtained.

Another important application of double crystal diffract-
ometry is for measurement of the lattice parameter difference
between a substrate and epitaxial layer for materials such as
garnet which is used for bubble memory devices (Hart and Lloyd
1975). The matching of the two lattices from the substrate
and epilayer 1is very important. An imperfect matching may
result in the formation of elastic strain and plastic
deformation which may result in device failure, Similar

experiments have also been carried out for materials such
as aluminium-substituted gallium arsenide on a gallium

arsenide substrate (Estop et al. 1976) which is an important



material in infra-red laser diodes; and epitaxial layer of
ternary and quaternary III-V semiconductor compounds On

binary substrates, for example (GalIn)As and (Galn)(As,P)

layers on InP substrate (Halliwell 1981). With the

increasing use of computer controlled diffractometers
measurements can be made quickly and the technique is potentially
very useful at an industrial level.

Double and multiple crystal diffractometry is also used
to study crystal perfection by topographic methods. The
pioneers for this technique (Bond and Andrus 1952, Bonse and
Kappler 1958) used topography to study the structural
imperfection of quartz crystals and individual dislocations
in germanium single crystals respectively. As the method
has a higher strain sensitivity it gives a more detailed
information compared to single crystal topography. An
asymmetric reflection can be used for the first crystal to
provide a spatially narrow beam and high resolution X-ray
section topographs can be achieved (Mai Zhen-Hong, Mardi x
and Lang 1980). A number of workers have used the highly
sensitive (+,-) arrangement to study small strains, for
example, (Hart 1968, Kohra et al. 1970, Stacy et al. 1974,
Hashizume et al. 1975, Yoshimura and Kohra 1976, Jones
et al. 1981)..

Studies on magnetic materials have also been carried
out using double crystal diffractometry (Miyaka 1949,

Hulubei 1952, Merz 1960, Ridou and Rousseau 1980). The

magnetostriction will give rise to changes in the X-ray

diffraction from a crystal undergoing magnetization. A
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diffraction peak will shift due to the change in lattice
parameter and an increase in integrated intensity due to
strain. From the measurement of the angular difference of
the peaks position of two domains from a rocking curve the
magnitude of the magnetostriction can be calculated

(Jones and Tanner 1980).

The availability of synchrotron radiation sources have
boosted the application of double crystal diffractometry
where the first crystal acts as a monochromator. Such a
system is essential as the synchrotron radiation spectrum
is continuous and many experiments require a monochromatic
beam, The main advantage in use of synchrotron radiation
for topography is the fast exposure time for double crystal
topographs of the order of a couple of minutes compared
to several hours (typically 18 hours) when using a con-

ventional X-~ray source.
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CHAPTER 3

INSTRUMENTS AND INTERFACE

3.1 Introduction

Two axis instruments have not been used as widely as
single axis instruments and this may be partly due to the non-
availability of these instruments commercially. Owing to the
high sensitivity and the availability of perfect single
crystals, this technique is becoming increasingly important.
Most of the double crystal diffractometers in existence were
built by the individuals who use them (Knowles 1959;

Bearden and Henins 1965; Bradler and Polcarova 1972; Sauvage
1978; Ohama, Sakashita and Okazaki 1979; Yoshimura et al.
1979; Mai, Mardix and Lang 1980; Bonse and Hartmann 1981 etc.)
for various purposes.

The double crystal spectrometer built by Knowles (1959)
was used for the measurement of y-ray energies resulting from
neutron capture where the relative angle between the reflecting
planes was measured by an optical system. The design of
Ohama et al. (1979) is a high angle double crystal diffractometer
(HADOX) used for measuring the temperature dependence of
lattice constant andiggtain an accuracy of 1 part in 107.

The double crystal camera which had been built and installed

at LURE-DC1 in 1978 is used for topographic studies (Sauvage
1978). Both axes are driven by pieéoelectric translators

and an accuracy better than 0.1 arc second is claimed. However
it is not monolithic and the stability is probably not as

high as this figure.
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The three double crystal diffractometers used for
experiments described in this thesis were originally designed
by Hart (1980) some twenty years ago. References to similar
instruments can be found (Jones et al., 1981, Halliwell 1981)
but a full description has not been published. A version
similar to the EGG is now available commercially (Bede
Scientific Instruments, Durham). Another double crystal
diffractometer is also availeble commercially from Rigaku.

It is the scanning type and although it can take large samples
it is not a high precision instrument. Two instruments based
on the same monolithic principle (Hart 1980) with an axis
separation of 300 mm have been installed at the Synchrotron
Radiation Source at Daresbury (Bowen et al, 1982). One

is mainly used for interferometric studies and the other for
real time experiments where a magnetic field of up to 1 Tesla
can be applied to the material under study or a cryostat
containing the sample can be placed on either diffractometer

axis.

3.2 The EGG

The EGG was constructed at the departmental workshop in
Durham and as already stated, the design of the diffracto-
meter is similar to the one built by Professor Hart and now

at King's College, London,

3.2.1 The Main Body

The main body of the camera was cast as a single piece

of gun metal. The casting was about 10 mm thick and 114 mm
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high. The hollow interior provides space for the construction
of the mechanisms which control the angular rotation of the
goniometers. The length of the camera is about 320 mm with
the goniometer axes a distance 150 mm apart and the width
of the camera at the two axis is different, the widtﬁ at
the second axis being larger. This design arises because
it is usually desirable that the second axis has a greatcr
sensitivity than the first. As the body was cut as a single
piece, the sleeves which support the spindles of the
goniometer axes can be accurately machined to be exactly
coincident with the horizontal axis of the casting. The
spindles and sleeves are made from stainlessAsteel and rotate
on two O-ring loaded ball journal bearings.

4-phase Impex IDO4 7%0 stepping motors are fixed on
brackets on each side of the outside of the casting. The
motors control the rotation of the goniometers through a
folded lever system as shown in Figure 3.1, driving the
micrometer via a 100:1 gear-box. The output shaft of the
gear-box is coupled to the micrometer via a thin brass
bellows. Alignment of the input shaft of the gear-box
and stepper motor is very critical. Even slight mis-
alignment between them will significantly affect the smoothness
of the rotation of the IDO4 motors which although inexpensive
have a poor torque output. One step of the motor corresponds
to 0.74 arc second on the first axis and 0.55 arc second on
the second axis. Two pairs of microswitches are used, one
pair for each goniometer fixed between the protruding
circular brass plate attached to the bellows on the side

nearer the micrometer. When the circular plate is in contact






with the microswitch, the drive circuit is broken and Lhe motor
stops. The same is for the other microswitch which limits

the movement of the micrometer in the opposite direction.

This is to prevent dangerous overrunning of the micrometer
tracks. A disadvantage is that although the motor is stopped
the computer still sends pulses to the drive module and
absolute positioning is lost. The motor must then be driven
manually back into the safe working region. The total range

of rotation for both goniometers is about 15°.

The bottom hollow part of the casting is covered with a
6 mm thick steel plate and together with the goniometers were
mounted on a graduated rotary milling table 70 mm high with
its axis of rotation concentric with the first goniometer axis.
The whole camera can therefore be rotated simultaneously
and this made easy alignment between both goniometer and
the X-ray beam. The table is driven by rotating the shaft
manually.

The detector support assembly is mounted on a large ball
journal bearing fixed on the outside of the casting concentric
with the second goniometer axis and is positioned manually.

An arm is attached to the assembly to support the detector

and a plate holder.

3.2.2 The Goniometer

The goniometers was made from two L-shaped aluminium
pieces and were attached together using pre-loaded bearings.
Each L-piece was machined as a single piece to maintain the
stability of the goniometer. The photograph of the

goniometers together with the whole experimental
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set-up is shown in Figure 3.2. The spindle of the
goniometer was fixed at the bottom of the outer L-piece

and a good fit was made between the spindle and the supporting
sleeve so that the whole goniometer is extremely stable. This
is very important since slight wobbling of the goniometer
will affect the sensitivity if a rocking curve of a few
seconds of arc is to be obtained. The position of the sample
holder was constructed at the base of the inner L-piece with
its axis coincident with the axis of the spindle. A micro-
meter fixed at the top of the outer L-piece is in contact
with a ball-bearing fixed at the inner L-piece. An elastic
spring retains the two L-pieces. Thus the inner L-piece is
movable in a vertical plane parallel to the goniometer axis
and thus controls the tilt angle ¢ which is necessary for
optimum results. The micrometer was coupled to the output
shaft of a 50:1 gear-box via a brass bellows. The stepping
motor which was coupled to the input shaft of the gear-box
will control the movement of the micrometer which will slag
or stretch the spring and thus changing the tilt angle ¢.

A bracket was attached to the outer L-piece to support the
gear-box and motor. One motor step is equivalent to a tilt

angle of 0.25 arc second.

3.3 The COFFIN

The COFFIN is a bigger version of the EGG and has the
same principle design with axes rotated by levers pushed by
Stepper motor driven micrometers via gear-boxes. The
diffractometer was initially made for magnetostriction

measurements up to a field of 1 Tesla (Jones and Tanner, 1980).
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Figure 3.3 is a photograph of the underside of the diffracto-
meter.

An unusual feature of the diffractometer is that the
crystals can be mounted . below the instrument as the large
bearings permit use of a wide collet and through this a
Helium gas flow cryostat can be inserted. For y-ray work
this feature was modified so that the crystals were mounted
in the usual manner, that is above the flat surface of the
instrument and can take the same goniometers as used with the
EGG. It has a larger axis separation of 825 mm which has
proved very suitable for y-ray work. The first axis has a
20:1 gear-box and a 46 mm lever resulting in an angular
rotation of 0.93 arc second per motor step. The second axis
with a 90:1 gear-box and a lever length of 292 mm has a step
angle of 0.1 arc second.

During this work, modification was made on the second
axis for the measurement of very narrow rocking curves less
than 0.1 arc second. A longer lever (573 mm) was used and
together with a higher ratio gear-box of 312.5:1, the angle

per step was reduced to 0.012 arc second.

3.4 Micro-Computer Control System

Before the widespread use of microprocessors, automation
was only restricted to large scale experiments due to the
large capital involved. At present more and more small scale
experiments are being interfaced to micro-computers with

consequent great advantage of an on-line control and data

praocessing system,
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The micro-computer used to control the diffractometer
described below is the Commodore System P.E.T. and the
"MINICAM' interface system designed by Rodrigues and
Siddons (1979) and available from Besselec, Isleworth,
Middlesex. This systen can also be used for any other
similar based experiments. The 32K byte PET is used pref-
erentially although the 8K is sufficient for some of the
control programs written.

The PET system can be divided into four main building
blocks. These are the (a) Central Processing Unit, (b)
Storage or Memory, (c) Input and (d) Output. The 6502 micro-
processor which is the main component of the CPU circuitry
controls the operation of the screen, keyboard, cassettes
and other additional peripherals. The high level language
used is BASIC, stored in ROM, which is easy to learn and use
even if one does not have any previous knowledge of
programming languages. BASIC includeé the function PEEK
and POKE used for memory inspection and modification. This
is essential to provide extra commands and functions as well
as fast execution speed in the form of subroutines written
for the specific requirement of the experiments. The sub-
routines are stored in a 1K byte EPROM on the bus interface
board and are available whenever required. The subroutines
are linked to the main BASIC program by the function SYS(X)

and USR(X).
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3.4.1 The Interface Rack System and the Power Supply

Unit

The rack system used is the standard 19 inch subrack
system, The 43-way gold-plated edge connectors which are
bused together accepts standard size cards used for plug in
modules, Table 3.1 shows the function of each terminal of
the bus. The power supply unit and the interface board are
built behind a 5 inch aluminium panel which carries the mains
power inlet, switch, fuse and indicator light. The circuit
diagram in Figure 3.4 is the power supply unit which provides
nominally + 15V at 4A and -15V at 1A. The unregulated supply
is fused and the regulated supply is current limited. The
total load should not exceed 100VA. Two of the four ground
terminals are for the unregulated supply, one for the regulated

supply and the fourth is used for analog devices,

3.4.2 The Interface Board

The main component of the interface module is the
6522 versatile interface adaptor. Each device consists of
two 8-bit bi-directional lines which is programmed as either
input or output, 4 control lines, an 8-bit shift register and
2 programmable 16-bit timers. The two devices provide parallel
control lines and 16 bi-directional data lines. One is mainly
concerned with data movement and the others with interface
control (Figure 3.5). Eight of the lines (lines 30-38) are
connected to two chip :decoder (Figure 3.6) which are treated
as an 8-bit address. A total of 255 addresses can be allocated

tO one systom,



fable 3.1 Funmction of each termiral of the

MINICAM interface bus.

Pin No. Function
1 Reset 1
2 Analog ground
3 +5V regulated
4 OV logic ground
5 Gate 1 (in parallel with Gate 2, pin 39)
6 Reserved for future MINICAM extensions
7
8 -15V nominal
9 Strobe
10 Motor supply +15V nominal
11
12 Motor supply OV
13
14 L.S.B.
16 data lines
29 M.S.B.
30 L.S.B.
. 7 address lines
36 N.M.S.B.
37 Polarizing key
38 M.S.B. address line
39 Gate 2
40 not allocated
41 Interrupt request
42 Handshake
43 Reset 2
Notes: 1. Reset 1 and 2, Gate 1 and 2, pairs connected in

parallel,
2, OV lines connected together at main reservoir

capacitor only.
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The PET memory expansion port used for the interface
provides access to the buffered and decoded input/output
lines from the 6502 microprocessor. The interface appears as
32 bytes of memory and occupies block 9 of the PET memory map.
The different function within the 6522's are controlled and
examined by writing to and reading from these 32 locations.
Table 3.2 shows the functions of the 16 registers in one 6522,
The DATA 6522 is unrestricted by external hardware except
a 1link between pins 17 and 18 used for stepper motor timing.
The four Register Select lines RSO-RS3 are connected to the
computer address lines to allow the computer to select the
internal 6522 register which is to be accessed. The other 7
bits are connected to two 74LS139 and other NAND gates (7402)
which act as the decoder for the PET address lines,

The CONTROL 6522 is more restricted to external hardware,
PB5, 6 and 7 and the IRQ output are solely used to provide a
highly repeatable monostable for counting purposes. The
first PAO-7 drives the address lines of the interface bus
and CA2 is used as the strobe line. The 8 bi-dircctional
data lines (DO;D7) are used to transfer data between the
6522 and the computer. The direction of data transfers
between the 6522 and the computer is controlled by the READ/
WRITE line (R/W). If R/W is low or 'O' data will be trans-
ferred out of the computer into the selected 6522 register
(write operation) and if R/W is high or '1' and the chip is
selected, data will be transferred out of the 6522 (read
operation). The RESET input (RES) .jears a1l internal

registers tologic '0f . e . )
t ! gre 'O'which places all peripheral interface
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lines in the input state, disables the timers, shift register
etc. and disables interupts from the chip. The 7474 and the
NAND gates are used as a synchronizing circuit in counting
circuits to provide an accurate gating signal. A RESET

line and the GATE function is used to clear all counters
before each counting period to avoid spurious data being
collected. The connections of the 1K byte EPROM, MM2708
which contains the subroutines is also shown in Figure 3.5.

The interface board can accommodate up to 3 EPROMS if needed.

3.4.2 The Stepper Motor Module

The stepper motor module (Figure 3.7) provides the right
signal level to drive the unipolar Impex stepping motor type
9904-112-04101 which requires 350 mA per phase. The binary
up/down counter IC type 40193 is used. The inputs (pin 4
and 5) are each connected to the output of a three input NOR
gate (la and 1b). One input from each NOR gate is always at
logic 'O' if the manual control is not used and the second
input is also at logic 'O' if the interlock is made which
is necessary for the motor to step. The motor will rotate in
a clockwise direction if the step pulses are sent to the up
input and anticlockwise if sent to the down input. Therc-
fore each motor drive will have two addresses, one for each
direction of rotation. The two outputs of the up/down
counter are connected to a network of a two input exclusive
OR gate and the outputs (A, B, C and D) from the gate
network are each connected to identical circuits comprising

transistors, resistors, diode and capacitor one of which is
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also shown. A special routine in the EPROM can be called
to facilitate programmed use of the module.

The module can drive stepper motors which takes current
up to 500 mA by changing the values of the resistor R1_4
and can also drive the motors manually. A switch is provided
on the front panel to select the direction of rotation of the
determine the speed

motor. The resistor R, and capacitor C

9 5
of the motor in the manual mode. For convenience the value

of Rq is chosen to be 330 KQ and C. is 0.047uF so that the

5
time between motor steps of 73 degrees is approximately 0.016
sec (= RC) that is about 62 steps per second. In the manual
mode the first input of the NOR gate (la, 1b) which are
connected to the address decoder will be at logic 'O' and the
third input will oscillate between logic 'O' and logic '1'
thus providing the step pulses to the inputs of the up/down
counter. When the interlock is broken the indicator light
(ND5) on the front panel illuminates. It is this facility
which is used in connection with the interlock terminal
to the microswitch system in the diffractometer to inhibit
all motion if the 1limit switch breaks which corresponds
to the interlock system being in open circuit and thus the
motor stopsstepping.

Access to the stepper motor routine is via USR(1). For

example,

20 A% = 32 : N =100 : T% = 1 : A = USR(1)

This program causes the motor with address 32 to advance 100

steps with time proportional to T% between cach step.



3.4.4 The Dual 16-bit Scalar or Pulse (Counter

The C-MOS integrated circuit type 4502 which is a
Strobed Hex inverter/buffer and a dual 4-bit binary up
counter type 4520 form the main components of the dual 16-bit
binary counter module. Each counter comprises two 4520's
connected in cascade and three 4502's. Figure 3.8 shows the
connections between them.

The dual 4-bit output of the 4502's (pins 3,4,5,6 and
pins 11,12,13,14) are each connected to the inputs of the 4520's
(pins 1,3,6,10,13,15). This corresponds to the first input
of the NOR gates which make up the buffer. Thé second input
ofi the NOR gates are earthed. This is the inhibit terminal
(pin 12). Therefore the outputs (pins 2,5,7,9,11,14) are
connected to the data to form a 16-bit pulse counter. The
disable tri-state output of the 4502's (pin 4) are connected
to the address decoder so that when the correct address is
output onto the control bus the output of the counter is
placed on the data bus. The gate signal from the interface
bus (terminal 39) is connected to the clock input (pin 1)
of one of the 4520's which enable the counter. This signal
is controlled by an accurately repeatable timer governed by
PET's system clock. The RESET (terminal 43) connection is
also made with the 4520's (pins 7,15 so that the counter is
reset before each perjod. Since Reset 1 and 2 and Gate
1 and 2 on the control bus are connected in parallel, all
the counters are cleared together. Therefore it is not
possible to acquire data for differcnt periods in different

counters.  The counters will accept T.T.L. level positive
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going pulses of minimum duration lus and was made compatible
with the output from our amplifier system which is greater
than 5V by incorporation of a Hex Buffer type 4050 in the
circuit since it has a high-to-low level voltage conversion,
The output from the amplifier is fed to the buffer's input

and its output is then connected to the enable terminal (pin 2)
of the 4520.

A subroutine in the EPROM provides a routine which
provides variable time intervals in units of 100 ms. The
software first clears the counters, opens the gate for the
programmed period, closes the gate and returns the value in

the currently addressed counter. For example,

30 A% = 48 : T% = 10 : A = USR(2)

This program causes the counter with address 48 to count in
intervals of 1 sec and the value is assigned to the variable

A.

3.4.5 The Dual Digital-to-Analog Converter

The dual 12-bit D-A converter module provides two
independent output voltages and is usually used here with an
X-Y recorder. The module consists of 2 AD565 chips 2
address decoders and 3 IC chips type 4508 (Figure 3.9). The
AD565 is a fast 12-bit digital-to-analog converter with a
stable voltage reference on a single monolithic chip. It
uses 12 precision, high speed bipolar current steering
switches, control amplifier, laser trimmed thin film resistor

network and buried Zener diode reference to provide a very
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fast, high accuracy analogue output current.

The digital input passed to either DAC must be in the
range O to 4095 which corresponds to a maximum output voltage
of 0.4V + 5%, Values outside the range 0-4095 will cause the
module to 'wrapped around', Access to the converter is via

USR(4). For example,

40 A% = 16: N% = 10: A = URS(4)

This causes the converter with address 16 to output the number
in N% on the data bus and a single strobe pulse on the strobe

line.

3.5 Manual Control System

The diffractometer was initially controlled manually
before the time saving computer control system was installed.
Figure 3.10 is the circuit diagram for the whole manual
confrol system built by the author. The pulse generator
provides square pulses and was fed into the stepper motor
drivers. The drivers in turn generate sequential pulses
suitable for driving the stepper motors which control the
angular rotation of the goniometers. The counters register
the motor steps. The microswitches incorporated in the
diffractometer 1imit the range of the goniometers' angular
rotation. The counter can also be used as an external
counter by changing the selecting switch on the front panel.

Appendix 1 shows the lay-out of the system.
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3.5.1 The Rack System and Power Supply Unit

The modules for the manual control system were also built
in a standard 19 inch sub-rack system. It consists of a power
supply module, a pulse generating module, a dual stepper
motor module, a module to reduce the 12V supply to 5V and a
dual counter module. 24-way module connectors with gold-
plated silver contacts were used for this system. Its non-
reversible plugs and sockets are particularly suitable for
this plug-in module system,

The power supply unit has an adjustable voltage between
4 and 12V at 1A (RS951-253). The presettable voltage is
adjusted by an integral preset control and short circuit
protection is incorporated. The dimensions of the unit are
160 mm x 100 mm x 57 mm. The input voltage is between
216-260 V a.c. in the frequency range 50-400 Hz. In this
particular application the output voltage is adjusted to 12V
and a 5V supply is obtained by using a 5V zener diode. The
unit was built in a 5 inch panel which carries the main power

inlet, a switch and an indicator light.

3.5.2 The Pulse Generator

The pulse generator makes use of the 555 timer as a
multivibrator . Figure 3.11a is the circuit used for the
generation of pulses.

The pulse generating circuit can be divided into 3
sections as shown in Figure 3.11a (a) the unijunction tfransistor
2N2646, (b) the npn transistor BC107 and (c) the 555 timer, |

Referring to the left most part of Figure 3.11a which consists
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of the 2N2646; suppose the capacitor is in a discharged
state initially. When a voltage is applied, the capacitor

C, charges through the resistor R1 and R2 towards the supply

1
voltage. The voltage Ve at the emitter and base 1 reaches

the threshold maximum corresponding to the rapid transition
transistor

to a very high emitter current. The unijunction N will

then trigger to the on-state. A low-voltage state is attained

by using a suitable resistor R, to prevent the device from

3
burning out. When the transition has occurred Veb is
:by
small and the capacitor then discharges through R. There-

+ronsistor

fore Ve falls and the A triggers to the off state. These
two states, the ON and OFF states are indicated in Figure
3.11b. The charge discharge cycle will repeat continuously
and the pulse repetition frequency can be varied by adjusting
the variable resistor R2. ‘
transistor
The output pulse produced at the base 1 of the N is
fed into the base of BC107 before it triggers the 555 timer.
The transistor acts as a switch. The ON-state corresPonds
to the emitter junction being in the forward bias such that

the base cirrent I, is large enough to drive the transistor

b
into its saturated condition where the collector cirrent IC
is at its maximum value and VCe is small. In this particular
case the transistor switch is used as a squaring or limiting
circuit where a squared-off output signal is produced which
is fed to the timer. Signal inversion occurs between the

input and output of the transistor as shown by the table

on the next page.



Input Signal Transistor State Output Signal

High ON Low

Low OFF High

The square-off signal triggers the timer or more
appropriately the [lip-flop circuit (bistable multivibrator)
in the chip. To understand how the timer works consider the
bistable multivibrator in Figure 3.12. Rcl and RCZ are
equal but due to the random thermal fluctuation Ib1 and Ib2
are not equal. Suppose Ib2 drops slightly from Ib = Ic/hfe’

this implies that IC becomes less and the voltage ch on the

2
collector T2 rises. As a result Ibl and ICl increase causing
the voltage VC1 on the collector T1 to decrease. The reduction
of VCl cause Ib2 to drop further, If this continues, due to

the positive feedback, T1 will ultimately be in an ON state

and T, in an OFF state. This final state is completely stable

2
unless an externalhtriggering pulse 1is applied. In this case
it is the squared off output pulse from the collector of
transistor BCl107. Therefore transistors T1 and T2 of the flip
flop circyit will be in an ON and OFF state alternately at a
rate 1/T depending on the value of the resistor R2. The
width of the output pulse is dependent on the resistor R4.
This module was built in a 2 inch panel which carries a
switch, a push button and a control knob to vary the frequency

of the pulse generated. The push button is used to produce

a single strohce pulsce and is controlled manually.
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Fig. 3.12 The Flip“Flop circuit (bistable multivibrator).
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3.5.3 The Dual Stepper Motor Driver

The integrated circuit SAA 1027 is used to drive the
four phase unipolar stepper motor which controls the rotation
of the goniometers. It changes a train of input pulses from
the pulse generator to a sequential output pulse which
provides the required pulse pattern for driving the stepper
motor. The schematic diagram of the drive circuit is shown in
Figure 3.13.

The dual stepper motor driver was built in a 2 inch panel
which carries two double pole double throw centre off switches
and a push button. The switches control the direction of
rotation of each of the stepper motors. The stepper motor
driver is powered from the 12V supply rail. The circuit
consists of four output stages, a logic part and three input
stages. The logic part is driven by three input stages: a
triggering input T, an input R which change the switching
sequence of the logic part so that the motor can rotate
clockwise or counter clockwise and a set input S to set the
four output stages. The triggering input receives the pulses
from the pulse generator which signals the motor to step,
Triggering only occurs when T goes from LOW to HIGH. When
the triggering level is LOW VT is between O to 4.5V and I, is

T

about 1luA, when it is HIGH VT is between 7.5 to 12V muiIT is

typically 30uA. The input R is connected either to OV or
12V by means of the selecting switch on the front panel and

the direction of rotation is clockwise when V. is low and

R
vice versa when VR is high. The three inputs are compatible
with high noise immunity logic to ensure proper operation

even in noisy environments.
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The four output stages are connected to each of the 4
terminals of the stepper motor while the other four terminals
are maintained at 12V, The output stages can supply 350mA
in each phase. Integrated diodes BAX12 are connected across
the motor windings to dissipate stored energy in the motor
coils and to protect the output Q from transient spikes
when they are switched on. Since the SAA1027 and the motor
are connected to the same power supply, a RC network is used
in the supply line ofithe logic part to prevent the logic
sequence from being disabled by transient spikes, caused

by the switching of the motor coils.

3.5.4 The Dual Counter System

The counter system uses the count display integrated
circuit ZN1040E. The device is contained in a 28 pin dual-
in-line package which requires : a voltage supply of 5 volts
and consumes an internal current of 90mA. The counter is
capable of counting pulses up to 5MHz and driving directly
7-scegment L.E.D. common anode or cathode displays with minimum
external components. Other features of the 7N1040E includes
4 digit counter, up/down synchronous counting, sSeparate
memory latches, anticipatory carry/borrow output, counter
cascading by direct connections, separate B.C.D. outputs as
well as segment outputs, blanking including mark/space
intensity control, automatic zero suppression which can
cater for a decimal point, self scanning oscillator for
synchronization, switch on reset which clears all counters,
schmitt input on count, inhibit and clear and lamp test

facility. Only a few of the facilities are required for the
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countér constructed. The minimum voltage for input logic 1 is
2V and the maximum voltage for input logic O is 0.8 volts.

The display board (RS 434-239) consists of two printed
circuit 'boards, one accepts the ZN1040E and the other the
display bezel which can accommodate the four common anode
7-segment L.E.D. All the facilities of the 7N1040Eare
brought to a 24-way gold plated edge plug. Both boards are
interconnected by ribbon cables. This dual counter module
was built on a 5 inch panel which carries a pair of display
bezels and a pair of push buttons for resetting the counter.
The input of the counter is conencted to the input of the
stepper motor drive via the 24-way plug and socket and hence
the counter displays the number of steps the motor moves., The
up /down terminal is connected to the selecting switch of the
stepper motor module which determine the direction of rotation
of the motor., When the motor is rotating clockwise, the
selecting switch is at logic 1 and the counter will counf up
or increase in counts and vice versa if the selecting sWitch
is at logic O, Therefore this keepstrack the position of
the goniometer.

The input of the counter and the up/down terminal only
accepts voltages of not more than 5 volts. The output of the
pulse generator which is fed into the stepper motor driver
and thus the counter is greater than 5 volts and logic 1
also corresponds to a voltage of 12 volts for the selecting
switch. Therefore before these voltages are fed to the counter
input and the up/down terminal they are fed to a simple resistor

network as shown in Figure 3.10 to drop the voltage to the



appropriate values before feeding it to the counter. This
simple resistor circuit was built as another 2 inch module

in which the front panel carries two single pole double

throw centre off switches and two BNC sockets. The switches
are used to select whether the counter is used for counting the
motor steps or used as an external counter by an input through

the external BNC sockets.

3.6 The Detecting Syvstem

The detector used for this system is a scintillation
counter. The operation is based on three basic principles:
(a) the ability of X-rays to cause certain substance to
fluoresce and emit visible light, (b) the photoelectric
emission of electrons when visible light is incident on a
photosensitive surface and (c¢) the emission of secondary
electrons by certain surface when primary electrons impinge
on them. The amount of light emitted is proportional to the
X-ray intensity and as the light emitted is very small a photo-
multiplier tube is used so that a measurable current output
is obtained.

The basic design of the counter is shown in Figure 3.14.
The photomultiplier tube is highly evacuated and the semi-
transparent photocathode is deposited on the inside surface
of the tube window, whilst the scintillator is placed in
contact with the outside surface using an optical grease.

The major length of the tube consist of a series of metal
electrodes called dynodes. Each dynode is maintained at a
potential of about 100 volts higher than the preceding one.

The scintillator used is a sodium iodide crystal activated



e
<2< S >

crystal photomultiplier tube

Fig. 3.14 Basic features of a scintillation counter.
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with a small amount of thallium and emits light under X-ray
bombardment (Rank Precision Instruments Type P1035). The
light photons will pass through the tube window to the
photocathode which in turn emits primary electrons with

kinetic energy E given by
E = hv + ¢

where hv is the energy of the light photon emitted by a
quantum of X-rays and ¢ is the work function of the photo-
cathode. The liberated electrons are then accelerated by

the electric potential towards the first dynode whose surface
is chosen such that for each incident electron, 5 or more
secondary electrons are emitted. The electrons liberated
from the first dynode are drawn towards a similar dynode by
the electric field. The process continues and the total
number of electrons leaving the:last dynode depends on the
number of dynodes used. If 10 dynodes are used the multi-

10 or about 107 or ten million times

plication factor will be 5
the original emission at the photocathode. The final emission
is then led off by a collecting electrode, the anode, to be
further amplified by a Harwell 2000 pulse amplifier,

Figure 3,14 also shows the stages of multiplication for only

one electron from the photocathode assuming that the gain of
each dynode is 2. It is obvious that even a weak source of
light may be detected by the photomultiplier. The whole

process takes place in less than a microsecond so that a
scintillation counter can operate at rates as high as 105 counts

per second without losses. The main disadvantage of the counter

is its relatively high background count of about 5 cps due
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to electrons produced by thermionic emission from the
photocathode even when no X-rays quanta are incident on the

counter.

3.6.1 Photomultiplier Tube Dynode Chain Design

The basic function of the dynode chain is to provide
the potential difference to accelerate and amplify the electrons
emitted from its surface. The voltages for the dynodes are
ohtained from resistors in series across a high voltage
source. The values of the resistors depend on the tube
specification as well as the application. Therefore the choice
of a photomultiplier tube and the dynode chain circuit is an
important factor for good performance of the tube for the
particular application desired.

The first important point to note is that the voltage
must be adequate

k—d1

to ensure proportionality between the cathode current and the

between the cathode and the first dynode V

cathode illumination, It is desirable that the first stage
gain is high and this is very much: dependent on the voltage

A .
k—d1

fication of the tube. The intermediate stages usually

The recommended value is usually given in the speci-

operate satisfactorily from uniformly distributed voltage
covering a wide range of 20 to 300V subject to not exceeding
the maximum ratings of the photomultiplier. The voltage
applied to the final dynode is more critical because of

the high current flowing from them, ¥For pulsed application
the last three stages must be decoupled to'suitable
capacitors, Figure 3.15 shows the dynode chain circuit for

the photomultiplier used, that is EM1 9524B. The tube is 30 mm
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—

Fig. 3.195 Eleven stages dynode chain design.

high voltage(+ ve)
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in diameter having 11 box and grid dynodes with highly stable
CsSh surfaces. The gain is typically 4 x 106 at 1000 volts
and has the advantage of low. . current and a rugged design
which are suitable for portable instruments and applications
where available power is limited. The recommended cathode to
first dynode chain voltage is 150V, and use of a Zener diode
across this stage is preferable. The present tube is operated
at 1 kV. The intermediate stages are maintained at 70V and
the last three stages is at approximatdly 150V,

The values of the resistors Rk = R1 ='R2 = R3 = 680 k{,
iW and R = RL = 330 k2, iW. The decoupling capacitors

C, and C, are 1lnF (750 V d.c.).

3 L
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CHAPTER 4

SOFTWARE FOR CAMERA CONTROL

4.1 General Purpose Routine

The control program (Appendix 2) for the double crystal
diffractometer is based on a combination of the three USR
functions described in Chapter 3. The program is divided
into eight routines which perform the various functions for
the two axes and goniometers. Fach routine is selected
by inpué&ng the string variables: RS, CO, SC, GN, FI, PL,

FL and AU. A GOSUB statement (lines 260-330) is then executed
depending on which routine was chosen. At the beginning of
each routine the necessary variables are input. The routines
also keep track of the axis and goniometer position in number
of motor steps and display them and other necessary
information before a RETURN command is encountered. Most

of the eight routines can be interrupted by pressing any

key, except the STOP key on the keyboard and a RETURN

command is encountered.

4.1.1 The Reset, Count, Scan and Goniometer Tilt

Routines

Figuré 4.1 is the flow-chart for the control program.
When the RUN command is excculed to start the program the
axis is chosen. The RESET routine or RS (lines 1000-1030

of program) allows the user to change to the other axis.



Fig. 4.1

(PG.10) R$= Fl ———&—
=Pl ———————] INPUT

(PG.11) R
(PG 12.13) R

sFlL ——<—- ROUTINE R$ |—2>——
(PG 14) RE=PL2 3

START

v

INPUT AXIS AX,
ANGLE PER STEPULU

[

Y

The flow—chart for the comntrol program
of the double crystal diffractometer.

R$ = RS (PG.7)

b—3———R$ =C0 (PG.7}

R = SC (PG.8)
R$ =GN (PG.9)

1
A Rp= AU (LINE 5000-—-5160)

\

-NO

CONTINUE IN"au”
YES OR NO

YES

v

INPUT VARIABLES

GON: AXiS GN, STEPS GS
TILY DIRECTION D$
FIND ROUT. MOTCR STEP ML
COUNTING TIME SS
JLIMIT STOP LS
SCAN ROUT. NOOF CYCLES CY
MOTOR STEPS MF
CHOOSING GREATEST: TOTAL PLOT K
PEAK COUNTS
PLOTROUT: NOOFCYCLES RA;

MOTOR STEPSMS, COUNTING TIME S

Y

INPUT AXIS ROTATION

FOR PEAK SEARCH. U ORD

v U ORD

STEP THEN CQUNT

L YES

GET
BS=

B%

COUNTS A

N

NO

NO

A D> LS

\}YES

COUNT AT SAME POINT AGAIN.
COUNTS A.

A

IF MOTOR iS SCANNING UP
THEN SCAN ON(S5=ML) STEPS

VICE VERSA IF MOTOR IS
SCANNING  DOWN

i
TCONT. ON PG. L

FROM PG,




NOTE: TILT CLOCKWISE: STRETCH SPRING Cont on PO
TILT _ANTICLOCKWISE: COMPRESS SPRING B

TILT GIRECTION YES TiLT OIRECTION
CLOCKWMISE QR Al KNOWN ?
ANTICLOCKWNISE i¢e. UORD
} NO A
y DOUBLE COUNTING
. TIME $5= 2 %5%
1 AN
GO SUB B0C0G &)
i.e. SCAN ROUTINE
PEAK COUNTS P )
TILTING CLOCKWISE g0 auh €200 B
TING U
(K~UNGS STEPS e TILTING CLOCKWISE  TWICE RETURN >
, = 2% GN STEPS L\ 4
e
YES . w0 > 7 7 GO SUB4070(PG 1Y)
. . GO SUB J000(PGI) i .
<> P S sool .
T<> P(K) UB & ie. FIND ROUTINE ne.PLOT/‘LTING
GO SUB 8 500( PG 5) 47 | GO SUB 3000PGS)
GO SUB 8000 . ‘ '8 3000 -
CHOOSING THE GREATEST PEAX COUNTS P2 i 1.6, PO SITIGNING FO&R FLOT TING,
PEAK COUNTS + ,f\
4 GO SUB 6500 GO SUB ¢000
<«  NEXT R GO SUB 6500 N
A
4 Y GO SUB 7000
P{R) = PV GO SuB 7000
. i \{/ PV=T
GO Su8 8000 PE:S SCL)JSNBTDSOF%
A 7 TILTING ANTICLOCKWISE
(K-U)xGS STEPS
[ GO SUB 7000 YES
* < P1>P20R P2)P3 AYES
NO ' N0< T¢) P(K)
GO SUB 6800 N
TILTING ANTIC LOCKWISE $S = 5972 A
T PV s INT(PV/2) [GO SUB 8500 1
>4 FOR R=1T0 K N /
- GO SUB 7000 NEXT R
GO SUB 8000 ‘y }
T d J GO SUB 68C0
) l GO SUB BOGO - P{R)= PV
GO SUB 7000 7 J ‘ ]
[FOR R=1T0 K I ) [ GO SUB 800G ]
HALYE COUNTING TIME
$$=55/2 | ¢ *
HALF PEAK VALUE TILTING CLOCKWISE R
PV=INT(PY/2) GO SUB 6500 GO sud 7000




LINE 7000 — 7740

GG SUB 7060
FIND ROUTINE

N

IF A$=U THEN STEP DOWN

IF Ab=D THEN STEP uUP
NO OF STEPS = 3a MF
THEN COUNT: COUNTS A

NeN-13

Y

ACINT(.6sPV)

J no

N= 0
+ IF A$=U TnEN STEP UP
NO YES
< ABS(N)= 6xCY > IF A% D THEN STEP DOWN
NO OF STEPS INTCYel8)xMFe3
Y

A

‘ N NeINT(CY«1.B823)
YES < NO \r

_ ABS(N)>12aCY

IF A$2U THEN STEP DOWN
IF Aba D THEN STEP UP
NOOF STEPS=INT(CY40.6)0 MF

NO OF STEPS=)3=MF

(F A$=U THEN SYEP uUP
IF A$sD THEN STEP DOWN

THEN COUNT: COUNTS A

iYES

IF A%~ U THEN STEP DOWN

IF A$aD THEN STEP UP

NO OF STEPS
S INT(CYx S 8)aMFe3

N= N=INT(CYx G6)
IFA$=D THENNZ -N
T,

N
b,

RETURN

N

N=N+J

Y

ACINT(0.6» PV)

YES
AY

N NO

YES

N=H - INT(CteS.6 = 3)

N

ABS(N)>12=CY

7

\¥ NO

{F AfsU THEN STEP DOWN

iF Ab=D THEN STEP uP
NO OF STEPS = MF% 10

1F Ap=tu THEH STER DOWN
IF A$=D THEN STEP UP
NO OF STEPS=MFx3
THEN COUNT: COUNTS A

4,

Nz N-10

IFAf=D TREN M= - H

PRINT"LOST - PEAKY
1F AS=D THEN N=-N

NE

H=N

PRINT FOSTION OF ANS

i

YES
< ALINT{CER -4)
¥ NO
IF AL-U THEN STEPDOWN |
v

IF AY=D THENSTEP UP
NO OF STEPS INTCYaDUHMF

\d

M- H-INJCreG L
IF &8=0 Teftiti- -t




LINE %000~ 8240

GO SuB 800C
SCANNING ROUTINE

Y

PEAK VAWE PV=0
lPEAK PO SITION PP« 0

Y

\'d

FOR I=1 T0 C¥

~

IF A$=U THEN STEF UP

IF AS=D THEN STEP DOWN

STEP SIZE: MF, THEN COUNT
COUNTS A(l)

N

PRINTL A(l),PV, PP

N

[ Next_lj——_ml—___[ A(1)> PV 1

N

Y YES

_.___<_____rpv=A< 1) PP=I ]

IF A$=D THEN }= -Cv¥

I AX=s1 THEN SizSI+(I&MF)
IF AX=2 THEN S2= S2+4(1% MF)

N

RETURN




LINE

$500— 8580

T= P(R), U=R

GO SUB 8500

CHOOSING THE GREATEST
PEAK COUNTS

N

=0, U=0

¥

FOR R= 1| TOK

A3

v

PRINT PEAK COUNT T
PRINT PLOT NO U

RETURN




LINE

9000 — 9160

GO suB

POSITIONING FOR
PLOTTING

5000 T

v

COUNTS

IF A$= U THEN STEPDOWN

IFA$2D THEN STEP uP
STEP SIZE MS, THEN COUNT

A

¥

N L
\

N= N-—]|

YES
—Jacarsarv ]

NO

IF A$=U THEN STEP DOWN INT(RA43/5)s MS+ 100 STEPS:

N= N ~INT(RA=3/5)

IF A$=D THEN STEP LP INT{RA%2/5)»MS+100 STEPS..

"N N+INT(RAsYS )

v

IF A3=U OR A$=0D
THEN STEP UP 100 STEPS

Y 4

IF A$=D THEN N=-N
IF AX=1 THEN SI=Si+(N=a M)
IE AX=2 THEN S2=S2{Nx M9

Y

l RETURN |
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GO SuUB 4850

v
1

(o y
l£OsJN T,COUNTS B_‘

B< HH+(0.1#HH) AND B>HH—=0.1» H H) e y=B 1 X=X
NO
B=> HH+ (0.1 x HH) J 2
JYES

STEP UP MS STEPS

N=N+1"

YsB: X=

X+

GOSUB 25C0

[B=( HH=(0.1 % '4H) >

STEP DOWN MS STEPY I N-N=1 [¥=B ! X=x-1"

YES

GET

GO SuB 4930

B

BH< »v v

Yno

RETURN

Y

|
Y
Lcoum,wums BJ]— <
1
Yes

B< HH+(0.1xHH) AND B> HH —(0.1 % HH)

P ¥=B: X=x

NO

\FNO

Be> HHH 0.1 % HH)

ives

STEP DG N 1S STERS, paN-1IY=PB [ X=X
'
B=<cHH<(0.«MHH) GOSUB 2500
T
~N / \+,
Lsn. L TEPS T NSNvl o v=Bt X=X+t Ly CETBE YES

B$ N "

Yo

RETU AN
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LINE 2000-2260

R$:C
Y

INPUT MOTOR STEP SIZEMS
INPUT COUNTING TIMES

Jd

INPUT NO. OF

CYCLES NO

FOR I=1 TUAB S(NO)

STEP [OWNMS STEPS

NO

) S

i
|

STEP UP' MS sreps‘

Y

COUNT: PRINT COUNTS

GET B%:

B3< o~ =

IF NO>O THEN
IF NO<Q THEN

NzleMS: A$=U
15= ~{ [¥#MS5): Af2D

IF AX=1 THEN SI=S1 4TS
IFFAX=2 THEN S2: R +135

I

PRINT PQS!TiION GF

PRINT AXIS ROTATION

by

A3

N

="

RETUR N =




LINE 3000-2150

R$=GN

\/

INPUT GONIOMETER GN

‘/

INPUT NO.OF STEPS GS

STEP DOWN ABS(G3)STEFS

Y

6Gs= 0 | YES o
NO
NO
—< GS> 0
YES

~

STEP UP AB5(GS) STEPS

I
hd

{F GN31 THEN G1# &I + GS
WF ON 2 "THEN 02«02+ 4GS

N

PRINT TILT POSITION OF GON.

N

A

RETURN

<




LINES 3500-3930

R = FI .{

INPUT MOTOR STEPS MS
INPUT COUNTING TIME S

INPUT RANGE OF SEARCH B 4

INPUT SEARCH IN BOTH DIRECTION ?
INPUT LIMIT STOP LS

Y

INPUT AXIS ROTATION A$
U OR D

A

IFA$=U THEN A$=D
IF Ab =D THEN A} =U

A

REWIND TO ORIGINAL
POSITION AND FIND IN
OPPOSITE DIRECTION

A YES

ct

NO

i
-

A

YES_ | N>ABS(B23600/UU/MS

}NO

IF Af = UP THEN STEP UP
IF A$ = ON THEN STEP DN
NO OF STEPS MS

THEN COUNT : COUNTS A

N=N+1

Y K]

A

PRINT A:A>LS —>

B$ <"

v YES

COUNTS AT SAME POINT AGAIN
COUNTS A

h YES

o
L

NO
PRINT A A >Ls Pt

A

84<>"0R A >LS

<2
<

Y

NO
¥ YES

IF A3 =D THEN N= -N
IF AX =1 THEN S1=S1+NaMS

IF AX =2 THEN S2=S2+NoNS

PRINT AXIS POSITION
PRINT AXIS RCTATION A$

> RETURN  —




LINE 4000-4360

R$=P

INPUT MOTOR STEPS MS
INPUT COUNTING TIME S
1 INPUT NO OF CYCLES RA4.

R

N

Fr R$ =AU THEN PRINT PLO nmcﬂ

Y
Fx:o: ¥=0 ¢ GO 5UB :saﬂ

¥

ipv: PP= 0 |
N7
1T 0
Y
FORI=1 10 Ra

Y
STEP UP MS STERPS
THEN COUNT COUNTS A(l)

Y

PRINT I, All}, PV, PP

Y

Y=A(l): X=1: GOSUB 200

AT

RETURN

1

PRINT POSITION QF AXIS
PRINT YILT POSN.OF GONIOMETER
PRINT WIDTH OF PLOT CLwMSw LU

Y

ARC SEC
¢ A PRINT MOTOR STEPSMS ORMSw LU
ARC SEC
NO AL)SP Y PRINT COUNTING TIME  S/10
PRINT INTEGRATED INTENSITY IT
y YES I
YES -
Pv=KAD . PP=] < RE=FL
5 1T= 1T + A(]) STEP UP 1005TEPS

A

GETBY B>

STEP DOWN(R A= M S+!6L) STEPS

~

Y= 0:60 SUB 2500

4

Xz0: GO sSuB 2500

1

i

am
FOR 25170 200 NEXT 2

Y 4




RE=FL
LINE 4500—4995
[ INPLT MOTOR STEPS MS
INPUT COUNTING TIME S
INPUT NO OF CYCLES RA
INPUT POSITION ONFLANR OF ROCKING
Curveg C
INPUT WHICH SIDE OF ROCKING CURVE®
L OR R (%
GO SUB 2080 PG1)
v
YES P —
HD=ABS(C e PV — A(PP)) J———é———-—, Ct = A J
Jd
» ¥ J NO
FOR [=(PPy1) 70 R4 | | Ho=aBS(Cx Pv- ail)]
¥ Y
HD(1)=ARS(C®Pyv—4l = 1 :
[ noin) (' | [For1= 210 PP |- <
NO Y
HEXT] HO(1) {HD ND(1)=ABS(Cx PV ~ A(!)

\f Yee NO
i HO(1) < WO —x—{ MEXT |

HD= HO([Y HP=] : HH= A(}]) J {VES {
[ HD=HD(I): HP=] ;| HH= A([) —J____).__._/}
> 1 STER UP{HPxMS)STERS
I
[ X=H P Y=HH: GO SU's.'S:(,J
NC
< GO 5 UBL S30{PG 1Y) | e
\f 1ES
-
Y | 6o sus eisirs 1y
N

[ ®werturn | <
| SR




LINE 1000-1030

LINE 1500-1550

RH=RS
N <
N
INPUT AXIS AX
INPUT ANGLE PER STEY
Y
RE TURN
R 4
R$=2CO
—

A

INPUT COUNTING TIME S

!

3 COUNT; CUUNTS A
A PRINT A
\/
YES
< GETBS. B =" "
¥ o

PRINT POSITION OF AXIS

RETURN




The flow-chart for the separation of layer and
substrate.

LINE 5500-10170

R$ =PL2 $

b

INPUT MUTQR STEPS
INPUT COUNTING TIME

INPUT BRAGG ANGLE AN
INPUT NO OF RUNS FOR AVERAGING L
INPUT TOTAL nNO OF CYCLES RA

INPUT NQ OF CYCLES

MS
S

FOR FIRST PEAK R1

Y

[ IF RS=AU THEN

FRINT “PLOTTING"

X
|x=0:v=0:Gosus 2500 |

—>— FORR:=

170 L |

<

ViR =PIRY= 0 |

Y

-

1710 R1

—>—FOR [ =
Y

STEP UP MS STEPS

THEN COUNT COUNTS All) ¥
PRINT WIDTH OF PLOT RAxMSxUU [~
[ PRINT L AlD), VI(R),PI@ PRINT PQOSITION OF AXIS —é—i'
¥ PRINT POSITION OF GONIOMETER
A [TY="ATiI:X= T GOSUB 2500]
NO L A
ALL)>VI(R)
Vves ETEP uP 100 erPs]
[vi (R =at1) - PHRI=I] )\
Dl prrew — GET B%:8% <" STEP DOWN (RAxMS +100) STEPS
YES A
E” [x=0 cosus 2s00 |
4 A

Y

Y=0:GOSUB 2500 =>4 FOR Z=1 TO 200: NEXT Z




Y

&

[ var) = Patr) = 0]

NEXT I

FOR T = (R1+1) TQO RA

¥

STEP UP MS STEP
THEN COUNT, COUNTS A(I)

\

PRINT 1, A(1), V2(R), P2(R)
v

Y=A({I}:X=1:G60SUB 2500

PRINT AV SEP OF FILM AND SUB
S12/L STEPS

PRINT ANG. SEP OF FILM AND SUB
P12 ARC SEC

PRINT AD/O

A

\
AL >V 2(R) |

y YES
{var)=atn PR 1 |

\ _
GET B Bf <>

NO

YES
RA:1

\

Y=0 GOSUB 2500

‘

FOR Z=1 TO 200:NEXTZ

{

X =0 : GOSUB 2500

D=1(P12/180/3600 = / TAN(AN/ 180« TT

A
[p12 =S12/L s QU ]

‘» PRINT SI2 (R}

FOR R = I1TOL

Y

4

lNEXT R | alalgl
¥

A

Ls12=s1z.s12m) ]

3

[step ON RAsmMs Hn sTEPS|

STEP UP 100 STEPS

S12(R) = [P2(R) -P1(R)]sMS

ANC

YES

RA =1 SRR - & -




The second routine is the COUNT routine or CO (lines
1500 - 1550). It sets the counter to count repeatedly for a-
predetermined period and display the numbers on the screen,

A different routine can be chosen by depressing a key.

The SCAN routine or SC (lines 2000 - 2260) allows the
user to scan through an angle in a particular direction
determined by the motor step size MS and the number of cycles
NO in a scan-count mode. The scan-count mode is repeated for
the number of cycles NO. A positive value of NO causes the
axis to rotate in a clockwise direction and vice versa if
NO is negative. The routine keeps track of the axis position
and can be interrupted in the usual way.

In order to narrow up the rocking curve the GN routine
(lines 3000 - 3150) is used. It tilts the goniometer so as
to make the diffracting planes of both crystals parallel.
Similarly the direction of rotation is determined by the

sign of the step sirze.

4.1.2 The Find Routine

The FIND routine or FI (lines 3500 - 3930) is a very
useful routine. It sets the computer to locate the Bragg
peak automatically. The parameters set initially are the
step angle MS, the counting interval S, the range in degrees
and the direction for the search to take place if not both,
and the 1imit stop T.S. The choice of the limit stop depends
very much on the step angle for the scan and the theoretical

full width at half height maximum (FWHM) of the rocking curve.
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The Bragg peak cannot be detected if a high limit stop and
a step angle much greater than the FWHM are chosen. The
best compromise is a step angle two to three times the value
of the expected FWHM and a limit stop twice the background
count. Sometimes due to fluctuations in the X-ray generator
a high count is obtained although it is not the peak position,
The routine checks this by recounting - at the same position
when the count exceeds the limit stop. Only if it exceeds
the 1limit stop again will the routine branch to the RETURN
command. The routine also branches to the RETURN command if
the peak is not found within the specified range for a one
way search. If the search is set for both directions, the
motor rewinds back to the position before the search starts
after taking care of the motor backlash and searchesin the

opposite direction.

4.1.3 The Plotting Routine

The plotting routine or PL (lines 4000 - 4360) is used
to obtain a hard copy of the rocking curve. To avoid confusion
as to whether the plot is in increasing or dcecrcusing anglao
the routine plots only in one direction. The subroutine SUB
2500 (lines 2500 - 2530) is used to activate the dual digital
to analogue converter which is connected to thé X and Y
terminal of the pén recorder. After each scan-count mode
the cycle number, the count for the cycle, the maximum count
so far obtained and the corresponding cycle number are
displayed on the screen. The axis scansback to its starting
position at the end of the plot or when the routine is

interrupted after taking carce of the motor backlash (lincs



- 82 -

4250 - 4260). The width of the plot and the integrated
intensity are evaluated and displayed on the screen together
with the goniometer and axis position, the motor step size

and counting time.

4,1.4 The Flank Routine

When a topograph of the sample is required the FLANK
routine or FL (lines 4500 - 4995) is used. The routine plots
out the rocking curve and sets itself at the chosen position
on the flank. It also takes care of the drift due to long
exposure time to ensure that the same part of the sample is
exposed. The detail of the routine is easily understood
with the aid of the flow-chart (Figure 4.1). The motor step
size MS, counting interval S, number of cycles RA and the
position on the flank of the rocking curve are input at the
beginning of the routine. The count for each cycle of the
plot are stored in the memory. For example; a topograph
is to be taken on the left flank of the rocking curve at a
position O.7 times the peak intensity PV. The difference
of each count between cycle 1 to PP and (0.7 x PV) is
evaluated. PP is the peak position. The count which gives
the smaldest difference is the required position and suppose
this position corresponds to cycle HP with a count HH.
Similarly if the topograph to be taken is on the right flank
of the rocking curve the routine locates a point between
cycle (PP + 1) and RA. The axis then scans to position HP
and the scaler counts repeatedly at the same point.

To take care of the drift the count B is each time



compared to the value HH. If B is equal to or greater than

anti

HH + (0.1 x HH) the motor scan MS steps in wucfockwise

e qual +o or
direction and vice versa if B ispless than HH -(0.1 x HH)
but if B lies.: between HH -(0.1 x HH) and HH + (0.1 x HH)
the axis will remain at the same point. For a topograph on the
right flank of the rocking curve the axis scan clockwise if
B is greater or equal to HH + (0.1 x HH) and anticlockwise if

equal to or
B is,less than HH - (0.1 x HH).

4.1.5 The Automatic Routine

When the Bragg peak is located the usual procedure is
to adjust the tilt of the sample crystal parallel to the
reference crystal. The last subroutine AU (line 5000 - 9160)
is a totally automatic set-up routine which locates the peak,
determines the goniometer tilt direction if not known, finds
the best tilt position before plotting out the rocking curve.
The AU routine consists of seven subroutines, The subroutine
SUB 8000 (lines 8000 - 8240) is the scan routine. It
locates the peak position and value. The rotation angle for
the axis is chosen such that an accurate peak position and
value are obtained. The next important subroutine is SUB
7000 (line 7000 - 7740). This routine is essential since the
peak position shifts when the goniometer is tilted. An axis
scan in both directions is performed if necessary to locate
the peak position. The angular rotation is three times that
of the scan routine so as to locate the peak position quickly.

As in all the other routines the necessary parameters
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are input at the beginning of the routine. Since the best
tilt position is determined by the peak count, a reasonable
counting time is chosen to reduce statistical fluctuation,
When the peak is located the tilt direction is determined.

The counting time for the scan in this case is doubled to be
absolutely certain that a correct tilt direction is obtained.
Using subroutine SUB 8000 the peak is located and is assigned
to a variable P1. The goniometer is tilted through twice

the angle specified in a clockwise direction using the sub-
routine SUB 6500 (lines 6500 - 6550). The subroutine SUB 7000
then locates the peak followed by subroutine SUB 8000

which locates the peak value and position again. The peak
value is assigned to the variable P2, The procedure is
repeated and another peak value P3 is obtained. I£f P1 > P2

or P2 > P3 then the tilt‘direction should be anticlockwise and
if P1 < P2 or P2 < P3 the tilt direction 1is clockwise, that

is the same direction as it was already tilting. The next
step 1s to tilt in the chosen direction to find the best

tilt position. This is done by comparing the peak value for
several scans at various tilt positions., The number of

scan was initially chosen and five is an adequate figure. The
peak value for each of these five scans is assigned to the
variable P(R) where R = 1 to 5. The subroutine SUB 8500
(lines 8500 - 8580) then compares P(1) to P(5) to find the
greatest value and the goniometer tiltsback to the position
which corresponds to the value, If the value is P(5), the.
goniometer tilts in the same direction again and this group of

five scans will include the last tilt position ol the previous
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group. The subroutine SUB 8500 is used again to find the
greatest value. When the best tilt position has been
found the peak is located and the subroutine SUB 9000

(lines 9000 - 9160) positions the axis for plotting.

4.2 Substrate and Epilayer Routine

The next program is similar to that of the general case
except for a slight modification to include the routine PL2
(lines 9500 - 10170) for finding the angular separation of
two peaks as in the case of a substrate and epilayer (Appendix 2).

Initially a rough value of the peak separation of the
layer and substrate is measured from the rocking curve. This
value is necessary because the plotting routine for the two
peaks case is divided into two sections. The first section
locates the peak position for the first peak and the second
locates the second peak position. Therefore the first
cycle is carefully chosen so as not to include the second peak.
The routine ié repeated to obtain the average value of the

peaks separation and Ad/d evaluated from the relation

Ad/d

AB /tanb

where Ad = lattice mismatch for the layer and substrate and
A6 = angular separation of layer and substrate.
Figure 4.2 is an example of the double crystal rocking
curve obtained [rom a pair of garnet crystals in the (+,-)
parallel mode using the automatic routine. Both crystals
are produced by Bell Laboratories. The reference crystal

on the first axis is a gadolinium gallium garnet (GGG) and
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the sample crystal has an epilayer on a GGG substrate. The
FWHM of the main peak (subst;ate) is about 13 arc seconds for
the 888 reflection using Kal copper radiation, The average
separation of the peak for the substrate and epilayer 1is
about 317 * 5 arc seconds and therefore the fractional change
of the lattice spacing Ad/d at the epilayer and substrate
boundary is about 9.0 x 10_4 + 2%. The peak intensity of the
substrate is about 6 times the peak intensity of the epilayer.
Rocking curves for another two garnet crystals with
epilayers were also obtained by placing the crystal in turn
on the second axis. Their corresponding rocking curves arc
shown in Figures 4.3 and 4.4. Ad/d was found to be 9.1 x
10"4 + 0.2% for the sample from Plessey and 6.0 x 10—3 +

0.6% for the sample from Philips.
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CHAPTER 5

DIAMOND TURNED SILICON

5.1 1Introduction

Monochromators and mirrors are now commonly used as a
beam conditioner in X-ray experiments especially at Synchrotron
Radiation Sources. It is vital that the monochromator surface
is flat, smooth and free from surface damage. This is to
ensure that an even distribution of the reflected beam is
obtained without loss in intensity due to scattering. There-
fore the choice of material for monochromator is important.

A brittle material is desirable so as to minimize
surface damage during its preparation. It should be chemically
inert so that it will not deteriorate in atmosphere, will
tolerate beam heating and mechanically strong for easy
handling. Germanium and silicon single crystals have so far
satisfied this criteria and combined with the availability
of perfect germanium and silicon crystals,; due to the semi-
conductor industry,are commonly used as monochromators. Silicon
of germanium is chosen depending on the intensity of the
diffracted beam required, funds available and wavelength
required.

The present method of producing these monochromators is
by diamond sawing and hand lapping with diamond abrasive and
finally using the 0.25um diamond paste which is the finest
particle size available before etching in the appropriate
solution to remove the surface damage. 'Syton' which is an

alkaline silica solution can also be used for the final
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preparation. It has the advantage of having a smaller
particle size of 0.025um andiit acts both mechanically and
chemically. This diamond sawing and handlapping technique
produces good surface finish but it needs skill and is very
time consuming if large sizes and odd shapes are required.
The following experiment aims to investigate whether

all or part of the above process can be replaced by machining
with a diamond tool in view of the success of diamond

machining in fields of laser optics, astronomy and infrared

optics (Frank et al. 1976, Frank 1977, Lester et al. 1977,

Gerth et al. 1978 and Benjamin 1978).

5.2 Diamond Turning

Diamond turning is the shaping of material on a precision
lathe under controlled machine and environmental conditions
by using a single point diamond tool. The quality of the
finished surface produced by the machining process depends
on several factors such as the rigidity of the machine; the
quality, orientation and shape of tool; the type of material
to be shaped and the surface interaction between tool and
workpiece.

As diamond is an extremely hard material, sharp cutting
edges could be made which will produce a surface with a high
reflectivity. The accuracy of diamond turning together with
the reduction in cost and time is particularly attractive
in the production of components with odd shapes and sizes.

For example, Frank (1977) found that he took 3 weeks to diamond
turn an optical off-axis parabola compared to a year 1if

donae by convenbional lapping and polishing ftcchnique with a
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tremendous saving of about 90% in cost. In infrared systems
the reflectivity of diamond turned metal is high and has a
good resistance to reflectivity degrading due to ageing.

The type and rate of tool wear will change the shape
of the tool in contact with the workpiece (silicon in this
case) and this affects the surface produce. Generally the
depth of cut must be deep enough so that over-riding does not
occur. Too deep a cut would increase the cutting force
unnecessarily. A spiral of uncut ridges will be left if the
tool feed rate is fast with respect to the plate rotation.
but too slow a tool feed rate will unduly wear and heat the
diamond tool.

The performance of diamonds as a cutting tool has been
discussed by Wilks (1980) and a study of the reflectivity
and imperfection of diamond turned copper surfaces and motor

car pistons have been carried out by King and Wilks (1976).

5.3 Experimental Procedure

The preparation of the samples and the initial measurements
were carried out at Warwick University (McKenney) and an
extensive series of rocking curve measurements to study the

depth of distribution of damage was performed at Durham.

5.3.1 Preparation of Sample

The silicon used was provided by Motorola Inc. and
guaranteed '"zero D'". The crystal was 2 inches in diameter and
grown by the float zone technique along the [111] direction.

It was doped with phosphorus and has a resistivity of 500  cm.

A number of 2.5 mm thick slices cut perpendicular to the
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growth axis were obtained using an annular saw. Each slice
was polished manually on a flat glass plate using 500 grit
silicon carbide and water until all the saw marks were
removed before being waxed on a lapping block. This was

to ensure that it lay flat on the polishing plate and an even
pressure applied during polishing. The slices were then
polished on rotating cloth pads with a 6, 1 and 0.25 um
diamond paste at a speed of 150, 300 and 300 rpm respectively
until a scratch-free and mirror-polished surface was obtained
when viewed with a microscope of 5 times magnification.
Between each polishing the slices were washed in acetone and
ultrasonically cleaned. They were then melted out of the
wax, soaked in dichloromethane to remove the wa.x and then
etched in a 20:1 solution of nitric acid and hydroflouric
acid for 10 seconds. A back reflection Laue photograph was
taken before each slice was cut into six sections along known
crystallographic directions (Figure 5.1). This is to permit
easy orientation for rocking curve measurements.

Each set of 6 specimens was waxed on a steel plate
(Figure 5.2). The specimens were labelled across the plate
that is 1 and 6 were outer, 2 and 5 middle and 3 and 4 were
the inner pair. The specimens were arranged such that 2
specimens will have each of the 3 radii. The outermost
silicon (1 and 6) is 7cm from the centre of the plate.

Epoxy resin was poured over the specimen and left to cure

at room temperature. Use of resin helps to reduce the impact
of the diamond tool which might damage the specimen or
fracture the expensive diamond tool.

The machining was done at the City Polytechnic in London
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Fig. 3.1 Crystallogbaphic orientation of the cuts.
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Fig, 5.2 A set of specimens mounted and embedded

in epoxy resin ready for machining.
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on a VDF Boehringer 48C CNC lathe. It is a rigid and massive
machine designed for diamond turning and is computer controlled.
The performance of any machining process 1s very much dependent
on the physical and chemical interaction between the cutting
tool and the workpiece and this varies from one material to
another. The machining parameters were Jjudged erm experience
with other materials since there does not appear to have
been any previous work on silicon single crystals.

For all the 3 sets of specimens the depth of cut was
200 um and the tool feed rate was 0.01 mm per rev. (10 ym per
rev). The round-nosed tool with a radius of 450um at the tip
was used for the first set of specimens. A flat-nosed tool
was used for the other 2 sets, one without lubrication and
the other with Cimicool S4 with 25:1 mist application. The flat-
nosed tool was brand new with a 2.5 mm facet width and was
set with zero top rake. Table 5.1 shows the conditions for
each of the specimens.

The flatness of the silicon surface was measured using
a Talysurf 5 machine in the Warwick Centre for micro-
mechanics with the stylus run normal to the turning grooves.
The measurements were taken from the edges of the specimen as
it leaves a mark which will interfere with the rocking curve
measurements. Sensitivity to height fluctuations was about

20 nm.

5.3.2 Rocking Curve Measurements

The depth of damage introduced by the diamond turning
was studied by rocking curve measurements using the double
axis camcera, the EGG. The sensitive non-dispersive (+,-)

parailel sciting was usced; Lhat is the relerence and sample



Table 5.1 Machining parameters of the specimens cut with
the different types of tool.

N - N S I [
[ Greatest speed of Slowest speed of |
| Specimen Tool Type Revs/min cut of outer cut of inner
; specimens m/min specimens m/min :
" —— - - -_-__“___._‘ﬁ
; RN % Round-nosed 1400 616 44 ;
,y _. S — ISR S
FN i Flat-nosed 1200 528 37
H } :
i __? v e = ..._.._._“.,,.-. O O Py S U S SOy O VR, .UYI e s _— s e Py _.__._.._“_..,__.._.._{
; FNL ¢ Flat-nosed with 800 to ; 352 39 .
| ! lubricant 1250 | !
: i Cimicol S4 {
; i mist application ;
i : 25:1 ]
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crystal have identical lattice spacings and set for hkl and
hk]l reflection respectively. Bonse and Hartman (1981) have
recently exploited this sensitivity to measure strain
variations of parts in 108 in silicon from double crystal
X-ray topograph. The Si(333) reflection using Mo Ka

radiation whose theoretical FWHM is 0.88 arc seconds (assuming
Gaussian distribution) was used throughout the experiment.

The diffractometer sensitivity 1imifs the use of the

more sensitive higher order reflections. For our purpose the
Si(333) reflection is adequate. It gave sufficient sensitivity
and good countihg statistics together with a convenient Bragg
angle of 19.9.degrees. The reference crystal is a highly
perfect silicon crystal with a (111) surface and placed on

the first diffractometer axis.

A holder constructed for the sample is placed on the
second axis (Figure 5.3). It consists of L-shaped flats onto
which the specimen was rested. As the specimens were generally
2 mm thick and 2 cm long measured vertically (when specimen
placed in hblder), the specimen do not need a clip to keep
them in pléce. The 2 mm well at the bottom is sufficient to
keep the specimen in place. Nevertheless a soft clip was
placed at the top of the specimen holder (but not touching
the specimen) as a safety device. The sample can be changed
easily for etching without removing the sample holder from
the axis. This ensures that the subéequent rocking curve is
within *+ 1° away from that of the previous one. The
minimum rocking curve width was obtained by adjusting the
azimuthal tilt under software control using the automatic
routine. Each rocking curve measurement is repeated at

least 4 times and the average value of the half width
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Fig. 5.3 Cross—section of the cr‘ys{:al holder.



evaluated.

A 20:1 solution of concentrated nitric acid (75%) and
hydroflouric acid (45%) was used to etch away the silicon.
The solution was continuously stirred with the aid of a motor
during the etching process and the thickness of the sample
was measured with a micrometer gauge after each etching. The
amount of material removed was calculated in each case.

The average rate of removal of 1-2 um per minute cannot be
used as the etching solution gets diluted.

Strains associated with diamond turning results in an
increasé of the rocking curve FWHM and an increase in the
integrated intensity. The FWHM and integrated intensity was
monitored as the surface layer is etched away and this gives
a quantitative measure of the damage profile with depth.

The turning damage can be described as ''removed'' when the

rocking curve FWHM was reduced to that of the control sample.

5.4 Results

The first encouraging result was that the specimens or
the diamond tool was not broken during the machining process.
Visually, the surface finish was inferior to the hand lapped
silicon or diamond turned metals such as brass, aluminium
and molybdenum. This maybe due to the more abrasive nature
of silicon.

The specimensturnced using the round-noscd tool RN1-6
appeared shiny but the machining marks were obvious. This is
typical of a round-nosed tool (Figure 5.4) which leaves

behind grooves with the profile of their cross=section. The
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specimens turned by the flat-nosed tool (Figure 5.5),
FN1-6 also appearsshiny but the surface is smoother as the
tool has a different cutting action. The cut surface is
wiped by the flat edge of the tool as machining continues
thus producing a smearing effect. Therefore the density of
damage is expected to increase. Although the surface is
smoother the machining marks are still visible. When a
lubricant is used with the flat-nosed tool (specimens FNL1-6)
we expect the cutting forces to reduce and thus a reduced
depth of damage. The surface appears flat and the turning
marks were hardly visible but the surface finish was dull
and slightly corroded.

Talysurf measurement of RN1-3 an8l FN1-3 were taken to

measure the roughness of the specimen's surfaces. The

roughness Rz of the round-nosed specimens is taken as one
fifth of the sum of the 5 highest peaks less the sum of the

5 lowest trough.

RN1 Rz = 1.06 um
RN2 , = 0.92 um
RN3 z = 0.96 um

Although the flat-nosed tool gave a smooth finish it has a
long range (v 7 mm wavelength) waviness of amplitude 1 um.
The waviness is a more serious disadvantage than roughness
since the roughness can be easily removed by etching.

For the rocking curve measurements, specimen RN6 which
has been hand lapped, polished and etched was taken as the
control specimen. It has a rocking curve FWHM of 1.2 arc

seconds compared to the thceorctlical value 0.88 arc socond
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(Figure 5.6 ). Therefore any increase in rocking curve width
above this figure for the other specimens are due to the
imperfections in the crystals. The 1.2 arc second. rocking
curve corresponds to 2 motor-steps of the axis rotation.
The value of 0.88 arc second 1is not obtainable due to the
limitation of the axis sensitivity. However, as seen later
the width was qQuite narrow enough to act as a control
specimen.

There is a very significant difference in the initial
damage introduced by the three types of tool. Table 5.2
shows the average FWHM and integrated reflecting power of
the samples cut by the different tools prior to etching.
The flat-nosed tool without lubricant introduces the least
damage. Its 4 arc seconds FWHM is about half that of the
samples cut by the round-nosed tool and the flat-nosed tool
with lubricant. Although one would expect the flat-nosed
tool with lubricant to introduce less damage compared to
when it is used without lubricant, it appears otherwise,
This result should however, be treated cautiously as the
flat-nosed tool was brand new when used without lubricant
as compared to when used with lubricant or the round-nosed
tool.

Figures 5.7 a-e and 5.8 a-e shows the variation of the
FWHM and integrated reflecting power of the samples RN1-5
cut with the round-nosed tool as successive layers of the
sample was removed. The corresponding curves for the samples
cut by the flat-nosed tool without and with lubricant are
shown in Figures 5.9 a-c, 5.10 a-c, 5.11 a-d, 5.12 a-d

respectively. As seen from the graphs there are no systematic
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variationsof the FWHM and integrated reflecting power of
the rocking curve with the position on the chuck indicating
that the depth of damage and the damage profile is independent
of the cutting speed between 40-620 m min~1

The most significant result is that in almost all the
samples cut with the different types of tool, there is a
sharp fall in the FWHM as the first few micrometers (0-5 um)
is etched away. Thisffollowmiby a slow decrease in the FWHM
for a further 100 uym when it approaches the value of the control
sample although for sample RN1 the fall is not so sharp.
This was the first sample etched away and it was not anti-
cipated that the FWHM would drop very sharply. Thus, readings
were not taken until at least about 4 um were removed. For
sample FNL1 the fall is also not so sharp compared to the
other samples cut by the same tool. The data for the FNL 1
was taken about 7 months later after that of samples FNL 4-6.
During that period the microcracks introduced during the
turning process might well have propagated through the sample
giving a deeper damage layer, resulting in a gradual drop in
FWHM as the sample is etched away. This factor is not a major
problem as the damage is removed when a further 100 um is
etched away and the FWHM approach that of the confrol sample.
The integrated reflecting power plots as the samples were
etched for all the samples cut with the different types of
tools have a similar characteristic, that is a sharp fall for
the initial 5 um etched and o slow fall as successive amounts
were removed. The surface finish aftcr about a 100 ym etch
for all the samples is comparable to the hand-lapped control
sample. As the rocking curve width und integrated reflecting

power Talls rapidly on removal of Lhe first few micrometers
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of material, Talysurf measurement were taken on two samples
cut by the flat-nosed tool without and with lubricant
before and after a 2 um etch. The corresponding FWHM and
integrated intensity were also measured and tabulated in
Table 5.3. The results show that there is no change in the
Talysurf measurements that is the surface flatness is

preserved to better than 1 um.

5.5 Conclusions

The important conclusion to be drawn from the results
obtained, is that single crystal silicon can be diamond
turned on '‘a computer controlled milling machine and can
replace the hand lapping and polishing process. As a good
surface is obtained as well as the removal of all surface
damages after about a 100 um etch combined with a large
reduction in cost and time, this is a promising method for
the production of large figured X-ray optical elements for
both diffraction and reflection geometries.

After machining, an increase by a factor of 8 and 3 was
achieved in the rocking curve FWHM and integrated reflecting
power for the round-nosed and flat-nosed tools respectively.
The values of the FWHM (9 and 4 arc seconds respectively) are
comparable to that of the lower order reflections with long
wavelength (6.7 and 5.7 arc seconds for the ¢ and 7
polarization at 1.58 respectively). Such as turned surfaces
could find application in modest resolution high reflectivity

experiments like protein crystallography.



Table 5.3 The FWHM and integrated reflecting
power of specimens FN4 and FNL3 before

and after a 2 m etch.

Specimen FWHM (arc seconds) Integrated intensity
" Before After Before After
2uetch 2uetch 2uetch 2uetch
FN4 | 2.3 0.5|1.3 % 0.5| 6.4 x 10°° | 3.2 x 1072,
+ 0.2 x 10 + 0.2 x 10
FNL3 15.5 + 0.5 | 6.7 + 0.5| 2.1 x 10>, | 1.7 x 1072,
+ 0.2 x 100° |t 0.2 x 10
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Other experiments could be carried out to determine
whether use of other diamond turning parameters yields a
better result. For example there is a need to investigate
whether a brand new or worn off tool affects the initial
damage produced and also a further study of the effect of
lubricant on the machining process. In particular, further
experiments are needed with a much smaller cut depfh. When
X-ray mirrors are produced, cut depths of only a few um
are used and it may be that such a technique introduces much

less damage.
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CHAPTER 6

GAMMA RAY DIFFRACTOMETRY

6.1 Introduction

This chapter describes the work carried out at Rutherford
Laboratory to test the feasibility of y-ray double crystal
technique for the study of perfection of large as grown
crytals. . This technique haé a very high sensitivity and
might be very useful if it can be used as an on-line testing
of silicon crystals prior to slicing for silicon device
fabrication.

A feature of y-ray experiment is the large separation
between the crystals and the detector which, because of the
small Bragg angles, is necessary to separate the Bragg
reflected beam from the transmitted beam. This large
separation is tolerable since the absorption of the 412 keV

y-rays in air is negligible.

6.2 Review of Past Work on y-ray Diffractometry

Experiments on crystal diffraction by y-rays date back
as early as 1914. Most of the experiments were aimed at the
measurement of energy and wavelength. Rutherford and Andrae
(1914) measured the energies and intensities of the y-rays as
low as 70 m& by transmission through RaB and RaC crystals in
lamina form. This was followed by Thibaud (1925) eleven
years later. Frilley (1929) made use of Thibaud's arrangement
and measured wavelength as low as 16 mf. The gamma rays

were Bragg reflected at grazing incidence, also using a flat
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crystal lamina, and the diffracted beam was recorded photo-
graphically. The resclution and precision obtained is poor
especially at small angle of incidence as the direct and
diffusely scattered beam result in a high background.

Hulubei and Cauchois (1934) improved the geometry

by using a curved crystal which diffracted X-rays from an
extended source and the photographic plate was placed such
that the X-rays were focussed on it. The shortest wavelength
measured was about 160 mf.

A ﬁajor breakthrough was made by Du Mond (1947). He con-
struqted a qurved crvstal spectrometer with a Zm radius of
.curvgturevwith the source placed at its focal circle. Each
ppsition.on the focal circle corresponds to one particular
wévelengtﬁ. A wide detector was used to detect the trans-
mittéd beam which is a function ofthe source position. Soller
slits.were used to shield the direct and scattered radiation
~ from reaching the detector especially for low wavelength
measurements. The spectrometer is capable of measuring a
widegrange of energies between 40 keV and 1.3 MeV. A
precision of 1 part in 10,000 is attainable for energy
below 500 keV.

_Fqllpwing the breakthrcugh and the availability of
neutrqn reactors, a number of similar instruments have been
constructed for the same purpose. Examples are the spectro-
meter built by Ryde and Anderson (1955), Knowles (1957),
Sumbaev (1957), Beckman et al. (1958), Piller et al. (1973)
and Borchert etal. (1975). The 7.7 m and 2.2 m focal length

" line focus transmission spectrometers built at Argonne (1957)



- 101 -

and Leningrad are used for neutron capture y-ray studies, as
well as the 4.6 m and 5.7 m spectrometers at Munich and Riso
(1962) and the 24 m spectrometer at Grenoble (1975).

Knowles (1959) made use of the successive reflection
from a pair of crystals to measure y-ray energies. The
double flat crystal spectrometer as it is called has the
advantage that the doubly diffracted beam depends only on
the relative angle between the two crystals and is therefore
independent of the position of the axes of the crystal
turntables. An optical device which is insensitive to trans-
lation of the crystal turntables was used for the angle
measurement. This method has a high resolution and extensive
energy range but it has a disadvantage of lower efficiency.

Besides the measurement of energy and_wavelength, Y-rays
have been used as a tool for the assessment of crvstal per-
fection. As y-rays have a rather weak absorption, the property
is exploited to study the mosaic structure of large as-
grown”single'érystals énd monochromators used in neutron
scattering experiments (Schneider 1974 a,b). The advantage
of y-ray experiments is that it can be carried out at high
or low temperature or under pressure without additional
experimental difficulties since the oven, cryostat or high
pressure device need not have any windows.

vy-ray diffraction have also been used to test Darwin's
theory of diffraction in mosaic crystal (Schneider 1975)
and the measurement of structure factor from absolute
intensity of high order diffracted beams(Schneider 1978).

An excellent review of the work has been published by Schneider

SORHAM UNIVERS; 77
1 2 MAY 1983
8CIENGE L1BRARY
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(1980).

Typical resolution of a single axis experiment 1is
between 30 and 60 arc seconds. Higher resolution 1is
limited to about 10 arc seconds due to the low intensity of
y-ray sources (250 Ci) and hence collimator length above 5 m
is not practical,

The study of Jahn Teller phase transition in TbVO4
using y-rays have been carried out by Smith and Tanner (1978)
and also by Bastie et al. (1975, 1976, 1978, 1979) to
investigate the ferroelectric system of KH_PO,.

2" 74

6.3 Sensitivity of y-ray Diffraction

From dynamical diffraction theory, the extinction
distance gg for a perfect crystal is given by

TV _cosb
g :___C_____B_ 6.1

g
r MACF
e

where VC 1is the volume of the unit cell, 6, is the Bragg

B
angle, T is the classical electron radius, A is the wave-
length, C is the polarization factor and F the structure

factor. As the extinction distance for y-ray is very locng,
(Table 6.1) the full width at half height maximum Ae% over

which the crystal will diffract an incident plane wave is

very narrow.

£B, = 6.2

(S
oje]
Nag



Table 6.1 The Bragg angle, extinction distarnce
and FWHM of the reflecting and rocking

curves for 0.03 R gamma ray.

Bra angle Extinction FWHM of AT FWHM of
Reflection (dggreeg) Distance reflecting rocking
g (um) curve (sec) | curve (sec)
Si (111) 0.274 991 0.13 0.18
]

[ Si (220) 0.448 856 0.09 0.13
Si (311) 0.525 1281 0.05 0.07
Si (400) 0.633 995 0.06 0.08
Si (422) 0.776 1121 0.04 0.06
Si (333) 0.823 1751 0.03 0.04
Ge (111) 0.263 450 0.3 0.42
Ge (333) 1.579 751 0.06 0.08

* Assuming (+ -) parallel geometry and Gaussian lineshapes
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As seen in Table 6.2 y-ray experiments have a higher
sensitivity as the FWHM of the reflecting curve for the
higher order and therefore weak reflection for O.7X
radiation is comparable to the low order and thus strong
reflection for y-rays.

An imperfect crystal contains both tilts and dilations
in its lattice. The effect of the tilt can be characterized
by a misorientation angle 7} and the strain by the change

— of the reciprocal lattice vector h.

Differentiating Bragg's law 2dsin9B = ) where d = %

a0 = A ran o 6.3
h
From equations 6.1 to 6.3
oAb _ 4ra?rc
h mv 6.4

The change in Bragg angle A9 due to the imperfection can

therefore be written as

(0632 = (2B tane )2 2

h B)
assuming a Gaussian distribution for the lattice tilt and
Strain.

In y-ray experiments the effectsof strain are not
detected due to the very small Bragg angle butthe effect of
tilt is seen as a broadening of the rocking curve if the
tilt is greater than the theoretical FWHM of the rocking

curve. The rocking curve full width at half height

maximum is the convolution of two perfect crystal reflecting



Table 6.2 Camparison of the Bragg angle and the
FWHM of +the PeFlecﬁimg curve for g
0. 03 K and 0.7 A radiation.

Rt 2% s e et L b 4 v B8 B A4S e e o e S+ ——

Reflection A = 0,032 A = 0.78
Brage angle | L tcoiing | PPA8E 2181 | roflee ting
curve (sec) curve (sec)
111 0.274 0.18 6,412 3.1
333 0.823 0.04 19.575 0.61
444 1.097 0.03 26.533 0.53
555 1.371 0.01 33.945 0.24
777 1.920 0.006 51,421 0,15
I i
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curves if reflection is from the (hk%) and (hk%) planes of
identical reference and specimen crystals. The FWHM is
typically 40% larger than the perfect crystal reflecting
range which is a fraction of an arc second. For Gaussian
lineshapes the FWHM is v2 times the plane wave FWHM. There-
fore lattice tilts less than an arc second can theoretically

be detected.

6.4 Diffracted Intensity For Plane Parallel Crystal Plates

in the Laue Case

As derived in Section 1.3.3a the ratio of the intensities
of the external diffracted wave IH and the external incident

wave I, (Figure 1.10a) is given by

I

H .2 2 -—u,t Sin2(av)+sinh2(aw)
— = 0" fxyl® e " L
1 f lg + 7]
o 2
6.6
where v + 1w = /é + 22 6.7
a = ﬂkoto/yo 6.8
t = %(i—+l—) t 6.9
Yo Ty ©
g = L =D Y o+ L 6.10
2 © 2
q=2> Xy Xg 6.11

The quantities used have already been defined in Section
1.3.3.

For the case of zero absorption, the polarizability per
unit volume is real. The Fourier coefficient of Xy are

x . 2 .
such that Xg = Xg that is Xy Xg = IXH' and q and z are real
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/
quantities. Therefore My T O, w =20 and v = /b[xH(z + z

Let
A= adibl Koyl
Tk Klxglt
A = _o '"H' o 6.12
z
and y = ———mm————
Vb 1K Xyl
1-b b
= _g,_iggijif% 6. 13
/ib] K [yl

K is the polarization factor where

K =1 for normal polarization.

|cos 20 for parallel polarization.

B!

Using equations 6.7 to 6.13, equation 6.6 simplifics to

IH b sin2 [AJl + yz]
T 2
IO 1 +y

6.14

The power of the diffracted beam PH and the incident beam PO

are given by

S I
O 00

SH and SO are the cross section ot the diffracted and incident

beam respectively.

Sy

'H

o Yo b

Il

0]
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Thus the reflecting power PH/Po is given by

P
Ho_ Yl
P | 1

O O

sin2 (AV/1 + y2]
1 + y2

The diffraction pattern is obtained by plotting a graph of
PH/PO as a function of y. The nature of the diffraction
curve is therefore dependent on the value of A which 1s
proportional to the crystal thickness tO and inversely
proportional to the extinction distance gg. The shape of the
diffraction pattern can therefore be divided into three
categories according to whether A>>1, A<<l or A=x1. A detailed
discussion of the dependence of the diffraction pattern on A
has been given by Zachariasen (1945).

The crystal dealt with in the experiment falls in the
first category that is A>>1. For a given value of y the

1

reflecting power PH/PO oscillates between zero and 5
1 +y

as A tends to infinity. This 1s due to the term
sin2[A/1 +y ] which exhibits interference fringes which gets
closér as A increase. It is reasonable to assume that the
interference fringes are smeared out for large values of A
due to variations in sample thickness and the fact that the

.2 : . . .2/ 2
sin® term oscillates extremely rapidly. The term sin“[A/1 + y ]

can therefore be replaced by 1ts average value of L. Then

2
PO 2(1 + yv™)
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The integrated reflecting power RyH is the area under the

diffraction curve

R, = [ -2 dy 6.20
H o P
o
For A>>1,RyH = g since f —l—g day = T
— ]_+y

As derived in Section 2.4 the retlecting power P(y')

for a double crystal (+,-) parallel arrangement where

B B
] * n IH n IH !
P(y ) = | = (y) = (y' - by)| dy 6.21
—00 I I
O O
fs's) I I yl H
. H H d
+ |cos2og] [ — (y)| | ( - by) y
~ I, I |cos26, |

lbb']{n[RHy] + [coszeB\p[RHy]}

If the reference and sample crystal are identical and a symmetrical
I I’

reflection is used TE (y) = TE— (y) and b = b' = 1. Thus
o o)

P(0) is the maximum value of P(y').

o [ 2 bry 2
H H
[ [T— (y)] dy + |cos20,] [ L— (y)} dy

H[RHﬂ + |cos29, | p[RHy]
B
The percent reflection is given by 100 P(O). A P(y') versus
y' plot gives the diffraction pattern for the double reflection
and the integrated rellecting power R is obtained by into-

grating cquation 6.21 from - (o +»

Q0

R=/[ Py ay

— 00

(o2}

.23
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For A>>1 and the case of zero absorption R simplifies to

[y 2
2(1 + cos 298) 5

2

|
(1 + |00528B|)

The FWHM corresponds to the difference in the values of y'
when the reflecting power is 3P(0).
In the interpretation of y-ray rocking curves, the

measured integrated reflecting power Rm is compared to Rkin

and R 3 R, . is calculated on the basis of the kinematical
dvn kin

theory and R is determined from the dynamical theory for

dyn

a perfect crystal of thickness to greater than the extinction

distance gg. For an ideally perfect crystal Rm = Rdyn

and if Rm = Rkjn the crystal is said Lo be ideally imperfect.

6.5 Diffractometer Design

As the experiment was carried out at Rutherford
Laboratory the COFFIN (Jones and Tanner 1980) was transported
from Durham together with its computer control system. The
facility provided at Butherford was a neutron goniometer, the
Badger, used for single axis work. Due to the very small
Bragg angles involved in y-ray experiments, of the order of
one degree (Table 6.1) it proves essential to use the COFFIN
instead of the EGG. The larger axis separation of the COFFIN
enables the direct beam to be separated ffom the doubly
diffracted beam. The monolithic diffractometer provides the
stability required for the measurement of very small angular
rotations (a fraction of an arc second) and to maintain

temperature stability, a large piece of expanded polystyrene
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was hollowed out to surround the whole diffractometer.

The first diffractometer axis was placed concentric with
the Badger. The Badger, which is stepper motor controlled,
is capable of rotating the diffractometer to any required
angle but it proved sufficient and easier to set the diffract-
ometer manually and reading from a linear scale placed on
the bench supporting the other end of the diffractometer.

The bench is placed on guide bars 6 m long which also
supports other benches used to mount the detector and the
source slit system. The geometry of the arrangement can be
varied by sliding the benches along the guide bars. Figure

6.1 is a photograph of the experimental arrangement.

6.5 Detector Characteristics

A standard scintillation counter was used as a detector.
It consists of a photomultiplier tube and a NaI(T%)
scintillation crystal, 1.5 inches in diameter and length. A
3mm x 35mm high slit made from two lead blocks was placed
in front of the detector to define the beam entering the
detector. Lead sheets were wrapped round the detector to
reduce the background count. The detector together with the
slit system were supported on a holder which is micromeier
driven so that it can be translated linearly across the
direct beam and to the required 26B position which 1is
normally less than 1°. The output from the detector was
fed to a programmable counter after pre-amplification and the
whole system was controlled by a 32K byte Commodore PET

microcomputer via a BESELEC Minicam Interface.
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Although precautions were taken to reduce the back-

ground count, a high backgroundis still obtained which
4o noise ratio

resulted in a very low SﬁﬁQ'AfOP the doubly diffracted
peak. A typical example is the double reflection from a pair
of highly perfect silicon crystals (Figure 6.13). A peak
count rate of 12 counts per second was obtained compared to
a background of 7 counts per second. A slit placed between
the first and second crystal does not improve the condition
very much as much of the scatter still reaches Lhe counter
due to the very small scattering angles. A Si energy
dispersive detector has been used but it failed to improve

the signal to noise ratio due to its low efficiency and a

Ge energy dispersive detector was not available.

6.7 Source Design

The source of y-radiation is from a radioactive gold
foil 0.25 x 6.5 x 6.5 mm irradiated in the DIDO rcactor at
AERE Harwell. An irradiation period of 3 to 4 days produced
an activity of 120 Ci. The following reaction occurs which

produces y-rays of 3 different energies.

] 412
O7u(n, vy au — > Hg + v (676 kev)
2.7 days 1088
The 412 keV line which is most intense was used. It has a

wavelength of 0.038 which 1is about 1/50 the wavelength of

the Cu Ko radiation. It has a very low energy dispersion

I -
%~ = %l = 10 6 at room temperature, and a hall life of about
2.7 days. The accepted safe limit of the source strength

for the source container shown in Figure 6.2, was judged to
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be about 250 Ci but we used a source strength of 450 Ci
in the earlier phase of the experiments with no hazards
to personnel. With a new 250 Ci source the direct beam count
rate of about 1.9 x 105 counts per second was obtained when
a 1lmm x 49mm slit was placed in front of the source.

After irradiation in the reactor, the gold foil which
is supported on a pure graphite rod, is Lransterred to a
special holder (Figure 6.2) for insertion in the shielded
housing built from tungsten and lead at Rutherford Laboratory.
Two slits are placed in front of the source, a 3 mm slit is
about 1 m from the source and a 1 mm slit is placed near the
first axis of the diffractometer. The distance between the

two slits can be varied depending on the geometry required.

6.8 Experimental Procedure

The angular divergence of the incidence beam depends on
the final slit in front of the diffractometer. In our
arrangement the distanca between the final slit which is Imm and
the source varies between 240 and 330cm. Thus the beam
divergence varies between 86 and 63 arc seconds. A series
of lead blocks are placed between the source and the 1mm
slit to limit the angular divergence of the beam emerging from
the source.

The zero position or the position where the detector
receives the direct beam was initially determincd by
plotting (he detector position versus source strongih. The
diflfractometer is displaced by 2().l from 1ls vero position and

this corresponds to than261 on the linear scale. w is
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the distance between the first axis and the linear scale and
81 is the Bragg angle for the first crystal.

As in all y-ray experiments the Laue geometry 1is used.
The specimen crystal can either be on the first or second
axis. The direct beam will be incident on both crystals
provided that the second crystal is large enough. It is
thus easier to obtain the double reflection by first
obtaining the single reflection from both crystals which is
of the order of 60 arc seconds. The detector must be
positioned accordingly to detect the first reflection from
both crystals. As shown in Figure 6.3 the detector is
displaced by (x + Y)tanzel to detect the first reflection
from the first crystal and by ytan262 for the second
crystal. A lead block positioned on a linear bearing is
translated between the first and second axis to cut off
the direct beam from reaching the second crystal and to
allow only the first crystal diffracted beam to reach the
second crystal. In the later phases of the experiments a
lead slit was used in order to reduce the high background
count. In order to detect the doubly diffracted beam the

detector is positioned [(x + y)tan28 - ytan262] from the

1
zero position. If both crystals are identical and reflection
are from the same plane, the doubly diffracted beam is only
a few arc seconds rotation away.

If non-identical crystals are used or the reflections
are not from the same plane, the angle through which the
second crystal has to be rotated from its first diffraction

peak to obtain the double reflection can be calculated. As

shown in Figure 6.4a,b 1if 61 > 62 the second crystal is rotated
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by (261 - 262) anticlockwise and (292 - 261) in a clockwise
direction if 81 < 62. Once the double reflection is located
the relative tilt of the crystal was adjusted using the
motorized goniometer. It was necessary to locate the rocking
curve after successive tilting of about 4 minute since the
peak shifted during the process. It was found to be more
convenient to scan and tilt the same crystal due to
difficulties in aligning the goniometer tilt axis. Computer
control is essential in this experiment due to the high
background and low peak count. Typical counting time per
point were between 10 to 360 secs.

The integrated reflecting power for the single and
double reflection was also measured. With the first crystal
in the path of the beam, the detector was positioned to
receive the direct beam PO and the count rate (Sec_l) noted.
The detector was then displaced by 201 Lo receive the lirst
crystal diffracted beam. To obtain a reasonable background
count the crystal was initially positioned sufficiently far
from its Bragg angle 61. The crystal was then rotated through
its reflecting range at an angular velocity w (rad sec_l)
and the total counts recorded is E. In each case the back-

ground intensity must be subtracted. The integrated

reflecting power is then given by R = Ey. The same method
P
0
applies for the double reflection. lﬂ) is then the pouk
intensity from Lthe reflection ol Lhe Tirst crystal and B

is the total intensity obtained when the second crystal is

rotated through its reflecting range with an angular velocity

W,
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6.9 Effect of Temperature Variation

As the full width at half height maximum of the rocking
curve is of the order of a fraction of an arc second, the
temperature stability is a critical factor. The length of
the aluminium lever used for the sensitive axis is about
53.7 cm and the micrometer used to push the lever has a
maximum length of about 9 cm. Taking the coefficient of
thermal expansion of aluminium and mild steel (micrometer)

6 6 per OC respectively

to be about 25 x 10 ° per °C and 15 x 10~
at room temperature, we find that a temperature change of
1°C causes the aluminium lever and micrometer to change its
length by approximately 14.3 um and 1.35 um respectiveiy.
This corresponds to a change in angular rotation by about

0.3 arc second and is significant compared to 0.012 arc

second.

6.10 Results

From Table 6.1 we see that the perfect crystal reflecting range for
0.0BR vy-radiation is less than 1 arc second and is much less
than the divergence of the incident beam which is of the

Single erystal
order of 70 arc seconds. Thus thepdiffraction pattern or
more precisely the half width of the rocking curve is not
a function of crystal property but is determined by the
angular resolution of the diffractometer. The intograted
reflecting power is independent ol the resolution and can
therefore be used to characterize crystal perfection. A

survey of the integrated reflecting power of four silicon



- 115 -

crystals was made and compared with the theoretical value.
Figure 6.5 shows the variation of the integrated reflecting
power as a function of A (Zachariasen 1945). As the
crystals studied fall into the category where A>>1,

equation 6.18was integrated numerically to obtain the theoretical
or dynamical value Rdyn' Table 6.4 is a tabulation of the
results obtained. Sample E has an average thickness of

about 12 mm. Sample F which contains phosphorus is 8 mm
thick. Samples G and H are LOPEX silicon with a thickness

of 6 mm and 3.5 mm respectively. All the four samples have
been chemically polished with a sclution of hydrofluoric

acid (48%), nitric acid (70%) and glacial acetic acid mix in

a ratio 1:13:6. It can be seen that as the crystal perfection
increases (Sample G and H) and the FWHM of the rocking

curve decreases (Table 6.5) the integrated reflecting power
approaches the dynamical value Rdyn. This verifies that
measurement of R in a single crystal experiment can be used

as an accurate measure of the perfection of highly perfect
crystals (Schneider 1980).

The rocking curve shown :in Figure 6.6 is the 111
reflection from a pair of moderately perfect germanium
crystals 2 mm thick grown some years ago. The FWHM obtained
is about 2 arc second compared to the theoretical value of
0.42 arc second (Table 6.1). Figures 6.7a and 6.7b are the
single reflection rocking curvesfrom the first and second
crystal with a FWHM of 63 and 71 arc seconds respectively.
The peak intensity of the single reflection is about 33
times that of the double reflection. A higher order 333

reftcction from the same pair of germanium crystals gives a
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Fig. 6.9 The inﬁegrobed reflecting power in the

Laue case as a function of A.



Table 6.3 DQSCPip£i0h of the crystals used in

the experiment.

Thickness

Crystal Description (mm)
A Germanium 2
B Germanium 2
C Silicon-Device Grade 3
D Silicon-Device Grade 3
E Silicon-From Mullard
i Semiconductor 12
F Silicon-From Fairchild
Semiconductor 8
G Silicon-LOPEX 6
H Silicon-LOPEX 3.5




Table 6.4 The theoretical ard the measured
inheghoﬁed PeFlecting power for the

simgle reflection.

Extinction distance is 991 pum for Si (111) reflection.

Crystal Thickness Rm Rdyn
mm
Samole E 12 0.59 x 10°° 0.43 x 1076
Sample F 8 10.1 x 107° 0.43 x 107°
Sample G 6 0.57 x 1079 0.42 x 1078
Sample H 3.5 0.53 x 10°° 0.53 x 1078
e en e e e e e s




Intensity A/

Angle

Fig. 6.6 111 double crystal rocking curve from a pair of
germanium Chysﬁals (Sample A and B). Eounﬁihg time
per 0.1 arc sec. step was 12 sec. Peak

height = 138 cps. BackghOUhd = 33 cps.
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Fig. 6.7 S8Single crystal rocking curve from
germanium crystals.
(@) Sample A. Counting time per 4.6 arc
secs. step was | sec. Peak height= 978 cps.
(b> Sample B. Counﬁihg time per 3 arc
sacs. sﬁep was | sec. Paak height= 894 cps.
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rocking curve width of 1.1 arc secondscompared to 0.08 arc
second which was expected. The peak intensity of the 333
reflection is reduced by approximately a factor of 4 (Figure
6.8). In both cases the curves are not symmetrical. This
could be due in part to surface damage as the crystals were
not polished before the experiment.

Broadening of the rocking curve is significant if the
reflecting planes of the sample and reference crystals are
not exactly parallel as shown by the plot of the FWHM versus
angle between the diffracting plane ¢C in Figure 6.9. As
discussed in Section 2.6 the broadening of rocking curve AGB

is a function of the vertical divergence ¢V of the source and

¢

c'

AeB - ¢V¢C

The fractional broadening is

This expression is similar to Knowles' equation (Knowles

1962) for the fractional broadening of rocking curve except

equation 2.52a in which the higher order term of 3 and y are

neglected (Section 2.6). Knowles expression is
2 2
AeB - ¢v * ¢c + ¢c¢v
BB 2 GB
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Fig. b. 8

333 double crystal rocking curve from
a pair of germanium crystals (Sample A and B).
Counting time per 0.1 arc second step was
5 seconds. Peak height=64 cps.
Background=11 cps.
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Fig. 6.8 Effect of the tilt between the reflecting planes of
the reference and sample crystals on the FWHM for
Ge(l11l) double Chystol Pockihg curve (Scmple A and BJ.
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However, the first term of equation 6.26 is negligible for

¢V of the order of 1 degree which is approximately the vertical
divergence of the set up used and ¢c greater than about 10O
minutes. As the divergence for a particular arrangement is
constant the broadening is therefore a linear function of the
angle between the diffracting plane ¢C. The FWHM versus ¢C
plot (Figure 6.9) satisfies this relation except in the region
where ¢C approaches zero where the (¢Cz + ¢V2)/2 term

becomes significant. This linear relation could be
used to aid rapid setting up of double crystal rocking curve,
as in principle, only 4 curves are needed to find the

min imum.

It was found that the narrow line width of the 412 keV
198Au line (AX/X = 10_6) and the small Bragg angle eliminates
the dispersion effect when the same reflection from different
crystals were used. In spite of the 5% lattice parameter
difference for the 111 reflection of germanium and silicon
{(sample H) the FWHM is still about 2 arc seconds (Figure 6.10).
Clearly the '"mosaic bending" in the germanium crystals is
typically 1 arc second.

Figure 6.11 is the 111 rocking curve from a pair of
device grade silicon crystals 3 mm thick. A 1 arc second
rocking curve was obtained which is 5% times the value for
perfect crystals. A linear relationship is also obtained
for the variation of tilt ¢C with FWHM (Figure 6.12).

Figure 6.13 is another 111 rocking curve

from a different pair of silicon crystals. The reference

crystal is a LOPEX silicon (Sample H) and the sample crystal



Intensity 4

Fig. 6.10

Angle

111 double erystal rocking curve from
a silicon corystal (Sample H) as referenrce
and a germanium Chys£01 as specimen.
Counting time per 0.2 arc sec. step was
35 sec. Paak height = 57cps.
Background = 17 cps.
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Angle
Fig. 65.11 111 double crysﬁal Pocking curve from

a pair of device grade silicon (Sample C
and D). Counting time per 0.1 arc sec.
step was 40 secs. Peak height = 899 cps.
Background = 13 cps.
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Fig. 6.13 111 double crystal rocking curve from a
LOPEX silicon (Sample H) and silicon sample E.
Counting time per 0.1 arc sec. step was
360 secs. Peak height = 12 cps.
Background = 7 cps.
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is sample E which originated from Mullard Semiconductor.
The separation between points on the rocking curve is equivalent
to 0.1 arc second. Due to the high background, a high
counting time is necessary, in this case 6 minutes per point.
The peak count is about 12 cps compared to a background of 7
cps.

The narrowest rocking curve obtained is shown in Figure
6.14 from a pair of LOPEX silicon (Sample G and H). As the
crystal perfection increase the FWHM and the integrated
reflecting power both decrease. We had very serious difficulty
in locating the double reflection. The reflecting planes of
both crystals must be set as nearly parallel as possible
initially in order to locate the double reflection because
small tilts become more significant as the FWHM goes down.
When the double reflection was first obtained it was 6 arc
seconds wide. The goniometer was tilted in steps of 4
minutes to narrow the rocking curve. As the rocking curve
became narrower the til ting was performed in steps of 2
minutes and finally 25 arc seconds. At this stage the
sensitive axis with an angular rotation of 0.012 arc seconds
per-step was used. It was a time consuming process as the
counting time at each point must be at least 20 seconds to
obtain a reasonable signal to noise ratio. A rocking curve
FWHM between 0.04 to 0.06 arc second was obtained which was
about 4 times smaller than the predicted value of 0.18 arc
Second.

The surprising narrowness of the rocking curve may be
due to four factors.

(a) The rotation of the axis may not be exactly 0.012

arc second per motor step.
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111 double crystal rocking curve for
a pair of LOPEX silicon (Sample G and H).
Counting time per 0.012 arc sec. step was
50 secs. Peak height = 12 cps.
Bockghound = SCPS.
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(b) The occurrance of Pendellosung fringes.

(c) The effect of temperature variation is significant,
and (d) the effect of multiple reflections.
The four possibilities are discussed below.

The length of the lever used for the axis with 0.012
arc second per motor step was measured to be 57.3 cm. A 3 cm
(v 5%) error in the measurement of the lever will result in
5% error for the angular rotation and is quite insignificant
compared to 0.18 arc second which is the value for perfect
crystals. The reproducibility of the rocking curve eliminates
the possibility of axis slop.

The second factor was ruled out since the crystal thickness
to is much greater than the extinction distance Eg: to N 3.55g

for the reference crystal and to = 6£g for the sample

crystal. Figure 6.15 is the theoretical curve for the double
reflection obtained by numerical integration of equation
6.21 for the sigma polarization state and using equation 6.18
as the single crystal reflection function. The FWHM of this
curve is about 0.23 arc second which is in fact some 28%
larger than the FWHM calculated by assuming a Gaussian
distribution for the single crystal reflection curve. The
non-symmetry of Figure 6.15 is due to the truncation error
of the numerical integration. Figure 6.16 is the rocking
curve obtained if the approximation of a thick crystal is
made where the Sine squared term of equation 6.18 is equal to
2. In all cases the theoretical FWHM is significantly
greater than that measured. -

When the diffractometer was surrounded by the poly-

styrene the narrowest rocking curve obtained was 0.3 arc
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second (Figure 6.17). This is 1.7 times larger than the FWHM
based on a Gaussian distribution and 1.3 times larger if the
FWHM is based on equation 6.21 and 6.18. Therefore the
suggestion that temperature drift was occurring seems
plausible as the measured FWHM of the rocking curve is closer
to the theoretical value of 0.23 arc second (based on equation
6.21) when the polystyrene was on compared to 0.04 to 0.06
arc second when the polystyrene was not on. As discussed in
Section 6.9 a temperature variation of loC results in a 0.3
arc second change in angular rotation. As the polystyrene
reduces the temperature variation to * O.lOC, a 0.03 arc
second in angular rotation, -2 meaningful value of the half
width could be obtained. As all scans were made in the same
direction, -it was by chance that the curves narrowed rather
than broadened.

Due to the very short wavelength of y-radiation the
Ewald sphere has a radius of about %ﬂ = 209 871 and is
about 180 times the mean distance between neighbouring
reciprocal lattice points for silicon. Therelore the
geometrical condition for multiple Bragg scattering, that is
more than two reciprocal lattice points are located on the
Ewald sphere, is often satisfied for y-ray diffractometry.
This may affect the shape and the integrated intensity of the
single reflection. As shown by Schneider (1975) the effect
of multiple scattering is avoided for Bragg reflections with
sinb /A X 0.88 -1 where the atomic scattering factor

decreases with increasing momentum transfer and the inter-

action of y-radiation with the crystal is weak.
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Fig. 6.17 111 double crystal rocking curve for a
pair of LOPEX silicon (Sample H and G).
Lounting time per 0.024 arc second step
was 100 seconds. Peak height=7 cps.

Bockground=4 cps.
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This OSSUMP+©n is justified as the reflections used
in the experiment has sin8 /A < 0.8% -1 and the single reflection
integrated intensity Rm measured for the LOPEX silicon
crystals (samples G and H) is approximately equal to the
value Rdyn calculated for perfect crystals.

A rocking curve for the 333 reflection from the same
pair of silicon crystals was also obtained but due to lack
of time and the weakening source the best value obtained for
the FWHM is between 0.06 to 0.072 arc second (Figure 6.18)
compared to the theoretical value of 0.04 arc second (for
Gaussian lineshapes) and 0.07arc seconds (equation 6.23).

The polystyrene was on in this case.

Table 6.5 is a tabulation of the measured and theoretical
integrated intensity and FWHM of the rocking curves mentioned
above. The theoretical value of the integrated intensity was
calculated using equation 6.24 and taking the single reflection
integrated reflecting power as 7w/2-for a thick non absorbing

perfect crystal. The theoretical

FWHM was calculated assuming that the rocking curve has a
Gaussian distribution and also by using the rocking curve
obtained by equation 6.21.

The apparatus was also used to study the uniformity of
crystal perfection of Sample F along its whole length. A
germanium crystal (Sample A) was used as the reference crystal.
The FWHM of the 111 reflection varies between 9 to 14 arc
seconds along its whole length of 112 mm and a plot of FWHM
versus position along the length of the crystal is shown in
Figure 6.19. A feature of this experiment is that the crystal

did not need to be remounted to obtain reflection from
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Fig. 6.18 333 double ecrystal Pockihg curve from
a pair of LOPEX silicon (Sample G and H).
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different parts of the crystal. Instead the diffractometer
was displaced by a known amount such that the reflection from
the reference crystal hit a different part of the sample.

The first diffracted beam could be relocated quite easily
after the diffractometer has been displaced. This technique
could be quite useful in assessment of moderate perfection
crystals prior to further processing, as employed for example
with copper monochromators in the single axis mode (Schneider

1975).

6.11 Conclusion

6
rads can be measured

Experiments show that tilts < 10~
in highly perfect silicon crystals and there is a good
agreement between the dynamically predicted FWHM and inte-
grated reflecting power with respect to experiment.

The main disadvantage of y-ray experiments especially
in the double crystal arrangement is the long counting time
involved, up to 6 minutes at each point. Thus the experi-
ment is slow and tedious. A much higher source strength is
desirable or better still the experiment is carried out
at a synchrotron radiation source such as CHESS at Cornell
where the synchrotron radiationuﬂﬂr%ery hard and intense
when the new wriggler is installed. The intensity will
increase by several orders of magnitude in the 40 to 100 keV
range and will provide a major increase in flux particularly
in the high energy range.

Although y-ray double crystal diffractometry is a very

good method for the study of the perfection of large crystals
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due to it being a non-destructive method and having a high
sensitivity to tilt, it 1is clearly not a practical method for
on line testing of silicon crystals to be used tfor mass

device fabrication. Another problem is that for device
fabrication it 1is not tilt that needs to be measured accurately
but lattice dilations. The oxygen and carbon segregation

give rise to growth striae and it is these dilations which
device engineers need to monitor. Gamma ray diffractometry,
which is insensitive to dilations, is clearly not as good

as X-ray diffractometry for this purpose.
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CHAPTER 7

TRIANGULAR MONOCHROMATOR CRYSTALS

7.1 The Curved Crystal Monochromator

The diffracted intensity from a plane crystal mono-
chromator is weak as an incident beam has a certain angular
divergence and therefore only rays making the Bragg angle with
the lattice planes will be diffracted. Johann (1931) and
Cauchois (1932) make use of an elastically curved crystal
whose reflecting pianes form a cylinder of revolution to
increase the reflected beam, The normals to the reflecting
plane at different positions along the crystal surface converge
on its centre of curvature of radius R and makes an angle
w/2-g with the diffracted beam. . The diffracted
beams do not converge to a single focus but converge to a
zone of minimum width on a circle of radius R tangential to
the crystal surface.

This chapter describpes the study undertaken on the mono-
chromator cyrstals used at the Protein Crystallography
Station at Daresbury Laboratory. In the assessment of the
degrec of perfection of the crystals, double crystal
rocking curves werce obtained where the FWHM, pecak count, peak
position and the integrated intensity were monitored as the
crystal was bent. Single reflection experiments to determine
the variation of bending radius R as a function of position
along the crystal was also carried out on the Lang camera.
The effect of rocking curve width, focussing aberration and

error in Guinier position on the energy resolution has been
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discussed by Helliwell et al. (1981).

The use of synchrotron radiation for protein crystallo-
graphy providesan Intense, tunable and collimated X-ray
beam compared to conventional sources. The monochromator used
at Daresbury (Helliwell et al. 198l) is basically the same
design as that used at LURE (Lemonnier et al., 1978, Kahn et
al, 1981) and DORIS (Hendrix et al. 1979)., It consists of
a horizontal focussing triangular shaped crystal bent to an
arc of a circle of curvature radius R, which made it possible
to image the horizontal source width h at the sample. The
base of the triangle is mounted as a cantilever and the
free end is displaced to obtain the curvature. To obtain a
reasonable focal length the bending radius is usually 10 m or
more., As the point of incidence on the bent crystal (Figure
7.1) moves along the arc MN, the envelope of the diffracted
beam for an asymmetric reflection is the circle of radius R
cos (6-a) centred at the centre of the circle of radius R.
The divergent incident beam correspondingly lies on the
arc of the circle of radius R cos (06+a). a is the angle
made by the surface to the reflecting plane. An asymmetric
reflection with an asymmetry factor b>1 is used to produce
a compression effect on the width of the reflected beam.
Although the total integrated intensity will be less than the
symmetric cut monochromator, the intensity (photons per unit
area) will be v b times larger and this geometry is preferable
for the usually small protein samples, The source size
effect, the crystal rocking curve width and the imperfection
in the Rowland focussing geometry contributes to the finite

size of the image produced (Lemonnier et al., 1978)., The
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wavelength spread in the reflected beam (§A{A)TOT is the

convolution of the crystal rocking curve contribution of

wo(xm 6 spread over a distance whp' with the source size

contribution of 68 cot 6 where 69 = h/p and the monochromator
curvature contribution of % | Sl“pﬂe'a) - 8514 é6+a) | cot 0.
Thus
sin(0- sin(¢ y
(QA) _ ///E N L l sin(o ?)_ 51n(J+u)!)z + MUZ ot 6
x TOT p 2 n D
7.1

where h and h' are the horizontal extension of the source and
focus respectively, p is the distance between the source and
monochromator, p' is the monochromator to focus distance,

L is the length of the monochromator, w = /vb is the

o) Ysym
angular width of the beam incident on the monochromator and
wy = wsym/b is the angular width of the diffracted beam.

If the sample is smaller than the focus or a slit is

placed at the focus, a fraction of (8§x/X) s rceeeived by

TOT
the sample. As shown in Figure 7.2 there is an energy
gradient across the focus due to the source size. Rays

from points A, B and C on the source make the same angle

61’ 82 and 63 respectively at different positions along the
monochromator thus coming to the respective foci A', B'

and C' (neglecting aberration). A sample or siit Xy at

the focus thus receives XHcotB/p‘ of the contribution of
source size (% cot 8) to (SX/X)TOT, hp'/p is the total focus
width., A wavelength spread 8A/x = 5 x 10_4 can therefore be

achieved alb Lhe Guinier position which is important for
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absorption edge line structure studies. Helliwell et al,
(1981) used samples of cobalt foil and Dy203 powder and obtain

K and L absorption edges respectively.

111

. . i S i
Away - from the Guinier point where sinr # L

p' p

contribution to the total wavelength spread due to the mono-

the

chromator curvature is significant, Assuming wsym = O and

o = O for convenience, rays from point A (Figure 7.2) on the
source form different angles along the monochromator surface,
that is 61 % 82 7 83, Thus the reflected rays which form at
the focus A' has a correlation between their direction and
energy and an energy gradient also exist due to the finite
source size, This effect was illustrated by Helliwell et

al., (1981). A photographic film was placed about 0.5 m
behind a 70 pm slit at the focus., The diverging beam which
reaches the film produced streaks with an energy gradient

across its length,

7.1.1 Effect of Rocking Curve Width

So far the rocking curve width and the focussing
aberration has been neglected and the oblique cut angle o is
assumed to be without error,

Referring to Figure 7.3 to illustrate the effect of
rocking curve width, CY is the incident beam on the mono-
chromator producing a reflected beam CY'., The angular spread
of the incident and reflected beams are w_ = w /Yb and

o sym

by T Waum vb about CY and CY' respectively. The reflected
beam has a wavelength spread of wocot 6 (Lemmonier et al, 1978).
Incident beams CP and CQ which are at an angle wh/2 with CY

will also have an incident angular spread of W about CP
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and CQ and an emergent angular spread about CP' and CQ'
respectively. 1In both cases <P'C Y' = <PCY = wh/2 and
<Q'C Y' = <QCY = mh/2e

The range of wavelengths passing along CY' is therefore
whcote if the bundles of ray centred on CP', CY' and CQ' are
monochromatic and separated in absolute wavelength by
whcotB/Z, This is only valid if CP or CQ intercept the
finite source size h., For example, for Ge(1l1ll) where

a = 10050,w p N 4.1 mm for Cu radiation, As h = 13,7 mm

h
(measured FWHM) then for rays from the edges of the source,
CP and CQ falls outside the FWHM range and is weak in flux.

The energy resolution thus increases towards the edge of the

focus.,

7.1.2 Focussing Aberration

FC in Figure 7.1 represent the focussing aberration at

the focus and is given by

9
FC = ELE (Martin and Cacak 1976)
8R
_ L2 cos (6-a)
7.2
8R
as 0 = R cos (6-a)

7.1.3 Error in Guinicr Position

An c¢rror in the angle o will produce an error 6pG'

in the Guinier position pG'a As



Sp ! =-——§9——— sin 26 8o 7.3
sinT (6 +a)

An error in pG' will also cause an error in the (53—%)TOT

due to the curvature component of

| cot 8

L ' sin (f6-a) sin (O6+a)
2 p' p

from zero at pG’ to

cos (B-a) + cos (6+a)) s

L
6(%A) =5 (
p' p

7.2 Elasticity Theory For a Bending of Beams Clamped at

One End

A bent rod returns to its original form if it is not
bent beyond its elastic limit., Figure 7.4a shows a beam OB
clamped at one end and the free end is supporting a load W.
At position A along the rod the internal forces at A due to
AOQ ﬁust balance the forces due to AB and the load W for
equilibrium to exist. The force W acting vertically down-
wards at B is balanced by an equal vertical force at A which
forms a couple of bending moment W x AB. Thus an internal
couple of equal magnitude but opposite in direction exists
at equilibrium,

If an elastic beam of thickness b is bent to a radius
R where R>>b, the deformation in the simple case consists only

of the extension or contraction of the longitudinal fibres
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of the beam in proportion to their distance from a central
neutral surface which retains its original length (Figure
7.4b). The resultant elastic reaction produces forces such
as Py, Py in both parts of the beam (above and below the
neutral surface) and form couples which balance the bending
moment W x AB. The ihternal forces give rise to a shearing
stress W/ab where a is the width of the beam and b is its
depth., The shearing stress W/ab produces a deflection 61

of B relative to O but is small compared to the depression of
B due to bending.

Figure 7.4c shows an element MNUT of the becam. The
neutral surface PQ subtends an angle ¢ at the centre of
curvature O, If QV is drawn parallel to MT then arc FW is
equal to the normal length s (arc PQ) of the beam and arc
WG is an extention of the beam at a distance z from P. Then
the tensile strain is %E and if the magnitude of the internal

he

force that produce the extension is p

p_yds 7.4

o S
where o 1s the cross section of the fibre and Y is the Young's
Modulus.,
But s = Ro

ds = z¢

ds = z_

S R 7.5
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Moment of p about Q is pz = % de 7.7

Therefore the total internal bending moment

z 22a 7.8

Evpes

Ipz =

2
Loz” is analogous to the moment of inertia about the neutral
axis and is called the geometrical moment of inertia of the

cross-section about that axis and is equal to Ak2 where A is

the area of cross-section and k is the radius of gyration,

.. Internal Bending Moment = Akz 7.9

i

In Figure 7.4a Ox, Oy are axes along and perpendicular
to the unstrained position of the beam. Let the co-ordinate
of A be (x,y). The co-ordinate of B is (2,8) where § is the
depression of B due to bending and & is the length of the beam,
The external bending moment at A is W(2-Xx) and the curvature
at a point is %% where ds is a short length of the beam and y

is the angle the tangent makes with the x-axis. Therefore

the curvature 1is

2
1_dy _d _d%
R~ ds = ds {(tan ) = 5 7,10
dx
Since Y is small tan Yy = ¢
Yy 2 2 a%y
W(2l-x) = & Ak~ = YAkK" —= 7.11
R 2
dx
The cross sectional area A is b(2-x). From equation 7,11
_ Y 2
W(i-x) il Ak
2
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which is independent of the position along the length of the

beam.

7.3 Radius of Curvature For a Bent Triangular Monochromator

Crystal

The monochromator crystals are triangular in shape with
a thickness of 1 mm. The length is about 200 mm and the width
at one end is between 30 to 35 mm and at the other is about
1 mm. The (111) plane is inclined at an angle o to the
crystal surface (Table 7.1).

The crystal is mounted on a special holder with the
reflecting surface vertical (Figure 7,5). The crystal is
pivoted at the wider end by sandwiching it between pieces
of teflon and photographic film. The sandwich is kept in
place by three screws. The narrow end of the crystal is
tangential to an eccentric cam such that as the cam is
rotated with the aid of a stepper motor it pushes against the
tip of the triangle. An advantage of using an eccentric cam
is that it is impossible to break the crystal, The amount of
the rotation of the cam determines the radius of curvature
of the arc form by the bending. The minimum radius of
curvature is fixed by the eccentricity of the cam and it is
about 20 m., Referring to Figure 7.6 the arc BC is the length
of the crystal which form part of the circle of radius R. As
the minimum radius R is large compared to the length of the
crystal, BC is approximately equal to are BC which is the
length ol the cerystal, B s Lhe angle made by the Lwo radii

ol Lthe cirele AB and AC. X is Lhe displacement of Lhe cam.



Table

7.1

Description

B R s, e

Silicon

Silicon

Silicon

Silicon

Germanium

Germanium

Silicon

DQSCI"iP{ZiOI‘H Ghd dC‘l{',O 'FOI" {',he monochr‘omator‘ CF‘)/SJCO].S.

FWHM of reflecting

a_(degrees) b curve for 111 symmetric
Nominal | Measured }11 reflection 333 reflection reflgct%on with Cu
with Cu rad. with Mo rad. radiation (sec.)

7 T—“'56.73 2,738 1.96gﬂ 6.9 o
7 6.74 2.743 1.970 6.9 é
10.5 10.2 5.870 2.979 6.9 5
10.5 10.29 6.024 3.015 6.9
10.5 10.44 7.285 3.289 15.8
10.5 10.39 7.160 3.265 15.8

0 0 1 1 6.9 ___l
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Fig. 7.6 Geomeﬁby of the bent Ehiongulor
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the radius of curvature.
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for the determinatiom of tihe radius of
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From AADC,
'.@:&.
Sin 5 5R
= 2R sin § 7.13
From ABCE,
B _x
tan 5 7
X = § tun £ 7.14
5 N
As 6 is small sin 8/2 = tan R/2 ~ £/2,
Therefore equation 7.13 becomes & = R B 7,15
and equation 7.14 becomes Xx = 2B/2 7.16
From 7.15 and 7.16
R = 2/B 7.17
_ 2
R = 2x/B 7.18
R = 22/2x 7.19

The radius of curvature R given by equations 7,17 to
7.19 is tftor a symmetric refllection where the reflecting planc
1s parallel to the crystal surface, For an asymmetric ref-
lection R is increased or decreased depending whether o is
positive or negative, Figure 7.7 shows the ray diagram for
an asymmetric reflection where the reflecting plane is at

an angle o to the crystal surface and 6 is the Bragg angle.

From APQS sin 6 = & 7.20
PS
. _ RT _ QS
From ARTU sin (6+a) = i U 7,21

From cquations 7.20 and 7.21, PS sin 0 = RU sin (U+e) .
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let PS = I, and RU = £

2 sin (06+qa)

L 7.22
sin 6
Radius of curvature of the reflecting plane
R _ % _ g sin (6'*'(1) 7.23

R sin 6

7.4 Double Crystal Rocking Curves

The FWHM of the double crystal rocking curves for all the
samples were measured to determine their perfection. The
automatic routine was used to obtain the minimum rocking
curve width, The experimental value was compared to the
theoretical value which was calculated on the assumption that
the rocking curve has a Gaussian distribution, Table 7.2
shows the results tabulated for the 111 and 333
reflections for Cu and Mo Ko radiation respectively,

The experimental and theoretical values for the 111
reflection from Samples 1 and 2, 5 and 6 and R and 3 are
comparhable within limits c¢f experimental error. As Sample
4 has its surface unpolished the FWHM of the rocking curve

for both the 111 and 333 reflec

(as

ion are expected to be
higher than the predicted value. Two peaks were observed

when the higher resolution 333 reflection was used. The
occurrence of Pendellosung fringes is eliminated as the crystal
is too thick, that is t>>£g. It is unlikely that all the
five crystals are imperfect and a lattice misorientation of

less than 15 arc seconds exist whiech is not resolved



lable 7.2 Tabulation of the theocretical and
experimentol FWHM of +the rockihg curve.

e B “f””’”“‘M““"f"“”’“*"""”"w’"”f””” T
i § ' Theoretical : Experimental! Peak
! Reflection First | Second |FWHM of FWHM of ' Se aration
f Crystal{ Crystal|rocking rocking ’ p
i * (sec)
i curve (sec)_ curve (seg)r
| Si(111) | 2 1 12.2 15 + 1
Si(333) 2 1 0.98 3.7 £ 0.5 8.8 *+ 0.5
Si(111) 3 R 18.1 24 + 1
Si(333) 3 R 1.2 3.3 + 0.5 i 3.9 = 0.5
! (
3
Si(111) ! 4 R 18.3 276 + 5
! ; i
Si(333) | R 4 0. 72 68 + 3 §
[
Ge(111) | 5 | 6 43.2 51 + 3 E
Ge(333) | 5 o 2.8 6.5 + 0.5 i 11 *+ 0.5
SR B ; S DRI S

* Assuming Gaussian lineshapes

(v 2

_ 2
(FWHM)Theo. a //(wh )first + o )Second
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in the 111 reflection, Although the intensity of the two
'peaks is in the ratio of approximately 1:2 it could not be
the Ku1 and Kuz peaks as the non—disﬁersive (+,-) parallel
arrangement was used and refraction effect could not account
for the peak separation between 4-11 arc seconds for the 3
pairs of samples compared to the calculated value for the

Ko peak separation of about 450 arc seconds,.

and Ko

1 2

7,5 Integrated Reflecting Power for a Polished and Unpolished

Crystal Surfaces

The integrated reflecting power of Sample 3 was
compared with that of Sample 4. Both samples were cut from
the same source with the (111) plane at an angle of about
10.5 degrees to the crystal surface. Sample 3 has a polished
reflecting surface but the surface of Sample 4 was left
unpolished. The Si (333) non-dispersive (+,-) parallel
arrangement with Mo radiation was used. The first reflection
is a symmetric reflection from a perfect silicon crystal
(Sample R). The asymmetry factor b for Sample 3 and 4 are
2.979 and 3.015 respectively.

Figure 7.8 is the double crystal rocking curve for
Sample 3 and has a FWHM of 3 arc scconds compared to 0,72
arc seconds for a Gaussian profile., A subsidiary peak was
obtained about 6 arc seconds from the main peak. Similarly
a double crystal rocking curve was obtained for Sample 4
(Figure 7.9). As expected the FWHM of the rocking curve is
very much wider, about 1.28 minutes due to the surface

damage of the unpolished crystal and the subsidiary peak was
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Fig. 7.8 333 double or*ystal rocking curve of
Somple 3 with Mo radiation.
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not resolved. The integrated reflecting power for Samples

3 and 4 are 4 x lO—6

and 2.5 x 107° respectively and about

a 6 fold increase in intensity is obtained for the crystal
with an unpolished surface. Although the defocussing effect
reduces the integrated intensity by a factor of 0.5, the

3 fold increase in intensity obtainable using an unpolished
monochromator is a great advantage in protein crystallo-
graphy experiments, This monochromator is scheduled to be

tested on the synchrotron radiation source during the next

cycle,

7.6 Effect of Variation of Curvature on the Double Crystal

Rocking Curves

The effect of bending or varying the radius of
curvature on FWHM, peak count, peak position and integrated
reflecting power was determined from the double crystal
rocking curve for the asymmetric reflection from various
pairs of crystals set in the (+,-) parallel arrangement.
The first .pair were the silicon crystals, Sample 1 and 2
where o 70, the second pair were germanium crystals, Sample
5 and 6 where « N 10,5O and the third and last pair has a
symmetric first reflection from a silicon crystal (Sample R)
and the second crystal was from Sample 3 and 4 respectively
where o ~ 1O,SO° Fach experiment was repeated twice using
the 111 reflection with Cu radiation and the 333 reflection
with Mo radiation, In each case rocking curves were obtained
by rotating the bent sample. Graphs of radius of curvature
versus FWHM and integrated reflecting power were plotted for

every set of data. The
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radius of curvature was calculated using equation 7.23, There
is usually a small gap between the cam and the crystal
initially, that is before bending as it is difficult to place
the cam Jjust touching the crystal. Therefore the
displacement x of the cam when the crystal was just touching
the crystal was determined from the peak position of the double
reflection as it varies as the crystal is bent. This allows
the minimum radius of curvature to be determined in each case.
The integrated reflecting power for the double reflection

from the pair of germanium crystals does not vary as the
curvature changes for both the 111 and 333 reflections
(Figures 7.12b and 7.13b) but the FWHM for the

333 reflection (Figure 7.132a) increases as the curvature
increases whereas it remains unchanged for the 111

reflection (Figure 7.13a). The increase in FWHM is sharp

for bending steps between 2000 and 3000. A comparison was
made with the third and fourth pair of silicon samples
where one of the crystals in each pair has about the same
a value of 10.5O as that of the germanium crystals. It shows
a similar variation in integrated reflecting power and ¥FWHM
with curvature for the 111 reflection (Figures 7.14a,b and
7.16 a,b). The 333 reflection for the third pair has both
the integrated intensity and FWHM increasing as the
curvature increase (Figures 7.15a and b) but both values
remain unchanged for the fourth pair (Figure 7.17a and b),
Note that the silicon sample in the fourth pair where
o = 10,5O has its reflecting surface unpolished. For the
first pair of silicon crystals with o = 70, the integrated

reflecting power and FWHM both increase as the curvature
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increases (Figures 7,1la,b) when sct for the 333 reflection
whereas only the FWHM increase with curvature for the 111
reflection (Figures 7,10a and b). A summary of the result
is tabulated in Table 7.3.

The peak position for the double reflection for all the
pairs of crystals shifted towards higher Bragg angle as the
curvature increased, The results for each pair are tabulated

in Table 7.4.

7.7 Energy Resolutlion

As stated in Section 7.1.1. the energy resolution improves

towards the edge of the focus and is given by

SE
5 W cot O

As b>1, the resolution will improve if a symmetric cut
crystal is used as Wy > Wy, but the focal width h is too

large (hmeas = 9,87 mm FWHM) for experiments with protein

samples. From Table 7.1 it is clear that by using a Si(111)
monochromator the energy resolution will improve by about

1 i
3 for the same reflection from Ge(11l1l) monochromator as the

FWHM of the reflecting range for silicon 1s much narrower.
This higher energy resolution is achieved at the expense of
intensity.

For an Fe absorption edge where A = 1,7438, S§E = 5,1eV

for Ge(111) crystal (a = 10,44°, (SE/E) o = 3.2 x 107%

and 8E = 1.9 eV for Si(111) (o = 10.20° (6E/E) = 1.2 x 104y,

sym



fable 7.3

the variation of

PeFlectihg power

A summary of the

increasead.

results obtairned for
the FWHM and integrated

as the curvature was

Sample Reflection Variation as Curvature Increase
Integrated reflecting
FWHM power
1 and 2 111 increase unchanged
333 increase increase
5 and 6 111 unchanged unchanged
333 increase unchanged
R and 3 111 unchanged unchanged
333 increase increase
R and 4 111 unchanged unchanged
333 unchanged unchanged
flable 7.4 Tabulation of the peak shift as the
cur‘vatur“e was ihor‘eased Clhd the
minimum radius of curvature obtainable.
Sample Peak shift (deg)4 Minimum radius I
111 333 of curvature (m) l
|
1 and 2 0.23 0.09 33 {
{
5 and 6 1.2 0.18 20 §
R and 3 0.11 - 29 !
{
R and 4 - - 20 1
_ . S R
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assuming that wsym measured for Cu Ka (A = 1.5428) can be
used for A = 107438°

The foecussing aberration which limits the energy
resolution of the monochromator can be improved by reducing
the length L of the monochromator and using a 10,5° oblique
cut monochromator instead of a 7° cut. For example, a Ge(1l1l1l)
crystal where o = 10.44O and R = 50 m at the Guinier position

has a focussing aberration FC = 0.1 mm, Then

3
- 2 FC,2-2 _
Yeffective [wh + (=)°] = 40,5 secs

instead of 40 secs (wh), If L is reduced to 100 mm,FC = 25 um
and is negligible compared to whp' = 0,65 mm at the Guinier
position, For cobalt hp'/p calculated is 2 mm with an energy
width of 20 eV, Therefore 0.65 mm is equivalent to 6.5 eV
and is comparable with 5.1 eV calculated earlier,.

Table 7.5 shows the effect of an error in the oblique
cut angle 8o on 8E for Ge(1lll) at 1,58. If 6a = 0,25°
which is the maximum difference between the crystal supplier's
estimate and the measured value, the error in the Guinier
position, SpG' is 250 mm and §(§rx/X) = 7.5 eV, For So =
0,05°, 8pg' = 50 mm and §(8A/A) = 1 eV. By reducing the
length of the monochromator §(8X/X) can be reduced at the
expense of flux and there is a difficulty of obtaining a
minimum width at the Guinier position. The depth of focus AB
(Figure 7.1) is less than Lcos6/2, but there is a contribution
from the depth of the source due to the acceptance angle
B = 4 mrad. of the SRS beam which is equal to BRb = 22.5 mm

for a hending radius R 5.5 m, For L = 200 mm for Co K

b:
edge where 0 = 14n250, the total depth of focus is



table 7.5

omnm

Effect of ar error

E for Ge(lli)

in the measurement

reflection at 1. 5A.

! Error in « Error in Guinier Effect on energy
[ * Sa (degrees) position resolution i
' + Gpé (mm) + 8E (eV)
0,05 50 1.2
0.1 100 2.4
IO e e et ]
0.15 150 3.6
0.20 200 4,8
0.25 250 6.0

T i o e e A+ ¢ e <)



Lcos 4 g = 119 mm
9 b
and for L = 100 mm it is 60 mm. Therefore 4(86A/») 1s in the

range 1-3 eV for L between 100 - 200 mm,

Therefore for Si(111) at the Guinier position with

O

o = 10,5 and for Fe K wavelength SET = 5.9 eV for L =

oT

200 mm and 3.9 eV for L = 100 mm where the contribution of
wcot 8 is 1,9 eV, Ja = 0.05° is 1 eV and depth of focus is
1-3 eV for L = 100 - 200 mm., For Ge(1lll) it would be 9.1 eV

and 7.1 eV respectively.

7.8 Determination of Radius of Curvature

A single reflection experiment was carriced out on the
Lang camera to determine the variation of curvature along
the length of the monochromator. Cu Kal radiation with a
beam divergence of approximately 5 X 10-4 radian was used.
The asymmetric Si(333) reflection used provide a suitable
Bragg angle of 47.6 degrees and about 70 mm of the crystal can
be translated across the incident beam using the transverse
mechanism. By bending the crystal using the cam to obtain a
fixed value of the curvature, the angular position of the peak
intensity was noted for various positions along the length of
the crystal, Similar data were taken as the curvature was
increased up to the maximum and then decreased back to zero
again., For the evaluation of the radius of curvature R the
angular position of the peak intensity for one position RA

along the crystal is used as a reference. The value of B

in equation 7.26 is therefore the angular difference between
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peak positions for different positions along the crystal, say
RB’ and that at position A.
Three graphs were plotted from each set of data taken.,
(a) a graph of B versus & for each radius of curvature
R,

(b) a graph of R versus ¢,

(c¢) a graph of R versus x for each value of ..
Theoretically graph (a) should be a straight line with a
positive gradient which is equal to the curvature (%) of
the crystal surface. Graph (b) determines the variation of
the radius of curvature along the length of the crystal for
a particular bending step and graph (c) is the variation of
R with x when 2 1is constant.

Data was obtained for the silicon Samples 2 and 3. Two
similar sets of data were obtained for Sample 2 in which the
second set was taken at a different part of the crystal
further from the clamped end and the crystal was remounted.
Graphs of B versus & (Figures 7.18 a,b,c) for the three sets
of data are linear as predicted theoretically. The radius
of curvature obtained from the gradient agrees within
experimental errors with the average value calculated from
the data obtained except at a bending step of about 1200
for the first and third set of data where the average radius
of curvature varies by a large range as it changes its sign
(Table 7.6). From Figures 7.19a, b and ¢, within limits of
experimental errors the radius of curvature is constant
along the length of the crystal and corresponds to the
average value and that obtained from Figures 7.18a, b and c

except at a bending step of about 1200 as discussed above
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Table 7.6 Tabulation of the radius of curvature for

different bending steps.
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(Table 7.6).

The graphs of R versus x for both samples (Figures
7.20 a,b,c) show an important feature. It is clear that
graphs (Figure 7.20 a,b) for Sample 2 have different features.
In Figure 7.20a, the radius of curvature takes negative
values for a bending step between 300 to 1200 ard it occurs
again at about the same bending as the curvature is
decreased to minimum. This feature does not occur in Figure
7.20b when the sample was remounted. The radius of curvature
decreases as the crystal was bent to a maximum displacement
of the cam which is 1mm. The graph in Figure 7.20a
suggests that buckling of the crystal occurs and it is
certainly due to improper mounting. The graph for Sample 3
(Figure 7.22c) also shows that buckling occurs. Therefore
it is very important to note that the curvature along the
crystal should be checked for each bending before it 1is
used as a monochromator for further experiments. Never-
theless following careful mounting, experiments carried out
at the Protein Crystallography Station using these mono-
chromators give excellent results and no problem in
focussing the monochromator has so far been encountered

(Helliwell et al. 1981).
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CHAPTER 8

PILOT EXPERIMENTS ON THE DOUBLE CRYSTAL

DIFFRACTOMETER AT THE INTERFEROMETRY STATION AT

DARESBURY LABORATORY

8.1 Introduction

Pilot experiments were carried out using the double
crystal diffractometer at the Interferometry Station and the
synchrotfon radiation source at Daresbury. The effect of
applied magnetic field on hematite crystals and the dis-
locations present in indium phosphide and gallium arsenide

crystals were studied.

8.2 Double Crystal Rocking Curve Analysis of Hematite

Crystal Under an Applied Magnetic Fields.

The magnetic structure of hematite (u—FeZOB) has been
investigated by neutron diffraction (Shull, Strauser and
Wollan 1951), It exhibits antiferromagnetic ordering along
the trigonal axis where the spins are almost in a plane per-
pendicular to the axis. The small rotation of the spin
about the trigonal axis results in a weak magnetic moment
parallel to the two fold axis in the basal plane thus giving
rise to a weak ferromagnetic behaviour. Domain structure in
a—FeZO3 have been observed indirectly by neutron diffraction
(Nathans et al. 1964) and directly by X-ray topographj
(Labushkin et al, 1978 and Clark et al. 1982) in single

crystal experiments. Clark et al, (1982) observed large

area basal plane walls in thin flux grown platelets of
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u—Fe203. The ratio orf the uniaxial anisotropy field to the
magnetization is favourable for the formation of in-plane
Bloch walls., An X-ray sensitive imagna system was used to
observe domain wall movement under the application of a weak
field perpendicular to the two fold axis. The existence of
the in-plane wall was confirmed by applying a field parallel
to the two fold axis and a gradual change in diffracted
intensity was observed which is reversible. The present
experiments were aimed at detecting any magnetostrictive
distortion between these domains and examining any changes in

rocking curve structure under application of an in-plane

magnetic field.

8.2.1 Experimental Procedure

The hematite crystals were grown at the Clarendon
Laboratory, Oxford some years ago from a PbO/Pbszlux. The
crystals are about 100 um thick and a few square centimeters
in area and are basal plane platelets. The crystalsused by
Clark et al. (1982) are from the same source.

A decent double crystal topograph was not successfully

obtained as the background intensity was too high. The

effect of magnetic field on the double crystal rocking curve
was investigated using both the synchrotron radiation and a
conventional X-ray source. The hematite crystal was

orientated for the 3030 reflection in the transmission geometry
and the reference crystal was the 422 reflection from a

LOPEX silicon. Fields up to 185 Gauss were applied to the

hematite crystal parallel to the crystal surface that is
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parallel to the two fold axis.

An absorption experiment was also carried out using a
device grade silicon crystal orientated for the 111 reflection
as the reference crystal. The beam reflected from the
silicon crystal reached the hematite platelets placed on the
second diffractometer axis perpendicular to the reflected
beam. The intensity transmitted through it was recorded on
a 25 um Nuclear Emulsion plate placed behind and very close
to the crystal. The experiment was repeated for X-ray wave-
lengths approaching and beyond that of the Fe absorption
edge which is 1,7438 by varying the 26 angle of the diffracto-
meter turntable, Typical exposure times were about 30
minutes at 1.9 GeV 100 mA before the absorption edge wave-

length and about 10 minutes when beyond the absorption edge.

8.2,2 Discussion of Results

Figure 8.1la is a zero field double crystal rocking
curve for a hematite crystal at a wavelength of about 1.88,
that is beyond the absorption edge of Fe and taken using
the synchrotron radiation source. As a variable magnetic
field was not available at this stage of the experiment a
permanent bar magnet whose field was measured to be about
100 Gauss, was applied parallel to the two fold axis. A
splitting of the rocking curve was obtained (Figure 8,1b)
which corresponds to two domains in the crystal separated by
about 76 arc seconds. This result prompted the experiment
of applying variable magnetic fields on the sample to be
carried out. A pair of coils which have a maximum field of

up Lo 250 Gauss was built for the purpose. Using the same
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hematite crystal as the one above, a series of rocking curves
(Figures 8.2 a-h) was obtained using the EGG and a con-
ventional source for fields up to 60 Gauss only as the
crystal was accidentally broken. The zero field rocking
curve (Figure 8.2a) shows that only one domain exists with a
FWHM of about 47 arc seconds. No significant changes occur
up to a field of about 42 Gauss when splitting occurs
(Figure 8.2e). Rocking curves obtained at a field of 50
Gauss show three domains present separated by about 25
arc seconds (Figure 8.2f)., The plot was repeated but the
field fluctuates by about * 2 Gauss due to the coil heating
up. The rocking curve (Figure 8.2g) shows quite a number
of peaks (about 8) which suggests that the domains structure
are extremely unstable. To confirm that splitting does not
exist at zero field, the zero field curve (Figure 8.2a)
was compared to the curve at 60 Gauss plotted with the same
step size (Figure 8.2h) and the zero field curve was replotted
at a higher sensitivity. Figure 8.2h shows that the splitting
was obvious even at a lower sensitivity step size and the
zero field plot at higher sensitivity shows that only one
domain exists at zero field.

The experiment was repeated several times with different
hematite crystals using the conventional X-ray source as
well as synchrotron radiation. In some cases including the
one carried out at Daresbury, no splitting was obtained. In
two cases, results similar to the one discussed above were
obtained that is multiple domains were formed which were
extremely unstable. In the first case the crystal was part

of the crystal used previously. The zero field rocking curve
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(Figure 8.3a) is about 90 arc seconds at FWHM with a kink
at the peak which suggests that a domain boundary may exist.
The domain boundary becomes dominant as the field was
increased up to 21 Gauss (Figures8.3b and c). As the field
was increased further to 30 Gauss and up to the maximum of
about 57 Gauss for this particular coil, multiple splitting
again takes place which was non-reproducible for the same
field setting. The curve identical to Figure 8,6a was
obtained when the field was reduced back to zero.

In the second case two well defined domains separated
by about 140 arc seconds were obtained at zero field for a
different hematite crystal (Figure 8.4a). This suggests
that there are two well defined magnetostrictive distortions
in the two domains., At a field of 150 Gauss three well
defined domains were obtained separated by about 100 and 110
arc seconds respectively (Figure 8.4c¢). The three peaks
were not reproducible (Figure 8.4d). The splitting obtained
as the field was increased up to 185 Gauss does not follow
a systematic change (Figures 8.4 c-f). No splitting of the
rocking curves was obtained when the experiment was repeated
by first increasing the field quickly up to a maximum and
then obtain rocking curves as the field was decreased to
zZero, In both cases where splitting occurs and does not
occur the integrated intensity increased with field and was
reversible, which confirms the existence of in-plane wall,.

Single crystal X-ray diffractometry on very high
magnetostriction rare earth element terbium (Clark, Tanner,
Farrant and Jones 1982) also show well resolved splitting

associated with the magnetic domains when the sample was
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cooled rapidly through the Curie Lemperaturce. However, slow
cooling through the Curie temperature only produced broadening
of the rocking curve but no individual domain peaks obtained.
The above results on hematite crystals in applied field is not
well understood. The zero field domains exhibits a complex
and non-systematic behaviour at a field when the splitting
occurs and were extremely unstable.

‘FigurGSSNSa and b are the absorption photographs of a
hematite crystal taken at X-ray wavelengths approaching and
beyond the absorption edge of TFe (A = 1.7438). In both
photographs the twin boundary A is dominant. As we pass
across the absorption edge the lines B get fainter and almost
disappear (Figure 8.5b). White spots appear along the twin
boundary and regions C corresponding to total absorption of
the Fe atoms which suggest that the twin boundary is iron
rich. Absorption radiography can be done at 1 um resolution
with a large increase in sensitivity above the absorption

edge.

8.3 Double Crystal Topographs of Indium Phosphide and Gallium

Arsenide Single Crystals

Double crystal topography have been used to image
defects inthe surface of crystals (Bonse 1962) and to image
very low levels of strains (Kohra et al. 1977). Due to its
non-destructive nature, the technique is very useful in
defect studies of materials such as indium phosphide and
gallium arsenide which are extensively used as substrate
materials for composite layer devices, for example, transferred

electron oscillators, field effect transistors and hetero-
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structural lasers. The evaluation of surface finish prior
to epitaxy (Jones et al, 1980) and the correlation between
features produced by chemical etching and the dislocation
lines in X-ray double crystal topographs(Brown et al. 1981)
are useful means of assessment of the nature and distri-

bution of defects.

8.3.1 Experimental Procedure

Double c¢rystal topographs of InP and GaAs substrate
wafers were obtained using the (+,-) seliing. The TnP was
grown by the Czochralski liquid encapsulation method. Both
crystals were grown at the Royal Signals and Radar Establish-
ment, Malvern. The reference crystal was a perfect silicon
crystal with zero dislocation density and low in carbon and
oxygen and was grown by the float zone technique. It is in
the form of a cylinder 10 mm thick and 25 mm in diameter. The
(111) surface was syton polished and etched chemically to
provide a strain damage free surface (Jones et al., 1980). An
asymmetric 422 reflection whose plane is at an angle of
19.5 degrees to the surface was used as the exploring beam
where a wider area of the sample could be imaged (b<1l).
Topographs of 422 and 440 reflections of indium phosphide
doped with germanium (Sample 886 InP, Ge doped) and the

440 reflection of gallium arsenide (Sample 280R) were
taken., Both samples had a (111) surface. The 422 reflection
topographs of InP were taken at four different positions on
the flank of the rocking curve (Figure 8.6). The 440

reflection topograph of InP and GaAs were taken for the three
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{440} planes by rotating the crystal by 120° about the normal
to the (111) surface. Typical exposure times were about
20-30 minutes at 1.9 GeV 90 mA using a 25 um Nuclear
Emulsion plate.

The wavelength used was 1.58 and is fixed by the 268
angle of the diffractometer turntable. In setting up for
the double reflection, transmission Laue photographs were
taken by placing Polaroid films behind the second crystal
to ensure that the diffracted beam from the first crystal
was reaching the second crystal. An image intensifier
placed at an angular distance of 29B from the direct beam
was used to detect the doubly diffracted beam and a TV
monitor was used to observe the image as the second crystal
was rotated through the Bragg peak. A scintillation detector
was used in the latter part of the experiment as the image
intensifier was not available. The image intensifier has
the advantage that the doubly diffracted beam can be found
much quicker as the second crystal can be scanned at the
fastest possible speed allowed by the software and the TV
monitor observed for the image to appear. If using a

scintillation detector the step count mode must be used,.

8.3.2 Discussion of Results

Figure 8.7 is the double crystal topograph of the 422
reflection from InP taken at position S on the flank of the
rocking curve (Fiugre 8.6). The difference in contrast
suggests that the crystal is bent. The topographs of Figures

8.8 a-d are a magnification of region X of Figure 8.7
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corresponding to positions P, Q, R and S on the flank of the
rocking curve (Figure 8.6). Observe the change in contrast
as the crystal was rotated through its reflecting range.

The change in contrast is obvious in Figures8.8 a and d as
the topographs were taken on the linear part of the left and
right flank of the rocking curve. Specific examples are
features A, B, C, D and E (Figures 8.% a and d).

The topographs display a large number of point-like
profiles such as F, G, H and I (Figures 8.8 a and d) which
are probably due to dislocations coming up from the deeper
part of the crystal and piercing the surface rather steeply.
These dislocations have complementary contrast which suggests
that the Burger's vector are in opposite directions. The
dash-1like profiles D, J, K and L indicate that the dis-
locations run over a certain distance parallel to the surface.

Some of the point like profiles are arranged in the form
of an arc of a circle. M in Figure 8.8 a, b and « have the
same contrast and is opposite to that of IFigure 8.8d. Other
examples are F and N. Catholuminescense experiments in GaAs
(Brown 1982) suggest that dislocations do not lie exactly
in the (111) slip plane but go up and down the plane. They
can be correlated to the arc of dots F, M and N.

Another interesting feature are the two semicircular
images ofthe same contrast forming a circle but sandwiched
by an image of opposite contrast. These fecatures are marked
in Figures8.9 a and b (A, B, C, D, E) which corresponds to
region Y of Figure 8.7 and on opposite flank P and S of the

rocking curve (Figure 8.6). They are probably due to Grappes
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defects commonly found in impurity - associated inclusions.
Burgers vector analysis can be done on the three 440
reflection topographs of InP and GaAs. Figures 8. 10a and b
are the corresponding topographs of nP. The dislocation
lines B, C, D, E and F are visible in Figure 8.10a but
they are not completely invisible in Figure 8310b. This
suggests that they are 60° type dislocations where the
Burgers vector is neither parallel or perpendicular to the
dislocation. The dislocation lines of GaAs (Figures 8.11
and 8.12) show a dendritic like pattern where the dis-
locations branch to other dislocations. Similarly a 60°
type dislocation can be identified at point A (Figures
8.11 a, b and c) and points A, B and C (Figures 8.12 a, b

and c).
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Appehdix 1

the manual control system.
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Appehdix 2

control program for the double ohy8£c1

diffractometer.

10 p
20 d
30 a
40 ¢
50 i
60 i
70 p

oke1,0:poke2,148:a%=1:n%=1:1t%=1
ima(500):dimp(50):dimhd(500)
d=64:u1=36:d1=37:u2=40:d2=41
1=32:a1=33:c2=44:32=45:xi=16:yi=17
nput"input axis 1 or 2";ax
nput"angle per step";uu
rint"*******************"
print"counter add=";ad
print"axis 1 add=";ul;d1
print"axis 2 add=";u2;d2
print"goniometer 1 add=";c1;al
print"goniometer 2 add=";c2;a2
print"d-a converter add=";xi;yi
print"*******************"

print'"rs:reset axis*co:count"

“print"sc:scan*gn:tilt goniometer"

print"fi:find*pl:plot*fl:.flank"
print"au:automatic tilting & plotting"

print"*******************H

print"press any key to stop in co,sc,fi,pl&flroutine"
print"*******************"
input"routine";r$
ifr$="rs"thengosub1000
ifr$="co"thengosub1500
ifr$="sc"thengosub2000
ifr$="gn"thengosub3000
ifr$="fi"thengosub3500
ifr$="pl"thengosubd000
ifr$="f1"thengosub4500
ifr$="au"thengosub5000
goto70
rem resetting axis
input"input axis:t or 2";ax
input'angle per step";uu
return
rem counting routine
input"input counting time";s
- a%=ad:t%=s:printusr(2)
getb$:ifb$=""then1520
ifax=1thenprint"***position of axis 1***";s1:return
ifax=2thenprint"***position of axis 2***";s2:return
rem scanning routine
print"axis=";ax
ifax=1thenup=ul:dn=d1
ifax=2thenup=u2:dn=d2
input"input motor steps";ms
input"input counting time";s
print"*******************"
print"***positive no. of steps:clockwise***"
print"*negative no. of steps:anticlockwise*"
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2090 print”*********k*********"

2100 input"input no. of cycles";no
2110 ifno=0then2230

2120 fori=1toabs(no)

2130 ifno>0thena%=up:n%=ms:t%=1:a=usr (1)
2140 ifno<Othena%=dn:n%=ms:t%=1:a=usr (1)
2150 a%=ad:t%=s:printusr(2)

2160 getb$:ifb%<>""then2190

2170 nexti

2180 i=abs(no)

2190 ifno>0thents=i*ms:a$="u"

2200 ifno<Othents=-(i*ms):a$="d"
2210 ifax=1thensi=s1+ts

2220 ifax=2thens2=s2+ts

2230 print"*******************"

2240 ifax=1thenprint"***position of axis 1***";s1

2250 ifax=2thenprint"***position of axis 2***";s?2

2260 print"***axis rotation=";a%:return

2500 rem d-a converter routine

2510 a%=xi:n%=x:b=usr(4)

2520 forz=1to50:nextz:a%=yi:n%=y:b=usr(4):forz=1to50:next
2530 return ~
3000 rem tilting goniometer routine

3010 input"input goniometer 1 or 2";gn

3020 ifgn=1thenup=ct:dn=al

3030 ifgn=2thenup=c2:dn=a2

3040 print"*******************"

3050 print"*positive no. of steps:stretch spring*"
3060 print"*negative no. of steps:compress spring*”
3070 input"input no. of steps";gs

3080 ifgs=0then3130

3090 ifgs>Othena%=up:n%=abs(gs):t¥%=1:a=usr(1)

3100 ifgs<Othena%=dn:n%=abs(gs):t%=1:a=usr(1)

3110 ifgn=1thengt=g1+gs

3120 ifgn=2theng2=g2+gs

3130 ifgn=1thenprint"***tilt position for gon 1***";g1
3140 ifgn=2thenprint"***tjilt position for gon 2***";g2
3150 return

3244 print"***dn or d:anticlockwise rotation***"

3500 rem find routine

3502 print"*****yp or u:clockwise rotation**x*xu

3504 print"***dn or d:anticlockwise rotation***"

3506 print"*******************"

3510 print"axis=";ax

3520 ifax=1thenup=ul:dn=d1

3530 ifax=2thenup=u2:dn=d2

3540 input"input motor steps";ms

3550 input"input counting time";s

3560 input"input range in degrees";b

3570 print"range=";int(b*3600/uu);"steps"

3580 input"find in both directions?:y or n";c$

3590 input'"input limit stop";ls

3600 input"input axis rotation:u or d";a$

3610 n=0

3620 gosub3800
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3630 ifb$<>""ora>lsthen3740

3640 ifc$="y"then3660

3650 ifc$="n"then3740

3660 print"find in opposite direction”
3670 ifa$="u"thena%=dn

3680 ifa$="d"thena%=up

3690 n%=n*ms:t%=1:a=usr (1)

3700 n=-10

3710 ifa$="u"thena$="d":goto3730

3720 ifa$="d"thena$="u"

3730 gosub3800

3740 ifa$="d"thenn=-n

3750 ifax=1thensi=stl+n*ms

3760 ifax=2thens2=sZ2+n*ms

3770 ifax=1thenprint"***position of axis 1***";s1
3780 ifax=2thenprint"***position of axis 2***";s2
3790 print"***axis rotation=";a¥$:return
3800 ifn>abs(b*3600/uu/ms)thenreturn
3810 ifa$="u"thena%=up

3820 ifa$="d"thena%=dn

3830 n%=ms:t%=1:a=usr(1)

3840 a%=ad:t%=s:a=usr(2)

3850 n=n+1

3860 printa:ifa>lsthen3890

3870 getb$:ifb$<>""then3930

3880 goto3800

3890 a%=ad:t%=s:a=usr(2)

3900 printa:ifa>lsthen3930

3920 goto3800

3930 return

4000 rem plotting routine

4002 print"*plot routine is in clockwise rotation*"
4004 pY‘l nt HhkkhkkhkhkhkhkhkhkrAhhhkhkirhkh